1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 /* 92 * For asym packing, by default the lower numbered CPU has higher priority. 93 */ 94 int __weak arch_asym_cpu_priority(int cpu) 95 { 96 return -cpu; 97 } 98 99 /* 100 * The margin used when comparing utilization with CPU capacity. 101 * 102 * (default: ~20%) 103 */ 104 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 105 106 /* 107 * The margin used when comparing CPU capacities. 108 * is 'cap1' noticeably greater than 'cap2' 109 * 110 * (default: ~5%) 111 */ 112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 113 114 #ifdef CONFIG_CFS_BANDWIDTH 115 /* 116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 117 * each time a cfs_rq requests quota. 118 * 119 * Note: in the case that the slice exceeds the runtime remaining (either due 120 * to consumption or the quota being specified to be smaller than the slice) 121 * we will always only issue the remaining available time. 122 * 123 * (default: 5 msec, units: microseconds) 124 */ 125 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 126 #endif 127 128 #ifdef CONFIG_NUMA_BALANCING 129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 131 #endif 132 133 #ifdef CONFIG_SYSCTL 134 static const struct ctl_table sched_fair_sysctls[] = { 135 #ifdef CONFIG_CFS_BANDWIDTH 136 { 137 .procname = "sched_cfs_bandwidth_slice_us", 138 .data = &sysctl_sched_cfs_bandwidth_slice, 139 .maxlen = sizeof(unsigned int), 140 .mode = 0644, 141 .proc_handler = proc_dointvec_minmax, 142 .extra1 = SYSCTL_ONE, 143 }, 144 #endif 145 #ifdef CONFIG_NUMA_BALANCING 146 { 147 .procname = "numa_balancing_promote_rate_limit_MBps", 148 .data = &sysctl_numa_balancing_promote_rate_limit, 149 .maxlen = sizeof(unsigned int), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 }, 154 #endif /* CONFIG_NUMA_BALANCING */ 155 }; 156 157 static int __init sched_fair_sysctl_init(void) 158 { 159 register_sysctl_init("kernel", sched_fair_sysctls); 160 return 0; 161 } 162 late_initcall(sched_fair_sysctl_init); 163 #endif /* CONFIG_SYSCTL */ 164 165 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 166 { 167 lw->weight += inc; 168 lw->inv_weight = 0; 169 } 170 171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 172 { 173 lw->weight -= dec; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_set(struct load_weight *lw, unsigned long w) 178 { 179 lw->weight = w; 180 lw->inv_weight = 0; 181 } 182 183 /* 184 * Increase the granularity value when there are more CPUs, 185 * because with more CPUs the 'effective latency' as visible 186 * to users decreases. But the relationship is not linear, 187 * so pick a second-best guess by going with the log2 of the 188 * number of CPUs. 189 * 190 * This idea comes from the SD scheduler of Con Kolivas: 191 */ 192 static unsigned int get_update_sysctl_factor(void) 193 { 194 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 195 unsigned int factor; 196 197 switch (sysctl_sched_tunable_scaling) { 198 case SCHED_TUNABLESCALING_NONE: 199 factor = 1; 200 break; 201 case SCHED_TUNABLESCALING_LINEAR: 202 factor = cpus; 203 break; 204 case SCHED_TUNABLESCALING_LOG: 205 default: 206 factor = 1 + ilog2(cpus); 207 break; 208 } 209 210 return factor; 211 } 212 213 static void update_sysctl(void) 214 { 215 unsigned int factor = get_update_sysctl_factor(); 216 217 #define SET_SYSCTL(name) \ 218 (sysctl_##name = (factor) * normalized_sysctl_##name) 219 SET_SYSCTL(sched_base_slice); 220 #undef SET_SYSCTL 221 } 222 223 void __init sched_init_granularity(void) 224 { 225 update_sysctl(); 226 } 227 228 #define WMULT_CONST (~0U) 229 #define WMULT_SHIFT 32 230 231 static void __update_inv_weight(struct load_weight *lw) 232 { 233 unsigned long w; 234 235 if (likely(lw->inv_weight)) 236 return; 237 238 w = scale_load_down(lw->weight); 239 240 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 241 lw->inv_weight = 1; 242 else if (unlikely(!w)) 243 lw->inv_weight = WMULT_CONST; 244 else 245 lw->inv_weight = WMULT_CONST / w; 246 } 247 248 /* 249 * delta_exec * weight / lw.weight 250 * OR 251 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 252 * 253 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 254 * we're guaranteed shift stays positive because inv_weight is guaranteed to 255 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 256 * 257 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 258 * weight/lw.weight <= 1, and therefore our shift will also be positive. 259 */ 260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 261 { 262 u64 fact = scale_load_down(weight); 263 u32 fact_hi = (u32)(fact >> 32); 264 int shift = WMULT_SHIFT; 265 int fs; 266 267 __update_inv_weight(lw); 268 269 if (unlikely(fact_hi)) { 270 fs = fls(fact_hi); 271 shift -= fs; 272 fact >>= fs; 273 } 274 275 fact = mul_u32_u32(fact, lw->inv_weight); 276 277 fact_hi = (u32)(fact >> 32); 278 if (fact_hi) { 279 fs = fls(fact_hi); 280 shift -= fs; 281 fact >>= fs; 282 } 283 284 return mul_u64_u32_shr(delta_exec, fact, shift); 285 } 286 287 /* 288 * delta /= w 289 */ 290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 291 { 292 if (unlikely(se->load.weight != NICE_0_LOAD)) 293 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 294 295 return delta; 296 } 297 298 const struct sched_class fair_sched_class; 299 300 /************************************************************** 301 * CFS operations on generic schedulable entities: 302 */ 303 304 #ifdef CONFIG_FAIR_GROUP_SCHED 305 306 /* Walk up scheduling entities hierarchy */ 307 #define for_each_sched_entity(se) \ 308 for (; se; se = se->parent) 309 310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 311 { 312 struct rq *rq = rq_of(cfs_rq); 313 int cpu = cpu_of(rq); 314 315 if (cfs_rq->on_list) 316 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 317 318 cfs_rq->on_list = 1; 319 320 /* 321 * Ensure we either appear before our parent (if already 322 * enqueued) or force our parent to appear after us when it is 323 * enqueued. The fact that we always enqueue bottom-up 324 * reduces this to two cases and a special case for the root 325 * cfs_rq. Furthermore, it also means that we will always reset 326 * tmp_alone_branch either when the branch is connected 327 * to a tree or when we reach the top of the tree 328 */ 329 if (cfs_rq->tg->parent && 330 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 331 /* 332 * If parent is already on the list, we add the child 333 * just before. Thanks to circular linked property of 334 * the list, this means to put the child at the tail 335 * of the list that starts by parent. 336 */ 337 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 338 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 339 /* 340 * The branch is now connected to its tree so we can 341 * reset tmp_alone_branch to the beginning of the 342 * list. 343 */ 344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 345 return true; 346 } 347 348 if (!cfs_rq->tg->parent) { 349 /* 350 * cfs rq without parent should be put 351 * at the tail of the list. 352 */ 353 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 354 &rq->leaf_cfs_rq_list); 355 /* 356 * We have reach the top of a tree so we can reset 357 * tmp_alone_branch to the beginning of the list. 358 */ 359 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 360 return true; 361 } 362 363 /* 364 * The parent has not already been added so we want to 365 * make sure that it will be put after us. 366 * tmp_alone_branch points to the begin of the branch 367 * where we will add parent. 368 */ 369 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 370 /* 371 * update tmp_alone_branch to points to the new begin 372 * of the branch 373 */ 374 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 375 return false; 376 } 377 378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 379 { 380 if (cfs_rq->on_list) { 381 struct rq *rq = rq_of(cfs_rq); 382 383 /* 384 * With cfs_rq being unthrottled/throttled during an enqueue, 385 * it can happen the tmp_alone_branch points to the leaf that 386 * we finally want to delete. In this case, tmp_alone_branch moves 387 * to the prev element but it will point to rq->leaf_cfs_rq_list 388 * at the end of the enqueue. 389 */ 390 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 391 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 392 393 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 394 cfs_rq->on_list = 0; 395 } 396 } 397 398 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 399 { 400 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 401 } 402 403 /* Iterate through all leaf cfs_rq's on a runqueue */ 404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 405 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 406 leaf_cfs_rq_list) 407 408 /* Do the two (enqueued) entities belong to the same group ? */ 409 static inline struct cfs_rq * 410 is_same_group(struct sched_entity *se, struct sched_entity *pse) 411 { 412 if (se->cfs_rq == pse->cfs_rq) 413 return se->cfs_rq; 414 415 return NULL; 416 } 417 418 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 419 { 420 return se->parent; 421 } 422 423 static void 424 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 425 { 426 int se_depth, pse_depth; 427 428 /* 429 * preemption test can be made between sibling entities who are in the 430 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 431 * both tasks until we find their ancestors who are siblings of common 432 * parent. 433 */ 434 435 /* First walk up until both entities are at same depth */ 436 se_depth = (*se)->depth; 437 pse_depth = (*pse)->depth; 438 439 while (se_depth > pse_depth) { 440 se_depth--; 441 *se = parent_entity(*se); 442 } 443 444 while (pse_depth > se_depth) { 445 pse_depth--; 446 *pse = parent_entity(*pse); 447 } 448 449 while (!is_same_group(*se, *pse)) { 450 *se = parent_entity(*se); 451 *pse = parent_entity(*pse); 452 } 453 } 454 455 static int tg_is_idle(struct task_group *tg) 456 { 457 return tg->idle > 0; 458 } 459 460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 461 { 462 return cfs_rq->idle > 0; 463 } 464 465 static int se_is_idle(struct sched_entity *se) 466 { 467 if (entity_is_task(se)) 468 return task_has_idle_policy(task_of(se)); 469 return cfs_rq_is_idle(group_cfs_rq(se)); 470 } 471 472 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 473 474 #define for_each_sched_entity(se) \ 475 for (; se; se = NULL) 476 477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 478 { 479 return true; 480 } 481 482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 483 { 484 } 485 486 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 487 { 488 } 489 490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 491 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 492 493 static inline struct sched_entity *parent_entity(struct sched_entity *se) 494 { 495 return NULL; 496 } 497 498 static inline void 499 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 500 { 501 } 502 503 static inline int tg_is_idle(struct task_group *tg) 504 { 505 return 0; 506 } 507 508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 509 { 510 return 0; 511 } 512 513 static int se_is_idle(struct sched_entity *se) 514 { 515 return task_has_idle_policy(task_of(se)); 516 } 517 518 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 519 520 static __always_inline 521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 522 523 /************************************************************** 524 * Scheduling class tree data structure manipulation methods: 525 */ 526 527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 528 { 529 s64 delta = (s64)(vruntime - max_vruntime); 530 if (delta > 0) 531 max_vruntime = vruntime; 532 533 return max_vruntime; 534 } 535 536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 537 { 538 s64 delta = (s64)(vruntime - min_vruntime); 539 if (delta < 0) 540 min_vruntime = vruntime; 541 542 return min_vruntime; 543 } 544 545 static inline bool entity_before(const struct sched_entity *a, 546 const struct sched_entity *b) 547 { 548 /* 549 * Tiebreak on vruntime seems unnecessary since it can 550 * hardly happen. 551 */ 552 return (s64)(a->deadline - b->deadline) < 0; 553 } 554 555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 556 { 557 return (s64)(se->vruntime - cfs_rq->min_vruntime); 558 } 559 560 #define __node_2_se(node) \ 561 rb_entry((node), struct sched_entity, run_node) 562 563 /* 564 * Compute virtual time from the per-task service numbers: 565 * 566 * Fair schedulers conserve lag: 567 * 568 * \Sum lag_i = 0 569 * 570 * Where lag_i is given by: 571 * 572 * lag_i = S - s_i = w_i * (V - v_i) 573 * 574 * Where S is the ideal service time and V is it's virtual time counterpart. 575 * Therefore: 576 * 577 * \Sum lag_i = 0 578 * \Sum w_i * (V - v_i) = 0 579 * \Sum w_i * V - w_i * v_i = 0 580 * 581 * From which we can solve an expression for V in v_i (which we have in 582 * se->vruntime): 583 * 584 * \Sum v_i * w_i \Sum v_i * w_i 585 * V = -------------- = -------------- 586 * \Sum w_i W 587 * 588 * Specifically, this is the weighted average of all entity virtual runtimes. 589 * 590 * [[ NOTE: this is only equal to the ideal scheduler under the condition 591 * that join/leave operations happen at lag_i = 0, otherwise the 592 * virtual time has non-contiguous motion equivalent to: 593 * 594 * V +-= lag_i / W 595 * 596 * Also see the comment in place_entity() that deals with this. ]] 597 * 598 * However, since v_i is u64, and the multiplication could easily overflow 599 * transform it into a relative form that uses smaller quantities: 600 * 601 * Substitute: v_i == (v_i - v0) + v0 602 * 603 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 604 * V = ---------------------------- = --------------------- + v0 605 * W W 606 * 607 * Which we track using: 608 * 609 * v0 := cfs_rq->min_vruntime 610 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 611 * \Sum w_i := cfs_rq->avg_load 612 * 613 * Since min_vruntime is a monotonic increasing variable that closely tracks 614 * the per-task service, these deltas: (v_i - v), will be in the order of the 615 * maximal (virtual) lag induced in the system due to quantisation. 616 * 617 * Also, we use scale_load_down() to reduce the size. 618 * 619 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 620 */ 621 static void 622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 623 { 624 unsigned long weight = scale_load_down(se->load.weight); 625 s64 key = entity_key(cfs_rq, se); 626 627 cfs_rq->avg_vruntime += key * weight; 628 cfs_rq->avg_load += weight; 629 } 630 631 static void 632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 633 { 634 unsigned long weight = scale_load_down(se->load.weight); 635 s64 key = entity_key(cfs_rq, se); 636 637 cfs_rq->avg_vruntime -= key * weight; 638 cfs_rq->avg_load -= weight; 639 } 640 641 static inline 642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 643 { 644 /* 645 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 646 */ 647 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 648 } 649 650 /* 651 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 652 * For this to be so, the result of this function must have a left bias. 653 */ 654 u64 avg_vruntime(struct cfs_rq *cfs_rq) 655 { 656 struct sched_entity *curr = cfs_rq->curr; 657 s64 avg = cfs_rq->avg_vruntime; 658 long load = cfs_rq->avg_load; 659 660 if (curr && curr->on_rq) { 661 unsigned long weight = scale_load_down(curr->load.weight); 662 663 avg += entity_key(cfs_rq, curr) * weight; 664 load += weight; 665 } 666 667 if (load) { 668 /* sign flips effective floor / ceiling */ 669 if (avg < 0) 670 avg -= (load - 1); 671 avg = div_s64(avg, load); 672 } 673 674 return cfs_rq->min_vruntime + avg; 675 } 676 677 /* 678 * lag_i = S - s_i = w_i * (V - v_i) 679 * 680 * However, since V is approximated by the weighted average of all entities it 681 * is possible -- by addition/removal/reweight to the tree -- to move V around 682 * and end up with a larger lag than we started with. 683 * 684 * Limit this to either double the slice length with a minimum of TICK_NSEC 685 * since that is the timing granularity. 686 * 687 * EEVDF gives the following limit for a steady state system: 688 * 689 * -r_max < lag < max(r_max, q) 690 * 691 * XXX could add max_slice to the augmented data to track this. 692 */ 693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 694 { 695 s64 vlag, limit; 696 697 WARN_ON_ONCE(!se->on_rq); 698 699 vlag = avg_vruntime(cfs_rq) - se->vruntime; 700 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 701 702 se->vlag = clamp(vlag, -limit, limit); 703 } 704 705 /* 706 * Entity is eligible once it received less service than it ought to have, 707 * eg. lag >= 0. 708 * 709 * lag_i = S - s_i = w_i*(V - v_i) 710 * 711 * lag_i >= 0 -> V >= v_i 712 * 713 * \Sum (v_i - v)*w_i 714 * V = ------------------ + v 715 * \Sum w_i 716 * 717 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 718 * 719 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 720 * to the loss in precision caused by the division. 721 */ 722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 723 { 724 struct sched_entity *curr = cfs_rq->curr; 725 s64 avg = cfs_rq->avg_vruntime; 726 long load = cfs_rq->avg_load; 727 728 if (curr && curr->on_rq) { 729 unsigned long weight = scale_load_down(curr->load.weight); 730 731 avg += entity_key(cfs_rq, curr) * weight; 732 load += weight; 733 } 734 735 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 736 } 737 738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 739 { 740 return vruntime_eligible(cfs_rq, se->vruntime); 741 } 742 743 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 744 { 745 u64 min_vruntime = cfs_rq->min_vruntime; 746 /* 747 * open coded max_vruntime() to allow updating avg_vruntime 748 */ 749 s64 delta = (s64)(vruntime - min_vruntime); 750 if (delta > 0) { 751 avg_vruntime_update(cfs_rq, delta); 752 min_vruntime = vruntime; 753 } 754 return min_vruntime; 755 } 756 757 static void update_min_vruntime(struct cfs_rq *cfs_rq) 758 { 759 struct sched_entity *se = __pick_root_entity(cfs_rq); 760 struct sched_entity *curr = cfs_rq->curr; 761 u64 vruntime = cfs_rq->min_vruntime; 762 763 if (curr) { 764 if (curr->on_rq) 765 vruntime = curr->vruntime; 766 else 767 curr = NULL; 768 } 769 770 if (se) { 771 if (!curr) 772 vruntime = se->min_vruntime; 773 else 774 vruntime = min_vruntime(vruntime, se->min_vruntime); 775 } 776 777 /* ensure we never gain time by being placed backwards. */ 778 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 779 } 780 781 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 782 { 783 struct sched_entity *root = __pick_root_entity(cfs_rq); 784 struct sched_entity *curr = cfs_rq->curr; 785 u64 min_slice = ~0ULL; 786 787 if (curr && curr->on_rq) 788 min_slice = curr->slice; 789 790 if (root) 791 min_slice = min(min_slice, root->min_slice); 792 793 return min_slice; 794 } 795 796 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 797 { 798 return entity_before(__node_2_se(a), __node_2_se(b)); 799 } 800 801 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 802 803 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 804 { 805 if (node) { 806 struct sched_entity *rse = __node_2_se(node); 807 if (vruntime_gt(min_vruntime, se, rse)) 808 se->min_vruntime = rse->min_vruntime; 809 } 810 } 811 812 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 813 { 814 if (node) { 815 struct sched_entity *rse = __node_2_se(node); 816 if (rse->min_slice < se->min_slice) 817 se->min_slice = rse->min_slice; 818 } 819 } 820 821 /* 822 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 823 */ 824 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 825 { 826 u64 old_min_vruntime = se->min_vruntime; 827 u64 old_min_slice = se->min_slice; 828 struct rb_node *node = &se->run_node; 829 830 se->min_vruntime = se->vruntime; 831 __min_vruntime_update(se, node->rb_right); 832 __min_vruntime_update(se, node->rb_left); 833 834 se->min_slice = se->slice; 835 __min_slice_update(se, node->rb_right); 836 __min_slice_update(se, node->rb_left); 837 838 return se->min_vruntime == old_min_vruntime && 839 se->min_slice == old_min_slice; 840 } 841 842 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 843 run_node, min_vruntime, min_vruntime_update); 844 845 /* 846 * Enqueue an entity into the rb-tree: 847 */ 848 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 849 { 850 avg_vruntime_add(cfs_rq, se); 851 se->min_vruntime = se->vruntime; 852 se->min_slice = se->slice; 853 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 854 __entity_less, &min_vruntime_cb); 855 } 856 857 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 858 { 859 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 860 &min_vruntime_cb); 861 avg_vruntime_sub(cfs_rq, se); 862 } 863 864 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 865 { 866 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 867 868 if (!root) 869 return NULL; 870 871 return __node_2_se(root); 872 } 873 874 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 875 { 876 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 877 878 if (!left) 879 return NULL; 880 881 return __node_2_se(left); 882 } 883 884 /* 885 * Set the vruntime up to which an entity can run before looking 886 * for another entity to pick. 887 * In case of run to parity, we use the shortest slice of the enqueued 888 * entities to set the protected period. 889 * When run to parity is disabled, we give a minimum quantum to the running 890 * entity to ensure progress. 891 */ 892 static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 893 { 894 u64 slice = normalized_sysctl_sched_base_slice; 895 u64 vprot = se->deadline; 896 897 if (sched_feat(RUN_TO_PARITY)) 898 slice = cfs_rq_min_slice(cfs_rq); 899 900 slice = min(slice, se->slice); 901 if (slice != se->slice) 902 vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se)); 903 904 se->vprot = vprot; 905 } 906 907 static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 908 { 909 u64 slice = cfs_rq_min_slice(cfs_rq); 910 911 se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se)); 912 } 913 914 static inline bool protect_slice(struct sched_entity *se) 915 { 916 return ((s64)(se->vprot - se->vruntime) > 0); 917 } 918 919 static inline void cancel_protect_slice(struct sched_entity *se) 920 { 921 if (protect_slice(se)) 922 se->vprot = se->vruntime; 923 } 924 925 /* 926 * Earliest Eligible Virtual Deadline First 927 * 928 * In order to provide latency guarantees for different request sizes 929 * EEVDF selects the best runnable task from two criteria: 930 * 931 * 1) the task must be eligible (must be owed service) 932 * 933 * 2) from those tasks that meet 1), we select the one 934 * with the earliest virtual deadline. 935 * 936 * We can do this in O(log n) time due to an augmented RB-tree. The 937 * tree keeps the entries sorted on deadline, but also functions as a 938 * heap based on the vruntime by keeping: 939 * 940 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 941 * 942 * Which allows tree pruning through eligibility. 943 */ 944 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect) 945 { 946 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 947 struct sched_entity *se = __pick_first_entity(cfs_rq); 948 struct sched_entity *curr = cfs_rq->curr; 949 struct sched_entity *best = NULL; 950 951 /* 952 * We can safely skip eligibility check if there is only one entity 953 * in this cfs_rq, saving some cycles. 954 */ 955 if (cfs_rq->nr_queued == 1) 956 return curr && curr->on_rq ? curr : se; 957 958 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 959 curr = NULL; 960 961 if (curr && protect && protect_slice(curr)) 962 return curr; 963 964 /* Pick the leftmost entity if it's eligible */ 965 if (se && entity_eligible(cfs_rq, se)) { 966 best = se; 967 goto found; 968 } 969 970 /* Heap search for the EEVD entity */ 971 while (node) { 972 struct rb_node *left = node->rb_left; 973 974 /* 975 * Eligible entities in left subtree are always better 976 * choices, since they have earlier deadlines. 977 */ 978 if (left && vruntime_eligible(cfs_rq, 979 __node_2_se(left)->min_vruntime)) { 980 node = left; 981 continue; 982 } 983 984 se = __node_2_se(node); 985 986 /* 987 * The left subtree either is empty or has no eligible 988 * entity, so check the current node since it is the one 989 * with earliest deadline that might be eligible. 990 */ 991 if (entity_eligible(cfs_rq, se)) { 992 best = se; 993 break; 994 } 995 996 node = node->rb_right; 997 } 998 found: 999 if (!best || (curr && entity_before(curr, best))) 1000 best = curr; 1001 1002 return best; 1003 } 1004 1005 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 1006 { 1007 return __pick_eevdf(cfs_rq, true); 1008 } 1009 1010 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 1011 { 1012 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 1013 1014 if (!last) 1015 return NULL; 1016 1017 return __node_2_se(last); 1018 } 1019 1020 /************************************************************** 1021 * Scheduling class statistics methods: 1022 */ 1023 int sched_update_scaling(void) 1024 { 1025 unsigned int factor = get_update_sysctl_factor(); 1026 1027 #define WRT_SYSCTL(name) \ 1028 (normalized_sysctl_##name = sysctl_##name / (factor)) 1029 WRT_SYSCTL(sched_base_slice); 1030 #undef WRT_SYSCTL 1031 1032 return 0; 1033 } 1034 1035 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1036 1037 /* 1038 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1039 * this is probably good enough. 1040 */ 1041 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1042 { 1043 if ((s64)(se->vruntime - se->deadline) < 0) 1044 return false; 1045 1046 /* 1047 * For EEVDF the virtual time slope is determined by w_i (iow. 1048 * nice) while the request time r_i is determined by 1049 * sysctl_sched_base_slice. 1050 */ 1051 if (!se->custom_slice) 1052 se->slice = sysctl_sched_base_slice; 1053 1054 /* 1055 * EEVDF: vd_i = ve_i + r_i / w_i 1056 */ 1057 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1058 1059 /* 1060 * The task has consumed its request, reschedule. 1061 */ 1062 return true; 1063 } 1064 1065 #include "pelt.h" 1066 1067 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1068 static unsigned long task_h_load(struct task_struct *p); 1069 static unsigned long capacity_of(int cpu); 1070 1071 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1072 void init_entity_runnable_average(struct sched_entity *se) 1073 { 1074 struct sched_avg *sa = &se->avg; 1075 1076 memset(sa, 0, sizeof(*sa)); 1077 1078 /* 1079 * Tasks are initialized with full load to be seen as heavy tasks until 1080 * they get a chance to stabilize to their real load level. 1081 * Group entities are initialized with zero load to reflect the fact that 1082 * nothing has been attached to the task group yet. 1083 */ 1084 if (entity_is_task(se)) 1085 sa->load_avg = scale_load_down(se->load.weight); 1086 1087 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1088 } 1089 1090 /* 1091 * With new tasks being created, their initial util_avgs are extrapolated 1092 * based on the cfs_rq's current util_avg: 1093 * 1094 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1095 * * se_weight(se) 1096 * 1097 * However, in many cases, the above util_avg does not give a desired 1098 * value. Moreover, the sum of the util_avgs may be divergent, such 1099 * as when the series is a harmonic series. 1100 * 1101 * To solve this problem, we also cap the util_avg of successive tasks to 1102 * only 1/2 of the left utilization budget: 1103 * 1104 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1105 * 1106 * where n denotes the nth task and cpu_scale the CPU capacity. 1107 * 1108 * For example, for a CPU with 1024 of capacity, a simplest series from 1109 * the beginning would be like: 1110 * 1111 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1112 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1113 * 1114 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1115 * if util_avg > util_avg_cap. 1116 */ 1117 void post_init_entity_util_avg(struct task_struct *p) 1118 { 1119 struct sched_entity *se = &p->se; 1120 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1121 struct sched_avg *sa = &se->avg; 1122 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1123 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1124 1125 if (p->sched_class != &fair_sched_class) { 1126 /* 1127 * For !fair tasks do: 1128 * 1129 update_cfs_rq_load_avg(now, cfs_rq); 1130 attach_entity_load_avg(cfs_rq, se); 1131 switched_from_fair(rq, p); 1132 * 1133 * such that the next switched_to_fair() has the 1134 * expected state. 1135 */ 1136 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1137 return; 1138 } 1139 1140 if (cap > 0) { 1141 if (cfs_rq->avg.util_avg != 0) { 1142 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1143 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1144 1145 if (sa->util_avg > cap) 1146 sa->util_avg = cap; 1147 } else { 1148 sa->util_avg = cap; 1149 } 1150 } 1151 1152 sa->runnable_avg = sa->util_avg; 1153 } 1154 1155 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1156 { 1157 u64 now = rq_clock_task(rq); 1158 s64 delta_exec; 1159 1160 delta_exec = now - curr->exec_start; 1161 if (unlikely(delta_exec <= 0)) 1162 return delta_exec; 1163 1164 curr->exec_start = now; 1165 curr->sum_exec_runtime += delta_exec; 1166 1167 if (schedstat_enabled()) { 1168 struct sched_statistics *stats; 1169 1170 stats = __schedstats_from_se(curr); 1171 __schedstat_set(stats->exec_max, 1172 max(delta_exec, stats->exec_max)); 1173 } 1174 1175 return delta_exec; 1176 } 1177 1178 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1179 { 1180 trace_sched_stat_runtime(p, delta_exec); 1181 account_group_exec_runtime(p, delta_exec); 1182 cgroup_account_cputime(p, delta_exec); 1183 } 1184 1185 /* 1186 * Used by other classes to account runtime. 1187 */ 1188 s64 update_curr_common(struct rq *rq) 1189 { 1190 struct task_struct *donor = rq->donor; 1191 s64 delta_exec; 1192 1193 delta_exec = update_curr_se(rq, &donor->se); 1194 if (likely(delta_exec > 0)) 1195 update_curr_task(donor, delta_exec); 1196 1197 return delta_exec; 1198 } 1199 1200 /* 1201 * Update the current task's runtime statistics. 1202 */ 1203 static void update_curr(struct cfs_rq *cfs_rq) 1204 { 1205 struct sched_entity *curr = cfs_rq->curr; 1206 struct rq *rq = rq_of(cfs_rq); 1207 s64 delta_exec; 1208 bool resched; 1209 1210 if (unlikely(!curr)) 1211 return; 1212 1213 delta_exec = update_curr_se(rq, curr); 1214 if (unlikely(delta_exec <= 0)) 1215 return; 1216 1217 curr->vruntime += calc_delta_fair(delta_exec, curr); 1218 resched = update_deadline(cfs_rq, curr); 1219 update_min_vruntime(cfs_rq); 1220 1221 if (entity_is_task(curr)) { 1222 struct task_struct *p = task_of(curr); 1223 1224 update_curr_task(p, delta_exec); 1225 1226 /* 1227 * If the fair_server is active, we need to account for the 1228 * fair_server time whether or not the task is running on 1229 * behalf of fair_server or not: 1230 * - If the task is running on behalf of fair_server, we need 1231 * to limit its time based on the assigned runtime. 1232 * - Fair task that runs outside of fair_server should account 1233 * against fair_server such that it can account for this time 1234 * and possibly avoid running this period. 1235 */ 1236 if (dl_server_active(&rq->fair_server)) 1237 dl_server_update(&rq->fair_server, delta_exec); 1238 } 1239 1240 account_cfs_rq_runtime(cfs_rq, delta_exec); 1241 1242 if (cfs_rq->nr_queued == 1) 1243 return; 1244 1245 if (resched || !protect_slice(curr)) { 1246 resched_curr_lazy(rq); 1247 clear_buddies(cfs_rq, curr); 1248 } 1249 } 1250 1251 static void update_curr_fair(struct rq *rq) 1252 { 1253 update_curr(cfs_rq_of(&rq->donor->se)); 1254 } 1255 1256 static inline void 1257 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1258 { 1259 struct sched_statistics *stats; 1260 struct task_struct *p = NULL; 1261 1262 if (!schedstat_enabled()) 1263 return; 1264 1265 stats = __schedstats_from_se(se); 1266 1267 if (entity_is_task(se)) 1268 p = task_of(se); 1269 1270 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1271 } 1272 1273 static inline void 1274 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1275 { 1276 struct sched_statistics *stats; 1277 struct task_struct *p = NULL; 1278 1279 if (!schedstat_enabled()) 1280 return; 1281 1282 stats = __schedstats_from_se(se); 1283 1284 /* 1285 * When the sched_schedstat changes from 0 to 1, some sched se 1286 * maybe already in the runqueue, the se->statistics.wait_start 1287 * will be 0.So it will let the delta wrong. We need to avoid this 1288 * scenario. 1289 */ 1290 if (unlikely(!schedstat_val(stats->wait_start))) 1291 return; 1292 1293 if (entity_is_task(se)) 1294 p = task_of(se); 1295 1296 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1297 } 1298 1299 static inline void 1300 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1301 { 1302 struct sched_statistics *stats; 1303 struct task_struct *tsk = NULL; 1304 1305 if (!schedstat_enabled()) 1306 return; 1307 1308 stats = __schedstats_from_se(se); 1309 1310 if (entity_is_task(se)) 1311 tsk = task_of(se); 1312 1313 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1314 } 1315 1316 /* 1317 * Task is being enqueued - update stats: 1318 */ 1319 static inline void 1320 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1321 { 1322 if (!schedstat_enabled()) 1323 return; 1324 1325 /* 1326 * Are we enqueueing a waiting task? (for current tasks 1327 * a dequeue/enqueue event is a NOP) 1328 */ 1329 if (se != cfs_rq->curr) 1330 update_stats_wait_start_fair(cfs_rq, se); 1331 1332 if (flags & ENQUEUE_WAKEUP) 1333 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1334 } 1335 1336 static inline void 1337 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1338 { 1339 1340 if (!schedstat_enabled()) 1341 return; 1342 1343 /* 1344 * Mark the end of the wait period if dequeueing a 1345 * waiting task: 1346 */ 1347 if (se != cfs_rq->curr) 1348 update_stats_wait_end_fair(cfs_rq, se); 1349 1350 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1351 struct task_struct *tsk = task_of(se); 1352 unsigned int state; 1353 1354 /* XXX racy against TTWU */ 1355 state = READ_ONCE(tsk->__state); 1356 if (state & TASK_INTERRUPTIBLE) 1357 __schedstat_set(tsk->stats.sleep_start, 1358 rq_clock(rq_of(cfs_rq))); 1359 if (state & TASK_UNINTERRUPTIBLE) 1360 __schedstat_set(tsk->stats.block_start, 1361 rq_clock(rq_of(cfs_rq))); 1362 } 1363 } 1364 1365 /* 1366 * We are picking a new current task - update its stats: 1367 */ 1368 static inline void 1369 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1370 { 1371 /* 1372 * We are starting a new run period: 1373 */ 1374 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1375 } 1376 1377 /************************************************** 1378 * Scheduling class queueing methods: 1379 */ 1380 1381 static inline bool is_core_idle(int cpu) 1382 { 1383 #ifdef CONFIG_SCHED_SMT 1384 int sibling; 1385 1386 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1387 if (cpu == sibling) 1388 continue; 1389 1390 if (!idle_cpu(sibling)) 1391 return false; 1392 } 1393 #endif 1394 1395 return true; 1396 } 1397 1398 #ifdef CONFIG_NUMA 1399 #define NUMA_IMBALANCE_MIN 2 1400 1401 static inline long 1402 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1403 { 1404 /* 1405 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1406 * threshold. Above this threshold, individual tasks may be contending 1407 * for both memory bandwidth and any shared HT resources. This is an 1408 * approximation as the number of running tasks may not be related to 1409 * the number of busy CPUs due to sched_setaffinity. 1410 */ 1411 if (dst_running > imb_numa_nr) 1412 return imbalance; 1413 1414 /* 1415 * Allow a small imbalance based on a simple pair of communicating 1416 * tasks that remain local when the destination is lightly loaded. 1417 */ 1418 if (imbalance <= NUMA_IMBALANCE_MIN) 1419 return 0; 1420 1421 return imbalance; 1422 } 1423 #endif /* CONFIG_NUMA */ 1424 1425 #ifdef CONFIG_NUMA_BALANCING 1426 /* 1427 * Approximate time to scan a full NUMA task in ms. The task scan period is 1428 * calculated based on the tasks virtual memory size and 1429 * numa_balancing_scan_size. 1430 */ 1431 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1432 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1433 1434 /* Portion of address space to scan in MB */ 1435 unsigned int sysctl_numa_balancing_scan_size = 256; 1436 1437 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1438 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1439 1440 /* The page with hint page fault latency < threshold in ms is considered hot */ 1441 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1442 1443 struct numa_group { 1444 refcount_t refcount; 1445 1446 spinlock_t lock; /* nr_tasks, tasks */ 1447 int nr_tasks; 1448 pid_t gid; 1449 int active_nodes; 1450 1451 struct rcu_head rcu; 1452 unsigned long total_faults; 1453 unsigned long max_faults_cpu; 1454 /* 1455 * faults[] array is split into two regions: faults_mem and faults_cpu. 1456 * 1457 * Faults_cpu is used to decide whether memory should move 1458 * towards the CPU. As a consequence, these stats are weighted 1459 * more by CPU use than by memory faults. 1460 */ 1461 unsigned long faults[]; 1462 }; 1463 1464 /* 1465 * For functions that can be called in multiple contexts that permit reading 1466 * ->numa_group (see struct task_struct for locking rules). 1467 */ 1468 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1469 { 1470 return rcu_dereference_check(p->numa_group, p == current || 1471 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1472 } 1473 1474 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1475 { 1476 return rcu_dereference_protected(p->numa_group, p == current); 1477 } 1478 1479 static inline unsigned long group_faults_priv(struct numa_group *ng); 1480 static inline unsigned long group_faults_shared(struct numa_group *ng); 1481 1482 static unsigned int task_nr_scan_windows(struct task_struct *p) 1483 { 1484 unsigned long rss = 0; 1485 unsigned long nr_scan_pages; 1486 1487 /* 1488 * Calculations based on RSS as non-present and empty pages are skipped 1489 * by the PTE scanner and NUMA hinting faults should be trapped based 1490 * on resident pages 1491 */ 1492 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1493 rss = get_mm_rss(p->mm); 1494 if (!rss) 1495 rss = nr_scan_pages; 1496 1497 rss = round_up(rss, nr_scan_pages); 1498 return rss / nr_scan_pages; 1499 } 1500 1501 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1502 #define MAX_SCAN_WINDOW 2560 1503 1504 static unsigned int task_scan_min(struct task_struct *p) 1505 { 1506 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1507 unsigned int scan, floor; 1508 unsigned int windows = 1; 1509 1510 if (scan_size < MAX_SCAN_WINDOW) 1511 windows = MAX_SCAN_WINDOW / scan_size; 1512 floor = 1000 / windows; 1513 1514 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1515 return max_t(unsigned int, floor, scan); 1516 } 1517 1518 static unsigned int task_scan_start(struct task_struct *p) 1519 { 1520 unsigned long smin = task_scan_min(p); 1521 unsigned long period = smin; 1522 struct numa_group *ng; 1523 1524 /* Scale the maximum scan period with the amount of shared memory. */ 1525 rcu_read_lock(); 1526 ng = rcu_dereference(p->numa_group); 1527 if (ng) { 1528 unsigned long shared = group_faults_shared(ng); 1529 unsigned long private = group_faults_priv(ng); 1530 1531 period *= refcount_read(&ng->refcount); 1532 period *= shared + 1; 1533 period /= private + shared + 1; 1534 } 1535 rcu_read_unlock(); 1536 1537 return max(smin, period); 1538 } 1539 1540 static unsigned int task_scan_max(struct task_struct *p) 1541 { 1542 unsigned long smin = task_scan_min(p); 1543 unsigned long smax; 1544 struct numa_group *ng; 1545 1546 /* Watch for min being lower than max due to floor calculations */ 1547 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1548 1549 /* Scale the maximum scan period with the amount of shared memory. */ 1550 ng = deref_curr_numa_group(p); 1551 if (ng) { 1552 unsigned long shared = group_faults_shared(ng); 1553 unsigned long private = group_faults_priv(ng); 1554 unsigned long period = smax; 1555 1556 period *= refcount_read(&ng->refcount); 1557 period *= shared + 1; 1558 period /= private + shared + 1; 1559 1560 smax = max(smax, period); 1561 } 1562 1563 return max(smin, smax); 1564 } 1565 1566 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1567 { 1568 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1569 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1570 } 1571 1572 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1573 { 1574 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1575 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1576 } 1577 1578 /* Shared or private faults. */ 1579 #define NR_NUMA_HINT_FAULT_TYPES 2 1580 1581 /* Memory and CPU locality */ 1582 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1583 1584 /* Averaged statistics, and temporary buffers. */ 1585 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1586 1587 pid_t task_numa_group_id(struct task_struct *p) 1588 { 1589 struct numa_group *ng; 1590 pid_t gid = 0; 1591 1592 rcu_read_lock(); 1593 ng = rcu_dereference(p->numa_group); 1594 if (ng) 1595 gid = ng->gid; 1596 rcu_read_unlock(); 1597 1598 return gid; 1599 } 1600 1601 /* 1602 * The averaged statistics, shared & private, memory & CPU, 1603 * occupy the first half of the array. The second half of the 1604 * array is for current counters, which are averaged into the 1605 * first set by task_numa_placement. 1606 */ 1607 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1608 { 1609 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1610 } 1611 1612 static inline unsigned long task_faults(struct task_struct *p, int nid) 1613 { 1614 if (!p->numa_faults) 1615 return 0; 1616 1617 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1618 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1619 } 1620 1621 static inline unsigned long group_faults(struct task_struct *p, int nid) 1622 { 1623 struct numa_group *ng = deref_task_numa_group(p); 1624 1625 if (!ng) 1626 return 0; 1627 1628 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1629 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1630 } 1631 1632 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1633 { 1634 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1635 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1636 } 1637 1638 static inline unsigned long group_faults_priv(struct numa_group *ng) 1639 { 1640 unsigned long faults = 0; 1641 int node; 1642 1643 for_each_online_node(node) { 1644 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1645 } 1646 1647 return faults; 1648 } 1649 1650 static inline unsigned long group_faults_shared(struct numa_group *ng) 1651 { 1652 unsigned long faults = 0; 1653 int node; 1654 1655 for_each_online_node(node) { 1656 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1657 } 1658 1659 return faults; 1660 } 1661 1662 /* 1663 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1664 * considered part of a numa group's pseudo-interleaving set. Migrations 1665 * between these nodes are slowed down, to allow things to settle down. 1666 */ 1667 #define ACTIVE_NODE_FRACTION 3 1668 1669 static bool numa_is_active_node(int nid, struct numa_group *ng) 1670 { 1671 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1672 } 1673 1674 /* Handle placement on systems where not all nodes are directly connected. */ 1675 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1676 int lim_dist, bool task) 1677 { 1678 unsigned long score = 0; 1679 int node, max_dist; 1680 1681 /* 1682 * All nodes are directly connected, and the same distance 1683 * from each other. No need for fancy placement algorithms. 1684 */ 1685 if (sched_numa_topology_type == NUMA_DIRECT) 1686 return 0; 1687 1688 /* sched_max_numa_distance may be changed in parallel. */ 1689 max_dist = READ_ONCE(sched_max_numa_distance); 1690 /* 1691 * This code is called for each node, introducing N^2 complexity, 1692 * which should be OK given the number of nodes rarely exceeds 8. 1693 */ 1694 for_each_online_node(node) { 1695 unsigned long faults; 1696 int dist = node_distance(nid, node); 1697 1698 /* 1699 * The furthest away nodes in the system are not interesting 1700 * for placement; nid was already counted. 1701 */ 1702 if (dist >= max_dist || node == nid) 1703 continue; 1704 1705 /* 1706 * On systems with a backplane NUMA topology, compare groups 1707 * of nodes, and move tasks towards the group with the most 1708 * memory accesses. When comparing two nodes at distance 1709 * "hoplimit", only nodes closer by than "hoplimit" are part 1710 * of each group. Skip other nodes. 1711 */ 1712 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1713 continue; 1714 1715 /* Add up the faults from nearby nodes. */ 1716 if (task) 1717 faults = task_faults(p, node); 1718 else 1719 faults = group_faults(p, node); 1720 1721 /* 1722 * On systems with a glueless mesh NUMA topology, there are 1723 * no fixed "groups of nodes". Instead, nodes that are not 1724 * directly connected bounce traffic through intermediate 1725 * nodes; a numa_group can occupy any set of nodes. 1726 * The further away a node is, the less the faults count. 1727 * This seems to result in good task placement. 1728 */ 1729 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1730 faults *= (max_dist - dist); 1731 faults /= (max_dist - LOCAL_DISTANCE); 1732 } 1733 1734 score += faults; 1735 } 1736 1737 return score; 1738 } 1739 1740 /* 1741 * These return the fraction of accesses done by a particular task, or 1742 * task group, on a particular numa node. The group weight is given a 1743 * larger multiplier, in order to group tasks together that are almost 1744 * evenly spread out between numa nodes. 1745 */ 1746 static inline unsigned long task_weight(struct task_struct *p, int nid, 1747 int dist) 1748 { 1749 unsigned long faults, total_faults; 1750 1751 if (!p->numa_faults) 1752 return 0; 1753 1754 total_faults = p->total_numa_faults; 1755 1756 if (!total_faults) 1757 return 0; 1758 1759 faults = task_faults(p, nid); 1760 faults += score_nearby_nodes(p, nid, dist, true); 1761 1762 return 1000 * faults / total_faults; 1763 } 1764 1765 static inline unsigned long group_weight(struct task_struct *p, int nid, 1766 int dist) 1767 { 1768 struct numa_group *ng = deref_task_numa_group(p); 1769 unsigned long faults, total_faults; 1770 1771 if (!ng) 1772 return 0; 1773 1774 total_faults = ng->total_faults; 1775 1776 if (!total_faults) 1777 return 0; 1778 1779 faults = group_faults(p, nid); 1780 faults += score_nearby_nodes(p, nid, dist, false); 1781 1782 return 1000 * faults / total_faults; 1783 } 1784 1785 /* 1786 * If memory tiering mode is enabled, cpupid of slow memory page is 1787 * used to record scan time instead of CPU and PID. When tiering mode 1788 * is disabled at run time, the scan time (in cpupid) will be 1789 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1790 * access out of array bound. 1791 */ 1792 static inline bool cpupid_valid(int cpupid) 1793 { 1794 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1795 } 1796 1797 /* 1798 * For memory tiering mode, if there are enough free pages (more than 1799 * enough watermark defined here) in fast memory node, to take full 1800 * advantage of fast memory capacity, all recently accessed slow 1801 * memory pages will be migrated to fast memory node without 1802 * considering hot threshold. 1803 */ 1804 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1805 { 1806 int z; 1807 unsigned long enough_wmark; 1808 1809 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1810 pgdat->node_present_pages >> 4); 1811 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1812 struct zone *zone = pgdat->node_zones + z; 1813 1814 if (!populated_zone(zone)) 1815 continue; 1816 1817 if (zone_watermark_ok(zone, 0, 1818 promo_wmark_pages(zone) + enough_wmark, 1819 ZONE_MOVABLE, 0)) 1820 return true; 1821 } 1822 return false; 1823 } 1824 1825 /* 1826 * For memory tiering mode, when page tables are scanned, the scan 1827 * time will be recorded in struct page in addition to make page 1828 * PROT_NONE for slow memory page. So when the page is accessed, in 1829 * hint page fault handler, the hint page fault latency is calculated 1830 * via, 1831 * 1832 * hint page fault latency = hint page fault time - scan time 1833 * 1834 * The smaller the hint page fault latency, the higher the possibility 1835 * for the page to be hot. 1836 */ 1837 static int numa_hint_fault_latency(struct folio *folio) 1838 { 1839 int last_time, time; 1840 1841 time = jiffies_to_msecs(jiffies); 1842 last_time = folio_xchg_access_time(folio, time); 1843 1844 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1845 } 1846 1847 /* 1848 * For memory tiering mode, too high promotion/demotion throughput may 1849 * hurt application latency. So we provide a mechanism to rate limit 1850 * the number of pages that are tried to be promoted. 1851 */ 1852 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1853 unsigned long rate_limit, int nr) 1854 { 1855 unsigned long nr_cand; 1856 unsigned int now, start; 1857 1858 now = jiffies_to_msecs(jiffies); 1859 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1860 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1861 start = pgdat->nbp_rl_start; 1862 if (now - start > MSEC_PER_SEC && 1863 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1864 pgdat->nbp_rl_nr_cand = nr_cand; 1865 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1866 return true; 1867 return false; 1868 } 1869 1870 #define NUMA_MIGRATION_ADJUST_STEPS 16 1871 1872 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1873 unsigned long rate_limit, 1874 unsigned int ref_th) 1875 { 1876 unsigned int now, start, th_period, unit_th, th; 1877 unsigned long nr_cand, ref_cand, diff_cand; 1878 1879 now = jiffies_to_msecs(jiffies); 1880 th_period = sysctl_numa_balancing_scan_period_max; 1881 start = pgdat->nbp_th_start; 1882 if (now - start > th_period && 1883 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1884 ref_cand = rate_limit * 1885 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1886 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1887 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1888 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1889 th = pgdat->nbp_threshold ? : ref_th; 1890 if (diff_cand > ref_cand * 11 / 10) 1891 th = max(th - unit_th, unit_th); 1892 else if (diff_cand < ref_cand * 9 / 10) 1893 th = min(th + unit_th, ref_th * 2); 1894 pgdat->nbp_th_nr_cand = nr_cand; 1895 pgdat->nbp_threshold = th; 1896 } 1897 } 1898 1899 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1900 int src_nid, int dst_cpu) 1901 { 1902 struct numa_group *ng = deref_curr_numa_group(p); 1903 int dst_nid = cpu_to_node(dst_cpu); 1904 int last_cpupid, this_cpupid; 1905 1906 /* 1907 * Cannot migrate to memoryless nodes. 1908 */ 1909 if (!node_state(dst_nid, N_MEMORY)) 1910 return false; 1911 1912 /* 1913 * The pages in slow memory node should be migrated according 1914 * to hot/cold instead of private/shared. 1915 */ 1916 if (folio_use_access_time(folio)) { 1917 struct pglist_data *pgdat; 1918 unsigned long rate_limit; 1919 unsigned int latency, th, def_th; 1920 1921 pgdat = NODE_DATA(dst_nid); 1922 if (pgdat_free_space_enough(pgdat)) { 1923 /* workload changed, reset hot threshold */ 1924 pgdat->nbp_threshold = 0; 1925 return true; 1926 } 1927 1928 def_th = sysctl_numa_balancing_hot_threshold; 1929 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1930 (20 - PAGE_SHIFT); 1931 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1932 1933 th = pgdat->nbp_threshold ? : def_th; 1934 latency = numa_hint_fault_latency(folio); 1935 if (latency >= th) 1936 return false; 1937 1938 return !numa_promotion_rate_limit(pgdat, rate_limit, 1939 folio_nr_pages(folio)); 1940 } 1941 1942 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1943 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1944 1945 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1946 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1947 return false; 1948 1949 /* 1950 * Allow first faults or private faults to migrate immediately early in 1951 * the lifetime of a task. The magic number 4 is based on waiting for 1952 * two full passes of the "multi-stage node selection" test that is 1953 * executed below. 1954 */ 1955 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1956 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1957 return true; 1958 1959 /* 1960 * Multi-stage node selection is used in conjunction with a periodic 1961 * migration fault to build a temporal task<->page relation. By using 1962 * a two-stage filter we remove short/unlikely relations. 1963 * 1964 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1965 * a task's usage of a particular page (n_p) per total usage of this 1966 * page (n_t) (in a given time-span) to a probability. 1967 * 1968 * Our periodic faults will sample this probability and getting the 1969 * same result twice in a row, given these samples are fully 1970 * independent, is then given by P(n)^2, provided our sample period 1971 * is sufficiently short compared to the usage pattern. 1972 * 1973 * This quadric squishes small probabilities, making it less likely we 1974 * act on an unlikely task<->page relation. 1975 */ 1976 if (!cpupid_pid_unset(last_cpupid) && 1977 cpupid_to_nid(last_cpupid) != dst_nid) 1978 return false; 1979 1980 /* Always allow migrate on private faults */ 1981 if (cpupid_match_pid(p, last_cpupid)) 1982 return true; 1983 1984 /* A shared fault, but p->numa_group has not been set up yet. */ 1985 if (!ng) 1986 return true; 1987 1988 /* 1989 * Destination node is much more heavily used than the source 1990 * node? Allow migration. 1991 */ 1992 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1993 ACTIVE_NODE_FRACTION) 1994 return true; 1995 1996 /* 1997 * Distribute memory according to CPU & memory use on each node, 1998 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1999 * 2000 * faults_cpu(dst) 3 faults_cpu(src) 2001 * --------------- * - > --------------- 2002 * faults_mem(dst) 4 faults_mem(src) 2003 */ 2004 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2005 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2006 } 2007 2008 /* 2009 * 'numa_type' describes the node at the moment of load balancing. 2010 */ 2011 enum numa_type { 2012 /* The node has spare capacity that can be used to run more tasks. */ 2013 node_has_spare = 0, 2014 /* 2015 * The node is fully used and the tasks don't compete for more CPU 2016 * cycles. Nevertheless, some tasks might wait before running. 2017 */ 2018 node_fully_busy, 2019 /* 2020 * The node is overloaded and can't provide expected CPU cycles to all 2021 * tasks. 2022 */ 2023 node_overloaded 2024 }; 2025 2026 /* Cached statistics for all CPUs within a node */ 2027 struct numa_stats { 2028 unsigned long load; 2029 unsigned long runnable; 2030 unsigned long util; 2031 /* Total compute capacity of CPUs on a node */ 2032 unsigned long compute_capacity; 2033 unsigned int nr_running; 2034 unsigned int weight; 2035 enum numa_type node_type; 2036 int idle_cpu; 2037 }; 2038 2039 struct task_numa_env { 2040 struct task_struct *p; 2041 2042 int src_cpu, src_nid; 2043 int dst_cpu, dst_nid; 2044 int imb_numa_nr; 2045 2046 struct numa_stats src_stats, dst_stats; 2047 2048 int imbalance_pct; 2049 int dist; 2050 2051 struct task_struct *best_task; 2052 long best_imp; 2053 int best_cpu; 2054 }; 2055 2056 static unsigned long cpu_load(struct rq *rq); 2057 static unsigned long cpu_runnable(struct rq *rq); 2058 2059 static inline enum 2060 numa_type numa_classify(unsigned int imbalance_pct, 2061 struct numa_stats *ns) 2062 { 2063 if ((ns->nr_running > ns->weight) && 2064 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2065 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2066 return node_overloaded; 2067 2068 if ((ns->nr_running < ns->weight) || 2069 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2070 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2071 return node_has_spare; 2072 2073 return node_fully_busy; 2074 } 2075 2076 #ifdef CONFIG_SCHED_SMT 2077 /* Forward declarations of select_idle_sibling helpers */ 2078 static inline bool test_idle_cores(int cpu); 2079 static inline int numa_idle_core(int idle_core, int cpu) 2080 { 2081 if (!static_branch_likely(&sched_smt_present) || 2082 idle_core >= 0 || !test_idle_cores(cpu)) 2083 return idle_core; 2084 2085 /* 2086 * Prefer cores instead of packing HT siblings 2087 * and triggering future load balancing. 2088 */ 2089 if (is_core_idle(cpu)) 2090 idle_core = cpu; 2091 2092 return idle_core; 2093 } 2094 #else /* !CONFIG_SCHED_SMT: */ 2095 static inline int numa_idle_core(int idle_core, int cpu) 2096 { 2097 return idle_core; 2098 } 2099 #endif /* !CONFIG_SCHED_SMT */ 2100 2101 /* 2102 * Gather all necessary information to make NUMA balancing placement 2103 * decisions that are compatible with standard load balancer. This 2104 * borrows code and logic from update_sg_lb_stats but sharing a 2105 * common implementation is impractical. 2106 */ 2107 static void update_numa_stats(struct task_numa_env *env, 2108 struct numa_stats *ns, int nid, 2109 bool find_idle) 2110 { 2111 int cpu, idle_core = -1; 2112 2113 memset(ns, 0, sizeof(*ns)); 2114 ns->idle_cpu = -1; 2115 2116 rcu_read_lock(); 2117 for_each_cpu(cpu, cpumask_of_node(nid)) { 2118 struct rq *rq = cpu_rq(cpu); 2119 2120 ns->load += cpu_load(rq); 2121 ns->runnable += cpu_runnable(rq); 2122 ns->util += cpu_util_cfs(cpu); 2123 ns->nr_running += rq->cfs.h_nr_runnable; 2124 ns->compute_capacity += capacity_of(cpu); 2125 2126 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2127 if (READ_ONCE(rq->numa_migrate_on) || 2128 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2129 continue; 2130 2131 if (ns->idle_cpu == -1) 2132 ns->idle_cpu = cpu; 2133 2134 idle_core = numa_idle_core(idle_core, cpu); 2135 } 2136 } 2137 rcu_read_unlock(); 2138 2139 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2140 2141 ns->node_type = numa_classify(env->imbalance_pct, ns); 2142 2143 if (idle_core >= 0) 2144 ns->idle_cpu = idle_core; 2145 } 2146 2147 static void task_numa_assign(struct task_numa_env *env, 2148 struct task_struct *p, long imp) 2149 { 2150 struct rq *rq = cpu_rq(env->dst_cpu); 2151 2152 /* Check if run-queue part of active NUMA balance. */ 2153 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2154 int cpu; 2155 int start = env->dst_cpu; 2156 2157 /* Find alternative idle CPU. */ 2158 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2159 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2160 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2161 continue; 2162 } 2163 2164 env->dst_cpu = cpu; 2165 rq = cpu_rq(env->dst_cpu); 2166 if (!xchg(&rq->numa_migrate_on, 1)) 2167 goto assign; 2168 } 2169 2170 /* Failed to find an alternative idle CPU */ 2171 return; 2172 } 2173 2174 assign: 2175 /* 2176 * Clear previous best_cpu/rq numa-migrate flag, since task now 2177 * found a better CPU to move/swap. 2178 */ 2179 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2180 rq = cpu_rq(env->best_cpu); 2181 WRITE_ONCE(rq->numa_migrate_on, 0); 2182 } 2183 2184 if (env->best_task) 2185 put_task_struct(env->best_task); 2186 if (p) 2187 get_task_struct(p); 2188 2189 env->best_task = p; 2190 env->best_imp = imp; 2191 env->best_cpu = env->dst_cpu; 2192 } 2193 2194 static bool load_too_imbalanced(long src_load, long dst_load, 2195 struct task_numa_env *env) 2196 { 2197 long imb, old_imb; 2198 long orig_src_load, orig_dst_load; 2199 long src_capacity, dst_capacity; 2200 2201 /* 2202 * The load is corrected for the CPU capacity available on each node. 2203 * 2204 * src_load dst_load 2205 * ------------ vs --------- 2206 * src_capacity dst_capacity 2207 */ 2208 src_capacity = env->src_stats.compute_capacity; 2209 dst_capacity = env->dst_stats.compute_capacity; 2210 2211 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2212 2213 orig_src_load = env->src_stats.load; 2214 orig_dst_load = env->dst_stats.load; 2215 2216 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2217 2218 /* Would this change make things worse? */ 2219 return (imb > old_imb); 2220 } 2221 2222 /* 2223 * Maximum NUMA importance can be 1998 (2*999); 2224 * SMALLIMP @ 30 would be close to 1998/64. 2225 * Used to deter task migration. 2226 */ 2227 #define SMALLIMP 30 2228 2229 /* 2230 * This checks if the overall compute and NUMA accesses of the system would 2231 * be improved if the source tasks was migrated to the target dst_cpu taking 2232 * into account that it might be best if task running on the dst_cpu should 2233 * be exchanged with the source task 2234 */ 2235 static bool task_numa_compare(struct task_numa_env *env, 2236 long taskimp, long groupimp, bool maymove) 2237 { 2238 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2239 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2240 long imp = p_ng ? groupimp : taskimp; 2241 struct task_struct *cur; 2242 long src_load, dst_load; 2243 int dist = env->dist; 2244 long moveimp = imp; 2245 long load; 2246 bool stopsearch = false; 2247 2248 if (READ_ONCE(dst_rq->numa_migrate_on)) 2249 return false; 2250 2251 rcu_read_lock(); 2252 cur = rcu_dereference(dst_rq->curr); 2253 if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) || 2254 !cur->mm)) 2255 cur = NULL; 2256 2257 /* 2258 * Because we have preemption enabled we can get migrated around and 2259 * end try selecting ourselves (current == env->p) as a swap candidate. 2260 */ 2261 if (cur == env->p) { 2262 stopsearch = true; 2263 goto unlock; 2264 } 2265 2266 if (!cur) { 2267 if (maymove && moveimp >= env->best_imp) 2268 goto assign; 2269 else 2270 goto unlock; 2271 } 2272 2273 /* Skip this swap candidate if cannot move to the source cpu. */ 2274 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2275 goto unlock; 2276 2277 /* 2278 * Skip this swap candidate if it is not moving to its preferred 2279 * node and the best task is. 2280 */ 2281 if (env->best_task && 2282 env->best_task->numa_preferred_nid == env->src_nid && 2283 cur->numa_preferred_nid != env->src_nid) { 2284 goto unlock; 2285 } 2286 2287 /* 2288 * "imp" is the fault differential for the source task between the 2289 * source and destination node. Calculate the total differential for 2290 * the source task and potential destination task. The more negative 2291 * the value is, the more remote accesses that would be expected to 2292 * be incurred if the tasks were swapped. 2293 * 2294 * If dst and source tasks are in the same NUMA group, or not 2295 * in any group then look only at task weights. 2296 */ 2297 cur_ng = rcu_dereference(cur->numa_group); 2298 if (cur_ng == p_ng) { 2299 /* 2300 * Do not swap within a group or between tasks that have 2301 * no group if there is spare capacity. Swapping does 2302 * not address the load imbalance and helps one task at 2303 * the cost of punishing another. 2304 */ 2305 if (env->dst_stats.node_type == node_has_spare) 2306 goto unlock; 2307 2308 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2309 task_weight(cur, env->dst_nid, dist); 2310 /* 2311 * Add some hysteresis to prevent swapping the 2312 * tasks within a group over tiny differences. 2313 */ 2314 if (cur_ng) 2315 imp -= imp / 16; 2316 } else { 2317 /* 2318 * Compare the group weights. If a task is all by itself 2319 * (not part of a group), use the task weight instead. 2320 */ 2321 if (cur_ng && p_ng) 2322 imp += group_weight(cur, env->src_nid, dist) - 2323 group_weight(cur, env->dst_nid, dist); 2324 else 2325 imp += task_weight(cur, env->src_nid, dist) - 2326 task_weight(cur, env->dst_nid, dist); 2327 } 2328 2329 /* Discourage picking a task already on its preferred node */ 2330 if (cur->numa_preferred_nid == env->dst_nid) 2331 imp -= imp / 16; 2332 2333 /* 2334 * Encourage picking a task that moves to its preferred node. 2335 * This potentially makes imp larger than it's maximum of 2336 * 1998 (see SMALLIMP and task_weight for why) but in this 2337 * case, it does not matter. 2338 */ 2339 if (cur->numa_preferred_nid == env->src_nid) 2340 imp += imp / 8; 2341 2342 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2343 imp = moveimp; 2344 cur = NULL; 2345 goto assign; 2346 } 2347 2348 /* 2349 * Prefer swapping with a task moving to its preferred node over a 2350 * task that is not. 2351 */ 2352 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2353 env->best_task->numa_preferred_nid != env->src_nid) { 2354 goto assign; 2355 } 2356 2357 /* 2358 * If the NUMA importance is less than SMALLIMP, 2359 * task migration might only result in ping pong 2360 * of tasks and also hurt performance due to cache 2361 * misses. 2362 */ 2363 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2364 goto unlock; 2365 2366 /* 2367 * In the overloaded case, try and keep the load balanced. 2368 */ 2369 load = task_h_load(env->p) - task_h_load(cur); 2370 if (!load) 2371 goto assign; 2372 2373 dst_load = env->dst_stats.load + load; 2374 src_load = env->src_stats.load - load; 2375 2376 if (load_too_imbalanced(src_load, dst_load, env)) 2377 goto unlock; 2378 2379 assign: 2380 /* Evaluate an idle CPU for a task numa move. */ 2381 if (!cur) { 2382 int cpu = env->dst_stats.idle_cpu; 2383 2384 /* Nothing cached so current CPU went idle since the search. */ 2385 if (cpu < 0) 2386 cpu = env->dst_cpu; 2387 2388 /* 2389 * If the CPU is no longer truly idle and the previous best CPU 2390 * is, keep using it. 2391 */ 2392 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2393 idle_cpu(env->best_cpu)) { 2394 cpu = env->best_cpu; 2395 } 2396 2397 env->dst_cpu = cpu; 2398 } 2399 2400 task_numa_assign(env, cur, imp); 2401 2402 /* 2403 * If a move to idle is allowed because there is capacity or load 2404 * balance improves then stop the search. While a better swap 2405 * candidate may exist, a search is not free. 2406 */ 2407 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2408 stopsearch = true; 2409 2410 /* 2411 * If a swap candidate must be identified and the current best task 2412 * moves its preferred node then stop the search. 2413 */ 2414 if (!maymove && env->best_task && 2415 env->best_task->numa_preferred_nid == env->src_nid) { 2416 stopsearch = true; 2417 } 2418 unlock: 2419 rcu_read_unlock(); 2420 2421 return stopsearch; 2422 } 2423 2424 static void task_numa_find_cpu(struct task_numa_env *env, 2425 long taskimp, long groupimp) 2426 { 2427 bool maymove = false; 2428 int cpu; 2429 2430 /* 2431 * If dst node has spare capacity, then check if there is an 2432 * imbalance that would be overruled by the load balancer. 2433 */ 2434 if (env->dst_stats.node_type == node_has_spare) { 2435 unsigned int imbalance; 2436 int src_running, dst_running; 2437 2438 /* 2439 * Would movement cause an imbalance? Note that if src has 2440 * more running tasks that the imbalance is ignored as the 2441 * move improves the imbalance from the perspective of the 2442 * CPU load balancer. 2443 * */ 2444 src_running = env->src_stats.nr_running - 1; 2445 dst_running = env->dst_stats.nr_running + 1; 2446 imbalance = max(0, dst_running - src_running); 2447 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2448 env->imb_numa_nr); 2449 2450 /* Use idle CPU if there is no imbalance */ 2451 if (!imbalance) { 2452 maymove = true; 2453 if (env->dst_stats.idle_cpu >= 0) { 2454 env->dst_cpu = env->dst_stats.idle_cpu; 2455 task_numa_assign(env, NULL, 0); 2456 return; 2457 } 2458 } 2459 } else { 2460 long src_load, dst_load, load; 2461 /* 2462 * If the improvement from just moving env->p direction is better 2463 * than swapping tasks around, check if a move is possible. 2464 */ 2465 load = task_h_load(env->p); 2466 dst_load = env->dst_stats.load + load; 2467 src_load = env->src_stats.load - load; 2468 maymove = !load_too_imbalanced(src_load, dst_load, env); 2469 } 2470 2471 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2472 /* Skip this CPU if the source task cannot migrate */ 2473 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2474 continue; 2475 2476 env->dst_cpu = cpu; 2477 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2478 break; 2479 } 2480 } 2481 2482 static int task_numa_migrate(struct task_struct *p) 2483 { 2484 struct task_numa_env env = { 2485 .p = p, 2486 2487 .src_cpu = task_cpu(p), 2488 .src_nid = task_node(p), 2489 2490 .imbalance_pct = 112, 2491 2492 .best_task = NULL, 2493 .best_imp = 0, 2494 .best_cpu = -1, 2495 }; 2496 unsigned long taskweight, groupweight; 2497 struct sched_domain *sd; 2498 long taskimp, groupimp; 2499 struct numa_group *ng; 2500 struct rq *best_rq; 2501 int nid, ret, dist; 2502 2503 /* 2504 * Pick the lowest SD_NUMA domain, as that would have the smallest 2505 * imbalance and would be the first to start moving tasks about. 2506 * 2507 * And we want to avoid any moving of tasks about, as that would create 2508 * random movement of tasks -- counter the numa conditions we're trying 2509 * to satisfy here. 2510 */ 2511 rcu_read_lock(); 2512 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2513 if (sd) { 2514 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2515 env.imb_numa_nr = sd->imb_numa_nr; 2516 } 2517 rcu_read_unlock(); 2518 2519 /* 2520 * Cpusets can break the scheduler domain tree into smaller 2521 * balance domains, some of which do not cross NUMA boundaries. 2522 * Tasks that are "trapped" in such domains cannot be migrated 2523 * elsewhere, so there is no point in (re)trying. 2524 */ 2525 if (unlikely(!sd)) { 2526 sched_setnuma(p, task_node(p)); 2527 return -EINVAL; 2528 } 2529 2530 env.dst_nid = p->numa_preferred_nid; 2531 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2532 taskweight = task_weight(p, env.src_nid, dist); 2533 groupweight = group_weight(p, env.src_nid, dist); 2534 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2535 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2536 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2537 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2538 2539 /* Try to find a spot on the preferred nid. */ 2540 task_numa_find_cpu(&env, taskimp, groupimp); 2541 2542 /* 2543 * Look at other nodes in these cases: 2544 * - there is no space available on the preferred_nid 2545 * - the task is part of a numa_group that is interleaved across 2546 * multiple NUMA nodes; in order to better consolidate the group, 2547 * we need to check other locations. 2548 */ 2549 ng = deref_curr_numa_group(p); 2550 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2551 for_each_node_state(nid, N_CPU) { 2552 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2553 continue; 2554 2555 dist = node_distance(env.src_nid, env.dst_nid); 2556 if (sched_numa_topology_type == NUMA_BACKPLANE && 2557 dist != env.dist) { 2558 taskweight = task_weight(p, env.src_nid, dist); 2559 groupweight = group_weight(p, env.src_nid, dist); 2560 } 2561 2562 /* Only consider nodes where both task and groups benefit */ 2563 taskimp = task_weight(p, nid, dist) - taskweight; 2564 groupimp = group_weight(p, nid, dist) - groupweight; 2565 if (taskimp < 0 && groupimp < 0) 2566 continue; 2567 2568 env.dist = dist; 2569 env.dst_nid = nid; 2570 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2571 task_numa_find_cpu(&env, taskimp, groupimp); 2572 } 2573 } 2574 2575 /* 2576 * If the task is part of a workload that spans multiple NUMA nodes, 2577 * and is migrating into one of the workload's active nodes, remember 2578 * this node as the task's preferred numa node, so the workload can 2579 * settle down. 2580 * A task that migrated to a second choice node will be better off 2581 * trying for a better one later. Do not set the preferred node here. 2582 */ 2583 if (ng) { 2584 if (env.best_cpu == -1) 2585 nid = env.src_nid; 2586 else 2587 nid = cpu_to_node(env.best_cpu); 2588 2589 if (nid != p->numa_preferred_nid) 2590 sched_setnuma(p, nid); 2591 } 2592 2593 /* No better CPU than the current one was found. */ 2594 if (env.best_cpu == -1) { 2595 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2596 return -EAGAIN; 2597 } 2598 2599 best_rq = cpu_rq(env.best_cpu); 2600 if (env.best_task == NULL) { 2601 ret = migrate_task_to(p, env.best_cpu); 2602 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2603 if (ret != 0) 2604 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2605 return ret; 2606 } 2607 2608 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2609 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2610 2611 if (ret != 0) 2612 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2613 put_task_struct(env.best_task); 2614 return ret; 2615 } 2616 2617 /* Attempt to migrate a task to a CPU on the preferred node. */ 2618 static void numa_migrate_preferred(struct task_struct *p) 2619 { 2620 unsigned long interval = HZ; 2621 2622 /* This task has no NUMA fault statistics yet */ 2623 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2624 return; 2625 2626 /* Periodically retry migrating the task to the preferred node */ 2627 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2628 p->numa_migrate_retry = jiffies + interval; 2629 2630 /* Success if task is already running on preferred CPU */ 2631 if (task_node(p) == p->numa_preferred_nid) 2632 return; 2633 2634 /* Otherwise, try migrate to a CPU on the preferred node */ 2635 task_numa_migrate(p); 2636 } 2637 2638 /* 2639 * Find out how many nodes the workload is actively running on. Do this by 2640 * tracking the nodes from which NUMA hinting faults are triggered. This can 2641 * be different from the set of nodes where the workload's memory is currently 2642 * located. 2643 */ 2644 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2645 { 2646 unsigned long faults, max_faults = 0; 2647 int nid, active_nodes = 0; 2648 2649 for_each_node_state(nid, N_CPU) { 2650 faults = group_faults_cpu(numa_group, nid); 2651 if (faults > max_faults) 2652 max_faults = faults; 2653 } 2654 2655 for_each_node_state(nid, N_CPU) { 2656 faults = group_faults_cpu(numa_group, nid); 2657 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2658 active_nodes++; 2659 } 2660 2661 numa_group->max_faults_cpu = max_faults; 2662 numa_group->active_nodes = active_nodes; 2663 } 2664 2665 /* 2666 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2667 * increments. The more local the fault statistics are, the higher the scan 2668 * period will be for the next scan window. If local/(local+remote) ratio is 2669 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2670 * the scan period will decrease. Aim for 70% local accesses. 2671 */ 2672 #define NUMA_PERIOD_SLOTS 10 2673 #define NUMA_PERIOD_THRESHOLD 7 2674 2675 /* 2676 * Increase the scan period (slow down scanning) if the majority of 2677 * our memory is already on our local node, or if the majority of 2678 * the page accesses are shared with other processes. 2679 * Otherwise, decrease the scan period. 2680 */ 2681 static void update_task_scan_period(struct task_struct *p, 2682 unsigned long shared, unsigned long private) 2683 { 2684 unsigned int period_slot; 2685 int lr_ratio, ps_ratio; 2686 int diff; 2687 2688 unsigned long remote = p->numa_faults_locality[0]; 2689 unsigned long local = p->numa_faults_locality[1]; 2690 2691 /* 2692 * If there were no record hinting faults then either the task is 2693 * completely idle or all activity is in areas that are not of interest 2694 * to automatic numa balancing. Related to that, if there were failed 2695 * migration then it implies we are migrating too quickly or the local 2696 * node is overloaded. In either case, scan slower 2697 */ 2698 if (local + shared == 0 || p->numa_faults_locality[2]) { 2699 p->numa_scan_period = min(p->numa_scan_period_max, 2700 p->numa_scan_period << 1); 2701 2702 p->mm->numa_next_scan = jiffies + 2703 msecs_to_jiffies(p->numa_scan_period); 2704 2705 return; 2706 } 2707 2708 /* 2709 * Prepare to scale scan period relative to the current period. 2710 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2711 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2712 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2713 */ 2714 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2715 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2716 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2717 2718 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2719 /* 2720 * Most memory accesses are local. There is no need to 2721 * do fast NUMA scanning, since memory is already local. 2722 */ 2723 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2724 if (!slot) 2725 slot = 1; 2726 diff = slot * period_slot; 2727 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2728 /* 2729 * Most memory accesses are shared with other tasks. 2730 * There is no point in continuing fast NUMA scanning, 2731 * since other tasks may just move the memory elsewhere. 2732 */ 2733 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2734 if (!slot) 2735 slot = 1; 2736 diff = slot * period_slot; 2737 } else { 2738 /* 2739 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2740 * yet they are not on the local NUMA node. Speed up 2741 * NUMA scanning to get the memory moved over. 2742 */ 2743 int ratio = max(lr_ratio, ps_ratio); 2744 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2745 } 2746 2747 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2748 task_scan_min(p), task_scan_max(p)); 2749 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2750 } 2751 2752 /* 2753 * Get the fraction of time the task has been running since the last 2754 * NUMA placement cycle. The scheduler keeps similar statistics, but 2755 * decays those on a 32ms period, which is orders of magnitude off 2756 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2757 * stats only if the task is so new there are no NUMA statistics yet. 2758 */ 2759 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2760 { 2761 u64 runtime, delta, now; 2762 /* Use the start of this time slice to avoid calculations. */ 2763 now = p->se.exec_start; 2764 runtime = p->se.sum_exec_runtime; 2765 2766 if (p->last_task_numa_placement) { 2767 delta = runtime - p->last_sum_exec_runtime; 2768 *period = now - p->last_task_numa_placement; 2769 2770 /* Avoid time going backwards, prevent potential divide error: */ 2771 if (unlikely((s64)*period < 0)) 2772 *period = 0; 2773 } else { 2774 delta = p->se.avg.load_sum; 2775 *period = LOAD_AVG_MAX; 2776 } 2777 2778 p->last_sum_exec_runtime = runtime; 2779 p->last_task_numa_placement = now; 2780 2781 return delta; 2782 } 2783 2784 /* 2785 * Determine the preferred nid for a task in a numa_group. This needs to 2786 * be done in a way that produces consistent results with group_weight, 2787 * otherwise workloads might not converge. 2788 */ 2789 static int preferred_group_nid(struct task_struct *p, int nid) 2790 { 2791 nodemask_t nodes; 2792 int dist; 2793 2794 /* Direct connections between all NUMA nodes. */ 2795 if (sched_numa_topology_type == NUMA_DIRECT) 2796 return nid; 2797 2798 /* 2799 * On a system with glueless mesh NUMA topology, group_weight 2800 * scores nodes according to the number of NUMA hinting faults on 2801 * both the node itself, and on nearby nodes. 2802 */ 2803 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2804 unsigned long score, max_score = 0; 2805 int node, max_node = nid; 2806 2807 dist = sched_max_numa_distance; 2808 2809 for_each_node_state(node, N_CPU) { 2810 score = group_weight(p, node, dist); 2811 if (score > max_score) { 2812 max_score = score; 2813 max_node = node; 2814 } 2815 } 2816 return max_node; 2817 } 2818 2819 /* 2820 * Finding the preferred nid in a system with NUMA backplane 2821 * interconnect topology is more involved. The goal is to locate 2822 * tasks from numa_groups near each other in the system, and 2823 * untangle workloads from different sides of the system. This requires 2824 * searching down the hierarchy of node groups, recursively searching 2825 * inside the highest scoring group of nodes. The nodemask tricks 2826 * keep the complexity of the search down. 2827 */ 2828 nodes = node_states[N_CPU]; 2829 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2830 unsigned long max_faults = 0; 2831 nodemask_t max_group = NODE_MASK_NONE; 2832 int a, b; 2833 2834 /* Are there nodes at this distance from each other? */ 2835 if (!find_numa_distance(dist)) 2836 continue; 2837 2838 for_each_node_mask(a, nodes) { 2839 unsigned long faults = 0; 2840 nodemask_t this_group; 2841 nodes_clear(this_group); 2842 2843 /* Sum group's NUMA faults; includes a==b case. */ 2844 for_each_node_mask(b, nodes) { 2845 if (node_distance(a, b) < dist) { 2846 faults += group_faults(p, b); 2847 node_set(b, this_group); 2848 node_clear(b, nodes); 2849 } 2850 } 2851 2852 /* Remember the top group. */ 2853 if (faults > max_faults) { 2854 max_faults = faults; 2855 max_group = this_group; 2856 /* 2857 * subtle: at the smallest distance there is 2858 * just one node left in each "group", the 2859 * winner is the preferred nid. 2860 */ 2861 nid = a; 2862 } 2863 } 2864 /* Next round, evaluate the nodes within max_group. */ 2865 if (!max_faults) 2866 break; 2867 nodes = max_group; 2868 } 2869 return nid; 2870 } 2871 2872 static void task_numa_placement(struct task_struct *p) 2873 { 2874 int seq, nid, max_nid = NUMA_NO_NODE; 2875 unsigned long max_faults = 0; 2876 unsigned long fault_types[2] = { 0, 0 }; 2877 unsigned long total_faults; 2878 u64 runtime, period; 2879 spinlock_t *group_lock = NULL; 2880 struct numa_group *ng; 2881 2882 /* 2883 * The p->mm->numa_scan_seq field gets updated without 2884 * exclusive access. Use READ_ONCE() here to ensure 2885 * that the field is read in a single access: 2886 */ 2887 seq = READ_ONCE(p->mm->numa_scan_seq); 2888 if (p->numa_scan_seq == seq) 2889 return; 2890 p->numa_scan_seq = seq; 2891 p->numa_scan_period_max = task_scan_max(p); 2892 2893 total_faults = p->numa_faults_locality[0] + 2894 p->numa_faults_locality[1]; 2895 runtime = numa_get_avg_runtime(p, &period); 2896 2897 /* If the task is part of a group prevent parallel updates to group stats */ 2898 ng = deref_curr_numa_group(p); 2899 if (ng) { 2900 group_lock = &ng->lock; 2901 spin_lock_irq(group_lock); 2902 } 2903 2904 /* Find the node with the highest number of faults */ 2905 for_each_online_node(nid) { 2906 /* Keep track of the offsets in numa_faults array */ 2907 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2908 unsigned long faults = 0, group_faults = 0; 2909 int priv; 2910 2911 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2912 long diff, f_diff, f_weight; 2913 2914 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2915 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2916 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2917 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2918 2919 /* Decay existing window, copy faults since last scan */ 2920 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2921 fault_types[priv] += p->numa_faults[membuf_idx]; 2922 p->numa_faults[membuf_idx] = 0; 2923 2924 /* 2925 * Normalize the faults_from, so all tasks in a group 2926 * count according to CPU use, instead of by the raw 2927 * number of faults. Tasks with little runtime have 2928 * little over-all impact on throughput, and thus their 2929 * faults are less important. 2930 */ 2931 f_weight = div64_u64(runtime << 16, period + 1); 2932 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2933 (total_faults + 1); 2934 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2935 p->numa_faults[cpubuf_idx] = 0; 2936 2937 p->numa_faults[mem_idx] += diff; 2938 p->numa_faults[cpu_idx] += f_diff; 2939 faults += p->numa_faults[mem_idx]; 2940 p->total_numa_faults += diff; 2941 if (ng) { 2942 /* 2943 * safe because we can only change our own group 2944 * 2945 * mem_idx represents the offset for a given 2946 * nid and priv in a specific region because it 2947 * is at the beginning of the numa_faults array. 2948 */ 2949 ng->faults[mem_idx] += diff; 2950 ng->faults[cpu_idx] += f_diff; 2951 ng->total_faults += diff; 2952 group_faults += ng->faults[mem_idx]; 2953 } 2954 } 2955 2956 if (!ng) { 2957 if (faults > max_faults) { 2958 max_faults = faults; 2959 max_nid = nid; 2960 } 2961 } else if (group_faults > max_faults) { 2962 max_faults = group_faults; 2963 max_nid = nid; 2964 } 2965 } 2966 2967 /* Cannot migrate task to CPU-less node */ 2968 max_nid = numa_nearest_node(max_nid, N_CPU); 2969 2970 if (ng) { 2971 numa_group_count_active_nodes(ng); 2972 spin_unlock_irq(group_lock); 2973 max_nid = preferred_group_nid(p, max_nid); 2974 } 2975 2976 if (max_faults) { 2977 /* Set the new preferred node */ 2978 if (max_nid != p->numa_preferred_nid) 2979 sched_setnuma(p, max_nid); 2980 } 2981 2982 update_task_scan_period(p, fault_types[0], fault_types[1]); 2983 } 2984 2985 static inline int get_numa_group(struct numa_group *grp) 2986 { 2987 return refcount_inc_not_zero(&grp->refcount); 2988 } 2989 2990 static inline void put_numa_group(struct numa_group *grp) 2991 { 2992 if (refcount_dec_and_test(&grp->refcount)) 2993 kfree_rcu(grp, rcu); 2994 } 2995 2996 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2997 int *priv) 2998 { 2999 struct numa_group *grp, *my_grp; 3000 struct task_struct *tsk; 3001 bool join = false; 3002 int cpu = cpupid_to_cpu(cpupid); 3003 int i; 3004 3005 if (unlikely(!deref_curr_numa_group(p))) { 3006 unsigned int size = sizeof(struct numa_group) + 3007 NR_NUMA_HINT_FAULT_STATS * 3008 nr_node_ids * sizeof(unsigned long); 3009 3010 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3011 if (!grp) 3012 return; 3013 3014 refcount_set(&grp->refcount, 1); 3015 grp->active_nodes = 1; 3016 grp->max_faults_cpu = 0; 3017 spin_lock_init(&grp->lock); 3018 grp->gid = p->pid; 3019 3020 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3021 grp->faults[i] = p->numa_faults[i]; 3022 3023 grp->total_faults = p->total_numa_faults; 3024 3025 grp->nr_tasks++; 3026 rcu_assign_pointer(p->numa_group, grp); 3027 } 3028 3029 rcu_read_lock(); 3030 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3031 3032 if (!cpupid_match_pid(tsk, cpupid)) 3033 goto no_join; 3034 3035 grp = rcu_dereference(tsk->numa_group); 3036 if (!grp) 3037 goto no_join; 3038 3039 my_grp = deref_curr_numa_group(p); 3040 if (grp == my_grp) 3041 goto no_join; 3042 3043 /* 3044 * Only join the other group if its bigger; if we're the bigger group, 3045 * the other task will join us. 3046 */ 3047 if (my_grp->nr_tasks > grp->nr_tasks) 3048 goto no_join; 3049 3050 /* 3051 * Tie-break on the grp address. 3052 */ 3053 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3054 goto no_join; 3055 3056 /* Always join threads in the same process. */ 3057 if (tsk->mm == current->mm) 3058 join = true; 3059 3060 /* Simple filter to avoid false positives due to PID collisions */ 3061 if (flags & TNF_SHARED) 3062 join = true; 3063 3064 /* Update priv based on whether false sharing was detected */ 3065 *priv = !join; 3066 3067 if (join && !get_numa_group(grp)) 3068 goto no_join; 3069 3070 rcu_read_unlock(); 3071 3072 if (!join) 3073 return; 3074 3075 WARN_ON_ONCE(irqs_disabled()); 3076 double_lock_irq(&my_grp->lock, &grp->lock); 3077 3078 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3079 my_grp->faults[i] -= p->numa_faults[i]; 3080 grp->faults[i] += p->numa_faults[i]; 3081 } 3082 my_grp->total_faults -= p->total_numa_faults; 3083 grp->total_faults += p->total_numa_faults; 3084 3085 my_grp->nr_tasks--; 3086 grp->nr_tasks++; 3087 3088 spin_unlock(&my_grp->lock); 3089 spin_unlock_irq(&grp->lock); 3090 3091 rcu_assign_pointer(p->numa_group, grp); 3092 3093 put_numa_group(my_grp); 3094 return; 3095 3096 no_join: 3097 rcu_read_unlock(); 3098 return; 3099 } 3100 3101 /* 3102 * Get rid of NUMA statistics associated with a task (either current or dead). 3103 * If @final is set, the task is dead and has reached refcount zero, so we can 3104 * safely free all relevant data structures. Otherwise, there might be 3105 * concurrent reads from places like load balancing and procfs, and we should 3106 * reset the data back to default state without freeing ->numa_faults. 3107 */ 3108 void task_numa_free(struct task_struct *p, bool final) 3109 { 3110 /* safe: p either is current or is being freed by current */ 3111 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3112 unsigned long *numa_faults = p->numa_faults; 3113 unsigned long flags; 3114 int i; 3115 3116 if (!numa_faults) 3117 return; 3118 3119 if (grp) { 3120 spin_lock_irqsave(&grp->lock, flags); 3121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3122 grp->faults[i] -= p->numa_faults[i]; 3123 grp->total_faults -= p->total_numa_faults; 3124 3125 grp->nr_tasks--; 3126 spin_unlock_irqrestore(&grp->lock, flags); 3127 RCU_INIT_POINTER(p->numa_group, NULL); 3128 put_numa_group(grp); 3129 } 3130 3131 if (final) { 3132 p->numa_faults = NULL; 3133 kfree(numa_faults); 3134 } else { 3135 p->total_numa_faults = 0; 3136 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3137 numa_faults[i] = 0; 3138 } 3139 } 3140 3141 /* 3142 * Got a PROT_NONE fault for a page on @node. 3143 */ 3144 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3145 { 3146 struct task_struct *p = current; 3147 bool migrated = flags & TNF_MIGRATED; 3148 int cpu_node = task_node(current); 3149 int local = !!(flags & TNF_FAULT_LOCAL); 3150 struct numa_group *ng; 3151 int priv; 3152 3153 if (!static_branch_likely(&sched_numa_balancing)) 3154 return; 3155 3156 /* for example, ksmd faulting in a user's mm */ 3157 if (!p->mm) 3158 return; 3159 3160 /* 3161 * NUMA faults statistics are unnecessary for the slow memory 3162 * node for memory tiering mode. 3163 */ 3164 if (!node_is_toptier(mem_node) && 3165 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3166 !cpupid_valid(last_cpupid))) 3167 return; 3168 3169 /* Allocate buffer to track faults on a per-node basis */ 3170 if (unlikely(!p->numa_faults)) { 3171 int size = sizeof(*p->numa_faults) * 3172 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3173 3174 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3175 if (!p->numa_faults) 3176 return; 3177 3178 p->total_numa_faults = 0; 3179 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3180 } 3181 3182 /* 3183 * First accesses are treated as private, otherwise consider accesses 3184 * to be private if the accessing pid has not changed 3185 */ 3186 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3187 priv = 1; 3188 } else { 3189 priv = cpupid_match_pid(p, last_cpupid); 3190 if (!priv && !(flags & TNF_NO_GROUP)) 3191 task_numa_group(p, last_cpupid, flags, &priv); 3192 } 3193 3194 /* 3195 * If a workload spans multiple NUMA nodes, a shared fault that 3196 * occurs wholly within the set of nodes that the workload is 3197 * actively using should be counted as local. This allows the 3198 * scan rate to slow down when a workload has settled down. 3199 */ 3200 ng = deref_curr_numa_group(p); 3201 if (!priv && !local && ng && ng->active_nodes > 1 && 3202 numa_is_active_node(cpu_node, ng) && 3203 numa_is_active_node(mem_node, ng)) 3204 local = 1; 3205 3206 /* 3207 * Retry to migrate task to preferred node periodically, in case it 3208 * previously failed, or the scheduler moved us. 3209 */ 3210 if (time_after(jiffies, p->numa_migrate_retry)) { 3211 task_numa_placement(p); 3212 numa_migrate_preferred(p); 3213 } 3214 3215 if (migrated) 3216 p->numa_pages_migrated += pages; 3217 if (flags & TNF_MIGRATE_FAIL) 3218 p->numa_faults_locality[2] += pages; 3219 3220 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3221 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3222 p->numa_faults_locality[local] += pages; 3223 } 3224 3225 static void reset_ptenuma_scan(struct task_struct *p) 3226 { 3227 /* 3228 * We only did a read acquisition of the mmap sem, so 3229 * p->mm->numa_scan_seq is written to without exclusive access 3230 * and the update is not guaranteed to be atomic. That's not 3231 * much of an issue though, since this is just used for 3232 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3233 * expensive, to avoid any form of compiler optimizations: 3234 */ 3235 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3236 p->mm->numa_scan_offset = 0; 3237 } 3238 3239 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3240 { 3241 unsigned long pids; 3242 /* 3243 * Allow unconditional access first two times, so that all the (pages) 3244 * of VMAs get prot_none fault introduced irrespective of accesses. 3245 * This is also done to avoid any side effect of task scanning 3246 * amplifying the unfairness of disjoint set of VMAs' access. 3247 */ 3248 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3249 return true; 3250 3251 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3252 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3253 return true; 3254 3255 /* 3256 * Complete a scan that has already started regardless of PID access, or 3257 * some VMAs may never be scanned in multi-threaded applications: 3258 */ 3259 if (mm->numa_scan_offset > vma->vm_start) { 3260 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3261 return true; 3262 } 3263 3264 /* 3265 * This vma has not been accessed for a while, and if the number 3266 * the threads in the same process is low, which means no other 3267 * threads can help scan this vma, force a vma scan. 3268 */ 3269 if (READ_ONCE(mm->numa_scan_seq) > 3270 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3271 return true; 3272 3273 return false; 3274 } 3275 3276 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3277 3278 /* 3279 * The expensive part of numa migration is done from task_work context. 3280 * Triggered from task_tick_numa(). 3281 */ 3282 static void task_numa_work(struct callback_head *work) 3283 { 3284 unsigned long migrate, next_scan, now = jiffies; 3285 struct task_struct *p = current; 3286 struct mm_struct *mm = p->mm; 3287 u64 runtime = p->se.sum_exec_runtime; 3288 struct vm_area_struct *vma; 3289 unsigned long start, end; 3290 unsigned long nr_pte_updates = 0; 3291 long pages, virtpages; 3292 struct vma_iterator vmi; 3293 bool vma_pids_skipped; 3294 bool vma_pids_forced = false; 3295 3296 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3297 3298 work->next = work; 3299 /* 3300 * Who cares about NUMA placement when they're dying. 3301 * 3302 * NOTE: make sure not to dereference p->mm before this check, 3303 * exit_task_work() happens _after_ exit_mm() so we could be called 3304 * without p->mm even though we still had it when we enqueued this 3305 * work. 3306 */ 3307 if (p->flags & PF_EXITING) 3308 return; 3309 3310 /* 3311 * Memory is pinned to only one NUMA node via cpuset.mems, naturally 3312 * no page can be migrated. 3313 */ 3314 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { 3315 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); 3316 return; 3317 } 3318 3319 if (!mm->numa_next_scan) { 3320 mm->numa_next_scan = now + 3321 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3322 } 3323 3324 /* 3325 * Enforce maximal scan/migration frequency.. 3326 */ 3327 migrate = mm->numa_next_scan; 3328 if (time_before(now, migrate)) 3329 return; 3330 3331 if (p->numa_scan_period == 0) { 3332 p->numa_scan_period_max = task_scan_max(p); 3333 p->numa_scan_period = task_scan_start(p); 3334 } 3335 3336 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3337 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3338 return; 3339 3340 /* 3341 * Delay this task enough that another task of this mm will likely win 3342 * the next time around. 3343 */ 3344 p->node_stamp += 2 * TICK_NSEC; 3345 3346 pages = sysctl_numa_balancing_scan_size; 3347 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3348 virtpages = pages * 8; /* Scan up to this much virtual space */ 3349 if (!pages) 3350 return; 3351 3352 3353 if (!mmap_read_trylock(mm)) 3354 return; 3355 3356 /* 3357 * VMAs are skipped if the current PID has not trapped a fault within 3358 * the VMA recently. Allow scanning to be forced if there is no 3359 * suitable VMA remaining. 3360 */ 3361 vma_pids_skipped = false; 3362 3363 retry_pids: 3364 start = mm->numa_scan_offset; 3365 vma_iter_init(&vmi, mm, start); 3366 vma = vma_next(&vmi); 3367 if (!vma) { 3368 reset_ptenuma_scan(p); 3369 start = 0; 3370 vma_iter_set(&vmi, start); 3371 vma = vma_next(&vmi); 3372 } 3373 3374 for (; vma; vma = vma_next(&vmi)) { 3375 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3376 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3377 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3378 continue; 3379 } 3380 3381 /* 3382 * Shared library pages mapped by multiple processes are not 3383 * migrated as it is expected they are cache replicated. Avoid 3384 * hinting faults in read-only file-backed mappings or the vDSO 3385 * as migrating the pages will be of marginal benefit. 3386 */ 3387 if (!vma->vm_mm || 3388 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3389 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3390 continue; 3391 } 3392 3393 /* 3394 * Skip inaccessible VMAs to avoid any confusion between 3395 * PROT_NONE and NUMA hinting PTEs 3396 */ 3397 if (!vma_is_accessible(vma)) { 3398 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3399 continue; 3400 } 3401 3402 /* Initialise new per-VMA NUMAB state. */ 3403 if (!vma->numab_state) { 3404 struct vma_numab_state *ptr; 3405 3406 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3407 if (!ptr) 3408 continue; 3409 3410 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3411 kfree(ptr); 3412 continue; 3413 } 3414 3415 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3416 3417 vma->numab_state->next_scan = now + 3418 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3419 3420 /* Reset happens after 4 times scan delay of scan start */ 3421 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3422 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3423 3424 /* 3425 * Ensure prev_scan_seq does not match numa_scan_seq, 3426 * to prevent VMAs being skipped prematurely on the 3427 * first scan: 3428 */ 3429 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3430 } 3431 3432 /* 3433 * Scanning the VMAs of short lived tasks add more overhead. So 3434 * delay the scan for new VMAs. 3435 */ 3436 if (mm->numa_scan_seq && time_before(jiffies, 3437 vma->numab_state->next_scan)) { 3438 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3439 continue; 3440 } 3441 3442 /* RESET access PIDs regularly for old VMAs. */ 3443 if (mm->numa_scan_seq && 3444 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3445 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3446 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3447 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3448 vma->numab_state->pids_active[1] = 0; 3449 } 3450 3451 /* Do not rescan VMAs twice within the same sequence. */ 3452 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3453 mm->numa_scan_offset = vma->vm_end; 3454 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3455 continue; 3456 } 3457 3458 /* 3459 * Do not scan the VMA if task has not accessed it, unless no other 3460 * VMA candidate exists. 3461 */ 3462 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3463 vma_pids_skipped = true; 3464 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3465 continue; 3466 } 3467 3468 do { 3469 start = max(start, vma->vm_start); 3470 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3471 end = min(end, vma->vm_end); 3472 nr_pte_updates = change_prot_numa(vma, start, end); 3473 3474 /* 3475 * Try to scan sysctl_numa_balancing_size worth of 3476 * hpages that have at least one present PTE that 3477 * is not already PTE-numa. If the VMA contains 3478 * areas that are unused or already full of prot_numa 3479 * PTEs, scan up to virtpages, to skip through those 3480 * areas faster. 3481 */ 3482 if (nr_pte_updates) 3483 pages -= (end - start) >> PAGE_SHIFT; 3484 virtpages -= (end - start) >> PAGE_SHIFT; 3485 3486 start = end; 3487 if (pages <= 0 || virtpages <= 0) 3488 goto out; 3489 3490 cond_resched(); 3491 } while (end != vma->vm_end); 3492 3493 /* VMA scan is complete, do not scan until next sequence. */ 3494 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3495 3496 /* 3497 * Only force scan within one VMA at a time, to limit the 3498 * cost of scanning a potentially uninteresting VMA. 3499 */ 3500 if (vma_pids_forced) 3501 break; 3502 } 3503 3504 /* 3505 * If no VMAs are remaining and VMAs were skipped due to the PID 3506 * not accessing the VMA previously, then force a scan to ensure 3507 * forward progress: 3508 */ 3509 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3510 vma_pids_forced = true; 3511 goto retry_pids; 3512 } 3513 3514 out: 3515 /* 3516 * It is possible to reach the end of the VMA list but the last few 3517 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3518 * would find the !migratable VMA on the next scan but not reset the 3519 * scanner to the start so check it now. 3520 */ 3521 if (vma) 3522 mm->numa_scan_offset = start; 3523 else 3524 reset_ptenuma_scan(p); 3525 mmap_read_unlock(mm); 3526 3527 /* 3528 * Make sure tasks use at least 32x as much time to run other code 3529 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3530 * Usually update_task_scan_period slows down scanning enough; on an 3531 * overloaded system we need to limit overhead on a per task basis. 3532 */ 3533 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3534 u64 diff = p->se.sum_exec_runtime - runtime; 3535 p->node_stamp += 32 * diff; 3536 } 3537 } 3538 3539 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3540 { 3541 int mm_users = 0; 3542 struct mm_struct *mm = p->mm; 3543 3544 if (mm) { 3545 mm_users = atomic_read(&mm->mm_users); 3546 if (mm_users == 1) { 3547 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3548 mm->numa_scan_seq = 0; 3549 } 3550 } 3551 p->node_stamp = 0; 3552 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3553 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3554 p->numa_migrate_retry = 0; 3555 /* Protect against double add, see task_tick_numa and task_numa_work */ 3556 p->numa_work.next = &p->numa_work; 3557 p->numa_faults = NULL; 3558 p->numa_pages_migrated = 0; 3559 p->total_numa_faults = 0; 3560 RCU_INIT_POINTER(p->numa_group, NULL); 3561 p->last_task_numa_placement = 0; 3562 p->last_sum_exec_runtime = 0; 3563 3564 init_task_work(&p->numa_work, task_numa_work); 3565 3566 /* New address space, reset the preferred nid */ 3567 if (!(clone_flags & CLONE_VM)) { 3568 p->numa_preferred_nid = NUMA_NO_NODE; 3569 return; 3570 } 3571 3572 /* 3573 * New thread, keep existing numa_preferred_nid which should be copied 3574 * already by arch_dup_task_struct but stagger when scans start. 3575 */ 3576 if (mm) { 3577 unsigned int delay; 3578 3579 delay = min_t(unsigned int, task_scan_max(current), 3580 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3581 delay += 2 * TICK_NSEC; 3582 p->node_stamp = delay; 3583 } 3584 } 3585 3586 /* 3587 * Drive the periodic memory faults.. 3588 */ 3589 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3590 { 3591 struct callback_head *work = &curr->numa_work; 3592 u64 period, now; 3593 3594 /* 3595 * We don't care about NUMA placement if we don't have memory. 3596 */ 3597 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3598 return; 3599 3600 /* 3601 * Using runtime rather than walltime has the dual advantage that 3602 * we (mostly) drive the selection from busy threads and that the 3603 * task needs to have done some actual work before we bother with 3604 * NUMA placement. 3605 */ 3606 now = curr->se.sum_exec_runtime; 3607 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3608 3609 if (now > curr->node_stamp + period) { 3610 if (!curr->node_stamp) 3611 curr->numa_scan_period = task_scan_start(curr); 3612 curr->node_stamp += period; 3613 3614 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3615 task_work_add(curr, work, TWA_RESUME); 3616 } 3617 } 3618 3619 static void update_scan_period(struct task_struct *p, int new_cpu) 3620 { 3621 int src_nid = cpu_to_node(task_cpu(p)); 3622 int dst_nid = cpu_to_node(new_cpu); 3623 3624 if (!static_branch_likely(&sched_numa_balancing)) 3625 return; 3626 3627 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3628 return; 3629 3630 if (src_nid == dst_nid) 3631 return; 3632 3633 /* 3634 * Allow resets if faults have been trapped before one scan 3635 * has completed. This is most likely due to a new task that 3636 * is pulled cross-node due to wakeups or load balancing. 3637 */ 3638 if (p->numa_scan_seq) { 3639 /* 3640 * Avoid scan adjustments if moving to the preferred 3641 * node or if the task was not previously running on 3642 * the preferred node. 3643 */ 3644 if (dst_nid == p->numa_preferred_nid || 3645 (p->numa_preferred_nid != NUMA_NO_NODE && 3646 src_nid != p->numa_preferred_nid)) 3647 return; 3648 } 3649 3650 p->numa_scan_period = task_scan_start(p); 3651 } 3652 3653 #else /* !CONFIG_NUMA_BALANCING: */ 3654 3655 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3656 { 3657 } 3658 3659 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3660 { 3661 } 3662 3663 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3664 { 3665 } 3666 3667 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3668 { 3669 } 3670 3671 #endif /* !CONFIG_NUMA_BALANCING */ 3672 3673 static void 3674 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3675 { 3676 update_load_add(&cfs_rq->load, se->load.weight); 3677 if (entity_is_task(se)) { 3678 struct rq *rq = rq_of(cfs_rq); 3679 3680 account_numa_enqueue(rq, task_of(se)); 3681 list_add(&se->group_node, &rq->cfs_tasks); 3682 } 3683 cfs_rq->nr_queued++; 3684 } 3685 3686 static void 3687 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3688 { 3689 update_load_sub(&cfs_rq->load, se->load.weight); 3690 if (entity_is_task(se)) { 3691 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3692 list_del_init(&se->group_node); 3693 } 3694 cfs_rq->nr_queued--; 3695 } 3696 3697 /* 3698 * Signed add and clamp on underflow. 3699 * 3700 * Explicitly do a load-store to ensure the intermediate value never hits 3701 * memory. This allows lockless observations without ever seeing the negative 3702 * values. 3703 */ 3704 #define add_positive(_ptr, _val) do { \ 3705 typeof(_ptr) ptr = (_ptr); \ 3706 typeof(_val) val = (_val); \ 3707 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3708 \ 3709 res = var + val; \ 3710 \ 3711 if (val < 0 && res > var) \ 3712 res = 0; \ 3713 \ 3714 WRITE_ONCE(*ptr, res); \ 3715 } while (0) 3716 3717 /* 3718 * Unsigned subtract and clamp on underflow. 3719 * 3720 * Explicitly do a load-store to ensure the intermediate value never hits 3721 * memory. This allows lockless observations without ever seeing the negative 3722 * values. 3723 */ 3724 #define sub_positive(_ptr, _val) do { \ 3725 typeof(_ptr) ptr = (_ptr); \ 3726 typeof(*ptr) val = (_val); \ 3727 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3728 res = var - val; \ 3729 if (res > var) \ 3730 res = 0; \ 3731 WRITE_ONCE(*ptr, res); \ 3732 } while (0) 3733 3734 /* 3735 * Remove and clamp on negative, from a local variable. 3736 * 3737 * A variant of sub_positive(), which does not use explicit load-store 3738 * and is thus optimized for local variable updates. 3739 */ 3740 #define lsub_positive(_ptr, _val) do { \ 3741 typeof(_ptr) ptr = (_ptr); \ 3742 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3743 } while (0) 3744 3745 static inline void 3746 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3747 { 3748 cfs_rq->avg.load_avg += se->avg.load_avg; 3749 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3750 } 3751 3752 static inline void 3753 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3754 { 3755 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3756 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3757 /* See update_cfs_rq_load_avg() */ 3758 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3759 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3760 } 3761 3762 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3763 3764 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3765 unsigned long weight) 3766 { 3767 bool curr = cfs_rq->curr == se; 3768 3769 if (se->on_rq) { 3770 /* commit outstanding execution time */ 3771 update_curr(cfs_rq); 3772 update_entity_lag(cfs_rq, se); 3773 se->deadline -= se->vruntime; 3774 se->rel_deadline = 1; 3775 cfs_rq->nr_queued--; 3776 if (!curr) 3777 __dequeue_entity(cfs_rq, se); 3778 update_load_sub(&cfs_rq->load, se->load.weight); 3779 } 3780 dequeue_load_avg(cfs_rq, se); 3781 3782 /* 3783 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3784 * we need to scale se->vlag when w_i changes. 3785 */ 3786 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3787 if (se->rel_deadline) 3788 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3789 3790 update_load_set(&se->load, weight); 3791 3792 do { 3793 u32 divider = get_pelt_divider(&se->avg); 3794 3795 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3796 } while (0); 3797 3798 enqueue_load_avg(cfs_rq, se); 3799 if (se->on_rq) { 3800 place_entity(cfs_rq, se, 0); 3801 update_load_add(&cfs_rq->load, se->load.weight); 3802 if (!curr) 3803 __enqueue_entity(cfs_rq, se); 3804 cfs_rq->nr_queued++; 3805 3806 /* 3807 * The entity's vruntime has been adjusted, so let's check 3808 * whether the rq-wide min_vruntime needs updated too. Since 3809 * the calculations above require stable min_vruntime rather 3810 * than up-to-date one, we do the update at the end of the 3811 * reweight process. 3812 */ 3813 update_min_vruntime(cfs_rq); 3814 } 3815 } 3816 3817 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3818 const struct load_weight *lw) 3819 { 3820 struct sched_entity *se = &p->se; 3821 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3822 struct load_weight *load = &se->load; 3823 3824 reweight_entity(cfs_rq, se, lw->weight); 3825 load->inv_weight = lw->inv_weight; 3826 } 3827 3828 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3829 3830 #ifdef CONFIG_FAIR_GROUP_SCHED 3831 /* 3832 * All this does is approximate the hierarchical proportion which includes that 3833 * global sum we all love to hate. 3834 * 3835 * That is, the weight of a group entity, is the proportional share of the 3836 * group weight based on the group runqueue weights. That is: 3837 * 3838 * tg->weight * grq->load.weight 3839 * ge->load.weight = ----------------------------- (1) 3840 * \Sum grq->load.weight 3841 * 3842 * Now, because computing that sum is prohibitively expensive to compute (been 3843 * there, done that) we approximate it with this average stuff. The average 3844 * moves slower and therefore the approximation is cheaper and more stable. 3845 * 3846 * So instead of the above, we substitute: 3847 * 3848 * grq->load.weight -> grq->avg.load_avg (2) 3849 * 3850 * which yields the following: 3851 * 3852 * tg->weight * grq->avg.load_avg 3853 * ge->load.weight = ------------------------------ (3) 3854 * tg->load_avg 3855 * 3856 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3857 * 3858 * That is shares_avg, and it is right (given the approximation (2)). 3859 * 3860 * The problem with it is that because the average is slow -- it was designed 3861 * to be exactly that of course -- this leads to transients in boundary 3862 * conditions. In specific, the case where the group was idle and we start the 3863 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3864 * yielding bad latency etc.. 3865 * 3866 * Now, in that special case (1) reduces to: 3867 * 3868 * tg->weight * grq->load.weight 3869 * ge->load.weight = ----------------------------- = tg->weight (4) 3870 * grp->load.weight 3871 * 3872 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3873 * 3874 * So what we do is modify our approximation (3) to approach (4) in the (near) 3875 * UP case, like: 3876 * 3877 * ge->load.weight = 3878 * 3879 * tg->weight * grq->load.weight 3880 * --------------------------------------------------- (5) 3881 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3882 * 3883 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3884 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3885 * 3886 * 3887 * tg->weight * grq->load.weight 3888 * ge->load.weight = ----------------------------- (6) 3889 * tg_load_avg' 3890 * 3891 * Where: 3892 * 3893 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3894 * max(grq->load.weight, grq->avg.load_avg) 3895 * 3896 * And that is shares_weight and is icky. In the (near) UP case it approaches 3897 * (4) while in the normal case it approaches (3). It consistently 3898 * overestimates the ge->load.weight and therefore: 3899 * 3900 * \Sum ge->load.weight >= tg->weight 3901 * 3902 * hence icky! 3903 */ 3904 static long calc_group_shares(struct cfs_rq *cfs_rq) 3905 { 3906 long tg_weight, tg_shares, load, shares; 3907 struct task_group *tg = cfs_rq->tg; 3908 3909 tg_shares = READ_ONCE(tg->shares); 3910 3911 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3912 3913 tg_weight = atomic_long_read(&tg->load_avg); 3914 3915 /* Ensure tg_weight >= load */ 3916 tg_weight -= cfs_rq->tg_load_avg_contrib; 3917 tg_weight += load; 3918 3919 shares = (tg_shares * load); 3920 if (tg_weight) 3921 shares /= tg_weight; 3922 3923 /* 3924 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3925 * of a group with small tg->shares value. It is a floor value which is 3926 * assigned as a minimum load.weight to the sched_entity representing 3927 * the group on a CPU. 3928 * 3929 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3930 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3931 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3932 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3933 * instead of 0. 3934 */ 3935 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3936 } 3937 3938 /* 3939 * Recomputes the group entity based on the current state of its group 3940 * runqueue. 3941 */ 3942 static void update_cfs_group(struct sched_entity *se) 3943 { 3944 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3945 long shares; 3946 3947 /* 3948 * When a group becomes empty, preserve its weight. This matters for 3949 * DELAY_DEQUEUE. 3950 */ 3951 if (!gcfs_rq || !gcfs_rq->load.weight) 3952 return; 3953 3954 if (throttled_hierarchy(gcfs_rq)) 3955 return; 3956 3957 shares = calc_group_shares(gcfs_rq); 3958 if (unlikely(se->load.weight != shares)) 3959 reweight_entity(cfs_rq_of(se), se, shares); 3960 } 3961 3962 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 3963 static inline void update_cfs_group(struct sched_entity *se) 3964 { 3965 } 3966 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 3967 3968 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3969 { 3970 struct rq *rq = rq_of(cfs_rq); 3971 3972 if (&rq->cfs == cfs_rq) { 3973 /* 3974 * There are a few boundary cases this might miss but it should 3975 * get called often enough that that should (hopefully) not be 3976 * a real problem. 3977 * 3978 * It will not get called when we go idle, because the idle 3979 * thread is a different class (!fair), nor will the utilization 3980 * number include things like RT tasks. 3981 * 3982 * As is, the util number is not freq-invariant (we'd have to 3983 * implement arch_scale_freq_capacity() for that). 3984 * 3985 * See cpu_util_cfs(). 3986 */ 3987 cpufreq_update_util(rq, flags); 3988 } 3989 } 3990 3991 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3992 { 3993 if (sa->load_sum) 3994 return false; 3995 3996 if (sa->util_sum) 3997 return false; 3998 3999 if (sa->runnable_sum) 4000 return false; 4001 4002 /* 4003 * _avg must be null when _sum are null because _avg = _sum / divider 4004 * Make sure that rounding and/or propagation of PELT values never 4005 * break this. 4006 */ 4007 WARN_ON_ONCE(sa->load_avg || 4008 sa->util_avg || 4009 sa->runnable_avg); 4010 4011 return true; 4012 } 4013 4014 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4015 { 4016 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4017 cfs_rq->last_update_time_copy); 4018 } 4019 #ifdef CONFIG_FAIR_GROUP_SCHED 4020 /* 4021 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4022 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4023 * bottom-up, we only have to test whether the cfs_rq before us on the list 4024 * is our child. 4025 * If cfs_rq is not on the list, test whether a child needs its to be added to 4026 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4027 */ 4028 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4029 { 4030 struct cfs_rq *prev_cfs_rq; 4031 struct list_head *prev; 4032 struct rq *rq = rq_of(cfs_rq); 4033 4034 if (cfs_rq->on_list) { 4035 prev = cfs_rq->leaf_cfs_rq_list.prev; 4036 } else { 4037 prev = rq->tmp_alone_branch; 4038 } 4039 4040 if (prev == &rq->leaf_cfs_rq_list) 4041 return false; 4042 4043 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4044 4045 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4046 } 4047 4048 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4049 { 4050 if (cfs_rq->load.weight) 4051 return false; 4052 4053 if (!load_avg_is_decayed(&cfs_rq->avg)) 4054 return false; 4055 4056 if (child_cfs_rq_on_list(cfs_rq)) 4057 return false; 4058 4059 return true; 4060 } 4061 4062 /** 4063 * update_tg_load_avg - update the tg's load avg 4064 * @cfs_rq: the cfs_rq whose avg changed 4065 * 4066 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4067 * However, because tg->load_avg is a global value there are performance 4068 * considerations. 4069 * 4070 * In order to avoid having to look at the other cfs_rq's, we use a 4071 * differential update where we store the last value we propagated. This in 4072 * turn allows skipping updates if the differential is 'small'. 4073 * 4074 * Updating tg's load_avg is necessary before update_cfs_share(). 4075 */ 4076 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4077 { 4078 long delta; 4079 u64 now; 4080 4081 /* 4082 * No need to update load_avg for root_task_group as it is not used. 4083 */ 4084 if (cfs_rq->tg == &root_task_group) 4085 return; 4086 4087 /* rq has been offline and doesn't contribute to the share anymore: */ 4088 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4089 return; 4090 4091 /* 4092 * For migration heavy workloads, access to tg->load_avg can be 4093 * unbound. Limit the update rate to at most once per ms. 4094 */ 4095 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4096 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4097 return; 4098 4099 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4100 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4101 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4102 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4103 cfs_rq->last_update_tg_load_avg = now; 4104 } 4105 } 4106 4107 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4108 { 4109 long delta; 4110 u64 now; 4111 4112 /* 4113 * No need to update load_avg for root_task_group, as it is not used. 4114 */ 4115 if (cfs_rq->tg == &root_task_group) 4116 return; 4117 4118 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4119 delta = 0 - cfs_rq->tg_load_avg_contrib; 4120 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4121 cfs_rq->tg_load_avg_contrib = 0; 4122 cfs_rq->last_update_tg_load_avg = now; 4123 } 4124 4125 /* CPU offline callback: */ 4126 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4127 { 4128 struct task_group *tg; 4129 4130 lockdep_assert_rq_held(rq); 4131 4132 /* 4133 * The rq clock has already been updated in 4134 * set_rq_offline(), so we should skip updating 4135 * the rq clock again in unthrottle_cfs_rq(). 4136 */ 4137 rq_clock_start_loop_update(rq); 4138 4139 rcu_read_lock(); 4140 list_for_each_entry_rcu(tg, &task_groups, list) { 4141 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4142 4143 clear_tg_load_avg(cfs_rq); 4144 } 4145 rcu_read_unlock(); 4146 4147 rq_clock_stop_loop_update(rq); 4148 } 4149 4150 /* 4151 * Called within set_task_rq() right before setting a task's CPU. The 4152 * caller only guarantees p->pi_lock is held; no other assumptions, 4153 * including the state of rq->lock, should be made. 4154 */ 4155 void set_task_rq_fair(struct sched_entity *se, 4156 struct cfs_rq *prev, struct cfs_rq *next) 4157 { 4158 u64 p_last_update_time; 4159 u64 n_last_update_time; 4160 4161 if (!sched_feat(ATTACH_AGE_LOAD)) 4162 return; 4163 4164 /* 4165 * We are supposed to update the task to "current" time, then its up to 4166 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4167 * getting what current time is, so simply throw away the out-of-date 4168 * time. This will result in the wakee task is less decayed, but giving 4169 * the wakee more load sounds not bad. 4170 */ 4171 if (!(se->avg.last_update_time && prev)) 4172 return; 4173 4174 p_last_update_time = cfs_rq_last_update_time(prev); 4175 n_last_update_time = cfs_rq_last_update_time(next); 4176 4177 __update_load_avg_blocked_se(p_last_update_time, se); 4178 se->avg.last_update_time = n_last_update_time; 4179 } 4180 4181 /* 4182 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4183 * propagate its contribution. The key to this propagation is the invariant 4184 * that for each group: 4185 * 4186 * ge->avg == grq->avg (1) 4187 * 4188 * _IFF_ we look at the pure running and runnable sums. Because they 4189 * represent the very same entity, just at different points in the hierarchy. 4190 * 4191 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4192 * and simply copies the running/runnable sum over (but still wrong, because 4193 * the group entity and group rq do not have their PELT windows aligned). 4194 * 4195 * However, update_tg_cfs_load() is more complex. So we have: 4196 * 4197 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4198 * 4199 * And since, like util, the runnable part should be directly transferable, 4200 * the following would _appear_ to be the straight forward approach: 4201 * 4202 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4203 * 4204 * And per (1) we have: 4205 * 4206 * ge->avg.runnable_avg == grq->avg.runnable_avg 4207 * 4208 * Which gives: 4209 * 4210 * ge->load.weight * grq->avg.load_avg 4211 * ge->avg.load_avg = ----------------------------------- (4) 4212 * grq->load.weight 4213 * 4214 * Except that is wrong! 4215 * 4216 * Because while for entities historical weight is not important and we 4217 * really only care about our future and therefore can consider a pure 4218 * runnable sum, runqueues can NOT do this. 4219 * 4220 * We specifically want runqueues to have a load_avg that includes 4221 * historical weights. Those represent the blocked load, the load we expect 4222 * to (shortly) return to us. This only works by keeping the weights as 4223 * integral part of the sum. We therefore cannot decompose as per (3). 4224 * 4225 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4226 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4227 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4228 * runnable section of these tasks overlap (or not). If they were to perfectly 4229 * align the rq as a whole would be runnable 2/3 of the time. If however we 4230 * always have at least 1 runnable task, the rq as a whole is always runnable. 4231 * 4232 * So we'll have to approximate.. :/ 4233 * 4234 * Given the constraint: 4235 * 4236 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4237 * 4238 * We can construct a rule that adds runnable to a rq by assuming minimal 4239 * overlap. 4240 * 4241 * On removal, we'll assume each task is equally runnable; which yields: 4242 * 4243 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4244 * 4245 * XXX: only do this for the part of runnable > running ? 4246 * 4247 */ 4248 static inline void 4249 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4250 { 4251 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4252 u32 new_sum, divider; 4253 4254 /* Nothing to update */ 4255 if (!delta_avg) 4256 return; 4257 4258 /* 4259 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4260 * See ___update_load_avg() for details. 4261 */ 4262 divider = get_pelt_divider(&cfs_rq->avg); 4263 4264 4265 /* Set new sched_entity's utilization */ 4266 se->avg.util_avg = gcfs_rq->avg.util_avg; 4267 new_sum = se->avg.util_avg * divider; 4268 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4269 se->avg.util_sum = new_sum; 4270 4271 /* Update parent cfs_rq utilization */ 4272 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4273 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4274 4275 /* See update_cfs_rq_load_avg() */ 4276 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4277 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4278 } 4279 4280 static inline void 4281 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4282 { 4283 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4284 u32 new_sum, divider; 4285 4286 /* Nothing to update */ 4287 if (!delta_avg) 4288 return; 4289 4290 /* 4291 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4292 * See ___update_load_avg() for details. 4293 */ 4294 divider = get_pelt_divider(&cfs_rq->avg); 4295 4296 /* Set new sched_entity's runnable */ 4297 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4298 new_sum = se->avg.runnable_avg * divider; 4299 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4300 se->avg.runnable_sum = new_sum; 4301 4302 /* Update parent cfs_rq runnable */ 4303 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4304 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4305 /* See update_cfs_rq_load_avg() */ 4306 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4307 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4308 } 4309 4310 static inline void 4311 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4312 { 4313 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4314 unsigned long load_avg; 4315 u64 load_sum = 0; 4316 s64 delta_sum; 4317 u32 divider; 4318 4319 if (!runnable_sum) 4320 return; 4321 4322 gcfs_rq->prop_runnable_sum = 0; 4323 4324 /* 4325 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4326 * See ___update_load_avg() for details. 4327 */ 4328 divider = get_pelt_divider(&cfs_rq->avg); 4329 4330 if (runnable_sum >= 0) { 4331 /* 4332 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4333 * the CPU is saturated running == runnable. 4334 */ 4335 runnable_sum += se->avg.load_sum; 4336 runnable_sum = min_t(long, runnable_sum, divider); 4337 } else { 4338 /* 4339 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4340 * assuming all tasks are equally runnable. 4341 */ 4342 if (scale_load_down(gcfs_rq->load.weight)) { 4343 load_sum = div_u64(gcfs_rq->avg.load_sum, 4344 scale_load_down(gcfs_rq->load.weight)); 4345 } 4346 4347 /* But make sure to not inflate se's runnable */ 4348 runnable_sum = min(se->avg.load_sum, load_sum); 4349 } 4350 4351 /* 4352 * runnable_sum can't be lower than running_sum 4353 * Rescale running sum to be in the same range as runnable sum 4354 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4355 * runnable_sum is in [0 : LOAD_AVG_MAX] 4356 */ 4357 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4358 runnable_sum = max(runnable_sum, running_sum); 4359 4360 load_sum = se_weight(se) * runnable_sum; 4361 load_avg = div_u64(load_sum, divider); 4362 4363 delta_avg = load_avg - se->avg.load_avg; 4364 if (!delta_avg) 4365 return; 4366 4367 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4368 4369 se->avg.load_sum = runnable_sum; 4370 se->avg.load_avg = load_avg; 4371 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4372 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4373 /* See update_cfs_rq_load_avg() */ 4374 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4375 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4376 } 4377 4378 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4379 { 4380 cfs_rq->propagate = 1; 4381 cfs_rq->prop_runnable_sum += runnable_sum; 4382 } 4383 4384 /* Update task and its cfs_rq load average */ 4385 static inline int propagate_entity_load_avg(struct sched_entity *se) 4386 { 4387 struct cfs_rq *cfs_rq, *gcfs_rq; 4388 4389 if (entity_is_task(se)) 4390 return 0; 4391 4392 gcfs_rq = group_cfs_rq(se); 4393 if (!gcfs_rq->propagate) 4394 return 0; 4395 4396 gcfs_rq->propagate = 0; 4397 4398 cfs_rq = cfs_rq_of(se); 4399 4400 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4401 4402 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4403 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4404 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4405 4406 trace_pelt_cfs_tp(cfs_rq); 4407 trace_pelt_se_tp(se); 4408 4409 return 1; 4410 } 4411 4412 /* 4413 * Check if we need to update the load and the utilization of a blocked 4414 * group_entity: 4415 */ 4416 static inline bool skip_blocked_update(struct sched_entity *se) 4417 { 4418 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4419 4420 /* 4421 * If sched_entity still have not zero load or utilization, we have to 4422 * decay it: 4423 */ 4424 if (se->avg.load_avg || se->avg.util_avg) 4425 return false; 4426 4427 /* 4428 * If there is a pending propagation, we have to update the load and 4429 * the utilization of the sched_entity: 4430 */ 4431 if (gcfs_rq->propagate) 4432 return false; 4433 4434 /* 4435 * Otherwise, the load and the utilization of the sched_entity is 4436 * already zero and there is no pending propagation, so it will be a 4437 * waste of time to try to decay it: 4438 */ 4439 return true; 4440 } 4441 4442 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 4443 4444 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4445 4446 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4447 4448 static inline int propagate_entity_load_avg(struct sched_entity *se) 4449 { 4450 return 0; 4451 } 4452 4453 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4454 4455 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 4456 4457 #ifdef CONFIG_NO_HZ_COMMON 4458 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4459 { 4460 u64 throttled = 0, now, lut; 4461 struct cfs_rq *cfs_rq; 4462 struct rq *rq; 4463 bool is_idle; 4464 4465 if (load_avg_is_decayed(&se->avg)) 4466 return; 4467 4468 cfs_rq = cfs_rq_of(se); 4469 rq = rq_of(cfs_rq); 4470 4471 rcu_read_lock(); 4472 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4473 rcu_read_unlock(); 4474 4475 /* 4476 * The lag estimation comes with a cost we don't want to pay all the 4477 * time. Hence, limiting to the case where the source CPU is idle and 4478 * we know we are at the greatest risk to have an outdated clock. 4479 */ 4480 if (!is_idle) 4481 return; 4482 4483 /* 4484 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4485 * 4486 * last_update_time (the cfs_rq's last_update_time) 4487 * = cfs_rq_clock_pelt()@cfs_rq_idle 4488 * = rq_clock_pelt()@cfs_rq_idle 4489 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4490 * 4491 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4492 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4493 * 4494 * rq_idle_lag (delta between now and rq's update) 4495 * = sched_clock_cpu() - rq_clock()@rq_idle 4496 * 4497 * We can then write: 4498 * 4499 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4500 * sched_clock_cpu() - rq_clock()@rq_idle 4501 * Where: 4502 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4503 * rq_clock()@rq_idle is rq->clock_idle 4504 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4505 * is cfs_rq->throttled_pelt_idle 4506 */ 4507 4508 #ifdef CONFIG_CFS_BANDWIDTH 4509 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4510 /* The clock has been stopped for throttling */ 4511 if (throttled == U64_MAX) 4512 return; 4513 #endif 4514 now = u64_u32_load(rq->clock_pelt_idle); 4515 /* 4516 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4517 * is observed the old clock_pelt_idle value and the new clock_idle, 4518 * which lead to an underestimation. The opposite would lead to an 4519 * overestimation. 4520 */ 4521 smp_rmb(); 4522 lut = cfs_rq_last_update_time(cfs_rq); 4523 4524 now -= throttled; 4525 if (now < lut) 4526 /* 4527 * cfs_rq->avg.last_update_time is more recent than our 4528 * estimation, let's use it. 4529 */ 4530 now = lut; 4531 else 4532 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4533 4534 __update_load_avg_blocked_se(now, se); 4535 } 4536 #else /* !CONFIG_NO_HZ_COMMON: */ 4537 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4538 #endif /* !CONFIG_NO_HZ_COMMON */ 4539 4540 /** 4541 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4542 * @now: current time, as per cfs_rq_clock_pelt() 4543 * @cfs_rq: cfs_rq to update 4544 * 4545 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4546 * avg. The immediate corollary is that all (fair) tasks must be attached. 4547 * 4548 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4549 * 4550 * Return: true if the load decayed or we removed load. 4551 * 4552 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4553 * call update_tg_load_avg() when this function returns true. 4554 */ 4555 static inline int 4556 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4557 { 4558 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4559 struct sched_avg *sa = &cfs_rq->avg; 4560 int decayed = 0; 4561 4562 if (cfs_rq->removed.nr) { 4563 unsigned long r; 4564 u32 divider = get_pelt_divider(&cfs_rq->avg); 4565 4566 raw_spin_lock(&cfs_rq->removed.lock); 4567 swap(cfs_rq->removed.util_avg, removed_util); 4568 swap(cfs_rq->removed.load_avg, removed_load); 4569 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4570 cfs_rq->removed.nr = 0; 4571 raw_spin_unlock(&cfs_rq->removed.lock); 4572 4573 r = removed_load; 4574 sub_positive(&sa->load_avg, r); 4575 sub_positive(&sa->load_sum, r * divider); 4576 /* See sa->util_sum below */ 4577 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4578 4579 r = removed_util; 4580 sub_positive(&sa->util_avg, r); 4581 sub_positive(&sa->util_sum, r * divider); 4582 /* 4583 * Because of rounding, se->util_sum might ends up being +1 more than 4584 * cfs->util_sum. Although this is not a problem by itself, detaching 4585 * a lot of tasks with the rounding problem between 2 updates of 4586 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4587 * cfs_util_avg is not. 4588 * Check that util_sum is still above its lower bound for the new 4589 * util_avg. Given that period_contrib might have moved since the last 4590 * sync, we are only sure that util_sum must be above or equal to 4591 * util_avg * minimum possible divider 4592 */ 4593 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4594 4595 r = removed_runnable; 4596 sub_positive(&sa->runnable_avg, r); 4597 sub_positive(&sa->runnable_sum, r * divider); 4598 /* See sa->util_sum above */ 4599 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4600 sa->runnable_avg * PELT_MIN_DIVIDER); 4601 4602 /* 4603 * removed_runnable is the unweighted version of removed_load so we 4604 * can use it to estimate removed_load_sum. 4605 */ 4606 add_tg_cfs_propagate(cfs_rq, 4607 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4608 4609 decayed = 1; 4610 } 4611 4612 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4613 u64_u32_store_copy(sa->last_update_time, 4614 cfs_rq->last_update_time_copy, 4615 sa->last_update_time); 4616 return decayed; 4617 } 4618 4619 /** 4620 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4621 * @cfs_rq: cfs_rq to attach to 4622 * @se: sched_entity to attach 4623 * 4624 * Must call update_cfs_rq_load_avg() before this, since we rely on 4625 * cfs_rq->avg.last_update_time being current. 4626 */ 4627 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4628 { 4629 /* 4630 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4631 * See ___update_load_avg() for details. 4632 */ 4633 u32 divider = get_pelt_divider(&cfs_rq->avg); 4634 4635 /* 4636 * When we attach the @se to the @cfs_rq, we must align the decay 4637 * window because without that, really weird and wonderful things can 4638 * happen. 4639 * 4640 * XXX illustrate 4641 */ 4642 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4643 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4644 4645 /* 4646 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4647 * period_contrib. This isn't strictly correct, but since we're 4648 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4649 * _sum a little. 4650 */ 4651 se->avg.util_sum = se->avg.util_avg * divider; 4652 4653 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4654 4655 se->avg.load_sum = se->avg.load_avg * divider; 4656 if (se_weight(se) < se->avg.load_sum) 4657 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4658 else 4659 se->avg.load_sum = 1; 4660 4661 enqueue_load_avg(cfs_rq, se); 4662 cfs_rq->avg.util_avg += se->avg.util_avg; 4663 cfs_rq->avg.util_sum += se->avg.util_sum; 4664 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4665 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4666 4667 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4668 4669 cfs_rq_util_change(cfs_rq, 0); 4670 4671 trace_pelt_cfs_tp(cfs_rq); 4672 } 4673 4674 /** 4675 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4676 * @cfs_rq: cfs_rq to detach from 4677 * @se: sched_entity to detach 4678 * 4679 * Must call update_cfs_rq_load_avg() before this, since we rely on 4680 * cfs_rq->avg.last_update_time being current. 4681 */ 4682 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4683 { 4684 dequeue_load_avg(cfs_rq, se); 4685 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4686 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4687 /* See update_cfs_rq_load_avg() */ 4688 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4689 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4690 4691 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4692 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4693 /* See update_cfs_rq_load_avg() */ 4694 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4695 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4696 4697 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4698 4699 cfs_rq_util_change(cfs_rq, 0); 4700 4701 trace_pelt_cfs_tp(cfs_rq); 4702 } 4703 4704 /* 4705 * Optional action to be done while updating the load average 4706 */ 4707 #define UPDATE_TG 0x1 4708 #define SKIP_AGE_LOAD 0x2 4709 #define DO_ATTACH 0x4 4710 #define DO_DETACH 0x8 4711 4712 /* Update task and its cfs_rq load average */ 4713 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4714 { 4715 u64 now = cfs_rq_clock_pelt(cfs_rq); 4716 int decayed; 4717 4718 /* 4719 * Track task load average for carrying it to new CPU after migrated, and 4720 * track group sched_entity load average for task_h_load calculation in migration 4721 */ 4722 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4723 __update_load_avg_se(now, cfs_rq, se); 4724 4725 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4726 decayed |= propagate_entity_load_avg(se); 4727 4728 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4729 4730 /* 4731 * DO_ATTACH means we're here from enqueue_entity(). 4732 * !last_update_time means we've passed through 4733 * migrate_task_rq_fair() indicating we migrated. 4734 * 4735 * IOW we're enqueueing a task on a new CPU. 4736 */ 4737 attach_entity_load_avg(cfs_rq, se); 4738 update_tg_load_avg(cfs_rq); 4739 4740 } else if (flags & DO_DETACH) { 4741 /* 4742 * DO_DETACH means we're here from dequeue_entity() 4743 * and we are migrating task out of the CPU. 4744 */ 4745 detach_entity_load_avg(cfs_rq, se); 4746 update_tg_load_avg(cfs_rq); 4747 } else if (decayed) { 4748 cfs_rq_util_change(cfs_rq, 0); 4749 4750 if (flags & UPDATE_TG) 4751 update_tg_load_avg(cfs_rq); 4752 } 4753 } 4754 4755 /* 4756 * Synchronize entity load avg of dequeued entity without locking 4757 * the previous rq. 4758 */ 4759 static void sync_entity_load_avg(struct sched_entity *se) 4760 { 4761 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4762 u64 last_update_time; 4763 4764 last_update_time = cfs_rq_last_update_time(cfs_rq); 4765 __update_load_avg_blocked_se(last_update_time, se); 4766 } 4767 4768 /* 4769 * Task first catches up with cfs_rq, and then subtract 4770 * itself from the cfs_rq (task must be off the queue now). 4771 */ 4772 static void remove_entity_load_avg(struct sched_entity *se) 4773 { 4774 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4775 unsigned long flags; 4776 4777 /* 4778 * tasks cannot exit without having gone through wake_up_new_task() -> 4779 * enqueue_task_fair() which will have added things to the cfs_rq, 4780 * so we can remove unconditionally. 4781 */ 4782 4783 sync_entity_load_avg(se); 4784 4785 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4786 ++cfs_rq->removed.nr; 4787 cfs_rq->removed.util_avg += se->avg.util_avg; 4788 cfs_rq->removed.load_avg += se->avg.load_avg; 4789 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4790 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4791 } 4792 4793 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4794 { 4795 return cfs_rq->avg.runnable_avg; 4796 } 4797 4798 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4799 { 4800 return cfs_rq->avg.load_avg; 4801 } 4802 4803 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4804 4805 static inline unsigned long task_util(struct task_struct *p) 4806 { 4807 return READ_ONCE(p->se.avg.util_avg); 4808 } 4809 4810 static inline unsigned long task_runnable(struct task_struct *p) 4811 { 4812 return READ_ONCE(p->se.avg.runnable_avg); 4813 } 4814 4815 static inline unsigned long _task_util_est(struct task_struct *p) 4816 { 4817 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4818 } 4819 4820 static inline unsigned long task_util_est(struct task_struct *p) 4821 { 4822 return max(task_util(p), _task_util_est(p)); 4823 } 4824 4825 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4826 struct task_struct *p) 4827 { 4828 unsigned int enqueued; 4829 4830 if (!sched_feat(UTIL_EST)) 4831 return; 4832 4833 /* Update root cfs_rq's estimated utilization */ 4834 enqueued = cfs_rq->avg.util_est; 4835 enqueued += _task_util_est(p); 4836 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4837 4838 trace_sched_util_est_cfs_tp(cfs_rq); 4839 } 4840 4841 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4842 struct task_struct *p) 4843 { 4844 unsigned int enqueued; 4845 4846 if (!sched_feat(UTIL_EST)) 4847 return; 4848 4849 /* Update root cfs_rq's estimated utilization */ 4850 enqueued = cfs_rq->avg.util_est; 4851 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4852 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4853 4854 trace_sched_util_est_cfs_tp(cfs_rq); 4855 } 4856 4857 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4858 4859 static inline void util_est_update(struct cfs_rq *cfs_rq, 4860 struct task_struct *p, 4861 bool task_sleep) 4862 { 4863 unsigned int ewma, dequeued, last_ewma_diff; 4864 4865 if (!sched_feat(UTIL_EST)) 4866 return; 4867 4868 /* 4869 * Skip update of task's estimated utilization when the task has not 4870 * yet completed an activation, e.g. being migrated. 4871 */ 4872 if (!task_sleep) 4873 return; 4874 4875 /* Get current estimate of utilization */ 4876 ewma = READ_ONCE(p->se.avg.util_est); 4877 4878 /* 4879 * If the PELT values haven't changed since enqueue time, 4880 * skip the util_est update. 4881 */ 4882 if (ewma & UTIL_AVG_UNCHANGED) 4883 return; 4884 4885 /* Get utilization at dequeue */ 4886 dequeued = task_util(p); 4887 4888 /* 4889 * Reset EWMA on utilization increases, the moving average is used only 4890 * to smooth utilization decreases. 4891 */ 4892 if (ewma <= dequeued) { 4893 ewma = dequeued; 4894 goto done; 4895 } 4896 4897 /* 4898 * Skip update of task's estimated utilization when its members are 4899 * already ~1% close to its last activation value. 4900 */ 4901 last_ewma_diff = ewma - dequeued; 4902 if (last_ewma_diff < UTIL_EST_MARGIN) 4903 goto done; 4904 4905 /* 4906 * To avoid underestimate of task utilization, skip updates of EWMA if 4907 * we cannot grant that thread got all CPU time it wanted. 4908 */ 4909 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4910 goto done; 4911 4912 4913 /* 4914 * Update Task's estimated utilization 4915 * 4916 * When *p completes an activation we can consolidate another sample 4917 * of the task size. This is done by using this value to update the 4918 * Exponential Weighted Moving Average (EWMA): 4919 * 4920 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4921 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4922 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4923 * = w * ( -last_ewma_diff ) + ewma(t-1) 4924 * = w * (-last_ewma_diff + ewma(t-1) / w) 4925 * 4926 * Where 'w' is the weight of new samples, which is configured to be 4927 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4928 */ 4929 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4930 ewma -= last_ewma_diff; 4931 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4932 done: 4933 ewma |= UTIL_AVG_UNCHANGED; 4934 WRITE_ONCE(p->se.avg.util_est, ewma); 4935 4936 trace_sched_util_est_se_tp(&p->se); 4937 } 4938 4939 static inline unsigned long get_actual_cpu_capacity(int cpu) 4940 { 4941 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4942 4943 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4944 4945 return capacity; 4946 } 4947 4948 static inline int util_fits_cpu(unsigned long util, 4949 unsigned long uclamp_min, 4950 unsigned long uclamp_max, 4951 int cpu) 4952 { 4953 unsigned long capacity = capacity_of(cpu); 4954 unsigned long capacity_orig; 4955 bool fits, uclamp_max_fits; 4956 4957 /* 4958 * Check if the real util fits without any uclamp boost/cap applied. 4959 */ 4960 fits = fits_capacity(util, capacity); 4961 4962 if (!uclamp_is_used()) 4963 return fits; 4964 4965 /* 4966 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4967 * uclamp_max. We only care about capacity pressure (by using 4968 * capacity_of()) for comparing against the real util. 4969 * 4970 * If a task is boosted to 1024 for example, we don't want a tiny 4971 * pressure to skew the check whether it fits a CPU or not. 4972 * 4973 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4974 * should fit a little cpu even if there's some pressure. 4975 * 4976 * Only exception is for HW or cpufreq pressure since it has a direct impact 4977 * on available OPP of the system. 4978 * 4979 * We honour it for uclamp_min only as a drop in performance level 4980 * could result in not getting the requested minimum performance level. 4981 * 4982 * For uclamp_max, we can tolerate a drop in performance level as the 4983 * goal is to cap the task. So it's okay if it's getting less. 4984 */ 4985 capacity_orig = arch_scale_cpu_capacity(cpu); 4986 4987 /* 4988 * We want to force a task to fit a cpu as implied by uclamp_max. 4989 * But we do have some corner cases to cater for.. 4990 * 4991 * 4992 * C=z 4993 * | ___ 4994 * | C=y | | 4995 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4996 * | C=x | | | | 4997 * | ___ | | | | 4998 * | | | | | | | (util somewhere in this region) 4999 * | | | | | | | 5000 * | | | | | | | 5001 * +---------------------------------------- 5002 * CPU0 CPU1 CPU2 5003 * 5004 * In the above example if a task is capped to a specific performance 5005 * point, y, then when: 5006 * 5007 * * util = 80% of x then it does not fit on CPU0 and should migrate 5008 * to CPU1 5009 * * util = 80% of y then it is forced to fit on CPU1 to honour 5010 * uclamp_max request. 5011 * 5012 * which is what we're enforcing here. A task always fits if 5013 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5014 * the normal upmigration rules should withhold still. 5015 * 5016 * Only exception is when we are on max capacity, then we need to be 5017 * careful not to block overutilized state. This is so because: 5018 * 5019 * 1. There's no concept of capping at max_capacity! We can't go 5020 * beyond this performance level anyway. 5021 * 2. The system is being saturated when we're operating near 5022 * max capacity, it doesn't make sense to block overutilized. 5023 */ 5024 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5025 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5026 fits = fits || uclamp_max_fits; 5027 5028 /* 5029 * 5030 * C=z 5031 * | ___ (region a, capped, util >= uclamp_max) 5032 * | C=y | | 5033 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5034 * | C=x | | | | 5035 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5036 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5037 * | | | | | | | 5038 * | | | | | | | (region c, boosted, util < uclamp_min) 5039 * +---------------------------------------- 5040 * CPU0 CPU1 CPU2 5041 * 5042 * a) If util > uclamp_max, then we're capped, we don't care about 5043 * actual fitness value here. We only care if uclamp_max fits 5044 * capacity without taking margin/pressure into account. 5045 * See comment above. 5046 * 5047 * b) If uclamp_min <= util <= uclamp_max, then the normal 5048 * fits_capacity() rules apply. Except we need to ensure that we 5049 * enforce we remain within uclamp_max, see comment above. 5050 * 5051 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5052 * need to take into account the boosted value fits the CPU without 5053 * taking margin/pressure into account. 5054 * 5055 * Cases (a) and (b) are handled in the 'fits' variable already. We 5056 * just need to consider an extra check for case (c) after ensuring we 5057 * handle the case uclamp_min > uclamp_max. 5058 */ 5059 uclamp_min = min(uclamp_min, uclamp_max); 5060 if (fits && (util < uclamp_min) && 5061 (uclamp_min > get_actual_cpu_capacity(cpu))) 5062 return -1; 5063 5064 return fits; 5065 } 5066 5067 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5068 { 5069 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5070 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5071 unsigned long util = task_util_est(p); 5072 /* 5073 * Return true only if the cpu fully fits the task requirements, which 5074 * include the utilization but also the performance hints. 5075 */ 5076 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5077 } 5078 5079 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5080 { 5081 int cpu = cpu_of(rq); 5082 5083 if (!sched_asym_cpucap_active()) 5084 return; 5085 5086 /* 5087 * Affinity allows us to go somewhere higher? Or are we on biggest 5088 * available CPU already? Or do we fit into this CPU ? 5089 */ 5090 if (!p || (p->nr_cpus_allowed == 1) || 5091 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5092 task_fits_cpu(p, cpu)) { 5093 5094 rq->misfit_task_load = 0; 5095 return; 5096 } 5097 5098 /* 5099 * Make sure that misfit_task_load will not be null even if 5100 * task_h_load() returns 0. 5101 */ 5102 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5103 } 5104 5105 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5106 { 5107 struct sched_entity *se = &p->se; 5108 5109 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5110 if (attr->sched_runtime) { 5111 se->custom_slice = 1; 5112 se->slice = clamp_t(u64, attr->sched_runtime, 5113 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5114 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5115 } else { 5116 se->custom_slice = 0; 5117 se->slice = sysctl_sched_base_slice; 5118 } 5119 } 5120 5121 static void 5122 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5123 { 5124 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5125 s64 lag = 0; 5126 5127 if (!se->custom_slice) 5128 se->slice = sysctl_sched_base_slice; 5129 vslice = calc_delta_fair(se->slice, se); 5130 5131 /* 5132 * Due to how V is constructed as the weighted average of entities, 5133 * adding tasks with positive lag, or removing tasks with negative lag 5134 * will move 'time' backwards, this can screw around with the lag of 5135 * other tasks. 5136 * 5137 * EEVDF: placement strategy #1 / #2 5138 */ 5139 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5140 struct sched_entity *curr = cfs_rq->curr; 5141 unsigned long load; 5142 5143 lag = se->vlag; 5144 5145 /* 5146 * If we want to place a task and preserve lag, we have to 5147 * consider the effect of the new entity on the weighted 5148 * average and compensate for this, otherwise lag can quickly 5149 * evaporate. 5150 * 5151 * Lag is defined as: 5152 * 5153 * lag_i = S - s_i = w_i * (V - v_i) 5154 * 5155 * To avoid the 'w_i' term all over the place, we only track 5156 * the virtual lag: 5157 * 5158 * vl_i = V - v_i <=> v_i = V - vl_i 5159 * 5160 * And we take V to be the weighted average of all v: 5161 * 5162 * V = (\Sum w_j*v_j) / W 5163 * 5164 * Where W is: \Sum w_j 5165 * 5166 * Then, the weighted average after adding an entity with lag 5167 * vl_i is given by: 5168 * 5169 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5170 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5171 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5172 * = (V*(W + w_i) - w_i*vl_i) / (W + w_i) 5173 * = V - w_i*vl_i / (W + w_i) 5174 * 5175 * And the actual lag after adding an entity with vl_i is: 5176 * 5177 * vl'_i = V' - v_i 5178 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5179 * = vl_i - w_i*vl_i / (W + w_i) 5180 * 5181 * Which is strictly less than vl_i. So in order to preserve lag 5182 * we should inflate the lag before placement such that the 5183 * effective lag after placement comes out right. 5184 * 5185 * As such, invert the above relation for vl'_i to get the vl_i 5186 * we need to use such that the lag after placement is the lag 5187 * we computed before dequeue. 5188 * 5189 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5190 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5191 * 5192 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5193 * = W*vl_i 5194 * 5195 * vl_i = (W + w_i)*vl'_i / W 5196 */ 5197 load = cfs_rq->avg_load; 5198 if (curr && curr->on_rq) 5199 load += scale_load_down(curr->load.weight); 5200 5201 lag *= load + scale_load_down(se->load.weight); 5202 if (WARN_ON_ONCE(!load)) 5203 load = 1; 5204 lag = div_s64(lag, load); 5205 } 5206 5207 se->vruntime = vruntime - lag; 5208 5209 if (se->rel_deadline) { 5210 se->deadline += se->vruntime; 5211 se->rel_deadline = 0; 5212 return; 5213 } 5214 5215 /* 5216 * When joining the competition; the existing tasks will be, 5217 * on average, halfway through their slice, as such start tasks 5218 * off with half a slice to ease into the competition. 5219 */ 5220 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5221 vslice /= 2; 5222 5223 /* 5224 * EEVDF: vd_i = ve_i + r_i/w_i 5225 */ 5226 se->deadline = se->vruntime + vslice; 5227 } 5228 5229 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5230 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5231 5232 static void 5233 requeue_delayed_entity(struct sched_entity *se); 5234 5235 static void 5236 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5237 { 5238 bool curr = cfs_rq->curr == se; 5239 5240 /* 5241 * If we're the current task, we must renormalise before calling 5242 * update_curr(). 5243 */ 5244 if (curr) 5245 place_entity(cfs_rq, se, flags); 5246 5247 update_curr(cfs_rq); 5248 5249 /* 5250 * When enqueuing a sched_entity, we must: 5251 * - Update loads to have both entity and cfs_rq synced with now. 5252 * - For group_entity, update its runnable_weight to reflect the new 5253 * h_nr_runnable of its group cfs_rq. 5254 * - For group_entity, update its weight to reflect the new share of 5255 * its group cfs_rq 5256 * - Add its new weight to cfs_rq->load.weight 5257 */ 5258 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5259 se_update_runnable(se); 5260 /* 5261 * XXX update_load_avg() above will have attached us to the pelt sum; 5262 * but update_cfs_group() here will re-adjust the weight and have to 5263 * undo/redo all that. Seems wasteful. 5264 */ 5265 update_cfs_group(se); 5266 5267 /* 5268 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5269 * we can place the entity. 5270 */ 5271 if (!curr) 5272 place_entity(cfs_rq, se, flags); 5273 5274 account_entity_enqueue(cfs_rq, se); 5275 5276 /* Entity has migrated, no longer consider this task hot */ 5277 if (flags & ENQUEUE_MIGRATED) 5278 se->exec_start = 0; 5279 5280 check_schedstat_required(); 5281 update_stats_enqueue_fair(cfs_rq, se, flags); 5282 if (!curr) 5283 __enqueue_entity(cfs_rq, se); 5284 se->on_rq = 1; 5285 5286 if (cfs_rq->nr_queued == 1) { 5287 check_enqueue_throttle(cfs_rq); 5288 if (!throttled_hierarchy(cfs_rq)) { 5289 list_add_leaf_cfs_rq(cfs_rq); 5290 } else { 5291 #ifdef CONFIG_CFS_BANDWIDTH 5292 struct rq *rq = rq_of(cfs_rq); 5293 5294 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5295 cfs_rq->throttled_clock = rq_clock(rq); 5296 if (!cfs_rq->throttled_clock_self) 5297 cfs_rq->throttled_clock_self = rq_clock(rq); 5298 #endif 5299 } 5300 } 5301 } 5302 5303 static void __clear_buddies_next(struct sched_entity *se) 5304 { 5305 for_each_sched_entity(se) { 5306 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5307 if (cfs_rq->next != se) 5308 break; 5309 5310 cfs_rq->next = NULL; 5311 } 5312 } 5313 5314 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5315 { 5316 if (cfs_rq->next == se) 5317 __clear_buddies_next(se); 5318 } 5319 5320 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5321 5322 static void set_delayed(struct sched_entity *se) 5323 { 5324 se->sched_delayed = 1; 5325 5326 /* 5327 * Delayed se of cfs_rq have no tasks queued on them. 5328 * Do not adjust h_nr_runnable since dequeue_entities() 5329 * will account it for blocked tasks. 5330 */ 5331 if (!entity_is_task(se)) 5332 return; 5333 5334 for_each_sched_entity(se) { 5335 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5336 5337 cfs_rq->h_nr_runnable--; 5338 if (cfs_rq_throttled(cfs_rq)) 5339 break; 5340 } 5341 } 5342 5343 static void clear_delayed(struct sched_entity *se) 5344 { 5345 se->sched_delayed = 0; 5346 5347 /* 5348 * Delayed se of cfs_rq have no tasks queued on them. 5349 * Do not adjust h_nr_runnable since a dequeue has 5350 * already accounted for it or an enqueue of a task 5351 * below it will account for it in enqueue_task_fair(). 5352 */ 5353 if (!entity_is_task(se)) 5354 return; 5355 5356 for_each_sched_entity(se) { 5357 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5358 5359 cfs_rq->h_nr_runnable++; 5360 if (cfs_rq_throttled(cfs_rq)) 5361 break; 5362 } 5363 } 5364 5365 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5366 { 5367 clear_delayed(se); 5368 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5369 se->vlag = 0; 5370 } 5371 5372 static bool 5373 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5374 { 5375 bool sleep = flags & DEQUEUE_SLEEP; 5376 int action = UPDATE_TG; 5377 5378 update_curr(cfs_rq); 5379 clear_buddies(cfs_rq, se); 5380 5381 if (flags & DEQUEUE_DELAYED) { 5382 WARN_ON_ONCE(!se->sched_delayed); 5383 } else { 5384 bool delay = sleep; 5385 /* 5386 * DELAY_DEQUEUE relies on spurious wakeups, special task 5387 * states must not suffer spurious wakeups, excempt them. 5388 */ 5389 if (flags & DEQUEUE_SPECIAL) 5390 delay = false; 5391 5392 WARN_ON_ONCE(delay && se->sched_delayed); 5393 5394 if (sched_feat(DELAY_DEQUEUE) && delay && 5395 !entity_eligible(cfs_rq, se)) { 5396 update_load_avg(cfs_rq, se, 0); 5397 set_delayed(se); 5398 return false; 5399 } 5400 } 5401 5402 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5403 action |= DO_DETACH; 5404 5405 /* 5406 * When dequeuing a sched_entity, we must: 5407 * - Update loads to have both entity and cfs_rq synced with now. 5408 * - For group_entity, update its runnable_weight to reflect the new 5409 * h_nr_runnable of its group cfs_rq. 5410 * - Subtract its previous weight from cfs_rq->load.weight. 5411 * - For group entity, update its weight to reflect the new share 5412 * of its group cfs_rq. 5413 */ 5414 update_load_avg(cfs_rq, se, action); 5415 se_update_runnable(se); 5416 5417 update_stats_dequeue_fair(cfs_rq, se, flags); 5418 5419 update_entity_lag(cfs_rq, se); 5420 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5421 se->deadline -= se->vruntime; 5422 se->rel_deadline = 1; 5423 } 5424 5425 if (se != cfs_rq->curr) 5426 __dequeue_entity(cfs_rq, se); 5427 se->on_rq = 0; 5428 account_entity_dequeue(cfs_rq, se); 5429 5430 /* return excess runtime on last dequeue */ 5431 return_cfs_rq_runtime(cfs_rq); 5432 5433 update_cfs_group(se); 5434 5435 /* 5436 * Now advance min_vruntime if @se was the entity holding it back, 5437 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5438 * put back on, and if we advance min_vruntime, we'll be placed back 5439 * further than we started -- i.e. we'll be penalized. 5440 */ 5441 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5442 update_min_vruntime(cfs_rq); 5443 5444 if (flags & DEQUEUE_DELAYED) 5445 finish_delayed_dequeue_entity(se); 5446 5447 if (cfs_rq->nr_queued == 0) 5448 update_idle_cfs_rq_clock_pelt(cfs_rq); 5449 5450 return true; 5451 } 5452 5453 static void 5454 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5455 { 5456 clear_buddies(cfs_rq, se); 5457 5458 /* 'current' is not kept within the tree. */ 5459 if (se->on_rq) { 5460 /* 5461 * Any task has to be enqueued before it get to execute on 5462 * a CPU. So account for the time it spent waiting on the 5463 * runqueue. 5464 */ 5465 update_stats_wait_end_fair(cfs_rq, se); 5466 __dequeue_entity(cfs_rq, se); 5467 update_load_avg(cfs_rq, se, UPDATE_TG); 5468 5469 set_protect_slice(cfs_rq, se); 5470 } 5471 5472 update_stats_curr_start(cfs_rq, se); 5473 WARN_ON_ONCE(cfs_rq->curr); 5474 cfs_rq->curr = se; 5475 5476 /* 5477 * Track our maximum slice length, if the CPU's load is at 5478 * least twice that of our own weight (i.e. don't track it 5479 * when there are only lesser-weight tasks around): 5480 */ 5481 if (schedstat_enabled() && 5482 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5483 struct sched_statistics *stats; 5484 5485 stats = __schedstats_from_se(se); 5486 __schedstat_set(stats->slice_max, 5487 max((u64)stats->slice_max, 5488 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5489 } 5490 5491 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5492 } 5493 5494 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5495 5496 /* 5497 * Pick the next process, keeping these things in mind, in this order: 5498 * 1) keep things fair between processes/task groups 5499 * 2) pick the "next" process, since someone really wants that to run 5500 * 3) pick the "last" process, for cache locality 5501 * 4) do not run the "skip" process, if something else is available 5502 */ 5503 static struct sched_entity * 5504 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5505 { 5506 struct sched_entity *se; 5507 5508 /* 5509 * Picking the ->next buddy will affect latency but not fairness. 5510 */ 5511 if (sched_feat(PICK_BUDDY) && 5512 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5513 /* ->next will never be delayed */ 5514 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 5515 return cfs_rq->next; 5516 } 5517 5518 se = pick_eevdf(cfs_rq); 5519 if (se->sched_delayed) { 5520 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5521 /* 5522 * Must not reference @se again, see __block_task(). 5523 */ 5524 return NULL; 5525 } 5526 return se; 5527 } 5528 5529 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5530 5531 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5532 { 5533 /* 5534 * If still on the runqueue then deactivate_task() 5535 * was not called and update_curr() has to be done: 5536 */ 5537 if (prev->on_rq) 5538 update_curr(cfs_rq); 5539 5540 /* throttle cfs_rqs exceeding runtime */ 5541 check_cfs_rq_runtime(cfs_rq); 5542 5543 if (prev->on_rq) { 5544 update_stats_wait_start_fair(cfs_rq, prev); 5545 /* Put 'current' back into the tree. */ 5546 __enqueue_entity(cfs_rq, prev); 5547 /* in !on_rq case, update occurred at dequeue */ 5548 update_load_avg(cfs_rq, prev, 0); 5549 } 5550 WARN_ON_ONCE(cfs_rq->curr != prev); 5551 cfs_rq->curr = NULL; 5552 } 5553 5554 static void 5555 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5556 { 5557 /* 5558 * Update run-time statistics of the 'current'. 5559 */ 5560 update_curr(cfs_rq); 5561 5562 /* 5563 * Ensure that runnable average is periodically updated. 5564 */ 5565 update_load_avg(cfs_rq, curr, UPDATE_TG); 5566 update_cfs_group(curr); 5567 5568 #ifdef CONFIG_SCHED_HRTICK 5569 /* 5570 * queued ticks are scheduled to match the slice, so don't bother 5571 * validating it and just reschedule. 5572 */ 5573 if (queued) { 5574 resched_curr_lazy(rq_of(cfs_rq)); 5575 return; 5576 } 5577 #endif 5578 } 5579 5580 5581 /************************************************** 5582 * CFS bandwidth control machinery 5583 */ 5584 5585 #ifdef CONFIG_CFS_BANDWIDTH 5586 5587 #ifdef CONFIG_JUMP_LABEL 5588 static struct static_key __cfs_bandwidth_used; 5589 5590 static inline bool cfs_bandwidth_used(void) 5591 { 5592 return static_key_false(&__cfs_bandwidth_used); 5593 } 5594 5595 void cfs_bandwidth_usage_inc(void) 5596 { 5597 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5598 } 5599 5600 void cfs_bandwidth_usage_dec(void) 5601 { 5602 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5603 } 5604 #else /* !CONFIG_JUMP_LABEL: */ 5605 static bool cfs_bandwidth_used(void) 5606 { 5607 return true; 5608 } 5609 5610 void cfs_bandwidth_usage_inc(void) {} 5611 void cfs_bandwidth_usage_dec(void) {} 5612 #endif /* !CONFIG_JUMP_LABEL */ 5613 5614 static inline u64 sched_cfs_bandwidth_slice(void) 5615 { 5616 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5617 } 5618 5619 /* 5620 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5621 * directly instead of rq->clock to avoid adding additional synchronization 5622 * around rq->lock. 5623 * 5624 * requires cfs_b->lock 5625 */ 5626 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5627 { 5628 s64 runtime; 5629 5630 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5631 return; 5632 5633 cfs_b->runtime += cfs_b->quota; 5634 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5635 if (runtime > 0) { 5636 cfs_b->burst_time += runtime; 5637 cfs_b->nr_burst++; 5638 } 5639 5640 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5641 cfs_b->runtime_snap = cfs_b->runtime; 5642 } 5643 5644 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5645 { 5646 return &tg->cfs_bandwidth; 5647 } 5648 5649 /* returns 0 on failure to allocate runtime */ 5650 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5651 struct cfs_rq *cfs_rq, u64 target_runtime) 5652 { 5653 u64 min_amount, amount = 0; 5654 5655 lockdep_assert_held(&cfs_b->lock); 5656 5657 /* note: this is a positive sum as runtime_remaining <= 0 */ 5658 min_amount = target_runtime - cfs_rq->runtime_remaining; 5659 5660 if (cfs_b->quota == RUNTIME_INF) 5661 amount = min_amount; 5662 else { 5663 start_cfs_bandwidth(cfs_b); 5664 5665 if (cfs_b->runtime > 0) { 5666 amount = min(cfs_b->runtime, min_amount); 5667 cfs_b->runtime -= amount; 5668 cfs_b->idle = 0; 5669 } 5670 } 5671 5672 cfs_rq->runtime_remaining += amount; 5673 5674 return cfs_rq->runtime_remaining > 0; 5675 } 5676 5677 /* returns 0 on failure to allocate runtime */ 5678 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5679 { 5680 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5681 int ret; 5682 5683 raw_spin_lock(&cfs_b->lock); 5684 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5685 raw_spin_unlock(&cfs_b->lock); 5686 5687 return ret; 5688 } 5689 5690 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5691 { 5692 /* dock delta_exec before expiring quota (as it could span periods) */ 5693 cfs_rq->runtime_remaining -= delta_exec; 5694 5695 if (likely(cfs_rq->runtime_remaining > 0)) 5696 return; 5697 5698 if (cfs_rq->throttled) 5699 return; 5700 /* 5701 * if we're unable to extend our runtime we resched so that the active 5702 * hierarchy can be throttled 5703 */ 5704 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5705 resched_curr(rq_of(cfs_rq)); 5706 } 5707 5708 static __always_inline 5709 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5710 { 5711 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5712 return; 5713 5714 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5715 } 5716 5717 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5718 { 5719 return cfs_bandwidth_used() && cfs_rq->throttled; 5720 } 5721 5722 /* check whether cfs_rq, or any parent, is throttled */ 5723 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5724 { 5725 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5726 } 5727 5728 /* 5729 * Ensure that neither of the group entities corresponding to src_cpu or 5730 * dest_cpu are members of a throttled hierarchy when performing group 5731 * load-balance operations. 5732 */ 5733 static inline int throttled_lb_pair(struct task_group *tg, 5734 int src_cpu, int dest_cpu) 5735 { 5736 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5737 5738 src_cfs_rq = tg->cfs_rq[src_cpu]; 5739 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5740 5741 return throttled_hierarchy(src_cfs_rq) || 5742 throttled_hierarchy(dest_cfs_rq); 5743 } 5744 5745 static int tg_unthrottle_up(struct task_group *tg, void *data) 5746 { 5747 struct rq *rq = data; 5748 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5749 5750 cfs_rq->throttle_count--; 5751 if (!cfs_rq->throttle_count) { 5752 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5753 cfs_rq->throttled_clock_pelt; 5754 5755 /* Add cfs_rq with load or one or more already running entities to the list */ 5756 if (!cfs_rq_is_decayed(cfs_rq)) 5757 list_add_leaf_cfs_rq(cfs_rq); 5758 5759 if (cfs_rq->throttled_clock_self) { 5760 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5761 5762 cfs_rq->throttled_clock_self = 0; 5763 5764 if (WARN_ON_ONCE((s64)delta < 0)) 5765 delta = 0; 5766 5767 cfs_rq->throttled_clock_self_time += delta; 5768 } 5769 } 5770 5771 return 0; 5772 } 5773 5774 static int tg_throttle_down(struct task_group *tg, void *data) 5775 { 5776 struct rq *rq = data; 5777 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5778 5779 /* group is entering throttled state, stop time */ 5780 if (!cfs_rq->throttle_count) { 5781 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5782 list_del_leaf_cfs_rq(cfs_rq); 5783 5784 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5785 if (cfs_rq->nr_queued) 5786 cfs_rq->throttled_clock_self = rq_clock(rq); 5787 } 5788 cfs_rq->throttle_count++; 5789 5790 return 0; 5791 } 5792 5793 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5794 { 5795 struct rq *rq = rq_of(cfs_rq); 5796 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5797 struct sched_entity *se; 5798 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5799 5800 raw_spin_lock(&cfs_b->lock); 5801 /* This will start the period timer if necessary */ 5802 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5803 /* 5804 * We have raced with bandwidth becoming available, and if we 5805 * actually throttled the timer might not unthrottle us for an 5806 * entire period. We additionally needed to make sure that any 5807 * subsequent check_cfs_rq_runtime calls agree not to throttle 5808 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5809 * for 1ns of runtime rather than just check cfs_b. 5810 */ 5811 dequeue = 0; 5812 } else { 5813 list_add_tail_rcu(&cfs_rq->throttled_list, 5814 &cfs_b->throttled_cfs_rq); 5815 } 5816 raw_spin_unlock(&cfs_b->lock); 5817 5818 if (!dequeue) 5819 return false; /* Throttle no longer required. */ 5820 5821 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5822 5823 /* freeze hierarchy runnable averages while throttled */ 5824 rcu_read_lock(); 5825 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5826 rcu_read_unlock(); 5827 5828 queued_delta = cfs_rq->h_nr_queued; 5829 runnable_delta = cfs_rq->h_nr_runnable; 5830 idle_delta = cfs_rq->h_nr_idle; 5831 for_each_sched_entity(se) { 5832 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5833 int flags; 5834 5835 /* throttled entity or throttle-on-deactivate */ 5836 if (!se->on_rq) 5837 goto done; 5838 5839 /* 5840 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5841 * This avoids teaching dequeue_entities() about throttled 5842 * entities and keeps things relatively simple. 5843 */ 5844 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5845 if (se->sched_delayed) 5846 flags |= DEQUEUE_DELAYED; 5847 dequeue_entity(qcfs_rq, se, flags); 5848 5849 if (cfs_rq_is_idle(group_cfs_rq(se))) 5850 idle_delta = cfs_rq->h_nr_queued; 5851 5852 qcfs_rq->h_nr_queued -= queued_delta; 5853 qcfs_rq->h_nr_runnable -= runnable_delta; 5854 qcfs_rq->h_nr_idle -= idle_delta; 5855 5856 if (qcfs_rq->load.weight) { 5857 /* Avoid re-evaluating load for this entity: */ 5858 se = parent_entity(se); 5859 break; 5860 } 5861 } 5862 5863 for_each_sched_entity(se) { 5864 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5865 /* throttled entity or throttle-on-deactivate */ 5866 if (!se->on_rq) 5867 goto done; 5868 5869 update_load_avg(qcfs_rq, se, 0); 5870 se_update_runnable(se); 5871 5872 if (cfs_rq_is_idle(group_cfs_rq(se))) 5873 idle_delta = cfs_rq->h_nr_queued; 5874 5875 qcfs_rq->h_nr_queued -= queued_delta; 5876 qcfs_rq->h_nr_runnable -= runnable_delta; 5877 qcfs_rq->h_nr_idle -= idle_delta; 5878 } 5879 5880 /* At this point se is NULL and we are at root level*/ 5881 sub_nr_running(rq, queued_delta); 5882 done: 5883 /* 5884 * Note: distribution will already see us throttled via the 5885 * throttled-list. rq->lock protects completion. 5886 */ 5887 cfs_rq->throttled = 1; 5888 WARN_ON_ONCE(cfs_rq->throttled_clock); 5889 if (cfs_rq->nr_queued) 5890 cfs_rq->throttled_clock = rq_clock(rq); 5891 return true; 5892 } 5893 5894 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5895 { 5896 struct rq *rq = rq_of(cfs_rq); 5897 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5898 struct sched_entity *se; 5899 long queued_delta, runnable_delta, idle_delta; 5900 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5901 5902 se = cfs_rq->tg->se[cpu_of(rq)]; 5903 5904 cfs_rq->throttled = 0; 5905 5906 update_rq_clock(rq); 5907 5908 raw_spin_lock(&cfs_b->lock); 5909 if (cfs_rq->throttled_clock) { 5910 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5911 cfs_rq->throttled_clock = 0; 5912 } 5913 list_del_rcu(&cfs_rq->throttled_list); 5914 raw_spin_unlock(&cfs_b->lock); 5915 5916 /* update hierarchical throttle state */ 5917 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5918 5919 if (!cfs_rq->load.weight) { 5920 if (!cfs_rq->on_list) 5921 return; 5922 /* 5923 * Nothing to run but something to decay (on_list)? 5924 * Complete the branch. 5925 */ 5926 for_each_sched_entity(se) { 5927 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5928 break; 5929 } 5930 goto unthrottle_throttle; 5931 } 5932 5933 queued_delta = cfs_rq->h_nr_queued; 5934 runnable_delta = cfs_rq->h_nr_runnable; 5935 idle_delta = cfs_rq->h_nr_idle; 5936 for_each_sched_entity(se) { 5937 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5938 5939 /* Handle any unfinished DELAY_DEQUEUE business first. */ 5940 if (se->sched_delayed) { 5941 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 5942 5943 dequeue_entity(qcfs_rq, se, flags); 5944 } else if (se->on_rq) 5945 break; 5946 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5947 5948 if (cfs_rq_is_idle(group_cfs_rq(se))) 5949 idle_delta = cfs_rq->h_nr_queued; 5950 5951 qcfs_rq->h_nr_queued += queued_delta; 5952 qcfs_rq->h_nr_runnable += runnable_delta; 5953 qcfs_rq->h_nr_idle += idle_delta; 5954 5955 /* end evaluation on encountering a throttled cfs_rq */ 5956 if (cfs_rq_throttled(qcfs_rq)) 5957 goto unthrottle_throttle; 5958 } 5959 5960 for_each_sched_entity(se) { 5961 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5962 5963 update_load_avg(qcfs_rq, se, UPDATE_TG); 5964 se_update_runnable(se); 5965 5966 if (cfs_rq_is_idle(group_cfs_rq(se))) 5967 idle_delta = cfs_rq->h_nr_queued; 5968 5969 qcfs_rq->h_nr_queued += queued_delta; 5970 qcfs_rq->h_nr_runnable += runnable_delta; 5971 qcfs_rq->h_nr_idle += idle_delta; 5972 5973 /* end evaluation on encountering a throttled cfs_rq */ 5974 if (cfs_rq_throttled(qcfs_rq)) 5975 goto unthrottle_throttle; 5976 } 5977 5978 /* Start the fair server if un-throttling resulted in new runnable tasks */ 5979 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 5980 dl_server_start(&rq->fair_server); 5981 5982 /* At this point se is NULL and we are at root level*/ 5983 add_nr_running(rq, queued_delta); 5984 5985 unthrottle_throttle: 5986 assert_list_leaf_cfs_rq(rq); 5987 5988 /* Determine whether we need to wake up potentially idle CPU: */ 5989 if (rq->curr == rq->idle && rq->cfs.nr_queued) 5990 resched_curr(rq); 5991 } 5992 5993 static void __cfsb_csd_unthrottle(void *arg) 5994 { 5995 struct cfs_rq *cursor, *tmp; 5996 struct rq *rq = arg; 5997 struct rq_flags rf; 5998 5999 rq_lock(rq, &rf); 6000 6001 /* 6002 * Iterating over the list can trigger several call to 6003 * update_rq_clock() in unthrottle_cfs_rq(). 6004 * Do it once and skip the potential next ones. 6005 */ 6006 update_rq_clock(rq); 6007 rq_clock_start_loop_update(rq); 6008 6009 /* 6010 * Since we hold rq lock we're safe from concurrent manipulation of 6011 * the CSD list. However, this RCU critical section annotates the 6012 * fact that we pair with sched_free_group_rcu(), so that we cannot 6013 * race with group being freed in the window between removing it 6014 * from the list and advancing to the next entry in the list. 6015 */ 6016 rcu_read_lock(); 6017 6018 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6019 throttled_csd_list) { 6020 list_del_init(&cursor->throttled_csd_list); 6021 6022 if (cfs_rq_throttled(cursor)) 6023 unthrottle_cfs_rq(cursor); 6024 } 6025 6026 rcu_read_unlock(); 6027 6028 rq_clock_stop_loop_update(rq); 6029 rq_unlock(rq, &rf); 6030 } 6031 6032 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6033 { 6034 struct rq *rq = rq_of(cfs_rq); 6035 bool first; 6036 6037 if (rq == this_rq()) { 6038 unthrottle_cfs_rq(cfs_rq); 6039 return; 6040 } 6041 6042 /* Already enqueued */ 6043 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6044 return; 6045 6046 first = list_empty(&rq->cfsb_csd_list); 6047 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6048 if (first) 6049 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6050 } 6051 6052 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6053 { 6054 lockdep_assert_rq_held(rq_of(cfs_rq)); 6055 6056 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6057 cfs_rq->runtime_remaining <= 0)) 6058 return; 6059 6060 __unthrottle_cfs_rq_async(cfs_rq); 6061 } 6062 6063 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6064 { 6065 int this_cpu = smp_processor_id(); 6066 u64 runtime, remaining = 1; 6067 bool throttled = false; 6068 struct cfs_rq *cfs_rq, *tmp; 6069 struct rq_flags rf; 6070 struct rq *rq; 6071 LIST_HEAD(local_unthrottle); 6072 6073 rcu_read_lock(); 6074 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6075 throttled_list) { 6076 rq = rq_of(cfs_rq); 6077 6078 if (!remaining) { 6079 throttled = true; 6080 break; 6081 } 6082 6083 rq_lock_irqsave(rq, &rf); 6084 if (!cfs_rq_throttled(cfs_rq)) 6085 goto next; 6086 6087 /* Already queued for async unthrottle */ 6088 if (!list_empty(&cfs_rq->throttled_csd_list)) 6089 goto next; 6090 6091 /* By the above checks, this should never be true */ 6092 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6093 6094 raw_spin_lock(&cfs_b->lock); 6095 runtime = -cfs_rq->runtime_remaining + 1; 6096 if (runtime > cfs_b->runtime) 6097 runtime = cfs_b->runtime; 6098 cfs_b->runtime -= runtime; 6099 remaining = cfs_b->runtime; 6100 raw_spin_unlock(&cfs_b->lock); 6101 6102 cfs_rq->runtime_remaining += runtime; 6103 6104 /* we check whether we're throttled above */ 6105 if (cfs_rq->runtime_remaining > 0) { 6106 if (cpu_of(rq) != this_cpu) { 6107 unthrottle_cfs_rq_async(cfs_rq); 6108 } else { 6109 /* 6110 * We currently only expect to be unthrottling 6111 * a single cfs_rq locally. 6112 */ 6113 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6114 list_add_tail(&cfs_rq->throttled_csd_list, 6115 &local_unthrottle); 6116 } 6117 } else { 6118 throttled = true; 6119 } 6120 6121 next: 6122 rq_unlock_irqrestore(rq, &rf); 6123 } 6124 6125 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6126 throttled_csd_list) { 6127 struct rq *rq = rq_of(cfs_rq); 6128 6129 rq_lock_irqsave(rq, &rf); 6130 6131 list_del_init(&cfs_rq->throttled_csd_list); 6132 6133 if (cfs_rq_throttled(cfs_rq)) 6134 unthrottle_cfs_rq(cfs_rq); 6135 6136 rq_unlock_irqrestore(rq, &rf); 6137 } 6138 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6139 6140 rcu_read_unlock(); 6141 6142 return throttled; 6143 } 6144 6145 /* 6146 * Responsible for refilling a task_group's bandwidth and unthrottling its 6147 * cfs_rqs as appropriate. If there has been no activity within the last 6148 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6149 * used to track this state. 6150 */ 6151 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6152 { 6153 int throttled; 6154 6155 /* no need to continue the timer with no bandwidth constraint */ 6156 if (cfs_b->quota == RUNTIME_INF) 6157 goto out_deactivate; 6158 6159 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6160 cfs_b->nr_periods += overrun; 6161 6162 /* Refill extra burst quota even if cfs_b->idle */ 6163 __refill_cfs_bandwidth_runtime(cfs_b); 6164 6165 /* 6166 * idle depends on !throttled (for the case of a large deficit), and if 6167 * we're going inactive then everything else can be deferred 6168 */ 6169 if (cfs_b->idle && !throttled) 6170 goto out_deactivate; 6171 6172 if (!throttled) { 6173 /* mark as potentially idle for the upcoming period */ 6174 cfs_b->idle = 1; 6175 return 0; 6176 } 6177 6178 /* account preceding periods in which throttling occurred */ 6179 cfs_b->nr_throttled += overrun; 6180 6181 /* 6182 * This check is repeated as we release cfs_b->lock while we unthrottle. 6183 */ 6184 while (throttled && cfs_b->runtime > 0) { 6185 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6186 /* we can't nest cfs_b->lock while distributing bandwidth */ 6187 throttled = distribute_cfs_runtime(cfs_b); 6188 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6189 } 6190 6191 /* 6192 * While we are ensured activity in the period following an 6193 * unthrottle, this also covers the case in which the new bandwidth is 6194 * insufficient to cover the existing bandwidth deficit. (Forcing the 6195 * timer to remain active while there are any throttled entities.) 6196 */ 6197 cfs_b->idle = 0; 6198 6199 return 0; 6200 6201 out_deactivate: 6202 return 1; 6203 } 6204 6205 /* a cfs_rq won't donate quota below this amount */ 6206 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6207 /* minimum remaining period time to redistribute slack quota */ 6208 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6209 /* how long we wait to gather additional slack before distributing */ 6210 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6211 6212 /* 6213 * Are we near the end of the current quota period? 6214 * 6215 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6216 * hrtimer base being cleared by hrtimer_start. In the case of 6217 * migrate_hrtimers, base is never cleared, so we are fine. 6218 */ 6219 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6220 { 6221 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6222 s64 remaining; 6223 6224 /* if the call-back is running a quota refresh is already occurring */ 6225 if (hrtimer_callback_running(refresh_timer)) 6226 return 1; 6227 6228 /* is a quota refresh about to occur? */ 6229 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6230 if (remaining < (s64)min_expire) 6231 return 1; 6232 6233 return 0; 6234 } 6235 6236 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6237 { 6238 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6239 6240 /* if there's a quota refresh soon don't bother with slack */ 6241 if (runtime_refresh_within(cfs_b, min_left)) 6242 return; 6243 6244 /* don't push forwards an existing deferred unthrottle */ 6245 if (cfs_b->slack_started) 6246 return; 6247 cfs_b->slack_started = true; 6248 6249 hrtimer_start(&cfs_b->slack_timer, 6250 ns_to_ktime(cfs_bandwidth_slack_period), 6251 HRTIMER_MODE_REL); 6252 } 6253 6254 /* we know any runtime found here is valid as update_curr() precedes return */ 6255 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6256 { 6257 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6258 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6259 6260 if (slack_runtime <= 0) 6261 return; 6262 6263 raw_spin_lock(&cfs_b->lock); 6264 if (cfs_b->quota != RUNTIME_INF) { 6265 cfs_b->runtime += slack_runtime; 6266 6267 /* we are under rq->lock, defer unthrottling using a timer */ 6268 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6269 !list_empty(&cfs_b->throttled_cfs_rq)) 6270 start_cfs_slack_bandwidth(cfs_b); 6271 } 6272 raw_spin_unlock(&cfs_b->lock); 6273 6274 /* even if it's not valid for return we don't want to try again */ 6275 cfs_rq->runtime_remaining -= slack_runtime; 6276 } 6277 6278 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6279 { 6280 if (!cfs_bandwidth_used()) 6281 return; 6282 6283 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6284 return; 6285 6286 __return_cfs_rq_runtime(cfs_rq); 6287 } 6288 6289 /* 6290 * This is done with a timer (instead of inline with bandwidth return) since 6291 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6292 */ 6293 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6294 { 6295 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6296 unsigned long flags; 6297 6298 /* confirm we're still not at a refresh boundary */ 6299 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6300 cfs_b->slack_started = false; 6301 6302 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6303 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6304 return; 6305 } 6306 6307 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6308 runtime = cfs_b->runtime; 6309 6310 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6311 6312 if (!runtime) 6313 return; 6314 6315 distribute_cfs_runtime(cfs_b); 6316 } 6317 6318 /* 6319 * When a group wakes up we want to make sure that its quota is not already 6320 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6321 * runtime as update_curr() throttling can not trigger until it's on-rq. 6322 */ 6323 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6324 { 6325 if (!cfs_bandwidth_used()) 6326 return; 6327 6328 /* an active group must be handled by the update_curr()->put() path */ 6329 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6330 return; 6331 6332 /* ensure the group is not already throttled */ 6333 if (cfs_rq_throttled(cfs_rq)) 6334 return; 6335 6336 /* update runtime allocation */ 6337 account_cfs_rq_runtime(cfs_rq, 0); 6338 if (cfs_rq->runtime_remaining <= 0) 6339 throttle_cfs_rq(cfs_rq); 6340 } 6341 6342 static void sync_throttle(struct task_group *tg, int cpu) 6343 { 6344 struct cfs_rq *pcfs_rq, *cfs_rq; 6345 6346 if (!cfs_bandwidth_used()) 6347 return; 6348 6349 if (!tg->parent) 6350 return; 6351 6352 cfs_rq = tg->cfs_rq[cpu]; 6353 pcfs_rq = tg->parent->cfs_rq[cpu]; 6354 6355 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6356 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6357 } 6358 6359 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6360 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6361 { 6362 if (!cfs_bandwidth_used()) 6363 return false; 6364 6365 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6366 return false; 6367 6368 /* 6369 * it's possible for a throttled entity to be forced into a running 6370 * state (e.g. set_curr_task), in this case we're finished. 6371 */ 6372 if (cfs_rq_throttled(cfs_rq)) 6373 return true; 6374 6375 return throttle_cfs_rq(cfs_rq); 6376 } 6377 6378 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6379 { 6380 struct cfs_bandwidth *cfs_b = 6381 container_of(timer, struct cfs_bandwidth, slack_timer); 6382 6383 do_sched_cfs_slack_timer(cfs_b); 6384 6385 return HRTIMER_NORESTART; 6386 } 6387 6388 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6389 { 6390 struct cfs_bandwidth *cfs_b = 6391 container_of(timer, struct cfs_bandwidth, period_timer); 6392 unsigned long flags; 6393 int overrun; 6394 int idle = 0; 6395 int count = 0; 6396 6397 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6398 for (;;) { 6399 overrun = hrtimer_forward_now(timer, cfs_b->period); 6400 if (!overrun) 6401 break; 6402 6403 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6404 6405 if (++count > 3) { 6406 u64 new, old = ktime_to_ns(cfs_b->period); 6407 6408 /* 6409 * Grow period by a factor of 2 to avoid losing precision. 6410 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6411 * to fail. 6412 */ 6413 new = old * 2; 6414 if (new < max_bw_quota_period_us * NSEC_PER_USEC) { 6415 cfs_b->period = ns_to_ktime(new); 6416 cfs_b->quota *= 2; 6417 cfs_b->burst *= 2; 6418 6419 pr_warn_ratelimited( 6420 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6421 smp_processor_id(), 6422 div_u64(new, NSEC_PER_USEC), 6423 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6424 } else { 6425 pr_warn_ratelimited( 6426 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6427 smp_processor_id(), 6428 div_u64(old, NSEC_PER_USEC), 6429 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6430 } 6431 6432 /* reset count so we don't come right back in here */ 6433 count = 0; 6434 } 6435 } 6436 if (idle) 6437 cfs_b->period_active = 0; 6438 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6439 6440 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6441 } 6442 6443 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6444 { 6445 raw_spin_lock_init(&cfs_b->lock); 6446 cfs_b->runtime = 0; 6447 cfs_b->quota = RUNTIME_INF; 6448 cfs_b->period = us_to_ktime(default_bw_period_us()); 6449 cfs_b->burst = 0; 6450 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6451 6452 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6453 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6454 HRTIMER_MODE_ABS_PINNED); 6455 6456 /* Add a random offset so that timers interleave */ 6457 hrtimer_set_expires(&cfs_b->period_timer, 6458 get_random_u32_below(cfs_b->period)); 6459 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6460 HRTIMER_MODE_REL); 6461 cfs_b->slack_started = false; 6462 } 6463 6464 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6465 { 6466 cfs_rq->runtime_enabled = 0; 6467 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6468 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6469 } 6470 6471 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6472 { 6473 lockdep_assert_held(&cfs_b->lock); 6474 6475 if (cfs_b->period_active) 6476 return; 6477 6478 cfs_b->period_active = 1; 6479 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6480 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6481 } 6482 6483 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6484 { 6485 int __maybe_unused i; 6486 6487 /* init_cfs_bandwidth() was not called */ 6488 if (!cfs_b->throttled_cfs_rq.next) 6489 return; 6490 6491 hrtimer_cancel(&cfs_b->period_timer); 6492 hrtimer_cancel(&cfs_b->slack_timer); 6493 6494 /* 6495 * It is possible that we still have some cfs_rq's pending on a CSD 6496 * list, though this race is very rare. In order for this to occur, we 6497 * must have raced with the last task leaving the group while there 6498 * exist throttled cfs_rq(s), and the period_timer must have queued the 6499 * CSD item but the remote cpu has not yet processed it. To handle this, 6500 * we can simply flush all pending CSD work inline here. We're 6501 * guaranteed at this point that no additional cfs_rq of this group can 6502 * join a CSD list. 6503 */ 6504 for_each_possible_cpu(i) { 6505 struct rq *rq = cpu_rq(i); 6506 unsigned long flags; 6507 6508 if (list_empty(&rq->cfsb_csd_list)) 6509 continue; 6510 6511 local_irq_save(flags); 6512 __cfsb_csd_unthrottle(rq); 6513 local_irq_restore(flags); 6514 } 6515 } 6516 6517 /* 6518 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6519 * 6520 * The race is harmless, since modifying bandwidth settings of unhooked group 6521 * bits doesn't do much. 6522 */ 6523 6524 /* cpu online callback */ 6525 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6526 { 6527 struct task_group *tg; 6528 6529 lockdep_assert_rq_held(rq); 6530 6531 rcu_read_lock(); 6532 list_for_each_entry_rcu(tg, &task_groups, list) { 6533 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6534 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6535 6536 raw_spin_lock(&cfs_b->lock); 6537 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6538 raw_spin_unlock(&cfs_b->lock); 6539 } 6540 rcu_read_unlock(); 6541 } 6542 6543 /* cpu offline callback */ 6544 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6545 { 6546 struct task_group *tg; 6547 6548 lockdep_assert_rq_held(rq); 6549 6550 // Do not unthrottle for an active CPU 6551 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6552 return; 6553 6554 /* 6555 * The rq clock has already been updated in the 6556 * set_rq_offline(), so we should skip updating 6557 * the rq clock again in unthrottle_cfs_rq(). 6558 */ 6559 rq_clock_start_loop_update(rq); 6560 6561 rcu_read_lock(); 6562 list_for_each_entry_rcu(tg, &task_groups, list) { 6563 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6564 6565 if (!cfs_rq->runtime_enabled) 6566 continue; 6567 6568 /* 6569 * Offline rq is schedulable till CPU is completely disabled 6570 * in take_cpu_down(), so we prevent new cfs throttling here. 6571 */ 6572 cfs_rq->runtime_enabled = 0; 6573 6574 if (!cfs_rq_throttled(cfs_rq)) 6575 continue; 6576 6577 /* 6578 * clock_task is not advancing so we just need to make sure 6579 * there's some valid quota amount 6580 */ 6581 cfs_rq->runtime_remaining = 1; 6582 unthrottle_cfs_rq(cfs_rq); 6583 } 6584 rcu_read_unlock(); 6585 6586 rq_clock_stop_loop_update(rq); 6587 } 6588 6589 bool cfs_task_bw_constrained(struct task_struct *p) 6590 { 6591 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6592 6593 if (!cfs_bandwidth_used()) 6594 return false; 6595 6596 if (cfs_rq->runtime_enabled || 6597 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6598 return true; 6599 6600 return false; 6601 } 6602 6603 #ifdef CONFIG_NO_HZ_FULL 6604 /* called from pick_next_task_fair() */ 6605 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6606 { 6607 int cpu = cpu_of(rq); 6608 6609 if (!cfs_bandwidth_used()) 6610 return; 6611 6612 if (!tick_nohz_full_cpu(cpu)) 6613 return; 6614 6615 if (rq->nr_running != 1) 6616 return; 6617 6618 /* 6619 * We know there is only one task runnable and we've just picked it. The 6620 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6621 * be otherwise able to stop the tick. Just need to check if we are using 6622 * bandwidth control. 6623 */ 6624 if (cfs_task_bw_constrained(p)) 6625 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6626 } 6627 #endif /* CONFIG_NO_HZ_FULL */ 6628 6629 #else /* !CONFIG_CFS_BANDWIDTH: */ 6630 6631 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6632 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6633 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6634 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6635 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6636 6637 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6638 { 6639 return 0; 6640 } 6641 6642 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6643 { 6644 return 0; 6645 } 6646 6647 static inline int throttled_lb_pair(struct task_group *tg, 6648 int src_cpu, int dest_cpu) 6649 { 6650 return 0; 6651 } 6652 6653 #ifdef CONFIG_FAIR_GROUP_SCHED 6654 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6655 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6656 #endif 6657 6658 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6659 { 6660 return NULL; 6661 } 6662 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6663 static inline void update_runtime_enabled(struct rq *rq) {} 6664 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6665 #ifdef CONFIG_CGROUP_SCHED 6666 bool cfs_task_bw_constrained(struct task_struct *p) 6667 { 6668 return false; 6669 } 6670 #endif 6671 #endif /* !CONFIG_CFS_BANDWIDTH */ 6672 6673 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6674 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6675 #endif 6676 6677 /************************************************** 6678 * CFS operations on tasks: 6679 */ 6680 6681 #ifdef CONFIG_SCHED_HRTICK 6682 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6683 { 6684 struct sched_entity *se = &p->se; 6685 6686 WARN_ON_ONCE(task_rq(p) != rq); 6687 6688 if (rq->cfs.h_nr_queued > 1) { 6689 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6690 u64 slice = se->slice; 6691 s64 delta = slice - ran; 6692 6693 if (delta < 0) { 6694 if (task_current_donor(rq, p)) 6695 resched_curr(rq); 6696 return; 6697 } 6698 hrtick_start(rq, delta); 6699 } 6700 } 6701 6702 /* 6703 * called from enqueue/dequeue and updates the hrtick when the 6704 * current task is from our class and nr_running is low enough 6705 * to matter. 6706 */ 6707 static void hrtick_update(struct rq *rq) 6708 { 6709 struct task_struct *donor = rq->donor; 6710 6711 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6712 return; 6713 6714 hrtick_start_fair(rq, donor); 6715 } 6716 #else /* !CONFIG_SCHED_HRTICK: */ 6717 static inline void 6718 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6719 { 6720 } 6721 6722 static inline void hrtick_update(struct rq *rq) 6723 { 6724 } 6725 #endif /* !CONFIG_SCHED_HRTICK */ 6726 6727 static inline bool cpu_overutilized(int cpu) 6728 { 6729 unsigned long rq_util_min, rq_util_max; 6730 6731 if (!sched_energy_enabled()) 6732 return false; 6733 6734 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6735 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6736 6737 /* Return true only if the utilization doesn't fit CPU's capacity */ 6738 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6739 } 6740 6741 /* 6742 * overutilized value make sense only if EAS is enabled 6743 */ 6744 static inline bool is_rd_overutilized(struct root_domain *rd) 6745 { 6746 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6747 } 6748 6749 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6750 { 6751 if (!sched_energy_enabled()) 6752 return; 6753 6754 WRITE_ONCE(rd->overutilized, flag); 6755 trace_sched_overutilized_tp(rd, flag); 6756 } 6757 6758 static inline void check_update_overutilized_status(struct rq *rq) 6759 { 6760 /* 6761 * overutilized field is used for load balancing decisions only 6762 * if energy aware scheduler is being used 6763 */ 6764 6765 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6766 set_rd_overutilized(rq->rd, 1); 6767 } 6768 6769 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6770 static int sched_idle_rq(struct rq *rq) 6771 { 6772 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6773 rq->nr_running); 6774 } 6775 6776 static int sched_idle_cpu(int cpu) 6777 { 6778 return sched_idle_rq(cpu_rq(cpu)); 6779 } 6780 6781 static void 6782 requeue_delayed_entity(struct sched_entity *se) 6783 { 6784 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6785 6786 /* 6787 * se->sched_delayed should imply: se->on_rq == 1. 6788 * Because a delayed entity is one that is still on 6789 * the runqueue competing until elegibility. 6790 */ 6791 WARN_ON_ONCE(!se->sched_delayed); 6792 WARN_ON_ONCE(!se->on_rq); 6793 6794 if (sched_feat(DELAY_ZERO)) { 6795 update_entity_lag(cfs_rq, se); 6796 if (se->vlag > 0) { 6797 cfs_rq->nr_queued--; 6798 if (se != cfs_rq->curr) 6799 __dequeue_entity(cfs_rq, se); 6800 se->vlag = 0; 6801 place_entity(cfs_rq, se, 0); 6802 if (se != cfs_rq->curr) 6803 __enqueue_entity(cfs_rq, se); 6804 cfs_rq->nr_queued++; 6805 } 6806 } 6807 6808 update_load_avg(cfs_rq, se, 0); 6809 clear_delayed(se); 6810 } 6811 6812 /* 6813 * The enqueue_task method is called before nr_running is 6814 * increased. Here we update the fair scheduling stats and 6815 * then put the task into the rbtree: 6816 */ 6817 static void 6818 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6819 { 6820 struct cfs_rq *cfs_rq; 6821 struct sched_entity *se = &p->se; 6822 int h_nr_idle = task_has_idle_policy(p); 6823 int h_nr_runnable = 1; 6824 int task_new = !(flags & ENQUEUE_WAKEUP); 6825 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6826 u64 slice = 0; 6827 6828 /* 6829 * The code below (indirectly) updates schedutil which looks at 6830 * the cfs_rq utilization to select a frequency. 6831 * Let's add the task's estimated utilization to the cfs_rq's 6832 * estimated utilization, before we update schedutil. 6833 */ 6834 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) 6835 util_est_enqueue(&rq->cfs, p); 6836 6837 if (flags & ENQUEUE_DELAYED) { 6838 requeue_delayed_entity(se); 6839 return; 6840 } 6841 6842 /* 6843 * If in_iowait is set, the code below may not trigger any cpufreq 6844 * utilization updates, so do it here explicitly with the IOWAIT flag 6845 * passed. 6846 */ 6847 if (p->in_iowait) 6848 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6849 6850 if (task_new && se->sched_delayed) 6851 h_nr_runnable = 0; 6852 6853 for_each_sched_entity(se) { 6854 if (se->on_rq) { 6855 if (se->sched_delayed) 6856 requeue_delayed_entity(se); 6857 break; 6858 } 6859 cfs_rq = cfs_rq_of(se); 6860 6861 /* 6862 * Basically set the slice of group entries to the min_slice of 6863 * their respective cfs_rq. This ensures the group can service 6864 * its entities in the desired time-frame. 6865 */ 6866 if (slice) { 6867 se->slice = slice; 6868 se->custom_slice = 1; 6869 } 6870 enqueue_entity(cfs_rq, se, flags); 6871 slice = cfs_rq_min_slice(cfs_rq); 6872 6873 cfs_rq->h_nr_runnable += h_nr_runnable; 6874 cfs_rq->h_nr_queued++; 6875 cfs_rq->h_nr_idle += h_nr_idle; 6876 6877 if (cfs_rq_is_idle(cfs_rq)) 6878 h_nr_idle = 1; 6879 6880 /* end evaluation on encountering a throttled cfs_rq */ 6881 if (cfs_rq_throttled(cfs_rq)) 6882 goto enqueue_throttle; 6883 6884 flags = ENQUEUE_WAKEUP; 6885 } 6886 6887 for_each_sched_entity(se) { 6888 cfs_rq = cfs_rq_of(se); 6889 6890 update_load_avg(cfs_rq, se, UPDATE_TG); 6891 se_update_runnable(se); 6892 update_cfs_group(se); 6893 6894 se->slice = slice; 6895 if (se != cfs_rq->curr) 6896 min_vruntime_cb_propagate(&se->run_node, NULL); 6897 slice = cfs_rq_min_slice(cfs_rq); 6898 6899 cfs_rq->h_nr_runnable += h_nr_runnable; 6900 cfs_rq->h_nr_queued++; 6901 cfs_rq->h_nr_idle += h_nr_idle; 6902 6903 if (cfs_rq_is_idle(cfs_rq)) 6904 h_nr_idle = 1; 6905 6906 /* end evaluation on encountering a throttled cfs_rq */ 6907 if (cfs_rq_throttled(cfs_rq)) 6908 goto enqueue_throttle; 6909 } 6910 6911 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 6912 /* Account for idle runtime */ 6913 if (!rq->nr_running) 6914 dl_server_update_idle_time(rq, rq->curr); 6915 dl_server_start(&rq->fair_server); 6916 } 6917 6918 /* At this point se is NULL and we are at root level*/ 6919 add_nr_running(rq, 1); 6920 6921 /* 6922 * Since new tasks are assigned an initial util_avg equal to 6923 * half of the spare capacity of their CPU, tiny tasks have the 6924 * ability to cross the overutilized threshold, which will 6925 * result in the load balancer ruining all the task placement 6926 * done by EAS. As a way to mitigate that effect, do not account 6927 * for the first enqueue operation of new tasks during the 6928 * overutilized flag detection. 6929 * 6930 * A better way of solving this problem would be to wait for 6931 * the PELT signals of tasks to converge before taking them 6932 * into account, but that is not straightforward to implement, 6933 * and the following generally works well enough in practice. 6934 */ 6935 if (!task_new) 6936 check_update_overutilized_status(rq); 6937 6938 enqueue_throttle: 6939 assert_list_leaf_cfs_rq(rq); 6940 6941 hrtick_update(rq); 6942 } 6943 6944 static void set_next_buddy(struct sched_entity *se); 6945 6946 /* 6947 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 6948 * failing half-way through and resume the dequeue later. 6949 * 6950 * Returns: 6951 * -1 - dequeue delayed 6952 * 0 - dequeue throttled 6953 * 1 - dequeue complete 6954 */ 6955 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 6956 { 6957 bool was_sched_idle = sched_idle_rq(rq); 6958 bool task_sleep = flags & DEQUEUE_SLEEP; 6959 bool task_delayed = flags & DEQUEUE_DELAYED; 6960 struct task_struct *p = NULL; 6961 int h_nr_idle = 0; 6962 int h_nr_queued = 0; 6963 int h_nr_runnable = 0; 6964 struct cfs_rq *cfs_rq; 6965 u64 slice = 0; 6966 6967 if (entity_is_task(se)) { 6968 p = task_of(se); 6969 h_nr_queued = 1; 6970 h_nr_idle = task_has_idle_policy(p); 6971 if (task_sleep || task_delayed || !se->sched_delayed) 6972 h_nr_runnable = 1; 6973 } 6974 6975 for_each_sched_entity(se) { 6976 cfs_rq = cfs_rq_of(se); 6977 6978 if (!dequeue_entity(cfs_rq, se, flags)) { 6979 if (p && &p->se == se) 6980 return -1; 6981 6982 slice = cfs_rq_min_slice(cfs_rq); 6983 break; 6984 } 6985 6986 cfs_rq->h_nr_runnable -= h_nr_runnable; 6987 cfs_rq->h_nr_queued -= h_nr_queued; 6988 cfs_rq->h_nr_idle -= h_nr_idle; 6989 6990 if (cfs_rq_is_idle(cfs_rq)) 6991 h_nr_idle = h_nr_queued; 6992 6993 /* end evaluation on encountering a throttled cfs_rq */ 6994 if (cfs_rq_throttled(cfs_rq)) 6995 return 0; 6996 6997 /* Don't dequeue parent if it has other entities besides us */ 6998 if (cfs_rq->load.weight) { 6999 slice = cfs_rq_min_slice(cfs_rq); 7000 7001 /* Avoid re-evaluating load for this entity: */ 7002 se = parent_entity(se); 7003 /* 7004 * Bias pick_next to pick a task from this cfs_rq, as 7005 * p is sleeping when it is within its sched_slice. 7006 */ 7007 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7008 set_next_buddy(se); 7009 break; 7010 } 7011 flags |= DEQUEUE_SLEEP; 7012 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7013 } 7014 7015 for_each_sched_entity(se) { 7016 cfs_rq = cfs_rq_of(se); 7017 7018 update_load_avg(cfs_rq, se, UPDATE_TG); 7019 se_update_runnable(se); 7020 update_cfs_group(se); 7021 7022 se->slice = slice; 7023 if (se != cfs_rq->curr) 7024 min_vruntime_cb_propagate(&se->run_node, NULL); 7025 slice = cfs_rq_min_slice(cfs_rq); 7026 7027 cfs_rq->h_nr_runnable -= h_nr_runnable; 7028 cfs_rq->h_nr_queued -= h_nr_queued; 7029 cfs_rq->h_nr_idle -= h_nr_idle; 7030 7031 if (cfs_rq_is_idle(cfs_rq)) 7032 h_nr_idle = h_nr_queued; 7033 7034 /* end evaluation on encountering a throttled cfs_rq */ 7035 if (cfs_rq_throttled(cfs_rq)) 7036 return 0; 7037 } 7038 7039 sub_nr_running(rq, h_nr_queued); 7040 7041 /* balance early to pull high priority tasks */ 7042 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7043 rq->next_balance = jiffies; 7044 7045 if (p && task_delayed) { 7046 WARN_ON_ONCE(!task_sleep); 7047 WARN_ON_ONCE(p->on_rq != 1); 7048 7049 /* Fix-up what dequeue_task_fair() skipped */ 7050 hrtick_update(rq); 7051 7052 /* 7053 * Fix-up what block_task() skipped. 7054 * 7055 * Must be last, @p might not be valid after this. 7056 */ 7057 __block_task(rq, p); 7058 } 7059 7060 return 1; 7061 } 7062 7063 /* 7064 * The dequeue_task method is called before nr_running is 7065 * decreased. We remove the task from the rbtree and 7066 * update the fair scheduling stats: 7067 */ 7068 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7069 { 7070 if (!p->se.sched_delayed) 7071 util_est_dequeue(&rq->cfs, p); 7072 7073 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7074 if (dequeue_entities(rq, &p->se, flags) < 0) 7075 return false; 7076 7077 /* 7078 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7079 */ 7080 7081 hrtick_update(rq); 7082 return true; 7083 } 7084 7085 static inline unsigned int cfs_h_nr_delayed(struct rq *rq) 7086 { 7087 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); 7088 } 7089 7090 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7091 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7092 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7093 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7094 7095 #ifdef CONFIG_NO_HZ_COMMON 7096 7097 static struct { 7098 cpumask_var_t idle_cpus_mask; 7099 atomic_t nr_cpus; 7100 int has_blocked; /* Idle CPUS has blocked load */ 7101 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7102 unsigned long next_balance; /* in jiffy units */ 7103 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7104 } nohz ____cacheline_aligned; 7105 7106 #endif /* CONFIG_NO_HZ_COMMON */ 7107 7108 static unsigned long cpu_load(struct rq *rq) 7109 { 7110 return cfs_rq_load_avg(&rq->cfs); 7111 } 7112 7113 /* 7114 * cpu_load_without - compute CPU load without any contributions from *p 7115 * @cpu: the CPU which load is requested 7116 * @p: the task which load should be discounted 7117 * 7118 * The load of a CPU is defined by the load of tasks currently enqueued on that 7119 * CPU as well as tasks which are currently sleeping after an execution on that 7120 * CPU. 7121 * 7122 * This method returns the load of the specified CPU by discounting the load of 7123 * the specified task, whenever the task is currently contributing to the CPU 7124 * load. 7125 */ 7126 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7127 { 7128 struct cfs_rq *cfs_rq; 7129 unsigned int load; 7130 7131 /* Task has no contribution or is new */ 7132 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7133 return cpu_load(rq); 7134 7135 cfs_rq = &rq->cfs; 7136 load = READ_ONCE(cfs_rq->avg.load_avg); 7137 7138 /* Discount task's util from CPU's util */ 7139 lsub_positive(&load, task_h_load(p)); 7140 7141 return load; 7142 } 7143 7144 static unsigned long cpu_runnable(struct rq *rq) 7145 { 7146 return cfs_rq_runnable_avg(&rq->cfs); 7147 } 7148 7149 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7150 { 7151 struct cfs_rq *cfs_rq; 7152 unsigned int runnable; 7153 7154 /* Task has no contribution or is new */ 7155 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7156 return cpu_runnable(rq); 7157 7158 cfs_rq = &rq->cfs; 7159 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7160 7161 /* Discount task's runnable from CPU's runnable */ 7162 lsub_positive(&runnable, p->se.avg.runnable_avg); 7163 7164 return runnable; 7165 } 7166 7167 static unsigned long capacity_of(int cpu) 7168 { 7169 return cpu_rq(cpu)->cpu_capacity; 7170 } 7171 7172 static void record_wakee(struct task_struct *p) 7173 { 7174 /* 7175 * Only decay a single time; tasks that have less then 1 wakeup per 7176 * jiffy will not have built up many flips. 7177 */ 7178 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7179 current->wakee_flips >>= 1; 7180 current->wakee_flip_decay_ts = jiffies; 7181 } 7182 7183 if (current->last_wakee != p) { 7184 current->last_wakee = p; 7185 current->wakee_flips++; 7186 } 7187 } 7188 7189 /* 7190 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7191 * 7192 * A waker of many should wake a different task than the one last awakened 7193 * at a frequency roughly N times higher than one of its wakees. 7194 * 7195 * In order to determine whether we should let the load spread vs consolidating 7196 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7197 * partner, and a factor of lls_size higher frequency in the other. 7198 * 7199 * With both conditions met, we can be relatively sure that the relationship is 7200 * non-monogamous, with partner count exceeding socket size. 7201 * 7202 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7203 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7204 * socket size. 7205 */ 7206 static int wake_wide(struct task_struct *p) 7207 { 7208 unsigned int master = current->wakee_flips; 7209 unsigned int slave = p->wakee_flips; 7210 int factor = __this_cpu_read(sd_llc_size); 7211 7212 if (master < slave) 7213 swap(master, slave); 7214 if (slave < factor || master < slave * factor) 7215 return 0; 7216 return 1; 7217 } 7218 7219 /* 7220 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7221 * soonest. For the purpose of speed we only consider the waking and previous 7222 * CPU. 7223 * 7224 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7225 * cache-affine and is (or will be) idle. 7226 * 7227 * wake_affine_weight() - considers the weight to reflect the average 7228 * scheduling latency of the CPUs. This seems to work 7229 * for the overloaded case. 7230 */ 7231 static int 7232 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7233 { 7234 /* 7235 * If this_cpu is idle, it implies the wakeup is from interrupt 7236 * context. Only allow the move if cache is shared. Otherwise an 7237 * interrupt intensive workload could force all tasks onto one 7238 * node depending on the IO topology or IRQ affinity settings. 7239 * 7240 * If the prev_cpu is idle and cache affine then avoid a migration. 7241 * There is no guarantee that the cache hot data from an interrupt 7242 * is more important than cache hot data on the prev_cpu and from 7243 * a cpufreq perspective, it's better to have higher utilisation 7244 * on one CPU. 7245 */ 7246 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7247 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7248 7249 if (sync) { 7250 struct rq *rq = cpu_rq(this_cpu); 7251 7252 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) 7253 return this_cpu; 7254 } 7255 7256 if (available_idle_cpu(prev_cpu)) 7257 return prev_cpu; 7258 7259 return nr_cpumask_bits; 7260 } 7261 7262 static int 7263 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7264 int this_cpu, int prev_cpu, int sync) 7265 { 7266 s64 this_eff_load, prev_eff_load; 7267 unsigned long task_load; 7268 7269 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7270 7271 if (sync) { 7272 unsigned long current_load = task_h_load(current); 7273 7274 if (current_load > this_eff_load) 7275 return this_cpu; 7276 7277 this_eff_load -= current_load; 7278 } 7279 7280 task_load = task_h_load(p); 7281 7282 this_eff_load += task_load; 7283 if (sched_feat(WA_BIAS)) 7284 this_eff_load *= 100; 7285 this_eff_load *= capacity_of(prev_cpu); 7286 7287 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7288 prev_eff_load -= task_load; 7289 if (sched_feat(WA_BIAS)) 7290 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7291 prev_eff_load *= capacity_of(this_cpu); 7292 7293 /* 7294 * If sync, adjust the weight of prev_eff_load such that if 7295 * prev_eff == this_eff that select_idle_sibling() will consider 7296 * stacking the wakee on top of the waker if no other CPU is 7297 * idle. 7298 */ 7299 if (sync) 7300 prev_eff_load += 1; 7301 7302 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7303 } 7304 7305 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7306 int this_cpu, int prev_cpu, int sync) 7307 { 7308 int target = nr_cpumask_bits; 7309 7310 if (sched_feat(WA_IDLE)) 7311 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7312 7313 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7314 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7315 7316 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7317 if (target != this_cpu) 7318 return prev_cpu; 7319 7320 schedstat_inc(sd->ttwu_move_affine); 7321 schedstat_inc(p->stats.nr_wakeups_affine); 7322 return target; 7323 } 7324 7325 static struct sched_group * 7326 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7327 7328 /* 7329 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7330 */ 7331 static int 7332 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7333 { 7334 unsigned long load, min_load = ULONG_MAX; 7335 unsigned int min_exit_latency = UINT_MAX; 7336 u64 latest_idle_timestamp = 0; 7337 int least_loaded_cpu = this_cpu; 7338 int shallowest_idle_cpu = -1; 7339 int i; 7340 7341 /* Check if we have any choice: */ 7342 if (group->group_weight == 1) 7343 return cpumask_first(sched_group_span(group)); 7344 7345 /* Traverse only the allowed CPUs */ 7346 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7347 struct rq *rq = cpu_rq(i); 7348 7349 if (!sched_core_cookie_match(rq, p)) 7350 continue; 7351 7352 if (sched_idle_cpu(i)) 7353 return i; 7354 7355 if (available_idle_cpu(i)) { 7356 struct cpuidle_state *idle = idle_get_state(rq); 7357 if (idle && idle->exit_latency < min_exit_latency) { 7358 /* 7359 * We give priority to a CPU whose idle state 7360 * has the smallest exit latency irrespective 7361 * of any idle timestamp. 7362 */ 7363 min_exit_latency = idle->exit_latency; 7364 latest_idle_timestamp = rq->idle_stamp; 7365 shallowest_idle_cpu = i; 7366 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7367 rq->idle_stamp > latest_idle_timestamp) { 7368 /* 7369 * If equal or no active idle state, then 7370 * the most recently idled CPU might have 7371 * a warmer cache. 7372 */ 7373 latest_idle_timestamp = rq->idle_stamp; 7374 shallowest_idle_cpu = i; 7375 } 7376 } else if (shallowest_idle_cpu == -1) { 7377 load = cpu_load(cpu_rq(i)); 7378 if (load < min_load) { 7379 min_load = load; 7380 least_loaded_cpu = i; 7381 } 7382 } 7383 } 7384 7385 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7386 } 7387 7388 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7389 int cpu, int prev_cpu, int sd_flag) 7390 { 7391 int new_cpu = cpu; 7392 7393 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7394 return prev_cpu; 7395 7396 /* 7397 * We need task's util for cpu_util_without, sync it up to 7398 * prev_cpu's last_update_time. 7399 */ 7400 if (!(sd_flag & SD_BALANCE_FORK)) 7401 sync_entity_load_avg(&p->se); 7402 7403 while (sd) { 7404 struct sched_group *group; 7405 struct sched_domain *tmp; 7406 int weight; 7407 7408 if (!(sd->flags & sd_flag)) { 7409 sd = sd->child; 7410 continue; 7411 } 7412 7413 group = sched_balance_find_dst_group(sd, p, cpu); 7414 if (!group) { 7415 sd = sd->child; 7416 continue; 7417 } 7418 7419 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7420 if (new_cpu == cpu) { 7421 /* Now try balancing at a lower domain level of 'cpu': */ 7422 sd = sd->child; 7423 continue; 7424 } 7425 7426 /* Now try balancing at a lower domain level of 'new_cpu': */ 7427 cpu = new_cpu; 7428 weight = sd->span_weight; 7429 sd = NULL; 7430 for_each_domain(cpu, tmp) { 7431 if (weight <= tmp->span_weight) 7432 break; 7433 if (tmp->flags & sd_flag) 7434 sd = tmp; 7435 } 7436 } 7437 7438 return new_cpu; 7439 } 7440 7441 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7442 { 7443 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7444 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7445 return cpu; 7446 7447 return -1; 7448 } 7449 7450 #ifdef CONFIG_SCHED_SMT 7451 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7452 EXPORT_SYMBOL_GPL(sched_smt_present); 7453 7454 static inline void set_idle_cores(int cpu, int val) 7455 { 7456 struct sched_domain_shared *sds; 7457 7458 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7459 if (sds) 7460 WRITE_ONCE(sds->has_idle_cores, val); 7461 } 7462 7463 static inline bool test_idle_cores(int cpu) 7464 { 7465 struct sched_domain_shared *sds; 7466 7467 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7468 if (sds) 7469 return READ_ONCE(sds->has_idle_cores); 7470 7471 return false; 7472 } 7473 7474 /* 7475 * Scans the local SMT mask to see if the entire core is idle, and records this 7476 * information in sd_llc_shared->has_idle_cores. 7477 * 7478 * Since SMT siblings share all cache levels, inspecting this limited remote 7479 * state should be fairly cheap. 7480 */ 7481 void __update_idle_core(struct rq *rq) 7482 { 7483 int core = cpu_of(rq); 7484 int cpu; 7485 7486 rcu_read_lock(); 7487 if (test_idle_cores(core)) 7488 goto unlock; 7489 7490 for_each_cpu(cpu, cpu_smt_mask(core)) { 7491 if (cpu == core) 7492 continue; 7493 7494 if (!available_idle_cpu(cpu)) 7495 goto unlock; 7496 } 7497 7498 set_idle_cores(core, 1); 7499 unlock: 7500 rcu_read_unlock(); 7501 } 7502 7503 /* 7504 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7505 * there are no idle cores left in the system; tracked through 7506 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7507 */ 7508 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7509 { 7510 bool idle = true; 7511 int cpu; 7512 7513 for_each_cpu(cpu, cpu_smt_mask(core)) { 7514 if (!available_idle_cpu(cpu)) { 7515 idle = false; 7516 if (*idle_cpu == -1) { 7517 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7518 *idle_cpu = cpu; 7519 break; 7520 } 7521 continue; 7522 } 7523 break; 7524 } 7525 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7526 *idle_cpu = cpu; 7527 } 7528 7529 if (idle) 7530 return core; 7531 7532 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7533 return -1; 7534 } 7535 7536 /* 7537 * Scan the local SMT mask for idle CPUs. 7538 */ 7539 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7540 { 7541 int cpu; 7542 7543 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7544 if (cpu == target) 7545 continue; 7546 /* 7547 * Check if the CPU is in the LLC scheduling domain of @target. 7548 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7549 */ 7550 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7551 continue; 7552 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7553 return cpu; 7554 } 7555 7556 return -1; 7557 } 7558 7559 #else /* !CONFIG_SCHED_SMT: */ 7560 7561 static inline void set_idle_cores(int cpu, int val) 7562 { 7563 } 7564 7565 static inline bool test_idle_cores(int cpu) 7566 { 7567 return false; 7568 } 7569 7570 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7571 { 7572 return __select_idle_cpu(core, p); 7573 } 7574 7575 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7576 { 7577 return -1; 7578 } 7579 7580 #endif /* !CONFIG_SCHED_SMT */ 7581 7582 /* 7583 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7584 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7585 * average idle time for this rq (as found in rq->avg_idle). 7586 */ 7587 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7588 { 7589 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7590 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7591 struct sched_domain_shared *sd_share; 7592 7593 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7594 7595 if (sched_feat(SIS_UTIL)) { 7596 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7597 if (sd_share) { 7598 /* because !--nr is the condition to stop scan */ 7599 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7600 /* overloaded LLC is unlikely to have idle cpu/core */ 7601 if (nr == 1) 7602 return -1; 7603 } 7604 } 7605 7606 if (static_branch_unlikely(&sched_cluster_active)) { 7607 struct sched_group *sg = sd->groups; 7608 7609 if (sg->flags & SD_CLUSTER) { 7610 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7611 if (!cpumask_test_cpu(cpu, cpus)) 7612 continue; 7613 7614 if (has_idle_core) { 7615 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7616 if ((unsigned int)i < nr_cpumask_bits) 7617 return i; 7618 } else { 7619 if (--nr <= 0) 7620 return -1; 7621 idle_cpu = __select_idle_cpu(cpu, p); 7622 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7623 return idle_cpu; 7624 } 7625 } 7626 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7627 } 7628 } 7629 7630 for_each_cpu_wrap(cpu, cpus, target + 1) { 7631 if (has_idle_core) { 7632 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7633 if ((unsigned int)i < nr_cpumask_bits) 7634 return i; 7635 7636 } else { 7637 if (--nr <= 0) 7638 return -1; 7639 idle_cpu = __select_idle_cpu(cpu, p); 7640 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7641 break; 7642 } 7643 } 7644 7645 if (has_idle_core) 7646 set_idle_cores(target, false); 7647 7648 return idle_cpu; 7649 } 7650 7651 /* 7652 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7653 * the task fits. If no CPU is big enough, but there are idle ones, try to 7654 * maximize capacity. 7655 */ 7656 static int 7657 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7658 { 7659 unsigned long task_util, util_min, util_max, best_cap = 0; 7660 int fits, best_fits = 0; 7661 int cpu, best_cpu = -1; 7662 struct cpumask *cpus; 7663 7664 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7665 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7666 7667 task_util = task_util_est(p); 7668 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7669 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7670 7671 for_each_cpu_wrap(cpu, cpus, target) { 7672 unsigned long cpu_cap = capacity_of(cpu); 7673 7674 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7675 continue; 7676 7677 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7678 7679 /* This CPU fits with all requirements */ 7680 if (fits > 0) 7681 return cpu; 7682 /* 7683 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7684 * Look for the CPU with best capacity. 7685 */ 7686 else if (fits < 0) 7687 cpu_cap = get_actual_cpu_capacity(cpu); 7688 7689 /* 7690 * First, select CPU which fits better (-1 being better than 0). 7691 * Then, select the one with best capacity at same level. 7692 */ 7693 if ((fits < best_fits) || 7694 ((fits == best_fits) && (cpu_cap > best_cap))) { 7695 best_cap = cpu_cap; 7696 best_cpu = cpu; 7697 best_fits = fits; 7698 } 7699 } 7700 7701 return best_cpu; 7702 } 7703 7704 static inline bool asym_fits_cpu(unsigned long util, 7705 unsigned long util_min, 7706 unsigned long util_max, 7707 int cpu) 7708 { 7709 if (sched_asym_cpucap_active()) 7710 /* 7711 * Return true only if the cpu fully fits the task requirements 7712 * which include the utilization and the performance hints. 7713 */ 7714 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7715 7716 return true; 7717 } 7718 7719 /* 7720 * Try and locate an idle core/thread in the LLC cache domain. 7721 */ 7722 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7723 { 7724 bool has_idle_core = false; 7725 struct sched_domain *sd; 7726 unsigned long task_util, util_min, util_max; 7727 int i, recent_used_cpu, prev_aff = -1; 7728 7729 /* 7730 * On asymmetric system, update task utilization because we will check 7731 * that the task fits with CPU's capacity. 7732 */ 7733 if (sched_asym_cpucap_active()) { 7734 sync_entity_load_avg(&p->se); 7735 task_util = task_util_est(p); 7736 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7737 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7738 } 7739 7740 /* 7741 * per-cpu select_rq_mask usage 7742 */ 7743 lockdep_assert_irqs_disabled(); 7744 7745 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7746 asym_fits_cpu(task_util, util_min, util_max, target)) 7747 return target; 7748 7749 /* 7750 * If the previous CPU is cache affine and idle, don't be stupid: 7751 */ 7752 if (prev != target && cpus_share_cache(prev, target) && 7753 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7754 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7755 7756 if (!static_branch_unlikely(&sched_cluster_active) || 7757 cpus_share_resources(prev, target)) 7758 return prev; 7759 7760 prev_aff = prev; 7761 } 7762 7763 /* 7764 * Allow a per-cpu kthread to stack with the wakee if the 7765 * kworker thread and the tasks previous CPUs are the same. 7766 * The assumption is that the wakee queued work for the 7767 * per-cpu kthread that is now complete and the wakeup is 7768 * essentially a sync wakeup. An obvious example of this 7769 * pattern is IO completions. 7770 */ 7771 if (is_per_cpu_kthread(current) && 7772 in_task() && 7773 prev == smp_processor_id() && 7774 this_rq()->nr_running <= 1 && 7775 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7776 return prev; 7777 } 7778 7779 /* Check a recently used CPU as a potential idle candidate: */ 7780 recent_used_cpu = p->recent_used_cpu; 7781 p->recent_used_cpu = prev; 7782 if (recent_used_cpu != prev && 7783 recent_used_cpu != target && 7784 cpus_share_cache(recent_used_cpu, target) && 7785 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7786 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7787 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7788 7789 if (!static_branch_unlikely(&sched_cluster_active) || 7790 cpus_share_resources(recent_used_cpu, target)) 7791 return recent_used_cpu; 7792 7793 } else { 7794 recent_used_cpu = -1; 7795 } 7796 7797 /* 7798 * For asymmetric CPU capacity systems, our domain of interest is 7799 * sd_asym_cpucapacity rather than sd_llc. 7800 */ 7801 if (sched_asym_cpucap_active()) { 7802 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7803 /* 7804 * On an asymmetric CPU capacity system where an exclusive 7805 * cpuset defines a symmetric island (i.e. one unique 7806 * capacity_orig value through the cpuset), the key will be set 7807 * but the CPUs within that cpuset will not have a domain with 7808 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7809 * capacity path. 7810 */ 7811 if (sd) { 7812 i = select_idle_capacity(p, sd, target); 7813 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7814 } 7815 } 7816 7817 sd = rcu_dereference(per_cpu(sd_llc, target)); 7818 if (!sd) 7819 return target; 7820 7821 if (sched_smt_active()) { 7822 has_idle_core = test_idle_cores(target); 7823 7824 if (!has_idle_core && cpus_share_cache(prev, target)) { 7825 i = select_idle_smt(p, sd, prev); 7826 if ((unsigned int)i < nr_cpumask_bits) 7827 return i; 7828 } 7829 } 7830 7831 i = select_idle_cpu(p, sd, has_idle_core, target); 7832 if ((unsigned)i < nr_cpumask_bits) 7833 return i; 7834 7835 /* 7836 * For cluster machines which have lower sharing cache like L2 or 7837 * LLC Tag, we tend to find an idle CPU in the target's cluster 7838 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7839 * use them if possible when no idle CPU found in select_idle_cpu(). 7840 */ 7841 if ((unsigned int)prev_aff < nr_cpumask_bits) 7842 return prev_aff; 7843 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7844 return recent_used_cpu; 7845 7846 return target; 7847 } 7848 7849 /** 7850 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7851 * @cpu: the CPU to get the utilization for 7852 * @p: task for which the CPU utilization should be predicted or NULL 7853 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7854 * @boost: 1 to enable boosting, otherwise 0 7855 * 7856 * The unit of the return value must be the same as the one of CPU capacity 7857 * so that CPU utilization can be compared with CPU capacity. 7858 * 7859 * CPU utilization is the sum of running time of runnable tasks plus the 7860 * recent utilization of currently non-runnable tasks on that CPU. 7861 * It represents the amount of CPU capacity currently used by CFS tasks in 7862 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7863 * capacity at f_max. 7864 * 7865 * The estimated CPU utilization is defined as the maximum between CPU 7866 * utilization and sum of the estimated utilization of the currently 7867 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7868 * previously-executed tasks, which helps better deduce how busy a CPU will 7869 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7870 * of such a task would be significantly decayed at this point of time. 7871 * 7872 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7873 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7874 * utilization. Boosting is implemented in cpu_util() so that internal 7875 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7876 * latter via cpu_util_cfs_boost(). 7877 * 7878 * CPU utilization can be higher than the current CPU capacity 7879 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7880 * of rounding errors as well as task migrations or wakeups of new tasks. 7881 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7882 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7883 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7884 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7885 * though since this is useful for predicting the CPU capacity required 7886 * after task migrations (scheduler-driven DVFS). 7887 * 7888 * Return: (Boosted) (estimated) utilization for the specified CPU. 7889 */ 7890 static unsigned long 7891 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7892 { 7893 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7894 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7895 unsigned long runnable; 7896 7897 if (boost) { 7898 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7899 util = max(util, runnable); 7900 } 7901 7902 /* 7903 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7904 * contribution. If @p migrates from another CPU to @cpu add its 7905 * contribution. In all the other cases @cpu is not impacted by the 7906 * migration so its util_avg is already correct. 7907 */ 7908 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7909 lsub_positive(&util, task_util(p)); 7910 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7911 util += task_util(p); 7912 7913 if (sched_feat(UTIL_EST)) { 7914 unsigned long util_est; 7915 7916 util_est = READ_ONCE(cfs_rq->avg.util_est); 7917 7918 /* 7919 * During wake-up @p isn't enqueued yet and doesn't contribute 7920 * to any cpu_rq(cpu)->cfs.avg.util_est. 7921 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7922 * has been enqueued. 7923 * 7924 * During exec (@dst_cpu = -1) @p is enqueued and does 7925 * contribute to cpu_rq(cpu)->cfs.util_est. 7926 * Remove it to "simulate" cpu_util without @p's contribution. 7927 * 7928 * Despite the task_on_rq_queued(@p) check there is still a 7929 * small window for a possible race when an exec 7930 * select_task_rq_fair() races with LB's detach_task(). 7931 * 7932 * detach_task() 7933 * deactivate_task() 7934 * p->on_rq = TASK_ON_RQ_MIGRATING; 7935 * -------------------------------- A 7936 * dequeue_task() \ 7937 * dequeue_task_fair() + Race Time 7938 * util_est_dequeue() / 7939 * -------------------------------- B 7940 * 7941 * The additional check "current == p" is required to further 7942 * reduce the race window. 7943 */ 7944 if (dst_cpu == cpu) 7945 util_est += _task_util_est(p); 7946 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7947 lsub_positive(&util_est, _task_util_est(p)); 7948 7949 util = max(util, util_est); 7950 } 7951 7952 return min(util, arch_scale_cpu_capacity(cpu)); 7953 } 7954 7955 unsigned long cpu_util_cfs(int cpu) 7956 { 7957 return cpu_util(cpu, NULL, -1, 0); 7958 } 7959 7960 unsigned long cpu_util_cfs_boost(int cpu) 7961 { 7962 return cpu_util(cpu, NULL, -1, 1); 7963 } 7964 7965 /* 7966 * cpu_util_without: compute cpu utilization without any contributions from *p 7967 * @cpu: the CPU which utilization is requested 7968 * @p: the task which utilization should be discounted 7969 * 7970 * The utilization of a CPU is defined by the utilization of tasks currently 7971 * enqueued on that CPU as well as tasks which are currently sleeping after an 7972 * execution on that CPU. 7973 * 7974 * This method returns the utilization of the specified CPU by discounting the 7975 * utilization of the specified task, whenever the task is currently 7976 * contributing to the CPU utilization. 7977 */ 7978 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7979 { 7980 /* Task has no contribution or is new */ 7981 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7982 p = NULL; 7983 7984 return cpu_util(cpu, p, -1, 0); 7985 } 7986 7987 /* 7988 * This function computes an effective utilization for the given CPU, to be 7989 * used for frequency selection given the linear relation: f = u * f_max. 7990 * 7991 * The scheduler tracks the following metrics: 7992 * 7993 * cpu_util_{cfs,rt,dl,irq}() 7994 * cpu_bw_dl() 7995 * 7996 * Where the cfs,rt and dl util numbers are tracked with the same metric and 7997 * synchronized windows and are thus directly comparable. 7998 * 7999 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8000 * which excludes things like IRQ and steal-time. These latter are then accrued 8001 * in the IRQ utilization. 8002 * 8003 * The DL bandwidth number OTOH is not a measured metric but a value computed 8004 * based on the task model parameters and gives the minimal utilization 8005 * required to meet deadlines. 8006 */ 8007 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8008 unsigned long *min, 8009 unsigned long *max) 8010 { 8011 unsigned long util, irq, scale; 8012 struct rq *rq = cpu_rq(cpu); 8013 8014 scale = arch_scale_cpu_capacity(cpu); 8015 8016 /* 8017 * Early check to see if IRQ/steal time saturates the CPU, can be 8018 * because of inaccuracies in how we track these -- see 8019 * update_irq_load_avg(). 8020 */ 8021 irq = cpu_util_irq(rq); 8022 if (unlikely(irq >= scale)) { 8023 if (min) 8024 *min = scale; 8025 if (max) 8026 *max = scale; 8027 return scale; 8028 } 8029 8030 if (min) { 8031 /* 8032 * The minimum utilization returns the highest level between: 8033 * - the computed DL bandwidth needed with the IRQ pressure which 8034 * steals time to the deadline task. 8035 * - The minimum performance requirement for CFS and/or RT. 8036 */ 8037 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8038 8039 /* 8040 * When an RT task is runnable and uclamp is not used, we must 8041 * ensure that the task will run at maximum compute capacity. 8042 */ 8043 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8044 *min = max(*min, scale); 8045 } 8046 8047 /* 8048 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8049 * CFS tasks and we use the same metric to track the effective 8050 * utilization (PELT windows are synchronized) we can directly add them 8051 * to obtain the CPU's actual utilization. 8052 */ 8053 util = util_cfs + cpu_util_rt(rq); 8054 util += cpu_util_dl(rq); 8055 8056 /* 8057 * The maximum hint is a soft bandwidth requirement, which can be lower 8058 * than the actual utilization because of uclamp_max requirements. 8059 */ 8060 if (max) 8061 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8062 8063 if (util >= scale) 8064 return scale; 8065 8066 /* 8067 * There is still idle time; further improve the number by using the 8068 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8069 * need to scale the task numbers: 8070 * 8071 * max - irq 8072 * U' = irq + --------- * U 8073 * max 8074 */ 8075 util = scale_irq_capacity(util, irq, scale); 8076 util += irq; 8077 8078 return min(scale, util); 8079 } 8080 8081 unsigned long sched_cpu_util(int cpu) 8082 { 8083 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8084 } 8085 8086 /* 8087 * energy_env - Utilization landscape for energy estimation. 8088 * @task_busy_time: Utilization contribution by the task for which we test the 8089 * placement. Given by eenv_task_busy_time(). 8090 * @pd_busy_time: Utilization of the whole perf domain without the task 8091 * contribution. Given by eenv_pd_busy_time(). 8092 * @cpu_cap: Maximum CPU capacity for the perf domain. 8093 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8094 */ 8095 struct energy_env { 8096 unsigned long task_busy_time; 8097 unsigned long pd_busy_time; 8098 unsigned long cpu_cap; 8099 unsigned long pd_cap; 8100 }; 8101 8102 /* 8103 * Compute the task busy time for compute_energy(). This time cannot be 8104 * injected directly into effective_cpu_util() because of the IRQ scaling. 8105 * The latter only makes sense with the most recent CPUs where the task has 8106 * run. 8107 */ 8108 static inline void eenv_task_busy_time(struct energy_env *eenv, 8109 struct task_struct *p, int prev_cpu) 8110 { 8111 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8112 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8113 8114 if (unlikely(irq >= max_cap)) 8115 busy_time = max_cap; 8116 else 8117 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8118 8119 eenv->task_busy_time = busy_time; 8120 } 8121 8122 /* 8123 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8124 * utilization for each @pd_cpus, it however doesn't take into account 8125 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8126 * scale the EM reported power consumption at the (eventually clamped) 8127 * cpu_capacity. 8128 * 8129 * The contribution of the task @p for which we want to estimate the 8130 * energy cost is removed (by cpu_util()) and must be calculated 8131 * separately (see eenv_task_busy_time). This ensures: 8132 * 8133 * - A stable PD utilization, no matter which CPU of that PD we want to place 8134 * the task on. 8135 * 8136 * - A fair comparison between CPUs as the task contribution (task_util()) 8137 * will always be the same no matter which CPU utilization we rely on 8138 * (util_avg or util_est). 8139 * 8140 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8141 * exceed @eenv->pd_cap. 8142 */ 8143 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8144 struct cpumask *pd_cpus, 8145 struct task_struct *p) 8146 { 8147 unsigned long busy_time = 0; 8148 int cpu; 8149 8150 for_each_cpu(cpu, pd_cpus) { 8151 unsigned long util = cpu_util(cpu, p, -1, 0); 8152 8153 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8154 } 8155 8156 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8157 } 8158 8159 /* 8160 * Compute the maximum utilization for compute_energy() when the task @p 8161 * is placed on the cpu @dst_cpu. 8162 * 8163 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8164 * exceed @eenv->cpu_cap. 8165 */ 8166 static inline unsigned long 8167 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8168 struct task_struct *p, int dst_cpu) 8169 { 8170 unsigned long max_util = 0; 8171 int cpu; 8172 8173 for_each_cpu(cpu, pd_cpus) { 8174 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8175 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8176 unsigned long eff_util, min, max; 8177 8178 /* 8179 * Performance domain frequency: utilization clamping 8180 * must be considered since it affects the selection 8181 * of the performance domain frequency. 8182 * NOTE: in case RT tasks are running, by default the min 8183 * utilization can be max OPP. 8184 */ 8185 eff_util = effective_cpu_util(cpu, util, &min, &max); 8186 8187 /* Task's uclamp can modify min and max value */ 8188 if (tsk && uclamp_is_used()) { 8189 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8190 8191 /* 8192 * If there is no active max uclamp constraint, 8193 * directly use task's one, otherwise keep max. 8194 */ 8195 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8196 max = uclamp_eff_value(p, UCLAMP_MAX); 8197 else 8198 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8199 } 8200 8201 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8202 max_util = max(max_util, eff_util); 8203 } 8204 8205 return min(max_util, eenv->cpu_cap); 8206 } 8207 8208 /* 8209 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8210 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8211 * contribution is ignored. 8212 */ 8213 static inline unsigned long 8214 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8215 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8216 { 8217 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8218 unsigned long busy_time = eenv->pd_busy_time; 8219 unsigned long energy; 8220 8221 if (dst_cpu >= 0) 8222 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8223 8224 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8225 8226 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8227 8228 return energy; 8229 } 8230 8231 /* 8232 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8233 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8234 * spare capacity in each performance domain and uses it as a potential 8235 * candidate to execute the task. Then, it uses the Energy Model to figure 8236 * out which of the CPU candidates is the most energy-efficient. 8237 * 8238 * The rationale for this heuristic is as follows. In a performance domain, 8239 * all the most energy efficient CPU candidates (according to the Energy 8240 * Model) are those for which we'll request a low frequency. When there are 8241 * several CPUs for which the frequency request will be the same, we don't 8242 * have enough data to break the tie between them, because the Energy Model 8243 * only includes active power costs. With this model, if we assume that 8244 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8245 * the maximum spare capacity in a performance domain is guaranteed to be among 8246 * the best candidates of the performance domain. 8247 * 8248 * In practice, it could be preferable from an energy standpoint to pack 8249 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8250 * but that could also hurt our chances to go cluster idle, and we have no 8251 * ways to tell with the current Energy Model if this is actually a good 8252 * idea or not. So, find_energy_efficient_cpu() basically favors 8253 * cluster-packing, and spreading inside a cluster. That should at least be 8254 * a good thing for latency, and this is consistent with the idea that most 8255 * of the energy savings of EAS come from the asymmetry of the system, and 8256 * not so much from breaking the tie between identical CPUs. That's also the 8257 * reason why EAS is enabled in the topology code only for systems where 8258 * SD_ASYM_CPUCAPACITY is set. 8259 * 8260 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8261 * they don't have any useful utilization data yet and it's not possible to 8262 * forecast their impact on energy consumption. Consequently, they will be 8263 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8264 * to be energy-inefficient in some use-cases. The alternative would be to 8265 * bias new tasks towards specific types of CPUs first, or to try to infer 8266 * their util_avg from the parent task, but those heuristics could hurt 8267 * other use-cases too. So, until someone finds a better way to solve this, 8268 * let's keep things simple by re-using the existing slow path. 8269 */ 8270 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8271 { 8272 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8273 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8274 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8275 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8276 struct root_domain *rd = this_rq()->rd; 8277 int cpu, best_energy_cpu, target = -1; 8278 int prev_fits = -1, best_fits = -1; 8279 unsigned long best_actual_cap = 0; 8280 unsigned long prev_actual_cap = 0; 8281 struct sched_domain *sd; 8282 struct perf_domain *pd; 8283 struct energy_env eenv; 8284 8285 rcu_read_lock(); 8286 pd = rcu_dereference(rd->pd); 8287 if (!pd) 8288 goto unlock; 8289 8290 /* 8291 * Energy-aware wake-up happens on the lowest sched_domain starting 8292 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8293 */ 8294 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8295 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8296 sd = sd->parent; 8297 if (!sd) 8298 goto unlock; 8299 8300 target = prev_cpu; 8301 8302 sync_entity_load_avg(&p->se); 8303 if (!task_util_est(p) && p_util_min == 0) 8304 goto unlock; 8305 8306 eenv_task_busy_time(&eenv, p, prev_cpu); 8307 8308 for (; pd; pd = pd->next) { 8309 unsigned long util_min = p_util_min, util_max = p_util_max; 8310 unsigned long cpu_cap, cpu_actual_cap, util; 8311 long prev_spare_cap = -1, max_spare_cap = -1; 8312 unsigned long rq_util_min, rq_util_max; 8313 unsigned long cur_delta, base_energy; 8314 int max_spare_cap_cpu = -1; 8315 int fits, max_fits = -1; 8316 8317 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8318 8319 if (cpumask_empty(cpus)) 8320 continue; 8321 8322 /* Account external pressure for the energy estimation */ 8323 cpu = cpumask_first(cpus); 8324 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8325 8326 eenv.cpu_cap = cpu_actual_cap; 8327 eenv.pd_cap = 0; 8328 8329 for_each_cpu(cpu, cpus) { 8330 struct rq *rq = cpu_rq(cpu); 8331 8332 eenv.pd_cap += cpu_actual_cap; 8333 8334 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8335 continue; 8336 8337 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8338 continue; 8339 8340 util = cpu_util(cpu, p, cpu, 0); 8341 cpu_cap = capacity_of(cpu); 8342 8343 /* 8344 * Skip CPUs that cannot satisfy the capacity request. 8345 * IOW, placing the task there would make the CPU 8346 * overutilized. Take uclamp into account to see how 8347 * much capacity we can get out of the CPU; this is 8348 * aligned with sched_cpu_util(). 8349 */ 8350 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8351 /* 8352 * Open code uclamp_rq_util_with() except for 8353 * the clamp() part. I.e.: apply max aggregation 8354 * only. util_fits_cpu() logic requires to 8355 * operate on non clamped util but must use the 8356 * max-aggregated uclamp_{min, max}. 8357 */ 8358 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8359 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8360 8361 util_min = max(rq_util_min, p_util_min); 8362 util_max = max(rq_util_max, p_util_max); 8363 } 8364 8365 fits = util_fits_cpu(util, util_min, util_max, cpu); 8366 if (!fits) 8367 continue; 8368 8369 lsub_positive(&cpu_cap, util); 8370 8371 if (cpu == prev_cpu) { 8372 /* Always use prev_cpu as a candidate. */ 8373 prev_spare_cap = cpu_cap; 8374 prev_fits = fits; 8375 } else if ((fits > max_fits) || 8376 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8377 /* 8378 * Find the CPU with the maximum spare capacity 8379 * among the remaining CPUs in the performance 8380 * domain. 8381 */ 8382 max_spare_cap = cpu_cap; 8383 max_spare_cap_cpu = cpu; 8384 max_fits = fits; 8385 } 8386 } 8387 8388 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8389 continue; 8390 8391 eenv_pd_busy_time(&eenv, cpus, p); 8392 /* Compute the 'base' energy of the pd, without @p */ 8393 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8394 8395 /* Evaluate the energy impact of using prev_cpu. */ 8396 if (prev_spare_cap > -1) { 8397 prev_delta = compute_energy(&eenv, pd, cpus, p, 8398 prev_cpu); 8399 /* CPU utilization has changed */ 8400 if (prev_delta < base_energy) 8401 goto unlock; 8402 prev_delta -= base_energy; 8403 prev_actual_cap = cpu_actual_cap; 8404 best_delta = min(best_delta, prev_delta); 8405 } 8406 8407 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8408 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8409 /* Current best energy cpu fits better */ 8410 if (max_fits < best_fits) 8411 continue; 8412 8413 /* 8414 * Both don't fit performance hint (i.e. uclamp_min) 8415 * but best energy cpu has better capacity. 8416 */ 8417 if ((max_fits < 0) && 8418 (cpu_actual_cap <= best_actual_cap)) 8419 continue; 8420 8421 cur_delta = compute_energy(&eenv, pd, cpus, p, 8422 max_spare_cap_cpu); 8423 /* CPU utilization has changed */ 8424 if (cur_delta < base_energy) 8425 goto unlock; 8426 cur_delta -= base_energy; 8427 8428 /* 8429 * Both fit for the task but best energy cpu has lower 8430 * energy impact. 8431 */ 8432 if ((max_fits > 0) && (best_fits > 0) && 8433 (cur_delta >= best_delta)) 8434 continue; 8435 8436 best_delta = cur_delta; 8437 best_energy_cpu = max_spare_cap_cpu; 8438 best_fits = max_fits; 8439 best_actual_cap = cpu_actual_cap; 8440 } 8441 } 8442 rcu_read_unlock(); 8443 8444 if ((best_fits > prev_fits) || 8445 ((best_fits > 0) && (best_delta < prev_delta)) || 8446 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8447 target = best_energy_cpu; 8448 8449 return target; 8450 8451 unlock: 8452 rcu_read_unlock(); 8453 8454 return target; 8455 } 8456 8457 /* 8458 * select_task_rq_fair: Select target runqueue for the waking task in domains 8459 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8460 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8461 * 8462 * Balances load by selecting the idlest CPU in the idlest group, or under 8463 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8464 * 8465 * Returns the target CPU number. 8466 */ 8467 static int 8468 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8469 { 8470 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8471 struct sched_domain *tmp, *sd = NULL; 8472 int cpu = smp_processor_id(); 8473 int new_cpu = prev_cpu; 8474 int want_affine = 0; 8475 /* SD_flags and WF_flags share the first nibble */ 8476 int sd_flag = wake_flags & 0xF; 8477 8478 /* 8479 * required for stable ->cpus_allowed 8480 */ 8481 lockdep_assert_held(&p->pi_lock); 8482 if (wake_flags & WF_TTWU) { 8483 record_wakee(p); 8484 8485 if ((wake_flags & WF_CURRENT_CPU) && 8486 cpumask_test_cpu(cpu, p->cpus_ptr)) 8487 return cpu; 8488 8489 if (!is_rd_overutilized(this_rq()->rd)) { 8490 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8491 if (new_cpu >= 0) 8492 return new_cpu; 8493 new_cpu = prev_cpu; 8494 } 8495 8496 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8497 } 8498 8499 rcu_read_lock(); 8500 for_each_domain(cpu, tmp) { 8501 /* 8502 * If both 'cpu' and 'prev_cpu' are part of this domain, 8503 * cpu is a valid SD_WAKE_AFFINE target. 8504 */ 8505 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8506 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8507 if (cpu != prev_cpu) 8508 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8509 8510 sd = NULL; /* Prefer wake_affine over balance flags */ 8511 break; 8512 } 8513 8514 /* 8515 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8516 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8517 * will usually go to the fast path. 8518 */ 8519 if (tmp->flags & sd_flag) 8520 sd = tmp; 8521 else if (!want_affine) 8522 break; 8523 } 8524 8525 if (unlikely(sd)) { 8526 /* Slow path */ 8527 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8528 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8529 /* Fast path */ 8530 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8531 } 8532 rcu_read_unlock(); 8533 8534 return new_cpu; 8535 } 8536 8537 /* 8538 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8539 * cfs_rq_of(p) references at time of call are still valid and identify the 8540 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8541 */ 8542 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8543 { 8544 struct sched_entity *se = &p->se; 8545 8546 if (!task_on_rq_migrating(p)) { 8547 remove_entity_load_avg(se); 8548 8549 /* 8550 * Here, the task's PELT values have been updated according to 8551 * the current rq's clock. But if that clock hasn't been 8552 * updated in a while, a substantial idle time will be missed, 8553 * leading to an inflation after wake-up on the new rq. 8554 * 8555 * Estimate the missing time from the cfs_rq last_update_time 8556 * and update sched_avg to improve the PELT continuity after 8557 * migration. 8558 */ 8559 migrate_se_pelt_lag(se); 8560 } 8561 8562 /* Tell new CPU we are migrated */ 8563 se->avg.last_update_time = 0; 8564 8565 update_scan_period(p, new_cpu); 8566 } 8567 8568 static void task_dead_fair(struct task_struct *p) 8569 { 8570 struct sched_entity *se = &p->se; 8571 8572 if (se->sched_delayed) { 8573 struct rq_flags rf; 8574 struct rq *rq; 8575 8576 rq = task_rq_lock(p, &rf); 8577 if (se->sched_delayed) { 8578 update_rq_clock(rq); 8579 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8580 } 8581 task_rq_unlock(rq, p, &rf); 8582 } 8583 8584 remove_entity_load_avg(se); 8585 } 8586 8587 /* 8588 * Set the max capacity the task is allowed to run at for misfit detection. 8589 */ 8590 static void set_task_max_allowed_capacity(struct task_struct *p) 8591 { 8592 struct asym_cap_data *entry; 8593 8594 if (!sched_asym_cpucap_active()) 8595 return; 8596 8597 rcu_read_lock(); 8598 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8599 cpumask_t *cpumask; 8600 8601 cpumask = cpu_capacity_span(entry); 8602 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8603 continue; 8604 8605 p->max_allowed_capacity = entry->capacity; 8606 break; 8607 } 8608 rcu_read_unlock(); 8609 } 8610 8611 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8612 { 8613 set_cpus_allowed_common(p, ctx); 8614 set_task_max_allowed_capacity(p); 8615 } 8616 8617 static int 8618 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8619 { 8620 if (sched_fair_runnable(rq)) 8621 return 1; 8622 8623 return sched_balance_newidle(rq, rf) != 0; 8624 } 8625 8626 static void set_next_buddy(struct sched_entity *se) 8627 { 8628 for_each_sched_entity(se) { 8629 if (WARN_ON_ONCE(!se->on_rq)) 8630 return; 8631 if (se_is_idle(se)) 8632 return; 8633 cfs_rq_of(se)->next = se; 8634 } 8635 } 8636 8637 /* 8638 * Preempt the current task with a newly woken task if needed: 8639 */ 8640 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8641 { 8642 struct task_struct *donor = rq->donor; 8643 struct sched_entity *se = &donor->se, *pse = &p->se; 8644 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8645 int cse_is_idle, pse_is_idle; 8646 bool do_preempt_short = false; 8647 8648 if (unlikely(se == pse)) 8649 return; 8650 8651 /* 8652 * This is possible from callers such as attach_tasks(), in which we 8653 * unconditionally wakeup_preempt() after an enqueue (which may have 8654 * lead to a throttle). This both saves work and prevents false 8655 * next-buddy nomination below. 8656 */ 8657 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8658 return; 8659 8660 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8661 set_next_buddy(pse); 8662 } 8663 8664 /* 8665 * We can come here with TIF_NEED_RESCHED already set from new task 8666 * wake up path. 8667 * 8668 * Note: this also catches the edge-case of curr being in a throttled 8669 * group (e.g. via set_curr_task), since update_curr() (in the 8670 * enqueue of curr) will have resulted in resched being set. This 8671 * prevents us from potentially nominating it as a false LAST_BUDDY 8672 * below. 8673 */ 8674 if (test_tsk_need_resched(rq->curr)) 8675 return; 8676 8677 if (!sched_feat(WAKEUP_PREEMPTION)) 8678 return; 8679 8680 find_matching_se(&se, &pse); 8681 WARN_ON_ONCE(!pse); 8682 8683 cse_is_idle = se_is_idle(se); 8684 pse_is_idle = se_is_idle(pse); 8685 8686 /* 8687 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8688 * in the inverse case). 8689 */ 8690 if (cse_is_idle && !pse_is_idle) { 8691 /* 8692 * When non-idle entity preempt an idle entity, 8693 * don't give idle entity slice protection. 8694 */ 8695 do_preempt_short = true; 8696 goto preempt; 8697 } 8698 8699 if (cse_is_idle != pse_is_idle) 8700 return; 8701 8702 /* 8703 * BATCH and IDLE tasks do not preempt others. 8704 */ 8705 if (unlikely(!normal_policy(p->policy))) 8706 return; 8707 8708 cfs_rq = cfs_rq_of(se); 8709 update_curr(cfs_rq); 8710 /* 8711 * If @p has a shorter slice than current and @p is eligible, override 8712 * current's slice protection in order to allow preemption. 8713 */ 8714 do_preempt_short = sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice); 8715 8716 /* 8717 * If @p has become the most eligible task, force preemption. 8718 */ 8719 if (__pick_eevdf(cfs_rq, !do_preempt_short) == pse) 8720 goto preempt; 8721 8722 if (sched_feat(RUN_TO_PARITY) && do_preempt_short) 8723 update_protect_slice(cfs_rq, se); 8724 8725 return; 8726 8727 preempt: 8728 if (do_preempt_short) 8729 cancel_protect_slice(se); 8730 8731 resched_curr_lazy(rq); 8732 } 8733 8734 static struct task_struct *pick_task_fair(struct rq *rq) 8735 { 8736 struct sched_entity *se; 8737 struct cfs_rq *cfs_rq; 8738 8739 again: 8740 cfs_rq = &rq->cfs; 8741 if (!cfs_rq->nr_queued) 8742 return NULL; 8743 8744 do { 8745 /* Might not have done put_prev_entity() */ 8746 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8747 update_curr(cfs_rq); 8748 8749 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8750 goto again; 8751 8752 se = pick_next_entity(rq, cfs_rq); 8753 if (!se) 8754 goto again; 8755 cfs_rq = group_cfs_rq(se); 8756 } while (cfs_rq); 8757 8758 return task_of(se); 8759 } 8760 8761 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8762 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8763 8764 struct task_struct * 8765 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8766 { 8767 struct sched_entity *se; 8768 struct task_struct *p; 8769 int new_tasks; 8770 8771 again: 8772 p = pick_task_fair(rq); 8773 if (!p) 8774 goto idle; 8775 se = &p->se; 8776 8777 #ifdef CONFIG_FAIR_GROUP_SCHED 8778 if (prev->sched_class != &fair_sched_class) 8779 goto simple; 8780 8781 __put_prev_set_next_dl_server(rq, prev, p); 8782 8783 /* 8784 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8785 * likely that a next task is from the same cgroup as the current. 8786 * 8787 * Therefore attempt to avoid putting and setting the entire cgroup 8788 * hierarchy, only change the part that actually changes. 8789 * 8790 * Since we haven't yet done put_prev_entity and if the selected task 8791 * is a different task than we started out with, try and touch the 8792 * least amount of cfs_rqs. 8793 */ 8794 if (prev != p) { 8795 struct sched_entity *pse = &prev->se; 8796 struct cfs_rq *cfs_rq; 8797 8798 while (!(cfs_rq = is_same_group(se, pse))) { 8799 int se_depth = se->depth; 8800 int pse_depth = pse->depth; 8801 8802 if (se_depth <= pse_depth) { 8803 put_prev_entity(cfs_rq_of(pse), pse); 8804 pse = parent_entity(pse); 8805 } 8806 if (se_depth >= pse_depth) { 8807 set_next_entity(cfs_rq_of(se), se); 8808 se = parent_entity(se); 8809 } 8810 } 8811 8812 put_prev_entity(cfs_rq, pse); 8813 set_next_entity(cfs_rq, se); 8814 8815 __set_next_task_fair(rq, p, true); 8816 } 8817 8818 return p; 8819 8820 simple: 8821 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8822 put_prev_set_next_task(rq, prev, p); 8823 return p; 8824 8825 idle: 8826 if (!rf) 8827 return NULL; 8828 8829 new_tasks = sched_balance_newidle(rq, rf); 8830 8831 /* 8832 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8833 * possible for any higher priority task to appear. In that case we 8834 * must re-start the pick_next_entity() loop. 8835 */ 8836 if (new_tasks < 0) 8837 return RETRY_TASK; 8838 8839 if (new_tasks > 0) 8840 goto again; 8841 8842 /* 8843 * rq is about to be idle, check if we need to update the 8844 * lost_idle_time of clock_pelt 8845 */ 8846 update_idle_rq_clock_pelt(rq); 8847 8848 return NULL; 8849 } 8850 8851 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8852 { 8853 return pick_next_task_fair(rq, prev, NULL); 8854 } 8855 8856 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8857 { 8858 return !!dl_se->rq->cfs.nr_queued; 8859 } 8860 8861 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8862 { 8863 return pick_task_fair(dl_se->rq); 8864 } 8865 8866 void fair_server_init(struct rq *rq) 8867 { 8868 struct sched_dl_entity *dl_se = &rq->fair_server; 8869 8870 init_dl_entity(dl_se); 8871 8872 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8873 } 8874 8875 /* 8876 * Account for a descheduled task: 8877 */ 8878 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8879 { 8880 struct sched_entity *se = &prev->se; 8881 struct cfs_rq *cfs_rq; 8882 8883 for_each_sched_entity(se) { 8884 cfs_rq = cfs_rq_of(se); 8885 put_prev_entity(cfs_rq, se); 8886 } 8887 } 8888 8889 /* 8890 * sched_yield() is very simple 8891 */ 8892 static void yield_task_fair(struct rq *rq) 8893 { 8894 struct task_struct *curr = rq->curr; 8895 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8896 struct sched_entity *se = &curr->se; 8897 8898 /* 8899 * Are we the only task in the tree? 8900 */ 8901 if (unlikely(rq->nr_running == 1)) 8902 return; 8903 8904 clear_buddies(cfs_rq, se); 8905 8906 update_rq_clock(rq); 8907 /* 8908 * Update run-time statistics of the 'current'. 8909 */ 8910 update_curr(cfs_rq); 8911 /* 8912 * Tell update_rq_clock() that we've just updated, 8913 * so we don't do microscopic update in schedule() 8914 * and double the fastpath cost. 8915 */ 8916 rq_clock_skip_update(rq); 8917 8918 se->deadline += calc_delta_fair(se->slice, se); 8919 } 8920 8921 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8922 { 8923 struct sched_entity *se = &p->se; 8924 8925 /* throttled hierarchies are not runnable */ 8926 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8927 return false; 8928 8929 /* Tell the scheduler that we'd really like se to run next. */ 8930 set_next_buddy(se); 8931 8932 yield_task_fair(rq); 8933 8934 return true; 8935 } 8936 8937 /************************************************** 8938 * Fair scheduling class load-balancing methods. 8939 * 8940 * BASICS 8941 * 8942 * The purpose of load-balancing is to achieve the same basic fairness the 8943 * per-CPU scheduler provides, namely provide a proportional amount of compute 8944 * time to each task. This is expressed in the following equation: 8945 * 8946 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8947 * 8948 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8949 * W_i,0 is defined as: 8950 * 8951 * W_i,0 = \Sum_j w_i,j (2) 8952 * 8953 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8954 * is derived from the nice value as per sched_prio_to_weight[]. 8955 * 8956 * The weight average is an exponential decay average of the instantaneous 8957 * weight: 8958 * 8959 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8960 * 8961 * C_i is the compute capacity of CPU i, typically it is the 8962 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8963 * can also include other factors [XXX]. 8964 * 8965 * To achieve this balance we define a measure of imbalance which follows 8966 * directly from (1): 8967 * 8968 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8969 * 8970 * We them move tasks around to minimize the imbalance. In the continuous 8971 * function space it is obvious this converges, in the discrete case we get 8972 * a few fun cases generally called infeasible weight scenarios. 8973 * 8974 * [XXX expand on: 8975 * - infeasible weights; 8976 * - local vs global optima in the discrete case. ] 8977 * 8978 * 8979 * SCHED DOMAINS 8980 * 8981 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8982 * for all i,j solution, we create a tree of CPUs that follows the hardware 8983 * topology where each level pairs two lower groups (or better). This results 8984 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8985 * tree to only the first of the previous level and we decrease the frequency 8986 * of load-balance at each level inversely proportional to the number of CPUs in 8987 * the groups. 8988 * 8989 * This yields: 8990 * 8991 * log_2 n 1 n 8992 * \Sum { --- * --- * 2^i } = O(n) (5) 8993 * i = 0 2^i 2^i 8994 * `- size of each group 8995 * | | `- number of CPUs doing load-balance 8996 * | `- freq 8997 * `- sum over all levels 8998 * 8999 * Coupled with a limit on how many tasks we can migrate every balance pass, 9000 * this makes (5) the runtime complexity of the balancer. 9001 * 9002 * An important property here is that each CPU is still (indirectly) connected 9003 * to every other CPU in at most O(log n) steps: 9004 * 9005 * The adjacency matrix of the resulting graph is given by: 9006 * 9007 * log_2 n 9008 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9009 * k = 0 9010 * 9011 * And you'll find that: 9012 * 9013 * A^(log_2 n)_i,j != 0 for all i,j (7) 9014 * 9015 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9016 * The task movement gives a factor of O(m), giving a convergence complexity 9017 * of: 9018 * 9019 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9020 * 9021 * 9022 * WORK CONSERVING 9023 * 9024 * In order to avoid CPUs going idle while there's still work to do, new idle 9025 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9026 * tree itself instead of relying on other CPUs to bring it work. 9027 * 9028 * This adds some complexity to both (5) and (8) but it reduces the total idle 9029 * time. 9030 * 9031 * [XXX more?] 9032 * 9033 * 9034 * CGROUPS 9035 * 9036 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9037 * 9038 * s_k,i 9039 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9040 * S_k 9041 * 9042 * Where 9043 * 9044 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9045 * 9046 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9047 * 9048 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9049 * property. 9050 * 9051 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9052 * rewrite all of this once again.] 9053 */ 9054 9055 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9056 9057 enum fbq_type { regular, remote, all }; 9058 9059 /* 9060 * 'group_type' describes the group of CPUs at the moment of load balancing. 9061 * 9062 * The enum is ordered by pulling priority, with the group with lowest priority 9063 * first so the group_type can simply be compared when selecting the busiest 9064 * group. See update_sd_pick_busiest(). 9065 */ 9066 enum group_type { 9067 /* The group has spare capacity that can be used to run more tasks. */ 9068 group_has_spare = 0, 9069 /* 9070 * The group is fully used and the tasks don't compete for more CPU 9071 * cycles. Nevertheless, some tasks might wait before running. 9072 */ 9073 group_fully_busy, 9074 /* 9075 * One task doesn't fit with CPU's capacity and must be migrated to a 9076 * more powerful CPU. 9077 */ 9078 group_misfit_task, 9079 /* 9080 * Balance SMT group that's fully busy. Can benefit from migration 9081 * a task on SMT with busy sibling to another CPU on idle core. 9082 */ 9083 group_smt_balance, 9084 /* 9085 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9086 * and the task should be migrated to it instead of running on the 9087 * current CPU. 9088 */ 9089 group_asym_packing, 9090 /* 9091 * The tasks' affinity constraints previously prevented the scheduler 9092 * from balancing the load across the system. 9093 */ 9094 group_imbalanced, 9095 /* 9096 * The CPU is overloaded and can't provide expected CPU cycles to all 9097 * tasks. 9098 */ 9099 group_overloaded 9100 }; 9101 9102 enum migration_type { 9103 migrate_load = 0, 9104 migrate_util, 9105 migrate_task, 9106 migrate_misfit 9107 }; 9108 9109 #define LBF_ALL_PINNED 0x01 9110 #define LBF_NEED_BREAK 0x02 9111 #define LBF_DST_PINNED 0x04 9112 #define LBF_SOME_PINNED 0x08 9113 #define LBF_ACTIVE_LB 0x10 9114 9115 struct lb_env { 9116 struct sched_domain *sd; 9117 9118 struct rq *src_rq; 9119 int src_cpu; 9120 9121 int dst_cpu; 9122 struct rq *dst_rq; 9123 9124 struct cpumask *dst_grpmask; 9125 int new_dst_cpu; 9126 enum cpu_idle_type idle; 9127 long imbalance; 9128 /* The set of CPUs under consideration for load-balancing */ 9129 struct cpumask *cpus; 9130 9131 unsigned int flags; 9132 9133 unsigned int loop; 9134 unsigned int loop_break; 9135 unsigned int loop_max; 9136 9137 enum fbq_type fbq_type; 9138 enum migration_type migration_type; 9139 struct list_head tasks; 9140 }; 9141 9142 /* 9143 * Is this task likely cache-hot: 9144 */ 9145 static int task_hot(struct task_struct *p, struct lb_env *env) 9146 { 9147 s64 delta; 9148 9149 lockdep_assert_rq_held(env->src_rq); 9150 9151 if (p->sched_class != &fair_sched_class) 9152 return 0; 9153 9154 if (unlikely(task_has_idle_policy(p))) 9155 return 0; 9156 9157 /* SMT siblings share cache */ 9158 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9159 return 0; 9160 9161 /* 9162 * Buddy candidates are cache hot: 9163 */ 9164 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9165 (&p->se == cfs_rq_of(&p->se)->next)) 9166 return 1; 9167 9168 if (sysctl_sched_migration_cost == -1) 9169 return 1; 9170 9171 /* 9172 * Don't migrate task if the task's cookie does not match 9173 * with the destination CPU's core cookie. 9174 */ 9175 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9176 return 1; 9177 9178 if (sysctl_sched_migration_cost == 0) 9179 return 0; 9180 9181 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9182 9183 return delta < (s64)sysctl_sched_migration_cost; 9184 } 9185 9186 #ifdef CONFIG_NUMA_BALANCING 9187 /* 9188 * Returns a positive value, if task migration degrades locality. 9189 * Returns 0, if task migration is not affected by locality. 9190 * Returns a negative value, if task migration improves locality i.e migration preferred. 9191 */ 9192 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9193 { 9194 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9195 unsigned long src_weight, dst_weight; 9196 int src_nid, dst_nid, dist; 9197 9198 if (!static_branch_likely(&sched_numa_balancing)) 9199 return 0; 9200 9201 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9202 return 0; 9203 9204 src_nid = cpu_to_node(env->src_cpu); 9205 dst_nid = cpu_to_node(env->dst_cpu); 9206 9207 if (src_nid == dst_nid) 9208 return 0; 9209 9210 /* Migrating away from the preferred node is always bad. */ 9211 if (src_nid == p->numa_preferred_nid) { 9212 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9213 return 1; 9214 else 9215 return 0; 9216 } 9217 9218 /* Encourage migration to the preferred node. */ 9219 if (dst_nid == p->numa_preferred_nid) 9220 return -1; 9221 9222 /* Leaving a core idle is often worse than degrading locality. */ 9223 if (env->idle == CPU_IDLE) 9224 return 0; 9225 9226 dist = node_distance(src_nid, dst_nid); 9227 if (numa_group) { 9228 src_weight = group_weight(p, src_nid, dist); 9229 dst_weight = group_weight(p, dst_nid, dist); 9230 } else { 9231 src_weight = task_weight(p, src_nid, dist); 9232 dst_weight = task_weight(p, dst_nid, dist); 9233 } 9234 9235 return src_weight - dst_weight; 9236 } 9237 9238 #else /* !CONFIG_NUMA_BALANCING: */ 9239 static inline long migrate_degrades_locality(struct task_struct *p, 9240 struct lb_env *env) 9241 { 9242 return 0; 9243 } 9244 #endif /* !CONFIG_NUMA_BALANCING */ 9245 9246 /* 9247 * Check whether the task is ineligible on the destination cpu 9248 * 9249 * When the PLACE_LAG scheduling feature is enabled and 9250 * dst_cfs_rq->nr_queued is greater than 1, if the task 9251 * is ineligible, it will also be ineligible when 9252 * it is migrated to the destination cpu. 9253 */ 9254 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9255 { 9256 struct cfs_rq *dst_cfs_rq; 9257 9258 #ifdef CONFIG_FAIR_GROUP_SCHED 9259 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9260 #else 9261 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9262 #endif 9263 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9264 !entity_eligible(task_cfs_rq(p), &p->se)) 9265 return 1; 9266 9267 return 0; 9268 } 9269 9270 /* 9271 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9272 */ 9273 static 9274 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9275 { 9276 long degrades, hot; 9277 9278 lockdep_assert_rq_held(env->src_rq); 9279 if (p->sched_task_hot) 9280 p->sched_task_hot = 0; 9281 9282 /* 9283 * We do not migrate tasks that are: 9284 * 1) delayed dequeued unless we migrate load, or 9285 * 2) throttled_lb_pair, or 9286 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9287 * 4) running (obviously), or 9288 * 5) are cache-hot on their current CPU. 9289 */ 9290 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9291 return 0; 9292 9293 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9294 return 0; 9295 9296 /* 9297 * We want to prioritize the migration of eligible tasks. 9298 * For ineligible tasks we soft-limit them and only allow 9299 * them to migrate when nr_balance_failed is non-zero to 9300 * avoid load-balancing trying very hard to balance the load. 9301 */ 9302 if (!env->sd->nr_balance_failed && 9303 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9304 return 0; 9305 9306 /* Disregard percpu kthreads; they are where they need to be. */ 9307 if (kthread_is_per_cpu(p)) 9308 return 0; 9309 9310 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9311 int cpu; 9312 9313 schedstat_inc(p->stats.nr_failed_migrations_affine); 9314 9315 env->flags |= LBF_SOME_PINNED; 9316 9317 /* 9318 * Remember if this task can be migrated to any other CPU in 9319 * our sched_group. We may want to revisit it if we couldn't 9320 * meet load balance goals by pulling other tasks on src_cpu. 9321 * 9322 * Avoid computing new_dst_cpu 9323 * - for NEWLY_IDLE 9324 * - if we have already computed one in current iteration 9325 * - if it's an active balance 9326 */ 9327 if (env->idle == CPU_NEWLY_IDLE || 9328 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9329 return 0; 9330 9331 /* Prevent to re-select dst_cpu via env's CPUs: */ 9332 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9333 9334 if (cpu < nr_cpu_ids) { 9335 env->flags |= LBF_DST_PINNED; 9336 env->new_dst_cpu = cpu; 9337 } 9338 9339 return 0; 9340 } 9341 9342 /* Record that we found at least one task that could run on dst_cpu */ 9343 env->flags &= ~LBF_ALL_PINNED; 9344 9345 if (task_on_cpu(env->src_rq, p)) { 9346 schedstat_inc(p->stats.nr_failed_migrations_running); 9347 return 0; 9348 } 9349 9350 /* 9351 * Aggressive migration if: 9352 * 1) active balance 9353 * 2) destination numa is preferred 9354 * 3) task is cache cold, or 9355 * 4) too many balance attempts have failed. 9356 */ 9357 if (env->flags & LBF_ACTIVE_LB) 9358 return 1; 9359 9360 degrades = migrate_degrades_locality(p, env); 9361 if (!degrades) 9362 hot = task_hot(p, env); 9363 else 9364 hot = degrades > 0; 9365 9366 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9367 if (hot) 9368 p->sched_task_hot = 1; 9369 return 1; 9370 } 9371 9372 schedstat_inc(p->stats.nr_failed_migrations_hot); 9373 return 0; 9374 } 9375 9376 /* 9377 * detach_task() -- detach the task for the migration specified in env 9378 */ 9379 static void detach_task(struct task_struct *p, struct lb_env *env) 9380 { 9381 lockdep_assert_rq_held(env->src_rq); 9382 9383 if (p->sched_task_hot) { 9384 p->sched_task_hot = 0; 9385 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9386 schedstat_inc(p->stats.nr_forced_migrations); 9387 } 9388 9389 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9390 set_task_cpu(p, env->dst_cpu); 9391 } 9392 9393 /* 9394 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9395 * part of active balancing operations within "domain". 9396 * 9397 * Returns a task if successful and NULL otherwise. 9398 */ 9399 static struct task_struct *detach_one_task(struct lb_env *env) 9400 { 9401 struct task_struct *p; 9402 9403 lockdep_assert_rq_held(env->src_rq); 9404 9405 list_for_each_entry_reverse(p, 9406 &env->src_rq->cfs_tasks, se.group_node) { 9407 if (!can_migrate_task(p, env)) 9408 continue; 9409 9410 detach_task(p, env); 9411 9412 /* 9413 * Right now, this is only the second place where 9414 * lb_gained[env->idle] is updated (other is detach_tasks) 9415 * so we can safely collect stats here rather than 9416 * inside detach_tasks(). 9417 */ 9418 schedstat_inc(env->sd->lb_gained[env->idle]); 9419 return p; 9420 } 9421 return NULL; 9422 } 9423 9424 /* 9425 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9426 * busiest_rq, as part of a balancing operation within domain "sd". 9427 * 9428 * Returns number of detached tasks if successful and 0 otherwise. 9429 */ 9430 static int detach_tasks(struct lb_env *env) 9431 { 9432 struct list_head *tasks = &env->src_rq->cfs_tasks; 9433 unsigned long util, load; 9434 struct task_struct *p; 9435 int detached = 0; 9436 9437 lockdep_assert_rq_held(env->src_rq); 9438 9439 /* 9440 * Source run queue has been emptied by another CPU, clear 9441 * LBF_ALL_PINNED flag as we will not test any task. 9442 */ 9443 if (env->src_rq->nr_running <= 1) { 9444 env->flags &= ~LBF_ALL_PINNED; 9445 return 0; 9446 } 9447 9448 if (env->imbalance <= 0) 9449 return 0; 9450 9451 while (!list_empty(tasks)) { 9452 /* 9453 * We don't want to steal all, otherwise we may be treated likewise, 9454 * which could at worst lead to a livelock crash. 9455 */ 9456 if (env->idle && env->src_rq->nr_running <= 1) 9457 break; 9458 9459 env->loop++; 9460 /* We've more or less seen every task there is, call it quits */ 9461 if (env->loop > env->loop_max) 9462 break; 9463 9464 /* take a breather every nr_migrate tasks */ 9465 if (env->loop > env->loop_break) { 9466 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9467 env->flags |= LBF_NEED_BREAK; 9468 break; 9469 } 9470 9471 p = list_last_entry(tasks, struct task_struct, se.group_node); 9472 9473 if (!can_migrate_task(p, env)) 9474 goto next; 9475 9476 switch (env->migration_type) { 9477 case migrate_load: 9478 /* 9479 * Depending of the number of CPUs and tasks and the 9480 * cgroup hierarchy, task_h_load() can return a null 9481 * value. Make sure that env->imbalance decreases 9482 * otherwise detach_tasks() will stop only after 9483 * detaching up to loop_max tasks. 9484 */ 9485 load = max_t(unsigned long, task_h_load(p), 1); 9486 9487 if (sched_feat(LB_MIN) && 9488 load < 16 && !env->sd->nr_balance_failed) 9489 goto next; 9490 9491 /* 9492 * Make sure that we don't migrate too much load. 9493 * Nevertheless, let relax the constraint if 9494 * scheduler fails to find a good waiting task to 9495 * migrate. 9496 */ 9497 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9498 goto next; 9499 9500 env->imbalance -= load; 9501 break; 9502 9503 case migrate_util: 9504 util = task_util_est(p); 9505 9506 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9507 goto next; 9508 9509 env->imbalance -= util; 9510 break; 9511 9512 case migrate_task: 9513 env->imbalance--; 9514 break; 9515 9516 case migrate_misfit: 9517 /* This is not a misfit task */ 9518 if (task_fits_cpu(p, env->src_cpu)) 9519 goto next; 9520 9521 env->imbalance = 0; 9522 break; 9523 } 9524 9525 detach_task(p, env); 9526 list_add(&p->se.group_node, &env->tasks); 9527 9528 detached++; 9529 9530 #ifdef CONFIG_PREEMPTION 9531 /* 9532 * NEWIDLE balancing is a source of latency, so preemptible 9533 * kernels will stop after the first task is detached to minimize 9534 * the critical section. 9535 */ 9536 if (env->idle == CPU_NEWLY_IDLE) 9537 break; 9538 #endif 9539 9540 /* 9541 * We only want to steal up to the prescribed amount of 9542 * load/util/tasks. 9543 */ 9544 if (env->imbalance <= 0) 9545 break; 9546 9547 continue; 9548 next: 9549 if (p->sched_task_hot) 9550 schedstat_inc(p->stats.nr_failed_migrations_hot); 9551 9552 list_move(&p->se.group_node, tasks); 9553 } 9554 9555 /* 9556 * Right now, this is one of only two places we collect this stat 9557 * so we can safely collect detach_one_task() stats here rather 9558 * than inside detach_one_task(). 9559 */ 9560 schedstat_add(env->sd->lb_gained[env->idle], detached); 9561 9562 return detached; 9563 } 9564 9565 /* 9566 * attach_task() -- attach the task detached by detach_task() to its new rq. 9567 */ 9568 static void attach_task(struct rq *rq, struct task_struct *p) 9569 { 9570 lockdep_assert_rq_held(rq); 9571 9572 WARN_ON_ONCE(task_rq(p) != rq); 9573 activate_task(rq, p, ENQUEUE_NOCLOCK); 9574 wakeup_preempt(rq, p, 0); 9575 } 9576 9577 /* 9578 * attach_one_task() -- attaches the task returned from detach_one_task() to 9579 * its new rq. 9580 */ 9581 static void attach_one_task(struct rq *rq, struct task_struct *p) 9582 { 9583 struct rq_flags rf; 9584 9585 rq_lock(rq, &rf); 9586 update_rq_clock(rq); 9587 attach_task(rq, p); 9588 rq_unlock(rq, &rf); 9589 } 9590 9591 /* 9592 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9593 * new rq. 9594 */ 9595 static void attach_tasks(struct lb_env *env) 9596 { 9597 struct list_head *tasks = &env->tasks; 9598 struct task_struct *p; 9599 struct rq_flags rf; 9600 9601 rq_lock(env->dst_rq, &rf); 9602 update_rq_clock(env->dst_rq); 9603 9604 while (!list_empty(tasks)) { 9605 p = list_first_entry(tasks, struct task_struct, se.group_node); 9606 list_del_init(&p->se.group_node); 9607 9608 attach_task(env->dst_rq, p); 9609 } 9610 9611 rq_unlock(env->dst_rq, &rf); 9612 } 9613 9614 #ifdef CONFIG_NO_HZ_COMMON 9615 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9616 { 9617 if (cfs_rq->avg.load_avg) 9618 return true; 9619 9620 if (cfs_rq->avg.util_avg) 9621 return true; 9622 9623 return false; 9624 } 9625 9626 static inline bool others_have_blocked(struct rq *rq) 9627 { 9628 if (cpu_util_rt(rq)) 9629 return true; 9630 9631 if (cpu_util_dl(rq)) 9632 return true; 9633 9634 if (hw_load_avg(rq)) 9635 return true; 9636 9637 if (cpu_util_irq(rq)) 9638 return true; 9639 9640 return false; 9641 } 9642 9643 static inline void update_blocked_load_tick(struct rq *rq) 9644 { 9645 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9646 } 9647 9648 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9649 { 9650 if (!has_blocked) 9651 rq->has_blocked_load = 0; 9652 } 9653 #else /* !CONFIG_NO_HZ_COMMON: */ 9654 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9655 static inline bool others_have_blocked(struct rq *rq) { return false; } 9656 static inline void update_blocked_load_tick(struct rq *rq) {} 9657 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9658 #endif /* !CONFIG_NO_HZ_COMMON */ 9659 9660 static bool __update_blocked_others(struct rq *rq, bool *done) 9661 { 9662 bool updated; 9663 9664 /* 9665 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9666 * DL and IRQ signals have been updated before updating CFS. 9667 */ 9668 updated = update_other_load_avgs(rq); 9669 9670 if (others_have_blocked(rq)) 9671 *done = false; 9672 9673 return updated; 9674 } 9675 9676 #ifdef CONFIG_FAIR_GROUP_SCHED 9677 9678 static bool __update_blocked_fair(struct rq *rq, bool *done) 9679 { 9680 struct cfs_rq *cfs_rq, *pos; 9681 bool decayed = false; 9682 int cpu = cpu_of(rq); 9683 9684 /* 9685 * Iterates the task_group tree in a bottom up fashion, see 9686 * list_add_leaf_cfs_rq() for details. 9687 */ 9688 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9689 struct sched_entity *se; 9690 9691 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9692 update_tg_load_avg(cfs_rq); 9693 9694 if (cfs_rq->nr_queued == 0) 9695 update_idle_cfs_rq_clock_pelt(cfs_rq); 9696 9697 if (cfs_rq == &rq->cfs) 9698 decayed = true; 9699 } 9700 9701 /* Propagate pending load changes to the parent, if any: */ 9702 se = cfs_rq->tg->se[cpu]; 9703 if (se && !skip_blocked_update(se)) 9704 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9705 9706 /* 9707 * There can be a lot of idle CPU cgroups. Don't let fully 9708 * decayed cfs_rqs linger on the list. 9709 */ 9710 if (cfs_rq_is_decayed(cfs_rq)) 9711 list_del_leaf_cfs_rq(cfs_rq); 9712 9713 /* Don't need periodic decay once load/util_avg are null */ 9714 if (cfs_rq_has_blocked(cfs_rq)) 9715 *done = false; 9716 } 9717 9718 return decayed; 9719 } 9720 9721 /* 9722 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9723 * This needs to be done in a top-down fashion because the load of a child 9724 * group is a fraction of its parents load. 9725 */ 9726 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9727 { 9728 struct rq *rq = rq_of(cfs_rq); 9729 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9730 unsigned long now = jiffies; 9731 unsigned long load; 9732 9733 if (cfs_rq->last_h_load_update == now) 9734 return; 9735 9736 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9737 for_each_sched_entity(se) { 9738 cfs_rq = cfs_rq_of(se); 9739 WRITE_ONCE(cfs_rq->h_load_next, se); 9740 if (cfs_rq->last_h_load_update == now) 9741 break; 9742 } 9743 9744 if (!se) { 9745 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9746 cfs_rq->last_h_load_update = now; 9747 } 9748 9749 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9750 load = cfs_rq->h_load; 9751 load = div64_ul(load * se->avg.load_avg, 9752 cfs_rq_load_avg(cfs_rq) + 1); 9753 cfs_rq = group_cfs_rq(se); 9754 cfs_rq->h_load = load; 9755 cfs_rq->last_h_load_update = now; 9756 } 9757 } 9758 9759 static unsigned long task_h_load(struct task_struct *p) 9760 { 9761 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9762 9763 update_cfs_rq_h_load(cfs_rq); 9764 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9765 cfs_rq_load_avg(cfs_rq) + 1); 9766 } 9767 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 9768 static bool __update_blocked_fair(struct rq *rq, bool *done) 9769 { 9770 struct cfs_rq *cfs_rq = &rq->cfs; 9771 bool decayed; 9772 9773 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9774 if (cfs_rq_has_blocked(cfs_rq)) 9775 *done = false; 9776 9777 return decayed; 9778 } 9779 9780 static unsigned long task_h_load(struct task_struct *p) 9781 { 9782 return p->se.avg.load_avg; 9783 } 9784 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 9785 9786 static void sched_balance_update_blocked_averages(int cpu) 9787 { 9788 bool decayed = false, done = true; 9789 struct rq *rq = cpu_rq(cpu); 9790 struct rq_flags rf; 9791 9792 rq_lock_irqsave(rq, &rf); 9793 update_blocked_load_tick(rq); 9794 update_rq_clock(rq); 9795 9796 decayed |= __update_blocked_others(rq, &done); 9797 decayed |= __update_blocked_fair(rq, &done); 9798 9799 update_blocked_load_status(rq, !done); 9800 if (decayed) 9801 cpufreq_update_util(rq, 0); 9802 rq_unlock_irqrestore(rq, &rf); 9803 } 9804 9805 /********** Helpers for sched_balance_find_src_group ************************/ 9806 9807 /* 9808 * sg_lb_stats - stats of a sched_group required for load-balancing: 9809 */ 9810 struct sg_lb_stats { 9811 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9812 unsigned long group_load; /* Total load over the CPUs of the group */ 9813 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9814 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9815 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9816 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9817 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9818 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9819 unsigned int group_weight; 9820 enum group_type group_type; 9821 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9822 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9823 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9824 #ifdef CONFIG_NUMA_BALANCING 9825 unsigned int nr_numa_running; 9826 unsigned int nr_preferred_running; 9827 #endif 9828 }; 9829 9830 /* 9831 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9832 */ 9833 struct sd_lb_stats { 9834 struct sched_group *busiest; /* Busiest group in this sd */ 9835 struct sched_group *local; /* Local group in this sd */ 9836 unsigned long total_load; /* Total load of all groups in sd */ 9837 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9838 unsigned long avg_load; /* Average load across all groups in sd */ 9839 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9840 9841 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9842 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9843 }; 9844 9845 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9846 { 9847 /* 9848 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9849 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9850 * We must however set busiest_stat::group_type and 9851 * busiest_stat::idle_cpus to the worst busiest group because 9852 * update_sd_pick_busiest() reads these before assignment. 9853 */ 9854 *sds = (struct sd_lb_stats){ 9855 .busiest = NULL, 9856 .local = NULL, 9857 .total_load = 0UL, 9858 .total_capacity = 0UL, 9859 .busiest_stat = { 9860 .idle_cpus = UINT_MAX, 9861 .group_type = group_has_spare, 9862 }, 9863 }; 9864 } 9865 9866 static unsigned long scale_rt_capacity(int cpu) 9867 { 9868 unsigned long max = get_actual_cpu_capacity(cpu); 9869 struct rq *rq = cpu_rq(cpu); 9870 unsigned long used, free; 9871 unsigned long irq; 9872 9873 irq = cpu_util_irq(rq); 9874 9875 if (unlikely(irq >= max)) 9876 return 1; 9877 9878 /* 9879 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9880 * (running and not running) with weights 0 and 1024 respectively. 9881 */ 9882 used = cpu_util_rt(rq); 9883 used += cpu_util_dl(rq); 9884 9885 if (unlikely(used >= max)) 9886 return 1; 9887 9888 free = max - used; 9889 9890 return scale_irq_capacity(free, irq, max); 9891 } 9892 9893 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9894 { 9895 unsigned long capacity = scale_rt_capacity(cpu); 9896 struct sched_group *sdg = sd->groups; 9897 9898 if (!capacity) 9899 capacity = 1; 9900 9901 cpu_rq(cpu)->cpu_capacity = capacity; 9902 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9903 9904 sdg->sgc->capacity = capacity; 9905 sdg->sgc->min_capacity = capacity; 9906 sdg->sgc->max_capacity = capacity; 9907 } 9908 9909 void update_group_capacity(struct sched_domain *sd, int cpu) 9910 { 9911 struct sched_domain *child = sd->child; 9912 struct sched_group *group, *sdg = sd->groups; 9913 unsigned long capacity, min_capacity, max_capacity; 9914 unsigned long interval; 9915 9916 interval = msecs_to_jiffies(sd->balance_interval); 9917 interval = clamp(interval, 1UL, max_load_balance_interval); 9918 sdg->sgc->next_update = jiffies + interval; 9919 9920 if (!child) { 9921 update_cpu_capacity(sd, cpu); 9922 return; 9923 } 9924 9925 capacity = 0; 9926 min_capacity = ULONG_MAX; 9927 max_capacity = 0; 9928 9929 if (child->flags & SD_NUMA) { 9930 /* 9931 * SD_NUMA domains cannot assume that child groups 9932 * span the current group. 9933 */ 9934 9935 for_each_cpu(cpu, sched_group_span(sdg)) { 9936 unsigned long cpu_cap = capacity_of(cpu); 9937 9938 capacity += cpu_cap; 9939 min_capacity = min(cpu_cap, min_capacity); 9940 max_capacity = max(cpu_cap, max_capacity); 9941 } 9942 } else { 9943 /* 9944 * !SD_NUMA domains can assume that child groups 9945 * span the current group. 9946 */ 9947 9948 group = child->groups; 9949 do { 9950 struct sched_group_capacity *sgc = group->sgc; 9951 9952 capacity += sgc->capacity; 9953 min_capacity = min(sgc->min_capacity, min_capacity); 9954 max_capacity = max(sgc->max_capacity, max_capacity); 9955 group = group->next; 9956 } while (group != child->groups); 9957 } 9958 9959 sdg->sgc->capacity = capacity; 9960 sdg->sgc->min_capacity = min_capacity; 9961 sdg->sgc->max_capacity = max_capacity; 9962 } 9963 9964 /* 9965 * Check whether the capacity of the rq has been noticeably reduced by side 9966 * activity. The imbalance_pct is used for the threshold. 9967 * Return true is the capacity is reduced 9968 */ 9969 static inline int 9970 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9971 { 9972 return ((rq->cpu_capacity * sd->imbalance_pct) < 9973 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9974 } 9975 9976 /* Check if the rq has a misfit task */ 9977 static inline bool check_misfit_status(struct rq *rq) 9978 { 9979 return rq->misfit_task_load; 9980 } 9981 9982 /* 9983 * Group imbalance indicates (and tries to solve) the problem where balancing 9984 * groups is inadequate due to ->cpus_ptr constraints. 9985 * 9986 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9987 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9988 * Something like: 9989 * 9990 * { 0 1 2 3 } { 4 5 6 7 } 9991 * * * * * 9992 * 9993 * If we were to balance group-wise we'd place two tasks in the first group and 9994 * two tasks in the second group. Clearly this is undesired as it will overload 9995 * cpu 3 and leave one of the CPUs in the second group unused. 9996 * 9997 * The current solution to this issue is detecting the skew in the first group 9998 * by noticing the lower domain failed to reach balance and had difficulty 9999 * moving tasks due to affinity constraints. 10000 * 10001 * When this is so detected; this group becomes a candidate for busiest; see 10002 * update_sd_pick_busiest(). And calculate_imbalance() and 10003 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10004 * to create an effective group imbalance. 10005 * 10006 * This is a somewhat tricky proposition since the next run might not find the 10007 * group imbalance and decide the groups need to be balanced again. A most 10008 * subtle and fragile situation. 10009 */ 10010 10011 static inline int sg_imbalanced(struct sched_group *group) 10012 { 10013 return group->sgc->imbalance; 10014 } 10015 10016 /* 10017 * group_has_capacity returns true if the group has spare capacity that could 10018 * be used by some tasks. 10019 * We consider that a group has spare capacity if the number of task is 10020 * smaller than the number of CPUs or if the utilization is lower than the 10021 * available capacity for CFS tasks. 10022 * For the latter, we use a threshold to stabilize the state, to take into 10023 * account the variance of the tasks' load and to return true if the available 10024 * capacity in meaningful for the load balancer. 10025 * As an example, an available capacity of 1% can appear but it doesn't make 10026 * any benefit for the load balance. 10027 */ 10028 static inline bool 10029 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10030 { 10031 if (sgs->sum_nr_running < sgs->group_weight) 10032 return true; 10033 10034 if ((sgs->group_capacity * imbalance_pct) < 10035 (sgs->group_runnable * 100)) 10036 return false; 10037 10038 if ((sgs->group_capacity * 100) > 10039 (sgs->group_util * imbalance_pct)) 10040 return true; 10041 10042 return false; 10043 } 10044 10045 /* 10046 * group_is_overloaded returns true if the group has more tasks than it can 10047 * handle. 10048 * group_is_overloaded is not equals to !group_has_capacity because a group 10049 * with the exact right number of tasks, has no more spare capacity but is not 10050 * overloaded so both group_has_capacity and group_is_overloaded return 10051 * false. 10052 */ 10053 static inline bool 10054 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10055 { 10056 if (sgs->sum_nr_running <= sgs->group_weight) 10057 return false; 10058 10059 if ((sgs->group_capacity * 100) < 10060 (sgs->group_util * imbalance_pct)) 10061 return true; 10062 10063 if ((sgs->group_capacity * imbalance_pct) < 10064 (sgs->group_runnable * 100)) 10065 return true; 10066 10067 return false; 10068 } 10069 10070 static inline enum 10071 group_type group_classify(unsigned int imbalance_pct, 10072 struct sched_group *group, 10073 struct sg_lb_stats *sgs) 10074 { 10075 if (group_is_overloaded(imbalance_pct, sgs)) 10076 return group_overloaded; 10077 10078 if (sg_imbalanced(group)) 10079 return group_imbalanced; 10080 10081 if (sgs->group_asym_packing) 10082 return group_asym_packing; 10083 10084 if (sgs->group_smt_balance) 10085 return group_smt_balance; 10086 10087 if (sgs->group_misfit_task_load) 10088 return group_misfit_task; 10089 10090 if (!group_has_capacity(imbalance_pct, sgs)) 10091 return group_fully_busy; 10092 10093 return group_has_spare; 10094 } 10095 10096 /** 10097 * sched_use_asym_prio - Check whether asym_packing priority must be used 10098 * @sd: The scheduling domain of the load balancing 10099 * @cpu: A CPU 10100 * 10101 * Always use CPU priority when balancing load between SMT siblings. When 10102 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10103 * use CPU priority if the whole core is idle. 10104 * 10105 * Returns: True if the priority of @cpu must be followed. False otherwise. 10106 */ 10107 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10108 { 10109 if (!(sd->flags & SD_ASYM_PACKING)) 10110 return false; 10111 10112 if (!sched_smt_active()) 10113 return true; 10114 10115 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10116 } 10117 10118 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10119 { 10120 /* 10121 * First check if @dst_cpu can do asym_packing load balance. Only do it 10122 * if it has higher priority than @src_cpu. 10123 */ 10124 return sched_use_asym_prio(sd, dst_cpu) && 10125 sched_asym_prefer(dst_cpu, src_cpu); 10126 } 10127 10128 /** 10129 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10130 * @env: The load balancing environment 10131 * @sgs: Load-balancing statistics of the candidate busiest group 10132 * @group: The candidate busiest group 10133 * 10134 * @env::dst_cpu can do asym_packing if it has higher priority than the 10135 * preferred CPU of @group. 10136 * 10137 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10138 * otherwise. 10139 */ 10140 static inline bool 10141 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10142 { 10143 /* 10144 * CPU priorities do not make sense for SMT cores with more than one 10145 * busy sibling. 10146 */ 10147 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10148 (sgs->group_weight - sgs->idle_cpus != 1)) 10149 return false; 10150 10151 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); 10152 } 10153 10154 /* One group has more than one SMT CPU while the other group does not */ 10155 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10156 struct sched_group *sg2) 10157 { 10158 if (!sg1 || !sg2) 10159 return false; 10160 10161 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10162 (sg2->flags & SD_SHARE_CPUCAPACITY); 10163 } 10164 10165 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10166 struct sched_group *group) 10167 { 10168 if (!env->idle) 10169 return false; 10170 10171 /* 10172 * For SMT source group, it is better to move a task 10173 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10174 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10175 * will not be on. 10176 */ 10177 if (group->flags & SD_SHARE_CPUCAPACITY && 10178 sgs->sum_h_nr_running > 1) 10179 return true; 10180 10181 return false; 10182 } 10183 10184 static inline long sibling_imbalance(struct lb_env *env, 10185 struct sd_lb_stats *sds, 10186 struct sg_lb_stats *busiest, 10187 struct sg_lb_stats *local) 10188 { 10189 int ncores_busiest, ncores_local; 10190 long imbalance; 10191 10192 if (!env->idle || !busiest->sum_nr_running) 10193 return 0; 10194 10195 ncores_busiest = sds->busiest->cores; 10196 ncores_local = sds->local->cores; 10197 10198 if (ncores_busiest == ncores_local) { 10199 imbalance = busiest->sum_nr_running; 10200 lsub_positive(&imbalance, local->sum_nr_running); 10201 return imbalance; 10202 } 10203 10204 /* Balance such that nr_running/ncores ratio are same on both groups */ 10205 imbalance = ncores_local * busiest->sum_nr_running; 10206 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10207 /* Normalize imbalance and do rounding on normalization */ 10208 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10209 imbalance /= ncores_local + ncores_busiest; 10210 10211 /* Take advantage of resource in an empty sched group */ 10212 if (imbalance <= 1 && local->sum_nr_running == 0 && 10213 busiest->sum_nr_running > 1) 10214 imbalance = 2; 10215 10216 return imbalance; 10217 } 10218 10219 static inline bool 10220 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10221 { 10222 /* 10223 * When there is more than 1 task, the group_overloaded case already 10224 * takes care of cpu with reduced capacity 10225 */ 10226 if (rq->cfs.h_nr_runnable != 1) 10227 return false; 10228 10229 return check_cpu_capacity(rq, sd); 10230 } 10231 10232 /** 10233 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10234 * @env: The load balancing environment. 10235 * @sds: Load-balancing data with statistics of the local group. 10236 * @group: sched_group whose statistics are to be updated. 10237 * @sgs: variable to hold the statistics for this group. 10238 * @sg_overloaded: sched_group is overloaded 10239 * @sg_overutilized: sched_group is overutilized 10240 */ 10241 static inline void update_sg_lb_stats(struct lb_env *env, 10242 struct sd_lb_stats *sds, 10243 struct sched_group *group, 10244 struct sg_lb_stats *sgs, 10245 bool *sg_overloaded, 10246 bool *sg_overutilized) 10247 { 10248 int i, nr_running, local_group, sd_flags = env->sd->flags; 10249 bool balancing_at_rd = !env->sd->parent; 10250 10251 memset(sgs, 0, sizeof(*sgs)); 10252 10253 local_group = group == sds->local; 10254 10255 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10256 struct rq *rq = cpu_rq(i); 10257 unsigned long load = cpu_load(rq); 10258 10259 sgs->group_load += load; 10260 sgs->group_util += cpu_util_cfs(i); 10261 sgs->group_runnable += cpu_runnable(rq); 10262 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10263 10264 nr_running = rq->nr_running; 10265 sgs->sum_nr_running += nr_running; 10266 10267 if (cpu_overutilized(i)) 10268 *sg_overutilized = 1; 10269 10270 /* 10271 * No need to call idle_cpu() if nr_running is not 0 10272 */ 10273 if (!nr_running && idle_cpu(i)) { 10274 sgs->idle_cpus++; 10275 /* Idle cpu can't have misfit task */ 10276 continue; 10277 } 10278 10279 /* Overload indicator is only updated at root domain */ 10280 if (balancing_at_rd && nr_running > 1) 10281 *sg_overloaded = 1; 10282 10283 #ifdef CONFIG_NUMA_BALANCING 10284 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10285 if (sd_flags & SD_NUMA) { 10286 sgs->nr_numa_running += rq->nr_numa_running; 10287 sgs->nr_preferred_running += rq->nr_preferred_running; 10288 } 10289 #endif 10290 if (local_group) 10291 continue; 10292 10293 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10294 /* Check for a misfit task on the cpu */ 10295 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10296 sgs->group_misfit_task_load = rq->misfit_task_load; 10297 *sg_overloaded = 1; 10298 } 10299 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10300 /* Check for a task running on a CPU with reduced capacity */ 10301 if (sgs->group_misfit_task_load < load) 10302 sgs->group_misfit_task_load = load; 10303 } 10304 } 10305 10306 sgs->group_capacity = group->sgc->capacity; 10307 10308 sgs->group_weight = group->group_weight; 10309 10310 /* Check if dst CPU is idle and preferred to this group */ 10311 if (!local_group && env->idle && sgs->sum_h_nr_running && 10312 sched_group_asym(env, sgs, group)) 10313 sgs->group_asym_packing = 1; 10314 10315 /* Check for loaded SMT group to be balanced to dst CPU */ 10316 if (!local_group && smt_balance(env, sgs, group)) 10317 sgs->group_smt_balance = 1; 10318 10319 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10320 10321 /* Computing avg_load makes sense only when group is overloaded */ 10322 if (sgs->group_type == group_overloaded) 10323 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10324 sgs->group_capacity; 10325 } 10326 10327 /** 10328 * update_sd_pick_busiest - return 1 on busiest group 10329 * @env: The load balancing environment. 10330 * @sds: sched_domain statistics 10331 * @sg: sched_group candidate to be checked for being the busiest 10332 * @sgs: sched_group statistics 10333 * 10334 * Determine if @sg is a busier group than the previously selected 10335 * busiest group. 10336 * 10337 * Return: %true if @sg is a busier group than the previously selected 10338 * busiest group. %false otherwise. 10339 */ 10340 static bool update_sd_pick_busiest(struct lb_env *env, 10341 struct sd_lb_stats *sds, 10342 struct sched_group *sg, 10343 struct sg_lb_stats *sgs) 10344 { 10345 struct sg_lb_stats *busiest = &sds->busiest_stat; 10346 10347 /* Make sure that there is at least one task to pull */ 10348 if (!sgs->sum_h_nr_running) 10349 return false; 10350 10351 /* 10352 * Don't try to pull misfit tasks we can't help. 10353 * We can use max_capacity here as reduction in capacity on some 10354 * CPUs in the group should either be possible to resolve 10355 * internally or be covered by avg_load imbalance (eventually). 10356 */ 10357 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10358 (sgs->group_type == group_misfit_task) && 10359 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10360 sds->local_stat.group_type != group_has_spare)) 10361 return false; 10362 10363 if (sgs->group_type > busiest->group_type) 10364 return true; 10365 10366 if (sgs->group_type < busiest->group_type) 10367 return false; 10368 10369 /* 10370 * The candidate and the current busiest group are the same type of 10371 * group. Let check which one is the busiest according to the type. 10372 */ 10373 10374 switch (sgs->group_type) { 10375 case group_overloaded: 10376 /* Select the overloaded group with highest avg_load. */ 10377 return sgs->avg_load > busiest->avg_load; 10378 10379 case group_imbalanced: 10380 /* 10381 * Select the 1st imbalanced group as we don't have any way to 10382 * choose one more than another. 10383 */ 10384 return false; 10385 10386 case group_asym_packing: 10387 /* Prefer to move from lowest priority CPU's work */ 10388 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), 10389 READ_ONCE(sg->asym_prefer_cpu)); 10390 10391 case group_misfit_task: 10392 /* 10393 * If we have more than one misfit sg go with the biggest 10394 * misfit. 10395 */ 10396 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10397 10398 case group_smt_balance: 10399 /* 10400 * Check if we have spare CPUs on either SMT group to 10401 * choose has spare or fully busy handling. 10402 */ 10403 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10404 goto has_spare; 10405 10406 fallthrough; 10407 10408 case group_fully_busy: 10409 /* 10410 * Select the fully busy group with highest avg_load. In 10411 * theory, there is no need to pull task from such kind of 10412 * group because tasks have all compute capacity that they need 10413 * but we can still improve the overall throughput by reducing 10414 * contention when accessing shared HW resources. 10415 * 10416 * XXX for now avg_load is not computed and always 0 so we 10417 * select the 1st one, except if @sg is composed of SMT 10418 * siblings. 10419 */ 10420 10421 if (sgs->avg_load < busiest->avg_load) 10422 return false; 10423 10424 if (sgs->avg_load == busiest->avg_load) { 10425 /* 10426 * SMT sched groups need more help than non-SMT groups. 10427 * If @sg happens to also be SMT, either choice is good. 10428 */ 10429 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10430 return false; 10431 } 10432 10433 break; 10434 10435 case group_has_spare: 10436 /* 10437 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10438 * as we do not want to pull task off SMT core with one task 10439 * and make the core idle. 10440 */ 10441 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10442 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10443 return false; 10444 else 10445 return true; 10446 } 10447 has_spare: 10448 10449 /* 10450 * Select not overloaded group with lowest number of idle CPUs 10451 * and highest number of running tasks. We could also compare 10452 * the spare capacity which is more stable but it can end up 10453 * that the group has less spare capacity but finally more idle 10454 * CPUs which means less opportunity to pull tasks. 10455 */ 10456 if (sgs->idle_cpus > busiest->idle_cpus) 10457 return false; 10458 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10459 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10460 return false; 10461 10462 break; 10463 } 10464 10465 /* 10466 * Candidate sg has no more than one task per CPU and has higher 10467 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10468 * throughput. Maximize throughput, power/energy consequences are not 10469 * considered. 10470 */ 10471 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10472 (sgs->group_type <= group_fully_busy) && 10473 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10474 return false; 10475 10476 return true; 10477 } 10478 10479 #ifdef CONFIG_NUMA_BALANCING 10480 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10481 { 10482 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10483 return regular; 10484 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10485 return remote; 10486 return all; 10487 } 10488 10489 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10490 { 10491 if (rq->nr_running > rq->nr_numa_running) 10492 return regular; 10493 if (rq->nr_running > rq->nr_preferred_running) 10494 return remote; 10495 return all; 10496 } 10497 #else /* !CONFIG_NUMA_BALANCING: */ 10498 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10499 { 10500 return all; 10501 } 10502 10503 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10504 { 10505 return regular; 10506 } 10507 #endif /* !CONFIG_NUMA_BALANCING */ 10508 10509 10510 struct sg_lb_stats; 10511 10512 /* 10513 * task_running_on_cpu - return 1 if @p is running on @cpu. 10514 */ 10515 10516 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10517 { 10518 /* Task has no contribution or is new */ 10519 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10520 return 0; 10521 10522 if (task_on_rq_queued(p)) 10523 return 1; 10524 10525 return 0; 10526 } 10527 10528 /** 10529 * idle_cpu_without - would a given CPU be idle without p ? 10530 * @cpu: the processor on which idleness is tested. 10531 * @p: task which should be ignored. 10532 * 10533 * Return: 1 if the CPU would be idle. 0 otherwise. 10534 */ 10535 static int idle_cpu_without(int cpu, struct task_struct *p) 10536 { 10537 struct rq *rq = cpu_rq(cpu); 10538 10539 if (rq->curr != rq->idle && rq->curr != p) 10540 return 0; 10541 10542 /* 10543 * rq->nr_running can't be used but an updated version without the 10544 * impact of p on cpu must be used instead. The updated nr_running 10545 * be computed and tested before calling idle_cpu_without(). 10546 */ 10547 10548 if (rq->ttwu_pending) 10549 return 0; 10550 10551 return 1; 10552 } 10553 10554 /* 10555 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10556 * @sd: The sched_domain level to look for idlest group. 10557 * @group: sched_group whose statistics are to be updated. 10558 * @sgs: variable to hold the statistics for this group. 10559 * @p: The task for which we look for the idlest group/CPU. 10560 */ 10561 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10562 struct sched_group *group, 10563 struct sg_lb_stats *sgs, 10564 struct task_struct *p) 10565 { 10566 int i, nr_running; 10567 10568 memset(sgs, 0, sizeof(*sgs)); 10569 10570 /* Assume that task can't fit any CPU of the group */ 10571 if (sd->flags & SD_ASYM_CPUCAPACITY) 10572 sgs->group_misfit_task_load = 1; 10573 10574 for_each_cpu(i, sched_group_span(group)) { 10575 struct rq *rq = cpu_rq(i); 10576 unsigned int local; 10577 10578 sgs->group_load += cpu_load_without(rq, p); 10579 sgs->group_util += cpu_util_without(i, p); 10580 sgs->group_runnable += cpu_runnable_without(rq, p); 10581 local = task_running_on_cpu(i, p); 10582 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10583 10584 nr_running = rq->nr_running - local; 10585 sgs->sum_nr_running += nr_running; 10586 10587 /* 10588 * No need to call idle_cpu_without() if nr_running is not 0 10589 */ 10590 if (!nr_running && idle_cpu_without(i, p)) 10591 sgs->idle_cpus++; 10592 10593 /* Check if task fits in the CPU */ 10594 if (sd->flags & SD_ASYM_CPUCAPACITY && 10595 sgs->group_misfit_task_load && 10596 task_fits_cpu(p, i)) 10597 sgs->group_misfit_task_load = 0; 10598 10599 } 10600 10601 sgs->group_capacity = group->sgc->capacity; 10602 10603 sgs->group_weight = group->group_weight; 10604 10605 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10606 10607 /* 10608 * Computing avg_load makes sense only when group is fully busy or 10609 * overloaded 10610 */ 10611 if (sgs->group_type == group_fully_busy || 10612 sgs->group_type == group_overloaded) 10613 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10614 sgs->group_capacity; 10615 } 10616 10617 static bool update_pick_idlest(struct sched_group *idlest, 10618 struct sg_lb_stats *idlest_sgs, 10619 struct sched_group *group, 10620 struct sg_lb_stats *sgs) 10621 { 10622 if (sgs->group_type < idlest_sgs->group_type) 10623 return true; 10624 10625 if (sgs->group_type > idlest_sgs->group_type) 10626 return false; 10627 10628 /* 10629 * The candidate and the current idlest group are the same type of 10630 * group. Let check which one is the idlest according to the type. 10631 */ 10632 10633 switch (sgs->group_type) { 10634 case group_overloaded: 10635 case group_fully_busy: 10636 /* Select the group with lowest avg_load. */ 10637 if (idlest_sgs->avg_load <= sgs->avg_load) 10638 return false; 10639 break; 10640 10641 case group_imbalanced: 10642 case group_asym_packing: 10643 case group_smt_balance: 10644 /* Those types are not used in the slow wakeup path */ 10645 return false; 10646 10647 case group_misfit_task: 10648 /* Select group with the highest max capacity */ 10649 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10650 return false; 10651 break; 10652 10653 case group_has_spare: 10654 /* Select group with most idle CPUs */ 10655 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10656 return false; 10657 10658 /* Select group with lowest group_util */ 10659 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10660 idlest_sgs->group_util <= sgs->group_util) 10661 return false; 10662 10663 break; 10664 } 10665 10666 return true; 10667 } 10668 10669 /* 10670 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10671 * domain. 10672 * 10673 * Assumes p is allowed on at least one CPU in sd. 10674 */ 10675 static struct sched_group * 10676 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10677 { 10678 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10679 struct sg_lb_stats local_sgs, tmp_sgs; 10680 struct sg_lb_stats *sgs; 10681 unsigned long imbalance; 10682 struct sg_lb_stats idlest_sgs = { 10683 .avg_load = UINT_MAX, 10684 .group_type = group_overloaded, 10685 }; 10686 10687 do { 10688 int local_group; 10689 10690 /* Skip over this group if it has no CPUs allowed */ 10691 if (!cpumask_intersects(sched_group_span(group), 10692 p->cpus_ptr)) 10693 continue; 10694 10695 /* Skip over this group if no cookie matched */ 10696 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10697 continue; 10698 10699 local_group = cpumask_test_cpu(this_cpu, 10700 sched_group_span(group)); 10701 10702 if (local_group) { 10703 sgs = &local_sgs; 10704 local = group; 10705 } else { 10706 sgs = &tmp_sgs; 10707 } 10708 10709 update_sg_wakeup_stats(sd, group, sgs, p); 10710 10711 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10712 idlest = group; 10713 idlest_sgs = *sgs; 10714 } 10715 10716 } while (group = group->next, group != sd->groups); 10717 10718 10719 /* There is no idlest group to push tasks to */ 10720 if (!idlest) 10721 return NULL; 10722 10723 /* The local group has been skipped because of CPU affinity */ 10724 if (!local) 10725 return idlest; 10726 10727 /* 10728 * If the local group is idler than the selected idlest group 10729 * don't try and push the task. 10730 */ 10731 if (local_sgs.group_type < idlest_sgs.group_type) 10732 return NULL; 10733 10734 /* 10735 * If the local group is busier than the selected idlest group 10736 * try and push the task. 10737 */ 10738 if (local_sgs.group_type > idlest_sgs.group_type) 10739 return idlest; 10740 10741 switch (local_sgs.group_type) { 10742 case group_overloaded: 10743 case group_fully_busy: 10744 10745 /* Calculate allowed imbalance based on load */ 10746 imbalance = scale_load_down(NICE_0_LOAD) * 10747 (sd->imbalance_pct-100) / 100; 10748 10749 /* 10750 * When comparing groups across NUMA domains, it's possible for 10751 * the local domain to be very lightly loaded relative to the 10752 * remote domains but "imbalance" skews the comparison making 10753 * remote CPUs look much more favourable. When considering 10754 * cross-domain, add imbalance to the load on the remote node 10755 * and consider staying local. 10756 */ 10757 10758 if ((sd->flags & SD_NUMA) && 10759 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10760 return NULL; 10761 10762 /* 10763 * If the local group is less loaded than the selected 10764 * idlest group don't try and push any tasks. 10765 */ 10766 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10767 return NULL; 10768 10769 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10770 return NULL; 10771 break; 10772 10773 case group_imbalanced: 10774 case group_asym_packing: 10775 case group_smt_balance: 10776 /* Those type are not used in the slow wakeup path */ 10777 return NULL; 10778 10779 case group_misfit_task: 10780 /* Select group with the highest max capacity */ 10781 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10782 return NULL; 10783 break; 10784 10785 case group_has_spare: 10786 #ifdef CONFIG_NUMA 10787 if (sd->flags & SD_NUMA) { 10788 int imb_numa_nr = sd->imb_numa_nr; 10789 #ifdef CONFIG_NUMA_BALANCING 10790 int idlest_cpu; 10791 /* 10792 * If there is spare capacity at NUMA, try to select 10793 * the preferred node 10794 */ 10795 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10796 return NULL; 10797 10798 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10799 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10800 return idlest; 10801 #endif /* CONFIG_NUMA_BALANCING */ 10802 /* 10803 * Otherwise, keep the task close to the wakeup source 10804 * and improve locality if the number of running tasks 10805 * would remain below threshold where an imbalance is 10806 * allowed while accounting for the possibility the 10807 * task is pinned to a subset of CPUs. If there is a 10808 * real need of migration, periodic load balance will 10809 * take care of it. 10810 */ 10811 if (p->nr_cpus_allowed != NR_CPUS) { 10812 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10813 10814 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10815 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10816 } 10817 10818 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10819 if (!adjust_numa_imbalance(imbalance, 10820 local_sgs.sum_nr_running + 1, 10821 imb_numa_nr)) { 10822 return NULL; 10823 } 10824 } 10825 #endif /* CONFIG_NUMA */ 10826 10827 /* 10828 * Select group with highest number of idle CPUs. We could also 10829 * compare the utilization which is more stable but it can end 10830 * up that the group has less spare capacity but finally more 10831 * idle CPUs which means more opportunity to run task. 10832 */ 10833 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10834 return NULL; 10835 break; 10836 } 10837 10838 return idlest; 10839 } 10840 10841 static void update_idle_cpu_scan(struct lb_env *env, 10842 unsigned long sum_util) 10843 { 10844 struct sched_domain_shared *sd_share; 10845 int llc_weight, pct; 10846 u64 x, y, tmp; 10847 /* 10848 * Update the number of CPUs to scan in LLC domain, which could 10849 * be used as a hint in select_idle_cpu(). The update of sd_share 10850 * could be expensive because it is within a shared cache line. 10851 * So the write of this hint only occurs during periodic load 10852 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10853 * can fire way more frequently than the former. 10854 */ 10855 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10856 return; 10857 10858 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10859 if (env->sd->span_weight != llc_weight) 10860 return; 10861 10862 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10863 if (!sd_share) 10864 return; 10865 10866 /* 10867 * The number of CPUs to search drops as sum_util increases, when 10868 * sum_util hits 85% or above, the scan stops. 10869 * The reason to choose 85% as the threshold is because this is the 10870 * imbalance_pct(117) when a LLC sched group is overloaded. 10871 * 10872 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10873 * and y'= y / SCHED_CAPACITY_SCALE 10874 * 10875 * x is the ratio of sum_util compared to the CPU capacity: 10876 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10877 * y' is the ratio of CPUs to be scanned in the LLC domain, 10878 * and the number of CPUs to scan is calculated by: 10879 * 10880 * nr_scan = llc_weight * y' [2] 10881 * 10882 * When x hits the threshold of overloaded, AKA, when 10883 * x = 100 / pct, y drops to 0. According to [1], 10884 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10885 * 10886 * Scale x by SCHED_CAPACITY_SCALE: 10887 * x' = sum_util / llc_weight; [3] 10888 * 10889 * and finally [1] becomes: 10890 * y = SCHED_CAPACITY_SCALE - 10891 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10892 * 10893 */ 10894 /* equation [3] */ 10895 x = sum_util; 10896 do_div(x, llc_weight); 10897 10898 /* equation [4] */ 10899 pct = env->sd->imbalance_pct; 10900 tmp = x * x * pct * pct; 10901 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10902 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10903 y = SCHED_CAPACITY_SCALE - tmp; 10904 10905 /* equation [2] */ 10906 y *= llc_weight; 10907 do_div(y, SCHED_CAPACITY_SCALE); 10908 if ((int)y != sd_share->nr_idle_scan) 10909 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10910 } 10911 10912 /** 10913 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10914 * @env: The load balancing environment. 10915 * @sds: variable to hold the statistics for this sched_domain. 10916 */ 10917 10918 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10919 { 10920 struct sched_group *sg = env->sd->groups; 10921 struct sg_lb_stats *local = &sds->local_stat; 10922 struct sg_lb_stats tmp_sgs; 10923 unsigned long sum_util = 0; 10924 bool sg_overloaded = 0, sg_overutilized = 0; 10925 10926 do { 10927 struct sg_lb_stats *sgs = &tmp_sgs; 10928 int local_group; 10929 10930 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10931 if (local_group) { 10932 sds->local = sg; 10933 sgs = local; 10934 10935 if (env->idle != CPU_NEWLY_IDLE || 10936 time_after_eq(jiffies, sg->sgc->next_update)) 10937 update_group_capacity(env->sd, env->dst_cpu); 10938 } 10939 10940 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10941 10942 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10943 sds->busiest = sg; 10944 sds->busiest_stat = *sgs; 10945 } 10946 10947 /* Now, start updating sd_lb_stats */ 10948 sds->total_load += sgs->group_load; 10949 sds->total_capacity += sgs->group_capacity; 10950 10951 sum_util += sgs->group_util; 10952 sg = sg->next; 10953 } while (sg != env->sd->groups); 10954 10955 /* 10956 * Indicate that the child domain of the busiest group prefers tasks 10957 * go to a child's sibling domains first. NB the flags of a sched group 10958 * are those of the child domain. 10959 */ 10960 if (sds->busiest) 10961 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10962 10963 10964 if (env->sd->flags & SD_NUMA) 10965 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10966 10967 if (!env->sd->parent) { 10968 /* update overload indicator if we are at root domain */ 10969 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 10970 10971 /* Update over-utilization (tipping point, U >= 0) indicator */ 10972 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10973 } else if (sg_overutilized) { 10974 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10975 } 10976 10977 update_idle_cpu_scan(env, sum_util); 10978 } 10979 10980 /** 10981 * calculate_imbalance - Calculate the amount of imbalance present within the 10982 * groups of a given sched_domain during load balance. 10983 * @env: load balance environment 10984 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10985 */ 10986 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10987 { 10988 struct sg_lb_stats *local, *busiest; 10989 10990 local = &sds->local_stat; 10991 busiest = &sds->busiest_stat; 10992 10993 if (busiest->group_type == group_misfit_task) { 10994 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10995 /* Set imbalance to allow misfit tasks to be balanced. */ 10996 env->migration_type = migrate_misfit; 10997 env->imbalance = 1; 10998 } else { 10999 /* 11000 * Set load imbalance to allow moving task from cpu 11001 * with reduced capacity. 11002 */ 11003 env->migration_type = migrate_load; 11004 env->imbalance = busiest->group_misfit_task_load; 11005 } 11006 return; 11007 } 11008 11009 if (busiest->group_type == group_asym_packing) { 11010 /* 11011 * In case of asym capacity, we will try to migrate all load to 11012 * the preferred CPU. 11013 */ 11014 env->migration_type = migrate_task; 11015 env->imbalance = busiest->sum_h_nr_running; 11016 return; 11017 } 11018 11019 if (busiest->group_type == group_smt_balance) { 11020 /* Reduce number of tasks sharing CPU capacity */ 11021 env->migration_type = migrate_task; 11022 env->imbalance = 1; 11023 return; 11024 } 11025 11026 if (busiest->group_type == group_imbalanced) { 11027 /* 11028 * In the group_imb case we cannot rely on group-wide averages 11029 * to ensure CPU-load equilibrium, try to move any task to fix 11030 * the imbalance. The next load balance will take care of 11031 * balancing back the system. 11032 */ 11033 env->migration_type = migrate_task; 11034 env->imbalance = 1; 11035 return; 11036 } 11037 11038 /* 11039 * Try to use spare capacity of local group without overloading it or 11040 * emptying busiest. 11041 */ 11042 if (local->group_type == group_has_spare) { 11043 if ((busiest->group_type > group_fully_busy) && 11044 !(env->sd->flags & SD_SHARE_LLC)) { 11045 /* 11046 * If busiest is overloaded, try to fill spare 11047 * capacity. This might end up creating spare capacity 11048 * in busiest or busiest still being overloaded but 11049 * there is no simple way to directly compute the 11050 * amount of load to migrate in order to balance the 11051 * system. 11052 */ 11053 env->migration_type = migrate_util; 11054 env->imbalance = max(local->group_capacity, local->group_util) - 11055 local->group_util; 11056 11057 /* 11058 * In some cases, the group's utilization is max or even 11059 * higher than capacity because of migrations but the 11060 * local CPU is (newly) idle. There is at least one 11061 * waiting task in this overloaded busiest group. Let's 11062 * try to pull it. 11063 */ 11064 if (env->idle && env->imbalance == 0) { 11065 env->migration_type = migrate_task; 11066 env->imbalance = 1; 11067 } 11068 11069 return; 11070 } 11071 11072 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11073 /* 11074 * When prefer sibling, evenly spread running tasks on 11075 * groups. 11076 */ 11077 env->migration_type = migrate_task; 11078 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11079 } else { 11080 11081 /* 11082 * If there is no overload, we just want to even the number of 11083 * idle CPUs. 11084 */ 11085 env->migration_type = migrate_task; 11086 env->imbalance = max_t(long, 0, 11087 (local->idle_cpus - busiest->idle_cpus)); 11088 } 11089 11090 #ifdef CONFIG_NUMA 11091 /* Consider allowing a small imbalance between NUMA groups */ 11092 if (env->sd->flags & SD_NUMA) { 11093 env->imbalance = adjust_numa_imbalance(env->imbalance, 11094 local->sum_nr_running + 1, 11095 env->sd->imb_numa_nr); 11096 } 11097 #endif 11098 11099 /* Number of tasks to move to restore balance */ 11100 env->imbalance >>= 1; 11101 11102 return; 11103 } 11104 11105 /* 11106 * Local is fully busy but has to take more load to relieve the 11107 * busiest group 11108 */ 11109 if (local->group_type < group_overloaded) { 11110 /* 11111 * Local will become overloaded so the avg_load metrics are 11112 * finally needed. 11113 */ 11114 11115 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11116 local->group_capacity; 11117 11118 /* 11119 * If the local group is more loaded than the selected 11120 * busiest group don't try to pull any tasks. 11121 */ 11122 if (local->avg_load >= busiest->avg_load) { 11123 env->imbalance = 0; 11124 return; 11125 } 11126 11127 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11128 sds->total_capacity; 11129 11130 /* 11131 * If the local group is more loaded than the average system 11132 * load, don't try to pull any tasks. 11133 */ 11134 if (local->avg_load >= sds->avg_load) { 11135 env->imbalance = 0; 11136 return; 11137 } 11138 11139 } 11140 11141 /* 11142 * Both group are or will become overloaded and we're trying to get all 11143 * the CPUs to the average_load, so we don't want to push ourselves 11144 * above the average load, nor do we wish to reduce the max loaded CPU 11145 * below the average load. At the same time, we also don't want to 11146 * reduce the group load below the group capacity. Thus we look for 11147 * the minimum possible imbalance. 11148 */ 11149 env->migration_type = migrate_load; 11150 env->imbalance = min( 11151 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11152 (sds->avg_load - local->avg_load) * local->group_capacity 11153 ) / SCHED_CAPACITY_SCALE; 11154 } 11155 11156 /******* sched_balance_find_src_group() helpers end here *********************/ 11157 11158 /* 11159 * Decision matrix according to the local and busiest group type: 11160 * 11161 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11162 * has_spare nr_idle balanced N/A N/A balanced balanced 11163 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11164 * misfit_task force N/A N/A N/A N/A N/A 11165 * asym_packing force force N/A N/A force force 11166 * imbalanced force force N/A N/A force force 11167 * overloaded force force N/A N/A force avg_load 11168 * 11169 * N/A : Not Applicable because already filtered while updating 11170 * statistics. 11171 * balanced : The system is balanced for these 2 groups. 11172 * force : Calculate the imbalance as load migration is probably needed. 11173 * avg_load : Only if imbalance is significant enough. 11174 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11175 * different in groups. 11176 */ 11177 11178 /** 11179 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11180 * if there is an imbalance. 11181 * @env: The load balancing environment. 11182 * 11183 * Also calculates the amount of runnable load which should be moved 11184 * to restore balance. 11185 * 11186 * Return: - The busiest group if imbalance exists. 11187 */ 11188 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11189 { 11190 struct sg_lb_stats *local, *busiest; 11191 struct sd_lb_stats sds; 11192 11193 init_sd_lb_stats(&sds); 11194 11195 /* 11196 * Compute the various statistics relevant for load balancing at 11197 * this level. 11198 */ 11199 update_sd_lb_stats(env, &sds); 11200 11201 /* There is no busy sibling group to pull tasks from */ 11202 if (!sds.busiest) 11203 goto out_balanced; 11204 11205 busiest = &sds.busiest_stat; 11206 11207 /* Misfit tasks should be dealt with regardless of the avg load */ 11208 if (busiest->group_type == group_misfit_task) 11209 goto force_balance; 11210 11211 if (!is_rd_overutilized(env->dst_rq->rd) && 11212 rcu_dereference(env->dst_rq->rd->pd)) 11213 goto out_balanced; 11214 11215 /* ASYM feature bypasses nice load balance check */ 11216 if (busiest->group_type == group_asym_packing) 11217 goto force_balance; 11218 11219 /* 11220 * If the busiest group is imbalanced the below checks don't 11221 * work because they assume all things are equal, which typically 11222 * isn't true due to cpus_ptr constraints and the like. 11223 */ 11224 if (busiest->group_type == group_imbalanced) 11225 goto force_balance; 11226 11227 local = &sds.local_stat; 11228 /* 11229 * If the local group is busier than the selected busiest group 11230 * don't try and pull any tasks. 11231 */ 11232 if (local->group_type > busiest->group_type) 11233 goto out_balanced; 11234 11235 /* 11236 * When groups are overloaded, use the avg_load to ensure fairness 11237 * between tasks. 11238 */ 11239 if (local->group_type == group_overloaded) { 11240 /* 11241 * If the local group is more loaded than the selected 11242 * busiest group don't try to pull any tasks. 11243 */ 11244 if (local->avg_load >= busiest->avg_load) 11245 goto out_balanced; 11246 11247 /* XXX broken for overlapping NUMA groups */ 11248 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11249 sds.total_capacity; 11250 11251 /* 11252 * Don't pull any tasks if this group is already above the 11253 * domain average load. 11254 */ 11255 if (local->avg_load >= sds.avg_load) 11256 goto out_balanced; 11257 11258 /* 11259 * If the busiest group is more loaded, use imbalance_pct to be 11260 * conservative. 11261 */ 11262 if (100 * busiest->avg_load <= 11263 env->sd->imbalance_pct * local->avg_load) 11264 goto out_balanced; 11265 } 11266 11267 /* 11268 * Try to move all excess tasks to a sibling domain of the busiest 11269 * group's child domain. 11270 */ 11271 if (sds.prefer_sibling && local->group_type == group_has_spare && 11272 sibling_imbalance(env, &sds, busiest, local) > 1) 11273 goto force_balance; 11274 11275 if (busiest->group_type != group_overloaded) { 11276 if (!env->idle) { 11277 /* 11278 * If the busiest group is not overloaded (and as a 11279 * result the local one too) but this CPU is already 11280 * busy, let another idle CPU try to pull task. 11281 */ 11282 goto out_balanced; 11283 } 11284 11285 if (busiest->group_type == group_smt_balance && 11286 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11287 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11288 goto force_balance; 11289 } 11290 11291 if (busiest->group_weight > 1 && 11292 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11293 /* 11294 * If the busiest group is not overloaded 11295 * and there is no imbalance between this and busiest 11296 * group wrt idle CPUs, it is balanced. The imbalance 11297 * becomes significant if the diff is greater than 1 11298 * otherwise we might end up to just move the imbalance 11299 * on another group. Of course this applies only if 11300 * there is more than 1 CPU per group. 11301 */ 11302 goto out_balanced; 11303 } 11304 11305 if (busiest->sum_h_nr_running == 1) { 11306 /* 11307 * busiest doesn't have any tasks waiting to run 11308 */ 11309 goto out_balanced; 11310 } 11311 } 11312 11313 force_balance: 11314 /* Looks like there is an imbalance. Compute it */ 11315 calculate_imbalance(env, &sds); 11316 return env->imbalance ? sds.busiest : NULL; 11317 11318 out_balanced: 11319 env->imbalance = 0; 11320 return NULL; 11321 } 11322 11323 /* 11324 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11325 */ 11326 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11327 struct sched_group *group) 11328 { 11329 struct rq *busiest = NULL, *rq; 11330 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11331 unsigned int busiest_nr = 0; 11332 int i; 11333 11334 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11335 unsigned long capacity, load, util; 11336 unsigned int nr_running; 11337 enum fbq_type rt; 11338 11339 rq = cpu_rq(i); 11340 rt = fbq_classify_rq(rq); 11341 11342 /* 11343 * We classify groups/runqueues into three groups: 11344 * - regular: there are !numa tasks 11345 * - remote: there are numa tasks that run on the 'wrong' node 11346 * - all: there is no distinction 11347 * 11348 * In order to avoid migrating ideally placed numa tasks, 11349 * ignore those when there's better options. 11350 * 11351 * If we ignore the actual busiest queue to migrate another 11352 * task, the next balance pass can still reduce the busiest 11353 * queue by moving tasks around inside the node. 11354 * 11355 * If we cannot move enough load due to this classification 11356 * the next pass will adjust the group classification and 11357 * allow migration of more tasks. 11358 * 11359 * Both cases only affect the total convergence complexity. 11360 */ 11361 if (rt > env->fbq_type) 11362 continue; 11363 11364 nr_running = rq->cfs.h_nr_runnable; 11365 if (!nr_running) 11366 continue; 11367 11368 capacity = capacity_of(i); 11369 11370 /* 11371 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11372 * eventually lead to active_balancing high->low capacity. 11373 * Higher per-CPU capacity is considered better than balancing 11374 * average load. 11375 */ 11376 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11377 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11378 nr_running == 1) 11379 continue; 11380 11381 /* 11382 * Make sure we only pull tasks from a CPU of lower priority 11383 * when balancing between SMT siblings. 11384 * 11385 * If balancing between cores, let lower priority CPUs help 11386 * SMT cores with more than one busy sibling. 11387 */ 11388 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11389 continue; 11390 11391 switch (env->migration_type) { 11392 case migrate_load: 11393 /* 11394 * When comparing with load imbalance, use cpu_load() 11395 * which is not scaled with the CPU capacity. 11396 */ 11397 load = cpu_load(rq); 11398 11399 if (nr_running == 1 && load > env->imbalance && 11400 !check_cpu_capacity(rq, env->sd)) 11401 break; 11402 11403 /* 11404 * For the load comparisons with the other CPUs, 11405 * consider the cpu_load() scaled with the CPU 11406 * capacity, so that the load can be moved away 11407 * from the CPU that is potentially running at a 11408 * lower capacity. 11409 * 11410 * Thus we're looking for max(load_i / capacity_i), 11411 * crosswise multiplication to rid ourselves of the 11412 * division works out to: 11413 * load_i * capacity_j > load_j * capacity_i; 11414 * where j is our previous maximum. 11415 */ 11416 if (load * busiest_capacity > busiest_load * capacity) { 11417 busiest_load = load; 11418 busiest_capacity = capacity; 11419 busiest = rq; 11420 } 11421 break; 11422 11423 case migrate_util: 11424 util = cpu_util_cfs_boost(i); 11425 11426 /* 11427 * Don't try to pull utilization from a CPU with one 11428 * running task. Whatever its utilization, we will fail 11429 * detach the task. 11430 */ 11431 if (nr_running <= 1) 11432 continue; 11433 11434 if (busiest_util < util) { 11435 busiest_util = util; 11436 busiest = rq; 11437 } 11438 break; 11439 11440 case migrate_task: 11441 if (busiest_nr < nr_running) { 11442 busiest_nr = nr_running; 11443 busiest = rq; 11444 } 11445 break; 11446 11447 case migrate_misfit: 11448 /* 11449 * For ASYM_CPUCAPACITY domains with misfit tasks we 11450 * simply seek the "biggest" misfit task. 11451 */ 11452 if (rq->misfit_task_load > busiest_load) { 11453 busiest_load = rq->misfit_task_load; 11454 busiest = rq; 11455 } 11456 11457 break; 11458 11459 } 11460 } 11461 11462 return busiest; 11463 } 11464 11465 /* 11466 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11467 * so long as it is large enough. 11468 */ 11469 #define MAX_PINNED_INTERVAL 512 11470 11471 static inline bool 11472 asym_active_balance(struct lb_env *env) 11473 { 11474 /* 11475 * ASYM_PACKING needs to force migrate tasks from busy but lower 11476 * priority CPUs in order to pack all tasks in the highest priority 11477 * CPUs. When done between cores, do it only if the whole core if the 11478 * whole core is idle. 11479 * 11480 * If @env::src_cpu is an SMT core with busy siblings, let 11481 * the lower priority @env::dst_cpu help it. Do not follow 11482 * CPU priority. 11483 */ 11484 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11485 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11486 !sched_use_asym_prio(env->sd, env->src_cpu)); 11487 } 11488 11489 static inline bool 11490 imbalanced_active_balance(struct lb_env *env) 11491 { 11492 struct sched_domain *sd = env->sd; 11493 11494 /* 11495 * The imbalanced case includes the case of pinned tasks preventing a fair 11496 * distribution of the load on the system but also the even distribution of the 11497 * threads on a system with spare capacity 11498 */ 11499 if ((env->migration_type == migrate_task) && 11500 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11501 return 1; 11502 11503 return 0; 11504 } 11505 11506 static int need_active_balance(struct lb_env *env) 11507 { 11508 struct sched_domain *sd = env->sd; 11509 11510 if (asym_active_balance(env)) 11511 return 1; 11512 11513 if (imbalanced_active_balance(env)) 11514 return 1; 11515 11516 /* 11517 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11518 * It's worth migrating the task if the src_cpu's capacity is reduced 11519 * because of other sched_class or IRQs if more capacity stays 11520 * available on dst_cpu. 11521 */ 11522 if (env->idle && 11523 (env->src_rq->cfs.h_nr_runnable == 1)) { 11524 if ((check_cpu_capacity(env->src_rq, sd)) && 11525 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11526 return 1; 11527 } 11528 11529 if (env->migration_type == migrate_misfit) 11530 return 1; 11531 11532 return 0; 11533 } 11534 11535 static int active_load_balance_cpu_stop(void *data); 11536 11537 static int should_we_balance(struct lb_env *env) 11538 { 11539 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11540 struct sched_group *sg = env->sd->groups; 11541 int cpu, idle_smt = -1; 11542 11543 /* 11544 * Ensure the balancing environment is consistent; can happen 11545 * when the softirq triggers 'during' hotplug. 11546 */ 11547 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11548 return 0; 11549 11550 /* 11551 * In the newly idle case, we will allow all the CPUs 11552 * to do the newly idle load balance. 11553 * 11554 * However, we bail out if we already have tasks or a wakeup pending, 11555 * to optimize wakeup latency. 11556 */ 11557 if (env->idle == CPU_NEWLY_IDLE) { 11558 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11559 return 0; 11560 return 1; 11561 } 11562 11563 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11564 /* Try to find first idle CPU */ 11565 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11566 if (!idle_cpu(cpu)) 11567 continue; 11568 11569 /* 11570 * Don't balance to idle SMT in busy core right away when 11571 * balancing cores, but remember the first idle SMT CPU for 11572 * later consideration. Find CPU on an idle core first. 11573 */ 11574 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11575 if (idle_smt == -1) 11576 idle_smt = cpu; 11577 /* 11578 * If the core is not idle, and first SMT sibling which is 11579 * idle has been found, then its not needed to check other 11580 * SMT siblings for idleness: 11581 */ 11582 #ifdef CONFIG_SCHED_SMT 11583 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11584 #endif 11585 continue; 11586 } 11587 11588 /* 11589 * Are we the first idle core in a non-SMT domain or higher, 11590 * or the first idle CPU in a SMT domain? 11591 */ 11592 return cpu == env->dst_cpu; 11593 } 11594 11595 /* Are we the first idle CPU with busy siblings? */ 11596 if (idle_smt != -1) 11597 return idle_smt == env->dst_cpu; 11598 11599 /* Are we the first CPU of this group ? */ 11600 return group_balance_cpu(sg) == env->dst_cpu; 11601 } 11602 11603 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11604 enum cpu_idle_type idle) 11605 { 11606 if (!schedstat_enabled()) 11607 return; 11608 11609 switch (env->migration_type) { 11610 case migrate_load: 11611 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11612 break; 11613 case migrate_util: 11614 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11615 break; 11616 case migrate_task: 11617 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11618 break; 11619 case migrate_misfit: 11620 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11621 break; 11622 } 11623 } 11624 11625 /* 11626 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11627 * tasks if there is an imbalance. 11628 */ 11629 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11630 struct sched_domain *sd, enum cpu_idle_type idle, 11631 int *continue_balancing) 11632 { 11633 int ld_moved, cur_ld_moved, active_balance = 0; 11634 struct sched_domain *sd_parent = sd->parent; 11635 struct sched_group *group; 11636 struct rq *busiest; 11637 struct rq_flags rf; 11638 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11639 struct lb_env env = { 11640 .sd = sd, 11641 .dst_cpu = this_cpu, 11642 .dst_rq = this_rq, 11643 .dst_grpmask = group_balance_mask(sd->groups), 11644 .idle = idle, 11645 .loop_break = SCHED_NR_MIGRATE_BREAK, 11646 .cpus = cpus, 11647 .fbq_type = all, 11648 .tasks = LIST_HEAD_INIT(env.tasks), 11649 }; 11650 11651 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11652 11653 schedstat_inc(sd->lb_count[idle]); 11654 11655 redo: 11656 if (!should_we_balance(&env)) { 11657 *continue_balancing = 0; 11658 goto out_balanced; 11659 } 11660 11661 group = sched_balance_find_src_group(&env); 11662 if (!group) { 11663 schedstat_inc(sd->lb_nobusyg[idle]); 11664 goto out_balanced; 11665 } 11666 11667 busiest = sched_balance_find_src_rq(&env, group); 11668 if (!busiest) { 11669 schedstat_inc(sd->lb_nobusyq[idle]); 11670 goto out_balanced; 11671 } 11672 11673 WARN_ON_ONCE(busiest == env.dst_rq); 11674 11675 update_lb_imbalance_stat(&env, sd, idle); 11676 11677 env.src_cpu = busiest->cpu; 11678 env.src_rq = busiest; 11679 11680 ld_moved = 0; 11681 /* Clear this flag as soon as we find a pullable task */ 11682 env.flags |= LBF_ALL_PINNED; 11683 if (busiest->nr_running > 1) { 11684 /* 11685 * Attempt to move tasks. If sched_balance_find_src_group has found 11686 * an imbalance but busiest->nr_running <= 1, the group is 11687 * still unbalanced. ld_moved simply stays zero, so it is 11688 * correctly treated as an imbalance. 11689 */ 11690 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11691 11692 more_balance: 11693 rq_lock_irqsave(busiest, &rf); 11694 update_rq_clock(busiest); 11695 11696 /* 11697 * cur_ld_moved - load moved in current iteration 11698 * ld_moved - cumulative load moved across iterations 11699 */ 11700 cur_ld_moved = detach_tasks(&env); 11701 11702 /* 11703 * We've detached some tasks from busiest_rq. Every 11704 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11705 * unlock busiest->lock, and we are able to be sure 11706 * that nobody can manipulate the tasks in parallel. 11707 * See task_rq_lock() family for the details. 11708 */ 11709 11710 rq_unlock(busiest, &rf); 11711 11712 if (cur_ld_moved) { 11713 attach_tasks(&env); 11714 ld_moved += cur_ld_moved; 11715 } 11716 11717 local_irq_restore(rf.flags); 11718 11719 if (env.flags & LBF_NEED_BREAK) { 11720 env.flags &= ~LBF_NEED_BREAK; 11721 goto more_balance; 11722 } 11723 11724 /* 11725 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11726 * us and move them to an alternate dst_cpu in our sched_group 11727 * where they can run. The upper limit on how many times we 11728 * iterate on same src_cpu is dependent on number of CPUs in our 11729 * sched_group. 11730 * 11731 * This changes load balance semantics a bit on who can move 11732 * load to a given_cpu. In addition to the given_cpu itself 11733 * (or a ilb_cpu acting on its behalf where given_cpu is 11734 * nohz-idle), we now have balance_cpu in a position to move 11735 * load to given_cpu. In rare situations, this may cause 11736 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11737 * _independently_ and at _same_ time to move some load to 11738 * given_cpu) causing excess load to be moved to given_cpu. 11739 * This however should not happen so much in practice and 11740 * moreover subsequent load balance cycles should correct the 11741 * excess load moved. 11742 */ 11743 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11744 11745 /* Prevent to re-select dst_cpu via env's CPUs */ 11746 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11747 11748 env.dst_rq = cpu_rq(env.new_dst_cpu); 11749 env.dst_cpu = env.new_dst_cpu; 11750 env.flags &= ~LBF_DST_PINNED; 11751 env.loop = 0; 11752 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11753 11754 /* 11755 * Go back to "more_balance" rather than "redo" since we 11756 * need to continue with same src_cpu. 11757 */ 11758 goto more_balance; 11759 } 11760 11761 /* 11762 * We failed to reach balance because of affinity. 11763 */ 11764 if (sd_parent) { 11765 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11766 11767 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11768 *group_imbalance = 1; 11769 } 11770 11771 /* All tasks on this runqueue were pinned by CPU affinity */ 11772 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11773 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11774 /* 11775 * Attempting to continue load balancing at the current 11776 * sched_domain level only makes sense if there are 11777 * active CPUs remaining as possible busiest CPUs to 11778 * pull load from which are not contained within the 11779 * destination group that is receiving any migrated 11780 * load. 11781 */ 11782 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11783 env.loop = 0; 11784 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11785 goto redo; 11786 } 11787 goto out_all_pinned; 11788 } 11789 } 11790 11791 if (!ld_moved) { 11792 schedstat_inc(sd->lb_failed[idle]); 11793 /* 11794 * Increment the failure counter only on periodic balance. 11795 * We do not want newidle balance, which can be very 11796 * frequent, pollute the failure counter causing 11797 * excessive cache_hot migrations and active balances. 11798 * 11799 * Similarly for migration_misfit which is not related to 11800 * load/util migration, don't pollute nr_balance_failed. 11801 */ 11802 if (idle != CPU_NEWLY_IDLE && 11803 env.migration_type != migrate_misfit) 11804 sd->nr_balance_failed++; 11805 11806 if (need_active_balance(&env)) { 11807 unsigned long flags; 11808 11809 raw_spin_rq_lock_irqsave(busiest, flags); 11810 11811 /* 11812 * Don't kick the active_load_balance_cpu_stop, 11813 * if the curr task on busiest CPU can't be 11814 * moved to this_cpu: 11815 */ 11816 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11817 raw_spin_rq_unlock_irqrestore(busiest, flags); 11818 goto out_one_pinned; 11819 } 11820 11821 /* Record that we found at least one task that could run on this_cpu */ 11822 env.flags &= ~LBF_ALL_PINNED; 11823 11824 /* 11825 * ->active_balance synchronizes accesses to 11826 * ->active_balance_work. Once set, it's cleared 11827 * only after active load balance is finished. 11828 */ 11829 if (!busiest->active_balance) { 11830 busiest->active_balance = 1; 11831 busiest->push_cpu = this_cpu; 11832 active_balance = 1; 11833 } 11834 11835 preempt_disable(); 11836 raw_spin_rq_unlock_irqrestore(busiest, flags); 11837 if (active_balance) { 11838 stop_one_cpu_nowait(cpu_of(busiest), 11839 active_load_balance_cpu_stop, busiest, 11840 &busiest->active_balance_work); 11841 } 11842 preempt_enable(); 11843 } 11844 } else { 11845 sd->nr_balance_failed = 0; 11846 } 11847 11848 if (likely(!active_balance) || need_active_balance(&env)) { 11849 /* We were unbalanced, so reset the balancing interval */ 11850 sd->balance_interval = sd->min_interval; 11851 } 11852 11853 goto out; 11854 11855 out_balanced: 11856 /* 11857 * We reach balance although we may have faced some affinity 11858 * constraints. Clear the imbalance flag only if other tasks got 11859 * a chance to move and fix the imbalance. 11860 */ 11861 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11862 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11863 11864 if (*group_imbalance) 11865 *group_imbalance = 0; 11866 } 11867 11868 out_all_pinned: 11869 /* 11870 * We reach balance because all tasks are pinned at this level so 11871 * we can't migrate them. Let the imbalance flag set so parent level 11872 * can try to migrate them. 11873 */ 11874 schedstat_inc(sd->lb_balanced[idle]); 11875 11876 sd->nr_balance_failed = 0; 11877 11878 out_one_pinned: 11879 ld_moved = 0; 11880 11881 /* 11882 * sched_balance_newidle() disregards balance intervals, so we could 11883 * repeatedly reach this code, which would lead to balance_interval 11884 * skyrocketing in a short amount of time. Skip the balance_interval 11885 * increase logic to avoid that. 11886 * 11887 * Similarly misfit migration which is not necessarily an indication of 11888 * the system being busy and requires lb to backoff to let it settle 11889 * down. 11890 */ 11891 if (env.idle == CPU_NEWLY_IDLE || 11892 env.migration_type == migrate_misfit) 11893 goto out; 11894 11895 /* tune up the balancing interval */ 11896 if ((env.flags & LBF_ALL_PINNED && 11897 sd->balance_interval < MAX_PINNED_INTERVAL) || 11898 sd->balance_interval < sd->max_interval) 11899 sd->balance_interval *= 2; 11900 out: 11901 return ld_moved; 11902 } 11903 11904 static inline unsigned long 11905 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11906 { 11907 unsigned long interval = sd->balance_interval; 11908 11909 if (cpu_busy) 11910 interval *= sd->busy_factor; 11911 11912 /* scale ms to jiffies */ 11913 interval = msecs_to_jiffies(interval); 11914 11915 /* 11916 * Reduce likelihood of busy balancing at higher domains racing with 11917 * balancing at lower domains by preventing their balancing periods 11918 * from being multiples of each other. 11919 */ 11920 if (cpu_busy) 11921 interval -= 1; 11922 11923 interval = clamp(interval, 1UL, max_load_balance_interval); 11924 11925 return interval; 11926 } 11927 11928 static inline void 11929 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11930 { 11931 unsigned long interval, next; 11932 11933 /* used by idle balance, so cpu_busy = 0 */ 11934 interval = get_sd_balance_interval(sd, 0); 11935 next = sd->last_balance + interval; 11936 11937 if (time_after(*next_balance, next)) 11938 *next_balance = next; 11939 } 11940 11941 /* 11942 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11943 * running tasks off the busiest CPU onto idle CPUs. It requires at 11944 * least 1 task to be running on each physical CPU where possible, and 11945 * avoids physical / logical imbalances. 11946 */ 11947 static int active_load_balance_cpu_stop(void *data) 11948 { 11949 struct rq *busiest_rq = data; 11950 int busiest_cpu = cpu_of(busiest_rq); 11951 int target_cpu = busiest_rq->push_cpu; 11952 struct rq *target_rq = cpu_rq(target_cpu); 11953 struct sched_domain *sd; 11954 struct task_struct *p = NULL; 11955 struct rq_flags rf; 11956 11957 rq_lock_irq(busiest_rq, &rf); 11958 /* 11959 * Between queueing the stop-work and running it is a hole in which 11960 * CPUs can become inactive. We should not move tasks from or to 11961 * inactive CPUs. 11962 */ 11963 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11964 goto out_unlock; 11965 11966 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11967 if (unlikely(busiest_cpu != smp_processor_id() || 11968 !busiest_rq->active_balance)) 11969 goto out_unlock; 11970 11971 /* Is there any task to move? */ 11972 if (busiest_rq->nr_running <= 1) 11973 goto out_unlock; 11974 11975 /* 11976 * This condition is "impossible", if it occurs 11977 * we need to fix it. Originally reported by 11978 * Bjorn Helgaas on a 128-CPU setup. 11979 */ 11980 WARN_ON_ONCE(busiest_rq == target_rq); 11981 11982 /* Search for an sd spanning us and the target CPU. */ 11983 rcu_read_lock(); 11984 for_each_domain(target_cpu, sd) { 11985 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11986 break; 11987 } 11988 11989 if (likely(sd)) { 11990 struct lb_env env = { 11991 .sd = sd, 11992 .dst_cpu = target_cpu, 11993 .dst_rq = target_rq, 11994 .src_cpu = busiest_rq->cpu, 11995 .src_rq = busiest_rq, 11996 .idle = CPU_IDLE, 11997 .flags = LBF_ACTIVE_LB, 11998 }; 11999 12000 schedstat_inc(sd->alb_count); 12001 update_rq_clock(busiest_rq); 12002 12003 p = detach_one_task(&env); 12004 if (p) { 12005 schedstat_inc(sd->alb_pushed); 12006 /* Active balancing done, reset the failure counter. */ 12007 sd->nr_balance_failed = 0; 12008 } else { 12009 schedstat_inc(sd->alb_failed); 12010 } 12011 } 12012 rcu_read_unlock(); 12013 out_unlock: 12014 busiest_rq->active_balance = 0; 12015 rq_unlock(busiest_rq, &rf); 12016 12017 if (p) 12018 attach_one_task(target_rq, p); 12019 12020 local_irq_enable(); 12021 12022 return 0; 12023 } 12024 12025 /* 12026 * This flag serializes load-balancing passes over large domains 12027 * (above the NODE topology level) - only one load-balancing instance 12028 * may run at a time, to reduce overhead on very large systems with 12029 * lots of CPUs and large NUMA distances. 12030 * 12031 * - Note that load-balancing passes triggered while another one 12032 * is executing are skipped and not re-tried. 12033 * 12034 * - Also note that this does not serialize rebalance_domains() 12035 * execution, as non-SD_SERIALIZE domains will still be 12036 * load-balanced in parallel. 12037 */ 12038 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12039 12040 /* 12041 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12042 * This trades load-balance latency on larger machines for less cross talk. 12043 */ 12044 void update_max_interval(void) 12045 { 12046 max_load_balance_interval = HZ*num_online_cpus()/10; 12047 } 12048 12049 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12050 { 12051 if (cost > sd->max_newidle_lb_cost) { 12052 /* 12053 * Track max cost of a domain to make sure to not delay the 12054 * next wakeup on the CPU. 12055 * 12056 * sched_balance_newidle() bumps the cost whenever newidle 12057 * balance fails, and we don't want things to grow out of 12058 * control. Use the sysctl_sched_migration_cost as the upper 12059 * limit, plus a litle extra to avoid off by ones. 12060 */ 12061 sd->max_newidle_lb_cost = 12062 min(cost, sysctl_sched_migration_cost + 200); 12063 sd->last_decay_max_lb_cost = jiffies; 12064 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12065 /* 12066 * Decay the newidle max times by ~1% per second to ensure that 12067 * it is not outdated and the current max cost is actually 12068 * shorter. 12069 */ 12070 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12071 sd->last_decay_max_lb_cost = jiffies; 12072 12073 return true; 12074 } 12075 12076 return false; 12077 } 12078 12079 /* 12080 * It checks each scheduling domain to see if it is due to be balanced, 12081 * and initiates a balancing operation if so. 12082 * 12083 * Balancing parameters are set up in init_sched_domains. 12084 */ 12085 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12086 { 12087 int continue_balancing = 1; 12088 int cpu = rq->cpu; 12089 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12090 unsigned long interval; 12091 struct sched_domain *sd; 12092 /* Earliest time when we have to do rebalance again */ 12093 unsigned long next_balance = jiffies + 60*HZ; 12094 int update_next_balance = 0; 12095 int need_serialize, need_decay = 0; 12096 u64 max_cost = 0; 12097 12098 rcu_read_lock(); 12099 for_each_domain(cpu, sd) { 12100 /* 12101 * Decay the newidle max times here because this is a regular 12102 * visit to all the domains. 12103 */ 12104 need_decay = update_newidle_cost(sd, 0); 12105 max_cost += sd->max_newidle_lb_cost; 12106 12107 /* 12108 * Stop the load balance at this level. There is another 12109 * CPU in our sched group which is doing load balancing more 12110 * actively. 12111 */ 12112 if (!continue_balancing) { 12113 if (need_decay) 12114 continue; 12115 break; 12116 } 12117 12118 interval = get_sd_balance_interval(sd, busy); 12119 12120 need_serialize = sd->flags & SD_SERIALIZE; 12121 if (need_serialize) { 12122 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12123 goto out; 12124 } 12125 12126 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12127 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12128 /* 12129 * The LBF_DST_PINNED logic could have changed 12130 * env->dst_cpu, so we can't know our idle 12131 * state even if we migrated tasks. Update it. 12132 */ 12133 idle = idle_cpu(cpu); 12134 busy = !idle && !sched_idle_cpu(cpu); 12135 } 12136 sd->last_balance = jiffies; 12137 interval = get_sd_balance_interval(sd, busy); 12138 } 12139 if (need_serialize) 12140 atomic_set_release(&sched_balance_running, 0); 12141 out: 12142 if (time_after(next_balance, sd->last_balance + interval)) { 12143 next_balance = sd->last_balance + interval; 12144 update_next_balance = 1; 12145 } 12146 } 12147 if (need_decay) { 12148 /* 12149 * Ensure the rq-wide value also decays but keep it at a 12150 * reasonable floor to avoid funnies with rq->avg_idle. 12151 */ 12152 rq->max_idle_balance_cost = 12153 max((u64)sysctl_sched_migration_cost, max_cost); 12154 } 12155 rcu_read_unlock(); 12156 12157 /* 12158 * next_balance will be updated only when there is a need. 12159 * When the cpu is attached to null domain for ex, it will not be 12160 * updated. 12161 */ 12162 if (likely(update_next_balance)) 12163 rq->next_balance = next_balance; 12164 12165 } 12166 12167 static inline int on_null_domain(struct rq *rq) 12168 { 12169 return unlikely(!rcu_dereference_sched(rq->sd)); 12170 } 12171 12172 #ifdef CONFIG_NO_HZ_COMMON 12173 /* 12174 * NOHZ idle load balancing (ILB) details: 12175 * 12176 * - When one of the busy CPUs notices that there may be an idle rebalancing 12177 * needed, they will kick the idle load balancer, which then does idle 12178 * load balancing for all the idle CPUs. 12179 */ 12180 static inline int find_new_ilb(void) 12181 { 12182 const struct cpumask *hk_mask; 12183 int ilb_cpu; 12184 12185 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12186 12187 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12188 12189 if (ilb_cpu == smp_processor_id()) 12190 continue; 12191 12192 if (idle_cpu(ilb_cpu)) 12193 return ilb_cpu; 12194 } 12195 12196 return -1; 12197 } 12198 12199 /* 12200 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12201 * SMP function call (IPI). 12202 * 12203 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12204 * (if there is one). 12205 */ 12206 static void kick_ilb(unsigned int flags) 12207 { 12208 int ilb_cpu; 12209 12210 /* 12211 * Increase nohz.next_balance only when if full ilb is triggered but 12212 * not if we only update stats. 12213 */ 12214 if (flags & NOHZ_BALANCE_KICK) 12215 nohz.next_balance = jiffies+1; 12216 12217 ilb_cpu = find_new_ilb(); 12218 if (ilb_cpu < 0) 12219 return; 12220 12221 /* 12222 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12223 * i.e. all bits in flags are already set in ilb_cpu. 12224 */ 12225 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12226 return; 12227 12228 /* 12229 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12230 * the first flag owns it; cleared by nohz_csd_func(). 12231 */ 12232 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12233 if (flags & NOHZ_KICK_MASK) 12234 return; 12235 12236 /* 12237 * This way we generate an IPI on the target CPU which 12238 * is idle, and the softirq performing NOHZ idle load balancing 12239 * will be run before returning from the IPI. 12240 */ 12241 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12242 } 12243 12244 /* 12245 * Current decision point for kicking the idle load balancer in the presence 12246 * of idle CPUs in the system. 12247 */ 12248 static void nohz_balancer_kick(struct rq *rq) 12249 { 12250 unsigned long now = jiffies; 12251 struct sched_domain_shared *sds; 12252 struct sched_domain *sd; 12253 int nr_busy, i, cpu = rq->cpu; 12254 unsigned int flags = 0; 12255 12256 if (unlikely(rq->idle_balance)) 12257 return; 12258 12259 /* 12260 * We may be recently in ticked or tickless idle mode. At the first 12261 * busy tick after returning from idle, we will update the busy stats. 12262 */ 12263 nohz_balance_exit_idle(rq); 12264 12265 /* 12266 * None are in tickless mode and hence no need for NOHZ idle load 12267 * balancing: 12268 */ 12269 if (likely(!atomic_read(&nohz.nr_cpus))) 12270 return; 12271 12272 if (READ_ONCE(nohz.has_blocked) && 12273 time_after(now, READ_ONCE(nohz.next_blocked))) 12274 flags = NOHZ_STATS_KICK; 12275 12276 if (time_before(now, nohz.next_balance)) 12277 goto out; 12278 12279 if (rq->nr_running >= 2) { 12280 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12281 goto out; 12282 } 12283 12284 rcu_read_lock(); 12285 12286 sd = rcu_dereference(rq->sd); 12287 if (sd) { 12288 /* 12289 * If there's a runnable CFS task and the current CPU has reduced 12290 * capacity, kick the ILB to see if there's a better CPU to run on: 12291 */ 12292 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12293 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12294 goto unlock; 12295 } 12296 } 12297 12298 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12299 if (sd) { 12300 /* 12301 * When ASYM_PACKING; see if there's a more preferred CPU 12302 * currently idle; in which case, kick the ILB to move tasks 12303 * around. 12304 * 12305 * When balancing between cores, all the SMT siblings of the 12306 * preferred CPU must be idle. 12307 */ 12308 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12309 if (sched_asym(sd, i, cpu)) { 12310 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12311 goto unlock; 12312 } 12313 } 12314 } 12315 12316 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12317 if (sd) { 12318 /* 12319 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12320 * to run the misfit task on. 12321 */ 12322 if (check_misfit_status(rq)) { 12323 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12324 goto unlock; 12325 } 12326 12327 /* 12328 * For asymmetric systems, we do not want to nicely balance 12329 * cache use, instead we want to embrace asymmetry and only 12330 * ensure tasks have enough CPU capacity. 12331 * 12332 * Skip the LLC logic because it's not relevant in that case. 12333 */ 12334 goto unlock; 12335 } 12336 12337 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12338 if (sds) { 12339 /* 12340 * If there is an imbalance between LLC domains (IOW we could 12341 * increase the overall cache utilization), we need a less-loaded LLC 12342 * domain to pull some load from. Likewise, we may need to spread 12343 * load within the current LLC domain (e.g. packed SMT cores but 12344 * other CPUs are idle). We can't really know from here how busy 12345 * the others are - so just get a NOHZ balance going if it looks 12346 * like this LLC domain has tasks we could move. 12347 */ 12348 nr_busy = atomic_read(&sds->nr_busy_cpus); 12349 if (nr_busy > 1) { 12350 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12351 goto unlock; 12352 } 12353 } 12354 unlock: 12355 rcu_read_unlock(); 12356 out: 12357 if (READ_ONCE(nohz.needs_update)) 12358 flags |= NOHZ_NEXT_KICK; 12359 12360 if (flags) 12361 kick_ilb(flags); 12362 } 12363 12364 static void set_cpu_sd_state_busy(int cpu) 12365 { 12366 struct sched_domain *sd; 12367 12368 rcu_read_lock(); 12369 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12370 12371 if (!sd || !sd->nohz_idle) 12372 goto unlock; 12373 sd->nohz_idle = 0; 12374 12375 atomic_inc(&sd->shared->nr_busy_cpus); 12376 unlock: 12377 rcu_read_unlock(); 12378 } 12379 12380 void nohz_balance_exit_idle(struct rq *rq) 12381 { 12382 WARN_ON_ONCE(rq != this_rq()); 12383 12384 if (likely(!rq->nohz_tick_stopped)) 12385 return; 12386 12387 rq->nohz_tick_stopped = 0; 12388 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12389 atomic_dec(&nohz.nr_cpus); 12390 12391 set_cpu_sd_state_busy(rq->cpu); 12392 } 12393 12394 static void set_cpu_sd_state_idle(int cpu) 12395 { 12396 struct sched_domain *sd; 12397 12398 rcu_read_lock(); 12399 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12400 12401 if (!sd || sd->nohz_idle) 12402 goto unlock; 12403 sd->nohz_idle = 1; 12404 12405 atomic_dec(&sd->shared->nr_busy_cpus); 12406 unlock: 12407 rcu_read_unlock(); 12408 } 12409 12410 /* 12411 * This routine will record that the CPU is going idle with tick stopped. 12412 * This info will be used in performing idle load balancing in the future. 12413 */ 12414 void nohz_balance_enter_idle(int cpu) 12415 { 12416 struct rq *rq = cpu_rq(cpu); 12417 12418 WARN_ON_ONCE(cpu != smp_processor_id()); 12419 12420 /* If this CPU is going down, then nothing needs to be done: */ 12421 if (!cpu_active(cpu)) 12422 return; 12423 12424 /* 12425 * Can be set safely without rq->lock held 12426 * If a clear happens, it will have evaluated last additions because 12427 * rq->lock is held during the check and the clear 12428 */ 12429 rq->has_blocked_load = 1; 12430 12431 /* 12432 * The tick is still stopped but load could have been added in the 12433 * meantime. We set the nohz.has_blocked flag to trig a check of the 12434 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12435 * of nohz.has_blocked can only happen after checking the new load 12436 */ 12437 if (rq->nohz_tick_stopped) 12438 goto out; 12439 12440 /* If we're a completely isolated CPU, we don't play: */ 12441 if (on_null_domain(rq)) 12442 return; 12443 12444 rq->nohz_tick_stopped = 1; 12445 12446 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12447 atomic_inc(&nohz.nr_cpus); 12448 12449 /* 12450 * Ensures that if nohz_idle_balance() fails to observe our 12451 * @idle_cpus_mask store, it must observe the @has_blocked 12452 * and @needs_update stores. 12453 */ 12454 smp_mb__after_atomic(); 12455 12456 set_cpu_sd_state_idle(cpu); 12457 12458 WRITE_ONCE(nohz.needs_update, 1); 12459 out: 12460 /* 12461 * Each time a cpu enter idle, we assume that it has blocked load and 12462 * enable the periodic update of the load of idle CPUs 12463 */ 12464 WRITE_ONCE(nohz.has_blocked, 1); 12465 } 12466 12467 static bool update_nohz_stats(struct rq *rq) 12468 { 12469 unsigned int cpu = rq->cpu; 12470 12471 if (!rq->has_blocked_load) 12472 return false; 12473 12474 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12475 return false; 12476 12477 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12478 return true; 12479 12480 sched_balance_update_blocked_averages(cpu); 12481 12482 return rq->has_blocked_load; 12483 } 12484 12485 /* 12486 * Internal function that runs load balance for all idle CPUs. The load balance 12487 * can be a simple update of blocked load or a complete load balance with 12488 * tasks movement depending of flags. 12489 */ 12490 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12491 { 12492 /* Earliest time when we have to do rebalance again */ 12493 unsigned long now = jiffies; 12494 unsigned long next_balance = now + 60*HZ; 12495 bool has_blocked_load = false; 12496 int update_next_balance = 0; 12497 int this_cpu = this_rq->cpu; 12498 int balance_cpu; 12499 struct rq *rq; 12500 12501 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12502 12503 /* 12504 * We assume there will be no idle load after this update and clear 12505 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12506 * set the has_blocked flag and trigger another update of idle load. 12507 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12508 * setting the flag, we are sure to not clear the state and not 12509 * check the load of an idle cpu. 12510 * 12511 * Same applies to idle_cpus_mask vs needs_update. 12512 */ 12513 if (flags & NOHZ_STATS_KICK) 12514 WRITE_ONCE(nohz.has_blocked, 0); 12515 if (flags & NOHZ_NEXT_KICK) 12516 WRITE_ONCE(nohz.needs_update, 0); 12517 12518 /* 12519 * Ensures that if we miss the CPU, we must see the has_blocked 12520 * store from nohz_balance_enter_idle(). 12521 */ 12522 smp_mb(); 12523 12524 /* 12525 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12526 * chance for other idle cpu to pull load. 12527 */ 12528 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12529 if (!idle_cpu(balance_cpu)) 12530 continue; 12531 12532 /* 12533 * If this CPU gets work to do, stop the load balancing 12534 * work being done for other CPUs. Next load 12535 * balancing owner will pick it up. 12536 */ 12537 if (!idle_cpu(this_cpu) && need_resched()) { 12538 if (flags & NOHZ_STATS_KICK) 12539 has_blocked_load = true; 12540 if (flags & NOHZ_NEXT_KICK) 12541 WRITE_ONCE(nohz.needs_update, 1); 12542 goto abort; 12543 } 12544 12545 rq = cpu_rq(balance_cpu); 12546 12547 if (flags & NOHZ_STATS_KICK) 12548 has_blocked_load |= update_nohz_stats(rq); 12549 12550 /* 12551 * If time for next balance is due, 12552 * do the balance. 12553 */ 12554 if (time_after_eq(jiffies, rq->next_balance)) { 12555 struct rq_flags rf; 12556 12557 rq_lock_irqsave(rq, &rf); 12558 update_rq_clock(rq); 12559 rq_unlock_irqrestore(rq, &rf); 12560 12561 if (flags & NOHZ_BALANCE_KICK) 12562 sched_balance_domains(rq, CPU_IDLE); 12563 } 12564 12565 if (time_after(next_balance, rq->next_balance)) { 12566 next_balance = rq->next_balance; 12567 update_next_balance = 1; 12568 } 12569 } 12570 12571 /* 12572 * next_balance will be updated only when there is a need. 12573 * When the CPU is attached to null domain for ex, it will not be 12574 * updated. 12575 */ 12576 if (likely(update_next_balance)) 12577 nohz.next_balance = next_balance; 12578 12579 if (flags & NOHZ_STATS_KICK) 12580 WRITE_ONCE(nohz.next_blocked, 12581 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12582 12583 abort: 12584 /* There is still blocked load, enable periodic update */ 12585 if (has_blocked_load) 12586 WRITE_ONCE(nohz.has_blocked, 1); 12587 } 12588 12589 /* 12590 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12591 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12592 */ 12593 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12594 { 12595 unsigned int flags = this_rq->nohz_idle_balance; 12596 12597 if (!flags) 12598 return false; 12599 12600 this_rq->nohz_idle_balance = 0; 12601 12602 if (idle != CPU_IDLE) 12603 return false; 12604 12605 _nohz_idle_balance(this_rq, flags); 12606 12607 return true; 12608 } 12609 12610 /* 12611 * Check if we need to directly run the ILB for updating blocked load before 12612 * entering idle state. Here we run ILB directly without issuing IPIs. 12613 * 12614 * Note that when this function is called, the tick may not yet be stopped on 12615 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12616 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12617 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12618 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12619 * called from this function on (this) CPU that's not yet in the mask. That's 12620 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12621 * updating the blocked load of already idle CPUs without waking up one of 12622 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12623 * cpu about to enter idle, because it can take a long time. 12624 */ 12625 void nohz_run_idle_balance(int cpu) 12626 { 12627 unsigned int flags; 12628 12629 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12630 12631 /* 12632 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12633 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12634 */ 12635 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12636 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12637 } 12638 12639 static void nohz_newidle_balance(struct rq *this_rq) 12640 { 12641 int this_cpu = this_rq->cpu; 12642 12643 /* Will wake up very soon. No time for doing anything else*/ 12644 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12645 return; 12646 12647 /* Don't need to update blocked load of idle CPUs*/ 12648 if (!READ_ONCE(nohz.has_blocked) || 12649 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12650 return; 12651 12652 /* 12653 * Set the need to trigger ILB in order to update blocked load 12654 * before entering idle state. 12655 */ 12656 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12657 } 12658 12659 #else /* !CONFIG_NO_HZ_COMMON: */ 12660 static inline void nohz_balancer_kick(struct rq *rq) { } 12661 12662 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12663 { 12664 return false; 12665 } 12666 12667 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12668 #endif /* !CONFIG_NO_HZ_COMMON */ 12669 12670 /* 12671 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12672 * idle. Attempts to pull tasks from other CPUs. 12673 * 12674 * Returns: 12675 * < 0 - we released the lock and there are !fair tasks present 12676 * 0 - failed, no new tasks 12677 * > 0 - success, new (fair) tasks present 12678 */ 12679 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12680 { 12681 unsigned long next_balance = jiffies + HZ; 12682 int this_cpu = this_rq->cpu; 12683 int continue_balancing = 1; 12684 u64 t0, t1, curr_cost = 0; 12685 struct sched_domain *sd; 12686 int pulled_task = 0; 12687 12688 update_misfit_status(NULL, this_rq); 12689 12690 /* 12691 * There is a task waiting to run. No need to search for one. 12692 * Return 0; the task will be enqueued when switching to idle. 12693 */ 12694 if (this_rq->ttwu_pending) 12695 return 0; 12696 12697 /* 12698 * We must set idle_stamp _before_ calling sched_balance_rq() 12699 * for CPU_NEWLY_IDLE, such that we measure the this duration 12700 * as idle time. 12701 */ 12702 this_rq->idle_stamp = rq_clock(this_rq); 12703 12704 /* 12705 * Do not pull tasks towards !active CPUs... 12706 */ 12707 if (!cpu_active(this_cpu)) 12708 return 0; 12709 12710 /* 12711 * This is OK, because current is on_cpu, which avoids it being picked 12712 * for load-balance and preemption/IRQs are still disabled avoiding 12713 * further scheduler activity on it and we're being very careful to 12714 * re-start the picking loop. 12715 */ 12716 rq_unpin_lock(this_rq, rf); 12717 12718 rcu_read_lock(); 12719 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12720 12721 if (!get_rd_overloaded(this_rq->rd) || 12722 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12723 12724 if (sd) 12725 update_next_balance(sd, &next_balance); 12726 rcu_read_unlock(); 12727 12728 goto out; 12729 } 12730 rcu_read_unlock(); 12731 12732 raw_spin_rq_unlock(this_rq); 12733 12734 t0 = sched_clock_cpu(this_cpu); 12735 sched_balance_update_blocked_averages(this_cpu); 12736 12737 rcu_read_lock(); 12738 for_each_domain(this_cpu, sd) { 12739 u64 domain_cost; 12740 12741 update_next_balance(sd, &next_balance); 12742 12743 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12744 break; 12745 12746 if (sd->flags & SD_BALANCE_NEWIDLE) { 12747 12748 pulled_task = sched_balance_rq(this_cpu, this_rq, 12749 sd, CPU_NEWLY_IDLE, 12750 &continue_balancing); 12751 12752 t1 = sched_clock_cpu(this_cpu); 12753 domain_cost = t1 - t0; 12754 curr_cost += domain_cost; 12755 t0 = t1; 12756 12757 /* 12758 * Failing newidle means it is not effective; 12759 * bump the cost so we end up doing less of it. 12760 */ 12761 if (!pulled_task) 12762 domain_cost = (3 * sd->max_newidle_lb_cost) / 2; 12763 12764 update_newidle_cost(sd, domain_cost); 12765 } 12766 12767 /* 12768 * Stop searching for tasks to pull if there are 12769 * now runnable tasks on this rq. 12770 */ 12771 if (pulled_task || !continue_balancing) 12772 break; 12773 } 12774 rcu_read_unlock(); 12775 12776 raw_spin_rq_lock(this_rq); 12777 12778 if (curr_cost > this_rq->max_idle_balance_cost) 12779 this_rq->max_idle_balance_cost = curr_cost; 12780 12781 /* 12782 * While browsing the domains, we released the rq lock, a task could 12783 * have been enqueued in the meantime. Since we're not going idle, 12784 * pretend we pulled a task. 12785 */ 12786 if (this_rq->cfs.h_nr_queued && !pulled_task) 12787 pulled_task = 1; 12788 12789 /* Is there a task of a high priority class? */ 12790 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12791 pulled_task = -1; 12792 12793 out: 12794 /* Move the next balance forward */ 12795 if (time_after(this_rq->next_balance, next_balance)) 12796 this_rq->next_balance = next_balance; 12797 12798 if (pulled_task) 12799 this_rq->idle_stamp = 0; 12800 else 12801 nohz_newidle_balance(this_rq); 12802 12803 rq_repin_lock(this_rq, rf); 12804 12805 return pulled_task; 12806 } 12807 12808 /* 12809 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12810 * 12811 * - directly from the local sched_tick() for periodic load balancing 12812 * 12813 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12814 * through the SMP cross-call nohz_csd_func() 12815 */ 12816 static __latent_entropy void sched_balance_softirq(void) 12817 { 12818 struct rq *this_rq = this_rq(); 12819 enum cpu_idle_type idle = this_rq->idle_balance; 12820 /* 12821 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12822 * balancing on behalf of the other idle CPUs whose ticks are 12823 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12824 * give the idle CPUs a chance to load balance. Else we may 12825 * load balance only within the local sched_domain hierarchy 12826 * and abort nohz_idle_balance altogether if we pull some load. 12827 */ 12828 if (nohz_idle_balance(this_rq, idle)) 12829 return; 12830 12831 /* normal load balance */ 12832 sched_balance_update_blocked_averages(this_rq->cpu); 12833 sched_balance_domains(this_rq, idle); 12834 } 12835 12836 /* 12837 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12838 */ 12839 void sched_balance_trigger(struct rq *rq) 12840 { 12841 /* 12842 * Don't need to rebalance while attached to NULL domain or 12843 * runqueue CPU is not active 12844 */ 12845 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12846 return; 12847 12848 if (time_after_eq(jiffies, rq->next_balance)) 12849 raise_softirq(SCHED_SOFTIRQ); 12850 12851 nohz_balancer_kick(rq); 12852 } 12853 12854 static void rq_online_fair(struct rq *rq) 12855 { 12856 update_sysctl(); 12857 12858 update_runtime_enabled(rq); 12859 } 12860 12861 static void rq_offline_fair(struct rq *rq) 12862 { 12863 update_sysctl(); 12864 12865 /* Ensure any throttled groups are reachable by pick_next_task */ 12866 unthrottle_offline_cfs_rqs(rq); 12867 12868 /* Ensure that we remove rq contribution to group share: */ 12869 clear_tg_offline_cfs_rqs(rq); 12870 } 12871 12872 #ifdef CONFIG_SCHED_CORE 12873 static inline bool 12874 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12875 { 12876 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12877 u64 slice = se->slice; 12878 12879 return (rtime * min_nr_tasks > slice); 12880 } 12881 12882 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12883 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12884 { 12885 if (!sched_core_enabled(rq)) 12886 return; 12887 12888 /* 12889 * If runqueue has only one task which used up its slice and 12890 * if the sibling is forced idle, then trigger schedule to 12891 * give forced idle task a chance. 12892 * 12893 * sched_slice() considers only this active rq and it gets the 12894 * whole slice. But during force idle, we have siblings acting 12895 * like a single runqueue and hence we need to consider runnable 12896 * tasks on this CPU and the forced idle CPU. Ideally, we should 12897 * go through the forced idle rq, but that would be a perf hit. 12898 * We can assume that the forced idle CPU has at least 12899 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12900 * if we need to give up the CPU. 12901 */ 12902 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 12903 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12904 resched_curr(rq); 12905 } 12906 12907 /* 12908 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12909 */ 12910 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12911 bool forceidle) 12912 { 12913 for_each_sched_entity(se) { 12914 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12915 12916 if (forceidle) { 12917 if (cfs_rq->forceidle_seq == fi_seq) 12918 break; 12919 cfs_rq->forceidle_seq = fi_seq; 12920 } 12921 12922 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12923 } 12924 } 12925 12926 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12927 { 12928 struct sched_entity *se = &p->se; 12929 12930 if (p->sched_class != &fair_sched_class) 12931 return; 12932 12933 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12934 } 12935 12936 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12937 bool in_fi) 12938 { 12939 struct rq *rq = task_rq(a); 12940 const struct sched_entity *sea = &a->se; 12941 const struct sched_entity *seb = &b->se; 12942 struct cfs_rq *cfs_rqa; 12943 struct cfs_rq *cfs_rqb; 12944 s64 delta; 12945 12946 WARN_ON_ONCE(task_rq(b)->core != rq->core); 12947 12948 #ifdef CONFIG_FAIR_GROUP_SCHED 12949 /* 12950 * Find an se in the hierarchy for tasks a and b, such that the se's 12951 * are immediate siblings. 12952 */ 12953 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12954 int sea_depth = sea->depth; 12955 int seb_depth = seb->depth; 12956 12957 if (sea_depth >= seb_depth) 12958 sea = parent_entity(sea); 12959 if (sea_depth <= seb_depth) 12960 seb = parent_entity(seb); 12961 } 12962 12963 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12964 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12965 12966 cfs_rqa = sea->cfs_rq; 12967 cfs_rqb = seb->cfs_rq; 12968 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 12969 cfs_rqa = &task_rq(a)->cfs; 12970 cfs_rqb = &task_rq(b)->cfs; 12971 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 12972 12973 /* 12974 * Find delta after normalizing se's vruntime with its cfs_rq's 12975 * min_vruntime_fi, which would have been updated in prior calls 12976 * to se_fi_update(). 12977 */ 12978 delta = (s64)(sea->vruntime - seb->vruntime) + 12979 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12980 12981 return delta > 0; 12982 } 12983 12984 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12985 { 12986 struct cfs_rq *cfs_rq; 12987 12988 #ifdef CONFIG_FAIR_GROUP_SCHED 12989 cfs_rq = task_group(p)->cfs_rq[cpu]; 12990 #else 12991 cfs_rq = &cpu_rq(cpu)->cfs; 12992 #endif 12993 return throttled_hierarchy(cfs_rq); 12994 } 12995 #else /* !CONFIG_SCHED_CORE: */ 12996 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12997 #endif /* !CONFIG_SCHED_CORE */ 12998 12999 /* 13000 * scheduler tick hitting a task of our scheduling class. 13001 * 13002 * NOTE: This function can be called remotely by the tick offload that 13003 * goes along full dynticks. Therefore no local assumption can be made 13004 * and everything must be accessed through the @rq and @curr passed in 13005 * parameters. 13006 */ 13007 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13008 { 13009 struct cfs_rq *cfs_rq; 13010 struct sched_entity *se = &curr->se; 13011 13012 for_each_sched_entity(se) { 13013 cfs_rq = cfs_rq_of(se); 13014 entity_tick(cfs_rq, se, queued); 13015 } 13016 13017 if (static_branch_unlikely(&sched_numa_balancing)) 13018 task_tick_numa(rq, curr); 13019 13020 update_misfit_status(curr, rq); 13021 check_update_overutilized_status(task_rq(curr)); 13022 13023 task_tick_core(rq, curr); 13024 } 13025 13026 /* 13027 * called on fork with the child task as argument from the parent's context 13028 * - child not yet on the tasklist 13029 * - preemption disabled 13030 */ 13031 static void task_fork_fair(struct task_struct *p) 13032 { 13033 set_task_max_allowed_capacity(p); 13034 } 13035 13036 /* 13037 * Priority of the task has changed. Check to see if we preempt 13038 * the current task. 13039 */ 13040 static void 13041 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13042 { 13043 if (!task_on_rq_queued(p)) 13044 return; 13045 13046 if (rq->cfs.nr_queued == 1) 13047 return; 13048 13049 /* 13050 * Reschedule if we are currently running on this runqueue and 13051 * our priority decreased, or if we are not currently running on 13052 * this runqueue and our priority is higher than the current's 13053 */ 13054 if (task_current_donor(rq, p)) { 13055 if (p->prio > oldprio) 13056 resched_curr(rq); 13057 } else 13058 wakeup_preempt(rq, p, 0); 13059 } 13060 13061 #ifdef CONFIG_FAIR_GROUP_SCHED 13062 /* 13063 * Propagate the changes of the sched_entity across the tg tree to make it 13064 * visible to the root 13065 */ 13066 static void propagate_entity_cfs_rq(struct sched_entity *se) 13067 { 13068 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13069 13070 if (cfs_rq_throttled(cfs_rq)) 13071 return; 13072 13073 if (!throttled_hierarchy(cfs_rq)) 13074 list_add_leaf_cfs_rq(cfs_rq); 13075 13076 /* Start to propagate at parent */ 13077 se = se->parent; 13078 13079 for_each_sched_entity(se) { 13080 cfs_rq = cfs_rq_of(se); 13081 13082 update_load_avg(cfs_rq, se, UPDATE_TG); 13083 13084 if (cfs_rq_throttled(cfs_rq)) 13085 break; 13086 13087 if (!throttled_hierarchy(cfs_rq)) 13088 list_add_leaf_cfs_rq(cfs_rq); 13089 } 13090 } 13091 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 13092 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13093 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 13094 13095 static void detach_entity_cfs_rq(struct sched_entity *se) 13096 { 13097 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13098 13099 /* 13100 * In case the task sched_avg hasn't been attached: 13101 * - A forked task which hasn't been woken up by wake_up_new_task(). 13102 * - A task which has been woken up by try_to_wake_up() but is 13103 * waiting for actually being woken up by sched_ttwu_pending(). 13104 */ 13105 if (!se->avg.last_update_time) 13106 return; 13107 13108 /* Catch up with the cfs_rq and remove our load when we leave */ 13109 update_load_avg(cfs_rq, se, 0); 13110 detach_entity_load_avg(cfs_rq, se); 13111 update_tg_load_avg(cfs_rq); 13112 propagate_entity_cfs_rq(se); 13113 } 13114 13115 static void attach_entity_cfs_rq(struct sched_entity *se) 13116 { 13117 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13118 13119 /* Synchronize entity with its cfs_rq */ 13120 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13121 attach_entity_load_avg(cfs_rq, se); 13122 update_tg_load_avg(cfs_rq); 13123 propagate_entity_cfs_rq(se); 13124 } 13125 13126 static void detach_task_cfs_rq(struct task_struct *p) 13127 { 13128 struct sched_entity *se = &p->se; 13129 13130 detach_entity_cfs_rq(se); 13131 } 13132 13133 static void attach_task_cfs_rq(struct task_struct *p) 13134 { 13135 struct sched_entity *se = &p->se; 13136 13137 attach_entity_cfs_rq(se); 13138 } 13139 13140 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13141 { 13142 detach_task_cfs_rq(p); 13143 } 13144 13145 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13146 { 13147 WARN_ON_ONCE(p->se.sched_delayed); 13148 13149 attach_task_cfs_rq(p); 13150 13151 set_task_max_allowed_capacity(p); 13152 13153 if (task_on_rq_queued(p)) { 13154 /* 13155 * We were most likely switched from sched_rt, so 13156 * kick off the schedule if running, otherwise just see 13157 * if we can still preempt the current task. 13158 */ 13159 if (task_current_donor(rq, p)) 13160 resched_curr(rq); 13161 else 13162 wakeup_preempt(rq, p, 0); 13163 } 13164 } 13165 13166 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13167 { 13168 struct sched_entity *se = &p->se; 13169 13170 if (task_on_rq_queued(p)) { 13171 /* 13172 * Move the next running task to the front of the list, so our 13173 * cfs_tasks list becomes MRU one. 13174 */ 13175 list_move(&se->group_node, &rq->cfs_tasks); 13176 } 13177 if (!first) 13178 return; 13179 13180 WARN_ON_ONCE(se->sched_delayed); 13181 13182 if (hrtick_enabled_fair(rq)) 13183 hrtick_start_fair(rq, p); 13184 13185 update_misfit_status(p, rq); 13186 sched_fair_update_stop_tick(rq, p); 13187 } 13188 13189 /* 13190 * Account for a task changing its policy or group. 13191 * 13192 * This routine is mostly called to set cfs_rq->curr field when a task 13193 * migrates between groups/classes. 13194 */ 13195 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13196 { 13197 struct sched_entity *se = &p->se; 13198 13199 for_each_sched_entity(se) { 13200 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13201 13202 set_next_entity(cfs_rq, se); 13203 /* ensure bandwidth has been allocated on our new cfs_rq */ 13204 account_cfs_rq_runtime(cfs_rq, 0); 13205 } 13206 13207 __set_next_task_fair(rq, p, first); 13208 } 13209 13210 void init_cfs_rq(struct cfs_rq *cfs_rq) 13211 { 13212 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13213 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13214 raw_spin_lock_init(&cfs_rq->removed.lock); 13215 } 13216 13217 #ifdef CONFIG_FAIR_GROUP_SCHED 13218 static void task_change_group_fair(struct task_struct *p) 13219 { 13220 /* 13221 * We couldn't detach or attach a forked task which 13222 * hasn't been woken up by wake_up_new_task(). 13223 */ 13224 if (READ_ONCE(p->__state) == TASK_NEW) 13225 return; 13226 13227 detach_task_cfs_rq(p); 13228 13229 /* Tell se's cfs_rq has been changed -- migrated */ 13230 p->se.avg.last_update_time = 0; 13231 set_task_rq(p, task_cpu(p)); 13232 attach_task_cfs_rq(p); 13233 } 13234 13235 void free_fair_sched_group(struct task_group *tg) 13236 { 13237 int i; 13238 13239 for_each_possible_cpu(i) { 13240 if (tg->cfs_rq) 13241 kfree(tg->cfs_rq[i]); 13242 if (tg->se) 13243 kfree(tg->se[i]); 13244 } 13245 13246 kfree(tg->cfs_rq); 13247 kfree(tg->se); 13248 } 13249 13250 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13251 { 13252 struct sched_entity *se; 13253 struct cfs_rq *cfs_rq; 13254 int i; 13255 13256 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13257 if (!tg->cfs_rq) 13258 goto err; 13259 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13260 if (!tg->se) 13261 goto err; 13262 13263 tg->shares = NICE_0_LOAD; 13264 13265 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13266 13267 for_each_possible_cpu(i) { 13268 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13269 GFP_KERNEL, cpu_to_node(i)); 13270 if (!cfs_rq) 13271 goto err; 13272 13273 se = kzalloc_node(sizeof(struct sched_entity_stats), 13274 GFP_KERNEL, cpu_to_node(i)); 13275 if (!se) 13276 goto err_free_rq; 13277 13278 init_cfs_rq(cfs_rq); 13279 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13280 init_entity_runnable_average(se); 13281 } 13282 13283 return 1; 13284 13285 err_free_rq: 13286 kfree(cfs_rq); 13287 err: 13288 return 0; 13289 } 13290 13291 void online_fair_sched_group(struct task_group *tg) 13292 { 13293 struct sched_entity *se; 13294 struct rq_flags rf; 13295 struct rq *rq; 13296 int i; 13297 13298 for_each_possible_cpu(i) { 13299 rq = cpu_rq(i); 13300 se = tg->se[i]; 13301 rq_lock_irq(rq, &rf); 13302 update_rq_clock(rq); 13303 attach_entity_cfs_rq(se); 13304 sync_throttle(tg, i); 13305 rq_unlock_irq(rq, &rf); 13306 } 13307 } 13308 13309 void unregister_fair_sched_group(struct task_group *tg) 13310 { 13311 int cpu; 13312 13313 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13314 13315 for_each_possible_cpu(cpu) { 13316 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13317 struct sched_entity *se = tg->se[cpu]; 13318 struct rq *rq = cpu_rq(cpu); 13319 13320 if (se) { 13321 if (se->sched_delayed) { 13322 guard(rq_lock_irqsave)(rq); 13323 if (se->sched_delayed) { 13324 update_rq_clock(rq); 13325 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13326 } 13327 list_del_leaf_cfs_rq(cfs_rq); 13328 } 13329 remove_entity_load_avg(se); 13330 } 13331 13332 /* 13333 * Only empty task groups can be destroyed; so we can speculatively 13334 * check on_list without danger of it being re-added. 13335 */ 13336 if (cfs_rq->on_list) { 13337 guard(rq_lock_irqsave)(rq); 13338 list_del_leaf_cfs_rq(cfs_rq); 13339 } 13340 } 13341 } 13342 13343 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13344 struct sched_entity *se, int cpu, 13345 struct sched_entity *parent) 13346 { 13347 struct rq *rq = cpu_rq(cpu); 13348 13349 cfs_rq->tg = tg; 13350 cfs_rq->rq = rq; 13351 init_cfs_rq_runtime(cfs_rq); 13352 13353 tg->cfs_rq[cpu] = cfs_rq; 13354 tg->se[cpu] = se; 13355 13356 /* se could be NULL for root_task_group */ 13357 if (!se) 13358 return; 13359 13360 if (!parent) { 13361 se->cfs_rq = &rq->cfs; 13362 se->depth = 0; 13363 } else { 13364 se->cfs_rq = parent->my_q; 13365 se->depth = parent->depth + 1; 13366 } 13367 13368 se->my_q = cfs_rq; 13369 /* guarantee group entities always have weight */ 13370 update_load_set(&se->load, NICE_0_LOAD); 13371 se->parent = parent; 13372 } 13373 13374 static DEFINE_MUTEX(shares_mutex); 13375 13376 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13377 { 13378 int i; 13379 13380 lockdep_assert_held(&shares_mutex); 13381 13382 /* 13383 * We can't change the weight of the root cgroup. 13384 */ 13385 if (!tg->se[0]) 13386 return -EINVAL; 13387 13388 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13389 13390 if (tg->shares == shares) 13391 return 0; 13392 13393 tg->shares = shares; 13394 for_each_possible_cpu(i) { 13395 struct rq *rq = cpu_rq(i); 13396 struct sched_entity *se = tg->se[i]; 13397 struct rq_flags rf; 13398 13399 /* Propagate contribution to hierarchy */ 13400 rq_lock_irqsave(rq, &rf); 13401 update_rq_clock(rq); 13402 for_each_sched_entity(se) { 13403 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13404 update_cfs_group(se); 13405 } 13406 rq_unlock_irqrestore(rq, &rf); 13407 } 13408 13409 return 0; 13410 } 13411 13412 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13413 { 13414 int ret; 13415 13416 mutex_lock(&shares_mutex); 13417 if (tg_is_idle(tg)) 13418 ret = -EINVAL; 13419 else 13420 ret = __sched_group_set_shares(tg, shares); 13421 mutex_unlock(&shares_mutex); 13422 13423 return ret; 13424 } 13425 13426 int sched_group_set_idle(struct task_group *tg, long idle) 13427 { 13428 int i; 13429 13430 if (tg == &root_task_group) 13431 return -EINVAL; 13432 13433 if (idle < 0 || idle > 1) 13434 return -EINVAL; 13435 13436 mutex_lock(&shares_mutex); 13437 13438 if (tg->idle == idle) { 13439 mutex_unlock(&shares_mutex); 13440 return 0; 13441 } 13442 13443 tg->idle = idle; 13444 13445 for_each_possible_cpu(i) { 13446 struct rq *rq = cpu_rq(i); 13447 struct sched_entity *se = tg->se[i]; 13448 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13449 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13450 long idle_task_delta; 13451 struct rq_flags rf; 13452 13453 rq_lock_irqsave(rq, &rf); 13454 13455 grp_cfs_rq->idle = idle; 13456 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13457 goto next_cpu; 13458 13459 idle_task_delta = grp_cfs_rq->h_nr_queued - 13460 grp_cfs_rq->h_nr_idle; 13461 if (!cfs_rq_is_idle(grp_cfs_rq)) 13462 idle_task_delta *= -1; 13463 13464 for_each_sched_entity(se) { 13465 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13466 13467 if (!se->on_rq) 13468 break; 13469 13470 cfs_rq->h_nr_idle += idle_task_delta; 13471 13472 /* Already accounted at parent level and above. */ 13473 if (cfs_rq_is_idle(cfs_rq)) 13474 break; 13475 } 13476 13477 next_cpu: 13478 rq_unlock_irqrestore(rq, &rf); 13479 } 13480 13481 /* Idle groups have minimum weight. */ 13482 if (tg_is_idle(tg)) 13483 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13484 else 13485 __sched_group_set_shares(tg, NICE_0_LOAD); 13486 13487 mutex_unlock(&shares_mutex); 13488 return 0; 13489 } 13490 13491 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13492 13493 13494 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13495 { 13496 struct sched_entity *se = &task->se; 13497 unsigned int rr_interval = 0; 13498 13499 /* 13500 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13501 * idle runqueue: 13502 */ 13503 if (rq->cfs.load.weight) 13504 rr_interval = NS_TO_JIFFIES(se->slice); 13505 13506 return rr_interval; 13507 } 13508 13509 /* 13510 * All the scheduling class methods: 13511 */ 13512 DEFINE_SCHED_CLASS(fair) = { 13513 13514 .enqueue_task = enqueue_task_fair, 13515 .dequeue_task = dequeue_task_fair, 13516 .yield_task = yield_task_fair, 13517 .yield_to_task = yield_to_task_fair, 13518 13519 .wakeup_preempt = check_preempt_wakeup_fair, 13520 13521 .pick_task = pick_task_fair, 13522 .pick_next_task = __pick_next_task_fair, 13523 .put_prev_task = put_prev_task_fair, 13524 .set_next_task = set_next_task_fair, 13525 13526 .balance = balance_fair, 13527 .select_task_rq = select_task_rq_fair, 13528 .migrate_task_rq = migrate_task_rq_fair, 13529 13530 .rq_online = rq_online_fair, 13531 .rq_offline = rq_offline_fair, 13532 13533 .task_dead = task_dead_fair, 13534 .set_cpus_allowed = set_cpus_allowed_fair, 13535 13536 .task_tick = task_tick_fair, 13537 .task_fork = task_fork_fair, 13538 13539 .reweight_task = reweight_task_fair, 13540 .prio_changed = prio_changed_fair, 13541 .switched_from = switched_from_fair, 13542 .switched_to = switched_to_fair, 13543 13544 .get_rr_interval = get_rr_interval_fair, 13545 13546 .update_curr = update_curr_fair, 13547 13548 #ifdef CONFIG_FAIR_GROUP_SCHED 13549 .task_change_group = task_change_group_fair, 13550 #endif 13551 13552 #ifdef CONFIG_SCHED_CORE 13553 .task_is_throttled = task_is_throttled_fair, 13554 #endif 13555 13556 #ifdef CONFIG_UCLAMP_TASK 13557 .uclamp_enabled = 1, 13558 #endif 13559 }; 13560 13561 void print_cfs_stats(struct seq_file *m, int cpu) 13562 { 13563 struct cfs_rq *cfs_rq, *pos; 13564 13565 rcu_read_lock(); 13566 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13567 print_cfs_rq(m, cpu, cfs_rq); 13568 rcu_read_unlock(); 13569 } 13570 13571 #ifdef CONFIG_NUMA_BALANCING 13572 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13573 { 13574 int node; 13575 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13576 struct numa_group *ng; 13577 13578 rcu_read_lock(); 13579 ng = rcu_dereference(p->numa_group); 13580 for_each_online_node(node) { 13581 if (p->numa_faults) { 13582 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13583 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13584 } 13585 if (ng) { 13586 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13587 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13588 } 13589 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13590 } 13591 rcu_read_unlock(); 13592 } 13593 #endif /* CONFIG_NUMA_BALANCING */ 13594 13595 __init void init_sched_fair_class(void) 13596 { 13597 int i; 13598 13599 for_each_possible_cpu(i) { 13600 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13601 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13602 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13603 GFP_KERNEL, cpu_to_node(i)); 13604 13605 #ifdef CONFIG_CFS_BANDWIDTH 13606 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13607 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13608 #endif 13609 } 13610 13611 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13612 13613 #ifdef CONFIG_NO_HZ_COMMON 13614 nohz.next_balance = jiffies; 13615 nohz.next_blocked = jiffies; 13616 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13617 #endif 13618 } 13619