1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return task_has_idle_policy(task_of(se)); 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 783 } 784 785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 786 { 787 struct sched_entity *root = __pick_root_entity(cfs_rq); 788 struct sched_entity *curr = cfs_rq->curr; 789 u64 min_slice = ~0ULL; 790 791 if (curr && curr->on_rq) 792 min_slice = curr->slice; 793 794 if (root) 795 min_slice = min(min_slice, root->min_slice); 796 797 return min_slice; 798 } 799 800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 801 { 802 return entity_before(__node_2_se(a), __node_2_se(b)); 803 } 804 805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 806 807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 808 { 809 if (node) { 810 struct sched_entity *rse = __node_2_se(node); 811 if (vruntime_gt(min_vruntime, se, rse)) 812 se->min_vruntime = rse->min_vruntime; 813 } 814 } 815 816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 817 { 818 if (node) { 819 struct sched_entity *rse = __node_2_se(node); 820 if (rse->min_slice < se->min_slice) 821 se->min_slice = rse->min_slice; 822 } 823 } 824 825 /* 826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 827 */ 828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 829 { 830 u64 old_min_vruntime = se->min_vruntime; 831 u64 old_min_slice = se->min_slice; 832 struct rb_node *node = &se->run_node; 833 834 se->min_vruntime = se->vruntime; 835 __min_vruntime_update(se, node->rb_right); 836 __min_vruntime_update(se, node->rb_left); 837 838 se->min_slice = se->slice; 839 __min_slice_update(se, node->rb_right); 840 __min_slice_update(se, node->rb_left); 841 842 return se->min_vruntime == old_min_vruntime && 843 se->min_slice == old_min_slice; 844 } 845 846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 847 run_node, min_vruntime, min_vruntime_update); 848 849 /* 850 * Enqueue an entity into the rb-tree: 851 */ 852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 853 { 854 avg_vruntime_add(cfs_rq, se); 855 se->min_vruntime = se->vruntime; 856 se->min_slice = se->slice; 857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 858 __entity_less, &min_vruntime_cb); 859 } 860 861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 862 { 863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 864 &min_vruntime_cb); 865 avg_vruntime_sub(cfs_rq, se); 866 } 867 868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 869 { 870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 871 872 if (!root) 873 return NULL; 874 875 return __node_2_se(root); 876 } 877 878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 879 { 880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 881 882 if (!left) 883 return NULL; 884 885 return __node_2_se(left); 886 } 887 888 /* 889 * Earliest Eligible Virtual Deadline First 890 * 891 * In order to provide latency guarantees for different request sizes 892 * EEVDF selects the best runnable task from two criteria: 893 * 894 * 1) the task must be eligible (must be owed service) 895 * 896 * 2) from those tasks that meet 1), we select the one 897 * with the earliest virtual deadline. 898 * 899 * We can do this in O(log n) time due to an augmented RB-tree. The 900 * tree keeps the entries sorted on deadline, but also functions as a 901 * heap based on the vruntime by keeping: 902 * 903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 904 * 905 * Which allows tree pruning through eligibility. 906 */ 907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 908 { 909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 910 struct sched_entity *se = __pick_first_entity(cfs_rq); 911 struct sched_entity *curr = cfs_rq->curr; 912 struct sched_entity *best = NULL; 913 914 /* 915 * We can safely skip eligibility check if there is only one entity 916 * in this cfs_rq, saving some cycles. 917 */ 918 if (cfs_rq->nr_running == 1) 919 return curr && curr->on_rq ? curr : se; 920 921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 922 curr = NULL; 923 924 /* 925 * Once selected, run a task until it either becomes non-eligible or 926 * until it gets a new slice. See the HACK in set_next_entity(). 927 */ 928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 929 return curr; 930 931 /* Pick the leftmost entity if it's eligible */ 932 if (se && entity_eligible(cfs_rq, se)) { 933 best = se; 934 goto found; 935 } 936 937 /* Heap search for the EEVD entity */ 938 while (node) { 939 struct rb_node *left = node->rb_left; 940 941 /* 942 * Eligible entities in left subtree are always better 943 * choices, since they have earlier deadlines. 944 */ 945 if (left && vruntime_eligible(cfs_rq, 946 __node_2_se(left)->min_vruntime)) { 947 node = left; 948 continue; 949 } 950 951 se = __node_2_se(node); 952 953 /* 954 * The left subtree either is empty or has no eligible 955 * entity, so check the current node since it is the one 956 * with earliest deadline that might be eligible. 957 */ 958 if (entity_eligible(cfs_rq, se)) { 959 best = se; 960 break; 961 } 962 963 node = node->rb_right; 964 } 965 found: 966 if (!best || (curr && entity_before(curr, best))) 967 best = curr; 968 969 return best; 970 } 971 972 #ifdef CONFIG_SCHED_DEBUG 973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 974 { 975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 976 977 if (!last) 978 return NULL; 979 980 return __node_2_se(last); 981 } 982 983 /************************************************************** 984 * Scheduling class statistics methods: 985 */ 986 #ifdef CONFIG_SMP 987 int sched_update_scaling(void) 988 { 989 unsigned int factor = get_update_sysctl_factor(); 990 991 #define WRT_SYSCTL(name) \ 992 (normalized_sysctl_##name = sysctl_##name / (factor)) 993 WRT_SYSCTL(sched_base_slice); 994 #undef WRT_SYSCTL 995 996 return 0; 997 } 998 #endif 999 #endif 1000 1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1002 1003 /* 1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1005 * this is probably good enough. 1006 */ 1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1008 { 1009 if ((s64)(se->vruntime - se->deadline) < 0) 1010 return false; 1011 1012 /* 1013 * For EEVDF the virtual time slope is determined by w_i (iow. 1014 * nice) while the request time r_i is determined by 1015 * sysctl_sched_base_slice. 1016 */ 1017 if (!se->custom_slice) 1018 se->slice = sysctl_sched_base_slice; 1019 1020 /* 1021 * EEVDF: vd_i = ve_i + r_i / w_i 1022 */ 1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1024 1025 /* 1026 * The task has consumed its request, reschedule. 1027 */ 1028 return true; 1029 } 1030 1031 #include "pelt.h" 1032 #ifdef CONFIG_SMP 1033 1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1035 static unsigned long task_h_load(struct task_struct *p); 1036 static unsigned long capacity_of(int cpu); 1037 1038 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1039 void init_entity_runnable_average(struct sched_entity *se) 1040 { 1041 struct sched_avg *sa = &se->avg; 1042 1043 memset(sa, 0, sizeof(*sa)); 1044 1045 /* 1046 * Tasks are initialized with full load to be seen as heavy tasks until 1047 * they get a chance to stabilize to their real load level. 1048 * Group entities are initialized with zero load to reflect the fact that 1049 * nothing has been attached to the task group yet. 1050 */ 1051 if (entity_is_task(se)) 1052 sa->load_avg = scale_load_down(se->load.weight); 1053 1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1055 } 1056 1057 /* 1058 * With new tasks being created, their initial util_avgs are extrapolated 1059 * based on the cfs_rq's current util_avg: 1060 * 1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1062 * * se_weight(se) 1063 * 1064 * However, in many cases, the above util_avg does not give a desired 1065 * value. Moreover, the sum of the util_avgs may be divergent, such 1066 * as when the series is a harmonic series. 1067 * 1068 * To solve this problem, we also cap the util_avg of successive tasks to 1069 * only 1/2 of the left utilization budget: 1070 * 1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1072 * 1073 * where n denotes the nth task and cpu_scale the CPU capacity. 1074 * 1075 * For example, for a CPU with 1024 of capacity, a simplest series from 1076 * the beginning would be like: 1077 * 1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1080 * 1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1082 * if util_avg > util_avg_cap. 1083 */ 1084 void post_init_entity_util_avg(struct task_struct *p) 1085 { 1086 struct sched_entity *se = &p->se; 1087 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1088 struct sched_avg *sa = &se->avg; 1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1091 1092 if (p->sched_class != &fair_sched_class) { 1093 /* 1094 * For !fair tasks do: 1095 * 1096 update_cfs_rq_load_avg(now, cfs_rq); 1097 attach_entity_load_avg(cfs_rq, se); 1098 switched_from_fair(rq, p); 1099 * 1100 * such that the next switched_to_fair() has the 1101 * expected state. 1102 */ 1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1104 return; 1105 } 1106 1107 if (cap > 0) { 1108 if (cfs_rq->avg.util_avg != 0) { 1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1111 1112 if (sa->util_avg > cap) 1113 sa->util_avg = cap; 1114 } else { 1115 sa->util_avg = cap; 1116 } 1117 } 1118 1119 sa->runnable_avg = sa->util_avg; 1120 } 1121 1122 #else /* !CONFIG_SMP */ 1123 void init_entity_runnable_average(struct sched_entity *se) 1124 { 1125 } 1126 void post_init_entity_util_avg(struct task_struct *p) 1127 { 1128 } 1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1130 { 1131 } 1132 #endif /* CONFIG_SMP */ 1133 1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1135 { 1136 u64 now = rq_clock_task(rq); 1137 s64 delta_exec; 1138 1139 delta_exec = now - curr->exec_start; 1140 if (unlikely(delta_exec <= 0)) 1141 return delta_exec; 1142 1143 curr->exec_start = now; 1144 curr->sum_exec_runtime += delta_exec; 1145 1146 if (schedstat_enabled()) { 1147 struct sched_statistics *stats; 1148 1149 stats = __schedstats_from_se(curr); 1150 __schedstat_set(stats->exec_max, 1151 max(delta_exec, stats->exec_max)); 1152 } 1153 1154 return delta_exec; 1155 } 1156 1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1158 { 1159 trace_sched_stat_runtime(p, delta_exec); 1160 account_group_exec_runtime(p, delta_exec); 1161 cgroup_account_cputime(p, delta_exec); 1162 if (p->dl_server) 1163 dl_server_update(p->dl_server, delta_exec); 1164 } 1165 1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1167 { 1168 if (!sched_feat(PREEMPT_SHORT)) 1169 return false; 1170 1171 if (curr->vlag == curr->deadline) 1172 return false; 1173 1174 return !entity_eligible(cfs_rq, curr); 1175 } 1176 1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1178 struct sched_entity *pse, struct sched_entity *se) 1179 { 1180 if (!sched_feat(PREEMPT_SHORT)) 1181 return false; 1182 1183 if (pse->slice >= se->slice) 1184 return false; 1185 1186 if (!entity_eligible(cfs_rq, pse)) 1187 return false; 1188 1189 if (entity_before(pse, se)) 1190 return true; 1191 1192 if (!entity_eligible(cfs_rq, se)) 1193 return true; 1194 1195 return false; 1196 } 1197 1198 /* 1199 * Used by other classes to account runtime. 1200 */ 1201 s64 update_curr_common(struct rq *rq) 1202 { 1203 struct task_struct *curr = rq->curr; 1204 s64 delta_exec; 1205 1206 delta_exec = update_curr_se(rq, &curr->se); 1207 if (likely(delta_exec > 0)) 1208 update_curr_task(curr, delta_exec); 1209 1210 return delta_exec; 1211 } 1212 1213 /* 1214 * Update the current task's runtime statistics. 1215 */ 1216 static void update_curr(struct cfs_rq *cfs_rq) 1217 { 1218 struct sched_entity *curr = cfs_rq->curr; 1219 struct rq *rq = rq_of(cfs_rq); 1220 s64 delta_exec; 1221 bool resched; 1222 1223 if (unlikely(!curr)) 1224 return; 1225 1226 delta_exec = update_curr_se(rq, curr); 1227 if (unlikely(delta_exec <= 0)) 1228 return; 1229 1230 curr->vruntime += calc_delta_fair(delta_exec, curr); 1231 resched = update_deadline(cfs_rq, curr); 1232 update_min_vruntime(cfs_rq); 1233 1234 if (entity_is_task(curr)) { 1235 struct task_struct *p = task_of(curr); 1236 1237 update_curr_task(p, delta_exec); 1238 1239 /* 1240 * Any fair task that runs outside of fair_server should 1241 * account against fair_server such that it can account for 1242 * this time and possibly avoid running this period. 1243 */ 1244 if (p->dl_server != &rq->fair_server) 1245 dl_server_update(&rq->fair_server, delta_exec); 1246 } 1247 1248 account_cfs_rq_runtime(cfs_rq, delta_exec); 1249 1250 if (rq->nr_running == 1) 1251 return; 1252 1253 if (resched || did_preempt_short(cfs_rq, curr)) { 1254 resched_curr(rq); 1255 clear_buddies(cfs_rq, curr); 1256 } 1257 } 1258 1259 static void update_curr_fair(struct rq *rq) 1260 { 1261 update_curr(cfs_rq_of(&rq->curr->se)); 1262 } 1263 1264 static inline void 1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1266 { 1267 struct sched_statistics *stats; 1268 struct task_struct *p = NULL; 1269 1270 if (!schedstat_enabled()) 1271 return; 1272 1273 stats = __schedstats_from_se(se); 1274 1275 if (entity_is_task(se)) 1276 p = task_of(se); 1277 1278 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1279 } 1280 1281 static inline void 1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1283 { 1284 struct sched_statistics *stats; 1285 struct task_struct *p = NULL; 1286 1287 if (!schedstat_enabled()) 1288 return; 1289 1290 stats = __schedstats_from_se(se); 1291 1292 /* 1293 * When the sched_schedstat changes from 0 to 1, some sched se 1294 * maybe already in the runqueue, the se->statistics.wait_start 1295 * will be 0.So it will let the delta wrong. We need to avoid this 1296 * scenario. 1297 */ 1298 if (unlikely(!schedstat_val(stats->wait_start))) 1299 return; 1300 1301 if (entity_is_task(se)) 1302 p = task_of(se); 1303 1304 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1305 } 1306 1307 static inline void 1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1309 { 1310 struct sched_statistics *stats; 1311 struct task_struct *tsk = NULL; 1312 1313 if (!schedstat_enabled()) 1314 return; 1315 1316 stats = __schedstats_from_se(se); 1317 1318 if (entity_is_task(se)) 1319 tsk = task_of(se); 1320 1321 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1322 } 1323 1324 /* 1325 * Task is being enqueued - update stats: 1326 */ 1327 static inline void 1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1329 { 1330 if (!schedstat_enabled()) 1331 return; 1332 1333 /* 1334 * Are we enqueueing a waiting task? (for current tasks 1335 * a dequeue/enqueue event is a NOP) 1336 */ 1337 if (se != cfs_rq->curr) 1338 update_stats_wait_start_fair(cfs_rq, se); 1339 1340 if (flags & ENQUEUE_WAKEUP) 1341 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1342 } 1343 1344 static inline void 1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1346 { 1347 1348 if (!schedstat_enabled()) 1349 return; 1350 1351 /* 1352 * Mark the end of the wait period if dequeueing a 1353 * waiting task: 1354 */ 1355 if (se != cfs_rq->curr) 1356 update_stats_wait_end_fair(cfs_rq, se); 1357 1358 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1359 struct task_struct *tsk = task_of(se); 1360 unsigned int state; 1361 1362 /* XXX racy against TTWU */ 1363 state = READ_ONCE(tsk->__state); 1364 if (state & TASK_INTERRUPTIBLE) 1365 __schedstat_set(tsk->stats.sleep_start, 1366 rq_clock(rq_of(cfs_rq))); 1367 if (state & TASK_UNINTERRUPTIBLE) 1368 __schedstat_set(tsk->stats.block_start, 1369 rq_clock(rq_of(cfs_rq))); 1370 } 1371 } 1372 1373 /* 1374 * We are picking a new current task - update its stats: 1375 */ 1376 static inline void 1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1378 { 1379 /* 1380 * We are starting a new run period: 1381 */ 1382 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1383 } 1384 1385 /************************************************** 1386 * Scheduling class queueing methods: 1387 */ 1388 1389 static inline bool is_core_idle(int cpu) 1390 { 1391 #ifdef CONFIG_SCHED_SMT 1392 int sibling; 1393 1394 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1395 if (cpu == sibling) 1396 continue; 1397 1398 if (!idle_cpu(sibling)) 1399 return false; 1400 } 1401 #endif 1402 1403 return true; 1404 } 1405 1406 #ifdef CONFIG_NUMA 1407 #define NUMA_IMBALANCE_MIN 2 1408 1409 static inline long 1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1411 { 1412 /* 1413 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1414 * threshold. Above this threshold, individual tasks may be contending 1415 * for both memory bandwidth and any shared HT resources. This is an 1416 * approximation as the number of running tasks may not be related to 1417 * the number of busy CPUs due to sched_setaffinity. 1418 */ 1419 if (dst_running > imb_numa_nr) 1420 return imbalance; 1421 1422 /* 1423 * Allow a small imbalance based on a simple pair of communicating 1424 * tasks that remain local when the destination is lightly loaded. 1425 */ 1426 if (imbalance <= NUMA_IMBALANCE_MIN) 1427 return 0; 1428 1429 return imbalance; 1430 } 1431 #endif /* CONFIG_NUMA */ 1432 1433 #ifdef CONFIG_NUMA_BALANCING 1434 /* 1435 * Approximate time to scan a full NUMA task in ms. The task scan period is 1436 * calculated based on the tasks virtual memory size and 1437 * numa_balancing_scan_size. 1438 */ 1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1441 1442 /* Portion of address space to scan in MB */ 1443 unsigned int sysctl_numa_balancing_scan_size = 256; 1444 1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1446 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1447 1448 /* The page with hint page fault latency < threshold in ms is considered hot */ 1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1450 1451 struct numa_group { 1452 refcount_t refcount; 1453 1454 spinlock_t lock; /* nr_tasks, tasks */ 1455 int nr_tasks; 1456 pid_t gid; 1457 int active_nodes; 1458 1459 struct rcu_head rcu; 1460 unsigned long total_faults; 1461 unsigned long max_faults_cpu; 1462 /* 1463 * faults[] array is split into two regions: faults_mem and faults_cpu. 1464 * 1465 * Faults_cpu is used to decide whether memory should move 1466 * towards the CPU. As a consequence, these stats are weighted 1467 * more by CPU use than by memory faults. 1468 */ 1469 unsigned long faults[]; 1470 }; 1471 1472 /* 1473 * For functions that can be called in multiple contexts that permit reading 1474 * ->numa_group (see struct task_struct for locking rules). 1475 */ 1476 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1477 { 1478 return rcu_dereference_check(p->numa_group, p == current || 1479 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1480 } 1481 1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1483 { 1484 return rcu_dereference_protected(p->numa_group, p == current); 1485 } 1486 1487 static inline unsigned long group_faults_priv(struct numa_group *ng); 1488 static inline unsigned long group_faults_shared(struct numa_group *ng); 1489 1490 static unsigned int task_nr_scan_windows(struct task_struct *p) 1491 { 1492 unsigned long rss = 0; 1493 unsigned long nr_scan_pages; 1494 1495 /* 1496 * Calculations based on RSS as non-present and empty pages are skipped 1497 * by the PTE scanner and NUMA hinting faults should be trapped based 1498 * on resident pages 1499 */ 1500 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1501 rss = get_mm_rss(p->mm); 1502 if (!rss) 1503 rss = nr_scan_pages; 1504 1505 rss = round_up(rss, nr_scan_pages); 1506 return rss / nr_scan_pages; 1507 } 1508 1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1510 #define MAX_SCAN_WINDOW 2560 1511 1512 static unsigned int task_scan_min(struct task_struct *p) 1513 { 1514 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1515 unsigned int scan, floor; 1516 unsigned int windows = 1; 1517 1518 if (scan_size < MAX_SCAN_WINDOW) 1519 windows = MAX_SCAN_WINDOW / scan_size; 1520 floor = 1000 / windows; 1521 1522 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1523 return max_t(unsigned int, floor, scan); 1524 } 1525 1526 static unsigned int task_scan_start(struct task_struct *p) 1527 { 1528 unsigned long smin = task_scan_min(p); 1529 unsigned long period = smin; 1530 struct numa_group *ng; 1531 1532 /* Scale the maximum scan period with the amount of shared memory. */ 1533 rcu_read_lock(); 1534 ng = rcu_dereference(p->numa_group); 1535 if (ng) { 1536 unsigned long shared = group_faults_shared(ng); 1537 unsigned long private = group_faults_priv(ng); 1538 1539 period *= refcount_read(&ng->refcount); 1540 period *= shared + 1; 1541 period /= private + shared + 1; 1542 } 1543 rcu_read_unlock(); 1544 1545 return max(smin, period); 1546 } 1547 1548 static unsigned int task_scan_max(struct task_struct *p) 1549 { 1550 unsigned long smin = task_scan_min(p); 1551 unsigned long smax; 1552 struct numa_group *ng; 1553 1554 /* Watch for min being lower than max due to floor calculations */ 1555 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1556 1557 /* Scale the maximum scan period with the amount of shared memory. */ 1558 ng = deref_curr_numa_group(p); 1559 if (ng) { 1560 unsigned long shared = group_faults_shared(ng); 1561 unsigned long private = group_faults_priv(ng); 1562 unsigned long period = smax; 1563 1564 period *= refcount_read(&ng->refcount); 1565 period *= shared + 1; 1566 period /= private + shared + 1; 1567 1568 smax = max(smax, period); 1569 } 1570 1571 return max(smin, smax); 1572 } 1573 1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1575 { 1576 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1577 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1578 } 1579 1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1581 { 1582 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1583 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1584 } 1585 1586 /* Shared or private faults. */ 1587 #define NR_NUMA_HINT_FAULT_TYPES 2 1588 1589 /* Memory and CPU locality */ 1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1591 1592 /* Averaged statistics, and temporary buffers. */ 1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1594 1595 pid_t task_numa_group_id(struct task_struct *p) 1596 { 1597 struct numa_group *ng; 1598 pid_t gid = 0; 1599 1600 rcu_read_lock(); 1601 ng = rcu_dereference(p->numa_group); 1602 if (ng) 1603 gid = ng->gid; 1604 rcu_read_unlock(); 1605 1606 return gid; 1607 } 1608 1609 /* 1610 * The averaged statistics, shared & private, memory & CPU, 1611 * occupy the first half of the array. The second half of the 1612 * array is for current counters, which are averaged into the 1613 * first set by task_numa_placement. 1614 */ 1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1616 { 1617 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1618 } 1619 1620 static inline unsigned long task_faults(struct task_struct *p, int nid) 1621 { 1622 if (!p->numa_faults) 1623 return 0; 1624 1625 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1626 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1627 } 1628 1629 static inline unsigned long group_faults(struct task_struct *p, int nid) 1630 { 1631 struct numa_group *ng = deref_task_numa_group(p); 1632 1633 if (!ng) 1634 return 0; 1635 1636 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1637 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1638 } 1639 1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1641 { 1642 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1643 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1644 } 1645 1646 static inline unsigned long group_faults_priv(struct numa_group *ng) 1647 { 1648 unsigned long faults = 0; 1649 int node; 1650 1651 for_each_online_node(node) { 1652 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1653 } 1654 1655 return faults; 1656 } 1657 1658 static inline unsigned long group_faults_shared(struct numa_group *ng) 1659 { 1660 unsigned long faults = 0; 1661 int node; 1662 1663 for_each_online_node(node) { 1664 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1665 } 1666 1667 return faults; 1668 } 1669 1670 /* 1671 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1672 * considered part of a numa group's pseudo-interleaving set. Migrations 1673 * between these nodes are slowed down, to allow things to settle down. 1674 */ 1675 #define ACTIVE_NODE_FRACTION 3 1676 1677 static bool numa_is_active_node(int nid, struct numa_group *ng) 1678 { 1679 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1680 } 1681 1682 /* Handle placement on systems where not all nodes are directly connected. */ 1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1684 int lim_dist, bool task) 1685 { 1686 unsigned long score = 0; 1687 int node, max_dist; 1688 1689 /* 1690 * All nodes are directly connected, and the same distance 1691 * from each other. No need for fancy placement algorithms. 1692 */ 1693 if (sched_numa_topology_type == NUMA_DIRECT) 1694 return 0; 1695 1696 /* sched_max_numa_distance may be changed in parallel. */ 1697 max_dist = READ_ONCE(sched_max_numa_distance); 1698 /* 1699 * This code is called for each node, introducing N^2 complexity, 1700 * which should be OK given the number of nodes rarely exceeds 8. 1701 */ 1702 for_each_online_node(node) { 1703 unsigned long faults; 1704 int dist = node_distance(nid, node); 1705 1706 /* 1707 * The furthest away nodes in the system are not interesting 1708 * for placement; nid was already counted. 1709 */ 1710 if (dist >= max_dist || node == nid) 1711 continue; 1712 1713 /* 1714 * On systems with a backplane NUMA topology, compare groups 1715 * of nodes, and move tasks towards the group with the most 1716 * memory accesses. When comparing two nodes at distance 1717 * "hoplimit", only nodes closer by than "hoplimit" are part 1718 * of each group. Skip other nodes. 1719 */ 1720 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1721 continue; 1722 1723 /* Add up the faults from nearby nodes. */ 1724 if (task) 1725 faults = task_faults(p, node); 1726 else 1727 faults = group_faults(p, node); 1728 1729 /* 1730 * On systems with a glueless mesh NUMA topology, there are 1731 * no fixed "groups of nodes". Instead, nodes that are not 1732 * directly connected bounce traffic through intermediate 1733 * nodes; a numa_group can occupy any set of nodes. 1734 * The further away a node is, the less the faults count. 1735 * This seems to result in good task placement. 1736 */ 1737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1738 faults *= (max_dist - dist); 1739 faults /= (max_dist - LOCAL_DISTANCE); 1740 } 1741 1742 score += faults; 1743 } 1744 1745 return score; 1746 } 1747 1748 /* 1749 * These return the fraction of accesses done by a particular task, or 1750 * task group, on a particular numa node. The group weight is given a 1751 * larger multiplier, in order to group tasks together that are almost 1752 * evenly spread out between numa nodes. 1753 */ 1754 static inline unsigned long task_weight(struct task_struct *p, int nid, 1755 int dist) 1756 { 1757 unsigned long faults, total_faults; 1758 1759 if (!p->numa_faults) 1760 return 0; 1761 1762 total_faults = p->total_numa_faults; 1763 1764 if (!total_faults) 1765 return 0; 1766 1767 faults = task_faults(p, nid); 1768 faults += score_nearby_nodes(p, nid, dist, true); 1769 1770 return 1000 * faults / total_faults; 1771 } 1772 1773 static inline unsigned long group_weight(struct task_struct *p, int nid, 1774 int dist) 1775 { 1776 struct numa_group *ng = deref_task_numa_group(p); 1777 unsigned long faults, total_faults; 1778 1779 if (!ng) 1780 return 0; 1781 1782 total_faults = ng->total_faults; 1783 1784 if (!total_faults) 1785 return 0; 1786 1787 faults = group_faults(p, nid); 1788 faults += score_nearby_nodes(p, nid, dist, false); 1789 1790 return 1000 * faults / total_faults; 1791 } 1792 1793 /* 1794 * If memory tiering mode is enabled, cpupid of slow memory page is 1795 * used to record scan time instead of CPU and PID. When tiering mode 1796 * is disabled at run time, the scan time (in cpupid) will be 1797 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1798 * access out of array bound. 1799 */ 1800 static inline bool cpupid_valid(int cpupid) 1801 { 1802 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1803 } 1804 1805 /* 1806 * For memory tiering mode, if there are enough free pages (more than 1807 * enough watermark defined here) in fast memory node, to take full 1808 * advantage of fast memory capacity, all recently accessed slow 1809 * memory pages will be migrated to fast memory node without 1810 * considering hot threshold. 1811 */ 1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1813 { 1814 int z; 1815 unsigned long enough_wmark; 1816 1817 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1818 pgdat->node_present_pages >> 4); 1819 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1820 struct zone *zone = pgdat->node_zones + z; 1821 1822 if (!populated_zone(zone)) 1823 continue; 1824 1825 if (zone_watermark_ok(zone, 0, 1826 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1827 ZONE_MOVABLE, 0)) 1828 return true; 1829 } 1830 return false; 1831 } 1832 1833 /* 1834 * For memory tiering mode, when page tables are scanned, the scan 1835 * time will be recorded in struct page in addition to make page 1836 * PROT_NONE for slow memory page. So when the page is accessed, in 1837 * hint page fault handler, the hint page fault latency is calculated 1838 * via, 1839 * 1840 * hint page fault latency = hint page fault time - scan time 1841 * 1842 * The smaller the hint page fault latency, the higher the possibility 1843 * for the page to be hot. 1844 */ 1845 static int numa_hint_fault_latency(struct folio *folio) 1846 { 1847 int last_time, time; 1848 1849 time = jiffies_to_msecs(jiffies); 1850 last_time = folio_xchg_access_time(folio, time); 1851 1852 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1853 } 1854 1855 /* 1856 * For memory tiering mode, too high promotion/demotion throughput may 1857 * hurt application latency. So we provide a mechanism to rate limit 1858 * the number of pages that are tried to be promoted. 1859 */ 1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1861 unsigned long rate_limit, int nr) 1862 { 1863 unsigned long nr_cand; 1864 unsigned int now, start; 1865 1866 now = jiffies_to_msecs(jiffies); 1867 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1868 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1869 start = pgdat->nbp_rl_start; 1870 if (now - start > MSEC_PER_SEC && 1871 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1872 pgdat->nbp_rl_nr_cand = nr_cand; 1873 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1874 return true; 1875 return false; 1876 } 1877 1878 #define NUMA_MIGRATION_ADJUST_STEPS 16 1879 1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1881 unsigned long rate_limit, 1882 unsigned int ref_th) 1883 { 1884 unsigned int now, start, th_period, unit_th, th; 1885 unsigned long nr_cand, ref_cand, diff_cand; 1886 1887 now = jiffies_to_msecs(jiffies); 1888 th_period = sysctl_numa_balancing_scan_period_max; 1889 start = pgdat->nbp_th_start; 1890 if (now - start > th_period && 1891 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1892 ref_cand = rate_limit * 1893 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1894 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1895 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1896 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1897 th = pgdat->nbp_threshold ? : ref_th; 1898 if (diff_cand > ref_cand * 11 / 10) 1899 th = max(th - unit_th, unit_th); 1900 else if (diff_cand < ref_cand * 9 / 10) 1901 th = min(th + unit_th, ref_th * 2); 1902 pgdat->nbp_th_nr_cand = nr_cand; 1903 pgdat->nbp_threshold = th; 1904 } 1905 } 1906 1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1908 int src_nid, int dst_cpu) 1909 { 1910 struct numa_group *ng = deref_curr_numa_group(p); 1911 int dst_nid = cpu_to_node(dst_cpu); 1912 int last_cpupid, this_cpupid; 1913 1914 /* 1915 * Cannot migrate to memoryless nodes. 1916 */ 1917 if (!node_state(dst_nid, N_MEMORY)) 1918 return false; 1919 1920 /* 1921 * The pages in slow memory node should be migrated according 1922 * to hot/cold instead of private/shared. 1923 */ 1924 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1925 !node_is_toptier(src_nid)) { 1926 struct pglist_data *pgdat; 1927 unsigned long rate_limit; 1928 unsigned int latency, th, def_th; 1929 1930 pgdat = NODE_DATA(dst_nid); 1931 if (pgdat_free_space_enough(pgdat)) { 1932 /* workload changed, reset hot threshold */ 1933 pgdat->nbp_threshold = 0; 1934 return true; 1935 } 1936 1937 def_th = sysctl_numa_balancing_hot_threshold; 1938 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1939 (20 - PAGE_SHIFT); 1940 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1941 1942 th = pgdat->nbp_threshold ? : def_th; 1943 latency = numa_hint_fault_latency(folio); 1944 if (latency >= th) 1945 return false; 1946 1947 return !numa_promotion_rate_limit(pgdat, rate_limit, 1948 folio_nr_pages(folio)); 1949 } 1950 1951 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1952 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1953 1954 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1955 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1956 return false; 1957 1958 /* 1959 * Allow first faults or private faults to migrate immediately early in 1960 * the lifetime of a task. The magic number 4 is based on waiting for 1961 * two full passes of the "multi-stage node selection" test that is 1962 * executed below. 1963 */ 1964 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1965 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1966 return true; 1967 1968 /* 1969 * Multi-stage node selection is used in conjunction with a periodic 1970 * migration fault to build a temporal task<->page relation. By using 1971 * a two-stage filter we remove short/unlikely relations. 1972 * 1973 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1974 * a task's usage of a particular page (n_p) per total usage of this 1975 * page (n_t) (in a given time-span) to a probability. 1976 * 1977 * Our periodic faults will sample this probability and getting the 1978 * same result twice in a row, given these samples are fully 1979 * independent, is then given by P(n)^2, provided our sample period 1980 * is sufficiently short compared to the usage pattern. 1981 * 1982 * This quadric squishes small probabilities, making it less likely we 1983 * act on an unlikely task<->page relation. 1984 */ 1985 if (!cpupid_pid_unset(last_cpupid) && 1986 cpupid_to_nid(last_cpupid) != dst_nid) 1987 return false; 1988 1989 /* Always allow migrate on private faults */ 1990 if (cpupid_match_pid(p, last_cpupid)) 1991 return true; 1992 1993 /* A shared fault, but p->numa_group has not been set up yet. */ 1994 if (!ng) 1995 return true; 1996 1997 /* 1998 * Destination node is much more heavily used than the source 1999 * node? Allow migration. 2000 */ 2001 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2002 ACTIVE_NODE_FRACTION) 2003 return true; 2004 2005 /* 2006 * Distribute memory according to CPU & memory use on each node, 2007 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2008 * 2009 * faults_cpu(dst) 3 faults_cpu(src) 2010 * --------------- * - > --------------- 2011 * faults_mem(dst) 4 faults_mem(src) 2012 */ 2013 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2014 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2015 } 2016 2017 /* 2018 * 'numa_type' describes the node at the moment of load balancing. 2019 */ 2020 enum numa_type { 2021 /* The node has spare capacity that can be used to run more tasks. */ 2022 node_has_spare = 0, 2023 /* 2024 * The node is fully used and the tasks don't compete for more CPU 2025 * cycles. Nevertheless, some tasks might wait before running. 2026 */ 2027 node_fully_busy, 2028 /* 2029 * The node is overloaded and can't provide expected CPU cycles to all 2030 * tasks. 2031 */ 2032 node_overloaded 2033 }; 2034 2035 /* Cached statistics for all CPUs within a node */ 2036 struct numa_stats { 2037 unsigned long load; 2038 unsigned long runnable; 2039 unsigned long util; 2040 /* Total compute capacity of CPUs on a node */ 2041 unsigned long compute_capacity; 2042 unsigned int nr_running; 2043 unsigned int weight; 2044 enum numa_type node_type; 2045 int idle_cpu; 2046 }; 2047 2048 struct task_numa_env { 2049 struct task_struct *p; 2050 2051 int src_cpu, src_nid; 2052 int dst_cpu, dst_nid; 2053 int imb_numa_nr; 2054 2055 struct numa_stats src_stats, dst_stats; 2056 2057 int imbalance_pct; 2058 int dist; 2059 2060 struct task_struct *best_task; 2061 long best_imp; 2062 int best_cpu; 2063 }; 2064 2065 static unsigned long cpu_load(struct rq *rq); 2066 static unsigned long cpu_runnable(struct rq *rq); 2067 2068 static inline enum 2069 numa_type numa_classify(unsigned int imbalance_pct, 2070 struct numa_stats *ns) 2071 { 2072 if ((ns->nr_running > ns->weight) && 2073 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2074 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2075 return node_overloaded; 2076 2077 if ((ns->nr_running < ns->weight) || 2078 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2079 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2080 return node_has_spare; 2081 2082 return node_fully_busy; 2083 } 2084 2085 #ifdef CONFIG_SCHED_SMT 2086 /* Forward declarations of select_idle_sibling helpers */ 2087 static inline bool test_idle_cores(int cpu); 2088 static inline int numa_idle_core(int idle_core, int cpu) 2089 { 2090 if (!static_branch_likely(&sched_smt_present) || 2091 idle_core >= 0 || !test_idle_cores(cpu)) 2092 return idle_core; 2093 2094 /* 2095 * Prefer cores instead of packing HT siblings 2096 * and triggering future load balancing. 2097 */ 2098 if (is_core_idle(cpu)) 2099 idle_core = cpu; 2100 2101 return idle_core; 2102 } 2103 #else 2104 static inline int numa_idle_core(int idle_core, int cpu) 2105 { 2106 return idle_core; 2107 } 2108 #endif 2109 2110 /* 2111 * Gather all necessary information to make NUMA balancing placement 2112 * decisions that are compatible with standard load balancer. This 2113 * borrows code and logic from update_sg_lb_stats but sharing a 2114 * common implementation is impractical. 2115 */ 2116 static void update_numa_stats(struct task_numa_env *env, 2117 struct numa_stats *ns, int nid, 2118 bool find_idle) 2119 { 2120 int cpu, idle_core = -1; 2121 2122 memset(ns, 0, sizeof(*ns)); 2123 ns->idle_cpu = -1; 2124 2125 rcu_read_lock(); 2126 for_each_cpu(cpu, cpumask_of_node(nid)) { 2127 struct rq *rq = cpu_rq(cpu); 2128 2129 ns->load += cpu_load(rq); 2130 ns->runnable += cpu_runnable(rq); 2131 ns->util += cpu_util_cfs(cpu); 2132 ns->nr_running += rq->cfs.h_nr_running; 2133 ns->compute_capacity += capacity_of(cpu); 2134 2135 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2136 if (READ_ONCE(rq->numa_migrate_on) || 2137 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2138 continue; 2139 2140 if (ns->idle_cpu == -1) 2141 ns->idle_cpu = cpu; 2142 2143 idle_core = numa_idle_core(idle_core, cpu); 2144 } 2145 } 2146 rcu_read_unlock(); 2147 2148 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2149 2150 ns->node_type = numa_classify(env->imbalance_pct, ns); 2151 2152 if (idle_core >= 0) 2153 ns->idle_cpu = idle_core; 2154 } 2155 2156 static void task_numa_assign(struct task_numa_env *env, 2157 struct task_struct *p, long imp) 2158 { 2159 struct rq *rq = cpu_rq(env->dst_cpu); 2160 2161 /* Check if run-queue part of active NUMA balance. */ 2162 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2163 int cpu; 2164 int start = env->dst_cpu; 2165 2166 /* Find alternative idle CPU. */ 2167 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2168 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2169 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2170 continue; 2171 } 2172 2173 env->dst_cpu = cpu; 2174 rq = cpu_rq(env->dst_cpu); 2175 if (!xchg(&rq->numa_migrate_on, 1)) 2176 goto assign; 2177 } 2178 2179 /* Failed to find an alternative idle CPU */ 2180 return; 2181 } 2182 2183 assign: 2184 /* 2185 * Clear previous best_cpu/rq numa-migrate flag, since task now 2186 * found a better CPU to move/swap. 2187 */ 2188 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2189 rq = cpu_rq(env->best_cpu); 2190 WRITE_ONCE(rq->numa_migrate_on, 0); 2191 } 2192 2193 if (env->best_task) 2194 put_task_struct(env->best_task); 2195 if (p) 2196 get_task_struct(p); 2197 2198 env->best_task = p; 2199 env->best_imp = imp; 2200 env->best_cpu = env->dst_cpu; 2201 } 2202 2203 static bool load_too_imbalanced(long src_load, long dst_load, 2204 struct task_numa_env *env) 2205 { 2206 long imb, old_imb; 2207 long orig_src_load, orig_dst_load; 2208 long src_capacity, dst_capacity; 2209 2210 /* 2211 * The load is corrected for the CPU capacity available on each node. 2212 * 2213 * src_load dst_load 2214 * ------------ vs --------- 2215 * src_capacity dst_capacity 2216 */ 2217 src_capacity = env->src_stats.compute_capacity; 2218 dst_capacity = env->dst_stats.compute_capacity; 2219 2220 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2221 2222 orig_src_load = env->src_stats.load; 2223 orig_dst_load = env->dst_stats.load; 2224 2225 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2226 2227 /* Would this change make things worse? */ 2228 return (imb > old_imb); 2229 } 2230 2231 /* 2232 * Maximum NUMA importance can be 1998 (2*999); 2233 * SMALLIMP @ 30 would be close to 1998/64. 2234 * Used to deter task migration. 2235 */ 2236 #define SMALLIMP 30 2237 2238 /* 2239 * This checks if the overall compute and NUMA accesses of the system would 2240 * be improved if the source tasks was migrated to the target dst_cpu taking 2241 * into account that it might be best if task running on the dst_cpu should 2242 * be exchanged with the source task 2243 */ 2244 static bool task_numa_compare(struct task_numa_env *env, 2245 long taskimp, long groupimp, bool maymove) 2246 { 2247 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2248 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2249 long imp = p_ng ? groupimp : taskimp; 2250 struct task_struct *cur; 2251 long src_load, dst_load; 2252 int dist = env->dist; 2253 long moveimp = imp; 2254 long load; 2255 bool stopsearch = false; 2256 2257 if (READ_ONCE(dst_rq->numa_migrate_on)) 2258 return false; 2259 2260 rcu_read_lock(); 2261 cur = rcu_dereference(dst_rq->curr); 2262 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2263 cur = NULL; 2264 2265 /* 2266 * Because we have preemption enabled we can get migrated around and 2267 * end try selecting ourselves (current == env->p) as a swap candidate. 2268 */ 2269 if (cur == env->p) { 2270 stopsearch = true; 2271 goto unlock; 2272 } 2273 2274 if (!cur) { 2275 if (maymove && moveimp >= env->best_imp) 2276 goto assign; 2277 else 2278 goto unlock; 2279 } 2280 2281 /* Skip this swap candidate if cannot move to the source cpu. */ 2282 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2283 goto unlock; 2284 2285 /* 2286 * Skip this swap candidate if it is not moving to its preferred 2287 * node and the best task is. 2288 */ 2289 if (env->best_task && 2290 env->best_task->numa_preferred_nid == env->src_nid && 2291 cur->numa_preferred_nid != env->src_nid) { 2292 goto unlock; 2293 } 2294 2295 /* 2296 * "imp" is the fault differential for the source task between the 2297 * source and destination node. Calculate the total differential for 2298 * the source task and potential destination task. The more negative 2299 * the value is, the more remote accesses that would be expected to 2300 * be incurred if the tasks were swapped. 2301 * 2302 * If dst and source tasks are in the same NUMA group, or not 2303 * in any group then look only at task weights. 2304 */ 2305 cur_ng = rcu_dereference(cur->numa_group); 2306 if (cur_ng == p_ng) { 2307 /* 2308 * Do not swap within a group or between tasks that have 2309 * no group if there is spare capacity. Swapping does 2310 * not address the load imbalance and helps one task at 2311 * the cost of punishing another. 2312 */ 2313 if (env->dst_stats.node_type == node_has_spare) 2314 goto unlock; 2315 2316 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2317 task_weight(cur, env->dst_nid, dist); 2318 /* 2319 * Add some hysteresis to prevent swapping the 2320 * tasks within a group over tiny differences. 2321 */ 2322 if (cur_ng) 2323 imp -= imp / 16; 2324 } else { 2325 /* 2326 * Compare the group weights. If a task is all by itself 2327 * (not part of a group), use the task weight instead. 2328 */ 2329 if (cur_ng && p_ng) 2330 imp += group_weight(cur, env->src_nid, dist) - 2331 group_weight(cur, env->dst_nid, dist); 2332 else 2333 imp += task_weight(cur, env->src_nid, dist) - 2334 task_weight(cur, env->dst_nid, dist); 2335 } 2336 2337 /* Discourage picking a task already on its preferred node */ 2338 if (cur->numa_preferred_nid == env->dst_nid) 2339 imp -= imp / 16; 2340 2341 /* 2342 * Encourage picking a task that moves to its preferred node. 2343 * This potentially makes imp larger than it's maximum of 2344 * 1998 (see SMALLIMP and task_weight for why) but in this 2345 * case, it does not matter. 2346 */ 2347 if (cur->numa_preferred_nid == env->src_nid) 2348 imp += imp / 8; 2349 2350 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2351 imp = moveimp; 2352 cur = NULL; 2353 goto assign; 2354 } 2355 2356 /* 2357 * Prefer swapping with a task moving to its preferred node over a 2358 * task that is not. 2359 */ 2360 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2361 env->best_task->numa_preferred_nid != env->src_nid) { 2362 goto assign; 2363 } 2364 2365 /* 2366 * If the NUMA importance is less than SMALLIMP, 2367 * task migration might only result in ping pong 2368 * of tasks and also hurt performance due to cache 2369 * misses. 2370 */ 2371 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2372 goto unlock; 2373 2374 /* 2375 * In the overloaded case, try and keep the load balanced. 2376 */ 2377 load = task_h_load(env->p) - task_h_load(cur); 2378 if (!load) 2379 goto assign; 2380 2381 dst_load = env->dst_stats.load + load; 2382 src_load = env->src_stats.load - load; 2383 2384 if (load_too_imbalanced(src_load, dst_load, env)) 2385 goto unlock; 2386 2387 assign: 2388 /* Evaluate an idle CPU for a task numa move. */ 2389 if (!cur) { 2390 int cpu = env->dst_stats.idle_cpu; 2391 2392 /* Nothing cached so current CPU went idle since the search. */ 2393 if (cpu < 0) 2394 cpu = env->dst_cpu; 2395 2396 /* 2397 * If the CPU is no longer truly idle and the previous best CPU 2398 * is, keep using it. 2399 */ 2400 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2401 idle_cpu(env->best_cpu)) { 2402 cpu = env->best_cpu; 2403 } 2404 2405 env->dst_cpu = cpu; 2406 } 2407 2408 task_numa_assign(env, cur, imp); 2409 2410 /* 2411 * If a move to idle is allowed because there is capacity or load 2412 * balance improves then stop the search. While a better swap 2413 * candidate may exist, a search is not free. 2414 */ 2415 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2416 stopsearch = true; 2417 2418 /* 2419 * If a swap candidate must be identified and the current best task 2420 * moves its preferred node then stop the search. 2421 */ 2422 if (!maymove && env->best_task && 2423 env->best_task->numa_preferred_nid == env->src_nid) { 2424 stopsearch = true; 2425 } 2426 unlock: 2427 rcu_read_unlock(); 2428 2429 return stopsearch; 2430 } 2431 2432 static void task_numa_find_cpu(struct task_numa_env *env, 2433 long taskimp, long groupimp) 2434 { 2435 bool maymove = false; 2436 int cpu; 2437 2438 /* 2439 * If dst node has spare capacity, then check if there is an 2440 * imbalance that would be overruled by the load balancer. 2441 */ 2442 if (env->dst_stats.node_type == node_has_spare) { 2443 unsigned int imbalance; 2444 int src_running, dst_running; 2445 2446 /* 2447 * Would movement cause an imbalance? Note that if src has 2448 * more running tasks that the imbalance is ignored as the 2449 * move improves the imbalance from the perspective of the 2450 * CPU load balancer. 2451 * */ 2452 src_running = env->src_stats.nr_running - 1; 2453 dst_running = env->dst_stats.nr_running + 1; 2454 imbalance = max(0, dst_running - src_running); 2455 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2456 env->imb_numa_nr); 2457 2458 /* Use idle CPU if there is no imbalance */ 2459 if (!imbalance) { 2460 maymove = true; 2461 if (env->dst_stats.idle_cpu >= 0) { 2462 env->dst_cpu = env->dst_stats.idle_cpu; 2463 task_numa_assign(env, NULL, 0); 2464 return; 2465 } 2466 } 2467 } else { 2468 long src_load, dst_load, load; 2469 /* 2470 * If the improvement from just moving env->p direction is better 2471 * than swapping tasks around, check if a move is possible. 2472 */ 2473 load = task_h_load(env->p); 2474 dst_load = env->dst_stats.load + load; 2475 src_load = env->src_stats.load - load; 2476 maymove = !load_too_imbalanced(src_load, dst_load, env); 2477 } 2478 2479 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2480 /* Skip this CPU if the source task cannot migrate */ 2481 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2482 continue; 2483 2484 env->dst_cpu = cpu; 2485 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2486 break; 2487 } 2488 } 2489 2490 static int task_numa_migrate(struct task_struct *p) 2491 { 2492 struct task_numa_env env = { 2493 .p = p, 2494 2495 .src_cpu = task_cpu(p), 2496 .src_nid = task_node(p), 2497 2498 .imbalance_pct = 112, 2499 2500 .best_task = NULL, 2501 .best_imp = 0, 2502 .best_cpu = -1, 2503 }; 2504 unsigned long taskweight, groupweight; 2505 struct sched_domain *sd; 2506 long taskimp, groupimp; 2507 struct numa_group *ng; 2508 struct rq *best_rq; 2509 int nid, ret, dist; 2510 2511 /* 2512 * Pick the lowest SD_NUMA domain, as that would have the smallest 2513 * imbalance and would be the first to start moving tasks about. 2514 * 2515 * And we want to avoid any moving of tasks about, as that would create 2516 * random movement of tasks -- counter the numa conditions we're trying 2517 * to satisfy here. 2518 */ 2519 rcu_read_lock(); 2520 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2521 if (sd) { 2522 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2523 env.imb_numa_nr = sd->imb_numa_nr; 2524 } 2525 rcu_read_unlock(); 2526 2527 /* 2528 * Cpusets can break the scheduler domain tree into smaller 2529 * balance domains, some of which do not cross NUMA boundaries. 2530 * Tasks that are "trapped" in such domains cannot be migrated 2531 * elsewhere, so there is no point in (re)trying. 2532 */ 2533 if (unlikely(!sd)) { 2534 sched_setnuma(p, task_node(p)); 2535 return -EINVAL; 2536 } 2537 2538 env.dst_nid = p->numa_preferred_nid; 2539 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2540 taskweight = task_weight(p, env.src_nid, dist); 2541 groupweight = group_weight(p, env.src_nid, dist); 2542 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2543 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2544 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2545 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2546 2547 /* Try to find a spot on the preferred nid. */ 2548 task_numa_find_cpu(&env, taskimp, groupimp); 2549 2550 /* 2551 * Look at other nodes in these cases: 2552 * - there is no space available on the preferred_nid 2553 * - the task is part of a numa_group that is interleaved across 2554 * multiple NUMA nodes; in order to better consolidate the group, 2555 * we need to check other locations. 2556 */ 2557 ng = deref_curr_numa_group(p); 2558 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2559 for_each_node_state(nid, N_CPU) { 2560 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2561 continue; 2562 2563 dist = node_distance(env.src_nid, env.dst_nid); 2564 if (sched_numa_topology_type == NUMA_BACKPLANE && 2565 dist != env.dist) { 2566 taskweight = task_weight(p, env.src_nid, dist); 2567 groupweight = group_weight(p, env.src_nid, dist); 2568 } 2569 2570 /* Only consider nodes where both task and groups benefit */ 2571 taskimp = task_weight(p, nid, dist) - taskweight; 2572 groupimp = group_weight(p, nid, dist) - groupweight; 2573 if (taskimp < 0 && groupimp < 0) 2574 continue; 2575 2576 env.dist = dist; 2577 env.dst_nid = nid; 2578 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2579 task_numa_find_cpu(&env, taskimp, groupimp); 2580 } 2581 } 2582 2583 /* 2584 * If the task is part of a workload that spans multiple NUMA nodes, 2585 * and is migrating into one of the workload's active nodes, remember 2586 * this node as the task's preferred numa node, so the workload can 2587 * settle down. 2588 * A task that migrated to a second choice node will be better off 2589 * trying for a better one later. Do not set the preferred node here. 2590 */ 2591 if (ng) { 2592 if (env.best_cpu == -1) 2593 nid = env.src_nid; 2594 else 2595 nid = cpu_to_node(env.best_cpu); 2596 2597 if (nid != p->numa_preferred_nid) 2598 sched_setnuma(p, nid); 2599 } 2600 2601 /* No better CPU than the current one was found. */ 2602 if (env.best_cpu == -1) { 2603 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2604 return -EAGAIN; 2605 } 2606 2607 best_rq = cpu_rq(env.best_cpu); 2608 if (env.best_task == NULL) { 2609 ret = migrate_task_to(p, env.best_cpu); 2610 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2611 if (ret != 0) 2612 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2613 return ret; 2614 } 2615 2616 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2617 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2618 2619 if (ret != 0) 2620 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2621 put_task_struct(env.best_task); 2622 return ret; 2623 } 2624 2625 /* Attempt to migrate a task to a CPU on the preferred node. */ 2626 static void numa_migrate_preferred(struct task_struct *p) 2627 { 2628 unsigned long interval = HZ; 2629 2630 /* This task has no NUMA fault statistics yet */ 2631 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2632 return; 2633 2634 /* Periodically retry migrating the task to the preferred node */ 2635 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2636 p->numa_migrate_retry = jiffies + interval; 2637 2638 /* Success if task is already running on preferred CPU */ 2639 if (task_node(p) == p->numa_preferred_nid) 2640 return; 2641 2642 /* Otherwise, try migrate to a CPU on the preferred node */ 2643 task_numa_migrate(p); 2644 } 2645 2646 /* 2647 * Find out how many nodes the workload is actively running on. Do this by 2648 * tracking the nodes from which NUMA hinting faults are triggered. This can 2649 * be different from the set of nodes where the workload's memory is currently 2650 * located. 2651 */ 2652 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2653 { 2654 unsigned long faults, max_faults = 0; 2655 int nid, active_nodes = 0; 2656 2657 for_each_node_state(nid, N_CPU) { 2658 faults = group_faults_cpu(numa_group, nid); 2659 if (faults > max_faults) 2660 max_faults = faults; 2661 } 2662 2663 for_each_node_state(nid, N_CPU) { 2664 faults = group_faults_cpu(numa_group, nid); 2665 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2666 active_nodes++; 2667 } 2668 2669 numa_group->max_faults_cpu = max_faults; 2670 numa_group->active_nodes = active_nodes; 2671 } 2672 2673 /* 2674 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2675 * increments. The more local the fault statistics are, the higher the scan 2676 * period will be for the next scan window. If local/(local+remote) ratio is 2677 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2678 * the scan period will decrease. Aim for 70% local accesses. 2679 */ 2680 #define NUMA_PERIOD_SLOTS 10 2681 #define NUMA_PERIOD_THRESHOLD 7 2682 2683 /* 2684 * Increase the scan period (slow down scanning) if the majority of 2685 * our memory is already on our local node, or if the majority of 2686 * the page accesses are shared with other processes. 2687 * Otherwise, decrease the scan period. 2688 */ 2689 static void update_task_scan_period(struct task_struct *p, 2690 unsigned long shared, unsigned long private) 2691 { 2692 unsigned int period_slot; 2693 int lr_ratio, ps_ratio; 2694 int diff; 2695 2696 unsigned long remote = p->numa_faults_locality[0]; 2697 unsigned long local = p->numa_faults_locality[1]; 2698 2699 /* 2700 * If there were no record hinting faults then either the task is 2701 * completely idle or all activity is in areas that are not of interest 2702 * to automatic numa balancing. Related to that, if there were failed 2703 * migration then it implies we are migrating too quickly or the local 2704 * node is overloaded. In either case, scan slower 2705 */ 2706 if (local + shared == 0 || p->numa_faults_locality[2]) { 2707 p->numa_scan_period = min(p->numa_scan_period_max, 2708 p->numa_scan_period << 1); 2709 2710 p->mm->numa_next_scan = jiffies + 2711 msecs_to_jiffies(p->numa_scan_period); 2712 2713 return; 2714 } 2715 2716 /* 2717 * Prepare to scale scan period relative to the current period. 2718 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2719 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2720 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2721 */ 2722 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2723 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2724 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2725 2726 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2727 /* 2728 * Most memory accesses are local. There is no need to 2729 * do fast NUMA scanning, since memory is already local. 2730 */ 2731 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2732 if (!slot) 2733 slot = 1; 2734 diff = slot * period_slot; 2735 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2736 /* 2737 * Most memory accesses are shared with other tasks. 2738 * There is no point in continuing fast NUMA scanning, 2739 * since other tasks may just move the memory elsewhere. 2740 */ 2741 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2742 if (!slot) 2743 slot = 1; 2744 diff = slot * period_slot; 2745 } else { 2746 /* 2747 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2748 * yet they are not on the local NUMA node. Speed up 2749 * NUMA scanning to get the memory moved over. 2750 */ 2751 int ratio = max(lr_ratio, ps_ratio); 2752 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2753 } 2754 2755 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2756 task_scan_min(p), task_scan_max(p)); 2757 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2758 } 2759 2760 /* 2761 * Get the fraction of time the task has been running since the last 2762 * NUMA placement cycle. The scheduler keeps similar statistics, but 2763 * decays those on a 32ms period, which is orders of magnitude off 2764 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2765 * stats only if the task is so new there are no NUMA statistics yet. 2766 */ 2767 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2768 { 2769 u64 runtime, delta, now; 2770 /* Use the start of this time slice to avoid calculations. */ 2771 now = p->se.exec_start; 2772 runtime = p->se.sum_exec_runtime; 2773 2774 if (p->last_task_numa_placement) { 2775 delta = runtime - p->last_sum_exec_runtime; 2776 *period = now - p->last_task_numa_placement; 2777 2778 /* Avoid time going backwards, prevent potential divide error: */ 2779 if (unlikely((s64)*period < 0)) 2780 *period = 0; 2781 } else { 2782 delta = p->se.avg.load_sum; 2783 *period = LOAD_AVG_MAX; 2784 } 2785 2786 p->last_sum_exec_runtime = runtime; 2787 p->last_task_numa_placement = now; 2788 2789 return delta; 2790 } 2791 2792 /* 2793 * Determine the preferred nid for a task in a numa_group. This needs to 2794 * be done in a way that produces consistent results with group_weight, 2795 * otherwise workloads might not converge. 2796 */ 2797 static int preferred_group_nid(struct task_struct *p, int nid) 2798 { 2799 nodemask_t nodes; 2800 int dist; 2801 2802 /* Direct connections between all NUMA nodes. */ 2803 if (sched_numa_topology_type == NUMA_DIRECT) 2804 return nid; 2805 2806 /* 2807 * On a system with glueless mesh NUMA topology, group_weight 2808 * scores nodes according to the number of NUMA hinting faults on 2809 * both the node itself, and on nearby nodes. 2810 */ 2811 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2812 unsigned long score, max_score = 0; 2813 int node, max_node = nid; 2814 2815 dist = sched_max_numa_distance; 2816 2817 for_each_node_state(node, N_CPU) { 2818 score = group_weight(p, node, dist); 2819 if (score > max_score) { 2820 max_score = score; 2821 max_node = node; 2822 } 2823 } 2824 return max_node; 2825 } 2826 2827 /* 2828 * Finding the preferred nid in a system with NUMA backplane 2829 * interconnect topology is more involved. The goal is to locate 2830 * tasks from numa_groups near each other in the system, and 2831 * untangle workloads from different sides of the system. This requires 2832 * searching down the hierarchy of node groups, recursively searching 2833 * inside the highest scoring group of nodes. The nodemask tricks 2834 * keep the complexity of the search down. 2835 */ 2836 nodes = node_states[N_CPU]; 2837 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2838 unsigned long max_faults = 0; 2839 nodemask_t max_group = NODE_MASK_NONE; 2840 int a, b; 2841 2842 /* Are there nodes at this distance from each other? */ 2843 if (!find_numa_distance(dist)) 2844 continue; 2845 2846 for_each_node_mask(a, nodes) { 2847 unsigned long faults = 0; 2848 nodemask_t this_group; 2849 nodes_clear(this_group); 2850 2851 /* Sum group's NUMA faults; includes a==b case. */ 2852 for_each_node_mask(b, nodes) { 2853 if (node_distance(a, b) < dist) { 2854 faults += group_faults(p, b); 2855 node_set(b, this_group); 2856 node_clear(b, nodes); 2857 } 2858 } 2859 2860 /* Remember the top group. */ 2861 if (faults > max_faults) { 2862 max_faults = faults; 2863 max_group = this_group; 2864 /* 2865 * subtle: at the smallest distance there is 2866 * just one node left in each "group", the 2867 * winner is the preferred nid. 2868 */ 2869 nid = a; 2870 } 2871 } 2872 /* Next round, evaluate the nodes within max_group. */ 2873 if (!max_faults) 2874 break; 2875 nodes = max_group; 2876 } 2877 return nid; 2878 } 2879 2880 static void task_numa_placement(struct task_struct *p) 2881 { 2882 int seq, nid, max_nid = NUMA_NO_NODE; 2883 unsigned long max_faults = 0; 2884 unsigned long fault_types[2] = { 0, 0 }; 2885 unsigned long total_faults; 2886 u64 runtime, period; 2887 spinlock_t *group_lock = NULL; 2888 struct numa_group *ng; 2889 2890 /* 2891 * The p->mm->numa_scan_seq field gets updated without 2892 * exclusive access. Use READ_ONCE() here to ensure 2893 * that the field is read in a single access: 2894 */ 2895 seq = READ_ONCE(p->mm->numa_scan_seq); 2896 if (p->numa_scan_seq == seq) 2897 return; 2898 p->numa_scan_seq = seq; 2899 p->numa_scan_period_max = task_scan_max(p); 2900 2901 total_faults = p->numa_faults_locality[0] + 2902 p->numa_faults_locality[1]; 2903 runtime = numa_get_avg_runtime(p, &period); 2904 2905 /* If the task is part of a group prevent parallel updates to group stats */ 2906 ng = deref_curr_numa_group(p); 2907 if (ng) { 2908 group_lock = &ng->lock; 2909 spin_lock_irq(group_lock); 2910 } 2911 2912 /* Find the node with the highest number of faults */ 2913 for_each_online_node(nid) { 2914 /* Keep track of the offsets in numa_faults array */ 2915 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2916 unsigned long faults = 0, group_faults = 0; 2917 int priv; 2918 2919 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2920 long diff, f_diff, f_weight; 2921 2922 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2923 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2924 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2925 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2926 2927 /* Decay existing window, copy faults since last scan */ 2928 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2929 fault_types[priv] += p->numa_faults[membuf_idx]; 2930 p->numa_faults[membuf_idx] = 0; 2931 2932 /* 2933 * Normalize the faults_from, so all tasks in a group 2934 * count according to CPU use, instead of by the raw 2935 * number of faults. Tasks with little runtime have 2936 * little over-all impact on throughput, and thus their 2937 * faults are less important. 2938 */ 2939 f_weight = div64_u64(runtime << 16, period + 1); 2940 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2941 (total_faults + 1); 2942 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2943 p->numa_faults[cpubuf_idx] = 0; 2944 2945 p->numa_faults[mem_idx] += diff; 2946 p->numa_faults[cpu_idx] += f_diff; 2947 faults += p->numa_faults[mem_idx]; 2948 p->total_numa_faults += diff; 2949 if (ng) { 2950 /* 2951 * safe because we can only change our own group 2952 * 2953 * mem_idx represents the offset for a given 2954 * nid and priv in a specific region because it 2955 * is at the beginning of the numa_faults array. 2956 */ 2957 ng->faults[mem_idx] += diff; 2958 ng->faults[cpu_idx] += f_diff; 2959 ng->total_faults += diff; 2960 group_faults += ng->faults[mem_idx]; 2961 } 2962 } 2963 2964 if (!ng) { 2965 if (faults > max_faults) { 2966 max_faults = faults; 2967 max_nid = nid; 2968 } 2969 } else if (group_faults > max_faults) { 2970 max_faults = group_faults; 2971 max_nid = nid; 2972 } 2973 } 2974 2975 /* Cannot migrate task to CPU-less node */ 2976 max_nid = numa_nearest_node(max_nid, N_CPU); 2977 2978 if (ng) { 2979 numa_group_count_active_nodes(ng); 2980 spin_unlock_irq(group_lock); 2981 max_nid = preferred_group_nid(p, max_nid); 2982 } 2983 2984 if (max_faults) { 2985 /* Set the new preferred node */ 2986 if (max_nid != p->numa_preferred_nid) 2987 sched_setnuma(p, max_nid); 2988 } 2989 2990 update_task_scan_period(p, fault_types[0], fault_types[1]); 2991 } 2992 2993 static inline int get_numa_group(struct numa_group *grp) 2994 { 2995 return refcount_inc_not_zero(&grp->refcount); 2996 } 2997 2998 static inline void put_numa_group(struct numa_group *grp) 2999 { 3000 if (refcount_dec_and_test(&grp->refcount)) 3001 kfree_rcu(grp, rcu); 3002 } 3003 3004 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3005 int *priv) 3006 { 3007 struct numa_group *grp, *my_grp; 3008 struct task_struct *tsk; 3009 bool join = false; 3010 int cpu = cpupid_to_cpu(cpupid); 3011 int i; 3012 3013 if (unlikely(!deref_curr_numa_group(p))) { 3014 unsigned int size = sizeof(struct numa_group) + 3015 NR_NUMA_HINT_FAULT_STATS * 3016 nr_node_ids * sizeof(unsigned long); 3017 3018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3019 if (!grp) 3020 return; 3021 3022 refcount_set(&grp->refcount, 1); 3023 grp->active_nodes = 1; 3024 grp->max_faults_cpu = 0; 3025 spin_lock_init(&grp->lock); 3026 grp->gid = p->pid; 3027 3028 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3029 grp->faults[i] = p->numa_faults[i]; 3030 3031 grp->total_faults = p->total_numa_faults; 3032 3033 grp->nr_tasks++; 3034 rcu_assign_pointer(p->numa_group, grp); 3035 } 3036 3037 rcu_read_lock(); 3038 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3039 3040 if (!cpupid_match_pid(tsk, cpupid)) 3041 goto no_join; 3042 3043 grp = rcu_dereference(tsk->numa_group); 3044 if (!grp) 3045 goto no_join; 3046 3047 my_grp = deref_curr_numa_group(p); 3048 if (grp == my_grp) 3049 goto no_join; 3050 3051 /* 3052 * Only join the other group if its bigger; if we're the bigger group, 3053 * the other task will join us. 3054 */ 3055 if (my_grp->nr_tasks > grp->nr_tasks) 3056 goto no_join; 3057 3058 /* 3059 * Tie-break on the grp address. 3060 */ 3061 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3062 goto no_join; 3063 3064 /* Always join threads in the same process. */ 3065 if (tsk->mm == current->mm) 3066 join = true; 3067 3068 /* Simple filter to avoid false positives due to PID collisions */ 3069 if (flags & TNF_SHARED) 3070 join = true; 3071 3072 /* Update priv based on whether false sharing was detected */ 3073 *priv = !join; 3074 3075 if (join && !get_numa_group(grp)) 3076 goto no_join; 3077 3078 rcu_read_unlock(); 3079 3080 if (!join) 3081 return; 3082 3083 WARN_ON_ONCE(irqs_disabled()); 3084 double_lock_irq(&my_grp->lock, &grp->lock); 3085 3086 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3087 my_grp->faults[i] -= p->numa_faults[i]; 3088 grp->faults[i] += p->numa_faults[i]; 3089 } 3090 my_grp->total_faults -= p->total_numa_faults; 3091 grp->total_faults += p->total_numa_faults; 3092 3093 my_grp->nr_tasks--; 3094 grp->nr_tasks++; 3095 3096 spin_unlock(&my_grp->lock); 3097 spin_unlock_irq(&grp->lock); 3098 3099 rcu_assign_pointer(p->numa_group, grp); 3100 3101 put_numa_group(my_grp); 3102 return; 3103 3104 no_join: 3105 rcu_read_unlock(); 3106 return; 3107 } 3108 3109 /* 3110 * Get rid of NUMA statistics associated with a task (either current or dead). 3111 * If @final is set, the task is dead and has reached refcount zero, so we can 3112 * safely free all relevant data structures. Otherwise, there might be 3113 * concurrent reads from places like load balancing and procfs, and we should 3114 * reset the data back to default state without freeing ->numa_faults. 3115 */ 3116 void task_numa_free(struct task_struct *p, bool final) 3117 { 3118 /* safe: p either is current or is being freed by current */ 3119 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3120 unsigned long *numa_faults = p->numa_faults; 3121 unsigned long flags; 3122 int i; 3123 3124 if (!numa_faults) 3125 return; 3126 3127 if (grp) { 3128 spin_lock_irqsave(&grp->lock, flags); 3129 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3130 grp->faults[i] -= p->numa_faults[i]; 3131 grp->total_faults -= p->total_numa_faults; 3132 3133 grp->nr_tasks--; 3134 spin_unlock_irqrestore(&grp->lock, flags); 3135 RCU_INIT_POINTER(p->numa_group, NULL); 3136 put_numa_group(grp); 3137 } 3138 3139 if (final) { 3140 p->numa_faults = NULL; 3141 kfree(numa_faults); 3142 } else { 3143 p->total_numa_faults = 0; 3144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3145 numa_faults[i] = 0; 3146 } 3147 } 3148 3149 /* 3150 * Got a PROT_NONE fault for a page on @node. 3151 */ 3152 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3153 { 3154 struct task_struct *p = current; 3155 bool migrated = flags & TNF_MIGRATED; 3156 int cpu_node = task_node(current); 3157 int local = !!(flags & TNF_FAULT_LOCAL); 3158 struct numa_group *ng; 3159 int priv; 3160 3161 if (!static_branch_likely(&sched_numa_balancing)) 3162 return; 3163 3164 /* for example, ksmd faulting in a user's mm */ 3165 if (!p->mm) 3166 return; 3167 3168 /* 3169 * NUMA faults statistics are unnecessary for the slow memory 3170 * node for memory tiering mode. 3171 */ 3172 if (!node_is_toptier(mem_node) && 3173 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3174 !cpupid_valid(last_cpupid))) 3175 return; 3176 3177 /* Allocate buffer to track faults on a per-node basis */ 3178 if (unlikely(!p->numa_faults)) { 3179 int size = sizeof(*p->numa_faults) * 3180 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3181 3182 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3183 if (!p->numa_faults) 3184 return; 3185 3186 p->total_numa_faults = 0; 3187 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3188 } 3189 3190 /* 3191 * First accesses are treated as private, otherwise consider accesses 3192 * to be private if the accessing pid has not changed 3193 */ 3194 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3195 priv = 1; 3196 } else { 3197 priv = cpupid_match_pid(p, last_cpupid); 3198 if (!priv && !(flags & TNF_NO_GROUP)) 3199 task_numa_group(p, last_cpupid, flags, &priv); 3200 } 3201 3202 /* 3203 * If a workload spans multiple NUMA nodes, a shared fault that 3204 * occurs wholly within the set of nodes that the workload is 3205 * actively using should be counted as local. This allows the 3206 * scan rate to slow down when a workload has settled down. 3207 */ 3208 ng = deref_curr_numa_group(p); 3209 if (!priv && !local && ng && ng->active_nodes > 1 && 3210 numa_is_active_node(cpu_node, ng) && 3211 numa_is_active_node(mem_node, ng)) 3212 local = 1; 3213 3214 /* 3215 * Retry to migrate task to preferred node periodically, in case it 3216 * previously failed, or the scheduler moved us. 3217 */ 3218 if (time_after(jiffies, p->numa_migrate_retry)) { 3219 task_numa_placement(p); 3220 numa_migrate_preferred(p); 3221 } 3222 3223 if (migrated) 3224 p->numa_pages_migrated += pages; 3225 if (flags & TNF_MIGRATE_FAIL) 3226 p->numa_faults_locality[2] += pages; 3227 3228 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3229 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3230 p->numa_faults_locality[local] += pages; 3231 } 3232 3233 static void reset_ptenuma_scan(struct task_struct *p) 3234 { 3235 /* 3236 * We only did a read acquisition of the mmap sem, so 3237 * p->mm->numa_scan_seq is written to without exclusive access 3238 * and the update is not guaranteed to be atomic. That's not 3239 * much of an issue though, since this is just used for 3240 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3241 * expensive, to avoid any form of compiler optimizations: 3242 */ 3243 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3244 p->mm->numa_scan_offset = 0; 3245 } 3246 3247 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3248 { 3249 unsigned long pids; 3250 /* 3251 * Allow unconditional access first two times, so that all the (pages) 3252 * of VMAs get prot_none fault introduced irrespective of accesses. 3253 * This is also done to avoid any side effect of task scanning 3254 * amplifying the unfairness of disjoint set of VMAs' access. 3255 */ 3256 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3257 return true; 3258 3259 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3260 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3261 return true; 3262 3263 /* 3264 * Complete a scan that has already started regardless of PID access, or 3265 * some VMAs may never be scanned in multi-threaded applications: 3266 */ 3267 if (mm->numa_scan_offset > vma->vm_start) { 3268 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3269 return true; 3270 } 3271 3272 return false; 3273 } 3274 3275 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3276 3277 /* 3278 * The expensive part of numa migration is done from task_work context. 3279 * Triggered from task_tick_numa(). 3280 */ 3281 static void task_numa_work(struct callback_head *work) 3282 { 3283 unsigned long migrate, next_scan, now = jiffies; 3284 struct task_struct *p = current; 3285 struct mm_struct *mm = p->mm; 3286 u64 runtime = p->se.sum_exec_runtime; 3287 struct vm_area_struct *vma; 3288 unsigned long start, end; 3289 unsigned long nr_pte_updates = 0; 3290 long pages, virtpages; 3291 struct vma_iterator vmi; 3292 bool vma_pids_skipped; 3293 bool vma_pids_forced = false; 3294 3295 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3296 3297 work->next = work; 3298 /* 3299 * Who cares about NUMA placement when they're dying. 3300 * 3301 * NOTE: make sure not to dereference p->mm before this check, 3302 * exit_task_work() happens _after_ exit_mm() so we could be called 3303 * without p->mm even though we still had it when we enqueued this 3304 * work. 3305 */ 3306 if (p->flags & PF_EXITING) 3307 return; 3308 3309 if (!mm->numa_next_scan) { 3310 mm->numa_next_scan = now + 3311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3312 } 3313 3314 /* 3315 * Enforce maximal scan/migration frequency.. 3316 */ 3317 migrate = mm->numa_next_scan; 3318 if (time_before(now, migrate)) 3319 return; 3320 3321 if (p->numa_scan_period == 0) { 3322 p->numa_scan_period_max = task_scan_max(p); 3323 p->numa_scan_period = task_scan_start(p); 3324 } 3325 3326 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3327 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3328 return; 3329 3330 /* 3331 * Delay this task enough that another task of this mm will likely win 3332 * the next time around. 3333 */ 3334 p->node_stamp += 2 * TICK_NSEC; 3335 3336 pages = sysctl_numa_balancing_scan_size; 3337 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3338 virtpages = pages * 8; /* Scan up to this much virtual space */ 3339 if (!pages) 3340 return; 3341 3342 3343 if (!mmap_read_trylock(mm)) 3344 return; 3345 3346 /* 3347 * VMAs are skipped if the current PID has not trapped a fault within 3348 * the VMA recently. Allow scanning to be forced if there is no 3349 * suitable VMA remaining. 3350 */ 3351 vma_pids_skipped = false; 3352 3353 retry_pids: 3354 start = mm->numa_scan_offset; 3355 vma_iter_init(&vmi, mm, start); 3356 vma = vma_next(&vmi); 3357 if (!vma) { 3358 reset_ptenuma_scan(p); 3359 start = 0; 3360 vma_iter_set(&vmi, start); 3361 vma = vma_next(&vmi); 3362 } 3363 3364 do { 3365 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3366 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3367 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3368 continue; 3369 } 3370 3371 /* 3372 * Shared library pages mapped by multiple processes are not 3373 * migrated as it is expected they are cache replicated. Avoid 3374 * hinting faults in read-only file-backed mappings or the vDSO 3375 * as migrating the pages will be of marginal benefit. 3376 */ 3377 if (!vma->vm_mm || 3378 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3379 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3380 continue; 3381 } 3382 3383 /* 3384 * Skip inaccessible VMAs to avoid any confusion between 3385 * PROT_NONE and NUMA hinting PTEs 3386 */ 3387 if (!vma_is_accessible(vma)) { 3388 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3389 continue; 3390 } 3391 3392 /* Initialise new per-VMA NUMAB state. */ 3393 if (!vma->numab_state) { 3394 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3395 GFP_KERNEL); 3396 if (!vma->numab_state) 3397 continue; 3398 3399 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3400 3401 vma->numab_state->next_scan = now + 3402 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3403 3404 /* Reset happens after 4 times scan delay of scan start */ 3405 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3406 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3407 3408 /* 3409 * Ensure prev_scan_seq does not match numa_scan_seq, 3410 * to prevent VMAs being skipped prematurely on the 3411 * first scan: 3412 */ 3413 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3414 } 3415 3416 /* 3417 * Scanning the VMAs of short lived tasks add more overhead. So 3418 * delay the scan for new VMAs. 3419 */ 3420 if (mm->numa_scan_seq && time_before(jiffies, 3421 vma->numab_state->next_scan)) { 3422 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3423 continue; 3424 } 3425 3426 /* RESET access PIDs regularly for old VMAs. */ 3427 if (mm->numa_scan_seq && 3428 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3429 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3430 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3431 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3432 vma->numab_state->pids_active[1] = 0; 3433 } 3434 3435 /* Do not rescan VMAs twice within the same sequence. */ 3436 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3437 mm->numa_scan_offset = vma->vm_end; 3438 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3439 continue; 3440 } 3441 3442 /* 3443 * Do not scan the VMA if task has not accessed it, unless no other 3444 * VMA candidate exists. 3445 */ 3446 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3447 vma_pids_skipped = true; 3448 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3449 continue; 3450 } 3451 3452 do { 3453 start = max(start, vma->vm_start); 3454 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3455 end = min(end, vma->vm_end); 3456 nr_pte_updates = change_prot_numa(vma, start, end); 3457 3458 /* 3459 * Try to scan sysctl_numa_balancing_size worth of 3460 * hpages that have at least one present PTE that 3461 * is not already PTE-numa. If the VMA contains 3462 * areas that are unused or already full of prot_numa 3463 * PTEs, scan up to virtpages, to skip through those 3464 * areas faster. 3465 */ 3466 if (nr_pte_updates) 3467 pages -= (end - start) >> PAGE_SHIFT; 3468 virtpages -= (end - start) >> PAGE_SHIFT; 3469 3470 start = end; 3471 if (pages <= 0 || virtpages <= 0) 3472 goto out; 3473 3474 cond_resched(); 3475 } while (end != vma->vm_end); 3476 3477 /* VMA scan is complete, do not scan until next sequence. */ 3478 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3479 3480 /* 3481 * Only force scan within one VMA at a time, to limit the 3482 * cost of scanning a potentially uninteresting VMA. 3483 */ 3484 if (vma_pids_forced) 3485 break; 3486 } for_each_vma(vmi, vma); 3487 3488 /* 3489 * If no VMAs are remaining and VMAs were skipped due to the PID 3490 * not accessing the VMA previously, then force a scan to ensure 3491 * forward progress: 3492 */ 3493 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3494 vma_pids_forced = true; 3495 goto retry_pids; 3496 } 3497 3498 out: 3499 /* 3500 * It is possible to reach the end of the VMA list but the last few 3501 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3502 * would find the !migratable VMA on the next scan but not reset the 3503 * scanner to the start so check it now. 3504 */ 3505 if (vma) 3506 mm->numa_scan_offset = start; 3507 else 3508 reset_ptenuma_scan(p); 3509 mmap_read_unlock(mm); 3510 3511 /* 3512 * Make sure tasks use at least 32x as much time to run other code 3513 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3514 * Usually update_task_scan_period slows down scanning enough; on an 3515 * overloaded system we need to limit overhead on a per task basis. 3516 */ 3517 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3518 u64 diff = p->se.sum_exec_runtime - runtime; 3519 p->node_stamp += 32 * diff; 3520 } 3521 } 3522 3523 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3524 { 3525 int mm_users = 0; 3526 struct mm_struct *mm = p->mm; 3527 3528 if (mm) { 3529 mm_users = atomic_read(&mm->mm_users); 3530 if (mm_users == 1) { 3531 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3532 mm->numa_scan_seq = 0; 3533 } 3534 } 3535 p->node_stamp = 0; 3536 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3537 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3538 p->numa_migrate_retry = 0; 3539 /* Protect against double add, see task_tick_numa and task_numa_work */ 3540 p->numa_work.next = &p->numa_work; 3541 p->numa_faults = NULL; 3542 p->numa_pages_migrated = 0; 3543 p->total_numa_faults = 0; 3544 RCU_INIT_POINTER(p->numa_group, NULL); 3545 p->last_task_numa_placement = 0; 3546 p->last_sum_exec_runtime = 0; 3547 3548 init_task_work(&p->numa_work, task_numa_work); 3549 3550 /* New address space, reset the preferred nid */ 3551 if (!(clone_flags & CLONE_VM)) { 3552 p->numa_preferred_nid = NUMA_NO_NODE; 3553 return; 3554 } 3555 3556 /* 3557 * New thread, keep existing numa_preferred_nid which should be copied 3558 * already by arch_dup_task_struct but stagger when scans start. 3559 */ 3560 if (mm) { 3561 unsigned int delay; 3562 3563 delay = min_t(unsigned int, task_scan_max(current), 3564 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3565 delay += 2 * TICK_NSEC; 3566 p->node_stamp = delay; 3567 } 3568 } 3569 3570 /* 3571 * Drive the periodic memory faults.. 3572 */ 3573 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3574 { 3575 struct callback_head *work = &curr->numa_work; 3576 u64 period, now; 3577 3578 /* 3579 * We don't care about NUMA placement if we don't have memory. 3580 */ 3581 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3582 return; 3583 3584 /* 3585 * Using runtime rather than walltime has the dual advantage that 3586 * we (mostly) drive the selection from busy threads and that the 3587 * task needs to have done some actual work before we bother with 3588 * NUMA placement. 3589 */ 3590 now = curr->se.sum_exec_runtime; 3591 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3592 3593 if (now > curr->node_stamp + period) { 3594 if (!curr->node_stamp) 3595 curr->numa_scan_period = task_scan_start(curr); 3596 curr->node_stamp += period; 3597 3598 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3599 task_work_add(curr, work, TWA_RESUME); 3600 } 3601 } 3602 3603 static void update_scan_period(struct task_struct *p, int new_cpu) 3604 { 3605 int src_nid = cpu_to_node(task_cpu(p)); 3606 int dst_nid = cpu_to_node(new_cpu); 3607 3608 if (!static_branch_likely(&sched_numa_balancing)) 3609 return; 3610 3611 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3612 return; 3613 3614 if (src_nid == dst_nid) 3615 return; 3616 3617 /* 3618 * Allow resets if faults have been trapped before one scan 3619 * has completed. This is most likely due to a new task that 3620 * is pulled cross-node due to wakeups or load balancing. 3621 */ 3622 if (p->numa_scan_seq) { 3623 /* 3624 * Avoid scan adjustments if moving to the preferred 3625 * node or if the task was not previously running on 3626 * the preferred node. 3627 */ 3628 if (dst_nid == p->numa_preferred_nid || 3629 (p->numa_preferred_nid != NUMA_NO_NODE && 3630 src_nid != p->numa_preferred_nid)) 3631 return; 3632 } 3633 3634 p->numa_scan_period = task_scan_start(p); 3635 } 3636 3637 #else 3638 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3639 { 3640 } 3641 3642 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3643 { 3644 } 3645 3646 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3647 { 3648 } 3649 3650 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3651 { 3652 } 3653 3654 #endif /* CONFIG_NUMA_BALANCING */ 3655 3656 static void 3657 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3658 { 3659 update_load_add(&cfs_rq->load, se->load.weight); 3660 #ifdef CONFIG_SMP 3661 if (entity_is_task(se)) { 3662 struct rq *rq = rq_of(cfs_rq); 3663 3664 account_numa_enqueue(rq, task_of(se)); 3665 list_add(&se->group_node, &rq->cfs_tasks); 3666 } 3667 #endif 3668 cfs_rq->nr_running++; 3669 if (se_is_idle(se)) 3670 cfs_rq->idle_nr_running++; 3671 } 3672 3673 static void 3674 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3675 { 3676 update_load_sub(&cfs_rq->load, se->load.weight); 3677 #ifdef CONFIG_SMP 3678 if (entity_is_task(se)) { 3679 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3680 list_del_init(&se->group_node); 3681 } 3682 #endif 3683 cfs_rq->nr_running--; 3684 if (se_is_idle(se)) 3685 cfs_rq->idle_nr_running--; 3686 } 3687 3688 /* 3689 * Signed add and clamp on underflow. 3690 * 3691 * Explicitly do a load-store to ensure the intermediate value never hits 3692 * memory. This allows lockless observations without ever seeing the negative 3693 * values. 3694 */ 3695 #define add_positive(_ptr, _val) do { \ 3696 typeof(_ptr) ptr = (_ptr); \ 3697 typeof(_val) val = (_val); \ 3698 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3699 \ 3700 res = var + val; \ 3701 \ 3702 if (val < 0 && res > var) \ 3703 res = 0; \ 3704 \ 3705 WRITE_ONCE(*ptr, res); \ 3706 } while (0) 3707 3708 /* 3709 * Unsigned subtract and clamp on underflow. 3710 * 3711 * Explicitly do a load-store to ensure the intermediate value never hits 3712 * memory. This allows lockless observations without ever seeing the negative 3713 * values. 3714 */ 3715 #define sub_positive(_ptr, _val) do { \ 3716 typeof(_ptr) ptr = (_ptr); \ 3717 typeof(*ptr) val = (_val); \ 3718 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3719 res = var - val; \ 3720 if (res > var) \ 3721 res = 0; \ 3722 WRITE_ONCE(*ptr, res); \ 3723 } while (0) 3724 3725 /* 3726 * Remove and clamp on negative, from a local variable. 3727 * 3728 * A variant of sub_positive(), which does not use explicit load-store 3729 * and is thus optimized for local variable updates. 3730 */ 3731 #define lsub_positive(_ptr, _val) do { \ 3732 typeof(_ptr) ptr = (_ptr); \ 3733 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3734 } while (0) 3735 3736 #ifdef CONFIG_SMP 3737 static inline void 3738 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3739 { 3740 cfs_rq->avg.load_avg += se->avg.load_avg; 3741 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3742 } 3743 3744 static inline void 3745 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3746 { 3747 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3748 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3749 /* See update_cfs_rq_load_avg() */ 3750 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3751 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3752 } 3753 #else 3754 static inline void 3755 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3756 static inline void 3757 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3758 #endif 3759 3760 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3761 unsigned long weight) 3762 { 3763 unsigned long old_weight = se->load.weight; 3764 s64 vlag, vslice; 3765 3766 /* 3767 * VRUNTIME 3768 * -------- 3769 * 3770 * COROLLARY #1: The virtual runtime of the entity needs to be 3771 * adjusted if re-weight at !0-lag point. 3772 * 3773 * Proof: For contradiction assume this is not true, so we can 3774 * re-weight without changing vruntime at !0-lag point. 3775 * 3776 * Weight VRuntime Avg-VRuntime 3777 * before w v V 3778 * after w' v' V' 3779 * 3780 * Since lag needs to be preserved through re-weight: 3781 * 3782 * lag = (V - v)*w = (V'- v')*w', where v = v' 3783 * ==> V' = (V - v)*w/w' + v (1) 3784 * 3785 * Let W be the total weight of the entities before reweight, 3786 * since V' is the new weighted average of entities: 3787 * 3788 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3789 * 3790 * by using (1) & (2) we obtain: 3791 * 3792 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3793 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3794 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3795 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3796 * 3797 * Since we are doing at !0-lag point which means V != v, we 3798 * can simplify (3): 3799 * 3800 * ==> W / (W + w' - w) = w / w' 3801 * ==> Ww' = Ww + ww' - ww 3802 * ==> W * (w' - w) = w * (w' - w) 3803 * ==> W = w (re-weight indicates w' != w) 3804 * 3805 * So the cfs_rq contains only one entity, hence vruntime of 3806 * the entity @v should always equal to the cfs_rq's weighted 3807 * average vruntime @V, which means we will always re-weight 3808 * at 0-lag point, thus breach assumption. Proof completed. 3809 * 3810 * 3811 * COROLLARY #2: Re-weight does NOT affect weighted average 3812 * vruntime of all the entities. 3813 * 3814 * Proof: According to corollary #1, Eq. (1) should be: 3815 * 3816 * (V - v)*w = (V' - v')*w' 3817 * ==> v' = V' - (V - v)*w/w' (4) 3818 * 3819 * According to the weighted average formula, we have: 3820 * 3821 * V' = (WV - wv + w'v') / (W - w + w') 3822 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3823 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3824 * = (WV + w'V' - Vw) / (W - w + w') 3825 * 3826 * ==> V'*(W - w + w') = WV + w'V' - Vw 3827 * ==> V' * (W - w) = (W - w) * V (5) 3828 * 3829 * If the entity is the only one in the cfs_rq, then reweight 3830 * always occurs at 0-lag point, so V won't change. Or else 3831 * there are other entities, hence W != w, then Eq. (5) turns 3832 * into V' = V. So V won't change in either case, proof done. 3833 * 3834 * 3835 * So according to corollary #1 & #2, the effect of re-weight 3836 * on vruntime should be: 3837 * 3838 * v' = V' - (V - v) * w / w' (4) 3839 * = V - (V - v) * w / w' 3840 * = V - vl * w / w' 3841 * = V - vl' 3842 */ 3843 if (avruntime != se->vruntime) { 3844 vlag = entity_lag(avruntime, se); 3845 vlag = div_s64(vlag * old_weight, weight); 3846 se->vruntime = avruntime - vlag; 3847 } 3848 3849 /* 3850 * DEADLINE 3851 * -------- 3852 * 3853 * When the weight changes, the virtual time slope changes and 3854 * we should adjust the relative virtual deadline accordingly. 3855 * 3856 * d' = v' + (d - v)*w/w' 3857 * = V' - (V - v)*w/w' + (d - v)*w/w' 3858 * = V - (V - v)*w/w' + (d - v)*w/w' 3859 * = V + (d - V)*w/w' 3860 */ 3861 vslice = (s64)(se->deadline - avruntime); 3862 vslice = div_s64(vslice * old_weight, weight); 3863 se->deadline = avruntime + vslice; 3864 } 3865 3866 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3867 unsigned long weight) 3868 { 3869 bool curr = cfs_rq->curr == se; 3870 u64 avruntime; 3871 3872 if (se->on_rq) { 3873 /* commit outstanding execution time */ 3874 update_curr(cfs_rq); 3875 avruntime = avg_vruntime(cfs_rq); 3876 if (!curr) 3877 __dequeue_entity(cfs_rq, se); 3878 update_load_sub(&cfs_rq->load, se->load.weight); 3879 } 3880 dequeue_load_avg(cfs_rq, se); 3881 3882 if (se->on_rq) { 3883 reweight_eevdf(se, avruntime, weight); 3884 } else { 3885 /* 3886 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3887 * we need to scale se->vlag when w_i changes. 3888 */ 3889 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3890 } 3891 3892 update_load_set(&se->load, weight); 3893 3894 #ifdef CONFIG_SMP 3895 do { 3896 u32 divider = get_pelt_divider(&se->avg); 3897 3898 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3899 } while (0); 3900 #endif 3901 3902 enqueue_load_avg(cfs_rq, se); 3903 if (se->on_rq) { 3904 update_load_add(&cfs_rq->load, se->load.weight); 3905 if (!curr) 3906 __enqueue_entity(cfs_rq, se); 3907 3908 /* 3909 * The entity's vruntime has been adjusted, so let's check 3910 * whether the rq-wide min_vruntime needs updated too. Since 3911 * the calculations above require stable min_vruntime rather 3912 * than up-to-date one, we do the update at the end of the 3913 * reweight process. 3914 */ 3915 update_min_vruntime(cfs_rq); 3916 } 3917 } 3918 3919 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3920 const struct load_weight *lw) 3921 { 3922 struct sched_entity *se = &p->se; 3923 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3924 struct load_weight *load = &se->load; 3925 3926 reweight_entity(cfs_rq, se, lw->weight); 3927 load->inv_weight = lw->inv_weight; 3928 } 3929 3930 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3931 3932 #ifdef CONFIG_FAIR_GROUP_SCHED 3933 #ifdef CONFIG_SMP 3934 /* 3935 * All this does is approximate the hierarchical proportion which includes that 3936 * global sum we all love to hate. 3937 * 3938 * That is, the weight of a group entity, is the proportional share of the 3939 * group weight based on the group runqueue weights. That is: 3940 * 3941 * tg->weight * grq->load.weight 3942 * ge->load.weight = ----------------------------- (1) 3943 * \Sum grq->load.weight 3944 * 3945 * Now, because computing that sum is prohibitively expensive to compute (been 3946 * there, done that) we approximate it with this average stuff. The average 3947 * moves slower and therefore the approximation is cheaper and more stable. 3948 * 3949 * So instead of the above, we substitute: 3950 * 3951 * grq->load.weight -> grq->avg.load_avg (2) 3952 * 3953 * which yields the following: 3954 * 3955 * tg->weight * grq->avg.load_avg 3956 * ge->load.weight = ------------------------------ (3) 3957 * tg->load_avg 3958 * 3959 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3960 * 3961 * That is shares_avg, and it is right (given the approximation (2)). 3962 * 3963 * The problem with it is that because the average is slow -- it was designed 3964 * to be exactly that of course -- this leads to transients in boundary 3965 * conditions. In specific, the case where the group was idle and we start the 3966 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3967 * yielding bad latency etc.. 3968 * 3969 * Now, in that special case (1) reduces to: 3970 * 3971 * tg->weight * grq->load.weight 3972 * ge->load.weight = ----------------------------- = tg->weight (4) 3973 * grp->load.weight 3974 * 3975 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3976 * 3977 * So what we do is modify our approximation (3) to approach (4) in the (near) 3978 * UP case, like: 3979 * 3980 * ge->load.weight = 3981 * 3982 * tg->weight * grq->load.weight 3983 * --------------------------------------------------- (5) 3984 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3985 * 3986 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3987 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3988 * 3989 * 3990 * tg->weight * grq->load.weight 3991 * ge->load.weight = ----------------------------- (6) 3992 * tg_load_avg' 3993 * 3994 * Where: 3995 * 3996 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3997 * max(grq->load.weight, grq->avg.load_avg) 3998 * 3999 * And that is shares_weight and is icky. In the (near) UP case it approaches 4000 * (4) while in the normal case it approaches (3). It consistently 4001 * overestimates the ge->load.weight and therefore: 4002 * 4003 * \Sum ge->load.weight >= tg->weight 4004 * 4005 * hence icky! 4006 */ 4007 static long calc_group_shares(struct cfs_rq *cfs_rq) 4008 { 4009 long tg_weight, tg_shares, load, shares; 4010 struct task_group *tg = cfs_rq->tg; 4011 4012 tg_shares = READ_ONCE(tg->shares); 4013 4014 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 4015 4016 tg_weight = atomic_long_read(&tg->load_avg); 4017 4018 /* Ensure tg_weight >= load */ 4019 tg_weight -= cfs_rq->tg_load_avg_contrib; 4020 tg_weight += load; 4021 4022 shares = (tg_shares * load); 4023 if (tg_weight) 4024 shares /= tg_weight; 4025 4026 /* 4027 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 4028 * of a group with small tg->shares value. It is a floor value which is 4029 * assigned as a minimum load.weight to the sched_entity representing 4030 * the group on a CPU. 4031 * 4032 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 4033 * on an 8-core system with 8 tasks each runnable on one CPU shares has 4034 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 4035 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 4036 * instead of 0. 4037 */ 4038 return clamp_t(long, shares, MIN_SHARES, tg_shares); 4039 } 4040 #endif /* CONFIG_SMP */ 4041 4042 /* 4043 * Recomputes the group entity based on the current state of its group 4044 * runqueue. 4045 */ 4046 static void update_cfs_group(struct sched_entity *se) 4047 { 4048 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4049 long shares; 4050 4051 if (!gcfs_rq) 4052 return; 4053 4054 if (throttled_hierarchy(gcfs_rq)) 4055 return; 4056 4057 #ifndef CONFIG_SMP 4058 shares = READ_ONCE(gcfs_rq->tg->shares); 4059 #else 4060 shares = calc_group_shares(gcfs_rq); 4061 #endif 4062 if (unlikely(se->load.weight != shares)) 4063 reweight_entity(cfs_rq_of(se), se, shares); 4064 } 4065 4066 #else /* CONFIG_FAIR_GROUP_SCHED */ 4067 static inline void update_cfs_group(struct sched_entity *se) 4068 { 4069 } 4070 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4071 4072 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4073 { 4074 struct rq *rq = rq_of(cfs_rq); 4075 4076 if (&rq->cfs == cfs_rq) { 4077 /* 4078 * There are a few boundary cases this might miss but it should 4079 * get called often enough that that should (hopefully) not be 4080 * a real problem. 4081 * 4082 * It will not get called when we go idle, because the idle 4083 * thread is a different class (!fair), nor will the utilization 4084 * number include things like RT tasks. 4085 * 4086 * As is, the util number is not freq-invariant (we'd have to 4087 * implement arch_scale_freq_capacity() for that). 4088 * 4089 * See cpu_util_cfs(). 4090 */ 4091 cpufreq_update_util(rq, flags); 4092 } 4093 } 4094 4095 #ifdef CONFIG_SMP 4096 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4097 { 4098 if (sa->load_sum) 4099 return false; 4100 4101 if (sa->util_sum) 4102 return false; 4103 4104 if (sa->runnable_sum) 4105 return false; 4106 4107 /* 4108 * _avg must be null when _sum are null because _avg = _sum / divider 4109 * Make sure that rounding and/or propagation of PELT values never 4110 * break this. 4111 */ 4112 SCHED_WARN_ON(sa->load_avg || 4113 sa->util_avg || 4114 sa->runnable_avg); 4115 4116 return true; 4117 } 4118 4119 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4120 { 4121 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4122 cfs_rq->last_update_time_copy); 4123 } 4124 #ifdef CONFIG_FAIR_GROUP_SCHED 4125 /* 4126 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4127 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4128 * bottom-up, we only have to test whether the cfs_rq before us on the list 4129 * is our child. 4130 * If cfs_rq is not on the list, test whether a child needs its to be added to 4131 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4132 */ 4133 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4134 { 4135 struct cfs_rq *prev_cfs_rq; 4136 struct list_head *prev; 4137 4138 if (cfs_rq->on_list) { 4139 prev = cfs_rq->leaf_cfs_rq_list.prev; 4140 } else { 4141 struct rq *rq = rq_of(cfs_rq); 4142 4143 prev = rq->tmp_alone_branch; 4144 } 4145 4146 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4147 4148 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4149 } 4150 4151 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4152 { 4153 if (cfs_rq->load.weight) 4154 return false; 4155 4156 if (!load_avg_is_decayed(&cfs_rq->avg)) 4157 return false; 4158 4159 if (child_cfs_rq_on_list(cfs_rq)) 4160 return false; 4161 4162 return true; 4163 } 4164 4165 /** 4166 * update_tg_load_avg - update the tg's load avg 4167 * @cfs_rq: the cfs_rq whose avg changed 4168 * 4169 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4170 * However, because tg->load_avg is a global value there are performance 4171 * considerations. 4172 * 4173 * In order to avoid having to look at the other cfs_rq's, we use a 4174 * differential update where we store the last value we propagated. This in 4175 * turn allows skipping updates if the differential is 'small'. 4176 * 4177 * Updating tg's load_avg is necessary before update_cfs_share(). 4178 */ 4179 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4180 { 4181 long delta; 4182 u64 now; 4183 4184 /* 4185 * No need to update load_avg for root_task_group as it is not used. 4186 */ 4187 if (cfs_rq->tg == &root_task_group) 4188 return; 4189 4190 /* rq has been offline and doesn't contribute to the share anymore: */ 4191 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4192 return; 4193 4194 /* 4195 * For migration heavy workloads, access to tg->load_avg can be 4196 * unbound. Limit the update rate to at most once per ms. 4197 */ 4198 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4199 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4200 return; 4201 4202 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4203 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4204 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4205 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4206 cfs_rq->last_update_tg_load_avg = now; 4207 } 4208 } 4209 4210 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4211 { 4212 long delta; 4213 u64 now; 4214 4215 /* 4216 * No need to update load_avg for root_task_group, as it is not used. 4217 */ 4218 if (cfs_rq->tg == &root_task_group) 4219 return; 4220 4221 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4222 delta = 0 - cfs_rq->tg_load_avg_contrib; 4223 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4224 cfs_rq->tg_load_avg_contrib = 0; 4225 cfs_rq->last_update_tg_load_avg = now; 4226 } 4227 4228 /* CPU offline callback: */ 4229 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4230 { 4231 struct task_group *tg; 4232 4233 lockdep_assert_rq_held(rq); 4234 4235 /* 4236 * The rq clock has already been updated in 4237 * set_rq_offline(), so we should skip updating 4238 * the rq clock again in unthrottle_cfs_rq(). 4239 */ 4240 rq_clock_start_loop_update(rq); 4241 4242 rcu_read_lock(); 4243 list_for_each_entry_rcu(tg, &task_groups, list) { 4244 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4245 4246 clear_tg_load_avg(cfs_rq); 4247 } 4248 rcu_read_unlock(); 4249 4250 rq_clock_stop_loop_update(rq); 4251 } 4252 4253 /* 4254 * Called within set_task_rq() right before setting a task's CPU. The 4255 * caller only guarantees p->pi_lock is held; no other assumptions, 4256 * including the state of rq->lock, should be made. 4257 */ 4258 void set_task_rq_fair(struct sched_entity *se, 4259 struct cfs_rq *prev, struct cfs_rq *next) 4260 { 4261 u64 p_last_update_time; 4262 u64 n_last_update_time; 4263 4264 if (!sched_feat(ATTACH_AGE_LOAD)) 4265 return; 4266 4267 /* 4268 * We are supposed to update the task to "current" time, then its up to 4269 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4270 * getting what current time is, so simply throw away the out-of-date 4271 * time. This will result in the wakee task is less decayed, but giving 4272 * the wakee more load sounds not bad. 4273 */ 4274 if (!(se->avg.last_update_time && prev)) 4275 return; 4276 4277 p_last_update_time = cfs_rq_last_update_time(prev); 4278 n_last_update_time = cfs_rq_last_update_time(next); 4279 4280 __update_load_avg_blocked_se(p_last_update_time, se); 4281 se->avg.last_update_time = n_last_update_time; 4282 } 4283 4284 /* 4285 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4286 * propagate its contribution. The key to this propagation is the invariant 4287 * that for each group: 4288 * 4289 * ge->avg == grq->avg (1) 4290 * 4291 * _IFF_ we look at the pure running and runnable sums. Because they 4292 * represent the very same entity, just at different points in the hierarchy. 4293 * 4294 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4295 * and simply copies the running/runnable sum over (but still wrong, because 4296 * the group entity and group rq do not have their PELT windows aligned). 4297 * 4298 * However, update_tg_cfs_load() is more complex. So we have: 4299 * 4300 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4301 * 4302 * And since, like util, the runnable part should be directly transferable, 4303 * the following would _appear_ to be the straight forward approach: 4304 * 4305 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4306 * 4307 * And per (1) we have: 4308 * 4309 * ge->avg.runnable_avg == grq->avg.runnable_avg 4310 * 4311 * Which gives: 4312 * 4313 * ge->load.weight * grq->avg.load_avg 4314 * ge->avg.load_avg = ----------------------------------- (4) 4315 * grq->load.weight 4316 * 4317 * Except that is wrong! 4318 * 4319 * Because while for entities historical weight is not important and we 4320 * really only care about our future and therefore can consider a pure 4321 * runnable sum, runqueues can NOT do this. 4322 * 4323 * We specifically want runqueues to have a load_avg that includes 4324 * historical weights. Those represent the blocked load, the load we expect 4325 * to (shortly) return to us. This only works by keeping the weights as 4326 * integral part of the sum. We therefore cannot decompose as per (3). 4327 * 4328 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4329 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4330 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4331 * runnable section of these tasks overlap (or not). If they were to perfectly 4332 * align the rq as a whole would be runnable 2/3 of the time. If however we 4333 * always have at least 1 runnable task, the rq as a whole is always runnable. 4334 * 4335 * So we'll have to approximate.. :/ 4336 * 4337 * Given the constraint: 4338 * 4339 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4340 * 4341 * We can construct a rule that adds runnable to a rq by assuming minimal 4342 * overlap. 4343 * 4344 * On removal, we'll assume each task is equally runnable; which yields: 4345 * 4346 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4347 * 4348 * XXX: only do this for the part of runnable > running ? 4349 * 4350 */ 4351 static inline void 4352 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4353 { 4354 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4355 u32 new_sum, divider; 4356 4357 /* Nothing to update */ 4358 if (!delta_avg) 4359 return; 4360 4361 /* 4362 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4363 * See ___update_load_avg() for details. 4364 */ 4365 divider = get_pelt_divider(&cfs_rq->avg); 4366 4367 4368 /* Set new sched_entity's utilization */ 4369 se->avg.util_avg = gcfs_rq->avg.util_avg; 4370 new_sum = se->avg.util_avg * divider; 4371 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4372 se->avg.util_sum = new_sum; 4373 4374 /* Update parent cfs_rq utilization */ 4375 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4376 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4377 4378 /* See update_cfs_rq_load_avg() */ 4379 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4380 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4381 } 4382 4383 static inline void 4384 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4385 { 4386 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4387 u32 new_sum, divider; 4388 4389 /* Nothing to update */ 4390 if (!delta_avg) 4391 return; 4392 4393 /* 4394 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4395 * See ___update_load_avg() for details. 4396 */ 4397 divider = get_pelt_divider(&cfs_rq->avg); 4398 4399 /* Set new sched_entity's runnable */ 4400 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4401 new_sum = se->avg.runnable_avg * divider; 4402 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4403 se->avg.runnable_sum = new_sum; 4404 4405 /* Update parent cfs_rq runnable */ 4406 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4407 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4408 /* See update_cfs_rq_load_avg() */ 4409 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4410 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4411 } 4412 4413 static inline void 4414 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4415 { 4416 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4417 unsigned long load_avg; 4418 u64 load_sum = 0; 4419 s64 delta_sum; 4420 u32 divider; 4421 4422 if (!runnable_sum) 4423 return; 4424 4425 gcfs_rq->prop_runnable_sum = 0; 4426 4427 /* 4428 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4429 * See ___update_load_avg() for details. 4430 */ 4431 divider = get_pelt_divider(&cfs_rq->avg); 4432 4433 if (runnable_sum >= 0) { 4434 /* 4435 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4436 * the CPU is saturated running == runnable. 4437 */ 4438 runnable_sum += se->avg.load_sum; 4439 runnable_sum = min_t(long, runnable_sum, divider); 4440 } else { 4441 /* 4442 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4443 * assuming all tasks are equally runnable. 4444 */ 4445 if (scale_load_down(gcfs_rq->load.weight)) { 4446 load_sum = div_u64(gcfs_rq->avg.load_sum, 4447 scale_load_down(gcfs_rq->load.weight)); 4448 } 4449 4450 /* But make sure to not inflate se's runnable */ 4451 runnable_sum = min(se->avg.load_sum, load_sum); 4452 } 4453 4454 /* 4455 * runnable_sum can't be lower than running_sum 4456 * Rescale running sum to be in the same range as runnable sum 4457 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4458 * runnable_sum is in [0 : LOAD_AVG_MAX] 4459 */ 4460 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4461 runnable_sum = max(runnable_sum, running_sum); 4462 4463 load_sum = se_weight(se) * runnable_sum; 4464 load_avg = div_u64(load_sum, divider); 4465 4466 delta_avg = load_avg - se->avg.load_avg; 4467 if (!delta_avg) 4468 return; 4469 4470 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4471 4472 se->avg.load_sum = runnable_sum; 4473 se->avg.load_avg = load_avg; 4474 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4475 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4476 /* See update_cfs_rq_load_avg() */ 4477 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4478 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4479 } 4480 4481 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4482 { 4483 cfs_rq->propagate = 1; 4484 cfs_rq->prop_runnable_sum += runnable_sum; 4485 } 4486 4487 /* Update task and its cfs_rq load average */ 4488 static inline int propagate_entity_load_avg(struct sched_entity *se) 4489 { 4490 struct cfs_rq *cfs_rq, *gcfs_rq; 4491 4492 if (entity_is_task(se)) 4493 return 0; 4494 4495 gcfs_rq = group_cfs_rq(se); 4496 if (!gcfs_rq->propagate) 4497 return 0; 4498 4499 gcfs_rq->propagate = 0; 4500 4501 cfs_rq = cfs_rq_of(se); 4502 4503 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4504 4505 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4506 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4507 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4508 4509 trace_pelt_cfs_tp(cfs_rq); 4510 trace_pelt_se_tp(se); 4511 4512 return 1; 4513 } 4514 4515 /* 4516 * Check if we need to update the load and the utilization of a blocked 4517 * group_entity: 4518 */ 4519 static inline bool skip_blocked_update(struct sched_entity *se) 4520 { 4521 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4522 4523 /* 4524 * If sched_entity still have not zero load or utilization, we have to 4525 * decay it: 4526 */ 4527 if (se->avg.load_avg || se->avg.util_avg) 4528 return false; 4529 4530 /* 4531 * If there is a pending propagation, we have to update the load and 4532 * the utilization of the sched_entity: 4533 */ 4534 if (gcfs_rq->propagate) 4535 return false; 4536 4537 /* 4538 * Otherwise, the load and the utilization of the sched_entity is 4539 * already zero and there is no pending propagation, so it will be a 4540 * waste of time to try to decay it: 4541 */ 4542 return true; 4543 } 4544 4545 #else /* CONFIG_FAIR_GROUP_SCHED */ 4546 4547 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4548 4549 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4550 4551 static inline int propagate_entity_load_avg(struct sched_entity *se) 4552 { 4553 return 0; 4554 } 4555 4556 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4557 4558 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4559 4560 #ifdef CONFIG_NO_HZ_COMMON 4561 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4562 { 4563 u64 throttled = 0, now, lut; 4564 struct cfs_rq *cfs_rq; 4565 struct rq *rq; 4566 bool is_idle; 4567 4568 if (load_avg_is_decayed(&se->avg)) 4569 return; 4570 4571 cfs_rq = cfs_rq_of(se); 4572 rq = rq_of(cfs_rq); 4573 4574 rcu_read_lock(); 4575 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4576 rcu_read_unlock(); 4577 4578 /* 4579 * The lag estimation comes with a cost we don't want to pay all the 4580 * time. Hence, limiting to the case where the source CPU is idle and 4581 * we know we are at the greatest risk to have an outdated clock. 4582 */ 4583 if (!is_idle) 4584 return; 4585 4586 /* 4587 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4588 * 4589 * last_update_time (the cfs_rq's last_update_time) 4590 * = cfs_rq_clock_pelt()@cfs_rq_idle 4591 * = rq_clock_pelt()@cfs_rq_idle 4592 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4593 * 4594 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4595 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4596 * 4597 * rq_idle_lag (delta between now and rq's update) 4598 * = sched_clock_cpu() - rq_clock()@rq_idle 4599 * 4600 * We can then write: 4601 * 4602 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4603 * sched_clock_cpu() - rq_clock()@rq_idle 4604 * Where: 4605 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4606 * rq_clock()@rq_idle is rq->clock_idle 4607 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4608 * is cfs_rq->throttled_pelt_idle 4609 */ 4610 4611 #ifdef CONFIG_CFS_BANDWIDTH 4612 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4613 /* The clock has been stopped for throttling */ 4614 if (throttled == U64_MAX) 4615 return; 4616 #endif 4617 now = u64_u32_load(rq->clock_pelt_idle); 4618 /* 4619 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4620 * is observed the old clock_pelt_idle value and the new clock_idle, 4621 * which lead to an underestimation. The opposite would lead to an 4622 * overestimation. 4623 */ 4624 smp_rmb(); 4625 lut = cfs_rq_last_update_time(cfs_rq); 4626 4627 now -= throttled; 4628 if (now < lut) 4629 /* 4630 * cfs_rq->avg.last_update_time is more recent than our 4631 * estimation, let's use it. 4632 */ 4633 now = lut; 4634 else 4635 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4636 4637 __update_load_avg_blocked_se(now, se); 4638 } 4639 #else 4640 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4641 #endif 4642 4643 /** 4644 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4645 * @now: current time, as per cfs_rq_clock_pelt() 4646 * @cfs_rq: cfs_rq to update 4647 * 4648 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4649 * avg. The immediate corollary is that all (fair) tasks must be attached. 4650 * 4651 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4652 * 4653 * Return: true if the load decayed or we removed load. 4654 * 4655 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4656 * call update_tg_load_avg() when this function returns true. 4657 */ 4658 static inline int 4659 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4660 { 4661 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4662 struct sched_avg *sa = &cfs_rq->avg; 4663 int decayed = 0; 4664 4665 if (cfs_rq->removed.nr) { 4666 unsigned long r; 4667 u32 divider = get_pelt_divider(&cfs_rq->avg); 4668 4669 raw_spin_lock(&cfs_rq->removed.lock); 4670 swap(cfs_rq->removed.util_avg, removed_util); 4671 swap(cfs_rq->removed.load_avg, removed_load); 4672 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4673 cfs_rq->removed.nr = 0; 4674 raw_spin_unlock(&cfs_rq->removed.lock); 4675 4676 r = removed_load; 4677 sub_positive(&sa->load_avg, r); 4678 sub_positive(&sa->load_sum, r * divider); 4679 /* See sa->util_sum below */ 4680 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4681 4682 r = removed_util; 4683 sub_positive(&sa->util_avg, r); 4684 sub_positive(&sa->util_sum, r * divider); 4685 /* 4686 * Because of rounding, se->util_sum might ends up being +1 more than 4687 * cfs->util_sum. Although this is not a problem by itself, detaching 4688 * a lot of tasks with the rounding problem between 2 updates of 4689 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4690 * cfs_util_avg is not. 4691 * Check that util_sum is still above its lower bound for the new 4692 * util_avg. Given that period_contrib might have moved since the last 4693 * sync, we are only sure that util_sum must be above or equal to 4694 * util_avg * minimum possible divider 4695 */ 4696 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4697 4698 r = removed_runnable; 4699 sub_positive(&sa->runnable_avg, r); 4700 sub_positive(&sa->runnable_sum, r * divider); 4701 /* See sa->util_sum above */ 4702 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4703 sa->runnable_avg * PELT_MIN_DIVIDER); 4704 4705 /* 4706 * removed_runnable is the unweighted version of removed_load so we 4707 * can use it to estimate removed_load_sum. 4708 */ 4709 add_tg_cfs_propagate(cfs_rq, 4710 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4711 4712 decayed = 1; 4713 } 4714 4715 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4716 u64_u32_store_copy(sa->last_update_time, 4717 cfs_rq->last_update_time_copy, 4718 sa->last_update_time); 4719 return decayed; 4720 } 4721 4722 /** 4723 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4724 * @cfs_rq: cfs_rq to attach to 4725 * @se: sched_entity to attach 4726 * 4727 * Must call update_cfs_rq_load_avg() before this, since we rely on 4728 * cfs_rq->avg.last_update_time being current. 4729 */ 4730 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4731 { 4732 /* 4733 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4734 * See ___update_load_avg() for details. 4735 */ 4736 u32 divider = get_pelt_divider(&cfs_rq->avg); 4737 4738 /* 4739 * When we attach the @se to the @cfs_rq, we must align the decay 4740 * window because without that, really weird and wonderful things can 4741 * happen. 4742 * 4743 * XXX illustrate 4744 */ 4745 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4746 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4747 4748 /* 4749 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4750 * period_contrib. This isn't strictly correct, but since we're 4751 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4752 * _sum a little. 4753 */ 4754 se->avg.util_sum = se->avg.util_avg * divider; 4755 4756 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4757 4758 se->avg.load_sum = se->avg.load_avg * divider; 4759 if (se_weight(se) < se->avg.load_sum) 4760 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4761 else 4762 se->avg.load_sum = 1; 4763 4764 enqueue_load_avg(cfs_rq, se); 4765 cfs_rq->avg.util_avg += se->avg.util_avg; 4766 cfs_rq->avg.util_sum += se->avg.util_sum; 4767 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4768 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4769 4770 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4771 4772 cfs_rq_util_change(cfs_rq, 0); 4773 4774 trace_pelt_cfs_tp(cfs_rq); 4775 } 4776 4777 /** 4778 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4779 * @cfs_rq: cfs_rq to detach from 4780 * @se: sched_entity to detach 4781 * 4782 * Must call update_cfs_rq_load_avg() before this, since we rely on 4783 * cfs_rq->avg.last_update_time being current. 4784 */ 4785 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4786 { 4787 dequeue_load_avg(cfs_rq, se); 4788 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4789 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4790 /* See update_cfs_rq_load_avg() */ 4791 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4792 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4793 4794 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4795 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4796 /* See update_cfs_rq_load_avg() */ 4797 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4798 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4799 4800 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4801 4802 cfs_rq_util_change(cfs_rq, 0); 4803 4804 trace_pelt_cfs_tp(cfs_rq); 4805 } 4806 4807 /* 4808 * Optional action to be done while updating the load average 4809 */ 4810 #define UPDATE_TG 0x1 4811 #define SKIP_AGE_LOAD 0x2 4812 #define DO_ATTACH 0x4 4813 #define DO_DETACH 0x8 4814 4815 /* Update task and its cfs_rq load average */ 4816 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4817 { 4818 u64 now = cfs_rq_clock_pelt(cfs_rq); 4819 int decayed; 4820 4821 /* 4822 * Track task load average for carrying it to new CPU after migrated, and 4823 * track group sched_entity load average for task_h_load calculation in migration 4824 */ 4825 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4826 __update_load_avg_se(now, cfs_rq, se); 4827 4828 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4829 decayed |= propagate_entity_load_avg(se); 4830 4831 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4832 4833 /* 4834 * DO_ATTACH means we're here from enqueue_entity(). 4835 * !last_update_time means we've passed through 4836 * migrate_task_rq_fair() indicating we migrated. 4837 * 4838 * IOW we're enqueueing a task on a new CPU. 4839 */ 4840 attach_entity_load_avg(cfs_rq, se); 4841 update_tg_load_avg(cfs_rq); 4842 4843 } else if (flags & DO_DETACH) { 4844 /* 4845 * DO_DETACH means we're here from dequeue_entity() 4846 * and we are migrating task out of the CPU. 4847 */ 4848 detach_entity_load_avg(cfs_rq, se); 4849 update_tg_load_avg(cfs_rq); 4850 } else if (decayed) { 4851 cfs_rq_util_change(cfs_rq, 0); 4852 4853 if (flags & UPDATE_TG) 4854 update_tg_load_avg(cfs_rq); 4855 } 4856 } 4857 4858 /* 4859 * Synchronize entity load avg of dequeued entity without locking 4860 * the previous rq. 4861 */ 4862 static void sync_entity_load_avg(struct sched_entity *se) 4863 { 4864 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4865 u64 last_update_time; 4866 4867 last_update_time = cfs_rq_last_update_time(cfs_rq); 4868 __update_load_avg_blocked_se(last_update_time, se); 4869 } 4870 4871 /* 4872 * Task first catches up with cfs_rq, and then subtract 4873 * itself from the cfs_rq (task must be off the queue now). 4874 */ 4875 static void remove_entity_load_avg(struct sched_entity *se) 4876 { 4877 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4878 unsigned long flags; 4879 4880 /* 4881 * tasks cannot exit without having gone through wake_up_new_task() -> 4882 * enqueue_task_fair() which will have added things to the cfs_rq, 4883 * so we can remove unconditionally. 4884 */ 4885 4886 sync_entity_load_avg(se); 4887 4888 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4889 ++cfs_rq->removed.nr; 4890 cfs_rq->removed.util_avg += se->avg.util_avg; 4891 cfs_rq->removed.load_avg += se->avg.load_avg; 4892 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4893 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4894 } 4895 4896 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4897 { 4898 return cfs_rq->avg.runnable_avg; 4899 } 4900 4901 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4902 { 4903 return cfs_rq->avg.load_avg; 4904 } 4905 4906 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4907 4908 static inline unsigned long task_util(struct task_struct *p) 4909 { 4910 return READ_ONCE(p->se.avg.util_avg); 4911 } 4912 4913 static inline unsigned long task_runnable(struct task_struct *p) 4914 { 4915 return READ_ONCE(p->se.avg.runnable_avg); 4916 } 4917 4918 static inline unsigned long _task_util_est(struct task_struct *p) 4919 { 4920 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4921 } 4922 4923 static inline unsigned long task_util_est(struct task_struct *p) 4924 { 4925 return max(task_util(p), _task_util_est(p)); 4926 } 4927 4928 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4929 struct task_struct *p) 4930 { 4931 unsigned int enqueued; 4932 4933 if (!sched_feat(UTIL_EST)) 4934 return; 4935 4936 /* Update root cfs_rq's estimated utilization */ 4937 enqueued = cfs_rq->avg.util_est; 4938 enqueued += _task_util_est(p); 4939 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4940 4941 trace_sched_util_est_cfs_tp(cfs_rq); 4942 } 4943 4944 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4945 struct task_struct *p) 4946 { 4947 unsigned int enqueued; 4948 4949 if (!sched_feat(UTIL_EST)) 4950 return; 4951 4952 /* Update root cfs_rq's estimated utilization */ 4953 enqueued = cfs_rq->avg.util_est; 4954 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4955 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4956 4957 trace_sched_util_est_cfs_tp(cfs_rq); 4958 } 4959 4960 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4961 4962 static inline void util_est_update(struct cfs_rq *cfs_rq, 4963 struct task_struct *p, 4964 bool task_sleep) 4965 { 4966 unsigned int ewma, dequeued, last_ewma_diff; 4967 4968 if (!sched_feat(UTIL_EST)) 4969 return; 4970 4971 /* 4972 * Skip update of task's estimated utilization when the task has not 4973 * yet completed an activation, e.g. being migrated. 4974 */ 4975 if (!task_sleep) 4976 return; 4977 4978 /* Get current estimate of utilization */ 4979 ewma = READ_ONCE(p->se.avg.util_est); 4980 4981 /* 4982 * If the PELT values haven't changed since enqueue time, 4983 * skip the util_est update. 4984 */ 4985 if (ewma & UTIL_AVG_UNCHANGED) 4986 return; 4987 4988 /* Get utilization at dequeue */ 4989 dequeued = task_util(p); 4990 4991 /* 4992 * Reset EWMA on utilization increases, the moving average is used only 4993 * to smooth utilization decreases. 4994 */ 4995 if (ewma <= dequeued) { 4996 ewma = dequeued; 4997 goto done; 4998 } 4999 5000 /* 5001 * Skip update of task's estimated utilization when its members are 5002 * already ~1% close to its last activation value. 5003 */ 5004 last_ewma_diff = ewma - dequeued; 5005 if (last_ewma_diff < UTIL_EST_MARGIN) 5006 goto done; 5007 5008 /* 5009 * To avoid overestimation of actual task utilization, skip updates if 5010 * we cannot grant there is idle time in this CPU. 5011 */ 5012 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 5013 return; 5014 5015 /* 5016 * To avoid underestimate of task utilization, skip updates of EWMA if 5017 * we cannot grant that thread got all CPU time it wanted. 5018 */ 5019 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 5020 goto done; 5021 5022 5023 /* 5024 * Update Task's estimated utilization 5025 * 5026 * When *p completes an activation we can consolidate another sample 5027 * of the task size. This is done by using this value to update the 5028 * Exponential Weighted Moving Average (EWMA): 5029 * 5030 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 5031 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 5032 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 5033 * = w * ( -last_ewma_diff ) + ewma(t-1) 5034 * = w * (-last_ewma_diff + ewma(t-1) / w) 5035 * 5036 * Where 'w' is the weight of new samples, which is configured to be 5037 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 5038 */ 5039 ewma <<= UTIL_EST_WEIGHT_SHIFT; 5040 ewma -= last_ewma_diff; 5041 ewma >>= UTIL_EST_WEIGHT_SHIFT; 5042 done: 5043 ewma |= UTIL_AVG_UNCHANGED; 5044 WRITE_ONCE(p->se.avg.util_est, ewma); 5045 5046 trace_sched_util_est_se_tp(&p->se); 5047 } 5048 5049 static inline unsigned long get_actual_cpu_capacity(int cpu) 5050 { 5051 unsigned long capacity = arch_scale_cpu_capacity(cpu); 5052 5053 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 5054 5055 return capacity; 5056 } 5057 5058 static inline int util_fits_cpu(unsigned long util, 5059 unsigned long uclamp_min, 5060 unsigned long uclamp_max, 5061 int cpu) 5062 { 5063 unsigned long capacity = capacity_of(cpu); 5064 unsigned long capacity_orig; 5065 bool fits, uclamp_max_fits; 5066 5067 /* 5068 * Check if the real util fits without any uclamp boost/cap applied. 5069 */ 5070 fits = fits_capacity(util, capacity); 5071 5072 if (!uclamp_is_used()) 5073 return fits; 5074 5075 /* 5076 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5077 * uclamp_max. We only care about capacity pressure (by using 5078 * capacity_of()) for comparing against the real util. 5079 * 5080 * If a task is boosted to 1024 for example, we don't want a tiny 5081 * pressure to skew the check whether it fits a CPU or not. 5082 * 5083 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5084 * should fit a little cpu even if there's some pressure. 5085 * 5086 * Only exception is for HW or cpufreq pressure since it has a direct impact 5087 * on available OPP of the system. 5088 * 5089 * We honour it for uclamp_min only as a drop in performance level 5090 * could result in not getting the requested minimum performance level. 5091 * 5092 * For uclamp_max, we can tolerate a drop in performance level as the 5093 * goal is to cap the task. So it's okay if it's getting less. 5094 */ 5095 capacity_orig = arch_scale_cpu_capacity(cpu); 5096 5097 /* 5098 * We want to force a task to fit a cpu as implied by uclamp_max. 5099 * But we do have some corner cases to cater for.. 5100 * 5101 * 5102 * C=z 5103 * | ___ 5104 * | C=y | | 5105 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5106 * | C=x | | | | 5107 * | ___ | | | | 5108 * | | | | | | | (util somewhere in this region) 5109 * | | | | | | | 5110 * | | | | | | | 5111 * +---------------------------------------- 5112 * CPU0 CPU1 CPU2 5113 * 5114 * In the above example if a task is capped to a specific performance 5115 * point, y, then when: 5116 * 5117 * * util = 80% of x then it does not fit on CPU0 and should migrate 5118 * to CPU1 5119 * * util = 80% of y then it is forced to fit on CPU1 to honour 5120 * uclamp_max request. 5121 * 5122 * which is what we're enforcing here. A task always fits if 5123 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5124 * the normal upmigration rules should withhold still. 5125 * 5126 * Only exception is when we are on max capacity, then we need to be 5127 * careful not to block overutilized state. This is so because: 5128 * 5129 * 1. There's no concept of capping at max_capacity! We can't go 5130 * beyond this performance level anyway. 5131 * 2. The system is being saturated when we're operating near 5132 * max capacity, it doesn't make sense to block overutilized. 5133 */ 5134 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5135 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5136 fits = fits || uclamp_max_fits; 5137 5138 /* 5139 * 5140 * C=z 5141 * | ___ (region a, capped, util >= uclamp_max) 5142 * | C=y | | 5143 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5144 * | C=x | | | | 5145 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5146 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5147 * | | | | | | | 5148 * | | | | | | | (region c, boosted, util < uclamp_min) 5149 * +---------------------------------------- 5150 * CPU0 CPU1 CPU2 5151 * 5152 * a) If util > uclamp_max, then we're capped, we don't care about 5153 * actual fitness value here. We only care if uclamp_max fits 5154 * capacity without taking margin/pressure into account. 5155 * See comment above. 5156 * 5157 * b) If uclamp_min <= util <= uclamp_max, then the normal 5158 * fits_capacity() rules apply. Except we need to ensure that we 5159 * enforce we remain within uclamp_max, see comment above. 5160 * 5161 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5162 * need to take into account the boosted value fits the CPU without 5163 * taking margin/pressure into account. 5164 * 5165 * Cases (a) and (b) are handled in the 'fits' variable already. We 5166 * just need to consider an extra check for case (c) after ensuring we 5167 * handle the case uclamp_min > uclamp_max. 5168 */ 5169 uclamp_min = min(uclamp_min, uclamp_max); 5170 if (fits && (util < uclamp_min) && 5171 (uclamp_min > get_actual_cpu_capacity(cpu))) 5172 return -1; 5173 5174 return fits; 5175 } 5176 5177 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5178 { 5179 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5180 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5181 unsigned long util = task_util_est(p); 5182 /* 5183 * Return true only if the cpu fully fits the task requirements, which 5184 * include the utilization but also the performance hints. 5185 */ 5186 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5187 } 5188 5189 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5190 { 5191 int cpu = cpu_of(rq); 5192 5193 if (!sched_asym_cpucap_active()) 5194 return; 5195 5196 /* 5197 * Affinity allows us to go somewhere higher? Or are we on biggest 5198 * available CPU already? Or do we fit into this CPU ? 5199 */ 5200 if (!p || (p->nr_cpus_allowed == 1) || 5201 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5202 task_fits_cpu(p, cpu)) { 5203 5204 rq->misfit_task_load = 0; 5205 return; 5206 } 5207 5208 /* 5209 * Make sure that misfit_task_load will not be null even if 5210 * task_h_load() returns 0. 5211 */ 5212 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5213 } 5214 5215 #else /* CONFIG_SMP */ 5216 5217 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5218 { 5219 return !cfs_rq->nr_running; 5220 } 5221 5222 #define UPDATE_TG 0x0 5223 #define SKIP_AGE_LOAD 0x0 5224 #define DO_ATTACH 0x0 5225 #define DO_DETACH 0x0 5226 5227 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5228 { 5229 cfs_rq_util_change(cfs_rq, 0); 5230 } 5231 5232 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5233 5234 static inline void 5235 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5236 static inline void 5237 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5238 5239 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5240 { 5241 return 0; 5242 } 5243 5244 static inline void 5245 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5246 5247 static inline void 5248 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5249 5250 static inline void 5251 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5252 bool task_sleep) {} 5253 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5254 5255 #endif /* CONFIG_SMP */ 5256 5257 static void 5258 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5259 { 5260 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5261 s64 lag = 0; 5262 5263 if (!se->custom_slice) 5264 se->slice = sysctl_sched_base_slice; 5265 vslice = calc_delta_fair(se->slice, se); 5266 5267 /* 5268 * Due to how V is constructed as the weighted average of entities, 5269 * adding tasks with positive lag, or removing tasks with negative lag 5270 * will move 'time' backwards, this can screw around with the lag of 5271 * other tasks. 5272 * 5273 * EEVDF: placement strategy #1 / #2 5274 */ 5275 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5276 struct sched_entity *curr = cfs_rq->curr; 5277 unsigned long load; 5278 5279 lag = se->vlag; 5280 5281 /* 5282 * If we want to place a task and preserve lag, we have to 5283 * consider the effect of the new entity on the weighted 5284 * average and compensate for this, otherwise lag can quickly 5285 * evaporate. 5286 * 5287 * Lag is defined as: 5288 * 5289 * lag_i = S - s_i = w_i * (V - v_i) 5290 * 5291 * To avoid the 'w_i' term all over the place, we only track 5292 * the virtual lag: 5293 * 5294 * vl_i = V - v_i <=> v_i = V - vl_i 5295 * 5296 * And we take V to be the weighted average of all v: 5297 * 5298 * V = (\Sum w_j*v_j) / W 5299 * 5300 * Where W is: \Sum w_j 5301 * 5302 * Then, the weighted average after adding an entity with lag 5303 * vl_i is given by: 5304 * 5305 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5306 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5307 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5308 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5309 * = V - w_i*vl_i / (W + w_i) 5310 * 5311 * And the actual lag after adding an entity with vl_i is: 5312 * 5313 * vl'_i = V' - v_i 5314 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5315 * = vl_i - w_i*vl_i / (W + w_i) 5316 * 5317 * Which is strictly less than vl_i. So in order to preserve lag 5318 * we should inflate the lag before placement such that the 5319 * effective lag after placement comes out right. 5320 * 5321 * As such, invert the above relation for vl'_i to get the vl_i 5322 * we need to use such that the lag after placement is the lag 5323 * we computed before dequeue. 5324 * 5325 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5326 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5327 * 5328 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5329 * = W*vl_i 5330 * 5331 * vl_i = (W + w_i)*vl'_i / W 5332 */ 5333 load = cfs_rq->avg_load; 5334 if (curr && curr->on_rq) 5335 load += scale_load_down(curr->load.weight); 5336 5337 lag *= load + scale_load_down(se->load.weight); 5338 if (WARN_ON_ONCE(!load)) 5339 load = 1; 5340 lag = div_s64(lag, load); 5341 } 5342 5343 se->vruntime = vruntime - lag; 5344 5345 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) { 5346 se->deadline += se->vruntime; 5347 se->rel_deadline = 0; 5348 return; 5349 } 5350 5351 /* 5352 * When joining the competition; the existing tasks will be, 5353 * on average, halfway through their slice, as such start tasks 5354 * off with half a slice to ease into the competition. 5355 */ 5356 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5357 vslice /= 2; 5358 5359 /* 5360 * EEVDF: vd_i = ve_i + r_i/w_i 5361 */ 5362 se->deadline = se->vruntime + vslice; 5363 } 5364 5365 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5366 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5367 5368 static inline bool cfs_bandwidth_used(void); 5369 5370 static void 5371 requeue_delayed_entity(struct sched_entity *se); 5372 5373 static void 5374 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5375 { 5376 bool curr = cfs_rq->curr == se; 5377 5378 /* 5379 * If we're the current task, we must renormalise before calling 5380 * update_curr(). 5381 */ 5382 if (curr) 5383 place_entity(cfs_rq, se, flags); 5384 5385 update_curr(cfs_rq); 5386 5387 /* 5388 * When enqueuing a sched_entity, we must: 5389 * - Update loads to have both entity and cfs_rq synced with now. 5390 * - For group_entity, update its runnable_weight to reflect the new 5391 * h_nr_running of its group cfs_rq. 5392 * - For group_entity, update its weight to reflect the new share of 5393 * its group cfs_rq 5394 * - Add its new weight to cfs_rq->load.weight 5395 */ 5396 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5397 se_update_runnable(se); 5398 /* 5399 * XXX update_load_avg() above will have attached us to the pelt sum; 5400 * but update_cfs_group() here will re-adjust the weight and have to 5401 * undo/redo all that. Seems wasteful. 5402 */ 5403 update_cfs_group(se); 5404 5405 /* 5406 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5407 * we can place the entity. 5408 */ 5409 if (!curr) 5410 place_entity(cfs_rq, se, flags); 5411 5412 account_entity_enqueue(cfs_rq, se); 5413 5414 /* Entity has migrated, no longer consider this task hot */ 5415 if (flags & ENQUEUE_MIGRATED) 5416 se->exec_start = 0; 5417 5418 check_schedstat_required(); 5419 update_stats_enqueue_fair(cfs_rq, se, flags); 5420 if (!curr) 5421 __enqueue_entity(cfs_rq, se); 5422 se->on_rq = 1; 5423 5424 if (cfs_rq->nr_running == 1) { 5425 check_enqueue_throttle(cfs_rq); 5426 if (!throttled_hierarchy(cfs_rq)) { 5427 list_add_leaf_cfs_rq(cfs_rq); 5428 } else { 5429 #ifdef CONFIG_CFS_BANDWIDTH 5430 struct rq *rq = rq_of(cfs_rq); 5431 5432 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5433 cfs_rq->throttled_clock = rq_clock(rq); 5434 if (!cfs_rq->throttled_clock_self) 5435 cfs_rq->throttled_clock_self = rq_clock(rq); 5436 #endif 5437 } 5438 } 5439 } 5440 5441 static void __clear_buddies_next(struct sched_entity *se) 5442 { 5443 for_each_sched_entity(se) { 5444 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5445 if (cfs_rq->next != se) 5446 break; 5447 5448 cfs_rq->next = NULL; 5449 } 5450 } 5451 5452 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5453 { 5454 if (cfs_rq->next == se) 5455 __clear_buddies_next(se); 5456 } 5457 5458 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5459 5460 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5461 { 5462 se->sched_delayed = 0; 5463 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5464 se->vlag = 0; 5465 } 5466 5467 static bool 5468 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5469 { 5470 bool sleep = flags & DEQUEUE_SLEEP; 5471 5472 update_curr(cfs_rq); 5473 5474 if (flags & DEQUEUE_DELAYED) { 5475 SCHED_WARN_ON(!se->sched_delayed); 5476 } else { 5477 bool delay = sleep; 5478 /* 5479 * DELAY_DEQUEUE relies on spurious wakeups, special task 5480 * states must not suffer spurious wakeups, excempt them. 5481 */ 5482 if (flags & DEQUEUE_SPECIAL) 5483 delay = false; 5484 5485 SCHED_WARN_ON(delay && se->sched_delayed); 5486 5487 if (sched_feat(DELAY_DEQUEUE) && delay && 5488 !entity_eligible(cfs_rq, se)) { 5489 if (cfs_rq->next == se) 5490 cfs_rq->next = NULL; 5491 update_load_avg(cfs_rq, se, 0); 5492 se->sched_delayed = 1; 5493 return false; 5494 } 5495 } 5496 5497 int action = UPDATE_TG; 5498 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5499 action |= DO_DETACH; 5500 5501 /* 5502 * When dequeuing a sched_entity, we must: 5503 * - Update loads to have both entity and cfs_rq synced with now. 5504 * - For group_entity, update its runnable_weight to reflect the new 5505 * h_nr_running of its group cfs_rq. 5506 * - Subtract its previous weight from cfs_rq->load.weight. 5507 * - For group entity, update its weight to reflect the new share 5508 * of its group cfs_rq. 5509 */ 5510 update_load_avg(cfs_rq, se, action); 5511 se_update_runnable(se); 5512 5513 update_stats_dequeue_fair(cfs_rq, se, flags); 5514 5515 clear_buddies(cfs_rq, se); 5516 5517 update_entity_lag(cfs_rq, se); 5518 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5519 se->deadline -= se->vruntime; 5520 se->rel_deadline = 1; 5521 } 5522 5523 if (se != cfs_rq->curr) 5524 __dequeue_entity(cfs_rq, se); 5525 se->on_rq = 0; 5526 account_entity_dequeue(cfs_rq, se); 5527 5528 /* return excess runtime on last dequeue */ 5529 return_cfs_rq_runtime(cfs_rq); 5530 5531 update_cfs_group(se); 5532 5533 /* 5534 * Now advance min_vruntime if @se was the entity holding it back, 5535 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5536 * put back on, and if we advance min_vruntime, we'll be placed back 5537 * further than we started -- i.e. we'll be penalized. 5538 */ 5539 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5540 update_min_vruntime(cfs_rq); 5541 5542 if (flags & DEQUEUE_DELAYED) 5543 finish_delayed_dequeue_entity(se); 5544 5545 if (cfs_rq->nr_running == 0) 5546 update_idle_cfs_rq_clock_pelt(cfs_rq); 5547 5548 return true; 5549 } 5550 5551 static void 5552 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5553 { 5554 clear_buddies(cfs_rq, se); 5555 5556 /* 'current' is not kept within the tree. */ 5557 if (se->on_rq) { 5558 /* 5559 * Any task has to be enqueued before it get to execute on 5560 * a CPU. So account for the time it spent waiting on the 5561 * runqueue. 5562 */ 5563 update_stats_wait_end_fair(cfs_rq, se); 5564 __dequeue_entity(cfs_rq, se); 5565 update_load_avg(cfs_rq, se, UPDATE_TG); 5566 /* 5567 * HACK, stash a copy of deadline at the point of pick in vlag, 5568 * which isn't used until dequeue. 5569 */ 5570 se->vlag = se->deadline; 5571 } 5572 5573 update_stats_curr_start(cfs_rq, se); 5574 SCHED_WARN_ON(cfs_rq->curr); 5575 cfs_rq->curr = se; 5576 5577 /* 5578 * Track our maximum slice length, if the CPU's load is at 5579 * least twice that of our own weight (i.e. don't track it 5580 * when there are only lesser-weight tasks around): 5581 */ 5582 if (schedstat_enabled() && 5583 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5584 struct sched_statistics *stats; 5585 5586 stats = __schedstats_from_se(se); 5587 __schedstat_set(stats->slice_max, 5588 max((u64)stats->slice_max, 5589 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5590 } 5591 5592 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5593 } 5594 5595 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5596 5597 /* 5598 * Pick the next process, keeping these things in mind, in this order: 5599 * 1) keep things fair between processes/task groups 5600 * 2) pick the "next" process, since someone really wants that to run 5601 * 3) pick the "last" process, for cache locality 5602 * 4) do not run the "skip" process, if something else is available 5603 */ 5604 static struct sched_entity * 5605 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5606 { 5607 /* 5608 * Enabling NEXT_BUDDY will affect latency but not fairness. 5609 */ 5610 if (sched_feat(NEXT_BUDDY) && 5611 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5612 /* ->next will never be delayed */ 5613 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5614 return cfs_rq->next; 5615 } 5616 5617 struct sched_entity *se = pick_eevdf(cfs_rq); 5618 if (se->sched_delayed) { 5619 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5620 SCHED_WARN_ON(se->sched_delayed); 5621 SCHED_WARN_ON(se->on_rq); 5622 return NULL; 5623 } 5624 return se; 5625 } 5626 5627 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5628 5629 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5630 { 5631 /* 5632 * If still on the runqueue then deactivate_task() 5633 * was not called and update_curr() has to be done: 5634 */ 5635 if (prev->on_rq) 5636 update_curr(cfs_rq); 5637 5638 /* throttle cfs_rqs exceeding runtime */ 5639 check_cfs_rq_runtime(cfs_rq); 5640 5641 if (prev->on_rq) { 5642 update_stats_wait_start_fair(cfs_rq, prev); 5643 /* Put 'current' back into the tree. */ 5644 __enqueue_entity(cfs_rq, prev); 5645 /* in !on_rq case, update occurred at dequeue */ 5646 update_load_avg(cfs_rq, prev, 0); 5647 } 5648 SCHED_WARN_ON(cfs_rq->curr != prev); 5649 cfs_rq->curr = NULL; 5650 } 5651 5652 static void 5653 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5654 { 5655 /* 5656 * Update run-time statistics of the 'current'. 5657 */ 5658 update_curr(cfs_rq); 5659 5660 /* 5661 * Ensure that runnable average is periodically updated. 5662 */ 5663 update_load_avg(cfs_rq, curr, UPDATE_TG); 5664 update_cfs_group(curr); 5665 5666 #ifdef CONFIG_SCHED_HRTICK 5667 /* 5668 * queued ticks are scheduled to match the slice, so don't bother 5669 * validating it and just reschedule. 5670 */ 5671 if (queued) { 5672 resched_curr(rq_of(cfs_rq)); 5673 return; 5674 } 5675 /* 5676 * don't let the period tick interfere with the hrtick preemption 5677 */ 5678 if (!sched_feat(DOUBLE_TICK) && 5679 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5680 return; 5681 #endif 5682 } 5683 5684 5685 /************************************************** 5686 * CFS bandwidth control machinery 5687 */ 5688 5689 #ifdef CONFIG_CFS_BANDWIDTH 5690 5691 #ifdef CONFIG_JUMP_LABEL 5692 static struct static_key __cfs_bandwidth_used; 5693 5694 static inline bool cfs_bandwidth_used(void) 5695 { 5696 return static_key_false(&__cfs_bandwidth_used); 5697 } 5698 5699 void cfs_bandwidth_usage_inc(void) 5700 { 5701 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5702 } 5703 5704 void cfs_bandwidth_usage_dec(void) 5705 { 5706 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5707 } 5708 #else /* CONFIG_JUMP_LABEL */ 5709 static bool cfs_bandwidth_used(void) 5710 { 5711 return true; 5712 } 5713 5714 void cfs_bandwidth_usage_inc(void) {} 5715 void cfs_bandwidth_usage_dec(void) {} 5716 #endif /* CONFIG_JUMP_LABEL */ 5717 5718 /* 5719 * default period for cfs group bandwidth. 5720 * default: 0.1s, units: nanoseconds 5721 */ 5722 static inline u64 default_cfs_period(void) 5723 { 5724 return 100000000ULL; 5725 } 5726 5727 static inline u64 sched_cfs_bandwidth_slice(void) 5728 { 5729 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5730 } 5731 5732 /* 5733 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5734 * directly instead of rq->clock to avoid adding additional synchronization 5735 * around rq->lock. 5736 * 5737 * requires cfs_b->lock 5738 */ 5739 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5740 { 5741 s64 runtime; 5742 5743 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5744 return; 5745 5746 cfs_b->runtime += cfs_b->quota; 5747 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5748 if (runtime > 0) { 5749 cfs_b->burst_time += runtime; 5750 cfs_b->nr_burst++; 5751 } 5752 5753 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5754 cfs_b->runtime_snap = cfs_b->runtime; 5755 } 5756 5757 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5758 { 5759 return &tg->cfs_bandwidth; 5760 } 5761 5762 /* returns 0 on failure to allocate runtime */ 5763 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5764 struct cfs_rq *cfs_rq, u64 target_runtime) 5765 { 5766 u64 min_amount, amount = 0; 5767 5768 lockdep_assert_held(&cfs_b->lock); 5769 5770 /* note: this is a positive sum as runtime_remaining <= 0 */ 5771 min_amount = target_runtime - cfs_rq->runtime_remaining; 5772 5773 if (cfs_b->quota == RUNTIME_INF) 5774 amount = min_amount; 5775 else { 5776 start_cfs_bandwidth(cfs_b); 5777 5778 if (cfs_b->runtime > 0) { 5779 amount = min(cfs_b->runtime, min_amount); 5780 cfs_b->runtime -= amount; 5781 cfs_b->idle = 0; 5782 } 5783 } 5784 5785 cfs_rq->runtime_remaining += amount; 5786 5787 return cfs_rq->runtime_remaining > 0; 5788 } 5789 5790 /* returns 0 on failure to allocate runtime */ 5791 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5792 { 5793 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5794 int ret; 5795 5796 raw_spin_lock(&cfs_b->lock); 5797 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5798 raw_spin_unlock(&cfs_b->lock); 5799 5800 return ret; 5801 } 5802 5803 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5804 { 5805 /* dock delta_exec before expiring quota (as it could span periods) */ 5806 cfs_rq->runtime_remaining -= delta_exec; 5807 5808 if (likely(cfs_rq->runtime_remaining > 0)) 5809 return; 5810 5811 if (cfs_rq->throttled) 5812 return; 5813 /* 5814 * if we're unable to extend our runtime we resched so that the active 5815 * hierarchy can be throttled 5816 */ 5817 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5818 resched_curr(rq_of(cfs_rq)); 5819 } 5820 5821 static __always_inline 5822 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5823 { 5824 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5825 return; 5826 5827 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5828 } 5829 5830 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5831 { 5832 return cfs_bandwidth_used() && cfs_rq->throttled; 5833 } 5834 5835 /* check whether cfs_rq, or any parent, is throttled */ 5836 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5837 { 5838 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5839 } 5840 5841 /* 5842 * Ensure that neither of the group entities corresponding to src_cpu or 5843 * dest_cpu are members of a throttled hierarchy when performing group 5844 * load-balance operations. 5845 */ 5846 static inline int throttled_lb_pair(struct task_group *tg, 5847 int src_cpu, int dest_cpu) 5848 { 5849 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5850 5851 src_cfs_rq = tg->cfs_rq[src_cpu]; 5852 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5853 5854 return throttled_hierarchy(src_cfs_rq) || 5855 throttled_hierarchy(dest_cfs_rq); 5856 } 5857 5858 static int tg_unthrottle_up(struct task_group *tg, void *data) 5859 { 5860 struct rq *rq = data; 5861 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5862 5863 cfs_rq->throttle_count--; 5864 if (!cfs_rq->throttle_count) { 5865 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5866 cfs_rq->throttled_clock_pelt; 5867 5868 /* Add cfs_rq with load or one or more already running entities to the list */ 5869 if (!cfs_rq_is_decayed(cfs_rq)) 5870 list_add_leaf_cfs_rq(cfs_rq); 5871 5872 if (cfs_rq->throttled_clock_self) { 5873 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5874 5875 cfs_rq->throttled_clock_self = 0; 5876 5877 if (SCHED_WARN_ON((s64)delta < 0)) 5878 delta = 0; 5879 5880 cfs_rq->throttled_clock_self_time += delta; 5881 } 5882 } 5883 5884 return 0; 5885 } 5886 5887 static int tg_throttle_down(struct task_group *tg, void *data) 5888 { 5889 struct rq *rq = data; 5890 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5891 5892 /* group is entering throttled state, stop time */ 5893 if (!cfs_rq->throttle_count) { 5894 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5895 list_del_leaf_cfs_rq(cfs_rq); 5896 5897 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5898 if (cfs_rq->nr_running) 5899 cfs_rq->throttled_clock_self = rq_clock(rq); 5900 } 5901 cfs_rq->throttle_count++; 5902 5903 return 0; 5904 } 5905 5906 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5907 { 5908 struct rq *rq = rq_of(cfs_rq); 5909 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5910 struct sched_entity *se; 5911 long task_delta, idle_task_delta, dequeue = 1; 5912 long rq_h_nr_running = rq->cfs.h_nr_running; 5913 5914 raw_spin_lock(&cfs_b->lock); 5915 /* This will start the period timer if necessary */ 5916 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5917 /* 5918 * We have raced with bandwidth becoming available, and if we 5919 * actually throttled the timer might not unthrottle us for an 5920 * entire period. We additionally needed to make sure that any 5921 * subsequent check_cfs_rq_runtime calls agree not to throttle 5922 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5923 * for 1ns of runtime rather than just check cfs_b. 5924 */ 5925 dequeue = 0; 5926 } else { 5927 list_add_tail_rcu(&cfs_rq->throttled_list, 5928 &cfs_b->throttled_cfs_rq); 5929 } 5930 raw_spin_unlock(&cfs_b->lock); 5931 5932 if (!dequeue) 5933 return false; /* Throttle no longer required. */ 5934 5935 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5936 5937 /* freeze hierarchy runnable averages while throttled */ 5938 rcu_read_lock(); 5939 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5940 rcu_read_unlock(); 5941 5942 task_delta = cfs_rq->h_nr_running; 5943 idle_task_delta = cfs_rq->idle_h_nr_running; 5944 for_each_sched_entity(se) { 5945 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5946 int flags; 5947 5948 /* throttled entity or throttle-on-deactivate */ 5949 if (!se->on_rq) 5950 goto done; 5951 5952 /* 5953 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5954 * This avoids teaching dequeue_entities() about throttled 5955 * entities and keeps things relatively simple. 5956 */ 5957 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5958 if (se->sched_delayed) 5959 flags |= DEQUEUE_DELAYED; 5960 dequeue_entity(qcfs_rq, se, flags); 5961 5962 if (cfs_rq_is_idle(group_cfs_rq(se))) 5963 idle_task_delta = cfs_rq->h_nr_running; 5964 5965 qcfs_rq->h_nr_running -= task_delta; 5966 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5967 5968 if (qcfs_rq->load.weight) { 5969 /* Avoid re-evaluating load for this entity: */ 5970 se = parent_entity(se); 5971 break; 5972 } 5973 } 5974 5975 for_each_sched_entity(se) { 5976 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5977 /* throttled entity or throttle-on-deactivate */ 5978 if (!se->on_rq) 5979 goto done; 5980 5981 update_load_avg(qcfs_rq, se, 0); 5982 se_update_runnable(se); 5983 5984 if (cfs_rq_is_idle(group_cfs_rq(se))) 5985 idle_task_delta = cfs_rq->h_nr_running; 5986 5987 qcfs_rq->h_nr_running -= task_delta; 5988 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5989 } 5990 5991 /* At this point se is NULL and we are at root level*/ 5992 sub_nr_running(rq, task_delta); 5993 5994 /* Stop the fair server if throttling resulted in no runnable tasks */ 5995 if (rq_h_nr_running && !rq->cfs.h_nr_running) 5996 dl_server_stop(&rq->fair_server); 5997 done: 5998 /* 5999 * Note: distribution will already see us throttled via the 6000 * throttled-list. rq->lock protects completion. 6001 */ 6002 cfs_rq->throttled = 1; 6003 SCHED_WARN_ON(cfs_rq->throttled_clock); 6004 if (cfs_rq->nr_running) 6005 cfs_rq->throttled_clock = rq_clock(rq); 6006 return true; 6007 } 6008 6009 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 6010 { 6011 struct rq *rq = rq_of(cfs_rq); 6012 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6013 struct sched_entity *se; 6014 long task_delta, idle_task_delta; 6015 long rq_h_nr_running = rq->cfs.h_nr_running; 6016 6017 se = cfs_rq->tg->se[cpu_of(rq)]; 6018 6019 cfs_rq->throttled = 0; 6020 6021 update_rq_clock(rq); 6022 6023 raw_spin_lock(&cfs_b->lock); 6024 if (cfs_rq->throttled_clock) { 6025 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6026 cfs_rq->throttled_clock = 0; 6027 } 6028 list_del_rcu(&cfs_rq->throttled_list); 6029 raw_spin_unlock(&cfs_b->lock); 6030 6031 /* update hierarchical throttle state */ 6032 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6033 6034 if (!cfs_rq->load.weight) { 6035 if (!cfs_rq->on_list) 6036 return; 6037 /* 6038 * Nothing to run but something to decay (on_list)? 6039 * Complete the branch. 6040 */ 6041 for_each_sched_entity(se) { 6042 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6043 break; 6044 } 6045 goto unthrottle_throttle; 6046 } 6047 6048 task_delta = cfs_rq->h_nr_running; 6049 idle_task_delta = cfs_rq->idle_h_nr_running; 6050 for_each_sched_entity(se) { 6051 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6052 6053 if (se->on_rq) { 6054 SCHED_WARN_ON(se->sched_delayed); 6055 break; 6056 } 6057 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6058 6059 if (cfs_rq_is_idle(group_cfs_rq(se))) 6060 idle_task_delta = cfs_rq->h_nr_running; 6061 6062 qcfs_rq->h_nr_running += task_delta; 6063 qcfs_rq->idle_h_nr_running += idle_task_delta; 6064 6065 /* end evaluation on encountering a throttled cfs_rq */ 6066 if (cfs_rq_throttled(qcfs_rq)) 6067 goto unthrottle_throttle; 6068 } 6069 6070 for_each_sched_entity(se) { 6071 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6072 6073 update_load_avg(qcfs_rq, se, UPDATE_TG); 6074 se_update_runnable(se); 6075 6076 if (cfs_rq_is_idle(group_cfs_rq(se))) 6077 idle_task_delta = cfs_rq->h_nr_running; 6078 6079 qcfs_rq->h_nr_running += task_delta; 6080 qcfs_rq->idle_h_nr_running += idle_task_delta; 6081 6082 /* end evaluation on encountering a throttled cfs_rq */ 6083 if (cfs_rq_throttled(qcfs_rq)) 6084 goto unthrottle_throttle; 6085 } 6086 6087 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6088 if (!rq_h_nr_running && rq->cfs.h_nr_running) 6089 dl_server_start(&rq->fair_server); 6090 6091 /* At this point se is NULL and we are at root level*/ 6092 add_nr_running(rq, task_delta); 6093 6094 unthrottle_throttle: 6095 assert_list_leaf_cfs_rq(rq); 6096 6097 /* Determine whether we need to wake up potentially idle CPU: */ 6098 if (rq->curr == rq->idle && rq->cfs.nr_running) 6099 resched_curr(rq); 6100 } 6101 6102 #ifdef CONFIG_SMP 6103 static void __cfsb_csd_unthrottle(void *arg) 6104 { 6105 struct cfs_rq *cursor, *tmp; 6106 struct rq *rq = arg; 6107 struct rq_flags rf; 6108 6109 rq_lock(rq, &rf); 6110 6111 /* 6112 * Iterating over the list can trigger several call to 6113 * update_rq_clock() in unthrottle_cfs_rq(). 6114 * Do it once and skip the potential next ones. 6115 */ 6116 update_rq_clock(rq); 6117 rq_clock_start_loop_update(rq); 6118 6119 /* 6120 * Since we hold rq lock we're safe from concurrent manipulation of 6121 * the CSD list. However, this RCU critical section annotates the 6122 * fact that we pair with sched_free_group_rcu(), so that we cannot 6123 * race with group being freed in the window between removing it 6124 * from the list and advancing to the next entry in the list. 6125 */ 6126 rcu_read_lock(); 6127 6128 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6129 throttled_csd_list) { 6130 list_del_init(&cursor->throttled_csd_list); 6131 6132 if (cfs_rq_throttled(cursor)) 6133 unthrottle_cfs_rq(cursor); 6134 } 6135 6136 rcu_read_unlock(); 6137 6138 rq_clock_stop_loop_update(rq); 6139 rq_unlock(rq, &rf); 6140 } 6141 6142 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6143 { 6144 struct rq *rq = rq_of(cfs_rq); 6145 bool first; 6146 6147 if (rq == this_rq()) { 6148 unthrottle_cfs_rq(cfs_rq); 6149 return; 6150 } 6151 6152 /* Already enqueued */ 6153 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6154 return; 6155 6156 first = list_empty(&rq->cfsb_csd_list); 6157 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6158 if (first) 6159 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6160 } 6161 #else 6162 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6163 { 6164 unthrottle_cfs_rq(cfs_rq); 6165 } 6166 #endif 6167 6168 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6169 { 6170 lockdep_assert_rq_held(rq_of(cfs_rq)); 6171 6172 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6173 cfs_rq->runtime_remaining <= 0)) 6174 return; 6175 6176 __unthrottle_cfs_rq_async(cfs_rq); 6177 } 6178 6179 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6180 { 6181 int this_cpu = smp_processor_id(); 6182 u64 runtime, remaining = 1; 6183 bool throttled = false; 6184 struct cfs_rq *cfs_rq, *tmp; 6185 struct rq_flags rf; 6186 struct rq *rq; 6187 LIST_HEAD(local_unthrottle); 6188 6189 rcu_read_lock(); 6190 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6191 throttled_list) { 6192 rq = rq_of(cfs_rq); 6193 6194 if (!remaining) { 6195 throttled = true; 6196 break; 6197 } 6198 6199 rq_lock_irqsave(rq, &rf); 6200 if (!cfs_rq_throttled(cfs_rq)) 6201 goto next; 6202 6203 /* Already queued for async unthrottle */ 6204 if (!list_empty(&cfs_rq->throttled_csd_list)) 6205 goto next; 6206 6207 /* By the above checks, this should never be true */ 6208 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6209 6210 raw_spin_lock(&cfs_b->lock); 6211 runtime = -cfs_rq->runtime_remaining + 1; 6212 if (runtime > cfs_b->runtime) 6213 runtime = cfs_b->runtime; 6214 cfs_b->runtime -= runtime; 6215 remaining = cfs_b->runtime; 6216 raw_spin_unlock(&cfs_b->lock); 6217 6218 cfs_rq->runtime_remaining += runtime; 6219 6220 /* we check whether we're throttled above */ 6221 if (cfs_rq->runtime_remaining > 0) { 6222 if (cpu_of(rq) != this_cpu) { 6223 unthrottle_cfs_rq_async(cfs_rq); 6224 } else { 6225 /* 6226 * We currently only expect to be unthrottling 6227 * a single cfs_rq locally. 6228 */ 6229 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6230 list_add_tail(&cfs_rq->throttled_csd_list, 6231 &local_unthrottle); 6232 } 6233 } else { 6234 throttled = true; 6235 } 6236 6237 next: 6238 rq_unlock_irqrestore(rq, &rf); 6239 } 6240 6241 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6242 throttled_csd_list) { 6243 struct rq *rq = rq_of(cfs_rq); 6244 6245 rq_lock_irqsave(rq, &rf); 6246 6247 list_del_init(&cfs_rq->throttled_csd_list); 6248 6249 if (cfs_rq_throttled(cfs_rq)) 6250 unthrottle_cfs_rq(cfs_rq); 6251 6252 rq_unlock_irqrestore(rq, &rf); 6253 } 6254 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6255 6256 rcu_read_unlock(); 6257 6258 return throttled; 6259 } 6260 6261 /* 6262 * Responsible for refilling a task_group's bandwidth and unthrottling its 6263 * cfs_rqs as appropriate. If there has been no activity within the last 6264 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6265 * used to track this state. 6266 */ 6267 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6268 { 6269 int throttled; 6270 6271 /* no need to continue the timer with no bandwidth constraint */ 6272 if (cfs_b->quota == RUNTIME_INF) 6273 goto out_deactivate; 6274 6275 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6276 cfs_b->nr_periods += overrun; 6277 6278 /* Refill extra burst quota even if cfs_b->idle */ 6279 __refill_cfs_bandwidth_runtime(cfs_b); 6280 6281 /* 6282 * idle depends on !throttled (for the case of a large deficit), and if 6283 * we're going inactive then everything else can be deferred 6284 */ 6285 if (cfs_b->idle && !throttled) 6286 goto out_deactivate; 6287 6288 if (!throttled) { 6289 /* mark as potentially idle for the upcoming period */ 6290 cfs_b->idle = 1; 6291 return 0; 6292 } 6293 6294 /* account preceding periods in which throttling occurred */ 6295 cfs_b->nr_throttled += overrun; 6296 6297 /* 6298 * This check is repeated as we release cfs_b->lock while we unthrottle. 6299 */ 6300 while (throttled && cfs_b->runtime > 0) { 6301 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6302 /* we can't nest cfs_b->lock while distributing bandwidth */ 6303 throttled = distribute_cfs_runtime(cfs_b); 6304 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6305 } 6306 6307 /* 6308 * While we are ensured activity in the period following an 6309 * unthrottle, this also covers the case in which the new bandwidth is 6310 * insufficient to cover the existing bandwidth deficit. (Forcing the 6311 * timer to remain active while there are any throttled entities.) 6312 */ 6313 cfs_b->idle = 0; 6314 6315 return 0; 6316 6317 out_deactivate: 6318 return 1; 6319 } 6320 6321 /* a cfs_rq won't donate quota below this amount */ 6322 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6323 /* minimum remaining period time to redistribute slack quota */ 6324 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6325 /* how long we wait to gather additional slack before distributing */ 6326 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6327 6328 /* 6329 * Are we near the end of the current quota period? 6330 * 6331 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6332 * hrtimer base being cleared by hrtimer_start. In the case of 6333 * migrate_hrtimers, base is never cleared, so we are fine. 6334 */ 6335 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6336 { 6337 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6338 s64 remaining; 6339 6340 /* if the call-back is running a quota refresh is already occurring */ 6341 if (hrtimer_callback_running(refresh_timer)) 6342 return 1; 6343 6344 /* is a quota refresh about to occur? */ 6345 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6346 if (remaining < (s64)min_expire) 6347 return 1; 6348 6349 return 0; 6350 } 6351 6352 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6353 { 6354 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6355 6356 /* if there's a quota refresh soon don't bother with slack */ 6357 if (runtime_refresh_within(cfs_b, min_left)) 6358 return; 6359 6360 /* don't push forwards an existing deferred unthrottle */ 6361 if (cfs_b->slack_started) 6362 return; 6363 cfs_b->slack_started = true; 6364 6365 hrtimer_start(&cfs_b->slack_timer, 6366 ns_to_ktime(cfs_bandwidth_slack_period), 6367 HRTIMER_MODE_REL); 6368 } 6369 6370 /* we know any runtime found here is valid as update_curr() precedes return */ 6371 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6372 { 6373 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6374 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6375 6376 if (slack_runtime <= 0) 6377 return; 6378 6379 raw_spin_lock(&cfs_b->lock); 6380 if (cfs_b->quota != RUNTIME_INF) { 6381 cfs_b->runtime += slack_runtime; 6382 6383 /* we are under rq->lock, defer unthrottling using a timer */ 6384 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6385 !list_empty(&cfs_b->throttled_cfs_rq)) 6386 start_cfs_slack_bandwidth(cfs_b); 6387 } 6388 raw_spin_unlock(&cfs_b->lock); 6389 6390 /* even if it's not valid for return we don't want to try again */ 6391 cfs_rq->runtime_remaining -= slack_runtime; 6392 } 6393 6394 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6395 { 6396 if (!cfs_bandwidth_used()) 6397 return; 6398 6399 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6400 return; 6401 6402 __return_cfs_rq_runtime(cfs_rq); 6403 } 6404 6405 /* 6406 * This is done with a timer (instead of inline with bandwidth return) since 6407 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6408 */ 6409 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6410 { 6411 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6412 unsigned long flags; 6413 6414 /* confirm we're still not at a refresh boundary */ 6415 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6416 cfs_b->slack_started = false; 6417 6418 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6419 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6420 return; 6421 } 6422 6423 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6424 runtime = cfs_b->runtime; 6425 6426 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6427 6428 if (!runtime) 6429 return; 6430 6431 distribute_cfs_runtime(cfs_b); 6432 } 6433 6434 /* 6435 * When a group wakes up we want to make sure that its quota is not already 6436 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6437 * runtime as update_curr() throttling can not trigger until it's on-rq. 6438 */ 6439 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6440 { 6441 if (!cfs_bandwidth_used()) 6442 return; 6443 6444 /* an active group must be handled by the update_curr()->put() path */ 6445 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6446 return; 6447 6448 /* ensure the group is not already throttled */ 6449 if (cfs_rq_throttled(cfs_rq)) 6450 return; 6451 6452 /* update runtime allocation */ 6453 account_cfs_rq_runtime(cfs_rq, 0); 6454 if (cfs_rq->runtime_remaining <= 0) 6455 throttle_cfs_rq(cfs_rq); 6456 } 6457 6458 static void sync_throttle(struct task_group *tg, int cpu) 6459 { 6460 struct cfs_rq *pcfs_rq, *cfs_rq; 6461 6462 if (!cfs_bandwidth_used()) 6463 return; 6464 6465 if (!tg->parent) 6466 return; 6467 6468 cfs_rq = tg->cfs_rq[cpu]; 6469 pcfs_rq = tg->parent->cfs_rq[cpu]; 6470 6471 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6472 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6473 } 6474 6475 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6476 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6477 { 6478 if (!cfs_bandwidth_used()) 6479 return false; 6480 6481 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6482 return false; 6483 6484 /* 6485 * it's possible for a throttled entity to be forced into a running 6486 * state (e.g. set_curr_task), in this case we're finished. 6487 */ 6488 if (cfs_rq_throttled(cfs_rq)) 6489 return true; 6490 6491 return throttle_cfs_rq(cfs_rq); 6492 } 6493 6494 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6495 { 6496 struct cfs_bandwidth *cfs_b = 6497 container_of(timer, struct cfs_bandwidth, slack_timer); 6498 6499 do_sched_cfs_slack_timer(cfs_b); 6500 6501 return HRTIMER_NORESTART; 6502 } 6503 6504 extern const u64 max_cfs_quota_period; 6505 6506 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6507 { 6508 struct cfs_bandwidth *cfs_b = 6509 container_of(timer, struct cfs_bandwidth, period_timer); 6510 unsigned long flags; 6511 int overrun; 6512 int idle = 0; 6513 int count = 0; 6514 6515 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6516 for (;;) { 6517 overrun = hrtimer_forward_now(timer, cfs_b->period); 6518 if (!overrun) 6519 break; 6520 6521 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6522 6523 if (++count > 3) { 6524 u64 new, old = ktime_to_ns(cfs_b->period); 6525 6526 /* 6527 * Grow period by a factor of 2 to avoid losing precision. 6528 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6529 * to fail. 6530 */ 6531 new = old * 2; 6532 if (new < max_cfs_quota_period) { 6533 cfs_b->period = ns_to_ktime(new); 6534 cfs_b->quota *= 2; 6535 cfs_b->burst *= 2; 6536 6537 pr_warn_ratelimited( 6538 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6539 smp_processor_id(), 6540 div_u64(new, NSEC_PER_USEC), 6541 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6542 } else { 6543 pr_warn_ratelimited( 6544 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6545 smp_processor_id(), 6546 div_u64(old, NSEC_PER_USEC), 6547 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6548 } 6549 6550 /* reset count so we don't come right back in here */ 6551 count = 0; 6552 } 6553 } 6554 if (idle) 6555 cfs_b->period_active = 0; 6556 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6557 6558 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6559 } 6560 6561 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6562 { 6563 raw_spin_lock_init(&cfs_b->lock); 6564 cfs_b->runtime = 0; 6565 cfs_b->quota = RUNTIME_INF; 6566 cfs_b->period = ns_to_ktime(default_cfs_period()); 6567 cfs_b->burst = 0; 6568 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6569 6570 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6571 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6572 cfs_b->period_timer.function = sched_cfs_period_timer; 6573 6574 /* Add a random offset so that timers interleave */ 6575 hrtimer_set_expires(&cfs_b->period_timer, 6576 get_random_u32_below(cfs_b->period)); 6577 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6578 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6579 cfs_b->slack_started = false; 6580 } 6581 6582 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6583 { 6584 cfs_rq->runtime_enabled = 0; 6585 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6586 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6587 } 6588 6589 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6590 { 6591 lockdep_assert_held(&cfs_b->lock); 6592 6593 if (cfs_b->period_active) 6594 return; 6595 6596 cfs_b->period_active = 1; 6597 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6598 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6599 } 6600 6601 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6602 { 6603 int __maybe_unused i; 6604 6605 /* init_cfs_bandwidth() was not called */ 6606 if (!cfs_b->throttled_cfs_rq.next) 6607 return; 6608 6609 hrtimer_cancel(&cfs_b->period_timer); 6610 hrtimer_cancel(&cfs_b->slack_timer); 6611 6612 /* 6613 * It is possible that we still have some cfs_rq's pending on a CSD 6614 * list, though this race is very rare. In order for this to occur, we 6615 * must have raced with the last task leaving the group while there 6616 * exist throttled cfs_rq(s), and the period_timer must have queued the 6617 * CSD item but the remote cpu has not yet processed it. To handle this, 6618 * we can simply flush all pending CSD work inline here. We're 6619 * guaranteed at this point that no additional cfs_rq of this group can 6620 * join a CSD list. 6621 */ 6622 #ifdef CONFIG_SMP 6623 for_each_possible_cpu(i) { 6624 struct rq *rq = cpu_rq(i); 6625 unsigned long flags; 6626 6627 if (list_empty(&rq->cfsb_csd_list)) 6628 continue; 6629 6630 local_irq_save(flags); 6631 __cfsb_csd_unthrottle(rq); 6632 local_irq_restore(flags); 6633 } 6634 #endif 6635 } 6636 6637 /* 6638 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6639 * 6640 * The race is harmless, since modifying bandwidth settings of unhooked group 6641 * bits doesn't do much. 6642 */ 6643 6644 /* cpu online callback */ 6645 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6646 { 6647 struct task_group *tg; 6648 6649 lockdep_assert_rq_held(rq); 6650 6651 rcu_read_lock(); 6652 list_for_each_entry_rcu(tg, &task_groups, list) { 6653 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6654 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6655 6656 raw_spin_lock(&cfs_b->lock); 6657 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6658 raw_spin_unlock(&cfs_b->lock); 6659 } 6660 rcu_read_unlock(); 6661 } 6662 6663 /* cpu offline callback */ 6664 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6665 { 6666 struct task_group *tg; 6667 6668 lockdep_assert_rq_held(rq); 6669 6670 /* 6671 * The rq clock has already been updated in the 6672 * set_rq_offline(), so we should skip updating 6673 * the rq clock again in unthrottle_cfs_rq(). 6674 */ 6675 rq_clock_start_loop_update(rq); 6676 6677 rcu_read_lock(); 6678 list_for_each_entry_rcu(tg, &task_groups, list) { 6679 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6680 6681 if (!cfs_rq->runtime_enabled) 6682 continue; 6683 6684 /* 6685 * clock_task is not advancing so we just need to make sure 6686 * there's some valid quota amount 6687 */ 6688 cfs_rq->runtime_remaining = 1; 6689 /* 6690 * Offline rq is schedulable till CPU is completely disabled 6691 * in take_cpu_down(), so we prevent new cfs throttling here. 6692 */ 6693 cfs_rq->runtime_enabled = 0; 6694 6695 if (cfs_rq_throttled(cfs_rq)) 6696 unthrottle_cfs_rq(cfs_rq); 6697 } 6698 rcu_read_unlock(); 6699 6700 rq_clock_stop_loop_update(rq); 6701 } 6702 6703 bool cfs_task_bw_constrained(struct task_struct *p) 6704 { 6705 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6706 6707 if (!cfs_bandwidth_used()) 6708 return false; 6709 6710 if (cfs_rq->runtime_enabled || 6711 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6712 return true; 6713 6714 return false; 6715 } 6716 6717 #ifdef CONFIG_NO_HZ_FULL 6718 /* called from pick_next_task_fair() */ 6719 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6720 { 6721 int cpu = cpu_of(rq); 6722 6723 if (!cfs_bandwidth_used()) 6724 return; 6725 6726 if (!tick_nohz_full_cpu(cpu)) 6727 return; 6728 6729 if (rq->nr_running != 1) 6730 return; 6731 6732 /* 6733 * We know there is only one task runnable and we've just picked it. The 6734 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6735 * be otherwise able to stop the tick. Just need to check if we are using 6736 * bandwidth control. 6737 */ 6738 if (cfs_task_bw_constrained(p)) 6739 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6740 } 6741 #endif 6742 6743 #else /* CONFIG_CFS_BANDWIDTH */ 6744 6745 static inline bool cfs_bandwidth_used(void) 6746 { 6747 return false; 6748 } 6749 6750 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6751 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6752 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6753 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6754 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6755 6756 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6757 { 6758 return 0; 6759 } 6760 6761 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6762 { 6763 return 0; 6764 } 6765 6766 static inline int throttled_lb_pair(struct task_group *tg, 6767 int src_cpu, int dest_cpu) 6768 { 6769 return 0; 6770 } 6771 6772 #ifdef CONFIG_FAIR_GROUP_SCHED 6773 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6774 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6775 #endif 6776 6777 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6778 { 6779 return NULL; 6780 } 6781 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6782 static inline void update_runtime_enabled(struct rq *rq) {} 6783 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6784 #ifdef CONFIG_CGROUP_SCHED 6785 bool cfs_task_bw_constrained(struct task_struct *p) 6786 { 6787 return false; 6788 } 6789 #endif 6790 #endif /* CONFIG_CFS_BANDWIDTH */ 6791 6792 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6793 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6794 #endif 6795 6796 /************************************************** 6797 * CFS operations on tasks: 6798 */ 6799 6800 #ifdef CONFIG_SCHED_HRTICK 6801 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6802 { 6803 struct sched_entity *se = &p->se; 6804 6805 SCHED_WARN_ON(task_rq(p) != rq); 6806 6807 if (rq->cfs.h_nr_running > 1) { 6808 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6809 u64 slice = se->slice; 6810 s64 delta = slice - ran; 6811 6812 if (delta < 0) { 6813 if (task_current(rq, p)) 6814 resched_curr(rq); 6815 return; 6816 } 6817 hrtick_start(rq, delta); 6818 } 6819 } 6820 6821 /* 6822 * called from enqueue/dequeue and updates the hrtick when the 6823 * current task is from our class and nr_running is low enough 6824 * to matter. 6825 */ 6826 static void hrtick_update(struct rq *rq) 6827 { 6828 struct task_struct *curr = rq->curr; 6829 6830 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6831 return; 6832 6833 hrtick_start_fair(rq, curr); 6834 } 6835 #else /* !CONFIG_SCHED_HRTICK */ 6836 static inline void 6837 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6838 { 6839 } 6840 6841 static inline void hrtick_update(struct rq *rq) 6842 { 6843 } 6844 #endif 6845 6846 #ifdef CONFIG_SMP 6847 static inline bool cpu_overutilized(int cpu) 6848 { 6849 unsigned long rq_util_min, rq_util_max; 6850 6851 if (!sched_energy_enabled()) 6852 return false; 6853 6854 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6855 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6856 6857 /* Return true only if the utilization doesn't fit CPU's capacity */ 6858 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6859 } 6860 6861 /* 6862 * overutilized value make sense only if EAS is enabled 6863 */ 6864 static inline bool is_rd_overutilized(struct root_domain *rd) 6865 { 6866 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6867 } 6868 6869 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6870 { 6871 if (!sched_energy_enabled()) 6872 return; 6873 6874 WRITE_ONCE(rd->overutilized, flag); 6875 trace_sched_overutilized_tp(rd, flag); 6876 } 6877 6878 static inline void check_update_overutilized_status(struct rq *rq) 6879 { 6880 /* 6881 * overutilized field is used for load balancing decisions only 6882 * if energy aware scheduler is being used 6883 */ 6884 6885 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6886 set_rd_overutilized(rq->rd, 1); 6887 } 6888 #else 6889 static inline void check_update_overutilized_status(struct rq *rq) { } 6890 #endif 6891 6892 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6893 static int sched_idle_rq(struct rq *rq) 6894 { 6895 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6896 rq->nr_running); 6897 } 6898 6899 #ifdef CONFIG_SMP 6900 static int sched_idle_cpu(int cpu) 6901 { 6902 return sched_idle_rq(cpu_rq(cpu)); 6903 } 6904 #endif 6905 6906 static void 6907 requeue_delayed_entity(struct sched_entity *se) 6908 { 6909 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6910 6911 /* 6912 * se->sched_delayed should imply: se->on_rq == 1. 6913 * Because a delayed entity is one that is still on 6914 * the runqueue competing until elegibility. 6915 */ 6916 SCHED_WARN_ON(!se->sched_delayed); 6917 SCHED_WARN_ON(!se->on_rq); 6918 6919 if (sched_feat(DELAY_ZERO)) { 6920 update_entity_lag(cfs_rq, se); 6921 if (se->vlag > 0) { 6922 cfs_rq->nr_running--; 6923 if (se != cfs_rq->curr) 6924 __dequeue_entity(cfs_rq, se); 6925 se->vlag = 0; 6926 place_entity(cfs_rq, se, 0); 6927 if (se != cfs_rq->curr) 6928 __enqueue_entity(cfs_rq, se); 6929 cfs_rq->nr_running++; 6930 } 6931 } 6932 6933 update_load_avg(cfs_rq, se, 0); 6934 se->sched_delayed = 0; 6935 } 6936 6937 /* 6938 * The enqueue_task method is called before nr_running is 6939 * increased. Here we update the fair scheduling stats and 6940 * then put the task into the rbtree: 6941 */ 6942 static void 6943 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6944 { 6945 struct cfs_rq *cfs_rq; 6946 struct sched_entity *se = &p->se; 6947 int idle_h_nr_running = task_has_idle_policy(p); 6948 int task_new = !(flags & ENQUEUE_WAKEUP); 6949 int rq_h_nr_running = rq->cfs.h_nr_running; 6950 u64 slice = 0; 6951 6952 if (flags & ENQUEUE_DELAYED) { 6953 requeue_delayed_entity(se); 6954 return; 6955 } 6956 6957 /* 6958 * The code below (indirectly) updates schedutil which looks at 6959 * the cfs_rq utilization to select a frequency. 6960 * Let's add the task's estimated utilization to the cfs_rq's 6961 * estimated utilization, before we update schedutil. 6962 */ 6963 util_est_enqueue(&rq->cfs, p); 6964 6965 /* 6966 * If in_iowait is set, the code below may not trigger any cpufreq 6967 * utilization updates, so do it here explicitly with the IOWAIT flag 6968 * passed. 6969 */ 6970 if (p->in_iowait) 6971 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6972 6973 for_each_sched_entity(se) { 6974 if (se->on_rq) { 6975 if (se->sched_delayed) 6976 requeue_delayed_entity(se); 6977 break; 6978 } 6979 cfs_rq = cfs_rq_of(se); 6980 6981 /* 6982 * Basically set the slice of group entries to the min_slice of 6983 * their respective cfs_rq. This ensures the group can service 6984 * its entities in the desired time-frame. 6985 */ 6986 if (slice) { 6987 se->slice = slice; 6988 se->custom_slice = 1; 6989 } 6990 enqueue_entity(cfs_rq, se, flags); 6991 slice = cfs_rq_min_slice(cfs_rq); 6992 6993 cfs_rq->h_nr_running++; 6994 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6995 6996 if (cfs_rq_is_idle(cfs_rq)) 6997 idle_h_nr_running = 1; 6998 6999 /* end evaluation on encountering a throttled cfs_rq */ 7000 if (cfs_rq_throttled(cfs_rq)) 7001 goto enqueue_throttle; 7002 7003 flags = ENQUEUE_WAKEUP; 7004 } 7005 7006 for_each_sched_entity(se) { 7007 cfs_rq = cfs_rq_of(se); 7008 7009 update_load_avg(cfs_rq, se, UPDATE_TG); 7010 se_update_runnable(se); 7011 update_cfs_group(se); 7012 7013 se->slice = slice; 7014 slice = cfs_rq_min_slice(cfs_rq); 7015 7016 cfs_rq->h_nr_running++; 7017 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7018 7019 if (cfs_rq_is_idle(cfs_rq)) 7020 idle_h_nr_running = 1; 7021 7022 /* end evaluation on encountering a throttled cfs_rq */ 7023 if (cfs_rq_throttled(cfs_rq)) 7024 goto enqueue_throttle; 7025 } 7026 7027 if (!rq_h_nr_running && rq->cfs.h_nr_running) { 7028 /* Account for idle runtime */ 7029 if (!rq->nr_running) 7030 dl_server_update_idle_time(rq, rq->curr); 7031 dl_server_start(&rq->fair_server); 7032 } 7033 7034 /* At this point se is NULL and we are at root level*/ 7035 add_nr_running(rq, 1); 7036 7037 /* 7038 * Since new tasks are assigned an initial util_avg equal to 7039 * half of the spare capacity of their CPU, tiny tasks have the 7040 * ability to cross the overutilized threshold, which will 7041 * result in the load balancer ruining all the task placement 7042 * done by EAS. As a way to mitigate that effect, do not account 7043 * for the first enqueue operation of new tasks during the 7044 * overutilized flag detection. 7045 * 7046 * A better way of solving this problem would be to wait for 7047 * the PELT signals of tasks to converge before taking them 7048 * into account, but that is not straightforward to implement, 7049 * and the following generally works well enough in practice. 7050 */ 7051 if (!task_new) 7052 check_update_overutilized_status(rq); 7053 7054 enqueue_throttle: 7055 assert_list_leaf_cfs_rq(rq); 7056 7057 hrtick_update(rq); 7058 } 7059 7060 static void set_next_buddy(struct sched_entity *se); 7061 7062 /* 7063 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7064 * failing half-way through and resume the dequeue later. 7065 * 7066 * Returns: 7067 * -1 - dequeue delayed 7068 * 0 - dequeue throttled 7069 * 1 - dequeue complete 7070 */ 7071 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7072 { 7073 bool was_sched_idle = sched_idle_rq(rq); 7074 int rq_h_nr_running = rq->cfs.h_nr_running; 7075 bool task_sleep = flags & DEQUEUE_SLEEP; 7076 bool task_delayed = flags & DEQUEUE_DELAYED; 7077 struct task_struct *p = NULL; 7078 int idle_h_nr_running = 0; 7079 int h_nr_running = 0; 7080 struct cfs_rq *cfs_rq; 7081 u64 slice = 0; 7082 7083 if (entity_is_task(se)) { 7084 p = task_of(se); 7085 h_nr_running = 1; 7086 idle_h_nr_running = task_has_idle_policy(p); 7087 } else { 7088 cfs_rq = group_cfs_rq(se); 7089 slice = cfs_rq_min_slice(cfs_rq); 7090 } 7091 7092 for_each_sched_entity(se) { 7093 cfs_rq = cfs_rq_of(se); 7094 7095 if (!dequeue_entity(cfs_rq, se, flags)) { 7096 if (p && &p->se == se) 7097 return -1; 7098 7099 break; 7100 } 7101 7102 cfs_rq->h_nr_running -= h_nr_running; 7103 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7104 7105 if (cfs_rq_is_idle(cfs_rq)) 7106 idle_h_nr_running = h_nr_running; 7107 7108 /* end evaluation on encountering a throttled cfs_rq */ 7109 if (cfs_rq_throttled(cfs_rq)) 7110 return 0; 7111 7112 /* Don't dequeue parent if it has other entities besides us */ 7113 if (cfs_rq->load.weight) { 7114 slice = cfs_rq_min_slice(cfs_rq); 7115 7116 /* Avoid re-evaluating load for this entity: */ 7117 se = parent_entity(se); 7118 /* 7119 * Bias pick_next to pick a task from this cfs_rq, as 7120 * p is sleeping when it is within its sched_slice. 7121 */ 7122 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7123 set_next_buddy(se); 7124 break; 7125 } 7126 flags |= DEQUEUE_SLEEP; 7127 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7128 } 7129 7130 for_each_sched_entity(se) { 7131 cfs_rq = cfs_rq_of(se); 7132 7133 update_load_avg(cfs_rq, se, UPDATE_TG); 7134 se_update_runnable(se); 7135 update_cfs_group(se); 7136 7137 se->slice = slice; 7138 slice = cfs_rq_min_slice(cfs_rq); 7139 7140 cfs_rq->h_nr_running -= h_nr_running; 7141 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7142 7143 if (cfs_rq_is_idle(cfs_rq)) 7144 idle_h_nr_running = h_nr_running; 7145 7146 /* end evaluation on encountering a throttled cfs_rq */ 7147 if (cfs_rq_throttled(cfs_rq)) 7148 return 0; 7149 } 7150 7151 sub_nr_running(rq, h_nr_running); 7152 7153 if (rq_h_nr_running && !rq->cfs.h_nr_running) 7154 dl_server_stop(&rq->fair_server); 7155 7156 /* balance early to pull high priority tasks */ 7157 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7158 rq->next_balance = jiffies; 7159 7160 if (p && task_delayed) { 7161 SCHED_WARN_ON(!task_sleep); 7162 SCHED_WARN_ON(p->on_rq != 1); 7163 7164 /* Fix-up what dequeue_task_fair() skipped */ 7165 hrtick_update(rq); 7166 7167 /* Fix-up what block_task() skipped. */ 7168 __block_task(rq, p); 7169 } 7170 7171 return 1; 7172 } 7173 7174 /* 7175 * The dequeue_task method is called before nr_running is 7176 * decreased. We remove the task from the rbtree and 7177 * update the fair scheduling stats: 7178 */ 7179 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7180 { 7181 util_est_dequeue(&rq->cfs, p); 7182 7183 if (dequeue_entities(rq, &p->se, flags) < 0) { 7184 util_est_update(&rq->cfs, p, DEQUEUE_SLEEP); 7185 return false; 7186 } 7187 7188 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7189 hrtick_update(rq); 7190 return true; 7191 } 7192 7193 #ifdef CONFIG_SMP 7194 7195 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7196 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7197 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7198 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7199 7200 #ifdef CONFIG_NO_HZ_COMMON 7201 7202 static struct { 7203 cpumask_var_t idle_cpus_mask; 7204 atomic_t nr_cpus; 7205 int has_blocked; /* Idle CPUS has blocked load */ 7206 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7207 unsigned long next_balance; /* in jiffy units */ 7208 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7209 } nohz ____cacheline_aligned; 7210 7211 #endif /* CONFIG_NO_HZ_COMMON */ 7212 7213 static unsigned long cpu_load(struct rq *rq) 7214 { 7215 return cfs_rq_load_avg(&rq->cfs); 7216 } 7217 7218 /* 7219 * cpu_load_without - compute CPU load without any contributions from *p 7220 * @cpu: the CPU which load is requested 7221 * @p: the task which load should be discounted 7222 * 7223 * The load of a CPU is defined by the load of tasks currently enqueued on that 7224 * CPU as well as tasks which are currently sleeping after an execution on that 7225 * CPU. 7226 * 7227 * This method returns the load of the specified CPU by discounting the load of 7228 * the specified task, whenever the task is currently contributing to the CPU 7229 * load. 7230 */ 7231 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7232 { 7233 struct cfs_rq *cfs_rq; 7234 unsigned int load; 7235 7236 /* Task has no contribution or is new */ 7237 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7238 return cpu_load(rq); 7239 7240 cfs_rq = &rq->cfs; 7241 load = READ_ONCE(cfs_rq->avg.load_avg); 7242 7243 /* Discount task's util from CPU's util */ 7244 lsub_positive(&load, task_h_load(p)); 7245 7246 return load; 7247 } 7248 7249 static unsigned long cpu_runnable(struct rq *rq) 7250 { 7251 return cfs_rq_runnable_avg(&rq->cfs); 7252 } 7253 7254 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7255 { 7256 struct cfs_rq *cfs_rq; 7257 unsigned int runnable; 7258 7259 /* Task has no contribution or is new */ 7260 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7261 return cpu_runnable(rq); 7262 7263 cfs_rq = &rq->cfs; 7264 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7265 7266 /* Discount task's runnable from CPU's runnable */ 7267 lsub_positive(&runnable, p->se.avg.runnable_avg); 7268 7269 return runnable; 7270 } 7271 7272 static unsigned long capacity_of(int cpu) 7273 { 7274 return cpu_rq(cpu)->cpu_capacity; 7275 } 7276 7277 static void record_wakee(struct task_struct *p) 7278 { 7279 /* 7280 * Only decay a single time; tasks that have less then 1 wakeup per 7281 * jiffy will not have built up many flips. 7282 */ 7283 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7284 current->wakee_flips >>= 1; 7285 current->wakee_flip_decay_ts = jiffies; 7286 } 7287 7288 if (current->last_wakee != p) { 7289 current->last_wakee = p; 7290 current->wakee_flips++; 7291 } 7292 } 7293 7294 /* 7295 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7296 * 7297 * A waker of many should wake a different task than the one last awakened 7298 * at a frequency roughly N times higher than one of its wakees. 7299 * 7300 * In order to determine whether we should let the load spread vs consolidating 7301 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7302 * partner, and a factor of lls_size higher frequency in the other. 7303 * 7304 * With both conditions met, we can be relatively sure that the relationship is 7305 * non-monogamous, with partner count exceeding socket size. 7306 * 7307 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7308 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7309 * socket size. 7310 */ 7311 static int wake_wide(struct task_struct *p) 7312 { 7313 unsigned int master = current->wakee_flips; 7314 unsigned int slave = p->wakee_flips; 7315 int factor = __this_cpu_read(sd_llc_size); 7316 7317 if (master < slave) 7318 swap(master, slave); 7319 if (slave < factor || master < slave * factor) 7320 return 0; 7321 return 1; 7322 } 7323 7324 /* 7325 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7326 * soonest. For the purpose of speed we only consider the waking and previous 7327 * CPU. 7328 * 7329 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7330 * cache-affine and is (or will be) idle. 7331 * 7332 * wake_affine_weight() - considers the weight to reflect the average 7333 * scheduling latency of the CPUs. This seems to work 7334 * for the overloaded case. 7335 */ 7336 static int 7337 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7338 { 7339 /* 7340 * If this_cpu is idle, it implies the wakeup is from interrupt 7341 * context. Only allow the move if cache is shared. Otherwise an 7342 * interrupt intensive workload could force all tasks onto one 7343 * node depending on the IO topology or IRQ affinity settings. 7344 * 7345 * If the prev_cpu is idle and cache affine then avoid a migration. 7346 * There is no guarantee that the cache hot data from an interrupt 7347 * is more important than cache hot data on the prev_cpu and from 7348 * a cpufreq perspective, it's better to have higher utilisation 7349 * on one CPU. 7350 */ 7351 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7352 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7353 7354 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7355 return this_cpu; 7356 7357 if (available_idle_cpu(prev_cpu)) 7358 return prev_cpu; 7359 7360 return nr_cpumask_bits; 7361 } 7362 7363 static int 7364 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7365 int this_cpu, int prev_cpu, int sync) 7366 { 7367 s64 this_eff_load, prev_eff_load; 7368 unsigned long task_load; 7369 7370 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7371 7372 if (sync) { 7373 unsigned long current_load = task_h_load(current); 7374 7375 if (current_load > this_eff_load) 7376 return this_cpu; 7377 7378 this_eff_load -= current_load; 7379 } 7380 7381 task_load = task_h_load(p); 7382 7383 this_eff_load += task_load; 7384 if (sched_feat(WA_BIAS)) 7385 this_eff_load *= 100; 7386 this_eff_load *= capacity_of(prev_cpu); 7387 7388 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7389 prev_eff_load -= task_load; 7390 if (sched_feat(WA_BIAS)) 7391 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7392 prev_eff_load *= capacity_of(this_cpu); 7393 7394 /* 7395 * If sync, adjust the weight of prev_eff_load such that if 7396 * prev_eff == this_eff that select_idle_sibling() will consider 7397 * stacking the wakee on top of the waker if no other CPU is 7398 * idle. 7399 */ 7400 if (sync) 7401 prev_eff_load += 1; 7402 7403 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7404 } 7405 7406 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7407 int this_cpu, int prev_cpu, int sync) 7408 { 7409 int target = nr_cpumask_bits; 7410 7411 if (sched_feat(WA_IDLE)) 7412 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7413 7414 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7415 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7416 7417 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7418 if (target != this_cpu) 7419 return prev_cpu; 7420 7421 schedstat_inc(sd->ttwu_move_affine); 7422 schedstat_inc(p->stats.nr_wakeups_affine); 7423 return target; 7424 } 7425 7426 static struct sched_group * 7427 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7428 7429 /* 7430 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7431 */ 7432 static int 7433 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7434 { 7435 unsigned long load, min_load = ULONG_MAX; 7436 unsigned int min_exit_latency = UINT_MAX; 7437 u64 latest_idle_timestamp = 0; 7438 int least_loaded_cpu = this_cpu; 7439 int shallowest_idle_cpu = -1; 7440 int i; 7441 7442 /* Check if we have any choice: */ 7443 if (group->group_weight == 1) 7444 return cpumask_first(sched_group_span(group)); 7445 7446 /* Traverse only the allowed CPUs */ 7447 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7448 struct rq *rq = cpu_rq(i); 7449 7450 if (!sched_core_cookie_match(rq, p)) 7451 continue; 7452 7453 if (sched_idle_cpu(i)) 7454 return i; 7455 7456 if (available_idle_cpu(i)) { 7457 struct cpuidle_state *idle = idle_get_state(rq); 7458 if (idle && idle->exit_latency < min_exit_latency) { 7459 /* 7460 * We give priority to a CPU whose idle state 7461 * has the smallest exit latency irrespective 7462 * of any idle timestamp. 7463 */ 7464 min_exit_latency = idle->exit_latency; 7465 latest_idle_timestamp = rq->idle_stamp; 7466 shallowest_idle_cpu = i; 7467 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7468 rq->idle_stamp > latest_idle_timestamp) { 7469 /* 7470 * If equal or no active idle state, then 7471 * the most recently idled CPU might have 7472 * a warmer cache. 7473 */ 7474 latest_idle_timestamp = rq->idle_stamp; 7475 shallowest_idle_cpu = i; 7476 } 7477 } else if (shallowest_idle_cpu == -1) { 7478 load = cpu_load(cpu_rq(i)); 7479 if (load < min_load) { 7480 min_load = load; 7481 least_loaded_cpu = i; 7482 } 7483 } 7484 } 7485 7486 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7487 } 7488 7489 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7490 int cpu, int prev_cpu, int sd_flag) 7491 { 7492 int new_cpu = cpu; 7493 7494 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7495 return prev_cpu; 7496 7497 /* 7498 * We need task's util for cpu_util_without, sync it up to 7499 * prev_cpu's last_update_time. 7500 */ 7501 if (!(sd_flag & SD_BALANCE_FORK)) 7502 sync_entity_load_avg(&p->se); 7503 7504 while (sd) { 7505 struct sched_group *group; 7506 struct sched_domain *tmp; 7507 int weight; 7508 7509 if (!(sd->flags & sd_flag)) { 7510 sd = sd->child; 7511 continue; 7512 } 7513 7514 group = sched_balance_find_dst_group(sd, p, cpu); 7515 if (!group) { 7516 sd = sd->child; 7517 continue; 7518 } 7519 7520 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7521 if (new_cpu == cpu) { 7522 /* Now try balancing at a lower domain level of 'cpu': */ 7523 sd = sd->child; 7524 continue; 7525 } 7526 7527 /* Now try balancing at a lower domain level of 'new_cpu': */ 7528 cpu = new_cpu; 7529 weight = sd->span_weight; 7530 sd = NULL; 7531 for_each_domain(cpu, tmp) { 7532 if (weight <= tmp->span_weight) 7533 break; 7534 if (tmp->flags & sd_flag) 7535 sd = tmp; 7536 } 7537 } 7538 7539 return new_cpu; 7540 } 7541 7542 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7543 { 7544 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7545 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7546 return cpu; 7547 7548 return -1; 7549 } 7550 7551 #ifdef CONFIG_SCHED_SMT 7552 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7553 EXPORT_SYMBOL_GPL(sched_smt_present); 7554 7555 static inline void set_idle_cores(int cpu, int val) 7556 { 7557 struct sched_domain_shared *sds; 7558 7559 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7560 if (sds) 7561 WRITE_ONCE(sds->has_idle_cores, val); 7562 } 7563 7564 static inline bool test_idle_cores(int cpu) 7565 { 7566 struct sched_domain_shared *sds; 7567 7568 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7569 if (sds) 7570 return READ_ONCE(sds->has_idle_cores); 7571 7572 return false; 7573 } 7574 7575 /* 7576 * Scans the local SMT mask to see if the entire core is idle, and records this 7577 * information in sd_llc_shared->has_idle_cores. 7578 * 7579 * Since SMT siblings share all cache levels, inspecting this limited remote 7580 * state should be fairly cheap. 7581 */ 7582 void __update_idle_core(struct rq *rq) 7583 { 7584 int core = cpu_of(rq); 7585 int cpu; 7586 7587 rcu_read_lock(); 7588 if (test_idle_cores(core)) 7589 goto unlock; 7590 7591 for_each_cpu(cpu, cpu_smt_mask(core)) { 7592 if (cpu == core) 7593 continue; 7594 7595 if (!available_idle_cpu(cpu)) 7596 goto unlock; 7597 } 7598 7599 set_idle_cores(core, 1); 7600 unlock: 7601 rcu_read_unlock(); 7602 } 7603 7604 /* 7605 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7606 * there are no idle cores left in the system; tracked through 7607 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7608 */ 7609 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7610 { 7611 bool idle = true; 7612 int cpu; 7613 7614 for_each_cpu(cpu, cpu_smt_mask(core)) { 7615 if (!available_idle_cpu(cpu)) { 7616 idle = false; 7617 if (*idle_cpu == -1) { 7618 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7619 *idle_cpu = cpu; 7620 break; 7621 } 7622 continue; 7623 } 7624 break; 7625 } 7626 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7627 *idle_cpu = cpu; 7628 } 7629 7630 if (idle) 7631 return core; 7632 7633 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7634 return -1; 7635 } 7636 7637 /* 7638 * Scan the local SMT mask for idle CPUs. 7639 */ 7640 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7641 { 7642 int cpu; 7643 7644 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7645 if (cpu == target) 7646 continue; 7647 /* 7648 * Check if the CPU is in the LLC scheduling domain of @target. 7649 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7650 */ 7651 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7652 continue; 7653 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7654 return cpu; 7655 } 7656 7657 return -1; 7658 } 7659 7660 #else /* CONFIG_SCHED_SMT */ 7661 7662 static inline void set_idle_cores(int cpu, int val) 7663 { 7664 } 7665 7666 static inline bool test_idle_cores(int cpu) 7667 { 7668 return false; 7669 } 7670 7671 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7672 { 7673 return __select_idle_cpu(core, p); 7674 } 7675 7676 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7677 { 7678 return -1; 7679 } 7680 7681 #endif /* CONFIG_SCHED_SMT */ 7682 7683 /* 7684 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7685 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7686 * average idle time for this rq (as found in rq->avg_idle). 7687 */ 7688 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7689 { 7690 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7691 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7692 struct sched_domain_shared *sd_share; 7693 7694 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7695 7696 if (sched_feat(SIS_UTIL)) { 7697 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7698 if (sd_share) { 7699 /* because !--nr is the condition to stop scan */ 7700 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7701 /* overloaded LLC is unlikely to have idle cpu/core */ 7702 if (nr == 1) 7703 return -1; 7704 } 7705 } 7706 7707 if (static_branch_unlikely(&sched_cluster_active)) { 7708 struct sched_group *sg = sd->groups; 7709 7710 if (sg->flags & SD_CLUSTER) { 7711 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7712 if (!cpumask_test_cpu(cpu, cpus)) 7713 continue; 7714 7715 if (has_idle_core) { 7716 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7717 if ((unsigned int)i < nr_cpumask_bits) 7718 return i; 7719 } else { 7720 if (--nr <= 0) 7721 return -1; 7722 idle_cpu = __select_idle_cpu(cpu, p); 7723 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7724 return idle_cpu; 7725 } 7726 } 7727 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7728 } 7729 } 7730 7731 for_each_cpu_wrap(cpu, cpus, target + 1) { 7732 if (has_idle_core) { 7733 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7734 if ((unsigned int)i < nr_cpumask_bits) 7735 return i; 7736 7737 } else { 7738 if (--nr <= 0) 7739 return -1; 7740 idle_cpu = __select_idle_cpu(cpu, p); 7741 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7742 break; 7743 } 7744 } 7745 7746 if (has_idle_core) 7747 set_idle_cores(target, false); 7748 7749 return idle_cpu; 7750 } 7751 7752 /* 7753 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7754 * the task fits. If no CPU is big enough, but there are idle ones, try to 7755 * maximize capacity. 7756 */ 7757 static int 7758 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7759 { 7760 unsigned long task_util, util_min, util_max, best_cap = 0; 7761 int fits, best_fits = 0; 7762 int cpu, best_cpu = -1; 7763 struct cpumask *cpus; 7764 7765 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7766 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7767 7768 task_util = task_util_est(p); 7769 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7770 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7771 7772 for_each_cpu_wrap(cpu, cpus, target) { 7773 unsigned long cpu_cap = capacity_of(cpu); 7774 7775 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7776 continue; 7777 7778 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7779 7780 /* This CPU fits with all requirements */ 7781 if (fits > 0) 7782 return cpu; 7783 /* 7784 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7785 * Look for the CPU with best capacity. 7786 */ 7787 else if (fits < 0) 7788 cpu_cap = get_actual_cpu_capacity(cpu); 7789 7790 /* 7791 * First, select CPU which fits better (-1 being better than 0). 7792 * Then, select the one with best capacity at same level. 7793 */ 7794 if ((fits < best_fits) || 7795 ((fits == best_fits) && (cpu_cap > best_cap))) { 7796 best_cap = cpu_cap; 7797 best_cpu = cpu; 7798 best_fits = fits; 7799 } 7800 } 7801 7802 return best_cpu; 7803 } 7804 7805 static inline bool asym_fits_cpu(unsigned long util, 7806 unsigned long util_min, 7807 unsigned long util_max, 7808 int cpu) 7809 { 7810 if (sched_asym_cpucap_active()) 7811 /* 7812 * Return true only if the cpu fully fits the task requirements 7813 * which include the utilization and the performance hints. 7814 */ 7815 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7816 7817 return true; 7818 } 7819 7820 /* 7821 * Try and locate an idle core/thread in the LLC cache domain. 7822 */ 7823 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7824 { 7825 bool has_idle_core = false; 7826 struct sched_domain *sd; 7827 unsigned long task_util, util_min, util_max; 7828 int i, recent_used_cpu, prev_aff = -1; 7829 7830 /* 7831 * On asymmetric system, update task utilization because we will check 7832 * that the task fits with CPU's capacity. 7833 */ 7834 if (sched_asym_cpucap_active()) { 7835 sync_entity_load_avg(&p->se); 7836 task_util = task_util_est(p); 7837 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7838 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7839 } 7840 7841 /* 7842 * per-cpu select_rq_mask usage 7843 */ 7844 lockdep_assert_irqs_disabled(); 7845 7846 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7847 asym_fits_cpu(task_util, util_min, util_max, target)) 7848 return target; 7849 7850 /* 7851 * If the previous CPU is cache affine and idle, don't be stupid: 7852 */ 7853 if (prev != target && cpus_share_cache(prev, target) && 7854 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7855 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7856 7857 if (!static_branch_unlikely(&sched_cluster_active) || 7858 cpus_share_resources(prev, target)) 7859 return prev; 7860 7861 prev_aff = prev; 7862 } 7863 7864 /* 7865 * Allow a per-cpu kthread to stack with the wakee if the 7866 * kworker thread and the tasks previous CPUs are the same. 7867 * The assumption is that the wakee queued work for the 7868 * per-cpu kthread that is now complete and the wakeup is 7869 * essentially a sync wakeup. An obvious example of this 7870 * pattern is IO completions. 7871 */ 7872 if (is_per_cpu_kthread(current) && 7873 in_task() && 7874 prev == smp_processor_id() && 7875 this_rq()->nr_running <= 1 && 7876 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7877 return prev; 7878 } 7879 7880 /* Check a recently used CPU as a potential idle candidate: */ 7881 recent_used_cpu = p->recent_used_cpu; 7882 p->recent_used_cpu = prev; 7883 if (recent_used_cpu != prev && 7884 recent_used_cpu != target && 7885 cpus_share_cache(recent_used_cpu, target) && 7886 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7887 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7888 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7889 7890 if (!static_branch_unlikely(&sched_cluster_active) || 7891 cpus_share_resources(recent_used_cpu, target)) 7892 return recent_used_cpu; 7893 7894 } else { 7895 recent_used_cpu = -1; 7896 } 7897 7898 /* 7899 * For asymmetric CPU capacity systems, our domain of interest is 7900 * sd_asym_cpucapacity rather than sd_llc. 7901 */ 7902 if (sched_asym_cpucap_active()) { 7903 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7904 /* 7905 * On an asymmetric CPU capacity system where an exclusive 7906 * cpuset defines a symmetric island (i.e. one unique 7907 * capacity_orig value through the cpuset), the key will be set 7908 * but the CPUs within that cpuset will not have a domain with 7909 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7910 * capacity path. 7911 */ 7912 if (sd) { 7913 i = select_idle_capacity(p, sd, target); 7914 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7915 } 7916 } 7917 7918 sd = rcu_dereference(per_cpu(sd_llc, target)); 7919 if (!sd) 7920 return target; 7921 7922 if (sched_smt_active()) { 7923 has_idle_core = test_idle_cores(target); 7924 7925 if (!has_idle_core && cpus_share_cache(prev, target)) { 7926 i = select_idle_smt(p, sd, prev); 7927 if ((unsigned int)i < nr_cpumask_bits) 7928 return i; 7929 } 7930 } 7931 7932 i = select_idle_cpu(p, sd, has_idle_core, target); 7933 if ((unsigned)i < nr_cpumask_bits) 7934 return i; 7935 7936 /* 7937 * For cluster machines which have lower sharing cache like L2 or 7938 * LLC Tag, we tend to find an idle CPU in the target's cluster 7939 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7940 * use them if possible when no idle CPU found in select_idle_cpu(). 7941 */ 7942 if ((unsigned int)prev_aff < nr_cpumask_bits) 7943 return prev_aff; 7944 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7945 return recent_used_cpu; 7946 7947 return target; 7948 } 7949 7950 /** 7951 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7952 * @cpu: the CPU to get the utilization for 7953 * @p: task for which the CPU utilization should be predicted or NULL 7954 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7955 * @boost: 1 to enable boosting, otherwise 0 7956 * 7957 * The unit of the return value must be the same as the one of CPU capacity 7958 * so that CPU utilization can be compared with CPU capacity. 7959 * 7960 * CPU utilization is the sum of running time of runnable tasks plus the 7961 * recent utilization of currently non-runnable tasks on that CPU. 7962 * It represents the amount of CPU capacity currently used by CFS tasks in 7963 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7964 * capacity at f_max. 7965 * 7966 * The estimated CPU utilization is defined as the maximum between CPU 7967 * utilization and sum of the estimated utilization of the currently 7968 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7969 * previously-executed tasks, which helps better deduce how busy a CPU will 7970 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7971 * of such a task would be significantly decayed at this point of time. 7972 * 7973 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7974 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7975 * utilization. Boosting is implemented in cpu_util() so that internal 7976 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7977 * latter via cpu_util_cfs_boost(). 7978 * 7979 * CPU utilization can be higher than the current CPU capacity 7980 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7981 * of rounding errors as well as task migrations or wakeups of new tasks. 7982 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7983 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7984 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7985 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7986 * though since this is useful for predicting the CPU capacity required 7987 * after task migrations (scheduler-driven DVFS). 7988 * 7989 * Return: (Boosted) (estimated) utilization for the specified CPU. 7990 */ 7991 static unsigned long 7992 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7993 { 7994 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7995 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7996 unsigned long runnable; 7997 7998 if (boost) { 7999 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8000 util = max(util, runnable); 8001 } 8002 8003 /* 8004 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8005 * contribution. If @p migrates from another CPU to @cpu add its 8006 * contribution. In all the other cases @cpu is not impacted by the 8007 * migration so its util_avg is already correct. 8008 */ 8009 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8010 lsub_positive(&util, task_util(p)); 8011 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8012 util += task_util(p); 8013 8014 if (sched_feat(UTIL_EST)) { 8015 unsigned long util_est; 8016 8017 util_est = READ_ONCE(cfs_rq->avg.util_est); 8018 8019 /* 8020 * During wake-up @p isn't enqueued yet and doesn't contribute 8021 * to any cpu_rq(cpu)->cfs.avg.util_est. 8022 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8023 * has been enqueued. 8024 * 8025 * During exec (@dst_cpu = -1) @p is enqueued and does 8026 * contribute to cpu_rq(cpu)->cfs.util_est. 8027 * Remove it to "simulate" cpu_util without @p's contribution. 8028 * 8029 * Despite the task_on_rq_queued(@p) check there is still a 8030 * small window for a possible race when an exec 8031 * select_task_rq_fair() races with LB's detach_task(). 8032 * 8033 * detach_task() 8034 * deactivate_task() 8035 * p->on_rq = TASK_ON_RQ_MIGRATING; 8036 * -------------------------------- A 8037 * dequeue_task() \ 8038 * dequeue_task_fair() + Race Time 8039 * util_est_dequeue() / 8040 * -------------------------------- B 8041 * 8042 * The additional check "current == p" is required to further 8043 * reduce the race window. 8044 */ 8045 if (dst_cpu == cpu) 8046 util_est += _task_util_est(p); 8047 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8048 lsub_positive(&util_est, _task_util_est(p)); 8049 8050 util = max(util, util_est); 8051 } 8052 8053 return min(util, arch_scale_cpu_capacity(cpu)); 8054 } 8055 8056 unsigned long cpu_util_cfs(int cpu) 8057 { 8058 return cpu_util(cpu, NULL, -1, 0); 8059 } 8060 8061 unsigned long cpu_util_cfs_boost(int cpu) 8062 { 8063 return cpu_util(cpu, NULL, -1, 1); 8064 } 8065 8066 /* 8067 * cpu_util_without: compute cpu utilization without any contributions from *p 8068 * @cpu: the CPU which utilization is requested 8069 * @p: the task which utilization should be discounted 8070 * 8071 * The utilization of a CPU is defined by the utilization of tasks currently 8072 * enqueued on that CPU as well as tasks which are currently sleeping after an 8073 * execution on that CPU. 8074 * 8075 * This method returns the utilization of the specified CPU by discounting the 8076 * utilization of the specified task, whenever the task is currently 8077 * contributing to the CPU utilization. 8078 */ 8079 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8080 { 8081 /* Task has no contribution or is new */ 8082 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8083 p = NULL; 8084 8085 return cpu_util(cpu, p, -1, 0); 8086 } 8087 8088 /* 8089 * energy_env - Utilization landscape for energy estimation. 8090 * @task_busy_time: Utilization contribution by the task for which we test the 8091 * placement. Given by eenv_task_busy_time(). 8092 * @pd_busy_time: Utilization of the whole perf domain without the task 8093 * contribution. Given by eenv_pd_busy_time(). 8094 * @cpu_cap: Maximum CPU capacity for the perf domain. 8095 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8096 */ 8097 struct energy_env { 8098 unsigned long task_busy_time; 8099 unsigned long pd_busy_time; 8100 unsigned long cpu_cap; 8101 unsigned long pd_cap; 8102 }; 8103 8104 /* 8105 * Compute the task busy time for compute_energy(). This time cannot be 8106 * injected directly into effective_cpu_util() because of the IRQ scaling. 8107 * The latter only makes sense with the most recent CPUs where the task has 8108 * run. 8109 */ 8110 static inline void eenv_task_busy_time(struct energy_env *eenv, 8111 struct task_struct *p, int prev_cpu) 8112 { 8113 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8114 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8115 8116 if (unlikely(irq >= max_cap)) 8117 busy_time = max_cap; 8118 else 8119 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8120 8121 eenv->task_busy_time = busy_time; 8122 } 8123 8124 /* 8125 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8126 * utilization for each @pd_cpus, it however doesn't take into account 8127 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8128 * scale the EM reported power consumption at the (eventually clamped) 8129 * cpu_capacity. 8130 * 8131 * The contribution of the task @p for which we want to estimate the 8132 * energy cost is removed (by cpu_util()) and must be calculated 8133 * separately (see eenv_task_busy_time). This ensures: 8134 * 8135 * - A stable PD utilization, no matter which CPU of that PD we want to place 8136 * the task on. 8137 * 8138 * - A fair comparison between CPUs as the task contribution (task_util()) 8139 * will always be the same no matter which CPU utilization we rely on 8140 * (util_avg or util_est). 8141 * 8142 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8143 * exceed @eenv->pd_cap. 8144 */ 8145 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8146 struct cpumask *pd_cpus, 8147 struct task_struct *p) 8148 { 8149 unsigned long busy_time = 0; 8150 int cpu; 8151 8152 for_each_cpu(cpu, pd_cpus) { 8153 unsigned long util = cpu_util(cpu, p, -1, 0); 8154 8155 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8156 } 8157 8158 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8159 } 8160 8161 /* 8162 * Compute the maximum utilization for compute_energy() when the task @p 8163 * is placed on the cpu @dst_cpu. 8164 * 8165 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8166 * exceed @eenv->cpu_cap. 8167 */ 8168 static inline unsigned long 8169 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8170 struct task_struct *p, int dst_cpu) 8171 { 8172 unsigned long max_util = 0; 8173 int cpu; 8174 8175 for_each_cpu(cpu, pd_cpus) { 8176 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8177 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8178 unsigned long eff_util, min, max; 8179 8180 /* 8181 * Performance domain frequency: utilization clamping 8182 * must be considered since it affects the selection 8183 * of the performance domain frequency. 8184 * NOTE: in case RT tasks are running, by default the min 8185 * utilization can be max OPP. 8186 */ 8187 eff_util = effective_cpu_util(cpu, util, &min, &max); 8188 8189 /* Task's uclamp can modify min and max value */ 8190 if (tsk && uclamp_is_used()) { 8191 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8192 8193 /* 8194 * If there is no active max uclamp constraint, 8195 * directly use task's one, otherwise keep max. 8196 */ 8197 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8198 max = uclamp_eff_value(p, UCLAMP_MAX); 8199 else 8200 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8201 } 8202 8203 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8204 max_util = max(max_util, eff_util); 8205 } 8206 8207 return min(max_util, eenv->cpu_cap); 8208 } 8209 8210 /* 8211 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8212 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8213 * contribution is ignored. 8214 */ 8215 static inline unsigned long 8216 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8217 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8218 { 8219 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8220 unsigned long busy_time = eenv->pd_busy_time; 8221 unsigned long energy; 8222 8223 if (dst_cpu >= 0) 8224 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8225 8226 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8227 8228 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8229 8230 return energy; 8231 } 8232 8233 /* 8234 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8235 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8236 * spare capacity in each performance domain and uses it as a potential 8237 * candidate to execute the task. Then, it uses the Energy Model to figure 8238 * out which of the CPU candidates is the most energy-efficient. 8239 * 8240 * The rationale for this heuristic is as follows. In a performance domain, 8241 * all the most energy efficient CPU candidates (according to the Energy 8242 * Model) are those for which we'll request a low frequency. When there are 8243 * several CPUs for which the frequency request will be the same, we don't 8244 * have enough data to break the tie between them, because the Energy Model 8245 * only includes active power costs. With this model, if we assume that 8246 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8247 * the maximum spare capacity in a performance domain is guaranteed to be among 8248 * the best candidates of the performance domain. 8249 * 8250 * In practice, it could be preferable from an energy standpoint to pack 8251 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8252 * but that could also hurt our chances to go cluster idle, and we have no 8253 * ways to tell with the current Energy Model if this is actually a good 8254 * idea or not. So, find_energy_efficient_cpu() basically favors 8255 * cluster-packing, and spreading inside a cluster. That should at least be 8256 * a good thing for latency, and this is consistent with the idea that most 8257 * of the energy savings of EAS come from the asymmetry of the system, and 8258 * not so much from breaking the tie between identical CPUs. That's also the 8259 * reason why EAS is enabled in the topology code only for systems where 8260 * SD_ASYM_CPUCAPACITY is set. 8261 * 8262 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8263 * they don't have any useful utilization data yet and it's not possible to 8264 * forecast their impact on energy consumption. Consequently, they will be 8265 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8266 * to be energy-inefficient in some use-cases. The alternative would be to 8267 * bias new tasks towards specific types of CPUs first, or to try to infer 8268 * their util_avg from the parent task, but those heuristics could hurt 8269 * other use-cases too. So, until someone finds a better way to solve this, 8270 * let's keep things simple by re-using the existing slow path. 8271 */ 8272 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8273 { 8274 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8275 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8276 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8277 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8278 struct root_domain *rd = this_rq()->rd; 8279 int cpu, best_energy_cpu, target = -1; 8280 int prev_fits = -1, best_fits = -1; 8281 unsigned long best_actual_cap = 0; 8282 unsigned long prev_actual_cap = 0; 8283 struct sched_domain *sd; 8284 struct perf_domain *pd; 8285 struct energy_env eenv; 8286 8287 rcu_read_lock(); 8288 pd = rcu_dereference(rd->pd); 8289 if (!pd) 8290 goto unlock; 8291 8292 /* 8293 * Energy-aware wake-up happens on the lowest sched_domain starting 8294 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8295 */ 8296 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8297 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8298 sd = sd->parent; 8299 if (!sd) 8300 goto unlock; 8301 8302 target = prev_cpu; 8303 8304 sync_entity_load_avg(&p->se); 8305 if (!task_util_est(p) && p_util_min == 0) 8306 goto unlock; 8307 8308 eenv_task_busy_time(&eenv, p, prev_cpu); 8309 8310 for (; pd; pd = pd->next) { 8311 unsigned long util_min = p_util_min, util_max = p_util_max; 8312 unsigned long cpu_cap, cpu_actual_cap, util; 8313 long prev_spare_cap = -1, max_spare_cap = -1; 8314 unsigned long rq_util_min, rq_util_max; 8315 unsigned long cur_delta, base_energy; 8316 int max_spare_cap_cpu = -1; 8317 int fits, max_fits = -1; 8318 8319 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8320 8321 if (cpumask_empty(cpus)) 8322 continue; 8323 8324 /* Account external pressure for the energy estimation */ 8325 cpu = cpumask_first(cpus); 8326 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8327 8328 eenv.cpu_cap = cpu_actual_cap; 8329 eenv.pd_cap = 0; 8330 8331 for_each_cpu(cpu, cpus) { 8332 struct rq *rq = cpu_rq(cpu); 8333 8334 eenv.pd_cap += cpu_actual_cap; 8335 8336 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8337 continue; 8338 8339 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8340 continue; 8341 8342 util = cpu_util(cpu, p, cpu, 0); 8343 cpu_cap = capacity_of(cpu); 8344 8345 /* 8346 * Skip CPUs that cannot satisfy the capacity request. 8347 * IOW, placing the task there would make the CPU 8348 * overutilized. Take uclamp into account to see how 8349 * much capacity we can get out of the CPU; this is 8350 * aligned with sched_cpu_util(). 8351 */ 8352 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8353 /* 8354 * Open code uclamp_rq_util_with() except for 8355 * the clamp() part. I.e.: apply max aggregation 8356 * only. util_fits_cpu() logic requires to 8357 * operate on non clamped util but must use the 8358 * max-aggregated uclamp_{min, max}. 8359 */ 8360 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8361 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8362 8363 util_min = max(rq_util_min, p_util_min); 8364 util_max = max(rq_util_max, p_util_max); 8365 } 8366 8367 fits = util_fits_cpu(util, util_min, util_max, cpu); 8368 if (!fits) 8369 continue; 8370 8371 lsub_positive(&cpu_cap, util); 8372 8373 if (cpu == prev_cpu) { 8374 /* Always use prev_cpu as a candidate. */ 8375 prev_spare_cap = cpu_cap; 8376 prev_fits = fits; 8377 } else if ((fits > max_fits) || 8378 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8379 /* 8380 * Find the CPU with the maximum spare capacity 8381 * among the remaining CPUs in the performance 8382 * domain. 8383 */ 8384 max_spare_cap = cpu_cap; 8385 max_spare_cap_cpu = cpu; 8386 max_fits = fits; 8387 } 8388 } 8389 8390 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8391 continue; 8392 8393 eenv_pd_busy_time(&eenv, cpus, p); 8394 /* Compute the 'base' energy of the pd, without @p */ 8395 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8396 8397 /* Evaluate the energy impact of using prev_cpu. */ 8398 if (prev_spare_cap > -1) { 8399 prev_delta = compute_energy(&eenv, pd, cpus, p, 8400 prev_cpu); 8401 /* CPU utilization has changed */ 8402 if (prev_delta < base_energy) 8403 goto unlock; 8404 prev_delta -= base_energy; 8405 prev_actual_cap = cpu_actual_cap; 8406 best_delta = min(best_delta, prev_delta); 8407 } 8408 8409 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8410 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8411 /* Current best energy cpu fits better */ 8412 if (max_fits < best_fits) 8413 continue; 8414 8415 /* 8416 * Both don't fit performance hint (i.e. uclamp_min) 8417 * but best energy cpu has better capacity. 8418 */ 8419 if ((max_fits < 0) && 8420 (cpu_actual_cap <= best_actual_cap)) 8421 continue; 8422 8423 cur_delta = compute_energy(&eenv, pd, cpus, p, 8424 max_spare_cap_cpu); 8425 /* CPU utilization has changed */ 8426 if (cur_delta < base_energy) 8427 goto unlock; 8428 cur_delta -= base_energy; 8429 8430 /* 8431 * Both fit for the task but best energy cpu has lower 8432 * energy impact. 8433 */ 8434 if ((max_fits > 0) && (best_fits > 0) && 8435 (cur_delta >= best_delta)) 8436 continue; 8437 8438 best_delta = cur_delta; 8439 best_energy_cpu = max_spare_cap_cpu; 8440 best_fits = max_fits; 8441 best_actual_cap = cpu_actual_cap; 8442 } 8443 } 8444 rcu_read_unlock(); 8445 8446 if ((best_fits > prev_fits) || 8447 ((best_fits > 0) && (best_delta < prev_delta)) || 8448 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8449 target = best_energy_cpu; 8450 8451 return target; 8452 8453 unlock: 8454 rcu_read_unlock(); 8455 8456 return target; 8457 } 8458 8459 /* 8460 * select_task_rq_fair: Select target runqueue for the waking task in domains 8461 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8462 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8463 * 8464 * Balances load by selecting the idlest CPU in the idlest group, or under 8465 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8466 * 8467 * Returns the target CPU number. 8468 */ 8469 static int 8470 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8471 { 8472 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8473 struct sched_domain *tmp, *sd = NULL; 8474 int cpu = smp_processor_id(); 8475 int new_cpu = prev_cpu; 8476 int want_affine = 0; 8477 /* SD_flags and WF_flags share the first nibble */ 8478 int sd_flag = wake_flags & 0xF; 8479 8480 /* 8481 * required for stable ->cpus_allowed 8482 */ 8483 lockdep_assert_held(&p->pi_lock); 8484 if (wake_flags & WF_TTWU) { 8485 record_wakee(p); 8486 8487 if ((wake_flags & WF_CURRENT_CPU) && 8488 cpumask_test_cpu(cpu, p->cpus_ptr)) 8489 return cpu; 8490 8491 if (!is_rd_overutilized(this_rq()->rd)) { 8492 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8493 if (new_cpu >= 0) 8494 return new_cpu; 8495 new_cpu = prev_cpu; 8496 } 8497 8498 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8499 } 8500 8501 rcu_read_lock(); 8502 for_each_domain(cpu, tmp) { 8503 /* 8504 * If both 'cpu' and 'prev_cpu' are part of this domain, 8505 * cpu is a valid SD_WAKE_AFFINE target. 8506 */ 8507 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8508 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8509 if (cpu != prev_cpu) 8510 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8511 8512 sd = NULL; /* Prefer wake_affine over balance flags */ 8513 break; 8514 } 8515 8516 /* 8517 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8518 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8519 * will usually go to the fast path. 8520 */ 8521 if (tmp->flags & sd_flag) 8522 sd = tmp; 8523 else if (!want_affine) 8524 break; 8525 } 8526 8527 if (unlikely(sd)) { 8528 /* Slow path */ 8529 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8530 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8531 /* Fast path */ 8532 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8533 } 8534 rcu_read_unlock(); 8535 8536 return new_cpu; 8537 } 8538 8539 /* 8540 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8541 * cfs_rq_of(p) references at time of call are still valid and identify the 8542 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8543 */ 8544 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8545 { 8546 struct sched_entity *se = &p->se; 8547 8548 if (!task_on_rq_migrating(p)) { 8549 remove_entity_load_avg(se); 8550 8551 /* 8552 * Here, the task's PELT values have been updated according to 8553 * the current rq's clock. But if that clock hasn't been 8554 * updated in a while, a substantial idle time will be missed, 8555 * leading to an inflation after wake-up on the new rq. 8556 * 8557 * Estimate the missing time from the cfs_rq last_update_time 8558 * and update sched_avg to improve the PELT continuity after 8559 * migration. 8560 */ 8561 migrate_se_pelt_lag(se); 8562 } 8563 8564 /* Tell new CPU we are migrated */ 8565 se->avg.last_update_time = 0; 8566 8567 update_scan_period(p, new_cpu); 8568 } 8569 8570 static void task_dead_fair(struct task_struct *p) 8571 { 8572 struct sched_entity *se = &p->se; 8573 8574 if (se->sched_delayed) { 8575 struct rq_flags rf; 8576 struct rq *rq; 8577 8578 rq = task_rq_lock(p, &rf); 8579 if (se->sched_delayed) { 8580 update_rq_clock(rq); 8581 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8582 } 8583 task_rq_unlock(rq, p, &rf); 8584 } 8585 8586 remove_entity_load_avg(se); 8587 } 8588 8589 /* 8590 * Set the max capacity the task is allowed to run at for misfit detection. 8591 */ 8592 static void set_task_max_allowed_capacity(struct task_struct *p) 8593 { 8594 struct asym_cap_data *entry; 8595 8596 if (!sched_asym_cpucap_active()) 8597 return; 8598 8599 rcu_read_lock(); 8600 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8601 cpumask_t *cpumask; 8602 8603 cpumask = cpu_capacity_span(entry); 8604 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8605 continue; 8606 8607 p->max_allowed_capacity = entry->capacity; 8608 break; 8609 } 8610 rcu_read_unlock(); 8611 } 8612 8613 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8614 { 8615 set_cpus_allowed_common(p, ctx); 8616 set_task_max_allowed_capacity(p); 8617 } 8618 8619 static int 8620 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8621 { 8622 if (sched_fair_runnable(rq)) 8623 return 1; 8624 8625 return sched_balance_newidle(rq, rf) != 0; 8626 } 8627 #else 8628 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8629 #endif /* CONFIG_SMP */ 8630 8631 static void set_next_buddy(struct sched_entity *se) 8632 { 8633 for_each_sched_entity(se) { 8634 if (SCHED_WARN_ON(!se->on_rq)) 8635 return; 8636 if (se_is_idle(se)) 8637 return; 8638 cfs_rq_of(se)->next = se; 8639 } 8640 } 8641 8642 /* 8643 * Preempt the current task with a newly woken task if needed: 8644 */ 8645 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8646 { 8647 struct task_struct *curr = rq->curr; 8648 struct sched_entity *se = &curr->se, *pse = &p->se; 8649 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8650 int cse_is_idle, pse_is_idle; 8651 8652 if (unlikely(se == pse)) 8653 return; 8654 8655 /* 8656 * This is possible from callers such as attach_tasks(), in which we 8657 * unconditionally wakeup_preempt() after an enqueue (which may have 8658 * lead to a throttle). This both saves work and prevents false 8659 * next-buddy nomination below. 8660 */ 8661 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8662 return; 8663 8664 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8665 set_next_buddy(pse); 8666 } 8667 8668 /* 8669 * We can come here with TIF_NEED_RESCHED already set from new task 8670 * wake up path. 8671 * 8672 * Note: this also catches the edge-case of curr being in a throttled 8673 * group (e.g. via set_curr_task), since update_curr() (in the 8674 * enqueue of curr) will have resulted in resched being set. This 8675 * prevents us from potentially nominating it as a false LAST_BUDDY 8676 * below. 8677 */ 8678 if (test_tsk_need_resched(curr)) 8679 return; 8680 8681 if (!sched_feat(WAKEUP_PREEMPTION)) 8682 return; 8683 8684 find_matching_se(&se, &pse); 8685 WARN_ON_ONCE(!pse); 8686 8687 cse_is_idle = se_is_idle(se); 8688 pse_is_idle = se_is_idle(pse); 8689 8690 /* 8691 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8692 * in the inverse case). 8693 */ 8694 if (cse_is_idle && !pse_is_idle) 8695 goto preempt; 8696 if (cse_is_idle != pse_is_idle) 8697 return; 8698 8699 /* 8700 * BATCH and IDLE tasks do not preempt others. 8701 */ 8702 if (unlikely(!normal_policy(p->policy))) 8703 return; 8704 8705 cfs_rq = cfs_rq_of(se); 8706 update_curr(cfs_rq); 8707 /* 8708 * If @p has a shorter slice than current and @p is eligible, override 8709 * current's slice protection in order to allow preemption. 8710 * 8711 * Note that even if @p does not turn out to be the most eligible 8712 * task at this moment, current's slice protection will be lost. 8713 */ 8714 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) 8715 se->vlag = se->deadline + 1; 8716 8717 /* 8718 * If @p has become the most eligible task, force preemption. 8719 */ 8720 if (pick_eevdf(cfs_rq) == pse) 8721 goto preempt; 8722 8723 return; 8724 8725 preempt: 8726 resched_curr(rq); 8727 } 8728 8729 static struct task_struct *pick_task_fair(struct rq *rq) 8730 { 8731 struct sched_entity *se; 8732 struct cfs_rq *cfs_rq; 8733 8734 again: 8735 cfs_rq = &rq->cfs; 8736 if (!cfs_rq->nr_running) 8737 return NULL; 8738 8739 do { 8740 /* Might not have done put_prev_entity() */ 8741 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8742 update_curr(cfs_rq); 8743 8744 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8745 goto again; 8746 8747 se = pick_next_entity(rq, cfs_rq); 8748 if (!se) 8749 goto again; 8750 cfs_rq = group_cfs_rq(se); 8751 } while (cfs_rq); 8752 8753 return task_of(se); 8754 } 8755 8756 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8757 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8758 8759 struct task_struct * 8760 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8761 { 8762 struct sched_entity *se; 8763 struct task_struct *p; 8764 int new_tasks; 8765 8766 again: 8767 p = pick_task_fair(rq); 8768 if (!p) 8769 goto idle; 8770 se = &p->se; 8771 8772 #ifdef CONFIG_FAIR_GROUP_SCHED 8773 if (prev->sched_class != &fair_sched_class) 8774 goto simple; 8775 8776 __put_prev_set_next_dl_server(rq, prev, p); 8777 8778 /* 8779 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8780 * likely that a next task is from the same cgroup as the current. 8781 * 8782 * Therefore attempt to avoid putting and setting the entire cgroup 8783 * hierarchy, only change the part that actually changes. 8784 * 8785 * Since we haven't yet done put_prev_entity and if the selected task 8786 * is a different task than we started out with, try and touch the 8787 * least amount of cfs_rqs. 8788 */ 8789 if (prev != p) { 8790 struct sched_entity *pse = &prev->se; 8791 struct cfs_rq *cfs_rq; 8792 8793 while (!(cfs_rq = is_same_group(se, pse))) { 8794 int se_depth = se->depth; 8795 int pse_depth = pse->depth; 8796 8797 if (se_depth <= pse_depth) { 8798 put_prev_entity(cfs_rq_of(pse), pse); 8799 pse = parent_entity(pse); 8800 } 8801 if (se_depth >= pse_depth) { 8802 set_next_entity(cfs_rq_of(se), se); 8803 se = parent_entity(se); 8804 } 8805 } 8806 8807 put_prev_entity(cfs_rq, pse); 8808 set_next_entity(cfs_rq, se); 8809 8810 __set_next_task_fair(rq, p, true); 8811 } 8812 8813 return p; 8814 8815 simple: 8816 #endif 8817 put_prev_set_next_task(rq, prev, p); 8818 return p; 8819 8820 idle: 8821 if (!rf) 8822 return NULL; 8823 8824 new_tasks = sched_balance_newidle(rq, rf); 8825 8826 /* 8827 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8828 * possible for any higher priority task to appear. In that case we 8829 * must re-start the pick_next_entity() loop. 8830 */ 8831 if (new_tasks < 0) 8832 return RETRY_TASK; 8833 8834 if (new_tasks > 0) 8835 goto again; 8836 8837 /* 8838 * rq is about to be idle, check if we need to update the 8839 * lost_idle_time of clock_pelt 8840 */ 8841 update_idle_rq_clock_pelt(rq); 8842 8843 return NULL; 8844 } 8845 8846 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8847 { 8848 return pick_next_task_fair(rq, prev, NULL); 8849 } 8850 8851 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8852 { 8853 return !!dl_se->rq->cfs.nr_running; 8854 } 8855 8856 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8857 { 8858 return pick_task_fair(dl_se->rq); 8859 } 8860 8861 void fair_server_init(struct rq *rq) 8862 { 8863 struct sched_dl_entity *dl_se = &rq->fair_server; 8864 8865 init_dl_entity(dl_se); 8866 8867 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8868 } 8869 8870 /* 8871 * Account for a descheduled task: 8872 */ 8873 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8874 { 8875 struct sched_entity *se = &prev->se; 8876 struct cfs_rq *cfs_rq; 8877 8878 for_each_sched_entity(se) { 8879 cfs_rq = cfs_rq_of(se); 8880 put_prev_entity(cfs_rq, se); 8881 } 8882 } 8883 8884 /* 8885 * sched_yield() is very simple 8886 */ 8887 static void yield_task_fair(struct rq *rq) 8888 { 8889 struct task_struct *curr = rq->curr; 8890 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8891 struct sched_entity *se = &curr->se; 8892 8893 /* 8894 * Are we the only task in the tree? 8895 */ 8896 if (unlikely(rq->nr_running == 1)) 8897 return; 8898 8899 clear_buddies(cfs_rq, se); 8900 8901 update_rq_clock(rq); 8902 /* 8903 * Update run-time statistics of the 'current'. 8904 */ 8905 update_curr(cfs_rq); 8906 /* 8907 * Tell update_rq_clock() that we've just updated, 8908 * so we don't do microscopic update in schedule() 8909 * and double the fastpath cost. 8910 */ 8911 rq_clock_skip_update(rq); 8912 8913 se->deadline += calc_delta_fair(se->slice, se); 8914 } 8915 8916 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8917 { 8918 struct sched_entity *se = &p->se; 8919 8920 /* throttled hierarchies are not runnable */ 8921 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8922 return false; 8923 8924 /* Tell the scheduler that we'd really like se to run next. */ 8925 set_next_buddy(se); 8926 8927 yield_task_fair(rq); 8928 8929 return true; 8930 } 8931 8932 #ifdef CONFIG_SMP 8933 /************************************************** 8934 * Fair scheduling class load-balancing methods. 8935 * 8936 * BASICS 8937 * 8938 * The purpose of load-balancing is to achieve the same basic fairness the 8939 * per-CPU scheduler provides, namely provide a proportional amount of compute 8940 * time to each task. This is expressed in the following equation: 8941 * 8942 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8943 * 8944 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8945 * W_i,0 is defined as: 8946 * 8947 * W_i,0 = \Sum_j w_i,j (2) 8948 * 8949 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8950 * is derived from the nice value as per sched_prio_to_weight[]. 8951 * 8952 * The weight average is an exponential decay average of the instantaneous 8953 * weight: 8954 * 8955 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8956 * 8957 * C_i is the compute capacity of CPU i, typically it is the 8958 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8959 * can also include other factors [XXX]. 8960 * 8961 * To achieve this balance we define a measure of imbalance which follows 8962 * directly from (1): 8963 * 8964 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8965 * 8966 * We them move tasks around to minimize the imbalance. In the continuous 8967 * function space it is obvious this converges, in the discrete case we get 8968 * a few fun cases generally called infeasible weight scenarios. 8969 * 8970 * [XXX expand on: 8971 * - infeasible weights; 8972 * - local vs global optima in the discrete case. ] 8973 * 8974 * 8975 * SCHED DOMAINS 8976 * 8977 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8978 * for all i,j solution, we create a tree of CPUs that follows the hardware 8979 * topology where each level pairs two lower groups (or better). This results 8980 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8981 * tree to only the first of the previous level and we decrease the frequency 8982 * of load-balance at each level inversely proportional to the number of CPUs in 8983 * the groups. 8984 * 8985 * This yields: 8986 * 8987 * log_2 n 1 n 8988 * \Sum { --- * --- * 2^i } = O(n) (5) 8989 * i = 0 2^i 2^i 8990 * `- size of each group 8991 * | | `- number of CPUs doing load-balance 8992 * | `- freq 8993 * `- sum over all levels 8994 * 8995 * Coupled with a limit on how many tasks we can migrate every balance pass, 8996 * this makes (5) the runtime complexity of the balancer. 8997 * 8998 * An important property here is that each CPU is still (indirectly) connected 8999 * to every other CPU in at most O(log n) steps: 9000 * 9001 * The adjacency matrix of the resulting graph is given by: 9002 * 9003 * log_2 n 9004 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9005 * k = 0 9006 * 9007 * And you'll find that: 9008 * 9009 * A^(log_2 n)_i,j != 0 for all i,j (7) 9010 * 9011 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9012 * The task movement gives a factor of O(m), giving a convergence complexity 9013 * of: 9014 * 9015 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9016 * 9017 * 9018 * WORK CONSERVING 9019 * 9020 * In order to avoid CPUs going idle while there's still work to do, new idle 9021 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9022 * tree itself instead of relying on other CPUs to bring it work. 9023 * 9024 * This adds some complexity to both (5) and (8) but it reduces the total idle 9025 * time. 9026 * 9027 * [XXX more?] 9028 * 9029 * 9030 * CGROUPS 9031 * 9032 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9033 * 9034 * s_k,i 9035 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9036 * S_k 9037 * 9038 * Where 9039 * 9040 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9041 * 9042 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9043 * 9044 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9045 * property. 9046 * 9047 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9048 * rewrite all of this once again.] 9049 */ 9050 9051 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9052 9053 enum fbq_type { regular, remote, all }; 9054 9055 /* 9056 * 'group_type' describes the group of CPUs at the moment of load balancing. 9057 * 9058 * The enum is ordered by pulling priority, with the group with lowest priority 9059 * first so the group_type can simply be compared when selecting the busiest 9060 * group. See update_sd_pick_busiest(). 9061 */ 9062 enum group_type { 9063 /* The group has spare capacity that can be used to run more tasks. */ 9064 group_has_spare = 0, 9065 /* 9066 * The group is fully used and the tasks don't compete for more CPU 9067 * cycles. Nevertheless, some tasks might wait before running. 9068 */ 9069 group_fully_busy, 9070 /* 9071 * One task doesn't fit with CPU's capacity and must be migrated to a 9072 * more powerful CPU. 9073 */ 9074 group_misfit_task, 9075 /* 9076 * Balance SMT group that's fully busy. Can benefit from migration 9077 * a task on SMT with busy sibling to another CPU on idle core. 9078 */ 9079 group_smt_balance, 9080 /* 9081 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9082 * and the task should be migrated to it instead of running on the 9083 * current CPU. 9084 */ 9085 group_asym_packing, 9086 /* 9087 * The tasks' affinity constraints previously prevented the scheduler 9088 * from balancing the load across the system. 9089 */ 9090 group_imbalanced, 9091 /* 9092 * The CPU is overloaded and can't provide expected CPU cycles to all 9093 * tasks. 9094 */ 9095 group_overloaded 9096 }; 9097 9098 enum migration_type { 9099 migrate_load = 0, 9100 migrate_util, 9101 migrate_task, 9102 migrate_misfit 9103 }; 9104 9105 #define LBF_ALL_PINNED 0x01 9106 #define LBF_NEED_BREAK 0x02 9107 #define LBF_DST_PINNED 0x04 9108 #define LBF_SOME_PINNED 0x08 9109 #define LBF_ACTIVE_LB 0x10 9110 9111 struct lb_env { 9112 struct sched_domain *sd; 9113 9114 struct rq *src_rq; 9115 int src_cpu; 9116 9117 int dst_cpu; 9118 struct rq *dst_rq; 9119 9120 struct cpumask *dst_grpmask; 9121 int new_dst_cpu; 9122 enum cpu_idle_type idle; 9123 long imbalance; 9124 /* The set of CPUs under consideration for load-balancing */ 9125 struct cpumask *cpus; 9126 9127 unsigned int flags; 9128 9129 unsigned int loop; 9130 unsigned int loop_break; 9131 unsigned int loop_max; 9132 9133 enum fbq_type fbq_type; 9134 enum migration_type migration_type; 9135 struct list_head tasks; 9136 }; 9137 9138 /* 9139 * Is this task likely cache-hot: 9140 */ 9141 static int task_hot(struct task_struct *p, struct lb_env *env) 9142 { 9143 s64 delta; 9144 9145 lockdep_assert_rq_held(env->src_rq); 9146 9147 if (p->sched_class != &fair_sched_class) 9148 return 0; 9149 9150 if (unlikely(task_has_idle_policy(p))) 9151 return 0; 9152 9153 /* SMT siblings share cache */ 9154 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9155 return 0; 9156 9157 /* 9158 * Buddy candidates are cache hot: 9159 */ 9160 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9161 (&p->se == cfs_rq_of(&p->se)->next)) 9162 return 1; 9163 9164 if (sysctl_sched_migration_cost == -1) 9165 return 1; 9166 9167 /* 9168 * Don't migrate task if the task's cookie does not match 9169 * with the destination CPU's core cookie. 9170 */ 9171 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9172 return 1; 9173 9174 if (sysctl_sched_migration_cost == 0) 9175 return 0; 9176 9177 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9178 9179 return delta < (s64)sysctl_sched_migration_cost; 9180 } 9181 9182 #ifdef CONFIG_NUMA_BALANCING 9183 /* 9184 * Returns 1, if task migration degrades locality 9185 * Returns 0, if task migration improves locality i.e migration preferred. 9186 * Returns -1, if task migration is not affected by locality. 9187 */ 9188 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9189 { 9190 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9191 unsigned long src_weight, dst_weight; 9192 int src_nid, dst_nid, dist; 9193 9194 if (!static_branch_likely(&sched_numa_balancing)) 9195 return -1; 9196 9197 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9198 return -1; 9199 9200 src_nid = cpu_to_node(env->src_cpu); 9201 dst_nid = cpu_to_node(env->dst_cpu); 9202 9203 if (src_nid == dst_nid) 9204 return -1; 9205 9206 /* Migrating away from the preferred node is always bad. */ 9207 if (src_nid == p->numa_preferred_nid) { 9208 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9209 return 1; 9210 else 9211 return -1; 9212 } 9213 9214 /* Encourage migration to the preferred node. */ 9215 if (dst_nid == p->numa_preferred_nid) 9216 return 0; 9217 9218 /* Leaving a core idle is often worse than degrading locality. */ 9219 if (env->idle == CPU_IDLE) 9220 return -1; 9221 9222 dist = node_distance(src_nid, dst_nid); 9223 if (numa_group) { 9224 src_weight = group_weight(p, src_nid, dist); 9225 dst_weight = group_weight(p, dst_nid, dist); 9226 } else { 9227 src_weight = task_weight(p, src_nid, dist); 9228 dst_weight = task_weight(p, dst_nid, dist); 9229 } 9230 9231 return dst_weight < src_weight; 9232 } 9233 9234 #else 9235 static inline int migrate_degrades_locality(struct task_struct *p, 9236 struct lb_env *env) 9237 { 9238 return -1; 9239 } 9240 #endif 9241 9242 /* 9243 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9244 */ 9245 static 9246 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9247 { 9248 int tsk_cache_hot; 9249 9250 lockdep_assert_rq_held(env->src_rq); 9251 9252 /* 9253 * We do not migrate tasks that are: 9254 * 1) throttled_lb_pair, or 9255 * 2) cannot be migrated to this CPU due to cpus_ptr, or 9256 * 3) running (obviously), or 9257 * 4) are cache-hot on their current CPU. 9258 */ 9259 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9260 return 0; 9261 9262 /* Disregard percpu kthreads; they are where they need to be. */ 9263 if (kthread_is_per_cpu(p)) 9264 return 0; 9265 9266 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9267 int cpu; 9268 9269 schedstat_inc(p->stats.nr_failed_migrations_affine); 9270 9271 env->flags |= LBF_SOME_PINNED; 9272 9273 /* 9274 * Remember if this task can be migrated to any other CPU in 9275 * our sched_group. We may want to revisit it if we couldn't 9276 * meet load balance goals by pulling other tasks on src_cpu. 9277 * 9278 * Avoid computing new_dst_cpu 9279 * - for NEWLY_IDLE 9280 * - if we have already computed one in current iteration 9281 * - if it's an active balance 9282 */ 9283 if (env->idle == CPU_NEWLY_IDLE || 9284 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9285 return 0; 9286 9287 /* Prevent to re-select dst_cpu via env's CPUs: */ 9288 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9289 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9290 env->flags |= LBF_DST_PINNED; 9291 env->new_dst_cpu = cpu; 9292 break; 9293 } 9294 } 9295 9296 return 0; 9297 } 9298 9299 /* Record that we found at least one task that could run on dst_cpu */ 9300 env->flags &= ~LBF_ALL_PINNED; 9301 9302 if (task_on_cpu(env->src_rq, p)) { 9303 schedstat_inc(p->stats.nr_failed_migrations_running); 9304 return 0; 9305 } 9306 9307 /* 9308 * Aggressive migration if: 9309 * 1) active balance 9310 * 2) destination numa is preferred 9311 * 3) task is cache cold, or 9312 * 4) too many balance attempts have failed. 9313 */ 9314 if (env->flags & LBF_ACTIVE_LB) 9315 return 1; 9316 9317 tsk_cache_hot = migrate_degrades_locality(p, env); 9318 if (tsk_cache_hot == -1) 9319 tsk_cache_hot = task_hot(p, env); 9320 9321 if (tsk_cache_hot <= 0 || 9322 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9323 if (tsk_cache_hot == 1) { 9324 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9325 schedstat_inc(p->stats.nr_forced_migrations); 9326 } 9327 return 1; 9328 } 9329 9330 schedstat_inc(p->stats.nr_failed_migrations_hot); 9331 return 0; 9332 } 9333 9334 /* 9335 * detach_task() -- detach the task for the migration specified in env 9336 */ 9337 static void detach_task(struct task_struct *p, struct lb_env *env) 9338 { 9339 lockdep_assert_rq_held(env->src_rq); 9340 9341 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9342 set_task_cpu(p, env->dst_cpu); 9343 } 9344 9345 /* 9346 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9347 * part of active balancing operations within "domain". 9348 * 9349 * Returns a task if successful and NULL otherwise. 9350 */ 9351 static struct task_struct *detach_one_task(struct lb_env *env) 9352 { 9353 struct task_struct *p; 9354 9355 lockdep_assert_rq_held(env->src_rq); 9356 9357 list_for_each_entry_reverse(p, 9358 &env->src_rq->cfs_tasks, se.group_node) { 9359 if (!can_migrate_task(p, env)) 9360 continue; 9361 9362 detach_task(p, env); 9363 9364 /* 9365 * Right now, this is only the second place where 9366 * lb_gained[env->idle] is updated (other is detach_tasks) 9367 * so we can safely collect stats here rather than 9368 * inside detach_tasks(). 9369 */ 9370 schedstat_inc(env->sd->lb_gained[env->idle]); 9371 return p; 9372 } 9373 return NULL; 9374 } 9375 9376 /* 9377 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9378 * busiest_rq, as part of a balancing operation within domain "sd". 9379 * 9380 * Returns number of detached tasks if successful and 0 otherwise. 9381 */ 9382 static int detach_tasks(struct lb_env *env) 9383 { 9384 struct list_head *tasks = &env->src_rq->cfs_tasks; 9385 unsigned long util, load; 9386 struct task_struct *p; 9387 int detached = 0; 9388 9389 lockdep_assert_rq_held(env->src_rq); 9390 9391 /* 9392 * Source run queue has been emptied by another CPU, clear 9393 * LBF_ALL_PINNED flag as we will not test any task. 9394 */ 9395 if (env->src_rq->nr_running <= 1) { 9396 env->flags &= ~LBF_ALL_PINNED; 9397 return 0; 9398 } 9399 9400 if (env->imbalance <= 0) 9401 return 0; 9402 9403 while (!list_empty(tasks)) { 9404 /* 9405 * We don't want to steal all, otherwise we may be treated likewise, 9406 * which could at worst lead to a livelock crash. 9407 */ 9408 if (env->idle && env->src_rq->nr_running <= 1) 9409 break; 9410 9411 env->loop++; 9412 /* We've more or less seen every task there is, call it quits */ 9413 if (env->loop > env->loop_max) 9414 break; 9415 9416 /* take a breather every nr_migrate tasks */ 9417 if (env->loop > env->loop_break) { 9418 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9419 env->flags |= LBF_NEED_BREAK; 9420 break; 9421 } 9422 9423 p = list_last_entry(tasks, struct task_struct, se.group_node); 9424 9425 if (!can_migrate_task(p, env)) 9426 goto next; 9427 9428 switch (env->migration_type) { 9429 case migrate_load: 9430 /* 9431 * Depending of the number of CPUs and tasks and the 9432 * cgroup hierarchy, task_h_load() can return a null 9433 * value. Make sure that env->imbalance decreases 9434 * otherwise detach_tasks() will stop only after 9435 * detaching up to loop_max tasks. 9436 */ 9437 load = max_t(unsigned long, task_h_load(p), 1); 9438 9439 if (sched_feat(LB_MIN) && 9440 load < 16 && !env->sd->nr_balance_failed) 9441 goto next; 9442 9443 /* 9444 * Make sure that we don't migrate too much load. 9445 * Nevertheless, let relax the constraint if 9446 * scheduler fails to find a good waiting task to 9447 * migrate. 9448 */ 9449 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9450 goto next; 9451 9452 env->imbalance -= load; 9453 break; 9454 9455 case migrate_util: 9456 util = task_util_est(p); 9457 9458 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9459 goto next; 9460 9461 env->imbalance -= util; 9462 break; 9463 9464 case migrate_task: 9465 env->imbalance--; 9466 break; 9467 9468 case migrate_misfit: 9469 /* This is not a misfit task */ 9470 if (task_fits_cpu(p, env->src_cpu)) 9471 goto next; 9472 9473 env->imbalance = 0; 9474 break; 9475 } 9476 9477 detach_task(p, env); 9478 list_add(&p->se.group_node, &env->tasks); 9479 9480 detached++; 9481 9482 #ifdef CONFIG_PREEMPTION 9483 /* 9484 * NEWIDLE balancing is a source of latency, so preemptible 9485 * kernels will stop after the first task is detached to minimize 9486 * the critical section. 9487 */ 9488 if (env->idle == CPU_NEWLY_IDLE) 9489 break; 9490 #endif 9491 9492 /* 9493 * We only want to steal up to the prescribed amount of 9494 * load/util/tasks. 9495 */ 9496 if (env->imbalance <= 0) 9497 break; 9498 9499 continue; 9500 next: 9501 list_move(&p->se.group_node, tasks); 9502 } 9503 9504 /* 9505 * Right now, this is one of only two places we collect this stat 9506 * so we can safely collect detach_one_task() stats here rather 9507 * than inside detach_one_task(). 9508 */ 9509 schedstat_add(env->sd->lb_gained[env->idle], detached); 9510 9511 return detached; 9512 } 9513 9514 /* 9515 * attach_task() -- attach the task detached by detach_task() to its new rq. 9516 */ 9517 static void attach_task(struct rq *rq, struct task_struct *p) 9518 { 9519 lockdep_assert_rq_held(rq); 9520 9521 WARN_ON_ONCE(task_rq(p) != rq); 9522 activate_task(rq, p, ENQUEUE_NOCLOCK); 9523 wakeup_preempt(rq, p, 0); 9524 } 9525 9526 /* 9527 * attach_one_task() -- attaches the task returned from detach_one_task() to 9528 * its new rq. 9529 */ 9530 static void attach_one_task(struct rq *rq, struct task_struct *p) 9531 { 9532 struct rq_flags rf; 9533 9534 rq_lock(rq, &rf); 9535 update_rq_clock(rq); 9536 attach_task(rq, p); 9537 rq_unlock(rq, &rf); 9538 } 9539 9540 /* 9541 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9542 * new rq. 9543 */ 9544 static void attach_tasks(struct lb_env *env) 9545 { 9546 struct list_head *tasks = &env->tasks; 9547 struct task_struct *p; 9548 struct rq_flags rf; 9549 9550 rq_lock(env->dst_rq, &rf); 9551 update_rq_clock(env->dst_rq); 9552 9553 while (!list_empty(tasks)) { 9554 p = list_first_entry(tasks, struct task_struct, se.group_node); 9555 list_del_init(&p->se.group_node); 9556 9557 attach_task(env->dst_rq, p); 9558 } 9559 9560 rq_unlock(env->dst_rq, &rf); 9561 } 9562 9563 #ifdef CONFIG_NO_HZ_COMMON 9564 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9565 { 9566 if (cfs_rq->avg.load_avg) 9567 return true; 9568 9569 if (cfs_rq->avg.util_avg) 9570 return true; 9571 9572 return false; 9573 } 9574 9575 static inline bool others_have_blocked(struct rq *rq) 9576 { 9577 if (cpu_util_rt(rq)) 9578 return true; 9579 9580 if (cpu_util_dl(rq)) 9581 return true; 9582 9583 if (hw_load_avg(rq)) 9584 return true; 9585 9586 if (cpu_util_irq(rq)) 9587 return true; 9588 9589 return false; 9590 } 9591 9592 static inline void update_blocked_load_tick(struct rq *rq) 9593 { 9594 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9595 } 9596 9597 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9598 { 9599 if (!has_blocked) 9600 rq->has_blocked_load = 0; 9601 } 9602 #else 9603 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9604 static inline bool others_have_blocked(struct rq *rq) { return false; } 9605 static inline void update_blocked_load_tick(struct rq *rq) {} 9606 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9607 #endif 9608 9609 static bool __update_blocked_others(struct rq *rq, bool *done) 9610 { 9611 bool updated; 9612 9613 /* 9614 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9615 * DL and IRQ signals have been updated before updating CFS. 9616 */ 9617 updated = update_other_load_avgs(rq); 9618 9619 if (others_have_blocked(rq)) 9620 *done = false; 9621 9622 return updated; 9623 } 9624 9625 #ifdef CONFIG_FAIR_GROUP_SCHED 9626 9627 static bool __update_blocked_fair(struct rq *rq, bool *done) 9628 { 9629 struct cfs_rq *cfs_rq, *pos; 9630 bool decayed = false; 9631 int cpu = cpu_of(rq); 9632 9633 /* 9634 * Iterates the task_group tree in a bottom up fashion, see 9635 * list_add_leaf_cfs_rq() for details. 9636 */ 9637 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9638 struct sched_entity *se; 9639 9640 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9641 update_tg_load_avg(cfs_rq); 9642 9643 if (cfs_rq->nr_running == 0) 9644 update_idle_cfs_rq_clock_pelt(cfs_rq); 9645 9646 if (cfs_rq == &rq->cfs) 9647 decayed = true; 9648 } 9649 9650 /* Propagate pending load changes to the parent, if any: */ 9651 se = cfs_rq->tg->se[cpu]; 9652 if (se && !skip_blocked_update(se)) 9653 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9654 9655 /* 9656 * There can be a lot of idle CPU cgroups. Don't let fully 9657 * decayed cfs_rqs linger on the list. 9658 */ 9659 if (cfs_rq_is_decayed(cfs_rq)) 9660 list_del_leaf_cfs_rq(cfs_rq); 9661 9662 /* Don't need periodic decay once load/util_avg are null */ 9663 if (cfs_rq_has_blocked(cfs_rq)) 9664 *done = false; 9665 } 9666 9667 return decayed; 9668 } 9669 9670 /* 9671 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9672 * This needs to be done in a top-down fashion because the load of a child 9673 * group is a fraction of its parents load. 9674 */ 9675 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9676 { 9677 struct rq *rq = rq_of(cfs_rq); 9678 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9679 unsigned long now = jiffies; 9680 unsigned long load; 9681 9682 if (cfs_rq->last_h_load_update == now) 9683 return; 9684 9685 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9686 for_each_sched_entity(se) { 9687 cfs_rq = cfs_rq_of(se); 9688 WRITE_ONCE(cfs_rq->h_load_next, se); 9689 if (cfs_rq->last_h_load_update == now) 9690 break; 9691 } 9692 9693 if (!se) { 9694 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9695 cfs_rq->last_h_load_update = now; 9696 } 9697 9698 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9699 load = cfs_rq->h_load; 9700 load = div64_ul(load * se->avg.load_avg, 9701 cfs_rq_load_avg(cfs_rq) + 1); 9702 cfs_rq = group_cfs_rq(se); 9703 cfs_rq->h_load = load; 9704 cfs_rq->last_h_load_update = now; 9705 } 9706 } 9707 9708 static unsigned long task_h_load(struct task_struct *p) 9709 { 9710 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9711 9712 update_cfs_rq_h_load(cfs_rq); 9713 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9714 cfs_rq_load_avg(cfs_rq) + 1); 9715 } 9716 #else 9717 static bool __update_blocked_fair(struct rq *rq, bool *done) 9718 { 9719 struct cfs_rq *cfs_rq = &rq->cfs; 9720 bool decayed; 9721 9722 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9723 if (cfs_rq_has_blocked(cfs_rq)) 9724 *done = false; 9725 9726 return decayed; 9727 } 9728 9729 static unsigned long task_h_load(struct task_struct *p) 9730 { 9731 return p->se.avg.load_avg; 9732 } 9733 #endif 9734 9735 static void sched_balance_update_blocked_averages(int cpu) 9736 { 9737 bool decayed = false, done = true; 9738 struct rq *rq = cpu_rq(cpu); 9739 struct rq_flags rf; 9740 9741 rq_lock_irqsave(rq, &rf); 9742 update_blocked_load_tick(rq); 9743 update_rq_clock(rq); 9744 9745 decayed |= __update_blocked_others(rq, &done); 9746 decayed |= __update_blocked_fair(rq, &done); 9747 9748 update_blocked_load_status(rq, !done); 9749 if (decayed) 9750 cpufreq_update_util(rq, 0); 9751 rq_unlock_irqrestore(rq, &rf); 9752 } 9753 9754 /********** Helpers for sched_balance_find_src_group ************************/ 9755 9756 /* 9757 * sg_lb_stats - stats of a sched_group required for load-balancing: 9758 */ 9759 struct sg_lb_stats { 9760 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9761 unsigned long group_load; /* Total load over the CPUs of the group */ 9762 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9763 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9764 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9765 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9766 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9767 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9768 unsigned int group_weight; 9769 enum group_type group_type; 9770 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9771 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9772 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9773 #ifdef CONFIG_NUMA_BALANCING 9774 unsigned int nr_numa_running; 9775 unsigned int nr_preferred_running; 9776 #endif 9777 }; 9778 9779 /* 9780 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9781 */ 9782 struct sd_lb_stats { 9783 struct sched_group *busiest; /* Busiest group in this sd */ 9784 struct sched_group *local; /* Local group in this sd */ 9785 unsigned long total_load; /* Total load of all groups in sd */ 9786 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9787 unsigned long avg_load; /* Average load across all groups in sd */ 9788 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9789 9790 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9791 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9792 }; 9793 9794 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9795 { 9796 /* 9797 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9798 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9799 * We must however set busiest_stat::group_type and 9800 * busiest_stat::idle_cpus to the worst busiest group because 9801 * update_sd_pick_busiest() reads these before assignment. 9802 */ 9803 *sds = (struct sd_lb_stats){ 9804 .busiest = NULL, 9805 .local = NULL, 9806 .total_load = 0UL, 9807 .total_capacity = 0UL, 9808 .busiest_stat = { 9809 .idle_cpus = UINT_MAX, 9810 .group_type = group_has_spare, 9811 }, 9812 }; 9813 } 9814 9815 static unsigned long scale_rt_capacity(int cpu) 9816 { 9817 unsigned long max = get_actual_cpu_capacity(cpu); 9818 struct rq *rq = cpu_rq(cpu); 9819 unsigned long used, free; 9820 unsigned long irq; 9821 9822 irq = cpu_util_irq(rq); 9823 9824 if (unlikely(irq >= max)) 9825 return 1; 9826 9827 /* 9828 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9829 * (running and not running) with weights 0 and 1024 respectively. 9830 */ 9831 used = cpu_util_rt(rq); 9832 used += cpu_util_dl(rq); 9833 9834 if (unlikely(used >= max)) 9835 return 1; 9836 9837 free = max - used; 9838 9839 return scale_irq_capacity(free, irq, max); 9840 } 9841 9842 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9843 { 9844 unsigned long capacity = scale_rt_capacity(cpu); 9845 struct sched_group *sdg = sd->groups; 9846 9847 if (!capacity) 9848 capacity = 1; 9849 9850 cpu_rq(cpu)->cpu_capacity = capacity; 9851 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9852 9853 sdg->sgc->capacity = capacity; 9854 sdg->sgc->min_capacity = capacity; 9855 sdg->sgc->max_capacity = capacity; 9856 } 9857 9858 void update_group_capacity(struct sched_domain *sd, int cpu) 9859 { 9860 struct sched_domain *child = sd->child; 9861 struct sched_group *group, *sdg = sd->groups; 9862 unsigned long capacity, min_capacity, max_capacity; 9863 unsigned long interval; 9864 9865 interval = msecs_to_jiffies(sd->balance_interval); 9866 interval = clamp(interval, 1UL, max_load_balance_interval); 9867 sdg->sgc->next_update = jiffies + interval; 9868 9869 if (!child) { 9870 update_cpu_capacity(sd, cpu); 9871 return; 9872 } 9873 9874 capacity = 0; 9875 min_capacity = ULONG_MAX; 9876 max_capacity = 0; 9877 9878 if (child->flags & SD_OVERLAP) { 9879 /* 9880 * SD_OVERLAP domains cannot assume that child groups 9881 * span the current group. 9882 */ 9883 9884 for_each_cpu(cpu, sched_group_span(sdg)) { 9885 unsigned long cpu_cap = capacity_of(cpu); 9886 9887 capacity += cpu_cap; 9888 min_capacity = min(cpu_cap, min_capacity); 9889 max_capacity = max(cpu_cap, max_capacity); 9890 } 9891 } else { 9892 /* 9893 * !SD_OVERLAP domains can assume that child groups 9894 * span the current group. 9895 */ 9896 9897 group = child->groups; 9898 do { 9899 struct sched_group_capacity *sgc = group->sgc; 9900 9901 capacity += sgc->capacity; 9902 min_capacity = min(sgc->min_capacity, min_capacity); 9903 max_capacity = max(sgc->max_capacity, max_capacity); 9904 group = group->next; 9905 } while (group != child->groups); 9906 } 9907 9908 sdg->sgc->capacity = capacity; 9909 sdg->sgc->min_capacity = min_capacity; 9910 sdg->sgc->max_capacity = max_capacity; 9911 } 9912 9913 /* 9914 * Check whether the capacity of the rq has been noticeably reduced by side 9915 * activity. The imbalance_pct is used for the threshold. 9916 * Return true is the capacity is reduced 9917 */ 9918 static inline int 9919 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9920 { 9921 return ((rq->cpu_capacity * sd->imbalance_pct) < 9922 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9923 } 9924 9925 /* Check if the rq has a misfit task */ 9926 static inline bool check_misfit_status(struct rq *rq) 9927 { 9928 return rq->misfit_task_load; 9929 } 9930 9931 /* 9932 * Group imbalance indicates (and tries to solve) the problem where balancing 9933 * groups is inadequate due to ->cpus_ptr constraints. 9934 * 9935 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9936 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9937 * Something like: 9938 * 9939 * { 0 1 2 3 } { 4 5 6 7 } 9940 * * * * * 9941 * 9942 * If we were to balance group-wise we'd place two tasks in the first group and 9943 * two tasks in the second group. Clearly this is undesired as it will overload 9944 * cpu 3 and leave one of the CPUs in the second group unused. 9945 * 9946 * The current solution to this issue is detecting the skew in the first group 9947 * by noticing the lower domain failed to reach balance and had difficulty 9948 * moving tasks due to affinity constraints. 9949 * 9950 * When this is so detected; this group becomes a candidate for busiest; see 9951 * update_sd_pick_busiest(). And calculate_imbalance() and 9952 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 9953 * to create an effective group imbalance. 9954 * 9955 * This is a somewhat tricky proposition since the next run might not find the 9956 * group imbalance and decide the groups need to be balanced again. A most 9957 * subtle and fragile situation. 9958 */ 9959 9960 static inline int sg_imbalanced(struct sched_group *group) 9961 { 9962 return group->sgc->imbalance; 9963 } 9964 9965 /* 9966 * group_has_capacity returns true if the group has spare capacity that could 9967 * be used by some tasks. 9968 * We consider that a group has spare capacity if the number of task is 9969 * smaller than the number of CPUs or if the utilization is lower than the 9970 * available capacity for CFS tasks. 9971 * For the latter, we use a threshold to stabilize the state, to take into 9972 * account the variance of the tasks' load and to return true if the available 9973 * capacity in meaningful for the load balancer. 9974 * As an example, an available capacity of 1% can appear but it doesn't make 9975 * any benefit for the load balance. 9976 */ 9977 static inline bool 9978 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9979 { 9980 if (sgs->sum_nr_running < sgs->group_weight) 9981 return true; 9982 9983 if ((sgs->group_capacity * imbalance_pct) < 9984 (sgs->group_runnable * 100)) 9985 return false; 9986 9987 if ((sgs->group_capacity * 100) > 9988 (sgs->group_util * imbalance_pct)) 9989 return true; 9990 9991 return false; 9992 } 9993 9994 /* 9995 * group_is_overloaded returns true if the group has more tasks than it can 9996 * handle. 9997 * group_is_overloaded is not equals to !group_has_capacity because a group 9998 * with the exact right number of tasks, has no more spare capacity but is not 9999 * overloaded so both group_has_capacity and group_is_overloaded return 10000 * false. 10001 */ 10002 static inline bool 10003 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10004 { 10005 if (sgs->sum_nr_running <= sgs->group_weight) 10006 return false; 10007 10008 if ((sgs->group_capacity * 100) < 10009 (sgs->group_util * imbalance_pct)) 10010 return true; 10011 10012 if ((sgs->group_capacity * imbalance_pct) < 10013 (sgs->group_runnable * 100)) 10014 return true; 10015 10016 return false; 10017 } 10018 10019 static inline enum 10020 group_type group_classify(unsigned int imbalance_pct, 10021 struct sched_group *group, 10022 struct sg_lb_stats *sgs) 10023 { 10024 if (group_is_overloaded(imbalance_pct, sgs)) 10025 return group_overloaded; 10026 10027 if (sg_imbalanced(group)) 10028 return group_imbalanced; 10029 10030 if (sgs->group_asym_packing) 10031 return group_asym_packing; 10032 10033 if (sgs->group_smt_balance) 10034 return group_smt_balance; 10035 10036 if (sgs->group_misfit_task_load) 10037 return group_misfit_task; 10038 10039 if (!group_has_capacity(imbalance_pct, sgs)) 10040 return group_fully_busy; 10041 10042 return group_has_spare; 10043 } 10044 10045 /** 10046 * sched_use_asym_prio - Check whether asym_packing priority must be used 10047 * @sd: The scheduling domain of the load balancing 10048 * @cpu: A CPU 10049 * 10050 * Always use CPU priority when balancing load between SMT siblings. When 10051 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10052 * use CPU priority if the whole core is idle. 10053 * 10054 * Returns: True if the priority of @cpu must be followed. False otherwise. 10055 */ 10056 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10057 { 10058 if (!(sd->flags & SD_ASYM_PACKING)) 10059 return false; 10060 10061 if (!sched_smt_active()) 10062 return true; 10063 10064 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10065 } 10066 10067 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10068 { 10069 /* 10070 * First check if @dst_cpu can do asym_packing load balance. Only do it 10071 * if it has higher priority than @src_cpu. 10072 */ 10073 return sched_use_asym_prio(sd, dst_cpu) && 10074 sched_asym_prefer(dst_cpu, src_cpu); 10075 } 10076 10077 /** 10078 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10079 * @env: The load balancing environment 10080 * @sgs: Load-balancing statistics of the candidate busiest group 10081 * @group: The candidate busiest group 10082 * 10083 * @env::dst_cpu can do asym_packing if it has higher priority than the 10084 * preferred CPU of @group. 10085 * 10086 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10087 * otherwise. 10088 */ 10089 static inline bool 10090 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10091 { 10092 /* 10093 * CPU priorities do not make sense for SMT cores with more than one 10094 * busy sibling. 10095 */ 10096 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10097 (sgs->group_weight - sgs->idle_cpus != 1)) 10098 return false; 10099 10100 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10101 } 10102 10103 /* One group has more than one SMT CPU while the other group does not */ 10104 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10105 struct sched_group *sg2) 10106 { 10107 if (!sg1 || !sg2) 10108 return false; 10109 10110 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10111 (sg2->flags & SD_SHARE_CPUCAPACITY); 10112 } 10113 10114 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10115 struct sched_group *group) 10116 { 10117 if (!env->idle) 10118 return false; 10119 10120 /* 10121 * For SMT source group, it is better to move a task 10122 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10123 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10124 * will not be on. 10125 */ 10126 if (group->flags & SD_SHARE_CPUCAPACITY && 10127 sgs->sum_h_nr_running > 1) 10128 return true; 10129 10130 return false; 10131 } 10132 10133 static inline long sibling_imbalance(struct lb_env *env, 10134 struct sd_lb_stats *sds, 10135 struct sg_lb_stats *busiest, 10136 struct sg_lb_stats *local) 10137 { 10138 int ncores_busiest, ncores_local; 10139 long imbalance; 10140 10141 if (!env->idle || !busiest->sum_nr_running) 10142 return 0; 10143 10144 ncores_busiest = sds->busiest->cores; 10145 ncores_local = sds->local->cores; 10146 10147 if (ncores_busiest == ncores_local) { 10148 imbalance = busiest->sum_nr_running; 10149 lsub_positive(&imbalance, local->sum_nr_running); 10150 return imbalance; 10151 } 10152 10153 /* Balance such that nr_running/ncores ratio are same on both groups */ 10154 imbalance = ncores_local * busiest->sum_nr_running; 10155 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10156 /* Normalize imbalance and do rounding on normalization */ 10157 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10158 imbalance /= ncores_local + ncores_busiest; 10159 10160 /* Take advantage of resource in an empty sched group */ 10161 if (imbalance <= 1 && local->sum_nr_running == 0 && 10162 busiest->sum_nr_running > 1) 10163 imbalance = 2; 10164 10165 return imbalance; 10166 } 10167 10168 static inline bool 10169 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10170 { 10171 /* 10172 * When there is more than 1 task, the group_overloaded case already 10173 * takes care of cpu with reduced capacity 10174 */ 10175 if (rq->cfs.h_nr_running != 1) 10176 return false; 10177 10178 return check_cpu_capacity(rq, sd); 10179 } 10180 10181 /** 10182 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10183 * @env: The load balancing environment. 10184 * @sds: Load-balancing data with statistics of the local group. 10185 * @group: sched_group whose statistics are to be updated. 10186 * @sgs: variable to hold the statistics for this group. 10187 * @sg_overloaded: sched_group is overloaded 10188 * @sg_overutilized: sched_group is overutilized 10189 */ 10190 static inline void update_sg_lb_stats(struct lb_env *env, 10191 struct sd_lb_stats *sds, 10192 struct sched_group *group, 10193 struct sg_lb_stats *sgs, 10194 bool *sg_overloaded, 10195 bool *sg_overutilized) 10196 { 10197 int i, nr_running, local_group; 10198 10199 memset(sgs, 0, sizeof(*sgs)); 10200 10201 local_group = group == sds->local; 10202 10203 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10204 struct rq *rq = cpu_rq(i); 10205 unsigned long load = cpu_load(rq); 10206 10207 sgs->group_load += load; 10208 sgs->group_util += cpu_util_cfs(i); 10209 sgs->group_runnable += cpu_runnable(rq); 10210 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 10211 10212 nr_running = rq->nr_running; 10213 sgs->sum_nr_running += nr_running; 10214 10215 if (nr_running > 1) 10216 *sg_overloaded = 1; 10217 10218 if (cpu_overutilized(i)) 10219 *sg_overutilized = 1; 10220 10221 #ifdef CONFIG_NUMA_BALANCING 10222 sgs->nr_numa_running += rq->nr_numa_running; 10223 sgs->nr_preferred_running += rq->nr_preferred_running; 10224 #endif 10225 /* 10226 * No need to call idle_cpu() if nr_running is not 0 10227 */ 10228 if (!nr_running && idle_cpu(i)) { 10229 sgs->idle_cpus++; 10230 /* Idle cpu can't have misfit task */ 10231 continue; 10232 } 10233 10234 if (local_group) 10235 continue; 10236 10237 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10238 /* Check for a misfit task on the cpu */ 10239 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10240 sgs->group_misfit_task_load = rq->misfit_task_load; 10241 *sg_overloaded = 1; 10242 } 10243 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10244 /* Check for a task running on a CPU with reduced capacity */ 10245 if (sgs->group_misfit_task_load < load) 10246 sgs->group_misfit_task_load = load; 10247 } 10248 } 10249 10250 sgs->group_capacity = group->sgc->capacity; 10251 10252 sgs->group_weight = group->group_weight; 10253 10254 /* Check if dst CPU is idle and preferred to this group */ 10255 if (!local_group && env->idle && sgs->sum_h_nr_running && 10256 sched_group_asym(env, sgs, group)) 10257 sgs->group_asym_packing = 1; 10258 10259 /* Check for loaded SMT group to be balanced to dst CPU */ 10260 if (!local_group && smt_balance(env, sgs, group)) 10261 sgs->group_smt_balance = 1; 10262 10263 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10264 10265 /* Computing avg_load makes sense only when group is overloaded */ 10266 if (sgs->group_type == group_overloaded) 10267 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10268 sgs->group_capacity; 10269 } 10270 10271 /** 10272 * update_sd_pick_busiest - return 1 on busiest group 10273 * @env: The load balancing environment. 10274 * @sds: sched_domain statistics 10275 * @sg: sched_group candidate to be checked for being the busiest 10276 * @sgs: sched_group statistics 10277 * 10278 * Determine if @sg is a busier group than the previously selected 10279 * busiest group. 10280 * 10281 * Return: %true if @sg is a busier group than the previously selected 10282 * busiest group. %false otherwise. 10283 */ 10284 static bool update_sd_pick_busiest(struct lb_env *env, 10285 struct sd_lb_stats *sds, 10286 struct sched_group *sg, 10287 struct sg_lb_stats *sgs) 10288 { 10289 struct sg_lb_stats *busiest = &sds->busiest_stat; 10290 10291 /* Make sure that there is at least one task to pull */ 10292 if (!sgs->sum_h_nr_running) 10293 return false; 10294 10295 /* 10296 * Don't try to pull misfit tasks we can't help. 10297 * We can use max_capacity here as reduction in capacity on some 10298 * CPUs in the group should either be possible to resolve 10299 * internally or be covered by avg_load imbalance (eventually). 10300 */ 10301 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10302 (sgs->group_type == group_misfit_task) && 10303 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10304 sds->local_stat.group_type != group_has_spare)) 10305 return false; 10306 10307 if (sgs->group_type > busiest->group_type) 10308 return true; 10309 10310 if (sgs->group_type < busiest->group_type) 10311 return false; 10312 10313 /* 10314 * The candidate and the current busiest group are the same type of 10315 * group. Let check which one is the busiest according to the type. 10316 */ 10317 10318 switch (sgs->group_type) { 10319 case group_overloaded: 10320 /* Select the overloaded group with highest avg_load. */ 10321 return sgs->avg_load > busiest->avg_load; 10322 10323 case group_imbalanced: 10324 /* 10325 * Select the 1st imbalanced group as we don't have any way to 10326 * choose one more than another. 10327 */ 10328 return false; 10329 10330 case group_asym_packing: 10331 /* Prefer to move from lowest priority CPU's work */ 10332 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10333 10334 case group_misfit_task: 10335 /* 10336 * If we have more than one misfit sg go with the biggest 10337 * misfit. 10338 */ 10339 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10340 10341 case group_smt_balance: 10342 /* 10343 * Check if we have spare CPUs on either SMT group to 10344 * choose has spare or fully busy handling. 10345 */ 10346 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10347 goto has_spare; 10348 10349 fallthrough; 10350 10351 case group_fully_busy: 10352 /* 10353 * Select the fully busy group with highest avg_load. In 10354 * theory, there is no need to pull task from such kind of 10355 * group because tasks have all compute capacity that they need 10356 * but we can still improve the overall throughput by reducing 10357 * contention when accessing shared HW resources. 10358 * 10359 * XXX for now avg_load is not computed and always 0 so we 10360 * select the 1st one, except if @sg is composed of SMT 10361 * siblings. 10362 */ 10363 10364 if (sgs->avg_load < busiest->avg_load) 10365 return false; 10366 10367 if (sgs->avg_load == busiest->avg_load) { 10368 /* 10369 * SMT sched groups need more help than non-SMT groups. 10370 * If @sg happens to also be SMT, either choice is good. 10371 */ 10372 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10373 return false; 10374 } 10375 10376 break; 10377 10378 case group_has_spare: 10379 /* 10380 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10381 * as we do not want to pull task off SMT core with one task 10382 * and make the core idle. 10383 */ 10384 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10385 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10386 return false; 10387 else 10388 return true; 10389 } 10390 has_spare: 10391 10392 /* 10393 * Select not overloaded group with lowest number of idle CPUs 10394 * and highest number of running tasks. We could also compare 10395 * the spare capacity which is more stable but it can end up 10396 * that the group has less spare capacity but finally more idle 10397 * CPUs which means less opportunity to pull tasks. 10398 */ 10399 if (sgs->idle_cpus > busiest->idle_cpus) 10400 return false; 10401 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10402 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10403 return false; 10404 10405 break; 10406 } 10407 10408 /* 10409 * Candidate sg has no more than one task per CPU and has higher 10410 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10411 * throughput. Maximize throughput, power/energy consequences are not 10412 * considered. 10413 */ 10414 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10415 (sgs->group_type <= group_fully_busy) && 10416 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10417 return false; 10418 10419 return true; 10420 } 10421 10422 #ifdef CONFIG_NUMA_BALANCING 10423 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10424 { 10425 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10426 return regular; 10427 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10428 return remote; 10429 return all; 10430 } 10431 10432 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10433 { 10434 if (rq->nr_running > rq->nr_numa_running) 10435 return regular; 10436 if (rq->nr_running > rq->nr_preferred_running) 10437 return remote; 10438 return all; 10439 } 10440 #else 10441 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10442 { 10443 return all; 10444 } 10445 10446 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10447 { 10448 return regular; 10449 } 10450 #endif /* CONFIG_NUMA_BALANCING */ 10451 10452 10453 struct sg_lb_stats; 10454 10455 /* 10456 * task_running_on_cpu - return 1 if @p is running on @cpu. 10457 */ 10458 10459 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10460 { 10461 /* Task has no contribution or is new */ 10462 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10463 return 0; 10464 10465 if (task_on_rq_queued(p)) 10466 return 1; 10467 10468 return 0; 10469 } 10470 10471 /** 10472 * idle_cpu_without - would a given CPU be idle without p ? 10473 * @cpu: the processor on which idleness is tested. 10474 * @p: task which should be ignored. 10475 * 10476 * Return: 1 if the CPU would be idle. 0 otherwise. 10477 */ 10478 static int idle_cpu_without(int cpu, struct task_struct *p) 10479 { 10480 struct rq *rq = cpu_rq(cpu); 10481 10482 if (rq->curr != rq->idle && rq->curr != p) 10483 return 0; 10484 10485 /* 10486 * rq->nr_running can't be used but an updated version without the 10487 * impact of p on cpu must be used instead. The updated nr_running 10488 * be computed and tested before calling idle_cpu_without(). 10489 */ 10490 10491 if (rq->ttwu_pending) 10492 return 0; 10493 10494 return 1; 10495 } 10496 10497 /* 10498 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10499 * @sd: The sched_domain level to look for idlest group. 10500 * @group: sched_group whose statistics are to be updated. 10501 * @sgs: variable to hold the statistics for this group. 10502 * @p: The task for which we look for the idlest group/CPU. 10503 */ 10504 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10505 struct sched_group *group, 10506 struct sg_lb_stats *sgs, 10507 struct task_struct *p) 10508 { 10509 int i, nr_running; 10510 10511 memset(sgs, 0, sizeof(*sgs)); 10512 10513 /* Assume that task can't fit any CPU of the group */ 10514 if (sd->flags & SD_ASYM_CPUCAPACITY) 10515 sgs->group_misfit_task_load = 1; 10516 10517 for_each_cpu(i, sched_group_span(group)) { 10518 struct rq *rq = cpu_rq(i); 10519 unsigned int local; 10520 10521 sgs->group_load += cpu_load_without(rq, p); 10522 sgs->group_util += cpu_util_without(i, p); 10523 sgs->group_runnable += cpu_runnable_without(rq, p); 10524 local = task_running_on_cpu(i, p); 10525 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10526 10527 nr_running = rq->nr_running - local; 10528 sgs->sum_nr_running += nr_running; 10529 10530 /* 10531 * No need to call idle_cpu_without() if nr_running is not 0 10532 */ 10533 if (!nr_running && idle_cpu_without(i, p)) 10534 sgs->idle_cpus++; 10535 10536 /* Check if task fits in the CPU */ 10537 if (sd->flags & SD_ASYM_CPUCAPACITY && 10538 sgs->group_misfit_task_load && 10539 task_fits_cpu(p, i)) 10540 sgs->group_misfit_task_load = 0; 10541 10542 } 10543 10544 sgs->group_capacity = group->sgc->capacity; 10545 10546 sgs->group_weight = group->group_weight; 10547 10548 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10549 10550 /* 10551 * Computing avg_load makes sense only when group is fully busy or 10552 * overloaded 10553 */ 10554 if (sgs->group_type == group_fully_busy || 10555 sgs->group_type == group_overloaded) 10556 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10557 sgs->group_capacity; 10558 } 10559 10560 static bool update_pick_idlest(struct sched_group *idlest, 10561 struct sg_lb_stats *idlest_sgs, 10562 struct sched_group *group, 10563 struct sg_lb_stats *sgs) 10564 { 10565 if (sgs->group_type < idlest_sgs->group_type) 10566 return true; 10567 10568 if (sgs->group_type > idlest_sgs->group_type) 10569 return false; 10570 10571 /* 10572 * The candidate and the current idlest group are the same type of 10573 * group. Let check which one is the idlest according to the type. 10574 */ 10575 10576 switch (sgs->group_type) { 10577 case group_overloaded: 10578 case group_fully_busy: 10579 /* Select the group with lowest avg_load. */ 10580 if (idlest_sgs->avg_load <= sgs->avg_load) 10581 return false; 10582 break; 10583 10584 case group_imbalanced: 10585 case group_asym_packing: 10586 case group_smt_balance: 10587 /* Those types are not used in the slow wakeup path */ 10588 return false; 10589 10590 case group_misfit_task: 10591 /* Select group with the highest max capacity */ 10592 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10593 return false; 10594 break; 10595 10596 case group_has_spare: 10597 /* Select group with most idle CPUs */ 10598 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10599 return false; 10600 10601 /* Select group with lowest group_util */ 10602 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10603 idlest_sgs->group_util <= sgs->group_util) 10604 return false; 10605 10606 break; 10607 } 10608 10609 return true; 10610 } 10611 10612 /* 10613 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10614 * domain. 10615 * 10616 * Assumes p is allowed on at least one CPU in sd. 10617 */ 10618 static struct sched_group * 10619 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10620 { 10621 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10622 struct sg_lb_stats local_sgs, tmp_sgs; 10623 struct sg_lb_stats *sgs; 10624 unsigned long imbalance; 10625 struct sg_lb_stats idlest_sgs = { 10626 .avg_load = UINT_MAX, 10627 .group_type = group_overloaded, 10628 }; 10629 10630 do { 10631 int local_group; 10632 10633 /* Skip over this group if it has no CPUs allowed */ 10634 if (!cpumask_intersects(sched_group_span(group), 10635 p->cpus_ptr)) 10636 continue; 10637 10638 /* Skip over this group if no cookie matched */ 10639 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10640 continue; 10641 10642 local_group = cpumask_test_cpu(this_cpu, 10643 sched_group_span(group)); 10644 10645 if (local_group) { 10646 sgs = &local_sgs; 10647 local = group; 10648 } else { 10649 sgs = &tmp_sgs; 10650 } 10651 10652 update_sg_wakeup_stats(sd, group, sgs, p); 10653 10654 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10655 idlest = group; 10656 idlest_sgs = *sgs; 10657 } 10658 10659 } while (group = group->next, group != sd->groups); 10660 10661 10662 /* There is no idlest group to push tasks to */ 10663 if (!idlest) 10664 return NULL; 10665 10666 /* The local group has been skipped because of CPU affinity */ 10667 if (!local) 10668 return idlest; 10669 10670 /* 10671 * If the local group is idler than the selected idlest group 10672 * don't try and push the task. 10673 */ 10674 if (local_sgs.group_type < idlest_sgs.group_type) 10675 return NULL; 10676 10677 /* 10678 * If the local group is busier than the selected idlest group 10679 * try and push the task. 10680 */ 10681 if (local_sgs.group_type > idlest_sgs.group_type) 10682 return idlest; 10683 10684 switch (local_sgs.group_type) { 10685 case group_overloaded: 10686 case group_fully_busy: 10687 10688 /* Calculate allowed imbalance based on load */ 10689 imbalance = scale_load_down(NICE_0_LOAD) * 10690 (sd->imbalance_pct-100) / 100; 10691 10692 /* 10693 * When comparing groups across NUMA domains, it's possible for 10694 * the local domain to be very lightly loaded relative to the 10695 * remote domains but "imbalance" skews the comparison making 10696 * remote CPUs look much more favourable. When considering 10697 * cross-domain, add imbalance to the load on the remote node 10698 * and consider staying local. 10699 */ 10700 10701 if ((sd->flags & SD_NUMA) && 10702 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10703 return NULL; 10704 10705 /* 10706 * If the local group is less loaded than the selected 10707 * idlest group don't try and push any tasks. 10708 */ 10709 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10710 return NULL; 10711 10712 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10713 return NULL; 10714 break; 10715 10716 case group_imbalanced: 10717 case group_asym_packing: 10718 case group_smt_balance: 10719 /* Those type are not used in the slow wakeup path */ 10720 return NULL; 10721 10722 case group_misfit_task: 10723 /* Select group with the highest max capacity */ 10724 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10725 return NULL; 10726 break; 10727 10728 case group_has_spare: 10729 #ifdef CONFIG_NUMA 10730 if (sd->flags & SD_NUMA) { 10731 int imb_numa_nr = sd->imb_numa_nr; 10732 #ifdef CONFIG_NUMA_BALANCING 10733 int idlest_cpu; 10734 /* 10735 * If there is spare capacity at NUMA, try to select 10736 * the preferred node 10737 */ 10738 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10739 return NULL; 10740 10741 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10742 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10743 return idlest; 10744 #endif /* CONFIG_NUMA_BALANCING */ 10745 /* 10746 * Otherwise, keep the task close to the wakeup source 10747 * and improve locality if the number of running tasks 10748 * would remain below threshold where an imbalance is 10749 * allowed while accounting for the possibility the 10750 * task is pinned to a subset of CPUs. If there is a 10751 * real need of migration, periodic load balance will 10752 * take care of it. 10753 */ 10754 if (p->nr_cpus_allowed != NR_CPUS) { 10755 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10756 10757 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10758 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10759 } 10760 10761 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10762 if (!adjust_numa_imbalance(imbalance, 10763 local_sgs.sum_nr_running + 1, 10764 imb_numa_nr)) { 10765 return NULL; 10766 } 10767 } 10768 #endif /* CONFIG_NUMA */ 10769 10770 /* 10771 * Select group with highest number of idle CPUs. We could also 10772 * compare the utilization which is more stable but it can end 10773 * up that the group has less spare capacity but finally more 10774 * idle CPUs which means more opportunity to run task. 10775 */ 10776 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10777 return NULL; 10778 break; 10779 } 10780 10781 return idlest; 10782 } 10783 10784 static void update_idle_cpu_scan(struct lb_env *env, 10785 unsigned long sum_util) 10786 { 10787 struct sched_domain_shared *sd_share; 10788 int llc_weight, pct; 10789 u64 x, y, tmp; 10790 /* 10791 * Update the number of CPUs to scan in LLC domain, which could 10792 * be used as a hint in select_idle_cpu(). The update of sd_share 10793 * could be expensive because it is within a shared cache line. 10794 * So the write of this hint only occurs during periodic load 10795 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10796 * can fire way more frequently than the former. 10797 */ 10798 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10799 return; 10800 10801 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10802 if (env->sd->span_weight != llc_weight) 10803 return; 10804 10805 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10806 if (!sd_share) 10807 return; 10808 10809 /* 10810 * The number of CPUs to search drops as sum_util increases, when 10811 * sum_util hits 85% or above, the scan stops. 10812 * The reason to choose 85% as the threshold is because this is the 10813 * imbalance_pct(117) when a LLC sched group is overloaded. 10814 * 10815 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10816 * and y'= y / SCHED_CAPACITY_SCALE 10817 * 10818 * x is the ratio of sum_util compared to the CPU capacity: 10819 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10820 * y' is the ratio of CPUs to be scanned in the LLC domain, 10821 * and the number of CPUs to scan is calculated by: 10822 * 10823 * nr_scan = llc_weight * y' [2] 10824 * 10825 * When x hits the threshold of overloaded, AKA, when 10826 * x = 100 / pct, y drops to 0. According to [1], 10827 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10828 * 10829 * Scale x by SCHED_CAPACITY_SCALE: 10830 * x' = sum_util / llc_weight; [3] 10831 * 10832 * and finally [1] becomes: 10833 * y = SCHED_CAPACITY_SCALE - 10834 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10835 * 10836 */ 10837 /* equation [3] */ 10838 x = sum_util; 10839 do_div(x, llc_weight); 10840 10841 /* equation [4] */ 10842 pct = env->sd->imbalance_pct; 10843 tmp = x * x * pct * pct; 10844 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10845 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10846 y = SCHED_CAPACITY_SCALE - tmp; 10847 10848 /* equation [2] */ 10849 y *= llc_weight; 10850 do_div(y, SCHED_CAPACITY_SCALE); 10851 if ((int)y != sd_share->nr_idle_scan) 10852 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10853 } 10854 10855 /** 10856 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10857 * @env: The load balancing environment. 10858 * @sds: variable to hold the statistics for this sched_domain. 10859 */ 10860 10861 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10862 { 10863 struct sched_group *sg = env->sd->groups; 10864 struct sg_lb_stats *local = &sds->local_stat; 10865 struct sg_lb_stats tmp_sgs; 10866 unsigned long sum_util = 0; 10867 bool sg_overloaded = 0, sg_overutilized = 0; 10868 10869 do { 10870 struct sg_lb_stats *sgs = &tmp_sgs; 10871 int local_group; 10872 10873 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10874 if (local_group) { 10875 sds->local = sg; 10876 sgs = local; 10877 10878 if (env->idle != CPU_NEWLY_IDLE || 10879 time_after_eq(jiffies, sg->sgc->next_update)) 10880 update_group_capacity(env->sd, env->dst_cpu); 10881 } 10882 10883 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10884 10885 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10886 sds->busiest = sg; 10887 sds->busiest_stat = *sgs; 10888 } 10889 10890 /* Now, start updating sd_lb_stats */ 10891 sds->total_load += sgs->group_load; 10892 sds->total_capacity += sgs->group_capacity; 10893 10894 sum_util += sgs->group_util; 10895 sg = sg->next; 10896 } while (sg != env->sd->groups); 10897 10898 /* 10899 * Indicate that the child domain of the busiest group prefers tasks 10900 * go to a child's sibling domains first. NB the flags of a sched group 10901 * are those of the child domain. 10902 */ 10903 if (sds->busiest) 10904 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10905 10906 10907 if (env->sd->flags & SD_NUMA) 10908 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10909 10910 if (!env->sd->parent) { 10911 /* update overload indicator if we are at root domain */ 10912 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 10913 10914 /* Update over-utilization (tipping point, U >= 0) indicator */ 10915 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10916 } else if (sg_overutilized) { 10917 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10918 } 10919 10920 update_idle_cpu_scan(env, sum_util); 10921 } 10922 10923 /** 10924 * calculate_imbalance - Calculate the amount of imbalance present within the 10925 * groups of a given sched_domain during load balance. 10926 * @env: load balance environment 10927 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10928 */ 10929 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10930 { 10931 struct sg_lb_stats *local, *busiest; 10932 10933 local = &sds->local_stat; 10934 busiest = &sds->busiest_stat; 10935 10936 if (busiest->group_type == group_misfit_task) { 10937 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10938 /* Set imbalance to allow misfit tasks to be balanced. */ 10939 env->migration_type = migrate_misfit; 10940 env->imbalance = 1; 10941 } else { 10942 /* 10943 * Set load imbalance to allow moving task from cpu 10944 * with reduced capacity. 10945 */ 10946 env->migration_type = migrate_load; 10947 env->imbalance = busiest->group_misfit_task_load; 10948 } 10949 return; 10950 } 10951 10952 if (busiest->group_type == group_asym_packing) { 10953 /* 10954 * In case of asym capacity, we will try to migrate all load to 10955 * the preferred CPU. 10956 */ 10957 env->migration_type = migrate_task; 10958 env->imbalance = busiest->sum_h_nr_running; 10959 return; 10960 } 10961 10962 if (busiest->group_type == group_smt_balance) { 10963 /* Reduce number of tasks sharing CPU capacity */ 10964 env->migration_type = migrate_task; 10965 env->imbalance = 1; 10966 return; 10967 } 10968 10969 if (busiest->group_type == group_imbalanced) { 10970 /* 10971 * In the group_imb case we cannot rely on group-wide averages 10972 * to ensure CPU-load equilibrium, try to move any task to fix 10973 * the imbalance. The next load balance will take care of 10974 * balancing back the system. 10975 */ 10976 env->migration_type = migrate_task; 10977 env->imbalance = 1; 10978 return; 10979 } 10980 10981 /* 10982 * Try to use spare capacity of local group without overloading it or 10983 * emptying busiest. 10984 */ 10985 if (local->group_type == group_has_spare) { 10986 if ((busiest->group_type > group_fully_busy) && 10987 !(env->sd->flags & SD_SHARE_LLC)) { 10988 /* 10989 * If busiest is overloaded, try to fill spare 10990 * capacity. This might end up creating spare capacity 10991 * in busiest or busiest still being overloaded but 10992 * there is no simple way to directly compute the 10993 * amount of load to migrate in order to balance the 10994 * system. 10995 */ 10996 env->migration_type = migrate_util; 10997 env->imbalance = max(local->group_capacity, local->group_util) - 10998 local->group_util; 10999 11000 /* 11001 * In some cases, the group's utilization is max or even 11002 * higher than capacity because of migrations but the 11003 * local CPU is (newly) idle. There is at least one 11004 * waiting task in this overloaded busiest group. Let's 11005 * try to pull it. 11006 */ 11007 if (env->idle && env->imbalance == 0) { 11008 env->migration_type = migrate_task; 11009 env->imbalance = 1; 11010 } 11011 11012 return; 11013 } 11014 11015 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11016 /* 11017 * When prefer sibling, evenly spread running tasks on 11018 * groups. 11019 */ 11020 env->migration_type = migrate_task; 11021 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11022 } else { 11023 11024 /* 11025 * If there is no overload, we just want to even the number of 11026 * idle CPUs. 11027 */ 11028 env->migration_type = migrate_task; 11029 env->imbalance = max_t(long, 0, 11030 (local->idle_cpus - busiest->idle_cpus)); 11031 } 11032 11033 #ifdef CONFIG_NUMA 11034 /* Consider allowing a small imbalance between NUMA groups */ 11035 if (env->sd->flags & SD_NUMA) { 11036 env->imbalance = adjust_numa_imbalance(env->imbalance, 11037 local->sum_nr_running + 1, 11038 env->sd->imb_numa_nr); 11039 } 11040 #endif 11041 11042 /* Number of tasks to move to restore balance */ 11043 env->imbalance >>= 1; 11044 11045 return; 11046 } 11047 11048 /* 11049 * Local is fully busy but has to take more load to relieve the 11050 * busiest group 11051 */ 11052 if (local->group_type < group_overloaded) { 11053 /* 11054 * Local will become overloaded so the avg_load metrics are 11055 * finally needed. 11056 */ 11057 11058 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11059 local->group_capacity; 11060 11061 /* 11062 * If the local group is more loaded than the selected 11063 * busiest group don't try to pull any tasks. 11064 */ 11065 if (local->avg_load >= busiest->avg_load) { 11066 env->imbalance = 0; 11067 return; 11068 } 11069 11070 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11071 sds->total_capacity; 11072 11073 /* 11074 * If the local group is more loaded than the average system 11075 * load, don't try to pull any tasks. 11076 */ 11077 if (local->avg_load >= sds->avg_load) { 11078 env->imbalance = 0; 11079 return; 11080 } 11081 11082 } 11083 11084 /* 11085 * Both group are or will become overloaded and we're trying to get all 11086 * the CPUs to the average_load, so we don't want to push ourselves 11087 * above the average load, nor do we wish to reduce the max loaded CPU 11088 * below the average load. At the same time, we also don't want to 11089 * reduce the group load below the group capacity. Thus we look for 11090 * the minimum possible imbalance. 11091 */ 11092 env->migration_type = migrate_load; 11093 env->imbalance = min( 11094 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11095 (sds->avg_load - local->avg_load) * local->group_capacity 11096 ) / SCHED_CAPACITY_SCALE; 11097 } 11098 11099 /******* sched_balance_find_src_group() helpers end here *********************/ 11100 11101 /* 11102 * Decision matrix according to the local and busiest group type: 11103 * 11104 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11105 * has_spare nr_idle balanced N/A N/A balanced balanced 11106 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11107 * misfit_task force N/A N/A N/A N/A N/A 11108 * asym_packing force force N/A N/A force force 11109 * imbalanced force force N/A N/A force force 11110 * overloaded force force N/A N/A force avg_load 11111 * 11112 * N/A : Not Applicable because already filtered while updating 11113 * statistics. 11114 * balanced : The system is balanced for these 2 groups. 11115 * force : Calculate the imbalance as load migration is probably needed. 11116 * avg_load : Only if imbalance is significant enough. 11117 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11118 * different in groups. 11119 */ 11120 11121 /** 11122 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11123 * if there is an imbalance. 11124 * @env: The load balancing environment. 11125 * 11126 * Also calculates the amount of runnable load which should be moved 11127 * to restore balance. 11128 * 11129 * Return: - The busiest group if imbalance exists. 11130 */ 11131 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11132 { 11133 struct sg_lb_stats *local, *busiest; 11134 struct sd_lb_stats sds; 11135 11136 init_sd_lb_stats(&sds); 11137 11138 /* 11139 * Compute the various statistics relevant for load balancing at 11140 * this level. 11141 */ 11142 update_sd_lb_stats(env, &sds); 11143 11144 /* There is no busy sibling group to pull tasks from */ 11145 if (!sds.busiest) 11146 goto out_balanced; 11147 11148 busiest = &sds.busiest_stat; 11149 11150 /* Misfit tasks should be dealt with regardless of the avg load */ 11151 if (busiest->group_type == group_misfit_task) 11152 goto force_balance; 11153 11154 if (!is_rd_overutilized(env->dst_rq->rd) && 11155 rcu_dereference(env->dst_rq->rd->pd)) 11156 goto out_balanced; 11157 11158 /* ASYM feature bypasses nice load balance check */ 11159 if (busiest->group_type == group_asym_packing) 11160 goto force_balance; 11161 11162 /* 11163 * If the busiest group is imbalanced the below checks don't 11164 * work because they assume all things are equal, which typically 11165 * isn't true due to cpus_ptr constraints and the like. 11166 */ 11167 if (busiest->group_type == group_imbalanced) 11168 goto force_balance; 11169 11170 local = &sds.local_stat; 11171 /* 11172 * If the local group is busier than the selected busiest group 11173 * don't try and pull any tasks. 11174 */ 11175 if (local->group_type > busiest->group_type) 11176 goto out_balanced; 11177 11178 /* 11179 * When groups are overloaded, use the avg_load to ensure fairness 11180 * between tasks. 11181 */ 11182 if (local->group_type == group_overloaded) { 11183 /* 11184 * If the local group is more loaded than the selected 11185 * busiest group don't try to pull any tasks. 11186 */ 11187 if (local->avg_load >= busiest->avg_load) 11188 goto out_balanced; 11189 11190 /* XXX broken for overlapping NUMA groups */ 11191 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11192 sds.total_capacity; 11193 11194 /* 11195 * Don't pull any tasks if this group is already above the 11196 * domain average load. 11197 */ 11198 if (local->avg_load >= sds.avg_load) 11199 goto out_balanced; 11200 11201 /* 11202 * If the busiest group is more loaded, use imbalance_pct to be 11203 * conservative. 11204 */ 11205 if (100 * busiest->avg_load <= 11206 env->sd->imbalance_pct * local->avg_load) 11207 goto out_balanced; 11208 } 11209 11210 /* 11211 * Try to move all excess tasks to a sibling domain of the busiest 11212 * group's child domain. 11213 */ 11214 if (sds.prefer_sibling && local->group_type == group_has_spare && 11215 sibling_imbalance(env, &sds, busiest, local) > 1) 11216 goto force_balance; 11217 11218 if (busiest->group_type != group_overloaded) { 11219 if (!env->idle) { 11220 /* 11221 * If the busiest group is not overloaded (and as a 11222 * result the local one too) but this CPU is already 11223 * busy, let another idle CPU try to pull task. 11224 */ 11225 goto out_balanced; 11226 } 11227 11228 if (busiest->group_type == group_smt_balance && 11229 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11230 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11231 goto force_balance; 11232 } 11233 11234 if (busiest->group_weight > 1 && 11235 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11236 /* 11237 * If the busiest group is not overloaded 11238 * and there is no imbalance between this and busiest 11239 * group wrt idle CPUs, it is balanced. The imbalance 11240 * becomes significant if the diff is greater than 1 11241 * otherwise we might end up to just move the imbalance 11242 * on another group. Of course this applies only if 11243 * there is more than 1 CPU per group. 11244 */ 11245 goto out_balanced; 11246 } 11247 11248 if (busiest->sum_h_nr_running == 1) { 11249 /* 11250 * busiest doesn't have any tasks waiting to run 11251 */ 11252 goto out_balanced; 11253 } 11254 } 11255 11256 force_balance: 11257 /* Looks like there is an imbalance. Compute it */ 11258 calculate_imbalance(env, &sds); 11259 return env->imbalance ? sds.busiest : NULL; 11260 11261 out_balanced: 11262 env->imbalance = 0; 11263 return NULL; 11264 } 11265 11266 /* 11267 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11268 */ 11269 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11270 struct sched_group *group) 11271 { 11272 struct rq *busiest = NULL, *rq; 11273 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11274 unsigned int busiest_nr = 0; 11275 int i; 11276 11277 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11278 unsigned long capacity, load, util; 11279 unsigned int nr_running; 11280 enum fbq_type rt; 11281 11282 rq = cpu_rq(i); 11283 rt = fbq_classify_rq(rq); 11284 11285 /* 11286 * We classify groups/runqueues into three groups: 11287 * - regular: there are !numa tasks 11288 * - remote: there are numa tasks that run on the 'wrong' node 11289 * - all: there is no distinction 11290 * 11291 * In order to avoid migrating ideally placed numa tasks, 11292 * ignore those when there's better options. 11293 * 11294 * If we ignore the actual busiest queue to migrate another 11295 * task, the next balance pass can still reduce the busiest 11296 * queue by moving tasks around inside the node. 11297 * 11298 * If we cannot move enough load due to this classification 11299 * the next pass will adjust the group classification and 11300 * allow migration of more tasks. 11301 * 11302 * Both cases only affect the total convergence complexity. 11303 */ 11304 if (rt > env->fbq_type) 11305 continue; 11306 11307 nr_running = rq->cfs.h_nr_running; 11308 if (!nr_running) 11309 continue; 11310 11311 capacity = capacity_of(i); 11312 11313 /* 11314 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11315 * eventually lead to active_balancing high->low capacity. 11316 * Higher per-CPU capacity is considered better than balancing 11317 * average load. 11318 */ 11319 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11320 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11321 nr_running == 1) 11322 continue; 11323 11324 /* 11325 * Make sure we only pull tasks from a CPU of lower priority 11326 * when balancing between SMT siblings. 11327 * 11328 * If balancing between cores, let lower priority CPUs help 11329 * SMT cores with more than one busy sibling. 11330 */ 11331 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11332 continue; 11333 11334 switch (env->migration_type) { 11335 case migrate_load: 11336 /* 11337 * When comparing with load imbalance, use cpu_load() 11338 * which is not scaled with the CPU capacity. 11339 */ 11340 load = cpu_load(rq); 11341 11342 if (nr_running == 1 && load > env->imbalance && 11343 !check_cpu_capacity(rq, env->sd)) 11344 break; 11345 11346 /* 11347 * For the load comparisons with the other CPUs, 11348 * consider the cpu_load() scaled with the CPU 11349 * capacity, so that the load can be moved away 11350 * from the CPU that is potentially running at a 11351 * lower capacity. 11352 * 11353 * Thus we're looking for max(load_i / capacity_i), 11354 * crosswise multiplication to rid ourselves of the 11355 * division works out to: 11356 * load_i * capacity_j > load_j * capacity_i; 11357 * where j is our previous maximum. 11358 */ 11359 if (load * busiest_capacity > busiest_load * capacity) { 11360 busiest_load = load; 11361 busiest_capacity = capacity; 11362 busiest = rq; 11363 } 11364 break; 11365 11366 case migrate_util: 11367 util = cpu_util_cfs_boost(i); 11368 11369 /* 11370 * Don't try to pull utilization from a CPU with one 11371 * running task. Whatever its utilization, we will fail 11372 * detach the task. 11373 */ 11374 if (nr_running <= 1) 11375 continue; 11376 11377 if (busiest_util < util) { 11378 busiest_util = util; 11379 busiest = rq; 11380 } 11381 break; 11382 11383 case migrate_task: 11384 if (busiest_nr < nr_running) { 11385 busiest_nr = nr_running; 11386 busiest = rq; 11387 } 11388 break; 11389 11390 case migrate_misfit: 11391 /* 11392 * For ASYM_CPUCAPACITY domains with misfit tasks we 11393 * simply seek the "biggest" misfit task. 11394 */ 11395 if (rq->misfit_task_load > busiest_load) { 11396 busiest_load = rq->misfit_task_load; 11397 busiest = rq; 11398 } 11399 11400 break; 11401 11402 } 11403 } 11404 11405 return busiest; 11406 } 11407 11408 /* 11409 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11410 * so long as it is large enough. 11411 */ 11412 #define MAX_PINNED_INTERVAL 512 11413 11414 static inline bool 11415 asym_active_balance(struct lb_env *env) 11416 { 11417 /* 11418 * ASYM_PACKING needs to force migrate tasks from busy but lower 11419 * priority CPUs in order to pack all tasks in the highest priority 11420 * CPUs. When done between cores, do it only if the whole core if the 11421 * whole core is idle. 11422 * 11423 * If @env::src_cpu is an SMT core with busy siblings, let 11424 * the lower priority @env::dst_cpu help it. Do not follow 11425 * CPU priority. 11426 */ 11427 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11428 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11429 !sched_use_asym_prio(env->sd, env->src_cpu)); 11430 } 11431 11432 static inline bool 11433 imbalanced_active_balance(struct lb_env *env) 11434 { 11435 struct sched_domain *sd = env->sd; 11436 11437 /* 11438 * The imbalanced case includes the case of pinned tasks preventing a fair 11439 * distribution of the load on the system but also the even distribution of the 11440 * threads on a system with spare capacity 11441 */ 11442 if ((env->migration_type == migrate_task) && 11443 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11444 return 1; 11445 11446 return 0; 11447 } 11448 11449 static int need_active_balance(struct lb_env *env) 11450 { 11451 struct sched_domain *sd = env->sd; 11452 11453 if (asym_active_balance(env)) 11454 return 1; 11455 11456 if (imbalanced_active_balance(env)) 11457 return 1; 11458 11459 /* 11460 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11461 * It's worth migrating the task if the src_cpu's capacity is reduced 11462 * because of other sched_class or IRQs if more capacity stays 11463 * available on dst_cpu. 11464 */ 11465 if (env->idle && 11466 (env->src_rq->cfs.h_nr_running == 1)) { 11467 if ((check_cpu_capacity(env->src_rq, sd)) && 11468 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11469 return 1; 11470 } 11471 11472 if (env->migration_type == migrate_misfit) 11473 return 1; 11474 11475 return 0; 11476 } 11477 11478 static int active_load_balance_cpu_stop(void *data); 11479 11480 static int should_we_balance(struct lb_env *env) 11481 { 11482 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11483 struct sched_group *sg = env->sd->groups; 11484 int cpu, idle_smt = -1; 11485 11486 /* 11487 * Ensure the balancing environment is consistent; can happen 11488 * when the softirq triggers 'during' hotplug. 11489 */ 11490 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11491 return 0; 11492 11493 /* 11494 * In the newly idle case, we will allow all the CPUs 11495 * to do the newly idle load balance. 11496 * 11497 * However, we bail out if we already have tasks or a wakeup pending, 11498 * to optimize wakeup latency. 11499 */ 11500 if (env->idle == CPU_NEWLY_IDLE) { 11501 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11502 return 0; 11503 return 1; 11504 } 11505 11506 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11507 /* Try to find first idle CPU */ 11508 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11509 if (!idle_cpu(cpu)) 11510 continue; 11511 11512 /* 11513 * Don't balance to idle SMT in busy core right away when 11514 * balancing cores, but remember the first idle SMT CPU for 11515 * later consideration. Find CPU on an idle core first. 11516 */ 11517 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11518 if (idle_smt == -1) 11519 idle_smt = cpu; 11520 /* 11521 * If the core is not idle, and first SMT sibling which is 11522 * idle has been found, then its not needed to check other 11523 * SMT siblings for idleness: 11524 */ 11525 #ifdef CONFIG_SCHED_SMT 11526 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11527 #endif 11528 continue; 11529 } 11530 11531 /* 11532 * Are we the first idle core in a non-SMT domain or higher, 11533 * or the first idle CPU in a SMT domain? 11534 */ 11535 return cpu == env->dst_cpu; 11536 } 11537 11538 /* Are we the first idle CPU with busy siblings? */ 11539 if (idle_smt != -1) 11540 return idle_smt == env->dst_cpu; 11541 11542 /* Are we the first CPU of this group ? */ 11543 return group_balance_cpu(sg) == env->dst_cpu; 11544 } 11545 11546 /* 11547 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11548 * tasks if there is an imbalance. 11549 */ 11550 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11551 struct sched_domain *sd, enum cpu_idle_type idle, 11552 int *continue_balancing) 11553 { 11554 int ld_moved, cur_ld_moved, active_balance = 0; 11555 struct sched_domain *sd_parent = sd->parent; 11556 struct sched_group *group; 11557 struct rq *busiest; 11558 struct rq_flags rf; 11559 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11560 struct lb_env env = { 11561 .sd = sd, 11562 .dst_cpu = this_cpu, 11563 .dst_rq = this_rq, 11564 .dst_grpmask = group_balance_mask(sd->groups), 11565 .idle = idle, 11566 .loop_break = SCHED_NR_MIGRATE_BREAK, 11567 .cpus = cpus, 11568 .fbq_type = all, 11569 .tasks = LIST_HEAD_INIT(env.tasks), 11570 }; 11571 11572 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11573 11574 schedstat_inc(sd->lb_count[idle]); 11575 11576 redo: 11577 if (!should_we_balance(&env)) { 11578 *continue_balancing = 0; 11579 goto out_balanced; 11580 } 11581 11582 group = sched_balance_find_src_group(&env); 11583 if (!group) { 11584 schedstat_inc(sd->lb_nobusyg[idle]); 11585 goto out_balanced; 11586 } 11587 11588 busiest = sched_balance_find_src_rq(&env, group); 11589 if (!busiest) { 11590 schedstat_inc(sd->lb_nobusyq[idle]); 11591 goto out_balanced; 11592 } 11593 11594 WARN_ON_ONCE(busiest == env.dst_rq); 11595 11596 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11597 11598 env.src_cpu = busiest->cpu; 11599 env.src_rq = busiest; 11600 11601 ld_moved = 0; 11602 /* Clear this flag as soon as we find a pullable task */ 11603 env.flags |= LBF_ALL_PINNED; 11604 if (busiest->nr_running > 1) { 11605 /* 11606 * Attempt to move tasks. If sched_balance_find_src_group has found 11607 * an imbalance but busiest->nr_running <= 1, the group is 11608 * still unbalanced. ld_moved simply stays zero, so it is 11609 * correctly treated as an imbalance. 11610 */ 11611 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11612 11613 more_balance: 11614 rq_lock_irqsave(busiest, &rf); 11615 update_rq_clock(busiest); 11616 11617 /* 11618 * cur_ld_moved - load moved in current iteration 11619 * ld_moved - cumulative load moved across iterations 11620 */ 11621 cur_ld_moved = detach_tasks(&env); 11622 11623 /* 11624 * We've detached some tasks from busiest_rq. Every 11625 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11626 * unlock busiest->lock, and we are able to be sure 11627 * that nobody can manipulate the tasks in parallel. 11628 * See task_rq_lock() family for the details. 11629 */ 11630 11631 rq_unlock(busiest, &rf); 11632 11633 if (cur_ld_moved) { 11634 attach_tasks(&env); 11635 ld_moved += cur_ld_moved; 11636 } 11637 11638 local_irq_restore(rf.flags); 11639 11640 if (env.flags & LBF_NEED_BREAK) { 11641 env.flags &= ~LBF_NEED_BREAK; 11642 goto more_balance; 11643 } 11644 11645 /* 11646 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11647 * us and move them to an alternate dst_cpu in our sched_group 11648 * where they can run. The upper limit on how many times we 11649 * iterate on same src_cpu is dependent on number of CPUs in our 11650 * sched_group. 11651 * 11652 * This changes load balance semantics a bit on who can move 11653 * load to a given_cpu. In addition to the given_cpu itself 11654 * (or a ilb_cpu acting on its behalf where given_cpu is 11655 * nohz-idle), we now have balance_cpu in a position to move 11656 * load to given_cpu. In rare situations, this may cause 11657 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11658 * _independently_ and at _same_ time to move some load to 11659 * given_cpu) causing excess load to be moved to given_cpu. 11660 * This however should not happen so much in practice and 11661 * moreover subsequent load balance cycles should correct the 11662 * excess load moved. 11663 */ 11664 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11665 11666 /* Prevent to re-select dst_cpu via env's CPUs */ 11667 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11668 11669 env.dst_rq = cpu_rq(env.new_dst_cpu); 11670 env.dst_cpu = env.new_dst_cpu; 11671 env.flags &= ~LBF_DST_PINNED; 11672 env.loop = 0; 11673 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11674 11675 /* 11676 * Go back to "more_balance" rather than "redo" since we 11677 * need to continue with same src_cpu. 11678 */ 11679 goto more_balance; 11680 } 11681 11682 /* 11683 * We failed to reach balance because of affinity. 11684 */ 11685 if (sd_parent) { 11686 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11687 11688 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11689 *group_imbalance = 1; 11690 } 11691 11692 /* All tasks on this runqueue were pinned by CPU affinity */ 11693 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11694 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11695 /* 11696 * Attempting to continue load balancing at the current 11697 * sched_domain level only makes sense if there are 11698 * active CPUs remaining as possible busiest CPUs to 11699 * pull load from which are not contained within the 11700 * destination group that is receiving any migrated 11701 * load. 11702 */ 11703 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11704 env.loop = 0; 11705 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11706 goto redo; 11707 } 11708 goto out_all_pinned; 11709 } 11710 } 11711 11712 if (!ld_moved) { 11713 schedstat_inc(sd->lb_failed[idle]); 11714 /* 11715 * Increment the failure counter only on periodic balance. 11716 * We do not want newidle balance, which can be very 11717 * frequent, pollute the failure counter causing 11718 * excessive cache_hot migrations and active balances. 11719 * 11720 * Similarly for migration_misfit which is not related to 11721 * load/util migration, don't pollute nr_balance_failed. 11722 */ 11723 if (idle != CPU_NEWLY_IDLE && 11724 env.migration_type != migrate_misfit) 11725 sd->nr_balance_failed++; 11726 11727 if (need_active_balance(&env)) { 11728 unsigned long flags; 11729 11730 raw_spin_rq_lock_irqsave(busiest, flags); 11731 11732 /* 11733 * Don't kick the active_load_balance_cpu_stop, 11734 * if the curr task on busiest CPU can't be 11735 * moved to this_cpu: 11736 */ 11737 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11738 raw_spin_rq_unlock_irqrestore(busiest, flags); 11739 goto out_one_pinned; 11740 } 11741 11742 /* Record that we found at least one task that could run on this_cpu */ 11743 env.flags &= ~LBF_ALL_PINNED; 11744 11745 /* 11746 * ->active_balance synchronizes accesses to 11747 * ->active_balance_work. Once set, it's cleared 11748 * only after active load balance is finished. 11749 */ 11750 if (!busiest->active_balance) { 11751 busiest->active_balance = 1; 11752 busiest->push_cpu = this_cpu; 11753 active_balance = 1; 11754 } 11755 11756 preempt_disable(); 11757 raw_spin_rq_unlock_irqrestore(busiest, flags); 11758 if (active_balance) { 11759 stop_one_cpu_nowait(cpu_of(busiest), 11760 active_load_balance_cpu_stop, busiest, 11761 &busiest->active_balance_work); 11762 } 11763 preempt_enable(); 11764 } 11765 } else { 11766 sd->nr_balance_failed = 0; 11767 } 11768 11769 if (likely(!active_balance) || need_active_balance(&env)) { 11770 /* We were unbalanced, so reset the balancing interval */ 11771 sd->balance_interval = sd->min_interval; 11772 } 11773 11774 goto out; 11775 11776 out_balanced: 11777 /* 11778 * We reach balance although we may have faced some affinity 11779 * constraints. Clear the imbalance flag only if other tasks got 11780 * a chance to move and fix the imbalance. 11781 */ 11782 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11783 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11784 11785 if (*group_imbalance) 11786 *group_imbalance = 0; 11787 } 11788 11789 out_all_pinned: 11790 /* 11791 * We reach balance because all tasks are pinned at this level so 11792 * we can't migrate them. Let the imbalance flag set so parent level 11793 * can try to migrate them. 11794 */ 11795 schedstat_inc(sd->lb_balanced[idle]); 11796 11797 sd->nr_balance_failed = 0; 11798 11799 out_one_pinned: 11800 ld_moved = 0; 11801 11802 /* 11803 * sched_balance_newidle() disregards balance intervals, so we could 11804 * repeatedly reach this code, which would lead to balance_interval 11805 * skyrocketing in a short amount of time. Skip the balance_interval 11806 * increase logic to avoid that. 11807 * 11808 * Similarly misfit migration which is not necessarily an indication of 11809 * the system being busy and requires lb to backoff to let it settle 11810 * down. 11811 */ 11812 if (env.idle == CPU_NEWLY_IDLE || 11813 env.migration_type == migrate_misfit) 11814 goto out; 11815 11816 /* tune up the balancing interval */ 11817 if ((env.flags & LBF_ALL_PINNED && 11818 sd->balance_interval < MAX_PINNED_INTERVAL) || 11819 sd->balance_interval < sd->max_interval) 11820 sd->balance_interval *= 2; 11821 out: 11822 return ld_moved; 11823 } 11824 11825 static inline unsigned long 11826 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11827 { 11828 unsigned long interval = sd->balance_interval; 11829 11830 if (cpu_busy) 11831 interval *= sd->busy_factor; 11832 11833 /* scale ms to jiffies */ 11834 interval = msecs_to_jiffies(interval); 11835 11836 /* 11837 * Reduce likelihood of busy balancing at higher domains racing with 11838 * balancing at lower domains by preventing their balancing periods 11839 * from being multiples of each other. 11840 */ 11841 if (cpu_busy) 11842 interval -= 1; 11843 11844 interval = clamp(interval, 1UL, max_load_balance_interval); 11845 11846 return interval; 11847 } 11848 11849 static inline void 11850 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11851 { 11852 unsigned long interval, next; 11853 11854 /* used by idle balance, so cpu_busy = 0 */ 11855 interval = get_sd_balance_interval(sd, 0); 11856 next = sd->last_balance + interval; 11857 11858 if (time_after(*next_balance, next)) 11859 *next_balance = next; 11860 } 11861 11862 /* 11863 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11864 * running tasks off the busiest CPU onto idle CPUs. It requires at 11865 * least 1 task to be running on each physical CPU where possible, and 11866 * avoids physical / logical imbalances. 11867 */ 11868 static int active_load_balance_cpu_stop(void *data) 11869 { 11870 struct rq *busiest_rq = data; 11871 int busiest_cpu = cpu_of(busiest_rq); 11872 int target_cpu = busiest_rq->push_cpu; 11873 struct rq *target_rq = cpu_rq(target_cpu); 11874 struct sched_domain *sd; 11875 struct task_struct *p = NULL; 11876 struct rq_flags rf; 11877 11878 rq_lock_irq(busiest_rq, &rf); 11879 /* 11880 * Between queueing the stop-work and running it is a hole in which 11881 * CPUs can become inactive. We should not move tasks from or to 11882 * inactive CPUs. 11883 */ 11884 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11885 goto out_unlock; 11886 11887 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11888 if (unlikely(busiest_cpu != smp_processor_id() || 11889 !busiest_rq->active_balance)) 11890 goto out_unlock; 11891 11892 /* Is there any task to move? */ 11893 if (busiest_rq->nr_running <= 1) 11894 goto out_unlock; 11895 11896 /* 11897 * This condition is "impossible", if it occurs 11898 * we need to fix it. Originally reported by 11899 * Bjorn Helgaas on a 128-CPU setup. 11900 */ 11901 WARN_ON_ONCE(busiest_rq == target_rq); 11902 11903 /* Search for an sd spanning us and the target CPU. */ 11904 rcu_read_lock(); 11905 for_each_domain(target_cpu, sd) { 11906 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11907 break; 11908 } 11909 11910 if (likely(sd)) { 11911 struct lb_env env = { 11912 .sd = sd, 11913 .dst_cpu = target_cpu, 11914 .dst_rq = target_rq, 11915 .src_cpu = busiest_rq->cpu, 11916 .src_rq = busiest_rq, 11917 .idle = CPU_IDLE, 11918 .flags = LBF_ACTIVE_LB, 11919 }; 11920 11921 schedstat_inc(sd->alb_count); 11922 update_rq_clock(busiest_rq); 11923 11924 p = detach_one_task(&env); 11925 if (p) { 11926 schedstat_inc(sd->alb_pushed); 11927 /* Active balancing done, reset the failure counter. */ 11928 sd->nr_balance_failed = 0; 11929 } else { 11930 schedstat_inc(sd->alb_failed); 11931 } 11932 } 11933 rcu_read_unlock(); 11934 out_unlock: 11935 busiest_rq->active_balance = 0; 11936 rq_unlock(busiest_rq, &rf); 11937 11938 if (p) 11939 attach_one_task(target_rq, p); 11940 11941 local_irq_enable(); 11942 11943 return 0; 11944 } 11945 11946 /* 11947 * This flag serializes load-balancing passes over large domains 11948 * (above the NODE topology level) - only one load-balancing instance 11949 * may run at a time, to reduce overhead on very large systems with 11950 * lots of CPUs and large NUMA distances. 11951 * 11952 * - Note that load-balancing passes triggered while another one 11953 * is executing are skipped and not re-tried. 11954 * 11955 * - Also note that this does not serialize rebalance_domains() 11956 * execution, as non-SD_SERIALIZE domains will still be 11957 * load-balanced in parallel. 11958 */ 11959 static atomic_t sched_balance_running = ATOMIC_INIT(0); 11960 11961 /* 11962 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 11963 * This trades load-balance latency on larger machines for less cross talk. 11964 */ 11965 void update_max_interval(void) 11966 { 11967 max_load_balance_interval = HZ*num_online_cpus()/10; 11968 } 11969 11970 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11971 { 11972 if (cost > sd->max_newidle_lb_cost) { 11973 /* 11974 * Track max cost of a domain to make sure to not delay the 11975 * next wakeup on the CPU. 11976 */ 11977 sd->max_newidle_lb_cost = cost; 11978 sd->last_decay_max_lb_cost = jiffies; 11979 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11980 /* 11981 * Decay the newidle max times by ~1% per second to ensure that 11982 * it is not outdated and the current max cost is actually 11983 * shorter. 11984 */ 11985 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11986 sd->last_decay_max_lb_cost = jiffies; 11987 11988 return true; 11989 } 11990 11991 return false; 11992 } 11993 11994 /* 11995 * It checks each scheduling domain to see if it is due to be balanced, 11996 * and initiates a balancing operation if so. 11997 * 11998 * Balancing parameters are set up in init_sched_domains. 11999 */ 12000 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12001 { 12002 int continue_balancing = 1; 12003 int cpu = rq->cpu; 12004 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12005 unsigned long interval; 12006 struct sched_domain *sd; 12007 /* Earliest time when we have to do rebalance again */ 12008 unsigned long next_balance = jiffies + 60*HZ; 12009 int update_next_balance = 0; 12010 int need_serialize, need_decay = 0; 12011 u64 max_cost = 0; 12012 12013 rcu_read_lock(); 12014 for_each_domain(cpu, sd) { 12015 /* 12016 * Decay the newidle max times here because this is a regular 12017 * visit to all the domains. 12018 */ 12019 need_decay = update_newidle_cost(sd, 0); 12020 max_cost += sd->max_newidle_lb_cost; 12021 12022 /* 12023 * Stop the load balance at this level. There is another 12024 * CPU in our sched group which is doing load balancing more 12025 * actively. 12026 */ 12027 if (!continue_balancing) { 12028 if (need_decay) 12029 continue; 12030 break; 12031 } 12032 12033 interval = get_sd_balance_interval(sd, busy); 12034 12035 need_serialize = sd->flags & SD_SERIALIZE; 12036 if (need_serialize) { 12037 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12038 goto out; 12039 } 12040 12041 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12042 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12043 /* 12044 * The LBF_DST_PINNED logic could have changed 12045 * env->dst_cpu, so we can't know our idle 12046 * state even if we migrated tasks. Update it. 12047 */ 12048 idle = idle_cpu(cpu); 12049 busy = !idle && !sched_idle_cpu(cpu); 12050 } 12051 sd->last_balance = jiffies; 12052 interval = get_sd_balance_interval(sd, busy); 12053 } 12054 if (need_serialize) 12055 atomic_set_release(&sched_balance_running, 0); 12056 out: 12057 if (time_after(next_balance, sd->last_balance + interval)) { 12058 next_balance = sd->last_balance + interval; 12059 update_next_balance = 1; 12060 } 12061 } 12062 if (need_decay) { 12063 /* 12064 * Ensure the rq-wide value also decays but keep it at a 12065 * reasonable floor to avoid funnies with rq->avg_idle. 12066 */ 12067 rq->max_idle_balance_cost = 12068 max((u64)sysctl_sched_migration_cost, max_cost); 12069 } 12070 rcu_read_unlock(); 12071 12072 /* 12073 * next_balance will be updated only when there is a need. 12074 * When the cpu is attached to null domain for ex, it will not be 12075 * updated. 12076 */ 12077 if (likely(update_next_balance)) 12078 rq->next_balance = next_balance; 12079 12080 } 12081 12082 static inline int on_null_domain(struct rq *rq) 12083 { 12084 return unlikely(!rcu_dereference_sched(rq->sd)); 12085 } 12086 12087 #ifdef CONFIG_NO_HZ_COMMON 12088 /* 12089 * NOHZ idle load balancing (ILB) details: 12090 * 12091 * - When one of the busy CPUs notices that there may be an idle rebalancing 12092 * needed, they will kick the idle load balancer, which then does idle 12093 * load balancing for all the idle CPUs. 12094 * 12095 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 12096 * anywhere yet. 12097 */ 12098 static inline int find_new_ilb(void) 12099 { 12100 const struct cpumask *hk_mask; 12101 int ilb_cpu; 12102 12103 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 12104 12105 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12106 12107 if (ilb_cpu == smp_processor_id()) 12108 continue; 12109 12110 if (idle_cpu(ilb_cpu)) 12111 return ilb_cpu; 12112 } 12113 12114 return -1; 12115 } 12116 12117 /* 12118 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12119 * SMP function call (IPI). 12120 * 12121 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 12122 */ 12123 static void kick_ilb(unsigned int flags) 12124 { 12125 int ilb_cpu; 12126 12127 /* 12128 * Increase nohz.next_balance only when if full ilb is triggered but 12129 * not if we only update stats. 12130 */ 12131 if (flags & NOHZ_BALANCE_KICK) 12132 nohz.next_balance = jiffies+1; 12133 12134 ilb_cpu = find_new_ilb(); 12135 if (ilb_cpu < 0) 12136 return; 12137 12138 /* 12139 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12140 * i.e. all bits in flags are already set in ilb_cpu. 12141 */ 12142 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12143 return; 12144 12145 /* 12146 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12147 * the first flag owns it; cleared by nohz_csd_func(). 12148 */ 12149 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12150 if (flags & NOHZ_KICK_MASK) 12151 return; 12152 12153 /* 12154 * This way we generate an IPI on the target CPU which 12155 * is idle, and the softirq performing NOHZ idle load balancing 12156 * will be run before returning from the IPI. 12157 */ 12158 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12159 } 12160 12161 /* 12162 * Current decision point for kicking the idle load balancer in the presence 12163 * of idle CPUs in the system. 12164 */ 12165 static void nohz_balancer_kick(struct rq *rq) 12166 { 12167 unsigned long now = jiffies; 12168 struct sched_domain_shared *sds; 12169 struct sched_domain *sd; 12170 int nr_busy, i, cpu = rq->cpu; 12171 unsigned int flags = 0; 12172 12173 if (unlikely(rq->idle_balance)) 12174 return; 12175 12176 /* 12177 * We may be recently in ticked or tickless idle mode. At the first 12178 * busy tick after returning from idle, we will update the busy stats. 12179 */ 12180 nohz_balance_exit_idle(rq); 12181 12182 /* 12183 * None are in tickless mode and hence no need for NOHZ idle load 12184 * balancing: 12185 */ 12186 if (likely(!atomic_read(&nohz.nr_cpus))) 12187 return; 12188 12189 if (READ_ONCE(nohz.has_blocked) && 12190 time_after(now, READ_ONCE(nohz.next_blocked))) 12191 flags = NOHZ_STATS_KICK; 12192 12193 if (time_before(now, nohz.next_balance)) 12194 goto out; 12195 12196 if (rq->nr_running >= 2) { 12197 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12198 goto out; 12199 } 12200 12201 rcu_read_lock(); 12202 12203 sd = rcu_dereference(rq->sd); 12204 if (sd) { 12205 /* 12206 * If there's a runnable CFS task and the current CPU has reduced 12207 * capacity, kick the ILB to see if there's a better CPU to run on: 12208 */ 12209 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 12210 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12211 goto unlock; 12212 } 12213 } 12214 12215 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12216 if (sd) { 12217 /* 12218 * When ASYM_PACKING; see if there's a more preferred CPU 12219 * currently idle; in which case, kick the ILB to move tasks 12220 * around. 12221 * 12222 * When balancing between cores, all the SMT siblings of the 12223 * preferred CPU must be idle. 12224 */ 12225 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12226 if (sched_asym(sd, i, cpu)) { 12227 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12228 goto unlock; 12229 } 12230 } 12231 } 12232 12233 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12234 if (sd) { 12235 /* 12236 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12237 * to run the misfit task on. 12238 */ 12239 if (check_misfit_status(rq)) { 12240 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12241 goto unlock; 12242 } 12243 12244 /* 12245 * For asymmetric systems, we do not want to nicely balance 12246 * cache use, instead we want to embrace asymmetry and only 12247 * ensure tasks have enough CPU capacity. 12248 * 12249 * Skip the LLC logic because it's not relevant in that case. 12250 */ 12251 goto unlock; 12252 } 12253 12254 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12255 if (sds) { 12256 /* 12257 * If there is an imbalance between LLC domains (IOW we could 12258 * increase the overall cache utilization), we need a less-loaded LLC 12259 * domain to pull some load from. Likewise, we may need to spread 12260 * load within the current LLC domain (e.g. packed SMT cores but 12261 * other CPUs are idle). We can't really know from here how busy 12262 * the others are - so just get a NOHZ balance going if it looks 12263 * like this LLC domain has tasks we could move. 12264 */ 12265 nr_busy = atomic_read(&sds->nr_busy_cpus); 12266 if (nr_busy > 1) { 12267 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12268 goto unlock; 12269 } 12270 } 12271 unlock: 12272 rcu_read_unlock(); 12273 out: 12274 if (READ_ONCE(nohz.needs_update)) 12275 flags |= NOHZ_NEXT_KICK; 12276 12277 if (flags) 12278 kick_ilb(flags); 12279 } 12280 12281 static void set_cpu_sd_state_busy(int cpu) 12282 { 12283 struct sched_domain *sd; 12284 12285 rcu_read_lock(); 12286 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12287 12288 if (!sd || !sd->nohz_idle) 12289 goto unlock; 12290 sd->nohz_idle = 0; 12291 12292 atomic_inc(&sd->shared->nr_busy_cpus); 12293 unlock: 12294 rcu_read_unlock(); 12295 } 12296 12297 void nohz_balance_exit_idle(struct rq *rq) 12298 { 12299 SCHED_WARN_ON(rq != this_rq()); 12300 12301 if (likely(!rq->nohz_tick_stopped)) 12302 return; 12303 12304 rq->nohz_tick_stopped = 0; 12305 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12306 atomic_dec(&nohz.nr_cpus); 12307 12308 set_cpu_sd_state_busy(rq->cpu); 12309 } 12310 12311 static void set_cpu_sd_state_idle(int cpu) 12312 { 12313 struct sched_domain *sd; 12314 12315 rcu_read_lock(); 12316 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12317 12318 if (!sd || sd->nohz_idle) 12319 goto unlock; 12320 sd->nohz_idle = 1; 12321 12322 atomic_dec(&sd->shared->nr_busy_cpus); 12323 unlock: 12324 rcu_read_unlock(); 12325 } 12326 12327 /* 12328 * This routine will record that the CPU is going idle with tick stopped. 12329 * This info will be used in performing idle load balancing in the future. 12330 */ 12331 void nohz_balance_enter_idle(int cpu) 12332 { 12333 struct rq *rq = cpu_rq(cpu); 12334 12335 SCHED_WARN_ON(cpu != smp_processor_id()); 12336 12337 /* If this CPU is going down, then nothing needs to be done: */ 12338 if (!cpu_active(cpu)) 12339 return; 12340 12341 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12342 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12343 return; 12344 12345 /* 12346 * Can be set safely without rq->lock held 12347 * If a clear happens, it will have evaluated last additions because 12348 * rq->lock is held during the check and the clear 12349 */ 12350 rq->has_blocked_load = 1; 12351 12352 /* 12353 * The tick is still stopped but load could have been added in the 12354 * meantime. We set the nohz.has_blocked flag to trig a check of the 12355 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12356 * of nohz.has_blocked can only happen after checking the new load 12357 */ 12358 if (rq->nohz_tick_stopped) 12359 goto out; 12360 12361 /* If we're a completely isolated CPU, we don't play: */ 12362 if (on_null_domain(rq)) 12363 return; 12364 12365 rq->nohz_tick_stopped = 1; 12366 12367 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12368 atomic_inc(&nohz.nr_cpus); 12369 12370 /* 12371 * Ensures that if nohz_idle_balance() fails to observe our 12372 * @idle_cpus_mask store, it must observe the @has_blocked 12373 * and @needs_update stores. 12374 */ 12375 smp_mb__after_atomic(); 12376 12377 set_cpu_sd_state_idle(cpu); 12378 12379 WRITE_ONCE(nohz.needs_update, 1); 12380 out: 12381 /* 12382 * Each time a cpu enter idle, we assume that it has blocked load and 12383 * enable the periodic update of the load of idle CPUs 12384 */ 12385 WRITE_ONCE(nohz.has_blocked, 1); 12386 } 12387 12388 static bool update_nohz_stats(struct rq *rq) 12389 { 12390 unsigned int cpu = rq->cpu; 12391 12392 if (!rq->has_blocked_load) 12393 return false; 12394 12395 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12396 return false; 12397 12398 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12399 return true; 12400 12401 sched_balance_update_blocked_averages(cpu); 12402 12403 return rq->has_blocked_load; 12404 } 12405 12406 /* 12407 * Internal function that runs load balance for all idle CPUs. The load balance 12408 * can be a simple update of blocked load or a complete load balance with 12409 * tasks movement depending of flags. 12410 */ 12411 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12412 { 12413 /* Earliest time when we have to do rebalance again */ 12414 unsigned long now = jiffies; 12415 unsigned long next_balance = now + 60*HZ; 12416 bool has_blocked_load = false; 12417 int update_next_balance = 0; 12418 int this_cpu = this_rq->cpu; 12419 int balance_cpu; 12420 struct rq *rq; 12421 12422 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12423 12424 /* 12425 * We assume there will be no idle load after this update and clear 12426 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12427 * set the has_blocked flag and trigger another update of idle load. 12428 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12429 * setting the flag, we are sure to not clear the state and not 12430 * check the load of an idle cpu. 12431 * 12432 * Same applies to idle_cpus_mask vs needs_update. 12433 */ 12434 if (flags & NOHZ_STATS_KICK) 12435 WRITE_ONCE(nohz.has_blocked, 0); 12436 if (flags & NOHZ_NEXT_KICK) 12437 WRITE_ONCE(nohz.needs_update, 0); 12438 12439 /* 12440 * Ensures that if we miss the CPU, we must see the has_blocked 12441 * store from nohz_balance_enter_idle(). 12442 */ 12443 smp_mb(); 12444 12445 /* 12446 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12447 * chance for other idle cpu to pull load. 12448 */ 12449 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12450 if (!idle_cpu(balance_cpu)) 12451 continue; 12452 12453 /* 12454 * If this CPU gets work to do, stop the load balancing 12455 * work being done for other CPUs. Next load 12456 * balancing owner will pick it up. 12457 */ 12458 if (need_resched()) { 12459 if (flags & NOHZ_STATS_KICK) 12460 has_blocked_load = true; 12461 if (flags & NOHZ_NEXT_KICK) 12462 WRITE_ONCE(nohz.needs_update, 1); 12463 goto abort; 12464 } 12465 12466 rq = cpu_rq(balance_cpu); 12467 12468 if (flags & NOHZ_STATS_KICK) 12469 has_blocked_load |= update_nohz_stats(rq); 12470 12471 /* 12472 * If time for next balance is due, 12473 * do the balance. 12474 */ 12475 if (time_after_eq(jiffies, rq->next_balance)) { 12476 struct rq_flags rf; 12477 12478 rq_lock_irqsave(rq, &rf); 12479 update_rq_clock(rq); 12480 rq_unlock_irqrestore(rq, &rf); 12481 12482 if (flags & NOHZ_BALANCE_KICK) 12483 sched_balance_domains(rq, CPU_IDLE); 12484 } 12485 12486 if (time_after(next_balance, rq->next_balance)) { 12487 next_balance = rq->next_balance; 12488 update_next_balance = 1; 12489 } 12490 } 12491 12492 /* 12493 * next_balance will be updated only when there is a need. 12494 * When the CPU is attached to null domain for ex, it will not be 12495 * updated. 12496 */ 12497 if (likely(update_next_balance)) 12498 nohz.next_balance = next_balance; 12499 12500 if (flags & NOHZ_STATS_KICK) 12501 WRITE_ONCE(nohz.next_blocked, 12502 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12503 12504 abort: 12505 /* There is still blocked load, enable periodic update */ 12506 if (has_blocked_load) 12507 WRITE_ONCE(nohz.has_blocked, 1); 12508 } 12509 12510 /* 12511 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12512 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12513 */ 12514 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12515 { 12516 unsigned int flags = this_rq->nohz_idle_balance; 12517 12518 if (!flags) 12519 return false; 12520 12521 this_rq->nohz_idle_balance = 0; 12522 12523 if (idle != CPU_IDLE) 12524 return false; 12525 12526 _nohz_idle_balance(this_rq, flags); 12527 12528 return true; 12529 } 12530 12531 /* 12532 * Check if we need to directly run the ILB for updating blocked load before 12533 * entering idle state. Here we run ILB directly without issuing IPIs. 12534 * 12535 * Note that when this function is called, the tick may not yet be stopped on 12536 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12537 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12538 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12539 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12540 * called from this function on (this) CPU that's not yet in the mask. That's 12541 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12542 * updating the blocked load of already idle CPUs without waking up one of 12543 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12544 * cpu about to enter idle, because it can take a long time. 12545 */ 12546 void nohz_run_idle_balance(int cpu) 12547 { 12548 unsigned int flags; 12549 12550 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12551 12552 /* 12553 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12554 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12555 */ 12556 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12557 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12558 } 12559 12560 static void nohz_newidle_balance(struct rq *this_rq) 12561 { 12562 int this_cpu = this_rq->cpu; 12563 12564 /* 12565 * This CPU doesn't want to be disturbed by scheduler 12566 * housekeeping 12567 */ 12568 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12569 return; 12570 12571 /* Will wake up very soon. No time for doing anything else*/ 12572 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12573 return; 12574 12575 /* Don't need to update blocked load of idle CPUs*/ 12576 if (!READ_ONCE(nohz.has_blocked) || 12577 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12578 return; 12579 12580 /* 12581 * Set the need to trigger ILB in order to update blocked load 12582 * before entering idle state. 12583 */ 12584 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12585 } 12586 12587 #else /* !CONFIG_NO_HZ_COMMON */ 12588 static inline void nohz_balancer_kick(struct rq *rq) { } 12589 12590 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12591 { 12592 return false; 12593 } 12594 12595 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12596 #endif /* CONFIG_NO_HZ_COMMON */ 12597 12598 /* 12599 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12600 * idle. Attempts to pull tasks from other CPUs. 12601 * 12602 * Returns: 12603 * < 0 - we released the lock and there are !fair tasks present 12604 * 0 - failed, no new tasks 12605 * > 0 - success, new (fair) tasks present 12606 */ 12607 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12608 { 12609 unsigned long next_balance = jiffies + HZ; 12610 int this_cpu = this_rq->cpu; 12611 int continue_balancing = 1; 12612 u64 t0, t1, curr_cost = 0; 12613 struct sched_domain *sd; 12614 int pulled_task = 0; 12615 12616 update_misfit_status(NULL, this_rq); 12617 12618 /* 12619 * There is a task waiting to run. No need to search for one. 12620 * Return 0; the task will be enqueued when switching to idle. 12621 */ 12622 if (this_rq->ttwu_pending) 12623 return 0; 12624 12625 /* 12626 * We must set idle_stamp _before_ calling sched_balance_rq() 12627 * for CPU_NEWLY_IDLE, such that we measure the this duration 12628 * as idle time. 12629 */ 12630 this_rq->idle_stamp = rq_clock(this_rq); 12631 12632 /* 12633 * Do not pull tasks towards !active CPUs... 12634 */ 12635 if (!cpu_active(this_cpu)) 12636 return 0; 12637 12638 /* 12639 * This is OK, because current is on_cpu, which avoids it being picked 12640 * for load-balance and preemption/IRQs are still disabled avoiding 12641 * further scheduler activity on it and we're being very careful to 12642 * re-start the picking loop. 12643 */ 12644 rq_unpin_lock(this_rq, rf); 12645 12646 rcu_read_lock(); 12647 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12648 12649 if (!get_rd_overloaded(this_rq->rd) || 12650 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12651 12652 if (sd) 12653 update_next_balance(sd, &next_balance); 12654 rcu_read_unlock(); 12655 12656 goto out; 12657 } 12658 rcu_read_unlock(); 12659 12660 raw_spin_rq_unlock(this_rq); 12661 12662 t0 = sched_clock_cpu(this_cpu); 12663 sched_balance_update_blocked_averages(this_cpu); 12664 12665 rcu_read_lock(); 12666 for_each_domain(this_cpu, sd) { 12667 u64 domain_cost; 12668 12669 update_next_balance(sd, &next_balance); 12670 12671 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12672 break; 12673 12674 if (sd->flags & SD_BALANCE_NEWIDLE) { 12675 12676 pulled_task = sched_balance_rq(this_cpu, this_rq, 12677 sd, CPU_NEWLY_IDLE, 12678 &continue_balancing); 12679 12680 t1 = sched_clock_cpu(this_cpu); 12681 domain_cost = t1 - t0; 12682 update_newidle_cost(sd, domain_cost); 12683 12684 curr_cost += domain_cost; 12685 t0 = t1; 12686 } 12687 12688 /* 12689 * Stop searching for tasks to pull if there are 12690 * now runnable tasks on this rq. 12691 */ 12692 if (pulled_task || !continue_balancing) 12693 break; 12694 } 12695 rcu_read_unlock(); 12696 12697 raw_spin_rq_lock(this_rq); 12698 12699 if (curr_cost > this_rq->max_idle_balance_cost) 12700 this_rq->max_idle_balance_cost = curr_cost; 12701 12702 /* 12703 * While browsing the domains, we released the rq lock, a task could 12704 * have been enqueued in the meantime. Since we're not going idle, 12705 * pretend we pulled a task. 12706 */ 12707 if (this_rq->cfs.h_nr_running && !pulled_task) 12708 pulled_task = 1; 12709 12710 /* Is there a task of a high priority class? */ 12711 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12712 pulled_task = -1; 12713 12714 out: 12715 /* Move the next balance forward */ 12716 if (time_after(this_rq->next_balance, next_balance)) 12717 this_rq->next_balance = next_balance; 12718 12719 if (pulled_task) 12720 this_rq->idle_stamp = 0; 12721 else 12722 nohz_newidle_balance(this_rq); 12723 12724 rq_repin_lock(this_rq, rf); 12725 12726 return pulled_task; 12727 } 12728 12729 /* 12730 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12731 * 12732 * - directly from the local scheduler_tick() for periodic load balancing 12733 * 12734 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12735 * through the SMP cross-call nohz_csd_func() 12736 */ 12737 static __latent_entropy void sched_balance_softirq(struct softirq_action *h) 12738 { 12739 struct rq *this_rq = this_rq(); 12740 enum cpu_idle_type idle = this_rq->idle_balance; 12741 /* 12742 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12743 * balancing on behalf of the other idle CPUs whose ticks are 12744 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12745 * give the idle CPUs a chance to load balance. Else we may 12746 * load balance only within the local sched_domain hierarchy 12747 * and abort nohz_idle_balance altogether if we pull some load. 12748 */ 12749 if (nohz_idle_balance(this_rq, idle)) 12750 return; 12751 12752 /* normal load balance */ 12753 sched_balance_update_blocked_averages(this_rq->cpu); 12754 sched_balance_domains(this_rq, idle); 12755 } 12756 12757 /* 12758 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12759 */ 12760 void sched_balance_trigger(struct rq *rq) 12761 { 12762 /* 12763 * Don't need to rebalance while attached to NULL domain or 12764 * runqueue CPU is not active 12765 */ 12766 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12767 return; 12768 12769 if (time_after_eq(jiffies, rq->next_balance)) 12770 raise_softirq(SCHED_SOFTIRQ); 12771 12772 nohz_balancer_kick(rq); 12773 } 12774 12775 static void rq_online_fair(struct rq *rq) 12776 { 12777 update_sysctl(); 12778 12779 update_runtime_enabled(rq); 12780 } 12781 12782 static void rq_offline_fair(struct rq *rq) 12783 { 12784 update_sysctl(); 12785 12786 /* Ensure any throttled groups are reachable by pick_next_task */ 12787 unthrottle_offline_cfs_rqs(rq); 12788 12789 /* Ensure that we remove rq contribution to group share: */ 12790 clear_tg_offline_cfs_rqs(rq); 12791 } 12792 12793 #endif /* CONFIG_SMP */ 12794 12795 #ifdef CONFIG_SCHED_CORE 12796 static inline bool 12797 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12798 { 12799 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12800 u64 slice = se->slice; 12801 12802 return (rtime * min_nr_tasks > slice); 12803 } 12804 12805 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12806 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12807 { 12808 if (!sched_core_enabled(rq)) 12809 return; 12810 12811 /* 12812 * If runqueue has only one task which used up its slice and 12813 * if the sibling is forced idle, then trigger schedule to 12814 * give forced idle task a chance. 12815 * 12816 * sched_slice() considers only this active rq and it gets the 12817 * whole slice. But during force idle, we have siblings acting 12818 * like a single runqueue and hence we need to consider runnable 12819 * tasks on this CPU and the forced idle CPU. Ideally, we should 12820 * go through the forced idle rq, but that would be a perf hit. 12821 * We can assume that the forced idle CPU has at least 12822 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12823 * if we need to give up the CPU. 12824 */ 12825 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12826 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12827 resched_curr(rq); 12828 } 12829 12830 /* 12831 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12832 */ 12833 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12834 bool forceidle) 12835 { 12836 for_each_sched_entity(se) { 12837 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12838 12839 if (forceidle) { 12840 if (cfs_rq->forceidle_seq == fi_seq) 12841 break; 12842 cfs_rq->forceidle_seq = fi_seq; 12843 } 12844 12845 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12846 } 12847 } 12848 12849 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12850 { 12851 struct sched_entity *se = &p->se; 12852 12853 if (p->sched_class != &fair_sched_class) 12854 return; 12855 12856 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12857 } 12858 12859 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12860 bool in_fi) 12861 { 12862 struct rq *rq = task_rq(a); 12863 const struct sched_entity *sea = &a->se; 12864 const struct sched_entity *seb = &b->se; 12865 struct cfs_rq *cfs_rqa; 12866 struct cfs_rq *cfs_rqb; 12867 s64 delta; 12868 12869 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12870 12871 #ifdef CONFIG_FAIR_GROUP_SCHED 12872 /* 12873 * Find an se in the hierarchy for tasks a and b, such that the se's 12874 * are immediate siblings. 12875 */ 12876 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12877 int sea_depth = sea->depth; 12878 int seb_depth = seb->depth; 12879 12880 if (sea_depth >= seb_depth) 12881 sea = parent_entity(sea); 12882 if (sea_depth <= seb_depth) 12883 seb = parent_entity(seb); 12884 } 12885 12886 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12887 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12888 12889 cfs_rqa = sea->cfs_rq; 12890 cfs_rqb = seb->cfs_rq; 12891 #else 12892 cfs_rqa = &task_rq(a)->cfs; 12893 cfs_rqb = &task_rq(b)->cfs; 12894 #endif 12895 12896 /* 12897 * Find delta after normalizing se's vruntime with its cfs_rq's 12898 * min_vruntime_fi, which would have been updated in prior calls 12899 * to se_fi_update(). 12900 */ 12901 delta = (s64)(sea->vruntime - seb->vruntime) + 12902 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12903 12904 return delta > 0; 12905 } 12906 12907 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12908 { 12909 struct cfs_rq *cfs_rq; 12910 12911 #ifdef CONFIG_FAIR_GROUP_SCHED 12912 cfs_rq = task_group(p)->cfs_rq[cpu]; 12913 #else 12914 cfs_rq = &cpu_rq(cpu)->cfs; 12915 #endif 12916 return throttled_hierarchy(cfs_rq); 12917 } 12918 #else 12919 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12920 #endif 12921 12922 /* 12923 * scheduler tick hitting a task of our scheduling class. 12924 * 12925 * NOTE: This function can be called remotely by the tick offload that 12926 * goes along full dynticks. Therefore no local assumption can be made 12927 * and everything must be accessed through the @rq and @curr passed in 12928 * parameters. 12929 */ 12930 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12931 { 12932 struct cfs_rq *cfs_rq; 12933 struct sched_entity *se = &curr->se; 12934 12935 for_each_sched_entity(se) { 12936 cfs_rq = cfs_rq_of(se); 12937 entity_tick(cfs_rq, se, queued); 12938 } 12939 12940 if (static_branch_unlikely(&sched_numa_balancing)) 12941 task_tick_numa(rq, curr); 12942 12943 update_misfit_status(curr, rq); 12944 check_update_overutilized_status(task_rq(curr)); 12945 12946 task_tick_core(rq, curr); 12947 } 12948 12949 /* 12950 * called on fork with the child task as argument from the parent's context 12951 * - child not yet on the tasklist 12952 * - preemption disabled 12953 */ 12954 static void task_fork_fair(struct task_struct *p) 12955 { 12956 set_task_max_allowed_capacity(p); 12957 } 12958 12959 /* 12960 * Priority of the task has changed. Check to see if we preempt 12961 * the current task. 12962 */ 12963 static void 12964 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12965 { 12966 if (!task_on_rq_queued(p)) 12967 return; 12968 12969 if (rq->cfs.nr_running == 1) 12970 return; 12971 12972 /* 12973 * Reschedule if we are currently running on this runqueue and 12974 * our priority decreased, or if we are not currently running on 12975 * this runqueue and our priority is higher than the current's 12976 */ 12977 if (task_current(rq, p)) { 12978 if (p->prio > oldprio) 12979 resched_curr(rq); 12980 } else 12981 wakeup_preempt(rq, p, 0); 12982 } 12983 12984 #ifdef CONFIG_FAIR_GROUP_SCHED 12985 /* 12986 * Propagate the changes of the sched_entity across the tg tree to make it 12987 * visible to the root 12988 */ 12989 static void propagate_entity_cfs_rq(struct sched_entity *se) 12990 { 12991 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12992 12993 if (cfs_rq_throttled(cfs_rq)) 12994 return; 12995 12996 if (!throttled_hierarchy(cfs_rq)) 12997 list_add_leaf_cfs_rq(cfs_rq); 12998 12999 /* Start to propagate at parent */ 13000 se = se->parent; 13001 13002 for_each_sched_entity(se) { 13003 cfs_rq = cfs_rq_of(se); 13004 13005 update_load_avg(cfs_rq, se, UPDATE_TG); 13006 13007 if (cfs_rq_throttled(cfs_rq)) 13008 break; 13009 13010 if (!throttled_hierarchy(cfs_rq)) 13011 list_add_leaf_cfs_rq(cfs_rq); 13012 } 13013 } 13014 #else 13015 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13016 #endif 13017 13018 static void detach_entity_cfs_rq(struct sched_entity *se) 13019 { 13020 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13021 13022 #ifdef CONFIG_SMP 13023 /* 13024 * In case the task sched_avg hasn't been attached: 13025 * - A forked task which hasn't been woken up by wake_up_new_task(). 13026 * - A task which has been woken up by try_to_wake_up() but is 13027 * waiting for actually being woken up by sched_ttwu_pending(). 13028 */ 13029 if (!se->avg.last_update_time) 13030 return; 13031 #endif 13032 13033 /* Catch up with the cfs_rq and remove our load when we leave */ 13034 update_load_avg(cfs_rq, se, 0); 13035 detach_entity_load_avg(cfs_rq, se); 13036 update_tg_load_avg(cfs_rq); 13037 propagate_entity_cfs_rq(se); 13038 } 13039 13040 static void attach_entity_cfs_rq(struct sched_entity *se) 13041 { 13042 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13043 13044 /* Synchronize entity with its cfs_rq */ 13045 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13046 attach_entity_load_avg(cfs_rq, se); 13047 update_tg_load_avg(cfs_rq); 13048 propagate_entity_cfs_rq(se); 13049 } 13050 13051 static void detach_task_cfs_rq(struct task_struct *p) 13052 { 13053 struct sched_entity *se = &p->se; 13054 13055 detach_entity_cfs_rq(se); 13056 } 13057 13058 static void attach_task_cfs_rq(struct task_struct *p) 13059 { 13060 struct sched_entity *se = &p->se; 13061 13062 attach_entity_cfs_rq(se); 13063 } 13064 13065 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13066 { 13067 detach_task_cfs_rq(p); 13068 /* 13069 * Since this is called after changing class, this is a little weird 13070 * and we cannot use DEQUEUE_DELAYED. 13071 */ 13072 if (p->se.sched_delayed) { 13073 /* First, dequeue it from its new class' structures */ 13074 dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP); 13075 /* 13076 * Now, clean up the fair_sched_class side of things 13077 * related to sched_delayed being true and that wasn't done 13078 * due to the generic dequeue not using DEQUEUE_DELAYED. 13079 */ 13080 finish_delayed_dequeue_entity(&p->se); 13081 p->se.rel_deadline = 0; 13082 __block_task(rq, p); 13083 } 13084 } 13085 13086 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13087 { 13088 SCHED_WARN_ON(p->se.sched_delayed); 13089 13090 attach_task_cfs_rq(p); 13091 13092 set_task_max_allowed_capacity(p); 13093 13094 if (task_on_rq_queued(p)) { 13095 /* 13096 * We were most likely switched from sched_rt, so 13097 * kick off the schedule if running, otherwise just see 13098 * if we can still preempt the current task. 13099 */ 13100 if (task_current(rq, p)) 13101 resched_curr(rq); 13102 else 13103 wakeup_preempt(rq, p, 0); 13104 } 13105 } 13106 13107 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13108 { 13109 struct sched_entity *se = &p->se; 13110 13111 #ifdef CONFIG_SMP 13112 if (task_on_rq_queued(p)) { 13113 /* 13114 * Move the next running task to the front of the list, so our 13115 * cfs_tasks list becomes MRU one. 13116 */ 13117 list_move(&se->group_node, &rq->cfs_tasks); 13118 } 13119 #endif 13120 if (!first) 13121 return; 13122 13123 SCHED_WARN_ON(se->sched_delayed); 13124 13125 if (hrtick_enabled_fair(rq)) 13126 hrtick_start_fair(rq, p); 13127 13128 update_misfit_status(p, rq); 13129 sched_fair_update_stop_tick(rq, p); 13130 } 13131 13132 /* 13133 * Account for a task changing its policy or group. 13134 * 13135 * This routine is mostly called to set cfs_rq->curr field when a task 13136 * migrates between groups/classes. 13137 */ 13138 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13139 { 13140 struct sched_entity *se = &p->se; 13141 13142 for_each_sched_entity(se) { 13143 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13144 13145 set_next_entity(cfs_rq, se); 13146 /* ensure bandwidth has been allocated on our new cfs_rq */ 13147 account_cfs_rq_runtime(cfs_rq, 0); 13148 } 13149 13150 __set_next_task_fair(rq, p, first); 13151 } 13152 13153 void init_cfs_rq(struct cfs_rq *cfs_rq) 13154 { 13155 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13156 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13157 #ifdef CONFIG_SMP 13158 raw_spin_lock_init(&cfs_rq->removed.lock); 13159 #endif 13160 } 13161 13162 #ifdef CONFIG_FAIR_GROUP_SCHED 13163 static void task_change_group_fair(struct task_struct *p) 13164 { 13165 /* 13166 * We couldn't detach or attach a forked task which 13167 * hasn't been woken up by wake_up_new_task(). 13168 */ 13169 if (READ_ONCE(p->__state) == TASK_NEW) 13170 return; 13171 13172 detach_task_cfs_rq(p); 13173 13174 #ifdef CONFIG_SMP 13175 /* Tell se's cfs_rq has been changed -- migrated */ 13176 p->se.avg.last_update_time = 0; 13177 #endif 13178 set_task_rq(p, task_cpu(p)); 13179 attach_task_cfs_rq(p); 13180 } 13181 13182 void free_fair_sched_group(struct task_group *tg) 13183 { 13184 int i; 13185 13186 for_each_possible_cpu(i) { 13187 if (tg->cfs_rq) 13188 kfree(tg->cfs_rq[i]); 13189 if (tg->se) 13190 kfree(tg->se[i]); 13191 } 13192 13193 kfree(tg->cfs_rq); 13194 kfree(tg->se); 13195 } 13196 13197 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13198 { 13199 struct sched_entity *se; 13200 struct cfs_rq *cfs_rq; 13201 int i; 13202 13203 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13204 if (!tg->cfs_rq) 13205 goto err; 13206 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13207 if (!tg->se) 13208 goto err; 13209 13210 tg->shares = NICE_0_LOAD; 13211 13212 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13213 13214 for_each_possible_cpu(i) { 13215 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13216 GFP_KERNEL, cpu_to_node(i)); 13217 if (!cfs_rq) 13218 goto err; 13219 13220 se = kzalloc_node(sizeof(struct sched_entity_stats), 13221 GFP_KERNEL, cpu_to_node(i)); 13222 if (!se) 13223 goto err_free_rq; 13224 13225 init_cfs_rq(cfs_rq); 13226 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13227 init_entity_runnable_average(se); 13228 } 13229 13230 return 1; 13231 13232 err_free_rq: 13233 kfree(cfs_rq); 13234 err: 13235 return 0; 13236 } 13237 13238 void online_fair_sched_group(struct task_group *tg) 13239 { 13240 struct sched_entity *se; 13241 struct rq_flags rf; 13242 struct rq *rq; 13243 int i; 13244 13245 for_each_possible_cpu(i) { 13246 rq = cpu_rq(i); 13247 se = tg->se[i]; 13248 rq_lock_irq(rq, &rf); 13249 update_rq_clock(rq); 13250 attach_entity_cfs_rq(se); 13251 sync_throttle(tg, i); 13252 rq_unlock_irq(rq, &rf); 13253 } 13254 } 13255 13256 void unregister_fair_sched_group(struct task_group *tg) 13257 { 13258 int cpu; 13259 13260 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13261 13262 for_each_possible_cpu(cpu) { 13263 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13264 struct sched_entity *se = tg->se[cpu]; 13265 struct rq *rq = cpu_rq(cpu); 13266 13267 if (se) { 13268 if (se->sched_delayed) { 13269 guard(rq_lock_irqsave)(rq); 13270 if (se->sched_delayed) { 13271 update_rq_clock(rq); 13272 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13273 } 13274 list_del_leaf_cfs_rq(cfs_rq); 13275 } 13276 remove_entity_load_avg(se); 13277 } 13278 13279 /* 13280 * Only empty task groups can be destroyed; so we can speculatively 13281 * check on_list without danger of it being re-added. 13282 */ 13283 if (cfs_rq->on_list) { 13284 guard(rq_lock_irqsave)(rq); 13285 list_del_leaf_cfs_rq(cfs_rq); 13286 } 13287 } 13288 } 13289 13290 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13291 struct sched_entity *se, int cpu, 13292 struct sched_entity *parent) 13293 { 13294 struct rq *rq = cpu_rq(cpu); 13295 13296 cfs_rq->tg = tg; 13297 cfs_rq->rq = rq; 13298 init_cfs_rq_runtime(cfs_rq); 13299 13300 tg->cfs_rq[cpu] = cfs_rq; 13301 tg->se[cpu] = se; 13302 13303 /* se could be NULL for root_task_group */ 13304 if (!se) 13305 return; 13306 13307 if (!parent) { 13308 se->cfs_rq = &rq->cfs; 13309 se->depth = 0; 13310 } else { 13311 se->cfs_rq = parent->my_q; 13312 se->depth = parent->depth + 1; 13313 } 13314 13315 se->my_q = cfs_rq; 13316 /* guarantee group entities always have weight */ 13317 update_load_set(&se->load, NICE_0_LOAD); 13318 se->parent = parent; 13319 } 13320 13321 static DEFINE_MUTEX(shares_mutex); 13322 13323 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13324 { 13325 int i; 13326 13327 lockdep_assert_held(&shares_mutex); 13328 13329 /* 13330 * We can't change the weight of the root cgroup. 13331 */ 13332 if (!tg->se[0]) 13333 return -EINVAL; 13334 13335 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13336 13337 if (tg->shares == shares) 13338 return 0; 13339 13340 tg->shares = shares; 13341 for_each_possible_cpu(i) { 13342 struct rq *rq = cpu_rq(i); 13343 struct sched_entity *se = tg->se[i]; 13344 struct rq_flags rf; 13345 13346 /* Propagate contribution to hierarchy */ 13347 rq_lock_irqsave(rq, &rf); 13348 update_rq_clock(rq); 13349 for_each_sched_entity(se) { 13350 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13351 update_cfs_group(se); 13352 } 13353 rq_unlock_irqrestore(rq, &rf); 13354 } 13355 13356 return 0; 13357 } 13358 13359 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13360 { 13361 int ret; 13362 13363 mutex_lock(&shares_mutex); 13364 if (tg_is_idle(tg)) 13365 ret = -EINVAL; 13366 else 13367 ret = __sched_group_set_shares(tg, shares); 13368 mutex_unlock(&shares_mutex); 13369 13370 return ret; 13371 } 13372 13373 int sched_group_set_idle(struct task_group *tg, long idle) 13374 { 13375 int i; 13376 13377 if (tg == &root_task_group) 13378 return -EINVAL; 13379 13380 if (idle < 0 || idle > 1) 13381 return -EINVAL; 13382 13383 mutex_lock(&shares_mutex); 13384 13385 if (tg->idle == idle) { 13386 mutex_unlock(&shares_mutex); 13387 return 0; 13388 } 13389 13390 tg->idle = idle; 13391 13392 for_each_possible_cpu(i) { 13393 struct rq *rq = cpu_rq(i); 13394 struct sched_entity *se = tg->se[i]; 13395 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13396 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13397 long idle_task_delta; 13398 struct rq_flags rf; 13399 13400 rq_lock_irqsave(rq, &rf); 13401 13402 grp_cfs_rq->idle = idle; 13403 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13404 goto next_cpu; 13405 13406 if (se->on_rq) { 13407 parent_cfs_rq = cfs_rq_of(se); 13408 if (cfs_rq_is_idle(grp_cfs_rq)) 13409 parent_cfs_rq->idle_nr_running++; 13410 else 13411 parent_cfs_rq->idle_nr_running--; 13412 } 13413 13414 idle_task_delta = grp_cfs_rq->h_nr_running - 13415 grp_cfs_rq->idle_h_nr_running; 13416 if (!cfs_rq_is_idle(grp_cfs_rq)) 13417 idle_task_delta *= -1; 13418 13419 for_each_sched_entity(se) { 13420 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13421 13422 if (!se->on_rq) 13423 break; 13424 13425 cfs_rq->idle_h_nr_running += idle_task_delta; 13426 13427 /* Already accounted at parent level and above. */ 13428 if (cfs_rq_is_idle(cfs_rq)) 13429 break; 13430 } 13431 13432 next_cpu: 13433 rq_unlock_irqrestore(rq, &rf); 13434 } 13435 13436 /* Idle groups have minimum weight. */ 13437 if (tg_is_idle(tg)) 13438 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13439 else 13440 __sched_group_set_shares(tg, NICE_0_LOAD); 13441 13442 mutex_unlock(&shares_mutex); 13443 return 0; 13444 } 13445 13446 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13447 13448 13449 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13450 { 13451 struct sched_entity *se = &task->se; 13452 unsigned int rr_interval = 0; 13453 13454 /* 13455 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13456 * idle runqueue: 13457 */ 13458 if (rq->cfs.load.weight) 13459 rr_interval = NS_TO_JIFFIES(se->slice); 13460 13461 return rr_interval; 13462 } 13463 13464 /* 13465 * All the scheduling class methods: 13466 */ 13467 DEFINE_SCHED_CLASS(fair) = { 13468 13469 .enqueue_task = enqueue_task_fair, 13470 .dequeue_task = dequeue_task_fair, 13471 .yield_task = yield_task_fair, 13472 .yield_to_task = yield_to_task_fair, 13473 13474 .wakeup_preempt = check_preempt_wakeup_fair, 13475 13476 .pick_task = pick_task_fair, 13477 .pick_next_task = __pick_next_task_fair, 13478 .put_prev_task = put_prev_task_fair, 13479 .set_next_task = set_next_task_fair, 13480 13481 #ifdef CONFIG_SMP 13482 .balance = balance_fair, 13483 .select_task_rq = select_task_rq_fair, 13484 .migrate_task_rq = migrate_task_rq_fair, 13485 13486 .rq_online = rq_online_fair, 13487 .rq_offline = rq_offline_fair, 13488 13489 .task_dead = task_dead_fair, 13490 .set_cpus_allowed = set_cpus_allowed_fair, 13491 #endif 13492 13493 .task_tick = task_tick_fair, 13494 .task_fork = task_fork_fair, 13495 13496 .reweight_task = reweight_task_fair, 13497 .prio_changed = prio_changed_fair, 13498 .switched_from = switched_from_fair, 13499 .switched_to = switched_to_fair, 13500 13501 .get_rr_interval = get_rr_interval_fair, 13502 13503 .update_curr = update_curr_fair, 13504 13505 #ifdef CONFIG_FAIR_GROUP_SCHED 13506 .task_change_group = task_change_group_fair, 13507 #endif 13508 13509 #ifdef CONFIG_SCHED_CORE 13510 .task_is_throttled = task_is_throttled_fair, 13511 #endif 13512 13513 #ifdef CONFIG_UCLAMP_TASK 13514 .uclamp_enabled = 1, 13515 #endif 13516 }; 13517 13518 #ifdef CONFIG_SCHED_DEBUG 13519 void print_cfs_stats(struct seq_file *m, int cpu) 13520 { 13521 struct cfs_rq *cfs_rq, *pos; 13522 13523 rcu_read_lock(); 13524 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13525 print_cfs_rq(m, cpu, cfs_rq); 13526 rcu_read_unlock(); 13527 } 13528 13529 #ifdef CONFIG_NUMA_BALANCING 13530 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13531 { 13532 int node; 13533 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13534 struct numa_group *ng; 13535 13536 rcu_read_lock(); 13537 ng = rcu_dereference(p->numa_group); 13538 for_each_online_node(node) { 13539 if (p->numa_faults) { 13540 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13541 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13542 } 13543 if (ng) { 13544 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13545 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13546 } 13547 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13548 } 13549 rcu_read_unlock(); 13550 } 13551 #endif /* CONFIG_NUMA_BALANCING */ 13552 #endif /* CONFIG_SCHED_DEBUG */ 13553 13554 __init void init_sched_fair_class(void) 13555 { 13556 #ifdef CONFIG_SMP 13557 int i; 13558 13559 for_each_possible_cpu(i) { 13560 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13561 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13562 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13563 GFP_KERNEL, cpu_to_node(i)); 13564 13565 #ifdef CONFIG_CFS_BANDWIDTH 13566 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13567 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13568 #endif 13569 } 13570 13571 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13572 13573 #ifdef CONFIG_NO_HZ_COMMON 13574 nohz.next_balance = jiffies; 13575 nohz.next_blocked = jiffies; 13576 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13577 #endif 13578 #endif /* SMP */ 13579 13580 } 13581