1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 /* 92 * For asym packing, by default the lower numbered CPU has higher priority. 93 */ 94 int __weak arch_asym_cpu_priority(int cpu) 95 { 96 return -cpu; 97 } 98 99 /* 100 * The margin used when comparing utilization with CPU capacity. 101 * 102 * (default: ~20%) 103 */ 104 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 105 106 /* 107 * The margin used when comparing CPU capacities. 108 * is 'cap1' noticeably greater than 'cap2' 109 * 110 * (default: ~5%) 111 */ 112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 113 114 #ifdef CONFIG_CFS_BANDWIDTH 115 /* 116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 117 * each time a cfs_rq requests quota. 118 * 119 * Note: in the case that the slice exceeds the runtime remaining (either due 120 * to consumption or the quota being specified to be smaller than the slice) 121 * we will always only issue the remaining available time. 122 * 123 * (default: 5 msec, units: microseconds) 124 */ 125 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 126 #endif 127 128 #ifdef CONFIG_NUMA_BALANCING 129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 131 #endif 132 133 #ifdef CONFIG_SYSCTL 134 static const struct ctl_table sched_fair_sysctls[] = { 135 #ifdef CONFIG_CFS_BANDWIDTH 136 { 137 .procname = "sched_cfs_bandwidth_slice_us", 138 .data = &sysctl_sched_cfs_bandwidth_slice, 139 .maxlen = sizeof(unsigned int), 140 .mode = 0644, 141 .proc_handler = proc_dointvec_minmax, 142 .extra1 = SYSCTL_ONE, 143 }, 144 #endif 145 #ifdef CONFIG_NUMA_BALANCING 146 { 147 .procname = "numa_balancing_promote_rate_limit_MBps", 148 .data = &sysctl_numa_balancing_promote_rate_limit, 149 .maxlen = sizeof(unsigned int), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 }, 154 #endif /* CONFIG_NUMA_BALANCING */ 155 }; 156 157 static int __init sched_fair_sysctl_init(void) 158 { 159 register_sysctl_init("kernel", sched_fair_sysctls); 160 return 0; 161 } 162 late_initcall(sched_fair_sysctl_init); 163 #endif /* CONFIG_SYSCTL */ 164 165 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 166 { 167 lw->weight += inc; 168 lw->inv_weight = 0; 169 } 170 171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 172 { 173 lw->weight -= dec; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_set(struct load_weight *lw, unsigned long w) 178 { 179 lw->weight = w; 180 lw->inv_weight = 0; 181 } 182 183 /* 184 * Increase the granularity value when there are more CPUs, 185 * because with more CPUs the 'effective latency' as visible 186 * to users decreases. But the relationship is not linear, 187 * so pick a second-best guess by going with the log2 of the 188 * number of CPUs. 189 * 190 * This idea comes from the SD scheduler of Con Kolivas: 191 */ 192 static unsigned int get_update_sysctl_factor(void) 193 { 194 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 195 unsigned int factor; 196 197 switch (sysctl_sched_tunable_scaling) { 198 case SCHED_TUNABLESCALING_NONE: 199 factor = 1; 200 break; 201 case SCHED_TUNABLESCALING_LINEAR: 202 factor = cpus; 203 break; 204 case SCHED_TUNABLESCALING_LOG: 205 default: 206 factor = 1 + ilog2(cpus); 207 break; 208 } 209 210 return factor; 211 } 212 213 static void update_sysctl(void) 214 { 215 unsigned int factor = get_update_sysctl_factor(); 216 217 #define SET_SYSCTL(name) \ 218 (sysctl_##name = (factor) * normalized_sysctl_##name) 219 SET_SYSCTL(sched_base_slice); 220 #undef SET_SYSCTL 221 } 222 223 void __init sched_init_granularity(void) 224 { 225 update_sysctl(); 226 } 227 228 #define WMULT_CONST (~0U) 229 #define WMULT_SHIFT 32 230 231 static void __update_inv_weight(struct load_weight *lw) 232 { 233 unsigned long w; 234 235 if (likely(lw->inv_weight)) 236 return; 237 238 w = scale_load_down(lw->weight); 239 240 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 241 lw->inv_weight = 1; 242 else if (unlikely(!w)) 243 lw->inv_weight = WMULT_CONST; 244 else 245 lw->inv_weight = WMULT_CONST / w; 246 } 247 248 /* 249 * delta_exec * weight / lw.weight 250 * OR 251 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 252 * 253 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 254 * we're guaranteed shift stays positive because inv_weight is guaranteed to 255 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 256 * 257 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 258 * weight/lw.weight <= 1, and therefore our shift will also be positive. 259 */ 260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 261 { 262 u64 fact = scale_load_down(weight); 263 u32 fact_hi = (u32)(fact >> 32); 264 int shift = WMULT_SHIFT; 265 int fs; 266 267 __update_inv_weight(lw); 268 269 if (unlikely(fact_hi)) { 270 fs = fls(fact_hi); 271 shift -= fs; 272 fact >>= fs; 273 } 274 275 fact = mul_u32_u32(fact, lw->inv_weight); 276 277 fact_hi = (u32)(fact >> 32); 278 if (fact_hi) { 279 fs = fls(fact_hi); 280 shift -= fs; 281 fact >>= fs; 282 } 283 284 return mul_u64_u32_shr(delta_exec, fact, shift); 285 } 286 287 /* 288 * delta /= w 289 */ 290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 291 { 292 if (unlikely(se->load.weight != NICE_0_LOAD)) 293 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 294 295 return delta; 296 } 297 298 const struct sched_class fair_sched_class; 299 300 /************************************************************** 301 * CFS operations on generic schedulable entities: 302 */ 303 304 #ifdef CONFIG_FAIR_GROUP_SCHED 305 306 /* Walk up scheduling entities hierarchy */ 307 #define for_each_sched_entity(se) \ 308 for (; se; se = se->parent) 309 310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 311 { 312 struct rq *rq = rq_of(cfs_rq); 313 int cpu = cpu_of(rq); 314 315 if (cfs_rq->on_list) 316 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 317 318 cfs_rq->on_list = 1; 319 320 /* 321 * Ensure we either appear before our parent (if already 322 * enqueued) or force our parent to appear after us when it is 323 * enqueued. The fact that we always enqueue bottom-up 324 * reduces this to two cases and a special case for the root 325 * cfs_rq. Furthermore, it also means that we will always reset 326 * tmp_alone_branch either when the branch is connected 327 * to a tree or when we reach the top of the tree 328 */ 329 if (cfs_rq->tg->parent && 330 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 331 /* 332 * If parent is already on the list, we add the child 333 * just before. Thanks to circular linked property of 334 * the list, this means to put the child at the tail 335 * of the list that starts by parent. 336 */ 337 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 338 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 339 /* 340 * The branch is now connected to its tree so we can 341 * reset tmp_alone_branch to the beginning of the 342 * list. 343 */ 344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 345 return true; 346 } 347 348 if (!cfs_rq->tg->parent) { 349 /* 350 * cfs rq without parent should be put 351 * at the tail of the list. 352 */ 353 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 354 &rq->leaf_cfs_rq_list); 355 /* 356 * We have reach the top of a tree so we can reset 357 * tmp_alone_branch to the beginning of the list. 358 */ 359 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 360 return true; 361 } 362 363 /* 364 * The parent has not already been added so we want to 365 * make sure that it will be put after us. 366 * tmp_alone_branch points to the begin of the branch 367 * where we will add parent. 368 */ 369 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 370 /* 371 * update tmp_alone_branch to points to the new begin 372 * of the branch 373 */ 374 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 375 return false; 376 } 377 378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 379 { 380 if (cfs_rq->on_list) { 381 struct rq *rq = rq_of(cfs_rq); 382 383 /* 384 * With cfs_rq being unthrottled/throttled during an enqueue, 385 * it can happen the tmp_alone_branch points to the leaf that 386 * we finally want to delete. In this case, tmp_alone_branch moves 387 * to the prev element but it will point to rq->leaf_cfs_rq_list 388 * at the end of the enqueue. 389 */ 390 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 391 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 392 393 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 394 cfs_rq->on_list = 0; 395 } 396 } 397 398 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 399 { 400 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 401 } 402 403 /* Iterate through all leaf cfs_rq's on a runqueue */ 404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 405 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 406 leaf_cfs_rq_list) 407 408 /* Do the two (enqueued) entities belong to the same group ? */ 409 static inline struct cfs_rq * 410 is_same_group(struct sched_entity *se, struct sched_entity *pse) 411 { 412 if (se->cfs_rq == pse->cfs_rq) 413 return se->cfs_rq; 414 415 return NULL; 416 } 417 418 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 419 { 420 return se->parent; 421 } 422 423 static void 424 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 425 { 426 int se_depth, pse_depth; 427 428 /* 429 * preemption test can be made between sibling entities who are in the 430 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 431 * both tasks until we find their ancestors who are siblings of common 432 * parent. 433 */ 434 435 /* First walk up until both entities are at same depth */ 436 se_depth = (*se)->depth; 437 pse_depth = (*pse)->depth; 438 439 while (se_depth > pse_depth) { 440 se_depth--; 441 *se = parent_entity(*se); 442 } 443 444 while (pse_depth > se_depth) { 445 pse_depth--; 446 *pse = parent_entity(*pse); 447 } 448 449 while (!is_same_group(*se, *pse)) { 450 *se = parent_entity(*se); 451 *pse = parent_entity(*pse); 452 } 453 } 454 455 static int tg_is_idle(struct task_group *tg) 456 { 457 return tg->idle > 0; 458 } 459 460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 461 { 462 return cfs_rq->idle > 0; 463 } 464 465 static int se_is_idle(struct sched_entity *se) 466 { 467 if (entity_is_task(se)) 468 return task_has_idle_policy(task_of(se)); 469 return cfs_rq_is_idle(group_cfs_rq(se)); 470 } 471 472 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 473 474 #define for_each_sched_entity(se) \ 475 for (; se; se = NULL) 476 477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 478 { 479 return true; 480 } 481 482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 483 { 484 } 485 486 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 487 { 488 } 489 490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 491 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 492 493 static inline struct sched_entity *parent_entity(struct sched_entity *se) 494 { 495 return NULL; 496 } 497 498 static inline void 499 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 500 { 501 } 502 503 static inline int tg_is_idle(struct task_group *tg) 504 { 505 return 0; 506 } 507 508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 509 { 510 return 0; 511 } 512 513 static int se_is_idle(struct sched_entity *se) 514 { 515 return task_has_idle_policy(task_of(se)); 516 } 517 518 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 519 520 static __always_inline 521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 522 523 /************************************************************** 524 * Scheduling class tree data structure manipulation methods: 525 */ 526 527 extern void __BUILD_BUG_vruntime_cmp(void); 528 529 /* Use __builtin_strcmp() because of __HAVE_ARCH_STRCMP: */ 530 531 #define vruntime_cmp(A, CMP_STR, B) ({ \ 532 int __res = 0; \ 533 \ 534 if (!__builtin_strcmp(CMP_STR, "<")) { \ 535 __res = ((s64)((A)-(B)) < 0); \ 536 } else if (!__builtin_strcmp(CMP_STR, "<=")) { \ 537 __res = ((s64)((A)-(B)) <= 0); \ 538 } else if (!__builtin_strcmp(CMP_STR, ">")) { \ 539 __res = ((s64)((A)-(B)) > 0); \ 540 } else if (!__builtin_strcmp(CMP_STR, ">=")) { \ 541 __res = ((s64)((A)-(B)) >= 0); \ 542 } else { \ 543 /* Unknown operator throws linker error: */ \ 544 __BUILD_BUG_vruntime_cmp(); \ 545 } \ 546 \ 547 __res; \ 548 }) 549 550 extern void __BUILD_BUG_vruntime_op(void); 551 552 #define vruntime_op(A, OP_STR, B) ({ \ 553 s64 __res = 0; \ 554 \ 555 if (!__builtin_strcmp(OP_STR, "-")) { \ 556 __res = (s64)((A)-(B)); \ 557 } else { \ 558 /* Unknown operator throws linker error: */ \ 559 __BUILD_BUG_vruntime_op(); \ 560 } \ 561 \ 562 __res; \ 563 }) 564 565 566 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 567 { 568 if (vruntime_cmp(vruntime, ">", max_vruntime)) 569 max_vruntime = vruntime; 570 571 return max_vruntime; 572 } 573 574 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 575 { 576 if (vruntime_cmp(vruntime, "<", min_vruntime)) 577 min_vruntime = vruntime; 578 579 return min_vruntime; 580 } 581 582 static inline bool entity_before(const struct sched_entity *a, 583 const struct sched_entity *b) 584 { 585 /* 586 * Tiebreak on vruntime seems unnecessary since it can 587 * hardly happen. 588 */ 589 return vruntime_cmp(a->deadline, "<", b->deadline); 590 } 591 592 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 593 { 594 return vruntime_op(se->vruntime, "-", cfs_rq->zero_vruntime); 595 } 596 597 #define __node_2_se(node) \ 598 rb_entry((node), struct sched_entity, run_node) 599 600 /* 601 * Compute virtual time from the per-task service numbers: 602 * 603 * Fair schedulers conserve lag: 604 * 605 * \Sum lag_i = 0 606 * 607 * Where lag_i is given by: 608 * 609 * lag_i = S - s_i = w_i * (V - v_i) 610 * 611 * Where S is the ideal service time and V is it's virtual time counterpart. 612 * Therefore: 613 * 614 * \Sum lag_i = 0 615 * \Sum w_i * (V - v_i) = 0 616 * \Sum (w_i * V - w_i * v_i) = 0 617 * 618 * From which we can solve an expression for V in v_i (which we have in 619 * se->vruntime): 620 * 621 * \Sum v_i * w_i \Sum v_i * w_i 622 * V = -------------- = -------------- 623 * \Sum w_i W 624 * 625 * Specifically, this is the weighted average of all entity virtual runtimes. 626 * 627 * [[ NOTE: this is only equal to the ideal scheduler under the condition 628 * that join/leave operations happen at lag_i = 0, otherwise the 629 * virtual time has non-contiguous motion equivalent to: 630 * 631 * V +-= lag_i / W 632 * 633 * Also see the comment in place_entity() that deals with this. ]] 634 * 635 * However, since v_i is u64, and the multiplication could easily overflow 636 * transform it into a relative form that uses smaller quantities: 637 * 638 * Substitute: v_i == (v_i - v0) + v0 639 * 640 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 641 * V = ---------------------------- = --------------------- + v0 642 * W W 643 * 644 * Which we track using: 645 * 646 * v0 := cfs_rq->zero_vruntime 647 * \Sum (v_i - v0) * w_i := cfs_rq->sum_w_vruntime 648 * \Sum w_i := cfs_rq->sum_weight 649 * 650 * Since zero_vruntime closely tracks the per-task service, these 651 * deltas: (v_i - v0), will be in the order of the maximal (virtual) lag 652 * induced in the system due to quantisation. 653 * 654 * Also, we use scale_load_down() to reduce the size. 655 * 656 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 657 */ 658 static void 659 sum_w_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 660 { 661 unsigned long weight = scale_load_down(se->load.weight); 662 s64 key = entity_key(cfs_rq, se); 663 664 cfs_rq->sum_w_vruntime += key * weight; 665 cfs_rq->sum_weight += weight; 666 } 667 668 static void 669 sum_w_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 670 { 671 unsigned long weight = scale_load_down(se->load.weight); 672 s64 key = entity_key(cfs_rq, se); 673 674 cfs_rq->sum_w_vruntime -= key * weight; 675 cfs_rq->sum_weight -= weight; 676 } 677 678 static inline 679 void sum_w_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 680 { 681 /* 682 * v' = v + d ==> sum_w_vruntime' = sum_runtime - d*sum_weight 683 */ 684 cfs_rq->sum_w_vruntime -= cfs_rq->sum_weight * delta; 685 } 686 687 /* 688 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 689 * For this to be so, the result of this function must have a left bias. 690 */ 691 u64 avg_vruntime(struct cfs_rq *cfs_rq) 692 { 693 struct sched_entity *curr = cfs_rq->curr; 694 s64 avg = cfs_rq->sum_w_vruntime; 695 long load = cfs_rq->sum_weight; 696 697 if (curr && curr->on_rq) { 698 unsigned long weight = scale_load_down(curr->load.weight); 699 700 avg += entity_key(cfs_rq, curr) * weight; 701 load += weight; 702 } 703 704 if (load) { 705 /* sign flips effective floor / ceiling */ 706 if (avg < 0) 707 avg -= (load - 1); 708 avg = div_s64(avg, load); 709 } 710 711 return cfs_rq->zero_vruntime + avg; 712 } 713 714 /* 715 * lag_i = S - s_i = w_i * (V - v_i) 716 * 717 * However, since V is approximated by the weighted average of all entities it 718 * is possible -- by addition/removal/reweight to the tree -- to move V around 719 * and end up with a larger lag than we started with. 720 * 721 * Limit this to either double the slice length with a minimum of TICK_NSEC 722 * since that is the timing granularity. 723 * 724 * EEVDF gives the following limit for a steady state system: 725 * 726 * -r_max < lag < max(r_max, q) 727 * 728 * XXX could add max_slice to the augmented data to track this. 729 */ 730 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 731 { 732 s64 vlag, limit; 733 734 WARN_ON_ONCE(!se->on_rq); 735 736 vlag = avg_vruntime(cfs_rq) - se->vruntime; 737 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 738 739 se->vlag = clamp(vlag, -limit, limit); 740 } 741 742 /* 743 * Entity is eligible once it received less service than it ought to have, 744 * eg. lag >= 0. 745 * 746 * lag_i = S - s_i = w_i*(V - v_i) 747 * 748 * lag_i >= 0 -> V >= v_i 749 * 750 * \Sum (v_i - v)*w_i 751 * V = ------------------ + v 752 * \Sum w_i 753 * 754 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 755 * 756 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 757 * to the loss in precision caused by the division. 758 */ 759 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 760 { 761 struct sched_entity *curr = cfs_rq->curr; 762 s64 avg = cfs_rq->sum_w_vruntime; 763 long load = cfs_rq->sum_weight; 764 765 if (curr && curr->on_rq) { 766 unsigned long weight = scale_load_down(curr->load.weight); 767 768 avg += entity_key(cfs_rq, curr) * weight; 769 load += weight; 770 } 771 772 return avg >= vruntime_op(vruntime, "-", cfs_rq->zero_vruntime) * load; 773 } 774 775 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 776 { 777 return vruntime_eligible(cfs_rq, se->vruntime); 778 } 779 780 static void update_zero_vruntime(struct cfs_rq *cfs_rq) 781 { 782 u64 vruntime = avg_vruntime(cfs_rq); 783 s64 delta = vruntime_op(vruntime, "-", cfs_rq->zero_vruntime); 784 785 sum_w_vruntime_update(cfs_rq, delta); 786 787 cfs_rq->zero_vruntime = vruntime; 788 } 789 790 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 791 { 792 struct sched_entity *root = __pick_root_entity(cfs_rq); 793 struct sched_entity *curr = cfs_rq->curr; 794 u64 min_slice = ~0ULL; 795 796 if (curr && curr->on_rq) 797 min_slice = curr->slice; 798 799 if (root) 800 min_slice = min(min_slice, root->min_slice); 801 802 return min_slice; 803 } 804 805 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 806 { 807 return entity_before(__node_2_se(a), __node_2_se(b)); 808 } 809 810 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 811 { 812 if (node) { 813 struct sched_entity *rse = __node_2_se(node); 814 815 if (vruntime_cmp(se->min_vruntime, ">", rse->min_vruntime)) 816 se->min_vruntime = rse->min_vruntime; 817 } 818 } 819 820 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 821 { 822 if (node) { 823 struct sched_entity *rse = __node_2_se(node); 824 if (rse->min_slice < se->min_slice) 825 se->min_slice = rse->min_slice; 826 } 827 } 828 829 /* 830 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 831 */ 832 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 833 { 834 u64 old_min_vruntime = se->min_vruntime; 835 u64 old_min_slice = se->min_slice; 836 struct rb_node *node = &se->run_node; 837 838 se->min_vruntime = se->vruntime; 839 __min_vruntime_update(se, node->rb_right); 840 __min_vruntime_update(se, node->rb_left); 841 842 se->min_slice = se->slice; 843 __min_slice_update(se, node->rb_right); 844 __min_slice_update(se, node->rb_left); 845 846 return se->min_vruntime == old_min_vruntime && 847 se->min_slice == old_min_slice; 848 } 849 850 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 851 run_node, min_vruntime, min_vruntime_update); 852 853 /* 854 * Enqueue an entity into the rb-tree: 855 */ 856 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 857 { 858 sum_w_vruntime_add(cfs_rq, se); 859 update_zero_vruntime(cfs_rq); 860 se->min_vruntime = se->vruntime; 861 se->min_slice = se->slice; 862 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 863 __entity_less, &min_vruntime_cb); 864 } 865 866 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 867 { 868 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 869 &min_vruntime_cb); 870 sum_w_vruntime_sub(cfs_rq, se); 871 update_zero_vruntime(cfs_rq); 872 } 873 874 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 875 { 876 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 877 878 if (!root) 879 return NULL; 880 881 return __node_2_se(root); 882 } 883 884 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 885 { 886 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 887 888 if (!left) 889 return NULL; 890 891 return __node_2_se(left); 892 } 893 894 /* 895 * Set the vruntime up to which an entity can run before looking 896 * for another entity to pick. 897 * In case of run to parity, we use the shortest slice of the enqueued 898 * entities to set the protected period. 899 * When run to parity is disabled, we give a minimum quantum to the running 900 * entity to ensure progress. 901 */ 902 static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 903 { 904 u64 slice = normalized_sysctl_sched_base_slice; 905 u64 vprot = se->deadline; 906 907 if (sched_feat(RUN_TO_PARITY)) 908 slice = cfs_rq_min_slice(cfs_rq); 909 910 slice = min(slice, se->slice); 911 if (slice != se->slice) 912 vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se)); 913 914 se->vprot = vprot; 915 } 916 917 static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 918 { 919 u64 slice = cfs_rq_min_slice(cfs_rq); 920 921 se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se)); 922 } 923 924 static inline bool protect_slice(struct sched_entity *se) 925 { 926 return vruntime_cmp(se->vruntime, "<", se->vprot); 927 } 928 929 static inline void cancel_protect_slice(struct sched_entity *se) 930 { 931 if (protect_slice(se)) 932 se->vprot = se->vruntime; 933 } 934 935 /* 936 * Earliest Eligible Virtual Deadline First 937 * 938 * In order to provide latency guarantees for different request sizes 939 * EEVDF selects the best runnable task from two criteria: 940 * 941 * 1) the task must be eligible (must be owed service) 942 * 943 * 2) from those tasks that meet 1), we select the one 944 * with the earliest virtual deadline. 945 * 946 * We can do this in O(log n) time due to an augmented RB-tree. The 947 * tree keeps the entries sorted on deadline, but also functions as a 948 * heap based on the vruntime by keeping: 949 * 950 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 951 * 952 * Which allows tree pruning through eligibility. 953 */ 954 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect) 955 { 956 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 957 struct sched_entity *se = __pick_first_entity(cfs_rq); 958 struct sched_entity *curr = cfs_rq->curr; 959 struct sched_entity *best = NULL; 960 961 /* 962 * We can safely skip eligibility check if there is only one entity 963 * in this cfs_rq, saving some cycles. 964 */ 965 if (cfs_rq->nr_queued == 1) 966 return curr && curr->on_rq ? curr : se; 967 968 /* 969 * Picking the ->next buddy will affect latency but not fairness. 970 */ 971 if (sched_feat(PICK_BUDDY) && 972 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 973 /* ->next will never be delayed */ 974 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 975 return cfs_rq->next; 976 } 977 978 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 979 curr = NULL; 980 981 if (curr && protect && protect_slice(curr)) 982 return curr; 983 984 /* Pick the leftmost entity if it's eligible */ 985 if (se && entity_eligible(cfs_rq, se)) { 986 best = se; 987 goto found; 988 } 989 990 /* Heap search for the EEVD entity */ 991 while (node) { 992 struct rb_node *left = node->rb_left; 993 994 /* 995 * Eligible entities in left subtree are always better 996 * choices, since they have earlier deadlines. 997 */ 998 if (left && vruntime_eligible(cfs_rq, 999 __node_2_se(left)->min_vruntime)) { 1000 node = left; 1001 continue; 1002 } 1003 1004 se = __node_2_se(node); 1005 1006 /* 1007 * The left subtree either is empty or has no eligible 1008 * entity, so check the current node since it is the one 1009 * with earliest deadline that might be eligible. 1010 */ 1011 if (entity_eligible(cfs_rq, se)) { 1012 best = se; 1013 break; 1014 } 1015 1016 node = node->rb_right; 1017 } 1018 found: 1019 if (!best || (curr && entity_before(curr, best))) 1020 best = curr; 1021 1022 return best; 1023 } 1024 1025 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 1026 { 1027 return __pick_eevdf(cfs_rq, true); 1028 } 1029 1030 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 1031 { 1032 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 1033 1034 if (!last) 1035 return NULL; 1036 1037 return __node_2_se(last); 1038 } 1039 1040 /************************************************************** 1041 * Scheduling class statistics methods: 1042 */ 1043 int sched_update_scaling(void) 1044 { 1045 unsigned int factor = get_update_sysctl_factor(); 1046 1047 #define WRT_SYSCTL(name) \ 1048 (normalized_sysctl_##name = sysctl_##name / (factor)) 1049 WRT_SYSCTL(sched_base_slice); 1050 #undef WRT_SYSCTL 1051 1052 return 0; 1053 } 1054 1055 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1056 1057 /* 1058 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1059 * this is probably good enough. 1060 */ 1061 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1062 { 1063 if (vruntime_cmp(se->vruntime, "<", se->deadline)) 1064 return false; 1065 1066 /* 1067 * For EEVDF the virtual time slope is determined by w_i (iow. 1068 * nice) while the request time r_i is determined by 1069 * sysctl_sched_base_slice. 1070 */ 1071 if (!se->custom_slice) 1072 se->slice = sysctl_sched_base_slice; 1073 1074 /* 1075 * EEVDF: vd_i = ve_i + r_i / w_i 1076 */ 1077 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1078 1079 /* 1080 * The task has consumed its request, reschedule. 1081 */ 1082 return true; 1083 } 1084 1085 #include "pelt.h" 1086 1087 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1088 static unsigned long task_h_load(struct task_struct *p); 1089 static unsigned long capacity_of(int cpu); 1090 1091 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1092 void init_entity_runnable_average(struct sched_entity *se) 1093 { 1094 struct sched_avg *sa = &se->avg; 1095 1096 memset(sa, 0, sizeof(*sa)); 1097 1098 /* 1099 * Tasks are initialized with full load to be seen as heavy tasks until 1100 * they get a chance to stabilize to their real load level. 1101 * Group entities are initialized with zero load to reflect the fact that 1102 * nothing has been attached to the task group yet. 1103 */ 1104 if (entity_is_task(se)) 1105 sa->load_avg = scale_load_down(se->load.weight); 1106 1107 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1108 } 1109 1110 /* 1111 * With new tasks being created, their initial util_avgs are extrapolated 1112 * based on the cfs_rq's current util_avg: 1113 * 1114 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1115 * * se_weight(se) 1116 * 1117 * However, in many cases, the above util_avg does not give a desired 1118 * value. Moreover, the sum of the util_avgs may be divergent, such 1119 * as when the series is a harmonic series. 1120 * 1121 * To solve this problem, we also cap the util_avg of successive tasks to 1122 * only 1/2 of the left utilization budget: 1123 * 1124 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1125 * 1126 * where n denotes the nth task and cpu_scale the CPU capacity. 1127 * 1128 * For example, for a CPU with 1024 of capacity, a simplest series from 1129 * the beginning would be like: 1130 * 1131 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1132 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1133 * 1134 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1135 * if util_avg > util_avg_cap. 1136 */ 1137 void post_init_entity_util_avg(struct task_struct *p) 1138 { 1139 struct sched_entity *se = &p->se; 1140 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1141 struct sched_avg *sa = &se->avg; 1142 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1143 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1144 1145 if (p->sched_class != &fair_sched_class) { 1146 /* 1147 * For !fair tasks do: 1148 * 1149 update_cfs_rq_load_avg(now, cfs_rq); 1150 attach_entity_load_avg(cfs_rq, se); 1151 switched_from_fair(rq, p); 1152 * 1153 * such that the next switched_to_fair() has the 1154 * expected state. 1155 */ 1156 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1157 return; 1158 } 1159 1160 if (cap > 0) { 1161 if (cfs_rq->avg.util_avg != 0) { 1162 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1163 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1164 1165 if (sa->util_avg > cap) 1166 sa->util_avg = cap; 1167 } else { 1168 sa->util_avg = cap; 1169 } 1170 } 1171 1172 sa->runnable_avg = sa->util_avg; 1173 } 1174 1175 static s64 update_se(struct rq *rq, struct sched_entity *se) 1176 { 1177 u64 now = rq_clock_task(rq); 1178 s64 delta_exec; 1179 1180 delta_exec = now - se->exec_start; 1181 if (unlikely(delta_exec <= 0)) 1182 return delta_exec; 1183 1184 se->exec_start = now; 1185 if (entity_is_task(se)) { 1186 struct task_struct *donor = task_of(se); 1187 struct task_struct *running = rq->curr; 1188 /* 1189 * If se is a task, we account the time against the running 1190 * task, as w/ proxy-exec they may not be the same. 1191 */ 1192 running->se.exec_start = now; 1193 running->se.sum_exec_runtime += delta_exec; 1194 1195 trace_sched_stat_runtime(running, delta_exec); 1196 account_group_exec_runtime(running, delta_exec); 1197 1198 /* cgroup time is always accounted against the donor */ 1199 cgroup_account_cputime(donor, delta_exec); 1200 } else { 1201 /* If not task, account the time against donor se */ 1202 se->sum_exec_runtime += delta_exec; 1203 } 1204 1205 if (schedstat_enabled()) { 1206 struct sched_statistics *stats; 1207 1208 stats = __schedstats_from_se(se); 1209 __schedstat_set(stats->exec_max, 1210 max(delta_exec, stats->exec_max)); 1211 } 1212 1213 return delta_exec; 1214 } 1215 1216 static void set_next_buddy(struct sched_entity *se); 1217 1218 /* 1219 * Used by other classes to account runtime. 1220 */ 1221 s64 update_curr_common(struct rq *rq) 1222 { 1223 return update_se(rq, &rq->donor->se); 1224 } 1225 1226 /* 1227 * Update the current task's runtime statistics. 1228 */ 1229 static void update_curr(struct cfs_rq *cfs_rq) 1230 { 1231 /* 1232 * Note: cfs_rq->curr corresponds to the task picked to 1233 * run (ie: rq->donor.se) which due to proxy-exec may 1234 * not necessarily be the actual task running 1235 * (rq->curr.se). This is easy to confuse! 1236 */ 1237 struct sched_entity *curr = cfs_rq->curr; 1238 struct rq *rq = rq_of(cfs_rq); 1239 s64 delta_exec; 1240 bool resched; 1241 1242 if (unlikely(!curr)) 1243 return; 1244 1245 delta_exec = update_se(rq, curr); 1246 if (unlikely(delta_exec <= 0)) 1247 return; 1248 1249 curr->vruntime += calc_delta_fair(delta_exec, curr); 1250 resched = update_deadline(cfs_rq, curr); 1251 1252 if (entity_is_task(curr)) { 1253 /* 1254 * If the fair_server is active, we need to account for the 1255 * fair_server time whether or not the task is running on 1256 * behalf of fair_server or not: 1257 * - If the task is running on behalf of fair_server, we need 1258 * to limit its time based on the assigned runtime. 1259 * - Fair task that runs outside of fair_server should account 1260 * against fair_server such that it can account for this time 1261 * and possibly avoid running this period. 1262 */ 1263 dl_server_update(&rq->fair_server, delta_exec); 1264 } 1265 1266 account_cfs_rq_runtime(cfs_rq, delta_exec); 1267 1268 if (cfs_rq->nr_queued == 1) 1269 return; 1270 1271 if (resched || !protect_slice(curr)) { 1272 resched_curr_lazy(rq); 1273 clear_buddies(cfs_rq, curr); 1274 } 1275 } 1276 1277 static void update_curr_fair(struct rq *rq) 1278 { 1279 update_curr(cfs_rq_of(&rq->donor->se)); 1280 } 1281 1282 static inline void 1283 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1284 { 1285 struct sched_statistics *stats; 1286 struct task_struct *p = NULL; 1287 1288 if (!schedstat_enabled()) 1289 return; 1290 1291 stats = __schedstats_from_se(se); 1292 1293 if (entity_is_task(se)) 1294 p = task_of(se); 1295 1296 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1297 } 1298 1299 static inline void 1300 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1301 { 1302 struct sched_statistics *stats; 1303 struct task_struct *p = NULL; 1304 1305 if (!schedstat_enabled()) 1306 return; 1307 1308 stats = __schedstats_from_se(se); 1309 1310 /* 1311 * When the sched_schedstat changes from 0 to 1, some sched se 1312 * maybe already in the runqueue, the se->statistics.wait_start 1313 * will be 0.So it will let the delta wrong. We need to avoid this 1314 * scenario. 1315 */ 1316 if (unlikely(!schedstat_val(stats->wait_start))) 1317 return; 1318 1319 if (entity_is_task(se)) 1320 p = task_of(se); 1321 1322 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1323 } 1324 1325 static inline void 1326 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1327 { 1328 struct sched_statistics *stats; 1329 struct task_struct *tsk = NULL; 1330 1331 if (!schedstat_enabled()) 1332 return; 1333 1334 stats = __schedstats_from_se(se); 1335 1336 if (entity_is_task(se)) 1337 tsk = task_of(se); 1338 1339 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1340 } 1341 1342 /* 1343 * Task is being enqueued - update stats: 1344 */ 1345 static inline void 1346 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1347 { 1348 if (!schedstat_enabled()) 1349 return; 1350 1351 /* 1352 * Are we enqueueing a waiting task? (for current tasks 1353 * a dequeue/enqueue event is a NOP) 1354 */ 1355 if (se != cfs_rq->curr) 1356 update_stats_wait_start_fair(cfs_rq, se); 1357 1358 if (flags & ENQUEUE_WAKEUP) 1359 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1360 } 1361 1362 static inline void 1363 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1364 { 1365 1366 if (!schedstat_enabled()) 1367 return; 1368 1369 /* 1370 * Mark the end of the wait period if dequeueing a 1371 * waiting task: 1372 */ 1373 if (se != cfs_rq->curr) 1374 update_stats_wait_end_fair(cfs_rq, se); 1375 1376 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1377 struct task_struct *tsk = task_of(se); 1378 unsigned int state; 1379 1380 /* XXX racy against TTWU */ 1381 state = READ_ONCE(tsk->__state); 1382 if (state & TASK_INTERRUPTIBLE) 1383 __schedstat_set(tsk->stats.sleep_start, 1384 rq_clock(rq_of(cfs_rq))); 1385 if (state & TASK_UNINTERRUPTIBLE) 1386 __schedstat_set(tsk->stats.block_start, 1387 rq_clock(rq_of(cfs_rq))); 1388 } 1389 } 1390 1391 /* 1392 * We are picking a new current task - update its stats: 1393 */ 1394 static inline void 1395 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1396 { 1397 /* 1398 * We are starting a new run period: 1399 */ 1400 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1401 } 1402 1403 /************************************************** 1404 * Scheduling class queueing methods: 1405 */ 1406 1407 static inline bool is_core_idle(int cpu) 1408 { 1409 #ifdef CONFIG_SCHED_SMT 1410 int sibling; 1411 1412 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1413 if (cpu == sibling) 1414 continue; 1415 1416 if (!idle_cpu(sibling)) 1417 return false; 1418 } 1419 #endif 1420 1421 return true; 1422 } 1423 1424 #ifdef CONFIG_NUMA 1425 #define NUMA_IMBALANCE_MIN 2 1426 1427 static inline long 1428 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1429 { 1430 /* 1431 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1432 * threshold. Above this threshold, individual tasks may be contending 1433 * for both memory bandwidth and any shared HT resources. This is an 1434 * approximation as the number of running tasks may not be related to 1435 * the number of busy CPUs due to sched_setaffinity. 1436 */ 1437 if (dst_running > imb_numa_nr) 1438 return imbalance; 1439 1440 /* 1441 * Allow a small imbalance based on a simple pair of communicating 1442 * tasks that remain local when the destination is lightly loaded. 1443 */ 1444 if (imbalance <= NUMA_IMBALANCE_MIN) 1445 return 0; 1446 1447 return imbalance; 1448 } 1449 #endif /* CONFIG_NUMA */ 1450 1451 #ifdef CONFIG_NUMA_BALANCING 1452 /* 1453 * Approximate time to scan a full NUMA task in ms. The task scan period is 1454 * calculated based on the tasks virtual memory size and 1455 * numa_balancing_scan_size. 1456 */ 1457 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1458 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1459 1460 /* Portion of address space to scan in MB */ 1461 unsigned int sysctl_numa_balancing_scan_size = 256; 1462 1463 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1464 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1465 1466 /* The page with hint page fault latency < threshold in ms is considered hot */ 1467 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1468 1469 struct numa_group { 1470 refcount_t refcount; 1471 1472 spinlock_t lock; /* nr_tasks, tasks */ 1473 int nr_tasks; 1474 pid_t gid; 1475 int active_nodes; 1476 1477 struct rcu_head rcu; 1478 unsigned long total_faults; 1479 unsigned long max_faults_cpu; 1480 /* 1481 * faults[] array is split into two regions: faults_mem and faults_cpu. 1482 * 1483 * Faults_cpu is used to decide whether memory should move 1484 * towards the CPU. As a consequence, these stats are weighted 1485 * more by CPU use than by memory faults. 1486 */ 1487 unsigned long faults[]; 1488 }; 1489 1490 /* 1491 * For functions that can be called in multiple contexts that permit reading 1492 * ->numa_group (see struct task_struct for locking rules). 1493 */ 1494 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1495 { 1496 return rcu_dereference_check(p->numa_group, p == current || 1497 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1498 } 1499 1500 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1501 { 1502 return rcu_dereference_protected(p->numa_group, p == current); 1503 } 1504 1505 static inline unsigned long group_faults_priv(struct numa_group *ng); 1506 static inline unsigned long group_faults_shared(struct numa_group *ng); 1507 1508 static unsigned int task_nr_scan_windows(struct task_struct *p) 1509 { 1510 unsigned long rss = 0; 1511 unsigned long nr_scan_pages; 1512 1513 /* 1514 * Calculations based on RSS as non-present and empty pages are skipped 1515 * by the PTE scanner and NUMA hinting faults should be trapped based 1516 * on resident pages 1517 */ 1518 nr_scan_pages = MB_TO_PAGES(sysctl_numa_balancing_scan_size); 1519 rss = get_mm_rss(p->mm); 1520 if (!rss) 1521 rss = nr_scan_pages; 1522 1523 rss = round_up(rss, nr_scan_pages); 1524 return rss / nr_scan_pages; 1525 } 1526 1527 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1528 #define MAX_SCAN_WINDOW 2560 1529 1530 static unsigned int task_scan_min(struct task_struct *p) 1531 { 1532 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1533 unsigned int scan, floor; 1534 unsigned int windows = 1; 1535 1536 if (scan_size < MAX_SCAN_WINDOW) 1537 windows = MAX_SCAN_WINDOW / scan_size; 1538 floor = 1000 / windows; 1539 1540 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1541 return max_t(unsigned int, floor, scan); 1542 } 1543 1544 static unsigned int task_scan_start(struct task_struct *p) 1545 { 1546 unsigned long smin = task_scan_min(p); 1547 unsigned long period = smin; 1548 struct numa_group *ng; 1549 1550 /* Scale the maximum scan period with the amount of shared memory. */ 1551 rcu_read_lock(); 1552 ng = rcu_dereference_all(p->numa_group); 1553 if (ng) { 1554 unsigned long shared = group_faults_shared(ng); 1555 unsigned long private = group_faults_priv(ng); 1556 1557 period *= refcount_read(&ng->refcount); 1558 period *= shared + 1; 1559 period /= private + shared + 1; 1560 } 1561 rcu_read_unlock(); 1562 1563 return max(smin, period); 1564 } 1565 1566 static unsigned int task_scan_max(struct task_struct *p) 1567 { 1568 unsigned long smin = task_scan_min(p); 1569 unsigned long smax; 1570 struct numa_group *ng; 1571 1572 /* Watch for min being lower than max due to floor calculations */ 1573 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1574 1575 /* Scale the maximum scan period with the amount of shared memory. */ 1576 ng = deref_curr_numa_group(p); 1577 if (ng) { 1578 unsigned long shared = group_faults_shared(ng); 1579 unsigned long private = group_faults_priv(ng); 1580 unsigned long period = smax; 1581 1582 period *= refcount_read(&ng->refcount); 1583 period *= shared + 1; 1584 period /= private + shared + 1; 1585 1586 smax = max(smax, period); 1587 } 1588 1589 return max(smin, smax); 1590 } 1591 1592 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1593 { 1594 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1595 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1596 } 1597 1598 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1599 { 1600 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1601 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1602 } 1603 1604 /* Shared or private faults. */ 1605 #define NR_NUMA_HINT_FAULT_TYPES 2 1606 1607 /* Memory and CPU locality */ 1608 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1609 1610 /* Averaged statistics, and temporary buffers. */ 1611 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1612 1613 pid_t task_numa_group_id(struct task_struct *p) 1614 { 1615 struct numa_group *ng; 1616 pid_t gid = 0; 1617 1618 rcu_read_lock(); 1619 ng = rcu_dereference_all(p->numa_group); 1620 if (ng) 1621 gid = ng->gid; 1622 rcu_read_unlock(); 1623 1624 return gid; 1625 } 1626 1627 /* 1628 * The averaged statistics, shared & private, memory & CPU, 1629 * occupy the first half of the array. The second half of the 1630 * array is for current counters, which are averaged into the 1631 * first set by task_numa_placement. 1632 */ 1633 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1634 { 1635 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1636 } 1637 1638 static inline unsigned long task_faults(struct task_struct *p, int nid) 1639 { 1640 if (!p->numa_faults) 1641 return 0; 1642 1643 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1644 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1645 } 1646 1647 static inline unsigned long group_faults(struct task_struct *p, int nid) 1648 { 1649 struct numa_group *ng = deref_task_numa_group(p); 1650 1651 if (!ng) 1652 return 0; 1653 1654 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1655 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1656 } 1657 1658 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1659 { 1660 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1661 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1662 } 1663 1664 static inline unsigned long group_faults_priv(struct numa_group *ng) 1665 { 1666 unsigned long faults = 0; 1667 int node; 1668 1669 for_each_online_node(node) { 1670 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1671 } 1672 1673 return faults; 1674 } 1675 1676 static inline unsigned long group_faults_shared(struct numa_group *ng) 1677 { 1678 unsigned long faults = 0; 1679 int node; 1680 1681 for_each_online_node(node) { 1682 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1683 } 1684 1685 return faults; 1686 } 1687 1688 /* 1689 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1690 * considered part of a numa group's pseudo-interleaving set. Migrations 1691 * between these nodes are slowed down, to allow things to settle down. 1692 */ 1693 #define ACTIVE_NODE_FRACTION 3 1694 1695 static bool numa_is_active_node(int nid, struct numa_group *ng) 1696 { 1697 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1698 } 1699 1700 /* Handle placement on systems where not all nodes are directly connected. */ 1701 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1702 int lim_dist, bool task) 1703 { 1704 unsigned long score = 0; 1705 int node, max_dist; 1706 1707 /* 1708 * All nodes are directly connected, and the same distance 1709 * from each other. No need for fancy placement algorithms. 1710 */ 1711 if (sched_numa_topology_type == NUMA_DIRECT) 1712 return 0; 1713 1714 /* sched_max_numa_distance may be changed in parallel. */ 1715 max_dist = READ_ONCE(sched_max_numa_distance); 1716 /* 1717 * This code is called for each node, introducing N^2 complexity, 1718 * which should be OK given the number of nodes rarely exceeds 8. 1719 */ 1720 for_each_online_node(node) { 1721 unsigned long faults; 1722 int dist = node_distance(nid, node); 1723 1724 /* 1725 * The furthest away nodes in the system are not interesting 1726 * for placement; nid was already counted. 1727 */ 1728 if (dist >= max_dist || node == nid) 1729 continue; 1730 1731 /* 1732 * On systems with a backplane NUMA topology, compare groups 1733 * of nodes, and move tasks towards the group with the most 1734 * memory accesses. When comparing two nodes at distance 1735 * "hoplimit", only nodes closer by than "hoplimit" are part 1736 * of each group. Skip other nodes. 1737 */ 1738 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1739 continue; 1740 1741 /* Add up the faults from nearby nodes. */ 1742 if (task) 1743 faults = task_faults(p, node); 1744 else 1745 faults = group_faults(p, node); 1746 1747 /* 1748 * On systems with a glueless mesh NUMA topology, there are 1749 * no fixed "groups of nodes". Instead, nodes that are not 1750 * directly connected bounce traffic through intermediate 1751 * nodes; a numa_group can occupy any set of nodes. 1752 * The further away a node is, the less the faults count. 1753 * This seems to result in good task placement. 1754 */ 1755 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1756 faults *= (max_dist - dist); 1757 faults /= (max_dist - LOCAL_DISTANCE); 1758 } 1759 1760 score += faults; 1761 } 1762 1763 return score; 1764 } 1765 1766 /* 1767 * These return the fraction of accesses done by a particular task, or 1768 * task group, on a particular numa node. The group weight is given a 1769 * larger multiplier, in order to group tasks together that are almost 1770 * evenly spread out between numa nodes. 1771 */ 1772 static inline unsigned long task_weight(struct task_struct *p, int nid, 1773 int dist) 1774 { 1775 unsigned long faults, total_faults; 1776 1777 if (!p->numa_faults) 1778 return 0; 1779 1780 total_faults = p->total_numa_faults; 1781 1782 if (!total_faults) 1783 return 0; 1784 1785 faults = task_faults(p, nid); 1786 faults += score_nearby_nodes(p, nid, dist, true); 1787 1788 return 1000 * faults / total_faults; 1789 } 1790 1791 static inline unsigned long group_weight(struct task_struct *p, int nid, 1792 int dist) 1793 { 1794 struct numa_group *ng = deref_task_numa_group(p); 1795 unsigned long faults, total_faults; 1796 1797 if (!ng) 1798 return 0; 1799 1800 total_faults = ng->total_faults; 1801 1802 if (!total_faults) 1803 return 0; 1804 1805 faults = group_faults(p, nid); 1806 faults += score_nearby_nodes(p, nid, dist, false); 1807 1808 return 1000 * faults / total_faults; 1809 } 1810 1811 /* 1812 * If memory tiering mode is enabled, cpupid of slow memory page is 1813 * used to record scan time instead of CPU and PID. When tiering mode 1814 * is disabled at run time, the scan time (in cpupid) will be 1815 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1816 * access out of array bound. 1817 */ 1818 static inline bool cpupid_valid(int cpupid) 1819 { 1820 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1821 } 1822 1823 /* 1824 * For memory tiering mode, if there are enough free pages (more than 1825 * enough watermark defined here) in fast memory node, to take full 1826 * advantage of fast memory capacity, all recently accessed slow 1827 * memory pages will be migrated to fast memory node without 1828 * considering hot threshold. 1829 */ 1830 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1831 { 1832 int z; 1833 unsigned long enough_wmark; 1834 1835 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1836 pgdat->node_present_pages >> 4); 1837 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1838 struct zone *zone = pgdat->node_zones + z; 1839 1840 if (!populated_zone(zone)) 1841 continue; 1842 1843 if (zone_watermark_ok(zone, 0, 1844 promo_wmark_pages(zone) + enough_wmark, 1845 ZONE_MOVABLE, 0)) 1846 return true; 1847 } 1848 return false; 1849 } 1850 1851 /* 1852 * For memory tiering mode, when page tables are scanned, the scan 1853 * time will be recorded in struct page in addition to make page 1854 * PROT_NONE for slow memory page. So when the page is accessed, in 1855 * hint page fault handler, the hint page fault latency is calculated 1856 * via, 1857 * 1858 * hint page fault latency = hint page fault time - scan time 1859 * 1860 * The smaller the hint page fault latency, the higher the possibility 1861 * for the page to be hot. 1862 */ 1863 static int numa_hint_fault_latency(struct folio *folio) 1864 { 1865 int last_time, time; 1866 1867 time = jiffies_to_msecs(jiffies); 1868 last_time = folio_xchg_access_time(folio, time); 1869 1870 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1871 } 1872 1873 /* 1874 * For memory tiering mode, too high promotion/demotion throughput may 1875 * hurt application latency. So we provide a mechanism to rate limit 1876 * the number of pages that are tried to be promoted. 1877 */ 1878 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1879 unsigned long rate_limit, int nr) 1880 { 1881 unsigned long nr_cand; 1882 unsigned int now, start; 1883 1884 now = jiffies_to_msecs(jiffies); 1885 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1886 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1887 start = pgdat->nbp_rl_start; 1888 if (now - start > MSEC_PER_SEC && 1889 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1890 pgdat->nbp_rl_nr_cand = nr_cand; 1891 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1892 return true; 1893 return false; 1894 } 1895 1896 #define NUMA_MIGRATION_ADJUST_STEPS 16 1897 1898 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1899 unsigned long rate_limit, 1900 unsigned int ref_th) 1901 { 1902 unsigned int now, start, th_period, unit_th, th; 1903 unsigned long nr_cand, ref_cand, diff_cand; 1904 1905 now = jiffies_to_msecs(jiffies); 1906 th_period = sysctl_numa_balancing_scan_period_max; 1907 start = pgdat->nbp_th_start; 1908 if (now - start > th_period && 1909 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1910 ref_cand = rate_limit * 1911 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1912 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1913 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1914 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1915 th = pgdat->nbp_threshold ? : ref_th; 1916 if (diff_cand > ref_cand * 11 / 10) 1917 th = max(th - unit_th, unit_th); 1918 else if (diff_cand < ref_cand * 9 / 10) 1919 th = min(th + unit_th, ref_th * 2); 1920 pgdat->nbp_th_nr_cand = nr_cand; 1921 pgdat->nbp_threshold = th; 1922 } 1923 } 1924 1925 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1926 int src_nid, int dst_cpu) 1927 { 1928 struct numa_group *ng = deref_curr_numa_group(p); 1929 int dst_nid = cpu_to_node(dst_cpu); 1930 int last_cpupid, this_cpupid; 1931 1932 /* 1933 * Cannot migrate to memoryless nodes. 1934 */ 1935 if (!node_state(dst_nid, N_MEMORY)) 1936 return false; 1937 1938 /* 1939 * The pages in slow memory node should be migrated according 1940 * to hot/cold instead of private/shared. 1941 */ 1942 if (folio_use_access_time(folio)) { 1943 struct pglist_data *pgdat; 1944 unsigned long rate_limit; 1945 unsigned int latency, th, def_th; 1946 long nr = folio_nr_pages(folio); 1947 1948 pgdat = NODE_DATA(dst_nid); 1949 if (pgdat_free_space_enough(pgdat)) { 1950 /* workload changed, reset hot threshold */ 1951 pgdat->nbp_threshold = 0; 1952 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE_NRL, nr); 1953 return true; 1954 } 1955 1956 def_th = sysctl_numa_balancing_hot_threshold; 1957 rate_limit = MB_TO_PAGES(sysctl_numa_balancing_promote_rate_limit); 1958 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1959 1960 th = pgdat->nbp_threshold ? : def_th; 1961 latency = numa_hint_fault_latency(folio); 1962 if (latency >= th) 1963 return false; 1964 1965 return !numa_promotion_rate_limit(pgdat, rate_limit, nr); 1966 } 1967 1968 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1969 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1970 1971 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1972 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1973 return false; 1974 1975 /* 1976 * Allow first faults or private faults to migrate immediately early in 1977 * the lifetime of a task. The magic number 4 is based on waiting for 1978 * two full passes of the "multi-stage node selection" test that is 1979 * executed below. 1980 */ 1981 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1982 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1983 return true; 1984 1985 /* 1986 * Multi-stage node selection is used in conjunction with a periodic 1987 * migration fault to build a temporal task<->page relation. By using 1988 * a two-stage filter we remove short/unlikely relations. 1989 * 1990 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1991 * a task's usage of a particular page (n_p) per total usage of this 1992 * page (n_t) (in a given time-span) to a probability. 1993 * 1994 * Our periodic faults will sample this probability and getting the 1995 * same result twice in a row, given these samples are fully 1996 * independent, is then given by P(n)^2, provided our sample period 1997 * is sufficiently short compared to the usage pattern. 1998 * 1999 * This quadric squishes small probabilities, making it less likely we 2000 * act on an unlikely task<->page relation. 2001 */ 2002 if (!cpupid_pid_unset(last_cpupid) && 2003 cpupid_to_nid(last_cpupid) != dst_nid) 2004 return false; 2005 2006 /* Always allow migrate on private faults */ 2007 if (cpupid_match_pid(p, last_cpupid)) 2008 return true; 2009 2010 /* A shared fault, but p->numa_group has not been set up yet. */ 2011 if (!ng) 2012 return true; 2013 2014 /* 2015 * Destination node is much more heavily used than the source 2016 * node? Allow migration. 2017 */ 2018 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2019 ACTIVE_NODE_FRACTION) 2020 return true; 2021 2022 /* 2023 * Distribute memory according to CPU & memory use on each node, 2024 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2025 * 2026 * faults_cpu(dst) 3 faults_cpu(src) 2027 * --------------- * - > --------------- 2028 * faults_mem(dst) 4 faults_mem(src) 2029 */ 2030 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2031 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2032 } 2033 2034 /* 2035 * 'numa_type' describes the node at the moment of load balancing. 2036 */ 2037 enum numa_type { 2038 /* The node has spare capacity that can be used to run more tasks. */ 2039 node_has_spare = 0, 2040 /* 2041 * The node is fully used and the tasks don't compete for more CPU 2042 * cycles. Nevertheless, some tasks might wait before running. 2043 */ 2044 node_fully_busy, 2045 /* 2046 * The node is overloaded and can't provide expected CPU cycles to all 2047 * tasks. 2048 */ 2049 node_overloaded 2050 }; 2051 2052 /* Cached statistics for all CPUs within a node */ 2053 struct numa_stats { 2054 unsigned long load; 2055 unsigned long runnable; 2056 unsigned long util; 2057 /* Total compute capacity of CPUs on a node */ 2058 unsigned long compute_capacity; 2059 unsigned int nr_running; 2060 unsigned int weight; 2061 enum numa_type node_type; 2062 int idle_cpu; 2063 }; 2064 2065 struct task_numa_env { 2066 struct task_struct *p; 2067 2068 int src_cpu, src_nid; 2069 int dst_cpu, dst_nid; 2070 int imb_numa_nr; 2071 2072 struct numa_stats src_stats, dst_stats; 2073 2074 int imbalance_pct; 2075 int dist; 2076 2077 struct task_struct *best_task; 2078 long best_imp; 2079 int best_cpu; 2080 }; 2081 2082 static unsigned long cpu_load(struct rq *rq); 2083 static unsigned long cpu_runnable(struct rq *rq); 2084 2085 static inline enum 2086 numa_type numa_classify(unsigned int imbalance_pct, 2087 struct numa_stats *ns) 2088 { 2089 if ((ns->nr_running > ns->weight) && 2090 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2091 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2092 return node_overloaded; 2093 2094 if ((ns->nr_running < ns->weight) || 2095 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2096 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2097 return node_has_spare; 2098 2099 return node_fully_busy; 2100 } 2101 2102 #ifdef CONFIG_SCHED_SMT 2103 /* Forward declarations of select_idle_sibling helpers */ 2104 static inline bool test_idle_cores(int cpu); 2105 static inline int numa_idle_core(int idle_core, int cpu) 2106 { 2107 if (!static_branch_likely(&sched_smt_present) || 2108 idle_core >= 0 || !test_idle_cores(cpu)) 2109 return idle_core; 2110 2111 /* 2112 * Prefer cores instead of packing HT siblings 2113 * and triggering future load balancing. 2114 */ 2115 if (is_core_idle(cpu)) 2116 idle_core = cpu; 2117 2118 return idle_core; 2119 } 2120 #else /* !CONFIG_SCHED_SMT: */ 2121 static inline int numa_idle_core(int idle_core, int cpu) 2122 { 2123 return idle_core; 2124 } 2125 #endif /* !CONFIG_SCHED_SMT */ 2126 2127 /* 2128 * Gather all necessary information to make NUMA balancing placement 2129 * decisions that are compatible with standard load balancer. This 2130 * borrows code and logic from update_sg_lb_stats but sharing a 2131 * common implementation is impractical. 2132 */ 2133 static void update_numa_stats(struct task_numa_env *env, 2134 struct numa_stats *ns, int nid, 2135 bool find_idle) 2136 { 2137 int cpu, idle_core = -1; 2138 2139 memset(ns, 0, sizeof(*ns)); 2140 ns->idle_cpu = -1; 2141 2142 rcu_read_lock(); 2143 for_each_cpu(cpu, cpumask_of_node(nid)) { 2144 struct rq *rq = cpu_rq(cpu); 2145 2146 ns->load += cpu_load(rq); 2147 ns->runnable += cpu_runnable(rq); 2148 ns->util += cpu_util_cfs(cpu); 2149 ns->nr_running += rq->cfs.h_nr_runnable; 2150 ns->compute_capacity += capacity_of(cpu); 2151 2152 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2153 if (READ_ONCE(rq->numa_migrate_on) || 2154 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2155 continue; 2156 2157 if (ns->idle_cpu == -1) 2158 ns->idle_cpu = cpu; 2159 2160 idle_core = numa_idle_core(idle_core, cpu); 2161 } 2162 } 2163 rcu_read_unlock(); 2164 2165 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2166 2167 ns->node_type = numa_classify(env->imbalance_pct, ns); 2168 2169 if (idle_core >= 0) 2170 ns->idle_cpu = idle_core; 2171 } 2172 2173 static void task_numa_assign(struct task_numa_env *env, 2174 struct task_struct *p, long imp) 2175 { 2176 struct rq *rq = cpu_rq(env->dst_cpu); 2177 2178 /* Check if run-queue part of active NUMA balance. */ 2179 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2180 int cpu; 2181 int start = env->dst_cpu; 2182 2183 /* Find alternative idle CPU. */ 2184 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2185 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2186 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2187 continue; 2188 } 2189 2190 env->dst_cpu = cpu; 2191 rq = cpu_rq(env->dst_cpu); 2192 if (!xchg(&rq->numa_migrate_on, 1)) 2193 goto assign; 2194 } 2195 2196 /* Failed to find an alternative idle CPU */ 2197 return; 2198 } 2199 2200 assign: 2201 /* 2202 * Clear previous best_cpu/rq numa-migrate flag, since task now 2203 * found a better CPU to move/swap. 2204 */ 2205 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2206 rq = cpu_rq(env->best_cpu); 2207 WRITE_ONCE(rq->numa_migrate_on, 0); 2208 } 2209 2210 if (env->best_task) 2211 put_task_struct(env->best_task); 2212 if (p) 2213 get_task_struct(p); 2214 2215 env->best_task = p; 2216 env->best_imp = imp; 2217 env->best_cpu = env->dst_cpu; 2218 } 2219 2220 static bool load_too_imbalanced(long src_load, long dst_load, 2221 struct task_numa_env *env) 2222 { 2223 long imb, old_imb; 2224 long orig_src_load, orig_dst_load; 2225 long src_capacity, dst_capacity; 2226 2227 /* 2228 * The load is corrected for the CPU capacity available on each node. 2229 * 2230 * src_load dst_load 2231 * ------------ vs --------- 2232 * src_capacity dst_capacity 2233 */ 2234 src_capacity = env->src_stats.compute_capacity; 2235 dst_capacity = env->dst_stats.compute_capacity; 2236 2237 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2238 2239 orig_src_load = env->src_stats.load; 2240 orig_dst_load = env->dst_stats.load; 2241 2242 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2243 2244 /* Would this change make things worse? */ 2245 return (imb > old_imb); 2246 } 2247 2248 /* 2249 * Maximum NUMA importance can be 1998 (2*999); 2250 * SMALLIMP @ 30 would be close to 1998/64. 2251 * Used to deter task migration. 2252 */ 2253 #define SMALLIMP 30 2254 2255 /* 2256 * This checks if the overall compute and NUMA accesses of the system would 2257 * be improved if the source tasks was migrated to the target dst_cpu taking 2258 * into account that it might be best if task running on the dst_cpu should 2259 * be exchanged with the source task 2260 */ 2261 static bool task_numa_compare(struct task_numa_env *env, 2262 long taskimp, long groupimp, bool maymove) 2263 { 2264 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2265 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2266 long imp = p_ng ? groupimp : taskimp; 2267 struct task_struct *cur; 2268 long src_load, dst_load; 2269 int dist = env->dist; 2270 long moveimp = imp; 2271 long load; 2272 bool stopsearch = false; 2273 2274 if (READ_ONCE(dst_rq->numa_migrate_on)) 2275 return false; 2276 2277 rcu_read_lock(); 2278 cur = rcu_dereference_all(dst_rq->curr); 2279 if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) || 2280 !cur->mm)) 2281 cur = NULL; 2282 2283 /* 2284 * Because we have preemption enabled we can get migrated around and 2285 * end try selecting ourselves (current == env->p) as a swap candidate. 2286 */ 2287 if (cur == env->p) { 2288 stopsearch = true; 2289 goto unlock; 2290 } 2291 2292 if (!cur) { 2293 if (maymove && moveimp >= env->best_imp) 2294 goto assign; 2295 else 2296 goto unlock; 2297 } 2298 2299 /* Skip this swap candidate if cannot move to the source cpu. */ 2300 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2301 goto unlock; 2302 2303 /* 2304 * Skip this swap candidate if it is not moving to its preferred 2305 * node and the best task is. 2306 */ 2307 if (env->best_task && 2308 env->best_task->numa_preferred_nid == env->src_nid && 2309 cur->numa_preferred_nid != env->src_nid) { 2310 goto unlock; 2311 } 2312 2313 /* 2314 * "imp" is the fault differential for the source task between the 2315 * source and destination node. Calculate the total differential for 2316 * the source task and potential destination task. The more negative 2317 * the value is, the more remote accesses that would be expected to 2318 * be incurred if the tasks were swapped. 2319 * 2320 * If dst and source tasks are in the same NUMA group, or not 2321 * in any group then look only at task weights. 2322 */ 2323 cur_ng = rcu_dereference_all(cur->numa_group); 2324 if (cur_ng == p_ng) { 2325 /* 2326 * Do not swap within a group or between tasks that have 2327 * no group if there is spare capacity. Swapping does 2328 * not address the load imbalance and helps one task at 2329 * the cost of punishing another. 2330 */ 2331 if (env->dst_stats.node_type == node_has_spare) 2332 goto unlock; 2333 2334 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2335 task_weight(cur, env->dst_nid, dist); 2336 /* 2337 * Add some hysteresis to prevent swapping the 2338 * tasks within a group over tiny differences. 2339 */ 2340 if (cur_ng) 2341 imp -= imp / 16; 2342 } else { 2343 /* 2344 * Compare the group weights. If a task is all by itself 2345 * (not part of a group), use the task weight instead. 2346 */ 2347 if (cur_ng && p_ng) 2348 imp += group_weight(cur, env->src_nid, dist) - 2349 group_weight(cur, env->dst_nid, dist); 2350 else 2351 imp += task_weight(cur, env->src_nid, dist) - 2352 task_weight(cur, env->dst_nid, dist); 2353 } 2354 2355 /* Discourage picking a task already on its preferred node */ 2356 if (cur->numa_preferred_nid == env->dst_nid) 2357 imp -= imp / 16; 2358 2359 /* 2360 * Encourage picking a task that moves to its preferred node. 2361 * This potentially makes imp larger than it's maximum of 2362 * 1998 (see SMALLIMP and task_weight for why) but in this 2363 * case, it does not matter. 2364 */ 2365 if (cur->numa_preferred_nid == env->src_nid) 2366 imp += imp / 8; 2367 2368 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2369 imp = moveimp; 2370 cur = NULL; 2371 goto assign; 2372 } 2373 2374 /* 2375 * Prefer swapping with a task moving to its preferred node over a 2376 * task that is not. 2377 */ 2378 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2379 env->best_task->numa_preferred_nid != env->src_nid) { 2380 goto assign; 2381 } 2382 2383 /* 2384 * If the NUMA importance is less than SMALLIMP, 2385 * task migration might only result in ping pong 2386 * of tasks and also hurt performance due to cache 2387 * misses. 2388 */ 2389 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2390 goto unlock; 2391 2392 /* 2393 * In the overloaded case, try and keep the load balanced. 2394 */ 2395 load = task_h_load(env->p) - task_h_load(cur); 2396 if (!load) 2397 goto assign; 2398 2399 dst_load = env->dst_stats.load + load; 2400 src_load = env->src_stats.load - load; 2401 2402 if (load_too_imbalanced(src_load, dst_load, env)) 2403 goto unlock; 2404 2405 assign: 2406 /* Evaluate an idle CPU for a task numa move. */ 2407 if (!cur) { 2408 int cpu = env->dst_stats.idle_cpu; 2409 2410 /* Nothing cached so current CPU went idle since the search. */ 2411 if (cpu < 0) 2412 cpu = env->dst_cpu; 2413 2414 /* 2415 * If the CPU is no longer truly idle and the previous best CPU 2416 * is, keep using it. 2417 */ 2418 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2419 idle_cpu(env->best_cpu)) { 2420 cpu = env->best_cpu; 2421 } 2422 2423 env->dst_cpu = cpu; 2424 } 2425 2426 task_numa_assign(env, cur, imp); 2427 2428 /* 2429 * If a move to idle is allowed because there is capacity or load 2430 * balance improves then stop the search. While a better swap 2431 * candidate may exist, a search is not free. 2432 */ 2433 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2434 stopsearch = true; 2435 2436 /* 2437 * If a swap candidate must be identified and the current best task 2438 * moves its preferred node then stop the search. 2439 */ 2440 if (!maymove && env->best_task && 2441 env->best_task->numa_preferred_nid == env->src_nid) { 2442 stopsearch = true; 2443 } 2444 unlock: 2445 rcu_read_unlock(); 2446 2447 return stopsearch; 2448 } 2449 2450 static void task_numa_find_cpu(struct task_numa_env *env, 2451 long taskimp, long groupimp) 2452 { 2453 bool maymove = false; 2454 int cpu; 2455 2456 /* 2457 * If dst node has spare capacity, then check if there is an 2458 * imbalance that would be overruled by the load balancer. 2459 */ 2460 if (env->dst_stats.node_type == node_has_spare) { 2461 unsigned int imbalance; 2462 int src_running, dst_running; 2463 2464 /* 2465 * Would movement cause an imbalance? Note that if src has 2466 * more running tasks that the imbalance is ignored as the 2467 * move improves the imbalance from the perspective of the 2468 * CPU load balancer. 2469 * */ 2470 src_running = env->src_stats.nr_running - 1; 2471 dst_running = env->dst_stats.nr_running + 1; 2472 imbalance = max(0, dst_running - src_running); 2473 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2474 env->imb_numa_nr); 2475 2476 /* Use idle CPU if there is no imbalance */ 2477 if (!imbalance) { 2478 maymove = true; 2479 if (env->dst_stats.idle_cpu >= 0) { 2480 env->dst_cpu = env->dst_stats.idle_cpu; 2481 task_numa_assign(env, NULL, 0); 2482 return; 2483 } 2484 } 2485 } else { 2486 long src_load, dst_load, load; 2487 /* 2488 * If the improvement from just moving env->p direction is better 2489 * than swapping tasks around, check if a move is possible. 2490 */ 2491 load = task_h_load(env->p); 2492 dst_load = env->dst_stats.load + load; 2493 src_load = env->src_stats.load - load; 2494 maymove = !load_too_imbalanced(src_load, dst_load, env); 2495 } 2496 2497 /* Skip CPUs if the source task cannot migrate */ 2498 for_each_cpu_and(cpu, cpumask_of_node(env->dst_nid), env->p->cpus_ptr) { 2499 env->dst_cpu = cpu; 2500 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2501 break; 2502 } 2503 } 2504 2505 static int task_numa_migrate(struct task_struct *p) 2506 { 2507 struct task_numa_env env = { 2508 .p = p, 2509 2510 .src_cpu = task_cpu(p), 2511 .src_nid = task_node(p), 2512 2513 .imbalance_pct = 112, 2514 2515 .best_task = NULL, 2516 .best_imp = 0, 2517 .best_cpu = -1, 2518 }; 2519 unsigned long taskweight, groupweight; 2520 struct sched_domain *sd; 2521 long taskimp, groupimp; 2522 struct numa_group *ng; 2523 struct rq *best_rq; 2524 int nid, ret, dist; 2525 2526 /* 2527 * Pick the lowest SD_NUMA domain, as that would have the smallest 2528 * imbalance and would be the first to start moving tasks about. 2529 * 2530 * And we want to avoid any moving of tasks about, as that would create 2531 * random movement of tasks -- counter the numa conditions we're trying 2532 * to satisfy here. 2533 */ 2534 rcu_read_lock(); 2535 sd = rcu_dereference_all(per_cpu(sd_numa, env.src_cpu)); 2536 if (sd) { 2537 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2538 env.imb_numa_nr = sd->imb_numa_nr; 2539 } 2540 rcu_read_unlock(); 2541 2542 /* 2543 * Cpusets can break the scheduler domain tree into smaller 2544 * balance domains, some of which do not cross NUMA boundaries. 2545 * Tasks that are "trapped" in such domains cannot be migrated 2546 * elsewhere, so there is no point in (re)trying. 2547 */ 2548 if (unlikely(!sd)) { 2549 sched_setnuma(p, task_node(p)); 2550 return -EINVAL; 2551 } 2552 2553 env.dst_nid = p->numa_preferred_nid; 2554 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2555 taskweight = task_weight(p, env.src_nid, dist); 2556 groupweight = group_weight(p, env.src_nid, dist); 2557 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2560 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2561 2562 /* Try to find a spot on the preferred nid. */ 2563 task_numa_find_cpu(&env, taskimp, groupimp); 2564 2565 /* 2566 * Look at other nodes in these cases: 2567 * - there is no space available on the preferred_nid 2568 * - the task is part of a numa_group that is interleaved across 2569 * multiple NUMA nodes; in order to better consolidate the group, 2570 * we need to check other locations. 2571 */ 2572 ng = deref_curr_numa_group(p); 2573 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2574 for_each_node_state(nid, N_CPU) { 2575 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2576 continue; 2577 2578 dist = node_distance(env.src_nid, env.dst_nid); 2579 if (sched_numa_topology_type == NUMA_BACKPLANE && 2580 dist != env.dist) { 2581 taskweight = task_weight(p, env.src_nid, dist); 2582 groupweight = group_weight(p, env.src_nid, dist); 2583 } 2584 2585 /* Only consider nodes where both task and groups benefit */ 2586 taskimp = task_weight(p, nid, dist) - taskweight; 2587 groupimp = group_weight(p, nid, dist) - groupweight; 2588 if (taskimp < 0 && groupimp < 0) 2589 continue; 2590 2591 env.dist = dist; 2592 env.dst_nid = nid; 2593 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2594 task_numa_find_cpu(&env, taskimp, groupimp); 2595 } 2596 } 2597 2598 /* 2599 * If the task is part of a workload that spans multiple NUMA nodes, 2600 * and is migrating into one of the workload's active nodes, remember 2601 * this node as the task's preferred numa node, so the workload can 2602 * settle down. 2603 * A task that migrated to a second choice node will be better off 2604 * trying for a better one later. Do not set the preferred node here. 2605 */ 2606 if (ng) { 2607 if (env.best_cpu == -1) 2608 nid = env.src_nid; 2609 else 2610 nid = cpu_to_node(env.best_cpu); 2611 2612 if (nid != p->numa_preferred_nid) 2613 sched_setnuma(p, nid); 2614 } 2615 2616 /* No better CPU than the current one was found. */ 2617 if (env.best_cpu == -1) { 2618 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2619 return -EAGAIN; 2620 } 2621 2622 best_rq = cpu_rq(env.best_cpu); 2623 if (env.best_task == NULL) { 2624 ret = migrate_task_to(p, env.best_cpu); 2625 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2626 if (ret != 0) 2627 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2628 return ret; 2629 } 2630 2631 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2632 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2633 2634 if (ret != 0) 2635 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2636 put_task_struct(env.best_task); 2637 return ret; 2638 } 2639 2640 /* Attempt to migrate a task to a CPU on the preferred node. */ 2641 static void numa_migrate_preferred(struct task_struct *p) 2642 { 2643 unsigned long interval = HZ; 2644 2645 /* This task has no NUMA fault statistics yet */ 2646 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2647 return; 2648 2649 /* Periodically retry migrating the task to the preferred node */ 2650 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2651 p->numa_migrate_retry = jiffies + interval; 2652 2653 /* Success if task is already running on preferred CPU */ 2654 if (task_node(p) == p->numa_preferred_nid) 2655 return; 2656 2657 /* Otherwise, try migrate to a CPU on the preferred node */ 2658 task_numa_migrate(p); 2659 } 2660 2661 /* 2662 * Find out how many nodes the workload is actively running on. Do this by 2663 * tracking the nodes from which NUMA hinting faults are triggered. This can 2664 * be different from the set of nodes where the workload's memory is currently 2665 * located. 2666 */ 2667 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2668 { 2669 unsigned long faults, max_faults = 0; 2670 int nid, active_nodes = 0; 2671 2672 for_each_node_state(nid, N_CPU) { 2673 faults = group_faults_cpu(numa_group, nid); 2674 if (faults > max_faults) 2675 max_faults = faults; 2676 } 2677 2678 for_each_node_state(nid, N_CPU) { 2679 faults = group_faults_cpu(numa_group, nid); 2680 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2681 active_nodes++; 2682 } 2683 2684 numa_group->max_faults_cpu = max_faults; 2685 numa_group->active_nodes = active_nodes; 2686 } 2687 2688 /* 2689 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2690 * increments. The more local the fault statistics are, the higher the scan 2691 * period will be for the next scan window. If local/(local+remote) ratio is 2692 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2693 * the scan period will decrease. Aim for 70% local accesses. 2694 */ 2695 #define NUMA_PERIOD_SLOTS 10 2696 #define NUMA_PERIOD_THRESHOLD 7 2697 2698 /* 2699 * Increase the scan period (slow down scanning) if the majority of 2700 * our memory is already on our local node, or if the majority of 2701 * the page accesses are shared with other processes. 2702 * Otherwise, decrease the scan period. 2703 */ 2704 static void update_task_scan_period(struct task_struct *p, 2705 unsigned long shared, unsigned long private) 2706 { 2707 unsigned int period_slot; 2708 int lr_ratio, ps_ratio; 2709 int diff; 2710 2711 unsigned long remote = p->numa_faults_locality[0]; 2712 unsigned long local = p->numa_faults_locality[1]; 2713 2714 /* 2715 * If there were no record hinting faults then either the task is 2716 * completely idle or all activity is in areas that are not of interest 2717 * to automatic numa balancing. Related to that, if there were failed 2718 * migration then it implies we are migrating too quickly or the local 2719 * node is overloaded. In either case, scan slower 2720 */ 2721 if (local + shared == 0 || p->numa_faults_locality[2]) { 2722 p->numa_scan_period = min(p->numa_scan_period_max, 2723 p->numa_scan_period << 1); 2724 2725 p->mm->numa_next_scan = jiffies + 2726 msecs_to_jiffies(p->numa_scan_period); 2727 2728 return; 2729 } 2730 2731 /* 2732 * Prepare to scale scan period relative to the current period. 2733 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2734 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2735 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2736 */ 2737 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2738 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2739 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2740 2741 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2742 /* 2743 * Most memory accesses are local. There is no need to 2744 * do fast NUMA scanning, since memory is already local. 2745 */ 2746 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2747 if (!slot) 2748 slot = 1; 2749 diff = slot * period_slot; 2750 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2751 /* 2752 * Most memory accesses are shared with other tasks. 2753 * There is no point in continuing fast NUMA scanning, 2754 * since other tasks may just move the memory elsewhere. 2755 */ 2756 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2757 if (!slot) 2758 slot = 1; 2759 diff = slot * period_slot; 2760 } else { 2761 /* 2762 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2763 * yet they are not on the local NUMA node. Speed up 2764 * NUMA scanning to get the memory moved over. 2765 */ 2766 int ratio = max(lr_ratio, ps_ratio); 2767 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2768 } 2769 2770 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2771 task_scan_min(p), task_scan_max(p)); 2772 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2773 } 2774 2775 /* 2776 * Get the fraction of time the task has been running since the last 2777 * NUMA placement cycle. The scheduler keeps similar statistics, but 2778 * decays those on a 32ms period, which is orders of magnitude off 2779 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2780 * stats only if the task is so new there are no NUMA statistics yet. 2781 */ 2782 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2783 { 2784 u64 runtime, delta, now; 2785 /* Use the start of this time slice to avoid calculations. */ 2786 now = p->se.exec_start; 2787 runtime = p->se.sum_exec_runtime; 2788 2789 if (p->last_task_numa_placement) { 2790 delta = runtime - p->last_sum_exec_runtime; 2791 *period = now - p->last_task_numa_placement; 2792 2793 /* Avoid time going backwards, prevent potential divide error: */ 2794 if (unlikely((s64)*period < 0)) 2795 *period = 0; 2796 } else { 2797 delta = p->se.avg.load_sum; 2798 *period = LOAD_AVG_MAX; 2799 } 2800 2801 p->last_sum_exec_runtime = runtime; 2802 p->last_task_numa_placement = now; 2803 2804 return delta; 2805 } 2806 2807 /* 2808 * Determine the preferred nid for a task in a numa_group. This needs to 2809 * be done in a way that produces consistent results with group_weight, 2810 * otherwise workloads might not converge. 2811 */ 2812 static int preferred_group_nid(struct task_struct *p, int nid) 2813 { 2814 nodemask_t nodes; 2815 int dist; 2816 2817 /* Direct connections between all NUMA nodes. */ 2818 if (sched_numa_topology_type == NUMA_DIRECT) 2819 return nid; 2820 2821 /* 2822 * On a system with glueless mesh NUMA topology, group_weight 2823 * scores nodes according to the number of NUMA hinting faults on 2824 * both the node itself, and on nearby nodes. 2825 */ 2826 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2827 unsigned long score, max_score = 0; 2828 int node, max_node = nid; 2829 2830 dist = sched_max_numa_distance; 2831 2832 for_each_node_state(node, N_CPU) { 2833 score = group_weight(p, node, dist); 2834 if (score > max_score) { 2835 max_score = score; 2836 max_node = node; 2837 } 2838 } 2839 return max_node; 2840 } 2841 2842 /* 2843 * Finding the preferred nid in a system with NUMA backplane 2844 * interconnect topology is more involved. The goal is to locate 2845 * tasks from numa_groups near each other in the system, and 2846 * untangle workloads from different sides of the system. This requires 2847 * searching down the hierarchy of node groups, recursively searching 2848 * inside the highest scoring group of nodes. The nodemask tricks 2849 * keep the complexity of the search down. 2850 */ 2851 nodes = node_states[N_CPU]; 2852 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2853 unsigned long max_faults = 0; 2854 nodemask_t max_group = NODE_MASK_NONE; 2855 int a, b; 2856 2857 /* Are there nodes at this distance from each other? */ 2858 if (!find_numa_distance(dist)) 2859 continue; 2860 2861 for_each_node_mask(a, nodes) { 2862 unsigned long faults = 0; 2863 nodemask_t this_group; 2864 nodes_clear(this_group); 2865 2866 /* Sum group's NUMA faults; includes a==b case. */ 2867 for_each_node_mask(b, nodes) { 2868 if (node_distance(a, b) < dist) { 2869 faults += group_faults(p, b); 2870 node_set(b, this_group); 2871 node_clear(b, nodes); 2872 } 2873 } 2874 2875 /* Remember the top group. */ 2876 if (faults > max_faults) { 2877 max_faults = faults; 2878 max_group = this_group; 2879 /* 2880 * subtle: at the smallest distance there is 2881 * just one node left in each "group", the 2882 * winner is the preferred nid. 2883 */ 2884 nid = a; 2885 } 2886 } 2887 /* Next round, evaluate the nodes within max_group. */ 2888 if (!max_faults) 2889 break; 2890 nodes = max_group; 2891 } 2892 return nid; 2893 } 2894 2895 static void task_numa_placement(struct task_struct *p) 2896 { 2897 int seq, nid, max_nid = NUMA_NO_NODE; 2898 unsigned long max_faults = 0; 2899 unsigned long fault_types[2] = { 0, 0 }; 2900 unsigned long total_faults; 2901 u64 runtime, period; 2902 spinlock_t *group_lock = NULL; 2903 struct numa_group *ng; 2904 2905 /* 2906 * The p->mm->numa_scan_seq field gets updated without 2907 * exclusive access. Use READ_ONCE() here to ensure 2908 * that the field is read in a single access: 2909 */ 2910 seq = READ_ONCE(p->mm->numa_scan_seq); 2911 if (p->numa_scan_seq == seq) 2912 return; 2913 p->numa_scan_seq = seq; 2914 p->numa_scan_period_max = task_scan_max(p); 2915 2916 total_faults = p->numa_faults_locality[0] + 2917 p->numa_faults_locality[1]; 2918 runtime = numa_get_avg_runtime(p, &period); 2919 2920 /* If the task is part of a group prevent parallel updates to group stats */ 2921 ng = deref_curr_numa_group(p); 2922 if (ng) { 2923 group_lock = &ng->lock; 2924 spin_lock_irq(group_lock); 2925 } 2926 2927 /* Find the node with the highest number of faults */ 2928 for_each_online_node(nid) { 2929 /* Keep track of the offsets in numa_faults array */ 2930 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2931 unsigned long faults = 0, group_faults = 0; 2932 int priv; 2933 2934 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2935 long diff, f_diff, f_weight; 2936 2937 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2938 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2939 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2940 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2941 2942 /* Decay existing window, copy faults since last scan */ 2943 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2944 fault_types[priv] += p->numa_faults[membuf_idx]; 2945 p->numa_faults[membuf_idx] = 0; 2946 2947 /* 2948 * Normalize the faults_from, so all tasks in a group 2949 * count according to CPU use, instead of by the raw 2950 * number of faults. Tasks with little runtime have 2951 * little over-all impact on throughput, and thus their 2952 * faults are less important. 2953 */ 2954 f_weight = div64_u64(runtime << 16, period + 1); 2955 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2956 (total_faults + 1); 2957 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2958 p->numa_faults[cpubuf_idx] = 0; 2959 2960 p->numa_faults[mem_idx] += diff; 2961 p->numa_faults[cpu_idx] += f_diff; 2962 faults += p->numa_faults[mem_idx]; 2963 p->total_numa_faults += diff; 2964 if (ng) { 2965 /* 2966 * safe because we can only change our own group 2967 * 2968 * mem_idx represents the offset for a given 2969 * nid and priv in a specific region because it 2970 * is at the beginning of the numa_faults array. 2971 */ 2972 ng->faults[mem_idx] += diff; 2973 ng->faults[cpu_idx] += f_diff; 2974 ng->total_faults += diff; 2975 group_faults += ng->faults[mem_idx]; 2976 } 2977 } 2978 2979 if (!ng) { 2980 if (faults > max_faults) { 2981 max_faults = faults; 2982 max_nid = nid; 2983 } 2984 } else if (group_faults > max_faults) { 2985 max_faults = group_faults; 2986 max_nid = nid; 2987 } 2988 } 2989 2990 /* Cannot migrate task to CPU-less node */ 2991 max_nid = numa_nearest_node(max_nid, N_CPU); 2992 2993 if (ng) { 2994 numa_group_count_active_nodes(ng); 2995 spin_unlock_irq(group_lock); 2996 max_nid = preferred_group_nid(p, max_nid); 2997 } 2998 2999 if (max_faults) { 3000 /* Set the new preferred node */ 3001 if (max_nid != p->numa_preferred_nid) 3002 sched_setnuma(p, max_nid); 3003 } 3004 3005 update_task_scan_period(p, fault_types[0], fault_types[1]); 3006 } 3007 3008 static inline int get_numa_group(struct numa_group *grp) 3009 { 3010 return refcount_inc_not_zero(&grp->refcount); 3011 } 3012 3013 static inline void put_numa_group(struct numa_group *grp) 3014 { 3015 if (refcount_dec_and_test(&grp->refcount)) 3016 kfree_rcu(grp, rcu); 3017 } 3018 3019 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3020 int *priv) 3021 { 3022 struct numa_group *grp, *my_grp; 3023 struct task_struct *tsk; 3024 bool join = false; 3025 int cpu = cpupid_to_cpu(cpupid); 3026 int i; 3027 3028 if (unlikely(!deref_curr_numa_group(p))) { 3029 unsigned int size = sizeof(struct numa_group) + 3030 NR_NUMA_HINT_FAULT_STATS * 3031 nr_node_ids * sizeof(unsigned long); 3032 3033 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3034 if (!grp) 3035 return; 3036 3037 refcount_set(&grp->refcount, 1); 3038 grp->active_nodes = 1; 3039 grp->max_faults_cpu = 0; 3040 spin_lock_init(&grp->lock); 3041 grp->gid = p->pid; 3042 3043 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3044 grp->faults[i] = p->numa_faults[i]; 3045 3046 grp->total_faults = p->total_numa_faults; 3047 3048 grp->nr_tasks++; 3049 rcu_assign_pointer(p->numa_group, grp); 3050 } 3051 3052 rcu_read_lock(); 3053 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3054 3055 if (!cpupid_match_pid(tsk, cpupid)) 3056 goto no_join; 3057 3058 grp = rcu_dereference_all(tsk->numa_group); 3059 if (!grp) 3060 goto no_join; 3061 3062 my_grp = deref_curr_numa_group(p); 3063 if (grp == my_grp) 3064 goto no_join; 3065 3066 /* 3067 * Only join the other group if its bigger; if we're the bigger group, 3068 * the other task will join us. 3069 */ 3070 if (my_grp->nr_tasks > grp->nr_tasks) 3071 goto no_join; 3072 3073 /* 3074 * Tie-break on the grp address. 3075 */ 3076 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3077 goto no_join; 3078 3079 /* Always join threads in the same process. */ 3080 if (tsk->mm == current->mm) 3081 join = true; 3082 3083 /* Simple filter to avoid false positives due to PID collisions */ 3084 if (flags & TNF_SHARED) 3085 join = true; 3086 3087 /* Update priv based on whether false sharing was detected */ 3088 *priv = !join; 3089 3090 if (join && !get_numa_group(grp)) 3091 goto no_join; 3092 3093 rcu_read_unlock(); 3094 3095 if (!join) 3096 return; 3097 3098 WARN_ON_ONCE(irqs_disabled()); 3099 double_lock_irq(&my_grp->lock, &grp->lock); 3100 3101 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3102 my_grp->faults[i] -= p->numa_faults[i]; 3103 grp->faults[i] += p->numa_faults[i]; 3104 } 3105 my_grp->total_faults -= p->total_numa_faults; 3106 grp->total_faults += p->total_numa_faults; 3107 3108 my_grp->nr_tasks--; 3109 grp->nr_tasks++; 3110 3111 spin_unlock(&my_grp->lock); 3112 spin_unlock_irq(&grp->lock); 3113 3114 rcu_assign_pointer(p->numa_group, grp); 3115 3116 put_numa_group(my_grp); 3117 return; 3118 3119 no_join: 3120 rcu_read_unlock(); 3121 return; 3122 } 3123 3124 /* 3125 * Get rid of NUMA statistics associated with a task (either current or dead). 3126 * If @final is set, the task is dead and has reached refcount zero, so we can 3127 * safely free all relevant data structures. Otherwise, there might be 3128 * concurrent reads from places like load balancing and procfs, and we should 3129 * reset the data back to default state without freeing ->numa_faults. 3130 */ 3131 void task_numa_free(struct task_struct *p, bool final) 3132 { 3133 /* safe: p either is current or is being freed by current */ 3134 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3135 unsigned long *numa_faults = p->numa_faults; 3136 unsigned long flags; 3137 int i; 3138 3139 if (!numa_faults) 3140 return; 3141 3142 if (grp) { 3143 spin_lock_irqsave(&grp->lock, flags); 3144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3145 grp->faults[i] -= p->numa_faults[i]; 3146 grp->total_faults -= p->total_numa_faults; 3147 3148 grp->nr_tasks--; 3149 spin_unlock_irqrestore(&grp->lock, flags); 3150 RCU_INIT_POINTER(p->numa_group, NULL); 3151 put_numa_group(grp); 3152 } 3153 3154 if (final) { 3155 p->numa_faults = NULL; 3156 kfree(numa_faults); 3157 } else { 3158 p->total_numa_faults = 0; 3159 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3160 numa_faults[i] = 0; 3161 } 3162 } 3163 3164 /* 3165 * Got a PROT_NONE fault for a page on @node. 3166 */ 3167 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3168 { 3169 struct task_struct *p = current; 3170 bool migrated = flags & TNF_MIGRATED; 3171 int cpu_node = task_node(current); 3172 int local = !!(flags & TNF_FAULT_LOCAL); 3173 struct numa_group *ng; 3174 int priv; 3175 3176 if (!static_branch_likely(&sched_numa_balancing)) 3177 return; 3178 3179 /* for example, ksmd faulting in a user's mm */ 3180 if (!p->mm) 3181 return; 3182 3183 /* 3184 * NUMA faults statistics are unnecessary for the slow memory 3185 * node for memory tiering mode. 3186 */ 3187 if (!node_is_toptier(mem_node) && 3188 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3189 !cpupid_valid(last_cpupid))) 3190 return; 3191 3192 /* Allocate buffer to track faults on a per-node basis */ 3193 if (unlikely(!p->numa_faults)) { 3194 int size = sizeof(*p->numa_faults) * 3195 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3196 3197 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3198 if (!p->numa_faults) 3199 return; 3200 3201 p->total_numa_faults = 0; 3202 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3203 } 3204 3205 /* 3206 * First accesses are treated as private, otherwise consider accesses 3207 * to be private if the accessing pid has not changed 3208 */ 3209 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3210 priv = 1; 3211 } else { 3212 priv = cpupid_match_pid(p, last_cpupid); 3213 if (!priv && !(flags & TNF_NO_GROUP)) 3214 task_numa_group(p, last_cpupid, flags, &priv); 3215 } 3216 3217 /* 3218 * If a workload spans multiple NUMA nodes, a shared fault that 3219 * occurs wholly within the set of nodes that the workload is 3220 * actively using should be counted as local. This allows the 3221 * scan rate to slow down when a workload has settled down. 3222 */ 3223 ng = deref_curr_numa_group(p); 3224 if (!priv && !local && ng && ng->active_nodes > 1 && 3225 numa_is_active_node(cpu_node, ng) && 3226 numa_is_active_node(mem_node, ng)) 3227 local = 1; 3228 3229 /* 3230 * Retry to migrate task to preferred node periodically, in case it 3231 * previously failed, or the scheduler moved us. 3232 */ 3233 if (time_after(jiffies, p->numa_migrate_retry)) { 3234 task_numa_placement(p); 3235 numa_migrate_preferred(p); 3236 } 3237 3238 if (migrated) 3239 p->numa_pages_migrated += pages; 3240 if (flags & TNF_MIGRATE_FAIL) 3241 p->numa_faults_locality[2] += pages; 3242 3243 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3244 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3245 p->numa_faults_locality[local] += pages; 3246 } 3247 3248 static void reset_ptenuma_scan(struct task_struct *p) 3249 { 3250 /* 3251 * We only did a read acquisition of the mmap sem, so 3252 * p->mm->numa_scan_seq is written to without exclusive access 3253 * and the update is not guaranteed to be atomic. That's not 3254 * much of an issue though, since this is just used for 3255 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3256 * expensive, to avoid any form of compiler optimizations: 3257 */ 3258 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3259 p->mm->numa_scan_offset = 0; 3260 } 3261 3262 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3263 { 3264 unsigned long pids; 3265 /* 3266 * Allow unconditional access first two times, so that all the (pages) 3267 * of VMAs get prot_none fault introduced irrespective of accesses. 3268 * This is also done to avoid any side effect of task scanning 3269 * amplifying the unfairness of disjoint set of VMAs' access. 3270 */ 3271 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3272 return true; 3273 3274 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3275 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3276 return true; 3277 3278 /* 3279 * Complete a scan that has already started regardless of PID access, or 3280 * some VMAs may never be scanned in multi-threaded applications: 3281 */ 3282 if (mm->numa_scan_offset > vma->vm_start) { 3283 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3284 return true; 3285 } 3286 3287 /* 3288 * This vma has not been accessed for a while, and if the number 3289 * the threads in the same process is low, which means no other 3290 * threads can help scan this vma, force a vma scan. 3291 */ 3292 if (READ_ONCE(mm->numa_scan_seq) > 3293 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3294 return true; 3295 3296 return false; 3297 } 3298 3299 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3300 3301 /* 3302 * The expensive part of numa migration is done from task_work context. 3303 * Triggered from task_tick_numa(). 3304 */ 3305 static void task_numa_work(struct callback_head *work) 3306 { 3307 unsigned long migrate, next_scan, now = jiffies; 3308 struct task_struct *p = current; 3309 struct mm_struct *mm = p->mm; 3310 u64 runtime = p->se.sum_exec_runtime; 3311 struct vm_area_struct *vma; 3312 unsigned long start, end; 3313 unsigned long nr_pte_updates = 0; 3314 long pages, virtpages; 3315 struct vma_iterator vmi; 3316 bool vma_pids_skipped; 3317 bool vma_pids_forced = false; 3318 3319 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3320 3321 work->next = work; 3322 /* 3323 * Who cares about NUMA placement when they're dying. 3324 * 3325 * NOTE: make sure not to dereference p->mm before this check, 3326 * exit_task_work() happens _after_ exit_mm() so we could be called 3327 * without p->mm even though we still had it when we enqueued this 3328 * work. 3329 */ 3330 if (p->flags & PF_EXITING) 3331 return; 3332 3333 /* 3334 * Memory is pinned to only one NUMA node via cpuset.mems, naturally 3335 * no page can be migrated. 3336 */ 3337 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { 3338 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); 3339 return; 3340 } 3341 3342 if (!mm->numa_next_scan) { 3343 mm->numa_next_scan = now + 3344 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3345 } 3346 3347 /* 3348 * Enforce maximal scan/migration frequency.. 3349 */ 3350 migrate = mm->numa_next_scan; 3351 if (time_before(now, migrate)) 3352 return; 3353 3354 if (p->numa_scan_period == 0) { 3355 p->numa_scan_period_max = task_scan_max(p); 3356 p->numa_scan_period = task_scan_start(p); 3357 } 3358 3359 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3360 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3361 return; 3362 3363 /* 3364 * Delay this task enough that another task of this mm will likely win 3365 * the next time around. 3366 */ 3367 p->node_stamp += 2 * TICK_NSEC; 3368 3369 pages = sysctl_numa_balancing_scan_size; 3370 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3371 virtpages = pages * 8; /* Scan up to this much virtual space */ 3372 if (!pages) 3373 return; 3374 3375 3376 if (!mmap_read_trylock(mm)) 3377 return; 3378 3379 /* 3380 * VMAs are skipped if the current PID has not trapped a fault within 3381 * the VMA recently. Allow scanning to be forced if there is no 3382 * suitable VMA remaining. 3383 */ 3384 vma_pids_skipped = false; 3385 3386 retry_pids: 3387 start = mm->numa_scan_offset; 3388 vma_iter_init(&vmi, mm, start); 3389 vma = vma_next(&vmi); 3390 if (!vma) { 3391 reset_ptenuma_scan(p); 3392 start = 0; 3393 vma_iter_set(&vmi, start); 3394 vma = vma_next(&vmi); 3395 } 3396 3397 for (; vma; vma = vma_next(&vmi)) { 3398 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3399 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3400 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3401 continue; 3402 } 3403 3404 /* 3405 * Shared library pages mapped by multiple processes are not 3406 * migrated as it is expected they are cache replicated. Avoid 3407 * hinting faults in read-only file-backed mappings or the vDSO 3408 * as migrating the pages will be of marginal benefit. 3409 */ 3410 if (!vma->vm_mm || 3411 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3412 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3413 continue; 3414 } 3415 3416 /* 3417 * Skip inaccessible VMAs to avoid any confusion between 3418 * PROT_NONE and NUMA hinting PTEs 3419 */ 3420 if (!vma_is_accessible(vma)) { 3421 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3422 continue; 3423 } 3424 3425 /* Initialise new per-VMA NUMAB state. */ 3426 if (!vma->numab_state) { 3427 struct vma_numab_state *ptr; 3428 3429 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3430 if (!ptr) 3431 continue; 3432 3433 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3434 kfree(ptr); 3435 continue; 3436 } 3437 3438 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3439 3440 vma->numab_state->next_scan = now + 3441 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3442 3443 /* Reset happens after 4 times scan delay of scan start */ 3444 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3445 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3446 3447 /* 3448 * Ensure prev_scan_seq does not match numa_scan_seq, 3449 * to prevent VMAs being skipped prematurely on the 3450 * first scan: 3451 */ 3452 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3453 } 3454 3455 /* 3456 * Scanning the VMAs of short lived tasks add more overhead. So 3457 * delay the scan for new VMAs. 3458 */ 3459 if (mm->numa_scan_seq && time_before(jiffies, 3460 vma->numab_state->next_scan)) { 3461 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3462 continue; 3463 } 3464 3465 /* RESET access PIDs regularly for old VMAs. */ 3466 if (mm->numa_scan_seq && 3467 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3468 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3469 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3470 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3471 vma->numab_state->pids_active[1] = 0; 3472 } 3473 3474 /* Do not rescan VMAs twice within the same sequence. */ 3475 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3476 mm->numa_scan_offset = vma->vm_end; 3477 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3478 continue; 3479 } 3480 3481 /* 3482 * Do not scan the VMA if task has not accessed it, unless no other 3483 * VMA candidate exists. 3484 */ 3485 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3486 vma_pids_skipped = true; 3487 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3488 continue; 3489 } 3490 3491 do { 3492 start = max(start, vma->vm_start); 3493 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3494 end = min(end, vma->vm_end); 3495 nr_pte_updates = change_prot_numa(vma, start, end); 3496 3497 /* 3498 * Try to scan sysctl_numa_balancing_size worth of 3499 * hpages that have at least one present PTE that 3500 * is not already PTE-numa. If the VMA contains 3501 * areas that are unused or already full of prot_numa 3502 * PTEs, scan up to virtpages, to skip through those 3503 * areas faster. 3504 */ 3505 if (nr_pte_updates) 3506 pages -= (end - start) >> PAGE_SHIFT; 3507 virtpages -= (end - start) >> PAGE_SHIFT; 3508 3509 start = end; 3510 if (pages <= 0 || virtpages <= 0) 3511 goto out; 3512 3513 cond_resched(); 3514 } while (end != vma->vm_end); 3515 3516 /* VMA scan is complete, do not scan until next sequence. */ 3517 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3518 3519 /* 3520 * Only force scan within one VMA at a time, to limit the 3521 * cost of scanning a potentially uninteresting VMA. 3522 */ 3523 if (vma_pids_forced) 3524 break; 3525 } 3526 3527 /* 3528 * If no VMAs are remaining and VMAs were skipped due to the PID 3529 * not accessing the VMA previously, then force a scan to ensure 3530 * forward progress: 3531 */ 3532 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3533 vma_pids_forced = true; 3534 goto retry_pids; 3535 } 3536 3537 out: 3538 /* 3539 * It is possible to reach the end of the VMA list but the last few 3540 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3541 * would find the !migratable VMA on the next scan but not reset the 3542 * scanner to the start so check it now. 3543 */ 3544 if (vma) 3545 mm->numa_scan_offset = start; 3546 else 3547 reset_ptenuma_scan(p); 3548 mmap_read_unlock(mm); 3549 3550 /* 3551 * Make sure tasks use at least 32x as much time to run other code 3552 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3553 * Usually update_task_scan_period slows down scanning enough; on an 3554 * overloaded system we need to limit overhead on a per task basis. 3555 */ 3556 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3557 u64 diff = p->se.sum_exec_runtime - runtime; 3558 p->node_stamp += 32 * diff; 3559 } 3560 } 3561 3562 void init_numa_balancing(u64 clone_flags, struct task_struct *p) 3563 { 3564 int mm_users = 0; 3565 struct mm_struct *mm = p->mm; 3566 3567 if (mm) { 3568 mm_users = atomic_read(&mm->mm_users); 3569 if (mm_users == 1) { 3570 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3571 mm->numa_scan_seq = 0; 3572 } 3573 } 3574 p->node_stamp = 0; 3575 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3576 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3577 p->numa_migrate_retry = 0; 3578 /* Protect against double add, see task_tick_numa and task_numa_work */ 3579 p->numa_work.next = &p->numa_work; 3580 p->numa_faults = NULL; 3581 p->numa_pages_migrated = 0; 3582 p->total_numa_faults = 0; 3583 RCU_INIT_POINTER(p->numa_group, NULL); 3584 p->last_task_numa_placement = 0; 3585 p->last_sum_exec_runtime = 0; 3586 3587 init_task_work(&p->numa_work, task_numa_work); 3588 3589 /* New address space, reset the preferred nid */ 3590 if (!(clone_flags & CLONE_VM)) { 3591 p->numa_preferred_nid = NUMA_NO_NODE; 3592 return; 3593 } 3594 3595 /* 3596 * New thread, keep existing numa_preferred_nid which should be copied 3597 * already by arch_dup_task_struct but stagger when scans start. 3598 */ 3599 if (mm) { 3600 unsigned int delay; 3601 3602 delay = min_t(unsigned int, task_scan_max(current), 3603 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3604 delay += 2 * TICK_NSEC; 3605 p->node_stamp = delay; 3606 } 3607 } 3608 3609 /* 3610 * Drive the periodic memory faults.. 3611 */ 3612 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3613 { 3614 struct callback_head *work = &curr->numa_work; 3615 u64 period, now; 3616 3617 /* 3618 * We don't care about NUMA placement if we don't have memory. 3619 */ 3620 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3621 return; 3622 3623 /* 3624 * Using runtime rather than walltime has the dual advantage that 3625 * we (mostly) drive the selection from busy threads and that the 3626 * task needs to have done some actual work before we bother with 3627 * NUMA placement. 3628 */ 3629 now = curr->se.sum_exec_runtime; 3630 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3631 3632 if (now > curr->node_stamp + period) { 3633 if (!curr->node_stamp) 3634 curr->numa_scan_period = task_scan_start(curr); 3635 curr->node_stamp += period; 3636 3637 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3638 task_work_add(curr, work, TWA_RESUME); 3639 } 3640 } 3641 3642 static void update_scan_period(struct task_struct *p, int new_cpu) 3643 { 3644 int src_nid = cpu_to_node(task_cpu(p)); 3645 int dst_nid = cpu_to_node(new_cpu); 3646 3647 if (!static_branch_likely(&sched_numa_balancing)) 3648 return; 3649 3650 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3651 return; 3652 3653 if (src_nid == dst_nid) 3654 return; 3655 3656 /* 3657 * Allow resets if faults have been trapped before one scan 3658 * has completed. This is most likely due to a new task that 3659 * is pulled cross-node due to wakeups or load balancing. 3660 */ 3661 if (p->numa_scan_seq) { 3662 /* 3663 * Avoid scan adjustments if moving to the preferred 3664 * node or if the task was not previously running on 3665 * the preferred node. 3666 */ 3667 if (dst_nid == p->numa_preferred_nid || 3668 (p->numa_preferred_nid != NUMA_NO_NODE && 3669 src_nid != p->numa_preferred_nid)) 3670 return; 3671 } 3672 3673 p->numa_scan_period = task_scan_start(p); 3674 } 3675 3676 #else /* !CONFIG_NUMA_BALANCING: */ 3677 3678 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3679 { 3680 } 3681 3682 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3683 { 3684 } 3685 3686 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3687 { 3688 } 3689 3690 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3691 { 3692 } 3693 3694 #endif /* !CONFIG_NUMA_BALANCING */ 3695 3696 static void 3697 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3698 { 3699 update_load_add(&cfs_rq->load, se->load.weight); 3700 if (entity_is_task(se)) { 3701 struct rq *rq = rq_of(cfs_rq); 3702 3703 account_numa_enqueue(rq, task_of(se)); 3704 list_add(&se->group_node, &rq->cfs_tasks); 3705 } 3706 cfs_rq->nr_queued++; 3707 } 3708 3709 static void 3710 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3711 { 3712 update_load_sub(&cfs_rq->load, se->load.weight); 3713 if (entity_is_task(se)) { 3714 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3715 list_del_init(&se->group_node); 3716 } 3717 cfs_rq->nr_queued--; 3718 } 3719 3720 /* 3721 * Signed add and clamp on underflow. 3722 * 3723 * Explicitly do a load-store to ensure the intermediate value never hits 3724 * memory. This allows lockless observations without ever seeing the negative 3725 * values. 3726 */ 3727 #define add_positive(_ptr, _val) do { \ 3728 typeof(_ptr) ptr = (_ptr); \ 3729 __signed_scalar_typeof(*ptr) val = (_val); \ 3730 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3731 \ 3732 res = var + val; \ 3733 \ 3734 if (val < 0 && res > var) \ 3735 res = 0; \ 3736 \ 3737 WRITE_ONCE(*ptr, res); \ 3738 } while (0) 3739 3740 /* 3741 * Remove and clamp on negative, from a local variable. 3742 * 3743 * A variant of sub_positive(), which does not use explicit load-store 3744 * and is thus optimized for local variable updates. 3745 */ 3746 #define lsub_positive(_ptr, _val) do { \ 3747 typeof(_ptr) ptr = (_ptr); \ 3748 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3749 } while (0) 3750 3751 3752 /* 3753 * Because of rounding, se->util_sum might ends up being +1 more than 3754 * cfs->util_sum. Although this is not a problem by itself, detaching 3755 * a lot of tasks with the rounding problem between 2 updates of 3756 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 3757 * cfs_util_avg is not. 3758 * 3759 * Check that util_sum is still above its lower bound for the new 3760 * util_avg. Given that period_contrib might have moved since the last 3761 * sync, we are only sure that util_sum must be above or equal to 3762 * util_avg * minimum possible divider 3763 */ 3764 #define __update_sa(sa, name, delta_avg, delta_sum) do { \ 3765 add_positive(&(sa)->name##_avg, delta_avg); \ 3766 add_positive(&(sa)->name##_sum, delta_sum); \ 3767 (sa)->name##_sum = max_t(typeof((sa)->name##_sum), \ 3768 (sa)->name##_sum, \ 3769 (sa)->name##_avg * PELT_MIN_DIVIDER); \ 3770 } while (0) 3771 3772 static inline void 3773 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3774 { 3775 __update_sa(&cfs_rq->avg, load, se->avg.load_avg, 3776 se_weight(se) * se->avg.load_sum); 3777 } 3778 3779 static inline void 3780 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3781 { 3782 __update_sa(&cfs_rq->avg, load, -se->avg.load_avg, 3783 se_weight(se) * -se->avg.load_sum); 3784 } 3785 3786 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3787 3788 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3789 unsigned long weight) 3790 { 3791 bool curr = cfs_rq->curr == se; 3792 3793 if (se->on_rq) { 3794 /* commit outstanding execution time */ 3795 update_curr(cfs_rq); 3796 update_entity_lag(cfs_rq, se); 3797 se->deadline -= se->vruntime; 3798 se->rel_deadline = 1; 3799 cfs_rq->nr_queued--; 3800 if (!curr) 3801 __dequeue_entity(cfs_rq, se); 3802 update_load_sub(&cfs_rq->load, se->load.weight); 3803 } 3804 dequeue_load_avg(cfs_rq, se); 3805 3806 /* 3807 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3808 * we need to scale se->vlag when w_i changes. 3809 */ 3810 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3811 if (se->rel_deadline) 3812 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3813 3814 update_load_set(&se->load, weight); 3815 3816 do { 3817 u32 divider = get_pelt_divider(&se->avg); 3818 3819 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3820 } while (0); 3821 3822 enqueue_load_avg(cfs_rq, se); 3823 if (se->on_rq) { 3824 place_entity(cfs_rq, se, 0); 3825 update_load_add(&cfs_rq->load, se->load.weight); 3826 if (!curr) 3827 __enqueue_entity(cfs_rq, se); 3828 cfs_rq->nr_queued++; 3829 } 3830 } 3831 3832 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3833 const struct load_weight *lw) 3834 { 3835 struct sched_entity *se = &p->se; 3836 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3837 struct load_weight *load = &se->load; 3838 3839 reweight_entity(cfs_rq, se, lw->weight); 3840 load->inv_weight = lw->inv_weight; 3841 } 3842 3843 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3844 3845 #ifdef CONFIG_FAIR_GROUP_SCHED 3846 /* 3847 * All this does is approximate the hierarchical proportion which includes that 3848 * global sum we all love to hate. 3849 * 3850 * That is, the weight of a group entity, is the proportional share of the 3851 * group weight based on the group runqueue weights. That is: 3852 * 3853 * tg->weight * grq->load.weight 3854 * ge->load.weight = ----------------------------- (1) 3855 * \Sum grq->load.weight 3856 * 3857 * Now, because computing that sum is prohibitively expensive to compute (been 3858 * there, done that) we approximate it with this average stuff. The average 3859 * moves slower and therefore the approximation is cheaper and more stable. 3860 * 3861 * So instead of the above, we substitute: 3862 * 3863 * grq->load.weight -> grq->avg.load_avg (2) 3864 * 3865 * which yields the following: 3866 * 3867 * tg->weight * grq->avg.load_avg 3868 * ge->load.weight = ------------------------------ (3) 3869 * tg->load_avg 3870 * 3871 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3872 * 3873 * That is shares_avg, and it is right (given the approximation (2)). 3874 * 3875 * The problem with it is that because the average is slow -- it was designed 3876 * to be exactly that of course -- this leads to transients in boundary 3877 * conditions. In specific, the case where the group was idle and we start the 3878 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3879 * yielding bad latency etc.. 3880 * 3881 * Now, in that special case (1) reduces to: 3882 * 3883 * tg->weight * grq->load.weight 3884 * ge->load.weight = ----------------------------- = tg->weight (4) 3885 * grp->load.weight 3886 * 3887 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3888 * 3889 * So what we do is modify our approximation (3) to approach (4) in the (near) 3890 * UP case, like: 3891 * 3892 * ge->load.weight = 3893 * 3894 * tg->weight * grq->load.weight 3895 * --------------------------------------------------- (5) 3896 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3897 * 3898 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3899 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3900 * 3901 * 3902 * tg->weight * grq->load.weight 3903 * ge->load.weight = ----------------------------- (6) 3904 * tg_load_avg' 3905 * 3906 * Where: 3907 * 3908 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3909 * max(grq->load.weight, grq->avg.load_avg) 3910 * 3911 * And that is shares_weight and is icky. In the (near) UP case it approaches 3912 * (4) while in the normal case it approaches (3). It consistently 3913 * overestimates the ge->load.weight and therefore: 3914 * 3915 * \Sum ge->load.weight >= tg->weight 3916 * 3917 * hence icky! 3918 */ 3919 static long calc_group_shares(struct cfs_rq *cfs_rq) 3920 { 3921 long tg_weight, tg_shares, load, shares; 3922 struct task_group *tg = cfs_rq->tg; 3923 3924 tg_shares = READ_ONCE(tg->shares); 3925 3926 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3927 3928 tg_weight = atomic_long_read(&tg->load_avg); 3929 3930 /* Ensure tg_weight >= load */ 3931 tg_weight -= cfs_rq->tg_load_avg_contrib; 3932 tg_weight += load; 3933 3934 shares = (tg_shares * load); 3935 if (tg_weight) 3936 shares /= tg_weight; 3937 3938 /* 3939 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3940 * of a group with small tg->shares value. It is a floor value which is 3941 * assigned as a minimum load.weight to the sched_entity representing 3942 * the group on a CPU. 3943 * 3944 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3945 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3946 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3947 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3948 * instead of 0. 3949 */ 3950 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3951 } 3952 3953 /* 3954 * Recomputes the group entity based on the current state of its group 3955 * runqueue. 3956 */ 3957 static void update_cfs_group(struct sched_entity *se) 3958 { 3959 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3960 long shares; 3961 3962 /* 3963 * When a group becomes empty, preserve its weight. This matters for 3964 * DELAY_DEQUEUE. 3965 */ 3966 if (!gcfs_rq || !gcfs_rq->load.weight) 3967 return; 3968 3969 shares = calc_group_shares(gcfs_rq); 3970 if (unlikely(se->load.weight != shares)) 3971 reweight_entity(cfs_rq_of(se), se, shares); 3972 } 3973 3974 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 3975 static inline void update_cfs_group(struct sched_entity *se) 3976 { 3977 } 3978 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 3979 3980 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3981 { 3982 struct rq *rq = rq_of(cfs_rq); 3983 3984 if (&rq->cfs == cfs_rq) { 3985 /* 3986 * There are a few boundary cases this might miss but it should 3987 * get called often enough that that should (hopefully) not be 3988 * a real problem. 3989 * 3990 * It will not get called when we go idle, because the idle 3991 * thread is a different class (!fair), nor will the utilization 3992 * number include things like RT tasks. 3993 * 3994 * As is, the util number is not freq-invariant (we'd have to 3995 * implement arch_scale_freq_capacity() for that). 3996 * 3997 * See cpu_util_cfs(). 3998 */ 3999 cpufreq_update_util(rq, flags); 4000 } 4001 } 4002 4003 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4004 { 4005 if (sa->load_sum) 4006 return false; 4007 4008 if (sa->util_sum) 4009 return false; 4010 4011 if (sa->runnable_sum) 4012 return false; 4013 4014 /* 4015 * _avg must be null when _sum are null because _avg = _sum / divider 4016 * Make sure that rounding and/or propagation of PELT values never 4017 * break this. 4018 */ 4019 WARN_ON_ONCE(sa->load_avg || 4020 sa->util_avg || 4021 sa->runnable_avg); 4022 4023 return true; 4024 } 4025 4026 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4027 { 4028 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4029 cfs_rq->last_update_time_copy); 4030 } 4031 #ifdef CONFIG_FAIR_GROUP_SCHED 4032 /* 4033 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4034 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4035 * bottom-up, we only have to test whether the cfs_rq before us on the list 4036 * is our child. 4037 * If cfs_rq is not on the list, test whether a child needs its to be added to 4038 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4039 */ 4040 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4041 { 4042 struct cfs_rq *prev_cfs_rq; 4043 struct list_head *prev; 4044 struct rq *rq = rq_of(cfs_rq); 4045 4046 if (cfs_rq->on_list) { 4047 prev = cfs_rq->leaf_cfs_rq_list.prev; 4048 } else { 4049 prev = rq->tmp_alone_branch; 4050 } 4051 4052 if (prev == &rq->leaf_cfs_rq_list) 4053 return false; 4054 4055 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4056 4057 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4058 } 4059 4060 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4061 { 4062 if (cfs_rq->load.weight) 4063 return false; 4064 4065 if (!load_avg_is_decayed(&cfs_rq->avg)) 4066 return false; 4067 4068 if (child_cfs_rq_on_list(cfs_rq)) 4069 return false; 4070 4071 if (cfs_rq->tg_load_avg_contrib) 4072 return false; 4073 4074 return true; 4075 } 4076 4077 /** 4078 * update_tg_load_avg - update the tg's load avg 4079 * @cfs_rq: the cfs_rq whose avg changed 4080 * 4081 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4082 * However, because tg->load_avg is a global value there are performance 4083 * considerations. 4084 * 4085 * In order to avoid having to look at the other cfs_rq's, we use a 4086 * differential update where we store the last value we propagated. This in 4087 * turn allows skipping updates if the differential is 'small'. 4088 * 4089 * Updating tg's load_avg is necessary before update_cfs_share(). 4090 */ 4091 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4092 { 4093 long delta; 4094 u64 now; 4095 4096 /* 4097 * No need to update load_avg for root_task_group as it is not used. 4098 */ 4099 if (cfs_rq->tg == &root_task_group) 4100 return; 4101 4102 /* rq has been offline and doesn't contribute to the share anymore: */ 4103 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4104 return; 4105 4106 /* 4107 * For migration heavy workloads, access to tg->load_avg can be 4108 * unbound. Limit the update rate to at most once per ms. 4109 */ 4110 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4111 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4112 return; 4113 4114 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4115 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4116 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4117 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4118 cfs_rq->last_update_tg_load_avg = now; 4119 } 4120 } 4121 4122 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4123 { 4124 long delta; 4125 u64 now; 4126 4127 /* 4128 * No need to update load_avg for root_task_group, as it is not used. 4129 */ 4130 if (cfs_rq->tg == &root_task_group) 4131 return; 4132 4133 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4134 delta = 0 - cfs_rq->tg_load_avg_contrib; 4135 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4136 cfs_rq->tg_load_avg_contrib = 0; 4137 cfs_rq->last_update_tg_load_avg = now; 4138 } 4139 4140 /* CPU offline callback: */ 4141 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4142 { 4143 struct task_group *tg; 4144 4145 lockdep_assert_rq_held(rq); 4146 4147 /* 4148 * The rq clock has already been updated in 4149 * set_rq_offline(), so we should skip updating 4150 * the rq clock again in unthrottle_cfs_rq(). 4151 */ 4152 rq_clock_start_loop_update(rq); 4153 4154 rcu_read_lock(); 4155 list_for_each_entry_rcu(tg, &task_groups, list) { 4156 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4157 4158 clear_tg_load_avg(cfs_rq); 4159 } 4160 rcu_read_unlock(); 4161 4162 rq_clock_stop_loop_update(rq); 4163 } 4164 4165 /* 4166 * Called within set_task_rq() right before setting a task's CPU. The 4167 * caller only guarantees p->pi_lock is held; no other assumptions, 4168 * including the state of rq->lock, should be made. 4169 */ 4170 void set_task_rq_fair(struct sched_entity *se, 4171 struct cfs_rq *prev, struct cfs_rq *next) 4172 { 4173 u64 p_last_update_time; 4174 u64 n_last_update_time; 4175 4176 if (!sched_feat(ATTACH_AGE_LOAD)) 4177 return; 4178 4179 /* 4180 * We are supposed to update the task to "current" time, then its up to 4181 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4182 * getting what current time is, so simply throw away the out-of-date 4183 * time. This will result in the wakee task is less decayed, but giving 4184 * the wakee more load sounds not bad. 4185 */ 4186 if (!(se->avg.last_update_time && prev)) 4187 return; 4188 4189 p_last_update_time = cfs_rq_last_update_time(prev); 4190 n_last_update_time = cfs_rq_last_update_time(next); 4191 4192 __update_load_avg_blocked_se(p_last_update_time, se); 4193 se->avg.last_update_time = n_last_update_time; 4194 } 4195 4196 /* 4197 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4198 * propagate its contribution. The key to this propagation is the invariant 4199 * that for each group: 4200 * 4201 * ge->avg == grq->avg (1) 4202 * 4203 * _IFF_ we look at the pure running and runnable sums. Because they 4204 * represent the very same entity, just at different points in the hierarchy. 4205 * 4206 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4207 * and simply copies the running/runnable sum over (but still wrong, because 4208 * the group entity and group rq do not have their PELT windows aligned). 4209 * 4210 * However, update_tg_cfs_load() is more complex. So we have: 4211 * 4212 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4213 * 4214 * And since, like util, the runnable part should be directly transferable, 4215 * the following would _appear_ to be the straight forward approach: 4216 * 4217 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4218 * 4219 * And per (1) we have: 4220 * 4221 * ge->avg.runnable_avg == grq->avg.runnable_avg 4222 * 4223 * Which gives: 4224 * 4225 * ge->load.weight * grq->avg.load_avg 4226 * ge->avg.load_avg = ----------------------------------- (4) 4227 * grq->load.weight 4228 * 4229 * Except that is wrong! 4230 * 4231 * Because while for entities historical weight is not important and we 4232 * really only care about our future and therefore can consider a pure 4233 * runnable sum, runqueues can NOT do this. 4234 * 4235 * We specifically want runqueues to have a load_avg that includes 4236 * historical weights. Those represent the blocked load, the load we expect 4237 * to (shortly) return to us. This only works by keeping the weights as 4238 * integral part of the sum. We therefore cannot decompose as per (3). 4239 * 4240 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4241 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4242 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4243 * runnable section of these tasks overlap (or not). If they were to perfectly 4244 * align the rq as a whole would be runnable 2/3 of the time. If however we 4245 * always have at least 1 runnable task, the rq as a whole is always runnable. 4246 * 4247 * So we'll have to approximate.. :/ 4248 * 4249 * Given the constraint: 4250 * 4251 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4252 * 4253 * We can construct a rule that adds runnable to a rq by assuming minimal 4254 * overlap. 4255 * 4256 * On removal, we'll assume each task is equally runnable; which yields: 4257 * 4258 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4259 * 4260 * XXX: only do this for the part of runnable > running ? 4261 * 4262 */ 4263 static inline void 4264 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4265 { 4266 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4267 u32 new_sum, divider; 4268 4269 /* Nothing to update */ 4270 if (!delta_avg) 4271 return; 4272 4273 /* 4274 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4275 * See ___update_load_avg() for details. 4276 */ 4277 divider = get_pelt_divider(&cfs_rq->avg); 4278 4279 /* Set new sched_entity's utilization */ 4280 se->avg.util_avg = gcfs_rq->avg.util_avg; 4281 new_sum = se->avg.util_avg * divider; 4282 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4283 se->avg.util_sum = new_sum; 4284 4285 /* Update parent cfs_rq utilization */ 4286 __update_sa(&cfs_rq->avg, util, delta_avg, delta_sum); 4287 } 4288 4289 static inline void 4290 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4291 { 4292 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4293 u32 new_sum, divider; 4294 4295 /* Nothing to update */ 4296 if (!delta_avg) 4297 return; 4298 4299 /* 4300 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4301 * See ___update_load_avg() for details. 4302 */ 4303 divider = get_pelt_divider(&cfs_rq->avg); 4304 4305 /* Set new sched_entity's runnable */ 4306 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4307 new_sum = se->avg.runnable_avg * divider; 4308 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4309 se->avg.runnable_sum = new_sum; 4310 4311 /* Update parent cfs_rq runnable */ 4312 __update_sa(&cfs_rq->avg, runnable, delta_avg, delta_sum); 4313 } 4314 4315 static inline void 4316 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4317 { 4318 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4319 unsigned long load_avg; 4320 u64 load_sum = 0; 4321 s64 delta_sum; 4322 u32 divider; 4323 4324 if (!runnable_sum) 4325 return; 4326 4327 gcfs_rq->prop_runnable_sum = 0; 4328 4329 /* 4330 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4331 * See ___update_load_avg() for details. 4332 */ 4333 divider = get_pelt_divider(&cfs_rq->avg); 4334 4335 if (runnable_sum >= 0) { 4336 /* 4337 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4338 * the CPU is saturated running == runnable. 4339 */ 4340 runnable_sum += se->avg.load_sum; 4341 runnable_sum = min_t(long, runnable_sum, divider); 4342 } else { 4343 /* 4344 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4345 * assuming all tasks are equally runnable. 4346 */ 4347 if (scale_load_down(gcfs_rq->load.weight)) { 4348 load_sum = div_u64(gcfs_rq->avg.load_sum, 4349 scale_load_down(gcfs_rq->load.weight)); 4350 } 4351 4352 /* But make sure to not inflate se's runnable */ 4353 runnable_sum = min(se->avg.load_sum, load_sum); 4354 } 4355 4356 /* 4357 * runnable_sum can't be lower than running_sum 4358 * Rescale running sum to be in the same range as runnable sum 4359 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4360 * runnable_sum is in [0 : LOAD_AVG_MAX] 4361 */ 4362 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4363 runnable_sum = max(runnable_sum, running_sum); 4364 4365 load_sum = se_weight(se) * runnable_sum; 4366 load_avg = div_u64(load_sum, divider); 4367 4368 delta_avg = load_avg - se->avg.load_avg; 4369 if (!delta_avg) 4370 return; 4371 4372 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4373 4374 se->avg.load_sum = runnable_sum; 4375 se->avg.load_avg = load_avg; 4376 __update_sa(&cfs_rq->avg, load, delta_avg, delta_sum); 4377 } 4378 4379 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4380 { 4381 cfs_rq->propagate = 1; 4382 cfs_rq->prop_runnable_sum += runnable_sum; 4383 } 4384 4385 /* Update task and its cfs_rq load average */ 4386 static inline int propagate_entity_load_avg(struct sched_entity *se) 4387 { 4388 struct cfs_rq *cfs_rq, *gcfs_rq; 4389 4390 if (entity_is_task(se)) 4391 return 0; 4392 4393 gcfs_rq = group_cfs_rq(se); 4394 if (!gcfs_rq->propagate) 4395 return 0; 4396 4397 gcfs_rq->propagate = 0; 4398 4399 cfs_rq = cfs_rq_of(se); 4400 4401 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4402 4403 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4404 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4405 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4406 4407 trace_pelt_cfs_tp(cfs_rq); 4408 trace_pelt_se_tp(se); 4409 4410 return 1; 4411 } 4412 4413 /* 4414 * Check if we need to update the load and the utilization of a blocked 4415 * group_entity: 4416 */ 4417 static inline bool skip_blocked_update(struct sched_entity *se) 4418 { 4419 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4420 4421 /* 4422 * If sched_entity still have not zero load or utilization, we have to 4423 * decay it: 4424 */ 4425 if (se->avg.load_avg || se->avg.util_avg) 4426 return false; 4427 4428 /* 4429 * If there is a pending propagation, we have to update the load and 4430 * the utilization of the sched_entity: 4431 */ 4432 if (gcfs_rq->propagate) 4433 return false; 4434 4435 /* 4436 * Otherwise, the load and the utilization of the sched_entity is 4437 * already zero and there is no pending propagation, so it will be a 4438 * waste of time to try to decay it: 4439 */ 4440 return true; 4441 } 4442 4443 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 4444 4445 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4446 4447 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4448 4449 static inline int propagate_entity_load_avg(struct sched_entity *se) 4450 { 4451 return 0; 4452 } 4453 4454 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4455 4456 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 4457 4458 #ifdef CONFIG_NO_HZ_COMMON 4459 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4460 { 4461 u64 throttled = 0, now, lut; 4462 struct cfs_rq *cfs_rq; 4463 struct rq *rq; 4464 bool is_idle; 4465 4466 if (load_avg_is_decayed(&se->avg)) 4467 return; 4468 4469 cfs_rq = cfs_rq_of(se); 4470 rq = rq_of(cfs_rq); 4471 4472 rcu_read_lock(); 4473 is_idle = is_idle_task(rcu_dereference_all(rq->curr)); 4474 rcu_read_unlock(); 4475 4476 /* 4477 * The lag estimation comes with a cost we don't want to pay all the 4478 * time. Hence, limiting to the case where the source CPU is idle and 4479 * we know we are at the greatest risk to have an outdated clock. 4480 */ 4481 if (!is_idle) 4482 return; 4483 4484 /* 4485 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4486 * 4487 * last_update_time (the cfs_rq's last_update_time) 4488 * = cfs_rq_clock_pelt()@cfs_rq_idle 4489 * = rq_clock_pelt()@cfs_rq_idle 4490 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4491 * 4492 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4493 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4494 * 4495 * rq_idle_lag (delta between now and rq's update) 4496 * = sched_clock_cpu() - rq_clock()@rq_idle 4497 * 4498 * We can then write: 4499 * 4500 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4501 * sched_clock_cpu() - rq_clock()@rq_idle 4502 * Where: 4503 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4504 * rq_clock()@rq_idle is rq->clock_idle 4505 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4506 * is cfs_rq->throttled_pelt_idle 4507 */ 4508 4509 #ifdef CONFIG_CFS_BANDWIDTH 4510 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4511 /* The clock has been stopped for throttling */ 4512 if (throttled == U64_MAX) 4513 return; 4514 #endif 4515 now = u64_u32_load(rq->clock_pelt_idle); 4516 /* 4517 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4518 * is observed the old clock_pelt_idle value and the new clock_idle, 4519 * which lead to an underestimation. The opposite would lead to an 4520 * overestimation. 4521 */ 4522 smp_rmb(); 4523 lut = cfs_rq_last_update_time(cfs_rq); 4524 4525 now -= throttled; 4526 if (now < lut) 4527 /* 4528 * cfs_rq->avg.last_update_time is more recent than our 4529 * estimation, let's use it. 4530 */ 4531 now = lut; 4532 else 4533 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4534 4535 __update_load_avg_blocked_se(now, se); 4536 } 4537 #else /* !CONFIG_NO_HZ_COMMON: */ 4538 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4539 #endif /* !CONFIG_NO_HZ_COMMON */ 4540 4541 /** 4542 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4543 * @now: current time, as per cfs_rq_clock_pelt() 4544 * @cfs_rq: cfs_rq to update 4545 * 4546 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4547 * avg. The immediate corollary is that all (fair) tasks must be attached. 4548 * 4549 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4550 * 4551 * Return: true if the load decayed or we removed load. 4552 * 4553 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4554 * call update_tg_load_avg() when this function returns true. 4555 */ 4556 static inline int 4557 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4558 { 4559 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4560 struct sched_avg *sa = &cfs_rq->avg; 4561 int decayed = 0; 4562 4563 if (cfs_rq->removed.nr) { 4564 unsigned long r; 4565 u32 divider = get_pelt_divider(&cfs_rq->avg); 4566 4567 raw_spin_lock(&cfs_rq->removed.lock); 4568 swap(cfs_rq->removed.util_avg, removed_util); 4569 swap(cfs_rq->removed.load_avg, removed_load); 4570 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4571 cfs_rq->removed.nr = 0; 4572 raw_spin_unlock(&cfs_rq->removed.lock); 4573 4574 r = removed_load; 4575 __update_sa(sa, load, -r, -r*divider); 4576 4577 r = removed_util; 4578 __update_sa(sa, util, -r, -r*divider); 4579 4580 r = removed_runnable; 4581 __update_sa(sa, runnable, -r, -r*divider); 4582 4583 /* 4584 * removed_runnable is the unweighted version of removed_load so we 4585 * can use it to estimate removed_load_sum. 4586 */ 4587 add_tg_cfs_propagate(cfs_rq, 4588 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4589 4590 decayed = 1; 4591 } 4592 4593 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4594 u64_u32_store_copy(sa->last_update_time, 4595 cfs_rq->last_update_time_copy, 4596 sa->last_update_time); 4597 return decayed; 4598 } 4599 4600 /** 4601 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4602 * @cfs_rq: cfs_rq to attach to 4603 * @se: sched_entity to attach 4604 * 4605 * Must call update_cfs_rq_load_avg() before this, since we rely on 4606 * cfs_rq->avg.last_update_time being current. 4607 */ 4608 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4609 { 4610 /* 4611 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4612 * See ___update_load_avg() for details. 4613 */ 4614 u32 divider = get_pelt_divider(&cfs_rq->avg); 4615 4616 /* 4617 * When we attach the @se to the @cfs_rq, we must align the decay 4618 * window because without that, really weird and wonderful things can 4619 * happen. 4620 * 4621 * XXX illustrate 4622 */ 4623 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4624 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4625 4626 /* 4627 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4628 * period_contrib. This isn't strictly correct, but since we're 4629 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4630 * _sum a little. 4631 */ 4632 se->avg.util_sum = se->avg.util_avg * divider; 4633 4634 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4635 4636 se->avg.load_sum = se->avg.load_avg * divider; 4637 if (se_weight(se) < se->avg.load_sum) 4638 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4639 else 4640 se->avg.load_sum = 1; 4641 4642 enqueue_load_avg(cfs_rq, se); 4643 cfs_rq->avg.util_avg += se->avg.util_avg; 4644 cfs_rq->avg.util_sum += se->avg.util_sum; 4645 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4646 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4647 4648 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4649 4650 cfs_rq_util_change(cfs_rq, 0); 4651 4652 trace_pelt_cfs_tp(cfs_rq); 4653 } 4654 4655 /** 4656 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4657 * @cfs_rq: cfs_rq to detach from 4658 * @se: sched_entity to detach 4659 * 4660 * Must call update_cfs_rq_load_avg() before this, since we rely on 4661 * cfs_rq->avg.last_update_time being current. 4662 */ 4663 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4664 { 4665 dequeue_load_avg(cfs_rq, se); 4666 __update_sa(&cfs_rq->avg, util, -se->avg.util_avg, -se->avg.util_sum); 4667 __update_sa(&cfs_rq->avg, runnable, -se->avg.runnable_avg, -se->avg.runnable_sum); 4668 4669 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4670 4671 cfs_rq_util_change(cfs_rq, 0); 4672 4673 trace_pelt_cfs_tp(cfs_rq); 4674 } 4675 4676 /* 4677 * Optional action to be done while updating the load average 4678 */ 4679 #define UPDATE_TG 0x1 4680 #define SKIP_AGE_LOAD 0x2 4681 #define DO_ATTACH 0x4 4682 #define DO_DETACH 0x8 4683 4684 /* Update task and its cfs_rq load average */ 4685 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4686 { 4687 u64 now = cfs_rq_clock_pelt(cfs_rq); 4688 int decayed; 4689 4690 /* 4691 * Track task load average for carrying it to new CPU after migrated, and 4692 * track group sched_entity load average for task_h_load calculation in migration 4693 */ 4694 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4695 __update_load_avg_se(now, cfs_rq, se); 4696 4697 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4698 decayed |= propagate_entity_load_avg(se); 4699 4700 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4701 4702 /* 4703 * DO_ATTACH means we're here from enqueue_entity(). 4704 * !last_update_time means we've passed through 4705 * migrate_task_rq_fair() indicating we migrated. 4706 * 4707 * IOW we're enqueueing a task on a new CPU. 4708 */ 4709 attach_entity_load_avg(cfs_rq, se); 4710 update_tg_load_avg(cfs_rq); 4711 4712 } else if (flags & DO_DETACH) { 4713 /* 4714 * DO_DETACH means we're here from dequeue_entity() 4715 * and we are migrating task out of the CPU. 4716 */ 4717 detach_entity_load_avg(cfs_rq, se); 4718 update_tg_load_avg(cfs_rq); 4719 } else if (decayed) { 4720 cfs_rq_util_change(cfs_rq, 0); 4721 4722 if (flags & UPDATE_TG) 4723 update_tg_load_avg(cfs_rq); 4724 } 4725 } 4726 4727 /* 4728 * Synchronize entity load avg of dequeued entity without locking 4729 * the previous rq. 4730 */ 4731 static void sync_entity_load_avg(struct sched_entity *se) 4732 { 4733 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4734 u64 last_update_time; 4735 4736 last_update_time = cfs_rq_last_update_time(cfs_rq); 4737 __update_load_avg_blocked_se(last_update_time, se); 4738 } 4739 4740 /* 4741 * Task first catches up with cfs_rq, and then subtract 4742 * itself from the cfs_rq (task must be off the queue now). 4743 */ 4744 static void remove_entity_load_avg(struct sched_entity *se) 4745 { 4746 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4747 unsigned long flags; 4748 4749 /* 4750 * tasks cannot exit without having gone through wake_up_new_task() -> 4751 * enqueue_task_fair() which will have added things to the cfs_rq, 4752 * so we can remove unconditionally. 4753 */ 4754 4755 sync_entity_load_avg(se); 4756 4757 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4758 ++cfs_rq->removed.nr; 4759 cfs_rq->removed.util_avg += se->avg.util_avg; 4760 cfs_rq->removed.load_avg += se->avg.load_avg; 4761 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4762 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4763 } 4764 4765 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4766 { 4767 return cfs_rq->avg.runnable_avg; 4768 } 4769 4770 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4771 { 4772 return cfs_rq->avg.load_avg; 4773 } 4774 4775 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4776 4777 static inline unsigned long task_util(struct task_struct *p) 4778 { 4779 return READ_ONCE(p->se.avg.util_avg); 4780 } 4781 4782 static inline unsigned long task_runnable(struct task_struct *p) 4783 { 4784 return READ_ONCE(p->se.avg.runnable_avg); 4785 } 4786 4787 static inline unsigned long _task_util_est(struct task_struct *p) 4788 { 4789 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4790 } 4791 4792 static inline unsigned long task_util_est(struct task_struct *p) 4793 { 4794 return max(task_util(p), _task_util_est(p)); 4795 } 4796 4797 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4798 struct task_struct *p) 4799 { 4800 unsigned int enqueued; 4801 4802 if (!sched_feat(UTIL_EST)) 4803 return; 4804 4805 /* Update root cfs_rq's estimated utilization */ 4806 enqueued = cfs_rq->avg.util_est; 4807 enqueued += _task_util_est(p); 4808 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4809 4810 trace_sched_util_est_cfs_tp(cfs_rq); 4811 } 4812 4813 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4814 struct task_struct *p) 4815 { 4816 unsigned int enqueued; 4817 4818 if (!sched_feat(UTIL_EST)) 4819 return; 4820 4821 /* Update root cfs_rq's estimated utilization */ 4822 enqueued = cfs_rq->avg.util_est; 4823 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4824 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4825 4826 trace_sched_util_est_cfs_tp(cfs_rq); 4827 } 4828 4829 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4830 4831 static inline void util_est_update(struct cfs_rq *cfs_rq, 4832 struct task_struct *p, 4833 bool task_sleep) 4834 { 4835 unsigned int ewma, dequeued, last_ewma_diff; 4836 4837 if (!sched_feat(UTIL_EST)) 4838 return; 4839 4840 /* 4841 * Skip update of task's estimated utilization when the task has not 4842 * yet completed an activation, e.g. being migrated. 4843 */ 4844 if (!task_sleep) 4845 return; 4846 4847 /* Get current estimate of utilization */ 4848 ewma = READ_ONCE(p->se.avg.util_est); 4849 4850 /* 4851 * If the PELT values haven't changed since enqueue time, 4852 * skip the util_est update. 4853 */ 4854 if (ewma & UTIL_AVG_UNCHANGED) 4855 return; 4856 4857 /* Get utilization at dequeue */ 4858 dequeued = task_util(p); 4859 4860 /* 4861 * Reset EWMA on utilization increases, the moving average is used only 4862 * to smooth utilization decreases. 4863 */ 4864 if (ewma <= dequeued) { 4865 ewma = dequeued; 4866 goto done; 4867 } 4868 4869 /* 4870 * Skip update of task's estimated utilization when its members are 4871 * already ~1% close to its last activation value. 4872 */ 4873 last_ewma_diff = ewma - dequeued; 4874 if (last_ewma_diff < UTIL_EST_MARGIN) 4875 goto done; 4876 4877 /* 4878 * To avoid underestimate of task utilization, skip updates of EWMA if 4879 * we cannot grant that thread got all CPU time it wanted. 4880 */ 4881 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4882 goto done; 4883 4884 4885 /* 4886 * Update Task's estimated utilization 4887 * 4888 * When *p completes an activation we can consolidate another sample 4889 * of the task size. This is done by using this value to update the 4890 * Exponential Weighted Moving Average (EWMA): 4891 * 4892 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4893 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4894 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4895 * = w * ( -last_ewma_diff ) + ewma(t-1) 4896 * = w * (-last_ewma_diff + ewma(t-1) / w) 4897 * 4898 * Where 'w' is the weight of new samples, which is configured to be 4899 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4900 */ 4901 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4902 ewma -= last_ewma_diff; 4903 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4904 done: 4905 ewma |= UTIL_AVG_UNCHANGED; 4906 WRITE_ONCE(p->se.avg.util_est, ewma); 4907 4908 trace_sched_util_est_se_tp(&p->se); 4909 } 4910 4911 static inline unsigned long get_actual_cpu_capacity(int cpu) 4912 { 4913 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4914 4915 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4916 4917 return capacity; 4918 } 4919 4920 static inline int util_fits_cpu(unsigned long util, 4921 unsigned long uclamp_min, 4922 unsigned long uclamp_max, 4923 int cpu) 4924 { 4925 unsigned long capacity = capacity_of(cpu); 4926 unsigned long capacity_orig; 4927 bool fits, uclamp_max_fits; 4928 4929 /* 4930 * Check if the real util fits without any uclamp boost/cap applied. 4931 */ 4932 fits = fits_capacity(util, capacity); 4933 4934 if (!uclamp_is_used()) 4935 return fits; 4936 4937 /* 4938 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4939 * uclamp_max. We only care about capacity pressure (by using 4940 * capacity_of()) for comparing against the real util. 4941 * 4942 * If a task is boosted to 1024 for example, we don't want a tiny 4943 * pressure to skew the check whether it fits a CPU or not. 4944 * 4945 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4946 * should fit a little cpu even if there's some pressure. 4947 * 4948 * Only exception is for HW or cpufreq pressure since it has a direct impact 4949 * on available OPP of the system. 4950 * 4951 * We honour it for uclamp_min only as a drop in performance level 4952 * could result in not getting the requested minimum performance level. 4953 * 4954 * For uclamp_max, we can tolerate a drop in performance level as the 4955 * goal is to cap the task. So it's okay if it's getting less. 4956 */ 4957 capacity_orig = arch_scale_cpu_capacity(cpu); 4958 4959 /* 4960 * We want to force a task to fit a cpu as implied by uclamp_max. 4961 * But we do have some corner cases to cater for.. 4962 * 4963 * 4964 * C=z 4965 * | ___ 4966 * | C=y | | 4967 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4968 * | C=x | | | | 4969 * | ___ | | | | 4970 * | | | | | | | (util somewhere in this region) 4971 * | | | | | | | 4972 * | | | | | | | 4973 * +---------------------------------------- 4974 * CPU0 CPU1 CPU2 4975 * 4976 * In the above example if a task is capped to a specific performance 4977 * point, y, then when: 4978 * 4979 * * util = 80% of x then it does not fit on CPU0 and should migrate 4980 * to CPU1 4981 * * util = 80% of y then it is forced to fit on CPU1 to honour 4982 * uclamp_max request. 4983 * 4984 * which is what we're enforcing here. A task always fits if 4985 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4986 * the normal upmigration rules should withhold still. 4987 * 4988 * Only exception is when we are on max capacity, then we need to be 4989 * careful not to block overutilized state. This is so because: 4990 * 4991 * 1. There's no concept of capping at max_capacity! We can't go 4992 * beyond this performance level anyway. 4993 * 2. The system is being saturated when we're operating near 4994 * max capacity, it doesn't make sense to block overutilized. 4995 */ 4996 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4997 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4998 fits = fits || uclamp_max_fits; 4999 5000 /* 5001 * 5002 * C=z 5003 * | ___ (region a, capped, util >= uclamp_max) 5004 * | C=y | | 5005 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5006 * | C=x | | | | 5007 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5008 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5009 * | | | | | | | 5010 * | | | | | | | (region c, boosted, util < uclamp_min) 5011 * +---------------------------------------- 5012 * CPU0 CPU1 CPU2 5013 * 5014 * a) If util > uclamp_max, then we're capped, we don't care about 5015 * actual fitness value here. We only care if uclamp_max fits 5016 * capacity without taking margin/pressure into account. 5017 * See comment above. 5018 * 5019 * b) If uclamp_min <= util <= uclamp_max, then the normal 5020 * fits_capacity() rules apply. Except we need to ensure that we 5021 * enforce we remain within uclamp_max, see comment above. 5022 * 5023 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5024 * need to take into account the boosted value fits the CPU without 5025 * taking margin/pressure into account. 5026 * 5027 * Cases (a) and (b) are handled in the 'fits' variable already. We 5028 * just need to consider an extra check for case (c) after ensuring we 5029 * handle the case uclamp_min > uclamp_max. 5030 */ 5031 uclamp_min = min(uclamp_min, uclamp_max); 5032 if (fits && (util < uclamp_min) && 5033 (uclamp_min > get_actual_cpu_capacity(cpu))) 5034 return -1; 5035 5036 return fits; 5037 } 5038 5039 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5040 { 5041 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5042 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5043 unsigned long util = task_util_est(p); 5044 /* 5045 * Return true only if the cpu fully fits the task requirements, which 5046 * include the utilization but also the performance hints. 5047 */ 5048 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5049 } 5050 5051 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5052 { 5053 int cpu = cpu_of(rq); 5054 5055 if (!sched_asym_cpucap_active()) 5056 return; 5057 5058 /* 5059 * Affinity allows us to go somewhere higher? Or are we on biggest 5060 * available CPU already? Or do we fit into this CPU ? 5061 */ 5062 if (!p || (p->nr_cpus_allowed == 1) || 5063 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5064 task_fits_cpu(p, cpu)) { 5065 5066 rq->misfit_task_load = 0; 5067 return; 5068 } 5069 5070 /* 5071 * Make sure that misfit_task_load will not be null even if 5072 * task_h_load() returns 0. 5073 */ 5074 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5075 } 5076 5077 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5078 { 5079 struct sched_entity *se = &p->se; 5080 5081 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5082 if (attr->sched_runtime) { 5083 se->custom_slice = 1; 5084 se->slice = clamp_t(u64, attr->sched_runtime, 5085 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5086 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5087 } else { 5088 se->custom_slice = 0; 5089 se->slice = sysctl_sched_base_slice; 5090 } 5091 } 5092 5093 static void 5094 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5095 { 5096 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5097 s64 lag = 0; 5098 5099 if (!se->custom_slice) 5100 se->slice = sysctl_sched_base_slice; 5101 vslice = calc_delta_fair(se->slice, se); 5102 5103 /* 5104 * Due to how V is constructed as the weighted average of entities, 5105 * adding tasks with positive lag, or removing tasks with negative lag 5106 * will move 'time' backwards, this can screw around with the lag of 5107 * other tasks. 5108 * 5109 * EEVDF: placement strategy #1 / #2 5110 */ 5111 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5112 struct sched_entity *curr = cfs_rq->curr; 5113 unsigned long load; 5114 5115 lag = se->vlag; 5116 5117 /* 5118 * If we want to place a task and preserve lag, we have to 5119 * consider the effect of the new entity on the weighted 5120 * average and compensate for this, otherwise lag can quickly 5121 * evaporate. 5122 * 5123 * Lag is defined as: 5124 * 5125 * lag_i = S - s_i = w_i * (V - v_i) 5126 * 5127 * To avoid the 'w_i' term all over the place, we only track 5128 * the virtual lag: 5129 * 5130 * vl_i = V - v_i <=> v_i = V - vl_i 5131 * 5132 * And we take V to be the weighted average of all v: 5133 * 5134 * V = (\Sum w_j*v_j) / W 5135 * 5136 * Where W is: \Sum w_j 5137 * 5138 * Then, the weighted average after adding an entity with lag 5139 * vl_i is given by: 5140 * 5141 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5142 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5143 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5144 * = (V*(W + w_i) - w_i*vl_i) / (W + w_i) 5145 * = V - w_i*vl_i / (W + w_i) 5146 * 5147 * And the actual lag after adding an entity with vl_i is: 5148 * 5149 * vl'_i = V' - v_i 5150 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5151 * = vl_i - w_i*vl_i / (W + w_i) 5152 * 5153 * Which is strictly less than vl_i. So in order to preserve lag 5154 * we should inflate the lag before placement such that the 5155 * effective lag after placement comes out right. 5156 * 5157 * As such, invert the above relation for vl'_i to get the vl_i 5158 * we need to use such that the lag after placement is the lag 5159 * we computed before dequeue. 5160 * 5161 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5162 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5163 * 5164 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5165 * = W*vl_i 5166 * 5167 * vl_i = (W + w_i)*vl'_i / W 5168 */ 5169 load = cfs_rq->sum_weight; 5170 if (curr && curr->on_rq) 5171 load += scale_load_down(curr->load.weight); 5172 5173 lag *= load + scale_load_down(se->load.weight); 5174 if (WARN_ON_ONCE(!load)) 5175 load = 1; 5176 lag = div_s64(lag, load); 5177 } 5178 5179 se->vruntime = vruntime - lag; 5180 5181 if (se->rel_deadline) { 5182 se->deadline += se->vruntime; 5183 se->rel_deadline = 0; 5184 return; 5185 } 5186 5187 /* 5188 * When joining the competition; the existing tasks will be, 5189 * on average, halfway through their slice, as such start tasks 5190 * off with half a slice to ease into the competition. 5191 */ 5192 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5193 vslice /= 2; 5194 5195 /* 5196 * EEVDF: vd_i = ve_i + r_i/w_i 5197 */ 5198 se->deadline = se->vruntime + vslice; 5199 } 5200 5201 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5202 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5203 5204 static void 5205 requeue_delayed_entity(struct sched_entity *se); 5206 5207 static void 5208 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5209 { 5210 bool curr = cfs_rq->curr == se; 5211 5212 /* 5213 * If we're the current task, we must renormalise before calling 5214 * update_curr(). 5215 */ 5216 if (curr) 5217 place_entity(cfs_rq, se, flags); 5218 5219 update_curr(cfs_rq); 5220 5221 /* 5222 * When enqueuing a sched_entity, we must: 5223 * - Update loads to have both entity and cfs_rq synced with now. 5224 * - For group_entity, update its runnable_weight to reflect the new 5225 * h_nr_runnable of its group cfs_rq. 5226 * - For group_entity, update its weight to reflect the new share of 5227 * its group cfs_rq 5228 * - Add its new weight to cfs_rq->load.weight 5229 */ 5230 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5231 se_update_runnable(se); 5232 /* 5233 * XXX update_load_avg() above will have attached us to the pelt sum; 5234 * but update_cfs_group() here will re-adjust the weight and have to 5235 * undo/redo all that. Seems wasteful. 5236 */ 5237 update_cfs_group(se); 5238 5239 /* 5240 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5241 * we can place the entity. 5242 */ 5243 if (!curr) 5244 place_entity(cfs_rq, se, flags); 5245 5246 account_entity_enqueue(cfs_rq, se); 5247 5248 /* Entity has migrated, no longer consider this task hot */ 5249 if (flags & ENQUEUE_MIGRATED) 5250 se->exec_start = 0; 5251 5252 check_schedstat_required(); 5253 update_stats_enqueue_fair(cfs_rq, se, flags); 5254 if (!curr) 5255 __enqueue_entity(cfs_rq, se); 5256 se->on_rq = 1; 5257 5258 if (cfs_rq->nr_queued == 1) { 5259 check_enqueue_throttle(cfs_rq); 5260 list_add_leaf_cfs_rq(cfs_rq); 5261 #ifdef CONFIG_CFS_BANDWIDTH 5262 if (cfs_rq->pelt_clock_throttled) { 5263 struct rq *rq = rq_of(cfs_rq); 5264 5265 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5266 cfs_rq->throttled_clock_pelt; 5267 cfs_rq->pelt_clock_throttled = 0; 5268 } 5269 #endif 5270 } 5271 } 5272 5273 static void __clear_buddies_next(struct sched_entity *se) 5274 { 5275 for_each_sched_entity(se) { 5276 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5277 if (cfs_rq->next != se) 5278 break; 5279 5280 cfs_rq->next = NULL; 5281 } 5282 } 5283 5284 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5285 { 5286 if (cfs_rq->next == se) 5287 __clear_buddies_next(se); 5288 } 5289 5290 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5291 5292 static void set_delayed(struct sched_entity *se) 5293 { 5294 se->sched_delayed = 1; 5295 5296 /* 5297 * Delayed se of cfs_rq have no tasks queued on them. 5298 * Do not adjust h_nr_runnable since dequeue_entities() 5299 * will account it for blocked tasks. 5300 */ 5301 if (!entity_is_task(se)) 5302 return; 5303 5304 for_each_sched_entity(se) { 5305 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5306 5307 cfs_rq->h_nr_runnable--; 5308 } 5309 } 5310 5311 static void clear_delayed(struct sched_entity *se) 5312 { 5313 se->sched_delayed = 0; 5314 5315 /* 5316 * Delayed se of cfs_rq have no tasks queued on them. 5317 * Do not adjust h_nr_runnable since a dequeue has 5318 * already accounted for it or an enqueue of a task 5319 * below it will account for it in enqueue_task_fair(). 5320 */ 5321 if (!entity_is_task(se)) 5322 return; 5323 5324 for_each_sched_entity(se) { 5325 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5326 5327 cfs_rq->h_nr_runnable++; 5328 } 5329 } 5330 5331 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5332 { 5333 clear_delayed(se); 5334 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5335 se->vlag = 0; 5336 } 5337 5338 static bool 5339 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5340 { 5341 bool sleep = flags & DEQUEUE_SLEEP; 5342 int action = UPDATE_TG; 5343 5344 update_curr(cfs_rq); 5345 clear_buddies(cfs_rq, se); 5346 5347 if (flags & DEQUEUE_DELAYED) { 5348 WARN_ON_ONCE(!se->sched_delayed); 5349 } else { 5350 bool delay = sleep; 5351 /* 5352 * DELAY_DEQUEUE relies on spurious wakeups, special task 5353 * states must not suffer spurious wakeups, excempt them. 5354 */ 5355 if (flags & (DEQUEUE_SPECIAL | DEQUEUE_THROTTLE)) 5356 delay = false; 5357 5358 WARN_ON_ONCE(delay && se->sched_delayed); 5359 5360 if (sched_feat(DELAY_DEQUEUE) && delay && 5361 !entity_eligible(cfs_rq, se)) { 5362 update_load_avg(cfs_rq, se, 0); 5363 set_delayed(se); 5364 return false; 5365 } 5366 } 5367 5368 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5369 action |= DO_DETACH; 5370 5371 /* 5372 * When dequeuing a sched_entity, we must: 5373 * - Update loads to have both entity and cfs_rq synced with now. 5374 * - For group_entity, update its runnable_weight to reflect the new 5375 * h_nr_runnable of its group cfs_rq. 5376 * - Subtract its previous weight from cfs_rq->load.weight. 5377 * - For group entity, update its weight to reflect the new share 5378 * of its group cfs_rq. 5379 */ 5380 update_load_avg(cfs_rq, se, action); 5381 se_update_runnable(se); 5382 5383 update_stats_dequeue_fair(cfs_rq, se, flags); 5384 5385 update_entity_lag(cfs_rq, se); 5386 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5387 se->deadline -= se->vruntime; 5388 se->rel_deadline = 1; 5389 } 5390 5391 if (se != cfs_rq->curr) 5392 __dequeue_entity(cfs_rq, se); 5393 se->on_rq = 0; 5394 account_entity_dequeue(cfs_rq, se); 5395 5396 /* return excess runtime on last dequeue */ 5397 return_cfs_rq_runtime(cfs_rq); 5398 5399 update_cfs_group(se); 5400 5401 if (flags & DEQUEUE_DELAYED) 5402 finish_delayed_dequeue_entity(se); 5403 5404 if (cfs_rq->nr_queued == 0) { 5405 update_idle_cfs_rq_clock_pelt(cfs_rq); 5406 #ifdef CONFIG_CFS_BANDWIDTH 5407 if (throttled_hierarchy(cfs_rq)) { 5408 struct rq *rq = rq_of(cfs_rq); 5409 5410 list_del_leaf_cfs_rq(cfs_rq); 5411 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5412 cfs_rq->pelt_clock_throttled = 1; 5413 } 5414 #endif 5415 } 5416 5417 return true; 5418 } 5419 5420 static void 5421 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5422 { 5423 clear_buddies(cfs_rq, se); 5424 5425 /* 'current' is not kept within the tree. */ 5426 if (se->on_rq) { 5427 /* 5428 * Any task has to be enqueued before it get to execute on 5429 * a CPU. So account for the time it spent waiting on the 5430 * runqueue. 5431 */ 5432 update_stats_wait_end_fair(cfs_rq, se); 5433 __dequeue_entity(cfs_rq, se); 5434 update_load_avg(cfs_rq, se, UPDATE_TG); 5435 5436 set_protect_slice(cfs_rq, se); 5437 } 5438 5439 update_stats_curr_start(cfs_rq, se); 5440 WARN_ON_ONCE(cfs_rq->curr); 5441 cfs_rq->curr = se; 5442 5443 /* 5444 * Track our maximum slice length, if the CPU's load is at 5445 * least twice that of our own weight (i.e. don't track it 5446 * when there are only lesser-weight tasks around): 5447 */ 5448 if (schedstat_enabled() && 5449 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5450 struct sched_statistics *stats; 5451 5452 stats = __schedstats_from_se(se); 5453 __schedstat_set(stats->slice_max, 5454 max((u64)stats->slice_max, 5455 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5456 } 5457 5458 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5459 } 5460 5461 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5462 5463 /* 5464 * Pick the next process, keeping these things in mind, in this order: 5465 * 1) keep things fair between processes/task groups 5466 * 2) pick the "next" process, since someone really wants that to run 5467 * 3) pick the "last" process, for cache locality 5468 * 4) do not run the "skip" process, if something else is available 5469 */ 5470 static struct sched_entity * 5471 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5472 { 5473 struct sched_entity *se; 5474 5475 se = pick_eevdf(cfs_rq); 5476 if (se->sched_delayed) { 5477 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5478 /* 5479 * Must not reference @se again, see __block_task(). 5480 */ 5481 return NULL; 5482 } 5483 return se; 5484 } 5485 5486 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5487 5488 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5489 { 5490 /* 5491 * If still on the runqueue then deactivate_task() 5492 * was not called and update_curr() has to be done: 5493 */ 5494 if (prev->on_rq) 5495 update_curr(cfs_rq); 5496 5497 /* throttle cfs_rqs exceeding runtime */ 5498 check_cfs_rq_runtime(cfs_rq); 5499 5500 if (prev->on_rq) { 5501 update_stats_wait_start_fair(cfs_rq, prev); 5502 /* Put 'current' back into the tree. */ 5503 __enqueue_entity(cfs_rq, prev); 5504 /* in !on_rq case, update occurred at dequeue */ 5505 update_load_avg(cfs_rq, prev, 0); 5506 } 5507 WARN_ON_ONCE(cfs_rq->curr != prev); 5508 cfs_rq->curr = NULL; 5509 } 5510 5511 static void 5512 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5513 { 5514 /* 5515 * Update run-time statistics of the 'current'. 5516 */ 5517 update_curr(cfs_rq); 5518 5519 /* 5520 * Ensure that runnable average is periodically updated. 5521 */ 5522 update_load_avg(cfs_rq, curr, UPDATE_TG); 5523 update_cfs_group(curr); 5524 5525 #ifdef CONFIG_SCHED_HRTICK 5526 /* 5527 * queued ticks are scheduled to match the slice, so don't bother 5528 * validating it and just reschedule. 5529 */ 5530 if (queued) { 5531 resched_curr_lazy(rq_of(cfs_rq)); 5532 return; 5533 } 5534 #endif 5535 } 5536 5537 5538 /************************************************** 5539 * CFS bandwidth control machinery 5540 */ 5541 5542 #ifdef CONFIG_CFS_BANDWIDTH 5543 5544 #ifdef CONFIG_JUMP_LABEL 5545 static struct static_key __cfs_bandwidth_used; 5546 5547 static inline bool cfs_bandwidth_used(void) 5548 { 5549 return static_key_false(&__cfs_bandwidth_used); 5550 } 5551 5552 void cfs_bandwidth_usage_inc(void) 5553 { 5554 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5555 } 5556 5557 void cfs_bandwidth_usage_dec(void) 5558 { 5559 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5560 } 5561 #else /* !CONFIG_JUMP_LABEL: */ 5562 static bool cfs_bandwidth_used(void) 5563 { 5564 return true; 5565 } 5566 5567 void cfs_bandwidth_usage_inc(void) {} 5568 void cfs_bandwidth_usage_dec(void) {} 5569 #endif /* !CONFIG_JUMP_LABEL */ 5570 5571 static inline u64 sched_cfs_bandwidth_slice(void) 5572 { 5573 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5574 } 5575 5576 /* 5577 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5578 * directly instead of rq->clock to avoid adding additional synchronization 5579 * around rq->lock. 5580 * 5581 * requires cfs_b->lock 5582 */ 5583 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5584 { 5585 s64 runtime; 5586 5587 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5588 return; 5589 5590 cfs_b->runtime += cfs_b->quota; 5591 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5592 if (runtime > 0) { 5593 cfs_b->burst_time += runtime; 5594 cfs_b->nr_burst++; 5595 } 5596 5597 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5598 cfs_b->runtime_snap = cfs_b->runtime; 5599 } 5600 5601 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5602 { 5603 return &tg->cfs_bandwidth; 5604 } 5605 5606 /* returns 0 on failure to allocate runtime */ 5607 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5608 struct cfs_rq *cfs_rq, u64 target_runtime) 5609 { 5610 u64 min_amount, amount = 0; 5611 5612 lockdep_assert_held(&cfs_b->lock); 5613 5614 /* note: this is a positive sum as runtime_remaining <= 0 */ 5615 min_amount = target_runtime - cfs_rq->runtime_remaining; 5616 5617 if (cfs_b->quota == RUNTIME_INF) 5618 amount = min_amount; 5619 else { 5620 start_cfs_bandwidth(cfs_b); 5621 5622 if (cfs_b->runtime > 0) { 5623 amount = min(cfs_b->runtime, min_amount); 5624 cfs_b->runtime -= amount; 5625 cfs_b->idle = 0; 5626 } 5627 } 5628 5629 cfs_rq->runtime_remaining += amount; 5630 5631 return cfs_rq->runtime_remaining > 0; 5632 } 5633 5634 /* returns 0 on failure to allocate runtime */ 5635 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5636 { 5637 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5638 int ret; 5639 5640 raw_spin_lock(&cfs_b->lock); 5641 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5642 raw_spin_unlock(&cfs_b->lock); 5643 5644 return ret; 5645 } 5646 5647 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5648 { 5649 /* dock delta_exec before expiring quota (as it could span periods) */ 5650 cfs_rq->runtime_remaining -= delta_exec; 5651 5652 if (likely(cfs_rq->runtime_remaining > 0)) 5653 return; 5654 5655 if (cfs_rq->throttled) 5656 return; 5657 /* 5658 * if we're unable to extend our runtime we resched so that the active 5659 * hierarchy can be throttled 5660 */ 5661 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5662 resched_curr(rq_of(cfs_rq)); 5663 } 5664 5665 static __always_inline 5666 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5667 { 5668 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5669 return; 5670 5671 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5672 } 5673 5674 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5675 { 5676 return cfs_bandwidth_used() && cfs_rq->throttled; 5677 } 5678 5679 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq) 5680 { 5681 return cfs_bandwidth_used() && cfs_rq->pelt_clock_throttled; 5682 } 5683 5684 /* check whether cfs_rq, or any parent, is throttled */ 5685 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5686 { 5687 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5688 } 5689 5690 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu) 5691 { 5692 return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]); 5693 } 5694 5695 static inline bool task_is_throttled(struct task_struct *p) 5696 { 5697 return cfs_bandwidth_used() && p->throttled; 5698 } 5699 5700 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags); 5701 static void throttle_cfs_rq_work(struct callback_head *work) 5702 { 5703 struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work); 5704 struct sched_entity *se; 5705 struct cfs_rq *cfs_rq; 5706 struct rq *rq; 5707 5708 WARN_ON_ONCE(p != current); 5709 p->sched_throttle_work.next = &p->sched_throttle_work; 5710 5711 /* 5712 * If task is exiting, then there won't be a return to userspace, so we 5713 * don't have to bother with any of this. 5714 */ 5715 if ((p->flags & PF_EXITING)) 5716 return; 5717 5718 scoped_guard(task_rq_lock, p) { 5719 se = &p->se; 5720 cfs_rq = cfs_rq_of(se); 5721 5722 /* Raced, forget */ 5723 if (p->sched_class != &fair_sched_class) 5724 return; 5725 5726 /* 5727 * If not in limbo, then either replenish has happened or this 5728 * task got migrated out of the throttled cfs_rq, move along. 5729 */ 5730 if (!cfs_rq->throttle_count) 5731 return; 5732 rq = scope.rq; 5733 update_rq_clock(rq); 5734 WARN_ON_ONCE(p->throttled || !list_empty(&p->throttle_node)); 5735 dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_THROTTLE); 5736 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list); 5737 /* 5738 * Must not set throttled before dequeue or dequeue will 5739 * mistakenly regard this task as an already throttled one. 5740 */ 5741 p->throttled = true; 5742 resched_curr(rq); 5743 } 5744 } 5745 5746 void init_cfs_throttle_work(struct task_struct *p) 5747 { 5748 init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work); 5749 /* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */ 5750 p->sched_throttle_work.next = &p->sched_throttle_work; 5751 INIT_LIST_HEAD(&p->throttle_node); 5752 } 5753 5754 /* 5755 * Task is throttled and someone wants to dequeue it again: 5756 * it could be sched/core when core needs to do things like 5757 * task affinity change, task group change, task sched class 5758 * change etc. and in these cases, DEQUEUE_SLEEP is not set; 5759 * or the task is blocked after throttled due to freezer etc. 5760 * and in these cases, DEQUEUE_SLEEP is set. 5761 */ 5762 static void detach_task_cfs_rq(struct task_struct *p); 5763 static void dequeue_throttled_task(struct task_struct *p, int flags) 5764 { 5765 WARN_ON_ONCE(p->se.on_rq); 5766 list_del_init(&p->throttle_node); 5767 5768 /* task blocked after throttled */ 5769 if (flags & DEQUEUE_SLEEP) { 5770 p->throttled = false; 5771 return; 5772 } 5773 5774 /* 5775 * task is migrating off its old cfs_rq, detach 5776 * the task's load from its old cfs_rq. 5777 */ 5778 if (task_on_rq_migrating(p)) 5779 detach_task_cfs_rq(p); 5780 } 5781 5782 static bool enqueue_throttled_task(struct task_struct *p) 5783 { 5784 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se); 5785 5786 /* @p should have gone through dequeue_throttled_task() first */ 5787 WARN_ON_ONCE(!list_empty(&p->throttle_node)); 5788 5789 /* 5790 * If the throttled task @p is enqueued to a throttled cfs_rq, 5791 * take the fast path by directly putting the task on the 5792 * target cfs_rq's limbo list. 5793 * 5794 * Do not do that when @p is current because the following race can 5795 * cause @p's group_node to be incorectly re-insterted in its rq's 5796 * cfs_tasks list, despite being throttled: 5797 * 5798 * cpuX cpuY 5799 * p ret2user 5800 * throttle_cfs_rq_work() sched_move_task(p) 5801 * LOCK task_rq_lock 5802 * dequeue_task_fair(p) 5803 * UNLOCK task_rq_lock 5804 * LOCK task_rq_lock 5805 * task_current_donor(p) == true 5806 * task_on_rq_queued(p) == true 5807 * dequeue_task(p) 5808 * put_prev_task(p) 5809 * sched_change_group() 5810 * enqueue_task(p) -> p's new cfs_rq 5811 * is throttled, go 5812 * fast path and skip 5813 * actual enqueue 5814 * set_next_task(p) 5815 * list_move(&se->group_node, &rq->cfs_tasks); // bug 5816 * schedule() 5817 * 5818 * In the above race case, @p current cfs_rq is in the same rq as 5819 * its previous cfs_rq because sched_move_task() only moves a task 5820 * to a different group from the same rq, so we can use its current 5821 * cfs_rq to derive rq and test if the task is current. 5822 */ 5823 if (throttled_hierarchy(cfs_rq) && 5824 !task_current_donor(rq_of(cfs_rq), p)) { 5825 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list); 5826 return true; 5827 } 5828 5829 /* we can't take the fast path, do an actual enqueue*/ 5830 p->throttled = false; 5831 return false; 5832 } 5833 5834 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags); 5835 static int tg_unthrottle_up(struct task_group *tg, void *data) 5836 { 5837 struct rq *rq = data; 5838 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5839 struct task_struct *p, *tmp; 5840 5841 if (--cfs_rq->throttle_count) 5842 return 0; 5843 5844 if (cfs_rq->pelt_clock_throttled) { 5845 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5846 cfs_rq->throttled_clock_pelt; 5847 cfs_rq->pelt_clock_throttled = 0; 5848 } 5849 5850 if (cfs_rq->throttled_clock_self) { 5851 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5852 5853 cfs_rq->throttled_clock_self = 0; 5854 5855 if (WARN_ON_ONCE((s64)delta < 0)) 5856 delta = 0; 5857 5858 cfs_rq->throttled_clock_self_time += delta; 5859 } 5860 5861 /* Re-enqueue the tasks that have been throttled at this level. */ 5862 list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) { 5863 list_del_init(&p->throttle_node); 5864 p->throttled = false; 5865 enqueue_task_fair(rq_of(cfs_rq), p, ENQUEUE_WAKEUP); 5866 } 5867 5868 /* Add cfs_rq with load or one or more already running entities to the list */ 5869 if (!cfs_rq_is_decayed(cfs_rq)) 5870 list_add_leaf_cfs_rq(cfs_rq); 5871 5872 return 0; 5873 } 5874 5875 static inline bool task_has_throttle_work(struct task_struct *p) 5876 { 5877 return p->sched_throttle_work.next != &p->sched_throttle_work; 5878 } 5879 5880 static inline void task_throttle_setup_work(struct task_struct *p) 5881 { 5882 if (task_has_throttle_work(p)) 5883 return; 5884 5885 /* 5886 * Kthreads and exiting tasks don't return to userspace, so adding the 5887 * work is pointless 5888 */ 5889 if ((p->flags & (PF_EXITING | PF_KTHREAD))) 5890 return; 5891 5892 task_work_add(p, &p->sched_throttle_work, TWA_RESUME); 5893 } 5894 5895 static void record_throttle_clock(struct cfs_rq *cfs_rq) 5896 { 5897 struct rq *rq = rq_of(cfs_rq); 5898 5899 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5900 cfs_rq->throttled_clock = rq_clock(rq); 5901 5902 if (!cfs_rq->throttled_clock_self) 5903 cfs_rq->throttled_clock_self = rq_clock(rq); 5904 } 5905 5906 static int tg_throttle_down(struct task_group *tg, void *data) 5907 { 5908 struct rq *rq = data; 5909 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5910 5911 if (cfs_rq->throttle_count++) 5912 return 0; 5913 5914 /* 5915 * For cfs_rqs that still have entities enqueued, PELT clock 5916 * stop happens at dequeue time when all entities are dequeued. 5917 */ 5918 if (!cfs_rq->nr_queued) { 5919 list_del_leaf_cfs_rq(cfs_rq); 5920 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5921 cfs_rq->pelt_clock_throttled = 1; 5922 } 5923 5924 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5925 WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list)); 5926 return 0; 5927 } 5928 5929 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5930 { 5931 struct rq *rq = rq_of(cfs_rq); 5932 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5933 int dequeue = 1; 5934 5935 raw_spin_lock(&cfs_b->lock); 5936 /* This will start the period timer if necessary */ 5937 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5938 /* 5939 * We have raced with bandwidth becoming available, and if we 5940 * actually throttled the timer might not unthrottle us for an 5941 * entire period. We additionally needed to make sure that any 5942 * subsequent check_cfs_rq_runtime calls agree not to throttle 5943 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5944 * for 1ns of runtime rather than just check cfs_b. 5945 */ 5946 dequeue = 0; 5947 } else { 5948 list_add_tail_rcu(&cfs_rq->throttled_list, 5949 &cfs_b->throttled_cfs_rq); 5950 } 5951 raw_spin_unlock(&cfs_b->lock); 5952 5953 if (!dequeue) 5954 return false; /* Throttle no longer required. */ 5955 5956 /* freeze hierarchy runnable averages while throttled */ 5957 rcu_read_lock(); 5958 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5959 rcu_read_unlock(); 5960 5961 /* 5962 * Note: distribution will already see us throttled via the 5963 * throttled-list. rq->lock protects completion. 5964 */ 5965 cfs_rq->throttled = 1; 5966 WARN_ON_ONCE(cfs_rq->throttled_clock); 5967 return true; 5968 } 5969 5970 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5971 { 5972 struct rq *rq = rq_of(cfs_rq); 5973 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5974 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5975 5976 /* 5977 * It's possible we are called with runtime_remaining < 0 due to things 5978 * like async unthrottled us with a positive runtime_remaining but other 5979 * still running entities consumed those runtime before we reached here. 5980 * 5981 * We can't unthrottle this cfs_rq without any runtime remaining because 5982 * any enqueue in tg_unthrottle_up() will immediately trigger a throttle, 5983 * which is not supposed to happen on unthrottle path. 5984 */ 5985 if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0) 5986 return; 5987 5988 cfs_rq->throttled = 0; 5989 5990 update_rq_clock(rq); 5991 5992 raw_spin_lock(&cfs_b->lock); 5993 if (cfs_rq->throttled_clock) { 5994 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5995 cfs_rq->throttled_clock = 0; 5996 } 5997 list_del_rcu(&cfs_rq->throttled_list); 5998 raw_spin_unlock(&cfs_b->lock); 5999 6000 /* update hierarchical throttle state */ 6001 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6002 6003 if (!cfs_rq->load.weight) { 6004 if (!cfs_rq->on_list) 6005 return; 6006 /* 6007 * Nothing to run but something to decay (on_list)? 6008 * Complete the branch. 6009 */ 6010 for_each_sched_entity(se) { 6011 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6012 break; 6013 } 6014 } 6015 6016 assert_list_leaf_cfs_rq(rq); 6017 6018 /* Determine whether we need to wake up potentially idle CPU: */ 6019 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6020 resched_curr(rq); 6021 } 6022 6023 static void __cfsb_csd_unthrottle(void *arg) 6024 { 6025 struct cfs_rq *cursor, *tmp; 6026 struct rq *rq = arg; 6027 struct rq_flags rf; 6028 6029 rq_lock(rq, &rf); 6030 6031 /* 6032 * Iterating over the list can trigger several call to 6033 * update_rq_clock() in unthrottle_cfs_rq(). 6034 * Do it once and skip the potential next ones. 6035 */ 6036 update_rq_clock(rq); 6037 rq_clock_start_loop_update(rq); 6038 6039 /* 6040 * Since we hold rq lock we're safe from concurrent manipulation of 6041 * the CSD list. However, this RCU critical section annotates the 6042 * fact that we pair with sched_free_group_rcu(), so that we cannot 6043 * race with group being freed in the window between removing it 6044 * from the list and advancing to the next entry in the list. 6045 */ 6046 rcu_read_lock(); 6047 6048 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6049 throttled_csd_list) { 6050 list_del_init(&cursor->throttled_csd_list); 6051 6052 if (cfs_rq_throttled(cursor)) 6053 unthrottle_cfs_rq(cursor); 6054 } 6055 6056 rcu_read_unlock(); 6057 6058 rq_clock_stop_loop_update(rq); 6059 rq_unlock(rq, &rf); 6060 } 6061 6062 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6063 { 6064 struct rq *rq = rq_of(cfs_rq); 6065 bool first; 6066 6067 if (rq == this_rq()) { 6068 unthrottle_cfs_rq(cfs_rq); 6069 return; 6070 } 6071 6072 /* Already enqueued */ 6073 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6074 return; 6075 6076 first = list_empty(&rq->cfsb_csd_list); 6077 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6078 if (first) 6079 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6080 } 6081 6082 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6083 { 6084 lockdep_assert_rq_held(rq_of(cfs_rq)); 6085 6086 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6087 cfs_rq->runtime_remaining <= 0)) 6088 return; 6089 6090 __unthrottle_cfs_rq_async(cfs_rq); 6091 } 6092 6093 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6094 { 6095 int this_cpu = smp_processor_id(); 6096 u64 runtime, remaining = 1; 6097 bool throttled = false; 6098 struct cfs_rq *cfs_rq, *tmp; 6099 struct rq_flags rf; 6100 struct rq *rq; 6101 LIST_HEAD(local_unthrottle); 6102 6103 rcu_read_lock(); 6104 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6105 throttled_list) { 6106 rq = rq_of(cfs_rq); 6107 6108 if (!remaining) { 6109 throttled = true; 6110 break; 6111 } 6112 6113 rq_lock_irqsave(rq, &rf); 6114 if (!cfs_rq_throttled(cfs_rq)) 6115 goto next; 6116 6117 /* Already queued for async unthrottle */ 6118 if (!list_empty(&cfs_rq->throttled_csd_list)) 6119 goto next; 6120 6121 /* By the above checks, this should never be true */ 6122 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6123 6124 raw_spin_lock(&cfs_b->lock); 6125 runtime = -cfs_rq->runtime_remaining + 1; 6126 if (runtime > cfs_b->runtime) 6127 runtime = cfs_b->runtime; 6128 cfs_b->runtime -= runtime; 6129 remaining = cfs_b->runtime; 6130 raw_spin_unlock(&cfs_b->lock); 6131 6132 cfs_rq->runtime_remaining += runtime; 6133 6134 /* we check whether we're throttled above */ 6135 if (cfs_rq->runtime_remaining > 0) { 6136 if (cpu_of(rq) != this_cpu) { 6137 unthrottle_cfs_rq_async(cfs_rq); 6138 } else { 6139 /* 6140 * We currently only expect to be unthrottling 6141 * a single cfs_rq locally. 6142 */ 6143 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6144 list_add_tail(&cfs_rq->throttled_csd_list, 6145 &local_unthrottle); 6146 } 6147 } else { 6148 throttled = true; 6149 } 6150 6151 next: 6152 rq_unlock_irqrestore(rq, &rf); 6153 } 6154 6155 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6156 throttled_csd_list) { 6157 struct rq *rq = rq_of(cfs_rq); 6158 6159 rq_lock_irqsave(rq, &rf); 6160 6161 list_del_init(&cfs_rq->throttled_csd_list); 6162 6163 if (cfs_rq_throttled(cfs_rq)) 6164 unthrottle_cfs_rq(cfs_rq); 6165 6166 rq_unlock_irqrestore(rq, &rf); 6167 } 6168 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6169 6170 rcu_read_unlock(); 6171 6172 return throttled; 6173 } 6174 6175 /* 6176 * Responsible for refilling a task_group's bandwidth and unthrottling its 6177 * cfs_rqs as appropriate. If there has been no activity within the last 6178 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6179 * used to track this state. 6180 */ 6181 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6182 { 6183 int throttled; 6184 6185 /* no need to continue the timer with no bandwidth constraint */ 6186 if (cfs_b->quota == RUNTIME_INF) 6187 goto out_deactivate; 6188 6189 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6190 cfs_b->nr_periods += overrun; 6191 6192 /* Refill extra burst quota even if cfs_b->idle */ 6193 __refill_cfs_bandwidth_runtime(cfs_b); 6194 6195 /* 6196 * idle depends on !throttled (for the case of a large deficit), and if 6197 * we're going inactive then everything else can be deferred 6198 */ 6199 if (cfs_b->idle && !throttled) 6200 goto out_deactivate; 6201 6202 if (!throttled) { 6203 /* mark as potentially idle for the upcoming period */ 6204 cfs_b->idle = 1; 6205 return 0; 6206 } 6207 6208 /* account preceding periods in which throttling occurred */ 6209 cfs_b->nr_throttled += overrun; 6210 6211 /* 6212 * This check is repeated as we release cfs_b->lock while we unthrottle. 6213 */ 6214 while (throttled && cfs_b->runtime > 0) { 6215 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6216 /* we can't nest cfs_b->lock while distributing bandwidth */ 6217 throttled = distribute_cfs_runtime(cfs_b); 6218 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6219 } 6220 6221 /* 6222 * While we are ensured activity in the period following an 6223 * unthrottle, this also covers the case in which the new bandwidth is 6224 * insufficient to cover the existing bandwidth deficit. (Forcing the 6225 * timer to remain active while there are any throttled entities.) 6226 */ 6227 cfs_b->idle = 0; 6228 6229 return 0; 6230 6231 out_deactivate: 6232 return 1; 6233 } 6234 6235 /* a cfs_rq won't donate quota below this amount */ 6236 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6237 /* minimum remaining period time to redistribute slack quota */ 6238 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6239 /* how long we wait to gather additional slack before distributing */ 6240 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6241 6242 /* 6243 * Are we near the end of the current quota period? 6244 * 6245 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6246 * hrtimer base being cleared by hrtimer_start. In the case of 6247 * migrate_hrtimers, base is never cleared, so we are fine. 6248 */ 6249 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6250 { 6251 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6252 s64 remaining; 6253 6254 /* if the call-back is running a quota refresh is already occurring */ 6255 if (hrtimer_callback_running(refresh_timer)) 6256 return 1; 6257 6258 /* is a quota refresh about to occur? */ 6259 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6260 if (remaining < (s64)min_expire) 6261 return 1; 6262 6263 return 0; 6264 } 6265 6266 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6267 { 6268 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6269 6270 /* if there's a quota refresh soon don't bother with slack */ 6271 if (runtime_refresh_within(cfs_b, min_left)) 6272 return; 6273 6274 /* don't push forwards an existing deferred unthrottle */ 6275 if (cfs_b->slack_started) 6276 return; 6277 cfs_b->slack_started = true; 6278 6279 hrtimer_start(&cfs_b->slack_timer, 6280 ns_to_ktime(cfs_bandwidth_slack_period), 6281 HRTIMER_MODE_REL); 6282 } 6283 6284 /* we know any runtime found here is valid as update_curr() precedes return */ 6285 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6286 { 6287 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6288 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6289 6290 if (slack_runtime <= 0) 6291 return; 6292 6293 raw_spin_lock(&cfs_b->lock); 6294 if (cfs_b->quota != RUNTIME_INF) { 6295 cfs_b->runtime += slack_runtime; 6296 6297 /* we are under rq->lock, defer unthrottling using a timer */ 6298 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6299 !list_empty(&cfs_b->throttled_cfs_rq)) 6300 start_cfs_slack_bandwidth(cfs_b); 6301 } 6302 raw_spin_unlock(&cfs_b->lock); 6303 6304 /* even if it's not valid for return we don't want to try again */ 6305 cfs_rq->runtime_remaining -= slack_runtime; 6306 } 6307 6308 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6309 { 6310 if (!cfs_bandwidth_used()) 6311 return; 6312 6313 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6314 return; 6315 6316 __return_cfs_rq_runtime(cfs_rq); 6317 } 6318 6319 /* 6320 * This is done with a timer (instead of inline with bandwidth return) since 6321 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6322 */ 6323 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6324 { 6325 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6326 unsigned long flags; 6327 6328 /* confirm we're still not at a refresh boundary */ 6329 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6330 cfs_b->slack_started = false; 6331 6332 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6333 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6334 return; 6335 } 6336 6337 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6338 runtime = cfs_b->runtime; 6339 6340 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6341 6342 if (!runtime) 6343 return; 6344 6345 distribute_cfs_runtime(cfs_b); 6346 } 6347 6348 /* 6349 * When a group wakes up we want to make sure that its quota is not already 6350 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6351 * runtime as update_curr() throttling can not trigger until it's on-rq. 6352 */ 6353 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6354 { 6355 if (!cfs_bandwidth_used()) 6356 return; 6357 6358 /* an active group must be handled by the update_curr()->put() path */ 6359 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6360 return; 6361 6362 /* ensure the group is not already throttled */ 6363 if (cfs_rq_throttled(cfs_rq)) 6364 return; 6365 6366 /* update runtime allocation */ 6367 account_cfs_rq_runtime(cfs_rq, 0); 6368 if (cfs_rq->runtime_remaining <= 0) 6369 throttle_cfs_rq(cfs_rq); 6370 } 6371 6372 static void sync_throttle(struct task_group *tg, int cpu) 6373 { 6374 struct cfs_rq *pcfs_rq, *cfs_rq; 6375 6376 if (!cfs_bandwidth_used()) 6377 return; 6378 6379 if (!tg->parent) 6380 return; 6381 6382 cfs_rq = tg->cfs_rq[cpu]; 6383 pcfs_rq = tg->parent->cfs_rq[cpu]; 6384 6385 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6386 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6387 6388 /* 6389 * It is not enough to sync the "pelt_clock_throttled" indicator 6390 * with the parent cfs_rq when the hierarchy is not queued. 6391 * Always join a throttled hierarchy with PELT clock throttled 6392 * and leaf it to the first enqueue, or distribution to 6393 * unthrottle the PELT clock. 6394 */ 6395 if (cfs_rq->throttle_count) 6396 cfs_rq->pelt_clock_throttled = 1; 6397 } 6398 6399 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6400 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6401 { 6402 if (!cfs_bandwidth_used()) 6403 return false; 6404 6405 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6406 return false; 6407 6408 /* 6409 * it's possible for a throttled entity to be forced into a running 6410 * state (e.g. set_curr_task), in this case we're finished. 6411 */ 6412 if (cfs_rq_throttled(cfs_rq)) 6413 return true; 6414 6415 return throttle_cfs_rq(cfs_rq); 6416 } 6417 6418 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6419 { 6420 struct cfs_bandwidth *cfs_b = 6421 container_of(timer, struct cfs_bandwidth, slack_timer); 6422 6423 do_sched_cfs_slack_timer(cfs_b); 6424 6425 return HRTIMER_NORESTART; 6426 } 6427 6428 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6429 { 6430 struct cfs_bandwidth *cfs_b = 6431 container_of(timer, struct cfs_bandwidth, period_timer); 6432 unsigned long flags; 6433 int overrun; 6434 int idle = 0; 6435 int count = 0; 6436 6437 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6438 for (;;) { 6439 overrun = hrtimer_forward_now(timer, cfs_b->period); 6440 if (!overrun) 6441 break; 6442 6443 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6444 6445 if (++count > 3) { 6446 u64 new, old = ktime_to_ns(cfs_b->period); 6447 6448 /* 6449 * Grow period by a factor of 2 to avoid losing precision. 6450 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6451 * to fail. 6452 */ 6453 new = old * 2; 6454 if (new < max_bw_quota_period_us * NSEC_PER_USEC) { 6455 cfs_b->period = ns_to_ktime(new); 6456 cfs_b->quota *= 2; 6457 cfs_b->burst *= 2; 6458 6459 pr_warn_ratelimited( 6460 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6461 smp_processor_id(), 6462 div_u64(new, NSEC_PER_USEC), 6463 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6464 } else { 6465 pr_warn_ratelimited( 6466 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6467 smp_processor_id(), 6468 div_u64(old, NSEC_PER_USEC), 6469 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6470 } 6471 6472 /* reset count so we don't come right back in here */ 6473 count = 0; 6474 } 6475 } 6476 if (idle) 6477 cfs_b->period_active = 0; 6478 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6479 6480 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6481 } 6482 6483 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6484 { 6485 raw_spin_lock_init(&cfs_b->lock); 6486 cfs_b->runtime = 0; 6487 cfs_b->quota = RUNTIME_INF; 6488 cfs_b->period = us_to_ktime(default_bw_period_us()); 6489 cfs_b->burst = 0; 6490 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6491 6492 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6493 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6494 HRTIMER_MODE_ABS_PINNED); 6495 6496 /* Add a random offset so that timers interleave */ 6497 hrtimer_set_expires(&cfs_b->period_timer, 6498 get_random_u32_below(cfs_b->period)); 6499 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6500 HRTIMER_MODE_REL); 6501 cfs_b->slack_started = false; 6502 } 6503 6504 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6505 { 6506 cfs_rq->runtime_enabled = 0; 6507 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6508 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6509 INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list); 6510 } 6511 6512 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6513 { 6514 lockdep_assert_held(&cfs_b->lock); 6515 6516 if (cfs_b->period_active) 6517 return; 6518 6519 cfs_b->period_active = 1; 6520 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6521 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6522 } 6523 6524 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6525 { 6526 int __maybe_unused i; 6527 6528 /* init_cfs_bandwidth() was not called */ 6529 if (!cfs_b->throttled_cfs_rq.next) 6530 return; 6531 6532 hrtimer_cancel(&cfs_b->period_timer); 6533 hrtimer_cancel(&cfs_b->slack_timer); 6534 6535 /* 6536 * It is possible that we still have some cfs_rq's pending on a CSD 6537 * list, though this race is very rare. In order for this to occur, we 6538 * must have raced with the last task leaving the group while there 6539 * exist throttled cfs_rq(s), and the period_timer must have queued the 6540 * CSD item but the remote cpu has not yet processed it. To handle this, 6541 * we can simply flush all pending CSD work inline here. We're 6542 * guaranteed at this point that no additional cfs_rq of this group can 6543 * join a CSD list. 6544 */ 6545 for_each_possible_cpu(i) { 6546 struct rq *rq = cpu_rq(i); 6547 unsigned long flags; 6548 6549 if (list_empty(&rq->cfsb_csd_list)) 6550 continue; 6551 6552 local_irq_save(flags); 6553 __cfsb_csd_unthrottle(rq); 6554 local_irq_restore(flags); 6555 } 6556 } 6557 6558 /* 6559 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6560 * 6561 * The race is harmless, since modifying bandwidth settings of unhooked group 6562 * bits doesn't do much. 6563 */ 6564 6565 /* cpu online callback */ 6566 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6567 { 6568 struct task_group *tg; 6569 6570 lockdep_assert_rq_held(rq); 6571 6572 rcu_read_lock(); 6573 list_for_each_entry_rcu(tg, &task_groups, list) { 6574 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6575 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6576 6577 raw_spin_lock(&cfs_b->lock); 6578 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6579 raw_spin_unlock(&cfs_b->lock); 6580 } 6581 rcu_read_unlock(); 6582 } 6583 6584 /* cpu offline callback */ 6585 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6586 { 6587 struct task_group *tg; 6588 6589 lockdep_assert_rq_held(rq); 6590 6591 // Do not unthrottle for an active CPU 6592 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6593 return; 6594 6595 /* 6596 * The rq clock has already been updated in the 6597 * set_rq_offline(), so we should skip updating 6598 * the rq clock again in unthrottle_cfs_rq(). 6599 */ 6600 rq_clock_start_loop_update(rq); 6601 6602 rcu_read_lock(); 6603 list_for_each_entry_rcu(tg, &task_groups, list) { 6604 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6605 6606 if (!cfs_rq->runtime_enabled) 6607 continue; 6608 6609 /* 6610 * Offline rq is schedulable till CPU is completely disabled 6611 * in take_cpu_down(), so we prevent new cfs throttling here. 6612 */ 6613 cfs_rq->runtime_enabled = 0; 6614 6615 if (!cfs_rq_throttled(cfs_rq)) 6616 continue; 6617 6618 /* 6619 * clock_task is not advancing so we just need to make sure 6620 * there's some valid quota amount 6621 */ 6622 cfs_rq->runtime_remaining = 1; 6623 unthrottle_cfs_rq(cfs_rq); 6624 } 6625 rcu_read_unlock(); 6626 6627 rq_clock_stop_loop_update(rq); 6628 } 6629 6630 bool cfs_task_bw_constrained(struct task_struct *p) 6631 { 6632 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6633 6634 if (!cfs_bandwidth_used()) 6635 return false; 6636 6637 if (cfs_rq->runtime_enabled || 6638 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6639 return true; 6640 6641 return false; 6642 } 6643 6644 #ifdef CONFIG_NO_HZ_FULL 6645 /* called from pick_next_task_fair() */ 6646 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6647 { 6648 int cpu = cpu_of(rq); 6649 6650 if (!cfs_bandwidth_used()) 6651 return; 6652 6653 if (!tick_nohz_full_cpu(cpu)) 6654 return; 6655 6656 if (rq->nr_running != 1) 6657 return; 6658 6659 /* 6660 * We know there is only one task runnable and we've just picked it. The 6661 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6662 * be otherwise able to stop the tick. Just need to check if we are using 6663 * bandwidth control. 6664 */ 6665 if (cfs_task_bw_constrained(p)) 6666 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6667 } 6668 #endif /* CONFIG_NO_HZ_FULL */ 6669 6670 #else /* !CONFIG_CFS_BANDWIDTH: */ 6671 6672 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6673 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6674 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6675 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6676 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6677 static void task_throttle_setup_work(struct task_struct *p) {} 6678 static bool task_is_throttled(struct task_struct *p) { return false; } 6679 static void dequeue_throttled_task(struct task_struct *p, int flags) {} 6680 static bool enqueue_throttled_task(struct task_struct *p) { return false; } 6681 static void record_throttle_clock(struct cfs_rq *cfs_rq) {} 6682 6683 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6684 { 6685 return 0; 6686 } 6687 6688 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq) 6689 { 6690 return false; 6691 } 6692 6693 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6694 { 6695 return 0; 6696 } 6697 6698 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu) 6699 { 6700 return 0; 6701 } 6702 6703 #ifdef CONFIG_FAIR_GROUP_SCHED 6704 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6705 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6706 #endif 6707 6708 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6709 { 6710 return NULL; 6711 } 6712 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6713 static inline void update_runtime_enabled(struct rq *rq) {} 6714 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6715 #ifdef CONFIG_CGROUP_SCHED 6716 bool cfs_task_bw_constrained(struct task_struct *p) 6717 { 6718 return false; 6719 } 6720 #endif 6721 #endif /* !CONFIG_CFS_BANDWIDTH */ 6722 6723 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6724 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6725 #endif 6726 6727 /************************************************** 6728 * CFS operations on tasks: 6729 */ 6730 6731 #ifdef CONFIG_SCHED_HRTICK 6732 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6733 { 6734 struct sched_entity *se = &p->se; 6735 6736 WARN_ON_ONCE(task_rq(p) != rq); 6737 6738 if (rq->cfs.h_nr_queued > 1) { 6739 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6740 u64 slice = se->slice; 6741 s64 delta = slice - ran; 6742 6743 if (delta < 0) { 6744 if (task_current_donor(rq, p)) 6745 resched_curr(rq); 6746 return; 6747 } 6748 hrtick_start(rq, delta); 6749 } 6750 } 6751 6752 /* 6753 * called from enqueue/dequeue and updates the hrtick when the 6754 * current task is from our class and nr_running is low enough 6755 * to matter. 6756 */ 6757 static void hrtick_update(struct rq *rq) 6758 { 6759 struct task_struct *donor = rq->donor; 6760 6761 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6762 return; 6763 6764 hrtick_start_fair(rq, donor); 6765 } 6766 #else /* !CONFIG_SCHED_HRTICK: */ 6767 static inline void 6768 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6769 { 6770 } 6771 6772 static inline void hrtick_update(struct rq *rq) 6773 { 6774 } 6775 #endif /* !CONFIG_SCHED_HRTICK */ 6776 6777 static inline bool cpu_overutilized(int cpu) 6778 { 6779 unsigned long rq_util_min, rq_util_max; 6780 6781 if (!sched_energy_enabled()) 6782 return false; 6783 6784 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6785 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6786 6787 /* Return true only if the utilization doesn't fit CPU's capacity */ 6788 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6789 } 6790 6791 /* 6792 * overutilized value make sense only if EAS is enabled 6793 */ 6794 static inline bool is_rd_overutilized(struct root_domain *rd) 6795 { 6796 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6797 } 6798 6799 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6800 { 6801 if (!sched_energy_enabled()) 6802 return; 6803 6804 WRITE_ONCE(rd->overutilized, flag); 6805 trace_sched_overutilized_tp(rd, flag); 6806 } 6807 6808 static inline void check_update_overutilized_status(struct rq *rq) 6809 { 6810 /* 6811 * overutilized field is used for load balancing decisions only 6812 * if energy aware scheduler is being used 6813 */ 6814 6815 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6816 set_rd_overutilized(rq->rd, 1); 6817 } 6818 6819 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6820 static int sched_idle_rq(struct rq *rq) 6821 { 6822 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6823 rq->nr_running); 6824 } 6825 6826 static int sched_idle_cpu(int cpu) 6827 { 6828 return sched_idle_rq(cpu_rq(cpu)); 6829 } 6830 6831 static void 6832 requeue_delayed_entity(struct sched_entity *se) 6833 { 6834 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6835 6836 /* 6837 * se->sched_delayed should imply: se->on_rq == 1. 6838 * Because a delayed entity is one that is still on 6839 * the runqueue competing until elegibility. 6840 */ 6841 WARN_ON_ONCE(!se->sched_delayed); 6842 WARN_ON_ONCE(!se->on_rq); 6843 6844 if (sched_feat(DELAY_ZERO)) { 6845 update_entity_lag(cfs_rq, se); 6846 if (se->vlag > 0) { 6847 cfs_rq->nr_queued--; 6848 if (se != cfs_rq->curr) 6849 __dequeue_entity(cfs_rq, se); 6850 se->vlag = 0; 6851 place_entity(cfs_rq, se, 0); 6852 if (se != cfs_rq->curr) 6853 __enqueue_entity(cfs_rq, se); 6854 cfs_rq->nr_queued++; 6855 } 6856 } 6857 6858 update_load_avg(cfs_rq, se, 0); 6859 clear_delayed(se); 6860 } 6861 6862 /* 6863 * The enqueue_task method is called before nr_running is 6864 * increased. Here we update the fair scheduling stats and 6865 * then put the task into the rbtree: 6866 */ 6867 static void 6868 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6869 { 6870 struct cfs_rq *cfs_rq; 6871 struct sched_entity *se = &p->se; 6872 int h_nr_idle = task_has_idle_policy(p); 6873 int h_nr_runnable = 1; 6874 int task_new = !(flags & ENQUEUE_WAKEUP); 6875 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6876 u64 slice = 0; 6877 6878 if (task_is_throttled(p) && enqueue_throttled_task(p)) 6879 return; 6880 6881 /* 6882 * The code below (indirectly) updates schedutil which looks at 6883 * the cfs_rq utilization to select a frequency. 6884 * Let's add the task's estimated utilization to the cfs_rq's 6885 * estimated utilization, before we update schedutil. 6886 */ 6887 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) 6888 util_est_enqueue(&rq->cfs, p); 6889 6890 if (flags & ENQUEUE_DELAYED) { 6891 requeue_delayed_entity(se); 6892 return; 6893 } 6894 6895 /* 6896 * If in_iowait is set, the code below may not trigger any cpufreq 6897 * utilization updates, so do it here explicitly with the IOWAIT flag 6898 * passed. 6899 */ 6900 if (p->in_iowait) 6901 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6902 6903 if (task_new && se->sched_delayed) 6904 h_nr_runnable = 0; 6905 6906 for_each_sched_entity(se) { 6907 if (se->on_rq) { 6908 if (se->sched_delayed) 6909 requeue_delayed_entity(se); 6910 break; 6911 } 6912 cfs_rq = cfs_rq_of(se); 6913 6914 /* 6915 * Basically set the slice of group entries to the min_slice of 6916 * their respective cfs_rq. This ensures the group can service 6917 * its entities in the desired time-frame. 6918 */ 6919 if (slice) { 6920 se->slice = slice; 6921 se->custom_slice = 1; 6922 } 6923 enqueue_entity(cfs_rq, se, flags); 6924 slice = cfs_rq_min_slice(cfs_rq); 6925 6926 cfs_rq->h_nr_runnable += h_nr_runnable; 6927 cfs_rq->h_nr_queued++; 6928 cfs_rq->h_nr_idle += h_nr_idle; 6929 6930 if (cfs_rq_is_idle(cfs_rq)) 6931 h_nr_idle = 1; 6932 6933 flags = ENQUEUE_WAKEUP; 6934 } 6935 6936 for_each_sched_entity(se) { 6937 cfs_rq = cfs_rq_of(se); 6938 6939 update_load_avg(cfs_rq, se, UPDATE_TG); 6940 se_update_runnable(se); 6941 update_cfs_group(se); 6942 6943 se->slice = slice; 6944 if (se != cfs_rq->curr) 6945 min_vruntime_cb_propagate(&se->run_node, NULL); 6946 slice = cfs_rq_min_slice(cfs_rq); 6947 6948 cfs_rq->h_nr_runnable += h_nr_runnable; 6949 cfs_rq->h_nr_queued++; 6950 cfs_rq->h_nr_idle += h_nr_idle; 6951 6952 if (cfs_rq_is_idle(cfs_rq)) 6953 h_nr_idle = 1; 6954 } 6955 6956 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6957 dl_server_start(&rq->fair_server); 6958 6959 /* At this point se is NULL and we are at root level*/ 6960 add_nr_running(rq, 1); 6961 6962 /* 6963 * Since new tasks are assigned an initial util_avg equal to 6964 * half of the spare capacity of their CPU, tiny tasks have the 6965 * ability to cross the overutilized threshold, which will 6966 * result in the load balancer ruining all the task placement 6967 * done by EAS. As a way to mitigate that effect, do not account 6968 * for the first enqueue operation of new tasks during the 6969 * overutilized flag detection. 6970 * 6971 * A better way of solving this problem would be to wait for 6972 * the PELT signals of tasks to converge before taking them 6973 * into account, but that is not straightforward to implement, 6974 * and the following generally works well enough in practice. 6975 */ 6976 if (!task_new) 6977 check_update_overutilized_status(rq); 6978 6979 assert_list_leaf_cfs_rq(rq); 6980 6981 hrtick_update(rq); 6982 } 6983 6984 /* 6985 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 6986 * failing half-way through and resume the dequeue later. 6987 * 6988 * Returns: 6989 * -1 - dequeue delayed 6990 * 0 - dequeue throttled 6991 * 1 - dequeue complete 6992 */ 6993 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 6994 { 6995 bool was_sched_idle = sched_idle_rq(rq); 6996 bool task_sleep = flags & DEQUEUE_SLEEP; 6997 bool task_delayed = flags & DEQUEUE_DELAYED; 6998 bool task_throttled = flags & DEQUEUE_THROTTLE; 6999 struct task_struct *p = NULL; 7000 int h_nr_idle = 0; 7001 int h_nr_queued = 0; 7002 int h_nr_runnable = 0; 7003 struct cfs_rq *cfs_rq; 7004 u64 slice = 0; 7005 7006 if (entity_is_task(se)) { 7007 p = task_of(se); 7008 h_nr_queued = 1; 7009 h_nr_idle = task_has_idle_policy(p); 7010 if (task_sleep || task_delayed || !se->sched_delayed) 7011 h_nr_runnable = 1; 7012 } 7013 7014 for_each_sched_entity(se) { 7015 cfs_rq = cfs_rq_of(se); 7016 7017 if (!dequeue_entity(cfs_rq, se, flags)) { 7018 if (p && &p->se == se) 7019 return -1; 7020 7021 slice = cfs_rq_min_slice(cfs_rq); 7022 break; 7023 } 7024 7025 cfs_rq->h_nr_runnable -= h_nr_runnable; 7026 cfs_rq->h_nr_queued -= h_nr_queued; 7027 cfs_rq->h_nr_idle -= h_nr_idle; 7028 7029 if (cfs_rq_is_idle(cfs_rq)) 7030 h_nr_idle = h_nr_queued; 7031 7032 if (throttled_hierarchy(cfs_rq) && task_throttled) 7033 record_throttle_clock(cfs_rq); 7034 7035 /* Don't dequeue parent if it has other entities besides us */ 7036 if (cfs_rq->load.weight) { 7037 slice = cfs_rq_min_slice(cfs_rq); 7038 7039 /* Avoid re-evaluating load for this entity: */ 7040 se = parent_entity(se); 7041 /* 7042 * Bias pick_next to pick a task from this cfs_rq, as 7043 * p is sleeping when it is within its sched_slice. 7044 */ 7045 if (task_sleep && se) 7046 set_next_buddy(se); 7047 break; 7048 } 7049 flags |= DEQUEUE_SLEEP; 7050 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7051 } 7052 7053 for_each_sched_entity(se) { 7054 cfs_rq = cfs_rq_of(se); 7055 7056 update_load_avg(cfs_rq, se, UPDATE_TG); 7057 se_update_runnable(se); 7058 update_cfs_group(se); 7059 7060 se->slice = slice; 7061 if (se != cfs_rq->curr) 7062 min_vruntime_cb_propagate(&se->run_node, NULL); 7063 slice = cfs_rq_min_slice(cfs_rq); 7064 7065 cfs_rq->h_nr_runnable -= h_nr_runnable; 7066 cfs_rq->h_nr_queued -= h_nr_queued; 7067 cfs_rq->h_nr_idle -= h_nr_idle; 7068 7069 if (cfs_rq_is_idle(cfs_rq)) 7070 h_nr_idle = h_nr_queued; 7071 7072 if (throttled_hierarchy(cfs_rq) && task_throttled) 7073 record_throttle_clock(cfs_rq); 7074 } 7075 7076 sub_nr_running(rq, h_nr_queued); 7077 7078 /* balance early to pull high priority tasks */ 7079 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7080 rq->next_balance = jiffies; 7081 7082 if (p && task_delayed) { 7083 WARN_ON_ONCE(!task_sleep); 7084 WARN_ON_ONCE(p->on_rq != 1); 7085 7086 /* Fix-up what dequeue_task_fair() skipped */ 7087 hrtick_update(rq); 7088 7089 /* 7090 * Fix-up what block_task() skipped. 7091 * 7092 * Must be last, @p might not be valid after this. 7093 */ 7094 __block_task(rq, p); 7095 } 7096 7097 return 1; 7098 } 7099 7100 /* 7101 * The dequeue_task method is called before nr_running is 7102 * decreased. We remove the task from the rbtree and 7103 * update the fair scheduling stats: 7104 */ 7105 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7106 { 7107 if (task_is_throttled(p)) { 7108 dequeue_throttled_task(p, flags); 7109 return true; 7110 } 7111 7112 if (!p->se.sched_delayed) 7113 util_est_dequeue(&rq->cfs, p); 7114 7115 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7116 if (dequeue_entities(rq, &p->se, flags) < 0) 7117 return false; 7118 7119 /* 7120 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7121 */ 7122 7123 hrtick_update(rq); 7124 return true; 7125 } 7126 7127 static inline unsigned int cfs_h_nr_delayed(struct rq *rq) 7128 { 7129 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); 7130 } 7131 7132 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7133 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7134 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7135 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7136 7137 #ifdef CONFIG_NO_HZ_COMMON 7138 7139 static struct { 7140 cpumask_var_t idle_cpus_mask; 7141 int has_blocked_load; /* Idle CPUS has blocked load */ 7142 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7143 unsigned long next_balance; /* in jiffy units */ 7144 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7145 } nohz ____cacheline_aligned; 7146 7147 #endif /* CONFIG_NO_HZ_COMMON */ 7148 7149 static unsigned long cpu_load(struct rq *rq) 7150 { 7151 return cfs_rq_load_avg(&rq->cfs); 7152 } 7153 7154 /* 7155 * cpu_load_without - compute CPU load without any contributions from *p 7156 * @cpu: the CPU which load is requested 7157 * @p: the task which load should be discounted 7158 * 7159 * The load of a CPU is defined by the load of tasks currently enqueued on that 7160 * CPU as well as tasks which are currently sleeping after an execution on that 7161 * CPU. 7162 * 7163 * This method returns the load of the specified CPU by discounting the load of 7164 * the specified task, whenever the task is currently contributing to the CPU 7165 * load. 7166 */ 7167 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7168 { 7169 struct cfs_rq *cfs_rq; 7170 unsigned int load; 7171 7172 /* Task has no contribution or is new */ 7173 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7174 return cpu_load(rq); 7175 7176 cfs_rq = &rq->cfs; 7177 load = READ_ONCE(cfs_rq->avg.load_avg); 7178 7179 /* Discount task's util from CPU's util */ 7180 lsub_positive(&load, task_h_load(p)); 7181 7182 return load; 7183 } 7184 7185 static unsigned long cpu_runnable(struct rq *rq) 7186 { 7187 return cfs_rq_runnable_avg(&rq->cfs); 7188 } 7189 7190 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7191 { 7192 struct cfs_rq *cfs_rq; 7193 unsigned int runnable; 7194 7195 /* Task has no contribution or is new */ 7196 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7197 return cpu_runnable(rq); 7198 7199 cfs_rq = &rq->cfs; 7200 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7201 7202 /* Discount task's runnable from CPU's runnable */ 7203 lsub_positive(&runnable, p->se.avg.runnable_avg); 7204 7205 return runnable; 7206 } 7207 7208 static unsigned long capacity_of(int cpu) 7209 { 7210 return cpu_rq(cpu)->cpu_capacity; 7211 } 7212 7213 static void record_wakee(struct task_struct *p) 7214 { 7215 /* 7216 * Only decay a single time; tasks that have less then 1 wakeup per 7217 * jiffy will not have built up many flips. 7218 */ 7219 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7220 current->wakee_flips >>= 1; 7221 current->wakee_flip_decay_ts = jiffies; 7222 } 7223 7224 if (current->last_wakee != p) { 7225 current->last_wakee = p; 7226 current->wakee_flips++; 7227 } 7228 } 7229 7230 /* 7231 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7232 * 7233 * A waker of many should wake a different task than the one last awakened 7234 * at a frequency roughly N times higher than one of its wakees. 7235 * 7236 * In order to determine whether we should let the load spread vs consolidating 7237 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7238 * partner, and a factor of lls_size higher frequency in the other. 7239 * 7240 * With both conditions met, we can be relatively sure that the relationship is 7241 * non-monogamous, with partner count exceeding socket size. 7242 * 7243 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7244 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7245 * socket size. 7246 */ 7247 static int wake_wide(struct task_struct *p) 7248 { 7249 unsigned int master = current->wakee_flips; 7250 unsigned int slave = p->wakee_flips; 7251 int factor = __this_cpu_read(sd_llc_size); 7252 7253 if (master < slave) 7254 swap(master, slave); 7255 if (slave < factor || master < slave * factor) 7256 return 0; 7257 return 1; 7258 } 7259 7260 /* 7261 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7262 * soonest. For the purpose of speed we only consider the waking and previous 7263 * CPU. 7264 * 7265 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7266 * cache-affine and is (or will be) idle. 7267 * 7268 * wake_affine_weight() - considers the weight to reflect the average 7269 * scheduling latency of the CPUs. This seems to work 7270 * for the overloaded case. 7271 */ 7272 static int 7273 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7274 { 7275 /* 7276 * If this_cpu is idle, it implies the wakeup is from interrupt 7277 * context. Only allow the move if cache is shared. Otherwise an 7278 * interrupt intensive workload could force all tasks onto one 7279 * node depending on the IO topology or IRQ affinity settings. 7280 * 7281 * If the prev_cpu is idle and cache affine then avoid a migration. 7282 * There is no guarantee that the cache hot data from an interrupt 7283 * is more important than cache hot data on the prev_cpu and from 7284 * a cpufreq perspective, it's better to have higher utilisation 7285 * on one CPU. 7286 */ 7287 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7288 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7289 7290 if (sync) { 7291 struct rq *rq = cpu_rq(this_cpu); 7292 7293 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) 7294 return this_cpu; 7295 } 7296 7297 if (available_idle_cpu(prev_cpu)) 7298 return prev_cpu; 7299 7300 return nr_cpumask_bits; 7301 } 7302 7303 static int 7304 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7305 int this_cpu, int prev_cpu, int sync) 7306 { 7307 s64 this_eff_load, prev_eff_load; 7308 unsigned long task_load; 7309 7310 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7311 7312 if (sync) { 7313 unsigned long current_load = task_h_load(current); 7314 7315 if (current_load > this_eff_load) 7316 return this_cpu; 7317 7318 this_eff_load -= current_load; 7319 } 7320 7321 task_load = task_h_load(p); 7322 7323 this_eff_load += task_load; 7324 if (sched_feat(WA_BIAS)) 7325 this_eff_load *= 100; 7326 this_eff_load *= capacity_of(prev_cpu); 7327 7328 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7329 prev_eff_load -= task_load; 7330 if (sched_feat(WA_BIAS)) 7331 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7332 prev_eff_load *= capacity_of(this_cpu); 7333 7334 /* 7335 * If sync, adjust the weight of prev_eff_load such that if 7336 * prev_eff == this_eff that select_idle_sibling() will consider 7337 * stacking the wakee on top of the waker if no other CPU is 7338 * idle. 7339 */ 7340 if (sync) 7341 prev_eff_load += 1; 7342 7343 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7344 } 7345 7346 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7347 int this_cpu, int prev_cpu, int sync) 7348 { 7349 int target = nr_cpumask_bits; 7350 7351 if (sched_feat(WA_IDLE)) 7352 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7353 7354 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7355 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7356 7357 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7358 if (target != this_cpu) 7359 return prev_cpu; 7360 7361 schedstat_inc(sd->ttwu_move_affine); 7362 schedstat_inc(p->stats.nr_wakeups_affine); 7363 return target; 7364 } 7365 7366 static struct sched_group * 7367 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7368 7369 /* 7370 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7371 */ 7372 static int 7373 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7374 { 7375 unsigned long load, min_load = ULONG_MAX; 7376 unsigned int min_exit_latency = UINT_MAX; 7377 u64 latest_idle_timestamp = 0; 7378 int least_loaded_cpu = this_cpu; 7379 int shallowest_idle_cpu = -1; 7380 int i; 7381 7382 /* Check if we have any choice: */ 7383 if (group->group_weight == 1) 7384 return cpumask_first(sched_group_span(group)); 7385 7386 /* Traverse only the allowed CPUs */ 7387 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7388 struct rq *rq = cpu_rq(i); 7389 7390 if (!sched_core_cookie_match(rq, p)) 7391 continue; 7392 7393 if (sched_idle_cpu(i)) 7394 return i; 7395 7396 if (available_idle_cpu(i)) { 7397 struct cpuidle_state *idle = idle_get_state(rq); 7398 if (idle && idle->exit_latency < min_exit_latency) { 7399 /* 7400 * We give priority to a CPU whose idle state 7401 * has the smallest exit latency irrespective 7402 * of any idle timestamp. 7403 */ 7404 min_exit_latency = idle->exit_latency; 7405 latest_idle_timestamp = rq->idle_stamp; 7406 shallowest_idle_cpu = i; 7407 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7408 rq->idle_stamp > latest_idle_timestamp) { 7409 /* 7410 * If equal or no active idle state, then 7411 * the most recently idled CPU might have 7412 * a warmer cache. 7413 */ 7414 latest_idle_timestamp = rq->idle_stamp; 7415 shallowest_idle_cpu = i; 7416 } 7417 } else if (shallowest_idle_cpu == -1) { 7418 load = cpu_load(cpu_rq(i)); 7419 if (load < min_load) { 7420 min_load = load; 7421 least_loaded_cpu = i; 7422 } 7423 } 7424 } 7425 7426 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7427 } 7428 7429 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7430 int cpu, int prev_cpu, int sd_flag) 7431 { 7432 int new_cpu = cpu; 7433 7434 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7435 return prev_cpu; 7436 7437 /* 7438 * We need task's util for cpu_util_without, sync it up to 7439 * prev_cpu's last_update_time. 7440 */ 7441 if (!(sd_flag & SD_BALANCE_FORK)) 7442 sync_entity_load_avg(&p->se); 7443 7444 while (sd) { 7445 struct sched_group *group; 7446 struct sched_domain *tmp; 7447 int weight; 7448 7449 if (!(sd->flags & sd_flag)) { 7450 sd = sd->child; 7451 continue; 7452 } 7453 7454 group = sched_balance_find_dst_group(sd, p, cpu); 7455 if (!group) { 7456 sd = sd->child; 7457 continue; 7458 } 7459 7460 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7461 if (new_cpu == cpu) { 7462 /* Now try balancing at a lower domain level of 'cpu': */ 7463 sd = sd->child; 7464 continue; 7465 } 7466 7467 /* Now try balancing at a lower domain level of 'new_cpu': */ 7468 cpu = new_cpu; 7469 weight = sd->span_weight; 7470 sd = NULL; 7471 for_each_domain(cpu, tmp) { 7472 if (weight <= tmp->span_weight) 7473 break; 7474 if (tmp->flags & sd_flag) 7475 sd = tmp; 7476 } 7477 } 7478 7479 return new_cpu; 7480 } 7481 7482 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7483 { 7484 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7485 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7486 return cpu; 7487 7488 return -1; 7489 } 7490 7491 #ifdef CONFIG_SCHED_SMT 7492 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7493 EXPORT_SYMBOL_GPL(sched_smt_present); 7494 7495 static inline void set_idle_cores(int cpu, int val) 7496 { 7497 struct sched_domain_shared *sds; 7498 7499 sds = rcu_dereference_all(per_cpu(sd_llc_shared, cpu)); 7500 if (sds) 7501 WRITE_ONCE(sds->has_idle_cores, val); 7502 } 7503 7504 static inline bool test_idle_cores(int cpu) 7505 { 7506 struct sched_domain_shared *sds; 7507 7508 sds = rcu_dereference_all(per_cpu(sd_llc_shared, cpu)); 7509 if (sds) 7510 return READ_ONCE(sds->has_idle_cores); 7511 7512 return false; 7513 } 7514 7515 /* 7516 * Scans the local SMT mask to see if the entire core is idle, and records this 7517 * information in sd_llc_shared->has_idle_cores. 7518 * 7519 * Since SMT siblings share all cache levels, inspecting this limited remote 7520 * state should be fairly cheap. 7521 */ 7522 void __update_idle_core(struct rq *rq) 7523 { 7524 int core = cpu_of(rq); 7525 int cpu; 7526 7527 rcu_read_lock(); 7528 if (test_idle_cores(core)) 7529 goto unlock; 7530 7531 for_each_cpu(cpu, cpu_smt_mask(core)) { 7532 if (cpu == core) 7533 continue; 7534 7535 if (!available_idle_cpu(cpu)) 7536 goto unlock; 7537 } 7538 7539 set_idle_cores(core, 1); 7540 unlock: 7541 rcu_read_unlock(); 7542 } 7543 7544 /* 7545 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7546 * there are no idle cores left in the system; tracked through 7547 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7548 */ 7549 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7550 { 7551 bool idle = true; 7552 int cpu; 7553 7554 for_each_cpu(cpu, cpu_smt_mask(core)) { 7555 if (!available_idle_cpu(cpu)) { 7556 idle = false; 7557 if (*idle_cpu == -1) { 7558 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7559 *idle_cpu = cpu; 7560 break; 7561 } 7562 continue; 7563 } 7564 break; 7565 } 7566 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7567 *idle_cpu = cpu; 7568 } 7569 7570 if (idle) 7571 return core; 7572 7573 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7574 return -1; 7575 } 7576 7577 /* 7578 * Scan the local SMT mask for idle CPUs. 7579 */ 7580 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7581 { 7582 int cpu; 7583 7584 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7585 if (cpu == target) 7586 continue; 7587 /* 7588 * Check if the CPU is in the LLC scheduling domain of @target. 7589 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7590 */ 7591 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7592 continue; 7593 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7594 return cpu; 7595 } 7596 7597 return -1; 7598 } 7599 7600 #else /* !CONFIG_SCHED_SMT: */ 7601 7602 static inline void set_idle_cores(int cpu, int val) 7603 { 7604 } 7605 7606 static inline bool test_idle_cores(int cpu) 7607 { 7608 return false; 7609 } 7610 7611 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7612 { 7613 return __select_idle_cpu(core, p); 7614 } 7615 7616 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7617 { 7618 return -1; 7619 } 7620 7621 #endif /* !CONFIG_SCHED_SMT */ 7622 7623 /* 7624 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7625 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7626 * average idle time for this rq (as found in rq->avg_idle). 7627 */ 7628 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7629 { 7630 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7631 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7632 struct sched_domain_shared *sd_share; 7633 7634 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7635 7636 if (sched_feat(SIS_UTIL)) { 7637 sd_share = rcu_dereference_all(per_cpu(sd_llc_shared, target)); 7638 if (sd_share) { 7639 /* because !--nr is the condition to stop scan */ 7640 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7641 /* overloaded LLC is unlikely to have idle cpu/core */ 7642 if (nr == 1) 7643 return -1; 7644 } 7645 } 7646 7647 if (static_branch_unlikely(&sched_cluster_active)) { 7648 struct sched_group *sg = sd->groups; 7649 7650 if (sg->flags & SD_CLUSTER) { 7651 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7652 if (!cpumask_test_cpu(cpu, cpus)) 7653 continue; 7654 7655 if (has_idle_core) { 7656 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7657 if ((unsigned int)i < nr_cpumask_bits) 7658 return i; 7659 } else { 7660 if (--nr <= 0) 7661 return -1; 7662 idle_cpu = __select_idle_cpu(cpu, p); 7663 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7664 return idle_cpu; 7665 } 7666 } 7667 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7668 } 7669 } 7670 7671 for_each_cpu_wrap(cpu, cpus, target + 1) { 7672 if (has_idle_core) { 7673 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7674 if ((unsigned int)i < nr_cpumask_bits) 7675 return i; 7676 7677 } else { 7678 if (--nr <= 0) 7679 return -1; 7680 idle_cpu = __select_idle_cpu(cpu, p); 7681 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7682 break; 7683 } 7684 } 7685 7686 if (has_idle_core) 7687 set_idle_cores(target, false); 7688 7689 return idle_cpu; 7690 } 7691 7692 /* 7693 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7694 * the task fits. If no CPU is big enough, but there are idle ones, try to 7695 * maximize capacity. 7696 */ 7697 static int 7698 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7699 { 7700 unsigned long task_util, util_min, util_max, best_cap = 0; 7701 int fits, best_fits = 0; 7702 int cpu, best_cpu = -1; 7703 struct cpumask *cpus; 7704 7705 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7706 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7707 7708 task_util = task_util_est(p); 7709 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7710 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7711 7712 for_each_cpu_wrap(cpu, cpus, target) { 7713 unsigned long cpu_cap = capacity_of(cpu); 7714 7715 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7716 continue; 7717 7718 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7719 7720 /* This CPU fits with all requirements */ 7721 if (fits > 0) 7722 return cpu; 7723 /* 7724 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7725 * Look for the CPU with best capacity. 7726 */ 7727 else if (fits < 0) 7728 cpu_cap = get_actual_cpu_capacity(cpu); 7729 7730 /* 7731 * First, select CPU which fits better (-1 being better than 0). 7732 * Then, select the one with best capacity at same level. 7733 */ 7734 if ((fits < best_fits) || 7735 ((fits == best_fits) && (cpu_cap > best_cap))) { 7736 best_cap = cpu_cap; 7737 best_cpu = cpu; 7738 best_fits = fits; 7739 } 7740 } 7741 7742 return best_cpu; 7743 } 7744 7745 static inline bool asym_fits_cpu(unsigned long util, 7746 unsigned long util_min, 7747 unsigned long util_max, 7748 int cpu) 7749 { 7750 if (sched_asym_cpucap_active()) 7751 /* 7752 * Return true only if the cpu fully fits the task requirements 7753 * which include the utilization and the performance hints. 7754 */ 7755 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7756 7757 return true; 7758 } 7759 7760 /* 7761 * Try and locate an idle core/thread in the LLC cache domain. 7762 */ 7763 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7764 { 7765 bool has_idle_core = false; 7766 struct sched_domain *sd; 7767 unsigned long task_util, util_min, util_max; 7768 int i, recent_used_cpu, prev_aff = -1; 7769 7770 /* 7771 * On asymmetric system, update task utilization because we will check 7772 * that the task fits with CPU's capacity. 7773 */ 7774 if (sched_asym_cpucap_active()) { 7775 sync_entity_load_avg(&p->se); 7776 task_util = task_util_est(p); 7777 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7778 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7779 } 7780 7781 /* 7782 * per-cpu select_rq_mask usage 7783 */ 7784 lockdep_assert_irqs_disabled(); 7785 7786 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7787 asym_fits_cpu(task_util, util_min, util_max, target)) 7788 return target; 7789 7790 /* 7791 * If the previous CPU is cache affine and idle, don't be stupid: 7792 */ 7793 if (prev != target && cpus_share_cache(prev, target) && 7794 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7795 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7796 7797 if (!static_branch_unlikely(&sched_cluster_active) || 7798 cpus_share_resources(prev, target)) 7799 return prev; 7800 7801 prev_aff = prev; 7802 } 7803 7804 /* 7805 * Allow a per-cpu kthread to stack with the wakee if the 7806 * kworker thread and the tasks previous CPUs are the same. 7807 * The assumption is that the wakee queued work for the 7808 * per-cpu kthread that is now complete and the wakeup is 7809 * essentially a sync wakeup. An obvious example of this 7810 * pattern is IO completions. 7811 */ 7812 if (is_per_cpu_kthread(current) && 7813 in_task() && 7814 prev == smp_processor_id() && 7815 this_rq()->nr_running <= 1 && 7816 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7817 return prev; 7818 } 7819 7820 /* Check a recently used CPU as a potential idle candidate: */ 7821 recent_used_cpu = p->recent_used_cpu; 7822 p->recent_used_cpu = prev; 7823 if (recent_used_cpu != prev && 7824 recent_used_cpu != target && 7825 cpus_share_cache(recent_used_cpu, target) && 7826 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7827 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7828 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7829 7830 if (!static_branch_unlikely(&sched_cluster_active) || 7831 cpus_share_resources(recent_used_cpu, target)) 7832 return recent_used_cpu; 7833 7834 } else { 7835 recent_used_cpu = -1; 7836 } 7837 7838 /* 7839 * For asymmetric CPU capacity systems, our domain of interest is 7840 * sd_asym_cpucapacity rather than sd_llc. 7841 */ 7842 if (sched_asym_cpucap_active()) { 7843 sd = rcu_dereference_all(per_cpu(sd_asym_cpucapacity, target)); 7844 /* 7845 * On an asymmetric CPU capacity system where an exclusive 7846 * cpuset defines a symmetric island (i.e. one unique 7847 * capacity_orig value through the cpuset), the key will be set 7848 * but the CPUs within that cpuset will not have a domain with 7849 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7850 * capacity path. 7851 */ 7852 if (sd) { 7853 i = select_idle_capacity(p, sd, target); 7854 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7855 } 7856 } 7857 7858 sd = rcu_dereference_all(per_cpu(sd_llc, target)); 7859 if (!sd) 7860 return target; 7861 7862 if (sched_smt_active()) { 7863 has_idle_core = test_idle_cores(target); 7864 7865 if (!has_idle_core && cpus_share_cache(prev, target)) { 7866 i = select_idle_smt(p, sd, prev); 7867 if ((unsigned int)i < nr_cpumask_bits) 7868 return i; 7869 } 7870 } 7871 7872 i = select_idle_cpu(p, sd, has_idle_core, target); 7873 if ((unsigned)i < nr_cpumask_bits) 7874 return i; 7875 7876 /* 7877 * For cluster machines which have lower sharing cache like L2 or 7878 * LLC Tag, we tend to find an idle CPU in the target's cluster 7879 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7880 * use them if possible when no idle CPU found in select_idle_cpu(). 7881 */ 7882 if ((unsigned int)prev_aff < nr_cpumask_bits) 7883 return prev_aff; 7884 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7885 return recent_used_cpu; 7886 7887 return target; 7888 } 7889 7890 /** 7891 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7892 * @cpu: the CPU to get the utilization for 7893 * @p: task for which the CPU utilization should be predicted or NULL 7894 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7895 * @boost: 1 to enable boosting, otherwise 0 7896 * 7897 * The unit of the return value must be the same as the one of CPU capacity 7898 * so that CPU utilization can be compared with CPU capacity. 7899 * 7900 * CPU utilization is the sum of running time of runnable tasks plus the 7901 * recent utilization of currently non-runnable tasks on that CPU. 7902 * It represents the amount of CPU capacity currently used by CFS tasks in 7903 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7904 * capacity at f_max. 7905 * 7906 * The estimated CPU utilization is defined as the maximum between CPU 7907 * utilization and sum of the estimated utilization of the currently 7908 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7909 * previously-executed tasks, which helps better deduce how busy a CPU will 7910 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7911 * of such a task would be significantly decayed at this point of time. 7912 * 7913 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7914 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7915 * utilization. Boosting is implemented in cpu_util() so that internal 7916 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7917 * latter via cpu_util_cfs_boost(). 7918 * 7919 * CPU utilization can be higher than the current CPU capacity 7920 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7921 * of rounding errors as well as task migrations or wakeups of new tasks. 7922 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7923 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7924 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7925 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7926 * though since this is useful for predicting the CPU capacity required 7927 * after task migrations (scheduler-driven DVFS). 7928 * 7929 * Return: (Boosted) (estimated) utilization for the specified CPU. 7930 */ 7931 static unsigned long 7932 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7933 { 7934 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7935 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7936 unsigned long runnable; 7937 7938 if (boost) { 7939 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7940 util = max(util, runnable); 7941 } 7942 7943 /* 7944 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7945 * contribution. If @p migrates from another CPU to @cpu add its 7946 * contribution. In all the other cases @cpu is not impacted by the 7947 * migration so its util_avg is already correct. 7948 */ 7949 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7950 lsub_positive(&util, task_util(p)); 7951 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7952 util += task_util(p); 7953 7954 if (sched_feat(UTIL_EST)) { 7955 unsigned long util_est; 7956 7957 util_est = READ_ONCE(cfs_rq->avg.util_est); 7958 7959 /* 7960 * During wake-up @p isn't enqueued yet and doesn't contribute 7961 * to any cpu_rq(cpu)->cfs.avg.util_est. 7962 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7963 * has been enqueued. 7964 * 7965 * During exec (@dst_cpu = -1) @p is enqueued and does 7966 * contribute to cpu_rq(cpu)->cfs.util_est. 7967 * Remove it to "simulate" cpu_util without @p's contribution. 7968 * 7969 * Despite the task_on_rq_queued(@p) check there is still a 7970 * small window for a possible race when an exec 7971 * select_task_rq_fair() races with LB's detach_task(). 7972 * 7973 * detach_task() 7974 * deactivate_task() 7975 * p->on_rq = TASK_ON_RQ_MIGRATING; 7976 * -------------------------------- A 7977 * dequeue_task() \ 7978 * dequeue_task_fair() + Race Time 7979 * util_est_dequeue() / 7980 * -------------------------------- B 7981 * 7982 * The additional check "current == p" is required to further 7983 * reduce the race window. 7984 */ 7985 if (dst_cpu == cpu) 7986 util_est += _task_util_est(p); 7987 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7988 lsub_positive(&util_est, _task_util_est(p)); 7989 7990 util = max(util, util_est); 7991 } 7992 7993 return min(util, arch_scale_cpu_capacity(cpu)); 7994 } 7995 7996 unsigned long cpu_util_cfs(int cpu) 7997 { 7998 return cpu_util(cpu, NULL, -1, 0); 7999 } 8000 8001 unsigned long cpu_util_cfs_boost(int cpu) 8002 { 8003 return cpu_util(cpu, NULL, -1, 1); 8004 } 8005 8006 /* 8007 * cpu_util_without: compute cpu utilization without any contributions from *p 8008 * @cpu: the CPU which utilization is requested 8009 * @p: the task which utilization should be discounted 8010 * 8011 * The utilization of a CPU is defined by the utilization of tasks currently 8012 * enqueued on that CPU as well as tasks which are currently sleeping after an 8013 * execution on that CPU. 8014 * 8015 * This method returns the utilization of the specified CPU by discounting the 8016 * utilization of the specified task, whenever the task is currently 8017 * contributing to the CPU utilization. 8018 */ 8019 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8020 { 8021 /* Task has no contribution or is new */ 8022 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8023 p = NULL; 8024 8025 return cpu_util(cpu, p, -1, 0); 8026 } 8027 8028 /* 8029 * This function computes an effective utilization for the given CPU, to be 8030 * used for frequency selection given the linear relation: f = u * f_max. 8031 * 8032 * The scheduler tracks the following metrics: 8033 * 8034 * cpu_util_{cfs,rt,dl,irq}() 8035 * cpu_bw_dl() 8036 * 8037 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8038 * synchronized windows and are thus directly comparable. 8039 * 8040 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8041 * which excludes things like IRQ and steal-time. These latter are then accrued 8042 * in the IRQ utilization. 8043 * 8044 * The DL bandwidth number OTOH is not a measured metric but a value computed 8045 * based on the task model parameters and gives the minimal utilization 8046 * required to meet deadlines. 8047 */ 8048 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8049 unsigned long *min, 8050 unsigned long *max) 8051 { 8052 unsigned long util, irq, scale; 8053 struct rq *rq = cpu_rq(cpu); 8054 8055 scale = arch_scale_cpu_capacity(cpu); 8056 8057 /* 8058 * Early check to see if IRQ/steal time saturates the CPU, can be 8059 * because of inaccuracies in how we track these -- see 8060 * update_irq_load_avg(). 8061 */ 8062 irq = cpu_util_irq(rq); 8063 if (unlikely(irq >= scale)) { 8064 if (min) 8065 *min = scale; 8066 if (max) 8067 *max = scale; 8068 return scale; 8069 } 8070 8071 if (min) { 8072 /* 8073 * The minimum utilization returns the highest level between: 8074 * - the computed DL bandwidth needed with the IRQ pressure which 8075 * steals time to the deadline task. 8076 * - The minimum performance requirement for CFS and/or RT. 8077 */ 8078 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8079 8080 /* 8081 * When an RT task is runnable and uclamp is not used, we must 8082 * ensure that the task will run at maximum compute capacity. 8083 */ 8084 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8085 *min = max(*min, scale); 8086 } 8087 8088 /* 8089 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8090 * CFS tasks and we use the same metric to track the effective 8091 * utilization (PELT windows are synchronized) we can directly add them 8092 * to obtain the CPU's actual utilization. 8093 */ 8094 util = util_cfs + cpu_util_rt(rq); 8095 util += cpu_util_dl(rq); 8096 8097 /* 8098 * The maximum hint is a soft bandwidth requirement, which can be lower 8099 * than the actual utilization because of uclamp_max requirements. 8100 */ 8101 if (max) 8102 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8103 8104 if (util >= scale) 8105 return scale; 8106 8107 /* 8108 * There is still idle time; further improve the number by using the 8109 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8110 * need to scale the task numbers: 8111 * 8112 * max - irq 8113 * U' = irq + --------- * U 8114 * max 8115 */ 8116 util = scale_irq_capacity(util, irq, scale); 8117 util += irq; 8118 8119 return min(scale, util); 8120 } 8121 8122 unsigned long sched_cpu_util(int cpu) 8123 { 8124 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8125 } 8126 8127 /* 8128 * energy_env - Utilization landscape for energy estimation. 8129 * @task_busy_time: Utilization contribution by the task for which we test the 8130 * placement. Given by eenv_task_busy_time(). 8131 * @pd_busy_time: Utilization of the whole perf domain without the task 8132 * contribution. Given by eenv_pd_busy_time(). 8133 * @cpu_cap: Maximum CPU capacity for the perf domain. 8134 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8135 */ 8136 struct energy_env { 8137 unsigned long task_busy_time; 8138 unsigned long pd_busy_time; 8139 unsigned long cpu_cap; 8140 unsigned long pd_cap; 8141 }; 8142 8143 /* 8144 * Compute the task busy time for compute_energy(). This time cannot be 8145 * injected directly into effective_cpu_util() because of the IRQ scaling. 8146 * The latter only makes sense with the most recent CPUs where the task has 8147 * run. 8148 */ 8149 static inline void eenv_task_busy_time(struct energy_env *eenv, 8150 struct task_struct *p, int prev_cpu) 8151 { 8152 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8153 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8154 8155 if (unlikely(irq >= max_cap)) 8156 busy_time = max_cap; 8157 else 8158 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8159 8160 eenv->task_busy_time = busy_time; 8161 } 8162 8163 /* 8164 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8165 * utilization for each @pd_cpus, it however doesn't take into account 8166 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8167 * scale the EM reported power consumption at the (eventually clamped) 8168 * cpu_capacity. 8169 * 8170 * The contribution of the task @p for which we want to estimate the 8171 * energy cost is removed (by cpu_util()) and must be calculated 8172 * separately (see eenv_task_busy_time). This ensures: 8173 * 8174 * - A stable PD utilization, no matter which CPU of that PD we want to place 8175 * the task on. 8176 * 8177 * - A fair comparison between CPUs as the task contribution (task_util()) 8178 * will always be the same no matter which CPU utilization we rely on 8179 * (util_avg or util_est). 8180 * 8181 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8182 * exceed @eenv->pd_cap. 8183 */ 8184 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8185 struct cpumask *pd_cpus, 8186 struct task_struct *p) 8187 { 8188 unsigned long busy_time = 0; 8189 int cpu; 8190 8191 for_each_cpu(cpu, pd_cpus) { 8192 unsigned long util = cpu_util(cpu, p, -1, 0); 8193 8194 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8195 } 8196 8197 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8198 } 8199 8200 /* 8201 * Compute the maximum utilization for compute_energy() when the task @p 8202 * is placed on the cpu @dst_cpu. 8203 * 8204 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8205 * exceed @eenv->cpu_cap. 8206 */ 8207 static inline unsigned long 8208 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8209 struct task_struct *p, int dst_cpu) 8210 { 8211 unsigned long max_util = 0; 8212 int cpu; 8213 8214 for_each_cpu(cpu, pd_cpus) { 8215 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8216 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8217 unsigned long eff_util, min, max; 8218 8219 /* 8220 * Performance domain frequency: utilization clamping 8221 * must be considered since it affects the selection 8222 * of the performance domain frequency. 8223 * NOTE: in case RT tasks are running, by default the min 8224 * utilization can be max OPP. 8225 */ 8226 eff_util = effective_cpu_util(cpu, util, &min, &max); 8227 8228 /* Task's uclamp can modify min and max value */ 8229 if (tsk && uclamp_is_used()) { 8230 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8231 8232 /* 8233 * If there is no active max uclamp constraint, 8234 * directly use task's one, otherwise keep max. 8235 */ 8236 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8237 max = uclamp_eff_value(p, UCLAMP_MAX); 8238 else 8239 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8240 } 8241 8242 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8243 max_util = max(max_util, eff_util); 8244 } 8245 8246 return min(max_util, eenv->cpu_cap); 8247 } 8248 8249 /* 8250 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8251 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8252 * contribution is ignored. 8253 */ 8254 static inline unsigned long 8255 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8256 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8257 { 8258 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8259 unsigned long busy_time = eenv->pd_busy_time; 8260 unsigned long energy; 8261 8262 if (dst_cpu >= 0) 8263 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8264 8265 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8266 8267 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8268 8269 return energy; 8270 } 8271 8272 /* 8273 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8274 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8275 * spare capacity in each performance domain and uses it as a potential 8276 * candidate to execute the task. Then, it uses the Energy Model to figure 8277 * out which of the CPU candidates is the most energy-efficient. 8278 * 8279 * The rationale for this heuristic is as follows. In a performance domain, 8280 * all the most energy efficient CPU candidates (according to the Energy 8281 * Model) are those for which we'll request a low frequency. When there are 8282 * several CPUs for which the frequency request will be the same, we don't 8283 * have enough data to break the tie between them, because the Energy Model 8284 * only includes active power costs. With this model, if we assume that 8285 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8286 * the maximum spare capacity in a performance domain is guaranteed to be among 8287 * the best candidates of the performance domain. 8288 * 8289 * In practice, it could be preferable from an energy standpoint to pack 8290 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8291 * but that could also hurt our chances to go cluster idle, and we have no 8292 * ways to tell with the current Energy Model if this is actually a good 8293 * idea or not. So, find_energy_efficient_cpu() basically favors 8294 * cluster-packing, and spreading inside a cluster. That should at least be 8295 * a good thing for latency, and this is consistent with the idea that most 8296 * of the energy savings of EAS come from the asymmetry of the system, and 8297 * not so much from breaking the tie between identical CPUs. That's also the 8298 * reason why EAS is enabled in the topology code only for systems where 8299 * SD_ASYM_CPUCAPACITY is set. 8300 * 8301 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8302 * they don't have any useful utilization data yet and it's not possible to 8303 * forecast their impact on energy consumption. Consequently, they will be 8304 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8305 * to be energy-inefficient in some use-cases. The alternative would be to 8306 * bias new tasks towards specific types of CPUs first, or to try to infer 8307 * their util_avg from the parent task, but those heuristics could hurt 8308 * other use-cases too. So, until someone finds a better way to solve this, 8309 * let's keep things simple by re-using the existing slow path. 8310 */ 8311 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8312 { 8313 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8314 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8315 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8316 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8317 struct root_domain *rd = this_rq()->rd; 8318 int cpu, best_energy_cpu, target = -1; 8319 int prev_fits = -1, best_fits = -1; 8320 unsigned long best_actual_cap = 0; 8321 unsigned long prev_actual_cap = 0; 8322 struct sched_domain *sd; 8323 struct perf_domain *pd; 8324 struct energy_env eenv; 8325 8326 rcu_read_lock(); 8327 pd = rcu_dereference_all(rd->pd); 8328 if (!pd) 8329 goto unlock; 8330 8331 /* 8332 * Energy-aware wake-up happens on the lowest sched_domain starting 8333 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8334 */ 8335 sd = rcu_dereference_all(*this_cpu_ptr(&sd_asym_cpucapacity)); 8336 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8337 sd = sd->parent; 8338 if (!sd) 8339 goto unlock; 8340 8341 target = prev_cpu; 8342 8343 sync_entity_load_avg(&p->se); 8344 if (!task_util_est(p) && p_util_min == 0) 8345 goto unlock; 8346 8347 eenv_task_busy_time(&eenv, p, prev_cpu); 8348 8349 for (; pd; pd = pd->next) { 8350 unsigned long util_min = p_util_min, util_max = p_util_max; 8351 unsigned long cpu_cap, cpu_actual_cap, util; 8352 long prev_spare_cap = -1, max_spare_cap = -1; 8353 unsigned long rq_util_min, rq_util_max; 8354 unsigned long cur_delta, base_energy; 8355 int max_spare_cap_cpu = -1; 8356 int fits, max_fits = -1; 8357 8358 if (!cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask)) 8359 continue; 8360 8361 /* Account external pressure for the energy estimation */ 8362 cpu = cpumask_first(cpus); 8363 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8364 8365 eenv.cpu_cap = cpu_actual_cap; 8366 eenv.pd_cap = 0; 8367 8368 for_each_cpu(cpu, cpus) { 8369 struct rq *rq = cpu_rq(cpu); 8370 8371 eenv.pd_cap += cpu_actual_cap; 8372 8373 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8374 continue; 8375 8376 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8377 continue; 8378 8379 util = cpu_util(cpu, p, cpu, 0); 8380 cpu_cap = capacity_of(cpu); 8381 8382 /* 8383 * Skip CPUs that cannot satisfy the capacity request. 8384 * IOW, placing the task there would make the CPU 8385 * overutilized. Take uclamp into account to see how 8386 * much capacity we can get out of the CPU; this is 8387 * aligned with sched_cpu_util(). 8388 */ 8389 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8390 /* 8391 * Open code uclamp_rq_util_with() except for 8392 * the clamp() part. I.e.: apply max aggregation 8393 * only. util_fits_cpu() logic requires to 8394 * operate on non clamped util but must use the 8395 * max-aggregated uclamp_{min, max}. 8396 */ 8397 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8398 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8399 8400 util_min = max(rq_util_min, p_util_min); 8401 util_max = max(rq_util_max, p_util_max); 8402 } 8403 8404 fits = util_fits_cpu(util, util_min, util_max, cpu); 8405 if (!fits) 8406 continue; 8407 8408 lsub_positive(&cpu_cap, util); 8409 8410 if (cpu == prev_cpu) { 8411 /* Always use prev_cpu as a candidate. */ 8412 prev_spare_cap = cpu_cap; 8413 prev_fits = fits; 8414 } else if ((fits > max_fits) || 8415 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8416 /* 8417 * Find the CPU with the maximum spare capacity 8418 * among the remaining CPUs in the performance 8419 * domain. 8420 */ 8421 max_spare_cap = cpu_cap; 8422 max_spare_cap_cpu = cpu; 8423 max_fits = fits; 8424 } 8425 } 8426 8427 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8428 continue; 8429 8430 eenv_pd_busy_time(&eenv, cpus, p); 8431 /* Compute the 'base' energy of the pd, without @p */ 8432 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8433 8434 /* Evaluate the energy impact of using prev_cpu. */ 8435 if (prev_spare_cap > -1) { 8436 prev_delta = compute_energy(&eenv, pd, cpus, p, 8437 prev_cpu); 8438 /* CPU utilization has changed */ 8439 if (prev_delta < base_energy) 8440 goto unlock; 8441 prev_delta -= base_energy; 8442 prev_actual_cap = cpu_actual_cap; 8443 best_delta = min(best_delta, prev_delta); 8444 } 8445 8446 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8447 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8448 /* Current best energy cpu fits better */ 8449 if (max_fits < best_fits) 8450 continue; 8451 8452 /* 8453 * Both don't fit performance hint (i.e. uclamp_min) 8454 * but best energy cpu has better capacity. 8455 */ 8456 if ((max_fits < 0) && 8457 (cpu_actual_cap <= best_actual_cap)) 8458 continue; 8459 8460 cur_delta = compute_energy(&eenv, pd, cpus, p, 8461 max_spare_cap_cpu); 8462 /* CPU utilization has changed */ 8463 if (cur_delta < base_energy) 8464 goto unlock; 8465 cur_delta -= base_energy; 8466 8467 /* 8468 * Both fit for the task but best energy cpu has lower 8469 * energy impact. 8470 */ 8471 if ((max_fits > 0) && (best_fits > 0) && 8472 (cur_delta >= best_delta)) 8473 continue; 8474 8475 best_delta = cur_delta; 8476 best_energy_cpu = max_spare_cap_cpu; 8477 best_fits = max_fits; 8478 best_actual_cap = cpu_actual_cap; 8479 } 8480 } 8481 rcu_read_unlock(); 8482 8483 if ((best_fits > prev_fits) || 8484 ((best_fits > 0) && (best_delta < prev_delta)) || 8485 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8486 target = best_energy_cpu; 8487 8488 return target; 8489 8490 unlock: 8491 rcu_read_unlock(); 8492 8493 return target; 8494 } 8495 8496 /* 8497 * select_task_rq_fair: Select target runqueue for the waking task in domains 8498 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8499 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8500 * 8501 * Balances load by selecting the idlest CPU in the idlest group, or under 8502 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8503 * 8504 * Returns the target CPU number. 8505 */ 8506 static int 8507 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8508 { 8509 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8510 struct sched_domain *tmp, *sd = NULL; 8511 int cpu = smp_processor_id(); 8512 int new_cpu = prev_cpu; 8513 int want_affine = 0; 8514 /* SD_flags and WF_flags share the first nibble */ 8515 int sd_flag = wake_flags & 0xF; 8516 8517 /* 8518 * required for stable ->cpus_allowed 8519 */ 8520 lockdep_assert_held(&p->pi_lock); 8521 if (wake_flags & WF_TTWU) { 8522 record_wakee(p); 8523 8524 if ((wake_flags & WF_CURRENT_CPU) && 8525 cpumask_test_cpu(cpu, p->cpus_ptr)) 8526 return cpu; 8527 8528 if (!is_rd_overutilized(this_rq()->rd)) { 8529 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8530 if (new_cpu >= 0) 8531 return new_cpu; 8532 new_cpu = prev_cpu; 8533 } 8534 8535 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8536 } 8537 8538 rcu_read_lock(); 8539 for_each_domain(cpu, tmp) { 8540 /* 8541 * If both 'cpu' and 'prev_cpu' are part of this domain, 8542 * cpu is a valid SD_WAKE_AFFINE target. 8543 */ 8544 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8545 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8546 if (cpu != prev_cpu) 8547 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8548 8549 sd = NULL; /* Prefer wake_affine over balance flags */ 8550 break; 8551 } 8552 8553 /* 8554 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8555 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8556 * will usually go to the fast path. 8557 */ 8558 if (tmp->flags & sd_flag) 8559 sd = tmp; 8560 else if (!want_affine) 8561 break; 8562 } 8563 8564 if (unlikely(sd)) { 8565 /* Slow path */ 8566 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8567 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8568 /* Fast path */ 8569 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8570 } 8571 rcu_read_unlock(); 8572 8573 return new_cpu; 8574 } 8575 8576 /* 8577 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8578 * cfs_rq_of(p) references at time of call are still valid and identify the 8579 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8580 */ 8581 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8582 { 8583 struct sched_entity *se = &p->se; 8584 8585 if (!task_on_rq_migrating(p)) { 8586 remove_entity_load_avg(se); 8587 8588 /* 8589 * Here, the task's PELT values have been updated according to 8590 * the current rq's clock. But if that clock hasn't been 8591 * updated in a while, a substantial idle time will be missed, 8592 * leading to an inflation after wake-up on the new rq. 8593 * 8594 * Estimate the missing time from the cfs_rq last_update_time 8595 * and update sched_avg to improve the PELT continuity after 8596 * migration. 8597 */ 8598 migrate_se_pelt_lag(se); 8599 } 8600 8601 /* Tell new CPU we are migrated */ 8602 se->avg.last_update_time = 0; 8603 8604 update_scan_period(p, new_cpu); 8605 } 8606 8607 static void task_dead_fair(struct task_struct *p) 8608 { 8609 struct sched_entity *se = &p->se; 8610 8611 if (se->sched_delayed) { 8612 struct rq_flags rf; 8613 struct rq *rq; 8614 8615 rq = task_rq_lock(p, &rf); 8616 if (se->sched_delayed) { 8617 update_rq_clock(rq); 8618 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8619 } 8620 task_rq_unlock(rq, p, &rf); 8621 } 8622 8623 remove_entity_load_avg(se); 8624 } 8625 8626 /* 8627 * Set the max capacity the task is allowed to run at for misfit detection. 8628 */ 8629 static void set_task_max_allowed_capacity(struct task_struct *p) 8630 { 8631 struct asym_cap_data *entry; 8632 8633 if (!sched_asym_cpucap_active()) 8634 return; 8635 8636 rcu_read_lock(); 8637 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8638 cpumask_t *cpumask; 8639 8640 cpumask = cpu_capacity_span(entry); 8641 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8642 continue; 8643 8644 p->max_allowed_capacity = entry->capacity; 8645 break; 8646 } 8647 rcu_read_unlock(); 8648 } 8649 8650 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8651 { 8652 set_cpus_allowed_common(p, ctx); 8653 set_task_max_allowed_capacity(p); 8654 } 8655 8656 static void set_next_buddy(struct sched_entity *se) 8657 { 8658 for_each_sched_entity(se) { 8659 if (WARN_ON_ONCE(!se->on_rq)) 8660 return; 8661 if (se_is_idle(se)) 8662 return; 8663 cfs_rq_of(se)->next = se; 8664 } 8665 } 8666 8667 enum preempt_wakeup_action { 8668 PREEMPT_WAKEUP_NONE, /* No preemption. */ 8669 PREEMPT_WAKEUP_SHORT, /* Ignore slice protection. */ 8670 PREEMPT_WAKEUP_PICK, /* Let __pick_eevdf() decide. */ 8671 PREEMPT_WAKEUP_RESCHED, /* Force reschedule. */ 8672 }; 8673 8674 static inline bool 8675 set_preempt_buddy(struct cfs_rq *cfs_rq, int wake_flags, 8676 struct sched_entity *pse, struct sched_entity *se) 8677 { 8678 /* 8679 * Keep existing buddy if the deadline is sooner than pse. 8680 * The older buddy may be cache cold and completely unrelated 8681 * to the current wakeup but that is unpredictable where as 8682 * obeying the deadline is more in line with EEVDF objectives. 8683 */ 8684 if (cfs_rq->next && entity_before(cfs_rq->next, pse)) 8685 return false; 8686 8687 set_next_buddy(pse); 8688 return true; 8689 } 8690 8691 /* 8692 * WF_SYNC|WF_TTWU indicates the waker expects to sleep but it is not 8693 * strictly enforced because the hint is either misunderstood or 8694 * multiple tasks must be woken up. 8695 */ 8696 static inline enum preempt_wakeup_action 8697 preempt_sync(struct rq *rq, int wake_flags, 8698 struct sched_entity *pse, struct sched_entity *se) 8699 { 8700 u64 threshold, delta; 8701 8702 /* 8703 * WF_SYNC without WF_TTWU is not expected so warn if it happens even 8704 * though it is likely harmless. 8705 */ 8706 WARN_ON_ONCE(!(wake_flags & WF_TTWU)); 8707 8708 threshold = sysctl_sched_migration_cost; 8709 delta = rq_clock_task(rq) - se->exec_start; 8710 if ((s64)delta < 0) 8711 delta = 0; 8712 8713 /* 8714 * WF_RQ_SELECTED implies the tasks are stacking on a CPU when they 8715 * could run on other CPUs. Reduce the threshold before preemption is 8716 * allowed to an arbitrary lower value as it is more likely (but not 8717 * guaranteed) the waker requires the wakee to finish. 8718 */ 8719 if (wake_flags & WF_RQ_SELECTED) 8720 threshold >>= 2; 8721 8722 /* 8723 * As WF_SYNC is not strictly obeyed, allow some runtime for batch 8724 * wakeups to be issued. 8725 */ 8726 if (entity_before(pse, se) && delta >= threshold) 8727 return PREEMPT_WAKEUP_RESCHED; 8728 8729 return PREEMPT_WAKEUP_NONE; 8730 } 8731 8732 /* 8733 * Preempt the current task with a newly woken task if needed: 8734 */ 8735 static void wakeup_preempt_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8736 { 8737 enum preempt_wakeup_action preempt_action = PREEMPT_WAKEUP_PICK; 8738 struct task_struct *donor = rq->donor; 8739 struct sched_entity *se = &donor->se, *pse = &p->se; 8740 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8741 int cse_is_idle, pse_is_idle; 8742 8743 /* 8744 * XXX Getting preempted by higher class, try and find idle CPU? 8745 */ 8746 if (p->sched_class != &fair_sched_class) 8747 return; 8748 8749 if (unlikely(se == pse)) 8750 return; 8751 8752 /* 8753 * This is possible from callers such as attach_tasks(), in which we 8754 * unconditionally wakeup_preempt() after an enqueue (which may have 8755 * lead to a throttle). This both saves work and prevents false 8756 * next-buddy nomination below. 8757 */ 8758 if (task_is_throttled(p)) 8759 return; 8760 8761 /* 8762 * We can come here with TIF_NEED_RESCHED already set from new task 8763 * wake up path. 8764 * 8765 * Note: this also catches the edge-case of curr being in a throttled 8766 * group (e.g. via set_curr_task), since update_curr() (in the 8767 * enqueue of curr) will have resulted in resched being set. This 8768 * prevents us from potentially nominating it as a false LAST_BUDDY 8769 * below. 8770 */ 8771 if (test_tsk_need_resched(rq->curr)) 8772 return; 8773 8774 if (!sched_feat(WAKEUP_PREEMPTION)) 8775 return; 8776 8777 find_matching_se(&se, &pse); 8778 WARN_ON_ONCE(!pse); 8779 8780 cse_is_idle = se_is_idle(se); 8781 pse_is_idle = se_is_idle(pse); 8782 8783 /* 8784 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8785 * in the inverse case). 8786 */ 8787 if (cse_is_idle && !pse_is_idle) { 8788 /* 8789 * When non-idle entity preempt an idle entity, 8790 * don't give idle entity slice protection. 8791 */ 8792 preempt_action = PREEMPT_WAKEUP_SHORT; 8793 goto preempt; 8794 } 8795 8796 if (cse_is_idle != pse_is_idle) 8797 return; 8798 8799 /* 8800 * BATCH and IDLE tasks do not preempt others. 8801 */ 8802 if (unlikely(!normal_policy(p->policy))) 8803 return; 8804 8805 cfs_rq = cfs_rq_of(se); 8806 update_curr(cfs_rq); 8807 /* 8808 * If @p has a shorter slice than current and @p is eligible, override 8809 * current's slice protection in order to allow preemption. 8810 */ 8811 if (sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice)) { 8812 preempt_action = PREEMPT_WAKEUP_SHORT; 8813 goto pick; 8814 } 8815 8816 /* 8817 * Ignore wakee preemption on WF_FORK as it is less likely that 8818 * there is shared data as exec often follow fork. Do not 8819 * preempt for tasks that are sched_delayed as it would violate 8820 * EEVDF to forcibly queue an ineligible task. 8821 */ 8822 if ((wake_flags & WF_FORK) || pse->sched_delayed) 8823 return; 8824 8825 /* 8826 * If @p potentially is completing work required by current then 8827 * consider preemption. 8828 * 8829 * Reschedule if waker is no longer eligible. */ 8830 if (in_task() && !entity_eligible(cfs_rq, se)) { 8831 preempt_action = PREEMPT_WAKEUP_RESCHED; 8832 goto preempt; 8833 } 8834 8835 /* Prefer picking wakee soon if appropriate. */ 8836 if (sched_feat(NEXT_BUDDY) && 8837 set_preempt_buddy(cfs_rq, wake_flags, pse, se)) { 8838 8839 /* 8840 * Decide whether to obey WF_SYNC hint for a new buddy. Old 8841 * buddies are ignored as they may not be relevant to the 8842 * waker and less likely to be cache hot. 8843 */ 8844 if (wake_flags & WF_SYNC) 8845 preempt_action = preempt_sync(rq, wake_flags, pse, se); 8846 } 8847 8848 switch (preempt_action) { 8849 case PREEMPT_WAKEUP_NONE: 8850 return; 8851 case PREEMPT_WAKEUP_RESCHED: 8852 goto preempt; 8853 case PREEMPT_WAKEUP_SHORT: 8854 fallthrough; 8855 case PREEMPT_WAKEUP_PICK: 8856 break; 8857 } 8858 8859 pick: 8860 /* 8861 * If @p has become the most eligible task, force preemption. 8862 */ 8863 if (__pick_eevdf(cfs_rq, preempt_action != PREEMPT_WAKEUP_SHORT) == pse) 8864 goto preempt; 8865 8866 if (sched_feat(RUN_TO_PARITY)) 8867 update_protect_slice(cfs_rq, se); 8868 8869 return; 8870 8871 preempt: 8872 if (preempt_action == PREEMPT_WAKEUP_SHORT) 8873 cancel_protect_slice(se); 8874 8875 resched_curr_lazy(rq); 8876 } 8877 8878 static struct task_struct *pick_task_fair(struct rq *rq, struct rq_flags *rf) 8879 { 8880 struct sched_entity *se; 8881 struct cfs_rq *cfs_rq; 8882 struct task_struct *p; 8883 bool throttled; 8884 8885 again: 8886 cfs_rq = &rq->cfs; 8887 if (!cfs_rq->nr_queued) 8888 return NULL; 8889 8890 throttled = false; 8891 8892 do { 8893 /* Might not have done put_prev_entity() */ 8894 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8895 update_curr(cfs_rq); 8896 8897 throttled |= check_cfs_rq_runtime(cfs_rq); 8898 8899 se = pick_next_entity(rq, cfs_rq); 8900 if (!se) 8901 goto again; 8902 cfs_rq = group_cfs_rq(se); 8903 } while (cfs_rq); 8904 8905 p = task_of(se); 8906 if (unlikely(throttled)) 8907 task_throttle_setup_work(p); 8908 return p; 8909 } 8910 8911 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8912 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8913 8914 struct task_struct * 8915 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8916 { 8917 struct sched_entity *se; 8918 struct task_struct *p; 8919 int new_tasks; 8920 8921 again: 8922 p = pick_task_fair(rq, rf); 8923 if (!p) 8924 goto idle; 8925 se = &p->se; 8926 8927 #ifdef CONFIG_FAIR_GROUP_SCHED 8928 if (prev->sched_class != &fair_sched_class) 8929 goto simple; 8930 8931 __put_prev_set_next_dl_server(rq, prev, p); 8932 8933 /* 8934 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8935 * likely that a next task is from the same cgroup as the current. 8936 * 8937 * Therefore attempt to avoid putting and setting the entire cgroup 8938 * hierarchy, only change the part that actually changes. 8939 * 8940 * Since we haven't yet done put_prev_entity and if the selected task 8941 * is a different task than we started out with, try and touch the 8942 * least amount of cfs_rqs. 8943 */ 8944 if (prev != p) { 8945 struct sched_entity *pse = &prev->se; 8946 struct cfs_rq *cfs_rq; 8947 8948 while (!(cfs_rq = is_same_group(se, pse))) { 8949 int se_depth = se->depth; 8950 int pse_depth = pse->depth; 8951 8952 if (se_depth <= pse_depth) { 8953 put_prev_entity(cfs_rq_of(pse), pse); 8954 pse = parent_entity(pse); 8955 } 8956 if (se_depth >= pse_depth) { 8957 set_next_entity(cfs_rq_of(se), se); 8958 se = parent_entity(se); 8959 } 8960 } 8961 8962 put_prev_entity(cfs_rq, pse); 8963 set_next_entity(cfs_rq, se); 8964 8965 __set_next_task_fair(rq, p, true); 8966 } 8967 8968 return p; 8969 8970 simple: 8971 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8972 put_prev_set_next_task(rq, prev, p); 8973 return p; 8974 8975 idle: 8976 if (rf) { 8977 new_tasks = sched_balance_newidle(rq, rf); 8978 8979 /* 8980 * Because sched_balance_newidle() releases (and re-acquires) 8981 * rq->lock, it is possible for any higher priority task to 8982 * appear. In that case we must re-start the pick_next_entity() 8983 * loop. 8984 */ 8985 if (new_tasks < 0) 8986 return RETRY_TASK; 8987 8988 if (new_tasks > 0) 8989 goto again; 8990 } 8991 8992 /* 8993 * rq is about to be idle, check if we need to update the 8994 * lost_idle_time of clock_pelt 8995 */ 8996 update_idle_rq_clock_pelt(rq); 8997 8998 return NULL; 8999 } 9000 9001 static struct task_struct * 9002 fair_server_pick_task(struct sched_dl_entity *dl_se, struct rq_flags *rf) 9003 { 9004 return pick_task_fair(dl_se->rq, rf); 9005 } 9006 9007 void fair_server_init(struct rq *rq) 9008 { 9009 struct sched_dl_entity *dl_se = &rq->fair_server; 9010 9011 init_dl_entity(dl_se); 9012 9013 dl_server_init(dl_se, rq, fair_server_pick_task); 9014 } 9015 9016 /* 9017 * Account for a descheduled task: 9018 */ 9019 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 9020 { 9021 struct sched_entity *se = &prev->se; 9022 struct cfs_rq *cfs_rq; 9023 9024 for_each_sched_entity(se) { 9025 cfs_rq = cfs_rq_of(se); 9026 put_prev_entity(cfs_rq, se); 9027 } 9028 } 9029 9030 /* 9031 * sched_yield() is very simple 9032 */ 9033 static void yield_task_fair(struct rq *rq) 9034 { 9035 struct task_struct *curr = rq->donor; 9036 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9037 struct sched_entity *se = &curr->se; 9038 9039 /* 9040 * Are we the only task in the tree? 9041 */ 9042 if (unlikely(rq->nr_running == 1)) 9043 return; 9044 9045 clear_buddies(cfs_rq, se); 9046 9047 update_rq_clock(rq); 9048 /* 9049 * Update run-time statistics of the 'current'. 9050 */ 9051 update_curr(cfs_rq); 9052 /* 9053 * Tell update_rq_clock() that we've just updated, 9054 * so we don't do microscopic update in schedule() 9055 * and double the fastpath cost. 9056 */ 9057 rq_clock_skip_update(rq); 9058 9059 /* 9060 * Forfeit the remaining vruntime, only if the entity is eligible. This 9061 * condition is necessary because in core scheduling we prefer to run 9062 * ineligible tasks rather than force idling. If this happens we may 9063 * end up in a loop where the core scheduler picks the yielding task, 9064 * which yields immediately again; without the condition the vruntime 9065 * ends up quickly running away. 9066 */ 9067 if (entity_eligible(cfs_rq, se)) { 9068 se->vruntime = se->deadline; 9069 se->deadline += calc_delta_fair(se->slice, se); 9070 } 9071 } 9072 9073 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9074 { 9075 struct sched_entity *se = &p->se; 9076 9077 /* !se->on_rq also covers throttled task */ 9078 if (!se->on_rq) 9079 return false; 9080 9081 /* Tell the scheduler that we'd really like se to run next. */ 9082 set_next_buddy(se); 9083 9084 yield_task_fair(rq); 9085 9086 return true; 9087 } 9088 9089 /************************************************** 9090 * Fair scheduling class load-balancing methods. 9091 * 9092 * BASICS 9093 * 9094 * The purpose of load-balancing is to achieve the same basic fairness the 9095 * per-CPU scheduler provides, namely provide a proportional amount of compute 9096 * time to each task. This is expressed in the following equation: 9097 * 9098 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9099 * 9100 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9101 * W_i,0 is defined as: 9102 * 9103 * W_i,0 = \Sum_j w_i,j (2) 9104 * 9105 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9106 * is derived from the nice value as per sched_prio_to_weight[]. 9107 * 9108 * The weight average is an exponential decay average of the instantaneous 9109 * weight: 9110 * 9111 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9112 * 9113 * C_i is the compute capacity of CPU i, typically it is the 9114 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9115 * can also include other factors [XXX]. 9116 * 9117 * To achieve this balance we define a measure of imbalance which follows 9118 * directly from (1): 9119 * 9120 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9121 * 9122 * We them move tasks around to minimize the imbalance. In the continuous 9123 * function space it is obvious this converges, in the discrete case we get 9124 * a few fun cases generally called infeasible weight scenarios. 9125 * 9126 * [XXX expand on: 9127 * - infeasible weights; 9128 * - local vs global optima in the discrete case. ] 9129 * 9130 * 9131 * SCHED DOMAINS 9132 * 9133 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9134 * for all i,j solution, we create a tree of CPUs that follows the hardware 9135 * topology where each level pairs two lower groups (or better). This results 9136 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9137 * tree to only the first of the previous level and we decrease the frequency 9138 * of load-balance at each level inversely proportional to the number of CPUs in 9139 * the groups. 9140 * 9141 * This yields: 9142 * 9143 * log_2 n 1 n 9144 * \Sum { --- * --- * 2^i } = O(n) (5) 9145 * i = 0 2^i 2^i 9146 * `- size of each group 9147 * | | `- number of CPUs doing load-balance 9148 * | `- freq 9149 * `- sum over all levels 9150 * 9151 * Coupled with a limit on how many tasks we can migrate every balance pass, 9152 * this makes (5) the runtime complexity of the balancer. 9153 * 9154 * An important property here is that each CPU is still (indirectly) connected 9155 * to every other CPU in at most O(log n) steps: 9156 * 9157 * The adjacency matrix of the resulting graph is given by: 9158 * 9159 * log_2 n 9160 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9161 * k = 0 9162 * 9163 * And you'll find that: 9164 * 9165 * A^(log_2 n)_i,j != 0 for all i,j (7) 9166 * 9167 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9168 * The task movement gives a factor of O(m), giving a convergence complexity 9169 * of: 9170 * 9171 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9172 * 9173 * 9174 * WORK CONSERVING 9175 * 9176 * In order to avoid CPUs going idle while there's still work to do, new idle 9177 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9178 * tree itself instead of relying on other CPUs to bring it work. 9179 * 9180 * This adds some complexity to both (5) and (8) but it reduces the total idle 9181 * time. 9182 * 9183 * [XXX more?] 9184 * 9185 * 9186 * CGROUPS 9187 * 9188 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9189 * 9190 * s_k,i 9191 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9192 * S_k 9193 * 9194 * Where 9195 * 9196 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9197 * 9198 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9199 * 9200 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9201 * property. 9202 * 9203 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9204 * rewrite all of this once again.] 9205 */ 9206 9207 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9208 9209 enum fbq_type { regular, remote, all }; 9210 9211 /* 9212 * 'group_type' describes the group of CPUs at the moment of load balancing. 9213 * 9214 * The enum is ordered by pulling priority, with the group with lowest priority 9215 * first so the group_type can simply be compared when selecting the busiest 9216 * group. See update_sd_pick_busiest(). 9217 */ 9218 enum group_type { 9219 /* The group has spare capacity that can be used to run more tasks. */ 9220 group_has_spare = 0, 9221 /* 9222 * The group is fully used and the tasks don't compete for more CPU 9223 * cycles. Nevertheless, some tasks might wait before running. 9224 */ 9225 group_fully_busy, 9226 /* 9227 * One task doesn't fit with CPU's capacity and must be migrated to a 9228 * more powerful CPU. 9229 */ 9230 group_misfit_task, 9231 /* 9232 * Balance SMT group that's fully busy. Can benefit from migration 9233 * a task on SMT with busy sibling to another CPU on idle core. 9234 */ 9235 group_smt_balance, 9236 /* 9237 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9238 * and the task should be migrated to it instead of running on the 9239 * current CPU. 9240 */ 9241 group_asym_packing, 9242 /* 9243 * The tasks' affinity constraints previously prevented the scheduler 9244 * from balancing the load across the system. 9245 */ 9246 group_imbalanced, 9247 /* 9248 * The CPU is overloaded and can't provide expected CPU cycles to all 9249 * tasks. 9250 */ 9251 group_overloaded 9252 }; 9253 9254 enum migration_type { 9255 migrate_load = 0, 9256 migrate_util, 9257 migrate_task, 9258 migrate_misfit 9259 }; 9260 9261 #define LBF_ALL_PINNED 0x01 9262 #define LBF_NEED_BREAK 0x02 9263 #define LBF_DST_PINNED 0x04 9264 #define LBF_SOME_PINNED 0x08 9265 #define LBF_ACTIVE_LB 0x10 9266 9267 struct lb_env { 9268 struct sched_domain *sd; 9269 9270 struct rq *src_rq; 9271 int src_cpu; 9272 9273 int dst_cpu; 9274 struct rq *dst_rq; 9275 9276 struct cpumask *dst_grpmask; 9277 int new_dst_cpu; 9278 enum cpu_idle_type idle; 9279 long imbalance; 9280 /* The set of CPUs under consideration for load-balancing */ 9281 struct cpumask *cpus; 9282 9283 unsigned int flags; 9284 9285 unsigned int loop; 9286 unsigned int loop_break; 9287 unsigned int loop_max; 9288 9289 enum fbq_type fbq_type; 9290 enum migration_type migration_type; 9291 struct list_head tasks; 9292 }; 9293 9294 /* 9295 * Is this task likely cache-hot: 9296 */ 9297 static int task_hot(struct task_struct *p, struct lb_env *env) 9298 { 9299 s64 delta; 9300 9301 lockdep_assert_rq_held(env->src_rq); 9302 9303 if (p->sched_class != &fair_sched_class) 9304 return 0; 9305 9306 if (unlikely(task_has_idle_policy(p))) 9307 return 0; 9308 9309 /* SMT siblings share cache */ 9310 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9311 return 0; 9312 9313 /* 9314 * Buddy candidates are cache hot: 9315 */ 9316 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9317 (&p->se == cfs_rq_of(&p->se)->next)) 9318 return 1; 9319 9320 if (sysctl_sched_migration_cost == -1) 9321 return 1; 9322 9323 /* 9324 * Don't migrate task if the task's cookie does not match 9325 * with the destination CPU's core cookie. 9326 */ 9327 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9328 return 1; 9329 9330 if (sysctl_sched_migration_cost == 0) 9331 return 0; 9332 9333 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9334 9335 return delta < (s64)sysctl_sched_migration_cost; 9336 } 9337 9338 #ifdef CONFIG_NUMA_BALANCING 9339 /* 9340 * Returns a positive value, if task migration degrades locality. 9341 * Returns 0, if task migration is not affected by locality. 9342 * Returns a negative value, if task migration improves locality i.e migration preferred. 9343 */ 9344 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9345 { 9346 struct numa_group *numa_group = rcu_dereference_all(p->numa_group); 9347 unsigned long src_weight, dst_weight; 9348 int src_nid, dst_nid, dist; 9349 9350 if (!static_branch_likely(&sched_numa_balancing)) 9351 return 0; 9352 9353 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9354 return 0; 9355 9356 src_nid = cpu_to_node(env->src_cpu); 9357 dst_nid = cpu_to_node(env->dst_cpu); 9358 9359 if (src_nid == dst_nid) 9360 return 0; 9361 9362 /* Migrating away from the preferred node is always bad. */ 9363 if (src_nid == p->numa_preferred_nid) { 9364 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9365 return 1; 9366 else 9367 return 0; 9368 } 9369 9370 /* Encourage migration to the preferred node. */ 9371 if (dst_nid == p->numa_preferred_nid) 9372 return -1; 9373 9374 /* Leaving a core idle is often worse than degrading locality. */ 9375 if (env->idle == CPU_IDLE) 9376 return 0; 9377 9378 dist = node_distance(src_nid, dst_nid); 9379 if (numa_group) { 9380 src_weight = group_weight(p, src_nid, dist); 9381 dst_weight = group_weight(p, dst_nid, dist); 9382 } else { 9383 src_weight = task_weight(p, src_nid, dist); 9384 dst_weight = task_weight(p, dst_nid, dist); 9385 } 9386 9387 return src_weight - dst_weight; 9388 } 9389 9390 #else /* !CONFIG_NUMA_BALANCING: */ 9391 static inline long migrate_degrades_locality(struct task_struct *p, 9392 struct lb_env *env) 9393 { 9394 return 0; 9395 } 9396 #endif /* !CONFIG_NUMA_BALANCING */ 9397 9398 /* 9399 * Check whether the task is ineligible on the destination cpu 9400 * 9401 * When the PLACE_LAG scheduling feature is enabled and 9402 * dst_cfs_rq->nr_queued is greater than 1, if the task 9403 * is ineligible, it will also be ineligible when 9404 * it is migrated to the destination cpu. 9405 */ 9406 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9407 { 9408 struct cfs_rq *dst_cfs_rq; 9409 9410 #ifdef CONFIG_FAIR_GROUP_SCHED 9411 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9412 #else 9413 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9414 #endif 9415 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9416 !entity_eligible(task_cfs_rq(p), &p->se)) 9417 return 1; 9418 9419 return 0; 9420 } 9421 9422 /* 9423 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9424 */ 9425 static 9426 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9427 { 9428 long degrades, hot; 9429 9430 lockdep_assert_rq_held(env->src_rq); 9431 if (p->sched_task_hot) 9432 p->sched_task_hot = 0; 9433 9434 /* 9435 * We do not migrate tasks that are: 9436 * 1) delayed dequeued unless we migrate load, or 9437 * 2) target cfs_rq is in throttled hierarchy, or 9438 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9439 * 4) running (obviously), or 9440 * 5) are cache-hot on their current CPU, or 9441 * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled) 9442 */ 9443 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9444 return 0; 9445 9446 if (lb_throttled_hierarchy(p, env->dst_cpu)) 9447 return 0; 9448 9449 /* 9450 * We want to prioritize the migration of eligible tasks. 9451 * For ineligible tasks we soft-limit them and only allow 9452 * them to migrate when nr_balance_failed is non-zero to 9453 * avoid load-balancing trying very hard to balance the load. 9454 */ 9455 if (!env->sd->nr_balance_failed && 9456 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9457 return 0; 9458 9459 /* Disregard percpu kthreads; they are where they need to be. */ 9460 if (kthread_is_per_cpu(p)) 9461 return 0; 9462 9463 if (task_is_blocked(p)) 9464 return 0; 9465 9466 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9467 int cpu; 9468 9469 schedstat_inc(p->stats.nr_failed_migrations_affine); 9470 9471 env->flags |= LBF_SOME_PINNED; 9472 9473 /* 9474 * Remember if this task can be migrated to any other CPU in 9475 * our sched_group. We may want to revisit it if we couldn't 9476 * meet load balance goals by pulling other tasks on src_cpu. 9477 * 9478 * Avoid computing new_dst_cpu 9479 * - for NEWLY_IDLE 9480 * - if we have already computed one in current iteration 9481 * - if it's an active balance 9482 */ 9483 if (env->idle == CPU_NEWLY_IDLE || 9484 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9485 return 0; 9486 9487 /* Prevent to re-select dst_cpu via env's CPUs: */ 9488 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9489 9490 if (cpu < nr_cpu_ids) { 9491 env->flags |= LBF_DST_PINNED; 9492 env->new_dst_cpu = cpu; 9493 } 9494 9495 return 0; 9496 } 9497 9498 /* Record that we found at least one task that could run on dst_cpu */ 9499 env->flags &= ~LBF_ALL_PINNED; 9500 9501 if (task_on_cpu(env->src_rq, p) || 9502 task_current_donor(env->src_rq, p)) { 9503 schedstat_inc(p->stats.nr_failed_migrations_running); 9504 return 0; 9505 } 9506 9507 /* 9508 * Aggressive migration if: 9509 * 1) active balance 9510 * 2) destination numa is preferred 9511 * 3) task is cache cold, or 9512 * 4) too many balance attempts have failed. 9513 */ 9514 if (env->flags & LBF_ACTIVE_LB) 9515 return 1; 9516 9517 degrades = migrate_degrades_locality(p, env); 9518 if (!degrades) 9519 hot = task_hot(p, env); 9520 else 9521 hot = degrades > 0; 9522 9523 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9524 if (hot) 9525 p->sched_task_hot = 1; 9526 return 1; 9527 } 9528 9529 schedstat_inc(p->stats.nr_failed_migrations_hot); 9530 return 0; 9531 } 9532 9533 /* 9534 * detach_task() -- detach the task for the migration specified in env 9535 */ 9536 static void detach_task(struct task_struct *p, struct lb_env *env) 9537 { 9538 lockdep_assert_rq_held(env->src_rq); 9539 9540 if (p->sched_task_hot) { 9541 p->sched_task_hot = 0; 9542 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9543 schedstat_inc(p->stats.nr_forced_migrations); 9544 } 9545 9546 WARN_ON(task_current(env->src_rq, p)); 9547 WARN_ON(task_current_donor(env->src_rq, p)); 9548 9549 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9550 set_task_cpu(p, env->dst_cpu); 9551 } 9552 9553 /* 9554 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9555 * part of active balancing operations within "domain". 9556 * 9557 * Returns a task if successful and NULL otherwise. 9558 */ 9559 static struct task_struct *detach_one_task(struct lb_env *env) 9560 { 9561 struct task_struct *p; 9562 9563 lockdep_assert_rq_held(env->src_rq); 9564 9565 list_for_each_entry_reverse(p, 9566 &env->src_rq->cfs_tasks, se.group_node) { 9567 if (!can_migrate_task(p, env)) 9568 continue; 9569 9570 detach_task(p, env); 9571 9572 /* 9573 * Right now, this is only the second place where 9574 * lb_gained[env->idle] is updated (other is detach_tasks) 9575 * so we can safely collect stats here rather than 9576 * inside detach_tasks(). 9577 */ 9578 schedstat_inc(env->sd->lb_gained[env->idle]); 9579 return p; 9580 } 9581 return NULL; 9582 } 9583 9584 /* 9585 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9586 * busiest_rq, as part of a balancing operation within domain "sd". 9587 * 9588 * Returns number of detached tasks if successful and 0 otherwise. 9589 */ 9590 static int detach_tasks(struct lb_env *env) 9591 { 9592 struct list_head *tasks = &env->src_rq->cfs_tasks; 9593 unsigned long util, load; 9594 struct task_struct *p; 9595 int detached = 0; 9596 9597 lockdep_assert_rq_held(env->src_rq); 9598 9599 /* 9600 * Source run queue has been emptied by another CPU, clear 9601 * LBF_ALL_PINNED flag as we will not test any task. 9602 */ 9603 if (env->src_rq->nr_running <= 1) { 9604 env->flags &= ~LBF_ALL_PINNED; 9605 return 0; 9606 } 9607 9608 if (env->imbalance <= 0) 9609 return 0; 9610 9611 while (!list_empty(tasks)) { 9612 /* 9613 * We don't want to steal all, otherwise we may be treated likewise, 9614 * which could at worst lead to a livelock crash. 9615 */ 9616 if (env->idle && env->src_rq->nr_running <= 1) 9617 break; 9618 9619 env->loop++; 9620 /* We've more or less seen every task there is, call it quits */ 9621 if (env->loop > env->loop_max) 9622 break; 9623 9624 /* take a breather every nr_migrate tasks */ 9625 if (env->loop > env->loop_break) { 9626 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9627 env->flags |= LBF_NEED_BREAK; 9628 break; 9629 } 9630 9631 p = list_last_entry(tasks, struct task_struct, se.group_node); 9632 9633 if (!can_migrate_task(p, env)) 9634 goto next; 9635 9636 switch (env->migration_type) { 9637 case migrate_load: 9638 /* 9639 * Depending of the number of CPUs and tasks and the 9640 * cgroup hierarchy, task_h_load() can return a null 9641 * value. Make sure that env->imbalance decreases 9642 * otherwise detach_tasks() will stop only after 9643 * detaching up to loop_max tasks. 9644 */ 9645 load = max_t(unsigned long, task_h_load(p), 1); 9646 9647 if (sched_feat(LB_MIN) && 9648 load < 16 && !env->sd->nr_balance_failed) 9649 goto next; 9650 9651 /* 9652 * Make sure that we don't migrate too much load. 9653 * Nevertheless, let relax the constraint if 9654 * scheduler fails to find a good waiting task to 9655 * migrate. 9656 */ 9657 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9658 goto next; 9659 9660 env->imbalance -= load; 9661 break; 9662 9663 case migrate_util: 9664 util = task_util_est(p); 9665 9666 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9667 goto next; 9668 9669 env->imbalance -= util; 9670 break; 9671 9672 case migrate_task: 9673 env->imbalance--; 9674 break; 9675 9676 case migrate_misfit: 9677 /* This is not a misfit task */ 9678 if (task_fits_cpu(p, env->src_cpu)) 9679 goto next; 9680 9681 env->imbalance = 0; 9682 break; 9683 } 9684 9685 detach_task(p, env); 9686 list_add(&p->se.group_node, &env->tasks); 9687 9688 detached++; 9689 9690 #ifdef CONFIG_PREEMPTION 9691 /* 9692 * NEWIDLE balancing is a source of latency, so preemptible 9693 * kernels will stop after the first task is detached to minimize 9694 * the critical section. 9695 */ 9696 if (env->idle == CPU_NEWLY_IDLE) 9697 break; 9698 #endif 9699 9700 /* 9701 * We only want to steal up to the prescribed amount of 9702 * load/util/tasks. 9703 */ 9704 if (env->imbalance <= 0) 9705 break; 9706 9707 continue; 9708 next: 9709 if (p->sched_task_hot) 9710 schedstat_inc(p->stats.nr_failed_migrations_hot); 9711 9712 list_move(&p->se.group_node, tasks); 9713 } 9714 9715 /* 9716 * Right now, this is one of only two places we collect this stat 9717 * so we can safely collect detach_one_task() stats here rather 9718 * than inside detach_one_task(). 9719 */ 9720 schedstat_add(env->sd->lb_gained[env->idle], detached); 9721 9722 return detached; 9723 } 9724 9725 /* 9726 * attach_task() -- attach the task detached by detach_task() to its new rq. 9727 */ 9728 static void attach_task(struct rq *rq, struct task_struct *p) 9729 { 9730 lockdep_assert_rq_held(rq); 9731 9732 WARN_ON_ONCE(task_rq(p) != rq); 9733 activate_task(rq, p, ENQUEUE_NOCLOCK); 9734 wakeup_preempt(rq, p, 0); 9735 } 9736 9737 /* 9738 * attach_one_task() -- attaches the task returned from detach_one_task() to 9739 * its new rq. 9740 */ 9741 static void attach_one_task(struct rq *rq, struct task_struct *p) 9742 { 9743 struct rq_flags rf; 9744 9745 rq_lock(rq, &rf); 9746 update_rq_clock(rq); 9747 attach_task(rq, p); 9748 rq_unlock(rq, &rf); 9749 } 9750 9751 /* 9752 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9753 * new rq. 9754 */ 9755 static void attach_tasks(struct lb_env *env) 9756 { 9757 struct list_head *tasks = &env->tasks; 9758 struct task_struct *p; 9759 struct rq_flags rf; 9760 9761 rq_lock(env->dst_rq, &rf); 9762 update_rq_clock(env->dst_rq); 9763 9764 while (!list_empty(tasks)) { 9765 p = list_first_entry(tasks, struct task_struct, se.group_node); 9766 list_del_init(&p->se.group_node); 9767 9768 attach_task(env->dst_rq, p); 9769 } 9770 9771 rq_unlock(env->dst_rq, &rf); 9772 } 9773 9774 #ifdef CONFIG_NO_HZ_COMMON 9775 static inline bool cfs_rq_has_blocked_load(struct cfs_rq *cfs_rq) 9776 { 9777 if (cfs_rq->avg.load_avg) 9778 return true; 9779 9780 if (cfs_rq->avg.util_avg) 9781 return true; 9782 9783 return false; 9784 } 9785 9786 static inline bool others_have_blocked(struct rq *rq) 9787 { 9788 if (cpu_util_rt(rq)) 9789 return true; 9790 9791 if (cpu_util_dl(rq)) 9792 return true; 9793 9794 if (hw_load_avg(rq)) 9795 return true; 9796 9797 if (cpu_util_irq(rq)) 9798 return true; 9799 9800 return false; 9801 } 9802 9803 static inline void update_blocked_load_tick(struct rq *rq) 9804 { 9805 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9806 } 9807 9808 static inline void update_has_blocked_load_status(struct rq *rq, bool has_blocked_load) 9809 { 9810 if (!has_blocked_load) 9811 rq->has_blocked_load = 0; 9812 } 9813 #else /* !CONFIG_NO_HZ_COMMON: */ 9814 static inline bool cfs_rq_has_blocked_load(struct cfs_rq *cfs_rq) { return false; } 9815 static inline bool others_have_blocked(struct rq *rq) { return false; } 9816 static inline void update_blocked_load_tick(struct rq *rq) {} 9817 static inline void update_has_blocked_load_status(struct rq *rq, bool has_blocked_load) {} 9818 #endif /* !CONFIG_NO_HZ_COMMON */ 9819 9820 static bool __update_blocked_others(struct rq *rq, bool *done) 9821 { 9822 bool updated; 9823 9824 /* 9825 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9826 * DL and IRQ signals have been updated before updating CFS. 9827 */ 9828 updated = update_other_load_avgs(rq); 9829 9830 if (others_have_blocked(rq)) 9831 *done = false; 9832 9833 return updated; 9834 } 9835 9836 #ifdef CONFIG_FAIR_GROUP_SCHED 9837 9838 static bool __update_blocked_fair(struct rq *rq, bool *done) 9839 { 9840 struct cfs_rq *cfs_rq, *pos; 9841 bool decayed = false; 9842 int cpu = cpu_of(rq); 9843 9844 /* 9845 * Iterates the task_group tree in a bottom up fashion, see 9846 * list_add_leaf_cfs_rq() for details. 9847 */ 9848 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9849 struct sched_entity *se; 9850 9851 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9852 update_tg_load_avg(cfs_rq); 9853 9854 if (cfs_rq->nr_queued == 0) 9855 update_idle_cfs_rq_clock_pelt(cfs_rq); 9856 9857 if (cfs_rq == &rq->cfs) 9858 decayed = true; 9859 } 9860 9861 /* Propagate pending load changes to the parent, if any: */ 9862 se = cfs_rq->tg->se[cpu]; 9863 if (se && !skip_blocked_update(se)) 9864 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9865 9866 /* 9867 * There can be a lot of idle CPU cgroups. Don't let fully 9868 * decayed cfs_rqs linger on the list. 9869 */ 9870 if (cfs_rq_is_decayed(cfs_rq)) 9871 list_del_leaf_cfs_rq(cfs_rq); 9872 9873 /* Don't need periodic decay once load/util_avg are null */ 9874 if (cfs_rq_has_blocked_load(cfs_rq)) 9875 *done = false; 9876 } 9877 9878 return decayed; 9879 } 9880 9881 /* 9882 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9883 * This needs to be done in a top-down fashion because the load of a child 9884 * group is a fraction of its parents load. 9885 */ 9886 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9887 { 9888 struct rq *rq = rq_of(cfs_rq); 9889 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9890 unsigned long now = jiffies; 9891 unsigned long load; 9892 9893 if (cfs_rq->last_h_load_update == now) 9894 return; 9895 9896 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9897 for_each_sched_entity(se) { 9898 cfs_rq = cfs_rq_of(se); 9899 WRITE_ONCE(cfs_rq->h_load_next, se); 9900 if (cfs_rq->last_h_load_update == now) 9901 break; 9902 } 9903 9904 if (!se) { 9905 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9906 cfs_rq->last_h_load_update = now; 9907 } 9908 9909 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9910 load = cfs_rq->h_load; 9911 load = div64_ul(load * se->avg.load_avg, 9912 cfs_rq_load_avg(cfs_rq) + 1); 9913 cfs_rq = group_cfs_rq(se); 9914 cfs_rq->h_load = load; 9915 cfs_rq->last_h_load_update = now; 9916 } 9917 } 9918 9919 static unsigned long task_h_load(struct task_struct *p) 9920 { 9921 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9922 9923 update_cfs_rq_h_load(cfs_rq); 9924 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9925 cfs_rq_load_avg(cfs_rq) + 1); 9926 } 9927 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 9928 static bool __update_blocked_fair(struct rq *rq, bool *done) 9929 { 9930 struct cfs_rq *cfs_rq = &rq->cfs; 9931 bool decayed; 9932 9933 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9934 if (cfs_rq_has_blocked_load(cfs_rq)) 9935 *done = false; 9936 9937 return decayed; 9938 } 9939 9940 static unsigned long task_h_load(struct task_struct *p) 9941 { 9942 return p->se.avg.load_avg; 9943 } 9944 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 9945 9946 static void __sched_balance_update_blocked_averages(struct rq *rq) 9947 { 9948 bool decayed = false, done = true; 9949 9950 update_blocked_load_tick(rq); 9951 9952 decayed |= __update_blocked_others(rq, &done); 9953 decayed |= __update_blocked_fair(rq, &done); 9954 9955 update_has_blocked_load_status(rq, !done); 9956 if (decayed) 9957 cpufreq_update_util(rq, 0); 9958 } 9959 9960 static void sched_balance_update_blocked_averages(int cpu) 9961 { 9962 struct rq *rq = cpu_rq(cpu); 9963 9964 guard(rq_lock_irqsave)(rq); 9965 update_rq_clock(rq); 9966 __sched_balance_update_blocked_averages(rq); 9967 } 9968 9969 /********** Helpers for sched_balance_find_src_group ************************/ 9970 9971 /* 9972 * sg_lb_stats - stats of a sched_group required for load-balancing: 9973 */ 9974 struct sg_lb_stats { 9975 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9976 unsigned long group_load; /* Total load over the CPUs of the group */ 9977 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9978 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9979 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9980 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9981 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9982 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9983 unsigned int group_weight; 9984 enum group_type group_type; 9985 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9986 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9987 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9988 #ifdef CONFIG_NUMA_BALANCING 9989 unsigned int nr_numa_running; 9990 unsigned int nr_preferred_running; 9991 #endif 9992 }; 9993 9994 /* 9995 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9996 */ 9997 struct sd_lb_stats { 9998 struct sched_group *busiest; /* Busiest group in this sd */ 9999 struct sched_group *local; /* Local group in this sd */ 10000 unsigned long total_load; /* Total load of all groups in sd */ 10001 unsigned long total_capacity; /* Total capacity of all groups in sd */ 10002 unsigned long avg_load; /* Average load across all groups in sd */ 10003 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 10004 10005 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 10006 struct sg_lb_stats local_stat; /* Statistics of the local group */ 10007 }; 10008 10009 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 10010 { 10011 /* 10012 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 10013 * local_stat because update_sg_lb_stats() does a full clear/assignment. 10014 * We must however set busiest_stat::group_type and 10015 * busiest_stat::idle_cpus to the worst busiest group because 10016 * update_sd_pick_busiest() reads these before assignment. 10017 */ 10018 *sds = (struct sd_lb_stats){ 10019 .busiest = NULL, 10020 .local = NULL, 10021 .total_load = 0UL, 10022 .total_capacity = 0UL, 10023 .busiest_stat = { 10024 .idle_cpus = UINT_MAX, 10025 .group_type = group_has_spare, 10026 }, 10027 }; 10028 } 10029 10030 static unsigned long scale_rt_capacity(int cpu) 10031 { 10032 unsigned long max = get_actual_cpu_capacity(cpu); 10033 struct rq *rq = cpu_rq(cpu); 10034 unsigned long used, free; 10035 unsigned long irq; 10036 10037 irq = cpu_util_irq(rq); 10038 10039 if (unlikely(irq >= max)) 10040 return 1; 10041 10042 /* 10043 * avg_rt.util_avg and avg_dl.util_avg track binary signals 10044 * (running and not running) with weights 0 and 1024 respectively. 10045 */ 10046 used = cpu_util_rt(rq); 10047 used += cpu_util_dl(rq); 10048 10049 if (unlikely(used >= max)) 10050 return 1; 10051 10052 free = max - used; 10053 10054 return scale_irq_capacity(free, irq, max); 10055 } 10056 10057 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10058 { 10059 unsigned long capacity = scale_rt_capacity(cpu); 10060 struct sched_group *sdg = sd->groups; 10061 10062 if (!capacity) 10063 capacity = 1; 10064 10065 cpu_rq(cpu)->cpu_capacity = capacity; 10066 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10067 10068 sdg->sgc->capacity = capacity; 10069 sdg->sgc->min_capacity = capacity; 10070 sdg->sgc->max_capacity = capacity; 10071 } 10072 10073 void update_group_capacity(struct sched_domain *sd, int cpu) 10074 { 10075 struct sched_domain *child = sd->child; 10076 struct sched_group *group, *sdg = sd->groups; 10077 unsigned long capacity, min_capacity, max_capacity; 10078 unsigned long interval; 10079 10080 interval = msecs_to_jiffies(sd->balance_interval); 10081 interval = clamp(interval, 1UL, max_load_balance_interval); 10082 sdg->sgc->next_update = jiffies + interval; 10083 10084 if (!child) { 10085 update_cpu_capacity(sd, cpu); 10086 return; 10087 } 10088 10089 capacity = 0; 10090 min_capacity = ULONG_MAX; 10091 max_capacity = 0; 10092 10093 if (child->flags & SD_NUMA) { 10094 /* 10095 * SD_NUMA domains cannot assume that child groups 10096 * span the current group. 10097 */ 10098 10099 for_each_cpu(cpu, sched_group_span(sdg)) { 10100 unsigned long cpu_cap = capacity_of(cpu); 10101 10102 capacity += cpu_cap; 10103 min_capacity = min(cpu_cap, min_capacity); 10104 max_capacity = max(cpu_cap, max_capacity); 10105 } 10106 } else { 10107 /* 10108 * !SD_NUMA domains can assume that child groups 10109 * span the current group. 10110 */ 10111 10112 group = child->groups; 10113 do { 10114 struct sched_group_capacity *sgc = group->sgc; 10115 10116 capacity += sgc->capacity; 10117 min_capacity = min(sgc->min_capacity, min_capacity); 10118 max_capacity = max(sgc->max_capacity, max_capacity); 10119 group = group->next; 10120 } while (group != child->groups); 10121 } 10122 10123 sdg->sgc->capacity = capacity; 10124 sdg->sgc->min_capacity = min_capacity; 10125 sdg->sgc->max_capacity = max_capacity; 10126 } 10127 10128 /* 10129 * Check whether the capacity of the rq has been noticeably reduced by side 10130 * activity. The imbalance_pct is used for the threshold. 10131 * Return true is the capacity is reduced 10132 */ 10133 static inline int 10134 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10135 { 10136 return ((rq->cpu_capacity * sd->imbalance_pct) < 10137 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10138 } 10139 10140 /* Check if the rq has a misfit task */ 10141 static inline bool check_misfit_status(struct rq *rq) 10142 { 10143 return rq->misfit_task_load; 10144 } 10145 10146 /* 10147 * Group imbalance indicates (and tries to solve) the problem where balancing 10148 * groups is inadequate due to ->cpus_ptr constraints. 10149 * 10150 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10151 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10152 * Something like: 10153 * 10154 * { 0 1 2 3 } { 4 5 6 7 } 10155 * * * * * 10156 * 10157 * If we were to balance group-wise we'd place two tasks in the first group and 10158 * two tasks in the second group. Clearly this is undesired as it will overload 10159 * cpu 3 and leave one of the CPUs in the second group unused. 10160 * 10161 * The current solution to this issue is detecting the skew in the first group 10162 * by noticing the lower domain failed to reach balance and had difficulty 10163 * moving tasks due to affinity constraints. 10164 * 10165 * When this is so detected; this group becomes a candidate for busiest; see 10166 * update_sd_pick_busiest(). And calculate_imbalance() and 10167 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10168 * to create an effective group imbalance. 10169 * 10170 * This is a somewhat tricky proposition since the next run might not find the 10171 * group imbalance and decide the groups need to be balanced again. A most 10172 * subtle and fragile situation. 10173 */ 10174 10175 static inline int sg_imbalanced(struct sched_group *group) 10176 { 10177 return group->sgc->imbalance; 10178 } 10179 10180 /* 10181 * group_has_capacity returns true if the group has spare capacity that could 10182 * be used by some tasks. 10183 * We consider that a group has spare capacity if the number of task is 10184 * smaller than the number of CPUs or if the utilization is lower than the 10185 * available capacity for CFS tasks. 10186 * For the latter, we use a threshold to stabilize the state, to take into 10187 * account the variance of the tasks' load and to return true if the available 10188 * capacity in meaningful for the load balancer. 10189 * As an example, an available capacity of 1% can appear but it doesn't make 10190 * any benefit for the load balance. 10191 */ 10192 static inline bool 10193 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10194 { 10195 if (sgs->sum_nr_running < sgs->group_weight) 10196 return true; 10197 10198 if ((sgs->group_capacity * imbalance_pct) < 10199 (sgs->group_runnable * 100)) 10200 return false; 10201 10202 if ((sgs->group_capacity * 100) > 10203 (sgs->group_util * imbalance_pct)) 10204 return true; 10205 10206 return false; 10207 } 10208 10209 /* 10210 * group_is_overloaded returns true if the group has more tasks than it can 10211 * handle. 10212 * group_is_overloaded is not equals to !group_has_capacity because a group 10213 * with the exact right number of tasks, has no more spare capacity but is not 10214 * overloaded so both group_has_capacity and group_is_overloaded return 10215 * false. 10216 */ 10217 static inline bool 10218 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10219 { 10220 if (sgs->sum_nr_running <= sgs->group_weight) 10221 return false; 10222 10223 if ((sgs->group_capacity * 100) < 10224 (sgs->group_util * imbalance_pct)) 10225 return true; 10226 10227 if ((sgs->group_capacity * imbalance_pct) < 10228 (sgs->group_runnable * 100)) 10229 return true; 10230 10231 return false; 10232 } 10233 10234 static inline enum 10235 group_type group_classify(unsigned int imbalance_pct, 10236 struct sched_group *group, 10237 struct sg_lb_stats *sgs) 10238 { 10239 if (group_is_overloaded(imbalance_pct, sgs)) 10240 return group_overloaded; 10241 10242 if (sg_imbalanced(group)) 10243 return group_imbalanced; 10244 10245 if (sgs->group_asym_packing) 10246 return group_asym_packing; 10247 10248 if (sgs->group_smt_balance) 10249 return group_smt_balance; 10250 10251 if (sgs->group_misfit_task_load) 10252 return group_misfit_task; 10253 10254 if (!group_has_capacity(imbalance_pct, sgs)) 10255 return group_fully_busy; 10256 10257 return group_has_spare; 10258 } 10259 10260 /** 10261 * sched_use_asym_prio - Check whether asym_packing priority must be used 10262 * @sd: The scheduling domain of the load balancing 10263 * @cpu: A CPU 10264 * 10265 * Always use CPU priority when balancing load between SMT siblings. When 10266 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10267 * use CPU priority if the whole core is idle. 10268 * 10269 * Returns: True if the priority of @cpu must be followed. False otherwise. 10270 */ 10271 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10272 { 10273 if (!(sd->flags & SD_ASYM_PACKING)) 10274 return false; 10275 10276 if (!sched_smt_active()) 10277 return true; 10278 10279 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10280 } 10281 10282 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10283 { 10284 /* 10285 * First check if @dst_cpu can do asym_packing load balance. Only do it 10286 * if it has higher priority than @src_cpu. 10287 */ 10288 return sched_use_asym_prio(sd, dst_cpu) && 10289 sched_asym_prefer(dst_cpu, src_cpu); 10290 } 10291 10292 /** 10293 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10294 * @env: The load balancing environment 10295 * @sgs: Load-balancing statistics of the candidate busiest group 10296 * @group: The candidate busiest group 10297 * 10298 * @env::dst_cpu can do asym_packing if it has higher priority than the 10299 * preferred CPU of @group. 10300 * 10301 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10302 * otherwise. 10303 */ 10304 static inline bool 10305 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10306 { 10307 /* 10308 * CPU priorities do not make sense for SMT cores with more than one 10309 * busy sibling. 10310 */ 10311 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10312 (sgs->group_weight - sgs->idle_cpus != 1)) 10313 return false; 10314 10315 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); 10316 } 10317 10318 /* One group has more than one SMT CPU while the other group does not */ 10319 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10320 struct sched_group *sg2) 10321 { 10322 if (!sg1 || !sg2) 10323 return false; 10324 10325 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10326 (sg2->flags & SD_SHARE_CPUCAPACITY); 10327 } 10328 10329 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10330 struct sched_group *group) 10331 { 10332 if (!env->idle) 10333 return false; 10334 10335 /* 10336 * For SMT source group, it is better to move a task 10337 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10338 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10339 * will not be on. 10340 */ 10341 if (group->flags & SD_SHARE_CPUCAPACITY && 10342 sgs->sum_h_nr_running > 1) 10343 return true; 10344 10345 return false; 10346 } 10347 10348 static inline long sibling_imbalance(struct lb_env *env, 10349 struct sd_lb_stats *sds, 10350 struct sg_lb_stats *busiest, 10351 struct sg_lb_stats *local) 10352 { 10353 int ncores_busiest, ncores_local; 10354 long imbalance; 10355 10356 if (!env->idle || !busiest->sum_nr_running) 10357 return 0; 10358 10359 ncores_busiest = sds->busiest->cores; 10360 ncores_local = sds->local->cores; 10361 10362 if (ncores_busiest == ncores_local) { 10363 imbalance = busiest->sum_nr_running; 10364 lsub_positive(&imbalance, local->sum_nr_running); 10365 return imbalance; 10366 } 10367 10368 /* Balance such that nr_running/ncores ratio are same on both groups */ 10369 imbalance = ncores_local * busiest->sum_nr_running; 10370 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10371 /* Normalize imbalance and do rounding on normalization */ 10372 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10373 imbalance /= ncores_local + ncores_busiest; 10374 10375 /* Take advantage of resource in an empty sched group */ 10376 if (imbalance <= 1 && local->sum_nr_running == 0 && 10377 busiest->sum_nr_running > 1) 10378 imbalance = 2; 10379 10380 return imbalance; 10381 } 10382 10383 static inline bool 10384 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10385 { 10386 /* 10387 * When there is more than 1 task, the group_overloaded case already 10388 * takes care of cpu with reduced capacity 10389 */ 10390 if (rq->cfs.h_nr_runnable != 1) 10391 return false; 10392 10393 return check_cpu_capacity(rq, sd); 10394 } 10395 10396 /** 10397 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10398 * @env: The load balancing environment. 10399 * @sds: Load-balancing data with statistics of the local group. 10400 * @group: sched_group whose statistics are to be updated. 10401 * @sgs: variable to hold the statistics for this group. 10402 * @sg_overloaded: sched_group is overloaded 10403 * @sg_overutilized: sched_group is overutilized 10404 */ 10405 static inline void update_sg_lb_stats(struct lb_env *env, 10406 struct sd_lb_stats *sds, 10407 struct sched_group *group, 10408 struct sg_lb_stats *sgs, 10409 bool *sg_overloaded, 10410 bool *sg_overutilized) 10411 { 10412 int i, nr_running, local_group, sd_flags = env->sd->flags; 10413 bool balancing_at_rd = !env->sd->parent; 10414 10415 memset(sgs, 0, sizeof(*sgs)); 10416 10417 local_group = group == sds->local; 10418 10419 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10420 struct rq *rq = cpu_rq(i); 10421 unsigned long load = cpu_load(rq); 10422 10423 sgs->group_load += load; 10424 sgs->group_util += cpu_util_cfs(i); 10425 sgs->group_runnable += cpu_runnable(rq); 10426 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10427 10428 nr_running = rq->nr_running; 10429 sgs->sum_nr_running += nr_running; 10430 10431 if (cpu_overutilized(i)) 10432 *sg_overutilized = 1; 10433 10434 /* 10435 * No need to call idle_cpu() if nr_running is not 0 10436 */ 10437 if (!nr_running && idle_cpu(i)) { 10438 sgs->idle_cpus++; 10439 /* Idle cpu can't have misfit task */ 10440 continue; 10441 } 10442 10443 /* Overload indicator is only updated at root domain */ 10444 if (balancing_at_rd && nr_running > 1) 10445 *sg_overloaded = 1; 10446 10447 #ifdef CONFIG_NUMA_BALANCING 10448 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10449 if (sd_flags & SD_NUMA) { 10450 sgs->nr_numa_running += rq->nr_numa_running; 10451 sgs->nr_preferred_running += rq->nr_preferred_running; 10452 } 10453 #endif 10454 if (local_group) 10455 continue; 10456 10457 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10458 /* Check for a misfit task on the cpu */ 10459 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10460 sgs->group_misfit_task_load = rq->misfit_task_load; 10461 *sg_overloaded = 1; 10462 } 10463 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10464 /* Check for a task running on a CPU with reduced capacity */ 10465 if (sgs->group_misfit_task_load < load) 10466 sgs->group_misfit_task_load = load; 10467 } 10468 } 10469 10470 sgs->group_capacity = group->sgc->capacity; 10471 10472 sgs->group_weight = group->group_weight; 10473 10474 /* Check if dst CPU is idle and preferred to this group */ 10475 if (!local_group && env->idle && sgs->sum_h_nr_running && 10476 sched_group_asym(env, sgs, group)) 10477 sgs->group_asym_packing = 1; 10478 10479 /* Check for loaded SMT group to be balanced to dst CPU */ 10480 if (!local_group && smt_balance(env, sgs, group)) 10481 sgs->group_smt_balance = 1; 10482 10483 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10484 10485 /* Computing avg_load makes sense only when group is overloaded */ 10486 if (sgs->group_type == group_overloaded) 10487 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10488 sgs->group_capacity; 10489 } 10490 10491 /** 10492 * update_sd_pick_busiest - return 1 on busiest group 10493 * @env: The load balancing environment. 10494 * @sds: sched_domain statistics 10495 * @sg: sched_group candidate to be checked for being the busiest 10496 * @sgs: sched_group statistics 10497 * 10498 * Determine if @sg is a busier group than the previously selected 10499 * busiest group. 10500 * 10501 * Return: %true if @sg is a busier group than the previously selected 10502 * busiest group. %false otherwise. 10503 */ 10504 static bool update_sd_pick_busiest(struct lb_env *env, 10505 struct sd_lb_stats *sds, 10506 struct sched_group *sg, 10507 struct sg_lb_stats *sgs) 10508 { 10509 struct sg_lb_stats *busiest = &sds->busiest_stat; 10510 10511 /* Make sure that there is at least one task to pull */ 10512 if (!sgs->sum_h_nr_running) 10513 return false; 10514 10515 /* 10516 * Don't try to pull misfit tasks we can't help. 10517 * We can use max_capacity here as reduction in capacity on some 10518 * CPUs in the group should either be possible to resolve 10519 * internally or be covered by avg_load imbalance (eventually). 10520 */ 10521 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10522 (sgs->group_type == group_misfit_task) && 10523 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10524 sds->local_stat.group_type != group_has_spare)) 10525 return false; 10526 10527 if (sgs->group_type > busiest->group_type) 10528 return true; 10529 10530 if (sgs->group_type < busiest->group_type) 10531 return false; 10532 10533 /* 10534 * The candidate and the current busiest group are the same type of 10535 * group. Let check which one is the busiest according to the type. 10536 */ 10537 10538 switch (sgs->group_type) { 10539 case group_overloaded: 10540 /* Select the overloaded group with highest avg_load. */ 10541 return sgs->avg_load > busiest->avg_load; 10542 10543 case group_imbalanced: 10544 /* 10545 * Select the 1st imbalanced group as we don't have any way to 10546 * choose one more than another. 10547 */ 10548 return false; 10549 10550 case group_asym_packing: 10551 /* Prefer to move from lowest priority CPU's work */ 10552 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), 10553 READ_ONCE(sg->asym_prefer_cpu)); 10554 10555 case group_misfit_task: 10556 /* 10557 * If we have more than one misfit sg go with the biggest 10558 * misfit. 10559 */ 10560 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10561 10562 case group_smt_balance: 10563 /* 10564 * Check if we have spare CPUs on either SMT group to 10565 * choose has spare or fully busy handling. 10566 */ 10567 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10568 goto has_spare; 10569 10570 fallthrough; 10571 10572 case group_fully_busy: 10573 /* 10574 * Select the fully busy group with highest avg_load. In 10575 * theory, there is no need to pull task from such kind of 10576 * group because tasks have all compute capacity that they need 10577 * but we can still improve the overall throughput by reducing 10578 * contention when accessing shared HW resources. 10579 * 10580 * XXX for now avg_load is not computed and always 0 so we 10581 * select the 1st one, except if @sg is composed of SMT 10582 * siblings. 10583 */ 10584 10585 if (sgs->avg_load < busiest->avg_load) 10586 return false; 10587 10588 if (sgs->avg_load == busiest->avg_load) { 10589 /* 10590 * SMT sched groups need more help than non-SMT groups. 10591 * If @sg happens to also be SMT, either choice is good. 10592 */ 10593 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10594 return false; 10595 } 10596 10597 break; 10598 10599 case group_has_spare: 10600 /* 10601 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10602 * as we do not want to pull task off SMT core with one task 10603 * and make the core idle. 10604 */ 10605 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10606 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10607 return false; 10608 else 10609 return true; 10610 } 10611 has_spare: 10612 10613 /* 10614 * Select not overloaded group with lowest number of idle CPUs 10615 * and highest number of running tasks. We could also compare 10616 * the spare capacity which is more stable but it can end up 10617 * that the group has less spare capacity but finally more idle 10618 * CPUs which means less opportunity to pull tasks. 10619 */ 10620 if (sgs->idle_cpus > busiest->idle_cpus) 10621 return false; 10622 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10623 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10624 return false; 10625 10626 break; 10627 } 10628 10629 /* 10630 * Candidate sg has no more than one task per CPU and has higher 10631 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10632 * throughput. Maximize throughput, power/energy consequences are not 10633 * considered. 10634 */ 10635 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10636 (sgs->group_type <= group_fully_busy) && 10637 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10638 return false; 10639 10640 return true; 10641 } 10642 10643 #ifdef CONFIG_NUMA_BALANCING 10644 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10645 { 10646 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10647 return regular; 10648 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10649 return remote; 10650 return all; 10651 } 10652 10653 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10654 { 10655 if (rq->nr_running > rq->nr_numa_running) 10656 return regular; 10657 if (rq->nr_running > rq->nr_preferred_running) 10658 return remote; 10659 return all; 10660 } 10661 #else /* !CONFIG_NUMA_BALANCING: */ 10662 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10663 { 10664 return all; 10665 } 10666 10667 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10668 { 10669 return regular; 10670 } 10671 #endif /* !CONFIG_NUMA_BALANCING */ 10672 10673 10674 struct sg_lb_stats; 10675 10676 /* 10677 * task_running_on_cpu - return 1 if @p is running on @cpu. 10678 */ 10679 10680 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10681 { 10682 /* Task has no contribution or is new */ 10683 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10684 return 0; 10685 10686 if (task_on_rq_queued(p)) 10687 return 1; 10688 10689 return 0; 10690 } 10691 10692 /** 10693 * idle_cpu_without - would a given CPU be idle without p ? 10694 * @cpu: the processor on which idleness is tested. 10695 * @p: task which should be ignored. 10696 * 10697 * Return: 1 if the CPU would be idle. 0 otherwise. 10698 */ 10699 static int idle_cpu_without(int cpu, struct task_struct *p) 10700 { 10701 struct rq *rq = cpu_rq(cpu); 10702 10703 if (rq->curr != rq->idle && rq->curr != p) 10704 return 0; 10705 10706 /* 10707 * rq->nr_running can't be used but an updated version without the 10708 * impact of p on cpu must be used instead. The updated nr_running 10709 * be computed and tested before calling idle_cpu_without(). 10710 */ 10711 10712 if (rq->ttwu_pending) 10713 return 0; 10714 10715 return 1; 10716 } 10717 10718 /* 10719 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10720 * @sd: The sched_domain level to look for idlest group. 10721 * @group: sched_group whose statistics are to be updated. 10722 * @sgs: variable to hold the statistics for this group. 10723 * @p: The task for which we look for the idlest group/CPU. 10724 */ 10725 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10726 struct sched_group *group, 10727 struct sg_lb_stats *sgs, 10728 struct task_struct *p) 10729 { 10730 int i, nr_running; 10731 10732 memset(sgs, 0, sizeof(*sgs)); 10733 10734 /* Assume that task can't fit any CPU of the group */ 10735 if (sd->flags & SD_ASYM_CPUCAPACITY) 10736 sgs->group_misfit_task_load = 1; 10737 10738 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 10739 struct rq *rq = cpu_rq(i); 10740 unsigned int local; 10741 10742 sgs->group_load += cpu_load_without(rq, p); 10743 sgs->group_util += cpu_util_without(i, p); 10744 sgs->group_runnable += cpu_runnable_without(rq, p); 10745 local = task_running_on_cpu(i, p); 10746 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10747 10748 nr_running = rq->nr_running - local; 10749 sgs->sum_nr_running += nr_running; 10750 10751 /* 10752 * No need to call idle_cpu_without() if nr_running is not 0 10753 */ 10754 if (!nr_running && idle_cpu_without(i, p)) 10755 sgs->idle_cpus++; 10756 10757 /* Check if task fits in the CPU */ 10758 if (sd->flags & SD_ASYM_CPUCAPACITY && 10759 sgs->group_misfit_task_load && 10760 task_fits_cpu(p, i)) 10761 sgs->group_misfit_task_load = 0; 10762 10763 } 10764 10765 sgs->group_capacity = group->sgc->capacity; 10766 10767 sgs->group_weight = group->group_weight; 10768 10769 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10770 10771 /* 10772 * Computing avg_load makes sense only when group is fully busy or 10773 * overloaded 10774 */ 10775 if (sgs->group_type == group_fully_busy || 10776 sgs->group_type == group_overloaded) 10777 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10778 sgs->group_capacity; 10779 } 10780 10781 static bool update_pick_idlest(struct sched_group *idlest, 10782 struct sg_lb_stats *idlest_sgs, 10783 struct sched_group *group, 10784 struct sg_lb_stats *sgs) 10785 { 10786 if (sgs->group_type < idlest_sgs->group_type) 10787 return true; 10788 10789 if (sgs->group_type > idlest_sgs->group_type) 10790 return false; 10791 10792 /* 10793 * The candidate and the current idlest group are the same type of 10794 * group. Let check which one is the idlest according to the type. 10795 */ 10796 10797 switch (sgs->group_type) { 10798 case group_overloaded: 10799 case group_fully_busy: 10800 /* Select the group with lowest avg_load. */ 10801 if (idlest_sgs->avg_load <= sgs->avg_load) 10802 return false; 10803 break; 10804 10805 case group_imbalanced: 10806 case group_asym_packing: 10807 case group_smt_balance: 10808 /* Those types are not used in the slow wakeup path */ 10809 return false; 10810 10811 case group_misfit_task: 10812 /* Select group with the highest max capacity */ 10813 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10814 return false; 10815 break; 10816 10817 case group_has_spare: 10818 /* Select group with most idle CPUs */ 10819 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10820 return false; 10821 10822 /* Select group with lowest group_util */ 10823 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10824 idlest_sgs->group_util <= sgs->group_util) 10825 return false; 10826 10827 break; 10828 } 10829 10830 return true; 10831 } 10832 10833 /* 10834 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10835 * domain. 10836 * 10837 * Assumes p is allowed on at least one CPU in sd. 10838 */ 10839 static struct sched_group * 10840 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10841 { 10842 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10843 struct sg_lb_stats local_sgs, tmp_sgs; 10844 struct sg_lb_stats *sgs; 10845 unsigned long imbalance; 10846 struct sg_lb_stats idlest_sgs = { 10847 .avg_load = UINT_MAX, 10848 .group_type = group_overloaded, 10849 }; 10850 10851 do { 10852 int local_group; 10853 10854 /* Skip over this group if it has no CPUs allowed */ 10855 if (!cpumask_intersects(sched_group_span(group), 10856 p->cpus_ptr)) 10857 continue; 10858 10859 /* Skip over this group if no cookie matched */ 10860 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10861 continue; 10862 10863 local_group = cpumask_test_cpu(this_cpu, 10864 sched_group_span(group)); 10865 10866 if (local_group) { 10867 sgs = &local_sgs; 10868 local = group; 10869 } else { 10870 sgs = &tmp_sgs; 10871 } 10872 10873 update_sg_wakeup_stats(sd, group, sgs, p); 10874 10875 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10876 idlest = group; 10877 idlest_sgs = *sgs; 10878 } 10879 10880 } while (group = group->next, group != sd->groups); 10881 10882 10883 /* There is no idlest group to push tasks to */ 10884 if (!idlest) 10885 return NULL; 10886 10887 /* The local group has been skipped because of CPU affinity */ 10888 if (!local) 10889 return idlest; 10890 10891 /* 10892 * If the local group is idler than the selected idlest group 10893 * don't try and push the task. 10894 */ 10895 if (local_sgs.group_type < idlest_sgs.group_type) 10896 return NULL; 10897 10898 /* 10899 * If the local group is busier than the selected idlest group 10900 * try and push the task. 10901 */ 10902 if (local_sgs.group_type > idlest_sgs.group_type) 10903 return idlest; 10904 10905 switch (local_sgs.group_type) { 10906 case group_overloaded: 10907 case group_fully_busy: 10908 10909 /* Calculate allowed imbalance based on load */ 10910 imbalance = scale_load_down(NICE_0_LOAD) * 10911 (sd->imbalance_pct-100) / 100; 10912 10913 /* 10914 * When comparing groups across NUMA domains, it's possible for 10915 * the local domain to be very lightly loaded relative to the 10916 * remote domains but "imbalance" skews the comparison making 10917 * remote CPUs look much more favourable. When considering 10918 * cross-domain, add imbalance to the load on the remote node 10919 * and consider staying local. 10920 */ 10921 10922 if ((sd->flags & SD_NUMA) && 10923 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10924 return NULL; 10925 10926 /* 10927 * If the local group is less loaded than the selected 10928 * idlest group don't try and push any tasks. 10929 */ 10930 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10931 return NULL; 10932 10933 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10934 return NULL; 10935 break; 10936 10937 case group_imbalanced: 10938 case group_asym_packing: 10939 case group_smt_balance: 10940 /* Those type are not used in the slow wakeup path */ 10941 return NULL; 10942 10943 case group_misfit_task: 10944 /* Select group with the highest max capacity */ 10945 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10946 return NULL; 10947 break; 10948 10949 case group_has_spare: 10950 #ifdef CONFIG_NUMA 10951 if (sd->flags & SD_NUMA) { 10952 int imb_numa_nr = sd->imb_numa_nr; 10953 #ifdef CONFIG_NUMA_BALANCING 10954 int idlest_cpu; 10955 /* 10956 * If there is spare capacity at NUMA, try to select 10957 * the preferred node 10958 */ 10959 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10960 return NULL; 10961 10962 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10963 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10964 return idlest; 10965 #endif /* CONFIG_NUMA_BALANCING */ 10966 /* 10967 * Otherwise, keep the task close to the wakeup source 10968 * and improve locality if the number of running tasks 10969 * would remain below threshold where an imbalance is 10970 * allowed while accounting for the possibility the 10971 * task is pinned to a subset of CPUs. If there is a 10972 * real need of migration, periodic load balance will 10973 * take care of it. 10974 */ 10975 if (p->nr_cpus_allowed != NR_CPUS) { 10976 unsigned int w = cpumask_weight_and(p->cpus_ptr, 10977 sched_group_span(local)); 10978 imb_numa_nr = min(w, sd->imb_numa_nr); 10979 } 10980 10981 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10982 if (!adjust_numa_imbalance(imbalance, 10983 local_sgs.sum_nr_running + 1, 10984 imb_numa_nr)) { 10985 return NULL; 10986 } 10987 } 10988 #endif /* CONFIG_NUMA */ 10989 10990 /* 10991 * Select group with highest number of idle CPUs. We could also 10992 * compare the utilization which is more stable but it can end 10993 * up that the group has less spare capacity but finally more 10994 * idle CPUs which means more opportunity to run task. 10995 */ 10996 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10997 return NULL; 10998 break; 10999 } 11000 11001 return idlest; 11002 } 11003 11004 static void update_idle_cpu_scan(struct lb_env *env, 11005 unsigned long sum_util) 11006 { 11007 struct sched_domain_shared *sd_share; 11008 int llc_weight, pct; 11009 u64 x, y, tmp; 11010 /* 11011 * Update the number of CPUs to scan in LLC domain, which could 11012 * be used as a hint in select_idle_cpu(). The update of sd_share 11013 * could be expensive because it is within a shared cache line. 11014 * So the write of this hint only occurs during periodic load 11015 * balancing, rather than CPU_NEWLY_IDLE, because the latter 11016 * can fire way more frequently than the former. 11017 */ 11018 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 11019 return; 11020 11021 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 11022 if (env->sd->span_weight != llc_weight) 11023 return; 11024 11025 sd_share = rcu_dereference_all(per_cpu(sd_llc_shared, env->dst_cpu)); 11026 if (!sd_share) 11027 return; 11028 11029 /* 11030 * The number of CPUs to search drops as sum_util increases, when 11031 * sum_util hits 85% or above, the scan stops. 11032 * The reason to choose 85% as the threshold is because this is the 11033 * imbalance_pct(117) when a LLC sched group is overloaded. 11034 * 11035 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 11036 * and y'= y / SCHED_CAPACITY_SCALE 11037 * 11038 * x is the ratio of sum_util compared to the CPU capacity: 11039 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 11040 * y' is the ratio of CPUs to be scanned in the LLC domain, 11041 * and the number of CPUs to scan is calculated by: 11042 * 11043 * nr_scan = llc_weight * y' [2] 11044 * 11045 * When x hits the threshold of overloaded, AKA, when 11046 * x = 100 / pct, y drops to 0. According to [1], 11047 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 11048 * 11049 * Scale x by SCHED_CAPACITY_SCALE: 11050 * x' = sum_util / llc_weight; [3] 11051 * 11052 * and finally [1] becomes: 11053 * y = SCHED_CAPACITY_SCALE - 11054 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 11055 * 11056 */ 11057 /* equation [3] */ 11058 x = sum_util; 11059 do_div(x, llc_weight); 11060 11061 /* equation [4] */ 11062 pct = env->sd->imbalance_pct; 11063 tmp = x * x * pct * pct; 11064 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11065 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11066 y = SCHED_CAPACITY_SCALE - tmp; 11067 11068 /* equation [2] */ 11069 y *= llc_weight; 11070 do_div(y, SCHED_CAPACITY_SCALE); 11071 if ((int)y != sd_share->nr_idle_scan) 11072 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11073 } 11074 11075 /** 11076 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11077 * @env: The load balancing environment. 11078 * @sds: variable to hold the statistics for this sched_domain. 11079 */ 11080 11081 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11082 { 11083 struct sched_group *sg = env->sd->groups; 11084 struct sg_lb_stats *local = &sds->local_stat; 11085 struct sg_lb_stats tmp_sgs; 11086 unsigned long sum_util = 0; 11087 bool sg_overloaded = 0, sg_overutilized = 0; 11088 11089 do { 11090 struct sg_lb_stats *sgs = &tmp_sgs; 11091 int local_group; 11092 11093 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11094 if (local_group) { 11095 sds->local = sg; 11096 sgs = local; 11097 11098 if (env->idle != CPU_NEWLY_IDLE || 11099 time_after_eq(jiffies, sg->sgc->next_update)) 11100 update_group_capacity(env->sd, env->dst_cpu); 11101 } 11102 11103 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11104 11105 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11106 sds->busiest = sg; 11107 sds->busiest_stat = *sgs; 11108 } 11109 11110 /* Now, start updating sd_lb_stats */ 11111 sds->total_load += sgs->group_load; 11112 sds->total_capacity += sgs->group_capacity; 11113 11114 sum_util += sgs->group_util; 11115 sg = sg->next; 11116 } while (sg != env->sd->groups); 11117 11118 /* 11119 * Indicate that the child domain of the busiest group prefers tasks 11120 * go to a child's sibling domains first. NB the flags of a sched group 11121 * are those of the child domain. 11122 */ 11123 if (sds->busiest) 11124 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11125 11126 11127 if (env->sd->flags & SD_NUMA) 11128 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11129 11130 if (!env->sd->parent) { 11131 /* update overload indicator if we are at root domain */ 11132 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11133 11134 /* Update over-utilization (tipping point, U >= 0) indicator */ 11135 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11136 } else if (sg_overutilized) { 11137 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11138 } 11139 11140 update_idle_cpu_scan(env, sum_util); 11141 } 11142 11143 /** 11144 * calculate_imbalance - Calculate the amount of imbalance present within the 11145 * groups of a given sched_domain during load balance. 11146 * @env: load balance environment 11147 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11148 */ 11149 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11150 { 11151 struct sg_lb_stats *local, *busiest; 11152 11153 local = &sds->local_stat; 11154 busiest = &sds->busiest_stat; 11155 11156 if (busiest->group_type == group_misfit_task) { 11157 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11158 /* Set imbalance to allow misfit tasks to be balanced. */ 11159 env->migration_type = migrate_misfit; 11160 env->imbalance = 1; 11161 } else { 11162 /* 11163 * Set load imbalance to allow moving task from cpu 11164 * with reduced capacity. 11165 */ 11166 env->migration_type = migrate_load; 11167 env->imbalance = busiest->group_misfit_task_load; 11168 } 11169 return; 11170 } 11171 11172 if (busiest->group_type == group_asym_packing) { 11173 /* 11174 * In case of asym capacity, we will try to migrate all load to 11175 * the preferred CPU. 11176 */ 11177 env->migration_type = migrate_task; 11178 env->imbalance = busiest->sum_h_nr_running; 11179 return; 11180 } 11181 11182 if (busiest->group_type == group_smt_balance) { 11183 /* Reduce number of tasks sharing CPU capacity */ 11184 env->migration_type = migrate_task; 11185 env->imbalance = 1; 11186 return; 11187 } 11188 11189 if (busiest->group_type == group_imbalanced) { 11190 /* 11191 * In the group_imb case we cannot rely on group-wide averages 11192 * to ensure CPU-load equilibrium, try to move any task to fix 11193 * the imbalance. The next load balance will take care of 11194 * balancing back the system. 11195 */ 11196 env->migration_type = migrate_task; 11197 env->imbalance = 1; 11198 return; 11199 } 11200 11201 /* 11202 * Try to use spare capacity of local group without overloading it or 11203 * emptying busiest. 11204 */ 11205 if (local->group_type == group_has_spare) { 11206 if ((busiest->group_type > group_fully_busy) && 11207 !(env->sd->flags & SD_SHARE_LLC)) { 11208 /* 11209 * If busiest is overloaded, try to fill spare 11210 * capacity. This might end up creating spare capacity 11211 * in busiest or busiest still being overloaded but 11212 * there is no simple way to directly compute the 11213 * amount of load to migrate in order to balance the 11214 * system. 11215 */ 11216 env->migration_type = migrate_util; 11217 env->imbalance = max(local->group_capacity, local->group_util) - 11218 local->group_util; 11219 11220 /* 11221 * In some cases, the group's utilization is max or even 11222 * higher than capacity because of migrations but the 11223 * local CPU is (newly) idle. There is at least one 11224 * waiting task in this overloaded busiest group. Let's 11225 * try to pull it. 11226 */ 11227 if (env->idle && env->imbalance == 0) { 11228 env->migration_type = migrate_task; 11229 env->imbalance = 1; 11230 } 11231 11232 return; 11233 } 11234 11235 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11236 /* 11237 * When prefer sibling, evenly spread running tasks on 11238 * groups. 11239 */ 11240 env->migration_type = migrate_task; 11241 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11242 } else { 11243 11244 /* 11245 * If there is no overload, we just want to even the number of 11246 * idle CPUs. 11247 */ 11248 env->migration_type = migrate_task; 11249 env->imbalance = max_t(long, 0, 11250 (local->idle_cpus - busiest->idle_cpus)); 11251 } 11252 11253 #ifdef CONFIG_NUMA 11254 /* Consider allowing a small imbalance between NUMA groups */ 11255 if (env->sd->flags & SD_NUMA) { 11256 env->imbalance = adjust_numa_imbalance(env->imbalance, 11257 local->sum_nr_running + 1, 11258 env->sd->imb_numa_nr); 11259 } 11260 #endif 11261 11262 /* Number of tasks to move to restore balance */ 11263 env->imbalance >>= 1; 11264 11265 return; 11266 } 11267 11268 /* 11269 * Local is fully busy but has to take more load to relieve the 11270 * busiest group 11271 */ 11272 if (local->group_type < group_overloaded) { 11273 /* 11274 * Local will become overloaded so the avg_load metrics are 11275 * finally needed. 11276 */ 11277 11278 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11279 local->group_capacity; 11280 11281 /* 11282 * If the local group is more loaded than the selected 11283 * busiest group don't try to pull any tasks. 11284 */ 11285 if (local->avg_load >= busiest->avg_load) { 11286 env->imbalance = 0; 11287 return; 11288 } 11289 11290 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11291 sds->total_capacity; 11292 11293 /* 11294 * If the local group is more loaded than the average system 11295 * load, don't try to pull any tasks. 11296 */ 11297 if (local->avg_load >= sds->avg_load) { 11298 env->imbalance = 0; 11299 return; 11300 } 11301 11302 } 11303 11304 /* 11305 * Both group are or will become overloaded and we're trying to get all 11306 * the CPUs to the average_load, so we don't want to push ourselves 11307 * above the average load, nor do we wish to reduce the max loaded CPU 11308 * below the average load. At the same time, we also don't want to 11309 * reduce the group load below the group capacity. Thus we look for 11310 * the minimum possible imbalance. 11311 */ 11312 env->migration_type = migrate_load; 11313 env->imbalance = min( 11314 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11315 (sds->avg_load - local->avg_load) * local->group_capacity 11316 ) / SCHED_CAPACITY_SCALE; 11317 } 11318 11319 /******* sched_balance_find_src_group() helpers end here *********************/ 11320 11321 /* 11322 * Decision matrix according to the local and busiest group type: 11323 * 11324 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11325 * has_spare nr_idle balanced N/A N/A balanced balanced 11326 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11327 * misfit_task force N/A N/A N/A N/A N/A 11328 * asym_packing force force N/A N/A force force 11329 * imbalanced force force N/A N/A force force 11330 * overloaded force force N/A N/A force avg_load 11331 * 11332 * N/A : Not Applicable because already filtered while updating 11333 * statistics. 11334 * balanced : The system is balanced for these 2 groups. 11335 * force : Calculate the imbalance as load migration is probably needed. 11336 * avg_load : Only if imbalance is significant enough. 11337 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11338 * different in groups. 11339 */ 11340 11341 /** 11342 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11343 * if there is an imbalance. 11344 * @env: The load balancing environment. 11345 * 11346 * Also calculates the amount of runnable load which should be moved 11347 * to restore balance. 11348 * 11349 * Return: - The busiest group if imbalance exists. 11350 */ 11351 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11352 { 11353 struct sg_lb_stats *local, *busiest; 11354 struct sd_lb_stats sds; 11355 11356 init_sd_lb_stats(&sds); 11357 11358 /* 11359 * Compute the various statistics relevant for load balancing at 11360 * this level. 11361 */ 11362 update_sd_lb_stats(env, &sds); 11363 11364 /* There is no busy sibling group to pull tasks from */ 11365 if (!sds.busiest) 11366 goto out_balanced; 11367 11368 busiest = &sds.busiest_stat; 11369 11370 /* Misfit tasks should be dealt with regardless of the avg load */ 11371 if (busiest->group_type == group_misfit_task) 11372 goto force_balance; 11373 11374 if (!is_rd_overutilized(env->dst_rq->rd) && 11375 rcu_dereference_all(env->dst_rq->rd->pd)) 11376 goto out_balanced; 11377 11378 /* ASYM feature bypasses nice load balance check */ 11379 if (busiest->group_type == group_asym_packing) 11380 goto force_balance; 11381 11382 /* 11383 * If the busiest group is imbalanced the below checks don't 11384 * work because they assume all things are equal, which typically 11385 * isn't true due to cpus_ptr constraints and the like. 11386 */ 11387 if (busiest->group_type == group_imbalanced) 11388 goto force_balance; 11389 11390 local = &sds.local_stat; 11391 /* 11392 * If the local group is busier than the selected busiest group 11393 * don't try and pull any tasks. 11394 */ 11395 if (local->group_type > busiest->group_type) 11396 goto out_balanced; 11397 11398 /* 11399 * When groups are overloaded, use the avg_load to ensure fairness 11400 * between tasks. 11401 */ 11402 if (local->group_type == group_overloaded) { 11403 /* 11404 * If the local group is more loaded than the selected 11405 * busiest group don't try to pull any tasks. 11406 */ 11407 if (local->avg_load >= busiest->avg_load) 11408 goto out_balanced; 11409 11410 /* XXX broken for overlapping NUMA groups */ 11411 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11412 sds.total_capacity; 11413 11414 /* 11415 * Don't pull any tasks if this group is already above the 11416 * domain average load. 11417 */ 11418 if (local->avg_load >= sds.avg_load) 11419 goto out_balanced; 11420 11421 /* 11422 * If the busiest group is more loaded, use imbalance_pct to be 11423 * conservative. 11424 */ 11425 if (100 * busiest->avg_load <= 11426 env->sd->imbalance_pct * local->avg_load) 11427 goto out_balanced; 11428 } 11429 11430 /* 11431 * Try to move all excess tasks to a sibling domain of the busiest 11432 * group's child domain. 11433 */ 11434 if (sds.prefer_sibling && local->group_type == group_has_spare && 11435 sibling_imbalance(env, &sds, busiest, local) > 1) 11436 goto force_balance; 11437 11438 if (busiest->group_type != group_overloaded) { 11439 if (!env->idle) { 11440 /* 11441 * If the busiest group is not overloaded (and as a 11442 * result the local one too) but this CPU is already 11443 * busy, let another idle CPU try to pull task. 11444 */ 11445 goto out_balanced; 11446 } 11447 11448 if (busiest->group_type == group_smt_balance && 11449 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11450 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11451 goto force_balance; 11452 } 11453 11454 if (busiest->group_weight > 1 && 11455 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11456 /* 11457 * If the busiest group is not overloaded 11458 * and there is no imbalance between this and busiest 11459 * group wrt idle CPUs, it is balanced. The imbalance 11460 * becomes significant if the diff is greater than 1 11461 * otherwise we might end up to just move the imbalance 11462 * on another group. Of course this applies only if 11463 * there is more than 1 CPU per group. 11464 */ 11465 goto out_balanced; 11466 } 11467 11468 if (busiest->sum_h_nr_running == 1) { 11469 /* 11470 * busiest doesn't have any tasks waiting to run 11471 */ 11472 goto out_balanced; 11473 } 11474 } 11475 11476 force_balance: 11477 /* Looks like there is an imbalance. Compute it */ 11478 calculate_imbalance(env, &sds); 11479 return env->imbalance ? sds.busiest : NULL; 11480 11481 out_balanced: 11482 env->imbalance = 0; 11483 return NULL; 11484 } 11485 11486 /* 11487 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11488 */ 11489 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11490 struct sched_group *group) 11491 { 11492 struct rq *busiest = NULL, *rq; 11493 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11494 unsigned int busiest_nr = 0; 11495 int i; 11496 11497 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11498 unsigned long capacity, load, util; 11499 unsigned int nr_running; 11500 enum fbq_type rt; 11501 11502 rq = cpu_rq(i); 11503 rt = fbq_classify_rq(rq); 11504 11505 /* 11506 * We classify groups/runqueues into three groups: 11507 * - regular: there are !numa tasks 11508 * - remote: there are numa tasks that run on the 'wrong' node 11509 * - all: there is no distinction 11510 * 11511 * In order to avoid migrating ideally placed numa tasks, 11512 * ignore those when there's better options. 11513 * 11514 * If we ignore the actual busiest queue to migrate another 11515 * task, the next balance pass can still reduce the busiest 11516 * queue by moving tasks around inside the node. 11517 * 11518 * If we cannot move enough load due to this classification 11519 * the next pass will adjust the group classification and 11520 * allow migration of more tasks. 11521 * 11522 * Both cases only affect the total convergence complexity. 11523 */ 11524 if (rt > env->fbq_type) 11525 continue; 11526 11527 nr_running = rq->cfs.h_nr_runnable; 11528 if (!nr_running) 11529 continue; 11530 11531 capacity = capacity_of(i); 11532 11533 /* 11534 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11535 * eventually lead to active_balancing high->low capacity. 11536 * Higher per-CPU capacity is considered better than balancing 11537 * average load. 11538 */ 11539 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11540 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11541 nr_running == 1) 11542 continue; 11543 11544 /* 11545 * Make sure we only pull tasks from a CPU of lower priority 11546 * when balancing between SMT siblings. 11547 * 11548 * If balancing between cores, let lower priority CPUs help 11549 * SMT cores with more than one busy sibling. 11550 */ 11551 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11552 continue; 11553 11554 switch (env->migration_type) { 11555 case migrate_load: 11556 /* 11557 * When comparing with load imbalance, use cpu_load() 11558 * which is not scaled with the CPU capacity. 11559 */ 11560 load = cpu_load(rq); 11561 11562 if (nr_running == 1 && load > env->imbalance && 11563 !check_cpu_capacity(rq, env->sd)) 11564 break; 11565 11566 /* 11567 * For the load comparisons with the other CPUs, 11568 * consider the cpu_load() scaled with the CPU 11569 * capacity, so that the load can be moved away 11570 * from the CPU that is potentially running at a 11571 * lower capacity. 11572 * 11573 * Thus we're looking for max(load_i / capacity_i), 11574 * crosswise multiplication to rid ourselves of the 11575 * division works out to: 11576 * load_i * capacity_j > load_j * capacity_i; 11577 * where j is our previous maximum. 11578 */ 11579 if (load * busiest_capacity > busiest_load * capacity) { 11580 busiest_load = load; 11581 busiest_capacity = capacity; 11582 busiest = rq; 11583 } 11584 break; 11585 11586 case migrate_util: 11587 util = cpu_util_cfs_boost(i); 11588 11589 /* 11590 * Don't try to pull utilization from a CPU with one 11591 * running task. Whatever its utilization, we will fail 11592 * detach the task. 11593 */ 11594 if (nr_running <= 1) 11595 continue; 11596 11597 if (busiest_util < util) { 11598 busiest_util = util; 11599 busiest = rq; 11600 } 11601 break; 11602 11603 case migrate_task: 11604 if (busiest_nr < nr_running) { 11605 busiest_nr = nr_running; 11606 busiest = rq; 11607 } 11608 break; 11609 11610 case migrate_misfit: 11611 /* 11612 * For ASYM_CPUCAPACITY domains with misfit tasks we 11613 * simply seek the "biggest" misfit task. 11614 */ 11615 if (rq->misfit_task_load > busiest_load) { 11616 busiest_load = rq->misfit_task_load; 11617 busiest = rq; 11618 } 11619 11620 break; 11621 11622 } 11623 } 11624 11625 return busiest; 11626 } 11627 11628 /* 11629 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11630 * so long as it is large enough. 11631 */ 11632 #define MAX_PINNED_INTERVAL 512 11633 11634 static inline bool 11635 asym_active_balance(struct lb_env *env) 11636 { 11637 /* 11638 * ASYM_PACKING needs to force migrate tasks from busy but lower 11639 * priority CPUs in order to pack all tasks in the highest priority 11640 * CPUs. When done between cores, do it only if the whole core if the 11641 * whole core is idle. 11642 * 11643 * If @env::src_cpu is an SMT core with busy siblings, let 11644 * the lower priority @env::dst_cpu help it. Do not follow 11645 * CPU priority. 11646 */ 11647 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11648 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11649 !sched_use_asym_prio(env->sd, env->src_cpu)); 11650 } 11651 11652 static inline bool 11653 imbalanced_active_balance(struct lb_env *env) 11654 { 11655 struct sched_domain *sd = env->sd; 11656 11657 /* 11658 * The imbalanced case includes the case of pinned tasks preventing a fair 11659 * distribution of the load on the system but also the even distribution of the 11660 * threads on a system with spare capacity 11661 */ 11662 if ((env->migration_type == migrate_task) && 11663 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11664 return 1; 11665 11666 return 0; 11667 } 11668 11669 static int need_active_balance(struct lb_env *env) 11670 { 11671 struct sched_domain *sd = env->sd; 11672 11673 if (asym_active_balance(env)) 11674 return 1; 11675 11676 if (imbalanced_active_balance(env)) 11677 return 1; 11678 11679 /* 11680 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11681 * It's worth migrating the task if the src_cpu's capacity is reduced 11682 * because of other sched_class or IRQs if more capacity stays 11683 * available on dst_cpu. 11684 */ 11685 if (env->idle && 11686 (env->src_rq->cfs.h_nr_runnable == 1)) { 11687 if ((check_cpu_capacity(env->src_rq, sd)) && 11688 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11689 return 1; 11690 } 11691 11692 if (env->migration_type == migrate_misfit) 11693 return 1; 11694 11695 return 0; 11696 } 11697 11698 static int active_load_balance_cpu_stop(void *data); 11699 11700 static int should_we_balance(struct lb_env *env) 11701 { 11702 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11703 struct sched_group *sg = env->sd->groups; 11704 int cpu, idle_smt = -1; 11705 11706 /* 11707 * Ensure the balancing environment is consistent; can happen 11708 * when the softirq triggers 'during' hotplug. 11709 */ 11710 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11711 return 0; 11712 11713 /* 11714 * In the newly idle case, we will allow all the CPUs 11715 * to do the newly idle load balance. 11716 * 11717 * However, we bail out if we already have tasks or a wakeup pending, 11718 * to optimize wakeup latency. 11719 */ 11720 if (env->idle == CPU_NEWLY_IDLE) { 11721 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11722 return 0; 11723 return 1; 11724 } 11725 11726 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11727 /* Try to find first idle CPU */ 11728 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11729 if (!idle_cpu(cpu)) 11730 continue; 11731 11732 /* 11733 * Don't balance to idle SMT in busy core right away when 11734 * balancing cores, but remember the first idle SMT CPU for 11735 * later consideration. Find CPU on an idle core first. 11736 */ 11737 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11738 if (idle_smt == -1) 11739 idle_smt = cpu; 11740 /* 11741 * If the core is not idle, and first SMT sibling which is 11742 * idle has been found, then its not needed to check other 11743 * SMT siblings for idleness: 11744 */ 11745 #ifdef CONFIG_SCHED_SMT 11746 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11747 #endif 11748 continue; 11749 } 11750 11751 /* 11752 * Are we the first idle core in a non-SMT domain or higher, 11753 * or the first idle CPU in a SMT domain? 11754 */ 11755 return cpu == env->dst_cpu; 11756 } 11757 11758 /* Are we the first idle CPU with busy siblings? */ 11759 if (idle_smt != -1) 11760 return idle_smt == env->dst_cpu; 11761 11762 /* Are we the first CPU of this group ? */ 11763 return group_balance_cpu(sg) == env->dst_cpu; 11764 } 11765 11766 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11767 enum cpu_idle_type idle) 11768 { 11769 if (!schedstat_enabled()) 11770 return; 11771 11772 switch (env->migration_type) { 11773 case migrate_load: 11774 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11775 break; 11776 case migrate_util: 11777 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11778 break; 11779 case migrate_task: 11780 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11781 break; 11782 case migrate_misfit: 11783 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11784 break; 11785 } 11786 } 11787 11788 /* 11789 * This flag serializes load-balancing passes over large domains 11790 * (above the NODE topology level) - only one load-balancing instance 11791 * may run at a time, to reduce overhead on very large systems with 11792 * lots of CPUs and large NUMA distances. 11793 * 11794 * - Note that load-balancing passes triggered while another one 11795 * is executing are skipped and not re-tried. 11796 * 11797 * - Also note that this does not serialize rebalance_domains() 11798 * execution, as non-SD_SERIALIZE domains will still be 11799 * load-balanced in parallel. 11800 */ 11801 static atomic_t sched_balance_running = ATOMIC_INIT(0); 11802 11803 /* 11804 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11805 * tasks if there is an imbalance. 11806 */ 11807 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11808 struct sched_domain *sd, enum cpu_idle_type idle, 11809 int *continue_balancing) 11810 { 11811 int ld_moved, cur_ld_moved, active_balance = 0; 11812 struct sched_domain *sd_parent = sd->parent; 11813 struct sched_group *group; 11814 struct rq *busiest; 11815 struct rq_flags rf; 11816 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11817 struct lb_env env = { 11818 .sd = sd, 11819 .dst_cpu = this_cpu, 11820 .dst_rq = this_rq, 11821 .dst_grpmask = group_balance_mask(sd->groups), 11822 .idle = idle, 11823 .loop_break = SCHED_NR_MIGRATE_BREAK, 11824 .cpus = cpus, 11825 .fbq_type = all, 11826 .tasks = LIST_HEAD_INIT(env.tasks), 11827 }; 11828 bool need_unlock = false; 11829 11830 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11831 11832 schedstat_inc(sd->lb_count[idle]); 11833 11834 redo: 11835 if (!should_we_balance(&env)) { 11836 *continue_balancing = 0; 11837 goto out_balanced; 11838 } 11839 11840 if (!need_unlock && (sd->flags & SD_SERIALIZE)) { 11841 int zero = 0; 11842 if (!atomic_try_cmpxchg_acquire(&sched_balance_running, &zero, 1)) 11843 goto out_balanced; 11844 11845 need_unlock = true; 11846 } 11847 11848 group = sched_balance_find_src_group(&env); 11849 if (!group) { 11850 schedstat_inc(sd->lb_nobusyg[idle]); 11851 goto out_balanced; 11852 } 11853 11854 busiest = sched_balance_find_src_rq(&env, group); 11855 if (!busiest) { 11856 schedstat_inc(sd->lb_nobusyq[idle]); 11857 goto out_balanced; 11858 } 11859 11860 WARN_ON_ONCE(busiest == env.dst_rq); 11861 11862 update_lb_imbalance_stat(&env, sd, idle); 11863 11864 env.src_cpu = busiest->cpu; 11865 env.src_rq = busiest; 11866 11867 ld_moved = 0; 11868 /* Clear this flag as soon as we find a pullable task */ 11869 env.flags |= LBF_ALL_PINNED; 11870 if (busiest->nr_running > 1) { 11871 /* 11872 * Attempt to move tasks. If sched_balance_find_src_group has found 11873 * an imbalance but busiest->nr_running <= 1, the group is 11874 * still unbalanced. ld_moved simply stays zero, so it is 11875 * correctly treated as an imbalance. 11876 */ 11877 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11878 11879 more_balance: 11880 rq_lock_irqsave(busiest, &rf); 11881 update_rq_clock(busiest); 11882 11883 /* 11884 * cur_ld_moved - load moved in current iteration 11885 * ld_moved - cumulative load moved across iterations 11886 */ 11887 cur_ld_moved = detach_tasks(&env); 11888 11889 /* 11890 * We've detached some tasks from busiest_rq. Every 11891 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11892 * unlock busiest->lock, and we are able to be sure 11893 * that nobody can manipulate the tasks in parallel. 11894 * See task_rq_lock() family for the details. 11895 */ 11896 11897 rq_unlock(busiest, &rf); 11898 11899 if (cur_ld_moved) { 11900 attach_tasks(&env); 11901 ld_moved += cur_ld_moved; 11902 } 11903 11904 local_irq_restore(rf.flags); 11905 11906 if (env.flags & LBF_NEED_BREAK) { 11907 env.flags &= ~LBF_NEED_BREAK; 11908 goto more_balance; 11909 } 11910 11911 /* 11912 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11913 * us and move them to an alternate dst_cpu in our sched_group 11914 * where they can run. The upper limit on how many times we 11915 * iterate on same src_cpu is dependent on number of CPUs in our 11916 * sched_group. 11917 * 11918 * This changes load balance semantics a bit on who can move 11919 * load to a given_cpu. In addition to the given_cpu itself 11920 * (or a ilb_cpu acting on its behalf where given_cpu is 11921 * nohz-idle), we now have balance_cpu in a position to move 11922 * load to given_cpu. In rare situations, this may cause 11923 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11924 * _independently_ and at _same_ time to move some load to 11925 * given_cpu) causing excess load to be moved to given_cpu. 11926 * This however should not happen so much in practice and 11927 * moreover subsequent load balance cycles should correct the 11928 * excess load moved. 11929 */ 11930 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11931 11932 /* Prevent to re-select dst_cpu via env's CPUs */ 11933 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11934 11935 env.dst_rq = cpu_rq(env.new_dst_cpu); 11936 env.dst_cpu = env.new_dst_cpu; 11937 env.flags &= ~LBF_DST_PINNED; 11938 env.loop = 0; 11939 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11940 11941 /* 11942 * Go back to "more_balance" rather than "redo" since we 11943 * need to continue with same src_cpu. 11944 */ 11945 goto more_balance; 11946 } 11947 11948 /* 11949 * We failed to reach balance because of affinity. 11950 */ 11951 if (sd_parent) { 11952 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11953 11954 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11955 *group_imbalance = 1; 11956 } 11957 11958 /* All tasks on this runqueue were pinned by CPU affinity */ 11959 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11960 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11961 /* 11962 * Attempting to continue load balancing at the current 11963 * sched_domain level only makes sense if there are 11964 * active CPUs remaining as possible busiest CPUs to 11965 * pull load from which are not contained within the 11966 * destination group that is receiving any migrated 11967 * load. 11968 */ 11969 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11970 env.loop = 0; 11971 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11972 goto redo; 11973 } 11974 goto out_all_pinned; 11975 } 11976 } 11977 11978 if (!ld_moved) { 11979 schedstat_inc(sd->lb_failed[idle]); 11980 /* 11981 * Increment the failure counter only on periodic balance. 11982 * We do not want newidle balance, which can be very 11983 * frequent, pollute the failure counter causing 11984 * excessive cache_hot migrations and active balances. 11985 * 11986 * Similarly for migration_misfit which is not related to 11987 * load/util migration, don't pollute nr_balance_failed. 11988 */ 11989 if (idle != CPU_NEWLY_IDLE && 11990 env.migration_type != migrate_misfit) 11991 sd->nr_balance_failed++; 11992 11993 if (need_active_balance(&env)) { 11994 unsigned long flags; 11995 11996 raw_spin_rq_lock_irqsave(busiest, flags); 11997 11998 /* 11999 * Don't kick the active_load_balance_cpu_stop, 12000 * if the curr task on busiest CPU can't be 12001 * moved to this_cpu: 12002 */ 12003 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 12004 raw_spin_rq_unlock_irqrestore(busiest, flags); 12005 goto out_one_pinned; 12006 } 12007 12008 /* Record that we found at least one task that could run on this_cpu */ 12009 env.flags &= ~LBF_ALL_PINNED; 12010 12011 /* 12012 * ->active_balance synchronizes accesses to 12013 * ->active_balance_work. Once set, it's cleared 12014 * only after active load balance is finished. 12015 */ 12016 if (!busiest->active_balance) { 12017 busiest->active_balance = 1; 12018 busiest->push_cpu = this_cpu; 12019 active_balance = 1; 12020 } 12021 12022 preempt_disable(); 12023 raw_spin_rq_unlock_irqrestore(busiest, flags); 12024 if (active_balance) { 12025 stop_one_cpu_nowait(cpu_of(busiest), 12026 active_load_balance_cpu_stop, busiest, 12027 &busiest->active_balance_work); 12028 } 12029 preempt_enable(); 12030 } 12031 } else { 12032 sd->nr_balance_failed = 0; 12033 } 12034 12035 if (likely(!active_balance) || need_active_balance(&env)) { 12036 /* We were unbalanced, so reset the balancing interval */ 12037 sd->balance_interval = sd->min_interval; 12038 } 12039 12040 goto out; 12041 12042 out_balanced: 12043 /* 12044 * We reach balance although we may have faced some affinity 12045 * constraints. Clear the imbalance flag only if other tasks got 12046 * a chance to move and fix the imbalance. 12047 */ 12048 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 12049 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 12050 12051 if (*group_imbalance) 12052 *group_imbalance = 0; 12053 } 12054 12055 out_all_pinned: 12056 /* 12057 * We reach balance because all tasks are pinned at this level so 12058 * we can't migrate them. Let the imbalance flag set so parent level 12059 * can try to migrate them. 12060 */ 12061 schedstat_inc(sd->lb_balanced[idle]); 12062 12063 sd->nr_balance_failed = 0; 12064 12065 out_one_pinned: 12066 ld_moved = 0; 12067 12068 /* 12069 * sched_balance_newidle() disregards balance intervals, so we could 12070 * repeatedly reach this code, which would lead to balance_interval 12071 * skyrocketing in a short amount of time. Skip the balance_interval 12072 * increase logic to avoid that. 12073 * 12074 * Similarly misfit migration which is not necessarily an indication of 12075 * the system being busy and requires lb to backoff to let it settle 12076 * down. 12077 */ 12078 if (env.idle == CPU_NEWLY_IDLE || 12079 env.migration_type == migrate_misfit) 12080 goto out; 12081 12082 /* tune up the balancing interval */ 12083 if ((env.flags & LBF_ALL_PINNED && 12084 sd->balance_interval < MAX_PINNED_INTERVAL) || 12085 sd->balance_interval < sd->max_interval) 12086 sd->balance_interval *= 2; 12087 out: 12088 if (need_unlock) 12089 atomic_set_release(&sched_balance_running, 0); 12090 12091 return ld_moved; 12092 } 12093 12094 static inline unsigned long 12095 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 12096 { 12097 unsigned long interval = sd->balance_interval; 12098 12099 if (cpu_busy) 12100 interval *= sd->busy_factor; 12101 12102 /* scale ms to jiffies */ 12103 interval = msecs_to_jiffies(interval); 12104 12105 /* 12106 * Reduce likelihood of busy balancing at higher domains racing with 12107 * balancing at lower domains by preventing their balancing periods 12108 * from being multiples of each other. 12109 */ 12110 if (cpu_busy) 12111 interval -= 1; 12112 12113 interval = clamp(interval, 1UL, max_load_balance_interval); 12114 12115 return interval; 12116 } 12117 12118 static inline void 12119 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12120 { 12121 unsigned long interval, next; 12122 12123 /* used by idle balance, so cpu_busy = 0 */ 12124 interval = get_sd_balance_interval(sd, 0); 12125 next = sd->last_balance + interval; 12126 12127 if (time_after(*next_balance, next)) 12128 *next_balance = next; 12129 } 12130 12131 /* 12132 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12133 * running tasks off the busiest CPU onto idle CPUs. It requires at 12134 * least 1 task to be running on each physical CPU where possible, and 12135 * avoids physical / logical imbalances. 12136 */ 12137 static int active_load_balance_cpu_stop(void *data) 12138 { 12139 struct rq *busiest_rq = data; 12140 int busiest_cpu = cpu_of(busiest_rq); 12141 int target_cpu = busiest_rq->push_cpu; 12142 struct rq *target_rq = cpu_rq(target_cpu); 12143 struct sched_domain *sd; 12144 struct task_struct *p = NULL; 12145 struct rq_flags rf; 12146 12147 rq_lock_irq(busiest_rq, &rf); 12148 /* 12149 * Between queueing the stop-work and running it is a hole in which 12150 * CPUs can become inactive. We should not move tasks from or to 12151 * inactive CPUs. 12152 */ 12153 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12154 goto out_unlock; 12155 12156 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12157 if (unlikely(busiest_cpu != smp_processor_id() || 12158 !busiest_rq->active_balance)) 12159 goto out_unlock; 12160 12161 /* Is there any task to move? */ 12162 if (busiest_rq->nr_running <= 1) 12163 goto out_unlock; 12164 12165 /* 12166 * This condition is "impossible", if it occurs 12167 * we need to fix it. Originally reported by 12168 * Bjorn Helgaas on a 128-CPU setup. 12169 */ 12170 WARN_ON_ONCE(busiest_rq == target_rq); 12171 12172 /* Search for an sd spanning us and the target CPU. */ 12173 rcu_read_lock(); 12174 for_each_domain(target_cpu, sd) { 12175 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12176 break; 12177 } 12178 12179 if (likely(sd)) { 12180 struct lb_env env = { 12181 .sd = sd, 12182 .dst_cpu = target_cpu, 12183 .dst_rq = target_rq, 12184 .src_cpu = busiest_rq->cpu, 12185 .src_rq = busiest_rq, 12186 .idle = CPU_IDLE, 12187 .flags = LBF_ACTIVE_LB, 12188 }; 12189 12190 schedstat_inc(sd->alb_count); 12191 update_rq_clock(busiest_rq); 12192 12193 p = detach_one_task(&env); 12194 if (p) { 12195 schedstat_inc(sd->alb_pushed); 12196 /* Active balancing done, reset the failure counter. */ 12197 sd->nr_balance_failed = 0; 12198 } else { 12199 schedstat_inc(sd->alb_failed); 12200 } 12201 } 12202 rcu_read_unlock(); 12203 out_unlock: 12204 busiest_rq->active_balance = 0; 12205 rq_unlock(busiest_rq, &rf); 12206 12207 if (p) 12208 attach_one_task(target_rq, p); 12209 12210 local_irq_enable(); 12211 12212 return 0; 12213 } 12214 12215 /* 12216 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12217 * This trades load-balance latency on larger machines for less cross talk. 12218 */ 12219 void update_max_interval(void) 12220 { 12221 max_load_balance_interval = HZ*num_online_cpus()/10; 12222 } 12223 12224 static inline void update_newidle_stats(struct sched_domain *sd, unsigned int success) 12225 { 12226 sd->newidle_call++; 12227 sd->newidle_success += success; 12228 12229 if (sd->newidle_call >= 1024) { 12230 sd->newidle_ratio = sd->newidle_success; 12231 sd->newidle_call /= 2; 12232 sd->newidle_success /= 2; 12233 } 12234 } 12235 12236 static inline bool 12237 update_newidle_cost(struct sched_domain *sd, u64 cost, unsigned int success) 12238 { 12239 unsigned long next_decay = sd->last_decay_max_lb_cost + HZ; 12240 unsigned long now = jiffies; 12241 12242 if (cost) 12243 update_newidle_stats(sd, success); 12244 12245 if (cost > sd->max_newidle_lb_cost) { 12246 /* 12247 * Track max cost of a domain to make sure to not delay the 12248 * next wakeup on the CPU. 12249 */ 12250 sd->max_newidle_lb_cost = cost; 12251 sd->last_decay_max_lb_cost = now; 12252 12253 } else if (time_after(now, next_decay)) { 12254 /* 12255 * Decay the newidle max times by ~1% per second to ensure that 12256 * it is not outdated and the current max cost is actually 12257 * shorter. 12258 */ 12259 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12260 sd->last_decay_max_lb_cost = now; 12261 return true; 12262 } 12263 12264 return false; 12265 } 12266 12267 /* 12268 * It checks each scheduling domain to see if it is due to be balanced, 12269 * and initiates a balancing operation if so. 12270 * 12271 * Balancing parameters are set up in init_sched_domains. 12272 */ 12273 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12274 { 12275 int continue_balancing = 1; 12276 int cpu = rq->cpu; 12277 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12278 unsigned long interval; 12279 struct sched_domain *sd; 12280 /* Earliest time when we have to do rebalance again */ 12281 unsigned long next_balance = jiffies + 60*HZ; 12282 int update_next_balance = 0; 12283 int need_decay = 0; 12284 u64 max_cost = 0; 12285 12286 rcu_read_lock(); 12287 for_each_domain(cpu, sd) { 12288 /* 12289 * Decay the newidle max times here because this is a regular 12290 * visit to all the domains. 12291 */ 12292 need_decay = update_newidle_cost(sd, 0, 0); 12293 max_cost += sd->max_newidle_lb_cost; 12294 12295 /* 12296 * Stop the load balance at this level. There is another 12297 * CPU in our sched group which is doing load balancing more 12298 * actively. 12299 */ 12300 if (!continue_balancing) { 12301 if (need_decay) 12302 continue; 12303 break; 12304 } 12305 12306 interval = get_sd_balance_interval(sd, busy); 12307 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12308 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12309 /* 12310 * The LBF_DST_PINNED logic could have changed 12311 * env->dst_cpu, so we can't know our idle 12312 * state even if we migrated tasks. Update it. 12313 */ 12314 idle = idle_cpu(cpu); 12315 busy = !idle && !sched_idle_cpu(cpu); 12316 } 12317 sd->last_balance = jiffies; 12318 interval = get_sd_balance_interval(sd, busy); 12319 } 12320 if (time_after(next_balance, sd->last_balance + interval)) { 12321 next_balance = sd->last_balance + interval; 12322 update_next_balance = 1; 12323 } 12324 } 12325 if (need_decay) { 12326 /* 12327 * Ensure the rq-wide value also decays but keep it at a 12328 * reasonable floor to avoid funnies with rq->avg_idle. 12329 */ 12330 rq->max_idle_balance_cost = 12331 max((u64)sysctl_sched_migration_cost, max_cost); 12332 } 12333 rcu_read_unlock(); 12334 12335 /* 12336 * next_balance will be updated only when there is a need. 12337 * When the cpu is attached to null domain for ex, it will not be 12338 * updated. 12339 */ 12340 if (likely(update_next_balance)) 12341 rq->next_balance = next_balance; 12342 12343 } 12344 12345 static inline int on_null_domain(struct rq *rq) 12346 { 12347 return unlikely(!rcu_dereference_sched(rq->sd)); 12348 } 12349 12350 #ifdef CONFIG_NO_HZ_COMMON 12351 /* 12352 * NOHZ idle load balancing (ILB) details: 12353 * 12354 * - When one of the busy CPUs notices that there may be an idle rebalancing 12355 * needed, they will kick the idle load balancer, which then does idle 12356 * load balancing for all the idle CPUs. 12357 */ 12358 static inline int find_new_ilb(void) 12359 { 12360 const struct cpumask *hk_mask; 12361 int ilb_cpu; 12362 12363 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12364 12365 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12366 12367 if (ilb_cpu == smp_processor_id()) 12368 continue; 12369 12370 if (idle_cpu(ilb_cpu)) 12371 return ilb_cpu; 12372 } 12373 12374 return -1; 12375 } 12376 12377 /* 12378 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12379 * SMP function call (IPI). 12380 * 12381 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12382 * (if there is one). 12383 */ 12384 static void kick_ilb(unsigned int flags) 12385 { 12386 int ilb_cpu; 12387 12388 /* 12389 * Increase nohz.next_balance only when if full ilb is triggered but 12390 * not if we only update stats. 12391 */ 12392 if (flags & NOHZ_BALANCE_KICK) 12393 nohz.next_balance = jiffies+1; 12394 12395 ilb_cpu = find_new_ilb(); 12396 if (ilb_cpu < 0) 12397 return; 12398 12399 /* 12400 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12401 * i.e. all bits in flags are already set in ilb_cpu. 12402 */ 12403 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12404 return; 12405 12406 /* 12407 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12408 * the first flag owns it; cleared by nohz_csd_func(). 12409 */ 12410 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12411 if (flags & NOHZ_KICK_MASK) 12412 return; 12413 12414 /* 12415 * This way we generate an IPI on the target CPU which 12416 * is idle, and the softirq performing NOHZ idle load balancing 12417 * will be run before returning from the IPI. 12418 */ 12419 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12420 } 12421 12422 /* 12423 * Current decision point for kicking the idle load balancer in the presence 12424 * of idle CPUs in the system. 12425 */ 12426 static void nohz_balancer_kick(struct rq *rq) 12427 { 12428 unsigned long now = jiffies; 12429 struct sched_domain_shared *sds; 12430 struct sched_domain *sd; 12431 int nr_busy, i, cpu = rq->cpu; 12432 unsigned int flags = 0; 12433 12434 if (unlikely(rq->idle_balance)) 12435 return; 12436 12437 /* 12438 * We may be recently in ticked or tickless idle mode. At the first 12439 * busy tick after returning from idle, we will update the busy stats. 12440 */ 12441 nohz_balance_exit_idle(rq); 12442 12443 if (READ_ONCE(nohz.has_blocked_load) && 12444 time_after(now, READ_ONCE(nohz.next_blocked))) 12445 flags = NOHZ_STATS_KICK; 12446 12447 /* 12448 * Most of the time system is not 100% busy. i.e nohz.nr_cpus > 0 12449 * Skip the read if time is not due. 12450 * 12451 * If none are in tickless mode, there maybe a narrow window 12452 * (28 jiffies, HZ=1000) where flags maybe set and kick_ilb called. 12453 * But idle load balancing is not done as find_new_ilb fails. 12454 * That's very rare. So read nohz.nr_cpus only if time is due. 12455 */ 12456 if (time_before(now, nohz.next_balance)) 12457 goto out; 12458 12459 /* 12460 * None are in tickless mode and hence no need for NOHZ idle load 12461 * balancing 12462 */ 12463 if (unlikely(cpumask_empty(nohz.idle_cpus_mask))) 12464 return; 12465 12466 if (rq->nr_running >= 2) { 12467 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12468 goto out; 12469 } 12470 12471 rcu_read_lock(); 12472 12473 sd = rcu_dereference_all(rq->sd); 12474 if (sd) { 12475 /* 12476 * If there's a runnable CFS task and the current CPU has reduced 12477 * capacity, kick the ILB to see if there's a better CPU to run on: 12478 */ 12479 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12480 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12481 goto unlock; 12482 } 12483 } 12484 12485 sd = rcu_dereference_all(per_cpu(sd_asym_packing, cpu)); 12486 if (sd) { 12487 /* 12488 * When ASYM_PACKING; see if there's a more preferred CPU 12489 * currently idle; in which case, kick the ILB to move tasks 12490 * around. 12491 * 12492 * When balancing between cores, all the SMT siblings of the 12493 * preferred CPU must be idle. 12494 */ 12495 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12496 if (sched_asym(sd, i, cpu)) { 12497 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12498 goto unlock; 12499 } 12500 } 12501 } 12502 12503 sd = rcu_dereference_all(per_cpu(sd_asym_cpucapacity, cpu)); 12504 if (sd) { 12505 /* 12506 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12507 * to run the misfit task on. 12508 */ 12509 if (check_misfit_status(rq)) { 12510 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12511 goto unlock; 12512 } 12513 12514 /* 12515 * For asymmetric systems, we do not want to nicely balance 12516 * cache use, instead we want to embrace asymmetry and only 12517 * ensure tasks have enough CPU capacity. 12518 * 12519 * Skip the LLC logic because it's not relevant in that case. 12520 */ 12521 goto unlock; 12522 } 12523 12524 sds = rcu_dereference_all(per_cpu(sd_llc_shared, cpu)); 12525 if (sds) { 12526 /* 12527 * If there is an imbalance between LLC domains (IOW we could 12528 * increase the overall cache utilization), we need a less-loaded LLC 12529 * domain to pull some load from. Likewise, we may need to spread 12530 * load within the current LLC domain (e.g. packed SMT cores but 12531 * other CPUs are idle). We can't really know from here how busy 12532 * the others are - so just get a NOHZ balance going if it looks 12533 * like this LLC domain has tasks we could move. 12534 */ 12535 nr_busy = atomic_read(&sds->nr_busy_cpus); 12536 if (nr_busy > 1) { 12537 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12538 goto unlock; 12539 } 12540 } 12541 unlock: 12542 rcu_read_unlock(); 12543 out: 12544 if (READ_ONCE(nohz.needs_update)) 12545 flags |= NOHZ_NEXT_KICK; 12546 12547 if (flags) 12548 kick_ilb(flags); 12549 } 12550 12551 static void set_cpu_sd_state_busy(int cpu) 12552 { 12553 struct sched_domain *sd; 12554 12555 rcu_read_lock(); 12556 sd = rcu_dereference_all(per_cpu(sd_llc, cpu)); 12557 12558 if (!sd || !sd->nohz_idle) 12559 goto unlock; 12560 sd->nohz_idle = 0; 12561 12562 atomic_inc(&sd->shared->nr_busy_cpus); 12563 unlock: 12564 rcu_read_unlock(); 12565 } 12566 12567 void nohz_balance_exit_idle(struct rq *rq) 12568 { 12569 WARN_ON_ONCE(rq != this_rq()); 12570 12571 if (likely(!rq->nohz_tick_stopped)) 12572 return; 12573 12574 rq->nohz_tick_stopped = 0; 12575 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12576 12577 set_cpu_sd_state_busy(rq->cpu); 12578 } 12579 12580 static void set_cpu_sd_state_idle(int cpu) 12581 { 12582 struct sched_domain *sd; 12583 12584 rcu_read_lock(); 12585 sd = rcu_dereference_all(per_cpu(sd_llc, cpu)); 12586 12587 if (!sd || sd->nohz_idle) 12588 goto unlock; 12589 sd->nohz_idle = 1; 12590 12591 atomic_dec(&sd->shared->nr_busy_cpus); 12592 unlock: 12593 rcu_read_unlock(); 12594 } 12595 12596 /* 12597 * This routine will record that the CPU is going idle with tick stopped. 12598 * This info will be used in performing idle load balancing in the future. 12599 */ 12600 void nohz_balance_enter_idle(int cpu) 12601 { 12602 struct rq *rq = cpu_rq(cpu); 12603 12604 WARN_ON_ONCE(cpu != smp_processor_id()); 12605 12606 /* If this CPU is going down, then nothing needs to be done: */ 12607 if (!cpu_active(cpu)) 12608 return; 12609 12610 /* 12611 * Can be set safely without rq->lock held 12612 * If a clear happens, it will have evaluated last additions because 12613 * rq->lock is held during the check and the clear 12614 */ 12615 rq->has_blocked_load = 1; 12616 12617 /* 12618 * The tick is still stopped but load could have been added in the 12619 * meantime. We set the nohz.has_blocked_load flag to trig a check of the 12620 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12621 * of nohz.has_blocked_load can only happen after checking the new load 12622 */ 12623 if (rq->nohz_tick_stopped) 12624 goto out; 12625 12626 /* If we're a completely isolated CPU, we don't play: */ 12627 if (on_null_domain(rq)) 12628 return; 12629 12630 rq->nohz_tick_stopped = 1; 12631 12632 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12633 12634 /* 12635 * Ensures that if nohz_idle_balance() fails to observe our 12636 * @idle_cpus_mask store, it must observe the @has_blocked_load 12637 * and @needs_update stores. 12638 */ 12639 smp_mb__after_atomic(); 12640 12641 set_cpu_sd_state_idle(cpu); 12642 12643 WRITE_ONCE(nohz.needs_update, 1); 12644 out: 12645 /* 12646 * Each time a cpu enter idle, we assume that it has blocked load and 12647 * enable the periodic update of the load of idle CPUs 12648 */ 12649 WRITE_ONCE(nohz.has_blocked_load, 1); 12650 } 12651 12652 static bool update_nohz_stats(struct rq *rq) 12653 { 12654 unsigned int cpu = rq->cpu; 12655 12656 if (!rq->has_blocked_load) 12657 return false; 12658 12659 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12660 return false; 12661 12662 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12663 return true; 12664 12665 sched_balance_update_blocked_averages(cpu); 12666 12667 return rq->has_blocked_load; 12668 } 12669 12670 /* 12671 * Internal function that runs load balance for all idle CPUs. The load balance 12672 * can be a simple update of blocked load or a complete load balance with 12673 * tasks movement depending of flags. 12674 */ 12675 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12676 { 12677 /* Earliest time when we have to do rebalance again */ 12678 unsigned long now = jiffies; 12679 unsigned long next_balance = now + 60*HZ; 12680 bool has_blocked_load = false; 12681 int update_next_balance = 0; 12682 int this_cpu = this_rq->cpu; 12683 int balance_cpu; 12684 struct rq *rq; 12685 12686 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12687 12688 /* 12689 * We assume there will be no idle load after this update and clear 12690 * the has_blocked_load flag. If a cpu enters idle in the mean time, it will 12691 * set the has_blocked_load flag and trigger another update of idle load. 12692 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12693 * setting the flag, we are sure to not clear the state and not 12694 * check the load of an idle cpu. 12695 * 12696 * Same applies to idle_cpus_mask vs needs_update. 12697 */ 12698 if (flags & NOHZ_STATS_KICK) 12699 WRITE_ONCE(nohz.has_blocked_load, 0); 12700 if (flags & NOHZ_NEXT_KICK) 12701 WRITE_ONCE(nohz.needs_update, 0); 12702 12703 /* 12704 * Ensures that if we miss the CPU, we must see the has_blocked_load 12705 * store from nohz_balance_enter_idle(). 12706 */ 12707 smp_mb(); 12708 12709 /* 12710 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12711 * chance for other idle cpu to pull load. 12712 */ 12713 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12714 if (!idle_cpu(balance_cpu)) 12715 continue; 12716 12717 /* 12718 * If this CPU gets work to do, stop the load balancing 12719 * work being done for other CPUs. Next load 12720 * balancing owner will pick it up. 12721 */ 12722 if (!idle_cpu(this_cpu) && need_resched()) { 12723 if (flags & NOHZ_STATS_KICK) 12724 has_blocked_load = true; 12725 if (flags & NOHZ_NEXT_KICK) 12726 WRITE_ONCE(nohz.needs_update, 1); 12727 goto abort; 12728 } 12729 12730 rq = cpu_rq(balance_cpu); 12731 12732 if (flags & NOHZ_STATS_KICK) 12733 has_blocked_load |= update_nohz_stats(rq); 12734 12735 /* 12736 * If time for next balance is due, 12737 * do the balance. 12738 */ 12739 if (time_after_eq(jiffies, rq->next_balance)) { 12740 struct rq_flags rf; 12741 12742 rq_lock_irqsave(rq, &rf); 12743 update_rq_clock(rq); 12744 rq_unlock_irqrestore(rq, &rf); 12745 12746 if (flags & NOHZ_BALANCE_KICK) 12747 sched_balance_domains(rq, CPU_IDLE); 12748 } 12749 12750 if (time_after(next_balance, rq->next_balance)) { 12751 next_balance = rq->next_balance; 12752 update_next_balance = 1; 12753 } 12754 } 12755 12756 /* 12757 * next_balance will be updated only when there is a need. 12758 * When the CPU is attached to null domain for ex, it will not be 12759 * updated. 12760 */ 12761 if (likely(update_next_balance)) 12762 nohz.next_balance = next_balance; 12763 12764 if (flags & NOHZ_STATS_KICK) 12765 WRITE_ONCE(nohz.next_blocked, 12766 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12767 12768 abort: 12769 /* There is still blocked load, enable periodic update */ 12770 if (has_blocked_load) 12771 WRITE_ONCE(nohz.has_blocked_load, 1); 12772 } 12773 12774 /* 12775 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12776 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12777 */ 12778 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12779 { 12780 unsigned int flags = this_rq->nohz_idle_balance; 12781 12782 if (!flags) 12783 return false; 12784 12785 this_rq->nohz_idle_balance = 0; 12786 12787 if (idle != CPU_IDLE) 12788 return false; 12789 12790 _nohz_idle_balance(this_rq, flags); 12791 12792 return true; 12793 } 12794 12795 /* 12796 * Check if we need to directly run the ILB for updating blocked load before 12797 * entering idle state. Here we run ILB directly without issuing IPIs. 12798 * 12799 * Note that when this function is called, the tick may not yet be stopped on 12800 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12801 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12802 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12803 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12804 * called from this function on (this) CPU that's not yet in the mask. That's 12805 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12806 * updating the blocked load of already idle CPUs without waking up one of 12807 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12808 * cpu about to enter idle, because it can take a long time. 12809 */ 12810 void nohz_run_idle_balance(int cpu) 12811 { 12812 unsigned int flags; 12813 12814 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12815 12816 /* 12817 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12818 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12819 */ 12820 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12821 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12822 } 12823 12824 static void nohz_newidle_balance(struct rq *this_rq) 12825 { 12826 int this_cpu = this_rq->cpu; 12827 12828 /* Will wake up very soon. No time for doing anything else*/ 12829 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12830 return; 12831 12832 /* Don't need to update blocked load of idle CPUs*/ 12833 if (!READ_ONCE(nohz.has_blocked_load) || 12834 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12835 return; 12836 12837 /* 12838 * Set the need to trigger ILB in order to update blocked load 12839 * before entering idle state. 12840 */ 12841 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12842 } 12843 12844 #else /* !CONFIG_NO_HZ_COMMON: */ 12845 static inline void nohz_balancer_kick(struct rq *rq) { } 12846 12847 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12848 { 12849 return false; 12850 } 12851 12852 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12853 #endif /* !CONFIG_NO_HZ_COMMON */ 12854 12855 /* 12856 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12857 * idle. Attempts to pull tasks from other CPUs. 12858 * 12859 * Returns: 12860 * < 0 - we released the lock and there are !fair tasks present 12861 * 0 - failed, no new tasks 12862 * > 0 - success, new (fair) tasks present 12863 */ 12864 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12865 { 12866 unsigned long next_balance = jiffies + HZ; 12867 int this_cpu = this_rq->cpu; 12868 int continue_balancing = 1; 12869 u64 t0, t1, curr_cost = 0; 12870 struct sched_domain *sd; 12871 int pulled_task = 0; 12872 12873 update_misfit_status(NULL, this_rq); 12874 12875 /* 12876 * There is a task waiting to run. No need to search for one. 12877 * Return 0; the task will be enqueued when switching to idle. 12878 */ 12879 if (this_rq->ttwu_pending) 12880 return 0; 12881 12882 /* 12883 * We must set idle_stamp _before_ calling sched_balance_rq() 12884 * for CPU_NEWLY_IDLE, such that we measure the this duration 12885 * as idle time. 12886 */ 12887 this_rq->idle_stamp = rq_clock(this_rq); 12888 12889 /* 12890 * Do not pull tasks towards !active CPUs... 12891 */ 12892 if (!cpu_active(this_cpu)) 12893 return 0; 12894 12895 /* 12896 * This is OK, because current is on_cpu, which avoids it being picked 12897 * for load-balance and preemption/IRQs are still disabled avoiding 12898 * further scheduler activity on it and we're being very careful to 12899 * re-start the picking loop. 12900 */ 12901 rq_unpin_lock(this_rq, rf); 12902 12903 sd = rcu_dereference_sched_domain(this_rq->sd); 12904 if (!sd) 12905 goto out; 12906 12907 if (!get_rd_overloaded(this_rq->rd) || 12908 this_rq->avg_idle < sd->max_newidle_lb_cost) { 12909 12910 update_next_balance(sd, &next_balance); 12911 goto out; 12912 } 12913 12914 /* 12915 * Include sched_balance_update_blocked_averages() in the cost 12916 * calculation because it can be quite costly -- this ensures we skip 12917 * it when avg_idle gets to be very low. 12918 */ 12919 t0 = sched_clock_cpu(this_cpu); 12920 __sched_balance_update_blocked_averages(this_rq); 12921 12922 this_rq->next_class = &fair_sched_class; 12923 raw_spin_rq_unlock(this_rq); 12924 12925 for_each_domain(this_cpu, sd) { 12926 u64 domain_cost; 12927 12928 update_next_balance(sd, &next_balance); 12929 12930 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12931 break; 12932 12933 if (sd->flags & SD_BALANCE_NEWIDLE) { 12934 unsigned int weight = 1; 12935 12936 if (sched_feat(NI_RANDOM)) { 12937 /* 12938 * Throw a 1k sided dice; and only run 12939 * newidle_balance according to the success 12940 * rate. 12941 */ 12942 u32 d1k = sched_rng() % 1024; 12943 weight = 1 + sd->newidle_ratio; 12944 if (d1k > weight) { 12945 update_newidle_stats(sd, 0); 12946 continue; 12947 } 12948 weight = (1024 + weight/2) / weight; 12949 } 12950 12951 pulled_task = sched_balance_rq(this_cpu, this_rq, 12952 sd, CPU_NEWLY_IDLE, 12953 &continue_balancing); 12954 12955 t1 = sched_clock_cpu(this_cpu); 12956 domain_cost = t1 - t0; 12957 curr_cost += domain_cost; 12958 t0 = t1; 12959 12960 /* 12961 * Track max cost of a domain to make sure to not delay the 12962 * next wakeup on the CPU. 12963 */ 12964 update_newidle_cost(sd, domain_cost, weight * !!pulled_task); 12965 } 12966 12967 /* 12968 * Stop searching for tasks to pull if there are 12969 * now runnable tasks on this rq. 12970 */ 12971 if (pulled_task || !continue_balancing) 12972 break; 12973 } 12974 12975 raw_spin_rq_lock(this_rq); 12976 12977 if (curr_cost > this_rq->max_idle_balance_cost) 12978 this_rq->max_idle_balance_cost = curr_cost; 12979 12980 /* 12981 * While browsing the domains, we released the rq lock, a task could 12982 * have been enqueued in the meantime. Since we're not going idle, 12983 * pretend we pulled a task. 12984 */ 12985 if (this_rq->cfs.h_nr_queued && !pulled_task) 12986 pulled_task = 1; 12987 12988 /* If a higher prio class was modified, restart the pick */ 12989 if (sched_class_above(this_rq->next_class, &fair_sched_class)) 12990 pulled_task = -1; 12991 12992 out: 12993 /* Move the next balance forward */ 12994 if (time_after(this_rq->next_balance, next_balance)) 12995 this_rq->next_balance = next_balance; 12996 12997 if (pulled_task) 12998 this_rq->idle_stamp = 0; 12999 else 13000 nohz_newidle_balance(this_rq); 13001 13002 rq_repin_lock(this_rq, rf); 13003 13004 return pulled_task; 13005 } 13006 13007 /* 13008 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 13009 * 13010 * - directly from the local sched_tick() for periodic load balancing 13011 * 13012 * - indirectly from a remote sched_tick() for NOHZ idle balancing 13013 * through the SMP cross-call nohz_csd_func() 13014 */ 13015 static __latent_entropy void sched_balance_softirq(void) 13016 { 13017 struct rq *this_rq = this_rq(); 13018 enum cpu_idle_type idle = this_rq->idle_balance; 13019 /* 13020 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 13021 * balancing on behalf of the other idle CPUs whose ticks are 13022 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 13023 * give the idle CPUs a chance to load balance. Else we may 13024 * load balance only within the local sched_domain hierarchy 13025 * and abort nohz_idle_balance altogether if we pull some load. 13026 */ 13027 if (nohz_idle_balance(this_rq, idle)) 13028 return; 13029 13030 /* normal load balance */ 13031 sched_balance_update_blocked_averages(this_rq->cpu); 13032 sched_balance_domains(this_rq, idle); 13033 } 13034 13035 /* 13036 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 13037 */ 13038 void sched_balance_trigger(struct rq *rq) 13039 { 13040 /* 13041 * Don't need to rebalance while attached to NULL domain or 13042 * runqueue CPU is not active 13043 */ 13044 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 13045 return; 13046 13047 if (time_after_eq(jiffies, rq->next_balance)) 13048 raise_softirq(SCHED_SOFTIRQ); 13049 13050 nohz_balancer_kick(rq); 13051 } 13052 13053 static void rq_online_fair(struct rq *rq) 13054 { 13055 update_sysctl(); 13056 13057 update_runtime_enabled(rq); 13058 } 13059 13060 static void rq_offline_fair(struct rq *rq) 13061 { 13062 update_sysctl(); 13063 13064 /* Ensure any throttled groups are reachable by pick_next_task */ 13065 unthrottle_offline_cfs_rqs(rq); 13066 13067 /* Ensure that we remove rq contribution to group share: */ 13068 clear_tg_offline_cfs_rqs(rq); 13069 } 13070 13071 #ifdef CONFIG_SCHED_CORE 13072 static inline bool 13073 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 13074 { 13075 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 13076 u64 slice = se->slice; 13077 13078 return (rtime * min_nr_tasks > slice); 13079 } 13080 13081 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 13082 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 13083 { 13084 if (!sched_core_enabled(rq)) 13085 return; 13086 13087 /* 13088 * If runqueue has only one task which used up its slice and 13089 * if the sibling is forced idle, then trigger schedule to 13090 * give forced idle task a chance. 13091 * 13092 * sched_slice() considers only this active rq and it gets the 13093 * whole slice. But during force idle, we have siblings acting 13094 * like a single runqueue and hence we need to consider runnable 13095 * tasks on this CPU and the forced idle CPU. Ideally, we should 13096 * go through the forced idle rq, but that would be a perf hit. 13097 * We can assume that the forced idle CPU has at least 13098 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 13099 * if we need to give up the CPU. 13100 */ 13101 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 13102 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 13103 resched_curr(rq); 13104 } 13105 13106 /* 13107 * Consider any infeasible weight scenario. Take for instance two tasks, 13108 * each bound to their respective sibling, one with weight 1 and one with 13109 * weight 2. Then the lower weight task will run ahead of the higher weight 13110 * task without bound. 13111 * 13112 * This utterly destroys the concept of a shared time base. 13113 * 13114 * Remember; all this is about a proportionally fair scheduling, where each 13115 * tasks receives: 13116 * 13117 * w_i 13118 * dt_i = ---------- dt (1) 13119 * \Sum_j w_j 13120 * 13121 * which we do by tracking a virtual time, s_i: 13122 * 13123 * 1 13124 * s_i = --- d[t]_i (2) 13125 * w_i 13126 * 13127 * Where d[t] is a delta of discrete time, while dt is an infinitesimal. 13128 * The immediate corollary is that the ideal schedule S, where (2) to use 13129 * an infinitesimal delta, is: 13130 * 13131 * 1 13132 * S = ---------- dt (3) 13133 * \Sum_i w_i 13134 * 13135 * From which we can define the lag, or deviation from the ideal, as: 13136 * 13137 * lag(i) = S - s_i (4) 13138 * 13139 * And since the one and only purpose is to approximate S, we get that: 13140 * 13141 * \Sum_i w_i lag(i) := 0 (5) 13142 * 13143 * If this were not so, we no longer converge to S, and we can no longer 13144 * claim our scheduler has any of the properties we derive from S. This is 13145 * exactly what you did above, you broke it! 13146 * 13147 * 13148 * Let's continue for a while though; to see if there is anything useful to 13149 * be learned. We can combine (1)-(3) or (4)-(5) and express S in s_i: 13150 * 13151 * \Sum_i w_i s_i 13152 * S = -------------- (6) 13153 * \Sum_i w_i 13154 * 13155 * Which gives us a way to compute S, given our s_i. Now, if you've read 13156 * our code, you know that we do not in fact do this, the reason for this 13157 * is two-fold. Firstly, computing S in that way requires a 64bit division 13158 * for every time we'd use it (see 12), and secondly, this only describes 13159 * the steady-state, it doesn't handle dynamics. 13160 * 13161 * Anyway, in (6): s_i -> x + (s_i - x), to get: 13162 * 13163 * \Sum_i w_i (s_i - x) 13164 * S - x = -------------------- (7) 13165 * \Sum_i w_i 13166 * 13167 * Which shows that S and s_i transform alike (which makes perfect sense 13168 * given that S is basically the (weighted) average of s_i). 13169 * 13170 * So the thing to remember is that the above is strictly UP. It is 13171 * possible to generalize to multiple runqueues -- however it gets really 13172 * yuck when you have to add affinity support, as illustrated by our very 13173 * first counter-example. 13174 * 13175 * Luckily I think we can avoid needing a full multi-queue variant for 13176 * core-scheduling (or load-balancing). The crucial observation is that we 13177 * only actually need this comparison in the presence of forced-idle; only 13178 * then do we need to tell if the stalled rq has higher priority over the 13179 * other. 13180 * 13181 * [XXX assumes SMT2; better consider the more general case, I suspect 13182 * it'll work out because our comparison is always between 2 rqs and the 13183 * answer is only interesting if one of them is forced-idle] 13184 * 13185 * And (under assumption of SMT2) when there is forced-idle, there is only 13186 * a single queue, so everything works like normal. 13187 * 13188 * Let, for our runqueue 'k': 13189 * 13190 * T_k = \Sum_i w_i s_i 13191 * W_k = \Sum_i w_i ; for all i of k (8) 13192 * 13193 * Then we can write (6) like: 13194 * 13195 * T_k 13196 * S_k = --- (9) 13197 * W_k 13198 * 13199 * From which immediately follows that: 13200 * 13201 * T_k + T_l 13202 * S_k+l = --------- (10) 13203 * W_k + W_l 13204 * 13205 * On which we can define a combined lag: 13206 * 13207 * lag_k+l(i) := S_k+l - s_i (11) 13208 * 13209 * And that gives us the tools to compare tasks across a combined runqueue. 13210 * 13211 * 13212 * Combined this gives the following: 13213 * 13214 * a) when a runqueue enters force-idle, sync it against it's sibling rq(s) 13215 * using (7); this only requires storing single 'time'-stamps. 13216 * 13217 * b) when comparing tasks between 2 runqueues of which one is forced-idle, 13218 * compare the combined lag, per (11). 13219 * 13220 * Now, of course cgroups (I so hate them) make this more interesting in 13221 * that a) seems to suggest we need to iterate all cgroup on a CPU at such 13222 * boundaries, but I think we can avoid that. The force-idle is for the 13223 * whole CPU, all it's rqs. So we can mark it in the root and lazily 13224 * propagate downward on demand. 13225 */ 13226 13227 /* 13228 * So this sync is basically a relative reset of S to 0. 13229 * 13230 * So with 2 queues, when one goes idle, we drop them both to 0 and one 13231 * then increases due to not being idle, and the idle one builds up lag to 13232 * get re-elected. So far so simple, right? 13233 * 13234 * When there's 3, we can have the situation where 2 run and one is idle, 13235 * we sync to 0 and let the idle one build up lag to get re-election. Now 13236 * suppose another one also drops idle. At this point dropping all to 0 13237 * again would destroy the built-up lag from the queue that was already 13238 * idle, not good. 13239 * 13240 * So instead of syncing everything, we can: 13241 * 13242 * less := !((s64)(s_a - s_b) <= 0) 13243 * 13244 * (v_a - S_a) - (v_b - S_b) == v_a - v_b - S_a + S_b 13245 * == v_a - (v_b - S_a + S_b) 13246 * 13247 * IOW, we can recast the (lag) comparison to a one-sided difference. 13248 * So if then, instead of syncing the whole queue, sync the idle queue 13249 * against the active queue with S_a + S_b at the point where we sync. 13250 * 13251 * (XXX consider the implication of living in a cyclic group: N / 2^n N) 13252 * 13253 * This gives us means of syncing single queues against the active queue, 13254 * and for already idle queues to preserve their build-up lag. 13255 * 13256 * Of course, then we get the situation where there's 2 active and one 13257 * going idle, who do we pick to sync against? Theory would have us sync 13258 * against the combined S, but as we've already demonstrated, there is no 13259 * such thing in infeasible weight scenarios. 13260 * 13261 * One thing I've considered; and this is where that core_active rudiment 13262 * came from, is having active queues sync up between themselves after 13263 * every tick. This limits the observed divergence due to the work 13264 * conservancy. 13265 * 13266 * On top of that, we can improve upon things by employing (10) here. 13267 */ 13268 13269 /* 13270 * se_fi_update - Update the cfs_rq->zero_vruntime_fi in a CFS hierarchy if needed. 13271 */ 13272 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 13273 bool forceidle) 13274 { 13275 for_each_sched_entity(se) { 13276 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13277 13278 if (forceidle) { 13279 if (cfs_rq->forceidle_seq == fi_seq) 13280 break; 13281 cfs_rq->forceidle_seq = fi_seq; 13282 } 13283 13284 cfs_rq->zero_vruntime_fi = cfs_rq->zero_vruntime; 13285 } 13286 } 13287 13288 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13289 { 13290 struct sched_entity *se = &p->se; 13291 13292 if (p->sched_class != &fair_sched_class) 13293 return; 13294 13295 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13296 } 13297 13298 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13299 bool in_fi) 13300 { 13301 struct rq *rq = task_rq(a); 13302 const struct sched_entity *sea = &a->se; 13303 const struct sched_entity *seb = &b->se; 13304 struct cfs_rq *cfs_rqa; 13305 struct cfs_rq *cfs_rqb; 13306 s64 delta; 13307 13308 WARN_ON_ONCE(task_rq(b)->core != rq->core); 13309 13310 #ifdef CONFIG_FAIR_GROUP_SCHED 13311 /* 13312 * Find an se in the hierarchy for tasks a and b, such that the se's 13313 * are immediate siblings. 13314 */ 13315 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13316 int sea_depth = sea->depth; 13317 int seb_depth = seb->depth; 13318 13319 if (sea_depth >= seb_depth) 13320 sea = parent_entity(sea); 13321 if (sea_depth <= seb_depth) 13322 seb = parent_entity(seb); 13323 } 13324 13325 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13326 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13327 13328 cfs_rqa = sea->cfs_rq; 13329 cfs_rqb = seb->cfs_rq; 13330 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 13331 cfs_rqa = &task_rq(a)->cfs; 13332 cfs_rqb = &task_rq(b)->cfs; 13333 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 13334 13335 /* 13336 * Find delta after normalizing se's vruntime with its cfs_rq's 13337 * zero_vruntime_fi, which would have been updated in prior calls 13338 * to se_fi_update(). 13339 */ 13340 delta = vruntime_op(sea->vruntime, "-", seb->vruntime) + 13341 vruntime_op(cfs_rqb->zero_vruntime_fi, "-", cfs_rqa->zero_vruntime_fi); 13342 13343 return delta > 0; 13344 } 13345 13346 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13347 { 13348 struct cfs_rq *cfs_rq; 13349 13350 #ifdef CONFIG_FAIR_GROUP_SCHED 13351 cfs_rq = task_group(p)->cfs_rq[cpu]; 13352 #else 13353 cfs_rq = &cpu_rq(cpu)->cfs; 13354 #endif 13355 return throttled_hierarchy(cfs_rq); 13356 } 13357 #else /* !CONFIG_SCHED_CORE: */ 13358 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13359 #endif /* !CONFIG_SCHED_CORE */ 13360 13361 /* 13362 * scheduler tick hitting a task of our scheduling class. 13363 * 13364 * NOTE: This function can be called remotely by the tick offload that 13365 * goes along full dynticks. Therefore no local assumption can be made 13366 * and everything must be accessed through the @rq and @curr passed in 13367 * parameters. 13368 */ 13369 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13370 { 13371 struct cfs_rq *cfs_rq; 13372 struct sched_entity *se = &curr->se; 13373 13374 for_each_sched_entity(se) { 13375 cfs_rq = cfs_rq_of(se); 13376 entity_tick(cfs_rq, se, queued); 13377 } 13378 13379 if (queued) { 13380 if (!need_resched()) 13381 hrtick_start_fair(rq, curr); 13382 return; 13383 } 13384 13385 if (static_branch_unlikely(&sched_numa_balancing)) 13386 task_tick_numa(rq, curr); 13387 13388 update_misfit_status(curr, rq); 13389 check_update_overutilized_status(task_rq(curr)); 13390 13391 task_tick_core(rq, curr); 13392 } 13393 13394 /* 13395 * called on fork with the child task as argument from the parent's context 13396 * - child not yet on the tasklist 13397 * - preemption disabled 13398 */ 13399 static void task_fork_fair(struct task_struct *p) 13400 { 13401 set_task_max_allowed_capacity(p); 13402 } 13403 13404 /* 13405 * Priority of the task has changed. Check to see if we preempt 13406 * the current task. 13407 */ 13408 static void 13409 prio_changed_fair(struct rq *rq, struct task_struct *p, u64 oldprio) 13410 { 13411 if (!task_on_rq_queued(p)) 13412 return; 13413 13414 if (p->prio == oldprio) 13415 return; 13416 13417 if (rq->cfs.nr_queued == 1) 13418 return; 13419 13420 /* 13421 * Reschedule if we are currently running on this runqueue and 13422 * our priority decreased, or if we are not currently running on 13423 * this runqueue and our priority is higher than the current's 13424 */ 13425 if (task_current_donor(rq, p)) { 13426 if (p->prio > oldprio) 13427 resched_curr(rq); 13428 } else { 13429 wakeup_preempt(rq, p, 0); 13430 } 13431 } 13432 13433 #ifdef CONFIG_FAIR_GROUP_SCHED 13434 /* 13435 * Propagate the changes of the sched_entity across the tg tree to make it 13436 * visible to the root 13437 */ 13438 static void propagate_entity_cfs_rq(struct sched_entity *se) 13439 { 13440 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13441 13442 /* 13443 * If a task gets attached to this cfs_rq and before being queued, 13444 * it gets migrated to another CPU due to reasons like affinity 13445 * change, make sure this cfs_rq stays on leaf cfs_rq list to have 13446 * that removed load decayed or it can cause faireness problem. 13447 */ 13448 if (!cfs_rq_pelt_clock_throttled(cfs_rq)) 13449 list_add_leaf_cfs_rq(cfs_rq); 13450 13451 /* Start to propagate at parent */ 13452 se = se->parent; 13453 13454 for_each_sched_entity(se) { 13455 cfs_rq = cfs_rq_of(se); 13456 13457 update_load_avg(cfs_rq, se, UPDATE_TG); 13458 13459 if (!cfs_rq_pelt_clock_throttled(cfs_rq)) 13460 list_add_leaf_cfs_rq(cfs_rq); 13461 } 13462 13463 assert_list_leaf_cfs_rq(rq_of(cfs_rq)); 13464 } 13465 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 13466 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13467 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 13468 13469 static void detach_entity_cfs_rq(struct sched_entity *se) 13470 { 13471 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13472 13473 /* 13474 * In case the task sched_avg hasn't been attached: 13475 * - A forked task which hasn't been woken up by wake_up_new_task(). 13476 * - A task which has been woken up by try_to_wake_up() but is 13477 * waiting for actually being woken up by sched_ttwu_pending(). 13478 */ 13479 if (!se->avg.last_update_time) 13480 return; 13481 13482 /* Catch up with the cfs_rq and remove our load when we leave */ 13483 update_load_avg(cfs_rq, se, 0); 13484 detach_entity_load_avg(cfs_rq, se); 13485 update_tg_load_avg(cfs_rq); 13486 propagate_entity_cfs_rq(se); 13487 } 13488 13489 static void attach_entity_cfs_rq(struct sched_entity *se) 13490 { 13491 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13492 13493 /* Synchronize entity with its cfs_rq */ 13494 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13495 attach_entity_load_avg(cfs_rq, se); 13496 update_tg_load_avg(cfs_rq); 13497 propagate_entity_cfs_rq(se); 13498 } 13499 13500 static void detach_task_cfs_rq(struct task_struct *p) 13501 { 13502 struct sched_entity *se = &p->se; 13503 13504 detach_entity_cfs_rq(se); 13505 } 13506 13507 static void attach_task_cfs_rq(struct task_struct *p) 13508 { 13509 struct sched_entity *se = &p->se; 13510 13511 attach_entity_cfs_rq(se); 13512 } 13513 13514 static void switching_from_fair(struct rq *rq, struct task_struct *p) 13515 { 13516 if (p->se.sched_delayed) 13517 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 13518 } 13519 13520 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13521 { 13522 detach_task_cfs_rq(p); 13523 } 13524 13525 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13526 { 13527 WARN_ON_ONCE(p->se.sched_delayed); 13528 13529 attach_task_cfs_rq(p); 13530 13531 set_task_max_allowed_capacity(p); 13532 13533 if (task_on_rq_queued(p)) { 13534 /* 13535 * We were most likely switched from sched_rt, so 13536 * kick off the schedule if running, otherwise just see 13537 * if we can still preempt the current task. 13538 */ 13539 if (task_current_donor(rq, p)) 13540 resched_curr(rq); 13541 else 13542 wakeup_preempt(rq, p, 0); 13543 } 13544 } 13545 13546 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13547 { 13548 struct sched_entity *se = &p->se; 13549 13550 if (task_on_rq_queued(p)) { 13551 /* 13552 * Move the next running task to the front of the list, so our 13553 * cfs_tasks list becomes MRU one. 13554 */ 13555 list_move(&se->group_node, &rq->cfs_tasks); 13556 } 13557 if (!first) 13558 return; 13559 13560 WARN_ON_ONCE(se->sched_delayed); 13561 13562 if (hrtick_enabled_fair(rq)) 13563 hrtick_start_fair(rq, p); 13564 13565 update_misfit_status(p, rq); 13566 sched_fair_update_stop_tick(rq, p); 13567 } 13568 13569 /* 13570 * Account for a task changing its policy or group. 13571 * 13572 * This routine is mostly called to set cfs_rq->curr field when a task 13573 * migrates between groups/classes. 13574 */ 13575 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13576 { 13577 struct sched_entity *se = &p->se; 13578 13579 for_each_sched_entity(se) { 13580 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13581 13582 set_next_entity(cfs_rq, se); 13583 /* ensure bandwidth has been allocated on our new cfs_rq */ 13584 account_cfs_rq_runtime(cfs_rq, 0); 13585 } 13586 13587 __set_next_task_fair(rq, p, first); 13588 } 13589 13590 void init_cfs_rq(struct cfs_rq *cfs_rq) 13591 { 13592 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13593 cfs_rq->zero_vruntime = (u64)(-(1LL << 20)); 13594 raw_spin_lock_init(&cfs_rq->removed.lock); 13595 } 13596 13597 #ifdef CONFIG_FAIR_GROUP_SCHED 13598 static void task_change_group_fair(struct task_struct *p) 13599 { 13600 /* 13601 * We couldn't detach or attach a forked task which 13602 * hasn't been woken up by wake_up_new_task(). 13603 */ 13604 if (READ_ONCE(p->__state) == TASK_NEW) 13605 return; 13606 13607 detach_task_cfs_rq(p); 13608 13609 /* Tell se's cfs_rq has been changed -- migrated */ 13610 p->se.avg.last_update_time = 0; 13611 set_task_rq(p, task_cpu(p)); 13612 attach_task_cfs_rq(p); 13613 } 13614 13615 void free_fair_sched_group(struct task_group *tg) 13616 { 13617 int i; 13618 13619 for_each_possible_cpu(i) { 13620 if (tg->cfs_rq) 13621 kfree(tg->cfs_rq[i]); 13622 if (tg->se) 13623 kfree(tg->se[i]); 13624 } 13625 13626 kfree(tg->cfs_rq); 13627 kfree(tg->se); 13628 } 13629 13630 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13631 { 13632 struct sched_entity *se; 13633 struct cfs_rq *cfs_rq; 13634 int i; 13635 13636 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13637 if (!tg->cfs_rq) 13638 goto err; 13639 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13640 if (!tg->se) 13641 goto err; 13642 13643 tg->shares = NICE_0_LOAD; 13644 13645 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13646 13647 for_each_possible_cpu(i) { 13648 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13649 GFP_KERNEL, cpu_to_node(i)); 13650 if (!cfs_rq) 13651 goto err; 13652 13653 se = kzalloc_node(sizeof(struct sched_entity_stats), 13654 GFP_KERNEL, cpu_to_node(i)); 13655 if (!se) 13656 goto err_free_rq; 13657 13658 init_cfs_rq(cfs_rq); 13659 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13660 init_entity_runnable_average(se); 13661 } 13662 13663 return 1; 13664 13665 err_free_rq: 13666 kfree(cfs_rq); 13667 err: 13668 return 0; 13669 } 13670 13671 void online_fair_sched_group(struct task_group *tg) 13672 { 13673 struct sched_entity *se; 13674 struct rq_flags rf; 13675 struct rq *rq; 13676 int i; 13677 13678 for_each_possible_cpu(i) { 13679 rq = cpu_rq(i); 13680 se = tg->se[i]; 13681 rq_lock_irq(rq, &rf); 13682 update_rq_clock(rq); 13683 attach_entity_cfs_rq(se); 13684 sync_throttle(tg, i); 13685 rq_unlock_irq(rq, &rf); 13686 } 13687 } 13688 13689 void unregister_fair_sched_group(struct task_group *tg) 13690 { 13691 int cpu; 13692 13693 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13694 13695 for_each_possible_cpu(cpu) { 13696 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13697 struct sched_entity *se = tg->se[cpu]; 13698 struct rq *rq = cpu_rq(cpu); 13699 13700 if (se) { 13701 if (se->sched_delayed) { 13702 guard(rq_lock_irqsave)(rq); 13703 if (se->sched_delayed) { 13704 update_rq_clock(rq); 13705 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13706 } 13707 list_del_leaf_cfs_rq(cfs_rq); 13708 } 13709 remove_entity_load_avg(se); 13710 } 13711 13712 /* 13713 * Only empty task groups can be destroyed; so we can speculatively 13714 * check on_list without danger of it being re-added. 13715 */ 13716 if (cfs_rq->on_list) { 13717 guard(rq_lock_irqsave)(rq); 13718 list_del_leaf_cfs_rq(cfs_rq); 13719 } 13720 } 13721 } 13722 13723 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13724 struct sched_entity *se, int cpu, 13725 struct sched_entity *parent) 13726 { 13727 struct rq *rq = cpu_rq(cpu); 13728 13729 cfs_rq->tg = tg; 13730 cfs_rq->rq = rq; 13731 init_cfs_rq_runtime(cfs_rq); 13732 13733 tg->cfs_rq[cpu] = cfs_rq; 13734 tg->se[cpu] = se; 13735 13736 /* se could be NULL for root_task_group */ 13737 if (!se) 13738 return; 13739 13740 if (!parent) { 13741 se->cfs_rq = &rq->cfs; 13742 se->depth = 0; 13743 } else { 13744 se->cfs_rq = parent->my_q; 13745 se->depth = parent->depth + 1; 13746 } 13747 13748 se->my_q = cfs_rq; 13749 /* guarantee group entities always have weight */ 13750 update_load_set(&se->load, NICE_0_LOAD); 13751 se->parent = parent; 13752 } 13753 13754 static DEFINE_MUTEX(shares_mutex); 13755 13756 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13757 { 13758 int i; 13759 13760 lockdep_assert_held(&shares_mutex); 13761 13762 /* 13763 * We can't change the weight of the root cgroup. 13764 */ 13765 if (!tg->se[0]) 13766 return -EINVAL; 13767 13768 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13769 13770 if (tg->shares == shares) 13771 return 0; 13772 13773 tg->shares = shares; 13774 for_each_possible_cpu(i) { 13775 struct rq *rq = cpu_rq(i); 13776 struct sched_entity *se = tg->se[i]; 13777 struct rq_flags rf; 13778 13779 /* Propagate contribution to hierarchy */ 13780 rq_lock_irqsave(rq, &rf); 13781 update_rq_clock(rq); 13782 for_each_sched_entity(se) { 13783 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13784 update_cfs_group(se); 13785 } 13786 rq_unlock_irqrestore(rq, &rf); 13787 } 13788 13789 return 0; 13790 } 13791 13792 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13793 { 13794 int ret; 13795 13796 mutex_lock(&shares_mutex); 13797 if (tg_is_idle(tg)) 13798 ret = -EINVAL; 13799 else 13800 ret = __sched_group_set_shares(tg, shares); 13801 mutex_unlock(&shares_mutex); 13802 13803 return ret; 13804 } 13805 13806 int sched_group_set_idle(struct task_group *tg, long idle) 13807 { 13808 int i; 13809 13810 if (tg == &root_task_group) 13811 return -EINVAL; 13812 13813 if (idle < 0 || idle > 1) 13814 return -EINVAL; 13815 13816 mutex_lock(&shares_mutex); 13817 13818 if (tg->idle == idle) { 13819 mutex_unlock(&shares_mutex); 13820 return 0; 13821 } 13822 13823 tg->idle = idle; 13824 13825 for_each_possible_cpu(i) { 13826 struct rq *rq = cpu_rq(i); 13827 struct sched_entity *se = tg->se[i]; 13828 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13829 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13830 long idle_task_delta; 13831 struct rq_flags rf; 13832 13833 rq_lock_irqsave(rq, &rf); 13834 13835 grp_cfs_rq->idle = idle; 13836 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13837 goto next_cpu; 13838 13839 idle_task_delta = grp_cfs_rq->h_nr_queued - 13840 grp_cfs_rq->h_nr_idle; 13841 if (!cfs_rq_is_idle(grp_cfs_rq)) 13842 idle_task_delta *= -1; 13843 13844 for_each_sched_entity(se) { 13845 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13846 13847 if (!se->on_rq) 13848 break; 13849 13850 cfs_rq->h_nr_idle += idle_task_delta; 13851 13852 /* Already accounted at parent level and above. */ 13853 if (cfs_rq_is_idle(cfs_rq)) 13854 break; 13855 } 13856 13857 next_cpu: 13858 rq_unlock_irqrestore(rq, &rf); 13859 } 13860 13861 /* Idle groups have minimum weight. */ 13862 if (tg_is_idle(tg)) 13863 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13864 else 13865 __sched_group_set_shares(tg, NICE_0_LOAD); 13866 13867 mutex_unlock(&shares_mutex); 13868 return 0; 13869 } 13870 13871 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13872 13873 13874 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13875 { 13876 struct sched_entity *se = &task->se; 13877 unsigned int rr_interval = 0; 13878 13879 /* 13880 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13881 * idle runqueue: 13882 */ 13883 if (rq->cfs.load.weight) 13884 rr_interval = NS_TO_JIFFIES(se->slice); 13885 13886 return rr_interval; 13887 } 13888 13889 /* 13890 * All the scheduling class methods: 13891 */ 13892 DEFINE_SCHED_CLASS(fair) = { 13893 .enqueue_task = enqueue_task_fair, 13894 .dequeue_task = dequeue_task_fair, 13895 .yield_task = yield_task_fair, 13896 .yield_to_task = yield_to_task_fair, 13897 13898 .wakeup_preempt = wakeup_preempt_fair, 13899 13900 .pick_task = pick_task_fair, 13901 .pick_next_task = pick_next_task_fair, 13902 .put_prev_task = put_prev_task_fair, 13903 .set_next_task = set_next_task_fair, 13904 13905 .select_task_rq = select_task_rq_fair, 13906 .migrate_task_rq = migrate_task_rq_fair, 13907 13908 .rq_online = rq_online_fair, 13909 .rq_offline = rq_offline_fair, 13910 13911 .task_dead = task_dead_fair, 13912 .set_cpus_allowed = set_cpus_allowed_fair, 13913 13914 .task_tick = task_tick_fair, 13915 .task_fork = task_fork_fair, 13916 13917 .reweight_task = reweight_task_fair, 13918 .prio_changed = prio_changed_fair, 13919 .switching_from = switching_from_fair, 13920 .switched_from = switched_from_fair, 13921 .switched_to = switched_to_fair, 13922 13923 .get_rr_interval = get_rr_interval_fair, 13924 13925 .update_curr = update_curr_fair, 13926 13927 #ifdef CONFIG_FAIR_GROUP_SCHED 13928 .task_change_group = task_change_group_fair, 13929 #endif 13930 13931 #ifdef CONFIG_SCHED_CORE 13932 .task_is_throttled = task_is_throttled_fair, 13933 #endif 13934 13935 #ifdef CONFIG_UCLAMP_TASK 13936 .uclamp_enabled = 1, 13937 #endif 13938 }; 13939 13940 void print_cfs_stats(struct seq_file *m, int cpu) 13941 { 13942 struct cfs_rq *cfs_rq, *pos; 13943 13944 rcu_read_lock(); 13945 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13946 print_cfs_rq(m, cpu, cfs_rq); 13947 rcu_read_unlock(); 13948 } 13949 13950 #ifdef CONFIG_NUMA_BALANCING 13951 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13952 { 13953 int node; 13954 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13955 struct numa_group *ng; 13956 13957 rcu_read_lock(); 13958 ng = rcu_dereference_all(p->numa_group); 13959 for_each_online_node(node) { 13960 if (p->numa_faults) { 13961 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13962 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13963 } 13964 if (ng) { 13965 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13966 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13967 } 13968 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13969 } 13970 rcu_read_unlock(); 13971 } 13972 #endif /* CONFIG_NUMA_BALANCING */ 13973 13974 __init void init_sched_fair_class(void) 13975 { 13976 int i; 13977 13978 for_each_possible_cpu(i) { 13979 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13980 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13981 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13982 GFP_KERNEL, cpu_to_node(i)); 13983 13984 #ifdef CONFIG_CFS_BANDWIDTH 13985 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13986 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13987 #endif 13988 } 13989 13990 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13991 13992 #ifdef CONFIG_NO_HZ_COMMON 13993 nohz.next_balance = jiffies; 13994 nohz.next_blocked = jiffies; 13995 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13996 #endif 13997 } 13998