1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 #ifdef CONFIG_SMP 92 /* 93 * For asym packing, by default the lower numbered CPU has higher priority. 94 */ 95 int __weak arch_asym_cpu_priority(int cpu) 96 { 97 return -cpu; 98 } 99 100 /* 101 * The margin used when comparing utilization with CPU capacity. 102 * 103 * (default: ~20%) 104 */ 105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 106 107 /* 108 * The margin used when comparing CPU capacities. 109 * is 'cap1' noticeably greater than 'cap2' 110 * 111 * (default: ~5%) 112 */ 113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 114 #endif 115 116 #ifdef CONFIG_CFS_BANDWIDTH 117 /* 118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 119 * each time a cfs_rq requests quota. 120 * 121 * Note: in the case that the slice exceeds the runtime remaining (either due 122 * to consumption or the quota being specified to be smaller than the slice) 123 * we will always only issue the remaining available time. 124 * 125 * (default: 5 msec, units: microseconds) 126 */ 127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 128 #endif 129 130 #ifdef CONFIG_NUMA_BALANCING 131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 133 #endif 134 135 #ifdef CONFIG_SYSCTL 136 static const struct ctl_table sched_fair_sysctls[] = { 137 #ifdef CONFIG_CFS_BANDWIDTH 138 { 139 .procname = "sched_cfs_bandwidth_slice_us", 140 .data = &sysctl_sched_cfs_bandwidth_slice, 141 .maxlen = sizeof(unsigned int), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_minmax, 144 .extra1 = SYSCTL_ONE, 145 }, 146 #endif 147 #ifdef CONFIG_NUMA_BALANCING 148 { 149 .procname = "numa_balancing_promote_rate_limit_MBps", 150 .data = &sysctl_numa_balancing_promote_rate_limit, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec_minmax, 154 .extra1 = SYSCTL_ZERO, 155 }, 156 #endif /* CONFIG_NUMA_BALANCING */ 157 }; 158 159 static int __init sched_fair_sysctl_init(void) 160 { 161 register_sysctl_init("kernel", sched_fair_sysctls); 162 return 0; 163 } 164 late_initcall(sched_fair_sysctl_init); 165 #endif 166 167 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 168 { 169 lw->weight += inc; 170 lw->inv_weight = 0; 171 } 172 173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 174 { 175 lw->weight -= dec; 176 lw->inv_weight = 0; 177 } 178 179 static inline void update_load_set(struct load_weight *lw, unsigned long w) 180 { 181 lw->weight = w; 182 lw->inv_weight = 0; 183 } 184 185 /* 186 * Increase the granularity value when there are more CPUs, 187 * because with more CPUs the 'effective latency' as visible 188 * to users decreases. But the relationship is not linear, 189 * so pick a second-best guess by going with the log2 of the 190 * number of CPUs. 191 * 192 * This idea comes from the SD scheduler of Con Kolivas: 193 */ 194 static unsigned int get_update_sysctl_factor(void) 195 { 196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 197 unsigned int factor; 198 199 switch (sysctl_sched_tunable_scaling) { 200 case SCHED_TUNABLESCALING_NONE: 201 factor = 1; 202 break; 203 case SCHED_TUNABLESCALING_LINEAR: 204 factor = cpus; 205 break; 206 case SCHED_TUNABLESCALING_LOG: 207 default: 208 factor = 1 + ilog2(cpus); 209 break; 210 } 211 212 return factor; 213 } 214 215 static void update_sysctl(void) 216 { 217 unsigned int factor = get_update_sysctl_factor(); 218 219 #define SET_SYSCTL(name) \ 220 (sysctl_##name = (factor) * normalized_sysctl_##name) 221 SET_SYSCTL(sched_base_slice); 222 #undef SET_SYSCTL 223 } 224 225 void __init sched_init_granularity(void) 226 { 227 update_sysctl(); 228 } 229 230 #define WMULT_CONST (~0U) 231 #define WMULT_SHIFT 32 232 233 static void __update_inv_weight(struct load_weight *lw) 234 { 235 unsigned long w; 236 237 if (likely(lw->inv_weight)) 238 return; 239 240 w = scale_load_down(lw->weight); 241 242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 243 lw->inv_weight = 1; 244 else if (unlikely(!w)) 245 lw->inv_weight = WMULT_CONST; 246 else 247 lw->inv_weight = WMULT_CONST / w; 248 } 249 250 /* 251 * delta_exec * weight / lw.weight 252 * OR 253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 254 * 255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 256 * we're guaranteed shift stays positive because inv_weight is guaranteed to 257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 258 * 259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 260 * weight/lw.weight <= 1, and therefore our shift will also be positive. 261 */ 262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 263 { 264 u64 fact = scale_load_down(weight); 265 u32 fact_hi = (u32)(fact >> 32); 266 int shift = WMULT_SHIFT; 267 int fs; 268 269 __update_inv_weight(lw); 270 271 if (unlikely(fact_hi)) { 272 fs = fls(fact_hi); 273 shift -= fs; 274 fact >>= fs; 275 } 276 277 fact = mul_u32_u32(fact, lw->inv_weight); 278 279 fact_hi = (u32)(fact >> 32); 280 if (fact_hi) { 281 fs = fls(fact_hi); 282 shift -= fs; 283 fact >>= fs; 284 } 285 286 return mul_u64_u32_shr(delta_exec, fact, shift); 287 } 288 289 /* 290 * delta /= w 291 */ 292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 293 { 294 if (unlikely(se->load.weight != NICE_0_LOAD)) 295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 296 297 return delta; 298 } 299 300 const struct sched_class fair_sched_class; 301 302 /************************************************************** 303 * CFS operations on generic schedulable entities: 304 */ 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 308 /* Walk up scheduling entities hierarchy */ 309 #define for_each_sched_entity(se) \ 310 for (; se; se = se->parent) 311 312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 struct rq *rq = rq_of(cfs_rq); 315 int cpu = cpu_of(rq); 316 317 if (cfs_rq->on_list) 318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 319 320 cfs_rq->on_list = 1; 321 322 /* 323 * Ensure we either appear before our parent (if already 324 * enqueued) or force our parent to appear after us when it is 325 * enqueued. The fact that we always enqueue bottom-up 326 * reduces this to two cases and a special case for the root 327 * cfs_rq. Furthermore, it also means that we will always reset 328 * tmp_alone_branch either when the branch is connected 329 * to a tree or when we reach the top of the tree 330 */ 331 if (cfs_rq->tg->parent && 332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 333 /* 334 * If parent is already on the list, we add the child 335 * just before. Thanks to circular linked property of 336 * the list, this means to put the child at the tail 337 * of the list that starts by parent. 338 */ 339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 341 /* 342 * The branch is now connected to its tree so we can 343 * reset tmp_alone_branch to the beginning of the 344 * list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 if (!cfs_rq->tg->parent) { 351 /* 352 * cfs rq without parent should be put 353 * at the tail of the list. 354 */ 355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 356 &rq->leaf_cfs_rq_list); 357 /* 358 * We have reach the top of a tree so we can reset 359 * tmp_alone_branch to the beginning of the list. 360 */ 361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 362 return true; 363 } 364 365 /* 366 * The parent has not already been added so we want to 367 * make sure that it will be put after us. 368 * tmp_alone_branch points to the begin of the branch 369 * where we will add parent. 370 */ 371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 372 /* 373 * update tmp_alone_branch to points to the new begin 374 * of the branch 375 */ 376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 377 return false; 378 } 379 380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 381 { 382 if (cfs_rq->on_list) { 383 struct rq *rq = rq_of(cfs_rq); 384 385 /* 386 * With cfs_rq being unthrottled/throttled during an enqueue, 387 * it can happen the tmp_alone_branch points to the leaf that 388 * we finally want to delete. In this case, tmp_alone_branch moves 389 * to the prev element but it will point to rq->leaf_cfs_rq_list 390 * at the end of the enqueue. 391 */ 392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 394 395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 396 cfs_rq->on_list = 0; 397 } 398 } 399 400 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 401 { 402 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 403 } 404 405 /* Iterate through all leaf cfs_rq's on a runqueue */ 406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 408 leaf_cfs_rq_list) 409 410 /* Do the two (enqueued) entities belong to the same group ? */ 411 static inline struct cfs_rq * 412 is_same_group(struct sched_entity *se, struct sched_entity *pse) 413 { 414 if (se->cfs_rq == pse->cfs_rq) 415 return se->cfs_rq; 416 417 return NULL; 418 } 419 420 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 421 { 422 return se->parent; 423 } 424 425 static void 426 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 427 { 428 int se_depth, pse_depth; 429 430 /* 431 * preemption test can be made between sibling entities who are in the 432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 433 * both tasks until we find their ancestors who are siblings of common 434 * parent. 435 */ 436 437 /* First walk up until both entities are at same depth */ 438 se_depth = (*se)->depth; 439 pse_depth = (*pse)->depth; 440 441 while (se_depth > pse_depth) { 442 se_depth--; 443 *se = parent_entity(*se); 444 } 445 446 while (pse_depth > se_depth) { 447 pse_depth--; 448 *pse = parent_entity(*pse); 449 } 450 451 while (!is_same_group(*se, *pse)) { 452 *se = parent_entity(*se); 453 *pse = parent_entity(*pse); 454 } 455 } 456 457 static int tg_is_idle(struct task_group *tg) 458 { 459 return tg->idle > 0; 460 } 461 462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 463 { 464 return cfs_rq->idle > 0; 465 } 466 467 static int se_is_idle(struct sched_entity *se) 468 { 469 if (entity_is_task(se)) 470 return task_has_idle_policy(task_of(se)); 471 return cfs_rq_is_idle(group_cfs_rq(se)); 472 } 473 474 #else /* !CONFIG_FAIR_GROUP_SCHED */ 475 476 #define for_each_sched_entity(se) \ 477 for (; se; se = NULL) 478 479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 480 { 481 return true; 482 } 483 484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 } 487 488 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 489 { 490 } 491 492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 494 495 static inline struct sched_entity *parent_entity(struct sched_entity *se) 496 { 497 return NULL; 498 } 499 500 static inline void 501 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 502 { 503 } 504 505 static inline int tg_is_idle(struct task_group *tg) 506 { 507 return 0; 508 } 509 510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 511 { 512 return 0; 513 } 514 515 static int se_is_idle(struct sched_entity *se) 516 { 517 return task_has_idle_policy(task_of(se)); 518 } 519 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 static __always_inline 523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 524 525 /************************************************************** 526 * Scheduling class tree data structure manipulation methods: 527 */ 528 529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - max_vruntime); 532 if (delta > 0) 533 max_vruntime = vruntime; 534 535 return max_vruntime; 536 } 537 538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 539 { 540 s64 delta = (s64)(vruntime - min_vruntime); 541 if (delta < 0) 542 min_vruntime = vruntime; 543 544 return min_vruntime; 545 } 546 547 static inline bool entity_before(const struct sched_entity *a, 548 const struct sched_entity *b) 549 { 550 /* 551 * Tiebreak on vruntime seems unnecessary since it can 552 * hardly happen. 553 */ 554 return (s64)(a->deadline - b->deadline) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-contiguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplication could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceiling */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 vlag, limit; 698 699 SCHED_WARN_ON(!se->on_rq); 700 701 vlag = avg_vruntime(cfs_rq) - se->vruntime; 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 704 se->vlag = clamp(vlag, -limit, limit); 705 } 706 707 /* 708 * Entity is eligible once it received less service than it ought to have, 709 * eg. lag >= 0. 710 * 711 * lag_i = S - s_i = w_i*(V - v_i) 712 * 713 * lag_i >= 0 -> V >= v_i 714 * 715 * \Sum (v_i - v)*w_i 716 * V = ------------------ + v 717 * \Sum w_i 718 * 719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 720 * 721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 722 * to the loss in precision caused by the division. 723 */ 724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 s64 avg = cfs_rq->avg_vruntime; 728 long load = cfs_rq->avg_load; 729 730 if (curr && curr->on_rq) { 731 unsigned long weight = scale_load_down(curr->load.weight); 732 733 avg += entity_key(cfs_rq, curr) * weight; 734 load += weight; 735 } 736 737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 738 } 739 740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 741 { 742 return vruntime_eligible(cfs_rq, se->vruntime); 743 } 744 745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 746 { 747 u64 min_vruntime = cfs_rq->min_vruntime; 748 /* 749 * open coded max_vruntime() to allow updating avg_vruntime 750 */ 751 s64 delta = (s64)(vruntime - min_vruntime); 752 if (delta > 0) { 753 avg_vruntime_update(cfs_rq, delta); 754 min_vruntime = vruntime; 755 } 756 return min_vruntime; 757 } 758 759 static void update_min_vruntime(struct cfs_rq *cfs_rq) 760 { 761 struct sched_entity *se = __pick_root_entity(cfs_rq); 762 struct sched_entity *curr = cfs_rq->curr; 763 u64 vruntime = cfs_rq->min_vruntime; 764 765 if (curr) { 766 if (curr->on_rq) 767 vruntime = curr->vruntime; 768 else 769 curr = NULL; 770 } 771 772 if (se) { 773 if (!curr) 774 vruntime = se->min_vruntime; 775 else 776 vruntime = min_vruntime(vruntime, se->min_vruntime); 777 } 778 779 /* ensure we never gain time by being placed backwards. */ 780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 781 } 782 783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *root = __pick_root_entity(cfs_rq); 786 struct sched_entity *curr = cfs_rq->curr; 787 u64 min_slice = ~0ULL; 788 789 if (curr && curr->on_rq) 790 min_slice = curr->slice; 791 792 if (root) 793 min_slice = min(min_slice, root->min_slice); 794 795 return min_slice; 796 } 797 798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 799 { 800 return entity_before(__node_2_se(a), __node_2_se(b)); 801 } 802 803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 804 805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 806 { 807 if (node) { 808 struct sched_entity *rse = __node_2_se(node); 809 if (vruntime_gt(min_vruntime, se, rse)) 810 se->min_vruntime = rse->min_vruntime; 811 } 812 } 813 814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 815 { 816 if (node) { 817 struct sched_entity *rse = __node_2_se(node); 818 if (rse->min_slice < se->min_slice) 819 se->min_slice = rse->min_slice; 820 } 821 } 822 823 /* 824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 825 */ 826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 827 { 828 u64 old_min_vruntime = se->min_vruntime; 829 u64 old_min_slice = se->min_slice; 830 struct rb_node *node = &se->run_node; 831 832 se->min_vruntime = se->vruntime; 833 __min_vruntime_update(se, node->rb_right); 834 __min_vruntime_update(se, node->rb_left); 835 836 se->min_slice = se->slice; 837 __min_slice_update(se, node->rb_right); 838 __min_slice_update(se, node->rb_left); 839 840 return se->min_vruntime == old_min_vruntime && 841 se->min_slice == old_min_slice; 842 } 843 844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 845 run_node, min_vruntime, min_vruntime_update); 846 847 /* 848 * Enqueue an entity into the rb-tree: 849 */ 850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 851 { 852 avg_vruntime_add(cfs_rq, se); 853 se->min_vruntime = se->vruntime; 854 se->min_slice = se->slice; 855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 856 __entity_less, &min_vruntime_cb); 857 } 858 859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 860 { 861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 862 &min_vruntime_cb); 863 avg_vruntime_sub(cfs_rq, se); 864 } 865 866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 867 { 868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 869 870 if (!root) 871 return NULL; 872 873 return __node_2_se(root); 874 } 875 876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 877 { 878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 879 880 if (!left) 881 return NULL; 882 883 return __node_2_se(left); 884 } 885 886 /* 887 * HACK, stash a copy of deadline at the point of pick in vlag, 888 * which isn't used until dequeue. 889 */ 890 static inline void set_protect_slice(struct sched_entity *se) 891 { 892 se->vlag = se->deadline; 893 } 894 895 static inline bool protect_slice(struct sched_entity *se) 896 { 897 return se->vlag == se->deadline; 898 } 899 900 static inline void cancel_protect_slice(struct sched_entity *se) 901 { 902 if (protect_slice(se)) 903 se->vlag = se->deadline + 1; 904 } 905 906 /* 907 * Earliest Eligible Virtual Deadline First 908 * 909 * In order to provide latency guarantees for different request sizes 910 * EEVDF selects the best runnable task from two criteria: 911 * 912 * 1) the task must be eligible (must be owed service) 913 * 914 * 2) from those tasks that meet 1), we select the one 915 * with the earliest virtual deadline. 916 * 917 * We can do this in O(log n) time due to an augmented RB-tree. The 918 * tree keeps the entries sorted on deadline, but also functions as a 919 * heap based on the vruntime by keeping: 920 * 921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 922 * 923 * Which allows tree pruning through eligibility. 924 */ 925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 926 { 927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 928 struct sched_entity *se = __pick_first_entity(cfs_rq); 929 struct sched_entity *curr = cfs_rq->curr; 930 struct sched_entity *best = NULL; 931 932 /* 933 * We can safely skip eligibility check if there is only one entity 934 * in this cfs_rq, saving some cycles. 935 */ 936 if (cfs_rq->nr_queued == 1) 937 return curr && curr->on_rq ? curr : se; 938 939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 940 curr = NULL; 941 942 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr)) 943 return curr; 944 945 /* Pick the leftmost entity if it's eligible */ 946 if (se && entity_eligible(cfs_rq, se)) { 947 best = se; 948 goto found; 949 } 950 951 /* Heap search for the EEVD entity */ 952 while (node) { 953 struct rb_node *left = node->rb_left; 954 955 /* 956 * Eligible entities in left subtree are always better 957 * choices, since they have earlier deadlines. 958 */ 959 if (left && vruntime_eligible(cfs_rq, 960 __node_2_se(left)->min_vruntime)) { 961 node = left; 962 continue; 963 } 964 965 se = __node_2_se(node); 966 967 /* 968 * The left subtree either is empty or has no eligible 969 * entity, so check the current node since it is the one 970 * with earliest deadline that might be eligible. 971 */ 972 if (entity_eligible(cfs_rq, se)) { 973 best = se; 974 break; 975 } 976 977 node = node->rb_right; 978 } 979 found: 980 if (!best || (curr && entity_before(curr, best))) 981 best = curr; 982 983 return best; 984 } 985 986 #ifdef CONFIG_SCHED_DEBUG 987 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 988 { 989 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 990 991 if (!last) 992 return NULL; 993 994 return __node_2_se(last); 995 } 996 997 /************************************************************** 998 * Scheduling class statistics methods: 999 */ 1000 #ifdef CONFIG_SMP 1001 int sched_update_scaling(void) 1002 { 1003 unsigned int factor = get_update_sysctl_factor(); 1004 1005 #define WRT_SYSCTL(name) \ 1006 (normalized_sysctl_##name = sysctl_##name / (factor)) 1007 WRT_SYSCTL(sched_base_slice); 1008 #undef WRT_SYSCTL 1009 1010 return 0; 1011 } 1012 #endif 1013 #endif 1014 1015 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1016 1017 /* 1018 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1019 * this is probably good enough. 1020 */ 1021 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1022 { 1023 if ((s64)(se->vruntime - se->deadline) < 0) 1024 return false; 1025 1026 /* 1027 * For EEVDF the virtual time slope is determined by w_i (iow. 1028 * nice) while the request time r_i is determined by 1029 * sysctl_sched_base_slice. 1030 */ 1031 if (!se->custom_slice) 1032 se->slice = sysctl_sched_base_slice; 1033 1034 /* 1035 * EEVDF: vd_i = ve_i + r_i / w_i 1036 */ 1037 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1038 1039 /* 1040 * The task has consumed its request, reschedule. 1041 */ 1042 return true; 1043 } 1044 1045 #include "pelt.h" 1046 #ifdef CONFIG_SMP 1047 1048 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1049 static unsigned long task_h_load(struct task_struct *p); 1050 static unsigned long capacity_of(int cpu); 1051 1052 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1053 void init_entity_runnable_average(struct sched_entity *se) 1054 { 1055 struct sched_avg *sa = &se->avg; 1056 1057 memset(sa, 0, sizeof(*sa)); 1058 1059 /* 1060 * Tasks are initialized with full load to be seen as heavy tasks until 1061 * they get a chance to stabilize to their real load level. 1062 * Group entities are initialized with zero load to reflect the fact that 1063 * nothing has been attached to the task group yet. 1064 */ 1065 if (entity_is_task(se)) 1066 sa->load_avg = scale_load_down(se->load.weight); 1067 1068 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1069 } 1070 1071 /* 1072 * With new tasks being created, their initial util_avgs are extrapolated 1073 * based on the cfs_rq's current util_avg: 1074 * 1075 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1076 * * se_weight(se) 1077 * 1078 * However, in many cases, the above util_avg does not give a desired 1079 * value. Moreover, the sum of the util_avgs may be divergent, such 1080 * as when the series is a harmonic series. 1081 * 1082 * To solve this problem, we also cap the util_avg of successive tasks to 1083 * only 1/2 of the left utilization budget: 1084 * 1085 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1086 * 1087 * where n denotes the nth task and cpu_scale the CPU capacity. 1088 * 1089 * For example, for a CPU with 1024 of capacity, a simplest series from 1090 * the beginning would be like: 1091 * 1092 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1093 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1094 * 1095 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1096 * if util_avg > util_avg_cap. 1097 */ 1098 void post_init_entity_util_avg(struct task_struct *p) 1099 { 1100 struct sched_entity *se = &p->se; 1101 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1102 struct sched_avg *sa = &se->avg; 1103 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1104 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1105 1106 if (p->sched_class != &fair_sched_class) { 1107 /* 1108 * For !fair tasks do: 1109 * 1110 update_cfs_rq_load_avg(now, cfs_rq); 1111 attach_entity_load_avg(cfs_rq, se); 1112 switched_from_fair(rq, p); 1113 * 1114 * such that the next switched_to_fair() has the 1115 * expected state. 1116 */ 1117 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1118 return; 1119 } 1120 1121 if (cap > 0) { 1122 if (cfs_rq->avg.util_avg != 0) { 1123 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1124 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1125 1126 if (sa->util_avg > cap) 1127 sa->util_avg = cap; 1128 } else { 1129 sa->util_avg = cap; 1130 } 1131 } 1132 1133 sa->runnable_avg = sa->util_avg; 1134 } 1135 1136 #else /* !CONFIG_SMP */ 1137 void init_entity_runnable_average(struct sched_entity *se) 1138 { 1139 } 1140 void post_init_entity_util_avg(struct task_struct *p) 1141 { 1142 } 1143 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1144 { 1145 } 1146 #endif /* CONFIG_SMP */ 1147 1148 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1149 { 1150 u64 now = rq_clock_task(rq); 1151 s64 delta_exec; 1152 1153 delta_exec = now - curr->exec_start; 1154 if (unlikely(delta_exec <= 0)) 1155 return delta_exec; 1156 1157 curr->exec_start = now; 1158 curr->sum_exec_runtime += delta_exec; 1159 1160 if (schedstat_enabled()) { 1161 struct sched_statistics *stats; 1162 1163 stats = __schedstats_from_se(curr); 1164 __schedstat_set(stats->exec_max, 1165 max(delta_exec, stats->exec_max)); 1166 } 1167 1168 return delta_exec; 1169 } 1170 1171 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1172 { 1173 trace_sched_stat_runtime(p, delta_exec); 1174 account_group_exec_runtime(p, delta_exec); 1175 cgroup_account_cputime(p, delta_exec); 1176 } 1177 1178 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1179 { 1180 if (!sched_feat(PREEMPT_SHORT)) 1181 return false; 1182 1183 if (curr->vlag == curr->deadline) 1184 return false; 1185 1186 return !entity_eligible(cfs_rq, curr); 1187 } 1188 1189 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1190 struct sched_entity *pse, struct sched_entity *se) 1191 { 1192 if (!sched_feat(PREEMPT_SHORT)) 1193 return false; 1194 1195 if (pse->slice >= se->slice) 1196 return false; 1197 1198 if (!entity_eligible(cfs_rq, pse)) 1199 return false; 1200 1201 if (entity_before(pse, se)) 1202 return true; 1203 1204 if (!entity_eligible(cfs_rq, se)) 1205 return true; 1206 1207 return false; 1208 } 1209 1210 /* 1211 * Used by other classes to account runtime. 1212 */ 1213 s64 update_curr_common(struct rq *rq) 1214 { 1215 struct task_struct *donor = rq->donor; 1216 s64 delta_exec; 1217 1218 delta_exec = update_curr_se(rq, &donor->se); 1219 if (likely(delta_exec > 0)) 1220 update_curr_task(donor, delta_exec); 1221 1222 return delta_exec; 1223 } 1224 1225 /* 1226 * Update the current task's runtime statistics. 1227 */ 1228 static void update_curr(struct cfs_rq *cfs_rq) 1229 { 1230 struct sched_entity *curr = cfs_rq->curr; 1231 struct rq *rq = rq_of(cfs_rq); 1232 s64 delta_exec; 1233 bool resched; 1234 1235 if (unlikely(!curr)) 1236 return; 1237 1238 delta_exec = update_curr_se(rq, curr); 1239 if (unlikely(delta_exec <= 0)) 1240 return; 1241 1242 curr->vruntime += calc_delta_fair(delta_exec, curr); 1243 resched = update_deadline(cfs_rq, curr); 1244 update_min_vruntime(cfs_rq); 1245 1246 if (entity_is_task(curr)) { 1247 struct task_struct *p = task_of(curr); 1248 1249 update_curr_task(p, delta_exec); 1250 1251 /* 1252 * If the fair_server is active, we need to account for the 1253 * fair_server time whether or not the task is running on 1254 * behalf of fair_server or not: 1255 * - If the task is running on behalf of fair_server, we need 1256 * to limit its time based on the assigned runtime. 1257 * - Fair task that runs outside of fair_server should account 1258 * against fair_server such that it can account for this time 1259 * and possibly avoid running this period. 1260 */ 1261 if (dl_server_active(&rq->fair_server)) 1262 dl_server_update(&rq->fair_server, delta_exec); 1263 } 1264 1265 account_cfs_rq_runtime(cfs_rq, delta_exec); 1266 1267 if (cfs_rq->nr_queued == 1) 1268 return; 1269 1270 if (resched || did_preempt_short(cfs_rq, curr)) { 1271 resched_curr_lazy(rq); 1272 clear_buddies(cfs_rq, curr); 1273 } 1274 } 1275 1276 static void update_curr_fair(struct rq *rq) 1277 { 1278 update_curr(cfs_rq_of(&rq->donor->se)); 1279 } 1280 1281 static inline void 1282 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1283 { 1284 struct sched_statistics *stats; 1285 struct task_struct *p = NULL; 1286 1287 if (!schedstat_enabled()) 1288 return; 1289 1290 stats = __schedstats_from_se(se); 1291 1292 if (entity_is_task(se)) 1293 p = task_of(se); 1294 1295 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1296 } 1297 1298 static inline void 1299 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1300 { 1301 struct sched_statistics *stats; 1302 struct task_struct *p = NULL; 1303 1304 if (!schedstat_enabled()) 1305 return; 1306 1307 stats = __schedstats_from_se(se); 1308 1309 /* 1310 * When the sched_schedstat changes from 0 to 1, some sched se 1311 * maybe already in the runqueue, the se->statistics.wait_start 1312 * will be 0.So it will let the delta wrong. We need to avoid this 1313 * scenario. 1314 */ 1315 if (unlikely(!schedstat_val(stats->wait_start))) 1316 return; 1317 1318 if (entity_is_task(se)) 1319 p = task_of(se); 1320 1321 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1322 } 1323 1324 static inline void 1325 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1326 { 1327 struct sched_statistics *stats; 1328 struct task_struct *tsk = NULL; 1329 1330 if (!schedstat_enabled()) 1331 return; 1332 1333 stats = __schedstats_from_se(se); 1334 1335 if (entity_is_task(se)) 1336 tsk = task_of(se); 1337 1338 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1339 } 1340 1341 /* 1342 * Task is being enqueued - update stats: 1343 */ 1344 static inline void 1345 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1346 { 1347 if (!schedstat_enabled()) 1348 return; 1349 1350 /* 1351 * Are we enqueueing a waiting task? (for current tasks 1352 * a dequeue/enqueue event is a NOP) 1353 */ 1354 if (se != cfs_rq->curr) 1355 update_stats_wait_start_fair(cfs_rq, se); 1356 1357 if (flags & ENQUEUE_WAKEUP) 1358 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1359 } 1360 1361 static inline void 1362 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1363 { 1364 1365 if (!schedstat_enabled()) 1366 return; 1367 1368 /* 1369 * Mark the end of the wait period if dequeueing a 1370 * waiting task: 1371 */ 1372 if (se != cfs_rq->curr) 1373 update_stats_wait_end_fair(cfs_rq, se); 1374 1375 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1376 struct task_struct *tsk = task_of(se); 1377 unsigned int state; 1378 1379 /* XXX racy against TTWU */ 1380 state = READ_ONCE(tsk->__state); 1381 if (state & TASK_INTERRUPTIBLE) 1382 __schedstat_set(tsk->stats.sleep_start, 1383 rq_clock(rq_of(cfs_rq))); 1384 if (state & TASK_UNINTERRUPTIBLE) 1385 __schedstat_set(tsk->stats.block_start, 1386 rq_clock(rq_of(cfs_rq))); 1387 } 1388 } 1389 1390 /* 1391 * We are picking a new current task - update its stats: 1392 */ 1393 static inline void 1394 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1395 { 1396 /* 1397 * We are starting a new run period: 1398 */ 1399 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1400 } 1401 1402 /************************************************** 1403 * Scheduling class queueing methods: 1404 */ 1405 1406 static inline bool is_core_idle(int cpu) 1407 { 1408 #ifdef CONFIG_SCHED_SMT 1409 int sibling; 1410 1411 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1412 if (cpu == sibling) 1413 continue; 1414 1415 if (!idle_cpu(sibling)) 1416 return false; 1417 } 1418 #endif 1419 1420 return true; 1421 } 1422 1423 #ifdef CONFIG_NUMA 1424 #define NUMA_IMBALANCE_MIN 2 1425 1426 static inline long 1427 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1428 { 1429 /* 1430 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1431 * threshold. Above this threshold, individual tasks may be contending 1432 * for both memory bandwidth and any shared HT resources. This is an 1433 * approximation as the number of running tasks may not be related to 1434 * the number of busy CPUs due to sched_setaffinity. 1435 */ 1436 if (dst_running > imb_numa_nr) 1437 return imbalance; 1438 1439 /* 1440 * Allow a small imbalance based on a simple pair of communicating 1441 * tasks that remain local when the destination is lightly loaded. 1442 */ 1443 if (imbalance <= NUMA_IMBALANCE_MIN) 1444 return 0; 1445 1446 return imbalance; 1447 } 1448 #endif /* CONFIG_NUMA */ 1449 1450 #ifdef CONFIG_NUMA_BALANCING 1451 /* 1452 * Approximate time to scan a full NUMA task in ms. The task scan period is 1453 * calculated based on the tasks virtual memory size and 1454 * numa_balancing_scan_size. 1455 */ 1456 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1457 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1458 1459 /* Portion of address space to scan in MB */ 1460 unsigned int sysctl_numa_balancing_scan_size = 256; 1461 1462 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1463 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1464 1465 /* The page with hint page fault latency < threshold in ms is considered hot */ 1466 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1467 1468 struct numa_group { 1469 refcount_t refcount; 1470 1471 spinlock_t lock; /* nr_tasks, tasks */ 1472 int nr_tasks; 1473 pid_t gid; 1474 int active_nodes; 1475 1476 struct rcu_head rcu; 1477 unsigned long total_faults; 1478 unsigned long max_faults_cpu; 1479 /* 1480 * faults[] array is split into two regions: faults_mem and faults_cpu. 1481 * 1482 * Faults_cpu is used to decide whether memory should move 1483 * towards the CPU. As a consequence, these stats are weighted 1484 * more by CPU use than by memory faults. 1485 */ 1486 unsigned long faults[]; 1487 }; 1488 1489 /* 1490 * For functions that can be called in multiple contexts that permit reading 1491 * ->numa_group (see struct task_struct for locking rules). 1492 */ 1493 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1494 { 1495 return rcu_dereference_check(p->numa_group, p == current || 1496 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1497 } 1498 1499 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1500 { 1501 return rcu_dereference_protected(p->numa_group, p == current); 1502 } 1503 1504 static inline unsigned long group_faults_priv(struct numa_group *ng); 1505 static inline unsigned long group_faults_shared(struct numa_group *ng); 1506 1507 static unsigned int task_nr_scan_windows(struct task_struct *p) 1508 { 1509 unsigned long rss = 0; 1510 unsigned long nr_scan_pages; 1511 1512 /* 1513 * Calculations based on RSS as non-present and empty pages are skipped 1514 * by the PTE scanner and NUMA hinting faults should be trapped based 1515 * on resident pages 1516 */ 1517 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1518 rss = get_mm_rss(p->mm); 1519 if (!rss) 1520 rss = nr_scan_pages; 1521 1522 rss = round_up(rss, nr_scan_pages); 1523 return rss / nr_scan_pages; 1524 } 1525 1526 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1527 #define MAX_SCAN_WINDOW 2560 1528 1529 static unsigned int task_scan_min(struct task_struct *p) 1530 { 1531 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1532 unsigned int scan, floor; 1533 unsigned int windows = 1; 1534 1535 if (scan_size < MAX_SCAN_WINDOW) 1536 windows = MAX_SCAN_WINDOW / scan_size; 1537 floor = 1000 / windows; 1538 1539 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1540 return max_t(unsigned int, floor, scan); 1541 } 1542 1543 static unsigned int task_scan_start(struct task_struct *p) 1544 { 1545 unsigned long smin = task_scan_min(p); 1546 unsigned long period = smin; 1547 struct numa_group *ng; 1548 1549 /* Scale the maximum scan period with the amount of shared memory. */ 1550 rcu_read_lock(); 1551 ng = rcu_dereference(p->numa_group); 1552 if (ng) { 1553 unsigned long shared = group_faults_shared(ng); 1554 unsigned long private = group_faults_priv(ng); 1555 1556 period *= refcount_read(&ng->refcount); 1557 period *= shared + 1; 1558 period /= private + shared + 1; 1559 } 1560 rcu_read_unlock(); 1561 1562 return max(smin, period); 1563 } 1564 1565 static unsigned int task_scan_max(struct task_struct *p) 1566 { 1567 unsigned long smin = task_scan_min(p); 1568 unsigned long smax; 1569 struct numa_group *ng; 1570 1571 /* Watch for min being lower than max due to floor calculations */ 1572 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1573 1574 /* Scale the maximum scan period with the amount of shared memory. */ 1575 ng = deref_curr_numa_group(p); 1576 if (ng) { 1577 unsigned long shared = group_faults_shared(ng); 1578 unsigned long private = group_faults_priv(ng); 1579 unsigned long period = smax; 1580 1581 period *= refcount_read(&ng->refcount); 1582 period *= shared + 1; 1583 period /= private + shared + 1; 1584 1585 smax = max(smax, period); 1586 } 1587 1588 return max(smin, smax); 1589 } 1590 1591 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1592 { 1593 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1594 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1595 } 1596 1597 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1598 { 1599 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1600 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1601 } 1602 1603 /* Shared or private faults. */ 1604 #define NR_NUMA_HINT_FAULT_TYPES 2 1605 1606 /* Memory and CPU locality */ 1607 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1608 1609 /* Averaged statistics, and temporary buffers. */ 1610 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1611 1612 pid_t task_numa_group_id(struct task_struct *p) 1613 { 1614 struct numa_group *ng; 1615 pid_t gid = 0; 1616 1617 rcu_read_lock(); 1618 ng = rcu_dereference(p->numa_group); 1619 if (ng) 1620 gid = ng->gid; 1621 rcu_read_unlock(); 1622 1623 return gid; 1624 } 1625 1626 /* 1627 * The averaged statistics, shared & private, memory & CPU, 1628 * occupy the first half of the array. The second half of the 1629 * array is for current counters, which are averaged into the 1630 * first set by task_numa_placement. 1631 */ 1632 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1633 { 1634 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1635 } 1636 1637 static inline unsigned long task_faults(struct task_struct *p, int nid) 1638 { 1639 if (!p->numa_faults) 1640 return 0; 1641 1642 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1643 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1644 } 1645 1646 static inline unsigned long group_faults(struct task_struct *p, int nid) 1647 { 1648 struct numa_group *ng = deref_task_numa_group(p); 1649 1650 if (!ng) 1651 return 0; 1652 1653 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1654 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1655 } 1656 1657 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1658 { 1659 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1660 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1661 } 1662 1663 static inline unsigned long group_faults_priv(struct numa_group *ng) 1664 { 1665 unsigned long faults = 0; 1666 int node; 1667 1668 for_each_online_node(node) { 1669 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1670 } 1671 1672 return faults; 1673 } 1674 1675 static inline unsigned long group_faults_shared(struct numa_group *ng) 1676 { 1677 unsigned long faults = 0; 1678 int node; 1679 1680 for_each_online_node(node) { 1681 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1682 } 1683 1684 return faults; 1685 } 1686 1687 /* 1688 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1689 * considered part of a numa group's pseudo-interleaving set. Migrations 1690 * between these nodes are slowed down, to allow things to settle down. 1691 */ 1692 #define ACTIVE_NODE_FRACTION 3 1693 1694 static bool numa_is_active_node(int nid, struct numa_group *ng) 1695 { 1696 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1697 } 1698 1699 /* Handle placement on systems where not all nodes are directly connected. */ 1700 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1701 int lim_dist, bool task) 1702 { 1703 unsigned long score = 0; 1704 int node, max_dist; 1705 1706 /* 1707 * All nodes are directly connected, and the same distance 1708 * from each other. No need for fancy placement algorithms. 1709 */ 1710 if (sched_numa_topology_type == NUMA_DIRECT) 1711 return 0; 1712 1713 /* sched_max_numa_distance may be changed in parallel. */ 1714 max_dist = READ_ONCE(sched_max_numa_distance); 1715 /* 1716 * This code is called for each node, introducing N^2 complexity, 1717 * which should be OK given the number of nodes rarely exceeds 8. 1718 */ 1719 for_each_online_node(node) { 1720 unsigned long faults; 1721 int dist = node_distance(nid, node); 1722 1723 /* 1724 * The furthest away nodes in the system are not interesting 1725 * for placement; nid was already counted. 1726 */ 1727 if (dist >= max_dist || node == nid) 1728 continue; 1729 1730 /* 1731 * On systems with a backplane NUMA topology, compare groups 1732 * of nodes, and move tasks towards the group with the most 1733 * memory accesses. When comparing two nodes at distance 1734 * "hoplimit", only nodes closer by than "hoplimit" are part 1735 * of each group. Skip other nodes. 1736 */ 1737 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1738 continue; 1739 1740 /* Add up the faults from nearby nodes. */ 1741 if (task) 1742 faults = task_faults(p, node); 1743 else 1744 faults = group_faults(p, node); 1745 1746 /* 1747 * On systems with a glueless mesh NUMA topology, there are 1748 * no fixed "groups of nodes". Instead, nodes that are not 1749 * directly connected bounce traffic through intermediate 1750 * nodes; a numa_group can occupy any set of nodes. 1751 * The further away a node is, the less the faults count. 1752 * This seems to result in good task placement. 1753 */ 1754 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1755 faults *= (max_dist - dist); 1756 faults /= (max_dist - LOCAL_DISTANCE); 1757 } 1758 1759 score += faults; 1760 } 1761 1762 return score; 1763 } 1764 1765 /* 1766 * These return the fraction of accesses done by a particular task, or 1767 * task group, on a particular numa node. The group weight is given a 1768 * larger multiplier, in order to group tasks together that are almost 1769 * evenly spread out between numa nodes. 1770 */ 1771 static inline unsigned long task_weight(struct task_struct *p, int nid, 1772 int dist) 1773 { 1774 unsigned long faults, total_faults; 1775 1776 if (!p->numa_faults) 1777 return 0; 1778 1779 total_faults = p->total_numa_faults; 1780 1781 if (!total_faults) 1782 return 0; 1783 1784 faults = task_faults(p, nid); 1785 faults += score_nearby_nodes(p, nid, dist, true); 1786 1787 return 1000 * faults / total_faults; 1788 } 1789 1790 static inline unsigned long group_weight(struct task_struct *p, int nid, 1791 int dist) 1792 { 1793 struct numa_group *ng = deref_task_numa_group(p); 1794 unsigned long faults, total_faults; 1795 1796 if (!ng) 1797 return 0; 1798 1799 total_faults = ng->total_faults; 1800 1801 if (!total_faults) 1802 return 0; 1803 1804 faults = group_faults(p, nid); 1805 faults += score_nearby_nodes(p, nid, dist, false); 1806 1807 return 1000 * faults / total_faults; 1808 } 1809 1810 /* 1811 * If memory tiering mode is enabled, cpupid of slow memory page is 1812 * used to record scan time instead of CPU and PID. When tiering mode 1813 * is disabled at run time, the scan time (in cpupid) will be 1814 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1815 * access out of array bound. 1816 */ 1817 static inline bool cpupid_valid(int cpupid) 1818 { 1819 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1820 } 1821 1822 /* 1823 * For memory tiering mode, if there are enough free pages (more than 1824 * enough watermark defined here) in fast memory node, to take full 1825 * advantage of fast memory capacity, all recently accessed slow 1826 * memory pages will be migrated to fast memory node without 1827 * considering hot threshold. 1828 */ 1829 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1830 { 1831 int z; 1832 unsigned long enough_wmark; 1833 1834 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1835 pgdat->node_present_pages >> 4); 1836 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1837 struct zone *zone = pgdat->node_zones + z; 1838 1839 if (!populated_zone(zone)) 1840 continue; 1841 1842 if (zone_watermark_ok(zone, 0, 1843 promo_wmark_pages(zone) + enough_wmark, 1844 ZONE_MOVABLE, 0)) 1845 return true; 1846 } 1847 return false; 1848 } 1849 1850 /* 1851 * For memory tiering mode, when page tables are scanned, the scan 1852 * time will be recorded in struct page in addition to make page 1853 * PROT_NONE for slow memory page. So when the page is accessed, in 1854 * hint page fault handler, the hint page fault latency is calculated 1855 * via, 1856 * 1857 * hint page fault latency = hint page fault time - scan time 1858 * 1859 * The smaller the hint page fault latency, the higher the possibility 1860 * for the page to be hot. 1861 */ 1862 static int numa_hint_fault_latency(struct folio *folio) 1863 { 1864 int last_time, time; 1865 1866 time = jiffies_to_msecs(jiffies); 1867 last_time = folio_xchg_access_time(folio, time); 1868 1869 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1870 } 1871 1872 /* 1873 * For memory tiering mode, too high promotion/demotion throughput may 1874 * hurt application latency. So we provide a mechanism to rate limit 1875 * the number of pages that are tried to be promoted. 1876 */ 1877 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1878 unsigned long rate_limit, int nr) 1879 { 1880 unsigned long nr_cand; 1881 unsigned int now, start; 1882 1883 now = jiffies_to_msecs(jiffies); 1884 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1885 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1886 start = pgdat->nbp_rl_start; 1887 if (now - start > MSEC_PER_SEC && 1888 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1889 pgdat->nbp_rl_nr_cand = nr_cand; 1890 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1891 return true; 1892 return false; 1893 } 1894 1895 #define NUMA_MIGRATION_ADJUST_STEPS 16 1896 1897 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1898 unsigned long rate_limit, 1899 unsigned int ref_th) 1900 { 1901 unsigned int now, start, th_period, unit_th, th; 1902 unsigned long nr_cand, ref_cand, diff_cand; 1903 1904 now = jiffies_to_msecs(jiffies); 1905 th_period = sysctl_numa_balancing_scan_period_max; 1906 start = pgdat->nbp_th_start; 1907 if (now - start > th_period && 1908 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1909 ref_cand = rate_limit * 1910 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1911 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1912 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1913 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1914 th = pgdat->nbp_threshold ? : ref_th; 1915 if (diff_cand > ref_cand * 11 / 10) 1916 th = max(th - unit_th, unit_th); 1917 else if (diff_cand < ref_cand * 9 / 10) 1918 th = min(th + unit_th, ref_th * 2); 1919 pgdat->nbp_th_nr_cand = nr_cand; 1920 pgdat->nbp_threshold = th; 1921 } 1922 } 1923 1924 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1925 int src_nid, int dst_cpu) 1926 { 1927 struct numa_group *ng = deref_curr_numa_group(p); 1928 int dst_nid = cpu_to_node(dst_cpu); 1929 int last_cpupid, this_cpupid; 1930 1931 /* 1932 * Cannot migrate to memoryless nodes. 1933 */ 1934 if (!node_state(dst_nid, N_MEMORY)) 1935 return false; 1936 1937 /* 1938 * The pages in slow memory node should be migrated according 1939 * to hot/cold instead of private/shared. 1940 */ 1941 if (folio_use_access_time(folio)) { 1942 struct pglist_data *pgdat; 1943 unsigned long rate_limit; 1944 unsigned int latency, th, def_th; 1945 1946 pgdat = NODE_DATA(dst_nid); 1947 if (pgdat_free_space_enough(pgdat)) { 1948 /* workload changed, reset hot threshold */ 1949 pgdat->nbp_threshold = 0; 1950 return true; 1951 } 1952 1953 def_th = sysctl_numa_balancing_hot_threshold; 1954 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1955 (20 - PAGE_SHIFT); 1956 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1957 1958 th = pgdat->nbp_threshold ? : def_th; 1959 latency = numa_hint_fault_latency(folio); 1960 if (latency >= th) 1961 return false; 1962 1963 return !numa_promotion_rate_limit(pgdat, rate_limit, 1964 folio_nr_pages(folio)); 1965 } 1966 1967 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1968 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1969 1970 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1971 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1972 return false; 1973 1974 /* 1975 * Allow first faults or private faults to migrate immediately early in 1976 * the lifetime of a task. The magic number 4 is based on waiting for 1977 * two full passes of the "multi-stage node selection" test that is 1978 * executed below. 1979 */ 1980 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1981 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1982 return true; 1983 1984 /* 1985 * Multi-stage node selection is used in conjunction with a periodic 1986 * migration fault to build a temporal task<->page relation. By using 1987 * a two-stage filter we remove short/unlikely relations. 1988 * 1989 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1990 * a task's usage of a particular page (n_p) per total usage of this 1991 * page (n_t) (in a given time-span) to a probability. 1992 * 1993 * Our periodic faults will sample this probability and getting the 1994 * same result twice in a row, given these samples are fully 1995 * independent, is then given by P(n)^2, provided our sample period 1996 * is sufficiently short compared to the usage pattern. 1997 * 1998 * This quadric squishes small probabilities, making it less likely we 1999 * act on an unlikely task<->page relation. 2000 */ 2001 if (!cpupid_pid_unset(last_cpupid) && 2002 cpupid_to_nid(last_cpupid) != dst_nid) 2003 return false; 2004 2005 /* Always allow migrate on private faults */ 2006 if (cpupid_match_pid(p, last_cpupid)) 2007 return true; 2008 2009 /* A shared fault, but p->numa_group has not been set up yet. */ 2010 if (!ng) 2011 return true; 2012 2013 /* 2014 * Destination node is much more heavily used than the source 2015 * node? Allow migration. 2016 */ 2017 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2018 ACTIVE_NODE_FRACTION) 2019 return true; 2020 2021 /* 2022 * Distribute memory according to CPU & memory use on each node, 2023 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2024 * 2025 * faults_cpu(dst) 3 faults_cpu(src) 2026 * --------------- * - > --------------- 2027 * faults_mem(dst) 4 faults_mem(src) 2028 */ 2029 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2030 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2031 } 2032 2033 /* 2034 * 'numa_type' describes the node at the moment of load balancing. 2035 */ 2036 enum numa_type { 2037 /* The node has spare capacity that can be used to run more tasks. */ 2038 node_has_spare = 0, 2039 /* 2040 * The node is fully used and the tasks don't compete for more CPU 2041 * cycles. Nevertheless, some tasks might wait before running. 2042 */ 2043 node_fully_busy, 2044 /* 2045 * The node is overloaded and can't provide expected CPU cycles to all 2046 * tasks. 2047 */ 2048 node_overloaded 2049 }; 2050 2051 /* Cached statistics for all CPUs within a node */ 2052 struct numa_stats { 2053 unsigned long load; 2054 unsigned long runnable; 2055 unsigned long util; 2056 /* Total compute capacity of CPUs on a node */ 2057 unsigned long compute_capacity; 2058 unsigned int nr_running; 2059 unsigned int weight; 2060 enum numa_type node_type; 2061 int idle_cpu; 2062 }; 2063 2064 struct task_numa_env { 2065 struct task_struct *p; 2066 2067 int src_cpu, src_nid; 2068 int dst_cpu, dst_nid; 2069 int imb_numa_nr; 2070 2071 struct numa_stats src_stats, dst_stats; 2072 2073 int imbalance_pct; 2074 int dist; 2075 2076 struct task_struct *best_task; 2077 long best_imp; 2078 int best_cpu; 2079 }; 2080 2081 static unsigned long cpu_load(struct rq *rq); 2082 static unsigned long cpu_runnable(struct rq *rq); 2083 2084 static inline enum 2085 numa_type numa_classify(unsigned int imbalance_pct, 2086 struct numa_stats *ns) 2087 { 2088 if ((ns->nr_running > ns->weight) && 2089 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2090 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2091 return node_overloaded; 2092 2093 if ((ns->nr_running < ns->weight) || 2094 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2095 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2096 return node_has_spare; 2097 2098 return node_fully_busy; 2099 } 2100 2101 #ifdef CONFIG_SCHED_SMT 2102 /* Forward declarations of select_idle_sibling helpers */ 2103 static inline bool test_idle_cores(int cpu); 2104 static inline int numa_idle_core(int idle_core, int cpu) 2105 { 2106 if (!static_branch_likely(&sched_smt_present) || 2107 idle_core >= 0 || !test_idle_cores(cpu)) 2108 return idle_core; 2109 2110 /* 2111 * Prefer cores instead of packing HT siblings 2112 * and triggering future load balancing. 2113 */ 2114 if (is_core_idle(cpu)) 2115 idle_core = cpu; 2116 2117 return idle_core; 2118 } 2119 #else 2120 static inline int numa_idle_core(int idle_core, int cpu) 2121 { 2122 return idle_core; 2123 } 2124 #endif 2125 2126 /* 2127 * Gather all necessary information to make NUMA balancing placement 2128 * decisions that are compatible with standard load balancer. This 2129 * borrows code and logic from update_sg_lb_stats but sharing a 2130 * common implementation is impractical. 2131 */ 2132 static void update_numa_stats(struct task_numa_env *env, 2133 struct numa_stats *ns, int nid, 2134 bool find_idle) 2135 { 2136 int cpu, idle_core = -1; 2137 2138 memset(ns, 0, sizeof(*ns)); 2139 ns->idle_cpu = -1; 2140 2141 rcu_read_lock(); 2142 for_each_cpu(cpu, cpumask_of_node(nid)) { 2143 struct rq *rq = cpu_rq(cpu); 2144 2145 ns->load += cpu_load(rq); 2146 ns->runnable += cpu_runnable(rq); 2147 ns->util += cpu_util_cfs(cpu); 2148 ns->nr_running += rq->cfs.h_nr_runnable; 2149 ns->compute_capacity += capacity_of(cpu); 2150 2151 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2152 if (READ_ONCE(rq->numa_migrate_on) || 2153 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2154 continue; 2155 2156 if (ns->idle_cpu == -1) 2157 ns->idle_cpu = cpu; 2158 2159 idle_core = numa_idle_core(idle_core, cpu); 2160 } 2161 } 2162 rcu_read_unlock(); 2163 2164 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2165 2166 ns->node_type = numa_classify(env->imbalance_pct, ns); 2167 2168 if (idle_core >= 0) 2169 ns->idle_cpu = idle_core; 2170 } 2171 2172 static void task_numa_assign(struct task_numa_env *env, 2173 struct task_struct *p, long imp) 2174 { 2175 struct rq *rq = cpu_rq(env->dst_cpu); 2176 2177 /* Check if run-queue part of active NUMA balance. */ 2178 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2179 int cpu; 2180 int start = env->dst_cpu; 2181 2182 /* Find alternative idle CPU. */ 2183 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2184 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2185 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2186 continue; 2187 } 2188 2189 env->dst_cpu = cpu; 2190 rq = cpu_rq(env->dst_cpu); 2191 if (!xchg(&rq->numa_migrate_on, 1)) 2192 goto assign; 2193 } 2194 2195 /* Failed to find an alternative idle CPU */ 2196 return; 2197 } 2198 2199 assign: 2200 /* 2201 * Clear previous best_cpu/rq numa-migrate flag, since task now 2202 * found a better CPU to move/swap. 2203 */ 2204 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2205 rq = cpu_rq(env->best_cpu); 2206 WRITE_ONCE(rq->numa_migrate_on, 0); 2207 } 2208 2209 if (env->best_task) 2210 put_task_struct(env->best_task); 2211 if (p) 2212 get_task_struct(p); 2213 2214 env->best_task = p; 2215 env->best_imp = imp; 2216 env->best_cpu = env->dst_cpu; 2217 } 2218 2219 static bool load_too_imbalanced(long src_load, long dst_load, 2220 struct task_numa_env *env) 2221 { 2222 long imb, old_imb; 2223 long orig_src_load, orig_dst_load; 2224 long src_capacity, dst_capacity; 2225 2226 /* 2227 * The load is corrected for the CPU capacity available on each node. 2228 * 2229 * src_load dst_load 2230 * ------------ vs --------- 2231 * src_capacity dst_capacity 2232 */ 2233 src_capacity = env->src_stats.compute_capacity; 2234 dst_capacity = env->dst_stats.compute_capacity; 2235 2236 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2237 2238 orig_src_load = env->src_stats.load; 2239 orig_dst_load = env->dst_stats.load; 2240 2241 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2242 2243 /* Would this change make things worse? */ 2244 return (imb > old_imb); 2245 } 2246 2247 /* 2248 * Maximum NUMA importance can be 1998 (2*999); 2249 * SMALLIMP @ 30 would be close to 1998/64. 2250 * Used to deter task migration. 2251 */ 2252 #define SMALLIMP 30 2253 2254 /* 2255 * This checks if the overall compute and NUMA accesses of the system would 2256 * be improved if the source tasks was migrated to the target dst_cpu taking 2257 * into account that it might be best if task running on the dst_cpu should 2258 * be exchanged with the source task 2259 */ 2260 static bool task_numa_compare(struct task_numa_env *env, 2261 long taskimp, long groupimp, bool maymove) 2262 { 2263 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2264 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2265 long imp = p_ng ? groupimp : taskimp; 2266 struct task_struct *cur; 2267 long src_load, dst_load; 2268 int dist = env->dist; 2269 long moveimp = imp; 2270 long load; 2271 bool stopsearch = false; 2272 2273 if (READ_ONCE(dst_rq->numa_migrate_on)) 2274 return false; 2275 2276 rcu_read_lock(); 2277 cur = rcu_dereference(dst_rq->curr); 2278 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2279 cur = NULL; 2280 2281 /* 2282 * Because we have preemption enabled we can get migrated around and 2283 * end try selecting ourselves (current == env->p) as a swap candidate. 2284 */ 2285 if (cur == env->p) { 2286 stopsearch = true; 2287 goto unlock; 2288 } 2289 2290 if (!cur) { 2291 if (maymove && moveimp >= env->best_imp) 2292 goto assign; 2293 else 2294 goto unlock; 2295 } 2296 2297 /* Skip this swap candidate if cannot move to the source cpu. */ 2298 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2299 goto unlock; 2300 2301 /* 2302 * Skip this swap candidate if it is not moving to its preferred 2303 * node and the best task is. 2304 */ 2305 if (env->best_task && 2306 env->best_task->numa_preferred_nid == env->src_nid && 2307 cur->numa_preferred_nid != env->src_nid) { 2308 goto unlock; 2309 } 2310 2311 /* 2312 * "imp" is the fault differential for the source task between the 2313 * source and destination node. Calculate the total differential for 2314 * the source task and potential destination task. The more negative 2315 * the value is, the more remote accesses that would be expected to 2316 * be incurred if the tasks were swapped. 2317 * 2318 * If dst and source tasks are in the same NUMA group, or not 2319 * in any group then look only at task weights. 2320 */ 2321 cur_ng = rcu_dereference(cur->numa_group); 2322 if (cur_ng == p_ng) { 2323 /* 2324 * Do not swap within a group or between tasks that have 2325 * no group if there is spare capacity. Swapping does 2326 * not address the load imbalance and helps one task at 2327 * the cost of punishing another. 2328 */ 2329 if (env->dst_stats.node_type == node_has_spare) 2330 goto unlock; 2331 2332 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2333 task_weight(cur, env->dst_nid, dist); 2334 /* 2335 * Add some hysteresis to prevent swapping the 2336 * tasks within a group over tiny differences. 2337 */ 2338 if (cur_ng) 2339 imp -= imp / 16; 2340 } else { 2341 /* 2342 * Compare the group weights. If a task is all by itself 2343 * (not part of a group), use the task weight instead. 2344 */ 2345 if (cur_ng && p_ng) 2346 imp += group_weight(cur, env->src_nid, dist) - 2347 group_weight(cur, env->dst_nid, dist); 2348 else 2349 imp += task_weight(cur, env->src_nid, dist) - 2350 task_weight(cur, env->dst_nid, dist); 2351 } 2352 2353 /* Discourage picking a task already on its preferred node */ 2354 if (cur->numa_preferred_nid == env->dst_nid) 2355 imp -= imp / 16; 2356 2357 /* 2358 * Encourage picking a task that moves to its preferred node. 2359 * This potentially makes imp larger than it's maximum of 2360 * 1998 (see SMALLIMP and task_weight for why) but in this 2361 * case, it does not matter. 2362 */ 2363 if (cur->numa_preferred_nid == env->src_nid) 2364 imp += imp / 8; 2365 2366 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2367 imp = moveimp; 2368 cur = NULL; 2369 goto assign; 2370 } 2371 2372 /* 2373 * Prefer swapping with a task moving to its preferred node over a 2374 * task that is not. 2375 */ 2376 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2377 env->best_task->numa_preferred_nid != env->src_nid) { 2378 goto assign; 2379 } 2380 2381 /* 2382 * If the NUMA importance is less than SMALLIMP, 2383 * task migration might only result in ping pong 2384 * of tasks and also hurt performance due to cache 2385 * misses. 2386 */ 2387 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2388 goto unlock; 2389 2390 /* 2391 * In the overloaded case, try and keep the load balanced. 2392 */ 2393 load = task_h_load(env->p) - task_h_load(cur); 2394 if (!load) 2395 goto assign; 2396 2397 dst_load = env->dst_stats.load + load; 2398 src_load = env->src_stats.load - load; 2399 2400 if (load_too_imbalanced(src_load, dst_load, env)) 2401 goto unlock; 2402 2403 assign: 2404 /* Evaluate an idle CPU for a task numa move. */ 2405 if (!cur) { 2406 int cpu = env->dst_stats.idle_cpu; 2407 2408 /* Nothing cached so current CPU went idle since the search. */ 2409 if (cpu < 0) 2410 cpu = env->dst_cpu; 2411 2412 /* 2413 * If the CPU is no longer truly idle and the previous best CPU 2414 * is, keep using it. 2415 */ 2416 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2417 idle_cpu(env->best_cpu)) { 2418 cpu = env->best_cpu; 2419 } 2420 2421 env->dst_cpu = cpu; 2422 } 2423 2424 task_numa_assign(env, cur, imp); 2425 2426 /* 2427 * If a move to idle is allowed because there is capacity or load 2428 * balance improves then stop the search. While a better swap 2429 * candidate may exist, a search is not free. 2430 */ 2431 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2432 stopsearch = true; 2433 2434 /* 2435 * If a swap candidate must be identified and the current best task 2436 * moves its preferred node then stop the search. 2437 */ 2438 if (!maymove && env->best_task && 2439 env->best_task->numa_preferred_nid == env->src_nid) { 2440 stopsearch = true; 2441 } 2442 unlock: 2443 rcu_read_unlock(); 2444 2445 return stopsearch; 2446 } 2447 2448 static void task_numa_find_cpu(struct task_numa_env *env, 2449 long taskimp, long groupimp) 2450 { 2451 bool maymove = false; 2452 int cpu; 2453 2454 /* 2455 * If dst node has spare capacity, then check if there is an 2456 * imbalance that would be overruled by the load balancer. 2457 */ 2458 if (env->dst_stats.node_type == node_has_spare) { 2459 unsigned int imbalance; 2460 int src_running, dst_running; 2461 2462 /* 2463 * Would movement cause an imbalance? Note that if src has 2464 * more running tasks that the imbalance is ignored as the 2465 * move improves the imbalance from the perspective of the 2466 * CPU load balancer. 2467 * */ 2468 src_running = env->src_stats.nr_running - 1; 2469 dst_running = env->dst_stats.nr_running + 1; 2470 imbalance = max(0, dst_running - src_running); 2471 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2472 env->imb_numa_nr); 2473 2474 /* Use idle CPU if there is no imbalance */ 2475 if (!imbalance) { 2476 maymove = true; 2477 if (env->dst_stats.idle_cpu >= 0) { 2478 env->dst_cpu = env->dst_stats.idle_cpu; 2479 task_numa_assign(env, NULL, 0); 2480 return; 2481 } 2482 } 2483 } else { 2484 long src_load, dst_load, load; 2485 /* 2486 * If the improvement from just moving env->p direction is better 2487 * than swapping tasks around, check if a move is possible. 2488 */ 2489 load = task_h_load(env->p); 2490 dst_load = env->dst_stats.load + load; 2491 src_load = env->src_stats.load - load; 2492 maymove = !load_too_imbalanced(src_load, dst_load, env); 2493 } 2494 2495 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2496 /* Skip this CPU if the source task cannot migrate */ 2497 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2498 continue; 2499 2500 env->dst_cpu = cpu; 2501 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2502 break; 2503 } 2504 } 2505 2506 static int task_numa_migrate(struct task_struct *p) 2507 { 2508 struct task_numa_env env = { 2509 .p = p, 2510 2511 .src_cpu = task_cpu(p), 2512 .src_nid = task_node(p), 2513 2514 .imbalance_pct = 112, 2515 2516 .best_task = NULL, 2517 .best_imp = 0, 2518 .best_cpu = -1, 2519 }; 2520 unsigned long taskweight, groupweight; 2521 struct sched_domain *sd; 2522 long taskimp, groupimp; 2523 struct numa_group *ng; 2524 struct rq *best_rq; 2525 int nid, ret, dist; 2526 2527 /* 2528 * Pick the lowest SD_NUMA domain, as that would have the smallest 2529 * imbalance and would be the first to start moving tasks about. 2530 * 2531 * And we want to avoid any moving of tasks about, as that would create 2532 * random movement of tasks -- counter the numa conditions we're trying 2533 * to satisfy here. 2534 */ 2535 rcu_read_lock(); 2536 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2537 if (sd) { 2538 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2539 env.imb_numa_nr = sd->imb_numa_nr; 2540 } 2541 rcu_read_unlock(); 2542 2543 /* 2544 * Cpusets can break the scheduler domain tree into smaller 2545 * balance domains, some of which do not cross NUMA boundaries. 2546 * Tasks that are "trapped" in such domains cannot be migrated 2547 * elsewhere, so there is no point in (re)trying. 2548 */ 2549 if (unlikely(!sd)) { 2550 sched_setnuma(p, task_node(p)); 2551 return -EINVAL; 2552 } 2553 2554 env.dst_nid = p->numa_preferred_nid; 2555 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2556 taskweight = task_weight(p, env.src_nid, dist); 2557 groupweight = group_weight(p, env.src_nid, dist); 2558 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2559 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2560 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2561 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2562 2563 /* Try to find a spot on the preferred nid. */ 2564 task_numa_find_cpu(&env, taskimp, groupimp); 2565 2566 /* 2567 * Look at other nodes in these cases: 2568 * - there is no space available on the preferred_nid 2569 * - the task is part of a numa_group that is interleaved across 2570 * multiple NUMA nodes; in order to better consolidate the group, 2571 * we need to check other locations. 2572 */ 2573 ng = deref_curr_numa_group(p); 2574 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2575 for_each_node_state(nid, N_CPU) { 2576 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2577 continue; 2578 2579 dist = node_distance(env.src_nid, env.dst_nid); 2580 if (sched_numa_topology_type == NUMA_BACKPLANE && 2581 dist != env.dist) { 2582 taskweight = task_weight(p, env.src_nid, dist); 2583 groupweight = group_weight(p, env.src_nid, dist); 2584 } 2585 2586 /* Only consider nodes where both task and groups benefit */ 2587 taskimp = task_weight(p, nid, dist) - taskweight; 2588 groupimp = group_weight(p, nid, dist) - groupweight; 2589 if (taskimp < 0 && groupimp < 0) 2590 continue; 2591 2592 env.dist = dist; 2593 env.dst_nid = nid; 2594 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2595 task_numa_find_cpu(&env, taskimp, groupimp); 2596 } 2597 } 2598 2599 /* 2600 * If the task is part of a workload that spans multiple NUMA nodes, 2601 * and is migrating into one of the workload's active nodes, remember 2602 * this node as the task's preferred numa node, so the workload can 2603 * settle down. 2604 * A task that migrated to a second choice node will be better off 2605 * trying for a better one later. Do not set the preferred node here. 2606 */ 2607 if (ng) { 2608 if (env.best_cpu == -1) 2609 nid = env.src_nid; 2610 else 2611 nid = cpu_to_node(env.best_cpu); 2612 2613 if (nid != p->numa_preferred_nid) 2614 sched_setnuma(p, nid); 2615 } 2616 2617 /* No better CPU than the current one was found. */ 2618 if (env.best_cpu == -1) { 2619 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2620 return -EAGAIN; 2621 } 2622 2623 best_rq = cpu_rq(env.best_cpu); 2624 if (env.best_task == NULL) { 2625 ret = migrate_task_to(p, env.best_cpu); 2626 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2627 if (ret != 0) 2628 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2629 return ret; 2630 } 2631 2632 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2633 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2634 2635 if (ret != 0) 2636 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2637 put_task_struct(env.best_task); 2638 return ret; 2639 } 2640 2641 /* Attempt to migrate a task to a CPU on the preferred node. */ 2642 static void numa_migrate_preferred(struct task_struct *p) 2643 { 2644 unsigned long interval = HZ; 2645 2646 /* This task has no NUMA fault statistics yet */ 2647 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2648 return; 2649 2650 /* Periodically retry migrating the task to the preferred node */ 2651 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2652 p->numa_migrate_retry = jiffies + interval; 2653 2654 /* Success if task is already running on preferred CPU */ 2655 if (task_node(p) == p->numa_preferred_nid) 2656 return; 2657 2658 /* Otherwise, try migrate to a CPU on the preferred node */ 2659 task_numa_migrate(p); 2660 } 2661 2662 /* 2663 * Find out how many nodes the workload is actively running on. Do this by 2664 * tracking the nodes from which NUMA hinting faults are triggered. This can 2665 * be different from the set of nodes where the workload's memory is currently 2666 * located. 2667 */ 2668 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2669 { 2670 unsigned long faults, max_faults = 0; 2671 int nid, active_nodes = 0; 2672 2673 for_each_node_state(nid, N_CPU) { 2674 faults = group_faults_cpu(numa_group, nid); 2675 if (faults > max_faults) 2676 max_faults = faults; 2677 } 2678 2679 for_each_node_state(nid, N_CPU) { 2680 faults = group_faults_cpu(numa_group, nid); 2681 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2682 active_nodes++; 2683 } 2684 2685 numa_group->max_faults_cpu = max_faults; 2686 numa_group->active_nodes = active_nodes; 2687 } 2688 2689 /* 2690 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2691 * increments. The more local the fault statistics are, the higher the scan 2692 * period will be for the next scan window. If local/(local+remote) ratio is 2693 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2694 * the scan period will decrease. Aim for 70% local accesses. 2695 */ 2696 #define NUMA_PERIOD_SLOTS 10 2697 #define NUMA_PERIOD_THRESHOLD 7 2698 2699 /* 2700 * Increase the scan period (slow down scanning) if the majority of 2701 * our memory is already on our local node, or if the majority of 2702 * the page accesses are shared with other processes. 2703 * Otherwise, decrease the scan period. 2704 */ 2705 static void update_task_scan_period(struct task_struct *p, 2706 unsigned long shared, unsigned long private) 2707 { 2708 unsigned int period_slot; 2709 int lr_ratio, ps_ratio; 2710 int diff; 2711 2712 unsigned long remote = p->numa_faults_locality[0]; 2713 unsigned long local = p->numa_faults_locality[1]; 2714 2715 /* 2716 * If there were no record hinting faults then either the task is 2717 * completely idle or all activity is in areas that are not of interest 2718 * to automatic numa balancing. Related to that, if there were failed 2719 * migration then it implies we are migrating too quickly or the local 2720 * node is overloaded. In either case, scan slower 2721 */ 2722 if (local + shared == 0 || p->numa_faults_locality[2]) { 2723 p->numa_scan_period = min(p->numa_scan_period_max, 2724 p->numa_scan_period << 1); 2725 2726 p->mm->numa_next_scan = jiffies + 2727 msecs_to_jiffies(p->numa_scan_period); 2728 2729 return; 2730 } 2731 2732 /* 2733 * Prepare to scale scan period relative to the current period. 2734 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2735 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2736 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2737 */ 2738 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2739 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2740 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2741 2742 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2743 /* 2744 * Most memory accesses are local. There is no need to 2745 * do fast NUMA scanning, since memory is already local. 2746 */ 2747 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2748 if (!slot) 2749 slot = 1; 2750 diff = slot * period_slot; 2751 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2752 /* 2753 * Most memory accesses are shared with other tasks. 2754 * There is no point in continuing fast NUMA scanning, 2755 * since other tasks may just move the memory elsewhere. 2756 */ 2757 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2758 if (!slot) 2759 slot = 1; 2760 diff = slot * period_slot; 2761 } else { 2762 /* 2763 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2764 * yet they are not on the local NUMA node. Speed up 2765 * NUMA scanning to get the memory moved over. 2766 */ 2767 int ratio = max(lr_ratio, ps_ratio); 2768 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2769 } 2770 2771 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2772 task_scan_min(p), task_scan_max(p)); 2773 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2774 } 2775 2776 /* 2777 * Get the fraction of time the task has been running since the last 2778 * NUMA placement cycle. The scheduler keeps similar statistics, but 2779 * decays those on a 32ms period, which is orders of magnitude off 2780 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2781 * stats only if the task is so new there are no NUMA statistics yet. 2782 */ 2783 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2784 { 2785 u64 runtime, delta, now; 2786 /* Use the start of this time slice to avoid calculations. */ 2787 now = p->se.exec_start; 2788 runtime = p->se.sum_exec_runtime; 2789 2790 if (p->last_task_numa_placement) { 2791 delta = runtime - p->last_sum_exec_runtime; 2792 *period = now - p->last_task_numa_placement; 2793 2794 /* Avoid time going backwards, prevent potential divide error: */ 2795 if (unlikely((s64)*period < 0)) 2796 *period = 0; 2797 } else { 2798 delta = p->se.avg.load_sum; 2799 *period = LOAD_AVG_MAX; 2800 } 2801 2802 p->last_sum_exec_runtime = runtime; 2803 p->last_task_numa_placement = now; 2804 2805 return delta; 2806 } 2807 2808 /* 2809 * Determine the preferred nid for a task in a numa_group. This needs to 2810 * be done in a way that produces consistent results with group_weight, 2811 * otherwise workloads might not converge. 2812 */ 2813 static int preferred_group_nid(struct task_struct *p, int nid) 2814 { 2815 nodemask_t nodes; 2816 int dist; 2817 2818 /* Direct connections between all NUMA nodes. */ 2819 if (sched_numa_topology_type == NUMA_DIRECT) 2820 return nid; 2821 2822 /* 2823 * On a system with glueless mesh NUMA topology, group_weight 2824 * scores nodes according to the number of NUMA hinting faults on 2825 * both the node itself, and on nearby nodes. 2826 */ 2827 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2828 unsigned long score, max_score = 0; 2829 int node, max_node = nid; 2830 2831 dist = sched_max_numa_distance; 2832 2833 for_each_node_state(node, N_CPU) { 2834 score = group_weight(p, node, dist); 2835 if (score > max_score) { 2836 max_score = score; 2837 max_node = node; 2838 } 2839 } 2840 return max_node; 2841 } 2842 2843 /* 2844 * Finding the preferred nid in a system with NUMA backplane 2845 * interconnect topology is more involved. The goal is to locate 2846 * tasks from numa_groups near each other in the system, and 2847 * untangle workloads from different sides of the system. This requires 2848 * searching down the hierarchy of node groups, recursively searching 2849 * inside the highest scoring group of nodes. The nodemask tricks 2850 * keep the complexity of the search down. 2851 */ 2852 nodes = node_states[N_CPU]; 2853 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2854 unsigned long max_faults = 0; 2855 nodemask_t max_group = NODE_MASK_NONE; 2856 int a, b; 2857 2858 /* Are there nodes at this distance from each other? */ 2859 if (!find_numa_distance(dist)) 2860 continue; 2861 2862 for_each_node_mask(a, nodes) { 2863 unsigned long faults = 0; 2864 nodemask_t this_group; 2865 nodes_clear(this_group); 2866 2867 /* Sum group's NUMA faults; includes a==b case. */ 2868 for_each_node_mask(b, nodes) { 2869 if (node_distance(a, b) < dist) { 2870 faults += group_faults(p, b); 2871 node_set(b, this_group); 2872 node_clear(b, nodes); 2873 } 2874 } 2875 2876 /* Remember the top group. */ 2877 if (faults > max_faults) { 2878 max_faults = faults; 2879 max_group = this_group; 2880 /* 2881 * subtle: at the smallest distance there is 2882 * just one node left in each "group", the 2883 * winner is the preferred nid. 2884 */ 2885 nid = a; 2886 } 2887 } 2888 /* Next round, evaluate the nodes within max_group. */ 2889 if (!max_faults) 2890 break; 2891 nodes = max_group; 2892 } 2893 return nid; 2894 } 2895 2896 static void task_numa_placement(struct task_struct *p) 2897 { 2898 int seq, nid, max_nid = NUMA_NO_NODE; 2899 unsigned long max_faults = 0; 2900 unsigned long fault_types[2] = { 0, 0 }; 2901 unsigned long total_faults; 2902 u64 runtime, period; 2903 spinlock_t *group_lock = NULL; 2904 struct numa_group *ng; 2905 2906 /* 2907 * The p->mm->numa_scan_seq field gets updated without 2908 * exclusive access. Use READ_ONCE() here to ensure 2909 * that the field is read in a single access: 2910 */ 2911 seq = READ_ONCE(p->mm->numa_scan_seq); 2912 if (p->numa_scan_seq == seq) 2913 return; 2914 p->numa_scan_seq = seq; 2915 p->numa_scan_period_max = task_scan_max(p); 2916 2917 total_faults = p->numa_faults_locality[0] + 2918 p->numa_faults_locality[1]; 2919 runtime = numa_get_avg_runtime(p, &period); 2920 2921 /* If the task is part of a group prevent parallel updates to group stats */ 2922 ng = deref_curr_numa_group(p); 2923 if (ng) { 2924 group_lock = &ng->lock; 2925 spin_lock_irq(group_lock); 2926 } 2927 2928 /* Find the node with the highest number of faults */ 2929 for_each_online_node(nid) { 2930 /* Keep track of the offsets in numa_faults array */ 2931 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2932 unsigned long faults = 0, group_faults = 0; 2933 int priv; 2934 2935 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2936 long diff, f_diff, f_weight; 2937 2938 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2939 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2940 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2941 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2942 2943 /* Decay existing window, copy faults since last scan */ 2944 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2945 fault_types[priv] += p->numa_faults[membuf_idx]; 2946 p->numa_faults[membuf_idx] = 0; 2947 2948 /* 2949 * Normalize the faults_from, so all tasks in a group 2950 * count according to CPU use, instead of by the raw 2951 * number of faults. Tasks with little runtime have 2952 * little over-all impact on throughput, and thus their 2953 * faults are less important. 2954 */ 2955 f_weight = div64_u64(runtime << 16, period + 1); 2956 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2957 (total_faults + 1); 2958 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2959 p->numa_faults[cpubuf_idx] = 0; 2960 2961 p->numa_faults[mem_idx] += diff; 2962 p->numa_faults[cpu_idx] += f_diff; 2963 faults += p->numa_faults[mem_idx]; 2964 p->total_numa_faults += diff; 2965 if (ng) { 2966 /* 2967 * safe because we can only change our own group 2968 * 2969 * mem_idx represents the offset for a given 2970 * nid and priv in a specific region because it 2971 * is at the beginning of the numa_faults array. 2972 */ 2973 ng->faults[mem_idx] += diff; 2974 ng->faults[cpu_idx] += f_diff; 2975 ng->total_faults += diff; 2976 group_faults += ng->faults[mem_idx]; 2977 } 2978 } 2979 2980 if (!ng) { 2981 if (faults > max_faults) { 2982 max_faults = faults; 2983 max_nid = nid; 2984 } 2985 } else if (group_faults > max_faults) { 2986 max_faults = group_faults; 2987 max_nid = nid; 2988 } 2989 } 2990 2991 /* Cannot migrate task to CPU-less node */ 2992 max_nid = numa_nearest_node(max_nid, N_CPU); 2993 2994 if (ng) { 2995 numa_group_count_active_nodes(ng); 2996 spin_unlock_irq(group_lock); 2997 max_nid = preferred_group_nid(p, max_nid); 2998 } 2999 3000 if (max_faults) { 3001 /* Set the new preferred node */ 3002 if (max_nid != p->numa_preferred_nid) 3003 sched_setnuma(p, max_nid); 3004 } 3005 3006 update_task_scan_period(p, fault_types[0], fault_types[1]); 3007 } 3008 3009 static inline int get_numa_group(struct numa_group *grp) 3010 { 3011 return refcount_inc_not_zero(&grp->refcount); 3012 } 3013 3014 static inline void put_numa_group(struct numa_group *grp) 3015 { 3016 if (refcount_dec_and_test(&grp->refcount)) 3017 kfree_rcu(grp, rcu); 3018 } 3019 3020 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3021 int *priv) 3022 { 3023 struct numa_group *grp, *my_grp; 3024 struct task_struct *tsk; 3025 bool join = false; 3026 int cpu = cpupid_to_cpu(cpupid); 3027 int i; 3028 3029 if (unlikely(!deref_curr_numa_group(p))) { 3030 unsigned int size = sizeof(struct numa_group) + 3031 NR_NUMA_HINT_FAULT_STATS * 3032 nr_node_ids * sizeof(unsigned long); 3033 3034 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3035 if (!grp) 3036 return; 3037 3038 refcount_set(&grp->refcount, 1); 3039 grp->active_nodes = 1; 3040 grp->max_faults_cpu = 0; 3041 spin_lock_init(&grp->lock); 3042 grp->gid = p->pid; 3043 3044 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3045 grp->faults[i] = p->numa_faults[i]; 3046 3047 grp->total_faults = p->total_numa_faults; 3048 3049 grp->nr_tasks++; 3050 rcu_assign_pointer(p->numa_group, grp); 3051 } 3052 3053 rcu_read_lock(); 3054 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3055 3056 if (!cpupid_match_pid(tsk, cpupid)) 3057 goto no_join; 3058 3059 grp = rcu_dereference(tsk->numa_group); 3060 if (!grp) 3061 goto no_join; 3062 3063 my_grp = deref_curr_numa_group(p); 3064 if (grp == my_grp) 3065 goto no_join; 3066 3067 /* 3068 * Only join the other group if its bigger; if we're the bigger group, 3069 * the other task will join us. 3070 */ 3071 if (my_grp->nr_tasks > grp->nr_tasks) 3072 goto no_join; 3073 3074 /* 3075 * Tie-break on the grp address. 3076 */ 3077 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3078 goto no_join; 3079 3080 /* Always join threads in the same process. */ 3081 if (tsk->mm == current->mm) 3082 join = true; 3083 3084 /* Simple filter to avoid false positives due to PID collisions */ 3085 if (flags & TNF_SHARED) 3086 join = true; 3087 3088 /* Update priv based on whether false sharing was detected */ 3089 *priv = !join; 3090 3091 if (join && !get_numa_group(grp)) 3092 goto no_join; 3093 3094 rcu_read_unlock(); 3095 3096 if (!join) 3097 return; 3098 3099 WARN_ON_ONCE(irqs_disabled()); 3100 double_lock_irq(&my_grp->lock, &grp->lock); 3101 3102 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3103 my_grp->faults[i] -= p->numa_faults[i]; 3104 grp->faults[i] += p->numa_faults[i]; 3105 } 3106 my_grp->total_faults -= p->total_numa_faults; 3107 grp->total_faults += p->total_numa_faults; 3108 3109 my_grp->nr_tasks--; 3110 grp->nr_tasks++; 3111 3112 spin_unlock(&my_grp->lock); 3113 spin_unlock_irq(&grp->lock); 3114 3115 rcu_assign_pointer(p->numa_group, grp); 3116 3117 put_numa_group(my_grp); 3118 return; 3119 3120 no_join: 3121 rcu_read_unlock(); 3122 return; 3123 } 3124 3125 /* 3126 * Get rid of NUMA statistics associated with a task (either current or dead). 3127 * If @final is set, the task is dead and has reached refcount zero, so we can 3128 * safely free all relevant data structures. Otherwise, there might be 3129 * concurrent reads from places like load balancing and procfs, and we should 3130 * reset the data back to default state without freeing ->numa_faults. 3131 */ 3132 void task_numa_free(struct task_struct *p, bool final) 3133 { 3134 /* safe: p either is current or is being freed by current */ 3135 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3136 unsigned long *numa_faults = p->numa_faults; 3137 unsigned long flags; 3138 int i; 3139 3140 if (!numa_faults) 3141 return; 3142 3143 if (grp) { 3144 spin_lock_irqsave(&grp->lock, flags); 3145 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3146 grp->faults[i] -= p->numa_faults[i]; 3147 grp->total_faults -= p->total_numa_faults; 3148 3149 grp->nr_tasks--; 3150 spin_unlock_irqrestore(&grp->lock, flags); 3151 RCU_INIT_POINTER(p->numa_group, NULL); 3152 put_numa_group(grp); 3153 } 3154 3155 if (final) { 3156 p->numa_faults = NULL; 3157 kfree(numa_faults); 3158 } else { 3159 p->total_numa_faults = 0; 3160 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3161 numa_faults[i] = 0; 3162 } 3163 } 3164 3165 /* 3166 * Got a PROT_NONE fault for a page on @node. 3167 */ 3168 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3169 { 3170 struct task_struct *p = current; 3171 bool migrated = flags & TNF_MIGRATED; 3172 int cpu_node = task_node(current); 3173 int local = !!(flags & TNF_FAULT_LOCAL); 3174 struct numa_group *ng; 3175 int priv; 3176 3177 if (!static_branch_likely(&sched_numa_balancing)) 3178 return; 3179 3180 /* for example, ksmd faulting in a user's mm */ 3181 if (!p->mm) 3182 return; 3183 3184 /* 3185 * NUMA faults statistics are unnecessary for the slow memory 3186 * node for memory tiering mode. 3187 */ 3188 if (!node_is_toptier(mem_node) && 3189 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3190 !cpupid_valid(last_cpupid))) 3191 return; 3192 3193 /* Allocate buffer to track faults on a per-node basis */ 3194 if (unlikely(!p->numa_faults)) { 3195 int size = sizeof(*p->numa_faults) * 3196 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3197 3198 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3199 if (!p->numa_faults) 3200 return; 3201 3202 p->total_numa_faults = 0; 3203 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3204 } 3205 3206 /* 3207 * First accesses are treated as private, otherwise consider accesses 3208 * to be private if the accessing pid has not changed 3209 */ 3210 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3211 priv = 1; 3212 } else { 3213 priv = cpupid_match_pid(p, last_cpupid); 3214 if (!priv && !(flags & TNF_NO_GROUP)) 3215 task_numa_group(p, last_cpupid, flags, &priv); 3216 } 3217 3218 /* 3219 * If a workload spans multiple NUMA nodes, a shared fault that 3220 * occurs wholly within the set of nodes that the workload is 3221 * actively using should be counted as local. This allows the 3222 * scan rate to slow down when a workload has settled down. 3223 */ 3224 ng = deref_curr_numa_group(p); 3225 if (!priv && !local && ng && ng->active_nodes > 1 && 3226 numa_is_active_node(cpu_node, ng) && 3227 numa_is_active_node(mem_node, ng)) 3228 local = 1; 3229 3230 /* 3231 * Retry to migrate task to preferred node periodically, in case it 3232 * previously failed, or the scheduler moved us. 3233 */ 3234 if (time_after(jiffies, p->numa_migrate_retry)) { 3235 task_numa_placement(p); 3236 numa_migrate_preferred(p); 3237 } 3238 3239 if (migrated) 3240 p->numa_pages_migrated += pages; 3241 if (flags & TNF_MIGRATE_FAIL) 3242 p->numa_faults_locality[2] += pages; 3243 3244 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3245 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3246 p->numa_faults_locality[local] += pages; 3247 } 3248 3249 static void reset_ptenuma_scan(struct task_struct *p) 3250 { 3251 /* 3252 * We only did a read acquisition of the mmap sem, so 3253 * p->mm->numa_scan_seq is written to without exclusive access 3254 * and the update is not guaranteed to be atomic. That's not 3255 * much of an issue though, since this is just used for 3256 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3257 * expensive, to avoid any form of compiler optimizations: 3258 */ 3259 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3260 p->mm->numa_scan_offset = 0; 3261 } 3262 3263 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3264 { 3265 unsigned long pids; 3266 /* 3267 * Allow unconditional access first two times, so that all the (pages) 3268 * of VMAs get prot_none fault introduced irrespective of accesses. 3269 * This is also done to avoid any side effect of task scanning 3270 * amplifying the unfairness of disjoint set of VMAs' access. 3271 */ 3272 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3273 return true; 3274 3275 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3276 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3277 return true; 3278 3279 /* 3280 * Complete a scan that has already started regardless of PID access, or 3281 * some VMAs may never be scanned in multi-threaded applications: 3282 */ 3283 if (mm->numa_scan_offset > vma->vm_start) { 3284 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3285 return true; 3286 } 3287 3288 /* 3289 * This vma has not been accessed for a while, and if the number 3290 * the threads in the same process is low, which means no other 3291 * threads can help scan this vma, force a vma scan. 3292 */ 3293 if (READ_ONCE(mm->numa_scan_seq) > 3294 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3295 return true; 3296 3297 return false; 3298 } 3299 3300 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3301 3302 /* 3303 * The expensive part of numa migration is done from task_work context. 3304 * Triggered from task_tick_numa(). 3305 */ 3306 static void task_numa_work(struct callback_head *work) 3307 { 3308 unsigned long migrate, next_scan, now = jiffies; 3309 struct task_struct *p = current; 3310 struct mm_struct *mm = p->mm; 3311 u64 runtime = p->se.sum_exec_runtime; 3312 struct vm_area_struct *vma; 3313 unsigned long start, end; 3314 unsigned long nr_pte_updates = 0; 3315 long pages, virtpages; 3316 struct vma_iterator vmi; 3317 bool vma_pids_skipped; 3318 bool vma_pids_forced = false; 3319 3320 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3321 3322 work->next = work; 3323 /* 3324 * Who cares about NUMA placement when they're dying. 3325 * 3326 * NOTE: make sure not to dereference p->mm before this check, 3327 * exit_task_work() happens _after_ exit_mm() so we could be called 3328 * without p->mm even though we still had it when we enqueued this 3329 * work. 3330 */ 3331 if (p->flags & PF_EXITING) 3332 return; 3333 3334 if (!mm->numa_next_scan) { 3335 mm->numa_next_scan = now + 3336 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3337 } 3338 3339 /* 3340 * Enforce maximal scan/migration frequency.. 3341 */ 3342 migrate = mm->numa_next_scan; 3343 if (time_before(now, migrate)) 3344 return; 3345 3346 if (p->numa_scan_period == 0) { 3347 p->numa_scan_period_max = task_scan_max(p); 3348 p->numa_scan_period = task_scan_start(p); 3349 } 3350 3351 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3352 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3353 return; 3354 3355 /* 3356 * Delay this task enough that another task of this mm will likely win 3357 * the next time around. 3358 */ 3359 p->node_stamp += 2 * TICK_NSEC; 3360 3361 pages = sysctl_numa_balancing_scan_size; 3362 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3363 virtpages = pages * 8; /* Scan up to this much virtual space */ 3364 if (!pages) 3365 return; 3366 3367 3368 if (!mmap_read_trylock(mm)) 3369 return; 3370 3371 /* 3372 * VMAs are skipped if the current PID has not trapped a fault within 3373 * the VMA recently. Allow scanning to be forced if there is no 3374 * suitable VMA remaining. 3375 */ 3376 vma_pids_skipped = false; 3377 3378 retry_pids: 3379 start = mm->numa_scan_offset; 3380 vma_iter_init(&vmi, mm, start); 3381 vma = vma_next(&vmi); 3382 if (!vma) { 3383 reset_ptenuma_scan(p); 3384 start = 0; 3385 vma_iter_set(&vmi, start); 3386 vma = vma_next(&vmi); 3387 } 3388 3389 for (; vma; vma = vma_next(&vmi)) { 3390 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3391 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3392 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3393 continue; 3394 } 3395 3396 /* 3397 * Shared library pages mapped by multiple processes are not 3398 * migrated as it is expected they are cache replicated. Avoid 3399 * hinting faults in read-only file-backed mappings or the vDSO 3400 * as migrating the pages will be of marginal benefit. 3401 */ 3402 if (!vma->vm_mm || 3403 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3404 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3405 continue; 3406 } 3407 3408 /* 3409 * Skip inaccessible VMAs to avoid any confusion between 3410 * PROT_NONE and NUMA hinting PTEs 3411 */ 3412 if (!vma_is_accessible(vma)) { 3413 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3414 continue; 3415 } 3416 3417 /* Initialise new per-VMA NUMAB state. */ 3418 if (!vma->numab_state) { 3419 struct vma_numab_state *ptr; 3420 3421 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3422 if (!ptr) 3423 continue; 3424 3425 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3426 kfree(ptr); 3427 continue; 3428 } 3429 3430 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3431 3432 vma->numab_state->next_scan = now + 3433 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3434 3435 /* Reset happens after 4 times scan delay of scan start */ 3436 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3437 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3438 3439 /* 3440 * Ensure prev_scan_seq does not match numa_scan_seq, 3441 * to prevent VMAs being skipped prematurely on the 3442 * first scan: 3443 */ 3444 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3445 } 3446 3447 /* 3448 * Scanning the VMAs of short lived tasks add more overhead. So 3449 * delay the scan for new VMAs. 3450 */ 3451 if (mm->numa_scan_seq && time_before(jiffies, 3452 vma->numab_state->next_scan)) { 3453 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3454 continue; 3455 } 3456 3457 /* RESET access PIDs regularly for old VMAs. */ 3458 if (mm->numa_scan_seq && 3459 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3460 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3461 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3462 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3463 vma->numab_state->pids_active[1] = 0; 3464 } 3465 3466 /* Do not rescan VMAs twice within the same sequence. */ 3467 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3468 mm->numa_scan_offset = vma->vm_end; 3469 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3470 continue; 3471 } 3472 3473 /* 3474 * Do not scan the VMA if task has not accessed it, unless no other 3475 * VMA candidate exists. 3476 */ 3477 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3478 vma_pids_skipped = true; 3479 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3480 continue; 3481 } 3482 3483 do { 3484 start = max(start, vma->vm_start); 3485 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3486 end = min(end, vma->vm_end); 3487 nr_pte_updates = change_prot_numa(vma, start, end); 3488 3489 /* 3490 * Try to scan sysctl_numa_balancing_size worth of 3491 * hpages that have at least one present PTE that 3492 * is not already PTE-numa. If the VMA contains 3493 * areas that are unused or already full of prot_numa 3494 * PTEs, scan up to virtpages, to skip through those 3495 * areas faster. 3496 */ 3497 if (nr_pte_updates) 3498 pages -= (end - start) >> PAGE_SHIFT; 3499 virtpages -= (end - start) >> PAGE_SHIFT; 3500 3501 start = end; 3502 if (pages <= 0 || virtpages <= 0) 3503 goto out; 3504 3505 cond_resched(); 3506 } while (end != vma->vm_end); 3507 3508 /* VMA scan is complete, do not scan until next sequence. */ 3509 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3510 3511 /* 3512 * Only force scan within one VMA at a time, to limit the 3513 * cost of scanning a potentially uninteresting VMA. 3514 */ 3515 if (vma_pids_forced) 3516 break; 3517 } 3518 3519 /* 3520 * If no VMAs are remaining and VMAs were skipped due to the PID 3521 * not accessing the VMA previously, then force a scan to ensure 3522 * forward progress: 3523 */ 3524 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3525 vma_pids_forced = true; 3526 goto retry_pids; 3527 } 3528 3529 out: 3530 /* 3531 * It is possible to reach the end of the VMA list but the last few 3532 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3533 * would find the !migratable VMA on the next scan but not reset the 3534 * scanner to the start so check it now. 3535 */ 3536 if (vma) 3537 mm->numa_scan_offset = start; 3538 else 3539 reset_ptenuma_scan(p); 3540 mmap_read_unlock(mm); 3541 3542 /* 3543 * Make sure tasks use at least 32x as much time to run other code 3544 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3545 * Usually update_task_scan_period slows down scanning enough; on an 3546 * overloaded system we need to limit overhead on a per task basis. 3547 */ 3548 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3549 u64 diff = p->se.sum_exec_runtime - runtime; 3550 p->node_stamp += 32 * diff; 3551 } 3552 } 3553 3554 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3555 { 3556 int mm_users = 0; 3557 struct mm_struct *mm = p->mm; 3558 3559 if (mm) { 3560 mm_users = atomic_read(&mm->mm_users); 3561 if (mm_users == 1) { 3562 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3563 mm->numa_scan_seq = 0; 3564 } 3565 } 3566 p->node_stamp = 0; 3567 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3568 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3569 p->numa_migrate_retry = 0; 3570 /* Protect against double add, see task_tick_numa and task_numa_work */ 3571 p->numa_work.next = &p->numa_work; 3572 p->numa_faults = NULL; 3573 p->numa_pages_migrated = 0; 3574 p->total_numa_faults = 0; 3575 RCU_INIT_POINTER(p->numa_group, NULL); 3576 p->last_task_numa_placement = 0; 3577 p->last_sum_exec_runtime = 0; 3578 3579 init_task_work(&p->numa_work, task_numa_work); 3580 3581 /* New address space, reset the preferred nid */ 3582 if (!(clone_flags & CLONE_VM)) { 3583 p->numa_preferred_nid = NUMA_NO_NODE; 3584 return; 3585 } 3586 3587 /* 3588 * New thread, keep existing numa_preferred_nid which should be copied 3589 * already by arch_dup_task_struct but stagger when scans start. 3590 */ 3591 if (mm) { 3592 unsigned int delay; 3593 3594 delay = min_t(unsigned int, task_scan_max(current), 3595 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3596 delay += 2 * TICK_NSEC; 3597 p->node_stamp = delay; 3598 } 3599 } 3600 3601 /* 3602 * Drive the periodic memory faults.. 3603 */ 3604 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3605 { 3606 struct callback_head *work = &curr->numa_work; 3607 u64 period, now; 3608 3609 /* 3610 * We don't care about NUMA placement if we don't have memory. 3611 */ 3612 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3613 return; 3614 3615 /* 3616 * Using runtime rather than walltime has the dual advantage that 3617 * we (mostly) drive the selection from busy threads and that the 3618 * task needs to have done some actual work before we bother with 3619 * NUMA placement. 3620 */ 3621 now = curr->se.sum_exec_runtime; 3622 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3623 3624 if (now > curr->node_stamp + period) { 3625 if (!curr->node_stamp) 3626 curr->numa_scan_period = task_scan_start(curr); 3627 curr->node_stamp += period; 3628 3629 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3630 task_work_add(curr, work, TWA_RESUME); 3631 } 3632 } 3633 3634 static void update_scan_period(struct task_struct *p, int new_cpu) 3635 { 3636 int src_nid = cpu_to_node(task_cpu(p)); 3637 int dst_nid = cpu_to_node(new_cpu); 3638 3639 if (!static_branch_likely(&sched_numa_balancing)) 3640 return; 3641 3642 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3643 return; 3644 3645 if (src_nid == dst_nid) 3646 return; 3647 3648 /* 3649 * Allow resets if faults have been trapped before one scan 3650 * has completed. This is most likely due to a new task that 3651 * is pulled cross-node due to wakeups or load balancing. 3652 */ 3653 if (p->numa_scan_seq) { 3654 /* 3655 * Avoid scan adjustments if moving to the preferred 3656 * node or if the task was not previously running on 3657 * the preferred node. 3658 */ 3659 if (dst_nid == p->numa_preferred_nid || 3660 (p->numa_preferred_nid != NUMA_NO_NODE && 3661 src_nid != p->numa_preferred_nid)) 3662 return; 3663 } 3664 3665 p->numa_scan_period = task_scan_start(p); 3666 } 3667 3668 #else 3669 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3670 { 3671 } 3672 3673 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3674 { 3675 } 3676 3677 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3678 { 3679 } 3680 3681 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3682 { 3683 } 3684 3685 #endif /* CONFIG_NUMA_BALANCING */ 3686 3687 static void 3688 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3689 { 3690 update_load_add(&cfs_rq->load, se->load.weight); 3691 #ifdef CONFIG_SMP 3692 if (entity_is_task(se)) { 3693 struct rq *rq = rq_of(cfs_rq); 3694 3695 account_numa_enqueue(rq, task_of(se)); 3696 list_add(&se->group_node, &rq->cfs_tasks); 3697 } 3698 #endif 3699 cfs_rq->nr_queued++; 3700 } 3701 3702 static void 3703 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3704 { 3705 update_load_sub(&cfs_rq->load, se->load.weight); 3706 #ifdef CONFIG_SMP 3707 if (entity_is_task(se)) { 3708 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3709 list_del_init(&se->group_node); 3710 } 3711 #endif 3712 cfs_rq->nr_queued--; 3713 } 3714 3715 /* 3716 * Signed add and clamp on underflow. 3717 * 3718 * Explicitly do a load-store to ensure the intermediate value never hits 3719 * memory. This allows lockless observations without ever seeing the negative 3720 * values. 3721 */ 3722 #define add_positive(_ptr, _val) do { \ 3723 typeof(_ptr) ptr = (_ptr); \ 3724 typeof(_val) val = (_val); \ 3725 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3726 \ 3727 res = var + val; \ 3728 \ 3729 if (val < 0 && res > var) \ 3730 res = 0; \ 3731 \ 3732 WRITE_ONCE(*ptr, res); \ 3733 } while (0) 3734 3735 /* 3736 * Unsigned subtract and clamp on underflow. 3737 * 3738 * Explicitly do a load-store to ensure the intermediate value never hits 3739 * memory. This allows lockless observations without ever seeing the negative 3740 * values. 3741 */ 3742 #define sub_positive(_ptr, _val) do { \ 3743 typeof(_ptr) ptr = (_ptr); \ 3744 typeof(*ptr) val = (_val); \ 3745 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3746 res = var - val; \ 3747 if (res > var) \ 3748 res = 0; \ 3749 WRITE_ONCE(*ptr, res); \ 3750 } while (0) 3751 3752 /* 3753 * Remove and clamp on negative, from a local variable. 3754 * 3755 * A variant of sub_positive(), which does not use explicit load-store 3756 * and is thus optimized for local variable updates. 3757 */ 3758 #define lsub_positive(_ptr, _val) do { \ 3759 typeof(_ptr) ptr = (_ptr); \ 3760 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3761 } while (0) 3762 3763 #ifdef CONFIG_SMP 3764 static inline void 3765 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3766 { 3767 cfs_rq->avg.load_avg += se->avg.load_avg; 3768 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3769 } 3770 3771 static inline void 3772 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3773 { 3774 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3775 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3776 /* See update_cfs_rq_load_avg() */ 3777 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3778 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3779 } 3780 #else 3781 static inline void 3782 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3783 static inline void 3784 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3785 #endif 3786 3787 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3788 3789 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3790 unsigned long weight) 3791 { 3792 bool curr = cfs_rq->curr == se; 3793 3794 if (se->on_rq) { 3795 /* commit outstanding execution time */ 3796 update_curr(cfs_rq); 3797 update_entity_lag(cfs_rq, se); 3798 se->deadline -= se->vruntime; 3799 se->rel_deadline = 1; 3800 if (!curr) 3801 __dequeue_entity(cfs_rq, se); 3802 update_load_sub(&cfs_rq->load, se->load.weight); 3803 } 3804 dequeue_load_avg(cfs_rq, se); 3805 3806 /* 3807 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3808 * we need to scale se->vlag when w_i changes. 3809 */ 3810 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3811 if (se->rel_deadline) 3812 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3813 3814 update_load_set(&se->load, weight); 3815 3816 #ifdef CONFIG_SMP 3817 do { 3818 u32 divider = get_pelt_divider(&se->avg); 3819 3820 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3821 } while (0); 3822 #endif 3823 3824 enqueue_load_avg(cfs_rq, se); 3825 if (se->on_rq) { 3826 update_load_add(&cfs_rq->load, se->load.weight); 3827 place_entity(cfs_rq, se, 0); 3828 if (!curr) 3829 __enqueue_entity(cfs_rq, se); 3830 3831 /* 3832 * The entity's vruntime has been adjusted, so let's check 3833 * whether the rq-wide min_vruntime needs updated too. Since 3834 * the calculations above require stable min_vruntime rather 3835 * than up-to-date one, we do the update at the end of the 3836 * reweight process. 3837 */ 3838 update_min_vruntime(cfs_rq); 3839 } 3840 } 3841 3842 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3843 const struct load_weight *lw) 3844 { 3845 struct sched_entity *se = &p->se; 3846 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3847 struct load_weight *load = &se->load; 3848 3849 reweight_entity(cfs_rq, se, lw->weight); 3850 load->inv_weight = lw->inv_weight; 3851 } 3852 3853 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3854 3855 #ifdef CONFIG_FAIR_GROUP_SCHED 3856 #ifdef CONFIG_SMP 3857 /* 3858 * All this does is approximate the hierarchical proportion which includes that 3859 * global sum we all love to hate. 3860 * 3861 * That is, the weight of a group entity, is the proportional share of the 3862 * group weight based on the group runqueue weights. That is: 3863 * 3864 * tg->weight * grq->load.weight 3865 * ge->load.weight = ----------------------------- (1) 3866 * \Sum grq->load.weight 3867 * 3868 * Now, because computing that sum is prohibitively expensive to compute (been 3869 * there, done that) we approximate it with this average stuff. The average 3870 * moves slower and therefore the approximation is cheaper and more stable. 3871 * 3872 * So instead of the above, we substitute: 3873 * 3874 * grq->load.weight -> grq->avg.load_avg (2) 3875 * 3876 * which yields the following: 3877 * 3878 * tg->weight * grq->avg.load_avg 3879 * ge->load.weight = ------------------------------ (3) 3880 * tg->load_avg 3881 * 3882 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3883 * 3884 * That is shares_avg, and it is right (given the approximation (2)). 3885 * 3886 * The problem with it is that because the average is slow -- it was designed 3887 * to be exactly that of course -- this leads to transients in boundary 3888 * conditions. In specific, the case where the group was idle and we start the 3889 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3890 * yielding bad latency etc.. 3891 * 3892 * Now, in that special case (1) reduces to: 3893 * 3894 * tg->weight * grq->load.weight 3895 * ge->load.weight = ----------------------------- = tg->weight (4) 3896 * grp->load.weight 3897 * 3898 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3899 * 3900 * So what we do is modify our approximation (3) to approach (4) in the (near) 3901 * UP case, like: 3902 * 3903 * ge->load.weight = 3904 * 3905 * tg->weight * grq->load.weight 3906 * --------------------------------------------------- (5) 3907 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3908 * 3909 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3910 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3911 * 3912 * 3913 * tg->weight * grq->load.weight 3914 * ge->load.weight = ----------------------------- (6) 3915 * tg_load_avg' 3916 * 3917 * Where: 3918 * 3919 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3920 * max(grq->load.weight, grq->avg.load_avg) 3921 * 3922 * And that is shares_weight and is icky. In the (near) UP case it approaches 3923 * (4) while in the normal case it approaches (3). It consistently 3924 * overestimates the ge->load.weight and therefore: 3925 * 3926 * \Sum ge->load.weight >= tg->weight 3927 * 3928 * hence icky! 3929 */ 3930 static long calc_group_shares(struct cfs_rq *cfs_rq) 3931 { 3932 long tg_weight, tg_shares, load, shares; 3933 struct task_group *tg = cfs_rq->tg; 3934 3935 tg_shares = READ_ONCE(tg->shares); 3936 3937 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3938 3939 tg_weight = atomic_long_read(&tg->load_avg); 3940 3941 /* Ensure tg_weight >= load */ 3942 tg_weight -= cfs_rq->tg_load_avg_contrib; 3943 tg_weight += load; 3944 3945 shares = (tg_shares * load); 3946 if (tg_weight) 3947 shares /= tg_weight; 3948 3949 /* 3950 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3951 * of a group with small tg->shares value. It is a floor value which is 3952 * assigned as a minimum load.weight to the sched_entity representing 3953 * the group on a CPU. 3954 * 3955 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3956 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3957 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3958 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3959 * instead of 0. 3960 */ 3961 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3962 } 3963 #endif /* CONFIG_SMP */ 3964 3965 /* 3966 * Recomputes the group entity based on the current state of its group 3967 * runqueue. 3968 */ 3969 static void update_cfs_group(struct sched_entity *se) 3970 { 3971 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3972 long shares; 3973 3974 /* 3975 * When a group becomes empty, preserve its weight. This matters for 3976 * DELAY_DEQUEUE. 3977 */ 3978 if (!gcfs_rq || !gcfs_rq->load.weight) 3979 return; 3980 3981 if (throttled_hierarchy(gcfs_rq)) 3982 return; 3983 3984 #ifndef CONFIG_SMP 3985 shares = READ_ONCE(gcfs_rq->tg->shares); 3986 #else 3987 shares = calc_group_shares(gcfs_rq); 3988 #endif 3989 if (unlikely(se->load.weight != shares)) 3990 reweight_entity(cfs_rq_of(se), se, shares); 3991 } 3992 3993 #else /* CONFIG_FAIR_GROUP_SCHED */ 3994 static inline void update_cfs_group(struct sched_entity *se) 3995 { 3996 } 3997 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3998 3999 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4000 { 4001 struct rq *rq = rq_of(cfs_rq); 4002 4003 if (&rq->cfs == cfs_rq) { 4004 /* 4005 * There are a few boundary cases this might miss but it should 4006 * get called often enough that that should (hopefully) not be 4007 * a real problem. 4008 * 4009 * It will not get called when we go idle, because the idle 4010 * thread is a different class (!fair), nor will the utilization 4011 * number include things like RT tasks. 4012 * 4013 * As is, the util number is not freq-invariant (we'd have to 4014 * implement arch_scale_freq_capacity() for that). 4015 * 4016 * See cpu_util_cfs(). 4017 */ 4018 cpufreq_update_util(rq, flags); 4019 } 4020 } 4021 4022 #ifdef CONFIG_SMP 4023 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4024 { 4025 if (sa->load_sum) 4026 return false; 4027 4028 if (sa->util_sum) 4029 return false; 4030 4031 if (sa->runnable_sum) 4032 return false; 4033 4034 /* 4035 * _avg must be null when _sum are null because _avg = _sum / divider 4036 * Make sure that rounding and/or propagation of PELT values never 4037 * break this. 4038 */ 4039 SCHED_WARN_ON(sa->load_avg || 4040 sa->util_avg || 4041 sa->runnable_avg); 4042 4043 return true; 4044 } 4045 4046 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4047 { 4048 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4049 cfs_rq->last_update_time_copy); 4050 } 4051 #ifdef CONFIG_FAIR_GROUP_SCHED 4052 /* 4053 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4054 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4055 * bottom-up, we only have to test whether the cfs_rq before us on the list 4056 * is our child. 4057 * If cfs_rq is not on the list, test whether a child needs its to be added to 4058 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4059 */ 4060 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4061 { 4062 struct cfs_rq *prev_cfs_rq; 4063 struct list_head *prev; 4064 struct rq *rq = rq_of(cfs_rq); 4065 4066 if (cfs_rq->on_list) { 4067 prev = cfs_rq->leaf_cfs_rq_list.prev; 4068 } else { 4069 prev = rq->tmp_alone_branch; 4070 } 4071 4072 if (prev == &rq->leaf_cfs_rq_list) 4073 return false; 4074 4075 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4076 4077 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4078 } 4079 4080 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4081 { 4082 if (cfs_rq->load.weight) 4083 return false; 4084 4085 if (!load_avg_is_decayed(&cfs_rq->avg)) 4086 return false; 4087 4088 if (child_cfs_rq_on_list(cfs_rq)) 4089 return false; 4090 4091 return true; 4092 } 4093 4094 /** 4095 * update_tg_load_avg - update the tg's load avg 4096 * @cfs_rq: the cfs_rq whose avg changed 4097 * 4098 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4099 * However, because tg->load_avg is a global value there are performance 4100 * considerations. 4101 * 4102 * In order to avoid having to look at the other cfs_rq's, we use a 4103 * differential update where we store the last value we propagated. This in 4104 * turn allows skipping updates if the differential is 'small'. 4105 * 4106 * Updating tg's load_avg is necessary before update_cfs_share(). 4107 */ 4108 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4109 { 4110 long delta; 4111 u64 now; 4112 4113 /* 4114 * No need to update load_avg for root_task_group as it is not used. 4115 */ 4116 if (cfs_rq->tg == &root_task_group) 4117 return; 4118 4119 /* rq has been offline and doesn't contribute to the share anymore: */ 4120 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4121 return; 4122 4123 /* 4124 * For migration heavy workloads, access to tg->load_avg can be 4125 * unbound. Limit the update rate to at most once per ms. 4126 */ 4127 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4128 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4129 return; 4130 4131 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4132 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4133 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4134 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4135 cfs_rq->last_update_tg_load_avg = now; 4136 } 4137 } 4138 4139 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4140 { 4141 long delta; 4142 u64 now; 4143 4144 /* 4145 * No need to update load_avg for root_task_group, as it is not used. 4146 */ 4147 if (cfs_rq->tg == &root_task_group) 4148 return; 4149 4150 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4151 delta = 0 - cfs_rq->tg_load_avg_contrib; 4152 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4153 cfs_rq->tg_load_avg_contrib = 0; 4154 cfs_rq->last_update_tg_load_avg = now; 4155 } 4156 4157 /* CPU offline callback: */ 4158 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4159 { 4160 struct task_group *tg; 4161 4162 lockdep_assert_rq_held(rq); 4163 4164 /* 4165 * The rq clock has already been updated in 4166 * set_rq_offline(), so we should skip updating 4167 * the rq clock again in unthrottle_cfs_rq(). 4168 */ 4169 rq_clock_start_loop_update(rq); 4170 4171 rcu_read_lock(); 4172 list_for_each_entry_rcu(tg, &task_groups, list) { 4173 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4174 4175 clear_tg_load_avg(cfs_rq); 4176 } 4177 rcu_read_unlock(); 4178 4179 rq_clock_stop_loop_update(rq); 4180 } 4181 4182 /* 4183 * Called within set_task_rq() right before setting a task's CPU. The 4184 * caller only guarantees p->pi_lock is held; no other assumptions, 4185 * including the state of rq->lock, should be made. 4186 */ 4187 void set_task_rq_fair(struct sched_entity *se, 4188 struct cfs_rq *prev, struct cfs_rq *next) 4189 { 4190 u64 p_last_update_time; 4191 u64 n_last_update_time; 4192 4193 if (!sched_feat(ATTACH_AGE_LOAD)) 4194 return; 4195 4196 /* 4197 * We are supposed to update the task to "current" time, then its up to 4198 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4199 * getting what current time is, so simply throw away the out-of-date 4200 * time. This will result in the wakee task is less decayed, but giving 4201 * the wakee more load sounds not bad. 4202 */ 4203 if (!(se->avg.last_update_time && prev)) 4204 return; 4205 4206 p_last_update_time = cfs_rq_last_update_time(prev); 4207 n_last_update_time = cfs_rq_last_update_time(next); 4208 4209 __update_load_avg_blocked_se(p_last_update_time, se); 4210 se->avg.last_update_time = n_last_update_time; 4211 } 4212 4213 /* 4214 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4215 * propagate its contribution. The key to this propagation is the invariant 4216 * that for each group: 4217 * 4218 * ge->avg == grq->avg (1) 4219 * 4220 * _IFF_ we look at the pure running and runnable sums. Because they 4221 * represent the very same entity, just at different points in the hierarchy. 4222 * 4223 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4224 * and simply copies the running/runnable sum over (but still wrong, because 4225 * the group entity and group rq do not have their PELT windows aligned). 4226 * 4227 * However, update_tg_cfs_load() is more complex. So we have: 4228 * 4229 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4230 * 4231 * And since, like util, the runnable part should be directly transferable, 4232 * the following would _appear_ to be the straight forward approach: 4233 * 4234 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4235 * 4236 * And per (1) we have: 4237 * 4238 * ge->avg.runnable_avg == grq->avg.runnable_avg 4239 * 4240 * Which gives: 4241 * 4242 * ge->load.weight * grq->avg.load_avg 4243 * ge->avg.load_avg = ----------------------------------- (4) 4244 * grq->load.weight 4245 * 4246 * Except that is wrong! 4247 * 4248 * Because while for entities historical weight is not important and we 4249 * really only care about our future and therefore can consider a pure 4250 * runnable sum, runqueues can NOT do this. 4251 * 4252 * We specifically want runqueues to have a load_avg that includes 4253 * historical weights. Those represent the blocked load, the load we expect 4254 * to (shortly) return to us. This only works by keeping the weights as 4255 * integral part of the sum. We therefore cannot decompose as per (3). 4256 * 4257 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4258 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4259 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4260 * runnable section of these tasks overlap (or not). If they were to perfectly 4261 * align the rq as a whole would be runnable 2/3 of the time. If however we 4262 * always have at least 1 runnable task, the rq as a whole is always runnable. 4263 * 4264 * So we'll have to approximate.. :/ 4265 * 4266 * Given the constraint: 4267 * 4268 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4269 * 4270 * We can construct a rule that adds runnable to a rq by assuming minimal 4271 * overlap. 4272 * 4273 * On removal, we'll assume each task is equally runnable; which yields: 4274 * 4275 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4276 * 4277 * XXX: only do this for the part of runnable > running ? 4278 * 4279 */ 4280 static inline void 4281 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4282 { 4283 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4284 u32 new_sum, divider; 4285 4286 /* Nothing to update */ 4287 if (!delta_avg) 4288 return; 4289 4290 /* 4291 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4292 * See ___update_load_avg() for details. 4293 */ 4294 divider = get_pelt_divider(&cfs_rq->avg); 4295 4296 4297 /* Set new sched_entity's utilization */ 4298 se->avg.util_avg = gcfs_rq->avg.util_avg; 4299 new_sum = se->avg.util_avg * divider; 4300 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4301 se->avg.util_sum = new_sum; 4302 4303 /* Update parent cfs_rq utilization */ 4304 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4305 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4306 4307 /* See update_cfs_rq_load_avg() */ 4308 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4309 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4310 } 4311 4312 static inline void 4313 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4314 { 4315 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4316 u32 new_sum, divider; 4317 4318 /* Nothing to update */ 4319 if (!delta_avg) 4320 return; 4321 4322 /* 4323 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4324 * See ___update_load_avg() for details. 4325 */ 4326 divider = get_pelt_divider(&cfs_rq->avg); 4327 4328 /* Set new sched_entity's runnable */ 4329 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4330 new_sum = se->avg.runnable_avg * divider; 4331 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4332 se->avg.runnable_sum = new_sum; 4333 4334 /* Update parent cfs_rq runnable */ 4335 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4336 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4337 /* See update_cfs_rq_load_avg() */ 4338 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4339 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4340 } 4341 4342 static inline void 4343 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4344 { 4345 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4346 unsigned long load_avg; 4347 u64 load_sum = 0; 4348 s64 delta_sum; 4349 u32 divider; 4350 4351 if (!runnable_sum) 4352 return; 4353 4354 gcfs_rq->prop_runnable_sum = 0; 4355 4356 /* 4357 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4358 * See ___update_load_avg() for details. 4359 */ 4360 divider = get_pelt_divider(&cfs_rq->avg); 4361 4362 if (runnable_sum >= 0) { 4363 /* 4364 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4365 * the CPU is saturated running == runnable. 4366 */ 4367 runnable_sum += se->avg.load_sum; 4368 runnable_sum = min_t(long, runnable_sum, divider); 4369 } else { 4370 /* 4371 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4372 * assuming all tasks are equally runnable. 4373 */ 4374 if (scale_load_down(gcfs_rq->load.weight)) { 4375 load_sum = div_u64(gcfs_rq->avg.load_sum, 4376 scale_load_down(gcfs_rq->load.weight)); 4377 } 4378 4379 /* But make sure to not inflate se's runnable */ 4380 runnable_sum = min(se->avg.load_sum, load_sum); 4381 } 4382 4383 /* 4384 * runnable_sum can't be lower than running_sum 4385 * Rescale running sum to be in the same range as runnable sum 4386 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4387 * runnable_sum is in [0 : LOAD_AVG_MAX] 4388 */ 4389 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4390 runnable_sum = max(runnable_sum, running_sum); 4391 4392 load_sum = se_weight(se) * runnable_sum; 4393 load_avg = div_u64(load_sum, divider); 4394 4395 delta_avg = load_avg - se->avg.load_avg; 4396 if (!delta_avg) 4397 return; 4398 4399 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4400 4401 se->avg.load_sum = runnable_sum; 4402 se->avg.load_avg = load_avg; 4403 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4404 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4405 /* See update_cfs_rq_load_avg() */ 4406 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4407 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4408 } 4409 4410 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4411 { 4412 cfs_rq->propagate = 1; 4413 cfs_rq->prop_runnable_sum += runnable_sum; 4414 } 4415 4416 /* Update task and its cfs_rq load average */ 4417 static inline int propagate_entity_load_avg(struct sched_entity *se) 4418 { 4419 struct cfs_rq *cfs_rq, *gcfs_rq; 4420 4421 if (entity_is_task(se)) 4422 return 0; 4423 4424 gcfs_rq = group_cfs_rq(se); 4425 if (!gcfs_rq->propagate) 4426 return 0; 4427 4428 gcfs_rq->propagate = 0; 4429 4430 cfs_rq = cfs_rq_of(se); 4431 4432 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4433 4434 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4435 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4436 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4437 4438 trace_pelt_cfs_tp(cfs_rq); 4439 trace_pelt_se_tp(se); 4440 4441 return 1; 4442 } 4443 4444 /* 4445 * Check if we need to update the load and the utilization of a blocked 4446 * group_entity: 4447 */ 4448 static inline bool skip_blocked_update(struct sched_entity *se) 4449 { 4450 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4451 4452 /* 4453 * If sched_entity still have not zero load or utilization, we have to 4454 * decay it: 4455 */ 4456 if (se->avg.load_avg || se->avg.util_avg) 4457 return false; 4458 4459 /* 4460 * If there is a pending propagation, we have to update the load and 4461 * the utilization of the sched_entity: 4462 */ 4463 if (gcfs_rq->propagate) 4464 return false; 4465 4466 /* 4467 * Otherwise, the load and the utilization of the sched_entity is 4468 * already zero and there is no pending propagation, so it will be a 4469 * waste of time to try to decay it: 4470 */ 4471 return true; 4472 } 4473 4474 #else /* CONFIG_FAIR_GROUP_SCHED */ 4475 4476 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4477 4478 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4479 4480 static inline int propagate_entity_load_avg(struct sched_entity *se) 4481 { 4482 return 0; 4483 } 4484 4485 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4486 4487 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4488 4489 #ifdef CONFIG_NO_HZ_COMMON 4490 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4491 { 4492 u64 throttled = 0, now, lut; 4493 struct cfs_rq *cfs_rq; 4494 struct rq *rq; 4495 bool is_idle; 4496 4497 if (load_avg_is_decayed(&se->avg)) 4498 return; 4499 4500 cfs_rq = cfs_rq_of(se); 4501 rq = rq_of(cfs_rq); 4502 4503 rcu_read_lock(); 4504 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4505 rcu_read_unlock(); 4506 4507 /* 4508 * The lag estimation comes with a cost we don't want to pay all the 4509 * time. Hence, limiting to the case where the source CPU is idle and 4510 * we know we are at the greatest risk to have an outdated clock. 4511 */ 4512 if (!is_idle) 4513 return; 4514 4515 /* 4516 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4517 * 4518 * last_update_time (the cfs_rq's last_update_time) 4519 * = cfs_rq_clock_pelt()@cfs_rq_idle 4520 * = rq_clock_pelt()@cfs_rq_idle 4521 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4522 * 4523 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4524 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4525 * 4526 * rq_idle_lag (delta between now and rq's update) 4527 * = sched_clock_cpu() - rq_clock()@rq_idle 4528 * 4529 * We can then write: 4530 * 4531 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4532 * sched_clock_cpu() - rq_clock()@rq_idle 4533 * Where: 4534 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4535 * rq_clock()@rq_idle is rq->clock_idle 4536 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4537 * is cfs_rq->throttled_pelt_idle 4538 */ 4539 4540 #ifdef CONFIG_CFS_BANDWIDTH 4541 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4542 /* The clock has been stopped for throttling */ 4543 if (throttled == U64_MAX) 4544 return; 4545 #endif 4546 now = u64_u32_load(rq->clock_pelt_idle); 4547 /* 4548 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4549 * is observed the old clock_pelt_idle value and the new clock_idle, 4550 * which lead to an underestimation. The opposite would lead to an 4551 * overestimation. 4552 */ 4553 smp_rmb(); 4554 lut = cfs_rq_last_update_time(cfs_rq); 4555 4556 now -= throttled; 4557 if (now < lut) 4558 /* 4559 * cfs_rq->avg.last_update_time is more recent than our 4560 * estimation, let's use it. 4561 */ 4562 now = lut; 4563 else 4564 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4565 4566 __update_load_avg_blocked_se(now, se); 4567 } 4568 #else 4569 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4570 #endif 4571 4572 /** 4573 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4574 * @now: current time, as per cfs_rq_clock_pelt() 4575 * @cfs_rq: cfs_rq to update 4576 * 4577 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4578 * avg. The immediate corollary is that all (fair) tasks must be attached. 4579 * 4580 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4581 * 4582 * Return: true if the load decayed or we removed load. 4583 * 4584 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4585 * call update_tg_load_avg() when this function returns true. 4586 */ 4587 static inline int 4588 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4589 { 4590 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4591 struct sched_avg *sa = &cfs_rq->avg; 4592 int decayed = 0; 4593 4594 if (cfs_rq->removed.nr) { 4595 unsigned long r; 4596 u32 divider = get_pelt_divider(&cfs_rq->avg); 4597 4598 raw_spin_lock(&cfs_rq->removed.lock); 4599 swap(cfs_rq->removed.util_avg, removed_util); 4600 swap(cfs_rq->removed.load_avg, removed_load); 4601 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4602 cfs_rq->removed.nr = 0; 4603 raw_spin_unlock(&cfs_rq->removed.lock); 4604 4605 r = removed_load; 4606 sub_positive(&sa->load_avg, r); 4607 sub_positive(&sa->load_sum, r * divider); 4608 /* See sa->util_sum below */ 4609 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4610 4611 r = removed_util; 4612 sub_positive(&sa->util_avg, r); 4613 sub_positive(&sa->util_sum, r * divider); 4614 /* 4615 * Because of rounding, se->util_sum might ends up being +1 more than 4616 * cfs->util_sum. Although this is not a problem by itself, detaching 4617 * a lot of tasks with the rounding problem between 2 updates of 4618 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4619 * cfs_util_avg is not. 4620 * Check that util_sum is still above its lower bound for the new 4621 * util_avg. Given that period_contrib might have moved since the last 4622 * sync, we are only sure that util_sum must be above or equal to 4623 * util_avg * minimum possible divider 4624 */ 4625 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4626 4627 r = removed_runnable; 4628 sub_positive(&sa->runnable_avg, r); 4629 sub_positive(&sa->runnable_sum, r * divider); 4630 /* See sa->util_sum above */ 4631 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4632 sa->runnable_avg * PELT_MIN_DIVIDER); 4633 4634 /* 4635 * removed_runnable is the unweighted version of removed_load so we 4636 * can use it to estimate removed_load_sum. 4637 */ 4638 add_tg_cfs_propagate(cfs_rq, 4639 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4640 4641 decayed = 1; 4642 } 4643 4644 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4645 u64_u32_store_copy(sa->last_update_time, 4646 cfs_rq->last_update_time_copy, 4647 sa->last_update_time); 4648 return decayed; 4649 } 4650 4651 /** 4652 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4653 * @cfs_rq: cfs_rq to attach to 4654 * @se: sched_entity to attach 4655 * 4656 * Must call update_cfs_rq_load_avg() before this, since we rely on 4657 * cfs_rq->avg.last_update_time being current. 4658 */ 4659 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4660 { 4661 /* 4662 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4663 * See ___update_load_avg() for details. 4664 */ 4665 u32 divider = get_pelt_divider(&cfs_rq->avg); 4666 4667 /* 4668 * When we attach the @se to the @cfs_rq, we must align the decay 4669 * window because without that, really weird and wonderful things can 4670 * happen. 4671 * 4672 * XXX illustrate 4673 */ 4674 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4675 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4676 4677 /* 4678 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4679 * period_contrib. This isn't strictly correct, but since we're 4680 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4681 * _sum a little. 4682 */ 4683 se->avg.util_sum = se->avg.util_avg * divider; 4684 4685 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4686 4687 se->avg.load_sum = se->avg.load_avg * divider; 4688 if (se_weight(se) < se->avg.load_sum) 4689 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4690 else 4691 se->avg.load_sum = 1; 4692 4693 enqueue_load_avg(cfs_rq, se); 4694 cfs_rq->avg.util_avg += se->avg.util_avg; 4695 cfs_rq->avg.util_sum += se->avg.util_sum; 4696 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4697 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4698 4699 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4700 4701 cfs_rq_util_change(cfs_rq, 0); 4702 4703 trace_pelt_cfs_tp(cfs_rq); 4704 } 4705 4706 /** 4707 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4708 * @cfs_rq: cfs_rq to detach from 4709 * @se: sched_entity to detach 4710 * 4711 * Must call update_cfs_rq_load_avg() before this, since we rely on 4712 * cfs_rq->avg.last_update_time being current. 4713 */ 4714 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4715 { 4716 dequeue_load_avg(cfs_rq, se); 4717 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4718 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4719 /* See update_cfs_rq_load_avg() */ 4720 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4721 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4722 4723 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4724 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4725 /* See update_cfs_rq_load_avg() */ 4726 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4727 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4728 4729 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4730 4731 cfs_rq_util_change(cfs_rq, 0); 4732 4733 trace_pelt_cfs_tp(cfs_rq); 4734 } 4735 4736 /* 4737 * Optional action to be done while updating the load average 4738 */ 4739 #define UPDATE_TG 0x1 4740 #define SKIP_AGE_LOAD 0x2 4741 #define DO_ATTACH 0x4 4742 #define DO_DETACH 0x8 4743 4744 /* Update task and its cfs_rq load average */ 4745 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4746 { 4747 u64 now = cfs_rq_clock_pelt(cfs_rq); 4748 int decayed; 4749 4750 /* 4751 * Track task load average for carrying it to new CPU after migrated, and 4752 * track group sched_entity load average for task_h_load calculation in migration 4753 */ 4754 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4755 __update_load_avg_se(now, cfs_rq, se); 4756 4757 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4758 decayed |= propagate_entity_load_avg(se); 4759 4760 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4761 4762 /* 4763 * DO_ATTACH means we're here from enqueue_entity(). 4764 * !last_update_time means we've passed through 4765 * migrate_task_rq_fair() indicating we migrated. 4766 * 4767 * IOW we're enqueueing a task on a new CPU. 4768 */ 4769 attach_entity_load_avg(cfs_rq, se); 4770 update_tg_load_avg(cfs_rq); 4771 4772 } else if (flags & DO_DETACH) { 4773 /* 4774 * DO_DETACH means we're here from dequeue_entity() 4775 * and we are migrating task out of the CPU. 4776 */ 4777 detach_entity_load_avg(cfs_rq, se); 4778 update_tg_load_avg(cfs_rq); 4779 } else if (decayed) { 4780 cfs_rq_util_change(cfs_rq, 0); 4781 4782 if (flags & UPDATE_TG) 4783 update_tg_load_avg(cfs_rq); 4784 } 4785 } 4786 4787 /* 4788 * Synchronize entity load avg of dequeued entity without locking 4789 * the previous rq. 4790 */ 4791 static void sync_entity_load_avg(struct sched_entity *se) 4792 { 4793 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4794 u64 last_update_time; 4795 4796 last_update_time = cfs_rq_last_update_time(cfs_rq); 4797 __update_load_avg_blocked_se(last_update_time, se); 4798 } 4799 4800 /* 4801 * Task first catches up with cfs_rq, and then subtract 4802 * itself from the cfs_rq (task must be off the queue now). 4803 */ 4804 static void remove_entity_load_avg(struct sched_entity *se) 4805 { 4806 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4807 unsigned long flags; 4808 4809 /* 4810 * tasks cannot exit without having gone through wake_up_new_task() -> 4811 * enqueue_task_fair() which will have added things to the cfs_rq, 4812 * so we can remove unconditionally. 4813 */ 4814 4815 sync_entity_load_avg(se); 4816 4817 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4818 ++cfs_rq->removed.nr; 4819 cfs_rq->removed.util_avg += se->avg.util_avg; 4820 cfs_rq->removed.load_avg += se->avg.load_avg; 4821 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4822 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4823 } 4824 4825 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4826 { 4827 return cfs_rq->avg.runnable_avg; 4828 } 4829 4830 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4831 { 4832 return cfs_rq->avg.load_avg; 4833 } 4834 4835 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4836 4837 static inline unsigned long task_util(struct task_struct *p) 4838 { 4839 return READ_ONCE(p->se.avg.util_avg); 4840 } 4841 4842 static inline unsigned long task_runnable(struct task_struct *p) 4843 { 4844 return READ_ONCE(p->se.avg.runnable_avg); 4845 } 4846 4847 static inline unsigned long _task_util_est(struct task_struct *p) 4848 { 4849 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4850 } 4851 4852 static inline unsigned long task_util_est(struct task_struct *p) 4853 { 4854 return max(task_util(p), _task_util_est(p)); 4855 } 4856 4857 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4858 struct task_struct *p) 4859 { 4860 unsigned int enqueued; 4861 4862 if (!sched_feat(UTIL_EST)) 4863 return; 4864 4865 /* Update root cfs_rq's estimated utilization */ 4866 enqueued = cfs_rq->avg.util_est; 4867 enqueued += _task_util_est(p); 4868 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4869 4870 trace_sched_util_est_cfs_tp(cfs_rq); 4871 } 4872 4873 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4874 struct task_struct *p) 4875 { 4876 unsigned int enqueued; 4877 4878 if (!sched_feat(UTIL_EST)) 4879 return; 4880 4881 /* Update root cfs_rq's estimated utilization */ 4882 enqueued = cfs_rq->avg.util_est; 4883 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4884 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4885 4886 trace_sched_util_est_cfs_tp(cfs_rq); 4887 } 4888 4889 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4890 4891 static inline void util_est_update(struct cfs_rq *cfs_rq, 4892 struct task_struct *p, 4893 bool task_sleep) 4894 { 4895 unsigned int ewma, dequeued, last_ewma_diff; 4896 4897 if (!sched_feat(UTIL_EST)) 4898 return; 4899 4900 /* 4901 * Skip update of task's estimated utilization when the task has not 4902 * yet completed an activation, e.g. being migrated. 4903 */ 4904 if (!task_sleep) 4905 return; 4906 4907 /* Get current estimate of utilization */ 4908 ewma = READ_ONCE(p->se.avg.util_est); 4909 4910 /* 4911 * If the PELT values haven't changed since enqueue time, 4912 * skip the util_est update. 4913 */ 4914 if (ewma & UTIL_AVG_UNCHANGED) 4915 return; 4916 4917 /* Get utilization at dequeue */ 4918 dequeued = task_util(p); 4919 4920 /* 4921 * Reset EWMA on utilization increases, the moving average is used only 4922 * to smooth utilization decreases. 4923 */ 4924 if (ewma <= dequeued) { 4925 ewma = dequeued; 4926 goto done; 4927 } 4928 4929 /* 4930 * Skip update of task's estimated utilization when its members are 4931 * already ~1% close to its last activation value. 4932 */ 4933 last_ewma_diff = ewma - dequeued; 4934 if (last_ewma_diff < UTIL_EST_MARGIN) 4935 goto done; 4936 4937 /* 4938 * To avoid overestimation of actual task utilization, skip updates if 4939 * we cannot grant there is idle time in this CPU. 4940 */ 4941 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4942 return; 4943 4944 /* 4945 * To avoid underestimate of task utilization, skip updates of EWMA if 4946 * we cannot grant that thread got all CPU time it wanted. 4947 */ 4948 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4949 goto done; 4950 4951 4952 /* 4953 * Update Task's estimated utilization 4954 * 4955 * When *p completes an activation we can consolidate another sample 4956 * of the task size. This is done by using this value to update the 4957 * Exponential Weighted Moving Average (EWMA): 4958 * 4959 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4960 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4961 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4962 * = w * ( -last_ewma_diff ) + ewma(t-1) 4963 * = w * (-last_ewma_diff + ewma(t-1) / w) 4964 * 4965 * Where 'w' is the weight of new samples, which is configured to be 4966 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4967 */ 4968 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4969 ewma -= last_ewma_diff; 4970 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4971 done: 4972 ewma |= UTIL_AVG_UNCHANGED; 4973 WRITE_ONCE(p->se.avg.util_est, ewma); 4974 4975 trace_sched_util_est_se_tp(&p->se); 4976 } 4977 4978 static inline unsigned long get_actual_cpu_capacity(int cpu) 4979 { 4980 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4981 4982 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4983 4984 return capacity; 4985 } 4986 4987 static inline int util_fits_cpu(unsigned long util, 4988 unsigned long uclamp_min, 4989 unsigned long uclamp_max, 4990 int cpu) 4991 { 4992 unsigned long capacity = capacity_of(cpu); 4993 unsigned long capacity_orig; 4994 bool fits, uclamp_max_fits; 4995 4996 /* 4997 * Check if the real util fits without any uclamp boost/cap applied. 4998 */ 4999 fits = fits_capacity(util, capacity); 5000 5001 if (!uclamp_is_used()) 5002 return fits; 5003 5004 /* 5005 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5006 * uclamp_max. We only care about capacity pressure (by using 5007 * capacity_of()) for comparing against the real util. 5008 * 5009 * If a task is boosted to 1024 for example, we don't want a tiny 5010 * pressure to skew the check whether it fits a CPU or not. 5011 * 5012 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5013 * should fit a little cpu even if there's some pressure. 5014 * 5015 * Only exception is for HW or cpufreq pressure since it has a direct impact 5016 * on available OPP of the system. 5017 * 5018 * We honour it for uclamp_min only as a drop in performance level 5019 * could result in not getting the requested minimum performance level. 5020 * 5021 * For uclamp_max, we can tolerate a drop in performance level as the 5022 * goal is to cap the task. So it's okay if it's getting less. 5023 */ 5024 capacity_orig = arch_scale_cpu_capacity(cpu); 5025 5026 /* 5027 * We want to force a task to fit a cpu as implied by uclamp_max. 5028 * But we do have some corner cases to cater for.. 5029 * 5030 * 5031 * C=z 5032 * | ___ 5033 * | C=y | | 5034 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5035 * | C=x | | | | 5036 * | ___ | | | | 5037 * | | | | | | | (util somewhere in this region) 5038 * | | | | | | | 5039 * | | | | | | | 5040 * +---------------------------------------- 5041 * CPU0 CPU1 CPU2 5042 * 5043 * In the above example if a task is capped to a specific performance 5044 * point, y, then when: 5045 * 5046 * * util = 80% of x then it does not fit on CPU0 and should migrate 5047 * to CPU1 5048 * * util = 80% of y then it is forced to fit on CPU1 to honour 5049 * uclamp_max request. 5050 * 5051 * which is what we're enforcing here. A task always fits if 5052 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5053 * the normal upmigration rules should withhold still. 5054 * 5055 * Only exception is when we are on max capacity, then we need to be 5056 * careful not to block overutilized state. This is so because: 5057 * 5058 * 1. There's no concept of capping at max_capacity! We can't go 5059 * beyond this performance level anyway. 5060 * 2. The system is being saturated when we're operating near 5061 * max capacity, it doesn't make sense to block overutilized. 5062 */ 5063 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5064 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5065 fits = fits || uclamp_max_fits; 5066 5067 /* 5068 * 5069 * C=z 5070 * | ___ (region a, capped, util >= uclamp_max) 5071 * | C=y | | 5072 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5073 * | C=x | | | | 5074 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5075 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5076 * | | | | | | | 5077 * | | | | | | | (region c, boosted, util < uclamp_min) 5078 * +---------------------------------------- 5079 * CPU0 CPU1 CPU2 5080 * 5081 * a) If util > uclamp_max, then we're capped, we don't care about 5082 * actual fitness value here. We only care if uclamp_max fits 5083 * capacity without taking margin/pressure into account. 5084 * See comment above. 5085 * 5086 * b) If uclamp_min <= util <= uclamp_max, then the normal 5087 * fits_capacity() rules apply. Except we need to ensure that we 5088 * enforce we remain within uclamp_max, see comment above. 5089 * 5090 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5091 * need to take into account the boosted value fits the CPU without 5092 * taking margin/pressure into account. 5093 * 5094 * Cases (a) and (b) are handled in the 'fits' variable already. We 5095 * just need to consider an extra check for case (c) after ensuring we 5096 * handle the case uclamp_min > uclamp_max. 5097 */ 5098 uclamp_min = min(uclamp_min, uclamp_max); 5099 if (fits && (util < uclamp_min) && 5100 (uclamp_min > get_actual_cpu_capacity(cpu))) 5101 return -1; 5102 5103 return fits; 5104 } 5105 5106 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5107 { 5108 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5109 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5110 unsigned long util = task_util_est(p); 5111 /* 5112 * Return true only if the cpu fully fits the task requirements, which 5113 * include the utilization but also the performance hints. 5114 */ 5115 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5116 } 5117 5118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5119 { 5120 int cpu = cpu_of(rq); 5121 5122 if (!sched_asym_cpucap_active()) 5123 return; 5124 5125 /* 5126 * Affinity allows us to go somewhere higher? Or are we on biggest 5127 * available CPU already? Or do we fit into this CPU ? 5128 */ 5129 if (!p || (p->nr_cpus_allowed == 1) || 5130 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5131 task_fits_cpu(p, cpu)) { 5132 5133 rq->misfit_task_load = 0; 5134 return; 5135 } 5136 5137 /* 5138 * Make sure that misfit_task_load will not be null even if 5139 * task_h_load() returns 0. 5140 */ 5141 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5142 } 5143 5144 #else /* CONFIG_SMP */ 5145 5146 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5147 { 5148 return !cfs_rq->nr_queued; 5149 } 5150 5151 #define UPDATE_TG 0x0 5152 #define SKIP_AGE_LOAD 0x0 5153 #define DO_ATTACH 0x0 5154 #define DO_DETACH 0x0 5155 5156 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5157 { 5158 cfs_rq_util_change(cfs_rq, 0); 5159 } 5160 5161 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5162 5163 static inline void 5164 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5165 static inline void 5166 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5167 5168 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5169 { 5170 return 0; 5171 } 5172 5173 static inline void 5174 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5175 5176 static inline void 5177 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5178 5179 static inline void 5180 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5181 bool task_sleep) {} 5182 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5183 5184 #endif /* CONFIG_SMP */ 5185 5186 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5187 { 5188 struct sched_entity *se = &p->se; 5189 5190 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5191 if (attr->sched_runtime) { 5192 se->custom_slice = 1; 5193 se->slice = clamp_t(u64, attr->sched_runtime, 5194 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5195 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5196 } else { 5197 se->custom_slice = 0; 5198 se->slice = sysctl_sched_base_slice; 5199 } 5200 } 5201 5202 static void 5203 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5204 { 5205 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5206 s64 lag = 0; 5207 5208 if (!se->custom_slice) 5209 se->slice = sysctl_sched_base_slice; 5210 vslice = calc_delta_fair(se->slice, se); 5211 5212 /* 5213 * Due to how V is constructed as the weighted average of entities, 5214 * adding tasks with positive lag, or removing tasks with negative lag 5215 * will move 'time' backwards, this can screw around with the lag of 5216 * other tasks. 5217 * 5218 * EEVDF: placement strategy #1 / #2 5219 */ 5220 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5221 struct sched_entity *curr = cfs_rq->curr; 5222 unsigned long load; 5223 5224 lag = se->vlag; 5225 5226 /* 5227 * If we want to place a task and preserve lag, we have to 5228 * consider the effect of the new entity on the weighted 5229 * average and compensate for this, otherwise lag can quickly 5230 * evaporate. 5231 * 5232 * Lag is defined as: 5233 * 5234 * lag_i = S - s_i = w_i * (V - v_i) 5235 * 5236 * To avoid the 'w_i' term all over the place, we only track 5237 * the virtual lag: 5238 * 5239 * vl_i = V - v_i <=> v_i = V - vl_i 5240 * 5241 * And we take V to be the weighted average of all v: 5242 * 5243 * V = (\Sum w_j*v_j) / W 5244 * 5245 * Where W is: \Sum w_j 5246 * 5247 * Then, the weighted average after adding an entity with lag 5248 * vl_i is given by: 5249 * 5250 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5251 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5252 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5253 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5254 * = V - w_i*vl_i / (W + w_i) 5255 * 5256 * And the actual lag after adding an entity with vl_i is: 5257 * 5258 * vl'_i = V' - v_i 5259 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5260 * = vl_i - w_i*vl_i / (W + w_i) 5261 * 5262 * Which is strictly less than vl_i. So in order to preserve lag 5263 * we should inflate the lag before placement such that the 5264 * effective lag after placement comes out right. 5265 * 5266 * As such, invert the above relation for vl'_i to get the vl_i 5267 * we need to use such that the lag after placement is the lag 5268 * we computed before dequeue. 5269 * 5270 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5271 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5272 * 5273 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5274 * = W*vl_i 5275 * 5276 * vl_i = (W + w_i)*vl'_i / W 5277 */ 5278 load = cfs_rq->avg_load; 5279 if (curr && curr->on_rq) 5280 load += scale_load_down(curr->load.weight); 5281 5282 lag *= load + scale_load_down(se->load.weight); 5283 if (WARN_ON_ONCE(!load)) 5284 load = 1; 5285 lag = div_s64(lag, load); 5286 } 5287 5288 se->vruntime = vruntime - lag; 5289 5290 if (se->rel_deadline) { 5291 se->deadline += se->vruntime; 5292 se->rel_deadline = 0; 5293 return; 5294 } 5295 5296 /* 5297 * When joining the competition; the existing tasks will be, 5298 * on average, halfway through their slice, as such start tasks 5299 * off with half a slice to ease into the competition. 5300 */ 5301 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5302 vslice /= 2; 5303 5304 /* 5305 * EEVDF: vd_i = ve_i + r_i/w_i 5306 */ 5307 se->deadline = se->vruntime + vslice; 5308 } 5309 5310 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5311 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5312 5313 static void 5314 requeue_delayed_entity(struct sched_entity *se); 5315 5316 static void 5317 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5318 { 5319 bool curr = cfs_rq->curr == se; 5320 5321 /* 5322 * If we're the current task, we must renormalise before calling 5323 * update_curr(). 5324 */ 5325 if (curr) 5326 place_entity(cfs_rq, se, flags); 5327 5328 update_curr(cfs_rq); 5329 5330 /* 5331 * When enqueuing a sched_entity, we must: 5332 * - Update loads to have both entity and cfs_rq synced with now. 5333 * - For group_entity, update its runnable_weight to reflect the new 5334 * h_nr_runnable of its group cfs_rq. 5335 * - For group_entity, update its weight to reflect the new share of 5336 * its group cfs_rq 5337 * - Add its new weight to cfs_rq->load.weight 5338 */ 5339 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5340 se_update_runnable(se); 5341 /* 5342 * XXX update_load_avg() above will have attached us to the pelt sum; 5343 * but update_cfs_group() here will re-adjust the weight and have to 5344 * undo/redo all that. Seems wasteful. 5345 */ 5346 update_cfs_group(se); 5347 5348 /* 5349 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5350 * we can place the entity. 5351 */ 5352 if (!curr) 5353 place_entity(cfs_rq, se, flags); 5354 5355 account_entity_enqueue(cfs_rq, se); 5356 5357 /* Entity has migrated, no longer consider this task hot */ 5358 if (flags & ENQUEUE_MIGRATED) 5359 se->exec_start = 0; 5360 5361 check_schedstat_required(); 5362 update_stats_enqueue_fair(cfs_rq, se, flags); 5363 if (!curr) 5364 __enqueue_entity(cfs_rq, se); 5365 se->on_rq = 1; 5366 5367 if (cfs_rq->nr_queued == 1) { 5368 check_enqueue_throttle(cfs_rq); 5369 if (!throttled_hierarchy(cfs_rq)) { 5370 list_add_leaf_cfs_rq(cfs_rq); 5371 } else { 5372 #ifdef CONFIG_CFS_BANDWIDTH 5373 struct rq *rq = rq_of(cfs_rq); 5374 5375 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5376 cfs_rq->throttled_clock = rq_clock(rq); 5377 if (!cfs_rq->throttled_clock_self) 5378 cfs_rq->throttled_clock_self = rq_clock(rq); 5379 #endif 5380 } 5381 } 5382 } 5383 5384 static void __clear_buddies_next(struct sched_entity *se) 5385 { 5386 for_each_sched_entity(se) { 5387 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5388 if (cfs_rq->next != se) 5389 break; 5390 5391 cfs_rq->next = NULL; 5392 } 5393 } 5394 5395 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5396 { 5397 if (cfs_rq->next == se) 5398 __clear_buddies_next(se); 5399 } 5400 5401 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5402 5403 static void set_delayed(struct sched_entity *se) 5404 { 5405 se->sched_delayed = 1; 5406 5407 /* 5408 * Delayed se of cfs_rq have no tasks queued on them. 5409 * Do not adjust h_nr_runnable since dequeue_entities() 5410 * will account it for blocked tasks. 5411 */ 5412 if (!entity_is_task(se)) 5413 return; 5414 5415 for_each_sched_entity(se) { 5416 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5417 5418 cfs_rq->h_nr_runnable--; 5419 if (cfs_rq_throttled(cfs_rq)) 5420 break; 5421 } 5422 } 5423 5424 static void clear_delayed(struct sched_entity *se) 5425 { 5426 se->sched_delayed = 0; 5427 5428 /* 5429 * Delayed se of cfs_rq have no tasks queued on them. 5430 * Do not adjust h_nr_runnable since a dequeue has 5431 * already accounted for it or an enqueue of a task 5432 * below it will account for it in enqueue_task_fair(). 5433 */ 5434 if (!entity_is_task(se)) 5435 return; 5436 5437 for_each_sched_entity(se) { 5438 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5439 5440 cfs_rq->h_nr_runnable++; 5441 if (cfs_rq_throttled(cfs_rq)) 5442 break; 5443 } 5444 } 5445 5446 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5447 { 5448 clear_delayed(se); 5449 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5450 se->vlag = 0; 5451 } 5452 5453 static bool 5454 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5455 { 5456 bool sleep = flags & DEQUEUE_SLEEP; 5457 int action = UPDATE_TG; 5458 5459 update_curr(cfs_rq); 5460 clear_buddies(cfs_rq, se); 5461 5462 if (flags & DEQUEUE_DELAYED) { 5463 SCHED_WARN_ON(!se->sched_delayed); 5464 } else { 5465 bool delay = sleep; 5466 /* 5467 * DELAY_DEQUEUE relies on spurious wakeups, special task 5468 * states must not suffer spurious wakeups, excempt them. 5469 */ 5470 if (flags & DEQUEUE_SPECIAL) 5471 delay = false; 5472 5473 SCHED_WARN_ON(delay && se->sched_delayed); 5474 5475 if (sched_feat(DELAY_DEQUEUE) && delay && 5476 !entity_eligible(cfs_rq, se)) { 5477 update_load_avg(cfs_rq, se, 0); 5478 set_delayed(se); 5479 return false; 5480 } 5481 } 5482 5483 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5484 action |= DO_DETACH; 5485 5486 /* 5487 * When dequeuing a sched_entity, we must: 5488 * - Update loads to have both entity and cfs_rq synced with now. 5489 * - For group_entity, update its runnable_weight to reflect the new 5490 * h_nr_runnable of its group cfs_rq. 5491 * - Subtract its previous weight from cfs_rq->load.weight. 5492 * - For group entity, update its weight to reflect the new share 5493 * of its group cfs_rq. 5494 */ 5495 update_load_avg(cfs_rq, se, action); 5496 se_update_runnable(se); 5497 5498 update_stats_dequeue_fair(cfs_rq, se, flags); 5499 5500 update_entity_lag(cfs_rq, se); 5501 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5502 se->deadline -= se->vruntime; 5503 se->rel_deadline = 1; 5504 } 5505 5506 if (se != cfs_rq->curr) 5507 __dequeue_entity(cfs_rq, se); 5508 se->on_rq = 0; 5509 account_entity_dequeue(cfs_rq, se); 5510 5511 /* return excess runtime on last dequeue */ 5512 return_cfs_rq_runtime(cfs_rq); 5513 5514 update_cfs_group(se); 5515 5516 /* 5517 * Now advance min_vruntime if @se was the entity holding it back, 5518 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5519 * put back on, and if we advance min_vruntime, we'll be placed back 5520 * further than we started -- i.e. we'll be penalized. 5521 */ 5522 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5523 update_min_vruntime(cfs_rq); 5524 5525 if (flags & DEQUEUE_DELAYED) 5526 finish_delayed_dequeue_entity(se); 5527 5528 if (cfs_rq->nr_queued == 0) 5529 update_idle_cfs_rq_clock_pelt(cfs_rq); 5530 5531 return true; 5532 } 5533 5534 static void 5535 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5536 { 5537 clear_buddies(cfs_rq, se); 5538 5539 /* 'current' is not kept within the tree. */ 5540 if (se->on_rq) { 5541 /* 5542 * Any task has to be enqueued before it get to execute on 5543 * a CPU. So account for the time it spent waiting on the 5544 * runqueue. 5545 */ 5546 update_stats_wait_end_fair(cfs_rq, se); 5547 __dequeue_entity(cfs_rq, se); 5548 update_load_avg(cfs_rq, se, UPDATE_TG); 5549 5550 set_protect_slice(se); 5551 } 5552 5553 update_stats_curr_start(cfs_rq, se); 5554 SCHED_WARN_ON(cfs_rq->curr); 5555 cfs_rq->curr = se; 5556 5557 /* 5558 * Track our maximum slice length, if the CPU's load is at 5559 * least twice that of our own weight (i.e. don't track it 5560 * when there are only lesser-weight tasks around): 5561 */ 5562 if (schedstat_enabled() && 5563 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5564 struct sched_statistics *stats; 5565 5566 stats = __schedstats_from_se(se); 5567 __schedstat_set(stats->slice_max, 5568 max((u64)stats->slice_max, 5569 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5570 } 5571 5572 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5573 } 5574 5575 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5576 5577 /* 5578 * Pick the next process, keeping these things in mind, in this order: 5579 * 1) keep things fair between processes/task groups 5580 * 2) pick the "next" process, since someone really wants that to run 5581 * 3) pick the "last" process, for cache locality 5582 * 4) do not run the "skip" process, if something else is available 5583 */ 5584 static struct sched_entity * 5585 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5586 { 5587 struct sched_entity *se; 5588 5589 /* 5590 * Picking the ->next buddy will affect latency but not fairness. 5591 */ 5592 if (sched_feat(PICK_BUDDY) && 5593 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5594 /* ->next will never be delayed */ 5595 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5596 return cfs_rq->next; 5597 } 5598 5599 se = pick_eevdf(cfs_rq); 5600 if (se->sched_delayed) { 5601 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5602 /* 5603 * Must not reference @se again, see __block_task(). 5604 */ 5605 return NULL; 5606 } 5607 return se; 5608 } 5609 5610 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5611 5612 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5613 { 5614 /* 5615 * If still on the runqueue then deactivate_task() 5616 * was not called and update_curr() has to be done: 5617 */ 5618 if (prev->on_rq) 5619 update_curr(cfs_rq); 5620 5621 /* throttle cfs_rqs exceeding runtime */ 5622 check_cfs_rq_runtime(cfs_rq); 5623 5624 if (prev->on_rq) { 5625 update_stats_wait_start_fair(cfs_rq, prev); 5626 /* Put 'current' back into the tree. */ 5627 __enqueue_entity(cfs_rq, prev); 5628 /* in !on_rq case, update occurred at dequeue */ 5629 update_load_avg(cfs_rq, prev, 0); 5630 } 5631 SCHED_WARN_ON(cfs_rq->curr != prev); 5632 cfs_rq->curr = NULL; 5633 } 5634 5635 static void 5636 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5637 { 5638 /* 5639 * Update run-time statistics of the 'current'. 5640 */ 5641 update_curr(cfs_rq); 5642 5643 /* 5644 * Ensure that runnable average is periodically updated. 5645 */ 5646 update_load_avg(cfs_rq, curr, UPDATE_TG); 5647 update_cfs_group(curr); 5648 5649 #ifdef CONFIG_SCHED_HRTICK 5650 /* 5651 * queued ticks are scheduled to match the slice, so don't bother 5652 * validating it and just reschedule. 5653 */ 5654 if (queued) { 5655 resched_curr_lazy(rq_of(cfs_rq)); 5656 return; 5657 } 5658 #endif 5659 } 5660 5661 5662 /************************************************** 5663 * CFS bandwidth control machinery 5664 */ 5665 5666 #ifdef CONFIG_CFS_BANDWIDTH 5667 5668 #ifdef CONFIG_JUMP_LABEL 5669 static struct static_key __cfs_bandwidth_used; 5670 5671 static inline bool cfs_bandwidth_used(void) 5672 { 5673 return static_key_false(&__cfs_bandwidth_used); 5674 } 5675 5676 void cfs_bandwidth_usage_inc(void) 5677 { 5678 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5679 } 5680 5681 void cfs_bandwidth_usage_dec(void) 5682 { 5683 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5684 } 5685 #else /* CONFIG_JUMP_LABEL */ 5686 static bool cfs_bandwidth_used(void) 5687 { 5688 return true; 5689 } 5690 5691 void cfs_bandwidth_usage_inc(void) {} 5692 void cfs_bandwidth_usage_dec(void) {} 5693 #endif /* CONFIG_JUMP_LABEL */ 5694 5695 /* 5696 * default period for cfs group bandwidth. 5697 * default: 0.1s, units: nanoseconds 5698 */ 5699 static inline u64 default_cfs_period(void) 5700 { 5701 return 100000000ULL; 5702 } 5703 5704 static inline u64 sched_cfs_bandwidth_slice(void) 5705 { 5706 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5707 } 5708 5709 /* 5710 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5711 * directly instead of rq->clock to avoid adding additional synchronization 5712 * around rq->lock. 5713 * 5714 * requires cfs_b->lock 5715 */ 5716 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5717 { 5718 s64 runtime; 5719 5720 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5721 return; 5722 5723 cfs_b->runtime += cfs_b->quota; 5724 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5725 if (runtime > 0) { 5726 cfs_b->burst_time += runtime; 5727 cfs_b->nr_burst++; 5728 } 5729 5730 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5731 cfs_b->runtime_snap = cfs_b->runtime; 5732 } 5733 5734 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5735 { 5736 return &tg->cfs_bandwidth; 5737 } 5738 5739 /* returns 0 on failure to allocate runtime */ 5740 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5741 struct cfs_rq *cfs_rq, u64 target_runtime) 5742 { 5743 u64 min_amount, amount = 0; 5744 5745 lockdep_assert_held(&cfs_b->lock); 5746 5747 /* note: this is a positive sum as runtime_remaining <= 0 */ 5748 min_amount = target_runtime - cfs_rq->runtime_remaining; 5749 5750 if (cfs_b->quota == RUNTIME_INF) 5751 amount = min_amount; 5752 else { 5753 start_cfs_bandwidth(cfs_b); 5754 5755 if (cfs_b->runtime > 0) { 5756 amount = min(cfs_b->runtime, min_amount); 5757 cfs_b->runtime -= amount; 5758 cfs_b->idle = 0; 5759 } 5760 } 5761 5762 cfs_rq->runtime_remaining += amount; 5763 5764 return cfs_rq->runtime_remaining > 0; 5765 } 5766 5767 /* returns 0 on failure to allocate runtime */ 5768 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5769 { 5770 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5771 int ret; 5772 5773 raw_spin_lock(&cfs_b->lock); 5774 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5775 raw_spin_unlock(&cfs_b->lock); 5776 5777 return ret; 5778 } 5779 5780 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5781 { 5782 /* dock delta_exec before expiring quota (as it could span periods) */ 5783 cfs_rq->runtime_remaining -= delta_exec; 5784 5785 if (likely(cfs_rq->runtime_remaining > 0)) 5786 return; 5787 5788 if (cfs_rq->throttled) 5789 return; 5790 /* 5791 * if we're unable to extend our runtime we resched so that the active 5792 * hierarchy can be throttled 5793 */ 5794 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5795 resched_curr(rq_of(cfs_rq)); 5796 } 5797 5798 static __always_inline 5799 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5800 { 5801 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5802 return; 5803 5804 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5805 } 5806 5807 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5808 { 5809 return cfs_bandwidth_used() && cfs_rq->throttled; 5810 } 5811 5812 /* check whether cfs_rq, or any parent, is throttled */ 5813 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5814 { 5815 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5816 } 5817 5818 /* 5819 * Ensure that neither of the group entities corresponding to src_cpu or 5820 * dest_cpu are members of a throttled hierarchy when performing group 5821 * load-balance operations. 5822 */ 5823 static inline int throttled_lb_pair(struct task_group *tg, 5824 int src_cpu, int dest_cpu) 5825 { 5826 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5827 5828 src_cfs_rq = tg->cfs_rq[src_cpu]; 5829 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5830 5831 return throttled_hierarchy(src_cfs_rq) || 5832 throttled_hierarchy(dest_cfs_rq); 5833 } 5834 5835 static int tg_unthrottle_up(struct task_group *tg, void *data) 5836 { 5837 struct rq *rq = data; 5838 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5839 5840 cfs_rq->throttle_count--; 5841 if (!cfs_rq->throttle_count) { 5842 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5843 cfs_rq->throttled_clock_pelt; 5844 5845 /* Add cfs_rq with load or one or more already running entities to the list */ 5846 if (!cfs_rq_is_decayed(cfs_rq)) 5847 list_add_leaf_cfs_rq(cfs_rq); 5848 5849 if (cfs_rq->throttled_clock_self) { 5850 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5851 5852 cfs_rq->throttled_clock_self = 0; 5853 5854 if (SCHED_WARN_ON((s64)delta < 0)) 5855 delta = 0; 5856 5857 cfs_rq->throttled_clock_self_time += delta; 5858 } 5859 } 5860 5861 return 0; 5862 } 5863 5864 static int tg_throttle_down(struct task_group *tg, void *data) 5865 { 5866 struct rq *rq = data; 5867 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5868 5869 /* group is entering throttled state, stop time */ 5870 if (!cfs_rq->throttle_count) { 5871 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5872 list_del_leaf_cfs_rq(cfs_rq); 5873 5874 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5875 if (cfs_rq->nr_queued) 5876 cfs_rq->throttled_clock_self = rq_clock(rq); 5877 } 5878 cfs_rq->throttle_count++; 5879 5880 return 0; 5881 } 5882 5883 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5884 { 5885 struct rq *rq = rq_of(cfs_rq); 5886 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5887 struct sched_entity *se; 5888 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5889 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5890 5891 raw_spin_lock(&cfs_b->lock); 5892 /* This will start the period timer if necessary */ 5893 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5894 /* 5895 * We have raced with bandwidth becoming available, and if we 5896 * actually throttled the timer might not unthrottle us for an 5897 * entire period. We additionally needed to make sure that any 5898 * subsequent check_cfs_rq_runtime calls agree not to throttle 5899 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5900 * for 1ns of runtime rather than just check cfs_b. 5901 */ 5902 dequeue = 0; 5903 } else { 5904 list_add_tail_rcu(&cfs_rq->throttled_list, 5905 &cfs_b->throttled_cfs_rq); 5906 } 5907 raw_spin_unlock(&cfs_b->lock); 5908 5909 if (!dequeue) 5910 return false; /* Throttle no longer required. */ 5911 5912 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5913 5914 /* freeze hierarchy runnable averages while throttled */ 5915 rcu_read_lock(); 5916 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5917 rcu_read_unlock(); 5918 5919 queued_delta = cfs_rq->h_nr_queued; 5920 runnable_delta = cfs_rq->h_nr_runnable; 5921 idle_delta = cfs_rq->h_nr_idle; 5922 for_each_sched_entity(se) { 5923 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5924 int flags; 5925 5926 /* throttled entity or throttle-on-deactivate */ 5927 if (!se->on_rq) 5928 goto done; 5929 5930 /* 5931 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5932 * This avoids teaching dequeue_entities() about throttled 5933 * entities and keeps things relatively simple. 5934 */ 5935 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5936 if (se->sched_delayed) 5937 flags |= DEQUEUE_DELAYED; 5938 dequeue_entity(qcfs_rq, se, flags); 5939 5940 if (cfs_rq_is_idle(group_cfs_rq(se))) 5941 idle_delta = cfs_rq->h_nr_queued; 5942 5943 qcfs_rq->h_nr_queued -= queued_delta; 5944 qcfs_rq->h_nr_runnable -= runnable_delta; 5945 qcfs_rq->h_nr_idle -= idle_delta; 5946 5947 if (qcfs_rq->load.weight) { 5948 /* Avoid re-evaluating load for this entity: */ 5949 se = parent_entity(se); 5950 break; 5951 } 5952 } 5953 5954 for_each_sched_entity(se) { 5955 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5956 /* throttled entity or throttle-on-deactivate */ 5957 if (!se->on_rq) 5958 goto done; 5959 5960 update_load_avg(qcfs_rq, se, 0); 5961 se_update_runnable(se); 5962 5963 if (cfs_rq_is_idle(group_cfs_rq(se))) 5964 idle_delta = cfs_rq->h_nr_queued; 5965 5966 qcfs_rq->h_nr_queued -= queued_delta; 5967 qcfs_rq->h_nr_runnable -= runnable_delta; 5968 qcfs_rq->h_nr_idle -= idle_delta; 5969 } 5970 5971 /* At this point se is NULL and we are at root level*/ 5972 sub_nr_running(rq, queued_delta); 5973 5974 /* Stop the fair server if throttling resulted in no runnable tasks */ 5975 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5976 dl_server_stop(&rq->fair_server); 5977 done: 5978 /* 5979 * Note: distribution will already see us throttled via the 5980 * throttled-list. rq->lock protects completion. 5981 */ 5982 cfs_rq->throttled = 1; 5983 SCHED_WARN_ON(cfs_rq->throttled_clock); 5984 if (cfs_rq->nr_queued) 5985 cfs_rq->throttled_clock = rq_clock(rq); 5986 return true; 5987 } 5988 5989 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5990 { 5991 struct rq *rq = rq_of(cfs_rq); 5992 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5993 struct sched_entity *se; 5994 long queued_delta, runnable_delta, idle_delta; 5995 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5996 5997 se = cfs_rq->tg->se[cpu_of(rq)]; 5998 5999 cfs_rq->throttled = 0; 6000 6001 update_rq_clock(rq); 6002 6003 raw_spin_lock(&cfs_b->lock); 6004 if (cfs_rq->throttled_clock) { 6005 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6006 cfs_rq->throttled_clock = 0; 6007 } 6008 list_del_rcu(&cfs_rq->throttled_list); 6009 raw_spin_unlock(&cfs_b->lock); 6010 6011 /* update hierarchical throttle state */ 6012 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6013 6014 if (!cfs_rq->load.weight) { 6015 if (!cfs_rq->on_list) 6016 return; 6017 /* 6018 * Nothing to run but something to decay (on_list)? 6019 * Complete the branch. 6020 */ 6021 for_each_sched_entity(se) { 6022 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6023 break; 6024 } 6025 goto unthrottle_throttle; 6026 } 6027 6028 queued_delta = cfs_rq->h_nr_queued; 6029 runnable_delta = cfs_rq->h_nr_runnable; 6030 idle_delta = cfs_rq->h_nr_idle; 6031 for_each_sched_entity(se) { 6032 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6033 6034 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6035 if (se->sched_delayed) { 6036 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6037 6038 dequeue_entity(qcfs_rq, se, flags); 6039 } else if (se->on_rq) 6040 break; 6041 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6042 6043 if (cfs_rq_is_idle(group_cfs_rq(se))) 6044 idle_delta = cfs_rq->h_nr_queued; 6045 6046 qcfs_rq->h_nr_queued += queued_delta; 6047 qcfs_rq->h_nr_runnable += runnable_delta; 6048 qcfs_rq->h_nr_idle += idle_delta; 6049 6050 /* end evaluation on encountering a throttled cfs_rq */ 6051 if (cfs_rq_throttled(qcfs_rq)) 6052 goto unthrottle_throttle; 6053 } 6054 6055 for_each_sched_entity(se) { 6056 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6057 6058 update_load_avg(qcfs_rq, se, UPDATE_TG); 6059 se_update_runnable(se); 6060 6061 if (cfs_rq_is_idle(group_cfs_rq(se))) 6062 idle_delta = cfs_rq->h_nr_queued; 6063 6064 qcfs_rq->h_nr_queued += queued_delta; 6065 qcfs_rq->h_nr_runnable += runnable_delta; 6066 qcfs_rq->h_nr_idle += idle_delta; 6067 6068 /* end evaluation on encountering a throttled cfs_rq */ 6069 if (cfs_rq_throttled(qcfs_rq)) 6070 goto unthrottle_throttle; 6071 } 6072 6073 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6074 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6075 dl_server_start(&rq->fair_server); 6076 6077 /* At this point se is NULL and we are at root level*/ 6078 add_nr_running(rq, queued_delta); 6079 6080 unthrottle_throttle: 6081 assert_list_leaf_cfs_rq(rq); 6082 6083 /* Determine whether we need to wake up potentially idle CPU: */ 6084 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6085 resched_curr(rq); 6086 } 6087 6088 #ifdef CONFIG_SMP 6089 static void __cfsb_csd_unthrottle(void *arg) 6090 { 6091 struct cfs_rq *cursor, *tmp; 6092 struct rq *rq = arg; 6093 struct rq_flags rf; 6094 6095 rq_lock(rq, &rf); 6096 6097 /* 6098 * Iterating over the list can trigger several call to 6099 * update_rq_clock() in unthrottle_cfs_rq(). 6100 * Do it once and skip the potential next ones. 6101 */ 6102 update_rq_clock(rq); 6103 rq_clock_start_loop_update(rq); 6104 6105 /* 6106 * Since we hold rq lock we're safe from concurrent manipulation of 6107 * the CSD list. However, this RCU critical section annotates the 6108 * fact that we pair with sched_free_group_rcu(), so that we cannot 6109 * race with group being freed in the window between removing it 6110 * from the list and advancing to the next entry in the list. 6111 */ 6112 rcu_read_lock(); 6113 6114 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6115 throttled_csd_list) { 6116 list_del_init(&cursor->throttled_csd_list); 6117 6118 if (cfs_rq_throttled(cursor)) 6119 unthrottle_cfs_rq(cursor); 6120 } 6121 6122 rcu_read_unlock(); 6123 6124 rq_clock_stop_loop_update(rq); 6125 rq_unlock(rq, &rf); 6126 } 6127 6128 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6129 { 6130 struct rq *rq = rq_of(cfs_rq); 6131 bool first; 6132 6133 if (rq == this_rq()) { 6134 unthrottle_cfs_rq(cfs_rq); 6135 return; 6136 } 6137 6138 /* Already enqueued */ 6139 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6140 return; 6141 6142 first = list_empty(&rq->cfsb_csd_list); 6143 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6144 if (first) 6145 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6146 } 6147 #else 6148 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6149 { 6150 unthrottle_cfs_rq(cfs_rq); 6151 } 6152 #endif 6153 6154 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6155 { 6156 lockdep_assert_rq_held(rq_of(cfs_rq)); 6157 6158 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6159 cfs_rq->runtime_remaining <= 0)) 6160 return; 6161 6162 __unthrottle_cfs_rq_async(cfs_rq); 6163 } 6164 6165 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6166 { 6167 int this_cpu = smp_processor_id(); 6168 u64 runtime, remaining = 1; 6169 bool throttled = false; 6170 struct cfs_rq *cfs_rq, *tmp; 6171 struct rq_flags rf; 6172 struct rq *rq; 6173 LIST_HEAD(local_unthrottle); 6174 6175 rcu_read_lock(); 6176 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6177 throttled_list) { 6178 rq = rq_of(cfs_rq); 6179 6180 if (!remaining) { 6181 throttled = true; 6182 break; 6183 } 6184 6185 rq_lock_irqsave(rq, &rf); 6186 if (!cfs_rq_throttled(cfs_rq)) 6187 goto next; 6188 6189 /* Already queued for async unthrottle */ 6190 if (!list_empty(&cfs_rq->throttled_csd_list)) 6191 goto next; 6192 6193 /* By the above checks, this should never be true */ 6194 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6195 6196 raw_spin_lock(&cfs_b->lock); 6197 runtime = -cfs_rq->runtime_remaining + 1; 6198 if (runtime > cfs_b->runtime) 6199 runtime = cfs_b->runtime; 6200 cfs_b->runtime -= runtime; 6201 remaining = cfs_b->runtime; 6202 raw_spin_unlock(&cfs_b->lock); 6203 6204 cfs_rq->runtime_remaining += runtime; 6205 6206 /* we check whether we're throttled above */ 6207 if (cfs_rq->runtime_remaining > 0) { 6208 if (cpu_of(rq) != this_cpu) { 6209 unthrottle_cfs_rq_async(cfs_rq); 6210 } else { 6211 /* 6212 * We currently only expect to be unthrottling 6213 * a single cfs_rq locally. 6214 */ 6215 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6216 list_add_tail(&cfs_rq->throttled_csd_list, 6217 &local_unthrottle); 6218 } 6219 } else { 6220 throttled = true; 6221 } 6222 6223 next: 6224 rq_unlock_irqrestore(rq, &rf); 6225 } 6226 6227 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6228 throttled_csd_list) { 6229 struct rq *rq = rq_of(cfs_rq); 6230 6231 rq_lock_irqsave(rq, &rf); 6232 6233 list_del_init(&cfs_rq->throttled_csd_list); 6234 6235 if (cfs_rq_throttled(cfs_rq)) 6236 unthrottle_cfs_rq(cfs_rq); 6237 6238 rq_unlock_irqrestore(rq, &rf); 6239 } 6240 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6241 6242 rcu_read_unlock(); 6243 6244 return throttled; 6245 } 6246 6247 /* 6248 * Responsible for refilling a task_group's bandwidth and unthrottling its 6249 * cfs_rqs as appropriate. If there has been no activity within the last 6250 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6251 * used to track this state. 6252 */ 6253 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6254 { 6255 int throttled; 6256 6257 /* no need to continue the timer with no bandwidth constraint */ 6258 if (cfs_b->quota == RUNTIME_INF) 6259 goto out_deactivate; 6260 6261 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6262 cfs_b->nr_periods += overrun; 6263 6264 /* Refill extra burst quota even if cfs_b->idle */ 6265 __refill_cfs_bandwidth_runtime(cfs_b); 6266 6267 /* 6268 * idle depends on !throttled (for the case of a large deficit), and if 6269 * we're going inactive then everything else can be deferred 6270 */ 6271 if (cfs_b->idle && !throttled) 6272 goto out_deactivate; 6273 6274 if (!throttled) { 6275 /* mark as potentially idle for the upcoming period */ 6276 cfs_b->idle = 1; 6277 return 0; 6278 } 6279 6280 /* account preceding periods in which throttling occurred */ 6281 cfs_b->nr_throttled += overrun; 6282 6283 /* 6284 * This check is repeated as we release cfs_b->lock while we unthrottle. 6285 */ 6286 while (throttled && cfs_b->runtime > 0) { 6287 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6288 /* we can't nest cfs_b->lock while distributing bandwidth */ 6289 throttled = distribute_cfs_runtime(cfs_b); 6290 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6291 } 6292 6293 /* 6294 * While we are ensured activity in the period following an 6295 * unthrottle, this also covers the case in which the new bandwidth is 6296 * insufficient to cover the existing bandwidth deficit. (Forcing the 6297 * timer to remain active while there are any throttled entities.) 6298 */ 6299 cfs_b->idle = 0; 6300 6301 return 0; 6302 6303 out_deactivate: 6304 return 1; 6305 } 6306 6307 /* a cfs_rq won't donate quota below this amount */ 6308 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6309 /* minimum remaining period time to redistribute slack quota */ 6310 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6311 /* how long we wait to gather additional slack before distributing */ 6312 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6313 6314 /* 6315 * Are we near the end of the current quota period? 6316 * 6317 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6318 * hrtimer base being cleared by hrtimer_start. In the case of 6319 * migrate_hrtimers, base is never cleared, so we are fine. 6320 */ 6321 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6322 { 6323 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6324 s64 remaining; 6325 6326 /* if the call-back is running a quota refresh is already occurring */ 6327 if (hrtimer_callback_running(refresh_timer)) 6328 return 1; 6329 6330 /* is a quota refresh about to occur? */ 6331 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6332 if (remaining < (s64)min_expire) 6333 return 1; 6334 6335 return 0; 6336 } 6337 6338 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6339 { 6340 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6341 6342 /* if there's a quota refresh soon don't bother with slack */ 6343 if (runtime_refresh_within(cfs_b, min_left)) 6344 return; 6345 6346 /* don't push forwards an existing deferred unthrottle */ 6347 if (cfs_b->slack_started) 6348 return; 6349 cfs_b->slack_started = true; 6350 6351 hrtimer_start(&cfs_b->slack_timer, 6352 ns_to_ktime(cfs_bandwidth_slack_period), 6353 HRTIMER_MODE_REL); 6354 } 6355 6356 /* we know any runtime found here is valid as update_curr() precedes return */ 6357 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6358 { 6359 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6360 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6361 6362 if (slack_runtime <= 0) 6363 return; 6364 6365 raw_spin_lock(&cfs_b->lock); 6366 if (cfs_b->quota != RUNTIME_INF) { 6367 cfs_b->runtime += slack_runtime; 6368 6369 /* we are under rq->lock, defer unthrottling using a timer */ 6370 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6371 !list_empty(&cfs_b->throttled_cfs_rq)) 6372 start_cfs_slack_bandwidth(cfs_b); 6373 } 6374 raw_spin_unlock(&cfs_b->lock); 6375 6376 /* even if it's not valid for return we don't want to try again */ 6377 cfs_rq->runtime_remaining -= slack_runtime; 6378 } 6379 6380 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6381 { 6382 if (!cfs_bandwidth_used()) 6383 return; 6384 6385 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6386 return; 6387 6388 __return_cfs_rq_runtime(cfs_rq); 6389 } 6390 6391 /* 6392 * This is done with a timer (instead of inline with bandwidth return) since 6393 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6394 */ 6395 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6396 { 6397 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6398 unsigned long flags; 6399 6400 /* confirm we're still not at a refresh boundary */ 6401 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6402 cfs_b->slack_started = false; 6403 6404 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6405 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6406 return; 6407 } 6408 6409 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6410 runtime = cfs_b->runtime; 6411 6412 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6413 6414 if (!runtime) 6415 return; 6416 6417 distribute_cfs_runtime(cfs_b); 6418 } 6419 6420 /* 6421 * When a group wakes up we want to make sure that its quota is not already 6422 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6423 * runtime as update_curr() throttling can not trigger until it's on-rq. 6424 */ 6425 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6426 { 6427 if (!cfs_bandwidth_used()) 6428 return; 6429 6430 /* an active group must be handled by the update_curr()->put() path */ 6431 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6432 return; 6433 6434 /* ensure the group is not already throttled */ 6435 if (cfs_rq_throttled(cfs_rq)) 6436 return; 6437 6438 /* update runtime allocation */ 6439 account_cfs_rq_runtime(cfs_rq, 0); 6440 if (cfs_rq->runtime_remaining <= 0) 6441 throttle_cfs_rq(cfs_rq); 6442 } 6443 6444 static void sync_throttle(struct task_group *tg, int cpu) 6445 { 6446 struct cfs_rq *pcfs_rq, *cfs_rq; 6447 6448 if (!cfs_bandwidth_used()) 6449 return; 6450 6451 if (!tg->parent) 6452 return; 6453 6454 cfs_rq = tg->cfs_rq[cpu]; 6455 pcfs_rq = tg->parent->cfs_rq[cpu]; 6456 6457 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6458 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6459 } 6460 6461 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6462 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6463 { 6464 if (!cfs_bandwidth_used()) 6465 return false; 6466 6467 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6468 return false; 6469 6470 /* 6471 * it's possible for a throttled entity to be forced into a running 6472 * state (e.g. set_curr_task), in this case we're finished. 6473 */ 6474 if (cfs_rq_throttled(cfs_rq)) 6475 return true; 6476 6477 return throttle_cfs_rq(cfs_rq); 6478 } 6479 6480 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6481 { 6482 struct cfs_bandwidth *cfs_b = 6483 container_of(timer, struct cfs_bandwidth, slack_timer); 6484 6485 do_sched_cfs_slack_timer(cfs_b); 6486 6487 return HRTIMER_NORESTART; 6488 } 6489 6490 extern const u64 max_cfs_quota_period; 6491 6492 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6493 { 6494 struct cfs_bandwidth *cfs_b = 6495 container_of(timer, struct cfs_bandwidth, period_timer); 6496 unsigned long flags; 6497 int overrun; 6498 int idle = 0; 6499 int count = 0; 6500 6501 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6502 for (;;) { 6503 overrun = hrtimer_forward_now(timer, cfs_b->period); 6504 if (!overrun) 6505 break; 6506 6507 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6508 6509 if (++count > 3) { 6510 u64 new, old = ktime_to_ns(cfs_b->period); 6511 6512 /* 6513 * Grow period by a factor of 2 to avoid losing precision. 6514 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6515 * to fail. 6516 */ 6517 new = old * 2; 6518 if (new < max_cfs_quota_period) { 6519 cfs_b->period = ns_to_ktime(new); 6520 cfs_b->quota *= 2; 6521 cfs_b->burst *= 2; 6522 6523 pr_warn_ratelimited( 6524 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6525 smp_processor_id(), 6526 div_u64(new, NSEC_PER_USEC), 6527 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6528 } else { 6529 pr_warn_ratelimited( 6530 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6531 smp_processor_id(), 6532 div_u64(old, NSEC_PER_USEC), 6533 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6534 } 6535 6536 /* reset count so we don't come right back in here */ 6537 count = 0; 6538 } 6539 } 6540 if (idle) 6541 cfs_b->period_active = 0; 6542 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6543 6544 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6545 } 6546 6547 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6548 { 6549 raw_spin_lock_init(&cfs_b->lock); 6550 cfs_b->runtime = 0; 6551 cfs_b->quota = RUNTIME_INF; 6552 cfs_b->period = ns_to_ktime(default_cfs_period()); 6553 cfs_b->burst = 0; 6554 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6555 6556 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6557 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6558 cfs_b->period_timer.function = sched_cfs_period_timer; 6559 6560 /* Add a random offset so that timers interleave */ 6561 hrtimer_set_expires(&cfs_b->period_timer, 6562 get_random_u32_below(cfs_b->period)); 6563 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6564 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6565 cfs_b->slack_started = false; 6566 } 6567 6568 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6569 { 6570 cfs_rq->runtime_enabled = 0; 6571 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6572 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6573 } 6574 6575 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6576 { 6577 lockdep_assert_held(&cfs_b->lock); 6578 6579 if (cfs_b->period_active) 6580 return; 6581 6582 cfs_b->period_active = 1; 6583 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6584 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6585 } 6586 6587 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6588 { 6589 int __maybe_unused i; 6590 6591 /* init_cfs_bandwidth() was not called */ 6592 if (!cfs_b->throttled_cfs_rq.next) 6593 return; 6594 6595 hrtimer_cancel(&cfs_b->period_timer); 6596 hrtimer_cancel(&cfs_b->slack_timer); 6597 6598 /* 6599 * It is possible that we still have some cfs_rq's pending on a CSD 6600 * list, though this race is very rare. In order for this to occur, we 6601 * must have raced with the last task leaving the group while there 6602 * exist throttled cfs_rq(s), and the period_timer must have queued the 6603 * CSD item but the remote cpu has not yet processed it. To handle this, 6604 * we can simply flush all pending CSD work inline here. We're 6605 * guaranteed at this point that no additional cfs_rq of this group can 6606 * join a CSD list. 6607 */ 6608 #ifdef CONFIG_SMP 6609 for_each_possible_cpu(i) { 6610 struct rq *rq = cpu_rq(i); 6611 unsigned long flags; 6612 6613 if (list_empty(&rq->cfsb_csd_list)) 6614 continue; 6615 6616 local_irq_save(flags); 6617 __cfsb_csd_unthrottle(rq); 6618 local_irq_restore(flags); 6619 } 6620 #endif 6621 } 6622 6623 /* 6624 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6625 * 6626 * The race is harmless, since modifying bandwidth settings of unhooked group 6627 * bits doesn't do much. 6628 */ 6629 6630 /* cpu online callback */ 6631 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6632 { 6633 struct task_group *tg; 6634 6635 lockdep_assert_rq_held(rq); 6636 6637 rcu_read_lock(); 6638 list_for_each_entry_rcu(tg, &task_groups, list) { 6639 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6640 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6641 6642 raw_spin_lock(&cfs_b->lock); 6643 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6644 raw_spin_unlock(&cfs_b->lock); 6645 } 6646 rcu_read_unlock(); 6647 } 6648 6649 /* cpu offline callback */ 6650 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6651 { 6652 struct task_group *tg; 6653 6654 lockdep_assert_rq_held(rq); 6655 6656 // Do not unthrottle for an active CPU 6657 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6658 return; 6659 6660 /* 6661 * The rq clock has already been updated in the 6662 * set_rq_offline(), so we should skip updating 6663 * the rq clock again in unthrottle_cfs_rq(). 6664 */ 6665 rq_clock_start_loop_update(rq); 6666 6667 rcu_read_lock(); 6668 list_for_each_entry_rcu(tg, &task_groups, list) { 6669 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6670 6671 if (!cfs_rq->runtime_enabled) 6672 continue; 6673 6674 /* 6675 * Offline rq is schedulable till CPU is completely disabled 6676 * in take_cpu_down(), so we prevent new cfs throttling here. 6677 */ 6678 cfs_rq->runtime_enabled = 0; 6679 6680 if (!cfs_rq_throttled(cfs_rq)) 6681 continue; 6682 6683 /* 6684 * clock_task is not advancing so we just need to make sure 6685 * there's some valid quota amount 6686 */ 6687 cfs_rq->runtime_remaining = 1; 6688 unthrottle_cfs_rq(cfs_rq); 6689 } 6690 rcu_read_unlock(); 6691 6692 rq_clock_stop_loop_update(rq); 6693 } 6694 6695 bool cfs_task_bw_constrained(struct task_struct *p) 6696 { 6697 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6698 6699 if (!cfs_bandwidth_used()) 6700 return false; 6701 6702 if (cfs_rq->runtime_enabled || 6703 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6704 return true; 6705 6706 return false; 6707 } 6708 6709 #ifdef CONFIG_NO_HZ_FULL 6710 /* called from pick_next_task_fair() */ 6711 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6712 { 6713 int cpu = cpu_of(rq); 6714 6715 if (!cfs_bandwidth_used()) 6716 return; 6717 6718 if (!tick_nohz_full_cpu(cpu)) 6719 return; 6720 6721 if (rq->nr_running != 1) 6722 return; 6723 6724 /* 6725 * We know there is only one task runnable and we've just picked it. The 6726 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6727 * be otherwise able to stop the tick. Just need to check if we are using 6728 * bandwidth control. 6729 */ 6730 if (cfs_task_bw_constrained(p)) 6731 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6732 } 6733 #endif 6734 6735 #else /* CONFIG_CFS_BANDWIDTH */ 6736 6737 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6738 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6739 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6740 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6741 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6742 6743 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6744 { 6745 return 0; 6746 } 6747 6748 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6749 { 6750 return 0; 6751 } 6752 6753 static inline int throttled_lb_pair(struct task_group *tg, 6754 int src_cpu, int dest_cpu) 6755 { 6756 return 0; 6757 } 6758 6759 #ifdef CONFIG_FAIR_GROUP_SCHED 6760 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6761 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6762 #endif 6763 6764 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6765 { 6766 return NULL; 6767 } 6768 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6769 static inline void update_runtime_enabled(struct rq *rq) {} 6770 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6771 #ifdef CONFIG_CGROUP_SCHED 6772 bool cfs_task_bw_constrained(struct task_struct *p) 6773 { 6774 return false; 6775 } 6776 #endif 6777 #endif /* CONFIG_CFS_BANDWIDTH */ 6778 6779 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6780 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6781 #endif 6782 6783 /************************************************** 6784 * CFS operations on tasks: 6785 */ 6786 6787 #ifdef CONFIG_SCHED_HRTICK 6788 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6789 { 6790 struct sched_entity *se = &p->se; 6791 6792 SCHED_WARN_ON(task_rq(p) != rq); 6793 6794 if (rq->cfs.h_nr_queued > 1) { 6795 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6796 u64 slice = se->slice; 6797 s64 delta = slice - ran; 6798 6799 if (delta < 0) { 6800 if (task_current_donor(rq, p)) 6801 resched_curr(rq); 6802 return; 6803 } 6804 hrtick_start(rq, delta); 6805 } 6806 } 6807 6808 /* 6809 * called from enqueue/dequeue and updates the hrtick when the 6810 * current task is from our class and nr_running is low enough 6811 * to matter. 6812 */ 6813 static void hrtick_update(struct rq *rq) 6814 { 6815 struct task_struct *donor = rq->donor; 6816 6817 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6818 return; 6819 6820 hrtick_start_fair(rq, donor); 6821 } 6822 #else /* !CONFIG_SCHED_HRTICK */ 6823 static inline void 6824 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6825 { 6826 } 6827 6828 static inline void hrtick_update(struct rq *rq) 6829 { 6830 } 6831 #endif 6832 6833 #ifdef CONFIG_SMP 6834 static inline bool cpu_overutilized(int cpu) 6835 { 6836 unsigned long rq_util_min, rq_util_max; 6837 6838 if (!sched_energy_enabled()) 6839 return false; 6840 6841 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6842 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6843 6844 /* Return true only if the utilization doesn't fit CPU's capacity */ 6845 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6846 } 6847 6848 /* 6849 * overutilized value make sense only if EAS is enabled 6850 */ 6851 static inline bool is_rd_overutilized(struct root_domain *rd) 6852 { 6853 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6854 } 6855 6856 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6857 { 6858 if (!sched_energy_enabled()) 6859 return; 6860 6861 WRITE_ONCE(rd->overutilized, flag); 6862 trace_sched_overutilized_tp(rd, flag); 6863 } 6864 6865 static inline void check_update_overutilized_status(struct rq *rq) 6866 { 6867 /* 6868 * overutilized field is used for load balancing decisions only 6869 * if energy aware scheduler is being used 6870 */ 6871 6872 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6873 set_rd_overutilized(rq->rd, 1); 6874 } 6875 #else 6876 static inline void check_update_overutilized_status(struct rq *rq) { } 6877 #endif 6878 6879 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6880 static int sched_idle_rq(struct rq *rq) 6881 { 6882 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6883 rq->nr_running); 6884 } 6885 6886 #ifdef CONFIG_SMP 6887 static int sched_idle_cpu(int cpu) 6888 { 6889 return sched_idle_rq(cpu_rq(cpu)); 6890 } 6891 #endif 6892 6893 static void 6894 requeue_delayed_entity(struct sched_entity *se) 6895 { 6896 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6897 6898 /* 6899 * se->sched_delayed should imply: se->on_rq == 1. 6900 * Because a delayed entity is one that is still on 6901 * the runqueue competing until elegibility. 6902 */ 6903 SCHED_WARN_ON(!se->sched_delayed); 6904 SCHED_WARN_ON(!se->on_rq); 6905 6906 if (sched_feat(DELAY_ZERO)) { 6907 update_entity_lag(cfs_rq, se); 6908 if (se->vlag > 0) { 6909 cfs_rq->nr_queued--; 6910 if (se != cfs_rq->curr) 6911 __dequeue_entity(cfs_rq, se); 6912 se->vlag = 0; 6913 place_entity(cfs_rq, se, 0); 6914 if (se != cfs_rq->curr) 6915 __enqueue_entity(cfs_rq, se); 6916 cfs_rq->nr_queued++; 6917 } 6918 } 6919 6920 update_load_avg(cfs_rq, se, 0); 6921 clear_delayed(se); 6922 } 6923 6924 /* 6925 * The enqueue_task method is called before nr_running is 6926 * increased. Here we update the fair scheduling stats and 6927 * then put the task into the rbtree: 6928 */ 6929 static void 6930 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6931 { 6932 struct cfs_rq *cfs_rq; 6933 struct sched_entity *se = &p->se; 6934 int h_nr_idle = task_has_idle_policy(p); 6935 int h_nr_runnable = 1; 6936 int task_new = !(flags & ENQUEUE_WAKEUP); 6937 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6938 u64 slice = 0; 6939 6940 /* 6941 * The code below (indirectly) updates schedutil which looks at 6942 * the cfs_rq utilization to select a frequency. 6943 * Let's add the task's estimated utilization to the cfs_rq's 6944 * estimated utilization, before we update schedutil. 6945 */ 6946 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6947 util_est_enqueue(&rq->cfs, p); 6948 6949 if (flags & ENQUEUE_DELAYED) { 6950 requeue_delayed_entity(se); 6951 return; 6952 } 6953 6954 /* 6955 * If in_iowait is set, the code below may not trigger any cpufreq 6956 * utilization updates, so do it here explicitly with the IOWAIT flag 6957 * passed. 6958 */ 6959 if (p->in_iowait) 6960 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6961 6962 if (task_new && se->sched_delayed) 6963 h_nr_runnable = 0; 6964 6965 for_each_sched_entity(se) { 6966 if (se->on_rq) { 6967 if (se->sched_delayed) 6968 requeue_delayed_entity(se); 6969 break; 6970 } 6971 cfs_rq = cfs_rq_of(se); 6972 6973 /* 6974 * Basically set the slice of group entries to the min_slice of 6975 * their respective cfs_rq. This ensures the group can service 6976 * its entities in the desired time-frame. 6977 */ 6978 if (slice) { 6979 se->slice = slice; 6980 se->custom_slice = 1; 6981 } 6982 enqueue_entity(cfs_rq, se, flags); 6983 slice = cfs_rq_min_slice(cfs_rq); 6984 6985 cfs_rq->h_nr_runnable += h_nr_runnable; 6986 cfs_rq->h_nr_queued++; 6987 cfs_rq->h_nr_idle += h_nr_idle; 6988 6989 if (cfs_rq_is_idle(cfs_rq)) 6990 h_nr_idle = 1; 6991 6992 /* end evaluation on encountering a throttled cfs_rq */ 6993 if (cfs_rq_throttled(cfs_rq)) 6994 goto enqueue_throttle; 6995 6996 flags = ENQUEUE_WAKEUP; 6997 } 6998 6999 for_each_sched_entity(se) { 7000 cfs_rq = cfs_rq_of(se); 7001 7002 update_load_avg(cfs_rq, se, UPDATE_TG); 7003 se_update_runnable(se); 7004 update_cfs_group(se); 7005 7006 se->slice = slice; 7007 if (se != cfs_rq->curr) 7008 min_vruntime_cb_propagate(&se->run_node, NULL); 7009 slice = cfs_rq_min_slice(cfs_rq); 7010 7011 cfs_rq->h_nr_runnable += h_nr_runnable; 7012 cfs_rq->h_nr_queued++; 7013 cfs_rq->h_nr_idle += h_nr_idle; 7014 7015 if (cfs_rq_is_idle(cfs_rq)) 7016 h_nr_idle = 1; 7017 7018 /* end evaluation on encountering a throttled cfs_rq */ 7019 if (cfs_rq_throttled(cfs_rq)) 7020 goto enqueue_throttle; 7021 } 7022 7023 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 7024 /* Account for idle runtime */ 7025 if (!rq->nr_running) 7026 dl_server_update_idle_time(rq, rq->curr); 7027 dl_server_start(&rq->fair_server); 7028 } 7029 7030 /* At this point se is NULL and we are at root level*/ 7031 add_nr_running(rq, 1); 7032 7033 /* 7034 * Since new tasks are assigned an initial util_avg equal to 7035 * half of the spare capacity of their CPU, tiny tasks have the 7036 * ability to cross the overutilized threshold, which will 7037 * result in the load balancer ruining all the task placement 7038 * done by EAS. As a way to mitigate that effect, do not account 7039 * for the first enqueue operation of new tasks during the 7040 * overutilized flag detection. 7041 * 7042 * A better way of solving this problem would be to wait for 7043 * the PELT signals of tasks to converge before taking them 7044 * into account, but that is not straightforward to implement, 7045 * and the following generally works well enough in practice. 7046 */ 7047 if (!task_new) 7048 check_update_overutilized_status(rq); 7049 7050 enqueue_throttle: 7051 assert_list_leaf_cfs_rq(rq); 7052 7053 hrtick_update(rq); 7054 } 7055 7056 static void set_next_buddy(struct sched_entity *se); 7057 7058 /* 7059 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7060 * failing half-way through and resume the dequeue later. 7061 * 7062 * Returns: 7063 * -1 - dequeue delayed 7064 * 0 - dequeue throttled 7065 * 1 - dequeue complete 7066 */ 7067 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7068 { 7069 bool was_sched_idle = sched_idle_rq(rq); 7070 int rq_h_nr_queued = rq->cfs.h_nr_queued; 7071 bool task_sleep = flags & DEQUEUE_SLEEP; 7072 bool task_delayed = flags & DEQUEUE_DELAYED; 7073 struct task_struct *p = NULL; 7074 int h_nr_idle = 0; 7075 int h_nr_queued = 0; 7076 int h_nr_runnable = 0; 7077 struct cfs_rq *cfs_rq; 7078 u64 slice = 0; 7079 7080 if (entity_is_task(se)) { 7081 p = task_of(se); 7082 h_nr_queued = 1; 7083 h_nr_idle = task_has_idle_policy(p); 7084 if (task_sleep || task_delayed || !se->sched_delayed) 7085 h_nr_runnable = 1; 7086 } else { 7087 cfs_rq = group_cfs_rq(se); 7088 slice = cfs_rq_min_slice(cfs_rq); 7089 } 7090 7091 for_each_sched_entity(se) { 7092 cfs_rq = cfs_rq_of(se); 7093 7094 if (!dequeue_entity(cfs_rq, se, flags)) { 7095 if (p && &p->se == se) 7096 return -1; 7097 7098 break; 7099 } 7100 7101 cfs_rq->h_nr_runnable -= h_nr_runnable; 7102 cfs_rq->h_nr_queued -= h_nr_queued; 7103 cfs_rq->h_nr_idle -= h_nr_idle; 7104 7105 if (cfs_rq_is_idle(cfs_rq)) 7106 h_nr_idle = h_nr_queued; 7107 7108 /* end evaluation on encountering a throttled cfs_rq */ 7109 if (cfs_rq_throttled(cfs_rq)) 7110 return 0; 7111 7112 /* Don't dequeue parent if it has other entities besides us */ 7113 if (cfs_rq->load.weight) { 7114 slice = cfs_rq_min_slice(cfs_rq); 7115 7116 /* Avoid re-evaluating load for this entity: */ 7117 se = parent_entity(se); 7118 /* 7119 * Bias pick_next to pick a task from this cfs_rq, as 7120 * p is sleeping when it is within its sched_slice. 7121 */ 7122 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7123 set_next_buddy(se); 7124 break; 7125 } 7126 flags |= DEQUEUE_SLEEP; 7127 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7128 } 7129 7130 for_each_sched_entity(se) { 7131 cfs_rq = cfs_rq_of(se); 7132 7133 update_load_avg(cfs_rq, se, UPDATE_TG); 7134 se_update_runnable(se); 7135 update_cfs_group(se); 7136 7137 se->slice = slice; 7138 if (se != cfs_rq->curr) 7139 min_vruntime_cb_propagate(&se->run_node, NULL); 7140 slice = cfs_rq_min_slice(cfs_rq); 7141 7142 cfs_rq->h_nr_runnable -= h_nr_runnable; 7143 cfs_rq->h_nr_queued -= h_nr_queued; 7144 cfs_rq->h_nr_idle -= h_nr_idle; 7145 7146 if (cfs_rq_is_idle(cfs_rq)) 7147 h_nr_idle = h_nr_queued; 7148 7149 /* end evaluation on encountering a throttled cfs_rq */ 7150 if (cfs_rq_throttled(cfs_rq)) 7151 return 0; 7152 } 7153 7154 sub_nr_running(rq, h_nr_queued); 7155 7156 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7157 dl_server_stop(&rq->fair_server); 7158 7159 /* balance early to pull high priority tasks */ 7160 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7161 rq->next_balance = jiffies; 7162 7163 if (p && task_delayed) { 7164 SCHED_WARN_ON(!task_sleep); 7165 SCHED_WARN_ON(p->on_rq != 1); 7166 7167 /* Fix-up what dequeue_task_fair() skipped */ 7168 hrtick_update(rq); 7169 7170 /* 7171 * Fix-up what block_task() skipped. 7172 * 7173 * Must be last, @p might not be valid after this. 7174 */ 7175 __block_task(rq, p); 7176 } 7177 7178 return 1; 7179 } 7180 7181 /* 7182 * The dequeue_task method is called before nr_running is 7183 * decreased. We remove the task from the rbtree and 7184 * update the fair scheduling stats: 7185 */ 7186 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7187 { 7188 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7189 util_est_dequeue(&rq->cfs, p); 7190 7191 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7192 if (dequeue_entities(rq, &p->se, flags) < 0) 7193 return false; 7194 7195 /* 7196 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7197 */ 7198 7199 hrtick_update(rq); 7200 return true; 7201 } 7202 7203 #ifdef CONFIG_SMP 7204 7205 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7206 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7207 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7208 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7209 7210 #ifdef CONFIG_NO_HZ_COMMON 7211 7212 static struct { 7213 cpumask_var_t idle_cpus_mask; 7214 atomic_t nr_cpus; 7215 int has_blocked; /* Idle CPUS has blocked load */ 7216 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7217 unsigned long next_balance; /* in jiffy units */ 7218 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7219 } nohz ____cacheline_aligned; 7220 7221 #endif /* CONFIG_NO_HZ_COMMON */ 7222 7223 static unsigned long cpu_load(struct rq *rq) 7224 { 7225 return cfs_rq_load_avg(&rq->cfs); 7226 } 7227 7228 /* 7229 * cpu_load_without - compute CPU load without any contributions from *p 7230 * @cpu: the CPU which load is requested 7231 * @p: the task which load should be discounted 7232 * 7233 * The load of a CPU is defined by the load of tasks currently enqueued on that 7234 * CPU as well as tasks which are currently sleeping after an execution on that 7235 * CPU. 7236 * 7237 * This method returns the load of the specified CPU by discounting the load of 7238 * the specified task, whenever the task is currently contributing to the CPU 7239 * load. 7240 */ 7241 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7242 { 7243 struct cfs_rq *cfs_rq; 7244 unsigned int load; 7245 7246 /* Task has no contribution or is new */ 7247 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7248 return cpu_load(rq); 7249 7250 cfs_rq = &rq->cfs; 7251 load = READ_ONCE(cfs_rq->avg.load_avg); 7252 7253 /* Discount task's util from CPU's util */ 7254 lsub_positive(&load, task_h_load(p)); 7255 7256 return load; 7257 } 7258 7259 static unsigned long cpu_runnable(struct rq *rq) 7260 { 7261 return cfs_rq_runnable_avg(&rq->cfs); 7262 } 7263 7264 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7265 { 7266 struct cfs_rq *cfs_rq; 7267 unsigned int runnable; 7268 7269 /* Task has no contribution or is new */ 7270 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7271 return cpu_runnable(rq); 7272 7273 cfs_rq = &rq->cfs; 7274 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7275 7276 /* Discount task's runnable from CPU's runnable */ 7277 lsub_positive(&runnable, p->se.avg.runnable_avg); 7278 7279 return runnable; 7280 } 7281 7282 static unsigned long capacity_of(int cpu) 7283 { 7284 return cpu_rq(cpu)->cpu_capacity; 7285 } 7286 7287 static void record_wakee(struct task_struct *p) 7288 { 7289 /* 7290 * Only decay a single time; tasks that have less then 1 wakeup per 7291 * jiffy will not have built up many flips. 7292 */ 7293 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7294 current->wakee_flips >>= 1; 7295 current->wakee_flip_decay_ts = jiffies; 7296 } 7297 7298 if (current->last_wakee != p) { 7299 current->last_wakee = p; 7300 current->wakee_flips++; 7301 } 7302 } 7303 7304 /* 7305 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7306 * 7307 * A waker of many should wake a different task than the one last awakened 7308 * at a frequency roughly N times higher than one of its wakees. 7309 * 7310 * In order to determine whether we should let the load spread vs consolidating 7311 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7312 * partner, and a factor of lls_size higher frequency in the other. 7313 * 7314 * With both conditions met, we can be relatively sure that the relationship is 7315 * non-monogamous, with partner count exceeding socket size. 7316 * 7317 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7318 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7319 * socket size. 7320 */ 7321 static int wake_wide(struct task_struct *p) 7322 { 7323 unsigned int master = current->wakee_flips; 7324 unsigned int slave = p->wakee_flips; 7325 int factor = __this_cpu_read(sd_llc_size); 7326 7327 if (master < slave) 7328 swap(master, slave); 7329 if (slave < factor || master < slave * factor) 7330 return 0; 7331 return 1; 7332 } 7333 7334 /* 7335 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7336 * soonest. For the purpose of speed we only consider the waking and previous 7337 * CPU. 7338 * 7339 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7340 * cache-affine and is (or will be) idle. 7341 * 7342 * wake_affine_weight() - considers the weight to reflect the average 7343 * scheduling latency of the CPUs. This seems to work 7344 * for the overloaded case. 7345 */ 7346 static int 7347 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7348 { 7349 /* 7350 * If this_cpu is idle, it implies the wakeup is from interrupt 7351 * context. Only allow the move if cache is shared. Otherwise an 7352 * interrupt intensive workload could force all tasks onto one 7353 * node depending on the IO topology or IRQ affinity settings. 7354 * 7355 * If the prev_cpu is idle and cache affine then avoid a migration. 7356 * There is no guarantee that the cache hot data from an interrupt 7357 * is more important than cache hot data on the prev_cpu and from 7358 * a cpufreq perspective, it's better to have higher utilisation 7359 * on one CPU. 7360 */ 7361 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7362 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7363 7364 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7365 return this_cpu; 7366 7367 if (available_idle_cpu(prev_cpu)) 7368 return prev_cpu; 7369 7370 return nr_cpumask_bits; 7371 } 7372 7373 static int 7374 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7375 int this_cpu, int prev_cpu, int sync) 7376 { 7377 s64 this_eff_load, prev_eff_load; 7378 unsigned long task_load; 7379 7380 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7381 7382 if (sync) { 7383 unsigned long current_load = task_h_load(current); 7384 7385 if (current_load > this_eff_load) 7386 return this_cpu; 7387 7388 this_eff_load -= current_load; 7389 } 7390 7391 task_load = task_h_load(p); 7392 7393 this_eff_load += task_load; 7394 if (sched_feat(WA_BIAS)) 7395 this_eff_load *= 100; 7396 this_eff_load *= capacity_of(prev_cpu); 7397 7398 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7399 prev_eff_load -= task_load; 7400 if (sched_feat(WA_BIAS)) 7401 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7402 prev_eff_load *= capacity_of(this_cpu); 7403 7404 /* 7405 * If sync, adjust the weight of prev_eff_load such that if 7406 * prev_eff == this_eff that select_idle_sibling() will consider 7407 * stacking the wakee on top of the waker if no other CPU is 7408 * idle. 7409 */ 7410 if (sync) 7411 prev_eff_load += 1; 7412 7413 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7414 } 7415 7416 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7417 int this_cpu, int prev_cpu, int sync) 7418 { 7419 int target = nr_cpumask_bits; 7420 7421 if (sched_feat(WA_IDLE)) 7422 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7423 7424 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7425 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7426 7427 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7428 if (target != this_cpu) 7429 return prev_cpu; 7430 7431 schedstat_inc(sd->ttwu_move_affine); 7432 schedstat_inc(p->stats.nr_wakeups_affine); 7433 return target; 7434 } 7435 7436 static struct sched_group * 7437 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7438 7439 /* 7440 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7441 */ 7442 static int 7443 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7444 { 7445 unsigned long load, min_load = ULONG_MAX; 7446 unsigned int min_exit_latency = UINT_MAX; 7447 u64 latest_idle_timestamp = 0; 7448 int least_loaded_cpu = this_cpu; 7449 int shallowest_idle_cpu = -1; 7450 int i; 7451 7452 /* Check if we have any choice: */ 7453 if (group->group_weight == 1) 7454 return cpumask_first(sched_group_span(group)); 7455 7456 /* Traverse only the allowed CPUs */ 7457 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7458 struct rq *rq = cpu_rq(i); 7459 7460 if (!sched_core_cookie_match(rq, p)) 7461 continue; 7462 7463 if (sched_idle_cpu(i)) 7464 return i; 7465 7466 if (available_idle_cpu(i)) { 7467 struct cpuidle_state *idle = idle_get_state(rq); 7468 if (idle && idle->exit_latency < min_exit_latency) { 7469 /* 7470 * We give priority to a CPU whose idle state 7471 * has the smallest exit latency irrespective 7472 * of any idle timestamp. 7473 */ 7474 min_exit_latency = idle->exit_latency; 7475 latest_idle_timestamp = rq->idle_stamp; 7476 shallowest_idle_cpu = i; 7477 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7478 rq->idle_stamp > latest_idle_timestamp) { 7479 /* 7480 * If equal or no active idle state, then 7481 * the most recently idled CPU might have 7482 * a warmer cache. 7483 */ 7484 latest_idle_timestamp = rq->idle_stamp; 7485 shallowest_idle_cpu = i; 7486 } 7487 } else if (shallowest_idle_cpu == -1) { 7488 load = cpu_load(cpu_rq(i)); 7489 if (load < min_load) { 7490 min_load = load; 7491 least_loaded_cpu = i; 7492 } 7493 } 7494 } 7495 7496 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7497 } 7498 7499 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7500 int cpu, int prev_cpu, int sd_flag) 7501 { 7502 int new_cpu = cpu; 7503 7504 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7505 return prev_cpu; 7506 7507 /* 7508 * We need task's util for cpu_util_without, sync it up to 7509 * prev_cpu's last_update_time. 7510 */ 7511 if (!(sd_flag & SD_BALANCE_FORK)) 7512 sync_entity_load_avg(&p->se); 7513 7514 while (sd) { 7515 struct sched_group *group; 7516 struct sched_domain *tmp; 7517 int weight; 7518 7519 if (!(sd->flags & sd_flag)) { 7520 sd = sd->child; 7521 continue; 7522 } 7523 7524 group = sched_balance_find_dst_group(sd, p, cpu); 7525 if (!group) { 7526 sd = sd->child; 7527 continue; 7528 } 7529 7530 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7531 if (new_cpu == cpu) { 7532 /* Now try balancing at a lower domain level of 'cpu': */ 7533 sd = sd->child; 7534 continue; 7535 } 7536 7537 /* Now try balancing at a lower domain level of 'new_cpu': */ 7538 cpu = new_cpu; 7539 weight = sd->span_weight; 7540 sd = NULL; 7541 for_each_domain(cpu, tmp) { 7542 if (weight <= tmp->span_weight) 7543 break; 7544 if (tmp->flags & sd_flag) 7545 sd = tmp; 7546 } 7547 } 7548 7549 return new_cpu; 7550 } 7551 7552 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7553 { 7554 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7555 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7556 return cpu; 7557 7558 return -1; 7559 } 7560 7561 #ifdef CONFIG_SCHED_SMT 7562 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7563 EXPORT_SYMBOL_GPL(sched_smt_present); 7564 7565 static inline void set_idle_cores(int cpu, int val) 7566 { 7567 struct sched_domain_shared *sds; 7568 7569 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7570 if (sds) 7571 WRITE_ONCE(sds->has_idle_cores, val); 7572 } 7573 7574 static inline bool test_idle_cores(int cpu) 7575 { 7576 struct sched_domain_shared *sds; 7577 7578 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7579 if (sds) 7580 return READ_ONCE(sds->has_idle_cores); 7581 7582 return false; 7583 } 7584 7585 /* 7586 * Scans the local SMT mask to see if the entire core is idle, and records this 7587 * information in sd_llc_shared->has_idle_cores. 7588 * 7589 * Since SMT siblings share all cache levels, inspecting this limited remote 7590 * state should be fairly cheap. 7591 */ 7592 void __update_idle_core(struct rq *rq) 7593 { 7594 int core = cpu_of(rq); 7595 int cpu; 7596 7597 rcu_read_lock(); 7598 if (test_idle_cores(core)) 7599 goto unlock; 7600 7601 for_each_cpu(cpu, cpu_smt_mask(core)) { 7602 if (cpu == core) 7603 continue; 7604 7605 if (!available_idle_cpu(cpu)) 7606 goto unlock; 7607 } 7608 7609 set_idle_cores(core, 1); 7610 unlock: 7611 rcu_read_unlock(); 7612 } 7613 7614 /* 7615 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7616 * there are no idle cores left in the system; tracked through 7617 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7618 */ 7619 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7620 { 7621 bool idle = true; 7622 int cpu; 7623 7624 for_each_cpu(cpu, cpu_smt_mask(core)) { 7625 if (!available_idle_cpu(cpu)) { 7626 idle = false; 7627 if (*idle_cpu == -1) { 7628 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7629 *idle_cpu = cpu; 7630 break; 7631 } 7632 continue; 7633 } 7634 break; 7635 } 7636 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7637 *idle_cpu = cpu; 7638 } 7639 7640 if (idle) 7641 return core; 7642 7643 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7644 return -1; 7645 } 7646 7647 /* 7648 * Scan the local SMT mask for idle CPUs. 7649 */ 7650 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7651 { 7652 int cpu; 7653 7654 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7655 if (cpu == target) 7656 continue; 7657 /* 7658 * Check if the CPU is in the LLC scheduling domain of @target. 7659 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7660 */ 7661 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7662 continue; 7663 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7664 return cpu; 7665 } 7666 7667 return -1; 7668 } 7669 7670 #else /* CONFIG_SCHED_SMT */ 7671 7672 static inline void set_idle_cores(int cpu, int val) 7673 { 7674 } 7675 7676 static inline bool test_idle_cores(int cpu) 7677 { 7678 return false; 7679 } 7680 7681 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7682 { 7683 return __select_idle_cpu(core, p); 7684 } 7685 7686 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7687 { 7688 return -1; 7689 } 7690 7691 #endif /* CONFIG_SCHED_SMT */ 7692 7693 /* 7694 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7695 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7696 * average idle time for this rq (as found in rq->avg_idle). 7697 */ 7698 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7699 { 7700 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7701 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7702 struct sched_domain_shared *sd_share; 7703 7704 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7705 7706 if (sched_feat(SIS_UTIL)) { 7707 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7708 if (sd_share) { 7709 /* because !--nr is the condition to stop scan */ 7710 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7711 /* overloaded LLC is unlikely to have idle cpu/core */ 7712 if (nr == 1) 7713 return -1; 7714 } 7715 } 7716 7717 if (static_branch_unlikely(&sched_cluster_active)) { 7718 struct sched_group *sg = sd->groups; 7719 7720 if (sg->flags & SD_CLUSTER) { 7721 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7722 if (!cpumask_test_cpu(cpu, cpus)) 7723 continue; 7724 7725 if (has_idle_core) { 7726 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7727 if ((unsigned int)i < nr_cpumask_bits) 7728 return i; 7729 } else { 7730 if (--nr <= 0) 7731 return -1; 7732 idle_cpu = __select_idle_cpu(cpu, p); 7733 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7734 return idle_cpu; 7735 } 7736 } 7737 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7738 } 7739 } 7740 7741 for_each_cpu_wrap(cpu, cpus, target + 1) { 7742 if (has_idle_core) { 7743 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7744 if ((unsigned int)i < nr_cpumask_bits) 7745 return i; 7746 7747 } else { 7748 if (--nr <= 0) 7749 return -1; 7750 idle_cpu = __select_idle_cpu(cpu, p); 7751 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7752 break; 7753 } 7754 } 7755 7756 if (has_idle_core) 7757 set_idle_cores(target, false); 7758 7759 return idle_cpu; 7760 } 7761 7762 /* 7763 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7764 * the task fits. If no CPU is big enough, but there are idle ones, try to 7765 * maximize capacity. 7766 */ 7767 static int 7768 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7769 { 7770 unsigned long task_util, util_min, util_max, best_cap = 0; 7771 int fits, best_fits = 0; 7772 int cpu, best_cpu = -1; 7773 struct cpumask *cpus; 7774 7775 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7776 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7777 7778 task_util = task_util_est(p); 7779 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7780 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7781 7782 for_each_cpu_wrap(cpu, cpus, target) { 7783 unsigned long cpu_cap = capacity_of(cpu); 7784 7785 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7786 continue; 7787 7788 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7789 7790 /* This CPU fits with all requirements */ 7791 if (fits > 0) 7792 return cpu; 7793 /* 7794 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7795 * Look for the CPU with best capacity. 7796 */ 7797 else if (fits < 0) 7798 cpu_cap = get_actual_cpu_capacity(cpu); 7799 7800 /* 7801 * First, select CPU which fits better (-1 being better than 0). 7802 * Then, select the one with best capacity at same level. 7803 */ 7804 if ((fits < best_fits) || 7805 ((fits == best_fits) && (cpu_cap > best_cap))) { 7806 best_cap = cpu_cap; 7807 best_cpu = cpu; 7808 best_fits = fits; 7809 } 7810 } 7811 7812 return best_cpu; 7813 } 7814 7815 static inline bool asym_fits_cpu(unsigned long util, 7816 unsigned long util_min, 7817 unsigned long util_max, 7818 int cpu) 7819 { 7820 if (sched_asym_cpucap_active()) 7821 /* 7822 * Return true only if the cpu fully fits the task requirements 7823 * which include the utilization and the performance hints. 7824 */ 7825 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7826 7827 return true; 7828 } 7829 7830 /* 7831 * Try and locate an idle core/thread in the LLC cache domain. 7832 */ 7833 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7834 { 7835 bool has_idle_core = false; 7836 struct sched_domain *sd; 7837 unsigned long task_util, util_min, util_max; 7838 int i, recent_used_cpu, prev_aff = -1; 7839 7840 /* 7841 * On asymmetric system, update task utilization because we will check 7842 * that the task fits with CPU's capacity. 7843 */ 7844 if (sched_asym_cpucap_active()) { 7845 sync_entity_load_avg(&p->se); 7846 task_util = task_util_est(p); 7847 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7848 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7849 } 7850 7851 /* 7852 * per-cpu select_rq_mask usage 7853 */ 7854 lockdep_assert_irqs_disabled(); 7855 7856 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7857 asym_fits_cpu(task_util, util_min, util_max, target)) 7858 return target; 7859 7860 /* 7861 * If the previous CPU is cache affine and idle, don't be stupid: 7862 */ 7863 if (prev != target && cpus_share_cache(prev, target) && 7864 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7865 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7866 7867 if (!static_branch_unlikely(&sched_cluster_active) || 7868 cpus_share_resources(prev, target)) 7869 return prev; 7870 7871 prev_aff = prev; 7872 } 7873 7874 /* 7875 * Allow a per-cpu kthread to stack with the wakee if the 7876 * kworker thread and the tasks previous CPUs are the same. 7877 * The assumption is that the wakee queued work for the 7878 * per-cpu kthread that is now complete and the wakeup is 7879 * essentially a sync wakeup. An obvious example of this 7880 * pattern is IO completions. 7881 */ 7882 if (is_per_cpu_kthread(current) && 7883 in_task() && 7884 prev == smp_processor_id() && 7885 this_rq()->nr_running <= 1 && 7886 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7887 return prev; 7888 } 7889 7890 /* Check a recently used CPU as a potential idle candidate: */ 7891 recent_used_cpu = p->recent_used_cpu; 7892 p->recent_used_cpu = prev; 7893 if (recent_used_cpu != prev && 7894 recent_used_cpu != target && 7895 cpus_share_cache(recent_used_cpu, target) && 7896 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7897 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7898 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7899 7900 if (!static_branch_unlikely(&sched_cluster_active) || 7901 cpus_share_resources(recent_used_cpu, target)) 7902 return recent_used_cpu; 7903 7904 } else { 7905 recent_used_cpu = -1; 7906 } 7907 7908 /* 7909 * For asymmetric CPU capacity systems, our domain of interest is 7910 * sd_asym_cpucapacity rather than sd_llc. 7911 */ 7912 if (sched_asym_cpucap_active()) { 7913 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7914 /* 7915 * On an asymmetric CPU capacity system where an exclusive 7916 * cpuset defines a symmetric island (i.e. one unique 7917 * capacity_orig value through the cpuset), the key will be set 7918 * but the CPUs within that cpuset will not have a domain with 7919 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7920 * capacity path. 7921 */ 7922 if (sd) { 7923 i = select_idle_capacity(p, sd, target); 7924 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7925 } 7926 } 7927 7928 sd = rcu_dereference(per_cpu(sd_llc, target)); 7929 if (!sd) 7930 return target; 7931 7932 if (sched_smt_active()) { 7933 has_idle_core = test_idle_cores(target); 7934 7935 if (!has_idle_core && cpus_share_cache(prev, target)) { 7936 i = select_idle_smt(p, sd, prev); 7937 if ((unsigned int)i < nr_cpumask_bits) 7938 return i; 7939 } 7940 } 7941 7942 i = select_idle_cpu(p, sd, has_idle_core, target); 7943 if ((unsigned)i < nr_cpumask_bits) 7944 return i; 7945 7946 /* 7947 * For cluster machines which have lower sharing cache like L2 or 7948 * LLC Tag, we tend to find an idle CPU in the target's cluster 7949 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7950 * use them if possible when no idle CPU found in select_idle_cpu(). 7951 */ 7952 if ((unsigned int)prev_aff < nr_cpumask_bits) 7953 return prev_aff; 7954 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7955 return recent_used_cpu; 7956 7957 return target; 7958 } 7959 7960 /** 7961 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7962 * @cpu: the CPU to get the utilization for 7963 * @p: task for which the CPU utilization should be predicted or NULL 7964 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7965 * @boost: 1 to enable boosting, otherwise 0 7966 * 7967 * The unit of the return value must be the same as the one of CPU capacity 7968 * so that CPU utilization can be compared with CPU capacity. 7969 * 7970 * CPU utilization is the sum of running time of runnable tasks plus the 7971 * recent utilization of currently non-runnable tasks on that CPU. 7972 * It represents the amount of CPU capacity currently used by CFS tasks in 7973 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7974 * capacity at f_max. 7975 * 7976 * The estimated CPU utilization is defined as the maximum between CPU 7977 * utilization and sum of the estimated utilization of the currently 7978 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7979 * previously-executed tasks, which helps better deduce how busy a CPU will 7980 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7981 * of such a task would be significantly decayed at this point of time. 7982 * 7983 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7984 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7985 * utilization. Boosting is implemented in cpu_util() so that internal 7986 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7987 * latter via cpu_util_cfs_boost(). 7988 * 7989 * CPU utilization can be higher than the current CPU capacity 7990 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7991 * of rounding errors as well as task migrations or wakeups of new tasks. 7992 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7993 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7994 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7995 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7996 * though since this is useful for predicting the CPU capacity required 7997 * after task migrations (scheduler-driven DVFS). 7998 * 7999 * Return: (Boosted) (estimated) utilization for the specified CPU. 8000 */ 8001 static unsigned long 8002 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8003 { 8004 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8005 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8006 unsigned long runnable; 8007 8008 if (boost) { 8009 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8010 util = max(util, runnable); 8011 } 8012 8013 /* 8014 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8015 * contribution. If @p migrates from another CPU to @cpu add its 8016 * contribution. In all the other cases @cpu is not impacted by the 8017 * migration so its util_avg is already correct. 8018 */ 8019 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8020 lsub_positive(&util, task_util(p)); 8021 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8022 util += task_util(p); 8023 8024 if (sched_feat(UTIL_EST)) { 8025 unsigned long util_est; 8026 8027 util_est = READ_ONCE(cfs_rq->avg.util_est); 8028 8029 /* 8030 * During wake-up @p isn't enqueued yet and doesn't contribute 8031 * to any cpu_rq(cpu)->cfs.avg.util_est. 8032 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8033 * has been enqueued. 8034 * 8035 * During exec (@dst_cpu = -1) @p is enqueued and does 8036 * contribute to cpu_rq(cpu)->cfs.util_est. 8037 * Remove it to "simulate" cpu_util without @p's contribution. 8038 * 8039 * Despite the task_on_rq_queued(@p) check there is still a 8040 * small window for a possible race when an exec 8041 * select_task_rq_fair() races with LB's detach_task(). 8042 * 8043 * detach_task() 8044 * deactivate_task() 8045 * p->on_rq = TASK_ON_RQ_MIGRATING; 8046 * -------------------------------- A 8047 * dequeue_task() \ 8048 * dequeue_task_fair() + Race Time 8049 * util_est_dequeue() / 8050 * -------------------------------- B 8051 * 8052 * The additional check "current == p" is required to further 8053 * reduce the race window. 8054 */ 8055 if (dst_cpu == cpu) 8056 util_est += _task_util_est(p); 8057 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8058 lsub_positive(&util_est, _task_util_est(p)); 8059 8060 util = max(util, util_est); 8061 } 8062 8063 return min(util, arch_scale_cpu_capacity(cpu)); 8064 } 8065 8066 unsigned long cpu_util_cfs(int cpu) 8067 { 8068 return cpu_util(cpu, NULL, -1, 0); 8069 } 8070 8071 unsigned long cpu_util_cfs_boost(int cpu) 8072 { 8073 return cpu_util(cpu, NULL, -1, 1); 8074 } 8075 8076 /* 8077 * cpu_util_without: compute cpu utilization without any contributions from *p 8078 * @cpu: the CPU which utilization is requested 8079 * @p: the task which utilization should be discounted 8080 * 8081 * The utilization of a CPU is defined by the utilization of tasks currently 8082 * enqueued on that CPU as well as tasks which are currently sleeping after an 8083 * execution on that CPU. 8084 * 8085 * This method returns the utilization of the specified CPU by discounting the 8086 * utilization of the specified task, whenever the task is currently 8087 * contributing to the CPU utilization. 8088 */ 8089 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8090 { 8091 /* Task has no contribution or is new */ 8092 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8093 p = NULL; 8094 8095 return cpu_util(cpu, p, -1, 0); 8096 } 8097 8098 /* 8099 * This function computes an effective utilization for the given CPU, to be 8100 * used for frequency selection given the linear relation: f = u * f_max. 8101 * 8102 * The scheduler tracks the following metrics: 8103 * 8104 * cpu_util_{cfs,rt,dl,irq}() 8105 * cpu_bw_dl() 8106 * 8107 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8108 * synchronized windows and are thus directly comparable. 8109 * 8110 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8111 * which excludes things like IRQ and steal-time. These latter are then accrued 8112 * in the IRQ utilization. 8113 * 8114 * The DL bandwidth number OTOH is not a measured metric but a value computed 8115 * based on the task model parameters and gives the minimal utilization 8116 * required to meet deadlines. 8117 */ 8118 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8119 unsigned long *min, 8120 unsigned long *max) 8121 { 8122 unsigned long util, irq, scale; 8123 struct rq *rq = cpu_rq(cpu); 8124 8125 scale = arch_scale_cpu_capacity(cpu); 8126 8127 /* 8128 * Early check to see if IRQ/steal time saturates the CPU, can be 8129 * because of inaccuracies in how we track these -- see 8130 * update_irq_load_avg(). 8131 */ 8132 irq = cpu_util_irq(rq); 8133 if (unlikely(irq >= scale)) { 8134 if (min) 8135 *min = scale; 8136 if (max) 8137 *max = scale; 8138 return scale; 8139 } 8140 8141 if (min) { 8142 /* 8143 * The minimum utilization returns the highest level between: 8144 * - the computed DL bandwidth needed with the IRQ pressure which 8145 * steals time to the deadline task. 8146 * - The minimum performance requirement for CFS and/or RT. 8147 */ 8148 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8149 8150 /* 8151 * When an RT task is runnable and uclamp is not used, we must 8152 * ensure that the task will run at maximum compute capacity. 8153 */ 8154 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8155 *min = max(*min, scale); 8156 } 8157 8158 /* 8159 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8160 * CFS tasks and we use the same metric to track the effective 8161 * utilization (PELT windows are synchronized) we can directly add them 8162 * to obtain the CPU's actual utilization. 8163 */ 8164 util = util_cfs + cpu_util_rt(rq); 8165 util += cpu_util_dl(rq); 8166 8167 /* 8168 * The maximum hint is a soft bandwidth requirement, which can be lower 8169 * than the actual utilization because of uclamp_max requirements. 8170 */ 8171 if (max) 8172 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8173 8174 if (util >= scale) 8175 return scale; 8176 8177 /* 8178 * There is still idle time; further improve the number by using the 8179 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8180 * need to scale the task numbers: 8181 * 8182 * max - irq 8183 * U' = irq + --------- * U 8184 * max 8185 */ 8186 util = scale_irq_capacity(util, irq, scale); 8187 util += irq; 8188 8189 return min(scale, util); 8190 } 8191 8192 unsigned long sched_cpu_util(int cpu) 8193 { 8194 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8195 } 8196 8197 /* 8198 * energy_env - Utilization landscape for energy estimation. 8199 * @task_busy_time: Utilization contribution by the task for which we test the 8200 * placement. Given by eenv_task_busy_time(). 8201 * @pd_busy_time: Utilization of the whole perf domain without the task 8202 * contribution. Given by eenv_pd_busy_time(). 8203 * @cpu_cap: Maximum CPU capacity for the perf domain. 8204 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8205 */ 8206 struct energy_env { 8207 unsigned long task_busy_time; 8208 unsigned long pd_busy_time; 8209 unsigned long cpu_cap; 8210 unsigned long pd_cap; 8211 }; 8212 8213 /* 8214 * Compute the task busy time for compute_energy(). This time cannot be 8215 * injected directly into effective_cpu_util() because of the IRQ scaling. 8216 * The latter only makes sense with the most recent CPUs where the task has 8217 * run. 8218 */ 8219 static inline void eenv_task_busy_time(struct energy_env *eenv, 8220 struct task_struct *p, int prev_cpu) 8221 { 8222 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8223 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8224 8225 if (unlikely(irq >= max_cap)) 8226 busy_time = max_cap; 8227 else 8228 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8229 8230 eenv->task_busy_time = busy_time; 8231 } 8232 8233 /* 8234 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8235 * utilization for each @pd_cpus, it however doesn't take into account 8236 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8237 * scale the EM reported power consumption at the (eventually clamped) 8238 * cpu_capacity. 8239 * 8240 * The contribution of the task @p for which we want to estimate the 8241 * energy cost is removed (by cpu_util()) and must be calculated 8242 * separately (see eenv_task_busy_time). This ensures: 8243 * 8244 * - A stable PD utilization, no matter which CPU of that PD we want to place 8245 * the task on. 8246 * 8247 * - A fair comparison between CPUs as the task contribution (task_util()) 8248 * will always be the same no matter which CPU utilization we rely on 8249 * (util_avg or util_est). 8250 * 8251 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8252 * exceed @eenv->pd_cap. 8253 */ 8254 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8255 struct cpumask *pd_cpus, 8256 struct task_struct *p) 8257 { 8258 unsigned long busy_time = 0; 8259 int cpu; 8260 8261 for_each_cpu(cpu, pd_cpus) { 8262 unsigned long util = cpu_util(cpu, p, -1, 0); 8263 8264 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8265 } 8266 8267 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8268 } 8269 8270 /* 8271 * Compute the maximum utilization for compute_energy() when the task @p 8272 * is placed on the cpu @dst_cpu. 8273 * 8274 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8275 * exceed @eenv->cpu_cap. 8276 */ 8277 static inline unsigned long 8278 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8279 struct task_struct *p, int dst_cpu) 8280 { 8281 unsigned long max_util = 0; 8282 int cpu; 8283 8284 for_each_cpu(cpu, pd_cpus) { 8285 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8286 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8287 unsigned long eff_util, min, max; 8288 8289 /* 8290 * Performance domain frequency: utilization clamping 8291 * must be considered since it affects the selection 8292 * of the performance domain frequency. 8293 * NOTE: in case RT tasks are running, by default the min 8294 * utilization can be max OPP. 8295 */ 8296 eff_util = effective_cpu_util(cpu, util, &min, &max); 8297 8298 /* Task's uclamp can modify min and max value */ 8299 if (tsk && uclamp_is_used()) { 8300 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8301 8302 /* 8303 * If there is no active max uclamp constraint, 8304 * directly use task's one, otherwise keep max. 8305 */ 8306 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8307 max = uclamp_eff_value(p, UCLAMP_MAX); 8308 else 8309 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8310 } 8311 8312 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8313 max_util = max(max_util, eff_util); 8314 } 8315 8316 return min(max_util, eenv->cpu_cap); 8317 } 8318 8319 /* 8320 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8321 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8322 * contribution is ignored. 8323 */ 8324 static inline unsigned long 8325 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8326 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8327 { 8328 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8329 unsigned long busy_time = eenv->pd_busy_time; 8330 unsigned long energy; 8331 8332 if (dst_cpu >= 0) 8333 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8334 8335 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8336 8337 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8338 8339 return energy; 8340 } 8341 8342 /* 8343 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8344 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8345 * spare capacity in each performance domain and uses it as a potential 8346 * candidate to execute the task. Then, it uses the Energy Model to figure 8347 * out which of the CPU candidates is the most energy-efficient. 8348 * 8349 * The rationale for this heuristic is as follows. In a performance domain, 8350 * all the most energy efficient CPU candidates (according to the Energy 8351 * Model) are those for which we'll request a low frequency. When there are 8352 * several CPUs for which the frequency request will be the same, we don't 8353 * have enough data to break the tie between them, because the Energy Model 8354 * only includes active power costs. With this model, if we assume that 8355 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8356 * the maximum spare capacity in a performance domain is guaranteed to be among 8357 * the best candidates of the performance domain. 8358 * 8359 * In practice, it could be preferable from an energy standpoint to pack 8360 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8361 * but that could also hurt our chances to go cluster idle, and we have no 8362 * ways to tell with the current Energy Model if this is actually a good 8363 * idea or not. So, find_energy_efficient_cpu() basically favors 8364 * cluster-packing, and spreading inside a cluster. That should at least be 8365 * a good thing for latency, and this is consistent with the idea that most 8366 * of the energy savings of EAS come from the asymmetry of the system, and 8367 * not so much from breaking the tie between identical CPUs. That's also the 8368 * reason why EAS is enabled in the topology code only for systems where 8369 * SD_ASYM_CPUCAPACITY is set. 8370 * 8371 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8372 * they don't have any useful utilization data yet and it's not possible to 8373 * forecast their impact on energy consumption. Consequently, they will be 8374 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8375 * to be energy-inefficient in some use-cases. The alternative would be to 8376 * bias new tasks towards specific types of CPUs first, or to try to infer 8377 * their util_avg from the parent task, but those heuristics could hurt 8378 * other use-cases too. So, until someone finds a better way to solve this, 8379 * let's keep things simple by re-using the existing slow path. 8380 */ 8381 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8382 { 8383 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8384 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8385 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8386 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8387 struct root_domain *rd = this_rq()->rd; 8388 int cpu, best_energy_cpu, target = -1; 8389 int prev_fits = -1, best_fits = -1; 8390 unsigned long best_actual_cap = 0; 8391 unsigned long prev_actual_cap = 0; 8392 struct sched_domain *sd; 8393 struct perf_domain *pd; 8394 struct energy_env eenv; 8395 8396 rcu_read_lock(); 8397 pd = rcu_dereference(rd->pd); 8398 if (!pd) 8399 goto unlock; 8400 8401 /* 8402 * Energy-aware wake-up happens on the lowest sched_domain starting 8403 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8404 */ 8405 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8406 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8407 sd = sd->parent; 8408 if (!sd) 8409 goto unlock; 8410 8411 target = prev_cpu; 8412 8413 sync_entity_load_avg(&p->se); 8414 if (!task_util_est(p) && p_util_min == 0) 8415 goto unlock; 8416 8417 eenv_task_busy_time(&eenv, p, prev_cpu); 8418 8419 for (; pd; pd = pd->next) { 8420 unsigned long util_min = p_util_min, util_max = p_util_max; 8421 unsigned long cpu_cap, cpu_actual_cap, util; 8422 long prev_spare_cap = -1, max_spare_cap = -1; 8423 unsigned long rq_util_min, rq_util_max; 8424 unsigned long cur_delta, base_energy; 8425 int max_spare_cap_cpu = -1; 8426 int fits, max_fits = -1; 8427 8428 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8429 8430 if (cpumask_empty(cpus)) 8431 continue; 8432 8433 /* Account external pressure for the energy estimation */ 8434 cpu = cpumask_first(cpus); 8435 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8436 8437 eenv.cpu_cap = cpu_actual_cap; 8438 eenv.pd_cap = 0; 8439 8440 for_each_cpu(cpu, cpus) { 8441 struct rq *rq = cpu_rq(cpu); 8442 8443 eenv.pd_cap += cpu_actual_cap; 8444 8445 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8446 continue; 8447 8448 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8449 continue; 8450 8451 util = cpu_util(cpu, p, cpu, 0); 8452 cpu_cap = capacity_of(cpu); 8453 8454 /* 8455 * Skip CPUs that cannot satisfy the capacity request. 8456 * IOW, placing the task there would make the CPU 8457 * overutilized. Take uclamp into account to see how 8458 * much capacity we can get out of the CPU; this is 8459 * aligned with sched_cpu_util(). 8460 */ 8461 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8462 /* 8463 * Open code uclamp_rq_util_with() except for 8464 * the clamp() part. I.e.: apply max aggregation 8465 * only. util_fits_cpu() logic requires to 8466 * operate on non clamped util but must use the 8467 * max-aggregated uclamp_{min, max}. 8468 */ 8469 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8470 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8471 8472 util_min = max(rq_util_min, p_util_min); 8473 util_max = max(rq_util_max, p_util_max); 8474 } 8475 8476 fits = util_fits_cpu(util, util_min, util_max, cpu); 8477 if (!fits) 8478 continue; 8479 8480 lsub_positive(&cpu_cap, util); 8481 8482 if (cpu == prev_cpu) { 8483 /* Always use prev_cpu as a candidate. */ 8484 prev_spare_cap = cpu_cap; 8485 prev_fits = fits; 8486 } else if ((fits > max_fits) || 8487 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8488 /* 8489 * Find the CPU with the maximum spare capacity 8490 * among the remaining CPUs in the performance 8491 * domain. 8492 */ 8493 max_spare_cap = cpu_cap; 8494 max_spare_cap_cpu = cpu; 8495 max_fits = fits; 8496 } 8497 } 8498 8499 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8500 continue; 8501 8502 eenv_pd_busy_time(&eenv, cpus, p); 8503 /* Compute the 'base' energy of the pd, without @p */ 8504 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8505 8506 /* Evaluate the energy impact of using prev_cpu. */ 8507 if (prev_spare_cap > -1) { 8508 prev_delta = compute_energy(&eenv, pd, cpus, p, 8509 prev_cpu); 8510 /* CPU utilization has changed */ 8511 if (prev_delta < base_energy) 8512 goto unlock; 8513 prev_delta -= base_energy; 8514 prev_actual_cap = cpu_actual_cap; 8515 best_delta = min(best_delta, prev_delta); 8516 } 8517 8518 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8519 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8520 /* Current best energy cpu fits better */ 8521 if (max_fits < best_fits) 8522 continue; 8523 8524 /* 8525 * Both don't fit performance hint (i.e. uclamp_min) 8526 * but best energy cpu has better capacity. 8527 */ 8528 if ((max_fits < 0) && 8529 (cpu_actual_cap <= best_actual_cap)) 8530 continue; 8531 8532 cur_delta = compute_energy(&eenv, pd, cpus, p, 8533 max_spare_cap_cpu); 8534 /* CPU utilization has changed */ 8535 if (cur_delta < base_energy) 8536 goto unlock; 8537 cur_delta -= base_energy; 8538 8539 /* 8540 * Both fit for the task but best energy cpu has lower 8541 * energy impact. 8542 */ 8543 if ((max_fits > 0) && (best_fits > 0) && 8544 (cur_delta >= best_delta)) 8545 continue; 8546 8547 best_delta = cur_delta; 8548 best_energy_cpu = max_spare_cap_cpu; 8549 best_fits = max_fits; 8550 best_actual_cap = cpu_actual_cap; 8551 } 8552 } 8553 rcu_read_unlock(); 8554 8555 if ((best_fits > prev_fits) || 8556 ((best_fits > 0) && (best_delta < prev_delta)) || 8557 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8558 target = best_energy_cpu; 8559 8560 return target; 8561 8562 unlock: 8563 rcu_read_unlock(); 8564 8565 return target; 8566 } 8567 8568 /* 8569 * select_task_rq_fair: Select target runqueue for the waking task in domains 8570 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8571 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8572 * 8573 * Balances load by selecting the idlest CPU in the idlest group, or under 8574 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8575 * 8576 * Returns the target CPU number. 8577 */ 8578 static int 8579 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8580 { 8581 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8582 struct sched_domain *tmp, *sd = NULL; 8583 int cpu = smp_processor_id(); 8584 int new_cpu = prev_cpu; 8585 int want_affine = 0; 8586 /* SD_flags and WF_flags share the first nibble */ 8587 int sd_flag = wake_flags & 0xF; 8588 8589 /* 8590 * required for stable ->cpus_allowed 8591 */ 8592 lockdep_assert_held(&p->pi_lock); 8593 if (wake_flags & WF_TTWU) { 8594 record_wakee(p); 8595 8596 if ((wake_flags & WF_CURRENT_CPU) && 8597 cpumask_test_cpu(cpu, p->cpus_ptr)) 8598 return cpu; 8599 8600 if (!is_rd_overutilized(this_rq()->rd)) { 8601 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8602 if (new_cpu >= 0) 8603 return new_cpu; 8604 new_cpu = prev_cpu; 8605 } 8606 8607 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8608 } 8609 8610 rcu_read_lock(); 8611 for_each_domain(cpu, tmp) { 8612 /* 8613 * If both 'cpu' and 'prev_cpu' are part of this domain, 8614 * cpu is a valid SD_WAKE_AFFINE target. 8615 */ 8616 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8617 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8618 if (cpu != prev_cpu) 8619 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8620 8621 sd = NULL; /* Prefer wake_affine over balance flags */ 8622 break; 8623 } 8624 8625 /* 8626 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8627 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8628 * will usually go to the fast path. 8629 */ 8630 if (tmp->flags & sd_flag) 8631 sd = tmp; 8632 else if (!want_affine) 8633 break; 8634 } 8635 8636 if (unlikely(sd)) { 8637 /* Slow path */ 8638 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8639 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8640 /* Fast path */ 8641 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8642 } 8643 rcu_read_unlock(); 8644 8645 return new_cpu; 8646 } 8647 8648 /* 8649 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8650 * cfs_rq_of(p) references at time of call are still valid and identify the 8651 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8652 */ 8653 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8654 { 8655 struct sched_entity *se = &p->se; 8656 8657 if (!task_on_rq_migrating(p)) { 8658 remove_entity_load_avg(se); 8659 8660 /* 8661 * Here, the task's PELT values have been updated according to 8662 * the current rq's clock. But if that clock hasn't been 8663 * updated in a while, a substantial idle time will be missed, 8664 * leading to an inflation after wake-up on the new rq. 8665 * 8666 * Estimate the missing time from the cfs_rq last_update_time 8667 * and update sched_avg to improve the PELT continuity after 8668 * migration. 8669 */ 8670 migrate_se_pelt_lag(se); 8671 } 8672 8673 /* Tell new CPU we are migrated */ 8674 se->avg.last_update_time = 0; 8675 8676 update_scan_period(p, new_cpu); 8677 } 8678 8679 static void task_dead_fair(struct task_struct *p) 8680 { 8681 struct sched_entity *se = &p->se; 8682 8683 if (se->sched_delayed) { 8684 struct rq_flags rf; 8685 struct rq *rq; 8686 8687 rq = task_rq_lock(p, &rf); 8688 if (se->sched_delayed) { 8689 update_rq_clock(rq); 8690 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8691 } 8692 task_rq_unlock(rq, p, &rf); 8693 } 8694 8695 remove_entity_load_avg(se); 8696 } 8697 8698 /* 8699 * Set the max capacity the task is allowed to run at for misfit detection. 8700 */ 8701 static void set_task_max_allowed_capacity(struct task_struct *p) 8702 { 8703 struct asym_cap_data *entry; 8704 8705 if (!sched_asym_cpucap_active()) 8706 return; 8707 8708 rcu_read_lock(); 8709 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8710 cpumask_t *cpumask; 8711 8712 cpumask = cpu_capacity_span(entry); 8713 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8714 continue; 8715 8716 p->max_allowed_capacity = entry->capacity; 8717 break; 8718 } 8719 rcu_read_unlock(); 8720 } 8721 8722 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8723 { 8724 set_cpus_allowed_common(p, ctx); 8725 set_task_max_allowed_capacity(p); 8726 } 8727 8728 static int 8729 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8730 { 8731 if (sched_fair_runnable(rq)) 8732 return 1; 8733 8734 return sched_balance_newidle(rq, rf) != 0; 8735 } 8736 #else 8737 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8738 #endif /* CONFIG_SMP */ 8739 8740 static void set_next_buddy(struct sched_entity *se) 8741 { 8742 for_each_sched_entity(se) { 8743 if (SCHED_WARN_ON(!se->on_rq)) 8744 return; 8745 if (se_is_idle(se)) 8746 return; 8747 cfs_rq_of(se)->next = se; 8748 } 8749 } 8750 8751 /* 8752 * Preempt the current task with a newly woken task if needed: 8753 */ 8754 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8755 { 8756 struct task_struct *donor = rq->donor; 8757 struct sched_entity *se = &donor->se, *pse = &p->se; 8758 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8759 int cse_is_idle, pse_is_idle; 8760 8761 if (unlikely(se == pse)) 8762 return; 8763 8764 /* 8765 * This is possible from callers such as attach_tasks(), in which we 8766 * unconditionally wakeup_preempt() after an enqueue (which may have 8767 * lead to a throttle). This both saves work and prevents false 8768 * next-buddy nomination below. 8769 */ 8770 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8771 return; 8772 8773 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8774 set_next_buddy(pse); 8775 } 8776 8777 /* 8778 * We can come here with TIF_NEED_RESCHED already set from new task 8779 * wake up path. 8780 * 8781 * Note: this also catches the edge-case of curr being in a throttled 8782 * group (e.g. via set_curr_task), since update_curr() (in the 8783 * enqueue of curr) will have resulted in resched being set. This 8784 * prevents us from potentially nominating it as a false LAST_BUDDY 8785 * below. 8786 */ 8787 if (test_tsk_need_resched(rq->curr)) 8788 return; 8789 8790 if (!sched_feat(WAKEUP_PREEMPTION)) 8791 return; 8792 8793 find_matching_se(&se, &pse); 8794 WARN_ON_ONCE(!pse); 8795 8796 cse_is_idle = se_is_idle(se); 8797 pse_is_idle = se_is_idle(pse); 8798 8799 /* 8800 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8801 * in the inverse case). 8802 */ 8803 if (cse_is_idle && !pse_is_idle) { 8804 /* 8805 * When non-idle entity preempt an idle entity, 8806 * don't give idle entity slice protection. 8807 */ 8808 cancel_protect_slice(se); 8809 goto preempt; 8810 } 8811 8812 if (cse_is_idle != pse_is_idle) 8813 return; 8814 8815 /* 8816 * BATCH and IDLE tasks do not preempt others. 8817 */ 8818 if (unlikely(!normal_policy(p->policy))) 8819 return; 8820 8821 cfs_rq = cfs_rq_of(se); 8822 update_curr(cfs_rq); 8823 /* 8824 * If @p has a shorter slice than current and @p is eligible, override 8825 * current's slice protection in order to allow preemption. 8826 * 8827 * Note that even if @p does not turn out to be the most eligible 8828 * task at this moment, current's slice protection will be lost. 8829 */ 8830 if (do_preempt_short(cfs_rq, pse, se)) 8831 cancel_protect_slice(se); 8832 8833 /* 8834 * If @p has become the most eligible task, force preemption. 8835 */ 8836 if (pick_eevdf(cfs_rq) == pse) 8837 goto preempt; 8838 8839 return; 8840 8841 preempt: 8842 resched_curr_lazy(rq); 8843 } 8844 8845 static struct task_struct *pick_task_fair(struct rq *rq) 8846 { 8847 struct sched_entity *se; 8848 struct cfs_rq *cfs_rq; 8849 8850 again: 8851 cfs_rq = &rq->cfs; 8852 if (!cfs_rq->nr_queued) 8853 return NULL; 8854 8855 do { 8856 /* Might not have done put_prev_entity() */ 8857 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8858 update_curr(cfs_rq); 8859 8860 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8861 goto again; 8862 8863 se = pick_next_entity(rq, cfs_rq); 8864 if (!se) 8865 goto again; 8866 cfs_rq = group_cfs_rq(se); 8867 } while (cfs_rq); 8868 8869 return task_of(se); 8870 } 8871 8872 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8873 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8874 8875 struct task_struct * 8876 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8877 { 8878 struct sched_entity *se; 8879 struct task_struct *p; 8880 int new_tasks; 8881 8882 again: 8883 p = pick_task_fair(rq); 8884 if (!p) 8885 goto idle; 8886 se = &p->se; 8887 8888 #ifdef CONFIG_FAIR_GROUP_SCHED 8889 if (prev->sched_class != &fair_sched_class) 8890 goto simple; 8891 8892 __put_prev_set_next_dl_server(rq, prev, p); 8893 8894 /* 8895 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8896 * likely that a next task is from the same cgroup as the current. 8897 * 8898 * Therefore attempt to avoid putting and setting the entire cgroup 8899 * hierarchy, only change the part that actually changes. 8900 * 8901 * Since we haven't yet done put_prev_entity and if the selected task 8902 * is a different task than we started out with, try and touch the 8903 * least amount of cfs_rqs. 8904 */ 8905 if (prev != p) { 8906 struct sched_entity *pse = &prev->se; 8907 struct cfs_rq *cfs_rq; 8908 8909 while (!(cfs_rq = is_same_group(se, pse))) { 8910 int se_depth = se->depth; 8911 int pse_depth = pse->depth; 8912 8913 if (se_depth <= pse_depth) { 8914 put_prev_entity(cfs_rq_of(pse), pse); 8915 pse = parent_entity(pse); 8916 } 8917 if (se_depth >= pse_depth) { 8918 set_next_entity(cfs_rq_of(se), se); 8919 se = parent_entity(se); 8920 } 8921 } 8922 8923 put_prev_entity(cfs_rq, pse); 8924 set_next_entity(cfs_rq, se); 8925 8926 __set_next_task_fair(rq, p, true); 8927 } 8928 8929 return p; 8930 8931 simple: 8932 #endif 8933 put_prev_set_next_task(rq, prev, p); 8934 return p; 8935 8936 idle: 8937 if (!rf) 8938 return NULL; 8939 8940 new_tasks = sched_balance_newidle(rq, rf); 8941 8942 /* 8943 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8944 * possible for any higher priority task to appear. In that case we 8945 * must re-start the pick_next_entity() loop. 8946 */ 8947 if (new_tasks < 0) 8948 return RETRY_TASK; 8949 8950 if (new_tasks > 0) 8951 goto again; 8952 8953 /* 8954 * rq is about to be idle, check if we need to update the 8955 * lost_idle_time of clock_pelt 8956 */ 8957 update_idle_rq_clock_pelt(rq); 8958 8959 return NULL; 8960 } 8961 8962 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8963 { 8964 return pick_next_task_fair(rq, prev, NULL); 8965 } 8966 8967 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8968 { 8969 return !!dl_se->rq->cfs.nr_queued; 8970 } 8971 8972 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8973 { 8974 return pick_task_fair(dl_se->rq); 8975 } 8976 8977 void fair_server_init(struct rq *rq) 8978 { 8979 struct sched_dl_entity *dl_se = &rq->fair_server; 8980 8981 init_dl_entity(dl_se); 8982 8983 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8984 } 8985 8986 /* 8987 * Account for a descheduled task: 8988 */ 8989 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8990 { 8991 struct sched_entity *se = &prev->se; 8992 struct cfs_rq *cfs_rq; 8993 8994 for_each_sched_entity(se) { 8995 cfs_rq = cfs_rq_of(se); 8996 put_prev_entity(cfs_rq, se); 8997 } 8998 } 8999 9000 /* 9001 * sched_yield() is very simple 9002 */ 9003 static void yield_task_fair(struct rq *rq) 9004 { 9005 struct task_struct *curr = rq->curr; 9006 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9007 struct sched_entity *se = &curr->se; 9008 9009 /* 9010 * Are we the only task in the tree? 9011 */ 9012 if (unlikely(rq->nr_running == 1)) 9013 return; 9014 9015 clear_buddies(cfs_rq, se); 9016 9017 update_rq_clock(rq); 9018 /* 9019 * Update run-time statistics of the 'current'. 9020 */ 9021 update_curr(cfs_rq); 9022 /* 9023 * Tell update_rq_clock() that we've just updated, 9024 * so we don't do microscopic update in schedule() 9025 * and double the fastpath cost. 9026 */ 9027 rq_clock_skip_update(rq); 9028 9029 se->deadline += calc_delta_fair(se->slice, se); 9030 } 9031 9032 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9033 { 9034 struct sched_entity *se = &p->se; 9035 9036 /* throttled hierarchies are not runnable */ 9037 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9038 return false; 9039 9040 /* Tell the scheduler that we'd really like se to run next. */ 9041 set_next_buddy(se); 9042 9043 yield_task_fair(rq); 9044 9045 return true; 9046 } 9047 9048 #ifdef CONFIG_SMP 9049 /************************************************** 9050 * Fair scheduling class load-balancing methods. 9051 * 9052 * BASICS 9053 * 9054 * The purpose of load-balancing is to achieve the same basic fairness the 9055 * per-CPU scheduler provides, namely provide a proportional amount of compute 9056 * time to each task. This is expressed in the following equation: 9057 * 9058 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9059 * 9060 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9061 * W_i,0 is defined as: 9062 * 9063 * W_i,0 = \Sum_j w_i,j (2) 9064 * 9065 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9066 * is derived from the nice value as per sched_prio_to_weight[]. 9067 * 9068 * The weight average is an exponential decay average of the instantaneous 9069 * weight: 9070 * 9071 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9072 * 9073 * C_i is the compute capacity of CPU i, typically it is the 9074 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9075 * can also include other factors [XXX]. 9076 * 9077 * To achieve this balance we define a measure of imbalance which follows 9078 * directly from (1): 9079 * 9080 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9081 * 9082 * We them move tasks around to minimize the imbalance. In the continuous 9083 * function space it is obvious this converges, in the discrete case we get 9084 * a few fun cases generally called infeasible weight scenarios. 9085 * 9086 * [XXX expand on: 9087 * - infeasible weights; 9088 * - local vs global optima in the discrete case. ] 9089 * 9090 * 9091 * SCHED DOMAINS 9092 * 9093 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9094 * for all i,j solution, we create a tree of CPUs that follows the hardware 9095 * topology where each level pairs two lower groups (or better). This results 9096 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9097 * tree to only the first of the previous level and we decrease the frequency 9098 * of load-balance at each level inversely proportional to the number of CPUs in 9099 * the groups. 9100 * 9101 * This yields: 9102 * 9103 * log_2 n 1 n 9104 * \Sum { --- * --- * 2^i } = O(n) (5) 9105 * i = 0 2^i 2^i 9106 * `- size of each group 9107 * | | `- number of CPUs doing load-balance 9108 * | `- freq 9109 * `- sum over all levels 9110 * 9111 * Coupled with a limit on how many tasks we can migrate every balance pass, 9112 * this makes (5) the runtime complexity of the balancer. 9113 * 9114 * An important property here is that each CPU is still (indirectly) connected 9115 * to every other CPU in at most O(log n) steps: 9116 * 9117 * The adjacency matrix of the resulting graph is given by: 9118 * 9119 * log_2 n 9120 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9121 * k = 0 9122 * 9123 * And you'll find that: 9124 * 9125 * A^(log_2 n)_i,j != 0 for all i,j (7) 9126 * 9127 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9128 * The task movement gives a factor of O(m), giving a convergence complexity 9129 * of: 9130 * 9131 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9132 * 9133 * 9134 * WORK CONSERVING 9135 * 9136 * In order to avoid CPUs going idle while there's still work to do, new idle 9137 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9138 * tree itself instead of relying on other CPUs to bring it work. 9139 * 9140 * This adds some complexity to both (5) and (8) but it reduces the total idle 9141 * time. 9142 * 9143 * [XXX more?] 9144 * 9145 * 9146 * CGROUPS 9147 * 9148 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9149 * 9150 * s_k,i 9151 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9152 * S_k 9153 * 9154 * Where 9155 * 9156 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9157 * 9158 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9159 * 9160 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9161 * property. 9162 * 9163 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9164 * rewrite all of this once again.] 9165 */ 9166 9167 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9168 9169 enum fbq_type { regular, remote, all }; 9170 9171 /* 9172 * 'group_type' describes the group of CPUs at the moment of load balancing. 9173 * 9174 * The enum is ordered by pulling priority, with the group with lowest priority 9175 * first so the group_type can simply be compared when selecting the busiest 9176 * group. See update_sd_pick_busiest(). 9177 */ 9178 enum group_type { 9179 /* The group has spare capacity that can be used to run more tasks. */ 9180 group_has_spare = 0, 9181 /* 9182 * The group is fully used and the tasks don't compete for more CPU 9183 * cycles. Nevertheless, some tasks might wait before running. 9184 */ 9185 group_fully_busy, 9186 /* 9187 * One task doesn't fit with CPU's capacity and must be migrated to a 9188 * more powerful CPU. 9189 */ 9190 group_misfit_task, 9191 /* 9192 * Balance SMT group that's fully busy. Can benefit from migration 9193 * a task on SMT with busy sibling to another CPU on idle core. 9194 */ 9195 group_smt_balance, 9196 /* 9197 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9198 * and the task should be migrated to it instead of running on the 9199 * current CPU. 9200 */ 9201 group_asym_packing, 9202 /* 9203 * The tasks' affinity constraints previously prevented the scheduler 9204 * from balancing the load across the system. 9205 */ 9206 group_imbalanced, 9207 /* 9208 * The CPU is overloaded and can't provide expected CPU cycles to all 9209 * tasks. 9210 */ 9211 group_overloaded 9212 }; 9213 9214 enum migration_type { 9215 migrate_load = 0, 9216 migrate_util, 9217 migrate_task, 9218 migrate_misfit 9219 }; 9220 9221 #define LBF_ALL_PINNED 0x01 9222 #define LBF_NEED_BREAK 0x02 9223 #define LBF_DST_PINNED 0x04 9224 #define LBF_SOME_PINNED 0x08 9225 #define LBF_ACTIVE_LB 0x10 9226 9227 struct lb_env { 9228 struct sched_domain *sd; 9229 9230 struct rq *src_rq; 9231 int src_cpu; 9232 9233 int dst_cpu; 9234 struct rq *dst_rq; 9235 9236 struct cpumask *dst_grpmask; 9237 int new_dst_cpu; 9238 enum cpu_idle_type idle; 9239 long imbalance; 9240 /* The set of CPUs under consideration for load-balancing */ 9241 struct cpumask *cpus; 9242 9243 unsigned int flags; 9244 9245 unsigned int loop; 9246 unsigned int loop_break; 9247 unsigned int loop_max; 9248 9249 enum fbq_type fbq_type; 9250 enum migration_type migration_type; 9251 struct list_head tasks; 9252 }; 9253 9254 /* 9255 * Is this task likely cache-hot: 9256 */ 9257 static int task_hot(struct task_struct *p, struct lb_env *env) 9258 { 9259 s64 delta; 9260 9261 lockdep_assert_rq_held(env->src_rq); 9262 9263 if (p->sched_class != &fair_sched_class) 9264 return 0; 9265 9266 if (unlikely(task_has_idle_policy(p))) 9267 return 0; 9268 9269 /* SMT siblings share cache */ 9270 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9271 return 0; 9272 9273 /* 9274 * Buddy candidates are cache hot: 9275 */ 9276 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9277 (&p->se == cfs_rq_of(&p->se)->next)) 9278 return 1; 9279 9280 if (sysctl_sched_migration_cost == -1) 9281 return 1; 9282 9283 /* 9284 * Don't migrate task if the task's cookie does not match 9285 * with the destination CPU's core cookie. 9286 */ 9287 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9288 return 1; 9289 9290 if (sysctl_sched_migration_cost == 0) 9291 return 0; 9292 9293 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9294 9295 return delta < (s64)sysctl_sched_migration_cost; 9296 } 9297 9298 #ifdef CONFIG_NUMA_BALANCING 9299 /* 9300 * Returns a positive value, if task migration degrades locality. 9301 * Returns 0, if task migration is not affected by locality. 9302 * Returns a negative value, if task migration improves locality i.e migration preferred. 9303 */ 9304 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9305 { 9306 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9307 unsigned long src_weight, dst_weight; 9308 int src_nid, dst_nid, dist; 9309 9310 if (!static_branch_likely(&sched_numa_balancing)) 9311 return 0; 9312 9313 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9314 return 0; 9315 9316 src_nid = cpu_to_node(env->src_cpu); 9317 dst_nid = cpu_to_node(env->dst_cpu); 9318 9319 if (src_nid == dst_nid) 9320 return 0; 9321 9322 /* Migrating away from the preferred node is always bad. */ 9323 if (src_nid == p->numa_preferred_nid) { 9324 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9325 return 1; 9326 else 9327 return 0; 9328 } 9329 9330 /* Encourage migration to the preferred node. */ 9331 if (dst_nid == p->numa_preferred_nid) 9332 return -1; 9333 9334 /* Leaving a core idle is often worse than degrading locality. */ 9335 if (env->idle == CPU_IDLE) 9336 return 0; 9337 9338 dist = node_distance(src_nid, dst_nid); 9339 if (numa_group) { 9340 src_weight = group_weight(p, src_nid, dist); 9341 dst_weight = group_weight(p, dst_nid, dist); 9342 } else { 9343 src_weight = task_weight(p, src_nid, dist); 9344 dst_weight = task_weight(p, dst_nid, dist); 9345 } 9346 9347 return src_weight - dst_weight; 9348 } 9349 9350 #else 9351 static inline long migrate_degrades_locality(struct task_struct *p, 9352 struct lb_env *env) 9353 { 9354 return 0; 9355 } 9356 #endif 9357 9358 /* 9359 * Check whether the task is ineligible on the destination cpu 9360 * 9361 * When the PLACE_LAG scheduling feature is enabled and 9362 * dst_cfs_rq->nr_queued is greater than 1, if the task 9363 * is ineligible, it will also be ineligible when 9364 * it is migrated to the destination cpu. 9365 */ 9366 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9367 { 9368 struct cfs_rq *dst_cfs_rq; 9369 9370 #ifdef CONFIG_FAIR_GROUP_SCHED 9371 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9372 #else 9373 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9374 #endif 9375 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9376 !entity_eligible(task_cfs_rq(p), &p->se)) 9377 return 1; 9378 9379 return 0; 9380 } 9381 9382 /* 9383 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9384 */ 9385 static 9386 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9387 { 9388 long degrades, hot; 9389 9390 lockdep_assert_rq_held(env->src_rq); 9391 if (p->sched_task_hot) 9392 p->sched_task_hot = 0; 9393 9394 /* 9395 * We do not migrate tasks that are: 9396 * 1) delayed dequeued unless we migrate load, or 9397 * 2) throttled_lb_pair, or 9398 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9399 * 4) running (obviously), or 9400 * 5) are cache-hot on their current CPU. 9401 */ 9402 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9403 return 0; 9404 9405 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9406 return 0; 9407 9408 /* 9409 * We want to prioritize the migration of eligible tasks. 9410 * For ineligible tasks we soft-limit them and only allow 9411 * them to migrate when nr_balance_failed is non-zero to 9412 * avoid load-balancing trying very hard to balance the load. 9413 */ 9414 if (!env->sd->nr_balance_failed && 9415 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9416 return 0; 9417 9418 /* Disregard percpu kthreads; they are where they need to be. */ 9419 if (kthread_is_per_cpu(p)) 9420 return 0; 9421 9422 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9423 int cpu; 9424 9425 schedstat_inc(p->stats.nr_failed_migrations_affine); 9426 9427 env->flags |= LBF_SOME_PINNED; 9428 9429 /* 9430 * Remember if this task can be migrated to any other CPU in 9431 * our sched_group. We may want to revisit it if we couldn't 9432 * meet load balance goals by pulling other tasks on src_cpu. 9433 * 9434 * Avoid computing new_dst_cpu 9435 * - for NEWLY_IDLE 9436 * - if we have already computed one in current iteration 9437 * - if it's an active balance 9438 */ 9439 if (env->idle == CPU_NEWLY_IDLE || 9440 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9441 return 0; 9442 9443 /* Prevent to re-select dst_cpu via env's CPUs: */ 9444 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9445 9446 if (cpu < nr_cpu_ids) { 9447 env->flags |= LBF_DST_PINNED; 9448 env->new_dst_cpu = cpu; 9449 } 9450 9451 return 0; 9452 } 9453 9454 /* Record that we found at least one task that could run on dst_cpu */ 9455 env->flags &= ~LBF_ALL_PINNED; 9456 9457 if (task_on_cpu(env->src_rq, p)) { 9458 schedstat_inc(p->stats.nr_failed_migrations_running); 9459 return 0; 9460 } 9461 9462 /* 9463 * Aggressive migration if: 9464 * 1) active balance 9465 * 2) destination numa is preferred 9466 * 3) task is cache cold, or 9467 * 4) too many balance attempts have failed. 9468 */ 9469 if (env->flags & LBF_ACTIVE_LB) 9470 return 1; 9471 9472 degrades = migrate_degrades_locality(p, env); 9473 if (!degrades) 9474 hot = task_hot(p, env); 9475 else 9476 hot = degrades > 0; 9477 9478 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9479 if (hot) 9480 p->sched_task_hot = 1; 9481 return 1; 9482 } 9483 9484 schedstat_inc(p->stats.nr_failed_migrations_hot); 9485 return 0; 9486 } 9487 9488 /* 9489 * detach_task() -- detach the task for the migration specified in env 9490 */ 9491 static void detach_task(struct task_struct *p, struct lb_env *env) 9492 { 9493 lockdep_assert_rq_held(env->src_rq); 9494 9495 if (p->sched_task_hot) { 9496 p->sched_task_hot = 0; 9497 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9498 schedstat_inc(p->stats.nr_forced_migrations); 9499 } 9500 9501 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9502 set_task_cpu(p, env->dst_cpu); 9503 } 9504 9505 /* 9506 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9507 * part of active balancing operations within "domain". 9508 * 9509 * Returns a task if successful and NULL otherwise. 9510 */ 9511 static struct task_struct *detach_one_task(struct lb_env *env) 9512 { 9513 struct task_struct *p; 9514 9515 lockdep_assert_rq_held(env->src_rq); 9516 9517 list_for_each_entry_reverse(p, 9518 &env->src_rq->cfs_tasks, se.group_node) { 9519 if (!can_migrate_task(p, env)) 9520 continue; 9521 9522 detach_task(p, env); 9523 9524 /* 9525 * Right now, this is only the second place where 9526 * lb_gained[env->idle] is updated (other is detach_tasks) 9527 * so we can safely collect stats here rather than 9528 * inside detach_tasks(). 9529 */ 9530 schedstat_inc(env->sd->lb_gained[env->idle]); 9531 return p; 9532 } 9533 return NULL; 9534 } 9535 9536 /* 9537 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9538 * busiest_rq, as part of a balancing operation within domain "sd". 9539 * 9540 * Returns number of detached tasks if successful and 0 otherwise. 9541 */ 9542 static int detach_tasks(struct lb_env *env) 9543 { 9544 struct list_head *tasks = &env->src_rq->cfs_tasks; 9545 unsigned long util, load; 9546 struct task_struct *p; 9547 int detached = 0; 9548 9549 lockdep_assert_rq_held(env->src_rq); 9550 9551 /* 9552 * Source run queue has been emptied by another CPU, clear 9553 * LBF_ALL_PINNED flag as we will not test any task. 9554 */ 9555 if (env->src_rq->nr_running <= 1) { 9556 env->flags &= ~LBF_ALL_PINNED; 9557 return 0; 9558 } 9559 9560 if (env->imbalance <= 0) 9561 return 0; 9562 9563 while (!list_empty(tasks)) { 9564 /* 9565 * We don't want to steal all, otherwise we may be treated likewise, 9566 * which could at worst lead to a livelock crash. 9567 */ 9568 if (env->idle && env->src_rq->nr_running <= 1) 9569 break; 9570 9571 env->loop++; 9572 /* We've more or less seen every task there is, call it quits */ 9573 if (env->loop > env->loop_max) 9574 break; 9575 9576 /* take a breather every nr_migrate tasks */ 9577 if (env->loop > env->loop_break) { 9578 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9579 env->flags |= LBF_NEED_BREAK; 9580 break; 9581 } 9582 9583 p = list_last_entry(tasks, struct task_struct, se.group_node); 9584 9585 if (!can_migrate_task(p, env)) 9586 goto next; 9587 9588 switch (env->migration_type) { 9589 case migrate_load: 9590 /* 9591 * Depending of the number of CPUs and tasks and the 9592 * cgroup hierarchy, task_h_load() can return a null 9593 * value. Make sure that env->imbalance decreases 9594 * otherwise detach_tasks() will stop only after 9595 * detaching up to loop_max tasks. 9596 */ 9597 load = max_t(unsigned long, task_h_load(p), 1); 9598 9599 if (sched_feat(LB_MIN) && 9600 load < 16 && !env->sd->nr_balance_failed) 9601 goto next; 9602 9603 /* 9604 * Make sure that we don't migrate too much load. 9605 * Nevertheless, let relax the constraint if 9606 * scheduler fails to find a good waiting task to 9607 * migrate. 9608 */ 9609 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9610 goto next; 9611 9612 env->imbalance -= load; 9613 break; 9614 9615 case migrate_util: 9616 util = task_util_est(p); 9617 9618 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9619 goto next; 9620 9621 env->imbalance -= util; 9622 break; 9623 9624 case migrate_task: 9625 env->imbalance--; 9626 break; 9627 9628 case migrate_misfit: 9629 /* This is not a misfit task */ 9630 if (task_fits_cpu(p, env->src_cpu)) 9631 goto next; 9632 9633 env->imbalance = 0; 9634 break; 9635 } 9636 9637 detach_task(p, env); 9638 list_add(&p->se.group_node, &env->tasks); 9639 9640 detached++; 9641 9642 #ifdef CONFIG_PREEMPTION 9643 /* 9644 * NEWIDLE balancing is a source of latency, so preemptible 9645 * kernels will stop after the first task is detached to minimize 9646 * the critical section. 9647 */ 9648 if (env->idle == CPU_NEWLY_IDLE) 9649 break; 9650 #endif 9651 9652 /* 9653 * We only want to steal up to the prescribed amount of 9654 * load/util/tasks. 9655 */ 9656 if (env->imbalance <= 0) 9657 break; 9658 9659 continue; 9660 next: 9661 if (p->sched_task_hot) 9662 schedstat_inc(p->stats.nr_failed_migrations_hot); 9663 9664 list_move(&p->se.group_node, tasks); 9665 } 9666 9667 /* 9668 * Right now, this is one of only two places we collect this stat 9669 * so we can safely collect detach_one_task() stats here rather 9670 * than inside detach_one_task(). 9671 */ 9672 schedstat_add(env->sd->lb_gained[env->idle], detached); 9673 9674 return detached; 9675 } 9676 9677 /* 9678 * attach_task() -- attach the task detached by detach_task() to its new rq. 9679 */ 9680 static void attach_task(struct rq *rq, struct task_struct *p) 9681 { 9682 lockdep_assert_rq_held(rq); 9683 9684 WARN_ON_ONCE(task_rq(p) != rq); 9685 activate_task(rq, p, ENQUEUE_NOCLOCK); 9686 wakeup_preempt(rq, p, 0); 9687 } 9688 9689 /* 9690 * attach_one_task() -- attaches the task returned from detach_one_task() to 9691 * its new rq. 9692 */ 9693 static void attach_one_task(struct rq *rq, struct task_struct *p) 9694 { 9695 struct rq_flags rf; 9696 9697 rq_lock(rq, &rf); 9698 update_rq_clock(rq); 9699 attach_task(rq, p); 9700 rq_unlock(rq, &rf); 9701 } 9702 9703 /* 9704 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9705 * new rq. 9706 */ 9707 static void attach_tasks(struct lb_env *env) 9708 { 9709 struct list_head *tasks = &env->tasks; 9710 struct task_struct *p; 9711 struct rq_flags rf; 9712 9713 rq_lock(env->dst_rq, &rf); 9714 update_rq_clock(env->dst_rq); 9715 9716 while (!list_empty(tasks)) { 9717 p = list_first_entry(tasks, struct task_struct, se.group_node); 9718 list_del_init(&p->se.group_node); 9719 9720 attach_task(env->dst_rq, p); 9721 } 9722 9723 rq_unlock(env->dst_rq, &rf); 9724 } 9725 9726 #ifdef CONFIG_NO_HZ_COMMON 9727 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9728 { 9729 if (cfs_rq->avg.load_avg) 9730 return true; 9731 9732 if (cfs_rq->avg.util_avg) 9733 return true; 9734 9735 return false; 9736 } 9737 9738 static inline bool others_have_blocked(struct rq *rq) 9739 { 9740 if (cpu_util_rt(rq)) 9741 return true; 9742 9743 if (cpu_util_dl(rq)) 9744 return true; 9745 9746 if (hw_load_avg(rq)) 9747 return true; 9748 9749 if (cpu_util_irq(rq)) 9750 return true; 9751 9752 return false; 9753 } 9754 9755 static inline void update_blocked_load_tick(struct rq *rq) 9756 { 9757 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9758 } 9759 9760 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9761 { 9762 if (!has_blocked) 9763 rq->has_blocked_load = 0; 9764 } 9765 #else 9766 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9767 static inline bool others_have_blocked(struct rq *rq) { return false; } 9768 static inline void update_blocked_load_tick(struct rq *rq) {} 9769 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9770 #endif 9771 9772 static bool __update_blocked_others(struct rq *rq, bool *done) 9773 { 9774 bool updated; 9775 9776 /* 9777 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9778 * DL and IRQ signals have been updated before updating CFS. 9779 */ 9780 updated = update_other_load_avgs(rq); 9781 9782 if (others_have_blocked(rq)) 9783 *done = false; 9784 9785 return updated; 9786 } 9787 9788 #ifdef CONFIG_FAIR_GROUP_SCHED 9789 9790 static bool __update_blocked_fair(struct rq *rq, bool *done) 9791 { 9792 struct cfs_rq *cfs_rq, *pos; 9793 bool decayed = false; 9794 int cpu = cpu_of(rq); 9795 9796 /* 9797 * Iterates the task_group tree in a bottom up fashion, see 9798 * list_add_leaf_cfs_rq() for details. 9799 */ 9800 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9801 struct sched_entity *se; 9802 9803 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9804 update_tg_load_avg(cfs_rq); 9805 9806 if (cfs_rq->nr_queued == 0) 9807 update_idle_cfs_rq_clock_pelt(cfs_rq); 9808 9809 if (cfs_rq == &rq->cfs) 9810 decayed = true; 9811 } 9812 9813 /* Propagate pending load changes to the parent, if any: */ 9814 se = cfs_rq->tg->se[cpu]; 9815 if (se && !skip_blocked_update(se)) 9816 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9817 9818 /* 9819 * There can be a lot of idle CPU cgroups. Don't let fully 9820 * decayed cfs_rqs linger on the list. 9821 */ 9822 if (cfs_rq_is_decayed(cfs_rq)) 9823 list_del_leaf_cfs_rq(cfs_rq); 9824 9825 /* Don't need periodic decay once load/util_avg are null */ 9826 if (cfs_rq_has_blocked(cfs_rq)) 9827 *done = false; 9828 } 9829 9830 return decayed; 9831 } 9832 9833 /* 9834 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9835 * This needs to be done in a top-down fashion because the load of a child 9836 * group is a fraction of its parents load. 9837 */ 9838 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9839 { 9840 struct rq *rq = rq_of(cfs_rq); 9841 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9842 unsigned long now = jiffies; 9843 unsigned long load; 9844 9845 if (cfs_rq->last_h_load_update == now) 9846 return; 9847 9848 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9849 for_each_sched_entity(se) { 9850 cfs_rq = cfs_rq_of(se); 9851 WRITE_ONCE(cfs_rq->h_load_next, se); 9852 if (cfs_rq->last_h_load_update == now) 9853 break; 9854 } 9855 9856 if (!se) { 9857 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9858 cfs_rq->last_h_load_update = now; 9859 } 9860 9861 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9862 load = cfs_rq->h_load; 9863 load = div64_ul(load * se->avg.load_avg, 9864 cfs_rq_load_avg(cfs_rq) + 1); 9865 cfs_rq = group_cfs_rq(se); 9866 cfs_rq->h_load = load; 9867 cfs_rq->last_h_load_update = now; 9868 } 9869 } 9870 9871 static unsigned long task_h_load(struct task_struct *p) 9872 { 9873 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9874 9875 update_cfs_rq_h_load(cfs_rq); 9876 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9877 cfs_rq_load_avg(cfs_rq) + 1); 9878 } 9879 #else 9880 static bool __update_blocked_fair(struct rq *rq, bool *done) 9881 { 9882 struct cfs_rq *cfs_rq = &rq->cfs; 9883 bool decayed; 9884 9885 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9886 if (cfs_rq_has_blocked(cfs_rq)) 9887 *done = false; 9888 9889 return decayed; 9890 } 9891 9892 static unsigned long task_h_load(struct task_struct *p) 9893 { 9894 return p->se.avg.load_avg; 9895 } 9896 #endif 9897 9898 static void sched_balance_update_blocked_averages(int cpu) 9899 { 9900 bool decayed = false, done = true; 9901 struct rq *rq = cpu_rq(cpu); 9902 struct rq_flags rf; 9903 9904 rq_lock_irqsave(rq, &rf); 9905 update_blocked_load_tick(rq); 9906 update_rq_clock(rq); 9907 9908 decayed |= __update_blocked_others(rq, &done); 9909 decayed |= __update_blocked_fair(rq, &done); 9910 9911 update_blocked_load_status(rq, !done); 9912 if (decayed) 9913 cpufreq_update_util(rq, 0); 9914 rq_unlock_irqrestore(rq, &rf); 9915 } 9916 9917 /********** Helpers for sched_balance_find_src_group ************************/ 9918 9919 /* 9920 * sg_lb_stats - stats of a sched_group required for load-balancing: 9921 */ 9922 struct sg_lb_stats { 9923 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9924 unsigned long group_load; /* Total load over the CPUs of the group */ 9925 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9926 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9927 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9928 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9929 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9930 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9931 unsigned int group_weight; 9932 enum group_type group_type; 9933 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9934 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9935 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9936 #ifdef CONFIG_NUMA_BALANCING 9937 unsigned int nr_numa_running; 9938 unsigned int nr_preferred_running; 9939 #endif 9940 }; 9941 9942 /* 9943 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9944 */ 9945 struct sd_lb_stats { 9946 struct sched_group *busiest; /* Busiest group in this sd */ 9947 struct sched_group *local; /* Local group in this sd */ 9948 unsigned long total_load; /* Total load of all groups in sd */ 9949 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9950 unsigned long avg_load; /* Average load across all groups in sd */ 9951 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9952 9953 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9954 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9955 }; 9956 9957 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9958 { 9959 /* 9960 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9961 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9962 * We must however set busiest_stat::group_type and 9963 * busiest_stat::idle_cpus to the worst busiest group because 9964 * update_sd_pick_busiest() reads these before assignment. 9965 */ 9966 *sds = (struct sd_lb_stats){ 9967 .busiest = NULL, 9968 .local = NULL, 9969 .total_load = 0UL, 9970 .total_capacity = 0UL, 9971 .busiest_stat = { 9972 .idle_cpus = UINT_MAX, 9973 .group_type = group_has_spare, 9974 }, 9975 }; 9976 } 9977 9978 static unsigned long scale_rt_capacity(int cpu) 9979 { 9980 unsigned long max = get_actual_cpu_capacity(cpu); 9981 struct rq *rq = cpu_rq(cpu); 9982 unsigned long used, free; 9983 unsigned long irq; 9984 9985 irq = cpu_util_irq(rq); 9986 9987 if (unlikely(irq >= max)) 9988 return 1; 9989 9990 /* 9991 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9992 * (running and not running) with weights 0 and 1024 respectively. 9993 */ 9994 used = cpu_util_rt(rq); 9995 used += cpu_util_dl(rq); 9996 9997 if (unlikely(used >= max)) 9998 return 1; 9999 10000 free = max - used; 10001 10002 return scale_irq_capacity(free, irq, max); 10003 } 10004 10005 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10006 { 10007 unsigned long capacity = scale_rt_capacity(cpu); 10008 struct sched_group *sdg = sd->groups; 10009 10010 if (!capacity) 10011 capacity = 1; 10012 10013 cpu_rq(cpu)->cpu_capacity = capacity; 10014 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10015 10016 sdg->sgc->capacity = capacity; 10017 sdg->sgc->min_capacity = capacity; 10018 sdg->sgc->max_capacity = capacity; 10019 } 10020 10021 void update_group_capacity(struct sched_domain *sd, int cpu) 10022 { 10023 struct sched_domain *child = sd->child; 10024 struct sched_group *group, *sdg = sd->groups; 10025 unsigned long capacity, min_capacity, max_capacity; 10026 unsigned long interval; 10027 10028 interval = msecs_to_jiffies(sd->balance_interval); 10029 interval = clamp(interval, 1UL, max_load_balance_interval); 10030 sdg->sgc->next_update = jiffies + interval; 10031 10032 if (!child) { 10033 update_cpu_capacity(sd, cpu); 10034 return; 10035 } 10036 10037 capacity = 0; 10038 min_capacity = ULONG_MAX; 10039 max_capacity = 0; 10040 10041 if (child->flags & SD_OVERLAP) { 10042 /* 10043 * SD_OVERLAP domains cannot assume that child groups 10044 * span the current group. 10045 */ 10046 10047 for_each_cpu(cpu, sched_group_span(sdg)) { 10048 unsigned long cpu_cap = capacity_of(cpu); 10049 10050 capacity += cpu_cap; 10051 min_capacity = min(cpu_cap, min_capacity); 10052 max_capacity = max(cpu_cap, max_capacity); 10053 } 10054 } else { 10055 /* 10056 * !SD_OVERLAP domains can assume that child groups 10057 * span the current group. 10058 */ 10059 10060 group = child->groups; 10061 do { 10062 struct sched_group_capacity *sgc = group->sgc; 10063 10064 capacity += sgc->capacity; 10065 min_capacity = min(sgc->min_capacity, min_capacity); 10066 max_capacity = max(sgc->max_capacity, max_capacity); 10067 group = group->next; 10068 } while (group != child->groups); 10069 } 10070 10071 sdg->sgc->capacity = capacity; 10072 sdg->sgc->min_capacity = min_capacity; 10073 sdg->sgc->max_capacity = max_capacity; 10074 } 10075 10076 /* 10077 * Check whether the capacity of the rq has been noticeably reduced by side 10078 * activity. The imbalance_pct is used for the threshold. 10079 * Return true is the capacity is reduced 10080 */ 10081 static inline int 10082 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10083 { 10084 return ((rq->cpu_capacity * sd->imbalance_pct) < 10085 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10086 } 10087 10088 /* Check if the rq has a misfit task */ 10089 static inline bool check_misfit_status(struct rq *rq) 10090 { 10091 return rq->misfit_task_load; 10092 } 10093 10094 /* 10095 * Group imbalance indicates (and tries to solve) the problem where balancing 10096 * groups is inadequate due to ->cpus_ptr constraints. 10097 * 10098 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10099 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10100 * Something like: 10101 * 10102 * { 0 1 2 3 } { 4 5 6 7 } 10103 * * * * * 10104 * 10105 * If we were to balance group-wise we'd place two tasks in the first group and 10106 * two tasks in the second group. Clearly this is undesired as it will overload 10107 * cpu 3 and leave one of the CPUs in the second group unused. 10108 * 10109 * The current solution to this issue is detecting the skew in the first group 10110 * by noticing the lower domain failed to reach balance and had difficulty 10111 * moving tasks due to affinity constraints. 10112 * 10113 * When this is so detected; this group becomes a candidate for busiest; see 10114 * update_sd_pick_busiest(). And calculate_imbalance() and 10115 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10116 * to create an effective group imbalance. 10117 * 10118 * This is a somewhat tricky proposition since the next run might not find the 10119 * group imbalance and decide the groups need to be balanced again. A most 10120 * subtle and fragile situation. 10121 */ 10122 10123 static inline int sg_imbalanced(struct sched_group *group) 10124 { 10125 return group->sgc->imbalance; 10126 } 10127 10128 /* 10129 * group_has_capacity returns true if the group has spare capacity that could 10130 * be used by some tasks. 10131 * We consider that a group has spare capacity if the number of task is 10132 * smaller than the number of CPUs or if the utilization is lower than the 10133 * available capacity for CFS tasks. 10134 * For the latter, we use a threshold to stabilize the state, to take into 10135 * account the variance of the tasks' load and to return true if the available 10136 * capacity in meaningful for the load balancer. 10137 * As an example, an available capacity of 1% can appear but it doesn't make 10138 * any benefit for the load balance. 10139 */ 10140 static inline bool 10141 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10142 { 10143 if (sgs->sum_nr_running < sgs->group_weight) 10144 return true; 10145 10146 if ((sgs->group_capacity * imbalance_pct) < 10147 (sgs->group_runnable * 100)) 10148 return false; 10149 10150 if ((sgs->group_capacity * 100) > 10151 (sgs->group_util * imbalance_pct)) 10152 return true; 10153 10154 return false; 10155 } 10156 10157 /* 10158 * group_is_overloaded returns true if the group has more tasks than it can 10159 * handle. 10160 * group_is_overloaded is not equals to !group_has_capacity because a group 10161 * with the exact right number of tasks, has no more spare capacity but is not 10162 * overloaded so both group_has_capacity and group_is_overloaded return 10163 * false. 10164 */ 10165 static inline bool 10166 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10167 { 10168 if (sgs->sum_nr_running <= sgs->group_weight) 10169 return false; 10170 10171 if ((sgs->group_capacity * 100) < 10172 (sgs->group_util * imbalance_pct)) 10173 return true; 10174 10175 if ((sgs->group_capacity * imbalance_pct) < 10176 (sgs->group_runnable * 100)) 10177 return true; 10178 10179 return false; 10180 } 10181 10182 static inline enum 10183 group_type group_classify(unsigned int imbalance_pct, 10184 struct sched_group *group, 10185 struct sg_lb_stats *sgs) 10186 { 10187 if (group_is_overloaded(imbalance_pct, sgs)) 10188 return group_overloaded; 10189 10190 if (sg_imbalanced(group)) 10191 return group_imbalanced; 10192 10193 if (sgs->group_asym_packing) 10194 return group_asym_packing; 10195 10196 if (sgs->group_smt_balance) 10197 return group_smt_balance; 10198 10199 if (sgs->group_misfit_task_load) 10200 return group_misfit_task; 10201 10202 if (!group_has_capacity(imbalance_pct, sgs)) 10203 return group_fully_busy; 10204 10205 return group_has_spare; 10206 } 10207 10208 /** 10209 * sched_use_asym_prio - Check whether asym_packing priority must be used 10210 * @sd: The scheduling domain of the load balancing 10211 * @cpu: A CPU 10212 * 10213 * Always use CPU priority when balancing load between SMT siblings. When 10214 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10215 * use CPU priority if the whole core is idle. 10216 * 10217 * Returns: True if the priority of @cpu must be followed. False otherwise. 10218 */ 10219 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10220 { 10221 if (!(sd->flags & SD_ASYM_PACKING)) 10222 return false; 10223 10224 if (!sched_smt_active()) 10225 return true; 10226 10227 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10228 } 10229 10230 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10231 { 10232 /* 10233 * First check if @dst_cpu can do asym_packing load balance. Only do it 10234 * if it has higher priority than @src_cpu. 10235 */ 10236 return sched_use_asym_prio(sd, dst_cpu) && 10237 sched_asym_prefer(dst_cpu, src_cpu); 10238 } 10239 10240 /** 10241 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10242 * @env: The load balancing environment 10243 * @sgs: Load-balancing statistics of the candidate busiest group 10244 * @group: The candidate busiest group 10245 * 10246 * @env::dst_cpu can do asym_packing if it has higher priority than the 10247 * preferred CPU of @group. 10248 * 10249 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10250 * otherwise. 10251 */ 10252 static inline bool 10253 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10254 { 10255 /* 10256 * CPU priorities do not make sense for SMT cores with more than one 10257 * busy sibling. 10258 */ 10259 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10260 (sgs->group_weight - sgs->idle_cpus != 1)) 10261 return false; 10262 10263 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10264 } 10265 10266 /* One group has more than one SMT CPU while the other group does not */ 10267 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10268 struct sched_group *sg2) 10269 { 10270 if (!sg1 || !sg2) 10271 return false; 10272 10273 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10274 (sg2->flags & SD_SHARE_CPUCAPACITY); 10275 } 10276 10277 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10278 struct sched_group *group) 10279 { 10280 if (!env->idle) 10281 return false; 10282 10283 /* 10284 * For SMT source group, it is better to move a task 10285 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10286 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10287 * will not be on. 10288 */ 10289 if (group->flags & SD_SHARE_CPUCAPACITY && 10290 sgs->sum_h_nr_running > 1) 10291 return true; 10292 10293 return false; 10294 } 10295 10296 static inline long sibling_imbalance(struct lb_env *env, 10297 struct sd_lb_stats *sds, 10298 struct sg_lb_stats *busiest, 10299 struct sg_lb_stats *local) 10300 { 10301 int ncores_busiest, ncores_local; 10302 long imbalance; 10303 10304 if (!env->idle || !busiest->sum_nr_running) 10305 return 0; 10306 10307 ncores_busiest = sds->busiest->cores; 10308 ncores_local = sds->local->cores; 10309 10310 if (ncores_busiest == ncores_local) { 10311 imbalance = busiest->sum_nr_running; 10312 lsub_positive(&imbalance, local->sum_nr_running); 10313 return imbalance; 10314 } 10315 10316 /* Balance such that nr_running/ncores ratio are same on both groups */ 10317 imbalance = ncores_local * busiest->sum_nr_running; 10318 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10319 /* Normalize imbalance and do rounding on normalization */ 10320 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10321 imbalance /= ncores_local + ncores_busiest; 10322 10323 /* Take advantage of resource in an empty sched group */ 10324 if (imbalance <= 1 && local->sum_nr_running == 0 && 10325 busiest->sum_nr_running > 1) 10326 imbalance = 2; 10327 10328 return imbalance; 10329 } 10330 10331 static inline bool 10332 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10333 { 10334 /* 10335 * When there is more than 1 task, the group_overloaded case already 10336 * takes care of cpu with reduced capacity 10337 */ 10338 if (rq->cfs.h_nr_runnable != 1) 10339 return false; 10340 10341 return check_cpu_capacity(rq, sd); 10342 } 10343 10344 /** 10345 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10346 * @env: The load balancing environment. 10347 * @sds: Load-balancing data with statistics of the local group. 10348 * @group: sched_group whose statistics are to be updated. 10349 * @sgs: variable to hold the statistics for this group. 10350 * @sg_overloaded: sched_group is overloaded 10351 * @sg_overutilized: sched_group is overutilized 10352 */ 10353 static inline void update_sg_lb_stats(struct lb_env *env, 10354 struct sd_lb_stats *sds, 10355 struct sched_group *group, 10356 struct sg_lb_stats *sgs, 10357 bool *sg_overloaded, 10358 bool *sg_overutilized) 10359 { 10360 int i, nr_running, local_group, sd_flags = env->sd->flags; 10361 bool balancing_at_rd = !env->sd->parent; 10362 10363 memset(sgs, 0, sizeof(*sgs)); 10364 10365 local_group = group == sds->local; 10366 10367 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10368 struct rq *rq = cpu_rq(i); 10369 unsigned long load = cpu_load(rq); 10370 10371 sgs->group_load += load; 10372 sgs->group_util += cpu_util_cfs(i); 10373 sgs->group_runnable += cpu_runnable(rq); 10374 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10375 10376 nr_running = rq->nr_running; 10377 sgs->sum_nr_running += nr_running; 10378 10379 if (cpu_overutilized(i)) 10380 *sg_overutilized = 1; 10381 10382 /* 10383 * No need to call idle_cpu() if nr_running is not 0 10384 */ 10385 if (!nr_running && idle_cpu(i)) { 10386 sgs->idle_cpus++; 10387 /* Idle cpu can't have misfit task */ 10388 continue; 10389 } 10390 10391 /* Overload indicator is only updated at root domain */ 10392 if (balancing_at_rd && nr_running > 1) 10393 *sg_overloaded = 1; 10394 10395 #ifdef CONFIG_NUMA_BALANCING 10396 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10397 if (sd_flags & SD_NUMA) { 10398 sgs->nr_numa_running += rq->nr_numa_running; 10399 sgs->nr_preferred_running += rq->nr_preferred_running; 10400 } 10401 #endif 10402 if (local_group) 10403 continue; 10404 10405 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10406 /* Check for a misfit task on the cpu */ 10407 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10408 sgs->group_misfit_task_load = rq->misfit_task_load; 10409 *sg_overloaded = 1; 10410 } 10411 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10412 /* Check for a task running on a CPU with reduced capacity */ 10413 if (sgs->group_misfit_task_load < load) 10414 sgs->group_misfit_task_load = load; 10415 } 10416 } 10417 10418 sgs->group_capacity = group->sgc->capacity; 10419 10420 sgs->group_weight = group->group_weight; 10421 10422 /* Check if dst CPU is idle and preferred to this group */ 10423 if (!local_group && env->idle && sgs->sum_h_nr_running && 10424 sched_group_asym(env, sgs, group)) 10425 sgs->group_asym_packing = 1; 10426 10427 /* Check for loaded SMT group to be balanced to dst CPU */ 10428 if (!local_group && smt_balance(env, sgs, group)) 10429 sgs->group_smt_balance = 1; 10430 10431 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10432 10433 /* Computing avg_load makes sense only when group is overloaded */ 10434 if (sgs->group_type == group_overloaded) 10435 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10436 sgs->group_capacity; 10437 } 10438 10439 /** 10440 * update_sd_pick_busiest - return 1 on busiest group 10441 * @env: The load balancing environment. 10442 * @sds: sched_domain statistics 10443 * @sg: sched_group candidate to be checked for being the busiest 10444 * @sgs: sched_group statistics 10445 * 10446 * Determine if @sg is a busier group than the previously selected 10447 * busiest group. 10448 * 10449 * Return: %true if @sg is a busier group than the previously selected 10450 * busiest group. %false otherwise. 10451 */ 10452 static bool update_sd_pick_busiest(struct lb_env *env, 10453 struct sd_lb_stats *sds, 10454 struct sched_group *sg, 10455 struct sg_lb_stats *sgs) 10456 { 10457 struct sg_lb_stats *busiest = &sds->busiest_stat; 10458 10459 /* Make sure that there is at least one task to pull */ 10460 if (!sgs->sum_h_nr_running) 10461 return false; 10462 10463 /* 10464 * Don't try to pull misfit tasks we can't help. 10465 * We can use max_capacity here as reduction in capacity on some 10466 * CPUs in the group should either be possible to resolve 10467 * internally or be covered by avg_load imbalance (eventually). 10468 */ 10469 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10470 (sgs->group_type == group_misfit_task) && 10471 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10472 sds->local_stat.group_type != group_has_spare)) 10473 return false; 10474 10475 if (sgs->group_type > busiest->group_type) 10476 return true; 10477 10478 if (sgs->group_type < busiest->group_type) 10479 return false; 10480 10481 /* 10482 * The candidate and the current busiest group are the same type of 10483 * group. Let check which one is the busiest according to the type. 10484 */ 10485 10486 switch (sgs->group_type) { 10487 case group_overloaded: 10488 /* Select the overloaded group with highest avg_load. */ 10489 return sgs->avg_load > busiest->avg_load; 10490 10491 case group_imbalanced: 10492 /* 10493 * Select the 1st imbalanced group as we don't have any way to 10494 * choose one more than another. 10495 */ 10496 return false; 10497 10498 case group_asym_packing: 10499 /* Prefer to move from lowest priority CPU's work */ 10500 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10501 10502 case group_misfit_task: 10503 /* 10504 * If we have more than one misfit sg go with the biggest 10505 * misfit. 10506 */ 10507 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10508 10509 case group_smt_balance: 10510 /* 10511 * Check if we have spare CPUs on either SMT group to 10512 * choose has spare or fully busy handling. 10513 */ 10514 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10515 goto has_spare; 10516 10517 fallthrough; 10518 10519 case group_fully_busy: 10520 /* 10521 * Select the fully busy group with highest avg_load. In 10522 * theory, there is no need to pull task from such kind of 10523 * group because tasks have all compute capacity that they need 10524 * but we can still improve the overall throughput by reducing 10525 * contention when accessing shared HW resources. 10526 * 10527 * XXX for now avg_load is not computed and always 0 so we 10528 * select the 1st one, except if @sg is composed of SMT 10529 * siblings. 10530 */ 10531 10532 if (sgs->avg_load < busiest->avg_load) 10533 return false; 10534 10535 if (sgs->avg_load == busiest->avg_load) { 10536 /* 10537 * SMT sched groups need more help than non-SMT groups. 10538 * If @sg happens to also be SMT, either choice is good. 10539 */ 10540 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10541 return false; 10542 } 10543 10544 break; 10545 10546 case group_has_spare: 10547 /* 10548 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10549 * as we do not want to pull task off SMT core with one task 10550 * and make the core idle. 10551 */ 10552 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10553 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10554 return false; 10555 else 10556 return true; 10557 } 10558 has_spare: 10559 10560 /* 10561 * Select not overloaded group with lowest number of idle CPUs 10562 * and highest number of running tasks. We could also compare 10563 * the spare capacity which is more stable but it can end up 10564 * that the group has less spare capacity but finally more idle 10565 * CPUs which means less opportunity to pull tasks. 10566 */ 10567 if (sgs->idle_cpus > busiest->idle_cpus) 10568 return false; 10569 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10570 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10571 return false; 10572 10573 break; 10574 } 10575 10576 /* 10577 * Candidate sg has no more than one task per CPU and has higher 10578 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10579 * throughput. Maximize throughput, power/energy consequences are not 10580 * considered. 10581 */ 10582 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10583 (sgs->group_type <= group_fully_busy) && 10584 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10585 return false; 10586 10587 return true; 10588 } 10589 10590 #ifdef CONFIG_NUMA_BALANCING 10591 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10592 { 10593 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10594 return regular; 10595 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10596 return remote; 10597 return all; 10598 } 10599 10600 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10601 { 10602 if (rq->nr_running > rq->nr_numa_running) 10603 return regular; 10604 if (rq->nr_running > rq->nr_preferred_running) 10605 return remote; 10606 return all; 10607 } 10608 #else 10609 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10610 { 10611 return all; 10612 } 10613 10614 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10615 { 10616 return regular; 10617 } 10618 #endif /* CONFIG_NUMA_BALANCING */ 10619 10620 10621 struct sg_lb_stats; 10622 10623 /* 10624 * task_running_on_cpu - return 1 if @p is running on @cpu. 10625 */ 10626 10627 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10628 { 10629 /* Task has no contribution or is new */ 10630 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10631 return 0; 10632 10633 if (task_on_rq_queued(p)) 10634 return 1; 10635 10636 return 0; 10637 } 10638 10639 /** 10640 * idle_cpu_without - would a given CPU be idle without p ? 10641 * @cpu: the processor on which idleness is tested. 10642 * @p: task which should be ignored. 10643 * 10644 * Return: 1 if the CPU would be idle. 0 otherwise. 10645 */ 10646 static int idle_cpu_without(int cpu, struct task_struct *p) 10647 { 10648 struct rq *rq = cpu_rq(cpu); 10649 10650 if (rq->curr != rq->idle && rq->curr != p) 10651 return 0; 10652 10653 /* 10654 * rq->nr_running can't be used but an updated version without the 10655 * impact of p on cpu must be used instead. The updated nr_running 10656 * be computed and tested before calling idle_cpu_without(). 10657 */ 10658 10659 if (rq->ttwu_pending) 10660 return 0; 10661 10662 return 1; 10663 } 10664 10665 /* 10666 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10667 * @sd: The sched_domain level to look for idlest group. 10668 * @group: sched_group whose statistics are to be updated. 10669 * @sgs: variable to hold the statistics for this group. 10670 * @p: The task for which we look for the idlest group/CPU. 10671 */ 10672 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10673 struct sched_group *group, 10674 struct sg_lb_stats *sgs, 10675 struct task_struct *p) 10676 { 10677 int i, nr_running; 10678 10679 memset(sgs, 0, sizeof(*sgs)); 10680 10681 /* Assume that task can't fit any CPU of the group */ 10682 if (sd->flags & SD_ASYM_CPUCAPACITY) 10683 sgs->group_misfit_task_load = 1; 10684 10685 for_each_cpu(i, sched_group_span(group)) { 10686 struct rq *rq = cpu_rq(i); 10687 unsigned int local; 10688 10689 sgs->group_load += cpu_load_without(rq, p); 10690 sgs->group_util += cpu_util_without(i, p); 10691 sgs->group_runnable += cpu_runnable_without(rq, p); 10692 local = task_running_on_cpu(i, p); 10693 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10694 10695 nr_running = rq->nr_running - local; 10696 sgs->sum_nr_running += nr_running; 10697 10698 /* 10699 * No need to call idle_cpu_without() if nr_running is not 0 10700 */ 10701 if (!nr_running && idle_cpu_without(i, p)) 10702 sgs->idle_cpus++; 10703 10704 /* Check if task fits in the CPU */ 10705 if (sd->flags & SD_ASYM_CPUCAPACITY && 10706 sgs->group_misfit_task_load && 10707 task_fits_cpu(p, i)) 10708 sgs->group_misfit_task_load = 0; 10709 10710 } 10711 10712 sgs->group_capacity = group->sgc->capacity; 10713 10714 sgs->group_weight = group->group_weight; 10715 10716 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10717 10718 /* 10719 * Computing avg_load makes sense only when group is fully busy or 10720 * overloaded 10721 */ 10722 if (sgs->group_type == group_fully_busy || 10723 sgs->group_type == group_overloaded) 10724 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10725 sgs->group_capacity; 10726 } 10727 10728 static bool update_pick_idlest(struct sched_group *idlest, 10729 struct sg_lb_stats *idlest_sgs, 10730 struct sched_group *group, 10731 struct sg_lb_stats *sgs) 10732 { 10733 if (sgs->group_type < idlest_sgs->group_type) 10734 return true; 10735 10736 if (sgs->group_type > idlest_sgs->group_type) 10737 return false; 10738 10739 /* 10740 * The candidate and the current idlest group are the same type of 10741 * group. Let check which one is the idlest according to the type. 10742 */ 10743 10744 switch (sgs->group_type) { 10745 case group_overloaded: 10746 case group_fully_busy: 10747 /* Select the group with lowest avg_load. */ 10748 if (idlest_sgs->avg_load <= sgs->avg_load) 10749 return false; 10750 break; 10751 10752 case group_imbalanced: 10753 case group_asym_packing: 10754 case group_smt_balance: 10755 /* Those types are not used in the slow wakeup path */ 10756 return false; 10757 10758 case group_misfit_task: 10759 /* Select group with the highest max capacity */ 10760 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10761 return false; 10762 break; 10763 10764 case group_has_spare: 10765 /* Select group with most idle CPUs */ 10766 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10767 return false; 10768 10769 /* Select group with lowest group_util */ 10770 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10771 idlest_sgs->group_util <= sgs->group_util) 10772 return false; 10773 10774 break; 10775 } 10776 10777 return true; 10778 } 10779 10780 /* 10781 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10782 * domain. 10783 * 10784 * Assumes p is allowed on at least one CPU in sd. 10785 */ 10786 static struct sched_group * 10787 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10788 { 10789 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10790 struct sg_lb_stats local_sgs, tmp_sgs; 10791 struct sg_lb_stats *sgs; 10792 unsigned long imbalance; 10793 struct sg_lb_stats idlest_sgs = { 10794 .avg_load = UINT_MAX, 10795 .group_type = group_overloaded, 10796 }; 10797 10798 do { 10799 int local_group; 10800 10801 /* Skip over this group if it has no CPUs allowed */ 10802 if (!cpumask_intersects(sched_group_span(group), 10803 p->cpus_ptr)) 10804 continue; 10805 10806 /* Skip over this group if no cookie matched */ 10807 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10808 continue; 10809 10810 local_group = cpumask_test_cpu(this_cpu, 10811 sched_group_span(group)); 10812 10813 if (local_group) { 10814 sgs = &local_sgs; 10815 local = group; 10816 } else { 10817 sgs = &tmp_sgs; 10818 } 10819 10820 update_sg_wakeup_stats(sd, group, sgs, p); 10821 10822 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10823 idlest = group; 10824 idlest_sgs = *sgs; 10825 } 10826 10827 } while (group = group->next, group != sd->groups); 10828 10829 10830 /* There is no idlest group to push tasks to */ 10831 if (!idlest) 10832 return NULL; 10833 10834 /* The local group has been skipped because of CPU affinity */ 10835 if (!local) 10836 return idlest; 10837 10838 /* 10839 * If the local group is idler than the selected idlest group 10840 * don't try and push the task. 10841 */ 10842 if (local_sgs.group_type < idlest_sgs.group_type) 10843 return NULL; 10844 10845 /* 10846 * If the local group is busier than the selected idlest group 10847 * try and push the task. 10848 */ 10849 if (local_sgs.group_type > idlest_sgs.group_type) 10850 return idlest; 10851 10852 switch (local_sgs.group_type) { 10853 case group_overloaded: 10854 case group_fully_busy: 10855 10856 /* Calculate allowed imbalance based on load */ 10857 imbalance = scale_load_down(NICE_0_LOAD) * 10858 (sd->imbalance_pct-100) / 100; 10859 10860 /* 10861 * When comparing groups across NUMA domains, it's possible for 10862 * the local domain to be very lightly loaded relative to the 10863 * remote domains but "imbalance" skews the comparison making 10864 * remote CPUs look much more favourable. When considering 10865 * cross-domain, add imbalance to the load on the remote node 10866 * and consider staying local. 10867 */ 10868 10869 if ((sd->flags & SD_NUMA) && 10870 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10871 return NULL; 10872 10873 /* 10874 * If the local group is less loaded than the selected 10875 * idlest group don't try and push any tasks. 10876 */ 10877 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10878 return NULL; 10879 10880 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10881 return NULL; 10882 break; 10883 10884 case group_imbalanced: 10885 case group_asym_packing: 10886 case group_smt_balance: 10887 /* Those type are not used in the slow wakeup path */ 10888 return NULL; 10889 10890 case group_misfit_task: 10891 /* Select group with the highest max capacity */ 10892 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10893 return NULL; 10894 break; 10895 10896 case group_has_spare: 10897 #ifdef CONFIG_NUMA 10898 if (sd->flags & SD_NUMA) { 10899 int imb_numa_nr = sd->imb_numa_nr; 10900 #ifdef CONFIG_NUMA_BALANCING 10901 int idlest_cpu; 10902 /* 10903 * If there is spare capacity at NUMA, try to select 10904 * the preferred node 10905 */ 10906 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10907 return NULL; 10908 10909 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10910 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10911 return idlest; 10912 #endif /* CONFIG_NUMA_BALANCING */ 10913 /* 10914 * Otherwise, keep the task close to the wakeup source 10915 * and improve locality if the number of running tasks 10916 * would remain below threshold where an imbalance is 10917 * allowed while accounting for the possibility the 10918 * task is pinned to a subset of CPUs. If there is a 10919 * real need of migration, periodic load balance will 10920 * take care of it. 10921 */ 10922 if (p->nr_cpus_allowed != NR_CPUS) { 10923 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10924 10925 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10926 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10927 } 10928 10929 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10930 if (!adjust_numa_imbalance(imbalance, 10931 local_sgs.sum_nr_running + 1, 10932 imb_numa_nr)) { 10933 return NULL; 10934 } 10935 } 10936 #endif /* CONFIG_NUMA */ 10937 10938 /* 10939 * Select group with highest number of idle CPUs. We could also 10940 * compare the utilization which is more stable but it can end 10941 * up that the group has less spare capacity but finally more 10942 * idle CPUs which means more opportunity to run task. 10943 */ 10944 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10945 return NULL; 10946 break; 10947 } 10948 10949 return idlest; 10950 } 10951 10952 static void update_idle_cpu_scan(struct lb_env *env, 10953 unsigned long sum_util) 10954 { 10955 struct sched_domain_shared *sd_share; 10956 int llc_weight, pct; 10957 u64 x, y, tmp; 10958 /* 10959 * Update the number of CPUs to scan in LLC domain, which could 10960 * be used as a hint in select_idle_cpu(). The update of sd_share 10961 * could be expensive because it is within a shared cache line. 10962 * So the write of this hint only occurs during periodic load 10963 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10964 * can fire way more frequently than the former. 10965 */ 10966 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10967 return; 10968 10969 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10970 if (env->sd->span_weight != llc_weight) 10971 return; 10972 10973 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10974 if (!sd_share) 10975 return; 10976 10977 /* 10978 * The number of CPUs to search drops as sum_util increases, when 10979 * sum_util hits 85% or above, the scan stops. 10980 * The reason to choose 85% as the threshold is because this is the 10981 * imbalance_pct(117) when a LLC sched group is overloaded. 10982 * 10983 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10984 * and y'= y / SCHED_CAPACITY_SCALE 10985 * 10986 * x is the ratio of sum_util compared to the CPU capacity: 10987 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10988 * y' is the ratio of CPUs to be scanned in the LLC domain, 10989 * and the number of CPUs to scan is calculated by: 10990 * 10991 * nr_scan = llc_weight * y' [2] 10992 * 10993 * When x hits the threshold of overloaded, AKA, when 10994 * x = 100 / pct, y drops to 0. According to [1], 10995 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10996 * 10997 * Scale x by SCHED_CAPACITY_SCALE: 10998 * x' = sum_util / llc_weight; [3] 10999 * 11000 * and finally [1] becomes: 11001 * y = SCHED_CAPACITY_SCALE - 11002 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 11003 * 11004 */ 11005 /* equation [3] */ 11006 x = sum_util; 11007 do_div(x, llc_weight); 11008 11009 /* equation [4] */ 11010 pct = env->sd->imbalance_pct; 11011 tmp = x * x * pct * pct; 11012 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11013 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11014 y = SCHED_CAPACITY_SCALE - tmp; 11015 11016 /* equation [2] */ 11017 y *= llc_weight; 11018 do_div(y, SCHED_CAPACITY_SCALE); 11019 if ((int)y != sd_share->nr_idle_scan) 11020 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11021 } 11022 11023 /** 11024 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11025 * @env: The load balancing environment. 11026 * @sds: variable to hold the statistics for this sched_domain. 11027 */ 11028 11029 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11030 { 11031 struct sched_group *sg = env->sd->groups; 11032 struct sg_lb_stats *local = &sds->local_stat; 11033 struct sg_lb_stats tmp_sgs; 11034 unsigned long sum_util = 0; 11035 bool sg_overloaded = 0, sg_overutilized = 0; 11036 11037 do { 11038 struct sg_lb_stats *sgs = &tmp_sgs; 11039 int local_group; 11040 11041 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11042 if (local_group) { 11043 sds->local = sg; 11044 sgs = local; 11045 11046 if (env->idle != CPU_NEWLY_IDLE || 11047 time_after_eq(jiffies, sg->sgc->next_update)) 11048 update_group_capacity(env->sd, env->dst_cpu); 11049 } 11050 11051 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11052 11053 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11054 sds->busiest = sg; 11055 sds->busiest_stat = *sgs; 11056 } 11057 11058 /* Now, start updating sd_lb_stats */ 11059 sds->total_load += sgs->group_load; 11060 sds->total_capacity += sgs->group_capacity; 11061 11062 sum_util += sgs->group_util; 11063 sg = sg->next; 11064 } while (sg != env->sd->groups); 11065 11066 /* 11067 * Indicate that the child domain of the busiest group prefers tasks 11068 * go to a child's sibling domains first. NB the flags of a sched group 11069 * are those of the child domain. 11070 */ 11071 if (sds->busiest) 11072 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11073 11074 11075 if (env->sd->flags & SD_NUMA) 11076 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11077 11078 if (!env->sd->parent) { 11079 /* update overload indicator if we are at root domain */ 11080 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11081 11082 /* Update over-utilization (tipping point, U >= 0) indicator */ 11083 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11084 } else if (sg_overutilized) { 11085 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11086 } 11087 11088 update_idle_cpu_scan(env, sum_util); 11089 } 11090 11091 /** 11092 * calculate_imbalance - Calculate the amount of imbalance present within the 11093 * groups of a given sched_domain during load balance. 11094 * @env: load balance environment 11095 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11096 */ 11097 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11098 { 11099 struct sg_lb_stats *local, *busiest; 11100 11101 local = &sds->local_stat; 11102 busiest = &sds->busiest_stat; 11103 11104 if (busiest->group_type == group_misfit_task) { 11105 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11106 /* Set imbalance to allow misfit tasks to be balanced. */ 11107 env->migration_type = migrate_misfit; 11108 env->imbalance = 1; 11109 } else { 11110 /* 11111 * Set load imbalance to allow moving task from cpu 11112 * with reduced capacity. 11113 */ 11114 env->migration_type = migrate_load; 11115 env->imbalance = busiest->group_misfit_task_load; 11116 } 11117 return; 11118 } 11119 11120 if (busiest->group_type == group_asym_packing) { 11121 /* 11122 * In case of asym capacity, we will try to migrate all load to 11123 * the preferred CPU. 11124 */ 11125 env->migration_type = migrate_task; 11126 env->imbalance = busiest->sum_h_nr_running; 11127 return; 11128 } 11129 11130 if (busiest->group_type == group_smt_balance) { 11131 /* Reduce number of tasks sharing CPU capacity */ 11132 env->migration_type = migrate_task; 11133 env->imbalance = 1; 11134 return; 11135 } 11136 11137 if (busiest->group_type == group_imbalanced) { 11138 /* 11139 * In the group_imb case we cannot rely on group-wide averages 11140 * to ensure CPU-load equilibrium, try to move any task to fix 11141 * the imbalance. The next load balance will take care of 11142 * balancing back the system. 11143 */ 11144 env->migration_type = migrate_task; 11145 env->imbalance = 1; 11146 return; 11147 } 11148 11149 /* 11150 * Try to use spare capacity of local group without overloading it or 11151 * emptying busiest. 11152 */ 11153 if (local->group_type == group_has_spare) { 11154 if ((busiest->group_type > group_fully_busy) && 11155 !(env->sd->flags & SD_SHARE_LLC)) { 11156 /* 11157 * If busiest is overloaded, try to fill spare 11158 * capacity. This might end up creating spare capacity 11159 * in busiest or busiest still being overloaded but 11160 * there is no simple way to directly compute the 11161 * amount of load to migrate in order to balance the 11162 * system. 11163 */ 11164 env->migration_type = migrate_util; 11165 env->imbalance = max(local->group_capacity, local->group_util) - 11166 local->group_util; 11167 11168 /* 11169 * In some cases, the group's utilization is max or even 11170 * higher than capacity because of migrations but the 11171 * local CPU is (newly) idle. There is at least one 11172 * waiting task in this overloaded busiest group. Let's 11173 * try to pull it. 11174 */ 11175 if (env->idle && env->imbalance == 0) { 11176 env->migration_type = migrate_task; 11177 env->imbalance = 1; 11178 } 11179 11180 return; 11181 } 11182 11183 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11184 /* 11185 * When prefer sibling, evenly spread running tasks on 11186 * groups. 11187 */ 11188 env->migration_type = migrate_task; 11189 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11190 } else { 11191 11192 /* 11193 * If there is no overload, we just want to even the number of 11194 * idle CPUs. 11195 */ 11196 env->migration_type = migrate_task; 11197 env->imbalance = max_t(long, 0, 11198 (local->idle_cpus - busiest->idle_cpus)); 11199 } 11200 11201 #ifdef CONFIG_NUMA 11202 /* Consider allowing a small imbalance between NUMA groups */ 11203 if (env->sd->flags & SD_NUMA) { 11204 env->imbalance = adjust_numa_imbalance(env->imbalance, 11205 local->sum_nr_running + 1, 11206 env->sd->imb_numa_nr); 11207 } 11208 #endif 11209 11210 /* Number of tasks to move to restore balance */ 11211 env->imbalance >>= 1; 11212 11213 return; 11214 } 11215 11216 /* 11217 * Local is fully busy but has to take more load to relieve the 11218 * busiest group 11219 */ 11220 if (local->group_type < group_overloaded) { 11221 /* 11222 * Local will become overloaded so the avg_load metrics are 11223 * finally needed. 11224 */ 11225 11226 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11227 local->group_capacity; 11228 11229 /* 11230 * If the local group is more loaded than the selected 11231 * busiest group don't try to pull any tasks. 11232 */ 11233 if (local->avg_load >= busiest->avg_load) { 11234 env->imbalance = 0; 11235 return; 11236 } 11237 11238 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11239 sds->total_capacity; 11240 11241 /* 11242 * If the local group is more loaded than the average system 11243 * load, don't try to pull any tasks. 11244 */ 11245 if (local->avg_load >= sds->avg_load) { 11246 env->imbalance = 0; 11247 return; 11248 } 11249 11250 } 11251 11252 /* 11253 * Both group are or will become overloaded and we're trying to get all 11254 * the CPUs to the average_load, so we don't want to push ourselves 11255 * above the average load, nor do we wish to reduce the max loaded CPU 11256 * below the average load. At the same time, we also don't want to 11257 * reduce the group load below the group capacity. Thus we look for 11258 * the minimum possible imbalance. 11259 */ 11260 env->migration_type = migrate_load; 11261 env->imbalance = min( 11262 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11263 (sds->avg_load - local->avg_load) * local->group_capacity 11264 ) / SCHED_CAPACITY_SCALE; 11265 } 11266 11267 /******* sched_balance_find_src_group() helpers end here *********************/ 11268 11269 /* 11270 * Decision matrix according to the local and busiest group type: 11271 * 11272 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11273 * has_spare nr_idle balanced N/A N/A balanced balanced 11274 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11275 * misfit_task force N/A N/A N/A N/A N/A 11276 * asym_packing force force N/A N/A force force 11277 * imbalanced force force N/A N/A force force 11278 * overloaded force force N/A N/A force avg_load 11279 * 11280 * N/A : Not Applicable because already filtered while updating 11281 * statistics. 11282 * balanced : The system is balanced for these 2 groups. 11283 * force : Calculate the imbalance as load migration is probably needed. 11284 * avg_load : Only if imbalance is significant enough. 11285 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11286 * different in groups. 11287 */ 11288 11289 /** 11290 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11291 * if there is an imbalance. 11292 * @env: The load balancing environment. 11293 * 11294 * Also calculates the amount of runnable load which should be moved 11295 * to restore balance. 11296 * 11297 * Return: - The busiest group if imbalance exists. 11298 */ 11299 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11300 { 11301 struct sg_lb_stats *local, *busiest; 11302 struct sd_lb_stats sds; 11303 11304 init_sd_lb_stats(&sds); 11305 11306 /* 11307 * Compute the various statistics relevant for load balancing at 11308 * this level. 11309 */ 11310 update_sd_lb_stats(env, &sds); 11311 11312 /* There is no busy sibling group to pull tasks from */ 11313 if (!sds.busiest) 11314 goto out_balanced; 11315 11316 busiest = &sds.busiest_stat; 11317 11318 /* Misfit tasks should be dealt with regardless of the avg load */ 11319 if (busiest->group_type == group_misfit_task) 11320 goto force_balance; 11321 11322 if (!is_rd_overutilized(env->dst_rq->rd) && 11323 rcu_dereference(env->dst_rq->rd->pd)) 11324 goto out_balanced; 11325 11326 /* ASYM feature bypasses nice load balance check */ 11327 if (busiest->group_type == group_asym_packing) 11328 goto force_balance; 11329 11330 /* 11331 * If the busiest group is imbalanced the below checks don't 11332 * work because they assume all things are equal, which typically 11333 * isn't true due to cpus_ptr constraints and the like. 11334 */ 11335 if (busiest->group_type == group_imbalanced) 11336 goto force_balance; 11337 11338 local = &sds.local_stat; 11339 /* 11340 * If the local group is busier than the selected busiest group 11341 * don't try and pull any tasks. 11342 */ 11343 if (local->group_type > busiest->group_type) 11344 goto out_balanced; 11345 11346 /* 11347 * When groups are overloaded, use the avg_load to ensure fairness 11348 * between tasks. 11349 */ 11350 if (local->group_type == group_overloaded) { 11351 /* 11352 * If the local group is more loaded than the selected 11353 * busiest group don't try to pull any tasks. 11354 */ 11355 if (local->avg_load >= busiest->avg_load) 11356 goto out_balanced; 11357 11358 /* XXX broken for overlapping NUMA groups */ 11359 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11360 sds.total_capacity; 11361 11362 /* 11363 * Don't pull any tasks if this group is already above the 11364 * domain average load. 11365 */ 11366 if (local->avg_load >= sds.avg_load) 11367 goto out_balanced; 11368 11369 /* 11370 * If the busiest group is more loaded, use imbalance_pct to be 11371 * conservative. 11372 */ 11373 if (100 * busiest->avg_load <= 11374 env->sd->imbalance_pct * local->avg_load) 11375 goto out_balanced; 11376 } 11377 11378 /* 11379 * Try to move all excess tasks to a sibling domain of the busiest 11380 * group's child domain. 11381 */ 11382 if (sds.prefer_sibling && local->group_type == group_has_spare && 11383 sibling_imbalance(env, &sds, busiest, local) > 1) 11384 goto force_balance; 11385 11386 if (busiest->group_type != group_overloaded) { 11387 if (!env->idle) { 11388 /* 11389 * If the busiest group is not overloaded (and as a 11390 * result the local one too) but this CPU is already 11391 * busy, let another idle CPU try to pull task. 11392 */ 11393 goto out_balanced; 11394 } 11395 11396 if (busiest->group_type == group_smt_balance && 11397 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11398 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11399 goto force_balance; 11400 } 11401 11402 if (busiest->group_weight > 1 && 11403 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11404 /* 11405 * If the busiest group is not overloaded 11406 * and there is no imbalance between this and busiest 11407 * group wrt idle CPUs, it is balanced. The imbalance 11408 * becomes significant if the diff is greater than 1 11409 * otherwise we might end up to just move the imbalance 11410 * on another group. Of course this applies only if 11411 * there is more than 1 CPU per group. 11412 */ 11413 goto out_balanced; 11414 } 11415 11416 if (busiest->sum_h_nr_running == 1) { 11417 /* 11418 * busiest doesn't have any tasks waiting to run 11419 */ 11420 goto out_balanced; 11421 } 11422 } 11423 11424 force_balance: 11425 /* Looks like there is an imbalance. Compute it */ 11426 calculate_imbalance(env, &sds); 11427 return env->imbalance ? sds.busiest : NULL; 11428 11429 out_balanced: 11430 env->imbalance = 0; 11431 return NULL; 11432 } 11433 11434 /* 11435 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11436 */ 11437 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11438 struct sched_group *group) 11439 { 11440 struct rq *busiest = NULL, *rq; 11441 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11442 unsigned int busiest_nr = 0; 11443 int i; 11444 11445 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11446 unsigned long capacity, load, util; 11447 unsigned int nr_running; 11448 enum fbq_type rt; 11449 11450 rq = cpu_rq(i); 11451 rt = fbq_classify_rq(rq); 11452 11453 /* 11454 * We classify groups/runqueues into three groups: 11455 * - regular: there are !numa tasks 11456 * - remote: there are numa tasks that run on the 'wrong' node 11457 * - all: there is no distinction 11458 * 11459 * In order to avoid migrating ideally placed numa tasks, 11460 * ignore those when there's better options. 11461 * 11462 * If we ignore the actual busiest queue to migrate another 11463 * task, the next balance pass can still reduce the busiest 11464 * queue by moving tasks around inside the node. 11465 * 11466 * If we cannot move enough load due to this classification 11467 * the next pass will adjust the group classification and 11468 * allow migration of more tasks. 11469 * 11470 * Both cases only affect the total convergence complexity. 11471 */ 11472 if (rt > env->fbq_type) 11473 continue; 11474 11475 nr_running = rq->cfs.h_nr_runnable; 11476 if (!nr_running) 11477 continue; 11478 11479 capacity = capacity_of(i); 11480 11481 /* 11482 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11483 * eventually lead to active_balancing high->low capacity. 11484 * Higher per-CPU capacity is considered better than balancing 11485 * average load. 11486 */ 11487 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11488 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11489 nr_running == 1) 11490 continue; 11491 11492 /* 11493 * Make sure we only pull tasks from a CPU of lower priority 11494 * when balancing between SMT siblings. 11495 * 11496 * If balancing between cores, let lower priority CPUs help 11497 * SMT cores with more than one busy sibling. 11498 */ 11499 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11500 continue; 11501 11502 switch (env->migration_type) { 11503 case migrate_load: 11504 /* 11505 * When comparing with load imbalance, use cpu_load() 11506 * which is not scaled with the CPU capacity. 11507 */ 11508 load = cpu_load(rq); 11509 11510 if (nr_running == 1 && load > env->imbalance && 11511 !check_cpu_capacity(rq, env->sd)) 11512 break; 11513 11514 /* 11515 * For the load comparisons with the other CPUs, 11516 * consider the cpu_load() scaled with the CPU 11517 * capacity, so that the load can be moved away 11518 * from the CPU that is potentially running at a 11519 * lower capacity. 11520 * 11521 * Thus we're looking for max(load_i / capacity_i), 11522 * crosswise multiplication to rid ourselves of the 11523 * division works out to: 11524 * load_i * capacity_j > load_j * capacity_i; 11525 * where j is our previous maximum. 11526 */ 11527 if (load * busiest_capacity > busiest_load * capacity) { 11528 busiest_load = load; 11529 busiest_capacity = capacity; 11530 busiest = rq; 11531 } 11532 break; 11533 11534 case migrate_util: 11535 util = cpu_util_cfs_boost(i); 11536 11537 /* 11538 * Don't try to pull utilization from a CPU with one 11539 * running task. Whatever its utilization, we will fail 11540 * detach the task. 11541 */ 11542 if (nr_running <= 1) 11543 continue; 11544 11545 if (busiest_util < util) { 11546 busiest_util = util; 11547 busiest = rq; 11548 } 11549 break; 11550 11551 case migrate_task: 11552 if (busiest_nr < nr_running) { 11553 busiest_nr = nr_running; 11554 busiest = rq; 11555 } 11556 break; 11557 11558 case migrate_misfit: 11559 /* 11560 * For ASYM_CPUCAPACITY domains with misfit tasks we 11561 * simply seek the "biggest" misfit task. 11562 */ 11563 if (rq->misfit_task_load > busiest_load) { 11564 busiest_load = rq->misfit_task_load; 11565 busiest = rq; 11566 } 11567 11568 break; 11569 11570 } 11571 } 11572 11573 return busiest; 11574 } 11575 11576 /* 11577 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11578 * so long as it is large enough. 11579 */ 11580 #define MAX_PINNED_INTERVAL 512 11581 11582 static inline bool 11583 asym_active_balance(struct lb_env *env) 11584 { 11585 /* 11586 * ASYM_PACKING needs to force migrate tasks from busy but lower 11587 * priority CPUs in order to pack all tasks in the highest priority 11588 * CPUs. When done between cores, do it only if the whole core if the 11589 * whole core is idle. 11590 * 11591 * If @env::src_cpu is an SMT core with busy siblings, let 11592 * the lower priority @env::dst_cpu help it. Do not follow 11593 * CPU priority. 11594 */ 11595 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11596 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11597 !sched_use_asym_prio(env->sd, env->src_cpu)); 11598 } 11599 11600 static inline bool 11601 imbalanced_active_balance(struct lb_env *env) 11602 { 11603 struct sched_domain *sd = env->sd; 11604 11605 /* 11606 * The imbalanced case includes the case of pinned tasks preventing a fair 11607 * distribution of the load on the system but also the even distribution of the 11608 * threads on a system with spare capacity 11609 */ 11610 if ((env->migration_type == migrate_task) && 11611 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11612 return 1; 11613 11614 return 0; 11615 } 11616 11617 static int need_active_balance(struct lb_env *env) 11618 { 11619 struct sched_domain *sd = env->sd; 11620 11621 if (asym_active_balance(env)) 11622 return 1; 11623 11624 if (imbalanced_active_balance(env)) 11625 return 1; 11626 11627 /* 11628 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11629 * It's worth migrating the task if the src_cpu's capacity is reduced 11630 * because of other sched_class or IRQs if more capacity stays 11631 * available on dst_cpu. 11632 */ 11633 if (env->idle && 11634 (env->src_rq->cfs.h_nr_runnable == 1)) { 11635 if ((check_cpu_capacity(env->src_rq, sd)) && 11636 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11637 return 1; 11638 } 11639 11640 if (env->migration_type == migrate_misfit) 11641 return 1; 11642 11643 return 0; 11644 } 11645 11646 static int active_load_balance_cpu_stop(void *data); 11647 11648 static int should_we_balance(struct lb_env *env) 11649 { 11650 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11651 struct sched_group *sg = env->sd->groups; 11652 int cpu, idle_smt = -1; 11653 11654 /* 11655 * Ensure the balancing environment is consistent; can happen 11656 * when the softirq triggers 'during' hotplug. 11657 */ 11658 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11659 return 0; 11660 11661 /* 11662 * In the newly idle case, we will allow all the CPUs 11663 * to do the newly idle load balance. 11664 * 11665 * However, we bail out if we already have tasks or a wakeup pending, 11666 * to optimize wakeup latency. 11667 */ 11668 if (env->idle == CPU_NEWLY_IDLE) { 11669 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11670 return 0; 11671 return 1; 11672 } 11673 11674 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11675 /* Try to find first idle CPU */ 11676 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11677 if (!idle_cpu(cpu)) 11678 continue; 11679 11680 /* 11681 * Don't balance to idle SMT in busy core right away when 11682 * balancing cores, but remember the first idle SMT CPU for 11683 * later consideration. Find CPU on an idle core first. 11684 */ 11685 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11686 if (idle_smt == -1) 11687 idle_smt = cpu; 11688 /* 11689 * If the core is not idle, and first SMT sibling which is 11690 * idle has been found, then its not needed to check other 11691 * SMT siblings for idleness: 11692 */ 11693 #ifdef CONFIG_SCHED_SMT 11694 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11695 #endif 11696 continue; 11697 } 11698 11699 /* 11700 * Are we the first idle core in a non-SMT domain or higher, 11701 * or the first idle CPU in a SMT domain? 11702 */ 11703 return cpu == env->dst_cpu; 11704 } 11705 11706 /* Are we the first idle CPU with busy siblings? */ 11707 if (idle_smt != -1) 11708 return idle_smt == env->dst_cpu; 11709 11710 /* Are we the first CPU of this group ? */ 11711 return group_balance_cpu(sg) == env->dst_cpu; 11712 } 11713 11714 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11715 enum cpu_idle_type idle) 11716 { 11717 if (!schedstat_enabled()) 11718 return; 11719 11720 switch (env->migration_type) { 11721 case migrate_load: 11722 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11723 break; 11724 case migrate_util: 11725 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11726 break; 11727 case migrate_task: 11728 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11729 break; 11730 case migrate_misfit: 11731 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11732 break; 11733 } 11734 } 11735 11736 /* 11737 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11738 * tasks if there is an imbalance. 11739 */ 11740 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11741 struct sched_domain *sd, enum cpu_idle_type idle, 11742 int *continue_balancing) 11743 { 11744 int ld_moved, cur_ld_moved, active_balance = 0; 11745 struct sched_domain *sd_parent = sd->parent; 11746 struct sched_group *group; 11747 struct rq *busiest; 11748 struct rq_flags rf; 11749 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11750 struct lb_env env = { 11751 .sd = sd, 11752 .dst_cpu = this_cpu, 11753 .dst_rq = this_rq, 11754 .dst_grpmask = group_balance_mask(sd->groups), 11755 .idle = idle, 11756 .loop_break = SCHED_NR_MIGRATE_BREAK, 11757 .cpus = cpus, 11758 .fbq_type = all, 11759 .tasks = LIST_HEAD_INIT(env.tasks), 11760 }; 11761 11762 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11763 11764 schedstat_inc(sd->lb_count[idle]); 11765 11766 redo: 11767 if (!should_we_balance(&env)) { 11768 *continue_balancing = 0; 11769 goto out_balanced; 11770 } 11771 11772 group = sched_balance_find_src_group(&env); 11773 if (!group) { 11774 schedstat_inc(sd->lb_nobusyg[idle]); 11775 goto out_balanced; 11776 } 11777 11778 busiest = sched_balance_find_src_rq(&env, group); 11779 if (!busiest) { 11780 schedstat_inc(sd->lb_nobusyq[idle]); 11781 goto out_balanced; 11782 } 11783 11784 WARN_ON_ONCE(busiest == env.dst_rq); 11785 11786 update_lb_imbalance_stat(&env, sd, idle); 11787 11788 env.src_cpu = busiest->cpu; 11789 env.src_rq = busiest; 11790 11791 ld_moved = 0; 11792 /* Clear this flag as soon as we find a pullable task */ 11793 env.flags |= LBF_ALL_PINNED; 11794 if (busiest->nr_running > 1) { 11795 /* 11796 * Attempt to move tasks. If sched_balance_find_src_group has found 11797 * an imbalance but busiest->nr_running <= 1, the group is 11798 * still unbalanced. ld_moved simply stays zero, so it is 11799 * correctly treated as an imbalance. 11800 */ 11801 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11802 11803 more_balance: 11804 rq_lock_irqsave(busiest, &rf); 11805 update_rq_clock(busiest); 11806 11807 /* 11808 * cur_ld_moved - load moved in current iteration 11809 * ld_moved - cumulative load moved across iterations 11810 */ 11811 cur_ld_moved = detach_tasks(&env); 11812 11813 /* 11814 * We've detached some tasks from busiest_rq. Every 11815 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11816 * unlock busiest->lock, and we are able to be sure 11817 * that nobody can manipulate the tasks in parallel. 11818 * See task_rq_lock() family for the details. 11819 */ 11820 11821 rq_unlock(busiest, &rf); 11822 11823 if (cur_ld_moved) { 11824 attach_tasks(&env); 11825 ld_moved += cur_ld_moved; 11826 } 11827 11828 local_irq_restore(rf.flags); 11829 11830 if (env.flags & LBF_NEED_BREAK) { 11831 env.flags &= ~LBF_NEED_BREAK; 11832 goto more_balance; 11833 } 11834 11835 /* 11836 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11837 * us and move them to an alternate dst_cpu in our sched_group 11838 * where they can run. The upper limit on how many times we 11839 * iterate on same src_cpu is dependent on number of CPUs in our 11840 * sched_group. 11841 * 11842 * This changes load balance semantics a bit on who can move 11843 * load to a given_cpu. In addition to the given_cpu itself 11844 * (or a ilb_cpu acting on its behalf where given_cpu is 11845 * nohz-idle), we now have balance_cpu in a position to move 11846 * load to given_cpu. In rare situations, this may cause 11847 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11848 * _independently_ and at _same_ time to move some load to 11849 * given_cpu) causing excess load to be moved to given_cpu. 11850 * This however should not happen so much in practice and 11851 * moreover subsequent load balance cycles should correct the 11852 * excess load moved. 11853 */ 11854 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11855 11856 /* Prevent to re-select dst_cpu via env's CPUs */ 11857 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11858 11859 env.dst_rq = cpu_rq(env.new_dst_cpu); 11860 env.dst_cpu = env.new_dst_cpu; 11861 env.flags &= ~LBF_DST_PINNED; 11862 env.loop = 0; 11863 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11864 11865 /* 11866 * Go back to "more_balance" rather than "redo" since we 11867 * need to continue with same src_cpu. 11868 */ 11869 goto more_balance; 11870 } 11871 11872 /* 11873 * We failed to reach balance because of affinity. 11874 */ 11875 if (sd_parent) { 11876 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11877 11878 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11879 *group_imbalance = 1; 11880 } 11881 11882 /* All tasks on this runqueue were pinned by CPU affinity */ 11883 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11884 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11885 /* 11886 * Attempting to continue load balancing at the current 11887 * sched_domain level only makes sense if there are 11888 * active CPUs remaining as possible busiest CPUs to 11889 * pull load from which are not contained within the 11890 * destination group that is receiving any migrated 11891 * load. 11892 */ 11893 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11894 env.loop = 0; 11895 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11896 goto redo; 11897 } 11898 goto out_all_pinned; 11899 } 11900 } 11901 11902 if (!ld_moved) { 11903 schedstat_inc(sd->lb_failed[idle]); 11904 /* 11905 * Increment the failure counter only on periodic balance. 11906 * We do not want newidle balance, which can be very 11907 * frequent, pollute the failure counter causing 11908 * excessive cache_hot migrations and active balances. 11909 * 11910 * Similarly for migration_misfit which is not related to 11911 * load/util migration, don't pollute nr_balance_failed. 11912 */ 11913 if (idle != CPU_NEWLY_IDLE && 11914 env.migration_type != migrate_misfit) 11915 sd->nr_balance_failed++; 11916 11917 if (need_active_balance(&env)) { 11918 unsigned long flags; 11919 11920 raw_spin_rq_lock_irqsave(busiest, flags); 11921 11922 /* 11923 * Don't kick the active_load_balance_cpu_stop, 11924 * if the curr task on busiest CPU can't be 11925 * moved to this_cpu: 11926 */ 11927 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11928 raw_spin_rq_unlock_irqrestore(busiest, flags); 11929 goto out_one_pinned; 11930 } 11931 11932 /* Record that we found at least one task that could run on this_cpu */ 11933 env.flags &= ~LBF_ALL_PINNED; 11934 11935 /* 11936 * ->active_balance synchronizes accesses to 11937 * ->active_balance_work. Once set, it's cleared 11938 * only after active load balance is finished. 11939 */ 11940 if (!busiest->active_balance) { 11941 busiest->active_balance = 1; 11942 busiest->push_cpu = this_cpu; 11943 active_balance = 1; 11944 } 11945 11946 preempt_disable(); 11947 raw_spin_rq_unlock_irqrestore(busiest, flags); 11948 if (active_balance) { 11949 stop_one_cpu_nowait(cpu_of(busiest), 11950 active_load_balance_cpu_stop, busiest, 11951 &busiest->active_balance_work); 11952 } 11953 preempt_enable(); 11954 } 11955 } else { 11956 sd->nr_balance_failed = 0; 11957 } 11958 11959 if (likely(!active_balance) || need_active_balance(&env)) { 11960 /* We were unbalanced, so reset the balancing interval */ 11961 sd->balance_interval = sd->min_interval; 11962 } 11963 11964 goto out; 11965 11966 out_balanced: 11967 /* 11968 * We reach balance although we may have faced some affinity 11969 * constraints. Clear the imbalance flag only if other tasks got 11970 * a chance to move and fix the imbalance. 11971 */ 11972 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11973 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11974 11975 if (*group_imbalance) 11976 *group_imbalance = 0; 11977 } 11978 11979 out_all_pinned: 11980 /* 11981 * We reach balance because all tasks are pinned at this level so 11982 * we can't migrate them. Let the imbalance flag set so parent level 11983 * can try to migrate them. 11984 */ 11985 schedstat_inc(sd->lb_balanced[idle]); 11986 11987 sd->nr_balance_failed = 0; 11988 11989 out_one_pinned: 11990 ld_moved = 0; 11991 11992 /* 11993 * sched_balance_newidle() disregards balance intervals, so we could 11994 * repeatedly reach this code, which would lead to balance_interval 11995 * skyrocketing in a short amount of time. Skip the balance_interval 11996 * increase logic to avoid that. 11997 * 11998 * Similarly misfit migration which is not necessarily an indication of 11999 * the system being busy and requires lb to backoff to let it settle 12000 * down. 12001 */ 12002 if (env.idle == CPU_NEWLY_IDLE || 12003 env.migration_type == migrate_misfit) 12004 goto out; 12005 12006 /* tune up the balancing interval */ 12007 if ((env.flags & LBF_ALL_PINNED && 12008 sd->balance_interval < MAX_PINNED_INTERVAL) || 12009 sd->balance_interval < sd->max_interval) 12010 sd->balance_interval *= 2; 12011 out: 12012 return ld_moved; 12013 } 12014 12015 static inline unsigned long 12016 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 12017 { 12018 unsigned long interval = sd->balance_interval; 12019 12020 if (cpu_busy) 12021 interval *= sd->busy_factor; 12022 12023 /* scale ms to jiffies */ 12024 interval = msecs_to_jiffies(interval); 12025 12026 /* 12027 * Reduce likelihood of busy balancing at higher domains racing with 12028 * balancing at lower domains by preventing their balancing periods 12029 * from being multiples of each other. 12030 */ 12031 if (cpu_busy) 12032 interval -= 1; 12033 12034 interval = clamp(interval, 1UL, max_load_balance_interval); 12035 12036 return interval; 12037 } 12038 12039 static inline void 12040 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12041 { 12042 unsigned long interval, next; 12043 12044 /* used by idle balance, so cpu_busy = 0 */ 12045 interval = get_sd_balance_interval(sd, 0); 12046 next = sd->last_balance + interval; 12047 12048 if (time_after(*next_balance, next)) 12049 *next_balance = next; 12050 } 12051 12052 /* 12053 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12054 * running tasks off the busiest CPU onto idle CPUs. It requires at 12055 * least 1 task to be running on each physical CPU where possible, and 12056 * avoids physical / logical imbalances. 12057 */ 12058 static int active_load_balance_cpu_stop(void *data) 12059 { 12060 struct rq *busiest_rq = data; 12061 int busiest_cpu = cpu_of(busiest_rq); 12062 int target_cpu = busiest_rq->push_cpu; 12063 struct rq *target_rq = cpu_rq(target_cpu); 12064 struct sched_domain *sd; 12065 struct task_struct *p = NULL; 12066 struct rq_flags rf; 12067 12068 rq_lock_irq(busiest_rq, &rf); 12069 /* 12070 * Between queueing the stop-work and running it is a hole in which 12071 * CPUs can become inactive. We should not move tasks from or to 12072 * inactive CPUs. 12073 */ 12074 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12075 goto out_unlock; 12076 12077 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12078 if (unlikely(busiest_cpu != smp_processor_id() || 12079 !busiest_rq->active_balance)) 12080 goto out_unlock; 12081 12082 /* Is there any task to move? */ 12083 if (busiest_rq->nr_running <= 1) 12084 goto out_unlock; 12085 12086 /* 12087 * This condition is "impossible", if it occurs 12088 * we need to fix it. Originally reported by 12089 * Bjorn Helgaas on a 128-CPU setup. 12090 */ 12091 WARN_ON_ONCE(busiest_rq == target_rq); 12092 12093 /* Search for an sd spanning us and the target CPU. */ 12094 rcu_read_lock(); 12095 for_each_domain(target_cpu, sd) { 12096 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12097 break; 12098 } 12099 12100 if (likely(sd)) { 12101 struct lb_env env = { 12102 .sd = sd, 12103 .dst_cpu = target_cpu, 12104 .dst_rq = target_rq, 12105 .src_cpu = busiest_rq->cpu, 12106 .src_rq = busiest_rq, 12107 .idle = CPU_IDLE, 12108 .flags = LBF_ACTIVE_LB, 12109 }; 12110 12111 schedstat_inc(sd->alb_count); 12112 update_rq_clock(busiest_rq); 12113 12114 p = detach_one_task(&env); 12115 if (p) { 12116 schedstat_inc(sd->alb_pushed); 12117 /* Active balancing done, reset the failure counter. */ 12118 sd->nr_balance_failed = 0; 12119 } else { 12120 schedstat_inc(sd->alb_failed); 12121 } 12122 } 12123 rcu_read_unlock(); 12124 out_unlock: 12125 busiest_rq->active_balance = 0; 12126 rq_unlock(busiest_rq, &rf); 12127 12128 if (p) 12129 attach_one_task(target_rq, p); 12130 12131 local_irq_enable(); 12132 12133 return 0; 12134 } 12135 12136 /* 12137 * This flag serializes load-balancing passes over large domains 12138 * (above the NODE topology level) - only one load-balancing instance 12139 * may run at a time, to reduce overhead on very large systems with 12140 * lots of CPUs and large NUMA distances. 12141 * 12142 * - Note that load-balancing passes triggered while another one 12143 * is executing are skipped and not re-tried. 12144 * 12145 * - Also note that this does not serialize rebalance_domains() 12146 * execution, as non-SD_SERIALIZE domains will still be 12147 * load-balanced in parallel. 12148 */ 12149 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12150 12151 /* 12152 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12153 * This trades load-balance latency on larger machines for less cross talk. 12154 */ 12155 void update_max_interval(void) 12156 { 12157 max_load_balance_interval = HZ*num_online_cpus()/10; 12158 } 12159 12160 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12161 { 12162 if (cost > sd->max_newidle_lb_cost) { 12163 /* 12164 * Track max cost of a domain to make sure to not delay the 12165 * next wakeup on the CPU. 12166 */ 12167 sd->max_newidle_lb_cost = cost; 12168 sd->last_decay_max_lb_cost = jiffies; 12169 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12170 /* 12171 * Decay the newidle max times by ~1% per second to ensure that 12172 * it is not outdated and the current max cost is actually 12173 * shorter. 12174 */ 12175 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12176 sd->last_decay_max_lb_cost = jiffies; 12177 12178 return true; 12179 } 12180 12181 return false; 12182 } 12183 12184 /* 12185 * It checks each scheduling domain to see if it is due to be balanced, 12186 * and initiates a balancing operation if so. 12187 * 12188 * Balancing parameters are set up in init_sched_domains. 12189 */ 12190 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12191 { 12192 int continue_balancing = 1; 12193 int cpu = rq->cpu; 12194 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12195 unsigned long interval; 12196 struct sched_domain *sd; 12197 /* Earliest time when we have to do rebalance again */ 12198 unsigned long next_balance = jiffies + 60*HZ; 12199 int update_next_balance = 0; 12200 int need_serialize, need_decay = 0; 12201 u64 max_cost = 0; 12202 12203 rcu_read_lock(); 12204 for_each_domain(cpu, sd) { 12205 /* 12206 * Decay the newidle max times here because this is a regular 12207 * visit to all the domains. 12208 */ 12209 need_decay = update_newidle_cost(sd, 0); 12210 max_cost += sd->max_newidle_lb_cost; 12211 12212 /* 12213 * Stop the load balance at this level. There is another 12214 * CPU in our sched group which is doing load balancing more 12215 * actively. 12216 */ 12217 if (!continue_balancing) { 12218 if (need_decay) 12219 continue; 12220 break; 12221 } 12222 12223 interval = get_sd_balance_interval(sd, busy); 12224 12225 need_serialize = sd->flags & SD_SERIALIZE; 12226 if (need_serialize) { 12227 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12228 goto out; 12229 } 12230 12231 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12232 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12233 /* 12234 * The LBF_DST_PINNED logic could have changed 12235 * env->dst_cpu, so we can't know our idle 12236 * state even if we migrated tasks. Update it. 12237 */ 12238 idle = idle_cpu(cpu); 12239 busy = !idle && !sched_idle_cpu(cpu); 12240 } 12241 sd->last_balance = jiffies; 12242 interval = get_sd_balance_interval(sd, busy); 12243 } 12244 if (need_serialize) 12245 atomic_set_release(&sched_balance_running, 0); 12246 out: 12247 if (time_after(next_balance, sd->last_balance + interval)) { 12248 next_balance = sd->last_balance + interval; 12249 update_next_balance = 1; 12250 } 12251 } 12252 if (need_decay) { 12253 /* 12254 * Ensure the rq-wide value also decays but keep it at a 12255 * reasonable floor to avoid funnies with rq->avg_idle. 12256 */ 12257 rq->max_idle_balance_cost = 12258 max((u64)sysctl_sched_migration_cost, max_cost); 12259 } 12260 rcu_read_unlock(); 12261 12262 /* 12263 * next_balance will be updated only when there is a need. 12264 * When the cpu is attached to null domain for ex, it will not be 12265 * updated. 12266 */ 12267 if (likely(update_next_balance)) 12268 rq->next_balance = next_balance; 12269 12270 } 12271 12272 static inline int on_null_domain(struct rq *rq) 12273 { 12274 return unlikely(!rcu_dereference_sched(rq->sd)); 12275 } 12276 12277 #ifdef CONFIG_NO_HZ_COMMON 12278 /* 12279 * NOHZ idle load balancing (ILB) details: 12280 * 12281 * - When one of the busy CPUs notices that there may be an idle rebalancing 12282 * needed, they will kick the idle load balancer, which then does idle 12283 * load balancing for all the idle CPUs. 12284 */ 12285 static inline int find_new_ilb(void) 12286 { 12287 const struct cpumask *hk_mask; 12288 int ilb_cpu; 12289 12290 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12291 12292 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12293 12294 if (ilb_cpu == smp_processor_id()) 12295 continue; 12296 12297 if (idle_cpu(ilb_cpu)) 12298 return ilb_cpu; 12299 } 12300 12301 return -1; 12302 } 12303 12304 /* 12305 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12306 * SMP function call (IPI). 12307 * 12308 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12309 * (if there is one). 12310 */ 12311 static void kick_ilb(unsigned int flags) 12312 { 12313 int ilb_cpu; 12314 12315 /* 12316 * Increase nohz.next_balance only when if full ilb is triggered but 12317 * not if we only update stats. 12318 */ 12319 if (flags & NOHZ_BALANCE_KICK) 12320 nohz.next_balance = jiffies+1; 12321 12322 ilb_cpu = find_new_ilb(); 12323 if (ilb_cpu < 0) 12324 return; 12325 12326 /* 12327 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12328 * i.e. all bits in flags are already set in ilb_cpu. 12329 */ 12330 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12331 return; 12332 12333 /* 12334 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12335 * the first flag owns it; cleared by nohz_csd_func(). 12336 */ 12337 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12338 if (flags & NOHZ_KICK_MASK) 12339 return; 12340 12341 /* 12342 * This way we generate an IPI on the target CPU which 12343 * is idle, and the softirq performing NOHZ idle load balancing 12344 * will be run before returning from the IPI. 12345 */ 12346 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12347 } 12348 12349 /* 12350 * Current decision point for kicking the idle load balancer in the presence 12351 * of idle CPUs in the system. 12352 */ 12353 static void nohz_balancer_kick(struct rq *rq) 12354 { 12355 unsigned long now = jiffies; 12356 struct sched_domain_shared *sds; 12357 struct sched_domain *sd; 12358 int nr_busy, i, cpu = rq->cpu; 12359 unsigned int flags = 0; 12360 12361 if (unlikely(rq->idle_balance)) 12362 return; 12363 12364 /* 12365 * We may be recently in ticked or tickless idle mode. At the first 12366 * busy tick after returning from idle, we will update the busy stats. 12367 */ 12368 nohz_balance_exit_idle(rq); 12369 12370 /* 12371 * None are in tickless mode and hence no need for NOHZ idle load 12372 * balancing: 12373 */ 12374 if (likely(!atomic_read(&nohz.nr_cpus))) 12375 return; 12376 12377 if (READ_ONCE(nohz.has_blocked) && 12378 time_after(now, READ_ONCE(nohz.next_blocked))) 12379 flags = NOHZ_STATS_KICK; 12380 12381 if (time_before(now, nohz.next_balance)) 12382 goto out; 12383 12384 if (rq->nr_running >= 2) { 12385 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12386 goto out; 12387 } 12388 12389 rcu_read_lock(); 12390 12391 sd = rcu_dereference(rq->sd); 12392 if (sd) { 12393 /* 12394 * If there's a runnable CFS task and the current CPU has reduced 12395 * capacity, kick the ILB to see if there's a better CPU to run on: 12396 */ 12397 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12398 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12399 goto unlock; 12400 } 12401 } 12402 12403 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12404 if (sd) { 12405 /* 12406 * When ASYM_PACKING; see if there's a more preferred CPU 12407 * currently idle; in which case, kick the ILB to move tasks 12408 * around. 12409 * 12410 * When balancing between cores, all the SMT siblings of the 12411 * preferred CPU must be idle. 12412 */ 12413 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12414 if (sched_asym(sd, i, cpu)) { 12415 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12416 goto unlock; 12417 } 12418 } 12419 } 12420 12421 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12422 if (sd) { 12423 /* 12424 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12425 * to run the misfit task on. 12426 */ 12427 if (check_misfit_status(rq)) { 12428 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12429 goto unlock; 12430 } 12431 12432 /* 12433 * For asymmetric systems, we do not want to nicely balance 12434 * cache use, instead we want to embrace asymmetry and only 12435 * ensure tasks have enough CPU capacity. 12436 * 12437 * Skip the LLC logic because it's not relevant in that case. 12438 */ 12439 goto unlock; 12440 } 12441 12442 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12443 if (sds) { 12444 /* 12445 * If there is an imbalance between LLC domains (IOW we could 12446 * increase the overall cache utilization), we need a less-loaded LLC 12447 * domain to pull some load from. Likewise, we may need to spread 12448 * load within the current LLC domain (e.g. packed SMT cores but 12449 * other CPUs are idle). We can't really know from here how busy 12450 * the others are - so just get a NOHZ balance going if it looks 12451 * like this LLC domain has tasks we could move. 12452 */ 12453 nr_busy = atomic_read(&sds->nr_busy_cpus); 12454 if (nr_busy > 1) { 12455 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12456 goto unlock; 12457 } 12458 } 12459 unlock: 12460 rcu_read_unlock(); 12461 out: 12462 if (READ_ONCE(nohz.needs_update)) 12463 flags |= NOHZ_NEXT_KICK; 12464 12465 if (flags) 12466 kick_ilb(flags); 12467 } 12468 12469 static void set_cpu_sd_state_busy(int cpu) 12470 { 12471 struct sched_domain *sd; 12472 12473 rcu_read_lock(); 12474 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12475 12476 if (!sd || !sd->nohz_idle) 12477 goto unlock; 12478 sd->nohz_idle = 0; 12479 12480 atomic_inc(&sd->shared->nr_busy_cpus); 12481 unlock: 12482 rcu_read_unlock(); 12483 } 12484 12485 void nohz_balance_exit_idle(struct rq *rq) 12486 { 12487 SCHED_WARN_ON(rq != this_rq()); 12488 12489 if (likely(!rq->nohz_tick_stopped)) 12490 return; 12491 12492 rq->nohz_tick_stopped = 0; 12493 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12494 atomic_dec(&nohz.nr_cpus); 12495 12496 set_cpu_sd_state_busy(rq->cpu); 12497 } 12498 12499 static void set_cpu_sd_state_idle(int cpu) 12500 { 12501 struct sched_domain *sd; 12502 12503 rcu_read_lock(); 12504 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12505 12506 if (!sd || sd->nohz_idle) 12507 goto unlock; 12508 sd->nohz_idle = 1; 12509 12510 atomic_dec(&sd->shared->nr_busy_cpus); 12511 unlock: 12512 rcu_read_unlock(); 12513 } 12514 12515 /* 12516 * This routine will record that the CPU is going idle with tick stopped. 12517 * This info will be used in performing idle load balancing in the future. 12518 */ 12519 void nohz_balance_enter_idle(int cpu) 12520 { 12521 struct rq *rq = cpu_rq(cpu); 12522 12523 SCHED_WARN_ON(cpu != smp_processor_id()); 12524 12525 /* If this CPU is going down, then nothing needs to be done: */ 12526 if (!cpu_active(cpu)) 12527 return; 12528 12529 /* 12530 * Can be set safely without rq->lock held 12531 * If a clear happens, it will have evaluated last additions because 12532 * rq->lock is held during the check and the clear 12533 */ 12534 rq->has_blocked_load = 1; 12535 12536 /* 12537 * The tick is still stopped but load could have been added in the 12538 * meantime. We set the nohz.has_blocked flag to trig a check of the 12539 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12540 * of nohz.has_blocked can only happen after checking the new load 12541 */ 12542 if (rq->nohz_tick_stopped) 12543 goto out; 12544 12545 /* If we're a completely isolated CPU, we don't play: */ 12546 if (on_null_domain(rq)) 12547 return; 12548 12549 rq->nohz_tick_stopped = 1; 12550 12551 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12552 atomic_inc(&nohz.nr_cpus); 12553 12554 /* 12555 * Ensures that if nohz_idle_balance() fails to observe our 12556 * @idle_cpus_mask store, it must observe the @has_blocked 12557 * and @needs_update stores. 12558 */ 12559 smp_mb__after_atomic(); 12560 12561 set_cpu_sd_state_idle(cpu); 12562 12563 WRITE_ONCE(nohz.needs_update, 1); 12564 out: 12565 /* 12566 * Each time a cpu enter idle, we assume that it has blocked load and 12567 * enable the periodic update of the load of idle CPUs 12568 */ 12569 WRITE_ONCE(nohz.has_blocked, 1); 12570 } 12571 12572 static bool update_nohz_stats(struct rq *rq) 12573 { 12574 unsigned int cpu = rq->cpu; 12575 12576 if (!rq->has_blocked_load) 12577 return false; 12578 12579 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12580 return false; 12581 12582 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12583 return true; 12584 12585 sched_balance_update_blocked_averages(cpu); 12586 12587 return rq->has_blocked_load; 12588 } 12589 12590 /* 12591 * Internal function that runs load balance for all idle CPUs. The load balance 12592 * can be a simple update of blocked load or a complete load balance with 12593 * tasks movement depending of flags. 12594 */ 12595 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12596 { 12597 /* Earliest time when we have to do rebalance again */ 12598 unsigned long now = jiffies; 12599 unsigned long next_balance = now + 60*HZ; 12600 bool has_blocked_load = false; 12601 int update_next_balance = 0; 12602 int this_cpu = this_rq->cpu; 12603 int balance_cpu; 12604 struct rq *rq; 12605 12606 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12607 12608 /* 12609 * We assume there will be no idle load after this update and clear 12610 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12611 * set the has_blocked flag and trigger another update of idle load. 12612 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12613 * setting the flag, we are sure to not clear the state and not 12614 * check the load of an idle cpu. 12615 * 12616 * Same applies to idle_cpus_mask vs needs_update. 12617 */ 12618 if (flags & NOHZ_STATS_KICK) 12619 WRITE_ONCE(nohz.has_blocked, 0); 12620 if (flags & NOHZ_NEXT_KICK) 12621 WRITE_ONCE(nohz.needs_update, 0); 12622 12623 /* 12624 * Ensures that if we miss the CPU, we must see the has_blocked 12625 * store from nohz_balance_enter_idle(). 12626 */ 12627 smp_mb(); 12628 12629 /* 12630 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12631 * chance for other idle cpu to pull load. 12632 */ 12633 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12634 if (!idle_cpu(balance_cpu)) 12635 continue; 12636 12637 /* 12638 * If this CPU gets work to do, stop the load balancing 12639 * work being done for other CPUs. Next load 12640 * balancing owner will pick it up. 12641 */ 12642 if (!idle_cpu(this_cpu) && need_resched()) { 12643 if (flags & NOHZ_STATS_KICK) 12644 has_blocked_load = true; 12645 if (flags & NOHZ_NEXT_KICK) 12646 WRITE_ONCE(nohz.needs_update, 1); 12647 goto abort; 12648 } 12649 12650 rq = cpu_rq(balance_cpu); 12651 12652 if (flags & NOHZ_STATS_KICK) 12653 has_blocked_load |= update_nohz_stats(rq); 12654 12655 /* 12656 * If time for next balance is due, 12657 * do the balance. 12658 */ 12659 if (time_after_eq(jiffies, rq->next_balance)) { 12660 struct rq_flags rf; 12661 12662 rq_lock_irqsave(rq, &rf); 12663 update_rq_clock(rq); 12664 rq_unlock_irqrestore(rq, &rf); 12665 12666 if (flags & NOHZ_BALANCE_KICK) 12667 sched_balance_domains(rq, CPU_IDLE); 12668 } 12669 12670 if (time_after(next_balance, rq->next_balance)) { 12671 next_balance = rq->next_balance; 12672 update_next_balance = 1; 12673 } 12674 } 12675 12676 /* 12677 * next_balance will be updated only when there is a need. 12678 * When the CPU is attached to null domain for ex, it will not be 12679 * updated. 12680 */ 12681 if (likely(update_next_balance)) 12682 nohz.next_balance = next_balance; 12683 12684 if (flags & NOHZ_STATS_KICK) 12685 WRITE_ONCE(nohz.next_blocked, 12686 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12687 12688 abort: 12689 /* There is still blocked load, enable periodic update */ 12690 if (has_blocked_load) 12691 WRITE_ONCE(nohz.has_blocked, 1); 12692 } 12693 12694 /* 12695 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12696 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12697 */ 12698 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12699 { 12700 unsigned int flags = this_rq->nohz_idle_balance; 12701 12702 if (!flags) 12703 return false; 12704 12705 this_rq->nohz_idle_balance = 0; 12706 12707 if (idle != CPU_IDLE) 12708 return false; 12709 12710 _nohz_idle_balance(this_rq, flags); 12711 12712 return true; 12713 } 12714 12715 /* 12716 * Check if we need to directly run the ILB for updating blocked load before 12717 * entering idle state. Here we run ILB directly without issuing IPIs. 12718 * 12719 * Note that when this function is called, the tick may not yet be stopped on 12720 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12721 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12722 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12723 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12724 * called from this function on (this) CPU that's not yet in the mask. That's 12725 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12726 * updating the blocked load of already idle CPUs without waking up one of 12727 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12728 * cpu about to enter idle, because it can take a long time. 12729 */ 12730 void nohz_run_idle_balance(int cpu) 12731 { 12732 unsigned int flags; 12733 12734 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12735 12736 /* 12737 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12738 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12739 */ 12740 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12741 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12742 } 12743 12744 static void nohz_newidle_balance(struct rq *this_rq) 12745 { 12746 int this_cpu = this_rq->cpu; 12747 12748 /* Will wake up very soon. No time for doing anything else*/ 12749 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12750 return; 12751 12752 /* Don't need to update blocked load of idle CPUs*/ 12753 if (!READ_ONCE(nohz.has_blocked) || 12754 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12755 return; 12756 12757 /* 12758 * Set the need to trigger ILB in order to update blocked load 12759 * before entering idle state. 12760 */ 12761 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12762 } 12763 12764 #else /* !CONFIG_NO_HZ_COMMON */ 12765 static inline void nohz_balancer_kick(struct rq *rq) { } 12766 12767 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12768 { 12769 return false; 12770 } 12771 12772 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12773 #endif /* CONFIG_NO_HZ_COMMON */ 12774 12775 /* 12776 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12777 * idle. Attempts to pull tasks from other CPUs. 12778 * 12779 * Returns: 12780 * < 0 - we released the lock and there are !fair tasks present 12781 * 0 - failed, no new tasks 12782 * > 0 - success, new (fair) tasks present 12783 */ 12784 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12785 { 12786 unsigned long next_balance = jiffies + HZ; 12787 int this_cpu = this_rq->cpu; 12788 int continue_balancing = 1; 12789 u64 t0, t1, curr_cost = 0; 12790 struct sched_domain *sd; 12791 int pulled_task = 0; 12792 12793 update_misfit_status(NULL, this_rq); 12794 12795 /* 12796 * There is a task waiting to run. No need to search for one. 12797 * Return 0; the task will be enqueued when switching to idle. 12798 */ 12799 if (this_rq->ttwu_pending) 12800 return 0; 12801 12802 /* 12803 * We must set idle_stamp _before_ calling sched_balance_rq() 12804 * for CPU_NEWLY_IDLE, such that we measure the this duration 12805 * as idle time. 12806 */ 12807 this_rq->idle_stamp = rq_clock(this_rq); 12808 12809 /* 12810 * Do not pull tasks towards !active CPUs... 12811 */ 12812 if (!cpu_active(this_cpu)) 12813 return 0; 12814 12815 /* 12816 * This is OK, because current is on_cpu, which avoids it being picked 12817 * for load-balance and preemption/IRQs are still disabled avoiding 12818 * further scheduler activity on it and we're being very careful to 12819 * re-start the picking loop. 12820 */ 12821 rq_unpin_lock(this_rq, rf); 12822 12823 rcu_read_lock(); 12824 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12825 12826 if (!get_rd_overloaded(this_rq->rd) || 12827 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12828 12829 if (sd) 12830 update_next_balance(sd, &next_balance); 12831 rcu_read_unlock(); 12832 12833 goto out; 12834 } 12835 rcu_read_unlock(); 12836 12837 raw_spin_rq_unlock(this_rq); 12838 12839 t0 = sched_clock_cpu(this_cpu); 12840 sched_balance_update_blocked_averages(this_cpu); 12841 12842 rcu_read_lock(); 12843 for_each_domain(this_cpu, sd) { 12844 u64 domain_cost; 12845 12846 update_next_balance(sd, &next_balance); 12847 12848 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12849 break; 12850 12851 if (sd->flags & SD_BALANCE_NEWIDLE) { 12852 12853 pulled_task = sched_balance_rq(this_cpu, this_rq, 12854 sd, CPU_NEWLY_IDLE, 12855 &continue_balancing); 12856 12857 t1 = sched_clock_cpu(this_cpu); 12858 domain_cost = t1 - t0; 12859 update_newidle_cost(sd, domain_cost); 12860 12861 curr_cost += domain_cost; 12862 t0 = t1; 12863 } 12864 12865 /* 12866 * Stop searching for tasks to pull if there are 12867 * now runnable tasks on this rq. 12868 */ 12869 if (pulled_task || !continue_balancing) 12870 break; 12871 } 12872 rcu_read_unlock(); 12873 12874 raw_spin_rq_lock(this_rq); 12875 12876 if (curr_cost > this_rq->max_idle_balance_cost) 12877 this_rq->max_idle_balance_cost = curr_cost; 12878 12879 /* 12880 * While browsing the domains, we released the rq lock, a task could 12881 * have been enqueued in the meantime. Since we're not going idle, 12882 * pretend we pulled a task. 12883 */ 12884 if (this_rq->cfs.h_nr_queued && !pulled_task) 12885 pulled_task = 1; 12886 12887 /* Is there a task of a high priority class? */ 12888 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12889 pulled_task = -1; 12890 12891 out: 12892 /* Move the next balance forward */ 12893 if (time_after(this_rq->next_balance, next_balance)) 12894 this_rq->next_balance = next_balance; 12895 12896 if (pulled_task) 12897 this_rq->idle_stamp = 0; 12898 else 12899 nohz_newidle_balance(this_rq); 12900 12901 rq_repin_lock(this_rq, rf); 12902 12903 return pulled_task; 12904 } 12905 12906 /* 12907 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12908 * 12909 * - directly from the local sched_tick() for periodic load balancing 12910 * 12911 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12912 * through the SMP cross-call nohz_csd_func() 12913 */ 12914 static __latent_entropy void sched_balance_softirq(void) 12915 { 12916 struct rq *this_rq = this_rq(); 12917 enum cpu_idle_type idle = this_rq->idle_balance; 12918 /* 12919 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12920 * balancing on behalf of the other idle CPUs whose ticks are 12921 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12922 * give the idle CPUs a chance to load balance. Else we may 12923 * load balance only within the local sched_domain hierarchy 12924 * and abort nohz_idle_balance altogether if we pull some load. 12925 */ 12926 if (nohz_idle_balance(this_rq, idle)) 12927 return; 12928 12929 /* normal load balance */ 12930 sched_balance_update_blocked_averages(this_rq->cpu); 12931 sched_balance_domains(this_rq, idle); 12932 } 12933 12934 /* 12935 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12936 */ 12937 void sched_balance_trigger(struct rq *rq) 12938 { 12939 /* 12940 * Don't need to rebalance while attached to NULL domain or 12941 * runqueue CPU is not active 12942 */ 12943 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12944 return; 12945 12946 if (time_after_eq(jiffies, rq->next_balance)) 12947 raise_softirq(SCHED_SOFTIRQ); 12948 12949 nohz_balancer_kick(rq); 12950 } 12951 12952 static void rq_online_fair(struct rq *rq) 12953 { 12954 update_sysctl(); 12955 12956 update_runtime_enabled(rq); 12957 } 12958 12959 static void rq_offline_fair(struct rq *rq) 12960 { 12961 update_sysctl(); 12962 12963 /* Ensure any throttled groups are reachable by pick_next_task */ 12964 unthrottle_offline_cfs_rqs(rq); 12965 12966 /* Ensure that we remove rq contribution to group share: */ 12967 clear_tg_offline_cfs_rqs(rq); 12968 } 12969 12970 #endif /* CONFIG_SMP */ 12971 12972 #ifdef CONFIG_SCHED_CORE 12973 static inline bool 12974 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12975 { 12976 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12977 u64 slice = se->slice; 12978 12979 return (rtime * min_nr_tasks > slice); 12980 } 12981 12982 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12983 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12984 { 12985 if (!sched_core_enabled(rq)) 12986 return; 12987 12988 /* 12989 * If runqueue has only one task which used up its slice and 12990 * if the sibling is forced idle, then trigger schedule to 12991 * give forced idle task a chance. 12992 * 12993 * sched_slice() considers only this active rq and it gets the 12994 * whole slice. But during force idle, we have siblings acting 12995 * like a single runqueue and hence we need to consider runnable 12996 * tasks on this CPU and the forced idle CPU. Ideally, we should 12997 * go through the forced idle rq, but that would be a perf hit. 12998 * We can assume that the forced idle CPU has at least 12999 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 13000 * if we need to give up the CPU. 13001 */ 13002 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 13003 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 13004 resched_curr(rq); 13005 } 13006 13007 /* 13008 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 13009 */ 13010 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 13011 bool forceidle) 13012 { 13013 for_each_sched_entity(se) { 13014 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13015 13016 if (forceidle) { 13017 if (cfs_rq->forceidle_seq == fi_seq) 13018 break; 13019 cfs_rq->forceidle_seq = fi_seq; 13020 } 13021 13022 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 13023 } 13024 } 13025 13026 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13027 { 13028 struct sched_entity *se = &p->se; 13029 13030 if (p->sched_class != &fair_sched_class) 13031 return; 13032 13033 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13034 } 13035 13036 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13037 bool in_fi) 13038 { 13039 struct rq *rq = task_rq(a); 13040 const struct sched_entity *sea = &a->se; 13041 const struct sched_entity *seb = &b->se; 13042 struct cfs_rq *cfs_rqa; 13043 struct cfs_rq *cfs_rqb; 13044 s64 delta; 13045 13046 SCHED_WARN_ON(task_rq(b)->core != rq->core); 13047 13048 #ifdef CONFIG_FAIR_GROUP_SCHED 13049 /* 13050 * Find an se in the hierarchy for tasks a and b, such that the se's 13051 * are immediate siblings. 13052 */ 13053 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13054 int sea_depth = sea->depth; 13055 int seb_depth = seb->depth; 13056 13057 if (sea_depth >= seb_depth) 13058 sea = parent_entity(sea); 13059 if (sea_depth <= seb_depth) 13060 seb = parent_entity(seb); 13061 } 13062 13063 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13064 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13065 13066 cfs_rqa = sea->cfs_rq; 13067 cfs_rqb = seb->cfs_rq; 13068 #else 13069 cfs_rqa = &task_rq(a)->cfs; 13070 cfs_rqb = &task_rq(b)->cfs; 13071 #endif 13072 13073 /* 13074 * Find delta after normalizing se's vruntime with its cfs_rq's 13075 * min_vruntime_fi, which would have been updated in prior calls 13076 * to se_fi_update(). 13077 */ 13078 delta = (s64)(sea->vruntime - seb->vruntime) + 13079 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13080 13081 return delta > 0; 13082 } 13083 13084 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13085 { 13086 struct cfs_rq *cfs_rq; 13087 13088 #ifdef CONFIG_FAIR_GROUP_SCHED 13089 cfs_rq = task_group(p)->cfs_rq[cpu]; 13090 #else 13091 cfs_rq = &cpu_rq(cpu)->cfs; 13092 #endif 13093 return throttled_hierarchy(cfs_rq); 13094 } 13095 #else 13096 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13097 #endif 13098 13099 /* 13100 * scheduler tick hitting a task of our scheduling class. 13101 * 13102 * NOTE: This function can be called remotely by the tick offload that 13103 * goes along full dynticks. Therefore no local assumption can be made 13104 * and everything must be accessed through the @rq and @curr passed in 13105 * parameters. 13106 */ 13107 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13108 { 13109 struct cfs_rq *cfs_rq; 13110 struct sched_entity *se = &curr->se; 13111 13112 for_each_sched_entity(se) { 13113 cfs_rq = cfs_rq_of(se); 13114 entity_tick(cfs_rq, se, queued); 13115 } 13116 13117 if (static_branch_unlikely(&sched_numa_balancing)) 13118 task_tick_numa(rq, curr); 13119 13120 update_misfit_status(curr, rq); 13121 check_update_overutilized_status(task_rq(curr)); 13122 13123 task_tick_core(rq, curr); 13124 } 13125 13126 /* 13127 * called on fork with the child task as argument from the parent's context 13128 * - child not yet on the tasklist 13129 * - preemption disabled 13130 */ 13131 static void task_fork_fair(struct task_struct *p) 13132 { 13133 set_task_max_allowed_capacity(p); 13134 } 13135 13136 /* 13137 * Priority of the task has changed. Check to see if we preempt 13138 * the current task. 13139 */ 13140 static void 13141 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13142 { 13143 if (!task_on_rq_queued(p)) 13144 return; 13145 13146 if (rq->cfs.nr_queued == 1) 13147 return; 13148 13149 /* 13150 * Reschedule if we are currently running on this runqueue and 13151 * our priority decreased, or if we are not currently running on 13152 * this runqueue and our priority is higher than the current's 13153 */ 13154 if (task_current_donor(rq, p)) { 13155 if (p->prio > oldprio) 13156 resched_curr(rq); 13157 } else 13158 wakeup_preempt(rq, p, 0); 13159 } 13160 13161 #ifdef CONFIG_FAIR_GROUP_SCHED 13162 /* 13163 * Propagate the changes of the sched_entity across the tg tree to make it 13164 * visible to the root 13165 */ 13166 static void propagate_entity_cfs_rq(struct sched_entity *se) 13167 { 13168 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13169 13170 if (cfs_rq_throttled(cfs_rq)) 13171 return; 13172 13173 if (!throttled_hierarchy(cfs_rq)) 13174 list_add_leaf_cfs_rq(cfs_rq); 13175 13176 /* Start to propagate at parent */ 13177 se = se->parent; 13178 13179 for_each_sched_entity(se) { 13180 cfs_rq = cfs_rq_of(se); 13181 13182 update_load_avg(cfs_rq, se, UPDATE_TG); 13183 13184 if (cfs_rq_throttled(cfs_rq)) 13185 break; 13186 13187 if (!throttled_hierarchy(cfs_rq)) 13188 list_add_leaf_cfs_rq(cfs_rq); 13189 } 13190 } 13191 #else 13192 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13193 #endif 13194 13195 static void detach_entity_cfs_rq(struct sched_entity *se) 13196 { 13197 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13198 13199 #ifdef CONFIG_SMP 13200 /* 13201 * In case the task sched_avg hasn't been attached: 13202 * - A forked task which hasn't been woken up by wake_up_new_task(). 13203 * - A task which has been woken up by try_to_wake_up() but is 13204 * waiting for actually being woken up by sched_ttwu_pending(). 13205 */ 13206 if (!se->avg.last_update_time) 13207 return; 13208 #endif 13209 13210 /* Catch up with the cfs_rq and remove our load when we leave */ 13211 update_load_avg(cfs_rq, se, 0); 13212 detach_entity_load_avg(cfs_rq, se); 13213 update_tg_load_avg(cfs_rq); 13214 propagate_entity_cfs_rq(se); 13215 } 13216 13217 static void attach_entity_cfs_rq(struct sched_entity *se) 13218 { 13219 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13220 13221 /* Synchronize entity with its cfs_rq */ 13222 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13223 attach_entity_load_avg(cfs_rq, se); 13224 update_tg_load_avg(cfs_rq); 13225 propagate_entity_cfs_rq(se); 13226 } 13227 13228 static void detach_task_cfs_rq(struct task_struct *p) 13229 { 13230 struct sched_entity *se = &p->se; 13231 13232 detach_entity_cfs_rq(se); 13233 } 13234 13235 static void attach_task_cfs_rq(struct task_struct *p) 13236 { 13237 struct sched_entity *se = &p->se; 13238 13239 attach_entity_cfs_rq(se); 13240 } 13241 13242 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13243 { 13244 detach_task_cfs_rq(p); 13245 } 13246 13247 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13248 { 13249 SCHED_WARN_ON(p->se.sched_delayed); 13250 13251 attach_task_cfs_rq(p); 13252 13253 set_task_max_allowed_capacity(p); 13254 13255 if (task_on_rq_queued(p)) { 13256 /* 13257 * We were most likely switched from sched_rt, so 13258 * kick off the schedule if running, otherwise just see 13259 * if we can still preempt the current task. 13260 */ 13261 if (task_current_donor(rq, p)) 13262 resched_curr(rq); 13263 else 13264 wakeup_preempt(rq, p, 0); 13265 } 13266 } 13267 13268 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13269 { 13270 struct sched_entity *se = &p->se; 13271 13272 #ifdef CONFIG_SMP 13273 if (task_on_rq_queued(p)) { 13274 /* 13275 * Move the next running task to the front of the list, so our 13276 * cfs_tasks list becomes MRU one. 13277 */ 13278 list_move(&se->group_node, &rq->cfs_tasks); 13279 } 13280 #endif 13281 if (!first) 13282 return; 13283 13284 SCHED_WARN_ON(se->sched_delayed); 13285 13286 if (hrtick_enabled_fair(rq)) 13287 hrtick_start_fair(rq, p); 13288 13289 update_misfit_status(p, rq); 13290 sched_fair_update_stop_tick(rq, p); 13291 } 13292 13293 /* 13294 * Account for a task changing its policy or group. 13295 * 13296 * This routine is mostly called to set cfs_rq->curr field when a task 13297 * migrates between groups/classes. 13298 */ 13299 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13300 { 13301 struct sched_entity *se = &p->se; 13302 13303 for_each_sched_entity(se) { 13304 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13305 13306 set_next_entity(cfs_rq, se); 13307 /* ensure bandwidth has been allocated on our new cfs_rq */ 13308 account_cfs_rq_runtime(cfs_rq, 0); 13309 } 13310 13311 __set_next_task_fair(rq, p, first); 13312 } 13313 13314 void init_cfs_rq(struct cfs_rq *cfs_rq) 13315 { 13316 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13317 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13318 #ifdef CONFIG_SMP 13319 raw_spin_lock_init(&cfs_rq->removed.lock); 13320 #endif 13321 } 13322 13323 #ifdef CONFIG_FAIR_GROUP_SCHED 13324 static void task_change_group_fair(struct task_struct *p) 13325 { 13326 /* 13327 * We couldn't detach or attach a forked task which 13328 * hasn't been woken up by wake_up_new_task(). 13329 */ 13330 if (READ_ONCE(p->__state) == TASK_NEW) 13331 return; 13332 13333 detach_task_cfs_rq(p); 13334 13335 #ifdef CONFIG_SMP 13336 /* Tell se's cfs_rq has been changed -- migrated */ 13337 p->se.avg.last_update_time = 0; 13338 #endif 13339 set_task_rq(p, task_cpu(p)); 13340 attach_task_cfs_rq(p); 13341 } 13342 13343 void free_fair_sched_group(struct task_group *tg) 13344 { 13345 int i; 13346 13347 for_each_possible_cpu(i) { 13348 if (tg->cfs_rq) 13349 kfree(tg->cfs_rq[i]); 13350 if (tg->se) 13351 kfree(tg->se[i]); 13352 } 13353 13354 kfree(tg->cfs_rq); 13355 kfree(tg->se); 13356 } 13357 13358 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13359 { 13360 struct sched_entity *se; 13361 struct cfs_rq *cfs_rq; 13362 int i; 13363 13364 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13365 if (!tg->cfs_rq) 13366 goto err; 13367 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13368 if (!tg->se) 13369 goto err; 13370 13371 tg->shares = NICE_0_LOAD; 13372 13373 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13374 13375 for_each_possible_cpu(i) { 13376 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13377 GFP_KERNEL, cpu_to_node(i)); 13378 if (!cfs_rq) 13379 goto err; 13380 13381 se = kzalloc_node(sizeof(struct sched_entity_stats), 13382 GFP_KERNEL, cpu_to_node(i)); 13383 if (!se) 13384 goto err_free_rq; 13385 13386 init_cfs_rq(cfs_rq); 13387 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13388 init_entity_runnable_average(se); 13389 } 13390 13391 return 1; 13392 13393 err_free_rq: 13394 kfree(cfs_rq); 13395 err: 13396 return 0; 13397 } 13398 13399 void online_fair_sched_group(struct task_group *tg) 13400 { 13401 struct sched_entity *se; 13402 struct rq_flags rf; 13403 struct rq *rq; 13404 int i; 13405 13406 for_each_possible_cpu(i) { 13407 rq = cpu_rq(i); 13408 se = tg->se[i]; 13409 rq_lock_irq(rq, &rf); 13410 update_rq_clock(rq); 13411 attach_entity_cfs_rq(se); 13412 sync_throttle(tg, i); 13413 rq_unlock_irq(rq, &rf); 13414 } 13415 } 13416 13417 void unregister_fair_sched_group(struct task_group *tg) 13418 { 13419 int cpu; 13420 13421 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13422 13423 for_each_possible_cpu(cpu) { 13424 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13425 struct sched_entity *se = tg->se[cpu]; 13426 struct rq *rq = cpu_rq(cpu); 13427 13428 if (se) { 13429 if (se->sched_delayed) { 13430 guard(rq_lock_irqsave)(rq); 13431 if (se->sched_delayed) { 13432 update_rq_clock(rq); 13433 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13434 } 13435 list_del_leaf_cfs_rq(cfs_rq); 13436 } 13437 remove_entity_load_avg(se); 13438 } 13439 13440 /* 13441 * Only empty task groups can be destroyed; so we can speculatively 13442 * check on_list without danger of it being re-added. 13443 */ 13444 if (cfs_rq->on_list) { 13445 guard(rq_lock_irqsave)(rq); 13446 list_del_leaf_cfs_rq(cfs_rq); 13447 } 13448 } 13449 } 13450 13451 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13452 struct sched_entity *se, int cpu, 13453 struct sched_entity *parent) 13454 { 13455 struct rq *rq = cpu_rq(cpu); 13456 13457 cfs_rq->tg = tg; 13458 cfs_rq->rq = rq; 13459 init_cfs_rq_runtime(cfs_rq); 13460 13461 tg->cfs_rq[cpu] = cfs_rq; 13462 tg->se[cpu] = se; 13463 13464 /* se could be NULL for root_task_group */ 13465 if (!se) 13466 return; 13467 13468 if (!parent) { 13469 se->cfs_rq = &rq->cfs; 13470 se->depth = 0; 13471 } else { 13472 se->cfs_rq = parent->my_q; 13473 se->depth = parent->depth + 1; 13474 } 13475 13476 se->my_q = cfs_rq; 13477 /* guarantee group entities always have weight */ 13478 update_load_set(&se->load, NICE_0_LOAD); 13479 se->parent = parent; 13480 } 13481 13482 static DEFINE_MUTEX(shares_mutex); 13483 13484 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13485 { 13486 int i; 13487 13488 lockdep_assert_held(&shares_mutex); 13489 13490 /* 13491 * We can't change the weight of the root cgroup. 13492 */ 13493 if (!tg->se[0]) 13494 return -EINVAL; 13495 13496 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13497 13498 if (tg->shares == shares) 13499 return 0; 13500 13501 tg->shares = shares; 13502 for_each_possible_cpu(i) { 13503 struct rq *rq = cpu_rq(i); 13504 struct sched_entity *se = tg->se[i]; 13505 struct rq_flags rf; 13506 13507 /* Propagate contribution to hierarchy */ 13508 rq_lock_irqsave(rq, &rf); 13509 update_rq_clock(rq); 13510 for_each_sched_entity(se) { 13511 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13512 update_cfs_group(se); 13513 } 13514 rq_unlock_irqrestore(rq, &rf); 13515 } 13516 13517 return 0; 13518 } 13519 13520 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13521 { 13522 int ret; 13523 13524 mutex_lock(&shares_mutex); 13525 if (tg_is_idle(tg)) 13526 ret = -EINVAL; 13527 else 13528 ret = __sched_group_set_shares(tg, shares); 13529 mutex_unlock(&shares_mutex); 13530 13531 return ret; 13532 } 13533 13534 int sched_group_set_idle(struct task_group *tg, long idle) 13535 { 13536 int i; 13537 13538 if (tg == &root_task_group) 13539 return -EINVAL; 13540 13541 if (idle < 0 || idle > 1) 13542 return -EINVAL; 13543 13544 mutex_lock(&shares_mutex); 13545 13546 if (tg->idle == idle) { 13547 mutex_unlock(&shares_mutex); 13548 return 0; 13549 } 13550 13551 tg->idle = idle; 13552 13553 for_each_possible_cpu(i) { 13554 struct rq *rq = cpu_rq(i); 13555 struct sched_entity *se = tg->se[i]; 13556 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13557 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13558 long idle_task_delta; 13559 struct rq_flags rf; 13560 13561 rq_lock_irqsave(rq, &rf); 13562 13563 grp_cfs_rq->idle = idle; 13564 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13565 goto next_cpu; 13566 13567 idle_task_delta = grp_cfs_rq->h_nr_queued - 13568 grp_cfs_rq->h_nr_idle; 13569 if (!cfs_rq_is_idle(grp_cfs_rq)) 13570 idle_task_delta *= -1; 13571 13572 for_each_sched_entity(se) { 13573 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13574 13575 if (!se->on_rq) 13576 break; 13577 13578 cfs_rq->h_nr_idle += idle_task_delta; 13579 13580 /* Already accounted at parent level and above. */ 13581 if (cfs_rq_is_idle(cfs_rq)) 13582 break; 13583 } 13584 13585 next_cpu: 13586 rq_unlock_irqrestore(rq, &rf); 13587 } 13588 13589 /* Idle groups have minimum weight. */ 13590 if (tg_is_idle(tg)) 13591 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13592 else 13593 __sched_group_set_shares(tg, NICE_0_LOAD); 13594 13595 mutex_unlock(&shares_mutex); 13596 return 0; 13597 } 13598 13599 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13600 13601 13602 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13603 { 13604 struct sched_entity *se = &task->se; 13605 unsigned int rr_interval = 0; 13606 13607 /* 13608 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13609 * idle runqueue: 13610 */ 13611 if (rq->cfs.load.weight) 13612 rr_interval = NS_TO_JIFFIES(se->slice); 13613 13614 return rr_interval; 13615 } 13616 13617 /* 13618 * All the scheduling class methods: 13619 */ 13620 DEFINE_SCHED_CLASS(fair) = { 13621 13622 .enqueue_task = enqueue_task_fair, 13623 .dequeue_task = dequeue_task_fair, 13624 .yield_task = yield_task_fair, 13625 .yield_to_task = yield_to_task_fair, 13626 13627 .wakeup_preempt = check_preempt_wakeup_fair, 13628 13629 .pick_task = pick_task_fair, 13630 .pick_next_task = __pick_next_task_fair, 13631 .put_prev_task = put_prev_task_fair, 13632 .set_next_task = set_next_task_fair, 13633 13634 #ifdef CONFIG_SMP 13635 .balance = balance_fair, 13636 .select_task_rq = select_task_rq_fair, 13637 .migrate_task_rq = migrate_task_rq_fair, 13638 13639 .rq_online = rq_online_fair, 13640 .rq_offline = rq_offline_fair, 13641 13642 .task_dead = task_dead_fair, 13643 .set_cpus_allowed = set_cpus_allowed_fair, 13644 #endif 13645 13646 .task_tick = task_tick_fair, 13647 .task_fork = task_fork_fair, 13648 13649 .reweight_task = reweight_task_fair, 13650 .prio_changed = prio_changed_fair, 13651 .switched_from = switched_from_fair, 13652 .switched_to = switched_to_fair, 13653 13654 .get_rr_interval = get_rr_interval_fair, 13655 13656 .update_curr = update_curr_fair, 13657 13658 #ifdef CONFIG_FAIR_GROUP_SCHED 13659 .task_change_group = task_change_group_fair, 13660 #endif 13661 13662 #ifdef CONFIG_SCHED_CORE 13663 .task_is_throttled = task_is_throttled_fair, 13664 #endif 13665 13666 #ifdef CONFIG_UCLAMP_TASK 13667 .uclamp_enabled = 1, 13668 #endif 13669 }; 13670 13671 #ifdef CONFIG_SCHED_DEBUG 13672 void print_cfs_stats(struct seq_file *m, int cpu) 13673 { 13674 struct cfs_rq *cfs_rq, *pos; 13675 13676 rcu_read_lock(); 13677 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13678 print_cfs_rq(m, cpu, cfs_rq); 13679 rcu_read_unlock(); 13680 } 13681 13682 #ifdef CONFIG_NUMA_BALANCING 13683 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13684 { 13685 int node; 13686 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13687 struct numa_group *ng; 13688 13689 rcu_read_lock(); 13690 ng = rcu_dereference(p->numa_group); 13691 for_each_online_node(node) { 13692 if (p->numa_faults) { 13693 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13694 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13695 } 13696 if (ng) { 13697 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13698 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13699 } 13700 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13701 } 13702 rcu_read_unlock(); 13703 } 13704 #endif /* CONFIG_NUMA_BALANCING */ 13705 #endif /* CONFIG_SCHED_DEBUG */ 13706 13707 __init void init_sched_fair_class(void) 13708 { 13709 #ifdef CONFIG_SMP 13710 int i; 13711 13712 for_each_possible_cpu(i) { 13713 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13714 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13715 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13716 GFP_KERNEL, cpu_to_node(i)); 13717 13718 #ifdef CONFIG_CFS_BANDWIDTH 13719 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13720 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13721 #endif 13722 } 13723 13724 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13725 13726 #ifdef CONFIG_NO_HZ_COMMON 13727 nohz.next_balance = jiffies; 13728 nohz.next_blocked = jiffies; 13729 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13730 #endif 13731 #endif /* SMP */ 13732 13733 } 13734