1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/mempolicy.h> 44 #include <linux/mutex_api.h> 45 #include <linux/profile.h> 46 #include <linux/psi.h> 47 #include <linux/ratelimit.h> 48 #include <linux/task_work.h> 49 50 #include <asm/switch_to.h> 51 52 #include <linux/sched/cond_resched.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * Targeted preemption latency for CPU-bound tasks: 60 * 61 * NOTE: this latency value is not the same as the concept of 62 * 'timeslice length' - timeslices in CFS are of variable length 63 * and have no persistent notion like in traditional, time-slice 64 * based scheduling concepts. 65 * 66 * (to see the precise effective timeslice length of your workload, 67 * run vmstat and monitor the context-switches (cs) field) 68 * 69 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 70 */ 71 unsigned int sysctl_sched_latency = 6000000ULL; 72 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 73 74 /* 75 * The initial- and re-scaling of tunables is configurable 76 * 77 * Options are: 78 * 79 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 80 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 81 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 82 * 83 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 84 */ 85 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 86 87 /* 88 * Minimal preemption granularity for CPU-bound tasks: 89 * 90 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 91 */ 92 unsigned int sysctl_sched_min_granularity = 750000ULL; 93 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 94 95 /* 96 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 97 * Applies only when SCHED_IDLE tasks compete with normal tasks. 98 * 99 * (default: 0.75 msec) 100 */ 101 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 102 103 /* 104 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 105 */ 106 static unsigned int sched_nr_latency = 8; 107 108 /* 109 * After fork, child runs first. If set to 0 (default) then 110 * parent will (try to) run first. 111 */ 112 unsigned int sysctl_sched_child_runs_first __read_mostly; 113 114 /* 115 * SCHED_OTHER wake-up granularity. 116 * 117 * This option delays the preemption effects of decoupled workloads 118 * and reduces their over-scheduling. Synchronous workloads will still 119 * have immediate wakeup/sleep latencies. 120 * 121 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 122 */ 123 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 124 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 125 126 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 127 128 int sched_thermal_decay_shift; 129 static int __init setup_sched_thermal_decay_shift(char *str) 130 { 131 int _shift = 0; 132 133 if (kstrtoint(str, 0, &_shift)) 134 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 135 136 sched_thermal_decay_shift = clamp(_shift, 0, 10); 137 return 1; 138 } 139 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 140 141 #ifdef CONFIG_SMP 142 /* 143 * For asym packing, by default the lower numbered CPU has higher priority. 144 */ 145 int __weak arch_asym_cpu_priority(int cpu) 146 { 147 return -cpu; 148 } 149 150 /* 151 * The margin used when comparing utilization with CPU capacity. 152 * 153 * (default: ~20%) 154 */ 155 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 156 157 /* 158 * The margin used when comparing CPU capacities. 159 * is 'cap1' noticeably greater than 'cap2' 160 * 161 * (default: ~5%) 162 */ 163 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 164 #endif 165 166 #ifdef CONFIG_CFS_BANDWIDTH 167 /* 168 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 169 * each time a cfs_rq requests quota. 170 * 171 * Note: in the case that the slice exceeds the runtime remaining (either due 172 * to consumption or the quota being specified to be smaller than the slice) 173 * we will always only issue the remaining available time. 174 * 175 * (default: 5 msec, units: microseconds) 176 */ 177 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 178 #endif 179 180 #ifdef CONFIG_SYSCTL 181 static struct ctl_table sched_fair_sysctls[] = { 182 { 183 .procname = "sched_child_runs_first", 184 .data = &sysctl_sched_child_runs_first, 185 .maxlen = sizeof(unsigned int), 186 .mode = 0644, 187 .proc_handler = proc_dointvec, 188 }, 189 #ifdef CONFIG_CFS_BANDWIDTH 190 { 191 .procname = "sched_cfs_bandwidth_slice_us", 192 .data = &sysctl_sched_cfs_bandwidth_slice, 193 .maxlen = sizeof(unsigned int), 194 .mode = 0644, 195 .proc_handler = proc_dointvec_minmax, 196 .extra1 = SYSCTL_ONE, 197 }, 198 #endif 199 {} 200 }; 201 202 static int __init sched_fair_sysctl_init(void) 203 { 204 register_sysctl_init("kernel", sched_fair_sysctls); 205 return 0; 206 } 207 late_initcall(sched_fair_sysctl_init); 208 #endif 209 210 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 211 { 212 lw->weight += inc; 213 lw->inv_weight = 0; 214 } 215 216 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 217 { 218 lw->weight -= dec; 219 lw->inv_weight = 0; 220 } 221 222 static inline void update_load_set(struct load_weight *lw, unsigned long w) 223 { 224 lw->weight = w; 225 lw->inv_weight = 0; 226 } 227 228 /* 229 * Increase the granularity value when there are more CPUs, 230 * because with more CPUs the 'effective latency' as visible 231 * to users decreases. But the relationship is not linear, 232 * so pick a second-best guess by going with the log2 of the 233 * number of CPUs. 234 * 235 * This idea comes from the SD scheduler of Con Kolivas: 236 */ 237 static unsigned int get_update_sysctl_factor(void) 238 { 239 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 240 unsigned int factor; 241 242 switch (sysctl_sched_tunable_scaling) { 243 case SCHED_TUNABLESCALING_NONE: 244 factor = 1; 245 break; 246 case SCHED_TUNABLESCALING_LINEAR: 247 factor = cpus; 248 break; 249 case SCHED_TUNABLESCALING_LOG: 250 default: 251 factor = 1 + ilog2(cpus); 252 break; 253 } 254 255 return factor; 256 } 257 258 static void update_sysctl(void) 259 { 260 unsigned int factor = get_update_sysctl_factor(); 261 262 #define SET_SYSCTL(name) \ 263 (sysctl_##name = (factor) * normalized_sysctl_##name) 264 SET_SYSCTL(sched_min_granularity); 265 SET_SYSCTL(sched_latency); 266 SET_SYSCTL(sched_wakeup_granularity); 267 #undef SET_SYSCTL 268 } 269 270 void __init sched_init_granularity(void) 271 { 272 update_sysctl(); 273 } 274 275 #define WMULT_CONST (~0U) 276 #define WMULT_SHIFT 32 277 278 static void __update_inv_weight(struct load_weight *lw) 279 { 280 unsigned long w; 281 282 if (likely(lw->inv_weight)) 283 return; 284 285 w = scale_load_down(lw->weight); 286 287 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 288 lw->inv_weight = 1; 289 else if (unlikely(!w)) 290 lw->inv_weight = WMULT_CONST; 291 else 292 lw->inv_weight = WMULT_CONST / w; 293 } 294 295 /* 296 * delta_exec * weight / lw.weight 297 * OR 298 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 299 * 300 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 301 * we're guaranteed shift stays positive because inv_weight is guaranteed to 302 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 303 * 304 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 305 * weight/lw.weight <= 1, and therefore our shift will also be positive. 306 */ 307 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 308 { 309 u64 fact = scale_load_down(weight); 310 u32 fact_hi = (u32)(fact >> 32); 311 int shift = WMULT_SHIFT; 312 int fs; 313 314 __update_inv_weight(lw); 315 316 if (unlikely(fact_hi)) { 317 fs = fls(fact_hi); 318 shift -= fs; 319 fact >>= fs; 320 } 321 322 fact = mul_u32_u32(fact, lw->inv_weight); 323 324 fact_hi = (u32)(fact >> 32); 325 if (fact_hi) { 326 fs = fls(fact_hi); 327 shift -= fs; 328 fact >>= fs; 329 } 330 331 return mul_u64_u32_shr(delta_exec, fact, shift); 332 } 333 334 335 const struct sched_class fair_sched_class; 336 337 /************************************************************** 338 * CFS operations on generic schedulable entities: 339 */ 340 341 #ifdef CONFIG_FAIR_GROUP_SCHED 342 343 /* Walk up scheduling entities hierarchy */ 344 #define for_each_sched_entity(se) \ 345 for (; se; se = se->parent) 346 347 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 348 { 349 struct rq *rq = rq_of(cfs_rq); 350 int cpu = cpu_of(rq); 351 352 if (cfs_rq->on_list) 353 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 354 355 cfs_rq->on_list = 1; 356 357 /* 358 * Ensure we either appear before our parent (if already 359 * enqueued) or force our parent to appear after us when it is 360 * enqueued. The fact that we always enqueue bottom-up 361 * reduces this to two cases and a special case for the root 362 * cfs_rq. Furthermore, it also means that we will always reset 363 * tmp_alone_branch either when the branch is connected 364 * to a tree or when we reach the top of the tree 365 */ 366 if (cfs_rq->tg->parent && 367 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 368 /* 369 * If parent is already on the list, we add the child 370 * just before. Thanks to circular linked property of 371 * the list, this means to put the child at the tail 372 * of the list that starts by parent. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 376 /* 377 * The branch is now connected to its tree so we can 378 * reset tmp_alone_branch to the beginning of the 379 * list. 380 */ 381 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 382 return true; 383 } 384 385 if (!cfs_rq->tg->parent) { 386 /* 387 * cfs rq without parent should be put 388 * at the tail of the list. 389 */ 390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 391 &rq->leaf_cfs_rq_list); 392 /* 393 * We have reach the top of a tree so we can reset 394 * tmp_alone_branch to the beginning of the list. 395 */ 396 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 397 return true; 398 } 399 400 /* 401 * The parent has not already been added so we want to 402 * make sure that it will be put after us. 403 * tmp_alone_branch points to the begin of the branch 404 * where we will add parent. 405 */ 406 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 407 /* 408 * update tmp_alone_branch to points to the new begin 409 * of the branch 410 */ 411 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 412 return false; 413 } 414 415 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 416 { 417 if (cfs_rq->on_list) { 418 struct rq *rq = rq_of(cfs_rq); 419 420 /* 421 * With cfs_rq being unthrottled/throttled during an enqueue, 422 * it can happen the tmp_alone_branch points the a leaf that 423 * we finally want to del. In this case, tmp_alone_branch moves 424 * to the prev element but it will point to rq->leaf_cfs_rq_list 425 * at the end of the enqueue. 426 */ 427 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 428 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 429 430 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 431 cfs_rq->on_list = 0; 432 } 433 } 434 435 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 436 { 437 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 438 } 439 440 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 441 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 442 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 443 leaf_cfs_rq_list) 444 445 /* Do the two (enqueued) entities belong to the same group ? */ 446 static inline struct cfs_rq * 447 is_same_group(struct sched_entity *se, struct sched_entity *pse) 448 { 449 if (se->cfs_rq == pse->cfs_rq) 450 return se->cfs_rq; 451 452 return NULL; 453 } 454 455 static inline struct sched_entity *parent_entity(struct sched_entity *se) 456 { 457 return se->parent; 458 } 459 460 static void 461 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 462 { 463 int se_depth, pse_depth; 464 465 /* 466 * preemption test can be made between sibling entities who are in the 467 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 468 * both tasks until we find their ancestors who are siblings of common 469 * parent. 470 */ 471 472 /* First walk up until both entities are at same depth */ 473 se_depth = (*se)->depth; 474 pse_depth = (*pse)->depth; 475 476 while (se_depth > pse_depth) { 477 se_depth--; 478 *se = parent_entity(*se); 479 } 480 481 while (pse_depth > se_depth) { 482 pse_depth--; 483 *pse = parent_entity(*pse); 484 } 485 486 while (!is_same_group(*se, *pse)) { 487 *se = parent_entity(*se); 488 *pse = parent_entity(*pse); 489 } 490 } 491 492 static int tg_is_idle(struct task_group *tg) 493 { 494 return tg->idle > 0; 495 } 496 497 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 498 { 499 return cfs_rq->idle > 0; 500 } 501 502 static int se_is_idle(struct sched_entity *se) 503 { 504 if (entity_is_task(se)) 505 return task_has_idle_policy(task_of(se)); 506 return cfs_rq_is_idle(group_cfs_rq(se)); 507 } 508 509 #else /* !CONFIG_FAIR_GROUP_SCHED */ 510 511 #define for_each_sched_entity(se) \ 512 for (; se; se = NULL) 513 514 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 515 { 516 return true; 517 } 518 519 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 520 { 521 } 522 523 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 524 { 525 } 526 527 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 528 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 529 530 static inline struct sched_entity *parent_entity(struct sched_entity *se) 531 { 532 return NULL; 533 } 534 535 static inline void 536 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 537 { 538 } 539 540 static inline int tg_is_idle(struct task_group *tg) 541 { 542 return 0; 543 } 544 545 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 546 { 547 return 0; 548 } 549 550 static int se_is_idle(struct sched_entity *se) 551 { 552 return 0; 553 } 554 555 #endif /* CONFIG_FAIR_GROUP_SCHED */ 556 557 static __always_inline 558 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 559 560 /************************************************************** 561 * Scheduling class tree data structure manipulation methods: 562 */ 563 564 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 565 { 566 s64 delta = (s64)(vruntime - max_vruntime); 567 if (delta > 0) 568 max_vruntime = vruntime; 569 570 return max_vruntime; 571 } 572 573 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 574 { 575 s64 delta = (s64)(vruntime - min_vruntime); 576 if (delta < 0) 577 min_vruntime = vruntime; 578 579 return min_vruntime; 580 } 581 582 static inline bool entity_before(struct sched_entity *a, 583 struct sched_entity *b) 584 { 585 return (s64)(a->vruntime - b->vruntime) < 0; 586 } 587 588 #define __node_2_se(node) \ 589 rb_entry((node), struct sched_entity, run_node) 590 591 static void update_min_vruntime(struct cfs_rq *cfs_rq) 592 { 593 struct sched_entity *curr = cfs_rq->curr; 594 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 595 596 u64 vruntime = cfs_rq->min_vruntime; 597 598 if (curr) { 599 if (curr->on_rq) 600 vruntime = curr->vruntime; 601 else 602 curr = NULL; 603 } 604 605 if (leftmost) { /* non-empty tree */ 606 struct sched_entity *se = __node_2_se(leftmost); 607 608 if (!curr) 609 vruntime = se->vruntime; 610 else 611 vruntime = min_vruntime(vruntime, se->vruntime); 612 } 613 614 /* ensure we never gain time by being placed backwards. */ 615 u64_u32_store(cfs_rq->min_vruntime, 616 max_vruntime(cfs_rq->min_vruntime, vruntime)); 617 } 618 619 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 620 { 621 return entity_before(__node_2_se(a), __node_2_se(b)); 622 } 623 624 /* 625 * Enqueue an entity into the rb-tree: 626 */ 627 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 628 { 629 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 630 } 631 632 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 633 { 634 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 635 } 636 637 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 638 { 639 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 640 641 if (!left) 642 return NULL; 643 644 return __node_2_se(left); 645 } 646 647 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 648 { 649 struct rb_node *next = rb_next(&se->run_node); 650 651 if (!next) 652 return NULL; 653 654 return __node_2_se(next); 655 } 656 657 #ifdef CONFIG_SCHED_DEBUG 658 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 659 { 660 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 661 662 if (!last) 663 return NULL; 664 665 return __node_2_se(last); 666 } 667 668 /************************************************************** 669 * Scheduling class statistics methods: 670 */ 671 672 int sched_update_scaling(void) 673 { 674 unsigned int factor = get_update_sysctl_factor(); 675 676 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 677 sysctl_sched_min_granularity); 678 679 #define WRT_SYSCTL(name) \ 680 (normalized_sysctl_##name = sysctl_##name / (factor)) 681 WRT_SYSCTL(sched_min_granularity); 682 WRT_SYSCTL(sched_latency); 683 WRT_SYSCTL(sched_wakeup_granularity); 684 #undef WRT_SYSCTL 685 686 return 0; 687 } 688 #endif 689 690 /* 691 * delta /= w 692 */ 693 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 694 { 695 if (unlikely(se->load.weight != NICE_0_LOAD)) 696 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 697 698 return delta; 699 } 700 701 /* 702 * The idea is to set a period in which each task runs once. 703 * 704 * When there are too many tasks (sched_nr_latency) we have to stretch 705 * this period because otherwise the slices get too small. 706 * 707 * p = (nr <= nl) ? l : l*nr/nl 708 */ 709 static u64 __sched_period(unsigned long nr_running) 710 { 711 if (unlikely(nr_running > sched_nr_latency)) 712 return nr_running * sysctl_sched_min_granularity; 713 else 714 return sysctl_sched_latency; 715 } 716 717 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 718 719 /* 720 * We calculate the wall-time slice from the period by taking a part 721 * proportional to the weight. 722 * 723 * s = p*P[w/rw] 724 */ 725 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 726 { 727 unsigned int nr_running = cfs_rq->nr_running; 728 struct sched_entity *init_se = se; 729 unsigned int min_gran; 730 u64 slice; 731 732 if (sched_feat(ALT_PERIOD)) 733 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 734 735 slice = __sched_period(nr_running + !se->on_rq); 736 737 for_each_sched_entity(se) { 738 struct load_weight *load; 739 struct load_weight lw; 740 struct cfs_rq *qcfs_rq; 741 742 qcfs_rq = cfs_rq_of(se); 743 load = &qcfs_rq->load; 744 745 if (unlikely(!se->on_rq)) { 746 lw = qcfs_rq->load; 747 748 update_load_add(&lw, se->load.weight); 749 load = &lw; 750 } 751 slice = __calc_delta(slice, se->load.weight, load); 752 } 753 754 if (sched_feat(BASE_SLICE)) { 755 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 756 min_gran = sysctl_sched_idle_min_granularity; 757 else 758 min_gran = sysctl_sched_min_granularity; 759 760 slice = max_t(u64, slice, min_gran); 761 } 762 763 return slice; 764 } 765 766 /* 767 * We calculate the vruntime slice of a to-be-inserted task. 768 * 769 * vs = s/w 770 */ 771 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 772 { 773 return calc_delta_fair(sched_slice(cfs_rq, se), se); 774 } 775 776 #include "pelt.h" 777 #ifdef CONFIG_SMP 778 779 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 780 static unsigned long task_h_load(struct task_struct *p); 781 static unsigned long capacity_of(int cpu); 782 783 /* Give new sched_entity start runnable values to heavy its load in infant time */ 784 void init_entity_runnable_average(struct sched_entity *se) 785 { 786 struct sched_avg *sa = &se->avg; 787 788 memset(sa, 0, sizeof(*sa)); 789 790 /* 791 * Tasks are initialized with full load to be seen as heavy tasks until 792 * they get a chance to stabilize to their real load level. 793 * Group entities are initialized with zero load to reflect the fact that 794 * nothing has been attached to the task group yet. 795 */ 796 if (entity_is_task(se)) 797 sa->load_avg = scale_load_down(se->load.weight); 798 799 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 800 } 801 802 /* 803 * With new tasks being created, their initial util_avgs are extrapolated 804 * based on the cfs_rq's current util_avg: 805 * 806 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 807 * 808 * However, in many cases, the above util_avg does not give a desired 809 * value. Moreover, the sum of the util_avgs may be divergent, such 810 * as when the series is a harmonic series. 811 * 812 * To solve this problem, we also cap the util_avg of successive tasks to 813 * only 1/2 of the left utilization budget: 814 * 815 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 816 * 817 * where n denotes the nth task and cpu_scale the CPU capacity. 818 * 819 * For example, for a CPU with 1024 of capacity, a simplest series from 820 * the beginning would be like: 821 * 822 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 823 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 824 * 825 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 826 * if util_avg > util_avg_cap. 827 */ 828 void post_init_entity_util_avg(struct task_struct *p) 829 { 830 struct sched_entity *se = &p->se; 831 struct cfs_rq *cfs_rq = cfs_rq_of(se); 832 struct sched_avg *sa = &se->avg; 833 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 834 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 835 836 if (p->sched_class != &fair_sched_class) { 837 /* 838 * For !fair tasks do: 839 * 840 update_cfs_rq_load_avg(now, cfs_rq); 841 attach_entity_load_avg(cfs_rq, se); 842 switched_from_fair(rq, p); 843 * 844 * such that the next switched_to_fair() has the 845 * expected state. 846 */ 847 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 848 return; 849 } 850 851 if (cap > 0) { 852 if (cfs_rq->avg.util_avg != 0) { 853 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 854 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 855 856 if (sa->util_avg > cap) 857 sa->util_avg = cap; 858 } else { 859 sa->util_avg = cap; 860 } 861 } 862 863 sa->runnable_avg = sa->util_avg; 864 } 865 866 #else /* !CONFIG_SMP */ 867 void init_entity_runnable_average(struct sched_entity *se) 868 { 869 } 870 void post_init_entity_util_avg(struct task_struct *p) 871 { 872 } 873 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 874 { 875 } 876 #endif /* CONFIG_SMP */ 877 878 /* 879 * Update the current task's runtime statistics. 880 */ 881 static void update_curr(struct cfs_rq *cfs_rq) 882 { 883 struct sched_entity *curr = cfs_rq->curr; 884 u64 now = rq_clock_task(rq_of(cfs_rq)); 885 u64 delta_exec; 886 887 if (unlikely(!curr)) 888 return; 889 890 delta_exec = now - curr->exec_start; 891 if (unlikely((s64)delta_exec <= 0)) 892 return; 893 894 curr->exec_start = now; 895 896 if (schedstat_enabled()) { 897 struct sched_statistics *stats; 898 899 stats = __schedstats_from_se(curr); 900 __schedstat_set(stats->exec_max, 901 max(delta_exec, stats->exec_max)); 902 } 903 904 curr->sum_exec_runtime += delta_exec; 905 schedstat_add(cfs_rq->exec_clock, delta_exec); 906 907 curr->vruntime += calc_delta_fair(delta_exec, curr); 908 update_min_vruntime(cfs_rq); 909 910 if (entity_is_task(curr)) { 911 struct task_struct *curtask = task_of(curr); 912 913 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 914 cgroup_account_cputime(curtask, delta_exec); 915 account_group_exec_runtime(curtask, delta_exec); 916 } 917 918 account_cfs_rq_runtime(cfs_rq, delta_exec); 919 } 920 921 static void update_curr_fair(struct rq *rq) 922 { 923 update_curr(cfs_rq_of(&rq->curr->se)); 924 } 925 926 static inline void 927 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 928 { 929 struct sched_statistics *stats; 930 struct task_struct *p = NULL; 931 932 if (!schedstat_enabled()) 933 return; 934 935 stats = __schedstats_from_se(se); 936 937 if (entity_is_task(se)) 938 p = task_of(se); 939 940 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 941 } 942 943 static inline void 944 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 945 { 946 struct sched_statistics *stats; 947 struct task_struct *p = NULL; 948 949 if (!schedstat_enabled()) 950 return; 951 952 stats = __schedstats_from_se(se); 953 954 /* 955 * When the sched_schedstat changes from 0 to 1, some sched se 956 * maybe already in the runqueue, the se->statistics.wait_start 957 * will be 0.So it will let the delta wrong. We need to avoid this 958 * scenario. 959 */ 960 if (unlikely(!schedstat_val(stats->wait_start))) 961 return; 962 963 if (entity_is_task(se)) 964 p = task_of(se); 965 966 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 967 } 968 969 static inline void 970 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 971 { 972 struct sched_statistics *stats; 973 struct task_struct *tsk = NULL; 974 975 if (!schedstat_enabled()) 976 return; 977 978 stats = __schedstats_from_se(se); 979 980 if (entity_is_task(se)) 981 tsk = task_of(se); 982 983 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 984 } 985 986 /* 987 * Task is being enqueued - update stats: 988 */ 989 static inline void 990 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 991 { 992 if (!schedstat_enabled()) 993 return; 994 995 /* 996 * Are we enqueueing a waiting task? (for current tasks 997 * a dequeue/enqueue event is a NOP) 998 */ 999 if (se != cfs_rq->curr) 1000 update_stats_wait_start_fair(cfs_rq, se); 1001 1002 if (flags & ENQUEUE_WAKEUP) 1003 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1004 } 1005 1006 static inline void 1007 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1008 { 1009 1010 if (!schedstat_enabled()) 1011 return; 1012 1013 /* 1014 * Mark the end of the wait period if dequeueing a 1015 * waiting task: 1016 */ 1017 if (se != cfs_rq->curr) 1018 update_stats_wait_end_fair(cfs_rq, se); 1019 1020 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1021 struct task_struct *tsk = task_of(se); 1022 unsigned int state; 1023 1024 /* XXX racy against TTWU */ 1025 state = READ_ONCE(tsk->__state); 1026 if (state & TASK_INTERRUPTIBLE) 1027 __schedstat_set(tsk->stats.sleep_start, 1028 rq_clock(rq_of(cfs_rq))); 1029 if (state & TASK_UNINTERRUPTIBLE) 1030 __schedstat_set(tsk->stats.block_start, 1031 rq_clock(rq_of(cfs_rq))); 1032 } 1033 } 1034 1035 /* 1036 * We are picking a new current task - update its stats: 1037 */ 1038 static inline void 1039 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1040 { 1041 /* 1042 * We are starting a new run period: 1043 */ 1044 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1045 } 1046 1047 /************************************************** 1048 * Scheduling class queueing methods: 1049 */ 1050 1051 #ifdef CONFIG_NUMA 1052 #define NUMA_IMBALANCE_MIN 2 1053 1054 static inline long 1055 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1056 { 1057 /* 1058 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1059 * threshold. Above this threshold, individual tasks may be contending 1060 * for both memory bandwidth and any shared HT resources. This is an 1061 * approximation as the number of running tasks may not be related to 1062 * the number of busy CPUs due to sched_setaffinity. 1063 */ 1064 if (dst_running > imb_numa_nr) 1065 return imbalance; 1066 1067 /* 1068 * Allow a small imbalance based on a simple pair of communicating 1069 * tasks that remain local when the destination is lightly loaded. 1070 */ 1071 if (imbalance <= NUMA_IMBALANCE_MIN) 1072 return 0; 1073 1074 return imbalance; 1075 } 1076 #endif /* CONFIG_NUMA */ 1077 1078 #ifdef CONFIG_NUMA_BALANCING 1079 /* 1080 * Approximate time to scan a full NUMA task in ms. The task scan period is 1081 * calculated based on the tasks virtual memory size and 1082 * numa_balancing_scan_size. 1083 */ 1084 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1085 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1086 1087 /* Portion of address space to scan in MB */ 1088 unsigned int sysctl_numa_balancing_scan_size = 256; 1089 1090 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1091 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1092 1093 struct numa_group { 1094 refcount_t refcount; 1095 1096 spinlock_t lock; /* nr_tasks, tasks */ 1097 int nr_tasks; 1098 pid_t gid; 1099 int active_nodes; 1100 1101 struct rcu_head rcu; 1102 unsigned long total_faults; 1103 unsigned long max_faults_cpu; 1104 /* 1105 * faults[] array is split into two regions: faults_mem and faults_cpu. 1106 * 1107 * Faults_cpu is used to decide whether memory should move 1108 * towards the CPU. As a consequence, these stats are weighted 1109 * more by CPU use than by memory faults. 1110 */ 1111 unsigned long faults[]; 1112 }; 1113 1114 /* 1115 * For functions that can be called in multiple contexts that permit reading 1116 * ->numa_group (see struct task_struct for locking rules). 1117 */ 1118 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1119 { 1120 return rcu_dereference_check(p->numa_group, p == current || 1121 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1122 } 1123 1124 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1125 { 1126 return rcu_dereference_protected(p->numa_group, p == current); 1127 } 1128 1129 static inline unsigned long group_faults_priv(struct numa_group *ng); 1130 static inline unsigned long group_faults_shared(struct numa_group *ng); 1131 1132 static unsigned int task_nr_scan_windows(struct task_struct *p) 1133 { 1134 unsigned long rss = 0; 1135 unsigned long nr_scan_pages; 1136 1137 /* 1138 * Calculations based on RSS as non-present and empty pages are skipped 1139 * by the PTE scanner and NUMA hinting faults should be trapped based 1140 * on resident pages 1141 */ 1142 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1143 rss = get_mm_rss(p->mm); 1144 if (!rss) 1145 rss = nr_scan_pages; 1146 1147 rss = round_up(rss, nr_scan_pages); 1148 return rss / nr_scan_pages; 1149 } 1150 1151 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1152 #define MAX_SCAN_WINDOW 2560 1153 1154 static unsigned int task_scan_min(struct task_struct *p) 1155 { 1156 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1157 unsigned int scan, floor; 1158 unsigned int windows = 1; 1159 1160 if (scan_size < MAX_SCAN_WINDOW) 1161 windows = MAX_SCAN_WINDOW / scan_size; 1162 floor = 1000 / windows; 1163 1164 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1165 return max_t(unsigned int, floor, scan); 1166 } 1167 1168 static unsigned int task_scan_start(struct task_struct *p) 1169 { 1170 unsigned long smin = task_scan_min(p); 1171 unsigned long period = smin; 1172 struct numa_group *ng; 1173 1174 /* Scale the maximum scan period with the amount of shared memory. */ 1175 rcu_read_lock(); 1176 ng = rcu_dereference(p->numa_group); 1177 if (ng) { 1178 unsigned long shared = group_faults_shared(ng); 1179 unsigned long private = group_faults_priv(ng); 1180 1181 period *= refcount_read(&ng->refcount); 1182 period *= shared + 1; 1183 period /= private + shared + 1; 1184 } 1185 rcu_read_unlock(); 1186 1187 return max(smin, period); 1188 } 1189 1190 static unsigned int task_scan_max(struct task_struct *p) 1191 { 1192 unsigned long smin = task_scan_min(p); 1193 unsigned long smax; 1194 struct numa_group *ng; 1195 1196 /* Watch for min being lower than max due to floor calculations */ 1197 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1198 1199 /* Scale the maximum scan period with the amount of shared memory. */ 1200 ng = deref_curr_numa_group(p); 1201 if (ng) { 1202 unsigned long shared = group_faults_shared(ng); 1203 unsigned long private = group_faults_priv(ng); 1204 unsigned long period = smax; 1205 1206 period *= refcount_read(&ng->refcount); 1207 period *= shared + 1; 1208 period /= private + shared + 1; 1209 1210 smax = max(smax, period); 1211 } 1212 1213 return max(smin, smax); 1214 } 1215 1216 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1217 { 1218 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1219 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1220 } 1221 1222 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1223 { 1224 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1225 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1226 } 1227 1228 /* Shared or private faults. */ 1229 #define NR_NUMA_HINT_FAULT_TYPES 2 1230 1231 /* Memory and CPU locality */ 1232 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1233 1234 /* Averaged statistics, and temporary buffers. */ 1235 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1236 1237 pid_t task_numa_group_id(struct task_struct *p) 1238 { 1239 struct numa_group *ng; 1240 pid_t gid = 0; 1241 1242 rcu_read_lock(); 1243 ng = rcu_dereference(p->numa_group); 1244 if (ng) 1245 gid = ng->gid; 1246 rcu_read_unlock(); 1247 1248 return gid; 1249 } 1250 1251 /* 1252 * The averaged statistics, shared & private, memory & CPU, 1253 * occupy the first half of the array. The second half of the 1254 * array is for current counters, which are averaged into the 1255 * first set by task_numa_placement. 1256 */ 1257 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1258 { 1259 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1260 } 1261 1262 static inline unsigned long task_faults(struct task_struct *p, int nid) 1263 { 1264 if (!p->numa_faults) 1265 return 0; 1266 1267 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1268 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1269 } 1270 1271 static inline unsigned long group_faults(struct task_struct *p, int nid) 1272 { 1273 struct numa_group *ng = deref_task_numa_group(p); 1274 1275 if (!ng) 1276 return 0; 1277 1278 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1279 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1280 } 1281 1282 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1283 { 1284 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1285 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1286 } 1287 1288 static inline unsigned long group_faults_priv(struct numa_group *ng) 1289 { 1290 unsigned long faults = 0; 1291 int node; 1292 1293 for_each_online_node(node) { 1294 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1295 } 1296 1297 return faults; 1298 } 1299 1300 static inline unsigned long group_faults_shared(struct numa_group *ng) 1301 { 1302 unsigned long faults = 0; 1303 int node; 1304 1305 for_each_online_node(node) { 1306 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1307 } 1308 1309 return faults; 1310 } 1311 1312 /* 1313 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1314 * considered part of a numa group's pseudo-interleaving set. Migrations 1315 * between these nodes are slowed down, to allow things to settle down. 1316 */ 1317 #define ACTIVE_NODE_FRACTION 3 1318 1319 static bool numa_is_active_node(int nid, struct numa_group *ng) 1320 { 1321 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1322 } 1323 1324 /* Handle placement on systems where not all nodes are directly connected. */ 1325 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1326 int lim_dist, bool task) 1327 { 1328 unsigned long score = 0; 1329 int node, max_dist; 1330 1331 /* 1332 * All nodes are directly connected, and the same distance 1333 * from each other. No need for fancy placement algorithms. 1334 */ 1335 if (sched_numa_topology_type == NUMA_DIRECT) 1336 return 0; 1337 1338 /* sched_max_numa_distance may be changed in parallel. */ 1339 max_dist = READ_ONCE(sched_max_numa_distance); 1340 /* 1341 * This code is called for each node, introducing N^2 complexity, 1342 * which should be ok given the number of nodes rarely exceeds 8. 1343 */ 1344 for_each_online_node(node) { 1345 unsigned long faults; 1346 int dist = node_distance(nid, node); 1347 1348 /* 1349 * The furthest away nodes in the system are not interesting 1350 * for placement; nid was already counted. 1351 */ 1352 if (dist >= max_dist || node == nid) 1353 continue; 1354 1355 /* 1356 * On systems with a backplane NUMA topology, compare groups 1357 * of nodes, and move tasks towards the group with the most 1358 * memory accesses. When comparing two nodes at distance 1359 * "hoplimit", only nodes closer by than "hoplimit" are part 1360 * of each group. Skip other nodes. 1361 */ 1362 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1363 continue; 1364 1365 /* Add up the faults from nearby nodes. */ 1366 if (task) 1367 faults = task_faults(p, node); 1368 else 1369 faults = group_faults(p, node); 1370 1371 /* 1372 * On systems with a glueless mesh NUMA topology, there are 1373 * no fixed "groups of nodes". Instead, nodes that are not 1374 * directly connected bounce traffic through intermediate 1375 * nodes; a numa_group can occupy any set of nodes. 1376 * The further away a node is, the less the faults count. 1377 * This seems to result in good task placement. 1378 */ 1379 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1380 faults *= (max_dist - dist); 1381 faults /= (max_dist - LOCAL_DISTANCE); 1382 } 1383 1384 score += faults; 1385 } 1386 1387 return score; 1388 } 1389 1390 /* 1391 * These return the fraction of accesses done by a particular task, or 1392 * task group, on a particular numa node. The group weight is given a 1393 * larger multiplier, in order to group tasks together that are almost 1394 * evenly spread out between numa nodes. 1395 */ 1396 static inline unsigned long task_weight(struct task_struct *p, int nid, 1397 int dist) 1398 { 1399 unsigned long faults, total_faults; 1400 1401 if (!p->numa_faults) 1402 return 0; 1403 1404 total_faults = p->total_numa_faults; 1405 1406 if (!total_faults) 1407 return 0; 1408 1409 faults = task_faults(p, nid); 1410 faults += score_nearby_nodes(p, nid, dist, true); 1411 1412 return 1000 * faults / total_faults; 1413 } 1414 1415 static inline unsigned long group_weight(struct task_struct *p, int nid, 1416 int dist) 1417 { 1418 struct numa_group *ng = deref_task_numa_group(p); 1419 unsigned long faults, total_faults; 1420 1421 if (!ng) 1422 return 0; 1423 1424 total_faults = ng->total_faults; 1425 1426 if (!total_faults) 1427 return 0; 1428 1429 faults = group_faults(p, nid); 1430 faults += score_nearby_nodes(p, nid, dist, false); 1431 1432 return 1000 * faults / total_faults; 1433 } 1434 1435 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1436 int src_nid, int dst_cpu) 1437 { 1438 struct numa_group *ng = deref_curr_numa_group(p); 1439 int dst_nid = cpu_to_node(dst_cpu); 1440 int last_cpupid, this_cpupid; 1441 1442 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1443 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1444 1445 /* 1446 * Allow first faults or private faults to migrate immediately early in 1447 * the lifetime of a task. The magic number 4 is based on waiting for 1448 * two full passes of the "multi-stage node selection" test that is 1449 * executed below. 1450 */ 1451 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1452 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1453 return true; 1454 1455 /* 1456 * Multi-stage node selection is used in conjunction with a periodic 1457 * migration fault to build a temporal task<->page relation. By using 1458 * a two-stage filter we remove short/unlikely relations. 1459 * 1460 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1461 * a task's usage of a particular page (n_p) per total usage of this 1462 * page (n_t) (in a given time-span) to a probability. 1463 * 1464 * Our periodic faults will sample this probability and getting the 1465 * same result twice in a row, given these samples are fully 1466 * independent, is then given by P(n)^2, provided our sample period 1467 * is sufficiently short compared to the usage pattern. 1468 * 1469 * This quadric squishes small probabilities, making it less likely we 1470 * act on an unlikely task<->page relation. 1471 */ 1472 if (!cpupid_pid_unset(last_cpupid) && 1473 cpupid_to_nid(last_cpupid) != dst_nid) 1474 return false; 1475 1476 /* Always allow migrate on private faults */ 1477 if (cpupid_match_pid(p, last_cpupid)) 1478 return true; 1479 1480 /* A shared fault, but p->numa_group has not been set up yet. */ 1481 if (!ng) 1482 return true; 1483 1484 /* 1485 * Destination node is much more heavily used than the source 1486 * node? Allow migration. 1487 */ 1488 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1489 ACTIVE_NODE_FRACTION) 1490 return true; 1491 1492 /* 1493 * Distribute memory according to CPU & memory use on each node, 1494 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1495 * 1496 * faults_cpu(dst) 3 faults_cpu(src) 1497 * --------------- * - > --------------- 1498 * faults_mem(dst) 4 faults_mem(src) 1499 */ 1500 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1501 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1502 } 1503 1504 /* 1505 * 'numa_type' describes the node at the moment of load balancing. 1506 */ 1507 enum numa_type { 1508 /* The node has spare capacity that can be used to run more tasks. */ 1509 node_has_spare = 0, 1510 /* 1511 * The node is fully used and the tasks don't compete for more CPU 1512 * cycles. Nevertheless, some tasks might wait before running. 1513 */ 1514 node_fully_busy, 1515 /* 1516 * The node is overloaded and can't provide expected CPU cycles to all 1517 * tasks. 1518 */ 1519 node_overloaded 1520 }; 1521 1522 /* Cached statistics for all CPUs within a node */ 1523 struct numa_stats { 1524 unsigned long load; 1525 unsigned long runnable; 1526 unsigned long util; 1527 /* Total compute capacity of CPUs on a node */ 1528 unsigned long compute_capacity; 1529 unsigned int nr_running; 1530 unsigned int weight; 1531 enum numa_type node_type; 1532 int idle_cpu; 1533 }; 1534 1535 static inline bool is_core_idle(int cpu) 1536 { 1537 #ifdef CONFIG_SCHED_SMT 1538 int sibling; 1539 1540 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1541 if (cpu == sibling) 1542 continue; 1543 1544 if (!idle_cpu(sibling)) 1545 return false; 1546 } 1547 #endif 1548 1549 return true; 1550 } 1551 1552 struct task_numa_env { 1553 struct task_struct *p; 1554 1555 int src_cpu, src_nid; 1556 int dst_cpu, dst_nid; 1557 int imb_numa_nr; 1558 1559 struct numa_stats src_stats, dst_stats; 1560 1561 int imbalance_pct; 1562 int dist; 1563 1564 struct task_struct *best_task; 1565 long best_imp; 1566 int best_cpu; 1567 }; 1568 1569 static unsigned long cpu_load(struct rq *rq); 1570 static unsigned long cpu_runnable(struct rq *rq); 1571 1572 static inline enum 1573 numa_type numa_classify(unsigned int imbalance_pct, 1574 struct numa_stats *ns) 1575 { 1576 if ((ns->nr_running > ns->weight) && 1577 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1578 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1579 return node_overloaded; 1580 1581 if ((ns->nr_running < ns->weight) || 1582 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1583 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1584 return node_has_spare; 1585 1586 return node_fully_busy; 1587 } 1588 1589 #ifdef CONFIG_SCHED_SMT 1590 /* Forward declarations of select_idle_sibling helpers */ 1591 static inline bool test_idle_cores(int cpu); 1592 static inline int numa_idle_core(int idle_core, int cpu) 1593 { 1594 if (!static_branch_likely(&sched_smt_present) || 1595 idle_core >= 0 || !test_idle_cores(cpu)) 1596 return idle_core; 1597 1598 /* 1599 * Prefer cores instead of packing HT siblings 1600 * and triggering future load balancing. 1601 */ 1602 if (is_core_idle(cpu)) 1603 idle_core = cpu; 1604 1605 return idle_core; 1606 } 1607 #else 1608 static inline int numa_idle_core(int idle_core, int cpu) 1609 { 1610 return idle_core; 1611 } 1612 #endif 1613 1614 /* 1615 * Gather all necessary information to make NUMA balancing placement 1616 * decisions that are compatible with standard load balancer. This 1617 * borrows code and logic from update_sg_lb_stats but sharing a 1618 * common implementation is impractical. 1619 */ 1620 static void update_numa_stats(struct task_numa_env *env, 1621 struct numa_stats *ns, int nid, 1622 bool find_idle) 1623 { 1624 int cpu, idle_core = -1; 1625 1626 memset(ns, 0, sizeof(*ns)); 1627 ns->idle_cpu = -1; 1628 1629 rcu_read_lock(); 1630 for_each_cpu(cpu, cpumask_of_node(nid)) { 1631 struct rq *rq = cpu_rq(cpu); 1632 1633 ns->load += cpu_load(rq); 1634 ns->runnable += cpu_runnable(rq); 1635 ns->util += cpu_util_cfs(cpu); 1636 ns->nr_running += rq->cfs.h_nr_running; 1637 ns->compute_capacity += capacity_of(cpu); 1638 1639 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1640 if (READ_ONCE(rq->numa_migrate_on) || 1641 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1642 continue; 1643 1644 if (ns->idle_cpu == -1) 1645 ns->idle_cpu = cpu; 1646 1647 idle_core = numa_idle_core(idle_core, cpu); 1648 } 1649 } 1650 rcu_read_unlock(); 1651 1652 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1653 1654 ns->node_type = numa_classify(env->imbalance_pct, ns); 1655 1656 if (idle_core >= 0) 1657 ns->idle_cpu = idle_core; 1658 } 1659 1660 static void task_numa_assign(struct task_numa_env *env, 1661 struct task_struct *p, long imp) 1662 { 1663 struct rq *rq = cpu_rq(env->dst_cpu); 1664 1665 /* Check if run-queue part of active NUMA balance. */ 1666 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1667 int cpu; 1668 int start = env->dst_cpu; 1669 1670 /* Find alternative idle CPU. */ 1671 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1672 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1673 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1674 continue; 1675 } 1676 1677 env->dst_cpu = cpu; 1678 rq = cpu_rq(env->dst_cpu); 1679 if (!xchg(&rq->numa_migrate_on, 1)) 1680 goto assign; 1681 } 1682 1683 /* Failed to find an alternative idle CPU */ 1684 return; 1685 } 1686 1687 assign: 1688 /* 1689 * Clear previous best_cpu/rq numa-migrate flag, since task now 1690 * found a better CPU to move/swap. 1691 */ 1692 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1693 rq = cpu_rq(env->best_cpu); 1694 WRITE_ONCE(rq->numa_migrate_on, 0); 1695 } 1696 1697 if (env->best_task) 1698 put_task_struct(env->best_task); 1699 if (p) 1700 get_task_struct(p); 1701 1702 env->best_task = p; 1703 env->best_imp = imp; 1704 env->best_cpu = env->dst_cpu; 1705 } 1706 1707 static bool load_too_imbalanced(long src_load, long dst_load, 1708 struct task_numa_env *env) 1709 { 1710 long imb, old_imb; 1711 long orig_src_load, orig_dst_load; 1712 long src_capacity, dst_capacity; 1713 1714 /* 1715 * The load is corrected for the CPU capacity available on each node. 1716 * 1717 * src_load dst_load 1718 * ------------ vs --------- 1719 * src_capacity dst_capacity 1720 */ 1721 src_capacity = env->src_stats.compute_capacity; 1722 dst_capacity = env->dst_stats.compute_capacity; 1723 1724 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1725 1726 orig_src_load = env->src_stats.load; 1727 orig_dst_load = env->dst_stats.load; 1728 1729 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1730 1731 /* Would this change make things worse? */ 1732 return (imb > old_imb); 1733 } 1734 1735 /* 1736 * Maximum NUMA importance can be 1998 (2*999); 1737 * SMALLIMP @ 30 would be close to 1998/64. 1738 * Used to deter task migration. 1739 */ 1740 #define SMALLIMP 30 1741 1742 /* 1743 * This checks if the overall compute and NUMA accesses of the system would 1744 * be improved if the source tasks was migrated to the target dst_cpu taking 1745 * into account that it might be best if task running on the dst_cpu should 1746 * be exchanged with the source task 1747 */ 1748 static bool task_numa_compare(struct task_numa_env *env, 1749 long taskimp, long groupimp, bool maymove) 1750 { 1751 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1752 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1753 long imp = p_ng ? groupimp : taskimp; 1754 struct task_struct *cur; 1755 long src_load, dst_load; 1756 int dist = env->dist; 1757 long moveimp = imp; 1758 long load; 1759 bool stopsearch = false; 1760 1761 if (READ_ONCE(dst_rq->numa_migrate_on)) 1762 return false; 1763 1764 rcu_read_lock(); 1765 cur = rcu_dereference(dst_rq->curr); 1766 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1767 cur = NULL; 1768 1769 /* 1770 * Because we have preemption enabled we can get migrated around and 1771 * end try selecting ourselves (current == env->p) as a swap candidate. 1772 */ 1773 if (cur == env->p) { 1774 stopsearch = true; 1775 goto unlock; 1776 } 1777 1778 if (!cur) { 1779 if (maymove && moveimp >= env->best_imp) 1780 goto assign; 1781 else 1782 goto unlock; 1783 } 1784 1785 /* Skip this swap candidate if cannot move to the source cpu. */ 1786 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1787 goto unlock; 1788 1789 /* 1790 * Skip this swap candidate if it is not moving to its preferred 1791 * node and the best task is. 1792 */ 1793 if (env->best_task && 1794 env->best_task->numa_preferred_nid == env->src_nid && 1795 cur->numa_preferred_nid != env->src_nid) { 1796 goto unlock; 1797 } 1798 1799 /* 1800 * "imp" is the fault differential for the source task between the 1801 * source and destination node. Calculate the total differential for 1802 * the source task and potential destination task. The more negative 1803 * the value is, the more remote accesses that would be expected to 1804 * be incurred if the tasks were swapped. 1805 * 1806 * If dst and source tasks are in the same NUMA group, or not 1807 * in any group then look only at task weights. 1808 */ 1809 cur_ng = rcu_dereference(cur->numa_group); 1810 if (cur_ng == p_ng) { 1811 /* 1812 * Do not swap within a group or between tasks that have 1813 * no group if there is spare capacity. Swapping does 1814 * not address the load imbalance and helps one task at 1815 * the cost of punishing another. 1816 */ 1817 if (env->dst_stats.node_type == node_has_spare) 1818 goto unlock; 1819 1820 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1821 task_weight(cur, env->dst_nid, dist); 1822 /* 1823 * Add some hysteresis to prevent swapping the 1824 * tasks within a group over tiny differences. 1825 */ 1826 if (cur_ng) 1827 imp -= imp / 16; 1828 } else { 1829 /* 1830 * Compare the group weights. If a task is all by itself 1831 * (not part of a group), use the task weight instead. 1832 */ 1833 if (cur_ng && p_ng) 1834 imp += group_weight(cur, env->src_nid, dist) - 1835 group_weight(cur, env->dst_nid, dist); 1836 else 1837 imp += task_weight(cur, env->src_nid, dist) - 1838 task_weight(cur, env->dst_nid, dist); 1839 } 1840 1841 /* Discourage picking a task already on its preferred node */ 1842 if (cur->numa_preferred_nid == env->dst_nid) 1843 imp -= imp / 16; 1844 1845 /* 1846 * Encourage picking a task that moves to its preferred node. 1847 * This potentially makes imp larger than it's maximum of 1848 * 1998 (see SMALLIMP and task_weight for why) but in this 1849 * case, it does not matter. 1850 */ 1851 if (cur->numa_preferred_nid == env->src_nid) 1852 imp += imp / 8; 1853 1854 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1855 imp = moveimp; 1856 cur = NULL; 1857 goto assign; 1858 } 1859 1860 /* 1861 * Prefer swapping with a task moving to its preferred node over a 1862 * task that is not. 1863 */ 1864 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1865 env->best_task->numa_preferred_nid != env->src_nid) { 1866 goto assign; 1867 } 1868 1869 /* 1870 * If the NUMA importance is less than SMALLIMP, 1871 * task migration might only result in ping pong 1872 * of tasks and also hurt performance due to cache 1873 * misses. 1874 */ 1875 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1876 goto unlock; 1877 1878 /* 1879 * In the overloaded case, try and keep the load balanced. 1880 */ 1881 load = task_h_load(env->p) - task_h_load(cur); 1882 if (!load) 1883 goto assign; 1884 1885 dst_load = env->dst_stats.load + load; 1886 src_load = env->src_stats.load - load; 1887 1888 if (load_too_imbalanced(src_load, dst_load, env)) 1889 goto unlock; 1890 1891 assign: 1892 /* Evaluate an idle CPU for a task numa move. */ 1893 if (!cur) { 1894 int cpu = env->dst_stats.idle_cpu; 1895 1896 /* Nothing cached so current CPU went idle since the search. */ 1897 if (cpu < 0) 1898 cpu = env->dst_cpu; 1899 1900 /* 1901 * If the CPU is no longer truly idle and the previous best CPU 1902 * is, keep using it. 1903 */ 1904 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1905 idle_cpu(env->best_cpu)) { 1906 cpu = env->best_cpu; 1907 } 1908 1909 env->dst_cpu = cpu; 1910 } 1911 1912 task_numa_assign(env, cur, imp); 1913 1914 /* 1915 * If a move to idle is allowed because there is capacity or load 1916 * balance improves then stop the search. While a better swap 1917 * candidate may exist, a search is not free. 1918 */ 1919 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1920 stopsearch = true; 1921 1922 /* 1923 * If a swap candidate must be identified and the current best task 1924 * moves its preferred node then stop the search. 1925 */ 1926 if (!maymove && env->best_task && 1927 env->best_task->numa_preferred_nid == env->src_nid) { 1928 stopsearch = true; 1929 } 1930 unlock: 1931 rcu_read_unlock(); 1932 1933 return stopsearch; 1934 } 1935 1936 static void task_numa_find_cpu(struct task_numa_env *env, 1937 long taskimp, long groupimp) 1938 { 1939 bool maymove = false; 1940 int cpu; 1941 1942 /* 1943 * If dst node has spare capacity, then check if there is an 1944 * imbalance that would be overruled by the load balancer. 1945 */ 1946 if (env->dst_stats.node_type == node_has_spare) { 1947 unsigned int imbalance; 1948 int src_running, dst_running; 1949 1950 /* 1951 * Would movement cause an imbalance? Note that if src has 1952 * more running tasks that the imbalance is ignored as the 1953 * move improves the imbalance from the perspective of the 1954 * CPU load balancer. 1955 * */ 1956 src_running = env->src_stats.nr_running - 1; 1957 dst_running = env->dst_stats.nr_running + 1; 1958 imbalance = max(0, dst_running - src_running); 1959 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1960 env->imb_numa_nr); 1961 1962 /* Use idle CPU if there is no imbalance */ 1963 if (!imbalance) { 1964 maymove = true; 1965 if (env->dst_stats.idle_cpu >= 0) { 1966 env->dst_cpu = env->dst_stats.idle_cpu; 1967 task_numa_assign(env, NULL, 0); 1968 return; 1969 } 1970 } 1971 } else { 1972 long src_load, dst_load, load; 1973 /* 1974 * If the improvement from just moving env->p direction is better 1975 * than swapping tasks around, check if a move is possible. 1976 */ 1977 load = task_h_load(env->p); 1978 dst_load = env->dst_stats.load + load; 1979 src_load = env->src_stats.load - load; 1980 maymove = !load_too_imbalanced(src_load, dst_load, env); 1981 } 1982 1983 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1984 /* Skip this CPU if the source task cannot migrate */ 1985 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1986 continue; 1987 1988 env->dst_cpu = cpu; 1989 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1990 break; 1991 } 1992 } 1993 1994 static int task_numa_migrate(struct task_struct *p) 1995 { 1996 struct task_numa_env env = { 1997 .p = p, 1998 1999 .src_cpu = task_cpu(p), 2000 .src_nid = task_node(p), 2001 2002 .imbalance_pct = 112, 2003 2004 .best_task = NULL, 2005 .best_imp = 0, 2006 .best_cpu = -1, 2007 }; 2008 unsigned long taskweight, groupweight; 2009 struct sched_domain *sd; 2010 long taskimp, groupimp; 2011 struct numa_group *ng; 2012 struct rq *best_rq; 2013 int nid, ret, dist; 2014 2015 /* 2016 * Pick the lowest SD_NUMA domain, as that would have the smallest 2017 * imbalance and would be the first to start moving tasks about. 2018 * 2019 * And we want to avoid any moving of tasks about, as that would create 2020 * random movement of tasks -- counter the numa conditions we're trying 2021 * to satisfy here. 2022 */ 2023 rcu_read_lock(); 2024 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2025 if (sd) { 2026 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2027 env.imb_numa_nr = sd->imb_numa_nr; 2028 } 2029 rcu_read_unlock(); 2030 2031 /* 2032 * Cpusets can break the scheduler domain tree into smaller 2033 * balance domains, some of which do not cross NUMA boundaries. 2034 * Tasks that are "trapped" in such domains cannot be migrated 2035 * elsewhere, so there is no point in (re)trying. 2036 */ 2037 if (unlikely(!sd)) { 2038 sched_setnuma(p, task_node(p)); 2039 return -EINVAL; 2040 } 2041 2042 env.dst_nid = p->numa_preferred_nid; 2043 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2044 taskweight = task_weight(p, env.src_nid, dist); 2045 groupweight = group_weight(p, env.src_nid, dist); 2046 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2047 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2048 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2049 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2050 2051 /* Try to find a spot on the preferred nid. */ 2052 task_numa_find_cpu(&env, taskimp, groupimp); 2053 2054 /* 2055 * Look at other nodes in these cases: 2056 * - there is no space available on the preferred_nid 2057 * - the task is part of a numa_group that is interleaved across 2058 * multiple NUMA nodes; in order to better consolidate the group, 2059 * we need to check other locations. 2060 */ 2061 ng = deref_curr_numa_group(p); 2062 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2063 for_each_node_state(nid, N_CPU) { 2064 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2065 continue; 2066 2067 dist = node_distance(env.src_nid, env.dst_nid); 2068 if (sched_numa_topology_type == NUMA_BACKPLANE && 2069 dist != env.dist) { 2070 taskweight = task_weight(p, env.src_nid, dist); 2071 groupweight = group_weight(p, env.src_nid, dist); 2072 } 2073 2074 /* Only consider nodes where both task and groups benefit */ 2075 taskimp = task_weight(p, nid, dist) - taskweight; 2076 groupimp = group_weight(p, nid, dist) - groupweight; 2077 if (taskimp < 0 && groupimp < 0) 2078 continue; 2079 2080 env.dist = dist; 2081 env.dst_nid = nid; 2082 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2083 task_numa_find_cpu(&env, taskimp, groupimp); 2084 } 2085 } 2086 2087 /* 2088 * If the task is part of a workload that spans multiple NUMA nodes, 2089 * and is migrating into one of the workload's active nodes, remember 2090 * this node as the task's preferred numa node, so the workload can 2091 * settle down. 2092 * A task that migrated to a second choice node will be better off 2093 * trying for a better one later. Do not set the preferred node here. 2094 */ 2095 if (ng) { 2096 if (env.best_cpu == -1) 2097 nid = env.src_nid; 2098 else 2099 nid = cpu_to_node(env.best_cpu); 2100 2101 if (nid != p->numa_preferred_nid) 2102 sched_setnuma(p, nid); 2103 } 2104 2105 /* No better CPU than the current one was found. */ 2106 if (env.best_cpu == -1) { 2107 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2108 return -EAGAIN; 2109 } 2110 2111 best_rq = cpu_rq(env.best_cpu); 2112 if (env.best_task == NULL) { 2113 ret = migrate_task_to(p, env.best_cpu); 2114 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2115 if (ret != 0) 2116 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2117 return ret; 2118 } 2119 2120 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2121 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2122 2123 if (ret != 0) 2124 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2125 put_task_struct(env.best_task); 2126 return ret; 2127 } 2128 2129 /* Attempt to migrate a task to a CPU on the preferred node. */ 2130 static void numa_migrate_preferred(struct task_struct *p) 2131 { 2132 unsigned long interval = HZ; 2133 2134 /* This task has no NUMA fault statistics yet */ 2135 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2136 return; 2137 2138 /* Periodically retry migrating the task to the preferred node */ 2139 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2140 p->numa_migrate_retry = jiffies + interval; 2141 2142 /* Success if task is already running on preferred CPU */ 2143 if (task_node(p) == p->numa_preferred_nid) 2144 return; 2145 2146 /* Otherwise, try migrate to a CPU on the preferred node */ 2147 task_numa_migrate(p); 2148 } 2149 2150 /* 2151 * Find out how many nodes the workload is actively running on. Do this by 2152 * tracking the nodes from which NUMA hinting faults are triggered. This can 2153 * be different from the set of nodes where the workload's memory is currently 2154 * located. 2155 */ 2156 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2157 { 2158 unsigned long faults, max_faults = 0; 2159 int nid, active_nodes = 0; 2160 2161 for_each_node_state(nid, N_CPU) { 2162 faults = group_faults_cpu(numa_group, nid); 2163 if (faults > max_faults) 2164 max_faults = faults; 2165 } 2166 2167 for_each_node_state(nid, N_CPU) { 2168 faults = group_faults_cpu(numa_group, nid); 2169 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2170 active_nodes++; 2171 } 2172 2173 numa_group->max_faults_cpu = max_faults; 2174 numa_group->active_nodes = active_nodes; 2175 } 2176 2177 /* 2178 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2179 * increments. The more local the fault statistics are, the higher the scan 2180 * period will be for the next scan window. If local/(local+remote) ratio is 2181 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2182 * the scan period will decrease. Aim for 70% local accesses. 2183 */ 2184 #define NUMA_PERIOD_SLOTS 10 2185 #define NUMA_PERIOD_THRESHOLD 7 2186 2187 /* 2188 * Increase the scan period (slow down scanning) if the majority of 2189 * our memory is already on our local node, or if the majority of 2190 * the page accesses are shared with other processes. 2191 * Otherwise, decrease the scan period. 2192 */ 2193 static void update_task_scan_period(struct task_struct *p, 2194 unsigned long shared, unsigned long private) 2195 { 2196 unsigned int period_slot; 2197 int lr_ratio, ps_ratio; 2198 int diff; 2199 2200 unsigned long remote = p->numa_faults_locality[0]; 2201 unsigned long local = p->numa_faults_locality[1]; 2202 2203 /* 2204 * If there were no record hinting faults then either the task is 2205 * completely idle or all activity is in areas that are not of interest 2206 * to automatic numa balancing. Related to that, if there were failed 2207 * migration then it implies we are migrating too quickly or the local 2208 * node is overloaded. In either case, scan slower 2209 */ 2210 if (local + shared == 0 || p->numa_faults_locality[2]) { 2211 p->numa_scan_period = min(p->numa_scan_period_max, 2212 p->numa_scan_period << 1); 2213 2214 p->mm->numa_next_scan = jiffies + 2215 msecs_to_jiffies(p->numa_scan_period); 2216 2217 return; 2218 } 2219 2220 /* 2221 * Prepare to scale scan period relative to the current period. 2222 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2223 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2224 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2225 */ 2226 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2227 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2228 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2229 2230 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2231 /* 2232 * Most memory accesses are local. There is no need to 2233 * do fast NUMA scanning, since memory is already local. 2234 */ 2235 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2236 if (!slot) 2237 slot = 1; 2238 diff = slot * period_slot; 2239 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2240 /* 2241 * Most memory accesses are shared with other tasks. 2242 * There is no point in continuing fast NUMA scanning, 2243 * since other tasks may just move the memory elsewhere. 2244 */ 2245 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2246 if (!slot) 2247 slot = 1; 2248 diff = slot * period_slot; 2249 } else { 2250 /* 2251 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2252 * yet they are not on the local NUMA node. Speed up 2253 * NUMA scanning to get the memory moved over. 2254 */ 2255 int ratio = max(lr_ratio, ps_ratio); 2256 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2257 } 2258 2259 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2260 task_scan_min(p), task_scan_max(p)); 2261 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2262 } 2263 2264 /* 2265 * Get the fraction of time the task has been running since the last 2266 * NUMA placement cycle. The scheduler keeps similar statistics, but 2267 * decays those on a 32ms period, which is orders of magnitude off 2268 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2269 * stats only if the task is so new there are no NUMA statistics yet. 2270 */ 2271 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2272 { 2273 u64 runtime, delta, now; 2274 /* Use the start of this time slice to avoid calculations. */ 2275 now = p->se.exec_start; 2276 runtime = p->se.sum_exec_runtime; 2277 2278 if (p->last_task_numa_placement) { 2279 delta = runtime - p->last_sum_exec_runtime; 2280 *period = now - p->last_task_numa_placement; 2281 2282 /* Avoid time going backwards, prevent potential divide error: */ 2283 if (unlikely((s64)*period < 0)) 2284 *period = 0; 2285 } else { 2286 delta = p->se.avg.load_sum; 2287 *period = LOAD_AVG_MAX; 2288 } 2289 2290 p->last_sum_exec_runtime = runtime; 2291 p->last_task_numa_placement = now; 2292 2293 return delta; 2294 } 2295 2296 /* 2297 * Determine the preferred nid for a task in a numa_group. This needs to 2298 * be done in a way that produces consistent results with group_weight, 2299 * otherwise workloads might not converge. 2300 */ 2301 static int preferred_group_nid(struct task_struct *p, int nid) 2302 { 2303 nodemask_t nodes; 2304 int dist; 2305 2306 /* Direct connections between all NUMA nodes. */ 2307 if (sched_numa_topology_type == NUMA_DIRECT) 2308 return nid; 2309 2310 /* 2311 * On a system with glueless mesh NUMA topology, group_weight 2312 * scores nodes according to the number of NUMA hinting faults on 2313 * both the node itself, and on nearby nodes. 2314 */ 2315 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2316 unsigned long score, max_score = 0; 2317 int node, max_node = nid; 2318 2319 dist = sched_max_numa_distance; 2320 2321 for_each_node_state(node, N_CPU) { 2322 score = group_weight(p, node, dist); 2323 if (score > max_score) { 2324 max_score = score; 2325 max_node = node; 2326 } 2327 } 2328 return max_node; 2329 } 2330 2331 /* 2332 * Finding the preferred nid in a system with NUMA backplane 2333 * interconnect topology is more involved. The goal is to locate 2334 * tasks from numa_groups near each other in the system, and 2335 * untangle workloads from different sides of the system. This requires 2336 * searching down the hierarchy of node groups, recursively searching 2337 * inside the highest scoring group of nodes. The nodemask tricks 2338 * keep the complexity of the search down. 2339 */ 2340 nodes = node_states[N_CPU]; 2341 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2342 unsigned long max_faults = 0; 2343 nodemask_t max_group = NODE_MASK_NONE; 2344 int a, b; 2345 2346 /* Are there nodes at this distance from each other? */ 2347 if (!find_numa_distance(dist)) 2348 continue; 2349 2350 for_each_node_mask(a, nodes) { 2351 unsigned long faults = 0; 2352 nodemask_t this_group; 2353 nodes_clear(this_group); 2354 2355 /* Sum group's NUMA faults; includes a==b case. */ 2356 for_each_node_mask(b, nodes) { 2357 if (node_distance(a, b) < dist) { 2358 faults += group_faults(p, b); 2359 node_set(b, this_group); 2360 node_clear(b, nodes); 2361 } 2362 } 2363 2364 /* Remember the top group. */ 2365 if (faults > max_faults) { 2366 max_faults = faults; 2367 max_group = this_group; 2368 /* 2369 * subtle: at the smallest distance there is 2370 * just one node left in each "group", the 2371 * winner is the preferred nid. 2372 */ 2373 nid = a; 2374 } 2375 } 2376 /* Next round, evaluate the nodes within max_group. */ 2377 if (!max_faults) 2378 break; 2379 nodes = max_group; 2380 } 2381 return nid; 2382 } 2383 2384 static void task_numa_placement(struct task_struct *p) 2385 { 2386 int seq, nid, max_nid = NUMA_NO_NODE; 2387 unsigned long max_faults = 0; 2388 unsigned long fault_types[2] = { 0, 0 }; 2389 unsigned long total_faults; 2390 u64 runtime, period; 2391 spinlock_t *group_lock = NULL; 2392 struct numa_group *ng; 2393 2394 /* 2395 * The p->mm->numa_scan_seq field gets updated without 2396 * exclusive access. Use READ_ONCE() here to ensure 2397 * that the field is read in a single access: 2398 */ 2399 seq = READ_ONCE(p->mm->numa_scan_seq); 2400 if (p->numa_scan_seq == seq) 2401 return; 2402 p->numa_scan_seq = seq; 2403 p->numa_scan_period_max = task_scan_max(p); 2404 2405 total_faults = p->numa_faults_locality[0] + 2406 p->numa_faults_locality[1]; 2407 runtime = numa_get_avg_runtime(p, &period); 2408 2409 /* If the task is part of a group prevent parallel updates to group stats */ 2410 ng = deref_curr_numa_group(p); 2411 if (ng) { 2412 group_lock = &ng->lock; 2413 spin_lock_irq(group_lock); 2414 } 2415 2416 /* Find the node with the highest number of faults */ 2417 for_each_online_node(nid) { 2418 /* Keep track of the offsets in numa_faults array */ 2419 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2420 unsigned long faults = 0, group_faults = 0; 2421 int priv; 2422 2423 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2424 long diff, f_diff, f_weight; 2425 2426 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2427 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2428 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2429 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2430 2431 /* Decay existing window, copy faults since last scan */ 2432 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2433 fault_types[priv] += p->numa_faults[membuf_idx]; 2434 p->numa_faults[membuf_idx] = 0; 2435 2436 /* 2437 * Normalize the faults_from, so all tasks in a group 2438 * count according to CPU use, instead of by the raw 2439 * number of faults. Tasks with little runtime have 2440 * little over-all impact on throughput, and thus their 2441 * faults are less important. 2442 */ 2443 f_weight = div64_u64(runtime << 16, period + 1); 2444 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2445 (total_faults + 1); 2446 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2447 p->numa_faults[cpubuf_idx] = 0; 2448 2449 p->numa_faults[mem_idx] += diff; 2450 p->numa_faults[cpu_idx] += f_diff; 2451 faults += p->numa_faults[mem_idx]; 2452 p->total_numa_faults += diff; 2453 if (ng) { 2454 /* 2455 * safe because we can only change our own group 2456 * 2457 * mem_idx represents the offset for a given 2458 * nid and priv in a specific region because it 2459 * is at the beginning of the numa_faults array. 2460 */ 2461 ng->faults[mem_idx] += diff; 2462 ng->faults[cpu_idx] += f_diff; 2463 ng->total_faults += diff; 2464 group_faults += ng->faults[mem_idx]; 2465 } 2466 } 2467 2468 if (!ng) { 2469 if (faults > max_faults) { 2470 max_faults = faults; 2471 max_nid = nid; 2472 } 2473 } else if (group_faults > max_faults) { 2474 max_faults = group_faults; 2475 max_nid = nid; 2476 } 2477 } 2478 2479 /* Cannot migrate task to CPU-less node */ 2480 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2481 int near_nid = max_nid; 2482 int distance, near_distance = INT_MAX; 2483 2484 for_each_node_state(nid, N_CPU) { 2485 distance = node_distance(max_nid, nid); 2486 if (distance < near_distance) { 2487 near_nid = nid; 2488 near_distance = distance; 2489 } 2490 } 2491 max_nid = near_nid; 2492 } 2493 2494 if (ng) { 2495 numa_group_count_active_nodes(ng); 2496 spin_unlock_irq(group_lock); 2497 max_nid = preferred_group_nid(p, max_nid); 2498 } 2499 2500 if (max_faults) { 2501 /* Set the new preferred node */ 2502 if (max_nid != p->numa_preferred_nid) 2503 sched_setnuma(p, max_nid); 2504 } 2505 2506 update_task_scan_period(p, fault_types[0], fault_types[1]); 2507 } 2508 2509 static inline int get_numa_group(struct numa_group *grp) 2510 { 2511 return refcount_inc_not_zero(&grp->refcount); 2512 } 2513 2514 static inline void put_numa_group(struct numa_group *grp) 2515 { 2516 if (refcount_dec_and_test(&grp->refcount)) 2517 kfree_rcu(grp, rcu); 2518 } 2519 2520 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2521 int *priv) 2522 { 2523 struct numa_group *grp, *my_grp; 2524 struct task_struct *tsk; 2525 bool join = false; 2526 int cpu = cpupid_to_cpu(cpupid); 2527 int i; 2528 2529 if (unlikely(!deref_curr_numa_group(p))) { 2530 unsigned int size = sizeof(struct numa_group) + 2531 NR_NUMA_HINT_FAULT_STATS * 2532 nr_node_ids * sizeof(unsigned long); 2533 2534 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2535 if (!grp) 2536 return; 2537 2538 refcount_set(&grp->refcount, 1); 2539 grp->active_nodes = 1; 2540 grp->max_faults_cpu = 0; 2541 spin_lock_init(&grp->lock); 2542 grp->gid = p->pid; 2543 2544 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2545 grp->faults[i] = p->numa_faults[i]; 2546 2547 grp->total_faults = p->total_numa_faults; 2548 2549 grp->nr_tasks++; 2550 rcu_assign_pointer(p->numa_group, grp); 2551 } 2552 2553 rcu_read_lock(); 2554 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2555 2556 if (!cpupid_match_pid(tsk, cpupid)) 2557 goto no_join; 2558 2559 grp = rcu_dereference(tsk->numa_group); 2560 if (!grp) 2561 goto no_join; 2562 2563 my_grp = deref_curr_numa_group(p); 2564 if (grp == my_grp) 2565 goto no_join; 2566 2567 /* 2568 * Only join the other group if its bigger; if we're the bigger group, 2569 * the other task will join us. 2570 */ 2571 if (my_grp->nr_tasks > grp->nr_tasks) 2572 goto no_join; 2573 2574 /* 2575 * Tie-break on the grp address. 2576 */ 2577 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2578 goto no_join; 2579 2580 /* Always join threads in the same process. */ 2581 if (tsk->mm == current->mm) 2582 join = true; 2583 2584 /* Simple filter to avoid false positives due to PID collisions */ 2585 if (flags & TNF_SHARED) 2586 join = true; 2587 2588 /* Update priv based on whether false sharing was detected */ 2589 *priv = !join; 2590 2591 if (join && !get_numa_group(grp)) 2592 goto no_join; 2593 2594 rcu_read_unlock(); 2595 2596 if (!join) 2597 return; 2598 2599 WARN_ON_ONCE(irqs_disabled()); 2600 double_lock_irq(&my_grp->lock, &grp->lock); 2601 2602 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2603 my_grp->faults[i] -= p->numa_faults[i]; 2604 grp->faults[i] += p->numa_faults[i]; 2605 } 2606 my_grp->total_faults -= p->total_numa_faults; 2607 grp->total_faults += p->total_numa_faults; 2608 2609 my_grp->nr_tasks--; 2610 grp->nr_tasks++; 2611 2612 spin_unlock(&my_grp->lock); 2613 spin_unlock_irq(&grp->lock); 2614 2615 rcu_assign_pointer(p->numa_group, grp); 2616 2617 put_numa_group(my_grp); 2618 return; 2619 2620 no_join: 2621 rcu_read_unlock(); 2622 return; 2623 } 2624 2625 /* 2626 * Get rid of NUMA statistics associated with a task (either current or dead). 2627 * If @final is set, the task is dead and has reached refcount zero, so we can 2628 * safely free all relevant data structures. Otherwise, there might be 2629 * concurrent reads from places like load balancing and procfs, and we should 2630 * reset the data back to default state without freeing ->numa_faults. 2631 */ 2632 void task_numa_free(struct task_struct *p, bool final) 2633 { 2634 /* safe: p either is current or is being freed by current */ 2635 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2636 unsigned long *numa_faults = p->numa_faults; 2637 unsigned long flags; 2638 int i; 2639 2640 if (!numa_faults) 2641 return; 2642 2643 if (grp) { 2644 spin_lock_irqsave(&grp->lock, flags); 2645 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2646 grp->faults[i] -= p->numa_faults[i]; 2647 grp->total_faults -= p->total_numa_faults; 2648 2649 grp->nr_tasks--; 2650 spin_unlock_irqrestore(&grp->lock, flags); 2651 RCU_INIT_POINTER(p->numa_group, NULL); 2652 put_numa_group(grp); 2653 } 2654 2655 if (final) { 2656 p->numa_faults = NULL; 2657 kfree(numa_faults); 2658 } else { 2659 p->total_numa_faults = 0; 2660 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2661 numa_faults[i] = 0; 2662 } 2663 } 2664 2665 /* 2666 * Got a PROT_NONE fault for a page on @node. 2667 */ 2668 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2669 { 2670 struct task_struct *p = current; 2671 bool migrated = flags & TNF_MIGRATED; 2672 int cpu_node = task_node(current); 2673 int local = !!(flags & TNF_FAULT_LOCAL); 2674 struct numa_group *ng; 2675 int priv; 2676 2677 if (!static_branch_likely(&sched_numa_balancing)) 2678 return; 2679 2680 /* for example, ksmd faulting in a user's mm */ 2681 if (!p->mm) 2682 return; 2683 2684 /* Allocate buffer to track faults on a per-node basis */ 2685 if (unlikely(!p->numa_faults)) { 2686 int size = sizeof(*p->numa_faults) * 2687 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2688 2689 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2690 if (!p->numa_faults) 2691 return; 2692 2693 p->total_numa_faults = 0; 2694 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2695 } 2696 2697 /* 2698 * First accesses are treated as private, otherwise consider accesses 2699 * to be private if the accessing pid has not changed 2700 */ 2701 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2702 priv = 1; 2703 } else { 2704 priv = cpupid_match_pid(p, last_cpupid); 2705 if (!priv && !(flags & TNF_NO_GROUP)) 2706 task_numa_group(p, last_cpupid, flags, &priv); 2707 } 2708 2709 /* 2710 * If a workload spans multiple NUMA nodes, a shared fault that 2711 * occurs wholly within the set of nodes that the workload is 2712 * actively using should be counted as local. This allows the 2713 * scan rate to slow down when a workload has settled down. 2714 */ 2715 ng = deref_curr_numa_group(p); 2716 if (!priv && !local && ng && ng->active_nodes > 1 && 2717 numa_is_active_node(cpu_node, ng) && 2718 numa_is_active_node(mem_node, ng)) 2719 local = 1; 2720 2721 /* 2722 * Retry to migrate task to preferred node periodically, in case it 2723 * previously failed, or the scheduler moved us. 2724 */ 2725 if (time_after(jiffies, p->numa_migrate_retry)) { 2726 task_numa_placement(p); 2727 numa_migrate_preferred(p); 2728 } 2729 2730 if (migrated) 2731 p->numa_pages_migrated += pages; 2732 if (flags & TNF_MIGRATE_FAIL) 2733 p->numa_faults_locality[2] += pages; 2734 2735 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2736 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2737 p->numa_faults_locality[local] += pages; 2738 } 2739 2740 static void reset_ptenuma_scan(struct task_struct *p) 2741 { 2742 /* 2743 * We only did a read acquisition of the mmap sem, so 2744 * p->mm->numa_scan_seq is written to without exclusive access 2745 * and the update is not guaranteed to be atomic. That's not 2746 * much of an issue though, since this is just used for 2747 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2748 * expensive, to avoid any form of compiler optimizations: 2749 */ 2750 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2751 p->mm->numa_scan_offset = 0; 2752 } 2753 2754 /* 2755 * The expensive part of numa migration is done from task_work context. 2756 * Triggered from task_tick_numa(). 2757 */ 2758 static void task_numa_work(struct callback_head *work) 2759 { 2760 unsigned long migrate, next_scan, now = jiffies; 2761 struct task_struct *p = current; 2762 struct mm_struct *mm = p->mm; 2763 u64 runtime = p->se.sum_exec_runtime; 2764 struct vm_area_struct *vma; 2765 unsigned long start, end; 2766 unsigned long nr_pte_updates = 0; 2767 long pages, virtpages; 2768 2769 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2770 2771 work->next = work; 2772 /* 2773 * Who cares about NUMA placement when they're dying. 2774 * 2775 * NOTE: make sure not to dereference p->mm before this check, 2776 * exit_task_work() happens _after_ exit_mm() so we could be called 2777 * without p->mm even though we still had it when we enqueued this 2778 * work. 2779 */ 2780 if (p->flags & PF_EXITING) 2781 return; 2782 2783 if (!mm->numa_next_scan) { 2784 mm->numa_next_scan = now + 2785 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2786 } 2787 2788 /* 2789 * Enforce maximal scan/migration frequency.. 2790 */ 2791 migrate = mm->numa_next_scan; 2792 if (time_before(now, migrate)) 2793 return; 2794 2795 if (p->numa_scan_period == 0) { 2796 p->numa_scan_period_max = task_scan_max(p); 2797 p->numa_scan_period = task_scan_start(p); 2798 } 2799 2800 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2801 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2802 return; 2803 2804 /* 2805 * Delay this task enough that another task of this mm will likely win 2806 * the next time around. 2807 */ 2808 p->node_stamp += 2 * TICK_NSEC; 2809 2810 start = mm->numa_scan_offset; 2811 pages = sysctl_numa_balancing_scan_size; 2812 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2813 virtpages = pages * 8; /* Scan up to this much virtual space */ 2814 if (!pages) 2815 return; 2816 2817 2818 if (!mmap_read_trylock(mm)) 2819 return; 2820 vma = find_vma(mm, start); 2821 if (!vma) { 2822 reset_ptenuma_scan(p); 2823 start = 0; 2824 vma = mm->mmap; 2825 } 2826 for (; vma; vma = vma->vm_next) { 2827 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2828 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2829 continue; 2830 } 2831 2832 /* 2833 * Shared library pages mapped by multiple processes are not 2834 * migrated as it is expected they are cache replicated. Avoid 2835 * hinting faults in read-only file-backed mappings or the vdso 2836 * as migrating the pages will be of marginal benefit. 2837 */ 2838 if (!vma->vm_mm || 2839 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2840 continue; 2841 2842 /* 2843 * Skip inaccessible VMAs to avoid any confusion between 2844 * PROT_NONE and NUMA hinting ptes 2845 */ 2846 if (!vma_is_accessible(vma)) 2847 continue; 2848 2849 do { 2850 start = max(start, vma->vm_start); 2851 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2852 end = min(end, vma->vm_end); 2853 nr_pte_updates = change_prot_numa(vma, start, end); 2854 2855 /* 2856 * Try to scan sysctl_numa_balancing_size worth of 2857 * hpages that have at least one present PTE that 2858 * is not already pte-numa. If the VMA contains 2859 * areas that are unused or already full of prot_numa 2860 * PTEs, scan up to virtpages, to skip through those 2861 * areas faster. 2862 */ 2863 if (nr_pte_updates) 2864 pages -= (end - start) >> PAGE_SHIFT; 2865 virtpages -= (end - start) >> PAGE_SHIFT; 2866 2867 start = end; 2868 if (pages <= 0 || virtpages <= 0) 2869 goto out; 2870 2871 cond_resched(); 2872 } while (end != vma->vm_end); 2873 } 2874 2875 out: 2876 /* 2877 * It is possible to reach the end of the VMA list but the last few 2878 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2879 * would find the !migratable VMA on the next scan but not reset the 2880 * scanner to the start so check it now. 2881 */ 2882 if (vma) 2883 mm->numa_scan_offset = start; 2884 else 2885 reset_ptenuma_scan(p); 2886 mmap_read_unlock(mm); 2887 2888 /* 2889 * Make sure tasks use at least 32x as much time to run other code 2890 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2891 * Usually update_task_scan_period slows down scanning enough; on an 2892 * overloaded system we need to limit overhead on a per task basis. 2893 */ 2894 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2895 u64 diff = p->se.sum_exec_runtime - runtime; 2896 p->node_stamp += 32 * diff; 2897 } 2898 } 2899 2900 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2901 { 2902 int mm_users = 0; 2903 struct mm_struct *mm = p->mm; 2904 2905 if (mm) { 2906 mm_users = atomic_read(&mm->mm_users); 2907 if (mm_users == 1) { 2908 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2909 mm->numa_scan_seq = 0; 2910 } 2911 } 2912 p->node_stamp = 0; 2913 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2914 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2915 p->numa_migrate_retry = 0; 2916 /* Protect against double add, see task_tick_numa and task_numa_work */ 2917 p->numa_work.next = &p->numa_work; 2918 p->numa_faults = NULL; 2919 p->numa_pages_migrated = 0; 2920 p->total_numa_faults = 0; 2921 RCU_INIT_POINTER(p->numa_group, NULL); 2922 p->last_task_numa_placement = 0; 2923 p->last_sum_exec_runtime = 0; 2924 2925 init_task_work(&p->numa_work, task_numa_work); 2926 2927 /* New address space, reset the preferred nid */ 2928 if (!(clone_flags & CLONE_VM)) { 2929 p->numa_preferred_nid = NUMA_NO_NODE; 2930 return; 2931 } 2932 2933 /* 2934 * New thread, keep existing numa_preferred_nid which should be copied 2935 * already by arch_dup_task_struct but stagger when scans start. 2936 */ 2937 if (mm) { 2938 unsigned int delay; 2939 2940 delay = min_t(unsigned int, task_scan_max(current), 2941 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2942 delay += 2 * TICK_NSEC; 2943 p->node_stamp = delay; 2944 } 2945 } 2946 2947 /* 2948 * Drive the periodic memory faults.. 2949 */ 2950 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2951 { 2952 struct callback_head *work = &curr->numa_work; 2953 u64 period, now; 2954 2955 /* 2956 * We don't care about NUMA placement if we don't have memory. 2957 */ 2958 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2959 return; 2960 2961 /* 2962 * Using runtime rather than walltime has the dual advantage that 2963 * we (mostly) drive the selection from busy threads and that the 2964 * task needs to have done some actual work before we bother with 2965 * NUMA placement. 2966 */ 2967 now = curr->se.sum_exec_runtime; 2968 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2969 2970 if (now > curr->node_stamp + period) { 2971 if (!curr->node_stamp) 2972 curr->numa_scan_period = task_scan_start(curr); 2973 curr->node_stamp += period; 2974 2975 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2976 task_work_add(curr, work, TWA_RESUME); 2977 } 2978 } 2979 2980 static void update_scan_period(struct task_struct *p, int new_cpu) 2981 { 2982 int src_nid = cpu_to_node(task_cpu(p)); 2983 int dst_nid = cpu_to_node(new_cpu); 2984 2985 if (!static_branch_likely(&sched_numa_balancing)) 2986 return; 2987 2988 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2989 return; 2990 2991 if (src_nid == dst_nid) 2992 return; 2993 2994 /* 2995 * Allow resets if faults have been trapped before one scan 2996 * has completed. This is most likely due to a new task that 2997 * is pulled cross-node due to wakeups or load balancing. 2998 */ 2999 if (p->numa_scan_seq) { 3000 /* 3001 * Avoid scan adjustments if moving to the preferred 3002 * node or if the task was not previously running on 3003 * the preferred node. 3004 */ 3005 if (dst_nid == p->numa_preferred_nid || 3006 (p->numa_preferred_nid != NUMA_NO_NODE && 3007 src_nid != p->numa_preferred_nid)) 3008 return; 3009 } 3010 3011 p->numa_scan_period = task_scan_start(p); 3012 } 3013 3014 #else 3015 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3016 { 3017 } 3018 3019 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3020 { 3021 } 3022 3023 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3024 { 3025 } 3026 3027 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3028 { 3029 } 3030 3031 #endif /* CONFIG_NUMA_BALANCING */ 3032 3033 static void 3034 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3035 { 3036 update_load_add(&cfs_rq->load, se->load.weight); 3037 #ifdef CONFIG_SMP 3038 if (entity_is_task(se)) { 3039 struct rq *rq = rq_of(cfs_rq); 3040 3041 account_numa_enqueue(rq, task_of(se)); 3042 list_add(&se->group_node, &rq->cfs_tasks); 3043 } 3044 #endif 3045 cfs_rq->nr_running++; 3046 if (se_is_idle(se)) 3047 cfs_rq->idle_nr_running++; 3048 } 3049 3050 static void 3051 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3052 { 3053 update_load_sub(&cfs_rq->load, se->load.weight); 3054 #ifdef CONFIG_SMP 3055 if (entity_is_task(se)) { 3056 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3057 list_del_init(&se->group_node); 3058 } 3059 #endif 3060 cfs_rq->nr_running--; 3061 if (se_is_idle(se)) 3062 cfs_rq->idle_nr_running--; 3063 } 3064 3065 /* 3066 * Signed add and clamp on underflow. 3067 * 3068 * Explicitly do a load-store to ensure the intermediate value never hits 3069 * memory. This allows lockless observations without ever seeing the negative 3070 * values. 3071 */ 3072 #define add_positive(_ptr, _val) do { \ 3073 typeof(_ptr) ptr = (_ptr); \ 3074 typeof(_val) val = (_val); \ 3075 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3076 \ 3077 res = var + val; \ 3078 \ 3079 if (val < 0 && res > var) \ 3080 res = 0; \ 3081 \ 3082 WRITE_ONCE(*ptr, res); \ 3083 } while (0) 3084 3085 /* 3086 * Unsigned subtract and clamp on underflow. 3087 * 3088 * Explicitly do a load-store to ensure the intermediate value never hits 3089 * memory. This allows lockless observations without ever seeing the negative 3090 * values. 3091 */ 3092 #define sub_positive(_ptr, _val) do { \ 3093 typeof(_ptr) ptr = (_ptr); \ 3094 typeof(*ptr) val = (_val); \ 3095 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3096 res = var - val; \ 3097 if (res > var) \ 3098 res = 0; \ 3099 WRITE_ONCE(*ptr, res); \ 3100 } while (0) 3101 3102 /* 3103 * Remove and clamp on negative, from a local variable. 3104 * 3105 * A variant of sub_positive(), which does not use explicit load-store 3106 * and is thus optimized for local variable updates. 3107 */ 3108 #define lsub_positive(_ptr, _val) do { \ 3109 typeof(_ptr) ptr = (_ptr); \ 3110 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3111 } while (0) 3112 3113 #ifdef CONFIG_SMP 3114 static inline void 3115 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3116 { 3117 cfs_rq->avg.load_avg += se->avg.load_avg; 3118 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3119 } 3120 3121 static inline void 3122 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3123 { 3124 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3125 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3126 /* See update_cfs_rq_load_avg() */ 3127 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3128 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3129 } 3130 #else 3131 static inline void 3132 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3133 static inline void 3134 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3135 #endif 3136 3137 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3138 unsigned long weight) 3139 { 3140 if (se->on_rq) { 3141 /* commit outstanding execution time */ 3142 if (cfs_rq->curr == se) 3143 update_curr(cfs_rq); 3144 update_load_sub(&cfs_rq->load, se->load.weight); 3145 } 3146 dequeue_load_avg(cfs_rq, se); 3147 3148 update_load_set(&se->load, weight); 3149 3150 #ifdef CONFIG_SMP 3151 do { 3152 u32 divider = get_pelt_divider(&se->avg); 3153 3154 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3155 } while (0); 3156 #endif 3157 3158 enqueue_load_avg(cfs_rq, se); 3159 if (se->on_rq) 3160 update_load_add(&cfs_rq->load, se->load.weight); 3161 3162 } 3163 3164 void reweight_task(struct task_struct *p, int prio) 3165 { 3166 struct sched_entity *se = &p->se; 3167 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3168 struct load_weight *load = &se->load; 3169 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3170 3171 reweight_entity(cfs_rq, se, weight); 3172 load->inv_weight = sched_prio_to_wmult[prio]; 3173 } 3174 3175 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3176 3177 #ifdef CONFIG_FAIR_GROUP_SCHED 3178 #ifdef CONFIG_SMP 3179 /* 3180 * All this does is approximate the hierarchical proportion which includes that 3181 * global sum we all love to hate. 3182 * 3183 * That is, the weight of a group entity, is the proportional share of the 3184 * group weight based on the group runqueue weights. That is: 3185 * 3186 * tg->weight * grq->load.weight 3187 * ge->load.weight = ----------------------------- (1) 3188 * \Sum grq->load.weight 3189 * 3190 * Now, because computing that sum is prohibitively expensive to compute (been 3191 * there, done that) we approximate it with this average stuff. The average 3192 * moves slower and therefore the approximation is cheaper and more stable. 3193 * 3194 * So instead of the above, we substitute: 3195 * 3196 * grq->load.weight -> grq->avg.load_avg (2) 3197 * 3198 * which yields the following: 3199 * 3200 * tg->weight * grq->avg.load_avg 3201 * ge->load.weight = ------------------------------ (3) 3202 * tg->load_avg 3203 * 3204 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3205 * 3206 * That is shares_avg, and it is right (given the approximation (2)). 3207 * 3208 * The problem with it is that because the average is slow -- it was designed 3209 * to be exactly that of course -- this leads to transients in boundary 3210 * conditions. In specific, the case where the group was idle and we start the 3211 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3212 * yielding bad latency etc.. 3213 * 3214 * Now, in that special case (1) reduces to: 3215 * 3216 * tg->weight * grq->load.weight 3217 * ge->load.weight = ----------------------------- = tg->weight (4) 3218 * grp->load.weight 3219 * 3220 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3221 * 3222 * So what we do is modify our approximation (3) to approach (4) in the (near) 3223 * UP case, like: 3224 * 3225 * ge->load.weight = 3226 * 3227 * tg->weight * grq->load.weight 3228 * --------------------------------------------------- (5) 3229 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3230 * 3231 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3232 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3233 * 3234 * 3235 * tg->weight * grq->load.weight 3236 * ge->load.weight = ----------------------------- (6) 3237 * tg_load_avg' 3238 * 3239 * Where: 3240 * 3241 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3242 * max(grq->load.weight, grq->avg.load_avg) 3243 * 3244 * And that is shares_weight and is icky. In the (near) UP case it approaches 3245 * (4) while in the normal case it approaches (3). It consistently 3246 * overestimates the ge->load.weight and therefore: 3247 * 3248 * \Sum ge->load.weight >= tg->weight 3249 * 3250 * hence icky! 3251 */ 3252 static long calc_group_shares(struct cfs_rq *cfs_rq) 3253 { 3254 long tg_weight, tg_shares, load, shares; 3255 struct task_group *tg = cfs_rq->tg; 3256 3257 tg_shares = READ_ONCE(tg->shares); 3258 3259 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3260 3261 tg_weight = atomic_long_read(&tg->load_avg); 3262 3263 /* Ensure tg_weight >= load */ 3264 tg_weight -= cfs_rq->tg_load_avg_contrib; 3265 tg_weight += load; 3266 3267 shares = (tg_shares * load); 3268 if (tg_weight) 3269 shares /= tg_weight; 3270 3271 /* 3272 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3273 * of a group with small tg->shares value. It is a floor value which is 3274 * assigned as a minimum load.weight to the sched_entity representing 3275 * the group on a CPU. 3276 * 3277 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3278 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3279 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3280 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3281 * instead of 0. 3282 */ 3283 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3284 } 3285 #endif /* CONFIG_SMP */ 3286 3287 /* 3288 * Recomputes the group entity based on the current state of its group 3289 * runqueue. 3290 */ 3291 static void update_cfs_group(struct sched_entity *se) 3292 { 3293 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3294 long shares; 3295 3296 if (!gcfs_rq) 3297 return; 3298 3299 if (throttled_hierarchy(gcfs_rq)) 3300 return; 3301 3302 #ifndef CONFIG_SMP 3303 shares = READ_ONCE(gcfs_rq->tg->shares); 3304 3305 if (likely(se->load.weight == shares)) 3306 return; 3307 #else 3308 shares = calc_group_shares(gcfs_rq); 3309 #endif 3310 3311 reweight_entity(cfs_rq_of(se), se, shares); 3312 } 3313 3314 #else /* CONFIG_FAIR_GROUP_SCHED */ 3315 static inline void update_cfs_group(struct sched_entity *se) 3316 { 3317 } 3318 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3319 3320 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3321 { 3322 struct rq *rq = rq_of(cfs_rq); 3323 3324 if (&rq->cfs == cfs_rq) { 3325 /* 3326 * There are a few boundary cases this might miss but it should 3327 * get called often enough that that should (hopefully) not be 3328 * a real problem. 3329 * 3330 * It will not get called when we go idle, because the idle 3331 * thread is a different class (!fair), nor will the utilization 3332 * number include things like RT tasks. 3333 * 3334 * As is, the util number is not freq-invariant (we'd have to 3335 * implement arch_scale_freq_capacity() for that). 3336 * 3337 * See cpu_util_cfs(). 3338 */ 3339 cpufreq_update_util(rq, flags); 3340 } 3341 } 3342 3343 #ifdef CONFIG_SMP 3344 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3345 { 3346 if (sa->load_sum) 3347 return false; 3348 3349 if (sa->util_sum) 3350 return false; 3351 3352 if (sa->runnable_sum) 3353 return false; 3354 3355 /* 3356 * _avg must be null when _sum are null because _avg = _sum / divider 3357 * Make sure that rounding and/or propagation of PELT values never 3358 * break this. 3359 */ 3360 SCHED_WARN_ON(sa->load_avg || 3361 sa->util_avg || 3362 sa->runnable_avg); 3363 3364 return true; 3365 } 3366 3367 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3368 { 3369 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3370 cfs_rq->last_update_time_copy); 3371 } 3372 #ifdef CONFIG_FAIR_GROUP_SCHED 3373 /* 3374 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3375 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3376 * bottom-up, we only have to test whether the cfs_rq before us on the list 3377 * is our child. 3378 * If cfs_rq is not on the list, test whether a child needs its to be added to 3379 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3380 */ 3381 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3382 { 3383 struct cfs_rq *prev_cfs_rq; 3384 struct list_head *prev; 3385 3386 if (cfs_rq->on_list) { 3387 prev = cfs_rq->leaf_cfs_rq_list.prev; 3388 } else { 3389 struct rq *rq = rq_of(cfs_rq); 3390 3391 prev = rq->tmp_alone_branch; 3392 } 3393 3394 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3395 3396 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3397 } 3398 3399 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3400 { 3401 if (cfs_rq->load.weight) 3402 return false; 3403 3404 if (!load_avg_is_decayed(&cfs_rq->avg)) 3405 return false; 3406 3407 if (child_cfs_rq_on_list(cfs_rq)) 3408 return false; 3409 3410 return true; 3411 } 3412 3413 /** 3414 * update_tg_load_avg - update the tg's load avg 3415 * @cfs_rq: the cfs_rq whose avg changed 3416 * 3417 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3418 * However, because tg->load_avg is a global value there are performance 3419 * considerations. 3420 * 3421 * In order to avoid having to look at the other cfs_rq's, we use a 3422 * differential update where we store the last value we propagated. This in 3423 * turn allows skipping updates if the differential is 'small'. 3424 * 3425 * Updating tg's load_avg is necessary before update_cfs_share(). 3426 */ 3427 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3428 { 3429 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3430 3431 /* 3432 * No need to update load_avg for root_task_group as it is not used. 3433 */ 3434 if (cfs_rq->tg == &root_task_group) 3435 return; 3436 3437 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3438 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3439 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3440 } 3441 } 3442 3443 /* 3444 * Called within set_task_rq() right before setting a task's CPU. The 3445 * caller only guarantees p->pi_lock is held; no other assumptions, 3446 * including the state of rq->lock, should be made. 3447 */ 3448 void set_task_rq_fair(struct sched_entity *se, 3449 struct cfs_rq *prev, struct cfs_rq *next) 3450 { 3451 u64 p_last_update_time; 3452 u64 n_last_update_time; 3453 3454 if (!sched_feat(ATTACH_AGE_LOAD)) 3455 return; 3456 3457 /* 3458 * We are supposed to update the task to "current" time, then its up to 3459 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3460 * getting what current time is, so simply throw away the out-of-date 3461 * time. This will result in the wakee task is less decayed, but giving 3462 * the wakee more load sounds not bad. 3463 */ 3464 if (!(se->avg.last_update_time && prev)) 3465 return; 3466 3467 p_last_update_time = cfs_rq_last_update_time(prev); 3468 n_last_update_time = cfs_rq_last_update_time(next); 3469 3470 __update_load_avg_blocked_se(p_last_update_time, se); 3471 se->avg.last_update_time = n_last_update_time; 3472 } 3473 3474 /* 3475 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3476 * propagate its contribution. The key to this propagation is the invariant 3477 * that for each group: 3478 * 3479 * ge->avg == grq->avg (1) 3480 * 3481 * _IFF_ we look at the pure running and runnable sums. Because they 3482 * represent the very same entity, just at different points in the hierarchy. 3483 * 3484 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3485 * and simply copies the running/runnable sum over (but still wrong, because 3486 * the group entity and group rq do not have their PELT windows aligned). 3487 * 3488 * However, update_tg_cfs_load() is more complex. So we have: 3489 * 3490 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3491 * 3492 * And since, like util, the runnable part should be directly transferable, 3493 * the following would _appear_ to be the straight forward approach: 3494 * 3495 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3496 * 3497 * And per (1) we have: 3498 * 3499 * ge->avg.runnable_avg == grq->avg.runnable_avg 3500 * 3501 * Which gives: 3502 * 3503 * ge->load.weight * grq->avg.load_avg 3504 * ge->avg.load_avg = ----------------------------------- (4) 3505 * grq->load.weight 3506 * 3507 * Except that is wrong! 3508 * 3509 * Because while for entities historical weight is not important and we 3510 * really only care about our future and therefore can consider a pure 3511 * runnable sum, runqueues can NOT do this. 3512 * 3513 * We specifically want runqueues to have a load_avg that includes 3514 * historical weights. Those represent the blocked load, the load we expect 3515 * to (shortly) return to us. This only works by keeping the weights as 3516 * integral part of the sum. We therefore cannot decompose as per (3). 3517 * 3518 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3519 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3520 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3521 * runnable section of these tasks overlap (or not). If they were to perfectly 3522 * align the rq as a whole would be runnable 2/3 of the time. If however we 3523 * always have at least 1 runnable task, the rq as a whole is always runnable. 3524 * 3525 * So we'll have to approximate.. :/ 3526 * 3527 * Given the constraint: 3528 * 3529 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3530 * 3531 * We can construct a rule that adds runnable to a rq by assuming minimal 3532 * overlap. 3533 * 3534 * On removal, we'll assume each task is equally runnable; which yields: 3535 * 3536 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3537 * 3538 * XXX: only do this for the part of runnable > running ? 3539 * 3540 */ 3541 static inline void 3542 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3543 { 3544 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3545 u32 new_sum, divider; 3546 3547 /* Nothing to update */ 3548 if (!delta_avg) 3549 return; 3550 3551 /* 3552 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3553 * See ___update_load_avg() for details. 3554 */ 3555 divider = get_pelt_divider(&cfs_rq->avg); 3556 3557 3558 /* Set new sched_entity's utilization */ 3559 se->avg.util_avg = gcfs_rq->avg.util_avg; 3560 new_sum = se->avg.util_avg * divider; 3561 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3562 se->avg.util_sum = new_sum; 3563 3564 /* Update parent cfs_rq utilization */ 3565 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3566 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3567 3568 /* See update_cfs_rq_load_avg() */ 3569 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3570 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3571 } 3572 3573 static inline void 3574 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3575 { 3576 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3577 u32 new_sum, divider; 3578 3579 /* Nothing to update */ 3580 if (!delta_avg) 3581 return; 3582 3583 /* 3584 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3585 * See ___update_load_avg() for details. 3586 */ 3587 divider = get_pelt_divider(&cfs_rq->avg); 3588 3589 /* Set new sched_entity's runnable */ 3590 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3591 new_sum = se->avg.runnable_avg * divider; 3592 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3593 se->avg.runnable_sum = new_sum; 3594 3595 /* Update parent cfs_rq runnable */ 3596 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3597 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3598 /* See update_cfs_rq_load_avg() */ 3599 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3600 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3601 } 3602 3603 static inline void 3604 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3605 { 3606 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3607 unsigned long load_avg; 3608 u64 load_sum = 0; 3609 s64 delta_sum; 3610 u32 divider; 3611 3612 if (!runnable_sum) 3613 return; 3614 3615 gcfs_rq->prop_runnable_sum = 0; 3616 3617 /* 3618 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3619 * See ___update_load_avg() for details. 3620 */ 3621 divider = get_pelt_divider(&cfs_rq->avg); 3622 3623 if (runnable_sum >= 0) { 3624 /* 3625 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3626 * the CPU is saturated running == runnable. 3627 */ 3628 runnable_sum += se->avg.load_sum; 3629 runnable_sum = min_t(long, runnable_sum, divider); 3630 } else { 3631 /* 3632 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3633 * assuming all tasks are equally runnable. 3634 */ 3635 if (scale_load_down(gcfs_rq->load.weight)) { 3636 load_sum = div_u64(gcfs_rq->avg.load_sum, 3637 scale_load_down(gcfs_rq->load.weight)); 3638 } 3639 3640 /* But make sure to not inflate se's runnable */ 3641 runnable_sum = min(se->avg.load_sum, load_sum); 3642 } 3643 3644 /* 3645 * runnable_sum can't be lower than running_sum 3646 * Rescale running sum to be in the same range as runnable sum 3647 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3648 * runnable_sum is in [0 : LOAD_AVG_MAX] 3649 */ 3650 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3651 runnable_sum = max(runnable_sum, running_sum); 3652 3653 load_sum = se_weight(se) * runnable_sum; 3654 load_avg = div_u64(load_sum, divider); 3655 3656 delta_avg = load_avg - se->avg.load_avg; 3657 if (!delta_avg) 3658 return; 3659 3660 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3661 3662 se->avg.load_sum = runnable_sum; 3663 se->avg.load_avg = load_avg; 3664 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3665 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3666 /* See update_cfs_rq_load_avg() */ 3667 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3668 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3669 } 3670 3671 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3672 { 3673 cfs_rq->propagate = 1; 3674 cfs_rq->prop_runnable_sum += runnable_sum; 3675 } 3676 3677 /* Update task and its cfs_rq load average */ 3678 static inline int propagate_entity_load_avg(struct sched_entity *se) 3679 { 3680 struct cfs_rq *cfs_rq, *gcfs_rq; 3681 3682 if (entity_is_task(se)) 3683 return 0; 3684 3685 gcfs_rq = group_cfs_rq(se); 3686 if (!gcfs_rq->propagate) 3687 return 0; 3688 3689 gcfs_rq->propagate = 0; 3690 3691 cfs_rq = cfs_rq_of(se); 3692 3693 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3694 3695 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3696 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3697 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3698 3699 trace_pelt_cfs_tp(cfs_rq); 3700 trace_pelt_se_tp(se); 3701 3702 return 1; 3703 } 3704 3705 /* 3706 * Check if we need to update the load and the utilization of a blocked 3707 * group_entity: 3708 */ 3709 static inline bool skip_blocked_update(struct sched_entity *se) 3710 { 3711 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3712 3713 /* 3714 * If sched_entity still have not zero load or utilization, we have to 3715 * decay it: 3716 */ 3717 if (se->avg.load_avg || se->avg.util_avg) 3718 return false; 3719 3720 /* 3721 * If there is a pending propagation, we have to update the load and 3722 * the utilization of the sched_entity: 3723 */ 3724 if (gcfs_rq->propagate) 3725 return false; 3726 3727 /* 3728 * Otherwise, the load and the utilization of the sched_entity is 3729 * already zero and there is no pending propagation, so it will be a 3730 * waste of time to try to decay it: 3731 */ 3732 return true; 3733 } 3734 3735 #else /* CONFIG_FAIR_GROUP_SCHED */ 3736 3737 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3738 3739 static inline int propagate_entity_load_avg(struct sched_entity *se) 3740 { 3741 return 0; 3742 } 3743 3744 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3745 3746 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3747 3748 #ifdef CONFIG_NO_HZ_COMMON 3749 static inline void migrate_se_pelt_lag(struct sched_entity *se) 3750 { 3751 u64 throttled = 0, now, lut; 3752 struct cfs_rq *cfs_rq; 3753 struct rq *rq; 3754 bool is_idle; 3755 3756 if (load_avg_is_decayed(&se->avg)) 3757 return; 3758 3759 cfs_rq = cfs_rq_of(se); 3760 rq = rq_of(cfs_rq); 3761 3762 rcu_read_lock(); 3763 is_idle = is_idle_task(rcu_dereference(rq->curr)); 3764 rcu_read_unlock(); 3765 3766 /* 3767 * The lag estimation comes with a cost we don't want to pay all the 3768 * time. Hence, limiting to the case where the source CPU is idle and 3769 * we know we are at the greatest risk to have an outdated clock. 3770 */ 3771 if (!is_idle) 3772 return; 3773 3774 /* 3775 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 3776 * 3777 * last_update_time (the cfs_rq's last_update_time) 3778 * = cfs_rq_clock_pelt()@cfs_rq_idle 3779 * = rq_clock_pelt()@cfs_rq_idle 3780 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 3781 * 3782 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 3783 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 3784 * 3785 * rq_idle_lag (delta between now and rq's update) 3786 * = sched_clock_cpu() - rq_clock()@rq_idle 3787 * 3788 * We can then write: 3789 * 3790 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 3791 * sched_clock_cpu() - rq_clock()@rq_idle 3792 * Where: 3793 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 3794 * rq_clock()@rq_idle is rq->clock_idle 3795 * cfs->throttled_clock_pelt_time@cfs_rq_idle 3796 * is cfs_rq->throttled_pelt_idle 3797 */ 3798 3799 #ifdef CONFIG_CFS_BANDWIDTH 3800 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 3801 /* The clock has been stopped for throttling */ 3802 if (throttled == U64_MAX) 3803 return; 3804 #endif 3805 now = u64_u32_load(rq->clock_pelt_idle); 3806 /* 3807 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 3808 * is observed the old clock_pelt_idle value and the new clock_idle, 3809 * which lead to an underestimation. The opposite would lead to an 3810 * overestimation. 3811 */ 3812 smp_rmb(); 3813 lut = cfs_rq_last_update_time(cfs_rq); 3814 3815 now -= throttled; 3816 if (now < lut) 3817 /* 3818 * cfs_rq->avg.last_update_time is more recent than our 3819 * estimation, let's use it. 3820 */ 3821 now = lut; 3822 else 3823 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 3824 3825 __update_load_avg_blocked_se(now, se); 3826 } 3827 #else 3828 static void migrate_se_pelt_lag(struct sched_entity *se) {} 3829 #endif 3830 3831 /** 3832 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3833 * @now: current time, as per cfs_rq_clock_pelt() 3834 * @cfs_rq: cfs_rq to update 3835 * 3836 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3837 * avg. The immediate corollary is that all (fair) tasks must be attached. 3838 * 3839 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3840 * 3841 * Return: true if the load decayed or we removed load. 3842 * 3843 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3844 * call update_tg_load_avg() when this function returns true. 3845 */ 3846 static inline int 3847 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3848 { 3849 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3850 struct sched_avg *sa = &cfs_rq->avg; 3851 int decayed = 0; 3852 3853 if (cfs_rq->removed.nr) { 3854 unsigned long r; 3855 u32 divider = get_pelt_divider(&cfs_rq->avg); 3856 3857 raw_spin_lock(&cfs_rq->removed.lock); 3858 swap(cfs_rq->removed.util_avg, removed_util); 3859 swap(cfs_rq->removed.load_avg, removed_load); 3860 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3861 cfs_rq->removed.nr = 0; 3862 raw_spin_unlock(&cfs_rq->removed.lock); 3863 3864 r = removed_load; 3865 sub_positive(&sa->load_avg, r); 3866 sub_positive(&sa->load_sum, r * divider); 3867 /* See sa->util_sum below */ 3868 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 3869 3870 r = removed_util; 3871 sub_positive(&sa->util_avg, r); 3872 sub_positive(&sa->util_sum, r * divider); 3873 /* 3874 * Because of rounding, se->util_sum might ends up being +1 more than 3875 * cfs->util_sum. Although this is not a problem by itself, detaching 3876 * a lot of tasks with the rounding problem between 2 updates of 3877 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 3878 * cfs_util_avg is not. 3879 * Check that util_sum is still above its lower bound for the new 3880 * util_avg. Given that period_contrib might have moved since the last 3881 * sync, we are only sure that util_sum must be above or equal to 3882 * util_avg * minimum possible divider 3883 */ 3884 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 3885 3886 r = removed_runnable; 3887 sub_positive(&sa->runnable_avg, r); 3888 sub_positive(&sa->runnable_sum, r * divider); 3889 /* See sa->util_sum above */ 3890 sa->runnable_sum = max_t(u32, sa->runnable_sum, 3891 sa->runnable_avg * PELT_MIN_DIVIDER); 3892 3893 /* 3894 * removed_runnable is the unweighted version of removed_load so we 3895 * can use it to estimate removed_load_sum. 3896 */ 3897 add_tg_cfs_propagate(cfs_rq, 3898 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3899 3900 decayed = 1; 3901 } 3902 3903 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3904 u64_u32_store_copy(sa->last_update_time, 3905 cfs_rq->last_update_time_copy, 3906 sa->last_update_time); 3907 return decayed; 3908 } 3909 3910 /** 3911 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3912 * @cfs_rq: cfs_rq to attach to 3913 * @se: sched_entity to attach 3914 * 3915 * Must call update_cfs_rq_load_avg() before this, since we rely on 3916 * cfs_rq->avg.last_update_time being current. 3917 */ 3918 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3919 { 3920 /* 3921 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3922 * See ___update_load_avg() for details. 3923 */ 3924 u32 divider = get_pelt_divider(&cfs_rq->avg); 3925 3926 /* 3927 * When we attach the @se to the @cfs_rq, we must align the decay 3928 * window because without that, really weird and wonderful things can 3929 * happen. 3930 * 3931 * XXX illustrate 3932 */ 3933 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3934 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3935 3936 /* 3937 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3938 * period_contrib. This isn't strictly correct, but since we're 3939 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3940 * _sum a little. 3941 */ 3942 se->avg.util_sum = se->avg.util_avg * divider; 3943 3944 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3945 3946 se->avg.load_sum = se->avg.load_avg * divider; 3947 if (se_weight(se) < se->avg.load_sum) 3948 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 3949 else 3950 se->avg.load_sum = 1; 3951 3952 enqueue_load_avg(cfs_rq, se); 3953 cfs_rq->avg.util_avg += se->avg.util_avg; 3954 cfs_rq->avg.util_sum += se->avg.util_sum; 3955 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3956 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3957 3958 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3959 3960 cfs_rq_util_change(cfs_rq, 0); 3961 3962 trace_pelt_cfs_tp(cfs_rq); 3963 } 3964 3965 /** 3966 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3967 * @cfs_rq: cfs_rq to detach from 3968 * @se: sched_entity to detach 3969 * 3970 * Must call update_cfs_rq_load_avg() before this, since we rely on 3971 * cfs_rq->avg.last_update_time being current. 3972 */ 3973 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3974 { 3975 dequeue_load_avg(cfs_rq, se); 3976 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3977 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3978 /* See update_cfs_rq_load_avg() */ 3979 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3980 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3981 3982 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3983 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3984 /* See update_cfs_rq_load_avg() */ 3985 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3986 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3987 3988 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3989 3990 cfs_rq_util_change(cfs_rq, 0); 3991 3992 trace_pelt_cfs_tp(cfs_rq); 3993 } 3994 3995 /* 3996 * Optional action to be done while updating the load average 3997 */ 3998 #define UPDATE_TG 0x1 3999 #define SKIP_AGE_LOAD 0x2 4000 #define DO_ATTACH 0x4 4001 #define DO_DETACH 0x8 4002 4003 /* Update task and its cfs_rq load average */ 4004 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4005 { 4006 u64 now = cfs_rq_clock_pelt(cfs_rq); 4007 int decayed; 4008 4009 /* 4010 * Track task load average for carrying it to new CPU after migrated, and 4011 * track group sched_entity load average for task_h_load calc in migration 4012 */ 4013 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4014 __update_load_avg_se(now, cfs_rq, se); 4015 4016 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4017 decayed |= propagate_entity_load_avg(se); 4018 4019 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4020 4021 /* 4022 * DO_ATTACH means we're here from enqueue_entity(). 4023 * !last_update_time means we've passed through 4024 * migrate_task_rq_fair() indicating we migrated. 4025 * 4026 * IOW we're enqueueing a task on a new CPU. 4027 */ 4028 attach_entity_load_avg(cfs_rq, se); 4029 update_tg_load_avg(cfs_rq); 4030 4031 } else if (flags & DO_DETACH) { 4032 /* 4033 * DO_DETACH means we're here from dequeue_entity() 4034 * and we are migrating task out of the CPU. 4035 */ 4036 detach_entity_load_avg(cfs_rq, se); 4037 update_tg_load_avg(cfs_rq); 4038 } else if (decayed) { 4039 cfs_rq_util_change(cfs_rq, 0); 4040 4041 if (flags & UPDATE_TG) 4042 update_tg_load_avg(cfs_rq); 4043 } 4044 } 4045 4046 /* 4047 * Synchronize entity load avg of dequeued entity without locking 4048 * the previous rq. 4049 */ 4050 static void sync_entity_load_avg(struct sched_entity *se) 4051 { 4052 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4053 u64 last_update_time; 4054 4055 last_update_time = cfs_rq_last_update_time(cfs_rq); 4056 __update_load_avg_blocked_se(last_update_time, se); 4057 } 4058 4059 /* 4060 * Task first catches up with cfs_rq, and then subtract 4061 * itself from the cfs_rq (task must be off the queue now). 4062 */ 4063 static void remove_entity_load_avg(struct sched_entity *se) 4064 { 4065 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4066 unsigned long flags; 4067 4068 /* 4069 * tasks cannot exit without having gone through wake_up_new_task() -> 4070 * enqueue_task_fair() which will have added things to the cfs_rq, 4071 * so we can remove unconditionally. 4072 */ 4073 4074 sync_entity_load_avg(se); 4075 4076 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4077 ++cfs_rq->removed.nr; 4078 cfs_rq->removed.util_avg += se->avg.util_avg; 4079 cfs_rq->removed.load_avg += se->avg.load_avg; 4080 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4081 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4082 } 4083 4084 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4085 { 4086 return cfs_rq->avg.runnable_avg; 4087 } 4088 4089 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4090 { 4091 return cfs_rq->avg.load_avg; 4092 } 4093 4094 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4095 4096 static inline unsigned long task_util(struct task_struct *p) 4097 { 4098 return READ_ONCE(p->se.avg.util_avg); 4099 } 4100 4101 static inline unsigned long _task_util_est(struct task_struct *p) 4102 { 4103 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4104 4105 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4106 } 4107 4108 static inline unsigned long task_util_est(struct task_struct *p) 4109 { 4110 return max(task_util(p), _task_util_est(p)); 4111 } 4112 4113 #ifdef CONFIG_UCLAMP_TASK 4114 static inline unsigned long uclamp_task_util(struct task_struct *p) 4115 { 4116 return clamp(task_util_est(p), 4117 uclamp_eff_value(p, UCLAMP_MIN), 4118 uclamp_eff_value(p, UCLAMP_MAX)); 4119 } 4120 #else 4121 static inline unsigned long uclamp_task_util(struct task_struct *p) 4122 { 4123 return task_util_est(p); 4124 } 4125 #endif 4126 4127 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4128 struct task_struct *p) 4129 { 4130 unsigned int enqueued; 4131 4132 if (!sched_feat(UTIL_EST)) 4133 return; 4134 4135 /* Update root cfs_rq's estimated utilization */ 4136 enqueued = cfs_rq->avg.util_est.enqueued; 4137 enqueued += _task_util_est(p); 4138 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4139 4140 trace_sched_util_est_cfs_tp(cfs_rq); 4141 } 4142 4143 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4144 struct task_struct *p) 4145 { 4146 unsigned int enqueued; 4147 4148 if (!sched_feat(UTIL_EST)) 4149 return; 4150 4151 /* Update root cfs_rq's estimated utilization */ 4152 enqueued = cfs_rq->avg.util_est.enqueued; 4153 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4154 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4155 4156 trace_sched_util_est_cfs_tp(cfs_rq); 4157 } 4158 4159 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4160 4161 /* 4162 * Check if a (signed) value is within a specified (unsigned) margin, 4163 * based on the observation that: 4164 * 4165 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4166 * 4167 * NOTE: this only works when value + margin < INT_MAX. 4168 */ 4169 static inline bool within_margin(int value, int margin) 4170 { 4171 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4172 } 4173 4174 static inline void util_est_update(struct cfs_rq *cfs_rq, 4175 struct task_struct *p, 4176 bool task_sleep) 4177 { 4178 long last_ewma_diff, last_enqueued_diff; 4179 struct util_est ue; 4180 4181 if (!sched_feat(UTIL_EST)) 4182 return; 4183 4184 /* 4185 * Skip update of task's estimated utilization when the task has not 4186 * yet completed an activation, e.g. being migrated. 4187 */ 4188 if (!task_sleep) 4189 return; 4190 4191 /* 4192 * If the PELT values haven't changed since enqueue time, 4193 * skip the util_est update. 4194 */ 4195 ue = p->se.avg.util_est; 4196 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4197 return; 4198 4199 last_enqueued_diff = ue.enqueued; 4200 4201 /* 4202 * Reset EWMA on utilization increases, the moving average is used only 4203 * to smooth utilization decreases. 4204 */ 4205 ue.enqueued = task_util(p); 4206 if (sched_feat(UTIL_EST_FASTUP)) { 4207 if (ue.ewma < ue.enqueued) { 4208 ue.ewma = ue.enqueued; 4209 goto done; 4210 } 4211 } 4212 4213 /* 4214 * Skip update of task's estimated utilization when its members are 4215 * already ~1% close to its last activation value. 4216 */ 4217 last_ewma_diff = ue.enqueued - ue.ewma; 4218 last_enqueued_diff -= ue.enqueued; 4219 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4220 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4221 goto done; 4222 4223 return; 4224 } 4225 4226 /* 4227 * To avoid overestimation of actual task utilization, skip updates if 4228 * we cannot grant there is idle time in this CPU. 4229 */ 4230 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4231 return; 4232 4233 /* 4234 * Update Task's estimated utilization 4235 * 4236 * When *p completes an activation we can consolidate another sample 4237 * of the task size. This is done by storing the current PELT value 4238 * as ue.enqueued and by using this value to update the Exponential 4239 * Weighted Moving Average (EWMA): 4240 * 4241 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4242 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4243 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4244 * = w * ( last_ewma_diff ) + ewma(t-1) 4245 * = w * (last_ewma_diff + ewma(t-1) / w) 4246 * 4247 * Where 'w' is the weight of new samples, which is configured to be 4248 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4249 */ 4250 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4251 ue.ewma += last_ewma_diff; 4252 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4253 done: 4254 ue.enqueued |= UTIL_AVG_UNCHANGED; 4255 WRITE_ONCE(p->se.avg.util_est, ue); 4256 4257 trace_sched_util_est_se_tp(&p->se); 4258 } 4259 4260 static inline int task_fits_capacity(struct task_struct *p, 4261 unsigned long capacity) 4262 { 4263 return fits_capacity(uclamp_task_util(p), capacity); 4264 } 4265 4266 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4267 { 4268 if (!sched_asym_cpucap_active()) 4269 return; 4270 4271 if (!p || p->nr_cpus_allowed == 1) { 4272 rq->misfit_task_load = 0; 4273 return; 4274 } 4275 4276 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4277 rq->misfit_task_load = 0; 4278 return; 4279 } 4280 4281 /* 4282 * Make sure that misfit_task_load will not be null even if 4283 * task_h_load() returns 0. 4284 */ 4285 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4286 } 4287 4288 #else /* CONFIG_SMP */ 4289 4290 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4291 { 4292 return true; 4293 } 4294 4295 #define UPDATE_TG 0x0 4296 #define SKIP_AGE_LOAD 0x0 4297 #define DO_ATTACH 0x0 4298 #define DO_DETACH 0x0 4299 4300 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4301 { 4302 cfs_rq_util_change(cfs_rq, 0); 4303 } 4304 4305 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4306 4307 static inline void 4308 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4309 static inline void 4310 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4311 4312 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4313 { 4314 return 0; 4315 } 4316 4317 static inline void 4318 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4319 4320 static inline void 4321 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4322 4323 static inline void 4324 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4325 bool task_sleep) {} 4326 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4327 4328 #endif /* CONFIG_SMP */ 4329 4330 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4331 { 4332 #ifdef CONFIG_SCHED_DEBUG 4333 s64 d = se->vruntime - cfs_rq->min_vruntime; 4334 4335 if (d < 0) 4336 d = -d; 4337 4338 if (d > 3*sysctl_sched_latency) 4339 schedstat_inc(cfs_rq->nr_spread_over); 4340 #endif 4341 } 4342 4343 static void 4344 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4345 { 4346 u64 vruntime = cfs_rq->min_vruntime; 4347 4348 /* 4349 * The 'current' period is already promised to the current tasks, 4350 * however the extra weight of the new task will slow them down a 4351 * little, place the new task so that it fits in the slot that 4352 * stays open at the end. 4353 */ 4354 if (initial && sched_feat(START_DEBIT)) 4355 vruntime += sched_vslice(cfs_rq, se); 4356 4357 /* sleeps up to a single latency don't count. */ 4358 if (!initial) { 4359 unsigned long thresh; 4360 4361 if (se_is_idle(se)) 4362 thresh = sysctl_sched_min_granularity; 4363 else 4364 thresh = sysctl_sched_latency; 4365 4366 /* 4367 * Halve their sleep time's effect, to allow 4368 * for a gentler effect of sleepers: 4369 */ 4370 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4371 thresh >>= 1; 4372 4373 vruntime -= thresh; 4374 } 4375 4376 /* ensure we never gain time by being placed backwards. */ 4377 se->vruntime = max_vruntime(se->vruntime, vruntime); 4378 } 4379 4380 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4381 4382 static inline bool cfs_bandwidth_used(void); 4383 4384 /* 4385 * MIGRATION 4386 * 4387 * dequeue 4388 * update_curr() 4389 * update_min_vruntime() 4390 * vruntime -= min_vruntime 4391 * 4392 * enqueue 4393 * update_curr() 4394 * update_min_vruntime() 4395 * vruntime += min_vruntime 4396 * 4397 * this way the vruntime transition between RQs is done when both 4398 * min_vruntime are up-to-date. 4399 * 4400 * WAKEUP (remote) 4401 * 4402 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4403 * vruntime -= min_vruntime 4404 * 4405 * enqueue 4406 * update_curr() 4407 * update_min_vruntime() 4408 * vruntime += min_vruntime 4409 * 4410 * this way we don't have the most up-to-date min_vruntime on the originating 4411 * CPU and an up-to-date min_vruntime on the destination CPU. 4412 */ 4413 4414 static void 4415 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4416 { 4417 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4418 bool curr = cfs_rq->curr == se; 4419 4420 /* 4421 * If we're the current task, we must renormalise before calling 4422 * update_curr(). 4423 */ 4424 if (renorm && curr) 4425 se->vruntime += cfs_rq->min_vruntime; 4426 4427 update_curr(cfs_rq); 4428 4429 /* 4430 * Otherwise, renormalise after, such that we're placed at the current 4431 * moment in time, instead of some random moment in the past. Being 4432 * placed in the past could significantly boost this task to the 4433 * fairness detriment of existing tasks. 4434 */ 4435 if (renorm && !curr) 4436 se->vruntime += cfs_rq->min_vruntime; 4437 4438 /* 4439 * When enqueuing a sched_entity, we must: 4440 * - Update loads to have both entity and cfs_rq synced with now. 4441 * - For group_entity, update its runnable_weight to reflect the new 4442 * h_nr_running of its group cfs_rq. 4443 * - For group_entity, update its weight to reflect the new share of 4444 * its group cfs_rq 4445 * - Add its new weight to cfs_rq->load.weight 4446 */ 4447 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4448 se_update_runnable(se); 4449 update_cfs_group(se); 4450 account_entity_enqueue(cfs_rq, se); 4451 4452 if (flags & ENQUEUE_WAKEUP) 4453 place_entity(cfs_rq, se, 0); 4454 4455 check_schedstat_required(); 4456 update_stats_enqueue_fair(cfs_rq, se, flags); 4457 check_spread(cfs_rq, se); 4458 if (!curr) 4459 __enqueue_entity(cfs_rq, se); 4460 se->on_rq = 1; 4461 4462 if (cfs_rq->nr_running == 1) { 4463 check_enqueue_throttle(cfs_rq); 4464 if (!throttled_hierarchy(cfs_rq)) 4465 list_add_leaf_cfs_rq(cfs_rq); 4466 } 4467 } 4468 4469 static void __clear_buddies_last(struct sched_entity *se) 4470 { 4471 for_each_sched_entity(se) { 4472 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4473 if (cfs_rq->last != se) 4474 break; 4475 4476 cfs_rq->last = NULL; 4477 } 4478 } 4479 4480 static void __clear_buddies_next(struct sched_entity *se) 4481 { 4482 for_each_sched_entity(se) { 4483 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4484 if (cfs_rq->next != se) 4485 break; 4486 4487 cfs_rq->next = NULL; 4488 } 4489 } 4490 4491 static void __clear_buddies_skip(struct sched_entity *se) 4492 { 4493 for_each_sched_entity(se) { 4494 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4495 if (cfs_rq->skip != se) 4496 break; 4497 4498 cfs_rq->skip = NULL; 4499 } 4500 } 4501 4502 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4503 { 4504 if (cfs_rq->last == se) 4505 __clear_buddies_last(se); 4506 4507 if (cfs_rq->next == se) 4508 __clear_buddies_next(se); 4509 4510 if (cfs_rq->skip == se) 4511 __clear_buddies_skip(se); 4512 } 4513 4514 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4515 4516 static void 4517 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4518 { 4519 int action = UPDATE_TG; 4520 4521 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 4522 action |= DO_DETACH; 4523 4524 /* 4525 * Update run-time statistics of the 'current'. 4526 */ 4527 update_curr(cfs_rq); 4528 4529 /* 4530 * When dequeuing a sched_entity, we must: 4531 * - Update loads to have both entity and cfs_rq synced with now. 4532 * - For group_entity, update its runnable_weight to reflect the new 4533 * h_nr_running of its group cfs_rq. 4534 * - Subtract its previous weight from cfs_rq->load.weight. 4535 * - For group entity, update its weight to reflect the new share 4536 * of its group cfs_rq. 4537 */ 4538 update_load_avg(cfs_rq, se, action); 4539 se_update_runnable(se); 4540 4541 update_stats_dequeue_fair(cfs_rq, se, flags); 4542 4543 clear_buddies(cfs_rq, se); 4544 4545 if (se != cfs_rq->curr) 4546 __dequeue_entity(cfs_rq, se); 4547 se->on_rq = 0; 4548 account_entity_dequeue(cfs_rq, se); 4549 4550 /* 4551 * Normalize after update_curr(); which will also have moved 4552 * min_vruntime if @se is the one holding it back. But before doing 4553 * update_min_vruntime() again, which will discount @se's position and 4554 * can move min_vruntime forward still more. 4555 */ 4556 if (!(flags & DEQUEUE_SLEEP)) 4557 se->vruntime -= cfs_rq->min_vruntime; 4558 4559 /* return excess runtime on last dequeue */ 4560 return_cfs_rq_runtime(cfs_rq); 4561 4562 update_cfs_group(se); 4563 4564 /* 4565 * Now advance min_vruntime if @se was the entity holding it back, 4566 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4567 * put back on, and if we advance min_vruntime, we'll be placed back 4568 * further than we started -- ie. we'll be penalized. 4569 */ 4570 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4571 update_min_vruntime(cfs_rq); 4572 4573 if (cfs_rq->nr_running == 0) 4574 update_idle_cfs_rq_clock_pelt(cfs_rq); 4575 } 4576 4577 /* 4578 * Preempt the current task with a newly woken task if needed: 4579 */ 4580 static void 4581 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4582 { 4583 unsigned long ideal_runtime, delta_exec; 4584 struct sched_entity *se; 4585 s64 delta; 4586 4587 ideal_runtime = sched_slice(cfs_rq, curr); 4588 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4589 if (delta_exec > ideal_runtime) { 4590 resched_curr(rq_of(cfs_rq)); 4591 /* 4592 * The current task ran long enough, ensure it doesn't get 4593 * re-elected due to buddy favours. 4594 */ 4595 clear_buddies(cfs_rq, curr); 4596 return; 4597 } 4598 4599 /* 4600 * Ensure that a task that missed wakeup preemption by a 4601 * narrow margin doesn't have to wait for a full slice. 4602 * This also mitigates buddy induced latencies under load. 4603 */ 4604 if (delta_exec < sysctl_sched_min_granularity) 4605 return; 4606 4607 se = __pick_first_entity(cfs_rq); 4608 delta = curr->vruntime - se->vruntime; 4609 4610 if (delta < 0) 4611 return; 4612 4613 if (delta > ideal_runtime) 4614 resched_curr(rq_of(cfs_rq)); 4615 } 4616 4617 static void 4618 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4619 { 4620 clear_buddies(cfs_rq, se); 4621 4622 /* 'current' is not kept within the tree. */ 4623 if (se->on_rq) { 4624 /* 4625 * Any task has to be enqueued before it get to execute on 4626 * a CPU. So account for the time it spent waiting on the 4627 * runqueue. 4628 */ 4629 update_stats_wait_end_fair(cfs_rq, se); 4630 __dequeue_entity(cfs_rq, se); 4631 update_load_avg(cfs_rq, se, UPDATE_TG); 4632 } 4633 4634 update_stats_curr_start(cfs_rq, se); 4635 cfs_rq->curr = se; 4636 4637 /* 4638 * Track our maximum slice length, if the CPU's load is at 4639 * least twice that of our own weight (i.e. dont track it 4640 * when there are only lesser-weight tasks around): 4641 */ 4642 if (schedstat_enabled() && 4643 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4644 struct sched_statistics *stats; 4645 4646 stats = __schedstats_from_se(se); 4647 __schedstat_set(stats->slice_max, 4648 max((u64)stats->slice_max, 4649 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4650 } 4651 4652 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4653 } 4654 4655 static int 4656 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4657 4658 /* 4659 * Pick the next process, keeping these things in mind, in this order: 4660 * 1) keep things fair between processes/task groups 4661 * 2) pick the "next" process, since someone really wants that to run 4662 * 3) pick the "last" process, for cache locality 4663 * 4) do not run the "skip" process, if something else is available 4664 */ 4665 static struct sched_entity * 4666 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4667 { 4668 struct sched_entity *left = __pick_first_entity(cfs_rq); 4669 struct sched_entity *se; 4670 4671 /* 4672 * If curr is set we have to see if its left of the leftmost entity 4673 * still in the tree, provided there was anything in the tree at all. 4674 */ 4675 if (!left || (curr && entity_before(curr, left))) 4676 left = curr; 4677 4678 se = left; /* ideally we run the leftmost entity */ 4679 4680 /* 4681 * Avoid running the skip buddy, if running something else can 4682 * be done without getting too unfair. 4683 */ 4684 if (cfs_rq->skip && cfs_rq->skip == se) { 4685 struct sched_entity *second; 4686 4687 if (se == curr) { 4688 second = __pick_first_entity(cfs_rq); 4689 } else { 4690 second = __pick_next_entity(se); 4691 if (!second || (curr && entity_before(curr, second))) 4692 second = curr; 4693 } 4694 4695 if (second && wakeup_preempt_entity(second, left) < 1) 4696 se = second; 4697 } 4698 4699 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4700 /* 4701 * Someone really wants this to run. If it's not unfair, run it. 4702 */ 4703 se = cfs_rq->next; 4704 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4705 /* 4706 * Prefer last buddy, try to return the CPU to a preempted task. 4707 */ 4708 se = cfs_rq->last; 4709 } 4710 4711 return se; 4712 } 4713 4714 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4715 4716 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4717 { 4718 /* 4719 * If still on the runqueue then deactivate_task() 4720 * was not called and update_curr() has to be done: 4721 */ 4722 if (prev->on_rq) 4723 update_curr(cfs_rq); 4724 4725 /* throttle cfs_rqs exceeding runtime */ 4726 check_cfs_rq_runtime(cfs_rq); 4727 4728 check_spread(cfs_rq, prev); 4729 4730 if (prev->on_rq) { 4731 update_stats_wait_start_fair(cfs_rq, prev); 4732 /* Put 'current' back into the tree. */ 4733 __enqueue_entity(cfs_rq, prev); 4734 /* in !on_rq case, update occurred at dequeue */ 4735 update_load_avg(cfs_rq, prev, 0); 4736 } 4737 cfs_rq->curr = NULL; 4738 } 4739 4740 static void 4741 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4742 { 4743 /* 4744 * Update run-time statistics of the 'current'. 4745 */ 4746 update_curr(cfs_rq); 4747 4748 /* 4749 * Ensure that runnable average is periodically updated. 4750 */ 4751 update_load_avg(cfs_rq, curr, UPDATE_TG); 4752 update_cfs_group(curr); 4753 4754 #ifdef CONFIG_SCHED_HRTICK 4755 /* 4756 * queued ticks are scheduled to match the slice, so don't bother 4757 * validating it and just reschedule. 4758 */ 4759 if (queued) { 4760 resched_curr(rq_of(cfs_rq)); 4761 return; 4762 } 4763 /* 4764 * don't let the period tick interfere with the hrtick preemption 4765 */ 4766 if (!sched_feat(DOUBLE_TICK) && 4767 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4768 return; 4769 #endif 4770 4771 if (cfs_rq->nr_running > 1) 4772 check_preempt_tick(cfs_rq, curr); 4773 } 4774 4775 4776 /************************************************** 4777 * CFS bandwidth control machinery 4778 */ 4779 4780 #ifdef CONFIG_CFS_BANDWIDTH 4781 4782 #ifdef CONFIG_JUMP_LABEL 4783 static struct static_key __cfs_bandwidth_used; 4784 4785 static inline bool cfs_bandwidth_used(void) 4786 { 4787 return static_key_false(&__cfs_bandwidth_used); 4788 } 4789 4790 void cfs_bandwidth_usage_inc(void) 4791 { 4792 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4793 } 4794 4795 void cfs_bandwidth_usage_dec(void) 4796 { 4797 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4798 } 4799 #else /* CONFIG_JUMP_LABEL */ 4800 static bool cfs_bandwidth_used(void) 4801 { 4802 return true; 4803 } 4804 4805 void cfs_bandwidth_usage_inc(void) {} 4806 void cfs_bandwidth_usage_dec(void) {} 4807 #endif /* CONFIG_JUMP_LABEL */ 4808 4809 /* 4810 * default period for cfs group bandwidth. 4811 * default: 0.1s, units: nanoseconds 4812 */ 4813 static inline u64 default_cfs_period(void) 4814 { 4815 return 100000000ULL; 4816 } 4817 4818 static inline u64 sched_cfs_bandwidth_slice(void) 4819 { 4820 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4821 } 4822 4823 /* 4824 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4825 * directly instead of rq->clock to avoid adding additional synchronization 4826 * around rq->lock. 4827 * 4828 * requires cfs_b->lock 4829 */ 4830 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4831 { 4832 s64 runtime; 4833 4834 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4835 return; 4836 4837 cfs_b->runtime += cfs_b->quota; 4838 runtime = cfs_b->runtime_snap - cfs_b->runtime; 4839 if (runtime > 0) { 4840 cfs_b->burst_time += runtime; 4841 cfs_b->nr_burst++; 4842 } 4843 4844 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4845 cfs_b->runtime_snap = cfs_b->runtime; 4846 } 4847 4848 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4849 { 4850 return &tg->cfs_bandwidth; 4851 } 4852 4853 /* returns 0 on failure to allocate runtime */ 4854 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4855 struct cfs_rq *cfs_rq, u64 target_runtime) 4856 { 4857 u64 min_amount, amount = 0; 4858 4859 lockdep_assert_held(&cfs_b->lock); 4860 4861 /* note: this is a positive sum as runtime_remaining <= 0 */ 4862 min_amount = target_runtime - cfs_rq->runtime_remaining; 4863 4864 if (cfs_b->quota == RUNTIME_INF) 4865 amount = min_amount; 4866 else { 4867 start_cfs_bandwidth(cfs_b); 4868 4869 if (cfs_b->runtime > 0) { 4870 amount = min(cfs_b->runtime, min_amount); 4871 cfs_b->runtime -= amount; 4872 cfs_b->idle = 0; 4873 } 4874 } 4875 4876 cfs_rq->runtime_remaining += amount; 4877 4878 return cfs_rq->runtime_remaining > 0; 4879 } 4880 4881 /* returns 0 on failure to allocate runtime */ 4882 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4883 { 4884 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4885 int ret; 4886 4887 raw_spin_lock(&cfs_b->lock); 4888 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4889 raw_spin_unlock(&cfs_b->lock); 4890 4891 return ret; 4892 } 4893 4894 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4895 { 4896 /* dock delta_exec before expiring quota (as it could span periods) */ 4897 cfs_rq->runtime_remaining -= delta_exec; 4898 4899 if (likely(cfs_rq->runtime_remaining > 0)) 4900 return; 4901 4902 if (cfs_rq->throttled) 4903 return; 4904 /* 4905 * if we're unable to extend our runtime we resched so that the active 4906 * hierarchy can be throttled 4907 */ 4908 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4909 resched_curr(rq_of(cfs_rq)); 4910 } 4911 4912 static __always_inline 4913 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4914 { 4915 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4916 return; 4917 4918 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4919 } 4920 4921 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4922 { 4923 return cfs_bandwidth_used() && cfs_rq->throttled; 4924 } 4925 4926 /* check whether cfs_rq, or any parent, is throttled */ 4927 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4928 { 4929 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4930 } 4931 4932 /* 4933 * Ensure that neither of the group entities corresponding to src_cpu or 4934 * dest_cpu are members of a throttled hierarchy when performing group 4935 * load-balance operations. 4936 */ 4937 static inline int throttled_lb_pair(struct task_group *tg, 4938 int src_cpu, int dest_cpu) 4939 { 4940 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4941 4942 src_cfs_rq = tg->cfs_rq[src_cpu]; 4943 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4944 4945 return throttled_hierarchy(src_cfs_rq) || 4946 throttled_hierarchy(dest_cfs_rq); 4947 } 4948 4949 static int tg_unthrottle_up(struct task_group *tg, void *data) 4950 { 4951 struct rq *rq = data; 4952 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4953 4954 cfs_rq->throttle_count--; 4955 if (!cfs_rq->throttle_count) { 4956 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 4957 cfs_rq->throttled_clock_pelt; 4958 4959 /* Add cfs_rq with load or one or more already running entities to the list */ 4960 if (!cfs_rq_is_decayed(cfs_rq)) 4961 list_add_leaf_cfs_rq(cfs_rq); 4962 } 4963 4964 return 0; 4965 } 4966 4967 static int tg_throttle_down(struct task_group *tg, void *data) 4968 { 4969 struct rq *rq = data; 4970 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4971 4972 /* group is entering throttled state, stop time */ 4973 if (!cfs_rq->throttle_count) { 4974 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 4975 list_del_leaf_cfs_rq(cfs_rq); 4976 } 4977 cfs_rq->throttle_count++; 4978 4979 return 0; 4980 } 4981 4982 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4983 { 4984 struct rq *rq = rq_of(cfs_rq); 4985 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4986 struct sched_entity *se; 4987 long task_delta, idle_task_delta, dequeue = 1; 4988 4989 raw_spin_lock(&cfs_b->lock); 4990 /* This will start the period timer if necessary */ 4991 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4992 /* 4993 * We have raced with bandwidth becoming available, and if we 4994 * actually throttled the timer might not unthrottle us for an 4995 * entire period. We additionally needed to make sure that any 4996 * subsequent check_cfs_rq_runtime calls agree not to throttle 4997 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4998 * for 1ns of runtime rather than just check cfs_b. 4999 */ 5000 dequeue = 0; 5001 } else { 5002 list_add_tail_rcu(&cfs_rq->throttled_list, 5003 &cfs_b->throttled_cfs_rq); 5004 } 5005 raw_spin_unlock(&cfs_b->lock); 5006 5007 if (!dequeue) 5008 return false; /* Throttle no longer required. */ 5009 5010 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5011 5012 /* freeze hierarchy runnable averages while throttled */ 5013 rcu_read_lock(); 5014 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5015 rcu_read_unlock(); 5016 5017 task_delta = cfs_rq->h_nr_running; 5018 idle_task_delta = cfs_rq->idle_h_nr_running; 5019 for_each_sched_entity(se) { 5020 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5021 /* throttled entity or throttle-on-deactivate */ 5022 if (!se->on_rq) 5023 goto done; 5024 5025 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5026 5027 if (cfs_rq_is_idle(group_cfs_rq(se))) 5028 idle_task_delta = cfs_rq->h_nr_running; 5029 5030 qcfs_rq->h_nr_running -= task_delta; 5031 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5032 5033 if (qcfs_rq->load.weight) { 5034 /* Avoid re-evaluating load for this entity: */ 5035 se = parent_entity(se); 5036 break; 5037 } 5038 } 5039 5040 for_each_sched_entity(se) { 5041 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5042 /* throttled entity or throttle-on-deactivate */ 5043 if (!se->on_rq) 5044 goto done; 5045 5046 update_load_avg(qcfs_rq, se, 0); 5047 se_update_runnable(se); 5048 5049 if (cfs_rq_is_idle(group_cfs_rq(se))) 5050 idle_task_delta = cfs_rq->h_nr_running; 5051 5052 qcfs_rq->h_nr_running -= task_delta; 5053 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5054 } 5055 5056 /* At this point se is NULL and we are at root level*/ 5057 sub_nr_running(rq, task_delta); 5058 5059 done: 5060 /* 5061 * Note: distribution will already see us throttled via the 5062 * throttled-list. rq->lock protects completion. 5063 */ 5064 cfs_rq->throttled = 1; 5065 cfs_rq->throttled_clock = rq_clock(rq); 5066 return true; 5067 } 5068 5069 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5070 { 5071 struct rq *rq = rq_of(cfs_rq); 5072 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5073 struct sched_entity *se; 5074 long task_delta, idle_task_delta; 5075 5076 se = cfs_rq->tg->se[cpu_of(rq)]; 5077 5078 cfs_rq->throttled = 0; 5079 5080 update_rq_clock(rq); 5081 5082 raw_spin_lock(&cfs_b->lock); 5083 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5084 list_del_rcu(&cfs_rq->throttled_list); 5085 raw_spin_unlock(&cfs_b->lock); 5086 5087 /* update hierarchical throttle state */ 5088 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5089 5090 if (!cfs_rq->load.weight) { 5091 if (!cfs_rq->on_list) 5092 return; 5093 /* 5094 * Nothing to run but something to decay (on_list)? 5095 * Complete the branch. 5096 */ 5097 for_each_sched_entity(se) { 5098 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5099 break; 5100 } 5101 goto unthrottle_throttle; 5102 } 5103 5104 task_delta = cfs_rq->h_nr_running; 5105 idle_task_delta = cfs_rq->idle_h_nr_running; 5106 for_each_sched_entity(se) { 5107 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5108 5109 if (se->on_rq) 5110 break; 5111 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5112 5113 if (cfs_rq_is_idle(group_cfs_rq(se))) 5114 idle_task_delta = cfs_rq->h_nr_running; 5115 5116 qcfs_rq->h_nr_running += task_delta; 5117 qcfs_rq->idle_h_nr_running += idle_task_delta; 5118 5119 /* end evaluation on encountering a throttled cfs_rq */ 5120 if (cfs_rq_throttled(qcfs_rq)) 5121 goto unthrottle_throttle; 5122 } 5123 5124 for_each_sched_entity(se) { 5125 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5126 5127 update_load_avg(qcfs_rq, se, UPDATE_TG); 5128 se_update_runnable(se); 5129 5130 if (cfs_rq_is_idle(group_cfs_rq(se))) 5131 idle_task_delta = cfs_rq->h_nr_running; 5132 5133 qcfs_rq->h_nr_running += task_delta; 5134 qcfs_rq->idle_h_nr_running += idle_task_delta; 5135 5136 /* end evaluation on encountering a throttled cfs_rq */ 5137 if (cfs_rq_throttled(qcfs_rq)) 5138 goto unthrottle_throttle; 5139 } 5140 5141 /* At this point se is NULL and we are at root level*/ 5142 add_nr_running(rq, task_delta); 5143 5144 unthrottle_throttle: 5145 assert_list_leaf_cfs_rq(rq); 5146 5147 /* Determine whether we need to wake up potentially idle CPU: */ 5148 if (rq->curr == rq->idle && rq->cfs.nr_running) 5149 resched_curr(rq); 5150 } 5151 5152 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5153 { 5154 struct cfs_rq *cfs_rq; 5155 u64 runtime, remaining = 1; 5156 5157 rcu_read_lock(); 5158 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5159 throttled_list) { 5160 struct rq *rq = rq_of(cfs_rq); 5161 struct rq_flags rf; 5162 5163 rq_lock_irqsave(rq, &rf); 5164 if (!cfs_rq_throttled(cfs_rq)) 5165 goto next; 5166 5167 /* By the above check, this should never be true */ 5168 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5169 5170 raw_spin_lock(&cfs_b->lock); 5171 runtime = -cfs_rq->runtime_remaining + 1; 5172 if (runtime > cfs_b->runtime) 5173 runtime = cfs_b->runtime; 5174 cfs_b->runtime -= runtime; 5175 remaining = cfs_b->runtime; 5176 raw_spin_unlock(&cfs_b->lock); 5177 5178 cfs_rq->runtime_remaining += runtime; 5179 5180 /* we check whether we're throttled above */ 5181 if (cfs_rq->runtime_remaining > 0) 5182 unthrottle_cfs_rq(cfs_rq); 5183 5184 next: 5185 rq_unlock_irqrestore(rq, &rf); 5186 5187 if (!remaining) 5188 break; 5189 } 5190 rcu_read_unlock(); 5191 } 5192 5193 /* 5194 * Responsible for refilling a task_group's bandwidth and unthrottling its 5195 * cfs_rqs as appropriate. If there has been no activity within the last 5196 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5197 * used to track this state. 5198 */ 5199 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5200 { 5201 int throttled; 5202 5203 /* no need to continue the timer with no bandwidth constraint */ 5204 if (cfs_b->quota == RUNTIME_INF) 5205 goto out_deactivate; 5206 5207 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5208 cfs_b->nr_periods += overrun; 5209 5210 /* Refill extra burst quota even if cfs_b->idle */ 5211 __refill_cfs_bandwidth_runtime(cfs_b); 5212 5213 /* 5214 * idle depends on !throttled (for the case of a large deficit), and if 5215 * we're going inactive then everything else can be deferred 5216 */ 5217 if (cfs_b->idle && !throttled) 5218 goto out_deactivate; 5219 5220 if (!throttled) { 5221 /* mark as potentially idle for the upcoming period */ 5222 cfs_b->idle = 1; 5223 return 0; 5224 } 5225 5226 /* account preceding periods in which throttling occurred */ 5227 cfs_b->nr_throttled += overrun; 5228 5229 /* 5230 * This check is repeated as we release cfs_b->lock while we unthrottle. 5231 */ 5232 while (throttled && cfs_b->runtime > 0) { 5233 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5234 /* we can't nest cfs_b->lock while distributing bandwidth */ 5235 distribute_cfs_runtime(cfs_b); 5236 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5237 5238 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5239 } 5240 5241 /* 5242 * While we are ensured activity in the period following an 5243 * unthrottle, this also covers the case in which the new bandwidth is 5244 * insufficient to cover the existing bandwidth deficit. (Forcing the 5245 * timer to remain active while there are any throttled entities.) 5246 */ 5247 cfs_b->idle = 0; 5248 5249 return 0; 5250 5251 out_deactivate: 5252 return 1; 5253 } 5254 5255 /* a cfs_rq won't donate quota below this amount */ 5256 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5257 /* minimum remaining period time to redistribute slack quota */ 5258 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5259 /* how long we wait to gather additional slack before distributing */ 5260 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5261 5262 /* 5263 * Are we near the end of the current quota period? 5264 * 5265 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5266 * hrtimer base being cleared by hrtimer_start. In the case of 5267 * migrate_hrtimers, base is never cleared, so we are fine. 5268 */ 5269 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5270 { 5271 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5272 s64 remaining; 5273 5274 /* if the call-back is running a quota refresh is already occurring */ 5275 if (hrtimer_callback_running(refresh_timer)) 5276 return 1; 5277 5278 /* is a quota refresh about to occur? */ 5279 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5280 if (remaining < (s64)min_expire) 5281 return 1; 5282 5283 return 0; 5284 } 5285 5286 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5287 { 5288 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5289 5290 /* if there's a quota refresh soon don't bother with slack */ 5291 if (runtime_refresh_within(cfs_b, min_left)) 5292 return; 5293 5294 /* don't push forwards an existing deferred unthrottle */ 5295 if (cfs_b->slack_started) 5296 return; 5297 cfs_b->slack_started = true; 5298 5299 hrtimer_start(&cfs_b->slack_timer, 5300 ns_to_ktime(cfs_bandwidth_slack_period), 5301 HRTIMER_MODE_REL); 5302 } 5303 5304 /* we know any runtime found here is valid as update_curr() precedes return */ 5305 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5306 { 5307 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5308 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5309 5310 if (slack_runtime <= 0) 5311 return; 5312 5313 raw_spin_lock(&cfs_b->lock); 5314 if (cfs_b->quota != RUNTIME_INF) { 5315 cfs_b->runtime += slack_runtime; 5316 5317 /* we are under rq->lock, defer unthrottling using a timer */ 5318 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5319 !list_empty(&cfs_b->throttled_cfs_rq)) 5320 start_cfs_slack_bandwidth(cfs_b); 5321 } 5322 raw_spin_unlock(&cfs_b->lock); 5323 5324 /* even if it's not valid for return we don't want to try again */ 5325 cfs_rq->runtime_remaining -= slack_runtime; 5326 } 5327 5328 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5329 { 5330 if (!cfs_bandwidth_used()) 5331 return; 5332 5333 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5334 return; 5335 5336 __return_cfs_rq_runtime(cfs_rq); 5337 } 5338 5339 /* 5340 * This is done with a timer (instead of inline with bandwidth return) since 5341 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5342 */ 5343 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5344 { 5345 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5346 unsigned long flags; 5347 5348 /* confirm we're still not at a refresh boundary */ 5349 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5350 cfs_b->slack_started = false; 5351 5352 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5353 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5354 return; 5355 } 5356 5357 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5358 runtime = cfs_b->runtime; 5359 5360 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5361 5362 if (!runtime) 5363 return; 5364 5365 distribute_cfs_runtime(cfs_b); 5366 } 5367 5368 /* 5369 * When a group wakes up we want to make sure that its quota is not already 5370 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5371 * runtime as update_curr() throttling can not trigger until it's on-rq. 5372 */ 5373 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5374 { 5375 if (!cfs_bandwidth_used()) 5376 return; 5377 5378 /* an active group must be handled by the update_curr()->put() path */ 5379 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5380 return; 5381 5382 /* ensure the group is not already throttled */ 5383 if (cfs_rq_throttled(cfs_rq)) 5384 return; 5385 5386 /* update runtime allocation */ 5387 account_cfs_rq_runtime(cfs_rq, 0); 5388 if (cfs_rq->runtime_remaining <= 0) 5389 throttle_cfs_rq(cfs_rq); 5390 } 5391 5392 static void sync_throttle(struct task_group *tg, int cpu) 5393 { 5394 struct cfs_rq *pcfs_rq, *cfs_rq; 5395 5396 if (!cfs_bandwidth_used()) 5397 return; 5398 5399 if (!tg->parent) 5400 return; 5401 5402 cfs_rq = tg->cfs_rq[cpu]; 5403 pcfs_rq = tg->parent->cfs_rq[cpu]; 5404 5405 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5406 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5407 } 5408 5409 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5410 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5411 { 5412 if (!cfs_bandwidth_used()) 5413 return false; 5414 5415 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5416 return false; 5417 5418 /* 5419 * it's possible for a throttled entity to be forced into a running 5420 * state (e.g. set_curr_task), in this case we're finished. 5421 */ 5422 if (cfs_rq_throttled(cfs_rq)) 5423 return true; 5424 5425 return throttle_cfs_rq(cfs_rq); 5426 } 5427 5428 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5429 { 5430 struct cfs_bandwidth *cfs_b = 5431 container_of(timer, struct cfs_bandwidth, slack_timer); 5432 5433 do_sched_cfs_slack_timer(cfs_b); 5434 5435 return HRTIMER_NORESTART; 5436 } 5437 5438 extern const u64 max_cfs_quota_period; 5439 5440 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5441 { 5442 struct cfs_bandwidth *cfs_b = 5443 container_of(timer, struct cfs_bandwidth, period_timer); 5444 unsigned long flags; 5445 int overrun; 5446 int idle = 0; 5447 int count = 0; 5448 5449 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5450 for (;;) { 5451 overrun = hrtimer_forward_now(timer, cfs_b->period); 5452 if (!overrun) 5453 break; 5454 5455 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5456 5457 if (++count > 3) { 5458 u64 new, old = ktime_to_ns(cfs_b->period); 5459 5460 /* 5461 * Grow period by a factor of 2 to avoid losing precision. 5462 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5463 * to fail. 5464 */ 5465 new = old * 2; 5466 if (new < max_cfs_quota_period) { 5467 cfs_b->period = ns_to_ktime(new); 5468 cfs_b->quota *= 2; 5469 cfs_b->burst *= 2; 5470 5471 pr_warn_ratelimited( 5472 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5473 smp_processor_id(), 5474 div_u64(new, NSEC_PER_USEC), 5475 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5476 } else { 5477 pr_warn_ratelimited( 5478 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5479 smp_processor_id(), 5480 div_u64(old, NSEC_PER_USEC), 5481 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5482 } 5483 5484 /* reset count so we don't come right back in here */ 5485 count = 0; 5486 } 5487 } 5488 if (idle) 5489 cfs_b->period_active = 0; 5490 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5491 5492 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5493 } 5494 5495 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5496 { 5497 raw_spin_lock_init(&cfs_b->lock); 5498 cfs_b->runtime = 0; 5499 cfs_b->quota = RUNTIME_INF; 5500 cfs_b->period = ns_to_ktime(default_cfs_period()); 5501 cfs_b->burst = 0; 5502 5503 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5504 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5505 cfs_b->period_timer.function = sched_cfs_period_timer; 5506 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5507 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5508 cfs_b->slack_started = false; 5509 } 5510 5511 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5512 { 5513 cfs_rq->runtime_enabled = 0; 5514 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5515 } 5516 5517 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5518 { 5519 lockdep_assert_held(&cfs_b->lock); 5520 5521 if (cfs_b->period_active) 5522 return; 5523 5524 cfs_b->period_active = 1; 5525 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5526 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5527 } 5528 5529 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5530 { 5531 /* init_cfs_bandwidth() was not called */ 5532 if (!cfs_b->throttled_cfs_rq.next) 5533 return; 5534 5535 hrtimer_cancel(&cfs_b->period_timer); 5536 hrtimer_cancel(&cfs_b->slack_timer); 5537 } 5538 5539 /* 5540 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5541 * 5542 * The race is harmless, since modifying bandwidth settings of unhooked group 5543 * bits doesn't do much. 5544 */ 5545 5546 /* cpu online callback */ 5547 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5548 { 5549 struct task_group *tg; 5550 5551 lockdep_assert_rq_held(rq); 5552 5553 rcu_read_lock(); 5554 list_for_each_entry_rcu(tg, &task_groups, list) { 5555 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5556 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5557 5558 raw_spin_lock(&cfs_b->lock); 5559 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5560 raw_spin_unlock(&cfs_b->lock); 5561 } 5562 rcu_read_unlock(); 5563 } 5564 5565 /* cpu offline callback */ 5566 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5567 { 5568 struct task_group *tg; 5569 5570 lockdep_assert_rq_held(rq); 5571 5572 rcu_read_lock(); 5573 list_for_each_entry_rcu(tg, &task_groups, list) { 5574 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5575 5576 if (!cfs_rq->runtime_enabled) 5577 continue; 5578 5579 /* 5580 * clock_task is not advancing so we just need to make sure 5581 * there's some valid quota amount 5582 */ 5583 cfs_rq->runtime_remaining = 1; 5584 /* 5585 * Offline rq is schedulable till CPU is completely disabled 5586 * in take_cpu_down(), so we prevent new cfs throttling here. 5587 */ 5588 cfs_rq->runtime_enabled = 0; 5589 5590 if (cfs_rq_throttled(cfs_rq)) 5591 unthrottle_cfs_rq(cfs_rq); 5592 } 5593 rcu_read_unlock(); 5594 } 5595 5596 #else /* CONFIG_CFS_BANDWIDTH */ 5597 5598 static inline bool cfs_bandwidth_used(void) 5599 { 5600 return false; 5601 } 5602 5603 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5604 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5605 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5606 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5607 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5608 5609 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5610 { 5611 return 0; 5612 } 5613 5614 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5615 { 5616 return 0; 5617 } 5618 5619 static inline int throttled_lb_pair(struct task_group *tg, 5620 int src_cpu, int dest_cpu) 5621 { 5622 return 0; 5623 } 5624 5625 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5626 5627 #ifdef CONFIG_FAIR_GROUP_SCHED 5628 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5629 #endif 5630 5631 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5632 { 5633 return NULL; 5634 } 5635 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5636 static inline void update_runtime_enabled(struct rq *rq) {} 5637 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5638 5639 #endif /* CONFIG_CFS_BANDWIDTH */ 5640 5641 /************************************************** 5642 * CFS operations on tasks: 5643 */ 5644 5645 #ifdef CONFIG_SCHED_HRTICK 5646 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5647 { 5648 struct sched_entity *se = &p->se; 5649 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5650 5651 SCHED_WARN_ON(task_rq(p) != rq); 5652 5653 if (rq->cfs.h_nr_running > 1) { 5654 u64 slice = sched_slice(cfs_rq, se); 5655 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5656 s64 delta = slice - ran; 5657 5658 if (delta < 0) { 5659 if (task_current(rq, p)) 5660 resched_curr(rq); 5661 return; 5662 } 5663 hrtick_start(rq, delta); 5664 } 5665 } 5666 5667 /* 5668 * called from enqueue/dequeue and updates the hrtick when the 5669 * current task is from our class and nr_running is low enough 5670 * to matter. 5671 */ 5672 static void hrtick_update(struct rq *rq) 5673 { 5674 struct task_struct *curr = rq->curr; 5675 5676 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5677 return; 5678 5679 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5680 hrtick_start_fair(rq, curr); 5681 } 5682 #else /* !CONFIG_SCHED_HRTICK */ 5683 static inline void 5684 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5685 { 5686 } 5687 5688 static inline void hrtick_update(struct rq *rq) 5689 { 5690 } 5691 #endif 5692 5693 #ifdef CONFIG_SMP 5694 static inline bool cpu_overutilized(int cpu) 5695 { 5696 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu)); 5697 } 5698 5699 static inline void update_overutilized_status(struct rq *rq) 5700 { 5701 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5702 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5703 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5704 } 5705 } 5706 #else 5707 static inline void update_overutilized_status(struct rq *rq) { } 5708 #endif 5709 5710 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5711 static int sched_idle_rq(struct rq *rq) 5712 { 5713 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5714 rq->nr_running); 5715 } 5716 5717 /* 5718 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 5719 * of idle_nr_running, which does not consider idle descendants of normal 5720 * entities. 5721 */ 5722 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 5723 { 5724 return cfs_rq->nr_running && 5725 cfs_rq->nr_running == cfs_rq->idle_nr_running; 5726 } 5727 5728 #ifdef CONFIG_SMP 5729 static int sched_idle_cpu(int cpu) 5730 { 5731 return sched_idle_rq(cpu_rq(cpu)); 5732 } 5733 #endif 5734 5735 /* 5736 * The enqueue_task method is called before nr_running is 5737 * increased. Here we update the fair scheduling stats and 5738 * then put the task into the rbtree: 5739 */ 5740 static void 5741 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5742 { 5743 struct cfs_rq *cfs_rq; 5744 struct sched_entity *se = &p->se; 5745 int idle_h_nr_running = task_has_idle_policy(p); 5746 int task_new = !(flags & ENQUEUE_WAKEUP); 5747 5748 /* 5749 * The code below (indirectly) updates schedutil which looks at 5750 * the cfs_rq utilization to select a frequency. 5751 * Let's add the task's estimated utilization to the cfs_rq's 5752 * estimated utilization, before we update schedutil. 5753 */ 5754 util_est_enqueue(&rq->cfs, p); 5755 5756 /* 5757 * If in_iowait is set, the code below may not trigger any cpufreq 5758 * utilization updates, so do it here explicitly with the IOWAIT flag 5759 * passed. 5760 */ 5761 if (p->in_iowait) 5762 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5763 5764 for_each_sched_entity(se) { 5765 if (se->on_rq) 5766 break; 5767 cfs_rq = cfs_rq_of(se); 5768 enqueue_entity(cfs_rq, se, flags); 5769 5770 cfs_rq->h_nr_running++; 5771 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5772 5773 if (cfs_rq_is_idle(cfs_rq)) 5774 idle_h_nr_running = 1; 5775 5776 /* end evaluation on encountering a throttled cfs_rq */ 5777 if (cfs_rq_throttled(cfs_rq)) 5778 goto enqueue_throttle; 5779 5780 flags = ENQUEUE_WAKEUP; 5781 } 5782 5783 for_each_sched_entity(se) { 5784 cfs_rq = cfs_rq_of(se); 5785 5786 update_load_avg(cfs_rq, se, UPDATE_TG); 5787 se_update_runnable(se); 5788 update_cfs_group(se); 5789 5790 cfs_rq->h_nr_running++; 5791 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5792 5793 if (cfs_rq_is_idle(cfs_rq)) 5794 idle_h_nr_running = 1; 5795 5796 /* end evaluation on encountering a throttled cfs_rq */ 5797 if (cfs_rq_throttled(cfs_rq)) 5798 goto enqueue_throttle; 5799 } 5800 5801 /* At this point se is NULL and we are at root level*/ 5802 add_nr_running(rq, 1); 5803 5804 /* 5805 * Since new tasks are assigned an initial util_avg equal to 5806 * half of the spare capacity of their CPU, tiny tasks have the 5807 * ability to cross the overutilized threshold, which will 5808 * result in the load balancer ruining all the task placement 5809 * done by EAS. As a way to mitigate that effect, do not account 5810 * for the first enqueue operation of new tasks during the 5811 * overutilized flag detection. 5812 * 5813 * A better way of solving this problem would be to wait for 5814 * the PELT signals of tasks to converge before taking them 5815 * into account, but that is not straightforward to implement, 5816 * and the following generally works well enough in practice. 5817 */ 5818 if (!task_new) 5819 update_overutilized_status(rq); 5820 5821 enqueue_throttle: 5822 assert_list_leaf_cfs_rq(rq); 5823 5824 hrtick_update(rq); 5825 } 5826 5827 static void set_next_buddy(struct sched_entity *se); 5828 5829 /* 5830 * The dequeue_task method is called before nr_running is 5831 * decreased. We remove the task from the rbtree and 5832 * update the fair scheduling stats: 5833 */ 5834 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5835 { 5836 struct cfs_rq *cfs_rq; 5837 struct sched_entity *se = &p->se; 5838 int task_sleep = flags & DEQUEUE_SLEEP; 5839 int idle_h_nr_running = task_has_idle_policy(p); 5840 bool was_sched_idle = sched_idle_rq(rq); 5841 5842 util_est_dequeue(&rq->cfs, p); 5843 5844 for_each_sched_entity(se) { 5845 cfs_rq = cfs_rq_of(se); 5846 dequeue_entity(cfs_rq, se, flags); 5847 5848 cfs_rq->h_nr_running--; 5849 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5850 5851 if (cfs_rq_is_idle(cfs_rq)) 5852 idle_h_nr_running = 1; 5853 5854 /* end evaluation on encountering a throttled cfs_rq */ 5855 if (cfs_rq_throttled(cfs_rq)) 5856 goto dequeue_throttle; 5857 5858 /* Don't dequeue parent if it has other entities besides us */ 5859 if (cfs_rq->load.weight) { 5860 /* Avoid re-evaluating load for this entity: */ 5861 se = parent_entity(se); 5862 /* 5863 * Bias pick_next to pick a task from this cfs_rq, as 5864 * p is sleeping when it is within its sched_slice. 5865 */ 5866 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5867 set_next_buddy(se); 5868 break; 5869 } 5870 flags |= DEQUEUE_SLEEP; 5871 } 5872 5873 for_each_sched_entity(se) { 5874 cfs_rq = cfs_rq_of(se); 5875 5876 update_load_avg(cfs_rq, se, UPDATE_TG); 5877 se_update_runnable(se); 5878 update_cfs_group(se); 5879 5880 cfs_rq->h_nr_running--; 5881 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5882 5883 if (cfs_rq_is_idle(cfs_rq)) 5884 idle_h_nr_running = 1; 5885 5886 /* end evaluation on encountering a throttled cfs_rq */ 5887 if (cfs_rq_throttled(cfs_rq)) 5888 goto dequeue_throttle; 5889 5890 } 5891 5892 /* At this point se is NULL and we are at root level*/ 5893 sub_nr_running(rq, 1); 5894 5895 /* balance early to pull high priority tasks */ 5896 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5897 rq->next_balance = jiffies; 5898 5899 dequeue_throttle: 5900 util_est_update(&rq->cfs, p, task_sleep); 5901 hrtick_update(rq); 5902 } 5903 5904 #ifdef CONFIG_SMP 5905 5906 /* Working cpumask for: load_balance, load_balance_newidle. */ 5907 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5908 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 5909 5910 #ifdef CONFIG_NO_HZ_COMMON 5911 5912 static struct { 5913 cpumask_var_t idle_cpus_mask; 5914 atomic_t nr_cpus; 5915 int has_blocked; /* Idle CPUS has blocked load */ 5916 int needs_update; /* Newly idle CPUs need their next_balance collated */ 5917 unsigned long next_balance; /* in jiffy units */ 5918 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5919 } nohz ____cacheline_aligned; 5920 5921 #endif /* CONFIG_NO_HZ_COMMON */ 5922 5923 static unsigned long cpu_load(struct rq *rq) 5924 { 5925 return cfs_rq_load_avg(&rq->cfs); 5926 } 5927 5928 /* 5929 * cpu_load_without - compute CPU load without any contributions from *p 5930 * @cpu: the CPU which load is requested 5931 * @p: the task which load should be discounted 5932 * 5933 * The load of a CPU is defined by the load of tasks currently enqueued on that 5934 * CPU as well as tasks which are currently sleeping after an execution on that 5935 * CPU. 5936 * 5937 * This method returns the load of the specified CPU by discounting the load of 5938 * the specified task, whenever the task is currently contributing to the CPU 5939 * load. 5940 */ 5941 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5942 { 5943 struct cfs_rq *cfs_rq; 5944 unsigned int load; 5945 5946 /* Task has no contribution or is new */ 5947 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5948 return cpu_load(rq); 5949 5950 cfs_rq = &rq->cfs; 5951 load = READ_ONCE(cfs_rq->avg.load_avg); 5952 5953 /* Discount task's util from CPU's util */ 5954 lsub_positive(&load, task_h_load(p)); 5955 5956 return load; 5957 } 5958 5959 static unsigned long cpu_runnable(struct rq *rq) 5960 { 5961 return cfs_rq_runnable_avg(&rq->cfs); 5962 } 5963 5964 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5965 { 5966 struct cfs_rq *cfs_rq; 5967 unsigned int runnable; 5968 5969 /* Task has no contribution or is new */ 5970 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5971 return cpu_runnable(rq); 5972 5973 cfs_rq = &rq->cfs; 5974 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5975 5976 /* Discount task's runnable from CPU's runnable */ 5977 lsub_positive(&runnable, p->se.avg.runnable_avg); 5978 5979 return runnable; 5980 } 5981 5982 static unsigned long capacity_of(int cpu) 5983 { 5984 return cpu_rq(cpu)->cpu_capacity; 5985 } 5986 5987 static void record_wakee(struct task_struct *p) 5988 { 5989 /* 5990 * Only decay a single time; tasks that have less then 1 wakeup per 5991 * jiffy will not have built up many flips. 5992 */ 5993 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5994 current->wakee_flips >>= 1; 5995 current->wakee_flip_decay_ts = jiffies; 5996 } 5997 5998 if (current->last_wakee != p) { 5999 current->last_wakee = p; 6000 current->wakee_flips++; 6001 } 6002 } 6003 6004 /* 6005 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6006 * 6007 * A waker of many should wake a different task than the one last awakened 6008 * at a frequency roughly N times higher than one of its wakees. 6009 * 6010 * In order to determine whether we should let the load spread vs consolidating 6011 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6012 * partner, and a factor of lls_size higher frequency in the other. 6013 * 6014 * With both conditions met, we can be relatively sure that the relationship is 6015 * non-monogamous, with partner count exceeding socket size. 6016 * 6017 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6018 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6019 * socket size. 6020 */ 6021 static int wake_wide(struct task_struct *p) 6022 { 6023 unsigned int master = current->wakee_flips; 6024 unsigned int slave = p->wakee_flips; 6025 int factor = __this_cpu_read(sd_llc_size); 6026 6027 if (master < slave) 6028 swap(master, slave); 6029 if (slave < factor || master < slave * factor) 6030 return 0; 6031 return 1; 6032 } 6033 6034 /* 6035 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6036 * soonest. For the purpose of speed we only consider the waking and previous 6037 * CPU. 6038 * 6039 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6040 * cache-affine and is (or will be) idle. 6041 * 6042 * wake_affine_weight() - considers the weight to reflect the average 6043 * scheduling latency of the CPUs. This seems to work 6044 * for the overloaded case. 6045 */ 6046 static int 6047 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6048 { 6049 /* 6050 * If this_cpu is idle, it implies the wakeup is from interrupt 6051 * context. Only allow the move if cache is shared. Otherwise an 6052 * interrupt intensive workload could force all tasks onto one 6053 * node depending on the IO topology or IRQ affinity settings. 6054 * 6055 * If the prev_cpu is idle and cache affine then avoid a migration. 6056 * There is no guarantee that the cache hot data from an interrupt 6057 * is more important than cache hot data on the prev_cpu and from 6058 * a cpufreq perspective, it's better to have higher utilisation 6059 * on one CPU. 6060 */ 6061 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6062 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6063 6064 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6065 return this_cpu; 6066 6067 if (available_idle_cpu(prev_cpu)) 6068 return prev_cpu; 6069 6070 return nr_cpumask_bits; 6071 } 6072 6073 static int 6074 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6075 int this_cpu, int prev_cpu, int sync) 6076 { 6077 s64 this_eff_load, prev_eff_load; 6078 unsigned long task_load; 6079 6080 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6081 6082 if (sync) { 6083 unsigned long current_load = task_h_load(current); 6084 6085 if (current_load > this_eff_load) 6086 return this_cpu; 6087 6088 this_eff_load -= current_load; 6089 } 6090 6091 task_load = task_h_load(p); 6092 6093 this_eff_load += task_load; 6094 if (sched_feat(WA_BIAS)) 6095 this_eff_load *= 100; 6096 this_eff_load *= capacity_of(prev_cpu); 6097 6098 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6099 prev_eff_load -= task_load; 6100 if (sched_feat(WA_BIAS)) 6101 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6102 prev_eff_load *= capacity_of(this_cpu); 6103 6104 /* 6105 * If sync, adjust the weight of prev_eff_load such that if 6106 * prev_eff == this_eff that select_idle_sibling() will consider 6107 * stacking the wakee on top of the waker if no other CPU is 6108 * idle. 6109 */ 6110 if (sync) 6111 prev_eff_load += 1; 6112 6113 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6114 } 6115 6116 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6117 int this_cpu, int prev_cpu, int sync) 6118 { 6119 int target = nr_cpumask_bits; 6120 6121 if (sched_feat(WA_IDLE)) 6122 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6123 6124 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6125 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6126 6127 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6128 if (target == nr_cpumask_bits) 6129 return prev_cpu; 6130 6131 schedstat_inc(sd->ttwu_move_affine); 6132 schedstat_inc(p->stats.nr_wakeups_affine); 6133 return target; 6134 } 6135 6136 static struct sched_group * 6137 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6138 6139 /* 6140 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6141 */ 6142 static int 6143 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6144 { 6145 unsigned long load, min_load = ULONG_MAX; 6146 unsigned int min_exit_latency = UINT_MAX; 6147 u64 latest_idle_timestamp = 0; 6148 int least_loaded_cpu = this_cpu; 6149 int shallowest_idle_cpu = -1; 6150 int i; 6151 6152 /* Check if we have any choice: */ 6153 if (group->group_weight == 1) 6154 return cpumask_first(sched_group_span(group)); 6155 6156 /* Traverse only the allowed CPUs */ 6157 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6158 struct rq *rq = cpu_rq(i); 6159 6160 if (!sched_core_cookie_match(rq, p)) 6161 continue; 6162 6163 if (sched_idle_cpu(i)) 6164 return i; 6165 6166 if (available_idle_cpu(i)) { 6167 struct cpuidle_state *idle = idle_get_state(rq); 6168 if (idle && idle->exit_latency < min_exit_latency) { 6169 /* 6170 * We give priority to a CPU whose idle state 6171 * has the smallest exit latency irrespective 6172 * of any idle timestamp. 6173 */ 6174 min_exit_latency = idle->exit_latency; 6175 latest_idle_timestamp = rq->idle_stamp; 6176 shallowest_idle_cpu = i; 6177 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6178 rq->idle_stamp > latest_idle_timestamp) { 6179 /* 6180 * If equal or no active idle state, then 6181 * the most recently idled CPU might have 6182 * a warmer cache. 6183 */ 6184 latest_idle_timestamp = rq->idle_stamp; 6185 shallowest_idle_cpu = i; 6186 } 6187 } else if (shallowest_idle_cpu == -1) { 6188 load = cpu_load(cpu_rq(i)); 6189 if (load < min_load) { 6190 min_load = load; 6191 least_loaded_cpu = i; 6192 } 6193 } 6194 } 6195 6196 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6197 } 6198 6199 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6200 int cpu, int prev_cpu, int sd_flag) 6201 { 6202 int new_cpu = cpu; 6203 6204 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6205 return prev_cpu; 6206 6207 /* 6208 * We need task's util for cpu_util_without, sync it up to 6209 * prev_cpu's last_update_time. 6210 */ 6211 if (!(sd_flag & SD_BALANCE_FORK)) 6212 sync_entity_load_avg(&p->se); 6213 6214 while (sd) { 6215 struct sched_group *group; 6216 struct sched_domain *tmp; 6217 int weight; 6218 6219 if (!(sd->flags & sd_flag)) { 6220 sd = sd->child; 6221 continue; 6222 } 6223 6224 group = find_idlest_group(sd, p, cpu); 6225 if (!group) { 6226 sd = sd->child; 6227 continue; 6228 } 6229 6230 new_cpu = find_idlest_group_cpu(group, p, cpu); 6231 if (new_cpu == cpu) { 6232 /* Now try balancing at a lower domain level of 'cpu': */ 6233 sd = sd->child; 6234 continue; 6235 } 6236 6237 /* Now try balancing at a lower domain level of 'new_cpu': */ 6238 cpu = new_cpu; 6239 weight = sd->span_weight; 6240 sd = NULL; 6241 for_each_domain(cpu, tmp) { 6242 if (weight <= tmp->span_weight) 6243 break; 6244 if (tmp->flags & sd_flag) 6245 sd = tmp; 6246 } 6247 } 6248 6249 return new_cpu; 6250 } 6251 6252 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6253 { 6254 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6255 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6256 return cpu; 6257 6258 return -1; 6259 } 6260 6261 #ifdef CONFIG_SCHED_SMT 6262 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6263 EXPORT_SYMBOL_GPL(sched_smt_present); 6264 6265 static inline void set_idle_cores(int cpu, int val) 6266 { 6267 struct sched_domain_shared *sds; 6268 6269 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6270 if (sds) 6271 WRITE_ONCE(sds->has_idle_cores, val); 6272 } 6273 6274 static inline bool test_idle_cores(int cpu) 6275 { 6276 struct sched_domain_shared *sds; 6277 6278 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6279 if (sds) 6280 return READ_ONCE(sds->has_idle_cores); 6281 6282 return false; 6283 } 6284 6285 /* 6286 * Scans the local SMT mask to see if the entire core is idle, and records this 6287 * information in sd_llc_shared->has_idle_cores. 6288 * 6289 * Since SMT siblings share all cache levels, inspecting this limited remote 6290 * state should be fairly cheap. 6291 */ 6292 void __update_idle_core(struct rq *rq) 6293 { 6294 int core = cpu_of(rq); 6295 int cpu; 6296 6297 rcu_read_lock(); 6298 if (test_idle_cores(core)) 6299 goto unlock; 6300 6301 for_each_cpu(cpu, cpu_smt_mask(core)) { 6302 if (cpu == core) 6303 continue; 6304 6305 if (!available_idle_cpu(cpu)) 6306 goto unlock; 6307 } 6308 6309 set_idle_cores(core, 1); 6310 unlock: 6311 rcu_read_unlock(); 6312 } 6313 6314 /* 6315 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6316 * there are no idle cores left in the system; tracked through 6317 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6318 */ 6319 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6320 { 6321 bool idle = true; 6322 int cpu; 6323 6324 for_each_cpu(cpu, cpu_smt_mask(core)) { 6325 if (!available_idle_cpu(cpu)) { 6326 idle = false; 6327 if (*idle_cpu == -1) { 6328 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6329 *idle_cpu = cpu; 6330 break; 6331 } 6332 continue; 6333 } 6334 break; 6335 } 6336 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6337 *idle_cpu = cpu; 6338 } 6339 6340 if (idle) 6341 return core; 6342 6343 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6344 return -1; 6345 } 6346 6347 /* 6348 * Scan the local SMT mask for idle CPUs. 6349 */ 6350 static int select_idle_smt(struct task_struct *p, int target) 6351 { 6352 int cpu; 6353 6354 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 6355 if (cpu == target) 6356 continue; 6357 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6358 return cpu; 6359 } 6360 6361 return -1; 6362 } 6363 6364 #else /* CONFIG_SCHED_SMT */ 6365 6366 static inline void set_idle_cores(int cpu, int val) 6367 { 6368 } 6369 6370 static inline bool test_idle_cores(int cpu) 6371 { 6372 return false; 6373 } 6374 6375 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6376 { 6377 return __select_idle_cpu(core, p); 6378 } 6379 6380 static inline int select_idle_smt(struct task_struct *p, int target) 6381 { 6382 return -1; 6383 } 6384 6385 #endif /* CONFIG_SCHED_SMT */ 6386 6387 /* 6388 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6389 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6390 * average idle time for this rq (as found in rq->avg_idle). 6391 */ 6392 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6393 { 6394 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6395 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6396 struct sched_domain_shared *sd_share; 6397 struct rq *this_rq = this_rq(); 6398 int this = smp_processor_id(); 6399 struct sched_domain *this_sd = NULL; 6400 u64 time = 0; 6401 6402 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6403 6404 if (sched_feat(SIS_PROP) && !has_idle_core) { 6405 u64 avg_cost, avg_idle, span_avg; 6406 unsigned long now = jiffies; 6407 6408 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6409 if (!this_sd) 6410 return -1; 6411 6412 /* 6413 * If we're busy, the assumption that the last idle period 6414 * predicts the future is flawed; age away the remaining 6415 * predicted idle time. 6416 */ 6417 if (unlikely(this_rq->wake_stamp < now)) { 6418 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6419 this_rq->wake_stamp++; 6420 this_rq->wake_avg_idle >>= 1; 6421 } 6422 } 6423 6424 avg_idle = this_rq->wake_avg_idle; 6425 avg_cost = this_sd->avg_scan_cost + 1; 6426 6427 span_avg = sd->span_weight * avg_idle; 6428 if (span_avg > 4*avg_cost) 6429 nr = div_u64(span_avg, avg_cost); 6430 else 6431 nr = 4; 6432 6433 time = cpu_clock(this); 6434 } 6435 6436 if (sched_feat(SIS_UTIL)) { 6437 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 6438 if (sd_share) { 6439 /* because !--nr is the condition to stop scan */ 6440 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 6441 /* overloaded LLC is unlikely to have idle cpu/core */ 6442 if (nr == 1) 6443 return -1; 6444 } 6445 } 6446 6447 for_each_cpu_wrap(cpu, cpus, target + 1) { 6448 if (has_idle_core) { 6449 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6450 if ((unsigned int)i < nr_cpumask_bits) 6451 return i; 6452 6453 } else { 6454 if (!--nr) 6455 return -1; 6456 idle_cpu = __select_idle_cpu(cpu, p); 6457 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6458 break; 6459 } 6460 } 6461 6462 if (has_idle_core) 6463 set_idle_cores(target, false); 6464 6465 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 6466 time = cpu_clock(this) - time; 6467 6468 /* 6469 * Account for the scan cost of wakeups against the average 6470 * idle time. 6471 */ 6472 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6473 6474 update_avg(&this_sd->avg_scan_cost, time); 6475 } 6476 6477 return idle_cpu; 6478 } 6479 6480 /* 6481 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6482 * the task fits. If no CPU is big enough, but there are idle ones, try to 6483 * maximize capacity. 6484 */ 6485 static int 6486 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6487 { 6488 unsigned long task_util, best_cap = 0; 6489 int cpu, best_cpu = -1; 6490 struct cpumask *cpus; 6491 6492 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6493 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6494 6495 task_util = uclamp_task_util(p); 6496 6497 for_each_cpu_wrap(cpu, cpus, target) { 6498 unsigned long cpu_cap = capacity_of(cpu); 6499 6500 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6501 continue; 6502 if (fits_capacity(task_util, cpu_cap)) 6503 return cpu; 6504 6505 if (cpu_cap > best_cap) { 6506 best_cap = cpu_cap; 6507 best_cpu = cpu; 6508 } 6509 } 6510 6511 return best_cpu; 6512 } 6513 6514 static inline bool asym_fits_capacity(unsigned long task_util, int cpu) 6515 { 6516 if (sched_asym_cpucap_active()) 6517 return fits_capacity(task_util, capacity_of(cpu)); 6518 6519 return true; 6520 } 6521 6522 /* 6523 * Try and locate an idle core/thread in the LLC cache domain. 6524 */ 6525 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6526 { 6527 bool has_idle_core = false; 6528 struct sched_domain *sd; 6529 unsigned long task_util; 6530 int i, recent_used_cpu; 6531 6532 /* 6533 * On asymmetric system, update task utilization because we will check 6534 * that the task fits with cpu's capacity. 6535 */ 6536 if (sched_asym_cpucap_active()) { 6537 sync_entity_load_avg(&p->se); 6538 task_util = uclamp_task_util(p); 6539 } 6540 6541 /* 6542 * per-cpu select_rq_mask usage 6543 */ 6544 lockdep_assert_irqs_disabled(); 6545 6546 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6547 asym_fits_capacity(task_util, target)) 6548 return target; 6549 6550 /* 6551 * If the previous CPU is cache affine and idle, don't be stupid: 6552 */ 6553 if (prev != target && cpus_share_cache(prev, target) && 6554 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6555 asym_fits_capacity(task_util, prev)) 6556 return prev; 6557 6558 /* 6559 * Allow a per-cpu kthread to stack with the wakee if the 6560 * kworker thread and the tasks previous CPUs are the same. 6561 * The assumption is that the wakee queued work for the 6562 * per-cpu kthread that is now complete and the wakeup is 6563 * essentially a sync wakeup. An obvious example of this 6564 * pattern is IO completions. 6565 */ 6566 if (is_per_cpu_kthread(current) && 6567 in_task() && 6568 prev == smp_processor_id() && 6569 this_rq()->nr_running <= 1 && 6570 asym_fits_capacity(task_util, prev)) { 6571 return prev; 6572 } 6573 6574 /* Check a recently used CPU as a potential idle candidate: */ 6575 recent_used_cpu = p->recent_used_cpu; 6576 p->recent_used_cpu = prev; 6577 if (recent_used_cpu != prev && 6578 recent_used_cpu != target && 6579 cpus_share_cache(recent_used_cpu, target) && 6580 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6581 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6582 asym_fits_capacity(task_util, recent_used_cpu)) { 6583 return recent_used_cpu; 6584 } 6585 6586 /* 6587 * For asymmetric CPU capacity systems, our domain of interest is 6588 * sd_asym_cpucapacity rather than sd_llc. 6589 */ 6590 if (sched_asym_cpucap_active()) { 6591 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6592 /* 6593 * On an asymmetric CPU capacity system where an exclusive 6594 * cpuset defines a symmetric island (i.e. one unique 6595 * capacity_orig value through the cpuset), the key will be set 6596 * but the CPUs within that cpuset will not have a domain with 6597 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6598 * capacity path. 6599 */ 6600 if (sd) { 6601 i = select_idle_capacity(p, sd, target); 6602 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6603 } 6604 } 6605 6606 sd = rcu_dereference(per_cpu(sd_llc, target)); 6607 if (!sd) 6608 return target; 6609 6610 if (sched_smt_active()) { 6611 has_idle_core = test_idle_cores(target); 6612 6613 if (!has_idle_core && cpus_share_cache(prev, target)) { 6614 i = select_idle_smt(p, prev); 6615 if ((unsigned int)i < nr_cpumask_bits) 6616 return i; 6617 } 6618 } 6619 6620 i = select_idle_cpu(p, sd, has_idle_core, target); 6621 if ((unsigned)i < nr_cpumask_bits) 6622 return i; 6623 6624 return target; 6625 } 6626 6627 /* 6628 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 6629 * (@dst_cpu = -1) or migrated to @dst_cpu. 6630 */ 6631 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6632 { 6633 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6634 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 6635 6636 /* 6637 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 6638 * contribution. If @p migrates from another CPU to @cpu add its 6639 * contribution. In all the other cases @cpu is not impacted by the 6640 * migration so its util_avg is already correct. 6641 */ 6642 if (task_cpu(p) == cpu && dst_cpu != cpu) 6643 lsub_positive(&util, task_util(p)); 6644 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6645 util += task_util(p); 6646 6647 if (sched_feat(UTIL_EST)) { 6648 unsigned long util_est; 6649 6650 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6651 6652 /* 6653 * During wake-up @p isn't enqueued yet and doesn't contribute 6654 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 6655 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 6656 * has been enqueued. 6657 * 6658 * During exec (@dst_cpu = -1) @p is enqueued and does 6659 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 6660 * Remove it to "simulate" cpu_util without @p's contribution. 6661 * 6662 * Despite the task_on_rq_queued(@p) check there is still a 6663 * small window for a possible race when an exec 6664 * select_task_rq_fair() races with LB's detach_task(). 6665 * 6666 * detach_task() 6667 * deactivate_task() 6668 * p->on_rq = TASK_ON_RQ_MIGRATING; 6669 * -------------------------------- A 6670 * dequeue_task() \ 6671 * dequeue_task_fair() + Race Time 6672 * util_est_dequeue() / 6673 * -------------------------------- B 6674 * 6675 * The additional check "current == p" is required to further 6676 * reduce the race window. 6677 */ 6678 if (dst_cpu == cpu) 6679 util_est += _task_util_est(p); 6680 else if (unlikely(task_on_rq_queued(p) || current == p)) 6681 lsub_positive(&util_est, _task_util_est(p)); 6682 6683 util = max(util, util_est); 6684 } 6685 6686 return min(util, capacity_orig_of(cpu)); 6687 } 6688 6689 /* 6690 * cpu_util_without: compute cpu utilization without any contributions from *p 6691 * @cpu: the CPU which utilization is requested 6692 * @p: the task which utilization should be discounted 6693 * 6694 * The utilization of a CPU is defined by the utilization of tasks currently 6695 * enqueued on that CPU as well as tasks which are currently sleeping after an 6696 * execution on that CPU. 6697 * 6698 * This method returns the utilization of the specified CPU by discounting the 6699 * utilization of the specified task, whenever the task is currently 6700 * contributing to the CPU utilization. 6701 */ 6702 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6703 { 6704 /* Task has no contribution or is new */ 6705 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6706 return cpu_util_cfs(cpu); 6707 6708 return cpu_util_next(cpu, p, -1); 6709 } 6710 6711 /* 6712 * energy_env - Utilization landscape for energy estimation. 6713 * @task_busy_time: Utilization contribution by the task for which we test the 6714 * placement. Given by eenv_task_busy_time(). 6715 * @pd_busy_time: Utilization of the whole perf domain without the task 6716 * contribution. Given by eenv_pd_busy_time(). 6717 * @cpu_cap: Maximum CPU capacity for the perf domain. 6718 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 6719 */ 6720 struct energy_env { 6721 unsigned long task_busy_time; 6722 unsigned long pd_busy_time; 6723 unsigned long cpu_cap; 6724 unsigned long pd_cap; 6725 }; 6726 6727 /* 6728 * Compute the task busy time for compute_energy(). This time cannot be 6729 * injected directly into effective_cpu_util() because of the IRQ scaling. 6730 * The latter only makes sense with the most recent CPUs where the task has 6731 * run. 6732 */ 6733 static inline void eenv_task_busy_time(struct energy_env *eenv, 6734 struct task_struct *p, int prev_cpu) 6735 { 6736 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 6737 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 6738 6739 if (unlikely(irq >= max_cap)) 6740 busy_time = max_cap; 6741 else 6742 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 6743 6744 eenv->task_busy_time = busy_time; 6745 } 6746 6747 /* 6748 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 6749 * utilization for each @pd_cpus, it however doesn't take into account 6750 * clamping since the ratio (utilization / cpu_capacity) is already enough to 6751 * scale the EM reported power consumption at the (eventually clamped) 6752 * cpu_capacity. 6753 * 6754 * The contribution of the task @p for which we want to estimate the 6755 * energy cost is removed (by cpu_util_next()) and must be calculated 6756 * separately (see eenv_task_busy_time). This ensures: 6757 * 6758 * - A stable PD utilization, no matter which CPU of that PD we want to place 6759 * the task on. 6760 * 6761 * - A fair comparison between CPUs as the task contribution (task_util()) 6762 * will always be the same no matter which CPU utilization we rely on 6763 * (util_avg or util_est). 6764 * 6765 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 6766 * exceed @eenv->pd_cap. 6767 */ 6768 static inline void eenv_pd_busy_time(struct energy_env *eenv, 6769 struct cpumask *pd_cpus, 6770 struct task_struct *p) 6771 { 6772 unsigned long busy_time = 0; 6773 int cpu; 6774 6775 for_each_cpu(cpu, pd_cpus) { 6776 unsigned long util = cpu_util_next(cpu, p, -1); 6777 6778 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 6779 } 6780 6781 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 6782 } 6783 6784 /* 6785 * Compute the maximum utilization for compute_energy() when the task @p 6786 * is placed on the cpu @dst_cpu. 6787 * 6788 * Returns the maximum utilization among @eenv->cpus. This utilization can't 6789 * exceed @eenv->cpu_cap. 6790 */ 6791 static inline unsigned long 6792 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 6793 struct task_struct *p, int dst_cpu) 6794 { 6795 unsigned long max_util = 0; 6796 int cpu; 6797 6798 for_each_cpu(cpu, pd_cpus) { 6799 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 6800 unsigned long util = cpu_util_next(cpu, p, dst_cpu); 6801 unsigned long cpu_util; 6802 6803 /* 6804 * Performance domain frequency: utilization clamping 6805 * must be considered since it affects the selection 6806 * of the performance domain frequency. 6807 * NOTE: in case RT tasks are running, by default the 6808 * FREQUENCY_UTIL's utilization can be max OPP. 6809 */ 6810 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 6811 max_util = max(max_util, cpu_util); 6812 } 6813 6814 return min(max_util, eenv->cpu_cap); 6815 } 6816 6817 /* 6818 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 6819 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 6820 * contribution is ignored. 6821 */ 6822 static inline unsigned long 6823 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 6824 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 6825 { 6826 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 6827 unsigned long busy_time = eenv->pd_busy_time; 6828 6829 if (dst_cpu >= 0) 6830 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 6831 6832 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 6833 } 6834 6835 /* 6836 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6837 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6838 * spare capacity in each performance domain and uses it as a potential 6839 * candidate to execute the task. Then, it uses the Energy Model to figure 6840 * out which of the CPU candidates is the most energy-efficient. 6841 * 6842 * The rationale for this heuristic is as follows. In a performance domain, 6843 * all the most energy efficient CPU candidates (according to the Energy 6844 * Model) are those for which we'll request a low frequency. When there are 6845 * several CPUs for which the frequency request will be the same, we don't 6846 * have enough data to break the tie between them, because the Energy Model 6847 * only includes active power costs. With this model, if we assume that 6848 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6849 * the maximum spare capacity in a performance domain is guaranteed to be among 6850 * the best candidates of the performance domain. 6851 * 6852 * In practice, it could be preferable from an energy standpoint to pack 6853 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6854 * but that could also hurt our chances to go cluster idle, and we have no 6855 * ways to tell with the current Energy Model if this is actually a good 6856 * idea or not. So, find_energy_efficient_cpu() basically favors 6857 * cluster-packing, and spreading inside a cluster. That should at least be 6858 * a good thing for latency, and this is consistent with the idea that most 6859 * of the energy savings of EAS come from the asymmetry of the system, and 6860 * not so much from breaking the tie between identical CPUs. That's also the 6861 * reason why EAS is enabled in the topology code only for systems where 6862 * SD_ASYM_CPUCAPACITY is set. 6863 * 6864 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6865 * they don't have any useful utilization data yet and it's not possible to 6866 * forecast their impact on energy consumption. Consequently, they will be 6867 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6868 * to be energy-inefficient in some use-cases. The alternative would be to 6869 * bias new tasks towards specific types of CPUs first, or to try to infer 6870 * their util_avg from the parent task, but those heuristics could hurt 6871 * other use-cases too. So, until someone finds a better way to solve this, 6872 * let's keep things simple by re-using the existing slow path. 6873 */ 6874 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6875 { 6876 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6877 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6878 struct root_domain *rd = this_rq()->rd; 6879 int cpu, best_energy_cpu, target = -1; 6880 struct sched_domain *sd; 6881 struct perf_domain *pd; 6882 struct energy_env eenv; 6883 6884 rcu_read_lock(); 6885 pd = rcu_dereference(rd->pd); 6886 if (!pd || READ_ONCE(rd->overutilized)) 6887 goto unlock; 6888 6889 /* 6890 * Energy-aware wake-up happens on the lowest sched_domain starting 6891 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6892 */ 6893 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6894 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6895 sd = sd->parent; 6896 if (!sd) 6897 goto unlock; 6898 6899 target = prev_cpu; 6900 6901 sync_entity_load_avg(&p->se); 6902 if (!task_util_est(p)) 6903 goto unlock; 6904 6905 eenv_task_busy_time(&eenv, p, prev_cpu); 6906 6907 for (; pd; pd = pd->next) { 6908 unsigned long cpu_cap, cpu_thermal_cap, util; 6909 unsigned long cur_delta, max_spare_cap = 0; 6910 bool compute_prev_delta = false; 6911 int max_spare_cap_cpu = -1; 6912 unsigned long base_energy; 6913 6914 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 6915 6916 if (cpumask_empty(cpus)) 6917 continue; 6918 6919 /* Account thermal pressure for the energy estimation */ 6920 cpu = cpumask_first(cpus); 6921 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 6922 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 6923 6924 eenv.cpu_cap = cpu_thermal_cap; 6925 eenv.pd_cap = 0; 6926 6927 for_each_cpu(cpu, cpus) { 6928 eenv.pd_cap += cpu_thermal_cap; 6929 6930 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 6931 continue; 6932 6933 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6934 continue; 6935 6936 util = cpu_util_next(cpu, p, cpu); 6937 cpu_cap = capacity_of(cpu); 6938 6939 /* 6940 * Skip CPUs that cannot satisfy the capacity request. 6941 * IOW, placing the task there would make the CPU 6942 * overutilized. Take uclamp into account to see how 6943 * much capacity we can get out of the CPU; this is 6944 * aligned with sched_cpu_util(). 6945 */ 6946 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6947 if (!fits_capacity(util, cpu_cap)) 6948 continue; 6949 6950 lsub_positive(&cpu_cap, util); 6951 6952 if (cpu == prev_cpu) { 6953 /* Always use prev_cpu as a candidate. */ 6954 compute_prev_delta = true; 6955 } else if (cpu_cap > max_spare_cap) { 6956 /* 6957 * Find the CPU with the maximum spare capacity 6958 * in the performance domain. 6959 */ 6960 max_spare_cap = cpu_cap; 6961 max_spare_cap_cpu = cpu; 6962 } 6963 } 6964 6965 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6966 continue; 6967 6968 eenv_pd_busy_time(&eenv, cpus, p); 6969 /* Compute the 'base' energy of the pd, without @p */ 6970 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 6971 6972 /* Evaluate the energy impact of using prev_cpu. */ 6973 if (compute_prev_delta) { 6974 prev_delta = compute_energy(&eenv, pd, cpus, p, 6975 prev_cpu); 6976 /* CPU utilization has changed */ 6977 if (prev_delta < base_energy) 6978 goto unlock; 6979 prev_delta -= base_energy; 6980 best_delta = min(best_delta, prev_delta); 6981 } 6982 6983 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6984 if (max_spare_cap_cpu >= 0) { 6985 cur_delta = compute_energy(&eenv, pd, cpus, p, 6986 max_spare_cap_cpu); 6987 /* CPU utilization has changed */ 6988 if (cur_delta < base_energy) 6989 goto unlock; 6990 cur_delta -= base_energy; 6991 if (cur_delta < best_delta) { 6992 best_delta = cur_delta; 6993 best_energy_cpu = max_spare_cap_cpu; 6994 } 6995 } 6996 } 6997 rcu_read_unlock(); 6998 6999 if (best_delta < prev_delta) 7000 target = best_energy_cpu; 7001 7002 return target; 7003 7004 unlock: 7005 rcu_read_unlock(); 7006 7007 return target; 7008 } 7009 7010 /* 7011 * select_task_rq_fair: Select target runqueue for the waking task in domains 7012 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7013 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7014 * 7015 * Balances load by selecting the idlest CPU in the idlest group, or under 7016 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7017 * 7018 * Returns the target CPU number. 7019 */ 7020 static int 7021 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7022 { 7023 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7024 struct sched_domain *tmp, *sd = NULL; 7025 int cpu = smp_processor_id(); 7026 int new_cpu = prev_cpu; 7027 int want_affine = 0; 7028 /* SD_flags and WF_flags share the first nibble */ 7029 int sd_flag = wake_flags & 0xF; 7030 7031 /* 7032 * required for stable ->cpus_allowed 7033 */ 7034 lockdep_assert_held(&p->pi_lock); 7035 if (wake_flags & WF_TTWU) { 7036 record_wakee(p); 7037 7038 if (sched_energy_enabled()) { 7039 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7040 if (new_cpu >= 0) 7041 return new_cpu; 7042 new_cpu = prev_cpu; 7043 } 7044 7045 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7046 } 7047 7048 rcu_read_lock(); 7049 for_each_domain(cpu, tmp) { 7050 /* 7051 * If both 'cpu' and 'prev_cpu' are part of this domain, 7052 * cpu is a valid SD_WAKE_AFFINE target. 7053 */ 7054 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7055 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7056 if (cpu != prev_cpu) 7057 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7058 7059 sd = NULL; /* Prefer wake_affine over balance flags */ 7060 break; 7061 } 7062 7063 /* 7064 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7065 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7066 * will usually go to the fast path. 7067 */ 7068 if (tmp->flags & sd_flag) 7069 sd = tmp; 7070 else if (!want_affine) 7071 break; 7072 } 7073 7074 if (unlikely(sd)) { 7075 /* Slow path */ 7076 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7077 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7078 /* Fast path */ 7079 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7080 } 7081 rcu_read_unlock(); 7082 7083 return new_cpu; 7084 } 7085 7086 /* 7087 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7088 * cfs_rq_of(p) references at time of call are still valid and identify the 7089 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7090 */ 7091 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7092 { 7093 struct sched_entity *se = &p->se; 7094 7095 /* 7096 * As blocked tasks retain absolute vruntime the migration needs to 7097 * deal with this by subtracting the old and adding the new 7098 * min_vruntime -- the latter is done by enqueue_entity() when placing 7099 * the task on the new runqueue. 7100 */ 7101 if (READ_ONCE(p->__state) == TASK_WAKING) { 7102 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7103 7104 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); 7105 } 7106 7107 if (!task_on_rq_migrating(p)) { 7108 remove_entity_load_avg(se); 7109 7110 /* 7111 * Here, the task's PELT values have been updated according to 7112 * the current rq's clock. But if that clock hasn't been 7113 * updated in a while, a substantial idle time will be missed, 7114 * leading to an inflation after wake-up on the new rq. 7115 * 7116 * Estimate the missing time from the cfs_rq last_update_time 7117 * and update sched_avg to improve the PELT continuity after 7118 * migration. 7119 */ 7120 migrate_se_pelt_lag(se); 7121 } 7122 7123 /* Tell new CPU we are migrated */ 7124 se->avg.last_update_time = 0; 7125 7126 /* We have migrated, no longer consider this task hot */ 7127 se->exec_start = 0; 7128 7129 update_scan_period(p, new_cpu); 7130 } 7131 7132 static void task_dead_fair(struct task_struct *p) 7133 { 7134 remove_entity_load_avg(&p->se); 7135 } 7136 7137 static int 7138 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7139 { 7140 if (rq->nr_running) 7141 return 1; 7142 7143 return newidle_balance(rq, rf) != 0; 7144 } 7145 #endif /* CONFIG_SMP */ 7146 7147 static unsigned long wakeup_gran(struct sched_entity *se) 7148 { 7149 unsigned long gran = sysctl_sched_wakeup_granularity; 7150 7151 /* 7152 * Since its curr running now, convert the gran from real-time 7153 * to virtual-time in his units. 7154 * 7155 * By using 'se' instead of 'curr' we penalize light tasks, so 7156 * they get preempted easier. That is, if 'se' < 'curr' then 7157 * the resulting gran will be larger, therefore penalizing the 7158 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7159 * be smaller, again penalizing the lighter task. 7160 * 7161 * This is especially important for buddies when the leftmost 7162 * task is higher priority than the buddy. 7163 */ 7164 return calc_delta_fair(gran, se); 7165 } 7166 7167 /* 7168 * Should 'se' preempt 'curr'. 7169 * 7170 * |s1 7171 * |s2 7172 * |s3 7173 * g 7174 * |<--->|c 7175 * 7176 * w(c, s1) = -1 7177 * w(c, s2) = 0 7178 * w(c, s3) = 1 7179 * 7180 */ 7181 static int 7182 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7183 { 7184 s64 gran, vdiff = curr->vruntime - se->vruntime; 7185 7186 if (vdiff <= 0) 7187 return -1; 7188 7189 gran = wakeup_gran(se); 7190 if (vdiff > gran) 7191 return 1; 7192 7193 return 0; 7194 } 7195 7196 static void set_last_buddy(struct sched_entity *se) 7197 { 7198 for_each_sched_entity(se) { 7199 if (SCHED_WARN_ON(!se->on_rq)) 7200 return; 7201 if (se_is_idle(se)) 7202 return; 7203 cfs_rq_of(se)->last = se; 7204 } 7205 } 7206 7207 static void set_next_buddy(struct sched_entity *se) 7208 { 7209 for_each_sched_entity(se) { 7210 if (SCHED_WARN_ON(!se->on_rq)) 7211 return; 7212 if (se_is_idle(se)) 7213 return; 7214 cfs_rq_of(se)->next = se; 7215 } 7216 } 7217 7218 static void set_skip_buddy(struct sched_entity *se) 7219 { 7220 for_each_sched_entity(se) 7221 cfs_rq_of(se)->skip = se; 7222 } 7223 7224 /* 7225 * Preempt the current task with a newly woken task if needed: 7226 */ 7227 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7228 { 7229 struct task_struct *curr = rq->curr; 7230 struct sched_entity *se = &curr->se, *pse = &p->se; 7231 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7232 int scale = cfs_rq->nr_running >= sched_nr_latency; 7233 int next_buddy_marked = 0; 7234 int cse_is_idle, pse_is_idle; 7235 7236 if (unlikely(se == pse)) 7237 return; 7238 7239 /* 7240 * This is possible from callers such as attach_tasks(), in which we 7241 * unconditionally check_preempt_curr() after an enqueue (which may have 7242 * lead to a throttle). This both saves work and prevents false 7243 * next-buddy nomination below. 7244 */ 7245 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7246 return; 7247 7248 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7249 set_next_buddy(pse); 7250 next_buddy_marked = 1; 7251 } 7252 7253 /* 7254 * We can come here with TIF_NEED_RESCHED already set from new task 7255 * wake up path. 7256 * 7257 * Note: this also catches the edge-case of curr being in a throttled 7258 * group (e.g. via set_curr_task), since update_curr() (in the 7259 * enqueue of curr) will have resulted in resched being set. This 7260 * prevents us from potentially nominating it as a false LAST_BUDDY 7261 * below. 7262 */ 7263 if (test_tsk_need_resched(curr)) 7264 return; 7265 7266 /* Idle tasks are by definition preempted by non-idle tasks. */ 7267 if (unlikely(task_has_idle_policy(curr)) && 7268 likely(!task_has_idle_policy(p))) 7269 goto preempt; 7270 7271 /* 7272 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7273 * is driven by the tick): 7274 */ 7275 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7276 return; 7277 7278 find_matching_se(&se, &pse); 7279 WARN_ON_ONCE(!pse); 7280 7281 cse_is_idle = se_is_idle(se); 7282 pse_is_idle = se_is_idle(pse); 7283 7284 /* 7285 * Preempt an idle group in favor of a non-idle group (and don't preempt 7286 * in the inverse case). 7287 */ 7288 if (cse_is_idle && !pse_is_idle) 7289 goto preempt; 7290 if (cse_is_idle != pse_is_idle) 7291 return; 7292 7293 update_curr(cfs_rq_of(se)); 7294 if (wakeup_preempt_entity(se, pse) == 1) { 7295 /* 7296 * Bias pick_next to pick the sched entity that is 7297 * triggering this preemption. 7298 */ 7299 if (!next_buddy_marked) 7300 set_next_buddy(pse); 7301 goto preempt; 7302 } 7303 7304 return; 7305 7306 preempt: 7307 resched_curr(rq); 7308 /* 7309 * Only set the backward buddy when the current task is still 7310 * on the rq. This can happen when a wakeup gets interleaved 7311 * with schedule on the ->pre_schedule() or idle_balance() 7312 * point, either of which can * drop the rq lock. 7313 * 7314 * Also, during early boot the idle thread is in the fair class, 7315 * for obvious reasons its a bad idea to schedule back to it. 7316 */ 7317 if (unlikely(!se->on_rq || curr == rq->idle)) 7318 return; 7319 7320 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7321 set_last_buddy(se); 7322 } 7323 7324 #ifdef CONFIG_SMP 7325 static struct task_struct *pick_task_fair(struct rq *rq) 7326 { 7327 struct sched_entity *se; 7328 struct cfs_rq *cfs_rq; 7329 7330 again: 7331 cfs_rq = &rq->cfs; 7332 if (!cfs_rq->nr_running) 7333 return NULL; 7334 7335 do { 7336 struct sched_entity *curr = cfs_rq->curr; 7337 7338 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7339 if (curr) { 7340 if (curr->on_rq) 7341 update_curr(cfs_rq); 7342 else 7343 curr = NULL; 7344 7345 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7346 goto again; 7347 } 7348 7349 se = pick_next_entity(cfs_rq, curr); 7350 cfs_rq = group_cfs_rq(se); 7351 } while (cfs_rq); 7352 7353 return task_of(se); 7354 } 7355 #endif 7356 7357 struct task_struct * 7358 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7359 { 7360 struct cfs_rq *cfs_rq = &rq->cfs; 7361 struct sched_entity *se; 7362 struct task_struct *p; 7363 int new_tasks; 7364 7365 again: 7366 if (!sched_fair_runnable(rq)) 7367 goto idle; 7368 7369 #ifdef CONFIG_FAIR_GROUP_SCHED 7370 if (!prev || prev->sched_class != &fair_sched_class) 7371 goto simple; 7372 7373 /* 7374 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7375 * likely that a next task is from the same cgroup as the current. 7376 * 7377 * Therefore attempt to avoid putting and setting the entire cgroup 7378 * hierarchy, only change the part that actually changes. 7379 */ 7380 7381 do { 7382 struct sched_entity *curr = cfs_rq->curr; 7383 7384 /* 7385 * Since we got here without doing put_prev_entity() we also 7386 * have to consider cfs_rq->curr. If it is still a runnable 7387 * entity, update_curr() will update its vruntime, otherwise 7388 * forget we've ever seen it. 7389 */ 7390 if (curr) { 7391 if (curr->on_rq) 7392 update_curr(cfs_rq); 7393 else 7394 curr = NULL; 7395 7396 /* 7397 * This call to check_cfs_rq_runtime() will do the 7398 * throttle and dequeue its entity in the parent(s). 7399 * Therefore the nr_running test will indeed 7400 * be correct. 7401 */ 7402 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7403 cfs_rq = &rq->cfs; 7404 7405 if (!cfs_rq->nr_running) 7406 goto idle; 7407 7408 goto simple; 7409 } 7410 } 7411 7412 se = pick_next_entity(cfs_rq, curr); 7413 cfs_rq = group_cfs_rq(se); 7414 } while (cfs_rq); 7415 7416 p = task_of(se); 7417 7418 /* 7419 * Since we haven't yet done put_prev_entity and if the selected task 7420 * is a different task than we started out with, try and touch the 7421 * least amount of cfs_rqs. 7422 */ 7423 if (prev != p) { 7424 struct sched_entity *pse = &prev->se; 7425 7426 while (!(cfs_rq = is_same_group(se, pse))) { 7427 int se_depth = se->depth; 7428 int pse_depth = pse->depth; 7429 7430 if (se_depth <= pse_depth) { 7431 put_prev_entity(cfs_rq_of(pse), pse); 7432 pse = parent_entity(pse); 7433 } 7434 if (se_depth >= pse_depth) { 7435 set_next_entity(cfs_rq_of(se), se); 7436 se = parent_entity(se); 7437 } 7438 } 7439 7440 put_prev_entity(cfs_rq, pse); 7441 set_next_entity(cfs_rq, se); 7442 } 7443 7444 goto done; 7445 simple: 7446 #endif 7447 if (prev) 7448 put_prev_task(rq, prev); 7449 7450 do { 7451 se = pick_next_entity(cfs_rq, NULL); 7452 set_next_entity(cfs_rq, se); 7453 cfs_rq = group_cfs_rq(se); 7454 } while (cfs_rq); 7455 7456 p = task_of(se); 7457 7458 done: __maybe_unused; 7459 #ifdef CONFIG_SMP 7460 /* 7461 * Move the next running task to the front of 7462 * the list, so our cfs_tasks list becomes MRU 7463 * one. 7464 */ 7465 list_move(&p->se.group_node, &rq->cfs_tasks); 7466 #endif 7467 7468 if (hrtick_enabled_fair(rq)) 7469 hrtick_start_fair(rq, p); 7470 7471 update_misfit_status(p, rq); 7472 7473 return p; 7474 7475 idle: 7476 if (!rf) 7477 return NULL; 7478 7479 new_tasks = newidle_balance(rq, rf); 7480 7481 /* 7482 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7483 * possible for any higher priority task to appear. In that case we 7484 * must re-start the pick_next_entity() loop. 7485 */ 7486 if (new_tasks < 0) 7487 return RETRY_TASK; 7488 7489 if (new_tasks > 0) 7490 goto again; 7491 7492 /* 7493 * rq is about to be idle, check if we need to update the 7494 * lost_idle_time of clock_pelt 7495 */ 7496 update_idle_rq_clock_pelt(rq); 7497 7498 return NULL; 7499 } 7500 7501 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7502 { 7503 return pick_next_task_fair(rq, NULL, NULL); 7504 } 7505 7506 /* 7507 * Account for a descheduled task: 7508 */ 7509 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7510 { 7511 struct sched_entity *se = &prev->se; 7512 struct cfs_rq *cfs_rq; 7513 7514 for_each_sched_entity(se) { 7515 cfs_rq = cfs_rq_of(se); 7516 put_prev_entity(cfs_rq, se); 7517 } 7518 } 7519 7520 /* 7521 * sched_yield() is very simple 7522 * 7523 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7524 */ 7525 static void yield_task_fair(struct rq *rq) 7526 { 7527 struct task_struct *curr = rq->curr; 7528 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7529 struct sched_entity *se = &curr->se; 7530 7531 /* 7532 * Are we the only task in the tree? 7533 */ 7534 if (unlikely(rq->nr_running == 1)) 7535 return; 7536 7537 clear_buddies(cfs_rq, se); 7538 7539 if (curr->policy != SCHED_BATCH) { 7540 update_rq_clock(rq); 7541 /* 7542 * Update run-time statistics of the 'current'. 7543 */ 7544 update_curr(cfs_rq); 7545 /* 7546 * Tell update_rq_clock() that we've just updated, 7547 * so we don't do microscopic update in schedule() 7548 * and double the fastpath cost. 7549 */ 7550 rq_clock_skip_update(rq); 7551 } 7552 7553 set_skip_buddy(se); 7554 } 7555 7556 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7557 { 7558 struct sched_entity *se = &p->se; 7559 7560 /* throttled hierarchies are not runnable */ 7561 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7562 return false; 7563 7564 /* Tell the scheduler that we'd really like pse to run next. */ 7565 set_next_buddy(se); 7566 7567 yield_task_fair(rq); 7568 7569 return true; 7570 } 7571 7572 #ifdef CONFIG_SMP 7573 /************************************************** 7574 * Fair scheduling class load-balancing methods. 7575 * 7576 * BASICS 7577 * 7578 * The purpose of load-balancing is to achieve the same basic fairness the 7579 * per-CPU scheduler provides, namely provide a proportional amount of compute 7580 * time to each task. This is expressed in the following equation: 7581 * 7582 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7583 * 7584 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7585 * W_i,0 is defined as: 7586 * 7587 * W_i,0 = \Sum_j w_i,j (2) 7588 * 7589 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7590 * is derived from the nice value as per sched_prio_to_weight[]. 7591 * 7592 * The weight average is an exponential decay average of the instantaneous 7593 * weight: 7594 * 7595 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7596 * 7597 * C_i is the compute capacity of CPU i, typically it is the 7598 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7599 * can also include other factors [XXX]. 7600 * 7601 * To achieve this balance we define a measure of imbalance which follows 7602 * directly from (1): 7603 * 7604 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7605 * 7606 * We them move tasks around to minimize the imbalance. In the continuous 7607 * function space it is obvious this converges, in the discrete case we get 7608 * a few fun cases generally called infeasible weight scenarios. 7609 * 7610 * [XXX expand on: 7611 * - infeasible weights; 7612 * - local vs global optima in the discrete case. ] 7613 * 7614 * 7615 * SCHED DOMAINS 7616 * 7617 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7618 * for all i,j solution, we create a tree of CPUs that follows the hardware 7619 * topology where each level pairs two lower groups (or better). This results 7620 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7621 * tree to only the first of the previous level and we decrease the frequency 7622 * of load-balance at each level inv. proportional to the number of CPUs in 7623 * the groups. 7624 * 7625 * This yields: 7626 * 7627 * log_2 n 1 n 7628 * \Sum { --- * --- * 2^i } = O(n) (5) 7629 * i = 0 2^i 2^i 7630 * `- size of each group 7631 * | | `- number of CPUs doing load-balance 7632 * | `- freq 7633 * `- sum over all levels 7634 * 7635 * Coupled with a limit on how many tasks we can migrate every balance pass, 7636 * this makes (5) the runtime complexity of the balancer. 7637 * 7638 * An important property here is that each CPU is still (indirectly) connected 7639 * to every other CPU in at most O(log n) steps: 7640 * 7641 * The adjacency matrix of the resulting graph is given by: 7642 * 7643 * log_2 n 7644 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7645 * k = 0 7646 * 7647 * And you'll find that: 7648 * 7649 * A^(log_2 n)_i,j != 0 for all i,j (7) 7650 * 7651 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7652 * The task movement gives a factor of O(m), giving a convergence complexity 7653 * of: 7654 * 7655 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7656 * 7657 * 7658 * WORK CONSERVING 7659 * 7660 * In order to avoid CPUs going idle while there's still work to do, new idle 7661 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7662 * tree itself instead of relying on other CPUs to bring it work. 7663 * 7664 * This adds some complexity to both (5) and (8) but it reduces the total idle 7665 * time. 7666 * 7667 * [XXX more?] 7668 * 7669 * 7670 * CGROUPS 7671 * 7672 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7673 * 7674 * s_k,i 7675 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7676 * S_k 7677 * 7678 * Where 7679 * 7680 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7681 * 7682 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7683 * 7684 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7685 * property. 7686 * 7687 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7688 * rewrite all of this once again.] 7689 */ 7690 7691 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7692 7693 enum fbq_type { regular, remote, all }; 7694 7695 /* 7696 * 'group_type' describes the group of CPUs at the moment of load balancing. 7697 * 7698 * The enum is ordered by pulling priority, with the group with lowest priority 7699 * first so the group_type can simply be compared when selecting the busiest 7700 * group. See update_sd_pick_busiest(). 7701 */ 7702 enum group_type { 7703 /* The group has spare capacity that can be used to run more tasks. */ 7704 group_has_spare = 0, 7705 /* 7706 * The group is fully used and the tasks don't compete for more CPU 7707 * cycles. Nevertheless, some tasks might wait before running. 7708 */ 7709 group_fully_busy, 7710 /* 7711 * One task doesn't fit with CPU's capacity and must be migrated to a 7712 * more powerful CPU. 7713 */ 7714 group_misfit_task, 7715 /* 7716 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7717 * and the task should be migrated to it instead of running on the 7718 * current CPU. 7719 */ 7720 group_asym_packing, 7721 /* 7722 * The tasks' affinity constraints previously prevented the scheduler 7723 * from balancing the load across the system. 7724 */ 7725 group_imbalanced, 7726 /* 7727 * The CPU is overloaded and can't provide expected CPU cycles to all 7728 * tasks. 7729 */ 7730 group_overloaded 7731 }; 7732 7733 enum migration_type { 7734 migrate_load = 0, 7735 migrate_util, 7736 migrate_task, 7737 migrate_misfit 7738 }; 7739 7740 #define LBF_ALL_PINNED 0x01 7741 #define LBF_NEED_BREAK 0x02 7742 #define LBF_DST_PINNED 0x04 7743 #define LBF_SOME_PINNED 0x08 7744 #define LBF_ACTIVE_LB 0x10 7745 7746 struct lb_env { 7747 struct sched_domain *sd; 7748 7749 struct rq *src_rq; 7750 int src_cpu; 7751 7752 int dst_cpu; 7753 struct rq *dst_rq; 7754 7755 struct cpumask *dst_grpmask; 7756 int new_dst_cpu; 7757 enum cpu_idle_type idle; 7758 long imbalance; 7759 /* The set of CPUs under consideration for load-balancing */ 7760 struct cpumask *cpus; 7761 7762 unsigned int flags; 7763 7764 unsigned int loop; 7765 unsigned int loop_break; 7766 unsigned int loop_max; 7767 7768 enum fbq_type fbq_type; 7769 enum migration_type migration_type; 7770 struct list_head tasks; 7771 }; 7772 7773 /* 7774 * Is this task likely cache-hot: 7775 */ 7776 static int task_hot(struct task_struct *p, struct lb_env *env) 7777 { 7778 s64 delta; 7779 7780 lockdep_assert_rq_held(env->src_rq); 7781 7782 if (p->sched_class != &fair_sched_class) 7783 return 0; 7784 7785 if (unlikely(task_has_idle_policy(p))) 7786 return 0; 7787 7788 /* SMT siblings share cache */ 7789 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7790 return 0; 7791 7792 /* 7793 * Buddy candidates are cache hot: 7794 */ 7795 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7796 (&p->se == cfs_rq_of(&p->se)->next || 7797 &p->se == cfs_rq_of(&p->se)->last)) 7798 return 1; 7799 7800 if (sysctl_sched_migration_cost == -1) 7801 return 1; 7802 7803 /* 7804 * Don't migrate task if the task's cookie does not match 7805 * with the destination CPU's core cookie. 7806 */ 7807 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7808 return 1; 7809 7810 if (sysctl_sched_migration_cost == 0) 7811 return 0; 7812 7813 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7814 7815 return delta < (s64)sysctl_sched_migration_cost; 7816 } 7817 7818 #ifdef CONFIG_NUMA_BALANCING 7819 /* 7820 * Returns 1, if task migration degrades locality 7821 * Returns 0, if task migration improves locality i.e migration preferred. 7822 * Returns -1, if task migration is not affected by locality. 7823 */ 7824 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7825 { 7826 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7827 unsigned long src_weight, dst_weight; 7828 int src_nid, dst_nid, dist; 7829 7830 if (!static_branch_likely(&sched_numa_balancing)) 7831 return -1; 7832 7833 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7834 return -1; 7835 7836 src_nid = cpu_to_node(env->src_cpu); 7837 dst_nid = cpu_to_node(env->dst_cpu); 7838 7839 if (src_nid == dst_nid) 7840 return -1; 7841 7842 /* Migrating away from the preferred node is always bad. */ 7843 if (src_nid == p->numa_preferred_nid) { 7844 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7845 return 1; 7846 else 7847 return -1; 7848 } 7849 7850 /* Encourage migration to the preferred node. */ 7851 if (dst_nid == p->numa_preferred_nid) 7852 return 0; 7853 7854 /* Leaving a core idle is often worse than degrading locality. */ 7855 if (env->idle == CPU_IDLE) 7856 return -1; 7857 7858 dist = node_distance(src_nid, dst_nid); 7859 if (numa_group) { 7860 src_weight = group_weight(p, src_nid, dist); 7861 dst_weight = group_weight(p, dst_nid, dist); 7862 } else { 7863 src_weight = task_weight(p, src_nid, dist); 7864 dst_weight = task_weight(p, dst_nid, dist); 7865 } 7866 7867 return dst_weight < src_weight; 7868 } 7869 7870 #else 7871 static inline int migrate_degrades_locality(struct task_struct *p, 7872 struct lb_env *env) 7873 { 7874 return -1; 7875 } 7876 #endif 7877 7878 /* 7879 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7880 */ 7881 static 7882 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7883 { 7884 int tsk_cache_hot; 7885 7886 lockdep_assert_rq_held(env->src_rq); 7887 7888 /* 7889 * We do not migrate tasks that are: 7890 * 1) throttled_lb_pair, or 7891 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7892 * 3) running (obviously), or 7893 * 4) are cache-hot on their current CPU. 7894 */ 7895 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7896 return 0; 7897 7898 /* Disregard pcpu kthreads; they are where they need to be. */ 7899 if (kthread_is_per_cpu(p)) 7900 return 0; 7901 7902 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7903 int cpu; 7904 7905 schedstat_inc(p->stats.nr_failed_migrations_affine); 7906 7907 env->flags |= LBF_SOME_PINNED; 7908 7909 /* 7910 * Remember if this task can be migrated to any other CPU in 7911 * our sched_group. We may want to revisit it if we couldn't 7912 * meet load balance goals by pulling other tasks on src_cpu. 7913 * 7914 * Avoid computing new_dst_cpu 7915 * - for NEWLY_IDLE 7916 * - if we have already computed one in current iteration 7917 * - if it's an active balance 7918 */ 7919 if (env->idle == CPU_NEWLY_IDLE || 7920 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7921 return 0; 7922 7923 /* Prevent to re-select dst_cpu via env's CPUs: */ 7924 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7925 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7926 env->flags |= LBF_DST_PINNED; 7927 env->new_dst_cpu = cpu; 7928 break; 7929 } 7930 } 7931 7932 return 0; 7933 } 7934 7935 /* Record that we found at least one task that could run on dst_cpu */ 7936 env->flags &= ~LBF_ALL_PINNED; 7937 7938 if (task_on_cpu(env->src_rq, p)) { 7939 schedstat_inc(p->stats.nr_failed_migrations_running); 7940 return 0; 7941 } 7942 7943 /* 7944 * Aggressive migration if: 7945 * 1) active balance 7946 * 2) destination numa is preferred 7947 * 3) task is cache cold, or 7948 * 4) too many balance attempts have failed. 7949 */ 7950 if (env->flags & LBF_ACTIVE_LB) 7951 return 1; 7952 7953 tsk_cache_hot = migrate_degrades_locality(p, env); 7954 if (tsk_cache_hot == -1) 7955 tsk_cache_hot = task_hot(p, env); 7956 7957 if (tsk_cache_hot <= 0 || 7958 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7959 if (tsk_cache_hot == 1) { 7960 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7961 schedstat_inc(p->stats.nr_forced_migrations); 7962 } 7963 return 1; 7964 } 7965 7966 schedstat_inc(p->stats.nr_failed_migrations_hot); 7967 return 0; 7968 } 7969 7970 /* 7971 * detach_task() -- detach the task for the migration specified in env 7972 */ 7973 static void detach_task(struct task_struct *p, struct lb_env *env) 7974 { 7975 lockdep_assert_rq_held(env->src_rq); 7976 7977 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7978 set_task_cpu(p, env->dst_cpu); 7979 } 7980 7981 /* 7982 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7983 * part of active balancing operations within "domain". 7984 * 7985 * Returns a task if successful and NULL otherwise. 7986 */ 7987 static struct task_struct *detach_one_task(struct lb_env *env) 7988 { 7989 struct task_struct *p; 7990 7991 lockdep_assert_rq_held(env->src_rq); 7992 7993 list_for_each_entry_reverse(p, 7994 &env->src_rq->cfs_tasks, se.group_node) { 7995 if (!can_migrate_task(p, env)) 7996 continue; 7997 7998 detach_task(p, env); 7999 8000 /* 8001 * Right now, this is only the second place where 8002 * lb_gained[env->idle] is updated (other is detach_tasks) 8003 * so we can safely collect stats here rather than 8004 * inside detach_tasks(). 8005 */ 8006 schedstat_inc(env->sd->lb_gained[env->idle]); 8007 return p; 8008 } 8009 return NULL; 8010 } 8011 8012 /* 8013 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8014 * busiest_rq, as part of a balancing operation within domain "sd". 8015 * 8016 * Returns number of detached tasks if successful and 0 otherwise. 8017 */ 8018 static int detach_tasks(struct lb_env *env) 8019 { 8020 struct list_head *tasks = &env->src_rq->cfs_tasks; 8021 unsigned long util, load; 8022 struct task_struct *p; 8023 int detached = 0; 8024 8025 lockdep_assert_rq_held(env->src_rq); 8026 8027 /* 8028 * Source run queue has been emptied by another CPU, clear 8029 * LBF_ALL_PINNED flag as we will not test any task. 8030 */ 8031 if (env->src_rq->nr_running <= 1) { 8032 env->flags &= ~LBF_ALL_PINNED; 8033 return 0; 8034 } 8035 8036 if (env->imbalance <= 0) 8037 return 0; 8038 8039 while (!list_empty(tasks)) { 8040 /* 8041 * We don't want to steal all, otherwise we may be treated likewise, 8042 * which could at worst lead to a livelock crash. 8043 */ 8044 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8045 break; 8046 8047 env->loop++; 8048 /* 8049 * We've more or less seen every task there is, call it quits 8050 * unless we haven't found any movable task yet. 8051 */ 8052 if (env->loop > env->loop_max && 8053 !(env->flags & LBF_ALL_PINNED)) 8054 break; 8055 8056 /* take a breather every nr_migrate tasks */ 8057 if (env->loop > env->loop_break) { 8058 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8059 env->flags |= LBF_NEED_BREAK; 8060 break; 8061 } 8062 8063 p = list_last_entry(tasks, struct task_struct, se.group_node); 8064 8065 if (!can_migrate_task(p, env)) 8066 goto next; 8067 8068 switch (env->migration_type) { 8069 case migrate_load: 8070 /* 8071 * Depending of the number of CPUs and tasks and the 8072 * cgroup hierarchy, task_h_load() can return a null 8073 * value. Make sure that env->imbalance decreases 8074 * otherwise detach_tasks() will stop only after 8075 * detaching up to loop_max tasks. 8076 */ 8077 load = max_t(unsigned long, task_h_load(p), 1); 8078 8079 if (sched_feat(LB_MIN) && 8080 load < 16 && !env->sd->nr_balance_failed) 8081 goto next; 8082 8083 /* 8084 * Make sure that we don't migrate too much load. 8085 * Nevertheless, let relax the constraint if 8086 * scheduler fails to find a good waiting task to 8087 * migrate. 8088 */ 8089 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8090 goto next; 8091 8092 env->imbalance -= load; 8093 break; 8094 8095 case migrate_util: 8096 util = task_util_est(p); 8097 8098 if (util > env->imbalance) 8099 goto next; 8100 8101 env->imbalance -= util; 8102 break; 8103 8104 case migrate_task: 8105 env->imbalance--; 8106 break; 8107 8108 case migrate_misfit: 8109 /* This is not a misfit task */ 8110 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 8111 goto next; 8112 8113 env->imbalance = 0; 8114 break; 8115 } 8116 8117 detach_task(p, env); 8118 list_add(&p->se.group_node, &env->tasks); 8119 8120 detached++; 8121 8122 #ifdef CONFIG_PREEMPTION 8123 /* 8124 * NEWIDLE balancing is a source of latency, so preemptible 8125 * kernels will stop after the first task is detached to minimize 8126 * the critical section. 8127 */ 8128 if (env->idle == CPU_NEWLY_IDLE) 8129 break; 8130 #endif 8131 8132 /* 8133 * We only want to steal up to the prescribed amount of 8134 * load/util/tasks. 8135 */ 8136 if (env->imbalance <= 0) 8137 break; 8138 8139 continue; 8140 next: 8141 list_move(&p->se.group_node, tasks); 8142 } 8143 8144 /* 8145 * Right now, this is one of only two places we collect this stat 8146 * so we can safely collect detach_one_task() stats here rather 8147 * than inside detach_one_task(). 8148 */ 8149 schedstat_add(env->sd->lb_gained[env->idle], detached); 8150 8151 return detached; 8152 } 8153 8154 /* 8155 * attach_task() -- attach the task detached by detach_task() to its new rq. 8156 */ 8157 static void attach_task(struct rq *rq, struct task_struct *p) 8158 { 8159 lockdep_assert_rq_held(rq); 8160 8161 WARN_ON_ONCE(task_rq(p) != rq); 8162 activate_task(rq, p, ENQUEUE_NOCLOCK); 8163 check_preempt_curr(rq, p, 0); 8164 } 8165 8166 /* 8167 * attach_one_task() -- attaches the task returned from detach_one_task() to 8168 * its new rq. 8169 */ 8170 static void attach_one_task(struct rq *rq, struct task_struct *p) 8171 { 8172 struct rq_flags rf; 8173 8174 rq_lock(rq, &rf); 8175 update_rq_clock(rq); 8176 attach_task(rq, p); 8177 rq_unlock(rq, &rf); 8178 } 8179 8180 /* 8181 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8182 * new rq. 8183 */ 8184 static void attach_tasks(struct lb_env *env) 8185 { 8186 struct list_head *tasks = &env->tasks; 8187 struct task_struct *p; 8188 struct rq_flags rf; 8189 8190 rq_lock(env->dst_rq, &rf); 8191 update_rq_clock(env->dst_rq); 8192 8193 while (!list_empty(tasks)) { 8194 p = list_first_entry(tasks, struct task_struct, se.group_node); 8195 list_del_init(&p->se.group_node); 8196 8197 attach_task(env->dst_rq, p); 8198 } 8199 8200 rq_unlock(env->dst_rq, &rf); 8201 } 8202 8203 #ifdef CONFIG_NO_HZ_COMMON 8204 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8205 { 8206 if (cfs_rq->avg.load_avg) 8207 return true; 8208 8209 if (cfs_rq->avg.util_avg) 8210 return true; 8211 8212 return false; 8213 } 8214 8215 static inline bool others_have_blocked(struct rq *rq) 8216 { 8217 if (READ_ONCE(rq->avg_rt.util_avg)) 8218 return true; 8219 8220 if (READ_ONCE(rq->avg_dl.util_avg)) 8221 return true; 8222 8223 if (thermal_load_avg(rq)) 8224 return true; 8225 8226 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8227 if (READ_ONCE(rq->avg_irq.util_avg)) 8228 return true; 8229 #endif 8230 8231 return false; 8232 } 8233 8234 static inline void update_blocked_load_tick(struct rq *rq) 8235 { 8236 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8237 } 8238 8239 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8240 { 8241 if (!has_blocked) 8242 rq->has_blocked_load = 0; 8243 } 8244 #else 8245 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8246 static inline bool others_have_blocked(struct rq *rq) { return false; } 8247 static inline void update_blocked_load_tick(struct rq *rq) {} 8248 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8249 #endif 8250 8251 static bool __update_blocked_others(struct rq *rq, bool *done) 8252 { 8253 const struct sched_class *curr_class; 8254 u64 now = rq_clock_pelt(rq); 8255 unsigned long thermal_pressure; 8256 bool decayed; 8257 8258 /* 8259 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8260 * DL and IRQ signals have been updated before updating CFS. 8261 */ 8262 curr_class = rq->curr->sched_class; 8263 8264 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8265 8266 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8267 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8268 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8269 update_irq_load_avg(rq, 0); 8270 8271 if (others_have_blocked(rq)) 8272 *done = false; 8273 8274 return decayed; 8275 } 8276 8277 #ifdef CONFIG_FAIR_GROUP_SCHED 8278 8279 static bool __update_blocked_fair(struct rq *rq, bool *done) 8280 { 8281 struct cfs_rq *cfs_rq, *pos; 8282 bool decayed = false; 8283 int cpu = cpu_of(rq); 8284 8285 /* 8286 * Iterates the task_group tree in a bottom up fashion, see 8287 * list_add_leaf_cfs_rq() for details. 8288 */ 8289 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8290 struct sched_entity *se; 8291 8292 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8293 update_tg_load_avg(cfs_rq); 8294 8295 if (cfs_rq->nr_running == 0) 8296 update_idle_cfs_rq_clock_pelt(cfs_rq); 8297 8298 if (cfs_rq == &rq->cfs) 8299 decayed = true; 8300 } 8301 8302 /* Propagate pending load changes to the parent, if any: */ 8303 se = cfs_rq->tg->se[cpu]; 8304 if (se && !skip_blocked_update(se)) 8305 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8306 8307 /* 8308 * There can be a lot of idle CPU cgroups. Don't let fully 8309 * decayed cfs_rqs linger on the list. 8310 */ 8311 if (cfs_rq_is_decayed(cfs_rq)) 8312 list_del_leaf_cfs_rq(cfs_rq); 8313 8314 /* Don't need periodic decay once load/util_avg are null */ 8315 if (cfs_rq_has_blocked(cfs_rq)) 8316 *done = false; 8317 } 8318 8319 return decayed; 8320 } 8321 8322 /* 8323 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8324 * This needs to be done in a top-down fashion because the load of a child 8325 * group is a fraction of its parents load. 8326 */ 8327 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8328 { 8329 struct rq *rq = rq_of(cfs_rq); 8330 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8331 unsigned long now = jiffies; 8332 unsigned long load; 8333 8334 if (cfs_rq->last_h_load_update == now) 8335 return; 8336 8337 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8338 for_each_sched_entity(se) { 8339 cfs_rq = cfs_rq_of(se); 8340 WRITE_ONCE(cfs_rq->h_load_next, se); 8341 if (cfs_rq->last_h_load_update == now) 8342 break; 8343 } 8344 8345 if (!se) { 8346 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8347 cfs_rq->last_h_load_update = now; 8348 } 8349 8350 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8351 load = cfs_rq->h_load; 8352 load = div64_ul(load * se->avg.load_avg, 8353 cfs_rq_load_avg(cfs_rq) + 1); 8354 cfs_rq = group_cfs_rq(se); 8355 cfs_rq->h_load = load; 8356 cfs_rq->last_h_load_update = now; 8357 } 8358 } 8359 8360 static unsigned long task_h_load(struct task_struct *p) 8361 { 8362 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8363 8364 update_cfs_rq_h_load(cfs_rq); 8365 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8366 cfs_rq_load_avg(cfs_rq) + 1); 8367 } 8368 #else 8369 static bool __update_blocked_fair(struct rq *rq, bool *done) 8370 { 8371 struct cfs_rq *cfs_rq = &rq->cfs; 8372 bool decayed; 8373 8374 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8375 if (cfs_rq_has_blocked(cfs_rq)) 8376 *done = false; 8377 8378 return decayed; 8379 } 8380 8381 static unsigned long task_h_load(struct task_struct *p) 8382 { 8383 return p->se.avg.load_avg; 8384 } 8385 #endif 8386 8387 static void update_blocked_averages(int cpu) 8388 { 8389 bool decayed = false, done = true; 8390 struct rq *rq = cpu_rq(cpu); 8391 struct rq_flags rf; 8392 8393 rq_lock_irqsave(rq, &rf); 8394 update_blocked_load_tick(rq); 8395 update_rq_clock(rq); 8396 8397 decayed |= __update_blocked_others(rq, &done); 8398 decayed |= __update_blocked_fair(rq, &done); 8399 8400 update_blocked_load_status(rq, !done); 8401 if (decayed) 8402 cpufreq_update_util(rq, 0); 8403 rq_unlock_irqrestore(rq, &rf); 8404 } 8405 8406 /********** Helpers for find_busiest_group ************************/ 8407 8408 /* 8409 * sg_lb_stats - stats of a sched_group required for load_balancing 8410 */ 8411 struct sg_lb_stats { 8412 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8413 unsigned long group_load; /* Total load over the CPUs of the group */ 8414 unsigned long group_capacity; 8415 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8416 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8417 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8418 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8419 unsigned int idle_cpus; 8420 unsigned int group_weight; 8421 enum group_type group_type; 8422 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8423 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8424 #ifdef CONFIG_NUMA_BALANCING 8425 unsigned int nr_numa_running; 8426 unsigned int nr_preferred_running; 8427 #endif 8428 }; 8429 8430 /* 8431 * sd_lb_stats - Structure to store the statistics of a sched_domain 8432 * during load balancing. 8433 */ 8434 struct sd_lb_stats { 8435 struct sched_group *busiest; /* Busiest group in this sd */ 8436 struct sched_group *local; /* Local group in this sd */ 8437 unsigned long total_load; /* Total load of all groups in sd */ 8438 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8439 unsigned long avg_load; /* Average load across all groups in sd */ 8440 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8441 8442 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8443 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8444 }; 8445 8446 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8447 { 8448 /* 8449 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8450 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8451 * We must however set busiest_stat::group_type and 8452 * busiest_stat::idle_cpus to the worst busiest group because 8453 * update_sd_pick_busiest() reads these before assignment. 8454 */ 8455 *sds = (struct sd_lb_stats){ 8456 .busiest = NULL, 8457 .local = NULL, 8458 .total_load = 0UL, 8459 .total_capacity = 0UL, 8460 .busiest_stat = { 8461 .idle_cpus = UINT_MAX, 8462 .group_type = group_has_spare, 8463 }, 8464 }; 8465 } 8466 8467 static unsigned long scale_rt_capacity(int cpu) 8468 { 8469 struct rq *rq = cpu_rq(cpu); 8470 unsigned long max = arch_scale_cpu_capacity(cpu); 8471 unsigned long used, free; 8472 unsigned long irq; 8473 8474 irq = cpu_util_irq(rq); 8475 8476 if (unlikely(irq >= max)) 8477 return 1; 8478 8479 /* 8480 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8481 * (running and not running) with weights 0 and 1024 respectively. 8482 * avg_thermal.load_avg tracks thermal pressure and the weighted 8483 * average uses the actual delta max capacity(load). 8484 */ 8485 used = READ_ONCE(rq->avg_rt.util_avg); 8486 used += READ_ONCE(rq->avg_dl.util_avg); 8487 used += thermal_load_avg(rq); 8488 8489 if (unlikely(used >= max)) 8490 return 1; 8491 8492 free = max - used; 8493 8494 return scale_irq_capacity(free, irq, max); 8495 } 8496 8497 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8498 { 8499 unsigned long capacity = scale_rt_capacity(cpu); 8500 struct sched_group *sdg = sd->groups; 8501 8502 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8503 8504 if (!capacity) 8505 capacity = 1; 8506 8507 cpu_rq(cpu)->cpu_capacity = capacity; 8508 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8509 8510 sdg->sgc->capacity = capacity; 8511 sdg->sgc->min_capacity = capacity; 8512 sdg->sgc->max_capacity = capacity; 8513 } 8514 8515 void update_group_capacity(struct sched_domain *sd, int cpu) 8516 { 8517 struct sched_domain *child = sd->child; 8518 struct sched_group *group, *sdg = sd->groups; 8519 unsigned long capacity, min_capacity, max_capacity; 8520 unsigned long interval; 8521 8522 interval = msecs_to_jiffies(sd->balance_interval); 8523 interval = clamp(interval, 1UL, max_load_balance_interval); 8524 sdg->sgc->next_update = jiffies + interval; 8525 8526 if (!child) { 8527 update_cpu_capacity(sd, cpu); 8528 return; 8529 } 8530 8531 capacity = 0; 8532 min_capacity = ULONG_MAX; 8533 max_capacity = 0; 8534 8535 if (child->flags & SD_OVERLAP) { 8536 /* 8537 * SD_OVERLAP domains cannot assume that child groups 8538 * span the current group. 8539 */ 8540 8541 for_each_cpu(cpu, sched_group_span(sdg)) { 8542 unsigned long cpu_cap = capacity_of(cpu); 8543 8544 capacity += cpu_cap; 8545 min_capacity = min(cpu_cap, min_capacity); 8546 max_capacity = max(cpu_cap, max_capacity); 8547 } 8548 } else { 8549 /* 8550 * !SD_OVERLAP domains can assume that child groups 8551 * span the current group. 8552 */ 8553 8554 group = child->groups; 8555 do { 8556 struct sched_group_capacity *sgc = group->sgc; 8557 8558 capacity += sgc->capacity; 8559 min_capacity = min(sgc->min_capacity, min_capacity); 8560 max_capacity = max(sgc->max_capacity, max_capacity); 8561 group = group->next; 8562 } while (group != child->groups); 8563 } 8564 8565 sdg->sgc->capacity = capacity; 8566 sdg->sgc->min_capacity = min_capacity; 8567 sdg->sgc->max_capacity = max_capacity; 8568 } 8569 8570 /* 8571 * Check whether the capacity of the rq has been noticeably reduced by side 8572 * activity. The imbalance_pct is used for the threshold. 8573 * Return true is the capacity is reduced 8574 */ 8575 static inline int 8576 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8577 { 8578 return ((rq->cpu_capacity * sd->imbalance_pct) < 8579 (rq->cpu_capacity_orig * 100)); 8580 } 8581 8582 /* 8583 * Check whether a rq has a misfit task and if it looks like we can actually 8584 * help that task: we can migrate the task to a CPU of higher capacity, or 8585 * the task's current CPU is heavily pressured. 8586 */ 8587 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8588 { 8589 return rq->misfit_task_load && 8590 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8591 check_cpu_capacity(rq, sd)); 8592 } 8593 8594 /* 8595 * Group imbalance indicates (and tries to solve) the problem where balancing 8596 * groups is inadequate due to ->cpus_ptr constraints. 8597 * 8598 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8599 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8600 * Something like: 8601 * 8602 * { 0 1 2 3 } { 4 5 6 7 } 8603 * * * * * 8604 * 8605 * If we were to balance group-wise we'd place two tasks in the first group and 8606 * two tasks in the second group. Clearly this is undesired as it will overload 8607 * cpu 3 and leave one of the CPUs in the second group unused. 8608 * 8609 * The current solution to this issue is detecting the skew in the first group 8610 * by noticing the lower domain failed to reach balance and had difficulty 8611 * moving tasks due to affinity constraints. 8612 * 8613 * When this is so detected; this group becomes a candidate for busiest; see 8614 * update_sd_pick_busiest(). And calculate_imbalance() and 8615 * find_busiest_group() avoid some of the usual balance conditions to allow it 8616 * to create an effective group imbalance. 8617 * 8618 * This is a somewhat tricky proposition since the next run might not find the 8619 * group imbalance and decide the groups need to be balanced again. A most 8620 * subtle and fragile situation. 8621 */ 8622 8623 static inline int sg_imbalanced(struct sched_group *group) 8624 { 8625 return group->sgc->imbalance; 8626 } 8627 8628 /* 8629 * group_has_capacity returns true if the group has spare capacity that could 8630 * be used by some tasks. 8631 * We consider that a group has spare capacity if the number of task is 8632 * smaller than the number of CPUs or if the utilization is lower than the 8633 * available capacity for CFS tasks. 8634 * For the latter, we use a threshold to stabilize the state, to take into 8635 * account the variance of the tasks' load and to return true if the available 8636 * capacity in meaningful for the load balancer. 8637 * As an example, an available capacity of 1% can appear but it doesn't make 8638 * any benefit for the load balance. 8639 */ 8640 static inline bool 8641 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8642 { 8643 if (sgs->sum_nr_running < sgs->group_weight) 8644 return true; 8645 8646 if ((sgs->group_capacity * imbalance_pct) < 8647 (sgs->group_runnable * 100)) 8648 return false; 8649 8650 if ((sgs->group_capacity * 100) > 8651 (sgs->group_util * imbalance_pct)) 8652 return true; 8653 8654 return false; 8655 } 8656 8657 /* 8658 * group_is_overloaded returns true if the group has more tasks than it can 8659 * handle. 8660 * group_is_overloaded is not equals to !group_has_capacity because a group 8661 * with the exact right number of tasks, has no more spare capacity but is not 8662 * overloaded so both group_has_capacity and group_is_overloaded return 8663 * false. 8664 */ 8665 static inline bool 8666 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8667 { 8668 if (sgs->sum_nr_running <= sgs->group_weight) 8669 return false; 8670 8671 if ((sgs->group_capacity * 100) < 8672 (sgs->group_util * imbalance_pct)) 8673 return true; 8674 8675 if ((sgs->group_capacity * imbalance_pct) < 8676 (sgs->group_runnable * 100)) 8677 return true; 8678 8679 return false; 8680 } 8681 8682 static inline enum 8683 group_type group_classify(unsigned int imbalance_pct, 8684 struct sched_group *group, 8685 struct sg_lb_stats *sgs) 8686 { 8687 if (group_is_overloaded(imbalance_pct, sgs)) 8688 return group_overloaded; 8689 8690 if (sg_imbalanced(group)) 8691 return group_imbalanced; 8692 8693 if (sgs->group_asym_packing) 8694 return group_asym_packing; 8695 8696 if (sgs->group_misfit_task_load) 8697 return group_misfit_task; 8698 8699 if (!group_has_capacity(imbalance_pct, sgs)) 8700 return group_fully_busy; 8701 8702 return group_has_spare; 8703 } 8704 8705 /** 8706 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 8707 * @dst_cpu: Destination CPU of the load balancing 8708 * @sds: Load-balancing data with statistics of the local group 8709 * @sgs: Load-balancing statistics of the candidate busiest group 8710 * @sg: The candidate busiest group 8711 * 8712 * Check the state of the SMT siblings of both @sds::local and @sg and decide 8713 * if @dst_cpu can pull tasks. 8714 * 8715 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 8716 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 8717 * only if @dst_cpu has higher priority. 8718 * 8719 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 8720 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 8721 * Bigger imbalances in the number of busy CPUs will be dealt with in 8722 * update_sd_pick_busiest(). 8723 * 8724 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 8725 * of @dst_cpu are idle and @sg has lower priority. 8726 * 8727 * Return: true if @dst_cpu can pull tasks, false otherwise. 8728 */ 8729 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 8730 struct sg_lb_stats *sgs, 8731 struct sched_group *sg) 8732 { 8733 #ifdef CONFIG_SCHED_SMT 8734 bool local_is_smt, sg_is_smt; 8735 int sg_busy_cpus; 8736 8737 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 8738 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 8739 8740 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 8741 8742 if (!local_is_smt) { 8743 /* 8744 * If we are here, @dst_cpu is idle and does not have SMT 8745 * siblings. Pull tasks if candidate group has two or more 8746 * busy CPUs. 8747 */ 8748 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 8749 return true; 8750 8751 /* 8752 * @dst_cpu does not have SMT siblings. @sg may have SMT 8753 * siblings and only one is busy. In such case, @dst_cpu 8754 * can help if it has higher priority and is idle (i.e., 8755 * it has no running tasks). 8756 */ 8757 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8758 } 8759 8760 /* @dst_cpu has SMT siblings. */ 8761 8762 if (sg_is_smt) { 8763 int local_busy_cpus = sds->local->group_weight - 8764 sds->local_stat.idle_cpus; 8765 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 8766 8767 if (busy_cpus_delta == 1) 8768 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8769 8770 return false; 8771 } 8772 8773 /* 8774 * @sg does not have SMT siblings. Ensure that @sds::local does not end 8775 * up with more than one busy SMT sibling and only pull tasks if there 8776 * are not busy CPUs (i.e., no CPU has running tasks). 8777 */ 8778 if (!sds->local_stat.sum_nr_running) 8779 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8780 8781 return false; 8782 #else 8783 /* Always return false so that callers deal with non-SMT cases. */ 8784 return false; 8785 #endif 8786 } 8787 8788 static inline bool 8789 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 8790 struct sched_group *group) 8791 { 8792 /* Only do SMT checks if either local or candidate have SMT siblings */ 8793 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 8794 (group->flags & SD_SHARE_CPUCAPACITY)) 8795 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 8796 8797 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 8798 } 8799 8800 static inline bool 8801 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 8802 { 8803 /* 8804 * When there is more than 1 task, the group_overloaded case already 8805 * takes care of cpu with reduced capacity 8806 */ 8807 if (rq->cfs.h_nr_running != 1) 8808 return false; 8809 8810 return check_cpu_capacity(rq, sd); 8811 } 8812 8813 /** 8814 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8815 * @env: The load balancing environment. 8816 * @sds: Load-balancing data with statistics of the local group. 8817 * @group: sched_group whose statistics are to be updated. 8818 * @sgs: variable to hold the statistics for this group. 8819 * @sg_status: Holds flag indicating the status of the sched_group 8820 */ 8821 static inline void update_sg_lb_stats(struct lb_env *env, 8822 struct sd_lb_stats *sds, 8823 struct sched_group *group, 8824 struct sg_lb_stats *sgs, 8825 int *sg_status) 8826 { 8827 int i, nr_running, local_group; 8828 8829 memset(sgs, 0, sizeof(*sgs)); 8830 8831 local_group = group == sds->local; 8832 8833 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8834 struct rq *rq = cpu_rq(i); 8835 unsigned long load = cpu_load(rq); 8836 8837 sgs->group_load += load; 8838 sgs->group_util += cpu_util_cfs(i); 8839 sgs->group_runnable += cpu_runnable(rq); 8840 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8841 8842 nr_running = rq->nr_running; 8843 sgs->sum_nr_running += nr_running; 8844 8845 if (nr_running > 1) 8846 *sg_status |= SG_OVERLOAD; 8847 8848 if (cpu_overutilized(i)) 8849 *sg_status |= SG_OVERUTILIZED; 8850 8851 #ifdef CONFIG_NUMA_BALANCING 8852 sgs->nr_numa_running += rq->nr_numa_running; 8853 sgs->nr_preferred_running += rq->nr_preferred_running; 8854 #endif 8855 /* 8856 * No need to call idle_cpu() if nr_running is not 0 8857 */ 8858 if (!nr_running && idle_cpu(i)) { 8859 sgs->idle_cpus++; 8860 /* Idle cpu can't have misfit task */ 8861 continue; 8862 } 8863 8864 if (local_group) 8865 continue; 8866 8867 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 8868 /* Check for a misfit task on the cpu */ 8869 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 8870 sgs->group_misfit_task_load = rq->misfit_task_load; 8871 *sg_status |= SG_OVERLOAD; 8872 } 8873 } else if ((env->idle != CPU_NOT_IDLE) && 8874 sched_reduced_capacity(rq, env->sd)) { 8875 /* Check for a task running on a CPU with reduced capacity */ 8876 if (sgs->group_misfit_task_load < load) 8877 sgs->group_misfit_task_load = load; 8878 } 8879 } 8880 8881 sgs->group_capacity = group->sgc->capacity; 8882 8883 sgs->group_weight = group->group_weight; 8884 8885 /* Check if dst CPU is idle and preferred to this group */ 8886 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 8887 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 8888 sched_asym(env, sds, sgs, group)) { 8889 sgs->group_asym_packing = 1; 8890 } 8891 8892 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8893 8894 /* Computing avg_load makes sense only when group is overloaded */ 8895 if (sgs->group_type == group_overloaded) 8896 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8897 sgs->group_capacity; 8898 } 8899 8900 /** 8901 * update_sd_pick_busiest - return 1 on busiest group 8902 * @env: The load balancing environment. 8903 * @sds: sched_domain statistics 8904 * @sg: sched_group candidate to be checked for being the busiest 8905 * @sgs: sched_group statistics 8906 * 8907 * Determine if @sg is a busier group than the previously selected 8908 * busiest group. 8909 * 8910 * Return: %true if @sg is a busier group than the previously selected 8911 * busiest group. %false otherwise. 8912 */ 8913 static bool update_sd_pick_busiest(struct lb_env *env, 8914 struct sd_lb_stats *sds, 8915 struct sched_group *sg, 8916 struct sg_lb_stats *sgs) 8917 { 8918 struct sg_lb_stats *busiest = &sds->busiest_stat; 8919 8920 /* Make sure that there is at least one task to pull */ 8921 if (!sgs->sum_h_nr_running) 8922 return false; 8923 8924 /* 8925 * Don't try to pull misfit tasks we can't help. 8926 * We can use max_capacity here as reduction in capacity on some 8927 * CPUs in the group should either be possible to resolve 8928 * internally or be covered by avg_load imbalance (eventually). 8929 */ 8930 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8931 (sgs->group_type == group_misfit_task) && 8932 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8933 sds->local_stat.group_type != group_has_spare)) 8934 return false; 8935 8936 if (sgs->group_type > busiest->group_type) 8937 return true; 8938 8939 if (sgs->group_type < busiest->group_type) 8940 return false; 8941 8942 /* 8943 * The candidate and the current busiest group are the same type of 8944 * group. Let check which one is the busiest according to the type. 8945 */ 8946 8947 switch (sgs->group_type) { 8948 case group_overloaded: 8949 /* Select the overloaded group with highest avg_load. */ 8950 if (sgs->avg_load <= busiest->avg_load) 8951 return false; 8952 break; 8953 8954 case group_imbalanced: 8955 /* 8956 * Select the 1st imbalanced group as we don't have any way to 8957 * choose one more than another. 8958 */ 8959 return false; 8960 8961 case group_asym_packing: 8962 /* Prefer to move from lowest priority CPU's work */ 8963 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8964 return false; 8965 break; 8966 8967 case group_misfit_task: 8968 /* 8969 * If we have more than one misfit sg go with the biggest 8970 * misfit. 8971 */ 8972 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8973 return false; 8974 break; 8975 8976 case group_fully_busy: 8977 /* 8978 * Select the fully busy group with highest avg_load. In 8979 * theory, there is no need to pull task from such kind of 8980 * group because tasks have all compute capacity that they need 8981 * but we can still improve the overall throughput by reducing 8982 * contention when accessing shared HW resources. 8983 * 8984 * XXX for now avg_load is not computed and always 0 so we 8985 * select the 1st one. 8986 */ 8987 if (sgs->avg_load <= busiest->avg_load) 8988 return false; 8989 break; 8990 8991 case group_has_spare: 8992 /* 8993 * Select not overloaded group with lowest number of idle cpus 8994 * and highest number of running tasks. We could also compare 8995 * the spare capacity which is more stable but it can end up 8996 * that the group has less spare capacity but finally more idle 8997 * CPUs which means less opportunity to pull tasks. 8998 */ 8999 if (sgs->idle_cpus > busiest->idle_cpus) 9000 return false; 9001 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9002 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9003 return false; 9004 9005 break; 9006 } 9007 9008 /* 9009 * Candidate sg has no more than one task per CPU and has higher 9010 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9011 * throughput. Maximize throughput, power/energy consequences are not 9012 * considered. 9013 */ 9014 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9015 (sgs->group_type <= group_fully_busy) && 9016 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9017 return false; 9018 9019 return true; 9020 } 9021 9022 #ifdef CONFIG_NUMA_BALANCING 9023 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9024 { 9025 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9026 return regular; 9027 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9028 return remote; 9029 return all; 9030 } 9031 9032 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9033 { 9034 if (rq->nr_running > rq->nr_numa_running) 9035 return regular; 9036 if (rq->nr_running > rq->nr_preferred_running) 9037 return remote; 9038 return all; 9039 } 9040 #else 9041 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9042 { 9043 return all; 9044 } 9045 9046 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9047 { 9048 return regular; 9049 } 9050 #endif /* CONFIG_NUMA_BALANCING */ 9051 9052 9053 struct sg_lb_stats; 9054 9055 /* 9056 * task_running_on_cpu - return 1 if @p is running on @cpu. 9057 */ 9058 9059 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9060 { 9061 /* Task has no contribution or is new */ 9062 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9063 return 0; 9064 9065 if (task_on_rq_queued(p)) 9066 return 1; 9067 9068 return 0; 9069 } 9070 9071 /** 9072 * idle_cpu_without - would a given CPU be idle without p ? 9073 * @cpu: the processor on which idleness is tested. 9074 * @p: task which should be ignored. 9075 * 9076 * Return: 1 if the CPU would be idle. 0 otherwise. 9077 */ 9078 static int idle_cpu_without(int cpu, struct task_struct *p) 9079 { 9080 struct rq *rq = cpu_rq(cpu); 9081 9082 if (rq->curr != rq->idle && rq->curr != p) 9083 return 0; 9084 9085 /* 9086 * rq->nr_running can't be used but an updated version without the 9087 * impact of p on cpu must be used instead. The updated nr_running 9088 * be computed and tested before calling idle_cpu_without(). 9089 */ 9090 9091 #ifdef CONFIG_SMP 9092 if (rq->ttwu_pending) 9093 return 0; 9094 #endif 9095 9096 return 1; 9097 } 9098 9099 /* 9100 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9101 * @sd: The sched_domain level to look for idlest group. 9102 * @group: sched_group whose statistics are to be updated. 9103 * @sgs: variable to hold the statistics for this group. 9104 * @p: The task for which we look for the idlest group/CPU. 9105 */ 9106 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9107 struct sched_group *group, 9108 struct sg_lb_stats *sgs, 9109 struct task_struct *p) 9110 { 9111 int i, nr_running; 9112 9113 memset(sgs, 0, sizeof(*sgs)); 9114 9115 for_each_cpu(i, sched_group_span(group)) { 9116 struct rq *rq = cpu_rq(i); 9117 unsigned int local; 9118 9119 sgs->group_load += cpu_load_without(rq, p); 9120 sgs->group_util += cpu_util_without(i, p); 9121 sgs->group_runnable += cpu_runnable_without(rq, p); 9122 local = task_running_on_cpu(i, p); 9123 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9124 9125 nr_running = rq->nr_running - local; 9126 sgs->sum_nr_running += nr_running; 9127 9128 /* 9129 * No need to call idle_cpu_without() if nr_running is not 0 9130 */ 9131 if (!nr_running && idle_cpu_without(i, p)) 9132 sgs->idle_cpus++; 9133 9134 } 9135 9136 /* Check if task fits in the group */ 9137 if (sd->flags & SD_ASYM_CPUCAPACITY && 9138 !task_fits_capacity(p, group->sgc->max_capacity)) { 9139 sgs->group_misfit_task_load = 1; 9140 } 9141 9142 sgs->group_capacity = group->sgc->capacity; 9143 9144 sgs->group_weight = group->group_weight; 9145 9146 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9147 9148 /* 9149 * Computing avg_load makes sense only when group is fully busy or 9150 * overloaded 9151 */ 9152 if (sgs->group_type == group_fully_busy || 9153 sgs->group_type == group_overloaded) 9154 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9155 sgs->group_capacity; 9156 } 9157 9158 static bool update_pick_idlest(struct sched_group *idlest, 9159 struct sg_lb_stats *idlest_sgs, 9160 struct sched_group *group, 9161 struct sg_lb_stats *sgs) 9162 { 9163 if (sgs->group_type < idlest_sgs->group_type) 9164 return true; 9165 9166 if (sgs->group_type > idlest_sgs->group_type) 9167 return false; 9168 9169 /* 9170 * The candidate and the current idlest group are the same type of 9171 * group. Let check which one is the idlest according to the type. 9172 */ 9173 9174 switch (sgs->group_type) { 9175 case group_overloaded: 9176 case group_fully_busy: 9177 /* Select the group with lowest avg_load. */ 9178 if (idlest_sgs->avg_load <= sgs->avg_load) 9179 return false; 9180 break; 9181 9182 case group_imbalanced: 9183 case group_asym_packing: 9184 /* Those types are not used in the slow wakeup path */ 9185 return false; 9186 9187 case group_misfit_task: 9188 /* Select group with the highest max capacity */ 9189 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9190 return false; 9191 break; 9192 9193 case group_has_spare: 9194 /* Select group with most idle CPUs */ 9195 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9196 return false; 9197 9198 /* Select group with lowest group_util */ 9199 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9200 idlest_sgs->group_util <= sgs->group_util) 9201 return false; 9202 9203 break; 9204 } 9205 9206 return true; 9207 } 9208 9209 /* 9210 * find_idlest_group() finds and returns the least busy CPU group within the 9211 * domain. 9212 * 9213 * Assumes p is allowed on at least one CPU in sd. 9214 */ 9215 static struct sched_group * 9216 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9217 { 9218 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9219 struct sg_lb_stats local_sgs, tmp_sgs; 9220 struct sg_lb_stats *sgs; 9221 unsigned long imbalance; 9222 struct sg_lb_stats idlest_sgs = { 9223 .avg_load = UINT_MAX, 9224 .group_type = group_overloaded, 9225 }; 9226 9227 do { 9228 int local_group; 9229 9230 /* Skip over this group if it has no CPUs allowed */ 9231 if (!cpumask_intersects(sched_group_span(group), 9232 p->cpus_ptr)) 9233 continue; 9234 9235 /* Skip over this group if no cookie matched */ 9236 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9237 continue; 9238 9239 local_group = cpumask_test_cpu(this_cpu, 9240 sched_group_span(group)); 9241 9242 if (local_group) { 9243 sgs = &local_sgs; 9244 local = group; 9245 } else { 9246 sgs = &tmp_sgs; 9247 } 9248 9249 update_sg_wakeup_stats(sd, group, sgs, p); 9250 9251 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9252 idlest = group; 9253 idlest_sgs = *sgs; 9254 } 9255 9256 } while (group = group->next, group != sd->groups); 9257 9258 9259 /* There is no idlest group to push tasks to */ 9260 if (!idlest) 9261 return NULL; 9262 9263 /* The local group has been skipped because of CPU affinity */ 9264 if (!local) 9265 return idlest; 9266 9267 /* 9268 * If the local group is idler than the selected idlest group 9269 * don't try and push the task. 9270 */ 9271 if (local_sgs.group_type < idlest_sgs.group_type) 9272 return NULL; 9273 9274 /* 9275 * If the local group is busier than the selected idlest group 9276 * try and push the task. 9277 */ 9278 if (local_sgs.group_type > idlest_sgs.group_type) 9279 return idlest; 9280 9281 switch (local_sgs.group_type) { 9282 case group_overloaded: 9283 case group_fully_busy: 9284 9285 /* Calculate allowed imbalance based on load */ 9286 imbalance = scale_load_down(NICE_0_LOAD) * 9287 (sd->imbalance_pct-100) / 100; 9288 9289 /* 9290 * When comparing groups across NUMA domains, it's possible for 9291 * the local domain to be very lightly loaded relative to the 9292 * remote domains but "imbalance" skews the comparison making 9293 * remote CPUs look much more favourable. When considering 9294 * cross-domain, add imbalance to the load on the remote node 9295 * and consider staying local. 9296 */ 9297 9298 if ((sd->flags & SD_NUMA) && 9299 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9300 return NULL; 9301 9302 /* 9303 * If the local group is less loaded than the selected 9304 * idlest group don't try and push any tasks. 9305 */ 9306 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9307 return NULL; 9308 9309 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9310 return NULL; 9311 break; 9312 9313 case group_imbalanced: 9314 case group_asym_packing: 9315 /* Those type are not used in the slow wakeup path */ 9316 return NULL; 9317 9318 case group_misfit_task: 9319 /* Select group with the highest max capacity */ 9320 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9321 return NULL; 9322 break; 9323 9324 case group_has_spare: 9325 #ifdef CONFIG_NUMA 9326 if (sd->flags & SD_NUMA) { 9327 int imb_numa_nr = sd->imb_numa_nr; 9328 #ifdef CONFIG_NUMA_BALANCING 9329 int idlest_cpu; 9330 /* 9331 * If there is spare capacity at NUMA, try to select 9332 * the preferred node 9333 */ 9334 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9335 return NULL; 9336 9337 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9338 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9339 return idlest; 9340 #endif /* CONFIG_NUMA_BALANCING */ 9341 /* 9342 * Otherwise, keep the task close to the wakeup source 9343 * and improve locality if the number of running tasks 9344 * would remain below threshold where an imbalance is 9345 * allowed while accounting for the possibility the 9346 * task is pinned to a subset of CPUs. If there is a 9347 * real need of migration, periodic load balance will 9348 * take care of it. 9349 */ 9350 if (p->nr_cpus_allowed != NR_CPUS) { 9351 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 9352 9353 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 9354 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 9355 } 9356 9357 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 9358 if (!adjust_numa_imbalance(imbalance, 9359 local_sgs.sum_nr_running + 1, 9360 imb_numa_nr)) { 9361 return NULL; 9362 } 9363 } 9364 #endif /* CONFIG_NUMA */ 9365 9366 /* 9367 * Select group with highest number of idle CPUs. We could also 9368 * compare the utilization which is more stable but it can end 9369 * up that the group has less spare capacity but finally more 9370 * idle CPUs which means more opportunity to run task. 9371 */ 9372 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9373 return NULL; 9374 break; 9375 } 9376 9377 return idlest; 9378 } 9379 9380 static void update_idle_cpu_scan(struct lb_env *env, 9381 unsigned long sum_util) 9382 { 9383 struct sched_domain_shared *sd_share; 9384 int llc_weight, pct; 9385 u64 x, y, tmp; 9386 /* 9387 * Update the number of CPUs to scan in LLC domain, which could 9388 * be used as a hint in select_idle_cpu(). The update of sd_share 9389 * could be expensive because it is within a shared cache line. 9390 * So the write of this hint only occurs during periodic load 9391 * balancing, rather than CPU_NEWLY_IDLE, because the latter 9392 * can fire way more frequently than the former. 9393 */ 9394 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 9395 return; 9396 9397 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 9398 if (env->sd->span_weight != llc_weight) 9399 return; 9400 9401 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 9402 if (!sd_share) 9403 return; 9404 9405 /* 9406 * The number of CPUs to search drops as sum_util increases, when 9407 * sum_util hits 85% or above, the scan stops. 9408 * The reason to choose 85% as the threshold is because this is the 9409 * imbalance_pct(117) when a LLC sched group is overloaded. 9410 * 9411 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 9412 * and y'= y / SCHED_CAPACITY_SCALE 9413 * 9414 * x is the ratio of sum_util compared to the CPU capacity: 9415 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 9416 * y' is the ratio of CPUs to be scanned in the LLC domain, 9417 * and the number of CPUs to scan is calculated by: 9418 * 9419 * nr_scan = llc_weight * y' [2] 9420 * 9421 * When x hits the threshold of overloaded, AKA, when 9422 * x = 100 / pct, y drops to 0. According to [1], 9423 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 9424 * 9425 * Scale x by SCHED_CAPACITY_SCALE: 9426 * x' = sum_util / llc_weight; [3] 9427 * 9428 * and finally [1] becomes: 9429 * y = SCHED_CAPACITY_SCALE - 9430 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 9431 * 9432 */ 9433 /* equation [3] */ 9434 x = sum_util; 9435 do_div(x, llc_weight); 9436 9437 /* equation [4] */ 9438 pct = env->sd->imbalance_pct; 9439 tmp = x * x * pct * pct; 9440 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 9441 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 9442 y = SCHED_CAPACITY_SCALE - tmp; 9443 9444 /* equation [2] */ 9445 y *= llc_weight; 9446 do_div(y, SCHED_CAPACITY_SCALE); 9447 if ((int)y != sd_share->nr_idle_scan) 9448 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 9449 } 9450 9451 /** 9452 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9453 * @env: The load balancing environment. 9454 * @sds: variable to hold the statistics for this sched_domain. 9455 */ 9456 9457 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9458 { 9459 struct sched_domain *child = env->sd->child; 9460 struct sched_group *sg = env->sd->groups; 9461 struct sg_lb_stats *local = &sds->local_stat; 9462 struct sg_lb_stats tmp_sgs; 9463 unsigned long sum_util = 0; 9464 int sg_status = 0; 9465 9466 do { 9467 struct sg_lb_stats *sgs = &tmp_sgs; 9468 int local_group; 9469 9470 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9471 if (local_group) { 9472 sds->local = sg; 9473 sgs = local; 9474 9475 if (env->idle != CPU_NEWLY_IDLE || 9476 time_after_eq(jiffies, sg->sgc->next_update)) 9477 update_group_capacity(env->sd, env->dst_cpu); 9478 } 9479 9480 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9481 9482 if (local_group) 9483 goto next_group; 9484 9485 9486 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9487 sds->busiest = sg; 9488 sds->busiest_stat = *sgs; 9489 } 9490 9491 next_group: 9492 /* Now, start updating sd_lb_stats */ 9493 sds->total_load += sgs->group_load; 9494 sds->total_capacity += sgs->group_capacity; 9495 9496 sum_util += sgs->group_util; 9497 sg = sg->next; 9498 } while (sg != env->sd->groups); 9499 9500 /* Tag domain that child domain prefers tasks go to siblings first */ 9501 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9502 9503 9504 if (env->sd->flags & SD_NUMA) 9505 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9506 9507 if (!env->sd->parent) { 9508 struct root_domain *rd = env->dst_rq->rd; 9509 9510 /* update overload indicator if we are at root domain */ 9511 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9512 9513 /* Update over-utilization (tipping point, U >= 0) indicator */ 9514 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9515 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9516 } else if (sg_status & SG_OVERUTILIZED) { 9517 struct root_domain *rd = env->dst_rq->rd; 9518 9519 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9520 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9521 } 9522 9523 update_idle_cpu_scan(env, sum_util); 9524 } 9525 9526 /** 9527 * calculate_imbalance - Calculate the amount of imbalance present within the 9528 * groups of a given sched_domain during load balance. 9529 * @env: load balance environment 9530 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9531 */ 9532 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9533 { 9534 struct sg_lb_stats *local, *busiest; 9535 9536 local = &sds->local_stat; 9537 busiest = &sds->busiest_stat; 9538 9539 if (busiest->group_type == group_misfit_task) { 9540 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9541 /* Set imbalance to allow misfit tasks to be balanced. */ 9542 env->migration_type = migrate_misfit; 9543 env->imbalance = 1; 9544 } else { 9545 /* 9546 * Set load imbalance to allow moving task from cpu 9547 * with reduced capacity. 9548 */ 9549 env->migration_type = migrate_load; 9550 env->imbalance = busiest->group_misfit_task_load; 9551 } 9552 return; 9553 } 9554 9555 if (busiest->group_type == group_asym_packing) { 9556 /* 9557 * In case of asym capacity, we will try to migrate all load to 9558 * the preferred CPU. 9559 */ 9560 env->migration_type = migrate_task; 9561 env->imbalance = busiest->sum_h_nr_running; 9562 return; 9563 } 9564 9565 if (busiest->group_type == group_imbalanced) { 9566 /* 9567 * In the group_imb case we cannot rely on group-wide averages 9568 * to ensure CPU-load equilibrium, try to move any task to fix 9569 * the imbalance. The next load balance will take care of 9570 * balancing back the system. 9571 */ 9572 env->migration_type = migrate_task; 9573 env->imbalance = 1; 9574 return; 9575 } 9576 9577 /* 9578 * Try to use spare capacity of local group without overloading it or 9579 * emptying busiest. 9580 */ 9581 if (local->group_type == group_has_spare) { 9582 if ((busiest->group_type > group_fully_busy) && 9583 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9584 /* 9585 * If busiest is overloaded, try to fill spare 9586 * capacity. This might end up creating spare capacity 9587 * in busiest or busiest still being overloaded but 9588 * there is no simple way to directly compute the 9589 * amount of load to migrate in order to balance the 9590 * system. 9591 */ 9592 env->migration_type = migrate_util; 9593 env->imbalance = max(local->group_capacity, local->group_util) - 9594 local->group_util; 9595 9596 /* 9597 * In some cases, the group's utilization is max or even 9598 * higher than capacity because of migrations but the 9599 * local CPU is (newly) idle. There is at least one 9600 * waiting task in this overloaded busiest group. Let's 9601 * try to pull it. 9602 */ 9603 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9604 env->migration_type = migrate_task; 9605 env->imbalance = 1; 9606 } 9607 9608 return; 9609 } 9610 9611 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9612 unsigned int nr_diff = busiest->sum_nr_running; 9613 /* 9614 * When prefer sibling, evenly spread running tasks on 9615 * groups. 9616 */ 9617 env->migration_type = migrate_task; 9618 lsub_positive(&nr_diff, local->sum_nr_running); 9619 env->imbalance = nr_diff; 9620 } else { 9621 9622 /* 9623 * If there is no overload, we just want to even the number of 9624 * idle cpus. 9625 */ 9626 env->migration_type = migrate_task; 9627 env->imbalance = max_t(long, 0, 9628 (local->idle_cpus - busiest->idle_cpus)); 9629 } 9630 9631 #ifdef CONFIG_NUMA 9632 /* Consider allowing a small imbalance between NUMA groups */ 9633 if (env->sd->flags & SD_NUMA) { 9634 env->imbalance = adjust_numa_imbalance(env->imbalance, 9635 local->sum_nr_running + 1, 9636 env->sd->imb_numa_nr); 9637 } 9638 #endif 9639 9640 /* Number of tasks to move to restore balance */ 9641 env->imbalance >>= 1; 9642 9643 return; 9644 } 9645 9646 /* 9647 * Local is fully busy but has to take more load to relieve the 9648 * busiest group 9649 */ 9650 if (local->group_type < group_overloaded) { 9651 /* 9652 * Local will become overloaded so the avg_load metrics are 9653 * finally needed. 9654 */ 9655 9656 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9657 local->group_capacity; 9658 9659 /* 9660 * If the local group is more loaded than the selected 9661 * busiest group don't try to pull any tasks. 9662 */ 9663 if (local->avg_load >= busiest->avg_load) { 9664 env->imbalance = 0; 9665 return; 9666 } 9667 9668 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9669 sds->total_capacity; 9670 } 9671 9672 /* 9673 * Both group are or will become overloaded and we're trying to get all 9674 * the CPUs to the average_load, so we don't want to push ourselves 9675 * above the average load, nor do we wish to reduce the max loaded CPU 9676 * below the average load. At the same time, we also don't want to 9677 * reduce the group load below the group capacity. Thus we look for 9678 * the minimum possible imbalance. 9679 */ 9680 env->migration_type = migrate_load; 9681 env->imbalance = min( 9682 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9683 (sds->avg_load - local->avg_load) * local->group_capacity 9684 ) / SCHED_CAPACITY_SCALE; 9685 } 9686 9687 /******* find_busiest_group() helpers end here *********************/ 9688 9689 /* 9690 * Decision matrix according to the local and busiest group type: 9691 * 9692 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9693 * has_spare nr_idle balanced N/A N/A balanced balanced 9694 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9695 * misfit_task force N/A N/A N/A N/A N/A 9696 * asym_packing force force N/A N/A force force 9697 * imbalanced force force N/A N/A force force 9698 * overloaded force force N/A N/A force avg_load 9699 * 9700 * N/A : Not Applicable because already filtered while updating 9701 * statistics. 9702 * balanced : The system is balanced for these 2 groups. 9703 * force : Calculate the imbalance as load migration is probably needed. 9704 * avg_load : Only if imbalance is significant enough. 9705 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9706 * different in groups. 9707 */ 9708 9709 /** 9710 * find_busiest_group - Returns the busiest group within the sched_domain 9711 * if there is an imbalance. 9712 * @env: The load balancing environment. 9713 * 9714 * Also calculates the amount of runnable load which should be moved 9715 * to restore balance. 9716 * 9717 * Return: - The busiest group if imbalance exists. 9718 */ 9719 static struct sched_group *find_busiest_group(struct lb_env *env) 9720 { 9721 struct sg_lb_stats *local, *busiest; 9722 struct sd_lb_stats sds; 9723 9724 init_sd_lb_stats(&sds); 9725 9726 /* 9727 * Compute the various statistics relevant for load balancing at 9728 * this level. 9729 */ 9730 update_sd_lb_stats(env, &sds); 9731 9732 if (sched_energy_enabled()) { 9733 struct root_domain *rd = env->dst_rq->rd; 9734 9735 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9736 goto out_balanced; 9737 } 9738 9739 local = &sds.local_stat; 9740 busiest = &sds.busiest_stat; 9741 9742 /* There is no busy sibling group to pull tasks from */ 9743 if (!sds.busiest) 9744 goto out_balanced; 9745 9746 /* Misfit tasks should be dealt with regardless of the avg load */ 9747 if (busiest->group_type == group_misfit_task) 9748 goto force_balance; 9749 9750 /* ASYM feature bypasses nice load balance check */ 9751 if (busiest->group_type == group_asym_packing) 9752 goto force_balance; 9753 9754 /* 9755 * If the busiest group is imbalanced the below checks don't 9756 * work because they assume all things are equal, which typically 9757 * isn't true due to cpus_ptr constraints and the like. 9758 */ 9759 if (busiest->group_type == group_imbalanced) 9760 goto force_balance; 9761 9762 /* 9763 * If the local group is busier than the selected busiest group 9764 * don't try and pull any tasks. 9765 */ 9766 if (local->group_type > busiest->group_type) 9767 goto out_balanced; 9768 9769 /* 9770 * When groups are overloaded, use the avg_load to ensure fairness 9771 * between tasks. 9772 */ 9773 if (local->group_type == group_overloaded) { 9774 /* 9775 * If the local group is more loaded than the selected 9776 * busiest group don't try to pull any tasks. 9777 */ 9778 if (local->avg_load >= busiest->avg_load) 9779 goto out_balanced; 9780 9781 /* XXX broken for overlapping NUMA groups */ 9782 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9783 sds.total_capacity; 9784 9785 /* 9786 * Don't pull any tasks if this group is already above the 9787 * domain average load. 9788 */ 9789 if (local->avg_load >= sds.avg_load) 9790 goto out_balanced; 9791 9792 /* 9793 * If the busiest group is more loaded, use imbalance_pct to be 9794 * conservative. 9795 */ 9796 if (100 * busiest->avg_load <= 9797 env->sd->imbalance_pct * local->avg_load) 9798 goto out_balanced; 9799 } 9800 9801 /* Try to move all excess tasks to child's sibling domain */ 9802 if (sds.prefer_sibling && local->group_type == group_has_spare && 9803 busiest->sum_nr_running > local->sum_nr_running + 1) 9804 goto force_balance; 9805 9806 if (busiest->group_type != group_overloaded) { 9807 if (env->idle == CPU_NOT_IDLE) 9808 /* 9809 * If the busiest group is not overloaded (and as a 9810 * result the local one too) but this CPU is already 9811 * busy, let another idle CPU try to pull task. 9812 */ 9813 goto out_balanced; 9814 9815 if (busiest->group_weight > 1 && 9816 local->idle_cpus <= (busiest->idle_cpus + 1)) 9817 /* 9818 * If the busiest group is not overloaded 9819 * and there is no imbalance between this and busiest 9820 * group wrt idle CPUs, it is balanced. The imbalance 9821 * becomes significant if the diff is greater than 1 9822 * otherwise we might end up to just move the imbalance 9823 * on another group. Of course this applies only if 9824 * there is more than 1 CPU per group. 9825 */ 9826 goto out_balanced; 9827 9828 if (busiest->sum_h_nr_running == 1) 9829 /* 9830 * busiest doesn't have any tasks waiting to run 9831 */ 9832 goto out_balanced; 9833 } 9834 9835 force_balance: 9836 /* Looks like there is an imbalance. Compute it */ 9837 calculate_imbalance(env, &sds); 9838 return env->imbalance ? sds.busiest : NULL; 9839 9840 out_balanced: 9841 env->imbalance = 0; 9842 return NULL; 9843 } 9844 9845 /* 9846 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9847 */ 9848 static struct rq *find_busiest_queue(struct lb_env *env, 9849 struct sched_group *group) 9850 { 9851 struct rq *busiest = NULL, *rq; 9852 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9853 unsigned int busiest_nr = 0; 9854 int i; 9855 9856 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9857 unsigned long capacity, load, util; 9858 unsigned int nr_running; 9859 enum fbq_type rt; 9860 9861 rq = cpu_rq(i); 9862 rt = fbq_classify_rq(rq); 9863 9864 /* 9865 * We classify groups/runqueues into three groups: 9866 * - regular: there are !numa tasks 9867 * - remote: there are numa tasks that run on the 'wrong' node 9868 * - all: there is no distinction 9869 * 9870 * In order to avoid migrating ideally placed numa tasks, 9871 * ignore those when there's better options. 9872 * 9873 * If we ignore the actual busiest queue to migrate another 9874 * task, the next balance pass can still reduce the busiest 9875 * queue by moving tasks around inside the node. 9876 * 9877 * If we cannot move enough load due to this classification 9878 * the next pass will adjust the group classification and 9879 * allow migration of more tasks. 9880 * 9881 * Both cases only affect the total convergence complexity. 9882 */ 9883 if (rt > env->fbq_type) 9884 continue; 9885 9886 nr_running = rq->cfs.h_nr_running; 9887 if (!nr_running) 9888 continue; 9889 9890 capacity = capacity_of(i); 9891 9892 /* 9893 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9894 * eventually lead to active_balancing high->low capacity. 9895 * Higher per-CPU capacity is considered better than balancing 9896 * average load. 9897 */ 9898 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9899 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9900 nr_running == 1) 9901 continue; 9902 9903 /* Make sure we only pull tasks from a CPU of lower priority */ 9904 if ((env->sd->flags & SD_ASYM_PACKING) && 9905 sched_asym_prefer(i, env->dst_cpu) && 9906 nr_running == 1) 9907 continue; 9908 9909 switch (env->migration_type) { 9910 case migrate_load: 9911 /* 9912 * When comparing with load imbalance, use cpu_load() 9913 * which is not scaled with the CPU capacity. 9914 */ 9915 load = cpu_load(rq); 9916 9917 if (nr_running == 1 && load > env->imbalance && 9918 !check_cpu_capacity(rq, env->sd)) 9919 break; 9920 9921 /* 9922 * For the load comparisons with the other CPUs, 9923 * consider the cpu_load() scaled with the CPU 9924 * capacity, so that the load can be moved away 9925 * from the CPU that is potentially running at a 9926 * lower capacity. 9927 * 9928 * Thus we're looking for max(load_i / capacity_i), 9929 * crosswise multiplication to rid ourselves of the 9930 * division works out to: 9931 * load_i * capacity_j > load_j * capacity_i; 9932 * where j is our previous maximum. 9933 */ 9934 if (load * busiest_capacity > busiest_load * capacity) { 9935 busiest_load = load; 9936 busiest_capacity = capacity; 9937 busiest = rq; 9938 } 9939 break; 9940 9941 case migrate_util: 9942 util = cpu_util_cfs(i); 9943 9944 /* 9945 * Don't try to pull utilization from a CPU with one 9946 * running task. Whatever its utilization, we will fail 9947 * detach the task. 9948 */ 9949 if (nr_running <= 1) 9950 continue; 9951 9952 if (busiest_util < util) { 9953 busiest_util = util; 9954 busiest = rq; 9955 } 9956 break; 9957 9958 case migrate_task: 9959 if (busiest_nr < nr_running) { 9960 busiest_nr = nr_running; 9961 busiest = rq; 9962 } 9963 break; 9964 9965 case migrate_misfit: 9966 /* 9967 * For ASYM_CPUCAPACITY domains with misfit tasks we 9968 * simply seek the "biggest" misfit task. 9969 */ 9970 if (rq->misfit_task_load > busiest_load) { 9971 busiest_load = rq->misfit_task_load; 9972 busiest = rq; 9973 } 9974 9975 break; 9976 9977 } 9978 } 9979 9980 return busiest; 9981 } 9982 9983 /* 9984 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9985 * so long as it is large enough. 9986 */ 9987 #define MAX_PINNED_INTERVAL 512 9988 9989 static inline bool 9990 asym_active_balance(struct lb_env *env) 9991 { 9992 /* 9993 * ASYM_PACKING needs to force migrate tasks from busy but 9994 * lower priority CPUs in order to pack all tasks in the 9995 * highest priority CPUs. 9996 */ 9997 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9998 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9999 } 10000 10001 static inline bool 10002 imbalanced_active_balance(struct lb_env *env) 10003 { 10004 struct sched_domain *sd = env->sd; 10005 10006 /* 10007 * The imbalanced case includes the case of pinned tasks preventing a fair 10008 * distribution of the load on the system but also the even distribution of the 10009 * threads on a system with spare capacity 10010 */ 10011 if ((env->migration_type == migrate_task) && 10012 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10013 return 1; 10014 10015 return 0; 10016 } 10017 10018 static int need_active_balance(struct lb_env *env) 10019 { 10020 struct sched_domain *sd = env->sd; 10021 10022 if (asym_active_balance(env)) 10023 return 1; 10024 10025 if (imbalanced_active_balance(env)) 10026 return 1; 10027 10028 /* 10029 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10030 * It's worth migrating the task if the src_cpu's capacity is reduced 10031 * because of other sched_class or IRQs if more capacity stays 10032 * available on dst_cpu. 10033 */ 10034 if ((env->idle != CPU_NOT_IDLE) && 10035 (env->src_rq->cfs.h_nr_running == 1)) { 10036 if ((check_cpu_capacity(env->src_rq, sd)) && 10037 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10038 return 1; 10039 } 10040 10041 if (env->migration_type == migrate_misfit) 10042 return 1; 10043 10044 return 0; 10045 } 10046 10047 static int active_load_balance_cpu_stop(void *data); 10048 10049 static int should_we_balance(struct lb_env *env) 10050 { 10051 struct sched_group *sg = env->sd->groups; 10052 int cpu; 10053 10054 /* 10055 * Ensure the balancing environment is consistent; can happen 10056 * when the softirq triggers 'during' hotplug. 10057 */ 10058 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10059 return 0; 10060 10061 /* 10062 * In the newly idle case, we will allow all the CPUs 10063 * to do the newly idle load balance. 10064 * 10065 * However, we bail out if we already have tasks or a wakeup pending, 10066 * to optimize wakeup latency. 10067 */ 10068 if (env->idle == CPU_NEWLY_IDLE) { 10069 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10070 return 0; 10071 return 1; 10072 } 10073 10074 /* Try to find first idle CPU */ 10075 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10076 if (!idle_cpu(cpu)) 10077 continue; 10078 10079 /* Are we the first idle CPU? */ 10080 return cpu == env->dst_cpu; 10081 } 10082 10083 /* Are we the first CPU of this group ? */ 10084 return group_balance_cpu(sg) == env->dst_cpu; 10085 } 10086 10087 /* 10088 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10089 * tasks if there is an imbalance. 10090 */ 10091 static int load_balance(int this_cpu, struct rq *this_rq, 10092 struct sched_domain *sd, enum cpu_idle_type idle, 10093 int *continue_balancing) 10094 { 10095 int ld_moved, cur_ld_moved, active_balance = 0; 10096 struct sched_domain *sd_parent = sd->parent; 10097 struct sched_group *group; 10098 struct rq *busiest; 10099 struct rq_flags rf; 10100 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10101 struct lb_env env = { 10102 .sd = sd, 10103 .dst_cpu = this_cpu, 10104 .dst_rq = this_rq, 10105 .dst_grpmask = sched_group_span(sd->groups), 10106 .idle = idle, 10107 .loop_break = SCHED_NR_MIGRATE_BREAK, 10108 .cpus = cpus, 10109 .fbq_type = all, 10110 .tasks = LIST_HEAD_INIT(env.tasks), 10111 }; 10112 10113 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10114 10115 schedstat_inc(sd->lb_count[idle]); 10116 10117 redo: 10118 if (!should_we_balance(&env)) { 10119 *continue_balancing = 0; 10120 goto out_balanced; 10121 } 10122 10123 group = find_busiest_group(&env); 10124 if (!group) { 10125 schedstat_inc(sd->lb_nobusyg[idle]); 10126 goto out_balanced; 10127 } 10128 10129 busiest = find_busiest_queue(&env, group); 10130 if (!busiest) { 10131 schedstat_inc(sd->lb_nobusyq[idle]); 10132 goto out_balanced; 10133 } 10134 10135 WARN_ON_ONCE(busiest == env.dst_rq); 10136 10137 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 10138 10139 env.src_cpu = busiest->cpu; 10140 env.src_rq = busiest; 10141 10142 ld_moved = 0; 10143 /* Clear this flag as soon as we find a pullable task */ 10144 env.flags |= LBF_ALL_PINNED; 10145 if (busiest->nr_running > 1) { 10146 /* 10147 * Attempt to move tasks. If find_busiest_group has found 10148 * an imbalance but busiest->nr_running <= 1, the group is 10149 * still unbalanced. ld_moved simply stays zero, so it is 10150 * correctly treated as an imbalance. 10151 */ 10152 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 10153 10154 more_balance: 10155 rq_lock_irqsave(busiest, &rf); 10156 update_rq_clock(busiest); 10157 10158 /* 10159 * cur_ld_moved - load moved in current iteration 10160 * ld_moved - cumulative load moved across iterations 10161 */ 10162 cur_ld_moved = detach_tasks(&env); 10163 10164 /* 10165 * We've detached some tasks from busiest_rq. Every 10166 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 10167 * unlock busiest->lock, and we are able to be sure 10168 * that nobody can manipulate the tasks in parallel. 10169 * See task_rq_lock() family for the details. 10170 */ 10171 10172 rq_unlock(busiest, &rf); 10173 10174 if (cur_ld_moved) { 10175 attach_tasks(&env); 10176 ld_moved += cur_ld_moved; 10177 } 10178 10179 local_irq_restore(rf.flags); 10180 10181 if (env.flags & LBF_NEED_BREAK) { 10182 env.flags &= ~LBF_NEED_BREAK; 10183 /* Stop if we tried all running tasks */ 10184 if (env.loop < busiest->nr_running) 10185 goto more_balance; 10186 } 10187 10188 /* 10189 * Revisit (affine) tasks on src_cpu that couldn't be moved to 10190 * us and move them to an alternate dst_cpu in our sched_group 10191 * where they can run. The upper limit on how many times we 10192 * iterate on same src_cpu is dependent on number of CPUs in our 10193 * sched_group. 10194 * 10195 * This changes load balance semantics a bit on who can move 10196 * load to a given_cpu. In addition to the given_cpu itself 10197 * (or a ilb_cpu acting on its behalf where given_cpu is 10198 * nohz-idle), we now have balance_cpu in a position to move 10199 * load to given_cpu. In rare situations, this may cause 10200 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 10201 * _independently_ and at _same_ time to move some load to 10202 * given_cpu) causing excess load to be moved to given_cpu. 10203 * This however should not happen so much in practice and 10204 * moreover subsequent load balance cycles should correct the 10205 * excess load moved. 10206 */ 10207 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10208 10209 /* Prevent to re-select dst_cpu via env's CPUs */ 10210 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10211 10212 env.dst_rq = cpu_rq(env.new_dst_cpu); 10213 env.dst_cpu = env.new_dst_cpu; 10214 env.flags &= ~LBF_DST_PINNED; 10215 env.loop = 0; 10216 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10217 10218 /* 10219 * Go back to "more_balance" rather than "redo" since we 10220 * need to continue with same src_cpu. 10221 */ 10222 goto more_balance; 10223 } 10224 10225 /* 10226 * We failed to reach balance because of affinity. 10227 */ 10228 if (sd_parent) { 10229 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10230 10231 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10232 *group_imbalance = 1; 10233 } 10234 10235 /* All tasks on this runqueue were pinned by CPU affinity */ 10236 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10237 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10238 /* 10239 * Attempting to continue load balancing at the current 10240 * sched_domain level only makes sense if there are 10241 * active CPUs remaining as possible busiest CPUs to 10242 * pull load from which are not contained within the 10243 * destination group that is receiving any migrated 10244 * load. 10245 */ 10246 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10247 env.loop = 0; 10248 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10249 goto redo; 10250 } 10251 goto out_all_pinned; 10252 } 10253 } 10254 10255 if (!ld_moved) { 10256 schedstat_inc(sd->lb_failed[idle]); 10257 /* 10258 * Increment the failure counter only on periodic balance. 10259 * We do not want newidle balance, which can be very 10260 * frequent, pollute the failure counter causing 10261 * excessive cache_hot migrations and active balances. 10262 */ 10263 if (idle != CPU_NEWLY_IDLE) 10264 sd->nr_balance_failed++; 10265 10266 if (need_active_balance(&env)) { 10267 unsigned long flags; 10268 10269 raw_spin_rq_lock_irqsave(busiest, flags); 10270 10271 /* 10272 * Don't kick the active_load_balance_cpu_stop, 10273 * if the curr task on busiest CPU can't be 10274 * moved to this_cpu: 10275 */ 10276 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10277 raw_spin_rq_unlock_irqrestore(busiest, flags); 10278 goto out_one_pinned; 10279 } 10280 10281 /* Record that we found at least one task that could run on this_cpu */ 10282 env.flags &= ~LBF_ALL_PINNED; 10283 10284 /* 10285 * ->active_balance synchronizes accesses to 10286 * ->active_balance_work. Once set, it's cleared 10287 * only after active load balance is finished. 10288 */ 10289 if (!busiest->active_balance) { 10290 busiest->active_balance = 1; 10291 busiest->push_cpu = this_cpu; 10292 active_balance = 1; 10293 } 10294 raw_spin_rq_unlock_irqrestore(busiest, flags); 10295 10296 if (active_balance) { 10297 stop_one_cpu_nowait(cpu_of(busiest), 10298 active_load_balance_cpu_stop, busiest, 10299 &busiest->active_balance_work); 10300 } 10301 } 10302 } else { 10303 sd->nr_balance_failed = 0; 10304 } 10305 10306 if (likely(!active_balance) || need_active_balance(&env)) { 10307 /* We were unbalanced, so reset the balancing interval */ 10308 sd->balance_interval = sd->min_interval; 10309 } 10310 10311 goto out; 10312 10313 out_balanced: 10314 /* 10315 * We reach balance although we may have faced some affinity 10316 * constraints. Clear the imbalance flag only if other tasks got 10317 * a chance to move and fix the imbalance. 10318 */ 10319 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10320 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10321 10322 if (*group_imbalance) 10323 *group_imbalance = 0; 10324 } 10325 10326 out_all_pinned: 10327 /* 10328 * We reach balance because all tasks are pinned at this level so 10329 * we can't migrate them. Let the imbalance flag set so parent level 10330 * can try to migrate them. 10331 */ 10332 schedstat_inc(sd->lb_balanced[idle]); 10333 10334 sd->nr_balance_failed = 0; 10335 10336 out_one_pinned: 10337 ld_moved = 0; 10338 10339 /* 10340 * newidle_balance() disregards balance intervals, so we could 10341 * repeatedly reach this code, which would lead to balance_interval 10342 * skyrocketing in a short amount of time. Skip the balance_interval 10343 * increase logic to avoid that. 10344 */ 10345 if (env.idle == CPU_NEWLY_IDLE) 10346 goto out; 10347 10348 /* tune up the balancing interval */ 10349 if ((env.flags & LBF_ALL_PINNED && 10350 sd->balance_interval < MAX_PINNED_INTERVAL) || 10351 sd->balance_interval < sd->max_interval) 10352 sd->balance_interval *= 2; 10353 out: 10354 return ld_moved; 10355 } 10356 10357 static inline unsigned long 10358 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10359 { 10360 unsigned long interval = sd->balance_interval; 10361 10362 if (cpu_busy) 10363 interval *= sd->busy_factor; 10364 10365 /* scale ms to jiffies */ 10366 interval = msecs_to_jiffies(interval); 10367 10368 /* 10369 * Reduce likelihood of busy balancing at higher domains racing with 10370 * balancing at lower domains by preventing their balancing periods 10371 * from being multiples of each other. 10372 */ 10373 if (cpu_busy) 10374 interval -= 1; 10375 10376 interval = clamp(interval, 1UL, max_load_balance_interval); 10377 10378 return interval; 10379 } 10380 10381 static inline void 10382 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10383 { 10384 unsigned long interval, next; 10385 10386 /* used by idle balance, so cpu_busy = 0 */ 10387 interval = get_sd_balance_interval(sd, 0); 10388 next = sd->last_balance + interval; 10389 10390 if (time_after(*next_balance, next)) 10391 *next_balance = next; 10392 } 10393 10394 /* 10395 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10396 * running tasks off the busiest CPU onto idle CPUs. It requires at 10397 * least 1 task to be running on each physical CPU where possible, and 10398 * avoids physical / logical imbalances. 10399 */ 10400 static int active_load_balance_cpu_stop(void *data) 10401 { 10402 struct rq *busiest_rq = data; 10403 int busiest_cpu = cpu_of(busiest_rq); 10404 int target_cpu = busiest_rq->push_cpu; 10405 struct rq *target_rq = cpu_rq(target_cpu); 10406 struct sched_domain *sd; 10407 struct task_struct *p = NULL; 10408 struct rq_flags rf; 10409 10410 rq_lock_irq(busiest_rq, &rf); 10411 /* 10412 * Between queueing the stop-work and running it is a hole in which 10413 * CPUs can become inactive. We should not move tasks from or to 10414 * inactive CPUs. 10415 */ 10416 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10417 goto out_unlock; 10418 10419 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10420 if (unlikely(busiest_cpu != smp_processor_id() || 10421 !busiest_rq->active_balance)) 10422 goto out_unlock; 10423 10424 /* Is there any task to move? */ 10425 if (busiest_rq->nr_running <= 1) 10426 goto out_unlock; 10427 10428 /* 10429 * This condition is "impossible", if it occurs 10430 * we need to fix it. Originally reported by 10431 * Bjorn Helgaas on a 128-CPU setup. 10432 */ 10433 WARN_ON_ONCE(busiest_rq == target_rq); 10434 10435 /* Search for an sd spanning us and the target CPU. */ 10436 rcu_read_lock(); 10437 for_each_domain(target_cpu, sd) { 10438 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10439 break; 10440 } 10441 10442 if (likely(sd)) { 10443 struct lb_env env = { 10444 .sd = sd, 10445 .dst_cpu = target_cpu, 10446 .dst_rq = target_rq, 10447 .src_cpu = busiest_rq->cpu, 10448 .src_rq = busiest_rq, 10449 .idle = CPU_IDLE, 10450 .flags = LBF_ACTIVE_LB, 10451 }; 10452 10453 schedstat_inc(sd->alb_count); 10454 update_rq_clock(busiest_rq); 10455 10456 p = detach_one_task(&env); 10457 if (p) { 10458 schedstat_inc(sd->alb_pushed); 10459 /* Active balancing done, reset the failure counter. */ 10460 sd->nr_balance_failed = 0; 10461 } else { 10462 schedstat_inc(sd->alb_failed); 10463 } 10464 } 10465 rcu_read_unlock(); 10466 out_unlock: 10467 busiest_rq->active_balance = 0; 10468 rq_unlock(busiest_rq, &rf); 10469 10470 if (p) 10471 attach_one_task(target_rq, p); 10472 10473 local_irq_enable(); 10474 10475 return 0; 10476 } 10477 10478 static DEFINE_SPINLOCK(balancing); 10479 10480 /* 10481 * Scale the max load_balance interval with the number of CPUs in the system. 10482 * This trades load-balance latency on larger machines for less cross talk. 10483 */ 10484 void update_max_interval(void) 10485 { 10486 max_load_balance_interval = HZ*num_online_cpus()/10; 10487 } 10488 10489 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10490 { 10491 if (cost > sd->max_newidle_lb_cost) { 10492 /* 10493 * Track max cost of a domain to make sure to not delay the 10494 * next wakeup on the CPU. 10495 */ 10496 sd->max_newidle_lb_cost = cost; 10497 sd->last_decay_max_lb_cost = jiffies; 10498 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10499 /* 10500 * Decay the newidle max times by ~1% per second to ensure that 10501 * it is not outdated and the current max cost is actually 10502 * shorter. 10503 */ 10504 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10505 sd->last_decay_max_lb_cost = jiffies; 10506 10507 return true; 10508 } 10509 10510 return false; 10511 } 10512 10513 /* 10514 * It checks each scheduling domain to see if it is due to be balanced, 10515 * and initiates a balancing operation if so. 10516 * 10517 * Balancing parameters are set up in init_sched_domains. 10518 */ 10519 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10520 { 10521 int continue_balancing = 1; 10522 int cpu = rq->cpu; 10523 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10524 unsigned long interval; 10525 struct sched_domain *sd; 10526 /* Earliest time when we have to do rebalance again */ 10527 unsigned long next_balance = jiffies + 60*HZ; 10528 int update_next_balance = 0; 10529 int need_serialize, need_decay = 0; 10530 u64 max_cost = 0; 10531 10532 rcu_read_lock(); 10533 for_each_domain(cpu, sd) { 10534 /* 10535 * Decay the newidle max times here because this is a regular 10536 * visit to all the domains. 10537 */ 10538 need_decay = update_newidle_cost(sd, 0); 10539 max_cost += sd->max_newidle_lb_cost; 10540 10541 /* 10542 * Stop the load balance at this level. There is another 10543 * CPU in our sched group which is doing load balancing more 10544 * actively. 10545 */ 10546 if (!continue_balancing) { 10547 if (need_decay) 10548 continue; 10549 break; 10550 } 10551 10552 interval = get_sd_balance_interval(sd, busy); 10553 10554 need_serialize = sd->flags & SD_SERIALIZE; 10555 if (need_serialize) { 10556 if (!spin_trylock(&balancing)) 10557 goto out; 10558 } 10559 10560 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10561 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10562 /* 10563 * The LBF_DST_PINNED logic could have changed 10564 * env->dst_cpu, so we can't know our idle 10565 * state even if we migrated tasks. Update it. 10566 */ 10567 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10568 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10569 } 10570 sd->last_balance = jiffies; 10571 interval = get_sd_balance_interval(sd, busy); 10572 } 10573 if (need_serialize) 10574 spin_unlock(&balancing); 10575 out: 10576 if (time_after(next_balance, sd->last_balance + interval)) { 10577 next_balance = sd->last_balance + interval; 10578 update_next_balance = 1; 10579 } 10580 } 10581 if (need_decay) { 10582 /* 10583 * Ensure the rq-wide value also decays but keep it at a 10584 * reasonable floor to avoid funnies with rq->avg_idle. 10585 */ 10586 rq->max_idle_balance_cost = 10587 max((u64)sysctl_sched_migration_cost, max_cost); 10588 } 10589 rcu_read_unlock(); 10590 10591 /* 10592 * next_balance will be updated only when there is a need. 10593 * When the cpu is attached to null domain for ex, it will not be 10594 * updated. 10595 */ 10596 if (likely(update_next_balance)) 10597 rq->next_balance = next_balance; 10598 10599 } 10600 10601 static inline int on_null_domain(struct rq *rq) 10602 { 10603 return unlikely(!rcu_dereference_sched(rq->sd)); 10604 } 10605 10606 #ifdef CONFIG_NO_HZ_COMMON 10607 /* 10608 * idle load balancing details 10609 * - When one of the busy CPUs notice that there may be an idle rebalancing 10610 * needed, they will kick the idle load balancer, which then does idle 10611 * load balancing for all the idle CPUs. 10612 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 10613 * anywhere yet. 10614 */ 10615 10616 static inline int find_new_ilb(void) 10617 { 10618 int ilb; 10619 const struct cpumask *hk_mask; 10620 10621 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 10622 10623 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10624 10625 if (ilb == smp_processor_id()) 10626 continue; 10627 10628 if (idle_cpu(ilb)) 10629 return ilb; 10630 } 10631 10632 return nr_cpu_ids; 10633 } 10634 10635 /* 10636 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10637 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 10638 */ 10639 static void kick_ilb(unsigned int flags) 10640 { 10641 int ilb_cpu; 10642 10643 /* 10644 * Increase nohz.next_balance only when if full ilb is triggered but 10645 * not if we only update stats. 10646 */ 10647 if (flags & NOHZ_BALANCE_KICK) 10648 nohz.next_balance = jiffies+1; 10649 10650 ilb_cpu = find_new_ilb(); 10651 10652 if (ilb_cpu >= nr_cpu_ids) 10653 return; 10654 10655 /* 10656 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10657 * the first flag owns it; cleared by nohz_csd_func(). 10658 */ 10659 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10660 if (flags & NOHZ_KICK_MASK) 10661 return; 10662 10663 /* 10664 * This way we generate an IPI on the target CPU which 10665 * is idle. And the softirq performing nohz idle load balance 10666 * will be run before returning from the IPI. 10667 */ 10668 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10669 } 10670 10671 /* 10672 * Current decision point for kicking the idle load balancer in the presence 10673 * of idle CPUs in the system. 10674 */ 10675 static void nohz_balancer_kick(struct rq *rq) 10676 { 10677 unsigned long now = jiffies; 10678 struct sched_domain_shared *sds; 10679 struct sched_domain *sd; 10680 int nr_busy, i, cpu = rq->cpu; 10681 unsigned int flags = 0; 10682 10683 if (unlikely(rq->idle_balance)) 10684 return; 10685 10686 /* 10687 * We may be recently in ticked or tickless idle mode. At the first 10688 * busy tick after returning from idle, we will update the busy stats. 10689 */ 10690 nohz_balance_exit_idle(rq); 10691 10692 /* 10693 * None are in tickless mode and hence no need for NOHZ idle load 10694 * balancing. 10695 */ 10696 if (likely(!atomic_read(&nohz.nr_cpus))) 10697 return; 10698 10699 if (READ_ONCE(nohz.has_blocked) && 10700 time_after(now, READ_ONCE(nohz.next_blocked))) 10701 flags = NOHZ_STATS_KICK; 10702 10703 if (time_before(now, nohz.next_balance)) 10704 goto out; 10705 10706 if (rq->nr_running >= 2) { 10707 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10708 goto out; 10709 } 10710 10711 rcu_read_lock(); 10712 10713 sd = rcu_dereference(rq->sd); 10714 if (sd) { 10715 /* 10716 * If there's a CFS task and the current CPU has reduced 10717 * capacity; kick the ILB to see if there's a better CPU to run 10718 * on. 10719 */ 10720 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10721 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10722 goto unlock; 10723 } 10724 } 10725 10726 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10727 if (sd) { 10728 /* 10729 * When ASYM_PACKING; see if there's a more preferred CPU 10730 * currently idle; in which case, kick the ILB to move tasks 10731 * around. 10732 */ 10733 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10734 if (sched_asym_prefer(i, cpu)) { 10735 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10736 goto unlock; 10737 } 10738 } 10739 } 10740 10741 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10742 if (sd) { 10743 /* 10744 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10745 * to run the misfit task on. 10746 */ 10747 if (check_misfit_status(rq, sd)) { 10748 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10749 goto unlock; 10750 } 10751 10752 /* 10753 * For asymmetric systems, we do not want to nicely balance 10754 * cache use, instead we want to embrace asymmetry and only 10755 * ensure tasks have enough CPU capacity. 10756 * 10757 * Skip the LLC logic because it's not relevant in that case. 10758 */ 10759 goto unlock; 10760 } 10761 10762 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10763 if (sds) { 10764 /* 10765 * If there is an imbalance between LLC domains (IOW we could 10766 * increase the overall cache use), we need some less-loaded LLC 10767 * domain to pull some load. Likewise, we may need to spread 10768 * load within the current LLC domain (e.g. packed SMT cores but 10769 * other CPUs are idle). We can't really know from here how busy 10770 * the others are - so just get a nohz balance going if it looks 10771 * like this LLC domain has tasks we could move. 10772 */ 10773 nr_busy = atomic_read(&sds->nr_busy_cpus); 10774 if (nr_busy > 1) { 10775 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10776 goto unlock; 10777 } 10778 } 10779 unlock: 10780 rcu_read_unlock(); 10781 out: 10782 if (READ_ONCE(nohz.needs_update)) 10783 flags |= NOHZ_NEXT_KICK; 10784 10785 if (flags) 10786 kick_ilb(flags); 10787 } 10788 10789 static void set_cpu_sd_state_busy(int cpu) 10790 { 10791 struct sched_domain *sd; 10792 10793 rcu_read_lock(); 10794 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10795 10796 if (!sd || !sd->nohz_idle) 10797 goto unlock; 10798 sd->nohz_idle = 0; 10799 10800 atomic_inc(&sd->shared->nr_busy_cpus); 10801 unlock: 10802 rcu_read_unlock(); 10803 } 10804 10805 void nohz_balance_exit_idle(struct rq *rq) 10806 { 10807 SCHED_WARN_ON(rq != this_rq()); 10808 10809 if (likely(!rq->nohz_tick_stopped)) 10810 return; 10811 10812 rq->nohz_tick_stopped = 0; 10813 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10814 atomic_dec(&nohz.nr_cpus); 10815 10816 set_cpu_sd_state_busy(rq->cpu); 10817 } 10818 10819 static void set_cpu_sd_state_idle(int cpu) 10820 { 10821 struct sched_domain *sd; 10822 10823 rcu_read_lock(); 10824 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10825 10826 if (!sd || sd->nohz_idle) 10827 goto unlock; 10828 sd->nohz_idle = 1; 10829 10830 atomic_dec(&sd->shared->nr_busy_cpus); 10831 unlock: 10832 rcu_read_unlock(); 10833 } 10834 10835 /* 10836 * This routine will record that the CPU is going idle with tick stopped. 10837 * This info will be used in performing idle load balancing in the future. 10838 */ 10839 void nohz_balance_enter_idle(int cpu) 10840 { 10841 struct rq *rq = cpu_rq(cpu); 10842 10843 SCHED_WARN_ON(cpu != smp_processor_id()); 10844 10845 /* If this CPU is going down, then nothing needs to be done: */ 10846 if (!cpu_active(cpu)) 10847 return; 10848 10849 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10850 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 10851 return; 10852 10853 /* 10854 * Can be set safely without rq->lock held 10855 * If a clear happens, it will have evaluated last additions because 10856 * rq->lock is held during the check and the clear 10857 */ 10858 rq->has_blocked_load = 1; 10859 10860 /* 10861 * The tick is still stopped but load could have been added in the 10862 * meantime. We set the nohz.has_blocked flag to trig a check of the 10863 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10864 * of nohz.has_blocked can only happen after checking the new load 10865 */ 10866 if (rq->nohz_tick_stopped) 10867 goto out; 10868 10869 /* If we're a completely isolated CPU, we don't play: */ 10870 if (on_null_domain(rq)) 10871 return; 10872 10873 rq->nohz_tick_stopped = 1; 10874 10875 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10876 atomic_inc(&nohz.nr_cpus); 10877 10878 /* 10879 * Ensures that if nohz_idle_balance() fails to observe our 10880 * @idle_cpus_mask store, it must observe the @has_blocked 10881 * and @needs_update stores. 10882 */ 10883 smp_mb__after_atomic(); 10884 10885 set_cpu_sd_state_idle(cpu); 10886 10887 WRITE_ONCE(nohz.needs_update, 1); 10888 out: 10889 /* 10890 * Each time a cpu enter idle, we assume that it has blocked load and 10891 * enable the periodic update of the load of idle cpus 10892 */ 10893 WRITE_ONCE(nohz.has_blocked, 1); 10894 } 10895 10896 static bool update_nohz_stats(struct rq *rq) 10897 { 10898 unsigned int cpu = rq->cpu; 10899 10900 if (!rq->has_blocked_load) 10901 return false; 10902 10903 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10904 return false; 10905 10906 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10907 return true; 10908 10909 update_blocked_averages(cpu); 10910 10911 return rq->has_blocked_load; 10912 } 10913 10914 /* 10915 * Internal function that runs load balance for all idle cpus. The load balance 10916 * can be a simple update of blocked load or a complete load balance with 10917 * tasks movement depending of flags. 10918 */ 10919 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 10920 { 10921 /* Earliest time when we have to do rebalance again */ 10922 unsigned long now = jiffies; 10923 unsigned long next_balance = now + 60*HZ; 10924 bool has_blocked_load = false; 10925 int update_next_balance = 0; 10926 int this_cpu = this_rq->cpu; 10927 int balance_cpu; 10928 struct rq *rq; 10929 10930 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10931 10932 /* 10933 * We assume there will be no idle load after this update and clear 10934 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10935 * set the has_blocked flag and trigger another update of idle load. 10936 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10937 * setting the flag, we are sure to not clear the state and not 10938 * check the load of an idle cpu. 10939 * 10940 * Same applies to idle_cpus_mask vs needs_update. 10941 */ 10942 if (flags & NOHZ_STATS_KICK) 10943 WRITE_ONCE(nohz.has_blocked, 0); 10944 if (flags & NOHZ_NEXT_KICK) 10945 WRITE_ONCE(nohz.needs_update, 0); 10946 10947 /* 10948 * Ensures that if we miss the CPU, we must see the has_blocked 10949 * store from nohz_balance_enter_idle(). 10950 */ 10951 smp_mb(); 10952 10953 /* 10954 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10955 * chance for other idle cpu to pull load. 10956 */ 10957 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10958 if (!idle_cpu(balance_cpu)) 10959 continue; 10960 10961 /* 10962 * If this CPU gets work to do, stop the load balancing 10963 * work being done for other CPUs. Next load 10964 * balancing owner will pick it up. 10965 */ 10966 if (need_resched()) { 10967 if (flags & NOHZ_STATS_KICK) 10968 has_blocked_load = true; 10969 if (flags & NOHZ_NEXT_KICK) 10970 WRITE_ONCE(nohz.needs_update, 1); 10971 goto abort; 10972 } 10973 10974 rq = cpu_rq(balance_cpu); 10975 10976 if (flags & NOHZ_STATS_KICK) 10977 has_blocked_load |= update_nohz_stats(rq); 10978 10979 /* 10980 * If time for next balance is due, 10981 * do the balance. 10982 */ 10983 if (time_after_eq(jiffies, rq->next_balance)) { 10984 struct rq_flags rf; 10985 10986 rq_lock_irqsave(rq, &rf); 10987 update_rq_clock(rq); 10988 rq_unlock_irqrestore(rq, &rf); 10989 10990 if (flags & NOHZ_BALANCE_KICK) 10991 rebalance_domains(rq, CPU_IDLE); 10992 } 10993 10994 if (time_after(next_balance, rq->next_balance)) { 10995 next_balance = rq->next_balance; 10996 update_next_balance = 1; 10997 } 10998 } 10999 11000 /* 11001 * next_balance will be updated only when there is a need. 11002 * When the CPU is attached to null domain for ex, it will not be 11003 * updated. 11004 */ 11005 if (likely(update_next_balance)) 11006 nohz.next_balance = next_balance; 11007 11008 if (flags & NOHZ_STATS_KICK) 11009 WRITE_ONCE(nohz.next_blocked, 11010 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11011 11012 abort: 11013 /* There is still blocked load, enable periodic update */ 11014 if (has_blocked_load) 11015 WRITE_ONCE(nohz.has_blocked, 1); 11016 } 11017 11018 /* 11019 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11020 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11021 */ 11022 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11023 { 11024 unsigned int flags = this_rq->nohz_idle_balance; 11025 11026 if (!flags) 11027 return false; 11028 11029 this_rq->nohz_idle_balance = 0; 11030 11031 if (idle != CPU_IDLE) 11032 return false; 11033 11034 _nohz_idle_balance(this_rq, flags); 11035 11036 return true; 11037 } 11038 11039 /* 11040 * Check if we need to run the ILB for updating blocked load before entering 11041 * idle state. 11042 */ 11043 void nohz_run_idle_balance(int cpu) 11044 { 11045 unsigned int flags; 11046 11047 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11048 11049 /* 11050 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11051 * (ie NOHZ_STATS_KICK set) and will do the same. 11052 */ 11053 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11054 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11055 } 11056 11057 static void nohz_newidle_balance(struct rq *this_rq) 11058 { 11059 int this_cpu = this_rq->cpu; 11060 11061 /* 11062 * This CPU doesn't want to be disturbed by scheduler 11063 * housekeeping 11064 */ 11065 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11066 return; 11067 11068 /* Will wake up very soon. No time for doing anything else*/ 11069 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11070 return; 11071 11072 /* Don't need to update blocked load of idle CPUs*/ 11073 if (!READ_ONCE(nohz.has_blocked) || 11074 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11075 return; 11076 11077 /* 11078 * Set the need to trigger ILB in order to update blocked load 11079 * before entering idle state. 11080 */ 11081 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11082 } 11083 11084 #else /* !CONFIG_NO_HZ_COMMON */ 11085 static inline void nohz_balancer_kick(struct rq *rq) { } 11086 11087 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11088 { 11089 return false; 11090 } 11091 11092 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11093 #endif /* CONFIG_NO_HZ_COMMON */ 11094 11095 /* 11096 * newidle_balance is called by schedule() if this_cpu is about to become 11097 * idle. Attempts to pull tasks from other CPUs. 11098 * 11099 * Returns: 11100 * < 0 - we released the lock and there are !fair tasks present 11101 * 0 - failed, no new tasks 11102 * > 0 - success, new (fair) tasks present 11103 */ 11104 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11105 { 11106 unsigned long next_balance = jiffies + HZ; 11107 int this_cpu = this_rq->cpu; 11108 u64 t0, t1, curr_cost = 0; 11109 struct sched_domain *sd; 11110 int pulled_task = 0; 11111 11112 update_misfit_status(NULL, this_rq); 11113 11114 /* 11115 * There is a task waiting to run. No need to search for one. 11116 * Return 0; the task will be enqueued when switching to idle. 11117 */ 11118 if (this_rq->ttwu_pending) 11119 return 0; 11120 11121 /* 11122 * We must set idle_stamp _before_ calling idle_balance(), such that we 11123 * measure the duration of idle_balance() as idle time. 11124 */ 11125 this_rq->idle_stamp = rq_clock(this_rq); 11126 11127 /* 11128 * Do not pull tasks towards !active CPUs... 11129 */ 11130 if (!cpu_active(this_cpu)) 11131 return 0; 11132 11133 /* 11134 * This is OK, because current is on_cpu, which avoids it being picked 11135 * for load-balance and preemption/IRQs are still disabled avoiding 11136 * further scheduler activity on it and we're being very careful to 11137 * re-start the picking loop. 11138 */ 11139 rq_unpin_lock(this_rq, rf); 11140 11141 rcu_read_lock(); 11142 sd = rcu_dereference_check_sched_domain(this_rq->sd); 11143 11144 if (!READ_ONCE(this_rq->rd->overload) || 11145 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 11146 11147 if (sd) 11148 update_next_balance(sd, &next_balance); 11149 rcu_read_unlock(); 11150 11151 goto out; 11152 } 11153 rcu_read_unlock(); 11154 11155 raw_spin_rq_unlock(this_rq); 11156 11157 t0 = sched_clock_cpu(this_cpu); 11158 update_blocked_averages(this_cpu); 11159 11160 rcu_read_lock(); 11161 for_each_domain(this_cpu, sd) { 11162 int continue_balancing = 1; 11163 u64 domain_cost; 11164 11165 update_next_balance(sd, &next_balance); 11166 11167 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 11168 break; 11169 11170 if (sd->flags & SD_BALANCE_NEWIDLE) { 11171 11172 pulled_task = load_balance(this_cpu, this_rq, 11173 sd, CPU_NEWLY_IDLE, 11174 &continue_balancing); 11175 11176 t1 = sched_clock_cpu(this_cpu); 11177 domain_cost = t1 - t0; 11178 update_newidle_cost(sd, domain_cost); 11179 11180 curr_cost += domain_cost; 11181 t0 = t1; 11182 } 11183 11184 /* 11185 * Stop searching for tasks to pull if there are 11186 * now runnable tasks on this rq. 11187 */ 11188 if (pulled_task || this_rq->nr_running > 0 || 11189 this_rq->ttwu_pending) 11190 break; 11191 } 11192 rcu_read_unlock(); 11193 11194 raw_spin_rq_lock(this_rq); 11195 11196 if (curr_cost > this_rq->max_idle_balance_cost) 11197 this_rq->max_idle_balance_cost = curr_cost; 11198 11199 /* 11200 * While browsing the domains, we released the rq lock, a task could 11201 * have been enqueued in the meantime. Since we're not going idle, 11202 * pretend we pulled a task. 11203 */ 11204 if (this_rq->cfs.h_nr_running && !pulled_task) 11205 pulled_task = 1; 11206 11207 /* Is there a task of a high priority class? */ 11208 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11209 pulled_task = -1; 11210 11211 out: 11212 /* Move the next balance forward */ 11213 if (time_after(this_rq->next_balance, next_balance)) 11214 this_rq->next_balance = next_balance; 11215 11216 if (pulled_task) 11217 this_rq->idle_stamp = 0; 11218 else 11219 nohz_newidle_balance(this_rq); 11220 11221 rq_repin_lock(this_rq, rf); 11222 11223 return pulled_task; 11224 } 11225 11226 /* 11227 * run_rebalance_domains is triggered when needed from the scheduler tick. 11228 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11229 */ 11230 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11231 { 11232 struct rq *this_rq = this_rq(); 11233 enum cpu_idle_type idle = this_rq->idle_balance ? 11234 CPU_IDLE : CPU_NOT_IDLE; 11235 11236 /* 11237 * If this CPU has a pending nohz_balance_kick, then do the 11238 * balancing on behalf of the other idle CPUs whose ticks are 11239 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11240 * give the idle CPUs a chance to load balance. Else we may 11241 * load balance only within the local sched_domain hierarchy 11242 * and abort nohz_idle_balance altogether if we pull some load. 11243 */ 11244 if (nohz_idle_balance(this_rq, idle)) 11245 return; 11246 11247 /* normal load balance */ 11248 update_blocked_averages(this_rq->cpu); 11249 rebalance_domains(this_rq, idle); 11250 } 11251 11252 /* 11253 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11254 */ 11255 void trigger_load_balance(struct rq *rq) 11256 { 11257 /* 11258 * Don't need to rebalance while attached to NULL domain or 11259 * runqueue CPU is not active 11260 */ 11261 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11262 return; 11263 11264 if (time_after_eq(jiffies, rq->next_balance)) 11265 raise_softirq(SCHED_SOFTIRQ); 11266 11267 nohz_balancer_kick(rq); 11268 } 11269 11270 static void rq_online_fair(struct rq *rq) 11271 { 11272 update_sysctl(); 11273 11274 update_runtime_enabled(rq); 11275 } 11276 11277 static void rq_offline_fair(struct rq *rq) 11278 { 11279 update_sysctl(); 11280 11281 /* Ensure any throttled groups are reachable by pick_next_task */ 11282 unthrottle_offline_cfs_rqs(rq); 11283 } 11284 11285 #endif /* CONFIG_SMP */ 11286 11287 #ifdef CONFIG_SCHED_CORE 11288 static inline bool 11289 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11290 { 11291 u64 slice = sched_slice(cfs_rq_of(se), se); 11292 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11293 11294 return (rtime * min_nr_tasks > slice); 11295 } 11296 11297 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11298 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11299 { 11300 if (!sched_core_enabled(rq)) 11301 return; 11302 11303 /* 11304 * If runqueue has only one task which used up its slice and 11305 * if the sibling is forced idle, then trigger schedule to 11306 * give forced idle task a chance. 11307 * 11308 * sched_slice() considers only this active rq and it gets the 11309 * whole slice. But during force idle, we have siblings acting 11310 * like a single runqueue and hence we need to consider runnable 11311 * tasks on this CPU and the forced idle CPU. Ideally, we should 11312 * go through the forced idle rq, but that would be a perf hit. 11313 * We can assume that the forced idle CPU has at least 11314 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11315 * if we need to give up the CPU. 11316 */ 11317 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11318 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11319 resched_curr(rq); 11320 } 11321 11322 /* 11323 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11324 */ 11325 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11326 { 11327 for_each_sched_entity(se) { 11328 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11329 11330 if (forceidle) { 11331 if (cfs_rq->forceidle_seq == fi_seq) 11332 break; 11333 cfs_rq->forceidle_seq = fi_seq; 11334 } 11335 11336 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11337 } 11338 } 11339 11340 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11341 { 11342 struct sched_entity *se = &p->se; 11343 11344 if (p->sched_class != &fair_sched_class) 11345 return; 11346 11347 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11348 } 11349 11350 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11351 { 11352 struct rq *rq = task_rq(a); 11353 struct sched_entity *sea = &a->se; 11354 struct sched_entity *seb = &b->se; 11355 struct cfs_rq *cfs_rqa; 11356 struct cfs_rq *cfs_rqb; 11357 s64 delta; 11358 11359 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11360 11361 #ifdef CONFIG_FAIR_GROUP_SCHED 11362 /* 11363 * Find an se in the hierarchy for tasks a and b, such that the se's 11364 * are immediate siblings. 11365 */ 11366 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11367 int sea_depth = sea->depth; 11368 int seb_depth = seb->depth; 11369 11370 if (sea_depth >= seb_depth) 11371 sea = parent_entity(sea); 11372 if (sea_depth <= seb_depth) 11373 seb = parent_entity(seb); 11374 } 11375 11376 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11377 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11378 11379 cfs_rqa = sea->cfs_rq; 11380 cfs_rqb = seb->cfs_rq; 11381 #else 11382 cfs_rqa = &task_rq(a)->cfs; 11383 cfs_rqb = &task_rq(b)->cfs; 11384 #endif 11385 11386 /* 11387 * Find delta after normalizing se's vruntime with its cfs_rq's 11388 * min_vruntime_fi, which would have been updated in prior calls 11389 * to se_fi_update(). 11390 */ 11391 delta = (s64)(sea->vruntime - seb->vruntime) + 11392 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11393 11394 return delta > 0; 11395 } 11396 #else 11397 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11398 #endif 11399 11400 /* 11401 * scheduler tick hitting a task of our scheduling class. 11402 * 11403 * NOTE: This function can be called remotely by the tick offload that 11404 * goes along full dynticks. Therefore no local assumption can be made 11405 * and everything must be accessed through the @rq and @curr passed in 11406 * parameters. 11407 */ 11408 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11409 { 11410 struct cfs_rq *cfs_rq; 11411 struct sched_entity *se = &curr->se; 11412 11413 for_each_sched_entity(se) { 11414 cfs_rq = cfs_rq_of(se); 11415 entity_tick(cfs_rq, se, queued); 11416 } 11417 11418 if (static_branch_unlikely(&sched_numa_balancing)) 11419 task_tick_numa(rq, curr); 11420 11421 update_misfit_status(curr, rq); 11422 update_overutilized_status(task_rq(curr)); 11423 11424 task_tick_core(rq, curr); 11425 } 11426 11427 /* 11428 * called on fork with the child task as argument from the parent's context 11429 * - child not yet on the tasklist 11430 * - preemption disabled 11431 */ 11432 static void task_fork_fair(struct task_struct *p) 11433 { 11434 struct cfs_rq *cfs_rq; 11435 struct sched_entity *se = &p->se, *curr; 11436 struct rq *rq = this_rq(); 11437 struct rq_flags rf; 11438 11439 rq_lock(rq, &rf); 11440 update_rq_clock(rq); 11441 11442 cfs_rq = task_cfs_rq(current); 11443 curr = cfs_rq->curr; 11444 if (curr) { 11445 update_curr(cfs_rq); 11446 se->vruntime = curr->vruntime; 11447 } 11448 place_entity(cfs_rq, se, 1); 11449 11450 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11451 /* 11452 * Upon rescheduling, sched_class::put_prev_task() will place 11453 * 'current' within the tree based on its new key value. 11454 */ 11455 swap(curr->vruntime, se->vruntime); 11456 resched_curr(rq); 11457 } 11458 11459 se->vruntime -= cfs_rq->min_vruntime; 11460 rq_unlock(rq, &rf); 11461 } 11462 11463 /* 11464 * Priority of the task has changed. Check to see if we preempt 11465 * the current task. 11466 */ 11467 static void 11468 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11469 { 11470 if (!task_on_rq_queued(p)) 11471 return; 11472 11473 if (rq->cfs.nr_running == 1) 11474 return; 11475 11476 /* 11477 * Reschedule if we are currently running on this runqueue and 11478 * our priority decreased, or if we are not currently running on 11479 * this runqueue and our priority is higher than the current's 11480 */ 11481 if (task_current(rq, p)) { 11482 if (p->prio > oldprio) 11483 resched_curr(rq); 11484 } else 11485 check_preempt_curr(rq, p, 0); 11486 } 11487 11488 static inline bool vruntime_normalized(struct task_struct *p) 11489 { 11490 struct sched_entity *se = &p->se; 11491 11492 /* 11493 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11494 * the dequeue_entity(.flags=0) will already have normalized the 11495 * vruntime. 11496 */ 11497 if (p->on_rq) 11498 return true; 11499 11500 /* 11501 * When !on_rq, vruntime of the task has usually NOT been normalized. 11502 * But there are some cases where it has already been normalized: 11503 * 11504 * - A forked child which is waiting for being woken up by 11505 * wake_up_new_task(). 11506 * - A task which has been woken up by try_to_wake_up() and 11507 * waiting for actually being woken up by sched_ttwu_pending(). 11508 */ 11509 if (!se->sum_exec_runtime || 11510 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11511 return true; 11512 11513 return false; 11514 } 11515 11516 #ifdef CONFIG_FAIR_GROUP_SCHED 11517 /* 11518 * Propagate the changes of the sched_entity across the tg tree to make it 11519 * visible to the root 11520 */ 11521 static void propagate_entity_cfs_rq(struct sched_entity *se) 11522 { 11523 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11524 11525 if (cfs_rq_throttled(cfs_rq)) 11526 return; 11527 11528 if (!throttled_hierarchy(cfs_rq)) 11529 list_add_leaf_cfs_rq(cfs_rq); 11530 11531 /* Start to propagate at parent */ 11532 se = se->parent; 11533 11534 for_each_sched_entity(se) { 11535 cfs_rq = cfs_rq_of(se); 11536 11537 update_load_avg(cfs_rq, se, UPDATE_TG); 11538 11539 if (cfs_rq_throttled(cfs_rq)) 11540 break; 11541 11542 if (!throttled_hierarchy(cfs_rq)) 11543 list_add_leaf_cfs_rq(cfs_rq); 11544 } 11545 } 11546 #else 11547 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11548 #endif 11549 11550 static void detach_entity_cfs_rq(struct sched_entity *se) 11551 { 11552 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11553 11554 #ifdef CONFIG_SMP 11555 /* 11556 * In case the task sched_avg hasn't been attached: 11557 * - A forked task which hasn't been woken up by wake_up_new_task(). 11558 * - A task which has been woken up by try_to_wake_up() but is 11559 * waiting for actually being woken up by sched_ttwu_pending(). 11560 */ 11561 if (!se->avg.last_update_time) 11562 return; 11563 #endif 11564 11565 /* Catch up with the cfs_rq and remove our load when we leave */ 11566 update_load_avg(cfs_rq, se, 0); 11567 detach_entity_load_avg(cfs_rq, se); 11568 update_tg_load_avg(cfs_rq); 11569 propagate_entity_cfs_rq(se); 11570 } 11571 11572 static void attach_entity_cfs_rq(struct sched_entity *se) 11573 { 11574 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11575 11576 /* Synchronize entity with its cfs_rq */ 11577 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11578 attach_entity_load_avg(cfs_rq, se); 11579 update_tg_load_avg(cfs_rq); 11580 propagate_entity_cfs_rq(se); 11581 } 11582 11583 static void detach_task_cfs_rq(struct task_struct *p) 11584 { 11585 struct sched_entity *se = &p->se; 11586 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11587 11588 if (!vruntime_normalized(p)) { 11589 /* 11590 * Fix up our vruntime so that the current sleep doesn't 11591 * cause 'unlimited' sleep bonus. 11592 */ 11593 place_entity(cfs_rq, se, 0); 11594 se->vruntime -= cfs_rq->min_vruntime; 11595 } 11596 11597 detach_entity_cfs_rq(se); 11598 } 11599 11600 static void attach_task_cfs_rq(struct task_struct *p) 11601 { 11602 struct sched_entity *se = &p->se; 11603 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11604 11605 attach_entity_cfs_rq(se); 11606 11607 if (!vruntime_normalized(p)) 11608 se->vruntime += cfs_rq->min_vruntime; 11609 } 11610 11611 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11612 { 11613 detach_task_cfs_rq(p); 11614 } 11615 11616 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11617 { 11618 attach_task_cfs_rq(p); 11619 11620 if (task_on_rq_queued(p)) { 11621 /* 11622 * We were most likely switched from sched_rt, so 11623 * kick off the schedule if running, otherwise just see 11624 * if we can still preempt the current task. 11625 */ 11626 if (task_current(rq, p)) 11627 resched_curr(rq); 11628 else 11629 check_preempt_curr(rq, p, 0); 11630 } 11631 } 11632 11633 /* Account for a task changing its policy or group. 11634 * 11635 * This routine is mostly called to set cfs_rq->curr field when a task 11636 * migrates between groups/classes. 11637 */ 11638 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11639 { 11640 struct sched_entity *se = &p->se; 11641 11642 #ifdef CONFIG_SMP 11643 if (task_on_rq_queued(p)) { 11644 /* 11645 * Move the next running task to the front of the list, so our 11646 * cfs_tasks list becomes MRU one. 11647 */ 11648 list_move(&se->group_node, &rq->cfs_tasks); 11649 } 11650 #endif 11651 11652 for_each_sched_entity(se) { 11653 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11654 11655 set_next_entity(cfs_rq, se); 11656 /* ensure bandwidth has been allocated on our new cfs_rq */ 11657 account_cfs_rq_runtime(cfs_rq, 0); 11658 } 11659 } 11660 11661 void init_cfs_rq(struct cfs_rq *cfs_rq) 11662 { 11663 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11664 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 11665 #ifdef CONFIG_SMP 11666 raw_spin_lock_init(&cfs_rq->removed.lock); 11667 #endif 11668 } 11669 11670 #ifdef CONFIG_FAIR_GROUP_SCHED 11671 static void task_change_group_fair(struct task_struct *p) 11672 { 11673 /* 11674 * We couldn't detach or attach a forked task which 11675 * hasn't been woken up by wake_up_new_task(). 11676 */ 11677 if (READ_ONCE(p->__state) == TASK_NEW) 11678 return; 11679 11680 detach_task_cfs_rq(p); 11681 11682 #ifdef CONFIG_SMP 11683 /* Tell se's cfs_rq has been changed -- migrated */ 11684 p->se.avg.last_update_time = 0; 11685 #endif 11686 set_task_rq(p, task_cpu(p)); 11687 attach_task_cfs_rq(p); 11688 } 11689 11690 void free_fair_sched_group(struct task_group *tg) 11691 { 11692 int i; 11693 11694 for_each_possible_cpu(i) { 11695 if (tg->cfs_rq) 11696 kfree(tg->cfs_rq[i]); 11697 if (tg->se) 11698 kfree(tg->se[i]); 11699 } 11700 11701 kfree(tg->cfs_rq); 11702 kfree(tg->se); 11703 } 11704 11705 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11706 { 11707 struct sched_entity *se; 11708 struct cfs_rq *cfs_rq; 11709 int i; 11710 11711 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11712 if (!tg->cfs_rq) 11713 goto err; 11714 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11715 if (!tg->se) 11716 goto err; 11717 11718 tg->shares = NICE_0_LOAD; 11719 11720 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11721 11722 for_each_possible_cpu(i) { 11723 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11724 GFP_KERNEL, cpu_to_node(i)); 11725 if (!cfs_rq) 11726 goto err; 11727 11728 se = kzalloc_node(sizeof(struct sched_entity_stats), 11729 GFP_KERNEL, cpu_to_node(i)); 11730 if (!se) 11731 goto err_free_rq; 11732 11733 init_cfs_rq(cfs_rq); 11734 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11735 init_entity_runnable_average(se); 11736 } 11737 11738 return 1; 11739 11740 err_free_rq: 11741 kfree(cfs_rq); 11742 err: 11743 return 0; 11744 } 11745 11746 void online_fair_sched_group(struct task_group *tg) 11747 { 11748 struct sched_entity *se; 11749 struct rq_flags rf; 11750 struct rq *rq; 11751 int i; 11752 11753 for_each_possible_cpu(i) { 11754 rq = cpu_rq(i); 11755 se = tg->se[i]; 11756 rq_lock_irq(rq, &rf); 11757 update_rq_clock(rq); 11758 attach_entity_cfs_rq(se); 11759 sync_throttle(tg, i); 11760 rq_unlock_irq(rq, &rf); 11761 } 11762 } 11763 11764 void unregister_fair_sched_group(struct task_group *tg) 11765 { 11766 unsigned long flags; 11767 struct rq *rq; 11768 int cpu; 11769 11770 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11771 11772 for_each_possible_cpu(cpu) { 11773 if (tg->se[cpu]) 11774 remove_entity_load_avg(tg->se[cpu]); 11775 11776 /* 11777 * Only empty task groups can be destroyed; so we can speculatively 11778 * check on_list without danger of it being re-added. 11779 */ 11780 if (!tg->cfs_rq[cpu]->on_list) 11781 continue; 11782 11783 rq = cpu_rq(cpu); 11784 11785 raw_spin_rq_lock_irqsave(rq, flags); 11786 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11787 raw_spin_rq_unlock_irqrestore(rq, flags); 11788 } 11789 } 11790 11791 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11792 struct sched_entity *se, int cpu, 11793 struct sched_entity *parent) 11794 { 11795 struct rq *rq = cpu_rq(cpu); 11796 11797 cfs_rq->tg = tg; 11798 cfs_rq->rq = rq; 11799 init_cfs_rq_runtime(cfs_rq); 11800 11801 tg->cfs_rq[cpu] = cfs_rq; 11802 tg->se[cpu] = se; 11803 11804 /* se could be NULL for root_task_group */ 11805 if (!se) 11806 return; 11807 11808 if (!parent) { 11809 se->cfs_rq = &rq->cfs; 11810 se->depth = 0; 11811 } else { 11812 se->cfs_rq = parent->my_q; 11813 se->depth = parent->depth + 1; 11814 } 11815 11816 se->my_q = cfs_rq; 11817 /* guarantee group entities always have weight */ 11818 update_load_set(&se->load, NICE_0_LOAD); 11819 se->parent = parent; 11820 } 11821 11822 static DEFINE_MUTEX(shares_mutex); 11823 11824 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11825 { 11826 int i; 11827 11828 lockdep_assert_held(&shares_mutex); 11829 11830 /* 11831 * We can't change the weight of the root cgroup. 11832 */ 11833 if (!tg->se[0]) 11834 return -EINVAL; 11835 11836 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11837 11838 if (tg->shares == shares) 11839 return 0; 11840 11841 tg->shares = shares; 11842 for_each_possible_cpu(i) { 11843 struct rq *rq = cpu_rq(i); 11844 struct sched_entity *se = tg->se[i]; 11845 struct rq_flags rf; 11846 11847 /* Propagate contribution to hierarchy */ 11848 rq_lock_irqsave(rq, &rf); 11849 update_rq_clock(rq); 11850 for_each_sched_entity(se) { 11851 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11852 update_cfs_group(se); 11853 } 11854 rq_unlock_irqrestore(rq, &rf); 11855 } 11856 11857 return 0; 11858 } 11859 11860 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11861 { 11862 int ret; 11863 11864 mutex_lock(&shares_mutex); 11865 if (tg_is_idle(tg)) 11866 ret = -EINVAL; 11867 else 11868 ret = __sched_group_set_shares(tg, shares); 11869 mutex_unlock(&shares_mutex); 11870 11871 return ret; 11872 } 11873 11874 int sched_group_set_idle(struct task_group *tg, long idle) 11875 { 11876 int i; 11877 11878 if (tg == &root_task_group) 11879 return -EINVAL; 11880 11881 if (idle < 0 || idle > 1) 11882 return -EINVAL; 11883 11884 mutex_lock(&shares_mutex); 11885 11886 if (tg->idle == idle) { 11887 mutex_unlock(&shares_mutex); 11888 return 0; 11889 } 11890 11891 tg->idle = idle; 11892 11893 for_each_possible_cpu(i) { 11894 struct rq *rq = cpu_rq(i); 11895 struct sched_entity *se = tg->se[i]; 11896 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 11897 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 11898 long idle_task_delta; 11899 struct rq_flags rf; 11900 11901 rq_lock_irqsave(rq, &rf); 11902 11903 grp_cfs_rq->idle = idle; 11904 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 11905 goto next_cpu; 11906 11907 if (se->on_rq) { 11908 parent_cfs_rq = cfs_rq_of(se); 11909 if (cfs_rq_is_idle(grp_cfs_rq)) 11910 parent_cfs_rq->idle_nr_running++; 11911 else 11912 parent_cfs_rq->idle_nr_running--; 11913 } 11914 11915 idle_task_delta = grp_cfs_rq->h_nr_running - 11916 grp_cfs_rq->idle_h_nr_running; 11917 if (!cfs_rq_is_idle(grp_cfs_rq)) 11918 idle_task_delta *= -1; 11919 11920 for_each_sched_entity(se) { 11921 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11922 11923 if (!se->on_rq) 11924 break; 11925 11926 cfs_rq->idle_h_nr_running += idle_task_delta; 11927 11928 /* Already accounted at parent level and above. */ 11929 if (cfs_rq_is_idle(cfs_rq)) 11930 break; 11931 } 11932 11933 next_cpu: 11934 rq_unlock_irqrestore(rq, &rf); 11935 } 11936 11937 /* Idle groups have minimum weight. */ 11938 if (tg_is_idle(tg)) 11939 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 11940 else 11941 __sched_group_set_shares(tg, NICE_0_LOAD); 11942 11943 mutex_unlock(&shares_mutex); 11944 return 0; 11945 } 11946 11947 #else /* CONFIG_FAIR_GROUP_SCHED */ 11948 11949 void free_fair_sched_group(struct task_group *tg) { } 11950 11951 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11952 { 11953 return 1; 11954 } 11955 11956 void online_fair_sched_group(struct task_group *tg) { } 11957 11958 void unregister_fair_sched_group(struct task_group *tg) { } 11959 11960 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11961 11962 11963 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11964 { 11965 struct sched_entity *se = &task->se; 11966 unsigned int rr_interval = 0; 11967 11968 /* 11969 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11970 * idle runqueue: 11971 */ 11972 if (rq->cfs.load.weight) 11973 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11974 11975 return rr_interval; 11976 } 11977 11978 /* 11979 * All the scheduling class methods: 11980 */ 11981 DEFINE_SCHED_CLASS(fair) = { 11982 11983 .enqueue_task = enqueue_task_fair, 11984 .dequeue_task = dequeue_task_fair, 11985 .yield_task = yield_task_fair, 11986 .yield_to_task = yield_to_task_fair, 11987 11988 .check_preempt_curr = check_preempt_wakeup, 11989 11990 .pick_next_task = __pick_next_task_fair, 11991 .put_prev_task = put_prev_task_fair, 11992 .set_next_task = set_next_task_fair, 11993 11994 #ifdef CONFIG_SMP 11995 .balance = balance_fair, 11996 .pick_task = pick_task_fair, 11997 .select_task_rq = select_task_rq_fair, 11998 .migrate_task_rq = migrate_task_rq_fair, 11999 12000 .rq_online = rq_online_fair, 12001 .rq_offline = rq_offline_fair, 12002 12003 .task_dead = task_dead_fair, 12004 .set_cpus_allowed = set_cpus_allowed_common, 12005 #endif 12006 12007 .task_tick = task_tick_fair, 12008 .task_fork = task_fork_fair, 12009 12010 .prio_changed = prio_changed_fair, 12011 .switched_from = switched_from_fair, 12012 .switched_to = switched_to_fair, 12013 12014 .get_rr_interval = get_rr_interval_fair, 12015 12016 .update_curr = update_curr_fair, 12017 12018 #ifdef CONFIG_FAIR_GROUP_SCHED 12019 .task_change_group = task_change_group_fair, 12020 #endif 12021 12022 #ifdef CONFIG_UCLAMP_TASK 12023 .uclamp_enabled = 1, 12024 #endif 12025 }; 12026 12027 #ifdef CONFIG_SCHED_DEBUG 12028 void print_cfs_stats(struct seq_file *m, int cpu) 12029 { 12030 struct cfs_rq *cfs_rq, *pos; 12031 12032 rcu_read_lock(); 12033 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12034 print_cfs_rq(m, cpu, cfs_rq); 12035 rcu_read_unlock(); 12036 } 12037 12038 #ifdef CONFIG_NUMA_BALANCING 12039 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12040 { 12041 int node; 12042 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12043 struct numa_group *ng; 12044 12045 rcu_read_lock(); 12046 ng = rcu_dereference(p->numa_group); 12047 for_each_online_node(node) { 12048 if (p->numa_faults) { 12049 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12050 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12051 } 12052 if (ng) { 12053 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12054 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12055 } 12056 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12057 } 12058 rcu_read_unlock(); 12059 } 12060 #endif /* CONFIG_NUMA_BALANCING */ 12061 #endif /* CONFIG_SCHED_DEBUG */ 12062 12063 __init void init_sched_fair_class(void) 12064 { 12065 #ifdef CONFIG_SMP 12066 int i; 12067 12068 for_each_possible_cpu(i) { 12069 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12070 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12071 } 12072 12073 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12074 12075 #ifdef CONFIG_NO_HZ_COMMON 12076 nohz.next_balance = jiffies; 12077 nohz.next_blocked = jiffies; 12078 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12079 #endif 12080 #endif /* SMP */ 12081 12082 } 12083