xref: /linux/kernel/sched/fair.c (revision 94901b7a74d82bfd30420f1d9d00898278fdc8bf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 	return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87 
88 #ifdef CONFIG_SMP
89 /*
90  * For asym packing, by default the lower numbered CPU has higher priority.
91  */
92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 	return -cpu;
95 }
96 
97 /*
98  * The margin used when comparing utilization with CPU capacity.
99  *
100  * (default: ~20%)
101  */
102 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103 
104 /*
105  * The margin used when comparing CPU capacities.
106  * is 'cap1' noticeably greater than 'cap2'
107  *
108  * (default: ~5%)
109  */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131 
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 	{
136 		.procname       = "sched_cfs_bandwidth_slice_us",
137 		.data           = &sysctl_sched_cfs_bandwidth_slice,
138 		.maxlen         = sizeof(unsigned int),
139 		.mode           = 0644,
140 		.proc_handler   = proc_dointvec_minmax,
141 		.extra1         = SYSCTL_ONE,
142 	},
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 	{
146 		.procname	= "numa_balancing_promote_rate_limit_MBps",
147 		.data		= &sysctl_numa_balancing_promote_rate_limit,
148 		.maxlen		= sizeof(unsigned int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 	},
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155 
156 static int __init sched_fair_sysctl_init(void)
157 {
158 	register_sysctl_init("kernel", sched_fair_sysctls);
159 	return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163 
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 	lw->weight += inc;
167 	lw->inv_weight = 0;
168 }
169 
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 	lw->weight -= dec;
173 	lw->inv_weight = 0;
174 }
175 
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 	lw->weight = w;
179 	lw->inv_weight = 0;
180 }
181 
182 /*
183  * Increase the granularity value when there are more CPUs,
184  * because with more CPUs the 'effective latency' as visible
185  * to users decreases. But the relationship is not linear,
186  * so pick a second-best guess by going with the log2 of the
187  * number of CPUs.
188  *
189  * This idea comes from the SD scheduler of Con Kolivas:
190  */
191 static unsigned int get_update_sysctl_factor(void)
192 {
193 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 	unsigned int factor;
195 
196 	switch (sysctl_sched_tunable_scaling) {
197 	case SCHED_TUNABLESCALING_NONE:
198 		factor = 1;
199 		break;
200 	case SCHED_TUNABLESCALING_LINEAR:
201 		factor = cpus;
202 		break;
203 	case SCHED_TUNABLESCALING_LOG:
204 	default:
205 		factor = 1 + ilog2(cpus);
206 		break;
207 	}
208 
209 	return factor;
210 }
211 
212 static void update_sysctl(void)
213 {
214 	unsigned int factor = get_update_sysctl_factor();
215 
216 #define SET_SYSCTL(name) \
217 	(sysctl_##name = (factor) * normalized_sysctl_##name)
218 	SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221 
222 void __init sched_init_granularity(void)
223 {
224 	update_sysctl();
225 }
226 
227 #define WMULT_CONST	(~0U)
228 #define WMULT_SHIFT	32
229 
230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 	unsigned long w;
233 
234 	if (likely(lw->inv_weight))
235 		return;
236 
237 	w = scale_load_down(lw->weight);
238 
239 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 		lw->inv_weight = 1;
241 	else if (unlikely(!w))
242 		lw->inv_weight = WMULT_CONST;
243 	else
244 		lw->inv_weight = WMULT_CONST / w;
245 }
246 
247 /*
248  * delta_exec * weight / lw.weight
249  *   OR
250  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251  *
252  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253  * we're guaranteed shift stays positive because inv_weight is guaranteed to
254  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255  *
256  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257  * weight/lw.weight <= 1, and therefore our shift will also be positive.
258  */
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 	u64 fact = scale_load_down(weight);
262 	u32 fact_hi = (u32)(fact >> 32);
263 	int shift = WMULT_SHIFT;
264 	int fs;
265 
266 	__update_inv_weight(lw);
267 
268 	if (unlikely(fact_hi)) {
269 		fs = fls(fact_hi);
270 		shift -= fs;
271 		fact >>= fs;
272 	}
273 
274 	fact = mul_u32_u32(fact, lw->inv_weight);
275 
276 	fact_hi = (u32)(fact >> 32);
277 	if (fact_hi) {
278 		fs = fls(fact_hi);
279 		shift -= fs;
280 		fact >>= fs;
281 	}
282 
283 	return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285 
286 /*
287  * delta /= w
288  */
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 	if (unlikely(se->load.weight != NICE_0_LOAD))
292 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293 
294 	return delta;
295 }
296 
297 const struct sched_class fair_sched_class;
298 
299 /**************************************************************
300  * CFS operations on generic schedulable entities:
301  */
302 
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304 
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 		for (; se; se = se->parent)
308 
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 	struct rq *rq = rq_of(cfs_rq);
312 	int cpu = cpu_of(rq);
313 
314 	if (cfs_rq->on_list)
315 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316 
317 	cfs_rq->on_list = 1;
318 
319 	/*
320 	 * Ensure we either appear before our parent (if already
321 	 * enqueued) or force our parent to appear after us when it is
322 	 * enqueued. The fact that we always enqueue bottom-up
323 	 * reduces this to two cases and a special case for the root
324 	 * cfs_rq. Furthermore, it also means that we will always reset
325 	 * tmp_alone_branch either when the branch is connected
326 	 * to a tree or when we reach the top of the tree
327 	 */
328 	if (cfs_rq->tg->parent &&
329 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 		/*
331 		 * If parent is already on the list, we add the child
332 		 * just before. Thanks to circular linked property of
333 		 * the list, this means to put the child at the tail
334 		 * of the list that starts by parent.
335 		 */
336 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 		/*
339 		 * The branch is now connected to its tree so we can
340 		 * reset tmp_alone_branch to the beginning of the
341 		 * list.
342 		 */
343 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		return true;
345 	}
346 
347 	if (!cfs_rq->tg->parent) {
348 		/*
349 		 * cfs rq without parent should be put
350 		 * at the tail of the list.
351 		 */
352 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 			&rq->leaf_cfs_rq_list);
354 		/*
355 		 * We have reach the top of a tree so we can reset
356 		 * tmp_alone_branch to the beginning of the list.
357 		 */
358 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 		return true;
360 	}
361 
362 	/*
363 	 * The parent has not already been added so we want to
364 	 * make sure that it will be put after us.
365 	 * tmp_alone_branch points to the begin of the branch
366 	 * where we will add parent.
367 	 */
368 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 	/*
370 	 * update tmp_alone_branch to points to the new begin
371 	 * of the branch
372 	 */
373 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 	return false;
375 }
376 
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 	if (cfs_rq->on_list) {
380 		struct rq *rq = rq_of(cfs_rq);
381 
382 		/*
383 		 * With cfs_rq being unthrottled/throttled during an enqueue,
384 		 * it can happen the tmp_alone_branch points to the leaf that
385 		 * we finally want to delete. In this case, tmp_alone_branch moves
386 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 		 * at the end of the enqueue.
388 		 */
389 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391 
392 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 		cfs_rq->on_list = 0;
394 	}
395 }
396 
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401 
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405 				 leaf_cfs_rq_list)
406 
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 	if (se->cfs_rq == pse->cfs_rq)
412 		return se->cfs_rq;
413 
414 	return NULL;
415 }
416 
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 	return se->parent;
420 }
421 
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 	int se_depth, pse_depth;
426 
427 	/*
428 	 * preemption test can be made between sibling entities who are in the
429 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 	 * both tasks until we find their ancestors who are siblings of common
431 	 * parent.
432 	 */
433 
434 	/* First walk up until both entities are at same depth */
435 	se_depth = (*se)->depth;
436 	pse_depth = (*pse)->depth;
437 
438 	while (se_depth > pse_depth) {
439 		se_depth--;
440 		*se = parent_entity(*se);
441 	}
442 
443 	while (pse_depth > se_depth) {
444 		pse_depth--;
445 		*pse = parent_entity(*pse);
446 	}
447 
448 	while (!is_same_group(*se, *pse)) {
449 		*se = parent_entity(*se);
450 		*pse = parent_entity(*pse);
451 	}
452 }
453 
454 static int tg_is_idle(struct task_group *tg)
455 {
456 	return tg->idle > 0;
457 }
458 
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 	return cfs_rq->idle > 0;
462 }
463 
464 static int se_is_idle(struct sched_entity *se)
465 {
466 	if (entity_is_task(se))
467 		return task_has_idle_policy(task_of(se));
468 	return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470 
471 #else	/* !CONFIG_FAIR_GROUP_SCHED */
472 
473 #define for_each_sched_entity(se) \
474 		for (; se; se = NULL)
475 
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 	return true;
479 }
480 
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484 
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488 
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491 
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 	return NULL;
495 }
496 
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501 
502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 	return 0;
505 }
506 
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 	return 0;
510 }
511 
512 static int se_is_idle(struct sched_entity *se)
513 {
514 	return task_has_idle_policy(task_of(se));
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(const struct sched_entity *a,
545 				 const struct sched_entity *b)
546 {
547 	/*
548 	 * Tiebreak on vruntime seems unnecessary since it can
549 	 * hardly happen.
550 	 */
551 	return (s64)(a->deadline - b->deadline) < 0;
552 }
553 
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558 
559 #define __node_2_se(node) \
560 	rb_entry((node), struct sched_entity, run_node)
561 
562 /*
563  * Compute virtual time from the per-task service numbers:
564  *
565  * Fair schedulers conserve lag:
566  *
567  *   \Sum lag_i = 0
568  *
569  * Where lag_i is given by:
570  *
571  *   lag_i = S - s_i = w_i * (V - v_i)
572  *
573  * Where S is the ideal service time and V is it's virtual time counterpart.
574  * Therefore:
575  *
576  *   \Sum lag_i = 0
577  *   \Sum w_i * (V - v_i) = 0
578  *   \Sum w_i * V - w_i * v_i = 0
579  *
580  * From which we can solve an expression for V in v_i (which we have in
581  * se->vruntime):
582  *
583  *       \Sum v_i * w_i   \Sum v_i * w_i
584  *   V = -------------- = --------------
585  *          \Sum w_i            W
586  *
587  * Specifically, this is the weighted average of all entity virtual runtimes.
588  *
589  * [[ NOTE: this is only equal to the ideal scheduler under the condition
590  *          that join/leave operations happen at lag_i = 0, otherwise the
591  *          virtual time has non-contiguous motion equivalent to:
592  *
593  *	      V +-= lag_i / W
594  *
595  *	    Also see the comment in place_entity() that deals with this. ]]
596  *
597  * However, since v_i is u64, and the multiplication could easily overflow
598  * transform it into a relative form that uses smaller quantities:
599  *
600  * Substitute: v_i == (v_i - v0) + v0
601  *
602  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603  * V = ---------------------------- = --------------------- + v0
604  *                  W                            W
605  *
606  * Which we track using:
607  *
608  *                    v0 := cfs_rq->min_vruntime
609  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610  *              \Sum w_i := cfs_rq->avg_load
611  *
612  * Since min_vruntime is a monotonic increasing variable that closely tracks
613  * the per-task service, these deltas: (v_i - v), will be in the order of the
614  * maximal (virtual) lag induced in the system due to quantisation.
615  *
616  * Also, we use scale_load_down() to reduce the size.
617  *
618  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619  */
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 	unsigned long weight = scale_load_down(se->load.weight);
624 	s64 key = entity_key(cfs_rq, se);
625 
626 	cfs_rq->avg_vruntime += key * weight;
627 	cfs_rq->avg_load += weight;
628 }
629 
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 	unsigned long weight = scale_load_down(se->load.weight);
634 	s64 key = entity_key(cfs_rq, se);
635 
636 	cfs_rq->avg_vruntime -= key * weight;
637 	cfs_rq->avg_load -= weight;
638 }
639 
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 	/*
644 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 	 */
646 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648 
649 /*
650  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651  * For this to be so, the result of this function must have a left bias.
652  */
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 	struct sched_entity *curr = cfs_rq->curr;
656 	s64 avg = cfs_rq->avg_vruntime;
657 	long load = cfs_rq->avg_load;
658 
659 	if (curr && curr->on_rq) {
660 		unsigned long weight = scale_load_down(curr->load.weight);
661 
662 		avg += entity_key(cfs_rq, curr) * weight;
663 		load += weight;
664 	}
665 
666 	if (load) {
667 		/* sign flips effective floor / ceiling */
668 		if (avg < 0)
669 			avg -= (load - 1);
670 		avg = div_s64(avg, load);
671 	}
672 
673 	return cfs_rq->min_vruntime + avg;
674 }
675 
676 /*
677  * lag_i = S - s_i = w_i * (V - v_i)
678  *
679  * However, since V is approximated by the weighted average of all entities it
680  * is possible -- by addition/removal/reweight to the tree -- to move V around
681  * and end up with a larger lag than we started with.
682  *
683  * Limit this to either double the slice length with a minimum of TICK_NSEC
684  * since that is the timing granularity.
685  *
686  * EEVDF gives the following limit for a steady state system:
687  *
688  *   -r_max < lag < max(r_max, q)
689  *
690  * XXX could add max_slice to the augmented data to track this.
691  */
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693 {
694 	s64 vlag, limit;
695 
696 	vlag = avruntime - se->vruntime;
697 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698 
699 	return clamp(vlag, -limit, limit);
700 }
701 
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	SCHED_WARN_ON(!se->on_rq);
705 
706 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707 }
708 
709 /*
710  * Entity is eligible once it received less service than it ought to have,
711  * eg. lag >= 0.
712  *
713  * lag_i = S - s_i = w_i*(V - v_i)
714  *
715  * lag_i >= 0 -> V >= v_i
716  *
717  *     \Sum (v_i - v)*w_i
718  * V = ------------------ + v
719  *          \Sum w_i
720  *
721  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722  *
723  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724  *       to the loss in precision caused by the division.
725  */
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727 {
728 	struct sched_entity *curr = cfs_rq->curr;
729 	s64 avg = cfs_rq->avg_vruntime;
730 	long load = cfs_rq->avg_load;
731 
732 	if (curr && curr->on_rq) {
733 		unsigned long weight = scale_load_down(curr->load.weight);
734 
735 		avg += entity_key(cfs_rq, curr) * weight;
736 		load += weight;
737 	}
738 
739 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 }
741 
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	return vruntime_eligible(cfs_rq, se->vruntime);
745 }
746 
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748 {
749 	u64 min_vruntime = cfs_rq->min_vruntime;
750 	/*
751 	 * open coded max_vruntime() to allow updating avg_vruntime
752 	 */
753 	s64 delta = (s64)(vruntime - min_vruntime);
754 	if (delta > 0) {
755 		avg_vruntime_update(cfs_rq, delta);
756 		min_vruntime = vruntime;
757 	}
758 	return min_vruntime;
759 }
760 
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
762 {
763 	struct sched_entity *se = __pick_root_entity(cfs_rq);
764 	struct sched_entity *curr = cfs_rq->curr;
765 	u64 vruntime = cfs_rq->min_vruntime;
766 
767 	if (curr) {
768 		if (curr->on_rq)
769 			vruntime = curr->vruntime;
770 		else
771 			curr = NULL;
772 	}
773 
774 	if (se) {
775 		if (!curr)
776 			vruntime = se->min_vruntime;
777 		else
778 			vruntime = min_vruntime(vruntime, se->min_vruntime);
779 	}
780 
781 	/* ensure we never gain time by being placed backwards. */
782 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
783 }
784 
785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
786 {
787 	struct sched_entity *root = __pick_root_entity(cfs_rq);
788 	struct sched_entity *curr = cfs_rq->curr;
789 	u64 min_slice = ~0ULL;
790 
791 	if (curr && curr->on_rq)
792 		min_slice = curr->slice;
793 
794 	if (root)
795 		min_slice = min(min_slice, root->min_slice);
796 
797 	return min_slice;
798 }
799 
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (vruntime_gt(min_vruntime, se, rse))
812 			se->min_vruntime = rse->min_vruntime;
813 	}
814 }
815 
816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
817 {
818 	if (node) {
819 		struct sched_entity *rse = __node_2_se(node);
820 		if (rse->min_slice < se->min_slice)
821 			se->min_slice = rse->min_slice;
822 	}
823 }
824 
825 /*
826  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
827  */
828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
829 {
830 	u64 old_min_vruntime = se->min_vruntime;
831 	u64 old_min_slice = se->min_slice;
832 	struct rb_node *node = &se->run_node;
833 
834 	se->min_vruntime = se->vruntime;
835 	__min_vruntime_update(se, node->rb_right);
836 	__min_vruntime_update(se, node->rb_left);
837 
838 	se->min_slice = se->slice;
839 	__min_slice_update(se, node->rb_right);
840 	__min_slice_update(se, node->rb_left);
841 
842 	return se->min_vruntime == old_min_vruntime &&
843 	       se->min_slice == old_min_slice;
844 }
845 
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847 		     run_node, min_vruntime, min_vruntime_update);
848 
849 /*
850  * Enqueue an entity into the rb-tree:
851  */
852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
853 {
854 	avg_vruntime_add(cfs_rq, se);
855 	se->min_vruntime = se->vruntime;
856 	se->min_slice = se->slice;
857 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858 				__entity_less, &min_vruntime_cb);
859 }
860 
861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
864 				  &min_vruntime_cb);
865 	avg_vruntime_sub(cfs_rq, se);
866 }
867 
868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
869 {
870 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
871 
872 	if (!root)
873 		return NULL;
874 
875 	return __node_2_se(root);
876 }
877 
878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
879 {
880 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
881 
882 	if (!left)
883 		return NULL;
884 
885 	return __node_2_se(left);
886 }
887 
888 /*
889  * Earliest Eligible Virtual Deadline First
890  *
891  * In order to provide latency guarantees for different request sizes
892  * EEVDF selects the best runnable task from two criteria:
893  *
894  *  1) the task must be eligible (must be owed service)
895  *
896  *  2) from those tasks that meet 1), we select the one
897  *     with the earliest virtual deadline.
898  *
899  * We can do this in O(log n) time due to an augmented RB-tree. The
900  * tree keeps the entries sorted on deadline, but also functions as a
901  * heap based on the vruntime by keeping:
902  *
903  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
904  *
905  * Which allows tree pruning through eligibility.
906  */
907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
908 {
909 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910 	struct sched_entity *se = __pick_first_entity(cfs_rq);
911 	struct sched_entity *curr = cfs_rq->curr;
912 	struct sched_entity *best = NULL;
913 
914 	/*
915 	 * We can safely skip eligibility check if there is only one entity
916 	 * in this cfs_rq, saving some cycles.
917 	 */
918 	if (cfs_rq->nr_running == 1)
919 		return curr && curr->on_rq ? curr : se;
920 
921 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
922 		curr = NULL;
923 
924 	/*
925 	 * Once selected, run a task until it either becomes non-eligible or
926 	 * until it gets a new slice. See the HACK in set_next_entity().
927 	 */
928 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
929 		return curr;
930 
931 	/* Pick the leftmost entity if it's eligible */
932 	if (se && entity_eligible(cfs_rq, se)) {
933 		best = se;
934 		goto found;
935 	}
936 
937 	/* Heap search for the EEVD entity */
938 	while (node) {
939 		struct rb_node *left = node->rb_left;
940 
941 		/*
942 		 * Eligible entities in left subtree are always better
943 		 * choices, since they have earlier deadlines.
944 		 */
945 		if (left && vruntime_eligible(cfs_rq,
946 					__node_2_se(left)->min_vruntime)) {
947 			node = left;
948 			continue;
949 		}
950 
951 		se = __node_2_se(node);
952 
953 		/*
954 		 * The left subtree either is empty or has no eligible
955 		 * entity, so check the current node since it is the one
956 		 * with earliest deadline that might be eligible.
957 		 */
958 		if (entity_eligible(cfs_rq, se)) {
959 			best = se;
960 			break;
961 		}
962 
963 		node = node->rb_right;
964 	}
965 found:
966 	if (!best || (curr && entity_before(curr, best)))
967 		best = curr;
968 
969 	return best;
970 }
971 
972 #ifdef CONFIG_SCHED_DEBUG
973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
974 {
975 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
976 
977 	if (!last)
978 		return NULL;
979 
980 	return __node_2_se(last);
981 }
982 
983 /**************************************************************
984  * Scheduling class statistics methods:
985  */
986 #ifdef CONFIG_SMP
987 int sched_update_scaling(void)
988 {
989 	unsigned int factor = get_update_sysctl_factor();
990 
991 #define WRT_SYSCTL(name) \
992 	(normalized_sysctl_##name = sysctl_##name / (factor))
993 	WRT_SYSCTL(sched_base_slice);
994 #undef WRT_SYSCTL
995 
996 	return 0;
997 }
998 #endif
999 #endif
1000 
1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1002 
1003 /*
1004  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005  * this is probably good enough.
1006  */
1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1008 {
1009 	if ((s64)(se->vruntime - se->deadline) < 0)
1010 		return false;
1011 
1012 	/*
1013 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 	 * nice) while the request time r_i is determined by
1015 	 * sysctl_sched_base_slice.
1016 	 */
1017 	if (!se->custom_slice)
1018 		se->slice = sysctl_sched_base_slice;
1019 
1020 	/*
1021 	 * EEVDF: vd_i = ve_i + r_i / w_i
1022 	 */
1023 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1024 
1025 	/*
1026 	 * The task has consumed its request, reschedule.
1027 	 */
1028 	return true;
1029 }
1030 
1031 #include "pelt.h"
1032 #ifdef CONFIG_SMP
1033 
1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035 static unsigned long task_h_load(struct task_struct *p);
1036 static unsigned long capacity_of(int cpu);
1037 
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
1039 void init_entity_runnable_average(struct sched_entity *se)
1040 {
1041 	struct sched_avg *sa = &se->avg;
1042 
1043 	memset(sa, 0, sizeof(*sa));
1044 
1045 	/*
1046 	 * Tasks are initialized with full load to be seen as heavy tasks until
1047 	 * they get a chance to stabilize to their real load level.
1048 	 * Group entities are initialized with zero load to reflect the fact that
1049 	 * nothing has been attached to the task group yet.
1050 	 */
1051 	if (entity_is_task(se))
1052 		sa->load_avg = scale_load_down(se->load.weight);
1053 
1054 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1055 }
1056 
1057 /*
1058  * With new tasks being created, their initial util_avgs are extrapolated
1059  * based on the cfs_rq's current util_avg:
1060  *
1061  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1062  *		* se_weight(se)
1063  *
1064  * However, in many cases, the above util_avg does not give a desired
1065  * value. Moreover, the sum of the util_avgs may be divergent, such
1066  * as when the series is a harmonic series.
1067  *
1068  * To solve this problem, we also cap the util_avg of successive tasks to
1069  * only 1/2 of the left utilization budget:
1070  *
1071  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1072  *
1073  * where n denotes the nth task and cpu_scale the CPU capacity.
1074  *
1075  * For example, for a CPU with 1024 of capacity, a simplest series from
1076  * the beginning would be like:
1077  *
1078  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1079  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1080  *
1081  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082  * if util_avg > util_avg_cap.
1083  */
1084 void post_init_entity_util_avg(struct task_struct *p)
1085 {
1086 	struct sched_entity *se = &p->se;
1087 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088 	struct sched_avg *sa = &se->avg;
1089 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1091 
1092 	if (p->sched_class != &fair_sched_class) {
1093 		/*
1094 		 * For !fair tasks do:
1095 		 *
1096 		update_cfs_rq_load_avg(now, cfs_rq);
1097 		attach_entity_load_avg(cfs_rq, se);
1098 		switched_from_fair(rq, p);
1099 		 *
1100 		 * such that the next switched_to_fair() has the
1101 		 * expected state.
1102 		 */
1103 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1104 		return;
1105 	}
1106 
1107 	if (cap > 0) {
1108 		if (cfs_rq->avg.util_avg != 0) {
1109 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1110 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1111 
1112 			if (sa->util_avg > cap)
1113 				sa->util_avg = cap;
1114 		} else {
1115 			sa->util_avg = cap;
1116 		}
1117 	}
1118 
1119 	sa->runnable_avg = sa->util_avg;
1120 }
1121 
1122 #else /* !CONFIG_SMP */
1123 void init_entity_runnable_average(struct sched_entity *se)
1124 {
1125 }
1126 void post_init_entity_util_avg(struct task_struct *p)
1127 {
1128 }
1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1130 {
1131 }
1132 #endif /* CONFIG_SMP */
1133 
1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1135 {
1136 	u64 now = rq_clock_task(rq);
1137 	s64 delta_exec;
1138 
1139 	delta_exec = now - curr->exec_start;
1140 	if (unlikely(delta_exec <= 0))
1141 		return delta_exec;
1142 
1143 	curr->exec_start = now;
1144 	curr->sum_exec_runtime += delta_exec;
1145 
1146 	if (schedstat_enabled()) {
1147 		struct sched_statistics *stats;
1148 
1149 		stats = __schedstats_from_se(curr);
1150 		__schedstat_set(stats->exec_max,
1151 				max(delta_exec, stats->exec_max));
1152 	}
1153 
1154 	return delta_exec;
1155 }
1156 
1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1158 {
1159 	trace_sched_stat_runtime(p, delta_exec);
1160 	account_group_exec_runtime(p, delta_exec);
1161 	cgroup_account_cputime(p, delta_exec);
1162 	if (p->dl_server)
1163 		dl_server_update(p->dl_server, delta_exec);
1164 }
1165 
1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1167 {
1168 	if (!sched_feat(PREEMPT_SHORT))
1169 		return false;
1170 
1171 	if (curr->vlag == curr->deadline)
1172 		return false;
1173 
1174 	return !entity_eligible(cfs_rq, curr);
1175 }
1176 
1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1178 				    struct sched_entity *pse, struct sched_entity *se)
1179 {
1180 	if (!sched_feat(PREEMPT_SHORT))
1181 		return false;
1182 
1183 	if (pse->slice >= se->slice)
1184 		return false;
1185 
1186 	if (!entity_eligible(cfs_rq, pse))
1187 		return false;
1188 
1189 	if (entity_before(pse, se))
1190 		return true;
1191 
1192 	if (!entity_eligible(cfs_rq, se))
1193 		return true;
1194 
1195 	return false;
1196 }
1197 
1198 /*
1199  * Used by other classes to account runtime.
1200  */
1201 s64 update_curr_common(struct rq *rq)
1202 {
1203 	struct task_struct *donor = rq->donor;
1204 	s64 delta_exec;
1205 
1206 	delta_exec = update_curr_se(rq, &donor->se);
1207 	if (likely(delta_exec > 0))
1208 		update_curr_task(donor, delta_exec);
1209 
1210 	return delta_exec;
1211 }
1212 
1213 /*
1214  * Update the current task's runtime statistics.
1215  */
1216 static void update_curr(struct cfs_rq *cfs_rq)
1217 {
1218 	struct sched_entity *curr = cfs_rq->curr;
1219 	struct rq *rq = rq_of(cfs_rq);
1220 	s64 delta_exec;
1221 	bool resched;
1222 
1223 	if (unlikely(!curr))
1224 		return;
1225 
1226 	delta_exec = update_curr_se(rq, curr);
1227 	if (unlikely(delta_exec <= 0))
1228 		return;
1229 
1230 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1231 	resched = update_deadline(cfs_rq, curr);
1232 	update_min_vruntime(cfs_rq);
1233 
1234 	if (entity_is_task(curr)) {
1235 		struct task_struct *p = task_of(curr);
1236 
1237 		update_curr_task(p, delta_exec);
1238 
1239 		/*
1240 		 * Any fair task that runs outside of fair_server should
1241 		 * account against fair_server such that it can account for
1242 		 * this time and possibly avoid running this period.
1243 		 */
1244 		if (p->dl_server != &rq->fair_server)
1245 			dl_server_update(&rq->fair_server, delta_exec);
1246 	}
1247 
1248 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1249 
1250 	if (cfs_rq->nr_running == 1)
1251 		return;
1252 
1253 	if (resched || did_preempt_short(cfs_rq, curr)) {
1254 		resched_curr_lazy(rq);
1255 		clear_buddies(cfs_rq, curr);
1256 	}
1257 }
1258 
1259 static void update_curr_fair(struct rq *rq)
1260 {
1261 	update_curr(cfs_rq_of(&rq->donor->se));
1262 }
1263 
1264 static inline void
1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1266 {
1267 	struct sched_statistics *stats;
1268 	struct task_struct *p = NULL;
1269 
1270 	if (!schedstat_enabled())
1271 		return;
1272 
1273 	stats = __schedstats_from_se(se);
1274 
1275 	if (entity_is_task(se))
1276 		p = task_of(se);
1277 
1278 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1279 }
1280 
1281 static inline void
1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1283 {
1284 	struct sched_statistics *stats;
1285 	struct task_struct *p = NULL;
1286 
1287 	if (!schedstat_enabled())
1288 		return;
1289 
1290 	stats = __schedstats_from_se(se);
1291 
1292 	/*
1293 	 * When the sched_schedstat changes from 0 to 1, some sched se
1294 	 * maybe already in the runqueue, the se->statistics.wait_start
1295 	 * will be 0.So it will let the delta wrong. We need to avoid this
1296 	 * scenario.
1297 	 */
1298 	if (unlikely(!schedstat_val(stats->wait_start)))
1299 		return;
1300 
1301 	if (entity_is_task(se))
1302 		p = task_of(se);
1303 
1304 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1305 }
1306 
1307 static inline void
1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1309 {
1310 	struct sched_statistics *stats;
1311 	struct task_struct *tsk = NULL;
1312 
1313 	if (!schedstat_enabled())
1314 		return;
1315 
1316 	stats = __schedstats_from_se(se);
1317 
1318 	if (entity_is_task(se))
1319 		tsk = task_of(se);
1320 
1321 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1322 }
1323 
1324 /*
1325  * Task is being enqueued - update stats:
1326  */
1327 static inline void
1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1329 {
1330 	if (!schedstat_enabled())
1331 		return;
1332 
1333 	/*
1334 	 * Are we enqueueing a waiting task? (for current tasks
1335 	 * a dequeue/enqueue event is a NOP)
1336 	 */
1337 	if (se != cfs_rq->curr)
1338 		update_stats_wait_start_fair(cfs_rq, se);
1339 
1340 	if (flags & ENQUEUE_WAKEUP)
1341 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1342 }
1343 
1344 static inline void
1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1346 {
1347 
1348 	if (!schedstat_enabled())
1349 		return;
1350 
1351 	/*
1352 	 * Mark the end of the wait period if dequeueing a
1353 	 * waiting task:
1354 	 */
1355 	if (se != cfs_rq->curr)
1356 		update_stats_wait_end_fair(cfs_rq, se);
1357 
1358 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1359 		struct task_struct *tsk = task_of(se);
1360 		unsigned int state;
1361 
1362 		/* XXX racy against TTWU */
1363 		state = READ_ONCE(tsk->__state);
1364 		if (state & TASK_INTERRUPTIBLE)
1365 			__schedstat_set(tsk->stats.sleep_start,
1366 				      rq_clock(rq_of(cfs_rq)));
1367 		if (state & TASK_UNINTERRUPTIBLE)
1368 			__schedstat_set(tsk->stats.block_start,
1369 				      rq_clock(rq_of(cfs_rq)));
1370 	}
1371 }
1372 
1373 /*
1374  * We are picking a new current task - update its stats:
1375  */
1376 static inline void
1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1378 {
1379 	/*
1380 	 * We are starting a new run period:
1381 	 */
1382 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1383 }
1384 
1385 /**************************************************
1386  * Scheduling class queueing methods:
1387  */
1388 
1389 static inline bool is_core_idle(int cpu)
1390 {
1391 #ifdef CONFIG_SCHED_SMT
1392 	int sibling;
1393 
1394 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1395 		if (cpu == sibling)
1396 			continue;
1397 
1398 		if (!idle_cpu(sibling))
1399 			return false;
1400 	}
1401 #endif
1402 
1403 	return true;
1404 }
1405 
1406 #ifdef CONFIG_NUMA
1407 #define NUMA_IMBALANCE_MIN 2
1408 
1409 static inline long
1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1411 {
1412 	/*
1413 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1414 	 * threshold. Above this threshold, individual tasks may be contending
1415 	 * for both memory bandwidth and any shared HT resources.  This is an
1416 	 * approximation as the number of running tasks may not be related to
1417 	 * the number of busy CPUs due to sched_setaffinity.
1418 	 */
1419 	if (dst_running > imb_numa_nr)
1420 		return imbalance;
1421 
1422 	/*
1423 	 * Allow a small imbalance based on a simple pair of communicating
1424 	 * tasks that remain local when the destination is lightly loaded.
1425 	 */
1426 	if (imbalance <= NUMA_IMBALANCE_MIN)
1427 		return 0;
1428 
1429 	return imbalance;
1430 }
1431 #endif /* CONFIG_NUMA */
1432 
1433 #ifdef CONFIG_NUMA_BALANCING
1434 /*
1435  * Approximate time to scan a full NUMA task in ms. The task scan period is
1436  * calculated based on the tasks virtual memory size and
1437  * numa_balancing_scan_size.
1438  */
1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1441 
1442 /* Portion of address space to scan in MB */
1443 unsigned int sysctl_numa_balancing_scan_size = 256;
1444 
1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1446 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1447 
1448 /* The page with hint page fault latency < threshold in ms is considered hot */
1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1450 
1451 struct numa_group {
1452 	refcount_t refcount;
1453 
1454 	spinlock_t lock; /* nr_tasks, tasks */
1455 	int nr_tasks;
1456 	pid_t gid;
1457 	int active_nodes;
1458 
1459 	struct rcu_head rcu;
1460 	unsigned long total_faults;
1461 	unsigned long max_faults_cpu;
1462 	/*
1463 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1464 	 *
1465 	 * Faults_cpu is used to decide whether memory should move
1466 	 * towards the CPU. As a consequence, these stats are weighted
1467 	 * more by CPU use than by memory faults.
1468 	 */
1469 	unsigned long faults[];
1470 };
1471 
1472 /*
1473  * For functions that can be called in multiple contexts that permit reading
1474  * ->numa_group (see struct task_struct for locking rules).
1475  */
1476 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1477 {
1478 	return rcu_dereference_check(p->numa_group, p == current ||
1479 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1480 }
1481 
1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1483 {
1484 	return rcu_dereference_protected(p->numa_group, p == current);
1485 }
1486 
1487 static inline unsigned long group_faults_priv(struct numa_group *ng);
1488 static inline unsigned long group_faults_shared(struct numa_group *ng);
1489 
1490 static unsigned int task_nr_scan_windows(struct task_struct *p)
1491 {
1492 	unsigned long rss = 0;
1493 	unsigned long nr_scan_pages;
1494 
1495 	/*
1496 	 * Calculations based on RSS as non-present and empty pages are skipped
1497 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1498 	 * on resident pages
1499 	 */
1500 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1501 	rss = get_mm_rss(p->mm);
1502 	if (!rss)
1503 		rss = nr_scan_pages;
1504 
1505 	rss = round_up(rss, nr_scan_pages);
1506 	return rss / nr_scan_pages;
1507 }
1508 
1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1510 #define MAX_SCAN_WINDOW 2560
1511 
1512 static unsigned int task_scan_min(struct task_struct *p)
1513 {
1514 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1515 	unsigned int scan, floor;
1516 	unsigned int windows = 1;
1517 
1518 	if (scan_size < MAX_SCAN_WINDOW)
1519 		windows = MAX_SCAN_WINDOW / scan_size;
1520 	floor = 1000 / windows;
1521 
1522 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1523 	return max_t(unsigned int, floor, scan);
1524 }
1525 
1526 static unsigned int task_scan_start(struct task_struct *p)
1527 {
1528 	unsigned long smin = task_scan_min(p);
1529 	unsigned long period = smin;
1530 	struct numa_group *ng;
1531 
1532 	/* Scale the maximum scan period with the amount of shared memory. */
1533 	rcu_read_lock();
1534 	ng = rcu_dereference(p->numa_group);
1535 	if (ng) {
1536 		unsigned long shared = group_faults_shared(ng);
1537 		unsigned long private = group_faults_priv(ng);
1538 
1539 		period *= refcount_read(&ng->refcount);
1540 		period *= shared + 1;
1541 		period /= private + shared + 1;
1542 	}
1543 	rcu_read_unlock();
1544 
1545 	return max(smin, period);
1546 }
1547 
1548 static unsigned int task_scan_max(struct task_struct *p)
1549 {
1550 	unsigned long smin = task_scan_min(p);
1551 	unsigned long smax;
1552 	struct numa_group *ng;
1553 
1554 	/* Watch for min being lower than max due to floor calculations */
1555 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1556 
1557 	/* Scale the maximum scan period with the amount of shared memory. */
1558 	ng = deref_curr_numa_group(p);
1559 	if (ng) {
1560 		unsigned long shared = group_faults_shared(ng);
1561 		unsigned long private = group_faults_priv(ng);
1562 		unsigned long period = smax;
1563 
1564 		period *= refcount_read(&ng->refcount);
1565 		period *= shared + 1;
1566 		period /= private + shared + 1;
1567 
1568 		smax = max(smax, period);
1569 	}
1570 
1571 	return max(smin, smax);
1572 }
1573 
1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1575 {
1576 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1577 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1578 }
1579 
1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1581 {
1582 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1583 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1584 }
1585 
1586 /* Shared or private faults. */
1587 #define NR_NUMA_HINT_FAULT_TYPES 2
1588 
1589 /* Memory and CPU locality */
1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1591 
1592 /* Averaged statistics, and temporary buffers. */
1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1594 
1595 pid_t task_numa_group_id(struct task_struct *p)
1596 {
1597 	struct numa_group *ng;
1598 	pid_t gid = 0;
1599 
1600 	rcu_read_lock();
1601 	ng = rcu_dereference(p->numa_group);
1602 	if (ng)
1603 		gid = ng->gid;
1604 	rcu_read_unlock();
1605 
1606 	return gid;
1607 }
1608 
1609 /*
1610  * The averaged statistics, shared & private, memory & CPU,
1611  * occupy the first half of the array. The second half of the
1612  * array is for current counters, which are averaged into the
1613  * first set by task_numa_placement.
1614  */
1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1616 {
1617 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1618 }
1619 
1620 static inline unsigned long task_faults(struct task_struct *p, int nid)
1621 {
1622 	if (!p->numa_faults)
1623 		return 0;
1624 
1625 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1626 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1627 }
1628 
1629 static inline unsigned long group_faults(struct task_struct *p, int nid)
1630 {
1631 	struct numa_group *ng = deref_task_numa_group(p);
1632 
1633 	if (!ng)
1634 		return 0;
1635 
1636 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1637 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1638 }
1639 
1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1641 {
1642 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1643 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1644 }
1645 
1646 static inline unsigned long group_faults_priv(struct numa_group *ng)
1647 {
1648 	unsigned long faults = 0;
1649 	int node;
1650 
1651 	for_each_online_node(node) {
1652 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1653 	}
1654 
1655 	return faults;
1656 }
1657 
1658 static inline unsigned long group_faults_shared(struct numa_group *ng)
1659 {
1660 	unsigned long faults = 0;
1661 	int node;
1662 
1663 	for_each_online_node(node) {
1664 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1665 	}
1666 
1667 	return faults;
1668 }
1669 
1670 /*
1671  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1672  * considered part of a numa group's pseudo-interleaving set. Migrations
1673  * between these nodes are slowed down, to allow things to settle down.
1674  */
1675 #define ACTIVE_NODE_FRACTION 3
1676 
1677 static bool numa_is_active_node(int nid, struct numa_group *ng)
1678 {
1679 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1680 }
1681 
1682 /* Handle placement on systems where not all nodes are directly connected. */
1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1684 					int lim_dist, bool task)
1685 {
1686 	unsigned long score = 0;
1687 	int node, max_dist;
1688 
1689 	/*
1690 	 * All nodes are directly connected, and the same distance
1691 	 * from each other. No need for fancy placement algorithms.
1692 	 */
1693 	if (sched_numa_topology_type == NUMA_DIRECT)
1694 		return 0;
1695 
1696 	/* sched_max_numa_distance may be changed in parallel. */
1697 	max_dist = READ_ONCE(sched_max_numa_distance);
1698 	/*
1699 	 * This code is called for each node, introducing N^2 complexity,
1700 	 * which should be OK given the number of nodes rarely exceeds 8.
1701 	 */
1702 	for_each_online_node(node) {
1703 		unsigned long faults;
1704 		int dist = node_distance(nid, node);
1705 
1706 		/*
1707 		 * The furthest away nodes in the system are not interesting
1708 		 * for placement; nid was already counted.
1709 		 */
1710 		if (dist >= max_dist || node == nid)
1711 			continue;
1712 
1713 		/*
1714 		 * On systems with a backplane NUMA topology, compare groups
1715 		 * of nodes, and move tasks towards the group with the most
1716 		 * memory accesses. When comparing two nodes at distance
1717 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1718 		 * of each group. Skip other nodes.
1719 		 */
1720 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1721 			continue;
1722 
1723 		/* Add up the faults from nearby nodes. */
1724 		if (task)
1725 			faults = task_faults(p, node);
1726 		else
1727 			faults = group_faults(p, node);
1728 
1729 		/*
1730 		 * On systems with a glueless mesh NUMA topology, there are
1731 		 * no fixed "groups of nodes". Instead, nodes that are not
1732 		 * directly connected bounce traffic through intermediate
1733 		 * nodes; a numa_group can occupy any set of nodes.
1734 		 * The further away a node is, the less the faults count.
1735 		 * This seems to result in good task placement.
1736 		 */
1737 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1738 			faults *= (max_dist - dist);
1739 			faults /= (max_dist - LOCAL_DISTANCE);
1740 		}
1741 
1742 		score += faults;
1743 	}
1744 
1745 	return score;
1746 }
1747 
1748 /*
1749  * These return the fraction of accesses done by a particular task, or
1750  * task group, on a particular numa node.  The group weight is given a
1751  * larger multiplier, in order to group tasks together that are almost
1752  * evenly spread out between numa nodes.
1753  */
1754 static inline unsigned long task_weight(struct task_struct *p, int nid,
1755 					int dist)
1756 {
1757 	unsigned long faults, total_faults;
1758 
1759 	if (!p->numa_faults)
1760 		return 0;
1761 
1762 	total_faults = p->total_numa_faults;
1763 
1764 	if (!total_faults)
1765 		return 0;
1766 
1767 	faults = task_faults(p, nid);
1768 	faults += score_nearby_nodes(p, nid, dist, true);
1769 
1770 	return 1000 * faults / total_faults;
1771 }
1772 
1773 static inline unsigned long group_weight(struct task_struct *p, int nid,
1774 					 int dist)
1775 {
1776 	struct numa_group *ng = deref_task_numa_group(p);
1777 	unsigned long faults, total_faults;
1778 
1779 	if (!ng)
1780 		return 0;
1781 
1782 	total_faults = ng->total_faults;
1783 
1784 	if (!total_faults)
1785 		return 0;
1786 
1787 	faults = group_faults(p, nid);
1788 	faults += score_nearby_nodes(p, nid, dist, false);
1789 
1790 	return 1000 * faults / total_faults;
1791 }
1792 
1793 /*
1794  * If memory tiering mode is enabled, cpupid of slow memory page is
1795  * used to record scan time instead of CPU and PID.  When tiering mode
1796  * is disabled at run time, the scan time (in cpupid) will be
1797  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1798  * access out of array bound.
1799  */
1800 static inline bool cpupid_valid(int cpupid)
1801 {
1802 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1803 }
1804 
1805 /*
1806  * For memory tiering mode, if there are enough free pages (more than
1807  * enough watermark defined here) in fast memory node, to take full
1808  * advantage of fast memory capacity, all recently accessed slow
1809  * memory pages will be migrated to fast memory node without
1810  * considering hot threshold.
1811  */
1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1813 {
1814 	int z;
1815 	unsigned long enough_wmark;
1816 
1817 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1818 			   pgdat->node_present_pages >> 4);
1819 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820 		struct zone *zone = pgdat->node_zones + z;
1821 
1822 		if (!populated_zone(zone))
1823 			continue;
1824 
1825 		if (zone_watermark_ok(zone, 0,
1826 				      promo_wmark_pages(zone) + enough_wmark,
1827 				      ZONE_MOVABLE, 0))
1828 			return true;
1829 	}
1830 	return false;
1831 }
1832 
1833 /*
1834  * For memory tiering mode, when page tables are scanned, the scan
1835  * time will be recorded in struct page in addition to make page
1836  * PROT_NONE for slow memory page.  So when the page is accessed, in
1837  * hint page fault handler, the hint page fault latency is calculated
1838  * via,
1839  *
1840  *	hint page fault latency = hint page fault time - scan time
1841  *
1842  * The smaller the hint page fault latency, the higher the possibility
1843  * for the page to be hot.
1844  */
1845 static int numa_hint_fault_latency(struct folio *folio)
1846 {
1847 	int last_time, time;
1848 
1849 	time = jiffies_to_msecs(jiffies);
1850 	last_time = folio_xchg_access_time(folio, time);
1851 
1852 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1853 }
1854 
1855 /*
1856  * For memory tiering mode, too high promotion/demotion throughput may
1857  * hurt application latency.  So we provide a mechanism to rate limit
1858  * the number of pages that are tried to be promoted.
1859  */
1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1861 				      unsigned long rate_limit, int nr)
1862 {
1863 	unsigned long nr_cand;
1864 	unsigned int now, start;
1865 
1866 	now = jiffies_to_msecs(jiffies);
1867 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1868 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1869 	start = pgdat->nbp_rl_start;
1870 	if (now - start > MSEC_PER_SEC &&
1871 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1872 		pgdat->nbp_rl_nr_cand = nr_cand;
1873 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1874 		return true;
1875 	return false;
1876 }
1877 
1878 #define NUMA_MIGRATION_ADJUST_STEPS	16
1879 
1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1881 					    unsigned long rate_limit,
1882 					    unsigned int ref_th)
1883 {
1884 	unsigned int now, start, th_period, unit_th, th;
1885 	unsigned long nr_cand, ref_cand, diff_cand;
1886 
1887 	now = jiffies_to_msecs(jiffies);
1888 	th_period = sysctl_numa_balancing_scan_period_max;
1889 	start = pgdat->nbp_th_start;
1890 	if (now - start > th_period &&
1891 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1892 		ref_cand = rate_limit *
1893 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1894 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1895 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1896 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1897 		th = pgdat->nbp_threshold ? : ref_th;
1898 		if (diff_cand > ref_cand * 11 / 10)
1899 			th = max(th - unit_th, unit_th);
1900 		else if (diff_cand < ref_cand * 9 / 10)
1901 			th = min(th + unit_th, ref_th * 2);
1902 		pgdat->nbp_th_nr_cand = nr_cand;
1903 		pgdat->nbp_threshold = th;
1904 	}
1905 }
1906 
1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1908 				int src_nid, int dst_cpu)
1909 {
1910 	struct numa_group *ng = deref_curr_numa_group(p);
1911 	int dst_nid = cpu_to_node(dst_cpu);
1912 	int last_cpupid, this_cpupid;
1913 
1914 	/*
1915 	 * Cannot migrate to memoryless nodes.
1916 	 */
1917 	if (!node_state(dst_nid, N_MEMORY))
1918 		return false;
1919 
1920 	/*
1921 	 * The pages in slow memory node should be migrated according
1922 	 * to hot/cold instead of private/shared.
1923 	 */
1924 	if (folio_use_access_time(folio)) {
1925 		struct pglist_data *pgdat;
1926 		unsigned long rate_limit;
1927 		unsigned int latency, th, def_th;
1928 
1929 		pgdat = NODE_DATA(dst_nid);
1930 		if (pgdat_free_space_enough(pgdat)) {
1931 			/* workload changed, reset hot threshold */
1932 			pgdat->nbp_threshold = 0;
1933 			return true;
1934 		}
1935 
1936 		def_th = sysctl_numa_balancing_hot_threshold;
1937 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1938 			(20 - PAGE_SHIFT);
1939 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1940 
1941 		th = pgdat->nbp_threshold ? : def_th;
1942 		latency = numa_hint_fault_latency(folio);
1943 		if (latency >= th)
1944 			return false;
1945 
1946 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1947 						  folio_nr_pages(folio));
1948 	}
1949 
1950 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1951 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1952 
1953 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1954 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1955 		return false;
1956 
1957 	/*
1958 	 * Allow first faults or private faults to migrate immediately early in
1959 	 * the lifetime of a task. The magic number 4 is based on waiting for
1960 	 * two full passes of the "multi-stage node selection" test that is
1961 	 * executed below.
1962 	 */
1963 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1964 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1965 		return true;
1966 
1967 	/*
1968 	 * Multi-stage node selection is used in conjunction with a periodic
1969 	 * migration fault to build a temporal task<->page relation. By using
1970 	 * a two-stage filter we remove short/unlikely relations.
1971 	 *
1972 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1973 	 * a task's usage of a particular page (n_p) per total usage of this
1974 	 * page (n_t) (in a given time-span) to a probability.
1975 	 *
1976 	 * Our periodic faults will sample this probability and getting the
1977 	 * same result twice in a row, given these samples are fully
1978 	 * independent, is then given by P(n)^2, provided our sample period
1979 	 * is sufficiently short compared to the usage pattern.
1980 	 *
1981 	 * This quadric squishes small probabilities, making it less likely we
1982 	 * act on an unlikely task<->page relation.
1983 	 */
1984 	if (!cpupid_pid_unset(last_cpupid) &&
1985 				cpupid_to_nid(last_cpupid) != dst_nid)
1986 		return false;
1987 
1988 	/* Always allow migrate on private faults */
1989 	if (cpupid_match_pid(p, last_cpupid))
1990 		return true;
1991 
1992 	/* A shared fault, but p->numa_group has not been set up yet. */
1993 	if (!ng)
1994 		return true;
1995 
1996 	/*
1997 	 * Destination node is much more heavily used than the source
1998 	 * node? Allow migration.
1999 	 */
2000 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2001 					ACTIVE_NODE_FRACTION)
2002 		return true;
2003 
2004 	/*
2005 	 * Distribute memory according to CPU & memory use on each node,
2006 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2007 	 *
2008 	 * faults_cpu(dst)   3   faults_cpu(src)
2009 	 * --------------- * - > ---------------
2010 	 * faults_mem(dst)   4   faults_mem(src)
2011 	 */
2012 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2013 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2014 }
2015 
2016 /*
2017  * 'numa_type' describes the node at the moment of load balancing.
2018  */
2019 enum numa_type {
2020 	/* The node has spare capacity that can be used to run more tasks.  */
2021 	node_has_spare = 0,
2022 	/*
2023 	 * The node is fully used and the tasks don't compete for more CPU
2024 	 * cycles. Nevertheless, some tasks might wait before running.
2025 	 */
2026 	node_fully_busy,
2027 	/*
2028 	 * The node is overloaded and can't provide expected CPU cycles to all
2029 	 * tasks.
2030 	 */
2031 	node_overloaded
2032 };
2033 
2034 /* Cached statistics for all CPUs within a node */
2035 struct numa_stats {
2036 	unsigned long load;
2037 	unsigned long runnable;
2038 	unsigned long util;
2039 	/* Total compute capacity of CPUs on a node */
2040 	unsigned long compute_capacity;
2041 	unsigned int nr_running;
2042 	unsigned int weight;
2043 	enum numa_type node_type;
2044 	int idle_cpu;
2045 };
2046 
2047 struct task_numa_env {
2048 	struct task_struct *p;
2049 
2050 	int src_cpu, src_nid;
2051 	int dst_cpu, dst_nid;
2052 	int imb_numa_nr;
2053 
2054 	struct numa_stats src_stats, dst_stats;
2055 
2056 	int imbalance_pct;
2057 	int dist;
2058 
2059 	struct task_struct *best_task;
2060 	long best_imp;
2061 	int best_cpu;
2062 };
2063 
2064 static unsigned long cpu_load(struct rq *rq);
2065 static unsigned long cpu_runnable(struct rq *rq);
2066 
2067 static inline enum
2068 numa_type numa_classify(unsigned int imbalance_pct,
2069 			 struct numa_stats *ns)
2070 {
2071 	if ((ns->nr_running > ns->weight) &&
2072 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2073 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2074 		return node_overloaded;
2075 
2076 	if ((ns->nr_running < ns->weight) ||
2077 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2078 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2079 		return node_has_spare;
2080 
2081 	return node_fully_busy;
2082 }
2083 
2084 #ifdef CONFIG_SCHED_SMT
2085 /* Forward declarations of select_idle_sibling helpers */
2086 static inline bool test_idle_cores(int cpu);
2087 static inline int numa_idle_core(int idle_core, int cpu)
2088 {
2089 	if (!static_branch_likely(&sched_smt_present) ||
2090 	    idle_core >= 0 || !test_idle_cores(cpu))
2091 		return idle_core;
2092 
2093 	/*
2094 	 * Prefer cores instead of packing HT siblings
2095 	 * and triggering future load balancing.
2096 	 */
2097 	if (is_core_idle(cpu))
2098 		idle_core = cpu;
2099 
2100 	return idle_core;
2101 }
2102 #else
2103 static inline int numa_idle_core(int idle_core, int cpu)
2104 {
2105 	return idle_core;
2106 }
2107 #endif
2108 
2109 /*
2110  * Gather all necessary information to make NUMA balancing placement
2111  * decisions that are compatible with standard load balancer. This
2112  * borrows code and logic from update_sg_lb_stats but sharing a
2113  * common implementation is impractical.
2114  */
2115 static void update_numa_stats(struct task_numa_env *env,
2116 			      struct numa_stats *ns, int nid,
2117 			      bool find_idle)
2118 {
2119 	int cpu, idle_core = -1;
2120 
2121 	memset(ns, 0, sizeof(*ns));
2122 	ns->idle_cpu = -1;
2123 
2124 	rcu_read_lock();
2125 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2126 		struct rq *rq = cpu_rq(cpu);
2127 
2128 		ns->load += cpu_load(rq);
2129 		ns->runnable += cpu_runnable(rq);
2130 		ns->util += cpu_util_cfs(cpu);
2131 		ns->nr_running += rq->cfs.h_nr_running;
2132 		ns->compute_capacity += capacity_of(cpu);
2133 
2134 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2135 			if (READ_ONCE(rq->numa_migrate_on) ||
2136 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2137 				continue;
2138 
2139 			if (ns->idle_cpu == -1)
2140 				ns->idle_cpu = cpu;
2141 
2142 			idle_core = numa_idle_core(idle_core, cpu);
2143 		}
2144 	}
2145 	rcu_read_unlock();
2146 
2147 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2148 
2149 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2150 
2151 	if (idle_core >= 0)
2152 		ns->idle_cpu = idle_core;
2153 }
2154 
2155 static void task_numa_assign(struct task_numa_env *env,
2156 			     struct task_struct *p, long imp)
2157 {
2158 	struct rq *rq = cpu_rq(env->dst_cpu);
2159 
2160 	/* Check if run-queue part of active NUMA balance. */
2161 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2162 		int cpu;
2163 		int start = env->dst_cpu;
2164 
2165 		/* Find alternative idle CPU. */
2166 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2167 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2168 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2169 				continue;
2170 			}
2171 
2172 			env->dst_cpu = cpu;
2173 			rq = cpu_rq(env->dst_cpu);
2174 			if (!xchg(&rq->numa_migrate_on, 1))
2175 				goto assign;
2176 		}
2177 
2178 		/* Failed to find an alternative idle CPU */
2179 		return;
2180 	}
2181 
2182 assign:
2183 	/*
2184 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2185 	 * found a better CPU to move/swap.
2186 	 */
2187 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2188 		rq = cpu_rq(env->best_cpu);
2189 		WRITE_ONCE(rq->numa_migrate_on, 0);
2190 	}
2191 
2192 	if (env->best_task)
2193 		put_task_struct(env->best_task);
2194 	if (p)
2195 		get_task_struct(p);
2196 
2197 	env->best_task = p;
2198 	env->best_imp = imp;
2199 	env->best_cpu = env->dst_cpu;
2200 }
2201 
2202 static bool load_too_imbalanced(long src_load, long dst_load,
2203 				struct task_numa_env *env)
2204 {
2205 	long imb, old_imb;
2206 	long orig_src_load, orig_dst_load;
2207 	long src_capacity, dst_capacity;
2208 
2209 	/*
2210 	 * The load is corrected for the CPU capacity available on each node.
2211 	 *
2212 	 * src_load        dst_load
2213 	 * ------------ vs ---------
2214 	 * src_capacity    dst_capacity
2215 	 */
2216 	src_capacity = env->src_stats.compute_capacity;
2217 	dst_capacity = env->dst_stats.compute_capacity;
2218 
2219 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2220 
2221 	orig_src_load = env->src_stats.load;
2222 	orig_dst_load = env->dst_stats.load;
2223 
2224 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2225 
2226 	/* Would this change make things worse? */
2227 	return (imb > old_imb);
2228 }
2229 
2230 /*
2231  * Maximum NUMA importance can be 1998 (2*999);
2232  * SMALLIMP @ 30 would be close to 1998/64.
2233  * Used to deter task migration.
2234  */
2235 #define SMALLIMP	30
2236 
2237 /*
2238  * This checks if the overall compute and NUMA accesses of the system would
2239  * be improved if the source tasks was migrated to the target dst_cpu taking
2240  * into account that it might be best if task running on the dst_cpu should
2241  * be exchanged with the source task
2242  */
2243 static bool task_numa_compare(struct task_numa_env *env,
2244 			      long taskimp, long groupimp, bool maymove)
2245 {
2246 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2247 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2248 	long imp = p_ng ? groupimp : taskimp;
2249 	struct task_struct *cur;
2250 	long src_load, dst_load;
2251 	int dist = env->dist;
2252 	long moveimp = imp;
2253 	long load;
2254 	bool stopsearch = false;
2255 
2256 	if (READ_ONCE(dst_rq->numa_migrate_on))
2257 		return false;
2258 
2259 	rcu_read_lock();
2260 	cur = rcu_dereference(dst_rq->curr);
2261 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2262 		cur = NULL;
2263 
2264 	/*
2265 	 * Because we have preemption enabled we can get migrated around and
2266 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2267 	 */
2268 	if (cur == env->p) {
2269 		stopsearch = true;
2270 		goto unlock;
2271 	}
2272 
2273 	if (!cur) {
2274 		if (maymove && moveimp >= env->best_imp)
2275 			goto assign;
2276 		else
2277 			goto unlock;
2278 	}
2279 
2280 	/* Skip this swap candidate if cannot move to the source cpu. */
2281 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2282 		goto unlock;
2283 
2284 	/*
2285 	 * Skip this swap candidate if it is not moving to its preferred
2286 	 * node and the best task is.
2287 	 */
2288 	if (env->best_task &&
2289 	    env->best_task->numa_preferred_nid == env->src_nid &&
2290 	    cur->numa_preferred_nid != env->src_nid) {
2291 		goto unlock;
2292 	}
2293 
2294 	/*
2295 	 * "imp" is the fault differential for the source task between the
2296 	 * source and destination node. Calculate the total differential for
2297 	 * the source task and potential destination task. The more negative
2298 	 * the value is, the more remote accesses that would be expected to
2299 	 * be incurred if the tasks were swapped.
2300 	 *
2301 	 * If dst and source tasks are in the same NUMA group, or not
2302 	 * in any group then look only at task weights.
2303 	 */
2304 	cur_ng = rcu_dereference(cur->numa_group);
2305 	if (cur_ng == p_ng) {
2306 		/*
2307 		 * Do not swap within a group or between tasks that have
2308 		 * no group if there is spare capacity. Swapping does
2309 		 * not address the load imbalance and helps one task at
2310 		 * the cost of punishing another.
2311 		 */
2312 		if (env->dst_stats.node_type == node_has_spare)
2313 			goto unlock;
2314 
2315 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2316 		      task_weight(cur, env->dst_nid, dist);
2317 		/*
2318 		 * Add some hysteresis to prevent swapping the
2319 		 * tasks within a group over tiny differences.
2320 		 */
2321 		if (cur_ng)
2322 			imp -= imp / 16;
2323 	} else {
2324 		/*
2325 		 * Compare the group weights. If a task is all by itself
2326 		 * (not part of a group), use the task weight instead.
2327 		 */
2328 		if (cur_ng && p_ng)
2329 			imp += group_weight(cur, env->src_nid, dist) -
2330 			       group_weight(cur, env->dst_nid, dist);
2331 		else
2332 			imp += task_weight(cur, env->src_nid, dist) -
2333 			       task_weight(cur, env->dst_nid, dist);
2334 	}
2335 
2336 	/* Discourage picking a task already on its preferred node */
2337 	if (cur->numa_preferred_nid == env->dst_nid)
2338 		imp -= imp / 16;
2339 
2340 	/*
2341 	 * Encourage picking a task that moves to its preferred node.
2342 	 * This potentially makes imp larger than it's maximum of
2343 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2344 	 * case, it does not matter.
2345 	 */
2346 	if (cur->numa_preferred_nid == env->src_nid)
2347 		imp += imp / 8;
2348 
2349 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2350 		imp = moveimp;
2351 		cur = NULL;
2352 		goto assign;
2353 	}
2354 
2355 	/*
2356 	 * Prefer swapping with a task moving to its preferred node over a
2357 	 * task that is not.
2358 	 */
2359 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2360 	    env->best_task->numa_preferred_nid != env->src_nid) {
2361 		goto assign;
2362 	}
2363 
2364 	/*
2365 	 * If the NUMA importance is less than SMALLIMP,
2366 	 * task migration might only result in ping pong
2367 	 * of tasks and also hurt performance due to cache
2368 	 * misses.
2369 	 */
2370 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2371 		goto unlock;
2372 
2373 	/*
2374 	 * In the overloaded case, try and keep the load balanced.
2375 	 */
2376 	load = task_h_load(env->p) - task_h_load(cur);
2377 	if (!load)
2378 		goto assign;
2379 
2380 	dst_load = env->dst_stats.load + load;
2381 	src_load = env->src_stats.load - load;
2382 
2383 	if (load_too_imbalanced(src_load, dst_load, env))
2384 		goto unlock;
2385 
2386 assign:
2387 	/* Evaluate an idle CPU for a task numa move. */
2388 	if (!cur) {
2389 		int cpu = env->dst_stats.idle_cpu;
2390 
2391 		/* Nothing cached so current CPU went idle since the search. */
2392 		if (cpu < 0)
2393 			cpu = env->dst_cpu;
2394 
2395 		/*
2396 		 * If the CPU is no longer truly idle and the previous best CPU
2397 		 * is, keep using it.
2398 		 */
2399 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2400 		    idle_cpu(env->best_cpu)) {
2401 			cpu = env->best_cpu;
2402 		}
2403 
2404 		env->dst_cpu = cpu;
2405 	}
2406 
2407 	task_numa_assign(env, cur, imp);
2408 
2409 	/*
2410 	 * If a move to idle is allowed because there is capacity or load
2411 	 * balance improves then stop the search. While a better swap
2412 	 * candidate may exist, a search is not free.
2413 	 */
2414 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2415 		stopsearch = true;
2416 
2417 	/*
2418 	 * If a swap candidate must be identified and the current best task
2419 	 * moves its preferred node then stop the search.
2420 	 */
2421 	if (!maymove && env->best_task &&
2422 	    env->best_task->numa_preferred_nid == env->src_nid) {
2423 		stopsearch = true;
2424 	}
2425 unlock:
2426 	rcu_read_unlock();
2427 
2428 	return stopsearch;
2429 }
2430 
2431 static void task_numa_find_cpu(struct task_numa_env *env,
2432 				long taskimp, long groupimp)
2433 {
2434 	bool maymove = false;
2435 	int cpu;
2436 
2437 	/*
2438 	 * If dst node has spare capacity, then check if there is an
2439 	 * imbalance that would be overruled by the load balancer.
2440 	 */
2441 	if (env->dst_stats.node_type == node_has_spare) {
2442 		unsigned int imbalance;
2443 		int src_running, dst_running;
2444 
2445 		/*
2446 		 * Would movement cause an imbalance? Note that if src has
2447 		 * more running tasks that the imbalance is ignored as the
2448 		 * move improves the imbalance from the perspective of the
2449 		 * CPU load balancer.
2450 		 * */
2451 		src_running = env->src_stats.nr_running - 1;
2452 		dst_running = env->dst_stats.nr_running + 1;
2453 		imbalance = max(0, dst_running - src_running);
2454 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2455 						  env->imb_numa_nr);
2456 
2457 		/* Use idle CPU if there is no imbalance */
2458 		if (!imbalance) {
2459 			maymove = true;
2460 			if (env->dst_stats.idle_cpu >= 0) {
2461 				env->dst_cpu = env->dst_stats.idle_cpu;
2462 				task_numa_assign(env, NULL, 0);
2463 				return;
2464 			}
2465 		}
2466 	} else {
2467 		long src_load, dst_load, load;
2468 		/*
2469 		 * If the improvement from just moving env->p direction is better
2470 		 * than swapping tasks around, check if a move is possible.
2471 		 */
2472 		load = task_h_load(env->p);
2473 		dst_load = env->dst_stats.load + load;
2474 		src_load = env->src_stats.load - load;
2475 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2476 	}
2477 
2478 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2479 		/* Skip this CPU if the source task cannot migrate */
2480 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2481 			continue;
2482 
2483 		env->dst_cpu = cpu;
2484 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2485 			break;
2486 	}
2487 }
2488 
2489 static int task_numa_migrate(struct task_struct *p)
2490 {
2491 	struct task_numa_env env = {
2492 		.p = p,
2493 
2494 		.src_cpu = task_cpu(p),
2495 		.src_nid = task_node(p),
2496 
2497 		.imbalance_pct = 112,
2498 
2499 		.best_task = NULL,
2500 		.best_imp = 0,
2501 		.best_cpu = -1,
2502 	};
2503 	unsigned long taskweight, groupweight;
2504 	struct sched_domain *sd;
2505 	long taskimp, groupimp;
2506 	struct numa_group *ng;
2507 	struct rq *best_rq;
2508 	int nid, ret, dist;
2509 
2510 	/*
2511 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2512 	 * imbalance and would be the first to start moving tasks about.
2513 	 *
2514 	 * And we want to avoid any moving of tasks about, as that would create
2515 	 * random movement of tasks -- counter the numa conditions we're trying
2516 	 * to satisfy here.
2517 	 */
2518 	rcu_read_lock();
2519 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2520 	if (sd) {
2521 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2522 		env.imb_numa_nr = sd->imb_numa_nr;
2523 	}
2524 	rcu_read_unlock();
2525 
2526 	/*
2527 	 * Cpusets can break the scheduler domain tree into smaller
2528 	 * balance domains, some of which do not cross NUMA boundaries.
2529 	 * Tasks that are "trapped" in such domains cannot be migrated
2530 	 * elsewhere, so there is no point in (re)trying.
2531 	 */
2532 	if (unlikely(!sd)) {
2533 		sched_setnuma(p, task_node(p));
2534 		return -EINVAL;
2535 	}
2536 
2537 	env.dst_nid = p->numa_preferred_nid;
2538 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2539 	taskweight = task_weight(p, env.src_nid, dist);
2540 	groupweight = group_weight(p, env.src_nid, dist);
2541 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2542 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2543 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2544 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2545 
2546 	/* Try to find a spot on the preferred nid. */
2547 	task_numa_find_cpu(&env, taskimp, groupimp);
2548 
2549 	/*
2550 	 * Look at other nodes in these cases:
2551 	 * - there is no space available on the preferred_nid
2552 	 * - the task is part of a numa_group that is interleaved across
2553 	 *   multiple NUMA nodes; in order to better consolidate the group,
2554 	 *   we need to check other locations.
2555 	 */
2556 	ng = deref_curr_numa_group(p);
2557 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2558 		for_each_node_state(nid, N_CPU) {
2559 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2560 				continue;
2561 
2562 			dist = node_distance(env.src_nid, env.dst_nid);
2563 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2564 						dist != env.dist) {
2565 				taskweight = task_weight(p, env.src_nid, dist);
2566 				groupweight = group_weight(p, env.src_nid, dist);
2567 			}
2568 
2569 			/* Only consider nodes where both task and groups benefit */
2570 			taskimp = task_weight(p, nid, dist) - taskweight;
2571 			groupimp = group_weight(p, nid, dist) - groupweight;
2572 			if (taskimp < 0 && groupimp < 0)
2573 				continue;
2574 
2575 			env.dist = dist;
2576 			env.dst_nid = nid;
2577 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2578 			task_numa_find_cpu(&env, taskimp, groupimp);
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * If the task is part of a workload that spans multiple NUMA nodes,
2584 	 * and is migrating into one of the workload's active nodes, remember
2585 	 * this node as the task's preferred numa node, so the workload can
2586 	 * settle down.
2587 	 * A task that migrated to a second choice node will be better off
2588 	 * trying for a better one later. Do not set the preferred node here.
2589 	 */
2590 	if (ng) {
2591 		if (env.best_cpu == -1)
2592 			nid = env.src_nid;
2593 		else
2594 			nid = cpu_to_node(env.best_cpu);
2595 
2596 		if (nid != p->numa_preferred_nid)
2597 			sched_setnuma(p, nid);
2598 	}
2599 
2600 	/* No better CPU than the current one was found. */
2601 	if (env.best_cpu == -1) {
2602 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2603 		return -EAGAIN;
2604 	}
2605 
2606 	best_rq = cpu_rq(env.best_cpu);
2607 	if (env.best_task == NULL) {
2608 		ret = migrate_task_to(p, env.best_cpu);
2609 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2610 		if (ret != 0)
2611 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2612 		return ret;
2613 	}
2614 
2615 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2616 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2617 
2618 	if (ret != 0)
2619 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2620 	put_task_struct(env.best_task);
2621 	return ret;
2622 }
2623 
2624 /* Attempt to migrate a task to a CPU on the preferred node. */
2625 static void numa_migrate_preferred(struct task_struct *p)
2626 {
2627 	unsigned long interval = HZ;
2628 
2629 	/* This task has no NUMA fault statistics yet */
2630 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2631 		return;
2632 
2633 	/* Periodically retry migrating the task to the preferred node */
2634 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2635 	p->numa_migrate_retry = jiffies + interval;
2636 
2637 	/* Success if task is already running on preferred CPU */
2638 	if (task_node(p) == p->numa_preferred_nid)
2639 		return;
2640 
2641 	/* Otherwise, try migrate to a CPU on the preferred node */
2642 	task_numa_migrate(p);
2643 }
2644 
2645 /*
2646  * Find out how many nodes the workload is actively running on. Do this by
2647  * tracking the nodes from which NUMA hinting faults are triggered. This can
2648  * be different from the set of nodes where the workload's memory is currently
2649  * located.
2650  */
2651 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2652 {
2653 	unsigned long faults, max_faults = 0;
2654 	int nid, active_nodes = 0;
2655 
2656 	for_each_node_state(nid, N_CPU) {
2657 		faults = group_faults_cpu(numa_group, nid);
2658 		if (faults > max_faults)
2659 			max_faults = faults;
2660 	}
2661 
2662 	for_each_node_state(nid, N_CPU) {
2663 		faults = group_faults_cpu(numa_group, nid);
2664 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2665 			active_nodes++;
2666 	}
2667 
2668 	numa_group->max_faults_cpu = max_faults;
2669 	numa_group->active_nodes = active_nodes;
2670 }
2671 
2672 /*
2673  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2674  * increments. The more local the fault statistics are, the higher the scan
2675  * period will be for the next scan window. If local/(local+remote) ratio is
2676  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2677  * the scan period will decrease. Aim for 70% local accesses.
2678  */
2679 #define NUMA_PERIOD_SLOTS 10
2680 #define NUMA_PERIOD_THRESHOLD 7
2681 
2682 /*
2683  * Increase the scan period (slow down scanning) if the majority of
2684  * our memory is already on our local node, or if the majority of
2685  * the page accesses are shared with other processes.
2686  * Otherwise, decrease the scan period.
2687  */
2688 static void update_task_scan_period(struct task_struct *p,
2689 			unsigned long shared, unsigned long private)
2690 {
2691 	unsigned int period_slot;
2692 	int lr_ratio, ps_ratio;
2693 	int diff;
2694 
2695 	unsigned long remote = p->numa_faults_locality[0];
2696 	unsigned long local = p->numa_faults_locality[1];
2697 
2698 	/*
2699 	 * If there were no record hinting faults then either the task is
2700 	 * completely idle or all activity is in areas that are not of interest
2701 	 * to automatic numa balancing. Related to that, if there were failed
2702 	 * migration then it implies we are migrating too quickly or the local
2703 	 * node is overloaded. In either case, scan slower
2704 	 */
2705 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2706 		p->numa_scan_period = min(p->numa_scan_period_max,
2707 			p->numa_scan_period << 1);
2708 
2709 		p->mm->numa_next_scan = jiffies +
2710 			msecs_to_jiffies(p->numa_scan_period);
2711 
2712 		return;
2713 	}
2714 
2715 	/*
2716 	 * Prepare to scale scan period relative to the current period.
2717 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2718 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2719 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2720 	 */
2721 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2722 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2723 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2724 
2725 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2726 		/*
2727 		 * Most memory accesses are local. There is no need to
2728 		 * do fast NUMA scanning, since memory is already local.
2729 		 */
2730 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2731 		if (!slot)
2732 			slot = 1;
2733 		diff = slot * period_slot;
2734 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2735 		/*
2736 		 * Most memory accesses are shared with other tasks.
2737 		 * There is no point in continuing fast NUMA scanning,
2738 		 * since other tasks may just move the memory elsewhere.
2739 		 */
2740 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2741 		if (!slot)
2742 			slot = 1;
2743 		diff = slot * period_slot;
2744 	} else {
2745 		/*
2746 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2747 		 * yet they are not on the local NUMA node. Speed up
2748 		 * NUMA scanning to get the memory moved over.
2749 		 */
2750 		int ratio = max(lr_ratio, ps_ratio);
2751 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2752 	}
2753 
2754 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2755 			task_scan_min(p), task_scan_max(p));
2756 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2757 }
2758 
2759 /*
2760  * Get the fraction of time the task has been running since the last
2761  * NUMA placement cycle. The scheduler keeps similar statistics, but
2762  * decays those on a 32ms period, which is orders of magnitude off
2763  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2764  * stats only if the task is so new there are no NUMA statistics yet.
2765  */
2766 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2767 {
2768 	u64 runtime, delta, now;
2769 	/* Use the start of this time slice to avoid calculations. */
2770 	now = p->se.exec_start;
2771 	runtime = p->se.sum_exec_runtime;
2772 
2773 	if (p->last_task_numa_placement) {
2774 		delta = runtime - p->last_sum_exec_runtime;
2775 		*period = now - p->last_task_numa_placement;
2776 
2777 		/* Avoid time going backwards, prevent potential divide error: */
2778 		if (unlikely((s64)*period < 0))
2779 			*period = 0;
2780 	} else {
2781 		delta = p->se.avg.load_sum;
2782 		*period = LOAD_AVG_MAX;
2783 	}
2784 
2785 	p->last_sum_exec_runtime = runtime;
2786 	p->last_task_numa_placement = now;
2787 
2788 	return delta;
2789 }
2790 
2791 /*
2792  * Determine the preferred nid for a task in a numa_group. This needs to
2793  * be done in a way that produces consistent results with group_weight,
2794  * otherwise workloads might not converge.
2795  */
2796 static int preferred_group_nid(struct task_struct *p, int nid)
2797 {
2798 	nodemask_t nodes;
2799 	int dist;
2800 
2801 	/* Direct connections between all NUMA nodes. */
2802 	if (sched_numa_topology_type == NUMA_DIRECT)
2803 		return nid;
2804 
2805 	/*
2806 	 * On a system with glueless mesh NUMA topology, group_weight
2807 	 * scores nodes according to the number of NUMA hinting faults on
2808 	 * both the node itself, and on nearby nodes.
2809 	 */
2810 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2811 		unsigned long score, max_score = 0;
2812 		int node, max_node = nid;
2813 
2814 		dist = sched_max_numa_distance;
2815 
2816 		for_each_node_state(node, N_CPU) {
2817 			score = group_weight(p, node, dist);
2818 			if (score > max_score) {
2819 				max_score = score;
2820 				max_node = node;
2821 			}
2822 		}
2823 		return max_node;
2824 	}
2825 
2826 	/*
2827 	 * Finding the preferred nid in a system with NUMA backplane
2828 	 * interconnect topology is more involved. The goal is to locate
2829 	 * tasks from numa_groups near each other in the system, and
2830 	 * untangle workloads from different sides of the system. This requires
2831 	 * searching down the hierarchy of node groups, recursively searching
2832 	 * inside the highest scoring group of nodes. The nodemask tricks
2833 	 * keep the complexity of the search down.
2834 	 */
2835 	nodes = node_states[N_CPU];
2836 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2837 		unsigned long max_faults = 0;
2838 		nodemask_t max_group = NODE_MASK_NONE;
2839 		int a, b;
2840 
2841 		/* Are there nodes at this distance from each other? */
2842 		if (!find_numa_distance(dist))
2843 			continue;
2844 
2845 		for_each_node_mask(a, nodes) {
2846 			unsigned long faults = 0;
2847 			nodemask_t this_group;
2848 			nodes_clear(this_group);
2849 
2850 			/* Sum group's NUMA faults; includes a==b case. */
2851 			for_each_node_mask(b, nodes) {
2852 				if (node_distance(a, b) < dist) {
2853 					faults += group_faults(p, b);
2854 					node_set(b, this_group);
2855 					node_clear(b, nodes);
2856 				}
2857 			}
2858 
2859 			/* Remember the top group. */
2860 			if (faults > max_faults) {
2861 				max_faults = faults;
2862 				max_group = this_group;
2863 				/*
2864 				 * subtle: at the smallest distance there is
2865 				 * just one node left in each "group", the
2866 				 * winner is the preferred nid.
2867 				 */
2868 				nid = a;
2869 			}
2870 		}
2871 		/* Next round, evaluate the nodes within max_group. */
2872 		if (!max_faults)
2873 			break;
2874 		nodes = max_group;
2875 	}
2876 	return nid;
2877 }
2878 
2879 static void task_numa_placement(struct task_struct *p)
2880 {
2881 	int seq, nid, max_nid = NUMA_NO_NODE;
2882 	unsigned long max_faults = 0;
2883 	unsigned long fault_types[2] = { 0, 0 };
2884 	unsigned long total_faults;
2885 	u64 runtime, period;
2886 	spinlock_t *group_lock = NULL;
2887 	struct numa_group *ng;
2888 
2889 	/*
2890 	 * The p->mm->numa_scan_seq field gets updated without
2891 	 * exclusive access. Use READ_ONCE() here to ensure
2892 	 * that the field is read in a single access:
2893 	 */
2894 	seq = READ_ONCE(p->mm->numa_scan_seq);
2895 	if (p->numa_scan_seq == seq)
2896 		return;
2897 	p->numa_scan_seq = seq;
2898 	p->numa_scan_period_max = task_scan_max(p);
2899 
2900 	total_faults = p->numa_faults_locality[0] +
2901 		       p->numa_faults_locality[1];
2902 	runtime = numa_get_avg_runtime(p, &period);
2903 
2904 	/* If the task is part of a group prevent parallel updates to group stats */
2905 	ng = deref_curr_numa_group(p);
2906 	if (ng) {
2907 		group_lock = &ng->lock;
2908 		spin_lock_irq(group_lock);
2909 	}
2910 
2911 	/* Find the node with the highest number of faults */
2912 	for_each_online_node(nid) {
2913 		/* Keep track of the offsets in numa_faults array */
2914 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2915 		unsigned long faults = 0, group_faults = 0;
2916 		int priv;
2917 
2918 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2919 			long diff, f_diff, f_weight;
2920 
2921 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2922 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2923 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2924 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2925 
2926 			/* Decay existing window, copy faults since last scan */
2927 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2928 			fault_types[priv] += p->numa_faults[membuf_idx];
2929 			p->numa_faults[membuf_idx] = 0;
2930 
2931 			/*
2932 			 * Normalize the faults_from, so all tasks in a group
2933 			 * count according to CPU use, instead of by the raw
2934 			 * number of faults. Tasks with little runtime have
2935 			 * little over-all impact on throughput, and thus their
2936 			 * faults are less important.
2937 			 */
2938 			f_weight = div64_u64(runtime << 16, period + 1);
2939 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2940 				   (total_faults + 1);
2941 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2942 			p->numa_faults[cpubuf_idx] = 0;
2943 
2944 			p->numa_faults[mem_idx] += diff;
2945 			p->numa_faults[cpu_idx] += f_diff;
2946 			faults += p->numa_faults[mem_idx];
2947 			p->total_numa_faults += diff;
2948 			if (ng) {
2949 				/*
2950 				 * safe because we can only change our own group
2951 				 *
2952 				 * mem_idx represents the offset for a given
2953 				 * nid and priv in a specific region because it
2954 				 * is at the beginning of the numa_faults array.
2955 				 */
2956 				ng->faults[mem_idx] += diff;
2957 				ng->faults[cpu_idx] += f_diff;
2958 				ng->total_faults += diff;
2959 				group_faults += ng->faults[mem_idx];
2960 			}
2961 		}
2962 
2963 		if (!ng) {
2964 			if (faults > max_faults) {
2965 				max_faults = faults;
2966 				max_nid = nid;
2967 			}
2968 		} else if (group_faults > max_faults) {
2969 			max_faults = group_faults;
2970 			max_nid = nid;
2971 		}
2972 	}
2973 
2974 	/* Cannot migrate task to CPU-less node */
2975 	max_nid = numa_nearest_node(max_nid, N_CPU);
2976 
2977 	if (ng) {
2978 		numa_group_count_active_nodes(ng);
2979 		spin_unlock_irq(group_lock);
2980 		max_nid = preferred_group_nid(p, max_nid);
2981 	}
2982 
2983 	if (max_faults) {
2984 		/* Set the new preferred node */
2985 		if (max_nid != p->numa_preferred_nid)
2986 			sched_setnuma(p, max_nid);
2987 	}
2988 
2989 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2990 }
2991 
2992 static inline int get_numa_group(struct numa_group *grp)
2993 {
2994 	return refcount_inc_not_zero(&grp->refcount);
2995 }
2996 
2997 static inline void put_numa_group(struct numa_group *grp)
2998 {
2999 	if (refcount_dec_and_test(&grp->refcount))
3000 		kfree_rcu(grp, rcu);
3001 }
3002 
3003 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3004 			int *priv)
3005 {
3006 	struct numa_group *grp, *my_grp;
3007 	struct task_struct *tsk;
3008 	bool join = false;
3009 	int cpu = cpupid_to_cpu(cpupid);
3010 	int i;
3011 
3012 	if (unlikely(!deref_curr_numa_group(p))) {
3013 		unsigned int size = sizeof(struct numa_group) +
3014 				    NR_NUMA_HINT_FAULT_STATS *
3015 				    nr_node_ids * sizeof(unsigned long);
3016 
3017 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3018 		if (!grp)
3019 			return;
3020 
3021 		refcount_set(&grp->refcount, 1);
3022 		grp->active_nodes = 1;
3023 		grp->max_faults_cpu = 0;
3024 		spin_lock_init(&grp->lock);
3025 		grp->gid = p->pid;
3026 
3027 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3028 			grp->faults[i] = p->numa_faults[i];
3029 
3030 		grp->total_faults = p->total_numa_faults;
3031 
3032 		grp->nr_tasks++;
3033 		rcu_assign_pointer(p->numa_group, grp);
3034 	}
3035 
3036 	rcu_read_lock();
3037 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3038 
3039 	if (!cpupid_match_pid(tsk, cpupid))
3040 		goto no_join;
3041 
3042 	grp = rcu_dereference(tsk->numa_group);
3043 	if (!grp)
3044 		goto no_join;
3045 
3046 	my_grp = deref_curr_numa_group(p);
3047 	if (grp == my_grp)
3048 		goto no_join;
3049 
3050 	/*
3051 	 * Only join the other group if its bigger; if we're the bigger group,
3052 	 * the other task will join us.
3053 	 */
3054 	if (my_grp->nr_tasks > grp->nr_tasks)
3055 		goto no_join;
3056 
3057 	/*
3058 	 * Tie-break on the grp address.
3059 	 */
3060 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3061 		goto no_join;
3062 
3063 	/* Always join threads in the same process. */
3064 	if (tsk->mm == current->mm)
3065 		join = true;
3066 
3067 	/* Simple filter to avoid false positives due to PID collisions */
3068 	if (flags & TNF_SHARED)
3069 		join = true;
3070 
3071 	/* Update priv based on whether false sharing was detected */
3072 	*priv = !join;
3073 
3074 	if (join && !get_numa_group(grp))
3075 		goto no_join;
3076 
3077 	rcu_read_unlock();
3078 
3079 	if (!join)
3080 		return;
3081 
3082 	WARN_ON_ONCE(irqs_disabled());
3083 	double_lock_irq(&my_grp->lock, &grp->lock);
3084 
3085 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3086 		my_grp->faults[i] -= p->numa_faults[i];
3087 		grp->faults[i] += p->numa_faults[i];
3088 	}
3089 	my_grp->total_faults -= p->total_numa_faults;
3090 	grp->total_faults += p->total_numa_faults;
3091 
3092 	my_grp->nr_tasks--;
3093 	grp->nr_tasks++;
3094 
3095 	spin_unlock(&my_grp->lock);
3096 	spin_unlock_irq(&grp->lock);
3097 
3098 	rcu_assign_pointer(p->numa_group, grp);
3099 
3100 	put_numa_group(my_grp);
3101 	return;
3102 
3103 no_join:
3104 	rcu_read_unlock();
3105 	return;
3106 }
3107 
3108 /*
3109  * Get rid of NUMA statistics associated with a task (either current or dead).
3110  * If @final is set, the task is dead and has reached refcount zero, so we can
3111  * safely free all relevant data structures. Otherwise, there might be
3112  * concurrent reads from places like load balancing and procfs, and we should
3113  * reset the data back to default state without freeing ->numa_faults.
3114  */
3115 void task_numa_free(struct task_struct *p, bool final)
3116 {
3117 	/* safe: p either is current or is being freed by current */
3118 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3119 	unsigned long *numa_faults = p->numa_faults;
3120 	unsigned long flags;
3121 	int i;
3122 
3123 	if (!numa_faults)
3124 		return;
3125 
3126 	if (grp) {
3127 		spin_lock_irqsave(&grp->lock, flags);
3128 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3129 			grp->faults[i] -= p->numa_faults[i];
3130 		grp->total_faults -= p->total_numa_faults;
3131 
3132 		grp->nr_tasks--;
3133 		spin_unlock_irqrestore(&grp->lock, flags);
3134 		RCU_INIT_POINTER(p->numa_group, NULL);
3135 		put_numa_group(grp);
3136 	}
3137 
3138 	if (final) {
3139 		p->numa_faults = NULL;
3140 		kfree(numa_faults);
3141 	} else {
3142 		p->total_numa_faults = 0;
3143 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3144 			numa_faults[i] = 0;
3145 	}
3146 }
3147 
3148 /*
3149  * Got a PROT_NONE fault for a page on @node.
3150  */
3151 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3152 {
3153 	struct task_struct *p = current;
3154 	bool migrated = flags & TNF_MIGRATED;
3155 	int cpu_node = task_node(current);
3156 	int local = !!(flags & TNF_FAULT_LOCAL);
3157 	struct numa_group *ng;
3158 	int priv;
3159 
3160 	if (!static_branch_likely(&sched_numa_balancing))
3161 		return;
3162 
3163 	/* for example, ksmd faulting in a user's mm */
3164 	if (!p->mm)
3165 		return;
3166 
3167 	/*
3168 	 * NUMA faults statistics are unnecessary for the slow memory
3169 	 * node for memory tiering mode.
3170 	 */
3171 	if (!node_is_toptier(mem_node) &&
3172 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3173 	     !cpupid_valid(last_cpupid)))
3174 		return;
3175 
3176 	/* Allocate buffer to track faults on a per-node basis */
3177 	if (unlikely(!p->numa_faults)) {
3178 		int size = sizeof(*p->numa_faults) *
3179 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3180 
3181 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3182 		if (!p->numa_faults)
3183 			return;
3184 
3185 		p->total_numa_faults = 0;
3186 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3187 	}
3188 
3189 	/*
3190 	 * First accesses are treated as private, otherwise consider accesses
3191 	 * to be private if the accessing pid has not changed
3192 	 */
3193 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3194 		priv = 1;
3195 	} else {
3196 		priv = cpupid_match_pid(p, last_cpupid);
3197 		if (!priv && !(flags & TNF_NO_GROUP))
3198 			task_numa_group(p, last_cpupid, flags, &priv);
3199 	}
3200 
3201 	/*
3202 	 * If a workload spans multiple NUMA nodes, a shared fault that
3203 	 * occurs wholly within the set of nodes that the workload is
3204 	 * actively using should be counted as local. This allows the
3205 	 * scan rate to slow down when a workload has settled down.
3206 	 */
3207 	ng = deref_curr_numa_group(p);
3208 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3209 				numa_is_active_node(cpu_node, ng) &&
3210 				numa_is_active_node(mem_node, ng))
3211 		local = 1;
3212 
3213 	/*
3214 	 * Retry to migrate task to preferred node periodically, in case it
3215 	 * previously failed, or the scheduler moved us.
3216 	 */
3217 	if (time_after(jiffies, p->numa_migrate_retry)) {
3218 		task_numa_placement(p);
3219 		numa_migrate_preferred(p);
3220 	}
3221 
3222 	if (migrated)
3223 		p->numa_pages_migrated += pages;
3224 	if (flags & TNF_MIGRATE_FAIL)
3225 		p->numa_faults_locality[2] += pages;
3226 
3227 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3228 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3229 	p->numa_faults_locality[local] += pages;
3230 }
3231 
3232 static void reset_ptenuma_scan(struct task_struct *p)
3233 {
3234 	/*
3235 	 * We only did a read acquisition of the mmap sem, so
3236 	 * p->mm->numa_scan_seq is written to without exclusive access
3237 	 * and the update is not guaranteed to be atomic. That's not
3238 	 * much of an issue though, since this is just used for
3239 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3240 	 * expensive, to avoid any form of compiler optimizations:
3241 	 */
3242 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3243 	p->mm->numa_scan_offset = 0;
3244 }
3245 
3246 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3247 {
3248 	unsigned long pids;
3249 	/*
3250 	 * Allow unconditional access first two times, so that all the (pages)
3251 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3252 	 * This is also done to avoid any side effect of task scanning
3253 	 * amplifying the unfairness of disjoint set of VMAs' access.
3254 	 */
3255 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3256 		return true;
3257 
3258 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3259 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3260 		return true;
3261 
3262 	/*
3263 	 * Complete a scan that has already started regardless of PID access, or
3264 	 * some VMAs may never be scanned in multi-threaded applications:
3265 	 */
3266 	if (mm->numa_scan_offset > vma->vm_start) {
3267 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3268 		return true;
3269 	}
3270 
3271 	/*
3272 	 * This vma has not been accessed for a while, and if the number
3273 	 * the threads in the same process is low, which means no other
3274 	 * threads can help scan this vma, force a vma scan.
3275 	 */
3276 	if (READ_ONCE(mm->numa_scan_seq) >
3277 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3278 		return true;
3279 
3280 	return false;
3281 }
3282 
3283 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3284 
3285 /*
3286  * The expensive part of numa migration is done from task_work context.
3287  * Triggered from task_tick_numa().
3288  */
3289 static void task_numa_work(struct callback_head *work)
3290 {
3291 	unsigned long migrate, next_scan, now = jiffies;
3292 	struct task_struct *p = current;
3293 	struct mm_struct *mm = p->mm;
3294 	u64 runtime = p->se.sum_exec_runtime;
3295 	struct vm_area_struct *vma;
3296 	unsigned long start, end;
3297 	unsigned long nr_pte_updates = 0;
3298 	long pages, virtpages;
3299 	struct vma_iterator vmi;
3300 	bool vma_pids_skipped;
3301 	bool vma_pids_forced = false;
3302 
3303 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3304 
3305 	work->next = work;
3306 	/*
3307 	 * Who cares about NUMA placement when they're dying.
3308 	 *
3309 	 * NOTE: make sure not to dereference p->mm before this check,
3310 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3311 	 * without p->mm even though we still had it when we enqueued this
3312 	 * work.
3313 	 */
3314 	if (p->flags & PF_EXITING)
3315 		return;
3316 
3317 	if (!mm->numa_next_scan) {
3318 		mm->numa_next_scan = now +
3319 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3320 	}
3321 
3322 	/*
3323 	 * Enforce maximal scan/migration frequency..
3324 	 */
3325 	migrate = mm->numa_next_scan;
3326 	if (time_before(now, migrate))
3327 		return;
3328 
3329 	if (p->numa_scan_period == 0) {
3330 		p->numa_scan_period_max = task_scan_max(p);
3331 		p->numa_scan_period = task_scan_start(p);
3332 	}
3333 
3334 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3335 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3336 		return;
3337 
3338 	/*
3339 	 * Delay this task enough that another task of this mm will likely win
3340 	 * the next time around.
3341 	 */
3342 	p->node_stamp += 2 * TICK_NSEC;
3343 
3344 	pages = sysctl_numa_balancing_scan_size;
3345 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3346 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3347 	if (!pages)
3348 		return;
3349 
3350 
3351 	if (!mmap_read_trylock(mm))
3352 		return;
3353 
3354 	/*
3355 	 * VMAs are skipped if the current PID has not trapped a fault within
3356 	 * the VMA recently. Allow scanning to be forced if there is no
3357 	 * suitable VMA remaining.
3358 	 */
3359 	vma_pids_skipped = false;
3360 
3361 retry_pids:
3362 	start = mm->numa_scan_offset;
3363 	vma_iter_init(&vmi, mm, start);
3364 	vma = vma_next(&vmi);
3365 	if (!vma) {
3366 		reset_ptenuma_scan(p);
3367 		start = 0;
3368 		vma_iter_set(&vmi, start);
3369 		vma = vma_next(&vmi);
3370 	}
3371 
3372 	for (; vma; vma = vma_next(&vmi)) {
3373 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3374 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3375 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3376 			continue;
3377 		}
3378 
3379 		/*
3380 		 * Shared library pages mapped by multiple processes are not
3381 		 * migrated as it is expected they are cache replicated. Avoid
3382 		 * hinting faults in read-only file-backed mappings or the vDSO
3383 		 * as migrating the pages will be of marginal benefit.
3384 		 */
3385 		if (!vma->vm_mm ||
3386 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3387 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3388 			continue;
3389 		}
3390 
3391 		/*
3392 		 * Skip inaccessible VMAs to avoid any confusion between
3393 		 * PROT_NONE and NUMA hinting PTEs
3394 		 */
3395 		if (!vma_is_accessible(vma)) {
3396 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3397 			continue;
3398 		}
3399 
3400 		/* Initialise new per-VMA NUMAB state. */
3401 		if (!vma->numab_state) {
3402 			struct vma_numab_state *ptr;
3403 
3404 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3405 			if (!ptr)
3406 				continue;
3407 
3408 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3409 				kfree(ptr);
3410 				continue;
3411 			}
3412 
3413 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3414 
3415 			vma->numab_state->next_scan = now +
3416 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3417 
3418 			/* Reset happens after 4 times scan delay of scan start */
3419 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3420 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3421 
3422 			/*
3423 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3424 			 * to prevent VMAs being skipped prematurely on the
3425 			 * first scan:
3426 			 */
3427 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3428 		}
3429 
3430 		/*
3431 		 * Scanning the VMAs of short lived tasks add more overhead. So
3432 		 * delay the scan for new VMAs.
3433 		 */
3434 		if (mm->numa_scan_seq && time_before(jiffies,
3435 						vma->numab_state->next_scan)) {
3436 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3437 			continue;
3438 		}
3439 
3440 		/* RESET access PIDs regularly for old VMAs. */
3441 		if (mm->numa_scan_seq &&
3442 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3443 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3444 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3445 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3446 			vma->numab_state->pids_active[1] = 0;
3447 		}
3448 
3449 		/* Do not rescan VMAs twice within the same sequence. */
3450 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3451 			mm->numa_scan_offset = vma->vm_end;
3452 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3453 			continue;
3454 		}
3455 
3456 		/*
3457 		 * Do not scan the VMA if task has not accessed it, unless no other
3458 		 * VMA candidate exists.
3459 		 */
3460 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3461 			vma_pids_skipped = true;
3462 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3463 			continue;
3464 		}
3465 
3466 		do {
3467 			start = max(start, vma->vm_start);
3468 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3469 			end = min(end, vma->vm_end);
3470 			nr_pte_updates = change_prot_numa(vma, start, end);
3471 
3472 			/*
3473 			 * Try to scan sysctl_numa_balancing_size worth of
3474 			 * hpages that have at least one present PTE that
3475 			 * is not already PTE-numa. If the VMA contains
3476 			 * areas that are unused or already full of prot_numa
3477 			 * PTEs, scan up to virtpages, to skip through those
3478 			 * areas faster.
3479 			 */
3480 			if (nr_pte_updates)
3481 				pages -= (end - start) >> PAGE_SHIFT;
3482 			virtpages -= (end - start) >> PAGE_SHIFT;
3483 
3484 			start = end;
3485 			if (pages <= 0 || virtpages <= 0)
3486 				goto out;
3487 
3488 			cond_resched();
3489 		} while (end != vma->vm_end);
3490 
3491 		/* VMA scan is complete, do not scan until next sequence. */
3492 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3493 
3494 		/*
3495 		 * Only force scan within one VMA at a time, to limit the
3496 		 * cost of scanning a potentially uninteresting VMA.
3497 		 */
3498 		if (vma_pids_forced)
3499 			break;
3500 	}
3501 
3502 	/*
3503 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3504 	 * not accessing the VMA previously, then force a scan to ensure
3505 	 * forward progress:
3506 	 */
3507 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3508 		vma_pids_forced = true;
3509 		goto retry_pids;
3510 	}
3511 
3512 out:
3513 	/*
3514 	 * It is possible to reach the end of the VMA list but the last few
3515 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3516 	 * would find the !migratable VMA on the next scan but not reset the
3517 	 * scanner to the start so check it now.
3518 	 */
3519 	if (vma)
3520 		mm->numa_scan_offset = start;
3521 	else
3522 		reset_ptenuma_scan(p);
3523 	mmap_read_unlock(mm);
3524 
3525 	/*
3526 	 * Make sure tasks use at least 32x as much time to run other code
3527 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3528 	 * Usually update_task_scan_period slows down scanning enough; on an
3529 	 * overloaded system we need to limit overhead on a per task basis.
3530 	 */
3531 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3532 		u64 diff = p->se.sum_exec_runtime - runtime;
3533 		p->node_stamp += 32 * diff;
3534 	}
3535 }
3536 
3537 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3538 {
3539 	int mm_users = 0;
3540 	struct mm_struct *mm = p->mm;
3541 
3542 	if (mm) {
3543 		mm_users = atomic_read(&mm->mm_users);
3544 		if (mm_users == 1) {
3545 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3546 			mm->numa_scan_seq = 0;
3547 		}
3548 	}
3549 	p->node_stamp			= 0;
3550 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3551 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3552 	p->numa_migrate_retry		= 0;
3553 	/* Protect against double add, see task_tick_numa and task_numa_work */
3554 	p->numa_work.next		= &p->numa_work;
3555 	p->numa_faults			= NULL;
3556 	p->numa_pages_migrated		= 0;
3557 	p->total_numa_faults		= 0;
3558 	RCU_INIT_POINTER(p->numa_group, NULL);
3559 	p->last_task_numa_placement	= 0;
3560 	p->last_sum_exec_runtime	= 0;
3561 
3562 	init_task_work(&p->numa_work, task_numa_work);
3563 
3564 	/* New address space, reset the preferred nid */
3565 	if (!(clone_flags & CLONE_VM)) {
3566 		p->numa_preferred_nid = NUMA_NO_NODE;
3567 		return;
3568 	}
3569 
3570 	/*
3571 	 * New thread, keep existing numa_preferred_nid which should be copied
3572 	 * already by arch_dup_task_struct but stagger when scans start.
3573 	 */
3574 	if (mm) {
3575 		unsigned int delay;
3576 
3577 		delay = min_t(unsigned int, task_scan_max(current),
3578 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3579 		delay += 2 * TICK_NSEC;
3580 		p->node_stamp = delay;
3581 	}
3582 }
3583 
3584 /*
3585  * Drive the periodic memory faults..
3586  */
3587 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3588 {
3589 	struct callback_head *work = &curr->numa_work;
3590 	u64 period, now;
3591 
3592 	/*
3593 	 * We don't care about NUMA placement if we don't have memory.
3594 	 */
3595 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3596 		return;
3597 
3598 	/*
3599 	 * Using runtime rather than walltime has the dual advantage that
3600 	 * we (mostly) drive the selection from busy threads and that the
3601 	 * task needs to have done some actual work before we bother with
3602 	 * NUMA placement.
3603 	 */
3604 	now = curr->se.sum_exec_runtime;
3605 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3606 
3607 	if (now > curr->node_stamp + period) {
3608 		if (!curr->node_stamp)
3609 			curr->numa_scan_period = task_scan_start(curr);
3610 		curr->node_stamp += period;
3611 
3612 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3613 			task_work_add(curr, work, TWA_RESUME);
3614 	}
3615 }
3616 
3617 static void update_scan_period(struct task_struct *p, int new_cpu)
3618 {
3619 	int src_nid = cpu_to_node(task_cpu(p));
3620 	int dst_nid = cpu_to_node(new_cpu);
3621 
3622 	if (!static_branch_likely(&sched_numa_balancing))
3623 		return;
3624 
3625 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3626 		return;
3627 
3628 	if (src_nid == dst_nid)
3629 		return;
3630 
3631 	/*
3632 	 * Allow resets if faults have been trapped before one scan
3633 	 * has completed. This is most likely due to a new task that
3634 	 * is pulled cross-node due to wakeups or load balancing.
3635 	 */
3636 	if (p->numa_scan_seq) {
3637 		/*
3638 		 * Avoid scan adjustments if moving to the preferred
3639 		 * node or if the task was not previously running on
3640 		 * the preferred node.
3641 		 */
3642 		if (dst_nid == p->numa_preferred_nid ||
3643 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3644 			src_nid != p->numa_preferred_nid))
3645 			return;
3646 	}
3647 
3648 	p->numa_scan_period = task_scan_start(p);
3649 }
3650 
3651 #else
3652 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3653 {
3654 }
3655 
3656 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3657 {
3658 }
3659 
3660 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3661 {
3662 }
3663 
3664 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3665 {
3666 }
3667 
3668 #endif /* CONFIG_NUMA_BALANCING */
3669 
3670 static void
3671 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3672 {
3673 	update_load_add(&cfs_rq->load, se->load.weight);
3674 #ifdef CONFIG_SMP
3675 	if (entity_is_task(se)) {
3676 		struct rq *rq = rq_of(cfs_rq);
3677 
3678 		account_numa_enqueue(rq, task_of(se));
3679 		list_add(&se->group_node, &rq->cfs_tasks);
3680 	}
3681 #endif
3682 	cfs_rq->nr_running++;
3683 	if (se_is_idle(se))
3684 		cfs_rq->idle_nr_running++;
3685 }
3686 
3687 static void
3688 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3689 {
3690 	update_load_sub(&cfs_rq->load, se->load.weight);
3691 #ifdef CONFIG_SMP
3692 	if (entity_is_task(se)) {
3693 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3694 		list_del_init(&se->group_node);
3695 	}
3696 #endif
3697 	cfs_rq->nr_running--;
3698 	if (se_is_idle(se))
3699 		cfs_rq->idle_nr_running--;
3700 }
3701 
3702 /*
3703  * Signed add and clamp on underflow.
3704  *
3705  * Explicitly do a load-store to ensure the intermediate value never hits
3706  * memory. This allows lockless observations without ever seeing the negative
3707  * values.
3708  */
3709 #define add_positive(_ptr, _val) do {                           \
3710 	typeof(_ptr) ptr = (_ptr);                              \
3711 	typeof(_val) val = (_val);                              \
3712 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3713 								\
3714 	res = var + val;                                        \
3715 								\
3716 	if (val < 0 && res > var)                               \
3717 		res = 0;                                        \
3718 								\
3719 	WRITE_ONCE(*ptr, res);                                  \
3720 } while (0)
3721 
3722 /*
3723  * Unsigned subtract and clamp on underflow.
3724  *
3725  * Explicitly do a load-store to ensure the intermediate value never hits
3726  * memory. This allows lockless observations without ever seeing the negative
3727  * values.
3728  */
3729 #define sub_positive(_ptr, _val) do {				\
3730 	typeof(_ptr) ptr = (_ptr);				\
3731 	typeof(*ptr) val = (_val);				\
3732 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3733 	res = var - val;					\
3734 	if (res > var)						\
3735 		res = 0;					\
3736 	WRITE_ONCE(*ptr, res);					\
3737 } while (0)
3738 
3739 /*
3740  * Remove and clamp on negative, from a local variable.
3741  *
3742  * A variant of sub_positive(), which does not use explicit load-store
3743  * and is thus optimized for local variable updates.
3744  */
3745 #define lsub_positive(_ptr, _val) do {				\
3746 	typeof(_ptr) ptr = (_ptr);				\
3747 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3748 } while (0)
3749 
3750 #ifdef CONFIG_SMP
3751 static inline void
3752 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753 {
3754 	cfs_rq->avg.load_avg += se->avg.load_avg;
3755 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3756 }
3757 
3758 static inline void
3759 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760 {
3761 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3762 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3763 	/* See update_cfs_rq_load_avg() */
3764 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3765 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3766 }
3767 #else
3768 static inline void
3769 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3770 static inline void
3771 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3772 #endif
3773 
3774 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3775 			   unsigned long weight)
3776 {
3777 	unsigned long old_weight = se->load.weight;
3778 	s64 vlag, vslice;
3779 
3780 	/*
3781 	 * VRUNTIME
3782 	 * --------
3783 	 *
3784 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3785 	 * adjusted if re-weight at !0-lag point.
3786 	 *
3787 	 * Proof: For contradiction assume this is not true, so we can
3788 	 * re-weight without changing vruntime at !0-lag point.
3789 	 *
3790 	 *             Weight	VRuntime   Avg-VRuntime
3791 	 *     before    w          v            V
3792 	 *      after    w'         v'           V'
3793 	 *
3794 	 * Since lag needs to be preserved through re-weight:
3795 	 *
3796 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3797 	 *	==>	V' = (V - v)*w/w' + v		(1)
3798 	 *
3799 	 * Let W be the total weight of the entities before reweight,
3800 	 * since V' is the new weighted average of entities:
3801 	 *
3802 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3803 	 *
3804 	 * by using (1) & (2) we obtain:
3805 	 *
3806 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3807 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3808 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3809 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3810 	 *
3811 	 * Since we are doing at !0-lag point which means V != v, we
3812 	 * can simplify (3):
3813 	 *
3814 	 *	==>	W / (W + w' - w) = w / w'
3815 	 *	==>	Ww' = Ww + ww' - ww
3816 	 *	==>	W * (w' - w) = w * (w' - w)
3817 	 *	==>	W = w	(re-weight indicates w' != w)
3818 	 *
3819 	 * So the cfs_rq contains only one entity, hence vruntime of
3820 	 * the entity @v should always equal to the cfs_rq's weighted
3821 	 * average vruntime @V, which means we will always re-weight
3822 	 * at 0-lag point, thus breach assumption. Proof completed.
3823 	 *
3824 	 *
3825 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3826 	 * vruntime of all the entities.
3827 	 *
3828 	 * Proof: According to corollary #1, Eq. (1) should be:
3829 	 *
3830 	 *	(V - v)*w = (V' - v')*w'
3831 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3832 	 *
3833 	 * According to the weighted average formula, we have:
3834 	 *
3835 	 *	V' = (WV - wv + w'v') / (W - w + w')
3836 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3837 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3838 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3839 	 *
3840 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3841 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3842 	 *
3843 	 * If the entity is the only one in the cfs_rq, then reweight
3844 	 * always occurs at 0-lag point, so V won't change. Or else
3845 	 * there are other entities, hence W != w, then Eq. (5) turns
3846 	 * into V' = V. So V won't change in either case, proof done.
3847 	 *
3848 	 *
3849 	 * So according to corollary #1 & #2, the effect of re-weight
3850 	 * on vruntime should be:
3851 	 *
3852 	 *	v' = V' - (V - v) * w / w'		(4)
3853 	 *	   = V  - (V - v) * w / w'
3854 	 *	   = V  - vl * w / w'
3855 	 *	   = V  - vl'
3856 	 */
3857 	if (avruntime != se->vruntime) {
3858 		vlag = entity_lag(avruntime, se);
3859 		vlag = div_s64(vlag * old_weight, weight);
3860 		se->vruntime = avruntime - vlag;
3861 	}
3862 
3863 	/*
3864 	 * DEADLINE
3865 	 * --------
3866 	 *
3867 	 * When the weight changes, the virtual time slope changes and
3868 	 * we should adjust the relative virtual deadline accordingly.
3869 	 *
3870 	 *	d' = v' + (d - v)*w/w'
3871 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3872 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3873 	 *	   = V  + (d - V)*w/w'
3874 	 */
3875 	vslice = (s64)(se->deadline - avruntime);
3876 	vslice = div_s64(vslice * old_weight, weight);
3877 	se->deadline = avruntime + vslice;
3878 }
3879 
3880 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3881 			    unsigned long weight)
3882 {
3883 	bool curr = cfs_rq->curr == se;
3884 	u64 avruntime;
3885 
3886 	if (se->on_rq) {
3887 		/* commit outstanding execution time */
3888 		update_curr(cfs_rq);
3889 		avruntime = avg_vruntime(cfs_rq);
3890 		if (!curr)
3891 			__dequeue_entity(cfs_rq, se);
3892 		update_load_sub(&cfs_rq->load, se->load.weight);
3893 	}
3894 	dequeue_load_avg(cfs_rq, se);
3895 
3896 	if (se->on_rq) {
3897 		reweight_eevdf(se, avruntime, weight);
3898 	} else {
3899 		/*
3900 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3901 		 * we need to scale se->vlag when w_i changes.
3902 		 */
3903 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3904 	}
3905 
3906 	update_load_set(&se->load, weight);
3907 
3908 #ifdef CONFIG_SMP
3909 	do {
3910 		u32 divider = get_pelt_divider(&se->avg);
3911 
3912 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3913 	} while (0);
3914 #endif
3915 
3916 	enqueue_load_avg(cfs_rq, se);
3917 	if (se->on_rq) {
3918 		update_load_add(&cfs_rq->load, se->load.weight);
3919 		if (!curr)
3920 			__enqueue_entity(cfs_rq, se);
3921 
3922 		/*
3923 		 * The entity's vruntime has been adjusted, so let's check
3924 		 * whether the rq-wide min_vruntime needs updated too. Since
3925 		 * the calculations above require stable min_vruntime rather
3926 		 * than up-to-date one, we do the update at the end of the
3927 		 * reweight process.
3928 		 */
3929 		update_min_vruntime(cfs_rq);
3930 	}
3931 }
3932 
3933 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3934 			       const struct load_weight *lw)
3935 {
3936 	struct sched_entity *se = &p->se;
3937 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3938 	struct load_weight *load = &se->load;
3939 
3940 	reweight_entity(cfs_rq, se, lw->weight);
3941 	load->inv_weight = lw->inv_weight;
3942 }
3943 
3944 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3945 
3946 #ifdef CONFIG_FAIR_GROUP_SCHED
3947 #ifdef CONFIG_SMP
3948 /*
3949  * All this does is approximate the hierarchical proportion which includes that
3950  * global sum we all love to hate.
3951  *
3952  * That is, the weight of a group entity, is the proportional share of the
3953  * group weight based on the group runqueue weights. That is:
3954  *
3955  *                     tg->weight * grq->load.weight
3956  *   ge->load.weight = -----------------------------               (1)
3957  *                       \Sum grq->load.weight
3958  *
3959  * Now, because computing that sum is prohibitively expensive to compute (been
3960  * there, done that) we approximate it with this average stuff. The average
3961  * moves slower and therefore the approximation is cheaper and more stable.
3962  *
3963  * So instead of the above, we substitute:
3964  *
3965  *   grq->load.weight -> grq->avg.load_avg                         (2)
3966  *
3967  * which yields the following:
3968  *
3969  *                     tg->weight * grq->avg.load_avg
3970  *   ge->load.weight = ------------------------------              (3)
3971  *                             tg->load_avg
3972  *
3973  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3974  *
3975  * That is shares_avg, and it is right (given the approximation (2)).
3976  *
3977  * The problem with it is that because the average is slow -- it was designed
3978  * to be exactly that of course -- this leads to transients in boundary
3979  * conditions. In specific, the case where the group was idle and we start the
3980  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3981  * yielding bad latency etc..
3982  *
3983  * Now, in that special case (1) reduces to:
3984  *
3985  *                     tg->weight * grq->load.weight
3986  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3987  *                         grp->load.weight
3988  *
3989  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3990  *
3991  * So what we do is modify our approximation (3) to approach (4) in the (near)
3992  * UP case, like:
3993  *
3994  *   ge->load.weight =
3995  *
3996  *              tg->weight * grq->load.weight
3997  *     ---------------------------------------------------         (5)
3998  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3999  *
4000  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
4001  * we need to use grq->avg.load_avg as its lower bound, which then gives:
4002  *
4003  *
4004  *                     tg->weight * grq->load.weight
4005  *   ge->load.weight = -----------------------------		   (6)
4006  *                             tg_load_avg'
4007  *
4008  * Where:
4009  *
4010  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4011  *                  max(grq->load.weight, grq->avg.load_avg)
4012  *
4013  * And that is shares_weight and is icky. In the (near) UP case it approaches
4014  * (4) while in the normal case it approaches (3). It consistently
4015  * overestimates the ge->load.weight and therefore:
4016  *
4017  *   \Sum ge->load.weight >= tg->weight
4018  *
4019  * hence icky!
4020  */
4021 static long calc_group_shares(struct cfs_rq *cfs_rq)
4022 {
4023 	long tg_weight, tg_shares, load, shares;
4024 	struct task_group *tg = cfs_rq->tg;
4025 
4026 	tg_shares = READ_ONCE(tg->shares);
4027 
4028 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4029 
4030 	tg_weight = atomic_long_read(&tg->load_avg);
4031 
4032 	/* Ensure tg_weight >= load */
4033 	tg_weight -= cfs_rq->tg_load_avg_contrib;
4034 	tg_weight += load;
4035 
4036 	shares = (tg_shares * load);
4037 	if (tg_weight)
4038 		shares /= tg_weight;
4039 
4040 	/*
4041 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4042 	 * of a group with small tg->shares value. It is a floor value which is
4043 	 * assigned as a minimum load.weight to the sched_entity representing
4044 	 * the group on a CPU.
4045 	 *
4046 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4047 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4048 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4049 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4050 	 * instead of 0.
4051 	 */
4052 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
4053 }
4054 #endif /* CONFIG_SMP */
4055 
4056 /*
4057  * Recomputes the group entity based on the current state of its group
4058  * runqueue.
4059  */
4060 static void update_cfs_group(struct sched_entity *se)
4061 {
4062 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4063 	long shares;
4064 
4065 	if (!gcfs_rq)
4066 		return;
4067 
4068 	if (throttled_hierarchy(gcfs_rq))
4069 		return;
4070 
4071 #ifndef CONFIG_SMP
4072 	shares = READ_ONCE(gcfs_rq->tg->shares);
4073 #else
4074 	shares = calc_group_shares(gcfs_rq);
4075 #endif
4076 	if (unlikely(se->load.weight != shares))
4077 		reweight_entity(cfs_rq_of(se), se, shares);
4078 }
4079 
4080 #else /* CONFIG_FAIR_GROUP_SCHED */
4081 static inline void update_cfs_group(struct sched_entity *se)
4082 {
4083 }
4084 #endif /* CONFIG_FAIR_GROUP_SCHED */
4085 
4086 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4087 {
4088 	struct rq *rq = rq_of(cfs_rq);
4089 
4090 	if (&rq->cfs == cfs_rq) {
4091 		/*
4092 		 * There are a few boundary cases this might miss but it should
4093 		 * get called often enough that that should (hopefully) not be
4094 		 * a real problem.
4095 		 *
4096 		 * It will not get called when we go idle, because the idle
4097 		 * thread is a different class (!fair), nor will the utilization
4098 		 * number include things like RT tasks.
4099 		 *
4100 		 * As is, the util number is not freq-invariant (we'd have to
4101 		 * implement arch_scale_freq_capacity() for that).
4102 		 *
4103 		 * See cpu_util_cfs().
4104 		 */
4105 		cpufreq_update_util(rq, flags);
4106 	}
4107 }
4108 
4109 #ifdef CONFIG_SMP
4110 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4111 {
4112 	if (sa->load_sum)
4113 		return false;
4114 
4115 	if (sa->util_sum)
4116 		return false;
4117 
4118 	if (sa->runnable_sum)
4119 		return false;
4120 
4121 	/*
4122 	 * _avg must be null when _sum are null because _avg = _sum / divider
4123 	 * Make sure that rounding and/or propagation of PELT values never
4124 	 * break this.
4125 	 */
4126 	SCHED_WARN_ON(sa->load_avg ||
4127 		      sa->util_avg ||
4128 		      sa->runnable_avg);
4129 
4130 	return true;
4131 }
4132 
4133 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4134 {
4135 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4136 				 cfs_rq->last_update_time_copy);
4137 }
4138 #ifdef CONFIG_FAIR_GROUP_SCHED
4139 /*
4140  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4141  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4142  * bottom-up, we only have to test whether the cfs_rq before us on the list
4143  * is our child.
4144  * If cfs_rq is not on the list, test whether a child needs its to be added to
4145  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4146  */
4147 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4148 {
4149 	struct cfs_rq *prev_cfs_rq;
4150 	struct list_head *prev;
4151 
4152 	if (cfs_rq->on_list) {
4153 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4154 	} else {
4155 		struct rq *rq = rq_of(cfs_rq);
4156 
4157 		prev = rq->tmp_alone_branch;
4158 	}
4159 
4160 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4161 
4162 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4163 }
4164 
4165 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4166 {
4167 	if (cfs_rq->load.weight)
4168 		return false;
4169 
4170 	if (!load_avg_is_decayed(&cfs_rq->avg))
4171 		return false;
4172 
4173 	if (child_cfs_rq_on_list(cfs_rq))
4174 		return false;
4175 
4176 	return true;
4177 }
4178 
4179 /**
4180  * update_tg_load_avg - update the tg's load avg
4181  * @cfs_rq: the cfs_rq whose avg changed
4182  *
4183  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4184  * However, because tg->load_avg is a global value there are performance
4185  * considerations.
4186  *
4187  * In order to avoid having to look at the other cfs_rq's, we use a
4188  * differential update where we store the last value we propagated. This in
4189  * turn allows skipping updates if the differential is 'small'.
4190  *
4191  * Updating tg's load_avg is necessary before update_cfs_share().
4192  */
4193 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4194 {
4195 	long delta;
4196 	u64 now;
4197 
4198 	/*
4199 	 * No need to update load_avg for root_task_group as it is not used.
4200 	 */
4201 	if (cfs_rq->tg == &root_task_group)
4202 		return;
4203 
4204 	/* rq has been offline and doesn't contribute to the share anymore: */
4205 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4206 		return;
4207 
4208 	/*
4209 	 * For migration heavy workloads, access to tg->load_avg can be
4210 	 * unbound. Limit the update rate to at most once per ms.
4211 	 */
4212 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4213 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4214 		return;
4215 
4216 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4217 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4218 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4219 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4220 		cfs_rq->last_update_tg_load_avg = now;
4221 	}
4222 }
4223 
4224 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4225 {
4226 	long delta;
4227 	u64 now;
4228 
4229 	/*
4230 	 * No need to update load_avg for root_task_group, as it is not used.
4231 	 */
4232 	if (cfs_rq->tg == &root_task_group)
4233 		return;
4234 
4235 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4236 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4237 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4238 	cfs_rq->tg_load_avg_contrib = 0;
4239 	cfs_rq->last_update_tg_load_avg = now;
4240 }
4241 
4242 /* CPU offline callback: */
4243 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4244 {
4245 	struct task_group *tg;
4246 
4247 	lockdep_assert_rq_held(rq);
4248 
4249 	/*
4250 	 * The rq clock has already been updated in
4251 	 * set_rq_offline(), so we should skip updating
4252 	 * the rq clock again in unthrottle_cfs_rq().
4253 	 */
4254 	rq_clock_start_loop_update(rq);
4255 
4256 	rcu_read_lock();
4257 	list_for_each_entry_rcu(tg, &task_groups, list) {
4258 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4259 
4260 		clear_tg_load_avg(cfs_rq);
4261 	}
4262 	rcu_read_unlock();
4263 
4264 	rq_clock_stop_loop_update(rq);
4265 }
4266 
4267 /*
4268  * Called within set_task_rq() right before setting a task's CPU. The
4269  * caller only guarantees p->pi_lock is held; no other assumptions,
4270  * including the state of rq->lock, should be made.
4271  */
4272 void set_task_rq_fair(struct sched_entity *se,
4273 		      struct cfs_rq *prev, struct cfs_rq *next)
4274 {
4275 	u64 p_last_update_time;
4276 	u64 n_last_update_time;
4277 
4278 	if (!sched_feat(ATTACH_AGE_LOAD))
4279 		return;
4280 
4281 	/*
4282 	 * We are supposed to update the task to "current" time, then its up to
4283 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4284 	 * getting what current time is, so simply throw away the out-of-date
4285 	 * time. This will result in the wakee task is less decayed, but giving
4286 	 * the wakee more load sounds not bad.
4287 	 */
4288 	if (!(se->avg.last_update_time && prev))
4289 		return;
4290 
4291 	p_last_update_time = cfs_rq_last_update_time(prev);
4292 	n_last_update_time = cfs_rq_last_update_time(next);
4293 
4294 	__update_load_avg_blocked_se(p_last_update_time, se);
4295 	se->avg.last_update_time = n_last_update_time;
4296 }
4297 
4298 /*
4299  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4300  * propagate its contribution. The key to this propagation is the invariant
4301  * that for each group:
4302  *
4303  *   ge->avg == grq->avg						(1)
4304  *
4305  * _IFF_ we look at the pure running and runnable sums. Because they
4306  * represent the very same entity, just at different points in the hierarchy.
4307  *
4308  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4309  * and simply copies the running/runnable sum over (but still wrong, because
4310  * the group entity and group rq do not have their PELT windows aligned).
4311  *
4312  * However, update_tg_cfs_load() is more complex. So we have:
4313  *
4314  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4315  *
4316  * And since, like util, the runnable part should be directly transferable,
4317  * the following would _appear_ to be the straight forward approach:
4318  *
4319  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4320  *
4321  * And per (1) we have:
4322  *
4323  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4324  *
4325  * Which gives:
4326  *
4327  *                      ge->load.weight * grq->avg.load_avg
4328  *   ge->avg.load_avg = -----------------------------------		(4)
4329  *                               grq->load.weight
4330  *
4331  * Except that is wrong!
4332  *
4333  * Because while for entities historical weight is not important and we
4334  * really only care about our future and therefore can consider a pure
4335  * runnable sum, runqueues can NOT do this.
4336  *
4337  * We specifically want runqueues to have a load_avg that includes
4338  * historical weights. Those represent the blocked load, the load we expect
4339  * to (shortly) return to us. This only works by keeping the weights as
4340  * integral part of the sum. We therefore cannot decompose as per (3).
4341  *
4342  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4343  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4344  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4345  * runnable section of these tasks overlap (or not). If they were to perfectly
4346  * align the rq as a whole would be runnable 2/3 of the time. If however we
4347  * always have at least 1 runnable task, the rq as a whole is always runnable.
4348  *
4349  * So we'll have to approximate.. :/
4350  *
4351  * Given the constraint:
4352  *
4353  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4354  *
4355  * We can construct a rule that adds runnable to a rq by assuming minimal
4356  * overlap.
4357  *
4358  * On removal, we'll assume each task is equally runnable; which yields:
4359  *
4360  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4361  *
4362  * XXX: only do this for the part of runnable > running ?
4363  *
4364  */
4365 static inline void
4366 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4367 {
4368 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4369 	u32 new_sum, divider;
4370 
4371 	/* Nothing to update */
4372 	if (!delta_avg)
4373 		return;
4374 
4375 	/*
4376 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4377 	 * See ___update_load_avg() for details.
4378 	 */
4379 	divider = get_pelt_divider(&cfs_rq->avg);
4380 
4381 
4382 	/* Set new sched_entity's utilization */
4383 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4384 	new_sum = se->avg.util_avg * divider;
4385 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4386 	se->avg.util_sum = new_sum;
4387 
4388 	/* Update parent cfs_rq utilization */
4389 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4390 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4391 
4392 	/* See update_cfs_rq_load_avg() */
4393 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4394 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4395 }
4396 
4397 static inline void
4398 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4399 {
4400 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4401 	u32 new_sum, divider;
4402 
4403 	/* Nothing to update */
4404 	if (!delta_avg)
4405 		return;
4406 
4407 	/*
4408 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4409 	 * See ___update_load_avg() for details.
4410 	 */
4411 	divider = get_pelt_divider(&cfs_rq->avg);
4412 
4413 	/* Set new sched_entity's runnable */
4414 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4415 	new_sum = se->avg.runnable_avg * divider;
4416 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4417 	se->avg.runnable_sum = new_sum;
4418 
4419 	/* Update parent cfs_rq runnable */
4420 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4421 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4422 	/* See update_cfs_rq_load_avg() */
4423 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4424 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4425 }
4426 
4427 static inline void
4428 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4429 {
4430 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4431 	unsigned long load_avg;
4432 	u64 load_sum = 0;
4433 	s64 delta_sum;
4434 	u32 divider;
4435 
4436 	if (!runnable_sum)
4437 		return;
4438 
4439 	gcfs_rq->prop_runnable_sum = 0;
4440 
4441 	/*
4442 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4443 	 * See ___update_load_avg() for details.
4444 	 */
4445 	divider = get_pelt_divider(&cfs_rq->avg);
4446 
4447 	if (runnable_sum >= 0) {
4448 		/*
4449 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4450 		 * the CPU is saturated running == runnable.
4451 		 */
4452 		runnable_sum += se->avg.load_sum;
4453 		runnable_sum = min_t(long, runnable_sum, divider);
4454 	} else {
4455 		/*
4456 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4457 		 * assuming all tasks are equally runnable.
4458 		 */
4459 		if (scale_load_down(gcfs_rq->load.weight)) {
4460 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4461 				scale_load_down(gcfs_rq->load.weight));
4462 		}
4463 
4464 		/* But make sure to not inflate se's runnable */
4465 		runnable_sum = min(se->avg.load_sum, load_sum);
4466 	}
4467 
4468 	/*
4469 	 * runnable_sum can't be lower than running_sum
4470 	 * Rescale running sum to be in the same range as runnable sum
4471 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4472 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4473 	 */
4474 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4475 	runnable_sum = max(runnable_sum, running_sum);
4476 
4477 	load_sum = se_weight(se) * runnable_sum;
4478 	load_avg = div_u64(load_sum, divider);
4479 
4480 	delta_avg = load_avg - se->avg.load_avg;
4481 	if (!delta_avg)
4482 		return;
4483 
4484 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4485 
4486 	se->avg.load_sum = runnable_sum;
4487 	se->avg.load_avg = load_avg;
4488 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4489 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4490 	/* See update_cfs_rq_load_avg() */
4491 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4492 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4493 }
4494 
4495 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4496 {
4497 	cfs_rq->propagate = 1;
4498 	cfs_rq->prop_runnable_sum += runnable_sum;
4499 }
4500 
4501 /* Update task and its cfs_rq load average */
4502 static inline int propagate_entity_load_avg(struct sched_entity *se)
4503 {
4504 	struct cfs_rq *cfs_rq, *gcfs_rq;
4505 
4506 	if (entity_is_task(se))
4507 		return 0;
4508 
4509 	gcfs_rq = group_cfs_rq(se);
4510 	if (!gcfs_rq->propagate)
4511 		return 0;
4512 
4513 	gcfs_rq->propagate = 0;
4514 
4515 	cfs_rq = cfs_rq_of(se);
4516 
4517 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4518 
4519 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4520 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4521 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4522 
4523 	trace_pelt_cfs_tp(cfs_rq);
4524 	trace_pelt_se_tp(se);
4525 
4526 	return 1;
4527 }
4528 
4529 /*
4530  * Check if we need to update the load and the utilization of a blocked
4531  * group_entity:
4532  */
4533 static inline bool skip_blocked_update(struct sched_entity *se)
4534 {
4535 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4536 
4537 	/*
4538 	 * If sched_entity still have not zero load or utilization, we have to
4539 	 * decay it:
4540 	 */
4541 	if (se->avg.load_avg || se->avg.util_avg)
4542 		return false;
4543 
4544 	/*
4545 	 * If there is a pending propagation, we have to update the load and
4546 	 * the utilization of the sched_entity:
4547 	 */
4548 	if (gcfs_rq->propagate)
4549 		return false;
4550 
4551 	/*
4552 	 * Otherwise, the load and the utilization of the sched_entity is
4553 	 * already zero and there is no pending propagation, so it will be a
4554 	 * waste of time to try to decay it:
4555 	 */
4556 	return true;
4557 }
4558 
4559 #else /* CONFIG_FAIR_GROUP_SCHED */
4560 
4561 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4562 
4563 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4564 
4565 static inline int propagate_entity_load_avg(struct sched_entity *se)
4566 {
4567 	return 0;
4568 }
4569 
4570 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4571 
4572 #endif /* CONFIG_FAIR_GROUP_SCHED */
4573 
4574 #ifdef CONFIG_NO_HZ_COMMON
4575 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4576 {
4577 	u64 throttled = 0, now, lut;
4578 	struct cfs_rq *cfs_rq;
4579 	struct rq *rq;
4580 	bool is_idle;
4581 
4582 	if (load_avg_is_decayed(&se->avg))
4583 		return;
4584 
4585 	cfs_rq = cfs_rq_of(se);
4586 	rq = rq_of(cfs_rq);
4587 
4588 	rcu_read_lock();
4589 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4590 	rcu_read_unlock();
4591 
4592 	/*
4593 	 * The lag estimation comes with a cost we don't want to pay all the
4594 	 * time. Hence, limiting to the case where the source CPU is idle and
4595 	 * we know we are at the greatest risk to have an outdated clock.
4596 	 */
4597 	if (!is_idle)
4598 		return;
4599 
4600 	/*
4601 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4602 	 *
4603 	 *   last_update_time (the cfs_rq's last_update_time)
4604 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4605 	 *      = rq_clock_pelt()@cfs_rq_idle
4606 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4607 	 *
4608 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4609 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4610 	 *
4611 	 *   rq_idle_lag (delta between now and rq's update)
4612 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4613 	 *
4614 	 * We can then write:
4615 	 *
4616 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4617 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4618 	 * Where:
4619 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4620 	 *      rq_clock()@rq_idle      is rq->clock_idle
4621 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4622 	 *                              is cfs_rq->throttled_pelt_idle
4623 	 */
4624 
4625 #ifdef CONFIG_CFS_BANDWIDTH
4626 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4627 	/* The clock has been stopped for throttling */
4628 	if (throttled == U64_MAX)
4629 		return;
4630 #endif
4631 	now = u64_u32_load(rq->clock_pelt_idle);
4632 	/*
4633 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4634 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4635 	 * which lead to an underestimation. The opposite would lead to an
4636 	 * overestimation.
4637 	 */
4638 	smp_rmb();
4639 	lut = cfs_rq_last_update_time(cfs_rq);
4640 
4641 	now -= throttled;
4642 	if (now < lut)
4643 		/*
4644 		 * cfs_rq->avg.last_update_time is more recent than our
4645 		 * estimation, let's use it.
4646 		 */
4647 		now = lut;
4648 	else
4649 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4650 
4651 	__update_load_avg_blocked_se(now, se);
4652 }
4653 #else
4654 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4655 #endif
4656 
4657 /**
4658  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4659  * @now: current time, as per cfs_rq_clock_pelt()
4660  * @cfs_rq: cfs_rq to update
4661  *
4662  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4663  * avg. The immediate corollary is that all (fair) tasks must be attached.
4664  *
4665  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4666  *
4667  * Return: true if the load decayed or we removed load.
4668  *
4669  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4670  * call update_tg_load_avg() when this function returns true.
4671  */
4672 static inline int
4673 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4674 {
4675 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4676 	struct sched_avg *sa = &cfs_rq->avg;
4677 	int decayed = 0;
4678 
4679 	if (cfs_rq->removed.nr) {
4680 		unsigned long r;
4681 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4682 
4683 		raw_spin_lock(&cfs_rq->removed.lock);
4684 		swap(cfs_rq->removed.util_avg, removed_util);
4685 		swap(cfs_rq->removed.load_avg, removed_load);
4686 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4687 		cfs_rq->removed.nr = 0;
4688 		raw_spin_unlock(&cfs_rq->removed.lock);
4689 
4690 		r = removed_load;
4691 		sub_positive(&sa->load_avg, r);
4692 		sub_positive(&sa->load_sum, r * divider);
4693 		/* See sa->util_sum below */
4694 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4695 
4696 		r = removed_util;
4697 		sub_positive(&sa->util_avg, r);
4698 		sub_positive(&sa->util_sum, r * divider);
4699 		/*
4700 		 * Because of rounding, se->util_sum might ends up being +1 more than
4701 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4702 		 * a lot of tasks with the rounding problem between 2 updates of
4703 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4704 		 * cfs_util_avg is not.
4705 		 * Check that util_sum is still above its lower bound for the new
4706 		 * util_avg. Given that period_contrib might have moved since the last
4707 		 * sync, we are only sure that util_sum must be above or equal to
4708 		 *    util_avg * minimum possible divider
4709 		 */
4710 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4711 
4712 		r = removed_runnable;
4713 		sub_positive(&sa->runnable_avg, r);
4714 		sub_positive(&sa->runnable_sum, r * divider);
4715 		/* See sa->util_sum above */
4716 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4717 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4718 
4719 		/*
4720 		 * removed_runnable is the unweighted version of removed_load so we
4721 		 * can use it to estimate removed_load_sum.
4722 		 */
4723 		add_tg_cfs_propagate(cfs_rq,
4724 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4725 
4726 		decayed = 1;
4727 	}
4728 
4729 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4730 	u64_u32_store_copy(sa->last_update_time,
4731 			   cfs_rq->last_update_time_copy,
4732 			   sa->last_update_time);
4733 	return decayed;
4734 }
4735 
4736 /**
4737  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4738  * @cfs_rq: cfs_rq to attach to
4739  * @se: sched_entity to attach
4740  *
4741  * Must call update_cfs_rq_load_avg() before this, since we rely on
4742  * cfs_rq->avg.last_update_time being current.
4743  */
4744 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4745 {
4746 	/*
4747 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4748 	 * See ___update_load_avg() for details.
4749 	 */
4750 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4751 
4752 	/*
4753 	 * When we attach the @se to the @cfs_rq, we must align the decay
4754 	 * window because without that, really weird and wonderful things can
4755 	 * happen.
4756 	 *
4757 	 * XXX illustrate
4758 	 */
4759 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4760 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4761 
4762 	/*
4763 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4764 	 * period_contrib. This isn't strictly correct, but since we're
4765 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4766 	 * _sum a little.
4767 	 */
4768 	se->avg.util_sum = se->avg.util_avg * divider;
4769 
4770 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4771 
4772 	se->avg.load_sum = se->avg.load_avg * divider;
4773 	if (se_weight(se) < se->avg.load_sum)
4774 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4775 	else
4776 		se->avg.load_sum = 1;
4777 
4778 	enqueue_load_avg(cfs_rq, se);
4779 	cfs_rq->avg.util_avg += se->avg.util_avg;
4780 	cfs_rq->avg.util_sum += se->avg.util_sum;
4781 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4782 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4783 
4784 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4785 
4786 	cfs_rq_util_change(cfs_rq, 0);
4787 
4788 	trace_pelt_cfs_tp(cfs_rq);
4789 }
4790 
4791 /**
4792  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4793  * @cfs_rq: cfs_rq to detach from
4794  * @se: sched_entity to detach
4795  *
4796  * Must call update_cfs_rq_load_avg() before this, since we rely on
4797  * cfs_rq->avg.last_update_time being current.
4798  */
4799 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4800 {
4801 	dequeue_load_avg(cfs_rq, se);
4802 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4803 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4804 	/* See update_cfs_rq_load_avg() */
4805 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4806 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4807 
4808 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4809 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4810 	/* See update_cfs_rq_load_avg() */
4811 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4812 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4813 
4814 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4815 
4816 	cfs_rq_util_change(cfs_rq, 0);
4817 
4818 	trace_pelt_cfs_tp(cfs_rq);
4819 }
4820 
4821 /*
4822  * Optional action to be done while updating the load average
4823  */
4824 #define UPDATE_TG	0x1
4825 #define SKIP_AGE_LOAD	0x2
4826 #define DO_ATTACH	0x4
4827 #define DO_DETACH	0x8
4828 
4829 /* Update task and its cfs_rq load average */
4830 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4831 {
4832 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4833 	int decayed;
4834 
4835 	/*
4836 	 * Track task load average for carrying it to new CPU after migrated, and
4837 	 * track group sched_entity load average for task_h_load calculation in migration
4838 	 */
4839 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4840 		__update_load_avg_se(now, cfs_rq, se);
4841 
4842 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4843 	decayed |= propagate_entity_load_avg(se);
4844 
4845 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4846 
4847 		/*
4848 		 * DO_ATTACH means we're here from enqueue_entity().
4849 		 * !last_update_time means we've passed through
4850 		 * migrate_task_rq_fair() indicating we migrated.
4851 		 *
4852 		 * IOW we're enqueueing a task on a new CPU.
4853 		 */
4854 		attach_entity_load_avg(cfs_rq, se);
4855 		update_tg_load_avg(cfs_rq);
4856 
4857 	} else if (flags & DO_DETACH) {
4858 		/*
4859 		 * DO_DETACH means we're here from dequeue_entity()
4860 		 * and we are migrating task out of the CPU.
4861 		 */
4862 		detach_entity_load_avg(cfs_rq, se);
4863 		update_tg_load_avg(cfs_rq);
4864 	} else if (decayed) {
4865 		cfs_rq_util_change(cfs_rq, 0);
4866 
4867 		if (flags & UPDATE_TG)
4868 			update_tg_load_avg(cfs_rq);
4869 	}
4870 }
4871 
4872 /*
4873  * Synchronize entity load avg of dequeued entity without locking
4874  * the previous rq.
4875  */
4876 static void sync_entity_load_avg(struct sched_entity *se)
4877 {
4878 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4879 	u64 last_update_time;
4880 
4881 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4882 	__update_load_avg_blocked_se(last_update_time, se);
4883 }
4884 
4885 /*
4886  * Task first catches up with cfs_rq, and then subtract
4887  * itself from the cfs_rq (task must be off the queue now).
4888  */
4889 static void remove_entity_load_avg(struct sched_entity *se)
4890 {
4891 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4892 	unsigned long flags;
4893 
4894 	/*
4895 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4896 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4897 	 * so we can remove unconditionally.
4898 	 */
4899 
4900 	sync_entity_load_avg(se);
4901 
4902 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4903 	++cfs_rq->removed.nr;
4904 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4905 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4906 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4907 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4908 }
4909 
4910 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4911 {
4912 	return cfs_rq->avg.runnable_avg;
4913 }
4914 
4915 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4916 {
4917 	return cfs_rq->avg.load_avg;
4918 }
4919 
4920 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4921 
4922 static inline unsigned long task_util(struct task_struct *p)
4923 {
4924 	return READ_ONCE(p->se.avg.util_avg);
4925 }
4926 
4927 static inline unsigned long task_runnable(struct task_struct *p)
4928 {
4929 	return READ_ONCE(p->se.avg.runnable_avg);
4930 }
4931 
4932 static inline unsigned long _task_util_est(struct task_struct *p)
4933 {
4934 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4935 }
4936 
4937 static inline unsigned long task_util_est(struct task_struct *p)
4938 {
4939 	return max(task_util(p), _task_util_est(p));
4940 }
4941 
4942 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4943 				    struct task_struct *p)
4944 {
4945 	unsigned int enqueued;
4946 
4947 	if (!sched_feat(UTIL_EST))
4948 		return;
4949 
4950 	/* Update root cfs_rq's estimated utilization */
4951 	enqueued  = cfs_rq->avg.util_est;
4952 	enqueued += _task_util_est(p);
4953 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4954 
4955 	trace_sched_util_est_cfs_tp(cfs_rq);
4956 }
4957 
4958 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4959 				    struct task_struct *p)
4960 {
4961 	unsigned int enqueued;
4962 
4963 	if (!sched_feat(UTIL_EST))
4964 		return;
4965 
4966 	/* Update root cfs_rq's estimated utilization */
4967 	enqueued  = cfs_rq->avg.util_est;
4968 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4969 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4970 
4971 	trace_sched_util_est_cfs_tp(cfs_rq);
4972 }
4973 
4974 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4975 
4976 static inline void util_est_update(struct cfs_rq *cfs_rq,
4977 				   struct task_struct *p,
4978 				   bool task_sleep)
4979 {
4980 	unsigned int ewma, dequeued, last_ewma_diff;
4981 
4982 	if (!sched_feat(UTIL_EST))
4983 		return;
4984 
4985 	/*
4986 	 * Skip update of task's estimated utilization when the task has not
4987 	 * yet completed an activation, e.g. being migrated.
4988 	 */
4989 	if (!task_sleep)
4990 		return;
4991 
4992 	/* Get current estimate of utilization */
4993 	ewma = READ_ONCE(p->se.avg.util_est);
4994 
4995 	/*
4996 	 * If the PELT values haven't changed since enqueue time,
4997 	 * skip the util_est update.
4998 	 */
4999 	if (ewma & UTIL_AVG_UNCHANGED)
5000 		return;
5001 
5002 	/* Get utilization at dequeue */
5003 	dequeued = task_util(p);
5004 
5005 	/*
5006 	 * Reset EWMA on utilization increases, the moving average is used only
5007 	 * to smooth utilization decreases.
5008 	 */
5009 	if (ewma <= dequeued) {
5010 		ewma = dequeued;
5011 		goto done;
5012 	}
5013 
5014 	/*
5015 	 * Skip update of task's estimated utilization when its members are
5016 	 * already ~1% close to its last activation value.
5017 	 */
5018 	last_ewma_diff = ewma - dequeued;
5019 	if (last_ewma_diff < UTIL_EST_MARGIN)
5020 		goto done;
5021 
5022 	/*
5023 	 * To avoid overestimation of actual task utilization, skip updates if
5024 	 * we cannot grant there is idle time in this CPU.
5025 	 */
5026 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5027 		return;
5028 
5029 	/*
5030 	 * To avoid underestimate of task utilization, skip updates of EWMA if
5031 	 * we cannot grant that thread got all CPU time it wanted.
5032 	 */
5033 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5034 		goto done;
5035 
5036 
5037 	/*
5038 	 * Update Task's estimated utilization
5039 	 *
5040 	 * When *p completes an activation we can consolidate another sample
5041 	 * of the task size. This is done by using this value to update the
5042 	 * Exponential Weighted Moving Average (EWMA):
5043 	 *
5044 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
5045 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
5046 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
5047 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
5048 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
5049 	 *
5050 	 * Where 'w' is the weight of new samples, which is configured to be
5051 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5052 	 */
5053 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
5054 	ewma  -= last_ewma_diff;
5055 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
5056 done:
5057 	ewma |= UTIL_AVG_UNCHANGED;
5058 	WRITE_ONCE(p->se.avg.util_est, ewma);
5059 
5060 	trace_sched_util_est_se_tp(&p->se);
5061 }
5062 
5063 static inline unsigned long get_actual_cpu_capacity(int cpu)
5064 {
5065 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
5066 
5067 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5068 
5069 	return capacity;
5070 }
5071 
5072 static inline int util_fits_cpu(unsigned long util,
5073 				unsigned long uclamp_min,
5074 				unsigned long uclamp_max,
5075 				int cpu)
5076 {
5077 	unsigned long capacity = capacity_of(cpu);
5078 	unsigned long capacity_orig;
5079 	bool fits, uclamp_max_fits;
5080 
5081 	/*
5082 	 * Check if the real util fits without any uclamp boost/cap applied.
5083 	 */
5084 	fits = fits_capacity(util, capacity);
5085 
5086 	if (!uclamp_is_used())
5087 		return fits;
5088 
5089 	/*
5090 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5091 	 * uclamp_max. We only care about capacity pressure (by using
5092 	 * capacity_of()) for comparing against the real util.
5093 	 *
5094 	 * If a task is boosted to 1024 for example, we don't want a tiny
5095 	 * pressure to skew the check whether it fits a CPU or not.
5096 	 *
5097 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5098 	 * should fit a little cpu even if there's some pressure.
5099 	 *
5100 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5101 	 * on available OPP of the system.
5102 	 *
5103 	 * We honour it for uclamp_min only as a drop in performance level
5104 	 * could result in not getting the requested minimum performance level.
5105 	 *
5106 	 * For uclamp_max, we can tolerate a drop in performance level as the
5107 	 * goal is to cap the task. So it's okay if it's getting less.
5108 	 */
5109 	capacity_orig = arch_scale_cpu_capacity(cpu);
5110 
5111 	/*
5112 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5113 	 * But we do have some corner cases to cater for..
5114 	 *
5115 	 *
5116 	 *                                 C=z
5117 	 *   |                             ___
5118 	 *   |                  C=y       |   |
5119 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5120 	 *   |      C=x        |   |      |   |
5121 	 *   |      ___        |   |      |   |
5122 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5123 	 *   |     |   |       |   |      |   |
5124 	 *   |     |   |       |   |      |   |
5125 	 *   +----------------------------------------
5126 	 *         CPU0        CPU1       CPU2
5127 	 *
5128 	 *   In the above example if a task is capped to a specific performance
5129 	 *   point, y, then when:
5130 	 *
5131 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5132 	 *     to CPU1
5133 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5134 	 *     uclamp_max request.
5135 	 *
5136 	 *   which is what we're enforcing here. A task always fits if
5137 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5138 	 *   the normal upmigration rules should withhold still.
5139 	 *
5140 	 *   Only exception is when we are on max capacity, then we need to be
5141 	 *   careful not to block overutilized state. This is so because:
5142 	 *
5143 	 *     1. There's no concept of capping at max_capacity! We can't go
5144 	 *        beyond this performance level anyway.
5145 	 *     2. The system is being saturated when we're operating near
5146 	 *        max capacity, it doesn't make sense to block overutilized.
5147 	 */
5148 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5149 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5150 	fits = fits || uclamp_max_fits;
5151 
5152 	/*
5153 	 *
5154 	 *                                 C=z
5155 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5156 	 *   |                  C=y       |   |
5157 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5158 	 *   |      C=x        |   |      |   |
5159 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5160 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5161 	 *   |     |   |       |   |      |   |
5162 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5163 	 *   +----------------------------------------
5164 	 *         CPU0        CPU1       CPU2
5165 	 *
5166 	 * a) If util > uclamp_max, then we're capped, we don't care about
5167 	 *    actual fitness value here. We only care if uclamp_max fits
5168 	 *    capacity without taking margin/pressure into account.
5169 	 *    See comment above.
5170 	 *
5171 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5172 	 *    fits_capacity() rules apply. Except we need to ensure that we
5173 	 *    enforce we remain within uclamp_max, see comment above.
5174 	 *
5175 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5176 	 *    need to take into account the boosted value fits the CPU without
5177 	 *    taking margin/pressure into account.
5178 	 *
5179 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5180 	 * just need to consider an extra check for case (c) after ensuring we
5181 	 * handle the case uclamp_min > uclamp_max.
5182 	 */
5183 	uclamp_min = min(uclamp_min, uclamp_max);
5184 	if (fits && (util < uclamp_min) &&
5185 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5186 		return -1;
5187 
5188 	return fits;
5189 }
5190 
5191 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5192 {
5193 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5194 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5195 	unsigned long util = task_util_est(p);
5196 	/*
5197 	 * Return true only if the cpu fully fits the task requirements, which
5198 	 * include the utilization but also the performance hints.
5199 	 */
5200 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5201 }
5202 
5203 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5204 {
5205 	int cpu = cpu_of(rq);
5206 
5207 	if (!sched_asym_cpucap_active())
5208 		return;
5209 
5210 	/*
5211 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5212 	 * available CPU already? Or do we fit into this CPU ?
5213 	 */
5214 	if (!p || (p->nr_cpus_allowed == 1) ||
5215 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5216 	    task_fits_cpu(p, cpu)) {
5217 
5218 		rq->misfit_task_load = 0;
5219 		return;
5220 	}
5221 
5222 	/*
5223 	 * Make sure that misfit_task_load will not be null even if
5224 	 * task_h_load() returns 0.
5225 	 */
5226 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5227 }
5228 
5229 #else /* CONFIG_SMP */
5230 
5231 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5232 {
5233 	return !cfs_rq->nr_running;
5234 }
5235 
5236 #define UPDATE_TG	0x0
5237 #define SKIP_AGE_LOAD	0x0
5238 #define DO_ATTACH	0x0
5239 #define DO_DETACH	0x0
5240 
5241 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5242 {
5243 	cfs_rq_util_change(cfs_rq, 0);
5244 }
5245 
5246 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5247 
5248 static inline void
5249 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5250 static inline void
5251 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5252 
5253 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5254 {
5255 	return 0;
5256 }
5257 
5258 static inline void
5259 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5260 
5261 static inline void
5262 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5263 
5264 static inline void
5265 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5266 		bool task_sleep) {}
5267 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5268 
5269 #endif /* CONFIG_SMP */
5270 
5271 static void
5272 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5273 {
5274 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5275 	s64 lag = 0;
5276 
5277 	if (!se->custom_slice)
5278 		se->slice = sysctl_sched_base_slice;
5279 	vslice = calc_delta_fair(se->slice, se);
5280 
5281 	/*
5282 	 * Due to how V is constructed as the weighted average of entities,
5283 	 * adding tasks with positive lag, or removing tasks with negative lag
5284 	 * will move 'time' backwards, this can screw around with the lag of
5285 	 * other tasks.
5286 	 *
5287 	 * EEVDF: placement strategy #1 / #2
5288 	 */
5289 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
5290 		struct sched_entity *curr = cfs_rq->curr;
5291 		unsigned long load;
5292 
5293 		lag = se->vlag;
5294 
5295 		/*
5296 		 * If we want to place a task and preserve lag, we have to
5297 		 * consider the effect of the new entity on the weighted
5298 		 * average and compensate for this, otherwise lag can quickly
5299 		 * evaporate.
5300 		 *
5301 		 * Lag is defined as:
5302 		 *
5303 		 *   lag_i = S - s_i = w_i * (V - v_i)
5304 		 *
5305 		 * To avoid the 'w_i' term all over the place, we only track
5306 		 * the virtual lag:
5307 		 *
5308 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5309 		 *
5310 		 * And we take V to be the weighted average of all v:
5311 		 *
5312 		 *   V = (\Sum w_j*v_j) / W
5313 		 *
5314 		 * Where W is: \Sum w_j
5315 		 *
5316 		 * Then, the weighted average after adding an entity with lag
5317 		 * vl_i is given by:
5318 		 *
5319 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5320 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5321 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5322 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5323 		 *      = V - w_i*vl_i / (W + w_i)
5324 		 *
5325 		 * And the actual lag after adding an entity with vl_i is:
5326 		 *
5327 		 *   vl'_i = V' - v_i
5328 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5329 		 *         = vl_i - w_i*vl_i / (W + w_i)
5330 		 *
5331 		 * Which is strictly less than vl_i. So in order to preserve lag
5332 		 * we should inflate the lag before placement such that the
5333 		 * effective lag after placement comes out right.
5334 		 *
5335 		 * As such, invert the above relation for vl'_i to get the vl_i
5336 		 * we need to use such that the lag after placement is the lag
5337 		 * we computed before dequeue.
5338 		 *
5339 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5340 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5341 		 *
5342 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5343 		 *                   = W*vl_i
5344 		 *
5345 		 *   vl_i = (W + w_i)*vl'_i / W
5346 		 */
5347 		load = cfs_rq->avg_load;
5348 		if (curr && curr->on_rq)
5349 			load += scale_load_down(curr->load.weight);
5350 
5351 		lag *= load + scale_load_down(se->load.weight);
5352 		if (WARN_ON_ONCE(!load))
5353 			load = 1;
5354 		lag = div_s64(lag, load);
5355 	}
5356 
5357 	se->vruntime = vruntime - lag;
5358 
5359 	if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5360 		se->deadline += se->vruntime;
5361 		se->rel_deadline = 0;
5362 		return;
5363 	}
5364 
5365 	/*
5366 	 * When joining the competition; the existing tasks will be,
5367 	 * on average, halfway through their slice, as such start tasks
5368 	 * off with half a slice to ease into the competition.
5369 	 */
5370 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5371 		vslice /= 2;
5372 
5373 	/*
5374 	 * EEVDF: vd_i = ve_i + r_i/w_i
5375 	 */
5376 	se->deadline = se->vruntime + vslice;
5377 }
5378 
5379 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5380 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5381 
5382 static inline bool cfs_bandwidth_used(void);
5383 
5384 static void
5385 requeue_delayed_entity(struct sched_entity *se);
5386 
5387 static void
5388 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5389 {
5390 	bool curr = cfs_rq->curr == se;
5391 
5392 	/*
5393 	 * If we're the current task, we must renormalise before calling
5394 	 * update_curr().
5395 	 */
5396 	if (curr)
5397 		place_entity(cfs_rq, se, flags);
5398 
5399 	update_curr(cfs_rq);
5400 
5401 	/*
5402 	 * When enqueuing a sched_entity, we must:
5403 	 *   - Update loads to have both entity and cfs_rq synced with now.
5404 	 *   - For group_entity, update its runnable_weight to reflect the new
5405 	 *     h_nr_running of its group cfs_rq.
5406 	 *   - For group_entity, update its weight to reflect the new share of
5407 	 *     its group cfs_rq
5408 	 *   - Add its new weight to cfs_rq->load.weight
5409 	 */
5410 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5411 	se_update_runnable(se);
5412 	/*
5413 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5414 	 * but update_cfs_group() here will re-adjust the weight and have to
5415 	 * undo/redo all that. Seems wasteful.
5416 	 */
5417 	update_cfs_group(se);
5418 
5419 	/*
5420 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5421 	 * we can place the entity.
5422 	 */
5423 	if (!curr)
5424 		place_entity(cfs_rq, se, flags);
5425 
5426 	account_entity_enqueue(cfs_rq, se);
5427 
5428 	/* Entity has migrated, no longer consider this task hot */
5429 	if (flags & ENQUEUE_MIGRATED)
5430 		se->exec_start = 0;
5431 
5432 	check_schedstat_required();
5433 	update_stats_enqueue_fair(cfs_rq, se, flags);
5434 	if (!curr)
5435 		__enqueue_entity(cfs_rq, se);
5436 	se->on_rq = 1;
5437 
5438 	if (cfs_rq->nr_running == 1) {
5439 		check_enqueue_throttle(cfs_rq);
5440 		if (!throttled_hierarchy(cfs_rq)) {
5441 			list_add_leaf_cfs_rq(cfs_rq);
5442 		} else {
5443 #ifdef CONFIG_CFS_BANDWIDTH
5444 			struct rq *rq = rq_of(cfs_rq);
5445 
5446 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5447 				cfs_rq->throttled_clock = rq_clock(rq);
5448 			if (!cfs_rq->throttled_clock_self)
5449 				cfs_rq->throttled_clock_self = rq_clock(rq);
5450 #endif
5451 		}
5452 	}
5453 }
5454 
5455 static void __clear_buddies_next(struct sched_entity *se)
5456 {
5457 	for_each_sched_entity(se) {
5458 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5459 		if (cfs_rq->next != se)
5460 			break;
5461 
5462 		cfs_rq->next = NULL;
5463 	}
5464 }
5465 
5466 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5467 {
5468 	if (cfs_rq->next == se)
5469 		__clear_buddies_next(se);
5470 }
5471 
5472 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5473 
5474 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5475 {
5476 	se->sched_delayed = 0;
5477 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5478 		se->vlag = 0;
5479 }
5480 
5481 static bool
5482 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5483 {
5484 	bool sleep = flags & DEQUEUE_SLEEP;
5485 
5486 	update_curr(cfs_rq);
5487 
5488 	if (flags & DEQUEUE_DELAYED) {
5489 		SCHED_WARN_ON(!se->sched_delayed);
5490 	} else {
5491 		bool delay = sleep;
5492 		/*
5493 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5494 		 * states must not suffer spurious wakeups, excempt them.
5495 		 */
5496 		if (flags & DEQUEUE_SPECIAL)
5497 			delay = false;
5498 
5499 		SCHED_WARN_ON(delay && se->sched_delayed);
5500 
5501 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5502 		    !entity_eligible(cfs_rq, se)) {
5503 			if (cfs_rq->next == se)
5504 				cfs_rq->next = NULL;
5505 			update_load_avg(cfs_rq, se, 0);
5506 			se->sched_delayed = 1;
5507 			return false;
5508 		}
5509 	}
5510 
5511 	int action = UPDATE_TG;
5512 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5513 		action |= DO_DETACH;
5514 
5515 	/*
5516 	 * When dequeuing a sched_entity, we must:
5517 	 *   - Update loads to have both entity and cfs_rq synced with now.
5518 	 *   - For group_entity, update its runnable_weight to reflect the new
5519 	 *     h_nr_running of its group cfs_rq.
5520 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5521 	 *   - For group entity, update its weight to reflect the new share
5522 	 *     of its group cfs_rq.
5523 	 */
5524 	update_load_avg(cfs_rq, se, action);
5525 	se_update_runnable(se);
5526 
5527 	update_stats_dequeue_fair(cfs_rq, se, flags);
5528 
5529 	clear_buddies(cfs_rq, se);
5530 
5531 	update_entity_lag(cfs_rq, se);
5532 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5533 		se->deadline -= se->vruntime;
5534 		se->rel_deadline = 1;
5535 	}
5536 
5537 	if (se != cfs_rq->curr)
5538 		__dequeue_entity(cfs_rq, se);
5539 	se->on_rq = 0;
5540 	account_entity_dequeue(cfs_rq, se);
5541 
5542 	/* return excess runtime on last dequeue */
5543 	return_cfs_rq_runtime(cfs_rq);
5544 
5545 	update_cfs_group(se);
5546 
5547 	/*
5548 	 * Now advance min_vruntime if @se was the entity holding it back,
5549 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5550 	 * put back on, and if we advance min_vruntime, we'll be placed back
5551 	 * further than we started -- i.e. we'll be penalized.
5552 	 */
5553 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5554 		update_min_vruntime(cfs_rq);
5555 
5556 	if (flags & DEQUEUE_DELAYED)
5557 		finish_delayed_dequeue_entity(se);
5558 
5559 	if (cfs_rq->nr_running == 0)
5560 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5561 
5562 	return true;
5563 }
5564 
5565 static void
5566 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5567 {
5568 	clear_buddies(cfs_rq, se);
5569 
5570 	/* 'current' is not kept within the tree. */
5571 	if (se->on_rq) {
5572 		/*
5573 		 * Any task has to be enqueued before it get to execute on
5574 		 * a CPU. So account for the time it spent waiting on the
5575 		 * runqueue.
5576 		 */
5577 		update_stats_wait_end_fair(cfs_rq, se);
5578 		__dequeue_entity(cfs_rq, se);
5579 		update_load_avg(cfs_rq, se, UPDATE_TG);
5580 		/*
5581 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5582 		 * which isn't used until dequeue.
5583 		 */
5584 		se->vlag = se->deadline;
5585 	}
5586 
5587 	update_stats_curr_start(cfs_rq, se);
5588 	SCHED_WARN_ON(cfs_rq->curr);
5589 	cfs_rq->curr = se;
5590 
5591 	/*
5592 	 * Track our maximum slice length, if the CPU's load is at
5593 	 * least twice that of our own weight (i.e. don't track it
5594 	 * when there are only lesser-weight tasks around):
5595 	 */
5596 	if (schedstat_enabled() &&
5597 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5598 		struct sched_statistics *stats;
5599 
5600 		stats = __schedstats_from_se(se);
5601 		__schedstat_set(stats->slice_max,
5602 				max((u64)stats->slice_max,
5603 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5604 	}
5605 
5606 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5607 }
5608 
5609 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5610 
5611 /*
5612  * Pick the next process, keeping these things in mind, in this order:
5613  * 1) keep things fair between processes/task groups
5614  * 2) pick the "next" process, since someone really wants that to run
5615  * 3) pick the "last" process, for cache locality
5616  * 4) do not run the "skip" process, if something else is available
5617  */
5618 static struct sched_entity *
5619 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5620 {
5621 	/*
5622 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5623 	 */
5624 	if (sched_feat(NEXT_BUDDY) &&
5625 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5626 		/* ->next will never be delayed */
5627 		SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5628 		return cfs_rq->next;
5629 	}
5630 
5631 	struct sched_entity *se = pick_eevdf(cfs_rq);
5632 	if (se->sched_delayed) {
5633 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5634 		/*
5635 		 * Must not reference @se again, see __block_task().
5636 		 */
5637 		return NULL;
5638 	}
5639 	return se;
5640 }
5641 
5642 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5643 
5644 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5645 {
5646 	/*
5647 	 * If still on the runqueue then deactivate_task()
5648 	 * was not called and update_curr() has to be done:
5649 	 */
5650 	if (prev->on_rq)
5651 		update_curr(cfs_rq);
5652 
5653 	/* throttle cfs_rqs exceeding runtime */
5654 	check_cfs_rq_runtime(cfs_rq);
5655 
5656 	if (prev->on_rq) {
5657 		update_stats_wait_start_fair(cfs_rq, prev);
5658 		/* Put 'current' back into the tree. */
5659 		__enqueue_entity(cfs_rq, prev);
5660 		/* in !on_rq case, update occurred at dequeue */
5661 		update_load_avg(cfs_rq, prev, 0);
5662 	}
5663 	SCHED_WARN_ON(cfs_rq->curr != prev);
5664 	cfs_rq->curr = NULL;
5665 }
5666 
5667 static void
5668 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5669 {
5670 	/*
5671 	 * Update run-time statistics of the 'current'.
5672 	 */
5673 	update_curr(cfs_rq);
5674 
5675 	/*
5676 	 * Ensure that runnable average is periodically updated.
5677 	 */
5678 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5679 	update_cfs_group(curr);
5680 
5681 #ifdef CONFIG_SCHED_HRTICK
5682 	/*
5683 	 * queued ticks are scheduled to match the slice, so don't bother
5684 	 * validating it and just reschedule.
5685 	 */
5686 	if (queued) {
5687 		resched_curr_lazy(rq_of(cfs_rq));
5688 		return;
5689 	}
5690 #endif
5691 }
5692 
5693 
5694 /**************************************************
5695  * CFS bandwidth control machinery
5696  */
5697 
5698 #ifdef CONFIG_CFS_BANDWIDTH
5699 
5700 #ifdef CONFIG_JUMP_LABEL
5701 static struct static_key __cfs_bandwidth_used;
5702 
5703 static inline bool cfs_bandwidth_used(void)
5704 {
5705 	return static_key_false(&__cfs_bandwidth_used);
5706 }
5707 
5708 void cfs_bandwidth_usage_inc(void)
5709 {
5710 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5711 }
5712 
5713 void cfs_bandwidth_usage_dec(void)
5714 {
5715 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5716 }
5717 #else /* CONFIG_JUMP_LABEL */
5718 static bool cfs_bandwidth_used(void)
5719 {
5720 	return true;
5721 }
5722 
5723 void cfs_bandwidth_usage_inc(void) {}
5724 void cfs_bandwidth_usage_dec(void) {}
5725 #endif /* CONFIG_JUMP_LABEL */
5726 
5727 /*
5728  * default period for cfs group bandwidth.
5729  * default: 0.1s, units: nanoseconds
5730  */
5731 static inline u64 default_cfs_period(void)
5732 {
5733 	return 100000000ULL;
5734 }
5735 
5736 static inline u64 sched_cfs_bandwidth_slice(void)
5737 {
5738 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5739 }
5740 
5741 /*
5742  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5743  * directly instead of rq->clock to avoid adding additional synchronization
5744  * around rq->lock.
5745  *
5746  * requires cfs_b->lock
5747  */
5748 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5749 {
5750 	s64 runtime;
5751 
5752 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5753 		return;
5754 
5755 	cfs_b->runtime += cfs_b->quota;
5756 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5757 	if (runtime > 0) {
5758 		cfs_b->burst_time += runtime;
5759 		cfs_b->nr_burst++;
5760 	}
5761 
5762 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5763 	cfs_b->runtime_snap = cfs_b->runtime;
5764 }
5765 
5766 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5767 {
5768 	return &tg->cfs_bandwidth;
5769 }
5770 
5771 /* returns 0 on failure to allocate runtime */
5772 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5773 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5774 {
5775 	u64 min_amount, amount = 0;
5776 
5777 	lockdep_assert_held(&cfs_b->lock);
5778 
5779 	/* note: this is a positive sum as runtime_remaining <= 0 */
5780 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5781 
5782 	if (cfs_b->quota == RUNTIME_INF)
5783 		amount = min_amount;
5784 	else {
5785 		start_cfs_bandwidth(cfs_b);
5786 
5787 		if (cfs_b->runtime > 0) {
5788 			amount = min(cfs_b->runtime, min_amount);
5789 			cfs_b->runtime -= amount;
5790 			cfs_b->idle = 0;
5791 		}
5792 	}
5793 
5794 	cfs_rq->runtime_remaining += amount;
5795 
5796 	return cfs_rq->runtime_remaining > 0;
5797 }
5798 
5799 /* returns 0 on failure to allocate runtime */
5800 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5801 {
5802 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5803 	int ret;
5804 
5805 	raw_spin_lock(&cfs_b->lock);
5806 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5807 	raw_spin_unlock(&cfs_b->lock);
5808 
5809 	return ret;
5810 }
5811 
5812 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5813 {
5814 	/* dock delta_exec before expiring quota (as it could span periods) */
5815 	cfs_rq->runtime_remaining -= delta_exec;
5816 
5817 	if (likely(cfs_rq->runtime_remaining > 0))
5818 		return;
5819 
5820 	if (cfs_rq->throttled)
5821 		return;
5822 	/*
5823 	 * if we're unable to extend our runtime we resched so that the active
5824 	 * hierarchy can be throttled
5825 	 */
5826 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5827 		resched_curr(rq_of(cfs_rq));
5828 }
5829 
5830 static __always_inline
5831 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5832 {
5833 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5834 		return;
5835 
5836 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5837 }
5838 
5839 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5840 {
5841 	return cfs_bandwidth_used() && cfs_rq->throttled;
5842 }
5843 
5844 /* check whether cfs_rq, or any parent, is throttled */
5845 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5846 {
5847 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5848 }
5849 
5850 /*
5851  * Ensure that neither of the group entities corresponding to src_cpu or
5852  * dest_cpu are members of a throttled hierarchy when performing group
5853  * load-balance operations.
5854  */
5855 static inline int throttled_lb_pair(struct task_group *tg,
5856 				    int src_cpu, int dest_cpu)
5857 {
5858 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5859 
5860 	src_cfs_rq = tg->cfs_rq[src_cpu];
5861 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5862 
5863 	return throttled_hierarchy(src_cfs_rq) ||
5864 	       throttled_hierarchy(dest_cfs_rq);
5865 }
5866 
5867 static int tg_unthrottle_up(struct task_group *tg, void *data)
5868 {
5869 	struct rq *rq = data;
5870 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5871 
5872 	cfs_rq->throttle_count--;
5873 	if (!cfs_rq->throttle_count) {
5874 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5875 					     cfs_rq->throttled_clock_pelt;
5876 
5877 		/* Add cfs_rq with load or one or more already running entities to the list */
5878 		if (!cfs_rq_is_decayed(cfs_rq))
5879 			list_add_leaf_cfs_rq(cfs_rq);
5880 
5881 		if (cfs_rq->throttled_clock_self) {
5882 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5883 
5884 			cfs_rq->throttled_clock_self = 0;
5885 
5886 			if (SCHED_WARN_ON((s64)delta < 0))
5887 				delta = 0;
5888 
5889 			cfs_rq->throttled_clock_self_time += delta;
5890 		}
5891 	}
5892 
5893 	return 0;
5894 }
5895 
5896 static int tg_throttle_down(struct task_group *tg, void *data)
5897 {
5898 	struct rq *rq = data;
5899 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5900 
5901 	/* group is entering throttled state, stop time */
5902 	if (!cfs_rq->throttle_count) {
5903 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5904 		list_del_leaf_cfs_rq(cfs_rq);
5905 
5906 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5907 		if (cfs_rq->nr_running)
5908 			cfs_rq->throttled_clock_self = rq_clock(rq);
5909 	}
5910 	cfs_rq->throttle_count++;
5911 
5912 	return 0;
5913 }
5914 
5915 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5916 {
5917 	struct rq *rq = rq_of(cfs_rq);
5918 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5919 	struct sched_entity *se;
5920 	long task_delta, idle_task_delta, dequeue = 1;
5921 	long rq_h_nr_running = rq->cfs.h_nr_running;
5922 
5923 	raw_spin_lock(&cfs_b->lock);
5924 	/* This will start the period timer if necessary */
5925 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5926 		/*
5927 		 * We have raced with bandwidth becoming available, and if we
5928 		 * actually throttled the timer might not unthrottle us for an
5929 		 * entire period. We additionally needed to make sure that any
5930 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5931 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5932 		 * for 1ns of runtime rather than just check cfs_b.
5933 		 */
5934 		dequeue = 0;
5935 	} else {
5936 		list_add_tail_rcu(&cfs_rq->throttled_list,
5937 				  &cfs_b->throttled_cfs_rq);
5938 	}
5939 	raw_spin_unlock(&cfs_b->lock);
5940 
5941 	if (!dequeue)
5942 		return false;  /* Throttle no longer required. */
5943 
5944 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5945 
5946 	/* freeze hierarchy runnable averages while throttled */
5947 	rcu_read_lock();
5948 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5949 	rcu_read_unlock();
5950 
5951 	task_delta = cfs_rq->h_nr_running;
5952 	idle_task_delta = cfs_rq->idle_h_nr_running;
5953 	for_each_sched_entity(se) {
5954 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5955 		int flags;
5956 
5957 		/* throttled entity or throttle-on-deactivate */
5958 		if (!se->on_rq)
5959 			goto done;
5960 
5961 		/*
5962 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5963 		 * This avoids teaching dequeue_entities() about throttled
5964 		 * entities and keeps things relatively simple.
5965 		 */
5966 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5967 		if (se->sched_delayed)
5968 			flags |= DEQUEUE_DELAYED;
5969 		dequeue_entity(qcfs_rq, se, flags);
5970 
5971 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5972 			idle_task_delta = cfs_rq->h_nr_running;
5973 
5974 		qcfs_rq->h_nr_running -= task_delta;
5975 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5976 
5977 		if (qcfs_rq->load.weight) {
5978 			/* Avoid re-evaluating load for this entity: */
5979 			se = parent_entity(se);
5980 			break;
5981 		}
5982 	}
5983 
5984 	for_each_sched_entity(se) {
5985 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5986 		/* throttled entity or throttle-on-deactivate */
5987 		if (!se->on_rq)
5988 			goto done;
5989 
5990 		update_load_avg(qcfs_rq, se, 0);
5991 		se_update_runnable(se);
5992 
5993 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5994 			idle_task_delta = cfs_rq->h_nr_running;
5995 
5996 		qcfs_rq->h_nr_running -= task_delta;
5997 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5998 	}
5999 
6000 	/* At this point se is NULL and we are at root level*/
6001 	sub_nr_running(rq, task_delta);
6002 
6003 	/* Stop the fair server if throttling resulted in no runnable tasks */
6004 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
6005 		dl_server_stop(&rq->fair_server);
6006 done:
6007 	/*
6008 	 * Note: distribution will already see us throttled via the
6009 	 * throttled-list.  rq->lock protects completion.
6010 	 */
6011 	cfs_rq->throttled = 1;
6012 	SCHED_WARN_ON(cfs_rq->throttled_clock);
6013 	if (cfs_rq->nr_running)
6014 		cfs_rq->throttled_clock = rq_clock(rq);
6015 	return true;
6016 }
6017 
6018 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6019 {
6020 	struct rq *rq = rq_of(cfs_rq);
6021 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6022 	struct sched_entity *se;
6023 	long task_delta, idle_task_delta;
6024 	long rq_h_nr_running = rq->cfs.h_nr_running;
6025 
6026 	se = cfs_rq->tg->se[cpu_of(rq)];
6027 
6028 	cfs_rq->throttled = 0;
6029 
6030 	update_rq_clock(rq);
6031 
6032 	raw_spin_lock(&cfs_b->lock);
6033 	if (cfs_rq->throttled_clock) {
6034 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6035 		cfs_rq->throttled_clock = 0;
6036 	}
6037 	list_del_rcu(&cfs_rq->throttled_list);
6038 	raw_spin_unlock(&cfs_b->lock);
6039 
6040 	/* update hierarchical throttle state */
6041 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6042 
6043 	if (!cfs_rq->load.weight) {
6044 		if (!cfs_rq->on_list)
6045 			return;
6046 		/*
6047 		 * Nothing to run but something to decay (on_list)?
6048 		 * Complete the branch.
6049 		 */
6050 		for_each_sched_entity(se) {
6051 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6052 				break;
6053 		}
6054 		goto unthrottle_throttle;
6055 	}
6056 
6057 	task_delta = cfs_rq->h_nr_running;
6058 	idle_task_delta = cfs_rq->idle_h_nr_running;
6059 	for_each_sched_entity(se) {
6060 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6061 
6062 		/* Handle any unfinished DELAY_DEQUEUE business first. */
6063 		if (se->sched_delayed) {
6064 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6065 
6066 			dequeue_entity(qcfs_rq, se, flags);
6067 		} else if (se->on_rq)
6068 			break;
6069 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6070 
6071 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6072 			idle_task_delta = cfs_rq->h_nr_running;
6073 
6074 		qcfs_rq->h_nr_running += task_delta;
6075 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6076 
6077 		/* end evaluation on encountering a throttled cfs_rq */
6078 		if (cfs_rq_throttled(qcfs_rq))
6079 			goto unthrottle_throttle;
6080 	}
6081 
6082 	for_each_sched_entity(se) {
6083 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6084 
6085 		update_load_avg(qcfs_rq, se, UPDATE_TG);
6086 		se_update_runnable(se);
6087 
6088 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6089 			idle_task_delta = cfs_rq->h_nr_running;
6090 
6091 		qcfs_rq->h_nr_running += task_delta;
6092 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6093 
6094 		/* end evaluation on encountering a throttled cfs_rq */
6095 		if (cfs_rq_throttled(qcfs_rq))
6096 			goto unthrottle_throttle;
6097 	}
6098 
6099 	/* Start the fair server if un-throttling resulted in new runnable tasks */
6100 	if (!rq_h_nr_running && rq->cfs.h_nr_running)
6101 		dl_server_start(&rq->fair_server);
6102 
6103 	/* At this point se is NULL and we are at root level*/
6104 	add_nr_running(rq, task_delta);
6105 
6106 unthrottle_throttle:
6107 	assert_list_leaf_cfs_rq(rq);
6108 
6109 	/* Determine whether we need to wake up potentially idle CPU: */
6110 	if (rq->curr == rq->idle && rq->cfs.nr_running)
6111 		resched_curr(rq);
6112 }
6113 
6114 #ifdef CONFIG_SMP
6115 static void __cfsb_csd_unthrottle(void *arg)
6116 {
6117 	struct cfs_rq *cursor, *tmp;
6118 	struct rq *rq = arg;
6119 	struct rq_flags rf;
6120 
6121 	rq_lock(rq, &rf);
6122 
6123 	/*
6124 	 * Iterating over the list can trigger several call to
6125 	 * update_rq_clock() in unthrottle_cfs_rq().
6126 	 * Do it once and skip the potential next ones.
6127 	 */
6128 	update_rq_clock(rq);
6129 	rq_clock_start_loop_update(rq);
6130 
6131 	/*
6132 	 * Since we hold rq lock we're safe from concurrent manipulation of
6133 	 * the CSD list. However, this RCU critical section annotates the
6134 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6135 	 * race with group being freed in the window between removing it
6136 	 * from the list and advancing to the next entry in the list.
6137 	 */
6138 	rcu_read_lock();
6139 
6140 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6141 				 throttled_csd_list) {
6142 		list_del_init(&cursor->throttled_csd_list);
6143 
6144 		if (cfs_rq_throttled(cursor))
6145 			unthrottle_cfs_rq(cursor);
6146 	}
6147 
6148 	rcu_read_unlock();
6149 
6150 	rq_clock_stop_loop_update(rq);
6151 	rq_unlock(rq, &rf);
6152 }
6153 
6154 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6155 {
6156 	struct rq *rq = rq_of(cfs_rq);
6157 	bool first;
6158 
6159 	if (rq == this_rq()) {
6160 		unthrottle_cfs_rq(cfs_rq);
6161 		return;
6162 	}
6163 
6164 	/* Already enqueued */
6165 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6166 		return;
6167 
6168 	first = list_empty(&rq->cfsb_csd_list);
6169 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6170 	if (first)
6171 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6172 }
6173 #else
6174 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6175 {
6176 	unthrottle_cfs_rq(cfs_rq);
6177 }
6178 #endif
6179 
6180 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6181 {
6182 	lockdep_assert_rq_held(rq_of(cfs_rq));
6183 
6184 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6185 	    cfs_rq->runtime_remaining <= 0))
6186 		return;
6187 
6188 	__unthrottle_cfs_rq_async(cfs_rq);
6189 }
6190 
6191 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6192 {
6193 	int this_cpu = smp_processor_id();
6194 	u64 runtime, remaining = 1;
6195 	bool throttled = false;
6196 	struct cfs_rq *cfs_rq, *tmp;
6197 	struct rq_flags rf;
6198 	struct rq *rq;
6199 	LIST_HEAD(local_unthrottle);
6200 
6201 	rcu_read_lock();
6202 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6203 				throttled_list) {
6204 		rq = rq_of(cfs_rq);
6205 
6206 		if (!remaining) {
6207 			throttled = true;
6208 			break;
6209 		}
6210 
6211 		rq_lock_irqsave(rq, &rf);
6212 		if (!cfs_rq_throttled(cfs_rq))
6213 			goto next;
6214 
6215 		/* Already queued for async unthrottle */
6216 		if (!list_empty(&cfs_rq->throttled_csd_list))
6217 			goto next;
6218 
6219 		/* By the above checks, this should never be true */
6220 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6221 
6222 		raw_spin_lock(&cfs_b->lock);
6223 		runtime = -cfs_rq->runtime_remaining + 1;
6224 		if (runtime > cfs_b->runtime)
6225 			runtime = cfs_b->runtime;
6226 		cfs_b->runtime -= runtime;
6227 		remaining = cfs_b->runtime;
6228 		raw_spin_unlock(&cfs_b->lock);
6229 
6230 		cfs_rq->runtime_remaining += runtime;
6231 
6232 		/* we check whether we're throttled above */
6233 		if (cfs_rq->runtime_remaining > 0) {
6234 			if (cpu_of(rq) != this_cpu) {
6235 				unthrottle_cfs_rq_async(cfs_rq);
6236 			} else {
6237 				/*
6238 				 * We currently only expect to be unthrottling
6239 				 * a single cfs_rq locally.
6240 				 */
6241 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6242 				list_add_tail(&cfs_rq->throttled_csd_list,
6243 					      &local_unthrottle);
6244 			}
6245 		} else {
6246 			throttled = true;
6247 		}
6248 
6249 next:
6250 		rq_unlock_irqrestore(rq, &rf);
6251 	}
6252 
6253 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6254 				 throttled_csd_list) {
6255 		struct rq *rq = rq_of(cfs_rq);
6256 
6257 		rq_lock_irqsave(rq, &rf);
6258 
6259 		list_del_init(&cfs_rq->throttled_csd_list);
6260 
6261 		if (cfs_rq_throttled(cfs_rq))
6262 			unthrottle_cfs_rq(cfs_rq);
6263 
6264 		rq_unlock_irqrestore(rq, &rf);
6265 	}
6266 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6267 
6268 	rcu_read_unlock();
6269 
6270 	return throttled;
6271 }
6272 
6273 /*
6274  * Responsible for refilling a task_group's bandwidth and unthrottling its
6275  * cfs_rqs as appropriate. If there has been no activity within the last
6276  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6277  * used to track this state.
6278  */
6279 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6280 {
6281 	int throttled;
6282 
6283 	/* no need to continue the timer with no bandwidth constraint */
6284 	if (cfs_b->quota == RUNTIME_INF)
6285 		goto out_deactivate;
6286 
6287 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6288 	cfs_b->nr_periods += overrun;
6289 
6290 	/* Refill extra burst quota even if cfs_b->idle */
6291 	__refill_cfs_bandwidth_runtime(cfs_b);
6292 
6293 	/*
6294 	 * idle depends on !throttled (for the case of a large deficit), and if
6295 	 * we're going inactive then everything else can be deferred
6296 	 */
6297 	if (cfs_b->idle && !throttled)
6298 		goto out_deactivate;
6299 
6300 	if (!throttled) {
6301 		/* mark as potentially idle for the upcoming period */
6302 		cfs_b->idle = 1;
6303 		return 0;
6304 	}
6305 
6306 	/* account preceding periods in which throttling occurred */
6307 	cfs_b->nr_throttled += overrun;
6308 
6309 	/*
6310 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6311 	 */
6312 	while (throttled && cfs_b->runtime > 0) {
6313 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6314 		/* we can't nest cfs_b->lock while distributing bandwidth */
6315 		throttled = distribute_cfs_runtime(cfs_b);
6316 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6317 	}
6318 
6319 	/*
6320 	 * While we are ensured activity in the period following an
6321 	 * unthrottle, this also covers the case in which the new bandwidth is
6322 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6323 	 * timer to remain active while there are any throttled entities.)
6324 	 */
6325 	cfs_b->idle = 0;
6326 
6327 	return 0;
6328 
6329 out_deactivate:
6330 	return 1;
6331 }
6332 
6333 /* a cfs_rq won't donate quota below this amount */
6334 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6335 /* minimum remaining period time to redistribute slack quota */
6336 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6337 /* how long we wait to gather additional slack before distributing */
6338 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6339 
6340 /*
6341  * Are we near the end of the current quota period?
6342  *
6343  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6344  * hrtimer base being cleared by hrtimer_start. In the case of
6345  * migrate_hrtimers, base is never cleared, so we are fine.
6346  */
6347 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6348 {
6349 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6350 	s64 remaining;
6351 
6352 	/* if the call-back is running a quota refresh is already occurring */
6353 	if (hrtimer_callback_running(refresh_timer))
6354 		return 1;
6355 
6356 	/* is a quota refresh about to occur? */
6357 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6358 	if (remaining < (s64)min_expire)
6359 		return 1;
6360 
6361 	return 0;
6362 }
6363 
6364 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6365 {
6366 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6367 
6368 	/* if there's a quota refresh soon don't bother with slack */
6369 	if (runtime_refresh_within(cfs_b, min_left))
6370 		return;
6371 
6372 	/* don't push forwards an existing deferred unthrottle */
6373 	if (cfs_b->slack_started)
6374 		return;
6375 	cfs_b->slack_started = true;
6376 
6377 	hrtimer_start(&cfs_b->slack_timer,
6378 			ns_to_ktime(cfs_bandwidth_slack_period),
6379 			HRTIMER_MODE_REL);
6380 }
6381 
6382 /* we know any runtime found here is valid as update_curr() precedes return */
6383 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6384 {
6385 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6386 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6387 
6388 	if (slack_runtime <= 0)
6389 		return;
6390 
6391 	raw_spin_lock(&cfs_b->lock);
6392 	if (cfs_b->quota != RUNTIME_INF) {
6393 		cfs_b->runtime += slack_runtime;
6394 
6395 		/* we are under rq->lock, defer unthrottling using a timer */
6396 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6397 		    !list_empty(&cfs_b->throttled_cfs_rq))
6398 			start_cfs_slack_bandwidth(cfs_b);
6399 	}
6400 	raw_spin_unlock(&cfs_b->lock);
6401 
6402 	/* even if it's not valid for return we don't want to try again */
6403 	cfs_rq->runtime_remaining -= slack_runtime;
6404 }
6405 
6406 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6407 {
6408 	if (!cfs_bandwidth_used())
6409 		return;
6410 
6411 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6412 		return;
6413 
6414 	__return_cfs_rq_runtime(cfs_rq);
6415 }
6416 
6417 /*
6418  * This is done with a timer (instead of inline with bandwidth return) since
6419  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6420  */
6421 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6422 {
6423 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6424 	unsigned long flags;
6425 
6426 	/* confirm we're still not at a refresh boundary */
6427 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6428 	cfs_b->slack_started = false;
6429 
6430 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6431 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6432 		return;
6433 	}
6434 
6435 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6436 		runtime = cfs_b->runtime;
6437 
6438 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6439 
6440 	if (!runtime)
6441 		return;
6442 
6443 	distribute_cfs_runtime(cfs_b);
6444 }
6445 
6446 /*
6447  * When a group wakes up we want to make sure that its quota is not already
6448  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6449  * runtime as update_curr() throttling can not trigger until it's on-rq.
6450  */
6451 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6452 {
6453 	if (!cfs_bandwidth_used())
6454 		return;
6455 
6456 	/* an active group must be handled by the update_curr()->put() path */
6457 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6458 		return;
6459 
6460 	/* ensure the group is not already throttled */
6461 	if (cfs_rq_throttled(cfs_rq))
6462 		return;
6463 
6464 	/* update runtime allocation */
6465 	account_cfs_rq_runtime(cfs_rq, 0);
6466 	if (cfs_rq->runtime_remaining <= 0)
6467 		throttle_cfs_rq(cfs_rq);
6468 }
6469 
6470 static void sync_throttle(struct task_group *tg, int cpu)
6471 {
6472 	struct cfs_rq *pcfs_rq, *cfs_rq;
6473 
6474 	if (!cfs_bandwidth_used())
6475 		return;
6476 
6477 	if (!tg->parent)
6478 		return;
6479 
6480 	cfs_rq = tg->cfs_rq[cpu];
6481 	pcfs_rq = tg->parent->cfs_rq[cpu];
6482 
6483 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6484 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6485 }
6486 
6487 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6488 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6489 {
6490 	if (!cfs_bandwidth_used())
6491 		return false;
6492 
6493 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6494 		return false;
6495 
6496 	/*
6497 	 * it's possible for a throttled entity to be forced into a running
6498 	 * state (e.g. set_curr_task), in this case we're finished.
6499 	 */
6500 	if (cfs_rq_throttled(cfs_rq))
6501 		return true;
6502 
6503 	return throttle_cfs_rq(cfs_rq);
6504 }
6505 
6506 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6507 {
6508 	struct cfs_bandwidth *cfs_b =
6509 		container_of(timer, struct cfs_bandwidth, slack_timer);
6510 
6511 	do_sched_cfs_slack_timer(cfs_b);
6512 
6513 	return HRTIMER_NORESTART;
6514 }
6515 
6516 extern const u64 max_cfs_quota_period;
6517 
6518 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6519 {
6520 	struct cfs_bandwidth *cfs_b =
6521 		container_of(timer, struct cfs_bandwidth, period_timer);
6522 	unsigned long flags;
6523 	int overrun;
6524 	int idle = 0;
6525 	int count = 0;
6526 
6527 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6528 	for (;;) {
6529 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6530 		if (!overrun)
6531 			break;
6532 
6533 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6534 
6535 		if (++count > 3) {
6536 			u64 new, old = ktime_to_ns(cfs_b->period);
6537 
6538 			/*
6539 			 * Grow period by a factor of 2 to avoid losing precision.
6540 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6541 			 * to fail.
6542 			 */
6543 			new = old * 2;
6544 			if (new < max_cfs_quota_period) {
6545 				cfs_b->period = ns_to_ktime(new);
6546 				cfs_b->quota *= 2;
6547 				cfs_b->burst *= 2;
6548 
6549 				pr_warn_ratelimited(
6550 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6551 					smp_processor_id(),
6552 					div_u64(new, NSEC_PER_USEC),
6553 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6554 			} else {
6555 				pr_warn_ratelimited(
6556 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6557 					smp_processor_id(),
6558 					div_u64(old, NSEC_PER_USEC),
6559 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6560 			}
6561 
6562 			/* reset count so we don't come right back in here */
6563 			count = 0;
6564 		}
6565 	}
6566 	if (idle)
6567 		cfs_b->period_active = 0;
6568 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6569 
6570 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6571 }
6572 
6573 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6574 {
6575 	raw_spin_lock_init(&cfs_b->lock);
6576 	cfs_b->runtime = 0;
6577 	cfs_b->quota = RUNTIME_INF;
6578 	cfs_b->period = ns_to_ktime(default_cfs_period());
6579 	cfs_b->burst = 0;
6580 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6581 
6582 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6583 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6584 	cfs_b->period_timer.function = sched_cfs_period_timer;
6585 
6586 	/* Add a random offset so that timers interleave */
6587 	hrtimer_set_expires(&cfs_b->period_timer,
6588 			    get_random_u32_below(cfs_b->period));
6589 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6590 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6591 	cfs_b->slack_started = false;
6592 }
6593 
6594 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6595 {
6596 	cfs_rq->runtime_enabled = 0;
6597 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6598 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6599 }
6600 
6601 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6602 {
6603 	lockdep_assert_held(&cfs_b->lock);
6604 
6605 	if (cfs_b->period_active)
6606 		return;
6607 
6608 	cfs_b->period_active = 1;
6609 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6610 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6611 }
6612 
6613 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6614 {
6615 	int __maybe_unused i;
6616 
6617 	/* init_cfs_bandwidth() was not called */
6618 	if (!cfs_b->throttled_cfs_rq.next)
6619 		return;
6620 
6621 	hrtimer_cancel(&cfs_b->period_timer);
6622 	hrtimer_cancel(&cfs_b->slack_timer);
6623 
6624 	/*
6625 	 * It is possible that we still have some cfs_rq's pending on a CSD
6626 	 * list, though this race is very rare. In order for this to occur, we
6627 	 * must have raced with the last task leaving the group while there
6628 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6629 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6630 	 * we can simply flush all pending CSD work inline here. We're
6631 	 * guaranteed at this point that no additional cfs_rq of this group can
6632 	 * join a CSD list.
6633 	 */
6634 #ifdef CONFIG_SMP
6635 	for_each_possible_cpu(i) {
6636 		struct rq *rq = cpu_rq(i);
6637 		unsigned long flags;
6638 
6639 		if (list_empty(&rq->cfsb_csd_list))
6640 			continue;
6641 
6642 		local_irq_save(flags);
6643 		__cfsb_csd_unthrottle(rq);
6644 		local_irq_restore(flags);
6645 	}
6646 #endif
6647 }
6648 
6649 /*
6650  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6651  *
6652  * The race is harmless, since modifying bandwidth settings of unhooked group
6653  * bits doesn't do much.
6654  */
6655 
6656 /* cpu online callback */
6657 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6658 {
6659 	struct task_group *tg;
6660 
6661 	lockdep_assert_rq_held(rq);
6662 
6663 	rcu_read_lock();
6664 	list_for_each_entry_rcu(tg, &task_groups, list) {
6665 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6666 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6667 
6668 		raw_spin_lock(&cfs_b->lock);
6669 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6670 		raw_spin_unlock(&cfs_b->lock);
6671 	}
6672 	rcu_read_unlock();
6673 }
6674 
6675 /* cpu offline callback */
6676 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6677 {
6678 	struct task_group *tg;
6679 
6680 	lockdep_assert_rq_held(rq);
6681 
6682 	/*
6683 	 * The rq clock has already been updated in the
6684 	 * set_rq_offline(), so we should skip updating
6685 	 * the rq clock again in unthrottle_cfs_rq().
6686 	 */
6687 	rq_clock_start_loop_update(rq);
6688 
6689 	rcu_read_lock();
6690 	list_for_each_entry_rcu(tg, &task_groups, list) {
6691 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6692 
6693 		if (!cfs_rq->runtime_enabled)
6694 			continue;
6695 
6696 		/*
6697 		 * clock_task is not advancing so we just need to make sure
6698 		 * there's some valid quota amount
6699 		 */
6700 		cfs_rq->runtime_remaining = 1;
6701 		/*
6702 		 * Offline rq is schedulable till CPU is completely disabled
6703 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6704 		 */
6705 		cfs_rq->runtime_enabled = 0;
6706 
6707 		if (cfs_rq_throttled(cfs_rq))
6708 			unthrottle_cfs_rq(cfs_rq);
6709 	}
6710 	rcu_read_unlock();
6711 
6712 	rq_clock_stop_loop_update(rq);
6713 }
6714 
6715 bool cfs_task_bw_constrained(struct task_struct *p)
6716 {
6717 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6718 
6719 	if (!cfs_bandwidth_used())
6720 		return false;
6721 
6722 	if (cfs_rq->runtime_enabled ||
6723 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6724 		return true;
6725 
6726 	return false;
6727 }
6728 
6729 #ifdef CONFIG_NO_HZ_FULL
6730 /* called from pick_next_task_fair() */
6731 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6732 {
6733 	int cpu = cpu_of(rq);
6734 
6735 	if (!cfs_bandwidth_used())
6736 		return;
6737 
6738 	if (!tick_nohz_full_cpu(cpu))
6739 		return;
6740 
6741 	if (rq->nr_running != 1)
6742 		return;
6743 
6744 	/*
6745 	 *  We know there is only one task runnable and we've just picked it. The
6746 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6747 	 *  be otherwise able to stop the tick. Just need to check if we are using
6748 	 *  bandwidth control.
6749 	 */
6750 	if (cfs_task_bw_constrained(p))
6751 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6752 }
6753 #endif
6754 
6755 #else /* CONFIG_CFS_BANDWIDTH */
6756 
6757 static inline bool cfs_bandwidth_used(void)
6758 {
6759 	return false;
6760 }
6761 
6762 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6763 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6764 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6765 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6766 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6767 
6768 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6769 {
6770 	return 0;
6771 }
6772 
6773 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6774 {
6775 	return 0;
6776 }
6777 
6778 static inline int throttled_lb_pair(struct task_group *tg,
6779 				    int src_cpu, int dest_cpu)
6780 {
6781 	return 0;
6782 }
6783 
6784 #ifdef CONFIG_FAIR_GROUP_SCHED
6785 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6786 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6787 #endif
6788 
6789 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6790 {
6791 	return NULL;
6792 }
6793 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6794 static inline void update_runtime_enabled(struct rq *rq) {}
6795 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6796 #ifdef CONFIG_CGROUP_SCHED
6797 bool cfs_task_bw_constrained(struct task_struct *p)
6798 {
6799 	return false;
6800 }
6801 #endif
6802 #endif /* CONFIG_CFS_BANDWIDTH */
6803 
6804 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6805 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6806 #endif
6807 
6808 /**************************************************
6809  * CFS operations on tasks:
6810  */
6811 
6812 #ifdef CONFIG_SCHED_HRTICK
6813 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6814 {
6815 	struct sched_entity *se = &p->se;
6816 
6817 	SCHED_WARN_ON(task_rq(p) != rq);
6818 
6819 	if (rq->cfs.h_nr_running > 1) {
6820 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6821 		u64 slice = se->slice;
6822 		s64 delta = slice - ran;
6823 
6824 		if (delta < 0) {
6825 			if (task_current_donor(rq, p))
6826 				resched_curr(rq);
6827 			return;
6828 		}
6829 		hrtick_start(rq, delta);
6830 	}
6831 }
6832 
6833 /*
6834  * called from enqueue/dequeue and updates the hrtick when the
6835  * current task is from our class and nr_running is low enough
6836  * to matter.
6837  */
6838 static void hrtick_update(struct rq *rq)
6839 {
6840 	struct task_struct *donor = rq->donor;
6841 
6842 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6843 		return;
6844 
6845 	hrtick_start_fair(rq, donor);
6846 }
6847 #else /* !CONFIG_SCHED_HRTICK */
6848 static inline void
6849 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6850 {
6851 }
6852 
6853 static inline void hrtick_update(struct rq *rq)
6854 {
6855 }
6856 #endif
6857 
6858 #ifdef CONFIG_SMP
6859 static inline bool cpu_overutilized(int cpu)
6860 {
6861 	unsigned long  rq_util_min, rq_util_max;
6862 
6863 	if (!sched_energy_enabled())
6864 		return false;
6865 
6866 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6867 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6868 
6869 	/* Return true only if the utilization doesn't fit CPU's capacity */
6870 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6871 }
6872 
6873 /*
6874  * overutilized value make sense only if EAS is enabled
6875  */
6876 static inline bool is_rd_overutilized(struct root_domain *rd)
6877 {
6878 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6879 }
6880 
6881 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6882 {
6883 	if (!sched_energy_enabled())
6884 		return;
6885 
6886 	WRITE_ONCE(rd->overutilized, flag);
6887 	trace_sched_overutilized_tp(rd, flag);
6888 }
6889 
6890 static inline void check_update_overutilized_status(struct rq *rq)
6891 {
6892 	/*
6893 	 * overutilized field is used for load balancing decisions only
6894 	 * if energy aware scheduler is being used
6895 	 */
6896 
6897 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6898 		set_rd_overutilized(rq->rd, 1);
6899 }
6900 #else
6901 static inline void check_update_overutilized_status(struct rq *rq) { }
6902 #endif
6903 
6904 /* Runqueue only has SCHED_IDLE tasks enqueued */
6905 static int sched_idle_rq(struct rq *rq)
6906 {
6907 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6908 			rq->nr_running);
6909 }
6910 
6911 #ifdef CONFIG_SMP
6912 static int sched_idle_cpu(int cpu)
6913 {
6914 	return sched_idle_rq(cpu_rq(cpu));
6915 }
6916 #endif
6917 
6918 static void
6919 requeue_delayed_entity(struct sched_entity *se)
6920 {
6921 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6922 
6923 	/*
6924 	 * se->sched_delayed should imply: se->on_rq == 1.
6925 	 * Because a delayed entity is one that is still on
6926 	 * the runqueue competing until elegibility.
6927 	 */
6928 	SCHED_WARN_ON(!se->sched_delayed);
6929 	SCHED_WARN_ON(!se->on_rq);
6930 
6931 	if (sched_feat(DELAY_ZERO)) {
6932 		update_entity_lag(cfs_rq, se);
6933 		if (se->vlag > 0) {
6934 			cfs_rq->nr_running--;
6935 			if (se != cfs_rq->curr)
6936 				__dequeue_entity(cfs_rq, se);
6937 			se->vlag = 0;
6938 			place_entity(cfs_rq, se, 0);
6939 			if (se != cfs_rq->curr)
6940 				__enqueue_entity(cfs_rq, se);
6941 			cfs_rq->nr_running++;
6942 		}
6943 	}
6944 
6945 	update_load_avg(cfs_rq, se, 0);
6946 	se->sched_delayed = 0;
6947 }
6948 
6949 /*
6950  * The enqueue_task method is called before nr_running is
6951  * increased. Here we update the fair scheduling stats and
6952  * then put the task into the rbtree:
6953  */
6954 static void
6955 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6956 {
6957 	struct cfs_rq *cfs_rq;
6958 	struct sched_entity *se = &p->se;
6959 	int idle_h_nr_running = task_has_idle_policy(p);
6960 	int task_new = !(flags & ENQUEUE_WAKEUP);
6961 	int rq_h_nr_running = rq->cfs.h_nr_running;
6962 	u64 slice = 0;
6963 
6964 	/*
6965 	 * The code below (indirectly) updates schedutil which looks at
6966 	 * the cfs_rq utilization to select a frequency.
6967 	 * Let's add the task's estimated utilization to the cfs_rq's
6968 	 * estimated utilization, before we update schedutil.
6969 	 */
6970 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6971 		util_est_enqueue(&rq->cfs, p);
6972 
6973 	if (flags & ENQUEUE_DELAYED) {
6974 		requeue_delayed_entity(se);
6975 		return;
6976 	}
6977 
6978 	/*
6979 	 * If in_iowait is set, the code below may not trigger any cpufreq
6980 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6981 	 * passed.
6982 	 */
6983 	if (p->in_iowait)
6984 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6985 
6986 	for_each_sched_entity(se) {
6987 		if (se->on_rq) {
6988 			if (se->sched_delayed)
6989 				requeue_delayed_entity(se);
6990 			break;
6991 		}
6992 		cfs_rq = cfs_rq_of(se);
6993 
6994 		/*
6995 		 * Basically set the slice of group entries to the min_slice of
6996 		 * their respective cfs_rq. This ensures the group can service
6997 		 * its entities in the desired time-frame.
6998 		 */
6999 		if (slice) {
7000 			se->slice = slice;
7001 			se->custom_slice = 1;
7002 		}
7003 		enqueue_entity(cfs_rq, se, flags);
7004 		slice = cfs_rq_min_slice(cfs_rq);
7005 
7006 		cfs_rq->h_nr_running++;
7007 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7008 
7009 		if (cfs_rq_is_idle(cfs_rq))
7010 			idle_h_nr_running = 1;
7011 
7012 		/* end evaluation on encountering a throttled cfs_rq */
7013 		if (cfs_rq_throttled(cfs_rq))
7014 			goto enqueue_throttle;
7015 
7016 		flags = ENQUEUE_WAKEUP;
7017 	}
7018 
7019 	for_each_sched_entity(se) {
7020 		cfs_rq = cfs_rq_of(se);
7021 
7022 		update_load_avg(cfs_rq, se, UPDATE_TG);
7023 		se_update_runnable(se);
7024 		update_cfs_group(se);
7025 
7026 		se->slice = slice;
7027 		slice = cfs_rq_min_slice(cfs_rq);
7028 
7029 		cfs_rq->h_nr_running++;
7030 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7031 
7032 		if (cfs_rq_is_idle(cfs_rq))
7033 			idle_h_nr_running = 1;
7034 
7035 		/* end evaluation on encountering a throttled cfs_rq */
7036 		if (cfs_rq_throttled(cfs_rq))
7037 			goto enqueue_throttle;
7038 	}
7039 
7040 	if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7041 		/* Account for idle runtime */
7042 		if (!rq->nr_running)
7043 			dl_server_update_idle_time(rq, rq->curr);
7044 		dl_server_start(&rq->fair_server);
7045 	}
7046 
7047 	/* At this point se is NULL and we are at root level*/
7048 	add_nr_running(rq, 1);
7049 
7050 	/*
7051 	 * Since new tasks are assigned an initial util_avg equal to
7052 	 * half of the spare capacity of their CPU, tiny tasks have the
7053 	 * ability to cross the overutilized threshold, which will
7054 	 * result in the load balancer ruining all the task placement
7055 	 * done by EAS. As a way to mitigate that effect, do not account
7056 	 * for the first enqueue operation of new tasks during the
7057 	 * overutilized flag detection.
7058 	 *
7059 	 * A better way of solving this problem would be to wait for
7060 	 * the PELT signals of tasks to converge before taking them
7061 	 * into account, but that is not straightforward to implement,
7062 	 * and the following generally works well enough in practice.
7063 	 */
7064 	if (!task_new)
7065 		check_update_overutilized_status(rq);
7066 
7067 enqueue_throttle:
7068 	assert_list_leaf_cfs_rq(rq);
7069 
7070 	hrtick_update(rq);
7071 }
7072 
7073 static void set_next_buddy(struct sched_entity *se);
7074 
7075 /*
7076  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7077  * failing half-way through and resume the dequeue later.
7078  *
7079  * Returns:
7080  * -1 - dequeue delayed
7081  *  0 - dequeue throttled
7082  *  1 - dequeue complete
7083  */
7084 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7085 {
7086 	bool was_sched_idle = sched_idle_rq(rq);
7087 	int rq_h_nr_running = rq->cfs.h_nr_running;
7088 	bool task_sleep = flags & DEQUEUE_SLEEP;
7089 	bool task_delayed = flags & DEQUEUE_DELAYED;
7090 	struct task_struct *p = NULL;
7091 	int idle_h_nr_running = 0;
7092 	int h_nr_running = 0;
7093 	struct cfs_rq *cfs_rq;
7094 	u64 slice = 0;
7095 
7096 	if (entity_is_task(se)) {
7097 		p = task_of(se);
7098 		h_nr_running = 1;
7099 		idle_h_nr_running = task_has_idle_policy(p);
7100 	} else {
7101 		cfs_rq = group_cfs_rq(se);
7102 		slice = cfs_rq_min_slice(cfs_rq);
7103 	}
7104 
7105 	for_each_sched_entity(se) {
7106 		cfs_rq = cfs_rq_of(se);
7107 
7108 		if (!dequeue_entity(cfs_rq, se, flags)) {
7109 			if (p && &p->se == se)
7110 				return -1;
7111 
7112 			break;
7113 		}
7114 
7115 		cfs_rq->h_nr_running -= h_nr_running;
7116 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7117 
7118 		if (cfs_rq_is_idle(cfs_rq))
7119 			idle_h_nr_running = h_nr_running;
7120 
7121 		/* end evaluation on encountering a throttled cfs_rq */
7122 		if (cfs_rq_throttled(cfs_rq))
7123 			return 0;
7124 
7125 		/* Don't dequeue parent if it has other entities besides us */
7126 		if (cfs_rq->load.weight) {
7127 			slice = cfs_rq_min_slice(cfs_rq);
7128 
7129 			/* Avoid re-evaluating load for this entity: */
7130 			se = parent_entity(se);
7131 			/*
7132 			 * Bias pick_next to pick a task from this cfs_rq, as
7133 			 * p is sleeping when it is within its sched_slice.
7134 			 */
7135 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7136 				set_next_buddy(se);
7137 			break;
7138 		}
7139 		flags |= DEQUEUE_SLEEP;
7140 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7141 	}
7142 
7143 	for_each_sched_entity(se) {
7144 		cfs_rq = cfs_rq_of(se);
7145 
7146 		update_load_avg(cfs_rq, se, UPDATE_TG);
7147 		se_update_runnable(se);
7148 		update_cfs_group(se);
7149 
7150 		se->slice = slice;
7151 		slice = cfs_rq_min_slice(cfs_rq);
7152 
7153 		cfs_rq->h_nr_running -= h_nr_running;
7154 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7155 
7156 		if (cfs_rq_is_idle(cfs_rq))
7157 			idle_h_nr_running = h_nr_running;
7158 
7159 		/* end evaluation on encountering a throttled cfs_rq */
7160 		if (cfs_rq_throttled(cfs_rq))
7161 			return 0;
7162 	}
7163 
7164 	sub_nr_running(rq, h_nr_running);
7165 
7166 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
7167 		dl_server_stop(&rq->fair_server);
7168 
7169 	/* balance early to pull high priority tasks */
7170 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7171 		rq->next_balance = jiffies;
7172 
7173 	if (p && task_delayed) {
7174 		SCHED_WARN_ON(!task_sleep);
7175 		SCHED_WARN_ON(p->on_rq != 1);
7176 
7177 		/* Fix-up what dequeue_task_fair() skipped */
7178 		hrtick_update(rq);
7179 
7180 		/*
7181 		 * Fix-up what block_task() skipped.
7182 		 *
7183 		 * Must be last, @p might not be valid after this.
7184 		 */
7185 		__block_task(rq, p);
7186 	}
7187 
7188 	return 1;
7189 }
7190 
7191 /*
7192  * The dequeue_task method is called before nr_running is
7193  * decreased. We remove the task from the rbtree and
7194  * update the fair scheduling stats:
7195  */
7196 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7197 {
7198 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7199 		util_est_dequeue(&rq->cfs, p);
7200 
7201 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7202 	if (dequeue_entities(rq, &p->se, flags) < 0)
7203 		return false;
7204 
7205 	/*
7206 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7207 	 */
7208 
7209 	hrtick_update(rq);
7210 	return true;
7211 }
7212 
7213 #ifdef CONFIG_SMP
7214 
7215 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7216 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7217 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7218 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7219 
7220 #ifdef CONFIG_NO_HZ_COMMON
7221 
7222 static struct {
7223 	cpumask_var_t idle_cpus_mask;
7224 	atomic_t nr_cpus;
7225 	int has_blocked;		/* Idle CPUS has blocked load */
7226 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7227 	unsigned long next_balance;     /* in jiffy units */
7228 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7229 } nohz ____cacheline_aligned;
7230 
7231 #endif /* CONFIG_NO_HZ_COMMON */
7232 
7233 static unsigned long cpu_load(struct rq *rq)
7234 {
7235 	return cfs_rq_load_avg(&rq->cfs);
7236 }
7237 
7238 /*
7239  * cpu_load_without - compute CPU load without any contributions from *p
7240  * @cpu: the CPU which load is requested
7241  * @p: the task which load should be discounted
7242  *
7243  * The load of a CPU is defined by the load of tasks currently enqueued on that
7244  * CPU as well as tasks which are currently sleeping after an execution on that
7245  * CPU.
7246  *
7247  * This method returns the load of the specified CPU by discounting the load of
7248  * the specified task, whenever the task is currently contributing to the CPU
7249  * load.
7250  */
7251 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7252 {
7253 	struct cfs_rq *cfs_rq;
7254 	unsigned int load;
7255 
7256 	/* Task has no contribution or is new */
7257 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7258 		return cpu_load(rq);
7259 
7260 	cfs_rq = &rq->cfs;
7261 	load = READ_ONCE(cfs_rq->avg.load_avg);
7262 
7263 	/* Discount task's util from CPU's util */
7264 	lsub_positive(&load, task_h_load(p));
7265 
7266 	return load;
7267 }
7268 
7269 static unsigned long cpu_runnable(struct rq *rq)
7270 {
7271 	return cfs_rq_runnable_avg(&rq->cfs);
7272 }
7273 
7274 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7275 {
7276 	struct cfs_rq *cfs_rq;
7277 	unsigned int runnable;
7278 
7279 	/* Task has no contribution or is new */
7280 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7281 		return cpu_runnable(rq);
7282 
7283 	cfs_rq = &rq->cfs;
7284 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7285 
7286 	/* Discount task's runnable from CPU's runnable */
7287 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7288 
7289 	return runnable;
7290 }
7291 
7292 static unsigned long capacity_of(int cpu)
7293 {
7294 	return cpu_rq(cpu)->cpu_capacity;
7295 }
7296 
7297 static void record_wakee(struct task_struct *p)
7298 {
7299 	/*
7300 	 * Only decay a single time; tasks that have less then 1 wakeup per
7301 	 * jiffy will not have built up many flips.
7302 	 */
7303 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7304 		current->wakee_flips >>= 1;
7305 		current->wakee_flip_decay_ts = jiffies;
7306 	}
7307 
7308 	if (current->last_wakee != p) {
7309 		current->last_wakee = p;
7310 		current->wakee_flips++;
7311 	}
7312 }
7313 
7314 /*
7315  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7316  *
7317  * A waker of many should wake a different task than the one last awakened
7318  * at a frequency roughly N times higher than one of its wakees.
7319  *
7320  * In order to determine whether we should let the load spread vs consolidating
7321  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7322  * partner, and a factor of lls_size higher frequency in the other.
7323  *
7324  * With both conditions met, we can be relatively sure that the relationship is
7325  * non-monogamous, with partner count exceeding socket size.
7326  *
7327  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7328  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7329  * socket size.
7330  */
7331 static int wake_wide(struct task_struct *p)
7332 {
7333 	unsigned int master = current->wakee_flips;
7334 	unsigned int slave = p->wakee_flips;
7335 	int factor = __this_cpu_read(sd_llc_size);
7336 
7337 	if (master < slave)
7338 		swap(master, slave);
7339 	if (slave < factor || master < slave * factor)
7340 		return 0;
7341 	return 1;
7342 }
7343 
7344 /*
7345  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7346  * soonest. For the purpose of speed we only consider the waking and previous
7347  * CPU.
7348  *
7349  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7350  *			cache-affine and is (or	will be) idle.
7351  *
7352  * wake_affine_weight() - considers the weight to reflect the average
7353  *			  scheduling latency of the CPUs. This seems to work
7354  *			  for the overloaded case.
7355  */
7356 static int
7357 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7358 {
7359 	/*
7360 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7361 	 * context. Only allow the move if cache is shared. Otherwise an
7362 	 * interrupt intensive workload could force all tasks onto one
7363 	 * node depending on the IO topology or IRQ affinity settings.
7364 	 *
7365 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7366 	 * There is no guarantee that the cache hot data from an interrupt
7367 	 * is more important than cache hot data on the prev_cpu and from
7368 	 * a cpufreq perspective, it's better to have higher utilisation
7369 	 * on one CPU.
7370 	 */
7371 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7372 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7373 
7374 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7375 		return this_cpu;
7376 
7377 	if (available_idle_cpu(prev_cpu))
7378 		return prev_cpu;
7379 
7380 	return nr_cpumask_bits;
7381 }
7382 
7383 static int
7384 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7385 		   int this_cpu, int prev_cpu, int sync)
7386 {
7387 	s64 this_eff_load, prev_eff_load;
7388 	unsigned long task_load;
7389 
7390 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7391 
7392 	if (sync) {
7393 		unsigned long current_load = task_h_load(current);
7394 
7395 		if (current_load > this_eff_load)
7396 			return this_cpu;
7397 
7398 		this_eff_load -= current_load;
7399 	}
7400 
7401 	task_load = task_h_load(p);
7402 
7403 	this_eff_load += task_load;
7404 	if (sched_feat(WA_BIAS))
7405 		this_eff_load *= 100;
7406 	this_eff_load *= capacity_of(prev_cpu);
7407 
7408 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7409 	prev_eff_load -= task_load;
7410 	if (sched_feat(WA_BIAS))
7411 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7412 	prev_eff_load *= capacity_of(this_cpu);
7413 
7414 	/*
7415 	 * If sync, adjust the weight of prev_eff_load such that if
7416 	 * prev_eff == this_eff that select_idle_sibling() will consider
7417 	 * stacking the wakee on top of the waker if no other CPU is
7418 	 * idle.
7419 	 */
7420 	if (sync)
7421 		prev_eff_load += 1;
7422 
7423 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7424 }
7425 
7426 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7427 		       int this_cpu, int prev_cpu, int sync)
7428 {
7429 	int target = nr_cpumask_bits;
7430 
7431 	if (sched_feat(WA_IDLE))
7432 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7433 
7434 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7435 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7436 
7437 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7438 	if (target != this_cpu)
7439 		return prev_cpu;
7440 
7441 	schedstat_inc(sd->ttwu_move_affine);
7442 	schedstat_inc(p->stats.nr_wakeups_affine);
7443 	return target;
7444 }
7445 
7446 static struct sched_group *
7447 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7448 
7449 /*
7450  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7451  */
7452 static int
7453 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7454 {
7455 	unsigned long load, min_load = ULONG_MAX;
7456 	unsigned int min_exit_latency = UINT_MAX;
7457 	u64 latest_idle_timestamp = 0;
7458 	int least_loaded_cpu = this_cpu;
7459 	int shallowest_idle_cpu = -1;
7460 	int i;
7461 
7462 	/* Check if we have any choice: */
7463 	if (group->group_weight == 1)
7464 		return cpumask_first(sched_group_span(group));
7465 
7466 	/* Traverse only the allowed CPUs */
7467 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7468 		struct rq *rq = cpu_rq(i);
7469 
7470 		if (!sched_core_cookie_match(rq, p))
7471 			continue;
7472 
7473 		if (sched_idle_cpu(i))
7474 			return i;
7475 
7476 		if (available_idle_cpu(i)) {
7477 			struct cpuidle_state *idle = idle_get_state(rq);
7478 			if (idle && idle->exit_latency < min_exit_latency) {
7479 				/*
7480 				 * We give priority to a CPU whose idle state
7481 				 * has the smallest exit latency irrespective
7482 				 * of any idle timestamp.
7483 				 */
7484 				min_exit_latency = idle->exit_latency;
7485 				latest_idle_timestamp = rq->idle_stamp;
7486 				shallowest_idle_cpu = i;
7487 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7488 				   rq->idle_stamp > latest_idle_timestamp) {
7489 				/*
7490 				 * If equal or no active idle state, then
7491 				 * the most recently idled CPU might have
7492 				 * a warmer cache.
7493 				 */
7494 				latest_idle_timestamp = rq->idle_stamp;
7495 				shallowest_idle_cpu = i;
7496 			}
7497 		} else if (shallowest_idle_cpu == -1) {
7498 			load = cpu_load(cpu_rq(i));
7499 			if (load < min_load) {
7500 				min_load = load;
7501 				least_loaded_cpu = i;
7502 			}
7503 		}
7504 	}
7505 
7506 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7507 }
7508 
7509 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7510 				  int cpu, int prev_cpu, int sd_flag)
7511 {
7512 	int new_cpu = cpu;
7513 
7514 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7515 		return prev_cpu;
7516 
7517 	/*
7518 	 * We need task's util for cpu_util_without, sync it up to
7519 	 * prev_cpu's last_update_time.
7520 	 */
7521 	if (!(sd_flag & SD_BALANCE_FORK))
7522 		sync_entity_load_avg(&p->se);
7523 
7524 	while (sd) {
7525 		struct sched_group *group;
7526 		struct sched_domain *tmp;
7527 		int weight;
7528 
7529 		if (!(sd->flags & sd_flag)) {
7530 			sd = sd->child;
7531 			continue;
7532 		}
7533 
7534 		group = sched_balance_find_dst_group(sd, p, cpu);
7535 		if (!group) {
7536 			sd = sd->child;
7537 			continue;
7538 		}
7539 
7540 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7541 		if (new_cpu == cpu) {
7542 			/* Now try balancing at a lower domain level of 'cpu': */
7543 			sd = sd->child;
7544 			continue;
7545 		}
7546 
7547 		/* Now try balancing at a lower domain level of 'new_cpu': */
7548 		cpu = new_cpu;
7549 		weight = sd->span_weight;
7550 		sd = NULL;
7551 		for_each_domain(cpu, tmp) {
7552 			if (weight <= tmp->span_weight)
7553 				break;
7554 			if (tmp->flags & sd_flag)
7555 				sd = tmp;
7556 		}
7557 	}
7558 
7559 	return new_cpu;
7560 }
7561 
7562 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7563 {
7564 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7565 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7566 		return cpu;
7567 
7568 	return -1;
7569 }
7570 
7571 #ifdef CONFIG_SCHED_SMT
7572 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7573 EXPORT_SYMBOL_GPL(sched_smt_present);
7574 
7575 static inline void set_idle_cores(int cpu, int val)
7576 {
7577 	struct sched_domain_shared *sds;
7578 
7579 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7580 	if (sds)
7581 		WRITE_ONCE(sds->has_idle_cores, val);
7582 }
7583 
7584 static inline bool test_idle_cores(int cpu)
7585 {
7586 	struct sched_domain_shared *sds;
7587 
7588 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7589 	if (sds)
7590 		return READ_ONCE(sds->has_idle_cores);
7591 
7592 	return false;
7593 }
7594 
7595 /*
7596  * Scans the local SMT mask to see if the entire core is idle, and records this
7597  * information in sd_llc_shared->has_idle_cores.
7598  *
7599  * Since SMT siblings share all cache levels, inspecting this limited remote
7600  * state should be fairly cheap.
7601  */
7602 void __update_idle_core(struct rq *rq)
7603 {
7604 	int core = cpu_of(rq);
7605 	int cpu;
7606 
7607 	rcu_read_lock();
7608 	if (test_idle_cores(core))
7609 		goto unlock;
7610 
7611 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7612 		if (cpu == core)
7613 			continue;
7614 
7615 		if (!available_idle_cpu(cpu))
7616 			goto unlock;
7617 	}
7618 
7619 	set_idle_cores(core, 1);
7620 unlock:
7621 	rcu_read_unlock();
7622 }
7623 
7624 /*
7625  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7626  * there are no idle cores left in the system; tracked through
7627  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7628  */
7629 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7630 {
7631 	bool idle = true;
7632 	int cpu;
7633 
7634 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7635 		if (!available_idle_cpu(cpu)) {
7636 			idle = false;
7637 			if (*idle_cpu == -1) {
7638 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7639 					*idle_cpu = cpu;
7640 					break;
7641 				}
7642 				continue;
7643 			}
7644 			break;
7645 		}
7646 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7647 			*idle_cpu = cpu;
7648 	}
7649 
7650 	if (idle)
7651 		return core;
7652 
7653 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7654 	return -1;
7655 }
7656 
7657 /*
7658  * Scan the local SMT mask for idle CPUs.
7659  */
7660 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7661 {
7662 	int cpu;
7663 
7664 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7665 		if (cpu == target)
7666 			continue;
7667 		/*
7668 		 * Check if the CPU is in the LLC scheduling domain of @target.
7669 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7670 		 */
7671 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7672 			continue;
7673 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7674 			return cpu;
7675 	}
7676 
7677 	return -1;
7678 }
7679 
7680 #else /* CONFIG_SCHED_SMT */
7681 
7682 static inline void set_idle_cores(int cpu, int val)
7683 {
7684 }
7685 
7686 static inline bool test_idle_cores(int cpu)
7687 {
7688 	return false;
7689 }
7690 
7691 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7692 {
7693 	return __select_idle_cpu(core, p);
7694 }
7695 
7696 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7697 {
7698 	return -1;
7699 }
7700 
7701 #endif /* CONFIG_SCHED_SMT */
7702 
7703 /*
7704  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7705  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7706  * average idle time for this rq (as found in rq->avg_idle).
7707  */
7708 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7709 {
7710 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7711 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7712 	struct sched_domain_shared *sd_share;
7713 
7714 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7715 
7716 	if (sched_feat(SIS_UTIL)) {
7717 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7718 		if (sd_share) {
7719 			/* because !--nr is the condition to stop scan */
7720 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7721 			/* overloaded LLC is unlikely to have idle cpu/core */
7722 			if (nr == 1)
7723 				return -1;
7724 		}
7725 	}
7726 
7727 	if (static_branch_unlikely(&sched_cluster_active)) {
7728 		struct sched_group *sg = sd->groups;
7729 
7730 		if (sg->flags & SD_CLUSTER) {
7731 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7732 				if (!cpumask_test_cpu(cpu, cpus))
7733 					continue;
7734 
7735 				if (has_idle_core) {
7736 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7737 					if ((unsigned int)i < nr_cpumask_bits)
7738 						return i;
7739 				} else {
7740 					if (--nr <= 0)
7741 						return -1;
7742 					idle_cpu = __select_idle_cpu(cpu, p);
7743 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7744 						return idle_cpu;
7745 				}
7746 			}
7747 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7748 		}
7749 	}
7750 
7751 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7752 		if (has_idle_core) {
7753 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7754 			if ((unsigned int)i < nr_cpumask_bits)
7755 				return i;
7756 
7757 		} else {
7758 			if (--nr <= 0)
7759 				return -1;
7760 			idle_cpu = __select_idle_cpu(cpu, p);
7761 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7762 				break;
7763 		}
7764 	}
7765 
7766 	if (has_idle_core)
7767 		set_idle_cores(target, false);
7768 
7769 	return idle_cpu;
7770 }
7771 
7772 /*
7773  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7774  * the task fits. If no CPU is big enough, but there are idle ones, try to
7775  * maximize capacity.
7776  */
7777 static int
7778 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7779 {
7780 	unsigned long task_util, util_min, util_max, best_cap = 0;
7781 	int fits, best_fits = 0;
7782 	int cpu, best_cpu = -1;
7783 	struct cpumask *cpus;
7784 
7785 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7786 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7787 
7788 	task_util = task_util_est(p);
7789 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7790 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7791 
7792 	for_each_cpu_wrap(cpu, cpus, target) {
7793 		unsigned long cpu_cap = capacity_of(cpu);
7794 
7795 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7796 			continue;
7797 
7798 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7799 
7800 		/* This CPU fits with all requirements */
7801 		if (fits > 0)
7802 			return cpu;
7803 		/*
7804 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7805 		 * Look for the CPU with best capacity.
7806 		 */
7807 		else if (fits < 0)
7808 			cpu_cap = get_actual_cpu_capacity(cpu);
7809 
7810 		/*
7811 		 * First, select CPU which fits better (-1 being better than 0).
7812 		 * Then, select the one with best capacity at same level.
7813 		 */
7814 		if ((fits < best_fits) ||
7815 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7816 			best_cap = cpu_cap;
7817 			best_cpu = cpu;
7818 			best_fits = fits;
7819 		}
7820 	}
7821 
7822 	return best_cpu;
7823 }
7824 
7825 static inline bool asym_fits_cpu(unsigned long util,
7826 				 unsigned long util_min,
7827 				 unsigned long util_max,
7828 				 int cpu)
7829 {
7830 	if (sched_asym_cpucap_active())
7831 		/*
7832 		 * Return true only if the cpu fully fits the task requirements
7833 		 * which include the utilization and the performance hints.
7834 		 */
7835 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7836 
7837 	return true;
7838 }
7839 
7840 /*
7841  * Try and locate an idle core/thread in the LLC cache domain.
7842  */
7843 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7844 {
7845 	bool has_idle_core = false;
7846 	struct sched_domain *sd;
7847 	unsigned long task_util, util_min, util_max;
7848 	int i, recent_used_cpu, prev_aff = -1;
7849 
7850 	/*
7851 	 * On asymmetric system, update task utilization because we will check
7852 	 * that the task fits with CPU's capacity.
7853 	 */
7854 	if (sched_asym_cpucap_active()) {
7855 		sync_entity_load_avg(&p->se);
7856 		task_util = task_util_est(p);
7857 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7858 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7859 	}
7860 
7861 	/*
7862 	 * per-cpu select_rq_mask usage
7863 	 */
7864 	lockdep_assert_irqs_disabled();
7865 
7866 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7867 	    asym_fits_cpu(task_util, util_min, util_max, target))
7868 		return target;
7869 
7870 	/*
7871 	 * If the previous CPU is cache affine and idle, don't be stupid:
7872 	 */
7873 	if (prev != target && cpus_share_cache(prev, target) &&
7874 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7875 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7876 
7877 		if (!static_branch_unlikely(&sched_cluster_active) ||
7878 		    cpus_share_resources(prev, target))
7879 			return prev;
7880 
7881 		prev_aff = prev;
7882 	}
7883 
7884 	/*
7885 	 * Allow a per-cpu kthread to stack with the wakee if the
7886 	 * kworker thread and the tasks previous CPUs are the same.
7887 	 * The assumption is that the wakee queued work for the
7888 	 * per-cpu kthread that is now complete and the wakeup is
7889 	 * essentially a sync wakeup. An obvious example of this
7890 	 * pattern is IO completions.
7891 	 */
7892 	if (is_per_cpu_kthread(current) &&
7893 	    in_task() &&
7894 	    prev == smp_processor_id() &&
7895 	    this_rq()->nr_running <= 1 &&
7896 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7897 		return prev;
7898 	}
7899 
7900 	/* Check a recently used CPU as a potential idle candidate: */
7901 	recent_used_cpu = p->recent_used_cpu;
7902 	p->recent_used_cpu = prev;
7903 	if (recent_used_cpu != prev &&
7904 	    recent_used_cpu != target &&
7905 	    cpus_share_cache(recent_used_cpu, target) &&
7906 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7907 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7908 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7909 
7910 		if (!static_branch_unlikely(&sched_cluster_active) ||
7911 		    cpus_share_resources(recent_used_cpu, target))
7912 			return recent_used_cpu;
7913 
7914 	} else {
7915 		recent_used_cpu = -1;
7916 	}
7917 
7918 	/*
7919 	 * For asymmetric CPU capacity systems, our domain of interest is
7920 	 * sd_asym_cpucapacity rather than sd_llc.
7921 	 */
7922 	if (sched_asym_cpucap_active()) {
7923 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7924 		/*
7925 		 * On an asymmetric CPU capacity system where an exclusive
7926 		 * cpuset defines a symmetric island (i.e. one unique
7927 		 * capacity_orig value through the cpuset), the key will be set
7928 		 * but the CPUs within that cpuset will not have a domain with
7929 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7930 		 * capacity path.
7931 		 */
7932 		if (sd) {
7933 			i = select_idle_capacity(p, sd, target);
7934 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7935 		}
7936 	}
7937 
7938 	sd = rcu_dereference(per_cpu(sd_llc, target));
7939 	if (!sd)
7940 		return target;
7941 
7942 	if (sched_smt_active()) {
7943 		has_idle_core = test_idle_cores(target);
7944 
7945 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7946 			i = select_idle_smt(p, sd, prev);
7947 			if ((unsigned int)i < nr_cpumask_bits)
7948 				return i;
7949 		}
7950 	}
7951 
7952 	i = select_idle_cpu(p, sd, has_idle_core, target);
7953 	if ((unsigned)i < nr_cpumask_bits)
7954 		return i;
7955 
7956 	/*
7957 	 * For cluster machines which have lower sharing cache like L2 or
7958 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7959 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7960 	 * use them if possible when no idle CPU found in select_idle_cpu().
7961 	 */
7962 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7963 		return prev_aff;
7964 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7965 		return recent_used_cpu;
7966 
7967 	return target;
7968 }
7969 
7970 /**
7971  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7972  * @cpu: the CPU to get the utilization for
7973  * @p: task for which the CPU utilization should be predicted or NULL
7974  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7975  * @boost: 1 to enable boosting, otherwise 0
7976  *
7977  * The unit of the return value must be the same as the one of CPU capacity
7978  * so that CPU utilization can be compared with CPU capacity.
7979  *
7980  * CPU utilization is the sum of running time of runnable tasks plus the
7981  * recent utilization of currently non-runnable tasks on that CPU.
7982  * It represents the amount of CPU capacity currently used by CFS tasks in
7983  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7984  * capacity at f_max.
7985  *
7986  * The estimated CPU utilization is defined as the maximum between CPU
7987  * utilization and sum of the estimated utilization of the currently
7988  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7989  * previously-executed tasks, which helps better deduce how busy a CPU will
7990  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7991  * of such a task would be significantly decayed at this point of time.
7992  *
7993  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7994  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7995  * utilization. Boosting is implemented in cpu_util() so that internal
7996  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7997  * latter via cpu_util_cfs_boost().
7998  *
7999  * CPU utilization can be higher than the current CPU capacity
8000  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8001  * of rounding errors as well as task migrations or wakeups of new tasks.
8002  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8003  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8004  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8005  * capacity. CPU utilization is allowed to overshoot current CPU capacity
8006  * though since this is useful for predicting the CPU capacity required
8007  * after task migrations (scheduler-driven DVFS).
8008  *
8009  * Return: (Boosted) (estimated) utilization for the specified CPU.
8010  */
8011 static unsigned long
8012 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8013 {
8014 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8015 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8016 	unsigned long runnable;
8017 
8018 	if (boost) {
8019 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8020 		util = max(util, runnable);
8021 	}
8022 
8023 	/*
8024 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8025 	 * contribution. If @p migrates from another CPU to @cpu add its
8026 	 * contribution. In all the other cases @cpu is not impacted by the
8027 	 * migration so its util_avg is already correct.
8028 	 */
8029 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8030 		lsub_positive(&util, task_util(p));
8031 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8032 		util += task_util(p);
8033 
8034 	if (sched_feat(UTIL_EST)) {
8035 		unsigned long util_est;
8036 
8037 		util_est = READ_ONCE(cfs_rq->avg.util_est);
8038 
8039 		/*
8040 		 * During wake-up @p isn't enqueued yet and doesn't contribute
8041 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8042 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8043 		 * has been enqueued.
8044 		 *
8045 		 * During exec (@dst_cpu = -1) @p is enqueued and does
8046 		 * contribute to cpu_rq(cpu)->cfs.util_est.
8047 		 * Remove it to "simulate" cpu_util without @p's contribution.
8048 		 *
8049 		 * Despite the task_on_rq_queued(@p) check there is still a
8050 		 * small window for a possible race when an exec
8051 		 * select_task_rq_fair() races with LB's detach_task().
8052 		 *
8053 		 *   detach_task()
8054 		 *     deactivate_task()
8055 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8056 		 *       -------------------------------- A
8057 		 *       dequeue_task()                    \
8058 		 *         dequeue_task_fair()              + Race Time
8059 		 *           util_est_dequeue()            /
8060 		 *       -------------------------------- B
8061 		 *
8062 		 * The additional check "current == p" is required to further
8063 		 * reduce the race window.
8064 		 */
8065 		if (dst_cpu == cpu)
8066 			util_est += _task_util_est(p);
8067 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8068 			lsub_positive(&util_est, _task_util_est(p));
8069 
8070 		util = max(util, util_est);
8071 	}
8072 
8073 	return min(util, arch_scale_cpu_capacity(cpu));
8074 }
8075 
8076 unsigned long cpu_util_cfs(int cpu)
8077 {
8078 	return cpu_util(cpu, NULL, -1, 0);
8079 }
8080 
8081 unsigned long cpu_util_cfs_boost(int cpu)
8082 {
8083 	return cpu_util(cpu, NULL, -1, 1);
8084 }
8085 
8086 /*
8087  * cpu_util_without: compute cpu utilization without any contributions from *p
8088  * @cpu: the CPU which utilization is requested
8089  * @p: the task which utilization should be discounted
8090  *
8091  * The utilization of a CPU is defined by the utilization of tasks currently
8092  * enqueued on that CPU as well as tasks which are currently sleeping after an
8093  * execution on that CPU.
8094  *
8095  * This method returns the utilization of the specified CPU by discounting the
8096  * utilization of the specified task, whenever the task is currently
8097  * contributing to the CPU utilization.
8098  */
8099 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8100 {
8101 	/* Task has no contribution or is new */
8102 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8103 		p = NULL;
8104 
8105 	return cpu_util(cpu, p, -1, 0);
8106 }
8107 
8108 /*
8109  * This function computes an effective utilization for the given CPU, to be
8110  * used for frequency selection given the linear relation: f = u * f_max.
8111  *
8112  * The scheduler tracks the following metrics:
8113  *
8114  *   cpu_util_{cfs,rt,dl,irq}()
8115  *   cpu_bw_dl()
8116  *
8117  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8118  * synchronized windows and are thus directly comparable.
8119  *
8120  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8121  * which excludes things like IRQ and steal-time. These latter are then accrued
8122  * in the IRQ utilization.
8123  *
8124  * The DL bandwidth number OTOH is not a measured metric but a value computed
8125  * based on the task model parameters and gives the minimal utilization
8126  * required to meet deadlines.
8127  */
8128 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8129 				 unsigned long *min,
8130 				 unsigned long *max)
8131 {
8132 	unsigned long util, irq, scale;
8133 	struct rq *rq = cpu_rq(cpu);
8134 
8135 	scale = arch_scale_cpu_capacity(cpu);
8136 
8137 	/*
8138 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8139 	 * because of inaccuracies in how we track these -- see
8140 	 * update_irq_load_avg().
8141 	 */
8142 	irq = cpu_util_irq(rq);
8143 	if (unlikely(irq >= scale)) {
8144 		if (min)
8145 			*min = scale;
8146 		if (max)
8147 			*max = scale;
8148 		return scale;
8149 	}
8150 
8151 	if (min) {
8152 		/*
8153 		 * The minimum utilization returns the highest level between:
8154 		 * - the computed DL bandwidth needed with the IRQ pressure which
8155 		 *   steals time to the deadline task.
8156 		 * - The minimum performance requirement for CFS and/or RT.
8157 		 */
8158 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8159 
8160 		/*
8161 		 * When an RT task is runnable and uclamp is not used, we must
8162 		 * ensure that the task will run at maximum compute capacity.
8163 		 */
8164 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8165 			*min = max(*min, scale);
8166 	}
8167 
8168 	/*
8169 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8170 	 * CFS tasks and we use the same metric to track the effective
8171 	 * utilization (PELT windows are synchronized) we can directly add them
8172 	 * to obtain the CPU's actual utilization.
8173 	 */
8174 	util = util_cfs + cpu_util_rt(rq);
8175 	util += cpu_util_dl(rq);
8176 
8177 	/*
8178 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8179 	 * than the actual utilization because of uclamp_max requirements.
8180 	 */
8181 	if (max)
8182 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8183 
8184 	if (util >= scale)
8185 		return scale;
8186 
8187 	/*
8188 	 * There is still idle time; further improve the number by using the
8189 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8190 	 * need to scale the task numbers:
8191 	 *
8192 	 *              max - irq
8193 	 *   U' = irq + --------- * U
8194 	 *                 max
8195 	 */
8196 	util = scale_irq_capacity(util, irq, scale);
8197 	util += irq;
8198 
8199 	return min(scale, util);
8200 }
8201 
8202 unsigned long sched_cpu_util(int cpu)
8203 {
8204 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8205 }
8206 
8207 /*
8208  * energy_env - Utilization landscape for energy estimation.
8209  * @task_busy_time: Utilization contribution by the task for which we test the
8210  *                  placement. Given by eenv_task_busy_time().
8211  * @pd_busy_time:   Utilization of the whole perf domain without the task
8212  *                  contribution. Given by eenv_pd_busy_time().
8213  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8214  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8215  */
8216 struct energy_env {
8217 	unsigned long task_busy_time;
8218 	unsigned long pd_busy_time;
8219 	unsigned long cpu_cap;
8220 	unsigned long pd_cap;
8221 };
8222 
8223 /*
8224  * Compute the task busy time for compute_energy(). This time cannot be
8225  * injected directly into effective_cpu_util() because of the IRQ scaling.
8226  * The latter only makes sense with the most recent CPUs where the task has
8227  * run.
8228  */
8229 static inline void eenv_task_busy_time(struct energy_env *eenv,
8230 				       struct task_struct *p, int prev_cpu)
8231 {
8232 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8233 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8234 
8235 	if (unlikely(irq >= max_cap))
8236 		busy_time = max_cap;
8237 	else
8238 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8239 
8240 	eenv->task_busy_time = busy_time;
8241 }
8242 
8243 /*
8244  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8245  * utilization for each @pd_cpus, it however doesn't take into account
8246  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8247  * scale the EM reported power consumption at the (eventually clamped)
8248  * cpu_capacity.
8249  *
8250  * The contribution of the task @p for which we want to estimate the
8251  * energy cost is removed (by cpu_util()) and must be calculated
8252  * separately (see eenv_task_busy_time). This ensures:
8253  *
8254  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8255  *     the task on.
8256  *
8257  *   - A fair comparison between CPUs as the task contribution (task_util())
8258  *     will always be the same no matter which CPU utilization we rely on
8259  *     (util_avg or util_est).
8260  *
8261  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8262  * exceed @eenv->pd_cap.
8263  */
8264 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8265 				     struct cpumask *pd_cpus,
8266 				     struct task_struct *p)
8267 {
8268 	unsigned long busy_time = 0;
8269 	int cpu;
8270 
8271 	for_each_cpu(cpu, pd_cpus) {
8272 		unsigned long util = cpu_util(cpu, p, -1, 0);
8273 
8274 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8275 	}
8276 
8277 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8278 }
8279 
8280 /*
8281  * Compute the maximum utilization for compute_energy() when the task @p
8282  * is placed on the cpu @dst_cpu.
8283  *
8284  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8285  * exceed @eenv->cpu_cap.
8286  */
8287 static inline unsigned long
8288 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8289 		 struct task_struct *p, int dst_cpu)
8290 {
8291 	unsigned long max_util = 0;
8292 	int cpu;
8293 
8294 	for_each_cpu(cpu, pd_cpus) {
8295 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8296 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8297 		unsigned long eff_util, min, max;
8298 
8299 		/*
8300 		 * Performance domain frequency: utilization clamping
8301 		 * must be considered since it affects the selection
8302 		 * of the performance domain frequency.
8303 		 * NOTE: in case RT tasks are running, by default the min
8304 		 * utilization can be max OPP.
8305 		 */
8306 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8307 
8308 		/* Task's uclamp can modify min and max value */
8309 		if (tsk && uclamp_is_used()) {
8310 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8311 
8312 			/*
8313 			 * If there is no active max uclamp constraint,
8314 			 * directly use task's one, otherwise keep max.
8315 			 */
8316 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8317 				max = uclamp_eff_value(p, UCLAMP_MAX);
8318 			else
8319 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8320 		}
8321 
8322 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8323 		max_util = max(max_util, eff_util);
8324 	}
8325 
8326 	return min(max_util, eenv->cpu_cap);
8327 }
8328 
8329 /*
8330  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8331  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8332  * contribution is ignored.
8333  */
8334 static inline unsigned long
8335 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8336 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8337 {
8338 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8339 	unsigned long busy_time = eenv->pd_busy_time;
8340 	unsigned long energy;
8341 
8342 	if (dst_cpu >= 0)
8343 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8344 
8345 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8346 
8347 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8348 
8349 	return energy;
8350 }
8351 
8352 /*
8353  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8354  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8355  * spare capacity in each performance domain and uses it as a potential
8356  * candidate to execute the task. Then, it uses the Energy Model to figure
8357  * out which of the CPU candidates is the most energy-efficient.
8358  *
8359  * The rationale for this heuristic is as follows. In a performance domain,
8360  * all the most energy efficient CPU candidates (according to the Energy
8361  * Model) are those for which we'll request a low frequency. When there are
8362  * several CPUs for which the frequency request will be the same, we don't
8363  * have enough data to break the tie between them, because the Energy Model
8364  * only includes active power costs. With this model, if we assume that
8365  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8366  * the maximum spare capacity in a performance domain is guaranteed to be among
8367  * the best candidates of the performance domain.
8368  *
8369  * In practice, it could be preferable from an energy standpoint to pack
8370  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8371  * but that could also hurt our chances to go cluster idle, and we have no
8372  * ways to tell with the current Energy Model if this is actually a good
8373  * idea or not. So, find_energy_efficient_cpu() basically favors
8374  * cluster-packing, and spreading inside a cluster. That should at least be
8375  * a good thing for latency, and this is consistent with the idea that most
8376  * of the energy savings of EAS come from the asymmetry of the system, and
8377  * not so much from breaking the tie between identical CPUs. That's also the
8378  * reason why EAS is enabled in the topology code only for systems where
8379  * SD_ASYM_CPUCAPACITY is set.
8380  *
8381  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8382  * they don't have any useful utilization data yet and it's not possible to
8383  * forecast their impact on energy consumption. Consequently, they will be
8384  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8385  * to be energy-inefficient in some use-cases. The alternative would be to
8386  * bias new tasks towards specific types of CPUs first, or to try to infer
8387  * their util_avg from the parent task, but those heuristics could hurt
8388  * other use-cases too. So, until someone finds a better way to solve this,
8389  * let's keep things simple by re-using the existing slow path.
8390  */
8391 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8392 {
8393 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8394 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8395 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8396 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8397 	struct root_domain *rd = this_rq()->rd;
8398 	int cpu, best_energy_cpu, target = -1;
8399 	int prev_fits = -1, best_fits = -1;
8400 	unsigned long best_actual_cap = 0;
8401 	unsigned long prev_actual_cap = 0;
8402 	struct sched_domain *sd;
8403 	struct perf_domain *pd;
8404 	struct energy_env eenv;
8405 
8406 	rcu_read_lock();
8407 	pd = rcu_dereference(rd->pd);
8408 	if (!pd)
8409 		goto unlock;
8410 
8411 	/*
8412 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8413 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8414 	 */
8415 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8416 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8417 		sd = sd->parent;
8418 	if (!sd)
8419 		goto unlock;
8420 
8421 	target = prev_cpu;
8422 
8423 	sync_entity_load_avg(&p->se);
8424 	if (!task_util_est(p) && p_util_min == 0)
8425 		goto unlock;
8426 
8427 	eenv_task_busy_time(&eenv, p, prev_cpu);
8428 
8429 	for (; pd; pd = pd->next) {
8430 		unsigned long util_min = p_util_min, util_max = p_util_max;
8431 		unsigned long cpu_cap, cpu_actual_cap, util;
8432 		long prev_spare_cap = -1, max_spare_cap = -1;
8433 		unsigned long rq_util_min, rq_util_max;
8434 		unsigned long cur_delta, base_energy;
8435 		int max_spare_cap_cpu = -1;
8436 		int fits, max_fits = -1;
8437 
8438 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8439 
8440 		if (cpumask_empty(cpus))
8441 			continue;
8442 
8443 		/* Account external pressure for the energy estimation */
8444 		cpu = cpumask_first(cpus);
8445 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8446 
8447 		eenv.cpu_cap = cpu_actual_cap;
8448 		eenv.pd_cap = 0;
8449 
8450 		for_each_cpu(cpu, cpus) {
8451 			struct rq *rq = cpu_rq(cpu);
8452 
8453 			eenv.pd_cap += cpu_actual_cap;
8454 
8455 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8456 				continue;
8457 
8458 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8459 				continue;
8460 
8461 			util = cpu_util(cpu, p, cpu, 0);
8462 			cpu_cap = capacity_of(cpu);
8463 
8464 			/*
8465 			 * Skip CPUs that cannot satisfy the capacity request.
8466 			 * IOW, placing the task there would make the CPU
8467 			 * overutilized. Take uclamp into account to see how
8468 			 * much capacity we can get out of the CPU; this is
8469 			 * aligned with sched_cpu_util().
8470 			 */
8471 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8472 				/*
8473 				 * Open code uclamp_rq_util_with() except for
8474 				 * the clamp() part. I.e.: apply max aggregation
8475 				 * only. util_fits_cpu() logic requires to
8476 				 * operate on non clamped util but must use the
8477 				 * max-aggregated uclamp_{min, max}.
8478 				 */
8479 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8480 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8481 
8482 				util_min = max(rq_util_min, p_util_min);
8483 				util_max = max(rq_util_max, p_util_max);
8484 			}
8485 
8486 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8487 			if (!fits)
8488 				continue;
8489 
8490 			lsub_positive(&cpu_cap, util);
8491 
8492 			if (cpu == prev_cpu) {
8493 				/* Always use prev_cpu as a candidate. */
8494 				prev_spare_cap = cpu_cap;
8495 				prev_fits = fits;
8496 			} else if ((fits > max_fits) ||
8497 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8498 				/*
8499 				 * Find the CPU with the maximum spare capacity
8500 				 * among the remaining CPUs in the performance
8501 				 * domain.
8502 				 */
8503 				max_spare_cap = cpu_cap;
8504 				max_spare_cap_cpu = cpu;
8505 				max_fits = fits;
8506 			}
8507 		}
8508 
8509 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8510 			continue;
8511 
8512 		eenv_pd_busy_time(&eenv, cpus, p);
8513 		/* Compute the 'base' energy of the pd, without @p */
8514 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8515 
8516 		/* Evaluate the energy impact of using prev_cpu. */
8517 		if (prev_spare_cap > -1) {
8518 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8519 						    prev_cpu);
8520 			/* CPU utilization has changed */
8521 			if (prev_delta < base_energy)
8522 				goto unlock;
8523 			prev_delta -= base_energy;
8524 			prev_actual_cap = cpu_actual_cap;
8525 			best_delta = min(best_delta, prev_delta);
8526 		}
8527 
8528 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8529 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8530 			/* Current best energy cpu fits better */
8531 			if (max_fits < best_fits)
8532 				continue;
8533 
8534 			/*
8535 			 * Both don't fit performance hint (i.e. uclamp_min)
8536 			 * but best energy cpu has better capacity.
8537 			 */
8538 			if ((max_fits < 0) &&
8539 			    (cpu_actual_cap <= best_actual_cap))
8540 				continue;
8541 
8542 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8543 						   max_spare_cap_cpu);
8544 			/* CPU utilization has changed */
8545 			if (cur_delta < base_energy)
8546 				goto unlock;
8547 			cur_delta -= base_energy;
8548 
8549 			/*
8550 			 * Both fit for the task but best energy cpu has lower
8551 			 * energy impact.
8552 			 */
8553 			if ((max_fits > 0) && (best_fits > 0) &&
8554 			    (cur_delta >= best_delta))
8555 				continue;
8556 
8557 			best_delta = cur_delta;
8558 			best_energy_cpu = max_spare_cap_cpu;
8559 			best_fits = max_fits;
8560 			best_actual_cap = cpu_actual_cap;
8561 		}
8562 	}
8563 	rcu_read_unlock();
8564 
8565 	if ((best_fits > prev_fits) ||
8566 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8567 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8568 		target = best_energy_cpu;
8569 
8570 	return target;
8571 
8572 unlock:
8573 	rcu_read_unlock();
8574 
8575 	return target;
8576 }
8577 
8578 /*
8579  * select_task_rq_fair: Select target runqueue for the waking task in domains
8580  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8581  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8582  *
8583  * Balances load by selecting the idlest CPU in the idlest group, or under
8584  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8585  *
8586  * Returns the target CPU number.
8587  */
8588 static int
8589 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8590 {
8591 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8592 	struct sched_domain *tmp, *sd = NULL;
8593 	int cpu = smp_processor_id();
8594 	int new_cpu = prev_cpu;
8595 	int want_affine = 0;
8596 	/* SD_flags and WF_flags share the first nibble */
8597 	int sd_flag = wake_flags & 0xF;
8598 
8599 	/*
8600 	 * required for stable ->cpus_allowed
8601 	 */
8602 	lockdep_assert_held(&p->pi_lock);
8603 	if (wake_flags & WF_TTWU) {
8604 		record_wakee(p);
8605 
8606 		if ((wake_flags & WF_CURRENT_CPU) &&
8607 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8608 			return cpu;
8609 
8610 		if (!is_rd_overutilized(this_rq()->rd)) {
8611 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8612 			if (new_cpu >= 0)
8613 				return new_cpu;
8614 			new_cpu = prev_cpu;
8615 		}
8616 
8617 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8618 	}
8619 
8620 	rcu_read_lock();
8621 	for_each_domain(cpu, tmp) {
8622 		/*
8623 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8624 		 * cpu is a valid SD_WAKE_AFFINE target.
8625 		 */
8626 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8627 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8628 			if (cpu != prev_cpu)
8629 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8630 
8631 			sd = NULL; /* Prefer wake_affine over balance flags */
8632 			break;
8633 		}
8634 
8635 		/*
8636 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8637 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8638 		 * will usually go to the fast path.
8639 		 */
8640 		if (tmp->flags & sd_flag)
8641 			sd = tmp;
8642 		else if (!want_affine)
8643 			break;
8644 	}
8645 
8646 	if (unlikely(sd)) {
8647 		/* Slow path */
8648 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8649 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8650 		/* Fast path */
8651 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8652 	}
8653 	rcu_read_unlock();
8654 
8655 	return new_cpu;
8656 }
8657 
8658 /*
8659  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8660  * cfs_rq_of(p) references at time of call are still valid and identify the
8661  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8662  */
8663 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8664 {
8665 	struct sched_entity *se = &p->se;
8666 
8667 	if (!task_on_rq_migrating(p)) {
8668 		remove_entity_load_avg(se);
8669 
8670 		/*
8671 		 * Here, the task's PELT values have been updated according to
8672 		 * the current rq's clock. But if that clock hasn't been
8673 		 * updated in a while, a substantial idle time will be missed,
8674 		 * leading to an inflation after wake-up on the new rq.
8675 		 *
8676 		 * Estimate the missing time from the cfs_rq last_update_time
8677 		 * and update sched_avg to improve the PELT continuity after
8678 		 * migration.
8679 		 */
8680 		migrate_se_pelt_lag(se);
8681 	}
8682 
8683 	/* Tell new CPU we are migrated */
8684 	se->avg.last_update_time = 0;
8685 
8686 	update_scan_period(p, new_cpu);
8687 }
8688 
8689 static void task_dead_fair(struct task_struct *p)
8690 {
8691 	struct sched_entity *se = &p->se;
8692 
8693 	if (se->sched_delayed) {
8694 		struct rq_flags rf;
8695 		struct rq *rq;
8696 
8697 		rq = task_rq_lock(p, &rf);
8698 		if (se->sched_delayed) {
8699 			update_rq_clock(rq);
8700 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8701 		}
8702 		task_rq_unlock(rq, p, &rf);
8703 	}
8704 
8705 	remove_entity_load_avg(se);
8706 }
8707 
8708 /*
8709  * Set the max capacity the task is allowed to run at for misfit detection.
8710  */
8711 static void set_task_max_allowed_capacity(struct task_struct *p)
8712 {
8713 	struct asym_cap_data *entry;
8714 
8715 	if (!sched_asym_cpucap_active())
8716 		return;
8717 
8718 	rcu_read_lock();
8719 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8720 		cpumask_t *cpumask;
8721 
8722 		cpumask = cpu_capacity_span(entry);
8723 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8724 			continue;
8725 
8726 		p->max_allowed_capacity = entry->capacity;
8727 		break;
8728 	}
8729 	rcu_read_unlock();
8730 }
8731 
8732 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8733 {
8734 	set_cpus_allowed_common(p, ctx);
8735 	set_task_max_allowed_capacity(p);
8736 }
8737 
8738 static int
8739 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8740 {
8741 	if (sched_fair_runnable(rq))
8742 		return 1;
8743 
8744 	return sched_balance_newidle(rq, rf) != 0;
8745 }
8746 #else
8747 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8748 #endif /* CONFIG_SMP */
8749 
8750 static void set_next_buddy(struct sched_entity *se)
8751 {
8752 	for_each_sched_entity(se) {
8753 		if (SCHED_WARN_ON(!se->on_rq))
8754 			return;
8755 		if (se_is_idle(se))
8756 			return;
8757 		cfs_rq_of(se)->next = se;
8758 	}
8759 }
8760 
8761 /*
8762  * Preempt the current task with a newly woken task if needed:
8763  */
8764 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8765 {
8766 	struct task_struct *donor = rq->donor;
8767 	struct sched_entity *se = &donor->se, *pse = &p->se;
8768 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8769 	int cse_is_idle, pse_is_idle;
8770 
8771 	if (unlikely(se == pse))
8772 		return;
8773 
8774 	/*
8775 	 * This is possible from callers such as attach_tasks(), in which we
8776 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8777 	 * lead to a throttle).  This both saves work and prevents false
8778 	 * next-buddy nomination below.
8779 	 */
8780 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8781 		return;
8782 
8783 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8784 		set_next_buddy(pse);
8785 	}
8786 
8787 	/*
8788 	 * We can come here with TIF_NEED_RESCHED already set from new task
8789 	 * wake up path.
8790 	 *
8791 	 * Note: this also catches the edge-case of curr being in a throttled
8792 	 * group (e.g. via set_curr_task), since update_curr() (in the
8793 	 * enqueue of curr) will have resulted in resched being set.  This
8794 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8795 	 * below.
8796 	 */
8797 	if (test_tsk_need_resched(rq->curr))
8798 		return;
8799 
8800 	if (!sched_feat(WAKEUP_PREEMPTION))
8801 		return;
8802 
8803 	find_matching_se(&se, &pse);
8804 	WARN_ON_ONCE(!pse);
8805 
8806 	cse_is_idle = se_is_idle(se);
8807 	pse_is_idle = se_is_idle(pse);
8808 
8809 	/*
8810 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8811 	 * in the inverse case).
8812 	 */
8813 	if (cse_is_idle && !pse_is_idle)
8814 		goto preempt;
8815 	if (cse_is_idle != pse_is_idle)
8816 		return;
8817 
8818 	/*
8819 	 * BATCH and IDLE tasks do not preempt others.
8820 	 */
8821 	if (unlikely(!normal_policy(p->policy)))
8822 		return;
8823 
8824 	cfs_rq = cfs_rq_of(se);
8825 	update_curr(cfs_rq);
8826 	/*
8827 	 * If @p has a shorter slice than current and @p is eligible, override
8828 	 * current's slice protection in order to allow preemption.
8829 	 *
8830 	 * Note that even if @p does not turn out to be the most eligible
8831 	 * task at this moment, current's slice protection will be lost.
8832 	 */
8833 	if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8834 		se->vlag = se->deadline + 1;
8835 
8836 	/*
8837 	 * If @p has become the most eligible task, force preemption.
8838 	 */
8839 	if (pick_eevdf(cfs_rq) == pse)
8840 		goto preempt;
8841 
8842 	return;
8843 
8844 preempt:
8845 	resched_curr_lazy(rq);
8846 }
8847 
8848 static struct task_struct *pick_task_fair(struct rq *rq)
8849 {
8850 	struct sched_entity *se;
8851 	struct cfs_rq *cfs_rq;
8852 
8853 again:
8854 	cfs_rq = &rq->cfs;
8855 	if (!cfs_rq->nr_running)
8856 		return NULL;
8857 
8858 	do {
8859 		/* Might not have done put_prev_entity() */
8860 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8861 			update_curr(cfs_rq);
8862 
8863 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8864 			goto again;
8865 
8866 		se = pick_next_entity(rq, cfs_rq);
8867 		if (!se)
8868 			goto again;
8869 		cfs_rq = group_cfs_rq(se);
8870 	} while (cfs_rq);
8871 
8872 	return task_of(se);
8873 }
8874 
8875 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8876 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8877 
8878 struct task_struct *
8879 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8880 {
8881 	struct sched_entity *se;
8882 	struct task_struct *p;
8883 	int new_tasks;
8884 
8885 again:
8886 	p = pick_task_fair(rq);
8887 	if (!p)
8888 		goto idle;
8889 	se = &p->se;
8890 
8891 #ifdef CONFIG_FAIR_GROUP_SCHED
8892 	if (prev->sched_class != &fair_sched_class)
8893 		goto simple;
8894 
8895 	__put_prev_set_next_dl_server(rq, prev, p);
8896 
8897 	/*
8898 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8899 	 * likely that a next task is from the same cgroup as the current.
8900 	 *
8901 	 * Therefore attempt to avoid putting and setting the entire cgroup
8902 	 * hierarchy, only change the part that actually changes.
8903 	 *
8904 	 * Since we haven't yet done put_prev_entity and if the selected task
8905 	 * is a different task than we started out with, try and touch the
8906 	 * least amount of cfs_rqs.
8907 	 */
8908 	if (prev != p) {
8909 		struct sched_entity *pse = &prev->se;
8910 		struct cfs_rq *cfs_rq;
8911 
8912 		while (!(cfs_rq = is_same_group(se, pse))) {
8913 			int se_depth = se->depth;
8914 			int pse_depth = pse->depth;
8915 
8916 			if (se_depth <= pse_depth) {
8917 				put_prev_entity(cfs_rq_of(pse), pse);
8918 				pse = parent_entity(pse);
8919 			}
8920 			if (se_depth >= pse_depth) {
8921 				set_next_entity(cfs_rq_of(se), se);
8922 				se = parent_entity(se);
8923 			}
8924 		}
8925 
8926 		put_prev_entity(cfs_rq, pse);
8927 		set_next_entity(cfs_rq, se);
8928 
8929 		__set_next_task_fair(rq, p, true);
8930 	}
8931 
8932 	return p;
8933 
8934 simple:
8935 #endif
8936 	put_prev_set_next_task(rq, prev, p);
8937 	return p;
8938 
8939 idle:
8940 	if (!rf)
8941 		return NULL;
8942 
8943 	new_tasks = sched_balance_newidle(rq, rf);
8944 
8945 	/*
8946 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8947 	 * possible for any higher priority task to appear. In that case we
8948 	 * must re-start the pick_next_entity() loop.
8949 	 */
8950 	if (new_tasks < 0)
8951 		return RETRY_TASK;
8952 
8953 	if (new_tasks > 0)
8954 		goto again;
8955 
8956 	/*
8957 	 * rq is about to be idle, check if we need to update the
8958 	 * lost_idle_time of clock_pelt
8959 	 */
8960 	update_idle_rq_clock_pelt(rq);
8961 
8962 	return NULL;
8963 }
8964 
8965 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8966 {
8967 	return pick_next_task_fair(rq, prev, NULL);
8968 }
8969 
8970 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8971 {
8972 	return !!dl_se->rq->cfs.nr_running;
8973 }
8974 
8975 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8976 {
8977 	return pick_task_fair(dl_se->rq);
8978 }
8979 
8980 void fair_server_init(struct rq *rq)
8981 {
8982 	struct sched_dl_entity *dl_se = &rq->fair_server;
8983 
8984 	init_dl_entity(dl_se);
8985 
8986 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8987 }
8988 
8989 /*
8990  * Account for a descheduled task:
8991  */
8992 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8993 {
8994 	struct sched_entity *se = &prev->se;
8995 	struct cfs_rq *cfs_rq;
8996 
8997 	for_each_sched_entity(se) {
8998 		cfs_rq = cfs_rq_of(se);
8999 		put_prev_entity(cfs_rq, se);
9000 	}
9001 }
9002 
9003 /*
9004  * sched_yield() is very simple
9005  */
9006 static void yield_task_fair(struct rq *rq)
9007 {
9008 	struct task_struct *curr = rq->curr;
9009 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9010 	struct sched_entity *se = &curr->se;
9011 
9012 	/*
9013 	 * Are we the only task in the tree?
9014 	 */
9015 	if (unlikely(rq->nr_running == 1))
9016 		return;
9017 
9018 	clear_buddies(cfs_rq, se);
9019 
9020 	update_rq_clock(rq);
9021 	/*
9022 	 * Update run-time statistics of the 'current'.
9023 	 */
9024 	update_curr(cfs_rq);
9025 	/*
9026 	 * Tell update_rq_clock() that we've just updated,
9027 	 * so we don't do microscopic update in schedule()
9028 	 * and double the fastpath cost.
9029 	 */
9030 	rq_clock_skip_update(rq);
9031 
9032 	se->deadline += calc_delta_fair(se->slice, se);
9033 }
9034 
9035 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9036 {
9037 	struct sched_entity *se = &p->se;
9038 
9039 	/* throttled hierarchies are not runnable */
9040 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9041 		return false;
9042 
9043 	/* Tell the scheduler that we'd really like se to run next. */
9044 	set_next_buddy(se);
9045 
9046 	yield_task_fair(rq);
9047 
9048 	return true;
9049 }
9050 
9051 #ifdef CONFIG_SMP
9052 /**************************************************
9053  * Fair scheduling class load-balancing methods.
9054  *
9055  * BASICS
9056  *
9057  * The purpose of load-balancing is to achieve the same basic fairness the
9058  * per-CPU scheduler provides, namely provide a proportional amount of compute
9059  * time to each task. This is expressed in the following equation:
9060  *
9061  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9062  *
9063  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9064  * W_i,0 is defined as:
9065  *
9066  *   W_i,0 = \Sum_j w_i,j                                             (2)
9067  *
9068  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9069  * is derived from the nice value as per sched_prio_to_weight[].
9070  *
9071  * The weight average is an exponential decay average of the instantaneous
9072  * weight:
9073  *
9074  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9075  *
9076  * C_i is the compute capacity of CPU i, typically it is the
9077  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9078  * can also include other factors [XXX].
9079  *
9080  * To achieve this balance we define a measure of imbalance which follows
9081  * directly from (1):
9082  *
9083  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9084  *
9085  * We them move tasks around to minimize the imbalance. In the continuous
9086  * function space it is obvious this converges, in the discrete case we get
9087  * a few fun cases generally called infeasible weight scenarios.
9088  *
9089  * [XXX expand on:
9090  *     - infeasible weights;
9091  *     - local vs global optima in the discrete case. ]
9092  *
9093  *
9094  * SCHED DOMAINS
9095  *
9096  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9097  * for all i,j solution, we create a tree of CPUs that follows the hardware
9098  * topology where each level pairs two lower groups (or better). This results
9099  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9100  * tree to only the first of the previous level and we decrease the frequency
9101  * of load-balance at each level inversely proportional to the number of CPUs in
9102  * the groups.
9103  *
9104  * This yields:
9105  *
9106  *     log_2 n     1     n
9107  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9108  *     i = 0      2^i   2^i
9109  *                               `- size of each group
9110  *         |         |     `- number of CPUs doing load-balance
9111  *         |         `- freq
9112  *         `- sum over all levels
9113  *
9114  * Coupled with a limit on how many tasks we can migrate every balance pass,
9115  * this makes (5) the runtime complexity of the balancer.
9116  *
9117  * An important property here is that each CPU is still (indirectly) connected
9118  * to every other CPU in at most O(log n) steps:
9119  *
9120  * The adjacency matrix of the resulting graph is given by:
9121  *
9122  *             log_2 n
9123  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9124  *             k = 0
9125  *
9126  * And you'll find that:
9127  *
9128  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9129  *
9130  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9131  * The task movement gives a factor of O(m), giving a convergence complexity
9132  * of:
9133  *
9134  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9135  *
9136  *
9137  * WORK CONSERVING
9138  *
9139  * In order to avoid CPUs going idle while there's still work to do, new idle
9140  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9141  * tree itself instead of relying on other CPUs to bring it work.
9142  *
9143  * This adds some complexity to both (5) and (8) but it reduces the total idle
9144  * time.
9145  *
9146  * [XXX more?]
9147  *
9148  *
9149  * CGROUPS
9150  *
9151  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9152  *
9153  *                                s_k,i
9154  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9155  *                                 S_k
9156  *
9157  * Where
9158  *
9159  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9160  *
9161  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9162  *
9163  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9164  * property.
9165  *
9166  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9167  *      rewrite all of this once again.]
9168  */
9169 
9170 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9171 
9172 enum fbq_type { regular, remote, all };
9173 
9174 /*
9175  * 'group_type' describes the group of CPUs at the moment of load balancing.
9176  *
9177  * The enum is ordered by pulling priority, with the group with lowest priority
9178  * first so the group_type can simply be compared when selecting the busiest
9179  * group. See update_sd_pick_busiest().
9180  */
9181 enum group_type {
9182 	/* The group has spare capacity that can be used to run more tasks.  */
9183 	group_has_spare = 0,
9184 	/*
9185 	 * The group is fully used and the tasks don't compete for more CPU
9186 	 * cycles. Nevertheless, some tasks might wait before running.
9187 	 */
9188 	group_fully_busy,
9189 	/*
9190 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9191 	 * more powerful CPU.
9192 	 */
9193 	group_misfit_task,
9194 	/*
9195 	 * Balance SMT group that's fully busy. Can benefit from migration
9196 	 * a task on SMT with busy sibling to another CPU on idle core.
9197 	 */
9198 	group_smt_balance,
9199 	/*
9200 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9201 	 * and the task should be migrated to it instead of running on the
9202 	 * current CPU.
9203 	 */
9204 	group_asym_packing,
9205 	/*
9206 	 * The tasks' affinity constraints previously prevented the scheduler
9207 	 * from balancing the load across the system.
9208 	 */
9209 	group_imbalanced,
9210 	/*
9211 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9212 	 * tasks.
9213 	 */
9214 	group_overloaded
9215 };
9216 
9217 enum migration_type {
9218 	migrate_load = 0,
9219 	migrate_util,
9220 	migrate_task,
9221 	migrate_misfit
9222 };
9223 
9224 #define LBF_ALL_PINNED	0x01
9225 #define LBF_NEED_BREAK	0x02
9226 #define LBF_DST_PINNED  0x04
9227 #define LBF_SOME_PINNED	0x08
9228 #define LBF_ACTIVE_LB	0x10
9229 
9230 struct lb_env {
9231 	struct sched_domain	*sd;
9232 
9233 	struct rq		*src_rq;
9234 	int			src_cpu;
9235 
9236 	int			dst_cpu;
9237 	struct rq		*dst_rq;
9238 
9239 	struct cpumask		*dst_grpmask;
9240 	int			new_dst_cpu;
9241 	enum cpu_idle_type	idle;
9242 	long			imbalance;
9243 	/* The set of CPUs under consideration for load-balancing */
9244 	struct cpumask		*cpus;
9245 
9246 	unsigned int		flags;
9247 
9248 	unsigned int		loop;
9249 	unsigned int		loop_break;
9250 	unsigned int		loop_max;
9251 
9252 	enum fbq_type		fbq_type;
9253 	enum migration_type	migration_type;
9254 	struct list_head	tasks;
9255 };
9256 
9257 /*
9258  * Is this task likely cache-hot:
9259  */
9260 static int task_hot(struct task_struct *p, struct lb_env *env)
9261 {
9262 	s64 delta;
9263 
9264 	lockdep_assert_rq_held(env->src_rq);
9265 
9266 	if (p->sched_class != &fair_sched_class)
9267 		return 0;
9268 
9269 	if (unlikely(task_has_idle_policy(p)))
9270 		return 0;
9271 
9272 	/* SMT siblings share cache */
9273 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9274 		return 0;
9275 
9276 	/*
9277 	 * Buddy candidates are cache hot:
9278 	 */
9279 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9280 	    (&p->se == cfs_rq_of(&p->se)->next))
9281 		return 1;
9282 
9283 	if (sysctl_sched_migration_cost == -1)
9284 		return 1;
9285 
9286 	/*
9287 	 * Don't migrate task if the task's cookie does not match
9288 	 * with the destination CPU's core cookie.
9289 	 */
9290 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9291 		return 1;
9292 
9293 	if (sysctl_sched_migration_cost == 0)
9294 		return 0;
9295 
9296 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9297 
9298 	return delta < (s64)sysctl_sched_migration_cost;
9299 }
9300 
9301 #ifdef CONFIG_NUMA_BALANCING
9302 /*
9303  * Returns 1, if task migration degrades locality
9304  * Returns 0, if task migration improves locality i.e migration preferred.
9305  * Returns -1, if task migration is not affected by locality.
9306  */
9307 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9308 {
9309 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9310 	unsigned long src_weight, dst_weight;
9311 	int src_nid, dst_nid, dist;
9312 
9313 	if (!static_branch_likely(&sched_numa_balancing))
9314 		return -1;
9315 
9316 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9317 		return -1;
9318 
9319 	src_nid = cpu_to_node(env->src_cpu);
9320 	dst_nid = cpu_to_node(env->dst_cpu);
9321 
9322 	if (src_nid == dst_nid)
9323 		return -1;
9324 
9325 	/* Migrating away from the preferred node is always bad. */
9326 	if (src_nid == p->numa_preferred_nid) {
9327 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9328 			return 1;
9329 		else
9330 			return -1;
9331 	}
9332 
9333 	/* Encourage migration to the preferred node. */
9334 	if (dst_nid == p->numa_preferred_nid)
9335 		return 0;
9336 
9337 	/* Leaving a core idle is often worse than degrading locality. */
9338 	if (env->idle == CPU_IDLE)
9339 		return -1;
9340 
9341 	dist = node_distance(src_nid, dst_nid);
9342 	if (numa_group) {
9343 		src_weight = group_weight(p, src_nid, dist);
9344 		dst_weight = group_weight(p, dst_nid, dist);
9345 	} else {
9346 		src_weight = task_weight(p, src_nid, dist);
9347 		dst_weight = task_weight(p, dst_nid, dist);
9348 	}
9349 
9350 	return dst_weight < src_weight;
9351 }
9352 
9353 #else
9354 static inline int migrate_degrades_locality(struct task_struct *p,
9355 					     struct lb_env *env)
9356 {
9357 	return -1;
9358 }
9359 #endif
9360 
9361 /*
9362  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9363  */
9364 static
9365 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9366 {
9367 	int tsk_cache_hot;
9368 
9369 	lockdep_assert_rq_held(env->src_rq);
9370 
9371 	/*
9372 	 * We do not migrate tasks that are:
9373 	 * 1) throttled_lb_pair, or
9374 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9375 	 * 3) running (obviously), or
9376 	 * 4) are cache-hot on their current CPU.
9377 	 */
9378 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9379 		return 0;
9380 
9381 	/* Disregard percpu kthreads; they are where they need to be. */
9382 	if (kthread_is_per_cpu(p))
9383 		return 0;
9384 
9385 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9386 		int cpu;
9387 
9388 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9389 
9390 		env->flags |= LBF_SOME_PINNED;
9391 
9392 		/*
9393 		 * Remember if this task can be migrated to any other CPU in
9394 		 * our sched_group. We may want to revisit it if we couldn't
9395 		 * meet load balance goals by pulling other tasks on src_cpu.
9396 		 *
9397 		 * Avoid computing new_dst_cpu
9398 		 * - for NEWLY_IDLE
9399 		 * - if we have already computed one in current iteration
9400 		 * - if it's an active balance
9401 		 */
9402 		if (env->idle == CPU_NEWLY_IDLE ||
9403 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9404 			return 0;
9405 
9406 		/* Prevent to re-select dst_cpu via env's CPUs: */
9407 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9408 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9409 				env->flags |= LBF_DST_PINNED;
9410 				env->new_dst_cpu = cpu;
9411 				break;
9412 			}
9413 		}
9414 
9415 		return 0;
9416 	}
9417 
9418 	/* Record that we found at least one task that could run on dst_cpu */
9419 	env->flags &= ~LBF_ALL_PINNED;
9420 
9421 	if (task_on_cpu(env->src_rq, p)) {
9422 		schedstat_inc(p->stats.nr_failed_migrations_running);
9423 		return 0;
9424 	}
9425 
9426 	/*
9427 	 * Aggressive migration if:
9428 	 * 1) active balance
9429 	 * 2) destination numa is preferred
9430 	 * 3) task is cache cold, or
9431 	 * 4) too many balance attempts have failed.
9432 	 */
9433 	if (env->flags & LBF_ACTIVE_LB)
9434 		return 1;
9435 
9436 	tsk_cache_hot = migrate_degrades_locality(p, env);
9437 	if (tsk_cache_hot == -1)
9438 		tsk_cache_hot = task_hot(p, env);
9439 
9440 	if (tsk_cache_hot <= 0 ||
9441 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9442 		if (tsk_cache_hot == 1) {
9443 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9444 			schedstat_inc(p->stats.nr_forced_migrations);
9445 		}
9446 		return 1;
9447 	}
9448 
9449 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9450 	return 0;
9451 }
9452 
9453 /*
9454  * detach_task() -- detach the task for the migration specified in env
9455  */
9456 static void detach_task(struct task_struct *p, struct lb_env *env)
9457 {
9458 	lockdep_assert_rq_held(env->src_rq);
9459 
9460 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9461 	set_task_cpu(p, env->dst_cpu);
9462 }
9463 
9464 /*
9465  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9466  * part of active balancing operations within "domain".
9467  *
9468  * Returns a task if successful and NULL otherwise.
9469  */
9470 static struct task_struct *detach_one_task(struct lb_env *env)
9471 {
9472 	struct task_struct *p;
9473 
9474 	lockdep_assert_rq_held(env->src_rq);
9475 
9476 	list_for_each_entry_reverse(p,
9477 			&env->src_rq->cfs_tasks, se.group_node) {
9478 		if (!can_migrate_task(p, env))
9479 			continue;
9480 
9481 		detach_task(p, env);
9482 
9483 		/*
9484 		 * Right now, this is only the second place where
9485 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9486 		 * so we can safely collect stats here rather than
9487 		 * inside detach_tasks().
9488 		 */
9489 		schedstat_inc(env->sd->lb_gained[env->idle]);
9490 		return p;
9491 	}
9492 	return NULL;
9493 }
9494 
9495 /*
9496  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9497  * busiest_rq, as part of a balancing operation within domain "sd".
9498  *
9499  * Returns number of detached tasks if successful and 0 otherwise.
9500  */
9501 static int detach_tasks(struct lb_env *env)
9502 {
9503 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9504 	unsigned long util, load;
9505 	struct task_struct *p;
9506 	int detached = 0;
9507 
9508 	lockdep_assert_rq_held(env->src_rq);
9509 
9510 	/*
9511 	 * Source run queue has been emptied by another CPU, clear
9512 	 * LBF_ALL_PINNED flag as we will not test any task.
9513 	 */
9514 	if (env->src_rq->nr_running <= 1) {
9515 		env->flags &= ~LBF_ALL_PINNED;
9516 		return 0;
9517 	}
9518 
9519 	if (env->imbalance <= 0)
9520 		return 0;
9521 
9522 	while (!list_empty(tasks)) {
9523 		/*
9524 		 * We don't want to steal all, otherwise we may be treated likewise,
9525 		 * which could at worst lead to a livelock crash.
9526 		 */
9527 		if (env->idle && env->src_rq->nr_running <= 1)
9528 			break;
9529 
9530 		env->loop++;
9531 		/* We've more or less seen every task there is, call it quits */
9532 		if (env->loop > env->loop_max)
9533 			break;
9534 
9535 		/* take a breather every nr_migrate tasks */
9536 		if (env->loop > env->loop_break) {
9537 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9538 			env->flags |= LBF_NEED_BREAK;
9539 			break;
9540 		}
9541 
9542 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9543 
9544 		if (!can_migrate_task(p, env))
9545 			goto next;
9546 
9547 		switch (env->migration_type) {
9548 		case migrate_load:
9549 			/*
9550 			 * Depending of the number of CPUs and tasks and the
9551 			 * cgroup hierarchy, task_h_load() can return a null
9552 			 * value. Make sure that env->imbalance decreases
9553 			 * otherwise detach_tasks() will stop only after
9554 			 * detaching up to loop_max tasks.
9555 			 */
9556 			load = max_t(unsigned long, task_h_load(p), 1);
9557 
9558 			if (sched_feat(LB_MIN) &&
9559 			    load < 16 && !env->sd->nr_balance_failed)
9560 				goto next;
9561 
9562 			/*
9563 			 * Make sure that we don't migrate too much load.
9564 			 * Nevertheless, let relax the constraint if
9565 			 * scheduler fails to find a good waiting task to
9566 			 * migrate.
9567 			 */
9568 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9569 				goto next;
9570 
9571 			env->imbalance -= load;
9572 			break;
9573 
9574 		case migrate_util:
9575 			util = task_util_est(p);
9576 
9577 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9578 				goto next;
9579 
9580 			env->imbalance -= util;
9581 			break;
9582 
9583 		case migrate_task:
9584 			env->imbalance--;
9585 			break;
9586 
9587 		case migrate_misfit:
9588 			/* This is not a misfit task */
9589 			if (task_fits_cpu(p, env->src_cpu))
9590 				goto next;
9591 
9592 			env->imbalance = 0;
9593 			break;
9594 		}
9595 
9596 		detach_task(p, env);
9597 		list_add(&p->se.group_node, &env->tasks);
9598 
9599 		detached++;
9600 
9601 #ifdef CONFIG_PREEMPTION
9602 		/*
9603 		 * NEWIDLE balancing is a source of latency, so preemptible
9604 		 * kernels will stop after the first task is detached to minimize
9605 		 * the critical section.
9606 		 */
9607 		if (env->idle == CPU_NEWLY_IDLE)
9608 			break;
9609 #endif
9610 
9611 		/*
9612 		 * We only want to steal up to the prescribed amount of
9613 		 * load/util/tasks.
9614 		 */
9615 		if (env->imbalance <= 0)
9616 			break;
9617 
9618 		continue;
9619 next:
9620 		list_move(&p->se.group_node, tasks);
9621 	}
9622 
9623 	/*
9624 	 * Right now, this is one of only two places we collect this stat
9625 	 * so we can safely collect detach_one_task() stats here rather
9626 	 * than inside detach_one_task().
9627 	 */
9628 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9629 
9630 	return detached;
9631 }
9632 
9633 /*
9634  * attach_task() -- attach the task detached by detach_task() to its new rq.
9635  */
9636 static void attach_task(struct rq *rq, struct task_struct *p)
9637 {
9638 	lockdep_assert_rq_held(rq);
9639 
9640 	WARN_ON_ONCE(task_rq(p) != rq);
9641 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9642 	wakeup_preempt(rq, p, 0);
9643 }
9644 
9645 /*
9646  * attach_one_task() -- attaches the task returned from detach_one_task() to
9647  * its new rq.
9648  */
9649 static void attach_one_task(struct rq *rq, struct task_struct *p)
9650 {
9651 	struct rq_flags rf;
9652 
9653 	rq_lock(rq, &rf);
9654 	update_rq_clock(rq);
9655 	attach_task(rq, p);
9656 	rq_unlock(rq, &rf);
9657 }
9658 
9659 /*
9660  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9661  * new rq.
9662  */
9663 static void attach_tasks(struct lb_env *env)
9664 {
9665 	struct list_head *tasks = &env->tasks;
9666 	struct task_struct *p;
9667 	struct rq_flags rf;
9668 
9669 	rq_lock(env->dst_rq, &rf);
9670 	update_rq_clock(env->dst_rq);
9671 
9672 	while (!list_empty(tasks)) {
9673 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9674 		list_del_init(&p->se.group_node);
9675 
9676 		attach_task(env->dst_rq, p);
9677 	}
9678 
9679 	rq_unlock(env->dst_rq, &rf);
9680 }
9681 
9682 #ifdef CONFIG_NO_HZ_COMMON
9683 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9684 {
9685 	if (cfs_rq->avg.load_avg)
9686 		return true;
9687 
9688 	if (cfs_rq->avg.util_avg)
9689 		return true;
9690 
9691 	return false;
9692 }
9693 
9694 static inline bool others_have_blocked(struct rq *rq)
9695 {
9696 	if (cpu_util_rt(rq))
9697 		return true;
9698 
9699 	if (cpu_util_dl(rq))
9700 		return true;
9701 
9702 	if (hw_load_avg(rq))
9703 		return true;
9704 
9705 	if (cpu_util_irq(rq))
9706 		return true;
9707 
9708 	return false;
9709 }
9710 
9711 static inline void update_blocked_load_tick(struct rq *rq)
9712 {
9713 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9714 }
9715 
9716 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9717 {
9718 	if (!has_blocked)
9719 		rq->has_blocked_load = 0;
9720 }
9721 #else
9722 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9723 static inline bool others_have_blocked(struct rq *rq) { return false; }
9724 static inline void update_blocked_load_tick(struct rq *rq) {}
9725 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9726 #endif
9727 
9728 static bool __update_blocked_others(struct rq *rq, bool *done)
9729 {
9730 	bool updated;
9731 
9732 	/*
9733 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9734 	 * DL and IRQ signals have been updated before updating CFS.
9735 	 */
9736 	updated = update_other_load_avgs(rq);
9737 
9738 	if (others_have_blocked(rq))
9739 		*done = false;
9740 
9741 	return updated;
9742 }
9743 
9744 #ifdef CONFIG_FAIR_GROUP_SCHED
9745 
9746 static bool __update_blocked_fair(struct rq *rq, bool *done)
9747 {
9748 	struct cfs_rq *cfs_rq, *pos;
9749 	bool decayed = false;
9750 	int cpu = cpu_of(rq);
9751 
9752 	/*
9753 	 * Iterates the task_group tree in a bottom up fashion, see
9754 	 * list_add_leaf_cfs_rq() for details.
9755 	 */
9756 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9757 		struct sched_entity *se;
9758 
9759 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9760 			update_tg_load_avg(cfs_rq);
9761 
9762 			if (cfs_rq->nr_running == 0)
9763 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9764 
9765 			if (cfs_rq == &rq->cfs)
9766 				decayed = true;
9767 		}
9768 
9769 		/* Propagate pending load changes to the parent, if any: */
9770 		se = cfs_rq->tg->se[cpu];
9771 		if (se && !skip_blocked_update(se))
9772 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9773 
9774 		/*
9775 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9776 		 * decayed cfs_rqs linger on the list.
9777 		 */
9778 		if (cfs_rq_is_decayed(cfs_rq))
9779 			list_del_leaf_cfs_rq(cfs_rq);
9780 
9781 		/* Don't need periodic decay once load/util_avg are null */
9782 		if (cfs_rq_has_blocked(cfs_rq))
9783 			*done = false;
9784 	}
9785 
9786 	return decayed;
9787 }
9788 
9789 /*
9790  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9791  * This needs to be done in a top-down fashion because the load of a child
9792  * group is a fraction of its parents load.
9793  */
9794 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9795 {
9796 	struct rq *rq = rq_of(cfs_rq);
9797 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9798 	unsigned long now = jiffies;
9799 	unsigned long load;
9800 
9801 	if (cfs_rq->last_h_load_update == now)
9802 		return;
9803 
9804 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9805 	for_each_sched_entity(se) {
9806 		cfs_rq = cfs_rq_of(se);
9807 		WRITE_ONCE(cfs_rq->h_load_next, se);
9808 		if (cfs_rq->last_h_load_update == now)
9809 			break;
9810 	}
9811 
9812 	if (!se) {
9813 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9814 		cfs_rq->last_h_load_update = now;
9815 	}
9816 
9817 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9818 		load = cfs_rq->h_load;
9819 		load = div64_ul(load * se->avg.load_avg,
9820 			cfs_rq_load_avg(cfs_rq) + 1);
9821 		cfs_rq = group_cfs_rq(se);
9822 		cfs_rq->h_load = load;
9823 		cfs_rq->last_h_load_update = now;
9824 	}
9825 }
9826 
9827 static unsigned long task_h_load(struct task_struct *p)
9828 {
9829 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9830 
9831 	update_cfs_rq_h_load(cfs_rq);
9832 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9833 			cfs_rq_load_avg(cfs_rq) + 1);
9834 }
9835 #else
9836 static bool __update_blocked_fair(struct rq *rq, bool *done)
9837 {
9838 	struct cfs_rq *cfs_rq = &rq->cfs;
9839 	bool decayed;
9840 
9841 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9842 	if (cfs_rq_has_blocked(cfs_rq))
9843 		*done = false;
9844 
9845 	return decayed;
9846 }
9847 
9848 static unsigned long task_h_load(struct task_struct *p)
9849 {
9850 	return p->se.avg.load_avg;
9851 }
9852 #endif
9853 
9854 static void sched_balance_update_blocked_averages(int cpu)
9855 {
9856 	bool decayed = false, done = true;
9857 	struct rq *rq = cpu_rq(cpu);
9858 	struct rq_flags rf;
9859 
9860 	rq_lock_irqsave(rq, &rf);
9861 	update_blocked_load_tick(rq);
9862 	update_rq_clock(rq);
9863 
9864 	decayed |= __update_blocked_others(rq, &done);
9865 	decayed |= __update_blocked_fair(rq, &done);
9866 
9867 	update_blocked_load_status(rq, !done);
9868 	if (decayed)
9869 		cpufreq_update_util(rq, 0);
9870 	rq_unlock_irqrestore(rq, &rf);
9871 }
9872 
9873 /********** Helpers for sched_balance_find_src_group ************************/
9874 
9875 /*
9876  * sg_lb_stats - stats of a sched_group required for load-balancing:
9877  */
9878 struct sg_lb_stats {
9879 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9880 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9881 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9882 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9883 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9884 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9885 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9886 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9887 	unsigned int group_weight;
9888 	enum group_type group_type;
9889 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9890 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9891 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9892 #ifdef CONFIG_NUMA_BALANCING
9893 	unsigned int nr_numa_running;
9894 	unsigned int nr_preferred_running;
9895 #endif
9896 };
9897 
9898 /*
9899  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9900  */
9901 struct sd_lb_stats {
9902 	struct sched_group *busiest;		/* Busiest group in this sd */
9903 	struct sched_group *local;		/* Local group in this sd */
9904 	unsigned long total_load;		/* Total load of all groups in sd */
9905 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9906 	unsigned long avg_load;			/* Average load across all groups in sd */
9907 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9908 
9909 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9910 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9911 };
9912 
9913 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9914 {
9915 	/*
9916 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9917 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9918 	 * We must however set busiest_stat::group_type and
9919 	 * busiest_stat::idle_cpus to the worst busiest group because
9920 	 * update_sd_pick_busiest() reads these before assignment.
9921 	 */
9922 	*sds = (struct sd_lb_stats){
9923 		.busiest = NULL,
9924 		.local = NULL,
9925 		.total_load = 0UL,
9926 		.total_capacity = 0UL,
9927 		.busiest_stat = {
9928 			.idle_cpus = UINT_MAX,
9929 			.group_type = group_has_spare,
9930 		},
9931 	};
9932 }
9933 
9934 static unsigned long scale_rt_capacity(int cpu)
9935 {
9936 	unsigned long max = get_actual_cpu_capacity(cpu);
9937 	struct rq *rq = cpu_rq(cpu);
9938 	unsigned long used, free;
9939 	unsigned long irq;
9940 
9941 	irq = cpu_util_irq(rq);
9942 
9943 	if (unlikely(irq >= max))
9944 		return 1;
9945 
9946 	/*
9947 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9948 	 * (running and not running) with weights 0 and 1024 respectively.
9949 	 */
9950 	used = cpu_util_rt(rq);
9951 	used += cpu_util_dl(rq);
9952 
9953 	if (unlikely(used >= max))
9954 		return 1;
9955 
9956 	free = max - used;
9957 
9958 	return scale_irq_capacity(free, irq, max);
9959 }
9960 
9961 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9962 {
9963 	unsigned long capacity = scale_rt_capacity(cpu);
9964 	struct sched_group *sdg = sd->groups;
9965 
9966 	if (!capacity)
9967 		capacity = 1;
9968 
9969 	cpu_rq(cpu)->cpu_capacity = capacity;
9970 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9971 
9972 	sdg->sgc->capacity = capacity;
9973 	sdg->sgc->min_capacity = capacity;
9974 	sdg->sgc->max_capacity = capacity;
9975 }
9976 
9977 void update_group_capacity(struct sched_domain *sd, int cpu)
9978 {
9979 	struct sched_domain *child = sd->child;
9980 	struct sched_group *group, *sdg = sd->groups;
9981 	unsigned long capacity, min_capacity, max_capacity;
9982 	unsigned long interval;
9983 
9984 	interval = msecs_to_jiffies(sd->balance_interval);
9985 	interval = clamp(interval, 1UL, max_load_balance_interval);
9986 	sdg->sgc->next_update = jiffies + interval;
9987 
9988 	if (!child) {
9989 		update_cpu_capacity(sd, cpu);
9990 		return;
9991 	}
9992 
9993 	capacity = 0;
9994 	min_capacity = ULONG_MAX;
9995 	max_capacity = 0;
9996 
9997 	if (child->flags & SD_OVERLAP) {
9998 		/*
9999 		 * SD_OVERLAP domains cannot assume that child groups
10000 		 * span the current group.
10001 		 */
10002 
10003 		for_each_cpu(cpu, sched_group_span(sdg)) {
10004 			unsigned long cpu_cap = capacity_of(cpu);
10005 
10006 			capacity += cpu_cap;
10007 			min_capacity = min(cpu_cap, min_capacity);
10008 			max_capacity = max(cpu_cap, max_capacity);
10009 		}
10010 	} else  {
10011 		/*
10012 		 * !SD_OVERLAP domains can assume that child groups
10013 		 * span the current group.
10014 		 */
10015 
10016 		group = child->groups;
10017 		do {
10018 			struct sched_group_capacity *sgc = group->sgc;
10019 
10020 			capacity += sgc->capacity;
10021 			min_capacity = min(sgc->min_capacity, min_capacity);
10022 			max_capacity = max(sgc->max_capacity, max_capacity);
10023 			group = group->next;
10024 		} while (group != child->groups);
10025 	}
10026 
10027 	sdg->sgc->capacity = capacity;
10028 	sdg->sgc->min_capacity = min_capacity;
10029 	sdg->sgc->max_capacity = max_capacity;
10030 }
10031 
10032 /*
10033  * Check whether the capacity of the rq has been noticeably reduced by side
10034  * activity. The imbalance_pct is used for the threshold.
10035  * Return true is the capacity is reduced
10036  */
10037 static inline int
10038 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10039 {
10040 	return ((rq->cpu_capacity * sd->imbalance_pct) <
10041 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10042 }
10043 
10044 /* Check if the rq has a misfit task */
10045 static inline bool check_misfit_status(struct rq *rq)
10046 {
10047 	return rq->misfit_task_load;
10048 }
10049 
10050 /*
10051  * Group imbalance indicates (and tries to solve) the problem where balancing
10052  * groups is inadequate due to ->cpus_ptr constraints.
10053  *
10054  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10055  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10056  * Something like:
10057  *
10058  *	{ 0 1 2 3 } { 4 5 6 7 }
10059  *	        *     * * *
10060  *
10061  * If we were to balance group-wise we'd place two tasks in the first group and
10062  * two tasks in the second group. Clearly this is undesired as it will overload
10063  * cpu 3 and leave one of the CPUs in the second group unused.
10064  *
10065  * The current solution to this issue is detecting the skew in the first group
10066  * by noticing the lower domain failed to reach balance and had difficulty
10067  * moving tasks due to affinity constraints.
10068  *
10069  * When this is so detected; this group becomes a candidate for busiest; see
10070  * update_sd_pick_busiest(). And calculate_imbalance() and
10071  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10072  * to create an effective group imbalance.
10073  *
10074  * This is a somewhat tricky proposition since the next run might not find the
10075  * group imbalance and decide the groups need to be balanced again. A most
10076  * subtle and fragile situation.
10077  */
10078 
10079 static inline int sg_imbalanced(struct sched_group *group)
10080 {
10081 	return group->sgc->imbalance;
10082 }
10083 
10084 /*
10085  * group_has_capacity returns true if the group has spare capacity that could
10086  * be used by some tasks.
10087  * We consider that a group has spare capacity if the number of task is
10088  * smaller than the number of CPUs or if the utilization is lower than the
10089  * available capacity for CFS tasks.
10090  * For the latter, we use a threshold to stabilize the state, to take into
10091  * account the variance of the tasks' load and to return true if the available
10092  * capacity in meaningful for the load balancer.
10093  * As an example, an available capacity of 1% can appear but it doesn't make
10094  * any benefit for the load balance.
10095  */
10096 static inline bool
10097 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10098 {
10099 	if (sgs->sum_nr_running < sgs->group_weight)
10100 		return true;
10101 
10102 	if ((sgs->group_capacity * imbalance_pct) <
10103 			(sgs->group_runnable * 100))
10104 		return false;
10105 
10106 	if ((sgs->group_capacity * 100) >
10107 			(sgs->group_util * imbalance_pct))
10108 		return true;
10109 
10110 	return false;
10111 }
10112 
10113 /*
10114  *  group_is_overloaded returns true if the group has more tasks than it can
10115  *  handle.
10116  *  group_is_overloaded is not equals to !group_has_capacity because a group
10117  *  with the exact right number of tasks, has no more spare capacity but is not
10118  *  overloaded so both group_has_capacity and group_is_overloaded return
10119  *  false.
10120  */
10121 static inline bool
10122 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10123 {
10124 	if (sgs->sum_nr_running <= sgs->group_weight)
10125 		return false;
10126 
10127 	if ((sgs->group_capacity * 100) <
10128 			(sgs->group_util * imbalance_pct))
10129 		return true;
10130 
10131 	if ((sgs->group_capacity * imbalance_pct) <
10132 			(sgs->group_runnable * 100))
10133 		return true;
10134 
10135 	return false;
10136 }
10137 
10138 static inline enum
10139 group_type group_classify(unsigned int imbalance_pct,
10140 			  struct sched_group *group,
10141 			  struct sg_lb_stats *sgs)
10142 {
10143 	if (group_is_overloaded(imbalance_pct, sgs))
10144 		return group_overloaded;
10145 
10146 	if (sg_imbalanced(group))
10147 		return group_imbalanced;
10148 
10149 	if (sgs->group_asym_packing)
10150 		return group_asym_packing;
10151 
10152 	if (sgs->group_smt_balance)
10153 		return group_smt_balance;
10154 
10155 	if (sgs->group_misfit_task_load)
10156 		return group_misfit_task;
10157 
10158 	if (!group_has_capacity(imbalance_pct, sgs))
10159 		return group_fully_busy;
10160 
10161 	return group_has_spare;
10162 }
10163 
10164 /**
10165  * sched_use_asym_prio - Check whether asym_packing priority must be used
10166  * @sd:		The scheduling domain of the load balancing
10167  * @cpu:	A CPU
10168  *
10169  * Always use CPU priority when balancing load between SMT siblings. When
10170  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10171  * use CPU priority if the whole core is idle.
10172  *
10173  * Returns: True if the priority of @cpu must be followed. False otherwise.
10174  */
10175 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10176 {
10177 	if (!(sd->flags & SD_ASYM_PACKING))
10178 		return false;
10179 
10180 	if (!sched_smt_active())
10181 		return true;
10182 
10183 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10184 }
10185 
10186 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10187 {
10188 	/*
10189 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10190 	 * if it has higher priority than @src_cpu.
10191 	 */
10192 	return sched_use_asym_prio(sd, dst_cpu) &&
10193 		sched_asym_prefer(dst_cpu, src_cpu);
10194 }
10195 
10196 /**
10197  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10198  * @env:	The load balancing environment
10199  * @sgs:	Load-balancing statistics of the candidate busiest group
10200  * @group:	The candidate busiest group
10201  *
10202  * @env::dst_cpu can do asym_packing if it has higher priority than the
10203  * preferred CPU of @group.
10204  *
10205  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10206  * otherwise.
10207  */
10208 static inline bool
10209 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10210 {
10211 	/*
10212 	 * CPU priorities do not make sense for SMT cores with more than one
10213 	 * busy sibling.
10214 	 */
10215 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10216 	    (sgs->group_weight - sgs->idle_cpus != 1))
10217 		return false;
10218 
10219 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10220 }
10221 
10222 /* One group has more than one SMT CPU while the other group does not */
10223 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10224 				    struct sched_group *sg2)
10225 {
10226 	if (!sg1 || !sg2)
10227 		return false;
10228 
10229 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10230 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10231 }
10232 
10233 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10234 			       struct sched_group *group)
10235 {
10236 	if (!env->idle)
10237 		return false;
10238 
10239 	/*
10240 	 * For SMT source group, it is better to move a task
10241 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10242 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10243 	 * will not be on.
10244 	 */
10245 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10246 	    sgs->sum_h_nr_running > 1)
10247 		return true;
10248 
10249 	return false;
10250 }
10251 
10252 static inline long sibling_imbalance(struct lb_env *env,
10253 				    struct sd_lb_stats *sds,
10254 				    struct sg_lb_stats *busiest,
10255 				    struct sg_lb_stats *local)
10256 {
10257 	int ncores_busiest, ncores_local;
10258 	long imbalance;
10259 
10260 	if (!env->idle || !busiest->sum_nr_running)
10261 		return 0;
10262 
10263 	ncores_busiest = sds->busiest->cores;
10264 	ncores_local = sds->local->cores;
10265 
10266 	if (ncores_busiest == ncores_local) {
10267 		imbalance = busiest->sum_nr_running;
10268 		lsub_positive(&imbalance, local->sum_nr_running);
10269 		return imbalance;
10270 	}
10271 
10272 	/* Balance such that nr_running/ncores ratio are same on both groups */
10273 	imbalance = ncores_local * busiest->sum_nr_running;
10274 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10275 	/* Normalize imbalance and do rounding on normalization */
10276 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10277 	imbalance /= ncores_local + ncores_busiest;
10278 
10279 	/* Take advantage of resource in an empty sched group */
10280 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10281 	    busiest->sum_nr_running > 1)
10282 		imbalance = 2;
10283 
10284 	return imbalance;
10285 }
10286 
10287 static inline bool
10288 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10289 {
10290 	/*
10291 	 * When there is more than 1 task, the group_overloaded case already
10292 	 * takes care of cpu with reduced capacity
10293 	 */
10294 	if (rq->cfs.h_nr_running != 1)
10295 		return false;
10296 
10297 	return check_cpu_capacity(rq, sd);
10298 }
10299 
10300 /**
10301  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10302  * @env: The load balancing environment.
10303  * @sds: Load-balancing data with statistics of the local group.
10304  * @group: sched_group whose statistics are to be updated.
10305  * @sgs: variable to hold the statistics for this group.
10306  * @sg_overloaded: sched_group is overloaded
10307  * @sg_overutilized: sched_group is overutilized
10308  */
10309 static inline void update_sg_lb_stats(struct lb_env *env,
10310 				      struct sd_lb_stats *sds,
10311 				      struct sched_group *group,
10312 				      struct sg_lb_stats *sgs,
10313 				      bool *sg_overloaded,
10314 				      bool *sg_overutilized)
10315 {
10316 	int i, nr_running, local_group;
10317 
10318 	memset(sgs, 0, sizeof(*sgs));
10319 
10320 	local_group = group == sds->local;
10321 
10322 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10323 		struct rq *rq = cpu_rq(i);
10324 		unsigned long load = cpu_load(rq);
10325 
10326 		sgs->group_load += load;
10327 		sgs->group_util += cpu_util_cfs(i);
10328 		sgs->group_runnable += cpu_runnable(rq);
10329 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10330 
10331 		nr_running = rq->nr_running;
10332 		sgs->sum_nr_running += nr_running;
10333 
10334 		if (nr_running > 1)
10335 			*sg_overloaded = 1;
10336 
10337 		if (cpu_overutilized(i))
10338 			*sg_overutilized = 1;
10339 
10340 #ifdef CONFIG_NUMA_BALANCING
10341 		sgs->nr_numa_running += rq->nr_numa_running;
10342 		sgs->nr_preferred_running += rq->nr_preferred_running;
10343 #endif
10344 		/*
10345 		 * No need to call idle_cpu() if nr_running is not 0
10346 		 */
10347 		if (!nr_running && idle_cpu(i)) {
10348 			sgs->idle_cpus++;
10349 			/* Idle cpu can't have misfit task */
10350 			continue;
10351 		}
10352 
10353 		if (local_group)
10354 			continue;
10355 
10356 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10357 			/* Check for a misfit task on the cpu */
10358 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10359 				sgs->group_misfit_task_load = rq->misfit_task_load;
10360 				*sg_overloaded = 1;
10361 			}
10362 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10363 			/* Check for a task running on a CPU with reduced capacity */
10364 			if (sgs->group_misfit_task_load < load)
10365 				sgs->group_misfit_task_load = load;
10366 		}
10367 	}
10368 
10369 	sgs->group_capacity = group->sgc->capacity;
10370 
10371 	sgs->group_weight = group->group_weight;
10372 
10373 	/* Check if dst CPU is idle and preferred to this group */
10374 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10375 	    sched_group_asym(env, sgs, group))
10376 		sgs->group_asym_packing = 1;
10377 
10378 	/* Check for loaded SMT group to be balanced to dst CPU */
10379 	if (!local_group && smt_balance(env, sgs, group))
10380 		sgs->group_smt_balance = 1;
10381 
10382 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10383 
10384 	/* Computing avg_load makes sense only when group is overloaded */
10385 	if (sgs->group_type == group_overloaded)
10386 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10387 				sgs->group_capacity;
10388 }
10389 
10390 /**
10391  * update_sd_pick_busiest - return 1 on busiest group
10392  * @env: The load balancing environment.
10393  * @sds: sched_domain statistics
10394  * @sg: sched_group candidate to be checked for being the busiest
10395  * @sgs: sched_group statistics
10396  *
10397  * Determine if @sg is a busier group than the previously selected
10398  * busiest group.
10399  *
10400  * Return: %true if @sg is a busier group than the previously selected
10401  * busiest group. %false otherwise.
10402  */
10403 static bool update_sd_pick_busiest(struct lb_env *env,
10404 				   struct sd_lb_stats *sds,
10405 				   struct sched_group *sg,
10406 				   struct sg_lb_stats *sgs)
10407 {
10408 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10409 
10410 	/* Make sure that there is at least one task to pull */
10411 	if (!sgs->sum_h_nr_running)
10412 		return false;
10413 
10414 	/*
10415 	 * Don't try to pull misfit tasks we can't help.
10416 	 * We can use max_capacity here as reduction in capacity on some
10417 	 * CPUs in the group should either be possible to resolve
10418 	 * internally or be covered by avg_load imbalance (eventually).
10419 	 */
10420 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10421 	    (sgs->group_type == group_misfit_task) &&
10422 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10423 	     sds->local_stat.group_type != group_has_spare))
10424 		return false;
10425 
10426 	if (sgs->group_type > busiest->group_type)
10427 		return true;
10428 
10429 	if (sgs->group_type < busiest->group_type)
10430 		return false;
10431 
10432 	/*
10433 	 * The candidate and the current busiest group are the same type of
10434 	 * group. Let check which one is the busiest according to the type.
10435 	 */
10436 
10437 	switch (sgs->group_type) {
10438 	case group_overloaded:
10439 		/* Select the overloaded group with highest avg_load. */
10440 		return sgs->avg_load > busiest->avg_load;
10441 
10442 	case group_imbalanced:
10443 		/*
10444 		 * Select the 1st imbalanced group as we don't have any way to
10445 		 * choose one more than another.
10446 		 */
10447 		return false;
10448 
10449 	case group_asym_packing:
10450 		/* Prefer to move from lowest priority CPU's work */
10451 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10452 
10453 	case group_misfit_task:
10454 		/*
10455 		 * If we have more than one misfit sg go with the biggest
10456 		 * misfit.
10457 		 */
10458 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10459 
10460 	case group_smt_balance:
10461 		/*
10462 		 * Check if we have spare CPUs on either SMT group to
10463 		 * choose has spare or fully busy handling.
10464 		 */
10465 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10466 			goto has_spare;
10467 
10468 		fallthrough;
10469 
10470 	case group_fully_busy:
10471 		/*
10472 		 * Select the fully busy group with highest avg_load. In
10473 		 * theory, there is no need to pull task from such kind of
10474 		 * group because tasks have all compute capacity that they need
10475 		 * but we can still improve the overall throughput by reducing
10476 		 * contention when accessing shared HW resources.
10477 		 *
10478 		 * XXX for now avg_load is not computed and always 0 so we
10479 		 * select the 1st one, except if @sg is composed of SMT
10480 		 * siblings.
10481 		 */
10482 
10483 		if (sgs->avg_load < busiest->avg_load)
10484 			return false;
10485 
10486 		if (sgs->avg_load == busiest->avg_load) {
10487 			/*
10488 			 * SMT sched groups need more help than non-SMT groups.
10489 			 * If @sg happens to also be SMT, either choice is good.
10490 			 */
10491 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10492 				return false;
10493 		}
10494 
10495 		break;
10496 
10497 	case group_has_spare:
10498 		/*
10499 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10500 		 * as we do not want to pull task off SMT core with one task
10501 		 * and make the core idle.
10502 		 */
10503 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10504 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10505 				return false;
10506 			else
10507 				return true;
10508 		}
10509 has_spare:
10510 
10511 		/*
10512 		 * Select not overloaded group with lowest number of idle CPUs
10513 		 * and highest number of running tasks. We could also compare
10514 		 * the spare capacity which is more stable but it can end up
10515 		 * that the group has less spare capacity but finally more idle
10516 		 * CPUs which means less opportunity to pull tasks.
10517 		 */
10518 		if (sgs->idle_cpus > busiest->idle_cpus)
10519 			return false;
10520 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10521 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10522 			return false;
10523 
10524 		break;
10525 	}
10526 
10527 	/*
10528 	 * Candidate sg has no more than one task per CPU and has higher
10529 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10530 	 * throughput. Maximize throughput, power/energy consequences are not
10531 	 * considered.
10532 	 */
10533 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10534 	    (sgs->group_type <= group_fully_busy) &&
10535 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10536 		return false;
10537 
10538 	return true;
10539 }
10540 
10541 #ifdef CONFIG_NUMA_BALANCING
10542 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10543 {
10544 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10545 		return regular;
10546 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10547 		return remote;
10548 	return all;
10549 }
10550 
10551 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10552 {
10553 	if (rq->nr_running > rq->nr_numa_running)
10554 		return regular;
10555 	if (rq->nr_running > rq->nr_preferred_running)
10556 		return remote;
10557 	return all;
10558 }
10559 #else
10560 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10561 {
10562 	return all;
10563 }
10564 
10565 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10566 {
10567 	return regular;
10568 }
10569 #endif /* CONFIG_NUMA_BALANCING */
10570 
10571 
10572 struct sg_lb_stats;
10573 
10574 /*
10575  * task_running_on_cpu - return 1 if @p is running on @cpu.
10576  */
10577 
10578 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10579 {
10580 	/* Task has no contribution or is new */
10581 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10582 		return 0;
10583 
10584 	if (task_on_rq_queued(p))
10585 		return 1;
10586 
10587 	return 0;
10588 }
10589 
10590 /**
10591  * idle_cpu_without - would a given CPU be idle without p ?
10592  * @cpu: the processor on which idleness is tested.
10593  * @p: task which should be ignored.
10594  *
10595  * Return: 1 if the CPU would be idle. 0 otherwise.
10596  */
10597 static int idle_cpu_without(int cpu, struct task_struct *p)
10598 {
10599 	struct rq *rq = cpu_rq(cpu);
10600 
10601 	if (rq->curr != rq->idle && rq->curr != p)
10602 		return 0;
10603 
10604 	/*
10605 	 * rq->nr_running can't be used but an updated version without the
10606 	 * impact of p on cpu must be used instead. The updated nr_running
10607 	 * be computed and tested before calling idle_cpu_without().
10608 	 */
10609 
10610 	if (rq->ttwu_pending)
10611 		return 0;
10612 
10613 	return 1;
10614 }
10615 
10616 /*
10617  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10618  * @sd: The sched_domain level to look for idlest group.
10619  * @group: sched_group whose statistics are to be updated.
10620  * @sgs: variable to hold the statistics for this group.
10621  * @p: The task for which we look for the idlest group/CPU.
10622  */
10623 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10624 					  struct sched_group *group,
10625 					  struct sg_lb_stats *sgs,
10626 					  struct task_struct *p)
10627 {
10628 	int i, nr_running;
10629 
10630 	memset(sgs, 0, sizeof(*sgs));
10631 
10632 	/* Assume that task can't fit any CPU of the group */
10633 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10634 		sgs->group_misfit_task_load = 1;
10635 
10636 	for_each_cpu(i, sched_group_span(group)) {
10637 		struct rq *rq = cpu_rq(i);
10638 		unsigned int local;
10639 
10640 		sgs->group_load += cpu_load_without(rq, p);
10641 		sgs->group_util += cpu_util_without(i, p);
10642 		sgs->group_runnable += cpu_runnable_without(rq, p);
10643 		local = task_running_on_cpu(i, p);
10644 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10645 
10646 		nr_running = rq->nr_running - local;
10647 		sgs->sum_nr_running += nr_running;
10648 
10649 		/*
10650 		 * No need to call idle_cpu_without() if nr_running is not 0
10651 		 */
10652 		if (!nr_running && idle_cpu_without(i, p))
10653 			sgs->idle_cpus++;
10654 
10655 		/* Check if task fits in the CPU */
10656 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10657 		    sgs->group_misfit_task_load &&
10658 		    task_fits_cpu(p, i))
10659 			sgs->group_misfit_task_load = 0;
10660 
10661 	}
10662 
10663 	sgs->group_capacity = group->sgc->capacity;
10664 
10665 	sgs->group_weight = group->group_weight;
10666 
10667 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10668 
10669 	/*
10670 	 * Computing avg_load makes sense only when group is fully busy or
10671 	 * overloaded
10672 	 */
10673 	if (sgs->group_type == group_fully_busy ||
10674 		sgs->group_type == group_overloaded)
10675 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10676 				sgs->group_capacity;
10677 }
10678 
10679 static bool update_pick_idlest(struct sched_group *idlest,
10680 			       struct sg_lb_stats *idlest_sgs,
10681 			       struct sched_group *group,
10682 			       struct sg_lb_stats *sgs)
10683 {
10684 	if (sgs->group_type < idlest_sgs->group_type)
10685 		return true;
10686 
10687 	if (sgs->group_type > idlest_sgs->group_type)
10688 		return false;
10689 
10690 	/*
10691 	 * The candidate and the current idlest group are the same type of
10692 	 * group. Let check which one is the idlest according to the type.
10693 	 */
10694 
10695 	switch (sgs->group_type) {
10696 	case group_overloaded:
10697 	case group_fully_busy:
10698 		/* Select the group with lowest avg_load. */
10699 		if (idlest_sgs->avg_load <= sgs->avg_load)
10700 			return false;
10701 		break;
10702 
10703 	case group_imbalanced:
10704 	case group_asym_packing:
10705 	case group_smt_balance:
10706 		/* Those types are not used in the slow wakeup path */
10707 		return false;
10708 
10709 	case group_misfit_task:
10710 		/* Select group with the highest max capacity */
10711 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10712 			return false;
10713 		break;
10714 
10715 	case group_has_spare:
10716 		/* Select group with most idle CPUs */
10717 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10718 			return false;
10719 
10720 		/* Select group with lowest group_util */
10721 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10722 			idlest_sgs->group_util <= sgs->group_util)
10723 			return false;
10724 
10725 		break;
10726 	}
10727 
10728 	return true;
10729 }
10730 
10731 /*
10732  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10733  * domain.
10734  *
10735  * Assumes p is allowed on at least one CPU in sd.
10736  */
10737 static struct sched_group *
10738 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10739 {
10740 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10741 	struct sg_lb_stats local_sgs, tmp_sgs;
10742 	struct sg_lb_stats *sgs;
10743 	unsigned long imbalance;
10744 	struct sg_lb_stats idlest_sgs = {
10745 			.avg_load = UINT_MAX,
10746 			.group_type = group_overloaded,
10747 	};
10748 
10749 	do {
10750 		int local_group;
10751 
10752 		/* Skip over this group if it has no CPUs allowed */
10753 		if (!cpumask_intersects(sched_group_span(group),
10754 					p->cpus_ptr))
10755 			continue;
10756 
10757 		/* Skip over this group if no cookie matched */
10758 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10759 			continue;
10760 
10761 		local_group = cpumask_test_cpu(this_cpu,
10762 					       sched_group_span(group));
10763 
10764 		if (local_group) {
10765 			sgs = &local_sgs;
10766 			local = group;
10767 		} else {
10768 			sgs = &tmp_sgs;
10769 		}
10770 
10771 		update_sg_wakeup_stats(sd, group, sgs, p);
10772 
10773 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10774 			idlest = group;
10775 			idlest_sgs = *sgs;
10776 		}
10777 
10778 	} while (group = group->next, group != sd->groups);
10779 
10780 
10781 	/* There is no idlest group to push tasks to */
10782 	if (!idlest)
10783 		return NULL;
10784 
10785 	/* The local group has been skipped because of CPU affinity */
10786 	if (!local)
10787 		return idlest;
10788 
10789 	/*
10790 	 * If the local group is idler than the selected idlest group
10791 	 * don't try and push the task.
10792 	 */
10793 	if (local_sgs.group_type < idlest_sgs.group_type)
10794 		return NULL;
10795 
10796 	/*
10797 	 * If the local group is busier than the selected idlest group
10798 	 * try and push the task.
10799 	 */
10800 	if (local_sgs.group_type > idlest_sgs.group_type)
10801 		return idlest;
10802 
10803 	switch (local_sgs.group_type) {
10804 	case group_overloaded:
10805 	case group_fully_busy:
10806 
10807 		/* Calculate allowed imbalance based on load */
10808 		imbalance = scale_load_down(NICE_0_LOAD) *
10809 				(sd->imbalance_pct-100) / 100;
10810 
10811 		/*
10812 		 * When comparing groups across NUMA domains, it's possible for
10813 		 * the local domain to be very lightly loaded relative to the
10814 		 * remote domains but "imbalance" skews the comparison making
10815 		 * remote CPUs look much more favourable. When considering
10816 		 * cross-domain, add imbalance to the load on the remote node
10817 		 * and consider staying local.
10818 		 */
10819 
10820 		if ((sd->flags & SD_NUMA) &&
10821 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10822 			return NULL;
10823 
10824 		/*
10825 		 * If the local group is less loaded than the selected
10826 		 * idlest group don't try and push any tasks.
10827 		 */
10828 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10829 			return NULL;
10830 
10831 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10832 			return NULL;
10833 		break;
10834 
10835 	case group_imbalanced:
10836 	case group_asym_packing:
10837 	case group_smt_balance:
10838 		/* Those type are not used in the slow wakeup path */
10839 		return NULL;
10840 
10841 	case group_misfit_task:
10842 		/* Select group with the highest max capacity */
10843 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10844 			return NULL;
10845 		break;
10846 
10847 	case group_has_spare:
10848 #ifdef CONFIG_NUMA
10849 		if (sd->flags & SD_NUMA) {
10850 			int imb_numa_nr = sd->imb_numa_nr;
10851 #ifdef CONFIG_NUMA_BALANCING
10852 			int idlest_cpu;
10853 			/*
10854 			 * If there is spare capacity at NUMA, try to select
10855 			 * the preferred node
10856 			 */
10857 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10858 				return NULL;
10859 
10860 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10861 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10862 				return idlest;
10863 #endif /* CONFIG_NUMA_BALANCING */
10864 			/*
10865 			 * Otherwise, keep the task close to the wakeup source
10866 			 * and improve locality if the number of running tasks
10867 			 * would remain below threshold where an imbalance is
10868 			 * allowed while accounting for the possibility the
10869 			 * task is pinned to a subset of CPUs. If there is a
10870 			 * real need of migration, periodic load balance will
10871 			 * take care of it.
10872 			 */
10873 			if (p->nr_cpus_allowed != NR_CPUS) {
10874 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10875 
10876 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10877 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10878 			}
10879 
10880 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10881 			if (!adjust_numa_imbalance(imbalance,
10882 						   local_sgs.sum_nr_running + 1,
10883 						   imb_numa_nr)) {
10884 				return NULL;
10885 			}
10886 		}
10887 #endif /* CONFIG_NUMA */
10888 
10889 		/*
10890 		 * Select group with highest number of idle CPUs. We could also
10891 		 * compare the utilization which is more stable but it can end
10892 		 * up that the group has less spare capacity but finally more
10893 		 * idle CPUs which means more opportunity to run task.
10894 		 */
10895 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10896 			return NULL;
10897 		break;
10898 	}
10899 
10900 	return idlest;
10901 }
10902 
10903 static void update_idle_cpu_scan(struct lb_env *env,
10904 				 unsigned long sum_util)
10905 {
10906 	struct sched_domain_shared *sd_share;
10907 	int llc_weight, pct;
10908 	u64 x, y, tmp;
10909 	/*
10910 	 * Update the number of CPUs to scan in LLC domain, which could
10911 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10912 	 * could be expensive because it is within a shared cache line.
10913 	 * So the write of this hint only occurs during periodic load
10914 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10915 	 * can fire way more frequently than the former.
10916 	 */
10917 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10918 		return;
10919 
10920 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10921 	if (env->sd->span_weight != llc_weight)
10922 		return;
10923 
10924 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10925 	if (!sd_share)
10926 		return;
10927 
10928 	/*
10929 	 * The number of CPUs to search drops as sum_util increases, when
10930 	 * sum_util hits 85% or above, the scan stops.
10931 	 * The reason to choose 85% as the threshold is because this is the
10932 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10933 	 *
10934 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10935 	 * and y'= y / SCHED_CAPACITY_SCALE
10936 	 *
10937 	 * x is the ratio of sum_util compared to the CPU capacity:
10938 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10939 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10940 	 * and the number of CPUs to scan is calculated by:
10941 	 *
10942 	 * nr_scan = llc_weight * y'                                    [2]
10943 	 *
10944 	 * When x hits the threshold of overloaded, AKA, when
10945 	 * x = 100 / pct, y drops to 0. According to [1],
10946 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10947 	 *
10948 	 * Scale x by SCHED_CAPACITY_SCALE:
10949 	 * x' = sum_util / llc_weight;                                  [3]
10950 	 *
10951 	 * and finally [1] becomes:
10952 	 * y = SCHED_CAPACITY_SCALE -
10953 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10954 	 *
10955 	 */
10956 	/* equation [3] */
10957 	x = sum_util;
10958 	do_div(x, llc_weight);
10959 
10960 	/* equation [4] */
10961 	pct = env->sd->imbalance_pct;
10962 	tmp = x * x * pct * pct;
10963 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10964 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10965 	y = SCHED_CAPACITY_SCALE - tmp;
10966 
10967 	/* equation [2] */
10968 	y *= llc_weight;
10969 	do_div(y, SCHED_CAPACITY_SCALE);
10970 	if ((int)y != sd_share->nr_idle_scan)
10971 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10972 }
10973 
10974 /**
10975  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10976  * @env: The load balancing environment.
10977  * @sds: variable to hold the statistics for this sched_domain.
10978  */
10979 
10980 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10981 {
10982 	struct sched_group *sg = env->sd->groups;
10983 	struct sg_lb_stats *local = &sds->local_stat;
10984 	struct sg_lb_stats tmp_sgs;
10985 	unsigned long sum_util = 0;
10986 	bool sg_overloaded = 0, sg_overutilized = 0;
10987 
10988 	do {
10989 		struct sg_lb_stats *sgs = &tmp_sgs;
10990 		int local_group;
10991 
10992 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10993 		if (local_group) {
10994 			sds->local = sg;
10995 			sgs = local;
10996 
10997 			if (env->idle != CPU_NEWLY_IDLE ||
10998 			    time_after_eq(jiffies, sg->sgc->next_update))
10999 				update_group_capacity(env->sd, env->dst_cpu);
11000 		}
11001 
11002 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11003 
11004 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11005 			sds->busiest = sg;
11006 			sds->busiest_stat = *sgs;
11007 		}
11008 
11009 		/* Now, start updating sd_lb_stats */
11010 		sds->total_load += sgs->group_load;
11011 		sds->total_capacity += sgs->group_capacity;
11012 
11013 		sum_util += sgs->group_util;
11014 		sg = sg->next;
11015 	} while (sg != env->sd->groups);
11016 
11017 	/*
11018 	 * Indicate that the child domain of the busiest group prefers tasks
11019 	 * go to a child's sibling domains first. NB the flags of a sched group
11020 	 * are those of the child domain.
11021 	 */
11022 	if (sds->busiest)
11023 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11024 
11025 
11026 	if (env->sd->flags & SD_NUMA)
11027 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11028 
11029 	if (!env->sd->parent) {
11030 		/* update overload indicator if we are at root domain */
11031 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11032 
11033 		/* Update over-utilization (tipping point, U >= 0) indicator */
11034 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11035 	} else if (sg_overutilized) {
11036 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11037 	}
11038 
11039 	update_idle_cpu_scan(env, sum_util);
11040 }
11041 
11042 /**
11043  * calculate_imbalance - Calculate the amount of imbalance present within the
11044  *			 groups of a given sched_domain during load balance.
11045  * @env: load balance environment
11046  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11047  */
11048 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11049 {
11050 	struct sg_lb_stats *local, *busiest;
11051 
11052 	local = &sds->local_stat;
11053 	busiest = &sds->busiest_stat;
11054 
11055 	if (busiest->group_type == group_misfit_task) {
11056 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11057 			/* Set imbalance to allow misfit tasks to be balanced. */
11058 			env->migration_type = migrate_misfit;
11059 			env->imbalance = 1;
11060 		} else {
11061 			/*
11062 			 * Set load imbalance to allow moving task from cpu
11063 			 * with reduced capacity.
11064 			 */
11065 			env->migration_type = migrate_load;
11066 			env->imbalance = busiest->group_misfit_task_load;
11067 		}
11068 		return;
11069 	}
11070 
11071 	if (busiest->group_type == group_asym_packing) {
11072 		/*
11073 		 * In case of asym capacity, we will try to migrate all load to
11074 		 * the preferred CPU.
11075 		 */
11076 		env->migration_type = migrate_task;
11077 		env->imbalance = busiest->sum_h_nr_running;
11078 		return;
11079 	}
11080 
11081 	if (busiest->group_type == group_smt_balance) {
11082 		/* Reduce number of tasks sharing CPU capacity */
11083 		env->migration_type = migrate_task;
11084 		env->imbalance = 1;
11085 		return;
11086 	}
11087 
11088 	if (busiest->group_type == group_imbalanced) {
11089 		/*
11090 		 * In the group_imb case we cannot rely on group-wide averages
11091 		 * to ensure CPU-load equilibrium, try to move any task to fix
11092 		 * the imbalance. The next load balance will take care of
11093 		 * balancing back the system.
11094 		 */
11095 		env->migration_type = migrate_task;
11096 		env->imbalance = 1;
11097 		return;
11098 	}
11099 
11100 	/*
11101 	 * Try to use spare capacity of local group without overloading it or
11102 	 * emptying busiest.
11103 	 */
11104 	if (local->group_type == group_has_spare) {
11105 		if ((busiest->group_type > group_fully_busy) &&
11106 		    !(env->sd->flags & SD_SHARE_LLC)) {
11107 			/*
11108 			 * If busiest is overloaded, try to fill spare
11109 			 * capacity. This might end up creating spare capacity
11110 			 * in busiest or busiest still being overloaded but
11111 			 * there is no simple way to directly compute the
11112 			 * amount of load to migrate in order to balance the
11113 			 * system.
11114 			 */
11115 			env->migration_type = migrate_util;
11116 			env->imbalance = max(local->group_capacity, local->group_util) -
11117 					 local->group_util;
11118 
11119 			/*
11120 			 * In some cases, the group's utilization is max or even
11121 			 * higher than capacity because of migrations but the
11122 			 * local CPU is (newly) idle. There is at least one
11123 			 * waiting task in this overloaded busiest group. Let's
11124 			 * try to pull it.
11125 			 */
11126 			if (env->idle && env->imbalance == 0) {
11127 				env->migration_type = migrate_task;
11128 				env->imbalance = 1;
11129 			}
11130 
11131 			return;
11132 		}
11133 
11134 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11135 			/*
11136 			 * When prefer sibling, evenly spread running tasks on
11137 			 * groups.
11138 			 */
11139 			env->migration_type = migrate_task;
11140 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11141 		} else {
11142 
11143 			/*
11144 			 * If there is no overload, we just want to even the number of
11145 			 * idle CPUs.
11146 			 */
11147 			env->migration_type = migrate_task;
11148 			env->imbalance = max_t(long, 0,
11149 					       (local->idle_cpus - busiest->idle_cpus));
11150 		}
11151 
11152 #ifdef CONFIG_NUMA
11153 		/* Consider allowing a small imbalance between NUMA groups */
11154 		if (env->sd->flags & SD_NUMA) {
11155 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11156 							       local->sum_nr_running + 1,
11157 							       env->sd->imb_numa_nr);
11158 		}
11159 #endif
11160 
11161 		/* Number of tasks to move to restore balance */
11162 		env->imbalance >>= 1;
11163 
11164 		return;
11165 	}
11166 
11167 	/*
11168 	 * Local is fully busy but has to take more load to relieve the
11169 	 * busiest group
11170 	 */
11171 	if (local->group_type < group_overloaded) {
11172 		/*
11173 		 * Local will become overloaded so the avg_load metrics are
11174 		 * finally needed.
11175 		 */
11176 
11177 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11178 				  local->group_capacity;
11179 
11180 		/*
11181 		 * If the local group is more loaded than the selected
11182 		 * busiest group don't try to pull any tasks.
11183 		 */
11184 		if (local->avg_load >= busiest->avg_load) {
11185 			env->imbalance = 0;
11186 			return;
11187 		}
11188 
11189 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11190 				sds->total_capacity;
11191 
11192 		/*
11193 		 * If the local group is more loaded than the average system
11194 		 * load, don't try to pull any tasks.
11195 		 */
11196 		if (local->avg_load >= sds->avg_load) {
11197 			env->imbalance = 0;
11198 			return;
11199 		}
11200 
11201 	}
11202 
11203 	/*
11204 	 * Both group are or will become overloaded and we're trying to get all
11205 	 * the CPUs to the average_load, so we don't want to push ourselves
11206 	 * above the average load, nor do we wish to reduce the max loaded CPU
11207 	 * below the average load. At the same time, we also don't want to
11208 	 * reduce the group load below the group capacity. Thus we look for
11209 	 * the minimum possible imbalance.
11210 	 */
11211 	env->migration_type = migrate_load;
11212 	env->imbalance = min(
11213 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11214 		(sds->avg_load - local->avg_load) * local->group_capacity
11215 	) / SCHED_CAPACITY_SCALE;
11216 }
11217 
11218 /******* sched_balance_find_src_group() helpers end here *********************/
11219 
11220 /*
11221  * Decision matrix according to the local and busiest group type:
11222  *
11223  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11224  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11225  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11226  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11227  * asym_packing     force     force      N/A    N/A  force      force
11228  * imbalanced       force     force      N/A    N/A  force      force
11229  * overloaded       force     force      N/A    N/A  force      avg_load
11230  *
11231  * N/A :      Not Applicable because already filtered while updating
11232  *            statistics.
11233  * balanced : The system is balanced for these 2 groups.
11234  * force :    Calculate the imbalance as load migration is probably needed.
11235  * avg_load : Only if imbalance is significant enough.
11236  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11237  *            different in groups.
11238  */
11239 
11240 /**
11241  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11242  * if there is an imbalance.
11243  * @env: The load balancing environment.
11244  *
11245  * Also calculates the amount of runnable load which should be moved
11246  * to restore balance.
11247  *
11248  * Return:	- The busiest group if imbalance exists.
11249  */
11250 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11251 {
11252 	struct sg_lb_stats *local, *busiest;
11253 	struct sd_lb_stats sds;
11254 
11255 	init_sd_lb_stats(&sds);
11256 
11257 	/*
11258 	 * Compute the various statistics relevant for load balancing at
11259 	 * this level.
11260 	 */
11261 	update_sd_lb_stats(env, &sds);
11262 
11263 	/* There is no busy sibling group to pull tasks from */
11264 	if (!sds.busiest)
11265 		goto out_balanced;
11266 
11267 	busiest = &sds.busiest_stat;
11268 
11269 	/* Misfit tasks should be dealt with regardless of the avg load */
11270 	if (busiest->group_type == group_misfit_task)
11271 		goto force_balance;
11272 
11273 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11274 	    rcu_dereference(env->dst_rq->rd->pd))
11275 		goto out_balanced;
11276 
11277 	/* ASYM feature bypasses nice load balance check */
11278 	if (busiest->group_type == group_asym_packing)
11279 		goto force_balance;
11280 
11281 	/*
11282 	 * If the busiest group is imbalanced the below checks don't
11283 	 * work because they assume all things are equal, which typically
11284 	 * isn't true due to cpus_ptr constraints and the like.
11285 	 */
11286 	if (busiest->group_type == group_imbalanced)
11287 		goto force_balance;
11288 
11289 	local = &sds.local_stat;
11290 	/*
11291 	 * If the local group is busier than the selected busiest group
11292 	 * don't try and pull any tasks.
11293 	 */
11294 	if (local->group_type > busiest->group_type)
11295 		goto out_balanced;
11296 
11297 	/*
11298 	 * When groups are overloaded, use the avg_load to ensure fairness
11299 	 * between tasks.
11300 	 */
11301 	if (local->group_type == group_overloaded) {
11302 		/*
11303 		 * If the local group is more loaded than the selected
11304 		 * busiest group don't try to pull any tasks.
11305 		 */
11306 		if (local->avg_load >= busiest->avg_load)
11307 			goto out_balanced;
11308 
11309 		/* XXX broken for overlapping NUMA groups */
11310 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11311 				sds.total_capacity;
11312 
11313 		/*
11314 		 * Don't pull any tasks if this group is already above the
11315 		 * domain average load.
11316 		 */
11317 		if (local->avg_load >= sds.avg_load)
11318 			goto out_balanced;
11319 
11320 		/*
11321 		 * If the busiest group is more loaded, use imbalance_pct to be
11322 		 * conservative.
11323 		 */
11324 		if (100 * busiest->avg_load <=
11325 				env->sd->imbalance_pct * local->avg_load)
11326 			goto out_balanced;
11327 	}
11328 
11329 	/*
11330 	 * Try to move all excess tasks to a sibling domain of the busiest
11331 	 * group's child domain.
11332 	 */
11333 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11334 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11335 		goto force_balance;
11336 
11337 	if (busiest->group_type != group_overloaded) {
11338 		if (!env->idle) {
11339 			/*
11340 			 * If the busiest group is not overloaded (and as a
11341 			 * result the local one too) but this CPU is already
11342 			 * busy, let another idle CPU try to pull task.
11343 			 */
11344 			goto out_balanced;
11345 		}
11346 
11347 		if (busiest->group_type == group_smt_balance &&
11348 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11349 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11350 			goto force_balance;
11351 		}
11352 
11353 		if (busiest->group_weight > 1 &&
11354 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11355 			/*
11356 			 * If the busiest group is not overloaded
11357 			 * and there is no imbalance between this and busiest
11358 			 * group wrt idle CPUs, it is balanced. The imbalance
11359 			 * becomes significant if the diff is greater than 1
11360 			 * otherwise we might end up to just move the imbalance
11361 			 * on another group. Of course this applies only if
11362 			 * there is more than 1 CPU per group.
11363 			 */
11364 			goto out_balanced;
11365 		}
11366 
11367 		if (busiest->sum_h_nr_running == 1) {
11368 			/*
11369 			 * busiest doesn't have any tasks waiting to run
11370 			 */
11371 			goto out_balanced;
11372 		}
11373 	}
11374 
11375 force_balance:
11376 	/* Looks like there is an imbalance. Compute it */
11377 	calculate_imbalance(env, &sds);
11378 	return env->imbalance ? sds.busiest : NULL;
11379 
11380 out_balanced:
11381 	env->imbalance = 0;
11382 	return NULL;
11383 }
11384 
11385 /*
11386  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11387  */
11388 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11389 				     struct sched_group *group)
11390 {
11391 	struct rq *busiest = NULL, *rq;
11392 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11393 	unsigned int busiest_nr = 0;
11394 	int i;
11395 
11396 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11397 		unsigned long capacity, load, util;
11398 		unsigned int nr_running;
11399 		enum fbq_type rt;
11400 
11401 		rq = cpu_rq(i);
11402 		rt = fbq_classify_rq(rq);
11403 
11404 		/*
11405 		 * We classify groups/runqueues into three groups:
11406 		 *  - regular: there are !numa tasks
11407 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11408 		 *  - all:     there is no distinction
11409 		 *
11410 		 * In order to avoid migrating ideally placed numa tasks,
11411 		 * ignore those when there's better options.
11412 		 *
11413 		 * If we ignore the actual busiest queue to migrate another
11414 		 * task, the next balance pass can still reduce the busiest
11415 		 * queue by moving tasks around inside the node.
11416 		 *
11417 		 * If we cannot move enough load due to this classification
11418 		 * the next pass will adjust the group classification and
11419 		 * allow migration of more tasks.
11420 		 *
11421 		 * Both cases only affect the total convergence complexity.
11422 		 */
11423 		if (rt > env->fbq_type)
11424 			continue;
11425 
11426 		nr_running = rq->cfs.h_nr_running;
11427 		if (!nr_running)
11428 			continue;
11429 
11430 		capacity = capacity_of(i);
11431 
11432 		/*
11433 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11434 		 * eventually lead to active_balancing high->low capacity.
11435 		 * Higher per-CPU capacity is considered better than balancing
11436 		 * average load.
11437 		 */
11438 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11439 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11440 		    nr_running == 1)
11441 			continue;
11442 
11443 		/*
11444 		 * Make sure we only pull tasks from a CPU of lower priority
11445 		 * when balancing between SMT siblings.
11446 		 *
11447 		 * If balancing between cores, let lower priority CPUs help
11448 		 * SMT cores with more than one busy sibling.
11449 		 */
11450 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11451 			continue;
11452 
11453 		switch (env->migration_type) {
11454 		case migrate_load:
11455 			/*
11456 			 * When comparing with load imbalance, use cpu_load()
11457 			 * which is not scaled with the CPU capacity.
11458 			 */
11459 			load = cpu_load(rq);
11460 
11461 			if (nr_running == 1 && load > env->imbalance &&
11462 			    !check_cpu_capacity(rq, env->sd))
11463 				break;
11464 
11465 			/*
11466 			 * For the load comparisons with the other CPUs,
11467 			 * consider the cpu_load() scaled with the CPU
11468 			 * capacity, so that the load can be moved away
11469 			 * from the CPU that is potentially running at a
11470 			 * lower capacity.
11471 			 *
11472 			 * Thus we're looking for max(load_i / capacity_i),
11473 			 * crosswise multiplication to rid ourselves of the
11474 			 * division works out to:
11475 			 * load_i * capacity_j > load_j * capacity_i;
11476 			 * where j is our previous maximum.
11477 			 */
11478 			if (load * busiest_capacity > busiest_load * capacity) {
11479 				busiest_load = load;
11480 				busiest_capacity = capacity;
11481 				busiest = rq;
11482 			}
11483 			break;
11484 
11485 		case migrate_util:
11486 			util = cpu_util_cfs_boost(i);
11487 
11488 			/*
11489 			 * Don't try to pull utilization from a CPU with one
11490 			 * running task. Whatever its utilization, we will fail
11491 			 * detach the task.
11492 			 */
11493 			if (nr_running <= 1)
11494 				continue;
11495 
11496 			if (busiest_util < util) {
11497 				busiest_util = util;
11498 				busiest = rq;
11499 			}
11500 			break;
11501 
11502 		case migrate_task:
11503 			if (busiest_nr < nr_running) {
11504 				busiest_nr = nr_running;
11505 				busiest = rq;
11506 			}
11507 			break;
11508 
11509 		case migrate_misfit:
11510 			/*
11511 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11512 			 * simply seek the "biggest" misfit task.
11513 			 */
11514 			if (rq->misfit_task_load > busiest_load) {
11515 				busiest_load = rq->misfit_task_load;
11516 				busiest = rq;
11517 			}
11518 
11519 			break;
11520 
11521 		}
11522 	}
11523 
11524 	return busiest;
11525 }
11526 
11527 /*
11528  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11529  * so long as it is large enough.
11530  */
11531 #define MAX_PINNED_INTERVAL	512
11532 
11533 static inline bool
11534 asym_active_balance(struct lb_env *env)
11535 {
11536 	/*
11537 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11538 	 * priority CPUs in order to pack all tasks in the highest priority
11539 	 * CPUs. When done between cores, do it only if the whole core if the
11540 	 * whole core is idle.
11541 	 *
11542 	 * If @env::src_cpu is an SMT core with busy siblings, let
11543 	 * the lower priority @env::dst_cpu help it. Do not follow
11544 	 * CPU priority.
11545 	 */
11546 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11547 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11548 		!sched_use_asym_prio(env->sd, env->src_cpu));
11549 }
11550 
11551 static inline bool
11552 imbalanced_active_balance(struct lb_env *env)
11553 {
11554 	struct sched_domain *sd = env->sd;
11555 
11556 	/*
11557 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11558 	 * distribution of the load on the system but also the even distribution of the
11559 	 * threads on a system with spare capacity
11560 	 */
11561 	if ((env->migration_type == migrate_task) &&
11562 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11563 		return 1;
11564 
11565 	return 0;
11566 }
11567 
11568 static int need_active_balance(struct lb_env *env)
11569 {
11570 	struct sched_domain *sd = env->sd;
11571 
11572 	if (asym_active_balance(env))
11573 		return 1;
11574 
11575 	if (imbalanced_active_balance(env))
11576 		return 1;
11577 
11578 	/*
11579 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11580 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11581 	 * because of other sched_class or IRQs if more capacity stays
11582 	 * available on dst_cpu.
11583 	 */
11584 	if (env->idle &&
11585 	    (env->src_rq->cfs.h_nr_running == 1)) {
11586 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11587 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11588 			return 1;
11589 	}
11590 
11591 	if (env->migration_type == migrate_misfit)
11592 		return 1;
11593 
11594 	return 0;
11595 }
11596 
11597 static int active_load_balance_cpu_stop(void *data);
11598 
11599 static int should_we_balance(struct lb_env *env)
11600 {
11601 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11602 	struct sched_group *sg = env->sd->groups;
11603 	int cpu, idle_smt = -1;
11604 
11605 	/*
11606 	 * Ensure the balancing environment is consistent; can happen
11607 	 * when the softirq triggers 'during' hotplug.
11608 	 */
11609 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11610 		return 0;
11611 
11612 	/*
11613 	 * In the newly idle case, we will allow all the CPUs
11614 	 * to do the newly idle load balance.
11615 	 *
11616 	 * However, we bail out if we already have tasks or a wakeup pending,
11617 	 * to optimize wakeup latency.
11618 	 */
11619 	if (env->idle == CPU_NEWLY_IDLE) {
11620 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11621 			return 0;
11622 		return 1;
11623 	}
11624 
11625 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11626 	/* Try to find first idle CPU */
11627 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11628 		if (!idle_cpu(cpu))
11629 			continue;
11630 
11631 		/*
11632 		 * Don't balance to idle SMT in busy core right away when
11633 		 * balancing cores, but remember the first idle SMT CPU for
11634 		 * later consideration.  Find CPU on an idle core first.
11635 		 */
11636 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11637 			if (idle_smt == -1)
11638 				idle_smt = cpu;
11639 			/*
11640 			 * If the core is not idle, and first SMT sibling which is
11641 			 * idle has been found, then its not needed to check other
11642 			 * SMT siblings for idleness:
11643 			 */
11644 #ifdef CONFIG_SCHED_SMT
11645 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11646 #endif
11647 			continue;
11648 		}
11649 
11650 		/*
11651 		 * Are we the first idle core in a non-SMT domain or higher,
11652 		 * or the first idle CPU in a SMT domain?
11653 		 */
11654 		return cpu == env->dst_cpu;
11655 	}
11656 
11657 	/* Are we the first idle CPU with busy siblings? */
11658 	if (idle_smt != -1)
11659 		return idle_smt == env->dst_cpu;
11660 
11661 	/* Are we the first CPU of this group ? */
11662 	return group_balance_cpu(sg) == env->dst_cpu;
11663 }
11664 
11665 /*
11666  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11667  * tasks if there is an imbalance.
11668  */
11669 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11670 			struct sched_domain *sd, enum cpu_idle_type idle,
11671 			int *continue_balancing)
11672 {
11673 	int ld_moved, cur_ld_moved, active_balance = 0;
11674 	struct sched_domain *sd_parent = sd->parent;
11675 	struct sched_group *group;
11676 	struct rq *busiest;
11677 	struct rq_flags rf;
11678 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11679 	struct lb_env env = {
11680 		.sd		= sd,
11681 		.dst_cpu	= this_cpu,
11682 		.dst_rq		= this_rq,
11683 		.dst_grpmask    = group_balance_mask(sd->groups),
11684 		.idle		= idle,
11685 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11686 		.cpus		= cpus,
11687 		.fbq_type	= all,
11688 		.tasks		= LIST_HEAD_INIT(env.tasks),
11689 	};
11690 
11691 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11692 
11693 	schedstat_inc(sd->lb_count[idle]);
11694 
11695 redo:
11696 	if (!should_we_balance(&env)) {
11697 		*continue_balancing = 0;
11698 		goto out_balanced;
11699 	}
11700 
11701 	group = sched_balance_find_src_group(&env);
11702 	if (!group) {
11703 		schedstat_inc(sd->lb_nobusyg[idle]);
11704 		goto out_balanced;
11705 	}
11706 
11707 	busiest = sched_balance_find_src_rq(&env, group);
11708 	if (!busiest) {
11709 		schedstat_inc(sd->lb_nobusyq[idle]);
11710 		goto out_balanced;
11711 	}
11712 
11713 	WARN_ON_ONCE(busiest == env.dst_rq);
11714 
11715 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11716 
11717 	env.src_cpu = busiest->cpu;
11718 	env.src_rq = busiest;
11719 
11720 	ld_moved = 0;
11721 	/* Clear this flag as soon as we find a pullable task */
11722 	env.flags |= LBF_ALL_PINNED;
11723 	if (busiest->nr_running > 1) {
11724 		/*
11725 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11726 		 * an imbalance but busiest->nr_running <= 1, the group is
11727 		 * still unbalanced. ld_moved simply stays zero, so it is
11728 		 * correctly treated as an imbalance.
11729 		 */
11730 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11731 
11732 more_balance:
11733 		rq_lock_irqsave(busiest, &rf);
11734 		update_rq_clock(busiest);
11735 
11736 		/*
11737 		 * cur_ld_moved - load moved in current iteration
11738 		 * ld_moved     - cumulative load moved across iterations
11739 		 */
11740 		cur_ld_moved = detach_tasks(&env);
11741 
11742 		/*
11743 		 * We've detached some tasks from busiest_rq. Every
11744 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11745 		 * unlock busiest->lock, and we are able to be sure
11746 		 * that nobody can manipulate the tasks in parallel.
11747 		 * See task_rq_lock() family for the details.
11748 		 */
11749 
11750 		rq_unlock(busiest, &rf);
11751 
11752 		if (cur_ld_moved) {
11753 			attach_tasks(&env);
11754 			ld_moved += cur_ld_moved;
11755 		}
11756 
11757 		local_irq_restore(rf.flags);
11758 
11759 		if (env.flags & LBF_NEED_BREAK) {
11760 			env.flags &= ~LBF_NEED_BREAK;
11761 			goto more_balance;
11762 		}
11763 
11764 		/*
11765 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11766 		 * us and move them to an alternate dst_cpu in our sched_group
11767 		 * where they can run. The upper limit on how many times we
11768 		 * iterate on same src_cpu is dependent on number of CPUs in our
11769 		 * sched_group.
11770 		 *
11771 		 * This changes load balance semantics a bit on who can move
11772 		 * load to a given_cpu. In addition to the given_cpu itself
11773 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11774 		 * nohz-idle), we now have balance_cpu in a position to move
11775 		 * load to given_cpu. In rare situations, this may cause
11776 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11777 		 * _independently_ and at _same_ time to move some load to
11778 		 * given_cpu) causing excess load to be moved to given_cpu.
11779 		 * This however should not happen so much in practice and
11780 		 * moreover subsequent load balance cycles should correct the
11781 		 * excess load moved.
11782 		 */
11783 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11784 
11785 			/* Prevent to re-select dst_cpu via env's CPUs */
11786 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11787 
11788 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11789 			env.dst_cpu	 = env.new_dst_cpu;
11790 			env.flags	&= ~LBF_DST_PINNED;
11791 			env.loop	 = 0;
11792 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11793 
11794 			/*
11795 			 * Go back to "more_balance" rather than "redo" since we
11796 			 * need to continue with same src_cpu.
11797 			 */
11798 			goto more_balance;
11799 		}
11800 
11801 		/*
11802 		 * We failed to reach balance because of affinity.
11803 		 */
11804 		if (sd_parent) {
11805 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11806 
11807 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11808 				*group_imbalance = 1;
11809 		}
11810 
11811 		/* All tasks on this runqueue were pinned by CPU affinity */
11812 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11813 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11814 			/*
11815 			 * Attempting to continue load balancing at the current
11816 			 * sched_domain level only makes sense if there are
11817 			 * active CPUs remaining as possible busiest CPUs to
11818 			 * pull load from which are not contained within the
11819 			 * destination group that is receiving any migrated
11820 			 * load.
11821 			 */
11822 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11823 				env.loop = 0;
11824 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11825 				goto redo;
11826 			}
11827 			goto out_all_pinned;
11828 		}
11829 	}
11830 
11831 	if (!ld_moved) {
11832 		schedstat_inc(sd->lb_failed[idle]);
11833 		/*
11834 		 * Increment the failure counter only on periodic balance.
11835 		 * We do not want newidle balance, which can be very
11836 		 * frequent, pollute the failure counter causing
11837 		 * excessive cache_hot migrations and active balances.
11838 		 *
11839 		 * Similarly for migration_misfit which is not related to
11840 		 * load/util migration, don't pollute nr_balance_failed.
11841 		 */
11842 		if (idle != CPU_NEWLY_IDLE &&
11843 		    env.migration_type != migrate_misfit)
11844 			sd->nr_balance_failed++;
11845 
11846 		if (need_active_balance(&env)) {
11847 			unsigned long flags;
11848 
11849 			raw_spin_rq_lock_irqsave(busiest, flags);
11850 
11851 			/*
11852 			 * Don't kick the active_load_balance_cpu_stop,
11853 			 * if the curr task on busiest CPU can't be
11854 			 * moved to this_cpu:
11855 			 */
11856 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11857 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11858 				goto out_one_pinned;
11859 			}
11860 
11861 			/* Record that we found at least one task that could run on this_cpu */
11862 			env.flags &= ~LBF_ALL_PINNED;
11863 
11864 			/*
11865 			 * ->active_balance synchronizes accesses to
11866 			 * ->active_balance_work.  Once set, it's cleared
11867 			 * only after active load balance is finished.
11868 			 */
11869 			if (!busiest->active_balance) {
11870 				busiest->active_balance = 1;
11871 				busiest->push_cpu = this_cpu;
11872 				active_balance = 1;
11873 			}
11874 
11875 			preempt_disable();
11876 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11877 			if (active_balance) {
11878 				stop_one_cpu_nowait(cpu_of(busiest),
11879 					active_load_balance_cpu_stop, busiest,
11880 					&busiest->active_balance_work);
11881 			}
11882 			preempt_enable();
11883 		}
11884 	} else {
11885 		sd->nr_balance_failed = 0;
11886 	}
11887 
11888 	if (likely(!active_balance) || need_active_balance(&env)) {
11889 		/* We were unbalanced, so reset the balancing interval */
11890 		sd->balance_interval = sd->min_interval;
11891 	}
11892 
11893 	goto out;
11894 
11895 out_balanced:
11896 	/*
11897 	 * We reach balance although we may have faced some affinity
11898 	 * constraints. Clear the imbalance flag only if other tasks got
11899 	 * a chance to move and fix the imbalance.
11900 	 */
11901 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11902 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11903 
11904 		if (*group_imbalance)
11905 			*group_imbalance = 0;
11906 	}
11907 
11908 out_all_pinned:
11909 	/*
11910 	 * We reach balance because all tasks are pinned at this level so
11911 	 * we can't migrate them. Let the imbalance flag set so parent level
11912 	 * can try to migrate them.
11913 	 */
11914 	schedstat_inc(sd->lb_balanced[idle]);
11915 
11916 	sd->nr_balance_failed = 0;
11917 
11918 out_one_pinned:
11919 	ld_moved = 0;
11920 
11921 	/*
11922 	 * sched_balance_newidle() disregards balance intervals, so we could
11923 	 * repeatedly reach this code, which would lead to balance_interval
11924 	 * skyrocketing in a short amount of time. Skip the balance_interval
11925 	 * increase logic to avoid that.
11926 	 *
11927 	 * Similarly misfit migration which is not necessarily an indication of
11928 	 * the system being busy and requires lb to backoff to let it settle
11929 	 * down.
11930 	 */
11931 	if (env.idle == CPU_NEWLY_IDLE ||
11932 	    env.migration_type == migrate_misfit)
11933 		goto out;
11934 
11935 	/* tune up the balancing interval */
11936 	if ((env.flags & LBF_ALL_PINNED &&
11937 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11938 	    sd->balance_interval < sd->max_interval)
11939 		sd->balance_interval *= 2;
11940 out:
11941 	return ld_moved;
11942 }
11943 
11944 static inline unsigned long
11945 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11946 {
11947 	unsigned long interval = sd->balance_interval;
11948 
11949 	if (cpu_busy)
11950 		interval *= sd->busy_factor;
11951 
11952 	/* scale ms to jiffies */
11953 	interval = msecs_to_jiffies(interval);
11954 
11955 	/*
11956 	 * Reduce likelihood of busy balancing at higher domains racing with
11957 	 * balancing at lower domains by preventing their balancing periods
11958 	 * from being multiples of each other.
11959 	 */
11960 	if (cpu_busy)
11961 		interval -= 1;
11962 
11963 	interval = clamp(interval, 1UL, max_load_balance_interval);
11964 
11965 	return interval;
11966 }
11967 
11968 static inline void
11969 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11970 {
11971 	unsigned long interval, next;
11972 
11973 	/* used by idle balance, so cpu_busy = 0 */
11974 	interval = get_sd_balance_interval(sd, 0);
11975 	next = sd->last_balance + interval;
11976 
11977 	if (time_after(*next_balance, next))
11978 		*next_balance = next;
11979 }
11980 
11981 /*
11982  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11983  * running tasks off the busiest CPU onto idle CPUs. It requires at
11984  * least 1 task to be running on each physical CPU where possible, and
11985  * avoids physical / logical imbalances.
11986  */
11987 static int active_load_balance_cpu_stop(void *data)
11988 {
11989 	struct rq *busiest_rq = data;
11990 	int busiest_cpu = cpu_of(busiest_rq);
11991 	int target_cpu = busiest_rq->push_cpu;
11992 	struct rq *target_rq = cpu_rq(target_cpu);
11993 	struct sched_domain *sd;
11994 	struct task_struct *p = NULL;
11995 	struct rq_flags rf;
11996 
11997 	rq_lock_irq(busiest_rq, &rf);
11998 	/*
11999 	 * Between queueing the stop-work and running it is a hole in which
12000 	 * CPUs can become inactive. We should not move tasks from or to
12001 	 * inactive CPUs.
12002 	 */
12003 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12004 		goto out_unlock;
12005 
12006 	/* Make sure the requested CPU hasn't gone down in the meantime: */
12007 	if (unlikely(busiest_cpu != smp_processor_id() ||
12008 		     !busiest_rq->active_balance))
12009 		goto out_unlock;
12010 
12011 	/* Is there any task to move? */
12012 	if (busiest_rq->nr_running <= 1)
12013 		goto out_unlock;
12014 
12015 	/*
12016 	 * This condition is "impossible", if it occurs
12017 	 * we need to fix it. Originally reported by
12018 	 * Bjorn Helgaas on a 128-CPU setup.
12019 	 */
12020 	WARN_ON_ONCE(busiest_rq == target_rq);
12021 
12022 	/* Search for an sd spanning us and the target CPU. */
12023 	rcu_read_lock();
12024 	for_each_domain(target_cpu, sd) {
12025 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12026 			break;
12027 	}
12028 
12029 	if (likely(sd)) {
12030 		struct lb_env env = {
12031 			.sd		= sd,
12032 			.dst_cpu	= target_cpu,
12033 			.dst_rq		= target_rq,
12034 			.src_cpu	= busiest_rq->cpu,
12035 			.src_rq		= busiest_rq,
12036 			.idle		= CPU_IDLE,
12037 			.flags		= LBF_ACTIVE_LB,
12038 		};
12039 
12040 		schedstat_inc(sd->alb_count);
12041 		update_rq_clock(busiest_rq);
12042 
12043 		p = detach_one_task(&env);
12044 		if (p) {
12045 			schedstat_inc(sd->alb_pushed);
12046 			/* Active balancing done, reset the failure counter. */
12047 			sd->nr_balance_failed = 0;
12048 		} else {
12049 			schedstat_inc(sd->alb_failed);
12050 		}
12051 	}
12052 	rcu_read_unlock();
12053 out_unlock:
12054 	busiest_rq->active_balance = 0;
12055 	rq_unlock(busiest_rq, &rf);
12056 
12057 	if (p)
12058 		attach_one_task(target_rq, p);
12059 
12060 	local_irq_enable();
12061 
12062 	return 0;
12063 }
12064 
12065 /*
12066  * This flag serializes load-balancing passes over large domains
12067  * (above the NODE topology level) - only one load-balancing instance
12068  * may run at a time, to reduce overhead on very large systems with
12069  * lots of CPUs and large NUMA distances.
12070  *
12071  * - Note that load-balancing passes triggered while another one
12072  *   is executing are skipped and not re-tried.
12073  *
12074  * - Also note that this does not serialize rebalance_domains()
12075  *   execution, as non-SD_SERIALIZE domains will still be
12076  *   load-balanced in parallel.
12077  */
12078 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12079 
12080 /*
12081  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12082  * This trades load-balance latency on larger machines for less cross talk.
12083  */
12084 void update_max_interval(void)
12085 {
12086 	max_load_balance_interval = HZ*num_online_cpus()/10;
12087 }
12088 
12089 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12090 {
12091 	if (cost > sd->max_newidle_lb_cost) {
12092 		/*
12093 		 * Track max cost of a domain to make sure to not delay the
12094 		 * next wakeup on the CPU.
12095 		 */
12096 		sd->max_newidle_lb_cost = cost;
12097 		sd->last_decay_max_lb_cost = jiffies;
12098 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12099 		/*
12100 		 * Decay the newidle max times by ~1% per second to ensure that
12101 		 * it is not outdated and the current max cost is actually
12102 		 * shorter.
12103 		 */
12104 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12105 		sd->last_decay_max_lb_cost = jiffies;
12106 
12107 		return true;
12108 	}
12109 
12110 	return false;
12111 }
12112 
12113 /*
12114  * It checks each scheduling domain to see if it is due to be balanced,
12115  * and initiates a balancing operation if so.
12116  *
12117  * Balancing parameters are set up in init_sched_domains.
12118  */
12119 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12120 {
12121 	int continue_balancing = 1;
12122 	int cpu = rq->cpu;
12123 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12124 	unsigned long interval;
12125 	struct sched_domain *sd;
12126 	/* Earliest time when we have to do rebalance again */
12127 	unsigned long next_balance = jiffies + 60*HZ;
12128 	int update_next_balance = 0;
12129 	int need_serialize, need_decay = 0;
12130 	u64 max_cost = 0;
12131 
12132 	rcu_read_lock();
12133 	for_each_domain(cpu, sd) {
12134 		/*
12135 		 * Decay the newidle max times here because this is a regular
12136 		 * visit to all the domains.
12137 		 */
12138 		need_decay = update_newidle_cost(sd, 0);
12139 		max_cost += sd->max_newidle_lb_cost;
12140 
12141 		/*
12142 		 * Stop the load balance at this level. There is another
12143 		 * CPU in our sched group which is doing load balancing more
12144 		 * actively.
12145 		 */
12146 		if (!continue_balancing) {
12147 			if (need_decay)
12148 				continue;
12149 			break;
12150 		}
12151 
12152 		interval = get_sd_balance_interval(sd, busy);
12153 
12154 		need_serialize = sd->flags & SD_SERIALIZE;
12155 		if (need_serialize) {
12156 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12157 				goto out;
12158 		}
12159 
12160 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12161 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12162 				/*
12163 				 * The LBF_DST_PINNED logic could have changed
12164 				 * env->dst_cpu, so we can't know our idle
12165 				 * state even if we migrated tasks. Update it.
12166 				 */
12167 				idle = idle_cpu(cpu);
12168 				busy = !idle && !sched_idle_cpu(cpu);
12169 			}
12170 			sd->last_balance = jiffies;
12171 			interval = get_sd_balance_interval(sd, busy);
12172 		}
12173 		if (need_serialize)
12174 			atomic_set_release(&sched_balance_running, 0);
12175 out:
12176 		if (time_after(next_balance, sd->last_balance + interval)) {
12177 			next_balance = sd->last_balance + interval;
12178 			update_next_balance = 1;
12179 		}
12180 	}
12181 	if (need_decay) {
12182 		/*
12183 		 * Ensure the rq-wide value also decays but keep it at a
12184 		 * reasonable floor to avoid funnies with rq->avg_idle.
12185 		 */
12186 		rq->max_idle_balance_cost =
12187 			max((u64)sysctl_sched_migration_cost, max_cost);
12188 	}
12189 	rcu_read_unlock();
12190 
12191 	/*
12192 	 * next_balance will be updated only when there is a need.
12193 	 * When the cpu is attached to null domain for ex, it will not be
12194 	 * updated.
12195 	 */
12196 	if (likely(update_next_balance))
12197 		rq->next_balance = next_balance;
12198 
12199 }
12200 
12201 static inline int on_null_domain(struct rq *rq)
12202 {
12203 	return unlikely(!rcu_dereference_sched(rq->sd));
12204 }
12205 
12206 #ifdef CONFIG_NO_HZ_COMMON
12207 /*
12208  * NOHZ idle load balancing (ILB) details:
12209  *
12210  * - When one of the busy CPUs notices that there may be an idle rebalancing
12211  *   needed, they will kick the idle load balancer, which then does idle
12212  *   load balancing for all the idle CPUs.
12213  *
12214  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12215  *   anywhere yet.
12216  */
12217 static inline int find_new_ilb(void)
12218 {
12219 	const struct cpumask *hk_mask;
12220 	int ilb_cpu;
12221 
12222 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12223 
12224 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12225 
12226 		if (ilb_cpu == smp_processor_id())
12227 			continue;
12228 
12229 		if (idle_cpu(ilb_cpu))
12230 			return ilb_cpu;
12231 	}
12232 
12233 	return -1;
12234 }
12235 
12236 /*
12237  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12238  * SMP function call (IPI).
12239  *
12240  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12241  */
12242 static void kick_ilb(unsigned int flags)
12243 {
12244 	int ilb_cpu;
12245 
12246 	/*
12247 	 * Increase nohz.next_balance only when if full ilb is triggered but
12248 	 * not if we only update stats.
12249 	 */
12250 	if (flags & NOHZ_BALANCE_KICK)
12251 		nohz.next_balance = jiffies+1;
12252 
12253 	ilb_cpu = find_new_ilb();
12254 	if (ilb_cpu < 0)
12255 		return;
12256 
12257 	/*
12258 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12259 	 * i.e. all bits in flags are already set in ilb_cpu.
12260 	 */
12261 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12262 		return;
12263 
12264 	/*
12265 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12266 	 * the first flag owns it; cleared by nohz_csd_func().
12267 	 */
12268 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12269 	if (flags & NOHZ_KICK_MASK)
12270 		return;
12271 
12272 	/*
12273 	 * This way we generate an IPI on the target CPU which
12274 	 * is idle, and the softirq performing NOHZ idle load balancing
12275 	 * will be run before returning from the IPI.
12276 	 */
12277 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12278 }
12279 
12280 /*
12281  * Current decision point for kicking the idle load balancer in the presence
12282  * of idle CPUs in the system.
12283  */
12284 static void nohz_balancer_kick(struct rq *rq)
12285 {
12286 	unsigned long now = jiffies;
12287 	struct sched_domain_shared *sds;
12288 	struct sched_domain *sd;
12289 	int nr_busy, i, cpu = rq->cpu;
12290 	unsigned int flags = 0;
12291 
12292 	if (unlikely(rq->idle_balance))
12293 		return;
12294 
12295 	/*
12296 	 * We may be recently in ticked or tickless idle mode. At the first
12297 	 * busy tick after returning from idle, we will update the busy stats.
12298 	 */
12299 	nohz_balance_exit_idle(rq);
12300 
12301 	/*
12302 	 * None are in tickless mode and hence no need for NOHZ idle load
12303 	 * balancing:
12304 	 */
12305 	if (likely(!atomic_read(&nohz.nr_cpus)))
12306 		return;
12307 
12308 	if (READ_ONCE(nohz.has_blocked) &&
12309 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12310 		flags = NOHZ_STATS_KICK;
12311 
12312 	if (time_before(now, nohz.next_balance))
12313 		goto out;
12314 
12315 	if (rq->nr_running >= 2) {
12316 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12317 		goto out;
12318 	}
12319 
12320 	rcu_read_lock();
12321 
12322 	sd = rcu_dereference(rq->sd);
12323 	if (sd) {
12324 		/*
12325 		 * If there's a runnable CFS task and the current CPU has reduced
12326 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12327 		 */
12328 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12329 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12330 			goto unlock;
12331 		}
12332 	}
12333 
12334 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12335 	if (sd) {
12336 		/*
12337 		 * When ASYM_PACKING; see if there's a more preferred CPU
12338 		 * currently idle; in which case, kick the ILB to move tasks
12339 		 * around.
12340 		 *
12341 		 * When balancing between cores, all the SMT siblings of the
12342 		 * preferred CPU must be idle.
12343 		 */
12344 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12345 			if (sched_asym(sd, i, cpu)) {
12346 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12347 				goto unlock;
12348 			}
12349 		}
12350 	}
12351 
12352 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12353 	if (sd) {
12354 		/*
12355 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12356 		 * to run the misfit task on.
12357 		 */
12358 		if (check_misfit_status(rq)) {
12359 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12360 			goto unlock;
12361 		}
12362 
12363 		/*
12364 		 * For asymmetric systems, we do not want to nicely balance
12365 		 * cache use, instead we want to embrace asymmetry and only
12366 		 * ensure tasks have enough CPU capacity.
12367 		 *
12368 		 * Skip the LLC logic because it's not relevant in that case.
12369 		 */
12370 		goto unlock;
12371 	}
12372 
12373 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12374 	if (sds) {
12375 		/*
12376 		 * If there is an imbalance between LLC domains (IOW we could
12377 		 * increase the overall cache utilization), we need a less-loaded LLC
12378 		 * domain to pull some load from. Likewise, we may need to spread
12379 		 * load within the current LLC domain (e.g. packed SMT cores but
12380 		 * other CPUs are idle). We can't really know from here how busy
12381 		 * the others are - so just get a NOHZ balance going if it looks
12382 		 * like this LLC domain has tasks we could move.
12383 		 */
12384 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12385 		if (nr_busy > 1) {
12386 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12387 			goto unlock;
12388 		}
12389 	}
12390 unlock:
12391 	rcu_read_unlock();
12392 out:
12393 	if (READ_ONCE(nohz.needs_update))
12394 		flags |= NOHZ_NEXT_KICK;
12395 
12396 	if (flags)
12397 		kick_ilb(flags);
12398 }
12399 
12400 static void set_cpu_sd_state_busy(int cpu)
12401 {
12402 	struct sched_domain *sd;
12403 
12404 	rcu_read_lock();
12405 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12406 
12407 	if (!sd || !sd->nohz_idle)
12408 		goto unlock;
12409 	sd->nohz_idle = 0;
12410 
12411 	atomic_inc(&sd->shared->nr_busy_cpus);
12412 unlock:
12413 	rcu_read_unlock();
12414 }
12415 
12416 void nohz_balance_exit_idle(struct rq *rq)
12417 {
12418 	SCHED_WARN_ON(rq != this_rq());
12419 
12420 	if (likely(!rq->nohz_tick_stopped))
12421 		return;
12422 
12423 	rq->nohz_tick_stopped = 0;
12424 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12425 	atomic_dec(&nohz.nr_cpus);
12426 
12427 	set_cpu_sd_state_busy(rq->cpu);
12428 }
12429 
12430 static void set_cpu_sd_state_idle(int cpu)
12431 {
12432 	struct sched_domain *sd;
12433 
12434 	rcu_read_lock();
12435 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12436 
12437 	if (!sd || sd->nohz_idle)
12438 		goto unlock;
12439 	sd->nohz_idle = 1;
12440 
12441 	atomic_dec(&sd->shared->nr_busy_cpus);
12442 unlock:
12443 	rcu_read_unlock();
12444 }
12445 
12446 /*
12447  * This routine will record that the CPU is going idle with tick stopped.
12448  * This info will be used in performing idle load balancing in the future.
12449  */
12450 void nohz_balance_enter_idle(int cpu)
12451 {
12452 	struct rq *rq = cpu_rq(cpu);
12453 
12454 	SCHED_WARN_ON(cpu != smp_processor_id());
12455 
12456 	/* If this CPU is going down, then nothing needs to be done: */
12457 	if (!cpu_active(cpu))
12458 		return;
12459 
12460 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12461 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12462 		return;
12463 
12464 	/*
12465 	 * Can be set safely without rq->lock held
12466 	 * If a clear happens, it will have evaluated last additions because
12467 	 * rq->lock is held during the check and the clear
12468 	 */
12469 	rq->has_blocked_load = 1;
12470 
12471 	/*
12472 	 * The tick is still stopped but load could have been added in the
12473 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12474 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12475 	 * of nohz.has_blocked can only happen after checking the new load
12476 	 */
12477 	if (rq->nohz_tick_stopped)
12478 		goto out;
12479 
12480 	/* If we're a completely isolated CPU, we don't play: */
12481 	if (on_null_domain(rq))
12482 		return;
12483 
12484 	rq->nohz_tick_stopped = 1;
12485 
12486 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12487 	atomic_inc(&nohz.nr_cpus);
12488 
12489 	/*
12490 	 * Ensures that if nohz_idle_balance() fails to observe our
12491 	 * @idle_cpus_mask store, it must observe the @has_blocked
12492 	 * and @needs_update stores.
12493 	 */
12494 	smp_mb__after_atomic();
12495 
12496 	set_cpu_sd_state_idle(cpu);
12497 
12498 	WRITE_ONCE(nohz.needs_update, 1);
12499 out:
12500 	/*
12501 	 * Each time a cpu enter idle, we assume that it has blocked load and
12502 	 * enable the periodic update of the load of idle CPUs
12503 	 */
12504 	WRITE_ONCE(nohz.has_blocked, 1);
12505 }
12506 
12507 static bool update_nohz_stats(struct rq *rq)
12508 {
12509 	unsigned int cpu = rq->cpu;
12510 
12511 	if (!rq->has_blocked_load)
12512 		return false;
12513 
12514 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12515 		return false;
12516 
12517 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12518 		return true;
12519 
12520 	sched_balance_update_blocked_averages(cpu);
12521 
12522 	return rq->has_blocked_load;
12523 }
12524 
12525 /*
12526  * Internal function that runs load balance for all idle CPUs. The load balance
12527  * can be a simple update of blocked load or a complete load balance with
12528  * tasks movement depending of flags.
12529  */
12530 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12531 {
12532 	/* Earliest time when we have to do rebalance again */
12533 	unsigned long now = jiffies;
12534 	unsigned long next_balance = now + 60*HZ;
12535 	bool has_blocked_load = false;
12536 	int update_next_balance = 0;
12537 	int this_cpu = this_rq->cpu;
12538 	int balance_cpu;
12539 	struct rq *rq;
12540 
12541 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12542 
12543 	/*
12544 	 * We assume there will be no idle load after this update and clear
12545 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12546 	 * set the has_blocked flag and trigger another update of idle load.
12547 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12548 	 * setting the flag, we are sure to not clear the state and not
12549 	 * check the load of an idle cpu.
12550 	 *
12551 	 * Same applies to idle_cpus_mask vs needs_update.
12552 	 */
12553 	if (flags & NOHZ_STATS_KICK)
12554 		WRITE_ONCE(nohz.has_blocked, 0);
12555 	if (flags & NOHZ_NEXT_KICK)
12556 		WRITE_ONCE(nohz.needs_update, 0);
12557 
12558 	/*
12559 	 * Ensures that if we miss the CPU, we must see the has_blocked
12560 	 * store from nohz_balance_enter_idle().
12561 	 */
12562 	smp_mb();
12563 
12564 	/*
12565 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12566 	 * chance for other idle cpu to pull load.
12567 	 */
12568 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12569 		if (!idle_cpu(balance_cpu))
12570 			continue;
12571 
12572 		/*
12573 		 * If this CPU gets work to do, stop the load balancing
12574 		 * work being done for other CPUs. Next load
12575 		 * balancing owner will pick it up.
12576 		 */
12577 		if (!idle_cpu(this_cpu) && need_resched()) {
12578 			if (flags & NOHZ_STATS_KICK)
12579 				has_blocked_load = true;
12580 			if (flags & NOHZ_NEXT_KICK)
12581 				WRITE_ONCE(nohz.needs_update, 1);
12582 			goto abort;
12583 		}
12584 
12585 		rq = cpu_rq(balance_cpu);
12586 
12587 		if (flags & NOHZ_STATS_KICK)
12588 			has_blocked_load |= update_nohz_stats(rq);
12589 
12590 		/*
12591 		 * If time for next balance is due,
12592 		 * do the balance.
12593 		 */
12594 		if (time_after_eq(jiffies, rq->next_balance)) {
12595 			struct rq_flags rf;
12596 
12597 			rq_lock_irqsave(rq, &rf);
12598 			update_rq_clock(rq);
12599 			rq_unlock_irqrestore(rq, &rf);
12600 
12601 			if (flags & NOHZ_BALANCE_KICK)
12602 				sched_balance_domains(rq, CPU_IDLE);
12603 		}
12604 
12605 		if (time_after(next_balance, rq->next_balance)) {
12606 			next_balance = rq->next_balance;
12607 			update_next_balance = 1;
12608 		}
12609 	}
12610 
12611 	/*
12612 	 * next_balance will be updated only when there is a need.
12613 	 * When the CPU is attached to null domain for ex, it will not be
12614 	 * updated.
12615 	 */
12616 	if (likely(update_next_balance))
12617 		nohz.next_balance = next_balance;
12618 
12619 	if (flags & NOHZ_STATS_KICK)
12620 		WRITE_ONCE(nohz.next_blocked,
12621 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12622 
12623 abort:
12624 	/* There is still blocked load, enable periodic update */
12625 	if (has_blocked_load)
12626 		WRITE_ONCE(nohz.has_blocked, 1);
12627 }
12628 
12629 /*
12630  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12631  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12632  */
12633 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12634 {
12635 	unsigned int flags = this_rq->nohz_idle_balance;
12636 
12637 	if (!flags)
12638 		return false;
12639 
12640 	this_rq->nohz_idle_balance = 0;
12641 
12642 	if (idle != CPU_IDLE)
12643 		return false;
12644 
12645 	_nohz_idle_balance(this_rq, flags);
12646 
12647 	return true;
12648 }
12649 
12650 /*
12651  * Check if we need to directly run the ILB for updating blocked load before
12652  * entering idle state. Here we run ILB directly without issuing IPIs.
12653  *
12654  * Note that when this function is called, the tick may not yet be stopped on
12655  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12656  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12657  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12658  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12659  * called from this function on (this) CPU that's not yet in the mask. That's
12660  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12661  * updating the blocked load of already idle CPUs without waking up one of
12662  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12663  * cpu about to enter idle, because it can take a long time.
12664  */
12665 void nohz_run_idle_balance(int cpu)
12666 {
12667 	unsigned int flags;
12668 
12669 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12670 
12671 	/*
12672 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12673 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12674 	 */
12675 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12676 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12677 }
12678 
12679 static void nohz_newidle_balance(struct rq *this_rq)
12680 {
12681 	int this_cpu = this_rq->cpu;
12682 
12683 	/*
12684 	 * This CPU doesn't want to be disturbed by scheduler
12685 	 * housekeeping
12686 	 */
12687 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12688 		return;
12689 
12690 	/* Will wake up very soon. No time for doing anything else*/
12691 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12692 		return;
12693 
12694 	/* Don't need to update blocked load of idle CPUs*/
12695 	if (!READ_ONCE(nohz.has_blocked) ||
12696 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12697 		return;
12698 
12699 	/*
12700 	 * Set the need to trigger ILB in order to update blocked load
12701 	 * before entering idle state.
12702 	 */
12703 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12704 }
12705 
12706 #else /* !CONFIG_NO_HZ_COMMON */
12707 static inline void nohz_balancer_kick(struct rq *rq) { }
12708 
12709 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12710 {
12711 	return false;
12712 }
12713 
12714 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12715 #endif /* CONFIG_NO_HZ_COMMON */
12716 
12717 /*
12718  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12719  * idle. Attempts to pull tasks from other CPUs.
12720  *
12721  * Returns:
12722  *   < 0 - we released the lock and there are !fair tasks present
12723  *     0 - failed, no new tasks
12724  *   > 0 - success, new (fair) tasks present
12725  */
12726 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12727 {
12728 	unsigned long next_balance = jiffies + HZ;
12729 	int this_cpu = this_rq->cpu;
12730 	int continue_balancing = 1;
12731 	u64 t0, t1, curr_cost = 0;
12732 	struct sched_domain *sd;
12733 	int pulled_task = 0;
12734 
12735 	update_misfit_status(NULL, this_rq);
12736 
12737 	/*
12738 	 * There is a task waiting to run. No need to search for one.
12739 	 * Return 0; the task will be enqueued when switching to idle.
12740 	 */
12741 	if (this_rq->ttwu_pending)
12742 		return 0;
12743 
12744 	/*
12745 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12746 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12747 	 * as idle time.
12748 	 */
12749 	this_rq->idle_stamp = rq_clock(this_rq);
12750 
12751 	/*
12752 	 * Do not pull tasks towards !active CPUs...
12753 	 */
12754 	if (!cpu_active(this_cpu))
12755 		return 0;
12756 
12757 	/*
12758 	 * This is OK, because current is on_cpu, which avoids it being picked
12759 	 * for load-balance and preemption/IRQs are still disabled avoiding
12760 	 * further scheduler activity on it and we're being very careful to
12761 	 * re-start the picking loop.
12762 	 */
12763 	rq_unpin_lock(this_rq, rf);
12764 
12765 	rcu_read_lock();
12766 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12767 
12768 	if (!get_rd_overloaded(this_rq->rd) ||
12769 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12770 
12771 		if (sd)
12772 			update_next_balance(sd, &next_balance);
12773 		rcu_read_unlock();
12774 
12775 		goto out;
12776 	}
12777 	rcu_read_unlock();
12778 
12779 	raw_spin_rq_unlock(this_rq);
12780 
12781 	t0 = sched_clock_cpu(this_cpu);
12782 	sched_balance_update_blocked_averages(this_cpu);
12783 
12784 	rcu_read_lock();
12785 	for_each_domain(this_cpu, sd) {
12786 		u64 domain_cost;
12787 
12788 		update_next_balance(sd, &next_balance);
12789 
12790 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12791 			break;
12792 
12793 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12794 
12795 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12796 						   sd, CPU_NEWLY_IDLE,
12797 						   &continue_balancing);
12798 
12799 			t1 = sched_clock_cpu(this_cpu);
12800 			domain_cost = t1 - t0;
12801 			update_newidle_cost(sd, domain_cost);
12802 
12803 			curr_cost += domain_cost;
12804 			t0 = t1;
12805 		}
12806 
12807 		/*
12808 		 * Stop searching for tasks to pull if there are
12809 		 * now runnable tasks on this rq.
12810 		 */
12811 		if (pulled_task || !continue_balancing)
12812 			break;
12813 	}
12814 	rcu_read_unlock();
12815 
12816 	raw_spin_rq_lock(this_rq);
12817 
12818 	if (curr_cost > this_rq->max_idle_balance_cost)
12819 		this_rq->max_idle_balance_cost = curr_cost;
12820 
12821 	/*
12822 	 * While browsing the domains, we released the rq lock, a task could
12823 	 * have been enqueued in the meantime. Since we're not going idle,
12824 	 * pretend we pulled a task.
12825 	 */
12826 	if (this_rq->cfs.h_nr_running && !pulled_task)
12827 		pulled_task = 1;
12828 
12829 	/* Is there a task of a high priority class? */
12830 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12831 		pulled_task = -1;
12832 
12833 out:
12834 	/* Move the next balance forward */
12835 	if (time_after(this_rq->next_balance, next_balance))
12836 		this_rq->next_balance = next_balance;
12837 
12838 	if (pulled_task)
12839 		this_rq->idle_stamp = 0;
12840 	else
12841 		nohz_newidle_balance(this_rq);
12842 
12843 	rq_repin_lock(this_rq, rf);
12844 
12845 	return pulled_task;
12846 }
12847 
12848 /*
12849  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12850  *
12851  * - directly from the local scheduler_tick() for periodic load balancing
12852  *
12853  * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12854  *   through the SMP cross-call nohz_csd_func()
12855  */
12856 static __latent_entropy void sched_balance_softirq(void)
12857 {
12858 	struct rq *this_rq = this_rq();
12859 	enum cpu_idle_type idle = this_rq->idle_balance;
12860 	/*
12861 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12862 	 * balancing on behalf of the other idle CPUs whose ticks are
12863 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12864 	 * give the idle CPUs a chance to load balance. Else we may
12865 	 * load balance only within the local sched_domain hierarchy
12866 	 * and abort nohz_idle_balance altogether if we pull some load.
12867 	 */
12868 	if (nohz_idle_balance(this_rq, idle))
12869 		return;
12870 
12871 	/* normal load balance */
12872 	sched_balance_update_blocked_averages(this_rq->cpu);
12873 	sched_balance_domains(this_rq, idle);
12874 }
12875 
12876 /*
12877  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12878  */
12879 void sched_balance_trigger(struct rq *rq)
12880 {
12881 	/*
12882 	 * Don't need to rebalance while attached to NULL domain or
12883 	 * runqueue CPU is not active
12884 	 */
12885 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12886 		return;
12887 
12888 	if (time_after_eq(jiffies, rq->next_balance))
12889 		raise_softirq(SCHED_SOFTIRQ);
12890 
12891 	nohz_balancer_kick(rq);
12892 }
12893 
12894 static void rq_online_fair(struct rq *rq)
12895 {
12896 	update_sysctl();
12897 
12898 	update_runtime_enabled(rq);
12899 }
12900 
12901 static void rq_offline_fair(struct rq *rq)
12902 {
12903 	update_sysctl();
12904 
12905 	/* Ensure any throttled groups are reachable by pick_next_task */
12906 	unthrottle_offline_cfs_rqs(rq);
12907 
12908 	/* Ensure that we remove rq contribution to group share: */
12909 	clear_tg_offline_cfs_rqs(rq);
12910 }
12911 
12912 #endif /* CONFIG_SMP */
12913 
12914 #ifdef CONFIG_SCHED_CORE
12915 static inline bool
12916 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12917 {
12918 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12919 	u64 slice = se->slice;
12920 
12921 	return (rtime * min_nr_tasks > slice);
12922 }
12923 
12924 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12925 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12926 {
12927 	if (!sched_core_enabled(rq))
12928 		return;
12929 
12930 	/*
12931 	 * If runqueue has only one task which used up its slice and
12932 	 * if the sibling is forced idle, then trigger schedule to
12933 	 * give forced idle task a chance.
12934 	 *
12935 	 * sched_slice() considers only this active rq and it gets the
12936 	 * whole slice. But during force idle, we have siblings acting
12937 	 * like a single runqueue and hence we need to consider runnable
12938 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12939 	 * go through the forced idle rq, but that would be a perf hit.
12940 	 * We can assume that the forced idle CPU has at least
12941 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12942 	 * if we need to give up the CPU.
12943 	 */
12944 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12945 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12946 		resched_curr(rq);
12947 }
12948 
12949 /*
12950  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12951  */
12952 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12953 			 bool forceidle)
12954 {
12955 	for_each_sched_entity(se) {
12956 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12957 
12958 		if (forceidle) {
12959 			if (cfs_rq->forceidle_seq == fi_seq)
12960 				break;
12961 			cfs_rq->forceidle_seq = fi_seq;
12962 		}
12963 
12964 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12965 	}
12966 }
12967 
12968 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12969 {
12970 	struct sched_entity *se = &p->se;
12971 
12972 	if (p->sched_class != &fair_sched_class)
12973 		return;
12974 
12975 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12976 }
12977 
12978 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12979 			bool in_fi)
12980 {
12981 	struct rq *rq = task_rq(a);
12982 	const struct sched_entity *sea = &a->se;
12983 	const struct sched_entity *seb = &b->se;
12984 	struct cfs_rq *cfs_rqa;
12985 	struct cfs_rq *cfs_rqb;
12986 	s64 delta;
12987 
12988 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12989 
12990 #ifdef CONFIG_FAIR_GROUP_SCHED
12991 	/*
12992 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12993 	 * are immediate siblings.
12994 	 */
12995 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12996 		int sea_depth = sea->depth;
12997 		int seb_depth = seb->depth;
12998 
12999 		if (sea_depth >= seb_depth)
13000 			sea = parent_entity(sea);
13001 		if (sea_depth <= seb_depth)
13002 			seb = parent_entity(seb);
13003 	}
13004 
13005 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13006 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13007 
13008 	cfs_rqa = sea->cfs_rq;
13009 	cfs_rqb = seb->cfs_rq;
13010 #else
13011 	cfs_rqa = &task_rq(a)->cfs;
13012 	cfs_rqb = &task_rq(b)->cfs;
13013 #endif
13014 
13015 	/*
13016 	 * Find delta after normalizing se's vruntime with its cfs_rq's
13017 	 * min_vruntime_fi, which would have been updated in prior calls
13018 	 * to se_fi_update().
13019 	 */
13020 	delta = (s64)(sea->vruntime - seb->vruntime) +
13021 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13022 
13023 	return delta > 0;
13024 }
13025 
13026 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13027 {
13028 	struct cfs_rq *cfs_rq;
13029 
13030 #ifdef CONFIG_FAIR_GROUP_SCHED
13031 	cfs_rq = task_group(p)->cfs_rq[cpu];
13032 #else
13033 	cfs_rq = &cpu_rq(cpu)->cfs;
13034 #endif
13035 	return throttled_hierarchy(cfs_rq);
13036 }
13037 #else
13038 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13039 #endif
13040 
13041 /*
13042  * scheduler tick hitting a task of our scheduling class.
13043  *
13044  * NOTE: This function can be called remotely by the tick offload that
13045  * goes along full dynticks. Therefore no local assumption can be made
13046  * and everything must be accessed through the @rq and @curr passed in
13047  * parameters.
13048  */
13049 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13050 {
13051 	struct cfs_rq *cfs_rq;
13052 	struct sched_entity *se = &curr->se;
13053 
13054 	for_each_sched_entity(se) {
13055 		cfs_rq = cfs_rq_of(se);
13056 		entity_tick(cfs_rq, se, queued);
13057 	}
13058 
13059 	if (static_branch_unlikely(&sched_numa_balancing))
13060 		task_tick_numa(rq, curr);
13061 
13062 	update_misfit_status(curr, rq);
13063 	check_update_overutilized_status(task_rq(curr));
13064 
13065 	task_tick_core(rq, curr);
13066 }
13067 
13068 /*
13069  * called on fork with the child task as argument from the parent's context
13070  *  - child not yet on the tasklist
13071  *  - preemption disabled
13072  */
13073 static void task_fork_fair(struct task_struct *p)
13074 {
13075 	set_task_max_allowed_capacity(p);
13076 }
13077 
13078 /*
13079  * Priority of the task has changed. Check to see if we preempt
13080  * the current task.
13081  */
13082 static void
13083 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13084 {
13085 	if (!task_on_rq_queued(p))
13086 		return;
13087 
13088 	if (rq->cfs.nr_running == 1)
13089 		return;
13090 
13091 	/*
13092 	 * Reschedule if we are currently running on this runqueue and
13093 	 * our priority decreased, or if we are not currently running on
13094 	 * this runqueue and our priority is higher than the current's
13095 	 */
13096 	if (task_current_donor(rq, p)) {
13097 		if (p->prio > oldprio)
13098 			resched_curr(rq);
13099 	} else
13100 		wakeup_preempt(rq, p, 0);
13101 }
13102 
13103 #ifdef CONFIG_FAIR_GROUP_SCHED
13104 /*
13105  * Propagate the changes of the sched_entity across the tg tree to make it
13106  * visible to the root
13107  */
13108 static void propagate_entity_cfs_rq(struct sched_entity *se)
13109 {
13110 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13111 
13112 	if (cfs_rq_throttled(cfs_rq))
13113 		return;
13114 
13115 	if (!throttled_hierarchy(cfs_rq))
13116 		list_add_leaf_cfs_rq(cfs_rq);
13117 
13118 	/* Start to propagate at parent */
13119 	se = se->parent;
13120 
13121 	for_each_sched_entity(se) {
13122 		cfs_rq = cfs_rq_of(se);
13123 
13124 		update_load_avg(cfs_rq, se, UPDATE_TG);
13125 
13126 		if (cfs_rq_throttled(cfs_rq))
13127 			break;
13128 
13129 		if (!throttled_hierarchy(cfs_rq))
13130 			list_add_leaf_cfs_rq(cfs_rq);
13131 	}
13132 }
13133 #else
13134 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13135 #endif
13136 
13137 static void detach_entity_cfs_rq(struct sched_entity *se)
13138 {
13139 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13140 
13141 #ifdef CONFIG_SMP
13142 	/*
13143 	 * In case the task sched_avg hasn't been attached:
13144 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13145 	 * - A task which has been woken up by try_to_wake_up() but is
13146 	 *   waiting for actually being woken up by sched_ttwu_pending().
13147 	 */
13148 	if (!se->avg.last_update_time)
13149 		return;
13150 #endif
13151 
13152 	/* Catch up with the cfs_rq and remove our load when we leave */
13153 	update_load_avg(cfs_rq, se, 0);
13154 	detach_entity_load_avg(cfs_rq, se);
13155 	update_tg_load_avg(cfs_rq);
13156 	propagate_entity_cfs_rq(se);
13157 }
13158 
13159 static void attach_entity_cfs_rq(struct sched_entity *se)
13160 {
13161 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13162 
13163 	/* Synchronize entity with its cfs_rq */
13164 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13165 	attach_entity_load_avg(cfs_rq, se);
13166 	update_tg_load_avg(cfs_rq);
13167 	propagate_entity_cfs_rq(se);
13168 }
13169 
13170 static void detach_task_cfs_rq(struct task_struct *p)
13171 {
13172 	struct sched_entity *se = &p->se;
13173 
13174 	detach_entity_cfs_rq(se);
13175 }
13176 
13177 static void attach_task_cfs_rq(struct task_struct *p)
13178 {
13179 	struct sched_entity *se = &p->se;
13180 
13181 	attach_entity_cfs_rq(se);
13182 }
13183 
13184 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13185 {
13186 	detach_task_cfs_rq(p);
13187 }
13188 
13189 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13190 {
13191 	SCHED_WARN_ON(p->se.sched_delayed);
13192 
13193 	attach_task_cfs_rq(p);
13194 
13195 	set_task_max_allowed_capacity(p);
13196 
13197 	if (task_on_rq_queued(p)) {
13198 		/*
13199 		 * We were most likely switched from sched_rt, so
13200 		 * kick off the schedule if running, otherwise just see
13201 		 * if we can still preempt the current task.
13202 		 */
13203 		if (task_current_donor(rq, p))
13204 			resched_curr(rq);
13205 		else
13206 			wakeup_preempt(rq, p, 0);
13207 	}
13208 }
13209 
13210 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13211 {
13212 	struct sched_entity *se = &p->se;
13213 
13214 #ifdef CONFIG_SMP
13215 	if (task_on_rq_queued(p)) {
13216 		/*
13217 		 * Move the next running task to the front of the list, so our
13218 		 * cfs_tasks list becomes MRU one.
13219 		 */
13220 		list_move(&se->group_node, &rq->cfs_tasks);
13221 	}
13222 #endif
13223 	if (!first)
13224 		return;
13225 
13226 	SCHED_WARN_ON(se->sched_delayed);
13227 
13228 	if (hrtick_enabled_fair(rq))
13229 		hrtick_start_fair(rq, p);
13230 
13231 	update_misfit_status(p, rq);
13232 	sched_fair_update_stop_tick(rq, p);
13233 }
13234 
13235 /*
13236  * Account for a task changing its policy or group.
13237  *
13238  * This routine is mostly called to set cfs_rq->curr field when a task
13239  * migrates between groups/classes.
13240  */
13241 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13242 {
13243 	struct sched_entity *se = &p->se;
13244 
13245 	for_each_sched_entity(se) {
13246 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13247 
13248 		set_next_entity(cfs_rq, se);
13249 		/* ensure bandwidth has been allocated on our new cfs_rq */
13250 		account_cfs_rq_runtime(cfs_rq, 0);
13251 	}
13252 
13253 	__set_next_task_fair(rq, p, first);
13254 }
13255 
13256 void init_cfs_rq(struct cfs_rq *cfs_rq)
13257 {
13258 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13259 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13260 #ifdef CONFIG_SMP
13261 	raw_spin_lock_init(&cfs_rq->removed.lock);
13262 #endif
13263 }
13264 
13265 #ifdef CONFIG_FAIR_GROUP_SCHED
13266 static void task_change_group_fair(struct task_struct *p)
13267 {
13268 	/*
13269 	 * We couldn't detach or attach a forked task which
13270 	 * hasn't been woken up by wake_up_new_task().
13271 	 */
13272 	if (READ_ONCE(p->__state) == TASK_NEW)
13273 		return;
13274 
13275 	detach_task_cfs_rq(p);
13276 
13277 #ifdef CONFIG_SMP
13278 	/* Tell se's cfs_rq has been changed -- migrated */
13279 	p->se.avg.last_update_time = 0;
13280 #endif
13281 	set_task_rq(p, task_cpu(p));
13282 	attach_task_cfs_rq(p);
13283 }
13284 
13285 void free_fair_sched_group(struct task_group *tg)
13286 {
13287 	int i;
13288 
13289 	for_each_possible_cpu(i) {
13290 		if (tg->cfs_rq)
13291 			kfree(tg->cfs_rq[i]);
13292 		if (tg->se)
13293 			kfree(tg->se[i]);
13294 	}
13295 
13296 	kfree(tg->cfs_rq);
13297 	kfree(tg->se);
13298 }
13299 
13300 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13301 {
13302 	struct sched_entity *se;
13303 	struct cfs_rq *cfs_rq;
13304 	int i;
13305 
13306 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13307 	if (!tg->cfs_rq)
13308 		goto err;
13309 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13310 	if (!tg->se)
13311 		goto err;
13312 
13313 	tg->shares = NICE_0_LOAD;
13314 
13315 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13316 
13317 	for_each_possible_cpu(i) {
13318 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13319 				      GFP_KERNEL, cpu_to_node(i));
13320 		if (!cfs_rq)
13321 			goto err;
13322 
13323 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13324 				  GFP_KERNEL, cpu_to_node(i));
13325 		if (!se)
13326 			goto err_free_rq;
13327 
13328 		init_cfs_rq(cfs_rq);
13329 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13330 		init_entity_runnable_average(se);
13331 	}
13332 
13333 	return 1;
13334 
13335 err_free_rq:
13336 	kfree(cfs_rq);
13337 err:
13338 	return 0;
13339 }
13340 
13341 void online_fair_sched_group(struct task_group *tg)
13342 {
13343 	struct sched_entity *se;
13344 	struct rq_flags rf;
13345 	struct rq *rq;
13346 	int i;
13347 
13348 	for_each_possible_cpu(i) {
13349 		rq = cpu_rq(i);
13350 		se = tg->se[i];
13351 		rq_lock_irq(rq, &rf);
13352 		update_rq_clock(rq);
13353 		attach_entity_cfs_rq(se);
13354 		sync_throttle(tg, i);
13355 		rq_unlock_irq(rq, &rf);
13356 	}
13357 }
13358 
13359 void unregister_fair_sched_group(struct task_group *tg)
13360 {
13361 	int cpu;
13362 
13363 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13364 
13365 	for_each_possible_cpu(cpu) {
13366 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13367 		struct sched_entity *se = tg->se[cpu];
13368 		struct rq *rq = cpu_rq(cpu);
13369 
13370 		if (se) {
13371 			if (se->sched_delayed) {
13372 				guard(rq_lock_irqsave)(rq);
13373 				if (se->sched_delayed) {
13374 					update_rq_clock(rq);
13375 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13376 				}
13377 				list_del_leaf_cfs_rq(cfs_rq);
13378 			}
13379 			remove_entity_load_avg(se);
13380 		}
13381 
13382 		/*
13383 		 * Only empty task groups can be destroyed; so we can speculatively
13384 		 * check on_list without danger of it being re-added.
13385 		 */
13386 		if (cfs_rq->on_list) {
13387 			guard(rq_lock_irqsave)(rq);
13388 			list_del_leaf_cfs_rq(cfs_rq);
13389 		}
13390 	}
13391 }
13392 
13393 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13394 			struct sched_entity *se, int cpu,
13395 			struct sched_entity *parent)
13396 {
13397 	struct rq *rq = cpu_rq(cpu);
13398 
13399 	cfs_rq->tg = tg;
13400 	cfs_rq->rq = rq;
13401 	init_cfs_rq_runtime(cfs_rq);
13402 
13403 	tg->cfs_rq[cpu] = cfs_rq;
13404 	tg->se[cpu] = se;
13405 
13406 	/* se could be NULL for root_task_group */
13407 	if (!se)
13408 		return;
13409 
13410 	if (!parent) {
13411 		se->cfs_rq = &rq->cfs;
13412 		se->depth = 0;
13413 	} else {
13414 		se->cfs_rq = parent->my_q;
13415 		se->depth = parent->depth + 1;
13416 	}
13417 
13418 	se->my_q = cfs_rq;
13419 	/* guarantee group entities always have weight */
13420 	update_load_set(&se->load, NICE_0_LOAD);
13421 	se->parent = parent;
13422 }
13423 
13424 static DEFINE_MUTEX(shares_mutex);
13425 
13426 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13427 {
13428 	int i;
13429 
13430 	lockdep_assert_held(&shares_mutex);
13431 
13432 	/*
13433 	 * We can't change the weight of the root cgroup.
13434 	 */
13435 	if (!tg->se[0])
13436 		return -EINVAL;
13437 
13438 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13439 
13440 	if (tg->shares == shares)
13441 		return 0;
13442 
13443 	tg->shares = shares;
13444 	for_each_possible_cpu(i) {
13445 		struct rq *rq = cpu_rq(i);
13446 		struct sched_entity *se = tg->se[i];
13447 		struct rq_flags rf;
13448 
13449 		/* Propagate contribution to hierarchy */
13450 		rq_lock_irqsave(rq, &rf);
13451 		update_rq_clock(rq);
13452 		for_each_sched_entity(se) {
13453 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13454 			update_cfs_group(se);
13455 		}
13456 		rq_unlock_irqrestore(rq, &rf);
13457 	}
13458 
13459 	return 0;
13460 }
13461 
13462 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13463 {
13464 	int ret;
13465 
13466 	mutex_lock(&shares_mutex);
13467 	if (tg_is_idle(tg))
13468 		ret = -EINVAL;
13469 	else
13470 		ret = __sched_group_set_shares(tg, shares);
13471 	mutex_unlock(&shares_mutex);
13472 
13473 	return ret;
13474 }
13475 
13476 int sched_group_set_idle(struct task_group *tg, long idle)
13477 {
13478 	int i;
13479 
13480 	if (tg == &root_task_group)
13481 		return -EINVAL;
13482 
13483 	if (idle < 0 || idle > 1)
13484 		return -EINVAL;
13485 
13486 	mutex_lock(&shares_mutex);
13487 
13488 	if (tg->idle == idle) {
13489 		mutex_unlock(&shares_mutex);
13490 		return 0;
13491 	}
13492 
13493 	tg->idle = idle;
13494 
13495 	for_each_possible_cpu(i) {
13496 		struct rq *rq = cpu_rq(i);
13497 		struct sched_entity *se = tg->se[i];
13498 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13499 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13500 		long idle_task_delta;
13501 		struct rq_flags rf;
13502 
13503 		rq_lock_irqsave(rq, &rf);
13504 
13505 		grp_cfs_rq->idle = idle;
13506 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13507 			goto next_cpu;
13508 
13509 		if (se->on_rq) {
13510 			parent_cfs_rq = cfs_rq_of(se);
13511 			if (cfs_rq_is_idle(grp_cfs_rq))
13512 				parent_cfs_rq->idle_nr_running++;
13513 			else
13514 				parent_cfs_rq->idle_nr_running--;
13515 		}
13516 
13517 		idle_task_delta = grp_cfs_rq->h_nr_running -
13518 				  grp_cfs_rq->idle_h_nr_running;
13519 		if (!cfs_rq_is_idle(grp_cfs_rq))
13520 			idle_task_delta *= -1;
13521 
13522 		for_each_sched_entity(se) {
13523 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13524 
13525 			if (!se->on_rq)
13526 				break;
13527 
13528 			cfs_rq->idle_h_nr_running += idle_task_delta;
13529 
13530 			/* Already accounted at parent level and above. */
13531 			if (cfs_rq_is_idle(cfs_rq))
13532 				break;
13533 		}
13534 
13535 next_cpu:
13536 		rq_unlock_irqrestore(rq, &rf);
13537 	}
13538 
13539 	/* Idle groups have minimum weight. */
13540 	if (tg_is_idle(tg))
13541 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13542 	else
13543 		__sched_group_set_shares(tg, NICE_0_LOAD);
13544 
13545 	mutex_unlock(&shares_mutex);
13546 	return 0;
13547 }
13548 
13549 #endif /* CONFIG_FAIR_GROUP_SCHED */
13550 
13551 
13552 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13553 {
13554 	struct sched_entity *se = &task->se;
13555 	unsigned int rr_interval = 0;
13556 
13557 	/*
13558 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13559 	 * idle runqueue:
13560 	 */
13561 	if (rq->cfs.load.weight)
13562 		rr_interval = NS_TO_JIFFIES(se->slice);
13563 
13564 	return rr_interval;
13565 }
13566 
13567 /*
13568  * All the scheduling class methods:
13569  */
13570 DEFINE_SCHED_CLASS(fair) = {
13571 
13572 	.enqueue_task		= enqueue_task_fair,
13573 	.dequeue_task		= dequeue_task_fair,
13574 	.yield_task		= yield_task_fair,
13575 	.yield_to_task		= yield_to_task_fair,
13576 
13577 	.wakeup_preempt		= check_preempt_wakeup_fair,
13578 
13579 	.pick_task		= pick_task_fair,
13580 	.pick_next_task		= __pick_next_task_fair,
13581 	.put_prev_task		= put_prev_task_fair,
13582 	.set_next_task          = set_next_task_fair,
13583 
13584 #ifdef CONFIG_SMP
13585 	.balance		= balance_fair,
13586 	.select_task_rq		= select_task_rq_fair,
13587 	.migrate_task_rq	= migrate_task_rq_fair,
13588 
13589 	.rq_online		= rq_online_fair,
13590 	.rq_offline		= rq_offline_fair,
13591 
13592 	.task_dead		= task_dead_fair,
13593 	.set_cpus_allowed	= set_cpus_allowed_fair,
13594 #endif
13595 
13596 	.task_tick		= task_tick_fair,
13597 	.task_fork		= task_fork_fair,
13598 
13599 	.reweight_task		= reweight_task_fair,
13600 	.prio_changed		= prio_changed_fair,
13601 	.switched_from		= switched_from_fair,
13602 	.switched_to		= switched_to_fair,
13603 
13604 	.get_rr_interval	= get_rr_interval_fair,
13605 
13606 	.update_curr		= update_curr_fair,
13607 
13608 #ifdef CONFIG_FAIR_GROUP_SCHED
13609 	.task_change_group	= task_change_group_fair,
13610 #endif
13611 
13612 #ifdef CONFIG_SCHED_CORE
13613 	.task_is_throttled	= task_is_throttled_fair,
13614 #endif
13615 
13616 #ifdef CONFIG_UCLAMP_TASK
13617 	.uclamp_enabled		= 1,
13618 #endif
13619 };
13620 
13621 #ifdef CONFIG_SCHED_DEBUG
13622 void print_cfs_stats(struct seq_file *m, int cpu)
13623 {
13624 	struct cfs_rq *cfs_rq, *pos;
13625 
13626 	rcu_read_lock();
13627 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13628 		print_cfs_rq(m, cpu, cfs_rq);
13629 	rcu_read_unlock();
13630 }
13631 
13632 #ifdef CONFIG_NUMA_BALANCING
13633 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13634 {
13635 	int node;
13636 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13637 	struct numa_group *ng;
13638 
13639 	rcu_read_lock();
13640 	ng = rcu_dereference(p->numa_group);
13641 	for_each_online_node(node) {
13642 		if (p->numa_faults) {
13643 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13644 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13645 		}
13646 		if (ng) {
13647 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13648 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13649 		}
13650 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13651 	}
13652 	rcu_read_unlock();
13653 }
13654 #endif /* CONFIG_NUMA_BALANCING */
13655 #endif /* CONFIG_SCHED_DEBUG */
13656 
13657 __init void init_sched_fair_class(void)
13658 {
13659 #ifdef CONFIG_SMP
13660 	int i;
13661 
13662 	for_each_possible_cpu(i) {
13663 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13664 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13665 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13666 					GFP_KERNEL, cpu_to_node(i));
13667 
13668 #ifdef CONFIG_CFS_BANDWIDTH
13669 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13670 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13671 #endif
13672 	}
13673 
13674 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13675 
13676 #ifdef CONFIG_NO_HZ_COMMON
13677 	nohz.next_balance = jiffies;
13678 	nohz.next_blocked = jiffies;
13679 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13680 #endif
13681 #endif /* SMP */
13682 
13683 }
13684