xref: /linux/kernel/sched/fair.c (revision 83439a0f1ce6a592f95e41338320b5f01b98a356)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/mempolicy.h>
44 #include <linux/mutex_api.h>
45 #include <linux/profile.h>
46 #include <linux/psi.h>
47 #include <linux/ratelimit.h>
48 #include <linux/task_work.h>
49 
50 #include <asm/switch_to.h>
51 
52 #include <linux/sched/cond_resched.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * Targeted preemption latency for CPU-bound tasks:
60  *
61  * NOTE: this latency value is not the same as the concept of
62  * 'timeslice length' - timeslices in CFS are of variable length
63  * and have no persistent notion like in traditional, time-slice
64  * based scheduling concepts.
65  *
66  * (to see the precise effective timeslice length of your workload,
67  *  run vmstat and monitor the context-switches (cs) field)
68  *
69  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
70  */
71 unsigned int sysctl_sched_latency			= 6000000ULL;
72 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
73 
74 /*
75  * The initial- and re-scaling of tunables is configurable
76  *
77  * Options are:
78  *
79  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
80  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
81  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
82  *
83  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
84  */
85 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
86 
87 /*
88  * Minimal preemption granularity for CPU-bound tasks:
89  *
90  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
91  */
92 unsigned int sysctl_sched_min_granularity			= 750000ULL;
93 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
94 
95 /*
96  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
97  * Applies only when SCHED_IDLE tasks compete with normal tasks.
98  *
99  * (default: 0.75 msec)
100  */
101 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
102 
103 /*
104  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
105  */
106 static unsigned int sched_nr_latency = 8;
107 
108 /*
109  * After fork, child runs first. If set to 0 (default) then
110  * parent will (try to) run first.
111  */
112 unsigned int sysctl_sched_child_runs_first __read_mostly;
113 
114 /*
115  * SCHED_OTHER wake-up granularity.
116  *
117  * This option delays the preemption effects of decoupled workloads
118  * and reduces their over-scheduling. Synchronous workloads will still
119  * have immediate wakeup/sleep latencies.
120  *
121  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
122  */
123 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
124 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
125 
126 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
127 
128 int sched_thermal_decay_shift;
129 static int __init setup_sched_thermal_decay_shift(char *str)
130 {
131 	int _shift = 0;
132 
133 	if (kstrtoint(str, 0, &_shift))
134 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
135 
136 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
137 	return 1;
138 }
139 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
140 
141 #ifdef CONFIG_SMP
142 /*
143  * For asym packing, by default the lower numbered CPU has higher priority.
144  */
145 int __weak arch_asym_cpu_priority(int cpu)
146 {
147 	return -cpu;
148 }
149 
150 /*
151  * The margin used when comparing utilization with CPU capacity.
152  *
153  * (default: ~20%)
154  */
155 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
156 
157 /*
158  * The margin used when comparing CPU capacities.
159  * is 'cap1' noticeably greater than 'cap2'
160  *
161  * (default: ~5%)
162  */
163 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
164 #endif
165 
166 #ifdef CONFIG_CFS_BANDWIDTH
167 /*
168  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
169  * each time a cfs_rq requests quota.
170  *
171  * Note: in the case that the slice exceeds the runtime remaining (either due
172  * to consumption or the quota being specified to be smaller than the slice)
173  * we will always only issue the remaining available time.
174  *
175  * (default: 5 msec, units: microseconds)
176  */
177 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
178 #endif
179 
180 #ifdef CONFIG_SYSCTL
181 static struct ctl_table sched_fair_sysctls[] = {
182 	{
183 		.procname       = "sched_child_runs_first",
184 		.data           = &sysctl_sched_child_runs_first,
185 		.maxlen         = sizeof(unsigned int),
186 		.mode           = 0644,
187 		.proc_handler   = proc_dointvec,
188 	},
189 #ifdef CONFIG_CFS_BANDWIDTH
190 	{
191 		.procname       = "sched_cfs_bandwidth_slice_us",
192 		.data           = &sysctl_sched_cfs_bandwidth_slice,
193 		.maxlen         = sizeof(unsigned int),
194 		.mode           = 0644,
195 		.proc_handler   = proc_dointvec_minmax,
196 		.extra1         = SYSCTL_ONE,
197 	},
198 #endif
199 	{}
200 };
201 
202 static int __init sched_fair_sysctl_init(void)
203 {
204 	register_sysctl_init("kernel", sched_fair_sysctls);
205 	return 0;
206 }
207 late_initcall(sched_fair_sysctl_init);
208 #endif
209 
210 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
211 {
212 	lw->weight += inc;
213 	lw->inv_weight = 0;
214 }
215 
216 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
217 {
218 	lw->weight -= dec;
219 	lw->inv_weight = 0;
220 }
221 
222 static inline void update_load_set(struct load_weight *lw, unsigned long w)
223 {
224 	lw->weight = w;
225 	lw->inv_weight = 0;
226 }
227 
228 /*
229  * Increase the granularity value when there are more CPUs,
230  * because with more CPUs the 'effective latency' as visible
231  * to users decreases. But the relationship is not linear,
232  * so pick a second-best guess by going with the log2 of the
233  * number of CPUs.
234  *
235  * This idea comes from the SD scheduler of Con Kolivas:
236  */
237 static unsigned int get_update_sysctl_factor(void)
238 {
239 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
240 	unsigned int factor;
241 
242 	switch (sysctl_sched_tunable_scaling) {
243 	case SCHED_TUNABLESCALING_NONE:
244 		factor = 1;
245 		break;
246 	case SCHED_TUNABLESCALING_LINEAR:
247 		factor = cpus;
248 		break;
249 	case SCHED_TUNABLESCALING_LOG:
250 	default:
251 		factor = 1 + ilog2(cpus);
252 		break;
253 	}
254 
255 	return factor;
256 }
257 
258 static void update_sysctl(void)
259 {
260 	unsigned int factor = get_update_sysctl_factor();
261 
262 #define SET_SYSCTL(name) \
263 	(sysctl_##name = (factor) * normalized_sysctl_##name)
264 	SET_SYSCTL(sched_min_granularity);
265 	SET_SYSCTL(sched_latency);
266 	SET_SYSCTL(sched_wakeup_granularity);
267 #undef SET_SYSCTL
268 }
269 
270 void __init sched_init_granularity(void)
271 {
272 	update_sysctl();
273 }
274 
275 #define WMULT_CONST	(~0U)
276 #define WMULT_SHIFT	32
277 
278 static void __update_inv_weight(struct load_weight *lw)
279 {
280 	unsigned long w;
281 
282 	if (likely(lw->inv_weight))
283 		return;
284 
285 	w = scale_load_down(lw->weight);
286 
287 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
288 		lw->inv_weight = 1;
289 	else if (unlikely(!w))
290 		lw->inv_weight = WMULT_CONST;
291 	else
292 		lw->inv_weight = WMULT_CONST / w;
293 }
294 
295 /*
296  * delta_exec * weight / lw.weight
297  *   OR
298  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
299  *
300  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
301  * we're guaranteed shift stays positive because inv_weight is guaranteed to
302  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
303  *
304  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
305  * weight/lw.weight <= 1, and therefore our shift will also be positive.
306  */
307 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
308 {
309 	u64 fact = scale_load_down(weight);
310 	u32 fact_hi = (u32)(fact >> 32);
311 	int shift = WMULT_SHIFT;
312 	int fs;
313 
314 	__update_inv_weight(lw);
315 
316 	if (unlikely(fact_hi)) {
317 		fs = fls(fact_hi);
318 		shift -= fs;
319 		fact >>= fs;
320 	}
321 
322 	fact = mul_u32_u32(fact, lw->inv_weight);
323 
324 	fact_hi = (u32)(fact >> 32);
325 	if (fact_hi) {
326 		fs = fls(fact_hi);
327 		shift -= fs;
328 		fact >>= fs;
329 	}
330 
331 	return mul_u64_u32_shr(delta_exec, fact, shift);
332 }
333 
334 
335 const struct sched_class fair_sched_class;
336 
337 /**************************************************************
338  * CFS operations on generic schedulable entities:
339  */
340 
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342 
343 /* Walk up scheduling entities hierarchy */
344 #define for_each_sched_entity(se) \
345 		for (; se; se = se->parent)
346 
347 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	struct rq *rq = rq_of(cfs_rq);
350 	int cpu = cpu_of(rq);
351 
352 	if (cfs_rq->on_list)
353 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
354 
355 	cfs_rq->on_list = 1;
356 
357 	/*
358 	 * Ensure we either appear before our parent (if already
359 	 * enqueued) or force our parent to appear after us when it is
360 	 * enqueued. The fact that we always enqueue bottom-up
361 	 * reduces this to two cases and a special case for the root
362 	 * cfs_rq. Furthermore, it also means that we will always reset
363 	 * tmp_alone_branch either when the branch is connected
364 	 * to a tree or when we reach the top of the tree
365 	 */
366 	if (cfs_rq->tg->parent &&
367 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
368 		/*
369 		 * If parent is already on the list, we add the child
370 		 * just before. Thanks to circular linked property of
371 		 * the list, this means to put the child at the tail
372 		 * of the list that starts by parent.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
376 		/*
377 		 * The branch is now connected to its tree so we can
378 		 * reset tmp_alone_branch to the beginning of the
379 		 * list.
380 		 */
381 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
382 		return true;
383 	}
384 
385 	if (!cfs_rq->tg->parent) {
386 		/*
387 		 * cfs rq without parent should be put
388 		 * at the tail of the list.
389 		 */
390 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
391 			&rq->leaf_cfs_rq_list);
392 		/*
393 		 * We have reach the top of a tree so we can reset
394 		 * tmp_alone_branch to the beginning of the list.
395 		 */
396 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
397 		return true;
398 	}
399 
400 	/*
401 	 * The parent has not already been added so we want to
402 	 * make sure that it will be put after us.
403 	 * tmp_alone_branch points to the begin of the branch
404 	 * where we will add parent.
405 	 */
406 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
407 	/*
408 	 * update tmp_alone_branch to points to the new begin
409 	 * of the branch
410 	 */
411 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
412 	return false;
413 }
414 
415 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
416 {
417 	if (cfs_rq->on_list) {
418 		struct rq *rq = rq_of(cfs_rq);
419 
420 		/*
421 		 * With cfs_rq being unthrottled/throttled during an enqueue,
422 		 * it can happen the tmp_alone_branch points the a leaf that
423 		 * we finally want to del. In this case, tmp_alone_branch moves
424 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
425 		 * at the end of the enqueue.
426 		 */
427 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
428 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
429 
430 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
431 		cfs_rq->on_list = 0;
432 	}
433 }
434 
435 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
436 {
437 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
438 }
439 
440 /* Iterate thr' all leaf cfs_rq's on a runqueue */
441 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
442 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
443 				 leaf_cfs_rq_list)
444 
445 /* Do the two (enqueued) entities belong to the same group ? */
446 static inline struct cfs_rq *
447 is_same_group(struct sched_entity *se, struct sched_entity *pse)
448 {
449 	if (se->cfs_rq == pse->cfs_rq)
450 		return se->cfs_rq;
451 
452 	return NULL;
453 }
454 
455 static inline struct sched_entity *parent_entity(struct sched_entity *se)
456 {
457 	return se->parent;
458 }
459 
460 static void
461 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
462 {
463 	int se_depth, pse_depth;
464 
465 	/*
466 	 * preemption test can be made between sibling entities who are in the
467 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
468 	 * both tasks until we find their ancestors who are siblings of common
469 	 * parent.
470 	 */
471 
472 	/* First walk up until both entities are at same depth */
473 	se_depth = (*se)->depth;
474 	pse_depth = (*pse)->depth;
475 
476 	while (se_depth > pse_depth) {
477 		se_depth--;
478 		*se = parent_entity(*se);
479 	}
480 
481 	while (pse_depth > se_depth) {
482 		pse_depth--;
483 		*pse = parent_entity(*pse);
484 	}
485 
486 	while (!is_same_group(*se, *pse)) {
487 		*se = parent_entity(*se);
488 		*pse = parent_entity(*pse);
489 	}
490 }
491 
492 static int tg_is_idle(struct task_group *tg)
493 {
494 	return tg->idle > 0;
495 }
496 
497 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
498 {
499 	return cfs_rq->idle > 0;
500 }
501 
502 static int se_is_idle(struct sched_entity *se)
503 {
504 	if (entity_is_task(se))
505 		return task_has_idle_policy(task_of(se));
506 	return cfs_rq_is_idle(group_cfs_rq(se));
507 }
508 
509 #else	/* !CONFIG_FAIR_GROUP_SCHED */
510 
511 #define for_each_sched_entity(se) \
512 		for (; se; se = NULL)
513 
514 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
515 {
516 	return true;
517 }
518 
519 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
520 {
521 }
522 
523 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
524 {
525 }
526 
527 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
528 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
529 
530 static inline struct sched_entity *parent_entity(struct sched_entity *se)
531 {
532 	return NULL;
533 }
534 
535 static inline void
536 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
537 {
538 }
539 
540 static inline int tg_is_idle(struct task_group *tg)
541 {
542 	return 0;
543 }
544 
545 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
546 {
547 	return 0;
548 }
549 
550 static int se_is_idle(struct sched_entity *se)
551 {
552 	return 0;
553 }
554 
555 #endif	/* CONFIG_FAIR_GROUP_SCHED */
556 
557 static __always_inline
558 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
559 
560 /**************************************************************
561  * Scheduling class tree data structure manipulation methods:
562  */
563 
564 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
565 {
566 	s64 delta = (s64)(vruntime - max_vruntime);
567 	if (delta > 0)
568 		max_vruntime = vruntime;
569 
570 	return max_vruntime;
571 }
572 
573 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
574 {
575 	s64 delta = (s64)(vruntime - min_vruntime);
576 	if (delta < 0)
577 		min_vruntime = vruntime;
578 
579 	return min_vruntime;
580 }
581 
582 static inline bool entity_before(struct sched_entity *a,
583 				struct sched_entity *b)
584 {
585 	return (s64)(a->vruntime - b->vruntime) < 0;
586 }
587 
588 #define __node_2_se(node) \
589 	rb_entry((node), struct sched_entity, run_node)
590 
591 static void update_min_vruntime(struct cfs_rq *cfs_rq)
592 {
593 	struct sched_entity *curr = cfs_rq->curr;
594 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
595 
596 	u64 vruntime = cfs_rq->min_vruntime;
597 
598 	if (curr) {
599 		if (curr->on_rq)
600 			vruntime = curr->vruntime;
601 		else
602 			curr = NULL;
603 	}
604 
605 	if (leftmost) { /* non-empty tree */
606 		struct sched_entity *se = __node_2_se(leftmost);
607 
608 		if (!curr)
609 			vruntime = se->vruntime;
610 		else
611 			vruntime = min_vruntime(vruntime, se->vruntime);
612 	}
613 
614 	/* ensure we never gain time by being placed backwards. */
615 	u64_u32_store(cfs_rq->min_vruntime,
616 		      max_vruntime(cfs_rq->min_vruntime, vruntime));
617 }
618 
619 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
620 {
621 	return entity_before(__node_2_se(a), __node_2_se(b));
622 }
623 
624 /*
625  * Enqueue an entity into the rb-tree:
626  */
627 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 {
629 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
630 }
631 
632 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
635 }
636 
637 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
638 {
639 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
640 
641 	if (!left)
642 		return NULL;
643 
644 	return __node_2_se(left);
645 }
646 
647 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
648 {
649 	struct rb_node *next = rb_next(&se->run_node);
650 
651 	if (!next)
652 		return NULL;
653 
654 	return __node_2_se(next);
655 }
656 
657 #ifdef CONFIG_SCHED_DEBUG
658 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
659 {
660 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
661 
662 	if (!last)
663 		return NULL;
664 
665 	return __node_2_se(last);
666 }
667 
668 /**************************************************************
669  * Scheduling class statistics methods:
670  */
671 
672 int sched_update_scaling(void)
673 {
674 	unsigned int factor = get_update_sysctl_factor();
675 
676 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
677 					sysctl_sched_min_granularity);
678 
679 #define WRT_SYSCTL(name) \
680 	(normalized_sysctl_##name = sysctl_##name / (factor))
681 	WRT_SYSCTL(sched_min_granularity);
682 	WRT_SYSCTL(sched_latency);
683 	WRT_SYSCTL(sched_wakeup_granularity);
684 #undef WRT_SYSCTL
685 
686 	return 0;
687 }
688 #endif
689 
690 /*
691  * delta /= w
692  */
693 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
694 {
695 	if (unlikely(se->load.weight != NICE_0_LOAD))
696 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
697 
698 	return delta;
699 }
700 
701 /*
702  * The idea is to set a period in which each task runs once.
703  *
704  * When there are too many tasks (sched_nr_latency) we have to stretch
705  * this period because otherwise the slices get too small.
706  *
707  * p = (nr <= nl) ? l : l*nr/nl
708  */
709 static u64 __sched_period(unsigned long nr_running)
710 {
711 	if (unlikely(nr_running > sched_nr_latency))
712 		return nr_running * sysctl_sched_min_granularity;
713 	else
714 		return sysctl_sched_latency;
715 }
716 
717 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
718 
719 /*
720  * We calculate the wall-time slice from the period by taking a part
721  * proportional to the weight.
722  *
723  * s = p*P[w/rw]
724  */
725 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 	unsigned int nr_running = cfs_rq->nr_running;
728 	struct sched_entity *init_se = se;
729 	unsigned int min_gran;
730 	u64 slice;
731 
732 	if (sched_feat(ALT_PERIOD))
733 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
734 
735 	slice = __sched_period(nr_running + !se->on_rq);
736 
737 	for_each_sched_entity(se) {
738 		struct load_weight *load;
739 		struct load_weight lw;
740 		struct cfs_rq *qcfs_rq;
741 
742 		qcfs_rq = cfs_rq_of(se);
743 		load = &qcfs_rq->load;
744 
745 		if (unlikely(!se->on_rq)) {
746 			lw = qcfs_rq->load;
747 
748 			update_load_add(&lw, se->load.weight);
749 			load = &lw;
750 		}
751 		slice = __calc_delta(slice, se->load.weight, load);
752 	}
753 
754 	if (sched_feat(BASE_SLICE)) {
755 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
756 			min_gran = sysctl_sched_idle_min_granularity;
757 		else
758 			min_gran = sysctl_sched_min_granularity;
759 
760 		slice = max_t(u64, slice, min_gran);
761 	}
762 
763 	return slice;
764 }
765 
766 /*
767  * We calculate the vruntime slice of a to-be-inserted task.
768  *
769  * vs = s/w
770  */
771 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
772 {
773 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
774 }
775 
776 #include "pelt.h"
777 #ifdef CONFIG_SMP
778 
779 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
780 static unsigned long task_h_load(struct task_struct *p);
781 static unsigned long capacity_of(int cpu);
782 
783 /* Give new sched_entity start runnable values to heavy its load in infant time */
784 void init_entity_runnable_average(struct sched_entity *se)
785 {
786 	struct sched_avg *sa = &se->avg;
787 
788 	memset(sa, 0, sizeof(*sa));
789 
790 	/*
791 	 * Tasks are initialized with full load to be seen as heavy tasks until
792 	 * they get a chance to stabilize to their real load level.
793 	 * Group entities are initialized with zero load to reflect the fact that
794 	 * nothing has been attached to the task group yet.
795 	 */
796 	if (entity_is_task(se))
797 		sa->load_avg = scale_load_down(se->load.weight);
798 
799 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
800 }
801 
802 /*
803  * With new tasks being created, their initial util_avgs are extrapolated
804  * based on the cfs_rq's current util_avg:
805  *
806  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
807  *
808  * However, in many cases, the above util_avg does not give a desired
809  * value. Moreover, the sum of the util_avgs may be divergent, such
810  * as when the series is a harmonic series.
811  *
812  * To solve this problem, we also cap the util_avg of successive tasks to
813  * only 1/2 of the left utilization budget:
814  *
815  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
816  *
817  * where n denotes the nth task and cpu_scale the CPU capacity.
818  *
819  * For example, for a CPU with 1024 of capacity, a simplest series from
820  * the beginning would be like:
821  *
822  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
823  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
824  *
825  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
826  * if util_avg > util_avg_cap.
827  */
828 void post_init_entity_util_avg(struct task_struct *p)
829 {
830 	struct sched_entity *se = &p->se;
831 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
832 	struct sched_avg *sa = &se->avg;
833 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
834 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
835 
836 	if (p->sched_class != &fair_sched_class) {
837 		/*
838 		 * For !fair tasks do:
839 		 *
840 		update_cfs_rq_load_avg(now, cfs_rq);
841 		attach_entity_load_avg(cfs_rq, se);
842 		switched_from_fair(rq, p);
843 		 *
844 		 * such that the next switched_to_fair() has the
845 		 * expected state.
846 		 */
847 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
848 		return;
849 	}
850 
851 	if (cap > 0) {
852 		if (cfs_rq->avg.util_avg != 0) {
853 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
854 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
855 
856 			if (sa->util_avg > cap)
857 				sa->util_avg = cap;
858 		} else {
859 			sa->util_avg = cap;
860 		}
861 	}
862 
863 	sa->runnable_avg = sa->util_avg;
864 }
865 
866 #else /* !CONFIG_SMP */
867 void init_entity_runnable_average(struct sched_entity *se)
868 {
869 }
870 void post_init_entity_util_avg(struct task_struct *p)
871 {
872 }
873 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
874 {
875 }
876 #endif /* CONFIG_SMP */
877 
878 /*
879  * Update the current task's runtime statistics.
880  */
881 static void update_curr(struct cfs_rq *cfs_rq)
882 {
883 	struct sched_entity *curr = cfs_rq->curr;
884 	u64 now = rq_clock_task(rq_of(cfs_rq));
885 	u64 delta_exec;
886 
887 	if (unlikely(!curr))
888 		return;
889 
890 	delta_exec = now - curr->exec_start;
891 	if (unlikely((s64)delta_exec <= 0))
892 		return;
893 
894 	curr->exec_start = now;
895 
896 	if (schedstat_enabled()) {
897 		struct sched_statistics *stats;
898 
899 		stats = __schedstats_from_se(curr);
900 		__schedstat_set(stats->exec_max,
901 				max(delta_exec, stats->exec_max));
902 	}
903 
904 	curr->sum_exec_runtime += delta_exec;
905 	schedstat_add(cfs_rq->exec_clock, delta_exec);
906 
907 	curr->vruntime += calc_delta_fair(delta_exec, curr);
908 	update_min_vruntime(cfs_rq);
909 
910 	if (entity_is_task(curr)) {
911 		struct task_struct *curtask = task_of(curr);
912 
913 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
914 		cgroup_account_cputime(curtask, delta_exec);
915 		account_group_exec_runtime(curtask, delta_exec);
916 	}
917 
918 	account_cfs_rq_runtime(cfs_rq, delta_exec);
919 }
920 
921 static void update_curr_fair(struct rq *rq)
922 {
923 	update_curr(cfs_rq_of(&rq->curr->se));
924 }
925 
926 static inline void
927 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
928 {
929 	struct sched_statistics *stats;
930 	struct task_struct *p = NULL;
931 
932 	if (!schedstat_enabled())
933 		return;
934 
935 	stats = __schedstats_from_se(se);
936 
937 	if (entity_is_task(se))
938 		p = task_of(se);
939 
940 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
941 }
942 
943 static inline void
944 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
945 {
946 	struct sched_statistics *stats;
947 	struct task_struct *p = NULL;
948 
949 	if (!schedstat_enabled())
950 		return;
951 
952 	stats = __schedstats_from_se(se);
953 
954 	/*
955 	 * When the sched_schedstat changes from 0 to 1, some sched se
956 	 * maybe already in the runqueue, the se->statistics.wait_start
957 	 * will be 0.So it will let the delta wrong. We need to avoid this
958 	 * scenario.
959 	 */
960 	if (unlikely(!schedstat_val(stats->wait_start)))
961 		return;
962 
963 	if (entity_is_task(se))
964 		p = task_of(se);
965 
966 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
967 }
968 
969 static inline void
970 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
971 {
972 	struct sched_statistics *stats;
973 	struct task_struct *tsk = NULL;
974 
975 	if (!schedstat_enabled())
976 		return;
977 
978 	stats = __schedstats_from_se(se);
979 
980 	if (entity_is_task(se))
981 		tsk = task_of(se);
982 
983 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
984 }
985 
986 /*
987  * Task is being enqueued - update stats:
988  */
989 static inline void
990 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
991 {
992 	if (!schedstat_enabled())
993 		return;
994 
995 	/*
996 	 * Are we enqueueing a waiting task? (for current tasks
997 	 * a dequeue/enqueue event is a NOP)
998 	 */
999 	if (se != cfs_rq->curr)
1000 		update_stats_wait_start_fair(cfs_rq, se);
1001 
1002 	if (flags & ENQUEUE_WAKEUP)
1003 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1004 }
1005 
1006 static inline void
1007 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1008 {
1009 
1010 	if (!schedstat_enabled())
1011 		return;
1012 
1013 	/*
1014 	 * Mark the end of the wait period if dequeueing a
1015 	 * waiting task:
1016 	 */
1017 	if (se != cfs_rq->curr)
1018 		update_stats_wait_end_fair(cfs_rq, se);
1019 
1020 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1021 		struct task_struct *tsk = task_of(se);
1022 		unsigned int state;
1023 
1024 		/* XXX racy against TTWU */
1025 		state = READ_ONCE(tsk->__state);
1026 		if (state & TASK_INTERRUPTIBLE)
1027 			__schedstat_set(tsk->stats.sleep_start,
1028 				      rq_clock(rq_of(cfs_rq)));
1029 		if (state & TASK_UNINTERRUPTIBLE)
1030 			__schedstat_set(tsk->stats.block_start,
1031 				      rq_clock(rq_of(cfs_rq)));
1032 	}
1033 }
1034 
1035 /*
1036  * We are picking a new current task - update its stats:
1037  */
1038 static inline void
1039 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1040 {
1041 	/*
1042 	 * We are starting a new run period:
1043 	 */
1044 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1045 }
1046 
1047 /**************************************************
1048  * Scheduling class queueing methods:
1049  */
1050 
1051 #ifdef CONFIG_NUMA
1052 #define NUMA_IMBALANCE_MIN 2
1053 
1054 static inline long
1055 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1056 {
1057 	/*
1058 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1059 	 * threshold. Above this threshold, individual tasks may be contending
1060 	 * for both memory bandwidth and any shared HT resources.  This is an
1061 	 * approximation as the number of running tasks may not be related to
1062 	 * the number of busy CPUs due to sched_setaffinity.
1063 	 */
1064 	if (dst_running > imb_numa_nr)
1065 		return imbalance;
1066 
1067 	/*
1068 	 * Allow a small imbalance based on a simple pair of communicating
1069 	 * tasks that remain local when the destination is lightly loaded.
1070 	 */
1071 	if (imbalance <= NUMA_IMBALANCE_MIN)
1072 		return 0;
1073 
1074 	return imbalance;
1075 }
1076 #endif /* CONFIG_NUMA */
1077 
1078 #ifdef CONFIG_NUMA_BALANCING
1079 /*
1080  * Approximate time to scan a full NUMA task in ms. The task scan period is
1081  * calculated based on the tasks virtual memory size and
1082  * numa_balancing_scan_size.
1083  */
1084 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1085 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1086 
1087 /* Portion of address space to scan in MB */
1088 unsigned int sysctl_numa_balancing_scan_size = 256;
1089 
1090 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1091 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1092 
1093 struct numa_group {
1094 	refcount_t refcount;
1095 
1096 	spinlock_t lock; /* nr_tasks, tasks */
1097 	int nr_tasks;
1098 	pid_t gid;
1099 	int active_nodes;
1100 
1101 	struct rcu_head rcu;
1102 	unsigned long total_faults;
1103 	unsigned long max_faults_cpu;
1104 	/*
1105 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1106 	 *
1107 	 * Faults_cpu is used to decide whether memory should move
1108 	 * towards the CPU. As a consequence, these stats are weighted
1109 	 * more by CPU use than by memory faults.
1110 	 */
1111 	unsigned long faults[];
1112 };
1113 
1114 /*
1115  * For functions that can be called in multiple contexts that permit reading
1116  * ->numa_group (see struct task_struct for locking rules).
1117  */
1118 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1119 {
1120 	return rcu_dereference_check(p->numa_group, p == current ||
1121 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1122 }
1123 
1124 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1125 {
1126 	return rcu_dereference_protected(p->numa_group, p == current);
1127 }
1128 
1129 static inline unsigned long group_faults_priv(struct numa_group *ng);
1130 static inline unsigned long group_faults_shared(struct numa_group *ng);
1131 
1132 static unsigned int task_nr_scan_windows(struct task_struct *p)
1133 {
1134 	unsigned long rss = 0;
1135 	unsigned long nr_scan_pages;
1136 
1137 	/*
1138 	 * Calculations based on RSS as non-present and empty pages are skipped
1139 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1140 	 * on resident pages
1141 	 */
1142 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1143 	rss = get_mm_rss(p->mm);
1144 	if (!rss)
1145 		rss = nr_scan_pages;
1146 
1147 	rss = round_up(rss, nr_scan_pages);
1148 	return rss / nr_scan_pages;
1149 }
1150 
1151 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1152 #define MAX_SCAN_WINDOW 2560
1153 
1154 static unsigned int task_scan_min(struct task_struct *p)
1155 {
1156 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1157 	unsigned int scan, floor;
1158 	unsigned int windows = 1;
1159 
1160 	if (scan_size < MAX_SCAN_WINDOW)
1161 		windows = MAX_SCAN_WINDOW / scan_size;
1162 	floor = 1000 / windows;
1163 
1164 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1165 	return max_t(unsigned int, floor, scan);
1166 }
1167 
1168 static unsigned int task_scan_start(struct task_struct *p)
1169 {
1170 	unsigned long smin = task_scan_min(p);
1171 	unsigned long period = smin;
1172 	struct numa_group *ng;
1173 
1174 	/* Scale the maximum scan period with the amount of shared memory. */
1175 	rcu_read_lock();
1176 	ng = rcu_dereference(p->numa_group);
1177 	if (ng) {
1178 		unsigned long shared = group_faults_shared(ng);
1179 		unsigned long private = group_faults_priv(ng);
1180 
1181 		period *= refcount_read(&ng->refcount);
1182 		period *= shared + 1;
1183 		period /= private + shared + 1;
1184 	}
1185 	rcu_read_unlock();
1186 
1187 	return max(smin, period);
1188 }
1189 
1190 static unsigned int task_scan_max(struct task_struct *p)
1191 {
1192 	unsigned long smin = task_scan_min(p);
1193 	unsigned long smax;
1194 	struct numa_group *ng;
1195 
1196 	/* Watch for min being lower than max due to floor calculations */
1197 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1198 
1199 	/* Scale the maximum scan period with the amount of shared memory. */
1200 	ng = deref_curr_numa_group(p);
1201 	if (ng) {
1202 		unsigned long shared = group_faults_shared(ng);
1203 		unsigned long private = group_faults_priv(ng);
1204 		unsigned long period = smax;
1205 
1206 		period *= refcount_read(&ng->refcount);
1207 		period *= shared + 1;
1208 		period /= private + shared + 1;
1209 
1210 		smax = max(smax, period);
1211 	}
1212 
1213 	return max(smin, smax);
1214 }
1215 
1216 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1217 {
1218 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1219 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1220 }
1221 
1222 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1223 {
1224 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1225 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1226 }
1227 
1228 /* Shared or private faults. */
1229 #define NR_NUMA_HINT_FAULT_TYPES 2
1230 
1231 /* Memory and CPU locality */
1232 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1233 
1234 /* Averaged statistics, and temporary buffers. */
1235 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1236 
1237 pid_t task_numa_group_id(struct task_struct *p)
1238 {
1239 	struct numa_group *ng;
1240 	pid_t gid = 0;
1241 
1242 	rcu_read_lock();
1243 	ng = rcu_dereference(p->numa_group);
1244 	if (ng)
1245 		gid = ng->gid;
1246 	rcu_read_unlock();
1247 
1248 	return gid;
1249 }
1250 
1251 /*
1252  * The averaged statistics, shared & private, memory & CPU,
1253  * occupy the first half of the array. The second half of the
1254  * array is for current counters, which are averaged into the
1255  * first set by task_numa_placement.
1256  */
1257 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1258 {
1259 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1260 }
1261 
1262 static inline unsigned long task_faults(struct task_struct *p, int nid)
1263 {
1264 	if (!p->numa_faults)
1265 		return 0;
1266 
1267 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1269 }
1270 
1271 static inline unsigned long group_faults(struct task_struct *p, int nid)
1272 {
1273 	struct numa_group *ng = deref_task_numa_group(p);
1274 
1275 	if (!ng)
1276 		return 0;
1277 
1278 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1279 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1280 }
1281 
1282 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1283 {
1284 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1285 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1286 }
1287 
1288 static inline unsigned long group_faults_priv(struct numa_group *ng)
1289 {
1290 	unsigned long faults = 0;
1291 	int node;
1292 
1293 	for_each_online_node(node) {
1294 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1295 	}
1296 
1297 	return faults;
1298 }
1299 
1300 static inline unsigned long group_faults_shared(struct numa_group *ng)
1301 {
1302 	unsigned long faults = 0;
1303 	int node;
1304 
1305 	for_each_online_node(node) {
1306 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1307 	}
1308 
1309 	return faults;
1310 }
1311 
1312 /*
1313  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1314  * considered part of a numa group's pseudo-interleaving set. Migrations
1315  * between these nodes are slowed down, to allow things to settle down.
1316  */
1317 #define ACTIVE_NODE_FRACTION 3
1318 
1319 static bool numa_is_active_node(int nid, struct numa_group *ng)
1320 {
1321 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1322 }
1323 
1324 /* Handle placement on systems where not all nodes are directly connected. */
1325 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1326 					int lim_dist, bool task)
1327 {
1328 	unsigned long score = 0;
1329 	int node, max_dist;
1330 
1331 	/*
1332 	 * All nodes are directly connected, and the same distance
1333 	 * from each other. No need for fancy placement algorithms.
1334 	 */
1335 	if (sched_numa_topology_type == NUMA_DIRECT)
1336 		return 0;
1337 
1338 	/* sched_max_numa_distance may be changed in parallel. */
1339 	max_dist = READ_ONCE(sched_max_numa_distance);
1340 	/*
1341 	 * This code is called for each node, introducing N^2 complexity,
1342 	 * which should be ok given the number of nodes rarely exceeds 8.
1343 	 */
1344 	for_each_online_node(node) {
1345 		unsigned long faults;
1346 		int dist = node_distance(nid, node);
1347 
1348 		/*
1349 		 * The furthest away nodes in the system are not interesting
1350 		 * for placement; nid was already counted.
1351 		 */
1352 		if (dist >= max_dist || node == nid)
1353 			continue;
1354 
1355 		/*
1356 		 * On systems with a backplane NUMA topology, compare groups
1357 		 * of nodes, and move tasks towards the group with the most
1358 		 * memory accesses. When comparing two nodes at distance
1359 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1360 		 * of each group. Skip other nodes.
1361 		 */
1362 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1363 			continue;
1364 
1365 		/* Add up the faults from nearby nodes. */
1366 		if (task)
1367 			faults = task_faults(p, node);
1368 		else
1369 			faults = group_faults(p, node);
1370 
1371 		/*
1372 		 * On systems with a glueless mesh NUMA topology, there are
1373 		 * no fixed "groups of nodes". Instead, nodes that are not
1374 		 * directly connected bounce traffic through intermediate
1375 		 * nodes; a numa_group can occupy any set of nodes.
1376 		 * The further away a node is, the less the faults count.
1377 		 * This seems to result in good task placement.
1378 		 */
1379 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1380 			faults *= (max_dist - dist);
1381 			faults /= (max_dist - LOCAL_DISTANCE);
1382 		}
1383 
1384 		score += faults;
1385 	}
1386 
1387 	return score;
1388 }
1389 
1390 /*
1391  * These return the fraction of accesses done by a particular task, or
1392  * task group, on a particular numa node.  The group weight is given a
1393  * larger multiplier, in order to group tasks together that are almost
1394  * evenly spread out between numa nodes.
1395  */
1396 static inline unsigned long task_weight(struct task_struct *p, int nid,
1397 					int dist)
1398 {
1399 	unsigned long faults, total_faults;
1400 
1401 	if (!p->numa_faults)
1402 		return 0;
1403 
1404 	total_faults = p->total_numa_faults;
1405 
1406 	if (!total_faults)
1407 		return 0;
1408 
1409 	faults = task_faults(p, nid);
1410 	faults += score_nearby_nodes(p, nid, dist, true);
1411 
1412 	return 1000 * faults / total_faults;
1413 }
1414 
1415 static inline unsigned long group_weight(struct task_struct *p, int nid,
1416 					 int dist)
1417 {
1418 	struct numa_group *ng = deref_task_numa_group(p);
1419 	unsigned long faults, total_faults;
1420 
1421 	if (!ng)
1422 		return 0;
1423 
1424 	total_faults = ng->total_faults;
1425 
1426 	if (!total_faults)
1427 		return 0;
1428 
1429 	faults = group_faults(p, nid);
1430 	faults += score_nearby_nodes(p, nid, dist, false);
1431 
1432 	return 1000 * faults / total_faults;
1433 }
1434 
1435 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1436 				int src_nid, int dst_cpu)
1437 {
1438 	struct numa_group *ng = deref_curr_numa_group(p);
1439 	int dst_nid = cpu_to_node(dst_cpu);
1440 	int last_cpupid, this_cpupid;
1441 
1442 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1443 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1444 
1445 	/*
1446 	 * Allow first faults or private faults to migrate immediately early in
1447 	 * the lifetime of a task. The magic number 4 is based on waiting for
1448 	 * two full passes of the "multi-stage node selection" test that is
1449 	 * executed below.
1450 	 */
1451 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1452 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1453 		return true;
1454 
1455 	/*
1456 	 * Multi-stage node selection is used in conjunction with a periodic
1457 	 * migration fault to build a temporal task<->page relation. By using
1458 	 * a two-stage filter we remove short/unlikely relations.
1459 	 *
1460 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1461 	 * a task's usage of a particular page (n_p) per total usage of this
1462 	 * page (n_t) (in a given time-span) to a probability.
1463 	 *
1464 	 * Our periodic faults will sample this probability and getting the
1465 	 * same result twice in a row, given these samples are fully
1466 	 * independent, is then given by P(n)^2, provided our sample period
1467 	 * is sufficiently short compared to the usage pattern.
1468 	 *
1469 	 * This quadric squishes small probabilities, making it less likely we
1470 	 * act on an unlikely task<->page relation.
1471 	 */
1472 	if (!cpupid_pid_unset(last_cpupid) &&
1473 				cpupid_to_nid(last_cpupid) != dst_nid)
1474 		return false;
1475 
1476 	/* Always allow migrate on private faults */
1477 	if (cpupid_match_pid(p, last_cpupid))
1478 		return true;
1479 
1480 	/* A shared fault, but p->numa_group has not been set up yet. */
1481 	if (!ng)
1482 		return true;
1483 
1484 	/*
1485 	 * Destination node is much more heavily used than the source
1486 	 * node? Allow migration.
1487 	 */
1488 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1489 					ACTIVE_NODE_FRACTION)
1490 		return true;
1491 
1492 	/*
1493 	 * Distribute memory according to CPU & memory use on each node,
1494 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1495 	 *
1496 	 * faults_cpu(dst)   3   faults_cpu(src)
1497 	 * --------------- * - > ---------------
1498 	 * faults_mem(dst)   4   faults_mem(src)
1499 	 */
1500 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1501 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1502 }
1503 
1504 /*
1505  * 'numa_type' describes the node at the moment of load balancing.
1506  */
1507 enum numa_type {
1508 	/* The node has spare capacity that can be used to run more tasks.  */
1509 	node_has_spare = 0,
1510 	/*
1511 	 * The node is fully used and the tasks don't compete for more CPU
1512 	 * cycles. Nevertheless, some tasks might wait before running.
1513 	 */
1514 	node_fully_busy,
1515 	/*
1516 	 * The node is overloaded and can't provide expected CPU cycles to all
1517 	 * tasks.
1518 	 */
1519 	node_overloaded
1520 };
1521 
1522 /* Cached statistics for all CPUs within a node */
1523 struct numa_stats {
1524 	unsigned long load;
1525 	unsigned long runnable;
1526 	unsigned long util;
1527 	/* Total compute capacity of CPUs on a node */
1528 	unsigned long compute_capacity;
1529 	unsigned int nr_running;
1530 	unsigned int weight;
1531 	enum numa_type node_type;
1532 	int idle_cpu;
1533 };
1534 
1535 static inline bool is_core_idle(int cpu)
1536 {
1537 #ifdef CONFIG_SCHED_SMT
1538 	int sibling;
1539 
1540 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1541 		if (cpu == sibling)
1542 			continue;
1543 
1544 		if (!idle_cpu(sibling))
1545 			return false;
1546 	}
1547 #endif
1548 
1549 	return true;
1550 }
1551 
1552 struct task_numa_env {
1553 	struct task_struct *p;
1554 
1555 	int src_cpu, src_nid;
1556 	int dst_cpu, dst_nid;
1557 	int imb_numa_nr;
1558 
1559 	struct numa_stats src_stats, dst_stats;
1560 
1561 	int imbalance_pct;
1562 	int dist;
1563 
1564 	struct task_struct *best_task;
1565 	long best_imp;
1566 	int best_cpu;
1567 };
1568 
1569 static unsigned long cpu_load(struct rq *rq);
1570 static unsigned long cpu_runnable(struct rq *rq);
1571 
1572 static inline enum
1573 numa_type numa_classify(unsigned int imbalance_pct,
1574 			 struct numa_stats *ns)
1575 {
1576 	if ((ns->nr_running > ns->weight) &&
1577 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1578 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1579 		return node_overloaded;
1580 
1581 	if ((ns->nr_running < ns->weight) ||
1582 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1583 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1584 		return node_has_spare;
1585 
1586 	return node_fully_busy;
1587 }
1588 
1589 #ifdef CONFIG_SCHED_SMT
1590 /* Forward declarations of select_idle_sibling helpers */
1591 static inline bool test_idle_cores(int cpu);
1592 static inline int numa_idle_core(int idle_core, int cpu)
1593 {
1594 	if (!static_branch_likely(&sched_smt_present) ||
1595 	    idle_core >= 0 || !test_idle_cores(cpu))
1596 		return idle_core;
1597 
1598 	/*
1599 	 * Prefer cores instead of packing HT siblings
1600 	 * and triggering future load balancing.
1601 	 */
1602 	if (is_core_idle(cpu))
1603 		idle_core = cpu;
1604 
1605 	return idle_core;
1606 }
1607 #else
1608 static inline int numa_idle_core(int idle_core, int cpu)
1609 {
1610 	return idle_core;
1611 }
1612 #endif
1613 
1614 /*
1615  * Gather all necessary information to make NUMA balancing placement
1616  * decisions that are compatible with standard load balancer. This
1617  * borrows code and logic from update_sg_lb_stats but sharing a
1618  * common implementation is impractical.
1619  */
1620 static void update_numa_stats(struct task_numa_env *env,
1621 			      struct numa_stats *ns, int nid,
1622 			      bool find_idle)
1623 {
1624 	int cpu, idle_core = -1;
1625 
1626 	memset(ns, 0, sizeof(*ns));
1627 	ns->idle_cpu = -1;
1628 
1629 	rcu_read_lock();
1630 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1631 		struct rq *rq = cpu_rq(cpu);
1632 
1633 		ns->load += cpu_load(rq);
1634 		ns->runnable += cpu_runnable(rq);
1635 		ns->util += cpu_util_cfs(cpu);
1636 		ns->nr_running += rq->cfs.h_nr_running;
1637 		ns->compute_capacity += capacity_of(cpu);
1638 
1639 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1640 			if (READ_ONCE(rq->numa_migrate_on) ||
1641 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1642 				continue;
1643 
1644 			if (ns->idle_cpu == -1)
1645 				ns->idle_cpu = cpu;
1646 
1647 			idle_core = numa_idle_core(idle_core, cpu);
1648 		}
1649 	}
1650 	rcu_read_unlock();
1651 
1652 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1653 
1654 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1655 
1656 	if (idle_core >= 0)
1657 		ns->idle_cpu = idle_core;
1658 }
1659 
1660 static void task_numa_assign(struct task_numa_env *env,
1661 			     struct task_struct *p, long imp)
1662 {
1663 	struct rq *rq = cpu_rq(env->dst_cpu);
1664 
1665 	/* Check if run-queue part of active NUMA balance. */
1666 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1667 		int cpu;
1668 		int start = env->dst_cpu;
1669 
1670 		/* Find alternative idle CPU. */
1671 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1672 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1673 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1674 				continue;
1675 			}
1676 
1677 			env->dst_cpu = cpu;
1678 			rq = cpu_rq(env->dst_cpu);
1679 			if (!xchg(&rq->numa_migrate_on, 1))
1680 				goto assign;
1681 		}
1682 
1683 		/* Failed to find an alternative idle CPU */
1684 		return;
1685 	}
1686 
1687 assign:
1688 	/*
1689 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1690 	 * found a better CPU to move/swap.
1691 	 */
1692 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1693 		rq = cpu_rq(env->best_cpu);
1694 		WRITE_ONCE(rq->numa_migrate_on, 0);
1695 	}
1696 
1697 	if (env->best_task)
1698 		put_task_struct(env->best_task);
1699 	if (p)
1700 		get_task_struct(p);
1701 
1702 	env->best_task = p;
1703 	env->best_imp = imp;
1704 	env->best_cpu = env->dst_cpu;
1705 }
1706 
1707 static bool load_too_imbalanced(long src_load, long dst_load,
1708 				struct task_numa_env *env)
1709 {
1710 	long imb, old_imb;
1711 	long orig_src_load, orig_dst_load;
1712 	long src_capacity, dst_capacity;
1713 
1714 	/*
1715 	 * The load is corrected for the CPU capacity available on each node.
1716 	 *
1717 	 * src_load        dst_load
1718 	 * ------------ vs ---------
1719 	 * src_capacity    dst_capacity
1720 	 */
1721 	src_capacity = env->src_stats.compute_capacity;
1722 	dst_capacity = env->dst_stats.compute_capacity;
1723 
1724 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1725 
1726 	orig_src_load = env->src_stats.load;
1727 	orig_dst_load = env->dst_stats.load;
1728 
1729 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1730 
1731 	/* Would this change make things worse? */
1732 	return (imb > old_imb);
1733 }
1734 
1735 /*
1736  * Maximum NUMA importance can be 1998 (2*999);
1737  * SMALLIMP @ 30 would be close to 1998/64.
1738  * Used to deter task migration.
1739  */
1740 #define SMALLIMP	30
1741 
1742 /*
1743  * This checks if the overall compute and NUMA accesses of the system would
1744  * be improved if the source tasks was migrated to the target dst_cpu taking
1745  * into account that it might be best if task running on the dst_cpu should
1746  * be exchanged with the source task
1747  */
1748 static bool task_numa_compare(struct task_numa_env *env,
1749 			      long taskimp, long groupimp, bool maymove)
1750 {
1751 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1752 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1753 	long imp = p_ng ? groupimp : taskimp;
1754 	struct task_struct *cur;
1755 	long src_load, dst_load;
1756 	int dist = env->dist;
1757 	long moveimp = imp;
1758 	long load;
1759 	bool stopsearch = false;
1760 
1761 	if (READ_ONCE(dst_rq->numa_migrate_on))
1762 		return false;
1763 
1764 	rcu_read_lock();
1765 	cur = rcu_dereference(dst_rq->curr);
1766 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1767 		cur = NULL;
1768 
1769 	/*
1770 	 * Because we have preemption enabled we can get migrated around and
1771 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1772 	 */
1773 	if (cur == env->p) {
1774 		stopsearch = true;
1775 		goto unlock;
1776 	}
1777 
1778 	if (!cur) {
1779 		if (maymove && moveimp >= env->best_imp)
1780 			goto assign;
1781 		else
1782 			goto unlock;
1783 	}
1784 
1785 	/* Skip this swap candidate if cannot move to the source cpu. */
1786 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1787 		goto unlock;
1788 
1789 	/*
1790 	 * Skip this swap candidate if it is not moving to its preferred
1791 	 * node and the best task is.
1792 	 */
1793 	if (env->best_task &&
1794 	    env->best_task->numa_preferred_nid == env->src_nid &&
1795 	    cur->numa_preferred_nid != env->src_nid) {
1796 		goto unlock;
1797 	}
1798 
1799 	/*
1800 	 * "imp" is the fault differential for the source task between the
1801 	 * source and destination node. Calculate the total differential for
1802 	 * the source task and potential destination task. The more negative
1803 	 * the value is, the more remote accesses that would be expected to
1804 	 * be incurred if the tasks were swapped.
1805 	 *
1806 	 * If dst and source tasks are in the same NUMA group, or not
1807 	 * in any group then look only at task weights.
1808 	 */
1809 	cur_ng = rcu_dereference(cur->numa_group);
1810 	if (cur_ng == p_ng) {
1811 		/*
1812 		 * Do not swap within a group or between tasks that have
1813 		 * no group if there is spare capacity. Swapping does
1814 		 * not address the load imbalance and helps one task at
1815 		 * the cost of punishing another.
1816 		 */
1817 		if (env->dst_stats.node_type == node_has_spare)
1818 			goto unlock;
1819 
1820 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1821 		      task_weight(cur, env->dst_nid, dist);
1822 		/*
1823 		 * Add some hysteresis to prevent swapping the
1824 		 * tasks within a group over tiny differences.
1825 		 */
1826 		if (cur_ng)
1827 			imp -= imp / 16;
1828 	} else {
1829 		/*
1830 		 * Compare the group weights. If a task is all by itself
1831 		 * (not part of a group), use the task weight instead.
1832 		 */
1833 		if (cur_ng && p_ng)
1834 			imp += group_weight(cur, env->src_nid, dist) -
1835 			       group_weight(cur, env->dst_nid, dist);
1836 		else
1837 			imp += task_weight(cur, env->src_nid, dist) -
1838 			       task_weight(cur, env->dst_nid, dist);
1839 	}
1840 
1841 	/* Discourage picking a task already on its preferred node */
1842 	if (cur->numa_preferred_nid == env->dst_nid)
1843 		imp -= imp / 16;
1844 
1845 	/*
1846 	 * Encourage picking a task that moves to its preferred node.
1847 	 * This potentially makes imp larger than it's maximum of
1848 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1849 	 * case, it does not matter.
1850 	 */
1851 	if (cur->numa_preferred_nid == env->src_nid)
1852 		imp += imp / 8;
1853 
1854 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1855 		imp = moveimp;
1856 		cur = NULL;
1857 		goto assign;
1858 	}
1859 
1860 	/*
1861 	 * Prefer swapping with a task moving to its preferred node over a
1862 	 * task that is not.
1863 	 */
1864 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1865 	    env->best_task->numa_preferred_nid != env->src_nid) {
1866 		goto assign;
1867 	}
1868 
1869 	/*
1870 	 * If the NUMA importance is less than SMALLIMP,
1871 	 * task migration might only result in ping pong
1872 	 * of tasks and also hurt performance due to cache
1873 	 * misses.
1874 	 */
1875 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1876 		goto unlock;
1877 
1878 	/*
1879 	 * In the overloaded case, try and keep the load balanced.
1880 	 */
1881 	load = task_h_load(env->p) - task_h_load(cur);
1882 	if (!load)
1883 		goto assign;
1884 
1885 	dst_load = env->dst_stats.load + load;
1886 	src_load = env->src_stats.load - load;
1887 
1888 	if (load_too_imbalanced(src_load, dst_load, env))
1889 		goto unlock;
1890 
1891 assign:
1892 	/* Evaluate an idle CPU for a task numa move. */
1893 	if (!cur) {
1894 		int cpu = env->dst_stats.idle_cpu;
1895 
1896 		/* Nothing cached so current CPU went idle since the search. */
1897 		if (cpu < 0)
1898 			cpu = env->dst_cpu;
1899 
1900 		/*
1901 		 * If the CPU is no longer truly idle and the previous best CPU
1902 		 * is, keep using it.
1903 		 */
1904 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1905 		    idle_cpu(env->best_cpu)) {
1906 			cpu = env->best_cpu;
1907 		}
1908 
1909 		env->dst_cpu = cpu;
1910 	}
1911 
1912 	task_numa_assign(env, cur, imp);
1913 
1914 	/*
1915 	 * If a move to idle is allowed because there is capacity or load
1916 	 * balance improves then stop the search. While a better swap
1917 	 * candidate may exist, a search is not free.
1918 	 */
1919 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1920 		stopsearch = true;
1921 
1922 	/*
1923 	 * If a swap candidate must be identified and the current best task
1924 	 * moves its preferred node then stop the search.
1925 	 */
1926 	if (!maymove && env->best_task &&
1927 	    env->best_task->numa_preferred_nid == env->src_nid) {
1928 		stopsearch = true;
1929 	}
1930 unlock:
1931 	rcu_read_unlock();
1932 
1933 	return stopsearch;
1934 }
1935 
1936 static void task_numa_find_cpu(struct task_numa_env *env,
1937 				long taskimp, long groupimp)
1938 {
1939 	bool maymove = false;
1940 	int cpu;
1941 
1942 	/*
1943 	 * If dst node has spare capacity, then check if there is an
1944 	 * imbalance that would be overruled by the load balancer.
1945 	 */
1946 	if (env->dst_stats.node_type == node_has_spare) {
1947 		unsigned int imbalance;
1948 		int src_running, dst_running;
1949 
1950 		/*
1951 		 * Would movement cause an imbalance? Note that if src has
1952 		 * more running tasks that the imbalance is ignored as the
1953 		 * move improves the imbalance from the perspective of the
1954 		 * CPU load balancer.
1955 		 * */
1956 		src_running = env->src_stats.nr_running - 1;
1957 		dst_running = env->dst_stats.nr_running + 1;
1958 		imbalance = max(0, dst_running - src_running);
1959 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1960 						  env->imb_numa_nr);
1961 
1962 		/* Use idle CPU if there is no imbalance */
1963 		if (!imbalance) {
1964 			maymove = true;
1965 			if (env->dst_stats.idle_cpu >= 0) {
1966 				env->dst_cpu = env->dst_stats.idle_cpu;
1967 				task_numa_assign(env, NULL, 0);
1968 				return;
1969 			}
1970 		}
1971 	} else {
1972 		long src_load, dst_load, load;
1973 		/*
1974 		 * If the improvement from just moving env->p direction is better
1975 		 * than swapping tasks around, check if a move is possible.
1976 		 */
1977 		load = task_h_load(env->p);
1978 		dst_load = env->dst_stats.load + load;
1979 		src_load = env->src_stats.load - load;
1980 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1981 	}
1982 
1983 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1984 		/* Skip this CPU if the source task cannot migrate */
1985 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1986 			continue;
1987 
1988 		env->dst_cpu = cpu;
1989 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1990 			break;
1991 	}
1992 }
1993 
1994 static int task_numa_migrate(struct task_struct *p)
1995 {
1996 	struct task_numa_env env = {
1997 		.p = p,
1998 
1999 		.src_cpu = task_cpu(p),
2000 		.src_nid = task_node(p),
2001 
2002 		.imbalance_pct = 112,
2003 
2004 		.best_task = NULL,
2005 		.best_imp = 0,
2006 		.best_cpu = -1,
2007 	};
2008 	unsigned long taskweight, groupweight;
2009 	struct sched_domain *sd;
2010 	long taskimp, groupimp;
2011 	struct numa_group *ng;
2012 	struct rq *best_rq;
2013 	int nid, ret, dist;
2014 
2015 	/*
2016 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2017 	 * imbalance and would be the first to start moving tasks about.
2018 	 *
2019 	 * And we want to avoid any moving of tasks about, as that would create
2020 	 * random movement of tasks -- counter the numa conditions we're trying
2021 	 * to satisfy here.
2022 	 */
2023 	rcu_read_lock();
2024 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2025 	if (sd) {
2026 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2027 		env.imb_numa_nr = sd->imb_numa_nr;
2028 	}
2029 	rcu_read_unlock();
2030 
2031 	/*
2032 	 * Cpusets can break the scheduler domain tree into smaller
2033 	 * balance domains, some of which do not cross NUMA boundaries.
2034 	 * Tasks that are "trapped" in such domains cannot be migrated
2035 	 * elsewhere, so there is no point in (re)trying.
2036 	 */
2037 	if (unlikely(!sd)) {
2038 		sched_setnuma(p, task_node(p));
2039 		return -EINVAL;
2040 	}
2041 
2042 	env.dst_nid = p->numa_preferred_nid;
2043 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2044 	taskweight = task_weight(p, env.src_nid, dist);
2045 	groupweight = group_weight(p, env.src_nid, dist);
2046 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2047 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2048 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2049 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2050 
2051 	/* Try to find a spot on the preferred nid. */
2052 	task_numa_find_cpu(&env, taskimp, groupimp);
2053 
2054 	/*
2055 	 * Look at other nodes in these cases:
2056 	 * - there is no space available on the preferred_nid
2057 	 * - the task is part of a numa_group that is interleaved across
2058 	 *   multiple NUMA nodes; in order to better consolidate the group,
2059 	 *   we need to check other locations.
2060 	 */
2061 	ng = deref_curr_numa_group(p);
2062 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2063 		for_each_node_state(nid, N_CPU) {
2064 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2065 				continue;
2066 
2067 			dist = node_distance(env.src_nid, env.dst_nid);
2068 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2069 						dist != env.dist) {
2070 				taskweight = task_weight(p, env.src_nid, dist);
2071 				groupweight = group_weight(p, env.src_nid, dist);
2072 			}
2073 
2074 			/* Only consider nodes where both task and groups benefit */
2075 			taskimp = task_weight(p, nid, dist) - taskweight;
2076 			groupimp = group_weight(p, nid, dist) - groupweight;
2077 			if (taskimp < 0 && groupimp < 0)
2078 				continue;
2079 
2080 			env.dist = dist;
2081 			env.dst_nid = nid;
2082 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2083 			task_numa_find_cpu(&env, taskimp, groupimp);
2084 		}
2085 	}
2086 
2087 	/*
2088 	 * If the task is part of a workload that spans multiple NUMA nodes,
2089 	 * and is migrating into one of the workload's active nodes, remember
2090 	 * this node as the task's preferred numa node, so the workload can
2091 	 * settle down.
2092 	 * A task that migrated to a second choice node will be better off
2093 	 * trying for a better one later. Do not set the preferred node here.
2094 	 */
2095 	if (ng) {
2096 		if (env.best_cpu == -1)
2097 			nid = env.src_nid;
2098 		else
2099 			nid = cpu_to_node(env.best_cpu);
2100 
2101 		if (nid != p->numa_preferred_nid)
2102 			sched_setnuma(p, nid);
2103 	}
2104 
2105 	/* No better CPU than the current one was found. */
2106 	if (env.best_cpu == -1) {
2107 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2108 		return -EAGAIN;
2109 	}
2110 
2111 	best_rq = cpu_rq(env.best_cpu);
2112 	if (env.best_task == NULL) {
2113 		ret = migrate_task_to(p, env.best_cpu);
2114 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2115 		if (ret != 0)
2116 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2117 		return ret;
2118 	}
2119 
2120 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2121 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2122 
2123 	if (ret != 0)
2124 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2125 	put_task_struct(env.best_task);
2126 	return ret;
2127 }
2128 
2129 /* Attempt to migrate a task to a CPU on the preferred node. */
2130 static void numa_migrate_preferred(struct task_struct *p)
2131 {
2132 	unsigned long interval = HZ;
2133 
2134 	/* This task has no NUMA fault statistics yet */
2135 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2136 		return;
2137 
2138 	/* Periodically retry migrating the task to the preferred node */
2139 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2140 	p->numa_migrate_retry = jiffies + interval;
2141 
2142 	/* Success if task is already running on preferred CPU */
2143 	if (task_node(p) == p->numa_preferred_nid)
2144 		return;
2145 
2146 	/* Otherwise, try migrate to a CPU on the preferred node */
2147 	task_numa_migrate(p);
2148 }
2149 
2150 /*
2151  * Find out how many nodes the workload is actively running on. Do this by
2152  * tracking the nodes from which NUMA hinting faults are triggered. This can
2153  * be different from the set of nodes where the workload's memory is currently
2154  * located.
2155  */
2156 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2157 {
2158 	unsigned long faults, max_faults = 0;
2159 	int nid, active_nodes = 0;
2160 
2161 	for_each_node_state(nid, N_CPU) {
2162 		faults = group_faults_cpu(numa_group, nid);
2163 		if (faults > max_faults)
2164 			max_faults = faults;
2165 	}
2166 
2167 	for_each_node_state(nid, N_CPU) {
2168 		faults = group_faults_cpu(numa_group, nid);
2169 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2170 			active_nodes++;
2171 	}
2172 
2173 	numa_group->max_faults_cpu = max_faults;
2174 	numa_group->active_nodes = active_nodes;
2175 }
2176 
2177 /*
2178  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2179  * increments. The more local the fault statistics are, the higher the scan
2180  * period will be for the next scan window. If local/(local+remote) ratio is
2181  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2182  * the scan period will decrease. Aim for 70% local accesses.
2183  */
2184 #define NUMA_PERIOD_SLOTS 10
2185 #define NUMA_PERIOD_THRESHOLD 7
2186 
2187 /*
2188  * Increase the scan period (slow down scanning) if the majority of
2189  * our memory is already on our local node, or if the majority of
2190  * the page accesses are shared with other processes.
2191  * Otherwise, decrease the scan period.
2192  */
2193 static void update_task_scan_period(struct task_struct *p,
2194 			unsigned long shared, unsigned long private)
2195 {
2196 	unsigned int period_slot;
2197 	int lr_ratio, ps_ratio;
2198 	int diff;
2199 
2200 	unsigned long remote = p->numa_faults_locality[0];
2201 	unsigned long local = p->numa_faults_locality[1];
2202 
2203 	/*
2204 	 * If there were no record hinting faults then either the task is
2205 	 * completely idle or all activity is in areas that are not of interest
2206 	 * to automatic numa balancing. Related to that, if there were failed
2207 	 * migration then it implies we are migrating too quickly or the local
2208 	 * node is overloaded. In either case, scan slower
2209 	 */
2210 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2211 		p->numa_scan_period = min(p->numa_scan_period_max,
2212 			p->numa_scan_period << 1);
2213 
2214 		p->mm->numa_next_scan = jiffies +
2215 			msecs_to_jiffies(p->numa_scan_period);
2216 
2217 		return;
2218 	}
2219 
2220 	/*
2221 	 * Prepare to scale scan period relative to the current period.
2222 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2223 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2224 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2225 	 */
2226 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2227 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2228 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2229 
2230 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2231 		/*
2232 		 * Most memory accesses are local. There is no need to
2233 		 * do fast NUMA scanning, since memory is already local.
2234 		 */
2235 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2236 		if (!slot)
2237 			slot = 1;
2238 		diff = slot * period_slot;
2239 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2240 		/*
2241 		 * Most memory accesses are shared with other tasks.
2242 		 * There is no point in continuing fast NUMA scanning,
2243 		 * since other tasks may just move the memory elsewhere.
2244 		 */
2245 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2246 		if (!slot)
2247 			slot = 1;
2248 		diff = slot * period_slot;
2249 	} else {
2250 		/*
2251 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2252 		 * yet they are not on the local NUMA node. Speed up
2253 		 * NUMA scanning to get the memory moved over.
2254 		 */
2255 		int ratio = max(lr_ratio, ps_ratio);
2256 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2257 	}
2258 
2259 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2260 			task_scan_min(p), task_scan_max(p));
2261 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2262 }
2263 
2264 /*
2265  * Get the fraction of time the task has been running since the last
2266  * NUMA placement cycle. The scheduler keeps similar statistics, but
2267  * decays those on a 32ms period, which is orders of magnitude off
2268  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2269  * stats only if the task is so new there are no NUMA statistics yet.
2270  */
2271 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2272 {
2273 	u64 runtime, delta, now;
2274 	/* Use the start of this time slice to avoid calculations. */
2275 	now = p->se.exec_start;
2276 	runtime = p->se.sum_exec_runtime;
2277 
2278 	if (p->last_task_numa_placement) {
2279 		delta = runtime - p->last_sum_exec_runtime;
2280 		*period = now - p->last_task_numa_placement;
2281 
2282 		/* Avoid time going backwards, prevent potential divide error: */
2283 		if (unlikely((s64)*period < 0))
2284 			*period = 0;
2285 	} else {
2286 		delta = p->se.avg.load_sum;
2287 		*period = LOAD_AVG_MAX;
2288 	}
2289 
2290 	p->last_sum_exec_runtime = runtime;
2291 	p->last_task_numa_placement = now;
2292 
2293 	return delta;
2294 }
2295 
2296 /*
2297  * Determine the preferred nid for a task in a numa_group. This needs to
2298  * be done in a way that produces consistent results with group_weight,
2299  * otherwise workloads might not converge.
2300  */
2301 static int preferred_group_nid(struct task_struct *p, int nid)
2302 {
2303 	nodemask_t nodes;
2304 	int dist;
2305 
2306 	/* Direct connections between all NUMA nodes. */
2307 	if (sched_numa_topology_type == NUMA_DIRECT)
2308 		return nid;
2309 
2310 	/*
2311 	 * On a system with glueless mesh NUMA topology, group_weight
2312 	 * scores nodes according to the number of NUMA hinting faults on
2313 	 * both the node itself, and on nearby nodes.
2314 	 */
2315 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2316 		unsigned long score, max_score = 0;
2317 		int node, max_node = nid;
2318 
2319 		dist = sched_max_numa_distance;
2320 
2321 		for_each_node_state(node, N_CPU) {
2322 			score = group_weight(p, node, dist);
2323 			if (score > max_score) {
2324 				max_score = score;
2325 				max_node = node;
2326 			}
2327 		}
2328 		return max_node;
2329 	}
2330 
2331 	/*
2332 	 * Finding the preferred nid in a system with NUMA backplane
2333 	 * interconnect topology is more involved. The goal is to locate
2334 	 * tasks from numa_groups near each other in the system, and
2335 	 * untangle workloads from different sides of the system. This requires
2336 	 * searching down the hierarchy of node groups, recursively searching
2337 	 * inside the highest scoring group of nodes. The nodemask tricks
2338 	 * keep the complexity of the search down.
2339 	 */
2340 	nodes = node_states[N_CPU];
2341 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2342 		unsigned long max_faults = 0;
2343 		nodemask_t max_group = NODE_MASK_NONE;
2344 		int a, b;
2345 
2346 		/* Are there nodes at this distance from each other? */
2347 		if (!find_numa_distance(dist))
2348 			continue;
2349 
2350 		for_each_node_mask(a, nodes) {
2351 			unsigned long faults = 0;
2352 			nodemask_t this_group;
2353 			nodes_clear(this_group);
2354 
2355 			/* Sum group's NUMA faults; includes a==b case. */
2356 			for_each_node_mask(b, nodes) {
2357 				if (node_distance(a, b) < dist) {
2358 					faults += group_faults(p, b);
2359 					node_set(b, this_group);
2360 					node_clear(b, nodes);
2361 				}
2362 			}
2363 
2364 			/* Remember the top group. */
2365 			if (faults > max_faults) {
2366 				max_faults = faults;
2367 				max_group = this_group;
2368 				/*
2369 				 * subtle: at the smallest distance there is
2370 				 * just one node left in each "group", the
2371 				 * winner is the preferred nid.
2372 				 */
2373 				nid = a;
2374 			}
2375 		}
2376 		/* Next round, evaluate the nodes within max_group. */
2377 		if (!max_faults)
2378 			break;
2379 		nodes = max_group;
2380 	}
2381 	return nid;
2382 }
2383 
2384 static void task_numa_placement(struct task_struct *p)
2385 {
2386 	int seq, nid, max_nid = NUMA_NO_NODE;
2387 	unsigned long max_faults = 0;
2388 	unsigned long fault_types[2] = { 0, 0 };
2389 	unsigned long total_faults;
2390 	u64 runtime, period;
2391 	spinlock_t *group_lock = NULL;
2392 	struct numa_group *ng;
2393 
2394 	/*
2395 	 * The p->mm->numa_scan_seq field gets updated without
2396 	 * exclusive access. Use READ_ONCE() here to ensure
2397 	 * that the field is read in a single access:
2398 	 */
2399 	seq = READ_ONCE(p->mm->numa_scan_seq);
2400 	if (p->numa_scan_seq == seq)
2401 		return;
2402 	p->numa_scan_seq = seq;
2403 	p->numa_scan_period_max = task_scan_max(p);
2404 
2405 	total_faults = p->numa_faults_locality[0] +
2406 		       p->numa_faults_locality[1];
2407 	runtime = numa_get_avg_runtime(p, &period);
2408 
2409 	/* If the task is part of a group prevent parallel updates to group stats */
2410 	ng = deref_curr_numa_group(p);
2411 	if (ng) {
2412 		group_lock = &ng->lock;
2413 		spin_lock_irq(group_lock);
2414 	}
2415 
2416 	/* Find the node with the highest number of faults */
2417 	for_each_online_node(nid) {
2418 		/* Keep track of the offsets in numa_faults array */
2419 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2420 		unsigned long faults = 0, group_faults = 0;
2421 		int priv;
2422 
2423 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2424 			long diff, f_diff, f_weight;
2425 
2426 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2427 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2428 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2429 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2430 
2431 			/* Decay existing window, copy faults since last scan */
2432 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2433 			fault_types[priv] += p->numa_faults[membuf_idx];
2434 			p->numa_faults[membuf_idx] = 0;
2435 
2436 			/*
2437 			 * Normalize the faults_from, so all tasks in a group
2438 			 * count according to CPU use, instead of by the raw
2439 			 * number of faults. Tasks with little runtime have
2440 			 * little over-all impact on throughput, and thus their
2441 			 * faults are less important.
2442 			 */
2443 			f_weight = div64_u64(runtime << 16, period + 1);
2444 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2445 				   (total_faults + 1);
2446 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2447 			p->numa_faults[cpubuf_idx] = 0;
2448 
2449 			p->numa_faults[mem_idx] += diff;
2450 			p->numa_faults[cpu_idx] += f_diff;
2451 			faults += p->numa_faults[mem_idx];
2452 			p->total_numa_faults += diff;
2453 			if (ng) {
2454 				/*
2455 				 * safe because we can only change our own group
2456 				 *
2457 				 * mem_idx represents the offset for a given
2458 				 * nid and priv in a specific region because it
2459 				 * is at the beginning of the numa_faults array.
2460 				 */
2461 				ng->faults[mem_idx] += diff;
2462 				ng->faults[cpu_idx] += f_diff;
2463 				ng->total_faults += diff;
2464 				group_faults += ng->faults[mem_idx];
2465 			}
2466 		}
2467 
2468 		if (!ng) {
2469 			if (faults > max_faults) {
2470 				max_faults = faults;
2471 				max_nid = nid;
2472 			}
2473 		} else if (group_faults > max_faults) {
2474 			max_faults = group_faults;
2475 			max_nid = nid;
2476 		}
2477 	}
2478 
2479 	/* Cannot migrate task to CPU-less node */
2480 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2481 		int near_nid = max_nid;
2482 		int distance, near_distance = INT_MAX;
2483 
2484 		for_each_node_state(nid, N_CPU) {
2485 			distance = node_distance(max_nid, nid);
2486 			if (distance < near_distance) {
2487 				near_nid = nid;
2488 				near_distance = distance;
2489 			}
2490 		}
2491 		max_nid = near_nid;
2492 	}
2493 
2494 	if (ng) {
2495 		numa_group_count_active_nodes(ng);
2496 		spin_unlock_irq(group_lock);
2497 		max_nid = preferred_group_nid(p, max_nid);
2498 	}
2499 
2500 	if (max_faults) {
2501 		/* Set the new preferred node */
2502 		if (max_nid != p->numa_preferred_nid)
2503 			sched_setnuma(p, max_nid);
2504 	}
2505 
2506 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2507 }
2508 
2509 static inline int get_numa_group(struct numa_group *grp)
2510 {
2511 	return refcount_inc_not_zero(&grp->refcount);
2512 }
2513 
2514 static inline void put_numa_group(struct numa_group *grp)
2515 {
2516 	if (refcount_dec_and_test(&grp->refcount))
2517 		kfree_rcu(grp, rcu);
2518 }
2519 
2520 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2521 			int *priv)
2522 {
2523 	struct numa_group *grp, *my_grp;
2524 	struct task_struct *tsk;
2525 	bool join = false;
2526 	int cpu = cpupid_to_cpu(cpupid);
2527 	int i;
2528 
2529 	if (unlikely(!deref_curr_numa_group(p))) {
2530 		unsigned int size = sizeof(struct numa_group) +
2531 				    NR_NUMA_HINT_FAULT_STATS *
2532 				    nr_node_ids * sizeof(unsigned long);
2533 
2534 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2535 		if (!grp)
2536 			return;
2537 
2538 		refcount_set(&grp->refcount, 1);
2539 		grp->active_nodes = 1;
2540 		grp->max_faults_cpu = 0;
2541 		spin_lock_init(&grp->lock);
2542 		grp->gid = p->pid;
2543 
2544 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2545 			grp->faults[i] = p->numa_faults[i];
2546 
2547 		grp->total_faults = p->total_numa_faults;
2548 
2549 		grp->nr_tasks++;
2550 		rcu_assign_pointer(p->numa_group, grp);
2551 	}
2552 
2553 	rcu_read_lock();
2554 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2555 
2556 	if (!cpupid_match_pid(tsk, cpupid))
2557 		goto no_join;
2558 
2559 	grp = rcu_dereference(tsk->numa_group);
2560 	if (!grp)
2561 		goto no_join;
2562 
2563 	my_grp = deref_curr_numa_group(p);
2564 	if (grp == my_grp)
2565 		goto no_join;
2566 
2567 	/*
2568 	 * Only join the other group if its bigger; if we're the bigger group,
2569 	 * the other task will join us.
2570 	 */
2571 	if (my_grp->nr_tasks > grp->nr_tasks)
2572 		goto no_join;
2573 
2574 	/*
2575 	 * Tie-break on the grp address.
2576 	 */
2577 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2578 		goto no_join;
2579 
2580 	/* Always join threads in the same process. */
2581 	if (tsk->mm == current->mm)
2582 		join = true;
2583 
2584 	/* Simple filter to avoid false positives due to PID collisions */
2585 	if (flags & TNF_SHARED)
2586 		join = true;
2587 
2588 	/* Update priv based on whether false sharing was detected */
2589 	*priv = !join;
2590 
2591 	if (join && !get_numa_group(grp))
2592 		goto no_join;
2593 
2594 	rcu_read_unlock();
2595 
2596 	if (!join)
2597 		return;
2598 
2599 	WARN_ON_ONCE(irqs_disabled());
2600 	double_lock_irq(&my_grp->lock, &grp->lock);
2601 
2602 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2603 		my_grp->faults[i] -= p->numa_faults[i];
2604 		grp->faults[i] += p->numa_faults[i];
2605 	}
2606 	my_grp->total_faults -= p->total_numa_faults;
2607 	grp->total_faults += p->total_numa_faults;
2608 
2609 	my_grp->nr_tasks--;
2610 	grp->nr_tasks++;
2611 
2612 	spin_unlock(&my_grp->lock);
2613 	spin_unlock_irq(&grp->lock);
2614 
2615 	rcu_assign_pointer(p->numa_group, grp);
2616 
2617 	put_numa_group(my_grp);
2618 	return;
2619 
2620 no_join:
2621 	rcu_read_unlock();
2622 	return;
2623 }
2624 
2625 /*
2626  * Get rid of NUMA statistics associated with a task (either current or dead).
2627  * If @final is set, the task is dead and has reached refcount zero, so we can
2628  * safely free all relevant data structures. Otherwise, there might be
2629  * concurrent reads from places like load balancing and procfs, and we should
2630  * reset the data back to default state without freeing ->numa_faults.
2631  */
2632 void task_numa_free(struct task_struct *p, bool final)
2633 {
2634 	/* safe: p either is current or is being freed by current */
2635 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2636 	unsigned long *numa_faults = p->numa_faults;
2637 	unsigned long flags;
2638 	int i;
2639 
2640 	if (!numa_faults)
2641 		return;
2642 
2643 	if (grp) {
2644 		spin_lock_irqsave(&grp->lock, flags);
2645 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2646 			grp->faults[i] -= p->numa_faults[i];
2647 		grp->total_faults -= p->total_numa_faults;
2648 
2649 		grp->nr_tasks--;
2650 		spin_unlock_irqrestore(&grp->lock, flags);
2651 		RCU_INIT_POINTER(p->numa_group, NULL);
2652 		put_numa_group(grp);
2653 	}
2654 
2655 	if (final) {
2656 		p->numa_faults = NULL;
2657 		kfree(numa_faults);
2658 	} else {
2659 		p->total_numa_faults = 0;
2660 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2661 			numa_faults[i] = 0;
2662 	}
2663 }
2664 
2665 /*
2666  * Got a PROT_NONE fault for a page on @node.
2667  */
2668 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2669 {
2670 	struct task_struct *p = current;
2671 	bool migrated = flags & TNF_MIGRATED;
2672 	int cpu_node = task_node(current);
2673 	int local = !!(flags & TNF_FAULT_LOCAL);
2674 	struct numa_group *ng;
2675 	int priv;
2676 
2677 	if (!static_branch_likely(&sched_numa_balancing))
2678 		return;
2679 
2680 	/* for example, ksmd faulting in a user's mm */
2681 	if (!p->mm)
2682 		return;
2683 
2684 	/* Allocate buffer to track faults on a per-node basis */
2685 	if (unlikely(!p->numa_faults)) {
2686 		int size = sizeof(*p->numa_faults) *
2687 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2688 
2689 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2690 		if (!p->numa_faults)
2691 			return;
2692 
2693 		p->total_numa_faults = 0;
2694 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2695 	}
2696 
2697 	/*
2698 	 * First accesses are treated as private, otherwise consider accesses
2699 	 * to be private if the accessing pid has not changed
2700 	 */
2701 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2702 		priv = 1;
2703 	} else {
2704 		priv = cpupid_match_pid(p, last_cpupid);
2705 		if (!priv && !(flags & TNF_NO_GROUP))
2706 			task_numa_group(p, last_cpupid, flags, &priv);
2707 	}
2708 
2709 	/*
2710 	 * If a workload spans multiple NUMA nodes, a shared fault that
2711 	 * occurs wholly within the set of nodes that the workload is
2712 	 * actively using should be counted as local. This allows the
2713 	 * scan rate to slow down when a workload has settled down.
2714 	 */
2715 	ng = deref_curr_numa_group(p);
2716 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2717 				numa_is_active_node(cpu_node, ng) &&
2718 				numa_is_active_node(mem_node, ng))
2719 		local = 1;
2720 
2721 	/*
2722 	 * Retry to migrate task to preferred node periodically, in case it
2723 	 * previously failed, or the scheduler moved us.
2724 	 */
2725 	if (time_after(jiffies, p->numa_migrate_retry)) {
2726 		task_numa_placement(p);
2727 		numa_migrate_preferred(p);
2728 	}
2729 
2730 	if (migrated)
2731 		p->numa_pages_migrated += pages;
2732 	if (flags & TNF_MIGRATE_FAIL)
2733 		p->numa_faults_locality[2] += pages;
2734 
2735 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2736 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2737 	p->numa_faults_locality[local] += pages;
2738 }
2739 
2740 static void reset_ptenuma_scan(struct task_struct *p)
2741 {
2742 	/*
2743 	 * We only did a read acquisition of the mmap sem, so
2744 	 * p->mm->numa_scan_seq is written to without exclusive access
2745 	 * and the update is not guaranteed to be atomic. That's not
2746 	 * much of an issue though, since this is just used for
2747 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2748 	 * expensive, to avoid any form of compiler optimizations:
2749 	 */
2750 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2751 	p->mm->numa_scan_offset = 0;
2752 }
2753 
2754 /*
2755  * The expensive part of numa migration is done from task_work context.
2756  * Triggered from task_tick_numa().
2757  */
2758 static void task_numa_work(struct callback_head *work)
2759 {
2760 	unsigned long migrate, next_scan, now = jiffies;
2761 	struct task_struct *p = current;
2762 	struct mm_struct *mm = p->mm;
2763 	u64 runtime = p->se.sum_exec_runtime;
2764 	struct vm_area_struct *vma;
2765 	unsigned long start, end;
2766 	unsigned long nr_pte_updates = 0;
2767 	long pages, virtpages;
2768 
2769 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2770 
2771 	work->next = work;
2772 	/*
2773 	 * Who cares about NUMA placement when they're dying.
2774 	 *
2775 	 * NOTE: make sure not to dereference p->mm before this check,
2776 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2777 	 * without p->mm even though we still had it when we enqueued this
2778 	 * work.
2779 	 */
2780 	if (p->flags & PF_EXITING)
2781 		return;
2782 
2783 	if (!mm->numa_next_scan) {
2784 		mm->numa_next_scan = now +
2785 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2786 	}
2787 
2788 	/*
2789 	 * Enforce maximal scan/migration frequency..
2790 	 */
2791 	migrate = mm->numa_next_scan;
2792 	if (time_before(now, migrate))
2793 		return;
2794 
2795 	if (p->numa_scan_period == 0) {
2796 		p->numa_scan_period_max = task_scan_max(p);
2797 		p->numa_scan_period = task_scan_start(p);
2798 	}
2799 
2800 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2801 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2802 		return;
2803 
2804 	/*
2805 	 * Delay this task enough that another task of this mm will likely win
2806 	 * the next time around.
2807 	 */
2808 	p->node_stamp += 2 * TICK_NSEC;
2809 
2810 	start = mm->numa_scan_offset;
2811 	pages = sysctl_numa_balancing_scan_size;
2812 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2813 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2814 	if (!pages)
2815 		return;
2816 
2817 
2818 	if (!mmap_read_trylock(mm))
2819 		return;
2820 	vma = find_vma(mm, start);
2821 	if (!vma) {
2822 		reset_ptenuma_scan(p);
2823 		start = 0;
2824 		vma = mm->mmap;
2825 	}
2826 	for (; vma; vma = vma->vm_next) {
2827 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2828 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2829 			continue;
2830 		}
2831 
2832 		/*
2833 		 * Shared library pages mapped by multiple processes are not
2834 		 * migrated as it is expected they are cache replicated. Avoid
2835 		 * hinting faults in read-only file-backed mappings or the vdso
2836 		 * as migrating the pages will be of marginal benefit.
2837 		 */
2838 		if (!vma->vm_mm ||
2839 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2840 			continue;
2841 
2842 		/*
2843 		 * Skip inaccessible VMAs to avoid any confusion between
2844 		 * PROT_NONE and NUMA hinting ptes
2845 		 */
2846 		if (!vma_is_accessible(vma))
2847 			continue;
2848 
2849 		do {
2850 			start = max(start, vma->vm_start);
2851 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2852 			end = min(end, vma->vm_end);
2853 			nr_pte_updates = change_prot_numa(vma, start, end);
2854 
2855 			/*
2856 			 * Try to scan sysctl_numa_balancing_size worth of
2857 			 * hpages that have at least one present PTE that
2858 			 * is not already pte-numa. If the VMA contains
2859 			 * areas that are unused or already full of prot_numa
2860 			 * PTEs, scan up to virtpages, to skip through those
2861 			 * areas faster.
2862 			 */
2863 			if (nr_pte_updates)
2864 				pages -= (end - start) >> PAGE_SHIFT;
2865 			virtpages -= (end - start) >> PAGE_SHIFT;
2866 
2867 			start = end;
2868 			if (pages <= 0 || virtpages <= 0)
2869 				goto out;
2870 
2871 			cond_resched();
2872 		} while (end != vma->vm_end);
2873 	}
2874 
2875 out:
2876 	/*
2877 	 * It is possible to reach the end of the VMA list but the last few
2878 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2879 	 * would find the !migratable VMA on the next scan but not reset the
2880 	 * scanner to the start so check it now.
2881 	 */
2882 	if (vma)
2883 		mm->numa_scan_offset = start;
2884 	else
2885 		reset_ptenuma_scan(p);
2886 	mmap_read_unlock(mm);
2887 
2888 	/*
2889 	 * Make sure tasks use at least 32x as much time to run other code
2890 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2891 	 * Usually update_task_scan_period slows down scanning enough; on an
2892 	 * overloaded system we need to limit overhead on a per task basis.
2893 	 */
2894 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2895 		u64 diff = p->se.sum_exec_runtime - runtime;
2896 		p->node_stamp += 32 * diff;
2897 	}
2898 }
2899 
2900 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2901 {
2902 	int mm_users = 0;
2903 	struct mm_struct *mm = p->mm;
2904 
2905 	if (mm) {
2906 		mm_users = atomic_read(&mm->mm_users);
2907 		if (mm_users == 1) {
2908 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2909 			mm->numa_scan_seq = 0;
2910 		}
2911 	}
2912 	p->node_stamp			= 0;
2913 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2914 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2915 	p->numa_migrate_retry		= 0;
2916 	/* Protect against double add, see task_tick_numa and task_numa_work */
2917 	p->numa_work.next		= &p->numa_work;
2918 	p->numa_faults			= NULL;
2919 	p->numa_pages_migrated		= 0;
2920 	p->total_numa_faults		= 0;
2921 	RCU_INIT_POINTER(p->numa_group, NULL);
2922 	p->last_task_numa_placement	= 0;
2923 	p->last_sum_exec_runtime	= 0;
2924 
2925 	init_task_work(&p->numa_work, task_numa_work);
2926 
2927 	/* New address space, reset the preferred nid */
2928 	if (!(clone_flags & CLONE_VM)) {
2929 		p->numa_preferred_nid = NUMA_NO_NODE;
2930 		return;
2931 	}
2932 
2933 	/*
2934 	 * New thread, keep existing numa_preferred_nid which should be copied
2935 	 * already by arch_dup_task_struct but stagger when scans start.
2936 	 */
2937 	if (mm) {
2938 		unsigned int delay;
2939 
2940 		delay = min_t(unsigned int, task_scan_max(current),
2941 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2942 		delay += 2 * TICK_NSEC;
2943 		p->node_stamp = delay;
2944 	}
2945 }
2946 
2947 /*
2948  * Drive the periodic memory faults..
2949  */
2950 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2951 {
2952 	struct callback_head *work = &curr->numa_work;
2953 	u64 period, now;
2954 
2955 	/*
2956 	 * We don't care about NUMA placement if we don't have memory.
2957 	 */
2958 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2959 		return;
2960 
2961 	/*
2962 	 * Using runtime rather than walltime has the dual advantage that
2963 	 * we (mostly) drive the selection from busy threads and that the
2964 	 * task needs to have done some actual work before we bother with
2965 	 * NUMA placement.
2966 	 */
2967 	now = curr->se.sum_exec_runtime;
2968 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2969 
2970 	if (now > curr->node_stamp + period) {
2971 		if (!curr->node_stamp)
2972 			curr->numa_scan_period = task_scan_start(curr);
2973 		curr->node_stamp += period;
2974 
2975 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2976 			task_work_add(curr, work, TWA_RESUME);
2977 	}
2978 }
2979 
2980 static void update_scan_period(struct task_struct *p, int new_cpu)
2981 {
2982 	int src_nid = cpu_to_node(task_cpu(p));
2983 	int dst_nid = cpu_to_node(new_cpu);
2984 
2985 	if (!static_branch_likely(&sched_numa_balancing))
2986 		return;
2987 
2988 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2989 		return;
2990 
2991 	if (src_nid == dst_nid)
2992 		return;
2993 
2994 	/*
2995 	 * Allow resets if faults have been trapped before one scan
2996 	 * has completed. This is most likely due to a new task that
2997 	 * is pulled cross-node due to wakeups or load balancing.
2998 	 */
2999 	if (p->numa_scan_seq) {
3000 		/*
3001 		 * Avoid scan adjustments if moving to the preferred
3002 		 * node or if the task was not previously running on
3003 		 * the preferred node.
3004 		 */
3005 		if (dst_nid == p->numa_preferred_nid ||
3006 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3007 			src_nid != p->numa_preferred_nid))
3008 			return;
3009 	}
3010 
3011 	p->numa_scan_period = task_scan_start(p);
3012 }
3013 
3014 #else
3015 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3016 {
3017 }
3018 
3019 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3020 {
3021 }
3022 
3023 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3024 {
3025 }
3026 
3027 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3028 {
3029 }
3030 
3031 #endif /* CONFIG_NUMA_BALANCING */
3032 
3033 static void
3034 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3035 {
3036 	update_load_add(&cfs_rq->load, se->load.weight);
3037 #ifdef CONFIG_SMP
3038 	if (entity_is_task(se)) {
3039 		struct rq *rq = rq_of(cfs_rq);
3040 
3041 		account_numa_enqueue(rq, task_of(se));
3042 		list_add(&se->group_node, &rq->cfs_tasks);
3043 	}
3044 #endif
3045 	cfs_rq->nr_running++;
3046 	if (se_is_idle(se))
3047 		cfs_rq->idle_nr_running++;
3048 }
3049 
3050 static void
3051 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3052 {
3053 	update_load_sub(&cfs_rq->load, se->load.weight);
3054 #ifdef CONFIG_SMP
3055 	if (entity_is_task(se)) {
3056 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3057 		list_del_init(&se->group_node);
3058 	}
3059 #endif
3060 	cfs_rq->nr_running--;
3061 	if (se_is_idle(se))
3062 		cfs_rq->idle_nr_running--;
3063 }
3064 
3065 /*
3066  * Signed add and clamp on underflow.
3067  *
3068  * Explicitly do a load-store to ensure the intermediate value never hits
3069  * memory. This allows lockless observations without ever seeing the negative
3070  * values.
3071  */
3072 #define add_positive(_ptr, _val) do {                           \
3073 	typeof(_ptr) ptr = (_ptr);                              \
3074 	typeof(_val) val = (_val);                              \
3075 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3076 								\
3077 	res = var + val;                                        \
3078 								\
3079 	if (val < 0 && res > var)                               \
3080 		res = 0;                                        \
3081 								\
3082 	WRITE_ONCE(*ptr, res);                                  \
3083 } while (0)
3084 
3085 /*
3086  * Unsigned subtract and clamp on underflow.
3087  *
3088  * Explicitly do a load-store to ensure the intermediate value never hits
3089  * memory. This allows lockless observations without ever seeing the negative
3090  * values.
3091  */
3092 #define sub_positive(_ptr, _val) do {				\
3093 	typeof(_ptr) ptr = (_ptr);				\
3094 	typeof(*ptr) val = (_val);				\
3095 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3096 	res = var - val;					\
3097 	if (res > var)						\
3098 		res = 0;					\
3099 	WRITE_ONCE(*ptr, res);					\
3100 } while (0)
3101 
3102 /*
3103  * Remove and clamp on negative, from a local variable.
3104  *
3105  * A variant of sub_positive(), which does not use explicit load-store
3106  * and is thus optimized for local variable updates.
3107  */
3108 #define lsub_positive(_ptr, _val) do {				\
3109 	typeof(_ptr) ptr = (_ptr);				\
3110 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3111 } while (0)
3112 
3113 #ifdef CONFIG_SMP
3114 static inline void
3115 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3116 {
3117 	cfs_rq->avg.load_avg += se->avg.load_avg;
3118 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3119 }
3120 
3121 static inline void
3122 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3123 {
3124 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3125 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3126 	/* See update_cfs_rq_load_avg() */
3127 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3128 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3129 }
3130 #else
3131 static inline void
3132 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3133 static inline void
3134 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3135 #endif
3136 
3137 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3138 			    unsigned long weight)
3139 {
3140 	if (se->on_rq) {
3141 		/* commit outstanding execution time */
3142 		if (cfs_rq->curr == se)
3143 			update_curr(cfs_rq);
3144 		update_load_sub(&cfs_rq->load, se->load.weight);
3145 	}
3146 	dequeue_load_avg(cfs_rq, se);
3147 
3148 	update_load_set(&se->load, weight);
3149 
3150 #ifdef CONFIG_SMP
3151 	do {
3152 		u32 divider = get_pelt_divider(&se->avg);
3153 
3154 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3155 	} while (0);
3156 #endif
3157 
3158 	enqueue_load_avg(cfs_rq, se);
3159 	if (se->on_rq)
3160 		update_load_add(&cfs_rq->load, se->load.weight);
3161 
3162 }
3163 
3164 void reweight_task(struct task_struct *p, int prio)
3165 {
3166 	struct sched_entity *se = &p->se;
3167 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3168 	struct load_weight *load = &se->load;
3169 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3170 
3171 	reweight_entity(cfs_rq, se, weight);
3172 	load->inv_weight = sched_prio_to_wmult[prio];
3173 }
3174 
3175 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3176 
3177 #ifdef CONFIG_FAIR_GROUP_SCHED
3178 #ifdef CONFIG_SMP
3179 /*
3180  * All this does is approximate the hierarchical proportion which includes that
3181  * global sum we all love to hate.
3182  *
3183  * That is, the weight of a group entity, is the proportional share of the
3184  * group weight based on the group runqueue weights. That is:
3185  *
3186  *                     tg->weight * grq->load.weight
3187  *   ge->load.weight = -----------------------------               (1)
3188  *                       \Sum grq->load.weight
3189  *
3190  * Now, because computing that sum is prohibitively expensive to compute (been
3191  * there, done that) we approximate it with this average stuff. The average
3192  * moves slower and therefore the approximation is cheaper and more stable.
3193  *
3194  * So instead of the above, we substitute:
3195  *
3196  *   grq->load.weight -> grq->avg.load_avg                         (2)
3197  *
3198  * which yields the following:
3199  *
3200  *                     tg->weight * grq->avg.load_avg
3201  *   ge->load.weight = ------------------------------              (3)
3202  *                             tg->load_avg
3203  *
3204  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3205  *
3206  * That is shares_avg, and it is right (given the approximation (2)).
3207  *
3208  * The problem with it is that because the average is slow -- it was designed
3209  * to be exactly that of course -- this leads to transients in boundary
3210  * conditions. In specific, the case where the group was idle and we start the
3211  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3212  * yielding bad latency etc..
3213  *
3214  * Now, in that special case (1) reduces to:
3215  *
3216  *                     tg->weight * grq->load.weight
3217  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3218  *                         grp->load.weight
3219  *
3220  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3221  *
3222  * So what we do is modify our approximation (3) to approach (4) in the (near)
3223  * UP case, like:
3224  *
3225  *   ge->load.weight =
3226  *
3227  *              tg->weight * grq->load.weight
3228  *     ---------------------------------------------------         (5)
3229  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3230  *
3231  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3232  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3233  *
3234  *
3235  *                     tg->weight * grq->load.weight
3236  *   ge->load.weight = -----------------------------		   (6)
3237  *                             tg_load_avg'
3238  *
3239  * Where:
3240  *
3241  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3242  *                  max(grq->load.weight, grq->avg.load_avg)
3243  *
3244  * And that is shares_weight and is icky. In the (near) UP case it approaches
3245  * (4) while in the normal case it approaches (3). It consistently
3246  * overestimates the ge->load.weight and therefore:
3247  *
3248  *   \Sum ge->load.weight >= tg->weight
3249  *
3250  * hence icky!
3251  */
3252 static long calc_group_shares(struct cfs_rq *cfs_rq)
3253 {
3254 	long tg_weight, tg_shares, load, shares;
3255 	struct task_group *tg = cfs_rq->tg;
3256 
3257 	tg_shares = READ_ONCE(tg->shares);
3258 
3259 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3260 
3261 	tg_weight = atomic_long_read(&tg->load_avg);
3262 
3263 	/* Ensure tg_weight >= load */
3264 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3265 	tg_weight += load;
3266 
3267 	shares = (tg_shares * load);
3268 	if (tg_weight)
3269 		shares /= tg_weight;
3270 
3271 	/*
3272 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3273 	 * of a group with small tg->shares value. It is a floor value which is
3274 	 * assigned as a minimum load.weight to the sched_entity representing
3275 	 * the group on a CPU.
3276 	 *
3277 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3278 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3279 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3280 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3281 	 * instead of 0.
3282 	 */
3283 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3284 }
3285 #endif /* CONFIG_SMP */
3286 
3287 /*
3288  * Recomputes the group entity based on the current state of its group
3289  * runqueue.
3290  */
3291 static void update_cfs_group(struct sched_entity *se)
3292 {
3293 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3294 	long shares;
3295 
3296 	if (!gcfs_rq)
3297 		return;
3298 
3299 	if (throttled_hierarchy(gcfs_rq))
3300 		return;
3301 
3302 #ifndef CONFIG_SMP
3303 	shares = READ_ONCE(gcfs_rq->tg->shares);
3304 
3305 	if (likely(se->load.weight == shares))
3306 		return;
3307 #else
3308 	shares   = calc_group_shares(gcfs_rq);
3309 #endif
3310 
3311 	reweight_entity(cfs_rq_of(se), se, shares);
3312 }
3313 
3314 #else /* CONFIG_FAIR_GROUP_SCHED */
3315 static inline void update_cfs_group(struct sched_entity *se)
3316 {
3317 }
3318 #endif /* CONFIG_FAIR_GROUP_SCHED */
3319 
3320 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3321 {
3322 	struct rq *rq = rq_of(cfs_rq);
3323 
3324 	if (&rq->cfs == cfs_rq) {
3325 		/*
3326 		 * There are a few boundary cases this might miss but it should
3327 		 * get called often enough that that should (hopefully) not be
3328 		 * a real problem.
3329 		 *
3330 		 * It will not get called when we go idle, because the idle
3331 		 * thread is a different class (!fair), nor will the utilization
3332 		 * number include things like RT tasks.
3333 		 *
3334 		 * As is, the util number is not freq-invariant (we'd have to
3335 		 * implement arch_scale_freq_capacity() for that).
3336 		 *
3337 		 * See cpu_util_cfs().
3338 		 */
3339 		cpufreq_update_util(rq, flags);
3340 	}
3341 }
3342 
3343 #ifdef CONFIG_SMP
3344 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3345 {
3346 	if (sa->load_sum)
3347 		return false;
3348 
3349 	if (sa->util_sum)
3350 		return false;
3351 
3352 	if (sa->runnable_sum)
3353 		return false;
3354 
3355 	/*
3356 	 * _avg must be null when _sum are null because _avg = _sum / divider
3357 	 * Make sure that rounding and/or propagation of PELT values never
3358 	 * break this.
3359 	 */
3360 	SCHED_WARN_ON(sa->load_avg ||
3361 		      sa->util_avg ||
3362 		      sa->runnable_avg);
3363 
3364 	return true;
3365 }
3366 
3367 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3368 {
3369 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
3370 				 cfs_rq->last_update_time_copy);
3371 }
3372 #ifdef CONFIG_FAIR_GROUP_SCHED
3373 /*
3374  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3375  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3376  * bottom-up, we only have to test whether the cfs_rq before us on the list
3377  * is our child.
3378  * If cfs_rq is not on the list, test whether a child needs its to be added to
3379  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3380  */
3381 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3382 {
3383 	struct cfs_rq *prev_cfs_rq;
3384 	struct list_head *prev;
3385 
3386 	if (cfs_rq->on_list) {
3387 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3388 	} else {
3389 		struct rq *rq = rq_of(cfs_rq);
3390 
3391 		prev = rq->tmp_alone_branch;
3392 	}
3393 
3394 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3395 
3396 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3397 }
3398 
3399 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3400 {
3401 	if (cfs_rq->load.weight)
3402 		return false;
3403 
3404 	if (!load_avg_is_decayed(&cfs_rq->avg))
3405 		return false;
3406 
3407 	if (child_cfs_rq_on_list(cfs_rq))
3408 		return false;
3409 
3410 	return true;
3411 }
3412 
3413 /**
3414  * update_tg_load_avg - update the tg's load avg
3415  * @cfs_rq: the cfs_rq whose avg changed
3416  *
3417  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3418  * However, because tg->load_avg is a global value there are performance
3419  * considerations.
3420  *
3421  * In order to avoid having to look at the other cfs_rq's, we use a
3422  * differential update where we store the last value we propagated. This in
3423  * turn allows skipping updates if the differential is 'small'.
3424  *
3425  * Updating tg's load_avg is necessary before update_cfs_share().
3426  */
3427 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3428 {
3429 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3430 
3431 	/*
3432 	 * No need to update load_avg for root_task_group as it is not used.
3433 	 */
3434 	if (cfs_rq->tg == &root_task_group)
3435 		return;
3436 
3437 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3438 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3439 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3440 	}
3441 }
3442 
3443 /*
3444  * Called within set_task_rq() right before setting a task's CPU. The
3445  * caller only guarantees p->pi_lock is held; no other assumptions,
3446  * including the state of rq->lock, should be made.
3447  */
3448 void set_task_rq_fair(struct sched_entity *se,
3449 		      struct cfs_rq *prev, struct cfs_rq *next)
3450 {
3451 	u64 p_last_update_time;
3452 	u64 n_last_update_time;
3453 
3454 	if (!sched_feat(ATTACH_AGE_LOAD))
3455 		return;
3456 
3457 	/*
3458 	 * We are supposed to update the task to "current" time, then its up to
3459 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3460 	 * getting what current time is, so simply throw away the out-of-date
3461 	 * time. This will result in the wakee task is less decayed, but giving
3462 	 * the wakee more load sounds not bad.
3463 	 */
3464 	if (!(se->avg.last_update_time && prev))
3465 		return;
3466 
3467 	p_last_update_time = cfs_rq_last_update_time(prev);
3468 	n_last_update_time = cfs_rq_last_update_time(next);
3469 
3470 	__update_load_avg_blocked_se(p_last_update_time, se);
3471 	se->avg.last_update_time = n_last_update_time;
3472 }
3473 
3474 /*
3475  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3476  * propagate its contribution. The key to this propagation is the invariant
3477  * that for each group:
3478  *
3479  *   ge->avg == grq->avg						(1)
3480  *
3481  * _IFF_ we look at the pure running and runnable sums. Because they
3482  * represent the very same entity, just at different points in the hierarchy.
3483  *
3484  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3485  * and simply copies the running/runnable sum over (but still wrong, because
3486  * the group entity and group rq do not have their PELT windows aligned).
3487  *
3488  * However, update_tg_cfs_load() is more complex. So we have:
3489  *
3490  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3491  *
3492  * And since, like util, the runnable part should be directly transferable,
3493  * the following would _appear_ to be the straight forward approach:
3494  *
3495  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3496  *
3497  * And per (1) we have:
3498  *
3499  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3500  *
3501  * Which gives:
3502  *
3503  *                      ge->load.weight * grq->avg.load_avg
3504  *   ge->avg.load_avg = -----------------------------------		(4)
3505  *                               grq->load.weight
3506  *
3507  * Except that is wrong!
3508  *
3509  * Because while for entities historical weight is not important and we
3510  * really only care about our future and therefore can consider a pure
3511  * runnable sum, runqueues can NOT do this.
3512  *
3513  * We specifically want runqueues to have a load_avg that includes
3514  * historical weights. Those represent the blocked load, the load we expect
3515  * to (shortly) return to us. This only works by keeping the weights as
3516  * integral part of the sum. We therefore cannot decompose as per (3).
3517  *
3518  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3519  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3520  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3521  * runnable section of these tasks overlap (or not). If they were to perfectly
3522  * align the rq as a whole would be runnable 2/3 of the time. If however we
3523  * always have at least 1 runnable task, the rq as a whole is always runnable.
3524  *
3525  * So we'll have to approximate.. :/
3526  *
3527  * Given the constraint:
3528  *
3529  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3530  *
3531  * We can construct a rule that adds runnable to a rq by assuming minimal
3532  * overlap.
3533  *
3534  * On removal, we'll assume each task is equally runnable; which yields:
3535  *
3536  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3537  *
3538  * XXX: only do this for the part of runnable > running ?
3539  *
3540  */
3541 static inline void
3542 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3543 {
3544 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3545 	u32 new_sum, divider;
3546 
3547 	/* Nothing to update */
3548 	if (!delta_avg)
3549 		return;
3550 
3551 	/*
3552 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3553 	 * See ___update_load_avg() for details.
3554 	 */
3555 	divider = get_pelt_divider(&cfs_rq->avg);
3556 
3557 
3558 	/* Set new sched_entity's utilization */
3559 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3560 	new_sum = se->avg.util_avg * divider;
3561 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3562 	se->avg.util_sum = new_sum;
3563 
3564 	/* Update parent cfs_rq utilization */
3565 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3566 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3567 
3568 	/* See update_cfs_rq_load_avg() */
3569 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3570 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3571 }
3572 
3573 static inline void
3574 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3575 {
3576 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3577 	u32 new_sum, divider;
3578 
3579 	/* Nothing to update */
3580 	if (!delta_avg)
3581 		return;
3582 
3583 	/*
3584 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3585 	 * See ___update_load_avg() for details.
3586 	 */
3587 	divider = get_pelt_divider(&cfs_rq->avg);
3588 
3589 	/* Set new sched_entity's runnable */
3590 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3591 	new_sum = se->avg.runnable_avg * divider;
3592 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3593 	se->avg.runnable_sum = new_sum;
3594 
3595 	/* Update parent cfs_rq runnable */
3596 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3597 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3598 	/* See update_cfs_rq_load_avg() */
3599 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3600 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3601 }
3602 
3603 static inline void
3604 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3605 {
3606 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3607 	unsigned long load_avg;
3608 	u64 load_sum = 0;
3609 	s64 delta_sum;
3610 	u32 divider;
3611 
3612 	if (!runnable_sum)
3613 		return;
3614 
3615 	gcfs_rq->prop_runnable_sum = 0;
3616 
3617 	/*
3618 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3619 	 * See ___update_load_avg() for details.
3620 	 */
3621 	divider = get_pelt_divider(&cfs_rq->avg);
3622 
3623 	if (runnable_sum >= 0) {
3624 		/*
3625 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3626 		 * the CPU is saturated running == runnable.
3627 		 */
3628 		runnable_sum += se->avg.load_sum;
3629 		runnable_sum = min_t(long, runnable_sum, divider);
3630 	} else {
3631 		/*
3632 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3633 		 * assuming all tasks are equally runnable.
3634 		 */
3635 		if (scale_load_down(gcfs_rq->load.weight)) {
3636 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3637 				scale_load_down(gcfs_rq->load.weight));
3638 		}
3639 
3640 		/* But make sure to not inflate se's runnable */
3641 		runnable_sum = min(se->avg.load_sum, load_sum);
3642 	}
3643 
3644 	/*
3645 	 * runnable_sum can't be lower than running_sum
3646 	 * Rescale running sum to be in the same range as runnable sum
3647 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3648 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3649 	 */
3650 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3651 	runnable_sum = max(runnable_sum, running_sum);
3652 
3653 	load_sum = se_weight(se) * runnable_sum;
3654 	load_avg = div_u64(load_sum, divider);
3655 
3656 	delta_avg = load_avg - se->avg.load_avg;
3657 	if (!delta_avg)
3658 		return;
3659 
3660 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3661 
3662 	se->avg.load_sum = runnable_sum;
3663 	se->avg.load_avg = load_avg;
3664 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3665 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3666 	/* See update_cfs_rq_load_avg() */
3667 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3668 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3669 }
3670 
3671 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3672 {
3673 	cfs_rq->propagate = 1;
3674 	cfs_rq->prop_runnable_sum += runnable_sum;
3675 }
3676 
3677 /* Update task and its cfs_rq load average */
3678 static inline int propagate_entity_load_avg(struct sched_entity *se)
3679 {
3680 	struct cfs_rq *cfs_rq, *gcfs_rq;
3681 
3682 	if (entity_is_task(se))
3683 		return 0;
3684 
3685 	gcfs_rq = group_cfs_rq(se);
3686 	if (!gcfs_rq->propagate)
3687 		return 0;
3688 
3689 	gcfs_rq->propagate = 0;
3690 
3691 	cfs_rq = cfs_rq_of(se);
3692 
3693 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3694 
3695 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3696 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3697 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3698 
3699 	trace_pelt_cfs_tp(cfs_rq);
3700 	trace_pelt_se_tp(se);
3701 
3702 	return 1;
3703 }
3704 
3705 /*
3706  * Check if we need to update the load and the utilization of a blocked
3707  * group_entity:
3708  */
3709 static inline bool skip_blocked_update(struct sched_entity *se)
3710 {
3711 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3712 
3713 	/*
3714 	 * If sched_entity still have not zero load or utilization, we have to
3715 	 * decay it:
3716 	 */
3717 	if (se->avg.load_avg || se->avg.util_avg)
3718 		return false;
3719 
3720 	/*
3721 	 * If there is a pending propagation, we have to update the load and
3722 	 * the utilization of the sched_entity:
3723 	 */
3724 	if (gcfs_rq->propagate)
3725 		return false;
3726 
3727 	/*
3728 	 * Otherwise, the load and the utilization of the sched_entity is
3729 	 * already zero and there is no pending propagation, so it will be a
3730 	 * waste of time to try to decay it:
3731 	 */
3732 	return true;
3733 }
3734 
3735 #else /* CONFIG_FAIR_GROUP_SCHED */
3736 
3737 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3738 
3739 static inline int propagate_entity_load_avg(struct sched_entity *se)
3740 {
3741 	return 0;
3742 }
3743 
3744 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3745 
3746 #endif /* CONFIG_FAIR_GROUP_SCHED */
3747 
3748 #ifdef CONFIG_NO_HZ_COMMON
3749 static inline void migrate_se_pelt_lag(struct sched_entity *se)
3750 {
3751 	u64 throttled = 0, now, lut;
3752 	struct cfs_rq *cfs_rq;
3753 	struct rq *rq;
3754 	bool is_idle;
3755 
3756 	if (load_avg_is_decayed(&se->avg))
3757 		return;
3758 
3759 	cfs_rq = cfs_rq_of(se);
3760 	rq = rq_of(cfs_rq);
3761 
3762 	rcu_read_lock();
3763 	is_idle = is_idle_task(rcu_dereference(rq->curr));
3764 	rcu_read_unlock();
3765 
3766 	/*
3767 	 * The lag estimation comes with a cost we don't want to pay all the
3768 	 * time. Hence, limiting to the case where the source CPU is idle and
3769 	 * we know we are at the greatest risk to have an outdated clock.
3770 	 */
3771 	if (!is_idle)
3772 		return;
3773 
3774 	/*
3775 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
3776 	 *
3777 	 *   last_update_time (the cfs_rq's last_update_time)
3778 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
3779 	 *      = rq_clock_pelt()@cfs_rq_idle
3780 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
3781 	 *
3782 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
3783 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
3784 	 *
3785 	 *   rq_idle_lag (delta between now and rq's update)
3786 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
3787 	 *
3788 	 * We can then write:
3789 	 *
3790 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
3791 	 *          sched_clock_cpu() - rq_clock()@rq_idle
3792 	 * Where:
3793 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
3794 	 *      rq_clock()@rq_idle      is rq->clock_idle
3795 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
3796 	 *                              is cfs_rq->throttled_pelt_idle
3797 	 */
3798 
3799 #ifdef CONFIG_CFS_BANDWIDTH
3800 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
3801 	/* The clock has been stopped for throttling */
3802 	if (throttled == U64_MAX)
3803 		return;
3804 #endif
3805 	now = u64_u32_load(rq->clock_pelt_idle);
3806 	/*
3807 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
3808 	 * is observed the old clock_pelt_idle value and the new clock_idle,
3809 	 * which lead to an underestimation. The opposite would lead to an
3810 	 * overestimation.
3811 	 */
3812 	smp_rmb();
3813 	lut = cfs_rq_last_update_time(cfs_rq);
3814 
3815 	now -= throttled;
3816 	if (now < lut)
3817 		/*
3818 		 * cfs_rq->avg.last_update_time is more recent than our
3819 		 * estimation, let's use it.
3820 		 */
3821 		now = lut;
3822 	else
3823 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
3824 
3825 	__update_load_avg_blocked_se(now, se);
3826 }
3827 #else
3828 static void migrate_se_pelt_lag(struct sched_entity *se) {}
3829 #endif
3830 
3831 /**
3832  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3833  * @now: current time, as per cfs_rq_clock_pelt()
3834  * @cfs_rq: cfs_rq to update
3835  *
3836  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3837  * avg. The immediate corollary is that all (fair) tasks must be attached.
3838  *
3839  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3840  *
3841  * Return: true if the load decayed or we removed load.
3842  *
3843  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3844  * call update_tg_load_avg() when this function returns true.
3845  */
3846 static inline int
3847 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3848 {
3849 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3850 	struct sched_avg *sa = &cfs_rq->avg;
3851 	int decayed = 0;
3852 
3853 	if (cfs_rq->removed.nr) {
3854 		unsigned long r;
3855 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3856 
3857 		raw_spin_lock(&cfs_rq->removed.lock);
3858 		swap(cfs_rq->removed.util_avg, removed_util);
3859 		swap(cfs_rq->removed.load_avg, removed_load);
3860 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3861 		cfs_rq->removed.nr = 0;
3862 		raw_spin_unlock(&cfs_rq->removed.lock);
3863 
3864 		r = removed_load;
3865 		sub_positive(&sa->load_avg, r);
3866 		sub_positive(&sa->load_sum, r * divider);
3867 		/* See sa->util_sum below */
3868 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
3869 
3870 		r = removed_util;
3871 		sub_positive(&sa->util_avg, r);
3872 		sub_positive(&sa->util_sum, r * divider);
3873 		/*
3874 		 * Because of rounding, se->util_sum might ends up being +1 more than
3875 		 * cfs->util_sum. Although this is not a problem by itself, detaching
3876 		 * a lot of tasks with the rounding problem between 2 updates of
3877 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3878 		 * cfs_util_avg is not.
3879 		 * Check that util_sum is still above its lower bound for the new
3880 		 * util_avg. Given that period_contrib might have moved since the last
3881 		 * sync, we are only sure that util_sum must be above or equal to
3882 		 *    util_avg * minimum possible divider
3883 		 */
3884 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3885 
3886 		r = removed_runnable;
3887 		sub_positive(&sa->runnable_avg, r);
3888 		sub_positive(&sa->runnable_sum, r * divider);
3889 		/* See sa->util_sum above */
3890 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
3891 					      sa->runnable_avg * PELT_MIN_DIVIDER);
3892 
3893 		/*
3894 		 * removed_runnable is the unweighted version of removed_load so we
3895 		 * can use it to estimate removed_load_sum.
3896 		 */
3897 		add_tg_cfs_propagate(cfs_rq,
3898 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3899 
3900 		decayed = 1;
3901 	}
3902 
3903 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3904 	u64_u32_store_copy(sa->last_update_time,
3905 			   cfs_rq->last_update_time_copy,
3906 			   sa->last_update_time);
3907 	return decayed;
3908 }
3909 
3910 /**
3911  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3912  * @cfs_rq: cfs_rq to attach to
3913  * @se: sched_entity to attach
3914  *
3915  * Must call update_cfs_rq_load_avg() before this, since we rely on
3916  * cfs_rq->avg.last_update_time being current.
3917  */
3918 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3919 {
3920 	/*
3921 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3922 	 * See ___update_load_avg() for details.
3923 	 */
3924 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3925 
3926 	/*
3927 	 * When we attach the @se to the @cfs_rq, we must align the decay
3928 	 * window because without that, really weird and wonderful things can
3929 	 * happen.
3930 	 *
3931 	 * XXX illustrate
3932 	 */
3933 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3934 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3935 
3936 	/*
3937 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3938 	 * period_contrib. This isn't strictly correct, but since we're
3939 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3940 	 * _sum a little.
3941 	 */
3942 	se->avg.util_sum = se->avg.util_avg * divider;
3943 
3944 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3945 
3946 	se->avg.load_sum = se->avg.load_avg * divider;
3947 	if (se_weight(se) < se->avg.load_sum)
3948 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
3949 	else
3950 		se->avg.load_sum = 1;
3951 
3952 	enqueue_load_avg(cfs_rq, se);
3953 	cfs_rq->avg.util_avg += se->avg.util_avg;
3954 	cfs_rq->avg.util_sum += se->avg.util_sum;
3955 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3956 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3957 
3958 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3959 
3960 	cfs_rq_util_change(cfs_rq, 0);
3961 
3962 	trace_pelt_cfs_tp(cfs_rq);
3963 }
3964 
3965 /**
3966  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3967  * @cfs_rq: cfs_rq to detach from
3968  * @se: sched_entity to detach
3969  *
3970  * Must call update_cfs_rq_load_avg() before this, since we rely on
3971  * cfs_rq->avg.last_update_time being current.
3972  */
3973 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3974 {
3975 	dequeue_load_avg(cfs_rq, se);
3976 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3977 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3978 	/* See update_cfs_rq_load_avg() */
3979 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3980 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3981 
3982 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3983 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3984 	/* See update_cfs_rq_load_avg() */
3985 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3986 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3987 
3988 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3989 
3990 	cfs_rq_util_change(cfs_rq, 0);
3991 
3992 	trace_pelt_cfs_tp(cfs_rq);
3993 }
3994 
3995 /*
3996  * Optional action to be done while updating the load average
3997  */
3998 #define UPDATE_TG	0x1
3999 #define SKIP_AGE_LOAD	0x2
4000 #define DO_ATTACH	0x4
4001 #define DO_DETACH	0x8
4002 
4003 /* Update task and its cfs_rq load average */
4004 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4005 {
4006 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4007 	int decayed;
4008 
4009 	/*
4010 	 * Track task load average for carrying it to new CPU after migrated, and
4011 	 * track group sched_entity load average for task_h_load calc in migration
4012 	 */
4013 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4014 		__update_load_avg_se(now, cfs_rq, se);
4015 
4016 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4017 	decayed |= propagate_entity_load_avg(se);
4018 
4019 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4020 
4021 		/*
4022 		 * DO_ATTACH means we're here from enqueue_entity().
4023 		 * !last_update_time means we've passed through
4024 		 * migrate_task_rq_fair() indicating we migrated.
4025 		 *
4026 		 * IOW we're enqueueing a task on a new CPU.
4027 		 */
4028 		attach_entity_load_avg(cfs_rq, se);
4029 		update_tg_load_avg(cfs_rq);
4030 
4031 	} else if (flags & DO_DETACH) {
4032 		/*
4033 		 * DO_DETACH means we're here from dequeue_entity()
4034 		 * and we are migrating task out of the CPU.
4035 		 */
4036 		detach_entity_load_avg(cfs_rq, se);
4037 		update_tg_load_avg(cfs_rq);
4038 	} else if (decayed) {
4039 		cfs_rq_util_change(cfs_rq, 0);
4040 
4041 		if (flags & UPDATE_TG)
4042 			update_tg_load_avg(cfs_rq);
4043 	}
4044 }
4045 
4046 /*
4047  * Synchronize entity load avg of dequeued entity without locking
4048  * the previous rq.
4049  */
4050 static void sync_entity_load_avg(struct sched_entity *se)
4051 {
4052 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4053 	u64 last_update_time;
4054 
4055 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4056 	__update_load_avg_blocked_se(last_update_time, se);
4057 }
4058 
4059 /*
4060  * Task first catches up with cfs_rq, and then subtract
4061  * itself from the cfs_rq (task must be off the queue now).
4062  */
4063 static void remove_entity_load_avg(struct sched_entity *se)
4064 {
4065 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4066 	unsigned long flags;
4067 
4068 	/*
4069 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4070 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4071 	 * so we can remove unconditionally.
4072 	 */
4073 
4074 	sync_entity_load_avg(se);
4075 
4076 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4077 	++cfs_rq->removed.nr;
4078 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4079 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4080 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4081 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4082 }
4083 
4084 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4085 {
4086 	return cfs_rq->avg.runnable_avg;
4087 }
4088 
4089 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4090 {
4091 	return cfs_rq->avg.load_avg;
4092 }
4093 
4094 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4095 
4096 static inline unsigned long task_util(struct task_struct *p)
4097 {
4098 	return READ_ONCE(p->se.avg.util_avg);
4099 }
4100 
4101 static inline unsigned long _task_util_est(struct task_struct *p)
4102 {
4103 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4104 
4105 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4106 }
4107 
4108 static inline unsigned long task_util_est(struct task_struct *p)
4109 {
4110 	return max(task_util(p), _task_util_est(p));
4111 }
4112 
4113 #ifdef CONFIG_UCLAMP_TASK
4114 static inline unsigned long uclamp_task_util(struct task_struct *p)
4115 {
4116 	return clamp(task_util_est(p),
4117 		     uclamp_eff_value(p, UCLAMP_MIN),
4118 		     uclamp_eff_value(p, UCLAMP_MAX));
4119 }
4120 #else
4121 static inline unsigned long uclamp_task_util(struct task_struct *p)
4122 {
4123 	return task_util_est(p);
4124 }
4125 #endif
4126 
4127 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4128 				    struct task_struct *p)
4129 {
4130 	unsigned int enqueued;
4131 
4132 	if (!sched_feat(UTIL_EST))
4133 		return;
4134 
4135 	/* Update root cfs_rq's estimated utilization */
4136 	enqueued  = cfs_rq->avg.util_est.enqueued;
4137 	enqueued += _task_util_est(p);
4138 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4139 
4140 	trace_sched_util_est_cfs_tp(cfs_rq);
4141 }
4142 
4143 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4144 				    struct task_struct *p)
4145 {
4146 	unsigned int enqueued;
4147 
4148 	if (!sched_feat(UTIL_EST))
4149 		return;
4150 
4151 	/* Update root cfs_rq's estimated utilization */
4152 	enqueued  = cfs_rq->avg.util_est.enqueued;
4153 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4154 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4155 
4156 	trace_sched_util_est_cfs_tp(cfs_rq);
4157 }
4158 
4159 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4160 
4161 /*
4162  * Check if a (signed) value is within a specified (unsigned) margin,
4163  * based on the observation that:
4164  *
4165  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4166  *
4167  * NOTE: this only works when value + margin < INT_MAX.
4168  */
4169 static inline bool within_margin(int value, int margin)
4170 {
4171 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4172 }
4173 
4174 static inline void util_est_update(struct cfs_rq *cfs_rq,
4175 				   struct task_struct *p,
4176 				   bool task_sleep)
4177 {
4178 	long last_ewma_diff, last_enqueued_diff;
4179 	struct util_est ue;
4180 
4181 	if (!sched_feat(UTIL_EST))
4182 		return;
4183 
4184 	/*
4185 	 * Skip update of task's estimated utilization when the task has not
4186 	 * yet completed an activation, e.g. being migrated.
4187 	 */
4188 	if (!task_sleep)
4189 		return;
4190 
4191 	/*
4192 	 * If the PELT values haven't changed since enqueue time,
4193 	 * skip the util_est update.
4194 	 */
4195 	ue = p->se.avg.util_est;
4196 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4197 		return;
4198 
4199 	last_enqueued_diff = ue.enqueued;
4200 
4201 	/*
4202 	 * Reset EWMA on utilization increases, the moving average is used only
4203 	 * to smooth utilization decreases.
4204 	 */
4205 	ue.enqueued = task_util(p);
4206 	if (sched_feat(UTIL_EST_FASTUP)) {
4207 		if (ue.ewma < ue.enqueued) {
4208 			ue.ewma = ue.enqueued;
4209 			goto done;
4210 		}
4211 	}
4212 
4213 	/*
4214 	 * Skip update of task's estimated utilization when its members are
4215 	 * already ~1% close to its last activation value.
4216 	 */
4217 	last_ewma_diff = ue.enqueued - ue.ewma;
4218 	last_enqueued_diff -= ue.enqueued;
4219 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4220 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4221 			goto done;
4222 
4223 		return;
4224 	}
4225 
4226 	/*
4227 	 * To avoid overestimation of actual task utilization, skip updates if
4228 	 * we cannot grant there is idle time in this CPU.
4229 	 */
4230 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4231 		return;
4232 
4233 	/*
4234 	 * Update Task's estimated utilization
4235 	 *
4236 	 * When *p completes an activation we can consolidate another sample
4237 	 * of the task size. This is done by storing the current PELT value
4238 	 * as ue.enqueued and by using this value to update the Exponential
4239 	 * Weighted Moving Average (EWMA):
4240 	 *
4241 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4242 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4243 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4244 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4245 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4246 	 *
4247 	 * Where 'w' is the weight of new samples, which is configured to be
4248 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4249 	 */
4250 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4251 	ue.ewma  += last_ewma_diff;
4252 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4253 done:
4254 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4255 	WRITE_ONCE(p->se.avg.util_est, ue);
4256 
4257 	trace_sched_util_est_se_tp(&p->se);
4258 }
4259 
4260 static inline int task_fits_capacity(struct task_struct *p,
4261 				     unsigned long capacity)
4262 {
4263 	return fits_capacity(uclamp_task_util(p), capacity);
4264 }
4265 
4266 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4267 {
4268 	if (!sched_asym_cpucap_active())
4269 		return;
4270 
4271 	if (!p || p->nr_cpus_allowed == 1) {
4272 		rq->misfit_task_load = 0;
4273 		return;
4274 	}
4275 
4276 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4277 		rq->misfit_task_load = 0;
4278 		return;
4279 	}
4280 
4281 	/*
4282 	 * Make sure that misfit_task_load will not be null even if
4283 	 * task_h_load() returns 0.
4284 	 */
4285 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4286 }
4287 
4288 #else /* CONFIG_SMP */
4289 
4290 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4291 {
4292 	return true;
4293 }
4294 
4295 #define UPDATE_TG	0x0
4296 #define SKIP_AGE_LOAD	0x0
4297 #define DO_ATTACH	0x0
4298 #define DO_DETACH	0x0
4299 
4300 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4301 {
4302 	cfs_rq_util_change(cfs_rq, 0);
4303 }
4304 
4305 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4306 
4307 static inline void
4308 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4309 static inline void
4310 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4311 
4312 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4313 {
4314 	return 0;
4315 }
4316 
4317 static inline void
4318 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4319 
4320 static inline void
4321 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4322 
4323 static inline void
4324 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4325 		bool task_sleep) {}
4326 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4327 
4328 #endif /* CONFIG_SMP */
4329 
4330 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4331 {
4332 #ifdef CONFIG_SCHED_DEBUG
4333 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4334 
4335 	if (d < 0)
4336 		d = -d;
4337 
4338 	if (d > 3*sysctl_sched_latency)
4339 		schedstat_inc(cfs_rq->nr_spread_over);
4340 #endif
4341 }
4342 
4343 static void
4344 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4345 {
4346 	u64 vruntime = cfs_rq->min_vruntime;
4347 
4348 	/*
4349 	 * The 'current' period is already promised to the current tasks,
4350 	 * however the extra weight of the new task will slow them down a
4351 	 * little, place the new task so that it fits in the slot that
4352 	 * stays open at the end.
4353 	 */
4354 	if (initial && sched_feat(START_DEBIT))
4355 		vruntime += sched_vslice(cfs_rq, se);
4356 
4357 	/* sleeps up to a single latency don't count. */
4358 	if (!initial) {
4359 		unsigned long thresh;
4360 
4361 		if (se_is_idle(se))
4362 			thresh = sysctl_sched_min_granularity;
4363 		else
4364 			thresh = sysctl_sched_latency;
4365 
4366 		/*
4367 		 * Halve their sleep time's effect, to allow
4368 		 * for a gentler effect of sleepers:
4369 		 */
4370 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4371 			thresh >>= 1;
4372 
4373 		vruntime -= thresh;
4374 	}
4375 
4376 	/* ensure we never gain time by being placed backwards. */
4377 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4378 }
4379 
4380 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4381 
4382 static inline bool cfs_bandwidth_used(void);
4383 
4384 /*
4385  * MIGRATION
4386  *
4387  *	dequeue
4388  *	  update_curr()
4389  *	    update_min_vruntime()
4390  *	  vruntime -= min_vruntime
4391  *
4392  *	enqueue
4393  *	  update_curr()
4394  *	    update_min_vruntime()
4395  *	  vruntime += min_vruntime
4396  *
4397  * this way the vruntime transition between RQs is done when both
4398  * min_vruntime are up-to-date.
4399  *
4400  * WAKEUP (remote)
4401  *
4402  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4403  *	  vruntime -= min_vruntime
4404  *
4405  *	enqueue
4406  *	  update_curr()
4407  *	    update_min_vruntime()
4408  *	  vruntime += min_vruntime
4409  *
4410  * this way we don't have the most up-to-date min_vruntime on the originating
4411  * CPU and an up-to-date min_vruntime on the destination CPU.
4412  */
4413 
4414 static void
4415 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4416 {
4417 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4418 	bool curr = cfs_rq->curr == se;
4419 
4420 	/*
4421 	 * If we're the current task, we must renormalise before calling
4422 	 * update_curr().
4423 	 */
4424 	if (renorm && curr)
4425 		se->vruntime += cfs_rq->min_vruntime;
4426 
4427 	update_curr(cfs_rq);
4428 
4429 	/*
4430 	 * Otherwise, renormalise after, such that we're placed at the current
4431 	 * moment in time, instead of some random moment in the past. Being
4432 	 * placed in the past could significantly boost this task to the
4433 	 * fairness detriment of existing tasks.
4434 	 */
4435 	if (renorm && !curr)
4436 		se->vruntime += cfs_rq->min_vruntime;
4437 
4438 	/*
4439 	 * When enqueuing a sched_entity, we must:
4440 	 *   - Update loads to have both entity and cfs_rq synced with now.
4441 	 *   - For group_entity, update its runnable_weight to reflect the new
4442 	 *     h_nr_running of its group cfs_rq.
4443 	 *   - For group_entity, update its weight to reflect the new share of
4444 	 *     its group cfs_rq
4445 	 *   - Add its new weight to cfs_rq->load.weight
4446 	 */
4447 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4448 	se_update_runnable(se);
4449 	update_cfs_group(se);
4450 	account_entity_enqueue(cfs_rq, se);
4451 
4452 	if (flags & ENQUEUE_WAKEUP)
4453 		place_entity(cfs_rq, se, 0);
4454 
4455 	check_schedstat_required();
4456 	update_stats_enqueue_fair(cfs_rq, se, flags);
4457 	check_spread(cfs_rq, se);
4458 	if (!curr)
4459 		__enqueue_entity(cfs_rq, se);
4460 	se->on_rq = 1;
4461 
4462 	if (cfs_rq->nr_running == 1) {
4463 		check_enqueue_throttle(cfs_rq);
4464 		if (!throttled_hierarchy(cfs_rq))
4465 			list_add_leaf_cfs_rq(cfs_rq);
4466 	}
4467 }
4468 
4469 static void __clear_buddies_last(struct sched_entity *se)
4470 {
4471 	for_each_sched_entity(se) {
4472 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4473 		if (cfs_rq->last != se)
4474 			break;
4475 
4476 		cfs_rq->last = NULL;
4477 	}
4478 }
4479 
4480 static void __clear_buddies_next(struct sched_entity *se)
4481 {
4482 	for_each_sched_entity(se) {
4483 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4484 		if (cfs_rq->next != se)
4485 			break;
4486 
4487 		cfs_rq->next = NULL;
4488 	}
4489 }
4490 
4491 static void __clear_buddies_skip(struct sched_entity *se)
4492 {
4493 	for_each_sched_entity(se) {
4494 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4495 		if (cfs_rq->skip != se)
4496 			break;
4497 
4498 		cfs_rq->skip = NULL;
4499 	}
4500 }
4501 
4502 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4503 {
4504 	if (cfs_rq->last == se)
4505 		__clear_buddies_last(se);
4506 
4507 	if (cfs_rq->next == se)
4508 		__clear_buddies_next(se);
4509 
4510 	if (cfs_rq->skip == se)
4511 		__clear_buddies_skip(se);
4512 }
4513 
4514 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4515 
4516 static void
4517 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4518 {
4519 	int action = UPDATE_TG;
4520 
4521 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
4522 		action |= DO_DETACH;
4523 
4524 	/*
4525 	 * Update run-time statistics of the 'current'.
4526 	 */
4527 	update_curr(cfs_rq);
4528 
4529 	/*
4530 	 * When dequeuing a sched_entity, we must:
4531 	 *   - Update loads to have both entity and cfs_rq synced with now.
4532 	 *   - For group_entity, update its runnable_weight to reflect the new
4533 	 *     h_nr_running of its group cfs_rq.
4534 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4535 	 *   - For group entity, update its weight to reflect the new share
4536 	 *     of its group cfs_rq.
4537 	 */
4538 	update_load_avg(cfs_rq, se, action);
4539 	se_update_runnable(se);
4540 
4541 	update_stats_dequeue_fair(cfs_rq, se, flags);
4542 
4543 	clear_buddies(cfs_rq, se);
4544 
4545 	if (se != cfs_rq->curr)
4546 		__dequeue_entity(cfs_rq, se);
4547 	se->on_rq = 0;
4548 	account_entity_dequeue(cfs_rq, se);
4549 
4550 	/*
4551 	 * Normalize after update_curr(); which will also have moved
4552 	 * min_vruntime if @se is the one holding it back. But before doing
4553 	 * update_min_vruntime() again, which will discount @se's position and
4554 	 * can move min_vruntime forward still more.
4555 	 */
4556 	if (!(flags & DEQUEUE_SLEEP))
4557 		se->vruntime -= cfs_rq->min_vruntime;
4558 
4559 	/* return excess runtime on last dequeue */
4560 	return_cfs_rq_runtime(cfs_rq);
4561 
4562 	update_cfs_group(se);
4563 
4564 	/*
4565 	 * Now advance min_vruntime if @se was the entity holding it back,
4566 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4567 	 * put back on, and if we advance min_vruntime, we'll be placed back
4568 	 * further than we started -- ie. we'll be penalized.
4569 	 */
4570 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4571 		update_min_vruntime(cfs_rq);
4572 
4573 	if (cfs_rq->nr_running == 0)
4574 		update_idle_cfs_rq_clock_pelt(cfs_rq);
4575 }
4576 
4577 /*
4578  * Preempt the current task with a newly woken task if needed:
4579  */
4580 static void
4581 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4582 {
4583 	unsigned long ideal_runtime, delta_exec;
4584 	struct sched_entity *se;
4585 	s64 delta;
4586 
4587 	ideal_runtime = sched_slice(cfs_rq, curr);
4588 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4589 	if (delta_exec > ideal_runtime) {
4590 		resched_curr(rq_of(cfs_rq));
4591 		/*
4592 		 * The current task ran long enough, ensure it doesn't get
4593 		 * re-elected due to buddy favours.
4594 		 */
4595 		clear_buddies(cfs_rq, curr);
4596 		return;
4597 	}
4598 
4599 	/*
4600 	 * Ensure that a task that missed wakeup preemption by a
4601 	 * narrow margin doesn't have to wait for a full slice.
4602 	 * This also mitigates buddy induced latencies under load.
4603 	 */
4604 	if (delta_exec < sysctl_sched_min_granularity)
4605 		return;
4606 
4607 	se = __pick_first_entity(cfs_rq);
4608 	delta = curr->vruntime - se->vruntime;
4609 
4610 	if (delta < 0)
4611 		return;
4612 
4613 	if (delta > ideal_runtime)
4614 		resched_curr(rq_of(cfs_rq));
4615 }
4616 
4617 static void
4618 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4619 {
4620 	clear_buddies(cfs_rq, se);
4621 
4622 	/* 'current' is not kept within the tree. */
4623 	if (se->on_rq) {
4624 		/*
4625 		 * Any task has to be enqueued before it get to execute on
4626 		 * a CPU. So account for the time it spent waiting on the
4627 		 * runqueue.
4628 		 */
4629 		update_stats_wait_end_fair(cfs_rq, se);
4630 		__dequeue_entity(cfs_rq, se);
4631 		update_load_avg(cfs_rq, se, UPDATE_TG);
4632 	}
4633 
4634 	update_stats_curr_start(cfs_rq, se);
4635 	cfs_rq->curr = se;
4636 
4637 	/*
4638 	 * Track our maximum slice length, if the CPU's load is at
4639 	 * least twice that of our own weight (i.e. dont track it
4640 	 * when there are only lesser-weight tasks around):
4641 	 */
4642 	if (schedstat_enabled() &&
4643 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4644 		struct sched_statistics *stats;
4645 
4646 		stats = __schedstats_from_se(se);
4647 		__schedstat_set(stats->slice_max,
4648 				max((u64)stats->slice_max,
4649 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4650 	}
4651 
4652 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4653 }
4654 
4655 static int
4656 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4657 
4658 /*
4659  * Pick the next process, keeping these things in mind, in this order:
4660  * 1) keep things fair between processes/task groups
4661  * 2) pick the "next" process, since someone really wants that to run
4662  * 3) pick the "last" process, for cache locality
4663  * 4) do not run the "skip" process, if something else is available
4664  */
4665 static struct sched_entity *
4666 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4667 {
4668 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4669 	struct sched_entity *se;
4670 
4671 	/*
4672 	 * If curr is set we have to see if its left of the leftmost entity
4673 	 * still in the tree, provided there was anything in the tree at all.
4674 	 */
4675 	if (!left || (curr && entity_before(curr, left)))
4676 		left = curr;
4677 
4678 	se = left; /* ideally we run the leftmost entity */
4679 
4680 	/*
4681 	 * Avoid running the skip buddy, if running something else can
4682 	 * be done without getting too unfair.
4683 	 */
4684 	if (cfs_rq->skip && cfs_rq->skip == se) {
4685 		struct sched_entity *second;
4686 
4687 		if (se == curr) {
4688 			second = __pick_first_entity(cfs_rq);
4689 		} else {
4690 			second = __pick_next_entity(se);
4691 			if (!second || (curr && entity_before(curr, second)))
4692 				second = curr;
4693 		}
4694 
4695 		if (second && wakeup_preempt_entity(second, left) < 1)
4696 			se = second;
4697 	}
4698 
4699 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4700 		/*
4701 		 * Someone really wants this to run. If it's not unfair, run it.
4702 		 */
4703 		se = cfs_rq->next;
4704 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4705 		/*
4706 		 * Prefer last buddy, try to return the CPU to a preempted task.
4707 		 */
4708 		se = cfs_rq->last;
4709 	}
4710 
4711 	return se;
4712 }
4713 
4714 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4715 
4716 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4717 {
4718 	/*
4719 	 * If still on the runqueue then deactivate_task()
4720 	 * was not called and update_curr() has to be done:
4721 	 */
4722 	if (prev->on_rq)
4723 		update_curr(cfs_rq);
4724 
4725 	/* throttle cfs_rqs exceeding runtime */
4726 	check_cfs_rq_runtime(cfs_rq);
4727 
4728 	check_spread(cfs_rq, prev);
4729 
4730 	if (prev->on_rq) {
4731 		update_stats_wait_start_fair(cfs_rq, prev);
4732 		/* Put 'current' back into the tree. */
4733 		__enqueue_entity(cfs_rq, prev);
4734 		/* in !on_rq case, update occurred at dequeue */
4735 		update_load_avg(cfs_rq, prev, 0);
4736 	}
4737 	cfs_rq->curr = NULL;
4738 }
4739 
4740 static void
4741 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4742 {
4743 	/*
4744 	 * Update run-time statistics of the 'current'.
4745 	 */
4746 	update_curr(cfs_rq);
4747 
4748 	/*
4749 	 * Ensure that runnable average is periodically updated.
4750 	 */
4751 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4752 	update_cfs_group(curr);
4753 
4754 #ifdef CONFIG_SCHED_HRTICK
4755 	/*
4756 	 * queued ticks are scheduled to match the slice, so don't bother
4757 	 * validating it and just reschedule.
4758 	 */
4759 	if (queued) {
4760 		resched_curr(rq_of(cfs_rq));
4761 		return;
4762 	}
4763 	/*
4764 	 * don't let the period tick interfere with the hrtick preemption
4765 	 */
4766 	if (!sched_feat(DOUBLE_TICK) &&
4767 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4768 		return;
4769 #endif
4770 
4771 	if (cfs_rq->nr_running > 1)
4772 		check_preempt_tick(cfs_rq, curr);
4773 }
4774 
4775 
4776 /**************************************************
4777  * CFS bandwidth control machinery
4778  */
4779 
4780 #ifdef CONFIG_CFS_BANDWIDTH
4781 
4782 #ifdef CONFIG_JUMP_LABEL
4783 static struct static_key __cfs_bandwidth_used;
4784 
4785 static inline bool cfs_bandwidth_used(void)
4786 {
4787 	return static_key_false(&__cfs_bandwidth_used);
4788 }
4789 
4790 void cfs_bandwidth_usage_inc(void)
4791 {
4792 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4793 }
4794 
4795 void cfs_bandwidth_usage_dec(void)
4796 {
4797 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4798 }
4799 #else /* CONFIG_JUMP_LABEL */
4800 static bool cfs_bandwidth_used(void)
4801 {
4802 	return true;
4803 }
4804 
4805 void cfs_bandwidth_usage_inc(void) {}
4806 void cfs_bandwidth_usage_dec(void) {}
4807 #endif /* CONFIG_JUMP_LABEL */
4808 
4809 /*
4810  * default period for cfs group bandwidth.
4811  * default: 0.1s, units: nanoseconds
4812  */
4813 static inline u64 default_cfs_period(void)
4814 {
4815 	return 100000000ULL;
4816 }
4817 
4818 static inline u64 sched_cfs_bandwidth_slice(void)
4819 {
4820 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4821 }
4822 
4823 /*
4824  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4825  * directly instead of rq->clock to avoid adding additional synchronization
4826  * around rq->lock.
4827  *
4828  * requires cfs_b->lock
4829  */
4830 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4831 {
4832 	s64 runtime;
4833 
4834 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4835 		return;
4836 
4837 	cfs_b->runtime += cfs_b->quota;
4838 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
4839 	if (runtime > 0) {
4840 		cfs_b->burst_time += runtime;
4841 		cfs_b->nr_burst++;
4842 	}
4843 
4844 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4845 	cfs_b->runtime_snap = cfs_b->runtime;
4846 }
4847 
4848 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4849 {
4850 	return &tg->cfs_bandwidth;
4851 }
4852 
4853 /* returns 0 on failure to allocate runtime */
4854 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4855 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4856 {
4857 	u64 min_amount, amount = 0;
4858 
4859 	lockdep_assert_held(&cfs_b->lock);
4860 
4861 	/* note: this is a positive sum as runtime_remaining <= 0 */
4862 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4863 
4864 	if (cfs_b->quota == RUNTIME_INF)
4865 		amount = min_amount;
4866 	else {
4867 		start_cfs_bandwidth(cfs_b);
4868 
4869 		if (cfs_b->runtime > 0) {
4870 			amount = min(cfs_b->runtime, min_amount);
4871 			cfs_b->runtime -= amount;
4872 			cfs_b->idle = 0;
4873 		}
4874 	}
4875 
4876 	cfs_rq->runtime_remaining += amount;
4877 
4878 	return cfs_rq->runtime_remaining > 0;
4879 }
4880 
4881 /* returns 0 on failure to allocate runtime */
4882 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4883 {
4884 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4885 	int ret;
4886 
4887 	raw_spin_lock(&cfs_b->lock);
4888 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4889 	raw_spin_unlock(&cfs_b->lock);
4890 
4891 	return ret;
4892 }
4893 
4894 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4895 {
4896 	/* dock delta_exec before expiring quota (as it could span periods) */
4897 	cfs_rq->runtime_remaining -= delta_exec;
4898 
4899 	if (likely(cfs_rq->runtime_remaining > 0))
4900 		return;
4901 
4902 	if (cfs_rq->throttled)
4903 		return;
4904 	/*
4905 	 * if we're unable to extend our runtime we resched so that the active
4906 	 * hierarchy can be throttled
4907 	 */
4908 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4909 		resched_curr(rq_of(cfs_rq));
4910 }
4911 
4912 static __always_inline
4913 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4914 {
4915 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4916 		return;
4917 
4918 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4919 }
4920 
4921 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4922 {
4923 	return cfs_bandwidth_used() && cfs_rq->throttled;
4924 }
4925 
4926 /* check whether cfs_rq, or any parent, is throttled */
4927 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4928 {
4929 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4930 }
4931 
4932 /*
4933  * Ensure that neither of the group entities corresponding to src_cpu or
4934  * dest_cpu are members of a throttled hierarchy when performing group
4935  * load-balance operations.
4936  */
4937 static inline int throttled_lb_pair(struct task_group *tg,
4938 				    int src_cpu, int dest_cpu)
4939 {
4940 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4941 
4942 	src_cfs_rq = tg->cfs_rq[src_cpu];
4943 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4944 
4945 	return throttled_hierarchy(src_cfs_rq) ||
4946 	       throttled_hierarchy(dest_cfs_rq);
4947 }
4948 
4949 static int tg_unthrottle_up(struct task_group *tg, void *data)
4950 {
4951 	struct rq *rq = data;
4952 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4953 
4954 	cfs_rq->throttle_count--;
4955 	if (!cfs_rq->throttle_count) {
4956 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
4957 					     cfs_rq->throttled_clock_pelt;
4958 
4959 		/* Add cfs_rq with load or one or more already running entities to the list */
4960 		if (!cfs_rq_is_decayed(cfs_rq))
4961 			list_add_leaf_cfs_rq(cfs_rq);
4962 	}
4963 
4964 	return 0;
4965 }
4966 
4967 static int tg_throttle_down(struct task_group *tg, void *data)
4968 {
4969 	struct rq *rq = data;
4970 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4971 
4972 	/* group is entering throttled state, stop time */
4973 	if (!cfs_rq->throttle_count) {
4974 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
4975 		list_del_leaf_cfs_rq(cfs_rq);
4976 	}
4977 	cfs_rq->throttle_count++;
4978 
4979 	return 0;
4980 }
4981 
4982 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4983 {
4984 	struct rq *rq = rq_of(cfs_rq);
4985 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4986 	struct sched_entity *se;
4987 	long task_delta, idle_task_delta, dequeue = 1;
4988 
4989 	raw_spin_lock(&cfs_b->lock);
4990 	/* This will start the period timer if necessary */
4991 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4992 		/*
4993 		 * We have raced with bandwidth becoming available, and if we
4994 		 * actually throttled the timer might not unthrottle us for an
4995 		 * entire period. We additionally needed to make sure that any
4996 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4997 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4998 		 * for 1ns of runtime rather than just check cfs_b.
4999 		 */
5000 		dequeue = 0;
5001 	} else {
5002 		list_add_tail_rcu(&cfs_rq->throttled_list,
5003 				  &cfs_b->throttled_cfs_rq);
5004 	}
5005 	raw_spin_unlock(&cfs_b->lock);
5006 
5007 	if (!dequeue)
5008 		return false;  /* Throttle no longer required. */
5009 
5010 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5011 
5012 	/* freeze hierarchy runnable averages while throttled */
5013 	rcu_read_lock();
5014 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5015 	rcu_read_unlock();
5016 
5017 	task_delta = cfs_rq->h_nr_running;
5018 	idle_task_delta = cfs_rq->idle_h_nr_running;
5019 	for_each_sched_entity(se) {
5020 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5021 		/* throttled entity or throttle-on-deactivate */
5022 		if (!se->on_rq)
5023 			goto done;
5024 
5025 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5026 
5027 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5028 			idle_task_delta = cfs_rq->h_nr_running;
5029 
5030 		qcfs_rq->h_nr_running -= task_delta;
5031 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5032 
5033 		if (qcfs_rq->load.weight) {
5034 			/* Avoid re-evaluating load for this entity: */
5035 			se = parent_entity(se);
5036 			break;
5037 		}
5038 	}
5039 
5040 	for_each_sched_entity(se) {
5041 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5042 		/* throttled entity or throttle-on-deactivate */
5043 		if (!se->on_rq)
5044 			goto done;
5045 
5046 		update_load_avg(qcfs_rq, se, 0);
5047 		se_update_runnable(se);
5048 
5049 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5050 			idle_task_delta = cfs_rq->h_nr_running;
5051 
5052 		qcfs_rq->h_nr_running -= task_delta;
5053 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5054 	}
5055 
5056 	/* At this point se is NULL and we are at root level*/
5057 	sub_nr_running(rq, task_delta);
5058 
5059 done:
5060 	/*
5061 	 * Note: distribution will already see us throttled via the
5062 	 * throttled-list.  rq->lock protects completion.
5063 	 */
5064 	cfs_rq->throttled = 1;
5065 	cfs_rq->throttled_clock = rq_clock(rq);
5066 	return true;
5067 }
5068 
5069 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5070 {
5071 	struct rq *rq = rq_of(cfs_rq);
5072 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5073 	struct sched_entity *se;
5074 	long task_delta, idle_task_delta;
5075 
5076 	se = cfs_rq->tg->se[cpu_of(rq)];
5077 
5078 	cfs_rq->throttled = 0;
5079 
5080 	update_rq_clock(rq);
5081 
5082 	raw_spin_lock(&cfs_b->lock);
5083 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5084 	list_del_rcu(&cfs_rq->throttled_list);
5085 	raw_spin_unlock(&cfs_b->lock);
5086 
5087 	/* update hierarchical throttle state */
5088 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5089 
5090 	if (!cfs_rq->load.weight) {
5091 		if (!cfs_rq->on_list)
5092 			return;
5093 		/*
5094 		 * Nothing to run but something to decay (on_list)?
5095 		 * Complete the branch.
5096 		 */
5097 		for_each_sched_entity(se) {
5098 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5099 				break;
5100 		}
5101 		goto unthrottle_throttle;
5102 	}
5103 
5104 	task_delta = cfs_rq->h_nr_running;
5105 	idle_task_delta = cfs_rq->idle_h_nr_running;
5106 	for_each_sched_entity(se) {
5107 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5108 
5109 		if (se->on_rq)
5110 			break;
5111 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5112 
5113 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5114 			idle_task_delta = cfs_rq->h_nr_running;
5115 
5116 		qcfs_rq->h_nr_running += task_delta;
5117 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5118 
5119 		/* end evaluation on encountering a throttled cfs_rq */
5120 		if (cfs_rq_throttled(qcfs_rq))
5121 			goto unthrottle_throttle;
5122 	}
5123 
5124 	for_each_sched_entity(se) {
5125 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5126 
5127 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5128 		se_update_runnable(se);
5129 
5130 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5131 			idle_task_delta = cfs_rq->h_nr_running;
5132 
5133 		qcfs_rq->h_nr_running += task_delta;
5134 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5135 
5136 		/* end evaluation on encountering a throttled cfs_rq */
5137 		if (cfs_rq_throttled(qcfs_rq))
5138 			goto unthrottle_throttle;
5139 	}
5140 
5141 	/* At this point se is NULL and we are at root level*/
5142 	add_nr_running(rq, task_delta);
5143 
5144 unthrottle_throttle:
5145 	assert_list_leaf_cfs_rq(rq);
5146 
5147 	/* Determine whether we need to wake up potentially idle CPU: */
5148 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5149 		resched_curr(rq);
5150 }
5151 
5152 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5153 {
5154 	struct cfs_rq *cfs_rq;
5155 	u64 runtime, remaining = 1;
5156 
5157 	rcu_read_lock();
5158 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5159 				throttled_list) {
5160 		struct rq *rq = rq_of(cfs_rq);
5161 		struct rq_flags rf;
5162 
5163 		rq_lock_irqsave(rq, &rf);
5164 		if (!cfs_rq_throttled(cfs_rq))
5165 			goto next;
5166 
5167 		/* By the above check, this should never be true */
5168 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5169 
5170 		raw_spin_lock(&cfs_b->lock);
5171 		runtime = -cfs_rq->runtime_remaining + 1;
5172 		if (runtime > cfs_b->runtime)
5173 			runtime = cfs_b->runtime;
5174 		cfs_b->runtime -= runtime;
5175 		remaining = cfs_b->runtime;
5176 		raw_spin_unlock(&cfs_b->lock);
5177 
5178 		cfs_rq->runtime_remaining += runtime;
5179 
5180 		/* we check whether we're throttled above */
5181 		if (cfs_rq->runtime_remaining > 0)
5182 			unthrottle_cfs_rq(cfs_rq);
5183 
5184 next:
5185 		rq_unlock_irqrestore(rq, &rf);
5186 
5187 		if (!remaining)
5188 			break;
5189 	}
5190 	rcu_read_unlock();
5191 }
5192 
5193 /*
5194  * Responsible for refilling a task_group's bandwidth and unthrottling its
5195  * cfs_rqs as appropriate. If there has been no activity within the last
5196  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5197  * used to track this state.
5198  */
5199 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5200 {
5201 	int throttled;
5202 
5203 	/* no need to continue the timer with no bandwidth constraint */
5204 	if (cfs_b->quota == RUNTIME_INF)
5205 		goto out_deactivate;
5206 
5207 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5208 	cfs_b->nr_periods += overrun;
5209 
5210 	/* Refill extra burst quota even if cfs_b->idle */
5211 	__refill_cfs_bandwidth_runtime(cfs_b);
5212 
5213 	/*
5214 	 * idle depends on !throttled (for the case of a large deficit), and if
5215 	 * we're going inactive then everything else can be deferred
5216 	 */
5217 	if (cfs_b->idle && !throttled)
5218 		goto out_deactivate;
5219 
5220 	if (!throttled) {
5221 		/* mark as potentially idle for the upcoming period */
5222 		cfs_b->idle = 1;
5223 		return 0;
5224 	}
5225 
5226 	/* account preceding periods in which throttling occurred */
5227 	cfs_b->nr_throttled += overrun;
5228 
5229 	/*
5230 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5231 	 */
5232 	while (throttled && cfs_b->runtime > 0) {
5233 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5234 		/* we can't nest cfs_b->lock while distributing bandwidth */
5235 		distribute_cfs_runtime(cfs_b);
5236 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5237 
5238 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5239 	}
5240 
5241 	/*
5242 	 * While we are ensured activity in the period following an
5243 	 * unthrottle, this also covers the case in which the new bandwidth is
5244 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5245 	 * timer to remain active while there are any throttled entities.)
5246 	 */
5247 	cfs_b->idle = 0;
5248 
5249 	return 0;
5250 
5251 out_deactivate:
5252 	return 1;
5253 }
5254 
5255 /* a cfs_rq won't donate quota below this amount */
5256 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5257 /* minimum remaining period time to redistribute slack quota */
5258 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5259 /* how long we wait to gather additional slack before distributing */
5260 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5261 
5262 /*
5263  * Are we near the end of the current quota period?
5264  *
5265  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5266  * hrtimer base being cleared by hrtimer_start. In the case of
5267  * migrate_hrtimers, base is never cleared, so we are fine.
5268  */
5269 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5270 {
5271 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5272 	s64 remaining;
5273 
5274 	/* if the call-back is running a quota refresh is already occurring */
5275 	if (hrtimer_callback_running(refresh_timer))
5276 		return 1;
5277 
5278 	/* is a quota refresh about to occur? */
5279 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5280 	if (remaining < (s64)min_expire)
5281 		return 1;
5282 
5283 	return 0;
5284 }
5285 
5286 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5287 {
5288 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5289 
5290 	/* if there's a quota refresh soon don't bother with slack */
5291 	if (runtime_refresh_within(cfs_b, min_left))
5292 		return;
5293 
5294 	/* don't push forwards an existing deferred unthrottle */
5295 	if (cfs_b->slack_started)
5296 		return;
5297 	cfs_b->slack_started = true;
5298 
5299 	hrtimer_start(&cfs_b->slack_timer,
5300 			ns_to_ktime(cfs_bandwidth_slack_period),
5301 			HRTIMER_MODE_REL);
5302 }
5303 
5304 /* we know any runtime found here is valid as update_curr() precedes return */
5305 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5306 {
5307 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5308 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5309 
5310 	if (slack_runtime <= 0)
5311 		return;
5312 
5313 	raw_spin_lock(&cfs_b->lock);
5314 	if (cfs_b->quota != RUNTIME_INF) {
5315 		cfs_b->runtime += slack_runtime;
5316 
5317 		/* we are under rq->lock, defer unthrottling using a timer */
5318 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5319 		    !list_empty(&cfs_b->throttled_cfs_rq))
5320 			start_cfs_slack_bandwidth(cfs_b);
5321 	}
5322 	raw_spin_unlock(&cfs_b->lock);
5323 
5324 	/* even if it's not valid for return we don't want to try again */
5325 	cfs_rq->runtime_remaining -= slack_runtime;
5326 }
5327 
5328 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5329 {
5330 	if (!cfs_bandwidth_used())
5331 		return;
5332 
5333 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5334 		return;
5335 
5336 	__return_cfs_rq_runtime(cfs_rq);
5337 }
5338 
5339 /*
5340  * This is done with a timer (instead of inline with bandwidth return) since
5341  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5342  */
5343 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5344 {
5345 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5346 	unsigned long flags;
5347 
5348 	/* confirm we're still not at a refresh boundary */
5349 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5350 	cfs_b->slack_started = false;
5351 
5352 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5353 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5354 		return;
5355 	}
5356 
5357 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5358 		runtime = cfs_b->runtime;
5359 
5360 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5361 
5362 	if (!runtime)
5363 		return;
5364 
5365 	distribute_cfs_runtime(cfs_b);
5366 }
5367 
5368 /*
5369  * When a group wakes up we want to make sure that its quota is not already
5370  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5371  * runtime as update_curr() throttling can not trigger until it's on-rq.
5372  */
5373 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5374 {
5375 	if (!cfs_bandwidth_used())
5376 		return;
5377 
5378 	/* an active group must be handled by the update_curr()->put() path */
5379 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5380 		return;
5381 
5382 	/* ensure the group is not already throttled */
5383 	if (cfs_rq_throttled(cfs_rq))
5384 		return;
5385 
5386 	/* update runtime allocation */
5387 	account_cfs_rq_runtime(cfs_rq, 0);
5388 	if (cfs_rq->runtime_remaining <= 0)
5389 		throttle_cfs_rq(cfs_rq);
5390 }
5391 
5392 static void sync_throttle(struct task_group *tg, int cpu)
5393 {
5394 	struct cfs_rq *pcfs_rq, *cfs_rq;
5395 
5396 	if (!cfs_bandwidth_used())
5397 		return;
5398 
5399 	if (!tg->parent)
5400 		return;
5401 
5402 	cfs_rq = tg->cfs_rq[cpu];
5403 	pcfs_rq = tg->parent->cfs_rq[cpu];
5404 
5405 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5406 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5407 }
5408 
5409 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5410 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5411 {
5412 	if (!cfs_bandwidth_used())
5413 		return false;
5414 
5415 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5416 		return false;
5417 
5418 	/*
5419 	 * it's possible for a throttled entity to be forced into a running
5420 	 * state (e.g. set_curr_task), in this case we're finished.
5421 	 */
5422 	if (cfs_rq_throttled(cfs_rq))
5423 		return true;
5424 
5425 	return throttle_cfs_rq(cfs_rq);
5426 }
5427 
5428 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5429 {
5430 	struct cfs_bandwidth *cfs_b =
5431 		container_of(timer, struct cfs_bandwidth, slack_timer);
5432 
5433 	do_sched_cfs_slack_timer(cfs_b);
5434 
5435 	return HRTIMER_NORESTART;
5436 }
5437 
5438 extern const u64 max_cfs_quota_period;
5439 
5440 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5441 {
5442 	struct cfs_bandwidth *cfs_b =
5443 		container_of(timer, struct cfs_bandwidth, period_timer);
5444 	unsigned long flags;
5445 	int overrun;
5446 	int idle = 0;
5447 	int count = 0;
5448 
5449 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5450 	for (;;) {
5451 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5452 		if (!overrun)
5453 			break;
5454 
5455 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5456 
5457 		if (++count > 3) {
5458 			u64 new, old = ktime_to_ns(cfs_b->period);
5459 
5460 			/*
5461 			 * Grow period by a factor of 2 to avoid losing precision.
5462 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5463 			 * to fail.
5464 			 */
5465 			new = old * 2;
5466 			if (new < max_cfs_quota_period) {
5467 				cfs_b->period = ns_to_ktime(new);
5468 				cfs_b->quota *= 2;
5469 				cfs_b->burst *= 2;
5470 
5471 				pr_warn_ratelimited(
5472 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5473 					smp_processor_id(),
5474 					div_u64(new, NSEC_PER_USEC),
5475 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5476 			} else {
5477 				pr_warn_ratelimited(
5478 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5479 					smp_processor_id(),
5480 					div_u64(old, NSEC_PER_USEC),
5481 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5482 			}
5483 
5484 			/* reset count so we don't come right back in here */
5485 			count = 0;
5486 		}
5487 	}
5488 	if (idle)
5489 		cfs_b->period_active = 0;
5490 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5491 
5492 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5493 }
5494 
5495 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5496 {
5497 	raw_spin_lock_init(&cfs_b->lock);
5498 	cfs_b->runtime = 0;
5499 	cfs_b->quota = RUNTIME_INF;
5500 	cfs_b->period = ns_to_ktime(default_cfs_period());
5501 	cfs_b->burst = 0;
5502 
5503 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5504 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5505 	cfs_b->period_timer.function = sched_cfs_period_timer;
5506 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5507 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5508 	cfs_b->slack_started = false;
5509 }
5510 
5511 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5512 {
5513 	cfs_rq->runtime_enabled = 0;
5514 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5515 }
5516 
5517 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5518 {
5519 	lockdep_assert_held(&cfs_b->lock);
5520 
5521 	if (cfs_b->period_active)
5522 		return;
5523 
5524 	cfs_b->period_active = 1;
5525 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5526 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5527 }
5528 
5529 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5530 {
5531 	/* init_cfs_bandwidth() was not called */
5532 	if (!cfs_b->throttled_cfs_rq.next)
5533 		return;
5534 
5535 	hrtimer_cancel(&cfs_b->period_timer);
5536 	hrtimer_cancel(&cfs_b->slack_timer);
5537 }
5538 
5539 /*
5540  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5541  *
5542  * The race is harmless, since modifying bandwidth settings of unhooked group
5543  * bits doesn't do much.
5544  */
5545 
5546 /* cpu online callback */
5547 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5548 {
5549 	struct task_group *tg;
5550 
5551 	lockdep_assert_rq_held(rq);
5552 
5553 	rcu_read_lock();
5554 	list_for_each_entry_rcu(tg, &task_groups, list) {
5555 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5556 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5557 
5558 		raw_spin_lock(&cfs_b->lock);
5559 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5560 		raw_spin_unlock(&cfs_b->lock);
5561 	}
5562 	rcu_read_unlock();
5563 }
5564 
5565 /* cpu offline callback */
5566 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5567 {
5568 	struct task_group *tg;
5569 
5570 	lockdep_assert_rq_held(rq);
5571 
5572 	rcu_read_lock();
5573 	list_for_each_entry_rcu(tg, &task_groups, list) {
5574 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5575 
5576 		if (!cfs_rq->runtime_enabled)
5577 			continue;
5578 
5579 		/*
5580 		 * clock_task is not advancing so we just need to make sure
5581 		 * there's some valid quota amount
5582 		 */
5583 		cfs_rq->runtime_remaining = 1;
5584 		/*
5585 		 * Offline rq is schedulable till CPU is completely disabled
5586 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5587 		 */
5588 		cfs_rq->runtime_enabled = 0;
5589 
5590 		if (cfs_rq_throttled(cfs_rq))
5591 			unthrottle_cfs_rq(cfs_rq);
5592 	}
5593 	rcu_read_unlock();
5594 }
5595 
5596 #else /* CONFIG_CFS_BANDWIDTH */
5597 
5598 static inline bool cfs_bandwidth_used(void)
5599 {
5600 	return false;
5601 }
5602 
5603 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5604 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5605 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5606 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5607 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5608 
5609 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5610 {
5611 	return 0;
5612 }
5613 
5614 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5615 {
5616 	return 0;
5617 }
5618 
5619 static inline int throttled_lb_pair(struct task_group *tg,
5620 				    int src_cpu, int dest_cpu)
5621 {
5622 	return 0;
5623 }
5624 
5625 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5626 
5627 #ifdef CONFIG_FAIR_GROUP_SCHED
5628 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5629 #endif
5630 
5631 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5632 {
5633 	return NULL;
5634 }
5635 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5636 static inline void update_runtime_enabled(struct rq *rq) {}
5637 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5638 
5639 #endif /* CONFIG_CFS_BANDWIDTH */
5640 
5641 /**************************************************
5642  * CFS operations on tasks:
5643  */
5644 
5645 #ifdef CONFIG_SCHED_HRTICK
5646 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5647 {
5648 	struct sched_entity *se = &p->se;
5649 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5650 
5651 	SCHED_WARN_ON(task_rq(p) != rq);
5652 
5653 	if (rq->cfs.h_nr_running > 1) {
5654 		u64 slice = sched_slice(cfs_rq, se);
5655 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5656 		s64 delta = slice - ran;
5657 
5658 		if (delta < 0) {
5659 			if (task_current(rq, p))
5660 				resched_curr(rq);
5661 			return;
5662 		}
5663 		hrtick_start(rq, delta);
5664 	}
5665 }
5666 
5667 /*
5668  * called from enqueue/dequeue and updates the hrtick when the
5669  * current task is from our class and nr_running is low enough
5670  * to matter.
5671  */
5672 static void hrtick_update(struct rq *rq)
5673 {
5674 	struct task_struct *curr = rq->curr;
5675 
5676 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5677 		return;
5678 
5679 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5680 		hrtick_start_fair(rq, curr);
5681 }
5682 #else /* !CONFIG_SCHED_HRTICK */
5683 static inline void
5684 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5685 {
5686 }
5687 
5688 static inline void hrtick_update(struct rq *rq)
5689 {
5690 }
5691 #endif
5692 
5693 #ifdef CONFIG_SMP
5694 static inline bool cpu_overutilized(int cpu)
5695 {
5696 	return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5697 }
5698 
5699 static inline void update_overutilized_status(struct rq *rq)
5700 {
5701 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5702 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5703 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5704 	}
5705 }
5706 #else
5707 static inline void update_overutilized_status(struct rq *rq) { }
5708 #endif
5709 
5710 /* Runqueue only has SCHED_IDLE tasks enqueued */
5711 static int sched_idle_rq(struct rq *rq)
5712 {
5713 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5714 			rq->nr_running);
5715 }
5716 
5717 /*
5718  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5719  * of idle_nr_running, which does not consider idle descendants of normal
5720  * entities.
5721  */
5722 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5723 {
5724 	return cfs_rq->nr_running &&
5725 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5726 }
5727 
5728 #ifdef CONFIG_SMP
5729 static int sched_idle_cpu(int cpu)
5730 {
5731 	return sched_idle_rq(cpu_rq(cpu));
5732 }
5733 #endif
5734 
5735 /*
5736  * The enqueue_task method is called before nr_running is
5737  * increased. Here we update the fair scheduling stats and
5738  * then put the task into the rbtree:
5739  */
5740 static void
5741 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5742 {
5743 	struct cfs_rq *cfs_rq;
5744 	struct sched_entity *se = &p->se;
5745 	int idle_h_nr_running = task_has_idle_policy(p);
5746 	int task_new = !(flags & ENQUEUE_WAKEUP);
5747 
5748 	/*
5749 	 * The code below (indirectly) updates schedutil which looks at
5750 	 * the cfs_rq utilization to select a frequency.
5751 	 * Let's add the task's estimated utilization to the cfs_rq's
5752 	 * estimated utilization, before we update schedutil.
5753 	 */
5754 	util_est_enqueue(&rq->cfs, p);
5755 
5756 	/*
5757 	 * If in_iowait is set, the code below may not trigger any cpufreq
5758 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5759 	 * passed.
5760 	 */
5761 	if (p->in_iowait)
5762 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5763 
5764 	for_each_sched_entity(se) {
5765 		if (se->on_rq)
5766 			break;
5767 		cfs_rq = cfs_rq_of(se);
5768 		enqueue_entity(cfs_rq, se, flags);
5769 
5770 		cfs_rq->h_nr_running++;
5771 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5772 
5773 		if (cfs_rq_is_idle(cfs_rq))
5774 			idle_h_nr_running = 1;
5775 
5776 		/* end evaluation on encountering a throttled cfs_rq */
5777 		if (cfs_rq_throttled(cfs_rq))
5778 			goto enqueue_throttle;
5779 
5780 		flags = ENQUEUE_WAKEUP;
5781 	}
5782 
5783 	for_each_sched_entity(se) {
5784 		cfs_rq = cfs_rq_of(se);
5785 
5786 		update_load_avg(cfs_rq, se, UPDATE_TG);
5787 		se_update_runnable(se);
5788 		update_cfs_group(se);
5789 
5790 		cfs_rq->h_nr_running++;
5791 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5792 
5793 		if (cfs_rq_is_idle(cfs_rq))
5794 			idle_h_nr_running = 1;
5795 
5796 		/* end evaluation on encountering a throttled cfs_rq */
5797 		if (cfs_rq_throttled(cfs_rq))
5798 			goto enqueue_throttle;
5799 	}
5800 
5801 	/* At this point se is NULL and we are at root level*/
5802 	add_nr_running(rq, 1);
5803 
5804 	/*
5805 	 * Since new tasks are assigned an initial util_avg equal to
5806 	 * half of the spare capacity of their CPU, tiny tasks have the
5807 	 * ability to cross the overutilized threshold, which will
5808 	 * result in the load balancer ruining all the task placement
5809 	 * done by EAS. As a way to mitigate that effect, do not account
5810 	 * for the first enqueue operation of new tasks during the
5811 	 * overutilized flag detection.
5812 	 *
5813 	 * A better way of solving this problem would be to wait for
5814 	 * the PELT signals of tasks to converge before taking them
5815 	 * into account, but that is not straightforward to implement,
5816 	 * and the following generally works well enough in practice.
5817 	 */
5818 	if (!task_new)
5819 		update_overutilized_status(rq);
5820 
5821 enqueue_throttle:
5822 	assert_list_leaf_cfs_rq(rq);
5823 
5824 	hrtick_update(rq);
5825 }
5826 
5827 static void set_next_buddy(struct sched_entity *se);
5828 
5829 /*
5830  * The dequeue_task method is called before nr_running is
5831  * decreased. We remove the task from the rbtree and
5832  * update the fair scheduling stats:
5833  */
5834 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5835 {
5836 	struct cfs_rq *cfs_rq;
5837 	struct sched_entity *se = &p->se;
5838 	int task_sleep = flags & DEQUEUE_SLEEP;
5839 	int idle_h_nr_running = task_has_idle_policy(p);
5840 	bool was_sched_idle = sched_idle_rq(rq);
5841 
5842 	util_est_dequeue(&rq->cfs, p);
5843 
5844 	for_each_sched_entity(se) {
5845 		cfs_rq = cfs_rq_of(se);
5846 		dequeue_entity(cfs_rq, se, flags);
5847 
5848 		cfs_rq->h_nr_running--;
5849 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5850 
5851 		if (cfs_rq_is_idle(cfs_rq))
5852 			idle_h_nr_running = 1;
5853 
5854 		/* end evaluation on encountering a throttled cfs_rq */
5855 		if (cfs_rq_throttled(cfs_rq))
5856 			goto dequeue_throttle;
5857 
5858 		/* Don't dequeue parent if it has other entities besides us */
5859 		if (cfs_rq->load.weight) {
5860 			/* Avoid re-evaluating load for this entity: */
5861 			se = parent_entity(se);
5862 			/*
5863 			 * Bias pick_next to pick a task from this cfs_rq, as
5864 			 * p is sleeping when it is within its sched_slice.
5865 			 */
5866 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5867 				set_next_buddy(se);
5868 			break;
5869 		}
5870 		flags |= DEQUEUE_SLEEP;
5871 	}
5872 
5873 	for_each_sched_entity(se) {
5874 		cfs_rq = cfs_rq_of(se);
5875 
5876 		update_load_avg(cfs_rq, se, UPDATE_TG);
5877 		se_update_runnable(se);
5878 		update_cfs_group(se);
5879 
5880 		cfs_rq->h_nr_running--;
5881 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5882 
5883 		if (cfs_rq_is_idle(cfs_rq))
5884 			idle_h_nr_running = 1;
5885 
5886 		/* end evaluation on encountering a throttled cfs_rq */
5887 		if (cfs_rq_throttled(cfs_rq))
5888 			goto dequeue_throttle;
5889 
5890 	}
5891 
5892 	/* At this point se is NULL and we are at root level*/
5893 	sub_nr_running(rq, 1);
5894 
5895 	/* balance early to pull high priority tasks */
5896 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5897 		rq->next_balance = jiffies;
5898 
5899 dequeue_throttle:
5900 	util_est_update(&rq->cfs, p, task_sleep);
5901 	hrtick_update(rq);
5902 }
5903 
5904 #ifdef CONFIG_SMP
5905 
5906 /* Working cpumask for: load_balance, load_balance_newidle. */
5907 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5908 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
5909 
5910 #ifdef CONFIG_NO_HZ_COMMON
5911 
5912 static struct {
5913 	cpumask_var_t idle_cpus_mask;
5914 	atomic_t nr_cpus;
5915 	int has_blocked;		/* Idle CPUS has blocked load */
5916 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
5917 	unsigned long next_balance;     /* in jiffy units */
5918 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5919 } nohz ____cacheline_aligned;
5920 
5921 #endif /* CONFIG_NO_HZ_COMMON */
5922 
5923 static unsigned long cpu_load(struct rq *rq)
5924 {
5925 	return cfs_rq_load_avg(&rq->cfs);
5926 }
5927 
5928 /*
5929  * cpu_load_without - compute CPU load without any contributions from *p
5930  * @cpu: the CPU which load is requested
5931  * @p: the task which load should be discounted
5932  *
5933  * The load of a CPU is defined by the load of tasks currently enqueued on that
5934  * CPU as well as tasks which are currently sleeping after an execution on that
5935  * CPU.
5936  *
5937  * This method returns the load of the specified CPU by discounting the load of
5938  * the specified task, whenever the task is currently contributing to the CPU
5939  * load.
5940  */
5941 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5942 {
5943 	struct cfs_rq *cfs_rq;
5944 	unsigned int load;
5945 
5946 	/* Task has no contribution or is new */
5947 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5948 		return cpu_load(rq);
5949 
5950 	cfs_rq = &rq->cfs;
5951 	load = READ_ONCE(cfs_rq->avg.load_avg);
5952 
5953 	/* Discount task's util from CPU's util */
5954 	lsub_positive(&load, task_h_load(p));
5955 
5956 	return load;
5957 }
5958 
5959 static unsigned long cpu_runnable(struct rq *rq)
5960 {
5961 	return cfs_rq_runnable_avg(&rq->cfs);
5962 }
5963 
5964 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5965 {
5966 	struct cfs_rq *cfs_rq;
5967 	unsigned int runnable;
5968 
5969 	/* Task has no contribution or is new */
5970 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5971 		return cpu_runnable(rq);
5972 
5973 	cfs_rq = &rq->cfs;
5974 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5975 
5976 	/* Discount task's runnable from CPU's runnable */
5977 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5978 
5979 	return runnable;
5980 }
5981 
5982 static unsigned long capacity_of(int cpu)
5983 {
5984 	return cpu_rq(cpu)->cpu_capacity;
5985 }
5986 
5987 static void record_wakee(struct task_struct *p)
5988 {
5989 	/*
5990 	 * Only decay a single time; tasks that have less then 1 wakeup per
5991 	 * jiffy will not have built up many flips.
5992 	 */
5993 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5994 		current->wakee_flips >>= 1;
5995 		current->wakee_flip_decay_ts = jiffies;
5996 	}
5997 
5998 	if (current->last_wakee != p) {
5999 		current->last_wakee = p;
6000 		current->wakee_flips++;
6001 	}
6002 }
6003 
6004 /*
6005  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6006  *
6007  * A waker of many should wake a different task than the one last awakened
6008  * at a frequency roughly N times higher than one of its wakees.
6009  *
6010  * In order to determine whether we should let the load spread vs consolidating
6011  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6012  * partner, and a factor of lls_size higher frequency in the other.
6013  *
6014  * With both conditions met, we can be relatively sure that the relationship is
6015  * non-monogamous, with partner count exceeding socket size.
6016  *
6017  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6018  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6019  * socket size.
6020  */
6021 static int wake_wide(struct task_struct *p)
6022 {
6023 	unsigned int master = current->wakee_flips;
6024 	unsigned int slave = p->wakee_flips;
6025 	int factor = __this_cpu_read(sd_llc_size);
6026 
6027 	if (master < slave)
6028 		swap(master, slave);
6029 	if (slave < factor || master < slave * factor)
6030 		return 0;
6031 	return 1;
6032 }
6033 
6034 /*
6035  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6036  * soonest. For the purpose of speed we only consider the waking and previous
6037  * CPU.
6038  *
6039  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6040  *			cache-affine and is (or	will be) idle.
6041  *
6042  * wake_affine_weight() - considers the weight to reflect the average
6043  *			  scheduling latency of the CPUs. This seems to work
6044  *			  for the overloaded case.
6045  */
6046 static int
6047 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6048 {
6049 	/*
6050 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6051 	 * context. Only allow the move if cache is shared. Otherwise an
6052 	 * interrupt intensive workload could force all tasks onto one
6053 	 * node depending on the IO topology or IRQ affinity settings.
6054 	 *
6055 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6056 	 * There is no guarantee that the cache hot data from an interrupt
6057 	 * is more important than cache hot data on the prev_cpu and from
6058 	 * a cpufreq perspective, it's better to have higher utilisation
6059 	 * on one CPU.
6060 	 */
6061 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6062 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6063 
6064 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6065 		return this_cpu;
6066 
6067 	if (available_idle_cpu(prev_cpu))
6068 		return prev_cpu;
6069 
6070 	return nr_cpumask_bits;
6071 }
6072 
6073 static int
6074 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6075 		   int this_cpu, int prev_cpu, int sync)
6076 {
6077 	s64 this_eff_load, prev_eff_load;
6078 	unsigned long task_load;
6079 
6080 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6081 
6082 	if (sync) {
6083 		unsigned long current_load = task_h_load(current);
6084 
6085 		if (current_load > this_eff_load)
6086 			return this_cpu;
6087 
6088 		this_eff_load -= current_load;
6089 	}
6090 
6091 	task_load = task_h_load(p);
6092 
6093 	this_eff_load += task_load;
6094 	if (sched_feat(WA_BIAS))
6095 		this_eff_load *= 100;
6096 	this_eff_load *= capacity_of(prev_cpu);
6097 
6098 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6099 	prev_eff_load -= task_load;
6100 	if (sched_feat(WA_BIAS))
6101 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6102 	prev_eff_load *= capacity_of(this_cpu);
6103 
6104 	/*
6105 	 * If sync, adjust the weight of prev_eff_load such that if
6106 	 * prev_eff == this_eff that select_idle_sibling() will consider
6107 	 * stacking the wakee on top of the waker if no other CPU is
6108 	 * idle.
6109 	 */
6110 	if (sync)
6111 		prev_eff_load += 1;
6112 
6113 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6114 }
6115 
6116 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6117 		       int this_cpu, int prev_cpu, int sync)
6118 {
6119 	int target = nr_cpumask_bits;
6120 
6121 	if (sched_feat(WA_IDLE))
6122 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6123 
6124 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6125 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6126 
6127 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6128 	if (target == nr_cpumask_bits)
6129 		return prev_cpu;
6130 
6131 	schedstat_inc(sd->ttwu_move_affine);
6132 	schedstat_inc(p->stats.nr_wakeups_affine);
6133 	return target;
6134 }
6135 
6136 static struct sched_group *
6137 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6138 
6139 /*
6140  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6141  */
6142 static int
6143 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6144 {
6145 	unsigned long load, min_load = ULONG_MAX;
6146 	unsigned int min_exit_latency = UINT_MAX;
6147 	u64 latest_idle_timestamp = 0;
6148 	int least_loaded_cpu = this_cpu;
6149 	int shallowest_idle_cpu = -1;
6150 	int i;
6151 
6152 	/* Check if we have any choice: */
6153 	if (group->group_weight == 1)
6154 		return cpumask_first(sched_group_span(group));
6155 
6156 	/* Traverse only the allowed CPUs */
6157 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6158 		struct rq *rq = cpu_rq(i);
6159 
6160 		if (!sched_core_cookie_match(rq, p))
6161 			continue;
6162 
6163 		if (sched_idle_cpu(i))
6164 			return i;
6165 
6166 		if (available_idle_cpu(i)) {
6167 			struct cpuidle_state *idle = idle_get_state(rq);
6168 			if (idle && idle->exit_latency < min_exit_latency) {
6169 				/*
6170 				 * We give priority to a CPU whose idle state
6171 				 * has the smallest exit latency irrespective
6172 				 * of any idle timestamp.
6173 				 */
6174 				min_exit_latency = idle->exit_latency;
6175 				latest_idle_timestamp = rq->idle_stamp;
6176 				shallowest_idle_cpu = i;
6177 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6178 				   rq->idle_stamp > latest_idle_timestamp) {
6179 				/*
6180 				 * If equal or no active idle state, then
6181 				 * the most recently idled CPU might have
6182 				 * a warmer cache.
6183 				 */
6184 				latest_idle_timestamp = rq->idle_stamp;
6185 				shallowest_idle_cpu = i;
6186 			}
6187 		} else if (shallowest_idle_cpu == -1) {
6188 			load = cpu_load(cpu_rq(i));
6189 			if (load < min_load) {
6190 				min_load = load;
6191 				least_loaded_cpu = i;
6192 			}
6193 		}
6194 	}
6195 
6196 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6197 }
6198 
6199 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6200 				  int cpu, int prev_cpu, int sd_flag)
6201 {
6202 	int new_cpu = cpu;
6203 
6204 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6205 		return prev_cpu;
6206 
6207 	/*
6208 	 * We need task's util for cpu_util_without, sync it up to
6209 	 * prev_cpu's last_update_time.
6210 	 */
6211 	if (!(sd_flag & SD_BALANCE_FORK))
6212 		sync_entity_load_avg(&p->se);
6213 
6214 	while (sd) {
6215 		struct sched_group *group;
6216 		struct sched_domain *tmp;
6217 		int weight;
6218 
6219 		if (!(sd->flags & sd_flag)) {
6220 			sd = sd->child;
6221 			continue;
6222 		}
6223 
6224 		group = find_idlest_group(sd, p, cpu);
6225 		if (!group) {
6226 			sd = sd->child;
6227 			continue;
6228 		}
6229 
6230 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6231 		if (new_cpu == cpu) {
6232 			/* Now try balancing at a lower domain level of 'cpu': */
6233 			sd = sd->child;
6234 			continue;
6235 		}
6236 
6237 		/* Now try balancing at a lower domain level of 'new_cpu': */
6238 		cpu = new_cpu;
6239 		weight = sd->span_weight;
6240 		sd = NULL;
6241 		for_each_domain(cpu, tmp) {
6242 			if (weight <= tmp->span_weight)
6243 				break;
6244 			if (tmp->flags & sd_flag)
6245 				sd = tmp;
6246 		}
6247 	}
6248 
6249 	return new_cpu;
6250 }
6251 
6252 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6253 {
6254 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6255 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6256 		return cpu;
6257 
6258 	return -1;
6259 }
6260 
6261 #ifdef CONFIG_SCHED_SMT
6262 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6263 EXPORT_SYMBOL_GPL(sched_smt_present);
6264 
6265 static inline void set_idle_cores(int cpu, int val)
6266 {
6267 	struct sched_domain_shared *sds;
6268 
6269 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6270 	if (sds)
6271 		WRITE_ONCE(sds->has_idle_cores, val);
6272 }
6273 
6274 static inline bool test_idle_cores(int cpu)
6275 {
6276 	struct sched_domain_shared *sds;
6277 
6278 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6279 	if (sds)
6280 		return READ_ONCE(sds->has_idle_cores);
6281 
6282 	return false;
6283 }
6284 
6285 /*
6286  * Scans the local SMT mask to see if the entire core is idle, and records this
6287  * information in sd_llc_shared->has_idle_cores.
6288  *
6289  * Since SMT siblings share all cache levels, inspecting this limited remote
6290  * state should be fairly cheap.
6291  */
6292 void __update_idle_core(struct rq *rq)
6293 {
6294 	int core = cpu_of(rq);
6295 	int cpu;
6296 
6297 	rcu_read_lock();
6298 	if (test_idle_cores(core))
6299 		goto unlock;
6300 
6301 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6302 		if (cpu == core)
6303 			continue;
6304 
6305 		if (!available_idle_cpu(cpu))
6306 			goto unlock;
6307 	}
6308 
6309 	set_idle_cores(core, 1);
6310 unlock:
6311 	rcu_read_unlock();
6312 }
6313 
6314 /*
6315  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6316  * there are no idle cores left in the system; tracked through
6317  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6318  */
6319 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6320 {
6321 	bool idle = true;
6322 	int cpu;
6323 
6324 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6325 		if (!available_idle_cpu(cpu)) {
6326 			idle = false;
6327 			if (*idle_cpu == -1) {
6328 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6329 					*idle_cpu = cpu;
6330 					break;
6331 				}
6332 				continue;
6333 			}
6334 			break;
6335 		}
6336 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6337 			*idle_cpu = cpu;
6338 	}
6339 
6340 	if (idle)
6341 		return core;
6342 
6343 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6344 	return -1;
6345 }
6346 
6347 /*
6348  * Scan the local SMT mask for idle CPUs.
6349  */
6350 static int select_idle_smt(struct task_struct *p, int target)
6351 {
6352 	int cpu;
6353 
6354 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
6355 		if (cpu == target)
6356 			continue;
6357 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6358 			return cpu;
6359 	}
6360 
6361 	return -1;
6362 }
6363 
6364 #else /* CONFIG_SCHED_SMT */
6365 
6366 static inline void set_idle_cores(int cpu, int val)
6367 {
6368 }
6369 
6370 static inline bool test_idle_cores(int cpu)
6371 {
6372 	return false;
6373 }
6374 
6375 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6376 {
6377 	return __select_idle_cpu(core, p);
6378 }
6379 
6380 static inline int select_idle_smt(struct task_struct *p, int target)
6381 {
6382 	return -1;
6383 }
6384 
6385 #endif /* CONFIG_SCHED_SMT */
6386 
6387 /*
6388  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6389  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6390  * average idle time for this rq (as found in rq->avg_idle).
6391  */
6392 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6393 {
6394 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6395 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6396 	struct sched_domain_shared *sd_share;
6397 	struct rq *this_rq = this_rq();
6398 	int this = smp_processor_id();
6399 	struct sched_domain *this_sd = NULL;
6400 	u64 time = 0;
6401 
6402 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6403 
6404 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6405 		u64 avg_cost, avg_idle, span_avg;
6406 		unsigned long now = jiffies;
6407 
6408 		this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6409 		if (!this_sd)
6410 			return -1;
6411 
6412 		/*
6413 		 * If we're busy, the assumption that the last idle period
6414 		 * predicts the future is flawed; age away the remaining
6415 		 * predicted idle time.
6416 		 */
6417 		if (unlikely(this_rq->wake_stamp < now)) {
6418 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6419 				this_rq->wake_stamp++;
6420 				this_rq->wake_avg_idle >>= 1;
6421 			}
6422 		}
6423 
6424 		avg_idle = this_rq->wake_avg_idle;
6425 		avg_cost = this_sd->avg_scan_cost + 1;
6426 
6427 		span_avg = sd->span_weight * avg_idle;
6428 		if (span_avg > 4*avg_cost)
6429 			nr = div_u64(span_avg, avg_cost);
6430 		else
6431 			nr = 4;
6432 
6433 		time = cpu_clock(this);
6434 	}
6435 
6436 	if (sched_feat(SIS_UTIL)) {
6437 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
6438 		if (sd_share) {
6439 			/* because !--nr is the condition to stop scan */
6440 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
6441 			/* overloaded LLC is unlikely to have idle cpu/core */
6442 			if (nr == 1)
6443 				return -1;
6444 		}
6445 	}
6446 
6447 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6448 		if (has_idle_core) {
6449 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6450 			if ((unsigned int)i < nr_cpumask_bits)
6451 				return i;
6452 
6453 		} else {
6454 			if (!--nr)
6455 				return -1;
6456 			idle_cpu = __select_idle_cpu(cpu, p);
6457 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6458 				break;
6459 		}
6460 	}
6461 
6462 	if (has_idle_core)
6463 		set_idle_cores(target, false);
6464 
6465 	if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) {
6466 		time = cpu_clock(this) - time;
6467 
6468 		/*
6469 		 * Account for the scan cost of wakeups against the average
6470 		 * idle time.
6471 		 */
6472 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6473 
6474 		update_avg(&this_sd->avg_scan_cost, time);
6475 	}
6476 
6477 	return idle_cpu;
6478 }
6479 
6480 /*
6481  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6482  * the task fits. If no CPU is big enough, but there are idle ones, try to
6483  * maximize capacity.
6484  */
6485 static int
6486 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6487 {
6488 	unsigned long task_util, best_cap = 0;
6489 	int cpu, best_cpu = -1;
6490 	struct cpumask *cpus;
6491 
6492 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6493 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6494 
6495 	task_util = uclamp_task_util(p);
6496 
6497 	for_each_cpu_wrap(cpu, cpus, target) {
6498 		unsigned long cpu_cap = capacity_of(cpu);
6499 
6500 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6501 			continue;
6502 		if (fits_capacity(task_util, cpu_cap))
6503 			return cpu;
6504 
6505 		if (cpu_cap > best_cap) {
6506 			best_cap = cpu_cap;
6507 			best_cpu = cpu;
6508 		}
6509 	}
6510 
6511 	return best_cpu;
6512 }
6513 
6514 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6515 {
6516 	if (sched_asym_cpucap_active())
6517 		return fits_capacity(task_util, capacity_of(cpu));
6518 
6519 	return true;
6520 }
6521 
6522 /*
6523  * Try and locate an idle core/thread in the LLC cache domain.
6524  */
6525 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6526 {
6527 	bool has_idle_core = false;
6528 	struct sched_domain *sd;
6529 	unsigned long task_util;
6530 	int i, recent_used_cpu;
6531 
6532 	/*
6533 	 * On asymmetric system, update task utilization because we will check
6534 	 * that the task fits with cpu's capacity.
6535 	 */
6536 	if (sched_asym_cpucap_active()) {
6537 		sync_entity_load_avg(&p->se);
6538 		task_util = uclamp_task_util(p);
6539 	}
6540 
6541 	/*
6542 	 * per-cpu select_rq_mask usage
6543 	 */
6544 	lockdep_assert_irqs_disabled();
6545 
6546 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6547 	    asym_fits_capacity(task_util, target))
6548 		return target;
6549 
6550 	/*
6551 	 * If the previous CPU is cache affine and idle, don't be stupid:
6552 	 */
6553 	if (prev != target && cpus_share_cache(prev, target) &&
6554 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6555 	    asym_fits_capacity(task_util, prev))
6556 		return prev;
6557 
6558 	/*
6559 	 * Allow a per-cpu kthread to stack with the wakee if the
6560 	 * kworker thread and the tasks previous CPUs are the same.
6561 	 * The assumption is that the wakee queued work for the
6562 	 * per-cpu kthread that is now complete and the wakeup is
6563 	 * essentially a sync wakeup. An obvious example of this
6564 	 * pattern is IO completions.
6565 	 */
6566 	if (is_per_cpu_kthread(current) &&
6567 	    in_task() &&
6568 	    prev == smp_processor_id() &&
6569 	    this_rq()->nr_running <= 1 &&
6570 	    asym_fits_capacity(task_util, prev)) {
6571 		return prev;
6572 	}
6573 
6574 	/* Check a recently used CPU as a potential idle candidate: */
6575 	recent_used_cpu = p->recent_used_cpu;
6576 	p->recent_used_cpu = prev;
6577 	if (recent_used_cpu != prev &&
6578 	    recent_used_cpu != target &&
6579 	    cpus_share_cache(recent_used_cpu, target) &&
6580 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6581 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6582 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6583 		return recent_used_cpu;
6584 	}
6585 
6586 	/*
6587 	 * For asymmetric CPU capacity systems, our domain of interest is
6588 	 * sd_asym_cpucapacity rather than sd_llc.
6589 	 */
6590 	if (sched_asym_cpucap_active()) {
6591 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6592 		/*
6593 		 * On an asymmetric CPU capacity system where an exclusive
6594 		 * cpuset defines a symmetric island (i.e. one unique
6595 		 * capacity_orig value through the cpuset), the key will be set
6596 		 * but the CPUs within that cpuset will not have a domain with
6597 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6598 		 * capacity path.
6599 		 */
6600 		if (sd) {
6601 			i = select_idle_capacity(p, sd, target);
6602 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6603 		}
6604 	}
6605 
6606 	sd = rcu_dereference(per_cpu(sd_llc, target));
6607 	if (!sd)
6608 		return target;
6609 
6610 	if (sched_smt_active()) {
6611 		has_idle_core = test_idle_cores(target);
6612 
6613 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6614 			i = select_idle_smt(p, prev);
6615 			if ((unsigned int)i < nr_cpumask_bits)
6616 				return i;
6617 		}
6618 	}
6619 
6620 	i = select_idle_cpu(p, sd, has_idle_core, target);
6621 	if ((unsigned)i < nr_cpumask_bits)
6622 		return i;
6623 
6624 	return target;
6625 }
6626 
6627 /*
6628  * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
6629  * (@dst_cpu = -1) or migrated to @dst_cpu.
6630  */
6631 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6632 {
6633 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6634 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
6635 
6636 	/*
6637 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
6638 	 * contribution. If @p migrates from another CPU to @cpu add its
6639 	 * contribution. In all the other cases @cpu is not impacted by the
6640 	 * migration so its util_avg is already correct.
6641 	 */
6642 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6643 		lsub_positive(&util, task_util(p));
6644 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6645 		util += task_util(p);
6646 
6647 	if (sched_feat(UTIL_EST)) {
6648 		unsigned long util_est;
6649 
6650 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6651 
6652 		/*
6653 		 * During wake-up @p isn't enqueued yet and doesn't contribute
6654 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
6655 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
6656 		 * has been enqueued.
6657 		 *
6658 		 * During exec (@dst_cpu = -1) @p is enqueued and does
6659 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
6660 		 * Remove it to "simulate" cpu_util without @p's contribution.
6661 		 *
6662 		 * Despite the task_on_rq_queued(@p) check there is still a
6663 		 * small window for a possible race when an exec
6664 		 * select_task_rq_fair() races with LB's detach_task().
6665 		 *
6666 		 *   detach_task()
6667 		 *     deactivate_task()
6668 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
6669 		 *       -------------------------------- A
6670 		 *       dequeue_task()                    \
6671 		 *         dequeue_task_fair()              + Race Time
6672 		 *           util_est_dequeue()            /
6673 		 *       -------------------------------- B
6674 		 *
6675 		 * The additional check "current == p" is required to further
6676 		 * reduce the race window.
6677 		 */
6678 		if (dst_cpu == cpu)
6679 			util_est += _task_util_est(p);
6680 		else if (unlikely(task_on_rq_queued(p) || current == p))
6681 			lsub_positive(&util_est, _task_util_est(p));
6682 
6683 		util = max(util, util_est);
6684 	}
6685 
6686 	return min(util, capacity_orig_of(cpu));
6687 }
6688 
6689 /*
6690  * cpu_util_without: compute cpu utilization without any contributions from *p
6691  * @cpu: the CPU which utilization is requested
6692  * @p: the task which utilization should be discounted
6693  *
6694  * The utilization of a CPU is defined by the utilization of tasks currently
6695  * enqueued on that CPU as well as tasks which are currently sleeping after an
6696  * execution on that CPU.
6697  *
6698  * This method returns the utilization of the specified CPU by discounting the
6699  * utilization of the specified task, whenever the task is currently
6700  * contributing to the CPU utilization.
6701  */
6702 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6703 {
6704 	/* Task has no contribution or is new */
6705 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6706 		return cpu_util_cfs(cpu);
6707 
6708 	return cpu_util_next(cpu, p, -1);
6709 }
6710 
6711 /*
6712  * energy_env - Utilization landscape for energy estimation.
6713  * @task_busy_time: Utilization contribution by the task for which we test the
6714  *                  placement. Given by eenv_task_busy_time().
6715  * @pd_busy_time:   Utilization of the whole perf domain without the task
6716  *                  contribution. Given by eenv_pd_busy_time().
6717  * @cpu_cap:        Maximum CPU capacity for the perf domain.
6718  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
6719  */
6720 struct energy_env {
6721 	unsigned long task_busy_time;
6722 	unsigned long pd_busy_time;
6723 	unsigned long cpu_cap;
6724 	unsigned long pd_cap;
6725 };
6726 
6727 /*
6728  * Compute the task busy time for compute_energy(). This time cannot be
6729  * injected directly into effective_cpu_util() because of the IRQ scaling.
6730  * The latter only makes sense with the most recent CPUs where the task has
6731  * run.
6732  */
6733 static inline void eenv_task_busy_time(struct energy_env *eenv,
6734 				       struct task_struct *p, int prev_cpu)
6735 {
6736 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
6737 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
6738 
6739 	if (unlikely(irq >= max_cap))
6740 		busy_time = max_cap;
6741 	else
6742 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
6743 
6744 	eenv->task_busy_time = busy_time;
6745 }
6746 
6747 /*
6748  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
6749  * utilization for each @pd_cpus, it however doesn't take into account
6750  * clamping since the ratio (utilization / cpu_capacity) is already enough to
6751  * scale the EM reported power consumption at the (eventually clamped)
6752  * cpu_capacity.
6753  *
6754  * The contribution of the task @p for which we want to estimate the
6755  * energy cost is removed (by cpu_util_next()) and must be calculated
6756  * separately (see eenv_task_busy_time). This ensures:
6757  *
6758  *   - A stable PD utilization, no matter which CPU of that PD we want to place
6759  *     the task on.
6760  *
6761  *   - A fair comparison between CPUs as the task contribution (task_util())
6762  *     will always be the same no matter which CPU utilization we rely on
6763  *     (util_avg or util_est).
6764  *
6765  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
6766  * exceed @eenv->pd_cap.
6767  */
6768 static inline void eenv_pd_busy_time(struct energy_env *eenv,
6769 				     struct cpumask *pd_cpus,
6770 				     struct task_struct *p)
6771 {
6772 	unsigned long busy_time = 0;
6773 	int cpu;
6774 
6775 	for_each_cpu(cpu, pd_cpus) {
6776 		unsigned long util = cpu_util_next(cpu, p, -1);
6777 
6778 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
6779 	}
6780 
6781 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
6782 }
6783 
6784 /*
6785  * Compute the maximum utilization for compute_energy() when the task @p
6786  * is placed on the cpu @dst_cpu.
6787  *
6788  * Returns the maximum utilization among @eenv->cpus. This utilization can't
6789  * exceed @eenv->cpu_cap.
6790  */
6791 static inline unsigned long
6792 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
6793 		 struct task_struct *p, int dst_cpu)
6794 {
6795 	unsigned long max_util = 0;
6796 	int cpu;
6797 
6798 	for_each_cpu(cpu, pd_cpus) {
6799 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
6800 		unsigned long util = cpu_util_next(cpu, p, dst_cpu);
6801 		unsigned long cpu_util;
6802 
6803 		/*
6804 		 * Performance domain frequency: utilization clamping
6805 		 * must be considered since it affects the selection
6806 		 * of the performance domain frequency.
6807 		 * NOTE: in case RT tasks are running, by default the
6808 		 * FREQUENCY_UTIL's utilization can be max OPP.
6809 		 */
6810 		cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
6811 		max_util = max(max_util, cpu_util);
6812 	}
6813 
6814 	return min(max_util, eenv->cpu_cap);
6815 }
6816 
6817 /*
6818  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
6819  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
6820  * contribution is ignored.
6821  */
6822 static inline unsigned long
6823 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
6824 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
6825 {
6826 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
6827 	unsigned long busy_time = eenv->pd_busy_time;
6828 
6829 	if (dst_cpu >= 0)
6830 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
6831 
6832 	return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
6833 }
6834 
6835 /*
6836  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6837  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6838  * spare capacity in each performance domain and uses it as a potential
6839  * candidate to execute the task. Then, it uses the Energy Model to figure
6840  * out which of the CPU candidates is the most energy-efficient.
6841  *
6842  * The rationale for this heuristic is as follows. In a performance domain,
6843  * all the most energy efficient CPU candidates (according to the Energy
6844  * Model) are those for which we'll request a low frequency. When there are
6845  * several CPUs for which the frequency request will be the same, we don't
6846  * have enough data to break the tie between them, because the Energy Model
6847  * only includes active power costs. With this model, if we assume that
6848  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6849  * the maximum spare capacity in a performance domain is guaranteed to be among
6850  * the best candidates of the performance domain.
6851  *
6852  * In practice, it could be preferable from an energy standpoint to pack
6853  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6854  * but that could also hurt our chances to go cluster idle, and we have no
6855  * ways to tell with the current Energy Model if this is actually a good
6856  * idea or not. So, find_energy_efficient_cpu() basically favors
6857  * cluster-packing, and spreading inside a cluster. That should at least be
6858  * a good thing for latency, and this is consistent with the idea that most
6859  * of the energy savings of EAS come from the asymmetry of the system, and
6860  * not so much from breaking the tie between identical CPUs. That's also the
6861  * reason why EAS is enabled in the topology code only for systems where
6862  * SD_ASYM_CPUCAPACITY is set.
6863  *
6864  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6865  * they don't have any useful utilization data yet and it's not possible to
6866  * forecast their impact on energy consumption. Consequently, they will be
6867  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6868  * to be energy-inefficient in some use-cases. The alternative would be to
6869  * bias new tasks towards specific types of CPUs first, or to try to infer
6870  * their util_avg from the parent task, but those heuristics could hurt
6871  * other use-cases too. So, until someone finds a better way to solve this,
6872  * let's keep things simple by re-using the existing slow path.
6873  */
6874 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6875 {
6876 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
6877 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6878 	struct root_domain *rd = this_rq()->rd;
6879 	int cpu, best_energy_cpu, target = -1;
6880 	struct sched_domain *sd;
6881 	struct perf_domain *pd;
6882 	struct energy_env eenv;
6883 
6884 	rcu_read_lock();
6885 	pd = rcu_dereference(rd->pd);
6886 	if (!pd || READ_ONCE(rd->overutilized))
6887 		goto unlock;
6888 
6889 	/*
6890 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6891 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6892 	 */
6893 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6894 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6895 		sd = sd->parent;
6896 	if (!sd)
6897 		goto unlock;
6898 
6899 	target = prev_cpu;
6900 
6901 	sync_entity_load_avg(&p->se);
6902 	if (!task_util_est(p))
6903 		goto unlock;
6904 
6905 	eenv_task_busy_time(&eenv, p, prev_cpu);
6906 
6907 	for (; pd; pd = pd->next) {
6908 		unsigned long cpu_cap, cpu_thermal_cap, util;
6909 		unsigned long cur_delta, max_spare_cap = 0;
6910 		bool compute_prev_delta = false;
6911 		int max_spare_cap_cpu = -1;
6912 		unsigned long base_energy;
6913 
6914 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
6915 
6916 		if (cpumask_empty(cpus))
6917 			continue;
6918 
6919 		/* Account thermal pressure for the energy estimation */
6920 		cpu = cpumask_first(cpus);
6921 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
6922 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
6923 
6924 		eenv.cpu_cap = cpu_thermal_cap;
6925 		eenv.pd_cap = 0;
6926 
6927 		for_each_cpu(cpu, cpus) {
6928 			eenv.pd_cap += cpu_thermal_cap;
6929 
6930 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
6931 				continue;
6932 
6933 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6934 				continue;
6935 
6936 			util = cpu_util_next(cpu, p, cpu);
6937 			cpu_cap = capacity_of(cpu);
6938 
6939 			/*
6940 			 * Skip CPUs that cannot satisfy the capacity request.
6941 			 * IOW, placing the task there would make the CPU
6942 			 * overutilized. Take uclamp into account to see how
6943 			 * much capacity we can get out of the CPU; this is
6944 			 * aligned with sched_cpu_util().
6945 			 */
6946 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6947 			if (!fits_capacity(util, cpu_cap))
6948 				continue;
6949 
6950 			lsub_positive(&cpu_cap, util);
6951 
6952 			if (cpu == prev_cpu) {
6953 				/* Always use prev_cpu as a candidate. */
6954 				compute_prev_delta = true;
6955 			} else if (cpu_cap > max_spare_cap) {
6956 				/*
6957 				 * Find the CPU with the maximum spare capacity
6958 				 * in the performance domain.
6959 				 */
6960 				max_spare_cap = cpu_cap;
6961 				max_spare_cap_cpu = cpu;
6962 			}
6963 		}
6964 
6965 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6966 			continue;
6967 
6968 		eenv_pd_busy_time(&eenv, cpus, p);
6969 		/* Compute the 'base' energy of the pd, without @p */
6970 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
6971 
6972 		/* Evaluate the energy impact of using prev_cpu. */
6973 		if (compute_prev_delta) {
6974 			prev_delta = compute_energy(&eenv, pd, cpus, p,
6975 						    prev_cpu);
6976 			/* CPU utilization has changed */
6977 			if (prev_delta < base_energy)
6978 				goto unlock;
6979 			prev_delta -= base_energy;
6980 			best_delta = min(best_delta, prev_delta);
6981 		}
6982 
6983 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6984 		if (max_spare_cap_cpu >= 0) {
6985 			cur_delta = compute_energy(&eenv, pd, cpus, p,
6986 						   max_spare_cap_cpu);
6987 			/* CPU utilization has changed */
6988 			if (cur_delta < base_energy)
6989 				goto unlock;
6990 			cur_delta -= base_energy;
6991 			if (cur_delta < best_delta) {
6992 				best_delta = cur_delta;
6993 				best_energy_cpu = max_spare_cap_cpu;
6994 			}
6995 		}
6996 	}
6997 	rcu_read_unlock();
6998 
6999 	if (best_delta < prev_delta)
7000 		target = best_energy_cpu;
7001 
7002 	return target;
7003 
7004 unlock:
7005 	rcu_read_unlock();
7006 
7007 	return target;
7008 }
7009 
7010 /*
7011  * select_task_rq_fair: Select target runqueue for the waking task in domains
7012  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7013  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7014  *
7015  * Balances load by selecting the idlest CPU in the idlest group, or under
7016  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7017  *
7018  * Returns the target CPU number.
7019  */
7020 static int
7021 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7022 {
7023 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7024 	struct sched_domain *tmp, *sd = NULL;
7025 	int cpu = smp_processor_id();
7026 	int new_cpu = prev_cpu;
7027 	int want_affine = 0;
7028 	/* SD_flags and WF_flags share the first nibble */
7029 	int sd_flag = wake_flags & 0xF;
7030 
7031 	/*
7032 	 * required for stable ->cpus_allowed
7033 	 */
7034 	lockdep_assert_held(&p->pi_lock);
7035 	if (wake_flags & WF_TTWU) {
7036 		record_wakee(p);
7037 
7038 		if (sched_energy_enabled()) {
7039 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7040 			if (new_cpu >= 0)
7041 				return new_cpu;
7042 			new_cpu = prev_cpu;
7043 		}
7044 
7045 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7046 	}
7047 
7048 	rcu_read_lock();
7049 	for_each_domain(cpu, tmp) {
7050 		/*
7051 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7052 		 * cpu is a valid SD_WAKE_AFFINE target.
7053 		 */
7054 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7055 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7056 			if (cpu != prev_cpu)
7057 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7058 
7059 			sd = NULL; /* Prefer wake_affine over balance flags */
7060 			break;
7061 		}
7062 
7063 		/*
7064 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
7065 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
7066 		 * will usually go to the fast path.
7067 		 */
7068 		if (tmp->flags & sd_flag)
7069 			sd = tmp;
7070 		else if (!want_affine)
7071 			break;
7072 	}
7073 
7074 	if (unlikely(sd)) {
7075 		/* Slow path */
7076 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7077 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
7078 		/* Fast path */
7079 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7080 	}
7081 	rcu_read_unlock();
7082 
7083 	return new_cpu;
7084 }
7085 
7086 /*
7087  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7088  * cfs_rq_of(p) references at time of call are still valid and identify the
7089  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7090  */
7091 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7092 {
7093 	struct sched_entity *se = &p->se;
7094 
7095 	/*
7096 	 * As blocked tasks retain absolute vruntime the migration needs to
7097 	 * deal with this by subtracting the old and adding the new
7098 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
7099 	 * the task on the new runqueue.
7100 	 */
7101 	if (READ_ONCE(p->__state) == TASK_WAKING) {
7102 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7103 
7104 		se->vruntime -= u64_u32_load(cfs_rq->min_vruntime);
7105 	}
7106 
7107 	if (!task_on_rq_migrating(p)) {
7108 		remove_entity_load_avg(se);
7109 
7110 		/*
7111 		 * Here, the task's PELT values have been updated according to
7112 		 * the current rq's clock. But if that clock hasn't been
7113 		 * updated in a while, a substantial idle time will be missed,
7114 		 * leading to an inflation after wake-up on the new rq.
7115 		 *
7116 		 * Estimate the missing time from the cfs_rq last_update_time
7117 		 * and update sched_avg to improve the PELT continuity after
7118 		 * migration.
7119 		 */
7120 		migrate_se_pelt_lag(se);
7121 	}
7122 
7123 	/* Tell new CPU we are migrated */
7124 	se->avg.last_update_time = 0;
7125 
7126 	/* We have migrated, no longer consider this task hot */
7127 	se->exec_start = 0;
7128 
7129 	update_scan_period(p, new_cpu);
7130 }
7131 
7132 static void task_dead_fair(struct task_struct *p)
7133 {
7134 	remove_entity_load_avg(&p->se);
7135 }
7136 
7137 static int
7138 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7139 {
7140 	if (rq->nr_running)
7141 		return 1;
7142 
7143 	return newidle_balance(rq, rf) != 0;
7144 }
7145 #endif /* CONFIG_SMP */
7146 
7147 static unsigned long wakeup_gran(struct sched_entity *se)
7148 {
7149 	unsigned long gran = sysctl_sched_wakeup_granularity;
7150 
7151 	/*
7152 	 * Since its curr running now, convert the gran from real-time
7153 	 * to virtual-time in his units.
7154 	 *
7155 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7156 	 * they get preempted easier. That is, if 'se' < 'curr' then
7157 	 * the resulting gran will be larger, therefore penalizing the
7158 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7159 	 * be smaller, again penalizing the lighter task.
7160 	 *
7161 	 * This is especially important for buddies when the leftmost
7162 	 * task is higher priority than the buddy.
7163 	 */
7164 	return calc_delta_fair(gran, se);
7165 }
7166 
7167 /*
7168  * Should 'se' preempt 'curr'.
7169  *
7170  *             |s1
7171  *        |s2
7172  *   |s3
7173  *         g
7174  *      |<--->|c
7175  *
7176  *  w(c, s1) = -1
7177  *  w(c, s2) =  0
7178  *  w(c, s3) =  1
7179  *
7180  */
7181 static int
7182 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7183 {
7184 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7185 
7186 	if (vdiff <= 0)
7187 		return -1;
7188 
7189 	gran = wakeup_gran(se);
7190 	if (vdiff > gran)
7191 		return 1;
7192 
7193 	return 0;
7194 }
7195 
7196 static void set_last_buddy(struct sched_entity *se)
7197 {
7198 	for_each_sched_entity(se) {
7199 		if (SCHED_WARN_ON(!se->on_rq))
7200 			return;
7201 		if (se_is_idle(se))
7202 			return;
7203 		cfs_rq_of(se)->last = se;
7204 	}
7205 }
7206 
7207 static void set_next_buddy(struct sched_entity *se)
7208 {
7209 	for_each_sched_entity(se) {
7210 		if (SCHED_WARN_ON(!se->on_rq))
7211 			return;
7212 		if (se_is_idle(se))
7213 			return;
7214 		cfs_rq_of(se)->next = se;
7215 	}
7216 }
7217 
7218 static void set_skip_buddy(struct sched_entity *se)
7219 {
7220 	for_each_sched_entity(se)
7221 		cfs_rq_of(se)->skip = se;
7222 }
7223 
7224 /*
7225  * Preempt the current task with a newly woken task if needed:
7226  */
7227 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7228 {
7229 	struct task_struct *curr = rq->curr;
7230 	struct sched_entity *se = &curr->se, *pse = &p->se;
7231 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7232 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7233 	int next_buddy_marked = 0;
7234 	int cse_is_idle, pse_is_idle;
7235 
7236 	if (unlikely(se == pse))
7237 		return;
7238 
7239 	/*
7240 	 * This is possible from callers such as attach_tasks(), in which we
7241 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7242 	 * lead to a throttle).  This both saves work and prevents false
7243 	 * next-buddy nomination below.
7244 	 */
7245 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7246 		return;
7247 
7248 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7249 		set_next_buddy(pse);
7250 		next_buddy_marked = 1;
7251 	}
7252 
7253 	/*
7254 	 * We can come here with TIF_NEED_RESCHED already set from new task
7255 	 * wake up path.
7256 	 *
7257 	 * Note: this also catches the edge-case of curr being in a throttled
7258 	 * group (e.g. via set_curr_task), since update_curr() (in the
7259 	 * enqueue of curr) will have resulted in resched being set.  This
7260 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7261 	 * below.
7262 	 */
7263 	if (test_tsk_need_resched(curr))
7264 		return;
7265 
7266 	/* Idle tasks are by definition preempted by non-idle tasks. */
7267 	if (unlikely(task_has_idle_policy(curr)) &&
7268 	    likely(!task_has_idle_policy(p)))
7269 		goto preempt;
7270 
7271 	/*
7272 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7273 	 * is driven by the tick):
7274 	 */
7275 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7276 		return;
7277 
7278 	find_matching_se(&se, &pse);
7279 	WARN_ON_ONCE(!pse);
7280 
7281 	cse_is_idle = se_is_idle(se);
7282 	pse_is_idle = se_is_idle(pse);
7283 
7284 	/*
7285 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7286 	 * in the inverse case).
7287 	 */
7288 	if (cse_is_idle && !pse_is_idle)
7289 		goto preempt;
7290 	if (cse_is_idle != pse_is_idle)
7291 		return;
7292 
7293 	update_curr(cfs_rq_of(se));
7294 	if (wakeup_preempt_entity(se, pse) == 1) {
7295 		/*
7296 		 * Bias pick_next to pick the sched entity that is
7297 		 * triggering this preemption.
7298 		 */
7299 		if (!next_buddy_marked)
7300 			set_next_buddy(pse);
7301 		goto preempt;
7302 	}
7303 
7304 	return;
7305 
7306 preempt:
7307 	resched_curr(rq);
7308 	/*
7309 	 * Only set the backward buddy when the current task is still
7310 	 * on the rq. This can happen when a wakeup gets interleaved
7311 	 * with schedule on the ->pre_schedule() or idle_balance()
7312 	 * point, either of which can * drop the rq lock.
7313 	 *
7314 	 * Also, during early boot the idle thread is in the fair class,
7315 	 * for obvious reasons its a bad idea to schedule back to it.
7316 	 */
7317 	if (unlikely(!se->on_rq || curr == rq->idle))
7318 		return;
7319 
7320 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7321 		set_last_buddy(se);
7322 }
7323 
7324 #ifdef CONFIG_SMP
7325 static struct task_struct *pick_task_fair(struct rq *rq)
7326 {
7327 	struct sched_entity *se;
7328 	struct cfs_rq *cfs_rq;
7329 
7330 again:
7331 	cfs_rq = &rq->cfs;
7332 	if (!cfs_rq->nr_running)
7333 		return NULL;
7334 
7335 	do {
7336 		struct sched_entity *curr = cfs_rq->curr;
7337 
7338 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7339 		if (curr) {
7340 			if (curr->on_rq)
7341 				update_curr(cfs_rq);
7342 			else
7343 				curr = NULL;
7344 
7345 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7346 				goto again;
7347 		}
7348 
7349 		se = pick_next_entity(cfs_rq, curr);
7350 		cfs_rq = group_cfs_rq(se);
7351 	} while (cfs_rq);
7352 
7353 	return task_of(se);
7354 }
7355 #endif
7356 
7357 struct task_struct *
7358 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7359 {
7360 	struct cfs_rq *cfs_rq = &rq->cfs;
7361 	struct sched_entity *se;
7362 	struct task_struct *p;
7363 	int new_tasks;
7364 
7365 again:
7366 	if (!sched_fair_runnable(rq))
7367 		goto idle;
7368 
7369 #ifdef CONFIG_FAIR_GROUP_SCHED
7370 	if (!prev || prev->sched_class != &fair_sched_class)
7371 		goto simple;
7372 
7373 	/*
7374 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7375 	 * likely that a next task is from the same cgroup as the current.
7376 	 *
7377 	 * Therefore attempt to avoid putting and setting the entire cgroup
7378 	 * hierarchy, only change the part that actually changes.
7379 	 */
7380 
7381 	do {
7382 		struct sched_entity *curr = cfs_rq->curr;
7383 
7384 		/*
7385 		 * Since we got here without doing put_prev_entity() we also
7386 		 * have to consider cfs_rq->curr. If it is still a runnable
7387 		 * entity, update_curr() will update its vruntime, otherwise
7388 		 * forget we've ever seen it.
7389 		 */
7390 		if (curr) {
7391 			if (curr->on_rq)
7392 				update_curr(cfs_rq);
7393 			else
7394 				curr = NULL;
7395 
7396 			/*
7397 			 * This call to check_cfs_rq_runtime() will do the
7398 			 * throttle and dequeue its entity in the parent(s).
7399 			 * Therefore the nr_running test will indeed
7400 			 * be correct.
7401 			 */
7402 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7403 				cfs_rq = &rq->cfs;
7404 
7405 				if (!cfs_rq->nr_running)
7406 					goto idle;
7407 
7408 				goto simple;
7409 			}
7410 		}
7411 
7412 		se = pick_next_entity(cfs_rq, curr);
7413 		cfs_rq = group_cfs_rq(se);
7414 	} while (cfs_rq);
7415 
7416 	p = task_of(se);
7417 
7418 	/*
7419 	 * Since we haven't yet done put_prev_entity and if the selected task
7420 	 * is a different task than we started out with, try and touch the
7421 	 * least amount of cfs_rqs.
7422 	 */
7423 	if (prev != p) {
7424 		struct sched_entity *pse = &prev->se;
7425 
7426 		while (!(cfs_rq = is_same_group(se, pse))) {
7427 			int se_depth = se->depth;
7428 			int pse_depth = pse->depth;
7429 
7430 			if (se_depth <= pse_depth) {
7431 				put_prev_entity(cfs_rq_of(pse), pse);
7432 				pse = parent_entity(pse);
7433 			}
7434 			if (se_depth >= pse_depth) {
7435 				set_next_entity(cfs_rq_of(se), se);
7436 				se = parent_entity(se);
7437 			}
7438 		}
7439 
7440 		put_prev_entity(cfs_rq, pse);
7441 		set_next_entity(cfs_rq, se);
7442 	}
7443 
7444 	goto done;
7445 simple:
7446 #endif
7447 	if (prev)
7448 		put_prev_task(rq, prev);
7449 
7450 	do {
7451 		se = pick_next_entity(cfs_rq, NULL);
7452 		set_next_entity(cfs_rq, se);
7453 		cfs_rq = group_cfs_rq(se);
7454 	} while (cfs_rq);
7455 
7456 	p = task_of(se);
7457 
7458 done: __maybe_unused;
7459 #ifdef CONFIG_SMP
7460 	/*
7461 	 * Move the next running task to the front of
7462 	 * the list, so our cfs_tasks list becomes MRU
7463 	 * one.
7464 	 */
7465 	list_move(&p->se.group_node, &rq->cfs_tasks);
7466 #endif
7467 
7468 	if (hrtick_enabled_fair(rq))
7469 		hrtick_start_fair(rq, p);
7470 
7471 	update_misfit_status(p, rq);
7472 
7473 	return p;
7474 
7475 idle:
7476 	if (!rf)
7477 		return NULL;
7478 
7479 	new_tasks = newidle_balance(rq, rf);
7480 
7481 	/*
7482 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7483 	 * possible for any higher priority task to appear. In that case we
7484 	 * must re-start the pick_next_entity() loop.
7485 	 */
7486 	if (new_tasks < 0)
7487 		return RETRY_TASK;
7488 
7489 	if (new_tasks > 0)
7490 		goto again;
7491 
7492 	/*
7493 	 * rq is about to be idle, check if we need to update the
7494 	 * lost_idle_time of clock_pelt
7495 	 */
7496 	update_idle_rq_clock_pelt(rq);
7497 
7498 	return NULL;
7499 }
7500 
7501 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7502 {
7503 	return pick_next_task_fair(rq, NULL, NULL);
7504 }
7505 
7506 /*
7507  * Account for a descheduled task:
7508  */
7509 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7510 {
7511 	struct sched_entity *se = &prev->se;
7512 	struct cfs_rq *cfs_rq;
7513 
7514 	for_each_sched_entity(se) {
7515 		cfs_rq = cfs_rq_of(se);
7516 		put_prev_entity(cfs_rq, se);
7517 	}
7518 }
7519 
7520 /*
7521  * sched_yield() is very simple
7522  *
7523  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7524  */
7525 static void yield_task_fair(struct rq *rq)
7526 {
7527 	struct task_struct *curr = rq->curr;
7528 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7529 	struct sched_entity *se = &curr->se;
7530 
7531 	/*
7532 	 * Are we the only task in the tree?
7533 	 */
7534 	if (unlikely(rq->nr_running == 1))
7535 		return;
7536 
7537 	clear_buddies(cfs_rq, se);
7538 
7539 	if (curr->policy != SCHED_BATCH) {
7540 		update_rq_clock(rq);
7541 		/*
7542 		 * Update run-time statistics of the 'current'.
7543 		 */
7544 		update_curr(cfs_rq);
7545 		/*
7546 		 * Tell update_rq_clock() that we've just updated,
7547 		 * so we don't do microscopic update in schedule()
7548 		 * and double the fastpath cost.
7549 		 */
7550 		rq_clock_skip_update(rq);
7551 	}
7552 
7553 	set_skip_buddy(se);
7554 }
7555 
7556 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7557 {
7558 	struct sched_entity *se = &p->se;
7559 
7560 	/* throttled hierarchies are not runnable */
7561 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7562 		return false;
7563 
7564 	/* Tell the scheduler that we'd really like pse to run next. */
7565 	set_next_buddy(se);
7566 
7567 	yield_task_fair(rq);
7568 
7569 	return true;
7570 }
7571 
7572 #ifdef CONFIG_SMP
7573 /**************************************************
7574  * Fair scheduling class load-balancing methods.
7575  *
7576  * BASICS
7577  *
7578  * The purpose of load-balancing is to achieve the same basic fairness the
7579  * per-CPU scheduler provides, namely provide a proportional amount of compute
7580  * time to each task. This is expressed in the following equation:
7581  *
7582  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7583  *
7584  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7585  * W_i,0 is defined as:
7586  *
7587  *   W_i,0 = \Sum_j w_i,j                                             (2)
7588  *
7589  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7590  * is derived from the nice value as per sched_prio_to_weight[].
7591  *
7592  * The weight average is an exponential decay average of the instantaneous
7593  * weight:
7594  *
7595  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7596  *
7597  * C_i is the compute capacity of CPU i, typically it is the
7598  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7599  * can also include other factors [XXX].
7600  *
7601  * To achieve this balance we define a measure of imbalance which follows
7602  * directly from (1):
7603  *
7604  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7605  *
7606  * We them move tasks around to minimize the imbalance. In the continuous
7607  * function space it is obvious this converges, in the discrete case we get
7608  * a few fun cases generally called infeasible weight scenarios.
7609  *
7610  * [XXX expand on:
7611  *     - infeasible weights;
7612  *     - local vs global optima in the discrete case. ]
7613  *
7614  *
7615  * SCHED DOMAINS
7616  *
7617  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7618  * for all i,j solution, we create a tree of CPUs that follows the hardware
7619  * topology where each level pairs two lower groups (or better). This results
7620  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7621  * tree to only the first of the previous level and we decrease the frequency
7622  * of load-balance at each level inv. proportional to the number of CPUs in
7623  * the groups.
7624  *
7625  * This yields:
7626  *
7627  *     log_2 n     1     n
7628  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7629  *     i = 0      2^i   2^i
7630  *                               `- size of each group
7631  *         |         |     `- number of CPUs doing load-balance
7632  *         |         `- freq
7633  *         `- sum over all levels
7634  *
7635  * Coupled with a limit on how many tasks we can migrate every balance pass,
7636  * this makes (5) the runtime complexity of the balancer.
7637  *
7638  * An important property here is that each CPU is still (indirectly) connected
7639  * to every other CPU in at most O(log n) steps:
7640  *
7641  * The adjacency matrix of the resulting graph is given by:
7642  *
7643  *             log_2 n
7644  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7645  *             k = 0
7646  *
7647  * And you'll find that:
7648  *
7649  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7650  *
7651  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7652  * The task movement gives a factor of O(m), giving a convergence complexity
7653  * of:
7654  *
7655  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7656  *
7657  *
7658  * WORK CONSERVING
7659  *
7660  * In order to avoid CPUs going idle while there's still work to do, new idle
7661  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7662  * tree itself instead of relying on other CPUs to bring it work.
7663  *
7664  * This adds some complexity to both (5) and (8) but it reduces the total idle
7665  * time.
7666  *
7667  * [XXX more?]
7668  *
7669  *
7670  * CGROUPS
7671  *
7672  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7673  *
7674  *                                s_k,i
7675  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7676  *                                 S_k
7677  *
7678  * Where
7679  *
7680  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7681  *
7682  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7683  *
7684  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7685  * property.
7686  *
7687  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7688  *      rewrite all of this once again.]
7689  */
7690 
7691 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7692 
7693 enum fbq_type { regular, remote, all };
7694 
7695 /*
7696  * 'group_type' describes the group of CPUs at the moment of load balancing.
7697  *
7698  * The enum is ordered by pulling priority, with the group with lowest priority
7699  * first so the group_type can simply be compared when selecting the busiest
7700  * group. See update_sd_pick_busiest().
7701  */
7702 enum group_type {
7703 	/* The group has spare capacity that can be used to run more tasks.  */
7704 	group_has_spare = 0,
7705 	/*
7706 	 * The group is fully used and the tasks don't compete for more CPU
7707 	 * cycles. Nevertheless, some tasks might wait before running.
7708 	 */
7709 	group_fully_busy,
7710 	/*
7711 	 * One task doesn't fit with CPU's capacity and must be migrated to a
7712 	 * more powerful CPU.
7713 	 */
7714 	group_misfit_task,
7715 	/*
7716 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7717 	 * and the task should be migrated to it instead of running on the
7718 	 * current CPU.
7719 	 */
7720 	group_asym_packing,
7721 	/*
7722 	 * The tasks' affinity constraints previously prevented the scheduler
7723 	 * from balancing the load across the system.
7724 	 */
7725 	group_imbalanced,
7726 	/*
7727 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7728 	 * tasks.
7729 	 */
7730 	group_overloaded
7731 };
7732 
7733 enum migration_type {
7734 	migrate_load = 0,
7735 	migrate_util,
7736 	migrate_task,
7737 	migrate_misfit
7738 };
7739 
7740 #define LBF_ALL_PINNED	0x01
7741 #define LBF_NEED_BREAK	0x02
7742 #define LBF_DST_PINNED  0x04
7743 #define LBF_SOME_PINNED	0x08
7744 #define LBF_ACTIVE_LB	0x10
7745 
7746 struct lb_env {
7747 	struct sched_domain	*sd;
7748 
7749 	struct rq		*src_rq;
7750 	int			src_cpu;
7751 
7752 	int			dst_cpu;
7753 	struct rq		*dst_rq;
7754 
7755 	struct cpumask		*dst_grpmask;
7756 	int			new_dst_cpu;
7757 	enum cpu_idle_type	idle;
7758 	long			imbalance;
7759 	/* The set of CPUs under consideration for load-balancing */
7760 	struct cpumask		*cpus;
7761 
7762 	unsigned int		flags;
7763 
7764 	unsigned int		loop;
7765 	unsigned int		loop_break;
7766 	unsigned int		loop_max;
7767 
7768 	enum fbq_type		fbq_type;
7769 	enum migration_type	migration_type;
7770 	struct list_head	tasks;
7771 };
7772 
7773 /*
7774  * Is this task likely cache-hot:
7775  */
7776 static int task_hot(struct task_struct *p, struct lb_env *env)
7777 {
7778 	s64 delta;
7779 
7780 	lockdep_assert_rq_held(env->src_rq);
7781 
7782 	if (p->sched_class != &fair_sched_class)
7783 		return 0;
7784 
7785 	if (unlikely(task_has_idle_policy(p)))
7786 		return 0;
7787 
7788 	/* SMT siblings share cache */
7789 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7790 		return 0;
7791 
7792 	/*
7793 	 * Buddy candidates are cache hot:
7794 	 */
7795 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7796 			(&p->se == cfs_rq_of(&p->se)->next ||
7797 			 &p->se == cfs_rq_of(&p->se)->last))
7798 		return 1;
7799 
7800 	if (sysctl_sched_migration_cost == -1)
7801 		return 1;
7802 
7803 	/*
7804 	 * Don't migrate task if the task's cookie does not match
7805 	 * with the destination CPU's core cookie.
7806 	 */
7807 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7808 		return 1;
7809 
7810 	if (sysctl_sched_migration_cost == 0)
7811 		return 0;
7812 
7813 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7814 
7815 	return delta < (s64)sysctl_sched_migration_cost;
7816 }
7817 
7818 #ifdef CONFIG_NUMA_BALANCING
7819 /*
7820  * Returns 1, if task migration degrades locality
7821  * Returns 0, if task migration improves locality i.e migration preferred.
7822  * Returns -1, if task migration is not affected by locality.
7823  */
7824 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7825 {
7826 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7827 	unsigned long src_weight, dst_weight;
7828 	int src_nid, dst_nid, dist;
7829 
7830 	if (!static_branch_likely(&sched_numa_balancing))
7831 		return -1;
7832 
7833 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7834 		return -1;
7835 
7836 	src_nid = cpu_to_node(env->src_cpu);
7837 	dst_nid = cpu_to_node(env->dst_cpu);
7838 
7839 	if (src_nid == dst_nid)
7840 		return -1;
7841 
7842 	/* Migrating away from the preferred node is always bad. */
7843 	if (src_nid == p->numa_preferred_nid) {
7844 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7845 			return 1;
7846 		else
7847 			return -1;
7848 	}
7849 
7850 	/* Encourage migration to the preferred node. */
7851 	if (dst_nid == p->numa_preferred_nid)
7852 		return 0;
7853 
7854 	/* Leaving a core idle is often worse than degrading locality. */
7855 	if (env->idle == CPU_IDLE)
7856 		return -1;
7857 
7858 	dist = node_distance(src_nid, dst_nid);
7859 	if (numa_group) {
7860 		src_weight = group_weight(p, src_nid, dist);
7861 		dst_weight = group_weight(p, dst_nid, dist);
7862 	} else {
7863 		src_weight = task_weight(p, src_nid, dist);
7864 		dst_weight = task_weight(p, dst_nid, dist);
7865 	}
7866 
7867 	return dst_weight < src_weight;
7868 }
7869 
7870 #else
7871 static inline int migrate_degrades_locality(struct task_struct *p,
7872 					     struct lb_env *env)
7873 {
7874 	return -1;
7875 }
7876 #endif
7877 
7878 /*
7879  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7880  */
7881 static
7882 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7883 {
7884 	int tsk_cache_hot;
7885 
7886 	lockdep_assert_rq_held(env->src_rq);
7887 
7888 	/*
7889 	 * We do not migrate tasks that are:
7890 	 * 1) throttled_lb_pair, or
7891 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7892 	 * 3) running (obviously), or
7893 	 * 4) are cache-hot on their current CPU.
7894 	 */
7895 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7896 		return 0;
7897 
7898 	/* Disregard pcpu kthreads; they are where they need to be. */
7899 	if (kthread_is_per_cpu(p))
7900 		return 0;
7901 
7902 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7903 		int cpu;
7904 
7905 		schedstat_inc(p->stats.nr_failed_migrations_affine);
7906 
7907 		env->flags |= LBF_SOME_PINNED;
7908 
7909 		/*
7910 		 * Remember if this task can be migrated to any other CPU in
7911 		 * our sched_group. We may want to revisit it if we couldn't
7912 		 * meet load balance goals by pulling other tasks on src_cpu.
7913 		 *
7914 		 * Avoid computing new_dst_cpu
7915 		 * - for NEWLY_IDLE
7916 		 * - if we have already computed one in current iteration
7917 		 * - if it's an active balance
7918 		 */
7919 		if (env->idle == CPU_NEWLY_IDLE ||
7920 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7921 			return 0;
7922 
7923 		/* Prevent to re-select dst_cpu via env's CPUs: */
7924 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7925 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7926 				env->flags |= LBF_DST_PINNED;
7927 				env->new_dst_cpu = cpu;
7928 				break;
7929 			}
7930 		}
7931 
7932 		return 0;
7933 	}
7934 
7935 	/* Record that we found at least one task that could run on dst_cpu */
7936 	env->flags &= ~LBF_ALL_PINNED;
7937 
7938 	if (task_on_cpu(env->src_rq, p)) {
7939 		schedstat_inc(p->stats.nr_failed_migrations_running);
7940 		return 0;
7941 	}
7942 
7943 	/*
7944 	 * Aggressive migration if:
7945 	 * 1) active balance
7946 	 * 2) destination numa is preferred
7947 	 * 3) task is cache cold, or
7948 	 * 4) too many balance attempts have failed.
7949 	 */
7950 	if (env->flags & LBF_ACTIVE_LB)
7951 		return 1;
7952 
7953 	tsk_cache_hot = migrate_degrades_locality(p, env);
7954 	if (tsk_cache_hot == -1)
7955 		tsk_cache_hot = task_hot(p, env);
7956 
7957 	if (tsk_cache_hot <= 0 ||
7958 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7959 		if (tsk_cache_hot == 1) {
7960 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7961 			schedstat_inc(p->stats.nr_forced_migrations);
7962 		}
7963 		return 1;
7964 	}
7965 
7966 	schedstat_inc(p->stats.nr_failed_migrations_hot);
7967 	return 0;
7968 }
7969 
7970 /*
7971  * detach_task() -- detach the task for the migration specified in env
7972  */
7973 static void detach_task(struct task_struct *p, struct lb_env *env)
7974 {
7975 	lockdep_assert_rq_held(env->src_rq);
7976 
7977 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7978 	set_task_cpu(p, env->dst_cpu);
7979 }
7980 
7981 /*
7982  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7983  * part of active balancing operations within "domain".
7984  *
7985  * Returns a task if successful and NULL otherwise.
7986  */
7987 static struct task_struct *detach_one_task(struct lb_env *env)
7988 {
7989 	struct task_struct *p;
7990 
7991 	lockdep_assert_rq_held(env->src_rq);
7992 
7993 	list_for_each_entry_reverse(p,
7994 			&env->src_rq->cfs_tasks, se.group_node) {
7995 		if (!can_migrate_task(p, env))
7996 			continue;
7997 
7998 		detach_task(p, env);
7999 
8000 		/*
8001 		 * Right now, this is only the second place where
8002 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8003 		 * so we can safely collect stats here rather than
8004 		 * inside detach_tasks().
8005 		 */
8006 		schedstat_inc(env->sd->lb_gained[env->idle]);
8007 		return p;
8008 	}
8009 	return NULL;
8010 }
8011 
8012 /*
8013  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8014  * busiest_rq, as part of a balancing operation within domain "sd".
8015  *
8016  * Returns number of detached tasks if successful and 0 otherwise.
8017  */
8018 static int detach_tasks(struct lb_env *env)
8019 {
8020 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8021 	unsigned long util, load;
8022 	struct task_struct *p;
8023 	int detached = 0;
8024 
8025 	lockdep_assert_rq_held(env->src_rq);
8026 
8027 	/*
8028 	 * Source run queue has been emptied by another CPU, clear
8029 	 * LBF_ALL_PINNED flag as we will not test any task.
8030 	 */
8031 	if (env->src_rq->nr_running <= 1) {
8032 		env->flags &= ~LBF_ALL_PINNED;
8033 		return 0;
8034 	}
8035 
8036 	if (env->imbalance <= 0)
8037 		return 0;
8038 
8039 	while (!list_empty(tasks)) {
8040 		/*
8041 		 * We don't want to steal all, otherwise we may be treated likewise,
8042 		 * which could at worst lead to a livelock crash.
8043 		 */
8044 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8045 			break;
8046 
8047 		env->loop++;
8048 		/*
8049 		 * We've more or less seen every task there is, call it quits
8050 		 * unless we haven't found any movable task yet.
8051 		 */
8052 		if (env->loop > env->loop_max &&
8053 		    !(env->flags & LBF_ALL_PINNED))
8054 			break;
8055 
8056 		/* take a breather every nr_migrate tasks */
8057 		if (env->loop > env->loop_break) {
8058 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
8059 			env->flags |= LBF_NEED_BREAK;
8060 			break;
8061 		}
8062 
8063 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8064 
8065 		if (!can_migrate_task(p, env))
8066 			goto next;
8067 
8068 		switch (env->migration_type) {
8069 		case migrate_load:
8070 			/*
8071 			 * Depending of the number of CPUs and tasks and the
8072 			 * cgroup hierarchy, task_h_load() can return a null
8073 			 * value. Make sure that env->imbalance decreases
8074 			 * otherwise detach_tasks() will stop only after
8075 			 * detaching up to loop_max tasks.
8076 			 */
8077 			load = max_t(unsigned long, task_h_load(p), 1);
8078 
8079 			if (sched_feat(LB_MIN) &&
8080 			    load < 16 && !env->sd->nr_balance_failed)
8081 				goto next;
8082 
8083 			/*
8084 			 * Make sure that we don't migrate too much load.
8085 			 * Nevertheless, let relax the constraint if
8086 			 * scheduler fails to find a good waiting task to
8087 			 * migrate.
8088 			 */
8089 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8090 				goto next;
8091 
8092 			env->imbalance -= load;
8093 			break;
8094 
8095 		case migrate_util:
8096 			util = task_util_est(p);
8097 
8098 			if (util > env->imbalance)
8099 				goto next;
8100 
8101 			env->imbalance -= util;
8102 			break;
8103 
8104 		case migrate_task:
8105 			env->imbalance--;
8106 			break;
8107 
8108 		case migrate_misfit:
8109 			/* This is not a misfit task */
8110 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8111 				goto next;
8112 
8113 			env->imbalance = 0;
8114 			break;
8115 		}
8116 
8117 		detach_task(p, env);
8118 		list_add(&p->se.group_node, &env->tasks);
8119 
8120 		detached++;
8121 
8122 #ifdef CONFIG_PREEMPTION
8123 		/*
8124 		 * NEWIDLE balancing is a source of latency, so preemptible
8125 		 * kernels will stop after the first task is detached to minimize
8126 		 * the critical section.
8127 		 */
8128 		if (env->idle == CPU_NEWLY_IDLE)
8129 			break;
8130 #endif
8131 
8132 		/*
8133 		 * We only want to steal up to the prescribed amount of
8134 		 * load/util/tasks.
8135 		 */
8136 		if (env->imbalance <= 0)
8137 			break;
8138 
8139 		continue;
8140 next:
8141 		list_move(&p->se.group_node, tasks);
8142 	}
8143 
8144 	/*
8145 	 * Right now, this is one of only two places we collect this stat
8146 	 * so we can safely collect detach_one_task() stats here rather
8147 	 * than inside detach_one_task().
8148 	 */
8149 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8150 
8151 	return detached;
8152 }
8153 
8154 /*
8155  * attach_task() -- attach the task detached by detach_task() to its new rq.
8156  */
8157 static void attach_task(struct rq *rq, struct task_struct *p)
8158 {
8159 	lockdep_assert_rq_held(rq);
8160 
8161 	WARN_ON_ONCE(task_rq(p) != rq);
8162 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8163 	check_preempt_curr(rq, p, 0);
8164 }
8165 
8166 /*
8167  * attach_one_task() -- attaches the task returned from detach_one_task() to
8168  * its new rq.
8169  */
8170 static void attach_one_task(struct rq *rq, struct task_struct *p)
8171 {
8172 	struct rq_flags rf;
8173 
8174 	rq_lock(rq, &rf);
8175 	update_rq_clock(rq);
8176 	attach_task(rq, p);
8177 	rq_unlock(rq, &rf);
8178 }
8179 
8180 /*
8181  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8182  * new rq.
8183  */
8184 static void attach_tasks(struct lb_env *env)
8185 {
8186 	struct list_head *tasks = &env->tasks;
8187 	struct task_struct *p;
8188 	struct rq_flags rf;
8189 
8190 	rq_lock(env->dst_rq, &rf);
8191 	update_rq_clock(env->dst_rq);
8192 
8193 	while (!list_empty(tasks)) {
8194 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8195 		list_del_init(&p->se.group_node);
8196 
8197 		attach_task(env->dst_rq, p);
8198 	}
8199 
8200 	rq_unlock(env->dst_rq, &rf);
8201 }
8202 
8203 #ifdef CONFIG_NO_HZ_COMMON
8204 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8205 {
8206 	if (cfs_rq->avg.load_avg)
8207 		return true;
8208 
8209 	if (cfs_rq->avg.util_avg)
8210 		return true;
8211 
8212 	return false;
8213 }
8214 
8215 static inline bool others_have_blocked(struct rq *rq)
8216 {
8217 	if (READ_ONCE(rq->avg_rt.util_avg))
8218 		return true;
8219 
8220 	if (READ_ONCE(rq->avg_dl.util_avg))
8221 		return true;
8222 
8223 	if (thermal_load_avg(rq))
8224 		return true;
8225 
8226 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8227 	if (READ_ONCE(rq->avg_irq.util_avg))
8228 		return true;
8229 #endif
8230 
8231 	return false;
8232 }
8233 
8234 static inline void update_blocked_load_tick(struct rq *rq)
8235 {
8236 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8237 }
8238 
8239 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8240 {
8241 	if (!has_blocked)
8242 		rq->has_blocked_load = 0;
8243 }
8244 #else
8245 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8246 static inline bool others_have_blocked(struct rq *rq) { return false; }
8247 static inline void update_blocked_load_tick(struct rq *rq) {}
8248 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8249 #endif
8250 
8251 static bool __update_blocked_others(struct rq *rq, bool *done)
8252 {
8253 	const struct sched_class *curr_class;
8254 	u64 now = rq_clock_pelt(rq);
8255 	unsigned long thermal_pressure;
8256 	bool decayed;
8257 
8258 	/*
8259 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8260 	 * DL and IRQ signals have been updated before updating CFS.
8261 	 */
8262 	curr_class = rq->curr->sched_class;
8263 
8264 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8265 
8266 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8267 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8268 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8269 		  update_irq_load_avg(rq, 0);
8270 
8271 	if (others_have_blocked(rq))
8272 		*done = false;
8273 
8274 	return decayed;
8275 }
8276 
8277 #ifdef CONFIG_FAIR_GROUP_SCHED
8278 
8279 static bool __update_blocked_fair(struct rq *rq, bool *done)
8280 {
8281 	struct cfs_rq *cfs_rq, *pos;
8282 	bool decayed = false;
8283 	int cpu = cpu_of(rq);
8284 
8285 	/*
8286 	 * Iterates the task_group tree in a bottom up fashion, see
8287 	 * list_add_leaf_cfs_rq() for details.
8288 	 */
8289 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8290 		struct sched_entity *se;
8291 
8292 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8293 			update_tg_load_avg(cfs_rq);
8294 
8295 			if (cfs_rq->nr_running == 0)
8296 				update_idle_cfs_rq_clock_pelt(cfs_rq);
8297 
8298 			if (cfs_rq == &rq->cfs)
8299 				decayed = true;
8300 		}
8301 
8302 		/* Propagate pending load changes to the parent, if any: */
8303 		se = cfs_rq->tg->se[cpu];
8304 		if (se && !skip_blocked_update(se))
8305 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8306 
8307 		/*
8308 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8309 		 * decayed cfs_rqs linger on the list.
8310 		 */
8311 		if (cfs_rq_is_decayed(cfs_rq))
8312 			list_del_leaf_cfs_rq(cfs_rq);
8313 
8314 		/* Don't need periodic decay once load/util_avg are null */
8315 		if (cfs_rq_has_blocked(cfs_rq))
8316 			*done = false;
8317 	}
8318 
8319 	return decayed;
8320 }
8321 
8322 /*
8323  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8324  * This needs to be done in a top-down fashion because the load of a child
8325  * group is a fraction of its parents load.
8326  */
8327 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8328 {
8329 	struct rq *rq = rq_of(cfs_rq);
8330 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8331 	unsigned long now = jiffies;
8332 	unsigned long load;
8333 
8334 	if (cfs_rq->last_h_load_update == now)
8335 		return;
8336 
8337 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8338 	for_each_sched_entity(se) {
8339 		cfs_rq = cfs_rq_of(se);
8340 		WRITE_ONCE(cfs_rq->h_load_next, se);
8341 		if (cfs_rq->last_h_load_update == now)
8342 			break;
8343 	}
8344 
8345 	if (!se) {
8346 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8347 		cfs_rq->last_h_load_update = now;
8348 	}
8349 
8350 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8351 		load = cfs_rq->h_load;
8352 		load = div64_ul(load * se->avg.load_avg,
8353 			cfs_rq_load_avg(cfs_rq) + 1);
8354 		cfs_rq = group_cfs_rq(se);
8355 		cfs_rq->h_load = load;
8356 		cfs_rq->last_h_load_update = now;
8357 	}
8358 }
8359 
8360 static unsigned long task_h_load(struct task_struct *p)
8361 {
8362 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8363 
8364 	update_cfs_rq_h_load(cfs_rq);
8365 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8366 			cfs_rq_load_avg(cfs_rq) + 1);
8367 }
8368 #else
8369 static bool __update_blocked_fair(struct rq *rq, bool *done)
8370 {
8371 	struct cfs_rq *cfs_rq = &rq->cfs;
8372 	bool decayed;
8373 
8374 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8375 	if (cfs_rq_has_blocked(cfs_rq))
8376 		*done = false;
8377 
8378 	return decayed;
8379 }
8380 
8381 static unsigned long task_h_load(struct task_struct *p)
8382 {
8383 	return p->se.avg.load_avg;
8384 }
8385 #endif
8386 
8387 static void update_blocked_averages(int cpu)
8388 {
8389 	bool decayed = false, done = true;
8390 	struct rq *rq = cpu_rq(cpu);
8391 	struct rq_flags rf;
8392 
8393 	rq_lock_irqsave(rq, &rf);
8394 	update_blocked_load_tick(rq);
8395 	update_rq_clock(rq);
8396 
8397 	decayed |= __update_blocked_others(rq, &done);
8398 	decayed |= __update_blocked_fair(rq, &done);
8399 
8400 	update_blocked_load_status(rq, !done);
8401 	if (decayed)
8402 		cpufreq_update_util(rq, 0);
8403 	rq_unlock_irqrestore(rq, &rf);
8404 }
8405 
8406 /********** Helpers for find_busiest_group ************************/
8407 
8408 /*
8409  * sg_lb_stats - stats of a sched_group required for load_balancing
8410  */
8411 struct sg_lb_stats {
8412 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8413 	unsigned long group_load; /* Total load over the CPUs of the group */
8414 	unsigned long group_capacity;
8415 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8416 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8417 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8418 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8419 	unsigned int idle_cpus;
8420 	unsigned int group_weight;
8421 	enum group_type group_type;
8422 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8423 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8424 #ifdef CONFIG_NUMA_BALANCING
8425 	unsigned int nr_numa_running;
8426 	unsigned int nr_preferred_running;
8427 #endif
8428 };
8429 
8430 /*
8431  * sd_lb_stats - Structure to store the statistics of a sched_domain
8432  *		 during load balancing.
8433  */
8434 struct sd_lb_stats {
8435 	struct sched_group *busiest;	/* Busiest group in this sd */
8436 	struct sched_group *local;	/* Local group in this sd */
8437 	unsigned long total_load;	/* Total load of all groups in sd */
8438 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8439 	unsigned long avg_load;	/* Average load across all groups in sd */
8440 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8441 
8442 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8443 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8444 };
8445 
8446 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8447 {
8448 	/*
8449 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8450 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8451 	 * We must however set busiest_stat::group_type and
8452 	 * busiest_stat::idle_cpus to the worst busiest group because
8453 	 * update_sd_pick_busiest() reads these before assignment.
8454 	 */
8455 	*sds = (struct sd_lb_stats){
8456 		.busiest = NULL,
8457 		.local = NULL,
8458 		.total_load = 0UL,
8459 		.total_capacity = 0UL,
8460 		.busiest_stat = {
8461 			.idle_cpus = UINT_MAX,
8462 			.group_type = group_has_spare,
8463 		},
8464 	};
8465 }
8466 
8467 static unsigned long scale_rt_capacity(int cpu)
8468 {
8469 	struct rq *rq = cpu_rq(cpu);
8470 	unsigned long max = arch_scale_cpu_capacity(cpu);
8471 	unsigned long used, free;
8472 	unsigned long irq;
8473 
8474 	irq = cpu_util_irq(rq);
8475 
8476 	if (unlikely(irq >= max))
8477 		return 1;
8478 
8479 	/*
8480 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8481 	 * (running and not running) with weights 0 and 1024 respectively.
8482 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8483 	 * average uses the actual delta max capacity(load).
8484 	 */
8485 	used = READ_ONCE(rq->avg_rt.util_avg);
8486 	used += READ_ONCE(rq->avg_dl.util_avg);
8487 	used += thermal_load_avg(rq);
8488 
8489 	if (unlikely(used >= max))
8490 		return 1;
8491 
8492 	free = max - used;
8493 
8494 	return scale_irq_capacity(free, irq, max);
8495 }
8496 
8497 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8498 {
8499 	unsigned long capacity = scale_rt_capacity(cpu);
8500 	struct sched_group *sdg = sd->groups;
8501 
8502 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8503 
8504 	if (!capacity)
8505 		capacity = 1;
8506 
8507 	cpu_rq(cpu)->cpu_capacity = capacity;
8508 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8509 
8510 	sdg->sgc->capacity = capacity;
8511 	sdg->sgc->min_capacity = capacity;
8512 	sdg->sgc->max_capacity = capacity;
8513 }
8514 
8515 void update_group_capacity(struct sched_domain *sd, int cpu)
8516 {
8517 	struct sched_domain *child = sd->child;
8518 	struct sched_group *group, *sdg = sd->groups;
8519 	unsigned long capacity, min_capacity, max_capacity;
8520 	unsigned long interval;
8521 
8522 	interval = msecs_to_jiffies(sd->balance_interval);
8523 	interval = clamp(interval, 1UL, max_load_balance_interval);
8524 	sdg->sgc->next_update = jiffies + interval;
8525 
8526 	if (!child) {
8527 		update_cpu_capacity(sd, cpu);
8528 		return;
8529 	}
8530 
8531 	capacity = 0;
8532 	min_capacity = ULONG_MAX;
8533 	max_capacity = 0;
8534 
8535 	if (child->flags & SD_OVERLAP) {
8536 		/*
8537 		 * SD_OVERLAP domains cannot assume that child groups
8538 		 * span the current group.
8539 		 */
8540 
8541 		for_each_cpu(cpu, sched_group_span(sdg)) {
8542 			unsigned long cpu_cap = capacity_of(cpu);
8543 
8544 			capacity += cpu_cap;
8545 			min_capacity = min(cpu_cap, min_capacity);
8546 			max_capacity = max(cpu_cap, max_capacity);
8547 		}
8548 	} else  {
8549 		/*
8550 		 * !SD_OVERLAP domains can assume that child groups
8551 		 * span the current group.
8552 		 */
8553 
8554 		group = child->groups;
8555 		do {
8556 			struct sched_group_capacity *sgc = group->sgc;
8557 
8558 			capacity += sgc->capacity;
8559 			min_capacity = min(sgc->min_capacity, min_capacity);
8560 			max_capacity = max(sgc->max_capacity, max_capacity);
8561 			group = group->next;
8562 		} while (group != child->groups);
8563 	}
8564 
8565 	sdg->sgc->capacity = capacity;
8566 	sdg->sgc->min_capacity = min_capacity;
8567 	sdg->sgc->max_capacity = max_capacity;
8568 }
8569 
8570 /*
8571  * Check whether the capacity of the rq has been noticeably reduced by side
8572  * activity. The imbalance_pct is used for the threshold.
8573  * Return true is the capacity is reduced
8574  */
8575 static inline int
8576 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8577 {
8578 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8579 				(rq->cpu_capacity_orig * 100));
8580 }
8581 
8582 /*
8583  * Check whether a rq has a misfit task and if it looks like we can actually
8584  * help that task: we can migrate the task to a CPU of higher capacity, or
8585  * the task's current CPU is heavily pressured.
8586  */
8587 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8588 {
8589 	return rq->misfit_task_load &&
8590 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8591 		 check_cpu_capacity(rq, sd));
8592 }
8593 
8594 /*
8595  * Group imbalance indicates (and tries to solve) the problem where balancing
8596  * groups is inadequate due to ->cpus_ptr constraints.
8597  *
8598  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8599  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8600  * Something like:
8601  *
8602  *	{ 0 1 2 3 } { 4 5 6 7 }
8603  *	        *     * * *
8604  *
8605  * If we were to balance group-wise we'd place two tasks in the first group and
8606  * two tasks in the second group. Clearly this is undesired as it will overload
8607  * cpu 3 and leave one of the CPUs in the second group unused.
8608  *
8609  * The current solution to this issue is detecting the skew in the first group
8610  * by noticing the lower domain failed to reach balance and had difficulty
8611  * moving tasks due to affinity constraints.
8612  *
8613  * When this is so detected; this group becomes a candidate for busiest; see
8614  * update_sd_pick_busiest(). And calculate_imbalance() and
8615  * find_busiest_group() avoid some of the usual balance conditions to allow it
8616  * to create an effective group imbalance.
8617  *
8618  * This is a somewhat tricky proposition since the next run might not find the
8619  * group imbalance and decide the groups need to be balanced again. A most
8620  * subtle and fragile situation.
8621  */
8622 
8623 static inline int sg_imbalanced(struct sched_group *group)
8624 {
8625 	return group->sgc->imbalance;
8626 }
8627 
8628 /*
8629  * group_has_capacity returns true if the group has spare capacity that could
8630  * be used by some tasks.
8631  * We consider that a group has spare capacity if the number of task is
8632  * smaller than the number of CPUs or if the utilization is lower than the
8633  * available capacity for CFS tasks.
8634  * For the latter, we use a threshold to stabilize the state, to take into
8635  * account the variance of the tasks' load and to return true if the available
8636  * capacity in meaningful for the load balancer.
8637  * As an example, an available capacity of 1% can appear but it doesn't make
8638  * any benefit for the load balance.
8639  */
8640 static inline bool
8641 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8642 {
8643 	if (sgs->sum_nr_running < sgs->group_weight)
8644 		return true;
8645 
8646 	if ((sgs->group_capacity * imbalance_pct) <
8647 			(sgs->group_runnable * 100))
8648 		return false;
8649 
8650 	if ((sgs->group_capacity * 100) >
8651 			(sgs->group_util * imbalance_pct))
8652 		return true;
8653 
8654 	return false;
8655 }
8656 
8657 /*
8658  *  group_is_overloaded returns true if the group has more tasks than it can
8659  *  handle.
8660  *  group_is_overloaded is not equals to !group_has_capacity because a group
8661  *  with the exact right number of tasks, has no more spare capacity but is not
8662  *  overloaded so both group_has_capacity and group_is_overloaded return
8663  *  false.
8664  */
8665 static inline bool
8666 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8667 {
8668 	if (sgs->sum_nr_running <= sgs->group_weight)
8669 		return false;
8670 
8671 	if ((sgs->group_capacity * 100) <
8672 			(sgs->group_util * imbalance_pct))
8673 		return true;
8674 
8675 	if ((sgs->group_capacity * imbalance_pct) <
8676 			(sgs->group_runnable * 100))
8677 		return true;
8678 
8679 	return false;
8680 }
8681 
8682 static inline enum
8683 group_type group_classify(unsigned int imbalance_pct,
8684 			  struct sched_group *group,
8685 			  struct sg_lb_stats *sgs)
8686 {
8687 	if (group_is_overloaded(imbalance_pct, sgs))
8688 		return group_overloaded;
8689 
8690 	if (sg_imbalanced(group))
8691 		return group_imbalanced;
8692 
8693 	if (sgs->group_asym_packing)
8694 		return group_asym_packing;
8695 
8696 	if (sgs->group_misfit_task_load)
8697 		return group_misfit_task;
8698 
8699 	if (!group_has_capacity(imbalance_pct, sgs))
8700 		return group_fully_busy;
8701 
8702 	return group_has_spare;
8703 }
8704 
8705 /**
8706  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8707  * @dst_cpu:	Destination CPU of the load balancing
8708  * @sds:	Load-balancing data with statistics of the local group
8709  * @sgs:	Load-balancing statistics of the candidate busiest group
8710  * @sg:		The candidate busiest group
8711  *
8712  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8713  * if @dst_cpu can pull tasks.
8714  *
8715  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8716  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8717  * only if @dst_cpu has higher priority.
8718  *
8719  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8720  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8721  * Bigger imbalances in the number of busy CPUs will be dealt with in
8722  * update_sd_pick_busiest().
8723  *
8724  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8725  * of @dst_cpu are idle and @sg has lower priority.
8726  *
8727  * Return: true if @dst_cpu can pull tasks, false otherwise.
8728  */
8729 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8730 				    struct sg_lb_stats *sgs,
8731 				    struct sched_group *sg)
8732 {
8733 #ifdef CONFIG_SCHED_SMT
8734 	bool local_is_smt, sg_is_smt;
8735 	int sg_busy_cpus;
8736 
8737 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8738 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8739 
8740 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8741 
8742 	if (!local_is_smt) {
8743 		/*
8744 		 * If we are here, @dst_cpu is idle and does not have SMT
8745 		 * siblings. Pull tasks if candidate group has two or more
8746 		 * busy CPUs.
8747 		 */
8748 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8749 			return true;
8750 
8751 		/*
8752 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8753 		 * siblings and only one is busy. In such case, @dst_cpu
8754 		 * can help if it has higher priority and is idle (i.e.,
8755 		 * it has no running tasks).
8756 		 */
8757 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8758 	}
8759 
8760 	/* @dst_cpu has SMT siblings. */
8761 
8762 	if (sg_is_smt) {
8763 		int local_busy_cpus = sds->local->group_weight -
8764 				      sds->local_stat.idle_cpus;
8765 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8766 
8767 		if (busy_cpus_delta == 1)
8768 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8769 
8770 		return false;
8771 	}
8772 
8773 	/*
8774 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8775 	 * up with more than one busy SMT sibling and only pull tasks if there
8776 	 * are not busy CPUs (i.e., no CPU has running tasks).
8777 	 */
8778 	if (!sds->local_stat.sum_nr_running)
8779 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8780 
8781 	return false;
8782 #else
8783 	/* Always return false so that callers deal with non-SMT cases. */
8784 	return false;
8785 #endif
8786 }
8787 
8788 static inline bool
8789 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8790 	   struct sched_group *group)
8791 {
8792 	/* Only do SMT checks if either local or candidate have SMT siblings */
8793 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8794 	    (group->flags & SD_SHARE_CPUCAPACITY))
8795 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8796 
8797 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8798 }
8799 
8800 static inline bool
8801 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
8802 {
8803 	/*
8804 	 * When there is more than 1 task, the group_overloaded case already
8805 	 * takes care of cpu with reduced capacity
8806 	 */
8807 	if (rq->cfs.h_nr_running != 1)
8808 		return false;
8809 
8810 	return check_cpu_capacity(rq, sd);
8811 }
8812 
8813 /**
8814  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8815  * @env: The load balancing environment.
8816  * @sds: Load-balancing data with statistics of the local group.
8817  * @group: sched_group whose statistics are to be updated.
8818  * @sgs: variable to hold the statistics for this group.
8819  * @sg_status: Holds flag indicating the status of the sched_group
8820  */
8821 static inline void update_sg_lb_stats(struct lb_env *env,
8822 				      struct sd_lb_stats *sds,
8823 				      struct sched_group *group,
8824 				      struct sg_lb_stats *sgs,
8825 				      int *sg_status)
8826 {
8827 	int i, nr_running, local_group;
8828 
8829 	memset(sgs, 0, sizeof(*sgs));
8830 
8831 	local_group = group == sds->local;
8832 
8833 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8834 		struct rq *rq = cpu_rq(i);
8835 		unsigned long load = cpu_load(rq);
8836 
8837 		sgs->group_load += load;
8838 		sgs->group_util += cpu_util_cfs(i);
8839 		sgs->group_runnable += cpu_runnable(rq);
8840 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8841 
8842 		nr_running = rq->nr_running;
8843 		sgs->sum_nr_running += nr_running;
8844 
8845 		if (nr_running > 1)
8846 			*sg_status |= SG_OVERLOAD;
8847 
8848 		if (cpu_overutilized(i))
8849 			*sg_status |= SG_OVERUTILIZED;
8850 
8851 #ifdef CONFIG_NUMA_BALANCING
8852 		sgs->nr_numa_running += rq->nr_numa_running;
8853 		sgs->nr_preferred_running += rq->nr_preferred_running;
8854 #endif
8855 		/*
8856 		 * No need to call idle_cpu() if nr_running is not 0
8857 		 */
8858 		if (!nr_running && idle_cpu(i)) {
8859 			sgs->idle_cpus++;
8860 			/* Idle cpu can't have misfit task */
8861 			continue;
8862 		}
8863 
8864 		if (local_group)
8865 			continue;
8866 
8867 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
8868 			/* Check for a misfit task on the cpu */
8869 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
8870 				sgs->group_misfit_task_load = rq->misfit_task_load;
8871 				*sg_status |= SG_OVERLOAD;
8872 			}
8873 		} else if ((env->idle != CPU_NOT_IDLE) &&
8874 			   sched_reduced_capacity(rq, env->sd)) {
8875 			/* Check for a task running on a CPU with reduced capacity */
8876 			if (sgs->group_misfit_task_load < load)
8877 				sgs->group_misfit_task_load = load;
8878 		}
8879 	}
8880 
8881 	sgs->group_capacity = group->sgc->capacity;
8882 
8883 	sgs->group_weight = group->group_weight;
8884 
8885 	/* Check if dst CPU is idle and preferred to this group */
8886 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8887 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8888 	    sched_asym(env, sds, sgs, group)) {
8889 		sgs->group_asym_packing = 1;
8890 	}
8891 
8892 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8893 
8894 	/* Computing avg_load makes sense only when group is overloaded */
8895 	if (sgs->group_type == group_overloaded)
8896 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8897 				sgs->group_capacity;
8898 }
8899 
8900 /**
8901  * update_sd_pick_busiest - return 1 on busiest group
8902  * @env: The load balancing environment.
8903  * @sds: sched_domain statistics
8904  * @sg: sched_group candidate to be checked for being the busiest
8905  * @sgs: sched_group statistics
8906  *
8907  * Determine if @sg is a busier group than the previously selected
8908  * busiest group.
8909  *
8910  * Return: %true if @sg is a busier group than the previously selected
8911  * busiest group. %false otherwise.
8912  */
8913 static bool update_sd_pick_busiest(struct lb_env *env,
8914 				   struct sd_lb_stats *sds,
8915 				   struct sched_group *sg,
8916 				   struct sg_lb_stats *sgs)
8917 {
8918 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8919 
8920 	/* Make sure that there is at least one task to pull */
8921 	if (!sgs->sum_h_nr_running)
8922 		return false;
8923 
8924 	/*
8925 	 * Don't try to pull misfit tasks we can't help.
8926 	 * We can use max_capacity here as reduction in capacity on some
8927 	 * CPUs in the group should either be possible to resolve
8928 	 * internally or be covered by avg_load imbalance (eventually).
8929 	 */
8930 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8931 	    (sgs->group_type == group_misfit_task) &&
8932 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8933 	     sds->local_stat.group_type != group_has_spare))
8934 		return false;
8935 
8936 	if (sgs->group_type > busiest->group_type)
8937 		return true;
8938 
8939 	if (sgs->group_type < busiest->group_type)
8940 		return false;
8941 
8942 	/*
8943 	 * The candidate and the current busiest group are the same type of
8944 	 * group. Let check which one is the busiest according to the type.
8945 	 */
8946 
8947 	switch (sgs->group_type) {
8948 	case group_overloaded:
8949 		/* Select the overloaded group with highest avg_load. */
8950 		if (sgs->avg_load <= busiest->avg_load)
8951 			return false;
8952 		break;
8953 
8954 	case group_imbalanced:
8955 		/*
8956 		 * Select the 1st imbalanced group as we don't have any way to
8957 		 * choose one more than another.
8958 		 */
8959 		return false;
8960 
8961 	case group_asym_packing:
8962 		/* Prefer to move from lowest priority CPU's work */
8963 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8964 			return false;
8965 		break;
8966 
8967 	case group_misfit_task:
8968 		/*
8969 		 * If we have more than one misfit sg go with the biggest
8970 		 * misfit.
8971 		 */
8972 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8973 			return false;
8974 		break;
8975 
8976 	case group_fully_busy:
8977 		/*
8978 		 * Select the fully busy group with highest avg_load. In
8979 		 * theory, there is no need to pull task from such kind of
8980 		 * group because tasks have all compute capacity that they need
8981 		 * but we can still improve the overall throughput by reducing
8982 		 * contention when accessing shared HW resources.
8983 		 *
8984 		 * XXX for now avg_load is not computed and always 0 so we
8985 		 * select the 1st one.
8986 		 */
8987 		if (sgs->avg_load <= busiest->avg_load)
8988 			return false;
8989 		break;
8990 
8991 	case group_has_spare:
8992 		/*
8993 		 * Select not overloaded group with lowest number of idle cpus
8994 		 * and highest number of running tasks. We could also compare
8995 		 * the spare capacity which is more stable but it can end up
8996 		 * that the group has less spare capacity but finally more idle
8997 		 * CPUs which means less opportunity to pull tasks.
8998 		 */
8999 		if (sgs->idle_cpus > busiest->idle_cpus)
9000 			return false;
9001 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9002 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9003 			return false;
9004 
9005 		break;
9006 	}
9007 
9008 	/*
9009 	 * Candidate sg has no more than one task per CPU and has higher
9010 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9011 	 * throughput. Maximize throughput, power/energy consequences are not
9012 	 * considered.
9013 	 */
9014 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9015 	    (sgs->group_type <= group_fully_busy) &&
9016 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9017 		return false;
9018 
9019 	return true;
9020 }
9021 
9022 #ifdef CONFIG_NUMA_BALANCING
9023 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9024 {
9025 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9026 		return regular;
9027 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9028 		return remote;
9029 	return all;
9030 }
9031 
9032 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9033 {
9034 	if (rq->nr_running > rq->nr_numa_running)
9035 		return regular;
9036 	if (rq->nr_running > rq->nr_preferred_running)
9037 		return remote;
9038 	return all;
9039 }
9040 #else
9041 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9042 {
9043 	return all;
9044 }
9045 
9046 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9047 {
9048 	return regular;
9049 }
9050 #endif /* CONFIG_NUMA_BALANCING */
9051 
9052 
9053 struct sg_lb_stats;
9054 
9055 /*
9056  * task_running_on_cpu - return 1 if @p is running on @cpu.
9057  */
9058 
9059 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9060 {
9061 	/* Task has no contribution or is new */
9062 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9063 		return 0;
9064 
9065 	if (task_on_rq_queued(p))
9066 		return 1;
9067 
9068 	return 0;
9069 }
9070 
9071 /**
9072  * idle_cpu_without - would a given CPU be idle without p ?
9073  * @cpu: the processor on which idleness is tested.
9074  * @p: task which should be ignored.
9075  *
9076  * Return: 1 if the CPU would be idle. 0 otherwise.
9077  */
9078 static int idle_cpu_without(int cpu, struct task_struct *p)
9079 {
9080 	struct rq *rq = cpu_rq(cpu);
9081 
9082 	if (rq->curr != rq->idle && rq->curr != p)
9083 		return 0;
9084 
9085 	/*
9086 	 * rq->nr_running can't be used but an updated version without the
9087 	 * impact of p on cpu must be used instead. The updated nr_running
9088 	 * be computed and tested before calling idle_cpu_without().
9089 	 */
9090 
9091 #ifdef CONFIG_SMP
9092 	if (rq->ttwu_pending)
9093 		return 0;
9094 #endif
9095 
9096 	return 1;
9097 }
9098 
9099 /*
9100  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9101  * @sd: The sched_domain level to look for idlest group.
9102  * @group: sched_group whose statistics are to be updated.
9103  * @sgs: variable to hold the statistics for this group.
9104  * @p: The task for which we look for the idlest group/CPU.
9105  */
9106 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9107 					  struct sched_group *group,
9108 					  struct sg_lb_stats *sgs,
9109 					  struct task_struct *p)
9110 {
9111 	int i, nr_running;
9112 
9113 	memset(sgs, 0, sizeof(*sgs));
9114 
9115 	for_each_cpu(i, sched_group_span(group)) {
9116 		struct rq *rq = cpu_rq(i);
9117 		unsigned int local;
9118 
9119 		sgs->group_load += cpu_load_without(rq, p);
9120 		sgs->group_util += cpu_util_without(i, p);
9121 		sgs->group_runnable += cpu_runnable_without(rq, p);
9122 		local = task_running_on_cpu(i, p);
9123 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9124 
9125 		nr_running = rq->nr_running - local;
9126 		sgs->sum_nr_running += nr_running;
9127 
9128 		/*
9129 		 * No need to call idle_cpu_without() if nr_running is not 0
9130 		 */
9131 		if (!nr_running && idle_cpu_without(i, p))
9132 			sgs->idle_cpus++;
9133 
9134 	}
9135 
9136 	/* Check if task fits in the group */
9137 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
9138 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
9139 		sgs->group_misfit_task_load = 1;
9140 	}
9141 
9142 	sgs->group_capacity = group->sgc->capacity;
9143 
9144 	sgs->group_weight = group->group_weight;
9145 
9146 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9147 
9148 	/*
9149 	 * Computing avg_load makes sense only when group is fully busy or
9150 	 * overloaded
9151 	 */
9152 	if (sgs->group_type == group_fully_busy ||
9153 		sgs->group_type == group_overloaded)
9154 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9155 				sgs->group_capacity;
9156 }
9157 
9158 static bool update_pick_idlest(struct sched_group *idlest,
9159 			       struct sg_lb_stats *idlest_sgs,
9160 			       struct sched_group *group,
9161 			       struct sg_lb_stats *sgs)
9162 {
9163 	if (sgs->group_type < idlest_sgs->group_type)
9164 		return true;
9165 
9166 	if (sgs->group_type > idlest_sgs->group_type)
9167 		return false;
9168 
9169 	/*
9170 	 * The candidate and the current idlest group are the same type of
9171 	 * group. Let check which one is the idlest according to the type.
9172 	 */
9173 
9174 	switch (sgs->group_type) {
9175 	case group_overloaded:
9176 	case group_fully_busy:
9177 		/* Select the group with lowest avg_load. */
9178 		if (idlest_sgs->avg_load <= sgs->avg_load)
9179 			return false;
9180 		break;
9181 
9182 	case group_imbalanced:
9183 	case group_asym_packing:
9184 		/* Those types are not used in the slow wakeup path */
9185 		return false;
9186 
9187 	case group_misfit_task:
9188 		/* Select group with the highest max capacity */
9189 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9190 			return false;
9191 		break;
9192 
9193 	case group_has_spare:
9194 		/* Select group with most idle CPUs */
9195 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9196 			return false;
9197 
9198 		/* Select group with lowest group_util */
9199 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9200 			idlest_sgs->group_util <= sgs->group_util)
9201 			return false;
9202 
9203 		break;
9204 	}
9205 
9206 	return true;
9207 }
9208 
9209 /*
9210  * find_idlest_group() finds and returns the least busy CPU group within the
9211  * domain.
9212  *
9213  * Assumes p is allowed on at least one CPU in sd.
9214  */
9215 static struct sched_group *
9216 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9217 {
9218 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9219 	struct sg_lb_stats local_sgs, tmp_sgs;
9220 	struct sg_lb_stats *sgs;
9221 	unsigned long imbalance;
9222 	struct sg_lb_stats idlest_sgs = {
9223 			.avg_load = UINT_MAX,
9224 			.group_type = group_overloaded,
9225 	};
9226 
9227 	do {
9228 		int local_group;
9229 
9230 		/* Skip over this group if it has no CPUs allowed */
9231 		if (!cpumask_intersects(sched_group_span(group),
9232 					p->cpus_ptr))
9233 			continue;
9234 
9235 		/* Skip over this group if no cookie matched */
9236 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9237 			continue;
9238 
9239 		local_group = cpumask_test_cpu(this_cpu,
9240 					       sched_group_span(group));
9241 
9242 		if (local_group) {
9243 			sgs = &local_sgs;
9244 			local = group;
9245 		} else {
9246 			sgs = &tmp_sgs;
9247 		}
9248 
9249 		update_sg_wakeup_stats(sd, group, sgs, p);
9250 
9251 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9252 			idlest = group;
9253 			idlest_sgs = *sgs;
9254 		}
9255 
9256 	} while (group = group->next, group != sd->groups);
9257 
9258 
9259 	/* There is no idlest group to push tasks to */
9260 	if (!idlest)
9261 		return NULL;
9262 
9263 	/* The local group has been skipped because of CPU affinity */
9264 	if (!local)
9265 		return idlest;
9266 
9267 	/*
9268 	 * If the local group is idler than the selected idlest group
9269 	 * don't try and push the task.
9270 	 */
9271 	if (local_sgs.group_type < idlest_sgs.group_type)
9272 		return NULL;
9273 
9274 	/*
9275 	 * If the local group is busier than the selected idlest group
9276 	 * try and push the task.
9277 	 */
9278 	if (local_sgs.group_type > idlest_sgs.group_type)
9279 		return idlest;
9280 
9281 	switch (local_sgs.group_type) {
9282 	case group_overloaded:
9283 	case group_fully_busy:
9284 
9285 		/* Calculate allowed imbalance based on load */
9286 		imbalance = scale_load_down(NICE_0_LOAD) *
9287 				(sd->imbalance_pct-100) / 100;
9288 
9289 		/*
9290 		 * When comparing groups across NUMA domains, it's possible for
9291 		 * the local domain to be very lightly loaded relative to the
9292 		 * remote domains but "imbalance" skews the comparison making
9293 		 * remote CPUs look much more favourable. When considering
9294 		 * cross-domain, add imbalance to the load on the remote node
9295 		 * and consider staying local.
9296 		 */
9297 
9298 		if ((sd->flags & SD_NUMA) &&
9299 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9300 			return NULL;
9301 
9302 		/*
9303 		 * If the local group is less loaded than the selected
9304 		 * idlest group don't try and push any tasks.
9305 		 */
9306 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9307 			return NULL;
9308 
9309 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9310 			return NULL;
9311 		break;
9312 
9313 	case group_imbalanced:
9314 	case group_asym_packing:
9315 		/* Those type are not used in the slow wakeup path */
9316 		return NULL;
9317 
9318 	case group_misfit_task:
9319 		/* Select group with the highest max capacity */
9320 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9321 			return NULL;
9322 		break;
9323 
9324 	case group_has_spare:
9325 #ifdef CONFIG_NUMA
9326 		if (sd->flags & SD_NUMA) {
9327 			int imb_numa_nr = sd->imb_numa_nr;
9328 #ifdef CONFIG_NUMA_BALANCING
9329 			int idlest_cpu;
9330 			/*
9331 			 * If there is spare capacity at NUMA, try to select
9332 			 * the preferred node
9333 			 */
9334 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9335 				return NULL;
9336 
9337 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9338 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9339 				return idlest;
9340 #endif /* CONFIG_NUMA_BALANCING */
9341 			/*
9342 			 * Otherwise, keep the task close to the wakeup source
9343 			 * and improve locality if the number of running tasks
9344 			 * would remain below threshold where an imbalance is
9345 			 * allowed while accounting for the possibility the
9346 			 * task is pinned to a subset of CPUs. If there is a
9347 			 * real need of migration, periodic load balance will
9348 			 * take care of it.
9349 			 */
9350 			if (p->nr_cpus_allowed != NR_CPUS) {
9351 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
9352 
9353 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
9354 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
9355 			}
9356 
9357 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
9358 			if (!adjust_numa_imbalance(imbalance,
9359 						   local_sgs.sum_nr_running + 1,
9360 						   imb_numa_nr)) {
9361 				return NULL;
9362 			}
9363 		}
9364 #endif /* CONFIG_NUMA */
9365 
9366 		/*
9367 		 * Select group with highest number of idle CPUs. We could also
9368 		 * compare the utilization which is more stable but it can end
9369 		 * up that the group has less spare capacity but finally more
9370 		 * idle CPUs which means more opportunity to run task.
9371 		 */
9372 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9373 			return NULL;
9374 		break;
9375 	}
9376 
9377 	return idlest;
9378 }
9379 
9380 static void update_idle_cpu_scan(struct lb_env *env,
9381 				 unsigned long sum_util)
9382 {
9383 	struct sched_domain_shared *sd_share;
9384 	int llc_weight, pct;
9385 	u64 x, y, tmp;
9386 	/*
9387 	 * Update the number of CPUs to scan in LLC domain, which could
9388 	 * be used as a hint in select_idle_cpu(). The update of sd_share
9389 	 * could be expensive because it is within a shared cache line.
9390 	 * So the write of this hint only occurs during periodic load
9391 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
9392 	 * can fire way more frequently than the former.
9393 	 */
9394 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
9395 		return;
9396 
9397 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
9398 	if (env->sd->span_weight != llc_weight)
9399 		return;
9400 
9401 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
9402 	if (!sd_share)
9403 		return;
9404 
9405 	/*
9406 	 * The number of CPUs to search drops as sum_util increases, when
9407 	 * sum_util hits 85% or above, the scan stops.
9408 	 * The reason to choose 85% as the threshold is because this is the
9409 	 * imbalance_pct(117) when a LLC sched group is overloaded.
9410 	 *
9411 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
9412 	 * and y'= y / SCHED_CAPACITY_SCALE
9413 	 *
9414 	 * x is the ratio of sum_util compared to the CPU capacity:
9415 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
9416 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
9417 	 * and the number of CPUs to scan is calculated by:
9418 	 *
9419 	 * nr_scan = llc_weight * y'                                    [2]
9420 	 *
9421 	 * When x hits the threshold of overloaded, AKA, when
9422 	 * x = 100 / pct, y drops to 0. According to [1],
9423 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
9424 	 *
9425 	 * Scale x by SCHED_CAPACITY_SCALE:
9426 	 * x' = sum_util / llc_weight;                                  [3]
9427 	 *
9428 	 * and finally [1] becomes:
9429 	 * y = SCHED_CAPACITY_SCALE -
9430 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
9431 	 *
9432 	 */
9433 	/* equation [3] */
9434 	x = sum_util;
9435 	do_div(x, llc_weight);
9436 
9437 	/* equation [4] */
9438 	pct = env->sd->imbalance_pct;
9439 	tmp = x * x * pct * pct;
9440 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
9441 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
9442 	y = SCHED_CAPACITY_SCALE - tmp;
9443 
9444 	/* equation [2] */
9445 	y *= llc_weight;
9446 	do_div(y, SCHED_CAPACITY_SCALE);
9447 	if ((int)y != sd_share->nr_idle_scan)
9448 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
9449 }
9450 
9451 /**
9452  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9453  * @env: The load balancing environment.
9454  * @sds: variable to hold the statistics for this sched_domain.
9455  */
9456 
9457 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9458 {
9459 	struct sched_domain *child = env->sd->child;
9460 	struct sched_group *sg = env->sd->groups;
9461 	struct sg_lb_stats *local = &sds->local_stat;
9462 	struct sg_lb_stats tmp_sgs;
9463 	unsigned long sum_util = 0;
9464 	int sg_status = 0;
9465 
9466 	do {
9467 		struct sg_lb_stats *sgs = &tmp_sgs;
9468 		int local_group;
9469 
9470 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9471 		if (local_group) {
9472 			sds->local = sg;
9473 			sgs = local;
9474 
9475 			if (env->idle != CPU_NEWLY_IDLE ||
9476 			    time_after_eq(jiffies, sg->sgc->next_update))
9477 				update_group_capacity(env->sd, env->dst_cpu);
9478 		}
9479 
9480 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9481 
9482 		if (local_group)
9483 			goto next_group;
9484 
9485 
9486 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9487 			sds->busiest = sg;
9488 			sds->busiest_stat = *sgs;
9489 		}
9490 
9491 next_group:
9492 		/* Now, start updating sd_lb_stats */
9493 		sds->total_load += sgs->group_load;
9494 		sds->total_capacity += sgs->group_capacity;
9495 
9496 		sum_util += sgs->group_util;
9497 		sg = sg->next;
9498 	} while (sg != env->sd->groups);
9499 
9500 	/* Tag domain that child domain prefers tasks go to siblings first */
9501 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9502 
9503 
9504 	if (env->sd->flags & SD_NUMA)
9505 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9506 
9507 	if (!env->sd->parent) {
9508 		struct root_domain *rd = env->dst_rq->rd;
9509 
9510 		/* update overload indicator if we are at root domain */
9511 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9512 
9513 		/* Update over-utilization (tipping point, U >= 0) indicator */
9514 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9515 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9516 	} else if (sg_status & SG_OVERUTILIZED) {
9517 		struct root_domain *rd = env->dst_rq->rd;
9518 
9519 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9520 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9521 	}
9522 
9523 	update_idle_cpu_scan(env, sum_util);
9524 }
9525 
9526 /**
9527  * calculate_imbalance - Calculate the amount of imbalance present within the
9528  *			 groups of a given sched_domain during load balance.
9529  * @env: load balance environment
9530  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9531  */
9532 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9533 {
9534 	struct sg_lb_stats *local, *busiest;
9535 
9536 	local = &sds->local_stat;
9537 	busiest = &sds->busiest_stat;
9538 
9539 	if (busiest->group_type == group_misfit_task) {
9540 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9541 			/* Set imbalance to allow misfit tasks to be balanced. */
9542 			env->migration_type = migrate_misfit;
9543 			env->imbalance = 1;
9544 		} else {
9545 			/*
9546 			 * Set load imbalance to allow moving task from cpu
9547 			 * with reduced capacity.
9548 			 */
9549 			env->migration_type = migrate_load;
9550 			env->imbalance = busiest->group_misfit_task_load;
9551 		}
9552 		return;
9553 	}
9554 
9555 	if (busiest->group_type == group_asym_packing) {
9556 		/*
9557 		 * In case of asym capacity, we will try to migrate all load to
9558 		 * the preferred CPU.
9559 		 */
9560 		env->migration_type = migrate_task;
9561 		env->imbalance = busiest->sum_h_nr_running;
9562 		return;
9563 	}
9564 
9565 	if (busiest->group_type == group_imbalanced) {
9566 		/*
9567 		 * In the group_imb case we cannot rely on group-wide averages
9568 		 * to ensure CPU-load equilibrium, try to move any task to fix
9569 		 * the imbalance. The next load balance will take care of
9570 		 * balancing back the system.
9571 		 */
9572 		env->migration_type = migrate_task;
9573 		env->imbalance = 1;
9574 		return;
9575 	}
9576 
9577 	/*
9578 	 * Try to use spare capacity of local group without overloading it or
9579 	 * emptying busiest.
9580 	 */
9581 	if (local->group_type == group_has_spare) {
9582 		if ((busiest->group_type > group_fully_busy) &&
9583 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9584 			/*
9585 			 * If busiest is overloaded, try to fill spare
9586 			 * capacity. This might end up creating spare capacity
9587 			 * in busiest or busiest still being overloaded but
9588 			 * there is no simple way to directly compute the
9589 			 * amount of load to migrate in order to balance the
9590 			 * system.
9591 			 */
9592 			env->migration_type = migrate_util;
9593 			env->imbalance = max(local->group_capacity, local->group_util) -
9594 					 local->group_util;
9595 
9596 			/*
9597 			 * In some cases, the group's utilization is max or even
9598 			 * higher than capacity because of migrations but the
9599 			 * local CPU is (newly) idle. There is at least one
9600 			 * waiting task in this overloaded busiest group. Let's
9601 			 * try to pull it.
9602 			 */
9603 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9604 				env->migration_type = migrate_task;
9605 				env->imbalance = 1;
9606 			}
9607 
9608 			return;
9609 		}
9610 
9611 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9612 			unsigned int nr_diff = busiest->sum_nr_running;
9613 			/*
9614 			 * When prefer sibling, evenly spread running tasks on
9615 			 * groups.
9616 			 */
9617 			env->migration_type = migrate_task;
9618 			lsub_positive(&nr_diff, local->sum_nr_running);
9619 			env->imbalance = nr_diff;
9620 		} else {
9621 
9622 			/*
9623 			 * If there is no overload, we just want to even the number of
9624 			 * idle cpus.
9625 			 */
9626 			env->migration_type = migrate_task;
9627 			env->imbalance = max_t(long, 0,
9628 					       (local->idle_cpus - busiest->idle_cpus));
9629 		}
9630 
9631 #ifdef CONFIG_NUMA
9632 		/* Consider allowing a small imbalance between NUMA groups */
9633 		if (env->sd->flags & SD_NUMA) {
9634 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9635 							       local->sum_nr_running + 1,
9636 							       env->sd->imb_numa_nr);
9637 		}
9638 #endif
9639 
9640 		/* Number of tasks to move to restore balance */
9641 		env->imbalance >>= 1;
9642 
9643 		return;
9644 	}
9645 
9646 	/*
9647 	 * Local is fully busy but has to take more load to relieve the
9648 	 * busiest group
9649 	 */
9650 	if (local->group_type < group_overloaded) {
9651 		/*
9652 		 * Local will become overloaded so the avg_load metrics are
9653 		 * finally needed.
9654 		 */
9655 
9656 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9657 				  local->group_capacity;
9658 
9659 		/*
9660 		 * If the local group is more loaded than the selected
9661 		 * busiest group don't try to pull any tasks.
9662 		 */
9663 		if (local->avg_load >= busiest->avg_load) {
9664 			env->imbalance = 0;
9665 			return;
9666 		}
9667 
9668 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9669 				sds->total_capacity;
9670 	}
9671 
9672 	/*
9673 	 * Both group are or will become overloaded and we're trying to get all
9674 	 * the CPUs to the average_load, so we don't want to push ourselves
9675 	 * above the average load, nor do we wish to reduce the max loaded CPU
9676 	 * below the average load. At the same time, we also don't want to
9677 	 * reduce the group load below the group capacity. Thus we look for
9678 	 * the minimum possible imbalance.
9679 	 */
9680 	env->migration_type = migrate_load;
9681 	env->imbalance = min(
9682 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9683 		(sds->avg_load - local->avg_load) * local->group_capacity
9684 	) / SCHED_CAPACITY_SCALE;
9685 }
9686 
9687 /******* find_busiest_group() helpers end here *********************/
9688 
9689 /*
9690  * Decision matrix according to the local and busiest group type:
9691  *
9692  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9693  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9694  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9695  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
9696  * asym_packing     force     force      N/A    N/A  force      force
9697  * imbalanced       force     force      N/A    N/A  force      force
9698  * overloaded       force     force      N/A    N/A  force      avg_load
9699  *
9700  * N/A :      Not Applicable because already filtered while updating
9701  *            statistics.
9702  * balanced : The system is balanced for these 2 groups.
9703  * force :    Calculate the imbalance as load migration is probably needed.
9704  * avg_load : Only if imbalance is significant enough.
9705  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9706  *            different in groups.
9707  */
9708 
9709 /**
9710  * find_busiest_group - Returns the busiest group within the sched_domain
9711  * if there is an imbalance.
9712  * @env: The load balancing environment.
9713  *
9714  * Also calculates the amount of runnable load which should be moved
9715  * to restore balance.
9716  *
9717  * Return:	- The busiest group if imbalance exists.
9718  */
9719 static struct sched_group *find_busiest_group(struct lb_env *env)
9720 {
9721 	struct sg_lb_stats *local, *busiest;
9722 	struct sd_lb_stats sds;
9723 
9724 	init_sd_lb_stats(&sds);
9725 
9726 	/*
9727 	 * Compute the various statistics relevant for load balancing at
9728 	 * this level.
9729 	 */
9730 	update_sd_lb_stats(env, &sds);
9731 
9732 	if (sched_energy_enabled()) {
9733 		struct root_domain *rd = env->dst_rq->rd;
9734 
9735 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9736 			goto out_balanced;
9737 	}
9738 
9739 	local = &sds.local_stat;
9740 	busiest = &sds.busiest_stat;
9741 
9742 	/* There is no busy sibling group to pull tasks from */
9743 	if (!sds.busiest)
9744 		goto out_balanced;
9745 
9746 	/* Misfit tasks should be dealt with regardless of the avg load */
9747 	if (busiest->group_type == group_misfit_task)
9748 		goto force_balance;
9749 
9750 	/* ASYM feature bypasses nice load balance check */
9751 	if (busiest->group_type == group_asym_packing)
9752 		goto force_balance;
9753 
9754 	/*
9755 	 * If the busiest group is imbalanced the below checks don't
9756 	 * work because they assume all things are equal, which typically
9757 	 * isn't true due to cpus_ptr constraints and the like.
9758 	 */
9759 	if (busiest->group_type == group_imbalanced)
9760 		goto force_balance;
9761 
9762 	/*
9763 	 * If the local group is busier than the selected busiest group
9764 	 * don't try and pull any tasks.
9765 	 */
9766 	if (local->group_type > busiest->group_type)
9767 		goto out_balanced;
9768 
9769 	/*
9770 	 * When groups are overloaded, use the avg_load to ensure fairness
9771 	 * between tasks.
9772 	 */
9773 	if (local->group_type == group_overloaded) {
9774 		/*
9775 		 * If the local group is more loaded than the selected
9776 		 * busiest group don't try to pull any tasks.
9777 		 */
9778 		if (local->avg_load >= busiest->avg_load)
9779 			goto out_balanced;
9780 
9781 		/* XXX broken for overlapping NUMA groups */
9782 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9783 				sds.total_capacity;
9784 
9785 		/*
9786 		 * Don't pull any tasks if this group is already above the
9787 		 * domain average load.
9788 		 */
9789 		if (local->avg_load >= sds.avg_load)
9790 			goto out_balanced;
9791 
9792 		/*
9793 		 * If the busiest group is more loaded, use imbalance_pct to be
9794 		 * conservative.
9795 		 */
9796 		if (100 * busiest->avg_load <=
9797 				env->sd->imbalance_pct * local->avg_load)
9798 			goto out_balanced;
9799 	}
9800 
9801 	/* Try to move all excess tasks to child's sibling domain */
9802 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9803 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9804 		goto force_balance;
9805 
9806 	if (busiest->group_type != group_overloaded) {
9807 		if (env->idle == CPU_NOT_IDLE)
9808 			/*
9809 			 * If the busiest group is not overloaded (and as a
9810 			 * result the local one too) but this CPU is already
9811 			 * busy, let another idle CPU try to pull task.
9812 			 */
9813 			goto out_balanced;
9814 
9815 		if (busiest->group_weight > 1 &&
9816 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9817 			/*
9818 			 * If the busiest group is not overloaded
9819 			 * and there is no imbalance between this and busiest
9820 			 * group wrt idle CPUs, it is balanced. The imbalance
9821 			 * becomes significant if the diff is greater than 1
9822 			 * otherwise we might end up to just move the imbalance
9823 			 * on another group. Of course this applies only if
9824 			 * there is more than 1 CPU per group.
9825 			 */
9826 			goto out_balanced;
9827 
9828 		if (busiest->sum_h_nr_running == 1)
9829 			/*
9830 			 * busiest doesn't have any tasks waiting to run
9831 			 */
9832 			goto out_balanced;
9833 	}
9834 
9835 force_balance:
9836 	/* Looks like there is an imbalance. Compute it */
9837 	calculate_imbalance(env, &sds);
9838 	return env->imbalance ? sds.busiest : NULL;
9839 
9840 out_balanced:
9841 	env->imbalance = 0;
9842 	return NULL;
9843 }
9844 
9845 /*
9846  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9847  */
9848 static struct rq *find_busiest_queue(struct lb_env *env,
9849 				     struct sched_group *group)
9850 {
9851 	struct rq *busiest = NULL, *rq;
9852 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9853 	unsigned int busiest_nr = 0;
9854 	int i;
9855 
9856 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9857 		unsigned long capacity, load, util;
9858 		unsigned int nr_running;
9859 		enum fbq_type rt;
9860 
9861 		rq = cpu_rq(i);
9862 		rt = fbq_classify_rq(rq);
9863 
9864 		/*
9865 		 * We classify groups/runqueues into three groups:
9866 		 *  - regular: there are !numa tasks
9867 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9868 		 *  - all:     there is no distinction
9869 		 *
9870 		 * In order to avoid migrating ideally placed numa tasks,
9871 		 * ignore those when there's better options.
9872 		 *
9873 		 * If we ignore the actual busiest queue to migrate another
9874 		 * task, the next balance pass can still reduce the busiest
9875 		 * queue by moving tasks around inside the node.
9876 		 *
9877 		 * If we cannot move enough load due to this classification
9878 		 * the next pass will adjust the group classification and
9879 		 * allow migration of more tasks.
9880 		 *
9881 		 * Both cases only affect the total convergence complexity.
9882 		 */
9883 		if (rt > env->fbq_type)
9884 			continue;
9885 
9886 		nr_running = rq->cfs.h_nr_running;
9887 		if (!nr_running)
9888 			continue;
9889 
9890 		capacity = capacity_of(i);
9891 
9892 		/*
9893 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9894 		 * eventually lead to active_balancing high->low capacity.
9895 		 * Higher per-CPU capacity is considered better than balancing
9896 		 * average load.
9897 		 */
9898 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9899 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9900 		    nr_running == 1)
9901 			continue;
9902 
9903 		/* Make sure we only pull tasks from a CPU of lower priority */
9904 		if ((env->sd->flags & SD_ASYM_PACKING) &&
9905 		    sched_asym_prefer(i, env->dst_cpu) &&
9906 		    nr_running == 1)
9907 			continue;
9908 
9909 		switch (env->migration_type) {
9910 		case migrate_load:
9911 			/*
9912 			 * When comparing with load imbalance, use cpu_load()
9913 			 * which is not scaled with the CPU capacity.
9914 			 */
9915 			load = cpu_load(rq);
9916 
9917 			if (nr_running == 1 && load > env->imbalance &&
9918 			    !check_cpu_capacity(rq, env->sd))
9919 				break;
9920 
9921 			/*
9922 			 * For the load comparisons with the other CPUs,
9923 			 * consider the cpu_load() scaled with the CPU
9924 			 * capacity, so that the load can be moved away
9925 			 * from the CPU that is potentially running at a
9926 			 * lower capacity.
9927 			 *
9928 			 * Thus we're looking for max(load_i / capacity_i),
9929 			 * crosswise multiplication to rid ourselves of the
9930 			 * division works out to:
9931 			 * load_i * capacity_j > load_j * capacity_i;
9932 			 * where j is our previous maximum.
9933 			 */
9934 			if (load * busiest_capacity > busiest_load * capacity) {
9935 				busiest_load = load;
9936 				busiest_capacity = capacity;
9937 				busiest = rq;
9938 			}
9939 			break;
9940 
9941 		case migrate_util:
9942 			util = cpu_util_cfs(i);
9943 
9944 			/*
9945 			 * Don't try to pull utilization from a CPU with one
9946 			 * running task. Whatever its utilization, we will fail
9947 			 * detach the task.
9948 			 */
9949 			if (nr_running <= 1)
9950 				continue;
9951 
9952 			if (busiest_util < util) {
9953 				busiest_util = util;
9954 				busiest = rq;
9955 			}
9956 			break;
9957 
9958 		case migrate_task:
9959 			if (busiest_nr < nr_running) {
9960 				busiest_nr = nr_running;
9961 				busiest = rq;
9962 			}
9963 			break;
9964 
9965 		case migrate_misfit:
9966 			/*
9967 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9968 			 * simply seek the "biggest" misfit task.
9969 			 */
9970 			if (rq->misfit_task_load > busiest_load) {
9971 				busiest_load = rq->misfit_task_load;
9972 				busiest = rq;
9973 			}
9974 
9975 			break;
9976 
9977 		}
9978 	}
9979 
9980 	return busiest;
9981 }
9982 
9983 /*
9984  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9985  * so long as it is large enough.
9986  */
9987 #define MAX_PINNED_INTERVAL	512
9988 
9989 static inline bool
9990 asym_active_balance(struct lb_env *env)
9991 {
9992 	/*
9993 	 * ASYM_PACKING needs to force migrate tasks from busy but
9994 	 * lower priority CPUs in order to pack all tasks in the
9995 	 * highest priority CPUs.
9996 	 */
9997 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9998 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9999 }
10000 
10001 static inline bool
10002 imbalanced_active_balance(struct lb_env *env)
10003 {
10004 	struct sched_domain *sd = env->sd;
10005 
10006 	/*
10007 	 * The imbalanced case includes the case of pinned tasks preventing a fair
10008 	 * distribution of the load on the system but also the even distribution of the
10009 	 * threads on a system with spare capacity
10010 	 */
10011 	if ((env->migration_type == migrate_task) &&
10012 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
10013 		return 1;
10014 
10015 	return 0;
10016 }
10017 
10018 static int need_active_balance(struct lb_env *env)
10019 {
10020 	struct sched_domain *sd = env->sd;
10021 
10022 	if (asym_active_balance(env))
10023 		return 1;
10024 
10025 	if (imbalanced_active_balance(env))
10026 		return 1;
10027 
10028 	/*
10029 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10030 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10031 	 * because of other sched_class or IRQs if more capacity stays
10032 	 * available on dst_cpu.
10033 	 */
10034 	if ((env->idle != CPU_NOT_IDLE) &&
10035 	    (env->src_rq->cfs.h_nr_running == 1)) {
10036 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10037 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10038 			return 1;
10039 	}
10040 
10041 	if (env->migration_type == migrate_misfit)
10042 		return 1;
10043 
10044 	return 0;
10045 }
10046 
10047 static int active_load_balance_cpu_stop(void *data);
10048 
10049 static int should_we_balance(struct lb_env *env)
10050 {
10051 	struct sched_group *sg = env->sd->groups;
10052 	int cpu;
10053 
10054 	/*
10055 	 * Ensure the balancing environment is consistent; can happen
10056 	 * when the softirq triggers 'during' hotplug.
10057 	 */
10058 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10059 		return 0;
10060 
10061 	/*
10062 	 * In the newly idle case, we will allow all the CPUs
10063 	 * to do the newly idle load balance.
10064 	 *
10065 	 * However, we bail out if we already have tasks or a wakeup pending,
10066 	 * to optimize wakeup latency.
10067 	 */
10068 	if (env->idle == CPU_NEWLY_IDLE) {
10069 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
10070 			return 0;
10071 		return 1;
10072 	}
10073 
10074 	/* Try to find first idle CPU */
10075 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10076 		if (!idle_cpu(cpu))
10077 			continue;
10078 
10079 		/* Are we the first idle CPU? */
10080 		return cpu == env->dst_cpu;
10081 	}
10082 
10083 	/* Are we the first CPU of this group ? */
10084 	return group_balance_cpu(sg) == env->dst_cpu;
10085 }
10086 
10087 /*
10088  * Check this_cpu to ensure it is balanced within domain. Attempt to move
10089  * tasks if there is an imbalance.
10090  */
10091 static int load_balance(int this_cpu, struct rq *this_rq,
10092 			struct sched_domain *sd, enum cpu_idle_type idle,
10093 			int *continue_balancing)
10094 {
10095 	int ld_moved, cur_ld_moved, active_balance = 0;
10096 	struct sched_domain *sd_parent = sd->parent;
10097 	struct sched_group *group;
10098 	struct rq *busiest;
10099 	struct rq_flags rf;
10100 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10101 	struct lb_env env = {
10102 		.sd		= sd,
10103 		.dst_cpu	= this_cpu,
10104 		.dst_rq		= this_rq,
10105 		.dst_grpmask    = sched_group_span(sd->groups),
10106 		.idle		= idle,
10107 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
10108 		.cpus		= cpus,
10109 		.fbq_type	= all,
10110 		.tasks		= LIST_HEAD_INIT(env.tasks),
10111 	};
10112 
10113 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10114 
10115 	schedstat_inc(sd->lb_count[idle]);
10116 
10117 redo:
10118 	if (!should_we_balance(&env)) {
10119 		*continue_balancing = 0;
10120 		goto out_balanced;
10121 	}
10122 
10123 	group = find_busiest_group(&env);
10124 	if (!group) {
10125 		schedstat_inc(sd->lb_nobusyg[idle]);
10126 		goto out_balanced;
10127 	}
10128 
10129 	busiest = find_busiest_queue(&env, group);
10130 	if (!busiest) {
10131 		schedstat_inc(sd->lb_nobusyq[idle]);
10132 		goto out_balanced;
10133 	}
10134 
10135 	WARN_ON_ONCE(busiest == env.dst_rq);
10136 
10137 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10138 
10139 	env.src_cpu = busiest->cpu;
10140 	env.src_rq = busiest;
10141 
10142 	ld_moved = 0;
10143 	/* Clear this flag as soon as we find a pullable task */
10144 	env.flags |= LBF_ALL_PINNED;
10145 	if (busiest->nr_running > 1) {
10146 		/*
10147 		 * Attempt to move tasks. If find_busiest_group has found
10148 		 * an imbalance but busiest->nr_running <= 1, the group is
10149 		 * still unbalanced. ld_moved simply stays zero, so it is
10150 		 * correctly treated as an imbalance.
10151 		 */
10152 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
10153 
10154 more_balance:
10155 		rq_lock_irqsave(busiest, &rf);
10156 		update_rq_clock(busiest);
10157 
10158 		/*
10159 		 * cur_ld_moved - load moved in current iteration
10160 		 * ld_moved     - cumulative load moved across iterations
10161 		 */
10162 		cur_ld_moved = detach_tasks(&env);
10163 
10164 		/*
10165 		 * We've detached some tasks from busiest_rq. Every
10166 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10167 		 * unlock busiest->lock, and we are able to be sure
10168 		 * that nobody can manipulate the tasks in parallel.
10169 		 * See task_rq_lock() family for the details.
10170 		 */
10171 
10172 		rq_unlock(busiest, &rf);
10173 
10174 		if (cur_ld_moved) {
10175 			attach_tasks(&env);
10176 			ld_moved += cur_ld_moved;
10177 		}
10178 
10179 		local_irq_restore(rf.flags);
10180 
10181 		if (env.flags & LBF_NEED_BREAK) {
10182 			env.flags &= ~LBF_NEED_BREAK;
10183 			/* Stop if we tried all running tasks */
10184 			if (env.loop < busiest->nr_running)
10185 				goto more_balance;
10186 		}
10187 
10188 		/*
10189 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10190 		 * us and move them to an alternate dst_cpu in our sched_group
10191 		 * where they can run. The upper limit on how many times we
10192 		 * iterate on same src_cpu is dependent on number of CPUs in our
10193 		 * sched_group.
10194 		 *
10195 		 * This changes load balance semantics a bit on who can move
10196 		 * load to a given_cpu. In addition to the given_cpu itself
10197 		 * (or a ilb_cpu acting on its behalf where given_cpu is
10198 		 * nohz-idle), we now have balance_cpu in a position to move
10199 		 * load to given_cpu. In rare situations, this may cause
10200 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10201 		 * _independently_ and at _same_ time to move some load to
10202 		 * given_cpu) causing excess load to be moved to given_cpu.
10203 		 * This however should not happen so much in practice and
10204 		 * moreover subsequent load balance cycles should correct the
10205 		 * excess load moved.
10206 		 */
10207 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10208 
10209 			/* Prevent to re-select dst_cpu via env's CPUs */
10210 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10211 
10212 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10213 			env.dst_cpu	 = env.new_dst_cpu;
10214 			env.flags	&= ~LBF_DST_PINNED;
10215 			env.loop	 = 0;
10216 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
10217 
10218 			/*
10219 			 * Go back to "more_balance" rather than "redo" since we
10220 			 * need to continue with same src_cpu.
10221 			 */
10222 			goto more_balance;
10223 		}
10224 
10225 		/*
10226 		 * We failed to reach balance because of affinity.
10227 		 */
10228 		if (sd_parent) {
10229 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10230 
10231 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10232 				*group_imbalance = 1;
10233 		}
10234 
10235 		/* All tasks on this runqueue were pinned by CPU affinity */
10236 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10237 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10238 			/*
10239 			 * Attempting to continue load balancing at the current
10240 			 * sched_domain level only makes sense if there are
10241 			 * active CPUs remaining as possible busiest CPUs to
10242 			 * pull load from which are not contained within the
10243 			 * destination group that is receiving any migrated
10244 			 * load.
10245 			 */
10246 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10247 				env.loop = 0;
10248 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
10249 				goto redo;
10250 			}
10251 			goto out_all_pinned;
10252 		}
10253 	}
10254 
10255 	if (!ld_moved) {
10256 		schedstat_inc(sd->lb_failed[idle]);
10257 		/*
10258 		 * Increment the failure counter only on periodic balance.
10259 		 * We do not want newidle balance, which can be very
10260 		 * frequent, pollute the failure counter causing
10261 		 * excessive cache_hot migrations and active balances.
10262 		 */
10263 		if (idle != CPU_NEWLY_IDLE)
10264 			sd->nr_balance_failed++;
10265 
10266 		if (need_active_balance(&env)) {
10267 			unsigned long flags;
10268 
10269 			raw_spin_rq_lock_irqsave(busiest, flags);
10270 
10271 			/*
10272 			 * Don't kick the active_load_balance_cpu_stop,
10273 			 * if the curr task on busiest CPU can't be
10274 			 * moved to this_cpu:
10275 			 */
10276 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10277 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10278 				goto out_one_pinned;
10279 			}
10280 
10281 			/* Record that we found at least one task that could run on this_cpu */
10282 			env.flags &= ~LBF_ALL_PINNED;
10283 
10284 			/*
10285 			 * ->active_balance synchronizes accesses to
10286 			 * ->active_balance_work.  Once set, it's cleared
10287 			 * only after active load balance is finished.
10288 			 */
10289 			if (!busiest->active_balance) {
10290 				busiest->active_balance = 1;
10291 				busiest->push_cpu = this_cpu;
10292 				active_balance = 1;
10293 			}
10294 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10295 
10296 			if (active_balance) {
10297 				stop_one_cpu_nowait(cpu_of(busiest),
10298 					active_load_balance_cpu_stop, busiest,
10299 					&busiest->active_balance_work);
10300 			}
10301 		}
10302 	} else {
10303 		sd->nr_balance_failed = 0;
10304 	}
10305 
10306 	if (likely(!active_balance) || need_active_balance(&env)) {
10307 		/* We were unbalanced, so reset the balancing interval */
10308 		sd->balance_interval = sd->min_interval;
10309 	}
10310 
10311 	goto out;
10312 
10313 out_balanced:
10314 	/*
10315 	 * We reach balance although we may have faced some affinity
10316 	 * constraints. Clear the imbalance flag only if other tasks got
10317 	 * a chance to move and fix the imbalance.
10318 	 */
10319 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10320 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10321 
10322 		if (*group_imbalance)
10323 			*group_imbalance = 0;
10324 	}
10325 
10326 out_all_pinned:
10327 	/*
10328 	 * We reach balance because all tasks are pinned at this level so
10329 	 * we can't migrate them. Let the imbalance flag set so parent level
10330 	 * can try to migrate them.
10331 	 */
10332 	schedstat_inc(sd->lb_balanced[idle]);
10333 
10334 	sd->nr_balance_failed = 0;
10335 
10336 out_one_pinned:
10337 	ld_moved = 0;
10338 
10339 	/*
10340 	 * newidle_balance() disregards balance intervals, so we could
10341 	 * repeatedly reach this code, which would lead to balance_interval
10342 	 * skyrocketing in a short amount of time. Skip the balance_interval
10343 	 * increase logic to avoid that.
10344 	 */
10345 	if (env.idle == CPU_NEWLY_IDLE)
10346 		goto out;
10347 
10348 	/* tune up the balancing interval */
10349 	if ((env.flags & LBF_ALL_PINNED &&
10350 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10351 	    sd->balance_interval < sd->max_interval)
10352 		sd->balance_interval *= 2;
10353 out:
10354 	return ld_moved;
10355 }
10356 
10357 static inline unsigned long
10358 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10359 {
10360 	unsigned long interval = sd->balance_interval;
10361 
10362 	if (cpu_busy)
10363 		interval *= sd->busy_factor;
10364 
10365 	/* scale ms to jiffies */
10366 	interval = msecs_to_jiffies(interval);
10367 
10368 	/*
10369 	 * Reduce likelihood of busy balancing at higher domains racing with
10370 	 * balancing at lower domains by preventing their balancing periods
10371 	 * from being multiples of each other.
10372 	 */
10373 	if (cpu_busy)
10374 		interval -= 1;
10375 
10376 	interval = clamp(interval, 1UL, max_load_balance_interval);
10377 
10378 	return interval;
10379 }
10380 
10381 static inline void
10382 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10383 {
10384 	unsigned long interval, next;
10385 
10386 	/* used by idle balance, so cpu_busy = 0 */
10387 	interval = get_sd_balance_interval(sd, 0);
10388 	next = sd->last_balance + interval;
10389 
10390 	if (time_after(*next_balance, next))
10391 		*next_balance = next;
10392 }
10393 
10394 /*
10395  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10396  * running tasks off the busiest CPU onto idle CPUs. It requires at
10397  * least 1 task to be running on each physical CPU where possible, and
10398  * avoids physical / logical imbalances.
10399  */
10400 static int active_load_balance_cpu_stop(void *data)
10401 {
10402 	struct rq *busiest_rq = data;
10403 	int busiest_cpu = cpu_of(busiest_rq);
10404 	int target_cpu = busiest_rq->push_cpu;
10405 	struct rq *target_rq = cpu_rq(target_cpu);
10406 	struct sched_domain *sd;
10407 	struct task_struct *p = NULL;
10408 	struct rq_flags rf;
10409 
10410 	rq_lock_irq(busiest_rq, &rf);
10411 	/*
10412 	 * Between queueing the stop-work and running it is a hole in which
10413 	 * CPUs can become inactive. We should not move tasks from or to
10414 	 * inactive CPUs.
10415 	 */
10416 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10417 		goto out_unlock;
10418 
10419 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10420 	if (unlikely(busiest_cpu != smp_processor_id() ||
10421 		     !busiest_rq->active_balance))
10422 		goto out_unlock;
10423 
10424 	/* Is there any task to move? */
10425 	if (busiest_rq->nr_running <= 1)
10426 		goto out_unlock;
10427 
10428 	/*
10429 	 * This condition is "impossible", if it occurs
10430 	 * we need to fix it. Originally reported by
10431 	 * Bjorn Helgaas on a 128-CPU setup.
10432 	 */
10433 	WARN_ON_ONCE(busiest_rq == target_rq);
10434 
10435 	/* Search for an sd spanning us and the target CPU. */
10436 	rcu_read_lock();
10437 	for_each_domain(target_cpu, sd) {
10438 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10439 			break;
10440 	}
10441 
10442 	if (likely(sd)) {
10443 		struct lb_env env = {
10444 			.sd		= sd,
10445 			.dst_cpu	= target_cpu,
10446 			.dst_rq		= target_rq,
10447 			.src_cpu	= busiest_rq->cpu,
10448 			.src_rq		= busiest_rq,
10449 			.idle		= CPU_IDLE,
10450 			.flags		= LBF_ACTIVE_LB,
10451 		};
10452 
10453 		schedstat_inc(sd->alb_count);
10454 		update_rq_clock(busiest_rq);
10455 
10456 		p = detach_one_task(&env);
10457 		if (p) {
10458 			schedstat_inc(sd->alb_pushed);
10459 			/* Active balancing done, reset the failure counter. */
10460 			sd->nr_balance_failed = 0;
10461 		} else {
10462 			schedstat_inc(sd->alb_failed);
10463 		}
10464 	}
10465 	rcu_read_unlock();
10466 out_unlock:
10467 	busiest_rq->active_balance = 0;
10468 	rq_unlock(busiest_rq, &rf);
10469 
10470 	if (p)
10471 		attach_one_task(target_rq, p);
10472 
10473 	local_irq_enable();
10474 
10475 	return 0;
10476 }
10477 
10478 static DEFINE_SPINLOCK(balancing);
10479 
10480 /*
10481  * Scale the max load_balance interval with the number of CPUs in the system.
10482  * This trades load-balance latency on larger machines for less cross talk.
10483  */
10484 void update_max_interval(void)
10485 {
10486 	max_load_balance_interval = HZ*num_online_cpus()/10;
10487 }
10488 
10489 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10490 {
10491 	if (cost > sd->max_newidle_lb_cost) {
10492 		/*
10493 		 * Track max cost of a domain to make sure to not delay the
10494 		 * next wakeup on the CPU.
10495 		 */
10496 		sd->max_newidle_lb_cost = cost;
10497 		sd->last_decay_max_lb_cost = jiffies;
10498 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10499 		/*
10500 		 * Decay the newidle max times by ~1% per second to ensure that
10501 		 * it is not outdated and the current max cost is actually
10502 		 * shorter.
10503 		 */
10504 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10505 		sd->last_decay_max_lb_cost = jiffies;
10506 
10507 		return true;
10508 	}
10509 
10510 	return false;
10511 }
10512 
10513 /*
10514  * It checks each scheduling domain to see if it is due to be balanced,
10515  * and initiates a balancing operation if so.
10516  *
10517  * Balancing parameters are set up in init_sched_domains.
10518  */
10519 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10520 {
10521 	int continue_balancing = 1;
10522 	int cpu = rq->cpu;
10523 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10524 	unsigned long interval;
10525 	struct sched_domain *sd;
10526 	/* Earliest time when we have to do rebalance again */
10527 	unsigned long next_balance = jiffies + 60*HZ;
10528 	int update_next_balance = 0;
10529 	int need_serialize, need_decay = 0;
10530 	u64 max_cost = 0;
10531 
10532 	rcu_read_lock();
10533 	for_each_domain(cpu, sd) {
10534 		/*
10535 		 * Decay the newidle max times here because this is a regular
10536 		 * visit to all the domains.
10537 		 */
10538 		need_decay = update_newidle_cost(sd, 0);
10539 		max_cost += sd->max_newidle_lb_cost;
10540 
10541 		/*
10542 		 * Stop the load balance at this level. There is another
10543 		 * CPU in our sched group which is doing load balancing more
10544 		 * actively.
10545 		 */
10546 		if (!continue_balancing) {
10547 			if (need_decay)
10548 				continue;
10549 			break;
10550 		}
10551 
10552 		interval = get_sd_balance_interval(sd, busy);
10553 
10554 		need_serialize = sd->flags & SD_SERIALIZE;
10555 		if (need_serialize) {
10556 			if (!spin_trylock(&balancing))
10557 				goto out;
10558 		}
10559 
10560 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10561 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10562 				/*
10563 				 * The LBF_DST_PINNED logic could have changed
10564 				 * env->dst_cpu, so we can't know our idle
10565 				 * state even if we migrated tasks. Update it.
10566 				 */
10567 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10568 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10569 			}
10570 			sd->last_balance = jiffies;
10571 			interval = get_sd_balance_interval(sd, busy);
10572 		}
10573 		if (need_serialize)
10574 			spin_unlock(&balancing);
10575 out:
10576 		if (time_after(next_balance, sd->last_balance + interval)) {
10577 			next_balance = sd->last_balance + interval;
10578 			update_next_balance = 1;
10579 		}
10580 	}
10581 	if (need_decay) {
10582 		/*
10583 		 * Ensure the rq-wide value also decays but keep it at a
10584 		 * reasonable floor to avoid funnies with rq->avg_idle.
10585 		 */
10586 		rq->max_idle_balance_cost =
10587 			max((u64)sysctl_sched_migration_cost, max_cost);
10588 	}
10589 	rcu_read_unlock();
10590 
10591 	/*
10592 	 * next_balance will be updated only when there is a need.
10593 	 * When the cpu is attached to null domain for ex, it will not be
10594 	 * updated.
10595 	 */
10596 	if (likely(update_next_balance))
10597 		rq->next_balance = next_balance;
10598 
10599 }
10600 
10601 static inline int on_null_domain(struct rq *rq)
10602 {
10603 	return unlikely(!rcu_dereference_sched(rq->sd));
10604 }
10605 
10606 #ifdef CONFIG_NO_HZ_COMMON
10607 /*
10608  * idle load balancing details
10609  * - When one of the busy CPUs notice that there may be an idle rebalancing
10610  *   needed, they will kick the idle load balancer, which then does idle
10611  *   load balancing for all the idle CPUs.
10612  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
10613  *   anywhere yet.
10614  */
10615 
10616 static inline int find_new_ilb(void)
10617 {
10618 	int ilb;
10619 	const struct cpumask *hk_mask;
10620 
10621 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
10622 
10623 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10624 
10625 		if (ilb == smp_processor_id())
10626 			continue;
10627 
10628 		if (idle_cpu(ilb))
10629 			return ilb;
10630 	}
10631 
10632 	return nr_cpu_ids;
10633 }
10634 
10635 /*
10636  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10637  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
10638  */
10639 static void kick_ilb(unsigned int flags)
10640 {
10641 	int ilb_cpu;
10642 
10643 	/*
10644 	 * Increase nohz.next_balance only when if full ilb is triggered but
10645 	 * not if we only update stats.
10646 	 */
10647 	if (flags & NOHZ_BALANCE_KICK)
10648 		nohz.next_balance = jiffies+1;
10649 
10650 	ilb_cpu = find_new_ilb();
10651 
10652 	if (ilb_cpu >= nr_cpu_ids)
10653 		return;
10654 
10655 	/*
10656 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10657 	 * the first flag owns it; cleared by nohz_csd_func().
10658 	 */
10659 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10660 	if (flags & NOHZ_KICK_MASK)
10661 		return;
10662 
10663 	/*
10664 	 * This way we generate an IPI on the target CPU which
10665 	 * is idle. And the softirq performing nohz idle load balance
10666 	 * will be run before returning from the IPI.
10667 	 */
10668 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10669 }
10670 
10671 /*
10672  * Current decision point for kicking the idle load balancer in the presence
10673  * of idle CPUs in the system.
10674  */
10675 static void nohz_balancer_kick(struct rq *rq)
10676 {
10677 	unsigned long now = jiffies;
10678 	struct sched_domain_shared *sds;
10679 	struct sched_domain *sd;
10680 	int nr_busy, i, cpu = rq->cpu;
10681 	unsigned int flags = 0;
10682 
10683 	if (unlikely(rq->idle_balance))
10684 		return;
10685 
10686 	/*
10687 	 * We may be recently in ticked or tickless idle mode. At the first
10688 	 * busy tick after returning from idle, we will update the busy stats.
10689 	 */
10690 	nohz_balance_exit_idle(rq);
10691 
10692 	/*
10693 	 * None are in tickless mode and hence no need for NOHZ idle load
10694 	 * balancing.
10695 	 */
10696 	if (likely(!atomic_read(&nohz.nr_cpus)))
10697 		return;
10698 
10699 	if (READ_ONCE(nohz.has_blocked) &&
10700 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10701 		flags = NOHZ_STATS_KICK;
10702 
10703 	if (time_before(now, nohz.next_balance))
10704 		goto out;
10705 
10706 	if (rq->nr_running >= 2) {
10707 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10708 		goto out;
10709 	}
10710 
10711 	rcu_read_lock();
10712 
10713 	sd = rcu_dereference(rq->sd);
10714 	if (sd) {
10715 		/*
10716 		 * If there's a CFS task and the current CPU has reduced
10717 		 * capacity; kick the ILB to see if there's a better CPU to run
10718 		 * on.
10719 		 */
10720 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10721 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10722 			goto unlock;
10723 		}
10724 	}
10725 
10726 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10727 	if (sd) {
10728 		/*
10729 		 * When ASYM_PACKING; see if there's a more preferred CPU
10730 		 * currently idle; in which case, kick the ILB to move tasks
10731 		 * around.
10732 		 */
10733 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10734 			if (sched_asym_prefer(i, cpu)) {
10735 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10736 				goto unlock;
10737 			}
10738 		}
10739 	}
10740 
10741 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10742 	if (sd) {
10743 		/*
10744 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10745 		 * to run the misfit task on.
10746 		 */
10747 		if (check_misfit_status(rq, sd)) {
10748 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10749 			goto unlock;
10750 		}
10751 
10752 		/*
10753 		 * For asymmetric systems, we do not want to nicely balance
10754 		 * cache use, instead we want to embrace asymmetry and only
10755 		 * ensure tasks have enough CPU capacity.
10756 		 *
10757 		 * Skip the LLC logic because it's not relevant in that case.
10758 		 */
10759 		goto unlock;
10760 	}
10761 
10762 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10763 	if (sds) {
10764 		/*
10765 		 * If there is an imbalance between LLC domains (IOW we could
10766 		 * increase the overall cache use), we need some less-loaded LLC
10767 		 * domain to pull some load. Likewise, we may need to spread
10768 		 * load within the current LLC domain (e.g. packed SMT cores but
10769 		 * other CPUs are idle). We can't really know from here how busy
10770 		 * the others are - so just get a nohz balance going if it looks
10771 		 * like this LLC domain has tasks we could move.
10772 		 */
10773 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10774 		if (nr_busy > 1) {
10775 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10776 			goto unlock;
10777 		}
10778 	}
10779 unlock:
10780 	rcu_read_unlock();
10781 out:
10782 	if (READ_ONCE(nohz.needs_update))
10783 		flags |= NOHZ_NEXT_KICK;
10784 
10785 	if (flags)
10786 		kick_ilb(flags);
10787 }
10788 
10789 static void set_cpu_sd_state_busy(int cpu)
10790 {
10791 	struct sched_domain *sd;
10792 
10793 	rcu_read_lock();
10794 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10795 
10796 	if (!sd || !sd->nohz_idle)
10797 		goto unlock;
10798 	sd->nohz_idle = 0;
10799 
10800 	atomic_inc(&sd->shared->nr_busy_cpus);
10801 unlock:
10802 	rcu_read_unlock();
10803 }
10804 
10805 void nohz_balance_exit_idle(struct rq *rq)
10806 {
10807 	SCHED_WARN_ON(rq != this_rq());
10808 
10809 	if (likely(!rq->nohz_tick_stopped))
10810 		return;
10811 
10812 	rq->nohz_tick_stopped = 0;
10813 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10814 	atomic_dec(&nohz.nr_cpus);
10815 
10816 	set_cpu_sd_state_busy(rq->cpu);
10817 }
10818 
10819 static void set_cpu_sd_state_idle(int cpu)
10820 {
10821 	struct sched_domain *sd;
10822 
10823 	rcu_read_lock();
10824 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10825 
10826 	if (!sd || sd->nohz_idle)
10827 		goto unlock;
10828 	sd->nohz_idle = 1;
10829 
10830 	atomic_dec(&sd->shared->nr_busy_cpus);
10831 unlock:
10832 	rcu_read_unlock();
10833 }
10834 
10835 /*
10836  * This routine will record that the CPU is going idle with tick stopped.
10837  * This info will be used in performing idle load balancing in the future.
10838  */
10839 void nohz_balance_enter_idle(int cpu)
10840 {
10841 	struct rq *rq = cpu_rq(cpu);
10842 
10843 	SCHED_WARN_ON(cpu != smp_processor_id());
10844 
10845 	/* If this CPU is going down, then nothing needs to be done: */
10846 	if (!cpu_active(cpu))
10847 		return;
10848 
10849 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10850 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
10851 		return;
10852 
10853 	/*
10854 	 * Can be set safely without rq->lock held
10855 	 * If a clear happens, it will have evaluated last additions because
10856 	 * rq->lock is held during the check and the clear
10857 	 */
10858 	rq->has_blocked_load = 1;
10859 
10860 	/*
10861 	 * The tick is still stopped but load could have been added in the
10862 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10863 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10864 	 * of nohz.has_blocked can only happen after checking the new load
10865 	 */
10866 	if (rq->nohz_tick_stopped)
10867 		goto out;
10868 
10869 	/* If we're a completely isolated CPU, we don't play: */
10870 	if (on_null_domain(rq))
10871 		return;
10872 
10873 	rq->nohz_tick_stopped = 1;
10874 
10875 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10876 	atomic_inc(&nohz.nr_cpus);
10877 
10878 	/*
10879 	 * Ensures that if nohz_idle_balance() fails to observe our
10880 	 * @idle_cpus_mask store, it must observe the @has_blocked
10881 	 * and @needs_update stores.
10882 	 */
10883 	smp_mb__after_atomic();
10884 
10885 	set_cpu_sd_state_idle(cpu);
10886 
10887 	WRITE_ONCE(nohz.needs_update, 1);
10888 out:
10889 	/*
10890 	 * Each time a cpu enter idle, we assume that it has blocked load and
10891 	 * enable the periodic update of the load of idle cpus
10892 	 */
10893 	WRITE_ONCE(nohz.has_blocked, 1);
10894 }
10895 
10896 static bool update_nohz_stats(struct rq *rq)
10897 {
10898 	unsigned int cpu = rq->cpu;
10899 
10900 	if (!rq->has_blocked_load)
10901 		return false;
10902 
10903 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10904 		return false;
10905 
10906 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10907 		return true;
10908 
10909 	update_blocked_averages(cpu);
10910 
10911 	return rq->has_blocked_load;
10912 }
10913 
10914 /*
10915  * Internal function that runs load balance for all idle cpus. The load balance
10916  * can be a simple update of blocked load or a complete load balance with
10917  * tasks movement depending of flags.
10918  */
10919 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
10920 {
10921 	/* Earliest time when we have to do rebalance again */
10922 	unsigned long now = jiffies;
10923 	unsigned long next_balance = now + 60*HZ;
10924 	bool has_blocked_load = false;
10925 	int update_next_balance = 0;
10926 	int this_cpu = this_rq->cpu;
10927 	int balance_cpu;
10928 	struct rq *rq;
10929 
10930 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10931 
10932 	/*
10933 	 * We assume there will be no idle load after this update and clear
10934 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10935 	 * set the has_blocked flag and trigger another update of idle load.
10936 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10937 	 * setting the flag, we are sure to not clear the state and not
10938 	 * check the load of an idle cpu.
10939 	 *
10940 	 * Same applies to idle_cpus_mask vs needs_update.
10941 	 */
10942 	if (flags & NOHZ_STATS_KICK)
10943 		WRITE_ONCE(nohz.has_blocked, 0);
10944 	if (flags & NOHZ_NEXT_KICK)
10945 		WRITE_ONCE(nohz.needs_update, 0);
10946 
10947 	/*
10948 	 * Ensures that if we miss the CPU, we must see the has_blocked
10949 	 * store from nohz_balance_enter_idle().
10950 	 */
10951 	smp_mb();
10952 
10953 	/*
10954 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10955 	 * chance for other idle cpu to pull load.
10956 	 */
10957 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10958 		if (!idle_cpu(balance_cpu))
10959 			continue;
10960 
10961 		/*
10962 		 * If this CPU gets work to do, stop the load balancing
10963 		 * work being done for other CPUs. Next load
10964 		 * balancing owner will pick it up.
10965 		 */
10966 		if (need_resched()) {
10967 			if (flags & NOHZ_STATS_KICK)
10968 				has_blocked_load = true;
10969 			if (flags & NOHZ_NEXT_KICK)
10970 				WRITE_ONCE(nohz.needs_update, 1);
10971 			goto abort;
10972 		}
10973 
10974 		rq = cpu_rq(balance_cpu);
10975 
10976 		if (flags & NOHZ_STATS_KICK)
10977 			has_blocked_load |= update_nohz_stats(rq);
10978 
10979 		/*
10980 		 * If time for next balance is due,
10981 		 * do the balance.
10982 		 */
10983 		if (time_after_eq(jiffies, rq->next_balance)) {
10984 			struct rq_flags rf;
10985 
10986 			rq_lock_irqsave(rq, &rf);
10987 			update_rq_clock(rq);
10988 			rq_unlock_irqrestore(rq, &rf);
10989 
10990 			if (flags & NOHZ_BALANCE_KICK)
10991 				rebalance_domains(rq, CPU_IDLE);
10992 		}
10993 
10994 		if (time_after(next_balance, rq->next_balance)) {
10995 			next_balance = rq->next_balance;
10996 			update_next_balance = 1;
10997 		}
10998 	}
10999 
11000 	/*
11001 	 * next_balance will be updated only when there is a need.
11002 	 * When the CPU is attached to null domain for ex, it will not be
11003 	 * updated.
11004 	 */
11005 	if (likely(update_next_balance))
11006 		nohz.next_balance = next_balance;
11007 
11008 	if (flags & NOHZ_STATS_KICK)
11009 		WRITE_ONCE(nohz.next_blocked,
11010 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11011 
11012 abort:
11013 	/* There is still blocked load, enable periodic update */
11014 	if (has_blocked_load)
11015 		WRITE_ONCE(nohz.has_blocked, 1);
11016 }
11017 
11018 /*
11019  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11020  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11021  */
11022 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11023 {
11024 	unsigned int flags = this_rq->nohz_idle_balance;
11025 
11026 	if (!flags)
11027 		return false;
11028 
11029 	this_rq->nohz_idle_balance = 0;
11030 
11031 	if (idle != CPU_IDLE)
11032 		return false;
11033 
11034 	_nohz_idle_balance(this_rq, flags);
11035 
11036 	return true;
11037 }
11038 
11039 /*
11040  * Check if we need to run the ILB for updating blocked load before entering
11041  * idle state.
11042  */
11043 void nohz_run_idle_balance(int cpu)
11044 {
11045 	unsigned int flags;
11046 
11047 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11048 
11049 	/*
11050 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11051 	 * (ie NOHZ_STATS_KICK set) and will do the same.
11052 	 */
11053 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11054 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
11055 }
11056 
11057 static void nohz_newidle_balance(struct rq *this_rq)
11058 {
11059 	int this_cpu = this_rq->cpu;
11060 
11061 	/*
11062 	 * This CPU doesn't want to be disturbed by scheduler
11063 	 * housekeeping
11064 	 */
11065 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
11066 		return;
11067 
11068 	/* Will wake up very soon. No time for doing anything else*/
11069 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11070 		return;
11071 
11072 	/* Don't need to update blocked load of idle CPUs*/
11073 	if (!READ_ONCE(nohz.has_blocked) ||
11074 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11075 		return;
11076 
11077 	/*
11078 	 * Set the need to trigger ILB in order to update blocked load
11079 	 * before entering idle state.
11080 	 */
11081 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11082 }
11083 
11084 #else /* !CONFIG_NO_HZ_COMMON */
11085 static inline void nohz_balancer_kick(struct rq *rq) { }
11086 
11087 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11088 {
11089 	return false;
11090 }
11091 
11092 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11093 #endif /* CONFIG_NO_HZ_COMMON */
11094 
11095 /*
11096  * newidle_balance is called by schedule() if this_cpu is about to become
11097  * idle. Attempts to pull tasks from other CPUs.
11098  *
11099  * Returns:
11100  *   < 0 - we released the lock and there are !fair tasks present
11101  *     0 - failed, no new tasks
11102  *   > 0 - success, new (fair) tasks present
11103  */
11104 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11105 {
11106 	unsigned long next_balance = jiffies + HZ;
11107 	int this_cpu = this_rq->cpu;
11108 	u64 t0, t1, curr_cost = 0;
11109 	struct sched_domain *sd;
11110 	int pulled_task = 0;
11111 
11112 	update_misfit_status(NULL, this_rq);
11113 
11114 	/*
11115 	 * There is a task waiting to run. No need to search for one.
11116 	 * Return 0; the task will be enqueued when switching to idle.
11117 	 */
11118 	if (this_rq->ttwu_pending)
11119 		return 0;
11120 
11121 	/*
11122 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
11123 	 * measure the duration of idle_balance() as idle time.
11124 	 */
11125 	this_rq->idle_stamp = rq_clock(this_rq);
11126 
11127 	/*
11128 	 * Do not pull tasks towards !active CPUs...
11129 	 */
11130 	if (!cpu_active(this_cpu))
11131 		return 0;
11132 
11133 	/*
11134 	 * This is OK, because current is on_cpu, which avoids it being picked
11135 	 * for load-balance and preemption/IRQs are still disabled avoiding
11136 	 * further scheduler activity on it and we're being very careful to
11137 	 * re-start the picking loop.
11138 	 */
11139 	rq_unpin_lock(this_rq, rf);
11140 
11141 	rcu_read_lock();
11142 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
11143 
11144 	if (!READ_ONCE(this_rq->rd->overload) ||
11145 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
11146 
11147 		if (sd)
11148 			update_next_balance(sd, &next_balance);
11149 		rcu_read_unlock();
11150 
11151 		goto out;
11152 	}
11153 	rcu_read_unlock();
11154 
11155 	raw_spin_rq_unlock(this_rq);
11156 
11157 	t0 = sched_clock_cpu(this_cpu);
11158 	update_blocked_averages(this_cpu);
11159 
11160 	rcu_read_lock();
11161 	for_each_domain(this_cpu, sd) {
11162 		int continue_balancing = 1;
11163 		u64 domain_cost;
11164 
11165 		update_next_balance(sd, &next_balance);
11166 
11167 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
11168 			break;
11169 
11170 		if (sd->flags & SD_BALANCE_NEWIDLE) {
11171 
11172 			pulled_task = load_balance(this_cpu, this_rq,
11173 						   sd, CPU_NEWLY_IDLE,
11174 						   &continue_balancing);
11175 
11176 			t1 = sched_clock_cpu(this_cpu);
11177 			domain_cost = t1 - t0;
11178 			update_newidle_cost(sd, domain_cost);
11179 
11180 			curr_cost += domain_cost;
11181 			t0 = t1;
11182 		}
11183 
11184 		/*
11185 		 * Stop searching for tasks to pull if there are
11186 		 * now runnable tasks on this rq.
11187 		 */
11188 		if (pulled_task || this_rq->nr_running > 0 ||
11189 		    this_rq->ttwu_pending)
11190 			break;
11191 	}
11192 	rcu_read_unlock();
11193 
11194 	raw_spin_rq_lock(this_rq);
11195 
11196 	if (curr_cost > this_rq->max_idle_balance_cost)
11197 		this_rq->max_idle_balance_cost = curr_cost;
11198 
11199 	/*
11200 	 * While browsing the domains, we released the rq lock, a task could
11201 	 * have been enqueued in the meantime. Since we're not going idle,
11202 	 * pretend we pulled a task.
11203 	 */
11204 	if (this_rq->cfs.h_nr_running && !pulled_task)
11205 		pulled_task = 1;
11206 
11207 	/* Is there a task of a high priority class? */
11208 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11209 		pulled_task = -1;
11210 
11211 out:
11212 	/* Move the next balance forward */
11213 	if (time_after(this_rq->next_balance, next_balance))
11214 		this_rq->next_balance = next_balance;
11215 
11216 	if (pulled_task)
11217 		this_rq->idle_stamp = 0;
11218 	else
11219 		nohz_newidle_balance(this_rq);
11220 
11221 	rq_repin_lock(this_rq, rf);
11222 
11223 	return pulled_task;
11224 }
11225 
11226 /*
11227  * run_rebalance_domains is triggered when needed from the scheduler tick.
11228  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11229  */
11230 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11231 {
11232 	struct rq *this_rq = this_rq();
11233 	enum cpu_idle_type idle = this_rq->idle_balance ?
11234 						CPU_IDLE : CPU_NOT_IDLE;
11235 
11236 	/*
11237 	 * If this CPU has a pending nohz_balance_kick, then do the
11238 	 * balancing on behalf of the other idle CPUs whose ticks are
11239 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11240 	 * give the idle CPUs a chance to load balance. Else we may
11241 	 * load balance only within the local sched_domain hierarchy
11242 	 * and abort nohz_idle_balance altogether if we pull some load.
11243 	 */
11244 	if (nohz_idle_balance(this_rq, idle))
11245 		return;
11246 
11247 	/* normal load balance */
11248 	update_blocked_averages(this_rq->cpu);
11249 	rebalance_domains(this_rq, idle);
11250 }
11251 
11252 /*
11253  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11254  */
11255 void trigger_load_balance(struct rq *rq)
11256 {
11257 	/*
11258 	 * Don't need to rebalance while attached to NULL domain or
11259 	 * runqueue CPU is not active
11260 	 */
11261 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11262 		return;
11263 
11264 	if (time_after_eq(jiffies, rq->next_balance))
11265 		raise_softirq(SCHED_SOFTIRQ);
11266 
11267 	nohz_balancer_kick(rq);
11268 }
11269 
11270 static void rq_online_fair(struct rq *rq)
11271 {
11272 	update_sysctl();
11273 
11274 	update_runtime_enabled(rq);
11275 }
11276 
11277 static void rq_offline_fair(struct rq *rq)
11278 {
11279 	update_sysctl();
11280 
11281 	/* Ensure any throttled groups are reachable by pick_next_task */
11282 	unthrottle_offline_cfs_rqs(rq);
11283 }
11284 
11285 #endif /* CONFIG_SMP */
11286 
11287 #ifdef CONFIG_SCHED_CORE
11288 static inline bool
11289 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11290 {
11291 	u64 slice = sched_slice(cfs_rq_of(se), se);
11292 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11293 
11294 	return (rtime * min_nr_tasks > slice);
11295 }
11296 
11297 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11298 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11299 {
11300 	if (!sched_core_enabled(rq))
11301 		return;
11302 
11303 	/*
11304 	 * If runqueue has only one task which used up its slice and
11305 	 * if the sibling is forced idle, then trigger schedule to
11306 	 * give forced idle task a chance.
11307 	 *
11308 	 * sched_slice() considers only this active rq and it gets the
11309 	 * whole slice. But during force idle, we have siblings acting
11310 	 * like a single runqueue and hence we need to consider runnable
11311 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11312 	 * go through the forced idle rq, but that would be a perf hit.
11313 	 * We can assume that the forced idle CPU has at least
11314 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11315 	 * if we need to give up the CPU.
11316 	 */
11317 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11318 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11319 		resched_curr(rq);
11320 }
11321 
11322 /*
11323  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11324  */
11325 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11326 {
11327 	for_each_sched_entity(se) {
11328 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11329 
11330 		if (forceidle) {
11331 			if (cfs_rq->forceidle_seq == fi_seq)
11332 				break;
11333 			cfs_rq->forceidle_seq = fi_seq;
11334 		}
11335 
11336 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11337 	}
11338 }
11339 
11340 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11341 {
11342 	struct sched_entity *se = &p->se;
11343 
11344 	if (p->sched_class != &fair_sched_class)
11345 		return;
11346 
11347 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11348 }
11349 
11350 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11351 {
11352 	struct rq *rq = task_rq(a);
11353 	struct sched_entity *sea = &a->se;
11354 	struct sched_entity *seb = &b->se;
11355 	struct cfs_rq *cfs_rqa;
11356 	struct cfs_rq *cfs_rqb;
11357 	s64 delta;
11358 
11359 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11360 
11361 #ifdef CONFIG_FAIR_GROUP_SCHED
11362 	/*
11363 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11364 	 * are immediate siblings.
11365 	 */
11366 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11367 		int sea_depth = sea->depth;
11368 		int seb_depth = seb->depth;
11369 
11370 		if (sea_depth >= seb_depth)
11371 			sea = parent_entity(sea);
11372 		if (sea_depth <= seb_depth)
11373 			seb = parent_entity(seb);
11374 	}
11375 
11376 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11377 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11378 
11379 	cfs_rqa = sea->cfs_rq;
11380 	cfs_rqb = seb->cfs_rq;
11381 #else
11382 	cfs_rqa = &task_rq(a)->cfs;
11383 	cfs_rqb = &task_rq(b)->cfs;
11384 #endif
11385 
11386 	/*
11387 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11388 	 * min_vruntime_fi, which would have been updated in prior calls
11389 	 * to se_fi_update().
11390 	 */
11391 	delta = (s64)(sea->vruntime - seb->vruntime) +
11392 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11393 
11394 	return delta > 0;
11395 }
11396 #else
11397 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11398 #endif
11399 
11400 /*
11401  * scheduler tick hitting a task of our scheduling class.
11402  *
11403  * NOTE: This function can be called remotely by the tick offload that
11404  * goes along full dynticks. Therefore no local assumption can be made
11405  * and everything must be accessed through the @rq and @curr passed in
11406  * parameters.
11407  */
11408 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11409 {
11410 	struct cfs_rq *cfs_rq;
11411 	struct sched_entity *se = &curr->se;
11412 
11413 	for_each_sched_entity(se) {
11414 		cfs_rq = cfs_rq_of(se);
11415 		entity_tick(cfs_rq, se, queued);
11416 	}
11417 
11418 	if (static_branch_unlikely(&sched_numa_balancing))
11419 		task_tick_numa(rq, curr);
11420 
11421 	update_misfit_status(curr, rq);
11422 	update_overutilized_status(task_rq(curr));
11423 
11424 	task_tick_core(rq, curr);
11425 }
11426 
11427 /*
11428  * called on fork with the child task as argument from the parent's context
11429  *  - child not yet on the tasklist
11430  *  - preemption disabled
11431  */
11432 static void task_fork_fair(struct task_struct *p)
11433 {
11434 	struct cfs_rq *cfs_rq;
11435 	struct sched_entity *se = &p->se, *curr;
11436 	struct rq *rq = this_rq();
11437 	struct rq_flags rf;
11438 
11439 	rq_lock(rq, &rf);
11440 	update_rq_clock(rq);
11441 
11442 	cfs_rq = task_cfs_rq(current);
11443 	curr = cfs_rq->curr;
11444 	if (curr) {
11445 		update_curr(cfs_rq);
11446 		se->vruntime = curr->vruntime;
11447 	}
11448 	place_entity(cfs_rq, se, 1);
11449 
11450 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11451 		/*
11452 		 * Upon rescheduling, sched_class::put_prev_task() will place
11453 		 * 'current' within the tree based on its new key value.
11454 		 */
11455 		swap(curr->vruntime, se->vruntime);
11456 		resched_curr(rq);
11457 	}
11458 
11459 	se->vruntime -= cfs_rq->min_vruntime;
11460 	rq_unlock(rq, &rf);
11461 }
11462 
11463 /*
11464  * Priority of the task has changed. Check to see if we preempt
11465  * the current task.
11466  */
11467 static void
11468 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11469 {
11470 	if (!task_on_rq_queued(p))
11471 		return;
11472 
11473 	if (rq->cfs.nr_running == 1)
11474 		return;
11475 
11476 	/*
11477 	 * Reschedule if we are currently running on this runqueue and
11478 	 * our priority decreased, or if we are not currently running on
11479 	 * this runqueue and our priority is higher than the current's
11480 	 */
11481 	if (task_current(rq, p)) {
11482 		if (p->prio > oldprio)
11483 			resched_curr(rq);
11484 	} else
11485 		check_preempt_curr(rq, p, 0);
11486 }
11487 
11488 static inline bool vruntime_normalized(struct task_struct *p)
11489 {
11490 	struct sched_entity *se = &p->se;
11491 
11492 	/*
11493 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11494 	 * the dequeue_entity(.flags=0) will already have normalized the
11495 	 * vruntime.
11496 	 */
11497 	if (p->on_rq)
11498 		return true;
11499 
11500 	/*
11501 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11502 	 * But there are some cases where it has already been normalized:
11503 	 *
11504 	 * - A forked child which is waiting for being woken up by
11505 	 *   wake_up_new_task().
11506 	 * - A task which has been woken up by try_to_wake_up() and
11507 	 *   waiting for actually being woken up by sched_ttwu_pending().
11508 	 */
11509 	if (!se->sum_exec_runtime ||
11510 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11511 		return true;
11512 
11513 	return false;
11514 }
11515 
11516 #ifdef CONFIG_FAIR_GROUP_SCHED
11517 /*
11518  * Propagate the changes of the sched_entity across the tg tree to make it
11519  * visible to the root
11520  */
11521 static void propagate_entity_cfs_rq(struct sched_entity *se)
11522 {
11523 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11524 
11525 	if (cfs_rq_throttled(cfs_rq))
11526 		return;
11527 
11528 	if (!throttled_hierarchy(cfs_rq))
11529 		list_add_leaf_cfs_rq(cfs_rq);
11530 
11531 	/* Start to propagate at parent */
11532 	se = se->parent;
11533 
11534 	for_each_sched_entity(se) {
11535 		cfs_rq = cfs_rq_of(se);
11536 
11537 		update_load_avg(cfs_rq, se, UPDATE_TG);
11538 
11539 		if (cfs_rq_throttled(cfs_rq))
11540 			break;
11541 
11542 		if (!throttled_hierarchy(cfs_rq))
11543 			list_add_leaf_cfs_rq(cfs_rq);
11544 	}
11545 }
11546 #else
11547 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11548 #endif
11549 
11550 static void detach_entity_cfs_rq(struct sched_entity *se)
11551 {
11552 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11553 
11554 #ifdef CONFIG_SMP
11555 	/*
11556 	 * In case the task sched_avg hasn't been attached:
11557 	 * - A forked task which hasn't been woken up by wake_up_new_task().
11558 	 * - A task which has been woken up by try_to_wake_up() but is
11559 	 *   waiting for actually being woken up by sched_ttwu_pending().
11560 	 */
11561 	if (!se->avg.last_update_time)
11562 		return;
11563 #endif
11564 
11565 	/* Catch up with the cfs_rq and remove our load when we leave */
11566 	update_load_avg(cfs_rq, se, 0);
11567 	detach_entity_load_avg(cfs_rq, se);
11568 	update_tg_load_avg(cfs_rq);
11569 	propagate_entity_cfs_rq(se);
11570 }
11571 
11572 static void attach_entity_cfs_rq(struct sched_entity *se)
11573 {
11574 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11575 
11576 	/* Synchronize entity with its cfs_rq */
11577 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11578 	attach_entity_load_avg(cfs_rq, se);
11579 	update_tg_load_avg(cfs_rq);
11580 	propagate_entity_cfs_rq(se);
11581 }
11582 
11583 static void detach_task_cfs_rq(struct task_struct *p)
11584 {
11585 	struct sched_entity *se = &p->se;
11586 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11587 
11588 	if (!vruntime_normalized(p)) {
11589 		/*
11590 		 * Fix up our vruntime so that the current sleep doesn't
11591 		 * cause 'unlimited' sleep bonus.
11592 		 */
11593 		place_entity(cfs_rq, se, 0);
11594 		se->vruntime -= cfs_rq->min_vruntime;
11595 	}
11596 
11597 	detach_entity_cfs_rq(se);
11598 }
11599 
11600 static void attach_task_cfs_rq(struct task_struct *p)
11601 {
11602 	struct sched_entity *se = &p->se;
11603 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11604 
11605 	attach_entity_cfs_rq(se);
11606 
11607 	if (!vruntime_normalized(p))
11608 		se->vruntime += cfs_rq->min_vruntime;
11609 }
11610 
11611 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11612 {
11613 	detach_task_cfs_rq(p);
11614 }
11615 
11616 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11617 {
11618 	attach_task_cfs_rq(p);
11619 
11620 	if (task_on_rq_queued(p)) {
11621 		/*
11622 		 * We were most likely switched from sched_rt, so
11623 		 * kick off the schedule if running, otherwise just see
11624 		 * if we can still preempt the current task.
11625 		 */
11626 		if (task_current(rq, p))
11627 			resched_curr(rq);
11628 		else
11629 			check_preempt_curr(rq, p, 0);
11630 	}
11631 }
11632 
11633 /* Account for a task changing its policy or group.
11634  *
11635  * This routine is mostly called to set cfs_rq->curr field when a task
11636  * migrates between groups/classes.
11637  */
11638 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11639 {
11640 	struct sched_entity *se = &p->se;
11641 
11642 #ifdef CONFIG_SMP
11643 	if (task_on_rq_queued(p)) {
11644 		/*
11645 		 * Move the next running task to the front of the list, so our
11646 		 * cfs_tasks list becomes MRU one.
11647 		 */
11648 		list_move(&se->group_node, &rq->cfs_tasks);
11649 	}
11650 #endif
11651 
11652 	for_each_sched_entity(se) {
11653 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11654 
11655 		set_next_entity(cfs_rq, se);
11656 		/* ensure bandwidth has been allocated on our new cfs_rq */
11657 		account_cfs_rq_runtime(cfs_rq, 0);
11658 	}
11659 }
11660 
11661 void init_cfs_rq(struct cfs_rq *cfs_rq)
11662 {
11663 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11664 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
11665 #ifdef CONFIG_SMP
11666 	raw_spin_lock_init(&cfs_rq->removed.lock);
11667 #endif
11668 }
11669 
11670 #ifdef CONFIG_FAIR_GROUP_SCHED
11671 static void task_change_group_fair(struct task_struct *p)
11672 {
11673 	/*
11674 	 * We couldn't detach or attach a forked task which
11675 	 * hasn't been woken up by wake_up_new_task().
11676 	 */
11677 	if (READ_ONCE(p->__state) == TASK_NEW)
11678 		return;
11679 
11680 	detach_task_cfs_rq(p);
11681 
11682 #ifdef CONFIG_SMP
11683 	/* Tell se's cfs_rq has been changed -- migrated */
11684 	p->se.avg.last_update_time = 0;
11685 #endif
11686 	set_task_rq(p, task_cpu(p));
11687 	attach_task_cfs_rq(p);
11688 }
11689 
11690 void free_fair_sched_group(struct task_group *tg)
11691 {
11692 	int i;
11693 
11694 	for_each_possible_cpu(i) {
11695 		if (tg->cfs_rq)
11696 			kfree(tg->cfs_rq[i]);
11697 		if (tg->se)
11698 			kfree(tg->se[i]);
11699 	}
11700 
11701 	kfree(tg->cfs_rq);
11702 	kfree(tg->se);
11703 }
11704 
11705 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11706 {
11707 	struct sched_entity *se;
11708 	struct cfs_rq *cfs_rq;
11709 	int i;
11710 
11711 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11712 	if (!tg->cfs_rq)
11713 		goto err;
11714 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11715 	if (!tg->se)
11716 		goto err;
11717 
11718 	tg->shares = NICE_0_LOAD;
11719 
11720 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11721 
11722 	for_each_possible_cpu(i) {
11723 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11724 				      GFP_KERNEL, cpu_to_node(i));
11725 		if (!cfs_rq)
11726 			goto err;
11727 
11728 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11729 				  GFP_KERNEL, cpu_to_node(i));
11730 		if (!se)
11731 			goto err_free_rq;
11732 
11733 		init_cfs_rq(cfs_rq);
11734 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11735 		init_entity_runnable_average(se);
11736 	}
11737 
11738 	return 1;
11739 
11740 err_free_rq:
11741 	kfree(cfs_rq);
11742 err:
11743 	return 0;
11744 }
11745 
11746 void online_fair_sched_group(struct task_group *tg)
11747 {
11748 	struct sched_entity *se;
11749 	struct rq_flags rf;
11750 	struct rq *rq;
11751 	int i;
11752 
11753 	for_each_possible_cpu(i) {
11754 		rq = cpu_rq(i);
11755 		se = tg->se[i];
11756 		rq_lock_irq(rq, &rf);
11757 		update_rq_clock(rq);
11758 		attach_entity_cfs_rq(se);
11759 		sync_throttle(tg, i);
11760 		rq_unlock_irq(rq, &rf);
11761 	}
11762 }
11763 
11764 void unregister_fair_sched_group(struct task_group *tg)
11765 {
11766 	unsigned long flags;
11767 	struct rq *rq;
11768 	int cpu;
11769 
11770 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11771 
11772 	for_each_possible_cpu(cpu) {
11773 		if (tg->se[cpu])
11774 			remove_entity_load_avg(tg->se[cpu]);
11775 
11776 		/*
11777 		 * Only empty task groups can be destroyed; so we can speculatively
11778 		 * check on_list without danger of it being re-added.
11779 		 */
11780 		if (!tg->cfs_rq[cpu]->on_list)
11781 			continue;
11782 
11783 		rq = cpu_rq(cpu);
11784 
11785 		raw_spin_rq_lock_irqsave(rq, flags);
11786 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11787 		raw_spin_rq_unlock_irqrestore(rq, flags);
11788 	}
11789 }
11790 
11791 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11792 			struct sched_entity *se, int cpu,
11793 			struct sched_entity *parent)
11794 {
11795 	struct rq *rq = cpu_rq(cpu);
11796 
11797 	cfs_rq->tg = tg;
11798 	cfs_rq->rq = rq;
11799 	init_cfs_rq_runtime(cfs_rq);
11800 
11801 	tg->cfs_rq[cpu] = cfs_rq;
11802 	tg->se[cpu] = se;
11803 
11804 	/* se could be NULL for root_task_group */
11805 	if (!se)
11806 		return;
11807 
11808 	if (!parent) {
11809 		se->cfs_rq = &rq->cfs;
11810 		se->depth = 0;
11811 	} else {
11812 		se->cfs_rq = parent->my_q;
11813 		se->depth = parent->depth + 1;
11814 	}
11815 
11816 	se->my_q = cfs_rq;
11817 	/* guarantee group entities always have weight */
11818 	update_load_set(&se->load, NICE_0_LOAD);
11819 	se->parent = parent;
11820 }
11821 
11822 static DEFINE_MUTEX(shares_mutex);
11823 
11824 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11825 {
11826 	int i;
11827 
11828 	lockdep_assert_held(&shares_mutex);
11829 
11830 	/*
11831 	 * We can't change the weight of the root cgroup.
11832 	 */
11833 	if (!tg->se[0])
11834 		return -EINVAL;
11835 
11836 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11837 
11838 	if (tg->shares == shares)
11839 		return 0;
11840 
11841 	tg->shares = shares;
11842 	for_each_possible_cpu(i) {
11843 		struct rq *rq = cpu_rq(i);
11844 		struct sched_entity *se = tg->se[i];
11845 		struct rq_flags rf;
11846 
11847 		/* Propagate contribution to hierarchy */
11848 		rq_lock_irqsave(rq, &rf);
11849 		update_rq_clock(rq);
11850 		for_each_sched_entity(se) {
11851 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11852 			update_cfs_group(se);
11853 		}
11854 		rq_unlock_irqrestore(rq, &rf);
11855 	}
11856 
11857 	return 0;
11858 }
11859 
11860 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11861 {
11862 	int ret;
11863 
11864 	mutex_lock(&shares_mutex);
11865 	if (tg_is_idle(tg))
11866 		ret = -EINVAL;
11867 	else
11868 		ret = __sched_group_set_shares(tg, shares);
11869 	mutex_unlock(&shares_mutex);
11870 
11871 	return ret;
11872 }
11873 
11874 int sched_group_set_idle(struct task_group *tg, long idle)
11875 {
11876 	int i;
11877 
11878 	if (tg == &root_task_group)
11879 		return -EINVAL;
11880 
11881 	if (idle < 0 || idle > 1)
11882 		return -EINVAL;
11883 
11884 	mutex_lock(&shares_mutex);
11885 
11886 	if (tg->idle == idle) {
11887 		mutex_unlock(&shares_mutex);
11888 		return 0;
11889 	}
11890 
11891 	tg->idle = idle;
11892 
11893 	for_each_possible_cpu(i) {
11894 		struct rq *rq = cpu_rq(i);
11895 		struct sched_entity *se = tg->se[i];
11896 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11897 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11898 		long idle_task_delta;
11899 		struct rq_flags rf;
11900 
11901 		rq_lock_irqsave(rq, &rf);
11902 
11903 		grp_cfs_rq->idle = idle;
11904 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11905 			goto next_cpu;
11906 
11907 		if (se->on_rq) {
11908 			parent_cfs_rq = cfs_rq_of(se);
11909 			if (cfs_rq_is_idle(grp_cfs_rq))
11910 				parent_cfs_rq->idle_nr_running++;
11911 			else
11912 				parent_cfs_rq->idle_nr_running--;
11913 		}
11914 
11915 		idle_task_delta = grp_cfs_rq->h_nr_running -
11916 				  grp_cfs_rq->idle_h_nr_running;
11917 		if (!cfs_rq_is_idle(grp_cfs_rq))
11918 			idle_task_delta *= -1;
11919 
11920 		for_each_sched_entity(se) {
11921 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
11922 
11923 			if (!se->on_rq)
11924 				break;
11925 
11926 			cfs_rq->idle_h_nr_running += idle_task_delta;
11927 
11928 			/* Already accounted at parent level and above. */
11929 			if (cfs_rq_is_idle(cfs_rq))
11930 				break;
11931 		}
11932 
11933 next_cpu:
11934 		rq_unlock_irqrestore(rq, &rf);
11935 	}
11936 
11937 	/* Idle groups have minimum weight. */
11938 	if (tg_is_idle(tg))
11939 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11940 	else
11941 		__sched_group_set_shares(tg, NICE_0_LOAD);
11942 
11943 	mutex_unlock(&shares_mutex);
11944 	return 0;
11945 }
11946 
11947 #else /* CONFIG_FAIR_GROUP_SCHED */
11948 
11949 void free_fair_sched_group(struct task_group *tg) { }
11950 
11951 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11952 {
11953 	return 1;
11954 }
11955 
11956 void online_fair_sched_group(struct task_group *tg) { }
11957 
11958 void unregister_fair_sched_group(struct task_group *tg) { }
11959 
11960 #endif /* CONFIG_FAIR_GROUP_SCHED */
11961 
11962 
11963 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11964 {
11965 	struct sched_entity *se = &task->se;
11966 	unsigned int rr_interval = 0;
11967 
11968 	/*
11969 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11970 	 * idle runqueue:
11971 	 */
11972 	if (rq->cfs.load.weight)
11973 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11974 
11975 	return rr_interval;
11976 }
11977 
11978 /*
11979  * All the scheduling class methods:
11980  */
11981 DEFINE_SCHED_CLASS(fair) = {
11982 
11983 	.enqueue_task		= enqueue_task_fair,
11984 	.dequeue_task		= dequeue_task_fair,
11985 	.yield_task		= yield_task_fair,
11986 	.yield_to_task		= yield_to_task_fair,
11987 
11988 	.check_preempt_curr	= check_preempt_wakeup,
11989 
11990 	.pick_next_task		= __pick_next_task_fair,
11991 	.put_prev_task		= put_prev_task_fair,
11992 	.set_next_task          = set_next_task_fair,
11993 
11994 #ifdef CONFIG_SMP
11995 	.balance		= balance_fair,
11996 	.pick_task		= pick_task_fair,
11997 	.select_task_rq		= select_task_rq_fair,
11998 	.migrate_task_rq	= migrate_task_rq_fair,
11999 
12000 	.rq_online		= rq_online_fair,
12001 	.rq_offline		= rq_offline_fair,
12002 
12003 	.task_dead		= task_dead_fair,
12004 	.set_cpus_allowed	= set_cpus_allowed_common,
12005 #endif
12006 
12007 	.task_tick		= task_tick_fair,
12008 	.task_fork		= task_fork_fair,
12009 
12010 	.prio_changed		= prio_changed_fair,
12011 	.switched_from		= switched_from_fair,
12012 	.switched_to		= switched_to_fair,
12013 
12014 	.get_rr_interval	= get_rr_interval_fair,
12015 
12016 	.update_curr		= update_curr_fair,
12017 
12018 #ifdef CONFIG_FAIR_GROUP_SCHED
12019 	.task_change_group	= task_change_group_fair,
12020 #endif
12021 
12022 #ifdef CONFIG_UCLAMP_TASK
12023 	.uclamp_enabled		= 1,
12024 #endif
12025 };
12026 
12027 #ifdef CONFIG_SCHED_DEBUG
12028 void print_cfs_stats(struct seq_file *m, int cpu)
12029 {
12030 	struct cfs_rq *cfs_rq, *pos;
12031 
12032 	rcu_read_lock();
12033 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12034 		print_cfs_rq(m, cpu, cfs_rq);
12035 	rcu_read_unlock();
12036 }
12037 
12038 #ifdef CONFIG_NUMA_BALANCING
12039 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12040 {
12041 	int node;
12042 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12043 	struct numa_group *ng;
12044 
12045 	rcu_read_lock();
12046 	ng = rcu_dereference(p->numa_group);
12047 	for_each_online_node(node) {
12048 		if (p->numa_faults) {
12049 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12050 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12051 		}
12052 		if (ng) {
12053 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12054 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12055 		}
12056 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12057 	}
12058 	rcu_read_unlock();
12059 }
12060 #endif /* CONFIG_NUMA_BALANCING */
12061 #endif /* CONFIG_SCHED_DEBUG */
12062 
12063 __init void init_sched_fair_class(void)
12064 {
12065 #ifdef CONFIG_SMP
12066 	int i;
12067 
12068 	for_each_possible_cpu(i) {
12069 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
12070 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
12071 	}
12072 
12073 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12074 
12075 #ifdef CONFIG_NO_HZ_COMMON
12076 	nohz.next_balance = jiffies;
12077 	nohz.next_blocked = jiffies;
12078 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12079 #endif
12080 #endif /* SMP */
12081 
12082 }
12083