xref: /linux/kernel/sched/fair.c (revision 8b6d678fede700db6466d73f11fcbad496fa515e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 int sched_thermal_decay_shift;
82 static int __init setup_sched_thermal_decay_shift(char *str)
83 {
84 	int _shift = 0;
85 
86 	if (kstrtoint(str, 0, &_shift))
87 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
88 
89 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
90 	return 1;
91 }
92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
93 
94 #ifdef CONFIG_SMP
95 /*
96  * For asym packing, by default the lower numbered CPU has higher priority.
97  */
98 int __weak arch_asym_cpu_priority(int cpu)
99 {
100 	return -cpu;
101 }
102 
103 /*
104  * The margin used when comparing utilization with CPU capacity.
105  *
106  * (default: ~20%)
107  */
108 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
109 
110 /*
111  * The margin used when comparing CPU capacities.
112  * is 'cap1' noticeably greater than 'cap2'
113  *
114  * (default: ~5%)
115  */
116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
117 #endif
118 
119 #ifdef CONFIG_CFS_BANDWIDTH
120 /*
121  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
122  * each time a cfs_rq requests quota.
123  *
124  * Note: in the case that the slice exceeds the runtime remaining (either due
125  * to consumption or the quota being specified to be smaller than the slice)
126  * we will always only issue the remaining available time.
127  *
128  * (default: 5 msec, units: microseconds)
129  */
130 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
131 #endif
132 
133 #ifdef CONFIG_NUMA_BALANCING
134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
136 #endif
137 
138 #ifdef CONFIG_SYSCTL
139 static struct ctl_table sched_fair_sysctls[] = {
140 #ifdef CONFIG_CFS_BANDWIDTH
141 	{
142 		.procname       = "sched_cfs_bandwidth_slice_us",
143 		.data           = &sysctl_sched_cfs_bandwidth_slice,
144 		.maxlen         = sizeof(unsigned int),
145 		.mode           = 0644,
146 		.proc_handler   = proc_dointvec_minmax,
147 		.extra1         = SYSCTL_ONE,
148 	},
149 #endif
150 #ifdef CONFIG_NUMA_BALANCING
151 	{
152 		.procname	= "numa_balancing_promote_rate_limit_MBps",
153 		.data		= &sysctl_numa_balancing_promote_rate_limit,
154 		.maxlen		= sizeof(unsigned int),
155 		.mode		= 0644,
156 		.proc_handler	= proc_dointvec_minmax,
157 		.extra1		= SYSCTL_ZERO,
158 	},
159 #endif /* CONFIG_NUMA_BALANCING */
160 	{}
161 };
162 
163 static int __init sched_fair_sysctl_init(void)
164 {
165 	register_sysctl_init("kernel", sched_fair_sysctls);
166 	return 0;
167 }
168 late_initcall(sched_fair_sysctl_init);
169 #endif
170 
171 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
172 {
173 	lw->weight += inc;
174 	lw->inv_weight = 0;
175 }
176 
177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
178 {
179 	lw->weight -= dec;
180 	lw->inv_weight = 0;
181 }
182 
183 static inline void update_load_set(struct load_weight *lw, unsigned long w)
184 {
185 	lw->weight = w;
186 	lw->inv_weight = 0;
187 }
188 
189 /*
190  * Increase the granularity value when there are more CPUs,
191  * because with more CPUs the 'effective latency' as visible
192  * to users decreases. But the relationship is not linear,
193  * so pick a second-best guess by going with the log2 of the
194  * number of CPUs.
195  *
196  * This idea comes from the SD scheduler of Con Kolivas:
197  */
198 static unsigned int get_update_sysctl_factor(void)
199 {
200 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
201 	unsigned int factor;
202 
203 	switch (sysctl_sched_tunable_scaling) {
204 	case SCHED_TUNABLESCALING_NONE:
205 		factor = 1;
206 		break;
207 	case SCHED_TUNABLESCALING_LINEAR:
208 		factor = cpus;
209 		break;
210 	case SCHED_TUNABLESCALING_LOG:
211 	default:
212 		factor = 1 + ilog2(cpus);
213 		break;
214 	}
215 
216 	return factor;
217 }
218 
219 static void update_sysctl(void)
220 {
221 	unsigned int factor = get_update_sysctl_factor();
222 
223 #define SET_SYSCTL(name) \
224 	(sysctl_##name = (factor) * normalized_sysctl_##name)
225 	SET_SYSCTL(sched_base_slice);
226 #undef SET_SYSCTL
227 }
228 
229 void __init sched_init_granularity(void)
230 {
231 	update_sysctl();
232 }
233 
234 #define WMULT_CONST	(~0U)
235 #define WMULT_SHIFT	32
236 
237 static void __update_inv_weight(struct load_weight *lw)
238 {
239 	unsigned long w;
240 
241 	if (likely(lw->inv_weight))
242 		return;
243 
244 	w = scale_load_down(lw->weight);
245 
246 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
247 		lw->inv_weight = 1;
248 	else if (unlikely(!w))
249 		lw->inv_weight = WMULT_CONST;
250 	else
251 		lw->inv_weight = WMULT_CONST / w;
252 }
253 
254 /*
255  * delta_exec * weight / lw.weight
256  *   OR
257  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
258  *
259  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
260  * we're guaranteed shift stays positive because inv_weight is guaranteed to
261  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
262  *
263  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
264  * weight/lw.weight <= 1, and therefore our shift will also be positive.
265  */
266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
267 {
268 	u64 fact = scale_load_down(weight);
269 	u32 fact_hi = (u32)(fact >> 32);
270 	int shift = WMULT_SHIFT;
271 	int fs;
272 
273 	__update_inv_weight(lw);
274 
275 	if (unlikely(fact_hi)) {
276 		fs = fls(fact_hi);
277 		shift -= fs;
278 		fact >>= fs;
279 	}
280 
281 	fact = mul_u32_u32(fact, lw->inv_weight);
282 
283 	fact_hi = (u32)(fact >> 32);
284 	if (fact_hi) {
285 		fs = fls(fact_hi);
286 		shift -= fs;
287 		fact >>= fs;
288 	}
289 
290 	return mul_u64_u32_shr(delta_exec, fact, shift);
291 }
292 
293 /*
294  * delta /= w
295  */
296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
297 {
298 	if (unlikely(se->load.weight != NICE_0_LOAD))
299 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
300 
301 	return delta;
302 }
303 
304 const struct sched_class fair_sched_class;
305 
306 /**************************************************************
307  * CFS operations on generic schedulable entities:
308  */
309 
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 
312 /* Walk up scheduling entities hierarchy */
313 #define for_each_sched_entity(se) \
314 		for (; se; se = se->parent)
315 
316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
317 {
318 	struct rq *rq = rq_of(cfs_rq);
319 	int cpu = cpu_of(rq);
320 
321 	if (cfs_rq->on_list)
322 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
323 
324 	cfs_rq->on_list = 1;
325 
326 	/*
327 	 * Ensure we either appear before our parent (if already
328 	 * enqueued) or force our parent to appear after us when it is
329 	 * enqueued. The fact that we always enqueue bottom-up
330 	 * reduces this to two cases and a special case for the root
331 	 * cfs_rq. Furthermore, it also means that we will always reset
332 	 * tmp_alone_branch either when the branch is connected
333 	 * to a tree or when we reach the top of the tree
334 	 */
335 	if (cfs_rq->tg->parent &&
336 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
337 		/*
338 		 * If parent is already on the list, we add the child
339 		 * just before. Thanks to circular linked property of
340 		 * the list, this means to put the child at the tail
341 		 * of the list that starts by parent.
342 		 */
343 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
344 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
345 		/*
346 		 * The branch is now connected to its tree so we can
347 		 * reset tmp_alone_branch to the beginning of the
348 		 * list.
349 		 */
350 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 		return true;
352 	}
353 
354 	if (!cfs_rq->tg->parent) {
355 		/*
356 		 * cfs rq without parent should be put
357 		 * at the tail of the list.
358 		 */
359 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
360 			&rq->leaf_cfs_rq_list);
361 		/*
362 		 * We have reach the top of a tree so we can reset
363 		 * tmp_alone_branch to the beginning of the list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	/*
370 	 * The parent has not already been added so we want to
371 	 * make sure that it will be put after us.
372 	 * tmp_alone_branch points to the begin of the branch
373 	 * where we will add parent.
374 	 */
375 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
376 	/*
377 	 * update tmp_alone_branch to points to the new begin
378 	 * of the branch
379 	 */
380 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
381 	return false;
382 }
383 
384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
385 {
386 	if (cfs_rq->on_list) {
387 		struct rq *rq = rq_of(cfs_rq);
388 
389 		/*
390 		 * With cfs_rq being unthrottled/throttled during an enqueue,
391 		 * it can happen the tmp_alone_branch points the a leaf that
392 		 * we finally want to del. In this case, tmp_alone_branch moves
393 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
394 		 * at the end of the enqueue.
395 		 */
396 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
397 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
398 
399 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
400 		cfs_rq->on_list = 0;
401 	}
402 }
403 
404 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
405 {
406 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
407 }
408 
409 /* Iterate thr' all leaf cfs_rq's on a runqueue */
410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
411 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
412 				 leaf_cfs_rq_list)
413 
414 /* Do the two (enqueued) entities belong to the same group ? */
415 static inline struct cfs_rq *
416 is_same_group(struct sched_entity *se, struct sched_entity *pse)
417 {
418 	if (se->cfs_rq == pse->cfs_rq)
419 		return se->cfs_rq;
420 
421 	return NULL;
422 }
423 
424 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
425 {
426 	return se->parent;
427 }
428 
429 static void
430 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
431 {
432 	int se_depth, pse_depth;
433 
434 	/*
435 	 * preemption test can be made between sibling entities who are in the
436 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
437 	 * both tasks until we find their ancestors who are siblings of common
438 	 * parent.
439 	 */
440 
441 	/* First walk up until both entities are at same depth */
442 	se_depth = (*se)->depth;
443 	pse_depth = (*pse)->depth;
444 
445 	while (se_depth > pse_depth) {
446 		se_depth--;
447 		*se = parent_entity(*se);
448 	}
449 
450 	while (pse_depth > se_depth) {
451 		pse_depth--;
452 		*pse = parent_entity(*pse);
453 	}
454 
455 	while (!is_same_group(*se, *pse)) {
456 		*se = parent_entity(*se);
457 		*pse = parent_entity(*pse);
458 	}
459 }
460 
461 static int tg_is_idle(struct task_group *tg)
462 {
463 	return tg->idle > 0;
464 }
465 
466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
467 {
468 	return cfs_rq->idle > 0;
469 }
470 
471 static int se_is_idle(struct sched_entity *se)
472 {
473 	if (entity_is_task(se))
474 		return task_has_idle_policy(task_of(se));
475 	return cfs_rq_is_idle(group_cfs_rq(se));
476 }
477 
478 #else	/* !CONFIG_FAIR_GROUP_SCHED */
479 
480 #define for_each_sched_entity(se) \
481 		for (; se; se = NULL)
482 
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 {
485 	return true;
486 }
487 
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489 {
490 }
491 
492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493 {
494 }
495 
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
497 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498 
499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
500 {
501 	return NULL;
502 }
503 
504 static inline void
505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506 {
507 }
508 
509 static inline int tg_is_idle(struct task_group *tg)
510 {
511 	return 0;
512 }
513 
514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
515 {
516 	return 0;
517 }
518 
519 static int se_is_idle(struct sched_entity *se)
520 {
521 	return 0;
522 }
523 
524 #endif	/* CONFIG_FAIR_GROUP_SCHED */
525 
526 static __always_inline
527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
528 
529 /**************************************************************
530  * Scheduling class tree data structure manipulation methods:
531  */
532 
533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
534 {
535 	s64 delta = (s64)(vruntime - max_vruntime);
536 	if (delta > 0)
537 		max_vruntime = vruntime;
538 
539 	return max_vruntime;
540 }
541 
542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
543 {
544 	s64 delta = (s64)(vruntime - min_vruntime);
545 	if (delta < 0)
546 		min_vruntime = vruntime;
547 
548 	return min_vruntime;
549 }
550 
551 static inline bool entity_before(const struct sched_entity *a,
552 				 const struct sched_entity *b)
553 {
554 	/*
555 	 * Tiebreak on vruntime seems unnecessary since it can
556 	 * hardly happen.
557 	 */
558 	return (s64)(a->deadline - b->deadline) < 0;
559 }
560 
561 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
564 }
565 
566 #define __node_2_se(node) \
567 	rb_entry((node), struct sched_entity, run_node)
568 
569 /*
570  * Compute virtual time from the per-task service numbers:
571  *
572  * Fair schedulers conserve lag:
573  *
574  *   \Sum lag_i = 0
575  *
576  * Where lag_i is given by:
577  *
578  *   lag_i = S - s_i = w_i * (V - v_i)
579  *
580  * Where S is the ideal service time and V is it's virtual time counterpart.
581  * Therefore:
582  *
583  *   \Sum lag_i = 0
584  *   \Sum w_i * (V - v_i) = 0
585  *   \Sum w_i * V - w_i * v_i = 0
586  *
587  * From which we can solve an expression for V in v_i (which we have in
588  * se->vruntime):
589  *
590  *       \Sum v_i * w_i   \Sum v_i * w_i
591  *   V = -------------- = --------------
592  *          \Sum w_i            W
593  *
594  * Specifically, this is the weighted average of all entity virtual runtimes.
595  *
596  * [[ NOTE: this is only equal to the ideal scheduler under the condition
597  *          that join/leave operations happen at lag_i = 0, otherwise the
598  *          virtual time has non-continguous motion equivalent to:
599  *
600  *	      V +-= lag_i / W
601  *
602  *	    Also see the comment in place_entity() that deals with this. ]]
603  *
604  * However, since v_i is u64, and the multiplcation could easily overflow
605  * transform it into a relative form that uses smaller quantities:
606  *
607  * Substitute: v_i == (v_i - v0) + v0
608  *
609  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
610  * V = ---------------------------- = --------------------- + v0
611  *                  W                            W
612  *
613  * Which we track using:
614  *
615  *                    v0 := cfs_rq->min_vruntime
616  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
617  *              \Sum w_i := cfs_rq->avg_load
618  *
619  * Since min_vruntime is a monotonic increasing variable that closely tracks
620  * the per-task service, these deltas: (v_i - v), will be in the order of the
621  * maximal (virtual) lag induced in the system due to quantisation.
622  *
623  * Also, we use scale_load_down() to reduce the size.
624  *
625  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
626  */
627 static void
628 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 	unsigned long weight = scale_load_down(se->load.weight);
631 	s64 key = entity_key(cfs_rq, se);
632 
633 	cfs_rq->avg_vruntime += key * weight;
634 	cfs_rq->avg_load += weight;
635 }
636 
637 static void
638 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
639 {
640 	unsigned long weight = scale_load_down(se->load.weight);
641 	s64 key = entity_key(cfs_rq, se);
642 
643 	cfs_rq->avg_vruntime -= key * weight;
644 	cfs_rq->avg_load -= weight;
645 }
646 
647 static inline
648 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
649 {
650 	/*
651 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
652 	 */
653 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
654 }
655 
656 /*
657  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
658  * For this to be so, the result of this function must have a left bias.
659  */
660 u64 avg_vruntime(struct cfs_rq *cfs_rq)
661 {
662 	struct sched_entity *curr = cfs_rq->curr;
663 	s64 avg = cfs_rq->avg_vruntime;
664 	long load = cfs_rq->avg_load;
665 
666 	if (curr && curr->on_rq) {
667 		unsigned long weight = scale_load_down(curr->load.weight);
668 
669 		avg += entity_key(cfs_rq, curr) * weight;
670 		load += weight;
671 	}
672 
673 	if (load) {
674 		/* sign flips effective floor / ceil */
675 		if (avg < 0)
676 			avg -= (load - 1);
677 		avg = div_s64(avg, load);
678 	}
679 
680 	return cfs_rq->min_vruntime + avg;
681 }
682 
683 /*
684  * lag_i = S - s_i = w_i * (V - v_i)
685  *
686  * However, since V is approximated by the weighted average of all entities it
687  * is possible -- by addition/removal/reweight to the tree -- to move V around
688  * and end up with a larger lag than we started with.
689  *
690  * Limit this to either double the slice length with a minimum of TICK_NSEC
691  * since that is the timing granularity.
692  *
693  * EEVDF gives the following limit for a steady state system:
694  *
695  *   -r_max < lag < max(r_max, q)
696  *
697  * XXX could add max_slice to the augmented data to track this.
698  */
699 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
700 {
701 	s64 lag, limit;
702 
703 	SCHED_WARN_ON(!se->on_rq);
704 	lag = avg_vruntime(cfs_rq) - se->vruntime;
705 
706 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
707 	se->vlag = clamp(lag, -limit, limit);
708 }
709 
710 /*
711  * Entity is eligible once it received less service than it ought to have,
712  * eg. lag >= 0.
713  *
714  * lag_i = S - s_i = w_i*(V - v_i)
715  *
716  * lag_i >= 0 -> V >= v_i
717  *
718  *     \Sum (v_i - v)*w_i
719  * V = ------------------ + v
720  *          \Sum w_i
721  *
722  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723  *
724  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
725  *       to the loss in precision caused by the division.
726  */
727 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
728 {
729 	struct sched_entity *curr = cfs_rq->curr;
730 	s64 avg = cfs_rq->avg_vruntime;
731 	long load = cfs_rq->avg_load;
732 
733 	if (curr && curr->on_rq) {
734 		unsigned long weight = scale_load_down(curr->load.weight);
735 
736 		avg += entity_key(cfs_rq, curr) * weight;
737 		load += weight;
738 	}
739 
740 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
741 }
742 
743 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 	return vruntime_eligible(cfs_rq, se->vruntime);
746 }
747 
748 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
749 {
750 	u64 min_vruntime = cfs_rq->min_vruntime;
751 	/*
752 	 * open coded max_vruntime() to allow updating avg_vruntime
753 	 */
754 	s64 delta = (s64)(vruntime - min_vruntime);
755 	if (delta > 0) {
756 		avg_vruntime_update(cfs_rq, delta);
757 		min_vruntime = vruntime;
758 	}
759 	return min_vruntime;
760 }
761 
762 static void update_min_vruntime(struct cfs_rq *cfs_rq)
763 {
764 	struct sched_entity *se = __pick_root_entity(cfs_rq);
765 	struct sched_entity *curr = cfs_rq->curr;
766 	u64 vruntime = cfs_rq->min_vruntime;
767 
768 	if (curr) {
769 		if (curr->on_rq)
770 			vruntime = curr->vruntime;
771 		else
772 			curr = NULL;
773 	}
774 
775 	if (se) {
776 		if (!curr)
777 			vruntime = se->min_vruntime;
778 		else
779 			vruntime = min_vruntime(vruntime, se->min_vruntime);
780 	}
781 
782 	/* ensure we never gain time by being placed backwards. */
783 	u64_u32_store(cfs_rq->min_vruntime,
784 		      __update_min_vruntime(cfs_rq, vruntime));
785 }
786 
787 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
788 {
789 	return entity_before(__node_2_se(a), __node_2_se(b));
790 }
791 
792 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
793 
794 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
795 {
796 	if (node) {
797 		struct sched_entity *rse = __node_2_se(node);
798 		if (vruntime_gt(min_vruntime, se, rse))
799 			se->min_vruntime = rse->min_vruntime;
800 	}
801 }
802 
803 /*
804  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
805  */
806 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
807 {
808 	u64 old_min_vruntime = se->min_vruntime;
809 	struct rb_node *node = &se->run_node;
810 
811 	se->min_vruntime = se->vruntime;
812 	__min_vruntime_update(se, node->rb_right);
813 	__min_vruntime_update(se, node->rb_left);
814 
815 	return se->min_vruntime == old_min_vruntime;
816 }
817 
818 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
819 		     run_node, min_vruntime, min_vruntime_update);
820 
821 /*
822  * Enqueue an entity into the rb-tree:
823  */
824 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
825 {
826 	avg_vruntime_add(cfs_rq, se);
827 	se->min_vruntime = se->vruntime;
828 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
829 				__entity_less, &min_vruntime_cb);
830 }
831 
832 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
833 {
834 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
835 				  &min_vruntime_cb);
836 	avg_vruntime_sub(cfs_rq, se);
837 }
838 
839 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
840 {
841 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
842 
843 	if (!root)
844 		return NULL;
845 
846 	return __node_2_se(root);
847 }
848 
849 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
850 {
851 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
852 
853 	if (!left)
854 		return NULL;
855 
856 	return __node_2_se(left);
857 }
858 
859 /*
860  * Earliest Eligible Virtual Deadline First
861  *
862  * In order to provide latency guarantees for different request sizes
863  * EEVDF selects the best runnable task from two criteria:
864  *
865  *  1) the task must be eligible (must be owed service)
866  *
867  *  2) from those tasks that meet 1), we select the one
868  *     with the earliest virtual deadline.
869  *
870  * We can do this in O(log n) time due to an augmented RB-tree. The
871  * tree keeps the entries sorted on deadline, but also functions as a
872  * heap based on the vruntime by keeping:
873  *
874  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
875  *
876  * Which allows tree pruning through eligibility.
877  */
878 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
879 {
880 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
881 	struct sched_entity *se = __pick_first_entity(cfs_rq);
882 	struct sched_entity *curr = cfs_rq->curr;
883 	struct sched_entity *best = NULL;
884 
885 	/*
886 	 * We can safely skip eligibility check if there is only one entity
887 	 * in this cfs_rq, saving some cycles.
888 	 */
889 	if (cfs_rq->nr_running == 1)
890 		return curr && curr->on_rq ? curr : se;
891 
892 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
893 		curr = NULL;
894 
895 	/*
896 	 * Once selected, run a task until it either becomes non-eligible or
897 	 * until it gets a new slice. See the HACK in set_next_entity().
898 	 */
899 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
900 		return curr;
901 
902 	/* Pick the leftmost entity if it's eligible */
903 	if (se && entity_eligible(cfs_rq, se)) {
904 		best = se;
905 		goto found;
906 	}
907 
908 	/* Heap search for the EEVD entity */
909 	while (node) {
910 		struct rb_node *left = node->rb_left;
911 
912 		/*
913 		 * Eligible entities in left subtree are always better
914 		 * choices, since they have earlier deadlines.
915 		 */
916 		if (left && vruntime_eligible(cfs_rq,
917 					__node_2_se(left)->min_vruntime)) {
918 			node = left;
919 			continue;
920 		}
921 
922 		se = __node_2_se(node);
923 
924 		/*
925 		 * The left subtree either is empty or has no eligible
926 		 * entity, so check the current node since it is the one
927 		 * with earliest deadline that might be eligible.
928 		 */
929 		if (entity_eligible(cfs_rq, se)) {
930 			best = se;
931 			break;
932 		}
933 
934 		node = node->rb_right;
935 	}
936 found:
937 	if (!best || (curr && entity_before(curr, best)))
938 		best = curr;
939 
940 	return best;
941 }
942 
943 #ifdef CONFIG_SCHED_DEBUG
944 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
945 {
946 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
947 
948 	if (!last)
949 		return NULL;
950 
951 	return __node_2_se(last);
952 }
953 
954 /**************************************************************
955  * Scheduling class statistics methods:
956  */
957 #ifdef CONFIG_SMP
958 int sched_update_scaling(void)
959 {
960 	unsigned int factor = get_update_sysctl_factor();
961 
962 #define WRT_SYSCTL(name) \
963 	(normalized_sysctl_##name = sysctl_##name / (factor))
964 	WRT_SYSCTL(sched_base_slice);
965 #undef WRT_SYSCTL
966 
967 	return 0;
968 }
969 #endif
970 #endif
971 
972 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
973 
974 /*
975  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
976  * this is probably good enough.
977  */
978 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
979 {
980 	if ((s64)(se->vruntime - se->deadline) < 0)
981 		return;
982 
983 	/*
984 	 * For EEVDF the virtual time slope is determined by w_i (iow.
985 	 * nice) while the request time r_i is determined by
986 	 * sysctl_sched_base_slice.
987 	 */
988 	se->slice = sysctl_sched_base_slice;
989 
990 	/*
991 	 * EEVDF: vd_i = ve_i + r_i / w_i
992 	 */
993 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
994 
995 	/*
996 	 * The task has consumed its request, reschedule.
997 	 */
998 	if (cfs_rq->nr_running > 1) {
999 		resched_curr(rq_of(cfs_rq));
1000 		clear_buddies(cfs_rq, se);
1001 	}
1002 }
1003 
1004 #include "pelt.h"
1005 #ifdef CONFIG_SMP
1006 
1007 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1008 static unsigned long task_h_load(struct task_struct *p);
1009 static unsigned long capacity_of(int cpu);
1010 
1011 /* Give new sched_entity start runnable values to heavy its load in infant time */
1012 void init_entity_runnable_average(struct sched_entity *se)
1013 {
1014 	struct sched_avg *sa = &se->avg;
1015 
1016 	memset(sa, 0, sizeof(*sa));
1017 
1018 	/*
1019 	 * Tasks are initialized with full load to be seen as heavy tasks until
1020 	 * they get a chance to stabilize to their real load level.
1021 	 * Group entities are initialized with zero load to reflect the fact that
1022 	 * nothing has been attached to the task group yet.
1023 	 */
1024 	if (entity_is_task(se))
1025 		sa->load_avg = scale_load_down(se->load.weight);
1026 
1027 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1028 }
1029 
1030 /*
1031  * With new tasks being created, their initial util_avgs are extrapolated
1032  * based on the cfs_rq's current util_avg:
1033  *
1034  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1035  *
1036  * However, in many cases, the above util_avg does not give a desired
1037  * value. Moreover, the sum of the util_avgs may be divergent, such
1038  * as when the series is a harmonic series.
1039  *
1040  * To solve this problem, we also cap the util_avg of successive tasks to
1041  * only 1/2 of the left utilization budget:
1042  *
1043  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1044  *
1045  * where n denotes the nth task and cpu_scale the CPU capacity.
1046  *
1047  * For example, for a CPU with 1024 of capacity, a simplest series from
1048  * the beginning would be like:
1049  *
1050  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1051  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1052  *
1053  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1054  * if util_avg > util_avg_cap.
1055  */
1056 void post_init_entity_util_avg(struct task_struct *p)
1057 {
1058 	struct sched_entity *se = &p->se;
1059 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1060 	struct sched_avg *sa = &se->avg;
1061 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1062 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1063 
1064 	if (p->sched_class != &fair_sched_class) {
1065 		/*
1066 		 * For !fair tasks do:
1067 		 *
1068 		update_cfs_rq_load_avg(now, cfs_rq);
1069 		attach_entity_load_avg(cfs_rq, se);
1070 		switched_from_fair(rq, p);
1071 		 *
1072 		 * such that the next switched_to_fair() has the
1073 		 * expected state.
1074 		 */
1075 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1076 		return;
1077 	}
1078 
1079 	if (cap > 0) {
1080 		if (cfs_rq->avg.util_avg != 0) {
1081 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1082 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1083 
1084 			if (sa->util_avg > cap)
1085 				sa->util_avg = cap;
1086 		} else {
1087 			sa->util_avg = cap;
1088 		}
1089 	}
1090 
1091 	sa->runnable_avg = sa->util_avg;
1092 }
1093 
1094 #else /* !CONFIG_SMP */
1095 void init_entity_runnable_average(struct sched_entity *se)
1096 {
1097 }
1098 void post_init_entity_util_avg(struct task_struct *p)
1099 {
1100 }
1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1102 {
1103 }
1104 #endif /* CONFIG_SMP */
1105 
1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1107 {
1108 	u64 now = rq_clock_task(rq);
1109 	s64 delta_exec;
1110 
1111 	delta_exec = now - curr->exec_start;
1112 	if (unlikely(delta_exec <= 0))
1113 		return delta_exec;
1114 
1115 	curr->exec_start = now;
1116 	curr->sum_exec_runtime += delta_exec;
1117 
1118 	if (schedstat_enabled()) {
1119 		struct sched_statistics *stats;
1120 
1121 		stats = __schedstats_from_se(curr);
1122 		__schedstat_set(stats->exec_max,
1123 				max(delta_exec, stats->exec_max));
1124 	}
1125 
1126 	return delta_exec;
1127 }
1128 
1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1130 {
1131 	trace_sched_stat_runtime(p, delta_exec);
1132 	account_group_exec_runtime(p, delta_exec);
1133 	cgroup_account_cputime(p, delta_exec);
1134 	if (p->dl_server)
1135 		dl_server_update(p->dl_server, delta_exec);
1136 }
1137 
1138 /*
1139  * Used by other classes to account runtime.
1140  */
1141 s64 update_curr_common(struct rq *rq)
1142 {
1143 	struct task_struct *curr = rq->curr;
1144 	s64 delta_exec;
1145 
1146 	delta_exec = update_curr_se(rq, &curr->se);
1147 	if (likely(delta_exec > 0))
1148 		update_curr_task(curr, delta_exec);
1149 
1150 	return delta_exec;
1151 }
1152 
1153 /*
1154  * Update the current task's runtime statistics.
1155  */
1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 	struct sched_entity *curr = cfs_rq->curr;
1159 	s64 delta_exec;
1160 
1161 	if (unlikely(!curr))
1162 		return;
1163 
1164 	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1165 	if (unlikely(delta_exec <= 0))
1166 		return;
1167 
1168 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1169 	update_deadline(cfs_rq, curr);
1170 	update_min_vruntime(cfs_rq);
1171 
1172 	if (entity_is_task(curr))
1173 		update_curr_task(task_of(curr), delta_exec);
1174 
1175 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1176 }
1177 
1178 static void update_curr_fair(struct rq *rq)
1179 {
1180 	update_curr(cfs_rq_of(&rq->curr->se));
1181 }
1182 
1183 static inline void
1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1185 {
1186 	struct sched_statistics *stats;
1187 	struct task_struct *p = NULL;
1188 
1189 	if (!schedstat_enabled())
1190 		return;
1191 
1192 	stats = __schedstats_from_se(se);
1193 
1194 	if (entity_is_task(se))
1195 		p = task_of(se);
1196 
1197 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1198 }
1199 
1200 static inline void
1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1202 {
1203 	struct sched_statistics *stats;
1204 	struct task_struct *p = NULL;
1205 
1206 	if (!schedstat_enabled())
1207 		return;
1208 
1209 	stats = __schedstats_from_se(se);
1210 
1211 	/*
1212 	 * When the sched_schedstat changes from 0 to 1, some sched se
1213 	 * maybe already in the runqueue, the se->statistics.wait_start
1214 	 * will be 0.So it will let the delta wrong. We need to avoid this
1215 	 * scenario.
1216 	 */
1217 	if (unlikely(!schedstat_val(stats->wait_start)))
1218 		return;
1219 
1220 	if (entity_is_task(se))
1221 		p = task_of(se);
1222 
1223 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1224 }
1225 
1226 static inline void
1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1228 {
1229 	struct sched_statistics *stats;
1230 	struct task_struct *tsk = NULL;
1231 
1232 	if (!schedstat_enabled())
1233 		return;
1234 
1235 	stats = __schedstats_from_se(se);
1236 
1237 	if (entity_is_task(se))
1238 		tsk = task_of(se);
1239 
1240 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1241 }
1242 
1243 /*
1244  * Task is being enqueued - update stats:
1245  */
1246 static inline void
1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1248 {
1249 	if (!schedstat_enabled())
1250 		return;
1251 
1252 	/*
1253 	 * Are we enqueueing a waiting task? (for current tasks
1254 	 * a dequeue/enqueue event is a NOP)
1255 	 */
1256 	if (se != cfs_rq->curr)
1257 		update_stats_wait_start_fair(cfs_rq, se);
1258 
1259 	if (flags & ENQUEUE_WAKEUP)
1260 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1261 }
1262 
1263 static inline void
1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1265 {
1266 
1267 	if (!schedstat_enabled())
1268 		return;
1269 
1270 	/*
1271 	 * Mark the end of the wait period if dequeueing a
1272 	 * waiting task:
1273 	 */
1274 	if (se != cfs_rq->curr)
1275 		update_stats_wait_end_fair(cfs_rq, se);
1276 
1277 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1278 		struct task_struct *tsk = task_of(se);
1279 		unsigned int state;
1280 
1281 		/* XXX racy against TTWU */
1282 		state = READ_ONCE(tsk->__state);
1283 		if (state & TASK_INTERRUPTIBLE)
1284 			__schedstat_set(tsk->stats.sleep_start,
1285 				      rq_clock(rq_of(cfs_rq)));
1286 		if (state & TASK_UNINTERRUPTIBLE)
1287 			__schedstat_set(tsk->stats.block_start,
1288 				      rq_clock(rq_of(cfs_rq)));
1289 	}
1290 }
1291 
1292 /*
1293  * We are picking a new current task - update its stats:
1294  */
1295 static inline void
1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1297 {
1298 	/*
1299 	 * We are starting a new run period:
1300 	 */
1301 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1302 }
1303 
1304 /**************************************************
1305  * Scheduling class queueing methods:
1306  */
1307 
1308 static inline bool is_core_idle(int cpu)
1309 {
1310 #ifdef CONFIG_SCHED_SMT
1311 	int sibling;
1312 
1313 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1314 		if (cpu == sibling)
1315 			continue;
1316 
1317 		if (!idle_cpu(sibling))
1318 			return false;
1319 	}
1320 #endif
1321 
1322 	return true;
1323 }
1324 
1325 #ifdef CONFIG_NUMA
1326 #define NUMA_IMBALANCE_MIN 2
1327 
1328 static inline long
1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1330 {
1331 	/*
1332 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1333 	 * threshold. Above this threshold, individual tasks may be contending
1334 	 * for both memory bandwidth and any shared HT resources.  This is an
1335 	 * approximation as the number of running tasks may not be related to
1336 	 * the number of busy CPUs due to sched_setaffinity.
1337 	 */
1338 	if (dst_running > imb_numa_nr)
1339 		return imbalance;
1340 
1341 	/*
1342 	 * Allow a small imbalance based on a simple pair of communicating
1343 	 * tasks that remain local when the destination is lightly loaded.
1344 	 */
1345 	if (imbalance <= NUMA_IMBALANCE_MIN)
1346 		return 0;
1347 
1348 	return imbalance;
1349 }
1350 #endif /* CONFIG_NUMA */
1351 
1352 #ifdef CONFIG_NUMA_BALANCING
1353 /*
1354  * Approximate time to scan a full NUMA task in ms. The task scan period is
1355  * calculated based on the tasks virtual memory size and
1356  * numa_balancing_scan_size.
1357  */
1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1360 
1361 /* Portion of address space to scan in MB */
1362 unsigned int sysctl_numa_balancing_scan_size = 256;
1363 
1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1365 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1366 
1367 /* The page with hint page fault latency < threshold in ms is considered hot */
1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1369 
1370 struct numa_group {
1371 	refcount_t refcount;
1372 
1373 	spinlock_t lock; /* nr_tasks, tasks */
1374 	int nr_tasks;
1375 	pid_t gid;
1376 	int active_nodes;
1377 
1378 	struct rcu_head rcu;
1379 	unsigned long total_faults;
1380 	unsigned long max_faults_cpu;
1381 	/*
1382 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1383 	 *
1384 	 * Faults_cpu is used to decide whether memory should move
1385 	 * towards the CPU. As a consequence, these stats are weighted
1386 	 * more by CPU use than by memory faults.
1387 	 */
1388 	unsigned long faults[];
1389 };
1390 
1391 /*
1392  * For functions that can be called in multiple contexts that permit reading
1393  * ->numa_group (see struct task_struct for locking rules).
1394  */
1395 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1396 {
1397 	return rcu_dereference_check(p->numa_group, p == current ||
1398 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1399 }
1400 
1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1402 {
1403 	return rcu_dereference_protected(p->numa_group, p == current);
1404 }
1405 
1406 static inline unsigned long group_faults_priv(struct numa_group *ng);
1407 static inline unsigned long group_faults_shared(struct numa_group *ng);
1408 
1409 static unsigned int task_nr_scan_windows(struct task_struct *p)
1410 {
1411 	unsigned long rss = 0;
1412 	unsigned long nr_scan_pages;
1413 
1414 	/*
1415 	 * Calculations based on RSS as non-present and empty pages are skipped
1416 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1417 	 * on resident pages
1418 	 */
1419 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1420 	rss = get_mm_rss(p->mm);
1421 	if (!rss)
1422 		rss = nr_scan_pages;
1423 
1424 	rss = round_up(rss, nr_scan_pages);
1425 	return rss / nr_scan_pages;
1426 }
1427 
1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1429 #define MAX_SCAN_WINDOW 2560
1430 
1431 static unsigned int task_scan_min(struct task_struct *p)
1432 {
1433 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1434 	unsigned int scan, floor;
1435 	unsigned int windows = 1;
1436 
1437 	if (scan_size < MAX_SCAN_WINDOW)
1438 		windows = MAX_SCAN_WINDOW / scan_size;
1439 	floor = 1000 / windows;
1440 
1441 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1442 	return max_t(unsigned int, floor, scan);
1443 }
1444 
1445 static unsigned int task_scan_start(struct task_struct *p)
1446 {
1447 	unsigned long smin = task_scan_min(p);
1448 	unsigned long period = smin;
1449 	struct numa_group *ng;
1450 
1451 	/* Scale the maximum scan period with the amount of shared memory. */
1452 	rcu_read_lock();
1453 	ng = rcu_dereference(p->numa_group);
1454 	if (ng) {
1455 		unsigned long shared = group_faults_shared(ng);
1456 		unsigned long private = group_faults_priv(ng);
1457 
1458 		period *= refcount_read(&ng->refcount);
1459 		period *= shared + 1;
1460 		period /= private + shared + 1;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	return max(smin, period);
1465 }
1466 
1467 static unsigned int task_scan_max(struct task_struct *p)
1468 {
1469 	unsigned long smin = task_scan_min(p);
1470 	unsigned long smax;
1471 	struct numa_group *ng;
1472 
1473 	/* Watch for min being lower than max due to floor calculations */
1474 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1475 
1476 	/* Scale the maximum scan period with the amount of shared memory. */
1477 	ng = deref_curr_numa_group(p);
1478 	if (ng) {
1479 		unsigned long shared = group_faults_shared(ng);
1480 		unsigned long private = group_faults_priv(ng);
1481 		unsigned long period = smax;
1482 
1483 		period *= refcount_read(&ng->refcount);
1484 		period *= shared + 1;
1485 		period /= private + shared + 1;
1486 
1487 		smax = max(smax, period);
1488 	}
1489 
1490 	return max(smin, smax);
1491 }
1492 
1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1494 {
1495 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1496 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1497 }
1498 
1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1500 {
1501 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1502 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1503 }
1504 
1505 /* Shared or private faults. */
1506 #define NR_NUMA_HINT_FAULT_TYPES 2
1507 
1508 /* Memory and CPU locality */
1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1510 
1511 /* Averaged statistics, and temporary buffers. */
1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1513 
1514 pid_t task_numa_group_id(struct task_struct *p)
1515 {
1516 	struct numa_group *ng;
1517 	pid_t gid = 0;
1518 
1519 	rcu_read_lock();
1520 	ng = rcu_dereference(p->numa_group);
1521 	if (ng)
1522 		gid = ng->gid;
1523 	rcu_read_unlock();
1524 
1525 	return gid;
1526 }
1527 
1528 /*
1529  * The averaged statistics, shared & private, memory & CPU,
1530  * occupy the first half of the array. The second half of the
1531  * array is for current counters, which are averaged into the
1532  * first set by task_numa_placement.
1533  */
1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1535 {
1536 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1537 }
1538 
1539 static inline unsigned long task_faults(struct task_struct *p, int nid)
1540 {
1541 	if (!p->numa_faults)
1542 		return 0;
1543 
1544 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1545 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1546 }
1547 
1548 static inline unsigned long group_faults(struct task_struct *p, int nid)
1549 {
1550 	struct numa_group *ng = deref_task_numa_group(p);
1551 
1552 	if (!ng)
1553 		return 0;
1554 
1555 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1556 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1557 }
1558 
1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1560 {
1561 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1562 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1563 }
1564 
1565 static inline unsigned long group_faults_priv(struct numa_group *ng)
1566 {
1567 	unsigned long faults = 0;
1568 	int node;
1569 
1570 	for_each_online_node(node) {
1571 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1572 	}
1573 
1574 	return faults;
1575 }
1576 
1577 static inline unsigned long group_faults_shared(struct numa_group *ng)
1578 {
1579 	unsigned long faults = 0;
1580 	int node;
1581 
1582 	for_each_online_node(node) {
1583 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1584 	}
1585 
1586 	return faults;
1587 }
1588 
1589 /*
1590  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1591  * considered part of a numa group's pseudo-interleaving set. Migrations
1592  * between these nodes are slowed down, to allow things to settle down.
1593  */
1594 #define ACTIVE_NODE_FRACTION 3
1595 
1596 static bool numa_is_active_node(int nid, struct numa_group *ng)
1597 {
1598 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1599 }
1600 
1601 /* Handle placement on systems where not all nodes are directly connected. */
1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1603 					int lim_dist, bool task)
1604 {
1605 	unsigned long score = 0;
1606 	int node, max_dist;
1607 
1608 	/*
1609 	 * All nodes are directly connected, and the same distance
1610 	 * from each other. No need for fancy placement algorithms.
1611 	 */
1612 	if (sched_numa_topology_type == NUMA_DIRECT)
1613 		return 0;
1614 
1615 	/* sched_max_numa_distance may be changed in parallel. */
1616 	max_dist = READ_ONCE(sched_max_numa_distance);
1617 	/*
1618 	 * This code is called for each node, introducing N^2 complexity,
1619 	 * which should be ok given the number of nodes rarely exceeds 8.
1620 	 */
1621 	for_each_online_node(node) {
1622 		unsigned long faults;
1623 		int dist = node_distance(nid, node);
1624 
1625 		/*
1626 		 * The furthest away nodes in the system are not interesting
1627 		 * for placement; nid was already counted.
1628 		 */
1629 		if (dist >= max_dist || node == nid)
1630 			continue;
1631 
1632 		/*
1633 		 * On systems with a backplane NUMA topology, compare groups
1634 		 * of nodes, and move tasks towards the group with the most
1635 		 * memory accesses. When comparing two nodes at distance
1636 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1637 		 * of each group. Skip other nodes.
1638 		 */
1639 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1640 			continue;
1641 
1642 		/* Add up the faults from nearby nodes. */
1643 		if (task)
1644 			faults = task_faults(p, node);
1645 		else
1646 			faults = group_faults(p, node);
1647 
1648 		/*
1649 		 * On systems with a glueless mesh NUMA topology, there are
1650 		 * no fixed "groups of nodes". Instead, nodes that are not
1651 		 * directly connected bounce traffic through intermediate
1652 		 * nodes; a numa_group can occupy any set of nodes.
1653 		 * The further away a node is, the less the faults count.
1654 		 * This seems to result in good task placement.
1655 		 */
1656 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1657 			faults *= (max_dist - dist);
1658 			faults /= (max_dist - LOCAL_DISTANCE);
1659 		}
1660 
1661 		score += faults;
1662 	}
1663 
1664 	return score;
1665 }
1666 
1667 /*
1668  * These return the fraction of accesses done by a particular task, or
1669  * task group, on a particular numa node.  The group weight is given a
1670  * larger multiplier, in order to group tasks together that are almost
1671  * evenly spread out between numa nodes.
1672  */
1673 static inline unsigned long task_weight(struct task_struct *p, int nid,
1674 					int dist)
1675 {
1676 	unsigned long faults, total_faults;
1677 
1678 	if (!p->numa_faults)
1679 		return 0;
1680 
1681 	total_faults = p->total_numa_faults;
1682 
1683 	if (!total_faults)
1684 		return 0;
1685 
1686 	faults = task_faults(p, nid);
1687 	faults += score_nearby_nodes(p, nid, dist, true);
1688 
1689 	return 1000 * faults / total_faults;
1690 }
1691 
1692 static inline unsigned long group_weight(struct task_struct *p, int nid,
1693 					 int dist)
1694 {
1695 	struct numa_group *ng = deref_task_numa_group(p);
1696 	unsigned long faults, total_faults;
1697 
1698 	if (!ng)
1699 		return 0;
1700 
1701 	total_faults = ng->total_faults;
1702 
1703 	if (!total_faults)
1704 		return 0;
1705 
1706 	faults = group_faults(p, nid);
1707 	faults += score_nearby_nodes(p, nid, dist, false);
1708 
1709 	return 1000 * faults / total_faults;
1710 }
1711 
1712 /*
1713  * If memory tiering mode is enabled, cpupid of slow memory page is
1714  * used to record scan time instead of CPU and PID.  When tiering mode
1715  * is disabled at run time, the scan time (in cpupid) will be
1716  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1717  * access out of array bound.
1718  */
1719 static inline bool cpupid_valid(int cpupid)
1720 {
1721 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1722 }
1723 
1724 /*
1725  * For memory tiering mode, if there are enough free pages (more than
1726  * enough watermark defined here) in fast memory node, to take full
1727  * advantage of fast memory capacity, all recently accessed slow
1728  * memory pages will be migrated to fast memory node without
1729  * considering hot threshold.
1730  */
1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1732 {
1733 	int z;
1734 	unsigned long enough_wmark;
1735 
1736 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1737 			   pgdat->node_present_pages >> 4);
1738 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1739 		struct zone *zone = pgdat->node_zones + z;
1740 
1741 		if (!populated_zone(zone))
1742 			continue;
1743 
1744 		if (zone_watermark_ok(zone, 0,
1745 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1746 				      ZONE_MOVABLE, 0))
1747 			return true;
1748 	}
1749 	return false;
1750 }
1751 
1752 /*
1753  * For memory tiering mode, when page tables are scanned, the scan
1754  * time will be recorded in struct page in addition to make page
1755  * PROT_NONE for slow memory page.  So when the page is accessed, in
1756  * hint page fault handler, the hint page fault latency is calculated
1757  * via,
1758  *
1759  *	hint page fault latency = hint page fault time - scan time
1760  *
1761  * The smaller the hint page fault latency, the higher the possibility
1762  * for the page to be hot.
1763  */
1764 static int numa_hint_fault_latency(struct folio *folio)
1765 {
1766 	int last_time, time;
1767 
1768 	time = jiffies_to_msecs(jiffies);
1769 	last_time = folio_xchg_access_time(folio, time);
1770 
1771 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1772 }
1773 
1774 /*
1775  * For memory tiering mode, too high promotion/demotion throughput may
1776  * hurt application latency.  So we provide a mechanism to rate limit
1777  * the number of pages that are tried to be promoted.
1778  */
1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1780 				      unsigned long rate_limit, int nr)
1781 {
1782 	unsigned long nr_cand;
1783 	unsigned int now, start;
1784 
1785 	now = jiffies_to_msecs(jiffies);
1786 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1787 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1788 	start = pgdat->nbp_rl_start;
1789 	if (now - start > MSEC_PER_SEC &&
1790 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1791 		pgdat->nbp_rl_nr_cand = nr_cand;
1792 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1793 		return true;
1794 	return false;
1795 }
1796 
1797 #define NUMA_MIGRATION_ADJUST_STEPS	16
1798 
1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1800 					    unsigned long rate_limit,
1801 					    unsigned int ref_th)
1802 {
1803 	unsigned int now, start, th_period, unit_th, th;
1804 	unsigned long nr_cand, ref_cand, diff_cand;
1805 
1806 	now = jiffies_to_msecs(jiffies);
1807 	th_period = sysctl_numa_balancing_scan_period_max;
1808 	start = pgdat->nbp_th_start;
1809 	if (now - start > th_period &&
1810 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1811 		ref_cand = rate_limit *
1812 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1813 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1814 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1815 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1816 		th = pgdat->nbp_threshold ? : ref_th;
1817 		if (diff_cand > ref_cand * 11 / 10)
1818 			th = max(th - unit_th, unit_th);
1819 		else if (diff_cand < ref_cand * 9 / 10)
1820 			th = min(th + unit_th, ref_th * 2);
1821 		pgdat->nbp_th_nr_cand = nr_cand;
1822 		pgdat->nbp_threshold = th;
1823 	}
1824 }
1825 
1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1827 				int src_nid, int dst_cpu)
1828 {
1829 	struct numa_group *ng = deref_curr_numa_group(p);
1830 	int dst_nid = cpu_to_node(dst_cpu);
1831 	int last_cpupid, this_cpupid;
1832 
1833 	/*
1834 	 * Cannot migrate to memoryless nodes.
1835 	 */
1836 	if (!node_state(dst_nid, N_MEMORY))
1837 		return false;
1838 
1839 	/*
1840 	 * The pages in slow memory node should be migrated according
1841 	 * to hot/cold instead of private/shared.
1842 	 */
1843 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1844 	    !node_is_toptier(src_nid)) {
1845 		struct pglist_data *pgdat;
1846 		unsigned long rate_limit;
1847 		unsigned int latency, th, def_th;
1848 
1849 		pgdat = NODE_DATA(dst_nid);
1850 		if (pgdat_free_space_enough(pgdat)) {
1851 			/* workload changed, reset hot threshold */
1852 			pgdat->nbp_threshold = 0;
1853 			return true;
1854 		}
1855 
1856 		def_th = sysctl_numa_balancing_hot_threshold;
1857 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1858 			(20 - PAGE_SHIFT);
1859 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1860 
1861 		th = pgdat->nbp_threshold ? : def_th;
1862 		latency = numa_hint_fault_latency(folio);
1863 		if (latency >= th)
1864 			return false;
1865 
1866 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1867 						  folio_nr_pages(folio));
1868 	}
1869 
1870 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1871 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1872 
1873 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1874 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1875 		return false;
1876 
1877 	/*
1878 	 * Allow first faults or private faults to migrate immediately early in
1879 	 * the lifetime of a task. The magic number 4 is based on waiting for
1880 	 * two full passes of the "multi-stage node selection" test that is
1881 	 * executed below.
1882 	 */
1883 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1884 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1885 		return true;
1886 
1887 	/*
1888 	 * Multi-stage node selection is used in conjunction with a periodic
1889 	 * migration fault to build a temporal task<->page relation. By using
1890 	 * a two-stage filter we remove short/unlikely relations.
1891 	 *
1892 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1893 	 * a task's usage of a particular page (n_p) per total usage of this
1894 	 * page (n_t) (in a given time-span) to a probability.
1895 	 *
1896 	 * Our periodic faults will sample this probability and getting the
1897 	 * same result twice in a row, given these samples are fully
1898 	 * independent, is then given by P(n)^2, provided our sample period
1899 	 * is sufficiently short compared to the usage pattern.
1900 	 *
1901 	 * This quadric squishes small probabilities, making it less likely we
1902 	 * act on an unlikely task<->page relation.
1903 	 */
1904 	if (!cpupid_pid_unset(last_cpupid) &&
1905 				cpupid_to_nid(last_cpupid) != dst_nid)
1906 		return false;
1907 
1908 	/* Always allow migrate on private faults */
1909 	if (cpupid_match_pid(p, last_cpupid))
1910 		return true;
1911 
1912 	/* A shared fault, but p->numa_group has not been set up yet. */
1913 	if (!ng)
1914 		return true;
1915 
1916 	/*
1917 	 * Destination node is much more heavily used than the source
1918 	 * node? Allow migration.
1919 	 */
1920 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1921 					ACTIVE_NODE_FRACTION)
1922 		return true;
1923 
1924 	/*
1925 	 * Distribute memory according to CPU & memory use on each node,
1926 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1927 	 *
1928 	 * faults_cpu(dst)   3   faults_cpu(src)
1929 	 * --------------- * - > ---------------
1930 	 * faults_mem(dst)   4   faults_mem(src)
1931 	 */
1932 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1933 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1934 }
1935 
1936 /*
1937  * 'numa_type' describes the node at the moment of load balancing.
1938  */
1939 enum numa_type {
1940 	/* The node has spare capacity that can be used to run more tasks.  */
1941 	node_has_spare = 0,
1942 	/*
1943 	 * The node is fully used and the tasks don't compete for more CPU
1944 	 * cycles. Nevertheless, some tasks might wait before running.
1945 	 */
1946 	node_fully_busy,
1947 	/*
1948 	 * The node is overloaded and can't provide expected CPU cycles to all
1949 	 * tasks.
1950 	 */
1951 	node_overloaded
1952 };
1953 
1954 /* Cached statistics for all CPUs within a node */
1955 struct numa_stats {
1956 	unsigned long load;
1957 	unsigned long runnable;
1958 	unsigned long util;
1959 	/* Total compute capacity of CPUs on a node */
1960 	unsigned long compute_capacity;
1961 	unsigned int nr_running;
1962 	unsigned int weight;
1963 	enum numa_type node_type;
1964 	int idle_cpu;
1965 };
1966 
1967 struct task_numa_env {
1968 	struct task_struct *p;
1969 
1970 	int src_cpu, src_nid;
1971 	int dst_cpu, dst_nid;
1972 	int imb_numa_nr;
1973 
1974 	struct numa_stats src_stats, dst_stats;
1975 
1976 	int imbalance_pct;
1977 	int dist;
1978 
1979 	struct task_struct *best_task;
1980 	long best_imp;
1981 	int best_cpu;
1982 };
1983 
1984 static unsigned long cpu_load(struct rq *rq);
1985 static unsigned long cpu_runnable(struct rq *rq);
1986 
1987 static inline enum
1988 numa_type numa_classify(unsigned int imbalance_pct,
1989 			 struct numa_stats *ns)
1990 {
1991 	if ((ns->nr_running > ns->weight) &&
1992 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1993 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1994 		return node_overloaded;
1995 
1996 	if ((ns->nr_running < ns->weight) ||
1997 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1998 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1999 		return node_has_spare;
2000 
2001 	return node_fully_busy;
2002 }
2003 
2004 #ifdef CONFIG_SCHED_SMT
2005 /* Forward declarations of select_idle_sibling helpers */
2006 static inline bool test_idle_cores(int cpu);
2007 static inline int numa_idle_core(int idle_core, int cpu)
2008 {
2009 	if (!static_branch_likely(&sched_smt_present) ||
2010 	    idle_core >= 0 || !test_idle_cores(cpu))
2011 		return idle_core;
2012 
2013 	/*
2014 	 * Prefer cores instead of packing HT siblings
2015 	 * and triggering future load balancing.
2016 	 */
2017 	if (is_core_idle(cpu))
2018 		idle_core = cpu;
2019 
2020 	return idle_core;
2021 }
2022 #else
2023 static inline int numa_idle_core(int idle_core, int cpu)
2024 {
2025 	return idle_core;
2026 }
2027 #endif
2028 
2029 /*
2030  * Gather all necessary information to make NUMA balancing placement
2031  * decisions that are compatible with standard load balancer. This
2032  * borrows code and logic from update_sg_lb_stats but sharing a
2033  * common implementation is impractical.
2034  */
2035 static void update_numa_stats(struct task_numa_env *env,
2036 			      struct numa_stats *ns, int nid,
2037 			      bool find_idle)
2038 {
2039 	int cpu, idle_core = -1;
2040 
2041 	memset(ns, 0, sizeof(*ns));
2042 	ns->idle_cpu = -1;
2043 
2044 	rcu_read_lock();
2045 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2046 		struct rq *rq = cpu_rq(cpu);
2047 
2048 		ns->load += cpu_load(rq);
2049 		ns->runnable += cpu_runnable(rq);
2050 		ns->util += cpu_util_cfs(cpu);
2051 		ns->nr_running += rq->cfs.h_nr_running;
2052 		ns->compute_capacity += capacity_of(cpu);
2053 
2054 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2055 			if (READ_ONCE(rq->numa_migrate_on) ||
2056 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2057 				continue;
2058 
2059 			if (ns->idle_cpu == -1)
2060 				ns->idle_cpu = cpu;
2061 
2062 			idle_core = numa_idle_core(idle_core, cpu);
2063 		}
2064 	}
2065 	rcu_read_unlock();
2066 
2067 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2068 
2069 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2070 
2071 	if (idle_core >= 0)
2072 		ns->idle_cpu = idle_core;
2073 }
2074 
2075 static void task_numa_assign(struct task_numa_env *env,
2076 			     struct task_struct *p, long imp)
2077 {
2078 	struct rq *rq = cpu_rq(env->dst_cpu);
2079 
2080 	/* Check if run-queue part of active NUMA balance. */
2081 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2082 		int cpu;
2083 		int start = env->dst_cpu;
2084 
2085 		/* Find alternative idle CPU. */
2086 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2087 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2088 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2089 				continue;
2090 			}
2091 
2092 			env->dst_cpu = cpu;
2093 			rq = cpu_rq(env->dst_cpu);
2094 			if (!xchg(&rq->numa_migrate_on, 1))
2095 				goto assign;
2096 		}
2097 
2098 		/* Failed to find an alternative idle CPU */
2099 		return;
2100 	}
2101 
2102 assign:
2103 	/*
2104 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2105 	 * found a better CPU to move/swap.
2106 	 */
2107 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2108 		rq = cpu_rq(env->best_cpu);
2109 		WRITE_ONCE(rq->numa_migrate_on, 0);
2110 	}
2111 
2112 	if (env->best_task)
2113 		put_task_struct(env->best_task);
2114 	if (p)
2115 		get_task_struct(p);
2116 
2117 	env->best_task = p;
2118 	env->best_imp = imp;
2119 	env->best_cpu = env->dst_cpu;
2120 }
2121 
2122 static bool load_too_imbalanced(long src_load, long dst_load,
2123 				struct task_numa_env *env)
2124 {
2125 	long imb, old_imb;
2126 	long orig_src_load, orig_dst_load;
2127 	long src_capacity, dst_capacity;
2128 
2129 	/*
2130 	 * The load is corrected for the CPU capacity available on each node.
2131 	 *
2132 	 * src_load        dst_load
2133 	 * ------------ vs ---------
2134 	 * src_capacity    dst_capacity
2135 	 */
2136 	src_capacity = env->src_stats.compute_capacity;
2137 	dst_capacity = env->dst_stats.compute_capacity;
2138 
2139 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2140 
2141 	orig_src_load = env->src_stats.load;
2142 	orig_dst_load = env->dst_stats.load;
2143 
2144 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2145 
2146 	/* Would this change make things worse? */
2147 	return (imb > old_imb);
2148 }
2149 
2150 /*
2151  * Maximum NUMA importance can be 1998 (2*999);
2152  * SMALLIMP @ 30 would be close to 1998/64.
2153  * Used to deter task migration.
2154  */
2155 #define SMALLIMP	30
2156 
2157 /*
2158  * This checks if the overall compute and NUMA accesses of the system would
2159  * be improved if the source tasks was migrated to the target dst_cpu taking
2160  * into account that it might be best if task running on the dst_cpu should
2161  * be exchanged with the source task
2162  */
2163 static bool task_numa_compare(struct task_numa_env *env,
2164 			      long taskimp, long groupimp, bool maymove)
2165 {
2166 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2167 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2168 	long imp = p_ng ? groupimp : taskimp;
2169 	struct task_struct *cur;
2170 	long src_load, dst_load;
2171 	int dist = env->dist;
2172 	long moveimp = imp;
2173 	long load;
2174 	bool stopsearch = false;
2175 
2176 	if (READ_ONCE(dst_rq->numa_migrate_on))
2177 		return false;
2178 
2179 	rcu_read_lock();
2180 	cur = rcu_dereference(dst_rq->curr);
2181 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2182 		cur = NULL;
2183 
2184 	/*
2185 	 * Because we have preemption enabled we can get migrated around and
2186 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2187 	 */
2188 	if (cur == env->p) {
2189 		stopsearch = true;
2190 		goto unlock;
2191 	}
2192 
2193 	if (!cur) {
2194 		if (maymove && moveimp >= env->best_imp)
2195 			goto assign;
2196 		else
2197 			goto unlock;
2198 	}
2199 
2200 	/* Skip this swap candidate if cannot move to the source cpu. */
2201 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2202 		goto unlock;
2203 
2204 	/*
2205 	 * Skip this swap candidate if it is not moving to its preferred
2206 	 * node and the best task is.
2207 	 */
2208 	if (env->best_task &&
2209 	    env->best_task->numa_preferred_nid == env->src_nid &&
2210 	    cur->numa_preferred_nid != env->src_nid) {
2211 		goto unlock;
2212 	}
2213 
2214 	/*
2215 	 * "imp" is the fault differential for the source task between the
2216 	 * source and destination node. Calculate the total differential for
2217 	 * the source task and potential destination task. The more negative
2218 	 * the value is, the more remote accesses that would be expected to
2219 	 * be incurred if the tasks were swapped.
2220 	 *
2221 	 * If dst and source tasks are in the same NUMA group, or not
2222 	 * in any group then look only at task weights.
2223 	 */
2224 	cur_ng = rcu_dereference(cur->numa_group);
2225 	if (cur_ng == p_ng) {
2226 		/*
2227 		 * Do not swap within a group or between tasks that have
2228 		 * no group if there is spare capacity. Swapping does
2229 		 * not address the load imbalance and helps one task at
2230 		 * the cost of punishing another.
2231 		 */
2232 		if (env->dst_stats.node_type == node_has_spare)
2233 			goto unlock;
2234 
2235 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2236 		      task_weight(cur, env->dst_nid, dist);
2237 		/*
2238 		 * Add some hysteresis to prevent swapping the
2239 		 * tasks within a group over tiny differences.
2240 		 */
2241 		if (cur_ng)
2242 			imp -= imp / 16;
2243 	} else {
2244 		/*
2245 		 * Compare the group weights. If a task is all by itself
2246 		 * (not part of a group), use the task weight instead.
2247 		 */
2248 		if (cur_ng && p_ng)
2249 			imp += group_weight(cur, env->src_nid, dist) -
2250 			       group_weight(cur, env->dst_nid, dist);
2251 		else
2252 			imp += task_weight(cur, env->src_nid, dist) -
2253 			       task_weight(cur, env->dst_nid, dist);
2254 	}
2255 
2256 	/* Discourage picking a task already on its preferred node */
2257 	if (cur->numa_preferred_nid == env->dst_nid)
2258 		imp -= imp / 16;
2259 
2260 	/*
2261 	 * Encourage picking a task that moves to its preferred node.
2262 	 * This potentially makes imp larger than it's maximum of
2263 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2264 	 * case, it does not matter.
2265 	 */
2266 	if (cur->numa_preferred_nid == env->src_nid)
2267 		imp += imp / 8;
2268 
2269 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2270 		imp = moveimp;
2271 		cur = NULL;
2272 		goto assign;
2273 	}
2274 
2275 	/*
2276 	 * Prefer swapping with a task moving to its preferred node over a
2277 	 * task that is not.
2278 	 */
2279 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2280 	    env->best_task->numa_preferred_nid != env->src_nid) {
2281 		goto assign;
2282 	}
2283 
2284 	/*
2285 	 * If the NUMA importance is less than SMALLIMP,
2286 	 * task migration might only result in ping pong
2287 	 * of tasks and also hurt performance due to cache
2288 	 * misses.
2289 	 */
2290 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2291 		goto unlock;
2292 
2293 	/*
2294 	 * In the overloaded case, try and keep the load balanced.
2295 	 */
2296 	load = task_h_load(env->p) - task_h_load(cur);
2297 	if (!load)
2298 		goto assign;
2299 
2300 	dst_load = env->dst_stats.load + load;
2301 	src_load = env->src_stats.load - load;
2302 
2303 	if (load_too_imbalanced(src_load, dst_load, env))
2304 		goto unlock;
2305 
2306 assign:
2307 	/* Evaluate an idle CPU for a task numa move. */
2308 	if (!cur) {
2309 		int cpu = env->dst_stats.idle_cpu;
2310 
2311 		/* Nothing cached so current CPU went idle since the search. */
2312 		if (cpu < 0)
2313 			cpu = env->dst_cpu;
2314 
2315 		/*
2316 		 * If the CPU is no longer truly idle and the previous best CPU
2317 		 * is, keep using it.
2318 		 */
2319 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2320 		    idle_cpu(env->best_cpu)) {
2321 			cpu = env->best_cpu;
2322 		}
2323 
2324 		env->dst_cpu = cpu;
2325 	}
2326 
2327 	task_numa_assign(env, cur, imp);
2328 
2329 	/*
2330 	 * If a move to idle is allowed because there is capacity or load
2331 	 * balance improves then stop the search. While a better swap
2332 	 * candidate may exist, a search is not free.
2333 	 */
2334 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2335 		stopsearch = true;
2336 
2337 	/*
2338 	 * If a swap candidate must be identified and the current best task
2339 	 * moves its preferred node then stop the search.
2340 	 */
2341 	if (!maymove && env->best_task &&
2342 	    env->best_task->numa_preferred_nid == env->src_nid) {
2343 		stopsearch = true;
2344 	}
2345 unlock:
2346 	rcu_read_unlock();
2347 
2348 	return stopsearch;
2349 }
2350 
2351 static void task_numa_find_cpu(struct task_numa_env *env,
2352 				long taskimp, long groupimp)
2353 {
2354 	bool maymove = false;
2355 	int cpu;
2356 
2357 	/*
2358 	 * If dst node has spare capacity, then check if there is an
2359 	 * imbalance that would be overruled by the load balancer.
2360 	 */
2361 	if (env->dst_stats.node_type == node_has_spare) {
2362 		unsigned int imbalance;
2363 		int src_running, dst_running;
2364 
2365 		/*
2366 		 * Would movement cause an imbalance? Note that if src has
2367 		 * more running tasks that the imbalance is ignored as the
2368 		 * move improves the imbalance from the perspective of the
2369 		 * CPU load balancer.
2370 		 * */
2371 		src_running = env->src_stats.nr_running - 1;
2372 		dst_running = env->dst_stats.nr_running + 1;
2373 		imbalance = max(0, dst_running - src_running);
2374 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2375 						  env->imb_numa_nr);
2376 
2377 		/* Use idle CPU if there is no imbalance */
2378 		if (!imbalance) {
2379 			maymove = true;
2380 			if (env->dst_stats.idle_cpu >= 0) {
2381 				env->dst_cpu = env->dst_stats.idle_cpu;
2382 				task_numa_assign(env, NULL, 0);
2383 				return;
2384 			}
2385 		}
2386 	} else {
2387 		long src_load, dst_load, load;
2388 		/*
2389 		 * If the improvement from just moving env->p direction is better
2390 		 * than swapping tasks around, check if a move is possible.
2391 		 */
2392 		load = task_h_load(env->p);
2393 		dst_load = env->dst_stats.load + load;
2394 		src_load = env->src_stats.load - load;
2395 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2396 	}
2397 
2398 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2399 		/* Skip this CPU if the source task cannot migrate */
2400 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2401 			continue;
2402 
2403 		env->dst_cpu = cpu;
2404 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2405 			break;
2406 	}
2407 }
2408 
2409 static int task_numa_migrate(struct task_struct *p)
2410 {
2411 	struct task_numa_env env = {
2412 		.p = p,
2413 
2414 		.src_cpu = task_cpu(p),
2415 		.src_nid = task_node(p),
2416 
2417 		.imbalance_pct = 112,
2418 
2419 		.best_task = NULL,
2420 		.best_imp = 0,
2421 		.best_cpu = -1,
2422 	};
2423 	unsigned long taskweight, groupweight;
2424 	struct sched_domain *sd;
2425 	long taskimp, groupimp;
2426 	struct numa_group *ng;
2427 	struct rq *best_rq;
2428 	int nid, ret, dist;
2429 
2430 	/*
2431 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2432 	 * imbalance and would be the first to start moving tasks about.
2433 	 *
2434 	 * And we want to avoid any moving of tasks about, as that would create
2435 	 * random movement of tasks -- counter the numa conditions we're trying
2436 	 * to satisfy here.
2437 	 */
2438 	rcu_read_lock();
2439 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2440 	if (sd) {
2441 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2442 		env.imb_numa_nr = sd->imb_numa_nr;
2443 	}
2444 	rcu_read_unlock();
2445 
2446 	/*
2447 	 * Cpusets can break the scheduler domain tree into smaller
2448 	 * balance domains, some of which do not cross NUMA boundaries.
2449 	 * Tasks that are "trapped" in such domains cannot be migrated
2450 	 * elsewhere, so there is no point in (re)trying.
2451 	 */
2452 	if (unlikely(!sd)) {
2453 		sched_setnuma(p, task_node(p));
2454 		return -EINVAL;
2455 	}
2456 
2457 	env.dst_nid = p->numa_preferred_nid;
2458 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2459 	taskweight = task_weight(p, env.src_nid, dist);
2460 	groupweight = group_weight(p, env.src_nid, dist);
2461 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2462 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2463 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2464 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2465 
2466 	/* Try to find a spot on the preferred nid. */
2467 	task_numa_find_cpu(&env, taskimp, groupimp);
2468 
2469 	/*
2470 	 * Look at other nodes in these cases:
2471 	 * - there is no space available on the preferred_nid
2472 	 * - the task is part of a numa_group that is interleaved across
2473 	 *   multiple NUMA nodes; in order to better consolidate the group,
2474 	 *   we need to check other locations.
2475 	 */
2476 	ng = deref_curr_numa_group(p);
2477 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2478 		for_each_node_state(nid, N_CPU) {
2479 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2480 				continue;
2481 
2482 			dist = node_distance(env.src_nid, env.dst_nid);
2483 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2484 						dist != env.dist) {
2485 				taskweight = task_weight(p, env.src_nid, dist);
2486 				groupweight = group_weight(p, env.src_nid, dist);
2487 			}
2488 
2489 			/* Only consider nodes where both task and groups benefit */
2490 			taskimp = task_weight(p, nid, dist) - taskweight;
2491 			groupimp = group_weight(p, nid, dist) - groupweight;
2492 			if (taskimp < 0 && groupimp < 0)
2493 				continue;
2494 
2495 			env.dist = dist;
2496 			env.dst_nid = nid;
2497 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2498 			task_numa_find_cpu(&env, taskimp, groupimp);
2499 		}
2500 	}
2501 
2502 	/*
2503 	 * If the task is part of a workload that spans multiple NUMA nodes,
2504 	 * and is migrating into one of the workload's active nodes, remember
2505 	 * this node as the task's preferred numa node, so the workload can
2506 	 * settle down.
2507 	 * A task that migrated to a second choice node will be better off
2508 	 * trying for a better one later. Do not set the preferred node here.
2509 	 */
2510 	if (ng) {
2511 		if (env.best_cpu == -1)
2512 			nid = env.src_nid;
2513 		else
2514 			nid = cpu_to_node(env.best_cpu);
2515 
2516 		if (nid != p->numa_preferred_nid)
2517 			sched_setnuma(p, nid);
2518 	}
2519 
2520 	/* No better CPU than the current one was found. */
2521 	if (env.best_cpu == -1) {
2522 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2523 		return -EAGAIN;
2524 	}
2525 
2526 	best_rq = cpu_rq(env.best_cpu);
2527 	if (env.best_task == NULL) {
2528 		ret = migrate_task_to(p, env.best_cpu);
2529 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2530 		if (ret != 0)
2531 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2532 		return ret;
2533 	}
2534 
2535 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2536 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2537 
2538 	if (ret != 0)
2539 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2540 	put_task_struct(env.best_task);
2541 	return ret;
2542 }
2543 
2544 /* Attempt to migrate a task to a CPU on the preferred node. */
2545 static void numa_migrate_preferred(struct task_struct *p)
2546 {
2547 	unsigned long interval = HZ;
2548 
2549 	/* This task has no NUMA fault statistics yet */
2550 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2551 		return;
2552 
2553 	/* Periodically retry migrating the task to the preferred node */
2554 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2555 	p->numa_migrate_retry = jiffies + interval;
2556 
2557 	/* Success if task is already running on preferred CPU */
2558 	if (task_node(p) == p->numa_preferred_nid)
2559 		return;
2560 
2561 	/* Otherwise, try migrate to a CPU on the preferred node */
2562 	task_numa_migrate(p);
2563 }
2564 
2565 /*
2566  * Find out how many nodes the workload is actively running on. Do this by
2567  * tracking the nodes from which NUMA hinting faults are triggered. This can
2568  * be different from the set of nodes where the workload's memory is currently
2569  * located.
2570  */
2571 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2572 {
2573 	unsigned long faults, max_faults = 0;
2574 	int nid, active_nodes = 0;
2575 
2576 	for_each_node_state(nid, N_CPU) {
2577 		faults = group_faults_cpu(numa_group, nid);
2578 		if (faults > max_faults)
2579 			max_faults = faults;
2580 	}
2581 
2582 	for_each_node_state(nid, N_CPU) {
2583 		faults = group_faults_cpu(numa_group, nid);
2584 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2585 			active_nodes++;
2586 	}
2587 
2588 	numa_group->max_faults_cpu = max_faults;
2589 	numa_group->active_nodes = active_nodes;
2590 }
2591 
2592 /*
2593  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2594  * increments. The more local the fault statistics are, the higher the scan
2595  * period will be for the next scan window. If local/(local+remote) ratio is
2596  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2597  * the scan period will decrease. Aim for 70% local accesses.
2598  */
2599 #define NUMA_PERIOD_SLOTS 10
2600 #define NUMA_PERIOD_THRESHOLD 7
2601 
2602 /*
2603  * Increase the scan period (slow down scanning) if the majority of
2604  * our memory is already on our local node, or if the majority of
2605  * the page accesses are shared with other processes.
2606  * Otherwise, decrease the scan period.
2607  */
2608 static void update_task_scan_period(struct task_struct *p,
2609 			unsigned long shared, unsigned long private)
2610 {
2611 	unsigned int period_slot;
2612 	int lr_ratio, ps_ratio;
2613 	int diff;
2614 
2615 	unsigned long remote = p->numa_faults_locality[0];
2616 	unsigned long local = p->numa_faults_locality[1];
2617 
2618 	/*
2619 	 * If there were no record hinting faults then either the task is
2620 	 * completely idle or all activity is in areas that are not of interest
2621 	 * to automatic numa balancing. Related to that, if there were failed
2622 	 * migration then it implies we are migrating too quickly or the local
2623 	 * node is overloaded. In either case, scan slower
2624 	 */
2625 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2626 		p->numa_scan_period = min(p->numa_scan_period_max,
2627 			p->numa_scan_period << 1);
2628 
2629 		p->mm->numa_next_scan = jiffies +
2630 			msecs_to_jiffies(p->numa_scan_period);
2631 
2632 		return;
2633 	}
2634 
2635 	/*
2636 	 * Prepare to scale scan period relative to the current period.
2637 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2638 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2639 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2640 	 */
2641 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2642 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2643 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2644 
2645 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2646 		/*
2647 		 * Most memory accesses are local. There is no need to
2648 		 * do fast NUMA scanning, since memory is already local.
2649 		 */
2650 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2651 		if (!slot)
2652 			slot = 1;
2653 		diff = slot * period_slot;
2654 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2655 		/*
2656 		 * Most memory accesses are shared with other tasks.
2657 		 * There is no point in continuing fast NUMA scanning,
2658 		 * since other tasks may just move the memory elsewhere.
2659 		 */
2660 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2661 		if (!slot)
2662 			slot = 1;
2663 		diff = slot * period_slot;
2664 	} else {
2665 		/*
2666 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2667 		 * yet they are not on the local NUMA node. Speed up
2668 		 * NUMA scanning to get the memory moved over.
2669 		 */
2670 		int ratio = max(lr_ratio, ps_ratio);
2671 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2672 	}
2673 
2674 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2675 			task_scan_min(p), task_scan_max(p));
2676 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2677 }
2678 
2679 /*
2680  * Get the fraction of time the task has been running since the last
2681  * NUMA placement cycle. The scheduler keeps similar statistics, but
2682  * decays those on a 32ms period, which is orders of magnitude off
2683  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2684  * stats only if the task is so new there are no NUMA statistics yet.
2685  */
2686 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2687 {
2688 	u64 runtime, delta, now;
2689 	/* Use the start of this time slice to avoid calculations. */
2690 	now = p->se.exec_start;
2691 	runtime = p->se.sum_exec_runtime;
2692 
2693 	if (p->last_task_numa_placement) {
2694 		delta = runtime - p->last_sum_exec_runtime;
2695 		*period = now - p->last_task_numa_placement;
2696 
2697 		/* Avoid time going backwards, prevent potential divide error: */
2698 		if (unlikely((s64)*period < 0))
2699 			*period = 0;
2700 	} else {
2701 		delta = p->se.avg.load_sum;
2702 		*period = LOAD_AVG_MAX;
2703 	}
2704 
2705 	p->last_sum_exec_runtime = runtime;
2706 	p->last_task_numa_placement = now;
2707 
2708 	return delta;
2709 }
2710 
2711 /*
2712  * Determine the preferred nid for a task in a numa_group. This needs to
2713  * be done in a way that produces consistent results with group_weight,
2714  * otherwise workloads might not converge.
2715  */
2716 static int preferred_group_nid(struct task_struct *p, int nid)
2717 {
2718 	nodemask_t nodes;
2719 	int dist;
2720 
2721 	/* Direct connections between all NUMA nodes. */
2722 	if (sched_numa_topology_type == NUMA_DIRECT)
2723 		return nid;
2724 
2725 	/*
2726 	 * On a system with glueless mesh NUMA topology, group_weight
2727 	 * scores nodes according to the number of NUMA hinting faults on
2728 	 * both the node itself, and on nearby nodes.
2729 	 */
2730 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2731 		unsigned long score, max_score = 0;
2732 		int node, max_node = nid;
2733 
2734 		dist = sched_max_numa_distance;
2735 
2736 		for_each_node_state(node, N_CPU) {
2737 			score = group_weight(p, node, dist);
2738 			if (score > max_score) {
2739 				max_score = score;
2740 				max_node = node;
2741 			}
2742 		}
2743 		return max_node;
2744 	}
2745 
2746 	/*
2747 	 * Finding the preferred nid in a system with NUMA backplane
2748 	 * interconnect topology is more involved. The goal is to locate
2749 	 * tasks from numa_groups near each other in the system, and
2750 	 * untangle workloads from different sides of the system. This requires
2751 	 * searching down the hierarchy of node groups, recursively searching
2752 	 * inside the highest scoring group of nodes. The nodemask tricks
2753 	 * keep the complexity of the search down.
2754 	 */
2755 	nodes = node_states[N_CPU];
2756 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2757 		unsigned long max_faults = 0;
2758 		nodemask_t max_group = NODE_MASK_NONE;
2759 		int a, b;
2760 
2761 		/* Are there nodes at this distance from each other? */
2762 		if (!find_numa_distance(dist))
2763 			continue;
2764 
2765 		for_each_node_mask(a, nodes) {
2766 			unsigned long faults = 0;
2767 			nodemask_t this_group;
2768 			nodes_clear(this_group);
2769 
2770 			/* Sum group's NUMA faults; includes a==b case. */
2771 			for_each_node_mask(b, nodes) {
2772 				if (node_distance(a, b) < dist) {
2773 					faults += group_faults(p, b);
2774 					node_set(b, this_group);
2775 					node_clear(b, nodes);
2776 				}
2777 			}
2778 
2779 			/* Remember the top group. */
2780 			if (faults > max_faults) {
2781 				max_faults = faults;
2782 				max_group = this_group;
2783 				/*
2784 				 * subtle: at the smallest distance there is
2785 				 * just one node left in each "group", the
2786 				 * winner is the preferred nid.
2787 				 */
2788 				nid = a;
2789 			}
2790 		}
2791 		/* Next round, evaluate the nodes within max_group. */
2792 		if (!max_faults)
2793 			break;
2794 		nodes = max_group;
2795 	}
2796 	return nid;
2797 }
2798 
2799 static void task_numa_placement(struct task_struct *p)
2800 {
2801 	int seq, nid, max_nid = NUMA_NO_NODE;
2802 	unsigned long max_faults = 0;
2803 	unsigned long fault_types[2] = { 0, 0 };
2804 	unsigned long total_faults;
2805 	u64 runtime, period;
2806 	spinlock_t *group_lock = NULL;
2807 	struct numa_group *ng;
2808 
2809 	/*
2810 	 * The p->mm->numa_scan_seq field gets updated without
2811 	 * exclusive access. Use READ_ONCE() here to ensure
2812 	 * that the field is read in a single access:
2813 	 */
2814 	seq = READ_ONCE(p->mm->numa_scan_seq);
2815 	if (p->numa_scan_seq == seq)
2816 		return;
2817 	p->numa_scan_seq = seq;
2818 	p->numa_scan_period_max = task_scan_max(p);
2819 
2820 	total_faults = p->numa_faults_locality[0] +
2821 		       p->numa_faults_locality[1];
2822 	runtime = numa_get_avg_runtime(p, &period);
2823 
2824 	/* If the task is part of a group prevent parallel updates to group stats */
2825 	ng = deref_curr_numa_group(p);
2826 	if (ng) {
2827 		group_lock = &ng->lock;
2828 		spin_lock_irq(group_lock);
2829 	}
2830 
2831 	/* Find the node with the highest number of faults */
2832 	for_each_online_node(nid) {
2833 		/* Keep track of the offsets in numa_faults array */
2834 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2835 		unsigned long faults = 0, group_faults = 0;
2836 		int priv;
2837 
2838 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2839 			long diff, f_diff, f_weight;
2840 
2841 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2842 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2843 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2844 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2845 
2846 			/* Decay existing window, copy faults since last scan */
2847 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2848 			fault_types[priv] += p->numa_faults[membuf_idx];
2849 			p->numa_faults[membuf_idx] = 0;
2850 
2851 			/*
2852 			 * Normalize the faults_from, so all tasks in a group
2853 			 * count according to CPU use, instead of by the raw
2854 			 * number of faults. Tasks with little runtime have
2855 			 * little over-all impact on throughput, and thus their
2856 			 * faults are less important.
2857 			 */
2858 			f_weight = div64_u64(runtime << 16, period + 1);
2859 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2860 				   (total_faults + 1);
2861 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2862 			p->numa_faults[cpubuf_idx] = 0;
2863 
2864 			p->numa_faults[mem_idx] += diff;
2865 			p->numa_faults[cpu_idx] += f_diff;
2866 			faults += p->numa_faults[mem_idx];
2867 			p->total_numa_faults += diff;
2868 			if (ng) {
2869 				/*
2870 				 * safe because we can only change our own group
2871 				 *
2872 				 * mem_idx represents the offset for a given
2873 				 * nid and priv in a specific region because it
2874 				 * is at the beginning of the numa_faults array.
2875 				 */
2876 				ng->faults[mem_idx] += diff;
2877 				ng->faults[cpu_idx] += f_diff;
2878 				ng->total_faults += diff;
2879 				group_faults += ng->faults[mem_idx];
2880 			}
2881 		}
2882 
2883 		if (!ng) {
2884 			if (faults > max_faults) {
2885 				max_faults = faults;
2886 				max_nid = nid;
2887 			}
2888 		} else if (group_faults > max_faults) {
2889 			max_faults = group_faults;
2890 			max_nid = nid;
2891 		}
2892 	}
2893 
2894 	/* Cannot migrate task to CPU-less node */
2895 	max_nid = numa_nearest_node(max_nid, N_CPU);
2896 
2897 	if (ng) {
2898 		numa_group_count_active_nodes(ng);
2899 		spin_unlock_irq(group_lock);
2900 		max_nid = preferred_group_nid(p, max_nid);
2901 	}
2902 
2903 	if (max_faults) {
2904 		/* Set the new preferred node */
2905 		if (max_nid != p->numa_preferred_nid)
2906 			sched_setnuma(p, max_nid);
2907 	}
2908 
2909 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2910 }
2911 
2912 static inline int get_numa_group(struct numa_group *grp)
2913 {
2914 	return refcount_inc_not_zero(&grp->refcount);
2915 }
2916 
2917 static inline void put_numa_group(struct numa_group *grp)
2918 {
2919 	if (refcount_dec_and_test(&grp->refcount))
2920 		kfree_rcu(grp, rcu);
2921 }
2922 
2923 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2924 			int *priv)
2925 {
2926 	struct numa_group *grp, *my_grp;
2927 	struct task_struct *tsk;
2928 	bool join = false;
2929 	int cpu = cpupid_to_cpu(cpupid);
2930 	int i;
2931 
2932 	if (unlikely(!deref_curr_numa_group(p))) {
2933 		unsigned int size = sizeof(struct numa_group) +
2934 				    NR_NUMA_HINT_FAULT_STATS *
2935 				    nr_node_ids * sizeof(unsigned long);
2936 
2937 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2938 		if (!grp)
2939 			return;
2940 
2941 		refcount_set(&grp->refcount, 1);
2942 		grp->active_nodes = 1;
2943 		grp->max_faults_cpu = 0;
2944 		spin_lock_init(&grp->lock);
2945 		grp->gid = p->pid;
2946 
2947 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2948 			grp->faults[i] = p->numa_faults[i];
2949 
2950 		grp->total_faults = p->total_numa_faults;
2951 
2952 		grp->nr_tasks++;
2953 		rcu_assign_pointer(p->numa_group, grp);
2954 	}
2955 
2956 	rcu_read_lock();
2957 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2958 
2959 	if (!cpupid_match_pid(tsk, cpupid))
2960 		goto no_join;
2961 
2962 	grp = rcu_dereference(tsk->numa_group);
2963 	if (!grp)
2964 		goto no_join;
2965 
2966 	my_grp = deref_curr_numa_group(p);
2967 	if (grp == my_grp)
2968 		goto no_join;
2969 
2970 	/*
2971 	 * Only join the other group if its bigger; if we're the bigger group,
2972 	 * the other task will join us.
2973 	 */
2974 	if (my_grp->nr_tasks > grp->nr_tasks)
2975 		goto no_join;
2976 
2977 	/*
2978 	 * Tie-break on the grp address.
2979 	 */
2980 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2981 		goto no_join;
2982 
2983 	/* Always join threads in the same process. */
2984 	if (tsk->mm == current->mm)
2985 		join = true;
2986 
2987 	/* Simple filter to avoid false positives due to PID collisions */
2988 	if (flags & TNF_SHARED)
2989 		join = true;
2990 
2991 	/* Update priv based on whether false sharing was detected */
2992 	*priv = !join;
2993 
2994 	if (join && !get_numa_group(grp))
2995 		goto no_join;
2996 
2997 	rcu_read_unlock();
2998 
2999 	if (!join)
3000 		return;
3001 
3002 	WARN_ON_ONCE(irqs_disabled());
3003 	double_lock_irq(&my_grp->lock, &grp->lock);
3004 
3005 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3006 		my_grp->faults[i] -= p->numa_faults[i];
3007 		grp->faults[i] += p->numa_faults[i];
3008 	}
3009 	my_grp->total_faults -= p->total_numa_faults;
3010 	grp->total_faults += p->total_numa_faults;
3011 
3012 	my_grp->nr_tasks--;
3013 	grp->nr_tasks++;
3014 
3015 	spin_unlock(&my_grp->lock);
3016 	spin_unlock_irq(&grp->lock);
3017 
3018 	rcu_assign_pointer(p->numa_group, grp);
3019 
3020 	put_numa_group(my_grp);
3021 	return;
3022 
3023 no_join:
3024 	rcu_read_unlock();
3025 	return;
3026 }
3027 
3028 /*
3029  * Get rid of NUMA statistics associated with a task (either current or dead).
3030  * If @final is set, the task is dead and has reached refcount zero, so we can
3031  * safely free all relevant data structures. Otherwise, there might be
3032  * concurrent reads from places like load balancing and procfs, and we should
3033  * reset the data back to default state without freeing ->numa_faults.
3034  */
3035 void task_numa_free(struct task_struct *p, bool final)
3036 {
3037 	/* safe: p either is current or is being freed by current */
3038 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3039 	unsigned long *numa_faults = p->numa_faults;
3040 	unsigned long flags;
3041 	int i;
3042 
3043 	if (!numa_faults)
3044 		return;
3045 
3046 	if (grp) {
3047 		spin_lock_irqsave(&grp->lock, flags);
3048 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3049 			grp->faults[i] -= p->numa_faults[i];
3050 		grp->total_faults -= p->total_numa_faults;
3051 
3052 		grp->nr_tasks--;
3053 		spin_unlock_irqrestore(&grp->lock, flags);
3054 		RCU_INIT_POINTER(p->numa_group, NULL);
3055 		put_numa_group(grp);
3056 	}
3057 
3058 	if (final) {
3059 		p->numa_faults = NULL;
3060 		kfree(numa_faults);
3061 	} else {
3062 		p->total_numa_faults = 0;
3063 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3064 			numa_faults[i] = 0;
3065 	}
3066 }
3067 
3068 /*
3069  * Got a PROT_NONE fault for a page on @node.
3070  */
3071 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3072 {
3073 	struct task_struct *p = current;
3074 	bool migrated = flags & TNF_MIGRATED;
3075 	int cpu_node = task_node(current);
3076 	int local = !!(flags & TNF_FAULT_LOCAL);
3077 	struct numa_group *ng;
3078 	int priv;
3079 
3080 	if (!static_branch_likely(&sched_numa_balancing))
3081 		return;
3082 
3083 	/* for example, ksmd faulting in a user's mm */
3084 	if (!p->mm)
3085 		return;
3086 
3087 	/*
3088 	 * NUMA faults statistics are unnecessary for the slow memory
3089 	 * node for memory tiering mode.
3090 	 */
3091 	if (!node_is_toptier(mem_node) &&
3092 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3093 	     !cpupid_valid(last_cpupid)))
3094 		return;
3095 
3096 	/* Allocate buffer to track faults on a per-node basis */
3097 	if (unlikely(!p->numa_faults)) {
3098 		int size = sizeof(*p->numa_faults) *
3099 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3100 
3101 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3102 		if (!p->numa_faults)
3103 			return;
3104 
3105 		p->total_numa_faults = 0;
3106 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3107 	}
3108 
3109 	/*
3110 	 * First accesses are treated as private, otherwise consider accesses
3111 	 * to be private if the accessing pid has not changed
3112 	 */
3113 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3114 		priv = 1;
3115 	} else {
3116 		priv = cpupid_match_pid(p, last_cpupid);
3117 		if (!priv && !(flags & TNF_NO_GROUP))
3118 			task_numa_group(p, last_cpupid, flags, &priv);
3119 	}
3120 
3121 	/*
3122 	 * If a workload spans multiple NUMA nodes, a shared fault that
3123 	 * occurs wholly within the set of nodes that the workload is
3124 	 * actively using should be counted as local. This allows the
3125 	 * scan rate to slow down when a workload has settled down.
3126 	 */
3127 	ng = deref_curr_numa_group(p);
3128 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3129 				numa_is_active_node(cpu_node, ng) &&
3130 				numa_is_active_node(mem_node, ng))
3131 		local = 1;
3132 
3133 	/*
3134 	 * Retry to migrate task to preferred node periodically, in case it
3135 	 * previously failed, or the scheduler moved us.
3136 	 */
3137 	if (time_after(jiffies, p->numa_migrate_retry)) {
3138 		task_numa_placement(p);
3139 		numa_migrate_preferred(p);
3140 	}
3141 
3142 	if (migrated)
3143 		p->numa_pages_migrated += pages;
3144 	if (flags & TNF_MIGRATE_FAIL)
3145 		p->numa_faults_locality[2] += pages;
3146 
3147 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3148 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3149 	p->numa_faults_locality[local] += pages;
3150 }
3151 
3152 static void reset_ptenuma_scan(struct task_struct *p)
3153 {
3154 	/*
3155 	 * We only did a read acquisition of the mmap sem, so
3156 	 * p->mm->numa_scan_seq is written to without exclusive access
3157 	 * and the update is not guaranteed to be atomic. That's not
3158 	 * much of an issue though, since this is just used for
3159 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3160 	 * expensive, to avoid any form of compiler optimizations:
3161 	 */
3162 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3163 	p->mm->numa_scan_offset = 0;
3164 }
3165 
3166 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3167 {
3168 	unsigned long pids;
3169 	/*
3170 	 * Allow unconditional access first two times, so that all the (pages)
3171 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3172 	 * This is also done to avoid any side effect of task scanning
3173 	 * amplifying the unfairness of disjoint set of VMAs' access.
3174 	 */
3175 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3176 		return true;
3177 
3178 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3179 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3180 		return true;
3181 
3182 	/*
3183 	 * Complete a scan that has already started regardless of PID access, or
3184 	 * some VMAs may never be scanned in multi-threaded applications:
3185 	 */
3186 	if (mm->numa_scan_offset > vma->vm_start) {
3187 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3188 		return true;
3189 	}
3190 
3191 	return false;
3192 }
3193 
3194 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3195 
3196 /*
3197  * The expensive part of numa migration is done from task_work context.
3198  * Triggered from task_tick_numa().
3199  */
3200 static void task_numa_work(struct callback_head *work)
3201 {
3202 	unsigned long migrate, next_scan, now = jiffies;
3203 	struct task_struct *p = current;
3204 	struct mm_struct *mm = p->mm;
3205 	u64 runtime = p->se.sum_exec_runtime;
3206 	struct vm_area_struct *vma;
3207 	unsigned long start, end;
3208 	unsigned long nr_pte_updates = 0;
3209 	long pages, virtpages;
3210 	struct vma_iterator vmi;
3211 	bool vma_pids_skipped;
3212 	bool vma_pids_forced = false;
3213 
3214 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3215 
3216 	work->next = work;
3217 	/*
3218 	 * Who cares about NUMA placement when they're dying.
3219 	 *
3220 	 * NOTE: make sure not to dereference p->mm before this check,
3221 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3222 	 * without p->mm even though we still had it when we enqueued this
3223 	 * work.
3224 	 */
3225 	if (p->flags & PF_EXITING)
3226 		return;
3227 
3228 	if (!mm->numa_next_scan) {
3229 		mm->numa_next_scan = now +
3230 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3231 	}
3232 
3233 	/*
3234 	 * Enforce maximal scan/migration frequency..
3235 	 */
3236 	migrate = mm->numa_next_scan;
3237 	if (time_before(now, migrate))
3238 		return;
3239 
3240 	if (p->numa_scan_period == 0) {
3241 		p->numa_scan_period_max = task_scan_max(p);
3242 		p->numa_scan_period = task_scan_start(p);
3243 	}
3244 
3245 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3246 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3247 		return;
3248 
3249 	/*
3250 	 * Delay this task enough that another task of this mm will likely win
3251 	 * the next time around.
3252 	 */
3253 	p->node_stamp += 2 * TICK_NSEC;
3254 
3255 	pages = sysctl_numa_balancing_scan_size;
3256 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3257 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3258 	if (!pages)
3259 		return;
3260 
3261 
3262 	if (!mmap_read_trylock(mm))
3263 		return;
3264 
3265 	/*
3266 	 * VMAs are skipped if the current PID has not trapped a fault within
3267 	 * the VMA recently. Allow scanning to be forced if there is no
3268 	 * suitable VMA remaining.
3269 	 */
3270 	vma_pids_skipped = false;
3271 
3272 retry_pids:
3273 	start = mm->numa_scan_offset;
3274 	vma_iter_init(&vmi, mm, start);
3275 	vma = vma_next(&vmi);
3276 	if (!vma) {
3277 		reset_ptenuma_scan(p);
3278 		start = 0;
3279 		vma_iter_set(&vmi, start);
3280 		vma = vma_next(&vmi);
3281 	}
3282 
3283 	do {
3284 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3285 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3286 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3287 			continue;
3288 		}
3289 
3290 		/*
3291 		 * Shared library pages mapped by multiple processes are not
3292 		 * migrated as it is expected they are cache replicated. Avoid
3293 		 * hinting faults in read-only file-backed mappings or the vdso
3294 		 * as migrating the pages will be of marginal benefit.
3295 		 */
3296 		if (!vma->vm_mm ||
3297 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3298 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3299 			continue;
3300 		}
3301 
3302 		/*
3303 		 * Skip inaccessible VMAs to avoid any confusion between
3304 		 * PROT_NONE and NUMA hinting ptes
3305 		 */
3306 		if (!vma_is_accessible(vma)) {
3307 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3308 			continue;
3309 		}
3310 
3311 		/* Initialise new per-VMA NUMAB state. */
3312 		if (!vma->numab_state) {
3313 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3314 				GFP_KERNEL);
3315 			if (!vma->numab_state)
3316 				continue;
3317 
3318 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3319 
3320 			vma->numab_state->next_scan = now +
3321 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3322 
3323 			/* Reset happens after 4 times scan delay of scan start */
3324 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3325 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3326 
3327 			/*
3328 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3329 			 * to prevent VMAs being skipped prematurely on the
3330 			 * first scan:
3331 			 */
3332 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3333 		}
3334 
3335 		/*
3336 		 * Scanning the VMA's of short lived tasks add more overhead. So
3337 		 * delay the scan for new VMAs.
3338 		 */
3339 		if (mm->numa_scan_seq && time_before(jiffies,
3340 						vma->numab_state->next_scan)) {
3341 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3342 			continue;
3343 		}
3344 
3345 		/* RESET access PIDs regularly for old VMAs. */
3346 		if (mm->numa_scan_seq &&
3347 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3348 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3349 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3350 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3351 			vma->numab_state->pids_active[1] = 0;
3352 		}
3353 
3354 		/* Do not rescan VMAs twice within the same sequence. */
3355 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3356 			mm->numa_scan_offset = vma->vm_end;
3357 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3358 			continue;
3359 		}
3360 
3361 		/*
3362 		 * Do not scan the VMA if task has not accessed it, unless no other
3363 		 * VMA candidate exists.
3364 		 */
3365 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3366 			vma_pids_skipped = true;
3367 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3368 			continue;
3369 		}
3370 
3371 		do {
3372 			start = max(start, vma->vm_start);
3373 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3374 			end = min(end, vma->vm_end);
3375 			nr_pte_updates = change_prot_numa(vma, start, end);
3376 
3377 			/*
3378 			 * Try to scan sysctl_numa_balancing_size worth of
3379 			 * hpages that have at least one present PTE that
3380 			 * is not already pte-numa. If the VMA contains
3381 			 * areas that are unused or already full of prot_numa
3382 			 * PTEs, scan up to virtpages, to skip through those
3383 			 * areas faster.
3384 			 */
3385 			if (nr_pte_updates)
3386 				pages -= (end - start) >> PAGE_SHIFT;
3387 			virtpages -= (end - start) >> PAGE_SHIFT;
3388 
3389 			start = end;
3390 			if (pages <= 0 || virtpages <= 0)
3391 				goto out;
3392 
3393 			cond_resched();
3394 		} while (end != vma->vm_end);
3395 
3396 		/* VMA scan is complete, do not scan until next sequence. */
3397 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3398 
3399 		/*
3400 		 * Only force scan within one VMA at a time, to limit the
3401 		 * cost of scanning a potentially uninteresting VMA.
3402 		 */
3403 		if (vma_pids_forced)
3404 			break;
3405 	} for_each_vma(vmi, vma);
3406 
3407 	/*
3408 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3409 	 * not accessing the VMA previously, then force a scan to ensure
3410 	 * forward progress:
3411 	 */
3412 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3413 		vma_pids_forced = true;
3414 		goto retry_pids;
3415 	}
3416 
3417 out:
3418 	/*
3419 	 * It is possible to reach the end of the VMA list but the last few
3420 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3421 	 * would find the !migratable VMA on the next scan but not reset the
3422 	 * scanner to the start so check it now.
3423 	 */
3424 	if (vma)
3425 		mm->numa_scan_offset = start;
3426 	else
3427 		reset_ptenuma_scan(p);
3428 	mmap_read_unlock(mm);
3429 
3430 	/*
3431 	 * Make sure tasks use at least 32x as much time to run other code
3432 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3433 	 * Usually update_task_scan_period slows down scanning enough; on an
3434 	 * overloaded system we need to limit overhead on a per task basis.
3435 	 */
3436 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3437 		u64 diff = p->se.sum_exec_runtime - runtime;
3438 		p->node_stamp += 32 * diff;
3439 	}
3440 }
3441 
3442 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3443 {
3444 	int mm_users = 0;
3445 	struct mm_struct *mm = p->mm;
3446 
3447 	if (mm) {
3448 		mm_users = atomic_read(&mm->mm_users);
3449 		if (mm_users == 1) {
3450 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3451 			mm->numa_scan_seq = 0;
3452 		}
3453 	}
3454 	p->node_stamp			= 0;
3455 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3456 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3457 	p->numa_migrate_retry		= 0;
3458 	/* Protect against double add, see task_tick_numa and task_numa_work */
3459 	p->numa_work.next		= &p->numa_work;
3460 	p->numa_faults			= NULL;
3461 	p->numa_pages_migrated		= 0;
3462 	p->total_numa_faults		= 0;
3463 	RCU_INIT_POINTER(p->numa_group, NULL);
3464 	p->last_task_numa_placement	= 0;
3465 	p->last_sum_exec_runtime	= 0;
3466 
3467 	init_task_work(&p->numa_work, task_numa_work);
3468 
3469 	/* New address space, reset the preferred nid */
3470 	if (!(clone_flags & CLONE_VM)) {
3471 		p->numa_preferred_nid = NUMA_NO_NODE;
3472 		return;
3473 	}
3474 
3475 	/*
3476 	 * New thread, keep existing numa_preferred_nid which should be copied
3477 	 * already by arch_dup_task_struct but stagger when scans start.
3478 	 */
3479 	if (mm) {
3480 		unsigned int delay;
3481 
3482 		delay = min_t(unsigned int, task_scan_max(current),
3483 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3484 		delay += 2 * TICK_NSEC;
3485 		p->node_stamp = delay;
3486 	}
3487 }
3488 
3489 /*
3490  * Drive the periodic memory faults..
3491  */
3492 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3493 {
3494 	struct callback_head *work = &curr->numa_work;
3495 	u64 period, now;
3496 
3497 	/*
3498 	 * We don't care about NUMA placement if we don't have memory.
3499 	 */
3500 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3501 		return;
3502 
3503 	/*
3504 	 * Using runtime rather than walltime has the dual advantage that
3505 	 * we (mostly) drive the selection from busy threads and that the
3506 	 * task needs to have done some actual work before we bother with
3507 	 * NUMA placement.
3508 	 */
3509 	now = curr->se.sum_exec_runtime;
3510 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3511 
3512 	if (now > curr->node_stamp + period) {
3513 		if (!curr->node_stamp)
3514 			curr->numa_scan_period = task_scan_start(curr);
3515 		curr->node_stamp += period;
3516 
3517 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3518 			task_work_add(curr, work, TWA_RESUME);
3519 	}
3520 }
3521 
3522 static void update_scan_period(struct task_struct *p, int new_cpu)
3523 {
3524 	int src_nid = cpu_to_node(task_cpu(p));
3525 	int dst_nid = cpu_to_node(new_cpu);
3526 
3527 	if (!static_branch_likely(&sched_numa_balancing))
3528 		return;
3529 
3530 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3531 		return;
3532 
3533 	if (src_nid == dst_nid)
3534 		return;
3535 
3536 	/*
3537 	 * Allow resets if faults have been trapped before one scan
3538 	 * has completed. This is most likely due to a new task that
3539 	 * is pulled cross-node due to wakeups or load balancing.
3540 	 */
3541 	if (p->numa_scan_seq) {
3542 		/*
3543 		 * Avoid scan adjustments if moving to the preferred
3544 		 * node or if the task was not previously running on
3545 		 * the preferred node.
3546 		 */
3547 		if (dst_nid == p->numa_preferred_nid ||
3548 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3549 			src_nid != p->numa_preferred_nid))
3550 			return;
3551 	}
3552 
3553 	p->numa_scan_period = task_scan_start(p);
3554 }
3555 
3556 #else
3557 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3558 {
3559 }
3560 
3561 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3562 {
3563 }
3564 
3565 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3566 {
3567 }
3568 
3569 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3570 {
3571 }
3572 
3573 #endif /* CONFIG_NUMA_BALANCING */
3574 
3575 static void
3576 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3577 {
3578 	update_load_add(&cfs_rq->load, se->load.weight);
3579 #ifdef CONFIG_SMP
3580 	if (entity_is_task(se)) {
3581 		struct rq *rq = rq_of(cfs_rq);
3582 
3583 		account_numa_enqueue(rq, task_of(se));
3584 		list_add(&se->group_node, &rq->cfs_tasks);
3585 	}
3586 #endif
3587 	cfs_rq->nr_running++;
3588 	if (se_is_idle(se))
3589 		cfs_rq->idle_nr_running++;
3590 }
3591 
3592 static void
3593 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3594 {
3595 	update_load_sub(&cfs_rq->load, se->load.weight);
3596 #ifdef CONFIG_SMP
3597 	if (entity_is_task(se)) {
3598 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3599 		list_del_init(&se->group_node);
3600 	}
3601 #endif
3602 	cfs_rq->nr_running--;
3603 	if (se_is_idle(se))
3604 		cfs_rq->idle_nr_running--;
3605 }
3606 
3607 /*
3608  * Signed add and clamp on underflow.
3609  *
3610  * Explicitly do a load-store to ensure the intermediate value never hits
3611  * memory. This allows lockless observations without ever seeing the negative
3612  * values.
3613  */
3614 #define add_positive(_ptr, _val) do {                           \
3615 	typeof(_ptr) ptr = (_ptr);                              \
3616 	typeof(_val) val = (_val);                              \
3617 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3618 								\
3619 	res = var + val;                                        \
3620 								\
3621 	if (val < 0 && res > var)                               \
3622 		res = 0;                                        \
3623 								\
3624 	WRITE_ONCE(*ptr, res);                                  \
3625 } while (0)
3626 
3627 /*
3628  * Unsigned subtract and clamp on underflow.
3629  *
3630  * Explicitly do a load-store to ensure the intermediate value never hits
3631  * memory. This allows lockless observations without ever seeing the negative
3632  * values.
3633  */
3634 #define sub_positive(_ptr, _val) do {				\
3635 	typeof(_ptr) ptr = (_ptr);				\
3636 	typeof(*ptr) val = (_val);				\
3637 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3638 	res = var - val;					\
3639 	if (res > var)						\
3640 		res = 0;					\
3641 	WRITE_ONCE(*ptr, res);					\
3642 } while (0)
3643 
3644 /*
3645  * Remove and clamp on negative, from a local variable.
3646  *
3647  * A variant of sub_positive(), which does not use explicit load-store
3648  * and is thus optimized for local variable updates.
3649  */
3650 #define lsub_positive(_ptr, _val) do {				\
3651 	typeof(_ptr) ptr = (_ptr);				\
3652 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3653 } while (0)
3654 
3655 #ifdef CONFIG_SMP
3656 static inline void
3657 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3658 {
3659 	cfs_rq->avg.load_avg += se->avg.load_avg;
3660 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3661 }
3662 
3663 static inline void
3664 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3665 {
3666 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3667 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3668 	/* See update_cfs_rq_load_avg() */
3669 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3670 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3671 }
3672 #else
3673 static inline void
3674 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3675 static inline void
3676 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3677 #endif
3678 
3679 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se,
3680 			   unsigned long weight)
3681 {
3682 	unsigned long old_weight = se->load.weight;
3683 	u64 avruntime = avg_vruntime(cfs_rq);
3684 	s64 vlag, vslice;
3685 
3686 	/*
3687 	 * VRUNTIME
3688 	 * ========
3689 	 *
3690 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3691 	 * adjusted if re-weight at !0-lag point.
3692 	 *
3693 	 * Proof: For contradiction assume this is not true, so we can
3694 	 * re-weight without changing vruntime at !0-lag point.
3695 	 *
3696 	 *             Weight	VRuntime   Avg-VRuntime
3697 	 *     before    w          v            V
3698 	 *      after    w'         v'           V'
3699 	 *
3700 	 * Since lag needs to be preserved through re-weight:
3701 	 *
3702 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3703 	 *	==>	V' = (V - v)*w/w' + v		(1)
3704 	 *
3705 	 * Let W be the total weight of the entities before reweight,
3706 	 * since V' is the new weighted average of entities:
3707 	 *
3708 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3709 	 *
3710 	 * by using (1) & (2) we obtain:
3711 	 *
3712 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3713 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3714 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3715 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3716 	 *
3717 	 * Since we are doing at !0-lag point which means V != v, we
3718 	 * can simplify (3):
3719 	 *
3720 	 *	==>	W / (W + w' - w) = w / w'
3721 	 *	==>	Ww' = Ww + ww' - ww
3722 	 *	==>	W * (w' - w) = w * (w' - w)
3723 	 *	==>	W = w	(re-weight indicates w' != w)
3724 	 *
3725 	 * So the cfs_rq contains only one entity, hence vruntime of
3726 	 * the entity @v should always equal to the cfs_rq's weighted
3727 	 * average vruntime @V, which means we will always re-weight
3728 	 * at 0-lag point, thus breach assumption. Proof completed.
3729 	 *
3730 	 *
3731 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3732 	 * vruntime of all the entities.
3733 	 *
3734 	 * Proof: According to corollary #1, Eq. (1) should be:
3735 	 *
3736 	 *	(V - v)*w = (V' - v')*w'
3737 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3738 	 *
3739 	 * According to the weighted average formula, we have:
3740 	 *
3741 	 *	V' = (WV - wv + w'v') / (W - w + w')
3742 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3743 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3744 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3745 	 *
3746 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3747 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3748 	 *
3749 	 * If the entity is the only one in the cfs_rq, then reweight
3750 	 * always occurs at 0-lag point, so V won't change. Or else
3751 	 * there are other entities, hence W != w, then Eq. (5) turns
3752 	 * into V' = V. So V won't change in either case, proof done.
3753 	 *
3754 	 *
3755 	 * So according to corollary #1 & #2, the effect of re-weight
3756 	 * on vruntime should be:
3757 	 *
3758 	 *	v' = V' - (V - v) * w / w'		(4)
3759 	 *	   = V  - (V - v) * w / w'
3760 	 *	   = V  - vl * w / w'
3761 	 *	   = V  - vl'
3762 	 */
3763 	if (avruntime != se->vruntime) {
3764 		vlag = (s64)(avruntime - se->vruntime);
3765 		vlag = div_s64(vlag * old_weight, weight);
3766 		se->vruntime = avruntime - vlag;
3767 	}
3768 
3769 	/*
3770 	 * DEADLINE
3771 	 * ========
3772 	 *
3773 	 * When the weight changes, the virtual time slope changes and
3774 	 * we should adjust the relative virtual deadline accordingly.
3775 	 *
3776 	 *	d' = v' + (d - v)*w/w'
3777 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3778 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3779 	 *	   = V  + (d - V)*w/w'
3780 	 */
3781 	vslice = (s64)(se->deadline - avruntime);
3782 	vslice = div_s64(vslice * old_weight, weight);
3783 	se->deadline = avruntime + vslice;
3784 }
3785 
3786 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3787 			    unsigned long weight)
3788 {
3789 	bool curr = cfs_rq->curr == se;
3790 
3791 	if (se->on_rq) {
3792 		/* commit outstanding execution time */
3793 		if (curr)
3794 			update_curr(cfs_rq);
3795 		else
3796 			__dequeue_entity(cfs_rq, se);
3797 		update_load_sub(&cfs_rq->load, se->load.weight);
3798 	}
3799 	dequeue_load_avg(cfs_rq, se);
3800 
3801 	if (!se->on_rq) {
3802 		/*
3803 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3804 		 * we need to scale se->vlag when w_i changes.
3805 		 */
3806 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3807 	} else {
3808 		reweight_eevdf(cfs_rq, se, weight);
3809 	}
3810 
3811 	update_load_set(&se->load, weight);
3812 
3813 #ifdef CONFIG_SMP
3814 	do {
3815 		u32 divider = get_pelt_divider(&se->avg);
3816 
3817 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3818 	} while (0);
3819 #endif
3820 
3821 	enqueue_load_avg(cfs_rq, se);
3822 	if (se->on_rq) {
3823 		update_load_add(&cfs_rq->load, se->load.weight);
3824 		if (!curr)
3825 			__enqueue_entity(cfs_rq, se);
3826 
3827 		/*
3828 		 * The entity's vruntime has been adjusted, so let's check
3829 		 * whether the rq-wide min_vruntime needs updated too. Since
3830 		 * the calculations above require stable min_vruntime rather
3831 		 * than up-to-date one, we do the update at the end of the
3832 		 * reweight process.
3833 		 */
3834 		update_min_vruntime(cfs_rq);
3835 	}
3836 }
3837 
3838 void reweight_task(struct task_struct *p, int prio)
3839 {
3840 	struct sched_entity *se = &p->se;
3841 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3842 	struct load_weight *load = &se->load;
3843 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3844 
3845 	reweight_entity(cfs_rq, se, weight);
3846 	load->inv_weight = sched_prio_to_wmult[prio];
3847 }
3848 
3849 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3850 
3851 #ifdef CONFIG_FAIR_GROUP_SCHED
3852 #ifdef CONFIG_SMP
3853 /*
3854  * All this does is approximate the hierarchical proportion which includes that
3855  * global sum we all love to hate.
3856  *
3857  * That is, the weight of a group entity, is the proportional share of the
3858  * group weight based on the group runqueue weights. That is:
3859  *
3860  *                     tg->weight * grq->load.weight
3861  *   ge->load.weight = -----------------------------               (1)
3862  *                       \Sum grq->load.weight
3863  *
3864  * Now, because computing that sum is prohibitively expensive to compute (been
3865  * there, done that) we approximate it with this average stuff. The average
3866  * moves slower and therefore the approximation is cheaper and more stable.
3867  *
3868  * So instead of the above, we substitute:
3869  *
3870  *   grq->load.weight -> grq->avg.load_avg                         (2)
3871  *
3872  * which yields the following:
3873  *
3874  *                     tg->weight * grq->avg.load_avg
3875  *   ge->load.weight = ------------------------------              (3)
3876  *                             tg->load_avg
3877  *
3878  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3879  *
3880  * That is shares_avg, and it is right (given the approximation (2)).
3881  *
3882  * The problem with it is that because the average is slow -- it was designed
3883  * to be exactly that of course -- this leads to transients in boundary
3884  * conditions. In specific, the case where the group was idle and we start the
3885  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3886  * yielding bad latency etc..
3887  *
3888  * Now, in that special case (1) reduces to:
3889  *
3890  *                     tg->weight * grq->load.weight
3891  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3892  *                         grp->load.weight
3893  *
3894  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3895  *
3896  * So what we do is modify our approximation (3) to approach (4) in the (near)
3897  * UP case, like:
3898  *
3899  *   ge->load.weight =
3900  *
3901  *              tg->weight * grq->load.weight
3902  *     ---------------------------------------------------         (5)
3903  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3904  *
3905  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3906  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3907  *
3908  *
3909  *                     tg->weight * grq->load.weight
3910  *   ge->load.weight = -----------------------------		   (6)
3911  *                             tg_load_avg'
3912  *
3913  * Where:
3914  *
3915  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3916  *                  max(grq->load.weight, grq->avg.load_avg)
3917  *
3918  * And that is shares_weight and is icky. In the (near) UP case it approaches
3919  * (4) while in the normal case it approaches (3). It consistently
3920  * overestimates the ge->load.weight and therefore:
3921  *
3922  *   \Sum ge->load.weight >= tg->weight
3923  *
3924  * hence icky!
3925  */
3926 static long calc_group_shares(struct cfs_rq *cfs_rq)
3927 {
3928 	long tg_weight, tg_shares, load, shares;
3929 	struct task_group *tg = cfs_rq->tg;
3930 
3931 	tg_shares = READ_ONCE(tg->shares);
3932 
3933 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3934 
3935 	tg_weight = atomic_long_read(&tg->load_avg);
3936 
3937 	/* Ensure tg_weight >= load */
3938 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3939 	tg_weight += load;
3940 
3941 	shares = (tg_shares * load);
3942 	if (tg_weight)
3943 		shares /= tg_weight;
3944 
3945 	/*
3946 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3947 	 * of a group with small tg->shares value. It is a floor value which is
3948 	 * assigned as a minimum load.weight to the sched_entity representing
3949 	 * the group on a CPU.
3950 	 *
3951 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3952 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3953 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3954 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3955 	 * instead of 0.
3956 	 */
3957 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3958 }
3959 #endif /* CONFIG_SMP */
3960 
3961 /*
3962  * Recomputes the group entity based on the current state of its group
3963  * runqueue.
3964  */
3965 static void update_cfs_group(struct sched_entity *se)
3966 {
3967 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3968 	long shares;
3969 
3970 	if (!gcfs_rq)
3971 		return;
3972 
3973 	if (throttled_hierarchy(gcfs_rq))
3974 		return;
3975 
3976 #ifndef CONFIG_SMP
3977 	shares = READ_ONCE(gcfs_rq->tg->shares);
3978 #else
3979 	shares = calc_group_shares(gcfs_rq);
3980 #endif
3981 	if (unlikely(se->load.weight != shares))
3982 		reweight_entity(cfs_rq_of(se), se, shares);
3983 }
3984 
3985 #else /* CONFIG_FAIR_GROUP_SCHED */
3986 static inline void update_cfs_group(struct sched_entity *se)
3987 {
3988 }
3989 #endif /* CONFIG_FAIR_GROUP_SCHED */
3990 
3991 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3992 {
3993 	struct rq *rq = rq_of(cfs_rq);
3994 
3995 	if (&rq->cfs == cfs_rq) {
3996 		/*
3997 		 * There are a few boundary cases this might miss but it should
3998 		 * get called often enough that that should (hopefully) not be
3999 		 * a real problem.
4000 		 *
4001 		 * It will not get called when we go idle, because the idle
4002 		 * thread is a different class (!fair), nor will the utilization
4003 		 * number include things like RT tasks.
4004 		 *
4005 		 * As is, the util number is not freq-invariant (we'd have to
4006 		 * implement arch_scale_freq_capacity() for that).
4007 		 *
4008 		 * See cpu_util_cfs().
4009 		 */
4010 		cpufreq_update_util(rq, flags);
4011 	}
4012 }
4013 
4014 #ifdef CONFIG_SMP
4015 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4016 {
4017 	if (sa->load_sum)
4018 		return false;
4019 
4020 	if (sa->util_sum)
4021 		return false;
4022 
4023 	if (sa->runnable_sum)
4024 		return false;
4025 
4026 	/*
4027 	 * _avg must be null when _sum are null because _avg = _sum / divider
4028 	 * Make sure that rounding and/or propagation of PELT values never
4029 	 * break this.
4030 	 */
4031 	SCHED_WARN_ON(sa->load_avg ||
4032 		      sa->util_avg ||
4033 		      sa->runnable_avg);
4034 
4035 	return true;
4036 }
4037 
4038 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4039 {
4040 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4041 				 cfs_rq->last_update_time_copy);
4042 }
4043 #ifdef CONFIG_FAIR_GROUP_SCHED
4044 /*
4045  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4046  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4047  * bottom-up, we only have to test whether the cfs_rq before us on the list
4048  * is our child.
4049  * If cfs_rq is not on the list, test whether a child needs its to be added to
4050  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4051  */
4052 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4053 {
4054 	struct cfs_rq *prev_cfs_rq;
4055 	struct list_head *prev;
4056 
4057 	if (cfs_rq->on_list) {
4058 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4059 	} else {
4060 		struct rq *rq = rq_of(cfs_rq);
4061 
4062 		prev = rq->tmp_alone_branch;
4063 	}
4064 
4065 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4066 
4067 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4068 }
4069 
4070 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4071 {
4072 	if (cfs_rq->load.weight)
4073 		return false;
4074 
4075 	if (!load_avg_is_decayed(&cfs_rq->avg))
4076 		return false;
4077 
4078 	if (child_cfs_rq_on_list(cfs_rq))
4079 		return false;
4080 
4081 	return true;
4082 }
4083 
4084 /**
4085  * update_tg_load_avg - update the tg's load avg
4086  * @cfs_rq: the cfs_rq whose avg changed
4087  *
4088  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4089  * However, because tg->load_avg is a global value there are performance
4090  * considerations.
4091  *
4092  * In order to avoid having to look at the other cfs_rq's, we use a
4093  * differential update where we store the last value we propagated. This in
4094  * turn allows skipping updates if the differential is 'small'.
4095  *
4096  * Updating tg's load_avg is necessary before update_cfs_share().
4097  */
4098 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4099 {
4100 	long delta;
4101 	u64 now;
4102 
4103 	/*
4104 	 * No need to update load_avg for root_task_group as it is not used.
4105 	 */
4106 	if (cfs_rq->tg == &root_task_group)
4107 		return;
4108 
4109 	/* rq has been offline and doesn't contribute to the share anymore: */
4110 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4111 		return;
4112 
4113 	/*
4114 	 * For migration heavy workloads, access to tg->load_avg can be
4115 	 * unbound. Limit the update rate to at most once per ms.
4116 	 */
4117 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4118 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4119 		return;
4120 
4121 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4122 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4123 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4124 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4125 		cfs_rq->last_update_tg_load_avg = now;
4126 	}
4127 }
4128 
4129 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4130 {
4131 	long delta;
4132 	u64 now;
4133 
4134 	/*
4135 	 * No need to update load_avg for root_task_group, as it is not used.
4136 	 */
4137 	if (cfs_rq->tg == &root_task_group)
4138 		return;
4139 
4140 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4141 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4142 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4143 	cfs_rq->tg_load_avg_contrib = 0;
4144 	cfs_rq->last_update_tg_load_avg = now;
4145 }
4146 
4147 /* CPU offline callback: */
4148 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4149 {
4150 	struct task_group *tg;
4151 
4152 	lockdep_assert_rq_held(rq);
4153 
4154 	/*
4155 	 * The rq clock has already been updated in
4156 	 * set_rq_offline(), so we should skip updating
4157 	 * the rq clock again in unthrottle_cfs_rq().
4158 	 */
4159 	rq_clock_start_loop_update(rq);
4160 
4161 	rcu_read_lock();
4162 	list_for_each_entry_rcu(tg, &task_groups, list) {
4163 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4164 
4165 		clear_tg_load_avg(cfs_rq);
4166 	}
4167 	rcu_read_unlock();
4168 
4169 	rq_clock_stop_loop_update(rq);
4170 }
4171 
4172 /*
4173  * Called within set_task_rq() right before setting a task's CPU. The
4174  * caller only guarantees p->pi_lock is held; no other assumptions,
4175  * including the state of rq->lock, should be made.
4176  */
4177 void set_task_rq_fair(struct sched_entity *se,
4178 		      struct cfs_rq *prev, struct cfs_rq *next)
4179 {
4180 	u64 p_last_update_time;
4181 	u64 n_last_update_time;
4182 
4183 	if (!sched_feat(ATTACH_AGE_LOAD))
4184 		return;
4185 
4186 	/*
4187 	 * We are supposed to update the task to "current" time, then its up to
4188 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4189 	 * getting what current time is, so simply throw away the out-of-date
4190 	 * time. This will result in the wakee task is less decayed, but giving
4191 	 * the wakee more load sounds not bad.
4192 	 */
4193 	if (!(se->avg.last_update_time && prev))
4194 		return;
4195 
4196 	p_last_update_time = cfs_rq_last_update_time(prev);
4197 	n_last_update_time = cfs_rq_last_update_time(next);
4198 
4199 	__update_load_avg_blocked_se(p_last_update_time, se);
4200 	se->avg.last_update_time = n_last_update_time;
4201 }
4202 
4203 /*
4204  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4205  * propagate its contribution. The key to this propagation is the invariant
4206  * that for each group:
4207  *
4208  *   ge->avg == grq->avg						(1)
4209  *
4210  * _IFF_ we look at the pure running and runnable sums. Because they
4211  * represent the very same entity, just at different points in the hierarchy.
4212  *
4213  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4214  * and simply copies the running/runnable sum over (but still wrong, because
4215  * the group entity and group rq do not have their PELT windows aligned).
4216  *
4217  * However, update_tg_cfs_load() is more complex. So we have:
4218  *
4219  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4220  *
4221  * And since, like util, the runnable part should be directly transferable,
4222  * the following would _appear_ to be the straight forward approach:
4223  *
4224  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4225  *
4226  * And per (1) we have:
4227  *
4228  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4229  *
4230  * Which gives:
4231  *
4232  *                      ge->load.weight * grq->avg.load_avg
4233  *   ge->avg.load_avg = -----------------------------------		(4)
4234  *                               grq->load.weight
4235  *
4236  * Except that is wrong!
4237  *
4238  * Because while for entities historical weight is not important and we
4239  * really only care about our future and therefore can consider a pure
4240  * runnable sum, runqueues can NOT do this.
4241  *
4242  * We specifically want runqueues to have a load_avg that includes
4243  * historical weights. Those represent the blocked load, the load we expect
4244  * to (shortly) return to us. This only works by keeping the weights as
4245  * integral part of the sum. We therefore cannot decompose as per (3).
4246  *
4247  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4248  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4249  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4250  * runnable section of these tasks overlap (or not). If they were to perfectly
4251  * align the rq as a whole would be runnable 2/3 of the time. If however we
4252  * always have at least 1 runnable task, the rq as a whole is always runnable.
4253  *
4254  * So we'll have to approximate.. :/
4255  *
4256  * Given the constraint:
4257  *
4258  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4259  *
4260  * We can construct a rule that adds runnable to a rq by assuming minimal
4261  * overlap.
4262  *
4263  * On removal, we'll assume each task is equally runnable; which yields:
4264  *
4265  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4266  *
4267  * XXX: only do this for the part of runnable > running ?
4268  *
4269  */
4270 static inline void
4271 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4272 {
4273 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4274 	u32 new_sum, divider;
4275 
4276 	/* Nothing to update */
4277 	if (!delta_avg)
4278 		return;
4279 
4280 	/*
4281 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4282 	 * See ___update_load_avg() for details.
4283 	 */
4284 	divider = get_pelt_divider(&cfs_rq->avg);
4285 
4286 
4287 	/* Set new sched_entity's utilization */
4288 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4289 	new_sum = se->avg.util_avg * divider;
4290 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4291 	se->avg.util_sum = new_sum;
4292 
4293 	/* Update parent cfs_rq utilization */
4294 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4295 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4296 
4297 	/* See update_cfs_rq_load_avg() */
4298 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4299 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4300 }
4301 
4302 static inline void
4303 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4304 {
4305 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4306 	u32 new_sum, divider;
4307 
4308 	/* Nothing to update */
4309 	if (!delta_avg)
4310 		return;
4311 
4312 	/*
4313 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4314 	 * See ___update_load_avg() for details.
4315 	 */
4316 	divider = get_pelt_divider(&cfs_rq->avg);
4317 
4318 	/* Set new sched_entity's runnable */
4319 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4320 	new_sum = se->avg.runnable_avg * divider;
4321 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4322 	se->avg.runnable_sum = new_sum;
4323 
4324 	/* Update parent cfs_rq runnable */
4325 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4326 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4327 	/* See update_cfs_rq_load_avg() */
4328 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4329 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4330 }
4331 
4332 static inline void
4333 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4334 {
4335 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4336 	unsigned long load_avg;
4337 	u64 load_sum = 0;
4338 	s64 delta_sum;
4339 	u32 divider;
4340 
4341 	if (!runnable_sum)
4342 		return;
4343 
4344 	gcfs_rq->prop_runnable_sum = 0;
4345 
4346 	/*
4347 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4348 	 * See ___update_load_avg() for details.
4349 	 */
4350 	divider = get_pelt_divider(&cfs_rq->avg);
4351 
4352 	if (runnable_sum >= 0) {
4353 		/*
4354 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4355 		 * the CPU is saturated running == runnable.
4356 		 */
4357 		runnable_sum += se->avg.load_sum;
4358 		runnable_sum = min_t(long, runnable_sum, divider);
4359 	} else {
4360 		/*
4361 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4362 		 * assuming all tasks are equally runnable.
4363 		 */
4364 		if (scale_load_down(gcfs_rq->load.weight)) {
4365 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4366 				scale_load_down(gcfs_rq->load.weight));
4367 		}
4368 
4369 		/* But make sure to not inflate se's runnable */
4370 		runnable_sum = min(se->avg.load_sum, load_sum);
4371 	}
4372 
4373 	/*
4374 	 * runnable_sum can't be lower than running_sum
4375 	 * Rescale running sum to be in the same range as runnable sum
4376 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4377 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4378 	 */
4379 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4380 	runnable_sum = max(runnable_sum, running_sum);
4381 
4382 	load_sum = se_weight(se) * runnable_sum;
4383 	load_avg = div_u64(load_sum, divider);
4384 
4385 	delta_avg = load_avg - se->avg.load_avg;
4386 	if (!delta_avg)
4387 		return;
4388 
4389 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4390 
4391 	se->avg.load_sum = runnable_sum;
4392 	se->avg.load_avg = load_avg;
4393 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4394 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4395 	/* See update_cfs_rq_load_avg() */
4396 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4397 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4398 }
4399 
4400 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4401 {
4402 	cfs_rq->propagate = 1;
4403 	cfs_rq->prop_runnable_sum += runnable_sum;
4404 }
4405 
4406 /* Update task and its cfs_rq load average */
4407 static inline int propagate_entity_load_avg(struct sched_entity *se)
4408 {
4409 	struct cfs_rq *cfs_rq, *gcfs_rq;
4410 
4411 	if (entity_is_task(se))
4412 		return 0;
4413 
4414 	gcfs_rq = group_cfs_rq(se);
4415 	if (!gcfs_rq->propagate)
4416 		return 0;
4417 
4418 	gcfs_rq->propagate = 0;
4419 
4420 	cfs_rq = cfs_rq_of(se);
4421 
4422 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4423 
4424 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4425 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4426 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4427 
4428 	trace_pelt_cfs_tp(cfs_rq);
4429 	trace_pelt_se_tp(se);
4430 
4431 	return 1;
4432 }
4433 
4434 /*
4435  * Check if we need to update the load and the utilization of a blocked
4436  * group_entity:
4437  */
4438 static inline bool skip_blocked_update(struct sched_entity *se)
4439 {
4440 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4441 
4442 	/*
4443 	 * If sched_entity still have not zero load or utilization, we have to
4444 	 * decay it:
4445 	 */
4446 	if (se->avg.load_avg || se->avg.util_avg)
4447 		return false;
4448 
4449 	/*
4450 	 * If there is a pending propagation, we have to update the load and
4451 	 * the utilization of the sched_entity:
4452 	 */
4453 	if (gcfs_rq->propagate)
4454 		return false;
4455 
4456 	/*
4457 	 * Otherwise, the load and the utilization of the sched_entity is
4458 	 * already zero and there is no pending propagation, so it will be a
4459 	 * waste of time to try to decay it:
4460 	 */
4461 	return true;
4462 }
4463 
4464 #else /* CONFIG_FAIR_GROUP_SCHED */
4465 
4466 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4467 
4468 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4469 
4470 static inline int propagate_entity_load_avg(struct sched_entity *se)
4471 {
4472 	return 0;
4473 }
4474 
4475 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4476 
4477 #endif /* CONFIG_FAIR_GROUP_SCHED */
4478 
4479 #ifdef CONFIG_NO_HZ_COMMON
4480 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4481 {
4482 	u64 throttled = 0, now, lut;
4483 	struct cfs_rq *cfs_rq;
4484 	struct rq *rq;
4485 	bool is_idle;
4486 
4487 	if (load_avg_is_decayed(&se->avg))
4488 		return;
4489 
4490 	cfs_rq = cfs_rq_of(se);
4491 	rq = rq_of(cfs_rq);
4492 
4493 	rcu_read_lock();
4494 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4495 	rcu_read_unlock();
4496 
4497 	/*
4498 	 * The lag estimation comes with a cost we don't want to pay all the
4499 	 * time. Hence, limiting to the case where the source CPU is idle and
4500 	 * we know we are at the greatest risk to have an outdated clock.
4501 	 */
4502 	if (!is_idle)
4503 		return;
4504 
4505 	/*
4506 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4507 	 *
4508 	 *   last_update_time (the cfs_rq's last_update_time)
4509 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4510 	 *      = rq_clock_pelt()@cfs_rq_idle
4511 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4512 	 *
4513 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4514 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4515 	 *
4516 	 *   rq_idle_lag (delta between now and rq's update)
4517 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4518 	 *
4519 	 * We can then write:
4520 	 *
4521 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4522 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4523 	 * Where:
4524 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4525 	 *      rq_clock()@rq_idle      is rq->clock_idle
4526 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4527 	 *                              is cfs_rq->throttled_pelt_idle
4528 	 */
4529 
4530 #ifdef CONFIG_CFS_BANDWIDTH
4531 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4532 	/* The clock has been stopped for throttling */
4533 	if (throttled == U64_MAX)
4534 		return;
4535 #endif
4536 	now = u64_u32_load(rq->clock_pelt_idle);
4537 	/*
4538 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4539 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4540 	 * which lead to an underestimation. The opposite would lead to an
4541 	 * overestimation.
4542 	 */
4543 	smp_rmb();
4544 	lut = cfs_rq_last_update_time(cfs_rq);
4545 
4546 	now -= throttled;
4547 	if (now < lut)
4548 		/*
4549 		 * cfs_rq->avg.last_update_time is more recent than our
4550 		 * estimation, let's use it.
4551 		 */
4552 		now = lut;
4553 	else
4554 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4555 
4556 	__update_load_avg_blocked_se(now, se);
4557 }
4558 #else
4559 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4560 #endif
4561 
4562 /**
4563  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4564  * @now: current time, as per cfs_rq_clock_pelt()
4565  * @cfs_rq: cfs_rq to update
4566  *
4567  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4568  * avg. The immediate corollary is that all (fair) tasks must be attached.
4569  *
4570  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4571  *
4572  * Return: true if the load decayed or we removed load.
4573  *
4574  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4575  * call update_tg_load_avg() when this function returns true.
4576  */
4577 static inline int
4578 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4579 {
4580 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4581 	struct sched_avg *sa = &cfs_rq->avg;
4582 	int decayed = 0;
4583 
4584 	if (cfs_rq->removed.nr) {
4585 		unsigned long r;
4586 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4587 
4588 		raw_spin_lock(&cfs_rq->removed.lock);
4589 		swap(cfs_rq->removed.util_avg, removed_util);
4590 		swap(cfs_rq->removed.load_avg, removed_load);
4591 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4592 		cfs_rq->removed.nr = 0;
4593 		raw_spin_unlock(&cfs_rq->removed.lock);
4594 
4595 		r = removed_load;
4596 		sub_positive(&sa->load_avg, r);
4597 		sub_positive(&sa->load_sum, r * divider);
4598 		/* See sa->util_sum below */
4599 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4600 
4601 		r = removed_util;
4602 		sub_positive(&sa->util_avg, r);
4603 		sub_positive(&sa->util_sum, r * divider);
4604 		/*
4605 		 * Because of rounding, se->util_sum might ends up being +1 more than
4606 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4607 		 * a lot of tasks with the rounding problem between 2 updates of
4608 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4609 		 * cfs_util_avg is not.
4610 		 * Check that util_sum is still above its lower bound for the new
4611 		 * util_avg. Given that period_contrib might have moved since the last
4612 		 * sync, we are only sure that util_sum must be above or equal to
4613 		 *    util_avg * minimum possible divider
4614 		 */
4615 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4616 
4617 		r = removed_runnable;
4618 		sub_positive(&sa->runnable_avg, r);
4619 		sub_positive(&sa->runnable_sum, r * divider);
4620 		/* See sa->util_sum above */
4621 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4622 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4623 
4624 		/*
4625 		 * removed_runnable is the unweighted version of removed_load so we
4626 		 * can use it to estimate removed_load_sum.
4627 		 */
4628 		add_tg_cfs_propagate(cfs_rq,
4629 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4630 
4631 		decayed = 1;
4632 	}
4633 
4634 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4635 	u64_u32_store_copy(sa->last_update_time,
4636 			   cfs_rq->last_update_time_copy,
4637 			   sa->last_update_time);
4638 	return decayed;
4639 }
4640 
4641 /**
4642  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4643  * @cfs_rq: cfs_rq to attach to
4644  * @se: sched_entity to attach
4645  *
4646  * Must call update_cfs_rq_load_avg() before this, since we rely on
4647  * cfs_rq->avg.last_update_time being current.
4648  */
4649 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4650 {
4651 	/*
4652 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4653 	 * See ___update_load_avg() for details.
4654 	 */
4655 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4656 
4657 	/*
4658 	 * When we attach the @se to the @cfs_rq, we must align the decay
4659 	 * window because without that, really weird and wonderful things can
4660 	 * happen.
4661 	 *
4662 	 * XXX illustrate
4663 	 */
4664 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4665 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4666 
4667 	/*
4668 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4669 	 * period_contrib. This isn't strictly correct, but since we're
4670 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4671 	 * _sum a little.
4672 	 */
4673 	se->avg.util_sum = se->avg.util_avg * divider;
4674 
4675 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4676 
4677 	se->avg.load_sum = se->avg.load_avg * divider;
4678 	if (se_weight(se) < se->avg.load_sum)
4679 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4680 	else
4681 		se->avg.load_sum = 1;
4682 
4683 	enqueue_load_avg(cfs_rq, se);
4684 	cfs_rq->avg.util_avg += se->avg.util_avg;
4685 	cfs_rq->avg.util_sum += se->avg.util_sum;
4686 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4687 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4688 
4689 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4690 
4691 	cfs_rq_util_change(cfs_rq, 0);
4692 
4693 	trace_pelt_cfs_tp(cfs_rq);
4694 }
4695 
4696 /**
4697  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4698  * @cfs_rq: cfs_rq to detach from
4699  * @se: sched_entity to detach
4700  *
4701  * Must call update_cfs_rq_load_avg() before this, since we rely on
4702  * cfs_rq->avg.last_update_time being current.
4703  */
4704 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4705 {
4706 	dequeue_load_avg(cfs_rq, se);
4707 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4708 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4709 	/* See update_cfs_rq_load_avg() */
4710 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4711 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4712 
4713 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4714 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4715 	/* See update_cfs_rq_load_avg() */
4716 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4717 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4718 
4719 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4720 
4721 	cfs_rq_util_change(cfs_rq, 0);
4722 
4723 	trace_pelt_cfs_tp(cfs_rq);
4724 }
4725 
4726 /*
4727  * Optional action to be done while updating the load average
4728  */
4729 #define UPDATE_TG	0x1
4730 #define SKIP_AGE_LOAD	0x2
4731 #define DO_ATTACH	0x4
4732 #define DO_DETACH	0x8
4733 
4734 /* Update task and its cfs_rq load average */
4735 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4736 {
4737 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4738 	int decayed;
4739 
4740 	/*
4741 	 * Track task load average for carrying it to new CPU after migrated, and
4742 	 * track group sched_entity load average for task_h_load calc in migration
4743 	 */
4744 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4745 		__update_load_avg_se(now, cfs_rq, se);
4746 
4747 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4748 	decayed |= propagate_entity_load_avg(se);
4749 
4750 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4751 
4752 		/*
4753 		 * DO_ATTACH means we're here from enqueue_entity().
4754 		 * !last_update_time means we've passed through
4755 		 * migrate_task_rq_fair() indicating we migrated.
4756 		 *
4757 		 * IOW we're enqueueing a task on a new CPU.
4758 		 */
4759 		attach_entity_load_avg(cfs_rq, se);
4760 		update_tg_load_avg(cfs_rq);
4761 
4762 	} else if (flags & DO_DETACH) {
4763 		/*
4764 		 * DO_DETACH means we're here from dequeue_entity()
4765 		 * and we are migrating task out of the CPU.
4766 		 */
4767 		detach_entity_load_avg(cfs_rq, se);
4768 		update_tg_load_avg(cfs_rq);
4769 	} else if (decayed) {
4770 		cfs_rq_util_change(cfs_rq, 0);
4771 
4772 		if (flags & UPDATE_TG)
4773 			update_tg_load_avg(cfs_rq);
4774 	}
4775 }
4776 
4777 /*
4778  * Synchronize entity load avg of dequeued entity without locking
4779  * the previous rq.
4780  */
4781 static void sync_entity_load_avg(struct sched_entity *se)
4782 {
4783 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4784 	u64 last_update_time;
4785 
4786 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4787 	__update_load_avg_blocked_se(last_update_time, se);
4788 }
4789 
4790 /*
4791  * Task first catches up with cfs_rq, and then subtract
4792  * itself from the cfs_rq (task must be off the queue now).
4793  */
4794 static void remove_entity_load_avg(struct sched_entity *se)
4795 {
4796 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4797 	unsigned long flags;
4798 
4799 	/*
4800 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4801 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4802 	 * so we can remove unconditionally.
4803 	 */
4804 
4805 	sync_entity_load_avg(se);
4806 
4807 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4808 	++cfs_rq->removed.nr;
4809 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4810 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4811 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4812 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4813 }
4814 
4815 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4816 {
4817 	return cfs_rq->avg.runnable_avg;
4818 }
4819 
4820 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4821 {
4822 	return cfs_rq->avg.load_avg;
4823 }
4824 
4825 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4826 
4827 static inline unsigned long task_util(struct task_struct *p)
4828 {
4829 	return READ_ONCE(p->se.avg.util_avg);
4830 }
4831 
4832 static inline unsigned long task_runnable(struct task_struct *p)
4833 {
4834 	return READ_ONCE(p->se.avg.runnable_avg);
4835 }
4836 
4837 static inline unsigned long _task_util_est(struct task_struct *p)
4838 {
4839 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4840 }
4841 
4842 static inline unsigned long task_util_est(struct task_struct *p)
4843 {
4844 	return max(task_util(p), _task_util_est(p));
4845 }
4846 
4847 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4848 				    struct task_struct *p)
4849 {
4850 	unsigned int enqueued;
4851 
4852 	if (!sched_feat(UTIL_EST))
4853 		return;
4854 
4855 	/* Update root cfs_rq's estimated utilization */
4856 	enqueued  = cfs_rq->avg.util_est;
4857 	enqueued += _task_util_est(p);
4858 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4859 
4860 	trace_sched_util_est_cfs_tp(cfs_rq);
4861 }
4862 
4863 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4864 				    struct task_struct *p)
4865 {
4866 	unsigned int enqueued;
4867 
4868 	if (!sched_feat(UTIL_EST))
4869 		return;
4870 
4871 	/* Update root cfs_rq's estimated utilization */
4872 	enqueued  = cfs_rq->avg.util_est;
4873 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4874 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4875 
4876 	trace_sched_util_est_cfs_tp(cfs_rq);
4877 }
4878 
4879 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4880 
4881 static inline void util_est_update(struct cfs_rq *cfs_rq,
4882 				   struct task_struct *p,
4883 				   bool task_sleep)
4884 {
4885 	unsigned int ewma, dequeued, last_ewma_diff;
4886 
4887 	if (!sched_feat(UTIL_EST))
4888 		return;
4889 
4890 	/*
4891 	 * Skip update of task's estimated utilization when the task has not
4892 	 * yet completed an activation, e.g. being migrated.
4893 	 */
4894 	if (!task_sleep)
4895 		return;
4896 
4897 	/* Get current estimate of utilization */
4898 	ewma = READ_ONCE(p->se.avg.util_est);
4899 
4900 	/*
4901 	 * If the PELT values haven't changed since enqueue time,
4902 	 * skip the util_est update.
4903 	 */
4904 	if (ewma & UTIL_AVG_UNCHANGED)
4905 		return;
4906 
4907 	/* Get utilization at dequeue */
4908 	dequeued = task_util(p);
4909 
4910 	/*
4911 	 * Reset EWMA on utilization increases, the moving average is used only
4912 	 * to smooth utilization decreases.
4913 	 */
4914 	if (ewma <= dequeued) {
4915 		ewma = dequeued;
4916 		goto done;
4917 	}
4918 
4919 	/*
4920 	 * Skip update of task's estimated utilization when its members are
4921 	 * already ~1% close to its last activation value.
4922 	 */
4923 	last_ewma_diff = ewma - dequeued;
4924 	if (last_ewma_diff < UTIL_EST_MARGIN)
4925 		goto done;
4926 
4927 	/*
4928 	 * To avoid overestimation of actual task utilization, skip updates if
4929 	 * we cannot grant there is idle time in this CPU.
4930 	 */
4931 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4932 		return;
4933 
4934 	/*
4935 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4936 	 * we cannot grant that thread got all CPU time it wanted.
4937 	 */
4938 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4939 		goto done;
4940 
4941 
4942 	/*
4943 	 * Update Task's estimated utilization
4944 	 *
4945 	 * When *p completes an activation we can consolidate another sample
4946 	 * of the task size. This is done by using this value to update the
4947 	 * Exponential Weighted Moving Average (EWMA):
4948 	 *
4949 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4950 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4951 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4952 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4953 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4954 	 *
4955 	 * Where 'w' is the weight of new samples, which is configured to be
4956 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4957 	 */
4958 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4959 	ewma  -= last_ewma_diff;
4960 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4961 done:
4962 	ewma |= UTIL_AVG_UNCHANGED;
4963 	WRITE_ONCE(p->se.avg.util_est, ewma);
4964 
4965 	trace_sched_util_est_se_tp(&p->se);
4966 }
4967 
4968 static inline int util_fits_cpu(unsigned long util,
4969 				unsigned long uclamp_min,
4970 				unsigned long uclamp_max,
4971 				int cpu)
4972 {
4973 	unsigned long capacity_orig, capacity_orig_thermal;
4974 	unsigned long capacity = capacity_of(cpu);
4975 	bool fits, uclamp_max_fits;
4976 
4977 	/*
4978 	 * Check if the real util fits without any uclamp boost/cap applied.
4979 	 */
4980 	fits = fits_capacity(util, capacity);
4981 
4982 	if (!uclamp_is_used())
4983 		return fits;
4984 
4985 	/*
4986 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4987 	 * uclamp_max. We only care about capacity pressure (by using
4988 	 * capacity_of()) for comparing against the real util.
4989 	 *
4990 	 * If a task is boosted to 1024 for example, we don't want a tiny
4991 	 * pressure to skew the check whether it fits a CPU or not.
4992 	 *
4993 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4994 	 * should fit a little cpu even if there's some pressure.
4995 	 *
4996 	 * Only exception is for thermal pressure since it has a direct impact
4997 	 * on available OPP of the system.
4998 	 *
4999 	 * We honour it for uclamp_min only as a drop in performance level
5000 	 * could result in not getting the requested minimum performance level.
5001 	 *
5002 	 * For uclamp_max, we can tolerate a drop in performance level as the
5003 	 * goal is to cap the task. So it's okay if it's getting less.
5004 	 */
5005 	capacity_orig = arch_scale_cpu_capacity(cpu);
5006 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5007 
5008 	/*
5009 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5010 	 * But we do have some corner cases to cater for..
5011 	 *
5012 	 *
5013 	 *                                 C=z
5014 	 *   |                             ___
5015 	 *   |                  C=y       |   |
5016 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5017 	 *   |      C=x        |   |      |   |
5018 	 *   |      ___        |   |      |   |
5019 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5020 	 *   |     |   |       |   |      |   |
5021 	 *   |     |   |       |   |      |   |
5022 	 *   +----------------------------------------
5023 	 *         cpu0        cpu1       cpu2
5024 	 *
5025 	 *   In the above example if a task is capped to a specific performance
5026 	 *   point, y, then when:
5027 	 *
5028 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
5029 	 *     to cpu1
5030 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
5031 	 *     uclamp_max request.
5032 	 *
5033 	 *   which is what we're enforcing here. A task always fits if
5034 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5035 	 *   the normal upmigration rules should withhold still.
5036 	 *
5037 	 *   Only exception is when we are on max capacity, then we need to be
5038 	 *   careful not to block overutilized state. This is so because:
5039 	 *
5040 	 *     1. There's no concept of capping at max_capacity! We can't go
5041 	 *        beyond this performance level anyway.
5042 	 *     2. The system is being saturated when we're operating near
5043 	 *        max capacity, it doesn't make sense to block overutilized.
5044 	 */
5045 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5046 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5047 	fits = fits || uclamp_max_fits;
5048 
5049 	/*
5050 	 *
5051 	 *                                 C=z
5052 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5053 	 *   |                  C=y       |   |
5054 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5055 	 *   |      C=x        |   |      |   |
5056 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5057 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5058 	 *   |     |   |       |   |      |   |
5059 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5060 	 *   +----------------------------------------
5061 	 *         cpu0        cpu1       cpu2
5062 	 *
5063 	 * a) If util > uclamp_max, then we're capped, we don't care about
5064 	 *    actual fitness value here. We only care if uclamp_max fits
5065 	 *    capacity without taking margin/pressure into account.
5066 	 *    See comment above.
5067 	 *
5068 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5069 	 *    fits_capacity() rules apply. Except we need to ensure that we
5070 	 *    enforce we remain within uclamp_max, see comment above.
5071 	 *
5072 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5073 	 *    need to take into account the boosted value fits the CPU without
5074 	 *    taking margin/pressure into account.
5075 	 *
5076 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5077 	 * just need to consider an extra check for case (c) after ensuring we
5078 	 * handle the case uclamp_min > uclamp_max.
5079 	 */
5080 	uclamp_min = min(uclamp_min, uclamp_max);
5081 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5082 		return -1;
5083 
5084 	return fits;
5085 }
5086 
5087 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5088 {
5089 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5090 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5091 	unsigned long util = task_util_est(p);
5092 	/*
5093 	 * Return true only if the cpu fully fits the task requirements, which
5094 	 * include the utilization but also the performance hints.
5095 	 */
5096 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5097 }
5098 
5099 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5100 {
5101 	if (!sched_asym_cpucap_active())
5102 		return;
5103 
5104 	if (!p || p->nr_cpus_allowed == 1) {
5105 		rq->misfit_task_load = 0;
5106 		return;
5107 	}
5108 
5109 	if (task_fits_cpu(p, cpu_of(rq))) {
5110 		rq->misfit_task_load = 0;
5111 		return;
5112 	}
5113 
5114 	/*
5115 	 * Make sure that misfit_task_load will not be null even if
5116 	 * task_h_load() returns 0.
5117 	 */
5118 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5119 }
5120 
5121 #else /* CONFIG_SMP */
5122 
5123 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5124 {
5125 	return !cfs_rq->nr_running;
5126 }
5127 
5128 #define UPDATE_TG	0x0
5129 #define SKIP_AGE_LOAD	0x0
5130 #define DO_ATTACH	0x0
5131 #define DO_DETACH	0x0
5132 
5133 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5134 {
5135 	cfs_rq_util_change(cfs_rq, 0);
5136 }
5137 
5138 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5139 
5140 static inline void
5141 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5142 static inline void
5143 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5144 
5145 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5146 {
5147 	return 0;
5148 }
5149 
5150 static inline void
5151 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5152 
5153 static inline void
5154 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5155 
5156 static inline void
5157 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5158 		bool task_sleep) {}
5159 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5160 
5161 #endif /* CONFIG_SMP */
5162 
5163 static void
5164 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5165 {
5166 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5167 	s64 lag = 0;
5168 
5169 	se->slice = sysctl_sched_base_slice;
5170 	vslice = calc_delta_fair(se->slice, se);
5171 
5172 	/*
5173 	 * Due to how V is constructed as the weighted average of entities,
5174 	 * adding tasks with positive lag, or removing tasks with negative lag
5175 	 * will move 'time' backwards, this can screw around with the lag of
5176 	 * other tasks.
5177 	 *
5178 	 * EEVDF: placement strategy #1 / #2
5179 	 */
5180 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5181 		struct sched_entity *curr = cfs_rq->curr;
5182 		unsigned long load;
5183 
5184 		lag = se->vlag;
5185 
5186 		/*
5187 		 * If we want to place a task and preserve lag, we have to
5188 		 * consider the effect of the new entity on the weighted
5189 		 * average and compensate for this, otherwise lag can quickly
5190 		 * evaporate.
5191 		 *
5192 		 * Lag is defined as:
5193 		 *
5194 		 *   lag_i = S - s_i = w_i * (V - v_i)
5195 		 *
5196 		 * To avoid the 'w_i' term all over the place, we only track
5197 		 * the virtual lag:
5198 		 *
5199 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5200 		 *
5201 		 * And we take V to be the weighted average of all v:
5202 		 *
5203 		 *   V = (\Sum w_j*v_j) / W
5204 		 *
5205 		 * Where W is: \Sum w_j
5206 		 *
5207 		 * Then, the weighted average after adding an entity with lag
5208 		 * vl_i is given by:
5209 		 *
5210 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5211 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5212 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5213 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5214 		 *      = V - w_i*vl_i / (W + w_i)
5215 		 *
5216 		 * And the actual lag after adding an entity with vl_i is:
5217 		 *
5218 		 *   vl'_i = V' - v_i
5219 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5220 		 *         = vl_i - w_i*vl_i / (W + w_i)
5221 		 *
5222 		 * Which is strictly less than vl_i. So in order to preserve lag
5223 		 * we should inflate the lag before placement such that the
5224 		 * effective lag after placement comes out right.
5225 		 *
5226 		 * As such, invert the above relation for vl'_i to get the vl_i
5227 		 * we need to use such that the lag after placement is the lag
5228 		 * we computed before dequeue.
5229 		 *
5230 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5231 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5232 		 *
5233 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5234 		 *                   = W*vl_i
5235 		 *
5236 		 *   vl_i = (W + w_i)*vl'_i / W
5237 		 */
5238 		load = cfs_rq->avg_load;
5239 		if (curr && curr->on_rq)
5240 			load += scale_load_down(curr->load.weight);
5241 
5242 		lag *= load + scale_load_down(se->load.weight);
5243 		if (WARN_ON_ONCE(!load))
5244 			load = 1;
5245 		lag = div_s64(lag, load);
5246 	}
5247 
5248 	se->vruntime = vruntime - lag;
5249 
5250 	/*
5251 	 * When joining the competition; the exisiting tasks will be,
5252 	 * on average, halfway through their slice, as such start tasks
5253 	 * off with half a slice to ease into the competition.
5254 	 */
5255 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5256 		vslice /= 2;
5257 
5258 	/*
5259 	 * EEVDF: vd_i = ve_i + r_i/w_i
5260 	 */
5261 	se->deadline = se->vruntime + vslice;
5262 }
5263 
5264 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5265 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5266 
5267 static inline bool cfs_bandwidth_used(void);
5268 
5269 static void
5270 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5271 {
5272 	bool curr = cfs_rq->curr == se;
5273 
5274 	/*
5275 	 * If we're the current task, we must renormalise before calling
5276 	 * update_curr().
5277 	 */
5278 	if (curr)
5279 		place_entity(cfs_rq, se, flags);
5280 
5281 	update_curr(cfs_rq);
5282 
5283 	/*
5284 	 * When enqueuing a sched_entity, we must:
5285 	 *   - Update loads to have both entity and cfs_rq synced with now.
5286 	 *   - For group_entity, update its runnable_weight to reflect the new
5287 	 *     h_nr_running of its group cfs_rq.
5288 	 *   - For group_entity, update its weight to reflect the new share of
5289 	 *     its group cfs_rq
5290 	 *   - Add its new weight to cfs_rq->load.weight
5291 	 */
5292 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5293 	se_update_runnable(se);
5294 	/*
5295 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5296 	 * but update_cfs_group() here will re-adjust the weight and have to
5297 	 * undo/redo all that. Seems wasteful.
5298 	 */
5299 	update_cfs_group(se);
5300 
5301 	/*
5302 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5303 	 * we can place the entity.
5304 	 */
5305 	if (!curr)
5306 		place_entity(cfs_rq, se, flags);
5307 
5308 	account_entity_enqueue(cfs_rq, se);
5309 
5310 	/* Entity has migrated, no longer consider this task hot */
5311 	if (flags & ENQUEUE_MIGRATED)
5312 		se->exec_start = 0;
5313 
5314 	check_schedstat_required();
5315 	update_stats_enqueue_fair(cfs_rq, se, flags);
5316 	if (!curr)
5317 		__enqueue_entity(cfs_rq, se);
5318 	se->on_rq = 1;
5319 
5320 	if (cfs_rq->nr_running == 1) {
5321 		check_enqueue_throttle(cfs_rq);
5322 		if (!throttled_hierarchy(cfs_rq)) {
5323 			list_add_leaf_cfs_rq(cfs_rq);
5324 		} else {
5325 #ifdef CONFIG_CFS_BANDWIDTH
5326 			struct rq *rq = rq_of(cfs_rq);
5327 
5328 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5329 				cfs_rq->throttled_clock = rq_clock(rq);
5330 			if (!cfs_rq->throttled_clock_self)
5331 				cfs_rq->throttled_clock_self = rq_clock(rq);
5332 #endif
5333 		}
5334 	}
5335 }
5336 
5337 static void __clear_buddies_next(struct sched_entity *se)
5338 {
5339 	for_each_sched_entity(se) {
5340 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5341 		if (cfs_rq->next != se)
5342 			break;
5343 
5344 		cfs_rq->next = NULL;
5345 	}
5346 }
5347 
5348 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5349 {
5350 	if (cfs_rq->next == se)
5351 		__clear_buddies_next(se);
5352 }
5353 
5354 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5355 
5356 static void
5357 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5358 {
5359 	int action = UPDATE_TG;
5360 
5361 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5362 		action |= DO_DETACH;
5363 
5364 	/*
5365 	 * Update run-time statistics of the 'current'.
5366 	 */
5367 	update_curr(cfs_rq);
5368 
5369 	/*
5370 	 * When dequeuing a sched_entity, we must:
5371 	 *   - Update loads to have both entity and cfs_rq synced with now.
5372 	 *   - For group_entity, update its runnable_weight to reflect the new
5373 	 *     h_nr_running of its group cfs_rq.
5374 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5375 	 *   - For group entity, update its weight to reflect the new share
5376 	 *     of its group cfs_rq.
5377 	 */
5378 	update_load_avg(cfs_rq, se, action);
5379 	se_update_runnable(se);
5380 
5381 	update_stats_dequeue_fair(cfs_rq, se, flags);
5382 
5383 	clear_buddies(cfs_rq, se);
5384 
5385 	update_entity_lag(cfs_rq, se);
5386 	if (se != cfs_rq->curr)
5387 		__dequeue_entity(cfs_rq, se);
5388 	se->on_rq = 0;
5389 	account_entity_dequeue(cfs_rq, se);
5390 
5391 	/* return excess runtime on last dequeue */
5392 	return_cfs_rq_runtime(cfs_rq);
5393 
5394 	update_cfs_group(se);
5395 
5396 	/*
5397 	 * Now advance min_vruntime if @se was the entity holding it back,
5398 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5399 	 * put back on, and if we advance min_vruntime, we'll be placed back
5400 	 * further than we started -- ie. we'll be penalized.
5401 	 */
5402 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5403 		update_min_vruntime(cfs_rq);
5404 
5405 	if (cfs_rq->nr_running == 0)
5406 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5407 }
5408 
5409 static void
5410 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5411 {
5412 	clear_buddies(cfs_rq, se);
5413 
5414 	/* 'current' is not kept within the tree. */
5415 	if (se->on_rq) {
5416 		/*
5417 		 * Any task has to be enqueued before it get to execute on
5418 		 * a CPU. So account for the time it spent waiting on the
5419 		 * runqueue.
5420 		 */
5421 		update_stats_wait_end_fair(cfs_rq, se);
5422 		__dequeue_entity(cfs_rq, se);
5423 		update_load_avg(cfs_rq, se, UPDATE_TG);
5424 		/*
5425 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5426 		 * which isn't used until dequeue.
5427 		 */
5428 		se->vlag = se->deadline;
5429 	}
5430 
5431 	update_stats_curr_start(cfs_rq, se);
5432 	cfs_rq->curr = se;
5433 
5434 	/*
5435 	 * Track our maximum slice length, if the CPU's load is at
5436 	 * least twice that of our own weight (i.e. dont track it
5437 	 * when there are only lesser-weight tasks around):
5438 	 */
5439 	if (schedstat_enabled() &&
5440 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5441 		struct sched_statistics *stats;
5442 
5443 		stats = __schedstats_from_se(se);
5444 		__schedstat_set(stats->slice_max,
5445 				max((u64)stats->slice_max,
5446 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5447 	}
5448 
5449 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5450 }
5451 
5452 /*
5453  * Pick the next process, keeping these things in mind, in this order:
5454  * 1) keep things fair between processes/task groups
5455  * 2) pick the "next" process, since someone really wants that to run
5456  * 3) pick the "last" process, for cache locality
5457  * 4) do not run the "skip" process, if something else is available
5458  */
5459 static struct sched_entity *
5460 pick_next_entity(struct cfs_rq *cfs_rq)
5461 {
5462 	/*
5463 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5464 	 */
5465 	if (sched_feat(NEXT_BUDDY) &&
5466 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5467 		return cfs_rq->next;
5468 
5469 	return pick_eevdf(cfs_rq);
5470 }
5471 
5472 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5473 
5474 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5475 {
5476 	/*
5477 	 * If still on the runqueue then deactivate_task()
5478 	 * was not called and update_curr() has to be done:
5479 	 */
5480 	if (prev->on_rq)
5481 		update_curr(cfs_rq);
5482 
5483 	/* throttle cfs_rqs exceeding runtime */
5484 	check_cfs_rq_runtime(cfs_rq);
5485 
5486 	if (prev->on_rq) {
5487 		update_stats_wait_start_fair(cfs_rq, prev);
5488 		/* Put 'current' back into the tree. */
5489 		__enqueue_entity(cfs_rq, prev);
5490 		/* in !on_rq case, update occurred at dequeue */
5491 		update_load_avg(cfs_rq, prev, 0);
5492 	}
5493 	cfs_rq->curr = NULL;
5494 }
5495 
5496 static void
5497 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5498 {
5499 	/*
5500 	 * Update run-time statistics of the 'current'.
5501 	 */
5502 	update_curr(cfs_rq);
5503 
5504 	/*
5505 	 * Ensure that runnable average is periodically updated.
5506 	 */
5507 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5508 	update_cfs_group(curr);
5509 
5510 #ifdef CONFIG_SCHED_HRTICK
5511 	/*
5512 	 * queued ticks are scheduled to match the slice, so don't bother
5513 	 * validating it and just reschedule.
5514 	 */
5515 	if (queued) {
5516 		resched_curr(rq_of(cfs_rq));
5517 		return;
5518 	}
5519 	/*
5520 	 * don't let the period tick interfere with the hrtick preemption
5521 	 */
5522 	if (!sched_feat(DOUBLE_TICK) &&
5523 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5524 		return;
5525 #endif
5526 }
5527 
5528 
5529 /**************************************************
5530  * CFS bandwidth control machinery
5531  */
5532 
5533 #ifdef CONFIG_CFS_BANDWIDTH
5534 
5535 #ifdef CONFIG_JUMP_LABEL
5536 static struct static_key __cfs_bandwidth_used;
5537 
5538 static inline bool cfs_bandwidth_used(void)
5539 {
5540 	return static_key_false(&__cfs_bandwidth_used);
5541 }
5542 
5543 void cfs_bandwidth_usage_inc(void)
5544 {
5545 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5546 }
5547 
5548 void cfs_bandwidth_usage_dec(void)
5549 {
5550 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5551 }
5552 #else /* CONFIG_JUMP_LABEL */
5553 static bool cfs_bandwidth_used(void)
5554 {
5555 	return true;
5556 }
5557 
5558 void cfs_bandwidth_usage_inc(void) {}
5559 void cfs_bandwidth_usage_dec(void) {}
5560 #endif /* CONFIG_JUMP_LABEL */
5561 
5562 /*
5563  * default period for cfs group bandwidth.
5564  * default: 0.1s, units: nanoseconds
5565  */
5566 static inline u64 default_cfs_period(void)
5567 {
5568 	return 100000000ULL;
5569 }
5570 
5571 static inline u64 sched_cfs_bandwidth_slice(void)
5572 {
5573 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5574 }
5575 
5576 /*
5577  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5578  * directly instead of rq->clock to avoid adding additional synchronization
5579  * around rq->lock.
5580  *
5581  * requires cfs_b->lock
5582  */
5583 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5584 {
5585 	s64 runtime;
5586 
5587 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5588 		return;
5589 
5590 	cfs_b->runtime += cfs_b->quota;
5591 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5592 	if (runtime > 0) {
5593 		cfs_b->burst_time += runtime;
5594 		cfs_b->nr_burst++;
5595 	}
5596 
5597 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5598 	cfs_b->runtime_snap = cfs_b->runtime;
5599 }
5600 
5601 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5602 {
5603 	return &tg->cfs_bandwidth;
5604 }
5605 
5606 /* returns 0 on failure to allocate runtime */
5607 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5608 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5609 {
5610 	u64 min_amount, amount = 0;
5611 
5612 	lockdep_assert_held(&cfs_b->lock);
5613 
5614 	/* note: this is a positive sum as runtime_remaining <= 0 */
5615 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5616 
5617 	if (cfs_b->quota == RUNTIME_INF)
5618 		amount = min_amount;
5619 	else {
5620 		start_cfs_bandwidth(cfs_b);
5621 
5622 		if (cfs_b->runtime > 0) {
5623 			amount = min(cfs_b->runtime, min_amount);
5624 			cfs_b->runtime -= amount;
5625 			cfs_b->idle = 0;
5626 		}
5627 	}
5628 
5629 	cfs_rq->runtime_remaining += amount;
5630 
5631 	return cfs_rq->runtime_remaining > 0;
5632 }
5633 
5634 /* returns 0 on failure to allocate runtime */
5635 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5636 {
5637 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5638 	int ret;
5639 
5640 	raw_spin_lock(&cfs_b->lock);
5641 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5642 	raw_spin_unlock(&cfs_b->lock);
5643 
5644 	return ret;
5645 }
5646 
5647 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5648 {
5649 	/* dock delta_exec before expiring quota (as it could span periods) */
5650 	cfs_rq->runtime_remaining -= delta_exec;
5651 
5652 	if (likely(cfs_rq->runtime_remaining > 0))
5653 		return;
5654 
5655 	if (cfs_rq->throttled)
5656 		return;
5657 	/*
5658 	 * if we're unable to extend our runtime we resched so that the active
5659 	 * hierarchy can be throttled
5660 	 */
5661 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5662 		resched_curr(rq_of(cfs_rq));
5663 }
5664 
5665 static __always_inline
5666 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5667 {
5668 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5669 		return;
5670 
5671 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5672 }
5673 
5674 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5675 {
5676 	return cfs_bandwidth_used() && cfs_rq->throttled;
5677 }
5678 
5679 /* check whether cfs_rq, or any parent, is throttled */
5680 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5681 {
5682 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5683 }
5684 
5685 /*
5686  * Ensure that neither of the group entities corresponding to src_cpu or
5687  * dest_cpu are members of a throttled hierarchy when performing group
5688  * load-balance operations.
5689  */
5690 static inline int throttled_lb_pair(struct task_group *tg,
5691 				    int src_cpu, int dest_cpu)
5692 {
5693 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5694 
5695 	src_cfs_rq = tg->cfs_rq[src_cpu];
5696 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5697 
5698 	return throttled_hierarchy(src_cfs_rq) ||
5699 	       throttled_hierarchy(dest_cfs_rq);
5700 }
5701 
5702 static int tg_unthrottle_up(struct task_group *tg, void *data)
5703 {
5704 	struct rq *rq = data;
5705 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5706 
5707 	cfs_rq->throttle_count--;
5708 	if (!cfs_rq->throttle_count) {
5709 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5710 					     cfs_rq->throttled_clock_pelt;
5711 
5712 		/* Add cfs_rq with load or one or more already running entities to the list */
5713 		if (!cfs_rq_is_decayed(cfs_rq))
5714 			list_add_leaf_cfs_rq(cfs_rq);
5715 
5716 		if (cfs_rq->throttled_clock_self) {
5717 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5718 
5719 			cfs_rq->throttled_clock_self = 0;
5720 
5721 			if (SCHED_WARN_ON((s64)delta < 0))
5722 				delta = 0;
5723 
5724 			cfs_rq->throttled_clock_self_time += delta;
5725 		}
5726 	}
5727 
5728 	return 0;
5729 }
5730 
5731 static int tg_throttle_down(struct task_group *tg, void *data)
5732 {
5733 	struct rq *rq = data;
5734 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5735 
5736 	/* group is entering throttled state, stop time */
5737 	if (!cfs_rq->throttle_count) {
5738 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5739 		list_del_leaf_cfs_rq(cfs_rq);
5740 
5741 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5742 		if (cfs_rq->nr_running)
5743 			cfs_rq->throttled_clock_self = rq_clock(rq);
5744 	}
5745 	cfs_rq->throttle_count++;
5746 
5747 	return 0;
5748 }
5749 
5750 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5751 {
5752 	struct rq *rq = rq_of(cfs_rq);
5753 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5754 	struct sched_entity *se;
5755 	long task_delta, idle_task_delta, dequeue = 1;
5756 
5757 	raw_spin_lock(&cfs_b->lock);
5758 	/* This will start the period timer if necessary */
5759 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5760 		/*
5761 		 * We have raced with bandwidth becoming available, and if we
5762 		 * actually throttled the timer might not unthrottle us for an
5763 		 * entire period. We additionally needed to make sure that any
5764 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5765 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5766 		 * for 1ns of runtime rather than just check cfs_b.
5767 		 */
5768 		dequeue = 0;
5769 	} else {
5770 		list_add_tail_rcu(&cfs_rq->throttled_list,
5771 				  &cfs_b->throttled_cfs_rq);
5772 	}
5773 	raw_spin_unlock(&cfs_b->lock);
5774 
5775 	if (!dequeue)
5776 		return false;  /* Throttle no longer required. */
5777 
5778 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5779 
5780 	/* freeze hierarchy runnable averages while throttled */
5781 	rcu_read_lock();
5782 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5783 	rcu_read_unlock();
5784 
5785 	task_delta = cfs_rq->h_nr_running;
5786 	idle_task_delta = cfs_rq->idle_h_nr_running;
5787 	for_each_sched_entity(se) {
5788 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5789 		/* throttled entity or throttle-on-deactivate */
5790 		if (!se->on_rq)
5791 			goto done;
5792 
5793 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5794 
5795 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5796 			idle_task_delta = cfs_rq->h_nr_running;
5797 
5798 		qcfs_rq->h_nr_running -= task_delta;
5799 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5800 
5801 		if (qcfs_rq->load.weight) {
5802 			/* Avoid re-evaluating load for this entity: */
5803 			se = parent_entity(se);
5804 			break;
5805 		}
5806 	}
5807 
5808 	for_each_sched_entity(se) {
5809 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5810 		/* throttled entity or throttle-on-deactivate */
5811 		if (!se->on_rq)
5812 			goto done;
5813 
5814 		update_load_avg(qcfs_rq, se, 0);
5815 		se_update_runnable(se);
5816 
5817 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5818 			idle_task_delta = cfs_rq->h_nr_running;
5819 
5820 		qcfs_rq->h_nr_running -= task_delta;
5821 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5822 	}
5823 
5824 	/* At this point se is NULL and we are at root level*/
5825 	sub_nr_running(rq, task_delta);
5826 
5827 done:
5828 	/*
5829 	 * Note: distribution will already see us throttled via the
5830 	 * throttled-list.  rq->lock protects completion.
5831 	 */
5832 	cfs_rq->throttled = 1;
5833 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5834 	if (cfs_rq->nr_running)
5835 		cfs_rq->throttled_clock = rq_clock(rq);
5836 	return true;
5837 }
5838 
5839 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5840 {
5841 	struct rq *rq = rq_of(cfs_rq);
5842 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5843 	struct sched_entity *se;
5844 	long task_delta, idle_task_delta;
5845 
5846 	se = cfs_rq->tg->se[cpu_of(rq)];
5847 
5848 	cfs_rq->throttled = 0;
5849 
5850 	update_rq_clock(rq);
5851 
5852 	raw_spin_lock(&cfs_b->lock);
5853 	if (cfs_rq->throttled_clock) {
5854 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5855 		cfs_rq->throttled_clock = 0;
5856 	}
5857 	list_del_rcu(&cfs_rq->throttled_list);
5858 	raw_spin_unlock(&cfs_b->lock);
5859 
5860 	/* update hierarchical throttle state */
5861 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5862 
5863 	if (!cfs_rq->load.weight) {
5864 		if (!cfs_rq->on_list)
5865 			return;
5866 		/*
5867 		 * Nothing to run but something to decay (on_list)?
5868 		 * Complete the branch.
5869 		 */
5870 		for_each_sched_entity(se) {
5871 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5872 				break;
5873 		}
5874 		goto unthrottle_throttle;
5875 	}
5876 
5877 	task_delta = cfs_rq->h_nr_running;
5878 	idle_task_delta = cfs_rq->idle_h_nr_running;
5879 	for_each_sched_entity(se) {
5880 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5881 
5882 		if (se->on_rq)
5883 			break;
5884 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5885 
5886 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5887 			idle_task_delta = cfs_rq->h_nr_running;
5888 
5889 		qcfs_rq->h_nr_running += task_delta;
5890 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5891 
5892 		/* end evaluation on encountering a throttled cfs_rq */
5893 		if (cfs_rq_throttled(qcfs_rq))
5894 			goto unthrottle_throttle;
5895 	}
5896 
5897 	for_each_sched_entity(se) {
5898 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5899 
5900 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5901 		se_update_runnable(se);
5902 
5903 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5904 			idle_task_delta = cfs_rq->h_nr_running;
5905 
5906 		qcfs_rq->h_nr_running += task_delta;
5907 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5908 
5909 		/* end evaluation on encountering a throttled cfs_rq */
5910 		if (cfs_rq_throttled(qcfs_rq))
5911 			goto unthrottle_throttle;
5912 	}
5913 
5914 	/* At this point se is NULL and we are at root level*/
5915 	add_nr_running(rq, task_delta);
5916 
5917 unthrottle_throttle:
5918 	assert_list_leaf_cfs_rq(rq);
5919 
5920 	/* Determine whether we need to wake up potentially idle CPU: */
5921 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5922 		resched_curr(rq);
5923 }
5924 
5925 #ifdef CONFIG_SMP
5926 static void __cfsb_csd_unthrottle(void *arg)
5927 {
5928 	struct cfs_rq *cursor, *tmp;
5929 	struct rq *rq = arg;
5930 	struct rq_flags rf;
5931 
5932 	rq_lock(rq, &rf);
5933 
5934 	/*
5935 	 * Iterating over the list can trigger several call to
5936 	 * update_rq_clock() in unthrottle_cfs_rq().
5937 	 * Do it once and skip the potential next ones.
5938 	 */
5939 	update_rq_clock(rq);
5940 	rq_clock_start_loop_update(rq);
5941 
5942 	/*
5943 	 * Since we hold rq lock we're safe from concurrent manipulation of
5944 	 * the CSD list. However, this RCU critical section annotates the
5945 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5946 	 * race with group being freed in the window between removing it
5947 	 * from the list and advancing to the next entry in the list.
5948 	 */
5949 	rcu_read_lock();
5950 
5951 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5952 				 throttled_csd_list) {
5953 		list_del_init(&cursor->throttled_csd_list);
5954 
5955 		if (cfs_rq_throttled(cursor))
5956 			unthrottle_cfs_rq(cursor);
5957 	}
5958 
5959 	rcu_read_unlock();
5960 
5961 	rq_clock_stop_loop_update(rq);
5962 	rq_unlock(rq, &rf);
5963 }
5964 
5965 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5966 {
5967 	struct rq *rq = rq_of(cfs_rq);
5968 	bool first;
5969 
5970 	if (rq == this_rq()) {
5971 		unthrottle_cfs_rq(cfs_rq);
5972 		return;
5973 	}
5974 
5975 	/* Already enqueued */
5976 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5977 		return;
5978 
5979 	first = list_empty(&rq->cfsb_csd_list);
5980 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5981 	if (first)
5982 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5983 }
5984 #else
5985 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5986 {
5987 	unthrottle_cfs_rq(cfs_rq);
5988 }
5989 #endif
5990 
5991 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5992 {
5993 	lockdep_assert_rq_held(rq_of(cfs_rq));
5994 
5995 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5996 	    cfs_rq->runtime_remaining <= 0))
5997 		return;
5998 
5999 	__unthrottle_cfs_rq_async(cfs_rq);
6000 }
6001 
6002 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6003 {
6004 	int this_cpu = smp_processor_id();
6005 	u64 runtime, remaining = 1;
6006 	bool throttled = false;
6007 	struct cfs_rq *cfs_rq, *tmp;
6008 	struct rq_flags rf;
6009 	struct rq *rq;
6010 	LIST_HEAD(local_unthrottle);
6011 
6012 	rcu_read_lock();
6013 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6014 				throttled_list) {
6015 		rq = rq_of(cfs_rq);
6016 
6017 		if (!remaining) {
6018 			throttled = true;
6019 			break;
6020 		}
6021 
6022 		rq_lock_irqsave(rq, &rf);
6023 		if (!cfs_rq_throttled(cfs_rq))
6024 			goto next;
6025 
6026 		/* Already queued for async unthrottle */
6027 		if (!list_empty(&cfs_rq->throttled_csd_list))
6028 			goto next;
6029 
6030 		/* By the above checks, this should never be true */
6031 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6032 
6033 		raw_spin_lock(&cfs_b->lock);
6034 		runtime = -cfs_rq->runtime_remaining + 1;
6035 		if (runtime > cfs_b->runtime)
6036 			runtime = cfs_b->runtime;
6037 		cfs_b->runtime -= runtime;
6038 		remaining = cfs_b->runtime;
6039 		raw_spin_unlock(&cfs_b->lock);
6040 
6041 		cfs_rq->runtime_remaining += runtime;
6042 
6043 		/* we check whether we're throttled above */
6044 		if (cfs_rq->runtime_remaining > 0) {
6045 			if (cpu_of(rq) != this_cpu) {
6046 				unthrottle_cfs_rq_async(cfs_rq);
6047 			} else {
6048 				/*
6049 				 * We currently only expect to be unthrottling
6050 				 * a single cfs_rq locally.
6051 				 */
6052 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6053 				list_add_tail(&cfs_rq->throttled_csd_list,
6054 					      &local_unthrottle);
6055 			}
6056 		} else {
6057 			throttled = true;
6058 		}
6059 
6060 next:
6061 		rq_unlock_irqrestore(rq, &rf);
6062 	}
6063 
6064 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6065 				 throttled_csd_list) {
6066 		struct rq *rq = rq_of(cfs_rq);
6067 
6068 		rq_lock_irqsave(rq, &rf);
6069 
6070 		list_del_init(&cfs_rq->throttled_csd_list);
6071 
6072 		if (cfs_rq_throttled(cfs_rq))
6073 			unthrottle_cfs_rq(cfs_rq);
6074 
6075 		rq_unlock_irqrestore(rq, &rf);
6076 	}
6077 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6078 
6079 	rcu_read_unlock();
6080 
6081 	return throttled;
6082 }
6083 
6084 /*
6085  * Responsible for refilling a task_group's bandwidth and unthrottling its
6086  * cfs_rqs as appropriate. If there has been no activity within the last
6087  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6088  * used to track this state.
6089  */
6090 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6091 {
6092 	int throttled;
6093 
6094 	/* no need to continue the timer with no bandwidth constraint */
6095 	if (cfs_b->quota == RUNTIME_INF)
6096 		goto out_deactivate;
6097 
6098 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6099 	cfs_b->nr_periods += overrun;
6100 
6101 	/* Refill extra burst quota even if cfs_b->idle */
6102 	__refill_cfs_bandwidth_runtime(cfs_b);
6103 
6104 	/*
6105 	 * idle depends on !throttled (for the case of a large deficit), and if
6106 	 * we're going inactive then everything else can be deferred
6107 	 */
6108 	if (cfs_b->idle && !throttled)
6109 		goto out_deactivate;
6110 
6111 	if (!throttled) {
6112 		/* mark as potentially idle for the upcoming period */
6113 		cfs_b->idle = 1;
6114 		return 0;
6115 	}
6116 
6117 	/* account preceding periods in which throttling occurred */
6118 	cfs_b->nr_throttled += overrun;
6119 
6120 	/*
6121 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6122 	 */
6123 	while (throttled && cfs_b->runtime > 0) {
6124 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6125 		/* we can't nest cfs_b->lock while distributing bandwidth */
6126 		throttled = distribute_cfs_runtime(cfs_b);
6127 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6128 	}
6129 
6130 	/*
6131 	 * While we are ensured activity in the period following an
6132 	 * unthrottle, this also covers the case in which the new bandwidth is
6133 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6134 	 * timer to remain active while there are any throttled entities.)
6135 	 */
6136 	cfs_b->idle = 0;
6137 
6138 	return 0;
6139 
6140 out_deactivate:
6141 	return 1;
6142 }
6143 
6144 /* a cfs_rq won't donate quota below this amount */
6145 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6146 /* minimum remaining period time to redistribute slack quota */
6147 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6148 /* how long we wait to gather additional slack before distributing */
6149 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6150 
6151 /*
6152  * Are we near the end of the current quota period?
6153  *
6154  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6155  * hrtimer base being cleared by hrtimer_start. In the case of
6156  * migrate_hrtimers, base is never cleared, so we are fine.
6157  */
6158 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6159 {
6160 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6161 	s64 remaining;
6162 
6163 	/* if the call-back is running a quota refresh is already occurring */
6164 	if (hrtimer_callback_running(refresh_timer))
6165 		return 1;
6166 
6167 	/* is a quota refresh about to occur? */
6168 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6169 	if (remaining < (s64)min_expire)
6170 		return 1;
6171 
6172 	return 0;
6173 }
6174 
6175 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6176 {
6177 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6178 
6179 	/* if there's a quota refresh soon don't bother with slack */
6180 	if (runtime_refresh_within(cfs_b, min_left))
6181 		return;
6182 
6183 	/* don't push forwards an existing deferred unthrottle */
6184 	if (cfs_b->slack_started)
6185 		return;
6186 	cfs_b->slack_started = true;
6187 
6188 	hrtimer_start(&cfs_b->slack_timer,
6189 			ns_to_ktime(cfs_bandwidth_slack_period),
6190 			HRTIMER_MODE_REL);
6191 }
6192 
6193 /* we know any runtime found here is valid as update_curr() precedes return */
6194 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6195 {
6196 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6197 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6198 
6199 	if (slack_runtime <= 0)
6200 		return;
6201 
6202 	raw_spin_lock(&cfs_b->lock);
6203 	if (cfs_b->quota != RUNTIME_INF) {
6204 		cfs_b->runtime += slack_runtime;
6205 
6206 		/* we are under rq->lock, defer unthrottling using a timer */
6207 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6208 		    !list_empty(&cfs_b->throttled_cfs_rq))
6209 			start_cfs_slack_bandwidth(cfs_b);
6210 	}
6211 	raw_spin_unlock(&cfs_b->lock);
6212 
6213 	/* even if it's not valid for return we don't want to try again */
6214 	cfs_rq->runtime_remaining -= slack_runtime;
6215 }
6216 
6217 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6218 {
6219 	if (!cfs_bandwidth_used())
6220 		return;
6221 
6222 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6223 		return;
6224 
6225 	__return_cfs_rq_runtime(cfs_rq);
6226 }
6227 
6228 /*
6229  * This is done with a timer (instead of inline with bandwidth return) since
6230  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6231  */
6232 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6233 {
6234 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6235 	unsigned long flags;
6236 
6237 	/* confirm we're still not at a refresh boundary */
6238 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6239 	cfs_b->slack_started = false;
6240 
6241 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6242 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6243 		return;
6244 	}
6245 
6246 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6247 		runtime = cfs_b->runtime;
6248 
6249 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6250 
6251 	if (!runtime)
6252 		return;
6253 
6254 	distribute_cfs_runtime(cfs_b);
6255 }
6256 
6257 /*
6258  * When a group wakes up we want to make sure that its quota is not already
6259  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6260  * runtime as update_curr() throttling can not trigger until it's on-rq.
6261  */
6262 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6263 {
6264 	if (!cfs_bandwidth_used())
6265 		return;
6266 
6267 	/* an active group must be handled by the update_curr()->put() path */
6268 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6269 		return;
6270 
6271 	/* ensure the group is not already throttled */
6272 	if (cfs_rq_throttled(cfs_rq))
6273 		return;
6274 
6275 	/* update runtime allocation */
6276 	account_cfs_rq_runtime(cfs_rq, 0);
6277 	if (cfs_rq->runtime_remaining <= 0)
6278 		throttle_cfs_rq(cfs_rq);
6279 }
6280 
6281 static void sync_throttle(struct task_group *tg, int cpu)
6282 {
6283 	struct cfs_rq *pcfs_rq, *cfs_rq;
6284 
6285 	if (!cfs_bandwidth_used())
6286 		return;
6287 
6288 	if (!tg->parent)
6289 		return;
6290 
6291 	cfs_rq = tg->cfs_rq[cpu];
6292 	pcfs_rq = tg->parent->cfs_rq[cpu];
6293 
6294 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6295 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6296 }
6297 
6298 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6299 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6300 {
6301 	if (!cfs_bandwidth_used())
6302 		return false;
6303 
6304 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6305 		return false;
6306 
6307 	/*
6308 	 * it's possible for a throttled entity to be forced into a running
6309 	 * state (e.g. set_curr_task), in this case we're finished.
6310 	 */
6311 	if (cfs_rq_throttled(cfs_rq))
6312 		return true;
6313 
6314 	return throttle_cfs_rq(cfs_rq);
6315 }
6316 
6317 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6318 {
6319 	struct cfs_bandwidth *cfs_b =
6320 		container_of(timer, struct cfs_bandwidth, slack_timer);
6321 
6322 	do_sched_cfs_slack_timer(cfs_b);
6323 
6324 	return HRTIMER_NORESTART;
6325 }
6326 
6327 extern const u64 max_cfs_quota_period;
6328 
6329 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6330 {
6331 	struct cfs_bandwidth *cfs_b =
6332 		container_of(timer, struct cfs_bandwidth, period_timer);
6333 	unsigned long flags;
6334 	int overrun;
6335 	int idle = 0;
6336 	int count = 0;
6337 
6338 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6339 	for (;;) {
6340 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6341 		if (!overrun)
6342 			break;
6343 
6344 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6345 
6346 		if (++count > 3) {
6347 			u64 new, old = ktime_to_ns(cfs_b->period);
6348 
6349 			/*
6350 			 * Grow period by a factor of 2 to avoid losing precision.
6351 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6352 			 * to fail.
6353 			 */
6354 			new = old * 2;
6355 			if (new < max_cfs_quota_period) {
6356 				cfs_b->period = ns_to_ktime(new);
6357 				cfs_b->quota *= 2;
6358 				cfs_b->burst *= 2;
6359 
6360 				pr_warn_ratelimited(
6361 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6362 					smp_processor_id(),
6363 					div_u64(new, NSEC_PER_USEC),
6364 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6365 			} else {
6366 				pr_warn_ratelimited(
6367 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6368 					smp_processor_id(),
6369 					div_u64(old, NSEC_PER_USEC),
6370 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6371 			}
6372 
6373 			/* reset count so we don't come right back in here */
6374 			count = 0;
6375 		}
6376 	}
6377 	if (idle)
6378 		cfs_b->period_active = 0;
6379 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6380 
6381 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6382 }
6383 
6384 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6385 {
6386 	raw_spin_lock_init(&cfs_b->lock);
6387 	cfs_b->runtime = 0;
6388 	cfs_b->quota = RUNTIME_INF;
6389 	cfs_b->period = ns_to_ktime(default_cfs_period());
6390 	cfs_b->burst = 0;
6391 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6392 
6393 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6394 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6395 	cfs_b->period_timer.function = sched_cfs_period_timer;
6396 
6397 	/* Add a random offset so that timers interleave */
6398 	hrtimer_set_expires(&cfs_b->period_timer,
6399 			    get_random_u32_below(cfs_b->period));
6400 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6401 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6402 	cfs_b->slack_started = false;
6403 }
6404 
6405 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6406 {
6407 	cfs_rq->runtime_enabled = 0;
6408 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6409 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6410 }
6411 
6412 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6413 {
6414 	lockdep_assert_held(&cfs_b->lock);
6415 
6416 	if (cfs_b->period_active)
6417 		return;
6418 
6419 	cfs_b->period_active = 1;
6420 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6421 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6422 }
6423 
6424 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6425 {
6426 	int __maybe_unused i;
6427 
6428 	/* init_cfs_bandwidth() was not called */
6429 	if (!cfs_b->throttled_cfs_rq.next)
6430 		return;
6431 
6432 	hrtimer_cancel(&cfs_b->period_timer);
6433 	hrtimer_cancel(&cfs_b->slack_timer);
6434 
6435 	/*
6436 	 * It is possible that we still have some cfs_rq's pending on a CSD
6437 	 * list, though this race is very rare. In order for this to occur, we
6438 	 * must have raced with the last task leaving the group while there
6439 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6440 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6441 	 * we can simply flush all pending CSD work inline here. We're
6442 	 * guaranteed at this point that no additional cfs_rq of this group can
6443 	 * join a CSD list.
6444 	 */
6445 #ifdef CONFIG_SMP
6446 	for_each_possible_cpu(i) {
6447 		struct rq *rq = cpu_rq(i);
6448 		unsigned long flags;
6449 
6450 		if (list_empty(&rq->cfsb_csd_list))
6451 			continue;
6452 
6453 		local_irq_save(flags);
6454 		__cfsb_csd_unthrottle(rq);
6455 		local_irq_restore(flags);
6456 	}
6457 #endif
6458 }
6459 
6460 /*
6461  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6462  *
6463  * The race is harmless, since modifying bandwidth settings of unhooked group
6464  * bits doesn't do much.
6465  */
6466 
6467 /* cpu online callback */
6468 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6469 {
6470 	struct task_group *tg;
6471 
6472 	lockdep_assert_rq_held(rq);
6473 
6474 	rcu_read_lock();
6475 	list_for_each_entry_rcu(tg, &task_groups, list) {
6476 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6477 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6478 
6479 		raw_spin_lock(&cfs_b->lock);
6480 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6481 		raw_spin_unlock(&cfs_b->lock);
6482 	}
6483 	rcu_read_unlock();
6484 }
6485 
6486 /* cpu offline callback */
6487 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6488 {
6489 	struct task_group *tg;
6490 
6491 	lockdep_assert_rq_held(rq);
6492 
6493 	/*
6494 	 * The rq clock has already been updated in the
6495 	 * set_rq_offline(), so we should skip updating
6496 	 * the rq clock again in unthrottle_cfs_rq().
6497 	 */
6498 	rq_clock_start_loop_update(rq);
6499 
6500 	rcu_read_lock();
6501 	list_for_each_entry_rcu(tg, &task_groups, list) {
6502 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6503 
6504 		if (!cfs_rq->runtime_enabled)
6505 			continue;
6506 
6507 		/*
6508 		 * clock_task is not advancing so we just need to make sure
6509 		 * there's some valid quota amount
6510 		 */
6511 		cfs_rq->runtime_remaining = 1;
6512 		/*
6513 		 * Offline rq is schedulable till CPU is completely disabled
6514 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6515 		 */
6516 		cfs_rq->runtime_enabled = 0;
6517 
6518 		if (cfs_rq_throttled(cfs_rq))
6519 			unthrottle_cfs_rq(cfs_rq);
6520 	}
6521 	rcu_read_unlock();
6522 
6523 	rq_clock_stop_loop_update(rq);
6524 }
6525 
6526 bool cfs_task_bw_constrained(struct task_struct *p)
6527 {
6528 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6529 
6530 	if (!cfs_bandwidth_used())
6531 		return false;
6532 
6533 	if (cfs_rq->runtime_enabled ||
6534 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6535 		return true;
6536 
6537 	return false;
6538 }
6539 
6540 #ifdef CONFIG_NO_HZ_FULL
6541 /* called from pick_next_task_fair() */
6542 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6543 {
6544 	int cpu = cpu_of(rq);
6545 
6546 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6547 		return;
6548 
6549 	if (!tick_nohz_full_cpu(cpu))
6550 		return;
6551 
6552 	if (rq->nr_running != 1)
6553 		return;
6554 
6555 	/*
6556 	 *  We know there is only one task runnable and we've just picked it. The
6557 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6558 	 *  be otherwise able to stop the tick. Just need to check if we are using
6559 	 *  bandwidth control.
6560 	 */
6561 	if (cfs_task_bw_constrained(p))
6562 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6563 }
6564 #endif
6565 
6566 #else /* CONFIG_CFS_BANDWIDTH */
6567 
6568 static inline bool cfs_bandwidth_used(void)
6569 {
6570 	return false;
6571 }
6572 
6573 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6574 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6575 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6576 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6577 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6578 
6579 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6580 {
6581 	return 0;
6582 }
6583 
6584 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6585 {
6586 	return 0;
6587 }
6588 
6589 static inline int throttled_lb_pair(struct task_group *tg,
6590 				    int src_cpu, int dest_cpu)
6591 {
6592 	return 0;
6593 }
6594 
6595 #ifdef CONFIG_FAIR_GROUP_SCHED
6596 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6597 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6598 #endif
6599 
6600 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6601 {
6602 	return NULL;
6603 }
6604 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6605 static inline void update_runtime_enabled(struct rq *rq) {}
6606 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6607 #ifdef CONFIG_CGROUP_SCHED
6608 bool cfs_task_bw_constrained(struct task_struct *p)
6609 {
6610 	return false;
6611 }
6612 #endif
6613 #endif /* CONFIG_CFS_BANDWIDTH */
6614 
6615 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6616 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6617 #endif
6618 
6619 /**************************************************
6620  * CFS operations on tasks:
6621  */
6622 
6623 #ifdef CONFIG_SCHED_HRTICK
6624 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6625 {
6626 	struct sched_entity *se = &p->se;
6627 
6628 	SCHED_WARN_ON(task_rq(p) != rq);
6629 
6630 	if (rq->cfs.h_nr_running > 1) {
6631 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6632 		u64 slice = se->slice;
6633 		s64 delta = slice - ran;
6634 
6635 		if (delta < 0) {
6636 			if (task_current(rq, p))
6637 				resched_curr(rq);
6638 			return;
6639 		}
6640 		hrtick_start(rq, delta);
6641 	}
6642 }
6643 
6644 /*
6645  * called from enqueue/dequeue and updates the hrtick when the
6646  * current task is from our class and nr_running is low enough
6647  * to matter.
6648  */
6649 static void hrtick_update(struct rq *rq)
6650 {
6651 	struct task_struct *curr = rq->curr;
6652 
6653 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6654 		return;
6655 
6656 	hrtick_start_fair(rq, curr);
6657 }
6658 #else /* !CONFIG_SCHED_HRTICK */
6659 static inline void
6660 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6661 {
6662 }
6663 
6664 static inline void hrtick_update(struct rq *rq)
6665 {
6666 }
6667 #endif
6668 
6669 #ifdef CONFIG_SMP
6670 static inline bool cpu_overutilized(int cpu)
6671 {
6672 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6673 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6674 
6675 	/* Return true only if the utilization doesn't fit CPU's capacity */
6676 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6677 }
6678 
6679 static inline void update_overutilized_status(struct rq *rq)
6680 {
6681 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6682 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6683 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6684 	}
6685 }
6686 #else
6687 static inline void update_overutilized_status(struct rq *rq) { }
6688 #endif
6689 
6690 /* Runqueue only has SCHED_IDLE tasks enqueued */
6691 static int sched_idle_rq(struct rq *rq)
6692 {
6693 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6694 			rq->nr_running);
6695 }
6696 
6697 #ifdef CONFIG_SMP
6698 static int sched_idle_cpu(int cpu)
6699 {
6700 	return sched_idle_rq(cpu_rq(cpu));
6701 }
6702 #endif
6703 
6704 /*
6705  * The enqueue_task method is called before nr_running is
6706  * increased. Here we update the fair scheduling stats and
6707  * then put the task into the rbtree:
6708  */
6709 static void
6710 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6711 {
6712 	struct cfs_rq *cfs_rq;
6713 	struct sched_entity *se = &p->se;
6714 	int idle_h_nr_running = task_has_idle_policy(p);
6715 	int task_new = !(flags & ENQUEUE_WAKEUP);
6716 
6717 	/*
6718 	 * The code below (indirectly) updates schedutil which looks at
6719 	 * the cfs_rq utilization to select a frequency.
6720 	 * Let's add the task's estimated utilization to the cfs_rq's
6721 	 * estimated utilization, before we update schedutil.
6722 	 */
6723 	util_est_enqueue(&rq->cfs, p);
6724 
6725 	/*
6726 	 * If in_iowait is set, the code below may not trigger any cpufreq
6727 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6728 	 * passed.
6729 	 */
6730 	if (p->in_iowait)
6731 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6732 
6733 	for_each_sched_entity(se) {
6734 		if (se->on_rq)
6735 			break;
6736 		cfs_rq = cfs_rq_of(se);
6737 		enqueue_entity(cfs_rq, se, flags);
6738 
6739 		cfs_rq->h_nr_running++;
6740 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6741 
6742 		if (cfs_rq_is_idle(cfs_rq))
6743 			idle_h_nr_running = 1;
6744 
6745 		/* end evaluation on encountering a throttled cfs_rq */
6746 		if (cfs_rq_throttled(cfs_rq))
6747 			goto enqueue_throttle;
6748 
6749 		flags = ENQUEUE_WAKEUP;
6750 	}
6751 
6752 	for_each_sched_entity(se) {
6753 		cfs_rq = cfs_rq_of(se);
6754 
6755 		update_load_avg(cfs_rq, se, UPDATE_TG);
6756 		se_update_runnable(se);
6757 		update_cfs_group(se);
6758 
6759 		cfs_rq->h_nr_running++;
6760 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6761 
6762 		if (cfs_rq_is_idle(cfs_rq))
6763 			idle_h_nr_running = 1;
6764 
6765 		/* end evaluation on encountering a throttled cfs_rq */
6766 		if (cfs_rq_throttled(cfs_rq))
6767 			goto enqueue_throttle;
6768 	}
6769 
6770 	/* At this point se is NULL and we are at root level*/
6771 	add_nr_running(rq, 1);
6772 
6773 	/*
6774 	 * Since new tasks are assigned an initial util_avg equal to
6775 	 * half of the spare capacity of their CPU, tiny tasks have the
6776 	 * ability to cross the overutilized threshold, which will
6777 	 * result in the load balancer ruining all the task placement
6778 	 * done by EAS. As a way to mitigate that effect, do not account
6779 	 * for the first enqueue operation of new tasks during the
6780 	 * overutilized flag detection.
6781 	 *
6782 	 * A better way of solving this problem would be to wait for
6783 	 * the PELT signals of tasks to converge before taking them
6784 	 * into account, but that is not straightforward to implement,
6785 	 * and the following generally works well enough in practice.
6786 	 */
6787 	if (!task_new)
6788 		update_overutilized_status(rq);
6789 
6790 enqueue_throttle:
6791 	assert_list_leaf_cfs_rq(rq);
6792 
6793 	hrtick_update(rq);
6794 }
6795 
6796 static void set_next_buddy(struct sched_entity *se);
6797 
6798 /*
6799  * The dequeue_task method is called before nr_running is
6800  * decreased. We remove the task from the rbtree and
6801  * update the fair scheduling stats:
6802  */
6803 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6804 {
6805 	struct cfs_rq *cfs_rq;
6806 	struct sched_entity *se = &p->se;
6807 	int task_sleep = flags & DEQUEUE_SLEEP;
6808 	int idle_h_nr_running = task_has_idle_policy(p);
6809 	bool was_sched_idle = sched_idle_rq(rq);
6810 
6811 	util_est_dequeue(&rq->cfs, p);
6812 
6813 	for_each_sched_entity(se) {
6814 		cfs_rq = cfs_rq_of(se);
6815 		dequeue_entity(cfs_rq, se, flags);
6816 
6817 		cfs_rq->h_nr_running--;
6818 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6819 
6820 		if (cfs_rq_is_idle(cfs_rq))
6821 			idle_h_nr_running = 1;
6822 
6823 		/* end evaluation on encountering a throttled cfs_rq */
6824 		if (cfs_rq_throttled(cfs_rq))
6825 			goto dequeue_throttle;
6826 
6827 		/* Don't dequeue parent if it has other entities besides us */
6828 		if (cfs_rq->load.weight) {
6829 			/* Avoid re-evaluating load for this entity: */
6830 			se = parent_entity(se);
6831 			/*
6832 			 * Bias pick_next to pick a task from this cfs_rq, as
6833 			 * p is sleeping when it is within its sched_slice.
6834 			 */
6835 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6836 				set_next_buddy(se);
6837 			break;
6838 		}
6839 		flags |= DEQUEUE_SLEEP;
6840 	}
6841 
6842 	for_each_sched_entity(se) {
6843 		cfs_rq = cfs_rq_of(se);
6844 
6845 		update_load_avg(cfs_rq, se, UPDATE_TG);
6846 		se_update_runnable(se);
6847 		update_cfs_group(se);
6848 
6849 		cfs_rq->h_nr_running--;
6850 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6851 
6852 		if (cfs_rq_is_idle(cfs_rq))
6853 			idle_h_nr_running = 1;
6854 
6855 		/* end evaluation on encountering a throttled cfs_rq */
6856 		if (cfs_rq_throttled(cfs_rq))
6857 			goto dequeue_throttle;
6858 
6859 	}
6860 
6861 	/* At this point se is NULL and we are at root level*/
6862 	sub_nr_running(rq, 1);
6863 
6864 	/* balance early to pull high priority tasks */
6865 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6866 		rq->next_balance = jiffies;
6867 
6868 dequeue_throttle:
6869 	util_est_update(&rq->cfs, p, task_sleep);
6870 	hrtick_update(rq);
6871 }
6872 
6873 #ifdef CONFIG_SMP
6874 
6875 /* Working cpumask for: load_balance, load_balance_newidle. */
6876 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6877 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6878 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6879 
6880 #ifdef CONFIG_NO_HZ_COMMON
6881 
6882 static struct {
6883 	cpumask_var_t idle_cpus_mask;
6884 	atomic_t nr_cpus;
6885 	int has_blocked;		/* Idle CPUS has blocked load */
6886 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6887 	unsigned long next_balance;     /* in jiffy units */
6888 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6889 } nohz ____cacheline_aligned;
6890 
6891 #endif /* CONFIG_NO_HZ_COMMON */
6892 
6893 static unsigned long cpu_load(struct rq *rq)
6894 {
6895 	return cfs_rq_load_avg(&rq->cfs);
6896 }
6897 
6898 /*
6899  * cpu_load_without - compute CPU load without any contributions from *p
6900  * @cpu: the CPU which load is requested
6901  * @p: the task which load should be discounted
6902  *
6903  * The load of a CPU is defined by the load of tasks currently enqueued on that
6904  * CPU as well as tasks which are currently sleeping after an execution on that
6905  * CPU.
6906  *
6907  * This method returns the load of the specified CPU by discounting the load of
6908  * the specified task, whenever the task is currently contributing to the CPU
6909  * load.
6910  */
6911 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6912 {
6913 	struct cfs_rq *cfs_rq;
6914 	unsigned int load;
6915 
6916 	/* Task has no contribution or is new */
6917 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6918 		return cpu_load(rq);
6919 
6920 	cfs_rq = &rq->cfs;
6921 	load = READ_ONCE(cfs_rq->avg.load_avg);
6922 
6923 	/* Discount task's util from CPU's util */
6924 	lsub_positive(&load, task_h_load(p));
6925 
6926 	return load;
6927 }
6928 
6929 static unsigned long cpu_runnable(struct rq *rq)
6930 {
6931 	return cfs_rq_runnable_avg(&rq->cfs);
6932 }
6933 
6934 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6935 {
6936 	struct cfs_rq *cfs_rq;
6937 	unsigned int runnable;
6938 
6939 	/* Task has no contribution or is new */
6940 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6941 		return cpu_runnable(rq);
6942 
6943 	cfs_rq = &rq->cfs;
6944 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6945 
6946 	/* Discount task's runnable from CPU's runnable */
6947 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6948 
6949 	return runnable;
6950 }
6951 
6952 static unsigned long capacity_of(int cpu)
6953 {
6954 	return cpu_rq(cpu)->cpu_capacity;
6955 }
6956 
6957 static void record_wakee(struct task_struct *p)
6958 {
6959 	/*
6960 	 * Only decay a single time; tasks that have less then 1 wakeup per
6961 	 * jiffy will not have built up many flips.
6962 	 */
6963 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6964 		current->wakee_flips >>= 1;
6965 		current->wakee_flip_decay_ts = jiffies;
6966 	}
6967 
6968 	if (current->last_wakee != p) {
6969 		current->last_wakee = p;
6970 		current->wakee_flips++;
6971 	}
6972 }
6973 
6974 /*
6975  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6976  *
6977  * A waker of many should wake a different task than the one last awakened
6978  * at a frequency roughly N times higher than one of its wakees.
6979  *
6980  * In order to determine whether we should let the load spread vs consolidating
6981  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6982  * partner, and a factor of lls_size higher frequency in the other.
6983  *
6984  * With both conditions met, we can be relatively sure that the relationship is
6985  * non-monogamous, with partner count exceeding socket size.
6986  *
6987  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6988  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6989  * socket size.
6990  */
6991 static int wake_wide(struct task_struct *p)
6992 {
6993 	unsigned int master = current->wakee_flips;
6994 	unsigned int slave = p->wakee_flips;
6995 	int factor = __this_cpu_read(sd_llc_size);
6996 
6997 	if (master < slave)
6998 		swap(master, slave);
6999 	if (slave < factor || master < slave * factor)
7000 		return 0;
7001 	return 1;
7002 }
7003 
7004 /*
7005  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7006  * soonest. For the purpose of speed we only consider the waking and previous
7007  * CPU.
7008  *
7009  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7010  *			cache-affine and is (or	will be) idle.
7011  *
7012  * wake_affine_weight() - considers the weight to reflect the average
7013  *			  scheduling latency of the CPUs. This seems to work
7014  *			  for the overloaded case.
7015  */
7016 static int
7017 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7018 {
7019 	/*
7020 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7021 	 * context. Only allow the move if cache is shared. Otherwise an
7022 	 * interrupt intensive workload could force all tasks onto one
7023 	 * node depending on the IO topology or IRQ affinity settings.
7024 	 *
7025 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7026 	 * There is no guarantee that the cache hot data from an interrupt
7027 	 * is more important than cache hot data on the prev_cpu and from
7028 	 * a cpufreq perspective, it's better to have higher utilisation
7029 	 * on one CPU.
7030 	 */
7031 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7032 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7033 
7034 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7035 		return this_cpu;
7036 
7037 	if (available_idle_cpu(prev_cpu))
7038 		return prev_cpu;
7039 
7040 	return nr_cpumask_bits;
7041 }
7042 
7043 static int
7044 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7045 		   int this_cpu, int prev_cpu, int sync)
7046 {
7047 	s64 this_eff_load, prev_eff_load;
7048 	unsigned long task_load;
7049 
7050 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7051 
7052 	if (sync) {
7053 		unsigned long current_load = task_h_load(current);
7054 
7055 		if (current_load > this_eff_load)
7056 			return this_cpu;
7057 
7058 		this_eff_load -= current_load;
7059 	}
7060 
7061 	task_load = task_h_load(p);
7062 
7063 	this_eff_load += task_load;
7064 	if (sched_feat(WA_BIAS))
7065 		this_eff_load *= 100;
7066 	this_eff_load *= capacity_of(prev_cpu);
7067 
7068 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7069 	prev_eff_load -= task_load;
7070 	if (sched_feat(WA_BIAS))
7071 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7072 	prev_eff_load *= capacity_of(this_cpu);
7073 
7074 	/*
7075 	 * If sync, adjust the weight of prev_eff_load such that if
7076 	 * prev_eff == this_eff that select_idle_sibling() will consider
7077 	 * stacking the wakee on top of the waker if no other CPU is
7078 	 * idle.
7079 	 */
7080 	if (sync)
7081 		prev_eff_load += 1;
7082 
7083 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7084 }
7085 
7086 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7087 		       int this_cpu, int prev_cpu, int sync)
7088 {
7089 	int target = nr_cpumask_bits;
7090 
7091 	if (sched_feat(WA_IDLE))
7092 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7093 
7094 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7095 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7096 
7097 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7098 	if (target != this_cpu)
7099 		return prev_cpu;
7100 
7101 	schedstat_inc(sd->ttwu_move_affine);
7102 	schedstat_inc(p->stats.nr_wakeups_affine);
7103 	return target;
7104 }
7105 
7106 static struct sched_group *
7107 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7108 
7109 /*
7110  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7111  */
7112 static int
7113 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7114 {
7115 	unsigned long load, min_load = ULONG_MAX;
7116 	unsigned int min_exit_latency = UINT_MAX;
7117 	u64 latest_idle_timestamp = 0;
7118 	int least_loaded_cpu = this_cpu;
7119 	int shallowest_idle_cpu = -1;
7120 	int i;
7121 
7122 	/* Check if we have any choice: */
7123 	if (group->group_weight == 1)
7124 		return cpumask_first(sched_group_span(group));
7125 
7126 	/* Traverse only the allowed CPUs */
7127 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7128 		struct rq *rq = cpu_rq(i);
7129 
7130 		if (!sched_core_cookie_match(rq, p))
7131 			continue;
7132 
7133 		if (sched_idle_cpu(i))
7134 			return i;
7135 
7136 		if (available_idle_cpu(i)) {
7137 			struct cpuidle_state *idle = idle_get_state(rq);
7138 			if (idle && idle->exit_latency < min_exit_latency) {
7139 				/*
7140 				 * We give priority to a CPU whose idle state
7141 				 * has the smallest exit latency irrespective
7142 				 * of any idle timestamp.
7143 				 */
7144 				min_exit_latency = idle->exit_latency;
7145 				latest_idle_timestamp = rq->idle_stamp;
7146 				shallowest_idle_cpu = i;
7147 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7148 				   rq->idle_stamp > latest_idle_timestamp) {
7149 				/*
7150 				 * If equal or no active idle state, then
7151 				 * the most recently idled CPU might have
7152 				 * a warmer cache.
7153 				 */
7154 				latest_idle_timestamp = rq->idle_stamp;
7155 				shallowest_idle_cpu = i;
7156 			}
7157 		} else if (shallowest_idle_cpu == -1) {
7158 			load = cpu_load(cpu_rq(i));
7159 			if (load < min_load) {
7160 				min_load = load;
7161 				least_loaded_cpu = i;
7162 			}
7163 		}
7164 	}
7165 
7166 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7167 }
7168 
7169 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7170 				  int cpu, int prev_cpu, int sd_flag)
7171 {
7172 	int new_cpu = cpu;
7173 
7174 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7175 		return prev_cpu;
7176 
7177 	/*
7178 	 * We need task's util for cpu_util_without, sync it up to
7179 	 * prev_cpu's last_update_time.
7180 	 */
7181 	if (!(sd_flag & SD_BALANCE_FORK))
7182 		sync_entity_load_avg(&p->se);
7183 
7184 	while (sd) {
7185 		struct sched_group *group;
7186 		struct sched_domain *tmp;
7187 		int weight;
7188 
7189 		if (!(sd->flags & sd_flag)) {
7190 			sd = sd->child;
7191 			continue;
7192 		}
7193 
7194 		group = find_idlest_group(sd, p, cpu);
7195 		if (!group) {
7196 			sd = sd->child;
7197 			continue;
7198 		}
7199 
7200 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7201 		if (new_cpu == cpu) {
7202 			/* Now try balancing at a lower domain level of 'cpu': */
7203 			sd = sd->child;
7204 			continue;
7205 		}
7206 
7207 		/* Now try balancing at a lower domain level of 'new_cpu': */
7208 		cpu = new_cpu;
7209 		weight = sd->span_weight;
7210 		sd = NULL;
7211 		for_each_domain(cpu, tmp) {
7212 			if (weight <= tmp->span_weight)
7213 				break;
7214 			if (tmp->flags & sd_flag)
7215 				sd = tmp;
7216 		}
7217 	}
7218 
7219 	return new_cpu;
7220 }
7221 
7222 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7223 {
7224 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7225 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7226 		return cpu;
7227 
7228 	return -1;
7229 }
7230 
7231 #ifdef CONFIG_SCHED_SMT
7232 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7233 EXPORT_SYMBOL_GPL(sched_smt_present);
7234 
7235 static inline void set_idle_cores(int cpu, int val)
7236 {
7237 	struct sched_domain_shared *sds;
7238 
7239 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7240 	if (sds)
7241 		WRITE_ONCE(sds->has_idle_cores, val);
7242 }
7243 
7244 static inline bool test_idle_cores(int cpu)
7245 {
7246 	struct sched_domain_shared *sds;
7247 
7248 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7249 	if (sds)
7250 		return READ_ONCE(sds->has_idle_cores);
7251 
7252 	return false;
7253 }
7254 
7255 /*
7256  * Scans the local SMT mask to see if the entire core is idle, and records this
7257  * information in sd_llc_shared->has_idle_cores.
7258  *
7259  * Since SMT siblings share all cache levels, inspecting this limited remote
7260  * state should be fairly cheap.
7261  */
7262 void __update_idle_core(struct rq *rq)
7263 {
7264 	int core = cpu_of(rq);
7265 	int cpu;
7266 
7267 	rcu_read_lock();
7268 	if (test_idle_cores(core))
7269 		goto unlock;
7270 
7271 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7272 		if (cpu == core)
7273 			continue;
7274 
7275 		if (!available_idle_cpu(cpu))
7276 			goto unlock;
7277 	}
7278 
7279 	set_idle_cores(core, 1);
7280 unlock:
7281 	rcu_read_unlock();
7282 }
7283 
7284 /*
7285  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7286  * there are no idle cores left in the system; tracked through
7287  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7288  */
7289 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7290 {
7291 	bool idle = true;
7292 	int cpu;
7293 
7294 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7295 		if (!available_idle_cpu(cpu)) {
7296 			idle = false;
7297 			if (*idle_cpu == -1) {
7298 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7299 					*idle_cpu = cpu;
7300 					break;
7301 				}
7302 				continue;
7303 			}
7304 			break;
7305 		}
7306 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7307 			*idle_cpu = cpu;
7308 	}
7309 
7310 	if (idle)
7311 		return core;
7312 
7313 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7314 	return -1;
7315 }
7316 
7317 /*
7318  * Scan the local SMT mask for idle CPUs.
7319  */
7320 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7321 {
7322 	int cpu;
7323 
7324 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7325 		if (cpu == target)
7326 			continue;
7327 		/*
7328 		 * Check if the CPU is in the LLC scheduling domain of @target.
7329 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7330 		 */
7331 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7332 			continue;
7333 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7334 			return cpu;
7335 	}
7336 
7337 	return -1;
7338 }
7339 
7340 #else /* CONFIG_SCHED_SMT */
7341 
7342 static inline void set_idle_cores(int cpu, int val)
7343 {
7344 }
7345 
7346 static inline bool test_idle_cores(int cpu)
7347 {
7348 	return false;
7349 }
7350 
7351 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7352 {
7353 	return __select_idle_cpu(core, p);
7354 }
7355 
7356 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7357 {
7358 	return -1;
7359 }
7360 
7361 #endif /* CONFIG_SCHED_SMT */
7362 
7363 /*
7364  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7365  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7366  * average idle time for this rq (as found in rq->avg_idle).
7367  */
7368 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7369 {
7370 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7371 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7372 	struct sched_domain_shared *sd_share;
7373 
7374 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7375 
7376 	if (sched_feat(SIS_UTIL)) {
7377 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7378 		if (sd_share) {
7379 			/* because !--nr is the condition to stop scan */
7380 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7381 			/* overloaded LLC is unlikely to have idle cpu/core */
7382 			if (nr == 1)
7383 				return -1;
7384 		}
7385 	}
7386 
7387 	if (static_branch_unlikely(&sched_cluster_active)) {
7388 		struct sched_group *sg = sd->groups;
7389 
7390 		if (sg->flags & SD_CLUSTER) {
7391 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7392 				if (!cpumask_test_cpu(cpu, cpus))
7393 					continue;
7394 
7395 				if (has_idle_core) {
7396 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7397 					if ((unsigned int)i < nr_cpumask_bits)
7398 						return i;
7399 				} else {
7400 					if (--nr <= 0)
7401 						return -1;
7402 					idle_cpu = __select_idle_cpu(cpu, p);
7403 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7404 						return idle_cpu;
7405 				}
7406 			}
7407 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7408 		}
7409 	}
7410 
7411 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7412 		if (has_idle_core) {
7413 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7414 			if ((unsigned int)i < nr_cpumask_bits)
7415 				return i;
7416 
7417 		} else {
7418 			if (--nr <= 0)
7419 				return -1;
7420 			idle_cpu = __select_idle_cpu(cpu, p);
7421 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7422 				break;
7423 		}
7424 	}
7425 
7426 	if (has_idle_core)
7427 		set_idle_cores(target, false);
7428 
7429 	return idle_cpu;
7430 }
7431 
7432 /*
7433  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7434  * the task fits. If no CPU is big enough, but there are idle ones, try to
7435  * maximize capacity.
7436  */
7437 static int
7438 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7439 {
7440 	unsigned long task_util, util_min, util_max, best_cap = 0;
7441 	int fits, best_fits = 0;
7442 	int cpu, best_cpu = -1;
7443 	struct cpumask *cpus;
7444 
7445 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7446 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7447 
7448 	task_util = task_util_est(p);
7449 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7450 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7451 
7452 	for_each_cpu_wrap(cpu, cpus, target) {
7453 		unsigned long cpu_cap = capacity_of(cpu);
7454 
7455 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7456 			continue;
7457 
7458 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7459 
7460 		/* This CPU fits with all requirements */
7461 		if (fits > 0)
7462 			return cpu;
7463 		/*
7464 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7465 		 * Look for the CPU with best capacity.
7466 		 */
7467 		else if (fits < 0)
7468 			cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
7469 
7470 		/*
7471 		 * First, select CPU which fits better (-1 being better than 0).
7472 		 * Then, select the one with best capacity at same level.
7473 		 */
7474 		if ((fits < best_fits) ||
7475 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7476 			best_cap = cpu_cap;
7477 			best_cpu = cpu;
7478 			best_fits = fits;
7479 		}
7480 	}
7481 
7482 	return best_cpu;
7483 }
7484 
7485 static inline bool asym_fits_cpu(unsigned long util,
7486 				 unsigned long util_min,
7487 				 unsigned long util_max,
7488 				 int cpu)
7489 {
7490 	if (sched_asym_cpucap_active())
7491 		/*
7492 		 * Return true only if the cpu fully fits the task requirements
7493 		 * which include the utilization and the performance hints.
7494 		 */
7495 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7496 
7497 	return true;
7498 }
7499 
7500 /*
7501  * Try and locate an idle core/thread in the LLC cache domain.
7502  */
7503 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7504 {
7505 	bool has_idle_core = false;
7506 	struct sched_domain *sd;
7507 	unsigned long task_util, util_min, util_max;
7508 	int i, recent_used_cpu, prev_aff = -1;
7509 
7510 	/*
7511 	 * On asymmetric system, update task utilization because we will check
7512 	 * that the task fits with cpu's capacity.
7513 	 */
7514 	if (sched_asym_cpucap_active()) {
7515 		sync_entity_load_avg(&p->se);
7516 		task_util = task_util_est(p);
7517 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7518 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7519 	}
7520 
7521 	/*
7522 	 * per-cpu select_rq_mask usage
7523 	 */
7524 	lockdep_assert_irqs_disabled();
7525 
7526 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7527 	    asym_fits_cpu(task_util, util_min, util_max, target))
7528 		return target;
7529 
7530 	/*
7531 	 * If the previous CPU is cache affine and idle, don't be stupid:
7532 	 */
7533 	if (prev != target && cpus_share_cache(prev, target) &&
7534 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7535 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7536 
7537 		if (!static_branch_unlikely(&sched_cluster_active) ||
7538 		    cpus_share_resources(prev, target))
7539 			return prev;
7540 
7541 		prev_aff = prev;
7542 	}
7543 
7544 	/*
7545 	 * Allow a per-cpu kthread to stack with the wakee if the
7546 	 * kworker thread and the tasks previous CPUs are the same.
7547 	 * The assumption is that the wakee queued work for the
7548 	 * per-cpu kthread that is now complete and the wakeup is
7549 	 * essentially a sync wakeup. An obvious example of this
7550 	 * pattern is IO completions.
7551 	 */
7552 	if (is_per_cpu_kthread(current) &&
7553 	    in_task() &&
7554 	    prev == smp_processor_id() &&
7555 	    this_rq()->nr_running <= 1 &&
7556 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7557 		return prev;
7558 	}
7559 
7560 	/* Check a recently used CPU as a potential idle candidate: */
7561 	recent_used_cpu = p->recent_used_cpu;
7562 	p->recent_used_cpu = prev;
7563 	if (recent_used_cpu != prev &&
7564 	    recent_used_cpu != target &&
7565 	    cpus_share_cache(recent_used_cpu, target) &&
7566 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7567 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7568 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7569 
7570 		if (!static_branch_unlikely(&sched_cluster_active) ||
7571 		    cpus_share_resources(recent_used_cpu, target))
7572 			return recent_used_cpu;
7573 
7574 	} else {
7575 		recent_used_cpu = -1;
7576 	}
7577 
7578 	/*
7579 	 * For asymmetric CPU capacity systems, our domain of interest is
7580 	 * sd_asym_cpucapacity rather than sd_llc.
7581 	 */
7582 	if (sched_asym_cpucap_active()) {
7583 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7584 		/*
7585 		 * On an asymmetric CPU capacity system where an exclusive
7586 		 * cpuset defines a symmetric island (i.e. one unique
7587 		 * capacity_orig value through the cpuset), the key will be set
7588 		 * but the CPUs within that cpuset will not have a domain with
7589 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7590 		 * capacity path.
7591 		 */
7592 		if (sd) {
7593 			i = select_idle_capacity(p, sd, target);
7594 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7595 		}
7596 	}
7597 
7598 	sd = rcu_dereference(per_cpu(sd_llc, target));
7599 	if (!sd)
7600 		return target;
7601 
7602 	if (sched_smt_active()) {
7603 		has_idle_core = test_idle_cores(target);
7604 
7605 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7606 			i = select_idle_smt(p, sd, prev);
7607 			if ((unsigned int)i < nr_cpumask_bits)
7608 				return i;
7609 		}
7610 	}
7611 
7612 	i = select_idle_cpu(p, sd, has_idle_core, target);
7613 	if ((unsigned)i < nr_cpumask_bits)
7614 		return i;
7615 
7616 	/*
7617 	 * For cluster machines which have lower sharing cache like L2 or
7618 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7619 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7620 	 * use them if possible when no idle CPU found in select_idle_cpu().
7621 	 */
7622 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7623 		return prev_aff;
7624 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7625 		return recent_used_cpu;
7626 
7627 	return target;
7628 }
7629 
7630 /**
7631  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7632  * @cpu: the CPU to get the utilization for
7633  * @p: task for which the CPU utilization should be predicted or NULL
7634  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7635  * @boost: 1 to enable boosting, otherwise 0
7636  *
7637  * The unit of the return value must be the same as the one of CPU capacity
7638  * so that CPU utilization can be compared with CPU capacity.
7639  *
7640  * CPU utilization is the sum of running time of runnable tasks plus the
7641  * recent utilization of currently non-runnable tasks on that CPU.
7642  * It represents the amount of CPU capacity currently used by CFS tasks in
7643  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7644  * capacity at f_max.
7645  *
7646  * The estimated CPU utilization is defined as the maximum between CPU
7647  * utilization and sum of the estimated utilization of the currently
7648  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7649  * previously-executed tasks, which helps better deduce how busy a CPU will
7650  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7651  * of such a task would be significantly decayed at this point of time.
7652  *
7653  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7654  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7655  * utilization. Boosting is implemented in cpu_util() so that internal
7656  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7657  * latter via cpu_util_cfs_boost().
7658  *
7659  * CPU utilization can be higher than the current CPU capacity
7660  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7661  * of rounding errors as well as task migrations or wakeups of new tasks.
7662  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7663  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7664  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7665  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7666  * though since this is useful for predicting the CPU capacity required
7667  * after task migrations (scheduler-driven DVFS).
7668  *
7669  * Return: (Boosted) (estimated) utilization for the specified CPU.
7670  */
7671 static unsigned long
7672 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7673 {
7674 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7675 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7676 	unsigned long runnable;
7677 
7678 	if (boost) {
7679 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7680 		util = max(util, runnable);
7681 	}
7682 
7683 	/*
7684 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7685 	 * contribution. If @p migrates from another CPU to @cpu add its
7686 	 * contribution. In all the other cases @cpu is not impacted by the
7687 	 * migration so its util_avg is already correct.
7688 	 */
7689 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7690 		lsub_positive(&util, task_util(p));
7691 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7692 		util += task_util(p);
7693 
7694 	if (sched_feat(UTIL_EST)) {
7695 		unsigned long util_est;
7696 
7697 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7698 
7699 		/*
7700 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7701 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7702 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7703 		 * has been enqueued.
7704 		 *
7705 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7706 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7707 		 * Remove it to "simulate" cpu_util without @p's contribution.
7708 		 *
7709 		 * Despite the task_on_rq_queued(@p) check there is still a
7710 		 * small window for a possible race when an exec
7711 		 * select_task_rq_fair() races with LB's detach_task().
7712 		 *
7713 		 *   detach_task()
7714 		 *     deactivate_task()
7715 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7716 		 *       -------------------------------- A
7717 		 *       dequeue_task()                    \
7718 		 *         dequeue_task_fair()              + Race Time
7719 		 *           util_est_dequeue()            /
7720 		 *       -------------------------------- B
7721 		 *
7722 		 * The additional check "current == p" is required to further
7723 		 * reduce the race window.
7724 		 */
7725 		if (dst_cpu == cpu)
7726 			util_est += _task_util_est(p);
7727 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7728 			lsub_positive(&util_est, _task_util_est(p));
7729 
7730 		util = max(util, util_est);
7731 	}
7732 
7733 	return min(util, arch_scale_cpu_capacity(cpu));
7734 }
7735 
7736 unsigned long cpu_util_cfs(int cpu)
7737 {
7738 	return cpu_util(cpu, NULL, -1, 0);
7739 }
7740 
7741 unsigned long cpu_util_cfs_boost(int cpu)
7742 {
7743 	return cpu_util(cpu, NULL, -1, 1);
7744 }
7745 
7746 /*
7747  * cpu_util_without: compute cpu utilization without any contributions from *p
7748  * @cpu: the CPU which utilization is requested
7749  * @p: the task which utilization should be discounted
7750  *
7751  * The utilization of a CPU is defined by the utilization of tasks currently
7752  * enqueued on that CPU as well as tasks which are currently sleeping after an
7753  * execution on that CPU.
7754  *
7755  * This method returns the utilization of the specified CPU by discounting the
7756  * utilization of the specified task, whenever the task is currently
7757  * contributing to the CPU utilization.
7758  */
7759 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7760 {
7761 	/* Task has no contribution or is new */
7762 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7763 		p = NULL;
7764 
7765 	return cpu_util(cpu, p, -1, 0);
7766 }
7767 
7768 /*
7769  * energy_env - Utilization landscape for energy estimation.
7770  * @task_busy_time: Utilization contribution by the task for which we test the
7771  *                  placement. Given by eenv_task_busy_time().
7772  * @pd_busy_time:   Utilization of the whole perf domain without the task
7773  *                  contribution. Given by eenv_pd_busy_time().
7774  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7775  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7776  */
7777 struct energy_env {
7778 	unsigned long task_busy_time;
7779 	unsigned long pd_busy_time;
7780 	unsigned long cpu_cap;
7781 	unsigned long pd_cap;
7782 };
7783 
7784 /*
7785  * Compute the task busy time for compute_energy(). This time cannot be
7786  * injected directly into effective_cpu_util() because of the IRQ scaling.
7787  * The latter only makes sense with the most recent CPUs where the task has
7788  * run.
7789  */
7790 static inline void eenv_task_busy_time(struct energy_env *eenv,
7791 				       struct task_struct *p, int prev_cpu)
7792 {
7793 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7794 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7795 
7796 	if (unlikely(irq >= max_cap))
7797 		busy_time = max_cap;
7798 	else
7799 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7800 
7801 	eenv->task_busy_time = busy_time;
7802 }
7803 
7804 /*
7805  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7806  * utilization for each @pd_cpus, it however doesn't take into account
7807  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7808  * scale the EM reported power consumption at the (eventually clamped)
7809  * cpu_capacity.
7810  *
7811  * The contribution of the task @p for which we want to estimate the
7812  * energy cost is removed (by cpu_util()) and must be calculated
7813  * separately (see eenv_task_busy_time). This ensures:
7814  *
7815  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7816  *     the task on.
7817  *
7818  *   - A fair comparison between CPUs as the task contribution (task_util())
7819  *     will always be the same no matter which CPU utilization we rely on
7820  *     (util_avg or util_est).
7821  *
7822  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7823  * exceed @eenv->pd_cap.
7824  */
7825 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7826 				     struct cpumask *pd_cpus,
7827 				     struct task_struct *p)
7828 {
7829 	unsigned long busy_time = 0;
7830 	int cpu;
7831 
7832 	for_each_cpu(cpu, pd_cpus) {
7833 		unsigned long util = cpu_util(cpu, p, -1, 0);
7834 
7835 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
7836 	}
7837 
7838 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7839 }
7840 
7841 /*
7842  * Compute the maximum utilization for compute_energy() when the task @p
7843  * is placed on the cpu @dst_cpu.
7844  *
7845  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7846  * exceed @eenv->cpu_cap.
7847  */
7848 static inline unsigned long
7849 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7850 		 struct task_struct *p, int dst_cpu)
7851 {
7852 	unsigned long max_util = 0;
7853 	int cpu;
7854 
7855 	for_each_cpu(cpu, pd_cpus) {
7856 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7857 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7858 		unsigned long eff_util, min, max;
7859 
7860 		/*
7861 		 * Performance domain frequency: utilization clamping
7862 		 * must be considered since it affects the selection
7863 		 * of the performance domain frequency.
7864 		 * NOTE: in case RT tasks are running, by default the
7865 		 * FREQUENCY_UTIL's utilization can be max OPP.
7866 		 */
7867 		eff_util = effective_cpu_util(cpu, util, &min, &max);
7868 
7869 		/* Task's uclamp can modify min and max value */
7870 		if (tsk && uclamp_is_used()) {
7871 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7872 
7873 			/*
7874 			 * If there is no active max uclamp constraint,
7875 			 * directly use task's one, otherwise keep max.
7876 			 */
7877 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
7878 				max = uclamp_eff_value(p, UCLAMP_MAX);
7879 			else
7880 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7881 		}
7882 
7883 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
7884 		max_util = max(max_util, eff_util);
7885 	}
7886 
7887 	return min(max_util, eenv->cpu_cap);
7888 }
7889 
7890 /*
7891  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7892  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7893  * contribution is ignored.
7894  */
7895 static inline unsigned long
7896 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7897 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7898 {
7899 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7900 	unsigned long busy_time = eenv->pd_busy_time;
7901 	unsigned long energy;
7902 
7903 	if (dst_cpu >= 0)
7904 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7905 
7906 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7907 
7908 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7909 
7910 	return energy;
7911 }
7912 
7913 /*
7914  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7915  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7916  * spare capacity in each performance domain and uses it as a potential
7917  * candidate to execute the task. Then, it uses the Energy Model to figure
7918  * out which of the CPU candidates is the most energy-efficient.
7919  *
7920  * The rationale for this heuristic is as follows. In a performance domain,
7921  * all the most energy efficient CPU candidates (according to the Energy
7922  * Model) are those for which we'll request a low frequency. When there are
7923  * several CPUs for which the frequency request will be the same, we don't
7924  * have enough data to break the tie between them, because the Energy Model
7925  * only includes active power costs. With this model, if we assume that
7926  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7927  * the maximum spare capacity in a performance domain is guaranteed to be among
7928  * the best candidates of the performance domain.
7929  *
7930  * In practice, it could be preferable from an energy standpoint to pack
7931  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7932  * but that could also hurt our chances to go cluster idle, and we have no
7933  * ways to tell with the current Energy Model if this is actually a good
7934  * idea or not. So, find_energy_efficient_cpu() basically favors
7935  * cluster-packing, and spreading inside a cluster. That should at least be
7936  * a good thing for latency, and this is consistent with the idea that most
7937  * of the energy savings of EAS come from the asymmetry of the system, and
7938  * not so much from breaking the tie between identical CPUs. That's also the
7939  * reason why EAS is enabled in the topology code only for systems where
7940  * SD_ASYM_CPUCAPACITY is set.
7941  *
7942  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7943  * they don't have any useful utilization data yet and it's not possible to
7944  * forecast their impact on energy consumption. Consequently, they will be
7945  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7946  * to be energy-inefficient in some use-cases. The alternative would be to
7947  * bias new tasks towards specific types of CPUs first, or to try to infer
7948  * their util_avg from the parent task, but those heuristics could hurt
7949  * other use-cases too. So, until someone finds a better way to solve this,
7950  * let's keep things simple by re-using the existing slow path.
7951  */
7952 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7953 {
7954 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7955 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7956 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7957 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7958 	struct root_domain *rd = this_rq()->rd;
7959 	int cpu, best_energy_cpu, target = -1;
7960 	int prev_fits = -1, best_fits = -1;
7961 	unsigned long best_thermal_cap = 0;
7962 	unsigned long prev_thermal_cap = 0;
7963 	struct sched_domain *sd;
7964 	struct perf_domain *pd;
7965 	struct energy_env eenv;
7966 
7967 	rcu_read_lock();
7968 	pd = rcu_dereference(rd->pd);
7969 	if (!pd || READ_ONCE(rd->overutilized))
7970 		goto unlock;
7971 
7972 	/*
7973 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7974 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7975 	 */
7976 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7977 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7978 		sd = sd->parent;
7979 	if (!sd)
7980 		goto unlock;
7981 
7982 	target = prev_cpu;
7983 
7984 	sync_entity_load_avg(&p->se);
7985 	if (!task_util_est(p) && p_util_min == 0)
7986 		goto unlock;
7987 
7988 	eenv_task_busy_time(&eenv, p, prev_cpu);
7989 
7990 	for (; pd; pd = pd->next) {
7991 		unsigned long util_min = p_util_min, util_max = p_util_max;
7992 		unsigned long cpu_cap, cpu_thermal_cap, util;
7993 		long prev_spare_cap = -1, max_spare_cap = -1;
7994 		unsigned long rq_util_min, rq_util_max;
7995 		unsigned long cur_delta, base_energy;
7996 		int max_spare_cap_cpu = -1;
7997 		int fits, max_fits = -1;
7998 
7999 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8000 
8001 		if (cpumask_empty(cpus))
8002 			continue;
8003 
8004 		/* Account thermal pressure for the energy estimation */
8005 		cpu = cpumask_first(cpus);
8006 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
8007 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
8008 
8009 		eenv.cpu_cap = cpu_thermal_cap;
8010 		eenv.pd_cap = 0;
8011 
8012 		for_each_cpu(cpu, cpus) {
8013 			struct rq *rq = cpu_rq(cpu);
8014 
8015 			eenv.pd_cap += cpu_thermal_cap;
8016 
8017 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8018 				continue;
8019 
8020 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8021 				continue;
8022 
8023 			util = cpu_util(cpu, p, cpu, 0);
8024 			cpu_cap = capacity_of(cpu);
8025 
8026 			/*
8027 			 * Skip CPUs that cannot satisfy the capacity request.
8028 			 * IOW, placing the task there would make the CPU
8029 			 * overutilized. Take uclamp into account to see how
8030 			 * much capacity we can get out of the CPU; this is
8031 			 * aligned with sched_cpu_util().
8032 			 */
8033 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8034 				/*
8035 				 * Open code uclamp_rq_util_with() except for
8036 				 * the clamp() part. Ie: apply max aggregation
8037 				 * only. util_fits_cpu() logic requires to
8038 				 * operate on non clamped util but must use the
8039 				 * max-aggregated uclamp_{min, max}.
8040 				 */
8041 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8042 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8043 
8044 				util_min = max(rq_util_min, p_util_min);
8045 				util_max = max(rq_util_max, p_util_max);
8046 			}
8047 
8048 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8049 			if (!fits)
8050 				continue;
8051 
8052 			lsub_positive(&cpu_cap, util);
8053 
8054 			if (cpu == prev_cpu) {
8055 				/* Always use prev_cpu as a candidate. */
8056 				prev_spare_cap = cpu_cap;
8057 				prev_fits = fits;
8058 			} else if ((fits > max_fits) ||
8059 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8060 				/*
8061 				 * Find the CPU with the maximum spare capacity
8062 				 * among the remaining CPUs in the performance
8063 				 * domain.
8064 				 */
8065 				max_spare_cap = cpu_cap;
8066 				max_spare_cap_cpu = cpu;
8067 				max_fits = fits;
8068 			}
8069 		}
8070 
8071 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8072 			continue;
8073 
8074 		eenv_pd_busy_time(&eenv, cpus, p);
8075 		/* Compute the 'base' energy of the pd, without @p */
8076 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8077 
8078 		/* Evaluate the energy impact of using prev_cpu. */
8079 		if (prev_spare_cap > -1) {
8080 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8081 						    prev_cpu);
8082 			/* CPU utilization has changed */
8083 			if (prev_delta < base_energy)
8084 				goto unlock;
8085 			prev_delta -= base_energy;
8086 			prev_thermal_cap = cpu_thermal_cap;
8087 			best_delta = min(best_delta, prev_delta);
8088 		}
8089 
8090 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8091 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8092 			/* Current best energy cpu fits better */
8093 			if (max_fits < best_fits)
8094 				continue;
8095 
8096 			/*
8097 			 * Both don't fit performance hint (i.e. uclamp_min)
8098 			 * but best energy cpu has better capacity.
8099 			 */
8100 			if ((max_fits < 0) &&
8101 			    (cpu_thermal_cap <= best_thermal_cap))
8102 				continue;
8103 
8104 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8105 						   max_spare_cap_cpu);
8106 			/* CPU utilization has changed */
8107 			if (cur_delta < base_energy)
8108 				goto unlock;
8109 			cur_delta -= base_energy;
8110 
8111 			/*
8112 			 * Both fit for the task but best energy cpu has lower
8113 			 * energy impact.
8114 			 */
8115 			if ((max_fits > 0) && (best_fits > 0) &&
8116 			    (cur_delta >= best_delta))
8117 				continue;
8118 
8119 			best_delta = cur_delta;
8120 			best_energy_cpu = max_spare_cap_cpu;
8121 			best_fits = max_fits;
8122 			best_thermal_cap = cpu_thermal_cap;
8123 		}
8124 	}
8125 	rcu_read_unlock();
8126 
8127 	if ((best_fits > prev_fits) ||
8128 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8129 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8130 		target = best_energy_cpu;
8131 
8132 	return target;
8133 
8134 unlock:
8135 	rcu_read_unlock();
8136 
8137 	return target;
8138 }
8139 
8140 /*
8141  * select_task_rq_fair: Select target runqueue for the waking task in domains
8142  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8143  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8144  *
8145  * Balances load by selecting the idlest CPU in the idlest group, or under
8146  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8147  *
8148  * Returns the target CPU number.
8149  */
8150 static int
8151 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8152 {
8153 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8154 	struct sched_domain *tmp, *sd = NULL;
8155 	int cpu = smp_processor_id();
8156 	int new_cpu = prev_cpu;
8157 	int want_affine = 0;
8158 	/* SD_flags and WF_flags share the first nibble */
8159 	int sd_flag = wake_flags & 0xF;
8160 
8161 	/*
8162 	 * required for stable ->cpus_allowed
8163 	 */
8164 	lockdep_assert_held(&p->pi_lock);
8165 	if (wake_flags & WF_TTWU) {
8166 		record_wakee(p);
8167 
8168 		if ((wake_flags & WF_CURRENT_CPU) &&
8169 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8170 			return cpu;
8171 
8172 		if (sched_energy_enabled()) {
8173 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8174 			if (new_cpu >= 0)
8175 				return new_cpu;
8176 			new_cpu = prev_cpu;
8177 		}
8178 
8179 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8180 	}
8181 
8182 	rcu_read_lock();
8183 	for_each_domain(cpu, tmp) {
8184 		/*
8185 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8186 		 * cpu is a valid SD_WAKE_AFFINE target.
8187 		 */
8188 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8189 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8190 			if (cpu != prev_cpu)
8191 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8192 
8193 			sd = NULL; /* Prefer wake_affine over balance flags */
8194 			break;
8195 		}
8196 
8197 		/*
8198 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8199 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8200 		 * will usually go to the fast path.
8201 		 */
8202 		if (tmp->flags & sd_flag)
8203 			sd = tmp;
8204 		else if (!want_affine)
8205 			break;
8206 	}
8207 
8208 	if (unlikely(sd)) {
8209 		/* Slow path */
8210 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8211 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8212 		/* Fast path */
8213 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8214 	}
8215 	rcu_read_unlock();
8216 
8217 	return new_cpu;
8218 }
8219 
8220 /*
8221  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8222  * cfs_rq_of(p) references at time of call are still valid and identify the
8223  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8224  */
8225 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8226 {
8227 	struct sched_entity *se = &p->se;
8228 
8229 	if (!task_on_rq_migrating(p)) {
8230 		remove_entity_load_avg(se);
8231 
8232 		/*
8233 		 * Here, the task's PELT values have been updated according to
8234 		 * the current rq's clock. But if that clock hasn't been
8235 		 * updated in a while, a substantial idle time will be missed,
8236 		 * leading to an inflation after wake-up on the new rq.
8237 		 *
8238 		 * Estimate the missing time from the cfs_rq last_update_time
8239 		 * and update sched_avg to improve the PELT continuity after
8240 		 * migration.
8241 		 */
8242 		migrate_se_pelt_lag(se);
8243 	}
8244 
8245 	/* Tell new CPU we are migrated */
8246 	se->avg.last_update_time = 0;
8247 
8248 	update_scan_period(p, new_cpu);
8249 }
8250 
8251 static void task_dead_fair(struct task_struct *p)
8252 {
8253 	remove_entity_load_avg(&p->se);
8254 }
8255 
8256 static int
8257 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8258 {
8259 	if (rq->nr_running)
8260 		return 1;
8261 
8262 	return newidle_balance(rq, rf) != 0;
8263 }
8264 #endif /* CONFIG_SMP */
8265 
8266 static void set_next_buddy(struct sched_entity *se)
8267 {
8268 	for_each_sched_entity(se) {
8269 		if (SCHED_WARN_ON(!se->on_rq))
8270 			return;
8271 		if (se_is_idle(se))
8272 			return;
8273 		cfs_rq_of(se)->next = se;
8274 	}
8275 }
8276 
8277 /*
8278  * Preempt the current task with a newly woken task if needed:
8279  */
8280 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8281 {
8282 	struct task_struct *curr = rq->curr;
8283 	struct sched_entity *se = &curr->se, *pse = &p->se;
8284 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8285 	int cse_is_idle, pse_is_idle;
8286 
8287 	if (unlikely(se == pse))
8288 		return;
8289 
8290 	/*
8291 	 * This is possible from callers such as attach_tasks(), in which we
8292 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8293 	 * lead to a throttle).  This both saves work and prevents false
8294 	 * next-buddy nomination below.
8295 	 */
8296 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8297 		return;
8298 
8299 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8300 		set_next_buddy(pse);
8301 	}
8302 
8303 	/*
8304 	 * We can come here with TIF_NEED_RESCHED already set from new task
8305 	 * wake up path.
8306 	 *
8307 	 * Note: this also catches the edge-case of curr being in a throttled
8308 	 * group (e.g. via set_curr_task), since update_curr() (in the
8309 	 * enqueue of curr) will have resulted in resched being set.  This
8310 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8311 	 * below.
8312 	 */
8313 	if (test_tsk_need_resched(curr))
8314 		return;
8315 
8316 	/* Idle tasks are by definition preempted by non-idle tasks. */
8317 	if (unlikely(task_has_idle_policy(curr)) &&
8318 	    likely(!task_has_idle_policy(p)))
8319 		goto preempt;
8320 
8321 	/*
8322 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8323 	 * is driven by the tick):
8324 	 */
8325 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8326 		return;
8327 
8328 	find_matching_se(&se, &pse);
8329 	WARN_ON_ONCE(!pse);
8330 
8331 	cse_is_idle = se_is_idle(se);
8332 	pse_is_idle = se_is_idle(pse);
8333 
8334 	/*
8335 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8336 	 * in the inverse case).
8337 	 */
8338 	if (cse_is_idle && !pse_is_idle)
8339 		goto preempt;
8340 	if (cse_is_idle != pse_is_idle)
8341 		return;
8342 
8343 	cfs_rq = cfs_rq_of(se);
8344 	update_curr(cfs_rq);
8345 
8346 	/*
8347 	 * XXX pick_eevdf(cfs_rq) != se ?
8348 	 */
8349 	if (pick_eevdf(cfs_rq) == pse)
8350 		goto preempt;
8351 
8352 	return;
8353 
8354 preempt:
8355 	resched_curr(rq);
8356 }
8357 
8358 #ifdef CONFIG_SMP
8359 static struct task_struct *pick_task_fair(struct rq *rq)
8360 {
8361 	struct sched_entity *se;
8362 	struct cfs_rq *cfs_rq;
8363 
8364 again:
8365 	cfs_rq = &rq->cfs;
8366 	if (!cfs_rq->nr_running)
8367 		return NULL;
8368 
8369 	do {
8370 		struct sched_entity *curr = cfs_rq->curr;
8371 
8372 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8373 		if (curr) {
8374 			if (curr->on_rq)
8375 				update_curr(cfs_rq);
8376 			else
8377 				curr = NULL;
8378 
8379 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8380 				goto again;
8381 		}
8382 
8383 		se = pick_next_entity(cfs_rq);
8384 		cfs_rq = group_cfs_rq(se);
8385 	} while (cfs_rq);
8386 
8387 	return task_of(se);
8388 }
8389 #endif
8390 
8391 struct task_struct *
8392 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8393 {
8394 	struct cfs_rq *cfs_rq = &rq->cfs;
8395 	struct sched_entity *se;
8396 	struct task_struct *p;
8397 	int new_tasks;
8398 
8399 again:
8400 	if (!sched_fair_runnable(rq))
8401 		goto idle;
8402 
8403 #ifdef CONFIG_FAIR_GROUP_SCHED
8404 	if (!prev || prev->sched_class != &fair_sched_class)
8405 		goto simple;
8406 
8407 	/*
8408 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8409 	 * likely that a next task is from the same cgroup as the current.
8410 	 *
8411 	 * Therefore attempt to avoid putting and setting the entire cgroup
8412 	 * hierarchy, only change the part that actually changes.
8413 	 */
8414 
8415 	do {
8416 		struct sched_entity *curr = cfs_rq->curr;
8417 
8418 		/*
8419 		 * Since we got here without doing put_prev_entity() we also
8420 		 * have to consider cfs_rq->curr. If it is still a runnable
8421 		 * entity, update_curr() will update its vruntime, otherwise
8422 		 * forget we've ever seen it.
8423 		 */
8424 		if (curr) {
8425 			if (curr->on_rq)
8426 				update_curr(cfs_rq);
8427 			else
8428 				curr = NULL;
8429 
8430 			/*
8431 			 * This call to check_cfs_rq_runtime() will do the
8432 			 * throttle and dequeue its entity in the parent(s).
8433 			 * Therefore the nr_running test will indeed
8434 			 * be correct.
8435 			 */
8436 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8437 				cfs_rq = &rq->cfs;
8438 
8439 				if (!cfs_rq->nr_running)
8440 					goto idle;
8441 
8442 				goto simple;
8443 			}
8444 		}
8445 
8446 		se = pick_next_entity(cfs_rq);
8447 		cfs_rq = group_cfs_rq(se);
8448 	} while (cfs_rq);
8449 
8450 	p = task_of(se);
8451 
8452 	/*
8453 	 * Since we haven't yet done put_prev_entity and if the selected task
8454 	 * is a different task than we started out with, try and touch the
8455 	 * least amount of cfs_rqs.
8456 	 */
8457 	if (prev != p) {
8458 		struct sched_entity *pse = &prev->se;
8459 
8460 		while (!(cfs_rq = is_same_group(se, pse))) {
8461 			int se_depth = se->depth;
8462 			int pse_depth = pse->depth;
8463 
8464 			if (se_depth <= pse_depth) {
8465 				put_prev_entity(cfs_rq_of(pse), pse);
8466 				pse = parent_entity(pse);
8467 			}
8468 			if (se_depth >= pse_depth) {
8469 				set_next_entity(cfs_rq_of(se), se);
8470 				se = parent_entity(se);
8471 			}
8472 		}
8473 
8474 		put_prev_entity(cfs_rq, pse);
8475 		set_next_entity(cfs_rq, se);
8476 	}
8477 
8478 	goto done;
8479 simple:
8480 #endif
8481 	if (prev)
8482 		put_prev_task(rq, prev);
8483 
8484 	do {
8485 		se = pick_next_entity(cfs_rq);
8486 		set_next_entity(cfs_rq, se);
8487 		cfs_rq = group_cfs_rq(se);
8488 	} while (cfs_rq);
8489 
8490 	p = task_of(se);
8491 
8492 done: __maybe_unused;
8493 #ifdef CONFIG_SMP
8494 	/*
8495 	 * Move the next running task to the front of
8496 	 * the list, so our cfs_tasks list becomes MRU
8497 	 * one.
8498 	 */
8499 	list_move(&p->se.group_node, &rq->cfs_tasks);
8500 #endif
8501 
8502 	if (hrtick_enabled_fair(rq))
8503 		hrtick_start_fair(rq, p);
8504 
8505 	update_misfit_status(p, rq);
8506 	sched_fair_update_stop_tick(rq, p);
8507 
8508 	return p;
8509 
8510 idle:
8511 	if (!rf)
8512 		return NULL;
8513 
8514 	new_tasks = newidle_balance(rq, rf);
8515 
8516 	/*
8517 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8518 	 * possible for any higher priority task to appear. In that case we
8519 	 * must re-start the pick_next_entity() loop.
8520 	 */
8521 	if (new_tasks < 0)
8522 		return RETRY_TASK;
8523 
8524 	if (new_tasks > 0)
8525 		goto again;
8526 
8527 	/*
8528 	 * rq is about to be idle, check if we need to update the
8529 	 * lost_idle_time of clock_pelt
8530 	 */
8531 	update_idle_rq_clock_pelt(rq);
8532 
8533 	return NULL;
8534 }
8535 
8536 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8537 {
8538 	return pick_next_task_fair(rq, NULL, NULL);
8539 }
8540 
8541 /*
8542  * Account for a descheduled task:
8543  */
8544 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8545 {
8546 	struct sched_entity *se = &prev->se;
8547 	struct cfs_rq *cfs_rq;
8548 
8549 	for_each_sched_entity(se) {
8550 		cfs_rq = cfs_rq_of(se);
8551 		put_prev_entity(cfs_rq, se);
8552 	}
8553 }
8554 
8555 /*
8556  * sched_yield() is very simple
8557  */
8558 static void yield_task_fair(struct rq *rq)
8559 {
8560 	struct task_struct *curr = rq->curr;
8561 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8562 	struct sched_entity *se = &curr->se;
8563 
8564 	/*
8565 	 * Are we the only task in the tree?
8566 	 */
8567 	if (unlikely(rq->nr_running == 1))
8568 		return;
8569 
8570 	clear_buddies(cfs_rq, se);
8571 
8572 	update_rq_clock(rq);
8573 	/*
8574 	 * Update run-time statistics of the 'current'.
8575 	 */
8576 	update_curr(cfs_rq);
8577 	/*
8578 	 * Tell update_rq_clock() that we've just updated,
8579 	 * so we don't do microscopic update in schedule()
8580 	 * and double the fastpath cost.
8581 	 */
8582 	rq_clock_skip_update(rq);
8583 
8584 	se->deadline += calc_delta_fair(se->slice, se);
8585 }
8586 
8587 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8588 {
8589 	struct sched_entity *se = &p->se;
8590 
8591 	/* throttled hierarchies are not runnable */
8592 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8593 		return false;
8594 
8595 	/* Tell the scheduler that we'd really like pse to run next. */
8596 	set_next_buddy(se);
8597 
8598 	yield_task_fair(rq);
8599 
8600 	return true;
8601 }
8602 
8603 #ifdef CONFIG_SMP
8604 /**************************************************
8605  * Fair scheduling class load-balancing methods.
8606  *
8607  * BASICS
8608  *
8609  * The purpose of load-balancing is to achieve the same basic fairness the
8610  * per-CPU scheduler provides, namely provide a proportional amount of compute
8611  * time to each task. This is expressed in the following equation:
8612  *
8613  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8614  *
8615  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8616  * W_i,0 is defined as:
8617  *
8618  *   W_i,0 = \Sum_j w_i,j                                             (2)
8619  *
8620  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8621  * is derived from the nice value as per sched_prio_to_weight[].
8622  *
8623  * The weight average is an exponential decay average of the instantaneous
8624  * weight:
8625  *
8626  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8627  *
8628  * C_i is the compute capacity of CPU i, typically it is the
8629  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8630  * can also include other factors [XXX].
8631  *
8632  * To achieve this balance we define a measure of imbalance which follows
8633  * directly from (1):
8634  *
8635  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8636  *
8637  * We them move tasks around to minimize the imbalance. In the continuous
8638  * function space it is obvious this converges, in the discrete case we get
8639  * a few fun cases generally called infeasible weight scenarios.
8640  *
8641  * [XXX expand on:
8642  *     - infeasible weights;
8643  *     - local vs global optima in the discrete case. ]
8644  *
8645  *
8646  * SCHED DOMAINS
8647  *
8648  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8649  * for all i,j solution, we create a tree of CPUs that follows the hardware
8650  * topology where each level pairs two lower groups (or better). This results
8651  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8652  * tree to only the first of the previous level and we decrease the frequency
8653  * of load-balance at each level inv. proportional to the number of CPUs in
8654  * the groups.
8655  *
8656  * This yields:
8657  *
8658  *     log_2 n     1     n
8659  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8660  *     i = 0      2^i   2^i
8661  *                               `- size of each group
8662  *         |         |     `- number of CPUs doing load-balance
8663  *         |         `- freq
8664  *         `- sum over all levels
8665  *
8666  * Coupled with a limit on how many tasks we can migrate every balance pass,
8667  * this makes (5) the runtime complexity of the balancer.
8668  *
8669  * An important property here is that each CPU is still (indirectly) connected
8670  * to every other CPU in at most O(log n) steps:
8671  *
8672  * The adjacency matrix of the resulting graph is given by:
8673  *
8674  *             log_2 n
8675  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8676  *             k = 0
8677  *
8678  * And you'll find that:
8679  *
8680  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8681  *
8682  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8683  * The task movement gives a factor of O(m), giving a convergence complexity
8684  * of:
8685  *
8686  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8687  *
8688  *
8689  * WORK CONSERVING
8690  *
8691  * In order to avoid CPUs going idle while there's still work to do, new idle
8692  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8693  * tree itself instead of relying on other CPUs to bring it work.
8694  *
8695  * This adds some complexity to both (5) and (8) but it reduces the total idle
8696  * time.
8697  *
8698  * [XXX more?]
8699  *
8700  *
8701  * CGROUPS
8702  *
8703  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8704  *
8705  *                                s_k,i
8706  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8707  *                                 S_k
8708  *
8709  * Where
8710  *
8711  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8712  *
8713  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8714  *
8715  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8716  * property.
8717  *
8718  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8719  *      rewrite all of this once again.]
8720  */
8721 
8722 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8723 
8724 enum fbq_type { regular, remote, all };
8725 
8726 /*
8727  * 'group_type' describes the group of CPUs at the moment of load balancing.
8728  *
8729  * The enum is ordered by pulling priority, with the group with lowest priority
8730  * first so the group_type can simply be compared when selecting the busiest
8731  * group. See update_sd_pick_busiest().
8732  */
8733 enum group_type {
8734 	/* The group has spare capacity that can be used to run more tasks.  */
8735 	group_has_spare = 0,
8736 	/*
8737 	 * The group is fully used and the tasks don't compete for more CPU
8738 	 * cycles. Nevertheless, some tasks might wait before running.
8739 	 */
8740 	group_fully_busy,
8741 	/*
8742 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8743 	 * more powerful CPU.
8744 	 */
8745 	group_misfit_task,
8746 	/*
8747 	 * Balance SMT group that's fully busy. Can benefit from migration
8748 	 * a task on SMT with busy sibling to another CPU on idle core.
8749 	 */
8750 	group_smt_balance,
8751 	/*
8752 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8753 	 * and the task should be migrated to it instead of running on the
8754 	 * current CPU.
8755 	 */
8756 	group_asym_packing,
8757 	/*
8758 	 * The tasks' affinity constraints previously prevented the scheduler
8759 	 * from balancing the load across the system.
8760 	 */
8761 	group_imbalanced,
8762 	/*
8763 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8764 	 * tasks.
8765 	 */
8766 	group_overloaded
8767 };
8768 
8769 enum migration_type {
8770 	migrate_load = 0,
8771 	migrate_util,
8772 	migrate_task,
8773 	migrate_misfit
8774 };
8775 
8776 #define LBF_ALL_PINNED	0x01
8777 #define LBF_NEED_BREAK	0x02
8778 #define LBF_DST_PINNED  0x04
8779 #define LBF_SOME_PINNED	0x08
8780 #define LBF_ACTIVE_LB	0x10
8781 
8782 struct lb_env {
8783 	struct sched_domain	*sd;
8784 
8785 	struct rq		*src_rq;
8786 	int			src_cpu;
8787 
8788 	int			dst_cpu;
8789 	struct rq		*dst_rq;
8790 
8791 	struct cpumask		*dst_grpmask;
8792 	int			new_dst_cpu;
8793 	enum cpu_idle_type	idle;
8794 	long			imbalance;
8795 	/* The set of CPUs under consideration for load-balancing */
8796 	struct cpumask		*cpus;
8797 
8798 	unsigned int		flags;
8799 
8800 	unsigned int		loop;
8801 	unsigned int		loop_break;
8802 	unsigned int		loop_max;
8803 
8804 	enum fbq_type		fbq_type;
8805 	enum migration_type	migration_type;
8806 	struct list_head	tasks;
8807 };
8808 
8809 /*
8810  * Is this task likely cache-hot:
8811  */
8812 static int task_hot(struct task_struct *p, struct lb_env *env)
8813 {
8814 	s64 delta;
8815 
8816 	lockdep_assert_rq_held(env->src_rq);
8817 
8818 	if (p->sched_class != &fair_sched_class)
8819 		return 0;
8820 
8821 	if (unlikely(task_has_idle_policy(p)))
8822 		return 0;
8823 
8824 	/* SMT siblings share cache */
8825 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8826 		return 0;
8827 
8828 	/*
8829 	 * Buddy candidates are cache hot:
8830 	 */
8831 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8832 	    (&p->se == cfs_rq_of(&p->se)->next))
8833 		return 1;
8834 
8835 	if (sysctl_sched_migration_cost == -1)
8836 		return 1;
8837 
8838 	/*
8839 	 * Don't migrate task if the task's cookie does not match
8840 	 * with the destination CPU's core cookie.
8841 	 */
8842 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8843 		return 1;
8844 
8845 	if (sysctl_sched_migration_cost == 0)
8846 		return 0;
8847 
8848 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8849 
8850 	return delta < (s64)sysctl_sched_migration_cost;
8851 }
8852 
8853 #ifdef CONFIG_NUMA_BALANCING
8854 /*
8855  * Returns 1, if task migration degrades locality
8856  * Returns 0, if task migration improves locality i.e migration preferred.
8857  * Returns -1, if task migration is not affected by locality.
8858  */
8859 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8860 {
8861 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8862 	unsigned long src_weight, dst_weight;
8863 	int src_nid, dst_nid, dist;
8864 
8865 	if (!static_branch_likely(&sched_numa_balancing))
8866 		return -1;
8867 
8868 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8869 		return -1;
8870 
8871 	src_nid = cpu_to_node(env->src_cpu);
8872 	dst_nid = cpu_to_node(env->dst_cpu);
8873 
8874 	if (src_nid == dst_nid)
8875 		return -1;
8876 
8877 	/* Migrating away from the preferred node is always bad. */
8878 	if (src_nid == p->numa_preferred_nid) {
8879 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8880 			return 1;
8881 		else
8882 			return -1;
8883 	}
8884 
8885 	/* Encourage migration to the preferred node. */
8886 	if (dst_nid == p->numa_preferred_nid)
8887 		return 0;
8888 
8889 	/* Leaving a core idle is often worse than degrading locality. */
8890 	if (env->idle == CPU_IDLE)
8891 		return -1;
8892 
8893 	dist = node_distance(src_nid, dst_nid);
8894 	if (numa_group) {
8895 		src_weight = group_weight(p, src_nid, dist);
8896 		dst_weight = group_weight(p, dst_nid, dist);
8897 	} else {
8898 		src_weight = task_weight(p, src_nid, dist);
8899 		dst_weight = task_weight(p, dst_nid, dist);
8900 	}
8901 
8902 	return dst_weight < src_weight;
8903 }
8904 
8905 #else
8906 static inline int migrate_degrades_locality(struct task_struct *p,
8907 					     struct lb_env *env)
8908 {
8909 	return -1;
8910 }
8911 #endif
8912 
8913 /*
8914  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8915  */
8916 static
8917 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8918 {
8919 	int tsk_cache_hot;
8920 
8921 	lockdep_assert_rq_held(env->src_rq);
8922 
8923 	/*
8924 	 * We do not migrate tasks that are:
8925 	 * 1) throttled_lb_pair, or
8926 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8927 	 * 3) running (obviously), or
8928 	 * 4) are cache-hot on their current CPU.
8929 	 */
8930 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8931 		return 0;
8932 
8933 	/* Disregard pcpu kthreads; they are where they need to be. */
8934 	if (kthread_is_per_cpu(p))
8935 		return 0;
8936 
8937 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8938 		int cpu;
8939 
8940 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8941 
8942 		env->flags |= LBF_SOME_PINNED;
8943 
8944 		/*
8945 		 * Remember if this task can be migrated to any other CPU in
8946 		 * our sched_group. We may want to revisit it if we couldn't
8947 		 * meet load balance goals by pulling other tasks on src_cpu.
8948 		 *
8949 		 * Avoid computing new_dst_cpu
8950 		 * - for NEWLY_IDLE
8951 		 * - if we have already computed one in current iteration
8952 		 * - if it's an active balance
8953 		 */
8954 		if (env->idle == CPU_NEWLY_IDLE ||
8955 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8956 			return 0;
8957 
8958 		/* Prevent to re-select dst_cpu via env's CPUs: */
8959 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8960 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8961 				env->flags |= LBF_DST_PINNED;
8962 				env->new_dst_cpu = cpu;
8963 				break;
8964 			}
8965 		}
8966 
8967 		return 0;
8968 	}
8969 
8970 	/* Record that we found at least one task that could run on dst_cpu */
8971 	env->flags &= ~LBF_ALL_PINNED;
8972 
8973 	if (task_on_cpu(env->src_rq, p)) {
8974 		schedstat_inc(p->stats.nr_failed_migrations_running);
8975 		return 0;
8976 	}
8977 
8978 	/*
8979 	 * Aggressive migration if:
8980 	 * 1) active balance
8981 	 * 2) destination numa is preferred
8982 	 * 3) task is cache cold, or
8983 	 * 4) too many balance attempts have failed.
8984 	 */
8985 	if (env->flags & LBF_ACTIVE_LB)
8986 		return 1;
8987 
8988 	tsk_cache_hot = migrate_degrades_locality(p, env);
8989 	if (tsk_cache_hot == -1)
8990 		tsk_cache_hot = task_hot(p, env);
8991 
8992 	if (tsk_cache_hot <= 0 ||
8993 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8994 		if (tsk_cache_hot == 1) {
8995 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8996 			schedstat_inc(p->stats.nr_forced_migrations);
8997 		}
8998 		return 1;
8999 	}
9000 
9001 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9002 	return 0;
9003 }
9004 
9005 /*
9006  * detach_task() -- detach the task for the migration specified in env
9007  */
9008 static void detach_task(struct task_struct *p, struct lb_env *env)
9009 {
9010 	lockdep_assert_rq_held(env->src_rq);
9011 
9012 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9013 	set_task_cpu(p, env->dst_cpu);
9014 }
9015 
9016 /*
9017  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9018  * part of active balancing operations within "domain".
9019  *
9020  * Returns a task if successful and NULL otherwise.
9021  */
9022 static struct task_struct *detach_one_task(struct lb_env *env)
9023 {
9024 	struct task_struct *p;
9025 
9026 	lockdep_assert_rq_held(env->src_rq);
9027 
9028 	list_for_each_entry_reverse(p,
9029 			&env->src_rq->cfs_tasks, se.group_node) {
9030 		if (!can_migrate_task(p, env))
9031 			continue;
9032 
9033 		detach_task(p, env);
9034 
9035 		/*
9036 		 * Right now, this is only the second place where
9037 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9038 		 * so we can safely collect stats here rather than
9039 		 * inside detach_tasks().
9040 		 */
9041 		schedstat_inc(env->sd->lb_gained[env->idle]);
9042 		return p;
9043 	}
9044 	return NULL;
9045 }
9046 
9047 /*
9048  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9049  * busiest_rq, as part of a balancing operation within domain "sd".
9050  *
9051  * Returns number of detached tasks if successful and 0 otherwise.
9052  */
9053 static int detach_tasks(struct lb_env *env)
9054 {
9055 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9056 	unsigned long util, load;
9057 	struct task_struct *p;
9058 	int detached = 0;
9059 
9060 	lockdep_assert_rq_held(env->src_rq);
9061 
9062 	/*
9063 	 * Source run queue has been emptied by another CPU, clear
9064 	 * LBF_ALL_PINNED flag as we will not test any task.
9065 	 */
9066 	if (env->src_rq->nr_running <= 1) {
9067 		env->flags &= ~LBF_ALL_PINNED;
9068 		return 0;
9069 	}
9070 
9071 	if (env->imbalance <= 0)
9072 		return 0;
9073 
9074 	while (!list_empty(tasks)) {
9075 		/*
9076 		 * We don't want to steal all, otherwise we may be treated likewise,
9077 		 * which could at worst lead to a livelock crash.
9078 		 */
9079 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9080 			break;
9081 
9082 		env->loop++;
9083 		/*
9084 		 * We've more or less seen every task there is, call it quits
9085 		 * unless we haven't found any movable task yet.
9086 		 */
9087 		if (env->loop > env->loop_max &&
9088 		    !(env->flags & LBF_ALL_PINNED))
9089 			break;
9090 
9091 		/* take a breather every nr_migrate tasks */
9092 		if (env->loop > env->loop_break) {
9093 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9094 			env->flags |= LBF_NEED_BREAK;
9095 			break;
9096 		}
9097 
9098 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9099 
9100 		if (!can_migrate_task(p, env))
9101 			goto next;
9102 
9103 		switch (env->migration_type) {
9104 		case migrate_load:
9105 			/*
9106 			 * Depending of the number of CPUs and tasks and the
9107 			 * cgroup hierarchy, task_h_load() can return a null
9108 			 * value. Make sure that env->imbalance decreases
9109 			 * otherwise detach_tasks() will stop only after
9110 			 * detaching up to loop_max tasks.
9111 			 */
9112 			load = max_t(unsigned long, task_h_load(p), 1);
9113 
9114 			if (sched_feat(LB_MIN) &&
9115 			    load < 16 && !env->sd->nr_balance_failed)
9116 				goto next;
9117 
9118 			/*
9119 			 * Make sure that we don't migrate too much load.
9120 			 * Nevertheless, let relax the constraint if
9121 			 * scheduler fails to find a good waiting task to
9122 			 * migrate.
9123 			 */
9124 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9125 				goto next;
9126 
9127 			env->imbalance -= load;
9128 			break;
9129 
9130 		case migrate_util:
9131 			util = task_util_est(p);
9132 
9133 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9134 				goto next;
9135 
9136 			env->imbalance -= util;
9137 			break;
9138 
9139 		case migrate_task:
9140 			env->imbalance--;
9141 			break;
9142 
9143 		case migrate_misfit:
9144 			/* This is not a misfit task */
9145 			if (task_fits_cpu(p, env->src_cpu))
9146 				goto next;
9147 
9148 			env->imbalance = 0;
9149 			break;
9150 		}
9151 
9152 		detach_task(p, env);
9153 		list_add(&p->se.group_node, &env->tasks);
9154 
9155 		detached++;
9156 
9157 #ifdef CONFIG_PREEMPTION
9158 		/*
9159 		 * NEWIDLE balancing is a source of latency, so preemptible
9160 		 * kernels will stop after the first task is detached to minimize
9161 		 * the critical section.
9162 		 */
9163 		if (env->idle == CPU_NEWLY_IDLE)
9164 			break;
9165 #endif
9166 
9167 		/*
9168 		 * We only want to steal up to the prescribed amount of
9169 		 * load/util/tasks.
9170 		 */
9171 		if (env->imbalance <= 0)
9172 			break;
9173 
9174 		continue;
9175 next:
9176 		list_move(&p->se.group_node, tasks);
9177 	}
9178 
9179 	/*
9180 	 * Right now, this is one of only two places we collect this stat
9181 	 * so we can safely collect detach_one_task() stats here rather
9182 	 * than inside detach_one_task().
9183 	 */
9184 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9185 
9186 	return detached;
9187 }
9188 
9189 /*
9190  * attach_task() -- attach the task detached by detach_task() to its new rq.
9191  */
9192 static void attach_task(struct rq *rq, struct task_struct *p)
9193 {
9194 	lockdep_assert_rq_held(rq);
9195 
9196 	WARN_ON_ONCE(task_rq(p) != rq);
9197 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9198 	wakeup_preempt(rq, p, 0);
9199 }
9200 
9201 /*
9202  * attach_one_task() -- attaches the task returned from detach_one_task() to
9203  * its new rq.
9204  */
9205 static void attach_one_task(struct rq *rq, struct task_struct *p)
9206 {
9207 	struct rq_flags rf;
9208 
9209 	rq_lock(rq, &rf);
9210 	update_rq_clock(rq);
9211 	attach_task(rq, p);
9212 	rq_unlock(rq, &rf);
9213 }
9214 
9215 /*
9216  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9217  * new rq.
9218  */
9219 static void attach_tasks(struct lb_env *env)
9220 {
9221 	struct list_head *tasks = &env->tasks;
9222 	struct task_struct *p;
9223 	struct rq_flags rf;
9224 
9225 	rq_lock(env->dst_rq, &rf);
9226 	update_rq_clock(env->dst_rq);
9227 
9228 	while (!list_empty(tasks)) {
9229 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9230 		list_del_init(&p->se.group_node);
9231 
9232 		attach_task(env->dst_rq, p);
9233 	}
9234 
9235 	rq_unlock(env->dst_rq, &rf);
9236 }
9237 
9238 #ifdef CONFIG_NO_HZ_COMMON
9239 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9240 {
9241 	if (cfs_rq->avg.load_avg)
9242 		return true;
9243 
9244 	if (cfs_rq->avg.util_avg)
9245 		return true;
9246 
9247 	return false;
9248 }
9249 
9250 static inline bool others_have_blocked(struct rq *rq)
9251 {
9252 	if (cpu_util_rt(rq))
9253 		return true;
9254 
9255 	if (cpu_util_dl(rq))
9256 		return true;
9257 
9258 	if (thermal_load_avg(rq))
9259 		return true;
9260 
9261 	if (cpu_util_irq(rq))
9262 		return true;
9263 
9264 	return false;
9265 }
9266 
9267 static inline void update_blocked_load_tick(struct rq *rq)
9268 {
9269 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9270 }
9271 
9272 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9273 {
9274 	if (!has_blocked)
9275 		rq->has_blocked_load = 0;
9276 }
9277 #else
9278 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9279 static inline bool others_have_blocked(struct rq *rq) { return false; }
9280 static inline void update_blocked_load_tick(struct rq *rq) {}
9281 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9282 #endif
9283 
9284 static bool __update_blocked_others(struct rq *rq, bool *done)
9285 {
9286 	const struct sched_class *curr_class;
9287 	u64 now = rq_clock_pelt(rq);
9288 	unsigned long thermal_pressure;
9289 	bool decayed;
9290 
9291 	/*
9292 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9293 	 * DL and IRQ signals have been updated before updating CFS.
9294 	 */
9295 	curr_class = rq->curr->sched_class;
9296 
9297 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9298 
9299 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9300 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9301 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9302 		  update_irq_load_avg(rq, 0);
9303 
9304 	if (others_have_blocked(rq))
9305 		*done = false;
9306 
9307 	return decayed;
9308 }
9309 
9310 #ifdef CONFIG_FAIR_GROUP_SCHED
9311 
9312 static bool __update_blocked_fair(struct rq *rq, bool *done)
9313 {
9314 	struct cfs_rq *cfs_rq, *pos;
9315 	bool decayed = false;
9316 	int cpu = cpu_of(rq);
9317 
9318 	/*
9319 	 * Iterates the task_group tree in a bottom up fashion, see
9320 	 * list_add_leaf_cfs_rq() for details.
9321 	 */
9322 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9323 		struct sched_entity *se;
9324 
9325 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9326 			update_tg_load_avg(cfs_rq);
9327 
9328 			if (cfs_rq->nr_running == 0)
9329 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9330 
9331 			if (cfs_rq == &rq->cfs)
9332 				decayed = true;
9333 		}
9334 
9335 		/* Propagate pending load changes to the parent, if any: */
9336 		se = cfs_rq->tg->se[cpu];
9337 		if (se && !skip_blocked_update(se))
9338 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9339 
9340 		/*
9341 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9342 		 * decayed cfs_rqs linger on the list.
9343 		 */
9344 		if (cfs_rq_is_decayed(cfs_rq))
9345 			list_del_leaf_cfs_rq(cfs_rq);
9346 
9347 		/* Don't need periodic decay once load/util_avg are null */
9348 		if (cfs_rq_has_blocked(cfs_rq))
9349 			*done = false;
9350 	}
9351 
9352 	return decayed;
9353 }
9354 
9355 /*
9356  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9357  * This needs to be done in a top-down fashion because the load of a child
9358  * group is a fraction of its parents load.
9359  */
9360 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9361 {
9362 	struct rq *rq = rq_of(cfs_rq);
9363 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9364 	unsigned long now = jiffies;
9365 	unsigned long load;
9366 
9367 	if (cfs_rq->last_h_load_update == now)
9368 		return;
9369 
9370 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9371 	for_each_sched_entity(se) {
9372 		cfs_rq = cfs_rq_of(se);
9373 		WRITE_ONCE(cfs_rq->h_load_next, se);
9374 		if (cfs_rq->last_h_load_update == now)
9375 			break;
9376 	}
9377 
9378 	if (!se) {
9379 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9380 		cfs_rq->last_h_load_update = now;
9381 	}
9382 
9383 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9384 		load = cfs_rq->h_load;
9385 		load = div64_ul(load * se->avg.load_avg,
9386 			cfs_rq_load_avg(cfs_rq) + 1);
9387 		cfs_rq = group_cfs_rq(se);
9388 		cfs_rq->h_load = load;
9389 		cfs_rq->last_h_load_update = now;
9390 	}
9391 }
9392 
9393 static unsigned long task_h_load(struct task_struct *p)
9394 {
9395 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9396 
9397 	update_cfs_rq_h_load(cfs_rq);
9398 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9399 			cfs_rq_load_avg(cfs_rq) + 1);
9400 }
9401 #else
9402 static bool __update_blocked_fair(struct rq *rq, bool *done)
9403 {
9404 	struct cfs_rq *cfs_rq = &rq->cfs;
9405 	bool decayed;
9406 
9407 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9408 	if (cfs_rq_has_blocked(cfs_rq))
9409 		*done = false;
9410 
9411 	return decayed;
9412 }
9413 
9414 static unsigned long task_h_load(struct task_struct *p)
9415 {
9416 	return p->se.avg.load_avg;
9417 }
9418 #endif
9419 
9420 static void update_blocked_averages(int cpu)
9421 {
9422 	bool decayed = false, done = true;
9423 	struct rq *rq = cpu_rq(cpu);
9424 	struct rq_flags rf;
9425 
9426 	rq_lock_irqsave(rq, &rf);
9427 	update_blocked_load_tick(rq);
9428 	update_rq_clock(rq);
9429 
9430 	decayed |= __update_blocked_others(rq, &done);
9431 	decayed |= __update_blocked_fair(rq, &done);
9432 
9433 	update_blocked_load_status(rq, !done);
9434 	if (decayed)
9435 		cpufreq_update_util(rq, 0);
9436 	rq_unlock_irqrestore(rq, &rf);
9437 }
9438 
9439 /********** Helpers for find_busiest_group ************************/
9440 
9441 /*
9442  * sg_lb_stats - stats of a sched_group required for load_balancing
9443  */
9444 struct sg_lb_stats {
9445 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9446 	unsigned long group_load; /* Total load over the CPUs of the group */
9447 	unsigned long group_capacity;
9448 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9449 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9450 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9451 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9452 	unsigned int idle_cpus;
9453 	unsigned int group_weight;
9454 	enum group_type group_type;
9455 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9456 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9457 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9458 #ifdef CONFIG_NUMA_BALANCING
9459 	unsigned int nr_numa_running;
9460 	unsigned int nr_preferred_running;
9461 #endif
9462 };
9463 
9464 /*
9465  * sd_lb_stats - Structure to store the statistics of a sched_domain
9466  *		 during load balancing.
9467  */
9468 struct sd_lb_stats {
9469 	struct sched_group *busiest;	/* Busiest group in this sd */
9470 	struct sched_group *local;	/* Local group in this sd */
9471 	unsigned long total_load;	/* Total load of all groups in sd */
9472 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9473 	unsigned long avg_load;	/* Average load across all groups in sd */
9474 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9475 
9476 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9477 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9478 };
9479 
9480 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9481 {
9482 	/*
9483 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9484 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9485 	 * We must however set busiest_stat::group_type and
9486 	 * busiest_stat::idle_cpus to the worst busiest group because
9487 	 * update_sd_pick_busiest() reads these before assignment.
9488 	 */
9489 	*sds = (struct sd_lb_stats){
9490 		.busiest = NULL,
9491 		.local = NULL,
9492 		.total_load = 0UL,
9493 		.total_capacity = 0UL,
9494 		.busiest_stat = {
9495 			.idle_cpus = UINT_MAX,
9496 			.group_type = group_has_spare,
9497 		},
9498 	};
9499 }
9500 
9501 static unsigned long scale_rt_capacity(int cpu)
9502 {
9503 	struct rq *rq = cpu_rq(cpu);
9504 	unsigned long max = arch_scale_cpu_capacity(cpu);
9505 	unsigned long used, free;
9506 	unsigned long irq;
9507 
9508 	irq = cpu_util_irq(rq);
9509 
9510 	if (unlikely(irq >= max))
9511 		return 1;
9512 
9513 	/*
9514 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9515 	 * (running and not running) with weights 0 and 1024 respectively.
9516 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9517 	 * average uses the actual delta max capacity(load).
9518 	 */
9519 	used = cpu_util_rt(rq);
9520 	used += cpu_util_dl(rq);
9521 	used += thermal_load_avg(rq);
9522 
9523 	if (unlikely(used >= max))
9524 		return 1;
9525 
9526 	free = max - used;
9527 
9528 	return scale_irq_capacity(free, irq, max);
9529 }
9530 
9531 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9532 {
9533 	unsigned long capacity = scale_rt_capacity(cpu);
9534 	struct sched_group *sdg = sd->groups;
9535 
9536 	if (!capacity)
9537 		capacity = 1;
9538 
9539 	cpu_rq(cpu)->cpu_capacity = capacity;
9540 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9541 
9542 	sdg->sgc->capacity = capacity;
9543 	sdg->sgc->min_capacity = capacity;
9544 	sdg->sgc->max_capacity = capacity;
9545 }
9546 
9547 void update_group_capacity(struct sched_domain *sd, int cpu)
9548 {
9549 	struct sched_domain *child = sd->child;
9550 	struct sched_group *group, *sdg = sd->groups;
9551 	unsigned long capacity, min_capacity, max_capacity;
9552 	unsigned long interval;
9553 
9554 	interval = msecs_to_jiffies(sd->balance_interval);
9555 	interval = clamp(interval, 1UL, max_load_balance_interval);
9556 	sdg->sgc->next_update = jiffies + interval;
9557 
9558 	if (!child) {
9559 		update_cpu_capacity(sd, cpu);
9560 		return;
9561 	}
9562 
9563 	capacity = 0;
9564 	min_capacity = ULONG_MAX;
9565 	max_capacity = 0;
9566 
9567 	if (child->flags & SD_OVERLAP) {
9568 		/*
9569 		 * SD_OVERLAP domains cannot assume that child groups
9570 		 * span the current group.
9571 		 */
9572 
9573 		for_each_cpu(cpu, sched_group_span(sdg)) {
9574 			unsigned long cpu_cap = capacity_of(cpu);
9575 
9576 			capacity += cpu_cap;
9577 			min_capacity = min(cpu_cap, min_capacity);
9578 			max_capacity = max(cpu_cap, max_capacity);
9579 		}
9580 	} else  {
9581 		/*
9582 		 * !SD_OVERLAP domains can assume that child groups
9583 		 * span the current group.
9584 		 */
9585 
9586 		group = child->groups;
9587 		do {
9588 			struct sched_group_capacity *sgc = group->sgc;
9589 
9590 			capacity += sgc->capacity;
9591 			min_capacity = min(sgc->min_capacity, min_capacity);
9592 			max_capacity = max(sgc->max_capacity, max_capacity);
9593 			group = group->next;
9594 		} while (group != child->groups);
9595 	}
9596 
9597 	sdg->sgc->capacity = capacity;
9598 	sdg->sgc->min_capacity = min_capacity;
9599 	sdg->sgc->max_capacity = max_capacity;
9600 }
9601 
9602 /*
9603  * Check whether the capacity of the rq has been noticeably reduced by side
9604  * activity. The imbalance_pct is used for the threshold.
9605  * Return true is the capacity is reduced
9606  */
9607 static inline int
9608 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9609 {
9610 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9611 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9612 }
9613 
9614 /*
9615  * Check whether a rq has a misfit task and if it looks like we can actually
9616  * help that task: we can migrate the task to a CPU of higher capacity, or
9617  * the task's current CPU is heavily pressured.
9618  */
9619 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9620 {
9621 	return rq->misfit_task_load &&
9622 		(arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
9623 		 check_cpu_capacity(rq, sd));
9624 }
9625 
9626 /*
9627  * Group imbalance indicates (and tries to solve) the problem where balancing
9628  * groups is inadequate due to ->cpus_ptr constraints.
9629  *
9630  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9631  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9632  * Something like:
9633  *
9634  *	{ 0 1 2 3 } { 4 5 6 7 }
9635  *	        *     * * *
9636  *
9637  * If we were to balance group-wise we'd place two tasks in the first group and
9638  * two tasks in the second group. Clearly this is undesired as it will overload
9639  * cpu 3 and leave one of the CPUs in the second group unused.
9640  *
9641  * The current solution to this issue is detecting the skew in the first group
9642  * by noticing the lower domain failed to reach balance and had difficulty
9643  * moving tasks due to affinity constraints.
9644  *
9645  * When this is so detected; this group becomes a candidate for busiest; see
9646  * update_sd_pick_busiest(). And calculate_imbalance() and
9647  * find_busiest_group() avoid some of the usual balance conditions to allow it
9648  * to create an effective group imbalance.
9649  *
9650  * This is a somewhat tricky proposition since the next run might not find the
9651  * group imbalance and decide the groups need to be balanced again. A most
9652  * subtle and fragile situation.
9653  */
9654 
9655 static inline int sg_imbalanced(struct sched_group *group)
9656 {
9657 	return group->sgc->imbalance;
9658 }
9659 
9660 /*
9661  * group_has_capacity returns true if the group has spare capacity that could
9662  * be used by some tasks.
9663  * We consider that a group has spare capacity if the number of task is
9664  * smaller than the number of CPUs or if the utilization is lower than the
9665  * available capacity for CFS tasks.
9666  * For the latter, we use a threshold to stabilize the state, to take into
9667  * account the variance of the tasks' load and to return true if the available
9668  * capacity in meaningful for the load balancer.
9669  * As an example, an available capacity of 1% can appear but it doesn't make
9670  * any benefit for the load balance.
9671  */
9672 static inline bool
9673 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9674 {
9675 	if (sgs->sum_nr_running < sgs->group_weight)
9676 		return true;
9677 
9678 	if ((sgs->group_capacity * imbalance_pct) <
9679 			(sgs->group_runnable * 100))
9680 		return false;
9681 
9682 	if ((sgs->group_capacity * 100) >
9683 			(sgs->group_util * imbalance_pct))
9684 		return true;
9685 
9686 	return false;
9687 }
9688 
9689 /*
9690  *  group_is_overloaded returns true if the group has more tasks than it can
9691  *  handle.
9692  *  group_is_overloaded is not equals to !group_has_capacity because a group
9693  *  with the exact right number of tasks, has no more spare capacity but is not
9694  *  overloaded so both group_has_capacity and group_is_overloaded return
9695  *  false.
9696  */
9697 static inline bool
9698 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9699 {
9700 	if (sgs->sum_nr_running <= sgs->group_weight)
9701 		return false;
9702 
9703 	if ((sgs->group_capacity * 100) <
9704 			(sgs->group_util * imbalance_pct))
9705 		return true;
9706 
9707 	if ((sgs->group_capacity * imbalance_pct) <
9708 			(sgs->group_runnable * 100))
9709 		return true;
9710 
9711 	return false;
9712 }
9713 
9714 static inline enum
9715 group_type group_classify(unsigned int imbalance_pct,
9716 			  struct sched_group *group,
9717 			  struct sg_lb_stats *sgs)
9718 {
9719 	if (group_is_overloaded(imbalance_pct, sgs))
9720 		return group_overloaded;
9721 
9722 	if (sg_imbalanced(group))
9723 		return group_imbalanced;
9724 
9725 	if (sgs->group_asym_packing)
9726 		return group_asym_packing;
9727 
9728 	if (sgs->group_smt_balance)
9729 		return group_smt_balance;
9730 
9731 	if (sgs->group_misfit_task_load)
9732 		return group_misfit_task;
9733 
9734 	if (!group_has_capacity(imbalance_pct, sgs))
9735 		return group_fully_busy;
9736 
9737 	return group_has_spare;
9738 }
9739 
9740 /**
9741  * sched_use_asym_prio - Check whether asym_packing priority must be used
9742  * @sd:		The scheduling domain of the load balancing
9743  * @cpu:	A CPU
9744  *
9745  * Always use CPU priority when balancing load between SMT siblings. When
9746  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9747  * use CPU priority if the whole core is idle.
9748  *
9749  * Returns: True if the priority of @cpu must be followed. False otherwise.
9750  */
9751 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9752 {
9753 	if (!(sd->flags & SD_ASYM_PACKING))
9754 		return false;
9755 
9756 	if (!sched_smt_active())
9757 		return true;
9758 
9759 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9760 }
9761 
9762 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
9763 {
9764 	/*
9765 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
9766 	 * if it has higher priority than @src_cpu.
9767 	 */
9768 	return sched_use_asym_prio(sd, dst_cpu) &&
9769 		sched_asym_prefer(dst_cpu, src_cpu);
9770 }
9771 
9772 /**
9773  * sched_group_asym - Check if the destination CPU can do asym_packing balance
9774  * @env:	The load balancing environment
9775  * @sgs:	Load-balancing statistics of the candidate busiest group
9776  * @group:	The candidate busiest group
9777  *
9778  * @env::dst_cpu can do asym_packing if it has higher priority than the
9779  * preferred CPU of @group.
9780  *
9781  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9782  * otherwise.
9783  */
9784 static inline bool
9785 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
9786 {
9787 	/*
9788 	 * CPU priorities do not make sense for SMT cores with more than one
9789 	 * busy sibling.
9790 	 */
9791 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
9792 	    (sgs->group_weight - sgs->idle_cpus != 1))
9793 		return false;
9794 
9795 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
9796 }
9797 
9798 /* One group has more than one SMT CPU while the other group does not */
9799 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9800 				    struct sched_group *sg2)
9801 {
9802 	if (!sg1 || !sg2)
9803 		return false;
9804 
9805 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9806 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9807 }
9808 
9809 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9810 			       struct sched_group *group)
9811 {
9812 	if (env->idle == CPU_NOT_IDLE)
9813 		return false;
9814 
9815 	/*
9816 	 * For SMT source group, it is better to move a task
9817 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9818 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9819 	 * will not be on.
9820 	 */
9821 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9822 	    sgs->sum_h_nr_running > 1)
9823 		return true;
9824 
9825 	return false;
9826 }
9827 
9828 static inline long sibling_imbalance(struct lb_env *env,
9829 				    struct sd_lb_stats *sds,
9830 				    struct sg_lb_stats *busiest,
9831 				    struct sg_lb_stats *local)
9832 {
9833 	int ncores_busiest, ncores_local;
9834 	long imbalance;
9835 
9836 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9837 		return 0;
9838 
9839 	ncores_busiest = sds->busiest->cores;
9840 	ncores_local = sds->local->cores;
9841 
9842 	if (ncores_busiest == ncores_local) {
9843 		imbalance = busiest->sum_nr_running;
9844 		lsub_positive(&imbalance, local->sum_nr_running);
9845 		return imbalance;
9846 	}
9847 
9848 	/* Balance such that nr_running/ncores ratio are same on both groups */
9849 	imbalance = ncores_local * busiest->sum_nr_running;
9850 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9851 	/* Normalize imbalance and do rounding on normalization */
9852 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9853 	imbalance /= ncores_local + ncores_busiest;
9854 
9855 	/* Take advantage of resource in an empty sched group */
9856 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9857 	    busiest->sum_nr_running > 1)
9858 		imbalance = 2;
9859 
9860 	return imbalance;
9861 }
9862 
9863 static inline bool
9864 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9865 {
9866 	/*
9867 	 * When there is more than 1 task, the group_overloaded case already
9868 	 * takes care of cpu with reduced capacity
9869 	 */
9870 	if (rq->cfs.h_nr_running != 1)
9871 		return false;
9872 
9873 	return check_cpu_capacity(rq, sd);
9874 }
9875 
9876 /**
9877  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9878  * @env: The load balancing environment.
9879  * @sds: Load-balancing data with statistics of the local group.
9880  * @group: sched_group whose statistics are to be updated.
9881  * @sgs: variable to hold the statistics for this group.
9882  * @sg_status: Holds flag indicating the status of the sched_group
9883  */
9884 static inline void update_sg_lb_stats(struct lb_env *env,
9885 				      struct sd_lb_stats *sds,
9886 				      struct sched_group *group,
9887 				      struct sg_lb_stats *sgs,
9888 				      int *sg_status)
9889 {
9890 	int i, nr_running, local_group;
9891 
9892 	memset(sgs, 0, sizeof(*sgs));
9893 
9894 	local_group = group == sds->local;
9895 
9896 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9897 		struct rq *rq = cpu_rq(i);
9898 		unsigned long load = cpu_load(rq);
9899 
9900 		sgs->group_load += load;
9901 		sgs->group_util += cpu_util_cfs(i);
9902 		sgs->group_runnable += cpu_runnable(rq);
9903 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9904 
9905 		nr_running = rq->nr_running;
9906 		sgs->sum_nr_running += nr_running;
9907 
9908 		if (nr_running > 1)
9909 			*sg_status |= SG_OVERLOAD;
9910 
9911 		if (cpu_overutilized(i))
9912 			*sg_status |= SG_OVERUTILIZED;
9913 
9914 #ifdef CONFIG_NUMA_BALANCING
9915 		sgs->nr_numa_running += rq->nr_numa_running;
9916 		sgs->nr_preferred_running += rq->nr_preferred_running;
9917 #endif
9918 		/*
9919 		 * No need to call idle_cpu() if nr_running is not 0
9920 		 */
9921 		if (!nr_running && idle_cpu(i)) {
9922 			sgs->idle_cpus++;
9923 			/* Idle cpu can't have misfit task */
9924 			continue;
9925 		}
9926 
9927 		if (local_group)
9928 			continue;
9929 
9930 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9931 			/* Check for a misfit task on the cpu */
9932 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9933 				sgs->group_misfit_task_load = rq->misfit_task_load;
9934 				*sg_status |= SG_OVERLOAD;
9935 			}
9936 		} else if ((env->idle != CPU_NOT_IDLE) &&
9937 			   sched_reduced_capacity(rq, env->sd)) {
9938 			/* Check for a task running on a CPU with reduced capacity */
9939 			if (sgs->group_misfit_task_load < load)
9940 				sgs->group_misfit_task_load = load;
9941 		}
9942 	}
9943 
9944 	sgs->group_capacity = group->sgc->capacity;
9945 
9946 	sgs->group_weight = group->group_weight;
9947 
9948 	/* Check if dst CPU is idle and preferred to this group */
9949 	if (!local_group && env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9950 	    sched_group_asym(env, sgs, group))
9951 		sgs->group_asym_packing = 1;
9952 
9953 	/* Check for loaded SMT group to be balanced to dst CPU */
9954 	if (!local_group && smt_balance(env, sgs, group))
9955 		sgs->group_smt_balance = 1;
9956 
9957 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9958 
9959 	/* Computing avg_load makes sense only when group is overloaded */
9960 	if (sgs->group_type == group_overloaded)
9961 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9962 				sgs->group_capacity;
9963 }
9964 
9965 /**
9966  * update_sd_pick_busiest - return 1 on busiest group
9967  * @env: The load balancing environment.
9968  * @sds: sched_domain statistics
9969  * @sg: sched_group candidate to be checked for being the busiest
9970  * @sgs: sched_group statistics
9971  *
9972  * Determine if @sg is a busier group than the previously selected
9973  * busiest group.
9974  *
9975  * Return: %true if @sg is a busier group than the previously selected
9976  * busiest group. %false otherwise.
9977  */
9978 static bool update_sd_pick_busiest(struct lb_env *env,
9979 				   struct sd_lb_stats *sds,
9980 				   struct sched_group *sg,
9981 				   struct sg_lb_stats *sgs)
9982 {
9983 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9984 
9985 	/* Make sure that there is at least one task to pull */
9986 	if (!sgs->sum_h_nr_running)
9987 		return false;
9988 
9989 	/*
9990 	 * Don't try to pull misfit tasks we can't help.
9991 	 * We can use max_capacity here as reduction in capacity on some
9992 	 * CPUs in the group should either be possible to resolve
9993 	 * internally or be covered by avg_load imbalance (eventually).
9994 	 */
9995 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9996 	    (sgs->group_type == group_misfit_task) &&
9997 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9998 	     sds->local_stat.group_type != group_has_spare))
9999 		return false;
10000 
10001 	if (sgs->group_type > busiest->group_type)
10002 		return true;
10003 
10004 	if (sgs->group_type < busiest->group_type)
10005 		return false;
10006 
10007 	/*
10008 	 * The candidate and the current busiest group are the same type of
10009 	 * group. Let check which one is the busiest according to the type.
10010 	 */
10011 
10012 	switch (sgs->group_type) {
10013 	case group_overloaded:
10014 		/* Select the overloaded group with highest avg_load. */
10015 		return sgs->avg_load > busiest->avg_load;
10016 
10017 	case group_imbalanced:
10018 		/*
10019 		 * Select the 1st imbalanced group as we don't have any way to
10020 		 * choose one more than another.
10021 		 */
10022 		return false;
10023 
10024 	case group_asym_packing:
10025 		/* Prefer to move from lowest priority CPU's work */
10026 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10027 
10028 	case group_misfit_task:
10029 		/*
10030 		 * If we have more than one misfit sg go with the biggest
10031 		 * misfit.
10032 		 */
10033 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10034 
10035 	case group_smt_balance:
10036 		/*
10037 		 * Check if we have spare CPUs on either SMT group to
10038 		 * choose has spare or fully busy handling.
10039 		 */
10040 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10041 			goto has_spare;
10042 
10043 		fallthrough;
10044 
10045 	case group_fully_busy:
10046 		/*
10047 		 * Select the fully busy group with highest avg_load. In
10048 		 * theory, there is no need to pull task from such kind of
10049 		 * group because tasks have all compute capacity that they need
10050 		 * but we can still improve the overall throughput by reducing
10051 		 * contention when accessing shared HW resources.
10052 		 *
10053 		 * XXX for now avg_load is not computed and always 0 so we
10054 		 * select the 1st one, except if @sg is composed of SMT
10055 		 * siblings.
10056 		 */
10057 
10058 		if (sgs->avg_load < busiest->avg_load)
10059 			return false;
10060 
10061 		if (sgs->avg_load == busiest->avg_load) {
10062 			/*
10063 			 * SMT sched groups need more help than non-SMT groups.
10064 			 * If @sg happens to also be SMT, either choice is good.
10065 			 */
10066 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10067 				return false;
10068 		}
10069 
10070 		break;
10071 
10072 	case group_has_spare:
10073 		/*
10074 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10075 		 * as we do not want to pull task off SMT core with one task
10076 		 * and make the core idle.
10077 		 */
10078 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10079 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10080 				return false;
10081 			else
10082 				return true;
10083 		}
10084 has_spare:
10085 
10086 		/*
10087 		 * Select not overloaded group with lowest number of idle cpus
10088 		 * and highest number of running tasks. We could also compare
10089 		 * the spare capacity which is more stable but it can end up
10090 		 * that the group has less spare capacity but finally more idle
10091 		 * CPUs which means less opportunity to pull tasks.
10092 		 */
10093 		if (sgs->idle_cpus > busiest->idle_cpus)
10094 			return false;
10095 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10096 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10097 			return false;
10098 
10099 		break;
10100 	}
10101 
10102 	/*
10103 	 * Candidate sg has no more than one task per CPU and has higher
10104 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10105 	 * throughput. Maximize throughput, power/energy consequences are not
10106 	 * considered.
10107 	 */
10108 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10109 	    (sgs->group_type <= group_fully_busy) &&
10110 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10111 		return false;
10112 
10113 	return true;
10114 }
10115 
10116 #ifdef CONFIG_NUMA_BALANCING
10117 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10118 {
10119 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10120 		return regular;
10121 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10122 		return remote;
10123 	return all;
10124 }
10125 
10126 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10127 {
10128 	if (rq->nr_running > rq->nr_numa_running)
10129 		return regular;
10130 	if (rq->nr_running > rq->nr_preferred_running)
10131 		return remote;
10132 	return all;
10133 }
10134 #else
10135 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10136 {
10137 	return all;
10138 }
10139 
10140 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10141 {
10142 	return regular;
10143 }
10144 #endif /* CONFIG_NUMA_BALANCING */
10145 
10146 
10147 struct sg_lb_stats;
10148 
10149 /*
10150  * task_running_on_cpu - return 1 if @p is running on @cpu.
10151  */
10152 
10153 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10154 {
10155 	/* Task has no contribution or is new */
10156 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10157 		return 0;
10158 
10159 	if (task_on_rq_queued(p))
10160 		return 1;
10161 
10162 	return 0;
10163 }
10164 
10165 /**
10166  * idle_cpu_without - would a given CPU be idle without p ?
10167  * @cpu: the processor on which idleness is tested.
10168  * @p: task which should be ignored.
10169  *
10170  * Return: 1 if the CPU would be idle. 0 otherwise.
10171  */
10172 static int idle_cpu_without(int cpu, struct task_struct *p)
10173 {
10174 	struct rq *rq = cpu_rq(cpu);
10175 
10176 	if (rq->curr != rq->idle && rq->curr != p)
10177 		return 0;
10178 
10179 	/*
10180 	 * rq->nr_running can't be used but an updated version without the
10181 	 * impact of p on cpu must be used instead. The updated nr_running
10182 	 * be computed and tested before calling idle_cpu_without().
10183 	 */
10184 
10185 	if (rq->ttwu_pending)
10186 		return 0;
10187 
10188 	return 1;
10189 }
10190 
10191 /*
10192  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10193  * @sd: The sched_domain level to look for idlest group.
10194  * @group: sched_group whose statistics are to be updated.
10195  * @sgs: variable to hold the statistics for this group.
10196  * @p: The task for which we look for the idlest group/CPU.
10197  */
10198 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10199 					  struct sched_group *group,
10200 					  struct sg_lb_stats *sgs,
10201 					  struct task_struct *p)
10202 {
10203 	int i, nr_running;
10204 
10205 	memset(sgs, 0, sizeof(*sgs));
10206 
10207 	/* Assume that task can't fit any CPU of the group */
10208 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10209 		sgs->group_misfit_task_load = 1;
10210 
10211 	for_each_cpu(i, sched_group_span(group)) {
10212 		struct rq *rq = cpu_rq(i);
10213 		unsigned int local;
10214 
10215 		sgs->group_load += cpu_load_without(rq, p);
10216 		sgs->group_util += cpu_util_without(i, p);
10217 		sgs->group_runnable += cpu_runnable_without(rq, p);
10218 		local = task_running_on_cpu(i, p);
10219 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10220 
10221 		nr_running = rq->nr_running - local;
10222 		sgs->sum_nr_running += nr_running;
10223 
10224 		/*
10225 		 * No need to call idle_cpu_without() if nr_running is not 0
10226 		 */
10227 		if (!nr_running && idle_cpu_without(i, p))
10228 			sgs->idle_cpus++;
10229 
10230 		/* Check if task fits in the CPU */
10231 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10232 		    sgs->group_misfit_task_load &&
10233 		    task_fits_cpu(p, i))
10234 			sgs->group_misfit_task_load = 0;
10235 
10236 	}
10237 
10238 	sgs->group_capacity = group->sgc->capacity;
10239 
10240 	sgs->group_weight = group->group_weight;
10241 
10242 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10243 
10244 	/*
10245 	 * Computing avg_load makes sense only when group is fully busy or
10246 	 * overloaded
10247 	 */
10248 	if (sgs->group_type == group_fully_busy ||
10249 		sgs->group_type == group_overloaded)
10250 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10251 				sgs->group_capacity;
10252 }
10253 
10254 static bool update_pick_idlest(struct sched_group *idlest,
10255 			       struct sg_lb_stats *idlest_sgs,
10256 			       struct sched_group *group,
10257 			       struct sg_lb_stats *sgs)
10258 {
10259 	if (sgs->group_type < idlest_sgs->group_type)
10260 		return true;
10261 
10262 	if (sgs->group_type > idlest_sgs->group_type)
10263 		return false;
10264 
10265 	/*
10266 	 * The candidate and the current idlest group are the same type of
10267 	 * group. Let check which one is the idlest according to the type.
10268 	 */
10269 
10270 	switch (sgs->group_type) {
10271 	case group_overloaded:
10272 	case group_fully_busy:
10273 		/* Select the group with lowest avg_load. */
10274 		if (idlest_sgs->avg_load <= sgs->avg_load)
10275 			return false;
10276 		break;
10277 
10278 	case group_imbalanced:
10279 	case group_asym_packing:
10280 	case group_smt_balance:
10281 		/* Those types are not used in the slow wakeup path */
10282 		return false;
10283 
10284 	case group_misfit_task:
10285 		/* Select group with the highest max capacity */
10286 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10287 			return false;
10288 		break;
10289 
10290 	case group_has_spare:
10291 		/* Select group with most idle CPUs */
10292 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10293 			return false;
10294 
10295 		/* Select group with lowest group_util */
10296 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10297 			idlest_sgs->group_util <= sgs->group_util)
10298 			return false;
10299 
10300 		break;
10301 	}
10302 
10303 	return true;
10304 }
10305 
10306 /*
10307  * find_idlest_group() finds and returns the least busy CPU group within the
10308  * domain.
10309  *
10310  * Assumes p is allowed on at least one CPU in sd.
10311  */
10312 static struct sched_group *
10313 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10314 {
10315 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10316 	struct sg_lb_stats local_sgs, tmp_sgs;
10317 	struct sg_lb_stats *sgs;
10318 	unsigned long imbalance;
10319 	struct sg_lb_stats idlest_sgs = {
10320 			.avg_load = UINT_MAX,
10321 			.group_type = group_overloaded,
10322 	};
10323 
10324 	do {
10325 		int local_group;
10326 
10327 		/* Skip over this group if it has no CPUs allowed */
10328 		if (!cpumask_intersects(sched_group_span(group),
10329 					p->cpus_ptr))
10330 			continue;
10331 
10332 		/* Skip over this group if no cookie matched */
10333 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10334 			continue;
10335 
10336 		local_group = cpumask_test_cpu(this_cpu,
10337 					       sched_group_span(group));
10338 
10339 		if (local_group) {
10340 			sgs = &local_sgs;
10341 			local = group;
10342 		} else {
10343 			sgs = &tmp_sgs;
10344 		}
10345 
10346 		update_sg_wakeup_stats(sd, group, sgs, p);
10347 
10348 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10349 			idlest = group;
10350 			idlest_sgs = *sgs;
10351 		}
10352 
10353 	} while (group = group->next, group != sd->groups);
10354 
10355 
10356 	/* There is no idlest group to push tasks to */
10357 	if (!idlest)
10358 		return NULL;
10359 
10360 	/* The local group has been skipped because of CPU affinity */
10361 	if (!local)
10362 		return idlest;
10363 
10364 	/*
10365 	 * If the local group is idler than the selected idlest group
10366 	 * don't try and push the task.
10367 	 */
10368 	if (local_sgs.group_type < idlest_sgs.group_type)
10369 		return NULL;
10370 
10371 	/*
10372 	 * If the local group is busier than the selected idlest group
10373 	 * try and push the task.
10374 	 */
10375 	if (local_sgs.group_type > idlest_sgs.group_type)
10376 		return idlest;
10377 
10378 	switch (local_sgs.group_type) {
10379 	case group_overloaded:
10380 	case group_fully_busy:
10381 
10382 		/* Calculate allowed imbalance based on load */
10383 		imbalance = scale_load_down(NICE_0_LOAD) *
10384 				(sd->imbalance_pct-100) / 100;
10385 
10386 		/*
10387 		 * When comparing groups across NUMA domains, it's possible for
10388 		 * the local domain to be very lightly loaded relative to the
10389 		 * remote domains but "imbalance" skews the comparison making
10390 		 * remote CPUs look much more favourable. When considering
10391 		 * cross-domain, add imbalance to the load on the remote node
10392 		 * and consider staying local.
10393 		 */
10394 
10395 		if ((sd->flags & SD_NUMA) &&
10396 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10397 			return NULL;
10398 
10399 		/*
10400 		 * If the local group is less loaded than the selected
10401 		 * idlest group don't try and push any tasks.
10402 		 */
10403 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10404 			return NULL;
10405 
10406 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10407 			return NULL;
10408 		break;
10409 
10410 	case group_imbalanced:
10411 	case group_asym_packing:
10412 	case group_smt_balance:
10413 		/* Those type are not used in the slow wakeup path */
10414 		return NULL;
10415 
10416 	case group_misfit_task:
10417 		/* Select group with the highest max capacity */
10418 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10419 			return NULL;
10420 		break;
10421 
10422 	case group_has_spare:
10423 #ifdef CONFIG_NUMA
10424 		if (sd->flags & SD_NUMA) {
10425 			int imb_numa_nr = sd->imb_numa_nr;
10426 #ifdef CONFIG_NUMA_BALANCING
10427 			int idlest_cpu;
10428 			/*
10429 			 * If there is spare capacity at NUMA, try to select
10430 			 * the preferred node
10431 			 */
10432 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10433 				return NULL;
10434 
10435 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10436 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10437 				return idlest;
10438 #endif /* CONFIG_NUMA_BALANCING */
10439 			/*
10440 			 * Otherwise, keep the task close to the wakeup source
10441 			 * and improve locality if the number of running tasks
10442 			 * would remain below threshold where an imbalance is
10443 			 * allowed while accounting for the possibility the
10444 			 * task is pinned to a subset of CPUs. If there is a
10445 			 * real need of migration, periodic load balance will
10446 			 * take care of it.
10447 			 */
10448 			if (p->nr_cpus_allowed != NR_CPUS) {
10449 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10450 
10451 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10452 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10453 			}
10454 
10455 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10456 			if (!adjust_numa_imbalance(imbalance,
10457 						   local_sgs.sum_nr_running + 1,
10458 						   imb_numa_nr)) {
10459 				return NULL;
10460 			}
10461 		}
10462 #endif /* CONFIG_NUMA */
10463 
10464 		/*
10465 		 * Select group with highest number of idle CPUs. We could also
10466 		 * compare the utilization which is more stable but it can end
10467 		 * up that the group has less spare capacity but finally more
10468 		 * idle CPUs which means more opportunity to run task.
10469 		 */
10470 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10471 			return NULL;
10472 		break;
10473 	}
10474 
10475 	return idlest;
10476 }
10477 
10478 static void update_idle_cpu_scan(struct lb_env *env,
10479 				 unsigned long sum_util)
10480 {
10481 	struct sched_domain_shared *sd_share;
10482 	int llc_weight, pct;
10483 	u64 x, y, tmp;
10484 	/*
10485 	 * Update the number of CPUs to scan in LLC domain, which could
10486 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10487 	 * could be expensive because it is within a shared cache line.
10488 	 * So the write of this hint only occurs during periodic load
10489 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10490 	 * can fire way more frequently than the former.
10491 	 */
10492 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10493 		return;
10494 
10495 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10496 	if (env->sd->span_weight != llc_weight)
10497 		return;
10498 
10499 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10500 	if (!sd_share)
10501 		return;
10502 
10503 	/*
10504 	 * The number of CPUs to search drops as sum_util increases, when
10505 	 * sum_util hits 85% or above, the scan stops.
10506 	 * The reason to choose 85% as the threshold is because this is the
10507 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10508 	 *
10509 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10510 	 * and y'= y / SCHED_CAPACITY_SCALE
10511 	 *
10512 	 * x is the ratio of sum_util compared to the CPU capacity:
10513 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10514 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10515 	 * and the number of CPUs to scan is calculated by:
10516 	 *
10517 	 * nr_scan = llc_weight * y'                                    [2]
10518 	 *
10519 	 * When x hits the threshold of overloaded, AKA, when
10520 	 * x = 100 / pct, y drops to 0. According to [1],
10521 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10522 	 *
10523 	 * Scale x by SCHED_CAPACITY_SCALE:
10524 	 * x' = sum_util / llc_weight;                                  [3]
10525 	 *
10526 	 * and finally [1] becomes:
10527 	 * y = SCHED_CAPACITY_SCALE -
10528 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10529 	 *
10530 	 */
10531 	/* equation [3] */
10532 	x = sum_util;
10533 	do_div(x, llc_weight);
10534 
10535 	/* equation [4] */
10536 	pct = env->sd->imbalance_pct;
10537 	tmp = x * x * pct * pct;
10538 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10539 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10540 	y = SCHED_CAPACITY_SCALE - tmp;
10541 
10542 	/* equation [2] */
10543 	y *= llc_weight;
10544 	do_div(y, SCHED_CAPACITY_SCALE);
10545 	if ((int)y != sd_share->nr_idle_scan)
10546 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10547 }
10548 
10549 /**
10550  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10551  * @env: The load balancing environment.
10552  * @sds: variable to hold the statistics for this sched_domain.
10553  */
10554 
10555 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10556 {
10557 	struct sched_group *sg = env->sd->groups;
10558 	struct sg_lb_stats *local = &sds->local_stat;
10559 	struct sg_lb_stats tmp_sgs;
10560 	unsigned long sum_util = 0;
10561 	int sg_status = 0;
10562 
10563 	do {
10564 		struct sg_lb_stats *sgs = &tmp_sgs;
10565 		int local_group;
10566 
10567 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10568 		if (local_group) {
10569 			sds->local = sg;
10570 			sgs = local;
10571 
10572 			if (env->idle != CPU_NEWLY_IDLE ||
10573 			    time_after_eq(jiffies, sg->sgc->next_update))
10574 				update_group_capacity(env->sd, env->dst_cpu);
10575 		}
10576 
10577 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10578 
10579 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10580 			sds->busiest = sg;
10581 			sds->busiest_stat = *sgs;
10582 		}
10583 
10584 		/* Now, start updating sd_lb_stats */
10585 		sds->total_load += sgs->group_load;
10586 		sds->total_capacity += sgs->group_capacity;
10587 
10588 		sum_util += sgs->group_util;
10589 		sg = sg->next;
10590 	} while (sg != env->sd->groups);
10591 
10592 	/*
10593 	 * Indicate that the child domain of the busiest group prefers tasks
10594 	 * go to a child's sibling domains first. NB the flags of a sched group
10595 	 * are those of the child domain.
10596 	 */
10597 	if (sds->busiest)
10598 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10599 
10600 
10601 	if (env->sd->flags & SD_NUMA)
10602 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10603 
10604 	if (!env->sd->parent) {
10605 		struct root_domain *rd = env->dst_rq->rd;
10606 
10607 		/* update overload indicator if we are at root domain */
10608 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10609 
10610 		/* Update over-utilization (tipping point, U >= 0) indicator */
10611 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10612 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10613 	} else if (sg_status & SG_OVERUTILIZED) {
10614 		struct root_domain *rd = env->dst_rq->rd;
10615 
10616 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10617 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10618 	}
10619 
10620 	update_idle_cpu_scan(env, sum_util);
10621 }
10622 
10623 /**
10624  * calculate_imbalance - Calculate the amount of imbalance present within the
10625  *			 groups of a given sched_domain during load balance.
10626  * @env: load balance environment
10627  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10628  */
10629 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10630 {
10631 	struct sg_lb_stats *local, *busiest;
10632 
10633 	local = &sds->local_stat;
10634 	busiest = &sds->busiest_stat;
10635 
10636 	if (busiest->group_type == group_misfit_task) {
10637 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10638 			/* Set imbalance to allow misfit tasks to be balanced. */
10639 			env->migration_type = migrate_misfit;
10640 			env->imbalance = 1;
10641 		} else {
10642 			/*
10643 			 * Set load imbalance to allow moving task from cpu
10644 			 * with reduced capacity.
10645 			 */
10646 			env->migration_type = migrate_load;
10647 			env->imbalance = busiest->group_misfit_task_load;
10648 		}
10649 		return;
10650 	}
10651 
10652 	if (busiest->group_type == group_asym_packing) {
10653 		/*
10654 		 * In case of asym capacity, we will try to migrate all load to
10655 		 * the preferred CPU.
10656 		 */
10657 		env->migration_type = migrate_task;
10658 		env->imbalance = busiest->sum_h_nr_running;
10659 		return;
10660 	}
10661 
10662 	if (busiest->group_type == group_smt_balance) {
10663 		/* Reduce number of tasks sharing CPU capacity */
10664 		env->migration_type = migrate_task;
10665 		env->imbalance = 1;
10666 		return;
10667 	}
10668 
10669 	if (busiest->group_type == group_imbalanced) {
10670 		/*
10671 		 * In the group_imb case we cannot rely on group-wide averages
10672 		 * to ensure CPU-load equilibrium, try to move any task to fix
10673 		 * the imbalance. The next load balance will take care of
10674 		 * balancing back the system.
10675 		 */
10676 		env->migration_type = migrate_task;
10677 		env->imbalance = 1;
10678 		return;
10679 	}
10680 
10681 	/*
10682 	 * Try to use spare capacity of local group without overloading it or
10683 	 * emptying busiest.
10684 	 */
10685 	if (local->group_type == group_has_spare) {
10686 		if ((busiest->group_type > group_fully_busy) &&
10687 		    !(env->sd->flags & SD_SHARE_LLC)) {
10688 			/*
10689 			 * If busiest is overloaded, try to fill spare
10690 			 * capacity. This might end up creating spare capacity
10691 			 * in busiest or busiest still being overloaded but
10692 			 * there is no simple way to directly compute the
10693 			 * amount of load to migrate in order to balance the
10694 			 * system.
10695 			 */
10696 			env->migration_type = migrate_util;
10697 			env->imbalance = max(local->group_capacity, local->group_util) -
10698 					 local->group_util;
10699 
10700 			/*
10701 			 * In some cases, the group's utilization is max or even
10702 			 * higher than capacity because of migrations but the
10703 			 * local CPU is (newly) idle. There is at least one
10704 			 * waiting task in this overloaded busiest group. Let's
10705 			 * try to pull it.
10706 			 */
10707 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10708 				env->migration_type = migrate_task;
10709 				env->imbalance = 1;
10710 			}
10711 
10712 			return;
10713 		}
10714 
10715 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10716 			/*
10717 			 * When prefer sibling, evenly spread running tasks on
10718 			 * groups.
10719 			 */
10720 			env->migration_type = migrate_task;
10721 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10722 		} else {
10723 
10724 			/*
10725 			 * If there is no overload, we just want to even the number of
10726 			 * idle cpus.
10727 			 */
10728 			env->migration_type = migrate_task;
10729 			env->imbalance = max_t(long, 0,
10730 					       (local->idle_cpus - busiest->idle_cpus));
10731 		}
10732 
10733 #ifdef CONFIG_NUMA
10734 		/* Consider allowing a small imbalance between NUMA groups */
10735 		if (env->sd->flags & SD_NUMA) {
10736 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10737 							       local->sum_nr_running + 1,
10738 							       env->sd->imb_numa_nr);
10739 		}
10740 #endif
10741 
10742 		/* Number of tasks to move to restore balance */
10743 		env->imbalance >>= 1;
10744 
10745 		return;
10746 	}
10747 
10748 	/*
10749 	 * Local is fully busy but has to take more load to relieve the
10750 	 * busiest group
10751 	 */
10752 	if (local->group_type < group_overloaded) {
10753 		/*
10754 		 * Local will become overloaded so the avg_load metrics are
10755 		 * finally needed.
10756 		 */
10757 
10758 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10759 				  local->group_capacity;
10760 
10761 		/*
10762 		 * If the local group is more loaded than the selected
10763 		 * busiest group don't try to pull any tasks.
10764 		 */
10765 		if (local->avg_load >= busiest->avg_load) {
10766 			env->imbalance = 0;
10767 			return;
10768 		}
10769 
10770 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10771 				sds->total_capacity;
10772 
10773 		/*
10774 		 * If the local group is more loaded than the average system
10775 		 * load, don't try to pull any tasks.
10776 		 */
10777 		if (local->avg_load >= sds->avg_load) {
10778 			env->imbalance = 0;
10779 			return;
10780 		}
10781 
10782 	}
10783 
10784 	/*
10785 	 * Both group are or will become overloaded and we're trying to get all
10786 	 * the CPUs to the average_load, so we don't want to push ourselves
10787 	 * above the average load, nor do we wish to reduce the max loaded CPU
10788 	 * below the average load. At the same time, we also don't want to
10789 	 * reduce the group load below the group capacity. Thus we look for
10790 	 * the minimum possible imbalance.
10791 	 */
10792 	env->migration_type = migrate_load;
10793 	env->imbalance = min(
10794 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10795 		(sds->avg_load - local->avg_load) * local->group_capacity
10796 	) / SCHED_CAPACITY_SCALE;
10797 }
10798 
10799 /******* find_busiest_group() helpers end here *********************/
10800 
10801 /*
10802  * Decision matrix according to the local and busiest group type:
10803  *
10804  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10805  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10806  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10807  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10808  * asym_packing     force     force      N/A    N/A  force      force
10809  * imbalanced       force     force      N/A    N/A  force      force
10810  * overloaded       force     force      N/A    N/A  force      avg_load
10811  *
10812  * N/A :      Not Applicable because already filtered while updating
10813  *            statistics.
10814  * balanced : The system is balanced for these 2 groups.
10815  * force :    Calculate the imbalance as load migration is probably needed.
10816  * avg_load : Only if imbalance is significant enough.
10817  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10818  *            different in groups.
10819  */
10820 
10821 /**
10822  * find_busiest_group - Returns the busiest group within the sched_domain
10823  * if there is an imbalance.
10824  * @env: The load balancing environment.
10825  *
10826  * Also calculates the amount of runnable load which should be moved
10827  * to restore balance.
10828  *
10829  * Return:	- The busiest group if imbalance exists.
10830  */
10831 static struct sched_group *find_busiest_group(struct lb_env *env)
10832 {
10833 	struct sg_lb_stats *local, *busiest;
10834 	struct sd_lb_stats sds;
10835 
10836 	init_sd_lb_stats(&sds);
10837 
10838 	/*
10839 	 * Compute the various statistics relevant for load balancing at
10840 	 * this level.
10841 	 */
10842 	update_sd_lb_stats(env, &sds);
10843 
10844 	/* There is no busy sibling group to pull tasks from */
10845 	if (!sds.busiest)
10846 		goto out_balanced;
10847 
10848 	busiest = &sds.busiest_stat;
10849 
10850 	/* Misfit tasks should be dealt with regardless of the avg load */
10851 	if (busiest->group_type == group_misfit_task)
10852 		goto force_balance;
10853 
10854 	if (sched_energy_enabled()) {
10855 		struct root_domain *rd = env->dst_rq->rd;
10856 
10857 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10858 			goto out_balanced;
10859 	}
10860 
10861 	/* ASYM feature bypasses nice load balance check */
10862 	if (busiest->group_type == group_asym_packing)
10863 		goto force_balance;
10864 
10865 	/*
10866 	 * If the busiest group is imbalanced the below checks don't
10867 	 * work because they assume all things are equal, which typically
10868 	 * isn't true due to cpus_ptr constraints and the like.
10869 	 */
10870 	if (busiest->group_type == group_imbalanced)
10871 		goto force_balance;
10872 
10873 	local = &sds.local_stat;
10874 	/*
10875 	 * If the local group is busier than the selected busiest group
10876 	 * don't try and pull any tasks.
10877 	 */
10878 	if (local->group_type > busiest->group_type)
10879 		goto out_balanced;
10880 
10881 	/*
10882 	 * When groups are overloaded, use the avg_load to ensure fairness
10883 	 * between tasks.
10884 	 */
10885 	if (local->group_type == group_overloaded) {
10886 		/*
10887 		 * If the local group is more loaded than the selected
10888 		 * busiest group don't try to pull any tasks.
10889 		 */
10890 		if (local->avg_load >= busiest->avg_load)
10891 			goto out_balanced;
10892 
10893 		/* XXX broken for overlapping NUMA groups */
10894 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10895 				sds.total_capacity;
10896 
10897 		/*
10898 		 * Don't pull any tasks if this group is already above the
10899 		 * domain average load.
10900 		 */
10901 		if (local->avg_load >= sds.avg_load)
10902 			goto out_balanced;
10903 
10904 		/*
10905 		 * If the busiest group is more loaded, use imbalance_pct to be
10906 		 * conservative.
10907 		 */
10908 		if (100 * busiest->avg_load <=
10909 				env->sd->imbalance_pct * local->avg_load)
10910 			goto out_balanced;
10911 	}
10912 
10913 	/*
10914 	 * Try to move all excess tasks to a sibling domain of the busiest
10915 	 * group's child domain.
10916 	 */
10917 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10918 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10919 		goto force_balance;
10920 
10921 	if (busiest->group_type != group_overloaded) {
10922 		if (env->idle == CPU_NOT_IDLE) {
10923 			/*
10924 			 * If the busiest group is not overloaded (and as a
10925 			 * result the local one too) but this CPU is already
10926 			 * busy, let another idle CPU try to pull task.
10927 			 */
10928 			goto out_balanced;
10929 		}
10930 
10931 		if (busiest->group_type == group_smt_balance &&
10932 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10933 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10934 			goto force_balance;
10935 		}
10936 
10937 		if (busiest->group_weight > 1 &&
10938 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10939 			/*
10940 			 * If the busiest group is not overloaded
10941 			 * and there is no imbalance between this and busiest
10942 			 * group wrt idle CPUs, it is balanced. The imbalance
10943 			 * becomes significant if the diff is greater than 1
10944 			 * otherwise we might end up to just move the imbalance
10945 			 * on another group. Of course this applies only if
10946 			 * there is more than 1 CPU per group.
10947 			 */
10948 			goto out_balanced;
10949 		}
10950 
10951 		if (busiest->sum_h_nr_running == 1) {
10952 			/*
10953 			 * busiest doesn't have any tasks waiting to run
10954 			 */
10955 			goto out_balanced;
10956 		}
10957 	}
10958 
10959 force_balance:
10960 	/* Looks like there is an imbalance. Compute it */
10961 	calculate_imbalance(env, &sds);
10962 	return env->imbalance ? sds.busiest : NULL;
10963 
10964 out_balanced:
10965 	env->imbalance = 0;
10966 	return NULL;
10967 }
10968 
10969 /*
10970  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10971  */
10972 static struct rq *find_busiest_queue(struct lb_env *env,
10973 				     struct sched_group *group)
10974 {
10975 	struct rq *busiest = NULL, *rq;
10976 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10977 	unsigned int busiest_nr = 0;
10978 	int i;
10979 
10980 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10981 		unsigned long capacity, load, util;
10982 		unsigned int nr_running;
10983 		enum fbq_type rt;
10984 
10985 		rq = cpu_rq(i);
10986 		rt = fbq_classify_rq(rq);
10987 
10988 		/*
10989 		 * We classify groups/runqueues into three groups:
10990 		 *  - regular: there are !numa tasks
10991 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10992 		 *  - all:     there is no distinction
10993 		 *
10994 		 * In order to avoid migrating ideally placed numa tasks,
10995 		 * ignore those when there's better options.
10996 		 *
10997 		 * If we ignore the actual busiest queue to migrate another
10998 		 * task, the next balance pass can still reduce the busiest
10999 		 * queue by moving tasks around inside the node.
11000 		 *
11001 		 * If we cannot move enough load due to this classification
11002 		 * the next pass will adjust the group classification and
11003 		 * allow migration of more tasks.
11004 		 *
11005 		 * Both cases only affect the total convergence complexity.
11006 		 */
11007 		if (rt > env->fbq_type)
11008 			continue;
11009 
11010 		nr_running = rq->cfs.h_nr_running;
11011 		if (!nr_running)
11012 			continue;
11013 
11014 		capacity = capacity_of(i);
11015 
11016 		/*
11017 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11018 		 * eventually lead to active_balancing high->low capacity.
11019 		 * Higher per-CPU capacity is considered better than balancing
11020 		 * average load.
11021 		 */
11022 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11023 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11024 		    nr_running == 1)
11025 			continue;
11026 
11027 		/*
11028 		 * Make sure we only pull tasks from a CPU of lower priority
11029 		 * when balancing between SMT siblings.
11030 		 *
11031 		 * If balancing between cores, let lower priority CPUs help
11032 		 * SMT cores with more than one busy sibling.
11033 		 */
11034 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11035 			continue;
11036 
11037 		switch (env->migration_type) {
11038 		case migrate_load:
11039 			/*
11040 			 * When comparing with load imbalance, use cpu_load()
11041 			 * which is not scaled with the CPU capacity.
11042 			 */
11043 			load = cpu_load(rq);
11044 
11045 			if (nr_running == 1 && load > env->imbalance &&
11046 			    !check_cpu_capacity(rq, env->sd))
11047 				break;
11048 
11049 			/*
11050 			 * For the load comparisons with the other CPUs,
11051 			 * consider the cpu_load() scaled with the CPU
11052 			 * capacity, so that the load can be moved away
11053 			 * from the CPU that is potentially running at a
11054 			 * lower capacity.
11055 			 *
11056 			 * Thus we're looking for max(load_i / capacity_i),
11057 			 * crosswise multiplication to rid ourselves of the
11058 			 * division works out to:
11059 			 * load_i * capacity_j > load_j * capacity_i;
11060 			 * where j is our previous maximum.
11061 			 */
11062 			if (load * busiest_capacity > busiest_load * capacity) {
11063 				busiest_load = load;
11064 				busiest_capacity = capacity;
11065 				busiest = rq;
11066 			}
11067 			break;
11068 
11069 		case migrate_util:
11070 			util = cpu_util_cfs_boost(i);
11071 
11072 			/*
11073 			 * Don't try to pull utilization from a CPU with one
11074 			 * running task. Whatever its utilization, we will fail
11075 			 * detach the task.
11076 			 */
11077 			if (nr_running <= 1)
11078 				continue;
11079 
11080 			if (busiest_util < util) {
11081 				busiest_util = util;
11082 				busiest = rq;
11083 			}
11084 			break;
11085 
11086 		case migrate_task:
11087 			if (busiest_nr < nr_running) {
11088 				busiest_nr = nr_running;
11089 				busiest = rq;
11090 			}
11091 			break;
11092 
11093 		case migrate_misfit:
11094 			/*
11095 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11096 			 * simply seek the "biggest" misfit task.
11097 			 */
11098 			if (rq->misfit_task_load > busiest_load) {
11099 				busiest_load = rq->misfit_task_load;
11100 				busiest = rq;
11101 			}
11102 
11103 			break;
11104 
11105 		}
11106 	}
11107 
11108 	return busiest;
11109 }
11110 
11111 /*
11112  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11113  * so long as it is large enough.
11114  */
11115 #define MAX_PINNED_INTERVAL	512
11116 
11117 static inline bool
11118 asym_active_balance(struct lb_env *env)
11119 {
11120 	/*
11121 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11122 	 * priority CPUs in order to pack all tasks in the highest priority
11123 	 * CPUs. When done between cores, do it only if the whole core if the
11124 	 * whole core is idle.
11125 	 *
11126 	 * If @env::src_cpu is an SMT core with busy siblings, let
11127 	 * the lower priority @env::dst_cpu help it. Do not follow
11128 	 * CPU priority.
11129 	 */
11130 	return env->idle != CPU_NOT_IDLE && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11131 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11132 		!sched_use_asym_prio(env->sd, env->src_cpu));
11133 }
11134 
11135 static inline bool
11136 imbalanced_active_balance(struct lb_env *env)
11137 {
11138 	struct sched_domain *sd = env->sd;
11139 
11140 	/*
11141 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11142 	 * distribution of the load on the system but also the even distribution of the
11143 	 * threads on a system with spare capacity
11144 	 */
11145 	if ((env->migration_type == migrate_task) &&
11146 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11147 		return 1;
11148 
11149 	return 0;
11150 }
11151 
11152 static int need_active_balance(struct lb_env *env)
11153 {
11154 	struct sched_domain *sd = env->sd;
11155 
11156 	if (asym_active_balance(env))
11157 		return 1;
11158 
11159 	if (imbalanced_active_balance(env))
11160 		return 1;
11161 
11162 	/*
11163 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11164 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11165 	 * because of other sched_class or IRQs if more capacity stays
11166 	 * available on dst_cpu.
11167 	 */
11168 	if ((env->idle != CPU_NOT_IDLE) &&
11169 	    (env->src_rq->cfs.h_nr_running == 1)) {
11170 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11171 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11172 			return 1;
11173 	}
11174 
11175 	if (env->migration_type == migrate_misfit)
11176 		return 1;
11177 
11178 	return 0;
11179 }
11180 
11181 static int active_load_balance_cpu_stop(void *data);
11182 
11183 static int should_we_balance(struct lb_env *env)
11184 {
11185 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11186 	struct sched_group *sg = env->sd->groups;
11187 	int cpu, idle_smt = -1;
11188 
11189 	/*
11190 	 * Ensure the balancing environment is consistent; can happen
11191 	 * when the softirq triggers 'during' hotplug.
11192 	 */
11193 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11194 		return 0;
11195 
11196 	/*
11197 	 * In the newly idle case, we will allow all the CPUs
11198 	 * to do the newly idle load balance.
11199 	 *
11200 	 * However, we bail out if we already have tasks or a wakeup pending,
11201 	 * to optimize wakeup latency.
11202 	 */
11203 	if (env->idle == CPU_NEWLY_IDLE) {
11204 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11205 			return 0;
11206 		return 1;
11207 	}
11208 
11209 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11210 	/* Try to find first idle CPU */
11211 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11212 		if (!idle_cpu(cpu))
11213 			continue;
11214 
11215 		/*
11216 		 * Don't balance to idle SMT in busy core right away when
11217 		 * balancing cores, but remember the first idle SMT CPU for
11218 		 * later consideration.  Find CPU on an idle core first.
11219 		 */
11220 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11221 			if (idle_smt == -1)
11222 				idle_smt = cpu;
11223 			/*
11224 			 * If the core is not idle, and first SMT sibling which is
11225 			 * idle has been found, then its not needed to check other
11226 			 * SMT siblings for idleness:
11227 			 */
11228 #ifdef CONFIG_SCHED_SMT
11229 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11230 #endif
11231 			continue;
11232 		}
11233 
11234 		/*
11235 		 * Are we the first idle core in a non-SMT domain or higher,
11236 		 * or the first idle CPU in a SMT domain?
11237 		 */
11238 		return cpu == env->dst_cpu;
11239 	}
11240 
11241 	/* Are we the first idle CPU with busy siblings? */
11242 	if (idle_smt != -1)
11243 		return idle_smt == env->dst_cpu;
11244 
11245 	/* Are we the first CPU of this group ? */
11246 	return group_balance_cpu(sg) == env->dst_cpu;
11247 }
11248 
11249 /*
11250  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11251  * tasks if there is an imbalance.
11252  */
11253 static int load_balance(int this_cpu, struct rq *this_rq,
11254 			struct sched_domain *sd, enum cpu_idle_type idle,
11255 			int *continue_balancing)
11256 {
11257 	int ld_moved, cur_ld_moved, active_balance = 0;
11258 	struct sched_domain *sd_parent = sd->parent;
11259 	struct sched_group *group;
11260 	struct rq *busiest;
11261 	struct rq_flags rf;
11262 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11263 	struct lb_env env = {
11264 		.sd		= sd,
11265 		.dst_cpu	= this_cpu,
11266 		.dst_rq		= this_rq,
11267 		.dst_grpmask    = group_balance_mask(sd->groups),
11268 		.idle		= idle,
11269 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11270 		.cpus		= cpus,
11271 		.fbq_type	= all,
11272 		.tasks		= LIST_HEAD_INIT(env.tasks),
11273 	};
11274 
11275 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11276 
11277 	schedstat_inc(sd->lb_count[idle]);
11278 
11279 redo:
11280 	if (!should_we_balance(&env)) {
11281 		*continue_balancing = 0;
11282 		goto out_balanced;
11283 	}
11284 
11285 	group = find_busiest_group(&env);
11286 	if (!group) {
11287 		schedstat_inc(sd->lb_nobusyg[idle]);
11288 		goto out_balanced;
11289 	}
11290 
11291 	busiest = find_busiest_queue(&env, group);
11292 	if (!busiest) {
11293 		schedstat_inc(sd->lb_nobusyq[idle]);
11294 		goto out_balanced;
11295 	}
11296 
11297 	WARN_ON_ONCE(busiest == env.dst_rq);
11298 
11299 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11300 
11301 	env.src_cpu = busiest->cpu;
11302 	env.src_rq = busiest;
11303 
11304 	ld_moved = 0;
11305 	/* Clear this flag as soon as we find a pullable task */
11306 	env.flags |= LBF_ALL_PINNED;
11307 	if (busiest->nr_running > 1) {
11308 		/*
11309 		 * Attempt to move tasks. If find_busiest_group has found
11310 		 * an imbalance but busiest->nr_running <= 1, the group is
11311 		 * still unbalanced. ld_moved simply stays zero, so it is
11312 		 * correctly treated as an imbalance.
11313 		 */
11314 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11315 
11316 more_balance:
11317 		rq_lock_irqsave(busiest, &rf);
11318 		update_rq_clock(busiest);
11319 
11320 		/*
11321 		 * cur_ld_moved - load moved in current iteration
11322 		 * ld_moved     - cumulative load moved across iterations
11323 		 */
11324 		cur_ld_moved = detach_tasks(&env);
11325 
11326 		/*
11327 		 * We've detached some tasks from busiest_rq. Every
11328 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11329 		 * unlock busiest->lock, and we are able to be sure
11330 		 * that nobody can manipulate the tasks in parallel.
11331 		 * See task_rq_lock() family for the details.
11332 		 */
11333 
11334 		rq_unlock(busiest, &rf);
11335 
11336 		if (cur_ld_moved) {
11337 			attach_tasks(&env);
11338 			ld_moved += cur_ld_moved;
11339 		}
11340 
11341 		local_irq_restore(rf.flags);
11342 
11343 		if (env.flags & LBF_NEED_BREAK) {
11344 			env.flags &= ~LBF_NEED_BREAK;
11345 			/* Stop if we tried all running tasks */
11346 			if (env.loop < busiest->nr_running)
11347 				goto more_balance;
11348 		}
11349 
11350 		/*
11351 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11352 		 * us and move them to an alternate dst_cpu in our sched_group
11353 		 * where they can run. The upper limit on how many times we
11354 		 * iterate on same src_cpu is dependent on number of CPUs in our
11355 		 * sched_group.
11356 		 *
11357 		 * This changes load balance semantics a bit on who can move
11358 		 * load to a given_cpu. In addition to the given_cpu itself
11359 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11360 		 * nohz-idle), we now have balance_cpu in a position to move
11361 		 * load to given_cpu. In rare situations, this may cause
11362 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11363 		 * _independently_ and at _same_ time to move some load to
11364 		 * given_cpu) causing excess load to be moved to given_cpu.
11365 		 * This however should not happen so much in practice and
11366 		 * moreover subsequent load balance cycles should correct the
11367 		 * excess load moved.
11368 		 */
11369 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11370 
11371 			/* Prevent to re-select dst_cpu via env's CPUs */
11372 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11373 
11374 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11375 			env.dst_cpu	 = env.new_dst_cpu;
11376 			env.flags	&= ~LBF_DST_PINNED;
11377 			env.loop	 = 0;
11378 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11379 
11380 			/*
11381 			 * Go back to "more_balance" rather than "redo" since we
11382 			 * need to continue with same src_cpu.
11383 			 */
11384 			goto more_balance;
11385 		}
11386 
11387 		/*
11388 		 * We failed to reach balance because of affinity.
11389 		 */
11390 		if (sd_parent) {
11391 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11392 
11393 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11394 				*group_imbalance = 1;
11395 		}
11396 
11397 		/* All tasks on this runqueue were pinned by CPU affinity */
11398 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11399 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11400 			/*
11401 			 * Attempting to continue load balancing at the current
11402 			 * sched_domain level only makes sense if there are
11403 			 * active CPUs remaining as possible busiest CPUs to
11404 			 * pull load from which are not contained within the
11405 			 * destination group that is receiving any migrated
11406 			 * load.
11407 			 */
11408 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11409 				env.loop = 0;
11410 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11411 				goto redo;
11412 			}
11413 			goto out_all_pinned;
11414 		}
11415 	}
11416 
11417 	if (!ld_moved) {
11418 		schedstat_inc(sd->lb_failed[idle]);
11419 		/*
11420 		 * Increment the failure counter only on periodic balance.
11421 		 * We do not want newidle balance, which can be very
11422 		 * frequent, pollute the failure counter causing
11423 		 * excessive cache_hot migrations and active balances.
11424 		 */
11425 		if (idle != CPU_NEWLY_IDLE)
11426 			sd->nr_balance_failed++;
11427 
11428 		if (need_active_balance(&env)) {
11429 			unsigned long flags;
11430 
11431 			raw_spin_rq_lock_irqsave(busiest, flags);
11432 
11433 			/*
11434 			 * Don't kick the active_load_balance_cpu_stop,
11435 			 * if the curr task on busiest CPU can't be
11436 			 * moved to this_cpu:
11437 			 */
11438 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11439 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11440 				goto out_one_pinned;
11441 			}
11442 
11443 			/* Record that we found at least one task that could run on this_cpu */
11444 			env.flags &= ~LBF_ALL_PINNED;
11445 
11446 			/*
11447 			 * ->active_balance synchronizes accesses to
11448 			 * ->active_balance_work.  Once set, it's cleared
11449 			 * only after active load balance is finished.
11450 			 */
11451 			if (!busiest->active_balance) {
11452 				busiest->active_balance = 1;
11453 				busiest->push_cpu = this_cpu;
11454 				active_balance = 1;
11455 			}
11456 
11457 			preempt_disable();
11458 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11459 			if (active_balance) {
11460 				stop_one_cpu_nowait(cpu_of(busiest),
11461 					active_load_balance_cpu_stop, busiest,
11462 					&busiest->active_balance_work);
11463 			}
11464 			preempt_enable();
11465 		}
11466 	} else {
11467 		sd->nr_balance_failed = 0;
11468 	}
11469 
11470 	if (likely(!active_balance) || need_active_balance(&env)) {
11471 		/* We were unbalanced, so reset the balancing interval */
11472 		sd->balance_interval = sd->min_interval;
11473 	}
11474 
11475 	goto out;
11476 
11477 out_balanced:
11478 	/*
11479 	 * We reach balance although we may have faced some affinity
11480 	 * constraints. Clear the imbalance flag only if other tasks got
11481 	 * a chance to move and fix the imbalance.
11482 	 */
11483 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11484 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11485 
11486 		if (*group_imbalance)
11487 			*group_imbalance = 0;
11488 	}
11489 
11490 out_all_pinned:
11491 	/*
11492 	 * We reach balance because all tasks are pinned at this level so
11493 	 * we can't migrate them. Let the imbalance flag set so parent level
11494 	 * can try to migrate them.
11495 	 */
11496 	schedstat_inc(sd->lb_balanced[idle]);
11497 
11498 	sd->nr_balance_failed = 0;
11499 
11500 out_one_pinned:
11501 	ld_moved = 0;
11502 
11503 	/*
11504 	 * newidle_balance() disregards balance intervals, so we could
11505 	 * repeatedly reach this code, which would lead to balance_interval
11506 	 * skyrocketing in a short amount of time. Skip the balance_interval
11507 	 * increase logic to avoid that.
11508 	 */
11509 	if (env.idle == CPU_NEWLY_IDLE)
11510 		goto out;
11511 
11512 	/* tune up the balancing interval */
11513 	if ((env.flags & LBF_ALL_PINNED &&
11514 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11515 	    sd->balance_interval < sd->max_interval)
11516 		sd->balance_interval *= 2;
11517 out:
11518 	return ld_moved;
11519 }
11520 
11521 static inline unsigned long
11522 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11523 {
11524 	unsigned long interval = sd->balance_interval;
11525 
11526 	if (cpu_busy)
11527 		interval *= sd->busy_factor;
11528 
11529 	/* scale ms to jiffies */
11530 	interval = msecs_to_jiffies(interval);
11531 
11532 	/*
11533 	 * Reduce likelihood of busy balancing at higher domains racing with
11534 	 * balancing at lower domains by preventing their balancing periods
11535 	 * from being multiples of each other.
11536 	 */
11537 	if (cpu_busy)
11538 		interval -= 1;
11539 
11540 	interval = clamp(interval, 1UL, max_load_balance_interval);
11541 
11542 	return interval;
11543 }
11544 
11545 static inline void
11546 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11547 {
11548 	unsigned long interval, next;
11549 
11550 	/* used by idle balance, so cpu_busy = 0 */
11551 	interval = get_sd_balance_interval(sd, 0);
11552 	next = sd->last_balance + interval;
11553 
11554 	if (time_after(*next_balance, next))
11555 		*next_balance = next;
11556 }
11557 
11558 /*
11559  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11560  * running tasks off the busiest CPU onto idle CPUs. It requires at
11561  * least 1 task to be running on each physical CPU where possible, and
11562  * avoids physical / logical imbalances.
11563  */
11564 static int active_load_balance_cpu_stop(void *data)
11565 {
11566 	struct rq *busiest_rq = data;
11567 	int busiest_cpu = cpu_of(busiest_rq);
11568 	int target_cpu = busiest_rq->push_cpu;
11569 	struct rq *target_rq = cpu_rq(target_cpu);
11570 	struct sched_domain *sd;
11571 	struct task_struct *p = NULL;
11572 	struct rq_flags rf;
11573 
11574 	rq_lock_irq(busiest_rq, &rf);
11575 	/*
11576 	 * Between queueing the stop-work and running it is a hole in which
11577 	 * CPUs can become inactive. We should not move tasks from or to
11578 	 * inactive CPUs.
11579 	 */
11580 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11581 		goto out_unlock;
11582 
11583 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11584 	if (unlikely(busiest_cpu != smp_processor_id() ||
11585 		     !busiest_rq->active_balance))
11586 		goto out_unlock;
11587 
11588 	/* Is there any task to move? */
11589 	if (busiest_rq->nr_running <= 1)
11590 		goto out_unlock;
11591 
11592 	/*
11593 	 * This condition is "impossible", if it occurs
11594 	 * we need to fix it. Originally reported by
11595 	 * Bjorn Helgaas on a 128-CPU setup.
11596 	 */
11597 	WARN_ON_ONCE(busiest_rq == target_rq);
11598 
11599 	/* Search for an sd spanning us and the target CPU. */
11600 	rcu_read_lock();
11601 	for_each_domain(target_cpu, sd) {
11602 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11603 			break;
11604 	}
11605 
11606 	if (likely(sd)) {
11607 		struct lb_env env = {
11608 			.sd		= sd,
11609 			.dst_cpu	= target_cpu,
11610 			.dst_rq		= target_rq,
11611 			.src_cpu	= busiest_rq->cpu,
11612 			.src_rq		= busiest_rq,
11613 			.idle		= CPU_IDLE,
11614 			.flags		= LBF_ACTIVE_LB,
11615 		};
11616 
11617 		schedstat_inc(sd->alb_count);
11618 		update_rq_clock(busiest_rq);
11619 
11620 		p = detach_one_task(&env);
11621 		if (p) {
11622 			schedstat_inc(sd->alb_pushed);
11623 			/* Active balancing done, reset the failure counter. */
11624 			sd->nr_balance_failed = 0;
11625 		} else {
11626 			schedstat_inc(sd->alb_failed);
11627 		}
11628 	}
11629 	rcu_read_unlock();
11630 out_unlock:
11631 	busiest_rq->active_balance = 0;
11632 	rq_unlock(busiest_rq, &rf);
11633 
11634 	if (p)
11635 		attach_one_task(target_rq, p);
11636 
11637 	local_irq_enable();
11638 
11639 	return 0;
11640 }
11641 
11642 static DEFINE_SPINLOCK(balancing);
11643 
11644 /*
11645  * Scale the max load_balance interval with the number of CPUs in the system.
11646  * This trades load-balance latency on larger machines for less cross talk.
11647  */
11648 void update_max_interval(void)
11649 {
11650 	max_load_balance_interval = HZ*num_online_cpus()/10;
11651 }
11652 
11653 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11654 {
11655 	if (cost > sd->max_newidle_lb_cost) {
11656 		/*
11657 		 * Track max cost of a domain to make sure to not delay the
11658 		 * next wakeup on the CPU.
11659 		 */
11660 		sd->max_newidle_lb_cost = cost;
11661 		sd->last_decay_max_lb_cost = jiffies;
11662 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11663 		/*
11664 		 * Decay the newidle max times by ~1% per second to ensure that
11665 		 * it is not outdated and the current max cost is actually
11666 		 * shorter.
11667 		 */
11668 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11669 		sd->last_decay_max_lb_cost = jiffies;
11670 
11671 		return true;
11672 	}
11673 
11674 	return false;
11675 }
11676 
11677 /*
11678  * It checks each scheduling domain to see if it is due to be balanced,
11679  * and initiates a balancing operation if so.
11680  *
11681  * Balancing parameters are set up in init_sched_domains.
11682  */
11683 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11684 {
11685 	int continue_balancing = 1;
11686 	int cpu = rq->cpu;
11687 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11688 	unsigned long interval;
11689 	struct sched_domain *sd;
11690 	/* Earliest time when we have to do rebalance again */
11691 	unsigned long next_balance = jiffies + 60*HZ;
11692 	int update_next_balance = 0;
11693 	int need_serialize, need_decay = 0;
11694 	u64 max_cost = 0;
11695 
11696 	rcu_read_lock();
11697 	for_each_domain(cpu, sd) {
11698 		/*
11699 		 * Decay the newidle max times here because this is a regular
11700 		 * visit to all the domains.
11701 		 */
11702 		need_decay = update_newidle_cost(sd, 0);
11703 		max_cost += sd->max_newidle_lb_cost;
11704 
11705 		/*
11706 		 * Stop the load balance at this level. There is another
11707 		 * CPU in our sched group which is doing load balancing more
11708 		 * actively.
11709 		 */
11710 		if (!continue_balancing) {
11711 			if (need_decay)
11712 				continue;
11713 			break;
11714 		}
11715 
11716 		interval = get_sd_balance_interval(sd, busy);
11717 
11718 		need_serialize = sd->flags & SD_SERIALIZE;
11719 		if (need_serialize) {
11720 			if (!spin_trylock(&balancing))
11721 				goto out;
11722 		}
11723 
11724 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11725 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11726 				/*
11727 				 * The LBF_DST_PINNED logic could have changed
11728 				 * env->dst_cpu, so we can't know our idle
11729 				 * state even if we migrated tasks. Update it.
11730 				 */
11731 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11732 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11733 			}
11734 			sd->last_balance = jiffies;
11735 			interval = get_sd_balance_interval(sd, busy);
11736 		}
11737 		if (need_serialize)
11738 			spin_unlock(&balancing);
11739 out:
11740 		if (time_after(next_balance, sd->last_balance + interval)) {
11741 			next_balance = sd->last_balance + interval;
11742 			update_next_balance = 1;
11743 		}
11744 	}
11745 	if (need_decay) {
11746 		/*
11747 		 * Ensure the rq-wide value also decays but keep it at a
11748 		 * reasonable floor to avoid funnies with rq->avg_idle.
11749 		 */
11750 		rq->max_idle_balance_cost =
11751 			max((u64)sysctl_sched_migration_cost, max_cost);
11752 	}
11753 	rcu_read_unlock();
11754 
11755 	/*
11756 	 * next_balance will be updated only when there is a need.
11757 	 * When the cpu is attached to null domain for ex, it will not be
11758 	 * updated.
11759 	 */
11760 	if (likely(update_next_balance))
11761 		rq->next_balance = next_balance;
11762 
11763 }
11764 
11765 static inline int on_null_domain(struct rq *rq)
11766 {
11767 	return unlikely(!rcu_dereference_sched(rq->sd));
11768 }
11769 
11770 #ifdef CONFIG_NO_HZ_COMMON
11771 /*
11772  * NOHZ idle load balancing (ILB) details:
11773  *
11774  * - When one of the busy CPUs notices that there may be an idle rebalancing
11775  *   needed, they will kick the idle load balancer, which then does idle
11776  *   load balancing for all the idle CPUs.
11777  *
11778  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11779  *   anywhere yet.
11780  */
11781 static inline int find_new_ilb(void)
11782 {
11783 	const struct cpumask *hk_mask;
11784 	int ilb_cpu;
11785 
11786 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11787 
11788 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11789 
11790 		if (ilb_cpu == smp_processor_id())
11791 			continue;
11792 
11793 		if (idle_cpu(ilb_cpu))
11794 			return ilb_cpu;
11795 	}
11796 
11797 	return -1;
11798 }
11799 
11800 /*
11801  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11802  * SMP function call (IPI).
11803  *
11804  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11805  */
11806 static void kick_ilb(unsigned int flags)
11807 {
11808 	int ilb_cpu;
11809 
11810 	/*
11811 	 * Increase nohz.next_balance only when if full ilb is triggered but
11812 	 * not if we only update stats.
11813 	 */
11814 	if (flags & NOHZ_BALANCE_KICK)
11815 		nohz.next_balance = jiffies+1;
11816 
11817 	ilb_cpu = find_new_ilb();
11818 	if (ilb_cpu < 0)
11819 		return;
11820 
11821 	/*
11822 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11823 	 * the first flag owns it; cleared by nohz_csd_func().
11824 	 */
11825 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11826 	if (flags & NOHZ_KICK_MASK)
11827 		return;
11828 
11829 	/*
11830 	 * This way we generate an IPI on the target CPU which
11831 	 * is idle, and the softirq performing NOHZ idle load balancing
11832 	 * will be run before returning from the IPI.
11833 	 */
11834 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11835 }
11836 
11837 /*
11838  * Current decision point for kicking the idle load balancer in the presence
11839  * of idle CPUs in the system.
11840  */
11841 static void nohz_balancer_kick(struct rq *rq)
11842 {
11843 	unsigned long now = jiffies;
11844 	struct sched_domain_shared *sds;
11845 	struct sched_domain *sd;
11846 	int nr_busy, i, cpu = rq->cpu;
11847 	unsigned int flags = 0;
11848 
11849 	if (unlikely(rq->idle_balance))
11850 		return;
11851 
11852 	/*
11853 	 * We may be recently in ticked or tickless idle mode. At the first
11854 	 * busy tick after returning from idle, we will update the busy stats.
11855 	 */
11856 	nohz_balance_exit_idle(rq);
11857 
11858 	/*
11859 	 * None are in tickless mode and hence no need for NOHZ idle load
11860 	 * balancing:
11861 	 */
11862 	if (likely(!atomic_read(&nohz.nr_cpus)))
11863 		return;
11864 
11865 	if (READ_ONCE(nohz.has_blocked) &&
11866 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11867 		flags = NOHZ_STATS_KICK;
11868 
11869 	if (time_before(now, nohz.next_balance))
11870 		goto out;
11871 
11872 	if (rq->nr_running >= 2) {
11873 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11874 		goto out;
11875 	}
11876 
11877 	rcu_read_lock();
11878 
11879 	sd = rcu_dereference(rq->sd);
11880 	if (sd) {
11881 		/*
11882 		 * If there's a runnable CFS task and the current CPU has reduced
11883 		 * capacity, kick the ILB to see if there's a better CPU to run on:
11884 		 */
11885 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11886 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11887 			goto unlock;
11888 		}
11889 	}
11890 
11891 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11892 	if (sd) {
11893 		/*
11894 		 * When ASYM_PACKING; see if there's a more preferred CPU
11895 		 * currently idle; in which case, kick the ILB to move tasks
11896 		 * around.
11897 		 *
11898 		 * When balancing betwen cores, all the SMT siblings of the
11899 		 * preferred CPU must be idle.
11900 		 */
11901 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11902 			if (sched_asym(sd, i, cpu)) {
11903 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11904 				goto unlock;
11905 			}
11906 		}
11907 	}
11908 
11909 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11910 	if (sd) {
11911 		/*
11912 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11913 		 * to run the misfit task on.
11914 		 */
11915 		if (check_misfit_status(rq, sd)) {
11916 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11917 			goto unlock;
11918 		}
11919 
11920 		/*
11921 		 * For asymmetric systems, we do not want to nicely balance
11922 		 * cache use, instead we want to embrace asymmetry and only
11923 		 * ensure tasks have enough CPU capacity.
11924 		 *
11925 		 * Skip the LLC logic because it's not relevant in that case.
11926 		 */
11927 		goto unlock;
11928 	}
11929 
11930 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11931 	if (sds) {
11932 		/*
11933 		 * If there is an imbalance between LLC domains (IOW we could
11934 		 * increase the overall cache utilization), we need a less-loaded LLC
11935 		 * domain to pull some load from. Likewise, we may need to spread
11936 		 * load within the current LLC domain (e.g. packed SMT cores but
11937 		 * other CPUs are idle). We can't really know from here how busy
11938 		 * the others are - so just get a NOHZ balance going if it looks
11939 		 * like this LLC domain has tasks we could move.
11940 		 */
11941 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11942 		if (nr_busy > 1) {
11943 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11944 			goto unlock;
11945 		}
11946 	}
11947 unlock:
11948 	rcu_read_unlock();
11949 out:
11950 	if (READ_ONCE(nohz.needs_update))
11951 		flags |= NOHZ_NEXT_KICK;
11952 
11953 	if (flags)
11954 		kick_ilb(flags);
11955 }
11956 
11957 static void set_cpu_sd_state_busy(int cpu)
11958 {
11959 	struct sched_domain *sd;
11960 
11961 	rcu_read_lock();
11962 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11963 
11964 	if (!sd || !sd->nohz_idle)
11965 		goto unlock;
11966 	sd->nohz_idle = 0;
11967 
11968 	atomic_inc(&sd->shared->nr_busy_cpus);
11969 unlock:
11970 	rcu_read_unlock();
11971 }
11972 
11973 void nohz_balance_exit_idle(struct rq *rq)
11974 {
11975 	SCHED_WARN_ON(rq != this_rq());
11976 
11977 	if (likely(!rq->nohz_tick_stopped))
11978 		return;
11979 
11980 	rq->nohz_tick_stopped = 0;
11981 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11982 	atomic_dec(&nohz.nr_cpus);
11983 
11984 	set_cpu_sd_state_busy(rq->cpu);
11985 }
11986 
11987 static void set_cpu_sd_state_idle(int cpu)
11988 {
11989 	struct sched_domain *sd;
11990 
11991 	rcu_read_lock();
11992 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11993 
11994 	if (!sd || sd->nohz_idle)
11995 		goto unlock;
11996 	sd->nohz_idle = 1;
11997 
11998 	atomic_dec(&sd->shared->nr_busy_cpus);
11999 unlock:
12000 	rcu_read_unlock();
12001 }
12002 
12003 /*
12004  * This routine will record that the CPU is going idle with tick stopped.
12005  * This info will be used in performing idle load balancing in the future.
12006  */
12007 void nohz_balance_enter_idle(int cpu)
12008 {
12009 	struct rq *rq = cpu_rq(cpu);
12010 
12011 	SCHED_WARN_ON(cpu != smp_processor_id());
12012 
12013 	/* If this CPU is going down, then nothing needs to be done: */
12014 	if (!cpu_active(cpu))
12015 		return;
12016 
12017 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12018 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12019 		return;
12020 
12021 	/*
12022 	 * Can be set safely without rq->lock held
12023 	 * If a clear happens, it will have evaluated last additions because
12024 	 * rq->lock is held during the check and the clear
12025 	 */
12026 	rq->has_blocked_load = 1;
12027 
12028 	/*
12029 	 * The tick is still stopped but load could have been added in the
12030 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12031 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12032 	 * of nohz.has_blocked can only happen after checking the new load
12033 	 */
12034 	if (rq->nohz_tick_stopped)
12035 		goto out;
12036 
12037 	/* If we're a completely isolated CPU, we don't play: */
12038 	if (on_null_domain(rq))
12039 		return;
12040 
12041 	rq->nohz_tick_stopped = 1;
12042 
12043 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12044 	atomic_inc(&nohz.nr_cpus);
12045 
12046 	/*
12047 	 * Ensures that if nohz_idle_balance() fails to observe our
12048 	 * @idle_cpus_mask store, it must observe the @has_blocked
12049 	 * and @needs_update stores.
12050 	 */
12051 	smp_mb__after_atomic();
12052 
12053 	set_cpu_sd_state_idle(cpu);
12054 
12055 	WRITE_ONCE(nohz.needs_update, 1);
12056 out:
12057 	/*
12058 	 * Each time a cpu enter idle, we assume that it has blocked load and
12059 	 * enable the periodic update of the load of idle cpus
12060 	 */
12061 	WRITE_ONCE(nohz.has_blocked, 1);
12062 }
12063 
12064 static bool update_nohz_stats(struct rq *rq)
12065 {
12066 	unsigned int cpu = rq->cpu;
12067 
12068 	if (!rq->has_blocked_load)
12069 		return false;
12070 
12071 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12072 		return false;
12073 
12074 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12075 		return true;
12076 
12077 	update_blocked_averages(cpu);
12078 
12079 	return rq->has_blocked_load;
12080 }
12081 
12082 /*
12083  * Internal function that runs load balance for all idle cpus. The load balance
12084  * can be a simple update of blocked load or a complete load balance with
12085  * tasks movement depending of flags.
12086  */
12087 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12088 {
12089 	/* Earliest time when we have to do rebalance again */
12090 	unsigned long now = jiffies;
12091 	unsigned long next_balance = now + 60*HZ;
12092 	bool has_blocked_load = false;
12093 	int update_next_balance = 0;
12094 	int this_cpu = this_rq->cpu;
12095 	int balance_cpu;
12096 	struct rq *rq;
12097 
12098 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12099 
12100 	/*
12101 	 * We assume there will be no idle load after this update and clear
12102 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12103 	 * set the has_blocked flag and trigger another update of idle load.
12104 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12105 	 * setting the flag, we are sure to not clear the state and not
12106 	 * check the load of an idle cpu.
12107 	 *
12108 	 * Same applies to idle_cpus_mask vs needs_update.
12109 	 */
12110 	if (flags & NOHZ_STATS_KICK)
12111 		WRITE_ONCE(nohz.has_blocked, 0);
12112 	if (flags & NOHZ_NEXT_KICK)
12113 		WRITE_ONCE(nohz.needs_update, 0);
12114 
12115 	/*
12116 	 * Ensures that if we miss the CPU, we must see the has_blocked
12117 	 * store from nohz_balance_enter_idle().
12118 	 */
12119 	smp_mb();
12120 
12121 	/*
12122 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12123 	 * chance for other idle cpu to pull load.
12124 	 */
12125 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12126 		if (!idle_cpu(balance_cpu))
12127 			continue;
12128 
12129 		/*
12130 		 * If this CPU gets work to do, stop the load balancing
12131 		 * work being done for other CPUs. Next load
12132 		 * balancing owner will pick it up.
12133 		 */
12134 		if (need_resched()) {
12135 			if (flags & NOHZ_STATS_KICK)
12136 				has_blocked_load = true;
12137 			if (flags & NOHZ_NEXT_KICK)
12138 				WRITE_ONCE(nohz.needs_update, 1);
12139 			goto abort;
12140 		}
12141 
12142 		rq = cpu_rq(balance_cpu);
12143 
12144 		if (flags & NOHZ_STATS_KICK)
12145 			has_blocked_load |= update_nohz_stats(rq);
12146 
12147 		/*
12148 		 * If time for next balance is due,
12149 		 * do the balance.
12150 		 */
12151 		if (time_after_eq(jiffies, rq->next_balance)) {
12152 			struct rq_flags rf;
12153 
12154 			rq_lock_irqsave(rq, &rf);
12155 			update_rq_clock(rq);
12156 			rq_unlock_irqrestore(rq, &rf);
12157 
12158 			if (flags & NOHZ_BALANCE_KICK)
12159 				rebalance_domains(rq, CPU_IDLE);
12160 		}
12161 
12162 		if (time_after(next_balance, rq->next_balance)) {
12163 			next_balance = rq->next_balance;
12164 			update_next_balance = 1;
12165 		}
12166 	}
12167 
12168 	/*
12169 	 * next_balance will be updated only when there is a need.
12170 	 * When the CPU is attached to null domain for ex, it will not be
12171 	 * updated.
12172 	 */
12173 	if (likely(update_next_balance))
12174 		nohz.next_balance = next_balance;
12175 
12176 	if (flags & NOHZ_STATS_KICK)
12177 		WRITE_ONCE(nohz.next_blocked,
12178 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12179 
12180 abort:
12181 	/* There is still blocked load, enable periodic update */
12182 	if (has_blocked_load)
12183 		WRITE_ONCE(nohz.has_blocked, 1);
12184 }
12185 
12186 /*
12187  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12188  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12189  */
12190 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12191 {
12192 	unsigned int flags = this_rq->nohz_idle_balance;
12193 
12194 	if (!flags)
12195 		return false;
12196 
12197 	this_rq->nohz_idle_balance = 0;
12198 
12199 	if (idle != CPU_IDLE)
12200 		return false;
12201 
12202 	_nohz_idle_balance(this_rq, flags);
12203 
12204 	return true;
12205 }
12206 
12207 /*
12208  * Check if we need to directly run the ILB for updating blocked load before
12209  * entering idle state. Here we run ILB directly without issuing IPIs.
12210  *
12211  * Note that when this function is called, the tick may not yet be stopped on
12212  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12213  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12214  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12215  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12216  * called from this function on (this) CPU that's not yet in the mask. That's
12217  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12218  * updating the blocked load of already idle CPUs without waking up one of
12219  * those idle CPUs and outside the preempt disable / irq off phase of the local
12220  * cpu about to enter idle, because it can take a long time.
12221  */
12222 void nohz_run_idle_balance(int cpu)
12223 {
12224 	unsigned int flags;
12225 
12226 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12227 
12228 	/*
12229 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12230 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12231 	 */
12232 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12233 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12234 }
12235 
12236 static void nohz_newidle_balance(struct rq *this_rq)
12237 {
12238 	int this_cpu = this_rq->cpu;
12239 
12240 	/*
12241 	 * This CPU doesn't want to be disturbed by scheduler
12242 	 * housekeeping
12243 	 */
12244 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12245 		return;
12246 
12247 	/* Will wake up very soon. No time for doing anything else*/
12248 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12249 		return;
12250 
12251 	/* Don't need to update blocked load of idle CPUs*/
12252 	if (!READ_ONCE(nohz.has_blocked) ||
12253 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12254 		return;
12255 
12256 	/*
12257 	 * Set the need to trigger ILB in order to update blocked load
12258 	 * before entering idle state.
12259 	 */
12260 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12261 }
12262 
12263 #else /* !CONFIG_NO_HZ_COMMON */
12264 static inline void nohz_balancer_kick(struct rq *rq) { }
12265 
12266 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12267 {
12268 	return false;
12269 }
12270 
12271 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12272 #endif /* CONFIG_NO_HZ_COMMON */
12273 
12274 /*
12275  * newidle_balance is called by schedule() if this_cpu is about to become
12276  * idle. Attempts to pull tasks from other CPUs.
12277  *
12278  * Returns:
12279  *   < 0 - we released the lock and there are !fair tasks present
12280  *     0 - failed, no new tasks
12281  *   > 0 - success, new (fair) tasks present
12282  */
12283 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12284 {
12285 	unsigned long next_balance = jiffies + HZ;
12286 	int this_cpu = this_rq->cpu;
12287 	u64 t0, t1, curr_cost = 0;
12288 	struct sched_domain *sd;
12289 	int pulled_task = 0;
12290 
12291 	update_misfit_status(NULL, this_rq);
12292 
12293 	/*
12294 	 * There is a task waiting to run. No need to search for one.
12295 	 * Return 0; the task will be enqueued when switching to idle.
12296 	 */
12297 	if (this_rq->ttwu_pending)
12298 		return 0;
12299 
12300 	/*
12301 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12302 	 * measure the duration of idle_balance() as idle time.
12303 	 */
12304 	this_rq->idle_stamp = rq_clock(this_rq);
12305 
12306 	/*
12307 	 * Do not pull tasks towards !active CPUs...
12308 	 */
12309 	if (!cpu_active(this_cpu))
12310 		return 0;
12311 
12312 	/*
12313 	 * This is OK, because current is on_cpu, which avoids it being picked
12314 	 * for load-balance and preemption/IRQs are still disabled avoiding
12315 	 * further scheduler activity on it and we're being very careful to
12316 	 * re-start the picking loop.
12317 	 */
12318 	rq_unpin_lock(this_rq, rf);
12319 
12320 	rcu_read_lock();
12321 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12322 
12323 	if (!READ_ONCE(this_rq->rd->overload) ||
12324 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12325 
12326 		if (sd)
12327 			update_next_balance(sd, &next_balance);
12328 		rcu_read_unlock();
12329 
12330 		goto out;
12331 	}
12332 	rcu_read_unlock();
12333 
12334 	raw_spin_rq_unlock(this_rq);
12335 
12336 	t0 = sched_clock_cpu(this_cpu);
12337 	update_blocked_averages(this_cpu);
12338 
12339 	rcu_read_lock();
12340 	for_each_domain(this_cpu, sd) {
12341 		int continue_balancing = 1;
12342 		u64 domain_cost;
12343 
12344 		update_next_balance(sd, &next_balance);
12345 
12346 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12347 			break;
12348 
12349 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12350 
12351 			pulled_task = load_balance(this_cpu, this_rq,
12352 						   sd, CPU_NEWLY_IDLE,
12353 						   &continue_balancing);
12354 
12355 			t1 = sched_clock_cpu(this_cpu);
12356 			domain_cost = t1 - t0;
12357 			update_newidle_cost(sd, domain_cost);
12358 
12359 			curr_cost += domain_cost;
12360 			t0 = t1;
12361 		}
12362 
12363 		/*
12364 		 * Stop searching for tasks to pull if there are
12365 		 * now runnable tasks on this rq.
12366 		 */
12367 		if (pulled_task || this_rq->nr_running > 0 ||
12368 		    this_rq->ttwu_pending)
12369 			break;
12370 	}
12371 	rcu_read_unlock();
12372 
12373 	raw_spin_rq_lock(this_rq);
12374 
12375 	if (curr_cost > this_rq->max_idle_balance_cost)
12376 		this_rq->max_idle_balance_cost = curr_cost;
12377 
12378 	/*
12379 	 * While browsing the domains, we released the rq lock, a task could
12380 	 * have been enqueued in the meantime. Since we're not going idle,
12381 	 * pretend we pulled a task.
12382 	 */
12383 	if (this_rq->cfs.h_nr_running && !pulled_task)
12384 		pulled_task = 1;
12385 
12386 	/* Is there a task of a high priority class? */
12387 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12388 		pulled_task = -1;
12389 
12390 out:
12391 	/* Move the next balance forward */
12392 	if (time_after(this_rq->next_balance, next_balance))
12393 		this_rq->next_balance = next_balance;
12394 
12395 	if (pulled_task)
12396 		this_rq->idle_stamp = 0;
12397 	else
12398 		nohz_newidle_balance(this_rq);
12399 
12400 	rq_repin_lock(this_rq, rf);
12401 
12402 	return pulled_task;
12403 }
12404 
12405 /*
12406  * run_rebalance_domains is triggered when needed from the scheduler tick.
12407  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12408  */
12409 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12410 {
12411 	struct rq *this_rq = this_rq();
12412 	enum cpu_idle_type idle = this_rq->idle_balance ?
12413 						CPU_IDLE : CPU_NOT_IDLE;
12414 
12415 	/*
12416 	 * If this CPU has a pending nohz_balance_kick, then do the
12417 	 * balancing on behalf of the other idle CPUs whose ticks are
12418 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12419 	 * give the idle CPUs a chance to load balance. Else we may
12420 	 * load balance only within the local sched_domain hierarchy
12421 	 * and abort nohz_idle_balance altogether if we pull some load.
12422 	 */
12423 	if (nohz_idle_balance(this_rq, idle))
12424 		return;
12425 
12426 	/* normal load balance */
12427 	update_blocked_averages(this_rq->cpu);
12428 	rebalance_domains(this_rq, idle);
12429 }
12430 
12431 /*
12432  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12433  */
12434 void trigger_load_balance(struct rq *rq)
12435 {
12436 	/*
12437 	 * Don't need to rebalance while attached to NULL domain or
12438 	 * runqueue CPU is not active
12439 	 */
12440 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12441 		return;
12442 
12443 	if (time_after_eq(jiffies, rq->next_balance))
12444 		raise_softirq(SCHED_SOFTIRQ);
12445 
12446 	nohz_balancer_kick(rq);
12447 }
12448 
12449 static void rq_online_fair(struct rq *rq)
12450 {
12451 	update_sysctl();
12452 
12453 	update_runtime_enabled(rq);
12454 }
12455 
12456 static void rq_offline_fair(struct rq *rq)
12457 {
12458 	update_sysctl();
12459 
12460 	/* Ensure any throttled groups are reachable by pick_next_task */
12461 	unthrottle_offline_cfs_rqs(rq);
12462 
12463 	/* Ensure that we remove rq contribution to group share: */
12464 	clear_tg_offline_cfs_rqs(rq);
12465 }
12466 
12467 #endif /* CONFIG_SMP */
12468 
12469 #ifdef CONFIG_SCHED_CORE
12470 static inline bool
12471 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12472 {
12473 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12474 	u64 slice = se->slice;
12475 
12476 	return (rtime * min_nr_tasks > slice);
12477 }
12478 
12479 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12480 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12481 {
12482 	if (!sched_core_enabled(rq))
12483 		return;
12484 
12485 	/*
12486 	 * If runqueue has only one task which used up its slice and
12487 	 * if the sibling is forced idle, then trigger schedule to
12488 	 * give forced idle task a chance.
12489 	 *
12490 	 * sched_slice() considers only this active rq and it gets the
12491 	 * whole slice. But during force idle, we have siblings acting
12492 	 * like a single runqueue and hence we need to consider runnable
12493 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12494 	 * go through the forced idle rq, but that would be a perf hit.
12495 	 * We can assume that the forced idle CPU has at least
12496 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12497 	 * if we need to give up the CPU.
12498 	 */
12499 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12500 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12501 		resched_curr(rq);
12502 }
12503 
12504 /*
12505  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12506  */
12507 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12508 			 bool forceidle)
12509 {
12510 	for_each_sched_entity(se) {
12511 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12512 
12513 		if (forceidle) {
12514 			if (cfs_rq->forceidle_seq == fi_seq)
12515 				break;
12516 			cfs_rq->forceidle_seq = fi_seq;
12517 		}
12518 
12519 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12520 	}
12521 }
12522 
12523 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12524 {
12525 	struct sched_entity *se = &p->se;
12526 
12527 	if (p->sched_class != &fair_sched_class)
12528 		return;
12529 
12530 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12531 }
12532 
12533 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12534 			bool in_fi)
12535 {
12536 	struct rq *rq = task_rq(a);
12537 	const struct sched_entity *sea = &a->se;
12538 	const struct sched_entity *seb = &b->se;
12539 	struct cfs_rq *cfs_rqa;
12540 	struct cfs_rq *cfs_rqb;
12541 	s64 delta;
12542 
12543 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12544 
12545 #ifdef CONFIG_FAIR_GROUP_SCHED
12546 	/*
12547 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12548 	 * are immediate siblings.
12549 	 */
12550 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12551 		int sea_depth = sea->depth;
12552 		int seb_depth = seb->depth;
12553 
12554 		if (sea_depth >= seb_depth)
12555 			sea = parent_entity(sea);
12556 		if (sea_depth <= seb_depth)
12557 			seb = parent_entity(seb);
12558 	}
12559 
12560 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12561 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12562 
12563 	cfs_rqa = sea->cfs_rq;
12564 	cfs_rqb = seb->cfs_rq;
12565 #else
12566 	cfs_rqa = &task_rq(a)->cfs;
12567 	cfs_rqb = &task_rq(b)->cfs;
12568 #endif
12569 
12570 	/*
12571 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12572 	 * min_vruntime_fi, which would have been updated in prior calls
12573 	 * to se_fi_update().
12574 	 */
12575 	delta = (s64)(sea->vruntime - seb->vruntime) +
12576 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12577 
12578 	return delta > 0;
12579 }
12580 
12581 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12582 {
12583 	struct cfs_rq *cfs_rq;
12584 
12585 #ifdef CONFIG_FAIR_GROUP_SCHED
12586 	cfs_rq = task_group(p)->cfs_rq[cpu];
12587 #else
12588 	cfs_rq = &cpu_rq(cpu)->cfs;
12589 #endif
12590 	return throttled_hierarchy(cfs_rq);
12591 }
12592 #else
12593 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12594 #endif
12595 
12596 /*
12597  * scheduler tick hitting a task of our scheduling class.
12598  *
12599  * NOTE: This function can be called remotely by the tick offload that
12600  * goes along full dynticks. Therefore no local assumption can be made
12601  * and everything must be accessed through the @rq and @curr passed in
12602  * parameters.
12603  */
12604 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12605 {
12606 	struct cfs_rq *cfs_rq;
12607 	struct sched_entity *se = &curr->se;
12608 
12609 	for_each_sched_entity(se) {
12610 		cfs_rq = cfs_rq_of(se);
12611 		entity_tick(cfs_rq, se, queued);
12612 	}
12613 
12614 	if (static_branch_unlikely(&sched_numa_balancing))
12615 		task_tick_numa(rq, curr);
12616 
12617 	update_misfit_status(curr, rq);
12618 	update_overutilized_status(task_rq(curr));
12619 
12620 	task_tick_core(rq, curr);
12621 }
12622 
12623 /*
12624  * called on fork with the child task as argument from the parent's context
12625  *  - child not yet on the tasklist
12626  *  - preemption disabled
12627  */
12628 static void task_fork_fair(struct task_struct *p)
12629 {
12630 	struct sched_entity *se = &p->se, *curr;
12631 	struct cfs_rq *cfs_rq;
12632 	struct rq *rq = this_rq();
12633 	struct rq_flags rf;
12634 
12635 	rq_lock(rq, &rf);
12636 	update_rq_clock(rq);
12637 
12638 	cfs_rq = task_cfs_rq(current);
12639 	curr = cfs_rq->curr;
12640 	if (curr)
12641 		update_curr(cfs_rq);
12642 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12643 	rq_unlock(rq, &rf);
12644 }
12645 
12646 /*
12647  * Priority of the task has changed. Check to see if we preempt
12648  * the current task.
12649  */
12650 static void
12651 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12652 {
12653 	if (!task_on_rq_queued(p))
12654 		return;
12655 
12656 	if (rq->cfs.nr_running == 1)
12657 		return;
12658 
12659 	/*
12660 	 * Reschedule if we are currently running on this runqueue and
12661 	 * our priority decreased, or if we are not currently running on
12662 	 * this runqueue and our priority is higher than the current's
12663 	 */
12664 	if (task_current(rq, p)) {
12665 		if (p->prio > oldprio)
12666 			resched_curr(rq);
12667 	} else
12668 		wakeup_preempt(rq, p, 0);
12669 }
12670 
12671 #ifdef CONFIG_FAIR_GROUP_SCHED
12672 /*
12673  * Propagate the changes of the sched_entity across the tg tree to make it
12674  * visible to the root
12675  */
12676 static void propagate_entity_cfs_rq(struct sched_entity *se)
12677 {
12678 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12679 
12680 	if (cfs_rq_throttled(cfs_rq))
12681 		return;
12682 
12683 	if (!throttled_hierarchy(cfs_rq))
12684 		list_add_leaf_cfs_rq(cfs_rq);
12685 
12686 	/* Start to propagate at parent */
12687 	se = se->parent;
12688 
12689 	for_each_sched_entity(se) {
12690 		cfs_rq = cfs_rq_of(se);
12691 
12692 		update_load_avg(cfs_rq, se, UPDATE_TG);
12693 
12694 		if (cfs_rq_throttled(cfs_rq))
12695 			break;
12696 
12697 		if (!throttled_hierarchy(cfs_rq))
12698 			list_add_leaf_cfs_rq(cfs_rq);
12699 	}
12700 }
12701 #else
12702 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12703 #endif
12704 
12705 static void detach_entity_cfs_rq(struct sched_entity *se)
12706 {
12707 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12708 
12709 #ifdef CONFIG_SMP
12710 	/*
12711 	 * In case the task sched_avg hasn't been attached:
12712 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12713 	 * - A task which has been woken up by try_to_wake_up() but is
12714 	 *   waiting for actually being woken up by sched_ttwu_pending().
12715 	 */
12716 	if (!se->avg.last_update_time)
12717 		return;
12718 #endif
12719 
12720 	/* Catch up with the cfs_rq and remove our load when we leave */
12721 	update_load_avg(cfs_rq, se, 0);
12722 	detach_entity_load_avg(cfs_rq, se);
12723 	update_tg_load_avg(cfs_rq);
12724 	propagate_entity_cfs_rq(se);
12725 }
12726 
12727 static void attach_entity_cfs_rq(struct sched_entity *se)
12728 {
12729 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12730 
12731 	/* Synchronize entity with its cfs_rq */
12732 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12733 	attach_entity_load_avg(cfs_rq, se);
12734 	update_tg_load_avg(cfs_rq);
12735 	propagate_entity_cfs_rq(se);
12736 }
12737 
12738 static void detach_task_cfs_rq(struct task_struct *p)
12739 {
12740 	struct sched_entity *se = &p->se;
12741 
12742 	detach_entity_cfs_rq(se);
12743 }
12744 
12745 static void attach_task_cfs_rq(struct task_struct *p)
12746 {
12747 	struct sched_entity *se = &p->se;
12748 
12749 	attach_entity_cfs_rq(se);
12750 }
12751 
12752 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12753 {
12754 	detach_task_cfs_rq(p);
12755 }
12756 
12757 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12758 {
12759 	attach_task_cfs_rq(p);
12760 
12761 	if (task_on_rq_queued(p)) {
12762 		/*
12763 		 * We were most likely switched from sched_rt, so
12764 		 * kick off the schedule if running, otherwise just see
12765 		 * if we can still preempt the current task.
12766 		 */
12767 		if (task_current(rq, p))
12768 			resched_curr(rq);
12769 		else
12770 			wakeup_preempt(rq, p, 0);
12771 	}
12772 }
12773 
12774 /* Account for a task changing its policy or group.
12775  *
12776  * This routine is mostly called to set cfs_rq->curr field when a task
12777  * migrates between groups/classes.
12778  */
12779 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12780 {
12781 	struct sched_entity *se = &p->se;
12782 
12783 #ifdef CONFIG_SMP
12784 	if (task_on_rq_queued(p)) {
12785 		/*
12786 		 * Move the next running task to the front of the list, so our
12787 		 * cfs_tasks list becomes MRU one.
12788 		 */
12789 		list_move(&se->group_node, &rq->cfs_tasks);
12790 	}
12791 #endif
12792 
12793 	for_each_sched_entity(se) {
12794 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12795 
12796 		set_next_entity(cfs_rq, se);
12797 		/* ensure bandwidth has been allocated on our new cfs_rq */
12798 		account_cfs_rq_runtime(cfs_rq, 0);
12799 	}
12800 }
12801 
12802 void init_cfs_rq(struct cfs_rq *cfs_rq)
12803 {
12804 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12805 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12806 #ifdef CONFIG_SMP
12807 	raw_spin_lock_init(&cfs_rq->removed.lock);
12808 #endif
12809 }
12810 
12811 #ifdef CONFIG_FAIR_GROUP_SCHED
12812 static void task_change_group_fair(struct task_struct *p)
12813 {
12814 	/*
12815 	 * We couldn't detach or attach a forked task which
12816 	 * hasn't been woken up by wake_up_new_task().
12817 	 */
12818 	if (READ_ONCE(p->__state) == TASK_NEW)
12819 		return;
12820 
12821 	detach_task_cfs_rq(p);
12822 
12823 #ifdef CONFIG_SMP
12824 	/* Tell se's cfs_rq has been changed -- migrated */
12825 	p->se.avg.last_update_time = 0;
12826 #endif
12827 	set_task_rq(p, task_cpu(p));
12828 	attach_task_cfs_rq(p);
12829 }
12830 
12831 void free_fair_sched_group(struct task_group *tg)
12832 {
12833 	int i;
12834 
12835 	for_each_possible_cpu(i) {
12836 		if (tg->cfs_rq)
12837 			kfree(tg->cfs_rq[i]);
12838 		if (tg->se)
12839 			kfree(tg->se[i]);
12840 	}
12841 
12842 	kfree(tg->cfs_rq);
12843 	kfree(tg->se);
12844 }
12845 
12846 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12847 {
12848 	struct sched_entity *se;
12849 	struct cfs_rq *cfs_rq;
12850 	int i;
12851 
12852 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12853 	if (!tg->cfs_rq)
12854 		goto err;
12855 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12856 	if (!tg->se)
12857 		goto err;
12858 
12859 	tg->shares = NICE_0_LOAD;
12860 
12861 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12862 
12863 	for_each_possible_cpu(i) {
12864 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12865 				      GFP_KERNEL, cpu_to_node(i));
12866 		if (!cfs_rq)
12867 			goto err;
12868 
12869 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12870 				  GFP_KERNEL, cpu_to_node(i));
12871 		if (!se)
12872 			goto err_free_rq;
12873 
12874 		init_cfs_rq(cfs_rq);
12875 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12876 		init_entity_runnable_average(se);
12877 	}
12878 
12879 	return 1;
12880 
12881 err_free_rq:
12882 	kfree(cfs_rq);
12883 err:
12884 	return 0;
12885 }
12886 
12887 void online_fair_sched_group(struct task_group *tg)
12888 {
12889 	struct sched_entity *se;
12890 	struct rq_flags rf;
12891 	struct rq *rq;
12892 	int i;
12893 
12894 	for_each_possible_cpu(i) {
12895 		rq = cpu_rq(i);
12896 		se = tg->se[i];
12897 		rq_lock_irq(rq, &rf);
12898 		update_rq_clock(rq);
12899 		attach_entity_cfs_rq(se);
12900 		sync_throttle(tg, i);
12901 		rq_unlock_irq(rq, &rf);
12902 	}
12903 }
12904 
12905 void unregister_fair_sched_group(struct task_group *tg)
12906 {
12907 	unsigned long flags;
12908 	struct rq *rq;
12909 	int cpu;
12910 
12911 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12912 
12913 	for_each_possible_cpu(cpu) {
12914 		if (tg->se[cpu])
12915 			remove_entity_load_avg(tg->se[cpu]);
12916 
12917 		/*
12918 		 * Only empty task groups can be destroyed; so we can speculatively
12919 		 * check on_list without danger of it being re-added.
12920 		 */
12921 		if (!tg->cfs_rq[cpu]->on_list)
12922 			continue;
12923 
12924 		rq = cpu_rq(cpu);
12925 
12926 		raw_spin_rq_lock_irqsave(rq, flags);
12927 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12928 		raw_spin_rq_unlock_irqrestore(rq, flags);
12929 	}
12930 }
12931 
12932 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12933 			struct sched_entity *se, int cpu,
12934 			struct sched_entity *parent)
12935 {
12936 	struct rq *rq = cpu_rq(cpu);
12937 
12938 	cfs_rq->tg = tg;
12939 	cfs_rq->rq = rq;
12940 	init_cfs_rq_runtime(cfs_rq);
12941 
12942 	tg->cfs_rq[cpu] = cfs_rq;
12943 	tg->se[cpu] = se;
12944 
12945 	/* se could be NULL for root_task_group */
12946 	if (!se)
12947 		return;
12948 
12949 	if (!parent) {
12950 		se->cfs_rq = &rq->cfs;
12951 		se->depth = 0;
12952 	} else {
12953 		se->cfs_rq = parent->my_q;
12954 		se->depth = parent->depth + 1;
12955 	}
12956 
12957 	se->my_q = cfs_rq;
12958 	/* guarantee group entities always have weight */
12959 	update_load_set(&se->load, NICE_0_LOAD);
12960 	se->parent = parent;
12961 }
12962 
12963 static DEFINE_MUTEX(shares_mutex);
12964 
12965 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12966 {
12967 	int i;
12968 
12969 	lockdep_assert_held(&shares_mutex);
12970 
12971 	/*
12972 	 * We can't change the weight of the root cgroup.
12973 	 */
12974 	if (!tg->se[0])
12975 		return -EINVAL;
12976 
12977 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12978 
12979 	if (tg->shares == shares)
12980 		return 0;
12981 
12982 	tg->shares = shares;
12983 	for_each_possible_cpu(i) {
12984 		struct rq *rq = cpu_rq(i);
12985 		struct sched_entity *se = tg->se[i];
12986 		struct rq_flags rf;
12987 
12988 		/* Propagate contribution to hierarchy */
12989 		rq_lock_irqsave(rq, &rf);
12990 		update_rq_clock(rq);
12991 		for_each_sched_entity(se) {
12992 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12993 			update_cfs_group(se);
12994 		}
12995 		rq_unlock_irqrestore(rq, &rf);
12996 	}
12997 
12998 	return 0;
12999 }
13000 
13001 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13002 {
13003 	int ret;
13004 
13005 	mutex_lock(&shares_mutex);
13006 	if (tg_is_idle(tg))
13007 		ret = -EINVAL;
13008 	else
13009 		ret = __sched_group_set_shares(tg, shares);
13010 	mutex_unlock(&shares_mutex);
13011 
13012 	return ret;
13013 }
13014 
13015 int sched_group_set_idle(struct task_group *tg, long idle)
13016 {
13017 	int i;
13018 
13019 	if (tg == &root_task_group)
13020 		return -EINVAL;
13021 
13022 	if (idle < 0 || idle > 1)
13023 		return -EINVAL;
13024 
13025 	mutex_lock(&shares_mutex);
13026 
13027 	if (tg->idle == idle) {
13028 		mutex_unlock(&shares_mutex);
13029 		return 0;
13030 	}
13031 
13032 	tg->idle = idle;
13033 
13034 	for_each_possible_cpu(i) {
13035 		struct rq *rq = cpu_rq(i);
13036 		struct sched_entity *se = tg->se[i];
13037 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13038 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13039 		long idle_task_delta;
13040 		struct rq_flags rf;
13041 
13042 		rq_lock_irqsave(rq, &rf);
13043 
13044 		grp_cfs_rq->idle = idle;
13045 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13046 			goto next_cpu;
13047 
13048 		if (se->on_rq) {
13049 			parent_cfs_rq = cfs_rq_of(se);
13050 			if (cfs_rq_is_idle(grp_cfs_rq))
13051 				parent_cfs_rq->idle_nr_running++;
13052 			else
13053 				parent_cfs_rq->idle_nr_running--;
13054 		}
13055 
13056 		idle_task_delta = grp_cfs_rq->h_nr_running -
13057 				  grp_cfs_rq->idle_h_nr_running;
13058 		if (!cfs_rq_is_idle(grp_cfs_rq))
13059 			idle_task_delta *= -1;
13060 
13061 		for_each_sched_entity(se) {
13062 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13063 
13064 			if (!se->on_rq)
13065 				break;
13066 
13067 			cfs_rq->idle_h_nr_running += idle_task_delta;
13068 
13069 			/* Already accounted at parent level and above. */
13070 			if (cfs_rq_is_idle(cfs_rq))
13071 				break;
13072 		}
13073 
13074 next_cpu:
13075 		rq_unlock_irqrestore(rq, &rf);
13076 	}
13077 
13078 	/* Idle groups have minimum weight. */
13079 	if (tg_is_idle(tg))
13080 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13081 	else
13082 		__sched_group_set_shares(tg, NICE_0_LOAD);
13083 
13084 	mutex_unlock(&shares_mutex);
13085 	return 0;
13086 }
13087 
13088 #endif /* CONFIG_FAIR_GROUP_SCHED */
13089 
13090 
13091 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13092 {
13093 	struct sched_entity *se = &task->se;
13094 	unsigned int rr_interval = 0;
13095 
13096 	/*
13097 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13098 	 * idle runqueue:
13099 	 */
13100 	if (rq->cfs.load.weight)
13101 		rr_interval = NS_TO_JIFFIES(se->slice);
13102 
13103 	return rr_interval;
13104 }
13105 
13106 /*
13107  * All the scheduling class methods:
13108  */
13109 DEFINE_SCHED_CLASS(fair) = {
13110 
13111 	.enqueue_task		= enqueue_task_fair,
13112 	.dequeue_task		= dequeue_task_fair,
13113 	.yield_task		= yield_task_fair,
13114 	.yield_to_task		= yield_to_task_fair,
13115 
13116 	.wakeup_preempt		= check_preempt_wakeup_fair,
13117 
13118 	.pick_next_task		= __pick_next_task_fair,
13119 	.put_prev_task		= put_prev_task_fair,
13120 	.set_next_task          = set_next_task_fair,
13121 
13122 #ifdef CONFIG_SMP
13123 	.balance		= balance_fair,
13124 	.pick_task		= pick_task_fair,
13125 	.select_task_rq		= select_task_rq_fair,
13126 	.migrate_task_rq	= migrate_task_rq_fair,
13127 
13128 	.rq_online		= rq_online_fair,
13129 	.rq_offline		= rq_offline_fair,
13130 
13131 	.task_dead		= task_dead_fair,
13132 	.set_cpus_allowed	= set_cpus_allowed_common,
13133 #endif
13134 
13135 	.task_tick		= task_tick_fair,
13136 	.task_fork		= task_fork_fair,
13137 
13138 	.prio_changed		= prio_changed_fair,
13139 	.switched_from		= switched_from_fair,
13140 	.switched_to		= switched_to_fair,
13141 
13142 	.get_rr_interval	= get_rr_interval_fair,
13143 
13144 	.update_curr		= update_curr_fair,
13145 
13146 #ifdef CONFIG_FAIR_GROUP_SCHED
13147 	.task_change_group	= task_change_group_fair,
13148 #endif
13149 
13150 #ifdef CONFIG_SCHED_CORE
13151 	.task_is_throttled	= task_is_throttled_fair,
13152 #endif
13153 
13154 #ifdef CONFIG_UCLAMP_TASK
13155 	.uclamp_enabled		= 1,
13156 #endif
13157 };
13158 
13159 #ifdef CONFIG_SCHED_DEBUG
13160 void print_cfs_stats(struct seq_file *m, int cpu)
13161 {
13162 	struct cfs_rq *cfs_rq, *pos;
13163 
13164 	rcu_read_lock();
13165 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13166 		print_cfs_rq(m, cpu, cfs_rq);
13167 	rcu_read_unlock();
13168 }
13169 
13170 #ifdef CONFIG_NUMA_BALANCING
13171 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13172 {
13173 	int node;
13174 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13175 	struct numa_group *ng;
13176 
13177 	rcu_read_lock();
13178 	ng = rcu_dereference(p->numa_group);
13179 	for_each_online_node(node) {
13180 		if (p->numa_faults) {
13181 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13182 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13183 		}
13184 		if (ng) {
13185 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13186 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13187 		}
13188 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13189 	}
13190 	rcu_read_unlock();
13191 }
13192 #endif /* CONFIG_NUMA_BALANCING */
13193 #endif /* CONFIG_SCHED_DEBUG */
13194 
13195 __init void init_sched_fair_class(void)
13196 {
13197 #ifdef CONFIG_SMP
13198 	int i;
13199 
13200 	for_each_possible_cpu(i) {
13201 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13202 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13203 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13204 					GFP_KERNEL, cpu_to_node(i));
13205 
13206 #ifdef CONFIG_CFS_BANDWIDTH
13207 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13208 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13209 #endif
13210 	}
13211 
13212 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13213 
13214 #ifdef CONFIG_NO_HZ_COMMON
13215 	nohz.next_balance = jiffies;
13216 	nohz.next_blocked = jiffies;
13217 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13218 #endif
13219 #endif /* SMP */
13220 
13221 }
13222