xref: /linux/kernel/sched/fair.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 
30 #include <trace/events/sched.h>
31 
32 #include "sched.h"
33 
34 /*
35  * Targeted preemption latency for CPU-bound tasks:
36  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37  *
38  * NOTE: this latency value is not the same as the concept of
39  * 'timeslice length' - timeslices in CFS are of variable length
40  * and have no persistent notion like in traditional, time-slice
41  * based scheduling concepts.
42  *
43  * (to see the precise effective timeslice length of your workload,
44  *  run vmstat and monitor the context-switches (cs) field)
45  */
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48 
49 /*
50  * The initial- and re-scaling of tunables is configurable
51  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52  *
53  * Options are:
54  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57  */
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 	= SCHED_TUNABLESCALING_LOG;
60 
61 /*
62  * Minimal preemption granularity for CPU-bound tasks:
63  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64  */
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67 
68 /*
69  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70  */
71 static unsigned int sched_nr_latency = 8;
72 
73 /*
74  * After fork, child runs first. If set to 0 (default) then
75  * parent will (try to) run first.
76  */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78 
79 /*
80  * SCHED_OTHER wake-up granularity.
81  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82  *
83  * This option delays the preemption effects of decoupled workloads
84  * and reduces their over-scheduling. Synchronous workloads will still
85  * have immediate wakeup/sleep latencies.
86  */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89 
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91 
92 /*
93  * The exponential sliding  window over which load is averaged for shares
94  * distribution.
95  * (default: 10msec)
96  */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * default: 5 msec, units: microseconds
109   */
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
112 
113 /*
114  * Increase the granularity value when there are more CPUs,
115  * because with more CPUs the 'effective latency' as visible
116  * to users decreases. But the relationship is not linear,
117  * so pick a second-best guess by going with the log2 of the
118  * number of CPUs.
119  *
120  * This idea comes from the SD scheduler of Con Kolivas:
121  */
122 static int get_update_sysctl_factor(void)
123 {
124 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 	unsigned int factor;
126 
127 	switch (sysctl_sched_tunable_scaling) {
128 	case SCHED_TUNABLESCALING_NONE:
129 		factor = 1;
130 		break;
131 	case SCHED_TUNABLESCALING_LINEAR:
132 		factor = cpus;
133 		break;
134 	case SCHED_TUNABLESCALING_LOG:
135 	default:
136 		factor = 1 + ilog2(cpus);
137 		break;
138 	}
139 
140 	return factor;
141 }
142 
143 static void update_sysctl(void)
144 {
145 	unsigned int factor = get_update_sysctl_factor();
146 
147 #define SET_SYSCTL(name) \
148 	(sysctl_##name = (factor) * normalized_sysctl_##name)
149 	SET_SYSCTL(sched_min_granularity);
150 	SET_SYSCTL(sched_latency);
151 	SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
153 }
154 
155 void sched_init_granularity(void)
156 {
157 	update_sysctl();
158 }
159 
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST	(~0UL)
162 #else
163 # define WMULT_CONST	(1UL << 32)
164 #endif
165 
166 #define WMULT_SHIFT	32
167 
168 /*
169  * Shift right and round:
170  */
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172 
173 /*
174  * delta *= weight / lw
175  */
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 		struct load_weight *lw)
179 {
180 	u64 tmp;
181 
182 	/*
183 	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 	 * 2^SCHED_LOAD_RESOLUTION.
186 	 */
187 	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 		tmp = (u64)delta_exec * scale_load_down(weight);
189 	else
190 		tmp = (u64)delta_exec;
191 
192 	if (!lw->inv_weight) {
193 		unsigned long w = scale_load_down(lw->weight);
194 
195 		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 			lw->inv_weight = 1;
197 		else if (unlikely(!w))
198 			lw->inv_weight = WMULT_CONST;
199 		else
200 			lw->inv_weight = WMULT_CONST / w;
201 	}
202 
203 	/*
204 	 * Check whether we'd overflow the 64-bit multiplication:
205 	 */
206 	if (unlikely(tmp > WMULT_CONST))
207 		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 			WMULT_SHIFT/2);
209 	else
210 		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211 
212 	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213 }
214 
215 
216 const struct sched_class fair_sched_class;
217 
218 /**************************************************************
219  * CFS operations on generic schedulable entities:
220  */
221 
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223 
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226 {
227 	return cfs_rq->rq;
228 }
229 
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se)	(!se->my_q)
232 
233 static inline struct task_struct *task_of(struct sched_entity *se)
234 {
235 #ifdef CONFIG_SCHED_DEBUG
236 	WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 	return container_of(se, struct task_struct, se);
239 }
240 
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 		for (; se; se = se->parent)
244 
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246 {
247 	return p->se.cfs_rq;
248 }
249 
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252 {
253 	return se->cfs_rq;
254 }
255 
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258 {
259 	return grp->my_q;
260 }
261 
262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
263 {
264 	if (!cfs_rq->on_list) {
265 		/*
266 		 * Ensure we either appear before our parent (if already
267 		 * enqueued) or force our parent to appear after us when it is
268 		 * enqueued.  The fact that we always enqueue bottom-up
269 		 * reduces this to two cases.
270 		 */
271 		if (cfs_rq->tg->parent &&
272 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
273 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
274 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
275 		} else {
276 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
277 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
278 		}
279 
280 		cfs_rq->on_list = 1;
281 	}
282 }
283 
284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285 {
286 	if (cfs_rq->on_list) {
287 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
288 		cfs_rq->on_list = 0;
289 	}
290 }
291 
292 /* Iterate thr' all leaf cfs_rq's on a runqueue */
293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
294 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
295 
296 /* Do the two (enqueued) entities belong to the same group ? */
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
299 {
300 	if (se->cfs_rq == pse->cfs_rq)
301 		return 1;
302 
303 	return 0;
304 }
305 
306 static inline struct sched_entity *parent_entity(struct sched_entity *se)
307 {
308 	return se->parent;
309 }
310 
311 /* return depth at which a sched entity is present in the hierarchy */
312 static inline int depth_se(struct sched_entity *se)
313 {
314 	int depth = 0;
315 
316 	for_each_sched_entity(se)
317 		depth++;
318 
319 	return depth;
320 }
321 
322 static void
323 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
324 {
325 	int se_depth, pse_depth;
326 
327 	/*
328 	 * preemption test can be made between sibling entities who are in the
329 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
330 	 * both tasks until we find their ancestors who are siblings of common
331 	 * parent.
332 	 */
333 
334 	/* First walk up until both entities are at same depth */
335 	se_depth = depth_se(*se);
336 	pse_depth = depth_se(*pse);
337 
338 	while (se_depth > pse_depth) {
339 		se_depth--;
340 		*se = parent_entity(*se);
341 	}
342 
343 	while (pse_depth > se_depth) {
344 		pse_depth--;
345 		*pse = parent_entity(*pse);
346 	}
347 
348 	while (!is_same_group(*se, *pse)) {
349 		*se = parent_entity(*se);
350 		*pse = parent_entity(*pse);
351 	}
352 }
353 
354 #else	/* !CONFIG_FAIR_GROUP_SCHED */
355 
356 static inline struct task_struct *task_of(struct sched_entity *se)
357 {
358 	return container_of(se, struct task_struct, se);
359 }
360 
361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
362 {
363 	return container_of(cfs_rq, struct rq, cfs);
364 }
365 
366 #define entity_is_task(se)	1
367 
368 #define for_each_sched_entity(se) \
369 		for (; se; se = NULL)
370 
371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
372 {
373 	return &task_rq(p)->cfs;
374 }
375 
376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
377 {
378 	struct task_struct *p = task_of(se);
379 	struct rq *rq = task_rq(p);
380 
381 	return &rq->cfs;
382 }
383 
384 /* runqueue "owned" by this group */
385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
386 {
387 	return NULL;
388 }
389 
390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
391 {
392 }
393 
394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
395 {
396 }
397 
398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
399 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
400 
401 static inline int
402 is_same_group(struct sched_entity *se, struct sched_entity *pse)
403 {
404 	return 1;
405 }
406 
407 static inline struct sched_entity *parent_entity(struct sched_entity *se)
408 {
409 	return NULL;
410 }
411 
412 static inline void
413 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
414 {
415 }
416 
417 #endif	/* CONFIG_FAIR_GROUP_SCHED */
418 
419 static __always_inline
420 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
421 
422 /**************************************************************
423  * Scheduling class tree data structure manipulation methods:
424  */
425 
426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
427 {
428 	s64 delta = (s64)(vruntime - min_vruntime);
429 	if (delta > 0)
430 		min_vruntime = vruntime;
431 
432 	return min_vruntime;
433 }
434 
435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
436 {
437 	s64 delta = (s64)(vruntime - min_vruntime);
438 	if (delta < 0)
439 		min_vruntime = vruntime;
440 
441 	return min_vruntime;
442 }
443 
444 static inline int entity_before(struct sched_entity *a,
445 				struct sched_entity *b)
446 {
447 	return (s64)(a->vruntime - b->vruntime) < 0;
448 }
449 
450 static void update_min_vruntime(struct cfs_rq *cfs_rq)
451 {
452 	u64 vruntime = cfs_rq->min_vruntime;
453 
454 	if (cfs_rq->curr)
455 		vruntime = cfs_rq->curr->vruntime;
456 
457 	if (cfs_rq->rb_leftmost) {
458 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
459 						   struct sched_entity,
460 						   run_node);
461 
462 		if (!cfs_rq->curr)
463 			vruntime = se->vruntime;
464 		else
465 			vruntime = min_vruntime(vruntime, se->vruntime);
466 	}
467 
468 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
469 #ifndef CONFIG_64BIT
470 	smp_wmb();
471 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
472 #endif
473 }
474 
475 /*
476  * Enqueue an entity into the rb-tree:
477  */
478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
481 	struct rb_node *parent = NULL;
482 	struct sched_entity *entry;
483 	int leftmost = 1;
484 
485 	/*
486 	 * Find the right place in the rbtree:
487 	 */
488 	while (*link) {
489 		parent = *link;
490 		entry = rb_entry(parent, struct sched_entity, run_node);
491 		/*
492 		 * We dont care about collisions. Nodes with
493 		 * the same key stay together.
494 		 */
495 		if (entity_before(se, entry)) {
496 			link = &parent->rb_left;
497 		} else {
498 			link = &parent->rb_right;
499 			leftmost = 0;
500 		}
501 	}
502 
503 	/*
504 	 * Maintain a cache of leftmost tree entries (it is frequently
505 	 * used):
506 	 */
507 	if (leftmost)
508 		cfs_rq->rb_leftmost = &se->run_node;
509 
510 	rb_link_node(&se->run_node, parent, link);
511 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
512 }
513 
514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 	if (cfs_rq->rb_leftmost == &se->run_node) {
517 		struct rb_node *next_node;
518 
519 		next_node = rb_next(&se->run_node);
520 		cfs_rq->rb_leftmost = next_node;
521 	}
522 
523 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525 
526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
527 {
528 	struct rb_node *left = cfs_rq->rb_leftmost;
529 
530 	if (!left)
531 		return NULL;
532 
533 	return rb_entry(left, struct sched_entity, run_node);
534 }
535 
536 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
537 {
538 	struct rb_node *next = rb_next(&se->run_node);
539 
540 	if (!next)
541 		return NULL;
542 
543 	return rb_entry(next, struct sched_entity, run_node);
544 }
545 
546 #ifdef CONFIG_SCHED_DEBUG
547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
548 {
549 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
550 
551 	if (!last)
552 		return NULL;
553 
554 	return rb_entry(last, struct sched_entity, run_node);
555 }
556 
557 /**************************************************************
558  * Scheduling class statistics methods:
559  */
560 
561 int sched_proc_update_handler(struct ctl_table *table, int write,
562 		void __user *buffer, size_t *lenp,
563 		loff_t *ppos)
564 {
565 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
566 	int factor = get_update_sysctl_factor();
567 
568 	if (ret || !write)
569 		return ret;
570 
571 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
572 					sysctl_sched_min_granularity);
573 
574 #define WRT_SYSCTL(name) \
575 	(normalized_sysctl_##name = sysctl_##name / (factor))
576 	WRT_SYSCTL(sched_min_granularity);
577 	WRT_SYSCTL(sched_latency);
578 	WRT_SYSCTL(sched_wakeup_granularity);
579 #undef WRT_SYSCTL
580 
581 	return 0;
582 }
583 #endif
584 
585 /*
586  * delta /= w
587  */
588 static inline unsigned long
589 calc_delta_fair(unsigned long delta, struct sched_entity *se)
590 {
591 	if (unlikely(se->load.weight != NICE_0_LOAD))
592 		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
593 
594 	return delta;
595 }
596 
597 /*
598  * The idea is to set a period in which each task runs once.
599  *
600  * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
601  * this period because otherwise the slices get too small.
602  *
603  * p = (nr <= nl) ? l : l*nr/nl
604  */
605 static u64 __sched_period(unsigned long nr_running)
606 {
607 	u64 period = sysctl_sched_latency;
608 	unsigned long nr_latency = sched_nr_latency;
609 
610 	if (unlikely(nr_running > nr_latency)) {
611 		period = sysctl_sched_min_granularity;
612 		period *= nr_running;
613 	}
614 
615 	return period;
616 }
617 
618 /*
619  * We calculate the wall-time slice from the period by taking a part
620  * proportional to the weight.
621  *
622  * s = p*P[w/rw]
623  */
624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
627 
628 	for_each_sched_entity(se) {
629 		struct load_weight *load;
630 		struct load_weight lw;
631 
632 		cfs_rq = cfs_rq_of(se);
633 		load = &cfs_rq->load;
634 
635 		if (unlikely(!se->on_rq)) {
636 			lw = cfs_rq->load;
637 
638 			update_load_add(&lw, se->load.weight);
639 			load = &lw;
640 		}
641 		slice = calc_delta_mine(slice, se->load.weight, load);
642 	}
643 	return slice;
644 }
645 
646 /*
647  * We calculate the vruntime slice of a to be inserted task
648  *
649  * vs = s/w
650  */
651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
654 }
655 
656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
657 static void update_cfs_shares(struct cfs_rq *cfs_rq);
658 
659 /*
660  * Update the current task's runtime statistics. Skip current tasks that
661  * are not in our scheduling class.
662  */
663 static inline void
664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
665 	      unsigned long delta_exec)
666 {
667 	unsigned long delta_exec_weighted;
668 
669 	schedstat_set(curr->statistics.exec_max,
670 		      max((u64)delta_exec, curr->statistics.exec_max));
671 
672 	curr->sum_exec_runtime += delta_exec;
673 	schedstat_add(cfs_rq, exec_clock, delta_exec);
674 	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
675 
676 	curr->vruntime += delta_exec_weighted;
677 	update_min_vruntime(cfs_rq);
678 
679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
680 	cfs_rq->load_unacc_exec_time += delta_exec;
681 #endif
682 }
683 
684 static void update_curr(struct cfs_rq *cfs_rq)
685 {
686 	struct sched_entity *curr = cfs_rq->curr;
687 	u64 now = rq_of(cfs_rq)->clock_task;
688 	unsigned long delta_exec;
689 
690 	if (unlikely(!curr))
691 		return;
692 
693 	/*
694 	 * Get the amount of time the current task was running
695 	 * since the last time we changed load (this cannot
696 	 * overflow on 32 bits):
697 	 */
698 	delta_exec = (unsigned long)(now - curr->exec_start);
699 	if (!delta_exec)
700 		return;
701 
702 	__update_curr(cfs_rq, curr, delta_exec);
703 	curr->exec_start = now;
704 
705 	if (entity_is_task(curr)) {
706 		struct task_struct *curtask = task_of(curr);
707 
708 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
709 		cpuacct_charge(curtask, delta_exec);
710 		account_group_exec_runtime(curtask, delta_exec);
711 	}
712 
713 	account_cfs_rq_runtime(cfs_rq, delta_exec);
714 }
715 
716 static inline void
717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
720 }
721 
722 /*
723  * Task is being enqueued - update stats:
724  */
725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 	/*
728 	 * Are we enqueueing a waiting task? (for current tasks
729 	 * a dequeue/enqueue event is a NOP)
730 	 */
731 	if (se != cfs_rq->curr)
732 		update_stats_wait_start(cfs_rq, se);
733 }
734 
735 static void
736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
739 			rq_of(cfs_rq)->clock - se->statistics.wait_start));
740 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
741 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
742 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
743 #ifdef CONFIG_SCHEDSTATS
744 	if (entity_is_task(se)) {
745 		trace_sched_stat_wait(task_of(se),
746 			rq_of(cfs_rq)->clock - se->statistics.wait_start);
747 	}
748 #endif
749 	schedstat_set(se->statistics.wait_start, 0);
750 }
751 
752 static inline void
753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 	/*
756 	 * Mark the end of the wait period if dequeueing a
757 	 * waiting task:
758 	 */
759 	if (se != cfs_rq->curr)
760 		update_stats_wait_end(cfs_rq, se);
761 }
762 
763 /*
764  * We are picking a new current task - update its stats:
765  */
766 static inline void
767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 	/*
770 	 * We are starting a new run period:
771 	 */
772 	se->exec_start = rq_of(cfs_rq)->clock_task;
773 }
774 
775 /**************************************************
776  * Scheduling class queueing methods:
777  */
778 
779 static void
780 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
781 {
782 	update_load_add(&cfs_rq->load, se->load.weight);
783 	if (!parent_entity(se))
784 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
785 #ifdef CONFIG_SMP
786 	if (entity_is_task(se))
787 		list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
788 #endif
789 	cfs_rq->nr_running++;
790 }
791 
792 static void
793 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 	update_load_sub(&cfs_rq->load, se->load.weight);
796 	if (!parent_entity(se))
797 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
798 	if (entity_is_task(se))
799 		list_del_init(&se->group_node);
800 	cfs_rq->nr_running--;
801 }
802 
803 #ifdef CONFIG_FAIR_GROUP_SCHED
804 /* we need this in update_cfs_load and load-balance functions below */
805 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
806 # ifdef CONFIG_SMP
807 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
808 					    int global_update)
809 {
810 	struct task_group *tg = cfs_rq->tg;
811 	long load_avg;
812 
813 	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
814 	load_avg -= cfs_rq->load_contribution;
815 
816 	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
817 		atomic_add(load_avg, &tg->load_weight);
818 		cfs_rq->load_contribution += load_avg;
819 	}
820 }
821 
822 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
823 {
824 	u64 period = sysctl_sched_shares_window;
825 	u64 now, delta;
826 	unsigned long load = cfs_rq->load.weight;
827 
828 	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
829 		return;
830 
831 	now = rq_of(cfs_rq)->clock_task;
832 	delta = now - cfs_rq->load_stamp;
833 
834 	/* truncate load history at 4 idle periods */
835 	if (cfs_rq->load_stamp > cfs_rq->load_last &&
836 	    now - cfs_rq->load_last > 4 * period) {
837 		cfs_rq->load_period = 0;
838 		cfs_rq->load_avg = 0;
839 		delta = period - 1;
840 	}
841 
842 	cfs_rq->load_stamp = now;
843 	cfs_rq->load_unacc_exec_time = 0;
844 	cfs_rq->load_period += delta;
845 	if (load) {
846 		cfs_rq->load_last = now;
847 		cfs_rq->load_avg += delta * load;
848 	}
849 
850 	/* consider updating load contribution on each fold or truncate */
851 	if (global_update || cfs_rq->load_period > period
852 	    || !cfs_rq->load_period)
853 		update_cfs_rq_load_contribution(cfs_rq, global_update);
854 
855 	while (cfs_rq->load_period > period) {
856 		/*
857 		 * Inline assembly required to prevent the compiler
858 		 * optimising this loop into a divmod call.
859 		 * See __iter_div_u64_rem() for another example of this.
860 		 */
861 		asm("" : "+rm" (cfs_rq->load_period));
862 		cfs_rq->load_period /= 2;
863 		cfs_rq->load_avg /= 2;
864 	}
865 
866 	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
867 		list_del_leaf_cfs_rq(cfs_rq);
868 }
869 
870 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
871 {
872 	long tg_weight;
873 
874 	/*
875 	 * Use this CPU's actual weight instead of the last load_contribution
876 	 * to gain a more accurate current total weight. See
877 	 * update_cfs_rq_load_contribution().
878 	 */
879 	tg_weight = atomic_read(&tg->load_weight);
880 	tg_weight -= cfs_rq->load_contribution;
881 	tg_weight += cfs_rq->load.weight;
882 
883 	return tg_weight;
884 }
885 
886 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
887 {
888 	long tg_weight, load, shares;
889 
890 	tg_weight = calc_tg_weight(tg, cfs_rq);
891 	load = cfs_rq->load.weight;
892 
893 	shares = (tg->shares * load);
894 	if (tg_weight)
895 		shares /= tg_weight;
896 
897 	if (shares < MIN_SHARES)
898 		shares = MIN_SHARES;
899 	if (shares > tg->shares)
900 		shares = tg->shares;
901 
902 	return shares;
903 }
904 
905 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
906 {
907 	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
908 		update_cfs_load(cfs_rq, 0);
909 		update_cfs_shares(cfs_rq);
910 	}
911 }
912 # else /* CONFIG_SMP */
913 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
914 {
915 }
916 
917 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
918 {
919 	return tg->shares;
920 }
921 
922 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
923 {
924 }
925 # endif /* CONFIG_SMP */
926 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
927 			    unsigned long weight)
928 {
929 	if (se->on_rq) {
930 		/* commit outstanding execution time */
931 		if (cfs_rq->curr == se)
932 			update_curr(cfs_rq);
933 		account_entity_dequeue(cfs_rq, se);
934 	}
935 
936 	update_load_set(&se->load, weight);
937 
938 	if (se->on_rq)
939 		account_entity_enqueue(cfs_rq, se);
940 }
941 
942 static void update_cfs_shares(struct cfs_rq *cfs_rq)
943 {
944 	struct task_group *tg;
945 	struct sched_entity *se;
946 	long shares;
947 
948 	tg = cfs_rq->tg;
949 	se = tg->se[cpu_of(rq_of(cfs_rq))];
950 	if (!se || throttled_hierarchy(cfs_rq))
951 		return;
952 #ifndef CONFIG_SMP
953 	if (likely(se->load.weight == tg->shares))
954 		return;
955 #endif
956 	shares = calc_cfs_shares(cfs_rq, tg);
957 
958 	reweight_entity(cfs_rq_of(se), se, shares);
959 }
960 #else /* CONFIG_FAIR_GROUP_SCHED */
961 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
962 {
963 }
964 
965 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
966 {
967 }
968 
969 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
970 {
971 }
972 #endif /* CONFIG_FAIR_GROUP_SCHED */
973 
974 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
975 {
976 #ifdef CONFIG_SCHEDSTATS
977 	struct task_struct *tsk = NULL;
978 
979 	if (entity_is_task(se))
980 		tsk = task_of(se);
981 
982 	if (se->statistics.sleep_start) {
983 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
984 
985 		if ((s64)delta < 0)
986 			delta = 0;
987 
988 		if (unlikely(delta > se->statistics.sleep_max))
989 			se->statistics.sleep_max = delta;
990 
991 		se->statistics.sleep_start = 0;
992 		se->statistics.sum_sleep_runtime += delta;
993 
994 		if (tsk) {
995 			account_scheduler_latency(tsk, delta >> 10, 1);
996 			trace_sched_stat_sleep(tsk, delta);
997 		}
998 	}
999 	if (se->statistics.block_start) {
1000 		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1001 
1002 		if ((s64)delta < 0)
1003 			delta = 0;
1004 
1005 		if (unlikely(delta > se->statistics.block_max))
1006 			se->statistics.block_max = delta;
1007 
1008 		se->statistics.block_start = 0;
1009 		se->statistics.sum_sleep_runtime += delta;
1010 
1011 		if (tsk) {
1012 			if (tsk->in_iowait) {
1013 				se->statistics.iowait_sum += delta;
1014 				se->statistics.iowait_count++;
1015 				trace_sched_stat_iowait(tsk, delta);
1016 			}
1017 
1018 			trace_sched_stat_blocked(tsk, delta);
1019 
1020 			/*
1021 			 * Blocking time is in units of nanosecs, so shift by
1022 			 * 20 to get a milliseconds-range estimation of the
1023 			 * amount of time that the task spent sleeping:
1024 			 */
1025 			if (unlikely(prof_on == SLEEP_PROFILING)) {
1026 				profile_hits(SLEEP_PROFILING,
1027 						(void *)get_wchan(tsk),
1028 						delta >> 20);
1029 			}
1030 			account_scheduler_latency(tsk, delta >> 10, 0);
1031 		}
1032 	}
1033 #endif
1034 }
1035 
1036 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1037 {
1038 #ifdef CONFIG_SCHED_DEBUG
1039 	s64 d = se->vruntime - cfs_rq->min_vruntime;
1040 
1041 	if (d < 0)
1042 		d = -d;
1043 
1044 	if (d > 3*sysctl_sched_latency)
1045 		schedstat_inc(cfs_rq, nr_spread_over);
1046 #endif
1047 }
1048 
1049 static void
1050 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1051 {
1052 	u64 vruntime = cfs_rq->min_vruntime;
1053 
1054 	/*
1055 	 * The 'current' period is already promised to the current tasks,
1056 	 * however the extra weight of the new task will slow them down a
1057 	 * little, place the new task so that it fits in the slot that
1058 	 * stays open at the end.
1059 	 */
1060 	if (initial && sched_feat(START_DEBIT))
1061 		vruntime += sched_vslice(cfs_rq, se);
1062 
1063 	/* sleeps up to a single latency don't count. */
1064 	if (!initial) {
1065 		unsigned long thresh = sysctl_sched_latency;
1066 
1067 		/*
1068 		 * Halve their sleep time's effect, to allow
1069 		 * for a gentler effect of sleepers:
1070 		 */
1071 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
1072 			thresh >>= 1;
1073 
1074 		vruntime -= thresh;
1075 	}
1076 
1077 	/* ensure we never gain time by being placed backwards. */
1078 	vruntime = max_vruntime(se->vruntime, vruntime);
1079 
1080 	se->vruntime = vruntime;
1081 }
1082 
1083 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1084 
1085 static void
1086 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1087 {
1088 	/*
1089 	 * Update the normalized vruntime before updating min_vruntime
1090 	 * through callig update_curr().
1091 	 */
1092 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1093 		se->vruntime += cfs_rq->min_vruntime;
1094 
1095 	/*
1096 	 * Update run-time statistics of the 'current'.
1097 	 */
1098 	update_curr(cfs_rq);
1099 	update_cfs_load(cfs_rq, 0);
1100 	account_entity_enqueue(cfs_rq, se);
1101 	update_cfs_shares(cfs_rq);
1102 
1103 	if (flags & ENQUEUE_WAKEUP) {
1104 		place_entity(cfs_rq, se, 0);
1105 		enqueue_sleeper(cfs_rq, se);
1106 	}
1107 
1108 	update_stats_enqueue(cfs_rq, se);
1109 	check_spread(cfs_rq, se);
1110 	if (se != cfs_rq->curr)
1111 		__enqueue_entity(cfs_rq, se);
1112 	se->on_rq = 1;
1113 
1114 	if (cfs_rq->nr_running == 1) {
1115 		list_add_leaf_cfs_rq(cfs_rq);
1116 		check_enqueue_throttle(cfs_rq);
1117 	}
1118 }
1119 
1120 static void __clear_buddies_last(struct sched_entity *se)
1121 {
1122 	for_each_sched_entity(se) {
1123 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1124 		if (cfs_rq->last == se)
1125 			cfs_rq->last = NULL;
1126 		else
1127 			break;
1128 	}
1129 }
1130 
1131 static void __clear_buddies_next(struct sched_entity *se)
1132 {
1133 	for_each_sched_entity(se) {
1134 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135 		if (cfs_rq->next == se)
1136 			cfs_rq->next = NULL;
1137 		else
1138 			break;
1139 	}
1140 }
1141 
1142 static void __clear_buddies_skip(struct sched_entity *se)
1143 {
1144 	for_each_sched_entity(se) {
1145 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 		if (cfs_rq->skip == se)
1147 			cfs_rq->skip = NULL;
1148 		else
1149 			break;
1150 	}
1151 }
1152 
1153 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1154 {
1155 	if (cfs_rq->last == se)
1156 		__clear_buddies_last(se);
1157 
1158 	if (cfs_rq->next == se)
1159 		__clear_buddies_next(se);
1160 
1161 	if (cfs_rq->skip == se)
1162 		__clear_buddies_skip(se);
1163 }
1164 
1165 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1166 
1167 static void
1168 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1169 {
1170 	/*
1171 	 * Update run-time statistics of the 'current'.
1172 	 */
1173 	update_curr(cfs_rq);
1174 
1175 	update_stats_dequeue(cfs_rq, se);
1176 	if (flags & DEQUEUE_SLEEP) {
1177 #ifdef CONFIG_SCHEDSTATS
1178 		if (entity_is_task(se)) {
1179 			struct task_struct *tsk = task_of(se);
1180 
1181 			if (tsk->state & TASK_INTERRUPTIBLE)
1182 				se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1183 			if (tsk->state & TASK_UNINTERRUPTIBLE)
1184 				se->statistics.block_start = rq_of(cfs_rq)->clock;
1185 		}
1186 #endif
1187 	}
1188 
1189 	clear_buddies(cfs_rq, se);
1190 
1191 	if (se != cfs_rq->curr)
1192 		__dequeue_entity(cfs_rq, se);
1193 	se->on_rq = 0;
1194 	update_cfs_load(cfs_rq, 0);
1195 	account_entity_dequeue(cfs_rq, se);
1196 
1197 	/*
1198 	 * Normalize the entity after updating the min_vruntime because the
1199 	 * update can refer to the ->curr item and we need to reflect this
1200 	 * movement in our normalized position.
1201 	 */
1202 	if (!(flags & DEQUEUE_SLEEP))
1203 		se->vruntime -= cfs_rq->min_vruntime;
1204 
1205 	/* return excess runtime on last dequeue */
1206 	return_cfs_rq_runtime(cfs_rq);
1207 
1208 	update_min_vruntime(cfs_rq);
1209 	update_cfs_shares(cfs_rq);
1210 }
1211 
1212 /*
1213  * Preempt the current task with a newly woken task if needed:
1214  */
1215 static void
1216 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1217 {
1218 	unsigned long ideal_runtime, delta_exec;
1219 	struct sched_entity *se;
1220 	s64 delta;
1221 
1222 	ideal_runtime = sched_slice(cfs_rq, curr);
1223 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1224 	if (delta_exec > ideal_runtime) {
1225 		resched_task(rq_of(cfs_rq)->curr);
1226 		/*
1227 		 * The current task ran long enough, ensure it doesn't get
1228 		 * re-elected due to buddy favours.
1229 		 */
1230 		clear_buddies(cfs_rq, curr);
1231 		return;
1232 	}
1233 
1234 	/*
1235 	 * Ensure that a task that missed wakeup preemption by a
1236 	 * narrow margin doesn't have to wait for a full slice.
1237 	 * This also mitigates buddy induced latencies under load.
1238 	 */
1239 	if (delta_exec < sysctl_sched_min_granularity)
1240 		return;
1241 
1242 	se = __pick_first_entity(cfs_rq);
1243 	delta = curr->vruntime - se->vruntime;
1244 
1245 	if (delta < 0)
1246 		return;
1247 
1248 	if (delta > ideal_runtime)
1249 		resched_task(rq_of(cfs_rq)->curr);
1250 }
1251 
1252 static void
1253 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1254 {
1255 	/* 'current' is not kept within the tree. */
1256 	if (se->on_rq) {
1257 		/*
1258 		 * Any task has to be enqueued before it get to execute on
1259 		 * a CPU. So account for the time it spent waiting on the
1260 		 * runqueue.
1261 		 */
1262 		update_stats_wait_end(cfs_rq, se);
1263 		__dequeue_entity(cfs_rq, se);
1264 	}
1265 
1266 	update_stats_curr_start(cfs_rq, se);
1267 	cfs_rq->curr = se;
1268 #ifdef CONFIG_SCHEDSTATS
1269 	/*
1270 	 * Track our maximum slice length, if the CPU's load is at
1271 	 * least twice that of our own weight (i.e. dont track it
1272 	 * when there are only lesser-weight tasks around):
1273 	 */
1274 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1275 		se->statistics.slice_max = max(se->statistics.slice_max,
1276 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
1277 	}
1278 #endif
1279 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
1280 }
1281 
1282 static int
1283 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1284 
1285 /*
1286  * Pick the next process, keeping these things in mind, in this order:
1287  * 1) keep things fair between processes/task groups
1288  * 2) pick the "next" process, since someone really wants that to run
1289  * 3) pick the "last" process, for cache locality
1290  * 4) do not run the "skip" process, if something else is available
1291  */
1292 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1293 {
1294 	struct sched_entity *se = __pick_first_entity(cfs_rq);
1295 	struct sched_entity *left = se;
1296 
1297 	/*
1298 	 * Avoid running the skip buddy, if running something else can
1299 	 * be done without getting too unfair.
1300 	 */
1301 	if (cfs_rq->skip == se) {
1302 		struct sched_entity *second = __pick_next_entity(se);
1303 		if (second && wakeup_preempt_entity(second, left) < 1)
1304 			se = second;
1305 	}
1306 
1307 	/*
1308 	 * Prefer last buddy, try to return the CPU to a preempted task.
1309 	 */
1310 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1311 		se = cfs_rq->last;
1312 
1313 	/*
1314 	 * Someone really wants this to run. If it's not unfair, run it.
1315 	 */
1316 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1317 		se = cfs_rq->next;
1318 
1319 	clear_buddies(cfs_rq, se);
1320 
1321 	return se;
1322 }
1323 
1324 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1325 
1326 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1327 {
1328 	/*
1329 	 * If still on the runqueue then deactivate_task()
1330 	 * was not called and update_curr() has to be done:
1331 	 */
1332 	if (prev->on_rq)
1333 		update_curr(cfs_rq);
1334 
1335 	/* throttle cfs_rqs exceeding runtime */
1336 	check_cfs_rq_runtime(cfs_rq);
1337 
1338 	check_spread(cfs_rq, prev);
1339 	if (prev->on_rq) {
1340 		update_stats_wait_start(cfs_rq, prev);
1341 		/* Put 'current' back into the tree. */
1342 		__enqueue_entity(cfs_rq, prev);
1343 	}
1344 	cfs_rq->curr = NULL;
1345 }
1346 
1347 static void
1348 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1349 {
1350 	/*
1351 	 * Update run-time statistics of the 'current'.
1352 	 */
1353 	update_curr(cfs_rq);
1354 
1355 	/*
1356 	 * Update share accounting for long-running entities.
1357 	 */
1358 	update_entity_shares_tick(cfs_rq);
1359 
1360 #ifdef CONFIG_SCHED_HRTICK
1361 	/*
1362 	 * queued ticks are scheduled to match the slice, so don't bother
1363 	 * validating it and just reschedule.
1364 	 */
1365 	if (queued) {
1366 		resched_task(rq_of(cfs_rq)->curr);
1367 		return;
1368 	}
1369 	/*
1370 	 * don't let the period tick interfere with the hrtick preemption
1371 	 */
1372 	if (!sched_feat(DOUBLE_TICK) &&
1373 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1374 		return;
1375 #endif
1376 
1377 	if (cfs_rq->nr_running > 1)
1378 		check_preempt_tick(cfs_rq, curr);
1379 }
1380 
1381 
1382 /**************************************************
1383  * CFS bandwidth control machinery
1384  */
1385 
1386 #ifdef CONFIG_CFS_BANDWIDTH
1387 
1388 #ifdef HAVE_JUMP_LABEL
1389 static struct static_key __cfs_bandwidth_used;
1390 
1391 static inline bool cfs_bandwidth_used(void)
1392 {
1393 	return static_key_false(&__cfs_bandwidth_used);
1394 }
1395 
1396 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1397 {
1398 	/* only need to count groups transitioning between enabled/!enabled */
1399 	if (enabled && !was_enabled)
1400 		static_key_slow_inc(&__cfs_bandwidth_used);
1401 	else if (!enabled && was_enabled)
1402 		static_key_slow_dec(&__cfs_bandwidth_used);
1403 }
1404 #else /* HAVE_JUMP_LABEL */
1405 static bool cfs_bandwidth_used(void)
1406 {
1407 	return true;
1408 }
1409 
1410 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1411 #endif /* HAVE_JUMP_LABEL */
1412 
1413 /*
1414  * default period for cfs group bandwidth.
1415  * default: 0.1s, units: nanoseconds
1416  */
1417 static inline u64 default_cfs_period(void)
1418 {
1419 	return 100000000ULL;
1420 }
1421 
1422 static inline u64 sched_cfs_bandwidth_slice(void)
1423 {
1424 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1425 }
1426 
1427 /*
1428  * Replenish runtime according to assigned quota and update expiration time.
1429  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1430  * additional synchronization around rq->lock.
1431  *
1432  * requires cfs_b->lock
1433  */
1434 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1435 {
1436 	u64 now;
1437 
1438 	if (cfs_b->quota == RUNTIME_INF)
1439 		return;
1440 
1441 	now = sched_clock_cpu(smp_processor_id());
1442 	cfs_b->runtime = cfs_b->quota;
1443 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1444 }
1445 
1446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1447 {
1448 	return &tg->cfs_bandwidth;
1449 }
1450 
1451 /* returns 0 on failure to allocate runtime */
1452 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1453 {
1454 	struct task_group *tg = cfs_rq->tg;
1455 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1456 	u64 amount = 0, min_amount, expires;
1457 
1458 	/* note: this is a positive sum as runtime_remaining <= 0 */
1459 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1460 
1461 	raw_spin_lock(&cfs_b->lock);
1462 	if (cfs_b->quota == RUNTIME_INF)
1463 		amount = min_amount;
1464 	else {
1465 		/*
1466 		 * If the bandwidth pool has become inactive, then at least one
1467 		 * period must have elapsed since the last consumption.
1468 		 * Refresh the global state and ensure bandwidth timer becomes
1469 		 * active.
1470 		 */
1471 		if (!cfs_b->timer_active) {
1472 			__refill_cfs_bandwidth_runtime(cfs_b);
1473 			__start_cfs_bandwidth(cfs_b);
1474 		}
1475 
1476 		if (cfs_b->runtime > 0) {
1477 			amount = min(cfs_b->runtime, min_amount);
1478 			cfs_b->runtime -= amount;
1479 			cfs_b->idle = 0;
1480 		}
1481 	}
1482 	expires = cfs_b->runtime_expires;
1483 	raw_spin_unlock(&cfs_b->lock);
1484 
1485 	cfs_rq->runtime_remaining += amount;
1486 	/*
1487 	 * we may have advanced our local expiration to account for allowed
1488 	 * spread between our sched_clock and the one on which runtime was
1489 	 * issued.
1490 	 */
1491 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1492 		cfs_rq->runtime_expires = expires;
1493 
1494 	return cfs_rq->runtime_remaining > 0;
1495 }
1496 
1497 /*
1498  * Note: This depends on the synchronization provided by sched_clock and the
1499  * fact that rq->clock snapshots this value.
1500  */
1501 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1502 {
1503 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1504 	struct rq *rq = rq_of(cfs_rq);
1505 
1506 	/* if the deadline is ahead of our clock, nothing to do */
1507 	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1508 		return;
1509 
1510 	if (cfs_rq->runtime_remaining < 0)
1511 		return;
1512 
1513 	/*
1514 	 * If the local deadline has passed we have to consider the
1515 	 * possibility that our sched_clock is 'fast' and the global deadline
1516 	 * has not truly expired.
1517 	 *
1518 	 * Fortunately we can check determine whether this the case by checking
1519 	 * whether the global deadline has advanced.
1520 	 */
1521 
1522 	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1523 		/* extend local deadline, drift is bounded above by 2 ticks */
1524 		cfs_rq->runtime_expires += TICK_NSEC;
1525 	} else {
1526 		/* global deadline is ahead, expiration has passed */
1527 		cfs_rq->runtime_remaining = 0;
1528 	}
1529 }
1530 
1531 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1532 				     unsigned long delta_exec)
1533 {
1534 	/* dock delta_exec before expiring quota (as it could span periods) */
1535 	cfs_rq->runtime_remaining -= delta_exec;
1536 	expire_cfs_rq_runtime(cfs_rq);
1537 
1538 	if (likely(cfs_rq->runtime_remaining > 0))
1539 		return;
1540 
1541 	/*
1542 	 * if we're unable to extend our runtime we resched so that the active
1543 	 * hierarchy can be throttled
1544 	 */
1545 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1546 		resched_task(rq_of(cfs_rq)->curr);
1547 }
1548 
1549 static __always_inline
1550 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1551 {
1552 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1553 		return;
1554 
1555 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
1556 }
1557 
1558 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1559 {
1560 	return cfs_bandwidth_used() && cfs_rq->throttled;
1561 }
1562 
1563 /* check whether cfs_rq, or any parent, is throttled */
1564 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1565 {
1566 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
1567 }
1568 
1569 /*
1570  * Ensure that neither of the group entities corresponding to src_cpu or
1571  * dest_cpu are members of a throttled hierarchy when performing group
1572  * load-balance operations.
1573  */
1574 static inline int throttled_lb_pair(struct task_group *tg,
1575 				    int src_cpu, int dest_cpu)
1576 {
1577 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1578 
1579 	src_cfs_rq = tg->cfs_rq[src_cpu];
1580 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
1581 
1582 	return throttled_hierarchy(src_cfs_rq) ||
1583 	       throttled_hierarchy(dest_cfs_rq);
1584 }
1585 
1586 /* updated child weight may affect parent so we have to do this bottom up */
1587 static int tg_unthrottle_up(struct task_group *tg, void *data)
1588 {
1589 	struct rq *rq = data;
1590 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1591 
1592 	cfs_rq->throttle_count--;
1593 #ifdef CONFIG_SMP
1594 	if (!cfs_rq->throttle_count) {
1595 		u64 delta = rq->clock_task - cfs_rq->load_stamp;
1596 
1597 		/* leaving throttled state, advance shares averaging windows */
1598 		cfs_rq->load_stamp += delta;
1599 		cfs_rq->load_last += delta;
1600 
1601 		/* update entity weight now that we are on_rq again */
1602 		update_cfs_shares(cfs_rq);
1603 	}
1604 #endif
1605 
1606 	return 0;
1607 }
1608 
1609 static int tg_throttle_down(struct task_group *tg, void *data)
1610 {
1611 	struct rq *rq = data;
1612 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1613 
1614 	/* group is entering throttled state, record last load */
1615 	if (!cfs_rq->throttle_count)
1616 		update_cfs_load(cfs_rq, 0);
1617 	cfs_rq->throttle_count++;
1618 
1619 	return 0;
1620 }
1621 
1622 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
1623 {
1624 	struct rq *rq = rq_of(cfs_rq);
1625 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1626 	struct sched_entity *se;
1627 	long task_delta, dequeue = 1;
1628 
1629 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1630 
1631 	/* account load preceding throttle */
1632 	rcu_read_lock();
1633 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1634 	rcu_read_unlock();
1635 
1636 	task_delta = cfs_rq->h_nr_running;
1637 	for_each_sched_entity(se) {
1638 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1639 		/* throttled entity or throttle-on-deactivate */
1640 		if (!se->on_rq)
1641 			break;
1642 
1643 		if (dequeue)
1644 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1645 		qcfs_rq->h_nr_running -= task_delta;
1646 
1647 		if (qcfs_rq->load.weight)
1648 			dequeue = 0;
1649 	}
1650 
1651 	if (!se)
1652 		rq->nr_running -= task_delta;
1653 
1654 	cfs_rq->throttled = 1;
1655 	cfs_rq->throttled_timestamp = rq->clock;
1656 	raw_spin_lock(&cfs_b->lock);
1657 	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1658 	raw_spin_unlock(&cfs_b->lock);
1659 }
1660 
1661 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1662 {
1663 	struct rq *rq = rq_of(cfs_rq);
1664 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1665 	struct sched_entity *se;
1666 	int enqueue = 1;
1667 	long task_delta;
1668 
1669 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1670 
1671 	cfs_rq->throttled = 0;
1672 	raw_spin_lock(&cfs_b->lock);
1673 	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
1674 	list_del_rcu(&cfs_rq->throttled_list);
1675 	raw_spin_unlock(&cfs_b->lock);
1676 	cfs_rq->throttled_timestamp = 0;
1677 
1678 	update_rq_clock(rq);
1679 	/* update hierarchical throttle state */
1680 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1681 
1682 	if (!cfs_rq->load.weight)
1683 		return;
1684 
1685 	task_delta = cfs_rq->h_nr_running;
1686 	for_each_sched_entity(se) {
1687 		if (se->on_rq)
1688 			enqueue = 0;
1689 
1690 		cfs_rq = cfs_rq_of(se);
1691 		if (enqueue)
1692 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1693 		cfs_rq->h_nr_running += task_delta;
1694 
1695 		if (cfs_rq_throttled(cfs_rq))
1696 			break;
1697 	}
1698 
1699 	if (!se)
1700 		rq->nr_running += task_delta;
1701 
1702 	/* determine whether we need to wake up potentially idle cpu */
1703 	if (rq->curr == rq->idle && rq->cfs.nr_running)
1704 		resched_task(rq->curr);
1705 }
1706 
1707 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1708 		u64 remaining, u64 expires)
1709 {
1710 	struct cfs_rq *cfs_rq;
1711 	u64 runtime = remaining;
1712 
1713 	rcu_read_lock();
1714 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1715 				throttled_list) {
1716 		struct rq *rq = rq_of(cfs_rq);
1717 
1718 		raw_spin_lock(&rq->lock);
1719 		if (!cfs_rq_throttled(cfs_rq))
1720 			goto next;
1721 
1722 		runtime = -cfs_rq->runtime_remaining + 1;
1723 		if (runtime > remaining)
1724 			runtime = remaining;
1725 		remaining -= runtime;
1726 
1727 		cfs_rq->runtime_remaining += runtime;
1728 		cfs_rq->runtime_expires = expires;
1729 
1730 		/* we check whether we're throttled above */
1731 		if (cfs_rq->runtime_remaining > 0)
1732 			unthrottle_cfs_rq(cfs_rq);
1733 
1734 next:
1735 		raw_spin_unlock(&rq->lock);
1736 
1737 		if (!remaining)
1738 			break;
1739 	}
1740 	rcu_read_unlock();
1741 
1742 	return remaining;
1743 }
1744 
1745 /*
1746  * Responsible for refilling a task_group's bandwidth and unthrottling its
1747  * cfs_rqs as appropriate. If there has been no activity within the last
1748  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1749  * used to track this state.
1750  */
1751 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1752 {
1753 	u64 runtime, runtime_expires;
1754 	int idle = 1, throttled;
1755 
1756 	raw_spin_lock(&cfs_b->lock);
1757 	/* no need to continue the timer with no bandwidth constraint */
1758 	if (cfs_b->quota == RUNTIME_INF)
1759 		goto out_unlock;
1760 
1761 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1762 	/* idle depends on !throttled (for the case of a large deficit) */
1763 	idle = cfs_b->idle && !throttled;
1764 	cfs_b->nr_periods += overrun;
1765 
1766 	/* if we're going inactive then everything else can be deferred */
1767 	if (idle)
1768 		goto out_unlock;
1769 
1770 	__refill_cfs_bandwidth_runtime(cfs_b);
1771 
1772 	if (!throttled) {
1773 		/* mark as potentially idle for the upcoming period */
1774 		cfs_b->idle = 1;
1775 		goto out_unlock;
1776 	}
1777 
1778 	/* account preceding periods in which throttling occurred */
1779 	cfs_b->nr_throttled += overrun;
1780 
1781 	/*
1782 	 * There are throttled entities so we must first use the new bandwidth
1783 	 * to unthrottle them before making it generally available.  This
1784 	 * ensures that all existing debts will be paid before a new cfs_rq is
1785 	 * allowed to run.
1786 	 */
1787 	runtime = cfs_b->runtime;
1788 	runtime_expires = cfs_b->runtime_expires;
1789 	cfs_b->runtime = 0;
1790 
1791 	/*
1792 	 * This check is repeated as we are holding onto the new bandwidth
1793 	 * while we unthrottle.  This can potentially race with an unthrottled
1794 	 * group trying to acquire new bandwidth from the global pool.
1795 	 */
1796 	while (throttled && runtime > 0) {
1797 		raw_spin_unlock(&cfs_b->lock);
1798 		/* we can't nest cfs_b->lock while distributing bandwidth */
1799 		runtime = distribute_cfs_runtime(cfs_b, runtime,
1800 						 runtime_expires);
1801 		raw_spin_lock(&cfs_b->lock);
1802 
1803 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1804 	}
1805 
1806 	/* return (any) remaining runtime */
1807 	cfs_b->runtime = runtime;
1808 	/*
1809 	 * While we are ensured activity in the period following an
1810 	 * unthrottle, this also covers the case in which the new bandwidth is
1811 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
1812 	 * timer to remain active while there are any throttled entities.)
1813 	 */
1814 	cfs_b->idle = 0;
1815 out_unlock:
1816 	if (idle)
1817 		cfs_b->timer_active = 0;
1818 	raw_spin_unlock(&cfs_b->lock);
1819 
1820 	return idle;
1821 }
1822 
1823 /* a cfs_rq won't donate quota below this amount */
1824 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1825 /* minimum remaining period time to redistribute slack quota */
1826 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1827 /* how long we wait to gather additional slack before distributing */
1828 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1829 
1830 /* are we near the end of the current quota period? */
1831 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1832 {
1833 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
1834 	u64 remaining;
1835 
1836 	/* if the call-back is running a quota refresh is already occurring */
1837 	if (hrtimer_callback_running(refresh_timer))
1838 		return 1;
1839 
1840 	/* is a quota refresh about to occur? */
1841 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1842 	if (remaining < min_expire)
1843 		return 1;
1844 
1845 	return 0;
1846 }
1847 
1848 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1849 {
1850 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1851 
1852 	/* if there's a quota refresh soon don't bother with slack */
1853 	if (runtime_refresh_within(cfs_b, min_left))
1854 		return;
1855 
1856 	start_bandwidth_timer(&cfs_b->slack_timer,
1857 				ns_to_ktime(cfs_bandwidth_slack_period));
1858 }
1859 
1860 /* we know any runtime found here is valid as update_curr() precedes return */
1861 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1862 {
1863 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1864 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1865 
1866 	if (slack_runtime <= 0)
1867 		return;
1868 
1869 	raw_spin_lock(&cfs_b->lock);
1870 	if (cfs_b->quota != RUNTIME_INF &&
1871 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1872 		cfs_b->runtime += slack_runtime;
1873 
1874 		/* we are under rq->lock, defer unthrottling using a timer */
1875 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1876 		    !list_empty(&cfs_b->throttled_cfs_rq))
1877 			start_cfs_slack_bandwidth(cfs_b);
1878 	}
1879 	raw_spin_unlock(&cfs_b->lock);
1880 
1881 	/* even if it's not valid for return we don't want to try again */
1882 	cfs_rq->runtime_remaining -= slack_runtime;
1883 }
1884 
1885 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1886 {
1887 	if (!cfs_bandwidth_used())
1888 		return;
1889 
1890 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
1891 		return;
1892 
1893 	__return_cfs_rq_runtime(cfs_rq);
1894 }
1895 
1896 /*
1897  * This is done with a timer (instead of inline with bandwidth return) since
1898  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1899  */
1900 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1901 {
1902 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1903 	u64 expires;
1904 
1905 	/* confirm we're still not at a refresh boundary */
1906 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1907 		return;
1908 
1909 	raw_spin_lock(&cfs_b->lock);
1910 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1911 		runtime = cfs_b->runtime;
1912 		cfs_b->runtime = 0;
1913 	}
1914 	expires = cfs_b->runtime_expires;
1915 	raw_spin_unlock(&cfs_b->lock);
1916 
1917 	if (!runtime)
1918 		return;
1919 
1920 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1921 
1922 	raw_spin_lock(&cfs_b->lock);
1923 	if (expires == cfs_b->runtime_expires)
1924 		cfs_b->runtime = runtime;
1925 	raw_spin_unlock(&cfs_b->lock);
1926 }
1927 
1928 /*
1929  * When a group wakes up we want to make sure that its quota is not already
1930  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1931  * runtime as update_curr() throttling can not not trigger until it's on-rq.
1932  */
1933 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1934 {
1935 	if (!cfs_bandwidth_used())
1936 		return;
1937 
1938 	/* an active group must be handled by the update_curr()->put() path */
1939 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1940 		return;
1941 
1942 	/* ensure the group is not already throttled */
1943 	if (cfs_rq_throttled(cfs_rq))
1944 		return;
1945 
1946 	/* update runtime allocation */
1947 	account_cfs_rq_runtime(cfs_rq, 0);
1948 	if (cfs_rq->runtime_remaining <= 0)
1949 		throttle_cfs_rq(cfs_rq);
1950 }
1951 
1952 /* conditionally throttle active cfs_rq's from put_prev_entity() */
1953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1954 {
1955 	if (!cfs_bandwidth_used())
1956 		return;
1957 
1958 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1959 		return;
1960 
1961 	/*
1962 	 * it's possible for a throttled entity to be forced into a running
1963 	 * state (e.g. set_curr_task), in this case we're finished.
1964 	 */
1965 	if (cfs_rq_throttled(cfs_rq))
1966 		return;
1967 
1968 	throttle_cfs_rq(cfs_rq);
1969 }
1970 
1971 static inline u64 default_cfs_period(void);
1972 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
1973 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
1974 
1975 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
1976 {
1977 	struct cfs_bandwidth *cfs_b =
1978 		container_of(timer, struct cfs_bandwidth, slack_timer);
1979 	do_sched_cfs_slack_timer(cfs_b);
1980 
1981 	return HRTIMER_NORESTART;
1982 }
1983 
1984 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
1985 {
1986 	struct cfs_bandwidth *cfs_b =
1987 		container_of(timer, struct cfs_bandwidth, period_timer);
1988 	ktime_t now;
1989 	int overrun;
1990 	int idle = 0;
1991 
1992 	for (;;) {
1993 		now = hrtimer_cb_get_time(timer);
1994 		overrun = hrtimer_forward(timer, now, cfs_b->period);
1995 
1996 		if (!overrun)
1997 			break;
1998 
1999 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
2000 	}
2001 
2002 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2003 }
2004 
2005 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2006 {
2007 	raw_spin_lock_init(&cfs_b->lock);
2008 	cfs_b->runtime = 0;
2009 	cfs_b->quota = RUNTIME_INF;
2010 	cfs_b->period = ns_to_ktime(default_cfs_period());
2011 
2012 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2013 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2014 	cfs_b->period_timer.function = sched_cfs_period_timer;
2015 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2016 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
2017 }
2018 
2019 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2020 {
2021 	cfs_rq->runtime_enabled = 0;
2022 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
2023 }
2024 
2025 /* requires cfs_b->lock, may release to reprogram timer */
2026 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2027 {
2028 	/*
2029 	 * The timer may be active because we're trying to set a new bandwidth
2030 	 * period or because we're racing with the tear-down path
2031 	 * (timer_active==0 becomes visible before the hrtimer call-back
2032 	 * terminates).  In either case we ensure that it's re-programmed
2033 	 */
2034 	while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2035 		raw_spin_unlock(&cfs_b->lock);
2036 		/* ensure cfs_b->lock is available while we wait */
2037 		hrtimer_cancel(&cfs_b->period_timer);
2038 
2039 		raw_spin_lock(&cfs_b->lock);
2040 		/* if someone else restarted the timer then we're done */
2041 		if (cfs_b->timer_active)
2042 			return;
2043 	}
2044 
2045 	cfs_b->timer_active = 1;
2046 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2047 }
2048 
2049 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2050 {
2051 	hrtimer_cancel(&cfs_b->period_timer);
2052 	hrtimer_cancel(&cfs_b->slack_timer);
2053 }
2054 
2055 void unthrottle_offline_cfs_rqs(struct rq *rq)
2056 {
2057 	struct cfs_rq *cfs_rq;
2058 
2059 	for_each_leaf_cfs_rq(rq, cfs_rq) {
2060 		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2061 
2062 		if (!cfs_rq->runtime_enabled)
2063 			continue;
2064 
2065 		/*
2066 		 * clock_task is not advancing so we just need to make sure
2067 		 * there's some valid quota amount
2068 		 */
2069 		cfs_rq->runtime_remaining = cfs_b->quota;
2070 		if (cfs_rq_throttled(cfs_rq))
2071 			unthrottle_cfs_rq(cfs_rq);
2072 	}
2073 }
2074 
2075 #else /* CONFIG_CFS_BANDWIDTH */
2076 static __always_inline
2077 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
2078 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2079 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2080 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2081 
2082 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2083 {
2084 	return 0;
2085 }
2086 
2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2088 {
2089 	return 0;
2090 }
2091 
2092 static inline int throttled_lb_pair(struct task_group *tg,
2093 				    int src_cpu, int dest_cpu)
2094 {
2095 	return 0;
2096 }
2097 
2098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2099 
2100 #ifdef CONFIG_FAIR_GROUP_SCHED
2101 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2102 #endif
2103 
2104 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2105 {
2106 	return NULL;
2107 }
2108 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2109 void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2110 
2111 #endif /* CONFIG_CFS_BANDWIDTH */
2112 
2113 /**************************************************
2114  * CFS operations on tasks:
2115  */
2116 
2117 #ifdef CONFIG_SCHED_HRTICK
2118 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2119 {
2120 	struct sched_entity *se = &p->se;
2121 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2122 
2123 	WARN_ON(task_rq(p) != rq);
2124 
2125 	if (cfs_rq->nr_running > 1) {
2126 		u64 slice = sched_slice(cfs_rq, se);
2127 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2128 		s64 delta = slice - ran;
2129 
2130 		if (delta < 0) {
2131 			if (rq->curr == p)
2132 				resched_task(p);
2133 			return;
2134 		}
2135 
2136 		/*
2137 		 * Don't schedule slices shorter than 10000ns, that just
2138 		 * doesn't make sense. Rely on vruntime for fairness.
2139 		 */
2140 		if (rq->curr != p)
2141 			delta = max_t(s64, 10000LL, delta);
2142 
2143 		hrtick_start(rq, delta);
2144 	}
2145 }
2146 
2147 /*
2148  * called from enqueue/dequeue and updates the hrtick when the
2149  * current task is from our class and nr_running is low enough
2150  * to matter.
2151  */
2152 static void hrtick_update(struct rq *rq)
2153 {
2154 	struct task_struct *curr = rq->curr;
2155 
2156 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2157 		return;
2158 
2159 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2160 		hrtick_start_fair(rq, curr);
2161 }
2162 #else /* !CONFIG_SCHED_HRTICK */
2163 static inline void
2164 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2165 {
2166 }
2167 
2168 static inline void hrtick_update(struct rq *rq)
2169 {
2170 }
2171 #endif
2172 
2173 /*
2174  * The enqueue_task method is called before nr_running is
2175  * increased. Here we update the fair scheduling stats and
2176  * then put the task into the rbtree:
2177  */
2178 static void
2179 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2180 {
2181 	struct cfs_rq *cfs_rq;
2182 	struct sched_entity *se = &p->se;
2183 
2184 	for_each_sched_entity(se) {
2185 		if (se->on_rq)
2186 			break;
2187 		cfs_rq = cfs_rq_of(se);
2188 		enqueue_entity(cfs_rq, se, flags);
2189 
2190 		/*
2191 		 * end evaluation on encountering a throttled cfs_rq
2192 		 *
2193 		 * note: in the case of encountering a throttled cfs_rq we will
2194 		 * post the final h_nr_running increment below.
2195 		*/
2196 		if (cfs_rq_throttled(cfs_rq))
2197 			break;
2198 		cfs_rq->h_nr_running++;
2199 
2200 		flags = ENQUEUE_WAKEUP;
2201 	}
2202 
2203 	for_each_sched_entity(se) {
2204 		cfs_rq = cfs_rq_of(se);
2205 		cfs_rq->h_nr_running++;
2206 
2207 		if (cfs_rq_throttled(cfs_rq))
2208 			break;
2209 
2210 		update_cfs_load(cfs_rq, 0);
2211 		update_cfs_shares(cfs_rq);
2212 	}
2213 
2214 	if (!se)
2215 		inc_nr_running(rq);
2216 	hrtick_update(rq);
2217 }
2218 
2219 static void set_next_buddy(struct sched_entity *se);
2220 
2221 /*
2222  * The dequeue_task method is called before nr_running is
2223  * decreased. We remove the task from the rbtree and
2224  * update the fair scheduling stats:
2225  */
2226 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2227 {
2228 	struct cfs_rq *cfs_rq;
2229 	struct sched_entity *se = &p->se;
2230 	int task_sleep = flags & DEQUEUE_SLEEP;
2231 
2232 	for_each_sched_entity(se) {
2233 		cfs_rq = cfs_rq_of(se);
2234 		dequeue_entity(cfs_rq, se, flags);
2235 
2236 		/*
2237 		 * end evaluation on encountering a throttled cfs_rq
2238 		 *
2239 		 * note: in the case of encountering a throttled cfs_rq we will
2240 		 * post the final h_nr_running decrement below.
2241 		*/
2242 		if (cfs_rq_throttled(cfs_rq))
2243 			break;
2244 		cfs_rq->h_nr_running--;
2245 
2246 		/* Don't dequeue parent if it has other entities besides us */
2247 		if (cfs_rq->load.weight) {
2248 			/*
2249 			 * Bias pick_next to pick a task from this cfs_rq, as
2250 			 * p is sleeping when it is within its sched_slice.
2251 			 */
2252 			if (task_sleep && parent_entity(se))
2253 				set_next_buddy(parent_entity(se));
2254 
2255 			/* avoid re-evaluating load for this entity */
2256 			se = parent_entity(se);
2257 			break;
2258 		}
2259 		flags |= DEQUEUE_SLEEP;
2260 	}
2261 
2262 	for_each_sched_entity(se) {
2263 		cfs_rq = cfs_rq_of(se);
2264 		cfs_rq->h_nr_running--;
2265 
2266 		if (cfs_rq_throttled(cfs_rq))
2267 			break;
2268 
2269 		update_cfs_load(cfs_rq, 0);
2270 		update_cfs_shares(cfs_rq);
2271 	}
2272 
2273 	if (!se)
2274 		dec_nr_running(rq);
2275 	hrtick_update(rq);
2276 }
2277 
2278 #ifdef CONFIG_SMP
2279 /* Used instead of source_load when we know the type == 0 */
2280 static unsigned long weighted_cpuload(const int cpu)
2281 {
2282 	return cpu_rq(cpu)->load.weight;
2283 }
2284 
2285 /*
2286  * Return a low guess at the load of a migration-source cpu weighted
2287  * according to the scheduling class and "nice" value.
2288  *
2289  * We want to under-estimate the load of migration sources, to
2290  * balance conservatively.
2291  */
2292 static unsigned long source_load(int cpu, int type)
2293 {
2294 	struct rq *rq = cpu_rq(cpu);
2295 	unsigned long total = weighted_cpuload(cpu);
2296 
2297 	if (type == 0 || !sched_feat(LB_BIAS))
2298 		return total;
2299 
2300 	return min(rq->cpu_load[type-1], total);
2301 }
2302 
2303 /*
2304  * Return a high guess at the load of a migration-target cpu weighted
2305  * according to the scheduling class and "nice" value.
2306  */
2307 static unsigned long target_load(int cpu, int type)
2308 {
2309 	struct rq *rq = cpu_rq(cpu);
2310 	unsigned long total = weighted_cpuload(cpu);
2311 
2312 	if (type == 0 || !sched_feat(LB_BIAS))
2313 		return total;
2314 
2315 	return max(rq->cpu_load[type-1], total);
2316 }
2317 
2318 static unsigned long power_of(int cpu)
2319 {
2320 	return cpu_rq(cpu)->cpu_power;
2321 }
2322 
2323 static unsigned long cpu_avg_load_per_task(int cpu)
2324 {
2325 	struct rq *rq = cpu_rq(cpu);
2326 	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2327 
2328 	if (nr_running)
2329 		return rq->load.weight / nr_running;
2330 
2331 	return 0;
2332 }
2333 
2334 
2335 static void task_waking_fair(struct task_struct *p)
2336 {
2337 	struct sched_entity *se = &p->se;
2338 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2339 	u64 min_vruntime;
2340 
2341 #ifndef CONFIG_64BIT
2342 	u64 min_vruntime_copy;
2343 
2344 	do {
2345 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
2346 		smp_rmb();
2347 		min_vruntime = cfs_rq->min_vruntime;
2348 	} while (min_vruntime != min_vruntime_copy);
2349 #else
2350 	min_vruntime = cfs_rq->min_vruntime;
2351 #endif
2352 
2353 	se->vruntime -= min_vruntime;
2354 }
2355 
2356 #ifdef CONFIG_FAIR_GROUP_SCHED
2357 /*
2358  * effective_load() calculates the load change as seen from the root_task_group
2359  *
2360  * Adding load to a group doesn't make a group heavier, but can cause movement
2361  * of group shares between cpus. Assuming the shares were perfectly aligned one
2362  * can calculate the shift in shares.
2363  *
2364  * Calculate the effective load difference if @wl is added (subtracted) to @tg
2365  * on this @cpu and results in a total addition (subtraction) of @wg to the
2366  * total group weight.
2367  *
2368  * Given a runqueue weight distribution (rw_i) we can compute a shares
2369  * distribution (s_i) using:
2370  *
2371  *   s_i = rw_i / \Sum rw_j						(1)
2372  *
2373  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2374  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2375  * shares distribution (s_i):
2376  *
2377  *   rw_i = {   2,   4,   1,   0 }
2378  *   s_i  = { 2/7, 4/7, 1/7,   0 }
2379  *
2380  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2381  * task used to run on and the CPU the waker is running on), we need to
2382  * compute the effect of waking a task on either CPU and, in case of a sync
2383  * wakeup, compute the effect of the current task going to sleep.
2384  *
2385  * So for a change of @wl to the local @cpu with an overall group weight change
2386  * of @wl we can compute the new shares distribution (s'_i) using:
2387  *
2388  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
2389  *
2390  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2391  * differences in waking a task to CPU 0. The additional task changes the
2392  * weight and shares distributions like:
2393  *
2394  *   rw'_i = {   3,   4,   1,   0 }
2395  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
2396  *
2397  * We can then compute the difference in effective weight by using:
2398  *
2399  *   dw_i = S * (s'_i - s_i)						(3)
2400  *
2401  * Where 'S' is the group weight as seen by its parent.
2402  *
2403  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2404  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2405  * 4/7) times the weight of the group.
2406  */
2407 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2408 {
2409 	struct sched_entity *se = tg->se[cpu];
2410 
2411 	if (!tg->parent)	/* the trivial, non-cgroup case */
2412 		return wl;
2413 
2414 	for_each_sched_entity(se) {
2415 		long w, W;
2416 
2417 		tg = se->my_q->tg;
2418 
2419 		/*
2420 		 * W = @wg + \Sum rw_j
2421 		 */
2422 		W = wg + calc_tg_weight(tg, se->my_q);
2423 
2424 		/*
2425 		 * w = rw_i + @wl
2426 		 */
2427 		w = se->my_q->load.weight + wl;
2428 
2429 		/*
2430 		 * wl = S * s'_i; see (2)
2431 		 */
2432 		if (W > 0 && w < W)
2433 			wl = (w * tg->shares) / W;
2434 		else
2435 			wl = tg->shares;
2436 
2437 		/*
2438 		 * Per the above, wl is the new se->load.weight value; since
2439 		 * those are clipped to [MIN_SHARES, ...) do so now. See
2440 		 * calc_cfs_shares().
2441 		 */
2442 		if (wl < MIN_SHARES)
2443 			wl = MIN_SHARES;
2444 
2445 		/*
2446 		 * wl = dw_i = S * (s'_i - s_i); see (3)
2447 		 */
2448 		wl -= se->load.weight;
2449 
2450 		/*
2451 		 * Recursively apply this logic to all parent groups to compute
2452 		 * the final effective load change on the root group. Since
2453 		 * only the @tg group gets extra weight, all parent groups can
2454 		 * only redistribute existing shares. @wl is the shift in shares
2455 		 * resulting from this level per the above.
2456 		 */
2457 		wg = 0;
2458 	}
2459 
2460 	return wl;
2461 }
2462 #else
2463 
2464 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2465 		unsigned long wl, unsigned long wg)
2466 {
2467 	return wl;
2468 }
2469 
2470 #endif
2471 
2472 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2473 {
2474 	s64 this_load, load;
2475 	int idx, this_cpu, prev_cpu;
2476 	unsigned long tl_per_task;
2477 	struct task_group *tg;
2478 	unsigned long weight;
2479 	int balanced;
2480 
2481 	idx	  = sd->wake_idx;
2482 	this_cpu  = smp_processor_id();
2483 	prev_cpu  = task_cpu(p);
2484 	load	  = source_load(prev_cpu, idx);
2485 	this_load = target_load(this_cpu, idx);
2486 
2487 	/*
2488 	 * If sync wakeup then subtract the (maximum possible)
2489 	 * effect of the currently running task from the load
2490 	 * of the current CPU:
2491 	 */
2492 	if (sync) {
2493 		tg = task_group(current);
2494 		weight = current->se.load.weight;
2495 
2496 		this_load += effective_load(tg, this_cpu, -weight, -weight);
2497 		load += effective_load(tg, prev_cpu, 0, -weight);
2498 	}
2499 
2500 	tg = task_group(p);
2501 	weight = p->se.load.weight;
2502 
2503 	/*
2504 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2505 	 * due to the sync cause above having dropped this_load to 0, we'll
2506 	 * always have an imbalance, but there's really nothing you can do
2507 	 * about that, so that's good too.
2508 	 *
2509 	 * Otherwise check if either cpus are near enough in load to allow this
2510 	 * task to be woken on this_cpu.
2511 	 */
2512 	if (this_load > 0) {
2513 		s64 this_eff_load, prev_eff_load;
2514 
2515 		this_eff_load = 100;
2516 		this_eff_load *= power_of(prev_cpu);
2517 		this_eff_load *= this_load +
2518 			effective_load(tg, this_cpu, weight, weight);
2519 
2520 		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2521 		prev_eff_load *= power_of(this_cpu);
2522 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2523 
2524 		balanced = this_eff_load <= prev_eff_load;
2525 	} else
2526 		balanced = true;
2527 
2528 	/*
2529 	 * If the currently running task will sleep within
2530 	 * a reasonable amount of time then attract this newly
2531 	 * woken task:
2532 	 */
2533 	if (sync && balanced)
2534 		return 1;
2535 
2536 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2537 	tl_per_task = cpu_avg_load_per_task(this_cpu);
2538 
2539 	if (balanced ||
2540 	    (this_load <= load &&
2541 	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2542 		/*
2543 		 * This domain has SD_WAKE_AFFINE and
2544 		 * p is cache cold in this domain, and
2545 		 * there is no bad imbalance.
2546 		 */
2547 		schedstat_inc(sd, ttwu_move_affine);
2548 		schedstat_inc(p, se.statistics.nr_wakeups_affine);
2549 
2550 		return 1;
2551 	}
2552 	return 0;
2553 }
2554 
2555 /*
2556  * find_idlest_group finds and returns the least busy CPU group within the
2557  * domain.
2558  */
2559 static struct sched_group *
2560 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2561 		  int this_cpu, int load_idx)
2562 {
2563 	struct sched_group *idlest = NULL, *group = sd->groups;
2564 	unsigned long min_load = ULONG_MAX, this_load = 0;
2565 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
2566 
2567 	do {
2568 		unsigned long load, avg_load;
2569 		int local_group;
2570 		int i;
2571 
2572 		/* Skip over this group if it has no CPUs allowed */
2573 		if (!cpumask_intersects(sched_group_cpus(group),
2574 					tsk_cpus_allowed(p)))
2575 			continue;
2576 
2577 		local_group = cpumask_test_cpu(this_cpu,
2578 					       sched_group_cpus(group));
2579 
2580 		/* Tally up the load of all CPUs in the group */
2581 		avg_load = 0;
2582 
2583 		for_each_cpu(i, sched_group_cpus(group)) {
2584 			/* Bias balancing toward cpus of our domain */
2585 			if (local_group)
2586 				load = source_load(i, load_idx);
2587 			else
2588 				load = target_load(i, load_idx);
2589 
2590 			avg_load += load;
2591 		}
2592 
2593 		/* Adjust by relative CPU power of the group */
2594 		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2595 
2596 		if (local_group) {
2597 			this_load = avg_load;
2598 		} else if (avg_load < min_load) {
2599 			min_load = avg_load;
2600 			idlest = group;
2601 		}
2602 	} while (group = group->next, group != sd->groups);
2603 
2604 	if (!idlest || 100*this_load < imbalance*min_load)
2605 		return NULL;
2606 	return idlest;
2607 }
2608 
2609 /*
2610  * find_idlest_cpu - find the idlest cpu among the cpus in group.
2611  */
2612 static int
2613 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2614 {
2615 	unsigned long load, min_load = ULONG_MAX;
2616 	int idlest = -1;
2617 	int i;
2618 
2619 	/* Traverse only the allowed CPUs */
2620 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
2621 		load = weighted_cpuload(i);
2622 
2623 		if (load < min_load || (load == min_load && i == this_cpu)) {
2624 			min_load = load;
2625 			idlest = i;
2626 		}
2627 	}
2628 
2629 	return idlest;
2630 }
2631 
2632 /*
2633  * Try and locate an idle CPU in the sched_domain.
2634  */
2635 static int select_idle_sibling(struct task_struct *p, int target)
2636 {
2637 	int cpu = smp_processor_id();
2638 	int prev_cpu = task_cpu(p);
2639 	struct sched_domain *sd;
2640 
2641 	/*
2642 	 * If the task is going to be woken-up on this cpu and if it is
2643 	 * already idle, then it is the right target.
2644 	 */
2645 	if (target == cpu && idle_cpu(cpu))
2646 		return cpu;
2647 
2648 	/*
2649 	 * If the task is going to be woken-up on the cpu where it previously
2650 	 * ran and if it is currently idle, then it the right target.
2651 	 */
2652 	if (target == prev_cpu && idle_cpu(prev_cpu))
2653 		return prev_cpu;
2654 
2655 	/*
2656 	 * Otherwise, check assigned siblings to find an elegible idle cpu.
2657 	 */
2658 	sd = rcu_dereference(per_cpu(sd_llc, target));
2659 
2660 	for_each_lower_domain(sd) {
2661 		if (!cpumask_test_cpu(sd->idle_buddy, tsk_cpus_allowed(p)))
2662 			continue;
2663 		if (idle_cpu(sd->idle_buddy))
2664 			return sd->idle_buddy;
2665 	}
2666 
2667 	return target;
2668 }
2669 
2670 /*
2671  * sched_balance_self: balance the current task (running on cpu) in domains
2672  * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2673  * SD_BALANCE_EXEC.
2674  *
2675  * Balance, ie. select the least loaded group.
2676  *
2677  * Returns the target CPU number, or the same CPU if no balancing is needed.
2678  *
2679  * preempt must be disabled.
2680  */
2681 static int
2682 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
2683 {
2684 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
2685 	int cpu = smp_processor_id();
2686 	int prev_cpu = task_cpu(p);
2687 	int new_cpu = cpu;
2688 	int want_affine = 0;
2689 	int want_sd = 1;
2690 	int sync = wake_flags & WF_SYNC;
2691 
2692 	if (p->nr_cpus_allowed == 1)
2693 		return prev_cpu;
2694 
2695 	if (sd_flag & SD_BALANCE_WAKE) {
2696 		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
2697 			want_affine = 1;
2698 		new_cpu = prev_cpu;
2699 	}
2700 
2701 	rcu_read_lock();
2702 	for_each_domain(cpu, tmp) {
2703 		if (!(tmp->flags & SD_LOAD_BALANCE))
2704 			continue;
2705 
2706 		/*
2707 		 * If power savings logic is enabled for a domain, see if we
2708 		 * are not overloaded, if so, don't balance wider.
2709 		 */
2710 		if (tmp->flags & (SD_PREFER_LOCAL)) {
2711 			unsigned long power = 0;
2712 			unsigned long nr_running = 0;
2713 			unsigned long capacity;
2714 			int i;
2715 
2716 			for_each_cpu(i, sched_domain_span(tmp)) {
2717 				power += power_of(i);
2718 				nr_running += cpu_rq(i)->cfs.nr_running;
2719 			}
2720 
2721 			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
2722 
2723 			if (nr_running < capacity)
2724 				want_sd = 0;
2725 		}
2726 
2727 		/*
2728 		 * If both cpu and prev_cpu are part of this domain,
2729 		 * cpu is a valid SD_WAKE_AFFINE target.
2730 		 */
2731 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2732 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2733 			affine_sd = tmp;
2734 			want_affine = 0;
2735 		}
2736 
2737 		if (!want_sd && !want_affine)
2738 			break;
2739 
2740 		if (!(tmp->flags & sd_flag))
2741 			continue;
2742 
2743 		if (want_sd)
2744 			sd = tmp;
2745 	}
2746 
2747 	if (affine_sd) {
2748 		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
2749 			prev_cpu = cpu;
2750 
2751 		new_cpu = select_idle_sibling(p, prev_cpu);
2752 		goto unlock;
2753 	}
2754 
2755 	while (sd) {
2756 		int load_idx = sd->forkexec_idx;
2757 		struct sched_group *group;
2758 		int weight;
2759 
2760 		if (!(sd->flags & sd_flag)) {
2761 			sd = sd->child;
2762 			continue;
2763 		}
2764 
2765 		if (sd_flag & SD_BALANCE_WAKE)
2766 			load_idx = sd->wake_idx;
2767 
2768 		group = find_idlest_group(sd, p, cpu, load_idx);
2769 		if (!group) {
2770 			sd = sd->child;
2771 			continue;
2772 		}
2773 
2774 		new_cpu = find_idlest_cpu(group, p, cpu);
2775 		if (new_cpu == -1 || new_cpu == cpu) {
2776 			/* Now try balancing at a lower domain level of cpu */
2777 			sd = sd->child;
2778 			continue;
2779 		}
2780 
2781 		/* Now try balancing at a lower domain level of new_cpu */
2782 		cpu = new_cpu;
2783 		weight = sd->span_weight;
2784 		sd = NULL;
2785 		for_each_domain(cpu, tmp) {
2786 			if (weight <= tmp->span_weight)
2787 				break;
2788 			if (tmp->flags & sd_flag)
2789 				sd = tmp;
2790 		}
2791 		/* while loop will break here if sd == NULL */
2792 	}
2793 unlock:
2794 	rcu_read_unlock();
2795 
2796 	return new_cpu;
2797 }
2798 #endif /* CONFIG_SMP */
2799 
2800 static unsigned long
2801 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
2802 {
2803 	unsigned long gran = sysctl_sched_wakeup_granularity;
2804 
2805 	/*
2806 	 * Since its curr running now, convert the gran from real-time
2807 	 * to virtual-time in his units.
2808 	 *
2809 	 * By using 'se' instead of 'curr' we penalize light tasks, so
2810 	 * they get preempted easier. That is, if 'se' < 'curr' then
2811 	 * the resulting gran will be larger, therefore penalizing the
2812 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2813 	 * be smaller, again penalizing the lighter task.
2814 	 *
2815 	 * This is especially important for buddies when the leftmost
2816 	 * task is higher priority than the buddy.
2817 	 */
2818 	return calc_delta_fair(gran, se);
2819 }
2820 
2821 /*
2822  * Should 'se' preempt 'curr'.
2823  *
2824  *             |s1
2825  *        |s2
2826  *   |s3
2827  *         g
2828  *      |<--->|c
2829  *
2830  *  w(c, s1) = -1
2831  *  w(c, s2) =  0
2832  *  w(c, s3) =  1
2833  *
2834  */
2835 static int
2836 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2837 {
2838 	s64 gran, vdiff = curr->vruntime - se->vruntime;
2839 
2840 	if (vdiff <= 0)
2841 		return -1;
2842 
2843 	gran = wakeup_gran(curr, se);
2844 	if (vdiff > gran)
2845 		return 1;
2846 
2847 	return 0;
2848 }
2849 
2850 static void set_last_buddy(struct sched_entity *se)
2851 {
2852 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2853 		return;
2854 
2855 	for_each_sched_entity(se)
2856 		cfs_rq_of(se)->last = se;
2857 }
2858 
2859 static void set_next_buddy(struct sched_entity *se)
2860 {
2861 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2862 		return;
2863 
2864 	for_each_sched_entity(se)
2865 		cfs_rq_of(se)->next = se;
2866 }
2867 
2868 static void set_skip_buddy(struct sched_entity *se)
2869 {
2870 	for_each_sched_entity(se)
2871 		cfs_rq_of(se)->skip = se;
2872 }
2873 
2874 /*
2875  * Preempt the current task with a newly woken task if needed:
2876  */
2877 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2878 {
2879 	struct task_struct *curr = rq->curr;
2880 	struct sched_entity *se = &curr->se, *pse = &p->se;
2881 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2882 	int scale = cfs_rq->nr_running >= sched_nr_latency;
2883 	int next_buddy_marked = 0;
2884 
2885 	if (unlikely(se == pse))
2886 		return;
2887 
2888 	/*
2889 	 * This is possible from callers such as move_task(), in which we
2890 	 * unconditionally check_prempt_curr() after an enqueue (which may have
2891 	 * lead to a throttle).  This both saves work and prevents false
2892 	 * next-buddy nomination below.
2893 	 */
2894 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2895 		return;
2896 
2897 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
2898 		set_next_buddy(pse);
2899 		next_buddy_marked = 1;
2900 	}
2901 
2902 	/*
2903 	 * We can come here with TIF_NEED_RESCHED already set from new task
2904 	 * wake up path.
2905 	 *
2906 	 * Note: this also catches the edge-case of curr being in a throttled
2907 	 * group (e.g. via set_curr_task), since update_curr() (in the
2908 	 * enqueue of curr) will have resulted in resched being set.  This
2909 	 * prevents us from potentially nominating it as a false LAST_BUDDY
2910 	 * below.
2911 	 */
2912 	if (test_tsk_need_resched(curr))
2913 		return;
2914 
2915 	/* Idle tasks are by definition preempted by non-idle tasks. */
2916 	if (unlikely(curr->policy == SCHED_IDLE) &&
2917 	    likely(p->policy != SCHED_IDLE))
2918 		goto preempt;
2919 
2920 	/*
2921 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2922 	 * is driven by the tick):
2923 	 */
2924 	if (unlikely(p->policy != SCHED_NORMAL))
2925 		return;
2926 
2927 	find_matching_se(&se, &pse);
2928 	update_curr(cfs_rq_of(se));
2929 	BUG_ON(!pse);
2930 	if (wakeup_preempt_entity(se, pse) == 1) {
2931 		/*
2932 		 * Bias pick_next to pick the sched entity that is
2933 		 * triggering this preemption.
2934 		 */
2935 		if (!next_buddy_marked)
2936 			set_next_buddy(pse);
2937 		goto preempt;
2938 	}
2939 
2940 	return;
2941 
2942 preempt:
2943 	resched_task(curr);
2944 	/*
2945 	 * Only set the backward buddy when the current task is still
2946 	 * on the rq. This can happen when a wakeup gets interleaved
2947 	 * with schedule on the ->pre_schedule() or idle_balance()
2948 	 * point, either of which can * drop the rq lock.
2949 	 *
2950 	 * Also, during early boot the idle thread is in the fair class,
2951 	 * for obvious reasons its a bad idea to schedule back to it.
2952 	 */
2953 	if (unlikely(!se->on_rq || curr == rq->idle))
2954 		return;
2955 
2956 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2957 		set_last_buddy(se);
2958 }
2959 
2960 static struct task_struct *pick_next_task_fair(struct rq *rq)
2961 {
2962 	struct task_struct *p;
2963 	struct cfs_rq *cfs_rq = &rq->cfs;
2964 	struct sched_entity *se;
2965 
2966 	if (!cfs_rq->nr_running)
2967 		return NULL;
2968 
2969 	do {
2970 		se = pick_next_entity(cfs_rq);
2971 		set_next_entity(cfs_rq, se);
2972 		cfs_rq = group_cfs_rq(se);
2973 	} while (cfs_rq);
2974 
2975 	p = task_of(se);
2976 	if (hrtick_enabled(rq))
2977 		hrtick_start_fair(rq, p);
2978 
2979 	return p;
2980 }
2981 
2982 /*
2983  * Account for a descheduled task:
2984  */
2985 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
2986 {
2987 	struct sched_entity *se = &prev->se;
2988 	struct cfs_rq *cfs_rq;
2989 
2990 	for_each_sched_entity(se) {
2991 		cfs_rq = cfs_rq_of(se);
2992 		put_prev_entity(cfs_rq, se);
2993 	}
2994 }
2995 
2996 /*
2997  * sched_yield() is very simple
2998  *
2999  * The magic of dealing with the ->skip buddy is in pick_next_entity.
3000  */
3001 static void yield_task_fair(struct rq *rq)
3002 {
3003 	struct task_struct *curr = rq->curr;
3004 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3005 	struct sched_entity *se = &curr->se;
3006 
3007 	/*
3008 	 * Are we the only task in the tree?
3009 	 */
3010 	if (unlikely(rq->nr_running == 1))
3011 		return;
3012 
3013 	clear_buddies(cfs_rq, se);
3014 
3015 	if (curr->policy != SCHED_BATCH) {
3016 		update_rq_clock(rq);
3017 		/*
3018 		 * Update run-time statistics of the 'current'.
3019 		 */
3020 		update_curr(cfs_rq);
3021 		/*
3022 		 * Tell update_rq_clock() that we've just updated,
3023 		 * so we don't do microscopic update in schedule()
3024 		 * and double the fastpath cost.
3025 		 */
3026 		 rq->skip_clock_update = 1;
3027 	}
3028 
3029 	set_skip_buddy(se);
3030 }
3031 
3032 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3033 {
3034 	struct sched_entity *se = &p->se;
3035 
3036 	/* throttled hierarchies are not runnable */
3037 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3038 		return false;
3039 
3040 	/* Tell the scheduler that we'd really like pse to run next. */
3041 	set_next_buddy(se);
3042 
3043 	yield_task_fair(rq);
3044 
3045 	return true;
3046 }
3047 
3048 #ifdef CONFIG_SMP
3049 /**************************************************
3050  * Fair scheduling class load-balancing methods:
3051  */
3052 
3053 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3054 
3055 #define LBF_ALL_PINNED	0x01
3056 #define LBF_NEED_BREAK	0x02
3057 #define LBF_SOME_PINNED 0x04
3058 
3059 struct lb_env {
3060 	struct sched_domain	*sd;
3061 
3062 	struct rq		*src_rq;
3063 	int			src_cpu;
3064 
3065 	int			dst_cpu;
3066 	struct rq		*dst_rq;
3067 
3068 	struct cpumask		*dst_grpmask;
3069 	int			new_dst_cpu;
3070 	enum cpu_idle_type	idle;
3071 	long			imbalance;
3072 	/* The set of CPUs under consideration for load-balancing */
3073 	struct cpumask		*cpus;
3074 
3075 	unsigned int		flags;
3076 
3077 	unsigned int		loop;
3078 	unsigned int		loop_break;
3079 	unsigned int		loop_max;
3080 };
3081 
3082 /*
3083  * move_task - move a task from one runqueue to another runqueue.
3084  * Both runqueues must be locked.
3085  */
3086 static void move_task(struct task_struct *p, struct lb_env *env)
3087 {
3088 	deactivate_task(env->src_rq, p, 0);
3089 	set_task_cpu(p, env->dst_cpu);
3090 	activate_task(env->dst_rq, p, 0);
3091 	check_preempt_curr(env->dst_rq, p, 0);
3092 }
3093 
3094 /*
3095  * Is this task likely cache-hot:
3096  */
3097 static int
3098 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3099 {
3100 	s64 delta;
3101 
3102 	if (p->sched_class != &fair_sched_class)
3103 		return 0;
3104 
3105 	if (unlikely(p->policy == SCHED_IDLE))
3106 		return 0;
3107 
3108 	/*
3109 	 * Buddy candidates are cache hot:
3110 	 */
3111 	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3112 			(&p->se == cfs_rq_of(&p->se)->next ||
3113 			 &p->se == cfs_rq_of(&p->se)->last))
3114 		return 1;
3115 
3116 	if (sysctl_sched_migration_cost == -1)
3117 		return 1;
3118 	if (sysctl_sched_migration_cost == 0)
3119 		return 0;
3120 
3121 	delta = now - p->se.exec_start;
3122 
3123 	return delta < (s64)sysctl_sched_migration_cost;
3124 }
3125 
3126 /*
3127  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3128  */
3129 static
3130 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3131 {
3132 	int tsk_cache_hot = 0;
3133 	/*
3134 	 * We do not migrate tasks that are:
3135 	 * 1) running (obviously), or
3136 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3137 	 * 3) are cache-hot on their current CPU.
3138 	 */
3139 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3140 		int new_dst_cpu;
3141 
3142 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3143 
3144 		/*
3145 		 * Remember if this task can be migrated to any other cpu in
3146 		 * our sched_group. We may want to revisit it if we couldn't
3147 		 * meet load balance goals by pulling other tasks on src_cpu.
3148 		 *
3149 		 * Also avoid computing new_dst_cpu if we have already computed
3150 		 * one in current iteration.
3151 		 */
3152 		if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3153 			return 0;
3154 
3155 		new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3156 						tsk_cpus_allowed(p));
3157 		if (new_dst_cpu < nr_cpu_ids) {
3158 			env->flags |= LBF_SOME_PINNED;
3159 			env->new_dst_cpu = new_dst_cpu;
3160 		}
3161 		return 0;
3162 	}
3163 
3164 	/* Record that we found atleast one task that could run on dst_cpu */
3165 	env->flags &= ~LBF_ALL_PINNED;
3166 
3167 	if (task_running(env->src_rq, p)) {
3168 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3169 		return 0;
3170 	}
3171 
3172 	/*
3173 	 * Aggressive migration if:
3174 	 * 1) task is cache cold, or
3175 	 * 2) too many balance attempts have failed.
3176 	 */
3177 
3178 	tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3179 	if (!tsk_cache_hot ||
3180 		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3181 #ifdef CONFIG_SCHEDSTATS
3182 		if (tsk_cache_hot) {
3183 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3184 			schedstat_inc(p, se.statistics.nr_forced_migrations);
3185 		}
3186 #endif
3187 		return 1;
3188 	}
3189 
3190 	if (tsk_cache_hot) {
3191 		schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3192 		return 0;
3193 	}
3194 	return 1;
3195 }
3196 
3197 /*
3198  * move_one_task tries to move exactly one task from busiest to this_rq, as
3199  * part of active balancing operations within "domain".
3200  * Returns 1 if successful and 0 otherwise.
3201  *
3202  * Called with both runqueues locked.
3203  */
3204 static int move_one_task(struct lb_env *env)
3205 {
3206 	struct task_struct *p, *n;
3207 
3208 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3209 		if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3210 			continue;
3211 
3212 		if (!can_migrate_task(p, env))
3213 			continue;
3214 
3215 		move_task(p, env);
3216 		/*
3217 		 * Right now, this is only the second place move_task()
3218 		 * is called, so we can safely collect move_task()
3219 		 * stats here rather than inside move_task().
3220 		 */
3221 		schedstat_inc(env->sd, lb_gained[env->idle]);
3222 		return 1;
3223 	}
3224 	return 0;
3225 }
3226 
3227 static unsigned long task_h_load(struct task_struct *p);
3228 
3229 static const unsigned int sched_nr_migrate_break = 32;
3230 
3231 /*
3232  * move_tasks tries to move up to imbalance weighted load from busiest to
3233  * this_rq, as part of a balancing operation within domain "sd".
3234  * Returns 1 if successful and 0 otherwise.
3235  *
3236  * Called with both runqueues locked.
3237  */
3238 static int move_tasks(struct lb_env *env)
3239 {
3240 	struct list_head *tasks = &env->src_rq->cfs_tasks;
3241 	struct task_struct *p;
3242 	unsigned long load;
3243 	int pulled = 0;
3244 
3245 	if (env->imbalance <= 0)
3246 		return 0;
3247 
3248 	while (!list_empty(tasks)) {
3249 		p = list_first_entry(tasks, struct task_struct, se.group_node);
3250 
3251 		env->loop++;
3252 		/* We've more or less seen every task there is, call it quits */
3253 		if (env->loop > env->loop_max)
3254 			break;
3255 
3256 		/* take a breather every nr_migrate tasks */
3257 		if (env->loop > env->loop_break) {
3258 			env->loop_break += sched_nr_migrate_break;
3259 			env->flags |= LBF_NEED_BREAK;
3260 			break;
3261 		}
3262 
3263 		if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3264 			goto next;
3265 
3266 		load = task_h_load(p);
3267 
3268 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3269 			goto next;
3270 
3271 		if ((load / 2) > env->imbalance)
3272 			goto next;
3273 
3274 		if (!can_migrate_task(p, env))
3275 			goto next;
3276 
3277 		move_task(p, env);
3278 		pulled++;
3279 		env->imbalance -= load;
3280 
3281 #ifdef CONFIG_PREEMPT
3282 		/*
3283 		 * NEWIDLE balancing is a source of latency, so preemptible
3284 		 * kernels will stop after the first task is pulled to minimize
3285 		 * the critical section.
3286 		 */
3287 		if (env->idle == CPU_NEWLY_IDLE)
3288 			break;
3289 #endif
3290 
3291 		/*
3292 		 * We only want to steal up to the prescribed amount of
3293 		 * weighted load.
3294 		 */
3295 		if (env->imbalance <= 0)
3296 			break;
3297 
3298 		continue;
3299 next:
3300 		list_move_tail(&p->se.group_node, tasks);
3301 	}
3302 
3303 	/*
3304 	 * Right now, this is one of only two places move_task() is called,
3305 	 * so we can safely collect move_task() stats here rather than
3306 	 * inside move_task().
3307 	 */
3308 	schedstat_add(env->sd, lb_gained[env->idle], pulled);
3309 
3310 	return pulled;
3311 }
3312 
3313 #ifdef CONFIG_FAIR_GROUP_SCHED
3314 /*
3315  * update tg->load_weight by folding this cpu's load_avg
3316  */
3317 static int update_shares_cpu(struct task_group *tg, int cpu)
3318 {
3319 	struct cfs_rq *cfs_rq;
3320 	unsigned long flags;
3321 	struct rq *rq;
3322 
3323 	if (!tg->se[cpu])
3324 		return 0;
3325 
3326 	rq = cpu_rq(cpu);
3327 	cfs_rq = tg->cfs_rq[cpu];
3328 
3329 	raw_spin_lock_irqsave(&rq->lock, flags);
3330 
3331 	update_rq_clock(rq);
3332 	update_cfs_load(cfs_rq, 1);
3333 
3334 	/*
3335 	 * We need to update shares after updating tg->load_weight in
3336 	 * order to adjust the weight of groups with long running tasks.
3337 	 */
3338 	update_cfs_shares(cfs_rq);
3339 
3340 	raw_spin_unlock_irqrestore(&rq->lock, flags);
3341 
3342 	return 0;
3343 }
3344 
3345 static void update_shares(int cpu)
3346 {
3347 	struct cfs_rq *cfs_rq;
3348 	struct rq *rq = cpu_rq(cpu);
3349 
3350 	rcu_read_lock();
3351 	/*
3352 	 * Iterates the task_group tree in a bottom up fashion, see
3353 	 * list_add_leaf_cfs_rq() for details.
3354 	 */
3355 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3356 		/* throttled entities do not contribute to load */
3357 		if (throttled_hierarchy(cfs_rq))
3358 			continue;
3359 
3360 		update_shares_cpu(cfs_rq->tg, cpu);
3361 	}
3362 	rcu_read_unlock();
3363 }
3364 
3365 /*
3366  * Compute the cpu's hierarchical load factor for each task group.
3367  * This needs to be done in a top-down fashion because the load of a child
3368  * group is a fraction of its parents load.
3369  */
3370 static int tg_load_down(struct task_group *tg, void *data)
3371 {
3372 	unsigned long load;
3373 	long cpu = (long)data;
3374 
3375 	if (!tg->parent) {
3376 		load = cpu_rq(cpu)->load.weight;
3377 	} else {
3378 		load = tg->parent->cfs_rq[cpu]->h_load;
3379 		load *= tg->se[cpu]->load.weight;
3380 		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3381 	}
3382 
3383 	tg->cfs_rq[cpu]->h_load = load;
3384 
3385 	return 0;
3386 }
3387 
3388 static void update_h_load(long cpu)
3389 {
3390 	struct rq *rq = cpu_rq(cpu);
3391 	unsigned long now = jiffies;
3392 
3393 	if (rq->h_load_throttle == now)
3394 		return;
3395 
3396 	rq->h_load_throttle = now;
3397 
3398 	rcu_read_lock();
3399 	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3400 	rcu_read_unlock();
3401 }
3402 
3403 static unsigned long task_h_load(struct task_struct *p)
3404 {
3405 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
3406 	unsigned long load;
3407 
3408 	load = p->se.load.weight;
3409 	load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3410 
3411 	return load;
3412 }
3413 #else
3414 static inline void update_shares(int cpu)
3415 {
3416 }
3417 
3418 static inline void update_h_load(long cpu)
3419 {
3420 }
3421 
3422 static unsigned long task_h_load(struct task_struct *p)
3423 {
3424 	return p->se.load.weight;
3425 }
3426 #endif
3427 
3428 /********** Helpers for find_busiest_group ************************/
3429 /*
3430  * sd_lb_stats - Structure to store the statistics of a sched_domain
3431  * 		during load balancing.
3432  */
3433 struct sd_lb_stats {
3434 	struct sched_group *busiest; /* Busiest group in this sd */
3435 	struct sched_group *this;  /* Local group in this sd */
3436 	unsigned long total_load;  /* Total load of all groups in sd */
3437 	unsigned long total_pwr;   /*	Total power of all groups in sd */
3438 	unsigned long avg_load;	   /* Average load across all groups in sd */
3439 
3440 	/** Statistics of this group */
3441 	unsigned long this_load;
3442 	unsigned long this_load_per_task;
3443 	unsigned long this_nr_running;
3444 	unsigned long this_has_capacity;
3445 	unsigned int  this_idle_cpus;
3446 
3447 	/* Statistics of the busiest group */
3448 	unsigned int  busiest_idle_cpus;
3449 	unsigned long max_load;
3450 	unsigned long busiest_load_per_task;
3451 	unsigned long busiest_nr_running;
3452 	unsigned long busiest_group_capacity;
3453 	unsigned long busiest_has_capacity;
3454 	unsigned int  busiest_group_weight;
3455 
3456 	int group_imb; /* Is there imbalance in this sd */
3457 };
3458 
3459 /*
3460  * sg_lb_stats - stats of a sched_group required for load_balancing
3461  */
3462 struct sg_lb_stats {
3463 	unsigned long avg_load; /*Avg load across the CPUs of the group */
3464 	unsigned long group_load; /* Total load over the CPUs of the group */
3465 	unsigned long sum_nr_running; /* Nr tasks running in the group */
3466 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3467 	unsigned long group_capacity;
3468 	unsigned long idle_cpus;
3469 	unsigned long group_weight;
3470 	int group_imb; /* Is there an imbalance in the group ? */
3471 	int group_has_capacity; /* Is there extra capacity in the group? */
3472 };
3473 
3474 /**
3475  * get_sd_load_idx - Obtain the load index for a given sched domain.
3476  * @sd: The sched_domain whose load_idx is to be obtained.
3477  * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3478  */
3479 static inline int get_sd_load_idx(struct sched_domain *sd,
3480 					enum cpu_idle_type idle)
3481 {
3482 	int load_idx;
3483 
3484 	switch (idle) {
3485 	case CPU_NOT_IDLE:
3486 		load_idx = sd->busy_idx;
3487 		break;
3488 
3489 	case CPU_NEWLY_IDLE:
3490 		load_idx = sd->newidle_idx;
3491 		break;
3492 	default:
3493 		load_idx = sd->idle_idx;
3494 		break;
3495 	}
3496 
3497 	return load_idx;
3498 }
3499 
3500 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3501 {
3502 	return SCHED_POWER_SCALE;
3503 }
3504 
3505 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3506 {
3507 	return default_scale_freq_power(sd, cpu);
3508 }
3509 
3510 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3511 {
3512 	unsigned long weight = sd->span_weight;
3513 	unsigned long smt_gain = sd->smt_gain;
3514 
3515 	smt_gain /= weight;
3516 
3517 	return smt_gain;
3518 }
3519 
3520 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3521 {
3522 	return default_scale_smt_power(sd, cpu);
3523 }
3524 
3525 unsigned long scale_rt_power(int cpu)
3526 {
3527 	struct rq *rq = cpu_rq(cpu);
3528 	u64 total, available, age_stamp, avg;
3529 
3530 	/*
3531 	 * Since we're reading these variables without serialization make sure
3532 	 * we read them once before doing sanity checks on them.
3533 	 */
3534 	age_stamp = ACCESS_ONCE(rq->age_stamp);
3535 	avg = ACCESS_ONCE(rq->rt_avg);
3536 
3537 	total = sched_avg_period() + (rq->clock - age_stamp);
3538 
3539 	if (unlikely(total < avg)) {
3540 		/* Ensures that power won't end up being negative */
3541 		available = 0;
3542 	} else {
3543 		available = total - avg;
3544 	}
3545 
3546 	if (unlikely((s64)total < SCHED_POWER_SCALE))
3547 		total = SCHED_POWER_SCALE;
3548 
3549 	total >>= SCHED_POWER_SHIFT;
3550 
3551 	return div_u64(available, total);
3552 }
3553 
3554 static void update_cpu_power(struct sched_domain *sd, int cpu)
3555 {
3556 	unsigned long weight = sd->span_weight;
3557 	unsigned long power = SCHED_POWER_SCALE;
3558 	struct sched_group *sdg = sd->groups;
3559 
3560 	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3561 		if (sched_feat(ARCH_POWER))
3562 			power *= arch_scale_smt_power(sd, cpu);
3563 		else
3564 			power *= default_scale_smt_power(sd, cpu);
3565 
3566 		power >>= SCHED_POWER_SHIFT;
3567 	}
3568 
3569 	sdg->sgp->power_orig = power;
3570 
3571 	if (sched_feat(ARCH_POWER))
3572 		power *= arch_scale_freq_power(sd, cpu);
3573 	else
3574 		power *= default_scale_freq_power(sd, cpu);
3575 
3576 	power >>= SCHED_POWER_SHIFT;
3577 
3578 	power *= scale_rt_power(cpu);
3579 	power >>= SCHED_POWER_SHIFT;
3580 
3581 	if (!power)
3582 		power = 1;
3583 
3584 	cpu_rq(cpu)->cpu_power = power;
3585 	sdg->sgp->power = power;
3586 }
3587 
3588 void update_group_power(struct sched_domain *sd, int cpu)
3589 {
3590 	struct sched_domain *child = sd->child;
3591 	struct sched_group *group, *sdg = sd->groups;
3592 	unsigned long power;
3593 	unsigned long interval;
3594 
3595 	interval = msecs_to_jiffies(sd->balance_interval);
3596 	interval = clamp(interval, 1UL, max_load_balance_interval);
3597 	sdg->sgp->next_update = jiffies + interval;
3598 
3599 	if (!child) {
3600 		update_cpu_power(sd, cpu);
3601 		return;
3602 	}
3603 
3604 	power = 0;
3605 
3606 	if (child->flags & SD_OVERLAP) {
3607 		/*
3608 		 * SD_OVERLAP domains cannot assume that child groups
3609 		 * span the current group.
3610 		 */
3611 
3612 		for_each_cpu(cpu, sched_group_cpus(sdg))
3613 			power += power_of(cpu);
3614 	} else  {
3615 		/*
3616 		 * !SD_OVERLAP domains can assume that child groups
3617 		 * span the current group.
3618 		 */
3619 
3620 		group = child->groups;
3621 		do {
3622 			power += group->sgp->power;
3623 			group = group->next;
3624 		} while (group != child->groups);
3625 	}
3626 
3627 	sdg->sgp->power_orig = sdg->sgp->power = power;
3628 }
3629 
3630 /*
3631  * Try and fix up capacity for tiny siblings, this is needed when
3632  * things like SD_ASYM_PACKING need f_b_g to select another sibling
3633  * which on its own isn't powerful enough.
3634  *
3635  * See update_sd_pick_busiest() and check_asym_packing().
3636  */
3637 static inline int
3638 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3639 {
3640 	/*
3641 	 * Only siblings can have significantly less than SCHED_POWER_SCALE
3642 	 */
3643 	if (!(sd->flags & SD_SHARE_CPUPOWER))
3644 		return 0;
3645 
3646 	/*
3647 	 * If ~90% of the cpu_power is still there, we're good.
3648 	 */
3649 	if (group->sgp->power * 32 > group->sgp->power_orig * 29)
3650 		return 1;
3651 
3652 	return 0;
3653 }
3654 
3655 /**
3656  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3657  * @env: The load balancing environment.
3658  * @group: sched_group whose statistics are to be updated.
3659  * @load_idx: Load index of sched_domain of this_cpu for load calc.
3660  * @local_group: Does group contain this_cpu.
3661  * @cpus: Set of cpus considered for load balancing.
3662  * @balance: Should we balance.
3663  * @sgs: variable to hold the statistics for this group.
3664  */
3665 static inline void update_sg_lb_stats(struct lb_env *env,
3666 			struct sched_group *group, int load_idx,
3667 			int local_group, int *balance, struct sg_lb_stats *sgs)
3668 {
3669 	unsigned long nr_running, max_nr_running, min_nr_running;
3670 	unsigned long load, max_cpu_load, min_cpu_load;
3671 	unsigned int balance_cpu = -1, first_idle_cpu = 0;
3672 	unsigned long avg_load_per_task = 0;
3673 	int i;
3674 
3675 	if (local_group)
3676 		balance_cpu = group_balance_cpu(group);
3677 
3678 	/* Tally up the load of all CPUs in the group */
3679 	max_cpu_load = 0;
3680 	min_cpu_load = ~0UL;
3681 	max_nr_running = 0;
3682 	min_nr_running = ~0UL;
3683 
3684 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
3685 		struct rq *rq = cpu_rq(i);
3686 
3687 		nr_running = rq->nr_running;
3688 
3689 		/* Bias balancing toward cpus of our domain */
3690 		if (local_group) {
3691 			if (idle_cpu(i) && !first_idle_cpu &&
3692 					cpumask_test_cpu(i, sched_group_mask(group))) {
3693 				first_idle_cpu = 1;
3694 				balance_cpu = i;
3695 			}
3696 
3697 			load = target_load(i, load_idx);
3698 		} else {
3699 			load = source_load(i, load_idx);
3700 			if (load > max_cpu_load)
3701 				max_cpu_load = load;
3702 			if (min_cpu_load > load)
3703 				min_cpu_load = load;
3704 
3705 			if (nr_running > max_nr_running)
3706 				max_nr_running = nr_running;
3707 			if (min_nr_running > nr_running)
3708 				min_nr_running = nr_running;
3709 		}
3710 
3711 		sgs->group_load += load;
3712 		sgs->sum_nr_running += nr_running;
3713 		sgs->sum_weighted_load += weighted_cpuload(i);
3714 		if (idle_cpu(i))
3715 			sgs->idle_cpus++;
3716 	}
3717 
3718 	/*
3719 	 * First idle cpu or the first cpu(busiest) in this sched group
3720 	 * is eligible for doing load balancing at this and above
3721 	 * domains. In the newly idle case, we will allow all the cpu's
3722 	 * to do the newly idle load balance.
3723 	 */
3724 	if (local_group) {
3725 		if (env->idle != CPU_NEWLY_IDLE) {
3726 			if (balance_cpu != env->dst_cpu) {
3727 				*balance = 0;
3728 				return;
3729 			}
3730 			update_group_power(env->sd, env->dst_cpu);
3731 		} else if (time_after_eq(jiffies, group->sgp->next_update))
3732 			update_group_power(env->sd, env->dst_cpu);
3733 	}
3734 
3735 	/* Adjust by relative CPU power of the group */
3736 	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
3737 
3738 	/*
3739 	 * Consider the group unbalanced when the imbalance is larger
3740 	 * than the average weight of a task.
3741 	 *
3742 	 * APZ: with cgroup the avg task weight can vary wildly and
3743 	 *      might not be a suitable number - should we keep a
3744 	 *      normalized nr_running number somewhere that negates
3745 	 *      the hierarchy?
3746 	 */
3747 	if (sgs->sum_nr_running)
3748 		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
3749 
3750 	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
3751 	    (max_nr_running - min_nr_running) > 1)
3752 		sgs->group_imb = 1;
3753 
3754 	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
3755 						SCHED_POWER_SCALE);
3756 	if (!sgs->group_capacity)
3757 		sgs->group_capacity = fix_small_capacity(env->sd, group);
3758 	sgs->group_weight = group->group_weight;
3759 
3760 	if (sgs->group_capacity > sgs->sum_nr_running)
3761 		sgs->group_has_capacity = 1;
3762 }
3763 
3764 /**
3765  * update_sd_pick_busiest - return 1 on busiest group
3766  * @env: The load balancing environment.
3767  * @sds: sched_domain statistics
3768  * @sg: sched_group candidate to be checked for being the busiest
3769  * @sgs: sched_group statistics
3770  *
3771  * Determine if @sg is a busier group than the previously selected
3772  * busiest group.
3773  */
3774 static bool update_sd_pick_busiest(struct lb_env *env,
3775 				   struct sd_lb_stats *sds,
3776 				   struct sched_group *sg,
3777 				   struct sg_lb_stats *sgs)
3778 {
3779 	if (sgs->avg_load <= sds->max_load)
3780 		return false;
3781 
3782 	if (sgs->sum_nr_running > sgs->group_capacity)
3783 		return true;
3784 
3785 	if (sgs->group_imb)
3786 		return true;
3787 
3788 	/*
3789 	 * ASYM_PACKING needs to move all the work to the lowest
3790 	 * numbered CPUs in the group, therefore mark all groups
3791 	 * higher than ourself as busy.
3792 	 */
3793 	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3794 	    env->dst_cpu < group_first_cpu(sg)) {
3795 		if (!sds->busiest)
3796 			return true;
3797 
3798 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3799 			return true;
3800 	}
3801 
3802 	return false;
3803 }
3804 
3805 /**
3806  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
3807  * @env: The load balancing environment.
3808  * @cpus: Set of cpus considered for load balancing.
3809  * @balance: Should we balance.
3810  * @sds: variable to hold the statistics for this sched_domain.
3811  */
3812 static inline void update_sd_lb_stats(struct lb_env *env,
3813 					int *balance, struct sd_lb_stats *sds)
3814 {
3815 	struct sched_domain *child = env->sd->child;
3816 	struct sched_group *sg = env->sd->groups;
3817 	struct sg_lb_stats sgs;
3818 	int load_idx, prefer_sibling = 0;
3819 
3820 	if (child && child->flags & SD_PREFER_SIBLING)
3821 		prefer_sibling = 1;
3822 
3823 	load_idx = get_sd_load_idx(env->sd, env->idle);
3824 
3825 	do {
3826 		int local_group;
3827 
3828 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
3829 		memset(&sgs, 0, sizeof(sgs));
3830 		update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
3831 
3832 		if (local_group && !(*balance))
3833 			return;
3834 
3835 		sds->total_load += sgs.group_load;
3836 		sds->total_pwr += sg->sgp->power;
3837 
3838 		/*
3839 		 * In case the child domain prefers tasks go to siblings
3840 		 * first, lower the sg capacity to one so that we'll try
3841 		 * and move all the excess tasks away. We lower the capacity
3842 		 * of a group only if the local group has the capacity to fit
3843 		 * these excess tasks, i.e. nr_running < group_capacity. The
3844 		 * extra check prevents the case where you always pull from the
3845 		 * heaviest group when it is already under-utilized (possible
3846 		 * with a large weight task outweighs the tasks on the system).
3847 		 */
3848 		if (prefer_sibling && !local_group && sds->this_has_capacity)
3849 			sgs.group_capacity = min(sgs.group_capacity, 1UL);
3850 
3851 		if (local_group) {
3852 			sds->this_load = sgs.avg_load;
3853 			sds->this = sg;
3854 			sds->this_nr_running = sgs.sum_nr_running;
3855 			sds->this_load_per_task = sgs.sum_weighted_load;
3856 			sds->this_has_capacity = sgs.group_has_capacity;
3857 			sds->this_idle_cpus = sgs.idle_cpus;
3858 		} else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
3859 			sds->max_load = sgs.avg_load;
3860 			sds->busiest = sg;
3861 			sds->busiest_nr_running = sgs.sum_nr_running;
3862 			sds->busiest_idle_cpus = sgs.idle_cpus;
3863 			sds->busiest_group_capacity = sgs.group_capacity;
3864 			sds->busiest_load_per_task = sgs.sum_weighted_load;
3865 			sds->busiest_has_capacity = sgs.group_has_capacity;
3866 			sds->busiest_group_weight = sgs.group_weight;
3867 			sds->group_imb = sgs.group_imb;
3868 		}
3869 
3870 		sg = sg->next;
3871 	} while (sg != env->sd->groups);
3872 }
3873 
3874 /**
3875  * check_asym_packing - Check to see if the group is packed into the
3876  *			sched doman.
3877  *
3878  * This is primarily intended to used at the sibling level.  Some
3879  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
3880  * case of POWER7, it can move to lower SMT modes only when higher
3881  * threads are idle.  When in lower SMT modes, the threads will
3882  * perform better since they share less core resources.  Hence when we
3883  * have idle threads, we want them to be the higher ones.
3884  *
3885  * This packing function is run on idle threads.  It checks to see if
3886  * the busiest CPU in this domain (core in the P7 case) has a higher
3887  * CPU number than the packing function is being run on.  Here we are
3888  * assuming lower CPU number will be equivalent to lower a SMT thread
3889  * number.
3890  *
3891  * Returns 1 when packing is required and a task should be moved to
3892  * this CPU.  The amount of the imbalance is returned in *imbalance.
3893  *
3894  * @env: The load balancing environment.
3895  * @sds: Statistics of the sched_domain which is to be packed
3896  */
3897 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
3898 {
3899 	int busiest_cpu;
3900 
3901 	if (!(env->sd->flags & SD_ASYM_PACKING))
3902 		return 0;
3903 
3904 	if (!sds->busiest)
3905 		return 0;
3906 
3907 	busiest_cpu = group_first_cpu(sds->busiest);
3908 	if (env->dst_cpu > busiest_cpu)
3909 		return 0;
3910 
3911 	env->imbalance = DIV_ROUND_CLOSEST(
3912 		sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
3913 
3914 	return 1;
3915 }
3916 
3917 /**
3918  * fix_small_imbalance - Calculate the minor imbalance that exists
3919  *			amongst the groups of a sched_domain, during
3920  *			load balancing.
3921  * @env: The load balancing environment.
3922  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3923  */
3924 static inline
3925 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3926 {
3927 	unsigned long tmp, pwr_now = 0, pwr_move = 0;
3928 	unsigned int imbn = 2;
3929 	unsigned long scaled_busy_load_per_task;
3930 
3931 	if (sds->this_nr_running) {
3932 		sds->this_load_per_task /= sds->this_nr_running;
3933 		if (sds->busiest_load_per_task >
3934 				sds->this_load_per_task)
3935 			imbn = 1;
3936 	} else {
3937 		sds->this_load_per_task =
3938 			cpu_avg_load_per_task(env->dst_cpu);
3939 	}
3940 
3941 	scaled_busy_load_per_task = sds->busiest_load_per_task
3942 					 * SCHED_POWER_SCALE;
3943 	scaled_busy_load_per_task /= sds->busiest->sgp->power;
3944 
3945 	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3946 			(scaled_busy_load_per_task * imbn)) {
3947 		env->imbalance = sds->busiest_load_per_task;
3948 		return;
3949 	}
3950 
3951 	/*
3952 	 * OK, we don't have enough imbalance to justify moving tasks,
3953 	 * however we may be able to increase total CPU power used by
3954 	 * moving them.
3955 	 */
3956 
3957 	pwr_now += sds->busiest->sgp->power *
3958 			min(sds->busiest_load_per_task, sds->max_load);
3959 	pwr_now += sds->this->sgp->power *
3960 			min(sds->this_load_per_task, sds->this_load);
3961 	pwr_now /= SCHED_POWER_SCALE;
3962 
3963 	/* Amount of load we'd subtract */
3964 	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3965 		sds->busiest->sgp->power;
3966 	if (sds->max_load > tmp)
3967 		pwr_move += sds->busiest->sgp->power *
3968 			min(sds->busiest_load_per_task, sds->max_load - tmp);
3969 
3970 	/* Amount of load we'd add */
3971 	if (sds->max_load * sds->busiest->sgp->power <
3972 		sds->busiest_load_per_task * SCHED_POWER_SCALE)
3973 		tmp = (sds->max_load * sds->busiest->sgp->power) /
3974 			sds->this->sgp->power;
3975 	else
3976 		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3977 			sds->this->sgp->power;
3978 	pwr_move += sds->this->sgp->power *
3979 			min(sds->this_load_per_task, sds->this_load + tmp);
3980 	pwr_move /= SCHED_POWER_SCALE;
3981 
3982 	/* Move if we gain throughput */
3983 	if (pwr_move > pwr_now)
3984 		env->imbalance = sds->busiest_load_per_task;
3985 }
3986 
3987 /**
3988  * calculate_imbalance - Calculate the amount of imbalance present within the
3989  *			 groups of a given sched_domain during load balance.
3990  * @env: load balance environment
3991  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3992  */
3993 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
3994 {
3995 	unsigned long max_pull, load_above_capacity = ~0UL;
3996 
3997 	sds->busiest_load_per_task /= sds->busiest_nr_running;
3998 	if (sds->group_imb) {
3999 		sds->busiest_load_per_task =
4000 			min(sds->busiest_load_per_task, sds->avg_load);
4001 	}
4002 
4003 	/*
4004 	 * In the presence of smp nice balancing, certain scenarios can have
4005 	 * max load less than avg load(as we skip the groups at or below
4006 	 * its cpu_power, while calculating max_load..)
4007 	 */
4008 	if (sds->max_load < sds->avg_load) {
4009 		env->imbalance = 0;
4010 		return fix_small_imbalance(env, sds);
4011 	}
4012 
4013 	if (!sds->group_imb) {
4014 		/*
4015 		 * Don't want to pull so many tasks that a group would go idle.
4016 		 */
4017 		load_above_capacity = (sds->busiest_nr_running -
4018 						sds->busiest_group_capacity);
4019 
4020 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4021 
4022 		load_above_capacity /= sds->busiest->sgp->power;
4023 	}
4024 
4025 	/*
4026 	 * We're trying to get all the cpus to the average_load, so we don't
4027 	 * want to push ourselves above the average load, nor do we wish to
4028 	 * reduce the max loaded cpu below the average load. At the same time,
4029 	 * we also don't want to reduce the group load below the group capacity
4030 	 * (so that we can implement power-savings policies etc). Thus we look
4031 	 * for the minimum possible imbalance.
4032 	 * Be careful of negative numbers as they'll appear as very large values
4033 	 * with unsigned longs.
4034 	 */
4035 	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4036 
4037 	/* How much load to actually move to equalise the imbalance */
4038 	env->imbalance = min(max_pull * sds->busiest->sgp->power,
4039 		(sds->avg_load - sds->this_load) * sds->this->sgp->power)
4040 			/ SCHED_POWER_SCALE;
4041 
4042 	/*
4043 	 * if *imbalance is less than the average load per runnable task
4044 	 * there is no guarantee that any tasks will be moved so we'll have
4045 	 * a think about bumping its value to force at least one task to be
4046 	 * moved
4047 	 */
4048 	if (env->imbalance < sds->busiest_load_per_task)
4049 		return fix_small_imbalance(env, sds);
4050 
4051 }
4052 
4053 /******* find_busiest_group() helpers end here *********************/
4054 
4055 /**
4056  * find_busiest_group - Returns the busiest group within the sched_domain
4057  * if there is an imbalance. If there isn't an imbalance, and
4058  * the user has opted for power-savings, it returns a group whose
4059  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4060  * such a group exists.
4061  *
4062  * Also calculates the amount of weighted load which should be moved
4063  * to restore balance.
4064  *
4065  * @env: The load balancing environment.
4066  * @balance: Pointer to a variable indicating if this_cpu
4067  *	is the appropriate cpu to perform load balancing at this_level.
4068  *
4069  * Returns:	- the busiest group if imbalance exists.
4070  *		- If no imbalance and user has opted for power-savings balance,
4071  *		   return the least loaded group whose CPUs can be
4072  *		   put to idle by rebalancing its tasks onto our group.
4073  */
4074 static struct sched_group *
4075 find_busiest_group(struct lb_env *env, int *balance)
4076 {
4077 	struct sd_lb_stats sds;
4078 
4079 	memset(&sds, 0, sizeof(sds));
4080 
4081 	/*
4082 	 * Compute the various statistics relavent for load balancing at
4083 	 * this level.
4084 	 */
4085 	update_sd_lb_stats(env, balance, &sds);
4086 
4087 	/*
4088 	 * this_cpu is not the appropriate cpu to perform load balancing at
4089 	 * this level.
4090 	 */
4091 	if (!(*balance))
4092 		goto ret;
4093 
4094 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4095 	    check_asym_packing(env, &sds))
4096 		return sds.busiest;
4097 
4098 	/* There is no busy sibling group to pull tasks from */
4099 	if (!sds.busiest || sds.busiest_nr_running == 0)
4100 		goto out_balanced;
4101 
4102 	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4103 
4104 	/*
4105 	 * If the busiest group is imbalanced the below checks don't
4106 	 * work because they assumes all things are equal, which typically
4107 	 * isn't true due to cpus_allowed constraints and the like.
4108 	 */
4109 	if (sds.group_imb)
4110 		goto force_balance;
4111 
4112 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4113 	if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4114 			!sds.busiest_has_capacity)
4115 		goto force_balance;
4116 
4117 	/*
4118 	 * If the local group is more busy than the selected busiest group
4119 	 * don't try and pull any tasks.
4120 	 */
4121 	if (sds.this_load >= sds.max_load)
4122 		goto out_balanced;
4123 
4124 	/*
4125 	 * Don't pull any tasks if this group is already above the domain
4126 	 * average load.
4127 	 */
4128 	if (sds.this_load >= sds.avg_load)
4129 		goto out_balanced;
4130 
4131 	if (env->idle == CPU_IDLE) {
4132 		/*
4133 		 * This cpu is idle. If the busiest group load doesn't
4134 		 * have more tasks than the number of available cpu's and
4135 		 * there is no imbalance between this and busiest group
4136 		 * wrt to idle cpu's, it is balanced.
4137 		 */
4138 		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4139 		    sds.busiest_nr_running <= sds.busiest_group_weight)
4140 			goto out_balanced;
4141 	} else {
4142 		/*
4143 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4144 		 * imbalance_pct to be conservative.
4145 		 */
4146 		if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4147 			goto out_balanced;
4148 	}
4149 
4150 force_balance:
4151 	/* Looks like there is an imbalance. Compute it */
4152 	calculate_imbalance(env, &sds);
4153 	return sds.busiest;
4154 
4155 out_balanced:
4156 ret:
4157 	env->imbalance = 0;
4158 	return NULL;
4159 }
4160 
4161 /*
4162  * find_busiest_queue - find the busiest runqueue among the cpus in group.
4163  */
4164 static struct rq *find_busiest_queue(struct lb_env *env,
4165 				     struct sched_group *group)
4166 {
4167 	struct rq *busiest = NULL, *rq;
4168 	unsigned long max_load = 0;
4169 	int i;
4170 
4171 	for_each_cpu(i, sched_group_cpus(group)) {
4172 		unsigned long power = power_of(i);
4173 		unsigned long capacity = DIV_ROUND_CLOSEST(power,
4174 							   SCHED_POWER_SCALE);
4175 		unsigned long wl;
4176 
4177 		if (!capacity)
4178 			capacity = fix_small_capacity(env->sd, group);
4179 
4180 		if (!cpumask_test_cpu(i, env->cpus))
4181 			continue;
4182 
4183 		rq = cpu_rq(i);
4184 		wl = weighted_cpuload(i);
4185 
4186 		/*
4187 		 * When comparing with imbalance, use weighted_cpuload()
4188 		 * which is not scaled with the cpu power.
4189 		 */
4190 		if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4191 			continue;
4192 
4193 		/*
4194 		 * For the load comparisons with the other cpu's, consider
4195 		 * the weighted_cpuload() scaled with the cpu power, so that
4196 		 * the load can be moved away from the cpu that is potentially
4197 		 * running at a lower capacity.
4198 		 */
4199 		wl = (wl * SCHED_POWER_SCALE) / power;
4200 
4201 		if (wl > max_load) {
4202 			max_load = wl;
4203 			busiest = rq;
4204 		}
4205 	}
4206 
4207 	return busiest;
4208 }
4209 
4210 /*
4211  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4212  * so long as it is large enough.
4213  */
4214 #define MAX_PINNED_INTERVAL	512
4215 
4216 /* Working cpumask for load_balance and load_balance_newidle. */
4217 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4218 
4219 static int need_active_balance(struct lb_env *env)
4220 {
4221 	struct sched_domain *sd = env->sd;
4222 
4223 	if (env->idle == CPU_NEWLY_IDLE) {
4224 
4225 		/*
4226 		 * ASYM_PACKING needs to force migrate tasks from busy but
4227 		 * higher numbered CPUs in order to pack all tasks in the
4228 		 * lowest numbered CPUs.
4229 		 */
4230 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4231 			return 1;
4232 	}
4233 
4234 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4235 }
4236 
4237 static int active_load_balance_cpu_stop(void *data);
4238 
4239 /*
4240  * Check this_cpu to ensure it is balanced within domain. Attempt to move
4241  * tasks if there is an imbalance.
4242  */
4243 static int load_balance(int this_cpu, struct rq *this_rq,
4244 			struct sched_domain *sd, enum cpu_idle_type idle,
4245 			int *balance)
4246 {
4247 	int ld_moved, cur_ld_moved, active_balance = 0;
4248 	int lb_iterations, max_lb_iterations;
4249 	struct sched_group *group;
4250 	struct rq *busiest;
4251 	unsigned long flags;
4252 	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4253 
4254 	struct lb_env env = {
4255 		.sd		= sd,
4256 		.dst_cpu	= this_cpu,
4257 		.dst_rq		= this_rq,
4258 		.dst_grpmask    = sched_group_cpus(sd->groups),
4259 		.idle		= idle,
4260 		.loop_break	= sched_nr_migrate_break,
4261 		.cpus		= cpus,
4262 	};
4263 
4264 	cpumask_copy(cpus, cpu_active_mask);
4265 	max_lb_iterations = cpumask_weight(env.dst_grpmask);
4266 
4267 	schedstat_inc(sd, lb_count[idle]);
4268 
4269 redo:
4270 	group = find_busiest_group(&env, balance);
4271 
4272 	if (*balance == 0)
4273 		goto out_balanced;
4274 
4275 	if (!group) {
4276 		schedstat_inc(sd, lb_nobusyg[idle]);
4277 		goto out_balanced;
4278 	}
4279 
4280 	busiest = find_busiest_queue(&env, group);
4281 	if (!busiest) {
4282 		schedstat_inc(sd, lb_nobusyq[idle]);
4283 		goto out_balanced;
4284 	}
4285 
4286 	BUG_ON(busiest == this_rq);
4287 
4288 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4289 
4290 	ld_moved = 0;
4291 	lb_iterations = 1;
4292 	if (busiest->nr_running > 1) {
4293 		/*
4294 		 * Attempt to move tasks. If find_busiest_group has found
4295 		 * an imbalance but busiest->nr_running <= 1, the group is
4296 		 * still unbalanced. ld_moved simply stays zero, so it is
4297 		 * correctly treated as an imbalance.
4298 		 */
4299 		env.flags |= LBF_ALL_PINNED;
4300 		env.src_cpu   = busiest->cpu;
4301 		env.src_rq    = busiest;
4302 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
4303 
4304 		update_h_load(env.src_cpu);
4305 more_balance:
4306 		local_irq_save(flags);
4307 		double_rq_lock(this_rq, busiest);
4308 
4309 		/*
4310 		 * cur_ld_moved - load moved in current iteration
4311 		 * ld_moved     - cumulative load moved across iterations
4312 		 */
4313 		cur_ld_moved = move_tasks(&env);
4314 		ld_moved += cur_ld_moved;
4315 		double_rq_unlock(this_rq, busiest);
4316 		local_irq_restore(flags);
4317 
4318 		if (env.flags & LBF_NEED_BREAK) {
4319 			env.flags &= ~LBF_NEED_BREAK;
4320 			goto more_balance;
4321 		}
4322 
4323 		/*
4324 		 * some other cpu did the load balance for us.
4325 		 */
4326 		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4327 			resched_cpu(env.dst_cpu);
4328 
4329 		/*
4330 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4331 		 * us and move them to an alternate dst_cpu in our sched_group
4332 		 * where they can run. The upper limit on how many times we
4333 		 * iterate on same src_cpu is dependent on number of cpus in our
4334 		 * sched_group.
4335 		 *
4336 		 * This changes load balance semantics a bit on who can move
4337 		 * load to a given_cpu. In addition to the given_cpu itself
4338 		 * (or a ilb_cpu acting on its behalf where given_cpu is
4339 		 * nohz-idle), we now have balance_cpu in a position to move
4340 		 * load to given_cpu. In rare situations, this may cause
4341 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4342 		 * _independently_ and at _same_ time to move some load to
4343 		 * given_cpu) causing exceess load to be moved to given_cpu.
4344 		 * This however should not happen so much in practice and
4345 		 * moreover subsequent load balance cycles should correct the
4346 		 * excess load moved.
4347 		 */
4348 		if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4349 				lb_iterations++ < max_lb_iterations) {
4350 
4351 			this_rq		 = cpu_rq(env.new_dst_cpu);
4352 			env.dst_rq	 = this_rq;
4353 			env.dst_cpu	 = env.new_dst_cpu;
4354 			env.flags	&= ~LBF_SOME_PINNED;
4355 			env.loop	 = 0;
4356 			env.loop_break	 = sched_nr_migrate_break;
4357 			/*
4358 			 * Go back to "more_balance" rather than "redo" since we
4359 			 * need to continue with same src_cpu.
4360 			 */
4361 			goto more_balance;
4362 		}
4363 
4364 		/* All tasks on this runqueue were pinned by CPU affinity */
4365 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
4366 			cpumask_clear_cpu(cpu_of(busiest), cpus);
4367 			if (!cpumask_empty(cpus)) {
4368 				env.loop = 0;
4369 				env.loop_break = sched_nr_migrate_break;
4370 				goto redo;
4371 			}
4372 			goto out_balanced;
4373 		}
4374 	}
4375 
4376 	if (!ld_moved) {
4377 		schedstat_inc(sd, lb_failed[idle]);
4378 		/*
4379 		 * Increment the failure counter only on periodic balance.
4380 		 * We do not want newidle balance, which can be very
4381 		 * frequent, pollute the failure counter causing
4382 		 * excessive cache_hot migrations and active balances.
4383 		 */
4384 		if (idle != CPU_NEWLY_IDLE)
4385 			sd->nr_balance_failed++;
4386 
4387 		if (need_active_balance(&env)) {
4388 			raw_spin_lock_irqsave(&busiest->lock, flags);
4389 
4390 			/* don't kick the active_load_balance_cpu_stop,
4391 			 * if the curr task on busiest cpu can't be
4392 			 * moved to this_cpu
4393 			 */
4394 			if (!cpumask_test_cpu(this_cpu,
4395 					tsk_cpus_allowed(busiest->curr))) {
4396 				raw_spin_unlock_irqrestore(&busiest->lock,
4397 							    flags);
4398 				env.flags |= LBF_ALL_PINNED;
4399 				goto out_one_pinned;
4400 			}
4401 
4402 			/*
4403 			 * ->active_balance synchronizes accesses to
4404 			 * ->active_balance_work.  Once set, it's cleared
4405 			 * only after active load balance is finished.
4406 			 */
4407 			if (!busiest->active_balance) {
4408 				busiest->active_balance = 1;
4409 				busiest->push_cpu = this_cpu;
4410 				active_balance = 1;
4411 			}
4412 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
4413 
4414 			if (active_balance) {
4415 				stop_one_cpu_nowait(cpu_of(busiest),
4416 					active_load_balance_cpu_stop, busiest,
4417 					&busiest->active_balance_work);
4418 			}
4419 
4420 			/*
4421 			 * We've kicked active balancing, reset the failure
4422 			 * counter.
4423 			 */
4424 			sd->nr_balance_failed = sd->cache_nice_tries+1;
4425 		}
4426 	} else
4427 		sd->nr_balance_failed = 0;
4428 
4429 	if (likely(!active_balance)) {
4430 		/* We were unbalanced, so reset the balancing interval */
4431 		sd->balance_interval = sd->min_interval;
4432 	} else {
4433 		/*
4434 		 * If we've begun active balancing, start to back off. This
4435 		 * case may not be covered by the all_pinned logic if there
4436 		 * is only 1 task on the busy runqueue (because we don't call
4437 		 * move_tasks).
4438 		 */
4439 		if (sd->balance_interval < sd->max_interval)
4440 			sd->balance_interval *= 2;
4441 	}
4442 
4443 	goto out;
4444 
4445 out_balanced:
4446 	schedstat_inc(sd, lb_balanced[idle]);
4447 
4448 	sd->nr_balance_failed = 0;
4449 
4450 out_one_pinned:
4451 	/* tune up the balancing interval */
4452 	if (((env.flags & LBF_ALL_PINNED) &&
4453 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
4454 			(sd->balance_interval < sd->max_interval))
4455 		sd->balance_interval *= 2;
4456 
4457 	ld_moved = 0;
4458 out:
4459 	return ld_moved;
4460 }
4461 
4462 /*
4463  * idle_balance is called by schedule() if this_cpu is about to become
4464  * idle. Attempts to pull tasks from other CPUs.
4465  */
4466 void idle_balance(int this_cpu, struct rq *this_rq)
4467 {
4468 	struct sched_domain *sd;
4469 	int pulled_task = 0;
4470 	unsigned long next_balance = jiffies + HZ;
4471 
4472 	this_rq->idle_stamp = this_rq->clock;
4473 
4474 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
4475 		return;
4476 
4477 	/*
4478 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
4479 	 */
4480 	raw_spin_unlock(&this_rq->lock);
4481 
4482 	update_shares(this_cpu);
4483 	rcu_read_lock();
4484 	for_each_domain(this_cpu, sd) {
4485 		unsigned long interval;
4486 		int balance = 1;
4487 
4488 		if (!(sd->flags & SD_LOAD_BALANCE))
4489 			continue;
4490 
4491 		if (sd->flags & SD_BALANCE_NEWIDLE) {
4492 			/* If we've pulled tasks over stop searching: */
4493 			pulled_task = load_balance(this_cpu, this_rq,
4494 						   sd, CPU_NEWLY_IDLE, &balance);
4495 		}
4496 
4497 		interval = msecs_to_jiffies(sd->balance_interval);
4498 		if (time_after(next_balance, sd->last_balance + interval))
4499 			next_balance = sd->last_balance + interval;
4500 		if (pulled_task) {
4501 			this_rq->idle_stamp = 0;
4502 			break;
4503 		}
4504 	}
4505 	rcu_read_unlock();
4506 
4507 	raw_spin_lock(&this_rq->lock);
4508 
4509 	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4510 		/*
4511 		 * We are going idle. next_balance may be set based on
4512 		 * a busy processor. So reset next_balance.
4513 		 */
4514 		this_rq->next_balance = next_balance;
4515 	}
4516 }
4517 
4518 /*
4519  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4520  * running tasks off the busiest CPU onto idle CPUs. It requires at
4521  * least 1 task to be running on each physical CPU where possible, and
4522  * avoids physical / logical imbalances.
4523  */
4524 static int active_load_balance_cpu_stop(void *data)
4525 {
4526 	struct rq *busiest_rq = data;
4527 	int busiest_cpu = cpu_of(busiest_rq);
4528 	int target_cpu = busiest_rq->push_cpu;
4529 	struct rq *target_rq = cpu_rq(target_cpu);
4530 	struct sched_domain *sd;
4531 
4532 	raw_spin_lock_irq(&busiest_rq->lock);
4533 
4534 	/* make sure the requested cpu hasn't gone down in the meantime */
4535 	if (unlikely(busiest_cpu != smp_processor_id() ||
4536 		     !busiest_rq->active_balance))
4537 		goto out_unlock;
4538 
4539 	/* Is there any task to move? */
4540 	if (busiest_rq->nr_running <= 1)
4541 		goto out_unlock;
4542 
4543 	/*
4544 	 * This condition is "impossible", if it occurs
4545 	 * we need to fix it. Originally reported by
4546 	 * Bjorn Helgaas on a 128-cpu setup.
4547 	 */
4548 	BUG_ON(busiest_rq == target_rq);
4549 
4550 	/* move a task from busiest_rq to target_rq */
4551 	double_lock_balance(busiest_rq, target_rq);
4552 
4553 	/* Search for an sd spanning us and the target CPU. */
4554 	rcu_read_lock();
4555 	for_each_domain(target_cpu, sd) {
4556 		if ((sd->flags & SD_LOAD_BALANCE) &&
4557 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4558 				break;
4559 	}
4560 
4561 	if (likely(sd)) {
4562 		struct lb_env env = {
4563 			.sd		= sd,
4564 			.dst_cpu	= target_cpu,
4565 			.dst_rq		= target_rq,
4566 			.src_cpu	= busiest_rq->cpu,
4567 			.src_rq		= busiest_rq,
4568 			.idle		= CPU_IDLE,
4569 		};
4570 
4571 		schedstat_inc(sd, alb_count);
4572 
4573 		if (move_one_task(&env))
4574 			schedstat_inc(sd, alb_pushed);
4575 		else
4576 			schedstat_inc(sd, alb_failed);
4577 	}
4578 	rcu_read_unlock();
4579 	double_unlock_balance(busiest_rq, target_rq);
4580 out_unlock:
4581 	busiest_rq->active_balance = 0;
4582 	raw_spin_unlock_irq(&busiest_rq->lock);
4583 	return 0;
4584 }
4585 
4586 #ifdef CONFIG_NO_HZ
4587 /*
4588  * idle load balancing details
4589  * - When one of the busy CPUs notice that there may be an idle rebalancing
4590  *   needed, they will kick the idle load balancer, which then does idle
4591  *   load balancing for all the idle CPUs.
4592  */
4593 static struct {
4594 	cpumask_var_t idle_cpus_mask;
4595 	atomic_t nr_cpus;
4596 	unsigned long next_balance;     /* in jiffy units */
4597 } nohz ____cacheline_aligned;
4598 
4599 static inline int find_new_ilb(int call_cpu)
4600 {
4601 	int ilb = cpumask_first(nohz.idle_cpus_mask);
4602 
4603 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
4604 		return ilb;
4605 
4606 	return nr_cpu_ids;
4607 }
4608 
4609 /*
4610  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4611  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4612  * CPU (if there is one).
4613  */
4614 static void nohz_balancer_kick(int cpu)
4615 {
4616 	int ilb_cpu;
4617 
4618 	nohz.next_balance++;
4619 
4620 	ilb_cpu = find_new_ilb(cpu);
4621 
4622 	if (ilb_cpu >= nr_cpu_ids)
4623 		return;
4624 
4625 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
4626 		return;
4627 	/*
4628 	 * Use smp_send_reschedule() instead of resched_cpu().
4629 	 * This way we generate a sched IPI on the target cpu which
4630 	 * is idle. And the softirq performing nohz idle load balance
4631 	 * will be run before returning from the IPI.
4632 	 */
4633 	smp_send_reschedule(ilb_cpu);
4634 	return;
4635 }
4636 
4637 static inline void clear_nohz_tick_stopped(int cpu)
4638 {
4639 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
4640 		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
4641 		atomic_dec(&nohz.nr_cpus);
4642 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4643 	}
4644 }
4645 
4646 static inline void set_cpu_sd_state_busy(void)
4647 {
4648 	struct sched_domain *sd;
4649 	int cpu = smp_processor_id();
4650 
4651 	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4652 		return;
4653 	clear_bit(NOHZ_IDLE, nohz_flags(cpu));
4654 
4655 	rcu_read_lock();
4656 	for_each_domain(cpu, sd)
4657 		atomic_inc(&sd->groups->sgp->nr_busy_cpus);
4658 	rcu_read_unlock();
4659 }
4660 
4661 void set_cpu_sd_state_idle(void)
4662 {
4663 	struct sched_domain *sd;
4664 	int cpu = smp_processor_id();
4665 
4666 	if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
4667 		return;
4668 	set_bit(NOHZ_IDLE, nohz_flags(cpu));
4669 
4670 	rcu_read_lock();
4671 	for_each_domain(cpu, sd)
4672 		atomic_dec(&sd->groups->sgp->nr_busy_cpus);
4673 	rcu_read_unlock();
4674 }
4675 
4676 /*
4677  * This routine will record that this cpu is going idle with tick stopped.
4678  * This info will be used in performing idle load balancing in the future.
4679  */
4680 void select_nohz_load_balancer(int stop_tick)
4681 {
4682 	int cpu = smp_processor_id();
4683 
4684 	/*
4685 	 * If this cpu is going down, then nothing needs to be done.
4686 	 */
4687 	if (!cpu_active(cpu))
4688 		return;
4689 
4690 	if (stop_tick) {
4691 		if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
4692 			return;
4693 
4694 		cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
4695 		atomic_inc(&nohz.nr_cpus);
4696 		set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
4697 	}
4698 	return;
4699 }
4700 
4701 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
4702 					unsigned long action, void *hcpu)
4703 {
4704 	switch (action & ~CPU_TASKS_FROZEN) {
4705 	case CPU_DYING:
4706 		clear_nohz_tick_stopped(smp_processor_id());
4707 		return NOTIFY_OK;
4708 	default:
4709 		return NOTIFY_DONE;
4710 	}
4711 }
4712 #endif
4713 
4714 static DEFINE_SPINLOCK(balancing);
4715 
4716 /*
4717  * Scale the max load_balance interval with the number of CPUs in the system.
4718  * This trades load-balance latency on larger machines for less cross talk.
4719  */
4720 void update_max_interval(void)
4721 {
4722 	max_load_balance_interval = HZ*num_online_cpus()/10;
4723 }
4724 
4725 /*
4726  * It checks each scheduling domain to see if it is due to be balanced,
4727  * and initiates a balancing operation if so.
4728  *
4729  * Balancing parameters are set up in arch_init_sched_domains.
4730  */
4731 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4732 {
4733 	int balance = 1;
4734 	struct rq *rq = cpu_rq(cpu);
4735 	unsigned long interval;
4736 	struct sched_domain *sd;
4737 	/* Earliest time when we have to do rebalance again */
4738 	unsigned long next_balance = jiffies + 60*HZ;
4739 	int update_next_balance = 0;
4740 	int need_serialize;
4741 
4742 	update_shares(cpu);
4743 
4744 	rcu_read_lock();
4745 	for_each_domain(cpu, sd) {
4746 		if (!(sd->flags & SD_LOAD_BALANCE))
4747 			continue;
4748 
4749 		interval = sd->balance_interval;
4750 		if (idle != CPU_IDLE)
4751 			interval *= sd->busy_factor;
4752 
4753 		/* scale ms to jiffies */
4754 		interval = msecs_to_jiffies(interval);
4755 		interval = clamp(interval, 1UL, max_load_balance_interval);
4756 
4757 		need_serialize = sd->flags & SD_SERIALIZE;
4758 
4759 		if (need_serialize) {
4760 			if (!spin_trylock(&balancing))
4761 				goto out;
4762 		}
4763 
4764 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4765 			if (load_balance(cpu, rq, sd, idle, &balance)) {
4766 				/*
4767 				 * We've pulled tasks over so either we're no
4768 				 * longer idle.
4769 				 */
4770 				idle = CPU_NOT_IDLE;
4771 			}
4772 			sd->last_balance = jiffies;
4773 		}
4774 		if (need_serialize)
4775 			spin_unlock(&balancing);
4776 out:
4777 		if (time_after(next_balance, sd->last_balance + interval)) {
4778 			next_balance = sd->last_balance + interval;
4779 			update_next_balance = 1;
4780 		}
4781 
4782 		/*
4783 		 * Stop the load balance at this level. There is another
4784 		 * CPU in our sched group which is doing load balancing more
4785 		 * actively.
4786 		 */
4787 		if (!balance)
4788 			break;
4789 	}
4790 	rcu_read_unlock();
4791 
4792 	/*
4793 	 * next_balance will be updated only when there is a need.
4794 	 * When the cpu is attached to null domain for ex, it will not be
4795 	 * updated.
4796 	 */
4797 	if (likely(update_next_balance))
4798 		rq->next_balance = next_balance;
4799 }
4800 
4801 #ifdef CONFIG_NO_HZ
4802 /*
4803  * In CONFIG_NO_HZ case, the idle balance kickee will do the
4804  * rebalancing for all the cpus for whom scheduler ticks are stopped.
4805  */
4806 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4807 {
4808 	struct rq *this_rq = cpu_rq(this_cpu);
4809 	struct rq *rq;
4810 	int balance_cpu;
4811 
4812 	if (idle != CPU_IDLE ||
4813 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
4814 		goto end;
4815 
4816 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4817 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
4818 			continue;
4819 
4820 		/*
4821 		 * If this cpu gets work to do, stop the load balancing
4822 		 * work being done for other cpus. Next load
4823 		 * balancing owner will pick it up.
4824 		 */
4825 		if (need_resched())
4826 			break;
4827 
4828 		raw_spin_lock_irq(&this_rq->lock);
4829 		update_rq_clock(this_rq);
4830 		update_idle_cpu_load(this_rq);
4831 		raw_spin_unlock_irq(&this_rq->lock);
4832 
4833 		rebalance_domains(balance_cpu, CPU_IDLE);
4834 
4835 		rq = cpu_rq(balance_cpu);
4836 		if (time_after(this_rq->next_balance, rq->next_balance))
4837 			this_rq->next_balance = rq->next_balance;
4838 	}
4839 	nohz.next_balance = this_rq->next_balance;
4840 end:
4841 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
4842 }
4843 
4844 /*
4845  * Current heuristic for kicking the idle load balancer in the presence
4846  * of an idle cpu is the system.
4847  *   - This rq has more than one task.
4848  *   - At any scheduler domain level, this cpu's scheduler group has multiple
4849  *     busy cpu's exceeding the group's power.
4850  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
4851  *     domain span are idle.
4852  */
4853 static inline int nohz_kick_needed(struct rq *rq, int cpu)
4854 {
4855 	unsigned long now = jiffies;
4856 	struct sched_domain *sd;
4857 
4858 	if (unlikely(idle_cpu(cpu)))
4859 		return 0;
4860 
4861        /*
4862 	* We may be recently in ticked or tickless idle mode. At the first
4863 	* busy tick after returning from idle, we will update the busy stats.
4864 	*/
4865 	set_cpu_sd_state_busy();
4866 	clear_nohz_tick_stopped(cpu);
4867 
4868 	/*
4869 	 * None are in tickless mode and hence no need for NOHZ idle load
4870 	 * balancing.
4871 	 */
4872 	if (likely(!atomic_read(&nohz.nr_cpus)))
4873 		return 0;
4874 
4875 	if (time_before(now, nohz.next_balance))
4876 		return 0;
4877 
4878 	if (rq->nr_running >= 2)
4879 		goto need_kick;
4880 
4881 	rcu_read_lock();
4882 	for_each_domain(cpu, sd) {
4883 		struct sched_group *sg = sd->groups;
4884 		struct sched_group_power *sgp = sg->sgp;
4885 		int nr_busy = atomic_read(&sgp->nr_busy_cpus);
4886 
4887 		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
4888 			goto need_kick_unlock;
4889 
4890 		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
4891 		    && (cpumask_first_and(nohz.idle_cpus_mask,
4892 					  sched_domain_span(sd)) < cpu))
4893 			goto need_kick_unlock;
4894 
4895 		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
4896 			break;
4897 	}
4898 	rcu_read_unlock();
4899 	return 0;
4900 
4901 need_kick_unlock:
4902 	rcu_read_unlock();
4903 need_kick:
4904 	return 1;
4905 }
4906 #else
4907 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4908 #endif
4909 
4910 /*
4911  * run_rebalance_domains is triggered when needed from the scheduler tick.
4912  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4913  */
4914 static void run_rebalance_domains(struct softirq_action *h)
4915 {
4916 	int this_cpu = smp_processor_id();
4917 	struct rq *this_rq = cpu_rq(this_cpu);
4918 	enum cpu_idle_type idle = this_rq->idle_balance ?
4919 						CPU_IDLE : CPU_NOT_IDLE;
4920 
4921 	rebalance_domains(this_cpu, idle);
4922 
4923 	/*
4924 	 * If this cpu has a pending nohz_balance_kick, then do the
4925 	 * balancing on behalf of the other idle cpus whose ticks are
4926 	 * stopped.
4927 	 */
4928 	nohz_idle_balance(this_cpu, idle);
4929 }
4930 
4931 static inline int on_null_domain(int cpu)
4932 {
4933 	return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4934 }
4935 
4936 /*
4937  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4938  */
4939 void trigger_load_balance(struct rq *rq, int cpu)
4940 {
4941 	/* Don't need to rebalance while attached to NULL domain */
4942 	if (time_after_eq(jiffies, rq->next_balance) &&
4943 	    likely(!on_null_domain(cpu)))
4944 		raise_softirq(SCHED_SOFTIRQ);
4945 #ifdef CONFIG_NO_HZ
4946 	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4947 		nohz_balancer_kick(cpu);
4948 #endif
4949 }
4950 
4951 static void rq_online_fair(struct rq *rq)
4952 {
4953 	update_sysctl();
4954 }
4955 
4956 static void rq_offline_fair(struct rq *rq)
4957 {
4958 	update_sysctl();
4959 }
4960 
4961 #endif /* CONFIG_SMP */
4962 
4963 /*
4964  * scheduler tick hitting a task of our scheduling class:
4965  */
4966 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4967 {
4968 	struct cfs_rq *cfs_rq;
4969 	struct sched_entity *se = &curr->se;
4970 
4971 	for_each_sched_entity(se) {
4972 		cfs_rq = cfs_rq_of(se);
4973 		entity_tick(cfs_rq, se, queued);
4974 	}
4975 }
4976 
4977 /*
4978  * called on fork with the child task as argument from the parent's context
4979  *  - child not yet on the tasklist
4980  *  - preemption disabled
4981  */
4982 static void task_fork_fair(struct task_struct *p)
4983 {
4984 	struct cfs_rq *cfs_rq;
4985 	struct sched_entity *se = &p->se, *curr;
4986 	int this_cpu = smp_processor_id();
4987 	struct rq *rq = this_rq();
4988 	unsigned long flags;
4989 
4990 	raw_spin_lock_irqsave(&rq->lock, flags);
4991 
4992 	update_rq_clock(rq);
4993 
4994 	cfs_rq = task_cfs_rq(current);
4995 	curr = cfs_rq->curr;
4996 
4997 	if (unlikely(task_cpu(p) != this_cpu)) {
4998 		rcu_read_lock();
4999 		__set_task_cpu(p, this_cpu);
5000 		rcu_read_unlock();
5001 	}
5002 
5003 	update_curr(cfs_rq);
5004 
5005 	if (curr)
5006 		se->vruntime = curr->vruntime;
5007 	place_entity(cfs_rq, se, 1);
5008 
5009 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5010 		/*
5011 		 * Upon rescheduling, sched_class::put_prev_task() will place
5012 		 * 'current' within the tree based on its new key value.
5013 		 */
5014 		swap(curr->vruntime, se->vruntime);
5015 		resched_task(rq->curr);
5016 	}
5017 
5018 	se->vruntime -= cfs_rq->min_vruntime;
5019 
5020 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5021 }
5022 
5023 /*
5024  * Priority of the task has changed. Check to see if we preempt
5025  * the current task.
5026  */
5027 static void
5028 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5029 {
5030 	if (!p->se.on_rq)
5031 		return;
5032 
5033 	/*
5034 	 * Reschedule if we are currently running on this runqueue and
5035 	 * our priority decreased, or if we are not currently running on
5036 	 * this runqueue and our priority is higher than the current's
5037 	 */
5038 	if (rq->curr == p) {
5039 		if (p->prio > oldprio)
5040 			resched_task(rq->curr);
5041 	} else
5042 		check_preempt_curr(rq, p, 0);
5043 }
5044 
5045 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5046 {
5047 	struct sched_entity *se = &p->se;
5048 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5049 
5050 	/*
5051 	 * Ensure the task's vruntime is normalized, so that when its
5052 	 * switched back to the fair class the enqueue_entity(.flags=0) will
5053 	 * do the right thing.
5054 	 *
5055 	 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5056 	 * have normalized the vruntime, if it was !on_rq, then only when
5057 	 * the task is sleeping will it still have non-normalized vruntime.
5058 	 */
5059 	if (!se->on_rq && p->state != TASK_RUNNING) {
5060 		/*
5061 		 * Fix up our vruntime so that the current sleep doesn't
5062 		 * cause 'unlimited' sleep bonus.
5063 		 */
5064 		place_entity(cfs_rq, se, 0);
5065 		se->vruntime -= cfs_rq->min_vruntime;
5066 	}
5067 }
5068 
5069 /*
5070  * We switched to the sched_fair class.
5071  */
5072 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5073 {
5074 	if (!p->se.on_rq)
5075 		return;
5076 
5077 	/*
5078 	 * We were most likely switched from sched_rt, so
5079 	 * kick off the schedule if running, otherwise just see
5080 	 * if we can still preempt the current task.
5081 	 */
5082 	if (rq->curr == p)
5083 		resched_task(rq->curr);
5084 	else
5085 		check_preempt_curr(rq, p, 0);
5086 }
5087 
5088 /* Account for a task changing its policy or group.
5089  *
5090  * This routine is mostly called to set cfs_rq->curr field when a task
5091  * migrates between groups/classes.
5092  */
5093 static void set_curr_task_fair(struct rq *rq)
5094 {
5095 	struct sched_entity *se = &rq->curr->se;
5096 
5097 	for_each_sched_entity(se) {
5098 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5099 
5100 		set_next_entity(cfs_rq, se);
5101 		/* ensure bandwidth has been allocated on our new cfs_rq */
5102 		account_cfs_rq_runtime(cfs_rq, 0);
5103 	}
5104 }
5105 
5106 void init_cfs_rq(struct cfs_rq *cfs_rq)
5107 {
5108 	cfs_rq->tasks_timeline = RB_ROOT;
5109 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5110 #ifndef CONFIG_64BIT
5111 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5112 #endif
5113 }
5114 
5115 #ifdef CONFIG_FAIR_GROUP_SCHED
5116 static void task_move_group_fair(struct task_struct *p, int on_rq)
5117 {
5118 	/*
5119 	 * If the task was not on the rq at the time of this cgroup movement
5120 	 * it must have been asleep, sleeping tasks keep their ->vruntime
5121 	 * absolute on their old rq until wakeup (needed for the fair sleeper
5122 	 * bonus in place_entity()).
5123 	 *
5124 	 * If it was on the rq, we've just 'preempted' it, which does convert
5125 	 * ->vruntime to a relative base.
5126 	 *
5127 	 * Make sure both cases convert their relative position when migrating
5128 	 * to another cgroup's rq. This does somewhat interfere with the
5129 	 * fair sleeper stuff for the first placement, but who cares.
5130 	 */
5131 	/*
5132 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
5133 	 * But there are some cases where it has already been normalized:
5134 	 *
5135 	 * - Moving a forked child which is waiting for being woken up by
5136 	 *   wake_up_new_task().
5137 	 * - Moving a task which has been woken up by try_to_wake_up() and
5138 	 *   waiting for actually being woken up by sched_ttwu_pending().
5139 	 *
5140 	 * To prevent boost or penalty in the new cfs_rq caused by delta
5141 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5142 	 */
5143 	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5144 		on_rq = 1;
5145 
5146 	if (!on_rq)
5147 		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5148 	set_task_rq(p, task_cpu(p));
5149 	if (!on_rq)
5150 		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
5151 }
5152 
5153 void free_fair_sched_group(struct task_group *tg)
5154 {
5155 	int i;
5156 
5157 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5158 
5159 	for_each_possible_cpu(i) {
5160 		if (tg->cfs_rq)
5161 			kfree(tg->cfs_rq[i]);
5162 		if (tg->se)
5163 			kfree(tg->se[i]);
5164 	}
5165 
5166 	kfree(tg->cfs_rq);
5167 	kfree(tg->se);
5168 }
5169 
5170 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5171 {
5172 	struct cfs_rq *cfs_rq;
5173 	struct sched_entity *se;
5174 	int i;
5175 
5176 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5177 	if (!tg->cfs_rq)
5178 		goto err;
5179 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5180 	if (!tg->se)
5181 		goto err;
5182 
5183 	tg->shares = NICE_0_LOAD;
5184 
5185 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5186 
5187 	for_each_possible_cpu(i) {
5188 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5189 				      GFP_KERNEL, cpu_to_node(i));
5190 		if (!cfs_rq)
5191 			goto err;
5192 
5193 		se = kzalloc_node(sizeof(struct sched_entity),
5194 				  GFP_KERNEL, cpu_to_node(i));
5195 		if (!se)
5196 			goto err_free_rq;
5197 
5198 		init_cfs_rq(cfs_rq);
5199 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5200 	}
5201 
5202 	return 1;
5203 
5204 err_free_rq:
5205 	kfree(cfs_rq);
5206 err:
5207 	return 0;
5208 }
5209 
5210 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5211 {
5212 	struct rq *rq = cpu_rq(cpu);
5213 	unsigned long flags;
5214 
5215 	/*
5216 	* Only empty task groups can be destroyed; so we can speculatively
5217 	* check on_list without danger of it being re-added.
5218 	*/
5219 	if (!tg->cfs_rq[cpu]->on_list)
5220 		return;
5221 
5222 	raw_spin_lock_irqsave(&rq->lock, flags);
5223 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5224 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5225 }
5226 
5227 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5228 			struct sched_entity *se, int cpu,
5229 			struct sched_entity *parent)
5230 {
5231 	struct rq *rq = cpu_rq(cpu);
5232 
5233 	cfs_rq->tg = tg;
5234 	cfs_rq->rq = rq;
5235 #ifdef CONFIG_SMP
5236 	/* allow initial update_cfs_load() to truncate */
5237 	cfs_rq->load_stamp = 1;
5238 #endif
5239 	init_cfs_rq_runtime(cfs_rq);
5240 
5241 	tg->cfs_rq[cpu] = cfs_rq;
5242 	tg->se[cpu] = se;
5243 
5244 	/* se could be NULL for root_task_group */
5245 	if (!se)
5246 		return;
5247 
5248 	if (!parent)
5249 		se->cfs_rq = &rq->cfs;
5250 	else
5251 		se->cfs_rq = parent->my_q;
5252 
5253 	se->my_q = cfs_rq;
5254 	update_load_set(&se->load, 0);
5255 	se->parent = parent;
5256 }
5257 
5258 static DEFINE_MUTEX(shares_mutex);
5259 
5260 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5261 {
5262 	int i;
5263 	unsigned long flags;
5264 
5265 	/*
5266 	 * We can't change the weight of the root cgroup.
5267 	 */
5268 	if (!tg->se[0])
5269 		return -EINVAL;
5270 
5271 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5272 
5273 	mutex_lock(&shares_mutex);
5274 	if (tg->shares == shares)
5275 		goto done;
5276 
5277 	tg->shares = shares;
5278 	for_each_possible_cpu(i) {
5279 		struct rq *rq = cpu_rq(i);
5280 		struct sched_entity *se;
5281 
5282 		se = tg->se[i];
5283 		/* Propagate contribution to hierarchy */
5284 		raw_spin_lock_irqsave(&rq->lock, flags);
5285 		for_each_sched_entity(se)
5286 			update_cfs_shares(group_cfs_rq(se));
5287 		raw_spin_unlock_irqrestore(&rq->lock, flags);
5288 	}
5289 
5290 done:
5291 	mutex_unlock(&shares_mutex);
5292 	return 0;
5293 }
5294 #else /* CONFIG_FAIR_GROUP_SCHED */
5295 
5296 void free_fair_sched_group(struct task_group *tg) { }
5297 
5298 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5299 {
5300 	return 1;
5301 }
5302 
5303 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5304 
5305 #endif /* CONFIG_FAIR_GROUP_SCHED */
5306 
5307 
5308 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5309 {
5310 	struct sched_entity *se = &task->se;
5311 	unsigned int rr_interval = 0;
5312 
5313 	/*
5314 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5315 	 * idle runqueue:
5316 	 */
5317 	if (rq->cfs.load.weight)
5318 		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5319 
5320 	return rr_interval;
5321 }
5322 
5323 /*
5324  * All the scheduling class methods:
5325  */
5326 const struct sched_class fair_sched_class = {
5327 	.next			= &idle_sched_class,
5328 	.enqueue_task		= enqueue_task_fair,
5329 	.dequeue_task		= dequeue_task_fair,
5330 	.yield_task		= yield_task_fair,
5331 	.yield_to_task		= yield_to_task_fair,
5332 
5333 	.check_preempt_curr	= check_preempt_wakeup,
5334 
5335 	.pick_next_task		= pick_next_task_fair,
5336 	.put_prev_task		= put_prev_task_fair,
5337 
5338 #ifdef CONFIG_SMP
5339 	.select_task_rq		= select_task_rq_fair,
5340 
5341 	.rq_online		= rq_online_fair,
5342 	.rq_offline		= rq_offline_fair,
5343 
5344 	.task_waking		= task_waking_fair,
5345 #endif
5346 
5347 	.set_curr_task          = set_curr_task_fair,
5348 	.task_tick		= task_tick_fair,
5349 	.task_fork		= task_fork_fair,
5350 
5351 	.prio_changed		= prio_changed_fair,
5352 	.switched_from		= switched_from_fair,
5353 	.switched_to		= switched_to_fair,
5354 
5355 	.get_rr_interval	= get_rr_interval_fair,
5356 
5357 #ifdef CONFIG_FAIR_GROUP_SCHED
5358 	.task_move_group	= task_move_group_fair,
5359 #endif
5360 };
5361 
5362 #ifdef CONFIG_SCHED_DEBUG
5363 void print_cfs_stats(struct seq_file *m, int cpu)
5364 {
5365 	struct cfs_rq *cfs_rq;
5366 
5367 	rcu_read_lock();
5368 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5369 		print_cfs_rq(m, cpu, cfs_rq);
5370 	rcu_read_unlock();
5371 }
5372 #endif
5373 
5374 __init void init_sched_fair_class(void)
5375 {
5376 #ifdef CONFIG_SMP
5377 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5378 
5379 #ifdef CONFIG_NO_HZ
5380 	nohz.next_balance = jiffies;
5381 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5382 	cpu_notifier(sched_ilb_notifier, 0);
5383 #endif
5384 #endif /* SMP */
5385 
5386 }
5387