xref: /linux/kernel/sched/fair.c (revision 8195136669661fdfe54e9a8923c33b31c92fc1da)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 	return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87 
88 #ifdef CONFIG_SMP
89 /*
90  * For asym packing, by default the lower numbered CPU has higher priority.
91  */
92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 	return -cpu;
95 }
96 
97 /*
98  * The margin used when comparing utilization with CPU capacity.
99  *
100  * (default: ~20%)
101  */
102 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103 
104 /*
105  * The margin used when comparing CPU capacities.
106  * is 'cap1' noticeably greater than 'cap2'
107  *
108  * (default: ~5%)
109  */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131 
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 	{
136 		.procname       = "sched_cfs_bandwidth_slice_us",
137 		.data           = &sysctl_sched_cfs_bandwidth_slice,
138 		.maxlen         = sizeof(unsigned int),
139 		.mode           = 0644,
140 		.proc_handler   = proc_dointvec_minmax,
141 		.extra1         = SYSCTL_ONE,
142 	},
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 	{
146 		.procname	= "numa_balancing_promote_rate_limit_MBps",
147 		.data		= &sysctl_numa_balancing_promote_rate_limit,
148 		.maxlen		= sizeof(unsigned int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 	},
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155 
156 static int __init sched_fair_sysctl_init(void)
157 {
158 	register_sysctl_init("kernel", sched_fair_sysctls);
159 	return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163 
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 	lw->weight += inc;
167 	lw->inv_weight = 0;
168 }
169 
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 	lw->weight -= dec;
173 	lw->inv_weight = 0;
174 }
175 
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 	lw->weight = w;
179 	lw->inv_weight = 0;
180 }
181 
182 /*
183  * Increase the granularity value when there are more CPUs,
184  * because with more CPUs the 'effective latency' as visible
185  * to users decreases. But the relationship is not linear,
186  * so pick a second-best guess by going with the log2 of the
187  * number of CPUs.
188  *
189  * This idea comes from the SD scheduler of Con Kolivas:
190  */
191 static unsigned int get_update_sysctl_factor(void)
192 {
193 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 	unsigned int factor;
195 
196 	switch (sysctl_sched_tunable_scaling) {
197 	case SCHED_TUNABLESCALING_NONE:
198 		factor = 1;
199 		break;
200 	case SCHED_TUNABLESCALING_LINEAR:
201 		factor = cpus;
202 		break;
203 	case SCHED_TUNABLESCALING_LOG:
204 	default:
205 		factor = 1 + ilog2(cpus);
206 		break;
207 	}
208 
209 	return factor;
210 }
211 
212 static void update_sysctl(void)
213 {
214 	unsigned int factor = get_update_sysctl_factor();
215 
216 #define SET_SYSCTL(name) \
217 	(sysctl_##name = (factor) * normalized_sysctl_##name)
218 	SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221 
222 void __init sched_init_granularity(void)
223 {
224 	update_sysctl();
225 }
226 
227 #define WMULT_CONST	(~0U)
228 #define WMULT_SHIFT	32
229 
230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 	unsigned long w;
233 
234 	if (likely(lw->inv_weight))
235 		return;
236 
237 	w = scale_load_down(lw->weight);
238 
239 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 		lw->inv_weight = 1;
241 	else if (unlikely(!w))
242 		lw->inv_weight = WMULT_CONST;
243 	else
244 		lw->inv_weight = WMULT_CONST / w;
245 }
246 
247 /*
248  * delta_exec * weight / lw.weight
249  *   OR
250  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251  *
252  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253  * we're guaranteed shift stays positive because inv_weight is guaranteed to
254  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255  *
256  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257  * weight/lw.weight <= 1, and therefore our shift will also be positive.
258  */
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 	u64 fact = scale_load_down(weight);
262 	u32 fact_hi = (u32)(fact >> 32);
263 	int shift = WMULT_SHIFT;
264 	int fs;
265 
266 	__update_inv_weight(lw);
267 
268 	if (unlikely(fact_hi)) {
269 		fs = fls(fact_hi);
270 		shift -= fs;
271 		fact >>= fs;
272 	}
273 
274 	fact = mul_u32_u32(fact, lw->inv_weight);
275 
276 	fact_hi = (u32)(fact >> 32);
277 	if (fact_hi) {
278 		fs = fls(fact_hi);
279 		shift -= fs;
280 		fact >>= fs;
281 	}
282 
283 	return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285 
286 /*
287  * delta /= w
288  */
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 	if (unlikely(se->load.weight != NICE_0_LOAD))
292 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293 
294 	return delta;
295 }
296 
297 const struct sched_class fair_sched_class;
298 
299 /**************************************************************
300  * CFS operations on generic schedulable entities:
301  */
302 
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304 
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 		for (; se; se = se->parent)
308 
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 	struct rq *rq = rq_of(cfs_rq);
312 	int cpu = cpu_of(rq);
313 
314 	if (cfs_rq->on_list)
315 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316 
317 	cfs_rq->on_list = 1;
318 
319 	/*
320 	 * Ensure we either appear before our parent (if already
321 	 * enqueued) or force our parent to appear after us when it is
322 	 * enqueued. The fact that we always enqueue bottom-up
323 	 * reduces this to two cases and a special case for the root
324 	 * cfs_rq. Furthermore, it also means that we will always reset
325 	 * tmp_alone_branch either when the branch is connected
326 	 * to a tree or when we reach the top of the tree
327 	 */
328 	if (cfs_rq->tg->parent &&
329 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 		/*
331 		 * If parent is already on the list, we add the child
332 		 * just before. Thanks to circular linked property of
333 		 * the list, this means to put the child at the tail
334 		 * of the list that starts by parent.
335 		 */
336 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 		/*
339 		 * The branch is now connected to its tree so we can
340 		 * reset tmp_alone_branch to the beginning of the
341 		 * list.
342 		 */
343 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		return true;
345 	}
346 
347 	if (!cfs_rq->tg->parent) {
348 		/*
349 		 * cfs rq without parent should be put
350 		 * at the tail of the list.
351 		 */
352 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 			&rq->leaf_cfs_rq_list);
354 		/*
355 		 * We have reach the top of a tree so we can reset
356 		 * tmp_alone_branch to the beginning of the list.
357 		 */
358 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 		return true;
360 	}
361 
362 	/*
363 	 * The parent has not already been added so we want to
364 	 * make sure that it will be put after us.
365 	 * tmp_alone_branch points to the begin of the branch
366 	 * where we will add parent.
367 	 */
368 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 	/*
370 	 * update tmp_alone_branch to points to the new begin
371 	 * of the branch
372 	 */
373 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 	return false;
375 }
376 
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 	if (cfs_rq->on_list) {
380 		struct rq *rq = rq_of(cfs_rq);
381 
382 		/*
383 		 * With cfs_rq being unthrottled/throttled during an enqueue,
384 		 * it can happen the tmp_alone_branch points to the leaf that
385 		 * we finally want to delete. In this case, tmp_alone_branch moves
386 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 		 * at the end of the enqueue.
388 		 */
389 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391 
392 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 		cfs_rq->on_list = 0;
394 	}
395 }
396 
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401 
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405 				 leaf_cfs_rq_list)
406 
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 	if (se->cfs_rq == pse->cfs_rq)
412 		return se->cfs_rq;
413 
414 	return NULL;
415 }
416 
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 	return se->parent;
420 }
421 
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 	int se_depth, pse_depth;
426 
427 	/*
428 	 * preemption test can be made between sibling entities who are in the
429 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 	 * both tasks until we find their ancestors who are siblings of common
431 	 * parent.
432 	 */
433 
434 	/* First walk up until both entities are at same depth */
435 	se_depth = (*se)->depth;
436 	pse_depth = (*pse)->depth;
437 
438 	while (se_depth > pse_depth) {
439 		se_depth--;
440 		*se = parent_entity(*se);
441 	}
442 
443 	while (pse_depth > se_depth) {
444 		pse_depth--;
445 		*pse = parent_entity(*pse);
446 	}
447 
448 	while (!is_same_group(*se, *pse)) {
449 		*se = parent_entity(*se);
450 		*pse = parent_entity(*pse);
451 	}
452 }
453 
454 static int tg_is_idle(struct task_group *tg)
455 {
456 	return tg->idle > 0;
457 }
458 
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 	return cfs_rq->idle > 0;
462 }
463 
464 static int se_is_idle(struct sched_entity *se)
465 {
466 	if (entity_is_task(se))
467 		return task_has_idle_policy(task_of(se));
468 	return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470 
471 #else	/* !CONFIG_FAIR_GROUP_SCHED */
472 
473 #define for_each_sched_entity(se) \
474 		for (; se; se = NULL)
475 
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 	return true;
479 }
480 
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484 
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488 
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491 
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 	return NULL;
495 }
496 
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501 
502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 	return 0;
505 }
506 
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 	return 0;
510 }
511 
512 static int se_is_idle(struct sched_entity *se)
513 {
514 	return task_has_idle_policy(task_of(se));
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(const struct sched_entity *a,
545 				 const struct sched_entity *b)
546 {
547 	/*
548 	 * Tiebreak on vruntime seems unnecessary since it can
549 	 * hardly happen.
550 	 */
551 	return (s64)(a->deadline - b->deadline) < 0;
552 }
553 
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558 
559 #define __node_2_se(node) \
560 	rb_entry((node), struct sched_entity, run_node)
561 
562 /*
563  * Compute virtual time from the per-task service numbers:
564  *
565  * Fair schedulers conserve lag:
566  *
567  *   \Sum lag_i = 0
568  *
569  * Where lag_i is given by:
570  *
571  *   lag_i = S - s_i = w_i * (V - v_i)
572  *
573  * Where S is the ideal service time and V is it's virtual time counterpart.
574  * Therefore:
575  *
576  *   \Sum lag_i = 0
577  *   \Sum w_i * (V - v_i) = 0
578  *   \Sum w_i * V - w_i * v_i = 0
579  *
580  * From which we can solve an expression for V in v_i (which we have in
581  * se->vruntime):
582  *
583  *       \Sum v_i * w_i   \Sum v_i * w_i
584  *   V = -------------- = --------------
585  *          \Sum w_i            W
586  *
587  * Specifically, this is the weighted average of all entity virtual runtimes.
588  *
589  * [[ NOTE: this is only equal to the ideal scheduler under the condition
590  *          that join/leave operations happen at lag_i = 0, otherwise the
591  *          virtual time has non-contiguous motion equivalent to:
592  *
593  *	      V +-= lag_i / W
594  *
595  *	    Also see the comment in place_entity() that deals with this. ]]
596  *
597  * However, since v_i is u64, and the multiplication could easily overflow
598  * transform it into a relative form that uses smaller quantities:
599  *
600  * Substitute: v_i == (v_i - v0) + v0
601  *
602  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603  * V = ---------------------------- = --------------------- + v0
604  *                  W                            W
605  *
606  * Which we track using:
607  *
608  *                    v0 := cfs_rq->min_vruntime
609  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610  *              \Sum w_i := cfs_rq->avg_load
611  *
612  * Since min_vruntime is a monotonic increasing variable that closely tracks
613  * the per-task service, these deltas: (v_i - v), will be in the order of the
614  * maximal (virtual) lag induced in the system due to quantisation.
615  *
616  * Also, we use scale_load_down() to reduce the size.
617  *
618  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619  */
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 	unsigned long weight = scale_load_down(se->load.weight);
624 	s64 key = entity_key(cfs_rq, se);
625 
626 	cfs_rq->avg_vruntime += key * weight;
627 	cfs_rq->avg_load += weight;
628 }
629 
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 	unsigned long weight = scale_load_down(se->load.weight);
634 	s64 key = entity_key(cfs_rq, se);
635 
636 	cfs_rq->avg_vruntime -= key * weight;
637 	cfs_rq->avg_load -= weight;
638 }
639 
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 	/*
644 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 	 */
646 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648 
649 /*
650  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651  * For this to be so, the result of this function must have a left bias.
652  */
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 	struct sched_entity *curr = cfs_rq->curr;
656 	s64 avg = cfs_rq->avg_vruntime;
657 	long load = cfs_rq->avg_load;
658 
659 	if (curr && curr->on_rq) {
660 		unsigned long weight = scale_load_down(curr->load.weight);
661 
662 		avg += entity_key(cfs_rq, curr) * weight;
663 		load += weight;
664 	}
665 
666 	if (load) {
667 		/* sign flips effective floor / ceiling */
668 		if (avg < 0)
669 			avg -= (load - 1);
670 		avg = div_s64(avg, load);
671 	}
672 
673 	return cfs_rq->min_vruntime + avg;
674 }
675 
676 /*
677  * lag_i = S - s_i = w_i * (V - v_i)
678  *
679  * However, since V is approximated by the weighted average of all entities it
680  * is possible -- by addition/removal/reweight to the tree -- to move V around
681  * and end up with a larger lag than we started with.
682  *
683  * Limit this to either double the slice length with a minimum of TICK_NSEC
684  * since that is the timing granularity.
685  *
686  * EEVDF gives the following limit for a steady state system:
687  *
688  *   -r_max < lag < max(r_max, q)
689  *
690  * XXX could add max_slice to the augmented data to track this.
691  */
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693 {
694 	s64 vlag, limit;
695 
696 	vlag = avruntime - se->vruntime;
697 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698 
699 	return clamp(vlag, -limit, limit);
700 }
701 
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	SCHED_WARN_ON(!se->on_rq);
705 
706 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707 }
708 
709 /*
710  * Entity is eligible once it received less service than it ought to have,
711  * eg. lag >= 0.
712  *
713  * lag_i = S - s_i = w_i*(V - v_i)
714  *
715  * lag_i >= 0 -> V >= v_i
716  *
717  *     \Sum (v_i - v)*w_i
718  * V = ------------------ + v
719  *          \Sum w_i
720  *
721  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722  *
723  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724  *       to the loss in precision caused by the division.
725  */
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727 {
728 	struct sched_entity *curr = cfs_rq->curr;
729 	s64 avg = cfs_rq->avg_vruntime;
730 	long load = cfs_rq->avg_load;
731 
732 	if (curr && curr->on_rq) {
733 		unsigned long weight = scale_load_down(curr->load.weight);
734 
735 		avg += entity_key(cfs_rq, curr) * weight;
736 		load += weight;
737 	}
738 
739 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 }
741 
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	return vruntime_eligible(cfs_rq, se->vruntime);
745 }
746 
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748 {
749 	u64 min_vruntime = cfs_rq->min_vruntime;
750 	/*
751 	 * open coded max_vruntime() to allow updating avg_vruntime
752 	 */
753 	s64 delta = (s64)(vruntime - min_vruntime);
754 	if (delta > 0) {
755 		avg_vruntime_update(cfs_rq, delta);
756 		min_vruntime = vruntime;
757 	}
758 	return min_vruntime;
759 }
760 
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
762 {
763 	struct sched_entity *se = __pick_root_entity(cfs_rq);
764 	struct sched_entity *curr = cfs_rq->curr;
765 	u64 vruntime = cfs_rq->min_vruntime;
766 
767 	if (curr) {
768 		if (curr->on_rq)
769 			vruntime = curr->vruntime;
770 		else
771 			curr = NULL;
772 	}
773 
774 	if (se) {
775 		if (!curr)
776 			vruntime = se->min_vruntime;
777 		else
778 			vruntime = min_vruntime(vruntime, se->min_vruntime);
779 	}
780 
781 	/* ensure we never gain time by being placed backwards. */
782 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
783 }
784 
785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
786 {
787 	struct sched_entity *root = __pick_root_entity(cfs_rq);
788 	struct sched_entity *curr = cfs_rq->curr;
789 	u64 min_slice = ~0ULL;
790 
791 	if (curr && curr->on_rq)
792 		min_slice = curr->slice;
793 
794 	if (root)
795 		min_slice = min(min_slice, root->min_slice);
796 
797 	return min_slice;
798 }
799 
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (vruntime_gt(min_vruntime, se, rse))
812 			se->min_vruntime = rse->min_vruntime;
813 	}
814 }
815 
816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
817 {
818 	if (node) {
819 		struct sched_entity *rse = __node_2_se(node);
820 		if (rse->min_slice < se->min_slice)
821 			se->min_slice = rse->min_slice;
822 	}
823 }
824 
825 /*
826  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
827  */
828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
829 {
830 	u64 old_min_vruntime = se->min_vruntime;
831 	u64 old_min_slice = se->min_slice;
832 	struct rb_node *node = &se->run_node;
833 
834 	se->min_vruntime = se->vruntime;
835 	__min_vruntime_update(se, node->rb_right);
836 	__min_vruntime_update(se, node->rb_left);
837 
838 	se->min_slice = se->slice;
839 	__min_slice_update(se, node->rb_right);
840 	__min_slice_update(se, node->rb_left);
841 
842 	return se->min_vruntime == old_min_vruntime &&
843 	       se->min_slice == old_min_slice;
844 }
845 
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847 		     run_node, min_vruntime, min_vruntime_update);
848 
849 /*
850  * Enqueue an entity into the rb-tree:
851  */
852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
853 {
854 	avg_vruntime_add(cfs_rq, se);
855 	se->min_vruntime = se->vruntime;
856 	se->min_slice = se->slice;
857 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858 				__entity_less, &min_vruntime_cb);
859 }
860 
861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
864 				  &min_vruntime_cb);
865 	avg_vruntime_sub(cfs_rq, se);
866 }
867 
868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
869 {
870 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
871 
872 	if (!root)
873 		return NULL;
874 
875 	return __node_2_se(root);
876 }
877 
878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
879 {
880 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
881 
882 	if (!left)
883 		return NULL;
884 
885 	return __node_2_se(left);
886 }
887 
888 /*
889  * Earliest Eligible Virtual Deadline First
890  *
891  * In order to provide latency guarantees for different request sizes
892  * EEVDF selects the best runnable task from two criteria:
893  *
894  *  1) the task must be eligible (must be owed service)
895  *
896  *  2) from those tasks that meet 1), we select the one
897  *     with the earliest virtual deadline.
898  *
899  * We can do this in O(log n) time due to an augmented RB-tree. The
900  * tree keeps the entries sorted on deadline, but also functions as a
901  * heap based on the vruntime by keeping:
902  *
903  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
904  *
905  * Which allows tree pruning through eligibility.
906  */
907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
908 {
909 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910 	struct sched_entity *se = __pick_first_entity(cfs_rq);
911 	struct sched_entity *curr = cfs_rq->curr;
912 	struct sched_entity *best = NULL;
913 
914 	/*
915 	 * We can safely skip eligibility check if there is only one entity
916 	 * in this cfs_rq, saving some cycles.
917 	 */
918 	if (cfs_rq->nr_running == 1)
919 		return curr && curr->on_rq ? curr : se;
920 
921 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
922 		curr = NULL;
923 
924 	/*
925 	 * Once selected, run a task until it either becomes non-eligible or
926 	 * until it gets a new slice. See the HACK in set_next_entity().
927 	 */
928 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
929 		return curr;
930 
931 	/* Pick the leftmost entity if it's eligible */
932 	if (se && entity_eligible(cfs_rq, se)) {
933 		best = se;
934 		goto found;
935 	}
936 
937 	/* Heap search for the EEVD entity */
938 	while (node) {
939 		struct rb_node *left = node->rb_left;
940 
941 		/*
942 		 * Eligible entities in left subtree are always better
943 		 * choices, since they have earlier deadlines.
944 		 */
945 		if (left && vruntime_eligible(cfs_rq,
946 					__node_2_se(left)->min_vruntime)) {
947 			node = left;
948 			continue;
949 		}
950 
951 		se = __node_2_se(node);
952 
953 		/*
954 		 * The left subtree either is empty or has no eligible
955 		 * entity, so check the current node since it is the one
956 		 * with earliest deadline that might be eligible.
957 		 */
958 		if (entity_eligible(cfs_rq, se)) {
959 			best = se;
960 			break;
961 		}
962 
963 		node = node->rb_right;
964 	}
965 found:
966 	if (!best || (curr && entity_before(curr, best)))
967 		best = curr;
968 
969 	return best;
970 }
971 
972 #ifdef CONFIG_SCHED_DEBUG
973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
974 {
975 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
976 
977 	if (!last)
978 		return NULL;
979 
980 	return __node_2_se(last);
981 }
982 
983 /**************************************************************
984  * Scheduling class statistics methods:
985  */
986 #ifdef CONFIG_SMP
987 int sched_update_scaling(void)
988 {
989 	unsigned int factor = get_update_sysctl_factor();
990 
991 #define WRT_SYSCTL(name) \
992 	(normalized_sysctl_##name = sysctl_##name / (factor))
993 	WRT_SYSCTL(sched_base_slice);
994 #undef WRT_SYSCTL
995 
996 	return 0;
997 }
998 #endif
999 #endif
1000 
1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1002 
1003 /*
1004  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005  * this is probably good enough.
1006  */
1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1008 {
1009 	if ((s64)(se->vruntime - se->deadline) < 0)
1010 		return false;
1011 
1012 	/*
1013 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 	 * nice) while the request time r_i is determined by
1015 	 * sysctl_sched_base_slice.
1016 	 */
1017 	if (!se->custom_slice)
1018 		se->slice = sysctl_sched_base_slice;
1019 
1020 	/*
1021 	 * EEVDF: vd_i = ve_i + r_i / w_i
1022 	 */
1023 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1024 
1025 	/*
1026 	 * The task has consumed its request, reschedule.
1027 	 */
1028 	return true;
1029 }
1030 
1031 #include "pelt.h"
1032 #ifdef CONFIG_SMP
1033 
1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035 static unsigned long task_h_load(struct task_struct *p);
1036 static unsigned long capacity_of(int cpu);
1037 
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
1039 void init_entity_runnable_average(struct sched_entity *se)
1040 {
1041 	struct sched_avg *sa = &se->avg;
1042 
1043 	memset(sa, 0, sizeof(*sa));
1044 
1045 	/*
1046 	 * Tasks are initialized with full load to be seen as heavy tasks until
1047 	 * they get a chance to stabilize to their real load level.
1048 	 * Group entities are initialized with zero load to reflect the fact that
1049 	 * nothing has been attached to the task group yet.
1050 	 */
1051 	if (entity_is_task(se))
1052 		sa->load_avg = scale_load_down(se->load.weight);
1053 
1054 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1055 }
1056 
1057 /*
1058  * With new tasks being created, their initial util_avgs are extrapolated
1059  * based on the cfs_rq's current util_avg:
1060  *
1061  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1062  *		* se_weight(se)
1063  *
1064  * However, in many cases, the above util_avg does not give a desired
1065  * value. Moreover, the sum of the util_avgs may be divergent, such
1066  * as when the series is a harmonic series.
1067  *
1068  * To solve this problem, we also cap the util_avg of successive tasks to
1069  * only 1/2 of the left utilization budget:
1070  *
1071  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1072  *
1073  * where n denotes the nth task and cpu_scale the CPU capacity.
1074  *
1075  * For example, for a CPU with 1024 of capacity, a simplest series from
1076  * the beginning would be like:
1077  *
1078  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1079  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1080  *
1081  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082  * if util_avg > util_avg_cap.
1083  */
1084 void post_init_entity_util_avg(struct task_struct *p)
1085 {
1086 	struct sched_entity *se = &p->se;
1087 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088 	struct sched_avg *sa = &se->avg;
1089 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1091 
1092 	if (p->sched_class != &fair_sched_class) {
1093 		/*
1094 		 * For !fair tasks do:
1095 		 *
1096 		update_cfs_rq_load_avg(now, cfs_rq);
1097 		attach_entity_load_avg(cfs_rq, se);
1098 		switched_from_fair(rq, p);
1099 		 *
1100 		 * such that the next switched_to_fair() has the
1101 		 * expected state.
1102 		 */
1103 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1104 		return;
1105 	}
1106 
1107 	if (cap > 0) {
1108 		if (cfs_rq->avg.util_avg != 0) {
1109 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1110 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1111 
1112 			if (sa->util_avg > cap)
1113 				sa->util_avg = cap;
1114 		} else {
1115 			sa->util_avg = cap;
1116 		}
1117 	}
1118 
1119 	sa->runnable_avg = sa->util_avg;
1120 }
1121 
1122 #else /* !CONFIG_SMP */
1123 void init_entity_runnable_average(struct sched_entity *se)
1124 {
1125 }
1126 void post_init_entity_util_avg(struct task_struct *p)
1127 {
1128 }
1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1130 {
1131 }
1132 #endif /* CONFIG_SMP */
1133 
1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1135 {
1136 	u64 now = rq_clock_task(rq);
1137 	s64 delta_exec;
1138 
1139 	delta_exec = now - curr->exec_start;
1140 	if (unlikely(delta_exec <= 0))
1141 		return delta_exec;
1142 
1143 	curr->exec_start = now;
1144 	curr->sum_exec_runtime += delta_exec;
1145 
1146 	if (schedstat_enabled()) {
1147 		struct sched_statistics *stats;
1148 
1149 		stats = __schedstats_from_se(curr);
1150 		__schedstat_set(stats->exec_max,
1151 				max(delta_exec, stats->exec_max));
1152 	}
1153 
1154 	return delta_exec;
1155 }
1156 
1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1158 {
1159 	trace_sched_stat_runtime(p, delta_exec);
1160 	account_group_exec_runtime(p, delta_exec);
1161 	cgroup_account_cputime(p, delta_exec);
1162 	if (p->dl_server)
1163 		dl_server_update(p->dl_server, delta_exec);
1164 }
1165 
1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1167 {
1168 	if (!sched_feat(PREEMPT_SHORT))
1169 		return false;
1170 
1171 	if (curr->vlag == curr->deadline)
1172 		return false;
1173 
1174 	return !entity_eligible(cfs_rq, curr);
1175 }
1176 
1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1178 				    struct sched_entity *pse, struct sched_entity *se)
1179 {
1180 	if (!sched_feat(PREEMPT_SHORT))
1181 		return false;
1182 
1183 	if (pse->slice >= se->slice)
1184 		return false;
1185 
1186 	if (!entity_eligible(cfs_rq, pse))
1187 		return false;
1188 
1189 	if (entity_before(pse, se))
1190 		return true;
1191 
1192 	if (!entity_eligible(cfs_rq, se))
1193 		return true;
1194 
1195 	return false;
1196 }
1197 
1198 /*
1199  * Used by other classes to account runtime.
1200  */
1201 s64 update_curr_common(struct rq *rq)
1202 {
1203 	struct task_struct *curr = rq->curr;
1204 	s64 delta_exec;
1205 
1206 	delta_exec = update_curr_se(rq, &curr->se);
1207 	if (likely(delta_exec > 0))
1208 		update_curr_task(curr, delta_exec);
1209 
1210 	return delta_exec;
1211 }
1212 
1213 /*
1214  * Update the current task's runtime statistics.
1215  */
1216 static void update_curr(struct cfs_rq *cfs_rq)
1217 {
1218 	struct sched_entity *curr = cfs_rq->curr;
1219 	struct rq *rq = rq_of(cfs_rq);
1220 	s64 delta_exec;
1221 	bool resched;
1222 
1223 	if (unlikely(!curr))
1224 		return;
1225 
1226 	delta_exec = update_curr_se(rq, curr);
1227 	if (unlikely(delta_exec <= 0))
1228 		return;
1229 
1230 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1231 	resched = update_deadline(cfs_rq, curr);
1232 	update_min_vruntime(cfs_rq);
1233 
1234 	if (entity_is_task(curr)) {
1235 		struct task_struct *p = task_of(curr);
1236 
1237 		update_curr_task(p, delta_exec);
1238 
1239 		/*
1240 		 * Any fair task that runs outside of fair_server should
1241 		 * account against fair_server such that it can account for
1242 		 * this time and possibly avoid running this period.
1243 		 */
1244 		if (p->dl_server != &rq->fair_server)
1245 			dl_server_update(&rq->fair_server, delta_exec);
1246 	}
1247 
1248 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1249 
1250 	if (rq->nr_running == 1)
1251 		return;
1252 
1253 	if (resched || did_preempt_short(cfs_rq, curr)) {
1254 		resched_curr(rq);
1255 		clear_buddies(cfs_rq, curr);
1256 	}
1257 }
1258 
1259 static void update_curr_fair(struct rq *rq)
1260 {
1261 	update_curr(cfs_rq_of(&rq->curr->se));
1262 }
1263 
1264 static inline void
1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1266 {
1267 	struct sched_statistics *stats;
1268 	struct task_struct *p = NULL;
1269 
1270 	if (!schedstat_enabled())
1271 		return;
1272 
1273 	stats = __schedstats_from_se(se);
1274 
1275 	if (entity_is_task(se))
1276 		p = task_of(se);
1277 
1278 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1279 }
1280 
1281 static inline void
1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1283 {
1284 	struct sched_statistics *stats;
1285 	struct task_struct *p = NULL;
1286 
1287 	if (!schedstat_enabled())
1288 		return;
1289 
1290 	stats = __schedstats_from_se(se);
1291 
1292 	/*
1293 	 * When the sched_schedstat changes from 0 to 1, some sched se
1294 	 * maybe already in the runqueue, the se->statistics.wait_start
1295 	 * will be 0.So it will let the delta wrong. We need to avoid this
1296 	 * scenario.
1297 	 */
1298 	if (unlikely(!schedstat_val(stats->wait_start)))
1299 		return;
1300 
1301 	if (entity_is_task(se))
1302 		p = task_of(se);
1303 
1304 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1305 }
1306 
1307 static inline void
1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1309 {
1310 	struct sched_statistics *stats;
1311 	struct task_struct *tsk = NULL;
1312 
1313 	if (!schedstat_enabled())
1314 		return;
1315 
1316 	stats = __schedstats_from_se(se);
1317 
1318 	if (entity_is_task(se))
1319 		tsk = task_of(se);
1320 
1321 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1322 }
1323 
1324 /*
1325  * Task is being enqueued - update stats:
1326  */
1327 static inline void
1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1329 {
1330 	if (!schedstat_enabled())
1331 		return;
1332 
1333 	/*
1334 	 * Are we enqueueing a waiting task? (for current tasks
1335 	 * a dequeue/enqueue event is a NOP)
1336 	 */
1337 	if (se != cfs_rq->curr)
1338 		update_stats_wait_start_fair(cfs_rq, se);
1339 
1340 	if (flags & ENQUEUE_WAKEUP)
1341 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1342 }
1343 
1344 static inline void
1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1346 {
1347 
1348 	if (!schedstat_enabled())
1349 		return;
1350 
1351 	/*
1352 	 * Mark the end of the wait period if dequeueing a
1353 	 * waiting task:
1354 	 */
1355 	if (se != cfs_rq->curr)
1356 		update_stats_wait_end_fair(cfs_rq, se);
1357 
1358 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1359 		struct task_struct *tsk = task_of(se);
1360 		unsigned int state;
1361 
1362 		/* XXX racy against TTWU */
1363 		state = READ_ONCE(tsk->__state);
1364 		if (state & TASK_INTERRUPTIBLE)
1365 			__schedstat_set(tsk->stats.sleep_start,
1366 				      rq_clock(rq_of(cfs_rq)));
1367 		if (state & TASK_UNINTERRUPTIBLE)
1368 			__schedstat_set(tsk->stats.block_start,
1369 				      rq_clock(rq_of(cfs_rq)));
1370 	}
1371 }
1372 
1373 /*
1374  * We are picking a new current task - update its stats:
1375  */
1376 static inline void
1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1378 {
1379 	/*
1380 	 * We are starting a new run period:
1381 	 */
1382 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1383 }
1384 
1385 /**************************************************
1386  * Scheduling class queueing methods:
1387  */
1388 
1389 static inline bool is_core_idle(int cpu)
1390 {
1391 #ifdef CONFIG_SCHED_SMT
1392 	int sibling;
1393 
1394 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1395 		if (cpu == sibling)
1396 			continue;
1397 
1398 		if (!idle_cpu(sibling))
1399 			return false;
1400 	}
1401 #endif
1402 
1403 	return true;
1404 }
1405 
1406 #ifdef CONFIG_NUMA
1407 #define NUMA_IMBALANCE_MIN 2
1408 
1409 static inline long
1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1411 {
1412 	/*
1413 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1414 	 * threshold. Above this threshold, individual tasks may be contending
1415 	 * for both memory bandwidth and any shared HT resources.  This is an
1416 	 * approximation as the number of running tasks may not be related to
1417 	 * the number of busy CPUs due to sched_setaffinity.
1418 	 */
1419 	if (dst_running > imb_numa_nr)
1420 		return imbalance;
1421 
1422 	/*
1423 	 * Allow a small imbalance based on a simple pair of communicating
1424 	 * tasks that remain local when the destination is lightly loaded.
1425 	 */
1426 	if (imbalance <= NUMA_IMBALANCE_MIN)
1427 		return 0;
1428 
1429 	return imbalance;
1430 }
1431 #endif /* CONFIG_NUMA */
1432 
1433 #ifdef CONFIG_NUMA_BALANCING
1434 /*
1435  * Approximate time to scan a full NUMA task in ms. The task scan period is
1436  * calculated based on the tasks virtual memory size and
1437  * numa_balancing_scan_size.
1438  */
1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1441 
1442 /* Portion of address space to scan in MB */
1443 unsigned int sysctl_numa_balancing_scan_size = 256;
1444 
1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1446 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1447 
1448 /* The page with hint page fault latency < threshold in ms is considered hot */
1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1450 
1451 struct numa_group {
1452 	refcount_t refcount;
1453 
1454 	spinlock_t lock; /* nr_tasks, tasks */
1455 	int nr_tasks;
1456 	pid_t gid;
1457 	int active_nodes;
1458 
1459 	struct rcu_head rcu;
1460 	unsigned long total_faults;
1461 	unsigned long max_faults_cpu;
1462 	/*
1463 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1464 	 *
1465 	 * Faults_cpu is used to decide whether memory should move
1466 	 * towards the CPU. As a consequence, these stats are weighted
1467 	 * more by CPU use than by memory faults.
1468 	 */
1469 	unsigned long faults[];
1470 };
1471 
1472 /*
1473  * For functions that can be called in multiple contexts that permit reading
1474  * ->numa_group (see struct task_struct for locking rules).
1475  */
1476 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1477 {
1478 	return rcu_dereference_check(p->numa_group, p == current ||
1479 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1480 }
1481 
1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1483 {
1484 	return rcu_dereference_protected(p->numa_group, p == current);
1485 }
1486 
1487 static inline unsigned long group_faults_priv(struct numa_group *ng);
1488 static inline unsigned long group_faults_shared(struct numa_group *ng);
1489 
1490 static unsigned int task_nr_scan_windows(struct task_struct *p)
1491 {
1492 	unsigned long rss = 0;
1493 	unsigned long nr_scan_pages;
1494 
1495 	/*
1496 	 * Calculations based on RSS as non-present and empty pages are skipped
1497 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1498 	 * on resident pages
1499 	 */
1500 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1501 	rss = get_mm_rss(p->mm);
1502 	if (!rss)
1503 		rss = nr_scan_pages;
1504 
1505 	rss = round_up(rss, nr_scan_pages);
1506 	return rss / nr_scan_pages;
1507 }
1508 
1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1510 #define MAX_SCAN_WINDOW 2560
1511 
1512 static unsigned int task_scan_min(struct task_struct *p)
1513 {
1514 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1515 	unsigned int scan, floor;
1516 	unsigned int windows = 1;
1517 
1518 	if (scan_size < MAX_SCAN_WINDOW)
1519 		windows = MAX_SCAN_WINDOW / scan_size;
1520 	floor = 1000 / windows;
1521 
1522 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1523 	return max_t(unsigned int, floor, scan);
1524 }
1525 
1526 static unsigned int task_scan_start(struct task_struct *p)
1527 {
1528 	unsigned long smin = task_scan_min(p);
1529 	unsigned long period = smin;
1530 	struct numa_group *ng;
1531 
1532 	/* Scale the maximum scan period with the amount of shared memory. */
1533 	rcu_read_lock();
1534 	ng = rcu_dereference(p->numa_group);
1535 	if (ng) {
1536 		unsigned long shared = group_faults_shared(ng);
1537 		unsigned long private = group_faults_priv(ng);
1538 
1539 		period *= refcount_read(&ng->refcount);
1540 		period *= shared + 1;
1541 		period /= private + shared + 1;
1542 	}
1543 	rcu_read_unlock();
1544 
1545 	return max(smin, period);
1546 }
1547 
1548 static unsigned int task_scan_max(struct task_struct *p)
1549 {
1550 	unsigned long smin = task_scan_min(p);
1551 	unsigned long smax;
1552 	struct numa_group *ng;
1553 
1554 	/* Watch for min being lower than max due to floor calculations */
1555 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1556 
1557 	/* Scale the maximum scan period with the amount of shared memory. */
1558 	ng = deref_curr_numa_group(p);
1559 	if (ng) {
1560 		unsigned long shared = group_faults_shared(ng);
1561 		unsigned long private = group_faults_priv(ng);
1562 		unsigned long period = smax;
1563 
1564 		period *= refcount_read(&ng->refcount);
1565 		period *= shared + 1;
1566 		period /= private + shared + 1;
1567 
1568 		smax = max(smax, period);
1569 	}
1570 
1571 	return max(smin, smax);
1572 }
1573 
1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1575 {
1576 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1577 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1578 }
1579 
1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1581 {
1582 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1583 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1584 }
1585 
1586 /* Shared or private faults. */
1587 #define NR_NUMA_HINT_FAULT_TYPES 2
1588 
1589 /* Memory and CPU locality */
1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1591 
1592 /* Averaged statistics, and temporary buffers. */
1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1594 
1595 pid_t task_numa_group_id(struct task_struct *p)
1596 {
1597 	struct numa_group *ng;
1598 	pid_t gid = 0;
1599 
1600 	rcu_read_lock();
1601 	ng = rcu_dereference(p->numa_group);
1602 	if (ng)
1603 		gid = ng->gid;
1604 	rcu_read_unlock();
1605 
1606 	return gid;
1607 }
1608 
1609 /*
1610  * The averaged statistics, shared & private, memory & CPU,
1611  * occupy the first half of the array. The second half of the
1612  * array is for current counters, which are averaged into the
1613  * first set by task_numa_placement.
1614  */
1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1616 {
1617 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1618 }
1619 
1620 static inline unsigned long task_faults(struct task_struct *p, int nid)
1621 {
1622 	if (!p->numa_faults)
1623 		return 0;
1624 
1625 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1626 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1627 }
1628 
1629 static inline unsigned long group_faults(struct task_struct *p, int nid)
1630 {
1631 	struct numa_group *ng = deref_task_numa_group(p);
1632 
1633 	if (!ng)
1634 		return 0;
1635 
1636 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1637 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1638 }
1639 
1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1641 {
1642 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1643 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1644 }
1645 
1646 static inline unsigned long group_faults_priv(struct numa_group *ng)
1647 {
1648 	unsigned long faults = 0;
1649 	int node;
1650 
1651 	for_each_online_node(node) {
1652 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1653 	}
1654 
1655 	return faults;
1656 }
1657 
1658 static inline unsigned long group_faults_shared(struct numa_group *ng)
1659 {
1660 	unsigned long faults = 0;
1661 	int node;
1662 
1663 	for_each_online_node(node) {
1664 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1665 	}
1666 
1667 	return faults;
1668 }
1669 
1670 /*
1671  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1672  * considered part of a numa group's pseudo-interleaving set. Migrations
1673  * between these nodes are slowed down, to allow things to settle down.
1674  */
1675 #define ACTIVE_NODE_FRACTION 3
1676 
1677 static bool numa_is_active_node(int nid, struct numa_group *ng)
1678 {
1679 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1680 }
1681 
1682 /* Handle placement on systems where not all nodes are directly connected. */
1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1684 					int lim_dist, bool task)
1685 {
1686 	unsigned long score = 0;
1687 	int node, max_dist;
1688 
1689 	/*
1690 	 * All nodes are directly connected, and the same distance
1691 	 * from each other. No need for fancy placement algorithms.
1692 	 */
1693 	if (sched_numa_topology_type == NUMA_DIRECT)
1694 		return 0;
1695 
1696 	/* sched_max_numa_distance may be changed in parallel. */
1697 	max_dist = READ_ONCE(sched_max_numa_distance);
1698 	/*
1699 	 * This code is called for each node, introducing N^2 complexity,
1700 	 * which should be OK given the number of nodes rarely exceeds 8.
1701 	 */
1702 	for_each_online_node(node) {
1703 		unsigned long faults;
1704 		int dist = node_distance(nid, node);
1705 
1706 		/*
1707 		 * The furthest away nodes in the system are not interesting
1708 		 * for placement; nid was already counted.
1709 		 */
1710 		if (dist >= max_dist || node == nid)
1711 			continue;
1712 
1713 		/*
1714 		 * On systems with a backplane NUMA topology, compare groups
1715 		 * of nodes, and move tasks towards the group with the most
1716 		 * memory accesses. When comparing two nodes at distance
1717 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1718 		 * of each group. Skip other nodes.
1719 		 */
1720 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1721 			continue;
1722 
1723 		/* Add up the faults from nearby nodes. */
1724 		if (task)
1725 			faults = task_faults(p, node);
1726 		else
1727 			faults = group_faults(p, node);
1728 
1729 		/*
1730 		 * On systems with a glueless mesh NUMA topology, there are
1731 		 * no fixed "groups of nodes". Instead, nodes that are not
1732 		 * directly connected bounce traffic through intermediate
1733 		 * nodes; a numa_group can occupy any set of nodes.
1734 		 * The further away a node is, the less the faults count.
1735 		 * This seems to result in good task placement.
1736 		 */
1737 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1738 			faults *= (max_dist - dist);
1739 			faults /= (max_dist - LOCAL_DISTANCE);
1740 		}
1741 
1742 		score += faults;
1743 	}
1744 
1745 	return score;
1746 }
1747 
1748 /*
1749  * These return the fraction of accesses done by a particular task, or
1750  * task group, on a particular numa node.  The group weight is given a
1751  * larger multiplier, in order to group tasks together that are almost
1752  * evenly spread out between numa nodes.
1753  */
1754 static inline unsigned long task_weight(struct task_struct *p, int nid,
1755 					int dist)
1756 {
1757 	unsigned long faults, total_faults;
1758 
1759 	if (!p->numa_faults)
1760 		return 0;
1761 
1762 	total_faults = p->total_numa_faults;
1763 
1764 	if (!total_faults)
1765 		return 0;
1766 
1767 	faults = task_faults(p, nid);
1768 	faults += score_nearby_nodes(p, nid, dist, true);
1769 
1770 	return 1000 * faults / total_faults;
1771 }
1772 
1773 static inline unsigned long group_weight(struct task_struct *p, int nid,
1774 					 int dist)
1775 {
1776 	struct numa_group *ng = deref_task_numa_group(p);
1777 	unsigned long faults, total_faults;
1778 
1779 	if (!ng)
1780 		return 0;
1781 
1782 	total_faults = ng->total_faults;
1783 
1784 	if (!total_faults)
1785 		return 0;
1786 
1787 	faults = group_faults(p, nid);
1788 	faults += score_nearby_nodes(p, nid, dist, false);
1789 
1790 	return 1000 * faults / total_faults;
1791 }
1792 
1793 /*
1794  * If memory tiering mode is enabled, cpupid of slow memory page is
1795  * used to record scan time instead of CPU and PID.  When tiering mode
1796  * is disabled at run time, the scan time (in cpupid) will be
1797  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1798  * access out of array bound.
1799  */
1800 static inline bool cpupid_valid(int cpupid)
1801 {
1802 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1803 }
1804 
1805 /*
1806  * For memory tiering mode, if there are enough free pages (more than
1807  * enough watermark defined here) in fast memory node, to take full
1808  * advantage of fast memory capacity, all recently accessed slow
1809  * memory pages will be migrated to fast memory node without
1810  * considering hot threshold.
1811  */
1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1813 {
1814 	int z;
1815 	unsigned long enough_wmark;
1816 
1817 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1818 			   pgdat->node_present_pages >> 4);
1819 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820 		struct zone *zone = pgdat->node_zones + z;
1821 
1822 		if (!populated_zone(zone))
1823 			continue;
1824 
1825 		if (zone_watermark_ok(zone, 0,
1826 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1827 				      ZONE_MOVABLE, 0))
1828 			return true;
1829 	}
1830 	return false;
1831 }
1832 
1833 /*
1834  * For memory tiering mode, when page tables are scanned, the scan
1835  * time will be recorded in struct page in addition to make page
1836  * PROT_NONE for slow memory page.  So when the page is accessed, in
1837  * hint page fault handler, the hint page fault latency is calculated
1838  * via,
1839  *
1840  *	hint page fault latency = hint page fault time - scan time
1841  *
1842  * The smaller the hint page fault latency, the higher the possibility
1843  * for the page to be hot.
1844  */
1845 static int numa_hint_fault_latency(struct folio *folio)
1846 {
1847 	int last_time, time;
1848 
1849 	time = jiffies_to_msecs(jiffies);
1850 	last_time = folio_xchg_access_time(folio, time);
1851 
1852 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1853 }
1854 
1855 /*
1856  * For memory tiering mode, too high promotion/demotion throughput may
1857  * hurt application latency.  So we provide a mechanism to rate limit
1858  * the number of pages that are tried to be promoted.
1859  */
1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1861 				      unsigned long rate_limit, int nr)
1862 {
1863 	unsigned long nr_cand;
1864 	unsigned int now, start;
1865 
1866 	now = jiffies_to_msecs(jiffies);
1867 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1868 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1869 	start = pgdat->nbp_rl_start;
1870 	if (now - start > MSEC_PER_SEC &&
1871 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1872 		pgdat->nbp_rl_nr_cand = nr_cand;
1873 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1874 		return true;
1875 	return false;
1876 }
1877 
1878 #define NUMA_MIGRATION_ADJUST_STEPS	16
1879 
1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1881 					    unsigned long rate_limit,
1882 					    unsigned int ref_th)
1883 {
1884 	unsigned int now, start, th_period, unit_th, th;
1885 	unsigned long nr_cand, ref_cand, diff_cand;
1886 
1887 	now = jiffies_to_msecs(jiffies);
1888 	th_period = sysctl_numa_balancing_scan_period_max;
1889 	start = pgdat->nbp_th_start;
1890 	if (now - start > th_period &&
1891 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1892 		ref_cand = rate_limit *
1893 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1894 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1895 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1896 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1897 		th = pgdat->nbp_threshold ? : ref_th;
1898 		if (diff_cand > ref_cand * 11 / 10)
1899 			th = max(th - unit_th, unit_th);
1900 		else if (diff_cand < ref_cand * 9 / 10)
1901 			th = min(th + unit_th, ref_th * 2);
1902 		pgdat->nbp_th_nr_cand = nr_cand;
1903 		pgdat->nbp_threshold = th;
1904 	}
1905 }
1906 
1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1908 				int src_nid, int dst_cpu)
1909 {
1910 	struct numa_group *ng = deref_curr_numa_group(p);
1911 	int dst_nid = cpu_to_node(dst_cpu);
1912 	int last_cpupid, this_cpupid;
1913 
1914 	/*
1915 	 * Cannot migrate to memoryless nodes.
1916 	 */
1917 	if (!node_state(dst_nid, N_MEMORY))
1918 		return false;
1919 
1920 	/*
1921 	 * The pages in slow memory node should be migrated according
1922 	 * to hot/cold instead of private/shared.
1923 	 */
1924 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1925 	    !node_is_toptier(src_nid)) {
1926 		struct pglist_data *pgdat;
1927 		unsigned long rate_limit;
1928 		unsigned int latency, th, def_th;
1929 
1930 		pgdat = NODE_DATA(dst_nid);
1931 		if (pgdat_free_space_enough(pgdat)) {
1932 			/* workload changed, reset hot threshold */
1933 			pgdat->nbp_threshold = 0;
1934 			return true;
1935 		}
1936 
1937 		def_th = sysctl_numa_balancing_hot_threshold;
1938 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1939 			(20 - PAGE_SHIFT);
1940 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1941 
1942 		th = pgdat->nbp_threshold ? : def_th;
1943 		latency = numa_hint_fault_latency(folio);
1944 		if (latency >= th)
1945 			return false;
1946 
1947 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1948 						  folio_nr_pages(folio));
1949 	}
1950 
1951 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1952 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1953 
1954 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1955 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1956 		return false;
1957 
1958 	/*
1959 	 * Allow first faults or private faults to migrate immediately early in
1960 	 * the lifetime of a task. The magic number 4 is based on waiting for
1961 	 * two full passes of the "multi-stage node selection" test that is
1962 	 * executed below.
1963 	 */
1964 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1965 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1966 		return true;
1967 
1968 	/*
1969 	 * Multi-stage node selection is used in conjunction with a periodic
1970 	 * migration fault to build a temporal task<->page relation. By using
1971 	 * a two-stage filter we remove short/unlikely relations.
1972 	 *
1973 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1974 	 * a task's usage of a particular page (n_p) per total usage of this
1975 	 * page (n_t) (in a given time-span) to a probability.
1976 	 *
1977 	 * Our periodic faults will sample this probability and getting the
1978 	 * same result twice in a row, given these samples are fully
1979 	 * independent, is then given by P(n)^2, provided our sample period
1980 	 * is sufficiently short compared to the usage pattern.
1981 	 *
1982 	 * This quadric squishes small probabilities, making it less likely we
1983 	 * act on an unlikely task<->page relation.
1984 	 */
1985 	if (!cpupid_pid_unset(last_cpupid) &&
1986 				cpupid_to_nid(last_cpupid) != dst_nid)
1987 		return false;
1988 
1989 	/* Always allow migrate on private faults */
1990 	if (cpupid_match_pid(p, last_cpupid))
1991 		return true;
1992 
1993 	/* A shared fault, but p->numa_group has not been set up yet. */
1994 	if (!ng)
1995 		return true;
1996 
1997 	/*
1998 	 * Destination node is much more heavily used than the source
1999 	 * node? Allow migration.
2000 	 */
2001 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2002 					ACTIVE_NODE_FRACTION)
2003 		return true;
2004 
2005 	/*
2006 	 * Distribute memory according to CPU & memory use on each node,
2007 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2008 	 *
2009 	 * faults_cpu(dst)   3   faults_cpu(src)
2010 	 * --------------- * - > ---------------
2011 	 * faults_mem(dst)   4   faults_mem(src)
2012 	 */
2013 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2014 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2015 }
2016 
2017 /*
2018  * 'numa_type' describes the node at the moment of load balancing.
2019  */
2020 enum numa_type {
2021 	/* The node has spare capacity that can be used to run more tasks.  */
2022 	node_has_spare = 0,
2023 	/*
2024 	 * The node is fully used and the tasks don't compete for more CPU
2025 	 * cycles. Nevertheless, some tasks might wait before running.
2026 	 */
2027 	node_fully_busy,
2028 	/*
2029 	 * The node is overloaded and can't provide expected CPU cycles to all
2030 	 * tasks.
2031 	 */
2032 	node_overloaded
2033 };
2034 
2035 /* Cached statistics for all CPUs within a node */
2036 struct numa_stats {
2037 	unsigned long load;
2038 	unsigned long runnable;
2039 	unsigned long util;
2040 	/* Total compute capacity of CPUs on a node */
2041 	unsigned long compute_capacity;
2042 	unsigned int nr_running;
2043 	unsigned int weight;
2044 	enum numa_type node_type;
2045 	int idle_cpu;
2046 };
2047 
2048 struct task_numa_env {
2049 	struct task_struct *p;
2050 
2051 	int src_cpu, src_nid;
2052 	int dst_cpu, dst_nid;
2053 	int imb_numa_nr;
2054 
2055 	struct numa_stats src_stats, dst_stats;
2056 
2057 	int imbalance_pct;
2058 	int dist;
2059 
2060 	struct task_struct *best_task;
2061 	long best_imp;
2062 	int best_cpu;
2063 };
2064 
2065 static unsigned long cpu_load(struct rq *rq);
2066 static unsigned long cpu_runnable(struct rq *rq);
2067 
2068 static inline enum
2069 numa_type numa_classify(unsigned int imbalance_pct,
2070 			 struct numa_stats *ns)
2071 {
2072 	if ((ns->nr_running > ns->weight) &&
2073 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2074 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2075 		return node_overloaded;
2076 
2077 	if ((ns->nr_running < ns->weight) ||
2078 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2079 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2080 		return node_has_spare;
2081 
2082 	return node_fully_busy;
2083 }
2084 
2085 #ifdef CONFIG_SCHED_SMT
2086 /* Forward declarations of select_idle_sibling helpers */
2087 static inline bool test_idle_cores(int cpu);
2088 static inline int numa_idle_core(int idle_core, int cpu)
2089 {
2090 	if (!static_branch_likely(&sched_smt_present) ||
2091 	    idle_core >= 0 || !test_idle_cores(cpu))
2092 		return idle_core;
2093 
2094 	/*
2095 	 * Prefer cores instead of packing HT siblings
2096 	 * and triggering future load balancing.
2097 	 */
2098 	if (is_core_idle(cpu))
2099 		idle_core = cpu;
2100 
2101 	return idle_core;
2102 }
2103 #else
2104 static inline int numa_idle_core(int idle_core, int cpu)
2105 {
2106 	return idle_core;
2107 }
2108 #endif
2109 
2110 /*
2111  * Gather all necessary information to make NUMA balancing placement
2112  * decisions that are compatible with standard load balancer. This
2113  * borrows code and logic from update_sg_lb_stats but sharing a
2114  * common implementation is impractical.
2115  */
2116 static void update_numa_stats(struct task_numa_env *env,
2117 			      struct numa_stats *ns, int nid,
2118 			      bool find_idle)
2119 {
2120 	int cpu, idle_core = -1;
2121 
2122 	memset(ns, 0, sizeof(*ns));
2123 	ns->idle_cpu = -1;
2124 
2125 	rcu_read_lock();
2126 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2127 		struct rq *rq = cpu_rq(cpu);
2128 
2129 		ns->load += cpu_load(rq);
2130 		ns->runnable += cpu_runnable(rq);
2131 		ns->util += cpu_util_cfs(cpu);
2132 		ns->nr_running += rq->cfs.h_nr_running;
2133 		ns->compute_capacity += capacity_of(cpu);
2134 
2135 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2136 			if (READ_ONCE(rq->numa_migrate_on) ||
2137 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2138 				continue;
2139 
2140 			if (ns->idle_cpu == -1)
2141 				ns->idle_cpu = cpu;
2142 
2143 			idle_core = numa_idle_core(idle_core, cpu);
2144 		}
2145 	}
2146 	rcu_read_unlock();
2147 
2148 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2149 
2150 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2151 
2152 	if (idle_core >= 0)
2153 		ns->idle_cpu = idle_core;
2154 }
2155 
2156 static void task_numa_assign(struct task_numa_env *env,
2157 			     struct task_struct *p, long imp)
2158 {
2159 	struct rq *rq = cpu_rq(env->dst_cpu);
2160 
2161 	/* Check if run-queue part of active NUMA balance. */
2162 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2163 		int cpu;
2164 		int start = env->dst_cpu;
2165 
2166 		/* Find alternative idle CPU. */
2167 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2168 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2169 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2170 				continue;
2171 			}
2172 
2173 			env->dst_cpu = cpu;
2174 			rq = cpu_rq(env->dst_cpu);
2175 			if (!xchg(&rq->numa_migrate_on, 1))
2176 				goto assign;
2177 		}
2178 
2179 		/* Failed to find an alternative idle CPU */
2180 		return;
2181 	}
2182 
2183 assign:
2184 	/*
2185 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2186 	 * found a better CPU to move/swap.
2187 	 */
2188 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2189 		rq = cpu_rq(env->best_cpu);
2190 		WRITE_ONCE(rq->numa_migrate_on, 0);
2191 	}
2192 
2193 	if (env->best_task)
2194 		put_task_struct(env->best_task);
2195 	if (p)
2196 		get_task_struct(p);
2197 
2198 	env->best_task = p;
2199 	env->best_imp = imp;
2200 	env->best_cpu = env->dst_cpu;
2201 }
2202 
2203 static bool load_too_imbalanced(long src_load, long dst_load,
2204 				struct task_numa_env *env)
2205 {
2206 	long imb, old_imb;
2207 	long orig_src_load, orig_dst_load;
2208 	long src_capacity, dst_capacity;
2209 
2210 	/*
2211 	 * The load is corrected for the CPU capacity available on each node.
2212 	 *
2213 	 * src_load        dst_load
2214 	 * ------------ vs ---------
2215 	 * src_capacity    dst_capacity
2216 	 */
2217 	src_capacity = env->src_stats.compute_capacity;
2218 	dst_capacity = env->dst_stats.compute_capacity;
2219 
2220 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2221 
2222 	orig_src_load = env->src_stats.load;
2223 	orig_dst_load = env->dst_stats.load;
2224 
2225 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2226 
2227 	/* Would this change make things worse? */
2228 	return (imb > old_imb);
2229 }
2230 
2231 /*
2232  * Maximum NUMA importance can be 1998 (2*999);
2233  * SMALLIMP @ 30 would be close to 1998/64.
2234  * Used to deter task migration.
2235  */
2236 #define SMALLIMP	30
2237 
2238 /*
2239  * This checks if the overall compute and NUMA accesses of the system would
2240  * be improved if the source tasks was migrated to the target dst_cpu taking
2241  * into account that it might be best if task running on the dst_cpu should
2242  * be exchanged with the source task
2243  */
2244 static bool task_numa_compare(struct task_numa_env *env,
2245 			      long taskimp, long groupimp, bool maymove)
2246 {
2247 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2248 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2249 	long imp = p_ng ? groupimp : taskimp;
2250 	struct task_struct *cur;
2251 	long src_load, dst_load;
2252 	int dist = env->dist;
2253 	long moveimp = imp;
2254 	long load;
2255 	bool stopsearch = false;
2256 
2257 	if (READ_ONCE(dst_rq->numa_migrate_on))
2258 		return false;
2259 
2260 	rcu_read_lock();
2261 	cur = rcu_dereference(dst_rq->curr);
2262 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2263 		cur = NULL;
2264 
2265 	/*
2266 	 * Because we have preemption enabled we can get migrated around and
2267 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2268 	 */
2269 	if (cur == env->p) {
2270 		stopsearch = true;
2271 		goto unlock;
2272 	}
2273 
2274 	if (!cur) {
2275 		if (maymove && moveimp >= env->best_imp)
2276 			goto assign;
2277 		else
2278 			goto unlock;
2279 	}
2280 
2281 	/* Skip this swap candidate if cannot move to the source cpu. */
2282 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2283 		goto unlock;
2284 
2285 	/*
2286 	 * Skip this swap candidate if it is not moving to its preferred
2287 	 * node and the best task is.
2288 	 */
2289 	if (env->best_task &&
2290 	    env->best_task->numa_preferred_nid == env->src_nid &&
2291 	    cur->numa_preferred_nid != env->src_nid) {
2292 		goto unlock;
2293 	}
2294 
2295 	/*
2296 	 * "imp" is the fault differential for the source task between the
2297 	 * source and destination node. Calculate the total differential for
2298 	 * the source task and potential destination task. The more negative
2299 	 * the value is, the more remote accesses that would be expected to
2300 	 * be incurred if the tasks were swapped.
2301 	 *
2302 	 * If dst and source tasks are in the same NUMA group, or not
2303 	 * in any group then look only at task weights.
2304 	 */
2305 	cur_ng = rcu_dereference(cur->numa_group);
2306 	if (cur_ng == p_ng) {
2307 		/*
2308 		 * Do not swap within a group or between tasks that have
2309 		 * no group if there is spare capacity. Swapping does
2310 		 * not address the load imbalance and helps one task at
2311 		 * the cost of punishing another.
2312 		 */
2313 		if (env->dst_stats.node_type == node_has_spare)
2314 			goto unlock;
2315 
2316 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2317 		      task_weight(cur, env->dst_nid, dist);
2318 		/*
2319 		 * Add some hysteresis to prevent swapping the
2320 		 * tasks within a group over tiny differences.
2321 		 */
2322 		if (cur_ng)
2323 			imp -= imp / 16;
2324 	} else {
2325 		/*
2326 		 * Compare the group weights. If a task is all by itself
2327 		 * (not part of a group), use the task weight instead.
2328 		 */
2329 		if (cur_ng && p_ng)
2330 			imp += group_weight(cur, env->src_nid, dist) -
2331 			       group_weight(cur, env->dst_nid, dist);
2332 		else
2333 			imp += task_weight(cur, env->src_nid, dist) -
2334 			       task_weight(cur, env->dst_nid, dist);
2335 	}
2336 
2337 	/* Discourage picking a task already on its preferred node */
2338 	if (cur->numa_preferred_nid == env->dst_nid)
2339 		imp -= imp / 16;
2340 
2341 	/*
2342 	 * Encourage picking a task that moves to its preferred node.
2343 	 * This potentially makes imp larger than it's maximum of
2344 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2345 	 * case, it does not matter.
2346 	 */
2347 	if (cur->numa_preferred_nid == env->src_nid)
2348 		imp += imp / 8;
2349 
2350 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2351 		imp = moveimp;
2352 		cur = NULL;
2353 		goto assign;
2354 	}
2355 
2356 	/*
2357 	 * Prefer swapping with a task moving to its preferred node over a
2358 	 * task that is not.
2359 	 */
2360 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2361 	    env->best_task->numa_preferred_nid != env->src_nid) {
2362 		goto assign;
2363 	}
2364 
2365 	/*
2366 	 * If the NUMA importance is less than SMALLIMP,
2367 	 * task migration might only result in ping pong
2368 	 * of tasks and also hurt performance due to cache
2369 	 * misses.
2370 	 */
2371 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2372 		goto unlock;
2373 
2374 	/*
2375 	 * In the overloaded case, try and keep the load balanced.
2376 	 */
2377 	load = task_h_load(env->p) - task_h_load(cur);
2378 	if (!load)
2379 		goto assign;
2380 
2381 	dst_load = env->dst_stats.load + load;
2382 	src_load = env->src_stats.load - load;
2383 
2384 	if (load_too_imbalanced(src_load, dst_load, env))
2385 		goto unlock;
2386 
2387 assign:
2388 	/* Evaluate an idle CPU for a task numa move. */
2389 	if (!cur) {
2390 		int cpu = env->dst_stats.idle_cpu;
2391 
2392 		/* Nothing cached so current CPU went idle since the search. */
2393 		if (cpu < 0)
2394 			cpu = env->dst_cpu;
2395 
2396 		/*
2397 		 * If the CPU is no longer truly idle and the previous best CPU
2398 		 * is, keep using it.
2399 		 */
2400 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2401 		    idle_cpu(env->best_cpu)) {
2402 			cpu = env->best_cpu;
2403 		}
2404 
2405 		env->dst_cpu = cpu;
2406 	}
2407 
2408 	task_numa_assign(env, cur, imp);
2409 
2410 	/*
2411 	 * If a move to idle is allowed because there is capacity or load
2412 	 * balance improves then stop the search. While a better swap
2413 	 * candidate may exist, a search is not free.
2414 	 */
2415 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2416 		stopsearch = true;
2417 
2418 	/*
2419 	 * If a swap candidate must be identified and the current best task
2420 	 * moves its preferred node then stop the search.
2421 	 */
2422 	if (!maymove && env->best_task &&
2423 	    env->best_task->numa_preferred_nid == env->src_nid) {
2424 		stopsearch = true;
2425 	}
2426 unlock:
2427 	rcu_read_unlock();
2428 
2429 	return stopsearch;
2430 }
2431 
2432 static void task_numa_find_cpu(struct task_numa_env *env,
2433 				long taskimp, long groupimp)
2434 {
2435 	bool maymove = false;
2436 	int cpu;
2437 
2438 	/*
2439 	 * If dst node has spare capacity, then check if there is an
2440 	 * imbalance that would be overruled by the load balancer.
2441 	 */
2442 	if (env->dst_stats.node_type == node_has_spare) {
2443 		unsigned int imbalance;
2444 		int src_running, dst_running;
2445 
2446 		/*
2447 		 * Would movement cause an imbalance? Note that if src has
2448 		 * more running tasks that the imbalance is ignored as the
2449 		 * move improves the imbalance from the perspective of the
2450 		 * CPU load balancer.
2451 		 * */
2452 		src_running = env->src_stats.nr_running - 1;
2453 		dst_running = env->dst_stats.nr_running + 1;
2454 		imbalance = max(0, dst_running - src_running);
2455 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2456 						  env->imb_numa_nr);
2457 
2458 		/* Use idle CPU if there is no imbalance */
2459 		if (!imbalance) {
2460 			maymove = true;
2461 			if (env->dst_stats.idle_cpu >= 0) {
2462 				env->dst_cpu = env->dst_stats.idle_cpu;
2463 				task_numa_assign(env, NULL, 0);
2464 				return;
2465 			}
2466 		}
2467 	} else {
2468 		long src_load, dst_load, load;
2469 		/*
2470 		 * If the improvement from just moving env->p direction is better
2471 		 * than swapping tasks around, check if a move is possible.
2472 		 */
2473 		load = task_h_load(env->p);
2474 		dst_load = env->dst_stats.load + load;
2475 		src_load = env->src_stats.load - load;
2476 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2477 	}
2478 
2479 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2480 		/* Skip this CPU if the source task cannot migrate */
2481 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2482 			continue;
2483 
2484 		env->dst_cpu = cpu;
2485 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2486 			break;
2487 	}
2488 }
2489 
2490 static int task_numa_migrate(struct task_struct *p)
2491 {
2492 	struct task_numa_env env = {
2493 		.p = p,
2494 
2495 		.src_cpu = task_cpu(p),
2496 		.src_nid = task_node(p),
2497 
2498 		.imbalance_pct = 112,
2499 
2500 		.best_task = NULL,
2501 		.best_imp = 0,
2502 		.best_cpu = -1,
2503 	};
2504 	unsigned long taskweight, groupweight;
2505 	struct sched_domain *sd;
2506 	long taskimp, groupimp;
2507 	struct numa_group *ng;
2508 	struct rq *best_rq;
2509 	int nid, ret, dist;
2510 
2511 	/*
2512 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2513 	 * imbalance and would be the first to start moving tasks about.
2514 	 *
2515 	 * And we want to avoid any moving of tasks about, as that would create
2516 	 * random movement of tasks -- counter the numa conditions we're trying
2517 	 * to satisfy here.
2518 	 */
2519 	rcu_read_lock();
2520 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2521 	if (sd) {
2522 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2523 		env.imb_numa_nr = sd->imb_numa_nr;
2524 	}
2525 	rcu_read_unlock();
2526 
2527 	/*
2528 	 * Cpusets can break the scheduler domain tree into smaller
2529 	 * balance domains, some of which do not cross NUMA boundaries.
2530 	 * Tasks that are "trapped" in such domains cannot be migrated
2531 	 * elsewhere, so there is no point in (re)trying.
2532 	 */
2533 	if (unlikely(!sd)) {
2534 		sched_setnuma(p, task_node(p));
2535 		return -EINVAL;
2536 	}
2537 
2538 	env.dst_nid = p->numa_preferred_nid;
2539 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2540 	taskweight = task_weight(p, env.src_nid, dist);
2541 	groupweight = group_weight(p, env.src_nid, dist);
2542 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2543 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2544 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2545 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2546 
2547 	/* Try to find a spot on the preferred nid. */
2548 	task_numa_find_cpu(&env, taskimp, groupimp);
2549 
2550 	/*
2551 	 * Look at other nodes in these cases:
2552 	 * - there is no space available on the preferred_nid
2553 	 * - the task is part of a numa_group that is interleaved across
2554 	 *   multiple NUMA nodes; in order to better consolidate the group,
2555 	 *   we need to check other locations.
2556 	 */
2557 	ng = deref_curr_numa_group(p);
2558 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2559 		for_each_node_state(nid, N_CPU) {
2560 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2561 				continue;
2562 
2563 			dist = node_distance(env.src_nid, env.dst_nid);
2564 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2565 						dist != env.dist) {
2566 				taskweight = task_weight(p, env.src_nid, dist);
2567 				groupweight = group_weight(p, env.src_nid, dist);
2568 			}
2569 
2570 			/* Only consider nodes where both task and groups benefit */
2571 			taskimp = task_weight(p, nid, dist) - taskweight;
2572 			groupimp = group_weight(p, nid, dist) - groupweight;
2573 			if (taskimp < 0 && groupimp < 0)
2574 				continue;
2575 
2576 			env.dist = dist;
2577 			env.dst_nid = nid;
2578 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2579 			task_numa_find_cpu(&env, taskimp, groupimp);
2580 		}
2581 	}
2582 
2583 	/*
2584 	 * If the task is part of a workload that spans multiple NUMA nodes,
2585 	 * and is migrating into one of the workload's active nodes, remember
2586 	 * this node as the task's preferred numa node, so the workload can
2587 	 * settle down.
2588 	 * A task that migrated to a second choice node will be better off
2589 	 * trying for a better one later. Do not set the preferred node here.
2590 	 */
2591 	if (ng) {
2592 		if (env.best_cpu == -1)
2593 			nid = env.src_nid;
2594 		else
2595 			nid = cpu_to_node(env.best_cpu);
2596 
2597 		if (nid != p->numa_preferred_nid)
2598 			sched_setnuma(p, nid);
2599 	}
2600 
2601 	/* No better CPU than the current one was found. */
2602 	if (env.best_cpu == -1) {
2603 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2604 		return -EAGAIN;
2605 	}
2606 
2607 	best_rq = cpu_rq(env.best_cpu);
2608 	if (env.best_task == NULL) {
2609 		ret = migrate_task_to(p, env.best_cpu);
2610 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2611 		if (ret != 0)
2612 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2613 		return ret;
2614 	}
2615 
2616 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2617 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2618 
2619 	if (ret != 0)
2620 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2621 	put_task_struct(env.best_task);
2622 	return ret;
2623 }
2624 
2625 /* Attempt to migrate a task to a CPU on the preferred node. */
2626 static void numa_migrate_preferred(struct task_struct *p)
2627 {
2628 	unsigned long interval = HZ;
2629 
2630 	/* This task has no NUMA fault statistics yet */
2631 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2632 		return;
2633 
2634 	/* Periodically retry migrating the task to the preferred node */
2635 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2636 	p->numa_migrate_retry = jiffies + interval;
2637 
2638 	/* Success if task is already running on preferred CPU */
2639 	if (task_node(p) == p->numa_preferred_nid)
2640 		return;
2641 
2642 	/* Otherwise, try migrate to a CPU on the preferred node */
2643 	task_numa_migrate(p);
2644 }
2645 
2646 /*
2647  * Find out how many nodes the workload is actively running on. Do this by
2648  * tracking the nodes from which NUMA hinting faults are triggered. This can
2649  * be different from the set of nodes where the workload's memory is currently
2650  * located.
2651  */
2652 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2653 {
2654 	unsigned long faults, max_faults = 0;
2655 	int nid, active_nodes = 0;
2656 
2657 	for_each_node_state(nid, N_CPU) {
2658 		faults = group_faults_cpu(numa_group, nid);
2659 		if (faults > max_faults)
2660 			max_faults = faults;
2661 	}
2662 
2663 	for_each_node_state(nid, N_CPU) {
2664 		faults = group_faults_cpu(numa_group, nid);
2665 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2666 			active_nodes++;
2667 	}
2668 
2669 	numa_group->max_faults_cpu = max_faults;
2670 	numa_group->active_nodes = active_nodes;
2671 }
2672 
2673 /*
2674  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2675  * increments. The more local the fault statistics are, the higher the scan
2676  * period will be for the next scan window. If local/(local+remote) ratio is
2677  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2678  * the scan period will decrease. Aim for 70% local accesses.
2679  */
2680 #define NUMA_PERIOD_SLOTS 10
2681 #define NUMA_PERIOD_THRESHOLD 7
2682 
2683 /*
2684  * Increase the scan period (slow down scanning) if the majority of
2685  * our memory is already on our local node, or if the majority of
2686  * the page accesses are shared with other processes.
2687  * Otherwise, decrease the scan period.
2688  */
2689 static void update_task_scan_period(struct task_struct *p,
2690 			unsigned long shared, unsigned long private)
2691 {
2692 	unsigned int period_slot;
2693 	int lr_ratio, ps_ratio;
2694 	int diff;
2695 
2696 	unsigned long remote = p->numa_faults_locality[0];
2697 	unsigned long local = p->numa_faults_locality[1];
2698 
2699 	/*
2700 	 * If there were no record hinting faults then either the task is
2701 	 * completely idle or all activity is in areas that are not of interest
2702 	 * to automatic numa balancing. Related to that, if there were failed
2703 	 * migration then it implies we are migrating too quickly or the local
2704 	 * node is overloaded. In either case, scan slower
2705 	 */
2706 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2707 		p->numa_scan_period = min(p->numa_scan_period_max,
2708 			p->numa_scan_period << 1);
2709 
2710 		p->mm->numa_next_scan = jiffies +
2711 			msecs_to_jiffies(p->numa_scan_period);
2712 
2713 		return;
2714 	}
2715 
2716 	/*
2717 	 * Prepare to scale scan period relative to the current period.
2718 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2719 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2720 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2721 	 */
2722 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2723 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2724 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2725 
2726 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2727 		/*
2728 		 * Most memory accesses are local. There is no need to
2729 		 * do fast NUMA scanning, since memory is already local.
2730 		 */
2731 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2732 		if (!slot)
2733 			slot = 1;
2734 		diff = slot * period_slot;
2735 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2736 		/*
2737 		 * Most memory accesses are shared with other tasks.
2738 		 * There is no point in continuing fast NUMA scanning,
2739 		 * since other tasks may just move the memory elsewhere.
2740 		 */
2741 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2742 		if (!slot)
2743 			slot = 1;
2744 		diff = slot * period_slot;
2745 	} else {
2746 		/*
2747 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2748 		 * yet they are not on the local NUMA node. Speed up
2749 		 * NUMA scanning to get the memory moved over.
2750 		 */
2751 		int ratio = max(lr_ratio, ps_ratio);
2752 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2753 	}
2754 
2755 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2756 			task_scan_min(p), task_scan_max(p));
2757 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2758 }
2759 
2760 /*
2761  * Get the fraction of time the task has been running since the last
2762  * NUMA placement cycle. The scheduler keeps similar statistics, but
2763  * decays those on a 32ms period, which is orders of magnitude off
2764  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2765  * stats only if the task is so new there are no NUMA statistics yet.
2766  */
2767 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2768 {
2769 	u64 runtime, delta, now;
2770 	/* Use the start of this time slice to avoid calculations. */
2771 	now = p->se.exec_start;
2772 	runtime = p->se.sum_exec_runtime;
2773 
2774 	if (p->last_task_numa_placement) {
2775 		delta = runtime - p->last_sum_exec_runtime;
2776 		*period = now - p->last_task_numa_placement;
2777 
2778 		/* Avoid time going backwards, prevent potential divide error: */
2779 		if (unlikely((s64)*period < 0))
2780 			*period = 0;
2781 	} else {
2782 		delta = p->se.avg.load_sum;
2783 		*period = LOAD_AVG_MAX;
2784 	}
2785 
2786 	p->last_sum_exec_runtime = runtime;
2787 	p->last_task_numa_placement = now;
2788 
2789 	return delta;
2790 }
2791 
2792 /*
2793  * Determine the preferred nid for a task in a numa_group. This needs to
2794  * be done in a way that produces consistent results with group_weight,
2795  * otherwise workloads might not converge.
2796  */
2797 static int preferred_group_nid(struct task_struct *p, int nid)
2798 {
2799 	nodemask_t nodes;
2800 	int dist;
2801 
2802 	/* Direct connections between all NUMA nodes. */
2803 	if (sched_numa_topology_type == NUMA_DIRECT)
2804 		return nid;
2805 
2806 	/*
2807 	 * On a system with glueless mesh NUMA topology, group_weight
2808 	 * scores nodes according to the number of NUMA hinting faults on
2809 	 * both the node itself, and on nearby nodes.
2810 	 */
2811 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2812 		unsigned long score, max_score = 0;
2813 		int node, max_node = nid;
2814 
2815 		dist = sched_max_numa_distance;
2816 
2817 		for_each_node_state(node, N_CPU) {
2818 			score = group_weight(p, node, dist);
2819 			if (score > max_score) {
2820 				max_score = score;
2821 				max_node = node;
2822 			}
2823 		}
2824 		return max_node;
2825 	}
2826 
2827 	/*
2828 	 * Finding the preferred nid in a system with NUMA backplane
2829 	 * interconnect topology is more involved. The goal is to locate
2830 	 * tasks from numa_groups near each other in the system, and
2831 	 * untangle workloads from different sides of the system. This requires
2832 	 * searching down the hierarchy of node groups, recursively searching
2833 	 * inside the highest scoring group of nodes. The nodemask tricks
2834 	 * keep the complexity of the search down.
2835 	 */
2836 	nodes = node_states[N_CPU];
2837 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2838 		unsigned long max_faults = 0;
2839 		nodemask_t max_group = NODE_MASK_NONE;
2840 		int a, b;
2841 
2842 		/* Are there nodes at this distance from each other? */
2843 		if (!find_numa_distance(dist))
2844 			continue;
2845 
2846 		for_each_node_mask(a, nodes) {
2847 			unsigned long faults = 0;
2848 			nodemask_t this_group;
2849 			nodes_clear(this_group);
2850 
2851 			/* Sum group's NUMA faults; includes a==b case. */
2852 			for_each_node_mask(b, nodes) {
2853 				if (node_distance(a, b) < dist) {
2854 					faults += group_faults(p, b);
2855 					node_set(b, this_group);
2856 					node_clear(b, nodes);
2857 				}
2858 			}
2859 
2860 			/* Remember the top group. */
2861 			if (faults > max_faults) {
2862 				max_faults = faults;
2863 				max_group = this_group;
2864 				/*
2865 				 * subtle: at the smallest distance there is
2866 				 * just one node left in each "group", the
2867 				 * winner is the preferred nid.
2868 				 */
2869 				nid = a;
2870 			}
2871 		}
2872 		/* Next round, evaluate the nodes within max_group. */
2873 		if (!max_faults)
2874 			break;
2875 		nodes = max_group;
2876 	}
2877 	return nid;
2878 }
2879 
2880 static void task_numa_placement(struct task_struct *p)
2881 {
2882 	int seq, nid, max_nid = NUMA_NO_NODE;
2883 	unsigned long max_faults = 0;
2884 	unsigned long fault_types[2] = { 0, 0 };
2885 	unsigned long total_faults;
2886 	u64 runtime, period;
2887 	spinlock_t *group_lock = NULL;
2888 	struct numa_group *ng;
2889 
2890 	/*
2891 	 * The p->mm->numa_scan_seq field gets updated without
2892 	 * exclusive access. Use READ_ONCE() here to ensure
2893 	 * that the field is read in a single access:
2894 	 */
2895 	seq = READ_ONCE(p->mm->numa_scan_seq);
2896 	if (p->numa_scan_seq == seq)
2897 		return;
2898 	p->numa_scan_seq = seq;
2899 	p->numa_scan_period_max = task_scan_max(p);
2900 
2901 	total_faults = p->numa_faults_locality[0] +
2902 		       p->numa_faults_locality[1];
2903 	runtime = numa_get_avg_runtime(p, &period);
2904 
2905 	/* If the task is part of a group prevent parallel updates to group stats */
2906 	ng = deref_curr_numa_group(p);
2907 	if (ng) {
2908 		group_lock = &ng->lock;
2909 		spin_lock_irq(group_lock);
2910 	}
2911 
2912 	/* Find the node with the highest number of faults */
2913 	for_each_online_node(nid) {
2914 		/* Keep track of the offsets in numa_faults array */
2915 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2916 		unsigned long faults = 0, group_faults = 0;
2917 		int priv;
2918 
2919 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2920 			long diff, f_diff, f_weight;
2921 
2922 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2923 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2924 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2925 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2926 
2927 			/* Decay existing window, copy faults since last scan */
2928 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2929 			fault_types[priv] += p->numa_faults[membuf_idx];
2930 			p->numa_faults[membuf_idx] = 0;
2931 
2932 			/*
2933 			 * Normalize the faults_from, so all tasks in a group
2934 			 * count according to CPU use, instead of by the raw
2935 			 * number of faults. Tasks with little runtime have
2936 			 * little over-all impact on throughput, and thus their
2937 			 * faults are less important.
2938 			 */
2939 			f_weight = div64_u64(runtime << 16, period + 1);
2940 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2941 				   (total_faults + 1);
2942 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2943 			p->numa_faults[cpubuf_idx] = 0;
2944 
2945 			p->numa_faults[mem_idx] += diff;
2946 			p->numa_faults[cpu_idx] += f_diff;
2947 			faults += p->numa_faults[mem_idx];
2948 			p->total_numa_faults += diff;
2949 			if (ng) {
2950 				/*
2951 				 * safe because we can only change our own group
2952 				 *
2953 				 * mem_idx represents the offset for a given
2954 				 * nid and priv in a specific region because it
2955 				 * is at the beginning of the numa_faults array.
2956 				 */
2957 				ng->faults[mem_idx] += diff;
2958 				ng->faults[cpu_idx] += f_diff;
2959 				ng->total_faults += diff;
2960 				group_faults += ng->faults[mem_idx];
2961 			}
2962 		}
2963 
2964 		if (!ng) {
2965 			if (faults > max_faults) {
2966 				max_faults = faults;
2967 				max_nid = nid;
2968 			}
2969 		} else if (group_faults > max_faults) {
2970 			max_faults = group_faults;
2971 			max_nid = nid;
2972 		}
2973 	}
2974 
2975 	/* Cannot migrate task to CPU-less node */
2976 	max_nid = numa_nearest_node(max_nid, N_CPU);
2977 
2978 	if (ng) {
2979 		numa_group_count_active_nodes(ng);
2980 		spin_unlock_irq(group_lock);
2981 		max_nid = preferred_group_nid(p, max_nid);
2982 	}
2983 
2984 	if (max_faults) {
2985 		/* Set the new preferred node */
2986 		if (max_nid != p->numa_preferred_nid)
2987 			sched_setnuma(p, max_nid);
2988 	}
2989 
2990 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2991 }
2992 
2993 static inline int get_numa_group(struct numa_group *grp)
2994 {
2995 	return refcount_inc_not_zero(&grp->refcount);
2996 }
2997 
2998 static inline void put_numa_group(struct numa_group *grp)
2999 {
3000 	if (refcount_dec_and_test(&grp->refcount))
3001 		kfree_rcu(grp, rcu);
3002 }
3003 
3004 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3005 			int *priv)
3006 {
3007 	struct numa_group *grp, *my_grp;
3008 	struct task_struct *tsk;
3009 	bool join = false;
3010 	int cpu = cpupid_to_cpu(cpupid);
3011 	int i;
3012 
3013 	if (unlikely(!deref_curr_numa_group(p))) {
3014 		unsigned int size = sizeof(struct numa_group) +
3015 				    NR_NUMA_HINT_FAULT_STATS *
3016 				    nr_node_ids * sizeof(unsigned long);
3017 
3018 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3019 		if (!grp)
3020 			return;
3021 
3022 		refcount_set(&grp->refcount, 1);
3023 		grp->active_nodes = 1;
3024 		grp->max_faults_cpu = 0;
3025 		spin_lock_init(&grp->lock);
3026 		grp->gid = p->pid;
3027 
3028 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3029 			grp->faults[i] = p->numa_faults[i];
3030 
3031 		grp->total_faults = p->total_numa_faults;
3032 
3033 		grp->nr_tasks++;
3034 		rcu_assign_pointer(p->numa_group, grp);
3035 	}
3036 
3037 	rcu_read_lock();
3038 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3039 
3040 	if (!cpupid_match_pid(tsk, cpupid))
3041 		goto no_join;
3042 
3043 	grp = rcu_dereference(tsk->numa_group);
3044 	if (!grp)
3045 		goto no_join;
3046 
3047 	my_grp = deref_curr_numa_group(p);
3048 	if (grp == my_grp)
3049 		goto no_join;
3050 
3051 	/*
3052 	 * Only join the other group if its bigger; if we're the bigger group,
3053 	 * the other task will join us.
3054 	 */
3055 	if (my_grp->nr_tasks > grp->nr_tasks)
3056 		goto no_join;
3057 
3058 	/*
3059 	 * Tie-break on the grp address.
3060 	 */
3061 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3062 		goto no_join;
3063 
3064 	/* Always join threads in the same process. */
3065 	if (tsk->mm == current->mm)
3066 		join = true;
3067 
3068 	/* Simple filter to avoid false positives due to PID collisions */
3069 	if (flags & TNF_SHARED)
3070 		join = true;
3071 
3072 	/* Update priv based on whether false sharing was detected */
3073 	*priv = !join;
3074 
3075 	if (join && !get_numa_group(grp))
3076 		goto no_join;
3077 
3078 	rcu_read_unlock();
3079 
3080 	if (!join)
3081 		return;
3082 
3083 	WARN_ON_ONCE(irqs_disabled());
3084 	double_lock_irq(&my_grp->lock, &grp->lock);
3085 
3086 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3087 		my_grp->faults[i] -= p->numa_faults[i];
3088 		grp->faults[i] += p->numa_faults[i];
3089 	}
3090 	my_grp->total_faults -= p->total_numa_faults;
3091 	grp->total_faults += p->total_numa_faults;
3092 
3093 	my_grp->nr_tasks--;
3094 	grp->nr_tasks++;
3095 
3096 	spin_unlock(&my_grp->lock);
3097 	spin_unlock_irq(&grp->lock);
3098 
3099 	rcu_assign_pointer(p->numa_group, grp);
3100 
3101 	put_numa_group(my_grp);
3102 	return;
3103 
3104 no_join:
3105 	rcu_read_unlock();
3106 	return;
3107 }
3108 
3109 /*
3110  * Get rid of NUMA statistics associated with a task (either current or dead).
3111  * If @final is set, the task is dead and has reached refcount zero, so we can
3112  * safely free all relevant data structures. Otherwise, there might be
3113  * concurrent reads from places like load balancing and procfs, and we should
3114  * reset the data back to default state without freeing ->numa_faults.
3115  */
3116 void task_numa_free(struct task_struct *p, bool final)
3117 {
3118 	/* safe: p either is current or is being freed by current */
3119 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3120 	unsigned long *numa_faults = p->numa_faults;
3121 	unsigned long flags;
3122 	int i;
3123 
3124 	if (!numa_faults)
3125 		return;
3126 
3127 	if (grp) {
3128 		spin_lock_irqsave(&grp->lock, flags);
3129 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3130 			grp->faults[i] -= p->numa_faults[i];
3131 		grp->total_faults -= p->total_numa_faults;
3132 
3133 		grp->nr_tasks--;
3134 		spin_unlock_irqrestore(&grp->lock, flags);
3135 		RCU_INIT_POINTER(p->numa_group, NULL);
3136 		put_numa_group(grp);
3137 	}
3138 
3139 	if (final) {
3140 		p->numa_faults = NULL;
3141 		kfree(numa_faults);
3142 	} else {
3143 		p->total_numa_faults = 0;
3144 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3145 			numa_faults[i] = 0;
3146 	}
3147 }
3148 
3149 /*
3150  * Got a PROT_NONE fault for a page on @node.
3151  */
3152 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3153 {
3154 	struct task_struct *p = current;
3155 	bool migrated = flags & TNF_MIGRATED;
3156 	int cpu_node = task_node(current);
3157 	int local = !!(flags & TNF_FAULT_LOCAL);
3158 	struct numa_group *ng;
3159 	int priv;
3160 
3161 	if (!static_branch_likely(&sched_numa_balancing))
3162 		return;
3163 
3164 	/* for example, ksmd faulting in a user's mm */
3165 	if (!p->mm)
3166 		return;
3167 
3168 	/*
3169 	 * NUMA faults statistics are unnecessary for the slow memory
3170 	 * node for memory tiering mode.
3171 	 */
3172 	if (!node_is_toptier(mem_node) &&
3173 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3174 	     !cpupid_valid(last_cpupid)))
3175 		return;
3176 
3177 	/* Allocate buffer to track faults on a per-node basis */
3178 	if (unlikely(!p->numa_faults)) {
3179 		int size = sizeof(*p->numa_faults) *
3180 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3181 
3182 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3183 		if (!p->numa_faults)
3184 			return;
3185 
3186 		p->total_numa_faults = 0;
3187 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3188 	}
3189 
3190 	/*
3191 	 * First accesses are treated as private, otherwise consider accesses
3192 	 * to be private if the accessing pid has not changed
3193 	 */
3194 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3195 		priv = 1;
3196 	} else {
3197 		priv = cpupid_match_pid(p, last_cpupid);
3198 		if (!priv && !(flags & TNF_NO_GROUP))
3199 			task_numa_group(p, last_cpupid, flags, &priv);
3200 	}
3201 
3202 	/*
3203 	 * If a workload spans multiple NUMA nodes, a shared fault that
3204 	 * occurs wholly within the set of nodes that the workload is
3205 	 * actively using should be counted as local. This allows the
3206 	 * scan rate to slow down when a workload has settled down.
3207 	 */
3208 	ng = deref_curr_numa_group(p);
3209 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3210 				numa_is_active_node(cpu_node, ng) &&
3211 				numa_is_active_node(mem_node, ng))
3212 		local = 1;
3213 
3214 	/*
3215 	 * Retry to migrate task to preferred node periodically, in case it
3216 	 * previously failed, or the scheduler moved us.
3217 	 */
3218 	if (time_after(jiffies, p->numa_migrate_retry)) {
3219 		task_numa_placement(p);
3220 		numa_migrate_preferred(p);
3221 	}
3222 
3223 	if (migrated)
3224 		p->numa_pages_migrated += pages;
3225 	if (flags & TNF_MIGRATE_FAIL)
3226 		p->numa_faults_locality[2] += pages;
3227 
3228 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3229 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3230 	p->numa_faults_locality[local] += pages;
3231 }
3232 
3233 static void reset_ptenuma_scan(struct task_struct *p)
3234 {
3235 	/*
3236 	 * We only did a read acquisition of the mmap sem, so
3237 	 * p->mm->numa_scan_seq is written to without exclusive access
3238 	 * and the update is not guaranteed to be atomic. That's not
3239 	 * much of an issue though, since this is just used for
3240 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3241 	 * expensive, to avoid any form of compiler optimizations:
3242 	 */
3243 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3244 	p->mm->numa_scan_offset = 0;
3245 }
3246 
3247 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3248 {
3249 	unsigned long pids;
3250 	/*
3251 	 * Allow unconditional access first two times, so that all the (pages)
3252 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3253 	 * This is also done to avoid any side effect of task scanning
3254 	 * amplifying the unfairness of disjoint set of VMAs' access.
3255 	 */
3256 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3257 		return true;
3258 
3259 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3260 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3261 		return true;
3262 
3263 	/*
3264 	 * Complete a scan that has already started regardless of PID access, or
3265 	 * some VMAs may never be scanned in multi-threaded applications:
3266 	 */
3267 	if (mm->numa_scan_offset > vma->vm_start) {
3268 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3269 		return true;
3270 	}
3271 
3272 	return false;
3273 }
3274 
3275 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3276 
3277 /*
3278  * The expensive part of numa migration is done from task_work context.
3279  * Triggered from task_tick_numa().
3280  */
3281 static void task_numa_work(struct callback_head *work)
3282 {
3283 	unsigned long migrate, next_scan, now = jiffies;
3284 	struct task_struct *p = current;
3285 	struct mm_struct *mm = p->mm;
3286 	u64 runtime = p->se.sum_exec_runtime;
3287 	struct vm_area_struct *vma;
3288 	unsigned long start, end;
3289 	unsigned long nr_pte_updates = 0;
3290 	long pages, virtpages;
3291 	struct vma_iterator vmi;
3292 	bool vma_pids_skipped;
3293 	bool vma_pids_forced = false;
3294 
3295 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3296 
3297 	work->next = work;
3298 	/*
3299 	 * Who cares about NUMA placement when they're dying.
3300 	 *
3301 	 * NOTE: make sure not to dereference p->mm before this check,
3302 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3303 	 * without p->mm even though we still had it when we enqueued this
3304 	 * work.
3305 	 */
3306 	if (p->flags & PF_EXITING)
3307 		return;
3308 
3309 	if (!mm->numa_next_scan) {
3310 		mm->numa_next_scan = now +
3311 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3312 	}
3313 
3314 	/*
3315 	 * Enforce maximal scan/migration frequency..
3316 	 */
3317 	migrate = mm->numa_next_scan;
3318 	if (time_before(now, migrate))
3319 		return;
3320 
3321 	if (p->numa_scan_period == 0) {
3322 		p->numa_scan_period_max = task_scan_max(p);
3323 		p->numa_scan_period = task_scan_start(p);
3324 	}
3325 
3326 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3327 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3328 		return;
3329 
3330 	/*
3331 	 * Delay this task enough that another task of this mm will likely win
3332 	 * the next time around.
3333 	 */
3334 	p->node_stamp += 2 * TICK_NSEC;
3335 
3336 	pages = sysctl_numa_balancing_scan_size;
3337 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3338 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3339 	if (!pages)
3340 		return;
3341 
3342 
3343 	if (!mmap_read_trylock(mm))
3344 		return;
3345 
3346 	/*
3347 	 * VMAs are skipped if the current PID has not trapped a fault within
3348 	 * the VMA recently. Allow scanning to be forced if there is no
3349 	 * suitable VMA remaining.
3350 	 */
3351 	vma_pids_skipped = false;
3352 
3353 retry_pids:
3354 	start = mm->numa_scan_offset;
3355 	vma_iter_init(&vmi, mm, start);
3356 	vma = vma_next(&vmi);
3357 	if (!vma) {
3358 		reset_ptenuma_scan(p);
3359 		start = 0;
3360 		vma_iter_set(&vmi, start);
3361 		vma = vma_next(&vmi);
3362 	}
3363 
3364 	do {
3365 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3366 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3367 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3368 			continue;
3369 		}
3370 
3371 		/*
3372 		 * Shared library pages mapped by multiple processes are not
3373 		 * migrated as it is expected they are cache replicated. Avoid
3374 		 * hinting faults in read-only file-backed mappings or the vDSO
3375 		 * as migrating the pages will be of marginal benefit.
3376 		 */
3377 		if (!vma->vm_mm ||
3378 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3379 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3380 			continue;
3381 		}
3382 
3383 		/*
3384 		 * Skip inaccessible VMAs to avoid any confusion between
3385 		 * PROT_NONE and NUMA hinting PTEs
3386 		 */
3387 		if (!vma_is_accessible(vma)) {
3388 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3389 			continue;
3390 		}
3391 
3392 		/* Initialise new per-VMA NUMAB state. */
3393 		if (!vma->numab_state) {
3394 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3395 				GFP_KERNEL);
3396 			if (!vma->numab_state)
3397 				continue;
3398 
3399 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3400 
3401 			vma->numab_state->next_scan = now +
3402 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3403 
3404 			/* Reset happens after 4 times scan delay of scan start */
3405 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3406 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3407 
3408 			/*
3409 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3410 			 * to prevent VMAs being skipped prematurely on the
3411 			 * first scan:
3412 			 */
3413 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3414 		}
3415 
3416 		/*
3417 		 * Scanning the VMAs of short lived tasks add more overhead. So
3418 		 * delay the scan for new VMAs.
3419 		 */
3420 		if (mm->numa_scan_seq && time_before(jiffies,
3421 						vma->numab_state->next_scan)) {
3422 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3423 			continue;
3424 		}
3425 
3426 		/* RESET access PIDs regularly for old VMAs. */
3427 		if (mm->numa_scan_seq &&
3428 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3429 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3430 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3431 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3432 			vma->numab_state->pids_active[1] = 0;
3433 		}
3434 
3435 		/* Do not rescan VMAs twice within the same sequence. */
3436 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3437 			mm->numa_scan_offset = vma->vm_end;
3438 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3439 			continue;
3440 		}
3441 
3442 		/*
3443 		 * Do not scan the VMA if task has not accessed it, unless no other
3444 		 * VMA candidate exists.
3445 		 */
3446 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3447 			vma_pids_skipped = true;
3448 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3449 			continue;
3450 		}
3451 
3452 		do {
3453 			start = max(start, vma->vm_start);
3454 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3455 			end = min(end, vma->vm_end);
3456 			nr_pte_updates = change_prot_numa(vma, start, end);
3457 
3458 			/*
3459 			 * Try to scan sysctl_numa_balancing_size worth of
3460 			 * hpages that have at least one present PTE that
3461 			 * is not already PTE-numa. If the VMA contains
3462 			 * areas that are unused or already full of prot_numa
3463 			 * PTEs, scan up to virtpages, to skip through those
3464 			 * areas faster.
3465 			 */
3466 			if (nr_pte_updates)
3467 				pages -= (end - start) >> PAGE_SHIFT;
3468 			virtpages -= (end - start) >> PAGE_SHIFT;
3469 
3470 			start = end;
3471 			if (pages <= 0 || virtpages <= 0)
3472 				goto out;
3473 
3474 			cond_resched();
3475 		} while (end != vma->vm_end);
3476 
3477 		/* VMA scan is complete, do not scan until next sequence. */
3478 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3479 
3480 		/*
3481 		 * Only force scan within one VMA at a time, to limit the
3482 		 * cost of scanning a potentially uninteresting VMA.
3483 		 */
3484 		if (vma_pids_forced)
3485 			break;
3486 	} for_each_vma(vmi, vma);
3487 
3488 	/*
3489 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3490 	 * not accessing the VMA previously, then force a scan to ensure
3491 	 * forward progress:
3492 	 */
3493 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3494 		vma_pids_forced = true;
3495 		goto retry_pids;
3496 	}
3497 
3498 out:
3499 	/*
3500 	 * It is possible to reach the end of the VMA list but the last few
3501 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3502 	 * would find the !migratable VMA on the next scan but not reset the
3503 	 * scanner to the start so check it now.
3504 	 */
3505 	if (vma)
3506 		mm->numa_scan_offset = start;
3507 	else
3508 		reset_ptenuma_scan(p);
3509 	mmap_read_unlock(mm);
3510 
3511 	/*
3512 	 * Make sure tasks use at least 32x as much time to run other code
3513 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3514 	 * Usually update_task_scan_period slows down scanning enough; on an
3515 	 * overloaded system we need to limit overhead on a per task basis.
3516 	 */
3517 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3518 		u64 diff = p->se.sum_exec_runtime - runtime;
3519 		p->node_stamp += 32 * diff;
3520 	}
3521 }
3522 
3523 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3524 {
3525 	int mm_users = 0;
3526 	struct mm_struct *mm = p->mm;
3527 
3528 	if (mm) {
3529 		mm_users = atomic_read(&mm->mm_users);
3530 		if (mm_users == 1) {
3531 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3532 			mm->numa_scan_seq = 0;
3533 		}
3534 	}
3535 	p->node_stamp			= 0;
3536 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3537 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3538 	p->numa_migrate_retry		= 0;
3539 	/* Protect against double add, see task_tick_numa and task_numa_work */
3540 	p->numa_work.next		= &p->numa_work;
3541 	p->numa_faults			= NULL;
3542 	p->numa_pages_migrated		= 0;
3543 	p->total_numa_faults		= 0;
3544 	RCU_INIT_POINTER(p->numa_group, NULL);
3545 	p->last_task_numa_placement	= 0;
3546 	p->last_sum_exec_runtime	= 0;
3547 
3548 	init_task_work(&p->numa_work, task_numa_work);
3549 
3550 	/* New address space, reset the preferred nid */
3551 	if (!(clone_flags & CLONE_VM)) {
3552 		p->numa_preferred_nid = NUMA_NO_NODE;
3553 		return;
3554 	}
3555 
3556 	/*
3557 	 * New thread, keep existing numa_preferred_nid which should be copied
3558 	 * already by arch_dup_task_struct but stagger when scans start.
3559 	 */
3560 	if (mm) {
3561 		unsigned int delay;
3562 
3563 		delay = min_t(unsigned int, task_scan_max(current),
3564 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3565 		delay += 2 * TICK_NSEC;
3566 		p->node_stamp = delay;
3567 	}
3568 }
3569 
3570 /*
3571  * Drive the periodic memory faults..
3572  */
3573 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3574 {
3575 	struct callback_head *work = &curr->numa_work;
3576 	u64 period, now;
3577 
3578 	/*
3579 	 * We don't care about NUMA placement if we don't have memory.
3580 	 */
3581 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3582 		return;
3583 
3584 	/*
3585 	 * Using runtime rather than walltime has the dual advantage that
3586 	 * we (mostly) drive the selection from busy threads and that the
3587 	 * task needs to have done some actual work before we bother with
3588 	 * NUMA placement.
3589 	 */
3590 	now = curr->se.sum_exec_runtime;
3591 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3592 
3593 	if (now > curr->node_stamp + period) {
3594 		if (!curr->node_stamp)
3595 			curr->numa_scan_period = task_scan_start(curr);
3596 		curr->node_stamp += period;
3597 
3598 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3599 			task_work_add(curr, work, TWA_RESUME);
3600 	}
3601 }
3602 
3603 static void update_scan_period(struct task_struct *p, int new_cpu)
3604 {
3605 	int src_nid = cpu_to_node(task_cpu(p));
3606 	int dst_nid = cpu_to_node(new_cpu);
3607 
3608 	if (!static_branch_likely(&sched_numa_balancing))
3609 		return;
3610 
3611 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3612 		return;
3613 
3614 	if (src_nid == dst_nid)
3615 		return;
3616 
3617 	/*
3618 	 * Allow resets if faults have been trapped before one scan
3619 	 * has completed. This is most likely due to a new task that
3620 	 * is pulled cross-node due to wakeups or load balancing.
3621 	 */
3622 	if (p->numa_scan_seq) {
3623 		/*
3624 		 * Avoid scan adjustments if moving to the preferred
3625 		 * node or if the task was not previously running on
3626 		 * the preferred node.
3627 		 */
3628 		if (dst_nid == p->numa_preferred_nid ||
3629 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3630 			src_nid != p->numa_preferred_nid))
3631 			return;
3632 	}
3633 
3634 	p->numa_scan_period = task_scan_start(p);
3635 }
3636 
3637 #else
3638 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3639 {
3640 }
3641 
3642 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3643 {
3644 }
3645 
3646 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3647 {
3648 }
3649 
3650 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3651 {
3652 }
3653 
3654 #endif /* CONFIG_NUMA_BALANCING */
3655 
3656 static void
3657 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3658 {
3659 	update_load_add(&cfs_rq->load, se->load.weight);
3660 #ifdef CONFIG_SMP
3661 	if (entity_is_task(se)) {
3662 		struct rq *rq = rq_of(cfs_rq);
3663 
3664 		account_numa_enqueue(rq, task_of(se));
3665 		list_add(&se->group_node, &rq->cfs_tasks);
3666 	}
3667 #endif
3668 	cfs_rq->nr_running++;
3669 	if (se_is_idle(se))
3670 		cfs_rq->idle_nr_running++;
3671 }
3672 
3673 static void
3674 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3675 {
3676 	update_load_sub(&cfs_rq->load, se->load.weight);
3677 #ifdef CONFIG_SMP
3678 	if (entity_is_task(se)) {
3679 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3680 		list_del_init(&se->group_node);
3681 	}
3682 #endif
3683 	cfs_rq->nr_running--;
3684 	if (se_is_idle(se))
3685 		cfs_rq->idle_nr_running--;
3686 }
3687 
3688 /*
3689  * Signed add and clamp on underflow.
3690  *
3691  * Explicitly do a load-store to ensure the intermediate value never hits
3692  * memory. This allows lockless observations without ever seeing the negative
3693  * values.
3694  */
3695 #define add_positive(_ptr, _val) do {                           \
3696 	typeof(_ptr) ptr = (_ptr);                              \
3697 	typeof(_val) val = (_val);                              \
3698 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3699 								\
3700 	res = var + val;                                        \
3701 								\
3702 	if (val < 0 && res > var)                               \
3703 		res = 0;                                        \
3704 								\
3705 	WRITE_ONCE(*ptr, res);                                  \
3706 } while (0)
3707 
3708 /*
3709  * Unsigned subtract and clamp on underflow.
3710  *
3711  * Explicitly do a load-store to ensure the intermediate value never hits
3712  * memory. This allows lockless observations without ever seeing the negative
3713  * values.
3714  */
3715 #define sub_positive(_ptr, _val) do {				\
3716 	typeof(_ptr) ptr = (_ptr);				\
3717 	typeof(*ptr) val = (_val);				\
3718 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3719 	res = var - val;					\
3720 	if (res > var)						\
3721 		res = 0;					\
3722 	WRITE_ONCE(*ptr, res);					\
3723 } while (0)
3724 
3725 /*
3726  * Remove and clamp on negative, from a local variable.
3727  *
3728  * A variant of sub_positive(), which does not use explicit load-store
3729  * and is thus optimized for local variable updates.
3730  */
3731 #define lsub_positive(_ptr, _val) do {				\
3732 	typeof(_ptr) ptr = (_ptr);				\
3733 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3734 } while (0)
3735 
3736 #ifdef CONFIG_SMP
3737 static inline void
3738 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3739 {
3740 	cfs_rq->avg.load_avg += se->avg.load_avg;
3741 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3742 }
3743 
3744 static inline void
3745 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3746 {
3747 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3748 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3749 	/* See update_cfs_rq_load_avg() */
3750 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3751 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3752 }
3753 #else
3754 static inline void
3755 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3756 static inline void
3757 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3758 #endif
3759 
3760 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3761 			   unsigned long weight)
3762 {
3763 	unsigned long old_weight = se->load.weight;
3764 	s64 vlag, vslice;
3765 
3766 	/*
3767 	 * VRUNTIME
3768 	 * --------
3769 	 *
3770 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3771 	 * adjusted if re-weight at !0-lag point.
3772 	 *
3773 	 * Proof: For contradiction assume this is not true, so we can
3774 	 * re-weight without changing vruntime at !0-lag point.
3775 	 *
3776 	 *             Weight	VRuntime   Avg-VRuntime
3777 	 *     before    w          v            V
3778 	 *      after    w'         v'           V'
3779 	 *
3780 	 * Since lag needs to be preserved through re-weight:
3781 	 *
3782 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3783 	 *	==>	V' = (V - v)*w/w' + v		(1)
3784 	 *
3785 	 * Let W be the total weight of the entities before reweight,
3786 	 * since V' is the new weighted average of entities:
3787 	 *
3788 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3789 	 *
3790 	 * by using (1) & (2) we obtain:
3791 	 *
3792 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3793 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3794 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3795 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3796 	 *
3797 	 * Since we are doing at !0-lag point which means V != v, we
3798 	 * can simplify (3):
3799 	 *
3800 	 *	==>	W / (W + w' - w) = w / w'
3801 	 *	==>	Ww' = Ww + ww' - ww
3802 	 *	==>	W * (w' - w) = w * (w' - w)
3803 	 *	==>	W = w	(re-weight indicates w' != w)
3804 	 *
3805 	 * So the cfs_rq contains only one entity, hence vruntime of
3806 	 * the entity @v should always equal to the cfs_rq's weighted
3807 	 * average vruntime @V, which means we will always re-weight
3808 	 * at 0-lag point, thus breach assumption. Proof completed.
3809 	 *
3810 	 *
3811 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3812 	 * vruntime of all the entities.
3813 	 *
3814 	 * Proof: According to corollary #1, Eq. (1) should be:
3815 	 *
3816 	 *	(V - v)*w = (V' - v')*w'
3817 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3818 	 *
3819 	 * According to the weighted average formula, we have:
3820 	 *
3821 	 *	V' = (WV - wv + w'v') / (W - w + w')
3822 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3823 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3824 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3825 	 *
3826 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3827 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3828 	 *
3829 	 * If the entity is the only one in the cfs_rq, then reweight
3830 	 * always occurs at 0-lag point, so V won't change. Or else
3831 	 * there are other entities, hence W != w, then Eq. (5) turns
3832 	 * into V' = V. So V won't change in either case, proof done.
3833 	 *
3834 	 *
3835 	 * So according to corollary #1 & #2, the effect of re-weight
3836 	 * on vruntime should be:
3837 	 *
3838 	 *	v' = V' - (V - v) * w / w'		(4)
3839 	 *	   = V  - (V - v) * w / w'
3840 	 *	   = V  - vl * w / w'
3841 	 *	   = V  - vl'
3842 	 */
3843 	if (avruntime != se->vruntime) {
3844 		vlag = entity_lag(avruntime, se);
3845 		vlag = div_s64(vlag * old_weight, weight);
3846 		se->vruntime = avruntime - vlag;
3847 	}
3848 
3849 	/*
3850 	 * DEADLINE
3851 	 * --------
3852 	 *
3853 	 * When the weight changes, the virtual time slope changes and
3854 	 * we should adjust the relative virtual deadline accordingly.
3855 	 *
3856 	 *	d' = v' + (d - v)*w/w'
3857 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3858 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3859 	 *	   = V  + (d - V)*w/w'
3860 	 */
3861 	vslice = (s64)(se->deadline - avruntime);
3862 	vslice = div_s64(vslice * old_weight, weight);
3863 	se->deadline = avruntime + vslice;
3864 }
3865 
3866 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3867 			    unsigned long weight)
3868 {
3869 	bool curr = cfs_rq->curr == se;
3870 	u64 avruntime;
3871 
3872 	if (se->on_rq) {
3873 		/* commit outstanding execution time */
3874 		update_curr(cfs_rq);
3875 		avruntime = avg_vruntime(cfs_rq);
3876 		if (!curr)
3877 			__dequeue_entity(cfs_rq, se);
3878 		update_load_sub(&cfs_rq->load, se->load.weight);
3879 	}
3880 	dequeue_load_avg(cfs_rq, se);
3881 
3882 	if (se->on_rq) {
3883 		reweight_eevdf(se, avruntime, weight);
3884 	} else {
3885 		/*
3886 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3887 		 * we need to scale se->vlag when w_i changes.
3888 		 */
3889 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3890 	}
3891 
3892 	update_load_set(&se->load, weight);
3893 
3894 #ifdef CONFIG_SMP
3895 	do {
3896 		u32 divider = get_pelt_divider(&se->avg);
3897 
3898 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3899 	} while (0);
3900 #endif
3901 
3902 	enqueue_load_avg(cfs_rq, se);
3903 	if (se->on_rq) {
3904 		update_load_add(&cfs_rq->load, se->load.weight);
3905 		if (!curr)
3906 			__enqueue_entity(cfs_rq, se);
3907 
3908 		/*
3909 		 * The entity's vruntime has been adjusted, so let's check
3910 		 * whether the rq-wide min_vruntime needs updated too. Since
3911 		 * the calculations above require stable min_vruntime rather
3912 		 * than up-to-date one, we do the update at the end of the
3913 		 * reweight process.
3914 		 */
3915 		update_min_vruntime(cfs_rq);
3916 	}
3917 }
3918 
3919 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3920 			       const struct load_weight *lw)
3921 {
3922 	struct sched_entity *se = &p->se;
3923 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3924 	struct load_weight *load = &se->load;
3925 
3926 	reweight_entity(cfs_rq, se, lw->weight);
3927 	load->inv_weight = lw->inv_weight;
3928 }
3929 
3930 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3931 
3932 #ifdef CONFIG_FAIR_GROUP_SCHED
3933 #ifdef CONFIG_SMP
3934 /*
3935  * All this does is approximate the hierarchical proportion which includes that
3936  * global sum we all love to hate.
3937  *
3938  * That is, the weight of a group entity, is the proportional share of the
3939  * group weight based on the group runqueue weights. That is:
3940  *
3941  *                     tg->weight * grq->load.weight
3942  *   ge->load.weight = -----------------------------               (1)
3943  *                       \Sum grq->load.weight
3944  *
3945  * Now, because computing that sum is prohibitively expensive to compute (been
3946  * there, done that) we approximate it with this average stuff. The average
3947  * moves slower and therefore the approximation is cheaper and more stable.
3948  *
3949  * So instead of the above, we substitute:
3950  *
3951  *   grq->load.weight -> grq->avg.load_avg                         (2)
3952  *
3953  * which yields the following:
3954  *
3955  *                     tg->weight * grq->avg.load_avg
3956  *   ge->load.weight = ------------------------------              (3)
3957  *                             tg->load_avg
3958  *
3959  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3960  *
3961  * That is shares_avg, and it is right (given the approximation (2)).
3962  *
3963  * The problem with it is that because the average is slow -- it was designed
3964  * to be exactly that of course -- this leads to transients in boundary
3965  * conditions. In specific, the case where the group was idle and we start the
3966  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3967  * yielding bad latency etc..
3968  *
3969  * Now, in that special case (1) reduces to:
3970  *
3971  *                     tg->weight * grq->load.weight
3972  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3973  *                         grp->load.weight
3974  *
3975  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3976  *
3977  * So what we do is modify our approximation (3) to approach (4) in the (near)
3978  * UP case, like:
3979  *
3980  *   ge->load.weight =
3981  *
3982  *              tg->weight * grq->load.weight
3983  *     ---------------------------------------------------         (5)
3984  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3985  *
3986  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3987  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3988  *
3989  *
3990  *                     tg->weight * grq->load.weight
3991  *   ge->load.weight = -----------------------------		   (6)
3992  *                             tg_load_avg'
3993  *
3994  * Where:
3995  *
3996  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3997  *                  max(grq->load.weight, grq->avg.load_avg)
3998  *
3999  * And that is shares_weight and is icky. In the (near) UP case it approaches
4000  * (4) while in the normal case it approaches (3). It consistently
4001  * overestimates the ge->load.weight and therefore:
4002  *
4003  *   \Sum ge->load.weight >= tg->weight
4004  *
4005  * hence icky!
4006  */
4007 static long calc_group_shares(struct cfs_rq *cfs_rq)
4008 {
4009 	long tg_weight, tg_shares, load, shares;
4010 	struct task_group *tg = cfs_rq->tg;
4011 
4012 	tg_shares = READ_ONCE(tg->shares);
4013 
4014 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4015 
4016 	tg_weight = atomic_long_read(&tg->load_avg);
4017 
4018 	/* Ensure tg_weight >= load */
4019 	tg_weight -= cfs_rq->tg_load_avg_contrib;
4020 	tg_weight += load;
4021 
4022 	shares = (tg_shares * load);
4023 	if (tg_weight)
4024 		shares /= tg_weight;
4025 
4026 	/*
4027 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4028 	 * of a group with small tg->shares value. It is a floor value which is
4029 	 * assigned as a minimum load.weight to the sched_entity representing
4030 	 * the group on a CPU.
4031 	 *
4032 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4033 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4034 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4035 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4036 	 * instead of 0.
4037 	 */
4038 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
4039 }
4040 #endif /* CONFIG_SMP */
4041 
4042 /*
4043  * Recomputes the group entity based on the current state of its group
4044  * runqueue.
4045  */
4046 static void update_cfs_group(struct sched_entity *se)
4047 {
4048 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4049 	long shares;
4050 
4051 	if (!gcfs_rq)
4052 		return;
4053 
4054 	if (throttled_hierarchy(gcfs_rq))
4055 		return;
4056 
4057 #ifndef CONFIG_SMP
4058 	shares = READ_ONCE(gcfs_rq->tg->shares);
4059 #else
4060 	shares = calc_group_shares(gcfs_rq);
4061 #endif
4062 	if (unlikely(se->load.weight != shares))
4063 		reweight_entity(cfs_rq_of(se), se, shares);
4064 }
4065 
4066 #else /* CONFIG_FAIR_GROUP_SCHED */
4067 static inline void update_cfs_group(struct sched_entity *se)
4068 {
4069 }
4070 #endif /* CONFIG_FAIR_GROUP_SCHED */
4071 
4072 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4073 {
4074 	struct rq *rq = rq_of(cfs_rq);
4075 
4076 	if (&rq->cfs == cfs_rq) {
4077 		/*
4078 		 * There are a few boundary cases this might miss but it should
4079 		 * get called often enough that that should (hopefully) not be
4080 		 * a real problem.
4081 		 *
4082 		 * It will not get called when we go idle, because the idle
4083 		 * thread is a different class (!fair), nor will the utilization
4084 		 * number include things like RT tasks.
4085 		 *
4086 		 * As is, the util number is not freq-invariant (we'd have to
4087 		 * implement arch_scale_freq_capacity() for that).
4088 		 *
4089 		 * See cpu_util_cfs().
4090 		 */
4091 		cpufreq_update_util(rq, flags);
4092 	}
4093 }
4094 
4095 #ifdef CONFIG_SMP
4096 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4097 {
4098 	if (sa->load_sum)
4099 		return false;
4100 
4101 	if (sa->util_sum)
4102 		return false;
4103 
4104 	if (sa->runnable_sum)
4105 		return false;
4106 
4107 	/*
4108 	 * _avg must be null when _sum are null because _avg = _sum / divider
4109 	 * Make sure that rounding and/or propagation of PELT values never
4110 	 * break this.
4111 	 */
4112 	SCHED_WARN_ON(sa->load_avg ||
4113 		      sa->util_avg ||
4114 		      sa->runnable_avg);
4115 
4116 	return true;
4117 }
4118 
4119 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4120 {
4121 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4122 				 cfs_rq->last_update_time_copy);
4123 }
4124 #ifdef CONFIG_FAIR_GROUP_SCHED
4125 /*
4126  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4127  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4128  * bottom-up, we only have to test whether the cfs_rq before us on the list
4129  * is our child.
4130  * If cfs_rq is not on the list, test whether a child needs its to be added to
4131  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4132  */
4133 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4134 {
4135 	struct cfs_rq *prev_cfs_rq;
4136 	struct list_head *prev;
4137 
4138 	if (cfs_rq->on_list) {
4139 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4140 	} else {
4141 		struct rq *rq = rq_of(cfs_rq);
4142 
4143 		prev = rq->tmp_alone_branch;
4144 	}
4145 
4146 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4147 
4148 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4149 }
4150 
4151 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4152 {
4153 	if (cfs_rq->load.weight)
4154 		return false;
4155 
4156 	if (!load_avg_is_decayed(&cfs_rq->avg))
4157 		return false;
4158 
4159 	if (child_cfs_rq_on_list(cfs_rq))
4160 		return false;
4161 
4162 	return true;
4163 }
4164 
4165 /**
4166  * update_tg_load_avg - update the tg's load avg
4167  * @cfs_rq: the cfs_rq whose avg changed
4168  *
4169  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4170  * However, because tg->load_avg is a global value there are performance
4171  * considerations.
4172  *
4173  * In order to avoid having to look at the other cfs_rq's, we use a
4174  * differential update where we store the last value we propagated. This in
4175  * turn allows skipping updates if the differential is 'small'.
4176  *
4177  * Updating tg's load_avg is necessary before update_cfs_share().
4178  */
4179 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4180 {
4181 	long delta;
4182 	u64 now;
4183 
4184 	/*
4185 	 * No need to update load_avg for root_task_group as it is not used.
4186 	 */
4187 	if (cfs_rq->tg == &root_task_group)
4188 		return;
4189 
4190 	/* rq has been offline and doesn't contribute to the share anymore: */
4191 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4192 		return;
4193 
4194 	/*
4195 	 * For migration heavy workloads, access to tg->load_avg can be
4196 	 * unbound. Limit the update rate to at most once per ms.
4197 	 */
4198 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4199 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4200 		return;
4201 
4202 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4203 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4204 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4205 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4206 		cfs_rq->last_update_tg_load_avg = now;
4207 	}
4208 }
4209 
4210 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4211 {
4212 	long delta;
4213 	u64 now;
4214 
4215 	/*
4216 	 * No need to update load_avg for root_task_group, as it is not used.
4217 	 */
4218 	if (cfs_rq->tg == &root_task_group)
4219 		return;
4220 
4221 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4222 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4223 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4224 	cfs_rq->tg_load_avg_contrib = 0;
4225 	cfs_rq->last_update_tg_load_avg = now;
4226 }
4227 
4228 /* CPU offline callback: */
4229 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4230 {
4231 	struct task_group *tg;
4232 
4233 	lockdep_assert_rq_held(rq);
4234 
4235 	/*
4236 	 * The rq clock has already been updated in
4237 	 * set_rq_offline(), so we should skip updating
4238 	 * the rq clock again in unthrottle_cfs_rq().
4239 	 */
4240 	rq_clock_start_loop_update(rq);
4241 
4242 	rcu_read_lock();
4243 	list_for_each_entry_rcu(tg, &task_groups, list) {
4244 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4245 
4246 		clear_tg_load_avg(cfs_rq);
4247 	}
4248 	rcu_read_unlock();
4249 
4250 	rq_clock_stop_loop_update(rq);
4251 }
4252 
4253 /*
4254  * Called within set_task_rq() right before setting a task's CPU. The
4255  * caller only guarantees p->pi_lock is held; no other assumptions,
4256  * including the state of rq->lock, should be made.
4257  */
4258 void set_task_rq_fair(struct sched_entity *se,
4259 		      struct cfs_rq *prev, struct cfs_rq *next)
4260 {
4261 	u64 p_last_update_time;
4262 	u64 n_last_update_time;
4263 
4264 	if (!sched_feat(ATTACH_AGE_LOAD))
4265 		return;
4266 
4267 	/*
4268 	 * We are supposed to update the task to "current" time, then its up to
4269 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4270 	 * getting what current time is, so simply throw away the out-of-date
4271 	 * time. This will result in the wakee task is less decayed, but giving
4272 	 * the wakee more load sounds not bad.
4273 	 */
4274 	if (!(se->avg.last_update_time && prev))
4275 		return;
4276 
4277 	p_last_update_time = cfs_rq_last_update_time(prev);
4278 	n_last_update_time = cfs_rq_last_update_time(next);
4279 
4280 	__update_load_avg_blocked_se(p_last_update_time, se);
4281 	se->avg.last_update_time = n_last_update_time;
4282 }
4283 
4284 /*
4285  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4286  * propagate its contribution. The key to this propagation is the invariant
4287  * that for each group:
4288  *
4289  *   ge->avg == grq->avg						(1)
4290  *
4291  * _IFF_ we look at the pure running and runnable sums. Because they
4292  * represent the very same entity, just at different points in the hierarchy.
4293  *
4294  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4295  * and simply copies the running/runnable sum over (but still wrong, because
4296  * the group entity and group rq do not have their PELT windows aligned).
4297  *
4298  * However, update_tg_cfs_load() is more complex. So we have:
4299  *
4300  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4301  *
4302  * And since, like util, the runnable part should be directly transferable,
4303  * the following would _appear_ to be the straight forward approach:
4304  *
4305  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4306  *
4307  * And per (1) we have:
4308  *
4309  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4310  *
4311  * Which gives:
4312  *
4313  *                      ge->load.weight * grq->avg.load_avg
4314  *   ge->avg.load_avg = -----------------------------------		(4)
4315  *                               grq->load.weight
4316  *
4317  * Except that is wrong!
4318  *
4319  * Because while for entities historical weight is not important and we
4320  * really only care about our future and therefore can consider a pure
4321  * runnable sum, runqueues can NOT do this.
4322  *
4323  * We specifically want runqueues to have a load_avg that includes
4324  * historical weights. Those represent the blocked load, the load we expect
4325  * to (shortly) return to us. This only works by keeping the weights as
4326  * integral part of the sum. We therefore cannot decompose as per (3).
4327  *
4328  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4329  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4330  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4331  * runnable section of these tasks overlap (or not). If they were to perfectly
4332  * align the rq as a whole would be runnable 2/3 of the time. If however we
4333  * always have at least 1 runnable task, the rq as a whole is always runnable.
4334  *
4335  * So we'll have to approximate.. :/
4336  *
4337  * Given the constraint:
4338  *
4339  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4340  *
4341  * We can construct a rule that adds runnable to a rq by assuming minimal
4342  * overlap.
4343  *
4344  * On removal, we'll assume each task is equally runnable; which yields:
4345  *
4346  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4347  *
4348  * XXX: only do this for the part of runnable > running ?
4349  *
4350  */
4351 static inline void
4352 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4353 {
4354 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4355 	u32 new_sum, divider;
4356 
4357 	/* Nothing to update */
4358 	if (!delta_avg)
4359 		return;
4360 
4361 	/*
4362 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4363 	 * See ___update_load_avg() for details.
4364 	 */
4365 	divider = get_pelt_divider(&cfs_rq->avg);
4366 
4367 
4368 	/* Set new sched_entity's utilization */
4369 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4370 	new_sum = se->avg.util_avg * divider;
4371 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4372 	se->avg.util_sum = new_sum;
4373 
4374 	/* Update parent cfs_rq utilization */
4375 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4376 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4377 
4378 	/* See update_cfs_rq_load_avg() */
4379 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4380 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4381 }
4382 
4383 static inline void
4384 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4385 {
4386 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4387 	u32 new_sum, divider;
4388 
4389 	/* Nothing to update */
4390 	if (!delta_avg)
4391 		return;
4392 
4393 	/*
4394 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4395 	 * See ___update_load_avg() for details.
4396 	 */
4397 	divider = get_pelt_divider(&cfs_rq->avg);
4398 
4399 	/* Set new sched_entity's runnable */
4400 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4401 	new_sum = se->avg.runnable_avg * divider;
4402 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4403 	se->avg.runnable_sum = new_sum;
4404 
4405 	/* Update parent cfs_rq runnable */
4406 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4407 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4408 	/* See update_cfs_rq_load_avg() */
4409 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4410 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4411 }
4412 
4413 static inline void
4414 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4415 {
4416 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4417 	unsigned long load_avg;
4418 	u64 load_sum = 0;
4419 	s64 delta_sum;
4420 	u32 divider;
4421 
4422 	if (!runnable_sum)
4423 		return;
4424 
4425 	gcfs_rq->prop_runnable_sum = 0;
4426 
4427 	/*
4428 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4429 	 * See ___update_load_avg() for details.
4430 	 */
4431 	divider = get_pelt_divider(&cfs_rq->avg);
4432 
4433 	if (runnable_sum >= 0) {
4434 		/*
4435 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4436 		 * the CPU is saturated running == runnable.
4437 		 */
4438 		runnable_sum += se->avg.load_sum;
4439 		runnable_sum = min_t(long, runnable_sum, divider);
4440 	} else {
4441 		/*
4442 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4443 		 * assuming all tasks are equally runnable.
4444 		 */
4445 		if (scale_load_down(gcfs_rq->load.weight)) {
4446 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4447 				scale_load_down(gcfs_rq->load.weight));
4448 		}
4449 
4450 		/* But make sure to not inflate se's runnable */
4451 		runnable_sum = min(se->avg.load_sum, load_sum);
4452 	}
4453 
4454 	/*
4455 	 * runnable_sum can't be lower than running_sum
4456 	 * Rescale running sum to be in the same range as runnable sum
4457 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4458 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4459 	 */
4460 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4461 	runnable_sum = max(runnable_sum, running_sum);
4462 
4463 	load_sum = se_weight(se) * runnable_sum;
4464 	load_avg = div_u64(load_sum, divider);
4465 
4466 	delta_avg = load_avg - se->avg.load_avg;
4467 	if (!delta_avg)
4468 		return;
4469 
4470 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4471 
4472 	se->avg.load_sum = runnable_sum;
4473 	se->avg.load_avg = load_avg;
4474 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4475 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4476 	/* See update_cfs_rq_load_avg() */
4477 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4478 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4479 }
4480 
4481 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4482 {
4483 	cfs_rq->propagate = 1;
4484 	cfs_rq->prop_runnable_sum += runnable_sum;
4485 }
4486 
4487 /* Update task and its cfs_rq load average */
4488 static inline int propagate_entity_load_avg(struct sched_entity *se)
4489 {
4490 	struct cfs_rq *cfs_rq, *gcfs_rq;
4491 
4492 	if (entity_is_task(se))
4493 		return 0;
4494 
4495 	gcfs_rq = group_cfs_rq(se);
4496 	if (!gcfs_rq->propagate)
4497 		return 0;
4498 
4499 	gcfs_rq->propagate = 0;
4500 
4501 	cfs_rq = cfs_rq_of(se);
4502 
4503 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4504 
4505 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4506 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4507 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4508 
4509 	trace_pelt_cfs_tp(cfs_rq);
4510 	trace_pelt_se_tp(se);
4511 
4512 	return 1;
4513 }
4514 
4515 /*
4516  * Check if we need to update the load and the utilization of a blocked
4517  * group_entity:
4518  */
4519 static inline bool skip_blocked_update(struct sched_entity *se)
4520 {
4521 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4522 
4523 	/*
4524 	 * If sched_entity still have not zero load or utilization, we have to
4525 	 * decay it:
4526 	 */
4527 	if (se->avg.load_avg || se->avg.util_avg)
4528 		return false;
4529 
4530 	/*
4531 	 * If there is a pending propagation, we have to update the load and
4532 	 * the utilization of the sched_entity:
4533 	 */
4534 	if (gcfs_rq->propagate)
4535 		return false;
4536 
4537 	/*
4538 	 * Otherwise, the load and the utilization of the sched_entity is
4539 	 * already zero and there is no pending propagation, so it will be a
4540 	 * waste of time to try to decay it:
4541 	 */
4542 	return true;
4543 }
4544 
4545 #else /* CONFIG_FAIR_GROUP_SCHED */
4546 
4547 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4548 
4549 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4550 
4551 static inline int propagate_entity_load_avg(struct sched_entity *se)
4552 {
4553 	return 0;
4554 }
4555 
4556 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4557 
4558 #endif /* CONFIG_FAIR_GROUP_SCHED */
4559 
4560 #ifdef CONFIG_NO_HZ_COMMON
4561 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4562 {
4563 	u64 throttled = 0, now, lut;
4564 	struct cfs_rq *cfs_rq;
4565 	struct rq *rq;
4566 	bool is_idle;
4567 
4568 	if (load_avg_is_decayed(&se->avg))
4569 		return;
4570 
4571 	cfs_rq = cfs_rq_of(se);
4572 	rq = rq_of(cfs_rq);
4573 
4574 	rcu_read_lock();
4575 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4576 	rcu_read_unlock();
4577 
4578 	/*
4579 	 * The lag estimation comes with a cost we don't want to pay all the
4580 	 * time. Hence, limiting to the case where the source CPU is idle and
4581 	 * we know we are at the greatest risk to have an outdated clock.
4582 	 */
4583 	if (!is_idle)
4584 		return;
4585 
4586 	/*
4587 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4588 	 *
4589 	 *   last_update_time (the cfs_rq's last_update_time)
4590 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4591 	 *      = rq_clock_pelt()@cfs_rq_idle
4592 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4593 	 *
4594 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4595 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4596 	 *
4597 	 *   rq_idle_lag (delta between now and rq's update)
4598 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4599 	 *
4600 	 * We can then write:
4601 	 *
4602 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4603 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4604 	 * Where:
4605 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4606 	 *      rq_clock()@rq_idle      is rq->clock_idle
4607 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4608 	 *                              is cfs_rq->throttled_pelt_idle
4609 	 */
4610 
4611 #ifdef CONFIG_CFS_BANDWIDTH
4612 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4613 	/* The clock has been stopped for throttling */
4614 	if (throttled == U64_MAX)
4615 		return;
4616 #endif
4617 	now = u64_u32_load(rq->clock_pelt_idle);
4618 	/*
4619 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4620 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4621 	 * which lead to an underestimation. The opposite would lead to an
4622 	 * overestimation.
4623 	 */
4624 	smp_rmb();
4625 	lut = cfs_rq_last_update_time(cfs_rq);
4626 
4627 	now -= throttled;
4628 	if (now < lut)
4629 		/*
4630 		 * cfs_rq->avg.last_update_time is more recent than our
4631 		 * estimation, let's use it.
4632 		 */
4633 		now = lut;
4634 	else
4635 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4636 
4637 	__update_load_avg_blocked_se(now, se);
4638 }
4639 #else
4640 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4641 #endif
4642 
4643 /**
4644  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4645  * @now: current time, as per cfs_rq_clock_pelt()
4646  * @cfs_rq: cfs_rq to update
4647  *
4648  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4649  * avg. The immediate corollary is that all (fair) tasks must be attached.
4650  *
4651  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4652  *
4653  * Return: true if the load decayed or we removed load.
4654  *
4655  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4656  * call update_tg_load_avg() when this function returns true.
4657  */
4658 static inline int
4659 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4660 {
4661 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4662 	struct sched_avg *sa = &cfs_rq->avg;
4663 	int decayed = 0;
4664 
4665 	if (cfs_rq->removed.nr) {
4666 		unsigned long r;
4667 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4668 
4669 		raw_spin_lock(&cfs_rq->removed.lock);
4670 		swap(cfs_rq->removed.util_avg, removed_util);
4671 		swap(cfs_rq->removed.load_avg, removed_load);
4672 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4673 		cfs_rq->removed.nr = 0;
4674 		raw_spin_unlock(&cfs_rq->removed.lock);
4675 
4676 		r = removed_load;
4677 		sub_positive(&sa->load_avg, r);
4678 		sub_positive(&sa->load_sum, r * divider);
4679 		/* See sa->util_sum below */
4680 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4681 
4682 		r = removed_util;
4683 		sub_positive(&sa->util_avg, r);
4684 		sub_positive(&sa->util_sum, r * divider);
4685 		/*
4686 		 * Because of rounding, se->util_sum might ends up being +1 more than
4687 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4688 		 * a lot of tasks with the rounding problem between 2 updates of
4689 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4690 		 * cfs_util_avg is not.
4691 		 * Check that util_sum is still above its lower bound for the new
4692 		 * util_avg. Given that period_contrib might have moved since the last
4693 		 * sync, we are only sure that util_sum must be above or equal to
4694 		 *    util_avg * minimum possible divider
4695 		 */
4696 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4697 
4698 		r = removed_runnable;
4699 		sub_positive(&sa->runnable_avg, r);
4700 		sub_positive(&sa->runnable_sum, r * divider);
4701 		/* See sa->util_sum above */
4702 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4703 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4704 
4705 		/*
4706 		 * removed_runnable is the unweighted version of removed_load so we
4707 		 * can use it to estimate removed_load_sum.
4708 		 */
4709 		add_tg_cfs_propagate(cfs_rq,
4710 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4711 
4712 		decayed = 1;
4713 	}
4714 
4715 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4716 	u64_u32_store_copy(sa->last_update_time,
4717 			   cfs_rq->last_update_time_copy,
4718 			   sa->last_update_time);
4719 	return decayed;
4720 }
4721 
4722 /**
4723  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4724  * @cfs_rq: cfs_rq to attach to
4725  * @se: sched_entity to attach
4726  *
4727  * Must call update_cfs_rq_load_avg() before this, since we rely on
4728  * cfs_rq->avg.last_update_time being current.
4729  */
4730 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4731 {
4732 	/*
4733 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4734 	 * See ___update_load_avg() for details.
4735 	 */
4736 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4737 
4738 	/*
4739 	 * When we attach the @se to the @cfs_rq, we must align the decay
4740 	 * window because without that, really weird and wonderful things can
4741 	 * happen.
4742 	 *
4743 	 * XXX illustrate
4744 	 */
4745 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4746 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4747 
4748 	/*
4749 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4750 	 * period_contrib. This isn't strictly correct, but since we're
4751 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4752 	 * _sum a little.
4753 	 */
4754 	se->avg.util_sum = se->avg.util_avg * divider;
4755 
4756 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4757 
4758 	se->avg.load_sum = se->avg.load_avg * divider;
4759 	if (se_weight(se) < se->avg.load_sum)
4760 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4761 	else
4762 		se->avg.load_sum = 1;
4763 
4764 	enqueue_load_avg(cfs_rq, se);
4765 	cfs_rq->avg.util_avg += se->avg.util_avg;
4766 	cfs_rq->avg.util_sum += se->avg.util_sum;
4767 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4768 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4769 
4770 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4771 
4772 	cfs_rq_util_change(cfs_rq, 0);
4773 
4774 	trace_pelt_cfs_tp(cfs_rq);
4775 }
4776 
4777 /**
4778  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4779  * @cfs_rq: cfs_rq to detach from
4780  * @se: sched_entity to detach
4781  *
4782  * Must call update_cfs_rq_load_avg() before this, since we rely on
4783  * cfs_rq->avg.last_update_time being current.
4784  */
4785 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4786 {
4787 	dequeue_load_avg(cfs_rq, se);
4788 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4789 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4790 	/* See update_cfs_rq_load_avg() */
4791 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4792 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4793 
4794 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4795 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4796 	/* See update_cfs_rq_load_avg() */
4797 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4798 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4799 
4800 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4801 
4802 	cfs_rq_util_change(cfs_rq, 0);
4803 
4804 	trace_pelt_cfs_tp(cfs_rq);
4805 }
4806 
4807 /*
4808  * Optional action to be done while updating the load average
4809  */
4810 #define UPDATE_TG	0x1
4811 #define SKIP_AGE_LOAD	0x2
4812 #define DO_ATTACH	0x4
4813 #define DO_DETACH	0x8
4814 
4815 /* Update task and its cfs_rq load average */
4816 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4817 {
4818 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4819 	int decayed;
4820 
4821 	/*
4822 	 * Track task load average for carrying it to new CPU after migrated, and
4823 	 * track group sched_entity load average for task_h_load calculation in migration
4824 	 */
4825 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4826 		__update_load_avg_se(now, cfs_rq, se);
4827 
4828 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4829 	decayed |= propagate_entity_load_avg(se);
4830 
4831 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4832 
4833 		/*
4834 		 * DO_ATTACH means we're here from enqueue_entity().
4835 		 * !last_update_time means we've passed through
4836 		 * migrate_task_rq_fair() indicating we migrated.
4837 		 *
4838 		 * IOW we're enqueueing a task on a new CPU.
4839 		 */
4840 		attach_entity_load_avg(cfs_rq, se);
4841 		update_tg_load_avg(cfs_rq);
4842 
4843 	} else if (flags & DO_DETACH) {
4844 		/*
4845 		 * DO_DETACH means we're here from dequeue_entity()
4846 		 * and we are migrating task out of the CPU.
4847 		 */
4848 		detach_entity_load_avg(cfs_rq, se);
4849 		update_tg_load_avg(cfs_rq);
4850 	} else if (decayed) {
4851 		cfs_rq_util_change(cfs_rq, 0);
4852 
4853 		if (flags & UPDATE_TG)
4854 			update_tg_load_avg(cfs_rq);
4855 	}
4856 }
4857 
4858 /*
4859  * Synchronize entity load avg of dequeued entity without locking
4860  * the previous rq.
4861  */
4862 static void sync_entity_load_avg(struct sched_entity *se)
4863 {
4864 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4865 	u64 last_update_time;
4866 
4867 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4868 	__update_load_avg_blocked_se(last_update_time, se);
4869 }
4870 
4871 /*
4872  * Task first catches up with cfs_rq, and then subtract
4873  * itself from the cfs_rq (task must be off the queue now).
4874  */
4875 static void remove_entity_load_avg(struct sched_entity *se)
4876 {
4877 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4878 	unsigned long flags;
4879 
4880 	/*
4881 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4882 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4883 	 * so we can remove unconditionally.
4884 	 */
4885 
4886 	sync_entity_load_avg(se);
4887 
4888 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4889 	++cfs_rq->removed.nr;
4890 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4891 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4892 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4893 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4894 }
4895 
4896 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4897 {
4898 	return cfs_rq->avg.runnable_avg;
4899 }
4900 
4901 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4902 {
4903 	return cfs_rq->avg.load_avg;
4904 }
4905 
4906 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4907 
4908 static inline unsigned long task_util(struct task_struct *p)
4909 {
4910 	return READ_ONCE(p->se.avg.util_avg);
4911 }
4912 
4913 static inline unsigned long task_runnable(struct task_struct *p)
4914 {
4915 	return READ_ONCE(p->se.avg.runnable_avg);
4916 }
4917 
4918 static inline unsigned long _task_util_est(struct task_struct *p)
4919 {
4920 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4921 }
4922 
4923 static inline unsigned long task_util_est(struct task_struct *p)
4924 {
4925 	return max(task_util(p), _task_util_est(p));
4926 }
4927 
4928 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4929 				    struct task_struct *p)
4930 {
4931 	unsigned int enqueued;
4932 
4933 	if (!sched_feat(UTIL_EST))
4934 		return;
4935 
4936 	/* Update root cfs_rq's estimated utilization */
4937 	enqueued  = cfs_rq->avg.util_est;
4938 	enqueued += _task_util_est(p);
4939 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4940 
4941 	trace_sched_util_est_cfs_tp(cfs_rq);
4942 }
4943 
4944 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4945 				    struct task_struct *p)
4946 {
4947 	unsigned int enqueued;
4948 
4949 	if (!sched_feat(UTIL_EST))
4950 		return;
4951 
4952 	/* Update root cfs_rq's estimated utilization */
4953 	enqueued  = cfs_rq->avg.util_est;
4954 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4955 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4956 
4957 	trace_sched_util_est_cfs_tp(cfs_rq);
4958 }
4959 
4960 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4961 
4962 static inline void util_est_update(struct cfs_rq *cfs_rq,
4963 				   struct task_struct *p,
4964 				   bool task_sleep)
4965 {
4966 	unsigned int ewma, dequeued, last_ewma_diff;
4967 
4968 	if (!sched_feat(UTIL_EST))
4969 		return;
4970 
4971 	/*
4972 	 * Skip update of task's estimated utilization when the task has not
4973 	 * yet completed an activation, e.g. being migrated.
4974 	 */
4975 	if (!task_sleep)
4976 		return;
4977 
4978 	/* Get current estimate of utilization */
4979 	ewma = READ_ONCE(p->se.avg.util_est);
4980 
4981 	/*
4982 	 * If the PELT values haven't changed since enqueue time,
4983 	 * skip the util_est update.
4984 	 */
4985 	if (ewma & UTIL_AVG_UNCHANGED)
4986 		return;
4987 
4988 	/* Get utilization at dequeue */
4989 	dequeued = task_util(p);
4990 
4991 	/*
4992 	 * Reset EWMA on utilization increases, the moving average is used only
4993 	 * to smooth utilization decreases.
4994 	 */
4995 	if (ewma <= dequeued) {
4996 		ewma = dequeued;
4997 		goto done;
4998 	}
4999 
5000 	/*
5001 	 * Skip update of task's estimated utilization when its members are
5002 	 * already ~1% close to its last activation value.
5003 	 */
5004 	last_ewma_diff = ewma - dequeued;
5005 	if (last_ewma_diff < UTIL_EST_MARGIN)
5006 		goto done;
5007 
5008 	/*
5009 	 * To avoid overestimation of actual task utilization, skip updates if
5010 	 * we cannot grant there is idle time in this CPU.
5011 	 */
5012 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5013 		return;
5014 
5015 	/*
5016 	 * To avoid underestimate of task utilization, skip updates of EWMA if
5017 	 * we cannot grant that thread got all CPU time it wanted.
5018 	 */
5019 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5020 		goto done;
5021 
5022 
5023 	/*
5024 	 * Update Task's estimated utilization
5025 	 *
5026 	 * When *p completes an activation we can consolidate another sample
5027 	 * of the task size. This is done by using this value to update the
5028 	 * Exponential Weighted Moving Average (EWMA):
5029 	 *
5030 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
5031 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
5032 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
5033 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
5034 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
5035 	 *
5036 	 * Where 'w' is the weight of new samples, which is configured to be
5037 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5038 	 */
5039 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
5040 	ewma  -= last_ewma_diff;
5041 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
5042 done:
5043 	ewma |= UTIL_AVG_UNCHANGED;
5044 	WRITE_ONCE(p->se.avg.util_est, ewma);
5045 
5046 	trace_sched_util_est_se_tp(&p->se);
5047 }
5048 
5049 static inline unsigned long get_actual_cpu_capacity(int cpu)
5050 {
5051 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
5052 
5053 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5054 
5055 	return capacity;
5056 }
5057 
5058 static inline int util_fits_cpu(unsigned long util,
5059 				unsigned long uclamp_min,
5060 				unsigned long uclamp_max,
5061 				int cpu)
5062 {
5063 	unsigned long capacity = capacity_of(cpu);
5064 	unsigned long capacity_orig;
5065 	bool fits, uclamp_max_fits;
5066 
5067 	/*
5068 	 * Check if the real util fits without any uclamp boost/cap applied.
5069 	 */
5070 	fits = fits_capacity(util, capacity);
5071 
5072 	if (!uclamp_is_used())
5073 		return fits;
5074 
5075 	/*
5076 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5077 	 * uclamp_max. We only care about capacity pressure (by using
5078 	 * capacity_of()) for comparing against the real util.
5079 	 *
5080 	 * If a task is boosted to 1024 for example, we don't want a tiny
5081 	 * pressure to skew the check whether it fits a CPU or not.
5082 	 *
5083 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5084 	 * should fit a little cpu even if there's some pressure.
5085 	 *
5086 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5087 	 * on available OPP of the system.
5088 	 *
5089 	 * We honour it for uclamp_min only as a drop in performance level
5090 	 * could result in not getting the requested minimum performance level.
5091 	 *
5092 	 * For uclamp_max, we can tolerate a drop in performance level as the
5093 	 * goal is to cap the task. So it's okay if it's getting less.
5094 	 */
5095 	capacity_orig = arch_scale_cpu_capacity(cpu);
5096 
5097 	/*
5098 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5099 	 * But we do have some corner cases to cater for..
5100 	 *
5101 	 *
5102 	 *                                 C=z
5103 	 *   |                             ___
5104 	 *   |                  C=y       |   |
5105 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5106 	 *   |      C=x        |   |      |   |
5107 	 *   |      ___        |   |      |   |
5108 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5109 	 *   |     |   |       |   |      |   |
5110 	 *   |     |   |       |   |      |   |
5111 	 *   +----------------------------------------
5112 	 *         CPU0        CPU1       CPU2
5113 	 *
5114 	 *   In the above example if a task is capped to a specific performance
5115 	 *   point, y, then when:
5116 	 *
5117 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5118 	 *     to CPU1
5119 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5120 	 *     uclamp_max request.
5121 	 *
5122 	 *   which is what we're enforcing here. A task always fits if
5123 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5124 	 *   the normal upmigration rules should withhold still.
5125 	 *
5126 	 *   Only exception is when we are on max capacity, then we need to be
5127 	 *   careful not to block overutilized state. This is so because:
5128 	 *
5129 	 *     1. There's no concept of capping at max_capacity! We can't go
5130 	 *        beyond this performance level anyway.
5131 	 *     2. The system is being saturated when we're operating near
5132 	 *        max capacity, it doesn't make sense to block overutilized.
5133 	 */
5134 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5135 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5136 	fits = fits || uclamp_max_fits;
5137 
5138 	/*
5139 	 *
5140 	 *                                 C=z
5141 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5142 	 *   |                  C=y       |   |
5143 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5144 	 *   |      C=x        |   |      |   |
5145 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5146 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5147 	 *   |     |   |       |   |      |   |
5148 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5149 	 *   +----------------------------------------
5150 	 *         CPU0        CPU1       CPU2
5151 	 *
5152 	 * a) If util > uclamp_max, then we're capped, we don't care about
5153 	 *    actual fitness value here. We only care if uclamp_max fits
5154 	 *    capacity without taking margin/pressure into account.
5155 	 *    See comment above.
5156 	 *
5157 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5158 	 *    fits_capacity() rules apply. Except we need to ensure that we
5159 	 *    enforce we remain within uclamp_max, see comment above.
5160 	 *
5161 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5162 	 *    need to take into account the boosted value fits the CPU without
5163 	 *    taking margin/pressure into account.
5164 	 *
5165 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5166 	 * just need to consider an extra check for case (c) after ensuring we
5167 	 * handle the case uclamp_min > uclamp_max.
5168 	 */
5169 	uclamp_min = min(uclamp_min, uclamp_max);
5170 	if (fits && (util < uclamp_min) &&
5171 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5172 		return -1;
5173 
5174 	return fits;
5175 }
5176 
5177 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5178 {
5179 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5180 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5181 	unsigned long util = task_util_est(p);
5182 	/*
5183 	 * Return true only if the cpu fully fits the task requirements, which
5184 	 * include the utilization but also the performance hints.
5185 	 */
5186 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5187 }
5188 
5189 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5190 {
5191 	int cpu = cpu_of(rq);
5192 
5193 	if (!sched_asym_cpucap_active())
5194 		return;
5195 
5196 	/*
5197 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5198 	 * available CPU already? Or do we fit into this CPU ?
5199 	 */
5200 	if (!p || (p->nr_cpus_allowed == 1) ||
5201 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5202 	    task_fits_cpu(p, cpu)) {
5203 
5204 		rq->misfit_task_load = 0;
5205 		return;
5206 	}
5207 
5208 	/*
5209 	 * Make sure that misfit_task_load will not be null even if
5210 	 * task_h_load() returns 0.
5211 	 */
5212 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5213 }
5214 
5215 #else /* CONFIG_SMP */
5216 
5217 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5218 {
5219 	return !cfs_rq->nr_running;
5220 }
5221 
5222 #define UPDATE_TG	0x0
5223 #define SKIP_AGE_LOAD	0x0
5224 #define DO_ATTACH	0x0
5225 #define DO_DETACH	0x0
5226 
5227 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5228 {
5229 	cfs_rq_util_change(cfs_rq, 0);
5230 }
5231 
5232 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5233 
5234 static inline void
5235 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5236 static inline void
5237 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5238 
5239 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5240 {
5241 	return 0;
5242 }
5243 
5244 static inline void
5245 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5246 
5247 static inline void
5248 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5249 
5250 static inline void
5251 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5252 		bool task_sleep) {}
5253 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5254 
5255 #endif /* CONFIG_SMP */
5256 
5257 static void
5258 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5259 {
5260 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5261 	s64 lag = 0;
5262 
5263 	if (!se->custom_slice)
5264 		se->slice = sysctl_sched_base_slice;
5265 	vslice = calc_delta_fair(se->slice, se);
5266 
5267 	/*
5268 	 * Due to how V is constructed as the weighted average of entities,
5269 	 * adding tasks with positive lag, or removing tasks with negative lag
5270 	 * will move 'time' backwards, this can screw around with the lag of
5271 	 * other tasks.
5272 	 *
5273 	 * EEVDF: placement strategy #1 / #2
5274 	 */
5275 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5276 		struct sched_entity *curr = cfs_rq->curr;
5277 		unsigned long load;
5278 
5279 		lag = se->vlag;
5280 
5281 		/*
5282 		 * If we want to place a task and preserve lag, we have to
5283 		 * consider the effect of the new entity on the weighted
5284 		 * average and compensate for this, otherwise lag can quickly
5285 		 * evaporate.
5286 		 *
5287 		 * Lag is defined as:
5288 		 *
5289 		 *   lag_i = S - s_i = w_i * (V - v_i)
5290 		 *
5291 		 * To avoid the 'w_i' term all over the place, we only track
5292 		 * the virtual lag:
5293 		 *
5294 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5295 		 *
5296 		 * And we take V to be the weighted average of all v:
5297 		 *
5298 		 *   V = (\Sum w_j*v_j) / W
5299 		 *
5300 		 * Where W is: \Sum w_j
5301 		 *
5302 		 * Then, the weighted average after adding an entity with lag
5303 		 * vl_i is given by:
5304 		 *
5305 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5306 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5307 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5308 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5309 		 *      = V - w_i*vl_i / (W + w_i)
5310 		 *
5311 		 * And the actual lag after adding an entity with vl_i is:
5312 		 *
5313 		 *   vl'_i = V' - v_i
5314 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5315 		 *         = vl_i - w_i*vl_i / (W + w_i)
5316 		 *
5317 		 * Which is strictly less than vl_i. So in order to preserve lag
5318 		 * we should inflate the lag before placement such that the
5319 		 * effective lag after placement comes out right.
5320 		 *
5321 		 * As such, invert the above relation for vl'_i to get the vl_i
5322 		 * we need to use such that the lag after placement is the lag
5323 		 * we computed before dequeue.
5324 		 *
5325 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5326 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5327 		 *
5328 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5329 		 *                   = W*vl_i
5330 		 *
5331 		 *   vl_i = (W + w_i)*vl'_i / W
5332 		 */
5333 		load = cfs_rq->avg_load;
5334 		if (curr && curr->on_rq)
5335 			load += scale_load_down(curr->load.weight);
5336 
5337 		lag *= load + scale_load_down(se->load.weight);
5338 		if (WARN_ON_ONCE(!load))
5339 			load = 1;
5340 		lag = div_s64(lag, load);
5341 	}
5342 
5343 	se->vruntime = vruntime - lag;
5344 
5345 	if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5346 		se->deadline += se->vruntime;
5347 		se->rel_deadline = 0;
5348 		return;
5349 	}
5350 
5351 	/*
5352 	 * When joining the competition; the existing tasks will be,
5353 	 * on average, halfway through their slice, as such start tasks
5354 	 * off with half a slice to ease into the competition.
5355 	 */
5356 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5357 		vslice /= 2;
5358 
5359 	/*
5360 	 * EEVDF: vd_i = ve_i + r_i/w_i
5361 	 */
5362 	se->deadline = se->vruntime + vslice;
5363 }
5364 
5365 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5366 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5367 
5368 static inline bool cfs_bandwidth_used(void);
5369 
5370 static void
5371 requeue_delayed_entity(struct sched_entity *se);
5372 
5373 static void
5374 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5375 {
5376 	bool curr = cfs_rq->curr == se;
5377 
5378 	/*
5379 	 * If we're the current task, we must renormalise before calling
5380 	 * update_curr().
5381 	 */
5382 	if (curr)
5383 		place_entity(cfs_rq, se, flags);
5384 
5385 	update_curr(cfs_rq);
5386 
5387 	/*
5388 	 * When enqueuing a sched_entity, we must:
5389 	 *   - Update loads to have both entity and cfs_rq synced with now.
5390 	 *   - For group_entity, update its runnable_weight to reflect the new
5391 	 *     h_nr_running of its group cfs_rq.
5392 	 *   - For group_entity, update its weight to reflect the new share of
5393 	 *     its group cfs_rq
5394 	 *   - Add its new weight to cfs_rq->load.weight
5395 	 */
5396 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5397 	se_update_runnable(se);
5398 	/*
5399 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5400 	 * but update_cfs_group() here will re-adjust the weight and have to
5401 	 * undo/redo all that. Seems wasteful.
5402 	 */
5403 	update_cfs_group(se);
5404 
5405 	/*
5406 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5407 	 * we can place the entity.
5408 	 */
5409 	if (!curr)
5410 		place_entity(cfs_rq, se, flags);
5411 
5412 	account_entity_enqueue(cfs_rq, se);
5413 
5414 	/* Entity has migrated, no longer consider this task hot */
5415 	if (flags & ENQUEUE_MIGRATED)
5416 		se->exec_start = 0;
5417 
5418 	check_schedstat_required();
5419 	update_stats_enqueue_fair(cfs_rq, se, flags);
5420 	if (!curr)
5421 		__enqueue_entity(cfs_rq, se);
5422 	se->on_rq = 1;
5423 
5424 	if (cfs_rq->nr_running == 1) {
5425 		check_enqueue_throttle(cfs_rq);
5426 		if (!throttled_hierarchy(cfs_rq)) {
5427 			list_add_leaf_cfs_rq(cfs_rq);
5428 		} else {
5429 #ifdef CONFIG_CFS_BANDWIDTH
5430 			struct rq *rq = rq_of(cfs_rq);
5431 
5432 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5433 				cfs_rq->throttled_clock = rq_clock(rq);
5434 			if (!cfs_rq->throttled_clock_self)
5435 				cfs_rq->throttled_clock_self = rq_clock(rq);
5436 #endif
5437 		}
5438 	}
5439 }
5440 
5441 static void __clear_buddies_next(struct sched_entity *se)
5442 {
5443 	for_each_sched_entity(se) {
5444 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5445 		if (cfs_rq->next != se)
5446 			break;
5447 
5448 		cfs_rq->next = NULL;
5449 	}
5450 }
5451 
5452 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5453 {
5454 	if (cfs_rq->next == se)
5455 		__clear_buddies_next(se);
5456 }
5457 
5458 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5459 
5460 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5461 {
5462 	se->sched_delayed = 0;
5463 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5464 		se->vlag = 0;
5465 }
5466 
5467 static bool
5468 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5469 {
5470 	bool sleep = flags & DEQUEUE_SLEEP;
5471 
5472 	update_curr(cfs_rq);
5473 
5474 	if (flags & DEQUEUE_DELAYED) {
5475 		SCHED_WARN_ON(!se->sched_delayed);
5476 	} else {
5477 		bool delay = sleep;
5478 		/*
5479 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5480 		 * states must not suffer spurious wakeups, excempt them.
5481 		 */
5482 		if (flags & DEQUEUE_SPECIAL)
5483 			delay = false;
5484 
5485 		SCHED_WARN_ON(delay && se->sched_delayed);
5486 
5487 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5488 		    !entity_eligible(cfs_rq, se)) {
5489 			if (cfs_rq->next == se)
5490 				cfs_rq->next = NULL;
5491 			update_load_avg(cfs_rq, se, 0);
5492 			se->sched_delayed = 1;
5493 			return false;
5494 		}
5495 	}
5496 
5497 	int action = UPDATE_TG;
5498 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5499 		action |= DO_DETACH;
5500 
5501 	/*
5502 	 * When dequeuing a sched_entity, we must:
5503 	 *   - Update loads to have both entity and cfs_rq synced with now.
5504 	 *   - For group_entity, update its runnable_weight to reflect the new
5505 	 *     h_nr_running of its group cfs_rq.
5506 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5507 	 *   - For group entity, update its weight to reflect the new share
5508 	 *     of its group cfs_rq.
5509 	 */
5510 	update_load_avg(cfs_rq, se, action);
5511 	se_update_runnable(se);
5512 
5513 	update_stats_dequeue_fair(cfs_rq, se, flags);
5514 
5515 	clear_buddies(cfs_rq, se);
5516 
5517 	update_entity_lag(cfs_rq, se);
5518 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5519 		se->deadline -= se->vruntime;
5520 		se->rel_deadline = 1;
5521 	}
5522 
5523 	if (se != cfs_rq->curr)
5524 		__dequeue_entity(cfs_rq, se);
5525 	se->on_rq = 0;
5526 	account_entity_dequeue(cfs_rq, se);
5527 
5528 	/* return excess runtime on last dequeue */
5529 	return_cfs_rq_runtime(cfs_rq);
5530 
5531 	update_cfs_group(se);
5532 
5533 	/*
5534 	 * Now advance min_vruntime if @se was the entity holding it back,
5535 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5536 	 * put back on, and if we advance min_vruntime, we'll be placed back
5537 	 * further than we started -- i.e. we'll be penalized.
5538 	 */
5539 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5540 		update_min_vruntime(cfs_rq);
5541 
5542 	if (flags & DEQUEUE_DELAYED)
5543 		finish_delayed_dequeue_entity(se);
5544 
5545 	if (cfs_rq->nr_running == 0)
5546 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5547 
5548 	return true;
5549 }
5550 
5551 static void
5552 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5553 {
5554 	clear_buddies(cfs_rq, se);
5555 
5556 	/* 'current' is not kept within the tree. */
5557 	if (se->on_rq) {
5558 		/*
5559 		 * Any task has to be enqueued before it get to execute on
5560 		 * a CPU. So account for the time it spent waiting on the
5561 		 * runqueue.
5562 		 */
5563 		update_stats_wait_end_fair(cfs_rq, se);
5564 		__dequeue_entity(cfs_rq, se);
5565 		update_load_avg(cfs_rq, se, UPDATE_TG);
5566 		/*
5567 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5568 		 * which isn't used until dequeue.
5569 		 */
5570 		se->vlag = se->deadline;
5571 	}
5572 
5573 	update_stats_curr_start(cfs_rq, se);
5574 	SCHED_WARN_ON(cfs_rq->curr);
5575 	cfs_rq->curr = se;
5576 
5577 	/*
5578 	 * Track our maximum slice length, if the CPU's load is at
5579 	 * least twice that of our own weight (i.e. don't track it
5580 	 * when there are only lesser-weight tasks around):
5581 	 */
5582 	if (schedstat_enabled() &&
5583 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5584 		struct sched_statistics *stats;
5585 
5586 		stats = __schedstats_from_se(se);
5587 		__schedstat_set(stats->slice_max,
5588 				max((u64)stats->slice_max,
5589 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5590 	}
5591 
5592 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5593 }
5594 
5595 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5596 
5597 /*
5598  * Pick the next process, keeping these things in mind, in this order:
5599  * 1) keep things fair between processes/task groups
5600  * 2) pick the "next" process, since someone really wants that to run
5601  * 3) pick the "last" process, for cache locality
5602  * 4) do not run the "skip" process, if something else is available
5603  */
5604 static struct sched_entity *
5605 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5606 {
5607 	/*
5608 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5609 	 */
5610 	if (sched_feat(NEXT_BUDDY) &&
5611 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5612 		/* ->next will never be delayed */
5613 		SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5614 		return cfs_rq->next;
5615 	}
5616 
5617 	struct sched_entity *se = pick_eevdf(cfs_rq);
5618 	if (se->sched_delayed) {
5619 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5620 		SCHED_WARN_ON(se->sched_delayed);
5621 		SCHED_WARN_ON(se->on_rq);
5622 		return NULL;
5623 	}
5624 	return se;
5625 }
5626 
5627 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5628 
5629 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5630 {
5631 	/*
5632 	 * If still on the runqueue then deactivate_task()
5633 	 * was not called and update_curr() has to be done:
5634 	 */
5635 	if (prev->on_rq)
5636 		update_curr(cfs_rq);
5637 
5638 	/* throttle cfs_rqs exceeding runtime */
5639 	check_cfs_rq_runtime(cfs_rq);
5640 
5641 	if (prev->on_rq) {
5642 		update_stats_wait_start_fair(cfs_rq, prev);
5643 		/* Put 'current' back into the tree. */
5644 		__enqueue_entity(cfs_rq, prev);
5645 		/* in !on_rq case, update occurred at dequeue */
5646 		update_load_avg(cfs_rq, prev, 0);
5647 	}
5648 	SCHED_WARN_ON(cfs_rq->curr != prev);
5649 	cfs_rq->curr = NULL;
5650 }
5651 
5652 static void
5653 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5654 {
5655 	/*
5656 	 * Update run-time statistics of the 'current'.
5657 	 */
5658 	update_curr(cfs_rq);
5659 
5660 	/*
5661 	 * Ensure that runnable average is periodically updated.
5662 	 */
5663 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5664 	update_cfs_group(curr);
5665 
5666 #ifdef CONFIG_SCHED_HRTICK
5667 	/*
5668 	 * queued ticks are scheduled to match the slice, so don't bother
5669 	 * validating it and just reschedule.
5670 	 */
5671 	if (queued) {
5672 		resched_curr(rq_of(cfs_rq));
5673 		return;
5674 	}
5675 	/*
5676 	 * don't let the period tick interfere with the hrtick preemption
5677 	 */
5678 	if (!sched_feat(DOUBLE_TICK) &&
5679 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5680 		return;
5681 #endif
5682 }
5683 
5684 
5685 /**************************************************
5686  * CFS bandwidth control machinery
5687  */
5688 
5689 #ifdef CONFIG_CFS_BANDWIDTH
5690 
5691 #ifdef CONFIG_JUMP_LABEL
5692 static struct static_key __cfs_bandwidth_used;
5693 
5694 static inline bool cfs_bandwidth_used(void)
5695 {
5696 	return static_key_false(&__cfs_bandwidth_used);
5697 }
5698 
5699 void cfs_bandwidth_usage_inc(void)
5700 {
5701 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5702 }
5703 
5704 void cfs_bandwidth_usage_dec(void)
5705 {
5706 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5707 }
5708 #else /* CONFIG_JUMP_LABEL */
5709 static bool cfs_bandwidth_used(void)
5710 {
5711 	return true;
5712 }
5713 
5714 void cfs_bandwidth_usage_inc(void) {}
5715 void cfs_bandwidth_usage_dec(void) {}
5716 #endif /* CONFIG_JUMP_LABEL */
5717 
5718 /*
5719  * default period for cfs group bandwidth.
5720  * default: 0.1s, units: nanoseconds
5721  */
5722 static inline u64 default_cfs_period(void)
5723 {
5724 	return 100000000ULL;
5725 }
5726 
5727 static inline u64 sched_cfs_bandwidth_slice(void)
5728 {
5729 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5730 }
5731 
5732 /*
5733  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5734  * directly instead of rq->clock to avoid adding additional synchronization
5735  * around rq->lock.
5736  *
5737  * requires cfs_b->lock
5738  */
5739 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5740 {
5741 	s64 runtime;
5742 
5743 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5744 		return;
5745 
5746 	cfs_b->runtime += cfs_b->quota;
5747 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5748 	if (runtime > 0) {
5749 		cfs_b->burst_time += runtime;
5750 		cfs_b->nr_burst++;
5751 	}
5752 
5753 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5754 	cfs_b->runtime_snap = cfs_b->runtime;
5755 }
5756 
5757 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5758 {
5759 	return &tg->cfs_bandwidth;
5760 }
5761 
5762 /* returns 0 on failure to allocate runtime */
5763 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5764 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5765 {
5766 	u64 min_amount, amount = 0;
5767 
5768 	lockdep_assert_held(&cfs_b->lock);
5769 
5770 	/* note: this is a positive sum as runtime_remaining <= 0 */
5771 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5772 
5773 	if (cfs_b->quota == RUNTIME_INF)
5774 		amount = min_amount;
5775 	else {
5776 		start_cfs_bandwidth(cfs_b);
5777 
5778 		if (cfs_b->runtime > 0) {
5779 			amount = min(cfs_b->runtime, min_amount);
5780 			cfs_b->runtime -= amount;
5781 			cfs_b->idle = 0;
5782 		}
5783 	}
5784 
5785 	cfs_rq->runtime_remaining += amount;
5786 
5787 	return cfs_rq->runtime_remaining > 0;
5788 }
5789 
5790 /* returns 0 on failure to allocate runtime */
5791 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5792 {
5793 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5794 	int ret;
5795 
5796 	raw_spin_lock(&cfs_b->lock);
5797 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5798 	raw_spin_unlock(&cfs_b->lock);
5799 
5800 	return ret;
5801 }
5802 
5803 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5804 {
5805 	/* dock delta_exec before expiring quota (as it could span periods) */
5806 	cfs_rq->runtime_remaining -= delta_exec;
5807 
5808 	if (likely(cfs_rq->runtime_remaining > 0))
5809 		return;
5810 
5811 	if (cfs_rq->throttled)
5812 		return;
5813 	/*
5814 	 * if we're unable to extend our runtime we resched so that the active
5815 	 * hierarchy can be throttled
5816 	 */
5817 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5818 		resched_curr(rq_of(cfs_rq));
5819 }
5820 
5821 static __always_inline
5822 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5823 {
5824 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5825 		return;
5826 
5827 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5828 }
5829 
5830 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5831 {
5832 	return cfs_bandwidth_used() && cfs_rq->throttled;
5833 }
5834 
5835 /* check whether cfs_rq, or any parent, is throttled */
5836 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5837 {
5838 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5839 }
5840 
5841 /*
5842  * Ensure that neither of the group entities corresponding to src_cpu or
5843  * dest_cpu are members of a throttled hierarchy when performing group
5844  * load-balance operations.
5845  */
5846 static inline int throttled_lb_pair(struct task_group *tg,
5847 				    int src_cpu, int dest_cpu)
5848 {
5849 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5850 
5851 	src_cfs_rq = tg->cfs_rq[src_cpu];
5852 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5853 
5854 	return throttled_hierarchy(src_cfs_rq) ||
5855 	       throttled_hierarchy(dest_cfs_rq);
5856 }
5857 
5858 static int tg_unthrottle_up(struct task_group *tg, void *data)
5859 {
5860 	struct rq *rq = data;
5861 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5862 
5863 	cfs_rq->throttle_count--;
5864 	if (!cfs_rq->throttle_count) {
5865 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5866 					     cfs_rq->throttled_clock_pelt;
5867 
5868 		/* Add cfs_rq with load or one or more already running entities to the list */
5869 		if (!cfs_rq_is_decayed(cfs_rq))
5870 			list_add_leaf_cfs_rq(cfs_rq);
5871 
5872 		if (cfs_rq->throttled_clock_self) {
5873 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5874 
5875 			cfs_rq->throttled_clock_self = 0;
5876 
5877 			if (SCHED_WARN_ON((s64)delta < 0))
5878 				delta = 0;
5879 
5880 			cfs_rq->throttled_clock_self_time += delta;
5881 		}
5882 	}
5883 
5884 	return 0;
5885 }
5886 
5887 static int tg_throttle_down(struct task_group *tg, void *data)
5888 {
5889 	struct rq *rq = data;
5890 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5891 
5892 	/* group is entering throttled state, stop time */
5893 	if (!cfs_rq->throttle_count) {
5894 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5895 		list_del_leaf_cfs_rq(cfs_rq);
5896 
5897 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5898 		if (cfs_rq->nr_running)
5899 			cfs_rq->throttled_clock_self = rq_clock(rq);
5900 	}
5901 	cfs_rq->throttle_count++;
5902 
5903 	return 0;
5904 }
5905 
5906 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5907 {
5908 	struct rq *rq = rq_of(cfs_rq);
5909 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5910 	struct sched_entity *se;
5911 	long task_delta, idle_task_delta, dequeue = 1;
5912 	long rq_h_nr_running = rq->cfs.h_nr_running;
5913 
5914 	raw_spin_lock(&cfs_b->lock);
5915 	/* This will start the period timer if necessary */
5916 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5917 		/*
5918 		 * We have raced with bandwidth becoming available, and if we
5919 		 * actually throttled the timer might not unthrottle us for an
5920 		 * entire period. We additionally needed to make sure that any
5921 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5922 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5923 		 * for 1ns of runtime rather than just check cfs_b.
5924 		 */
5925 		dequeue = 0;
5926 	} else {
5927 		list_add_tail_rcu(&cfs_rq->throttled_list,
5928 				  &cfs_b->throttled_cfs_rq);
5929 	}
5930 	raw_spin_unlock(&cfs_b->lock);
5931 
5932 	if (!dequeue)
5933 		return false;  /* Throttle no longer required. */
5934 
5935 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5936 
5937 	/* freeze hierarchy runnable averages while throttled */
5938 	rcu_read_lock();
5939 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5940 	rcu_read_unlock();
5941 
5942 	task_delta = cfs_rq->h_nr_running;
5943 	idle_task_delta = cfs_rq->idle_h_nr_running;
5944 	for_each_sched_entity(se) {
5945 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5946 		int flags;
5947 
5948 		/* throttled entity or throttle-on-deactivate */
5949 		if (!se->on_rq)
5950 			goto done;
5951 
5952 		/*
5953 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5954 		 * This avoids teaching dequeue_entities() about throttled
5955 		 * entities and keeps things relatively simple.
5956 		 */
5957 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5958 		if (se->sched_delayed)
5959 			flags |= DEQUEUE_DELAYED;
5960 		dequeue_entity(qcfs_rq, se, flags);
5961 
5962 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5963 			idle_task_delta = cfs_rq->h_nr_running;
5964 
5965 		qcfs_rq->h_nr_running -= task_delta;
5966 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5967 
5968 		if (qcfs_rq->load.weight) {
5969 			/* Avoid re-evaluating load for this entity: */
5970 			se = parent_entity(se);
5971 			break;
5972 		}
5973 	}
5974 
5975 	for_each_sched_entity(se) {
5976 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5977 		/* throttled entity or throttle-on-deactivate */
5978 		if (!se->on_rq)
5979 			goto done;
5980 
5981 		update_load_avg(qcfs_rq, se, 0);
5982 		se_update_runnable(se);
5983 
5984 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5985 			idle_task_delta = cfs_rq->h_nr_running;
5986 
5987 		qcfs_rq->h_nr_running -= task_delta;
5988 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5989 	}
5990 
5991 	/* At this point se is NULL and we are at root level*/
5992 	sub_nr_running(rq, task_delta);
5993 
5994 	/* Stop the fair server if throttling resulted in no runnable tasks */
5995 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
5996 		dl_server_stop(&rq->fair_server);
5997 done:
5998 	/*
5999 	 * Note: distribution will already see us throttled via the
6000 	 * throttled-list.  rq->lock protects completion.
6001 	 */
6002 	cfs_rq->throttled = 1;
6003 	SCHED_WARN_ON(cfs_rq->throttled_clock);
6004 	if (cfs_rq->nr_running)
6005 		cfs_rq->throttled_clock = rq_clock(rq);
6006 	return true;
6007 }
6008 
6009 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6010 {
6011 	struct rq *rq = rq_of(cfs_rq);
6012 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6013 	struct sched_entity *se;
6014 	long task_delta, idle_task_delta;
6015 	long rq_h_nr_running = rq->cfs.h_nr_running;
6016 
6017 	se = cfs_rq->tg->se[cpu_of(rq)];
6018 
6019 	cfs_rq->throttled = 0;
6020 
6021 	update_rq_clock(rq);
6022 
6023 	raw_spin_lock(&cfs_b->lock);
6024 	if (cfs_rq->throttled_clock) {
6025 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6026 		cfs_rq->throttled_clock = 0;
6027 	}
6028 	list_del_rcu(&cfs_rq->throttled_list);
6029 	raw_spin_unlock(&cfs_b->lock);
6030 
6031 	/* update hierarchical throttle state */
6032 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6033 
6034 	if (!cfs_rq->load.weight) {
6035 		if (!cfs_rq->on_list)
6036 			return;
6037 		/*
6038 		 * Nothing to run but something to decay (on_list)?
6039 		 * Complete the branch.
6040 		 */
6041 		for_each_sched_entity(se) {
6042 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6043 				break;
6044 		}
6045 		goto unthrottle_throttle;
6046 	}
6047 
6048 	task_delta = cfs_rq->h_nr_running;
6049 	idle_task_delta = cfs_rq->idle_h_nr_running;
6050 	for_each_sched_entity(se) {
6051 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6052 
6053 		if (se->on_rq) {
6054 			SCHED_WARN_ON(se->sched_delayed);
6055 			break;
6056 		}
6057 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6058 
6059 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6060 			idle_task_delta = cfs_rq->h_nr_running;
6061 
6062 		qcfs_rq->h_nr_running += task_delta;
6063 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6064 
6065 		/* end evaluation on encountering a throttled cfs_rq */
6066 		if (cfs_rq_throttled(qcfs_rq))
6067 			goto unthrottle_throttle;
6068 	}
6069 
6070 	for_each_sched_entity(se) {
6071 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6072 
6073 		update_load_avg(qcfs_rq, se, UPDATE_TG);
6074 		se_update_runnable(se);
6075 
6076 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6077 			idle_task_delta = cfs_rq->h_nr_running;
6078 
6079 		qcfs_rq->h_nr_running += task_delta;
6080 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6081 
6082 		/* end evaluation on encountering a throttled cfs_rq */
6083 		if (cfs_rq_throttled(qcfs_rq))
6084 			goto unthrottle_throttle;
6085 	}
6086 
6087 	/* Start the fair server if un-throttling resulted in new runnable tasks */
6088 	if (!rq_h_nr_running && rq->cfs.h_nr_running)
6089 		dl_server_start(&rq->fair_server);
6090 
6091 	/* At this point se is NULL and we are at root level*/
6092 	add_nr_running(rq, task_delta);
6093 
6094 unthrottle_throttle:
6095 	assert_list_leaf_cfs_rq(rq);
6096 
6097 	/* Determine whether we need to wake up potentially idle CPU: */
6098 	if (rq->curr == rq->idle && rq->cfs.nr_running)
6099 		resched_curr(rq);
6100 }
6101 
6102 #ifdef CONFIG_SMP
6103 static void __cfsb_csd_unthrottle(void *arg)
6104 {
6105 	struct cfs_rq *cursor, *tmp;
6106 	struct rq *rq = arg;
6107 	struct rq_flags rf;
6108 
6109 	rq_lock(rq, &rf);
6110 
6111 	/*
6112 	 * Iterating over the list can trigger several call to
6113 	 * update_rq_clock() in unthrottle_cfs_rq().
6114 	 * Do it once and skip the potential next ones.
6115 	 */
6116 	update_rq_clock(rq);
6117 	rq_clock_start_loop_update(rq);
6118 
6119 	/*
6120 	 * Since we hold rq lock we're safe from concurrent manipulation of
6121 	 * the CSD list. However, this RCU critical section annotates the
6122 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6123 	 * race with group being freed in the window between removing it
6124 	 * from the list and advancing to the next entry in the list.
6125 	 */
6126 	rcu_read_lock();
6127 
6128 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6129 				 throttled_csd_list) {
6130 		list_del_init(&cursor->throttled_csd_list);
6131 
6132 		if (cfs_rq_throttled(cursor))
6133 			unthrottle_cfs_rq(cursor);
6134 	}
6135 
6136 	rcu_read_unlock();
6137 
6138 	rq_clock_stop_loop_update(rq);
6139 	rq_unlock(rq, &rf);
6140 }
6141 
6142 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6143 {
6144 	struct rq *rq = rq_of(cfs_rq);
6145 	bool first;
6146 
6147 	if (rq == this_rq()) {
6148 		unthrottle_cfs_rq(cfs_rq);
6149 		return;
6150 	}
6151 
6152 	/* Already enqueued */
6153 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6154 		return;
6155 
6156 	first = list_empty(&rq->cfsb_csd_list);
6157 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6158 	if (first)
6159 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6160 }
6161 #else
6162 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6163 {
6164 	unthrottle_cfs_rq(cfs_rq);
6165 }
6166 #endif
6167 
6168 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6169 {
6170 	lockdep_assert_rq_held(rq_of(cfs_rq));
6171 
6172 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6173 	    cfs_rq->runtime_remaining <= 0))
6174 		return;
6175 
6176 	__unthrottle_cfs_rq_async(cfs_rq);
6177 }
6178 
6179 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6180 {
6181 	int this_cpu = smp_processor_id();
6182 	u64 runtime, remaining = 1;
6183 	bool throttled = false;
6184 	struct cfs_rq *cfs_rq, *tmp;
6185 	struct rq_flags rf;
6186 	struct rq *rq;
6187 	LIST_HEAD(local_unthrottle);
6188 
6189 	rcu_read_lock();
6190 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6191 				throttled_list) {
6192 		rq = rq_of(cfs_rq);
6193 
6194 		if (!remaining) {
6195 			throttled = true;
6196 			break;
6197 		}
6198 
6199 		rq_lock_irqsave(rq, &rf);
6200 		if (!cfs_rq_throttled(cfs_rq))
6201 			goto next;
6202 
6203 		/* Already queued for async unthrottle */
6204 		if (!list_empty(&cfs_rq->throttled_csd_list))
6205 			goto next;
6206 
6207 		/* By the above checks, this should never be true */
6208 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6209 
6210 		raw_spin_lock(&cfs_b->lock);
6211 		runtime = -cfs_rq->runtime_remaining + 1;
6212 		if (runtime > cfs_b->runtime)
6213 			runtime = cfs_b->runtime;
6214 		cfs_b->runtime -= runtime;
6215 		remaining = cfs_b->runtime;
6216 		raw_spin_unlock(&cfs_b->lock);
6217 
6218 		cfs_rq->runtime_remaining += runtime;
6219 
6220 		/* we check whether we're throttled above */
6221 		if (cfs_rq->runtime_remaining > 0) {
6222 			if (cpu_of(rq) != this_cpu) {
6223 				unthrottle_cfs_rq_async(cfs_rq);
6224 			} else {
6225 				/*
6226 				 * We currently only expect to be unthrottling
6227 				 * a single cfs_rq locally.
6228 				 */
6229 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6230 				list_add_tail(&cfs_rq->throttled_csd_list,
6231 					      &local_unthrottle);
6232 			}
6233 		} else {
6234 			throttled = true;
6235 		}
6236 
6237 next:
6238 		rq_unlock_irqrestore(rq, &rf);
6239 	}
6240 
6241 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6242 				 throttled_csd_list) {
6243 		struct rq *rq = rq_of(cfs_rq);
6244 
6245 		rq_lock_irqsave(rq, &rf);
6246 
6247 		list_del_init(&cfs_rq->throttled_csd_list);
6248 
6249 		if (cfs_rq_throttled(cfs_rq))
6250 			unthrottle_cfs_rq(cfs_rq);
6251 
6252 		rq_unlock_irqrestore(rq, &rf);
6253 	}
6254 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6255 
6256 	rcu_read_unlock();
6257 
6258 	return throttled;
6259 }
6260 
6261 /*
6262  * Responsible for refilling a task_group's bandwidth and unthrottling its
6263  * cfs_rqs as appropriate. If there has been no activity within the last
6264  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6265  * used to track this state.
6266  */
6267 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6268 {
6269 	int throttled;
6270 
6271 	/* no need to continue the timer with no bandwidth constraint */
6272 	if (cfs_b->quota == RUNTIME_INF)
6273 		goto out_deactivate;
6274 
6275 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6276 	cfs_b->nr_periods += overrun;
6277 
6278 	/* Refill extra burst quota even if cfs_b->idle */
6279 	__refill_cfs_bandwidth_runtime(cfs_b);
6280 
6281 	/*
6282 	 * idle depends on !throttled (for the case of a large deficit), and if
6283 	 * we're going inactive then everything else can be deferred
6284 	 */
6285 	if (cfs_b->idle && !throttled)
6286 		goto out_deactivate;
6287 
6288 	if (!throttled) {
6289 		/* mark as potentially idle for the upcoming period */
6290 		cfs_b->idle = 1;
6291 		return 0;
6292 	}
6293 
6294 	/* account preceding periods in which throttling occurred */
6295 	cfs_b->nr_throttled += overrun;
6296 
6297 	/*
6298 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6299 	 */
6300 	while (throttled && cfs_b->runtime > 0) {
6301 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6302 		/* we can't nest cfs_b->lock while distributing bandwidth */
6303 		throttled = distribute_cfs_runtime(cfs_b);
6304 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6305 	}
6306 
6307 	/*
6308 	 * While we are ensured activity in the period following an
6309 	 * unthrottle, this also covers the case in which the new bandwidth is
6310 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6311 	 * timer to remain active while there are any throttled entities.)
6312 	 */
6313 	cfs_b->idle = 0;
6314 
6315 	return 0;
6316 
6317 out_deactivate:
6318 	return 1;
6319 }
6320 
6321 /* a cfs_rq won't donate quota below this amount */
6322 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6323 /* minimum remaining period time to redistribute slack quota */
6324 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6325 /* how long we wait to gather additional slack before distributing */
6326 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6327 
6328 /*
6329  * Are we near the end of the current quota period?
6330  *
6331  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6332  * hrtimer base being cleared by hrtimer_start. In the case of
6333  * migrate_hrtimers, base is never cleared, so we are fine.
6334  */
6335 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6336 {
6337 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6338 	s64 remaining;
6339 
6340 	/* if the call-back is running a quota refresh is already occurring */
6341 	if (hrtimer_callback_running(refresh_timer))
6342 		return 1;
6343 
6344 	/* is a quota refresh about to occur? */
6345 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6346 	if (remaining < (s64)min_expire)
6347 		return 1;
6348 
6349 	return 0;
6350 }
6351 
6352 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6353 {
6354 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6355 
6356 	/* if there's a quota refresh soon don't bother with slack */
6357 	if (runtime_refresh_within(cfs_b, min_left))
6358 		return;
6359 
6360 	/* don't push forwards an existing deferred unthrottle */
6361 	if (cfs_b->slack_started)
6362 		return;
6363 	cfs_b->slack_started = true;
6364 
6365 	hrtimer_start(&cfs_b->slack_timer,
6366 			ns_to_ktime(cfs_bandwidth_slack_period),
6367 			HRTIMER_MODE_REL);
6368 }
6369 
6370 /* we know any runtime found here is valid as update_curr() precedes return */
6371 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6372 {
6373 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6374 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6375 
6376 	if (slack_runtime <= 0)
6377 		return;
6378 
6379 	raw_spin_lock(&cfs_b->lock);
6380 	if (cfs_b->quota != RUNTIME_INF) {
6381 		cfs_b->runtime += slack_runtime;
6382 
6383 		/* we are under rq->lock, defer unthrottling using a timer */
6384 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6385 		    !list_empty(&cfs_b->throttled_cfs_rq))
6386 			start_cfs_slack_bandwidth(cfs_b);
6387 	}
6388 	raw_spin_unlock(&cfs_b->lock);
6389 
6390 	/* even if it's not valid for return we don't want to try again */
6391 	cfs_rq->runtime_remaining -= slack_runtime;
6392 }
6393 
6394 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6395 {
6396 	if (!cfs_bandwidth_used())
6397 		return;
6398 
6399 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6400 		return;
6401 
6402 	__return_cfs_rq_runtime(cfs_rq);
6403 }
6404 
6405 /*
6406  * This is done with a timer (instead of inline with bandwidth return) since
6407  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6408  */
6409 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6410 {
6411 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6412 	unsigned long flags;
6413 
6414 	/* confirm we're still not at a refresh boundary */
6415 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6416 	cfs_b->slack_started = false;
6417 
6418 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6419 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6420 		return;
6421 	}
6422 
6423 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6424 		runtime = cfs_b->runtime;
6425 
6426 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6427 
6428 	if (!runtime)
6429 		return;
6430 
6431 	distribute_cfs_runtime(cfs_b);
6432 }
6433 
6434 /*
6435  * When a group wakes up we want to make sure that its quota is not already
6436  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6437  * runtime as update_curr() throttling can not trigger until it's on-rq.
6438  */
6439 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6440 {
6441 	if (!cfs_bandwidth_used())
6442 		return;
6443 
6444 	/* an active group must be handled by the update_curr()->put() path */
6445 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6446 		return;
6447 
6448 	/* ensure the group is not already throttled */
6449 	if (cfs_rq_throttled(cfs_rq))
6450 		return;
6451 
6452 	/* update runtime allocation */
6453 	account_cfs_rq_runtime(cfs_rq, 0);
6454 	if (cfs_rq->runtime_remaining <= 0)
6455 		throttle_cfs_rq(cfs_rq);
6456 }
6457 
6458 static void sync_throttle(struct task_group *tg, int cpu)
6459 {
6460 	struct cfs_rq *pcfs_rq, *cfs_rq;
6461 
6462 	if (!cfs_bandwidth_used())
6463 		return;
6464 
6465 	if (!tg->parent)
6466 		return;
6467 
6468 	cfs_rq = tg->cfs_rq[cpu];
6469 	pcfs_rq = tg->parent->cfs_rq[cpu];
6470 
6471 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6472 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6473 }
6474 
6475 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6476 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6477 {
6478 	if (!cfs_bandwidth_used())
6479 		return false;
6480 
6481 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6482 		return false;
6483 
6484 	/*
6485 	 * it's possible for a throttled entity to be forced into a running
6486 	 * state (e.g. set_curr_task), in this case we're finished.
6487 	 */
6488 	if (cfs_rq_throttled(cfs_rq))
6489 		return true;
6490 
6491 	return throttle_cfs_rq(cfs_rq);
6492 }
6493 
6494 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6495 {
6496 	struct cfs_bandwidth *cfs_b =
6497 		container_of(timer, struct cfs_bandwidth, slack_timer);
6498 
6499 	do_sched_cfs_slack_timer(cfs_b);
6500 
6501 	return HRTIMER_NORESTART;
6502 }
6503 
6504 extern const u64 max_cfs_quota_period;
6505 
6506 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6507 {
6508 	struct cfs_bandwidth *cfs_b =
6509 		container_of(timer, struct cfs_bandwidth, period_timer);
6510 	unsigned long flags;
6511 	int overrun;
6512 	int idle = 0;
6513 	int count = 0;
6514 
6515 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6516 	for (;;) {
6517 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6518 		if (!overrun)
6519 			break;
6520 
6521 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6522 
6523 		if (++count > 3) {
6524 			u64 new, old = ktime_to_ns(cfs_b->period);
6525 
6526 			/*
6527 			 * Grow period by a factor of 2 to avoid losing precision.
6528 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6529 			 * to fail.
6530 			 */
6531 			new = old * 2;
6532 			if (new < max_cfs_quota_period) {
6533 				cfs_b->period = ns_to_ktime(new);
6534 				cfs_b->quota *= 2;
6535 				cfs_b->burst *= 2;
6536 
6537 				pr_warn_ratelimited(
6538 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6539 					smp_processor_id(),
6540 					div_u64(new, NSEC_PER_USEC),
6541 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6542 			} else {
6543 				pr_warn_ratelimited(
6544 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6545 					smp_processor_id(),
6546 					div_u64(old, NSEC_PER_USEC),
6547 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6548 			}
6549 
6550 			/* reset count so we don't come right back in here */
6551 			count = 0;
6552 		}
6553 	}
6554 	if (idle)
6555 		cfs_b->period_active = 0;
6556 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6557 
6558 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6559 }
6560 
6561 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6562 {
6563 	raw_spin_lock_init(&cfs_b->lock);
6564 	cfs_b->runtime = 0;
6565 	cfs_b->quota = RUNTIME_INF;
6566 	cfs_b->period = ns_to_ktime(default_cfs_period());
6567 	cfs_b->burst = 0;
6568 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6569 
6570 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6571 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6572 	cfs_b->period_timer.function = sched_cfs_period_timer;
6573 
6574 	/* Add a random offset so that timers interleave */
6575 	hrtimer_set_expires(&cfs_b->period_timer,
6576 			    get_random_u32_below(cfs_b->period));
6577 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6578 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6579 	cfs_b->slack_started = false;
6580 }
6581 
6582 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6583 {
6584 	cfs_rq->runtime_enabled = 0;
6585 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6586 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6587 }
6588 
6589 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6590 {
6591 	lockdep_assert_held(&cfs_b->lock);
6592 
6593 	if (cfs_b->period_active)
6594 		return;
6595 
6596 	cfs_b->period_active = 1;
6597 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6598 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6599 }
6600 
6601 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6602 {
6603 	int __maybe_unused i;
6604 
6605 	/* init_cfs_bandwidth() was not called */
6606 	if (!cfs_b->throttled_cfs_rq.next)
6607 		return;
6608 
6609 	hrtimer_cancel(&cfs_b->period_timer);
6610 	hrtimer_cancel(&cfs_b->slack_timer);
6611 
6612 	/*
6613 	 * It is possible that we still have some cfs_rq's pending on a CSD
6614 	 * list, though this race is very rare. In order for this to occur, we
6615 	 * must have raced with the last task leaving the group while there
6616 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6617 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6618 	 * we can simply flush all pending CSD work inline here. We're
6619 	 * guaranteed at this point that no additional cfs_rq of this group can
6620 	 * join a CSD list.
6621 	 */
6622 #ifdef CONFIG_SMP
6623 	for_each_possible_cpu(i) {
6624 		struct rq *rq = cpu_rq(i);
6625 		unsigned long flags;
6626 
6627 		if (list_empty(&rq->cfsb_csd_list))
6628 			continue;
6629 
6630 		local_irq_save(flags);
6631 		__cfsb_csd_unthrottle(rq);
6632 		local_irq_restore(flags);
6633 	}
6634 #endif
6635 }
6636 
6637 /*
6638  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6639  *
6640  * The race is harmless, since modifying bandwidth settings of unhooked group
6641  * bits doesn't do much.
6642  */
6643 
6644 /* cpu online callback */
6645 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6646 {
6647 	struct task_group *tg;
6648 
6649 	lockdep_assert_rq_held(rq);
6650 
6651 	rcu_read_lock();
6652 	list_for_each_entry_rcu(tg, &task_groups, list) {
6653 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6654 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6655 
6656 		raw_spin_lock(&cfs_b->lock);
6657 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6658 		raw_spin_unlock(&cfs_b->lock);
6659 	}
6660 	rcu_read_unlock();
6661 }
6662 
6663 /* cpu offline callback */
6664 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6665 {
6666 	struct task_group *tg;
6667 
6668 	lockdep_assert_rq_held(rq);
6669 
6670 	/*
6671 	 * The rq clock has already been updated in the
6672 	 * set_rq_offline(), so we should skip updating
6673 	 * the rq clock again in unthrottle_cfs_rq().
6674 	 */
6675 	rq_clock_start_loop_update(rq);
6676 
6677 	rcu_read_lock();
6678 	list_for_each_entry_rcu(tg, &task_groups, list) {
6679 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6680 
6681 		if (!cfs_rq->runtime_enabled)
6682 			continue;
6683 
6684 		/*
6685 		 * clock_task is not advancing so we just need to make sure
6686 		 * there's some valid quota amount
6687 		 */
6688 		cfs_rq->runtime_remaining = 1;
6689 		/*
6690 		 * Offline rq is schedulable till CPU is completely disabled
6691 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6692 		 */
6693 		cfs_rq->runtime_enabled = 0;
6694 
6695 		if (cfs_rq_throttled(cfs_rq))
6696 			unthrottle_cfs_rq(cfs_rq);
6697 	}
6698 	rcu_read_unlock();
6699 
6700 	rq_clock_stop_loop_update(rq);
6701 }
6702 
6703 bool cfs_task_bw_constrained(struct task_struct *p)
6704 {
6705 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6706 
6707 	if (!cfs_bandwidth_used())
6708 		return false;
6709 
6710 	if (cfs_rq->runtime_enabled ||
6711 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6712 		return true;
6713 
6714 	return false;
6715 }
6716 
6717 #ifdef CONFIG_NO_HZ_FULL
6718 /* called from pick_next_task_fair() */
6719 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6720 {
6721 	int cpu = cpu_of(rq);
6722 
6723 	if (!cfs_bandwidth_used())
6724 		return;
6725 
6726 	if (!tick_nohz_full_cpu(cpu))
6727 		return;
6728 
6729 	if (rq->nr_running != 1)
6730 		return;
6731 
6732 	/*
6733 	 *  We know there is only one task runnable and we've just picked it. The
6734 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6735 	 *  be otherwise able to stop the tick. Just need to check if we are using
6736 	 *  bandwidth control.
6737 	 */
6738 	if (cfs_task_bw_constrained(p))
6739 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6740 }
6741 #endif
6742 
6743 #else /* CONFIG_CFS_BANDWIDTH */
6744 
6745 static inline bool cfs_bandwidth_used(void)
6746 {
6747 	return false;
6748 }
6749 
6750 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6751 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6752 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6753 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6754 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6755 
6756 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6757 {
6758 	return 0;
6759 }
6760 
6761 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6762 {
6763 	return 0;
6764 }
6765 
6766 static inline int throttled_lb_pair(struct task_group *tg,
6767 				    int src_cpu, int dest_cpu)
6768 {
6769 	return 0;
6770 }
6771 
6772 #ifdef CONFIG_FAIR_GROUP_SCHED
6773 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6774 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6775 #endif
6776 
6777 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6778 {
6779 	return NULL;
6780 }
6781 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6782 static inline void update_runtime_enabled(struct rq *rq) {}
6783 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6784 #ifdef CONFIG_CGROUP_SCHED
6785 bool cfs_task_bw_constrained(struct task_struct *p)
6786 {
6787 	return false;
6788 }
6789 #endif
6790 #endif /* CONFIG_CFS_BANDWIDTH */
6791 
6792 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6793 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6794 #endif
6795 
6796 /**************************************************
6797  * CFS operations on tasks:
6798  */
6799 
6800 #ifdef CONFIG_SCHED_HRTICK
6801 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6802 {
6803 	struct sched_entity *se = &p->se;
6804 
6805 	SCHED_WARN_ON(task_rq(p) != rq);
6806 
6807 	if (rq->cfs.h_nr_running > 1) {
6808 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6809 		u64 slice = se->slice;
6810 		s64 delta = slice - ran;
6811 
6812 		if (delta < 0) {
6813 			if (task_current(rq, p))
6814 				resched_curr(rq);
6815 			return;
6816 		}
6817 		hrtick_start(rq, delta);
6818 	}
6819 }
6820 
6821 /*
6822  * called from enqueue/dequeue and updates the hrtick when the
6823  * current task is from our class and nr_running is low enough
6824  * to matter.
6825  */
6826 static void hrtick_update(struct rq *rq)
6827 {
6828 	struct task_struct *curr = rq->curr;
6829 
6830 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6831 		return;
6832 
6833 	hrtick_start_fair(rq, curr);
6834 }
6835 #else /* !CONFIG_SCHED_HRTICK */
6836 static inline void
6837 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6838 {
6839 }
6840 
6841 static inline void hrtick_update(struct rq *rq)
6842 {
6843 }
6844 #endif
6845 
6846 #ifdef CONFIG_SMP
6847 static inline bool cpu_overutilized(int cpu)
6848 {
6849 	unsigned long  rq_util_min, rq_util_max;
6850 
6851 	if (!sched_energy_enabled())
6852 		return false;
6853 
6854 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6855 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6856 
6857 	/* Return true only if the utilization doesn't fit CPU's capacity */
6858 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6859 }
6860 
6861 /*
6862  * overutilized value make sense only if EAS is enabled
6863  */
6864 static inline bool is_rd_overutilized(struct root_domain *rd)
6865 {
6866 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6867 }
6868 
6869 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6870 {
6871 	if (!sched_energy_enabled())
6872 		return;
6873 
6874 	WRITE_ONCE(rd->overutilized, flag);
6875 	trace_sched_overutilized_tp(rd, flag);
6876 }
6877 
6878 static inline void check_update_overutilized_status(struct rq *rq)
6879 {
6880 	/*
6881 	 * overutilized field is used for load balancing decisions only
6882 	 * if energy aware scheduler is being used
6883 	 */
6884 
6885 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6886 		set_rd_overutilized(rq->rd, 1);
6887 }
6888 #else
6889 static inline void check_update_overutilized_status(struct rq *rq) { }
6890 #endif
6891 
6892 /* Runqueue only has SCHED_IDLE tasks enqueued */
6893 static int sched_idle_rq(struct rq *rq)
6894 {
6895 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6896 			rq->nr_running);
6897 }
6898 
6899 #ifdef CONFIG_SMP
6900 static int sched_idle_cpu(int cpu)
6901 {
6902 	return sched_idle_rq(cpu_rq(cpu));
6903 }
6904 #endif
6905 
6906 static void
6907 requeue_delayed_entity(struct sched_entity *se)
6908 {
6909 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6910 
6911 	/*
6912 	 * se->sched_delayed should imply: se->on_rq == 1.
6913 	 * Because a delayed entity is one that is still on
6914 	 * the runqueue competing until elegibility.
6915 	 */
6916 	SCHED_WARN_ON(!se->sched_delayed);
6917 	SCHED_WARN_ON(!se->on_rq);
6918 
6919 	if (sched_feat(DELAY_ZERO)) {
6920 		update_entity_lag(cfs_rq, se);
6921 		if (se->vlag > 0) {
6922 			cfs_rq->nr_running--;
6923 			if (se != cfs_rq->curr)
6924 				__dequeue_entity(cfs_rq, se);
6925 			se->vlag = 0;
6926 			place_entity(cfs_rq, se, 0);
6927 			if (se != cfs_rq->curr)
6928 				__enqueue_entity(cfs_rq, se);
6929 			cfs_rq->nr_running++;
6930 		}
6931 	}
6932 
6933 	update_load_avg(cfs_rq, se, 0);
6934 	se->sched_delayed = 0;
6935 }
6936 
6937 /*
6938  * The enqueue_task method is called before nr_running is
6939  * increased. Here we update the fair scheduling stats and
6940  * then put the task into the rbtree:
6941  */
6942 static void
6943 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6944 {
6945 	struct cfs_rq *cfs_rq;
6946 	struct sched_entity *se = &p->se;
6947 	int idle_h_nr_running = task_has_idle_policy(p);
6948 	int task_new = !(flags & ENQUEUE_WAKEUP);
6949 	int rq_h_nr_running = rq->cfs.h_nr_running;
6950 	u64 slice = 0;
6951 
6952 	if (flags & ENQUEUE_DELAYED) {
6953 		requeue_delayed_entity(se);
6954 		return;
6955 	}
6956 
6957 	/*
6958 	 * The code below (indirectly) updates schedutil which looks at
6959 	 * the cfs_rq utilization to select a frequency.
6960 	 * Let's add the task's estimated utilization to the cfs_rq's
6961 	 * estimated utilization, before we update schedutil.
6962 	 */
6963 	util_est_enqueue(&rq->cfs, p);
6964 
6965 	/*
6966 	 * If in_iowait is set, the code below may not trigger any cpufreq
6967 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6968 	 * passed.
6969 	 */
6970 	if (p->in_iowait)
6971 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6972 
6973 	for_each_sched_entity(se) {
6974 		if (se->on_rq) {
6975 			if (se->sched_delayed)
6976 				requeue_delayed_entity(se);
6977 			break;
6978 		}
6979 		cfs_rq = cfs_rq_of(se);
6980 
6981 		/*
6982 		 * Basically set the slice of group entries to the min_slice of
6983 		 * their respective cfs_rq. This ensures the group can service
6984 		 * its entities in the desired time-frame.
6985 		 */
6986 		if (slice) {
6987 			se->slice = slice;
6988 			se->custom_slice = 1;
6989 		}
6990 		enqueue_entity(cfs_rq, se, flags);
6991 		slice = cfs_rq_min_slice(cfs_rq);
6992 
6993 		cfs_rq->h_nr_running++;
6994 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6995 
6996 		if (cfs_rq_is_idle(cfs_rq))
6997 			idle_h_nr_running = 1;
6998 
6999 		/* end evaluation on encountering a throttled cfs_rq */
7000 		if (cfs_rq_throttled(cfs_rq))
7001 			goto enqueue_throttle;
7002 
7003 		flags = ENQUEUE_WAKEUP;
7004 	}
7005 
7006 	for_each_sched_entity(se) {
7007 		cfs_rq = cfs_rq_of(se);
7008 
7009 		update_load_avg(cfs_rq, se, UPDATE_TG);
7010 		se_update_runnable(se);
7011 		update_cfs_group(se);
7012 
7013 		se->slice = slice;
7014 		slice = cfs_rq_min_slice(cfs_rq);
7015 
7016 		cfs_rq->h_nr_running++;
7017 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7018 
7019 		if (cfs_rq_is_idle(cfs_rq))
7020 			idle_h_nr_running = 1;
7021 
7022 		/* end evaluation on encountering a throttled cfs_rq */
7023 		if (cfs_rq_throttled(cfs_rq))
7024 			goto enqueue_throttle;
7025 	}
7026 
7027 	if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7028 		/* Account for idle runtime */
7029 		if (!rq->nr_running)
7030 			dl_server_update_idle_time(rq, rq->curr);
7031 		dl_server_start(&rq->fair_server);
7032 	}
7033 
7034 	/* At this point se is NULL and we are at root level*/
7035 	add_nr_running(rq, 1);
7036 
7037 	/*
7038 	 * Since new tasks are assigned an initial util_avg equal to
7039 	 * half of the spare capacity of their CPU, tiny tasks have the
7040 	 * ability to cross the overutilized threshold, which will
7041 	 * result in the load balancer ruining all the task placement
7042 	 * done by EAS. As a way to mitigate that effect, do not account
7043 	 * for the first enqueue operation of new tasks during the
7044 	 * overutilized flag detection.
7045 	 *
7046 	 * A better way of solving this problem would be to wait for
7047 	 * the PELT signals of tasks to converge before taking them
7048 	 * into account, but that is not straightforward to implement,
7049 	 * and the following generally works well enough in practice.
7050 	 */
7051 	if (!task_new)
7052 		check_update_overutilized_status(rq);
7053 
7054 enqueue_throttle:
7055 	assert_list_leaf_cfs_rq(rq);
7056 
7057 	hrtick_update(rq);
7058 }
7059 
7060 static void set_next_buddy(struct sched_entity *se);
7061 
7062 /*
7063  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7064  * failing half-way through and resume the dequeue later.
7065  *
7066  * Returns:
7067  * -1 - dequeue delayed
7068  *  0 - dequeue throttled
7069  *  1 - dequeue complete
7070  */
7071 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7072 {
7073 	bool was_sched_idle = sched_idle_rq(rq);
7074 	int rq_h_nr_running = rq->cfs.h_nr_running;
7075 	bool task_sleep = flags & DEQUEUE_SLEEP;
7076 	bool task_delayed = flags & DEQUEUE_DELAYED;
7077 	struct task_struct *p = NULL;
7078 	int idle_h_nr_running = 0;
7079 	int h_nr_running = 0;
7080 	struct cfs_rq *cfs_rq;
7081 	u64 slice = 0;
7082 
7083 	if (entity_is_task(se)) {
7084 		p = task_of(se);
7085 		h_nr_running = 1;
7086 		idle_h_nr_running = task_has_idle_policy(p);
7087 	} else {
7088 		cfs_rq = group_cfs_rq(se);
7089 		slice = cfs_rq_min_slice(cfs_rq);
7090 	}
7091 
7092 	for_each_sched_entity(se) {
7093 		cfs_rq = cfs_rq_of(se);
7094 
7095 		if (!dequeue_entity(cfs_rq, se, flags)) {
7096 			if (p && &p->se == se)
7097 				return -1;
7098 
7099 			break;
7100 		}
7101 
7102 		cfs_rq->h_nr_running -= h_nr_running;
7103 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7104 
7105 		if (cfs_rq_is_idle(cfs_rq))
7106 			idle_h_nr_running = h_nr_running;
7107 
7108 		/* end evaluation on encountering a throttled cfs_rq */
7109 		if (cfs_rq_throttled(cfs_rq))
7110 			return 0;
7111 
7112 		/* Don't dequeue parent if it has other entities besides us */
7113 		if (cfs_rq->load.weight) {
7114 			slice = cfs_rq_min_slice(cfs_rq);
7115 
7116 			/* Avoid re-evaluating load for this entity: */
7117 			se = parent_entity(se);
7118 			/*
7119 			 * Bias pick_next to pick a task from this cfs_rq, as
7120 			 * p is sleeping when it is within its sched_slice.
7121 			 */
7122 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7123 				set_next_buddy(se);
7124 			break;
7125 		}
7126 		flags |= DEQUEUE_SLEEP;
7127 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7128 	}
7129 
7130 	for_each_sched_entity(se) {
7131 		cfs_rq = cfs_rq_of(se);
7132 
7133 		update_load_avg(cfs_rq, se, UPDATE_TG);
7134 		se_update_runnable(se);
7135 		update_cfs_group(se);
7136 
7137 		se->slice = slice;
7138 		slice = cfs_rq_min_slice(cfs_rq);
7139 
7140 		cfs_rq->h_nr_running -= h_nr_running;
7141 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7142 
7143 		if (cfs_rq_is_idle(cfs_rq))
7144 			idle_h_nr_running = h_nr_running;
7145 
7146 		/* end evaluation on encountering a throttled cfs_rq */
7147 		if (cfs_rq_throttled(cfs_rq))
7148 			return 0;
7149 	}
7150 
7151 	sub_nr_running(rq, h_nr_running);
7152 
7153 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
7154 		dl_server_stop(&rq->fair_server);
7155 
7156 	/* balance early to pull high priority tasks */
7157 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7158 		rq->next_balance = jiffies;
7159 
7160 	if (p && task_delayed) {
7161 		SCHED_WARN_ON(!task_sleep);
7162 		SCHED_WARN_ON(p->on_rq != 1);
7163 
7164 		/* Fix-up what dequeue_task_fair() skipped */
7165 		hrtick_update(rq);
7166 
7167 		/* Fix-up what block_task() skipped. */
7168 		__block_task(rq, p);
7169 	}
7170 
7171 	return 1;
7172 }
7173 
7174 /*
7175  * The dequeue_task method is called before nr_running is
7176  * decreased. We remove the task from the rbtree and
7177  * update the fair scheduling stats:
7178  */
7179 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7180 {
7181 	util_est_dequeue(&rq->cfs, p);
7182 
7183 	if (dequeue_entities(rq, &p->se, flags) < 0) {
7184 		util_est_update(&rq->cfs, p, DEQUEUE_SLEEP);
7185 		return false;
7186 	}
7187 
7188 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7189 	hrtick_update(rq);
7190 	return true;
7191 }
7192 
7193 #ifdef CONFIG_SMP
7194 
7195 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7196 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7197 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7198 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7199 
7200 #ifdef CONFIG_NO_HZ_COMMON
7201 
7202 static struct {
7203 	cpumask_var_t idle_cpus_mask;
7204 	atomic_t nr_cpus;
7205 	int has_blocked;		/* Idle CPUS has blocked load */
7206 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7207 	unsigned long next_balance;     /* in jiffy units */
7208 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7209 } nohz ____cacheline_aligned;
7210 
7211 #endif /* CONFIG_NO_HZ_COMMON */
7212 
7213 static unsigned long cpu_load(struct rq *rq)
7214 {
7215 	return cfs_rq_load_avg(&rq->cfs);
7216 }
7217 
7218 /*
7219  * cpu_load_without - compute CPU load without any contributions from *p
7220  * @cpu: the CPU which load is requested
7221  * @p: the task which load should be discounted
7222  *
7223  * The load of a CPU is defined by the load of tasks currently enqueued on that
7224  * CPU as well as tasks which are currently sleeping after an execution on that
7225  * CPU.
7226  *
7227  * This method returns the load of the specified CPU by discounting the load of
7228  * the specified task, whenever the task is currently contributing to the CPU
7229  * load.
7230  */
7231 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7232 {
7233 	struct cfs_rq *cfs_rq;
7234 	unsigned int load;
7235 
7236 	/* Task has no contribution or is new */
7237 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7238 		return cpu_load(rq);
7239 
7240 	cfs_rq = &rq->cfs;
7241 	load = READ_ONCE(cfs_rq->avg.load_avg);
7242 
7243 	/* Discount task's util from CPU's util */
7244 	lsub_positive(&load, task_h_load(p));
7245 
7246 	return load;
7247 }
7248 
7249 static unsigned long cpu_runnable(struct rq *rq)
7250 {
7251 	return cfs_rq_runnable_avg(&rq->cfs);
7252 }
7253 
7254 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7255 {
7256 	struct cfs_rq *cfs_rq;
7257 	unsigned int runnable;
7258 
7259 	/* Task has no contribution or is new */
7260 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7261 		return cpu_runnable(rq);
7262 
7263 	cfs_rq = &rq->cfs;
7264 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7265 
7266 	/* Discount task's runnable from CPU's runnable */
7267 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7268 
7269 	return runnable;
7270 }
7271 
7272 static unsigned long capacity_of(int cpu)
7273 {
7274 	return cpu_rq(cpu)->cpu_capacity;
7275 }
7276 
7277 static void record_wakee(struct task_struct *p)
7278 {
7279 	/*
7280 	 * Only decay a single time; tasks that have less then 1 wakeup per
7281 	 * jiffy will not have built up many flips.
7282 	 */
7283 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7284 		current->wakee_flips >>= 1;
7285 		current->wakee_flip_decay_ts = jiffies;
7286 	}
7287 
7288 	if (current->last_wakee != p) {
7289 		current->last_wakee = p;
7290 		current->wakee_flips++;
7291 	}
7292 }
7293 
7294 /*
7295  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7296  *
7297  * A waker of many should wake a different task than the one last awakened
7298  * at a frequency roughly N times higher than one of its wakees.
7299  *
7300  * In order to determine whether we should let the load spread vs consolidating
7301  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7302  * partner, and a factor of lls_size higher frequency in the other.
7303  *
7304  * With both conditions met, we can be relatively sure that the relationship is
7305  * non-monogamous, with partner count exceeding socket size.
7306  *
7307  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7308  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7309  * socket size.
7310  */
7311 static int wake_wide(struct task_struct *p)
7312 {
7313 	unsigned int master = current->wakee_flips;
7314 	unsigned int slave = p->wakee_flips;
7315 	int factor = __this_cpu_read(sd_llc_size);
7316 
7317 	if (master < slave)
7318 		swap(master, slave);
7319 	if (slave < factor || master < slave * factor)
7320 		return 0;
7321 	return 1;
7322 }
7323 
7324 /*
7325  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7326  * soonest. For the purpose of speed we only consider the waking and previous
7327  * CPU.
7328  *
7329  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7330  *			cache-affine and is (or	will be) idle.
7331  *
7332  * wake_affine_weight() - considers the weight to reflect the average
7333  *			  scheduling latency of the CPUs. This seems to work
7334  *			  for the overloaded case.
7335  */
7336 static int
7337 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7338 {
7339 	/*
7340 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7341 	 * context. Only allow the move if cache is shared. Otherwise an
7342 	 * interrupt intensive workload could force all tasks onto one
7343 	 * node depending on the IO topology or IRQ affinity settings.
7344 	 *
7345 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7346 	 * There is no guarantee that the cache hot data from an interrupt
7347 	 * is more important than cache hot data on the prev_cpu and from
7348 	 * a cpufreq perspective, it's better to have higher utilisation
7349 	 * on one CPU.
7350 	 */
7351 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7352 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7353 
7354 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7355 		return this_cpu;
7356 
7357 	if (available_idle_cpu(prev_cpu))
7358 		return prev_cpu;
7359 
7360 	return nr_cpumask_bits;
7361 }
7362 
7363 static int
7364 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7365 		   int this_cpu, int prev_cpu, int sync)
7366 {
7367 	s64 this_eff_load, prev_eff_load;
7368 	unsigned long task_load;
7369 
7370 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7371 
7372 	if (sync) {
7373 		unsigned long current_load = task_h_load(current);
7374 
7375 		if (current_load > this_eff_load)
7376 			return this_cpu;
7377 
7378 		this_eff_load -= current_load;
7379 	}
7380 
7381 	task_load = task_h_load(p);
7382 
7383 	this_eff_load += task_load;
7384 	if (sched_feat(WA_BIAS))
7385 		this_eff_load *= 100;
7386 	this_eff_load *= capacity_of(prev_cpu);
7387 
7388 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7389 	prev_eff_load -= task_load;
7390 	if (sched_feat(WA_BIAS))
7391 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7392 	prev_eff_load *= capacity_of(this_cpu);
7393 
7394 	/*
7395 	 * If sync, adjust the weight of prev_eff_load such that if
7396 	 * prev_eff == this_eff that select_idle_sibling() will consider
7397 	 * stacking the wakee on top of the waker if no other CPU is
7398 	 * idle.
7399 	 */
7400 	if (sync)
7401 		prev_eff_load += 1;
7402 
7403 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7404 }
7405 
7406 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7407 		       int this_cpu, int prev_cpu, int sync)
7408 {
7409 	int target = nr_cpumask_bits;
7410 
7411 	if (sched_feat(WA_IDLE))
7412 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7413 
7414 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7415 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7416 
7417 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7418 	if (target != this_cpu)
7419 		return prev_cpu;
7420 
7421 	schedstat_inc(sd->ttwu_move_affine);
7422 	schedstat_inc(p->stats.nr_wakeups_affine);
7423 	return target;
7424 }
7425 
7426 static struct sched_group *
7427 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7428 
7429 /*
7430  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7431  */
7432 static int
7433 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7434 {
7435 	unsigned long load, min_load = ULONG_MAX;
7436 	unsigned int min_exit_latency = UINT_MAX;
7437 	u64 latest_idle_timestamp = 0;
7438 	int least_loaded_cpu = this_cpu;
7439 	int shallowest_idle_cpu = -1;
7440 	int i;
7441 
7442 	/* Check if we have any choice: */
7443 	if (group->group_weight == 1)
7444 		return cpumask_first(sched_group_span(group));
7445 
7446 	/* Traverse only the allowed CPUs */
7447 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7448 		struct rq *rq = cpu_rq(i);
7449 
7450 		if (!sched_core_cookie_match(rq, p))
7451 			continue;
7452 
7453 		if (sched_idle_cpu(i))
7454 			return i;
7455 
7456 		if (available_idle_cpu(i)) {
7457 			struct cpuidle_state *idle = idle_get_state(rq);
7458 			if (idle && idle->exit_latency < min_exit_latency) {
7459 				/*
7460 				 * We give priority to a CPU whose idle state
7461 				 * has the smallest exit latency irrespective
7462 				 * of any idle timestamp.
7463 				 */
7464 				min_exit_latency = idle->exit_latency;
7465 				latest_idle_timestamp = rq->idle_stamp;
7466 				shallowest_idle_cpu = i;
7467 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7468 				   rq->idle_stamp > latest_idle_timestamp) {
7469 				/*
7470 				 * If equal or no active idle state, then
7471 				 * the most recently idled CPU might have
7472 				 * a warmer cache.
7473 				 */
7474 				latest_idle_timestamp = rq->idle_stamp;
7475 				shallowest_idle_cpu = i;
7476 			}
7477 		} else if (shallowest_idle_cpu == -1) {
7478 			load = cpu_load(cpu_rq(i));
7479 			if (load < min_load) {
7480 				min_load = load;
7481 				least_loaded_cpu = i;
7482 			}
7483 		}
7484 	}
7485 
7486 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7487 }
7488 
7489 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7490 				  int cpu, int prev_cpu, int sd_flag)
7491 {
7492 	int new_cpu = cpu;
7493 
7494 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7495 		return prev_cpu;
7496 
7497 	/*
7498 	 * We need task's util for cpu_util_without, sync it up to
7499 	 * prev_cpu's last_update_time.
7500 	 */
7501 	if (!(sd_flag & SD_BALANCE_FORK))
7502 		sync_entity_load_avg(&p->se);
7503 
7504 	while (sd) {
7505 		struct sched_group *group;
7506 		struct sched_domain *tmp;
7507 		int weight;
7508 
7509 		if (!(sd->flags & sd_flag)) {
7510 			sd = sd->child;
7511 			continue;
7512 		}
7513 
7514 		group = sched_balance_find_dst_group(sd, p, cpu);
7515 		if (!group) {
7516 			sd = sd->child;
7517 			continue;
7518 		}
7519 
7520 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7521 		if (new_cpu == cpu) {
7522 			/* Now try balancing at a lower domain level of 'cpu': */
7523 			sd = sd->child;
7524 			continue;
7525 		}
7526 
7527 		/* Now try balancing at a lower domain level of 'new_cpu': */
7528 		cpu = new_cpu;
7529 		weight = sd->span_weight;
7530 		sd = NULL;
7531 		for_each_domain(cpu, tmp) {
7532 			if (weight <= tmp->span_weight)
7533 				break;
7534 			if (tmp->flags & sd_flag)
7535 				sd = tmp;
7536 		}
7537 	}
7538 
7539 	return new_cpu;
7540 }
7541 
7542 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7543 {
7544 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7545 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7546 		return cpu;
7547 
7548 	return -1;
7549 }
7550 
7551 #ifdef CONFIG_SCHED_SMT
7552 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7553 EXPORT_SYMBOL_GPL(sched_smt_present);
7554 
7555 static inline void set_idle_cores(int cpu, int val)
7556 {
7557 	struct sched_domain_shared *sds;
7558 
7559 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7560 	if (sds)
7561 		WRITE_ONCE(sds->has_idle_cores, val);
7562 }
7563 
7564 static inline bool test_idle_cores(int cpu)
7565 {
7566 	struct sched_domain_shared *sds;
7567 
7568 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7569 	if (sds)
7570 		return READ_ONCE(sds->has_idle_cores);
7571 
7572 	return false;
7573 }
7574 
7575 /*
7576  * Scans the local SMT mask to see if the entire core is idle, and records this
7577  * information in sd_llc_shared->has_idle_cores.
7578  *
7579  * Since SMT siblings share all cache levels, inspecting this limited remote
7580  * state should be fairly cheap.
7581  */
7582 void __update_idle_core(struct rq *rq)
7583 {
7584 	int core = cpu_of(rq);
7585 	int cpu;
7586 
7587 	rcu_read_lock();
7588 	if (test_idle_cores(core))
7589 		goto unlock;
7590 
7591 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7592 		if (cpu == core)
7593 			continue;
7594 
7595 		if (!available_idle_cpu(cpu))
7596 			goto unlock;
7597 	}
7598 
7599 	set_idle_cores(core, 1);
7600 unlock:
7601 	rcu_read_unlock();
7602 }
7603 
7604 /*
7605  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7606  * there are no idle cores left in the system; tracked through
7607  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7608  */
7609 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7610 {
7611 	bool idle = true;
7612 	int cpu;
7613 
7614 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7615 		if (!available_idle_cpu(cpu)) {
7616 			idle = false;
7617 			if (*idle_cpu == -1) {
7618 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7619 					*idle_cpu = cpu;
7620 					break;
7621 				}
7622 				continue;
7623 			}
7624 			break;
7625 		}
7626 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7627 			*idle_cpu = cpu;
7628 	}
7629 
7630 	if (idle)
7631 		return core;
7632 
7633 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7634 	return -1;
7635 }
7636 
7637 /*
7638  * Scan the local SMT mask for idle CPUs.
7639  */
7640 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7641 {
7642 	int cpu;
7643 
7644 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7645 		if (cpu == target)
7646 			continue;
7647 		/*
7648 		 * Check if the CPU is in the LLC scheduling domain of @target.
7649 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7650 		 */
7651 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7652 			continue;
7653 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7654 			return cpu;
7655 	}
7656 
7657 	return -1;
7658 }
7659 
7660 #else /* CONFIG_SCHED_SMT */
7661 
7662 static inline void set_idle_cores(int cpu, int val)
7663 {
7664 }
7665 
7666 static inline bool test_idle_cores(int cpu)
7667 {
7668 	return false;
7669 }
7670 
7671 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7672 {
7673 	return __select_idle_cpu(core, p);
7674 }
7675 
7676 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7677 {
7678 	return -1;
7679 }
7680 
7681 #endif /* CONFIG_SCHED_SMT */
7682 
7683 /*
7684  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7685  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7686  * average idle time for this rq (as found in rq->avg_idle).
7687  */
7688 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7689 {
7690 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7691 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7692 	struct sched_domain_shared *sd_share;
7693 
7694 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7695 
7696 	if (sched_feat(SIS_UTIL)) {
7697 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7698 		if (sd_share) {
7699 			/* because !--nr is the condition to stop scan */
7700 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7701 			/* overloaded LLC is unlikely to have idle cpu/core */
7702 			if (nr == 1)
7703 				return -1;
7704 		}
7705 	}
7706 
7707 	if (static_branch_unlikely(&sched_cluster_active)) {
7708 		struct sched_group *sg = sd->groups;
7709 
7710 		if (sg->flags & SD_CLUSTER) {
7711 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7712 				if (!cpumask_test_cpu(cpu, cpus))
7713 					continue;
7714 
7715 				if (has_idle_core) {
7716 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7717 					if ((unsigned int)i < nr_cpumask_bits)
7718 						return i;
7719 				} else {
7720 					if (--nr <= 0)
7721 						return -1;
7722 					idle_cpu = __select_idle_cpu(cpu, p);
7723 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7724 						return idle_cpu;
7725 				}
7726 			}
7727 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7728 		}
7729 	}
7730 
7731 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7732 		if (has_idle_core) {
7733 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7734 			if ((unsigned int)i < nr_cpumask_bits)
7735 				return i;
7736 
7737 		} else {
7738 			if (--nr <= 0)
7739 				return -1;
7740 			idle_cpu = __select_idle_cpu(cpu, p);
7741 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7742 				break;
7743 		}
7744 	}
7745 
7746 	if (has_idle_core)
7747 		set_idle_cores(target, false);
7748 
7749 	return idle_cpu;
7750 }
7751 
7752 /*
7753  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7754  * the task fits. If no CPU is big enough, but there are idle ones, try to
7755  * maximize capacity.
7756  */
7757 static int
7758 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7759 {
7760 	unsigned long task_util, util_min, util_max, best_cap = 0;
7761 	int fits, best_fits = 0;
7762 	int cpu, best_cpu = -1;
7763 	struct cpumask *cpus;
7764 
7765 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7766 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7767 
7768 	task_util = task_util_est(p);
7769 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7770 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7771 
7772 	for_each_cpu_wrap(cpu, cpus, target) {
7773 		unsigned long cpu_cap = capacity_of(cpu);
7774 
7775 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7776 			continue;
7777 
7778 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7779 
7780 		/* This CPU fits with all requirements */
7781 		if (fits > 0)
7782 			return cpu;
7783 		/*
7784 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7785 		 * Look for the CPU with best capacity.
7786 		 */
7787 		else if (fits < 0)
7788 			cpu_cap = get_actual_cpu_capacity(cpu);
7789 
7790 		/*
7791 		 * First, select CPU which fits better (-1 being better than 0).
7792 		 * Then, select the one with best capacity at same level.
7793 		 */
7794 		if ((fits < best_fits) ||
7795 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7796 			best_cap = cpu_cap;
7797 			best_cpu = cpu;
7798 			best_fits = fits;
7799 		}
7800 	}
7801 
7802 	return best_cpu;
7803 }
7804 
7805 static inline bool asym_fits_cpu(unsigned long util,
7806 				 unsigned long util_min,
7807 				 unsigned long util_max,
7808 				 int cpu)
7809 {
7810 	if (sched_asym_cpucap_active())
7811 		/*
7812 		 * Return true only if the cpu fully fits the task requirements
7813 		 * which include the utilization and the performance hints.
7814 		 */
7815 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7816 
7817 	return true;
7818 }
7819 
7820 /*
7821  * Try and locate an idle core/thread in the LLC cache domain.
7822  */
7823 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7824 {
7825 	bool has_idle_core = false;
7826 	struct sched_domain *sd;
7827 	unsigned long task_util, util_min, util_max;
7828 	int i, recent_used_cpu, prev_aff = -1;
7829 
7830 	/*
7831 	 * On asymmetric system, update task utilization because we will check
7832 	 * that the task fits with CPU's capacity.
7833 	 */
7834 	if (sched_asym_cpucap_active()) {
7835 		sync_entity_load_avg(&p->se);
7836 		task_util = task_util_est(p);
7837 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7838 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7839 	}
7840 
7841 	/*
7842 	 * per-cpu select_rq_mask usage
7843 	 */
7844 	lockdep_assert_irqs_disabled();
7845 
7846 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7847 	    asym_fits_cpu(task_util, util_min, util_max, target))
7848 		return target;
7849 
7850 	/*
7851 	 * If the previous CPU is cache affine and idle, don't be stupid:
7852 	 */
7853 	if (prev != target && cpus_share_cache(prev, target) &&
7854 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7855 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7856 
7857 		if (!static_branch_unlikely(&sched_cluster_active) ||
7858 		    cpus_share_resources(prev, target))
7859 			return prev;
7860 
7861 		prev_aff = prev;
7862 	}
7863 
7864 	/*
7865 	 * Allow a per-cpu kthread to stack with the wakee if the
7866 	 * kworker thread and the tasks previous CPUs are the same.
7867 	 * The assumption is that the wakee queued work for the
7868 	 * per-cpu kthread that is now complete and the wakeup is
7869 	 * essentially a sync wakeup. An obvious example of this
7870 	 * pattern is IO completions.
7871 	 */
7872 	if (is_per_cpu_kthread(current) &&
7873 	    in_task() &&
7874 	    prev == smp_processor_id() &&
7875 	    this_rq()->nr_running <= 1 &&
7876 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7877 		return prev;
7878 	}
7879 
7880 	/* Check a recently used CPU as a potential idle candidate: */
7881 	recent_used_cpu = p->recent_used_cpu;
7882 	p->recent_used_cpu = prev;
7883 	if (recent_used_cpu != prev &&
7884 	    recent_used_cpu != target &&
7885 	    cpus_share_cache(recent_used_cpu, target) &&
7886 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7887 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7888 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7889 
7890 		if (!static_branch_unlikely(&sched_cluster_active) ||
7891 		    cpus_share_resources(recent_used_cpu, target))
7892 			return recent_used_cpu;
7893 
7894 	} else {
7895 		recent_used_cpu = -1;
7896 	}
7897 
7898 	/*
7899 	 * For asymmetric CPU capacity systems, our domain of interest is
7900 	 * sd_asym_cpucapacity rather than sd_llc.
7901 	 */
7902 	if (sched_asym_cpucap_active()) {
7903 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7904 		/*
7905 		 * On an asymmetric CPU capacity system where an exclusive
7906 		 * cpuset defines a symmetric island (i.e. one unique
7907 		 * capacity_orig value through the cpuset), the key will be set
7908 		 * but the CPUs within that cpuset will not have a domain with
7909 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7910 		 * capacity path.
7911 		 */
7912 		if (sd) {
7913 			i = select_idle_capacity(p, sd, target);
7914 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7915 		}
7916 	}
7917 
7918 	sd = rcu_dereference(per_cpu(sd_llc, target));
7919 	if (!sd)
7920 		return target;
7921 
7922 	if (sched_smt_active()) {
7923 		has_idle_core = test_idle_cores(target);
7924 
7925 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7926 			i = select_idle_smt(p, sd, prev);
7927 			if ((unsigned int)i < nr_cpumask_bits)
7928 				return i;
7929 		}
7930 	}
7931 
7932 	i = select_idle_cpu(p, sd, has_idle_core, target);
7933 	if ((unsigned)i < nr_cpumask_bits)
7934 		return i;
7935 
7936 	/*
7937 	 * For cluster machines which have lower sharing cache like L2 or
7938 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7939 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7940 	 * use them if possible when no idle CPU found in select_idle_cpu().
7941 	 */
7942 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7943 		return prev_aff;
7944 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7945 		return recent_used_cpu;
7946 
7947 	return target;
7948 }
7949 
7950 /**
7951  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7952  * @cpu: the CPU to get the utilization for
7953  * @p: task for which the CPU utilization should be predicted or NULL
7954  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7955  * @boost: 1 to enable boosting, otherwise 0
7956  *
7957  * The unit of the return value must be the same as the one of CPU capacity
7958  * so that CPU utilization can be compared with CPU capacity.
7959  *
7960  * CPU utilization is the sum of running time of runnable tasks plus the
7961  * recent utilization of currently non-runnable tasks on that CPU.
7962  * It represents the amount of CPU capacity currently used by CFS tasks in
7963  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7964  * capacity at f_max.
7965  *
7966  * The estimated CPU utilization is defined as the maximum between CPU
7967  * utilization and sum of the estimated utilization of the currently
7968  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7969  * previously-executed tasks, which helps better deduce how busy a CPU will
7970  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7971  * of such a task would be significantly decayed at this point of time.
7972  *
7973  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7974  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7975  * utilization. Boosting is implemented in cpu_util() so that internal
7976  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7977  * latter via cpu_util_cfs_boost().
7978  *
7979  * CPU utilization can be higher than the current CPU capacity
7980  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7981  * of rounding errors as well as task migrations or wakeups of new tasks.
7982  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7983  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7984  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7985  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7986  * though since this is useful for predicting the CPU capacity required
7987  * after task migrations (scheduler-driven DVFS).
7988  *
7989  * Return: (Boosted) (estimated) utilization for the specified CPU.
7990  */
7991 static unsigned long
7992 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7993 {
7994 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7995 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7996 	unsigned long runnable;
7997 
7998 	if (boost) {
7999 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8000 		util = max(util, runnable);
8001 	}
8002 
8003 	/*
8004 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8005 	 * contribution. If @p migrates from another CPU to @cpu add its
8006 	 * contribution. In all the other cases @cpu is not impacted by the
8007 	 * migration so its util_avg is already correct.
8008 	 */
8009 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8010 		lsub_positive(&util, task_util(p));
8011 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8012 		util += task_util(p);
8013 
8014 	if (sched_feat(UTIL_EST)) {
8015 		unsigned long util_est;
8016 
8017 		util_est = READ_ONCE(cfs_rq->avg.util_est);
8018 
8019 		/*
8020 		 * During wake-up @p isn't enqueued yet and doesn't contribute
8021 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8022 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8023 		 * has been enqueued.
8024 		 *
8025 		 * During exec (@dst_cpu = -1) @p is enqueued and does
8026 		 * contribute to cpu_rq(cpu)->cfs.util_est.
8027 		 * Remove it to "simulate" cpu_util without @p's contribution.
8028 		 *
8029 		 * Despite the task_on_rq_queued(@p) check there is still a
8030 		 * small window for a possible race when an exec
8031 		 * select_task_rq_fair() races with LB's detach_task().
8032 		 *
8033 		 *   detach_task()
8034 		 *     deactivate_task()
8035 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8036 		 *       -------------------------------- A
8037 		 *       dequeue_task()                    \
8038 		 *         dequeue_task_fair()              + Race Time
8039 		 *           util_est_dequeue()            /
8040 		 *       -------------------------------- B
8041 		 *
8042 		 * The additional check "current == p" is required to further
8043 		 * reduce the race window.
8044 		 */
8045 		if (dst_cpu == cpu)
8046 			util_est += _task_util_est(p);
8047 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8048 			lsub_positive(&util_est, _task_util_est(p));
8049 
8050 		util = max(util, util_est);
8051 	}
8052 
8053 	return min(util, arch_scale_cpu_capacity(cpu));
8054 }
8055 
8056 unsigned long cpu_util_cfs(int cpu)
8057 {
8058 	return cpu_util(cpu, NULL, -1, 0);
8059 }
8060 
8061 unsigned long cpu_util_cfs_boost(int cpu)
8062 {
8063 	return cpu_util(cpu, NULL, -1, 1);
8064 }
8065 
8066 /*
8067  * cpu_util_without: compute cpu utilization without any contributions from *p
8068  * @cpu: the CPU which utilization is requested
8069  * @p: the task which utilization should be discounted
8070  *
8071  * The utilization of a CPU is defined by the utilization of tasks currently
8072  * enqueued on that CPU as well as tasks which are currently sleeping after an
8073  * execution on that CPU.
8074  *
8075  * This method returns the utilization of the specified CPU by discounting the
8076  * utilization of the specified task, whenever the task is currently
8077  * contributing to the CPU utilization.
8078  */
8079 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8080 {
8081 	/* Task has no contribution or is new */
8082 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8083 		p = NULL;
8084 
8085 	return cpu_util(cpu, p, -1, 0);
8086 }
8087 
8088 /*
8089  * energy_env - Utilization landscape for energy estimation.
8090  * @task_busy_time: Utilization contribution by the task for which we test the
8091  *                  placement. Given by eenv_task_busy_time().
8092  * @pd_busy_time:   Utilization of the whole perf domain without the task
8093  *                  contribution. Given by eenv_pd_busy_time().
8094  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8095  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8096  */
8097 struct energy_env {
8098 	unsigned long task_busy_time;
8099 	unsigned long pd_busy_time;
8100 	unsigned long cpu_cap;
8101 	unsigned long pd_cap;
8102 };
8103 
8104 /*
8105  * Compute the task busy time for compute_energy(). This time cannot be
8106  * injected directly into effective_cpu_util() because of the IRQ scaling.
8107  * The latter only makes sense with the most recent CPUs where the task has
8108  * run.
8109  */
8110 static inline void eenv_task_busy_time(struct energy_env *eenv,
8111 				       struct task_struct *p, int prev_cpu)
8112 {
8113 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8114 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8115 
8116 	if (unlikely(irq >= max_cap))
8117 		busy_time = max_cap;
8118 	else
8119 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8120 
8121 	eenv->task_busy_time = busy_time;
8122 }
8123 
8124 /*
8125  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8126  * utilization for each @pd_cpus, it however doesn't take into account
8127  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8128  * scale the EM reported power consumption at the (eventually clamped)
8129  * cpu_capacity.
8130  *
8131  * The contribution of the task @p for which we want to estimate the
8132  * energy cost is removed (by cpu_util()) and must be calculated
8133  * separately (see eenv_task_busy_time). This ensures:
8134  *
8135  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8136  *     the task on.
8137  *
8138  *   - A fair comparison between CPUs as the task contribution (task_util())
8139  *     will always be the same no matter which CPU utilization we rely on
8140  *     (util_avg or util_est).
8141  *
8142  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8143  * exceed @eenv->pd_cap.
8144  */
8145 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8146 				     struct cpumask *pd_cpus,
8147 				     struct task_struct *p)
8148 {
8149 	unsigned long busy_time = 0;
8150 	int cpu;
8151 
8152 	for_each_cpu(cpu, pd_cpus) {
8153 		unsigned long util = cpu_util(cpu, p, -1, 0);
8154 
8155 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8156 	}
8157 
8158 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8159 }
8160 
8161 /*
8162  * Compute the maximum utilization for compute_energy() when the task @p
8163  * is placed on the cpu @dst_cpu.
8164  *
8165  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8166  * exceed @eenv->cpu_cap.
8167  */
8168 static inline unsigned long
8169 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8170 		 struct task_struct *p, int dst_cpu)
8171 {
8172 	unsigned long max_util = 0;
8173 	int cpu;
8174 
8175 	for_each_cpu(cpu, pd_cpus) {
8176 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8177 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8178 		unsigned long eff_util, min, max;
8179 
8180 		/*
8181 		 * Performance domain frequency: utilization clamping
8182 		 * must be considered since it affects the selection
8183 		 * of the performance domain frequency.
8184 		 * NOTE: in case RT tasks are running, by default the min
8185 		 * utilization can be max OPP.
8186 		 */
8187 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8188 
8189 		/* Task's uclamp can modify min and max value */
8190 		if (tsk && uclamp_is_used()) {
8191 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8192 
8193 			/*
8194 			 * If there is no active max uclamp constraint,
8195 			 * directly use task's one, otherwise keep max.
8196 			 */
8197 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8198 				max = uclamp_eff_value(p, UCLAMP_MAX);
8199 			else
8200 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8201 		}
8202 
8203 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8204 		max_util = max(max_util, eff_util);
8205 	}
8206 
8207 	return min(max_util, eenv->cpu_cap);
8208 }
8209 
8210 /*
8211  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8212  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8213  * contribution is ignored.
8214  */
8215 static inline unsigned long
8216 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8217 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8218 {
8219 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8220 	unsigned long busy_time = eenv->pd_busy_time;
8221 	unsigned long energy;
8222 
8223 	if (dst_cpu >= 0)
8224 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8225 
8226 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8227 
8228 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8229 
8230 	return energy;
8231 }
8232 
8233 /*
8234  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8235  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8236  * spare capacity in each performance domain and uses it as a potential
8237  * candidate to execute the task. Then, it uses the Energy Model to figure
8238  * out which of the CPU candidates is the most energy-efficient.
8239  *
8240  * The rationale for this heuristic is as follows. In a performance domain,
8241  * all the most energy efficient CPU candidates (according to the Energy
8242  * Model) are those for which we'll request a low frequency. When there are
8243  * several CPUs for which the frequency request will be the same, we don't
8244  * have enough data to break the tie between them, because the Energy Model
8245  * only includes active power costs. With this model, if we assume that
8246  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8247  * the maximum spare capacity in a performance domain is guaranteed to be among
8248  * the best candidates of the performance domain.
8249  *
8250  * In practice, it could be preferable from an energy standpoint to pack
8251  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8252  * but that could also hurt our chances to go cluster idle, and we have no
8253  * ways to tell with the current Energy Model if this is actually a good
8254  * idea or not. So, find_energy_efficient_cpu() basically favors
8255  * cluster-packing, and spreading inside a cluster. That should at least be
8256  * a good thing for latency, and this is consistent with the idea that most
8257  * of the energy savings of EAS come from the asymmetry of the system, and
8258  * not so much from breaking the tie between identical CPUs. That's also the
8259  * reason why EAS is enabled in the topology code only for systems where
8260  * SD_ASYM_CPUCAPACITY is set.
8261  *
8262  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8263  * they don't have any useful utilization data yet and it's not possible to
8264  * forecast their impact on energy consumption. Consequently, they will be
8265  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8266  * to be energy-inefficient in some use-cases. The alternative would be to
8267  * bias new tasks towards specific types of CPUs first, or to try to infer
8268  * their util_avg from the parent task, but those heuristics could hurt
8269  * other use-cases too. So, until someone finds a better way to solve this,
8270  * let's keep things simple by re-using the existing slow path.
8271  */
8272 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8273 {
8274 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8275 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8276 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8277 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8278 	struct root_domain *rd = this_rq()->rd;
8279 	int cpu, best_energy_cpu, target = -1;
8280 	int prev_fits = -1, best_fits = -1;
8281 	unsigned long best_actual_cap = 0;
8282 	unsigned long prev_actual_cap = 0;
8283 	struct sched_domain *sd;
8284 	struct perf_domain *pd;
8285 	struct energy_env eenv;
8286 
8287 	rcu_read_lock();
8288 	pd = rcu_dereference(rd->pd);
8289 	if (!pd)
8290 		goto unlock;
8291 
8292 	/*
8293 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8294 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8295 	 */
8296 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8297 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8298 		sd = sd->parent;
8299 	if (!sd)
8300 		goto unlock;
8301 
8302 	target = prev_cpu;
8303 
8304 	sync_entity_load_avg(&p->se);
8305 	if (!task_util_est(p) && p_util_min == 0)
8306 		goto unlock;
8307 
8308 	eenv_task_busy_time(&eenv, p, prev_cpu);
8309 
8310 	for (; pd; pd = pd->next) {
8311 		unsigned long util_min = p_util_min, util_max = p_util_max;
8312 		unsigned long cpu_cap, cpu_actual_cap, util;
8313 		long prev_spare_cap = -1, max_spare_cap = -1;
8314 		unsigned long rq_util_min, rq_util_max;
8315 		unsigned long cur_delta, base_energy;
8316 		int max_spare_cap_cpu = -1;
8317 		int fits, max_fits = -1;
8318 
8319 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8320 
8321 		if (cpumask_empty(cpus))
8322 			continue;
8323 
8324 		/* Account external pressure for the energy estimation */
8325 		cpu = cpumask_first(cpus);
8326 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8327 
8328 		eenv.cpu_cap = cpu_actual_cap;
8329 		eenv.pd_cap = 0;
8330 
8331 		for_each_cpu(cpu, cpus) {
8332 			struct rq *rq = cpu_rq(cpu);
8333 
8334 			eenv.pd_cap += cpu_actual_cap;
8335 
8336 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8337 				continue;
8338 
8339 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8340 				continue;
8341 
8342 			util = cpu_util(cpu, p, cpu, 0);
8343 			cpu_cap = capacity_of(cpu);
8344 
8345 			/*
8346 			 * Skip CPUs that cannot satisfy the capacity request.
8347 			 * IOW, placing the task there would make the CPU
8348 			 * overutilized. Take uclamp into account to see how
8349 			 * much capacity we can get out of the CPU; this is
8350 			 * aligned with sched_cpu_util().
8351 			 */
8352 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8353 				/*
8354 				 * Open code uclamp_rq_util_with() except for
8355 				 * the clamp() part. I.e.: apply max aggregation
8356 				 * only. util_fits_cpu() logic requires to
8357 				 * operate on non clamped util but must use the
8358 				 * max-aggregated uclamp_{min, max}.
8359 				 */
8360 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8361 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8362 
8363 				util_min = max(rq_util_min, p_util_min);
8364 				util_max = max(rq_util_max, p_util_max);
8365 			}
8366 
8367 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8368 			if (!fits)
8369 				continue;
8370 
8371 			lsub_positive(&cpu_cap, util);
8372 
8373 			if (cpu == prev_cpu) {
8374 				/* Always use prev_cpu as a candidate. */
8375 				prev_spare_cap = cpu_cap;
8376 				prev_fits = fits;
8377 			} else if ((fits > max_fits) ||
8378 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8379 				/*
8380 				 * Find the CPU with the maximum spare capacity
8381 				 * among the remaining CPUs in the performance
8382 				 * domain.
8383 				 */
8384 				max_spare_cap = cpu_cap;
8385 				max_spare_cap_cpu = cpu;
8386 				max_fits = fits;
8387 			}
8388 		}
8389 
8390 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8391 			continue;
8392 
8393 		eenv_pd_busy_time(&eenv, cpus, p);
8394 		/* Compute the 'base' energy of the pd, without @p */
8395 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8396 
8397 		/* Evaluate the energy impact of using prev_cpu. */
8398 		if (prev_spare_cap > -1) {
8399 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8400 						    prev_cpu);
8401 			/* CPU utilization has changed */
8402 			if (prev_delta < base_energy)
8403 				goto unlock;
8404 			prev_delta -= base_energy;
8405 			prev_actual_cap = cpu_actual_cap;
8406 			best_delta = min(best_delta, prev_delta);
8407 		}
8408 
8409 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8410 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8411 			/* Current best energy cpu fits better */
8412 			if (max_fits < best_fits)
8413 				continue;
8414 
8415 			/*
8416 			 * Both don't fit performance hint (i.e. uclamp_min)
8417 			 * but best energy cpu has better capacity.
8418 			 */
8419 			if ((max_fits < 0) &&
8420 			    (cpu_actual_cap <= best_actual_cap))
8421 				continue;
8422 
8423 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8424 						   max_spare_cap_cpu);
8425 			/* CPU utilization has changed */
8426 			if (cur_delta < base_energy)
8427 				goto unlock;
8428 			cur_delta -= base_energy;
8429 
8430 			/*
8431 			 * Both fit for the task but best energy cpu has lower
8432 			 * energy impact.
8433 			 */
8434 			if ((max_fits > 0) && (best_fits > 0) &&
8435 			    (cur_delta >= best_delta))
8436 				continue;
8437 
8438 			best_delta = cur_delta;
8439 			best_energy_cpu = max_spare_cap_cpu;
8440 			best_fits = max_fits;
8441 			best_actual_cap = cpu_actual_cap;
8442 		}
8443 	}
8444 	rcu_read_unlock();
8445 
8446 	if ((best_fits > prev_fits) ||
8447 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8448 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8449 		target = best_energy_cpu;
8450 
8451 	return target;
8452 
8453 unlock:
8454 	rcu_read_unlock();
8455 
8456 	return target;
8457 }
8458 
8459 /*
8460  * select_task_rq_fair: Select target runqueue for the waking task in domains
8461  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8462  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8463  *
8464  * Balances load by selecting the idlest CPU in the idlest group, or under
8465  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8466  *
8467  * Returns the target CPU number.
8468  */
8469 static int
8470 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8471 {
8472 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8473 	struct sched_domain *tmp, *sd = NULL;
8474 	int cpu = smp_processor_id();
8475 	int new_cpu = prev_cpu;
8476 	int want_affine = 0;
8477 	/* SD_flags and WF_flags share the first nibble */
8478 	int sd_flag = wake_flags & 0xF;
8479 
8480 	/*
8481 	 * required for stable ->cpus_allowed
8482 	 */
8483 	lockdep_assert_held(&p->pi_lock);
8484 	if (wake_flags & WF_TTWU) {
8485 		record_wakee(p);
8486 
8487 		if ((wake_flags & WF_CURRENT_CPU) &&
8488 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8489 			return cpu;
8490 
8491 		if (!is_rd_overutilized(this_rq()->rd)) {
8492 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8493 			if (new_cpu >= 0)
8494 				return new_cpu;
8495 			new_cpu = prev_cpu;
8496 		}
8497 
8498 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8499 	}
8500 
8501 	rcu_read_lock();
8502 	for_each_domain(cpu, tmp) {
8503 		/*
8504 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8505 		 * cpu is a valid SD_WAKE_AFFINE target.
8506 		 */
8507 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8508 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8509 			if (cpu != prev_cpu)
8510 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8511 
8512 			sd = NULL; /* Prefer wake_affine over balance flags */
8513 			break;
8514 		}
8515 
8516 		/*
8517 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8518 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8519 		 * will usually go to the fast path.
8520 		 */
8521 		if (tmp->flags & sd_flag)
8522 			sd = tmp;
8523 		else if (!want_affine)
8524 			break;
8525 	}
8526 
8527 	if (unlikely(sd)) {
8528 		/* Slow path */
8529 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8530 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8531 		/* Fast path */
8532 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8533 	}
8534 	rcu_read_unlock();
8535 
8536 	return new_cpu;
8537 }
8538 
8539 /*
8540  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8541  * cfs_rq_of(p) references at time of call are still valid and identify the
8542  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8543  */
8544 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8545 {
8546 	struct sched_entity *se = &p->se;
8547 
8548 	if (!task_on_rq_migrating(p)) {
8549 		remove_entity_load_avg(se);
8550 
8551 		/*
8552 		 * Here, the task's PELT values have been updated according to
8553 		 * the current rq's clock. But if that clock hasn't been
8554 		 * updated in a while, a substantial idle time will be missed,
8555 		 * leading to an inflation after wake-up on the new rq.
8556 		 *
8557 		 * Estimate the missing time from the cfs_rq last_update_time
8558 		 * and update sched_avg to improve the PELT continuity after
8559 		 * migration.
8560 		 */
8561 		migrate_se_pelt_lag(se);
8562 	}
8563 
8564 	/* Tell new CPU we are migrated */
8565 	se->avg.last_update_time = 0;
8566 
8567 	update_scan_period(p, new_cpu);
8568 }
8569 
8570 static void task_dead_fair(struct task_struct *p)
8571 {
8572 	struct sched_entity *se = &p->se;
8573 
8574 	if (se->sched_delayed) {
8575 		struct rq_flags rf;
8576 		struct rq *rq;
8577 
8578 		rq = task_rq_lock(p, &rf);
8579 		if (se->sched_delayed) {
8580 			update_rq_clock(rq);
8581 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8582 		}
8583 		task_rq_unlock(rq, p, &rf);
8584 	}
8585 
8586 	remove_entity_load_avg(se);
8587 }
8588 
8589 /*
8590  * Set the max capacity the task is allowed to run at for misfit detection.
8591  */
8592 static void set_task_max_allowed_capacity(struct task_struct *p)
8593 {
8594 	struct asym_cap_data *entry;
8595 
8596 	if (!sched_asym_cpucap_active())
8597 		return;
8598 
8599 	rcu_read_lock();
8600 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8601 		cpumask_t *cpumask;
8602 
8603 		cpumask = cpu_capacity_span(entry);
8604 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8605 			continue;
8606 
8607 		p->max_allowed_capacity = entry->capacity;
8608 		break;
8609 	}
8610 	rcu_read_unlock();
8611 }
8612 
8613 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8614 {
8615 	set_cpus_allowed_common(p, ctx);
8616 	set_task_max_allowed_capacity(p);
8617 }
8618 
8619 static int
8620 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8621 {
8622 	if (sched_fair_runnable(rq))
8623 		return 1;
8624 
8625 	return sched_balance_newidle(rq, rf) != 0;
8626 }
8627 #else
8628 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8629 #endif /* CONFIG_SMP */
8630 
8631 static void set_next_buddy(struct sched_entity *se)
8632 {
8633 	for_each_sched_entity(se) {
8634 		if (SCHED_WARN_ON(!se->on_rq))
8635 			return;
8636 		if (se_is_idle(se))
8637 			return;
8638 		cfs_rq_of(se)->next = se;
8639 	}
8640 }
8641 
8642 /*
8643  * Preempt the current task with a newly woken task if needed:
8644  */
8645 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8646 {
8647 	struct task_struct *curr = rq->curr;
8648 	struct sched_entity *se = &curr->se, *pse = &p->se;
8649 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8650 	int cse_is_idle, pse_is_idle;
8651 
8652 	if (unlikely(se == pse))
8653 		return;
8654 
8655 	/*
8656 	 * This is possible from callers such as attach_tasks(), in which we
8657 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8658 	 * lead to a throttle).  This both saves work and prevents false
8659 	 * next-buddy nomination below.
8660 	 */
8661 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8662 		return;
8663 
8664 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8665 		set_next_buddy(pse);
8666 	}
8667 
8668 	/*
8669 	 * We can come here with TIF_NEED_RESCHED already set from new task
8670 	 * wake up path.
8671 	 *
8672 	 * Note: this also catches the edge-case of curr being in a throttled
8673 	 * group (e.g. via set_curr_task), since update_curr() (in the
8674 	 * enqueue of curr) will have resulted in resched being set.  This
8675 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8676 	 * below.
8677 	 */
8678 	if (test_tsk_need_resched(curr))
8679 		return;
8680 
8681 	if (!sched_feat(WAKEUP_PREEMPTION))
8682 		return;
8683 
8684 	find_matching_se(&se, &pse);
8685 	WARN_ON_ONCE(!pse);
8686 
8687 	cse_is_idle = se_is_idle(se);
8688 	pse_is_idle = se_is_idle(pse);
8689 
8690 	/*
8691 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8692 	 * in the inverse case).
8693 	 */
8694 	if (cse_is_idle && !pse_is_idle)
8695 		goto preempt;
8696 	if (cse_is_idle != pse_is_idle)
8697 		return;
8698 
8699 	/*
8700 	 * BATCH and IDLE tasks do not preempt others.
8701 	 */
8702 	if (unlikely(!normal_policy(p->policy)))
8703 		return;
8704 
8705 	cfs_rq = cfs_rq_of(se);
8706 	update_curr(cfs_rq);
8707 	/*
8708 	 * If @p has a shorter slice than current and @p is eligible, override
8709 	 * current's slice protection in order to allow preemption.
8710 	 *
8711 	 * Note that even if @p does not turn out to be the most eligible
8712 	 * task at this moment, current's slice protection will be lost.
8713 	 */
8714 	if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8715 		se->vlag = se->deadline + 1;
8716 
8717 	/*
8718 	 * If @p has become the most eligible task, force preemption.
8719 	 */
8720 	if (pick_eevdf(cfs_rq) == pse)
8721 		goto preempt;
8722 
8723 	return;
8724 
8725 preempt:
8726 	resched_curr(rq);
8727 }
8728 
8729 static struct task_struct *pick_task_fair(struct rq *rq)
8730 {
8731 	struct sched_entity *se;
8732 	struct cfs_rq *cfs_rq;
8733 
8734 again:
8735 	cfs_rq = &rq->cfs;
8736 	if (!cfs_rq->nr_running)
8737 		return NULL;
8738 
8739 	do {
8740 		/* Might not have done put_prev_entity() */
8741 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8742 			update_curr(cfs_rq);
8743 
8744 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8745 			goto again;
8746 
8747 		se = pick_next_entity(rq, cfs_rq);
8748 		if (!se)
8749 			goto again;
8750 		cfs_rq = group_cfs_rq(se);
8751 	} while (cfs_rq);
8752 
8753 	return task_of(se);
8754 }
8755 
8756 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8757 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8758 
8759 struct task_struct *
8760 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8761 {
8762 	struct sched_entity *se;
8763 	struct task_struct *p;
8764 	int new_tasks;
8765 
8766 again:
8767 	p = pick_task_fair(rq);
8768 	if (!p)
8769 		goto idle;
8770 	se = &p->se;
8771 
8772 #ifdef CONFIG_FAIR_GROUP_SCHED
8773 	if (prev->sched_class != &fair_sched_class)
8774 		goto simple;
8775 
8776 	__put_prev_set_next_dl_server(rq, prev, p);
8777 
8778 	/*
8779 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8780 	 * likely that a next task is from the same cgroup as the current.
8781 	 *
8782 	 * Therefore attempt to avoid putting and setting the entire cgroup
8783 	 * hierarchy, only change the part that actually changes.
8784 	 *
8785 	 * Since we haven't yet done put_prev_entity and if the selected task
8786 	 * is a different task than we started out with, try and touch the
8787 	 * least amount of cfs_rqs.
8788 	 */
8789 	if (prev != p) {
8790 		struct sched_entity *pse = &prev->se;
8791 		struct cfs_rq *cfs_rq;
8792 
8793 		while (!(cfs_rq = is_same_group(se, pse))) {
8794 			int se_depth = se->depth;
8795 			int pse_depth = pse->depth;
8796 
8797 			if (se_depth <= pse_depth) {
8798 				put_prev_entity(cfs_rq_of(pse), pse);
8799 				pse = parent_entity(pse);
8800 			}
8801 			if (se_depth >= pse_depth) {
8802 				set_next_entity(cfs_rq_of(se), se);
8803 				se = parent_entity(se);
8804 			}
8805 		}
8806 
8807 		put_prev_entity(cfs_rq, pse);
8808 		set_next_entity(cfs_rq, se);
8809 
8810 		__set_next_task_fair(rq, p, true);
8811 	}
8812 
8813 	return p;
8814 
8815 simple:
8816 #endif
8817 	put_prev_set_next_task(rq, prev, p);
8818 	return p;
8819 
8820 idle:
8821 	if (!rf)
8822 		return NULL;
8823 
8824 	new_tasks = sched_balance_newidle(rq, rf);
8825 
8826 	/*
8827 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8828 	 * possible for any higher priority task to appear. In that case we
8829 	 * must re-start the pick_next_entity() loop.
8830 	 */
8831 	if (new_tasks < 0)
8832 		return RETRY_TASK;
8833 
8834 	if (new_tasks > 0)
8835 		goto again;
8836 
8837 	/*
8838 	 * rq is about to be idle, check if we need to update the
8839 	 * lost_idle_time of clock_pelt
8840 	 */
8841 	update_idle_rq_clock_pelt(rq);
8842 
8843 	return NULL;
8844 }
8845 
8846 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8847 {
8848 	return pick_next_task_fair(rq, prev, NULL);
8849 }
8850 
8851 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8852 {
8853 	return !!dl_se->rq->cfs.nr_running;
8854 }
8855 
8856 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8857 {
8858 	return pick_task_fair(dl_se->rq);
8859 }
8860 
8861 void fair_server_init(struct rq *rq)
8862 {
8863 	struct sched_dl_entity *dl_se = &rq->fair_server;
8864 
8865 	init_dl_entity(dl_se);
8866 
8867 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8868 }
8869 
8870 /*
8871  * Account for a descheduled task:
8872  */
8873 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8874 {
8875 	struct sched_entity *se = &prev->se;
8876 	struct cfs_rq *cfs_rq;
8877 
8878 	for_each_sched_entity(se) {
8879 		cfs_rq = cfs_rq_of(se);
8880 		put_prev_entity(cfs_rq, se);
8881 	}
8882 }
8883 
8884 /*
8885  * sched_yield() is very simple
8886  */
8887 static void yield_task_fair(struct rq *rq)
8888 {
8889 	struct task_struct *curr = rq->curr;
8890 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8891 	struct sched_entity *se = &curr->se;
8892 
8893 	/*
8894 	 * Are we the only task in the tree?
8895 	 */
8896 	if (unlikely(rq->nr_running == 1))
8897 		return;
8898 
8899 	clear_buddies(cfs_rq, se);
8900 
8901 	update_rq_clock(rq);
8902 	/*
8903 	 * Update run-time statistics of the 'current'.
8904 	 */
8905 	update_curr(cfs_rq);
8906 	/*
8907 	 * Tell update_rq_clock() that we've just updated,
8908 	 * so we don't do microscopic update in schedule()
8909 	 * and double the fastpath cost.
8910 	 */
8911 	rq_clock_skip_update(rq);
8912 
8913 	se->deadline += calc_delta_fair(se->slice, se);
8914 }
8915 
8916 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8917 {
8918 	struct sched_entity *se = &p->se;
8919 
8920 	/* throttled hierarchies are not runnable */
8921 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8922 		return false;
8923 
8924 	/* Tell the scheduler that we'd really like se to run next. */
8925 	set_next_buddy(se);
8926 
8927 	yield_task_fair(rq);
8928 
8929 	return true;
8930 }
8931 
8932 #ifdef CONFIG_SMP
8933 /**************************************************
8934  * Fair scheduling class load-balancing methods.
8935  *
8936  * BASICS
8937  *
8938  * The purpose of load-balancing is to achieve the same basic fairness the
8939  * per-CPU scheduler provides, namely provide a proportional amount of compute
8940  * time to each task. This is expressed in the following equation:
8941  *
8942  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8943  *
8944  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8945  * W_i,0 is defined as:
8946  *
8947  *   W_i,0 = \Sum_j w_i,j                                             (2)
8948  *
8949  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8950  * is derived from the nice value as per sched_prio_to_weight[].
8951  *
8952  * The weight average is an exponential decay average of the instantaneous
8953  * weight:
8954  *
8955  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8956  *
8957  * C_i is the compute capacity of CPU i, typically it is the
8958  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8959  * can also include other factors [XXX].
8960  *
8961  * To achieve this balance we define a measure of imbalance which follows
8962  * directly from (1):
8963  *
8964  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8965  *
8966  * We them move tasks around to minimize the imbalance. In the continuous
8967  * function space it is obvious this converges, in the discrete case we get
8968  * a few fun cases generally called infeasible weight scenarios.
8969  *
8970  * [XXX expand on:
8971  *     - infeasible weights;
8972  *     - local vs global optima in the discrete case. ]
8973  *
8974  *
8975  * SCHED DOMAINS
8976  *
8977  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8978  * for all i,j solution, we create a tree of CPUs that follows the hardware
8979  * topology where each level pairs two lower groups (or better). This results
8980  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8981  * tree to only the first of the previous level and we decrease the frequency
8982  * of load-balance at each level inversely proportional to the number of CPUs in
8983  * the groups.
8984  *
8985  * This yields:
8986  *
8987  *     log_2 n     1     n
8988  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8989  *     i = 0      2^i   2^i
8990  *                               `- size of each group
8991  *         |         |     `- number of CPUs doing load-balance
8992  *         |         `- freq
8993  *         `- sum over all levels
8994  *
8995  * Coupled with a limit on how many tasks we can migrate every balance pass,
8996  * this makes (5) the runtime complexity of the balancer.
8997  *
8998  * An important property here is that each CPU is still (indirectly) connected
8999  * to every other CPU in at most O(log n) steps:
9000  *
9001  * The adjacency matrix of the resulting graph is given by:
9002  *
9003  *             log_2 n
9004  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9005  *             k = 0
9006  *
9007  * And you'll find that:
9008  *
9009  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9010  *
9011  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9012  * The task movement gives a factor of O(m), giving a convergence complexity
9013  * of:
9014  *
9015  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9016  *
9017  *
9018  * WORK CONSERVING
9019  *
9020  * In order to avoid CPUs going idle while there's still work to do, new idle
9021  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9022  * tree itself instead of relying on other CPUs to bring it work.
9023  *
9024  * This adds some complexity to both (5) and (8) but it reduces the total idle
9025  * time.
9026  *
9027  * [XXX more?]
9028  *
9029  *
9030  * CGROUPS
9031  *
9032  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9033  *
9034  *                                s_k,i
9035  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9036  *                                 S_k
9037  *
9038  * Where
9039  *
9040  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9041  *
9042  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9043  *
9044  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9045  * property.
9046  *
9047  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9048  *      rewrite all of this once again.]
9049  */
9050 
9051 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9052 
9053 enum fbq_type { regular, remote, all };
9054 
9055 /*
9056  * 'group_type' describes the group of CPUs at the moment of load balancing.
9057  *
9058  * The enum is ordered by pulling priority, with the group with lowest priority
9059  * first so the group_type can simply be compared when selecting the busiest
9060  * group. See update_sd_pick_busiest().
9061  */
9062 enum group_type {
9063 	/* The group has spare capacity that can be used to run more tasks.  */
9064 	group_has_spare = 0,
9065 	/*
9066 	 * The group is fully used and the tasks don't compete for more CPU
9067 	 * cycles. Nevertheless, some tasks might wait before running.
9068 	 */
9069 	group_fully_busy,
9070 	/*
9071 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9072 	 * more powerful CPU.
9073 	 */
9074 	group_misfit_task,
9075 	/*
9076 	 * Balance SMT group that's fully busy. Can benefit from migration
9077 	 * a task on SMT with busy sibling to another CPU on idle core.
9078 	 */
9079 	group_smt_balance,
9080 	/*
9081 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9082 	 * and the task should be migrated to it instead of running on the
9083 	 * current CPU.
9084 	 */
9085 	group_asym_packing,
9086 	/*
9087 	 * The tasks' affinity constraints previously prevented the scheduler
9088 	 * from balancing the load across the system.
9089 	 */
9090 	group_imbalanced,
9091 	/*
9092 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9093 	 * tasks.
9094 	 */
9095 	group_overloaded
9096 };
9097 
9098 enum migration_type {
9099 	migrate_load = 0,
9100 	migrate_util,
9101 	migrate_task,
9102 	migrate_misfit
9103 };
9104 
9105 #define LBF_ALL_PINNED	0x01
9106 #define LBF_NEED_BREAK	0x02
9107 #define LBF_DST_PINNED  0x04
9108 #define LBF_SOME_PINNED	0x08
9109 #define LBF_ACTIVE_LB	0x10
9110 
9111 struct lb_env {
9112 	struct sched_domain	*sd;
9113 
9114 	struct rq		*src_rq;
9115 	int			src_cpu;
9116 
9117 	int			dst_cpu;
9118 	struct rq		*dst_rq;
9119 
9120 	struct cpumask		*dst_grpmask;
9121 	int			new_dst_cpu;
9122 	enum cpu_idle_type	idle;
9123 	long			imbalance;
9124 	/* The set of CPUs under consideration for load-balancing */
9125 	struct cpumask		*cpus;
9126 
9127 	unsigned int		flags;
9128 
9129 	unsigned int		loop;
9130 	unsigned int		loop_break;
9131 	unsigned int		loop_max;
9132 
9133 	enum fbq_type		fbq_type;
9134 	enum migration_type	migration_type;
9135 	struct list_head	tasks;
9136 };
9137 
9138 /*
9139  * Is this task likely cache-hot:
9140  */
9141 static int task_hot(struct task_struct *p, struct lb_env *env)
9142 {
9143 	s64 delta;
9144 
9145 	lockdep_assert_rq_held(env->src_rq);
9146 
9147 	if (p->sched_class != &fair_sched_class)
9148 		return 0;
9149 
9150 	if (unlikely(task_has_idle_policy(p)))
9151 		return 0;
9152 
9153 	/* SMT siblings share cache */
9154 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9155 		return 0;
9156 
9157 	/*
9158 	 * Buddy candidates are cache hot:
9159 	 */
9160 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9161 	    (&p->se == cfs_rq_of(&p->se)->next))
9162 		return 1;
9163 
9164 	if (sysctl_sched_migration_cost == -1)
9165 		return 1;
9166 
9167 	/*
9168 	 * Don't migrate task if the task's cookie does not match
9169 	 * with the destination CPU's core cookie.
9170 	 */
9171 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9172 		return 1;
9173 
9174 	if (sysctl_sched_migration_cost == 0)
9175 		return 0;
9176 
9177 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9178 
9179 	return delta < (s64)sysctl_sched_migration_cost;
9180 }
9181 
9182 #ifdef CONFIG_NUMA_BALANCING
9183 /*
9184  * Returns 1, if task migration degrades locality
9185  * Returns 0, if task migration improves locality i.e migration preferred.
9186  * Returns -1, if task migration is not affected by locality.
9187  */
9188 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9189 {
9190 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9191 	unsigned long src_weight, dst_weight;
9192 	int src_nid, dst_nid, dist;
9193 
9194 	if (!static_branch_likely(&sched_numa_balancing))
9195 		return -1;
9196 
9197 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9198 		return -1;
9199 
9200 	src_nid = cpu_to_node(env->src_cpu);
9201 	dst_nid = cpu_to_node(env->dst_cpu);
9202 
9203 	if (src_nid == dst_nid)
9204 		return -1;
9205 
9206 	/* Migrating away from the preferred node is always bad. */
9207 	if (src_nid == p->numa_preferred_nid) {
9208 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9209 			return 1;
9210 		else
9211 			return -1;
9212 	}
9213 
9214 	/* Encourage migration to the preferred node. */
9215 	if (dst_nid == p->numa_preferred_nid)
9216 		return 0;
9217 
9218 	/* Leaving a core idle is often worse than degrading locality. */
9219 	if (env->idle == CPU_IDLE)
9220 		return -1;
9221 
9222 	dist = node_distance(src_nid, dst_nid);
9223 	if (numa_group) {
9224 		src_weight = group_weight(p, src_nid, dist);
9225 		dst_weight = group_weight(p, dst_nid, dist);
9226 	} else {
9227 		src_weight = task_weight(p, src_nid, dist);
9228 		dst_weight = task_weight(p, dst_nid, dist);
9229 	}
9230 
9231 	return dst_weight < src_weight;
9232 }
9233 
9234 #else
9235 static inline int migrate_degrades_locality(struct task_struct *p,
9236 					     struct lb_env *env)
9237 {
9238 	return -1;
9239 }
9240 #endif
9241 
9242 /*
9243  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9244  */
9245 static
9246 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9247 {
9248 	int tsk_cache_hot;
9249 
9250 	lockdep_assert_rq_held(env->src_rq);
9251 
9252 	/*
9253 	 * We do not migrate tasks that are:
9254 	 * 1) throttled_lb_pair, or
9255 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9256 	 * 3) running (obviously), or
9257 	 * 4) are cache-hot on their current CPU.
9258 	 */
9259 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9260 		return 0;
9261 
9262 	/* Disregard percpu kthreads; they are where they need to be. */
9263 	if (kthread_is_per_cpu(p))
9264 		return 0;
9265 
9266 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9267 		int cpu;
9268 
9269 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9270 
9271 		env->flags |= LBF_SOME_PINNED;
9272 
9273 		/*
9274 		 * Remember if this task can be migrated to any other CPU in
9275 		 * our sched_group. We may want to revisit it if we couldn't
9276 		 * meet load balance goals by pulling other tasks on src_cpu.
9277 		 *
9278 		 * Avoid computing new_dst_cpu
9279 		 * - for NEWLY_IDLE
9280 		 * - if we have already computed one in current iteration
9281 		 * - if it's an active balance
9282 		 */
9283 		if (env->idle == CPU_NEWLY_IDLE ||
9284 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9285 			return 0;
9286 
9287 		/* Prevent to re-select dst_cpu via env's CPUs: */
9288 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9289 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9290 				env->flags |= LBF_DST_PINNED;
9291 				env->new_dst_cpu = cpu;
9292 				break;
9293 			}
9294 		}
9295 
9296 		return 0;
9297 	}
9298 
9299 	/* Record that we found at least one task that could run on dst_cpu */
9300 	env->flags &= ~LBF_ALL_PINNED;
9301 
9302 	if (task_on_cpu(env->src_rq, p)) {
9303 		schedstat_inc(p->stats.nr_failed_migrations_running);
9304 		return 0;
9305 	}
9306 
9307 	/*
9308 	 * Aggressive migration if:
9309 	 * 1) active balance
9310 	 * 2) destination numa is preferred
9311 	 * 3) task is cache cold, or
9312 	 * 4) too many balance attempts have failed.
9313 	 */
9314 	if (env->flags & LBF_ACTIVE_LB)
9315 		return 1;
9316 
9317 	tsk_cache_hot = migrate_degrades_locality(p, env);
9318 	if (tsk_cache_hot == -1)
9319 		tsk_cache_hot = task_hot(p, env);
9320 
9321 	if (tsk_cache_hot <= 0 ||
9322 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9323 		if (tsk_cache_hot == 1) {
9324 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9325 			schedstat_inc(p->stats.nr_forced_migrations);
9326 		}
9327 		return 1;
9328 	}
9329 
9330 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9331 	return 0;
9332 }
9333 
9334 /*
9335  * detach_task() -- detach the task for the migration specified in env
9336  */
9337 static void detach_task(struct task_struct *p, struct lb_env *env)
9338 {
9339 	lockdep_assert_rq_held(env->src_rq);
9340 
9341 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9342 	set_task_cpu(p, env->dst_cpu);
9343 }
9344 
9345 /*
9346  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9347  * part of active balancing operations within "domain".
9348  *
9349  * Returns a task if successful and NULL otherwise.
9350  */
9351 static struct task_struct *detach_one_task(struct lb_env *env)
9352 {
9353 	struct task_struct *p;
9354 
9355 	lockdep_assert_rq_held(env->src_rq);
9356 
9357 	list_for_each_entry_reverse(p,
9358 			&env->src_rq->cfs_tasks, se.group_node) {
9359 		if (!can_migrate_task(p, env))
9360 			continue;
9361 
9362 		detach_task(p, env);
9363 
9364 		/*
9365 		 * Right now, this is only the second place where
9366 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9367 		 * so we can safely collect stats here rather than
9368 		 * inside detach_tasks().
9369 		 */
9370 		schedstat_inc(env->sd->lb_gained[env->idle]);
9371 		return p;
9372 	}
9373 	return NULL;
9374 }
9375 
9376 /*
9377  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9378  * busiest_rq, as part of a balancing operation within domain "sd".
9379  *
9380  * Returns number of detached tasks if successful and 0 otherwise.
9381  */
9382 static int detach_tasks(struct lb_env *env)
9383 {
9384 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9385 	unsigned long util, load;
9386 	struct task_struct *p;
9387 	int detached = 0;
9388 
9389 	lockdep_assert_rq_held(env->src_rq);
9390 
9391 	/*
9392 	 * Source run queue has been emptied by another CPU, clear
9393 	 * LBF_ALL_PINNED flag as we will not test any task.
9394 	 */
9395 	if (env->src_rq->nr_running <= 1) {
9396 		env->flags &= ~LBF_ALL_PINNED;
9397 		return 0;
9398 	}
9399 
9400 	if (env->imbalance <= 0)
9401 		return 0;
9402 
9403 	while (!list_empty(tasks)) {
9404 		/*
9405 		 * We don't want to steal all, otherwise we may be treated likewise,
9406 		 * which could at worst lead to a livelock crash.
9407 		 */
9408 		if (env->idle && env->src_rq->nr_running <= 1)
9409 			break;
9410 
9411 		env->loop++;
9412 		/* We've more or less seen every task there is, call it quits */
9413 		if (env->loop > env->loop_max)
9414 			break;
9415 
9416 		/* take a breather every nr_migrate tasks */
9417 		if (env->loop > env->loop_break) {
9418 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9419 			env->flags |= LBF_NEED_BREAK;
9420 			break;
9421 		}
9422 
9423 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9424 
9425 		if (!can_migrate_task(p, env))
9426 			goto next;
9427 
9428 		switch (env->migration_type) {
9429 		case migrate_load:
9430 			/*
9431 			 * Depending of the number of CPUs and tasks and the
9432 			 * cgroup hierarchy, task_h_load() can return a null
9433 			 * value. Make sure that env->imbalance decreases
9434 			 * otherwise detach_tasks() will stop only after
9435 			 * detaching up to loop_max tasks.
9436 			 */
9437 			load = max_t(unsigned long, task_h_load(p), 1);
9438 
9439 			if (sched_feat(LB_MIN) &&
9440 			    load < 16 && !env->sd->nr_balance_failed)
9441 				goto next;
9442 
9443 			/*
9444 			 * Make sure that we don't migrate too much load.
9445 			 * Nevertheless, let relax the constraint if
9446 			 * scheduler fails to find a good waiting task to
9447 			 * migrate.
9448 			 */
9449 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9450 				goto next;
9451 
9452 			env->imbalance -= load;
9453 			break;
9454 
9455 		case migrate_util:
9456 			util = task_util_est(p);
9457 
9458 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9459 				goto next;
9460 
9461 			env->imbalance -= util;
9462 			break;
9463 
9464 		case migrate_task:
9465 			env->imbalance--;
9466 			break;
9467 
9468 		case migrate_misfit:
9469 			/* This is not a misfit task */
9470 			if (task_fits_cpu(p, env->src_cpu))
9471 				goto next;
9472 
9473 			env->imbalance = 0;
9474 			break;
9475 		}
9476 
9477 		detach_task(p, env);
9478 		list_add(&p->se.group_node, &env->tasks);
9479 
9480 		detached++;
9481 
9482 #ifdef CONFIG_PREEMPTION
9483 		/*
9484 		 * NEWIDLE balancing is a source of latency, so preemptible
9485 		 * kernels will stop after the first task is detached to minimize
9486 		 * the critical section.
9487 		 */
9488 		if (env->idle == CPU_NEWLY_IDLE)
9489 			break;
9490 #endif
9491 
9492 		/*
9493 		 * We only want to steal up to the prescribed amount of
9494 		 * load/util/tasks.
9495 		 */
9496 		if (env->imbalance <= 0)
9497 			break;
9498 
9499 		continue;
9500 next:
9501 		list_move(&p->se.group_node, tasks);
9502 	}
9503 
9504 	/*
9505 	 * Right now, this is one of only two places we collect this stat
9506 	 * so we can safely collect detach_one_task() stats here rather
9507 	 * than inside detach_one_task().
9508 	 */
9509 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9510 
9511 	return detached;
9512 }
9513 
9514 /*
9515  * attach_task() -- attach the task detached by detach_task() to its new rq.
9516  */
9517 static void attach_task(struct rq *rq, struct task_struct *p)
9518 {
9519 	lockdep_assert_rq_held(rq);
9520 
9521 	WARN_ON_ONCE(task_rq(p) != rq);
9522 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9523 	wakeup_preempt(rq, p, 0);
9524 }
9525 
9526 /*
9527  * attach_one_task() -- attaches the task returned from detach_one_task() to
9528  * its new rq.
9529  */
9530 static void attach_one_task(struct rq *rq, struct task_struct *p)
9531 {
9532 	struct rq_flags rf;
9533 
9534 	rq_lock(rq, &rf);
9535 	update_rq_clock(rq);
9536 	attach_task(rq, p);
9537 	rq_unlock(rq, &rf);
9538 }
9539 
9540 /*
9541  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9542  * new rq.
9543  */
9544 static void attach_tasks(struct lb_env *env)
9545 {
9546 	struct list_head *tasks = &env->tasks;
9547 	struct task_struct *p;
9548 	struct rq_flags rf;
9549 
9550 	rq_lock(env->dst_rq, &rf);
9551 	update_rq_clock(env->dst_rq);
9552 
9553 	while (!list_empty(tasks)) {
9554 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9555 		list_del_init(&p->se.group_node);
9556 
9557 		attach_task(env->dst_rq, p);
9558 	}
9559 
9560 	rq_unlock(env->dst_rq, &rf);
9561 }
9562 
9563 #ifdef CONFIG_NO_HZ_COMMON
9564 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9565 {
9566 	if (cfs_rq->avg.load_avg)
9567 		return true;
9568 
9569 	if (cfs_rq->avg.util_avg)
9570 		return true;
9571 
9572 	return false;
9573 }
9574 
9575 static inline bool others_have_blocked(struct rq *rq)
9576 {
9577 	if (cpu_util_rt(rq))
9578 		return true;
9579 
9580 	if (cpu_util_dl(rq))
9581 		return true;
9582 
9583 	if (hw_load_avg(rq))
9584 		return true;
9585 
9586 	if (cpu_util_irq(rq))
9587 		return true;
9588 
9589 	return false;
9590 }
9591 
9592 static inline void update_blocked_load_tick(struct rq *rq)
9593 {
9594 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9595 }
9596 
9597 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9598 {
9599 	if (!has_blocked)
9600 		rq->has_blocked_load = 0;
9601 }
9602 #else
9603 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9604 static inline bool others_have_blocked(struct rq *rq) { return false; }
9605 static inline void update_blocked_load_tick(struct rq *rq) {}
9606 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9607 #endif
9608 
9609 static bool __update_blocked_others(struct rq *rq, bool *done)
9610 {
9611 	bool updated;
9612 
9613 	/*
9614 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9615 	 * DL and IRQ signals have been updated before updating CFS.
9616 	 */
9617 	updated = update_other_load_avgs(rq);
9618 
9619 	if (others_have_blocked(rq))
9620 		*done = false;
9621 
9622 	return updated;
9623 }
9624 
9625 #ifdef CONFIG_FAIR_GROUP_SCHED
9626 
9627 static bool __update_blocked_fair(struct rq *rq, bool *done)
9628 {
9629 	struct cfs_rq *cfs_rq, *pos;
9630 	bool decayed = false;
9631 	int cpu = cpu_of(rq);
9632 
9633 	/*
9634 	 * Iterates the task_group tree in a bottom up fashion, see
9635 	 * list_add_leaf_cfs_rq() for details.
9636 	 */
9637 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9638 		struct sched_entity *se;
9639 
9640 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9641 			update_tg_load_avg(cfs_rq);
9642 
9643 			if (cfs_rq->nr_running == 0)
9644 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9645 
9646 			if (cfs_rq == &rq->cfs)
9647 				decayed = true;
9648 		}
9649 
9650 		/* Propagate pending load changes to the parent, if any: */
9651 		se = cfs_rq->tg->se[cpu];
9652 		if (se && !skip_blocked_update(se))
9653 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9654 
9655 		/*
9656 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9657 		 * decayed cfs_rqs linger on the list.
9658 		 */
9659 		if (cfs_rq_is_decayed(cfs_rq))
9660 			list_del_leaf_cfs_rq(cfs_rq);
9661 
9662 		/* Don't need periodic decay once load/util_avg are null */
9663 		if (cfs_rq_has_blocked(cfs_rq))
9664 			*done = false;
9665 	}
9666 
9667 	return decayed;
9668 }
9669 
9670 /*
9671  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9672  * This needs to be done in a top-down fashion because the load of a child
9673  * group is a fraction of its parents load.
9674  */
9675 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9676 {
9677 	struct rq *rq = rq_of(cfs_rq);
9678 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9679 	unsigned long now = jiffies;
9680 	unsigned long load;
9681 
9682 	if (cfs_rq->last_h_load_update == now)
9683 		return;
9684 
9685 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9686 	for_each_sched_entity(se) {
9687 		cfs_rq = cfs_rq_of(se);
9688 		WRITE_ONCE(cfs_rq->h_load_next, se);
9689 		if (cfs_rq->last_h_load_update == now)
9690 			break;
9691 	}
9692 
9693 	if (!se) {
9694 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9695 		cfs_rq->last_h_load_update = now;
9696 	}
9697 
9698 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9699 		load = cfs_rq->h_load;
9700 		load = div64_ul(load * se->avg.load_avg,
9701 			cfs_rq_load_avg(cfs_rq) + 1);
9702 		cfs_rq = group_cfs_rq(se);
9703 		cfs_rq->h_load = load;
9704 		cfs_rq->last_h_load_update = now;
9705 	}
9706 }
9707 
9708 static unsigned long task_h_load(struct task_struct *p)
9709 {
9710 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9711 
9712 	update_cfs_rq_h_load(cfs_rq);
9713 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9714 			cfs_rq_load_avg(cfs_rq) + 1);
9715 }
9716 #else
9717 static bool __update_blocked_fair(struct rq *rq, bool *done)
9718 {
9719 	struct cfs_rq *cfs_rq = &rq->cfs;
9720 	bool decayed;
9721 
9722 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9723 	if (cfs_rq_has_blocked(cfs_rq))
9724 		*done = false;
9725 
9726 	return decayed;
9727 }
9728 
9729 static unsigned long task_h_load(struct task_struct *p)
9730 {
9731 	return p->se.avg.load_avg;
9732 }
9733 #endif
9734 
9735 static void sched_balance_update_blocked_averages(int cpu)
9736 {
9737 	bool decayed = false, done = true;
9738 	struct rq *rq = cpu_rq(cpu);
9739 	struct rq_flags rf;
9740 
9741 	rq_lock_irqsave(rq, &rf);
9742 	update_blocked_load_tick(rq);
9743 	update_rq_clock(rq);
9744 
9745 	decayed |= __update_blocked_others(rq, &done);
9746 	decayed |= __update_blocked_fair(rq, &done);
9747 
9748 	update_blocked_load_status(rq, !done);
9749 	if (decayed)
9750 		cpufreq_update_util(rq, 0);
9751 	rq_unlock_irqrestore(rq, &rf);
9752 }
9753 
9754 /********** Helpers for sched_balance_find_src_group ************************/
9755 
9756 /*
9757  * sg_lb_stats - stats of a sched_group required for load-balancing:
9758  */
9759 struct sg_lb_stats {
9760 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9761 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9762 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9763 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9764 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9765 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9766 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9767 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9768 	unsigned int group_weight;
9769 	enum group_type group_type;
9770 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9771 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9772 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9773 #ifdef CONFIG_NUMA_BALANCING
9774 	unsigned int nr_numa_running;
9775 	unsigned int nr_preferred_running;
9776 #endif
9777 };
9778 
9779 /*
9780  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9781  */
9782 struct sd_lb_stats {
9783 	struct sched_group *busiest;		/* Busiest group in this sd */
9784 	struct sched_group *local;		/* Local group in this sd */
9785 	unsigned long total_load;		/* Total load of all groups in sd */
9786 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9787 	unsigned long avg_load;			/* Average load across all groups in sd */
9788 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9789 
9790 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9791 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9792 };
9793 
9794 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9795 {
9796 	/*
9797 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9798 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9799 	 * We must however set busiest_stat::group_type and
9800 	 * busiest_stat::idle_cpus to the worst busiest group because
9801 	 * update_sd_pick_busiest() reads these before assignment.
9802 	 */
9803 	*sds = (struct sd_lb_stats){
9804 		.busiest = NULL,
9805 		.local = NULL,
9806 		.total_load = 0UL,
9807 		.total_capacity = 0UL,
9808 		.busiest_stat = {
9809 			.idle_cpus = UINT_MAX,
9810 			.group_type = group_has_spare,
9811 		},
9812 	};
9813 }
9814 
9815 static unsigned long scale_rt_capacity(int cpu)
9816 {
9817 	unsigned long max = get_actual_cpu_capacity(cpu);
9818 	struct rq *rq = cpu_rq(cpu);
9819 	unsigned long used, free;
9820 	unsigned long irq;
9821 
9822 	irq = cpu_util_irq(rq);
9823 
9824 	if (unlikely(irq >= max))
9825 		return 1;
9826 
9827 	/*
9828 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9829 	 * (running and not running) with weights 0 and 1024 respectively.
9830 	 */
9831 	used = cpu_util_rt(rq);
9832 	used += cpu_util_dl(rq);
9833 
9834 	if (unlikely(used >= max))
9835 		return 1;
9836 
9837 	free = max - used;
9838 
9839 	return scale_irq_capacity(free, irq, max);
9840 }
9841 
9842 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9843 {
9844 	unsigned long capacity = scale_rt_capacity(cpu);
9845 	struct sched_group *sdg = sd->groups;
9846 
9847 	if (!capacity)
9848 		capacity = 1;
9849 
9850 	cpu_rq(cpu)->cpu_capacity = capacity;
9851 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9852 
9853 	sdg->sgc->capacity = capacity;
9854 	sdg->sgc->min_capacity = capacity;
9855 	sdg->sgc->max_capacity = capacity;
9856 }
9857 
9858 void update_group_capacity(struct sched_domain *sd, int cpu)
9859 {
9860 	struct sched_domain *child = sd->child;
9861 	struct sched_group *group, *sdg = sd->groups;
9862 	unsigned long capacity, min_capacity, max_capacity;
9863 	unsigned long interval;
9864 
9865 	interval = msecs_to_jiffies(sd->balance_interval);
9866 	interval = clamp(interval, 1UL, max_load_balance_interval);
9867 	sdg->sgc->next_update = jiffies + interval;
9868 
9869 	if (!child) {
9870 		update_cpu_capacity(sd, cpu);
9871 		return;
9872 	}
9873 
9874 	capacity = 0;
9875 	min_capacity = ULONG_MAX;
9876 	max_capacity = 0;
9877 
9878 	if (child->flags & SD_OVERLAP) {
9879 		/*
9880 		 * SD_OVERLAP domains cannot assume that child groups
9881 		 * span the current group.
9882 		 */
9883 
9884 		for_each_cpu(cpu, sched_group_span(sdg)) {
9885 			unsigned long cpu_cap = capacity_of(cpu);
9886 
9887 			capacity += cpu_cap;
9888 			min_capacity = min(cpu_cap, min_capacity);
9889 			max_capacity = max(cpu_cap, max_capacity);
9890 		}
9891 	} else  {
9892 		/*
9893 		 * !SD_OVERLAP domains can assume that child groups
9894 		 * span the current group.
9895 		 */
9896 
9897 		group = child->groups;
9898 		do {
9899 			struct sched_group_capacity *sgc = group->sgc;
9900 
9901 			capacity += sgc->capacity;
9902 			min_capacity = min(sgc->min_capacity, min_capacity);
9903 			max_capacity = max(sgc->max_capacity, max_capacity);
9904 			group = group->next;
9905 		} while (group != child->groups);
9906 	}
9907 
9908 	sdg->sgc->capacity = capacity;
9909 	sdg->sgc->min_capacity = min_capacity;
9910 	sdg->sgc->max_capacity = max_capacity;
9911 }
9912 
9913 /*
9914  * Check whether the capacity of the rq has been noticeably reduced by side
9915  * activity. The imbalance_pct is used for the threshold.
9916  * Return true is the capacity is reduced
9917  */
9918 static inline int
9919 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9920 {
9921 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9922 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9923 }
9924 
9925 /* Check if the rq has a misfit task */
9926 static inline bool check_misfit_status(struct rq *rq)
9927 {
9928 	return rq->misfit_task_load;
9929 }
9930 
9931 /*
9932  * Group imbalance indicates (and tries to solve) the problem where balancing
9933  * groups is inadequate due to ->cpus_ptr constraints.
9934  *
9935  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9936  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9937  * Something like:
9938  *
9939  *	{ 0 1 2 3 } { 4 5 6 7 }
9940  *	        *     * * *
9941  *
9942  * If we were to balance group-wise we'd place two tasks in the first group and
9943  * two tasks in the second group. Clearly this is undesired as it will overload
9944  * cpu 3 and leave one of the CPUs in the second group unused.
9945  *
9946  * The current solution to this issue is detecting the skew in the first group
9947  * by noticing the lower domain failed to reach balance and had difficulty
9948  * moving tasks due to affinity constraints.
9949  *
9950  * When this is so detected; this group becomes a candidate for busiest; see
9951  * update_sd_pick_busiest(). And calculate_imbalance() and
9952  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
9953  * to create an effective group imbalance.
9954  *
9955  * This is a somewhat tricky proposition since the next run might not find the
9956  * group imbalance and decide the groups need to be balanced again. A most
9957  * subtle and fragile situation.
9958  */
9959 
9960 static inline int sg_imbalanced(struct sched_group *group)
9961 {
9962 	return group->sgc->imbalance;
9963 }
9964 
9965 /*
9966  * group_has_capacity returns true if the group has spare capacity that could
9967  * be used by some tasks.
9968  * We consider that a group has spare capacity if the number of task is
9969  * smaller than the number of CPUs or if the utilization is lower than the
9970  * available capacity for CFS tasks.
9971  * For the latter, we use a threshold to stabilize the state, to take into
9972  * account the variance of the tasks' load and to return true if the available
9973  * capacity in meaningful for the load balancer.
9974  * As an example, an available capacity of 1% can appear but it doesn't make
9975  * any benefit for the load balance.
9976  */
9977 static inline bool
9978 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9979 {
9980 	if (sgs->sum_nr_running < sgs->group_weight)
9981 		return true;
9982 
9983 	if ((sgs->group_capacity * imbalance_pct) <
9984 			(sgs->group_runnable * 100))
9985 		return false;
9986 
9987 	if ((sgs->group_capacity * 100) >
9988 			(sgs->group_util * imbalance_pct))
9989 		return true;
9990 
9991 	return false;
9992 }
9993 
9994 /*
9995  *  group_is_overloaded returns true if the group has more tasks than it can
9996  *  handle.
9997  *  group_is_overloaded is not equals to !group_has_capacity because a group
9998  *  with the exact right number of tasks, has no more spare capacity but is not
9999  *  overloaded so both group_has_capacity and group_is_overloaded return
10000  *  false.
10001  */
10002 static inline bool
10003 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10004 {
10005 	if (sgs->sum_nr_running <= sgs->group_weight)
10006 		return false;
10007 
10008 	if ((sgs->group_capacity * 100) <
10009 			(sgs->group_util * imbalance_pct))
10010 		return true;
10011 
10012 	if ((sgs->group_capacity * imbalance_pct) <
10013 			(sgs->group_runnable * 100))
10014 		return true;
10015 
10016 	return false;
10017 }
10018 
10019 static inline enum
10020 group_type group_classify(unsigned int imbalance_pct,
10021 			  struct sched_group *group,
10022 			  struct sg_lb_stats *sgs)
10023 {
10024 	if (group_is_overloaded(imbalance_pct, sgs))
10025 		return group_overloaded;
10026 
10027 	if (sg_imbalanced(group))
10028 		return group_imbalanced;
10029 
10030 	if (sgs->group_asym_packing)
10031 		return group_asym_packing;
10032 
10033 	if (sgs->group_smt_balance)
10034 		return group_smt_balance;
10035 
10036 	if (sgs->group_misfit_task_load)
10037 		return group_misfit_task;
10038 
10039 	if (!group_has_capacity(imbalance_pct, sgs))
10040 		return group_fully_busy;
10041 
10042 	return group_has_spare;
10043 }
10044 
10045 /**
10046  * sched_use_asym_prio - Check whether asym_packing priority must be used
10047  * @sd:		The scheduling domain of the load balancing
10048  * @cpu:	A CPU
10049  *
10050  * Always use CPU priority when balancing load between SMT siblings. When
10051  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10052  * use CPU priority if the whole core is idle.
10053  *
10054  * Returns: True if the priority of @cpu must be followed. False otherwise.
10055  */
10056 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10057 {
10058 	if (!(sd->flags & SD_ASYM_PACKING))
10059 		return false;
10060 
10061 	if (!sched_smt_active())
10062 		return true;
10063 
10064 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10065 }
10066 
10067 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10068 {
10069 	/*
10070 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10071 	 * if it has higher priority than @src_cpu.
10072 	 */
10073 	return sched_use_asym_prio(sd, dst_cpu) &&
10074 		sched_asym_prefer(dst_cpu, src_cpu);
10075 }
10076 
10077 /**
10078  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10079  * @env:	The load balancing environment
10080  * @sgs:	Load-balancing statistics of the candidate busiest group
10081  * @group:	The candidate busiest group
10082  *
10083  * @env::dst_cpu can do asym_packing if it has higher priority than the
10084  * preferred CPU of @group.
10085  *
10086  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10087  * otherwise.
10088  */
10089 static inline bool
10090 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10091 {
10092 	/*
10093 	 * CPU priorities do not make sense for SMT cores with more than one
10094 	 * busy sibling.
10095 	 */
10096 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10097 	    (sgs->group_weight - sgs->idle_cpus != 1))
10098 		return false;
10099 
10100 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10101 }
10102 
10103 /* One group has more than one SMT CPU while the other group does not */
10104 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10105 				    struct sched_group *sg2)
10106 {
10107 	if (!sg1 || !sg2)
10108 		return false;
10109 
10110 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10111 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10112 }
10113 
10114 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10115 			       struct sched_group *group)
10116 {
10117 	if (!env->idle)
10118 		return false;
10119 
10120 	/*
10121 	 * For SMT source group, it is better to move a task
10122 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10123 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10124 	 * will not be on.
10125 	 */
10126 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10127 	    sgs->sum_h_nr_running > 1)
10128 		return true;
10129 
10130 	return false;
10131 }
10132 
10133 static inline long sibling_imbalance(struct lb_env *env,
10134 				    struct sd_lb_stats *sds,
10135 				    struct sg_lb_stats *busiest,
10136 				    struct sg_lb_stats *local)
10137 {
10138 	int ncores_busiest, ncores_local;
10139 	long imbalance;
10140 
10141 	if (!env->idle || !busiest->sum_nr_running)
10142 		return 0;
10143 
10144 	ncores_busiest = sds->busiest->cores;
10145 	ncores_local = sds->local->cores;
10146 
10147 	if (ncores_busiest == ncores_local) {
10148 		imbalance = busiest->sum_nr_running;
10149 		lsub_positive(&imbalance, local->sum_nr_running);
10150 		return imbalance;
10151 	}
10152 
10153 	/* Balance such that nr_running/ncores ratio are same on both groups */
10154 	imbalance = ncores_local * busiest->sum_nr_running;
10155 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10156 	/* Normalize imbalance and do rounding on normalization */
10157 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10158 	imbalance /= ncores_local + ncores_busiest;
10159 
10160 	/* Take advantage of resource in an empty sched group */
10161 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10162 	    busiest->sum_nr_running > 1)
10163 		imbalance = 2;
10164 
10165 	return imbalance;
10166 }
10167 
10168 static inline bool
10169 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10170 {
10171 	/*
10172 	 * When there is more than 1 task, the group_overloaded case already
10173 	 * takes care of cpu with reduced capacity
10174 	 */
10175 	if (rq->cfs.h_nr_running != 1)
10176 		return false;
10177 
10178 	return check_cpu_capacity(rq, sd);
10179 }
10180 
10181 /**
10182  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10183  * @env: The load balancing environment.
10184  * @sds: Load-balancing data with statistics of the local group.
10185  * @group: sched_group whose statistics are to be updated.
10186  * @sgs: variable to hold the statistics for this group.
10187  * @sg_overloaded: sched_group is overloaded
10188  * @sg_overutilized: sched_group is overutilized
10189  */
10190 static inline void update_sg_lb_stats(struct lb_env *env,
10191 				      struct sd_lb_stats *sds,
10192 				      struct sched_group *group,
10193 				      struct sg_lb_stats *sgs,
10194 				      bool *sg_overloaded,
10195 				      bool *sg_overutilized)
10196 {
10197 	int i, nr_running, local_group;
10198 
10199 	memset(sgs, 0, sizeof(*sgs));
10200 
10201 	local_group = group == sds->local;
10202 
10203 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10204 		struct rq *rq = cpu_rq(i);
10205 		unsigned long load = cpu_load(rq);
10206 
10207 		sgs->group_load += load;
10208 		sgs->group_util += cpu_util_cfs(i);
10209 		sgs->group_runnable += cpu_runnable(rq);
10210 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10211 
10212 		nr_running = rq->nr_running;
10213 		sgs->sum_nr_running += nr_running;
10214 
10215 		if (nr_running > 1)
10216 			*sg_overloaded = 1;
10217 
10218 		if (cpu_overutilized(i))
10219 			*sg_overutilized = 1;
10220 
10221 #ifdef CONFIG_NUMA_BALANCING
10222 		sgs->nr_numa_running += rq->nr_numa_running;
10223 		sgs->nr_preferred_running += rq->nr_preferred_running;
10224 #endif
10225 		/*
10226 		 * No need to call idle_cpu() if nr_running is not 0
10227 		 */
10228 		if (!nr_running && idle_cpu(i)) {
10229 			sgs->idle_cpus++;
10230 			/* Idle cpu can't have misfit task */
10231 			continue;
10232 		}
10233 
10234 		if (local_group)
10235 			continue;
10236 
10237 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10238 			/* Check for a misfit task on the cpu */
10239 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10240 				sgs->group_misfit_task_load = rq->misfit_task_load;
10241 				*sg_overloaded = 1;
10242 			}
10243 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10244 			/* Check for a task running on a CPU with reduced capacity */
10245 			if (sgs->group_misfit_task_load < load)
10246 				sgs->group_misfit_task_load = load;
10247 		}
10248 	}
10249 
10250 	sgs->group_capacity = group->sgc->capacity;
10251 
10252 	sgs->group_weight = group->group_weight;
10253 
10254 	/* Check if dst CPU is idle and preferred to this group */
10255 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10256 	    sched_group_asym(env, sgs, group))
10257 		sgs->group_asym_packing = 1;
10258 
10259 	/* Check for loaded SMT group to be balanced to dst CPU */
10260 	if (!local_group && smt_balance(env, sgs, group))
10261 		sgs->group_smt_balance = 1;
10262 
10263 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10264 
10265 	/* Computing avg_load makes sense only when group is overloaded */
10266 	if (sgs->group_type == group_overloaded)
10267 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10268 				sgs->group_capacity;
10269 }
10270 
10271 /**
10272  * update_sd_pick_busiest - return 1 on busiest group
10273  * @env: The load balancing environment.
10274  * @sds: sched_domain statistics
10275  * @sg: sched_group candidate to be checked for being the busiest
10276  * @sgs: sched_group statistics
10277  *
10278  * Determine if @sg is a busier group than the previously selected
10279  * busiest group.
10280  *
10281  * Return: %true if @sg is a busier group than the previously selected
10282  * busiest group. %false otherwise.
10283  */
10284 static bool update_sd_pick_busiest(struct lb_env *env,
10285 				   struct sd_lb_stats *sds,
10286 				   struct sched_group *sg,
10287 				   struct sg_lb_stats *sgs)
10288 {
10289 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10290 
10291 	/* Make sure that there is at least one task to pull */
10292 	if (!sgs->sum_h_nr_running)
10293 		return false;
10294 
10295 	/*
10296 	 * Don't try to pull misfit tasks we can't help.
10297 	 * We can use max_capacity here as reduction in capacity on some
10298 	 * CPUs in the group should either be possible to resolve
10299 	 * internally or be covered by avg_load imbalance (eventually).
10300 	 */
10301 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10302 	    (sgs->group_type == group_misfit_task) &&
10303 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10304 	     sds->local_stat.group_type != group_has_spare))
10305 		return false;
10306 
10307 	if (sgs->group_type > busiest->group_type)
10308 		return true;
10309 
10310 	if (sgs->group_type < busiest->group_type)
10311 		return false;
10312 
10313 	/*
10314 	 * The candidate and the current busiest group are the same type of
10315 	 * group. Let check which one is the busiest according to the type.
10316 	 */
10317 
10318 	switch (sgs->group_type) {
10319 	case group_overloaded:
10320 		/* Select the overloaded group with highest avg_load. */
10321 		return sgs->avg_load > busiest->avg_load;
10322 
10323 	case group_imbalanced:
10324 		/*
10325 		 * Select the 1st imbalanced group as we don't have any way to
10326 		 * choose one more than another.
10327 		 */
10328 		return false;
10329 
10330 	case group_asym_packing:
10331 		/* Prefer to move from lowest priority CPU's work */
10332 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10333 
10334 	case group_misfit_task:
10335 		/*
10336 		 * If we have more than one misfit sg go with the biggest
10337 		 * misfit.
10338 		 */
10339 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10340 
10341 	case group_smt_balance:
10342 		/*
10343 		 * Check if we have spare CPUs on either SMT group to
10344 		 * choose has spare or fully busy handling.
10345 		 */
10346 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10347 			goto has_spare;
10348 
10349 		fallthrough;
10350 
10351 	case group_fully_busy:
10352 		/*
10353 		 * Select the fully busy group with highest avg_load. In
10354 		 * theory, there is no need to pull task from such kind of
10355 		 * group because tasks have all compute capacity that they need
10356 		 * but we can still improve the overall throughput by reducing
10357 		 * contention when accessing shared HW resources.
10358 		 *
10359 		 * XXX for now avg_load is not computed and always 0 so we
10360 		 * select the 1st one, except if @sg is composed of SMT
10361 		 * siblings.
10362 		 */
10363 
10364 		if (sgs->avg_load < busiest->avg_load)
10365 			return false;
10366 
10367 		if (sgs->avg_load == busiest->avg_load) {
10368 			/*
10369 			 * SMT sched groups need more help than non-SMT groups.
10370 			 * If @sg happens to also be SMT, either choice is good.
10371 			 */
10372 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10373 				return false;
10374 		}
10375 
10376 		break;
10377 
10378 	case group_has_spare:
10379 		/*
10380 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10381 		 * as we do not want to pull task off SMT core with one task
10382 		 * and make the core idle.
10383 		 */
10384 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10385 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10386 				return false;
10387 			else
10388 				return true;
10389 		}
10390 has_spare:
10391 
10392 		/*
10393 		 * Select not overloaded group with lowest number of idle CPUs
10394 		 * and highest number of running tasks. We could also compare
10395 		 * the spare capacity which is more stable but it can end up
10396 		 * that the group has less spare capacity but finally more idle
10397 		 * CPUs which means less opportunity to pull tasks.
10398 		 */
10399 		if (sgs->idle_cpus > busiest->idle_cpus)
10400 			return false;
10401 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10402 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10403 			return false;
10404 
10405 		break;
10406 	}
10407 
10408 	/*
10409 	 * Candidate sg has no more than one task per CPU and has higher
10410 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10411 	 * throughput. Maximize throughput, power/energy consequences are not
10412 	 * considered.
10413 	 */
10414 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10415 	    (sgs->group_type <= group_fully_busy) &&
10416 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10417 		return false;
10418 
10419 	return true;
10420 }
10421 
10422 #ifdef CONFIG_NUMA_BALANCING
10423 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10424 {
10425 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10426 		return regular;
10427 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10428 		return remote;
10429 	return all;
10430 }
10431 
10432 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10433 {
10434 	if (rq->nr_running > rq->nr_numa_running)
10435 		return regular;
10436 	if (rq->nr_running > rq->nr_preferred_running)
10437 		return remote;
10438 	return all;
10439 }
10440 #else
10441 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10442 {
10443 	return all;
10444 }
10445 
10446 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10447 {
10448 	return regular;
10449 }
10450 #endif /* CONFIG_NUMA_BALANCING */
10451 
10452 
10453 struct sg_lb_stats;
10454 
10455 /*
10456  * task_running_on_cpu - return 1 if @p is running on @cpu.
10457  */
10458 
10459 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10460 {
10461 	/* Task has no contribution or is new */
10462 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10463 		return 0;
10464 
10465 	if (task_on_rq_queued(p))
10466 		return 1;
10467 
10468 	return 0;
10469 }
10470 
10471 /**
10472  * idle_cpu_without - would a given CPU be idle without p ?
10473  * @cpu: the processor on which idleness is tested.
10474  * @p: task which should be ignored.
10475  *
10476  * Return: 1 if the CPU would be idle. 0 otherwise.
10477  */
10478 static int idle_cpu_without(int cpu, struct task_struct *p)
10479 {
10480 	struct rq *rq = cpu_rq(cpu);
10481 
10482 	if (rq->curr != rq->idle && rq->curr != p)
10483 		return 0;
10484 
10485 	/*
10486 	 * rq->nr_running can't be used but an updated version without the
10487 	 * impact of p on cpu must be used instead. The updated nr_running
10488 	 * be computed and tested before calling idle_cpu_without().
10489 	 */
10490 
10491 	if (rq->ttwu_pending)
10492 		return 0;
10493 
10494 	return 1;
10495 }
10496 
10497 /*
10498  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10499  * @sd: The sched_domain level to look for idlest group.
10500  * @group: sched_group whose statistics are to be updated.
10501  * @sgs: variable to hold the statistics for this group.
10502  * @p: The task for which we look for the idlest group/CPU.
10503  */
10504 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10505 					  struct sched_group *group,
10506 					  struct sg_lb_stats *sgs,
10507 					  struct task_struct *p)
10508 {
10509 	int i, nr_running;
10510 
10511 	memset(sgs, 0, sizeof(*sgs));
10512 
10513 	/* Assume that task can't fit any CPU of the group */
10514 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10515 		sgs->group_misfit_task_load = 1;
10516 
10517 	for_each_cpu(i, sched_group_span(group)) {
10518 		struct rq *rq = cpu_rq(i);
10519 		unsigned int local;
10520 
10521 		sgs->group_load += cpu_load_without(rq, p);
10522 		sgs->group_util += cpu_util_without(i, p);
10523 		sgs->group_runnable += cpu_runnable_without(rq, p);
10524 		local = task_running_on_cpu(i, p);
10525 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10526 
10527 		nr_running = rq->nr_running - local;
10528 		sgs->sum_nr_running += nr_running;
10529 
10530 		/*
10531 		 * No need to call idle_cpu_without() if nr_running is not 0
10532 		 */
10533 		if (!nr_running && idle_cpu_without(i, p))
10534 			sgs->idle_cpus++;
10535 
10536 		/* Check if task fits in the CPU */
10537 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10538 		    sgs->group_misfit_task_load &&
10539 		    task_fits_cpu(p, i))
10540 			sgs->group_misfit_task_load = 0;
10541 
10542 	}
10543 
10544 	sgs->group_capacity = group->sgc->capacity;
10545 
10546 	sgs->group_weight = group->group_weight;
10547 
10548 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10549 
10550 	/*
10551 	 * Computing avg_load makes sense only when group is fully busy or
10552 	 * overloaded
10553 	 */
10554 	if (sgs->group_type == group_fully_busy ||
10555 		sgs->group_type == group_overloaded)
10556 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10557 				sgs->group_capacity;
10558 }
10559 
10560 static bool update_pick_idlest(struct sched_group *idlest,
10561 			       struct sg_lb_stats *idlest_sgs,
10562 			       struct sched_group *group,
10563 			       struct sg_lb_stats *sgs)
10564 {
10565 	if (sgs->group_type < idlest_sgs->group_type)
10566 		return true;
10567 
10568 	if (sgs->group_type > idlest_sgs->group_type)
10569 		return false;
10570 
10571 	/*
10572 	 * The candidate and the current idlest group are the same type of
10573 	 * group. Let check which one is the idlest according to the type.
10574 	 */
10575 
10576 	switch (sgs->group_type) {
10577 	case group_overloaded:
10578 	case group_fully_busy:
10579 		/* Select the group with lowest avg_load. */
10580 		if (idlest_sgs->avg_load <= sgs->avg_load)
10581 			return false;
10582 		break;
10583 
10584 	case group_imbalanced:
10585 	case group_asym_packing:
10586 	case group_smt_balance:
10587 		/* Those types are not used in the slow wakeup path */
10588 		return false;
10589 
10590 	case group_misfit_task:
10591 		/* Select group with the highest max capacity */
10592 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10593 			return false;
10594 		break;
10595 
10596 	case group_has_spare:
10597 		/* Select group with most idle CPUs */
10598 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10599 			return false;
10600 
10601 		/* Select group with lowest group_util */
10602 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10603 			idlest_sgs->group_util <= sgs->group_util)
10604 			return false;
10605 
10606 		break;
10607 	}
10608 
10609 	return true;
10610 }
10611 
10612 /*
10613  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10614  * domain.
10615  *
10616  * Assumes p is allowed on at least one CPU in sd.
10617  */
10618 static struct sched_group *
10619 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10620 {
10621 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10622 	struct sg_lb_stats local_sgs, tmp_sgs;
10623 	struct sg_lb_stats *sgs;
10624 	unsigned long imbalance;
10625 	struct sg_lb_stats idlest_sgs = {
10626 			.avg_load = UINT_MAX,
10627 			.group_type = group_overloaded,
10628 	};
10629 
10630 	do {
10631 		int local_group;
10632 
10633 		/* Skip over this group if it has no CPUs allowed */
10634 		if (!cpumask_intersects(sched_group_span(group),
10635 					p->cpus_ptr))
10636 			continue;
10637 
10638 		/* Skip over this group if no cookie matched */
10639 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10640 			continue;
10641 
10642 		local_group = cpumask_test_cpu(this_cpu,
10643 					       sched_group_span(group));
10644 
10645 		if (local_group) {
10646 			sgs = &local_sgs;
10647 			local = group;
10648 		} else {
10649 			sgs = &tmp_sgs;
10650 		}
10651 
10652 		update_sg_wakeup_stats(sd, group, sgs, p);
10653 
10654 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10655 			idlest = group;
10656 			idlest_sgs = *sgs;
10657 		}
10658 
10659 	} while (group = group->next, group != sd->groups);
10660 
10661 
10662 	/* There is no idlest group to push tasks to */
10663 	if (!idlest)
10664 		return NULL;
10665 
10666 	/* The local group has been skipped because of CPU affinity */
10667 	if (!local)
10668 		return idlest;
10669 
10670 	/*
10671 	 * If the local group is idler than the selected idlest group
10672 	 * don't try and push the task.
10673 	 */
10674 	if (local_sgs.group_type < idlest_sgs.group_type)
10675 		return NULL;
10676 
10677 	/*
10678 	 * If the local group is busier than the selected idlest group
10679 	 * try and push the task.
10680 	 */
10681 	if (local_sgs.group_type > idlest_sgs.group_type)
10682 		return idlest;
10683 
10684 	switch (local_sgs.group_type) {
10685 	case group_overloaded:
10686 	case group_fully_busy:
10687 
10688 		/* Calculate allowed imbalance based on load */
10689 		imbalance = scale_load_down(NICE_0_LOAD) *
10690 				(sd->imbalance_pct-100) / 100;
10691 
10692 		/*
10693 		 * When comparing groups across NUMA domains, it's possible for
10694 		 * the local domain to be very lightly loaded relative to the
10695 		 * remote domains but "imbalance" skews the comparison making
10696 		 * remote CPUs look much more favourable. When considering
10697 		 * cross-domain, add imbalance to the load on the remote node
10698 		 * and consider staying local.
10699 		 */
10700 
10701 		if ((sd->flags & SD_NUMA) &&
10702 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10703 			return NULL;
10704 
10705 		/*
10706 		 * If the local group is less loaded than the selected
10707 		 * idlest group don't try and push any tasks.
10708 		 */
10709 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10710 			return NULL;
10711 
10712 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10713 			return NULL;
10714 		break;
10715 
10716 	case group_imbalanced:
10717 	case group_asym_packing:
10718 	case group_smt_balance:
10719 		/* Those type are not used in the slow wakeup path */
10720 		return NULL;
10721 
10722 	case group_misfit_task:
10723 		/* Select group with the highest max capacity */
10724 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10725 			return NULL;
10726 		break;
10727 
10728 	case group_has_spare:
10729 #ifdef CONFIG_NUMA
10730 		if (sd->flags & SD_NUMA) {
10731 			int imb_numa_nr = sd->imb_numa_nr;
10732 #ifdef CONFIG_NUMA_BALANCING
10733 			int idlest_cpu;
10734 			/*
10735 			 * If there is spare capacity at NUMA, try to select
10736 			 * the preferred node
10737 			 */
10738 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10739 				return NULL;
10740 
10741 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10742 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10743 				return idlest;
10744 #endif /* CONFIG_NUMA_BALANCING */
10745 			/*
10746 			 * Otherwise, keep the task close to the wakeup source
10747 			 * and improve locality if the number of running tasks
10748 			 * would remain below threshold where an imbalance is
10749 			 * allowed while accounting for the possibility the
10750 			 * task is pinned to a subset of CPUs. If there is a
10751 			 * real need of migration, periodic load balance will
10752 			 * take care of it.
10753 			 */
10754 			if (p->nr_cpus_allowed != NR_CPUS) {
10755 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10756 
10757 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10758 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10759 			}
10760 
10761 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10762 			if (!adjust_numa_imbalance(imbalance,
10763 						   local_sgs.sum_nr_running + 1,
10764 						   imb_numa_nr)) {
10765 				return NULL;
10766 			}
10767 		}
10768 #endif /* CONFIG_NUMA */
10769 
10770 		/*
10771 		 * Select group with highest number of idle CPUs. We could also
10772 		 * compare the utilization which is more stable but it can end
10773 		 * up that the group has less spare capacity but finally more
10774 		 * idle CPUs which means more opportunity to run task.
10775 		 */
10776 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10777 			return NULL;
10778 		break;
10779 	}
10780 
10781 	return idlest;
10782 }
10783 
10784 static void update_idle_cpu_scan(struct lb_env *env,
10785 				 unsigned long sum_util)
10786 {
10787 	struct sched_domain_shared *sd_share;
10788 	int llc_weight, pct;
10789 	u64 x, y, tmp;
10790 	/*
10791 	 * Update the number of CPUs to scan in LLC domain, which could
10792 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10793 	 * could be expensive because it is within a shared cache line.
10794 	 * So the write of this hint only occurs during periodic load
10795 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10796 	 * can fire way more frequently than the former.
10797 	 */
10798 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10799 		return;
10800 
10801 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10802 	if (env->sd->span_weight != llc_weight)
10803 		return;
10804 
10805 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10806 	if (!sd_share)
10807 		return;
10808 
10809 	/*
10810 	 * The number of CPUs to search drops as sum_util increases, when
10811 	 * sum_util hits 85% or above, the scan stops.
10812 	 * The reason to choose 85% as the threshold is because this is the
10813 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10814 	 *
10815 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10816 	 * and y'= y / SCHED_CAPACITY_SCALE
10817 	 *
10818 	 * x is the ratio of sum_util compared to the CPU capacity:
10819 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10820 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10821 	 * and the number of CPUs to scan is calculated by:
10822 	 *
10823 	 * nr_scan = llc_weight * y'                                    [2]
10824 	 *
10825 	 * When x hits the threshold of overloaded, AKA, when
10826 	 * x = 100 / pct, y drops to 0. According to [1],
10827 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10828 	 *
10829 	 * Scale x by SCHED_CAPACITY_SCALE:
10830 	 * x' = sum_util / llc_weight;                                  [3]
10831 	 *
10832 	 * and finally [1] becomes:
10833 	 * y = SCHED_CAPACITY_SCALE -
10834 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10835 	 *
10836 	 */
10837 	/* equation [3] */
10838 	x = sum_util;
10839 	do_div(x, llc_weight);
10840 
10841 	/* equation [4] */
10842 	pct = env->sd->imbalance_pct;
10843 	tmp = x * x * pct * pct;
10844 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10845 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10846 	y = SCHED_CAPACITY_SCALE - tmp;
10847 
10848 	/* equation [2] */
10849 	y *= llc_weight;
10850 	do_div(y, SCHED_CAPACITY_SCALE);
10851 	if ((int)y != sd_share->nr_idle_scan)
10852 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10853 }
10854 
10855 /**
10856  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10857  * @env: The load balancing environment.
10858  * @sds: variable to hold the statistics for this sched_domain.
10859  */
10860 
10861 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10862 {
10863 	struct sched_group *sg = env->sd->groups;
10864 	struct sg_lb_stats *local = &sds->local_stat;
10865 	struct sg_lb_stats tmp_sgs;
10866 	unsigned long sum_util = 0;
10867 	bool sg_overloaded = 0, sg_overutilized = 0;
10868 
10869 	do {
10870 		struct sg_lb_stats *sgs = &tmp_sgs;
10871 		int local_group;
10872 
10873 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10874 		if (local_group) {
10875 			sds->local = sg;
10876 			sgs = local;
10877 
10878 			if (env->idle != CPU_NEWLY_IDLE ||
10879 			    time_after_eq(jiffies, sg->sgc->next_update))
10880 				update_group_capacity(env->sd, env->dst_cpu);
10881 		}
10882 
10883 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10884 
10885 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10886 			sds->busiest = sg;
10887 			sds->busiest_stat = *sgs;
10888 		}
10889 
10890 		/* Now, start updating sd_lb_stats */
10891 		sds->total_load += sgs->group_load;
10892 		sds->total_capacity += sgs->group_capacity;
10893 
10894 		sum_util += sgs->group_util;
10895 		sg = sg->next;
10896 	} while (sg != env->sd->groups);
10897 
10898 	/*
10899 	 * Indicate that the child domain of the busiest group prefers tasks
10900 	 * go to a child's sibling domains first. NB the flags of a sched group
10901 	 * are those of the child domain.
10902 	 */
10903 	if (sds->busiest)
10904 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10905 
10906 
10907 	if (env->sd->flags & SD_NUMA)
10908 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10909 
10910 	if (!env->sd->parent) {
10911 		/* update overload indicator if we are at root domain */
10912 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
10913 
10914 		/* Update over-utilization (tipping point, U >= 0) indicator */
10915 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10916 	} else if (sg_overutilized) {
10917 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10918 	}
10919 
10920 	update_idle_cpu_scan(env, sum_util);
10921 }
10922 
10923 /**
10924  * calculate_imbalance - Calculate the amount of imbalance present within the
10925  *			 groups of a given sched_domain during load balance.
10926  * @env: load balance environment
10927  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10928  */
10929 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10930 {
10931 	struct sg_lb_stats *local, *busiest;
10932 
10933 	local = &sds->local_stat;
10934 	busiest = &sds->busiest_stat;
10935 
10936 	if (busiest->group_type == group_misfit_task) {
10937 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10938 			/* Set imbalance to allow misfit tasks to be balanced. */
10939 			env->migration_type = migrate_misfit;
10940 			env->imbalance = 1;
10941 		} else {
10942 			/*
10943 			 * Set load imbalance to allow moving task from cpu
10944 			 * with reduced capacity.
10945 			 */
10946 			env->migration_type = migrate_load;
10947 			env->imbalance = busiest->group_misfit_task_load;
10948 		}
10949 		return;
10950 	}
10951 
10952 	if (busiest->group_type == group_asym_packing) {
10953 		/*
10954 		 * In case of asym capacity, we will try to migrate all load to
10955 		 * the preferred CPU.
10956 		 */
10957 		env->migration_type = migrate_task;
10958 		env->imbalance = busiest->sum_h_nr_running;
10959 		return;
10960 	}
10961 
10962 	if (busiest->group_type == group_smt_balance) {
10963 		/* Reduce number of tasks sharing CPU capacity */
10964 		env->migration_type = migrate_task;
10965 		env->imbalance = 1;
10966 		return;
10967 	}
10968 
10969 	if (busiest->group_type == group_imbalanced) {
10970 		/*
10971 		 * In the group_imb case we cannot rely on group-wide averages
10972 		 * to ensure CPU-load equilibrium, try to move any task to fix
10973 		 * the imbalance. The next load balance will take care of
10974 		 * balancing back the system.
10975 		 */
10976 		env->migration_type = migrate_task;
10977 		env->imbalance = 1;
10978 		return;
10979 	}
10980 
10981 	/*
10982 	 * Try to use spare capacity of local group without overloading it or
10983 	 * emptying busiest.
10984 	 */
10985 	if (local->group_type == group_has_spare) {
10986 		if ((busiest->group_type > group_fully_busy) &&
10987 		    !(env->sd->flags & SD_SHARE_LLC)) {
10988 			/*
10989 			 * If busiest is overloaded, try to fill spare
10990 			 * capacity. This might end up creating spare capacity
10991 			 * in busiest or busiest still being overloaded but
10992 			 * there is no simple way to directly compute the
10993 			 * amount of load to migrate in order to balance the
10994 			 * system.
10995 			 */
10996 			env->migration_type = migrate_util;
10997 			env->imbalance = max(local->group_capacity, local->group_util) -
10998 					 local->group_util;
10999 
11000 			/*
11001 			 * In some cases, the group's utilization is max or even
11002 			 * higher than capacity because of migrations but the
11003 			 * local CPU is (newly) idle. There is at least one
11004 			 * waiting task in this overloaded busiest group. Let's
11005 			 * try to pull it.
11006 			 */
11007 			if (env->idle && env->imbalance == 0) {
11008 				env->migration_type = migrate_task;
11009 				env->imbalance = 1;
11010 			}
11011 
11012 			return;
11013 		}
11014 
11015 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11016 			/*
11017 			 * When prefer sibling, evenly spread running tasks on
11018 			 * groups.
11019 			 */
11020 			env->migration_type = migrate_task;
11021 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11022 		} else {
11023 
11024 			/*
11025 			 * If there is no overload, we just want to even the number of
11026 			 * idle CPUs.
11027 			 */
11028 			env->migration_type = migrate_task;
11029 			env->imbalance = max_t(long, 0,
11030 					       (local->idle_cpus - busiest->idle_cpus));
11031 		}
11032 
11033 #ifdef CONFIG_NUMA
11034 		/* Consider allowing a small imbalance between NUMA groups */
11035 		if (env->sd->flags & SD_NUMA) {
11036 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11037 							       local->sum_nr_running + 1,
11038 							       env->sd->imb_numa_nr);
11039 		}
11040 #endif
11041 
11042 		/* Number of tasks to move to restore balance */
11043 		env->imbalance >>= 1;
11044 
11045 		return;
11046 	}
11047 
11048 	/*
11049 	 * Local is fully busy but has to take more load to relieve the
11050 	 * busiest group
11051 	 */
11052 	if (local->group_type < group_overloaded) {
11053 		/*
11054 		 * Local will become overloaded so the avg_load metrics are
11055 		 * finally needed.
11056 		 */
11057 
11058 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11059 				  local->group_capacity;
11060 
11061 		/*
11062 		 * If the local group is more loaded than the selected
11063 		 * busiest group don't try to pull any tasks.
11064 		 */
11065 		if (local->avg_load >= busiest->avg_load) {
11066 			env->imbalance = 0;
11067 			return;
11068 		}
11069 
11070 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11071 				sds->total_capacity;
11072 
11073 		/*
11074 		 * If the local group is more loaded than the average system
11075 		 * load, don't try to pull any tasks.
11076 		 */
11077 		if (local->avg_load >= sds->avg_load) {
11078 			env->imbalance = 0;
11079 			return;
11080 		}
11081 
11082 	}
11083 
11084 	/*
11085 	 * Both group are or will become overloaded and we're trying to get all
11086 	 * the CPUs to the average_load, so we don't want to push ourselves
11087 	 * above the average load, nor do we wish to reduce the max loaded CPU
11088 	 * below the average load. At the same time, we also don't want to
11089 	 * reduce the group load below the group capacity. Thus we look for
11090 	 * the minimum possible imbalance.
11091 	 */
11092 	env->migration_type = migrate_load;
11093 	env->imbalance = min(
11094 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11095 		(sds->avg_load - local->avg_load) * local->group_capacity
11096 	) / SCHED_CAPACITY_SCALE;
11097 }
11098 
11099 /******* sched_balance_find_src_group() helpers end here *********************/
11100 
11101 /*
11102  * Decision matrix according to the local and busiest group type:
11103  *
11104  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11105  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11106  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11107  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11108  * asym_packing     force     force      N/A    N/A  force      force
11109  * imbalanced       force     force      N/A    N/A  force      force
11110  * overloaded       force     force      N/A    N/A  force      avg_load
11111  *
11112  * N/A :      Not Applicable because already filtered while updating
11113  *            statistics.
11114  * balanced : The system is balanced for these 2 groups.
11115  * force :    Calculate the imbalance as load migration is probably needed.
11116  * avg_load : Only if imbalance is significant enough.
11117  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11118  *            different in groups.
11119  */
11120 
11121 /**
11122  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11123  * if there is an imbalance.
11124  * @env: The load balancing environment.
11125  *
11126  * Also calculates the amount of runnable load which should be moved
11127  * to restore balance.
11128  *
11129  * Return:	- The busiest group if imbalance exists.
11130  */
11131 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11132 {
11133 	struct sg_lb_stats *local, *busiest;
11134 	struct sd_lb_stats sds;
11135 
11136 	init_sd_lb_stats(&sds);
11137 
11138 	/*
11139 	 * Compute the various statistics relevant for load balancing at
11140 	 * this level.
11141 	 */
11142 	update_sd_lb_stats(env, &sds);
11143 
11144 	/* There is no busy sibling group to pull tasks from */
11145 	if (!sds.busiest)
11146 		goto out_balanced;
11147 
11148 	busiest = &sds.busiest_stat;
11149 
11150 	/* Misfit tasks should be dealt with regardless of the avg load */
11151 	if (busiest->group_type == group_misfit_task)
11152 		goto force_balance;
11153 
11154 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11155 	    rcu_dereference(env->dst_rq->rd->pd))
11156 		goto out_balanced;
11157 
11158 	/* ASYM feature bypasses nice load balance check */
11159 	if (busiest->group_type == group_asym_packing)
11160 		goto force_balance;
11161 
11162 	/*
11163 	 * If the busiest group is imbalanced the below checks don't
11164 	 * work because they assume all things are equal, which typically
11165 	 * isn't true due to cpus_ptr constraints and the like.
11166 	 */
11167 	if (busiest->group_type == group_imbalanced)
11168 		goto force_balance;
11169 
11170 	local = &sds.local_stat;
11171 	/*
11172 	 * If the local group is busier than the selected busiest group
11173 	 * don't try and pull any tasks.
11174 	 */
11175 	if (local->group_type > busiest->group_type)
11176 		goto out_balanced;
11177 
11178 	/*
11179 	 * When groups are overloaded, use the avg_load to ensure fairness
11180 	 * between tasks.
11181 	 */
11182 	if (local->group_type == group_overloaded) {
11183 		/*
11184 		 * If the local group is more loaded than the selected
11185 		 * busiest group don't try to pull any tasks.
11186 		 */
11187 		if (local->avg_load >= busiest->avg_load)
11188 			goto out_balanced;
11189 
11190 		/* XXX broken for overlapping NUMA groups */
11191 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11192 				sds.total_capacity;
11193 
11194 		/*
11195 		 * Don't pull any tasks if this group is already above the
11196 		 * domain average load.
11197 		 */
11198 		if (local->avg_load >= sds.avg_load)
11199 			goto out_balanced;
11200 
11201 		/*
11202 		 * If the busiest group is more loaded, use imbalance_pct to be
11203 		 * conservative.
11204 		 */
11205 		if (100 * busiest->avg_load <=
11206 				env->sd->imbalance_pct * local->avg_load)
11207 			goto out_balanced;
11208 	}
11209 
11210 	/*
11211 	 * Try to move all excess tasks to a sibling domain of the busiest
11212 	 * group's child domain.
11213 	 */
11214 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11215 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11216 		goto force_balance;
11217 
11218 	if (busiest->group_type != group_overloaded) {
11219 		if (!env->idle) {
11220 			/*
11221 			 * If the busiest group is not overloaded (and as a
11222 			 * result the local one too) but this CPU is already
11223 			 * busy, let another idle CPU try to pull task.
11224 			 */
11225 			goto out_balanced;
11226 		}
11227 
11228 		if (busiest->group_type == group_smt_balance &&
11229 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11230 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11231 			goto force_balance;
11232 		}
11233 
11234 		if (busiest->group_weight > 1 &&
11235 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11236 			/*
11237 			 * If the busiest group is not overloaded
11238 			 * and there is no imbalance between this and busiest
11239 			 * group wrt idle CPUs, it is balanced. The imbalance
11240 			 * becomes significant if the diff is greater than 1
11241 			 * otherwise we might end up to just move the imbalance
11242 			 * on another group. Of course this applies only if
11243 			 * there is more than 1 CPU per group.
11244 			 */
11245 			goto out_balanced;
11246 		}
11247 
11248 		if (busiest->sum_h_nr_running == 1) {
11249 			/*
11250 			 * busiest doesn't have any tasks waiting to run
11251 			 */
11252 			goto out_balanced;
11253 		}
11254 	}
11255 
11256 force_balance:
11257 	/* Looks like there is an imbalance. Compute it */
11258 	calculate_imbalance(env, &sds);
11259 	return env->imbalance ? sds.busiest : NULL;
11260 
11261 out_balanced:
11262 	env->imbalance = 0;
11263 	return NULL;
11264 }
11265 
11266 /*
11267  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11268  */
11269 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11270 				     struct sched_group *group)
11271 {
11272 	struct rq *busiest = NULL, *rq;
11273 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11274 	unsigned int busiest_nr = 0;
11275 	int i;
11276 
11277 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11278 		unsigned long capacity, load, util;
11279 		unsigned int nr_running;
11280 		enum fbq_type rt;
11281 
11282 		rq = cpu_rq(i);
11283 		rt = fbq_classify_rq(rq);
11284 
11285 		/*
11286 		 * We classify groups/runqueues into three groups:
11287 		 *  - regular: there are !numa tasks
11288 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11289 		 *  - all:     there is no distinction
11290 		 *
11291 		 * In order to avoid migrating ideally placed numa tasks,
11292 		 * ignore those when there's better options.
11293 		 *
11294 		 * If we ignore the actual busiest queue to migrate another
11295 		 * task, the next balance pass can still reduce the busiest
11296 		 * queue by moving tasks around inside the node.
11297 		 *
11298 		 * If we cannot move enough load due to this classification
11299 		 * the next pass will adjust the group classification and
11300 		 * allow migration of more tasks.
11301 		 *
11302 		 * Both cases only affect the total convergence complexity.
11303 		 */
11304 		if (rt > env->fbq_type)
11305 			continue;
11306 
11307 		nr_running = rq->cfs.h_nr_running;
11308 		if (!nr_running)
11309 			continue;
11310 
11311 		capacity = capacity_of(i);
11312 
11313 		/*
11314 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11315 		 * eventually lead to active_balancing high->low capacity.
11316 		 * Higher per-CPU capacity is considered better than balancing
11317 		 * average load.
11318 		 */
11319 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11320 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11321 		    nr_running == 1)
11322 			continue;
11323 
11324 		/*
11325 		 * Make sure we only pull tasks from a CPU of lower priority
11326 		 * when balancing between SMT siblings.
11327 		 *
11328 		 * If balancing between cores, let lower priority CPUs help
11329 		 * SMT cores with more than one busy sibling.
11330 		 */
11331 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11332 			continue;
11333 
11334 		switch (env->migration_type) {
11335 		case migrate_load:
11336 			/*
11337 			 * When comparing with load imbalance, use cpu_load()
11338 			 * which is not scaled with the CPU capacity.
11339 			 */
11340 			load = cpu_load(rq);
11341 
11342 			if (nr_running == 1 && load > env->imbalance &&
11343 			    !check_cpu_capacity(rq, env->sd))
11344 				break;
11345 
11346 			/*
11347 			 * For the load comparisons with the other CPUs,
11348 			 * consider the cpu_load() scaled with the CPU
11349 			 * capacity, so that the load can be moved away
11350 			 * from the CPU that is potentially running at a
11351 			 * lower capacity.
11352 			 *
11353 			 * Thus we're looking for max(load_i / capacity_i),
11354 			 * crosswise multiplication to rid ourselves of the
11355 			 * division works out to:
11356 			 * load_i * capacity_j > load_j * capacity_i;
11357 			 * where j is our previous maximum.
11358 			 */
11359 			if (load * busiest_capacity > busiest_load * capacity) {
11360 				busiest_load = load;
11361 				busiest_capacity = capacity;
11362 				busiest = rq;
11363 			}
11364 			break;
11365 
11366 		case migrate_util:
11367 			util = cpu_util_cfs_boost(i);
11368 
11369 			/*
11370 			 * Don't try to pull utilization from a CPU with one
11371 			 * running task. Whatever its utilization, we will fail
11372 			 * detach the task.
11373 			 */
11374 			if (nr_running <= 1)
11375 				continue;
11376 
11377 			if (busiest_util < util) {
11378 				busiest_util = util;
11379 				busiest = rq;
11380 			}
11381 			break;
11382 
11383 		case migrate_task:
11384 			if (busiest_nr < nr_running) {
11385 				busiest_nr = nr_running;
11386 				busiest = rq;
11387 			}
11388 			break;
11389 
11390 		case migrate_misfit:
11391 			/*
11392 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11393 			 * simply seek the "biggest" misfit task.
11394 			 */
11395 			if (rq->misfit_task_load > busiest_load) {
11396 				busiest_load = rq->misfit_task_load;
11397 				busiest = rq;
11398 			}
11399 
11400 			break;
11401 
11402 		}
11403 	}
11404 
11405 	return busiest;
11406 }
11407 
11408 /*
11409  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11410  * so long as it is large enough.
11411  */
11412 #define MAX_PINNED_INTERVAL	512
11413 
11414 static inline bool
11415 asym_active_balance(struct lb_env *env)
11416 {
11417 	/*
11418 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11419 	 * priority CPUs in order to pack all tasks in the highest priority
11420 	 * CPUs. When done between cores, do it only if the whole core if the
11421 	 * whole core is idle.
11422 	 *
11423 	 * If @env::src_cpu is an SMT core with busy siblings, let
11424 	 * the lower priority @env::dst_cpu help it. Do not follow
11425 	 * CPU priority.
11426 	 */
11427 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11428 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11429 		!sched_use_asym_prio(env->sd, env->src_cpu));
11430 }
11431 
11432 static inline bool
11433 imbalanced_active_balance(struct lb_env *env)
11434 {
11435 	struct sched_domain *sd = env->sd;
11436 
11437 	/*
11438 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11439 	 * distribution of the load on the system but also the even distribution of the
11440 	 * threads on a system with spare capacity
11441 	 */
11442 	if ((env->migration_type == migrate_task) &&
11443 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11444 		return 1;
11445 
11446 	return 0;
11447 }
11448 
11449 static int need_active_balance(struct lb_env *env)
11450 {
11451 	struct sched_domain *sd = env->sd;
11452 
11453 	if (asym_active_balance(env))
11454 		return 1;
11455 
11456 	if (imbalanced_active_balance(env))
11457 		return 1;
11458 
11459 	/*
11460 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11461 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11462 	 * because of other sched_class or IRQs if more capacity stays
11463 	 * available on dst_cpu.
11464 	 */
11465 	if (env->idle &&
11466 	    (env->src_rq->cfs.h_nr_running == 1)) {
11467 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11468 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11469 			return 1;
11470 	}
11471 
11472 	if (env->migration_type == migrate_misfit)
11473 		return 1;
11474 
11475 	return 0;
11476 }
11477 
11478 static int active_load_balance_cpu_stop(void *data);
11479 
11480 static int should_we_balance(struct lb_env *env)
11481 {
11482 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11483 	struct sched_group *sg = env->sd->groups;
11484 	int cpu, idle_smt = -1;
11485 
11486 	/*
11487 	 * Ensure the balancing environment is consistent; can happen
11488 	 * when the softirq triggers 'during' hotplug.
11489 	 */
11490 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11491 		return 0;
11492 
11493 	/*
11494 	 * In the newly idle case, we will allow all the CPUs
11495 	 * to do the newly idle load balance.
11496 	 *
11497 	 * However, we bail out if we already have tasks or a wakeup pending,
11498 	 * to optimize wakeup latency.
11499 	 */
11500 	if (env->idle == CPU_NEWLY_IDLE) {
11501 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11502 			return 0;
11503 		return 1;
11504 	}
11505 
11506 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11507 	/* Try to find first idle CPU */
11508 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11509 		if (!idle_cpu(cpu))
11510 			continue;
11511 
11512 		/*
11513 		 * Don't balance to idle SMT in busy core right away when
11514 		 * balancing cores, but remember the first idle SMT CPU for
11515 		 * later consideration.  Find CPU on an idle core first.
11516 		 */
11517 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11518 			if (idle_smt == -1)
11519 				idle_smt = cpu;
11520 			/*
11521 			 * If the core is not idle, and first SMT sibling which is
11522 			 * idle has been found, then its not needed to check other
11523 			 * SMT siblings for idleness:
11524 			 */
11525 #ifdef CONFIG_SCHED_SMT
11526 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11527 #endif
11528 			continue;
11529 		}
11530 
11531 		/*
11532 		 * Are we the first idle core in a non-SMT domain or higher,
11533 		 * or the first idle CPU in a SMT domain?
11534 		 */
11535 		return cpu == env->dst_cpu;
11536 	}
11537 
11538 	/* Are we the first idle CPU with busy siblings? */
11539 	if (idle_smt != -1)
11540 		return idle_smt == env->dst_cpu;
11541 
11542 	/* Are we the first CPU of this group ? */
11543 	return group_balance_cpu(sg) == env->dst_cpu;
11544 }
11545 
11546 /*
11547  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11548  * tasks if there is an imbalance.
11549  */
11550 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11551 			struct sched_domain *sd, enum cpu_idle_type idle,
11552 			int *continue_balancing)
11553 {
11554 	int ld_moved, cur_ld_moved, active_balance = 0;
11555 	struct sched_domain *sd_parent = sd->parent;
11556 	struct sched_group *group;
11557 	struct rq *busiest;
11558 	struct rq_flags rf;
11559 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11560 	struct lb_env env = {
11561 		.sd		= sd,
11562 		.dst_cpu	= this_cpu,
11563 		.dst_rq		= this_rq,
11564 		.dst_grpmask    = group_balance_mask(sd->groups),
11565 		.idle		= idle,
11566 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11567 		.cpus		= cpus,
11568 		.fbq_type	= all,
11569 		.tasks		= LIST_HEAD_INIT(env.tasks),
11570 	};
11571 
11572 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11573 
11574 	schedstat_inc(sd->lb_count[idle]);
11575 
11576 redo:
11577 	if (!should_we_balance(&env)) {
11578 		*continue_balancing = 0;
11579 		goto out_balanced;
11580 	}
11581 
11582 	group = sched_balance_find_src_group(&env);
11583 	if (!group) {
11584 		schedstat_inc(sd->lb_nobusyg[idle]);
11585 		goto out_balanced;
11586 	}
11587 
11588 	busiest = sched_balance_find_src_rq(&env, group);
11589 	if (!busiest) {
11590 		schedstat_inc(sd->lb_nobusyq[idle]);
11591 		goto out_balanced;
11592 	}
11593 
11594 	WARN_ON_ONCE(busiest == env.dst_rq);
11595 
11596 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11597 
11598 	env.src_cpu = busiest->cpu;
11599 	env.src_rq = busiest;
11600 
11601 	ld_moved = 0;
11602 	/* Clear this flag as soon as we find a pullable task */
11603 	env.flags |= LBF_ALL_PINNED;
11604 	if (busiest->nr_running > 1) {
11605 		/*
11606 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11607 		 * an imbalance but busiest->nr_running <= 1, the group is
11608 		 * still unbalanced. ld_moved simply stays zero, so it is
11609 		 * correctly treated as an imbalance.
11610 		 */
11611 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11612 
11613 more_balance:
11614 		rq_lock_irqsave(busiest, &rf);
11615 		update_rq_clock(busiest);
11616 
11617 		/*
11618 		 * cur_ld_moved - load moved in current iteration
11619 		 * ld_moved     - cumulative load moved across iterations
11620 		 */
11621 		cur_ld_moved = detach_tasks(&env);
11622 
11623 		/*
11624 		 * We've detached some tasks from busiest_rq. Every
11625 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11626 		 * unlock busiest->lock, and we are able to be sure
11627 		 * that nobody can manipulate the tasks in parallel.
11628 		 * See task_rq_lock() family for the details.
11629 		 */
11630 
11631 		rq_unlock(busiest, &rf);
11632 
11633 		if (cur_ld_moved) {
11634 			attach_tasks(&env);
11635 			ld_moved += cur_ld_moved;
11636 		}
11637 
11638 		local_irq_restore(rf.flags);
11639 
11640 		if (env.flags & LBF_NEED_BREAK) {
11641 			env.flags &= ~LBF_NEED_BREAK;
11642 			goto more_balance;
11643 		}
11644 
11645 		/*
11646 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11647 		 * us and move them to an alternate dst_cpu in our sched_group
11648 		 * where they can run. The upper limit on how many times we
11649 		 * iterate on same src_cpu is dependent on number of CPUs in our
11650 		 * sched_group.
11651 		 *
11652 		 * This changes load balance semantics a bit on who can move
11653 		 * load to a given_cpu. In addition to the given_cpu itself
11654 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11655 		 * nohz-idle), we now have balance_cpu in a position to move
11656 		 * load to given_cpu. In rare situations, this may cause
11657 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11658 		 * _independently_ and at _same_ time to move some load to
11659 		 * given_cpu) causing excess load to be moved to given_cpu.
11660 		 * This however should not happen so much in practice and
11661 		 * moreover subsequent load balance cycles should correct the
11662 		 * excess load moved.
11663 		 */
11664 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11665 
11666 			/* Prevent to re-select dst_cpu via env's CPUs */
11667 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11668 
11669 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11670 			env.dst_cpu	 = env.new_dst_cpu;
11671 			env.flags	&= ~LBF_DST_PINNED;
11672 			env.loop	 = 0;
11673 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11674 
11675 			/*
11676 			 * Go back to "more_balance" rather than "redo" since we
11677 			 * need to continue with same src_cpu.
11678 			 */
11679 			goto more_balance;
11680 		}
11681 
11682 		/*
11683 		 * We failed to reach balance because of affinity.
11684 		 */
11685 		if (sd_parent) {
11686 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11687 
11688 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11689 				*group_imbalance = 1;
11690 		}
11691 
11692 		/* All tasks on this runqueue were pinned by CPU affinity */
11693 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11694 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11695 			/*
11696 			 * Attempting to continue load balancing at the current
11697 			 * sched_domain level only makes sense if there are
11698 			 * active CPUs remaining as possible busiest CPUs to
11699 			 * pull load from which are not contained within the
11700 			 * destination group that is receiving any migrated
11701 			 * load.
11702 			 */
11703 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11704 				env.loop = 0;
11705 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11706 				goto redo;
11707 			}
11708 			goto out_all_pinned;
11709 		}
11710 	}
11711 
11712 	if (!ld_moved) {
11713 		schedstat_inc(sd->lb_failed[idle]);
11714 		/*
11715 		 * Increment the failure counter only on periodic balance.
11716 		 * We do not want newidle balance, which can be very
11717 		 * frequent, pollute the failure counter causing
11718 		 * excessive cache_hot migrations and active balances.
11719 		 *
11720 		 * Similarly for migration_misfit which is not related to
11721 		 * load/util migration, don't pollute nr_balance_failed.
11722 		 */
11723 		if (idle != CPU_NEWLY_IDLE &&
11724 		    env.migration_type != migrate_misfit)
11725 			sd->nr_balance_failed++;
11726 
11727 		if (need_active_balance(&env)) {
11728 			unsigned long flags;
11729 
11730 			raw_spin_rq_lock_irqsave(busiest, flags);
11731 
11732 			/*
11733 			 * Don't kick the active_load_balance_cpu_stop,
11734 			 * if the curr task on busiest CPU can't be
11735 			 * moved to this_cpu:
11736 			 */
11737 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11738 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11739 				goto out_one_pinned;
11740 			}
11741 
11742 			/* Record that we found at least one task that could run on this_cpu */
11743 			env.flags &= ~LBF_ALL_PINNED;
11744 
11745 			/*
11746 			 * ->active_balance synchronizes accesses to
11747 			 * ->active_balance_work.  Once set, it's cleared
11748 			 * only after active load balance is finished.
11749 			 */
11750 			if (!busiest->active_balance) {
11751 				busiest->active_balance = 1;
11752 				busiest->push_cpu = this_cpu;
11753 				active_balance = 1;
11754 			}
11755 
11756 			preempt_disable();
11757 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11758 			if (active_balance) {
11759 				stop_one_cpu_nowait(cpu_of(busiest),
11760 					active_load_balance_cpu_stop, busiest,
11761 					&busiest->active_balance_work);
11762 			}
11763 			preempt_enable();
11764 		}
11765 	} else {
11766 		sd->nr_balance_failed = 0;
11767 	}
11768 
11769 	if (likely(!active_balance) || need_active_balance(&env)) {
11770 		/* We were unbalanced, so reset the balancing interval */
11771 		sd->balance_interval = sd->min_interval;
11772 	}
11773 
11774 	goto out;
11775 
11776 out_balanced:
11777 	/*
11778 	 * We reach balance although we may have faced some affinity
11779 	 * constraints. Clear the imbalance flag only if other tasks got
11780 	 * a chance to move and fix the imbalance.
11781 	 */
11782 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11783 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11784 
11785 		if (*group_imbalance)
11786 			*group_imbalance = 0;
11787 	}
11788 
11789 out_all_pinned:
11790 	/*
11791 	 * We reach balance because all tasks are pinned at this level so
11792 	 * we can't migrate them. Let the imbalance flag set so parent level
11793 	 * can try to migrate them.
11794 	 */
11795 	schedstat_inc(sd->lb_balanced[idle]);
11796 
11797 	sd->nr_balance_failed = 0;
11798 
11799 out_one_pinned:
11800 	ld_moved = 0;
11801 
11802 	/*
11803 	 * sched_balance_newidle() disregards balance intervals, so we could
11804 	 * repeatedly reach this code, which would lead to balance_interval
11805 	 * skyrocketing in a short amount of time. Skip the balance_interval
11806 	 * increase logic to avoid that.
11807 	 *
11808 	 * Similarly misfit migration which is not necessarily an indication of
11809 	 * the system being busy and requires lb to backoff to let it settle
11810 	 * down.
11811 	 */
11812 	if (env.idle == CPU_NEWLY_IDLE ||
11813 	    env.migration_type == migrate_misfit)
11814 		goto out;
11815 
11816 	/* tune up the balancing interval */
11817 	if ((env.flags & LBF_ALL_PINNED &&
11818 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11819 	    sd->balance_interval < sd->max_interval)
11820 		sd->balance_interval *= 2;
11821 out:
11822 	return ld_moved;
11823 }
11824 
11825 static inline unsigned long
11826 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11827 {
11828 	unsigned long interval = sd->balance_interval;
11829 
11830 	if (cpu_busy)
11831 		interval *= sd->busy_factor;
11832 
11833 	/* scale ms to jiffies */
11834 	interval = msecs_to_jiffies(interval);
11835 
11836 	/*
11837 	 * Reduce likelihood of busy balancing at higher domains racing with
11838 	 * balancing at lower domains by preventing their balancing periods
11839 	 * from being multiples of each other.
11840 	 */
11841 	if (cpu_busy)
11842 		interval -= 1;
11843 
11844 	interval = clamp(interval, 1UL, max_load_balance_interval);
11845 
11846 	return interval;
11847 }
11848 
11849 static inline void
11850 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11851 {
11852 	unsigned long interval, next;
11853 
11854 	/* used by idle balance, so cpu_busy = 0 */
11855 	interval = get_sd_balance_interval(sd, 0);
11856 	next = sd->last_balance + interval;
11857 
11858 	if (time_after(*next_balance, next))
11859 		*next_balance = next;
11860 }
11861 
11862 /*
11863  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11864  * running tasks off the busiest CPU onto idle CPUs. It requires at
11865  * least 1 task to be running on each physical CPU where possible, and
11866  * avoids physical / logical imbalances.
11867  */
11868 static int active_load_balance_cpu_stop(void *data)
11869 {
11870 	struct rq *busiest_rq = data;
11871 	int busiest_cpu = cpu_of(busiest_rq);
11872 	int target_cpu = busiest_rq->push_cpu;
11873 	struct rq *target_rq = cpu_rq(target_cpu);
11874 	struct sched_domain *sd;
11875 	struct task_struct *p = NULL;
11876 	struct rq_flags rf;
11877 
11878 	rq_lock_irq(busiest_rq, &rf);
11879 	/*
11880 	 * Between queueing the stop-work and running it is a hole in which
11881 	 * CPUs can become inactive. We should not move tasks from or to
11882 	 * inactive CPUs.
11883 	 */
11884 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11885 		goto out_unlock;
11886 
11887 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11888 	if (unlikely(busiest_cpu != smp_processor_id() ||
11889 		     !busiest_rq->active_balance))
11890 		goto out_unlock;
11891 
11892 	/* Is there any task to move? */
11893 	if (busiest_rq->nr_running <= 1)
11894 		goto out_unlock;
11895 
11896 	/*
11897 	 * This condition is "impossible", if it occurs
11898 	 * we need to fix it. Originally reported by
11899 	 * Bjorn Helgaas on a 128-CPU setup.
11900 	 */
11901 	WARN_ON_ONCE(busiest_rq == target_rq);
11902 
11903 	/* Search for an sd spanning us and the target CPU. */
11904 	rcu_read_lock();
11905 	for_each_domain(target_cpu, sd) {
11906 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11907 			break;
11908 	}
11909 
11910 	if (likely(sd)) {
11911 		struct lb_env env = {
11912 			.sd		= sd,
11913 			.dst_cpu	= target_cpu,
11914 			.dst_rq		= target_rq,
11915 			.src_cpu	= busiest_rq->cpu,
11916 			.src_rq		= busiest_rq,
11917 			.idle		= CPU_IDLE,
11918 			.flags		= LBF_ACTIVE_LB,
11919 		};
11920 
11921 		schedstat_inc(sd->alb_count);
11922 		update_rq_clock(busiest_rq);
11923 
11924 		p = detach_one_task(&env);
11925 		if (p) {
11926 			schedstat_inc(sd->alb_pushed);
11927 			/* Active balancing done, reset the failure counter. */
11928 			sd->nr_balance_failed = 0;
11929 		} else {
11930 			schedstat_inc(sd->alb_failed);
11931 		}
11932 	}
11933 	rcu_read_unlock();
11934 out_unlock:
11935 	busiest_rq->active_balance = 0;
11936 	rq_unlock(busiest_rq, &rf);
11937 
11938 	if (p)
11939 		attach_one_task(target_rq, p);
11940 
11941 	local_irq_enable();
11942 
11943 	return 0;
11944 }
11945 
11946 /*
11947  * This flag serializes load-balancing passes over large domains
11948  * (above the NODE topology level) - only one load-balancing instance
11949  * may run at a time, to reduce overhead on very large systems with
11950  * lots of CPUs and large NUMA distances.
11951  *
11952  * - Note that load-balancing passes triggered while another one
11953  *   is executing are skipped and not re-tried.
11954  *
11955  * - Also note that this does not serialize rebalance_domains()
11956  *   execution, as non-SD_SERIALIZE domains will still be
11957  *   load-balanced in parallel.
11958  */
11959 static atomic_t sched_balance_running = ATOMIC_INIT(0);
11960 
11961 /*
11962  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
11963  * This trades load-balance latency on larger machines for less cross talk.
11964  */
11965 void update_max_interval(void)
11966 {
11967 	max_load_balance_interval = HZ*num_online_cpus()/10;
11968 }
11969 
11970 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11971 {
11972 	if (cost > sd->max_newidle_lb_cost) {
11973 		/*
11974 		 * Track max cost of a domain to make sure to not delay the
11975 		 * next wakeup on the CPU.
11976 		 */
11977 		sd->max_newidle_lb_cost = cost;
11978 		sd->last_decay_max_lb_cost = jiffies;
11979 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11980 		/*
11981 		 * Decay the newidle max times by ~1% per second to ensure that
11982 		 * it is not outdated and the current max cost is actually
11983 		 * shorter.
11984 		 */
11985 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11986 		sd->last_decay_max_lb_cost = jiffies;
11987 
11988 		return true;
11989 	}
11990 
11991 	return false;
11992 }
11993 
11994 /*
11995  * It checks each scheduling domain to see if it is due to be balanced,
11996  * and initiates a balancing operation if so.
11997  *
11998  * Balancing parameters are set up in init_sched_domains.
11999  */
12000 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12001 {
12002 	int continue_balancing = 1;
12003 	int cpu = rq->cpu;
12004 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12005 	unsigned long interval;
12006 	struct sched_domain *sd;
12007 	/* Earliest time when we have to do rebalance again */
12008 	unsigned long next_balance = jiffies + 60*HZ;
12009 	int update_next_balance = 0;
12010 	int need_serialize, need_decay = 0;
12011 	u64 max_cost = 0;
12012 
12013 	rcu_read_lock();
12014 	for_each_domain(cpu, sd) {
12015 		/*
12016 		 * Decay the newidle max times here because this is a regular
12017 		 * visit to all the domains.
12018 		 */
12019 		need_decay = update_newidle_cost(sd, 0);
12020 		max_cost += sd->max_newidle_lb_cost;
12021 
12022 		/*
12023 		 * Stop the load balance at this level. There is another
12024 		 * CPU in our sched group which is doing load balancing more
12025 		 * actively.
12026 		 */
12027 		if (!continue_balancing) {
12028 			if (need_decay)
12029 				continue;
12030 			break;
12031 		}
12032 
12033 		interval = get_sd_balance_interval(sd, busy);
12034 
12035 		need_serialize = sd->flags & SD_SERIALIZE;
12036 		if (need_serialize) {
12037 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12038 				goto out;
12039 		}
12040 
12041 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12042 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12043 				/*
12044 				 * The LBF_DST_PINNED logic could have changed
12045 				 * env->dst_cpu, so we can't know our idle
12046 				 * state even if we migrated tasks. Update it.
12047 				 */
12048 				idle = idle_cpu(cpu);
12049 				busy = !idle && !sched_idle_cpu(cpu);
12050 			}
12051 			sd->last_balance = jiffies;
12052 			interval = get_sd_balance_interval(sd, busy);
12053 		}
12054 		if (need_serialize)
12055 			atomic_set_release(&sched_balance_running, 0);
12056 out:
12057 		if (time_after(next_balance, sd->last_balance + interval)) {
12058 			next_balance = sd->last_balance + interval;
12059 			update_next_balance = 1;
12060 		}
12061 	}
12062 	if (need_decay) {
12063 		/*
12064 		 * Ensure the rq-wide value also decays but keep it at a
12065 		 * reasonable floor to avoid funnies with rq->avg_idle.
12066 		 */
12067 		rq->max_idle_balance_cost =
12068 			max((u64)sysctl_sched_migration_cost, max_cost);
12069 	}
12070 	rcu_read_unlock();
12071 
12072 	/*
12073 	 * next_balance will be updated only when there is a need.
12074 	 * When the cpu is attached to null domain for ex, it will not be
12075 	 * updated.
12076 	 */
12077 	if (likely(update_next_balance))
12078 		rq->next_balance = next_balance;
12079 
12080 }
12081 
12082 static inline int on_null_domain(struct rq *rq)
12083 {
12084 	return unlikely(!rcu_dereference_sched(rq->sd));
12085 }
12086 
12087 #ifdef CONFIG_NO_HZ_COMMON
12088 /*
12089  * NOHZ idle load balancing (ILB) details:
12090  *
12091  * - When one of the busy CPUs notices that there may be an idle rebalancing
12092  *   needed, they will kick the idle load balancer, which then does idle
12093  *   load balancing for all the idle CPUs.
12094  *
12095  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12096  *   anywhere yet.
12097  */
12098 static inline int find_new_ilb(void)
12099 {
12100 	const struct cpumask *hk_mask;
12101 	int ilb_cpu;
12102 
12103 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12104 
12105 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12106 
12107 		if (ilb_cpu == smp_processor_id())
12108 			continue;
12109 
12110 		if (idle_cpu(ilb_cpu))
12111 			return ilb_cpu;
12112 	}
12113 
12114 	return -1;
12115 }
12116 
12117 /*
12118  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12119  * SMP function call (IPI).
12120  *
12121  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12122  */
12123 static void kick_ilb(unsigned int flags)
12124 {
12125 	int ilb_cpu;
12126 
12127 	/*
12128 	 * Increase nohz.next_balance only when if full ilb is triggered but
12129 	 * not if we only update stats.
12130 	 */
12131 	if (flags & NOHZ_BALANCE_KICK)
12132 		nohz.next_balance = jiffies+1;
12133 
12134 	ilb_cpu = find_new_ilb();
12135 	if (ilb_cpu < 0)
12136 		return;
12137 
12138 	/*
12139 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12140 	 * i.e. all bits in flags are already set in ilb_cpu.
12141 	 */
12142 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12143 		return;
12144 
12145 	/*
12146 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12147 	 * the first flag owns it; cleared by nohz_csd_func().
12148 	 */
12149 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12150 	if (flags & NOHZ_KICK_MASK)
12151 		return;
12152 
12153 	/*
12154 	 * This way we generate an IPI on the target CPU which
12155 	 * is idle, and the softirq performing NOHZ idle load balancing
12156 	 * will be run before returning from the IPI.
12157 	 */
12158 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12159 }
12160 
12161 /*
12162  * Current decision point for kicking the idle load balancer in the presence
12163  * of idle CPUs in the system.
12164  */
12165 static void nohz_balancer_kick(struct rq *rq)
12166 {
12167 	unsigned long now = jiffies;
12168 	struct sched_domain_shared *sds;
12169 	struct sched_domain *sd;
12170 	int nr_busy, i, cpu = rq->cpu;
12171 	unsigned int flags = 0;
12172 
12173 	if (unlikely(rq->idle_balance))
12174 		return;
12175 
12176 	/*
12177 	 * We may be recently in ticked or tickless idle mode. At the first
12178 	 * busy tick after returning from idle, we will update the busy stats.
12179 	 */
12180 	nohz_balance_exit_idle(rq);
12181 
12182 	/*
12183 	 * None are in tickless mode and hence no need for NOHZ idle load
12184 	 * balancing:
12185 	 */
12186 	if (likely(!atomic_read(&nohz.nr_cpus)))
12187 		return;
12188 
12189 	if (READ_ONCE(nohz.has_blocked) &&
12190 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12191 		flags = NOHZ_STATS_KICK;
12192 
12193 	if (time_before(now, nohz.next_balance))
12194 		goto out;
12195 
12196 	if (rq->nr_running >= 2) {
12197 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12198 		goto out;
12199 	}
12200 
12201 	rcu_read_lock();
12202 
12203 	sd = rcu_dereference(rq->sd);
12204 	if (sd) {
12205 		/*
12206 		 * If there's a runnable CFS task and the current CPU has reduced
12207 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12208 		 */
12209 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12210 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12211 			goto unlock;
12212 		}
12213 	}
12214 
12215 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12216 	if (sd) {
12217 		/*
12218 		 * When ASYM_PACKING; see if there's a more preferred CPU
12219 		 * currently idle; in which case, kick the ILB to move tasks
12220 		 * around.
12221 		 *
12222 		 * When balancing between cores, all the SMT siblings of the
12223 		 * preferred CPU must be idle.
12224 		 */
12225 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12226 			if (sched_asym(sd, i, cpu)) {
12227 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12228 				goto unlock;
12229 			}
12230 		}
12231 	}
12232 
12233 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12234 	if (sd) {
12235 		/*
12236 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12237 		 * to run the misfit task on.
12238 		 */
12239 		if (check_misfit_status(rq)) {
12240 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12241 			goto unlock;
12242 		}
12243 
12244 		/*
12245 		 * For asymmetric systems, we do not want to nicely balance
12246 		 * cache use, instead we want to embrace asymmetry and only
12247 		 * ensure tasks have enough CPU capacity.
12248 		 *
12249 		 * Skip the LLC logic because it's not relevant in that case.
12250 		 */
12251 		goto unlock;
12252 	}
12253 
12254 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12255 	if (sds) {
12256 		/*
12257 		 * If there is an imbalance between LLC domains (IOW we could
12258 		 * increase the overall cache utilization), we need a less-loaded LLC
12259 		 * domain to pull some load from. Likewise, we may need to spread
12260 		 * load within the current LLC domain (e.g. packed SMT cores but
12261 		 * other CPUs are idle). We can't really know from here how busy
12262 		 * the others are - so just get a NOHZ balance going if it looks
12263 		 * like this LLC domain has tasks we could move.
12264 		 */
12265 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12266 		if (nr_busy > 1) {
12267 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12268 			goto unlock;
12269 		}
12270 	}
12271 unlock:
12272 	rcu_read_unlock();
12273 out:
12274 	if (READ_ONCE(nohz.needs_update))
12275 		flags |= NOHZ_NEXT_KICK;
12276 
12277 	if (flags)
12278 		kick_ilb(flags);
12279 }
12280 
12281 static void set_cpu_sd_state_busy(int cpu)
12282 {
12283 	struct sched_domain *sd;
12284 
12285 	rcu_read_lock();
12286 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12287 
12288 	if (!sd || !sd->nohz_idle)
12289 		goto unlock;
12290 	sd->nohz_idle = 0;
12291 
12292 	atomic_inc(&sd->shared->nr_busy_cpus);
12293 unlock:
12294 	rcu_read_unlock();
12295 }
12296 
12297 void nohz_balance_exit_idle(struct rq *rq)
12298 {
12299 	SCHED_WARN_ON(rq != this_rq());
12300 
12301 	if (likely(!rq->nohz_tick_stopped))
12302 		return;
12303 
12304 	rq->nohz_tick_stopped = 0;
12305 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12306 	atomic_dec(&nohz.nr_cpus);
12307 
12308 	set_cpu_sd_state_busy(rq->cpu);
12309 }
12310 
12311 static void set_cpu_sd_state_idle(int cpu)
12312 {
12313 	struct sched_domain *sd;
12314 
12315 	rcu_read_lock();
12316 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12317 
12318 	if (!sd || sd->nohz_idle)
12319 		goto unlock;
12320 	sd->nohz_idle = 1;
12321 
12322 	atomic_dec(&sd->shared->nr_busy_cpus);
12323 unlock:
12324 	rcu_read_unlock();
12325 }
12326 
12327 /*
12328  * This routine will record that the CPU is going idle with tick stopped.
12329  * This info will be used in performing idle load balancing in the future.
12330  */
12331 void nohz_balance_enter_idle(int cpu)
12332 {
12333 	struct rq *rq = cpu_rq(cpu);
12334 
12335 	SCHED_WARN_ON(cpu != smp_processor_id());
12336 
12337 	/* If this CPU is going down, then nothing needs to be done: */
12338 	if (!cpu_active(cpu))
12339 		return;
12340 
12341 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12342 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12343 		return;
12344 
12345 	/*
12346 	 * Can be set safely without rq->lock held
12347 	 * If a clear happens, it will have evaluated last additions because
12348 	 * rq->lock is held during the check and the clear
12349 	 */
12350 	rq->has_blocked_load = 1;
12351 
12352 	/*
12353 	 * The tick is still stopped but load could have been added in the
12354 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12355 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12356 	 * of nohz.has_blocked can only happen after checking the new load
12357 	 */
12358 	if (rq->nohz_tick_stopped)
12359 		goto out;
12360 
12361 	/* If we're a completely isolated CPU, we don't play: */
12362 	if (on_null_domain(rq))
12363 		return;
12364 
12365 	rq->nohz_tick_stopped = 1;
12366 
12367 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12368 	atomic_inc(&nohz.nr_cpus);
12369 
12370 	/*
12371 	 * Ensures that if nohz_idle_balance() fails to observe our
12372 	 * @idle_cpus_mask store, it must observe the @has_blocked
12373 	 * and @needs_update stores.
12374 	 */
12375 	smp_mb__after_atomic();
12376 
12377 	set_cpu_sd_state_idle(cpu);
12378 
12379 	WRITE_ONCE(nohz.needs_update, 1);
12380 out:
12381 	/*
12382 	 * Each time a cpu enter idle, we assume that it has blocked load and
12383 	 * enable the periodic update of the load of idle CPUs
12384 	 */
12385 	WRITE_ONCE(nohz.has_blocked, 1);
12386 }
12387 
12388 static bool update_nohz_stats(struct rq *rq)
12389 {
12390 	unsigned int cpu = rq->cpu;
12391 
12392 	if (!rq->has_blocked_load)
12393 		return false;
12394 
12395 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12396 		return false;
12397 
12398 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12399 		return true;
12400 
12401 	sched_balance_update_blocked_averages(cpu);
12402 
12403 	return rq->has_blocked_load;
12404 }
12405 
12406 /*
12407  * Internal function that runs load balance for all idle CPUs. The load balance
12408  * can be a simple update of blocked load or a complete load balance with
12409  * tasks movement depending of flags.
12410  */
12411 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12412 {
12413 	/* Earliest time when we have to do rebalance again */
12414 	unsigned long now = jiffies;
12415 	unsigned long next_balance = now + 60*HZ;
12416 	bool has_blocked_load = false;
12417 	int update_next_balance = 0;
12418 	int this_cpu = this_rq->cpu;
12419 	int balance_cpu;
12420 	struct rq *rq;
12421 
12422 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12423 
12424 	/*
12425 	 * We assume there will be no idle load after this update and clear
12426 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12427 	 * set the has_blocked flag and trigger another update of idle load.
12428 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12429 	 * setting the flag, we are sure to not clear the state and not
12430 	 * check the load of an idle cpu.
12431 	 *
12432 	 * Same applies to idle_cpus_mask vs needs_update.
12433 	 */
12434 	if (flags & NOHZ_STATS_KICK)
12435 		WRITE_ONCE(nohz.has_blocked, 0);
12436 	if (flags & NOHZ_NEXT_KICK)
12437 		WRITE_ONCE(nohz.needs_update, 0);
12438 
12439 	/*
12440 	 * Ensures that if we miss the CPU, we must see the has_blocked
12441 	 * store from nohz_balance_enter_idle().
12442 	 */
12443 	smp_mb();
12444 
12445 	/*
12446 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12447 	 * chance for other idle cpu to pull load.
12448 	 */
12449 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12450 		if (!idle_cpu(balance_cpu))
12451 			continue;
12452 
12453 		/*
12454 		 * If this CPU gets work to do, stop the load balancing
12455 		 * work being done for other CPUs. Next load
12456 		 * balancing owner will pick it up.
12457 		 */
12458 		if (need_resched()) {
12459 			if (flags & NOHZ_STATS_KICK)
12460 				has_blocked_load = true;
12461 			if (flags & NOHZ_NEXT_KICK)
12462 				WRITE_ONCE(nohz.needs_update, 1);
12463 			goto abort;
12464 		}
12465 
12466 		rq = cpu_rq(balance_cpu);
12467 
12468 		if (flags & NOHZ_STATS_KICK)
12469 			has_blocked_load |= update_nohz_stats(rq);
12470 
12471 		/*
12472 		 * If time for next balance is due,
12473 		 * do the balance.
12474 		 */
12475 		if (time_after_eq(jiffies, rq->next_balance)) {
12476 			struct rq_flags rf;
12477 
12478 			rq_lock_irqsave(rq, &rf);
12479 			update_rq_clock(rq);
12480 			rq_unlock_irqrestore(rq, &rf);
12481 
12482 			if (flags & NOHZ_BALANCE_KICK)
12483 				sched_balance_domains(rq, CPU_IDLE);
12484 		}
12485 
12486 		if (time_after(next_balance, rq->next_balance)) {
12487 			next_balance = rq->next_balance;
12488 			update_next_balance = 1;
12489 		}
12490 	}
12491 
12492 	/*
12493 	 * next_balance will be updated only when there is a need.
12494 	 * When the CPU is attached to null domain for ex, it will not be
12495 	 * updated.
12496 	 */
12497 	if (likely(update_next_balance))
12498 		nohz.next_balance = next_balance;
12499 
12500 	if (flags & NOHZ_STATS_KICK)
12501 		WRITE_ONCE(nohz.next_blocked,
12502 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12503 
12504 abort:
12505 	/* There is still blocked load, enable periodic update */
12506 	if (has_blocked_load)
12507 		WRITE_ONCE(nohz.has_blocked, 1);
12508 }
12509 
12510 /*
12511  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12512  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12513  */
12514 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12515 {
12516 	unsigned int flags = this_rq->nohz_idle_balance;
12517 
12518 	if (!flags)
12519 		return false;
12520 
12521 	this_rq->nohz_idle_balance = 0;
12522 
12523 	if (idle != CPU_IDLE)
12524 		return false;
12525 
12526 	_nohz_idle_balance(this_rq, flags);
12527 
12528 	return true;
12529 }
12530 
12531 /*
12532  * Check if we need to directly run the ILB for updating blocked load before
12533  * entering idle state. Here we run ILB directly without issuing IPIs.
12534  *
12535  * Note that when this function is called, the tick may not yet be stopped on
12536  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12537  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12538  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12539  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12540  * called from this function on (this) CPU that's not yet in the mask. That's
12541  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12542  * updating the blocked load of already idle CPUs without waking up one of
12543  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12544  * cpu about to enter idle, because it can take a long time.
12545  */
12546 void nohz_run_idle_balance(int cpu)
12547 {
12548 	unsigned int flags;
12549 
12550 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12551 
12552 	/*
12553 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12554 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12555 	 */
12556 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12557 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12558 }
12559 
12560 static void nohz_newidle_balance(struct rq *this_rq)
12561 {
12562 	int this_cpu = this_rq->cpu;
12563 
12564 	/*
12565 	 * This CPU doesn't want to be disturbed by scheduler
12566 	 * housekeeping
12567 	 */
12568 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12569 		return;
12570 
12571 	/* Will wake up very soon. No time for doing anything else*/
12572 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12573 		return;
12574 
12575 	/* Don't need to update blocked load of idle CPUs*/
12576 	if (!READ_ONCE(nohz.has_blocked) ||
12577 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12578 		return;
12579 
12580 	/*
12581 	 * Set the need to trigger ILB in order to update blocked load
12582 	 * before entering idle state.
12583 	 */
12584 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12585 }
12586 
12587 #else /* !CONFIG_NO_HZ_COMMON */
12588 static inline void nohz_balancer_kick(struct rq *rq) { }
12589 
12590 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12591 {
12592 	return false;
12593 }
12594 
12595 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12596 #endif /* CONFIG_NO_HZ_COMMON */
12597 
12598 /*
12599  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12600  * idle. Attempts to pull tasks from other CPUs.
12601  *
12602  * Returns:
12603  *   < 0 - we released the lock and there are !fair tasks present
12604  *     0 - failed, no new tasks
12605  *   > 0 - success, new (fair) tasks present
12606  */
12607 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12608 {
12609 	unsigned long next_balance = jiffies + HZ;
12610 	int this_cpu = this_rq->cpu;
12611 	int continue_balancing = 1;
12612 	u64 t0, t1, curr_cost = 0;
12613 	struct sched_domain *sd;
12614 	int pulled_task = 0;
12615 
12616 	update_misfit_status(NULL, this_rq);
12617 
12618 	/*
12619 	 * There is a task waiting to run. No need to search for one.
12620 	 * Return 0; the task will be enqueued when switching to idle.
12621 	 */
12622 	if (this_rq->ttwu_pending)
12623 		return 0;
12624 
12625 	/*
12626 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12627 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12628 	 * as idle time.
12629 	 */
12630 	this_rq->idle_stamp = rq_clock(this_rq);
12631 
12632 	/*
12633 	 * Do not pull tasks towards !active CPUs...
12634 	 */
12635 	if (!cpu_active(this_cpu))
12636 		return 0;
12637 
12638 	/*
12639 	 * This is OK, because current is on_cpu, which avoids it being picked
12640 	 * for load-balance and preemption/IRQs are still disabled avoiding
12641 	 * further scheduler activity on it and we're being very careful to
12642 	 * re-start the picking loop.
12643 	 */
12644 	rq_unpin_lock(this_rq, rf);
12645 
12646 	rcu_read_lock();
12647 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12648 
12649 	if (!get_rd_overloaded(this_rq->rd) ||
12650 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12651 
12652 		if (sd)
12653 			update_next_balance(sd, &next_balance);
12654 		rcu_read_unlock();
12655 
12656 		goto out;
12657 	}
12658 	rcu_read_unlock();
12659 
12660 	raw_spin_rq_unlock(this_rq);
12661 
12662 	t0 = sched_clock_cpu(this_cpu);
12663 	sched_balance_update_blocked_averages(this_cpu);
12664 
12665 	rcu_read_lock();
12666 	for_each_domain(this_cpu, sd) {
12667 		u64 domain_cost;
12668 
12669 		update_next_balance(sd, &next_balance);
12670 
12671 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12672 			break;
12673 
12674 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12675 
12676 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12677 						   sd, CPU_NEWLY_IDLE,
12678 						   &continue_balancing);
12679 
12680 			t1 = sched_clock_cpu(this_cpu);
12681 			domain_cost = t1 - t0;
12682 			update_newidle_cost(sd, domain_cost);
12683 
12684 			curr_cost += domain_cost;
12685 			t0 = t1;
12686 		}
12687 
12688 		/*
12689 		 * Stop searching for tasks to pull if there are
12690 		 * now runnable tasks on this rq.
12691 		 */
12692 		if (pulled_task || !continue_balancing)
12693 			break;
12694 	}
12695 	rcu_read_unlock();
12696 
12697 	raw_spin_rq_lock(this_rq);
12698 
12699 	if (curr_cost > this_rq->max_idle_balance_cost)
12700 		this_rq->max_idle_balance_cost = curr_cost;
12701 
12702 	/*
12703 	 * While browsing the domains, we released the rq lock, a task could
12704 	 * have been enqueued in the meantime. Since we're not going idle,
12705 	 * pretend we pulled a task.
12706 	 */
12707 	if (this_rq->cfs.h_nr_running && !pulled_task)
12708 		pulled_task = 1;
12709 
12710 	/* Is there a task of a high priority class? */
12711 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12712 		pulled_task = -1;
12713 
12714 out:
12715 	/* Move the next balance forward */
12716 	if (time_after(this_rq->next_balance, next_balance))
12717 		this_rq->next_balance = next_balance;
12718 
12719 	if (pulled_task)
12720 		this_rq->idle_stamp = 0;
12721 	else
12722 		nohz_newidle_balance(this_rq);
12723 
12724 	rq_repin_lock(this_rq, rf);
12725 
12726 	return pulled_task;
12727 }
12728 
12729 /*
12730  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12731  *
12732  * - directly from the local scheduler_tick() for periodic load balancing
12733  *
12734  * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12735  *   through the SMP cross-call nohz_csd_func()
12736  */
12737 static __latent_entropy void sched_balance_softirq(struct softirq_action *h)
12738 {
12739 	struct rq *this_rq = this_rq();
12740 	enum cpu_idle_type idle = this_rq->idle_balance;
12741 	/*
12742 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12743 	 * balancing on behalf of the other idle CPUs whose ticks are
12744 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12745 	 * give the idle CPUs a chance to load balance. Else we may
12746 	 * load balance only within the local sched_domain hierarchy
12747 	 * and abort nohz_idle_balance altogether if we pull some load.
12748 	 */
12749 	if (nohz_idle_balance(this_rq, idle))
12750 		return;
12751 
12752 	/* normal load balance */
12753 	sched_balance_update_blocked_averages(this_rq->cpu);
12754 	sched_balance_domains(this_rq, idle);
12755 }
12756 
12757 /*
12758  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12759  */
12760 void sched_balance_trigger(struct rq *rq)
12761 {
12762 	/*
12763 	 * Don't need to rebalance while attached to NULL domain or
12764 	 * runqueue CPU is not active
12765 	 */
12766 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12767 		return;
12768 
12769 	if (time_after_eq(jiffies, rq->next_balance))
12770 		raise_softirq(SCHED_SOFTIRQ);
12771 
12772 	nohz_balancer_kick(rq);
12773 }
12774 
12775 static void rq_online_fair(struct rq *rq)
12776 {
12777 	update_sysctl();
12778 
12779 	update_runtime_enabled(rq);
12780 }
12781 
12782 static void rq_offline_fair(struct rq *rq)
12783 {
12784 	update_sysctl();
12785 
12786 	/* Ensure any throttled groups are reachable by pick_next_task */
12787 	unthrottle_offline_cfs_rqs(rq);
12788 
12789 	/* Ensure that we remove rq contribution to group share: */
12790 	clear_tg_offline_cfs_rqs(rq);
12791 }
12792 
12793 #endif /* CONFIG_SMP */
12794 
12795 #ifdef CONFIG_SCHED_CORE
12796 static inline bool
12797 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12798 {
12799 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12800 	u64 slice = se->slice;
12801 
12802 	return (rtime * min_nr_tasks > slice);
12803 }
12804 
12805 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12806 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12807 {
12808 	if (!sched_core_enabled(rq))
12809 		return;
12810 
12811 	/*
12812 	 * If runqueue has only one task which used up its slice and
12813 	 * if the sibling is forced idle, then trigger schedule to
12814 	 * give forced idle task a chance.
12815 	 *
12816 	 * sched_slice() considers only this active rq and it gets the
12817 	 * whole slice. But during force idle, we have siblings acting
12818 	 * like a single runqueue and hence we need to consider runnable
12819 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12820 	 * go through the forced idle rq, but that would be a perf hit.
12821 	 * We can assume that the forced idle CPU has at least
12822 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12823 	 * if we need to give up the CPU.
12824 	 */
12825 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12826 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12827 		resched_curr(rq);
12828 }
12829 
12830 /*
12831  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12832  */
12833 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12834 			 bool forceidle)
12835 {
12836 	for_each_sched_entity(se) {
12837 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12838 
12839 		if (forceidle) {
12840 			if (cfs_rq->forceidle_seq == fi_seq)
12841 				break;
12842 			cfs_rq->forceidle_seq = fi_seq;
12843 		}
12844 
12845 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12846 	}
12847 }
12848 
12849 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12850 {
12851 	struct sched_entity *se = &p->se;
12852 
12853 	if (p->sched_class != &fair_sched_class)
12854 		return;
12855 
12856 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12857 }
12858 
12859 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12860 			bool in_fi)
12861 {
12862 	struct rq *rq = task_rq(a);
12863 	const struct sched_entity *sea = &a->se;
12864 	const struct sched_entity *seb = &b->se;
12865 	struct cfs_rq *cfs_rqa;
12866 	struct cfs_rq *cfs_rqb;
12867 	s64 delta;
12868 
12869 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12870 
12871 #ifdef CONFIG_FAIR_GROUP_SCHED
12872 	/*
12873 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12874 	 * are immediate siblings.
12875 	 */
12876 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12877 		int sea_depth = sea->depth;
12878 		int seb_depth = seb->depth;
12879 
12880 		if (sea_depth >= seb_depth)
12881 			sea = parent_entity(sea);
12882 		if (sea_depth <= seb_depth)
12883 			seb = parent_entity(seb);
12884 	}
12885 
12886 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12887 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12888 
12889 	cfs_rqa = sea->cfs_rq;
12890 	cfs_rqb = seb->cfs_rq;
12891 #else
12892 	cfs_rqa = &task_rq(a)->cfs;
12893 	cfs_rqb = &task_rq(b)->cfs;
12894 #endif
12895 
12896 	/*
12897 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12898 	 * min_vruntime_fi, which would have been updated in prior calls
12899 	 * to se_fi_update().
12900 	 */
12901 	delta = (s64)(sea->vruntime - seb->vruntime) +
12902 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12903 
12904 	return delta > 0;
12905 }
12906 
12907 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12908 {
12909 	struct cfs_rq *cfs_rq;
12910 
12911 #ifdef CONFIG_FAIR_GROUP_SCHED
12912 	cfs_rq = task_group(p)->cfs_rq[cpu];
12913 #else
12914 	cfs_rq = &cpu_rq(cpu)->cfs;
12915 #endif
12916 	return throttled_hierarchy(cfs_rq);
12917 }
12918 #else
12919 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12920 #endif
12921 
12922 /*
12923  * scheduler tick hitting a task of our scheduling class.
12924  *
12925  * NOTE: This function can be called remotely by the tick offload that
12926  * goes along full dynticks. Therefore no local assumption can be made
12927  * and everything must be accessed through the @rq and @curr passed in
12928  * parameters.
12929  */
12930 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12931 {
12932 	struct cfs_rq *cfs_rq;
12933 	struct sched_entity *se = &curr->se;
12934 
12935 	for_each_sched_entity(se) {
12936 		cfs_rq = cfs_rq_of(se);
12937 		entity_tick(cfs_rq, se, queued);
12938 	}
12939 
12940 	if (static_branch_unlikely(&sched_numa_balancing))
12941 		task_tick_numa(rq, curr);
12942 
12943 	update_misfit_status(curr, rq);
12944 	check_update_overutilized_status(task_rq(curr));
12945 
12946 	task_tick_core(rq, curr);
12947 }
12948 
12949 /*
12950  * called on fork with the child task as argument from the parent's context
12951  *  - child not yet on the tasklist
12952  *  - preemption disabled
12953  */
12954 static void task_fork_fair(struct task_struct *p)
12955 {
12956 	set_task_max_allowed_capacity(p);
12957 }
12958 
12959 /*
12960  * Priority of the task has changed. Check to see if we preempt
12961  * the current task.
12962  */
12963 static void
12964 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12965 {
12966 	if (!task_on_rq_queued(p))
12967 		return;
12968 
12969 	if (rq->cfs.nr_running == 1)
12970 		return;
12971 
12972 	/*
12973 	 * Reschedule if we are currently running on this runqueue and
12974 	 * our priority decreased, or if we are not currently running on
12975 	 * this runqueue and our priority is higher than the current's
12976 	 */
12977 	if (task_current(rq, p)) {
12978 		if (p->prio > oldprio)
12979 			resched_curr(rq);
12980 	} else
12981 		wakeup_preempt(rq, p, 0);
12982 }
12983 
12984 #ifdef CONFIG_FAIR_GROUP_SCHED
12985 /*
12986  * Propagate the changes of the sched_entity across the tg tree to make it
12987  * visible to the root
12988  */
12989 static void propagate_entity_cfs_rq(struct sched_entity *se)
12990 {
12991 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12992 
12993 	if (cfs_rq_throttled(cfs_rq))
12994 		return;
12995 
12996 	if (!throttled_hierarchy(cfs_rq))
12997 		list_add_leaf_cfs_rq(cfs_rq);
12998 
12999 	/* Start to propagate at parent */
13000 	se = se->parent;
13001 
13002 	for_each_sched_entity(se) {
13003 		cfs_rq = cfs_rq_of(se);
13004 
13005 		update_load_avg(cfs_rq, se, UPDATE_TG);
13006 
13007 		if (cfs_rq_throttled(cfs_rq))
13008 			break;
13009 
13010 		if (!throttled_hierarchy(cfs_rq))
13011 			list_add_leaf_cfs_rq(cfs_rq);
13012 	}
13013 }
13014 #else
13015 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13016 #endif
13017 
13018 static void detach_entity_cfs_rq(struct sched_entity *se)
13019 {
13020 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13021 
13022 #ifdef CONFIG_SMP
13023 	/*
13024 	 * In case the task sched_avg hasn't been attached:
13025 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13026 	 * - A task which has been woken up by try_to_wake_up() but is
13027 	 *   waiting for actually being woken up by sched_ttwu_pending().
13028 	 */
13029 	if (!se->avg.last_update_time)
13030 		return;
13031 #endif
13032 
13033 	/* Catch up with the cfs_rq and remove our load when we leave */
13034 	update_load_avg(cfs_rq, se, 0);
13035 	detach_entity_load_avg(cfs_rq, se);
13036 	update_tg_load_avg(cfs_rq);
13037 	propagate_entity_cfs_rq(se);
13038 }
13039 
13040 static void attach_entity_cfs_rq(struct sched_entity *se)
13041 {
13042 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13043 
13044 	/* Synchronize entity with its cfs_rq */
13045 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13046 	attach_entity_load_avg(cfs_rq, se);
13047 	update_tg_load_avg(cfs_rq);
13048 	propagate_entity_cfs_rq(se);
13049 }
13050 
13051 static void detach_task_cfs_rq(struct task_struct *p)
13052 {
13053 	struct sched_entity *se = &p->se;
13054 
13055 	detach_entity_cfs_rq(se);
13056 }
13057 
13058 static void attach_task_cfs_rq(struct task_struct *p)
13059 {
13060 	struct sched_entity *se = &p->se;
13061 
13062 	attach_entity_cfs_rq(se);
13063 }
13064 
13065 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13066 {
13067 	detach_task_cfs_rq(p);
13068 	/*
13069 	 * Since this is called after changing class, this is a little weird
13070 	 * and we cannot use DEQUEUE_DELAYED.
13071 	 */
13072 	if (p->se.sched_delayed) {
13073 		/* First, dequeue it from its new class' structures */
13074 		dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);
13075 		/*
13076 		 * Now, clean up the fair_sched_class side of things
13077 		 * related to sched_delayed being true and that wasn't done
13078 		 * due to the generic dequeue not using DEQUEUE_DELAYED.
13079 		 */
13080 		finish_delayed_dequeue_entity(&p->se);
13081 		p->se.rel_deadline = 0;
13082 		__block_task(rq, p);
13083 	}
13084 }
13085 
13086 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13087 {
13088 	SCHED_WARN_ON(p->se.sched_delayed);
13089 
13090 	attach_task_cfs_rq(p);
13091 
13092 	set_task_max_allowed_capacity(p);
13093 
13094 	if (task_on_rq_queued(p)) {
13095 		/*
13096 		 * We were most likely switched from sched_rt, so
13097 		 * kick off the schedule if running, otherwise just see
13098 		 * if we can still preempt the current task.
13099 		 */
13100 		if (task_current(rq, p))
13101 			resched_curr(rq);
13102 		else
13103 			wakeup_preempt(rq, p, 0);
13104 	}
13105 }
13106 
13107 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13108 {
13109 	struct sched_entity *se = &p->se;
13110 
13111 #ifdef CONFIG_SMP
13112 	if (task_on_rq_queued(p)) {
13113 		/*
13114 		 * Move the next running task to the front of the list, so our
13115 		 * cfs_tasks list becomes MRU one.
13116 		 */
13117 		list_move(&se->group_node, &rq->cfs_tasks);
13118 	}
13119 #endif
13120 	if (!first)
13121 		return;
13122 
13123 	SCHED_WARN_ON(se->sched_delayed);
13124 
13125 	if (hrtick_enabled_fair(rq))
13126 		hrtick_start_fair(rq, p);
13127 
13128 	update_misfit_status(p, rq);
13129 	sched_fair_update_stop_tick(rq, p);
13130 }
13131 
13132 /*
13133  * Account for a task changing its policy or group.
13134  *
13135  * This routine is mostly called to set cfs_rq->curr field when a task
13136  * migrates between groups/classes.
13137  */
13138 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13139 {
13140 	struct sched_entity *se = &p->se;
13141 
13142 	for_each_sched_entity(se) {
13143 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13144 
13145 		set_next_entity(cfs_rq, se);
13146 		/* ensure bandwidth has been allocated on our new cfs_rq */
13147 		account_cfs_rq_runtime(cfs_rq, 0);
13148 	}
13149 
13150 	__set_next_task_fair(rq, p, first);
13151 }
13152 
13153 void init_cfs_rq(struct cfs_rq *cfs_rq)
13154 {
13155 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13156 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13157 #ifdef CONFIG_SMP
13158 	raw_spin_lock_init(&cfs_rq->removed.lock);
13159 #endif
13160 }
13161 
13162 #ifdef CONFIG_FAIR_GROUP_SCHED
13163 static void task_change_group_fair(struct task_struct *p)
13164 {
13165 	/*
13166 	 * We couldn't detach or attach a forked task which
13167 	 * hasn't been woken up by wake_up_new_task().
13168 	 */
13169 	if (READ_ONCE(p->__state) == TASK_NEW)
13170 		return;
13171 
13172 	detach_task_cfs_rq(p);
13173 
13174 #ifdef CONFIG_SMP
13175 	/* Tell se's cfs_rq has been changed -- migrated */
13176 	p->se.avg.last_update_time = 0;
13177 #endif
13178 	set_task_rq(p, task_cpu(p));
13179 	attach_task_cfs_rq(p);
13180 }
13181 
13182 void free_fair_sched_group(struct task_group *tg)
13183 {
13184 	int i;
13185 
13186 	for_each_possible_cpu(i) {
13187 		if (tg->cfs_rq)
13188 			kfree(tg->cfs_rq[i]);
13189 		if (tg->se)
13190 			kfree(tg->se[i]);
13191 	}
13192 
13193 	kfree(tg->cfs_rq);
13194 	kfree(tg->se);
13195 }
13196 
13197 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13198 {
13199 	struct sched_entity *se;
13200 	struct cfs_rq *cfs_rq;
13201 	int i;
13202 
13203 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13204 	if (!tg->cfs_rq)
13205 		goto err;
13206 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13207 	if (!tg->se)
13208 		goto err;
13209 
13210 	tg->shares = NICE_0_LOAD;
13211 
13212 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13213 
13214 	for_each_possible_cpu(i) {
13215 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13216 				      GFP_KERNEL, cpu_to_node(i));
13217 		if (!cfs_rq)
13218 			goto err;
13219 
13220 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13221 				  GFP_KERNEL, cpu_to_node(i));
13222 		if (!se)
13223 			goto err_free_rq;
13224 
13225 		init_cfs_rq(cfs_rq);
13226 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13227 		init_entity_runnable_average(se);
13228 	}
13229 
13230 	return 1;
13231 
13232 err_free_rq:
13233 	kfree(cfs_rq);
13234 err:
13235 	return 0;
13236 }
13237 
13238 void online_fair_sched_group(struct task_group *tg)
13239 {
13240 	struct sched_entity *se;
13241 	struct rq_flags rf;
13242 	struct rq *rq;
13243 	int i;
13244 
13245 	for_each_possible_cpu(i) {
13246 		rq = cpu_rq(i);
13247 		se = tg->se[i];
13248 		rq_lock_irq(rq, &rf);
13249 		update_rq_clock(rq);
13250 		attach_entity_cfs_rq(se);
13251 		sync_throttle(tg, i);
13252 		rq_unlock_irq(rq, &rf);
13253 	}
13254 }
13255 
13256 void unregister_fair_sched_group(struct task_group *tg)
13257 {
13258 	int cpu;
13259 
13260 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13261 
13262 	for_each_possible_cpu(cpu) {
13263 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13264 		struct sched_entity *se = tg->se[cpu];
13265 		struct rq *rq = cpu_rq(cpu);
13266 
13267 		if (se) {
13268 			if (se->sched_delayed) {
13269 				guard(rq_lock_irqsave)(rq);
13270 				if (se->sched_delayed) {
13271 					update_rq_clock(rq);
13272 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13273 				}
13274 				list_del_leaf_cfs_rq(cfs_rq);
13275 			}
13276 			remove_entity_load_avg(se);
13277 		}
13278 
13279 		/*
13280 		 * Only empty task groups can be destroyed; so we can speculatively
13281 		 * check on_list without danger of it being re-added.
13282 		 */
13283 		if (cfs_rq->on_list) {
13284 			guard(rq_lock_irqsave)(rq);
13285 			list_del_leaf_cfs_rq(cfs_rq);
13286 		}
13287 	}
13288 }
13289 
13290 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13291 			struct sched_entity *se, int cpu,
13292 			struct sched_entity *parent)
13293 {
13294 	struct rq *rq = cpu_rq(cpu);
13295 
13296 	cfs_rq->tg = tg;
13297 	cfs_rq->rq = rq;
13298 	init_cfs_rq_runtime(cfs_rq);
13299 
13300 	tg->cfs_rq[cpu] = cfs_rq;
13301 	tg->se[cpu] = se;
13302 
13303 	/* se could be NULL for root_task_group */
13304 	if (!se)
13305 		return;
13306 
13307 	if (!parent) {
13308 		se->cfs_rq = &rq->cfs;
13309 		se->depth = 0;
13310 	} else {
13311 		se->cfs_rq = parent->my_q;
13312 		se->depth = parent->depth + 1;
13313 	}
13314 
13315 	se->my_q = cfs_rq;
13316 	/* guarantee group entities always have weight */
13317 	update_load_set(&se->load, NICE_0_LOAD);
13318 	se->parent = parent;
13319 }
13320 
13321 static DEFINE_MUTEX(shares_mutex);
13322 
13323 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13324 {
13325 	int i;
13326 
13327 	lockdep_assert_held(&shares_mutex);
13328 
13329 	/*
13330 	 * We can't change the weight of the root cgroup.
13331 	 */
13332 	if (!tg->se[0])
13333 		return -EINVAL;
13334 
13335 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13336 
13337 	if (tg->shares == shares)
13338 		return 0;
13339 
13340 	tg->shares = shares;
13341 	for_each_possible_cpu(i) {
13342 		struct rq *rq = cpu_rq(i);
13343 		struct sched_entity *se = tg->se[i];
13344 		struct rq_flags rf;
13345 
13346 		/* Propagate contribution to hierarchy */
13347 		rq_lock_irqsave(rq, &rf);
13348 		update_rq_clock(rq);
13349 		for_each_sched_entity(se) {
13350 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13351 			update_cfs_group(se);
13352 		}
13353 		rq_unlock_irqrestore(rq, &rf);
13354 	}
13355 
13356 	return 0;
13357 }
13358 
13359 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13360 {
13361 	int ret;
13362 
13363 	mutex_lock(&shares_mutex);
13364 	if (tg_is_idle(tg))
13365 		ret = -EINVAL;
13366 	else
13367 		ret = __sched_group_set_shares(tg, shares);
13368 	mutex_unlock(&shares_mutex);
13369 
13370 	return ret;
13371 }
13372 
13373 int sched_group_set_idle(struct task_group *tg, long idle)
13374 {
13375 	int i;
13376 
13377 	if (tg == &root_task_group)
13378 		return -EINVAL;
13379 
13380 	if (idle < 0 || idle > 1)
13381 		return -EINVAL;
13382 
13383 	mutex_lock(&shares_mutex);
13384 
13385 	if (tg->idle == idle) {
13386 		mutex_unlock(&shares_mutex);
13387 		return 0;
13388 	}
13389 
13390 	tg->idle = idle;
13391 
13392 	for_each_possible_cpu(i) {
13393 		struct rq *rq = cpu_rq(i);
13394 		struct sched_entity *se = tg->se[i];
13395 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13396 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13397 		long idle_task_delta;
13398 		struct rq_flags rf;
13399 
13400 		rq_lock_irqsave(rq, &rf);
13401 
13402 		grp_cfs_rq->idle = idle;
13403 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13404 			goto next_cpu;
13405 
13406 		if (se->on_rq) {
13407 			parent_cfs_rq = cfs_rq_of(se);
13408 			if (cfs_rq_is_idle(grp_cfs_rq))
13409 				parent_cfs_rq->idle_nr_running++;
13410 			else
13411 				parent_cfs_rq->idle_nr_running--;
13412 		}
13413 
13414 		idle_task_delta = grp_cfs_rq->h_nr_running -
13415 				  grp_cfs_rq->idle_h_nr_running;
13416 		if (!cfs_rq_is_idle(grp_cfs_rq))
13417 			idle_task_delta *= -1;
13418 
13419 		for_each_sched_entity(se) {
13420 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13421 
13422 			if (!se->on_rq)
13423 				break;
13424 
13425 			cfs_rq->idle_h_nr_running += idle_task_delta;
13426 
13427 			/* Already accounted at parent level and above. */
13428 			if (cfs_rq_is_idle(cfs_rq))
13429 				break;
13430 		}
13431 
13432 next_cpu:
13433 		rq_unlock_irqrestore(rq, &rf);
13434 	}
13435 
13436 	/* Idle groups have minimum weight. */
13437 	if (tg_is_idle(tg))
13438 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13439 	else
13440 		__sched_group_set_shares(tg, NICE_0_LOAD);
13441 
13442 	mutex_unlock(&shares_mutex);
13443 	return 0;
13444 }
13445 
13446 #endif /* CONFIG_FAIR_GROUP_SCHED */
13447 
13448 
13449 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13450 {
13451 	struct sched_entity *se = &task->se;
13452 	unsigned int rr_interval = 0;
13453 
13454 	/*
13455 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13456 	 * idle runqueue:
13457 	 */
13458 	if (rq->cfs.load.weight)
13459 		rr_interval = NS_TO_JIFFIES(se->slice);
13460 
13461 	return rr_interval;
13462 }
13463 
13464 /*
13465  * All the scheduling class methods:
13466  */
13467 DEFINE_SCHED_CLASS(fair) = {
13468 
13469 	.enqueue_task		= enqueue_task_fair,
13470 	.dequeue_task		= dequeue_task_fair,
13471 	.yield_task		= yield_task_fair,
13472 	.yield_to_task		= yield_to_task_fair,
13473 
13474 	.wakeup_preempt		= check_preempt_wakeup_fair,
13475 
13476 	.pick_task		= pick_task_fair,
13477 	.pick_next_task		= __pick_next_task_fair,
13478 	.put_prev_task		= put_prev_task_fair,
13479 	.set_next_task          = set_next_task_fair,
13480 
13481 #ifdef CONFIG_SMP
13482 	.balance		= balance_fair,
13483 	.select_task_rq		= select_task_rq_fair,
13484 	.migrate_task_rq	= migrate_task_rq_fair,
13485 
13486 	.rq_online		= rq_online_fair,
13487 	.rq_offline		= rq_offline_fair,
13488 
13489 	.task_dead		= task_dead_fair,
13490 	.set_cpus_allowed	= set_cpus_allowed_fair,
13491 #endif
13492 
13493 	.task_tick		= task_tick_fair,
13494 	.task_fork		= task_fork_fair,
13495 
13496 	.reweight_task		= reweight_task_fair,
13497 	.prio_changed		= prio_changed_fair,
13498 	.switched_from		= switched_from_fair,
13499 	.switched_to		= switched_to_fair,
13500 
13501 	.get_rr_interval	= get_rr_interval_fair,
13502 
13503 	.update_curr		= update_curr_fair,
13504 
13505 #ifdef CONFIG_FAIR_GROUP_SCHED
13506 	.task_change_group	= task_change_group_fair,
13507 #endif
13508 
13509 #ifdef CONFIG_SCHED_CORE
13510 	.task_is_throttled	= task_is_throttled_fair,
13511 #endif
13512 
13513 #ifdef CONFIG_UCLAMP_TASK
13514 	.uclamp_enabled		= 1,
13515 #endif
13516 };
13517 
13518 #ifdef CONFIG_SCHED_DEBUG
13519 void print_cfs_stats(struct seq_file *m, int cpu)
13520 {
13521 	struct cfs_rq *cfs_rq, *pos;
13522 
13523 	rcu_read_lock();
13524 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13525 		print_cfs_rq(m, cpu, cfs_rq);
13526 	rcu_read_unlock();
13527 }
13528 
13529 #ifdef CONFIG_NUMA_BALANCING
13530 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13531 {
13532 	int node;
13533 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13534 	struct numa_group *ng;
13535 
13536 	rcu_read_lock();
13537 	ng = rcu_dereference(p->numa_group);
13538 	for_each_online_node(node) {
13539 		if (p->numa_faults) {
13540 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13541 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13542 		}
13543 		if (ng) {
13544 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13545 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13546 		}
13547 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13548 	}
13549 	rcu_read_unlock();
13550 }
13551 #endif /* CONFIG_NUMA_BALANCING */
13552 #endif /* CONFIG_SCHED_DEBUG */
13553 
13554 __init void init_sched_fair_class(void)
13555 {
13556 #ifdef CONFIG_SMP
13557 	int i;
13558 
13559 	for_each_possible_cpu(i) {
13560 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13561 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13562 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13563 					GFP_KERNEL, cpu_to_node(i));
13564 
13565 #ifdef CONFIG_CFS_BANDWIDTH
13566 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13567 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13568 #endif
13569 	}
13570 
13571 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13572 
13573 #ifdef CONFIG_NO_HZ_COMMON
13574 	nohz.next_balance = jiffies;
13575 	nohz.next_blocked = jiffies;
13576 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13577 #endif
13578 #endif /* SMP */
13579 
13580 }
13581