1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 int sched_thermal_decay_shift; 82 static int __init setup_sched_thermal_decay_shift(char *str) 83 { 84 int _shift = 0; 85 86 if (kstrtoint(str, 0, &_shift)) 87 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 88 89 sched_thermal_decay_shift = clamp(_shift, 0, 10); 90 return 1; 91 } 92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 93 94 #ifdef CONFIG_SMP 95 /* 96 * For asym packing, by default the lower numbered CPU has higher priority. 97 */ 98 int __weak arch_asym_cpu_priority(int cpu) 99 { 100 return -cpu; 101 } 102 103 /* 104 * The margin used when comparing utilization with CPU capacity. 105 * 106 * (default: ~20%) 107 */ 108 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 109 110 /* 111 * The margin used when comparing CPU capacities. 112 * is 'cap1' noticeably greater than 'cap2' 113 * 114 * (default: ~5%) 115 */ 116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 117 #endif 118 119 #ifdef CONFIG_CFS_BANDWIDTH 120 /* 121 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 122 * each time a cfs_rq requests quota. 123 * 124 * Note: in the case that the slice exceeds the runtime remaining (either due 125 * to consumption or the quota being specified to be smaller than the slice) 126 * we will always only issue the remaining available time. 127 * 128 * (default: 5 msec, units: microseconds) 129 */ 130 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 131 #endif 132 133 #ifdef CONFIG_NUMA_BALANCING 134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 136 #endif 137 138 #ifdef CONFIG_SYSCTL 139 static struct ctl_table sched_fair_sysctls[] = { 140 #ifdef CONFIG_CFS_BANDWIDTH 141 { 142 .procname = "sched_cfs_bandwidth_slice_us", 143 .data = &sysctl_sched_cfs_bandwidth_slice, 144 .maxlen = sizeof(unsigned int), 145 .mode = 0644, 146 .proc_handler = proc_dointvec_minmax, 147 .extra1 = SYSCTL_ONE, 148 }, 149 #endif 150 #ifdef CONFIG_NUMA_BALANCING 151 { 152 .procname = "numa_balancing_promote_rate_limit_MBps", 153 .data = &sysctl_numa_balancing_promote_rate_limit, 154 .maxlen = sizeof(unsigned int), 155 .mode = 0644, 156 .proc_handler = proc_dointvec_minmax, 157 .extra1 = SYSCTL_ZERO, 158 }, 159 #endif /* CONFIG_NUMA_BALANCING */ 160 {} 161 }; 162 163 static int __init sched_fair_sysctl_init(void) 164 { 165 register_sysctl_init("kernel", sched_fair_sysctls); 166 return 0; 167 } 168 late_initcall(sched_fair_sysctl_init); 169 #endif 170 171 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 172 { 173 lw->weight += inc; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 178 { 179 lw->weight -= dec; 180 lw->inv_weight = 0; 181 } 182 183 static inline void update_load_set(struct load_weight *lw, unsigned long w) 184 { 185 lw->weight = w; 186 lw->inv_weight = 0; 187 } 188 189 /* 190 * Increase the granularity value when there are more CPUs, 191 * because with more CPUs the 'effective latency' as visible 192 * to users decreases. But the relationship is not linear, 193 * so pick a second-best guess by going with the log2 of the 194 * number of CPUs. 195 * 196 * This idea comes from the SD scheduler of Con Kolivas: 197 */ 198 static unsigned int get_update_sysctl_factor(void) 199 { 200 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 201 unsigned int factor; 202 203 switch (sysctl_sched_tunable_scaling) { 204 case SCHED_TUNABLESCALING_NONE: 205 factor = 1; 206 break; 207 case SCHED_TUNABLESCALING_LINEAR: 208 factor = cpus; 209 break; 210 case SCHED_TUNABLESCALING_LOG: 211 default: 212 factor = 1 + ilog2(cpus); 213 break; 214 } 215 216 return factor; 217 } 218 219 static void update_sysctl(void) 220 { 221 unsigned int factor = get_update_sysctl_factor(); 222 223 #define SET_SYSCTL(name) \ 224 (sysctl_##name = (factor) * normalized_sysctl_##name) 225 SET_SYSCTL(sched_base_slice); 226 #undef SET_SYSCTL 227 } 228 229 void __init sched_init_granularity(void) 230 { 231 update_sysctl(); 232 } 233 234 #define WMULT_CONST (~0U) 235 #define WMULT_SHIFT 32 236 237 static void __update_inv_weight(struct load_weight *lw) 238 { 239 unsigned long w; 240 241 if (likely(lw->inv_weight)) 242 return; 243 244 w = scale_load_down(lw->weight); 245 246 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 247 lw->inv_weight = 1; 248 else if (unlikely(!w)) 249 lw->inv_weight = WMULT_CONST; 250 else 251 lw->inv_weight = WMULT_CONST / w; 252 } 253 254 /* 255 * delta_exec * weight / lw.weight 256 * OR 257 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 258 * 259 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 260 * we're guaranteed shift stays positive because inv_weight is guaranteed to 261 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 262 * 263 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 264 * weight/lw.weight <= 1, and therefore our shift will also be positive. 265 */ 266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 267 { 268 u64 fact = scale_load_down(weight); 269 u32 fact_hi = (u32)(fact >> 32); 270 int shift = WMULT_SHIFT; 271 int fs; 272 273 __update_inv_weight(lw); 274 275 if (unlikely(fact_hi)) { 276 fs = fls(fact_hi); 277 shift -= fs; 278 fact >>= fs; 279 } 280 281 fact = mul_u32_u32(fact, lw->inv_weight); 282 283 fact_hi = (u32)(fact >> 32); 284 if (fact_hi) { 285 fs = fls(fact_hi); 286 shift -= fs; 287 fact >>= fs; 288 } 289 290 return mul_u64_u32_shr(delta_exec, fact, shift); 291 } 292 293 /* 294 * delta /= w 295 */ 296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 297 { 298 if (unlikely(se->load.weight != NICE_0_LOAD)) 299 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 300 301 return delta; 302 } 303 304 const struct sched_class fair_sched_class; 305 306 /************************************************************** 307 * CFS operations on generic schedulable entities: 308 */ 309 310 #ifdef CONFIG_FAIR_GROUP_SCHED 311 312 /* Walk up scheduling entities hierarchy */ 313 #define for_each_sched_entity(se) \ 314 for (; se; se = se->parent) 315 316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 317 { 318 struct rq *rq = rq_of(cfs_rq); 319 int cpu = cpu_of(rq); 320 321 if (cfs_rq->on_list) 322 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 323 324 cfs_rq->on_list = 1; 325 326 /* 327 * Ensure we either appear before our parent (if already 328 * enqueued) or force our parent to appear after us when it is 329 * enqueued. The fact that we always enqueue bottom-up 330 * reduces this to two cases and a special case for the root 331 * cfs_rq. Furthermore, it also means that we will always reset 332 * tmp_alone_branch either when the branch is connected 333 * to a tree or when we reach the top of the tree 334 */ 335 if (cfs_rq->tg->parent && 336 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 337 /* 338 * If parent is already on the list, we add the child 339 * just before. Thanks to circular linked property of 340 * the list, this means to put the child at the tail 341 * of the list that starts by parent. 342 */ 343 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 344 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 345 /* 346 * The branch is now connected to its tree so we can 347 * reset tmp_alone_branch to the beginning of the 348 * list. 349 */ 350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 351 return true; 352 } 353 354 if (!cfs_rq->tg->parent) { 355 /* 356 * cfs rq without parent should be put 357 * at the tail of the list. 358 */ 359 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 360 &rq->leaf_cfs_rq_list); 361 /* 362 * We have reach the top of a tree so we can reset 363 * tmp_alone_branch to the beginning of the list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 /* 370 * The parent has not already been added so we want to 371 * make sure that it will be put after us. 372 * tmp_alone_branch points to the begin of the branch 373 * where we will add parent. 374 */ 375 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 376 /* 377 * update tmp_alone_branch to points to the new begin 378 * of the branch 379 */ 380 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 381 return false; 382 } 383 384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 385 { 386 if (cfs_rq->on_list) { 387 struct rq *rq = rq_of(cfs_rq); 388 389 /* 390 * With cfs_rq being unthrottled/throttled during an enqueue, 391 * it can happen the tmp_alone_branch points the a leaf that 392 * we finally want to del. In this case, tmp_alone_branch moves 393 * to the prev element but it will point to rq->leaf_cfs_rq_list 394 * at the end of the enqueue. 395 */ 396 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 397 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 398 399 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 400 cfs_rq->on_list = 0; 401 } 402 } 403 404 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 405 { 406 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 407 } 408 409 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 411 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 412 leaf_cfs_rq_list) 413 414 /* Do the two (enqueued) entities belong to the same group ? */ 415 static inline struct cfs_rq * 416 is_same_group(struct sched_entity *se, struct sched_entity *pse) 417 { 418 if (se->cfs_rq == pse->cfs_rq) 419 return se->cfs_rq; 420 421 return NULL; 422 } 423 424 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 425 { 426 return se->parent; 427 } 428 429 static void 430 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 431 { 432 int se_depth, pse_depth; 433 434 /* 435 * preemption test can be made between sibling entities who are in the 436 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 437 * both tasks until we find their ancestors who are siblings of common 438 * parent. 439 */ 440 441 /* First walk up until both entities are at same depth */ 442 se_depth = (*se)->depth; 443 pse_depth = (*pse)->depth; 444 445 while (se_depth > pse_depth) { 446 se_depth--; 447 *se = parent_entity(*se); 448 } 449 450 while (pse_depth > se_depth) { 451 pse_depth--; 452 *pse = parent_entity(*pse); 453 } 454 455 while (!is_same_group(*se, *pse)) { 456 *se = parent_entity(*se); 457 *pse = parent_entity(*pse); 458 } 459 } 460 461 static int tg_is_idle(struct task_group *tg) 462 { 463 return tg->idle > 0; 464 } 465 466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 467 { 468 return cfs_rq->idle > 0; 469 } 470 471 static int se_is_idle(struct sched_entity *se) 472 { 473 if (entity_is_task(se)) 474 return task_has_idle_policy(task_of(se)); 475 return cfs_rq_is_idle(group_cfs_rq(se)); 476 } 477 478 #else /* !CONFIG_FAIR_GROUP_SCHED */ 479 480 #define for_each_sched_entity(se) \ 481 for (; se; se = NULL) 482 483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 484 { 485 return true; 486 } 487 488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 489 { 490 } 491 492 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 493 { 494 } 495 496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 498 499 static inline struct sched_entity *parent_entity(struct sched_entity *se) 500 { 501 return NULL; 502 } 503 504 static inline void 505 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 506 { 507 } 508 509 static inline int tg_is_idle(struct task_group *tg) 510 { 511 return 0; 512 } 513 514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 515 { 516 return 0; 517 } 518 519 static int se_is_idle(struct sched_entity *se) 520 { 521 return 0; 522 } 523 524 #endif /* CONFIG_FAIR_GROUP_SCHED */ 525 526 static __always_inline 527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 528 529 /************************************************************** 530 * Scheduling class tree data structure manipulation methods: 531 */ 532 533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 534 { 535 s64 delta = (s64)(vruntime - max_vruntime); 536 if (delta > 0) 537 max_vruntime = vruntime; 538 539 return max_vruntime; 540 } 541 542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 543 { 544 s64 delta = (s64)(vruntime - min_vruntime); 545 if (delta < 0) 546 min_vruntime = vruntime; 547 548 return min_vruntime; 549 } 550 551 static inline bool entity_before(const struct sched_entity *a, 552 const struct sched_entity *b) 553 { 554 return (s64)(a->vruntime - b->vruntime) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-continguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplcation could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceil */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 lag, limit; 698 699 SCHED_WARN_ON(!se->on_rq); 700 lag = avg_vruntime(cfs_rq) - se->vruntime; 701 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 se->vlag = clamp(lag, -limit, limit); 704 } 705 706 /* 707 * Entity is eligible once it received less service than it ought to have, 708 * eg. lag >= 0. 709 * 710 * lag_i = S - s_i = w_i*(V - v_i) 711 * 712 * lag_i >= 0 -> V >= v_i 713 * 714 * \Sum (v_i - v)*w_i 715 * V = ------------------ + v 716 * \Sum w_i 717 * 718 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 719 * 720 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 721 * to the loss in precision caused by the division. 722 */ 723 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 724 { 725 struct sched_entity *curr = cfs_rq->curr; 726 s64 avg = cfs_rq->avg_vruntime; 727 long load = cfs_rq->avg_load; 728 729 if (curr && curr->on_rq) { 730 unsigned long weight = scale_load_down(curr->load.weight); 731 732 avg += entity_key(cfs_rq, curr) * weight; 733 load += weight; 734 } 735 736 return avg >= entity_key(cfs_rq, se) * load; 737 } 738 739 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 740 { 741 u64 min_vruntime = cfs_rq->min_vruntime; 742 /* 743 * open coded max_vruntime() to allow updating avg_vruntime 744 */ 745 s64 delta = (s64)(vruntime - min_vruntime); 746 if (delta > 0) { 747 avg_vruntime_update(cfs_rq, delta); 748 min_vruntime = vruntime; 749 } 750 return min_vruntime; 751 } 752 753 static void update_min_vruntime(struct cfs_rq *cfs_rq) 754 { 755 struct sched_entity *se = __pick_first_entity(cfs_rq); 756 struct sched_entity *curr = cfs_rq->curr; 757 758 u64 vruntime = cfs_rq->min_vruntime; 759 760 if (curr) { 761 if (curr->on_rq) 762 vruntime = curr->vruntime; 763 else 764 curr = NULL; 765 } 766 767 if (se) { 768 if (!curr) 769 vruntime = se->vruntime; 770 else 771 vruntime = min_vruntime(vruntime, se->vruntime); 772 } 773 774 /* ensure we never gain time by being placed backwards. */ 775 u64_u32_store(cfs_rq->min_vruntime, 776 __update_min_vruntime(cfs_rq, vruntime)); 777 } 778 779 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 780 { 781 return entity_before(__node_2_se(a), __node_2_se(b)); 782 } 783 784 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 785 786 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) 787 { 788 if (node) { 789 struct sched_entity *rse = __node_2_se(node); 790 if (deadline_gt(min_deadline, se, rse)) 791 se->min_deadline = rse->min_deadline; 792 } 793 } 794 795 /* 796 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) 797 */ 798 static inline bool min_deadline_update(struct sched_entity *se, bool exit) 799 { 800 u64 old_min_deadline = se->min_deadline; 801 struct rb_node *node = &se->run_node; 802 803 se->min_deadline = se->deadline; 804 __update_min_deadline(se, node->rb_right); 805 __update_min_deadline(se, node->rb_left); 806 807 return se->min_deadline == old_min_deadline; 808 } 809 810 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, 811 run_node, min_deadline, min_deadline_update); 812 813 /* 814 * Enqueue an entity into the rb-tree: 815 */ 816 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 817 { 818 avg_vruntime_add(cfs_rq, se); 819 se->min_deadline = se->deadline; 820 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 821 __entity_less, &min_deadline_cb); 822 } 823 824 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 825 { 826 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 827 &min_deadline_cb); 828 avg_vruntime_sub(cfs_rq, se); 829 } 830 831 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 832 { 833 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 834 835 if (!left) 836 return NULL; 837 838 return __node_2_se(left); 839 } 840 841 /* 842 * Earliest Eligible Virtual Deadline First 843 * 844 * In order to provide latency guarantees for different request sizes 845 * EEVDF selects the best runnable task from two criteria: 846 * 847 * 1) the task must be eligible (must be owed service) 848 * 849 * 2) from those tasks that meet 1), we select the one 850 * with the earliest virtual deadline. 851 * 852 * We can do this in O(log n) time due to an augmented RB-tree. The 853 * tree keeps the entries sorted on service, but also functions as a 854 * heap based on the deadline by keeping: 855 * 856 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) 857 * 858 * Which allows an EDF like search on (sub)trees. 859 */ 860 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq) 861 { 862 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 863 struct sched_entity *curr = cfs_rq->curr; 864 struct sched_entity *best = NULL; 865 struct sched_entity *best_left = NULL; 866 867 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 868 curr = NULL; 869 best = curr; 870 871 /* 872 * Once selected, run a task until it either becomes non-eligible or 873 * until it gets a new slice. See the HACK in set_next_entity(). 874 */ 875 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 876 return curr; 877 878 while (node) { 879 struct sched_entity *se = __node_2_se(node); 880 881 /* 882 * If this entity is not eligible, try the left subtree. 883 */ 884 if (!entity_eligible(cfs_rq, se)) { 885 node = node->rb_left; 886 continue; 887 } 888 889 /* 890 * Now we heap search eligible trees for the best (min_)deadline 891 */ 892 if (!best || deadline_gt(deadline, best, se)) 893 best = se; 894 895 /* 896 * Every se in a left branch is eligible, keep track of the 897 * branch with the best min_deadline 898 */ 899 if (node->rb_left) { 900 struct sched_entity *left = __node_2_se(node->rb_left); 901 902 if (!best_left || deadline_gt(min_deadline, best_left, left)) 903 best_left = left; 904 905 /* 906 * min_deadline is in the left branch. rb_left and all 907 * descendants are eligible, so immediately switch to the second 908 * loop. 909 */ 910 if (left->min_deadline == se->min_deadline) 911 break; 912 } 913 914 /* min_deadline is at this node, no need to look right */ 915 if (se->deadline == se->min_deadline) 916 break; 917 918 /* else min_deadline is in the right branch. */ 919 node = node->rb_right; 920 } 921 922 /* 923 * We ran into an eligible node which is itself the best. 924 * (Or nr_running == 0 and both are NULL) 925 */ 926 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0) 927 return best; 928 929 /* 930 * Now best_left and all of its children are eligible, and we are just 931 * looking for deadline == min_deadline 932 */ 933 node = &best_left->run_node; 934 while (node) { 935 struct sched_entity *se = __node_2_se(node); 936 937 /* min_deadline is the current node */ 938 if (se->deadline == se->min_deadline) 939 return se; 940 941 /* min_deadline is in the left branch */ 942 if (node->rb_left && 943 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { 944 node = node->rb_left; 945 continue; 946 } 947 948 /* else min_deadline is in the right branch */ 949 node = node->rb_right; 950 } 951 return NULL; 952 } 953 954 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 955 { 956 struct sched_entity *se = __pick_eevdf(cfs_rq); 957 958 if (!se) { 959 struct sched_entity *left = __pick_first_entity(cfs_rq); 960 if (left) { 961 pr_err("EEVDF scheduling fail, picking leftmost\n"); 962 return left; 963 } 964 } 965 966 return se; 967 } 968 969 #ifdef CONFIG_SCHED_DEBUG 970 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 971 { 972 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 973 974 if (!last) 975 return NULL; 976 977 return __node_2_se(last); 978 } 979 980 /************************************************************** 981 * Scheduling class statistics methods: 982 */ 983 #ifdef CONFIG_SMP 984 int sched_update_scaling(void) 985 { 986 unsigned int factor = get_update_sysctl_factor(); 987 988 #define WRT_SYSCTL(name) \ 989 (normalized_sysctl_##name = sysctl_##name / (factor)) 990 WRT_SYSCTL(sched_base_slice); 991 #undef WRT_SYSCTL 992 993 return 0; 994 } 995 #endif 996 #endif 997 998 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 999 1000 /* 1001 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1002 * this is probably good enough. 1003 */ 1004 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1005 { 1006 if ((s64)(se->vruntime - se->deadline) < 0) 1007 return; 1008 1009 /* 1010 * For EEVDF the virtual time slope is determined by w_i (iow. 1011 * nice) while the request time r_i is determined by 1012 * sysctl_sched_base_slice. 1013 */ 1014 se->slice = sysctl_sched_base_slice; 1015 1016 /* 1017 * EEVDF: vd_i = ve_i + r_i / w_i 1018 */ 1019 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1020 1021 /* 1022 * The task has consumed its request, reschedule. 1023 */ 1024 if (cfs_rq->nr_running > 1) { 1025 resched_curr(rq_of(cfs_rq)); 1026 clear_buddies(cfs_rq, se); 1027 } 1028 } 1029 1030 #include "pelt.h" 1031 #ifdef CONFIG_SMP 1032 1033 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1034 static unsigned long task_h_load(struct task_struct *p); 1035 static unsigned long capacity_of(int cpu); 1036 1037 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1038 void init_entity_runnable_average(struct sched_entity *se) 1039 { 1040 struct sched_avg *sa = &se->avg; 1041 1042 memset(sa, 0, sizeof(*sa)); 1043 1044 /* 1045 * Tasks are initialized with full load to be seen as heavy tasks until 1046 * they get a chance to stabilize to their real load level. 1047 * Group entities are initialized with zero load to reflect the fact that 1048 * nothing has been attached to the task group yet. 1049 */ 1050 if (entity_is_task(se)) 1051 sa->load_avg = scale_load_down(se->load.weight); 1052 1053 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1054 } 1055 1056 /* 1057 * With new tasks being created, their initial util_avgs are extrapolated 1058 * based on the cfs_rq's current util_avg: 1059 * 1060 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1061 * 1062 * However, in many cases, the above util_avg does not give a desired 1063 * value. Moreover, the sum of the util_avgs may be divergent, such 1064 * as when the series is a harmonic series. 1065 * 1066 * To solve this problem, we also cap the util_avg of successive tasks to 1067 * only 1/2 of the left utilization budget: 1068 * 1069 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1070 * 1071 * where n denotes the nth task and cpu_scale the CPU capacity. 1072 * 1073 * For example, for a CPU with 1024 of capacity, a simplest series from 1074 * the beginning would be like: 1075 * 1076 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1077 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1078 * 1079 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1080 * if util_avg > util_avg_cap. 1081 */ 1082 void post_init_entity_util_avg(struct task_struct *p) 1083 { 1084 struct sched_entity *se = &p->se; 1085 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1086 struct sched_avg *sa = &se->avg; 1087 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1088 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1089 1090 if (p->sched_class != &fair_sched_class) { 1091 /* 1092 * For !fair tasks do: 1093 * 1094 update_cfs_rq_load_avg(now, cfs_rq); 1095 attach_entity_load_avg(cfs_rq, se); 1096 switched_from_fair(rq, p); 1097 * 1098 * such that the next switched_to_fair() has the 1099 * expected state. 1100 */ 1101 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1102 return; 1103 } 1104 1105 if (cap > 0) { 1106 if (cfs_rq->avg.util_avg != 0) { 1107 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1108 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1109 1110 if (sa->util_avg > cap) 1111 sa->util_avg = cap; 1112 } else { 1113 sa->util_avg = cap; 1114 } 1115 } 1116 1117 sa->runnable_avg = sa->util_avg; 1118 } 1119 1120 #else /* !CONFIG_SMP */ 1121 void init_entity_runnable_average(struct sched_entity *se) 1122 { 1123 } 1124 void post_init_entity_util_avg(struct task_struct *p) 1125 { 1126 } 1127 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1128 { 1129 } 1130 #endif /* CONFIG_SMP */ 1131 1132 /* 1133 * Update the current task's runtime statistics. 1134 */ 1135 static void update_curr(struct cfs_rq *cfs_rq) 1136 { 1137 struct sched_entity *curr = cfs_rq->curr; 1138 u64 now = rq_clock_task(rq_of(cfs_rq)); 1139 u64 delta_exec; 1140 1141 if (unlikely(!curr)) 1142 return; 1143 1144 delta_exec = now - curr->exec_start; 1145 if (unlikely((s64)delta_exec <= 0)) 1146 return; 1147 1148 curr->exec_start = now; 1149 1150 if (schedstat_enabled()) { 1151 struct sched_statistics *stats; 1152 1153 stats = __schedstats_from_se(curr); 1154 __schedstat_set(stats->exec_max, 1155 max(delta_exec, stats->exec_max)); 1156 } 1157 1158 curr->sum_exec_runtime += delta_exec; 1159 schedstat_add(cfs_rq->exec_clock, delta_exec); 1160 1161 curr->vruntime += calc_delta_fair(delta_exec, curr); 1162 update_deadline(cfs_rq, curr); 1163 update_min_vruntime(cfs_rq); 1164 1165 if (entity_is_task(curr)) { 1166 struct task_struct *curtask = task_of(curr); 1167 1168 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 1169 cgroup_account_cputime(curtask, delta_exec); 1170 account_group_exec_runtime(curtask, delta_exec); 1171 } 1172 1173 account_cfs_rq_runtime(cfs_rq, delta_exec); 1174 } 1175 1176 static void update_curr_fair(struct rq *rq) 1177 { 1178 update_curr(cfs_rq_of(&rq->curr->se)); 1179 } 1180 1181 static inline void 1182 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1183 { 1184 struct sched_statistics *stats; 1185 struct task_struct *p = NULL; 1186 1187 if (!schedstat_enabled()) 1188 return; 1189 1190 stats = __schedstats_from_se(se); 1191 1192 if (entity_is_task(se)) 1193 p = task_of(se); 1194 1195 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1196 } 1197 1198 static inline void 1199 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1200 { 1201 struct sched_statistics *stats; 1202 struct task_struct *p = NULL; 1203 1204 if (!schedstat_enabled()) 1205 return; 1206 1207 stats = __schedstats_from_se(se); 1208 1209 /* 1210 * When the sched_schedstat changes from 0 to 1, some sched se 1211 * maybe already in the runqueue, the se->statistics.wait_start 1212 * will be 0.So it will let the delta wrong. We need to avoid this 1213 * scenario. 1214 */ 1215 if (unlikely(!schedstat_val(stats->wait_start))) 1216 return; 1217 1218 if (entity_is_task(se)) 1219 p = task_of(se); 1220 1221 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1222 } 1223 1224 static inline void 1225 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1226 { 1227 struct sched_statistics *stats; 1228 struct task_struct *tsk = NULL; 1229 1230 if (!schedstat_enabled()) 1231 return; 1232 1233 stats = __schedstats_from_se(se); 1234 1235 if (entity_is_task(se)) 1236 tsk = task_of(se); 1237 1238 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1239 } 1240 1241 /* 1242 * Task is being enqueued - update stats: 1243 */ 1244 static inline void 1245 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1246 { 1247 if (!schedstat_enabled()) 1248 return; 1249 1250 /* 1251 * Are we enqueueing a waiting task? (for current tasks 1252 * a dequeue/enqueue event is a NOP) 1253 */ 1254 if (se != cfs_rq->curr) 1255 update_stats_wait_start_fair(cfs_rq, se); 1256 1257 if (flags & ENQUEUE_WAKEUP) 1258 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1259 } 1260 1261 static inline void 1262 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1263 { 1264 1265 if (!schedstat_enabled()) 1266 return; 1267 1268 /* 1269 * Mark the end of the wait period if dequeueing a 1270 * waiting task: 1271 */ 1272 if (se != cfs_rq->curr) 1273 update_stats_wait_end_fair(cfs_rq, se); 1274 1275 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1276 struct task_struct *tsk = task_of(se); 1277 unsigned int state; 1278 1279 /* XXX racy against TTWU */ 1280 state = READ_ONCE(tsk->__state); 1281 if (state & TASK_INTERRUPTIBLE) 1282 __schedstat_set(tsk->stats.sleep_start, 1283 rq_clock(rq_of(cfs_rq))); 1284 if (state & TASK_UNINTERRUPTIBLE) 1285 __schedstat_set(tsk->stats.block_start, 1286 rq_clock(rq_of(cfs_rq))); 1287 } 1288 } 1289 1290 /* 1291 * We are picking a new current task - update its stats: 1292 */ 1293 static inline void 1294 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1295 { 1296 /* 1297 * We are starting a new run period: 1298 */ 1299 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1300 } 1301 1302 /************************************************** 1303 * Scheduling class queueing methods: 1304 */ 1305 1306 static inline bool is_core_idle(int cpu) 1307 { 1308 #ifdef CONFIG_SCHED_SMT 1309 int sibling; 1310 1311 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1312 if (cpu == sibling) 1313 continue; 1314 1315 if (!idle_cpu(sibling)) 1316 return false; 1317 } 1318 #endif 1319 1320 return true; 1321 } 1322 1323 #ifdef CONFIG_NUMA 1324 #define NUMA_IMBALANCE_MIN 2 1325 1326 static inline long 1327 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1328 { 1329 /* 1330 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1331 * threshold. Above this threshold, individual tasks may be contending 1332 * for both memory bandwidth and any shared HT resources. This is an 1333 * approximation as the number of running tasks may not be related to 1334 * the number of busy CPUs due to sched_setaffinity. 1335 */ 1336 if (dst_running > imb_numa_nr) 1337 return imbalance; 1338 1339 /* 1340 * Allow a small imbalance based on a simple pair of communicating 1341 * tasks that remain local when the destination is lightly loaded. 1342 */ 1343 if (imbalance <= NUMA_IMBALANCE_MIN) 1344 return 0; 1345 1346 return imbalance; 1347 } 1348 #endif /* CONFIG_NUMA */ 1349 1350 #ifdef CONFIG_NUMA_BALANCING 1351 /* 1352 * Approximate time to scan a full NUMA task in ms. The task scan period is 1353 * calculated based on the tasks virtual memory size and 1354 * numa_balancing_scan_size. 1355 */ 1356 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1357 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1358 1359 /* Portion of address space to scan in MB */ 1360 unsigned int sysctl_numa_balancing_scan_size = 256; 1361 1362 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1363 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1364 1365 /* The page with hint page fault latency < threshold in ms is considered hot */ 1366 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1367 1368 struct numa_group { 1369 refcount_t refcount; 1370 1371 spinlock_t lock; /* nr_tasks, tasks */ 1372 int nr_tasks; 1373 pid_t gid; 1374 int active_nodes; 1375 1376 struct rcu_head rcu; 1377 unsigned long total_faults; 1378 unsigned long max_faults_cpu; 1379 /* 1380 * faults[] array is split into two regions: faults_mem and faults_cpu. 1381 * 1382 * Faults_cpu is used to decide whether memory should move 1383 * towards the CPU. As a consequence, these stats are weighted 1384 * more by CPU use than by memory faults. 1385 */ 1386 unsigned long faults[]; 1387 }; 1388 1389 /* 1390 * For functions that can be called in multiple contexts that permit reading 1391 * ->numa_group (see struct task_struct for locking rules). 1392 */ 1393 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1394 { 1395 return rcu_dereference_check(p->numa_group, p == current || 1396 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1397 } 1398 1399 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1400 { 1401 return rcu_dereference_protected(p->numa_group, p == current); 1402 } 1403 1404 static inline unsigned long group_faults_priv(struct numa_group *ng); 1405 static inline unsigned long group_faults_shared(struct numa_group *ng); 1406 1407 static unsigned int task_nr_scan_windows(struct task_struct *p) 1408 { 1409 unsigned long rss = 0; 1410 unsigned long nr_scan_pages; 1411 1412 /* 1413 * Calculations based on RSS as non-present and empty pages are skipped 1414 * by the PTE scanner and NUMA hinting faults should be trapped based 1415 * on resident pages 1416 */ 1417 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1418 rss = get_mm_rss(p->mm); 1419 if (!rss) 1420 rss = nr_scan_pages; 1421 1422 rss = round_up(rss, nr_scan_pages); 1423 return rss / nr_scan_pages; 1424 } 1425 1426 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1427 #define MAX_SCAN_WINDOW 2560 1428 1429 static unsigned int task_scan_min(struct task_struct *p) 1430 { 1431 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1432 unsigned int scan, floor; 1433 unsigned int windows = 1; 1434 1435 if (scan_size < MAX_SCAN_WINDOW) 1436 windows = MAX_SCAN_WINDOW / scan_size; 1437 floor = 1000 / windows; 1438 1439 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1440 return max_t(unsigned int, floor, scan); 1441 } 1442 1443 static unsigned int task_scan_start(struct task_struct *p) 1444 { 1445 unsigned long smin = task_scan_min(p); 1446 unsigned long period = smin; 1447 struct numa_group *ng; 1448 1449 /* Scale the maximum scan period with the amount of shared memory. */ 1450 rcu_read_lock(); 1451 ng = rcu_dereference(p->numa_group); 1452 if (ng) { 1453 unsigned long shared = group_faults_shared(ng); 1454 unsigned long private = group_faults_priv(ng); 1455 1456 period *= refcount_read(&ng->refcount); 1457 period *= shared + 1; 1458 period /= private + shared + 1; 1459 } 1460 rcu_read_unlock(); 1461 1462 return max(smin, period); 1463 } 1464 1465 static unsigned int task_scan_max(struct task_struct *p) 1466 { 1467 unsigned long smin = task_scan_min(p); 1468 unsigned long smax; 1469 struct numa_group *ng; 1470 1471 /* Watch for min being lower than max due to floor calculations */ 1472 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1473 1474 /* Scale the maximum scan period with the amount of shared memory. */ 1475 ng = deref_curr_numa_group(p); 1476 if (ng) { 1477 unsigned long shared = group_faults_shared(ng); 1478 unsigned long private = group_faults_priv(ng); 1479 unsigned long period = smax; 1480 1481 period *= refcount_read(&ng->refcount); 1482 period *= shared + 1; 1483 period /= private + shared + 1; 1484 1485 smax = max(smax, period); 1486 } 1487 1488 return max(smin, smax); 1489 } 1490 1491 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1492 { 1493 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1494 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1495 } 1496 1497 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1498 { 1499 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1500 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1501 } 1502 1503 /* Shared or private faults. */ 1504 #define NR_NUMA_HINT_FAULT_TYPES 2 1505 1506 /* Memory and CPU locality */ 1507 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1508 1509 /* Averaged statistics, and temporary buffers. */ 1510 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1511 1512 pid_t task_numa_group_id(struct task_struct *p) 1513 { 1514 struct numa_group *ng; 1515 pid_t gid = 0; 1516 1517 rcu_read_lock(); 1518 ng = rcu_dereference(p->numa_group); 1519 if (ng) 1520 gid = ng->gid; 1521 rcu_read_unlock(); 1522 1523 return gid; 1524 } 1525 1526 /* 1527 * The averaged statistics, shared & private, memory & CPU, 1528 * occupy the first half of the array. The second half of the 1529 * array is for current counters, which are averaged into the 1530 * first set by task_numa_placement. 1531 */ 1532 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1533 { 1534 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1535 } 1536 1537 static inline unsigned long task_faults(struct task_struct *p, int nid) 1538 { 1539 if (!p->numa_faults) 1540 return 0; 1541 1542 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1543 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1544 } 1545 1546 static inline unsigned long group_faults(struct task_struct *p, int nid) 1547 { 1548 struct numa_group *ng = deref_task_numa_group(p); 1549 1550 if (!ng) 1551 return 0; 1552 1553 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1554 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1555 } 1556 1557 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1558 { 1559 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1560 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1561 } 1562 1563 static inline unsigned long group_faults_priv(struct numa_group *ng) 1564 { 1565 unsigned long faults = 0; 1566 int node; 1567 1568 for_each_online_node(node) { 1569 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1570 } 1571 1572 return faults; 1573 } 1574 1575 static inline unsigned long group_faults_shared(struct numa_group *ng) 1576 { 1577 unsigned long faults = 0; 1578 int node; 1579 1580 for_each_online_node(node) { 1581 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1582 } 1583 1584 return faults; 1585 } 1586 1587 /* 1588 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1589 * considered part of a numa group's pseudo-interleaving set. Migrations 1590 * between these nodes are slowed down, to allow things to settle down. 1591 */ 1592 #define ACTIVE_NODE_FRACTION 3 1593 1594 static bool numa_is_active_node(int nid, struct numa_group *ng) 1595 { 1596 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1597 } 1598 1599 /* Handle placement on systems where not all nodes are directly connected. */ 1600 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1601 int lim_dist, bool task) 1602 { 1603 unsigned long score = 0; 1604 int node, max_dist; 1605 1606 /* 1607 * All nodes are directly connected, and the same distance 1608 * from each other. No need for fancy placement algorithms. 1609 */ 1610 if (sched_numa_topology_type == NUMA_DIRECT) 1611 return 0; 1612 1613 /* sched_max_numa_distance may be changed in parallel. */ 1614 max_dist = READ_ONCE(sched_max_numa_distance); 1615 /* 1616 * This code is called for each node, introducing N^2 complexity, 1617 * which should be ok given the number of nodes rarely exceeds 8. 1618 */ 1619 for_each_online_node(node) { 1620 unsigned long faults; 1621 int dist = node_distance(nid, node); 1622 1623 /* 1624 * The furthest away nodes in the system are not interesting 1625 * for placement; nid was already counted. 1626 */ 1627 if (dist >= max_dist || node == nid) 1628 continue; 1629 1630 /* 1631 * On systems with a backplane NUMA topology, compare groups 1632 * of nodes, and move tasks towards the group with the most 1633 * memory accesses. When comparing two nodes at distance 1634 * "hoplimit", only nodes closer by than "hoplimit" are part 1635 * of each group. Skip other nodes. 1636 */ 1637 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1638 continue; 1639 1640 /* Add up the faults from nearby nodes. */ 1641 if (task) 1642 faults = task_faults(p, node); 1643 else 1644 faults = group_faults(p, node); 1645 1646 /* 1647 * On systems with a glueless mesh NUMA topology, there are 1648 * no fixed "groups of nodes". Instead, nodes that are not 1649 * directly connected bounce traffic through intermediate 1650 * nodes; a numa_group can occupy any set of nodes. 1651 * The further away a node is, the less the faults count. 1652 * This seems to result in good task placement. 1653 */ 1654 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1655 faults *= (max_dist - dist); 1656 faults /= (max_dist - LOCAL_DISTANCE); 1657 } 1658 1659 score += faults; 1660 } 1661 1662 return score; 1663 } 1664 1665 /* 1666 * These return the fraction of accesses done by a particular task, or 1667 * task group, on a particular numa node. The group weight is given a 1668 * larger multiplier, in order to group tasks together that are almost 1669 * evenly spread out between numa nodes. 1670 */ 1671 static inline unsigned long task_weight(struct task_struct *p, int nid, 1672 int dist) 1673 { 1674 unsigned long faults, total_faults; 1675 1676 if (!p->numa_faults) 1677 return 0; 1678 1679 total_faults = p->total_numa_faults; 1680 1681 if (!total_faults) 1682 return 0; 1683 1684 faults = task_faults(p, nid); 1685 faults += score_nearby_nodes(p, nid, dist, true); 1686 1687 return 1000 * faults / total_faults; 1688 } 1689 1690 static inline unsigned long group_weight(struct task_struct *p, int nid, 1691 int dist) 1692 { 1693 struct numa_group *ng = deref_task_numa_group(p); 1694 unsigned long faults, total_faults; 1695 1696 if (!ng) 1697 return 0; 1698 1699 total_faults = ng->total_faults; 1700 1701 if (!total_faults) 1702 return 0; 1703 1704 faults = group_faults(p, nid); 1705 faults += score_nearby_nodes(p, nid, dist, false); 1706 1707 return 1000 * faults / total_faults; 1708 } 1709 1710 /* 1711 * If memory tiering mode is enabled, cpupid of slow memory page is 1712 * used to record scan time instead of CPU and PID. When tiering mode 1713 * is disabled at run time, the scan time (in cpupid) will be 1714 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1715 * access out of array bound. 1716 */ 1717 static inline bool cpupid_valid(int cpupid) 1718 { 1719 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1720 } 1721 1722 /* 1723 * For memory tiering mode, if there are enough free pages (more than 1724 * enough watermark defined here) in fast memory node, to take full 1725 * advantage of fast memory capacity, all recently accessed slow 1726 * memory pages will be migrated to fast memory node without 1727 * considering hot threshold. 1728 */ 1729 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1730 { 1731 int z; 1732 unsigned long enough_wmark; 1733 1734 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1735 pgdat->node_present_pages >> 4); 1736 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1737 struct zone *zone = pgdat->node_zones + z; 1738 1739 if (!populated_zone(zone)) 1740 continue; 1741 1742 if (zone_watermark_ok(zone, 0, 1743 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1744 ZONE_MOVABLE, 0)) 1745 return true; 1746 } 1747 return false; 1748 } 1749 1750 /* 1751 * For memory tiering mode, when page tables are scanned, the scan 1752 * time will be recorded in struct page in addition to make page 1753 * PROT_NONE for slow memory page. So when the page is accessed, in 1754 * hint page fault handler, the hint page fault latency is calculated 1755 * via, 1756 * 1757 * hint page fault latency = hint page fault time - scan time 1758 * 1759 * The smaller the hint page fault latency, the higher the possibility 1760 * for the page to be hot. 1761 */ 1762 static int numa_hint_fault_latency(struct folio *folio) 1763 { 1764 int last_time, time; 1765 1766 time = jiffies_to_msecs(jiffies); 1767 last_time = folio_xchg_access_time(folio, time); 1768 1769 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1770 } 1771 1772 /* 1773 * For memory tiering mode, too high promotion/demotion throughput may 1774 * hurt application latency. So we provide a mechanism to rate limit 1775 * the number of pages that are tried to be promoted. 1776 */ 1777 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1778 unsigned long rate_limit, int nr) 1779 { 1780 unsigned long nr_cand; 1781 unsigned int now, start; 1782 1783 now = jiffies_to_msecs(jiffies); 1784 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1785 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1786 start = pgdat->nbp_rl_start; 1787 if (now - start > MSEC_PER_SEC && 1788 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1789 pgdat->nbp_rl_nr_cand = nr_cand; 1790 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1791 return true; 1792 return false; 1793 } 1794 1795 #define NUMA_MIGRATION_ADJUST_STEPS 16 1796 1797 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1798 unsigned long rate_limit, 1799 unsigned int ref_th) 1800 { 1801 unsigned int now, start, th_period, unit_th, th; 1802 unsigned long nr_cand, ref_cand, diff_cand; 1803 1804 now = jiffies_to_msecs(jiffies); 1805 th_period = sysctl_numa_balancing_scan_period_max; 1806 start = pgdat->nbp_th_start; 1807 if (now - start > th_period && 1808 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1809 ref_cand = rate_limit * 1810 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1811 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1812 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1813 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1814 th = pgdat->nbp_threshold ? : ref_th; 1815 if (diff_cand > ref_cand * 11 / 10) 1816 th = max(th - unit_th, unit_th); 1817 else if (diff_cand < ref_cand * 9 / 10) 1818 th = min(th + unit_th, ref_th * 2); 1819 pgdat->nbp_th_nr_cand = nr_cand; 1820 pgdat->nbp_threshold = th; 1821 } 1822 } 1823 1824 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1825 int src_nid, int dst_cpu) 1826 { 1827 struct numa_group *ng = deref_curr_numa_group(p); 1828 int dst_nid = cpu_to_node(dst_cpu); 1829 int last_cpupid, this_cpupid; 1830 1831 /* 1832 * The pages in slow memory node should be migrated according 1833 * to hot/cold instead of private/shared. 1834 */ 1835 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1836 !node_is_toptier(src_nid)) { 1837 struct pglist_data *pgdat; 1838 unsigned long rate_limit; 1839 unsigned int latency, th, def_th; 1840 1841 pgdat = NODE_DATA(dst_nid); 1842 if (pgdat_free_space_enough(pgdat)) { 1843 /* workload changed, reset hot threshold */ 1844 pgdat->nbp_threshold = 0; 1845 return true; 1846 } 1847 1848 def_th = sysctl_numa_balancing_hot_threshold; 1849 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1850 (20 - PAGE_SHIFT); 1851 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1852 1853 th = pgdat->nbp_threshold ? : def_th; 1854 latency = numa_hint_fault_latency(folio); 1855 if (latency >= th) 1856 return false; 1857 1858 return !numa_promotion_rate_limit(pgdat, rate_limit, 1859 folio_nr_pages(folio)); 1860 } 1861 1862 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1863 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1864 1865 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1866 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1867 return false; 1868 1869 /* 1870 * Allow first faults or private faults to migrate immediately early in 1871 * the lifetime of a task. The magic number 4 is based on waiting for 1872 * two full passes of the "multi-stage node selection" test that is 1873 * executed below. 1874 */ 1875 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1876 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1877 return true; 1878 1879 /* 1880 * Multi-stage node selection is used in conjunction with a periodic 1881 * migration fault to build a temporal task<->page relation. By using 1882 * a two-stage filter we remove short/unlikely relations. 1883 * 1884 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1885 * a task's usage of a particular page (n_p) per total usage of this 1886 * page (n_t) (in a given time-span) to a probability. 1887 * 1888 * Our periodic faults will sample this probability and getting the 1889 * same result twice in a row, given these samples are fully 1890 * independent, is then given by P(n)^2, provided our sample period 1891 * is sufficiently short compared to the usage pattern. 1892 * 1893 * This quadric squishes small probabilities, making it less likely we 1894 * act on an unlikely task<->page relation. 1895 */ 1896 if (!cpupid_pid_unset(last_cpupid) && 1897 cpupid_to_nid(last_cpupid) != dst_nid) 1898 return false; 1899 1900 /* Always allow migrate on private faults */ 1901 if (cpupid_match_pid(p, last_cpupid)) 1902 return true; 1903 1904 /* A shared fault, but p->numa_group has not been set up yet. */ 1905 if (!ng) 1906 return true; 1907 1908 /* 1909 * Destination node is much more heavily used than the source 1910 * node? Allow migration. 1911 */ 1912 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1913 ACTIVE_NODE_FRACTION) 1914 return true; 1915 1916 /* 1917 * Distribute memory according to CPU & memory use on each node, 1918 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1919 * 1920 * faults_cpu(dst) 3 faults_cpu(src) 1921 * --------------- * - > --------------- 1922 * faults_mem(dst) 4 faults_mem(src) 1923 */ 1924 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1925 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1926 } 1927 1928 /* 1929 * 'numa_type' describes the node at the moment of load balancing. 1930 */ 1931 enum numa_type { 1932 /* The node has spare capacity that can be used to run more tasks. */ 1933 node_has_spare = 0, 1934 /* 1935 * The node is fully used and the tasks don't compete for more CPU 1936 * cycles. Nevertheless, some tasks might wait before running. 1937 */ 1938 node_fully_busy, 1939 /* 1940 * The node is overloaded and can't provide expected CPU cycles to all 1941 * tasks. 1942 */ 1943 node_overloaded 1944 }; 1945 1946 /* Cached statistics for all CPUs within a node */ 1947 struct numa_stats { 1948 unsigned long load; 1949 unsigned long runnable; 1950 unsigned long util; 1951 /* Total compute capacity of CPUs on a node */ 1952 unsigned long compute_capacity; 1953 unsigned int nr_running; 1954 unsigned int weight; 1955 enum numa_type node_type; 1956 int idle_cpu; 1957 }; 1958 1959 struct task_numa_env { 1960 struct task_struct *p; 1961 1962 int src_cpu, src_nid; 1963 int dst_cpu, dst_nid; 1964 int imb_numa_nr; 1965 1966 struct numa_stats src_stats, dst_stats; 1967 1968 int imbalance_pct; 1969 int dist; 1970 1971 struct task_struct *best_task; 1972 long best_imp; 1973 int best_cpu; 1974 }; 1975 1976 static unsigned long cpu_load(struct rq *rq); 1977 static unsigned long cpu_runnable(struct rq *rq); 1978 1979 static inline enum 1980 numa_type numa_classify(unsigned int imbalance_pct, 1981 struct numa_stats *ns) 1982 { 1983 if ((ns->nr_running > ns->weight) && 1984 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1985 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1986 return node_overloaded; 1987 1988 if ((ns->nr_running < ns->weight) || 1989 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1990 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1991 return node_has_spare; 1992 1993 return node_fully_busy; 1994 } 1995 1996 #ifdef CONFIG_SCHED_SMT 1997 /* Forward declarations of select_idle_sibling helpers */ 1998 static inline bool test_idle_cores(int cpu); 1999 static inline int numa_idle_core(int idle_core, int cpu) 2000 { 2001 if (!static_branch_likely(&sched_smt_present) || 2002 idle_core >= 0 || !test_idle_cores(cpu)) 2003 return idle_core; 2004 2005 /* 2006 * Prefer cores instead of packing HT siblings 2007 * and triggering future load balancing. 2008 */ 2009 if (is_core_idle(cpu)) 2010 idle_core = cpu; 2011 2012 return idle_core; 2013 } 2014 #else 2015 static inline int numa_idle_core(int idle_core, int cpu) 2016 { 2017 return idle_core; 2018 } 2019 #endif 2020 2021 /* 2022 * Gather all necessary information to make NUMA balancing placement 2023 * decisions that are compatible with standard load balancer. This 2024 * borrows code and logic from update_sg_lb_stats but sharing a 2025 * common implementation is impractical. 2026 */ 2027 static void update_numa_stats(struct task_numa_env *env, 2028 struct numa_stats *ns, int nid, 2029 bool find_idle) 2030 { 2031 int cpu, idle_core = -1; 2032 2033 memset(ns, 0, sizeof(*ns)); 2034 ns->idle_cpu = -1; 2035 2036 rcu_read_lock(); 2037 for_each_cpu(cpu, cpumask_of_node(nid)) { 2038 struct rq *rq = cpu_rq(cpu); 2039 2040 ns->load += cpu_load(rq); 2041 ns->runnable += cpu_runnable(rq); 2042 ns->util += cpu_util_cfs(cpu); 2043 ns->nr_running += rq->cfs.h_nr_running; 2044 ns->compute_capacity += capacity_of(cpu); 2045 2046 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2047 if (READ_ONCE(rq->numa_migrate_on) || 2048 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2049 continue; 2050 2051 if (ns->idle_cpu == -1) 2052 ns->idle_cpu = cpu; 2053 2054 idle_core = numa_idle_core(idle_core, cpu); 2055 } 2056 } 2057 rcu_read_unlock(); 2058 2059 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2060 2061 ns->node_type = numa_classify(env->imbalance_pct, ns); 2062 2063 if (idle_core >= 0) 2064 ns->idle_cpu = idle_core; 2065 } 2066 2067 static void task_numa_assign(struct task_numa_env *env, 2068 struct task_struct *p, long imp) 2069 { 2070 struct rq *rq = cpu_rq(env->dst_cpu); 2071 2072 /* Check if run-queue part of active NUMA balance. */ 2073 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2074 int cpu; 2075 int start = env->dst_cpu; 2076 2077 /* Find alternative idle CPU. */ 2078 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2079 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2080 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2081 continue; 2082 } 2083 2084 env->dst_cpu = cpu; 2085 rq = cpu_rq(env->dst_cpu); 2086 if (!xchg(&rq->numa_migrate_on, 1)) 2087 goto assign; 2088 } 2089 2090 /* Failed to find an alternative idle CPU */ 2091 return; 2092 } 2093 2094 assign: 2095 /* 2096 * Clear previous best_cpu/rq numa-migrate flag, since task now 2097 * found a better CPU to move/swap. 2098 */ 2099 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2100 rq = cpu_rq(env->best_cpu); 2101 WRITE_ONCE(rq->numa_migrate_on, 0); 2102 } 2103 2104 if (env->best_task) 2105 put_task_struct(env->best_task); 2106 if (p) 2107 get_task_struct(p); 2108 2109 env->best_task = p; 2110 env->best_imp = imp; 2111 env->best_cpu = env->dst_cpu; 2112 } 2113 2114 static bool load_too_imbalanced(long src_load, long dst_load, 2115 struct task_numa_env *env) 2116 { 2117 long imb, old_imb; 2118 long orig_src_load, orig_dst_load; 2119 long src_capacity, dst_capacity; 2120 2121 /* 2122 * The load is corrected for the CPU capacity available on each node. 2123 * 2124 * src_load dst_load 2125 * ------------ vs --------- 2126 * src_capacity dst_capacity 2127 */ 2128 src_capacity = env->src_stats.compute_capacity; 2129 dst_capacity = env->dst_stats.compute_capacity; 2130 2131 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2132 2133 orig_src_load = env->src_stats.load; 2134 orig_dst_load = env->dst_stats.load; 2135 2136 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2137 2138 /* Would this change make things worse? */ 2139 return (imb > old_imb); 2140 } 2141 2142 /* 2143 * Maximum NUMA importance can be 1998 (2*999); 2144 * SMALLIMP @ 30 would be close to 1998/64. 2145 * Used to deter task migration. 2146 */ 2147 #define SMALLIMP 30 2148 2149 /* 2150 * This checks if the overall compute and NUMA accesses of the system would 2151 * be improved if the source tasks was migrated to the target dst_cpu taking 2152 * into account that it might be best if task running on the dst_cpu should 2153 * be exchanged with the source task 2154 */ 2155 static bool task_numa_compare(struct task_numa_env *env, 2156 long taskimp, long groupimp, bool maymove) 2157 { 2158 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2159 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2160 long imp = p_ng ? groupimp : taskimp; 2161 struct task_struct *cur; 2162 long src_load, dst_load; 2163 int dist = env->dist; 2164 long moveimp = imp; 2165 long load; 2166 bool stopsearch = false; 2167 2168 if (READ_ONCE(dst_rq->numa_migrate_on)) 2169 return false; 2170 2171 rcu_read_lock(); 2172 cur = rcu_dereference(dst_rq->curr); 2173 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2174 cur = NULL; 2175 2176 /* 2177 * Because we have preemption enabled we can get migrated around and 2178 * end try selecting ourselves (current == env->p) as a swap candidate. 2179 */ 2180 if (cur == env->p) { 2181 stopsearch = true; 2182 goto unlock; 2183 } 2184 2185 if (!cur) { 2186 if (maymove && moveimp >= env->best_imp) 2187 goto assign; 2188 else 2189 goto unlock; 2190 } 2191 2192 /* Skip this swap candidate if cannot move to the source cpu. */ 2193 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2194 goto unlock; 2195 2196 /* 2197 * Skip this swap candidate if it is not moving to its preferred 2198 * node and the best task is. 2199 */ 2200 if (env->best_task && 2201 env->best_task->numa_preferred_nid == env->src_nid && 2202 cur->numa_preferred_nid != env->src_nid) { 2203 goto unlock; 2204 } 2205 2206 /* 2207 * "imp" is the fault differential for the source task between the 2208 * source and destination node. Calculate the total differential for 2209 * the source task and potential destination task. The more negative 2210 * the value is, the more remote accesses that would be expected to 2211 * be incurred if the tasks were swapped. 2212 * 2213 * If dst and source tasks are in the same NUMA group, or not 2214 * in any group then look only at task weights. 2215 */ 2216 cur_ng = rcu_dereference(cur->numa_group); 2217 if (cur_ng == p_ng) { 2218 /* 2219 * Do not swap within a group or between tasks that have 2220 * no group if there is spare capacity. Swapping does 2221 * not address the load imbalance and helps one task at 2222 * the cost of punishing another. 2223 */ 2224 if (env->dst_stats.node_type == node_has_spare) 2225 goto unlock; 2226 2227 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2228 task_weight(cur, env->dst_nid, dist); 2229 /* 2230 * Add some hysteresis to prevent swapping the 2231 * tasks within a group over tiny differences. 2232 */ 2233 if (cur_ng) 2234 imp -= imp / 16; 2235 } else { 2236 /* 2237 * Compare the group weights. If a task is all by itself 2238 * (not part of a group), use the task weight instead. 2239 */ 2240 if (cur_ng && p_ng) 2241 imp += group_weight(cur, env->src_nid, dist) - 2242 group_weight(cur, env->dst_nid, dist); 2243 else 2244 imp += task_weight(cur, env->src_nid, dist) - 2245 task_weight(cur, env->dst_nid, dist); 2246 } 2247 2248 /* Discourage picking a task already on its preferred node */ 2249 if (cur->numa_preferred_nid == env->dst_nid) 2250 imp -= imp / 16; 2251 2252 /* 2253 * Encourage picking a task that moves to its preferred node. 2254 * This potentially makes imp larger than it's maximum of 2255 * 1998 (see SMALLIMP and task_weight for why) but in this 2256 * case, it does not matter. 2257 */ 2258 if (cur->numa_preferred_nid == env->src_nid) 2259 imp += imp / 8; 2260 2261 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2262 imp = moveimp; 2263 cur = NULL; 2264 goto assign; 2265 } 2266 2267 /* 2268 * Prefer swapping with a task moving to its preferred node over a 2269 * task that is not. 2270 */ 2271 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2272 env->best_task->numa_preferred_nid != env->src_nid) { 2273 goto assign; 2274 } 2275 2276 /* 2277 * If the NUMA importance is less than SMALLIMP, 2278 * task migration might only result in ping pong 2279 * of tasks and also hurt performance due to cache 2280 * misses. 2281 */ 2282 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2283 goto unlock; 2284 2285 /* 2286 * In the overloaded case, try and keep the load balanced. 2287 */ 2288 load = task_h_load(env->p) - task_h_load(cur); 2289 if (!load) 2290 goto assign; 2291 2292 dst_load = env->dst_stats.load + load; 2293 src_load = env->src_stats.load - load; 2294 2295 if (load_too_imbalanced(src_load, dst_load, env)) 2296 goto unlock; 2297 2298 assign: 2299 /* Evaluate an idle CPU for a task numa move. */ 2300 if (!cur) { 2301 int cpu = env->dst_stats.idle_cpu; 2302 2303 /* Nothing cached so current CPU went idle since the search. */ 2304 if (cpu < 0) 2305 cpu = env->dst_cpu; 2306 2307 /* 2308 * If the CPU is no longer truly idle and the previous best CPU 2309 * is, keep using it. 2310 */ 2311 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2312 idle_cpu(env->best_cpu)) { 2313 cpu = env->best_cpu; 2314 } 2315 2316 env->dst_cpu = cpu; 2317 } 2318 2319 task_numa_assign(env, cur, imp); 2320 2321 /* 2322 * If a move to idle is allowed because there is capacity or load 2323 * balance improves then stop the search. While a better swap 2324 * candidate may exist, a search is not free. 2325 */ 2326 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2327 stopsearch = true; 2328 2329 /* 2330 * If a swap candidate must be identified and the current best task 2331 * moves its preferred node then stop the search. 2332 */ 2333 if (!maymove && env->best_task && 2334 env->best_task->numa_preferred_nid == env->src_nid) { 2335 stopsearch = true; 2336 } 2337 unlock: 2338 rcu_read_unlock(); 2339 2340 return stopsearch; 2341 } 2342 2343 static void task_numa_find_cpu(struct task_numa_env *env, 2344 long taskimp, long groupimp) 2345 { 2346 bool maymove = false; 2347 int cpu; 2348 2349 /* 2350 * If dst node has spare capacity, then check if there is an 2351 * imbalance that would be overruled by the load balancer. 2352 */ 2353 if (env->dst_stats.node_type == node_has_spare) { 2354 unsigned int imbalance; 2355 int src_running, dst_running; 2356 2357 /* 2358 * Would movement cause an imbalance? Note that if src has 2359 * more running tasks that the imbalance is ignored as the 2360 * move improves the imbalance from the perspective of the 2361 * CPU load balancer. 2362 * */ 2363 src_running = env->src_stats.nr_running - 1; 2364 dst_running = env->dst_stats.nr_running + 1; 2365 imbalance = max(0, dst_running - src_running); 2366 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2367 env->imb_numa_nr); 2368 2369 /* Use idle CPU if there is no imbalance */ 2370 if (!imbalance) { 2371 maymove = true; 2372 if (env->dst_stats.idle_cpu >= 0) { 2373 env->dst_cpu = env->dst_stats.idle_cpu; 2374 task_numa_assign(env, NULL, 0); 2375 return; 2376 } 2377 } 2378 } else { 2379 long src_load, dst_load, load; 2380 /* 2381 * If the improvement from just moving env->p direction is better 2382 * than swapping tasks around, check if a move is possible. 2383 */ 2384 load = task_h_load(env->p); 2385 dst_load = env->dst_stats.load + load; 2386 src_load = env->src_stats.load - load; 2387 maymove = !load_too_imbalanced(src_load, dst_load, env); 2388 } 2389 2390 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2391 /* Skip this CPU if the source task cannot migrate */ 2392 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2393 continue; 2394 2395 env->dst_cpu = cpu; 2396 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2397 break; 2398 } 2399 } 2400 2401 static int task_numa_migrate(struct task_struct *p) 2402 { 2403 struct task_numa_env env = { 2404 .p = p, 2405 2406 .src_cpu = task_cpu(p), 2407 .src_nid = task_node(p), 2408 2409 .imbalance_pct = 112, 2410 2411 .best_task = NULL, 2412 .best_imp = 0, 2413 .best_cpu = -1, 2414 }; 2415 unsigned long taskweight, groupweight; 2416 struct sched_domain *sd; 2417 long taskimp, groupimp; 2418 struct numa_group *ng; 2419 struct rq *best_rq; 2420 int nid, ret, dist; 2421 2422 /* 2423 * Pick the lowest SD_NUMA domain, as that would have the smallest 2424 * imbalance and would be the first to start moving tasks about. 2425 * 2426 * And we want to avoid any moving of tasks about, as that would create 2427 * random movement of tasks -- counter the numa conditions we're trying 2428 * to satisfy here. 2429 */ 2430 rcu_read_lock(); 2431 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2432 if (sd) { 2433 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2434 env.imb_numa_nr = sd->imb_numa_nr; 2435 } 2436 rcu_read_unlock(); 2437 2438 /* 2439 * Cpusets can break the scheduler domain tree into smaller 2440 * balance domains, some of which do not cross NUMA boundaries. 2441 * Tasks that are "trapped" in such domains cannot be migrated 2442 * elsewhere, so there is no point in (re)trying. 2443 */ 2444 if (unlikely(!sd)) { 2445 sched_setnuma(p, task_node(p)); 2446 return -EINVAL; 2447 } 2448 2449 env.dst_nid = p->numa_preferred_nid; 2450 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2451 taskweight = task_weight(p, env.src_nid, dist); 2452 groupweight = group_weight(p, env.src_nid, dist); 2453 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2454 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2455 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2456 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2457 2458 /* Try to find a spot on the preferred nid. */ 2459 task_numa_find_cpu(&env, taskimp, groupimp); 2460 2461 /* 2462 * Look at other nodes in these cases: 2463 * - there is no space available on the preferred_nid 2464 * - the task is part of a numa_group that is interleaved across 2465 * multiple NUMA nodes; in order to better consolidate the group, 2466 * we need to check other locations. 2467 */ 2468 ng = deref_curr_numa_group(p); 2469 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2470 for_each_node_state(nid, N_CPU) { 2471 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2472 continue; 2473 2474 dist = node_distance(env.src_nid, env.dst_nid); 2475 if (sched_numa_topology_type == NUMA_BACKPLANE && 2476 dist != env.dist) { 2477 taskweight = task_weight(p, env.src_nid, dist); 2478 groupweight = group_weight(p, env.src_nid, dist); 2479 } 2480 2481 /* Only consider nodes where both task and groups benefit */ 2482 taskimp = task_weight(p, nid, dist) - taskweight; 2483 groupimp = group_weight(p, nid, dist) - groupweight; 2484 if (taskimp < 0 && groupimp < 0) 2485 continue; 2486 2487 env.dist = dist; 2488 env.dst_nid = nid; 2489 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2490 task_numa_find_cpu(&env, taskimp, groupimp); 2491 } 2492 } 2493 2494 /* 2495 * If the task is part of a workload that spans multiple NUMA nodes, 2496 * and is migrating into one of the workload's active nodes, remember 2497 * this node as the task's preferred numa node, so the workload can 2498 * settle down. 2499 * A task that migrated to a second choice node will be better off 2500 * trying for a better one later. Do not set the preferred node here. 2501 */ 2502 if (ng) { 2503 if (env.best_cpu == -1) 2504 nid = env.src_nid; 2505 else 2506 nid = cpu_to_node(env.best_cpu); 2507 2508 if (nid != p->numa_preferred_nid) 2509 sched_setnuma(p, nid); 2510 } 2511 2512 /* No better CPU than the current one was found. */ 2513 if (env.best_cpu == -1) { 2514 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2515 return -EAGAIN; 2516 } 2517 2518 best_rq = cpu_rq(env.best_cpu); 2519 if (env.best_task == NULL) { 2520 ret = migrate_task_to(p, env.best_cpu); 2521 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2522 if (ret != 0) 2523 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2524 return ret; 2525 } 2526 2527 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2528 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2529 2530 if (ret != 0) 2531 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2532 put_task_struct(env.best_task); 2533 return ret; 2534 } 2535 2536 /* Attempt to migrate a task to a CPU on the preferred node. */ 2537 static void numa_migrate_preferred(struct task_struct *p) 2538 { 2539 unsigned long interval = HZ; 2540 2541 /* This task has no NUMA fault statistics yet */ 2542 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2543 return; 2544 2545 /* Periodically retry migrating the task to the preferred node */ 2546 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2547 p->numa_migrate_retry = jiffies + interval; 2548 2549 /* Success if task is already running on preferred CPU */ 2550 if (task_node(p) == p->numa_preferred_nid) 2551 return; 2552 2553 /* Otherwise, try migrate to a CPU on the preferred node */ 2554 task_numa_migrate(p); 2555 } 2556 2557 /* 2558 * Find out how many nodes the workload is actively running on. Do this by 2559 * tracking the nodes from which NUMA hinting faults are triggered. This can 2560 * be different from the set of nodes where the workload's memory is currently 2561 * located. 2562 */ 2563 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2564 { 2565 unsigned long faults, max_faults = 0; 2566 int nid, active_nodes = 0; 2567 2568 for_each_node_state(nid, N_CPU) { 2569 faults = group_faults_cpu(numa_group, nid); 2570 if (faults > max_faults) 2571 max_faults = faults; 2572 } 2573 2574 for_each_node_state(nid, N_CPU) { 2575 faults = group_faults_cpu(numa_group, nid); 2576 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2577 active_nodes++; 2578 } 2579 2580 numa_group->max_faults_cpu = max_faults; 2581 numa_group->active_nodes = active_nodes; 2582 } 2583 2584 /* 2585 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2586 * increments. The more local the fault statistics are, the higher the scan 2587 * period will be for the next scan window. If local/(local+remote) ratio is 2588 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2589 * the scan period will decrease. Aim for 70% local accesses. 2590 */ 2591 #define NUMA_PERIOD_SLOTS 10 2592 #define NUMA_PERIOD_THRESHOLD 7 2593 2594 /* 2595 * Increase the scan period (slow down scanning) if the majority of 2596 * our memory is already on our local node, or if the majority of 2597 * the page accesses are shared with other processes. 2598 * Otherwise, decrease the scan period. 2599 */ 2600 static void update_task_scan_period(struct task_struct *p, 2601 unsigned long shared, unsigned long private) 2602 { 2603 unsigned int period_slot; 2604 int lr_ratio, ps_ratio; 2605 int diff; 2606 2607 unsigned long remote = p->numa_faults_locality[0]; 2608 unsigned long local = p->numa_faults_locality[1]; 2609 2610 /* 2611 * If there were no record hinting faults then either the task is 2612 * completely idle or all activity is in areas that are not of interest 2613 * to automatic numa balancing. Related to that, if there were failed 2614 * migration then it implies we are migrating too quickly or the local 2615 * node is overloaded. In either case, scan slower 2616 */ 2617 if (local + shared == 0 || p->numa_faults_locality[2]) { 2618 p->numa_scan_period = min(p->numa_scan_period_max, 2619 p->numa_scan_period << 1); 2620 2621 p->mm->numa_next_scan = jiffies + 2622 msecs_to_jiffies(p->numa_scan_period); 2623 2624 return; 2625 } 2626 2627 /* 2628 * Prepare to scale scan period relative to the current period. 2629 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2630 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2631 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2632 */ 2633 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2634 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2635 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2636 2637 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2638 /* 2639 * Most memory accesses are local. There is no need to 2640 * do fast NUMA scanning, since memory is already local. 2641 */ 2642 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2643 if (!slot) 2644 slot = 1; 2645 diff = slot * period_slot; 2646 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2647 /* 2648 * Most memory accesses are shared with other tasks. 2649 * There is no point in continuing fast NUMA scanning, 2650 * since other tasks may just move the memory elsewhere. 2651 */ 2652 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2653 if (!slot) 2654 slot = 1; 2655 diff = slot * period_slot; 2656 } else { 2657 /* 2658 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2659 * yet they are not on the local NUMA node. Speed up 2660 * NUMA scanning to get the memory moved over. 2661 */ 2662 int ratio = max(lr_ratio, ps_ratio); 2663 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2664 } 2665 2666 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2667 task_scan_min(p), task_scan_max(p)); 2668 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2669 } 2670 2671 /* 2672 * Get the fraction of time the task has been running since the last 2673 * NUMA placement cycle. The scheduler keeps similar statistics, but 2674 * decays those on a 32ms period, which is orders of magnitude off 2675 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2676 * stats only if the task is so new there are no NUMA statistics yet. 2677 */ 2678 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2679 { 2680 u64 runtime, delta, now; 2681 /* Use the start of this time slice to avoid calculations. */ 2682 now = p->se.exec_start; 2683 runtime = p->se.sum_exec_runtime; 2684 2685 if (p->last_task_numa_placement) { 2686 delta = runtime - p->last_sum_exec_runtime; 2687 *period = now - p->last_task_numa_placement; 2688 2689 /* Avoid time going backwards, prevent potential divide error: */ 2690 if (unlikely((s64)*period < 0)) 2691 *period = 0; 2692 } else { 2693 delta = p->se.avg.load_sum; 2694 *period = LOAD_AVG_MAX; 2695 } 2696 2697 p->last_sum_exec_runtime = runtime; 2698 p->last_task_numa_placement = now; 2699 2700 return delta; 2701 } 2702 2703 /* 2704 * Determine the preferred nid for a task in a numa_group. This needs to 2705 * be done in a way that produces consistent results with group_weight, 2706 * otherwise workloads might not converge. 2707 */ 2708 static int preferred_group_nid(struct task_struct *p, int nid) 2709 { 2710 nodemask_t nodes; 2711 int dist; 2712 2713 /* Direct connections between all NUMA nodes. */ 2714 if (sched_numa_topology_type == NUMA_DIRECT) 2715 return nid; 2716 2717 /* 2718 * On a system with glueless mesh NUMA topology, group_weight 2719 * scores nodes according to the number of NUMA hinting faults on 2720 * both the node itself, and on nearby nodes. 2721 */ 2722 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2723 unsigned long score, max_score = 0; 2724 int node, max_node = nid; 2725 2726 dist = sched_max_numa_distance; 2727 2728 for_each_node_state(node, N_CPU) { 2729 score = group_weight(p, node, dist); 2730 if (score > max_score) { 2731 max_score = score; 2732 max_node = node; 2733 } 2734 } 2735 return max_node; 2736 } 2737 2738 /* 2739 * Finding the preferred nid in a system with NUMA backplane 2740 * interconnect topology is more involved. The goal is to locate 2741 * tasks from numa_groups near each other in the system, and 2742 * untangle workloads from different sides of the system. This requires 2743 * searching down the hierarchy of node groups, recursively searching 2744 * inside the highest scoring group of nodes. The nodemask tricks 2745 * keep the complexity of the search down. 2746 */ 2747 nodes = node_states[N_CPU]; 2748 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2749 unsigned long max_faults = 0; 2750 nodemask_t max_group = NODE_MASK_NONE; 2751 int a, b; 2752 2753 /* Are there nodes at this distance from each other? */ 2754 if (!find_numa_distance(dist)) 2755 continue; 2756 2757 for_each_node_mask(a, nodes) { 2758 unsigned long faults = 0; 2759 nodemask_t this_group; 2760 nodes_clear(this_group); 2761 2762 /* Sum group's NUMA faults; includes a==b case. */ 2763 for_each_node_mask(b, nodes) { 2764 if (node_distance(a, b) < dist) { 2765 faults += group_faults(p, b); 2766 node_set(b, this_group); 2767 node_clear(b, nodes); 2768 } 2769 } 2770 2771 /* Remember the top group. */ 2772 if (faults > max_faults) { 2773 max_faults = faults; 2774 max_group = this_group; 2775 /* 2776 * subtle: at the smallest distance there is 2777 * just one node left in each "group", the 2778 * winner is the preferred nid. 2779 */ 2780 nid = a; 2781 } 2782 } 2783 /* Next round, evaluate the nodes within max_group. */ 2784 if (!max_faults) 2785 break; 2786 nodes = max_group; 2787 } 2788 return nid; 2789 } 2790 2791 static void task_numa_placement(struct task_struct *p) 2792 { 2793 int seq, nid, max_nid = NUMA_NO_NODE; 2794 unsigned long max_faults = 0; 2795 unsigned long fault_types[2] = { 0, 0 }; 2796 unsigned long total_faults; 2797 u64 runtime, period; 2798 spinlock_t *group_lock = NULL; 2799 struct numa_group *ng; 2800 2801 /* 2802 * The p->mm->numa_scan_seq field gets updated without 2803 * exclusive access. Use READ_ONCE() here to ensure 2804 * that the field is read in a single access: 2805 */ 2806 seq = READ_ONCE(p->mm->numa_scan_seq); 2807 if (p->numa_scan_seq == seq) 2808 return; 2809 p->numa_scan_seq = seq; 2810 p->numa_scan_period_max = task_scan_max(p); 2811 2812 total_faults = p->numa_faults_locality[0] + 2813 p->numa_faults_locality[1]; 2814 runtime = numa_get_avg_runtime(p, &period); 2815 2816 /* If the task is part of a group prevent parallel updates to group stats */ 2817 ng = deref_curr_numa_group(p); 2818 if (ng) { 2819 group_lock = &ng->lock; 2820 spin_lock_irq(group_lock); 2821 } 2822 2823 /* Find the node with the highest number of faults */ 2824 for_each_online_node(nid) { 2825 /* Keep track of the offsets in numa_faults array */ 2826 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2827 unsigned long faults = 0, group_faults = 0; 2828 int priv; 2829 2830 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2831 long diff, f_diff, f_weight; 2832 2833 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2834 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2835 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2836 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2837 2838 /* Decay existing window, copy faults since last scan */ 2839 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2840 fault_types[priv] += p->numa_faults[membuf_idx]; 2841 p->numa_faults[membuf_idx] = 0; 2842 2843 /* 2844 * Normalize the faults_from, so all tasks in a group 2845 * count according to CPU use, instead of by the raw 2846 * number of faults. Tasks with little runtime have 2847 * little over-all impact on throughput, and thus their 2848 * faults are less important. 2849 */ 2850 f_weight = div64_u64(runtime << 16, period + 1); 2851 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2852 (total_faults + 1); 2853 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2854 p->numa_faults[cpubuf_idx] = 0; 2855 2856 p->numa_faults[mem_idx] += diff; 2857 p->numa_faults[cpu_idx] += f_diff; 2858 faults += p->numa_faults[mem_idx]; 2859 p->total_numa_faults += diff; 2860 if (ng) { 2861 /* 2862 * safe because we can only change our own group 2863 * 2864 * mem_idx represents the offset for a given 2865 * nid and priv in a specific region because it 2866 * is at the beginning of the numa_faults array. 2867 */ 2868 ng->faults[mem_idx] += diff; 2869 ng->faults[cpu_idx] += f_diff; 2870 ng->total_faults += diff; 2871 group_faults += ng->faults[mem_idx]; 2872 } 2873 } 2874 2875 if (!ng) { 2876 if (faults > max_faults) { 2877 max_faults = faults; 2878 max_nid = nid; 2879 } 2880 } else if (group_faults > max_faults) { 2881 max_faults = group_faults; 2882 max_nid = nid; 2883 } 2884 } 2885 2886 /* Cannot migrate task to CPU-less node */ 2887 max_nid = numa_nearest_node(max_nid, N_CPU); 2888 2889 if (ng) { 2890 numa_group_count_active_nodes(ng); 2891 spin_unlock_irq(group_lock); 2892 max_nid = preferred_group_nid(p, max_nid); 2893 } 2894 2895 if (max_faults) { 2896 /* Set the new preferred node */ 2897 if (max_nid != p->numa_preferred_nid) 2898 sched_setnuma(p, max_nid); 2899 } 2900 2901 update_task_scan_period(p, fault_types[0], fault_types[1]); 2902 } 2903 2904 static inline int get_numa_group(struct numa_group *grp) 2905 { 2906 return refcount_inc_not_zero(&grp->refcount); 2907 } 2908 2909 static inline void put_numa_group(struct numa_group *grp) 2910 { 2911 if (refcount_dec_and_test(&grp->refcount)) 2912 kfree_rcu(grp, rcu); 2913 } 2914 2915 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2916 int *priv) 2917 { 2918 struct numa_group *grp, *my_grp; 2919 struct task_struct *tsk; 2920 bool join = false; 2921 int cpu = cpupid_to_cpu(cpupid); 2922 int i; 2923 2924 if (unlikely(!deref_curr_numa_group(p))) { 2925 unsigned int size = sizeof(struct numa_group) + 2926 NR_NUMA_HINT_FAULT_STATS * 2927 nr_node_ids * sizeof(unsigned long); 2928 2929 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2930 if (!grp) 2931 return; 2932 2933 refcount_set(&grp->refcount, 1); 2934 grp->active_nodes = 1; 2935 grp->max_faults_cpu = 0; 2936 spin_lock_init(&grp->lock); 2937 grp->gid = p->pid; 2938 2939 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2940 grp->faults[i] = p->numa_faults[i]; 2941 2942 grp->total_faults = p->total_numa_faults; 2943 2944 grp->nr_tasks++; 2945 rcu_assign_pointer(p->numa_group, grp); 2946 } 2947 2948 rcu_read_lock(); 2949 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2950 2951 if (!cpupid_match_pid(tsk, cpupid)) 2952 goto no_join; 2953 2954 grp = rcu_dereference(tsk->numa_group); 2955 if (!grp) 2956 goto no_join; 2957 2958 my_grp = deref_curr_numa_group(p); 2959 if (grp == my_grp) 2960 goto no_join; 2961 2962 /* 2963 * Only join the other group if its bigger; if we're the bigger group, 2964 * the other task will join us. 2965 */ 2966 if (my_grp->nr_tasks > grp->nr_tasks) 2967 goto no_join; 2968 2969 /* 2970 * Tie-break on the grp address. 2971 */ 2972 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2973 goto no_join; 2974 2975 /* Always join threads in the same process. */ 2976 if (tsk->mm == current->mm) 2977 join = true; 2978 2979 /* Simple filter to avoid false positives due to PID collisions */ 2980 if (flags & TNF_SHARED) 2981 join = true; 2982 2983 /* Update priv based on whether false sharing was detected */ 2984 *priv = !join; 2985 2986 if (join && !get_numa_group(grp)) 2987 goto no_join; 2988 2989 rcu_read_unlock(); 2990 2991 if (!join) 2992 return; 2993 2994 WARN_ON_ONCE(irqs_disabled()); 2995 double_lock_irq(&my_grp->lock, &grp->lock); 2996 2997 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2998 my_grp->faults[i] -= p->numa_faults[i]; 2999 grp->faults[i] += p->numa_faults[i]; 3000 } 3001 my_grp->total_faults -= p->total_numa_faults; 3002 grp->total_faults += p->total_numa_faults; 3003 3004 my_grp->nr_tasks--; 3005 grp->nr_tasks++; 3006 3007 spin_unlock(&my_grp->lock); 3008 spin_unlock_irq(&grp->lock); 3009 3010 rcu_assign_pointer(p->numa_group, grp); 3011 3012 put_numa_group(my_grp); 3013 return; 3014 3015 no_join: 3016 rcu_read_unlock(); 3017 return; 3018 } 3019 3020 /* 3021 * Get rid of NUMA statistics associated with a task (either current or dead). 3022 * If @final is set, the task is dead and has reached refcount zero, so we can 3023 * safely free all relevant data structures. Otherwise, there might be 3024 * concurrent reads from places like load balancing and procfs, and we should 3025 * reset the data back to default state without freeing ->numa_faults. 3026 */ 3027 void task_numa_free(struct task_struct *p, bool final) 3028 { 3029 /* safe: p either is current or is being freed by current */ 3030 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3031 unsigned long *numa_faults = p->numa_faults; 3032 unsigned long flags; 3033 int i; 3034 3035 if (!numa_faults) 3036 return; 3037 3038 if (grp) { 3039 spin_lock_irqsave(&grp->lock, flags); 3040 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3041 grp->faults[i] -= p->numa_faults[i]; 3042 grp->total_faults -= p->total_numa_faults; 3043 3044 grp->nr_tasks--; 3045 spin_unlock_irqrestore(&grp->lock, flags); 3046 RCU_INIT_POINTER(p->numa_group, NULL); 3047 put_numa_group(grp); 3048 } 3049 3050 if (final) { 3051 p->numa_faults = NULL; 3052 kfree(numa_faults); 3053 } else { 3054 p->total_numa_faults = 0; 3055 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3056 numa_faults[i] = 0; 3057 } 3058 } 3059 3060 /* 3061 * Got a PROT_NONE fault for a page on @node. 3062 */ 3063 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3064 { 3065 struct task_struct *p = current; 3066 bool migrated = flags & TNF_MIGRATED; 3067 int cpu_node = task_node(current); 3068 int local = !!(flags & TNF_FAULT_LOCAL); 3069 struct numa_group *ng; 3070 int priv; 3071 3072 if (!static_branch_likely(&sched_numa_balancing)) 3073 return; 3074 3075 /* for example, ksmd faulting in a user's mm */ 3076 if (!p->mm) 3077 return; 3078 3079 /* 3080 * NUMA faults statistics are unnecessary for the slow memory 3081 * node for memory tiering mode. 3082 */ 3083 if (!node_is_toptier(mem_node) && 3084 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3085 !cpupid_valid(last_cpupid))) 3086 return; 3087 3088 /* Allocate buffer to track faults on a per-node basis */ 3089 if (unlikely(!p->numa_faults)) { 3090 int size = sizeof(*p->numa_faults) * 3091 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3092 3093 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3094 if (!p->numa_faults) 3095 return; 3096 3097 p->total_numa_faults = 0; 3098 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3099 } 3100 3101 /* 3102 * First accesses are treated as private, otherwise consider accesses 3103 * to be private if the accessing pid has not changed 3104 */ 3105 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3106 priv = 1; 3107 } else { 3108 priv = cpupid_match_pid(p, last_cpupid); 3109 if (!priv && !(flags & TNF_NO_GROUP)) 3110 task_numa_group(p, last_cpupid, flags, &priv); 3111 } 3112 3113 /* 3114 * If a workload spans multiple NUMA nodes, a shared fault that 3115 * occurs wholly within the set of nodes that the workload is 3116 * actively using should be counted as local. This allows the 3117 * scan rate to slow down when a workload has settled down. 3118 */ 3119 ng = deref_curr_numa_group(p); 3120 if (!priv && !local && ng && ng->active_nodes > 1 && 3121 numa_is_active_node(cpu_node, ng) && 3122 numa_is_active_node(mem_node, ng)) 3123 local = 1; 3124 3125 /* 3126 * Retry to migrate task to preferred node periodically, in case it 3127 * previously failed, or the scheduler moved us. 3128 */ 3129 if (time_after(jiffies, p->numa_migrate_retry)) { 3130 task_numa_placement(p); 3131 numa_migrate_preferred(p); 3132 } 3133 3134 if (migrated) 3135 p->numa_pages_migrated += pages; 3136 if (flags & TNF_MIGRATE_FAIL) 3137 p->numa_faults_locality[2] += pages; 3138 3139 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3140 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3141 p->numa_faults_locality[local] += pages; 3142 } 3143 3144 static void reset_ptenuma_scan(struct task_struct *p) 3145 { 3146 /* 3147 * We only did a read acquisition of the mmap sem, so 3148 * p->mm->numa_scan_seq is written to without exclusive access 3149 * and the update is not guaranteed to be atomic. That's not 3150 * much of an issue though, since this is just used for 3151 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3152 * expensive, to avoid any form of compiler optimizations: 3153 */ 3154 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3155 p->mm->numa_scan_offset = 0; 3156 } 3157 3158 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3159 { 3160 unsigned long pids; 3161 /* 3162 * Allow unconditional access first two times, so that all the (pages) 3163 * of VMAs get prot_none fault introduced irrespective of accesses. 3164 * This is also done to avoid any side effect of task scanning 3165 * amplifying the unfairness of disjoint set of VMAs' access. 3166 */ 3167 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 3168 return true; 3169 3170 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3171 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3172 return true; 3173 3174 /* 3175 * Complete a scan that has already started regardless of PID access, or 3176 * some VMAs may never be scanned in multi-threaded applications: 3177 */ 3178 if (mm->numa_scan_offset > vma->vm_start) { 3179 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3180 return true; 3181 } 3182 3183 return false; 3184 } 3185 3186 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3187 3188 /* 3189 * The expensive part of numa migration is done from task_work context. 3190 * Triggered from task_tick_numa(). 3191 */ 3192 static void task_numa_work(struct callback_head *work) 3193 { 3194 unsigned long migrate, next_scan, now = jiffies; 3195 struct task_struct *p = current; 3196 struct mm_struct *mm = p->mm; 3197 u64 runtime = p->se.sum_exec_runtime; 3198 struct vm_area_struct *vma; 3199 unsigned long start, end; 3200 unsigned long nr_pte_updates = 0; 3201 long pages, virtpages; 3202 struct vma_iterator vmi; 3203 bool vma_pids_skipped; 3204 bool vma_pids_forced = false; 3205 3206 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3207 3208 work->next = work; 3209 /* 3210 * Who cares about NUMA placement when they're dying. 3211 * 3212 * NOTE: make sure not to dereference p->mm before this check, 3213 * exit_task_work() happens _after_ exit_mm() so we could be called 3214 * without p->mm even though we still had it when we enqueued this 3215 * work. 3216 */ 3217 if (p->flags & PF_EXITING) 3218 return; 3219 3220 if (!mm->numa_next_scan) { 3221 mm->numa_next_scan = now + 3222 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3223 } 3224 3225 /* 3226 * Enforce maximal scan/migration frequency.. 3227 */ 3228 migrate = mm->numa_next_scan; 3229 if (time_before(now, migrate)) 3230 return; 3231 3232 if (p->numa_scan_period == 0) { 3233 p->numa_scan_period_max = task_scan_max(p); 3234 p->numa_scan_period = task_scan_start(p); 3235 } 3236 3237 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3238 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3239 return; 3240 3241 /* 3242 * Delay this task enough that another task of this mm will likely win 3243 * the next time around. 3244 */ 3245 p->node_stamp += 2 * TICK_NSEC; 3246 3247 pages = sysctl_numa_balancing_scan_size; 3248 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3249 virtpages = pages * 8; /* Scan up to this much virtual space */ 3250 if (!pages) 3251 return; 3252 3253 3254 if (!mmap_read_trylock(mm)) 3255 return; 3256 3257 /* 3258 * VMAs are skipped if the current PID has not trapped a fault within 3259 * the VMA recently. Allow scanning to be forced if there is no 3260 * suitable VMA remaining. 3261 */ 3262 vma_pids_skipped = false; 3263 3264 retry_pids: 3265 start = mm->numa_scan_offset; 3266 vma_iter_init(&vmi, mm, start); 3267 vma = vma_next(&vmi); 3268 if (!vma) { 3269 reset_ptenuma_scan(p); 3270 start = 0; 3271 vma_iter_set(&vmi, start); 3272 vma = vma_next(&vmi); 3273 } 3274 3275 do { 3276 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3277 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3278 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3279 continue; 3280 } 3281 3282 /* 3283 * Shared library pages mapped by multiple processes are not 3284 * migrated as it is expected they are cache replicated. Avoid 3285 * hinting faults in read-only file-backed mappings or the vdso 3286 * as migrating the pages will be of marginal benefit. 3287 */ 3288 if (!vma->vm_mm || 3289 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3290 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3291 continue; 3292 } 3293 3294 /* 3295 * Skip inaccessible VMAs to avoid any confusion between 3296 * PROT_NONE and NUMA hinting ptes 3297 */ 3298 if (!vma_is_accessible(vma)) { 3299 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3300 continue; 3301 } 3302 3303 /* Initialise new per-VMA NUMAB state. */ 3304 if (!vma->numab_state) { 3305 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3306 GFP_KERNEL); 3307 if (!vma->numab_state) 3308 continue; 3309 3310 vma->numab_state->next_scan = now + 3311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3312 3313 /* Reset happens after 4 times scan delay of scan start */ 3314 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3315 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3316 3317 /* 3318 * Ensure prev_scan_seq does not match numa_scan_seq, 3319 * to prevent VMAs being skipped prematurely on the 3320 * first scan: 3321 */ 3322 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3323 } 3324 3325 /* 3326 * Scanning the VMA's of short lived tasks add more overhead. So 3327 * delay the scan for new VMAs. 3328 */ 3329 if (mm->numa_scan_seq && time_before(jiffies, 3330 vma->numab_state->next_scan)) { 3331 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3332 continue; 3333 } 3334 3335 /* RESET access PIDs regularly for old VMAs. */ 3336 if (mm->numa_scan_seq && 3337 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3338 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3339 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3340 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3341 vma->numab_state->pids_active[1] = 0; 3342 } 3343 3344 /* Do not rescan VMAs twice within the same sequence. */ 3345 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3346 mm->numa_scan_offset = vma->vm_end; 3347 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3348 continue; 3349 } 3350 3351 /* 3352 * Do not scan the VMA if task has not accessed it, unless no other 3353 * VMA candidate exists. 3354 */ 3355 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3356 vma_pids_skipped = true; 3357 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3358 continue; 3359 } 3360 3361 do { 3362 start = max(start, vma->vm_start); 3363 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3364 end = min(end, vma->vm_end); 3365 nr_pte_updates = change_prot_numa(vma, start, end); 3366 3367 /* 3368 * Try to scan sysctl_numa_balancing_size worth of 3369 * hpages that have at least one present PTE that 3370 * is not already pte-numa. If the VMA contains 3371 * areas that are unused or already full of prot_numa 3372 * PTEs, scan up to virtpages, to skip through those 3373 * areas faster. 3374 */ 3375 if (nr_pte_updates) 3376 pages -= (end - start) >> PAGE_SHIFT; 3377 virtpages -= (end - start) >> PAGE_SHIFT; 3378 3379 start = end; 3380 if (pages <= 0 || virtpages <= 0) 3381 goto out; 3382 3383 cond_resched(); 3384 } while (end != vma->vm_end); 3385 3386 /* VMA scan is complete, do not scan until next sequence. */ 3387 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3388 3389 /* 3390 * Only force scan within one VMA at a time, to limit the 3391 * cost of scanning a potentially uninteresting VMA. 3392 */ 3393 if (vma_pids_forced) 3394 break; 3395 } for_each_vma(vmi, vma); 3396 3397 /* 3398 * If no VMAs are remaining and VMAs were skipped due to the PID 3399 * not accessing the VMA previously, then force a scan to ensure 3400 * forward progress: 3401 */ 3402 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3403 vma_pids_forced = true; 3404 goto retry_pids; 3405 } 3406 3407 out: 3408 /* 3409 * It is possible to reach the end of the VMA list but the last few 3410 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3411 * would find the !migratable VMA on the next scan but not reset the 3412 * scanner to the start so check it now. 3413 */ 3414 if (vma) 3415 mm->numa_scan_offset = start; 3416 else 3417 reset_ptenuma_scan(p); 3418 mmap_read_unlock(mm); 3419 3420 /* 3421 * Make sure tasks use at least 32x as much time to run other code 3422 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3423 * Usually update_task_scan_period slows down scanning enough; on an 3424 * overloaded system we need to limit overhead on a per task basis. 3425 */ 3426 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3427 u64 diff = p->se.sum_exec_runtime - runtime; 3428 p->node_stamp += 32 * diff; 3429 } 3430 } 3431 3432 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3433 { 3434 int mm_users = 0; 3435 struct mm_struct *mm = p->mm; 3436 3437 if (mm) { 3438 mm_users = atomic_read(&mm->mm_users); 3439 if (mm_users == 1) { 3440 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3441 mm->numa_scan_seq = 0; 3442 } 3443 } 3444 p->node_stamp = 0; 3445 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3446 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3447 p->numa_migrate_retry = 0; 3448 /* Protect against double add, see task_tick_numa and task_numa_work */ 3449 p->numa_work.next = &p->numa_work; 3450 p->numa_faults = NULL; 3451 p->numa_pages_migrated = 0; 3452 p->total_numa_faults = 0; 3453 RCU_INIT_POINTER(p->numa_group, NULL); 3454 p->last_task_numa_placement = 0; 3455 p->last_sum_exec_runtime = 0; 3456 3457 init_task_work(&p->numa_work, task_numa_work); 3458 3459 /* New address space, reset the preferred nid */ 3460 if (!(clone_flags & CLONE_VM)) { 3461 p->numa_preferred_nid = NUMA_NO_NODE; 3462 return; 3463 } 3464 3465 /* 3466 * New thread, keep existing numa_preferred_nid which should be copied 3467 * already by arch_dup_task_struct but stagger when scans start. 3468 */ 3469 if (mm) { 3470 unsigned int delay; 3471 3472 delay = min_t(unsigned int, task_scan_max(current), 3473 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3474 delay += 2 * TICK_NSEC; 3475 p->node_stamp = delay; 3476 } 3477 } 3478 3479 /* 3480 * Drive the periodic memory faults.. 3481 */ 3482 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3483 { 3484 struct callback_head *work = &curr->numa_work; 3485 u64 period, now; 3486 3487 /* 3488 * We don't care about NUMA placement if we don't have memory. 3489 */ 3490 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3491 return; 3492 3493 /* 3494 * Using runtime rather than walltime has the dual advantage that 3495 * we (mostly) drive the selection from busy threads and that the 3496 * task needs to have done some actual work before we bother with 3497 * NUMA placement. 3498 */ 3499 now = curr->se.sum_exec_runtime; 3500 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3501 3502 if (now > curr->node_stamp + period) { 3503 if (!curr->node_stamp) 3504 curr->numa_scan_period = task_scan_start(curr); 3505 curr->node_stamp += period; 3506 3507 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3508 task_work_add(curr, work, TWA_RESUME); 3509 } 3510 } 3511 3512 static void update_scan_period(struct task_struct *p, int new_cpu) 3513 { 3514 int src_nid = cpu_to_node(task_cpu(p)); 3515 int dst_nid = cpu_to_node(new_cpu); 3516 3517 if (!static_branch_likely(&sched_numa_balancing)) 3518 return; 3519 3520 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3521 return; 3522 3523 if (src_nid == dst_nid) 3524 return; 3525 3526 /* 3527 * Allow resets if faults have been trapped before one scan 3528 * has completed. This is most likely due to a new task that 3529 * is pulled cross-node due to wakeups or load balancing. 3530 */ 3531 if (p->numa_scan_seq) { 3532 /* 3533 * Avoid scan adjustments if moving to the preferred 3534 * node or if the task was not previously running on 3535 * the preferred node. 3536 */ 3537 if (dst_nid == p->numa_preferred_nid || 3538 (p->numa_preferred_nid != NUMA_NO_NODE && 3539 src_nid != p->numa_preferred_nid)) 3540 return; 3541 } 3542 3543 p->numa_scan_period = task_scan_start(p); 3544 } 3545 3546 #else 3547 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3548 { 3549 } 3550 3551 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3552 { 3553 } 3554 3555 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3556 { 3557 } 3558 3559 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3560 { 3561 } 3562 3563 #endif /* CONFIG_NUMA_BALANCING */ 3564 3565 static void 3566 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3567 { 3568 update_load_add(&cfs_rq->load, se->load.weight); 3569 #ifdef CONFIG_SMP 3570 if (entity_is_task(se)) { 3571 struct rq *rq = rq_of(cfs_rq); 3572 3573 account_numa_enqueue(rq, task_of(se)); 3574 list_add(&se->group_node, &rq->cfs_tasks); 3575 } 3576 #endif 3577 cfs_rq->nr_running++; 3578 if (se_is_idle(se)) 3579 cfs_rq->idle_nr_running++; 3580 } 3581 3582 static void 3583 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3584 { 3585 update_load_sub(&cfs_rq->load, se->load.weight); 3586 #ifdef CONFIG_SMP 3587 if (entity_is_task(se)) { 3588 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3589 list_del_init(&se->group_node); 3590 } 3591 #endif 3592 cfs_rq->nr_running--; 3593 if (se_is_idle(se)) 3594 cfs_rq->idle_nr_running--; 3595 } 3596 3597 /* 3598 * Signed add and clamp on underflow. 3599 * 3600 * Explicitly do a load-store to ensure the intermediate value never hits 3601 * memory. This allows lockless observations without ever seeing the negative 3602 * values. 3603 */ 3604 #define add_positive(_ptr, _val) do { \ 3605 typeof(_ptr) ptr = (_ptr); \ 3606 typeof(_val) val = (_val); \ 3607 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3608 \ 3609 res = var + val; \ 3610 \ 3611 if (val < 0 && res > var) \ 3612 res = 0; \ 3613 \ 3614 WRITE_ONCE(*ptr, res); \ 3615 } while (0) 3616 3617 /* 3618 * Unsigned subtract and clamp on underflow. 3619 * 3620 * Explicitly do a load-store to ensure the intermediate value never hits 3621 * memory. This allows lockless observations without ever seeing the negative 3622 * values. 3623 */ 3624 #define sub_positive(_ptr, _val) do { \ 3625 typeof(_ptr) ptr = (_ptr); \ 3626 typeof(*ptr) val = (_val); \ 3627 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3628 res = var - val; \ 3629 if (res > var) \ 3630 res = 0; \ 3631 WRITE_ONCE(*ptr, res); \ 3632 } while (0) 3633 3634 /* 3635 * Remove and clamp on negative, from a local variable. 3636 * 3637 * A variant of sub_positive(), which does not use explicit load-store 3638 * and is thus optimized for local variable updates. 3639 */ 3640 #define lsub_positive(_ptr, _val) do { \ 3641 typeof(_ptr) ptr = (_ptr); \ 3642 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3643 } while (0) 3644 3645 #ifdef CONFIG_SMP 3646 static inline void 3647 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3648 { 3649 cfs_rq->avg.load_avg += se->avg.load_avg; 3650 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3651 } 3652 3653 static inline void 3654 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3655 { 3656 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3657 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3658 /* See update_cfs_rq_load_avg() */ 3659 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3660 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3661 } 3662 #else 3663 static inline void 3664 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3665 static inline void 3666 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3667 #endif 3668 3669 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se, 3670 unsigned long weight) 3671 { 3672 unsigned long old_weight = se->load.weight; 3673 u64 avruntime = avg_vruntime(cfs_rq); 3674 s64 vlag, vslice; 3675 3676 /* 3677 * VRUNTIME 3678 * ======== 3679 * 3680 * COROLLARY #1: The virtual runtime of the entity needs to be 3681 * adjusted if re-weight at !0-lag point. 3682 * 3683 * Proof: For contradiction assume this is not true, so we can 3684 * re-weight without changing vruntime at !0-lag point. 3685 * 3686 * Weight VRuntime Avg-VRuntime 3687 * before w v V 3688 * after w' v' V' 3689 * 3690 * Since lag needs to be preserved through re-weight: 3691 * 3692 * lag = (V - v)*w = (V'- v')*w', where v = v' 3693 * ==> V' = (V - v)*w/w' + v (1) 3694 * 3695 * Let W be the total weight of the entities before reweight, 3696 * since V' is the new weighted average of entities: 3697 * 3698 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3699 * 3700 * by using (1) & (2) we obtain: 3701 * 3702 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3703 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3704 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3705 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3706 * 3707 * Since we are doing at !0-lag point which means V != v, we 3708 * can simplify (3): 3709 * 3710 * ==> W / (W + w' - w) = w / w' 3711 * ==> Ww' = Ww + ww' - ww 3712 * ==> W * (w' - w) = w * (w' - w) 3713 * ==> W = w (re-weight indicates w' != w) 3714 * 3715 * So the cfs_rq contains only one entity, hence vruntime of 3716 * the entity @v should always equal to the cfs_rq's weighted 3717 * average vruntime @V, which means we will always re-weight 3718 * at 0-lag point, thus breach assumption. Proof completed. 3719 * 3720 * 3721 * COROLLARY #2: Re-weight does NOT affect weighted average 3722 * vruntime of all the entities. 3723 * 3724 * Proof: According to corollary #1, Eq. (1) should be: 3725 * 3726 * (V - v)*w = (V' - v')*w' 3727 * ==> v' = V' - (V - v)*w/w' (4) 3728 * 3729 * According to the weighted average formula, we have: 3730 * 3731 * V' = (WV - wv + w'v') / (W - w + w') 3732 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3733 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3734 * = (WV + w'V' - Vw) / (W - w + w') 3735 * 3736 * ==> V'*(W - w + w') = WV + w'V' - Vw 3737 * ==> V' * (W - w) = (W - w) * V (5) 3738 * 3739 * If the entity is the only one in the cfs_rq, then reweight 3740 * always occurs at 0-lag point, so V won't change. Or else 3741 * there are other entities, hence W != w, then Eq. (5) turns 3742 * into V' = V. So V won't change in either case, proof done. 3743 * 3744 * 3745 * So according to corollary #1 & #2, the effect of re-weight 3746 * on vruntime should be: 3747 * 3748 * v' = V' - (V - v) * w / w' (4) 3749 * = V - (V - v) * w / w' 3750 * = V - vl * w / w' 3751 * = V - vl' 3752 */ 3753 if (avruntime != se->vruntime) { 3754 vlag = (s64)(avruntime - se->vruntime); 3755 vlag = div_s64(vlag * old_weight, weight); 3756 se->vruntime = avruntime - vlag; 3757 } 3758 3759 /* 3760 * DEADLINE 3761 * ======== 3762 * 3763 * When the weight changes, the virtual time slope changes and 3764 * we should adjust the relative virtual deadline accordingly. 3765 * 3766 * d' = v' + (d - v)*w/w' 3767 * = V' - (V - v)*w/w' + (d - v)*w/w' 3768 * = V - (V - v)*w/w' + (d - v)*w/w' 3769 * = V + (d - V)*w/w' 3770 */ 3771 vslice = (s64)(se->deadline - avruntime); 3772 vslice = div_s64(vslice * old_weight, weight); 3773 se->deadline = avruntime + vslice; 3774 } 3775 3776 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3777 unsigned long weight) 3778 { 3779 bool curr = cfs_rq->curr == se; 3780 3781 if (se->on_rq) { 3782 /* commit outstanding execution time */ 3783 if (curr) 3784 update_curr(cfs_rq); 3785 else 3786 __dequeue_entity(cfs_rq, se); 3787 update_load_sub(&cfs_rq->load, se->load.weight); 3788 } 3789 dequeue_load_avg(cfs_rq, se); 3790 3791 if (!se->on_rq) { 3792 /* 3793 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3794 * we need to scale se->vlag when w_i changes. 3795 */ 3796 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3797 } else { 3798 reweight_eevdf(cfs_rq, se, weight); 3799 } 3800 3801 update_load_set(&se->load, weight); 3802 3803 #ifdef CONFIG_SMP 3804 do { 3805 u32 divider = get_pelt_divider(&se->avg); 3806 3807 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3808 } while (0); 3809 #endif 3810 3811 enqueue_load_avg(cfs_rq, se); 3812 if (se->on_rq) { 3813 update_load_add(&cfs_rq->load, se->load.weight); 3814 if (!curr) { 3815 /* 3816 * The entity's vruntime has been adjusted, so let's check 3817 * whether the rq-wide min_vruntime needs updated too. Since 3818 * the calculations above require stable min_vruntime rather 3819 * than up-to-date one, we do the update at the end of the 3820 * reweight process. 3821 */ 3822 __enqueue_entity(cfs_rq, se); 3823 update_min_vruntime(cfs_rq); 3824 } 3825 } 3826 } 3827 3828 void reweight_task(struct task_struct *p, int prio) 3829 { 3830 struct sched_entity *se = &p->se; 3831 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3832 struct load_weight *load = &se->load; 3833 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3834 3835 reweight_entity(cfs_rq, se, weight); 3836 load->inv_weight = sched_prio_to_wmult[prio]; 3837 } 3838 3839 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3840 3841 #ifdef CONFIG_FAIR_GROUP_SCHED 3842 #ifdef CONFIG_SMP 3843 /* 3844 * All this does is approximate the hierarchical proportion which includes that 3845 * global sum we all love to hate. 3846 * 3847 * That is, the weight of a group entity, is the proportional share of the 3848 * group weight based on the group runqueue weights. That is: 3849 * 3850 * tg->weight * grq->load.weight 3851 * ge->load.weight = ----------------------------- (1) 3852 * \Sum grq->load.weight 3853 * 3854 * Now, because computing that sum is prohibitively expensive to compute (been 3855 * there, done that) we approximate it with this average stuff. The average 3856 * moves slower and therefore the approximation is cheaper and more stable. 3857 * 3858 * So instead of the above, we substitute: 3859 * 3860 * grq->load.weight -> grq->avg.load_avg (2) 3861 * 3862 * which yields the following: 3863 * 3864 * tg->weight * grq->avg.load_avg 3865 * ge->load.weight = ------------------------------ (3) 3866 * tg->load_avg 3867 * 3868 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3869 * 3870 * That is shares_avg, and it is right (given the approximation (2)). 3871 * 3872 * The problem with it is that because the average is slow -- it was designed 3873 * to be exactly that of course -- this leads to transients in boundary 3874 * conditions. In specific, the case where the group was idle and we start the 3875 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3876 * yielding bad latency etc.. 3877 * 3878 * Now, in that special case (1) reduces to: 3879 * 3880 * tg->weight * grq->load.weight 3881 * ge->load.weight = ----------------------------- = tg->weight (4) 3882 * grp->load.weight 3883 * 3884 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3885 * 3886 * So what we do is modify our approximation (3) to approach (4) in the (near) 3887 * UP case, like: 3888 * 3889 * ge->load.weight = 3890 * 3891 * tg->weight * grq->load.weight 3892 * --------------------------------------------------- (5) 3893 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3894 * 3895 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3896 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3897 * 3898 * 3899 * tg->weight * grq->load.weight 3900 * ge->load.weight = ----------------------------- (6) 3901 * tg_load_avg' 3902 * 3903 * Where: 3904 * 3905 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3906 * max(grq->load.weight, grq->avg.load_avg) 3907 * 3908 * And that is shares_weight and is icky. In the (near) UP case it approaches 3909 * (4) while in the normal case it approaches (3). It consistently 3910 * overestimates the ge->load.weight and therefore: 3911 * 3912 * \Sum ge->load.weight >= tg->weight 3913 * 3914 * hence icky! 3915 */ 3916 static long calc_group_shares(struct cfs_rq *cfs_rq) 3917 { 3918 long tg_weight, tg_shares, load, shares; 3919 struct task_group *tg = cfs_rq->tg; 3920 3921 tg_shares = READ_ONCE(tg->shares); 3922 3923 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3924 3925 tg_weight = atomic_long_read(&tg->load_avg); 3926 3927 /* Ensure tg_weight >= load */ 3928 tg_weight -= cfs_rq->tg_load_avg_contrib; 3929 tg_weight += load; 3930 3931 shares = (tg_shares * load); 3932 if (tg_weight) 3933 shares /= tg_weight; 3934 3935 /* 3936 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3937 * of a group with small tg->shares value. It is a floor value which is 3938 * assigned as a minimum load.weight to the sched_entity representing 3939 * the group on a CPU. 3940 * 3941 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3942 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3943 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3944 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3945 * instead of 0. 3946 */ 3947 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3948 } 3949 #endif /* CONFIG_SMP */ 3950 3951 /* 3952 * Recomputes the group entity based on the current state of its group 3953 * runqueue. 3954 */ 3955 static void update_cfs_group(struct sched_entity *se) 3956 { 3957 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3958 long shares; 3959 3960 if (!gcfs_rq) 3961 return; 3962 3963 if (throttled_hierarchy(gcfs_rq)) 3964 return; 3965 3966 #ifndef CONFIG_SMP 3967 shares = READ_ONCE(gcfs_rq->tg->shares); 3968 #else 3969 shares = calc_group_shares(gcfs_rq); 3970 #endif 3971 if (unlikely(se->load.weight != shares)) 3972 reweight_entity(cfs_rq_of(se), se, shares); 3973 } 3974 3975 #else /* CONFIG_FAIR_GROUP_SCHED */ 3976 static inline void update_cfs_group(struct sched_entity *se) 3977 { 3978 } 3979 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3980 3981 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3982 { 3983 struct rq *rq = rq_of(cfs_rq); 3984 3985 if (&rq->cfs == cfs_rq) { 3986 /* 3987 * There are a few boundary cases this might miss but it should 3988 * get called often enough that that should (hopefully) not be 3989 * a real problem. 3990 * 3991 * It will not get called when we go idle, because the idle 3992 * thread is a different class (!fair), nor will the utilization 3993 * number include things like RT tasks. 3994 * 3995 * As is, the util number is not freq-invariant (we'd have to 3996 * implement arch_scale_freq_capacity() for that). 3997 * 3998 * See cpu_util_cfs(). 3999 */ 4000 cpufreq_update_util(rq, flags); 4001 } 4002 } 4003 4004 #ifdef CONFIG_SMP 4005 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4006 { 4007 if (sa->load_sum) 4008 return false; 4009 4010 if (sa->util_sum) 4011 return false; 4012 4013 if (sa->runnable_sum) 4014 return false; 4015 4016 /* 4017 * _avg must be null when _sum are null because _avg = _sum / divider 4018 * Make sure that rounding and/or propagation of PELT values never 4019 * break this. 4020 */ 4021 SCHED_WARN_ON(sa->load_avg || 4022 sa->util_avg || 4023 sa->runnable_avg); 4024 4025 return true; 4026 } 4027 4028 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4029 { 4030 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4031 cfs_rq->last_update_time_copy); 4032 } 4033 #ifdef CONFIG_FAIR_GROUP_SCHED 4034 /* 4035 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4036 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4037 * bottom-up, we only have to test whether the cfs_rq before us on the list 4038 * is our child. 4039 * If cfs_rq is not on the list, test whether a child needs its to be added to 4040 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4041 */ 4042 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4043 { 4044 struct cfs_rq *prev_cfs_rq; 4045 struct list_head *prev; 4046 4047 if (cfs_rq->on_list) { 4048 prev = cfs_rq->leaf_cfs_rq_list.prev; 4049 } else { 4050 struct rq *rq = rq_of(cfs_rq); 4051 4052 prev = rq->tmp_alone_branch; 4053 } 4054 4055 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4056 4057 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4058 } 4059 4060 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4061 { 4062 if (cfs_rq->load.weight) 4063 return false; 4064 4065 if (!load_avg_is_decayed(&cfs_rq->avg)) 4066 return false; 4067 4068 if (child_cfs_rq_on_list(cfs_rq)) 4069 return false; 4070 4071 return true; 4072 } 4073 4074 /** 4075 * update_tg_load_avg - update the tg's load avg 4076 * @cfs_rq: the cfs_rq whose avg changed 4077 * 4078 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4079 * However, because tg->load_avg is a global value there are performance 4080 * considerations. 4081 * 4082 * In order to avoid having to look at the other cfs_rq's, we use a 4083 * differential update where we store the last value we propagated. This in 4084 * turn allows skipping updates if the differential is 'small'. 4085 * 4086 * Updating tg's load_avg is necessary before update_cfs_share(). 4087 */ 4088 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4089 { 4090 long delta; 4091 u64 now; 4092 4093 /* 4094 * No need to update load_avg for root_task_group as it is not used. 4095 */ 4096 if (cfs_rq->tg == &root_task_group) 4097 return; 4098 4099 /* 4100 * For migration heavy workloads, access to tg->load_avg can be 4101 * unbound. Limit the update rate to at most once per ms. 4102 */ 4103 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4104 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4105 return; 4106 4107 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4108 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4109 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4110 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4111 cfs_rq->last_update_tg_load_avg = now; 4112 } 4113 } 4114 4115 /* 4116 * Called within set_task_rq() right before setting a task's CPU. The 4117 * caller only guarantees p->pi_lock is held; no other assumptions, 4118 * including the state of rq->lock, should be made. 4119 */ 4120 void set_task_rq_fair(struct sched_entity *se, 4121 struct cfs_rq *prev, struct cfs_rq *next) 4122 { 4123 u64 p_last_update_time; 4124 u64 n_last_update_time; 4125 4126 if (!sched_feat(ATTACH_AGE_LOAD)) 4127 return; 4128 4129 /* 4130 * We are supposed to update the task to "current" time, then its up to 4131 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4132 * getting what current time is, so simply throw away the out-of-date 4133 * time. This will result in the wakee task is less decayed, but giving 4134 * the wakee more load sounds not bad. 4135 */ 4136 if (!(se->avg.last_update_time && prev)) 4137 return; 4138 4139 p_last_update_time = cfs_rq_last_update_time(prev); 4140 n_last_update_time = cfs_rq_last_update_time(next); 4141 4142 __update_load_avg_blocked_se(p_last_update_time, se); 4143 se->avg.last_update_time = n_last_update_time; 4144 } 4145 4146 /* 4147 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4148 * propagate its contribution. The key to this propagation is the invariant 4149 * that for each group: 4150 * 4151 * ge->avg == grq->avg (1) 4152 * 4153 * _IFF_ we look at the pure running and runnable sums. Because they 4154 * represent the very same entity, just at different points in the hierarchy. 4155 * 4156 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4157 * and simply copies the running/runnable sum over (but still wrong, because 4158 * the group entity and group rq do not have their PELT windows aligned). 4159 * 4160 * However, update_tg_cfs_load() is more complex. So we have: 4161 * 4162 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4163 * 4164 * And since, like util, the runnable part should be directly transferable, 4165 * the following would _appear_ to be the straight forward approach: 4166 * 4167 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4168 * 4169 * And per (1) we have: 4170 * 4171 * ge->avg.runnable_avg == grq->avg.runnable_avg 4172 * 4173 * Which gives: 4174 * 4175 * ge->load.weight * grq->avg.load_avg 4176 * ge->avg.load_avg = ----------------------------------- (4) 4177 * grq->load.weight 4178 * 4179 * Except that is wrong! 4180 * 4181 * Because while for entities historical weight is not important and we 4182 * really only care about our future and therefore can consider a pure 4183 * runnable sum, runqueues can NOT do this. 4184 * 4185 * We specifically want runqueues to have a load_avg that includes 4186 * historical weights. Those represent the blocked load, the load we expect 4187 * to (shortly) return to us. This only works by keeping the weights as 4188 * integral part of the sum. We therefore cannot decompose as per (3). 4189 * 4190 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4191 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4192 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4193 * runnable section of these tasks overlap (or not). If they were to perfectly 4194 * align the rq as a whole would be runnable 2/3 of the time. If however we 4195 * always have at least 1 runnable task, the rq as a whole is always runnable. 4196 * 4197 * So we'll have to approximate.. :/ 4198 * 4199 * Given the constraint: 4200 * 4201 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4202 * 4203 * We can construct a rule that adds runnable to a rq by assuming minimal 4204 * overlap. 4205 * 4206 * On removal, we'll assume each task is equally runnable; which yields: 4207 * 4208 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4209 * 4210 * XXX: only do this for the part of runnable > running ? 4211 * 4212 */ 4213 static inline void 4214 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4215 { 4216 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4217 u32 new_sum, divider; 4218 4219 /* Nothing to update */ 4220 if (!delta_avg) 4221 return; 4222 4223 /* 4224 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4225 * See ___update_load_avg() for details. 4226 */ 4227 divider = get_pelt_divider(&cfs_rq->avg); 4228 4229 4230 /* Set new sched_entity's utilization */ 4231 se->avg.util_avg = gcfs_rq->avg.util_avg; 4232 new_sum = se->avg.util_avg * divider; 4233 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4234 se->avg.util_sum = new_sum; 4235 4236 /* Update parent cfs_rq utilization */ 4237 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4238 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4239 4240 /* See update_cfs_rq_load_avg() */ 4241 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4242 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4243 } 4244 4245 static inline void 4246 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4247 { 4248 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4249 u32 new_sum, divider; 4250 4251 /* Nothing to update */ 4252 if (!delta_avg) 4253 return; 4254 4255 /* 4256 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4257 * See ___update_load_avg() for details. 4258 */ 4259 divider = get_pelt_divider(&cfs_rq->avg); 4260 4261 /* Set new sched_entity's runnable */ 4262 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4263 new_sum = se->avg.runnable_avg * divider; 4264 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4265 se->avg.runnable_sum = new_sum; 4266 4267 /* Update parent cfs_rq runnable */ 4268 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4269 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4270 /* See update_cfs_rq_load_avg() */ 4271 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4272 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4273 } 4274 4275 static inline void 4276 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4277 { 4278 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4279 unsigned long load_avg; 4280 u64 load_sum = 0; 4281 s64 delta_sum; 4282 u32 divider; 4283 4284 if (!runnable_sum) 4285 return; 4286 4287 gcfs_rq->prop_runnable_sum = 0; 4288 4289 /* 4290 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4291 * See ___update_load_avg() for details. 4292 */ 4293 divider = get_pelt_divider(&cfs_rq->avg); 4294 4295 if (runnable_sum >= 0) { 4296 /* 4297 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4298 * the CPU is saturated running == runnable. 4299 */ 4300 runnable_sum += se->avg.load_sum; 4301 runnable_sum = min_t(long, runnable_sum, divider); 4302 } else { 4303 /* 4304 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4305 * assuming all tasks are equally runnable. 4306 */ 4307 if (scale_load_down(gcfs_rq->load.weight)) { 4308 load_sum = div_u64(gcfs_rq->avg.load_sum, 4309 scale_load_down(gcfs_rq->load.weight)); 4310 } 4311 4312 /* But make sure to not inflate se's runnable */ 4313 runnable_sum = min(se->avg.load_sum, load_sum); 4314 } 4315 4316 /* 4317 * runnable_sum can't be lower than running_sum 4318 * Rescale running sum to be in the same range as runnable sum 4319 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4320 * runnable_sum is in [0 : LOAD_AVG_MAX] 4321 */ 4322 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4323 runnable_sum = max(runnable_sum, running_sum); 4324 4325 load_sum = se_weight(se) * runnable_sum; 4326 load_avg = div_u64(load_sum, divider); 4327 4328 delta_avg = load_avg - se->avg.load_avg; 4329 if (!delta_avg) 4330 return; 4331 4332 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4333 4334 se->avg.load_sum = runnable_sum; 4335 se->avg.load_avg = load_avg; 4336 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4337 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4338 /* See update_cfs_rq_load_avg() */ 4339 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4340 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4341 } 4342 4343 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4344 { 4345 cfs_rq->propagate = 1; 4346 cfs_rq->prop_runnable_sum += runnable_sum; 4347 } 4348 4349 /* Update task and its cfs_rq load average */ 4350 static inline int propagate_entity_load_avg(struct sched_entity *se) 4351 { 4352 struct cfs_rq *cfs_rq, *gcfs_rq; 4353 4354 if (entity_is_task(se)) 4355 return 0; 4356 4357 gcfs_rq = group_cfs_rq(se); 4358 if (!gcfs_rq->propagate) 4359 return 0; 4360 4361 gcfs_rq->propagate = 0; 4362 4363 cfs_rq = cfs_rq_of(se); 4364 4365 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4366 4367 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4368 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4369 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4370 4371 trace_pelt_cfs_tp(cfs_rq); 4372 trace_pelt_se_tp(se); 4373 4374 return 1; 4375 } 4376 4377 /* 4378 * Check if we need to update the load and the utilization of a blocked 4379 * group_entity: 4380 */ 4381 static inline bool skip_blocked_update(struct sched_entity *se) 4382 { 4383 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4384 4385 /* 4386 * If sched_entity still have not zero load or utilization, we have to 4387 * decay it: 4388 */ 4389 if (se->avg.load_avg || se->avg.util_avg) 4390 return false; 4391 4392 /* 4393 * If there is a pending propagation, we have to update the load and 4394 * the utilization of the sched_entity: 4395 */ 4396 if (gcfs_rq->propagate) 4397 return false; 4398 4399 /* 4400 * Otherwise, the load and the utilization of the sched_entity is 4401 * already zero and there is no pending propagation, so it will be a 4402 * waste of time to try to decay it: 4403 */ 4404 return true; 4405 } 4406 4407 #else /* CONFIG_FAIR_GROUP_SCHED */ 4408 4409 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4410 4411 static inline int propagate_entity_load_avg(struct sched_entity *se) 4412 { 4413 return 0; 4414 } 4415 4416 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4417 4418 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4419 4420 #ifdef CONFIG_NO_HZ_COMMON 4421 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4422 { 4423 u64 throttled = 0, now, lut; 4424 struct cfs_rq *cfs_rq; 4425 struct rq *rq; 4426 bool is_idle; 4427 4428 if (load_avg_is_decayed(&se->avg)) 4429 return; 4430 4431 cfs_rq = cfs_rq_of(se); 4432 rq = rq_of(cfs_rq); 4433 4434 rcu_read_lock(); 4435 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4436 rcu_read_unlock(); 4437 4438 /* 4439 * The lag estimation comes with a cost we don't want to pay all the 4440 * time. Hence, limiting to the case where the source CPU is idle and 4441 * we know we are at the greatest risk to have an outdated clock. 4442 */ 4443 if (!is_idle) 4444 return; 4445 4446 /* 4447 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4448 * 4449 * last_update_time (the cfs_rq's last_update_time) 4450 * = cfs_rq_clock_pelt()@cfs_rq_idle 4451 * = rq_clock_pelt()@cfs_rq_idle 4452 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4453 * 4454 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4455 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4456 * 4457 * rq_idle_lag (delta between now and rq's update) 4458 * = sched_clock_cpu() - rq_clock()@rq_idle 4459 * 4460 * We can then write: 4461 * 4462 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4463 * sched_clock_cpu() - rq_clock()@rq_idle 4464 * Where: 4465 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4466 * rq_clock()@rq_idle is rq->clock_idle 4467 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4468 * is cfs_rq->throttled_pelt_idle 4469 */ 4470 4471 #ifdef CONFIG_CFS_BANDWIDTH 4472 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4473 /* The clock has been stopped for throttling */ 4474 if (throttled == U64_MAX) 4475 return; 4476 #endif 4477 now = u64_u32_load(rq->clock_pelt_idle); 4478 /* 4479 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4480 * is observed the old clock_pelt_idle value and the new clock_idle, 4481 * which lead to an underestimation. The opposite would lead to an 4482 * overestimation. 4483 */ 4484 smp_rmb(); 4485 lut = cfs_rq_last_update_time(cfs_rq); 4486 4487 now -= throttled; 4488 if (now < lut) 4489 /* 4490 * cfs_rq->avg.last_update_time is more recent than our 4491 * estimation, let's use it. 4492 */ 4493 now = lut; 4494 else 4495 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4496 4497 __update_load_avg_blocked_se(now, se); 4498 } 4499 #else 4500 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4501 #endif 4502 4503 /** 4504 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4505 * @now: current time, as per cfs_rq_clock_pelt() 4506 * @cfs_rq: cfs_rq to update 4507 * 4508 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4509 * avg. The immediate corollary is that all (fair) tasks must be attached. 4510 * 4511 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4512 * 4513 * Return: true if the load decayed or we removed load. 4514 * 4515 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4516 * call update_tg_load_avg() when this function returns true. 4517 */ 4518 static inline int 4519 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4520 { 4521 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4522 struct sched_avg *sa = &cfs_rq->avg; 4523 int decayed = 0; 4524 4525 if (cfs_rq->removed.nr) { 4526 unsigned long r; 4527 u32 divider = get_pelt_divider(&cfs_rq->avg); 4528 4529 raw_spin_lock(&cfs_rq->removed.lock); 4530 swap(cfs_rq->removed.util_avg, removed_util); 4531 swap(cfs_rq->removed.load_avg, removed_load); 4532 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4533 cfs_rq->removed.nr = 0; 4534 raw_spin_unlock(&cfs_rq->removed.lock); 4535 4536 r = removed_load; 4537 sub_positive(&sa->load_avg, r); 4538 sub_positive(&sa->load_sum, r * divider); 4539 /* See sa->util_sum below */ 4540 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4541 4542 r = removed_util; 4543 sub_positive(&sa->util_avg, r); 4544 sub_positive(&sa->util_sum, r * divider); 4545 /* 4546 * Because of rounding, se->util_sum might ends up being +1 more than 4547 * cfs->util_sum. Although this is not a problem by itself, detaching 4548 * a lot of tasks with the rounding problem between 2 updates of 4549 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4550 * cfs_util_avg is not. 4551 * Check that util_sum is still above its lower bound for the new 4552 * util_avg. Given that period_contrib might have moved since the last 4553 * sync, we are only sure that util_sum must be above or equal to 4554 * util_avg * minimum possible divider 4555 */ 4556 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4557 4558 r = removed_runnable; 4559 sub_positive(&sa->runnable_avg, r); 4560 sub_positive(&sa->runnable_sum, r * divider); 4561 /* See sa->util_sum above */ 4562 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4563 sa->runnable_avg * PELT_MIN_DIVIDER); 4564 4565 /* 4566 * removed_runnable is the unweighted version of removed_load so we 4567 * can use it to estimate removed_load_sum. 4568 */ 4569 add_tg_cfs_propagate(cfs_rq, 4570 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4571 4572 decayed = 1; 4573 } 4574 4575 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4576 u64_u32_store_copy(sa->last_update_time, 4577 cfs_rq->last_update_time_copy, 4578 sa->last_update_time); 4579 return decayed; 4580 } 4581 4582 /** 4583 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4584 * @cfs_rq: cfs_rq to attach to 4585 * @se: sched_entity to attach 4586 * 4587 * Must call update_cfs_rq_load_avg() before this, since we rely on 4588 * cfs_rq->avg.last_update_time being current. 4589 */ 4590 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4591 { 4592 /* 4593 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4594 * See ___update_load_avg() for details. 4595 */ 4596 u32 divider = get_pelt_divider(&cfs_rq->avg); 4597 4598 /* 4599 * When we attach the @se to the @cfs_rq, we must align the decay 4600 * window because without that, really weird and wonderful things can 4601 * happen. 4602 * 4603 * XXX illustrate 4604 */ 4605 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4606 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4607 4608 /* 4609 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4610 * period_contrib. This isn't strictly correct, but since we're 4611 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4612 * _sum a little. 4613 */ 4614 se->avg.util_sum = se->avg.util_avg * divider; 4615 4616 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4617 4618 se->avg.load_sum = se->avg.load_avg * divider; 4619 if (se_weight(se) < se->avg.load_sum) 4620 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4621 else 4622 se->avg.load_sum = 1; 4623 4624 enqueue_load_avg(cfs_rq, se); 4625 cfs_rq->avg.util_avg += se->avg.util_avg; 4626 cfs_rq->avg.util_sum += se->avg.util_sum; 4627 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4628 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4629 4630 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4631 4632 cfs_rq_util_change(cfs_rq, 0); 4633 4634 trace_pelt_cfs_tp(cfs_rq); 4635 } 4636 4637 /** 4638 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4639 * @cfs_rq: cfs_rq to detach from 4640 * @se: sched_entity to detach 4641 * 4642 * Must call update_cfs_rq_load_avg() before this, since we rely on 4643 * cfs_rq->avg.last_update_time being current. 4644 */ 4645 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4646 { 4647 dequeue_load_avg(cfs_rq, se); 4648 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4649 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4650 /* See update_cfs_rq_load_avg() */ 4651 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4652 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4653 4654 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4655 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4656 /* See update_cfs_rq_load_avg() */ 4657 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4658 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4659 4660 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4661 4662 cfs_rq_util_change(cfs_rq, 0); 4663 4664 trace_pelt_cfs_tp(cfs_rq); 4665 } 4666 4667 /* 4668 * Optional action to be done while updating the load average 4669 */ 4670 #define UPDATE_TG 0x1 4671 #define SKIP_AGE_LOAD 0x2 4672 #define DO_ATTACH 0x4 4673 #define DO_DETACH 0x8 4674 4675 /* Update task and its cfs_rq load average */ 4676 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4677 { 4678 u64 now = cfs_rq_clock_pelt(cfs_rq); 4679 int decayed; 4680 4681 /* 4682 * Track task load average for carrying it to new CPU after migrated, and 4683 * track group sched_entity load average for task_h_load calc in migration 4684 */ 4685 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4686 __update_load_avg_se(now, cfs_rq, se); 4687 4688 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4689 decayed |= propagate_entity_load_avg(se); 4690 4691 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4692 4693 /* 4694 * DO_ATTACH means we're here from enqueue_entity(). 4695 * !last_update_time means we've passed through 4696 * migrate_task_rq_fair() indicating we migrated. 4697 * 4698 * IOW we're enqueueing a task on a new CPU. 4699 */ 4700 attach_entity_load_avg(cfs_rq, se); 4701 update_tg_load_avg(cfs_rq); 4702 4703 } else if (flags & DO_DETACH) { 4704 /* 4705 * DO_DETACH means we're here from dequeue_entity() 4706 * and we are migrating task out of the CPU. 4707 */ 4708 detach_entity_load_avg(cfs_rq, se); 4709 update_tg_load_avg(cfs_rq); 4710 } else if (decayed) { 4711 cfs_rq_util_change(cfs_rq, 0); 4712 4713 if (flags & UPDATE_TG) 4714 update_tg_load_avg(cfs_rq); 4715 } 4716 } 4717 4718 /* 4719 * Synchronize entity load avg of dequeued entity without locking 4720 * the previous rq. 4721 */ 4722 static void sync_entity_load_avg(struct sched_entity *se) 4723 { 4724 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4725 u64 last_update_time; 4726 4727 last_update_time = cfs_rq_last_update_time(cfs_rq); 4728 __update_load_avg_blocked_se(last_update_time, se); 4729 } 4730 4731 /* 4732 * Task first catches up with cfs_rq, and then subtract 4733 * itself from the cfs_rq (task must be off the queue now). 4734 */ 4735 static void remove_entity_load_avg(struct sched_entity *se) 4736 { 4737 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4738 unsigned long flags; 4739 4740 /* 4741 * tasks cannot exit without having gone through wake_up_new_task() -> 4742 * enqueue_task_fair() which will have added things to the cfs_rq, 4743 * so we can remove unconditionally. 4744 */ 4745 4746 sync_entity_load_avg(se); 4747 4748 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4749 ++cfs_rq->removed.nr; 4750 cfs_rq->removed.util_avg += se->avg.util_avg; 4751 cfs_rq->removed.load_avg += se->avg.load_avg; 4752 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4753 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4754 } 4755 4756 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4757 { 4758 return cfs_rq->avg.runnable_avg; 4759 } 4760 4761 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4762 { 4763 return cfs_rq->avg.load_avg; 4764 } 4765 4766 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4767 4768 static inline unsigned long task_util(struct task_struct *p) 4769 { 4770 return READ_ONCE(p->se.avg.util_avg); 4771 } 4772 4773 static inline unsigned long _task_util_est(struct task_struct *p) 4774 { 4775 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4776 4777 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4778 } 4779 4780 static inline unsigned long task_util_est(struct task_struct *p) 4781 { 4782 return max(task_util(p), _task_util_est(p)); 4783 } 4784 4785 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4786 struct task_struct *p) 4787 { 4788 unsigned int enqueued; 4789 4790 if (!sched_feat(UTIL_EST)) 4791 return; 4792 4793 /* Update root cfs_rq's estimated utilization */ 4794 enqueued = cfs_rq->avg.util_est.enqueued; 4795 enqueued += _task_util_est(p); 4796 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4797 4798 trace_sched_util_est_cfs_tp(cfs_rq); 4799 } 4800 4801 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4802 struct task_struct *p) 4803 { 4804 unsigned int enqueued; 4805 4806 if (!sched_feat(UTIL_EST)) 4807 return; 4808 4809 /* Update root cfs_rq's estimated utilization */ 4810 enqueued = cfs_rq->avg.util_est.enqueued; 4811 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4812 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4813 4814 trace_sched_util_est_cfs_tp(cfs_rq); 4815 } 4816 4817 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4818 4819 /* 4820 * Check if a (signed) value is within a specified (unsigned) margin, 4821 * based on the observation that: 4822 * 4823 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4824 * 4825 * NOTE: this only works when value + margin < INT_MAX. 4826 */ 4827 static inline bool within_margin(int value, int margin) 4828 { 4829 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4830 } 4831 4832 static inline void util_est_update(struct cfs_rq *cfs_rq, 4833 struct task_struct *p, 4834 bool task_sleep) 4835 { 4836 long last_ewma_diff, last_enqueued_diff; 4837 struct util_est ue; 4838 4839 if (!sched_feat(UTIL_EST)) 4840 return; 4841 4842 /* 4843 * Skip update of task's estimated utilization when the task has not 4844 * yet completed an activation, e.g. being migrated. 4845 */ 4846 if (!task_sleep) 4847 return; 4848 4849 /* 4850 * If the PELT values haven't changed since enqueue time, 4851 * skip the util_est update. 4852 */ 4853 ue = p->se.avg.util_est; 4854 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4855 return; 4856 4857 last_enqueued_diff = ue.enqueued; 4858 4859 /* 4860 * Reset EWMA on utilization increases, the moving average is used only 4861 * to smooth utilization decreases. 4862 */ 4863 ue.enqueued = task_util(p); 4864 if (sched_feat(UTIL_EST_FASTUP)) { 4865 if (ue.ewma < ue.enqueued) { 4866 ue.ewma = ue.enqueued; 4867 goto done; 4868 } 4869 } 4870 4871 /* 4872 * Skip update of task's estimated utilization when its members are 4873 * already ~1% close to its last activation value. 4874 */ 4875 last_ewma_diff = ue.enqueued - ue.ewma; 4876 last_enqueued_diff -= ue.enqueued; 4877 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4878 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4879 goto done; 4880 4881 return; 4882 } 4883 4884 /* 4885 * To avoid overestimation of actual task utilization, skip updates if 4886 * we cannot grant there is idle time in this CPU. 4887 */ 4888 if (task_util(p) > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4889 return; 4890 4891 /* 4892 * Update Task's estimated utilization 4893 * 4894 * When *p completes an activation we can consolidate another sample 4895 * of the task size. This is done by storing the current PELT value 4896 * as ue.enqueued and by using this value to update the Exponential 4897 * Weighted Moving Average (EWMA): 4898 * 4899 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4900 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4901 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4902 * = w * ( last_ewma_diff ) + ewma(t-1) 4903 * = w * (last_ewma_diff + ewma(t-1) / w) 4904 * 4905 * Where 'w' is the weight of new samples, which is configured to be 4906 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4907 */ 4908 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4909 ue.ewma += last_ewma_diff; 4910 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4911 done: 4912 ue.enqueued |= UTIL_AVG_UNCHANGED; 4913 WRITE_ONCE(p->se.avg.util_est, ue); 4914 4915 trace_sched_util_est_se_tp(&p->se); 4916 } 4917 4918 static inline int util_fits_cpu(unsigned long util, 4919 unsigned long uclamp_min, 4920 unsigned long uclamp_max, 4921 int cpu) 4922 { 4923 unsigned long capacity_orig, capacity_orig_thermal; 4924 unsigned long capacity = capacity_of(cpu); 4925 bool fits, uclamp_max_fits; 4926 4927 /* 4928 * Check if the real util fits without any uclamp boost/cap applied. 4929 */ 4930 fits = fits_capacity(util, capacity); 4931 4932 if (!uclamp_is_used()) 4933 return fits; 4934 4935 /* 4936 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4937 * uclamp_max. We only care about capacity pressure (by using 4938 * capacity_of()) for comparing against the real util. 4939 * 4940 * If a task is boosted to 1024 for example, we don't want a tiny 4941 * pressure to skew the check whether it fits a CPU or not. 4942 * 4943 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4944 * should fit a little cpu even if there's some pressure. 4945 * 4946 * Only exception is for thermal pressure since it has a direct impact 4947 * on available OPP of the system. 4948 * 4949 * We honour it for uclamp_min only as a drop in performance level 4950 * could result in not getting the requested minimum performance level. 4951 * 4952 * For uclamp_max, we can tolerate a drop in performance level as the 4953 * goal is to cap the task. So it's okay if it's getting less. 4954 */ 4955 capacity_orig = arch_scale_cpu_capacity(cpu); 4956 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4957 4958 /* 4959 * We want to force a task to fit a cpu as implied by uclamp_max. 4960 * But we do have some corner cases to cater for.. 4961 * 4962 * 4963 * C=z 4964 * | ___ 4965 * | C=y | | 4966 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4967 * | C=x | | | | 4968 * | ___ | | | | 4969 * | | | | | | | (util somewhere in this region) 4970 * | | | | | | | 4971 * | | | | | | | 4972 * +---------------------------------------- 4973 * cpu0 cpu1 cpu2 4974 * 4975 * In the above example if a task is capped to a specific performance 4976 * point, y, then when: 4977 * 4978 * * util = 80% of x then it does not fit on cpu0 and should migrate 4979 * to cpu1 4980 * * util = 80% of y then it is forced to fit on cpu1 to honour 4981 * uclamp_max request. 4982 * 4983 * which is what we're enforcing here. A task always fits if 4984 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4985 * the normal upmigration rules should withhold still. 4986 * 4987 * Only exception is when we are on max capacity, then we need to be 4988 * careful not to block overutilized state. This is so because: 4989 * 4990 * 1. There's no concept of capping at max_capacity! We can't go 4991 * beyond this performance level anyway. 4992 * 2. The system is being saturated when we're operating near 4993 * max capacity, it doesn't make sense to block overutilized. 4994 */ 4995 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4996 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4997 fits = fits || uclamp_max_fits; 4998 4999 /* 5000 * 5001 * C=z 5002 * | ___ (region a, capped, util >= uclamp_max) 5003 * | C=y | | 5004 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5005 * | C=x | | | | 5006 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5007 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5008 * | | | | | | | 5009 * | | | | | | | (region c, boosted, util < uclamp_min) 5010 * +---------------------------------------- 5011 * cpu0 cpu1 cpu2 5012 * 5013 * a) If util > uclamp_max, then we're capped, we don't care about 5014 * actual fitness value here. We only care if uclamp_max fits 5015 * capacity without taking margin/pressure into account. 5016 * See comment above. 5017 * 5018 * b) If uclamp_min <= util <= uclamp_max, then the normal 5019 * fits_capacity() rules apply. Except we need to ensure that we 5020 * enforce we remain within uclamp_max, see comment above. 5021 * 5022 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5023 * need to take into account the boosted value fits the CPU without 5024 * taking margin/pressure into account. 5025 * 5026 * Cases (a) and (b) are handled in the 'fits' variable already. We 5027 * just need to consider an extra check for case (c) after ensuring we 5028 * handle the case uclamp_min > uclamp_max. 5029 */ 5030 uclamp_min = min(uclamp_min, uclamp_max); 5031 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 5032 return -1; 5033 5034 return fits; 5035 } 5036 5037 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5038 { 5039 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5040 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5041 unsigned long util = task_util_est(p); 5042 /* 5043 * Return true only if the cpu fully fits the task requirements, which 5044 * include the utilization but also the performance hints. 5045 */ 5046 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5047 } 5048 5049 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5050 { 5051 if (!sched_asym_cpucap_active()) 5052 return; 5053 5054 if (!p || p->nr_cpus_allowed == 1) { 5055 rq->misfit_task_load = 0; 5056 return; 5057 } 5058 5059 if (task_fits_cpu(p, cpu_of(rq))) { 5060 rq->misfit_task_load = 0; 5061 return; 5062 } 5063 5064 /* 5065 * Make sure that misfit_task_load will not be null even if 5066 * task_h_load() returns 0. 5067 */ 5068 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5069 } 5070 5071 #else /* CONFIG_SMP */ 5072 5073 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5074 { 5075 return !cfs_rq->nr_running; 5076 } 5077 5078 #define UPDATE_TG 0x0 5079 #define SKIP_AGE_LOAD 0x0 5080 #define DO_ATTACH 0x0 5081 #define DO_DETACH 0x0 5082 5083 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5084 { 5085 cfs_rq_util_change(cfs_rq, 0); 5086 } 5087 5088 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5089 5090 static inline void 5091 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5092 static inline void 5093 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5094 5095 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 5096 { 5097 return 0; 5098 } 5099 5100 static inline void 5101 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5102 5103 static inline void 5104 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5105 5106 static inline void 5107 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5108 bool task_sleep) {} 5109 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5110 5111 #endif /* CONFIG_SMP */ 5112 5113 static void 5114 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5115 { 5116 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5117 s64 lag = 0; 5118 5119 se->slice = sysctl_sched_base_slice; 5120 vslice = calc_delta_fair(se->slice, se); 5121 5122 /* 5123 * Due to how V is constructed as the weighted average of entities, 5124 * adding tasks with positive lag, or removing tasks with negative lag 5125 * will move 'time' backwards, this can screw around with the lag of 5126 * other tasks. 5127 * 5128 * EEVDF: placement strategy #1 / #2 5129 */ 5130 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5131 struct sched_entity *curr = cfs_rq->curr; 5132 unsigned long load; 5133 5134 lag = se->vlag; 5135 5136 /* 5137 * If we want to place a task and preserve lag, we have to 5138 * consider the effect of the new entity on the weighted 5139 * average and compensate for this, otherwise lag can quickly 5140 * evaporate. 5141 * 5142 * Lag is defined as: 5143 * 5144 * lag_i = S - s_i = w_i * (V - v_i) 5145 * 5146 * To avoid the 'w_i' term all over the place, we only track 5147 * the virtual lag: 5148 * 5149 * vl_i = V - v_i <=> v_i = V - vl_i 5150 * 5151 * And we take V to be the weighted average of all v: 5152 * 5153 * V = (\Sum w_j*v_j) / W 5154 * 5155 * Where W is: \Sum w_j 5156 * 5157 * Then, the weighted average after adding an entity with lag 5158 * vl_i is given by: 5159 * 5160 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5161 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5162 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5163 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5164 * = V - w_i*vl_i / (W + w_i) 5165 * 5166 * And the actual lag after adding an entity with vl_i is: 5167 * 5168 * vl'_i = V' - v_i 5169 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5170 * = vl_i - w_i*vl_i / (W + w_i) 5171 * 5172 * Which is strictly less than vl_i. So in order to preserve lag 5173 * we should inflate the lag before placement such that the 5174 * effective lag after placement comes out right. 5175 * 5176 * As such, invert the above relation for vl'_i to get the vl_i 5177 * we need to use such that the lag after placement is the lag 5178 * we computed before dequeue. 5179 * 5180 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5181 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5182 * 5183 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5184 * = W*vl_i 5185 * 5186 * vl_i = (W + w_i)*vl'_i / W 5187 */ 5188 load = cfs_rq->avg_load; 5189 if (curr && curr->on_rq) 5190 load += scale_load_down(curr->load.weight); 5191 5192 lag *= load + scale_load_down(se->load.weight); 5193 if (WARN_ON_ONCE(!load)) 5194 load = 1; 5195 lag = div_s64(lag, load); 5196 } 5197 5198 se->vruntime = vruntime - lag; 5199 5200 /* 5201 * When joining the competition; the exisiting tasks will be, 5202 * on average, halfway through their slice, as such start tasks 5203 * off with half a slice to ease into the competition. 5204 */ 5205 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5206 vslice /= 2; 5207 5208 /* 5209 * EEVDF: vd_i = ve_i + r_i/w_i 5210 */ 5211 se->deadline = se->vruntime + vslice; 5212 } 5213 5214 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5215 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5216 5217 static inline bool cfs_bandwidth_used(void); 5218 5219 static void 5220 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5221 { 5222 bool curr = cfs_rq->curr == se; 5223 5224 /* 5225 * If we're the current task, we must renormalise before calling 5226 * update_curr(). 5227 */ 5228 if (curr) 5229 place_entity(cfs_rq, se, flags); 5230 5231 update_curr(cfs_rq); 5232 5233 /* 5234 * When enqueuing a sched_entity, we must: 5235 * - Update loads to have both entity and cfs_rq synced with now. 5236 * - For group_entity, update its runnable_weight to reflect the new 5237 * h_nr_running of its group cfs_rq. 5238 * - For group_entity, update its weight to reflect the new share of 5239 * its group cfs_rq 5240 * - Add its new weight to cfs_rq->load.weight 5241 */ 5242 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5243 se_update_runnable(se); 5244 /* 5245 * XXX update_load_avg() above will have attached us to the pelt sum; 5246 * but update_cfs_group() here will re-adjust the weight and have to 5247 * undo/redo all that. Seems wasteful. 5248 */ 5249 update_cfs_group(se); 5250 5251 /* 5252 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5253 * we can place the entity. 5254 */ 5255 if (!curr) 5256 place_entity(cfs_rq, se, flags); 5257 5258 account_entity_enqueue(cfs_rq, se); 5259 5260 /* Entity has migrated, no longer consider this task hot */ 5261 if (flags & ENQUEUE_MIGRATED) 5262 se->exec_start = 0; 5263 5264 check_schedstat_required(); 5265 update_stats_enqueue_fair(cfs_rq, se, flags); 5266 if (!curr) 5267 __enqueue_entity(cfs_rq, se); 5268 se->on_rq = 1; 5269 5270 if (cfs_rq->nr_running == 1) { 5271 check_enqueue_throttle(cfs_rq); 5272 if (!throttled_hierarchy(cfs_rq)) { 5273 list_add_leaf_cfs_rq(cfs_rq); 5274 } else { 5275 #ifdef CONFIG_CFS_BANDWIDTH 5276 struct rq *rq = rq_of(cfs_rq); 5277 5278 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5279 cfs_rq->throttled_clock = rq_clock(rq); 5280 if (!cfs_rq->throttled_clock_self) 5281 cfs_rq->throttled_clock_self = rq_clock(rq); 5282 #endif 5283 } 5284 } 5285 } 5286 5287 static void __clear_buddies_next(struct sched_entity *se) 5288 { 5289 for_each_sched_entity(se) { 5290 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5291 if (cfs_rq->next != se) 5292 break; 5293 5294 cfs_rq->next = NULL; 5295 } 5296 } 5297 5298 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5299 { 5300 if (cfs_rq->next == se) 5301 __clear_buddies_next(se); 5302 } 5303 5304 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5305 5306 static void 5307 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5308 { 5309 int action = UPDATE_TG; 5310 5311 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5312 action |= DO_DETACH; 5313 5314 /* 5315 * Update run-time statistics of the 'current'. 5316 */ 5317 update_curr(cfs_rq); 5318 5319 /* 5320 * When dequeuing a sched_entity, we must: 5321 * - Update loads to have both entity and cfs_rq synced with now. 5322 * - For group_entity, update its runnable_weight to reflect the new 5323 * h_nr_running of its group cfs_rq. 5324 * - Subtract its previous weight from cfs_rq->load.weight. 5325 * - For group entity, update its weight to reflect the new share 5326 * of its group cfs_rq. 5327 */ 5328 update_load_avg(cfs_rq, se, action); 5329 se_update_runnable(se); 5330 5331 update_stats_dequeue_fair(cfs_rq, se, flags); 5332 5333 clear_buddies(cfs_rq, se); 5334 5335 update_entity_lag(cfs_rq, se); 5336 if (se != cfs_rq->curr) 5337 __dequeue_entity(cfs_rq, se); 5338 se->on_rq = 0; 5339 account_entity_dequeue(cfs_rq, se); 5340 5341 /* return excess runtime on last dequeue */ 5342 return_cfs_rq_runtime(cfs_rq); 5343 5344 update_cfs_group(se); 5345 5346 /* 5347 * Now advance min_vruntime if @se was the entity holding it back, 5348 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5349 * put back on, and if we advance min_vruntime, we'll be placed back 5350 * further than we started -- ie. we'll be penalized. 5351 */ 5352 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5353 update_min_vruntime(cfs_rq); 5354 5355 if (cfs_rq->nr_running == 0) 5356 update_idle_cfs_rq_clock_pelt(cfs_rq); 5357 } 5358 5359 static void 5360 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5361 { 5362 clear_buddies(cfs_rq, se); 5363 5364 /* 'current' is not kept within the tree. */ 5365 if (se->on_rq) { 5366 /* 5367 * Any task has to be enqueued before it get to execute on 5368 * a CPU. So account for the time it spent waiting on the 5369 * runqueue. 5370 */ 5371 update_stats_wait_end_fair(cfs_rq, se); 5372 __dequeue_entity(cfs_rq, se); 5373 update_load_avg(cfs_rq, se, UPDATE_TG); 5374 /* 5375 * HACK, stash a copy of deadline at the point of pick in vlag, 5376 * which isn't used until dequeue. 5377 */ 5378 se->vlag = se->deadline; 5379 } 5380 5381 update_stats_curr_start(cfs_rq, se); 5382 cfs_rq->curr = se; 5383 5384 /* 5385 * Track our maximum slice length, if the CPU's load is at 5386 * least twice that of our own weight (i.e. dont track it 5387 * when there are only lesser-weight tasks around): 5388 */ 5389 if (schedstat_enabled() && 5390 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5391 struct sched_statistics *stats; 5392 5393 stats = __schedstats_from_se(se); 5394 __schedstat_set(stats->slice_max, 5395 max((u64)stats->slice_max, 5396 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5397 } 5398 5399 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5400 } 5401 5402 /* 5403 * Pick the next process, keeping these things in mind, in this order: 5404 * 1) keep things fair between processes/task groups 5405 * 2) pick the "next" process, since someone really wants that to run 5406 * 3) pick the "last" process, for cache locality 5407 * 4) do not run the "skip" process, if something else is available 5408 */ 5409 static struct sched_entity * 5410 pick_next_entity(struct cfs_rq *cfs_rq) 5411 { 5412 /* 5413 * Enabling NEXT_BUDDY will affect latency but not fairness. 5414 */ 5415 if (sched_feat(NEXT_BUDDY) && 5416 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5417 return cfs_rq->next; 5418 5419 return pick_eevdf(cfs_rq); 5420 } 5421 5422 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5423 5424 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5425 { 5426 /* 5427 * If still on the runqueue then deactivate_task() 5428 * was not called and update_curr() has to be done: 5429 */ 5430 if (prev->on_rq) 5431 update_curr(cfs_rq); 5432 5433 /* throttle cfs_rqs exceeding runtime */ 5434 check_cfs_rq_runtime(cfs_rq); 5435 5436 if (prev->on_rq) { 5437 update_stats_wait_start_fair(cfs_rq, prev); 5438 /* Put 'current' back into the tree. */ 5439 __enqueue_entity(cfs_rq, prev); 5440 /* in !on_rq case, update occurred at dequeue */ 5441 update_load_avg(cfs_rq, prev, 0); 5442 } 5443 cfs_rq->curr = NULL; 5444 } 5445 5446 static void 5447 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5448 { 5449 /* 5450 * Update run-time statistics of the 'current'. 5451 */ 5452 update_curr(cfs_rq); 5453 5454 /* 5455 * Ensure that runnable average is periodically updated. 5456 */ 5457 update_load_avg(cfs_rq, curr, UPDATE_TG); 5458 update_cfs_group(curr); 5459 5460 #ifdef CONFIG_SCHED_HRTICK 5461 /* 5462 * queued ticks are scheduled to match the slice, so don't bother 5463 * validating it and just reschedule. 5464 */ 5465 if (queued) { 5466 resched_curr(rq_of(cfs_rq)); 5467 return; 5468 } 5469 /* 5470 * don't let the period tick interfere with the hrtick preemption 5471 */ 5472 if (!sched_feat(DOUBLE_TICK) && 5473 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5474 return; 5475 #endif 5476 } 5477 5478 5479 /************************************************** 5480 * CFS bandwidth control machinery 5481 */ 5482 5483 #ifdef CONFIG_CFS_BANDWIDTH 5484 5485 #ifdef CONFIG_JUMP_LABEL 5486 static struct static_key __cfs_bandwidth_used; 5487 5488 static inline bool cfs_bandwidth_used(void) 5489 { 5490 return static_key_false(&__cfs_bandwidth_used); 5491 } 5492 5493 void cfs_bandwidth_usage_inc(void) 5494 { 5495 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5496 } 5497 5498 void cfs_bandwidth_usage_dec(void) 5499 { 5500 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5501 } 5502 #else /* CONFIG_JUMP_LABEL */ 5503 static bool cfs_bandwidth_used(void) 5504 { 5505 return true; 5506 } 5507 5508 void cfs_bandwidth_usage_inc(void) {} 5509 void cfs_bandwidth_usage_dec(void) {} 5510 #endif /* CONFIG_JUMP_LABEL */ 5511 5512 /* 5513 * default period for cfs group bandwidth. 5514 * default: 0.1s, units: nanoseconds 5515 */ 5516 static inline u64 default_cfs_period(void) 5517 { 5518 return 100000000ULL; 5519 } 5520 5521 static inline u64 sched_cfs_bandwidth_slice(void) 5522 { 5523 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5524 } 5525 5526 /* 5527 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5528 * directly instead of rq->clock to avoid adding additional synchronization 5529 * around rq->lock. 5530 * 5531 * requires cfs_b->lock 5532 */ 5533 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5534 { 5535 s64 runtime; 5536 5537 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5538 return; 5539 5540 cfs_b->runtime += cfs_b->quota; 5541 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5542 if (runtime > 0) { 5543 cfs_b->burst_time += runtime; 5544 cfs_b->nr_burst++; 5545 } 5546 5547 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5548 cfs_b->runtime_snap = cfs_b->runtime; 5549 } 5550 5551 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5552 { 5553 return &tg->cfs_bandwidth; 5554 } 5555 5556 /* returns 0 on failure to allocate runtime */ 5557 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5558 struct cfs_rq *cfs_rq, u64 target_runtime) 5559 { 5560 u64 min_amount, amount = 0; 5561 5562 lockdep_assert_held(&cfs_b->lock); 5563 5564 /* note: this is a positive sum as runtime_remaining <= 0 */ 5565 min_amount = target_runtime - cfs_rq->runtime_remaining; 5566 5567 if (cfs_b->quota == RUNTIME_INF) 5568 amount = min_amount; 5569 else { 5570 start_cfs_bandwidth(cfs_b); 5571 5572 if (cfs_b->runtime > 0) { 5573 amount = min(cfs_b->runtime, min_amount); 5574 cfs_b->runtime -= amount; 5575 cfs_b->idle = 0; 5576 } 5577 } 5578 5579 cfs_rq->runtime_remaining += amount; 5580 5581 return cfs_rq->runtime_remaining > 0; 5582 } 5583 5584 /* returns 0 on failure to allocate runtime */ 5585 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5586 { 5587 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5588 int ret; 5589 5590 raw_spin_lock(&cfs_b->lock); 5591 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5592 raw_spin_unlock(&cfs_b->lock); 5593 5594 return ret; 5595 } 5596 5597 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5598 { 5599 /* dock delta_exec before expiring quota (as it could span periods) */ 5600 cfs_rq->runtime_remaining -= delta_exec; 5601 5602 if (likely(cfs_rq->runtime_remaining > 0)) 5603 return; 5604 5605 if (cfs_rq->throttled) 5606 return; 5607 /* 5608 * if we're unable to extend our runtime we resched so that the active 5609 * hierarchy can be throttled 5610 */ 5611 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5612 resched_curr(rq_of(cfs_rq)); 5613 } 5614 5615 static __always_inline 5616 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5617 { 5618 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5619 return; 5620 5621 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5622 } 5623 5624 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5625 { 5626 return cfs_bandwidth_used() && cfs_rq->throttled; 5627 } 5628 5629 /* check whether cfs_rq, or any parent, is throttled */ 5630 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5631 { 5632 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5633 } 5634 5635 /* 5636 * Ensure that neither of the group entities corresponding to src_cpu or 5637 * dest_cpu are members of a throttled hierarchy when performing group 5638 * load-balance operations. 5639 */ 5640 static inline int throttled_lb_pair(struct task_group *tg, 5641 int src_cpu, int dest_cpu) 5642 { 5643 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5644 5645 src_cfs_rq = tg->cfs_rq[src_cpu]; 5646 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5647 5648 return throttled_hierarchy(src_cfs_rq) || 5649 throttled_hierarchy(dest_cfs_rq); 5650 } 5651 5652 static int tg_unthrottle_up(struct task_group *tg, void *data) 5653 { 5654 struct rq *rq = data; 5655 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5656 5657 cfs_rq->throttle_count--; 5658 if (!cfs_rq->throttle_count) { 5659 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5660 cfs_rq->throttled_clock_pelt; 5661 5662 /* Add cfs_rq with load or one or more already running entities to the list */ 5663 if (!cfs_rq_is_decayed(cfs_rq)) 5664 list_add_leaf_cfs_rq(cfs_rq); 5665 5666 if (cfs_rq->throttled_clock_self) { 5667 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5668 5669 cfs_rq->throttled_clock_self = 0; 5670 5671 if (SCHED_WARN_ON((s64)delta < 0)) 5672 delta = 0; 5673 5674 cfs_rq->throttled_clock_self_time += delta; 5675 } 5676 } 5677 5678 return 0; 5679 } 5680 5681 static int tg_throttle_down(struct task_group *tg, void *data) 5682 { 5683 struct rq *rq = data; 5684 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5685 5686 /* group is entering throttled state, stop time */ 5687 if (!cfs_rq->throttle_count) { 5688 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5689 list_del_leaf_cfs_rq(cfs_rq); 5690 5691 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5692 if (cfs_rq->nr_running) 5693 cfs_rq->throttled_clock_self = rq_clock(rq); 5694 } 5695 cfs_rq->throttle_count++; 5696 5697 return 0; 5698 } 5699 5700 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5701 { 5702 struct rq *rq = rq_of(cfs_rq); 5703 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5704 struct sched_entity *se; 5705 long task_delta, idle_task_delta, dequeue = 1; 5706 5707 raw_spin_lock(&cfs_b->lock); 5708 /* This will start the period timer if necessary */ 5709 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5710 /* 5711 * We have raced with bandwidth becoming available, and if we 5712 * actually throttled the timer might not unthrottle us for an 5713 * entire period. We additionally needed to make sure that any 5714 * subsequent check_cfs_rq_runtime calls agree not to throttle 5715 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5716 * for 1ns of runtime rather than just check cfs_b. 5717 */ 5718 dequeue = 0; 5719 } else { 5720 list_add_tail_rcu(&cfs_rq->throttled_list, 5721 &cfs_b->throttled_cfs_rq); 5722 } 5723 raw_spin_unlock(&cfs_b->lock); 5724 5725 if (!dequeue) 5726 return false; /* Throttle no longer required. */ 5727 5728 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5729 5730 /* freeze hierarchy runnable averages while throttled */ 5731 rcu_read_lock(); 5732 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5733 rcu_read_unlock(); 5734 5735 task_delta = cfs_rq->h_nr_running; 5736 idle_task_delta = cfs_rq->idle_h_nr_running; 5737 for_each_sched_entity(se) { 5738 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5739 /* throttled entity or throttle-on-deactivate */ 5740 if (!se->on_rq) 5741 goto done; 5742 5743 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5744 5745 if (cfs_rq_is_idle(group_cfs_rq(se))) 5746 idle_task_delta = cfs_rq->h_nr_running; 5747 5748 qcfs_rq->h_nr_running -= task_delta; 5749 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5750 5751 if (qcfs_rq->load.weight) { 5752 /* Avoid re-evaluating load for this entity: */ 5753 se = parent_entity(se); 5754 break; 5755 } 5756 } 5757 5758 for_each_sched_entity(se) { 5759 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5760 /* throttled entity or throttle-on-deactivate */ 5761 if (!se->on_rq) 5762 goto done; 5763 5764 update_load_avg(qcfs_rq, se, 0); 5765 se_update_runnable(se); 5766 5767 if (cfs_rq_is_idle(group_cfs_rq(se))) 5768 idle_task_delta = cfs_rq->h_nr_running; 5769 5770 qcfs_rq->h_nr_running -= task_delta; 5771 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5772 } 5773 5774 /* At this point se is NULL and we are at root level*/ 5775 sub_nr_running(rq, task_delta); 5776 5777 done: 5778 /* 5779 * Note: distribution will already see us throttled via the 5780 * throttled-list. rq->lock protects completion. 5781 */ 5782 cfs_rq->throttled = 1; 5783 SCHED_WARN_ON(cfs_rq->throttled_clock); 5784 if (cfs_rq->nr_running) 5785 cfs_rq->throttled_clock = rq_clock(rq); 5786 return true; 5787 } 5788 5789 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5790 { 5791 struct rq *rq = rq_of(cfs_rq); 5792 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5793 struct sched_entity *se; 5794 long task_delta, idle_task_delta; 5795 5796 se = cfs_rq->tg->se[cpu_of(rq)]; 5797 5798 cfs_rq->throttled = 0; 5799 5800 update_rq_clock(rq); 5801 5802 raw_spin_lock(&cfs_b->lock); 5803 if (cfs_rq->throttled_clock) { 5804 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5805 cfs_rq->throttled_clock = 0; 5806 } 5807 list_del_rcu(&cfs_rq->throttled_list); 5808 raw_spin_unlock(&cfs_b->lock); 5809 5810 /* update hierarchical throttle state */ 5811 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5812 5813 if (!cfs_rq->load.weight) { 5814 if (!cfs_rq->on_list) 5815 return; 5816 /* 5817 * Nothing to run but something to decay (on_list)? 5818 * Complete the branch. 5819 */ 5820 for_each_sched_entity(se) { 5821 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5822 break; 5823 } 5824 goto unthrottle_throttle; 5825 } 5826 5827 task_delta = cfs_rq->h_nr_running; 5828 idle_task_delta = cfs_rq->idle_h_nr_running; 5829 for_each_sched_entity(se) { 5830 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5831 5832 if (se->on_rq) 5833 break; 5834 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5835 5836 if (cfs_rq_is_idle(group_cfs_rq(se))) 5837 idle_task_delta = cfs_rq->h_nr_running; 5838 5839 qcfs_rq->h_nr_running += task_delta; 5840 qcfs_rq->idle_h_nr_running += idle_task_delta; 5841 5842 /* end evaluation on encountering a throttled cfs_rq */ 5843 if (cfs_rq_throttled(qcfs_rq)) 5844 goto unthrottle_throttle; 5845 } 5846 5847 for_each_sched_entity(se) { 5848 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5849 5850 update_load_avg(qcfs_rq, se, UPDATE_TG); 5851 se_update_runnable(se); 5852 5853 if (cfs_rq_is_idle(group_cfs_rq(se))) 5854 idle_task_delta = cfs_rq->h_nr_running; 5855 5856 qcfs_rq->h_nr_running += task_delta; 5857 qcfs_rq->idle_h_nr_running += idle_task_delta; 5858 5859 /* end evaluation on encountering a throttled cfs_rq */ 5860 if (cfs_rq_throttled(qcfs_rq)) 5861 goto unthrottle_throttle; 5862 } 5863 5864 /* At this point se is NULL and we are at root level*/ 5865 add_nr_running(rq, task_delta); 5866 5867 unthrottle_throttle: 5868 assert_list_leaf_cfs_rq(rq); 5869 5870 /* Determine whether we need to wake up potentially idle CPU: */ 5871 if (rq->curr == rq->idle && rq->cfs.nr_running) 5872 resched_curr(rq); 5873 } 5874 5875 #ifdef CONFIG_SMP 5876 static void __cfsb_csd_unthrottle(void *arg) 5877 { 5878 struct cfs_rq *cursor, *tmp; 5879 struct rq *rq = arg; 5880 struct rq_flags rf; 5881 5882 rq_lock(rq, &rf); 5883 5884 /* 5885 * Iterating over the list can trigger several call to 5886 * update_rq_clock() in unthrottle_cfs_rq(). 5887 * Do it once and skip the potential next ones. 5888 */ 5889 update_rq_clock(rq); 5890 rq_clock_start_loop_update(rq); 5891 5892 /* 5893 * Since we hold rq lock we're safe from concurrent manipulation of 5894 * the CSD list. However, this RCU critical section annotates the 5895 * fact that we pair with sched_free_group_rcu(), so that we cannot 5896 * race with group being freed in the window between removing it 5897 * from the list and advancing to the next entry in the list. 5898 */ 5899 rcu_read_lock(); 5900 5901 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5902 throttled_csd_list) { 5903 list_del_init(&cursor->throttled_csd_list); 5904 5905 if (cfs_rq_throttled(cursor)) 5906 unthrottle_cfs_rq(cursor); 5907 } 5908 5909 rcu_read_unlock(); 5910 5911 rq_clock_stop_loop_update(rq); 5912 rq_unlock(rq, &rf); 5913 } 5914 5915 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5916 { 5917 struct rq *rq = rq_of(cfs_rq); 5918 bool first; 5919 5920 if (rq == this_rq()) { 5921 unthrottle_cfs_rq(cfs_rq); 5922 return; 5923 } 5924 5925 /* Already enqueued */ 5926 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5927 return; 5928 5929 first = list_empty(&rq->cfsb_csd_list); 5930 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5931 if (first) 5932 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5933 } 5934 #else 5935 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5936 { 5937 unthrottle_cfs_rq(cfs_rq); 5938 } 5939 #endif 5940 5941 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5942 { 5943 lockdep_assert_rq_held(rq_of(cfs_rq)); 5944 5945 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5946 cfs_rq->runtime_remaining <= 0)) 5947 return; 5948 5949 __unthrottle_cfs_rq_async(cfs_rq); 5950 } 5951 5952 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5953 { 5954 int this_cpu = smp_processor_id(); 5955 u64 runtime, remaining = 1; 5956 bool throttled = false; 5957 struct cfs_rq *cfs_rq, *tmp; 5958 struct rq_flags rf; 5959 struct rq *rq; 5960 LIST_HEAD(local_unthrottle); 5961 5962 rcu_read_lock(); 5963 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5964 throttled_list) { 5965 rq = rq_of(cfs_rq); 5966 5967 if (!remaining) { 5968 throttled = true; 5969 break; 5970 } 5971 5972 rq_lock_irqsave(rq, &rf); 5973 if (!cfs_rq_throttled(cfs_rq)) 5974 goto next; 5975 5976 /* Already queued for async unthrottle */ 5977 if (!list_empty(&cfs_rq->throttled_csd_list)) 5978 goto next; 5979 5980 /* By the above checks, this should never be true */ 5981 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5982 5983 raw_spin_lock(&cfs_b->lock); 5984 runtime = -cfs_rq->runtime_remaining + 1; 5985 if (runtime > cfs_b->runtime) 5986 runtime = cfs_b->runtime; 5987 cfs_b->runtime -= runtime; 5988 remaining = cfs_b->runtime; 5989 raw_spin_unlock(&cfs_b->lock); 5990 5991 cfs_rq->runtime_remaining += runtime; 5992 5993 /* we check whether we're throttled above */ 5994 if (cfs_rq->runtime_remaining > 0) { 5995 if (cpu_of(rq) != this_cpu) { 5996 unthrottle_cfs_rq_async(cfs_rq); 5997 } else { 5998 /* 5999 * We currently only expect to be unthrottling 6000 * a single cfs_rq locally. 6001 */ 6002 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6003 list_add_tail(&cfs_rq->throttled_csd_list, 6004 &local_unthrottle); 6005 } 6006 } else { 6007 throttled = true; 6008 } 6009 6010 next: 6011 rq_unlock_irqrestore(rq, &rf); 6012 } 6013 6014 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6015 throttled_csd_list) { 6016 struct rq *rq = rq_of(cfs_rq); 6017 6018 rq_lock_irqsave(rq, &rf); 6019 6020 list_del_init(&cfs_rq->throttled_csd_list); 6021 6022 if (cfs_rq_throttled(cfs_rq)) 6023 unthrottle_cfs_rq(cfs_rq); 6024 6025 rq_unlock_irqrestore(rq, &rf); 6026 } 6027 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6028 6029 rcu_read_unlock(); 6030 6031 return throttled; 6032 } 6033 6034 /* 6035 * Responsible for refilling a task_group's bandwidth and unthrottling its 6036 * cfs_rqs as appropriate. If there has been no activity within the last 6037 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6038 * used to track this state. 6039 */ 6040 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6041 { 6042 int throttled; 6043 6044 /* no need to continue the timer with no bandwidth constraint */ 6045 if (cfs_b->quota == RUNTIME_INF) 6046 goto out_deactivate; 6047 6048 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6049 cfs_b->nr_periods += overrun; 6050 6051 /* Refill extra burst quota even if cfs_b->idle */ 6052 __refill_cfs_bandwidth_runtime(cfs_b); 6053 6054 /* 6055 * idle depends on !throttled (for the case of a large deficit), and if 6056 * we're going inactive then everything else can be deferred 6057 */ 6058 if (cfs_b->idle && !throttled) 6059 goto out_deactivate; 6060 6061 if (!throttled) { 6062 /* mark as potentially idle for the upcoming period */ 6063 cfs_b->idle = 1; 6064 return 0; 6065 } 6066 6067 /* account preceding periods in which throttling occurred */ 6068 cfs_b->nr_throttled += overrun; 6069 6070 /* 6071 * This check is repeated as we release cfs_b->lock while we unthrottle. 6072 */ 6073 while (throttled && cfs_b->runtime > 0) { 6074 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6075 /* we can't nest cfs_b->lock while distributing bandwidth */ 6076 throttled = distribute_cfs_runtime(cfs_b); 6077 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6078 } 6079 6080 /* 6081 * While we are ensured activity in the period following an 6082 * unthrottle, this also covers the case in which the new bandwidth is 6083 * insufficient to cover the existing bandwidth deficit. (Forcing the 6084 * timer to remain active while there are any throttled entities.) 6085 */ 6086 cfs_b->idle = 0; 6087 6088 return 0; 6089 6090 out_deactivate: 6091 return 1; 6092 } 6093 6094 /* a cfs_rq won't donate quota below this amount */ 6095 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6096 /* minimum remaining period time to redistribute slack quota */ 6097 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6098 /* how long we wait to gather additional slack before distributing */ 6099 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6100 6101 /* 6102 * Are we near the end of the current quota period? 6103 * 6104 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6105 * hrtimer base being cleared by hrtimer_start. In the case of 6106 * migrate_hrtimers, base is never cleared, so we are fine. 6107 */ 6108 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6109 { 6110 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6111 s64 remaining; 6112 6113 /* if the call-back is running a quota refresh is already occurring */ 6114 if (hrtimer_callback_running(refresh_timer)) 6115 return 1; 6116 6117 /* is a quota refresh about to occur? */ 6118 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6119 if (remaining < (s64)min_expire) 6120 return 1; 6121 6122 return 0; 6123 } 6124 6125 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6126 { 6127 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6128 6129 /* if there's a quota refresh soon don't bother with slack */ 6130 if (runtime_refresh_within(cfs_b, min_left)) 6131 return; 6132 6133 /* don't push forwards an existing deferred unthrottle */ 6134 if (cfs_b->slack_started) 6135 return; 6136 cfs_b->slack_started = true; 6137 6138 hrtimer_start(&cfs_b->slack_timer, 6139 ns_to_ktime(cfs_bandwidth_slack_period), 6140 HRTIMER_MODE_REL); 6141 } 6142 6143 /* we know any runtime found here is valid as update_curr() precedes return */ 6144 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6145 { 6146 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6147 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6148 6149 if (slack_runtime <= 0) 6150 return; 6151 6152 raw_spin_lock(&cfs_b->lock); 6153 if (cfs_b->quota != RUNTIME_INF) { 6154 cfs_b->runtime += slack_runtime; 6155 6156 /* we are under rq->lock, defer unthrottling using a timer */ 6157 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6158 !list_empty(&cfs_b->throttled_cfs_rq)) 6159 start_cfs_slack_bandwidth(cfs_b); 6160 } 6161 raw_spin_unlock(&cfs_b->lock); 6162 6163 /* even if it's not valid for return we don't want to try again */ 6164 cfs_rq->runtime_remaining -= slack_runtime; 6165 } 6166 6167 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6168 { 6169 if (!cfs_bandwidth_used()) 6170 return; 6171 6172 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6173 return; 6174 6175 __return_cfs_rq_runtime(cfs_rq); 6176 } 6177 6178 /* 6179 * This is done with a timer (instead of inline with bandwidth return) since 6180 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6181 */ 6182 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6183 { 6184 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6185 unsigned long flags; 6186 6187 /* confirm we're still not at a refresh boundary */ 6188 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6189 cfs_b->slack_started = false; 6190 6191 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6192 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6193 return; 6194 } 6195 6196 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6197 runtime = cfs_b->runtime; 6198 6199 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6200 6201 if (!runtime) 6202 return; 6203 6204 distribute_cfs_runtime(cfs_b); 6205 } 6206 6207 /* 6208 * When a group wakes up we want to make sure that its quota is not already 6209 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6210 * runtime as update_curr() throttling can not trigger until it's on-rq. 6211 */ 6212 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6213 { 6214 if (!cfs_bandwidth_used()) 6215 return; 6216 6217 /* an active group must be handled by the update_curr()->put() path */ 6218 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6219 return; 6220 6221 /* ensure the group is not already throttled */ 6222 if (cfs_rq_throttled(cfs_rq)) 6223 return; 6224 6225 /* update runtime allocation */ 6226 account_cfs_rq_runtime(cfs_rq, 0); 6227 if (cfs_rq->runtime_remaining <= 0) 6228 throttle_cfs_rq(cfs_rq); 6229 } 6230 6231 static void sync_throttle(struct task_group *tg, int cpu) 6232 { 6233 struct cfs_rq *pcfs_rq, *cfs_rq; 6234 6235 if (!cfs_bandwidth_used()) 6236 return; 6237 6238 if (!tg->parent) 6239 return; 6240 6241 cfs_rq = tg->cfs_rq[cpu]; 6242 pcfs_rq = tg->parent->cfs_rq[cpu]; 6243 6244 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6245 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6246 } 6247 6248 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6249 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6250 { 6251 if (!cfs_bandwidth_used()) 6252 return false; 6253 6254 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6255 return false; 6256 6257 /* 6258 * it's possible for a throttled entity to be forced into a running 6259 * state (e.g. set_curr_task), in this case we're finished. 6260 */ 6261 if (cfs_rq_throttled(cfs_rq)) 6262 return true; 6263 6264 return throttle_cfs_rq(cfs_rq); 6265 } 6266 6267 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6268 { 6269 struct cfs_bandwidth *cfs_b = 6270 container_of(timer, struct cfs_bandwidth, slack_timer); 6271 6272 do_sched_cfs_slack_timer(cfs_b); 6273 6274 return HRTIMER_NORESTART; 6275 } 6276 6277 extern const u64 max_cfs_quota_period; 6278 6279 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6280 { 6281 struct cfs_bandwidth *cfs_b = 6282 container_of(timer, struct cfs_bandwidth, period_timer); 6283 unsigned long flags; 6284 int overrun; 6285 int idle = 0; 6286 int count = 0; 6287 6288 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6289 for (;;) { 6290 overrun = hrtimer_forward_now(timer, cfs_b->period); 6291 if (!overrun) 6292 break; 6293 6294 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6295 6296 if (++count > 3) { 6297 u64 new, old = ktime_to_ns(cfs_b->period); 6298 6299 /* 6300 * Grow period by a factor of 2 to avoid losing precision. 6301 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6302 * to fail. 6303 */ 6304 new = old * 2; 6305 if (new < max_cfs_quota_period) { 6306 cfs_b->period = ns_to_ktime(new); 6307 cfs_b->quota *= 2; 6308 cfs_b->burst *= 2; 6309 6310 pr_warn_ratelimited( 6311 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6312 smp_processor_id(), 6313 div_u64(new, NSEC_PER_USEC), 6314 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6315 } else { 6316 pr_warn_ratelimited( 6317 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6318 smp_processor_id(), 6319 div_u64(old, NSEC_PER_USEC), 6320 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6321 } 6322 6323 /* reset count so we don't come right back in here */ 6324 count = 0; 6325 } 6326 } 6327 if (idle) 6328 cfs_b->period_active = 0; 6329 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6330 6331 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6332 } 6333 6334 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6335 { 6336 raw_spin_lock_init(&cfs_b->lock); 6337 cfs_b->runtime = 0; 6338 cfs_b->quota = RUNTIME_INF; 6339 cfs_b->period = ns_to_ktime(default_cfs_period()); 6340 cfs_b->burst = 0; 6341 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6342 6343 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6344 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6345 cfs_b->period_timer.function = sched_cfs_period_timer; 6346 6347 /* Add a random offset so that timers interleave */ 6348 hrtimer_set_expires(&cfs_b->period_timer, 6349 get_random_u32_below(cfs_b->period)); 6350 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6351 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6352 cfs_b->slack_started = false; 6353 } 6354 6355 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6356 { 6357 cfs_rq->runtime_enabled = 0; 6358 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6359 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6360 } 6361 6362 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6363 { 6364 lockdep_assert_held(&cfs_b->lock); 6365 6366 if (cfs_b->period_active) 6367 return; 6368 6369 cfs_b->period_active = 1; 6370 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6371 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6372 } 6373 6374 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6375 { 6376 int __maybe_unused i; 6377 6378 /* init_cfs_bandwidth() was not called */ 6379 if (!cfs_b->throttled_cfs_rq.next) 6380 return; 6381 6382 hrtimer_cancel(&cfs_b->period_timer); 6383 hrtimer_cancel(&cfs_b->slack_timer); 6384 6385 /* 6386 * It is possible that we still have some cfs_rq's pending on a CSD 6387 * list, though this race is very rare. In order for this to occur, we 6388 * must have raced with the last task leaving the group while there 6389 * exist throttled cfs_rq(s), and the period_timer must have queued the 6390 * CSD item but the remote cpu has not yet processed it. To handle this, 6391 * we can simply flush all pending CSD work inline here. We're 6392 * guaranteed at this point that no additional cfs_rq of this group can 6393 * join a CSD list. 6394 */ 6395 #ifdef CONFIG_SMP 6396 for_each_possible_cpu(i) { 6397 struct rq *rq = cpu_rq(i); 6398 unsigned long flags; 6399 6400 if (list_empty(&rq->cfsb_csd_list)) 6401 continue; 6402 6403 local_irq_save(flags); 6404 __cfsb_csd_unthrottle(rq); 6405 local_irq_restore(flags); 6406 } 6407 #endif 6408 } 6409 6410 /* 6411 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6412 * 6413 * The race is harmless, since modifying bandwidth settings of unhooked group 6414 * bits doesn't do much. 6415 */ 6416 6417 /* cpu online callback */ 6418 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6419 { 6420 struct task_group *tg; 6421 6422 lockdep_assert_rq_held(rq); 6423 6424 rcu_read_lock(); 6425 list_for_each_entry_rcu(tg, &task_groups, list) { 6426 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6427 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6428 6429 raw_spin_lock(&cfs_b->lock); 6430 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6431 raw_spin_unlock(&cfs_b->lock); 6432 } 6433 rcu_read_unlock(); 6434 } 6435 6436 /* cpu offline callback */ 6437 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6438 { 6439 struct task_group *tg; 6440 6441 lockdep_assert_rq_held(rq); 6442 6443 /* 6444 * The rq clock has already been updated in the 6445 * set_rq_offline(), so we should skip updating 6446 * the rq clock again in unthrottle_cfs_rq(). 6447 */ 6448 rq_clock_start_loop_update(rq); 6449 6450 rcu_read_lock(); 6451 list_for_each_entry_rcu(tg, &task_groups, list) { 6452 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6453 6454 if (!cfs_rq->runtime_enabled) 6455 continue; 6456 6457 /* 6458 * clock_task is not advancing so we just need to make sure 6459 * there's some valid quota amount 6460 */ 6461 cfs_rq->runtime_remaining = 1; 6462 /* 6463 * Offline rq is schedulable till CPU is completely disabled 6464 * in take_cpu_down(), so we prevent new cfs throttling here. 6465 */ 6466 cfs_rq->runtime_enabled = 0; 6467 6468 if (cfs_rq_throttled(cfs_rq)) 6469 unthrottle_cfs_rq(cfs_rq); 6470 } 6471 rcu_read_unlock(); 6472 6473 rq_clock_stop_loop_update(rq); 6474 } 6475 6476 bool cfs_task_bw_constrained(struct task_struct *p) 6477 { 6478 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6479 6480 if (!cfs_bandwidth_used()) 6481 return false; 6482 6483 if (cfs_rq->runtime_enabled || 6484 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6485 return true; 6486 6487 return false; 6488 } 6489 6490 #ifdef CONFIG_NO_HZ_FULL 6491 /* called from pick_next_task_fair() */ 6492 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6493 { 6494 int cpu = cpu_of(rq); 6495 6496 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6497 return; 6498 6499 if (!tick_nohz_full_cpu(cpu)) 6500 return; 6501 6502 if (rq->nr_running != 1) 6503 return; 6504 6505 /* 6506 * We know there is only one task runnable and we've just picked it. The 6507 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6508 * be otherwise able to stop the tick. Just need to check if we are using 6509 * bandwidth control. 6510 */ 6511 if (cfs_task_bw_constrained(p)) 6512 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6513 } 6514 #endif 6515 6516 #else /* CONFIG_CFS_BANDWIDTH */ 6517 6518 static inline bool cfs_bandwidth_used(void) 6519 { 6520 return false; 6521 } 6522 6523 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6524 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6525 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6526 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6527 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6528 6529 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6530 { 6531 return 0; 6532 } 6533 6534 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6535 { 6536 return 0; 6537 } 6538 6539 static inline int throttled_lb_pair(struct task_group *tg, 6540 int src_cpu, int dest_cpu) 6541 { 6542 return 0; 6543 } 6544 6545 #ifdef CONFIG_FAIR_GROUP_SCHED 6546 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6547 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6548 #endif 6549 6550 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6551 { 6552 return NULL; 6553 } 6554 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6555 static inline void update_runtime_enabled(struct rq *rq) {} 6556 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6557 #ifdef CONFIG_CGROUP_SCHED 6558 bool cfs_task_bw_constrained(struct task_struct *p) 6559 { 6560 return false; 6561 } 6562 #endif 6563 #endif /* CONFIG_CFS_BANDWIDTH */ 6564 6565 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6566 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6567 #endif 6568 6569 /************************************************** 6570 * CFS operations on tasks: 6571 */ 6572 6573 #ifdef CONFIG_SCHED_HRTICK 6574 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6575 { 6576 struct sched_entity *se = &p->se; 6577 6578 SCHED_WARN_ON(task_rq(p) != rq); 6579 6580 if (rq->cfs.h_nr_running > 1) { 6581 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6582 u64 slice = se->slice; 6583 s64 delta = slice - ran; 6584 6585 if (delta < 0) { 6586 if (task_current(rq, p)) 6587 resched_curr(rq); 6588 return; 6589 } 6590 hrtick_start(rq, delta); 6591 } 6592 } 6593 6594 /* 6595 * called from enqueue/dequeue and updates the hrtick when the 6596 * current task is from our class and nr_running is low enough 6597 * to matter. 6598 */ 6599 static void hrtick_update(struct rq *rq) 6600 { 6601 struct task_struct *curr = rq->curr; 6602 6603 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6604 return; 6605 6606 hrtick_start_fair(rq, curr); 6607 } 6608 #else /* !CONFIG_SCHED_HRTICK */ 6609 static inline void 6610 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6611 { 6612 } 6613 6614 static inline void hrtick_update(struct rq *rq) 6615 { 6616 } 6617 #endif 6618 6619 #ifdef CONFIG_SMP 6620 static inline bool cpu_overutilized(int cpu) 6621 { 6622 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6623 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6624 6625 /* Return true only if the utilization doesn't fit CPU's capacity */ 6626 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6627 } 6628 6629 static inline void update_overutilized_status(struct rq *rq) 6630 { 6631 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6632 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6633 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6634 } 6635 } 6636 #else 6637 static inline void update_overutilized_status(struct rq *rq) { } 6638 #endif 6639 6640 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6641 static int sched_idle_rq(struct rq *rq) 6642 { 6643 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6644 rq->nr_running); 6645 } 6646 6647 #ifdef CONFIG_SMP 6648 static int sched_idle_cpu(int cpu) 6649 { 6650 return sched_idle_rq(cpu_rq(cpu)); 6651 } 6652 #endif 6653 6654 /* 6655 * The enqueue_task method is called before nr_running is 6656 * increased. Here we update the fair scheduling stats and 6657 * then put the task into the rbtree: 6658 */ 6659 static void 6660 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6661 { 6662 struct cfs_rq *cfs_rq; 6663 struct sched_entity *se = &p->se; 6664 int idle_h_nr_running = task_has_idle_policy(p); 6665 int task_new = !(flags & ENQUEUE_WAKEUP); 6666 6667 /* 6668 * The code below (indirectly) updates schedutil which looks at 6669 * the cfs_rq utilization to select a frequency. 6670 * Let's add the task's estimated utilization to the cfs_rq's 6671 * estimated utilization, before we update schedutil. 6672 */ 6673 util_est_enqueue(&rq->cfs, p); 6674 6675 /* 6676 * If in_iowait is set, the code below may not trigger any cpufreq 6677 * utilization updates, so do it here explicitly with the IOWAIT flag 6678 * passed. 6679 */ 6680 if (p->in_iowait) 6681 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6682 6683 for_each_sched_entity(se) { 6684 if (se->on_rq) 6685 break; 6686 cfs_rq = cfs_rq_of(se); 6687 enqueue_entity(cfs_rq, se, flags); 6688 6689 cfs_rq->h_nr_running++; 6690 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6691 6692 if (cfs_rq_is_idle(cfs_rq)) 6693 idle_h_nr_running = 1; 6694 6695 /* end evaluation on encountering a throttled cfs_rq */ 6696 if (cfs_rq_throttled(cfs_rq)) 6697 goto enqueue_throttle; 6698 6699 flags = ENQUEUE_WAKEUP; 6700 } 6701 6702 for_each_sched_entity(se) { 6703 cfs_rq = cfs_rq_of(se); 6704 6705 update_load_avg(cfs_rq, se, UPDATE_TG); 6706 se_update_runnable(se); 6707 update_cfs_group(se); 6708 6709 cfs_rq->h_nr_running++; 6710 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6711 6712 if (cfs_rq_is_idle(cfs_rq)) 6713 idle_h_nr_running = 1; 6714 6715 /* end evaluation on encountering a throttled cfs_rq */ 6716 if (cfs_rq_throttled(cfs_rq)) 6717 goto enqueue_throttle; 6718 } 6719 6720 /* At this point se is NULL and we are at root level*/ 6721 add_nr_running(rq, 1); 6722 6723 /* 6724 * Since new tasks are assigned an initial util_avg equal to 6725 * half of the spare capacity of their CPU, tiny tasks have the 6726 * ability to cross the overutilized threshold, which will 6727 * result in the load balancer ruining all the task placement 6728 * done by EAS. As a way to mitigate that effect, do not account 6729 * for the first enqueue operation of new tasks during the 6730 * overutilized flag detection. 6731 * 6732 * A better way of solving this problem would be to wait for 6733 * the PELT signals of tasks to converge before taking them 6734 * into account, but that is not straightforward to implement, 6735 * and the following generally works well enough in practice. 6736 */ 6737 if (!task_new) 6738 update_overutilized_status(rq); 6739 6740 enqueue_throttle: 6741 assert_list_leaf_cfs_rq(rq); 6742 6743 hrtick_update(rq); 6744 } 6745 6746 static void set_next_buddy(struct sched_entity *se); 6747 6748 /* 6749 * The dequeue_task method is called before nr_running is 6750 * decreased. We remove the task from the rbtree and 6751 * update the fair scheduling stats: 6752 */ 6753 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6754 { 6755 struct cfs_rq *cfs_rq; 6756 struct sched_entity *se = &p->se; 6757 int task_sleep = flags & DEQUEUE_SLEEP; 6758 int idle_h_nr_running = task_has_idle_policy(p); 6759 bool was_sched_idle = sched_idle_rq(rq); 6760 6761 util_est_dequeue(&rq->cfs, p); 6762 6763 for_each_sched_entity(se) { 6764 cfs_rq = cfs_rq_of(se); 6765 dequeue_entity(cfs_rq, se, flags); 6766 6767 cfs_rq->h_nr_running--; 6768 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6769 6770 if (cfs_rq_is_idle(cfs_rq)) 6771 idle_h_nr_running = 1; 6772 6773 /* end evaluation on encountering a throttled cfs_rq */ 6774 if (cfs_rq_throttled(cfs_rq)) 6775 goto dequeue_throttle; 6776 6777 /* Don't dequeue parent if it has other entities besides us */ 6778 if (cfs_rq->load.weight) { 6779 /* Avoid re-evaluating load for this entity: */ 6780 se = parent_entity(se); 6781 /* 6782 * Bias pick_next to pick a task from this cfs_rq, as 6783 * p is sleeping when it is within its sched_slice. 6784 */ 6785 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6786 set_next_buddy(se); 6787 break; 6788 } 6789 flags |= DEQUEUE_SLEEP; 6790 } 6791 6792 for_each_sched_entity(se) { 6793 cfs_rq = cfs_rq_of(se); 6794 6795 update_load_avg(cfs_rq, se, UPDATE_TG); 6796 se_update_runnable(se); 6797 update_cfs_group(se); 6798 6799 cfs_rq->h_nr_running--; 6800 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6801 6802 if (cfs_rq_is_idle(cfs_rq)) 6803 idle_h_nr_running = 1; 6804 6805 /* end evaluation on encountering a throttled cfs_rq */ 6806 if (cfs_rq_throttled(cfs_rq)) 6807 goto dequeue_throttle; 6808 6809 } 6810 6811 /* At this point se is NULL and we are at root level*/ 6812 sub_nr_running(rq, 1); 6813 6814 /* balance early to pull high priority tasks */ 6815 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6816 rq->next_balance = jiffies; 6817 6818 dequeue_throttle: 6819 util_est_update(&rq->cfs, p, task_sleep); 6820 hrtick_update(rq); 6821 } 6822 6823 #ifdef CONFIG_SMP 6824 6825 /* Working cpumask for: load_balance, load_balance_newidle. */ 6826 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6827 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6828 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6829 6830 #ifdef CONFIG_NO_HZ_COMMON 6831 6832 static struct { 6833 cpumask_var_t idle_cpus_mask; 6834 atomic_t nr_cpus; 6835 int has_blocked; /* Idle CPUS has blocked load */ 6836 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6837 unsigned long next_balance; /* in jiffy units */ 6838 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6839 } nohz ____cacheline_aligned; 6840 6841 #endif /* CONFIG_NO_HZ_COMMON */ 6842 6843 static unsigned long cpu_load(struct rq *rq) 6844 { 6845 return cfs_rq_load_avg(&rq->cfs); 6846 } 6847 6848 /* 6849 * cpu_load_without - compute CPU load without any contributions from *p 6850 * @cpu: the CPU which load is requested 6851 * @p: the task which load should be discounted 6852 * 6853 * The load of a CPU is defined by the load of tasks currently enqueued on that 6854 * CPU as well as tasks which are currently sleeping after an execution on that 6855 * CPU. 6856 * 6857 * This method returns the load of the specified CPU by discounting the load of 6858 * the specified task, whenever the task is currently contributing to the CPU 6859 * load. 6860 */ 6861 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6862 { 6863 struct cfs_rq *cfs_rq; 6864 unsigned int load; 6865 6866 /* Task has no contribution or is new */ 6867 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6868 return cpu_load(rq); 6869 6870 cfs_rq = &rq->cfs; 6871 load = READ_ONCE(cfs_rq->avg.load_avg); 6872 6873 /* Discount task's util from CPU's util */ 6874 lsub_positive(&load, task_h_load(p)); 6875 6876 return load; 6877 } 6878 6879 static unsigned long cpu_runnable(struct rq *rq) 6880 { 6881 return cfs_rq_runnable_avg(&rq->cfs); 6882 } 6883 6884 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6885 { 6886 struct cfs_rq *cfs_rq; 6887 unsigned int runnable; 6888 6889 /* Task has no contribution or is new */ 6890 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6891 return cpu_runnable(rq); 6892 6893 cfs_rq = &rq->cfs; 6894 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6895 6896 /* Discount task's runnable from CPU's runnable */ 6897 lsub_positive(&runnable, p->se.avg.runnable_avg); 6898 6899 return runnable; 6900 } 6901 6902 static unsigned long capacity_of(int cpu) 6903 { 6904 return cpu_rq(cpu)->cpu_capacity; 6905 } 6906 6907 static void record_wakee(struct task_struct *p) 6908 { 6909 /* 6910 * Only decay a single time; tasks that have less then 1 wakeup per 6911 * jiffy will not have built up many flips. 6912 */ 6913 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6914 current->wakee_flips >>= 1; 6915 current->wakee_flip_decay_ts = jiffies; 6916 } 6917 6918 if (current->last_wakee != p) { 6919 current->last_wakee = p; 6920 current->wakee_flips++; 6921 } 6922 } 6923 6924 /* 6925 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6926 * 6927 * A waker of many should wake a different task than the one last awakened 6928 * at a frequency roughly N times higher than one of its wakees. 6929 * 6930 * In order to determine whether we should let the load spread vs consolidating 6931 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6932 * partner, and a factor of lls_size higher frequency in the other. 6933 * 6934 * With both conditions met, we can be relatively sure that the relationship is 6935 * non-monogamous, with partner count exceeding socket size. 6936 * 6937 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6938 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6939 * socket size. 6940 */ 6941 static int wake_wide(struct task_struct *p) 6942 { 6943 unsigned int master = current->wakee_flips; 6944 unsigned int slave = p->wakee_flips; 6945 int factor = __this_cpu_read(sd_llc_size); 6946 6947 if (master < slave) 6948 swap(master, slave); 6949 if (slave < factor || master < slave * factor) 6950 return 0; 6951 return 1; 6952 } 6953 6954 /* 6955 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6956 * soonest. For the purpose of speed we only consider the waking and previous 6957 * CPU. 6958 * 6959 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6960 * cache-affine and is (or will be) idle. 6961 * 6962 * wake_affine_weight() - considers the weight to reflect the average 6963 * scheduling latency of the CPUs. This seems to work 6964 * for the overloaded case. 6965 */ 6966 static int 6967 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6968 { 6969 /* 6970 * If this_cpu is idle, it implies the wakeup is from interrupt 6971 * context. Only allow the move if cache is shared. Otherwise an 6972 * interrupt intensive workload could force all tasks onto one 6973 * node depending on the IO topology or IRQ affinity settings. 6974 * 6975 * If the prev_cpu is idle and cache affine then avoid a migration. 6976 * There is no guarantee that the cache hot data from an interrupt 6977 * is more important than cache hot data on the prev_cpu and from 6978 * a cpufreq perspective, it's better to have higher utilisation 6979 * on one CPU. 6980 */ 6981 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6982 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6983 6984 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6985 return this_cpu; 6986 6987 if (available_idle_cpu(prev_cpu)) 6988 return prev_cpu; 6989 6990 return nr_cpumask_bits; 6991 } 6992 6993 static int 6994 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6995 int this_cpu, int prev_cpu, int sync) 6996 { 6997 s64 this_eff_load, prev_eff_load; 6998 unsigned long task_load; 6999 7000 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7001 7002 if (sync) { 7003 unsigned long current_load = task_h_load(current); 7004 7005 if (current_load > this_eff_load) 7006 return this_cpu; 7007 7008 this_eff_load -= current_load; 7009 } 7010 7011 task_load = task_h_load(p); 7012 7013 this_eff_load += task_load; 7014 if (sched_feat(WA_BIAS)) 7015 this_eff_load *= 100; 7016 this_eff_load *= capacity_of(prev_cpu); 7017 7018 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7019 prev_eff_load -= task_load; 7020 if (sched_feat(WA_BIAS)) 7021 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7022 prev_eff_load *= capacity_of(this_cpu); 7023 7024 /* 7025 * If sync, adjust the weight of prev_eff_load such that if 7026 * prev_eff == this_eff that select_idle_sibling() will consider 7027 * stacking the wakee on top of the waker if no other CPU is 7028 * idle. 7029 */ 7030 if (sync) 7031 prev_eff_load += 1; 7032 7033 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7034 } 7035 7036 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7037 int this_cpu, int prev_cpu, int sync) 7038 { 7039 int target = nr_cpumask_bits; 7040 7041 if (sched_feat(WA_IDLE)) 7042 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7043 7044 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7045 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7046 7047 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7048 if (target != this_cpu) 7049 return prev_cpu; 7050 7051 schedstat_inc(sd->ttwu_move_affine); 7052 schedstat_inc(p->stats.nr_wakeups_affine); 7053 return target; 7054 } 7055 7056 static struct sched_group * 7057 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7058 7059 /* 7060 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 7061 */ 7062 static int 7063 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7064 { 7065 unsigned long load, min_load = ULONG_MAX; 7066 unsigned int min_exit_latency = UINT_MAX; 7067 u64 latest_idle_timestamp = 0; 7068 int least_loaded_cpu = this_cpu; 7069 int shallowest_idle_cpu = -1; 7070 int i; 7071 7072 /* Check if we have any choice: */ 7073 if (group->group_weight == 1) 7074 return cpumask_first(sched_group_span(group)); 7075 7076 /* Traverse only the allowed CPUs */ 7077 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7078 struct rq *rq = cpu_rq(i); 7079 7080 if (!sched_core_cookie_match(rq, p)) 7081 continue; 7082 7083 if (sched_idle_cpu(i)) 7084 return i; 7085 7086 if (available_idle_cpu(i)) { 7087 struct cpuidle_state *idle = idle_get_state(rq); 7088 if (idle && idle->exit_latency < min_exit_latency) { 7089 /* 7090 * We give priority to a CPU whose idle state 7091 * has the smallest exit latency irrespective 7092 * of any idle timestamp. 7093 */ 7094 min_exit_latency = idle->exit_latency; 7095 latest_idle_timestamp = rq->idle_stamp; 7096 shallowest_idle_cpu = i; 7097 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7098 rq->idle_stamp > latest_idle_timestamp) { 7099 /* 7100 * If equal or no active idle state, then 7101 * the most recently idled CPU might have 7102 * a warmer cache. 7103 */ 7104 latest_idle_timestamp = rq->idle_stamp; 7105 shallowest_idle_cpu = i; 7106 } 7107 } else if (shallowest_idle_cpu == -1) { 7108 load = cpu_load(cpu_rq(i)); 7109 if (load < min_load) { 7110 min_load = load; 7111 least_loaded_cpu = i; 7112 } 7113 } 7114 } 7115 7116 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7117 } 7118 7119 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 7120 int cpu, int prev_cpu, int sd_flag) 7121 { 7122 int new_cpu = cpu; 7123 7124 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7125 return prev_cpu; 7126 7127 /* 7128 * We need task's util for cpu_util_without, sync it up to 7129 * prev_cpu's last_update_time. 7130 */ 7131 if (!(sd_flag & SD_BALANCE_FORK)) 7132 sync_entity_load_avg(&p->se); 7133 7134 while (sd) { 7135 struct sched_group *group; 7136 struct sched_domain *tmp; 7137 int weight; 7138 7139 if (!(sd->flags & sd_flag)) { 7140 sd = sd->child; 7141 continue; 7142 } 7143 7144 group = find_idlest_group(sd, p, cpu); 7145 if (!group) { 7146 sd = sd->child; 7147 continue; 7148 } 7149 7150 new_cpu = find_idlest_group_cpu(group, p, cpu); 7151 if (new_cpu == cpu) { 7152 /* Now try balancing at a lower domain level of 'cpu': */ 7153 sd = sd->child; 7154 continue; 7155 } 7156 7157 /* Now try balancing at a lower domain level of 'new_cpu': */ 7158 cpu = new_cpu; 7159 weight = sd->span_weight; 7160 sd = NULL; 7161 for_each_domain(cpu, tmp) { 7162 if (weight <= tmp->span_weight) 7163 break; 7164 if (tmp->flags & sd_flag) 7165 sd = tmp; 7166 } 7167 } 7168 7169 return new_cpu; 7170 } 7171 7172 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7173 { 7174 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7175 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7176 return cpu; 7177 7178 return -1; 7179 } 7180 7181 #ifdef CONFIG_SCHED_SMT 7182 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7183 EXPORT_SYMBOL_GPL(sched_smt_present); 7184 7185 static inline void set_idle_cores(int cpu, int val) 7186 { 7187 struct sched_domain_shared *sds; 7188 7189 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7190 if (sds) 7191 WRITE_ONCE(sds->has_idle_cores, val); 7192 } 7193 7194 static inline bool test_idle_cores(int cpu) 7195 { 7196 struct sched_domain_shared *sds; 7197 7198 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7199 if (sds) 7200 return READ_ONCE(sds->has_idle_cores); 7201 7202 return false; 7203 } 7204 7205 /* 7206 * Scans the local SMT mask to see if the entire core is idle, and records this 7207 * information in sd_llc_shared->has_idle_cores. 7208 * 7209 * Since SMT siblings share all cache levels, inspecting this limited remote 7210 * state should be fairly cheap. 7211 */ 7212 void __update_idle_core(struct rq *rq) 7213 { 7214 int core = cpu_of(rq); 7215 int cpu; 7216 7217 rcu_read_lock(); 7218 if (test_idle_cores(core)) 7219 goto unlock; 7220 7221 for_each_cpu(cpu, cpu_smt_mask(core)) { 7222 if (cpu == core) 7223 continue; 7224 7225 if (!available_idle_cpu(cpu)) 7226 goto unlock; 7227 } 7228 7229 set_idle_cores(core, 1); 7230 unlock: 7231 rcu_read_unlock(); 7232 } 7233 7234 /* 7235 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7236 * there are no idle cores left in the system; tracked through 7237 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7238 */ 7239 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7240 { 7241 bool idle = true; 7242 int cpu; 7243 7244 for_each_cpu(cpu, cpu_smt_mask(core)) { 7245 if (!available_idle_cpu(cpu)) { 7246 idle = false; 7247 if (*idle_cpu == -1) { 7248 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 7249 *idle_cpu = cpu; 7250 break; 7251 } 7252 continue; 7253 } 7254 break; 7255 } 7256 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 7257 *idle_cpu = cpu; 7258 } 7259 7260 if (idle) 7261 return core; 7262 7263 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7264 return -1; 7265 } 7266 7267 /* 7268 * Scan the local SMT mask for idle CPUs. 7269 */ 7270 static int select_idle_smt(struct task_struct *p, int target) 7271 { 7272 int cpu; 7273 7274 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7275 if (cpu == target) 7276 continue; 7277 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7278 return cpu; 7279 } 7280 7281 return -1; 7282 } 7283 7284 #else /* CONFIG_SCHED_SMT */ 7285 7286 static inline void set_idle_cores(int cpu, int val) 7287 { 7288 } 7289 7290 static inline bool test_idle_cores(int cpu) 7291 { 7292 return false; 7293 } 7294 7295 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7296 { 7297 return __select_idle_cpu(core, p); 7298 } 7299 7300 static inline int select_idle_smt(struct task_struct *p, int target) 7301 { 7302 return -1; 7303 } 7304 7305 #endif /* CONFIG_SCHED_SMT */ 7306 7307 /* 7308 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7309 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7310 * average idle time for this rq (as found in rq->avg_idle). 7311 */ 7312 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7313 { 7314 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7315 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7316 struct sched_domain_shared *sd_share; 7317 7318 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7319 7320 if (sched_feat(SIS_UTIL)) { 7321 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7322 if (sd_share) { 7323 /* because !--nr is the condition to stop scan */ 7324 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7325 /* overloaded LLC is unlikely to have idle cpu/core */ 7326 if (nr == 1) 7327 return -1; 7328 } 7329 } 7330 7331 if (static_branch_unlikely(&sched_cluster_active)) { 7332 struct sched_group *sg = sd->groups; 7333 7334 if (sg->flags & SD_CLUSTER) { 7335 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7336 if (!cpumask_test_cpu(cpu, cpus)) 7337 continue; 7338 7339 if (has_idle_core) { 7340 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7341 if ((unsigned int)i < nr_cpumask_bits) 7342 return i; 7343 } else { 7344 if (--nr <= 0) 7345 return -1; 7346 idle_cpu = __select_idle_cpu(cpu, p); 7347 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7348 return idle_cpu; 7349 } 7350 } 7351 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7352 } 7353 } 7354 7355 for_each_cpu_wrap(cpu, cpus, target + 1) { 7356 if (has_idle_core) { 7357 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7358 if ((unsigned int)i < nr_cpumask_bits) 7359 return i; 7360 7361 } else { 7362 if (--nr <= 0) 7363 return -1; 7364 idle_cpu = __select_idle_cpu(cpu, p); 7365 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7366 break; 7367 } 7368 } 7369 7370 if (has_idle_core) 7371 set_idle_cores(target, false); 7372 7373 return idle_cpu; 7374 } 7375 7376 /* 7377 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7378 * the task fits. If no CPU is big enough, but there are idle ones, try to 7379 * maximize capacity. 7380 */ 7381 static int 7382 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7383 { 7384 unsigned long task_util, util_min, util_max, best_cap = 0; 7385 int fits, best_fits = 0; 7386 int cpu, best_cpu = -1; 7387 struct cpumask *cpus; 7388 7389 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7390 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7391 7392 task_util = task_util_est(p); 7393 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7394 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7395 7396 for_each_cpu_wrap(cpu, cpus, target) { 7397 unsigned long cpu_cap = capacity_of(cpu); 7398 7399 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7400 continue; 7401 7402 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7403 7404 /* This CPU fits with all requirements */ 7405 if (fits > 0) 7406 return cpu; 7407 /* 7408 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7409 * Look for the CPU with best capacity. 7410 */ 7411 else if (fits < 0) 7412 cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu)); 7413 7414 /* 7415 * First, select CPU which fits better (-1 being better than 0). 7416 * Then, select the one with best capacity at same level. 7417 */ 7418 if ((fits < best_fits) || 7419 ((fits == best_fits) && (cpu_cap > best_cap))) { 7420 best_cap = cpu_cap; 7421 best_cpu = cpu; 7422 best_fits = fits; 7423 } 7424 } 7425 7426 return best_cpu; 7427 } 7428 7429 static inline bool asym_fits_cpu(unsigned long util, 7430 unsigned long util_min, 7431 unsigned long util_max, 7432 int cpu) 7433 { 7434 if (sched_asym_cpucap_active()) 7435 /* 7436 * Return true only if the cpu fully fits the task requirements 7437 * which include the utilization and the performance hints. 7438 */ 7439 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7440 7441 return true; 7442 } 7443 7444 /* 7445 * Try and locate an idle core/thread in the LLC cache domain. 7446 */ 7447 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7448 { 7449 bool has_idle_core = false; 7450 struct sched_domain *sd; 7451 unsigned long task_util, util_min, util_max; 7452 int i, recent_used_cpu, prev_aff = -1; 7453 7454 /* 7455 * On asymmetric system, update task utilization because we will check 7456 * that the task fits with cpu's capacity. 7457 */ 7458 if (sched_asym_cpucap_active()) { 7459 sync_entity_load_avg(&p->se); 7460 task_util = task_util_est(p); 7461 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7462 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7463 } 7464 7465 /* 7466 * per-cpu select_rq_mask usage 7467 */ 7468 lockdep_assert_irqs_disabled(); 7469 7470 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7471 asym_fits_cpu(task_util, util_min, util_max, target)) 7472 return target; 7473 7474 /* 7475 * If the previous CPU is cache affine and idle, don't be stupid: 7476 */ 7477 if (prev != target && cpus_share_cache(prev, target) && 7478 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7479 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7480 7481 if (!static_branch_unlikely(&sched_cluster_active) || 7482 cpus_share_resources(prev, target)) 7483 return prev; 7484 7485 prev_aff = prev; 7486 } 7487 7488 /* 7489 * Allow a per-cpu kthread to stack with the wakee if the 7490 * kworker thread and the tasks previous CPUs are the same. 7491 * The assumption is that the wakee queued work for the 7492 * per-cpu kthread that is now complete and the wakeup is 7493 * essentially a sync wakeup. An obvious example of this 7494 * pattern is IO completions. 7495 */ 7496 if (is_per_cpu_kthread(current) && 7497 in_task() && 7498 prev == smp_processor_id() && 7499 this_rq()->nr_running <= 1 && 7500 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7501 return prev; 7502 } 7503 7504 /* Check a recently used CPU as a potential idle candidate: */ 7505 recent_used_cpu = p->recent_used_cpu; 7506 p->recent_used_cpu = prev; 7507 if (recent_used_cpu != prev && 7508 recent_used_cpu != target && 7509 cpus_share_cache(recent_used_cpu, target) && 7510 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7511 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7512 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7513 7514 if (!static_branch_unlikely(&sched_cluster_active) || 7515 cpus_share_resources(recent_used_cpu, target)) 7516 return recent_used_cpu; 7517 7518 } else { 7519 recent_used_cpu = -1; 7520 } 7521 7522 /* 7523 * For asymmetric CPU capacity systems, our domain of interest is 7524 * sd_asym_cpucapacity rather than sd_llc. 7525 */ 7526 if (sched_asym_cpucap_active()) { 7527 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7528 /* 7529 * On an asymmetric CPU capacity system where an exclusive 7530 * cpuset defines a symmetric island (i.e. one unique 7531 * capacity_orig value through the cpuset), the key will be set 7532 * but the CPUs within that cpuset will not have a domain with 7533 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7534 * capacity path. 7535 */ 7536 if (sd) { 7537 i = select_idle_capacity(p, sd, target); 7538 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7539 } 7540 } 7541 7542 sd = rcu_dereference(per_cpu(sd_llc, target)); 7543 if (!sd) 7544 return target; 7545 7546 if (sched_smt_active()) { 7547 has_idle_core = test_idle_cores(target); 7548 7549 if (!has_idle_core && cpus_share_cache(prev, target)) { 7550 i = select_idle_smt(p, prev); 7551 if ((unsigned int)i < nr_cpumask_bits) 7552 return i; 7553 } 7554 } 7555 7556 i = select_idle_cpu(p, sd, has_idle_core, target); 7557 if ((unsigned)i < nr_cpumask_bits) 7558 return i; 7559 7560 /* 7561 * For cluster machines which have lower sharing cache like L2 or 7562 * LLC Tag, we tend to find an idle CPU in the target's cluster 7563 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7564 * use them if possible when no idle CPU found in select_idle_cpu(). 7565 */ 7566 if ((unsigned int)prev_aff < nr_cpumask_bits) 7567 return prev_aff; 7568 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7569 return recent_used_cpu; 7570 7571 return target; 7572 } 7573 7574 /** 7575 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7576 * @cpu: the CPU to get the utilization for 7577 * @p: task for which the CPU utilization should be predicted or NULL 7578 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7579 * @boost: 1 to enable boosting, otherwise 0 7580 * 7581 * The unit of the return value must be the same as the one of CPU capacity 7582 * so that CPU utilization can be compared with CPU capacity. 7583 * 7584 * CPU utilization is the sum of running time of runnable tasks plus the 7585 * recent utilization of currently non-runnable tasks on that CPU. 7586 * It represents the amount of CPU capacity currently used by CFS tasks in 7587 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7588 * capacity at f_max. 7589 * 7590 * The estimated CPU utilization is defined as the maximum between CPU 7591 * utilization and sum of the estimated utilization of the currently 7592 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7593 * previously-executed tasks, which helps better deduce how busy a CPU will 7594 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7595 * of such a task would be significantly decayed at this point of time. 7596 * 7597 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7598 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7599 * utilization. Boosting is implemented in cpu_util() so that internal 7600 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7601 * latter via cpu_util_cfs_boost(). 7602 * 7603 * CPU utilization can be higher than the current CPU capacity 7604 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7605 * of rounding errors as well as task migrations or wakeups of new tasks. 7606 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7607 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7608 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7609 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7610 * though since this is useful for predicting the CPU capacity required 7611 * after task migrations (scheduler-driven DVFS). 7612 * 7613 * Return: (Boosted) (estimated) utilization for the specified CPU. 7614 */ 7615 static unsigned long 7616 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7617 { 7618 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7619 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7620 unsigned long runnable; 7621 7622 if (boost) { 7623 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7624 util = max(util, runnable); 7625 } 7626 7627 /* 7628 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7629 * contribution. If @p migrates from another CPU to @cpu add its 7630 * contribution. In all the other cases @cpu is not impacted by the 7631 * migration so its util_avg is already correct. 7632 */ 7633 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7634 lsub_positive(&util, task_util(p)); 7635 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7636 util += task_util(p); 7637 7638 if (sched_feat(UTIL_EST)) { 7639 unsigned long util_est; 7640 7641 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7642 7643 /* 7644 * During wake-up @p isn't enqueued yet and doesn't contribute 7645 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7646 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7647 * has been enqueued. 7648 * 7649 * During exec (@dst_cpu = -1) @p is enqueued and does 7650 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7651 * Remove it to "simulate" cpu_util without @p's contribution. 7652 * 7653 * Despite the task_on_rq_queued(@p) check there is still a 7654 * small window for a possible race when an exec 7655 * select_task_rq_fair() races with LB's detach_task(). 7656 * 7657 * detach_task() 7658 * deactivate_task() 7659 * p->on_rq = TASK_ON_RQ_MIGRATING; 7660 * -------------------------------- A 7661 * dequeue_task() \ 7662 * dequeue_task_fair() + Race Time 7663 * util_est_dequeue() / 7664 * -------------------------------- B 7665 * 7666 * The additional check "current == p" is required to further 7667 * reduce the race window. 7668 */ 7669 if (dst_cpu == cpu) 7670 util_est += _task_util_est(p); 7671 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7672 lsub_positive(&util_est, _task_util_est(p)); 7673 7674 util = max(util, util_est); 7675 } 7676 7677 return min(util, arch_scale_cpu_capacity(cpu)); 7678 } 7679 7680 unsigned long cpu_util_cfs(int cpu) 7681 { 7682 return cpu_util(cpu, NULL, -1, 0); 7683 } 7684 7685 unsigned long cpu_util_cfs_boost(int cpu) 7686 { 7687 return cpu_util(cpu, NULL, -1, 1); 7688 } 7689 7690 /* 7691 * cpu_util_without: compute cpu utilization without any contributions from *p 7692 * @cpu: the CPU which utilization is requested 7693 * @p: the task which utilization should be discounted 7694 * 7695 * The utilization of a CPU is defined by the utilization of tasks currently 7696 * enqueued on that CPU as well as tasks which are currently sleeping after an 7697 * execution on that CPU. 7698 * 7699 * This method returns the utilization of the specified CPU by discounting the 7700 * utilization of the specified task, whenever the task is currently 7701 * contributing to the CPU utilization. 7702 */ 7703 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7704 { 7705 /* Task has no contribution or is new */ 7706 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7707 p = NULL; 7708 7709 return cpu_util(cpu, p, -1, 0); 7710 } 7711 7712 /* 7713 * energy_env - Utilization landscape for energy estimation. 7714 * @task_busy_time: Utilization contribution by the task for which we test the 7715 * placement. Given by eenv_task_busy_time(). 7716 * @pd_busy_time: Utilization of the whole perf domain without the task 7717 * contribution. Given by eenv_pd_busy_time(). 7718 * @cpu_cap: Maximum CPU capacity for the perf domain. 7719 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7720 */ 7721 struct energy_env { 7722 unsigned long task_busy_time; 7723 unsigned long pd_busy_time; 7724 unsigned long cpu_cap; 7725 unsigned long pd_cap; 7726 }; 7727 7728 /* 7729 * Compute the task busy time for compute_energy(). This time cannot be 7730 * injected directly into effective_cpu_util() because of the IRQ scaling. 7731 * The latter only makes sense with the most recent CPUs where the task has 7732 * run. 7733 */ 7734 static inline void eenv_task_busy_time(struct energy_env *eenv, 7735 struct task_struct *p, int prev_cpu) 7736 { 7737 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7738 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7739 7740 if (unlikely(irq >= max_cap)) 7741 busy_time = max_cap; 7742 else 7743 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7744 7745 eenv->task_busy_time = busy_time; 7746 } 7747 7748 /* 7749 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7750 * utilization for each @pd_cpus, it however doesn't take into account 7751 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7752 * scale the EM reported power consumption at the (eventually clamped) 7753 * cpu_capacity. 7754 * 7755 * The contribution of the task @p for which we want to estimate the 7756 * energy cost is removed (by cpu_util()) and must be calculated 7757 * separately (see eenv_task_busy_time). This ensures: 7758 * 7759 * - A stable PD utilization, no matter which CPU of that PD we want to place 7760 * the task on. 7761 * 7762 * - A fair comparison between CPUs as the task contribution (task_util()) 7763 * will always be the same no matter which CPU utilization we rely on 7764 * (util_avg or util_est). 7765 * 7766 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7767 * exceed @eenv->pd_cap. 7768 */ 7769 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7770 struct cpumask *pd_cpus, 7771 struct task_struct *p) 7772 { 7773 unsigned long busy_time = 0; 7774 int cpu; 7775 7776 for_each_cpu(cpu, pd_cpus) { 7777 unsigned long util = cpu_util(cpu, p, -1, 0); 7778 7779 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7780 } 7781 7782 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7783 } 7784 7785 /* 7786 * Compute the maximum utilization for compute_energy() when the task @p 7787 * is placed on the cpu @dst_cpu. 7788 * 7789 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7790 * exceed @eenv->cpu_cap. 7791 */ 7792 static inline unsigned long 7793 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7794 struct task_struct *p, int dst_cpu) 7795 { 7796 unsigned long max_util = 0; 7797 int cpu; 7798 7799 for_each_cpu(cpu, pd_cpus) { 7800 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7801 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7802 unsigned long eff_util; 7803 7804 /* 7805 * Performance domain frequency: utilization clamping 7806 * must be considered since it affects the selection 7807 * of the performance domain frequency. 7808 * NOTE: in case RT tasks are running, by default the 7809 * FREQUENCY_UTIL's utilization can be max OPP. 7810 */ 7811 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7812 max_util = max(max_util, eff_util); 7813 } 7814 7815 return min(max_util, eenv->cpu_cap); 7816 } 7817 7818 /* 7819 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7820 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7821 * contribution is ignored. 7822 */ 7823 static inline unsigned long 7824 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7825 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7826 { 7827 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7828 unsigned long busy_time = eenv->pd_busy_time; 7829 unsigned long energy; 7830 7831 if (dst_cpu >= 0) 7832 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7833 7834 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7835 7836 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 7837 7838 return energy; 7839 } 7840 7841 /* 7842 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7843 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7844 * spare capacity in each performance domain and uses it as a potential 7845 * candidate to execute the task. Then, it uses the Energy Model to figure 7846 * out which of the CPU candidates is the most energy-efficient. 7847 * 7848 * The rationale for this heuristic is as follows. In a performance domain, 7849 * all the most energy efficient CPU candidates (according to the Energy 7850 * Model) are those for which we'll request a low frequency. When there are 7851 * several CPUs for which the frequency request will be the same, we don't 7852 * have enough data to break the tie between them, because the Energy Model 7853 * only includes active power costs. With this model, if we assume that 7854 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7855 * the maximum spare capacity in a performance domain is guaranteed to be among 7856 * the best candidates of the performance domain. 7857 * 7858 * In practice, it could be preferable from an energy standpoint to pack 7859 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7860 * but that could also hurt our chances to go cluster idle, and we have no 7861 * ways to tell with the current Energy Model if this is actually a good 7862 * idea or not. So, find_energy_efficient_cpu() basically favors 7863 * cluster-packing, and spreading inside a cluster. That should at least be 7864 * a good thing for latency, and this is consistent with the idea that most 7865 * of the energy savings of EAS come from the asymmetry of the system, and 7866 * not so much from breaking the tie between identical CPUs. That's also the 7867 * reason why EAS is enabled in the topology code only for systems where 7868 * SD_ASYM_CPUCAPACITY is set. 7869 * 7870 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7871 * they don't have any useful utilization data yet and it's not possible to 7872 * forecast their impact on energy consumption. Consequently, they will be 7873 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7874 * to be energy-inefficient in some use-cases. The alternative would be to 7875 * bias new tasks towards specific types of CPUs first, or to try to infer 7876 * their util_avg from the parent task, but those heuristics could hurt 7877 * other use-cases too. So, until someone finds a better way to solve this, 7878 * let's keep things simple by re-using the existing slow path. 7879 */ 7880 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7881 { 7882 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7883 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7884 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7885 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7886 struct root_domain *rd = this_rq()->rd; 7887 int cpu, best_energy_cpu, target = -1; 7888 int prev_fits = -1, best_fits = -1; 7889 unsigned long best_thermal_cap = 0; 7890 unsigned long prev_thermal_cap = 0; 7891 struct sched_domain *sd; 7892 struct perf_domain *pd; 7893 struct energy_env eenv; 7894 7895 rcu_read_lock(); 7896 pd = rcu_dereference(rd->pd); 7897 if (!pd || READ_ONCE(rd->overutilized)) 7898 goto unlock; 7899 7900 /* 7901 * Energy-aware wake-up happens on the lowest sched_domain starting 7902 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7903 */ 7904 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7905 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7906 sd = sd->parent; 7907 if (!sd) 7908 goto unlock; 7909 7910 target = prev_cpu; 7911 7912 sync_entity_load_avg(&p->se); 7913 if (!task_util_est(p) && p_util_min == 0) 7914 goto unlock; 7915 7916 eenv_task_busy_time(&eenv, p, prev_cpu); 7917 7918 for (; pd; pd = pd->next) { 7919 unsigned long util_min = p_util_min, util_max = p_util_max; 7920 unsigned long cpu_cap, cpu_thermal_cap, util; 7921 long prev_spare_cap = -1, max_spare_cap = -1; 7922 unsigned long rq_util_min, rq_util_max; 7923 unsigned long cur_delta, base_energy; 7924 int max_spare_cap_cpu = -1; 7925 int fits, max_fits = -1; 7926 7927 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7928 7929 if (cpumask_empty(cpus)) 7930 continue; 7931 7932 /* Account thermal pressure for the energy estimation */ 7933 cpu = cpumask_first(cpus); 7934 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7935 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7936 7937 eenv.cpu_cap = cpu_thermal_cap; 7938 eenv.pd_cap = 0; 7939 7940 for_each_cpu(cpu, cpus) { 7941 struct rq *rq = cpu_rq(cpu); 7942 7943 eenv.pd_cap += cpu_thermal_cap; 7944 7945 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7946 continue; 7947 7948 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7949 continue; 7950 7951 util = cpu_util(cpu, p, cpu, 0); 7952 cpu_cap = capacity_of(cpu); 7953 7954 /* 7955 * Skip CPUs that cannot satisfy the capacity request. 7956 * IOW, placing the task there would make the CPU 7957 * overutilized. Take uclamp into account to see how 7958 * much capacity we can get out of the CPU; this is 7959 * aligned with sched_cpu_util(). 7960 */ 7961 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7962 /* 7963 * Open code uclamp_rq_util_with() except for 7964 * the clamp() part. Ie: apply max aggregation 7965 * only. util_fits_cpu() logic requires to 7966 * operate on non clamped util but must use the 7967 * max-aggregated uclamp_{min, max}. 7968 */ 7969 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7970 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7971 7972 util_min = max(rq_util_min, p_util_min); 7973 util_max = max(rq_util_max, p_util_max); 7974 } 7975 7976 fits = util_fits_cpu(util, util_min, util_max, cpu); 7977 if (!fits) 7978 continue; 7979 7980 lsub_positive(&cpu_cap, util); 7981 7982 if (cpu == prev_cpu) { 7983 /* Always use prev_cpu as a candidate. */ 7984 prev_spare_cap = cpu_cap; 7985 prev_fits = fits; 7986 } else if ((fits > max_fits) || 7987 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 7988 /* 7989 * Find the CPU with the maximum spare capacity 7990 * among the remaining CPUs in the performance 7991 * domain. 7992 */ 7993 max_spare_cap = cpu_cap; 7994 max_spare_cap_cpu = cpu; 7995 max_fits = fits; 7996 } 7997 } 7998 7999 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8000 continue; 8001 8002 eenv_pd_busy_time(&eenv, cpus, p); 8003 /* Compute the 'base' energy of the pd, without @p */ 8004 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8005 8006 /* Evaluate the energy impact of using prev_cpu. */ 8007 if (prev_spare_cap > -1) { 8008 prev_delta = compute_energy(&eenv, pd, cpus, p, 8009 prev_cpu); 8010 /* CPU utilization has changed */ 8011 if (prev_delta < base_energy) 8012 goto unlock; 8013 prev_delta -= base_energy; 8014 prev_thermal_cap = cpu_thermal_cap; 8015 best_delta = min(best_delta, prev_delta); 8016 } 8017 8018 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8019 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8020 /* Current best energy cpu fits better */ 8021 if (max_fits < best_fits) 8022 continue; 8023 8024 /* 8025 * Both don't fit performance hint (i.e. uclamp_min) 8026 * but best energy cpu has better capacity. 8027 */ 8028 if ((max_fits < 0) && 8029 (cpu_thermal_cap <= best_thermal_cap)) 8030 continue; 8031 8032 cur_delta = compute_energy(&eenv, pd, cpus, p, 8033 max_spare_cap_cpu); 8034 /* CPU utilization has changed */ 8035 if (cur_delta < base_energy) 8036 goto unlock; 8037 cur_delta -= base_energy; 8038 8039 /* 8040 * Both fit for the task but best energy cpu has lower 8041 * energy impact. 8042 */ 8043 if ((max_fits > 0) && (best_fits > 0) && 8044 (cur_delta >= best_delta)) 8045 continue; 8046 8047 best_delta = cur_delta; 8048 best_energy_cpu = max_spare_cap_cpu; 8049 best_fits = max_fits; 8050 best_thermal_cap = cpu_thermal_cap; 8051 } 8052 } 8053 rcu_read_unlock(); 8054 8055 if ((best_fits > prev_fits) || 8056 ((best_fits > 0) && (best_delta < prev_delta)) || 8057 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 8058 target = best_energy_cpu; 8059 8060 return target; 8061 8062 unlock: 8063 rcu_read_unlock(); 8064 8065 return target; 8066 } 8067 8068 /* 8069 * select_task_rq_fair: Select target runqueue for the waking task in domains 8070 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8071 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8072 * 8073 * Balances load by selecting the idlest CPU in the idlest group, or under 8074 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8075 * 8076 * Returns the target CPU number. 8077 */ 8078 static int 8079 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8080 { 8081 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8082 struct sched_domain *tmp, *sd = NULL; 8083 int cpu = smp_processor_id(); 8084 int new_cpu = prev_cpu; 8085 int want_affine = 0; 8086 /* SD_flags and WF_flags share the first nibble */ 8087 int sd_flag = wake_flags & 0xF; 8088 8089 /* 8090 * required for stable ->cpus_allowed 8091 */ 8092 lockdep_assert_held(&p->pi_lock); 8093 if (wake_flags & WF_TTWU) { 8094 record_wakee(p); 8095 8096 if ((wake_flags & WF_CURRENT_CPU) && 8097 cpumask_test_cpu(cpu, p->cpus_ptr)) 8098 return cpu; 8099 8100 if (sched_energy_enabled()) { 8101 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8102 if (new_cpu >= 0) 8103 return new_cpu; 8104 new_cpu = prev_cpu; 8105 } 8106 8107 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8108 } 8109 8110 rcu_read_lock(); 8111 for_each_domain(cpu, tmp) { 8112 /* 8113 * If both 'cpu' and 'prev_cpu' are part of this domain, 8114 * cpu is a valid SD_WAKE_AFFINE target. 8115 */ 8116 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8117 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8118 if (cpu != prev_cpu) 8119 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8120 8121 sd = NULL; /* Prefer wake_affine over balance flags */ 8122 break; 8123 } 8124 8125 /* 8126 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8127 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8128 * will usually go to the fast path. 8129 */ 8130 if (tmp->flags & sd_flag) 8131 sd = tmp; 8132 else if (!want_affine) 8133 break; 8134 } 8135 8136 if (unlikely(sd)) { 8137 /* Slow path */ 8138 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 8139 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8140 /* Fast path */ 8141 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8142 } 8143 rcu_read_unlock(); 8144 8145 return new_cpu; 8146 } 8147 8148 /* 8149 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8150 * cfs_rq_of(p) references at time of call are still valid and identify the 8151 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8152 */ 8153 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8154 { 8155 struct sched_entity *se = &p->se; 8156 8157 if (!task_on_rq_migrating(p)) { 8158 remove_entity_load_avg(se); 8159 8160 /* 8161 * Here, the task's PELT values have been updated according to 8162 * the current rq's clock. But if that clock hasn't been 8163 * updated in a while, a substantial idle time will be missed, 8164 * leading to an inflation after wake-up on the new rq. 8165 * 8166 * Estimate the missing time from the cfs_rq last_update_time 8167 * and update sched_avg to improve the PELT continuity after 8168 * migration. 8169 */ 8170 migrate_se_pelt_lag(se); 8171 } 8172 8173 /* Tell new CPU we are migrated */ 8174 se->avg.last_update_time = 0; 8175 8176 update_scan_period(p, new_cpu); 8177 } 8178 8179 static void task_dead_fair(struct task_struct *p) 8180 { 8181 remove_entity_load_avg(&p->se); 8182 } 8183 8184 static int 8185 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8186 { 8187 if (rq->nr_running) 8188 return 1; 8189 8190 return newidle_balance(rq, rf) != 0; 8191 } 8192 #endif /* CONFIG_SMP */ 8193 8194 static void set_next_buddy(struct sched_entity *se) 8195 { 8196 for_each_sched_entity(se) { 8197 if (SCHED_WARN_ON(!se->on_rq)) 8198 return; 8199 if (se_is_idle(se)) 8200 return; 8201 cfs_rq_of(se)->next = se; 8202 } 8203 } 8204 8205 /* 8206 * Preempt the current task with a newly woken task if needed: 8207 */ 8208 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8209 { 8210 struct task_struct *curr = rq->curr; 8211 struct sched_entity *se = &curr->se, *pse = &p->se; 8212 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8213 int next_buddy_marked = 0; 8214 int cse_is_idle, pse_is_idle; 8215 8216 if (unlikely(se == pse)) 8217 return; 8218 8219 /* 8220 * This is possible from callers such as attach_tasks(), in which we 8221 * unconditionally wakeup_preempt() after an enqueue (which may have 8222 * lead to a throttle). This both saves work and prevents false 8223 * next-buddy nomination below. 8224 */ 8225 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8226 return; 8227 8228 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8229 set_next_buddy(pse); 8230 next_buddy_marked = 1; 8231 } 8232 8233 /* 8234 * We can come here with TIF_NEED_RESCHED already set from new task 8235 * wake up path. 8236 * 8237 * Note: this also catches the edge-case of curr being in a throttled 8238 * group (e.g. via set_curr_task), since update_curr() (in the 8239 * enqueue of curr) will have resulted in resched being set. This 8240 * prevents us from potentially nominating it as a false LAST_BUDDY 8241 * below. 8242 */ 8243 if (test_tsk_need_resched(curr)) 8244 return; 8245 8246 /* Idle tasks are by definition preempted by non-idle tasks. */ 8247 if (unlikely(task_has_idle_policy(curr)) && 8248 likely(!task_has_idle_policy(p))) 8249 goto preempt; 8250 8251 /* 8252 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8253 * is driven by the tick): 8254 */ 8255 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8256 return; 8257 8258 find_matching_se(&se, &pse); 8259 WARN_ON_ONCE(!pse); 8260 8261 cse_is_idle = se_is_idle(se); 8262 pse_is_idle = se_is_idle(pse); 8263 8264 /* 8265 * Preempt an idle group in favor of a non-idle group (and don't preempt 8266 * in the inverse case). 8267 */ 8268 if (cse_is_idle && !pse_is_idle) 8269 goto preempt; 8270 if (cse_is_idle != pse_is_idle) 8271 return; 8272 8273 cfs_rq = cfs_rq_of(se); 8274 update_curr(cfs_rq); 8275 8276 /* 8277 * XXX pick_eevdf(cfs_rq) != se ? 8278 */ 8279 if (pick_eevdf(cfs_rq) == pse) 8280 goto preempt; 8281 8282 return; 8283 8284 preempt: 8285 resched_curr(rq); 8286 } 8287 8288 #ifdef CONFIG_SMP 8289 static struct task_struct *pick_task_fair(struct rq *rq) 8290 { 8291 struct sched_entity *se; 8292 struct cfs_rq *cfs_rq; 8293 8294 again: 8295 cfs_rq = &rq->cfs; 8296 if (!cfs_rq->nr_running) 8297 return NULL; 8298 8299 do { 8300 struct sched_entity *curr = cfs_rq->curr; 8301 8302 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8303 if (curr) { 8304 if (curr->on_rq) 8305 update_curr(cfs_rq); 8306 else 8307 curr = NULL; 8308 8309 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8310 goto again; 8311 } 8312 8313 se = pick_next_entity(cfs_rq); 8314 cfs_rq = group_cfs_rq(se); 8315 } while (cfs_rq); 8316 8317 return task_of(se); 8318 } 8319 #endif 8320 8321 struct task_struct * 8322 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8323 { 8324 struct cfs_rq *cfs_rq = &rq->cfs; 8325 struct sched_entity *se; 8326 struct task_struct *p; 8327 int new_tasks; 8328 8329 again: 8330 if (!sched_fair_runnable(rq)) 8331 goto idle; 8332 8333 #ifdef CONFIG_FAIR_GROUP_SCHED 8334 if (!prev || prev->sched_class != &fair_sched_class) 8335 goto simple; 8336 8337 /* 8338 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8339 * likely that a next task is from the same cgroup as the current. 8340 * 8341 * Therefore attempt to avoid putting and setting the entire cgroup 8342 * hierarchy, only change the part that actually changes. 8343 */ 8344 8345 do { 8346 struct sched_entity *curr = cfs_rq->curr; 8347 8348 /* 8349 * Since we got here without doing put_prev_entity() we also 8350 * have to consider cfs_rq->curr. If it is still a runnable 8351 * entity, update_curr() will update its vruntime, otherwise 8352 * forget we've ever seen it. 8353 */ 8354 if (curr) { 8355 if (curr->on_rq) 8356 update_curr(cfs_rq); 8357 else 8358 curr = NULL; 8359 8360 /* 8361 * This call to check_cfs_rq_runtime() will do the 8362 * throttle and dequeue its entity in the parent(s). 8363 * Therefore the nr_running test will indeed 8364 * be correct. 8365 */ 8366 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8367 cfs_rq = &rq->cfs; 8368 8369 if (!cfs_rq->nr_running) 8370 goto idle; 8371 8372 goto simple; 8373 } 8374 } 8375 8376 se = pick_next_entity(cfs_rq); 8377 cfs_rq = group_cfs_rq(se); 8378 } while (cfs_rq); 8379 8380 p = task_of(se); 8381 8382 /* 8383 * Since we haven't yet done put_prev_entity and if the selected task 8384 * is a different task than we started out with, try and touch the 8385 * least amount of cfs_rqs. 8386 */ 8387 if (prev != p) { 8388 struct sched_entity *pse = &prev->se; 8389 8390 while (!(cfs_rq = is_same_group(se, pse))) { 8391 int se_depth = se->depth; 8392 int pse_depth = pse->depth; 8393 8394 if (se_depth <= pse_depth) { 8395 put_prev_entity(cfs_rq_of(pse), pse); 8396 pse = parent_entity(pse); 8397 } 8398 if (se_depth >= pse_depth) { 8399 set_next_entity(cfs_rq_of(se), se); 8400 se = parent_entity(se); 8401 } 8402 } 8403 8404 put_prev_entity(cfs_rq, pse); 8405 set_next_entity(cfs_rq, se); 8406 } 8407 8408 goto done; 8409 simple: 8410 #endif 8411 if (prev) 8412 put_prev_task(rq, prev); 8413 8414 do { 8415 se = pick_next_entity(cfs_rq); 8416 set_next_entity(cfs_rq, se); 8417 cfs_rq = group_cfs_rq(se); 8418 } while (cfs_rq); 8419 8420 p = task_of(se); 8421 8422 done: __maybe_unused; 8423 #ifdef CONFIG_SMP 8424 /* 8425 * Move the next running task to the front of 8426 * the list, so our cfs_tasks list becomes MRU 8427 * one. 8428 */ 8429 list_move(&p->se.group_node, &rq->cfs_tasks); 8430 #endif 8431 8432 if (hrtick_enabled_fair(rq)) 8433 hrtick_start_fair(rq, p); 8434 8435 update_misfit_status(p, rq); 8436 sched_fair_update_stop_tick(rq, p); 8437 8438 return p; 8439 8440 idle: 8441 if (!rf) 8442 return NULL; 8443 8444 new_tasks = newidle_balance(rq, rf); 8445 8446 /* 8447 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8448 * possible for any higher priority task to appear. In that case we 8449 * must re-start the pick_next_entity() loop. 8450 */ 8451 if (new_tasks < 0) 8452 return RETRY_TASK; 8453 8454 if (new_tasks > 0) 8455 goto again; 8456 8457 /* 8458 * rq is about to be idle, check if we need to update the 8459 * lost_idle_time of clock_pelt 8460 */ 8461 update_idle_rq_clock_pelt(rq); 8462 8463 return NULL; 8464 } 8465 8466 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8467 { 8468 return pick_next_task_fair(rq, NULL, NULL); 8469 } 8470 8471 /* 8472 * Account for a descheduled task: 8473 */ 8474 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8475 { 8476 struct sched_entity *se = &prev->se; 8477 struct cfs_rq *cfs_rq; 8478 8479 for_each_sched_entity(se) { 8480 cfs_rq = cfs_rq_of(se); 8481 put_prev_entity(cfs_rq, se); 8482 } 8483 } 8484 8485 /* 8486 * sched_yield() is very simple 8487 */ 8488 static void yield_task_fair(struct rq *rq) 8489 { 8490 struct task_struct *curr = rq->curr; 8491 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8492 struct sched_entity *se = &curr->se; 8493 8494 /* 8495 * Are we the only task in the tree? 8496 */ 8497 if (unlikely(rq->nr_running == 1)) 8498 return; 8499 8500 clear_buddies(cfs_rq, se); 8501 8502 update_rq_clock(rq); 8503 /* 8504 * Update run-time statistics of the 'current'. 8505 */ 8506 update_curr(cfs_rq); 8507 /* 8508 * Tell update_rq_clock() that we've just updated, 8509 * so we don't do microscopic update in schedule() 8510 * and double the fastpath cost. 8511 */ 8512 rq_clock_skip_update(rq); 8513 8514 se->deadline += calc_delta_fair(se->slice, se); 8515 } 8516 8517 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8518 { 8519 struct sched_entity *se = &p->se; 8520 8521 /* throttled hierarchies are not runnable */ 8522 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8523 return false; 8524 8525 /* Tell the scheduler that we'd really like pse to run next. */ 8526 set_next_buddy(se); 8527 8528 yield_task_fair(rq); 8529 8530 return true; 8531 } 8532 8533 #ifdef CONFIG_SMP 8534 /************************************************** 8535 * Fair scheduling class load-balancing methods. 8536 * 8537 * BASICS 8538 * 8539 * The purpose of load-balancing is to achieve the same basic fairness the 8540 * per-CPU scheduler provides, namely provide a proportional amount of compute 8541 * time to each task. This is expressed in the following equation: 8542 * 8543 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8544 * 8545 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8546 * W_i,0 is defined as: 8547 * 8548 * W_i,0 = \Sum_j w_i,j (2) 8549 * 8550 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8551 * is derived from the nice value as per sched_prio_to_weight[]. 8552 * 8553 * The weight average is an exponential decay average of the instantaneous 8554 * weight: 8555 * 8556 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8557 * 8558 * C_i is the compute capacity of CPU i, typically it is the 8559 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8560 * can also include other factors [XXX]. 8561 * 8562 * To achieve this balance we define a measure of imbalance which follows 8563 * directly from (1): 8564 * 8565 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8566 * 8567 * We them move tasks around to minimize the imbalance. In the continuous 8568 * function space it is obvious this converges, in the discrete case we get 8569 * a few fun cases generally called infeasible weight scenarios. 8570 * 8571 * [XXX expand on: 8572 * - infeasible weights; 8573 * - local vs global optima in the discrete case. ] 8574 * 8575 * 8576 * SCHED DOMAINS 8577 * 8578 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8579 * for all i,j solution, we create a tree of CPUs that follows the hardware 8580 * topology where each level pairs two lower groups (or better). This results 8581 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8582 * tree to only the first of the previous level and we decrease the frequency 8583 * of load-balance at each level inv. proportional to the number of CPUs in 8584 * the groups. 8585 * 8586 * This yields: 8587 * 8588 * log_2 n 1 n 8589 * \Sum { --- * --- * 2^i } = O(n) (5) 8590 * i = 0 2^i 2^i 8591 * `- size of each group 8592 * | | `- number of CPUs doing load-balance 8593 * | `- freq 8594 * `- sum over all levels 8595 * 8596 * Coupled with a limit on how many tasks we can migrate every balance pass, 8597 * this makes (5) the runtime complexity of the balancer. 8598 * 8599 * An important property here is that each CPU is still (indirectly) connected 8600 * to every other CPU in at most O(log n) steps: 8601 * 8602 * The adjacency matrix of the resulting graph is given by: 8603 * 8604 * log_2 n 8605 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8606 * k = 0 8607 * 8608 * And you'll find that: 8609 * 8610 * A^(log_2 n)_i,j != 0 for all i,j (7) 8611 * 8612 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8613 * The task movement gives a factor of O(m), giving a convergence complexity 8614 * of: 8615 * 8616 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8617 * 8618 * 8619 * WORK CONSERVING 8620 * 8621 * In order to avoid CPUs going idle while there's still work to do, new idle 8622 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8623 * tree itself instead of relying on other CPUs to bring it work. 8624 * 8625 * This adds some complexity to both (5) and (8) but it reduces the total idle 8626 * time. 8627 * 8628 * [XXX more?] 8629 * 8630 * 8631 * CGROUPS 8632 * 8633 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8634 * 8635 * s_k,i 8636 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8637 * S_k 8638 * 8639 * Where 8640 * 8641 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8642 * 8643 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8644 * 8645 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8646 * property. 8647 * 8648 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8649 * rewrite all of this once again.] 8650 */ 8651 8652 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8653 8654 enum fbq_type { regular, remote, all }; 8655 8656 /* 8657 * 'group_type' describes the group of CPUs at the moment of load balancing. 8658 * 8659 * The enum is ordered by pulling priority, with the group with lowest priority 8660 * first so the group_type can simply be compared when selecting the busiest 8661 * group. See update_sd_pick_busiest(). 8662 */ 8663 enum group_type { 8664 /* The group has spare capacity that can be used to run more tasks. */ 8665 group_has_spare = 0, 8666 /* 8667 * The group is fully used and the tasks don't compete for more CPU 8668 * cycles. Nevertheless, some tasks might wait before running. 8669 */ 8670 group_fully_busy, 8671 /* 8672 * One task doesn't fit with CPU's capacity and must be migrated to a 8673 * more powerful CPU. 8674 */ 8675 group_misfit_task, 8676 /* 8677 * Balance SMT group that's fully busy. Can benefit from migration 8678 * a task on SMT with busy sibling to another CPU on idle core. 8679 */ 8680 group_smt_balance, 8681 /* 8682 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8683 * and the task should be migrated to it instead of running on the 8684 * current CPU. 8685 */ 8686 group_asym_packing, 8687 /* 8688 * The tasks' affinity constraints previously prevented the scheduler 8689 * from balancing the load across the system. 8690 */ 8691 group_imbalanced, 8692 /* 8693 * The CPU is overloaded and can't provide expected CPU cycles to all 8694 * tasks. 8695 */ 8696 group_overloaded 8697 }; 8698 8699 enum migration_type { 8700 migrate_load = 0, 8701 migrate_util, 8702 migrate_task, 8703 migrate_misfit 8704 }; 8705 8706 #define LBF_ALL_PINNED 0x01 8707 #define LBF_NEED_BREAK 0x02 8708 #define LBF_DST_PINNED 0x04 8709 #define LBF_SOME_PINNED 0x08 8710 #define LBF_ACTIVE_LB 0x10 8711 8712 struct lb_env { 8713 struct sched_domain *sd; 8714 8715 struct rq *src_rq; 8716 int src_cpu; 8717 8718 int dst_cpu; 8719 struct rq *dst_rq; 8720 8721 struct cpumask *dst_grpmask; 8722 int new_dst_cpu; 8723 enum cpu_idle_type idle; 8724 long imbalance; 8725 /* The set of CPUs under consideration for load-balancing */ 8726 struct cpumask *cpus; 8727 8728 unsigned int flags; 8729 8730 unsigned int loop; 8731 unsigned int loop_break; 8732 unsigned int loop_max; 8733 8734 enum fbq_type fbq_type; 8735 enum migration_type migration_type; 8736 struct list_head tasks; 8737 }; 8738 8739 /* 8740 * Is this task likely cache-hot: 8741 */ 8742 static int task_hot(struct task_struct *p, struct lb_env *env) 8743 { 8744 s64 delta; 8745 8746 lockdep_assert_rq_held(env->src_rq); 8747 8748 if (p->sched_class != &fair_sched_class) 8749 return 0; 8750 8751 if (unlikely(task_has_idle_policy(p))) 8752 return 0; 8753 8754 /* SMT siblings share cache */ 8755 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8756 return 0; 8757 8758 /* 8759 * Buddy candidates are cache hot: 8760 */ 8761 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8762 (&p->se == cfs_rq_of(&p->se)->next)) 8763 return 1; 8764 8765 if (sysctl_sched_migration_cost == -1) 8766 return 1; 8767 8768 /* 8769 * Don't migrate task if the task's cookie does not match 8770 * with the destination CPU's core cookie. 8771 */ 8772 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8773 return 1; 8774 8775 if (sysctl_sched_migration_cost == 0) 8776 return 0; 8777 8778 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8779 8780 return delta < (s64)sysctl_sched_migration_cost; 8781 } 8782 8783 #ifdef CONFIG_NUMA_BALANCING 8784 /* 8785 * Returns 1, if task migration degrades locality 8786 * Returns 0, if task migration improves locality i.e migration preferred. 8787 * Returns -1, if task migration is not affected by locality. 8788 */ 8789 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8790 { 8791 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8792 unsigned long src_weight, dst_weight; 8793 int src_nid, dst_nid, dist; 8794 8795 if (!static_branch_likely(&sched_numa_balancing)) 8796 return -1; 8797 8798 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8799 return -1; 8800 8801 src_nid = cpu_to_node(env->src_cpu); 8802 dst_nid = cpu_to_node(env->dst_cpu); 8803 8804 if (src_nid == dst_nid) 8805 return -1; 8806 8807 /* Migrating away from the preferred node is always bad. */ 8808 if (src_nid == p->numa_preferred_nid) { 8809 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8810 return 1; 8811 else 8812 return -1; 8813 } 8814 8815 /* Encourage migration to the preferred node. */ 8816 if (dst_nid == p->numa_preferred_nid) 8817 return 0; 8818 8819 /* Leaving a core idle is often worse than degrading locality. */ 8820 if (env->idle == CPU_IDLE) 8821 return -1; 8822 8823 dist = node_distance(src_nid, dst_nid); 8824 if (numa_group) { 8825 src_weight = group_weight(p, src_nid, dist); 8826 dst_weight = group_weight(p, dst_nid, dist); 8827 } else { 8828 src_weight = task_weight(p, src_nid, dist); 8829 dst_weight = task_weight(p, dst_nid, dist); 8830 } 8831 8832 return dst_weight < src_weight; 8833 } 8834 8835 #else 8836 static inline int migrate_degrades_locality(struct task_struct *p, 8837 struct lb_env *env) 8838 { 8839 return -1; 8840 } 8841 #endif 8842 8843 /* 8844 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8845 */ 8846 static 8847 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8848 { 8849 int tsk_cache_hot; 8850 8851 lockdep_assert_rq_held(env->src_rq); 8852 8853 /* 8854 * We do not migrate tasks that are: 8855 * 1) throttled_lb_pair, or 8856 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8857 * 3) running (obviously), or 8858 * 4) are cache-hot on their current CPU. 8859 */ 8860 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8861 return 0; 8862 8863 /* Disregard pcpu kthreads; they are where they need to be. */ 8864 if (kthread_is_per_cpu(p)) 8865 return 0; 8866 8867 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8868 int cpu; 8869 8870 schedstat_inc(p->stats.nr_failed_migrations_affine); 8871 8872 env->flags |= LBF_SOME_PINNED; 8873 8874 /* 8875 * Remember if this task can be migrated to any other CPU in 8876 * our sched_group. We may want to revisit it if we couldn't 8877 * meet load balance goals by pulling other tasks on src_cpu. 8878 * 8879 * Avoid computing new_dst_cpu 8880 * - for NEWLY_IDLE 8881 * - if we have already computed one in current iteration 8882 * - if it's an active balance 8883 */ 8884 if (env->idle == CPU_NEWLY_IDLE || 8885 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8886 return 0; 8887 8888 /* Prevent to re-select dst_cpu via env's CPUs: */ 8889 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8890 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8891 env->flags |= LBF_DST_PINNED; 8892 env->new_dst_cpu = cpu; 8893 break; 8894 } 8895 } 8896 8897 return 0; 8898 } 8899 8900 /* Record that we found at least one task that could run on dst_cpu */ 8901 env->flags &= ~LBF_ALL_PINNED; 8902 8903 if (task_on_cpu(env->src_rq, p)) { 8904 schedstat_inc(p->stats.nr_failed_migrations_running); 8905 return 0; 8906 } 8907 8908 /* 8909 * Aggressive migration if: 8910 * 1) active balance 8911 * 2) destination numa is preferred 8912 * 3) task is cache cold, or 8913 * 4) too many balance attempts have failed. 8914 */ 8915 if (env->flags & LBF_ACTIVE_LB) 8916 return 1; 8917 8918 tsk_cache_hot = migrate_degrades_locality(p, env); 8919 if (tsk_cache_hot == -1) 8920 tsk_cache_hot = task_hot(p, env); 8921 8922 if (tsk_cache_hot <= 0 || 8923 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8924 if (tsk_cache_hot == 1) { 8925 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8926 schedstat_inc(p->stats.nr_forced_migrations); 8927 } 8928 return 1; 8929 } 8930 8931 schedstat_inc(p->stats.nr_failed_migrations_hot); 8932 return 0; 8933 } 8934 8935 /* 8936 * detach_task() -- detach the task for the migration specified in env 8937 */ 8938 static void detach_task(struct task_struct *p, struct lb_env *env) 8939 { 8940 lockdep_assert_rq_held(env->src_rq); 8941 8942 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8943 set_task_cpu(p, env->dst_cpu); 8944 } 8945 8946 /* 8947 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8948 * part of active balancing operations within "domain". 8949 * 8950 * Returns a task if successful and NULL otherwise. 8951 */ 8952 static struct task_struct *detach_one_task(struct lb_env *env) 8953 { 8954 struct task_struct *p; 8955 8956 lockdep_assert_rq_held(env->src_rq); 8957 8958 list_for_each_entry_reverse(p, 8959 &env->src_rq->cfs_tasks, se.group_node) { 8960 if (!can_migrate_task(p, env)) 8961 continue; 8962 8963 detach_task(p, env); 8964 8965 /* 8966 * Right now, this is only the second place where 8967 * lb_gained[env->idle] is updated (other is detach_tasks) 8968 * so we can safely collect stats here rather than 8969 * inside detach_tasks(). 8970 */ 8971 schedstat_inc(env->sd->lb_gained[env->idle]); 8972 return p; 8973 } 8974 return NULL; 8975 } 8976 8977 /* 8978 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8979 * busiest_rq, as part of a balancing operation within domain "sd". 8980 * 8981 * Returns number of detached tasks if successful and 0 otherwise. 8982 */ 8983 static int detach_tasks(struct lb_env *env) 8984 { 8985 struct list_head *tasks = &env->src_rq->cfs_tasks; 8986 unsigned long util, load; 8987 struct task_struct *p; 8988 int detached = 0; 8989 8990 lockdep_assert_rq_held(env->src_rq); 8991 8992 /* 8993 * Source run queue has been emptied by another CPU, clear 8994 * LBF_ALL_PINNED flag as we will not test any task. 8995 */ 8996 if (env->src_rq->nr_running <= 1) { 8997 env->flags &= ~LBF_ALL_PINNED; 8998 return 0; 8999 } 9000 9001 if (env->imbalance <= 0) 9002 return 0; 9003 9004 while (!list_empty(tasks)) { 9005 /* 9006 * We don't want to steal all, otherwise we may be treated likewise, 9007 * which could at worst lead to a livelock crash. 9008 */ 9009 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 9010 break; 9011 9012 env->loop++; 9013 /* 9014 * We've more or less seen every task there is, call it quits 9015 * unless we haven't found any movable task yet. 9016 */ 9017 if (env->loop > env->loop_max && 9018 !(env->flags & LBF_ALL_PINNED)) 9019 break; 9020 9021 /* take a breather every nr_migrate tasks */ 9022 if (env->loop > env->loop_break) { 9023 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9024 env->flags |= LBF_NEED_BREAK; 9025 break; 9026 } 9027 9028 p = list_last_entry(tasks, struct task_struct, se.group_node); 9029 9030 if (!can_migrate_task(p, env)) 9031 goto next; 9032 9033 switch (env->migration_type) { 9034 case migrate_load: 9035 /* 9036 * Depending of the number of CPUs and tasks and the 9037 * cgroup hierarchy, task_h_load() can return a null 9038 * value. Make sure that env->imbalance decreases 9039 * otherwise detach_tasks() will stop only after 9040 * detaching up to loop_max tasks. 9041 */ 9042 load = max_t(unsigned long, task_h_load(p), 1); 9043 9044 if (sched_feat(LB_MIN) && 9045 load < 16 && !env->sd->nr_balance_failed) 9046 goto next; 9047 9048 /* 9049 * Make sure that we don't migrate too much load. 9050 * Nevertheless, let relax the constraint if 9051 * scheduler fails to find a good waiting task to 9052 * migrate. 9053 */ 9054 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9055 goto next; 9056 9057 env->imbalance -= load; 9058 break; 9059 9060 case migrate_util: 9061 util = task_util_est(p); 9062 9063 if (util > env->imbalance) 9064 goto next; 9065 9066 env->imbalance -= util; 9067 break; 9068 9069 case migrate_task: 9070 env->imbalance--; 9071 break; 9072 9073 case migrate_misfit: 9074 /* This is not a misfit task */ 9075 if (task_fits_cpu(p, env->src_cpu)) 9076 goto next; 9077 9078 env->imbalance = 0; 9079 break; 9080 } 9081 9082 detach_task(p, env); 9083 list_add(&p->se.group_node, &env->tasks); 9084 9085 detached++; 9086 9087 #ifdef CONFIG_PREEMPTION 9088 /* 9089 * NEWIDLE balancing is a source of latency, so preemptible 9090 * kernels will stop after the first task is detached to minimize 9091 * the critical section. 9092 */ 9093 if (env->idle == CPU_NEWLY_IDLE) 9094 break; 9095 #endif 9096 9097 /* 9098 * We only want to steal up to the prescribed amount of 9099 * load/util/tasks. 9100 */ 9101 if (env->imbalance <= 0) 9102 break; 9103 9104 continue; 9105 next: 9106 list_move(&p->se.group_node, tasks); 9107 } 9108 9109 /* 9110 * Right now, this is one of only two places we collect this stat 9111 * so we can safely collect detach_one_task() stats here rather 9112 * than inside detach_one_task(). 9113 */ 9114 schedstat_add(env->sd->lb_gained[env->idle], detached); 9115 9116 return detached; 9117 } 9118 9119 /* 9120 * attach_task() -- attach the task detached by detach_task() to its new rq. 9121 */ 9122 static void attach_task(struct rq *rq, struct task_struct *p) 9123 { 9124 lockdep_assert_rq_held(rq); 9125 9126 WARN_ON_ONCE(task_rq(p) != rq); 9127 activate_task(rq, p, ENQUEUE_NOCLOCK); 9128 wakeup_preempt(rq, p, 0); 9129 } 9130 9131 /* 9132 * attach_one_task() -- attaches the task returned from detach_one_task() to 9133 * its new rq. 9134 */ 9135 static void attach_one_task(struct rq *rq, struct task_struct *p) 9136 { 9137 struct rq_flags rf; 9138 9139 rq_lock(rq, &rf); 9140 update_rq_clock(rq); 9141 attach_task(rq, p); 9142 rq_unlock(rq, &rf); 9143 } 9144 9145 /* 9146 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9147 * new rq. 9148 */ 9149 static void attach_tasks(struct lb_env *env) 9150 { 9151 struct list_head *tasks = &env->tasks; 9152 struct task_struct *p; 9153 struct rq_flags rf; 9154 9155 rq_lock(env->dst_rq, &rf); 9156 update_rq_clock(env->dst_rq); 9157 9158 while (!list_empty(tasks)) { 9159 p = list_first_entry(tasks, struct task_struct, se.group_node); 9160 list_del_init(&p->se.group_node); 9161 9162 attach_task(env->dst_rq, p); 9163 } 9164 9165 rq_unlock(env->dst_rq, &rf); 9166 } 9167 9168 #ifdef CONFIG_NO_HZ_COMMON 9169 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9170 { 9171 if (cfs_rq->avg.load_avg) 9172 return true; 9173 9174 if (cfs_rq->avg.util_avg) 9175 return true; 9176 9177 return false; 9178 } 9179 9180 static inline bool others_have_blocked(struct rq *rq) 9181 { 9182 if (READ_ONCE(rq->avg_rt.util_avg)) 9183 return true; 9184 9185 if (READ_ONCE(rq->avg_dl.util_avg)) 9186 return true; 9187 9188 if (thermal_load_avg(rq)) 9189 return true; 9190 9191 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 9192 if (READ_ONCE(rq->avg_irq.util_avg)) 9193 return true; 9194 #endif 9195 9196 return false; 9197 } 9198 9199 static inline void update_blocked_load_tick(struct rq *rq) 9200 { 9201 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9202 } 9203 9204 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9205 { 9206 if (!has_blocked) 9207 rq->has_blocked_load = 0; 9208 } 9209 #else 9210 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9211 static inline bool others_have_blocked(struct rq *rq) { return false; } 9212 static inline void update_blocked_load_tick(struct rq *rq) {} 9213 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9214 #endif 9215 9216 static bool __update_blocked_others(struct rq *rq, bool *done) 9217 { 9218 const struct sched_class *curr_class; 9219 u64 now = rq_clock_pelt(rq); 9220 unsigned long thermal_pressure; 9221 bool decayed; 9222 9223 /* 9224 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9225 * DL and IRQ signals have been updated before updating CFS. 9226 */ 9227 curr_class = rq->curr->sched_class; 9228 9229 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9230 9231 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9232 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9233 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9234 update_irq_load_avg(rq, 0); 9235 9236 if (others_have_blocked(rq)) 9237 *done = false; 9238 9239 return decayed; 9240 } 9241 9242 #ifdef CONFIG_FAIR_GROUP_SCHED 9243 9244 static bool __update_blocked_fair(struct rq *rq, bool *done) 9245 { 9246 struct cfs_rq *cfs_rq, *pos; 9247 bool decayed = false; 9248 int cpu = cpu_of(rq); 9249 9250 /* 9251 * Iterates the task_group tree in a bottom up fashion, see 9252 * list_add_leaf_cfs_rq() for details. 9253 */ 9254 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9255 struct sched_entity *se; 9256 9257 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9258 update_tg_load_avg(cfs_rq); 9259 9260 if (cfs_rq->nr_running == 0) 9261 update_idle_cfs_rq_clock_pelt(cfs_rq); 9262 9263 if (cfs_rq == &rq->cfs) 9264 decayed = true; 9265 } 9266 9267 /* Propagate pending load changes to the parent, if any: */ 9268 se = cfs_rq->tg->se[cpu]; 9269 if (se && !skip_blocked_update(se)) 9270 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9271 9272 /* 9273 * There can be a lot of idle CPU cgroups. Don't let fully 9274 * decayed cfs_rqs linger on the list. 9275 */ 9276 if (cfs_rq_is_decayed(cfs_rq)) 9277 list_del_leaf_cfs_rq(cfs_rq); 9278 9279 /* Don't need periodic decay once load/util_avg are null */ 9280 if (cfs_rq_has_blocked(cfs_rq)) 9281 *done = false; 9282 } 9283 9284 return decayed; 9285 } 9286 9287 /* 9288 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9289 * This needs to be done in a top-down fashion because the load of a child 9290 * group is a fraction of its parents load. 9291 */ 9292 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9293 { 9294 struct rq *rq = rq_of(cfs_rq); 9295 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9296 unsigned long now = jiffies; 9297 unsigned long load; 9298 9299 if (cfs_rq->last_h_load_update == now) 9300 return; 9301 9302 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9303 for_each_sched_entity(se) { 9304 cfs_rq = cfs_rq_of(se); 9305 WRITE_ONCE(cfs_rq->h_load_next, se); 9306 if (cfs_rq->last_h_load_update == now) 9307 break; 9308 } 9309 9310 if (!se) { 9311 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9312 cfs_rq->last_h_load_update = now; 9313 } 9314 9315 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9316 load = cfs_rq->h_load; 9317 load = div64_ul(load * se->avg.load_avg, 9318 cfs_rq_load_avg(cfs_rq) + 1); 9319 cfs_rq = group_cfs_rq(se); 9320 cfs_rq->h_load = load; 9321 cfs_rq->last_h_load_update = now; 9322 } 9323 } 9324 9325 static unsigned long task_h_load(struct task_struct *p) 9326 { 9327 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9328 9329 update_cfs_rq_h_load(cfs_rq); 9330 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9331 cfs_rq_load_avg(cfs_rq) + 1); 9332 } 9333 #else 9334 static bool __update_blocked_fair(struct rq *rq, bool *done) 9335 { 9336 struct cfs_rq *cfs_rq = &rq->cfs; 9337 bool decayed; 9338 9339 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9340 if (cfs_rq_has_blocked(cfs_rq)) 9341 *done = false; 9342 9343 return decayed; 9344 } 9345 9346 static unsigned long task_h_load(struct task_struct *p) 9347 { 9348 return p->se.avg.load_avg; 9349 } 9350 #endif 9351 9352 static void update_blocked_averages(int cpu) 9353 { 9354 bool decayed = false, done = true; 9355 struct rq *rq = cpu_rq(cpu); 9356 struct rq_flags rf; 9357 9358 rq_lock_irqsave(rq, &rf); 9359 update_blocked_load_tick(rq); 9360 update_rq_clock(rq); 9361 9362 decayed |= __update_blocked_others(rq, &done); 9363 decayed |= __update_blocked_fair(rq, &done); 9364 9365 update_blocked_load_status(rq, !done); 9366 if (decayed) 9367 cpufreq_update_util(rq, 0); 9368 rq_unlock_irqrestore(rq, &rf); 9369 } 9370 9371 /********** Helpers for find_busiest_group ************************/ 9372 9373 /* 9374 * sg_lb_stats - stats of a sched_group required for load_balancing 9375 */ 9376 struct sg_lb_stats { 9377 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9378 unsigned long group_load; /* Total load over the CPUs of the group */ 9379 unsigned long group_capacity; 9380 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9381 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9382 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9383 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9384 unsigned int idle_cpus; 9385 unsigned int group_weight; 9386 enum group_type group_type; 9387 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9388 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9389 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9390 #ifdef CONFIG_NUMA_BALANCING 9391 unsigned int nr_numa_running; 9392 unsigned int nr_preferred_running; 9393 #endif 9394 }; 9395 9396 /* 9397 * sd_lb_stats - Structure to store the statistics of a sched_domain 9398 * during load balancing. 9399 */ 9400 struct sd_lb_stats { 9401 struct sched_group *busiest; /* Busiest group in this sd */ 9402 struct sched_group *local; /* Local group in this sd */ 9403 unsigned long total_load; /* Total load of all groups in sd */ 9404 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9405 unsigned long avg_load; /* Average load across all groups in sd */ 9406 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9407 9408 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9409 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9410 }; 9411 9412 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9413 { 9414 /* 9415 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9416 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9417 * We must however set busiest_stat::group_type and 9418 * busiest_stat::idle_cpus to the worst busiest group because 9419 * update_sd_pick_busiest() reads these before assignment. 9420 */ 9421 *sds = (struct sd_lb_stats){ 9422 .busiest = NULL, 9423 .local = NULL, 9424 .total_load = 0UL, 9425 .total_capacity = 0UL, 9426 .busiest_stat = { 9427 .idle_cpus = UINT_MAX, 9428 .group_type = group_has_spare, 9429 }, 9430 }; 9431 } 9432 9433 static unsigned long scale_rt_capacity(int cpu) 9434 { 9435 struct rq *rq = cpu_rq(cpu); 9436 unsigned long max = arch_scale_cpu_capacity(cpu); 9437 unsigned long used, free; 9438 unsigned long irq; 9439 9440 irq = cpu_util_irq(rq); 9441 9442 if (unlikely(irq >= max)) 9443 return 1; 9444 9445 /* 9446 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9447 * (running and not running) with weights 0 and 1024 respectively. 9448 * avg_thermal.load_avg tracks thermal pressure and the weighted 9449 * average uses the actual delta max capacity(load). 9450 */ 9451 used = READ_ONCE(rq->avg_rt.util_avg); 9452 used += READ_ONCE(rq->avg_dl.util_avg); 9453 used += thermal_load_avg(rq); 9454 9455 if (unlikely(used >= max)) 9456 return 1; 9457 9458 free = max - used; 9459 9460 return scale_irq_capacity(free, irq, max); 9461 } 9462 9463 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9464 { 9465 unsigned long capacity = scale_rt_capacity(cpu); 9466 struct sched_group *sdg = sd->groups; 9467 9468 if (!capacity) 9469 capacity = 1; 9470 9471 cpu_rq(cpu)->cpu_capacity = capacity; 9472 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9473 9474 sdg->sgc->capacity = capacity; 9475 sdg->sgc->min_capacity = capacity; 9476 sdg->sgc->max_capacity = capacity; 9477 } 9478 9479 void update_group_capacity(struct sched_domain *sd, int cpu) 9480 { 9481 struct sched_domain *child = sd->child; 9482 struct sched_group *group, *sdg = sd->groups; 9483 unsigned long capacity, min_capacity, max_capacity; 9484 unsigned long interval; 9485 9486 interval = msecs_to_jiffies(sd->balance_interval); 9487 interval = clamp(interval, 1UL, max_load_balance_interval); 9488 sdg->sgc->next_update = jiffies + interval; 9489 9490 if (!child) { 9491 update_cpu_capacity(sd, cpu); 9492 return; 9493 } 9494 9495 capacity = 0; 9496 min_capacity = ULONG_MAX; 9497 max_capacity = 0; 9498 9499 if (child->flags & SD_OVERLAP) { 9500 /* 9501 * SD_OVERLAP domains cannot assume that child groups 9502 * span the current group. 9503 */ 9504 9505 for_each_cpu(cpu, sched_group_span(sdg)) { 9506 unsigned long cpu_cap = capacity_of(cpu); 9507 9508 capacity += cpu_cap; 9509 min_capacity = min(cpu_cap, min_capacity); 9510 max_capacity = max(cpu_cap, max_capacity); 9511 } 9512 } else { 9513 /* 9514 * !SD_OVERLAP domains can assume that child groups 9515 * span the current group. 9516 */ 9517 9518 group = child->groups; 9519 do { 9520 struct sched_group_capacity *sgc = group->sgc; 9521 9522 capacity += sgc->capacity; 9523 min_capacity = min(sgc->min_capacity, min_capacity); 9524 max_capacity = max(sgc->max_capacity, max_capacity); 9525 group = group->next; 9526 } while (group != child->groups); 9527 } 9528 9529 sdg->sgc->capacity = capacity; 9530 sdg->sgc->min_capacity = min_capacity; 9531 sdg->sgc->max_capacity = max_capacity; 9532 } 9533 9534 /* 9535 * Check whether the capacity of the rq has been noticeably reduced by side 9536 * activity. The imbalance_pct is used for the threshold. 9537 * Return true is the capacity is reduced 9538 */ 9539 static inline int 9540 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9541 { 9542 return ((rq->cpu_capacity * sd->imbalance_pct) < 9543 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9544 } 9545 9546 /* 9547 * Check whether a rq has a misfit task and if it looks like we can actually 9548 * help that task: we can migrate the task to a CPU of higher capacity, or 9549 * the task's current CPU is heavily pressured. 9550 */ 9551 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9552 { 9553 return rq->misfit_task_load && 9554 (arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity || 9555 check_cpu_capacity(rq, sd)); 9556 } 9557 9558 /* 9559 * Group imbalance indicates (and tries to solve) the problem where balancing 9560 * groups is inadequate due to ->cpus_ptr constraints. 9561 * 9562 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9563 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9564 * Something like: 9565 * 9566 * { 0 1 2 3 } { 4 5 6 7 } 9567 * * * * * 9568 * 9569 * If we were to balance group-wise we'd place two tasks in the first group and 9570 * two tasks in the second group. Clearly this is undesired as it will overload 9571 * cpu 3 and leave one of the CPUs in the second group unused. 9572 * 9573 * The current solution to this issue is detecting the skew in the first group 9574 * by noticing the lower domain failed to reach balance and had difficulty 9575 * moving tasks due to affinity constraints. 9576 * 9577 * When this is so detected; this group becomes a candidate for busiest; see 9578 * update_sd_pick_busiest(). And calculate_imbalance() and 9579 * find_busiest_group() avoid some of the usual balance conditions to allow it 9580 * to create an effective group imbalance. 9581 * 9582 * This is a somewhat tricky proposition since the next run might not find the 9583 * group imbalance and decide the groups need to be balanced again. A most 9584 * subtle and fragile situation. 9585 */ 9586 9587 static inline int sg_imbalanced(struct sched_group *group) 9588 { 9589 return group->sgc->imbalance; 9590 } 9591 9592 /* 9593 * group_has_capacity returns true if the group has spare capacity that could 9594 * be used by some tasks. 9595 * We consider that a group has spare capacity if the number of task is 9596 * smaller than the number of CPUs or if the utilization is lower than the 9597 * available capacity for CFS tasks. 9598 * For the latter, we use a threshold to stabilize the state, to take into 9599 * account the variance of the tasks' load and to return true if the available 9600 * capacity in meaningful for the load balancer. 9601 * As an example, an available capacity of 1% can appear but it doesn't make 9602 * any benefit for the load balance. 9603 */ 9604 static inline bool 9605 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9606 { 9607 if (sgs->sum_nr_running < sgs->group_weight) 9608 return true; 9609 9610 if ((sgs->group_capacity * imbalance_pct) < 9611 (sgs->group_runnable * 100)) 9612 return false; 9613 9614 if ((sgs->group_capacity * 100) > 9615 (sgs->group_util * imbalance_pct)) 9616 return true; 9617 9618 return false; 9619 } 9620 9621 /* 9622 * group_is_overloaded returns true if the group has more tasks than it can 9623 * handle. 9624 * group_is_overloaded is not equals to !group_has_capacity because a group 9625 * with the exact right number of tasks, has no more spare capacity but is not 9626 * overloaded so both group_has_capacity and group_is_overloaded return 9627 * false. 9628 */ 9629 static inline bool 9630 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9631 { 9632 if (sgs->sum_nr_running <= sgs->group_weight) 9633 return false; 9634 9635 if ((sgs->group_capacity * 100) < 9636 (sgs->group_util * imbalance_pct)) 9637 return true; 9638 9639 if ((sgs->group_capacity * imbalance_pct) < 9640 (sgs->group_runnable * 100)) 9641 return true; 9642 9643 return false; 9644 } 9645 9646 static inline enum 9647 group_type group_classify(unsigned int imbalance_pct, 9648 struct sched_group *group, 9649 struct sg_lb_stats *sgs) 9650 { 9651 if (group_is_overloaded(imbalance_pct, sgs)) 9652 return group_overloaded; 9653 9654 if (sg_imbalanced(group)) 9655 return group_imbalanced; 9656 9657 if (sgs->group_asym_packing) 9658 return group_asym_packing; 9659 9660 if (sgs->group_smt_balance) 9661 return group_smt_balance; 9662 9663 if (sgs->group_misfit_task_load) 9664 return group_misfit_task; 9665 9666 if (!group_has_capacity(imbalance_pct, sgs)) 9667 return group_fully_busy; 9668 9669 return group_has_spare; 9670 } 9671 9672 /** 9673 * sched_use_asym_prio - Check whether asym_packing priority must be used 9674 * @sd: The scheduling domain of the load balancing 9675 * @cpu: A CPU 9676 * 9677 * Always use CPU priority when balancing load between SMT siblings. When 9678 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9679 * use CPU priority if the whole core is idle. 9680 * 9681 * Returns: True if the priority of @cpu must be followed. False otherwise. 9682 */ 9683 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9684 { 9685 if (!sched_smt_active()) 9686 return true; 9687 9688 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9689 } 9690 9691 /** 9692 * sched_asym - Check if the destination CPU can do asym_packing load balance 9693 * @env: The load balancing environment 9694 * @sds: Load-balancing data with statistics of the local group 9695 * @sgs: Load-balancing statistics of the candidate busiest group 9696 * @group: The candidate busiest group 9697 * 9698 * @env::dst_cpu can do asym_packing if it has higher priority than the 9699 * preferred CPU of @group. 9700 * 9701 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9702 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9703 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9704 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9705 * 9706 * If we are balancing load within an SMT core, or at PKG domain level, always 9707 * proceed. 9708 * 9709 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9710 * otherwise. 9711 */ 9712 static inline bool 9713 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9714 struct sched_group *group) 9715 { 9716 /* Ensure that the whole local core is idle, if applicable. */ 9717 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9718 return false; 9719 9720 /* 9721 * CPU priorities does not make sense for SMT cores with more than one 9722 * busy sibling. 9723 */ 9724 if (group->flags & SD_SHARE_CPUCAPACITY) { 9725 if (sgs->group_weight - sgs->idle_cpus != 1) 9726 return false; 9727 } 9728 9729 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9730 } 9731 9732 /* One group has more than one SMT CPU while the other group does not */ 9733 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9734 struct sched_group *sg2) 9735 { 9736 if (!sg1 || !sg2) 9737 return false; 9738 9739 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9740 (sg2->flags & SD_SHARE_CPUCAPACITY); 9741 } 9742 9743 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9744 struct sched_group *group) 9745 { 9746 if (env->idle == CPU_NOT_IDLE) 9747 return false; 9748 9749 /* 9750 * For SMT source group, it is better to move a task 9751 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9752 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9753 * will not be on. 9754 */ 9755 if (group->flags & SD_SHARE_CPUCAPACITY && 9756 sgs->sum_h_nr_running > 1) 9757 return true; 9758 9759 return false; 9760 } 9761 9762 static inline long sibling_imbalance(struct lb_env *env, 9763 struct sd_lb_stats *sds, 9764 struct sg_lb_stats *busiest, 9765 struct sg_lb_stats *local) 9766 { 9767 int ncores_busiest, ncores_local; 9768 long imbalance; 9769 9770 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9771 return 0; 9772 9773 ncores_busiest = sds->busiest->cores; 9774 ncores_local = sds->local->cores; 9775 9776 if (ncores_busiest == ncores_local) { 9777 imbalance = busiest->sum_nr_running; 9778 lsub_positive(&imbalance, local->sum_nr_running); 9779 return imbalance; 9780 } 9781 9782 /* Balance such that nr_running/ncores ratio are same on both groups */ 9783 imbalance = ncores_local * busiest->sum_nr_running; 9784 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9785 /* Normalize imbalance and do rounding on normalization */ 9786 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9787 imbalance /= ncores_local + ncores_busiest; 9788 9789 /* Take advantage of resource in an empty sched group */ 9790 if (imbalance <= 1 && local->sum_nr_running == 0 && 9791 busiest->sum_nr_running > 1) 9792 imbalance = 2; 9793 9794 return imbalance; 9795 } 9796 9797 static inline bool 9798 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9799 { 9800 /* 9801 * When there is more than 1 task, the group_overloaded case already 9802 * takes care of cpu with reduced capacity 9803 */ 9804 if (rq->cfs.h_nr_running != 1) 9805 return false; 9806 9807 return check_cpu_capacity(rq, sd); 9808 } 9809 9810 /** 9811 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9812 * @env: The load balancing environment. 9813 * @sds: Load-balancing data with statistics of the local group. 9814 * @group: sched_group whose statistics are to be updated. 9815 * @sgs: variable to hold the statistics for this group. 9816 * @sg_status: Holds flag indicating the status of the sched_group 9817 */ 9818 static inline void update_sg_lb_stats(struct lb_env *env, 9819 struct sd_lb_stats *sds, 9820 struct sched_group *group, 9821 struct sg_lb_stats *sgs, 9822 int *sg_status) 9823 { 9824 int i, nr_running, local_group; 9825 9826 memset(sgs, 0, sizeof(*sgs)); 9827 9828 local_group = group == sds->local; 9829 9830 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9831 struct rq *rq = cpu_rq(i); 9832 unsigned long load = cpu_load(rq); 9833 9834 sgs->group_load += load; 9835 sgs->group_util += cpu_util_cfs(i); 9836 sgs->group_runnable += cpu_runnable(rq); 9837 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9838 9839 nr_running = rq->nr_running; 9840 sgs->sum_nr_running += nr_running; 9841 9842 if (nr_running > 1) 9843 *sg_status |= SG_OVERLOAD; 9844 9845 if (cpu_overutilized(i)) 9846 *sg_status |= SG_OVERUTILIZED; 9847 9848 #ifdef CONFIG_NUMA_BALANCING 9849 sgs->nr_numa_running += rq->nr_numa_running; 9850 sgs->nr_preferred_running += rq->nr_preferred_running; 9851 #endif 9852 /* 9853 * No need to call idle_cpu() if nr_running is not 0 9854 */ 9855 if (!nr_running && idle_cpu(i)) { 9856 sgs->idle_cpus++; 9857 /* Idle cpu can't have misfit task */ 9858 continue; 9859 } 9860 9861 if (local_group) 9862 continue; 9863 9864 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9865 /* Check for a misfit task on the cpu */ 9866 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9867 sgs->group_misfit_task_load = rq->misfit_task_load; 9868 *sg_status |= SG_OVERLOAD; 9869 } 9870 } else if ((env->idle != CPU_NOT_IDLE) && 9871 sched_reduced_capacity(rq, env->sd)) { 9872 /* Check for a task running on a CPU with reduced capacity */ 9873 if (sgs->group_misfit_task_load < load) 9874 sgs->group_misfit_task_load = load; 9875 } 9876 } 9877 9878 sgs->group_capacity = group->sgc->capacity; 9879 9880 sgs->group_weight = group->group_weight; 9881 9882 /* Check if dst CPU is idle and preferred to this group */ 9883 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9884 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9885 sched_asym(env, sds, sgs, group)) { 9886 sgs->group_asym_packing = 1; 9887 } 9888 9889 /* Check for loaded SMT group to be balanced to dst CPU */ 9890 if (!local_group && smt_balance(env, sgs, group)) 9891 sgs->group_smt_balance = 1; 9892 9893 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9894 9895 /* Computing avg_load makes sense only when group is overloaded */ 9896 if (sgs->group_type == group_overloaded) 9897 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9898 sgs->group_capacity; 9899 } 9900 9901 /** 9902 * update_sd_pick_busiest - return 1 on busiest group 9903 * @env: The load balancing environment. 9904 * @sds: sched_domain statistics 9905 * @sg: sched_group candidate to be checked for being the busiest 9906 * @sgs: sched_group statistics 9907 * 9908 * Determine if @sg is a busier group than the previously selected 9909 * busiest group. 9910 * 9911 * Return: %true if @sg is a busier group than the previously selected 9912 * busiest group. %false otherwise. 9913 */ 9914 static bool update_sd_pick_busiest(struct lb_env *env, 9915 struct sd_lb_stats *sds, 9916 struct sched_group *sg, 9917 struct sg_lb_stats *sgs) 9918 { 9919 struct sg_lb_stats *busiest = &sds->busiest_stat; 9920 9921 /* Make sure that there is at least one task to pull */ 9922 if (!sgs->sum_h_nr_running) 9923 return false; 9924 9925 /* 9926 * Don't try to pull misfit tasks we can't help. 9927 * We can use max_capacity here as reduction in capacity on some 9928 * CPUs in the group should either be possible to resolve 9929 * internally or be covered by avg_load imbalance (eventually). 9930 */ 9931 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9932 (sgs->group_type == group_misfit_task) && 9933 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9934 sds->local_stat.group_type != group_has_spare)) 9935 return false; 9936 9937 if (sgs->group_type > busiest->group_type) 9938 return true; 9939 9940 if (sgs->group_type < busiest->group_type) 9941 return false; 9942 9943 /* 9944 * The candidate and the current busiest group are the same type of 9945 * group. Let check which one is the busiest according to the type. 9946 */ 9947 9948 switch (sgs->group_type) { 9949 case group_overloaded: 9950 /* Select the overloaded group with highest avg_load. */ 9951 if (sgs->avg_load <= busiest->avg_load) 9952 return false; 9953 break; 9954 9955 case group_imbalanced: 9956 /* 9957 * Select the 1st imbalanced group as we don't have any way to 9958 * choose one more than another. 9959 */ 9960 return false; 9961 9962 case group_asym_packing: 9963 /* Prefer to move from lowest priority CPU's work */ 9964 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9965 return false; 9966 break; 9967 9968 case group_misfit_task: 9969 /* 9970 * If we have more than one misfit sg go with the biggest 9971 * misfit. 9972 */ 9973 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9974 return false; 9975 break; 9976 9977 case group_smt_balance: 9978 /* 9979 * Check if we have spare CPUs on either SMT group to 9980 * choose has spare or fully busy handling. 9981 */ 9982 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 9983 goto has_spare; 9984 9985 fallthrough; 9986 9987 case group_fully_busy: 9988 /* 9989 * Select the fully busy group with highest avg_load. In 9990 * theory, there is no need to pull task from such kind of 9991 * group because tasks have all compute capacity that they need 9992 * but we can still improve the overall throughput by reducing 9993 * contention when accessing shared HW resources. 9994 * 9995 * XXX for now avg_load is not computed and always 0 so we 9996 * select the 1st one, except if @sg is composed of SMT 9997 * siblings. 9998 */ 9999 10000 if (sgs->avg_load < busiest->avg_load) 10001 return false; 10002 10003 if (sgs->avg_load == busiest->avg_load) { 10004 /* 10005 * SMT sched groups need more help than non-SMT groups. 10006 * If @sg happens to also be SMT, either choice is good. 10007 */ 10008 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10009 return false; 10010 } 10011 10012 break; 10013 10014 case group_has_spare: 10015 /* 10016 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10017 * as we do not want to pull task off SMT core with one task 10018 * and make the core idle. 10019 */ 10020 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10021 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10022 return false; 10023 else 10024 return true; 10025 } 10026 has_spare: 10027 10028 /* 10029 * Select not overloaded group with lowest number of idle cpus 10030 * and highest number of running tasks. We could also compare 10031 * the spare capacity which is more stable but it can end up 10032 * that the group has less spare capacity but finally more idle 10033 * CPUs which means less opportunity to pull tasks. 10034 */ 10035 if (sgs->idle_cpus > busiest->idle_cpus) 10036 return false; 10037 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10038 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10039 return false; 10040 10041 break; 10042 } 10043 10044 /* 10045 * Candidate sg has no more than one task per CPU and has higher 10046 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10047 * throughput. Maximize throughput, power/energy consequences are not 10048 * considered. 10049 */ 10050 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10051 (sgs->group_type <= group_fully_busy) && 10052 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10053 return false; 10054 10055 return true; 10056 } 10057 10058 #ifdef CONFIG_NUMA_BALANCING 10059 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10060 { 10061 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10062 return regular; 10063 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10064 return remote; 10065 return all; 10066 } 10067 10068 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10069 { 10070 if (rq->nr_running > rq->nr_numa_running) 10071 return regular; 10072 if (rq->nr_running > rq->nr_preferred_running) 10073 return remote; 10074 return all; 10075 } 10076 #else 10077 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10078 { 10079 return all; 10080 } 10081 10082 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10083 { 10084 return regular; 10085 } 10086 #endif /* CONFIG_NUMA_BALANCING */ 10087 10088 10089 struct sg_lb_stats; 10090 10091 /* 10092 * task_running_on_cpu - return 1 if @p is running on @cpu. 10093 */ 10094 10095 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10096 { 10097 /* Task has no contribution or is new */ 10098 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10099 return 0; 10100 10101 if (task_on_rq_queued(p)) 10102 return 1; 10103 10104 return 0; 10105 } 10106 10107 /** 10108 * idle_cpu_without - would a given CPU be idle without p ? 10109 * @cpu: the processor on which idleness is tested. 10110 * @p: task which should be ignored. 10111 * 10112 * Return: 1 if the CPU would be idle. 0 otherwise. 10113 */ 10114 static int idle_cpu_without(int cpu, struct task_struct *p) 10115 { 10116 struct rq *rq = cpu_rq(cpu); 10117 10118 if (rq->curr != rq->idle && rq->curr != p) 10119 return 0; 10120 10121 /* 10122 * rq->nr_running can't be used but an updated version without the 10123 * impact of p on cpu must be used instead. The updated nr_running 10124 * be computed and tested before calling idle_cpu_without(). 10125 */ 10126 10127 #ifdef CONFIG_SMP 10128 if (rq->ttwu_pending) 10129 return 0; 10130 #endif 10131 10132 return 1; 10133 } 10134 10135 /* 10136 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10137 * @sd: The sched_domain level to look for idlest group. 10138 * @group: sched_group whose statistics are to be updated. 10139 * @sgs: variable to hold the statistics for this group. 10140 * @p: The task for which we look for the idlest group/CPU. 10141 */ 10142 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10143 struct sched_group *group, 10144 struct sg_lb_stats *sgs, 10145 struct task_struct *p) 10146 { 10147 int i, nr_running; 10148 10149 memset(sgs, 0, sizeof(*sgs)); 10150 10151 /* Assume that task can't fit any CPU of the group */ 10152 if (sd->flags & SD_ASYM_CPUCAPACITY) 10153 sgs->group_misfit_task_load = 1; 10154 10155 for_each_cpu(i, sched_group_span(group)) { 10156 struct rq *rq = cpu_rq(i); 10157 unsigned int local; 10158 10159 sgs->group_load += cpu_load_without(rq, p); 10160 sgs->group_util += cpu_util_without(i, p); 10161 sgs->group_runnable += cpu_runnable_without(rq, p); 10162 local = task_running_on_cpu(i, p); 10163 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10164 10165 nr_running = rq->nr_running - local; 10166 sgs->sum_nr_running += nr_running; 10167 10168 /* 10169 * No need to call idle_cpu_without() if nr_running is not 0 10170 */ 10171 if (!nr_running && idle_cpu_without(i, p)) 10172 sgs->idle_cpus++; 10173 10174 /* Check if task fits in the CPU */ 10175 if (sd->flags & SD_ASYM_CPUCAPACITY && 10176 sgs->group_misfit_task_load && 10177 task_fits_cpu(p, i)) 10178 sgs->group_misfit_task_load = 0; 10179 10180 } 10181 10182 sgs->group_capacity = group->sgc->capacity; 10183 10184 sgs->group_weight = group->group_weight; 10185 10186 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10187 10188 /* 10189 * Computing avg_load makes sense only when group is fully busy or 10190 * overloaded 10191 */ 10192 if (sgs->group_type == group_fully_busy || 10193 sgs->group_type == group_overloaded) 10194 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10195 sgs->group_capacity; 10196 } 10197 10198 static bool update_pick_idlest(struct sched_group *idlest, 10199 struct sg_lb_stats *idlest_sgs, 10200 struct sched_group *group, 10201 struct sg_lb_stats *sgs) 10202 { 10203 if (sgs->group_type < idlest_sgs->group_type) 10204 return true; 10205 10206 if (sgs->group_type > idlest_sgs->group_type) 10207 return false; 10208 10209 /* 10210 * The candidate and the current idlest group are the same type of 10211 * group. Let check which one is the idlest according to the type. 10212 */ 10213 10214 switch (sgs->group_type) { 10215 case group_overloaded: 10216 case group_fully_busy: 10217 /* Select the group with lowest avg_load. */ 10218 if (idlest_sgs->avg_load <= sgs->avg_load) 10219 return false; 10220 break; 10221 10222 case group_imbalanced: 10223 case group_asym_packing: 10224 case group_smt_balance: 10225 /* Those types are not used in the slow wakeup path */ 10226 return false; 10227 10228 case group_misfit_task: 10229 /* Select group with the highest max capacity */ 10230 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10231 return false; 10232 break; 10233 10234 case group_has_spare: 10235 /* Select group with most idle CPUs */ 10236 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10237 return false; 10238 10239 /* Select group with lowest group_util */ 10240 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10241 idlest_sgs->group_util <= sgs->group_util) 10242 return false; 10243 10244 break; 10245 } 10246 10247 return true; 10248 } 10249 10250 /* 10251 * find_idlest_group() finds and returns the least busy CPU group within the 10252 * domain. 10253 * 10254 * Assumes p is allowed on at least one CPU in sd. 10255 */ 10256 static struct sched_group * 10257 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10258 { 10259 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10260 struct sg_lb_stats local_sgs, tmp_sgs; 10261 struct sg_lb_stats *sgs; 10262 unsigned long imbalance; 10263 struct sg_lb_stats idlest_sgs = { 10264 .avg_load = UINT_MAX, 10265 .group_type = group_overloaded, 10266 }; 10267 10268 do { 10269 int local_group; 10270 10271 /* Skip over this group if it has no CPUs allowed */ 10272 if (!cpumask_intersects(sched_group_span(group), 10273 p->cpus_ptr)) 10274 continue; 10275 10276 /* Skip over this group if no cookie matched */ 10277 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10278 continue; 10279 10280 local_group = cpumask_test_cpu(this_cpu, 10281 sched_group_span(group)); 10282 10283 if (local_group) { 10284 sgs = &local_sgs; 10285 local = group; 10286 } else { 10287 sgs = &tmp_sgs; 10288 } 10289 10290 update_sg_wakeup_stats(sd, group, sgs, p); 10291 10292 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10293 idlest = group; 10294 idlest_sgs = *sgs; 10295 } 10296 10297 } while (group = group->next, group != sd->groups); 10298 10299 10300 /* There is no idlest group to push tasks to */ 10301 if (!idlest) 10302 return NULL; 10303 10304 /* The local group has been skipped because of CPU affinity */ 10305 if (!local) 10306 return idlest; 10307 10308 /* 10309 * If the local group is idler than the selected idlest group 10310 * don't try and push the task. 10311 */ 10312 if (local_sgs.group_type < idlest_sgs.group_type) 10313 return NULL; 10314 10315 /* 10316 * If the local group is busier than the selected idlest group 10317 * try and push the task. 10318 */ 10319 if (local_sgs.group_type > idlest_sgs.group_type) 10320 return idlest; 10321 10322 switch (local_sgs.group_type) { 10323 case group_overloaded: 10324 case group_fully_busy: 10325 10326 /* Calculate allowed imbalance based on load */ 10327 imbalance = scale_load_down(NICE_0_LOAD) * 10328 (sd->imbalance_pct-100) / 100; 10329 10330 /* 10331 * When comparing groups across NUMA domains, it's possible for 10332 * the local domain to be very lightly loaded relative to the 10333 * remote domains but "imbalance" skews the comparison making 10334 * remote CPUs look much more favourable. When considering 10335 * cross-domain, add imbalance to the load on the remote node 10336 * and consider staying local. 10337 */ 10338 10339 if ((sd->flags & SD_NUMA) && 10340 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10341 return NULL; 10342 10343 /* 10344 * If the local group is less loaded than the selected 10345 * idlest group don't try and push any tasks. 10346 */ 10347 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10348 return NULL; 10349 10350 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10351 return NULL; 10352 break; 10353 10354 case group_imbalanced: 10355 case group_asym_packing: 10356 case group_smt_balance: 10357 /* Those type are not used in the slow wakeup path */ 10358 return NULL; 10359 10360 case group_misfit_task: 10361 /* Select group with the highest max capacity */ 10362 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10363 return NULL; 10364 break; 10365 10366 case group_has_spare: 10367 #ifdef CONFIG_NUMA 10368 if (sd->flags & SD_NUMA) { 10369 int imb_numa_nr = sd->imb_numa_nr; 10370 #ifdef CONFIG_NUMA_BALANCING 10371 int idlest_cpu; 10372 /* 10373 * If there is spare capacity at NUMA, try to select 10374 * the preferred node 10375 */ 10376 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10377 return NULL; 10378 10379 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10380 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10381 return idlest; 10382 #endif /* CONFIG_NUMA_BALANCING */ 10383 /* 10384 * Otherwise, keep the task close to the wakeup source 10385 * and improve locality if the number of running tasks 10386 * would remain below threshold where an imbalance is 10387 * allowed while accounting for the possibility the 10388 * task is pinned to a subset of CPUs. If there is a 10389 * real need of migration, periodic load balance will 10390 * take care of it. 10391 */ 10392 if (p->nr_cpus_allowed != NR_CPUS) { 10393 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10394 10395 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10396 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10397 } 10398 10399 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10400 if (!adjust_numa_imbalance(imbalance, 10401 local_sgs.sum_nr_running + 1, 10402 imb_numa_nr)) { 10403 return NULL; 10404 } 10405 } 10406 #endif /* CONFIG_NUMA */ 10407 10408 /* 10409 * Select group with highest number of idle CPUs. We could also 10410 * compare the utilization which is more stable but it can end 10411 * up that the group has less spare capacity but finally more 10412 * idle CPUs which means more opportunity to run task. 10413 */ 10414 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10415 return NULL; 10416 break; 10417 } 10418 10419 return idlest; 10420 } 10421 10422 static void update_idle_cpu_scan(struct lb_env *env, 10423 unsigned long sum_util) 10424 { 10425 struct sched_domain_shared *sd_share; 10426 int llc_weight, pct; 10427 u64 x, y, tmp; 10428 /* 10429 * Update the number of CPUs to scan in LLC domain, which could 10430 * be used as a hint in select_idle_cpu(). The update of sd_share 10431 * could be expensive because it is within a shared cache line. 10432 * So the write of this hint only occurs during periodic load 10433 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10434 * can fire way more frequently than the former. 10435 */ 10436 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10437 return; 10438 10439 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10440 if (env->sd->span_weight != llc_weight) 10441 return; 10442 10443 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10444 if (!sd_share) 10445 return; 10446 10447 /* 10448 * The number of CPUs to search drops as sum_util increases, when 10449 * sum_util hits 85% or above, the scan stops. 10450 * The reason to choose 85% as the threshold is because this is the 10451 * imbalance_pct(117) when a LLC sched group is overloaded. 10452 * 10453 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10454 * and y'= y / SCHED_CAPACITY_SCALE 10455 * 10456 * x is the ratio of sum_util compared to the CPU capacity: 10457 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10458 * y' is the ratio of CPUs to be scanned in the LLC domain, 10459 * and the number of CPUs to scan is calculated by: 10460 * 10461 * nr_scan = llc_weight * y' [2] 10462 * 10463 * When x hits the threshold of overloaded, AKA, when 10464 * x = 100 / pct, y drops to 0. According to [1], 10465 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10466 * 10467 * Scale x by SCHED_CAPACITY_SCALE: 10468 * x' = sum_util / llc_weight; [3] 10469 * 10470 * and finally [1] becomes: 10471 * y = SCHED_CAPACITY_SCALE - 10472 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10473 * 10474 */ 10475 /* equation [3] */ 10476 x = sum_util; 10477 do_div(x, llc_weight); 10478 10479 /* equation [4] */ 10480 pct = env->sd->imbalance_pct; 10481 tmp = x * x * pct * pct; 10482 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10483 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10484 y = SCHED_CAPACITY_SCALE - tmp; 10485 10486 /* equation [2] */ 10487 y *= llc_weight; 10488 do_div(y, SCHED_CAPACITY_SCALE); 10489 if ((int)y != sd_share->nr_idle_scan) 10490 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10491 } 10492 10493 /** 10494 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10495 * @env: The load balancing environment. 10496 * @sds: variable to hold the statistics for this sched_domain. 10497 */ 10498 10499 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10500 { 10501 struct sched_group *sg = env->sd->groups; 10502 struct sg_lb_stats *local = &sds->local_stat; 10503 struct sg_lb_stats tmp_sgs; 10504 unsigned long sum_util = 0; 10505 int sg_status = 0; 10506 10507 do { 10508 struct sg_lb_stats *sgs = &tmp_sgs; 10509 int local_group; 10510 10511 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10512 if (local_group) { 10513 sds->local = sg; 10514 sgs = local; 10515 10516 if (env->idle != CPU_NEWLY_IDLE || 10517 time_after_eq(jiffies, sg->sgc->next_update)) 10518 update_group_capacity(env->sd, env->dst_cpu); 10519 } 10520 10521 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10522 10523 if (local_group) 10524 goto next_group; 10525 10526 10527 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10528 sds->busiest = sg; 10529 sds->busiest_stat = *sgs; 10530 } 10531 10532 next_group: 10533 /* Now, start updating sd_lb_stats */ 10534 sds->total_load += sgs->group_load; 10535 sds->total_capacity += sgs->group_capacity; 10536 10537 sum_util += sgs->group_util; 10538 sg = sg->next; 10539 } while (sg != env->sd->groups); 10540 10541 /* 10542 * Indicate that the child domain of the busiest group prefers tasks 10543 * go to a child's sibling domains first. NB the flags of a sched group 10544 * are those of the child domain. 10545 */ 10546 if (sds->busiest) 10547 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10548 10549 10550 if (env->sd->flags & SD_NUMA) 10551 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10552 10553 if (!env->sd->parent) { 10554 struct root_domain *rd = env->dst_rq->rd; 10555 10556 /* update overload indicator if we are at root domain */ 10557 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10558 10559 /* Update over-utilization (tipping point, U >= 0) indicator */ 10560 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10561 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10562 } else if (sg_status & SG_OVERUTILIZED) { 10563 struct root_domain *rd = env->dst_rq->rd; 10564 10565 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10566 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10567 } 10568 10569 update_idle_cpu_scan(env, sum_util); 10570 } 10571 10572 /** 10573 * calculate_imbalance - Calculate the amount of imbalance present within the 10574 * groups of a given sched_domain during load balance. 10575 * @env: load balance environment 10576 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10577 */ 10578 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10579 { 10580 struct sg_lb_stats *local, *busiest; 10581 10582 local = &sds->local_stat; 10583 busiest = &sds->busiest_stat; 10584 10585 if (busiest->group_type == group_misfit_task) { 10586 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10587 /* Set imbalance to allow misfit tasks to be balanced. */ 10588 env->migration_type = migrate_misfit; 10589 env->imbalance = 1; 10590 } else { 10591 /* 10592 * Set load imbalance to allow moving task from cpu 10593 * with reduced capacity. 10594 */ 10595 env->migration_type = migrate_load; 10596 env->imbalance = busiest->group_misfit_task_load; 10597 } 10598 return; 10599 } 10600 10601 if (busiest->group_type == group_asym_packing) { 10602 /* 10603 * In case of asym capacity, we will try to migrate all load to 10604 * the preferred CPU. 10605 */ 10606 env->migration_type = migrate_task; 10607 env->imbalance = busiest->sum_h_nr_running; 10608 return; 10609 } 10610 10611 if (busiest->group_type == group_smt_balance) { 10612 /* Reduce number of tasks sharing CPU capacity */ 10613 env->migration_type = migrate_task; 10614 env->imbalance = 1; 10615 return; 10616 } 10617 10618 if (busiest->group_type == group_imbalanced) { 10619 /* 10620 * In the group_imb case we cannot rely on group-wide averages 10621 * to ensure CPU-load equilibrium, try to move any task to fix 10622 * the imbalance. The next load balance will take care of 10623 * balancing back the system. 10624 */ 10625 env->migration_type = migrate_task; 10626 env->imbalance = 1; 10627 return; 10628 } 10629 10630 /* 10631 * Try to use spare capacity of local group without overloading it or 10632 * emptying busiest. 10633 */ 10634 if (local->group_type == group_has_spare) { 10635 if ((busiest->group_type > group_fully_busy) && 10636 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10637 /* 10638 * If busiest is overloaded, try to fill spare 10639 * capacity. This might end up creating spare capacity 10640 * in busiest or busiest still being overloaded but 10641 * there is no simple way to directly compute the 10642 * amount of load to migrate in order to balance the 10643 * system. 10644 */ 10645 env->migration_type = migrate_util; 10646 env->imbalance = max(local->group_capacity, local->group_util) - 10647 local->group_util; 10648 10649 /* 10650 * In some cases, the group's utilization is max or even 10651 * higher than capacity because of migrations but the 10652 * local CPU is (newly) idle. There is at least one 10653 * waiting task in this overloaded busiest group. Let's 10654 * try to pull it. 10655 */ 10656 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10657 env->migration_type = migrate_task; 10658 env->imbalance = 1; 10659 } 10660 10661 return; 10662 } 10663 10664 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10665 /* 10666 * When prefer sibling, evenly spread running tasks on 10667 * groups. 10668 */ 10669 env->migration_type = migrate_task; 10670 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10671 } else { 10672 10673 /* 10674 * If there is no overload, we just want to even the number of 10675 * idle cpus. 10676 */ 10677 env->migration_type = migrate_task; 10678 env->imbalance = max_t(long, 0, 10679 (local->idle_cpus - busiest->idle_cpus)); 10680 } 10681 10682 #ifdef CONFIG_NUMA 10683 /* Consider allowing a small imbalance between NUMA groups */ 10684 if (env->sd->flags & SD_NUMA) { 10685 env->imbalance = adjust_numa_imbalance(env->imbalance, 10686 local->sum_nr_running + 1, 10687 env->sd->imb_numa_nr); 10688 } 10689 #endif 10690 10691 /* Number of tasks to move to restore balance */ 10692 env->imbalance >>= 1; 10693 10694 return; 10695 } 10696 10697 /* 10698 * Local is fully busy but has to take more load to relieve the 10699 * busiest group 10700 */ 10701 if (local->group_type < group_overloaded) { 10702 /* 10703 * Local will become overloaded so the avg_load metrics are 10704 * finally needed. 10705 */ 10706 10707 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10708 local->group_capacity; 10709 10710 /* 10711 * If the local group is more loaded than the selected 10712 * busiest group don't try to pull any tasks. 10713 */ 10714 if (local->avg_load >= busiest->avg_load) { 10715 env->imbalance = 0; 10716 return; 10717 } 10718 10719 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10720 sds->total_capacity; 10721 10722 /* 10723 * If the local group is more loaded than the average system 10724 * load, don't try to pull any tasks. 10725 */ 10726 if (local->avg_load >= sds->avg_load) { 10727 env->imbalance = 0; 10728 return; 10729 } 10730 10731 } 10732 10733 /* 10734 * Both group are or will become overloaded and we're trying to get all 10735 * the CPUs to the average_load, so we don't want to push ourselves 10736 * above the average load, nor do we wish to reduce the max loaded CPU 10737 * below the average load. At the same time, we also don't want to 10738 * reduce the group load below the group capacity. Thus we look for 10739 * the minimum possible imbalance. 10740 */ 10741 env->migration_type = migrate_load; 10742 env->imbalance = min( 10743 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10744 (sds->avg_load - local->avg_load) * local->group_capacity 10745 ) / SCHED_CAPACITY_SCALE; 10746 } 10747 10748 /******* find_busiest_group() helpers end here *********************/ 10749 10750 /* 10751 * Decision matrix according to the local and busiest group type: 10752 * 10753 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10754 * has_spare nr_idle balanced N/A N/A balanced balanced 10755 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10756 * misfit_task force N/A N/A N/A N/A N/A 10757 * asym_packing force force N/A N/A force force 10758 * imbalanced force force N/A N/A force force 10759 * overloaded force force N/A N/A force avg_load 10760 * 10761 * N/A : Not Applicable because already filtered while updating 10762 * statistics. 10763 * balanced : The system is balanced for these 2 groups. 10764 * force : Calculate the imbalance as load migration is probably needed. 10765 * avg_load : Only if imbalance is significant enough. 10766 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10767 * different in groups. 10768 */ 10769 10770 /** 10771 * find_busiest_group - Returns the busiest group within the sched_domain 10772 * if there is an imbalance. 10773 * @env: The load balancing environment. 10774 * 10775 * Also calculates the amount of runnable load which should be moved 10776 * to restore balance. 10777 * 10778 * Return: - The busiest group if imbalance exists. 10779 */ 10780 static struct sched_group *find_busiest_group(struct lb_env *env) 10781 { 10782 struct sg_lb_stats *local, *busiest; 10783 struct sd_lb_stats sds; 10784 10785 init_sd_lb_stats(&sds); 10786 10787 /* 10788 * Compute the various statistics relevant for load balancing at 10789 * this level. 10790 */ 10791 update_sd_lb_stats(env, &sds); 10792 10793 /* There is no busy sibling group to pull tasks from */ 10794 if (!sds.busiest) 10795 goto out_balanced; 10796 10797 busiest = &sds.busiest_stat; 10798 10799 /* Misfit tasks should be dealt with regardless of the avg load */ 10800 if (busiest->group_type == group_misfit_task) 10801 goto force_balance; 10802 10803 if (sched_energy_enabled()) { 10804 struct root_domain *rd = env->dst_rq->rd; 10805 10806 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10807 goto out_balanced; 10808 } 10809 10810 /* ASYM feature bypasses nice load balance check */ 10811 if (busiest->group_type == group_asym_packing) 10812 goto force_balance; 10813 10814 /* 10815 * If the busiest group is imbalanced the below checks don't 10816 * work because they assume all things are equal, which typically 10817 * isn't true due to cpus_ptr constraints and the like. 10818 */ 10819 if (busiest->group_type == group_imbalanced) 10820 goto force_balance; 10821 10822 local = &sds.local_stat; 10823 /* 10824 * If the local group is busier than the selected busiest group 10825 * don't try and pull any tasks. 10826 */ 10827 if (local->group_type > busiest->group_type) 10828 goto out_balanced; 10829 10830 /* 10831 * When groups are overloaded, use the avg_load to ensure fairness 10832 * between tasks. 10833 */ 10834 if (local->group_type == group_overloaded) { 10835 /* 10836 * If the local group is more loaded than the selected 10837 * busiest group don't try to pull any tasks. 10838 */ 10839 if (local->avg_load >= busiest->avg_load) 10840 goto out_balanced; 10841 10842 /* XXX broken for overlapping NUMA groups */ 10843 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10844 sds.total_capacity; 10845 10846 /* 10847 * Don't pull any tasks if this group is already above the 10848 * domain average load. 10849 */ 10850 if (local->avg_load >= sds.avg_load) 10851 goto out_balanced; 10852 10853 /* 10854 * If the busiest group is more loaded, use imbalance_pct to be 10855 * conservative. 10856 */ 10857 if (100 * busiest->avg_load <= 10858 env->sd->imbalance_pct * local->avg_load) 10859 goto out_balanced; 10860 } 10861 10862 /* 10863 * Try to move all excess tasks to a sibling domain of the busiest 10864 * group's child domain. 10865 */ 10866 if (sds.prefer_sibling && local->group_type == group_has_spare && 10867 sibling_imbalance(env, &sds, busiest, local) > 1) 10868 goto force_balance; 10869 10870 if (busiest->group_type != group_overloaded) { 10871 if (env->idle == CPU_NOT_IDLE) { 10872 /* 10873 * If the busiest group is not overloaded (and as a 10874 * result the local one too) but this CPU is already 10875 * busy, let another idle CPU try to pull task. 10876 */ 10877 goto out_balanced; 10878 } 10879 10880 if (busiest->group_type == group_smt_balance && 10881 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10882 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10883 goto force_balance; 10884 } 10885 10886 if (busiest->group_weight > 1 && 10887 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10888 /* 10889 * If the busiest group is not overloaded 10890 * and there is no imbalance between this and busiest 10891 * group wrt idle CPUs, it is balanced. The imbalance 10892 * becomes significant if the diff is greater than 1 10893 * otherwise we might end up to just move the imbalance 10894 * on another group. Of course this applies only if 10895 * there is more than 1 CPU per group. 10896 */ 10897 goto out_balanced; 10898 } 10899 10900 if (busiest->sum_h_nr_running == 1) { 10901 /* 10902 * busiest doesn't have any tasks waiting to run 10903 */ 10904 goto out_balanced; 10905 } 10906 } 10907 10908 force_balance: 10909 /* Looks like there is an imbalance. Compute it */ 10910 calculate_imbalance(env, &sds); 10911 return env->imbalance ? sds.busiest : NULL; 10912 10913 out_balanced: 10914 env->imbalance = 0; 10915 return NULL; 10916 } 10917 10918 /* 10919 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10920 */ 10921 static struct rq *find_busiest_queue(struct lb_env *env, 10922 struct sched_group *group) 10923 { 10924 struct rq *busiest = NULL, *rq; 10925 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10926 unsigned int busiest_nr = 0; 10927 int i; 10928 10929 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10930 unsigned long capacity, load, util; 10931 unsigned int nr_running; 10932 enum fbq_type rt; 10933 10934 rq = cpu_rq(i); 10935 rt = fbq_classify_rq(rq); 10936 10937 /* 10938 * We classify groups/runqueues into three groups: 10939 * - regular: there are !numa tasks 10940 * - remote: there are numa tasks that run on the 'wrong' node 10941 * - all: there is no distinction 10942 * 10943 * In order to avoid migrating ideally placed numa tasks, 10944 * ignore those when there's better options. 10945 * 10946 * If we ignore the actual busiest queue to migrate another 10947 * task, the next balance pass can still reduce the busiest 10948 * queue by moving tasks around inside the node. 10949 * 10950 * If we cannot move enough load due to this classification 10951 * the next pass will adjust the group classification and 10952 * allow migration of more tasks. 10953 * 10954 * Both cases only affect the total convergence complexity. 10955 */ 10956 if (rt > env->fbq_type) 10957 continue; 10958 10959 nr_running = rq->cfs.h_nr_running; 10960 if (!nr_running) 10961 continue; 10962 10963 capacity = capacity_of(i); 10964 10965 /* 10966 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10967 * eventually lead to active_balancing high->low capacity. 10968 * Higher per-CPU capacity is considered better than balancing 10969 * average load. 10970 */ 10971 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10972 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10973 nr_running == 1) 10974 continue; 10975 10976 /* 10977 * Make sure we only pull tasks from a CPU of lower priority 10978 * when balancing between SMT siblings. 10979 * 10980 * If balancing between cores, let lower priority CPUs help 10981 * SMT cores with more than one busy sibling. 10982 */ 10983 if ((env->sd->flags & SD_ASYM_PACKING) && 10984 sched_use_asym_prio(env->sd, i) && 10985 sched_asym_prefer(i, env->dst_cpu) && 10986 nr_running == 1) 10987 continue; 10988 10989 switch (env->migration_type) { 10990 case migrate_load: 10991 /* 10992 * When comparing with load imbalance, use cpu_load() 10993 * which is not scaled with the CPU capacity. 10994 */ 10995 load = cpu_load(rq); 10996 10997 if (nr_running == 1 && load > env->imbalance && 10998 !check_cpu_capacity(rq, env->sd)) 10999 break; 11000 11001 /* 11002 * For the load comparisons with the other CPUs, 11003 * consider the cpu_load() scaled with the CPU 11004 * capacity, so that the load can be moved away 11005 * from the CPU that is potentially running at a 11006 * lower capacity. 11007 * 11008 * Thus we're looking for max(load_i / capacity_i), 11009 * crosswise multiplication to rid ourselves of the 11010 * division works out to: 11011 * load_i * capacity_j > load_j * capacity_i; 11012 * where j is our previous maximum. 11013 */ 11014 if (load * busiest_capacity > busiest_load * capacity) { 11015 busiest_load = load; 11016 busiest_capacity = capacity; 11017 busiest = rq; 11018 } 11019 break; 11020 11021 case migrate_util: 11022 util = cpu_util_cfs_boost(i); 11023 11024 /* 11025 * Don't try to pull utilization from a CPU with one 11026 * running task. Whatever its utilization, we will fail 11027 * detach the task. 11028 */ 11029 if (nr_running <= 1) 11030 continue; 11031 11032 if (busiest_util < util) { 11033 busiest_util = util; 11034 busiest = rq; 11035 } 11036 break; 11037 11038 case migrate_task: 11039 if (busiest_nr < nr_running) { 11040 busiest_nr = nr_running; 11041 busiest = rq; 11042 } 11043 break; 11044 11045 case migrate_misfit: 11046 /* 11047 * For ASYM_CPUCAPACITY domains with misfit tasks we 11048 * simply seek the "biggest" misfit task. 11049 */ 11050 if (rq->misfit_task_load > busiest_load) { 11051 busiest_load = rq->misfit_task_load; 11052 busiest = rq; 11053 } 11054 11055 break; 11056 11057 } 11058 } 11059 11060 return busiest; 11061 } 11062 11063 /* 11064 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11065 * so long as it is large enough. 11066 */ 11067 #define MAX_PINNED_INTERVAL 512 11068 11069 static inline bool 11070 asym_active_balance(struct lb_env *env) 11071 { 11072 /* 11073 * ASYM_PACKING needs to force migrate tasks from busy but lower 11074 * priority CPUs in order to pack all tasks in the highest priority 11075 * CPUs. When done between cores, do it only if the whole core if the 11076 * whole core is idle. 11077 * 11078 * If @env::src_cpu is an SMT core with busy siblings, let 11079 * the lower priority @env::dst_cpu help it. Do not follow 11080 * CPU priority. 11081 */ 11082 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 11083 sched_use_asym_prio(env->sd, env->dst_cpu) && 11084 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11085 !sched_use_asym_prio(env->sd, env->src_cpu)); 11086 } 11087 11088 static inline bool 11089 imbalanced_active_balance(struct lb_env *env) 11090 { 11091 struct sched_domain *sd = env->sd; 11092 11093 /* 11094 * The imbalanced case includes the case of pinned tasks preventing a fair 11095 * distribution of the load on the system but also the even distribution of the 11096 * threads on a system with spare capacity 11097 */ 11098 if ((env->migration_type == migrate_task) && 11099 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11100 return 1; 11101 11102 return 0; 11103 } 11104 11105 static int need_active_balance(struct lb_env *env) 11106 { 11107 struct sched_domain *sd = env->sd; 11108 11109 if (asym_active_balance(env)) 11110 return 1; 11111 11112 if (imbalanced_active_balance(env)) 11113 return 1; 11114 11115 /* 11116 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11117 * It's worth migrating the task if the src_cpu's capacity is reduced 11118 * because of other sched_class or IRQs if more capacity stays 11119 * available on dst_cpu. 11120 */ 11121 if ((env->idle != CPU_NOT_IDLE) && 11122 (env->src_rq->cfs.h_nr_running == 1)) { 11123 if ((check_cpu_capacity(env->src_rq, sd)) && 11124 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11125 return 1; 11126 } 11127 11128 if (env->migration_type == migrate_misfit) 11129 return 1; 11130 11131 return 0; 11132 } 11133 11134 static int active_load_balance_cpu_stop(void *data); 11135 11136 static int should_we_balance(struct lb_env *env) 11137 { 11138 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11139 struct sched_group *sg = env->sd->groups; 11140 int cpu, idle_smt = -1; 11141 11142 /* 11143 * Ensure the balancing environment is consistent; can happen 11144 * when the softirq triggers 'during' hotplug. 11145 */ 11146 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11147 return 0; 11148 11149 /* 11150 * In the newly idle case, we will allow all the CPUs 11151 * to do the newly idle load balance. 11152 * 11153 * However, we bail out if we already have tasks or a wakeup pending, 11154 * to optimize wakeup latency. 11155 */ 11156 if (env->idle == CPU_NEWLY_IDLE) { 11157 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11158 return 0; 11159 return 1; 11160 } 11161 11162 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11163 /* Try to find first idle CPU */ 11164 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11165 if (!idle_cpu(cpu)) 11166 continue; 11167 11168 /* 11169 * Don't balance to idle SMT in busy core right away when 11170 * balancing cores, but remember the first idle SMT CPU for 11171 * later consideration. Find CPU on an idle core first. 11172 */ 11173 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11174 if (idle_smt == -1) 11175 idle_smt = cpu; 11176 /* 11177 * If the core is not idle, and first SMT sibling which is 11178 * idle has been found, then its not needed to check other 11179 * SMT siblings for idleness: 11180 */ 11181 #ifdef CONFIG_SCHED_SMT 11182 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11183 #endif 11184 continue; 11185 } 11186 11187 /* 11188 * Are we the first idle core in a non-SMT domain or higher, 11189 * or the first idle CPU in a SMT domain? 11190 */ 11191 return cpu == env->dst_cpu; 11192 } 11193 11194 /* Are we the first idle CPU with busy siblings? */ 11195 if (idle_smt != -1) 11196 return idle_smt == env->dst_cpu; 11197 11198 /* Are we the first CPU of this group ? */ 11199 return group_balance_cpu(sg) == env->dst_cpu; 11200 } 11201 11202 /* 11203 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11204 * tasks if there is an imbalance. 11205 */ 11206 static int load_balance(int this_cpu, struct rq *this_rq, 11207 struct sched_domain *sd, enum cpu_idle_type idle, 11208 int *continue_balancing) 11209 { 11210 int ld_moved, cur_ld_moved, active_balance = 0; 11211 struct sched_domain *sd_parent = sd->parent; 11212 struct sched_group *group; 11213 struct rq *busiest; 11214 struct rq_flags rf; 11215 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11216 struct lb_env env = { 11217 .sd = sd, 11218 .dst_cpu = this_cpu, 11219 .dst_rq = this_rq, 11220 .dst_grpmask = group_balance_mask(sd->groups), 11221 .idle = idle, 11222 .loop_break = SCHED_NR_MIGRATE_BREAK, 11223 .cpus = cpus, 11224 .fbq_type = all, 11225 .tasks = LIST_HEAD_INIT(env.tasks), 11226 }; 11227 11228 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11229 11230 schedstat_inc(sd->lb_count[idle]); 11231 11232 redo: 11233 if (!should_we_balance(&env)) { 11234 *continue_balancing = 0; 11235 goto out_balanced; 11236 } 11237 11238 group = find_busiest_group(&env); 11239 if (!group) { 11240 schedstat_inc(sd->lb_nobusyg[idle]); 11241 goto out_balanced; 11242 } 11243 11244 busiest = find_busiest_queue(&env, group); 11245 if (!busiest) { 11246 schedstat_inc(sd->lb_nobusyq[idle]); 11247 goto out_balanced; 11248 } 11249 11250 WARN_ON_ONCE(busiest == env.dst_rq); 11251 11252 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11253 11254 env.src_cpu = busiest->cpu; 11255 env.src_rq = busiest; 11256 11257 ld_moved = 0; 11258 /* Clear this flag as soon as we find a pullable task */ 11259 env.flags |= LBF_ALL_PINNED; 11260 if (busiest->nr_running > 1) { 11261 /* 11262 * Attempt to move tasks. If find_busiest_group has found 11263 * an imbalance but busiest->nr_running <= 1, the group is 11264 * still unbalanced. ld_moved simply stays zero, so it is 11265 * correctly treated as an imbalance. 11266 */ 11267 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11268 11269 more_balance: 11270 rq_lock_irqsave(busiest, &rf); 11271 update_rq_clock(busiest); 11272 11273 /* 11274 * cur_ld_moved - load moved in current iteration 11275 * ld_moved - cumulative load moved across iterations 11276 */ 11277 cur_ld_moved = detach_tasks(&env); 11278 11279 /* 11280 * We've detached some tasks from busiest_rq. Every 11281 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11282 * unlock busiest->lock, and we are able to be sure 11283 * that nobody can manipulate the tasks in parallel. 11284 * See task_rq_lock() family for the details. 11285 */ 11286 11287 rq_unlock(busiest, &rf); 11288 11289 if (cur_ld_moved) { 11290 attach_tasks(&env); 11291 ld_moved += cur_ld_moved; 11292 } 11293 11294 local_irq_restore(rf.flags); 11295 11296 if (env.flags & LBF_NEED_BREAK) { 11297 env.flags &= ~LBF_NEED_BREAK; 11298 /* Stop if we tried all running tasks */ 11299 if (env.loop < busiest->nr_running) 11300 goto more_balance; 11301 } 11302 11303 /* 11304 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11305 * us and move them to an alternate dst_cpu in our sched_group 11306 * where they can run. The upper limit on how many times we 11307 * iterate on same src_cpu is dependent on number of CPUs in our 11308 * sched_group. 11309 * 11310 * This changes load balance semantics a bit on who can move 11311 * load to a given_cpu. In addition to the given_cpu itself 11312 * (or a ilb_cpu acting on its behalf where given_cpu is 11313 * nohz-idle), we now have balance_cpu in a position to move 11314 * load to given_cpu. In rare situations, this may cause 11315 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11316 * _independently_ and at _same_ time to move some load to 11317 * given_cpu) causing excess load to be moved to given_cpu. 11318 * This however should not happen so much in practice and 11319 * moreover subsequent load balance cycles should correct the 11320 * excess load moved. 11321 */ 11322 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11323 11324 /* Prevent to re-select dst_cpu via env's CPUs */ 11325 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11326 11327 env.dst_rq = cpu_rq(env.new_dst_cpu); 11328 env.dst_cpu = env.new_dst_cpu; 11329 env.flags &= ~LBF_DST_PINNED; 11330 env.loop = 0; 11331 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11332 11333 /* 11334 * Go back to "more_balance" rather than "redo" since we 11335 * need to continue with same src_cpu. 11336 */ 11337 goto more_balance; 11338 } 11339 11340 /* 11341 * We failed to reach balance because of affinity. 11342 */ 11343 if (sd_parent) { 11344 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11345 11346 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11347 *group_imbalance = 1; 11348 } 11349 11350 /* All tasks on this runqueue were pinned by CPU affinity */ 11351 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11352 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11353 /* 11354 * Attempting to continue load balancing at the current 11355 * sched_domain level only makes sense if there are 11356 * active CPUs remaining as possible busiest CPUs to 11357 * pull load from which are not contained within the 11358 * destination group that is receiving any migrated 11359 * load. 11360 */ 11361 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11362 env.loop = 0; 11363 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11364 goto redo; 11365 } 11366 goto out_all_pinned; 11367 } 11368 } 11369 11370 if (!ld_moved) { 11371 schedstat_inc(sd->lb_failed[idle]); 11372 /* 11373 * Increment the failure counter only on periodic balance. 11374 * We do not want newidle balance, which can be very 11375 * frequent, pollute the failure counter causing 11376 * excessive cache_hot migrations and active balances. 11377 */ 11378 if (idle != CPU_NEWLY_IDLE) 11379 sd->nr_balance_failed++; 11380 11381 if (need_active_balance(&env)) { 11382 unsigned long flags; 11383 11384 raw_spin_rq_lock_irqsave(busiest, flags); 11385 11386 /* 11387 * Don't kick the active_load_balance_cpu_stop, 11388 * if the curr task on busiest CPU can't be 11389 * moved to this_cpu: 11390 */ 11391 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11392 raw_spin_rq_unlock_irqrestore(busiest, flags); 11393 goto out_one_pinned; 11394 } 11395 11396 /* Record that we found at least one task that could run on this_cpu */ 11397 env.flags &= ~LBF_ALL_PINNED; 11398 11399 /* 11400 * ->active_balance synchronizes accesses to 11401 * ->active_balance_work. Once set, it's cleared 11402 * only after active load balance is finished. 11403 */ 11404 if (!busiest->active_balance) { 11405 busiest->active_balance = 1; 11406 busiest->push_cpu = this_cpu; 11407 active_balance = 1; 11408 } 11409 11410 preempt_disable(); 11411 raw_spin_rq_unlock_irqrestore(busiest, flags); 11412 if (active_balance) { 11413 stop_one_cpu_nowait(cpu_of(busiest), 11414 active_load_balance_cpu_stop, busiest, 11415 &busiest->active_balance_work); 11416 } 11417 preempt_enable(); 11418 } 11419 } else { 11420 sd->nr_balance_failed = 0; 11421 } 11422 11423 if (likely(!active_balance) || need_active_balance(&env)) { 11424 /* We were unbalanced, so reset the balancing interval */ 11425 sd->balance_interval = sd->min_interval; 11426 } 11427 11428 goto out; 11429 11430 out_balanced: 11431 /* 11432 * We reach balance although we may have faced some affinity 11433 * constraints. Clear the imbalance flag only if other tasks got 11434 * a chance to move and fix the imbalance. 11435 */ 11436 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11437 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11438 11439 if (*group_imbalance) 11440 *group_imbalance = 0; 11441 } 11442 11443 out_all_pinned: 11444 /* 11445 * We reach balance because all tasks are pinned at this level so 11446 * we can't migrate them. Let the imbalance flag set so parent level 11447 * can try to migrate them. 11448 */ 11449 schedstat_inc(sd->lb_balanced[idle]); 11450 11451 sd->nr_balance_failed = 0; 11452 11453 out_one_pinned: 11454 ld_moved = 0; 11455 11456 /* 11457 * newidle_balance() disregards balance intervals, so we could 11458 * repeatedly reach this code, which would lead to balance_interval 11459 * skyrocketing in a short amount of time. Skip the balance_interval 11460 * increase logic to avoid that. 11461 */ 11462 if (env.idle == CPU_NEWLY_IDLE) 11463 goto out; 11464 11465 /* tune up the balancing interval */ 11466 if ((env.flags & LBF_ALL_PINNED && 11467 sd->balance_interval < MAX_PINNED_INTERVAL) || 11468 sd->balance_interval < sd->max_interval) 11469 sd->balance_interval *= 2; 11470 out: 11471 return ld_moved; 11472 } 11473 11474 static inline unsigned long 11475 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11476 { 11477 unsigned long interval = sd->balance_interval; 11478 11479 if (cpu_busy) 11480 interval *= sd->busy_factor; 11481 11482 /* scale ms to jiffies */ 11483 interval = msecs_to_jiffies(interval); 11484 11485 /* 11486 * Reduce likelihood of busy balancing at higher domains racing with 11487 * balancing at lower domains by preventing their balancing periods 11488 * from being multiples of each other. 11489 */ 11490 if (cpu_busy) 11491 interval -= 1; 11492 11493 interval = clamp(interval, 1UL, max_load_balance_interval); 11494 11495 return interval; 11496 } 11497 11498 static inline void 11499 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11500 { 11501 unsigned long interval, next; 11502 11503 /* used by idle balance, so cpu_busy = 0 */ 11504 interval = get_sd_balance_interval(sd, 0); 11505 next = sd->last_balance + interval; 11506 11507 if (time_after(*next_balance, next)) 11508 *next_balance = next; 11509 } 11510 11511 /* 11512 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11513 * running tasks off the busiest CPU onto idle CPUs. It requires at 11514 * least 1 task to be running on each physical CPU where possible, and 11515 * avoids physical / logical imbalances. 11516 */ 11517 static int active_load_balance_cpu_stop(void *data) 11518 { 11519 struct rq *busiest_rq = data; 11520 int busiest_cpu = cpu_of(busiest_rq); 11521 int target_cpu = busiest_rq->push_cpu; 11522 struct rq *target_rq = cpu_rq(target_cpu); 11523 struct sched_domain *sd; 11524 struct task_struct *p = NULL; 11525 struct rq_flags rf; 11526 11527 rq_lock_irq(busiest_rq, &rf); 11528 /* 11529 * Between queueing the stop-work and running it is a hole in which 11530 * CPUs can become inactive. We should not move tasks from or to 11531 * inactive CPUs. 11532 */ 11533 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11534 goto out_unlock; 11535 11536 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11537 if (unlikely(busiest_cpu != smp_processor_id() || 11538 !busiest_rq->active_balance)) 11539 goto out_unlock; 11540 11541 /* Is there any task to move? */ 11542 if (busiest_rq->nr_running <= 1) 11543 goto out_unlock; 11544 11545 /* 11546 * This condition is "impossible", if it occurs 11547 * we need to fix it. Originally reported by 11548 * Bjorn Helgaas on a 128-CPU setup. 11549 */ 11550 WARN_ON_ONCE(busiest_rq == target_rq); 11551 11552 /* Search for an sd spanning us and the target CPU. */ 11553 rcu_read_lock(); 11554 for_each_domain(target_cpu, sd) { 11555 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11556 break; 11557 } 11558 11559 if (likely(sd)) { 11560 struct lb_env env = { 11561 .sd = sd, 11562 .dst_cpu = target_cpu, 11563 .dst_rq = target_rq, 11564 .src_cpu = busiest_rq->cpu, 11565 .src_rq = busiest_rq, 11566 .idle = CPU_IDLE, 11567 .flags = LBF_ACTIVE_LB, 11568 }; 11569 11570 schedstat_inc(sd->alb_count); 11571 update_rq_clock(busiest_rq); 11572 11573 p = detach_one_task(&env); 11574 if (p) { 11575 schedstat_inc(sd->alb_pushed); 11576 /* Active balancing done, reset the failure counter. */ 11577 sd->nr_balance_failed = 0; 11578 } else { 11579 schedstat_inc(sd->alb_failed); 11580 } 11581 } 11582 rcu_read_unlock(); 11583 out_unlock: 11584 busiest_rq->active_balance = 0; 11585 rq_unlock(busiest_rq, &rf); 11586 11587 if (p) 11588 attach_one_task(target_rq, p); 11589 11590 local_irq_enable(); 11591 11592 return 0; 11593 } 11594 11595 static DEFINE_SPINLOCK(balancing); 11596 11597 /* 11598 * Scale the max load_balance interval with the number of CPUs in the system. 11599 * This trades load-balance latency on larger machines for less cross talk. 11600 */ 11601 void update_max_interval(void) 11602 { 11603 max_load_balance_interval = HZ*num_online_cpus()/10; 11604 } 11605 11606 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11607 { 11608 if (cost > sd->max_newidle_lb_cost) { 11609 /* 11610 * Track max cost of a domain to make sure to not delay the 11611 * next wakeup on the CPU. 11612 */ 11613 sd->max_newidle_lb_cost = cost; 11614 sd->last_decay_max_lb_cost = jiffies; 11615 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11616 /* 11617 * Decay the newidle max times by ~1% per second to ensure that 11618 * it is not outdated and the current max cost is actually 11619 * shorter. 11620 */ 11621 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11622 sd->last_decay_max_lb_cost = jiffies; 11623 11624 return true; 11625 } 11626 11627 return false; 11628 } 11629 11630 /* 11631 * It checks each scheduling domain to see if it is due to be balanced, 11632 * and initiates a balancing operation if so. 11633 * 11634 * Balancing parameters are set up in init_sched_domains. 11635 */ 11636 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11637 { 11638 int continue_balancing = 1; 11639 int cpu = rq->cpu; 11640 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11641 unsigned long interval; 11642 struct sched_domain *sd; 11643 /* Earliest time when we have to do rebalance again */ 11644 unsigned long next_balance = jiffies + 60*HZ; 11645 int update_next_balance = 0; 11646 int need_serialize, need_decay = 0; 11647 u64 max_cost = 0; 11648 11649 rcu_read_lock(); 11650 for_each_domain(cpu, sd) { 11651 /* 11652 * Decay the newidle max times here because this is a regular 11653 * visit to all the domains. 11654 */ 11655 need_decay = update_newidle_cost(sd, 0); 11656 max_cost += sd->max_newidle_lb_cost; 11657 11658 /* 11659 * Stop the load balance at this level. There is another 11660 * CPU in our sched group which is doing load balancing more 11661 * actively. 11662 */ 11663 if (!continue_balancing) { 11664 if (need_decay) 11665 continue; 11666 break; 11667 } 11668 11669 interval = get_sd_balance_interval(sd, busy); 11670 11671 need_serialize = sd->flags & SD_SERIALIZE; 11672 if (need_serialize) { 11673 if (!spin_trylock(&balancing)) 11674 goto out; 11675 } 11676 11677 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11678 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11679 /* 11680 * The LBF_DST_PINNED logic could have changed 11681 * env->dst_cpu, so we can't know our idle 11682 * state even if we migrated tasks. Update it. 11683 */ 11684 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11685 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11686 } 11687 sd->last_balance = jiffies; 11688 interval = get_sd_balance_interval(sd, busy); 11689 } 11690 if (need_serialize) 11691 spin_unlock(&balancing); 11692 out: 11693 if (time_after(next_balance, sd->last_balance + interval)) { 11694 next_balance = sd->last_balance + interval; 11695 update_next_balance = 1; 11696 } 11697 } 11698 if (need_decay) { 11699 /* 11700 * Ensure the rq-wide value also decays but keep it at a 11701 * reasonable floor to avoid funnies with rq->avg_idle. 11702 */ 11703 rq->max_idle_balance_cost = 11704 max((u64)sysctl_sched_migration_cost, max_cost); 11705 } 11706 rcu_read_unlock(); 11707 11708 /* 11709 * next_balance will be updated only when there is a need. 11710 * When the cpu is attached to null domain for ex, it will not be 11711 * updated. 11712 */ 11713 if (likely(update_next_balance)) 11714 rq->next_balance = next_balance; 11715 11716 } 11717 11718 static inline int on_null_domain(struct rq *rq) 11719 { 11720 return unlikely(!rcu_dereference_sched(rq->sd)); 11721 } 11722 11723 #ifdef CONFIG_NO_HZ_COMMON 11724 /* 11725 * NOHZ idle load balancing (ILB) details: 11726 * 11727 * - When one of the busy CPUs notices that there may be an idle rebalancing 11728 * needed, they will kick the idle load balancer, which then does idle 11729 * load balancing for all the idle CPUs. 11730 * 11731 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 11732 * anywhere yet. 11733 */ 11734 static inline int find_new_ilb(void) 11735 { 11736 const struct cpumask *hk_mask; 11737 int ilb_cpu; 11738 11739 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11740 11741 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 11742 11743 if (ilb_cpu == smp_processor_id()) 11744 continue; 11745 11746 if (idle_cpu(ilb_cpu)) 11747 return ilb_cpu; 11748 } 11749 11750 return -1; 11751 } 11752 11753 /* 11754 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 11755 * SMP function call (IPI). 11756 * 11757 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11758 */ 11759 static void kick_ilb(unsigned int flags) 11760 { 11761 int ilb_cpu; 11762 11763 /* 11764 * Increase nohz.next_balance only when if full ilb is triggered but 11765 * not if we only update stats. 11766 */ 11767 if (flags & NOHZ_BALANCE_KICK) 11768 nohz.next_balance = jiffies+1; 11769 11770 ilb_cpu = find_new_ilb(); 11771 if (ilb_cpu < 0) 11772 return; 11773 11774 /* 11775 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11776 * the first flag owns it; cleared by nohz_csd_func(). 11777 */ 11778 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11779 if (flags & NOHZ_KICK_MASK) 11780 return; 11781 11782 /* 11783 * This way we generate an IPI on the target CPU which 11784 * is idle, and the softirq performing NOHZ idle load balancing 11785 * will be run before returning from the IPI. 11786 */ 11787 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11788 } 11789 11790 /* 11791 * Current decision point for kicking the idle load balancer in the presence 11792 * of idle CPUs in the system. 11793 */ 11794 static void nohz_balancer_kick(struct rq *rq) 11795 { 11796 unsigned long now = jiffies; 11797 struct sched_domain_shared *sds; 11798 struct sched_domain *sd; 11799 int nr_busy, i, cpu = rq->cpu; 11800 unsigned int flags = 0; 11801 11802 if (unlikely(rq->idle_balance)) 11803 return; 11804 11805 /* 11806 * We may be recently in ticked or tickless idle mode. At the first 11807 * busy tick after returning from idle, we will update the busy stats. 11808 */ 11809 nohz_balance_exit_idle(rq); 11810 11811 /* 11812 * None are in tickless mode and hence no need for NOHZ idle load 11813 * balancing: 11814 */ 11815 if (likely(!atomic_read(&nohz.nr_cpus))) 11816 return; 11817 11818 if (READ_ONCE(nohz.has_blocked) && 11819 time_after(now, READ_ONCE(nohz.next_blocked))) 11820 flags = NOHZ_STATS_KICK; 11821 11822 if (time_before(now, nohz.next_balance)) 11823 goto out; 11824 11825 if (rq->nr_running >= 2) { 11826 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11827 goto out; 11828 } 11829 11830 rcu_read_lock(); 11831 11832 sd = rcu_dereference(rq->sd); 11833 if (sd) { 11834 /* 11835 * If there's a runnable CFS task and the current CPU has reduced 11836 * capacity, kick the ILB to see if there's a better CPU to run on: 11837 */ 11838 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11839 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11840 goto unlock; 11841 } 11842 } 11843 11844 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11845 if (sd) { 11846 /* 11847 * When ASYM_PACKING; see if there's a more preferred CPU 11848 * currently idle; in which case, kick the ILB to move tasks 11849 * around. 11850 * 11851 * When balancing betwen cores, all the SMT siblings of the 11852 * preferred CPU must be idle. 11853 */ 11854 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11855 if (sched_use_asym_prio(sd, i) && 11856 sched_asym_prefer(i, cpu)) { 11857 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11858 goto unlock; 11859 } 11860 } 11861 } 11862 11863 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11864 if (sd) { 11865 /* 11866 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11867 * to run the misfit task on. 11868 */ 11869 if (check_misfit_status(rq, sd)) { 11870 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11871 goto unlock; 11872 } 11873 11874 /* 11875 * For asymmetric systems, we do not want to nicely balance 11876 * cache use, instead we want to embrace asymmetry and only 11877 * ensure tasks have enough CPU capacity. 11878 * 11879 * Skip the LLC logic because it's not relevant in that case. 11880 */ 11881 goto unlock; 11882 } 11883 11884 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11885 if (sds) { 11886 /* 11887 * If there is an imbalance between LLC domains (IOW we could 11888 * increase the overall cache utilization), we need a less-loaded LLC 11889 * domain to pull some load from. Likewise, we may need to spread 11890 * load within the current LLC domain (e.g. packed SMT cores but 11891 * other CPUs are idle). We can't really know from here how busy 11892 * the others are - so just get a NOHZ balance going if it looks 11893 * like this LLC domain has tasks we could move. 11894 */ 11895 nr_busy = atomic_read(&sds->nr_busy_cpus); 11896 if (nr_busy > 1) { 11897 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11898 goto unlock; 11899 } 11900 } 11901 unlock: 11902 rcu_read_unlock(); 11903 out: 11904 if (READ_ONCE(nohz.needs_update)) 11905 flags |= NOHZ_NEXT_KICK; 11906 11907 if (flags) 11908 kick_ilb(flags); 11909 } 11910 11911 static void set_cpu_sd_state_busy(int cpu) 11912 { 11913 struct sched_domain *sd; 11914 11915 rcu_read_lock(); 11916 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11917 11918 if (!sd || !sd->nohz_idle) 11919 goto unlock; 11920 sd->nohz_idle = 0; 11921 11922 atomic_inc(&sd->shared->nr_busy_cpus); 11923 unlock: 11924 rcu_read_unlock(); 11925 } 11926 11927 void nohz_balance_exit_idle(struct rq *rq) 11928 { 11929 SCHED_WARN_ON(rq != this_rq()); 11930 11931 if (likely(!rq->nohz_tick_stopped)) 11932 return; 11933 11934 rq->nohz_tick_stopped = 0; 11935 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11936 atomic_dec(&nohz.nr_cpus); 11937 11938 set_cpu_sd_state_busy(rq->cpu); 11939 } 11940 11941 static void set_cpu_sd_state_idle(int cpu) 11942 { 11943 struct sched_domain *sd; 11944 11945 rcu_read_lock(); 11946 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11947 11948 if (!sd || sd->nohz_idle) 11949 goto unlock; 11950 sd->nohz_idle = 1; 11951 11952 atomic_dec(&sd->shared->nr_busy_cpus); 11953 unlock: 11954 rcu_read_unlock(); 11955 } 11956 11957 /* 11958 * This routine will record that the CPU is going idle with tick stopped. 11959 * This info will be used in performing idle load balancing in the future. 11960 */ 11961 void nohz_balance_enter_idle(int cpu) 11962 { 11963 struct rq *rq = cpu_rq(cpu); 11964 11965 SCHED_WARN_ON(cpu != smp_processor_id()); 11966 11967 /* If this CPU is going down, then nothing needs to be done: */ 11968 if (!cpu_active(cpu)) 11969 return; 11970 11971 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11972 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11973 return; 11974 11975 /* 11976 * Can be set safely without rq->lock held 11977 * If a clear happens, it will have evaluated last additions because 11978 * rq->lock is held during the check and the clear 11979 */ 11980 rq->has_blocked_load = 1; 11981 11982 /* 11983 * The tick is still stopped but load could have been added in the 11984 * meantime. We set the nohz.has_blocked flag to trig a check of the 11985 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11986 * of nohz.has_blocked can only happen after checking the new load 11987 */ 11988 if (rq->nohz_tick_stopped) 11989 goto out; 11990 11991 /* If we're a completely isolated CPU, we don't play: */ 11992 if (on_null_domain(rq)) 11993 return; 11994 11995 rq->nohz_tick_stopped = 1; 11996 11997 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11998 atomic_inc(&nohz.nr_cpus); 11999 12000 /* 12001 * Ensures that if nohz_idle_balance() fails to observe our 12002 * @idle_cpus_mask store, it must observe the @has_blocked 12003 * and @needs_update stores. 12004 */ 12005 smp_mb__after_atomic(); 12006 12007 set_cpu_sd_state_idle(cpu); 12008 12009 WRITE_ONCE(nohz.needs_update, 1); 12010 out: 12011 /* 12012 * Each time a cpu enter idle, we assume that it has blocked load and 12013 * enable the periodic update of the load of idle cpus 12014 */ 12015 WRITE_ONCE(nohz.has_blocked, 1); 12016 } 12017 12018 static bool update_nohz_stats(struct rq *rq) 12019 { 12020 unsigned int cpu = rq->cpu; 12021 12022 if (!rq->has_blocked_load) 12023 return false; 12024 12025 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12026 return false; 12027 12028 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12029 return true; 12030 12031 update_blocked_averages(cpu); 12032 12033 return rq->has_blocked_load; 12034 } 12035 12036 /* 12037 * Internal function that runs load balance for all idle cpus. The load balance 12038 * can be a simple update of blocked load or a complete load balance with 12039 * tasks movement depending of flags. 12040 */ 12041 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12042 { 12043 /* Earliest time when we have to do rebalance again */ 12044 unsigned long now = jiffies; 12045 unsigned long next_balance = now + 60*HZ; 12046 bool has_blocked_load = false; 12047 int update_next_balance = 0; 12048 int this_cpu = this_rq->cpu; 12049 int balance_cpu; 12050 struct rq *rq; 12051 12052 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12053 12054 /* 12055 * We assume there will be no idle load after this update and clear 12056 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12057 * set the has_blocked flag and trigger another update of idle load. 12058 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12059 * setting the flag, we are sure to not clear the state and not 12060 * check the load of an idle cpu. 12061 * 12062 * Same applies to idle_cpus_mask vs needs_update. 12063 */ 12064 if (flags & NOHZ_STATS_KICK) 12065 WRITE_ONCE(nohz.has_blocked, 0); 12066 if (flags & NOHZ_NEXT_KICK) 12067 WRITE_ONCE(nohz.needs_update, 0); 12068 12069 /* 12070 * Ensures that if we miss the CPU, we must see the has_blocked 12071 * store from nohz_balance_enter_idle(). 12072 */ 12073 smp_mb(); 12074 12075 /* 12076 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12077 * chance for other idle cpu to pull load. 12078 */ 12079 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12080 if (!idle_cpu(balance_cpu)) 12081 continue; 12082 12083 /* 12084 * If this CPU gets work to do, stop the load balancing 12085 * work being done for other CPUs. Next load 12086 * balancing owner will pick it up. 12087 */ 12088 if (need_resched()) { 12089 if (flags & NOHZ_STATS_KICK) 12090 has_blocked_load = true; 12091 if (flags & NOHZ_NEXT_KICK) 12092 WRITE_ONCE(nohz.needs_update, 1); 12093 goto abort; 12094 } 12095 12096 rq = cpu_rq(balance_cpu); 12097 12098 if (flags & NOHZ_STATS_KICK) 12099 has_blocked_load |= update_nohz_stats(rq); 12100 12101 /* 12102 * If time for next balance is due, 12103 * do the balance. 12104 */ 12105 if (time_after_eq(jiffies, rq->next_balance)) { 12106 struct rq_flags rf; 12107 12108 rq_lock_irqsave(rq, &rf); 12109 update_rq_clock(rq); 12110 rq_unlock_irqrestore(rq, &rf); 12111 12112 if (flags & NOHZ_BALANCE_KICK) 12113 rebalance_domains(rq, CPU_IDLE); 12114 } 12115 12116 if (time_after(next_balance, rq->next_balance)) { 12117 next_balance = rq->next_balance; 12118 update_next_balance = 1; 12119 } 12120 } 12121 12122 /* 12123 * next_balance will be updated only when there is a need. 12124 * When the CPU is attached to null domain for ex, it will not be 12125 * updated. 12126 */ 12127 if (likely(update_next_balance)) 12128 nohz.next_balance = next_balance; 12129 12130 if (flags & NOHZ_STATS_KICK) 12131 WRITE_ONCE(nohz.next_blocked, 12132 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12133 12134 abort: 12135 /* There is still blocked load, enable periodic update */ 12136 if (has_blocked_load) 12137 WRITE_ONCE(nohz.has_blocked, 1); 12138 } 12139 12140 /* 12141 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12142 * rebalancing for all the cpus for whom scheduler ticks are stopped. 12143 */ 12144 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12145 { 12146 unsigned int flags = this_rq->nohz_idle_balance; 12147 12148 if (!flags) 12149 return false; 12150 12151 this_rq->nohz_idle_balance = 0; 12152 12153 if (idle != CPU_IDLE) 12154 return false; 12155 12156 _nohz_idle_balance(this_rq, flags); 12157 12158 return true; 12159 } 12160 12161 /* 12162 * Check if we need to directly run the ILB for updating blocked load before 12163 * entering idle state. Here we run ILB directly without issuing IPIs. 12164 * 12165 * Note that when this function is called, the tick may not yet be stopped on 12166 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12167 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12168 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12169 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12170 * called from this function on (this) CPU that's not yet in the mask. That's 12171 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12172 * updating the blocked load of already idle CPUs without waking up one of 12173 * those idle CPUs and outside the preempt disable / irq off phase of the local 12174 * cpu about to enter idle, because it can take a long time. 12175 */ 12176 void nohz_run_idle_balance(int cpu) 12177 { 12178 unsigned int flags; 12179 12180 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12181 12182 /* 12183 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12184 * (ie NOHZ_STATS_KICK set) and will do the same. 12185 */ 12186 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12187 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12188 } 12189 12190 static void nohz_newidle_balance(struct rq *this_rq) 12191 { 12192 int this_cpu = this_rq->cpu; 12193 12194 /* 12195 * This CPU doesn't want to be disturbed by scheduler 12196 * housekeeping 12197 */ 12198 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12199 return; 12200 12201 /* Will wake up very soon. No time for doing anything else*/ 12202 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12203 return; 12204 12205 /* Don't need to update blocked load of idle CPUs*/ 12206 if (!READ_ONCE(nohz.has_blocked) || 12207 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12208 return; 12209 12210 /* 12211 * Set the need to trigger ILB in order to update blocked load 12212 * before entering idle state. 12213 */ 12214 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12215 } 12216 12217 #else /* !CONFIG_NO_HZ_COMMON */ 12218 static inline void nohz_balancer_kick(struct rq *rq) { } 12219 12220 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12221 { 12222 return false; 12223 } 12224 12225 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12226 #endif /* CONFIG_NO_HZ_COMMON */ 12227 12228 /* 12229 * newidle_balance is called by schedule() if this_cpu is about to become 12230 * idle. Attempts to pull tasks from other CPUs. 12231 * 12232 * Returns: 12233 * < 0 - we released the lock and there are !fair tasks present 12234 * 0 - failed, no new tasks 12235 * > 0 - success, new (fair) tasks present 12236 */ 12237 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12238 { 12239 unsigned long next_balance = jiffies + HZ; 12240 int this_cpu = this_rq->cpu; 12241 u64 t0, t1, curr_cost = 0; 12242 struct sched_domain *sd; 12243 int pulled_task = 0; 12244 12245 update_misfit_status(NULL, this_rq); 12246 12247 /* 12248 * There is a task waiting to run. No need to search for one. 12249 * Return 0; the task will be enqueued when switching to idle. 12250 */ 12251 if (this_rq->ttwu_pending) 12252 return 0; 12253 12254 /* 12255 * We must set idle_stamp _before_ calling idle_balance(), such that we 12256 * measure the duration of idle_balance() as idle time. 12257 */ 12258 this_rq->idle_stamp = rq_clock(this_rq); 12259 12260 /* 12261 * Do not pull tasks towards !active CPUs... 12262 */ 12263 if (!cpu_active(this_cpu)) 12264 return 0; 12265 12266 /* 12267 * This is OK, because current is on_cpu, which avoids it being picked 12268 * for load-balance and preemption/IRQs are still disabled avoiding 12269 * further scheduler activity on it and we're being very careful to 12270 * re-start the picking loop. 12271 */ 12272 rq_unpin_lock(this_rq, rf); 12273 12274 rcu_read_lock(); 12275 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12276 12277 if (!READ_ONCE(this_rq->rd->overload) || 12278 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12279 12280 if (sd) 12281 update_next_balance(sd, &next_balance); 12282 rcu_read_unlock(); 12283 12284 goto out; 12285 } 12286 rcu_read_unlock(); 12287 12288 raw_spin_rq_unlock(this_rq); 12289 12290 t0 = sched_clock_cpu(this_cpu); 12291 update_blocked_averages(this_cpu); 12292 12293 rcu_read_lock(); 12294 for_each_domain(this_cpu, sd) { 12295 int continue_balancing = 1; 12296 u64 domain_cost; 12297 12298 update_next_balance(sd, &next_balance); 12299 12300 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12301 break; 12302 12303 if (sd->flags & SD_BALANCE_NEWIDLE) { 12304 12305 pulled_task = load_balance(this_cpu, this_rq, 12306 sd, CPU_NEWLY_IDLE, 12307 &continue_balancing); 12308 12309 t1 = sched_clock_cpu(this_cpu); 12310 domain_cost = t1 - t0; 12311 update_newidle_cost(sd, domain_cost); 12312 12313 curr_cost += domain_cost; 12314 t0 = t1; 12315 } 12316 12317 /* 12318 * Stop searching for tasks to pull if there are 12319 * now runnable tasks on this rq. 12320 */ 12321 if (pulled_task || this_rq->nr_running > 0 || 12322 this_rq->ttwu_pending) 12323 break; 12324 } 12325 rcu_read_unlock(); 12326 12327 raw_spin_rq_lock(this_rq); 12328 12329 if (curr_cost > this_rq->max_idle_balance_cost) 12330 this_rq->max_idle_balance_cost = curr_cost; 12331 12332 /* 12333 * While browsing the domains, we released the rq lock, a task could 12334 * have been enqueued in the meantime. Since we're not going idle, 12335 * pretend we pulled a task. 12336 */ 12337 if (this_rq->cfs.h_nr_running && !pulled_task) 12338 pulled_task = 1; 12339 12340 /* Is there a task of a high priority class? */ 12341 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12342 pulled_task = -1; 12343 12344 out: 12345 /* Move the next balance forward */ 12346 if (time_after(this_rq->next_balance, next_balance)) 12347 this_rq->next_balance = next_balance; 12348 12349 if (pulled_task) 12350 this_rq->idle_stamp = 0; 12351 else 12352 nohz_newidle_balance(this_rq); 12353 12354 rq_repin_lock(this_rq, rf); 12355 12356 return pulled_task; 12357 } 12358 12359 /* 12360 * run_rebalance_domains is triggered when needed from the scheduler tick. 12361 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12362 */ 12363 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12364 { 12365 struct rq *this_rq = this_rq(); 12366 enum cpu_idle_type idle = this_rq->idle_balance ? 12367 CPU_IDLE : CPU_NOT_IDLE; 12368 12369 /* 12370 * If this CPU has a pending nohz_balance_kick, then do the 12371 * balancing on behalf of the other idle CPUs whose ticks are 12372 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12373 * give the idle CPUs a chance to load balance. Else we may 12374 * load balance only within the local sched_domain hierarchy 12375 * and abort nohz_idle_balance altogether if we pull some load. 12376 */ 12377 if (nohz_idle_balance(this_rq, idle)) 12378 return; 12379 12380 /* normal load balance */ 12381 update_blocked_averages(this_rq->cpu); 12382 rebalance_domains(this_rq, idle); 12383 } 12384 12385 /* 12386 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12387 */ 12388 void trigger_load_balance(struct rq *rq) 12389 { 12390 /* 12391 * Don't need to rebalance while attached to NULL domain or 12392 * runqueue CPU is not active 12393 */ 12394 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12395 return; 12396 12397 if (time_after_eq(jiffies, rq->next_balance)) 12398 raise_softirq(SCHED_SOFTIRQ); 12399 12400 nohz_balancer_kick(rq); 12401 } 12402 12403 static void rq_online_fair(struct rq *rq) 12404 { 12405 update_sysctl(); 12406 12407 update_runtime_enabled(rq); 12408 } 12409 12410 static void rq_offline_fair(struct rq *rq) 12411 { 12412 update_sysctl(); 12413 12414 /* Ensure any throttled groups are reachable by pick_next_task */ 12415 unthrottle_offline_cfs_rqs(rq); 12416 } 12417 12418 #endif /* CONFIG_SMP */ 12419 12420 #ifdef CONFIG_SCHED_CORE 12421 static inline bool 12422 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12423 { 12424 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12425 u64 slice = se->slice; 12426 12427 return (rtime * min_nr_tasks > slice); 12428 } 12429 12430 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12431 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12432 { 12433 if (!sched_core_enabled(rq)) 12434 return; 12435 12436 /* 12437 * If runqueue has only one task which used up its slice and 12438 * if the sibling is forced idle, then trigger schedule to 12439 * give forced idle task a chance. 12440 * 12441 * sched_slice() considers only this active rq and it gets the 12442 * whole slice. But during force idle, we have siblings acting 12443 * like a single runqueue and hence we need to consider runnable 12444 * tasks on this CPU and the forced idle CPU. Ideally, we should 12445 * go through the forced idle rq, but that would be a perf hit. 12446 * We can assume that the forced idle CPU has at least 12447 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12448 * if we need to give up the CPU. 12449 */ 12450 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12451 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12452 resched_curr(rq); 12453 } 12454 12455 /* 12456 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12457 */ 12458 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12459 bool forceidle) 12460 { 12461 for_each_sched_entity(se) { 12462 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12463 12464 if (forceidle) { 12465 if (cfs_rq->forceidle_seq == fi_seq) 12466 break; 12467 cfs_rq->forceidle_seq = fi_seq; 12468 } 12469 12470 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12471 } 12472 } 12473 12474 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12475 { 12476 struct sched_entity *se = &p->se; 12477 12478 if (p->sched_class != &fair_sched_class) 12479 return; 12480 12481 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12482 } 12483 12484 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12485 bool in_fi) 12486 { 12487 struct rq *rq = task_rq(a); 12488 const struct sched_entity *sea = &a->se; 12489 const struct sched_entity *seb = &b->se; 12490 struct cfs_rq *cfs_rqa; 12491 struct cfs_rq *cfs_rqb; 12492 s64 delta; 12493 12494 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12495 12496 #ifdef CONFIG_FAIR_GROUP_SCHED 12497 /* 12498 * Find an se in the hierarchy for tasks a and b, such that the se's 12499 * are immediate siblings. 12500 */ 12501 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12502 int sea_depth = sea->depth; 12503 int seb_depth = seb->depth; 12504 12505 if (sea_depth >= seb_depth) 12506 sea = parent_entity(sea); 12507 if (sea_depth <= seb_depth) 12508 seb = parent_entity(seb); 12509 } 12510 12511 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12512 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12513 12514 cfs_rqa = sea->cfs_rq; 12515 cfs_rqb = seb->cfs_rq; 12516 #else 12517 cfs_rqa = &task_rq(a)->cfs; 12518 cfs_rqb = &task_rq(b)->cfs; 12519 #endif 12520 12521 /* 12522 * Find delta after normalizing se's vruntime with its cfs_rq's 12523 * min_vruntime_fi, which would have been updated in prior calls 12524 * to se_fi_update(). 12525 */ 12526 delta = (s64)(sea->vruntime - seb->vruntime) + 12527 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12528 12529 return delta > 0; 12530 } 12531 12532 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12533 { 12534 struct cfs_rq *cfs_rq; 12535 12536 #ifdef CONFIG_FAIR_GROUP_SCHED 12537 cfs_rq = task_group(p)->cfs_rq[cpu]; 12538 #else 12539 cfs_rq = &cpu_rq(cpu)->cfs; 12540 #endif 12541 return throttled_hierarchy(cfs_rq); 12542 } 12543 #else 12544 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12545 #endif 12546 12547 /* 12548 * scheduler tick hitting a task of our scheduling class. 12549 * 12550 * NOTE: This function can be called remotely by the tick offload that 12551 * goes along full dynticks. Therefore no local assumption can be made 12552 * and everything must be accessed through the @rq and @curr passed in 12553 * parameters. 12554 */ 12555 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12556 { 12557 struct cfs_rq *cfs_rq; 12558 struct sched_entity *se = &curr->se; 12559 12560 for_each_sched_entity(se) { 12561 cfs_rq = cfs_rq_of(se); 12562 entity_tick(cfs_rq, se, queued); 12563 } 12564 12565 if (static_branch_unlikely(&sched_numa_balancing)) 12566 task_tick_numa(rq, curr); 12567 12568 update_misfit_status(curr, rq); 12569 update_overutilized_status(task_rq(curr)); 12570 12571 task_tick_core(rq, curr); 12572 } 12573 12574 /* 12575 * called on fork with the child task as argument from the parent's context 12576 * - child not yet on the tasklist 12577 * - preemption disabled 12578 */ 12579 static void task_fork_fair(struct task_struct *p) 12580 { 12581 struct sched_entity *se = &p->se, *curr; 12582 struct cfs_rq *cfs_rq; 12583 struct rq *rq = this_rq(); 12584 struct rq_flags rf; 12585 12586 rq_lock(rq, &rf); 12587 update_rq_clock(rq); 12588 12589 cfs_rq = task_cfs_rq(current); 12590 curr = cfs_rq->curr; 12591 if (curr) 12592 update_curr(cfs_rq); 12593 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12594 rq_unlock(rq, &rf); 12595 } 12596 12597 /* 12598 * Priority of the task has changed. Check to see if we preempt 12599 * the current task. 12600 */ 12601 static void 12602 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12603 { 12604 if (!task_on_rq_queued(p)) 12605 return; 12606 12607 if (rq->cfs.nr_running == 1) 12608 return; 12609 12610 /* 12611 * Reschedule if we are currently running on this runqueue and 12612 * our priority decreased, or if we are not currently running on 12613 * this runqueue and our priority is higher than the current's 12614 */ 12615 if (task_current(rq, p)) { 12616 if (p->prio > oldprio) 12617 resched_curr(rq); 12618 } else 12619 wakeup_preempt(rq, p, 0); 12620 } 12621 12622 #ifdef CONFIG_FAIR_GROUP_SCHED 12623 /* 12624 * Propagate the changes of the sched_entity across the tg tree to make it 12625 * visible to the root 12626 */ 12627 static void propagate_entity_cfs_rq(struct sched_entity *se) 12628 { 12629 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12630 12631 if (cfs_rq_throttled(cfs_rq)) 12632 return; 12633 12634 if (!throttled_hierarchy(cfs_rq)) 12635 list_add_leaf_cfs_rq(cfs_rq); 12636 12637 /* Start to propagate at parent */ 12638 se = se->parent; 12639 12640 for_each_sched_entity(se) { 12641 cfs_rq = cfs_rq_of(se); 12642 12643 update_load_avg(cfs_rq, se, UPDATE_TG); 12644 12645 if (cfs_rq_throttled(cfs_rq)) 12646 break; 12647 12648 if (!throttled_hierarchy(cfs_rq)) 12649 list_add_leaf_cfs_rq(cfs_rq); 12650 } 12651 } 12652 #else 12653 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12654 #endif 12655 12656 static void detach_entity_cfs_rq(struct sched_entity *se) 12657 { 12658 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12659 12660 #ifdef CONFIG_SMP 12661 /* 12662 * In case the task sched_avg hasn't been attached: 12663 * - A forked task which hasn't been woken up by wake_up_new_task(). 12664 * - A task which has been woken up by try_to_wake_up() but is 12665 * waiting for actually being woken up by sched_ttwu_pending(). 12666 */ 12667 if (!se->avg.last_update_time) 12668 return; 12669 #endif 12670 12671 /* Catch up with the cfs_rq and remove our load when we leave */ 12672 update_load_avg(cfs_rq, se, 0); 12673 detach_entity_load_avg(cfs_rq, se); 12674 update_tg_load_avg(cfs_rq); 12675 propagate_entity_cfs_rq(se); 12676 } 12677 12678 static void attach_entity_cfs_rq(struct sched_entity *se) 12679 { 12680 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12681 12682 /* Synchronize entity with its cfs_rq */ 12683 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12684 attach_entity_load_avg(cfs_rq, se); 12685 update_tg_load_avg(cfs_rq); 12686 propagate_entity_cfs_rq(se); 12687 } 12688 12689 static void detach_task_cfs_rq(struct task_struct *p) 12690 { 12691 struct sched_entity *se = &p->se; 12692 12693 detach_entity_cfs_rq(se); 12694 } 12695 12696 static void attach_task_cfs_rq(struct task_struct *p) 12697 { 12698 struct sched_entity *se = &p->se; 12699 12700 attach_entity_cfs_rq(se); 12701 } 12702 12703 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12704 { 12705 detach_task_cfs_rq(p); 12706 } 12707 12708 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12709 { 12710 attach_task_cfs_rq(p); 12711 12712 if (task_on_rq_queued(p)) { 12713 /* 12714 * We were most likely switched from sched_rt, so 12715 * kick off the schedule if running, otherwise just see 12716 * if we can still preempt the current task. 12717 */ 12718 if (task_current(rq, p)) 12719 resched_curr(rq); 12720 else 12721 wakeup_preempt(rq, p, 0); 12722 } 12723 } 12724 12725 /* Account for a task changing its policy or group. 12726 * 12727 * This routine is mostly called to set cfs_rq->curr field when a task 12728 * migrates between groups/classes. 12729 */ 12730 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12731 { 12732 struct sched_entity *se = &p->se; 12733 12734 #ifdef CONFIG_SMP 12735 if (task_on_rq_queued(p)) { 12736 /* 12737 * Move the next running task to the front of the list, so our 12738 * cfs_tasks list becomes MRU one. 12739 */ 12740 list_move(&se->group_node, &rq->cfs_tasks); 12741 } 12742 #endif 12743 12744 for_each_sched_entity(se) { 12745 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12746 12747 set_next_entity(cfs_rq, se); 12748 /* ensure bandwidth has been allocated on our new cfs_rq */ 12749 account_cfs_rq_runtime(cfs_rq, 0); 12750 } 12751 } 12752 12753 void init_cfs_rq(struct cfs_rq *cfs_rq) 12754 { 12755 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12756 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12757 #ifdef CONFIG_SMP 12758 raw_spin_lock_init(&cfs_rq->removed.lock); 12759 #endif 12760 } 12761 12762 #ifdef CONFIG_FAIR_GROUP_SCHED 12763 static void task_change_group_fair(struct task_struct *p) 12764 { 12765 /* 12766 * We couldn't detach or attach a forked task which 12767 * hasn't been woken up by wake_up_new_task(). 12768 */ 12769 if (READ_ONCE(p->__state) == TASK_NEW) 12770 return; 12771 12772 detach_task_cfs_rq(p); 12773 12774 #ifdef CONFIG_SMP 12775 /* Tell se's cfs_rq has been changed -- migrated */ 12776 p->se.avg.last_update_time = 0; 12777 #endif 12778 set_task_rq(p, task_cpu(p)); 12779 attach_task_cfs_rq(p); 12780 } 12781 12782 void free_fair_sched_group(struct task_group *tg) 12783 { 12784 int i; 12785 12786 for_each_possible_cpu(i) { 12787 if (tg->cfs_rq) 12788 kfree(tg->cfs_rq[i]); 12789 if (tg->se) 12790 kfree(tg->se[i]); 12791 } 12792 12793 kfree(tg->cfs_rq); 12794 kfree(tg->se); 12795 } 12796 12797 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12798 { 12799 struct sched_entity *se; 12800 struct cfs_rq *cfs_rq; 12801 int i; 12802 12803 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12804 if (!tg->cfs_rq) 12805 goto err; 12806 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12807 if (!tg->se) 12808 goto err; 12809 12810 tg->shares = NICE_0_LOAD; 12811 12812 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12813 12814 for_each_possible_cpu(i) { 12815 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12816 GFP_KERNEL, cpu_to_node(i)); 12817 if (!cfs_rq) 12818 goto err; 12819 12820 se = kzalloc_node(sizeof(struct sched_entity_stats), 12821 GFP_KERNEL, cpu_to_node(i)); 12822 if (!se) 12823 goto err_free_rq; 12824 12825 init_cfs_rq(cfs_rq); 12826 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12827 init_entity_runnable_average(se); 12828 } 12829 12830 return 1; 12831 12832 err_free_rq: 12833 kfree(cfs_rq); 12834 err: 12835 return 0; 12836 } 12837 12838 void online_fair_sched_group(struct task_group *tg) 12839 { 12840 struct sched_entity *se; 12841 struct rq_flags rf; 12842 struct rq *rq; 12843 int i; 12844 12845 for_each_possible_cpu(i) { 12846 rq = cpu_rq(i); 12847 se = tg->se[i]; 12848 rq_lock_irq(rq, &rf); 12849 update_rq_clock(rq); 12850 attach_entity_cfs_rq(se); 12851 sync_throttle(tg, i); 12852 rq_unlock_irq(rq, &rf); 12853 } 12854 } 12855 12856 void unregister_fair_sched_group(struct task_group *tg) 12857 { 12858 unsigned long flags; 12859 struct rq *rq; 12860 int cpu; 12861 12862 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12863 12864 for_each_possible_cpu(cpu) { 12865 if (tg->se[cpu]) 12866 remove_entity_load_avg(tg->se[cpu]); 12867 12868 /* 12869 * Only empty task groups can be destroyed; so we can speculatively 12870 * check on_list without danger of it being re-added. 12871 */ 12872 if (!tg->cfs_rq[cpu]->on_list) 12873 continue; 12874 12875 rq = cpu_rq(cpu); 12876 12877 raw_spin_rq_lock_irqsave(rq, flags); 12878 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12879 raw_spin_rq_unlock_irqrestore(rq, flags); 12880 } 12881 } 12882 12883 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12884 struct sched_entity *se, int cpu, 12885 struct sched_entity *parent) 12886 { 12887 struct rq *rq = cpu_rq(cpu); 12888 12889 cfs_rq->tg = tg; 12890 cfs_rq->rq = rq; 12891 init_cfs_rq_runtime(cfs_rq); 12892 12893 tg->cfs_rq[cpu] = cfs_rq; 12894 tg->se[cpu] = se; 12895 12896 /* se could be NULL for root_task_group */ 12897 if (!se) 12898 return; 12899 12900 if (!parent) { 12901 se->cfs_rq = &rq->cfs; 12902 se->depth = 0; 12903 } else { 12904 se->cfs_rq = parent->my_q; 12905 se->depth = parent->depth + 1; 12906 } 12907 12908 se->my_q = cfs_rq; 12909 /* guarantee group entities always have weight */ 12910 update_load_set(&se->load, NICE_0_LOAD); 12911 se->parent = parent; 12912 } 12913 12914 static DEFINE_MUTEX(shares_mutex); 12915 12916 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12917 { 12918 int i; 12919 12920 lockdep_assert_held(&shares_mutex); 12921 12922 /* 12923 * We can't change the weight of the root cgroup. 12924 */ 12925 if (!tg->se[0]) 12926 return -EINVAL; 12927 12928 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12929 12930 if (tg->shares == shares) 12931 return 0; 12932 12933 tg->shares = shares; 12934 for_each_possible_cpu(i) { 12935 struct rq *rq = cpu_rq(i); 12936 struct sched_entity *se = tg->se[i]; 12937 struct rq_flags rf; 12938 12939 /* Propagate contribution to hierarchy */ 12940 rq_lock_irqsave(rq, &rf); 12941 update_rq_clock(rq); 12942 for_each_sched_entity(se) { 12943 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12944 update_cfs_group(se); 12945 } 12946 rq_unlock_irqrestore(rq, &rf); 12947 } 12948 12949 return 0; 12950 } 12951 12952 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12953 { 12954 int ret; 12955 12956 mutex_lock(&shares_mutex); 12957 if (tg_is_idle(tg)) 12958 ret = -EINVAL; 12959 else 12960 ret = __sched_group_set_shares(tg, shares); 12961 mutex_unlock(&shares_mutex); 12962 12963 return ret; 12964 } 12965 12966 int sched_group_set_idle(struct task_group *tg, long idle) 12967 { 12968 int i; 12969 12970 if (tg == &root_task_group) 12971 return -EINVAL; 12972 12973 if (idle < 0 || idle > 1) 12974 return -EINVAL; 12975 12976 mutex_lock(&shares_mutex); 12977 12978 if (tg->idle == idle) { 12979 mutex_unlock(&shares_mutex); 12980 return 0; 12981 } 12982 12983 tg->idle = idle; 12984 12985 for_each_possible_cpu(i) { 12986 struct rq *rq = cpu_rq(i); 12987 struct sched_entity *se = tg->se[i]; 12988 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12989 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12990 long idle_task_delta; 12991 struct rq_flags rf; 12992 12993 rq_lock_irqsave(rq, &rf); 12994 12995 grp_cfs_rq->idle = idle; 12996 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12997 goto next_cpu; 12998 12999 if (se->on_rq) { 13000 parent_cfs_rq = cfs_rq_of(se); 13001 if (cfs_rq_is_idle(grp_cfs_rq)) 13002 parent_cfs_rq->idle_nr_running++; 13003 else 13004 parent_cfs_rq->idle_nr_running--; 13005 } 13006 13007 idle_task_delta = grp_cfs_rq->h_nr_running - 13008 grp_cfs_rq->idle_h_nr_running; 13009 if (!cfs_rq_is_idle(grp_cfs_rq)) 13010 idle_task_delta *= -1; 13011 13012 for_each_sched_entity(se) { 13013 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13014 13015 if (!se->on_rq) 13016 break; 13017 13018 cfs_rq->idle_h_nr_running += idle_task_delta; 13019 13020 /* Already accounted at parent level and above. */ 13021 if (cfs_rq_is_idle(cfs_rq)) 13022 break; 13023 } 13024 13025 next_cpu: 13026 rq_unlock_irqrestore(rq, &rf); 13027 } 13028 13029 /* Idle groups have minimum weight. */ 13030 if (tg_is_idle(tg)) 13031 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13032 else 13033 __sched_group_set_shares(tg, NICE_0_LOAD); 13034 13035 mutex_unlock(&shares_mutex); 13036 return 0; 13037 } 13038 13039 #else /* CONFIG_FAIR_GROUP_SCHED */ 13040 13041 void free_fair_sched_group(struct task_group *tg) { } 13042 13043 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13044 { 13045 return 1; 13046 } 13047 13048 void online_fair_sched_group(struct task_group *tg) { } 13049 13050 void unregister_fair_sched_group(struct task_group *tg) { } 13051 13052 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13053 13054 13055 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13056 { 13057 struct sched_entity *se = &task->se; 13058 unsigned int rr_interval = 0; 13059 13060 /* 13061 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13062 * idle runqueue: 13063 */ 13064 if (rq->cfs.load.weight) 13065 rr_interval = NS_TO_JIFFIES(se->slice); 13066 13067 return rr_interval; 13068 } 13069 13070 /* 13071 * All the scheduling class methods: 13072 */ 13073 DEFINE_SCHED_CLASS(fair) = { 13074 13075 .enqueue_task = enqueue_task_fair, 13076 .dequeue_task = dequeue_task_fair, 13077 .yield_task = yield_task_fair, 13078 .yield_to_task = yield_to_task_fair, 13079 13080 .wakeup_preempt = check_preempt_wakeup_fair, 13081 13082 .pick_next_task = __pick_next_task_fair, 13083 .put_prev_task = put_prev_task_fair, 13084 .set_next_task = set_next_task_fair, 13085 13086 #ifdef CONFIG_SMP 13087 .balance = balance_fair, 13088 .pick_task = pick_task_fair, 13089 .select_task_rq = select_task_rq_fair, 13090 .migrate_task_rq = migrate_task_rq_fair, 13091 13092 .rq_online = rq_online_fair, 13093 .rq_offline = rq_offline_fair, 13094 13095 .task_dead = task_dead_fair, 13096 .set_cpus_allowed = set_cpus_allowed_common, 13097 #endif 13098 13099 .task_tick = task_tick_fair, 13100 .task_fork = task_fork_fair, 13101 13102 .prio_changed = prio_changed_fair, 13103 .switched_from = switched_from_fair, 13104 .switched_to = switched_to_fair, 13105 13106 .get_rr_interval = get_rr_interval_fair, 13107 13108 .update_curr = update_curr_fair, 13109 13110 #ifdef CONFIG_FAIR_GROUP_SCHED 13111 .task_change_group = task_change_group_fair, 13112 #endif 13113 13114 #ifdef CONFIG_SCHED_CORE 13115 .task_is_throttled = task_is_throttled_fair, 13116 #endif 13117 13118 #ifdef CONFIG_UCLAMP_TASK 13119 .uclamp_enabled = 1, 13120 #endif 13121 }; 13122 13123 #ifdef CONFIG_SCHED_DEBUG 13124 void print_cfs_stats(struct seq_file *m, int cpu) 13125 { 13126 struct cfs_rq *cfs_rq, *pos; 13127 13128 rcu_read_lock(); 13129 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13130 print_cfs_rq(m, cpu, cfs_rq); 13131 rcu_read_unlock(); 13132 } 13133 13134 #ifdef CONFIG_NUMA_BALANCING 13135 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13136 { 13137 int node; 13138 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13139 struct numa_group *ng; 13140 13141 rcu_read_lock(); 13142 ng = rcu_dereference(p->numa_group); 13143 for_each_online_node(node) { 13144 if (p->numa_faults) { 13145 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13146 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13147 } 13148 if (ng) { 13149 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13150 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13151 } 13152 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13153 } 13154 rcu_read_unlock(); 13155 } 13156 #endif /* CONFIG_NUMA_BALANCING */ 13157 #endif /* CONFIG_SCHED_DEBUG */ 13158 13159 __init void init_sched_fair_class(void) 13160 { 13161 #ifdef CONFIG_SMP 13162 int i; 13163 13164 for_each_possible_cpu(i) { 13165 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13166 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13167 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13168 GFP_KERNEL, cpu_to_node(i)); 13169 13170 #ifdef CONFIG_CFS_BANDWIDTH 13171 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13172 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13173 #endif 13174 } 13175 13176 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13177 13178 #ifdef CONFIG_NO_HZ_COMMON 13179 nohz.next_balance = jiffies; 13180 nohz.next_blocked = jiffies; 13181 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13182 #endif 13183 #endif /* SMP */ 13184 13185 } 13186