1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 /* 92 * For asym packing, by default the lower numbered CPU has higher priority. 93 */ 94 int __weak arch_asym_cpu_priority(int cpu) 95 { 96 return -cpu; 97 } 98 99 /* 100 * The margin used when comparing utilization with CPU capacity. 101 * 102 * (default: ~20%) 103 */ 104 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 105 106 /* 107 * The margin used when comparing CPU capacities. 108 * is 'cap1' noticeably greater than 'cap2' 109 * 110 * (default: ~5%) 111 */ 112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 113 114 #ifdef CONFIG_CFS_BANDWIDTH 115 /* 116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 117 * each time a cfs_rq requests quota. 118 * 119 * Note: in the case that the slice exceeds the runtime remaining (either due 120 * to consumption or the quota being specified to be smaller than the slice) 121 * we will always only issue the remaining available time. 122 * 123 * (default: 5 msec, units: microseconds) 124 */ 125 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 126 #endif 127 128 #ifdef CONFIG_NUMA_BALANCING 129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 131 #endif 132 133 #ifdef CONFIG_SYSCTL 134 static const struct ctl_table sched_fair_sysctls[] = { 135 #ifdef CONFIG_CFS_BANDWIDTH 136 { 137 .procname = "sched_cfs_bandwidth_slice_us", 138 .data = &sysctl_sched_cfs_bandwidth_slice, 139 .maxlen = sizeof(unsigned int), 140 .mode = 0644, 141 .proc_handler = proc_dointvec_minmax, 142 .extra1 = SYSCTL_ONE, 143 }, 144 #endif 145 #ifdef CONFIG_NUMA_BALANCING 146 { 147 .procname = "numa_balancing_promote_rate_limit_MBps", 148 .data = &sysctl_numa_balancing_promote_rate_limit, 149 .maxlen = sizeof(unsigned int), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 }, 154 #endif /* CONFIG_NUMA_BALANCING */ 155 }; 156 157 static int __init sched_fair_sysctl_init(void) 158 { 159 register_sysctl_init("kernel", sched_fair_sysctls); 160 return 0; 161 } 162 late_initcall(sched_fair_sysctl_init); 163 #endif /* CONFIG_SYSCTL */ 164 165 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 166 { 167 lw->weight += inc; 168 lw->inv_weight = 0; 169 } 170 171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 172 { 173 lw->weight -= dec; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_set(struct load_weight *lw, unsigned long w) 178 { 179 lw->weight = w; 180 lw->inv_weight = 0; 181 } 182 183 /* 184 * Increase the granularity value when there are more CPUs, 185 * because with more CPUs the 'effective latency' as visible 186 * to users decreases. But the relationship is not linear, 187 * so pick a second-best guess by going with the log2 of the 188 * number of CPUs. 189 * 190 * This idea comes from the SD scheduler of Con Kolivas: 191 */ 192 static unsigned int get_update_sysctl_factor(void) 193 { 194 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 195 unsigned int factor; 196 197 switch (sysctl_sched_tunable_scaling) { 198 case SCHED_TUNABLESCALING_NONE: 199 factor = 1; 200 break; 201 case SCHED_TUNABLESCALING_LINEAR: 202 factor = cpus; 203 break; 204 case SCHED_TUNABLESCALING_LOG: 205 default: 206 factor = 1 + ilog2(cpus); 207 break; 208 } 209 210 return factor; 211 } 212 213 static void update_sysctl(void) 214 { 215 unsigned int factor = get_update_sysctl_factor(); 216 217 #define SET_SYSCTL(name) \ 218 (sysctl_##name = (factor) * normalized_sysctl_##name) 219 SET_SYSCTL(sched_base_slice); 220 #undef SET_SYSCTL 221 } 222 223 void __init sched_init_granularity(void) 224 { 225 update_sysctl(); 226 } 227 228 #define WMULT_CONST (~0U) 229 #define WMULT_SHIFT 32 230 231 static void __update_inv_weight(struct load_weight *lw) 232 { 233 unsigned long w; 234 235 if (likely(lw->inv_weight)) 236 return; 237 238 w = scale_load_down(lw->weight); 239 240 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 241 lw->inv_weight = 1; 242 else if (unlikely(!w)) 243 lw->inv_weight = WMULT_CONST; 244 else 245 lw->inv_weight = WMULT_CONST / w; 246 } 247 248 /* 249 * delta_exec * weight / lw.weight 250 * OR 251 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 252 * 253 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 254 * we're guaranteed shift stays positive because inv_weight is guaranteed to 255 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 256 * 257 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 258 * weight/lw.weight <= 1, and therefore our shift will also be positive. 259 */ 260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 261 { 262 u64 fact = scale_load_down(weight); 263 u32 fact_hi = (u32)(fact >> 32); 264 int shift = WMULT_SHIFT; 265 int fs; 266 267 __update_inv_weight(lw); 268 269 if (unlikely(fact_hi)) { 270 fs = fls(fact_hi); 271 shift -= fs; 272 fact >>= fs; 273 } 274 275 fact = mul_u32_u32(fact, lw->inv_weight); 276 277 fact_hi = (u32)(fact >> 32); 278 if (fact_hi) { 279 fs = fls(fact_hi); 280 shift -= fs; 281 fact >>= fs; 282 } 283 284 return mul_u64_u32_shr(delta_exec, fact, shift); 285 } 286 287 /* 288 * delta /= w 289 */ 290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 291 { 292 if (unlikely(se->load.weight != NICE_0_LOAD)) 293 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 294 295 return delta; 296 } 297 298 const struct sched_class fair_sched_class; 299 300 /************************************************************** 301 * CFS operations on generic schedulable entities: 302 */ 303 304 #ifdef CONFIG_FAIR_GROUP_SCHED 305 306 /* Walk up scheduling entities hierarchy */ 307 #define for_each_sched_entity(se) \ 308 for (; se; se = se->parent) 309 310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 311 { 312 struct rq *rq = rq_of(cfs_rq); 313 int cpu = cpu_of(rq); 314 315 if (cfs_rq->on_list) 316 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 317 318 cfs_rq->on_list = 1; 319 320 /* 321 * Ensure we either appear before our parent (if already 322 * enqueued) or force our parent to appear after us when it is 323 * enqueued. The fact that we always enqueue bottom-up 324 * reduces this to two cases and a special case for the root 325 * cfs_rq. Furthermore, it also means that we will always reset 326 * tmp_alone_branch either when the branch is connected 327 * to a tree or when we reach the top of the tree 328 */ 329 if (cfs_rq->tg->parent && 330 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 331 /* 332 * If parent is already on the list, we add the child 333 * just before. Thanks to circular linked property of 334 * the list, this means to put the child at the tail 335 * of the list that starts by parent. 336 */ 337 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 338 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 339 /* 340 * The branch is now connected to its tree so we can 341 * reset tmp_alone_branch to the beginning of the 342 * list. 343 */ 344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 345 return true; 346 } 347 348 if (!cfs_rq->tg->parent) { 349 /* 350 * cfs rq without parent should be put 351 * at the tail of the list. 352 */ 353 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 354 &rq->leaf_cfs_rq_list); 355 /* 356 * We have reach the top of a tree so we can reset 357 * tmp_alone_branch to the beginning of the list. 358 */ 359 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 360 return true; 361 } 362 363 /* 364 * The parent has not already been added so we want to 365 * make sure that it will be put after us. 366 * tmp_alone_branch points to the begin of the branch 367 * where we will add parent. 368 */ 369 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 370 /* 371 * update tmp_alone_branch to points to the new begin 372 * of the branch 373 */ 374 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 375 return false; 376 } 377 378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 379 { 380 if (cfs_rq->on_list) { 381 struct rq *rq = rq_of(cfs_rq); 382 383 /* 384 * With cfs_rq being unthrottled/throttled during an enqueue, 385 * it can happen the tmp_alone_branch points to the leaf that 386 * we finally want to delete. In this case, tmp_alone_branch moves 387 * to the prev element but it will point to rq->leaf_cfs_rq_list 388 * at the end of the enqueue. 389 */ 390 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 391 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 392 393 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 394 cfs_rq->on_list = 0; 395 } 396 } 397 398 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 399 { 400 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 401 } 402 403 /* Iterate through all leaf cfs_rq's on a runqueue */ 404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 405 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 406 leaf_cfs_rq_list) 407 408 /* Do the two (enqueued) entities belong to the same group ? */ 409 static inline struct cfs_rq * 410 is_same_group(struct sched_entity *se, struct sched_entity *pse) 411 { 412 if (se->cfs_rq == pse->cfs_rq) 413 return se->cfs_rq; 414 415 return NULL; 416 } 417 418 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 419 { 420 return se->parent; 421 } 422 423 static void 424 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 425 { 426 int se_depth, pse_depth; 427 428 /* 429 * preemption test can be made between sibling entities who are in the 430 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 431 * both tasks until we find their ancestors who are siblings of common 432 * parent. 433 */ 434 435 /* First walk up until both entities are at same depth */ 436 se_depth = (*se)->depth; 437 pse_depth = (*pse)->depth; 438 439 while (se_depth > pse_depth) { 440 se_depth--; 441 *se = parent_entity(*se); 442 } 443 444 while (pse_depth > se_depth) { 445 pse_depth--; 446 *pse = parent_entity(*pse); 447 } 448 449 while (!is_same_group(*se, *pse)) { 450 *se = parent_entity(*se); 451 *pse = parent_entity(*pse); 452 } 453 } 454 455 static int tg_is_idle(struct task_group *tg) 456 { 457 return tg->idle > 0; 458 } 459 460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 461 { 462 return cfs_rq->idle > 0; 463 } 464 465 static int se_is_idle(struct sched_entity *se) 466 { 467 if (entity_is_task(se)) 468 return task_has_idle_policy(task_of(se)); 469 return cfs_rq_is_idle(group_cfs_rq(se)); 470 } 471 472 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 473 474 #define for_each_sched_entity(se) \ 475 for (; se; se = NULL) 476 477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 478 { 479 return true; 480 } 481 482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 483 { 484 } 485 486 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 487 { 488 } 489 490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 491 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 492 493 static inline struct sched_entity *parent_entity(struct sched_entity *se) 494 { 495 return NULL; 496 } 497 498 static inline void 499 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 500 { 501 } 502 503 static inline int tg_is_idle(struct task_group *tg) 504 { 505 return 0; 506 } 507 508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 509 { 510 return 0; 511 } 512 513 static int se_is_idle(struct sched_entity *se) 514 { 515 return task_has_idle_policy(task_of(se)); 516 } 517 518 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 519 520 static __always_inline 521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 522 523 /************************************************************** 524 * Scheduling class tree data structure manipulation methods: 525 */ 526 527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 528 { 529 s64 delta = (s64)(vruntime - max_vruntime); 530 if (delta > 0) 531 max_vruntime = vruntime; 532 533 return max_vruntime; 534 } 535 536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 537 { 538 s64 delta = (s64)(vruntime - min_vruntime); 539 if (delta < 0) 540 min_vruntime = vruntime; 541 542 return min_vruntime; 543 } 544 545 static inline bool entity_before(const struct sched_entity *a, 546 const struct sched_entity *b) 547 { 548 /* 549 * Tiebreak on vruntime seems unnecessary since it can 550 * hardly happen. 551 */ 552 return (s64)(a->deadline - b->deadline) < 0; 553 } 554 555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 556 { 557 return (s64)(se->vruntime - cfs_rq->zero_vruntime); 558 } 559 560 #define __node_2_se(node) \ 561 rb_entry((node), struct sched_entity, run_node) 562 563 /* 564 * Compute virtual time from the per-task service numbers: 565 * 566 * Fair schedulers conserve lag: 567 * 568 * \Sum lag_i = 0 569 * 570 * Where lag_i is given by: 571 * 572 * lag_i = S - s_i = w_i * (V - v_i) 573 * 574 * Where S is the ideal service time and V is it's virtual time counterpart. 575 * Therefore: 576 * 577 * \Sum lag_i = 0 578 * \Sum w_i * (V - v_i) = 0 579 * \Sum w_i * V - w_i * v_i = 0 580 * 581 * From which we can solve an expression for V in v_i (which we have in 582 * se->vruntime): 583 * 584 * \Sum v_i * w_i \Sum v_i * w_i 585 * V = -------------- = -------------- 586 * \Sum w_i W 587 * 588 * Specifically, this is the weighted average of all entity virtual runtimes. 589 * 590 * [[ NOTE: this is only equal to the ideal scheduler under the condition 591 * that join/leave operations happen at lag_i = 0, otherwise the 592 * virtual time has non-contiguous motion equivalent to: 593 * 594 * V +-= lag_i / W 595 * 596 * Also see the comment in place_entity() that deals with this. ]] 597 * 598 * However, since v_i is u64, and the multiplication could easily overflow 599 * transform it into a relative form that uses smaller quantities: 600 * 601 * Substitute: v_i == (v_i - v0) + v0 602 * 603 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 604 * V = ---------------------------- = --------------------- + v0 605 * W W 606 * 607 * Which we track using: 608 * 609 * v0 := cfs_rq->zero_vruntime 610 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 611 * \Sum w_i := cfs_rq->avg_load 612 * 613 * Since zero_vruntime closely tracks the per-task service, these 614 * deltas: (v_i - v), will be in the order of the maximal (virtual) lag 615 * induced in the system due to quantisation. 616 * 617 * Also, we use scale_load_down() to reduce the size. 618 * 619 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 620 */ 621 static void 622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 623 { 624 unsigned long weight = scale_load_down(se->load.weight); 625 s64 key = entity_key(cfs_rq, se); 626 627 cfs_rq->avg_vruntime += key * weight; 628 cfs_rq->avg_load += weight; 629 } 630 631 static void 632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 633 { 634 unsigned long weight = scale_load_down(se->load.weight); 635 s64 key = entity_key(cfs_rq, se); 636 637 cfs_rq->avg_vruntime -= key * weight; 638 cfs_rq->avg_load -= weight; 639 } 640 641 static inline 642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 643 { 644 /* 645 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 646 */ 647 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 648 } 649 650 /* 651 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 652 * For this to be so, the result of this function must have a left bias. 653 */ 654 u64 avg_vruntime(struct cfs_rq *cfs_rq) 655 { 656 struct sched_entity *curr = cfs_rq->curr; 657 s64 avg = cfs_rq->avg_vruntime; 658 long load = cfs_rq->avg_load; 659 660 if (curr && curr->on_rq) { 661 unsigned long weight = scale_load_down(curr->load.weight); 662 663 avg += entity_key(cfs_rq, curr) * weight; 664 load += weight; 665 } 666 667 if (load) { 668 /* sign flips effective floor / ceiling */ 669 if (avg < 0) 670 avg -= (load - 1); 671 avg = div_s64(avg, load); 672 } 673 674 return cfs_rq->zero_vruntime + avg; 675 } 676 677 /* 678 * lag_i = S - s_i = w_i * (V - v_i) 679 * 680 * However, since V is approximated by the weighted average of all entities it 681 * is possible -- by addition/removal/reweight to the tree -- to move V around 682 * and end up with a larger lag than we started with. 683 * 684 * Limit this to either double the slice length with a minimum of TICK_NSEC 685 * since that is the timing granularity. 686 * 687 * EEVDF gives the following limit for a steady state system: 688 * 689 * -r_max < lag < max(r_max, q) 690 * 691 * XXX could add max_slice to the augmented data to track this. 692 */ 693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 694 { 695 s64 vlag, limit; 696 697 WARN_ON_ONCE(!se->on_rq); 698 699 vlag = avg_vruntime(cfs_rq) - se->vruntime; 700 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 701 702 se->vlag = clamp(vlag, -limit, limit); 703 } 704 705 /* 706 * Entity is eligible once it received less service than it ought to have, 707 * eg. lag >= 0. 708 * 709 * lag_i = S - s_i = w_i*(V - v_i) 710 * 711 * lag_i >= 0 -> V >= v_i 712 * 713 * \Sum (v_i - v)*w_i 714 * V = ------------------ + v 715 * \Sum w_i 716 * 717 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 718 * 719 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 720 * to the loss in precision caused by the division. 721 */ 722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 723 { 724 struct sched_entity *curr = cfs_rq->curr; 725 s64 avg = cfs_rq->avg_vruntime; 726 long load = cfs_rq->avg_load; 727 728 if (curr && curr->on_rq) { 729 unsigned long weight = scale_load_down(curr->load.weight); 730 731 avg += entity_key(cfs_rq, curr) * weight; 732 load += weight; 733 } 734 735 return avg >= (s64)(vruntime - cfs_rq->zero_vruntime) * load; 736 } 737 738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 739 { 740 return vruntime_eligible(cfs_rq, se->vruntime); 741 } 742 743 static void update_zero_vruntime(struct cfs_rq *cfs_rq) 744 { 745 u64 vruntime = avg_vruntime(cfs_rq); 746 s64 delta = (s64)(vruntime - cfs_rq->zero_vruntime); 747 748 avg_vruntime_update(cfs_rq, delta); 749 750 cfs_rq->zero_vruntime = vruntime; 751 } 752 753 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 754 { 755 struct sched_entity *root = __pick_root_entity(cfs_rq); 756 struct sched_entity *curr = cfs_rq->curr; 757 u64 min_slice = ~0ULL; 758 759 if (curr && curr->on_rq) 760 min_slice = curr->slice; 761 762 if (root) 763 min_slice = min(min_slice, root->min_slice); 764 765 return min_slice; 766 } 767 768 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 769 { 770 return entity_before(__node_2_se(a), __node_2_se(b)); 771 } 772 773 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 774 775 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 776 { 777 if (node) { 778 struct sched_entity *rse = __node_2_se(node); 779 if (vruntime_gt(min_vruntime, se, rse)) 780 se->min_vruntime = rse->min_vruntime; 781 } 782 } 783 784 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 785 { 786 if (node) { 787 struct sched_entity *rse = __node_2_se(node); 788 if (rse->min_slice < se->min_slice) 789 se->min_slice = rse->min_slice; 790 } 791 } 792 793 /* 794 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 795 */ 796 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 797 { 798 u64 old_min_vruntime = se->min_vruntime; 799 u64 old_min_slice = se->min_slice; 800 struct rb_node *node = &se->run_node; 801 802 se->min_vruntime = se->vruntime; 803 __min_vruntime_update(se, node->rb_right); 804 __min_vruntime_update(se, node->rb_left); 805 806 se->min_slice = se->slice; 807 __min_slice_update(se, node->rb_right); 808 __min_slice_update(se, node->rb_left); 809 810 return se->min_vruntime == old_min_vruntime && 811 se->min_slice == old_min_slice; 812 } 813 814 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 815 run_node, min_vruntime, min_vruntime_update); 816 817 /* 818 * Enqueue an entity into the rb-tree: 819 */ 820 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 821 { 822 avg_vruntime_add(cfs_rq, se); 823 update_zero_vruntime(cfs_rq); 824 se->min_vruntime = se->vruntime; 825 se->min_slice = se->slice; 826 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 827 __entity_less, &min_vruntime_cb); 828 } 829 830 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 831 { 832 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 833 &min_vruntime_cb); 834 avg_vruntime_sub(cfs_rq, se); 835 update_zero_vruntime(cfs_rq); 836 } 837 838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 839 { 840 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 841 842 if (!root) 843 return NULL; 844 845 return __node_2_se(root); 846 } 847 848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 849 { 850 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 851 852 if (!left) 853 return NULL; 854 855 return __node_2_se(left); 856 } 857 858 /* 859 * Set the vruntime up to which an entity can run before looking 860 * for another entity to pick. 861 * In case of run to parity, we use the shortest slice of the enqueued 862 * entities to set the protected period. 863 * When run to parity is disabled, we give a minimum quantum to the running 864 * entity to ensure progress. 865 */ 866 static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 867 { 868 u64 slice = normalized_sysctl_sched_base_slice; 869 u64 vprot = se->deadline; 870 871 if (sched_feat(RUN_TO_PARITY)) 872 slice = cfs_rq_min_slice(cfs_rq); 873 874 slice = min(slice, se->slice); 875 if (slice != se->slice) 876 vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se)); 877 878 se->vprot = vprot; 879 } 880 881 static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 882 { 883 u64 slice = cfs_rq_min_slice(cfs_rq); 884 885 se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se)); 886 } 887 888 static inline bool protect_slice(struct sched_entity *se) 889 { 890 return ((s64)(se->vprot - se->vruntime) > 0); 891 } 892 893 static inline void cancel_protect_slice(struct sched_entity *se) 894 { 895 if (protect_slice(se)) 896 se->vprot = se->vruntime; 897 } 898 899 /* 900 * Earliest Eligible Virtual Deadline First 901 * 902 * In order to provide latency guarantees for different request sizes 903 * EEVDF selects the best runnable task from two criteria: 904 * 905 * 1) the task must be eligible (must be owed service) 906 * 907 * 2) from those tasks that meet 1), we select the one 908 * with the earliest virtual deadline. 909 * 910 * We can do this in O(log n) time due to an augmented RB-tree. The 911 * tree keeps the entries sorted on deadline, but also functions as a 912 * heap based on the vruntime by keeping: 913 * 914 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 915 * 916 * Which allows tree pruning through eligibility. 917 */ 918 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect) 919 { 920 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 921 struct sched_entity *se = __pick_first_entity(cfs_rq); 922 struct sched_entity *curr = cfs_rq->curr; 923 struct sched_entity *best = NULL; 924 925 /* 926 * We can safely skip eligibility check if there is only one entity 927 * in this cfs_rq, saving some cycles. 928 */ 929 if (cfs_rq->nr_queued == 1) 930 return curr && curr->on_rq ? curr : se; 931 932 /* 933 * Picking the ->next buddy will affect latency but not fairness. 934 */ 935 if (sched_feat(PICK_BUDDY) && 936 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 937 /* ->next will never be delayed */ 938 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 939 return cfs_rq->next; 940 } 941 942 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 943 curr = NULL; 944 945 if (curr && protect && protect_slice(curr)) 946 return curr; 947 948 /* Pick the leftmost entity if it's eligible */ 949 if (se && entity_eligible(cfs_rq, se)) { 950 best = se; 951 goto found; 952 } 953 954 /* Heap search for the EEVD entity */ 955 while (node) { 956 struct rb_node *left = node->rb_left; 957 958 /* 959 * Eligible entities in left subtree are always better 960 * choices, since they have earlier deadlines. 961 */ 962 if (left && vruntime_eligible(cfs_rq, 963 __node_2_se(left)->min_vruntime)) { 964 node = left; 965 continue; 966 } 967 968 se = __node_2_se(node); 969 970 /* 971 * The left subtree either is empty or has no eligible 972 * entity, so check the current node since it is the one 973 * with earliest deadline that might be eligible. 974 */ 975 if (entity_eligible(cfs_rq, se)) { 976 best = se; 977 break; 978 } 979 980 node = node->rb_right; 981 } 982 found: 983 if (!best || (curr && entity_before(curr, best))) 984 best = curr; 985 986 return best; 987 } 988 989 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 990 { 991 return __pick_eevdf(cfs_rq, true); 992 } 993 994 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 995 { 996 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 997 998 if (!last) 999 return NULL; 1000 1001 return __node_2_se(last); 1002 } 1003 1004 /************************************************************** 1005 * Scheduling class statistics methods: 1006 */ 1007 int sched_update_scaling(void) 1008 { 1009 unsigned int factor = get_update_sysctl_factor(); 1010 1011 #define WRT_SYSCTL(name) \ 1012 (normalized_sysctl_##name = sysctl_##name / (factor)) 1013 WRT_SYSCTL(sched_base_slice); 1014 #undef WRT_SYSCTL 1015 1016 return 0; 1017 } 1018 1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1020 1021 /* 1022 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1023 * this is probably good enough. 1024 */ 1025 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1026 { 1027 if ((s64)(se->vruntime - se->deadline) < 0) 1028 return false; 1029 1030 /* 1031 * For EEVDF the virtual time slope is determined by w_i (iow. 1032 * nice) while the request time r_i is determined by 1033 * sysctl_sched_base_slice. 1034 */ 1035 if (!se->custom_slice) 1036 se->slice = sysctl_sched_base_slice; 1037 1038 /* 1039 * EEVDF: vd_i = ve_i + r_i / w_i 1040 */ 1041 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1042 1043 /* 1044 * The task has consumed its request, reschedule. 1045 */ 1046 return true; 1047 } 1048 1049 #include "pelt.h" 1050 1051 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1052 static unsigned long task_h_load(struct task_struct *p); 1053 static unsigned long capacity_of(int cpu); 1054 1055 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1056 void init_entity_runnable_average(struct sched_entity *se) 1057 { 1058 struct sched_avg *sa = &se->avg; 1059 1060 memset(sa, 0, sizeof(*sa)); 1061 1062 /* 1063 * Tasks are initialized with full load to be seen as heavy tasks until 1064 * they get a chance to stabilize to their real load level. 1065 * Group entities are initialized with zero load to reflect the fact that 1066 * nothing has been attached to the task group yet. 1067 */ 1068 if (entity_is_task(se)) 1069 sa->load_avg = scale_load_down(se->load.weight); 1070 1071 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1072 } 1073 1074 /* 1075 * With new tasks being created, their initial util_avgs are extrapolated 1076 * based on the cfs_rq's current util_avg: 1077 * 1078 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1079 * * se_weight(se) 1080 * 1081 * However, in many cases, the above util_avg does not give a desired 1082 * value. Moreover, the sum of the util_avgs may be divergent, such 1083 * as when the series is a harmonic series. 1084 * 1085 * To solve this problem, we also cap the util_avg of successive tasks to 1086 * only 1/2 of the left utilization budget: 1087 * 1088 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1089 * 1090 * where n denotes the nth task and cpu_scale the CPU capacity. 1091 * 1092 * For example, for a CPU with 1024 of capacity, a simplest series from 1093 * the beginning would be like: 1094 * 1095 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1096 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1097 * 1098 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1099 * if util_avg > util_avg_cap. 1100 */ 1101 void post_init_entity_util_avg(struct task_struct *p) 1102 { 1103 struct sched_entity *se = &p->se; 1104 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1105 struct sched_avg *sa = &se->avg; 1106 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1107 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1108 1109 if (p->sched_class != &fair_sched_class) { 1110 /* 1111 * For !fair tasks do: 1112 * 1113 update_cfs_rq_load_avg(now, cfs_rq); 1114 attach_entity_load_avg(cfs_rq, se); 1115 switched_from_fair(rq, p); 1116 * 1117 * such that the next switched_to_fair() has the 1118 * expected state. 1119 */ 1120 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1121 return; 1122 } 1123 1124 if (cap > 0) { 1125 if (cfs_rq->avg.util_avg != 0) { 1126 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1127 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1128 1129 if (sa->util_avg > cap) 1130 sa->util_avg = cap; 1131 } else { 1132 sa->util_avg = cap; 1133 } 1134 } 1135 1136 sa->runnable_avg = sa->util_avg; 1137 } 1138 1139 static s64 update_se(struct rq *rq, struct sched_entity *se) 1140 { 1141 u64 now = rq_clock_task(rq); 1142 s64 delta_exec; 1143 1144 delta_exec = now - se->exec_start; 1145 if (unlikely(delta_exec <= 0)) 1146 return delta_exec; 1147 1148 se->exec_start = now; 1149 if (entity_is_task(se)) { 1150 struct task_struct *donor = task_of(se); 1151 struct task_struct *running = rq->curr; 1152 /* 1153 * If se is a task, we account the time against the running 1154 * task, as w/ proxy-exec they may not be the same. 1155 */ 1156 running->se.exec_start = now; 1157 running->se.sum_exec_runtime += delta_exec; 1158 1159 trace_sched_stat_runtime(running, delta_exec); 1160 account_group_exec_runtime(running, delta_exec); 1161 1162 /* cgroup time is always accounted against the donor */ 1163 cgroup_account_cputime(donor, delta_exec); 1164 } else { 1165 /* If not task, account the time against donor se */ 1166 se->sum_exec_runtime += delta_exec; 1167 } 1168 1169 if (schedstat_enabled()) { 1170 struct sched_statistics *stats; 1171 1172 stats = __schedstats_from_se(se); 1173 __schedstat_set(stats->exec_max, 1174 max(delta_exec, stats->exec_max)); 1175 } 1176 1177 return delta_exec; 1178 } 1179 1180 static void set_next_buddy(struct sched_entity *se); 1181 1182 /* 1183 * Used by other classes to account runtime. 1184 */ 1185 s64 update_curr_common(struct rq *rq) 1186 { 1187 return update_se(rq, &rq->donor->se); 1188 } 1189 1190 /* 1191 * Update the current task's runtime statistics. 1192 */ 1193 static void update_curr(struct cfs_rq *cfs_rq) 1194 { 1195 /* 1196 * Note: cfs_rq->curr corresponds to the task picked to 1197 * run (ie: rq->donor.se) which due to proxy-exec may 1198 * not necessarily be the actual task running 1199 * (rq->curr.se). This is easy to confuse! 1200 */ 1201 struct sched_entity *curr = cfs_rq->curr; 1202 struct rq *rq = rq_of(cfs_rq); 1203 s64 delta_exec; 1204 bool resched; 1205 1206 if (unlikely(!curr)) 1207 return; 1208 1209 delta_exec = update_se(rq, curr); 1210 if (unlikely(delta_exec <= 0)) 1211 return; 1212 1213 curr->vruntime += calc_delta_fair(delta_exec, curr); 1214 resched = update_deadline(cfs_rq, curr); 1215 1216 if (entity_is_task(curr)) { 1217 /* 1218 * If the fair_server is active, we need to account for the 1219 * fair_server time whether or not the task is running on 1220 * behalf of fair_server or not: 1221 * - If the task is running on behalf of fair_server, we need 1222 * to limit its time based on the assigned runtime. 1223 * - Fair task that runs outside of fair_server should account 1224 * against fair_server such that it can account for this time 1225 * and possibly avoid running this period. 1226 */ 1227 dl_server_update(&rq->fair_server, delta_exec); 1228 } 1229 1230 account_cfs_rq_runtime(cfs_rq, delta_exec); 1231 1232 if (cfs_rq->nr_queued == 1) 1233 return; 1234 1235 if (resched || !protect_slice(curr)) { 1236 resched_curr_lazy(rq); 1237 clear_buddies(cfs_rq, curr); 1238 } 1239 } 1240 1241 static void update_curr_fair(struct rq *rq) 1242 { 1243 update_curr(cfs_rq_of(&rq->donor->se)); 1244 } 1245 1246 static inline void 1247 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1248 { 1249 struct sched_statistics *stats; 1250 struct task_struct *p = NULL; 1251 1252 if (!schedstat_enabled()) 1253 return; 1254 1255 stats = __schedstats_from_se(se); 1256 1257 if (entity_is_task(se)) 1258 p = task_of(se); 1259 1260 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1261 } 1262 1263 static inline void 1264 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1265 { 1266 struct sched_statistics *stats; 1267 struct task_struct *p = NULL; 1268 1269 if (!schedstat_enabled()) 1270 return; 1271 1272 stats = __schedstats_from_se(se); 1273 1274 /* 1275 * When the sched_schedstat changes from 0 to 1, some sched se 1276 * maybe already in the runqueue, the se->statistics.wait_start 1277 * will be 0.So it will let the delta wrong. We need to avoid this 1278 * scenario. 1279 */ 1280 if (unlikely(!schedstat_val(stats->wait_start))) 1281 return; 1282 1283 if (entity_is_task(se)) 1284 p = task_of(se); 1285 1286 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1287 } 1288 1289 static inline void 1290 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1291 { 1292 struct sched_statistics *stats; 1293 struct task_struct *tsk = NULL; 1294 1295 if (!schedstat_enabled()) 1296 return; 1297 1298 stats = __schedstats_from_se(se); 1299 1300 if (entity_is_task(se)) 1301 tsk = task_of(se); 1302 1303 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1304 } 1305 1306 /* 1307 * Task is being enqueued - update stats: 1308 */ 1309 static inline void 1310 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1311 { 1312 if (!schedstat_enabled()) 1313 return; 1314 1315 /* 1316 * Are we enqueueing a waiting task? (for current tasks 1317 * a dequeue/enqueue event is a NOP) 1318 */ 1319 if (se != cfs_rq->curr) 1320 update_stats_wait_start_fair(cfs_rq, se); 1321 1322 if (flags & ENQUEUE_WAKEUP) 1323 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1324 } 1325 1326 static inline void 1327 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1328 { 1329 1330 if (!schedstat_enabled()) 1331 return; 1332 1333 /* 1334 * Mark the end of the wait period if dequeueing a 1335 * waiting task: 1336 */ 1337 if (se != cfs_rq->curr) 1338 update_stats_wait_end_fair(cfs_rq, se); 1339 1340 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1341 struct task_struct *tsk = task_of(se); 1342 unsigned int state; 1343 1344 /* XXX racy against TTWU */ 1345 state = READ_ONCE(tsk->__state); 1346 if (state & TASK_INTERRUPTIBLE) 1347 __schedstat_set(tsk->stats.sleep_start, 1348 rq_clock(rq_of(cfs_rq))); 1349 if (state & TASK_UNINTERRUPTIBLE) 1350 __schedstat_set(tsk->stats.block_start, 1351 rq_clock(rq_of(cfs_rq))); 1352 } 1353 } 1354 1355 /* 1356 * We are picking a new current task - update its stats: 1357 */ 1358 static inline void 1359 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1360 { 1361 /* 1362 * We are starting a new run period: 1363 */ 1364 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1365 } 1366 1367 /************************************************** 1368 * Scheduling class queueing methods: 1369 */ 1370 1371 static inline bool is_core_idle(int cpu) 1372 { 1373 #ifdef CONFIG_SCHED_SMT 1374 int sibling; 1375 1376 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1377 if (cpu == sibling) 1378 continue; 1379 1380 if (!idle_cpu(sibling)) 1381 return false; 1382 } 1383 #endif 1384 1385 return true; 1386 } 1387 1388 #ifdef CONFIG_NUMA 1389 #define NUMA_IMBALANCE_MIN 2 1390 1391 static inline long 1392 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1393 { 1394 /* 1395 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1396 * threshold. Above this threshold, individual tasks may be contending 1397 * for both memory bandwidth and any shared HT resources. This is an 1398 * approximation as the number of running tasks may not be related to 1399 * the number of busy CPUs due to sched_setaffinity. 1400 */ 1401 if (dst_running > imb_numa_nr) 1402 return imbalance; 1403 1404 /* 1405 * Allow a small imbalance based on a simple pair of communicating 1406 * tasks that remain local when the destination is lightly loaded. 1407 */ 1408 if (imbalance <= NUMA_IMBALANCE_MIN) 1409 return 0; 1410 1411 return imbalance; 1412 } 1413 #endif /* CONFIG_NUMA */ 1414 1415 #ifdef CONFIG_NUMA_BALANCING 1416 /* 1417 * Approximate time to scan a full NUMA task in ms. The task scan period is 1418 * calculated based on the tasks virtual memory size and 1419 * numa_balancing_scan_size. 1420 */ 1421 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1422 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1423 1424 /* Portion of address space to scan in MB */ 1425 unsigned int sysctl_numa_balancing_scan_size = 256; 1426 1427 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1428 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1429 1430 /* The page with hint page fault latency < threshold in ms is considered hot */ 1431 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1432 1433 struct numa_group { 1434 refcount_t refcount; 1435 1436 spinlock_t lock; /* nr_tasks, tasks */ 1437 int nr_tasks; 1438 pid_t gid; 1439 int active_nodes; 1440 1441 struct rcu_head rcu; 1442 unsigned long total_faults; 1443 unsigned long max_faults_cpu; 1444 /* 1445 * faults[] array is split into two regions: faults_mem and faults_cpu. 1446 * 1447 * Faults_cpu is used to decide whether memory should move 1448 * towards the CPU. As a consequence, these stats are weighted 1449 * more by CPU use than by memory faults. 1450 */ 1451 unsigned long faults[]; 1452 }; 1453 1454 /* 1455 * For functions that can be called in multiple contexts that permit reading 1456 * ->numa_group (see struct task_struct for locking rules). 1457 */ 1458 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1459 { 1460 return rcu_dereference_check(p->numa_group, p == current || 1461 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1462 } 1463 1464 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1465 { 1466 return rcu_dereference_protected(p->numa_group, p == current); 1467 } 1468 1469 static inline unsigned long group_faults_priv(struct numa_group *ng); 1470 static inline unsigned long group_faults_shared(struct numa_group *ng); 1471 1472 static unsigned int task_nr_scan_windows(struct task_struct *p) 1473 { 1474 unsigned long rss = 0; 1475 unsigned long nr_scan_pages; 1476 1477 /* 1478 * Calculations based on RSS as non-present and empty pages are skipped 1479 * by the PTE scanner and NUMA hinting faults should be trapped based 1480 * on resident pages 1481 */ 1482 nr_scan_pages = MB_TO_PAGES(sysctl_numa_balancing_scan_size); 1483 rss = get_mm_rss(p->mm); 1484 if (!rss) 1485 rss = nr_scan_pages; 1486 1487 rss = round_up(rss, nr_scan_pages); 1488 return rss / nr_scan_pages; 1489 } 1490 1491 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1492 #define MAX_SCAN_WINDOW 2560 1493 1494 static unsigned int task_scan_min(struct task_struct *p) 1495 { 1496 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1497 unsigned int scan, floor; 1498 unsigned int windows = 1; 1499 1500 if (scan_size < MAX_SCAN_WINDOW) 1501 windows = MAX_SCAN_WINDOW / scan_size; 1502 floor = 1000 / windows; 1503 1504 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1505 return max_t(unsigned int, floor, scan); 1506 } 1507 1508 static unsigned int task_scan_start(struct task_struct *p) 1509 { 1510 unsigned long smin = task_scan_min(p); 1511 unsigned long period = smin; 1512 struct numa_group *ng; 1513 1514 /* Scale the maximum scan period with the amount of shared memory. */ 1515 rcu_read_lock(); 1516 ng = rcu_dereference(p->numa_group); 1517 if (ng) { 1518 unsigned long shared = group_faults_shared(ng); 1519 unsigned long private = group_faults_priv(ng); 1520 1521 period *= refcount_read(&ng->refcount); 1522 period *= shared + 1; 1523 period /= private + shared + 1; 1524 } 1525 rcu_read_unlock(); 1526 1527 return max(smin, period); 1528 } 1529 1530 static unsigned int task_scan_max(struct task_struct *p) 1531 { 1532 unsigned long smin = task_scan_min(p); 1533 unsigned long smax; 1534 struct numa_group *ng; 1535 1536 /* Watch for min being lower than max due to floor calculations */ 1537 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1538 1539 /* Scale the maximum scan period with the amount of shared memory. */ 1540 ng = deref_curr_numa_group(p); 1541 if (ng) { 1542 unsigned long shared = group_faults_shared(ng); 1543 unsigned long private = group_faults_priv(ng); 1544 unsigned long period = smax; 1545 1546 period *= refcount_read(&ng->refcount); 1547 period *= shared + 1; 1548 period /= private + shared + 1; 1549 1550 smax = max(smax, period); 1551 } 1552 1553 return max(smin, smax); 1554 } 1555 1556 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1557 { 1558 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1559 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1560 } 1561 1562 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1563 { 1564 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1565 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1566 } 1567 1568 /* Shared or private faults. */ 1569 #define NR_NUMA_HINT_FAULT_TYPES 2 1570 1571 /* Memory and CPU locality */ 1572 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1573 1574 /* Averaged statistics, and temporary buffers. */ 1575 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1576 1577 pid_t task_numa_group_id(struct task_struct *p) 1578 { 1579 struct numa_group *ng; 1580 pid_t gid = 0; 1581 1582 rcu_read_lock(); 1583 ng = rcu_dereference(p->numa_group); 1584 if (ng) 1585 gid = ng->gid; 1586 rcu_read_unlock(); 1587 1588 return gid; 1589 } 1590 1591 /* 1592 * The averaged statistics, shared & private, memory & CPU, 1593 * occupy the first half of the array. The second half of the 1594 * array is for current counters, which are averaged into the 1595 * first set by task_numa_placement. 1596 */ 1597 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1598 { 1599 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1600 } 1601 1602 static inline unsigned long task_faults(struct task_struct *p, int nid) 1603 { 1604 if (!p->numa_faults) 1605 return 0; 1606 1607 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1608 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1609 } 1610 1611 static inline unsigned long group_faults(struct task_struct *p, int nid) 1612 { 1613 struct numa_group *ng = deref_task_numa_group(p); 1614 1615 if (!ng) 1616 return 0; 1617 1618 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1619 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1620 } 1621 1622 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1623 { 1624 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1625 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1626 } 1627 1628 static inline unsigned long group_faults_priv(struct numa_group *ng) 1629 { 1630 unsigned long faults = 0; 1631 int node; 1632 1633 for_each_online_node(node) { 1634 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1635 } 1636 1637 return faults; 1638 } 1639 1640 static inline unsigned long group_faults_shared(struct numa_group *ng) 1641 { 1642 unsigned long faults = 0; 1643 int node; 1644 1645 for_each_online_node(node) { 1646 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1647 } 1648 1649 return faults; 1650 } 1651 1652 /* 1653 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1654 * considered part of a numa group's pseudo-interleaving set. Migrations 1655 * between these nodes are slowed down, to allow things to settle down. 1656 */ 1657 #define ACTIVE_NODE_FRACTION 3 1658 1659 static bool numa_is_active_node(int nid, struct numa_group *ng) 1660 { 1661 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1662 } 1663 1664 /* Handle placement on systems where not all nodes are directly connected. */ 1665 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1666 int lim_dist, bool task) 1667 { 1668 unsigned long score = 0; 1669 int node, max_dist; 1670 1671 /* 1672 * All nodes are directly connected, and the same distance 1673 * from each other. No need for fancy placement algorithms. 1674 */ 1675 if (sched_numa_topology_type == NUMA_DIRECT) 1676 return 0; 1677 1678 /* sched_max_numa_distance may be changed in parallel. */ 1679 max_dist = READ_ONCE(sched_max_numa_distance); 1680 /* 1681 * This code is called for each node, introducing N^2 complexity, 1682 * which should be OK given the number of nodes rarely exceeds 8. 1683 */ 1684 for_each_online_node(node) { 1685 unsigned long faults; 1686 int dist = node_distance(nid, node); 1687 1688 /* 1689 * The furthest away nodes in the system are not interesting 1690 * for placement; nid was already counted. 1691 */ 1692 if (dist >= max_dist || node == nid) 1693 continue; 1694 1695 /* 1696 * On systems with a backplane NUMA topology, compare groups 1697 * of nodes, and move tasks towards the group with the most 1698 * memory accesses. When comparing two nodes at distance 1699 * "hoplimit", only nodes closer by than "hoplimit" are part 1700 * of each group. Skip other nodes. 1701 */ 1702 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1703 continue; 1704 1705 /* Add up the faults from nearby nodes. */ 1706 if (task) 1707 faults = task_faults(p, node); 1708 else 1709 faults = group_faults(p, node); 1710 1711 /* 1712 * On systems with a glueless mesh NUMA topology, there are 1713 * no fixed "groups of nodes". Instead, nodes that are not 1714 * directly connected bounce traffic through intermediate 1715 * nodes; a numa_group can occupy any set of nodes. 1716 * The further away a node is, the less the faults count. 1717 * This seems to result in good task placement. 1718 */ 1719 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1720 faults *= (max_dist - dist); 1721 faults /= (max_dist - LOCAL_DISTANCE); 1722 } 1723 1724 score += faults; 1725 } 1726 1727 return score; 1728 } 1729 1730 /* 1731 * These return the fraction of accesses done by a particular task, or 1732 * task group, on a particular numa node. The group weight is given a 1733 * larger multiplier, in order to group tasks together that are almost 1734 * evenly spread out between numa nodes. 1735 */ 1736 static inline unsigned long task_weight(struct task_struct *p, int nid, 1737 int dist) 1738 { 1739 unsigned long faults, total_faults; 1740 1741 if (!p->numa_faults) 1742 return 0; 1743 1744 total_faults = p->total_numa_faults; 1745 1746 if (!total_faults) 1747 return 0; 1748 1749 faults = task_faults(p, nid); 1750 faults += score_nearby_nodes(p, nid, dist, true); 1751 1752 return 1000 * faults / total_faults; 1753 } 1754 1755 static inline unsigned long group_weight(struct task_struct *p, int nid, 1756 int dist) 1757 { 1758 struct numa_group *ng = deref_task_numa_group(p); 1759 unsigned long faults, total_faults; 1760 1761 if (!ng) 1762 return 0; 1763 1764 total_faults = ng->total_faults; 1765 1766 if (!total_faults) 1767 return 0; 1768 1769 faults = group_faults(p, nid); 1770 faults += score_nearby_nodes(p, nid, dist, false); 1771 1772 return 1000 * faults / total_faults; 1773 } 1774 1775 /* 1776 * If memory tiering mode is enabled, cpupid of slow memory page is 1777 * used to record scan time instead of CPU and PID. When tiering mode 1778 * is disabled at run time, the scan time (in cpupid) will be 1779 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1780 * access out of array bound. 1781 */ 1782 static inline bool cpupid_valid(int cpupid) 1783 { 1784 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1785 } 1786 1787 /* 1788 * For memory tiering mode, if there are enough free pages (more than 1789 * enough watermark defined here) in fast memory node, to take full 1790 * advantage of fast memory capacity, all recently accessed slow 1791 * memory pages will be migrated to fast memory node without 1792 * considering hot threshold. 1793 */ 1794 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1795 { 1796 int z; 1797 unsigned long enough_wmark; 1798 1799 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1800 pgdat->node_present_pages >> 4); 1801 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1802 struct zone *zone = pgdat->node_zones + z; 1803 1804 if (!populated_zone(zone)) 1805 continue; 1806 1807 if (zone_watermark_ok(zone, 0, 1808 promo_wmark_pages(zone) + enough_wmark, 1809 ZONE_MOVABLE, 0)) 1810 return true; 1811 } 1812 return false; 1813 } 1814 1815 /* 1816 * For memory tiering mode, when page tables are scanned, the scan 1817 * time will be recorded in struct page in addition to make page 1818 * PROT_NONE for slow memory page. So when the page is accessed, in 1819 * hint page fault handler, the hint page fault latency is calculated 1820 * via, 1821 * 1822 * hint page fault latency = hint page fault time - scan time 1823 * 1824 * The smaller the hint page fault latency, the higher the possibility 1825 * for the page to be hot. 1826 */ 1827 static int numa_hint_fault_latency(struct folio *folio) 1828 { 1829 int last_time, time; 1830 1831 time = jiffies_to_msecs(jiffies); 1832 last_time = folio_xchg_access_time(folio, time); 1833 1834 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1835 } 1836 1837 /* 1838 * For memory tiering mode, too high promotion/demotion throughput may 1839 * hurt application latency. So we provide a mechanism to rate limit 1840 * the number of pages that are tried to be promoted. 1841 */ 1842 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1843 unsigned long rate_limit, int nr) 1844 { 1845 unsigned long nr_cand; 1846 unsigned int now, start; 1847 1848 now = jiffies_to_msecs(jiffies); 1849 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1850 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1851 start = pgdat->nbp_rl_start; 1852 if (now - start > MSEC_PER_SEC && 1853 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1854 pgdat->nbp_rl_nr_cand = nr_cand; 1855 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1856 return true; 1857 return false; 1858 } 1859 1860 #define NUMA_MIGRATION_ADJUST_STEPS 16 1861 1862 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1863 unsigned long rate_limit, 1864 unsigned int ref_th) 1865 { 1866 unsigned int now, start, th_period, unit_th, th; 1867 unsigned long nr_cand, ref_cand, diff_cand; 1868 1869 now = jiffies_to_msecs(jiffies); 1870 th_period = sysctl_numa_balancing_scan_period_max; 1871 start = pgdat->nbp_th_start; 1872 if (now - start > th_period && 1873 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1874 ref_cand = rate_limit * 1875 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1876 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1877 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1878 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1879 th = pgdat->nbp_threshold ? : ref_th; 1880 if (diff_cand > ref_cand * 11 / 10) 1881 th = max(th - unit_th, unit_th); 1882 else if (diff_cand < ref_cand * 9 / 10) 1883 th = min(th + unit_th, ref_th * 2); 1884 pgdat->nbp_th_nr_cand = nr_cand; 1885 pgdat->nbp_threshold = th; 1886 } 1887 } 1888 1889 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1890 int src_nid, int dst_cpu) 1891 { 1892 struct numa_group *ng = deref_curr_numa_group(p); 1893 int dst_nid = cpu_to_node(dst_cpu); 1894 int last_cpupid, this_cpupid; 1895 1896 /* 1897 * Cannot migrate to memoryless nodes. 1898 */ 1899 if (!node_state(dst_nid, N_MEMORY)) 1900 return false; 1901 1902 /* 1903 * The pages in slow memory node should be migrated according 1904 * to hot/cold instead of private/shared. 1905 */ 1906 if (folio_use_access_time(folio)) { 1907 struct pglist_data *pgdat; 1908 unsigned long rate_limit; 1909 unsigned int latency, th, def_th; 1910 long nr = folio_nr_pages(folio); 1911 1912 pgdat = NODE_DATA(dst_nid); 1913 if (pgdat_free_space_enough(pgdat)) { 1914 /* workload changed, reset hot threshold */ 1915 pgdat->nbp_threshold = 0; 1916 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE_NRL, nr); 1917 return true; 1918 } 1919 1920 def_th = sysctl_numa_balancing_hot_threshold; 1921 rate_limit = MB_TO_PAGES(sysctl_numa_balancing_promote_rate_limit); 1922 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1923 1924 th = pgdat->nbp_threshold ? : def_th; 1925 latency = numa_hint_fault_latency(folio); 1926 if (latency >= th) 1927 return false; 1928 1929 return !numa_promotion_rate_limit(pgdat, rate_limit, nr); 1930 } 1931 1932 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1933 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1934 1935 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1936 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1937 return false; 1938 1939 /* 1940 * Allow first faults or private faults to migrate immediately early in 1941 * the lifetime of a task. The magic number 4 is based on waiting for 1942 * two full passes of the "multi-stage node selection" test that is 1943 * executed below. 1944 */ 1945 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1946 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1947 return true; 1948 1949 /* 1950 * Multi-stage node selection is used in conjunction with a periodic 1951 * migration fault to build a temporal task<->page relation. By using 1952 * a two-stage filter we remove short/unlikely relations. 1953 * 1954 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1955 * a task's usage of a particular page (n_p) per total usage of this 1956 * page (n_t) (in a given time-span) to a probability. 1957 * 1958 * Our periodic faults will sample this probability and getting the 1959 * same result twice in a row, given these samples are fully 1960 * independent, is then given by P(n)^2, provided our sample period 1961 * is sufficiently short compared to the usage pattern. 1962 * 1963 * This quadric squishes small probabilities, making it less likely we 1964 * act on an unlikely task<->page relation. 1965 */ 1966 if (!cpupid_pid_unset(last_cpupid) && 1967 cpupid_to_nid(last_cpupid) != dst_nid) 1968 return false; 1969 1970 /* Always allow migrate on private faults */ 1971 if (cpupid_match_pid(p, last_cpupid)) 1972 return true; 1973 1974 /* A shared fault, but p->numa_group has not been set up yet. */ 1975 if (!ng) 1976 return true; 1977 1978 /* 1979 * Destination node is much more heavily used than the source 1980 * node? Allow migration. 1981 */ 1982 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1983 ACTIVE_NODE_FRACTION) 1984 return true; 1985 1986 /* 1987 * Distribute memory according to CPU & memory use on each node, 1988 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1989 * 1990 * faults_cpu(dst) 3 faults_cpu(src) 1991 * --------------- * - > --------------- 1992 * faults_mem(dst) 4 faults_mem(src) 1993 */ 1994 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1995 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1996 } 1997 1998 /* 1999 * 'numa_type' describes the node at the moment of load balancing. 2000 */ 2001 enum numa_type { 2002 /* The node has spare capacity that can be used to run more tasks. */ 2003 node_has_spare = 0, 2004 /* 2005 * The node is fully used and the tasks don't compete for more CPU 2006 * cycles. Nevertheless, some tasks might wait before running. 2007 */ 2008 node_fully_busy, 2009 /* 2010 * The node is overloaded and can't provide expected CPU cycles to all 2011 * tasks. 2012 */ 2013 node_overloaded 2014 }; 2015 2016 /* Cached statistics for all CPUs within a node */ 2017 struct numa_stats { 2018 unsigned long load; 2019 unsigned long runnable; 2020 unsigned long util; 2021 /* Total compute capacity of CPUs on a node */ 2022 unsigned long compute_capacity; 2023 unsigned int nr_running; 2024 unsigned int weight; 2025 enum numa_type node_type; 2026 int idle_cpu; 2027 }; 2028 2029 struct task_numa_env { 2030 struct task_struct *p; 2031 2032 int src_cpu, src_nid; 2033 int dst_cpu, dst_nid; 2034 int imb_numa_nr; 2035 2036 struct numa_stats src_stats, dst_stats; 2037 2038 int imbalance_pct; 2039 int dist; 2040 2041 struct task_struct *best_task; 2042 long best_imp; 2043 int best_cpu; 2044 }; 2045 2046 static unsigned long cpu_load(struct rq *rq); 2047 static unsigned long cpu_runnable(struct rq *rq); 2048 2049 static inline enum 2050 numa_type numa_classify(unsigned int imbalance_pct, 2051 struct numa_stats *ns) 2052 { 2053 if ((ns->nr_running > ns->weight) && 2054 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2055 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2056 return node_overloaded; 2057 2058 if ((ns->nr_running < ns->weight) || 2059 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2060 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2061 return node_has_spare; 2062 2063 return node_fully_busy; 2064 } 2065 2066 #ifdef CONFIG_SCHED_SMT 2067 /* Forward declarations of select_idle_sibling helpers */ 2068 static inline bool test_idle_cores(int cpu); 2069 static inline int numa_idle_core(int idle_core, int cpu) 2070 { 2071 if (!static_branch_likely(&sched_smt_present) || 2072 idle_core >= 0 || !test_idle_cores(cpu)) 2073 return idle_core; 2074 2075 /* 2076 * Prefer cores instead of packing HT siblings 2077 * and triggering future load balancing. 2078 */ 2079 if (is_core_idle(cpu)) 2080 idle_core = cpu; 2081 2082 return idle_core; 2083 } 2084 #else /* !CONFIG_SCHED_SMT: */ 2085 static inline int numa_idle_core(int idle_core, int cpu) 2086 { 2087 return idle_core; 2088 } 2089 #endif /* !CONFIG_SCHED_SMT */ 2090 2091 /* 2092 * Gather all necessary information to make NUMA balancing placement 2093 * decisions that are compatible with standard load balancer. This 2094 * borrows code and logic from update_sg_lb_stats but sharing a 2095 * common implementation is impractical. 2096 */ 2097 static void update_numa_stats(struct task_numa_env *env, 2098 struct numa_stats *ns, int nid, 2099 bool find_idle) 2100 { 2101 int cpu, idle_core = -1; 2102 2103 memset(ns, 0, sizeof(*ns)); 2104 ns->idle_cpu = -1; 2105 2106 rcu_read_lock(); 2107 for_each_cpu(cpu, cpumask_of_node(nid)) { 2108 struct rq *rq = cpu_rq(cpu); 2109 2110 ns->load += cpu_load(rq); 2111 ns->runnable += cpu_runnable(rq); 2112 ns->util += cpu_util_cfs(cpu); 2113 ns->nr_running += rq->cfs.h_nr_runnable; 2114 ns->compute_capacity += capacity_of(cpu); 2115 2116 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2117 if (READ_ONCE(rq->numa_migrate_on) || 2118 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2119 continue; 2120 2121 if (ns->idle_cpu == -1) 2122 ns->idle_cpu = cpu; 2123 2124 idle_core = numa_idle_core(idle_core, cpu); 2125 } 2126 } 2127 rcu_read_unlock(); 2128 2129 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2130 2131 ns->node_type = numa_classify(env->imbalance_pct, ns); 2132 2133 if (idle_core >= 0) 2134 ns->idle_cpu = idle_core; 2135 } 2136 2137 static void task_numa_assign(struct task_numa_env *env, 2138 struct task_struct *p, long imp) 2139 { 2140 struct rq *rq = cpu_rq(env->dst_cpu); 2141 2142 /* Check if run-queue part of active NUMA balance. */ 2143 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2144 int cpu; 2145 int start = env->dst_cpu; 2146 2147 /* Find alternative idle CPU. */ 2148 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2149 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2150 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2151 continue; 2152 } 2153 2154 env->dst_cpu = cpu; 2155 rq = cpu_rq(env->dst_cpu); 2156 if (!xchg(&rq->numa_migrate_on, 1)) 2157 goto assign; 2158 } 2159 2160 /* Failed to find an alternative idle CPU */ 2161 return; 2162 } 2163 2164 assign: 2165 /* 2166 * Clear previous best_cpu/rq numa-migrate flag, since task now 2167 * found a better CPU to move/swap. 2168 */ 2169 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2170 rq = cpu_rq(env->best_cpu); 2171 WRITE_ONCE(rq->numa_migrate_on, 0); 2172 } 2173 2174 if (env->best_task) 2175 put_task_struct(env->best_task); 2176 if (p) 2177 get_task_struct(p); 2178 2179 env->best_task = p; 2180 env->best_imp = imp; 2181 env->best_cpu = env->dst_cpu; 2182 } 2183 2184 static bool load_too_imbalanced(long src_load, long dst_load, 2185 struct task_numa_env *env) 2186 { 2187 long imb, old_imb; 2188 long orig_src_load, orig_dst_load; 2189 long src_capacity, dst_capacity; 2190 2191 /* 2192 * The load is corrected for the CPU capacity available on each node. 2193 * 2194 * src_load dst_load 2195 * ------------ vs --------- 2196 * src_capacity dst_capacity 2197 */ 2198 src_capacity = env->src_stats.compute_capacity; 2199 dst_capacity = env->dst_stats.compute_capacity; 2200 2201 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2202 2203 orig_src_load = env->src_stats.load; 2204 orig_dst_load = env->dst_stats.load; 2205 2206 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2207 2208 /* Would this change make things worse? */ 2209 return (imb > old_imb); 2210 } 2211 2212 /* 2213 * Maximum NUMA importance can be 1998 (2*999); 2214 * SMALLIMP @ 30 would be close to 1998/64. 2215 * Used to deter task migration. 2216 */ 2217 #define SMALLIMP 30 2218 2219 /* 2220 * This checks if the overall compute and NUMA accesses of the system would 2221 * be improved if the source tasks was migrated to the target dst_cpu taking 2222 * into account that it might be best if task running on the dst_cpu should 2223 * be exchanged with the source task 2224 */ 2225 static bool task_numa_compare(struct task_numa_env *env, 2226 long taskimp, long groupimp, bool maymove) 2227 { 2228 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2229 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2230 long imp = p_ng ? groupimp : taskimp; 2231 struct task_struct *cur; 2232 long src_load, dst_load; 2233 int dist = env->dist; 2234 long moveimp = imp; 2235 long load; 2236 bool stopsearch = false; 2237 2238 if (READ_ONCE(dst_rq->numa_migrate_on)) 2239 return false; 2240 2241 rcu_read_lock(); 2242 cur = rcu_dereference(dst_rq->curr); 2243 if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) || 2244 !cur->mm)) 2245 cur = NULL; 2246 2247 /* 2248 * Because we have preemption enabled we can get migrated around and 2249 * end try selecting ourselves (current == env->p) as a swap candidate. 2250 */ 2251 if (cur == env->p) { 2252 stopsearch = true; 2253 goto unlock; 2254 } 2255 2256 if (!cur) { 2257 if (maymove && moveimp >= env->best_imp) 2258 goto assign; 2259 else 2260 goto unlock; 2261 } 2262 2263 /* Skip this swap candidate if cannot move to the source cpu. */ 2264 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2265 goto unlock; 2266 2267 /* 2268 * Skip this swap candidate if it is not moving to its preferred 2269 * node and the best task is. 2270 */ 2271 if (env->best_task && 2272 env->best_task->numa_preferred_nid == env->src_nid && 2273 cur->numa_preferred_nid != env->src_nid) { 2274 goto unlock; 2275 } 2276 2277 /* 2278 * "imp" is the fault differential for the source task between the 2279 * source and destination node. Calculate the total differential for 2280 * the source task and potential destination task. The more negative 2281 * the value is, the more remote accesses that would be expected to 2282 * be incurred if the tasks were swapped. 2283 * 2284 * If dst and source tasks are in the same NUMA group, or not 2285 * in any group then look only at task weights. 2286 */ 2287 cur_ng = rcu_dereference(cur->numa_group); 2288 if (cur_ng == p_ng) { 2289 /* 2290 * Do not swap within a group or between tasks that have 2291 * no group if there is spare capacity. Swapping does 2292 * not address the load imbalance and helps one task at 2293 * the cost of punishing another. 2294 */ 2295 if (env->dst_stats.node_type == node_has_spare) 2296 goto unlock; 2297 2298 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2299 task_weight(cur, env->dst_nid, dist); 2300 /* 2301 * Add some hysteresis to prevent swapping the 2302 * tasks within a group over tiny differences. 2303 */ 2304 if (cur_ng) 2305 imp -= imp / 16; 2306 } else { 2307 /* 2308 * Compare the group weights. If a task is all by itself 2309 * (not part of a group), use the task weight instead. 2310 */ 2311 if (cur_ng && p_ng) 2312 imp += group_weight(cur, env->src_nid, dist) - 2313 group_weight(cur, env->dst_nid, dist); 2314 else 2315 imp += task_weight(cur, env->src_nid, dist) - 2316 task_weight(cur, env->dst_nid, dist); 2317 } 2318 2319 /* Discourage picking a task already on its preferred node */ 2320 if (cur->numa_preferred_nid == env->dst_nid) 2321 imp -= imp / 16; 2322 2323 /* 2324 * Encourage picking a task that moves to its preferred node. 2325 * This potentially makes imp larger than it's maximum of 2326 * 1998 (see SMALLIMP and task_weight for why) but in this 2327 * case, it does not matter. 2328 */ 2329 if (cur->numa_preferred_nid == env->src_nid) 2330 imp += imp / 8; 2331 2332 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2333 imp = moveimp; 2334 cur = NULL; 2335 goto assign; 2336 } 2337 2338 /* 2339 * Prefer swapping with a task moving to its preferred node over a 2340 * task that is not. 2341 */ 2342 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2343 env->best_task->numa_preferred_nid != env->src_nid) { 2344 goto assign; 2345 } 2346 2347 /* 2348 * If the NUMA importance is less than SMALLIMP, 2349 * task migration might only result in ping pong 2350 * of tasks and also hurt performance due to cache 2351 * misses. 2352 */ 2353 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2354 goto unlock; 2355 2356 /* 2357 * In the overloaded case, try and keep the load balanced. 2358 */ 2359 load = task_h_load(env->p) - task_h_load(cur); 2360 if (!load) 2361 goto assign; 2362 2363 dst_load = env->dst_stats.load + load; 2364 src_load = env->src_stats.load - load; 2365 2366 if (load_too_imbalanced(src_load, dst_load, env)) 2367 goto unlock; 2368 2369 assign: 2370 /* Evaluate an idle CPU for a task numa move. */ 2371 if (!cur) { 2372 int cpu = env->dst_stats.idle_cpu; 2373 2374 /* Nothing cached so current CPU went idle since the search. */ 2375 if (cpu < 0) 2376 cpu = env->dst_cpu; 2377 2378 /* 2379 * If the CPU is no longer truly idle and the previous best CPU 2380 * is, keep using it. 2381 */ 2382 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2383 idle_cpu(env->best_cpu)) { 2384 cpu = env->best_cpu; 2385 } 2386 2387 env->dst_cpu = cpu; 2388 } 2389 2390 task_numa_assign(env, cur, imp); 2391 2392 /* 2393 * If a move to idle is allowed because there is capacity or load 2394 * balance improves then stop the search. While a better swap 2395 * candidate may exist, a search is not free. 2396 */ 2397 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2398 stopsearch = true; 2399 2400 /* 2401 * If a swap candidate must be identified and the current best task 2402 * moves its preferred node then stop the search. 2403 */ 2404 if (!maymove && env->best_task && 2405 env->best_task->numa_preferred_nid == env->src_nid) { 2406 stopsearch = true; 2407 } 2408 unlock: 2409 rcu_read_unlock(); 2410 2411 return stopsearch; 2412 } 2413 2414 static void task_numa_find_cpu(struct task_numa_env *env, 2415 long taskimp, long groupimp) 2416 { 2417 bool maymove = false; 2418 int cpu; 2419 2420 /* 2421 * If dst node has spare capacity, then check if there is an 2422 * imbalance that would be overruled by the load balancer. 2423 */ 2424 if (env->dst_stats.node_type == node_has_spare) { 2425 unsigned int imbalance; 2426 int src_running, dst_running; 2427 2428 /* 2429 * Would movement cause an imbalance? Note that if src has 2430 * more running tasks that the imbalance is ignored as the 2431 * move improves the imbalance from the perspective of the 2432 * CPU load balancer. 2433 * */ 2434 src_running = env->src_stats.nr_running - 1; 2435 dst_running = env->dst_stats.nr_running + 1; 2436 imbalance = max(0, dst_running - src_running); 2437 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2438 env->imb_numa_nr); 2439 2440 /* Use idle CPU if there is no imbalance */ 2441 if (!imbalance) { 2442 maymove = true; 2443 if (env->dst_stats.idle_cpu >= 0) { 2444 env->dst_cpu = env->dst_stats.idle_cpu; 2445 task_numa_assign(env, NULL, 0); 2446 return; 2447 } 2448 } 2449 } else { 2450 long src_load, dst_load, load; 2451 /* 2452 * If the improvement from just moving env->p direction is better 2453 * than swapping tasks around, check if a move is possible. 2454 */ 2455 load = task_h_load(env->p); 2456 dst_load = env->dst_stats.load + load; 2457 src_load = env->src_stats.load - load; 2458 maymove = !load_too_imbalanced(src_load, dst_load, env); 2459 } 2460 2461 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2462 /* Skip this CPU if the source task cannot migrate */ 2463 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2464 continue; 2465 2466 env->dst_cpu = cpu; 2467 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2468 break; 2469 } 2470 } 2471 2472 static int task_numa_migrate(struct task_struct *p) 2473 { 2474 struct task_numa_env env = { 2475 .p = p, 2476 2477 .src_cpu = task_cpu(p), 2478 .src_nid = task_node(p), 2479 2480 .imbalance_pct = 112, 2481 2482 .best_task = NULL, 2483 .best_imp = 0, 2484 .best_cpu = -1, 2485 }; 2486 unsigned long taskweight, groupweight; 2487 struct sched_domain *sd; 2488 long taskimp, groupimp; 2489 struct numa_group *ng; 2490 struct rq *best_rq; 2491 int nid, ret, dist; 2492 2493 /* 2494 * Pick the lowest SD_NUMA domain, as that would have the smallest 2495 * imbalance and would be the first to start moving tasks about. 2496 * 2497 * And we want to avoid any moving of tasks about, as that would create 2498 * random movement of tasks -- counter the numa conditions we're trying 2499 * to satisfy here. 2500 */ 2501 rcu_read_lock(); 2502 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2503 if (sd) { 2504 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2505 env.imb_numa_nr = sd->imb_numa_nr; 2506 } 2507 rcu_read_unlock(); 2508 2509 /* 2510 * Cpusets can break the scheduler domain tree into smaller 2511 * balance domains, some of which do not cross NUMA boundaries. 2512 * Tasks that are "trapped" in such domains cannot be migrated 2513 * elsewhere, so there is no point in (re)trying. 2514 */ 2515 if (unlikely(!sd)) { 2516 sched_setnuma(p, task_node(p)); 2517 return -EINVAL; 2518 } 2519 2520 env.dst_nid = p->numa_preferred_nid; 2521 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2522 taskweight = task_weight(p, env.src_nid, dist); 2523 groupweight = group_weight(p, env.src_nid, dist); 2524 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2525 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2526 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2527 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2528 2529 /* Try to find a spot on the preferred nid. */ 2530 task_numa_find_cpu(&env, taskimp, groupimp); 2531 2532 /* 2533 * Look at other nodes in these cases: 2534 * - there is no space available on the preferred_nid 2535 * - the task is part of a numa_group that is interleaved across 2536 * multiple NUMA nodes; in order to better consolidate the group, 2537 * we need to check other locations. 2538 */ 2539 ng = deref_curr_numa_group(p); 2540 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2541 for_each_node_state(nid, N_CPU) { 2542 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2543 continue; 2544 2545 dist = node_distance(env.src_nid, env.dst_nid); 2546 if (sched_numa_topology_type == NUMA_BACKPLANE && 2547 dist != env.dist) { 2548 taskweight = task_weight(p, env.src_nid, dist); 2549 groupweight = group_weight(p, env.src_nid, dist); 2550 } 2551 2552 /* Only consider nodes where both task and groups benefit */ 2553 taskimp = task_weight(p, nid, dist) - taskweight; 2554 groupimp = group_weight(p, nid, dist) - groupweight; 2555 if (taskimp < 0 && groupimp < 0) 2556 continue; 2557 2558 env.dist = dist; 2559 env.dst_nid = nid; 2560 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2561 task_numa_find_cpu(&env, taskimp, groupimp); 2562 } 2563 } 2564 2565 /* 2566 * If the task is part of a workload that spans multiple NUMA nodes, 2567 * and is migrating into one of the workload's active nodes, remember 2568 * this node as the task's preferred numa node, so the workload can 2569 * settle down. 2570 * A task that migrated to a second choice node will be better off 2571 * trying for a better one later. Do not set the preferred node here. 2572 */ 2573 if (ng) { 2574 if (env.best_cpu == -1) 2575 nid = env.src_nid; 2576 else 2577 nid = cpu_to_node(env.best_cpu); 2578 2579 if (nid != p->numa_preferred_nid) 2580 sched_setnuma(p, nid); 2581 } 2582 2583 /* No better CPU than the current one was found. */ 2584 if (env.best_cpu == -1) { 2585 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2586 return -EAGAIN; 2587 } 2588 2589 best_rq = cpu_rq(env.best_cpu); 2590 if (env.best_task == NULL) { 2591 ret = migrate_task_to(p, env.best_cpu); 2592 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2593 if (ret != 0) 2594 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2595 return ret; 2596 } 2597 2598 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2599 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2600 2601 if (ret != 0) 2602 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2603 put_task_struct(env.best_task); 2604 return ret; 2605 } 2606 2607 /* Attempt to migrate a task to a CPU on the preferred node. */ 2608 static void numa_migrate_preferred(struct task_struct *p) 2609 { 2610 unsigned long interval = HZ; 2611 2612 /* This task has no NUMA fault statistics yet */ 2613 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2614 return; 2615 2616 /* Periodically retry migrating the task to the preferred node */ 2617 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2618 p->numa_migrate_retry = jiffies + interval; 2619 2620 /* Success if task is already running on preferred CPU */ 2621 if (task_node(p) == p->numa_preferred_nid) 2622 return; 2623 2624 /* Otherwise, try migrate to a CPU on the preferred node */ 2625 task_numa_migrate(p); 2626 } 2627 2628 /* 2629 * Find out how many nodes the workload is actively running on. Do this by 2630 * tracking the nodes from which NUMA hinting faults are triggered. This can 2631 * be different from the set of nodes where the workload's memory is currently 2632 * located. 2633 */ 2634 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2635 { 2636 unsigned long faults, max_faults = 0; 2637 int nid, active_nodes = 0; 2638 2639 for_each_node_state(nid, N_CPU) { 2640 faults = group_faults_cpu(numa_group, nid); 2641 if (faults > max_faults) 2642 max_faults = faults; 2643 } 2644 2645 for_each_node_state(nid, N_CPU) { 2646 faults = group_faults_cpu(numa_group, nid); 2647 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2648 active_nodes++; 2649 } 2650 2651 numa_group->max_faults_cpu = max_faults; 2652 numa_group->active_nodes = active_nodes; 2653 } 2654 2655 /* 2656 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2657 * increments. The more local the fault statistics are, the higher the scan 2658 * period will be for the next scan window. If local/(local+remote) ratio is 2659 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2660 * the scan period will decrease. Aim for 70% local accesses. 2661 */ 2662 #define NUMA_PERIOD_SLOTS 10 2663 #define NUMA_PERIOD_THRESHOLD 7 2664 2665 /* 2666 * Increase the scan period (slow down scanning) if the majority of 2667 * our memory is already on our local node, or if the majority of 2668 * the page accesses are shared with other processes. 2669 * Otherwise, decrease the scan period. 2670 */ 2671 static void update_task_scan_period(struct task_struct *p, 2672 unsigned long shared, unsigned long private) 2673 { 2674 unsigned int period_slot; 2675 int lr_ratio, ps_ratio; 2676 int diff; 2677 2678 unsigned long remote = p->numa_faults_locality[0]; 2679 unsigned long local = p->numa_faults_locality[1]; 2680 2681 /* 2682 * If there were no record hinting faults then either the task is 2683 * completely idle or all activity is in areas that are not of interest 2684 * to automatic numa balancing. Related to that, if there were failed 2685 * migration then it implies we are migrating too quickly or the local 2686 * node is overloaded. In either case, scan slower 2687 */ 2688 if (local + shared == 0 || p->numa_faults_locality[2]) { 2689 p->numa_scan_period = min(p->numa_scan_period_max, 2690 p->numa_scan_period << 1); 2691 2692 p->mm->numa_next_scan = jiffies + 2693 msecs_to_jiffies(p->numa_scan_period); 2694 2695 return; 2696 } 2697 2698 /* 2699 * Prepare to scale scan period relative to the current period. 2700 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2701 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2702 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2703 */ 2704 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2705 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2706 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2707 2708 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2709 /* 2710 * Most memory accesses are local. There is no need to 2711 * do fast NUMA scanning, since memory is already local. 2712 */ 2713 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2714 if (!slot) 2715 slot = 1; 2716 diff = slot * period_slot; 2717 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2718 /* 2719 * Most memory accesses are shared with other tasks. 2720 * There is no point in continuing fast NUMA scanning, 2721 * since other tasks may just move the memory elsewhere. 2722 */ 2723 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2724 if (!slot) 2725 slot = 1; 2726 diff = slot * period_slot; 2727 } else { 2728 /* 2729 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2730 * yet they are not on the local NUMA node. Speed up 2731 * NUMA scanning to get the memory moved over. 2732 */ 2733 int ratio = max(lr_ratio, ps_ratio); 2734 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2735 } 2736 2737 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2738 task_scan_min(p), task_scan_max(p)); 2739 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2740 } 2741 2742 /* 2743 * Get the fraction of time the task has been running since the last 2744 * NUMA placement cycle. The scheduler keeps similar statistics, but 2745 * decays those on a 32ms period, which is orders of magnitude off 2746 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2747 * stats only if the task is so new there are no NUMA statistics yet. 2748 */ 2749 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2750 { 2751 u64 runtime, delta, now; 2752 /* Use the start of this time slice to avoid calculations. */ 2753 now = p->se.exec_start; 2754 runtime = p->se.sum_exec_runtime; 2755 2756 if (p->last_task_numa_placement) { 2757 delta = runtime - p->last_sum_exec_runtime; 2758 *period = now - p->last_task_numa_placement; 2759 2760 /* Avoid time going backwards, prevent potential divide error: */ 2761 if (unlikely((s64)*period < 0)) 2762 *period = 0; 2763 } else { 2764 delta = p->se.avg.load_sum; 2765 *period = LOAD_AVG_MAX; 2766 } 2767 2768 p->last_sum_exec_runtime = runtime; 2769 p->last_task_numa_placement = now; 2770 2771 return delta; 2772 } 2773 2774 /* 2775 * Determine the preferred nid for a task in a numa_group. This needs to 2776 * be done in a way that produces consistent results with group_weight, 2777 * otherwise workloads might not converge. 2778 */ 2779 static int preferred_group_nid(struct task_struct *p, int nid) 2780 { 2781 nodemask_t nodes; 2782 int dist; 2783 2784 /* Direct connections between all NUMA nodes. */ 2785 if (sched_numa_topology_type == NUMA_DIRECT) 2786 return nid; 2787 2788 /* 2789 * On a system with glueless mesh NUMA topology, group_weight 2790 * scores nodes according to the number of NUMA hinting faults on 2791 * both the node itself, and on nearby nodes. 2792 */ 2793 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2794 unsigned long score, max_score = 0; 2795 int node, max_node = nid; 2796 2797 dist = sched_max_numa_distance; 2798 2799 for_each_node_state(node, N_CPU) { 2800 score = group_weight(p, node, dist); 2801 if (score > max_score) { 2802 max_score = score; 2803 max_node = node; 2804 } 2805 } 2806 return max_node; 2807 } 2808 2809 /* 2810 * Finding the preferred nid in a system with NUMA backplane 2811 * interconnect topology is more involved. The goal is to locate 2812 * tasks from numa_groups near each other in the system, and 2813 * untangle workloads from different sides of the system. This requires 2814 * searching down the hierarchy of node groups, recursively searching 2815 * inside the highest scoring group of nodes. The nodemask tricks 2816 * keep the complexity of the search down. 2817 */ 2818 nodes = node_states[N_CPU]; 2819 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2820 unsigned long max_faults = 0; 2821 nodemask_t max_group = NODE_MASK_NONE; 2822 int a, b; 2823 2824 /* Are there nodes at this distance from each other? */ 2825 if (!find_numa_distance(dist)) 2826 continue; 2827 2828 for_each_node_mask(a, nodes) { 2829 unsigned long faults = 0; 2830 nodemask_t this_group; 2831 nodes_clear(this_group); 2832 2833 /* Sum group's NUMA faults; includes a==b case. */ 2834 for_each_node_mask(b, nodes) { 2835 if (node_distance(a, b) < dist) { 2836 faults += group_faults(p, b); 2837 node_set(b, this_group); 2838 node_clear(b, nodes); 2839 } 2840 } 2841 2842 /* Remember the top group. */ 2843 if (faults > max_faults) { 2844 max_faults = faults; 2845 max_group = this_group; 2846 /* 2847 * subtle: at the smallest distance there is 2848 * just one node left in each "group", the 2849 * winner is the preferred nid. 2850 */ 2851 nid = a; 2852 } 2853 } 2854 /* Next round, evaluate the nodes within max_group. */ 2855 if (!max_faults) 2856 break; 2857 nodes = max_group; 2858 } 2859 return nid; 2860 } 2861 2862 static void task_numa_placement(struct task_struct *p) 2863 { 2864 int seq, nid, max_nid = NUMA_NO_NODE; 2865 unsigned long max_faults = 0; 2866 unsigned long fault_types[2] = { 0, 0 }; 2867 unsigned long total_faults; 2868 u64 runtime, period; 2869 spinlock_t *group_lock = NULL; 2870 struct numa_group *ng; 2871 2872 /* 2873 * The p->mm->numa_scan_seq field gets updated without 2874 * exclusive access. Use READ_ONCE() here to ensure 2875 * that the field is read in a single access: 2876 */ 2877 seq = READ_ONCE(p->mm->numa_scan_seq); 2878 if (p->numa_scan_seq == seq) 2879 return; 2880 p->numa_scan_seq = seq; 2881 p->numa_scan_period_max = task_scan_max(p); 2882 2883 total_faults = p->numa_faults_locality[0] + 2884 p->numa_faults_locality[1]; 2885 runtime = numa_get_avg_runtime(p, &period); 2886 2887 /* If the task is part of a group prevent parallel updates to group stats */ 2888 ng = deref_curr_numa_group(p); 2889 if (ng) { 2890 group_lock = &ng->lock; 2891 spin_lock_irq(group_lock); 2892 } 2893 2894 /* Find the node with the highest number of faults */ 2895 for_each_online_node(nid) { 2896 /* Keep track of the offsets in numa_faults array */ 2897 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2898 unsigned long faults = 0, group_faults = 0; 2899 int priv; 2900 2901 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2902 long diff, f_diff, f_weight; 2903 2904 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2905 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2906 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2907 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2908 2909 /* Decay existing window, copy faults since last scan */ 2910 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2911 fault_types[priv] += p->numa_faults[membuf_idx]; 2912 p->numa_faults[membuf_idx] = 0; 2913 2914 /* 2915 * Normalize the faults_from, so all tasks in a group 2916 * count according to CPU use, instead of by the raw 2917 * number of faults. Tasks with little runtime have 2918 * little over-all impact on throughput, and thus their 2919 * faults are less important. 2920 */ 2921 f_weight = div64_u64(runtime << 16, period + 1); 2922 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2923 (total_faults + 1); 2924 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2925 p->numa_faults[cpubuf_idx] = 0; 2926 2927 p->numa_faults[mem_idx] += diff; 2928 p->numa_faults[cpu_idx] += f_diff; 2929 faults += p->numa_faults[mem_idx]; 2930 p->total_numa_faults += diff; 2931 if (ng) { 2932 /* 2933 * safe because we can only change our own group 2934 * 2935 * mem_idx represents the offset for a given 2936 * nid and priv in a specific region because it 2937 * is at the beginning of the numa_faults array. 2938 */ 2939 ng->faults[mem_idx] += diff; 2940 ng->faults[cpu_idx] += f_diff; 2941 ng->total_faults += diff; 2942 group_faults += ng->faults[mem_idx]; 2943 } 2944 } 2945 2946 if (!ng) { 2947 if (faults > max_faults) { 2948 max_faults = faults; 2949 max_nid = nid; 2950 } 2951 } else if (group_faults > max_faults) { 2952 max_faults = group_faults; 2953 max_nid = nid; 2954 } 2955 } 2956 2957 /* Cannot migrate task to CPU-less node */ 2958 max_nid = numa_nearest_node(max_nid, N_CPU); 2959 2960 if (ng) { 2961 numa_group_count_active_nodes(ng); 2962 spin_unlock_irq(group_lock); 2963 max_nid = preferred_group_nid(p, max_nid); 2964 } 2965 2966 if (max_faults) { 2967 /* Set the new preferred node */ 2968 if (max_nid != p->numa_preferred_nid) 2969 sched_setnuma(p, max_nid); 2970 } 2971 2972 update_task_scan_period(p, fault_types[0], fault_types[1]); 2973 } 2974 2975 static inline int get_numa_group(struct numa_group *grp) 2976 { 2977 return refcount_inc_not_zero(&grp->refcount); 2978 } 2979 2980 static inline void put_numa_group(struct numa_group *grp) 2981 { 2982 if (refcount_dec_and_test(&grp->refcount)) 2983 kfree_rcu(grp, rcu); 2984 } 2985 2986 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2987 int *priv) 2988 { 2989 struct numa_group *grp, *my_grp; 2990 struct task_struct *tsk; 2991 bool join = false; 2992 int cpu = cpupid_to_cpu(cpupid); 2993 int i; 2994 2995 if (unlikely(!deref_curr_numa_group(p))) { 2996 unsigned int size = sizeof(struct numa_group) + 2997 NR_NUMA_HINT_FAULT_STATS * 2998 nr_node_ids * sizeof(unsigned long); 2999 3000 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3001 if (!grp) 3002 return; 3003 3004 refcount_set(&grp->refcount, 1); 3005 grp->active_nodes = 1; 3006 grp->max_faults_cpu = 0; 3007 spin_lock_init(&grp->lock); 3008 grp->gid = p->pid; 3009 3010 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3011 grp->faults[i] = p->numa_faults[i]; 3012 3013 grp->total_faults = p->total_numa_faults; 3014 3015 grp->nr_tasks++; 3016 rcu_assign_pointer(p->numa_group, grp); 3017 } 3018 3019 rcu_read_lock(); 3020 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3021 3022 if (!cpupid_match_pid(tsk, cpupid)) 3023 goto no_join; 3024 3025 grp = rcu_dereference(tsk->numa_group); 3026 if (!grp) 3027 goto no_join; 3028 3029 my_grp = deref_curr_numa_group(p); 3030 if (grp == my_grp) 3031 goto no_join; 3032 3033 /* 3034 * Only join the other group if its bigger; if we're the bigger group, 3035 * the other task will join us. 3036 */ 3037 if (my_grp->nr_tasks > grp->nr_tasks) 3038 goto no_join; 3039 3040 /* 3041 * Tie-break on the grp address. 3042 */ 3043 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3044 goto no_join; 3045 3046 /* Always join threads in the same process. */ 3047 if (tsk->mm == current->mm) 3048 join = true; 3049 3050 /* Simple filter to avoid false positives due to PID collisions */ 3051 if (flags & TNF_SHARED) 3052 join = true; 3053 3054 /* Update priv based on whether false sharing was detected */ 3055 *priv = !join; 3056 3057 if (join && !get_numa_group(grp)) 3058 goto no_join; 3059 3060 rcu_read_unlock(); 3061 3062 if (!join) 3063 return; 3064 3065 WARN_ON_ONCE(irqs_disabled()); 3066 double_lock_irq(&my_grp->lock, &grp->lock); 3067 3068 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3069 my_grp->faults[i] -= p->numa_faults[i]; 3070 grp->faults[i] += p->numa_faults[i]; 3071 } 3072 my_grp->total_faults -= p->total_numa_faults; 3073 grp->total_faults += p->total_numa_faults; 3074 3075 my_grp->nr_tasks--; 3076 grp->nr_tasks++; 3077 3078 spin_unlock(&my_grp->lock); 3079 spin_unlock_irq(&grp->lock); 3080 3081 rcu_assign_pointer(p->numa_group, grp); 3082 3083 put_numa_group(my_grp); 3084 return; 3085 3086 no_join: 3087 rcu_read_unlock(); 3088 return; 3089 } 3090 3091 /* 3092 * Get rid of NUMA statistics associated with a task (either current or dead). 3093 * If @final is set, the task is dead and has reached refcount zero, so we can 3094 * safely free all relevant data structures. Otherwise, there might be 3095 * concurrent reads from places like load balancing and procfs, and we should 3096 * reset the data back to default state without freeing ->numa_faults. 3097 */ 3098 void task_numa_free(struct task_struct *p, bool final) 3099 { 3100 /* safe: p either is current or is being freed by current */ 3101 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3102 unsigned long *numa_faults = p->numa_faults; 3103 unsigned long flags; 3104 int i; 3105 3106 if (!numa_faults) 3107 return; 3108 3109 if (grp) { 3110 spin_lock_irqsave(&grp->lock, flags); 3111 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3112 grp->faults[i] -= p->numa_faults[i]; 3113 grp->total_faults -= p->total_numa_faults; 3114 3115 grp->nr_tasks--; 3116 spin_unlock_irqrestore(&grp->lock, flags); 3117 RCU_INIT_POINTER(p->numa_group, NULL); 3118 put_numa_group(grp); 3119 } 3120 3121 if (final) { 3122 p->numa_faults = NULL; 3123 kfree(numa_faults); 3124 } else { 3125 p->total_numa_faults = 0; 3126 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3127 numa_faults[i] = 0; 3128 } 3129 } 3130 3131 /* 3132 * Got a PROT_NONE fault for a page on @node. 3133 */ 3134 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3135 { 3136 struct task_struct *p = current; 3137 bool migrated = flags & TNF_MIGRATED; 3138 int cpu_node = task_node(current); 3139 int local = !!(flags & TNF_FAULT_LOCAL); 3140 struct numa_group *ng; 3141 int priv; 3142 3143 if (!static_branch_likely(&sched_numa_balancing)) 3144 return; 3145 3146 /* for example, ksmd faulting in a user's mm */ 3147 if (!p->mm) 3148 return; 3149 3150 /* 3151 * NUMA faults statistics are unnecessary for the slow memory 3152 * node for memory tiering mode. 3153 */ 3154 if (!node_is_toptier(mem_node) && 3155 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3156 !cpupid_valid(last_cpupid))) 3157 return; 3158 3159 /* Allocate buffer to track faults on a per-node basis */ 3160 if (unlikely(!p->numa_faults)) { 3161 int size = sizeof(*p->numa_faults) * 3162 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3163 3164 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3165 if (!p->numa_faults) 3166 return; 3167 3168 p->total_numa_faults = 0; 3169 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3170 } 3171 3172 /* 3173 * First accesses are treated as private, otherwise consider accesses 3174 * to be private if the accessing pid has not changed 3175 */ 3176 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3177 priv = 1; 3178 } else { 3179 priv = cpupid_match_pid(p, last_cpupid); 3180 if (!priv && !(flags & TNF_NO_GROUP)) 3181 task_numa_group(p, last_cpupid, flags, &priv); 3182 } 3183 3184 /* 3185 * If a workload spans multiple NUMA nodes, a shared fault that 3186 * occurs wholly within the set of nodes that the workload is 3187 * actively using should be counted as local. This allows the 3188 * scan rate to slow down when a workload has settled down. 3189 */ 3190 ng = deref_curr_numa_group(p); 3191 if (!priv && !local && ng && ng->active_nodes > 1 && 3192 numa_is_active_node(cpu_node, ng) && 3193 numa_is_active_node(mem_node, ng)) 3194 local = 1; 3195 3196 /* 3197 * Retry to migrate task to preferred node periodically, in case it 3198 * previously failed, or the scheduler moved us. 3199 */ 3200 if (time_after(jiffies, p->numa_migrate_retry)) { 3201 task_numa_placement(p); 3202 numa_migrate_preferred(p); 3203 } 3204 3205 if (migrated) 3206 p->numa_pages_migrated += pages; 3207 if (flags & TNF_MIGRATE_FAIL) 3208 p->numa_faults_locality[2] += pages; 3209 3210 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3211 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3212 p->numa_faults_locality[local] += pages; 3213 } 3214 3215 static void reset_ptenuma_scan(struct task_struct *p) 3216 { 3217 /* 3218 * We only did a read acquisition of the mmap sem, so 3219 * p->mm->numa_scan_seq is written to without exclusive access 3220 * and the update is not guaranteed to be atomic. That's not 3221 * much of an issue though, since this is just used for 3222 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3223 * expensive, to avoid any form of compiler optimizations: 3224 */ 3225 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3226 p->mm->numa_scan_offset = 0; 3227 } 3228 3229 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3230 { 3231 unsigned long pids; 3232 /* 3233 * Allow unconditional access first two times, so that all the (pages) 3234 * of VMAs get prot_none fault introduced irrespective of accesses. 3235 * This is also done to avoid any side effect of task scanning 3236 * amplifying the unfairness of disjoint set of VMAs' access. 3237 */ 3238 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3239 return true; 3240 3241 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3242 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3243 return true; 3244 3245 /* 3246 * Complete a scan that has already started regardless of PID access, or 3247 * some VMAs may never be scanned in multi-threaded applications: 3248 */ 3249 if (mm->numa_scan_offset > vma->vm_start) { 3250 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3251 return true; 3252 } 3253 3254 /* 3255 * This vma has not been accessed for a while, and if the number 3256 * the threads in the same process is low, which means no other 3257 * threads can help scan this vma, force a vma scan. 3258 */ 3259 if (READ_ONCE(mm->numa_scan_seq) > 3260 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3261 return true; 3262 3263 return false; 3264 } 3265 3266 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3267 3268 /* 3269 * The expensive part of numa migration is done from task_work context. 3270 * Triggered from task_tick_numa(). 3271 */ 3272 static void task_numa_work(struct callback_head *work) 3273 { 3274 unsigned long migrate, next_scan, now = jiffies; 3275 struct task_struct *p = current; 3276 struct mm_struct *mm = p->mm; 3277 u64 runtime = p->se.sum_exec_runtime; 3278 struct vm_area_struct *vma; 3279 unsigned long start, end; 3280 unsigned long nr_pte_updates = 0; 3281 long pages, virtpages; 3282 struct vma_iterator vmi; 3283 bool vma_pids_skipped; 3284 bool vma_pids_forced = false; 3285 3286 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3287 3288 work->next = work; 3289 /* 3290 * Who cares about NUMA placement when they're dying. 3291 * 3292 * NOTE: make sure not to dereference p->mm before this check, 3293 * exit_task_work() happens _after_ exit_mm() so we could be called 3294 * without p->mm even though we still had it when we enqueued this 3295 * work. 3296 */ 3297 if (p->flags & PF_EXITING) 3298 return; 3299 3300 /* 3301 * Memory is pinned to only one NUMA node via cpuset.mems, naturally 3302 * no page can be migrated. 3303 */ 3304 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { 3305 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); 3306 return; 3307 } 3308 3309 if (!mm->numa_next_scan) { 3310 mm->numa_next_scan = now + 3311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3312 } 3313 3314 /* 3315 * Enforce maximal scan/migration frequency.. 3316 */ 3317 migrate = mm->numa_next_scan; 3318 if (time_before(now, migrate)) 3319 return; 3320 3321 if (p->numa_scan_period == 0) { 3322 p->numa_scan_period_max = task_scan_max(p); 3323 p->numa_scan_period = task_scan_start(p); 3324 } 3325 3326 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3327 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3328 return; 3329 3330 /* 3331 * Delay this task enough that another task of this mm will likely win 3332 * the next time around. 3333 */ 3334 p->node_stamp += 2 * TICK_NSEC; 3335 3336 pages = sysctl_numa_balancing_scan_size; 3337 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3338 virtpages = pages * 8; /* Scan up to this much virtual space */ 3339 if (!pages) 3340 return; 3341 3342 3343 if (!mmap_read_trylock(mm)) 3344 return; 3345 3346 /* 3347 * VMAs are skipped if the current PID has not trapped a fault within 3348 * the VMA recently. Allow scanning to be forced if there is no 3349 * suitable VMA remaining. 3350 */ 3351 vma_pids_skipped = false; 3352 3353 retry_pids: 3354 start = mm->numa_scan_offset; 3355 vma_iter_init(&vmi, mm, start); 3356 vma = vma_next(&vmi); 3357 if (!vma) { 3358 reset_ptenuma_scan(p); 3359 start = 0; 3360 vma_iter_set(&vmi, start); 3361 vma = vma_next(&vmi); 3362 } 3363 3364 for (; vma; vma = vma_next(&vmi)) { 3365 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3366 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3367 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3368 continue; 3369 } 3370 3371 /* 3372 * Shared library pages mapped by multiple processes are not 3373 * migrated as it is expected they are cache replicated. Avoid 3374 * hinting faults in read-only file-backed mappings or the vDSO 3375 * as migrating the pages will be of marginal benefit. 3376 */ 3377 if (!vma->vm_mm || 3378 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3379 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3380 continue; 3381 } 3382 3383 /* 3384 * Skip inaccessible VMAs to avoid any confusion between 3385 * PROT_NONE and NUMA hinting PTEs 3386 */ 3387 if (!vma_is_accessible(vma)) { 3388 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3389 continue; 3390 } 3391 3392 /* Initialise new per-VMA NUMAB state. */ 3393 if (!vma->numab_state) { 3394 struct vma_numab_state *ptr; 3395 3396 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3397 if (!ptr) 3398 continue; 3399 3400 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3401 kfree(ptr); 3402 continue; 3403 } 3404 3405 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3406 3407 vma->numab_state->next_scan = now + 3408 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3409 3410 /* Reset happens after 4 times scan delay of scan start */ 3411 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3412 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3413 3414 /* 3415 * Ensure prev_scan_seq does not match numa_scan_seq, 3416 * to prevent VMAs being skipped prematurely on the 3417 * first scan: 3418 */ 3419 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3420 } 3421 3422 /* 3423 * Scanning the VMAs of short lived tasks add more overhead. So 3424 * delay the scan for new VMAs. 3425 */ 3426 if (mm->numa_scan_seq && time_before(jiffies, 3427 vma->numab_state->next_scan)) { 3428 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3429 continue; 3430 } 3431 3432 /* RESET access PIDs regularly for old VMAs. */ 3433 if (mm->numa_scan_seq && 3434 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3435 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3436 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3437 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3438 vma->numab_state->pids_active[1] = 0; 3439 } 3440 3441 /* Do not rescan VMAs twice within the same sequence. */ 3442 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3443 mm->numa_scan_offset = vma->vm_end; 3444 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3445 continue; 3446 } 3447 3448 /* 3449 * Do not scan the VMA if task has not accessed it, unless no other 3450 * VMA candidate exists. 3451 */ 3452 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3453 vma_pids_skipped = true; 3454 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3455 continue; 3456 } 3457 3458 do { 3459 start = max(start, vma->vm_start); 3460 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3461 end = min(end, vma->vm_end); 3462 nr_pte_updates = change_prot_numa(vma, start, end); 3463 3464 /* 3465 * Try to scan sysctl_numa_balancing_size worth of 3466 * hpages that have at least one present PTE that 3467 * is not already PTE-numa. If the VMA contains 3468 * areas that are unused or already full of prot_numa 3469 * PTEs, scan up to virtpages, to skip through those 3470 * areas faster. 3471 */ 3472 if (nr_pte_updates) 3473 pages -= (end - start) >> PAGE_SHIFT; 3474 virtpages -= (end - start) >> PAGE_SHIFT; 3475 3476 start = end; 3477 if (pages <= 0 || virtpages <= 0) 3478 goto out; 3479 3480 cond_resched(); 3481 } while (end != vma->vm_end); 3482 3483 /* VMA scan is complete, do not scan until next sequence. */ 3484 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3485 3486 /* 3487 * Only force scan within one VMA at a time, to limit the 3488 * cost of scanning a potentially uninteresting VMA. 3489 */ 3490 if (vma_pids_forced) 3491 break; 3492 } 3493 3494 /* 3495 * If no VMAs are remaining and VMAs were skipped due to the PID 3496 * not accessing the VMA previously, then force a scan to ensure 3497 * forward progress: 3498 */ 3499 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3500 vma_pids_forced = true; 3501 goto retry_pids; 3502 } 3503 3504 out: 3505 /* 3506 * It is possible to reach the end of the VMA list but the last few 3507 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3508 * would find the !migratable VMA on the next scan but not reset the 3509 * scanner to the start so check it now. 3510 */ 3511 if (vma) 3512 mm->numa_scan_offset = start; 3513 else 3514 reset_ptenuma_scan(p); 3515 mmap_read_unlock(mm); 3516 3517 /* 3518 * Make sure tasks use at least 32x as much time to run other code 3519 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3520 * Usually update_task_scan_period slows down scanning enough; on an 3521 * overloaded system we need to limit overhead on a per task basis. 3522 */ 3523 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3524 u64 diff = p->se.sum_exec_runtime - runtime; 3525 p->node_stamp += 32 * diff; 3526 } 3527 } 3528 3529 void init_numa_balancing(u64 clone_flags, struct task_struct *p) 3530 { 3531 int mm_users = 0; 3532 struct mm_struct *mm = p->mm; 3533 3534 if (mm) { 3535 mm_users = atomic_read(&mm->mm_users); 3536 if (mm_users == 1) { 3537 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3538 mm->numa_scan_seq = 0; 3539 } 3540 } 3541 p->node_stamp = 0; 3542 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3543 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3544 p->numa_migrate_retry = 0; 3545 /* Protect against double add, see task_tick_numa and task_numa_work */ 3546 p->numa_work.next = &p->numa_work; 3547 p->numa_faults = NULL; 3548 p->numa_pages_migrated = 0; 3549 p->total_numa_faults = 0; 3550 RCU_INIT_POINTER(p->numa_group, NULL); 3551 p->last_task_numa_placement = 0; 3552 p->last_sum_exec_runtime = 0; 3553 3554 init_task_work(&p->numa_work, task_numa_work); 3555 3556 /* New address space, reset the preferred nid */ 3557 if (!(clone_flags & CLONE_VM)) { 3558 p->numa_preferred_nid = NUMA_NO_NODE; 3559 return; 3560 } 3561 3562 /* 3563 * New thread, keep existing numa_preferred_nid which should be copied 3564 * already by arch_dup_task_struct but stagger when scans start. 3565 */ 3566 if (mm) { 3567 unsigned int delay; 3568 3569 delay = min_t(unsigned int, task_scan_max(current), 3570 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3571 delay += 2 * TICK_NSEC; 3572 p->node_stamp = delay; 3573 } 3574 } 3575 3576 /* 3577 * Drive the periodic memory faults.. 3578 */ 3579 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3580 { 3581 struct callback_head *work = &curr->numa_work; 3582 u64 period, now; 3583 3584 /* 3585 * We don't care about NUMA placement if we don't have memory. 3586 */ 3587 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3588 return; 3589 3590 /* 3591 * Using runtime rather than walltime has the dual advantage that 3592 * we (mostly) drive the selection from busy threads and that the 3593 * task needs to have done some actual work before we bother with 3594 * NUMA placement. 3595 */ 3596 now = curr->se.sum_exec_runtime; 3597 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3598 3599 if (now > curr->node_stamp + period) { 3600 if (!curr->node_stamp) 3601 curr->numa_scan_period = task_scan_start(curr); 3602 curr->node_stamp += period; 3603 3604 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3605 task_work_add(curr, work, TWA_RESUME); 3606 } 3607 } 3608 3609 static void update_scan_period(struct task_struct *p, int new_cpu) 3610 { 3611 int src_nid = cpu_to_node(task_cpu(p)); 3612 int dst_nid = cpu_to_node(new_cpu); 3613 3614 if (!static_branch_likely(&sched_numa_balancing)) 3615 return; 3616 3617 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3618 return; 3619 3620 if (src_nid == dst_nid) 3621 return; 3622 3623 /* 3624 * Allow resets if faults have been trapped before one scan 3625 * has completed. This is most likely due to a new task that 3626 * is pulled cross-node due to wakeups or load balancing. 3627 */ 3628 if (p->numa_scan_seq) { 3629 /* 3630 * Avoid scan adjustments if moving to the preferred 3631 * node or if the task was not previously running on 3632 * the preferred node. 3633 */ 3634 if (dst_nid == p->numa_preferred_nid || 3635 (p->numa_preferred_nid != NUMA_NO_NODE && 3636 src_nid != p->numa_preferred_nid)) 3637 return; 3638 } 3639 3640 p->numa_scan_period = task_scan_start(p); 3641 } 3642 3643 #else /* !CONFIG_NUMA_BALANCING: */ 3644 3645 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3646 { 3647 } 3648 3649 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3650 { 3651 } 3652 3653 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3654 { 3655 } 3656 3657 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3658 { 3659 } 3660 3661 #endif /* !CONFIG_NUMA_BALANCING */ 3662 3663 static void 3664 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3665 { 3666 update_load_add(&cfs_rq->load, se->load.weight); 3667 if (entity_is_task(se)) { 3668 struct rq *rq = rq_of(cfs_rq); 3669 3670 account_numa_enqueue(rq, task_of(se)); 3671 list_add(&se->group_node, &rq->cfs_tasks); 3672 } 3673 cfs_rq->nr_queued++; 3674 } 3675 3676 static void 3677 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3678 { 3679 update_load_sub(&cfs_rq->load, se->load.weight); 3680 if (entity_is_task(se)) { 3681 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3682 list_del_init(&se->group_node); 3683 } 3684 cfs_rq->nr_queued--; 3685 } 3686 3687 /* 3688 * Signed add and clamp on underflow. 3689 * 3690 * Explicitly do a load-store to ensure the intermediate value never hits 3691 * memory. This allows lockless observations without ever seeing the negative 3692 * values. 3693 */ 3694 #define add_positive(_ptr, _val) do { \ 3695 typeof(_ptr) ptr = (_ptr); \ 3696 typeof(_val) val = (_val); \ 3697 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3698 \ 3699 res = var + val; \ 3700 \ 3701 if (val < 0 && res > var) \ 3702 res = 0; \ 3703 \ 3704 WRITE_ONCE(*ptr, res); \ 3705 } while (0) 3706 3707 /* 3708 * Unsigned subtract and clamp on underflow. 3709 * 3710 * Explicitly do a load-store to ensure the intermediate value never hits 3711 * memory. This allows lockless observations without ever seeing the negative 3712 * values. 3713 */ 3714 #define sub_positive(_ptr, _val) do { \ 3715 typeof(_ptr) ptr = (_ptr); \ 3716 typeof(*ptr) val = (_val); \ 3717 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3718 res = var - val; \ 3719 if (res > var) \ 3720 res = 0; \ 3721 WRITE_ONCE(*ptr, res); \ 3722 } while (0) 3723 3724 /* 3725 * Remove and clamp on negative, from a local variable. 3726 * 3727 * A variant of sub_positive(), which does not use explicit load-store 3728 * and is thus optimized for local variable updates. 3729 */ 3730 #define lsub_positive(_ptr, _val) do { \ 3731 typeof(_ptr) ptr = (_ptr); \ 3732 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3733 } while (0) 3734 3735 static inline void 3736 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3737 { 3738 cfs_rq->avg.load_avg += se->avg.load_avg; 3739 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3740 } 3741 3742 static inline void 3743 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3744 { 3745 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3746 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3747 /* See update_cfs_rq_load_avg() */ 3748 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3749 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3750 } 3751 3752 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3753 3754 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3755 unsigned long weight) 3756 { 3757 bool curr = cfs_rq->curr == se; 3758 3759 if (se->on_rq) { 3760 /* commit outstanding execution time */ 3761 update_curr(cfs_rq); 3762 update_entity_lag(cfs_rq, se); 3763 se->deadline -= se->vruntime; 3764 se->rel_deadline = 1; 3765 cfs_rq->nr_queued--; 3766 if (!curr) 3767 __dequeue_entity(cfs_rq, se); 3768 update_load_sub(&cfs_rq->load, se->load.weight); 3769 } 3770 dequeue_load_avg(cfs_rq, se); 3771 3772 /* 3773 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3774 * we need to scale se->vlag when w_i changes. 3775 */ 3776 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3777 if (se->rel_deadline) 3778 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3779 3780 update_load_set(&se->load, weight); 3781 3782 do { 3783 u32 divider = get_pelt_divider(&se->avg); 3784 3785 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3786 } while (0); 3787 3788 enqueue_load_avg(cfs_rq, se); 3789 if (se->on_rq) { 3790 place_entity(cfs_rq, se, 0); 3791 update_load_add(&cfs_rq->load, se->load.weight); 3792 if (!curr) 3793 __enqueue_entity(cfs_rq, se); 3794 cfs_rq->nr_queued++; 3795 } 3796 } 3797 3798 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3799 const struct load_weight *lw) 3800 { 3801 struct sched_entity *se = &p->se; 3802 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3803 struct load_weight *load = &se->load; 3804 3805 reweight_entity(cfs_rq, se, lw->weight); 3806 load->inv_weight = lw->inv_weight; 3807 } 3808 3809 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3810 3811 #ifdef CONFIG_FAIR_GROUP_SCHED 3812 /* 3813 * All this does is approximate the hierarchical proportion which includes that 3814 * global sum we all love to hate. 3815 * 3816 * That is, the weight of a group entity, is the proportional share of the 3817 * group weight based on the group runqueue weights. That is: 3818 * 3819 * tg->weight * grq->load.weight 3820 * ge->load.weight = ----------------------------- (1) 3821 * \Sum grq->load.weight 3822 * 3823 * Now, because computing that sum is prohibitively expensive to compute (been 3824 * there, done that) we approximate it with this average stuff. The average 3825 * moves slower and therefore the approximation is cheaper and more stable. 3826 * 3827 * So instead of the above, we substitute: 3828 * 3829 * grq->load.weight -> grq->avg.load_avg (2) 3830 * 3831 * which yields the following: 3832 * 3833 * tg->weight * grq->avg.load_avg 3834 * ge->load.weight = ------------------------------ (3) 3835 * tg->load_avg 3836 * 3837 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3838 * 3839 * That is shares_avg, and it is right (given the approximation (2)). 3840 * 3841 * The problem with it is that because the average is slow -- it was designed 3842 * to be exactly that of course -- this leads to transients in boundary 3843 * conditions. In specific, the case where the group was idle and we start the 3844 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3845 * yielding bad latency etc.. 3846 * 3847 * Now, in that special case (1) reduces to: 3848 * 3849 * tg->weight * grq->load.weight 3850 * ge->load.weight = ----------------------------- = tg->weight (4) 3851 * grp->load.weight 3852 * 3853 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3854 * 3855 * So what we do is modify our approximation (3) to approach (4) in the (near) 3856 * UP case, like: 3857 * 3858 * ge->load.weight = 3859 * 3860 * tg->weight * grq->load.weight 3861 * --------------------------------------------------- (5) 3862 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3863 * 3864 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3865 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3866 * 3867 * 3868 * tg->weight * grq->load.weight 3869 * ge->load.weight = ----------------------------- (6) 3870 * tg_load_avg' 3871 * 3872 * Where: 3873 * 3874 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3875 * max(grq->load.weight, grq->avg.load_avg) 3876 * 3877 * And that is shares_weight and is icky. In the (near) UP case it approaches 3878 * (4) while in the normal case it approaches (3). It consistently 3879 * overestimates the ge->load.weight and therefore: 3880 * 3881 * \Sum ge->load.weight >= tg->weight 3882 * 3883 * hence icky! 3884 */ 3885 static long calc_group_shares(struct cfs_rq *cfs_rq) 3886 { 3887 long tg_weight, tg_shares, load, shares; 3888 struct task_group *tg = cfs_rq->tg; 3889 3890 tg_shares = READ_ONCE(tg->shares); 3891 3892 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3893 3894 tg_weight = atomic_long_read(&tg->load_avg); 3895 3896 /* Ensure tg_weight >= load */ 3897 tg_weight -= cfs_rq->tg_load_avg_contrib; 3898 tg_weight += load; 3899 3900 shares = (tg_shares * load); 3901 if (tg_weight) 3902 shares /= tg_weight; 3903 3904 /* 3905 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3906 * of a group with small tg->shares value. It is a floor value which is 3907 * assigned as a minimum load.weight to the sched_entity representing 3908 * the group on a CPU. 3909 * 3910 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3911 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3912 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3913 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3914 * instead of 0. 3915 */ 3916 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3917 } 3918 3919 /* 3920 * Recomputes the group entity based on the current state of its group 3921 * runqueue. 3922 */ 3923 static void update_cfs_group(struct sched_entity *se) 3924 { 3925 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3926 long shares; 3927 3928 /* 3929 * When a group becomes empty, preserve its weight. This matters for 3930 * DELAY_DEQUEUE. 3931 */ 3932 if (!gcfs_rq || !gcfs_rq->load.weight) 3933 return; 3934 3935 shares = calc_group_shares(gcfs_rq); 3936 if (unlikely(se->load.weight != shares)) 3937 reweight_entity(cfs_rq_of(se), se, shares); 3938 } 3939 3940 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 3941 static inline void update_cfs_group(struct sched_entity *se) 3942 { 3943 } 3944 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 3945 3946 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3947 { 3948 struct rq *rq = rq_of(cfs_rq); 3949 3950 if (&rq->cfs == cfs_rq) { 3951 /* 3952 * There are a few boundary cases this might miss but it should 3953 * get called often enough that that should (hopefully) not be 3954 * a real problem. 3955 * 3956 * It will not get called when we go idle, because the idle 3957 * thread is a different class (!fair), nor will the utilization 3958 * number include things like RT tasks. 3959 * 3960 * As is, the util number is not freq-invariant (we'd have to 3961 * implement arch_scale_freq_capacity() for that). 3962 * 3963 * See cpu_util_cfs(). 3964 */ 3965 cpufreq_update_util(rq, flags); 3966 } 3967 } 3968 3969 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3970 { 3971 if (sa->load_sum) 3972 return false; 3973 3974 if (sa->util_sum) 3975 return false; 3976 3977 if (sa->runnable_sum) 3978 return false; 3979 3980 /* 3981 * _avg must be null when _sum are null because _avg = _sum / divider 3982 * Make sure that rounding and/or propagation of PELT values never 3983 * break this. 3984 */ 3985 WARN_ON_ONCE(sa->load_avg || 3986 sa->util_avg || 3987 sa->runnable_avg); 3988 3989 return true; 3990 } 3991 3992 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3993 { 3994 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3995 cfs_rq->last_update_time_copy); 3996 } 3997 #ifdef CONFIG_FAIR_GROUP_SCHED 3998 /* 3999 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4000 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4001 * bottom-up, we only have to test whether the cfs_rq before us on the list 4002 * is our child. 4003 * If cfs_rq is not on the list, test whether a child needs its to be added to 4004 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4005 */ 4006 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4007 { 4008 struct cfs_rq *prev_cfs_rq; 4009 struct list_head *prev; 4010 struct rq *rq = rq_of(cfs_rq); 4011 4012 if (cfs_rq->on_list) { 4013 prev = cfs_rq->leaf_cfs_rq_list.prev; 4014 } else { 4015 prev = rq->tmp_alone_branch; 4016 } 4017 4018 if (prev == &rq->leaf_cfs_rq_list) 4019 return false; 4020 4021 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4022 4023 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4024 } 4025 4026 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4027 { 4028 if (cfs_rq->load.weight) 4029 return false; 4030 4031 if (!load_avg_is_decayed(&cfs_rq->avg)) 4032 return false; 4033 4034 if (child_cfs_rq_on_list(cfs_rq)) 4035 return false; 4036 4037 return true; 4038 } 4039 4040 /** 4041 * update_tg_load_avg - update the tg's load avg 4042 * @cfs_rq: the cfs_rq whose avg changed 4043 * 4044 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4045 * However, because tg->load_avg is a global value there are performance 4046 * considerations. 4047 * 4048 * In order to avoid having to look at the other cfs_rq's, we use a 4049 * differential update where we store the last value we propagated. This in 4050 * turn allows skipping updates if the differential is 'small'. 4051 * 4052 * Updating tg's load_avg is necessary before update_cfs_share(). 4053 */ 4054 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4055 { 4056 long delta; 4057 u64 now; 4058 4059 /* 4060 * No need to update load_avg for root_task_group as it is not used. 4061 */ 4062 if (cfs_rq->tg == &root_task_group) 4063 return; 4064 4065 /* rq has been offline and doesn't contribute to the share anymore: */ 4066 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4067 return; 4068 4069 /* 4070 * For migration heavy workloads, access to tg->load_avg can be 4071 * unbound. Limit the update rate to at most once per ms. 4072 */ 4073 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4074 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4075 return; 4076 4077 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4078 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4079 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4080 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4081 cfs_rq->last_update_tg_load_avg = now; 4082 } 4083 } 4084 4085 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4086 { 4087 long delta; 4088 u64 now; 4089 4090 /* 4091 * No need to update load_avg for root_task_group, as it is not used. 4092 */ 4093 if (cfs_rq->tg == &root_task_group) 4094 return; 4095 4096 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4097 delta = 0 - cfs_rq->tg_load_avg_contrib; 4098 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4099 cfs_rq->tg_load_avg_contrib = 0; 4100 cfs_rq->last_update_tg_load_avg = now; 4101 } 4102 4103 /* CPU offline callback: */ 4104 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4105 { 4106 struct task_group *tg; 4107 4108 lockdep_assert_rq_held(rq); 4109 4110 /* 4111 * The rq clock has already been updated in 4112 * set_rq_offline(), so we should skip updating 4113 * the rq clock again in unthrottle_cfs_rq(). 4114 */ 4115 rq_clock_start_loop_update(rq); 4116 4117 rcu_read_lock(); 4118 list_for_each_entry_rcu(tg, &task_groups, list) { 4119 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4120 4121 clear_tg_load_avg(cfs_rq); 4122 } 4123 rcu_read_unlock(); 4124 4125 rq_clock_stop_loop_update(rq); 4126 } 4127 4128 /* 4129 * Called within set_task_rq() right before setting a task's CPU. The 4130 * caller only guarantees p->pi_lock is held; no other assumptions, 4131 * including the state of rq->lock, should be made. 4132 */ 4133 void set_task_rq_fair(struct sched_entity *se, 4134 struct cfs_rq *prev, struct cfs_rq *next) 4135 { 4136 u64 p_last_update_time; 4137 u64 n_last_update_time; 4138 4139 if (!sched_feat(ATTACH_AGE_LOAD)) 4140 return; 4141 4142 /* 4143 * We are supposed to update the task to "current" time, then its up to 4144 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4145 * getting what current time is, so simply throw away the out-of-date 4146 * time. This will result in the wakee task is less decayed, but giving 4147 * the wakee more load sounds not bad. 4148 */ 4149 if (!(se->avg.last_update_time && prev)) 4150 return; 4151 4152 p_last_update_time = cfs_rq_last_update_time(prev); 4153 n_last_update_time = cfs_rq_last_update_time(next); 4154 4155 __update_load_avg_blocked_se(p_last_update_time, se); 4156 se->avg.last_update_time = n_last_update_time; 4157 } 4158 4159 /* 4160 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4161 * propagate its contribution. The key to this propagation is the invariant 4162 * that for each group: 4163 * 4164 * ge->avg == grq->avg (1) 4165 * 4166 * _IFF_ we look at the pure running and runnable sums. Because they 4167 * represent the very same entity, just at different points in the hierarchy. 4168 * 4169 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4170 * and simply copies the running/runnable sum over (but still wrong, because 4171 * the group entity and group rq do not have their PELT windows aligned). 4172 * 4173 * However, update_tg_cfs_load() is more complex. So we have: 4174 * 4175 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4176 * 4177 * And since, like util, the runnable part should be directly transferable, 4178 * the following would _appear_ to be the straight forward approach: 4179 * 4180 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4181 * 4182 * And per (1) we have: 4183 * 4184 * ge->avg.runnable_avg == grq->avg.runnable_avg 4185 * 4186 * Which gives: 4187 * 4188 * ge->load.weight * grq->avg.load_avg 4189 * ge->avg.load_avg = ----------------------------------- (4) 4190 * grq->load.weight 4191 * 4192 * Except that is wrong! 4193 * 4194 * Because while for entities historical weight is not important and we 4195 * really only care about our future and therefore can consider a pure 4196 * runnable sum, runqueues can NOT do this. 4197 * 4198 * We specifically want runqueues to have a load_avg that includes 4199 * historical weights. Those represent the blocked load, the load we expect 4200 * to (shortly) return to us. This only works by keeping the weights as 4201 * integral part of the sum. We therefore cannot decompose as per (3). 4202 * 4203 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4204 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4205 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4206 * runnable section of these tasks overlap (or not). If they were to perfectly 4207 * align the rq as a whole would be runnable 2/3 of the time. If however we 4208 * always have at least 1 runnable task, the rq as a whole is always runnable. 4209 * 4210 * So we'll have to approximate.. :/ 4211 * 4212 * Given the constraint: 4213 * 4214 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4215 * 4216 * We can construct a rule that adds runnable to a rq by assuming minimal 4217 * overlap. 4218 * 4219 * On removal, we'll assume each task is equally runnable; which yields: 4220 * 4221 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4222 * 4223 * XXX: only do this for the part of runnable > running ? 4224 * 4225 */ 4226 static inline void 4227 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4228 { 4229 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4230 u32 new_sum, divider; 4231 4232 /* Nothing to update */ 4233 if (!delta_avg) 4234 return; 4235 4236 /* 4237 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4238 * See ___update_load_avg() for details. 4239 */ 4240 divider = get_pelt_divider(&cfs_rq->avg); 4241 4242 4243 /* Set new sched_entity's utilization */ 4244 se->avg.util_avg = gcfs_rq->avg.util_avg; 4245 new_sum = se->avg.util_avg * divider; 4246 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4247 se->avg.util_sum = new_sum; 4248 4249 /* Update parent cfs_rq utilization */ 4250 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4251 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4252 4253 /* See update_cfs_rq_load_avg() */ 4254 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4255 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4256 } 4257 4258 static inline void 4259 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4260 { 4261 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4262 u32 new_sum, divider; 4263 4264 /* Nothing to update */ 4265 if (!delta_avg) 4266 return; 4267 4268 /* 4269 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4270 * See ___update_load_avg() for details. 4271 */ 4272 divider = get_pelt_divider(&cfs_rq->avg); 4273 4274 /* Set new sched_entity's runnable */ 4275 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4276 new_sum = se->avg.runnable_avg * divider; 4277 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4278 se->avg.runnable_sum = new_sum; 4279 4280 /* Update parent cfs_rq runnable */ 4281 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4282 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4283 /* See update_cfs_rq_load_avg() */ 4284 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4285 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4286 } 4287 4288 static inline void 4289 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4290 { 4291 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4292 unsigned long load_avg; 4293 u64 load_sum = 0; 4294 s64 delta_sum; 4295 u32 divider; 4296 4297 if (!runnable_sum) 4298 return; 4299 4300 gcfs_rq->prop_runnable_sum = 0; 4301 4302 /* 4303 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4304 * See ___update_load_avg() for details. 4305 */ 4306 divider = get_pelt_divider(&cfs_rq->avg); 4307 4308 if (runnable_sum >= 0) { 4309 /* 4310 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4311 * the CPU is saturated running == runnable. 4312 */ 4313 runnable_sum += se->avg.load_sum; 4314 runnable_sum = min_t(long, runnable_sum, divider); 4315 } else { 4316 /* 4317 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4318 * assuming all tasks are equally runnable. 4319 */ 4320 if (scale_load_down(gcfs_rq->load.weight)) { 4321 load_sum = div_u64(gcfs_rq->avg.load_sum, 4322 scale_load_down(gcfs_rq->load.weight)); 4323 } 4324 4325 /* But make sure to not inflate se's runnable */ 4326 runnable_sum = min(se->avg.load_sum, load_sum); 4327 } 4328 4329 /* 4330 * runnable_sum can't be lower than running_sum 4331 * Rescale running sum to be in the same range as runnable sum 4332 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4333 * runnable_sum is in [0 : LOAD_AVG_MAX] 4334 */ 4335 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4336 runnable_sum = max(runnable_sum, running_sum); 4337 4338 load_sum = se_weight(se) * runnable_sum; 4339 load_avg = div_u64(load_sum, divider); 4340 4341 delta_avg = load_avg - se->avg.load_avg; 4342 if (!delta_avg) 4343 return; 4344 4345 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4346 4347 se->avg.load_sum = runnable_sum; 4348 se->avg.load_avg = load_avg; 4349 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4350 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4351 /* See update_cfs_rq_load_avg() */ 4352 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4353 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4354 } 4355 4356 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4357 { 4358 cfs_rq->propagate = 1; 4359 cfs_rq->prop_runnable_sum += runnable_sum; 4360 } 4361 4362 /* Update task and its cfs_rq load average */ 4363 static inline int propagate_entity_load_avg(struct sched_entity *se) 4364 { 4365 struct cfs_rq *cfs_rq, *gcfs_rq; 4366 4367 if (entity_is_task(se)) 4368 return 0; 4369 4370 gcfs_rq = group_cfs_rq(se); 4371 if (!gcfs_rq->propagate) 4372 return 0; 4373 4374 gcfs_rq->propagate = 0; 4375 4376 cfs_rq = cfs_rq_of(se); 4377 4378 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4379 4380 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4381 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4382 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4383 4384 trace_pelt_cfs_tp(cfs_rq); 4385 trace_pelt_se_tp(se); 4386 4387 return 1; 4388 } 4389 4390 /* 4391 * Check if we need to update the load and the utilization of a blocked 4392 * group_entity: 4393 */ 4394 static inline bool skip_blocked_update(struct sched_entity *se) 4395 { 4396 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4397 4398 /* 4399 * If sched_entity still have not zero load or utilization, we have to 4400 * decay it: 4401 */ 4402 if (se->avg.load_avg || se->avg.util_avg) 4403 return false; 4404 4405 /* 4406 * If there is a pending propagation, we have to update the load and 4407 * the utilization of the sched_entity: 4408 */ 4409 if (gcfs_rq->propagate) 4410 return false; 4411 4412 /* 4413 * Otherwise, the load and the utilization of the sched_entity is 4414 * already zero and there is no pending propagation, so it will be a 4415 * waste of time to try to decay it: 4416 */ 4417 return true; 4418 } 4419 4420 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 4421 4422 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4423 4424 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4425 4426 static inline int propagate_entity_load_avg(struct sched_entity *se) 4427 { 4428 return 0; 4429 } 4430 4431 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4432 4433 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 4434 4435 #ifdef CONFIG_NO_HZ_COMMON 4436 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4437 { 4438 u64 throttled = 0, now, lut; 4439 struct cfs_rq *cfs_rq; 4440 struct rq *rq; 4441 bool is_idle; 4442 4443 if (load_avg_is_decayed(&se->avg)) 4444 return; 4445 4446 cfs_rq = cfs_rq_of(se); 4447 rq = rq_of(cfs_rq); 4448 4449 rcu_read_lock(); 4450 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4451 rcu_read_unlock(); 4452 4453 /* 4454 * The lag estimation comes with a cost we don't want to pay all the 4455 * time. Hence, limiting to the case where the source CPU is idle and 4456 * we know we are at the greatest risk to have an outdated clock. 4457 */ 4458 if (!is_idle) 4459 return; 4460 4461 /* 4462 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4463 * 4464 * last_update_time (the cfs_rq's last_update_time) 4465 * = cfs_rq_clock_pelt()@cfs_rq_idle 4466 * = rq_clock_pelt()@cfs_rq_idle 4467 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4468 * 4469 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4470 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4471 * 4472 * rq_idle_lag (delta between now and rq's update) 4473 * = sched_clock_cpu() - rq_clock()@rq_idle 4474 * 4475 * We can then write: 4476 * 4477 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4478 * sched_clock_cpu() - rq_clock()@rq_idle 4479 * Where: 4480 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4481 * rq_clock()@rq_idle is rq->clock_idle 4482 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4483 * is cfs_rq->throttled_pelt_idle 4484 */ 4485 4486 #ifdef CONFIG_CFS_BANDWIDTH 4487 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4488 /* The clock has been stopped for throttling */ 4489 if (throttled == U64_MAX) 4490 return; 4491 #endif 4492 now = u64_u32_load(rq->clock_pelt_idle); 4493 /* 4494 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4495 * is observed the old clock_pelt_idle value and the new clock_idle, 4496 * which lead to an underestimation. The opposite would lead to an 4497 * overestimation. 4498 */ 4499 smp_rmb(); 4500 lut = cfs_rq_last_update_time(cfs_rq); 4501 4502 now -= throttled; 4503 if (now < lut) 4504 /* 4505 * cfs_rq->avg.last_update_time is more recent than our 4506 * estimation, let's use it. 4507 */ 4508 now = lut; 4509 else 4510 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4511 4512 __update_load_avg_blocked_se(now, se); 4513 } 4514 #else /* !CONFIG_NO_HZ_COMMON: */ 4515 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4516 #endif /* !CONFIG_NO_HZ_COMMON */ 4517 4518 /** 4519 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4520 * @now: current time, as per cfs_rq_clock_pelt() 4521 * @cfs_rq: cfs_rq to update 4522 * 4523 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4524 * avg. The immediate corollary is that all (fair) tasks must be attached. 4525 * 4526 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4527 * 4528 * Return: true if the load decayed or we removed load. 4529 * 4530 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4531 * call update_tg_load_avg() when this function returns true. 4532 */ 4533 static inline int 4534 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4535 { 4536 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4537 struct sched_avg *sa = &cfs_rq->avg; 4538 int decayed = 0; 4539 4540 if (cfs_rq->removed.nr) { 4541 unsigned long r; 4542 u32 divider = get_pelt_divider(&cfs_rq->avg); 4543 4544 raw_spin_lock(&cfs_rq->removed.lock); 4545 swap(cfs_rq->removed.util_avg, removed_util); 4546 swap(cfs_rq->removed.load_avg, removed_load); 4547 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4548 cfs_rq->removed.nr = 0; 4549 raw_spin_unlock(&cfs_rq->removed.lock); 4550 4551 r = removed_load; 4552 sub_positive(&sa->load_avg, r); 4553 sub_positive(&sa->load_sum, r * divider); 4554 /* See sa->util_sum below */ 4555 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4556 4557 r = removed_util; 4558 sub_positive(&sa->util_avg, r); 4559 sub_positive(&sa->util_sum, r * divider); 4560 /* 4561 * Because of rounding, se->util_sum might ends up being +1 more than 4562 * cfs->util_sum. Although this is not a problem by itself, detaching 4563 * a lot of tasks with the rounding problem between 2 updates of 4564 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4565 * cfs_util_avg is not. 4566 * Check that util_sum is still above its lower bound for the new 4567 * util_avg. Given that period_contrib might have moved since the last 4568 * sync, we are only sure that util_sum must be above or equal to 4569 * util_avg * minimum possible divider 4570 */ 4571 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4572 4573 r = removed_runnable; 4574 sub_positive(&sa->runnable_avg, r); 4575 sub_positive(&sa->runnable_sum, r * divider); 4576 /* See sa->util_sum above */ 4577 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4578 sa->runnable_avg * PELT_MIN_DIVIDER); 4579 4580 /* 4581 * removed_runnable is the unweighted version of removed_load so we 4582 * can use it to estimate removed_load_sum. 4583 */ 4584 add_tg_cfs_propagate(cfs_rq, 4585 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4586 4587 decayed = 1; 4588 } 4589 4590 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4591 u64_u32_store_copy(sa->last_update_time, 4592 cfs_rq->last_update_time_copy, 4593 sa->last_update_time); 4594 return decayed; 4595 } 4596 4597 /** 4598 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4599 * @cfs_rq: cfs_rq to attach to 4600 * @se: sched_entity to attach 4601 * 4602 * Must call update_cfs_rq_load_avg() before this, since we rely on 4603 * cfs_rq->avg.last_update_time being current. 4604 */ 4605 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4606 { 4607 /* 4608 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4609 * See ___update_load_avg() for details. 4610 */ 4611 u32 divider = get_pelt_divider(&cfs_rq->avg); 4612 4613 /* 4614 * When we attach the @se to the @cfs_rq, we must align the decay 4615 * window because without that, really weird and wonderful things can 4616 * happen. 4617 * 4618 * XXX illustrate 4619 */ 4620 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4621 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4622 4623 /* 4624 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4625 * period_contrib. This isn't strictly correct, but since we're 4626 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4627 * _sum a little. 4628 */ 4629 se->avg.util_sum = se->avg.util_avg * divider; 4630 4631 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4632 4633 se->avg.load_sum = se->avg.load_avg * divider; 4634 if (se_weight(se) < se->avg.load_sum) 4635 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4636 else 4637 se->avg.load_sum = 1; 4638 4639 enqueue_load_avg(cfs_rq, se); 4640 cfs_rq->avg.util_avg += se->avg.util_avg; 4641 cfs_rq->avg.util_sum += se->avg.util_sum; 4642 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4643 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4644 4645 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4646 4647 cfs_rq_util_change(cfs_rq, 0); 4648 4649 trace_pelt_cfs_tp(cfs_rq); 4650 } 4651 4652 /** 4653 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4654 * @cfs_rq: cfs_rq to detach from 4655 * @se: sched_entity to detach 4656 * 4657 * Must call update_cfs_rq_load_avg() before this, since we rely on 4658 * cfs_rq->avg.last_update_time being current. 4659 */ 4660 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4661 { 4662 dequeue_load_avg(cfs_rq, se); 4663 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4664 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4665 /* See update_cfs_rq_load_avg() */ 4666 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4667 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4668 4669 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4670 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4671 /* See update_cfs_rq_load_avg() */ 4672 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4673 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4674 4675 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4676 4677 cfs_rq_util_change(cfs_rq, 0); 4678 4679 trace_pelt_cfs_tp(cfs_rq); 4680 } 4681 4682 /* 4683 * Optional action to be done while updating the load average 4684 */ 4685 #define UPDATE_TG 0x1 4686 #define SKIP_AGE_LOAD 0x2 4687 #define DO_ATTACH 0x4 4688 #define DO_DETACH 0x8 4689 4690 /* Update task and its cfs_rq load average */ 4691 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4692 { 4693 u64 now = cfs_rq_clock_pelt(cfs_rq); 4694 int decayed; 4695 4696 /* 4697 * Track task load average for carrying it to new CPU after migrated, and 4698 * track group sched_entity load average for task_h_load calculation in migration 4699 */ 4700 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4701 __update_load_avg_se(now, cfs_rq, se); 4702 4703 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4704 decayed |= propagate_entity_load_avg(se); 4705 4706 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4707 4708 /* 4709 * DO_ATTACH means we're here from enqueue_entity(). 4710 * !last_update_time means we've passed through 4711 * migrate_task_rq_fair() indicating we migrated. 4712 * 4713 * IOW we're enqueueing a task on a new CPU. 4714 */ 4715 attach_entity_load_avg(cfs_rq, se); 4716 update_tg_load_avg(cfs_rq); 4717 4718 } else if (flags & DO_DETACH) { 4719 /* 4720 * DO_DETACH means we're here from dequeue_entity() 4721 * and we are migrating task out of the CPU. 4722 */ 4723 detach_entity_load_avg(cfs_rq, se); 4724 update_tg_load_avg(cfs_rq); 4725 } else if (decayed) { 4726 cfs_rq_util_change(cfs_rq, 0); 4727 4728 if (flags & UPDATE_TG) 4729 update_tg_load_avg(cfs_rq); 4730 } 4731 } 4732 4733 /* 4734 * Synchronize entity load avg of dequeued entity without locking 4735 * the previous rq. 4736 */ 4737 static void sync_entity_load_avg(struct sched_entity *se) 4738 { 4739 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4740 u64 last_update_time; 4741 4742 last_update_time = cfs_rq_last_update_time(cfs_rq); 4743 __update_load_avg_blocked_se(last_update_time, se); 4744 } 4745 4746 /* 4747 * Task first catches up with cfs_rq, and then subtract 4748 * itself from the cfs_rq (task must be off the queue now). 4749 */ 4750 static void remove_entity_load_avg(struct sched_entity *se) 4751 { 4752 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4753 unsigned long flags; 4754 4755 /* 4756 * tasks cannot exit without having gone through wake_up_new_task() -> 4757 * enqueue_task_fair() which will have added things to the cfs_rq, 4758 * so we can remove unconditionally. 4759 */ 4760 4761 sync_entity_load_avg(se); 4762 4763 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4764 ++cfs_rq->removed.nr; 4765 cfs_rq->removed.util_avg += se->avg.util_avg; 4766 cfs_rq->removed.load_avg += se->avg.load_avg; 4767 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4768 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4769 } 4770 4771 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4772 { 4773 return cfs_rq->avg.runnable_avg; 4774 } 4775 4776 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4777 { 4778 return cfs_rq->avg.load_avg; 4779 } 4780 4781 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4782 4783 static inline unsigned long task_util(struct task_struct *p) 4784 { 4785 return READ_ONCE(p->se.avg.util_avg); 4786 } 4787 4788 static inline unsigned long task_runnable(struct task_struct *p) 4789 { 4790 return READ_ONCE(p->se.avg.runnable_avg); 4791 } 4792 4793 static inline unsigned long _task_util_est(struct task_struct *p) 4794 { 4795 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4796 } 4797 4798 static inline unsigned long task_util_est(struct task_struct *p) 4799 { 4800 return max(task_util(p), _task_util_est(p)); 4801 } 4802 4803 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4804 struct task_struct *p) 4805 { 4806 unsigned int enqueued; 4807 4808 if (!sched_feat(UTIL_EST)) 4809 return; 4810 4811 /* Update root cfs_rq's estimated utilization */ 4812 enqueued = cfs_rq->avg.util_est; 4813 enqueued += _task_util_est(p); 4814 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4815 4816 trace_sched_util_est_cfs_tp(cfs_rq); 4817 } 4818 4819 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4820 struct task_struct *p) 4821 { 4822 unsigned int enqueued; 4823 4824 if (!sched_feat(UTIL_EST)) 4825 return; 4826 4827 /* Update root cfs_rq's estimated utilization */ 4828 enqueued = cfs_rq->avg.util_est; 4829 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4830 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4831 4832 trace_sched_util_est_cfs_tp(cfs_rq); 4833 } 4834 4835 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4836 4837 static inline void util_est_update(struct cfs_rq *cfs_rq, 4838 struct task_struct *p, 4839 bool task_sleep) 4840 { 4841 unsigned int ewma, dequeued, last_ewma_diff; 4842 4843 if (!sched_feat(UTIL_EST)) 4844 return; 4845 4846 /* 4847 * Skip update of task's estimated utilization when the task has not 4848 * yet completed an activation, e.g. being migrated. 4849 */ 4850 if (!task_sleep) 4851 return; 4852 4853 /* Get current estimate of utilization */ 4854 ewma = READ_ONCE(p->se.avg.util_est); 4855 4856 /* 4857 * If the PELT values haven't changed since enqueue time, 4858 * skip the util_est update. 4859 */ 4860 if (ewma & UTIL_AVG_UNCHANGED) 4861 return; 4862 4863 /* Get utilization at dequeue */ 4864 dequeued = task_util(p); 4865 4866 /* 4867 * Reset EWMA on utilization increases, the moving average is used only 4868 * to smooth utilization decreases. 4869 */ 4870 if (ewma <= dequeued) { 4871 ewma = dequeued; 4872 goto done; 4873 } 4874 4875 /* 4876 * Skip update of task's estimated utilization when its members are 4877 * already ~1% close to its last activation value. 4878 */ 4879 last_ewma_diff = ewma - dequeued; 4880 if (last_ewma_diff < UTIL_EST_MARGIN) 4881 goto done; 4882 4883 /* 4884 * To avoid underestimate of task utilization, skip updates of EWMA if 4885 * we cannot grant that thread got all CPU time it wanted. 4886 */ 4887 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4888 goto done; 4889 4890 4891 /* 4892 * Update Task's estimated utilization 4893 * 4894 * When *p completes an activation we can consolidate another sample 4895 * of the task size. This is done by using this value to update the 4896 * Exponential Weighted Moving Average (EWMA): 4897 * 4898 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4899 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4900 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4901 * = w * ( -last_ewma_diff ) + ewma(t-1) 4902 * = w * (-last_ewma_diff + ewma(t-1) / w) 4903 * 4904 * Where 'w' is the weight of new samples, which is configured to be 4905 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4906 */ 4907 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4908 ewma -= last_ewma_diff; 4909 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4910 done: 4911 ewma |= UTIL_AVG_UNCHANGED; 4912 WRITE_ONCE(p->se.avg.util_est, ewma); 4913 4914 trace_sched_util_est_se_tp(&p->se); 4915 } 4916 4917 static inline unsigned long get_actual_cpu_capacity(int cpu) 4918 { 4919 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4920 4921 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4922 4923 return capacity; 4924 } 4925 4926 static inline int util_fits_cpu(unsigned long util, 4927 unsigned long uclamp_min, 4928 unsigned long uclamp_max, 4929 int cpu) 4930 { 4931 unsigned long capacity = capacity_of(cpu); 4932 unsigned long capacity_orig; 4933 bool fits, uclamp_max_fits; 4934 4935 /* 4936 * Check if the real util fits without any uclamp boost/cap applied. 4937 */ 4938 fits = fits_capacity(util, capacity); 4939 4940 if (!uclamp_is_used()) 4941 return fits; 4942 4943 /* 4944 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4945 * uclamp_max. We only care about capacity pressure (by using 4946 * capacity_of()) for comparing against the real util. 4947 * 4948 * If a task is boosted to 1024 for example, we don't want a tiny 4949 * pressure to skew the check whether it fits a CPU or not. 4950 * 4951 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4952 * should fit a little cpu even if there's some pressure. 4953 * 4954 * Only exception is for HW or cpufreq pressure since it has a direct impact 4955 * on available OPP of the system. 4956 * 4957 * We honour it for uclamp_min only as a drop in performance level 4958 * could result in not getting the requested minimum performance level. 4959 * 4960 * For uclamp_max, we can tolerate a drop in performance level as the 4961 * goal is to cap the task. So it's okay if it's getting less. 4962 */ 4963 capacity_orig = arch_scale_cpu_capacity(cpu); 4964 4965 /* 4966 * We want to force a task to fit a cpu as implied by uclamp_max. 4967 * But we do have some corner cases to cater for.. 4968 * 4969 * 4970 * C=z 4971 * | ___ 4972 * | C=y | | 4973 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4974 * | C=x | | | | 4975 * | ___ | | | | 4976 * | | | | | | | (util somewhere in this region) 4977 * | | | | | | | 4978 * | | | | | | | 4979 * +---------------------------------------- 4980 * CPU0 CPU1 CPU2 4981 * 4982 * In the above example if a task is capped to a specific performance 4983 * point, y, then when: 4984 * 4985 * * util = 80% of x then it does not fit on CPU0 and should migrate 4986 * to CPU1 4987 * * util = 80% of y then it is forced to fit on CPU1 to honour 4988 * uclamp_max request. 4989 * 4990 * which is what we're enforcing here. A task always fits if 4991 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4992 * the normal upmigration rules should withhold still. 4993 * 4994 * Only exception is when we are on max capacity, then we need to be 4995 * careful not to block overutilized state. This is so because: 4996 * 4997 * 1. There's no concept of capping at max_capacity! We can't go 4998 * beyond this performance level anyway. 4999 * 2. The system is being saturated when we're operating near 5000 * max capacity, it doesn't make sense to block overutilized. 5001 */ 5002 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5003 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5004 fits = fits || uclamp_max_fits; 5005 5006 /* 5007 * 5008 * C=z 5009 * | ___ (region a, capped, util >= uclamp_max) 5010 * | C=y | | 5011 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5012 * | C=x | | | | 5013 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5014 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5015 * | | | | | | | 5016 * | | | | | | | (region c, boosted, util < uclamp_min) 5017 * +---------------------------------------- 5018 * CPU0 CPU1 CPU2 5019 * 5020 * a) If util > uclamp_max, then we're capped, we don't care about 5021 * actual fitness value here. We only care if uclamp_max fits 5022 * capacity without taking margin/pressure into account. 5023 * See comment above. 5024 * 5025 * b) If uclamp_min <= util <= uclamp_max, then the normal 5026 * fits_capacity() rules apply. Except we need to ensure that we 5027 * enforce we remain within uclamp_max, see comment above. 5028 * 5029 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5030 * need to take into account the boosted value fits the CPU without 5031 * taking margin/pressure into account. 5032 * 5033 * Cases (a) and (b) are handled in the 'fits' variable already. We 5034 * just need to consider an extra check for case (c) after ensuring we 5035 * handle the case uclamp_min > uclamp_max. 5036 */ 5037 uclamp_min = min(uclamp_min, uclamp_max); 5038 if (fits && (util < uclamp_min) && 5039 (uclamp_min > get_actual_cpu_capacity(cpu))) 5040 return -1; 5041 5042 return fits; 5043 } 5044 5045 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5046 { 5047 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5048 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5049 unsigned long util = task_util_est(p); 5050 /* 5051 * Return true only if the cpu fully fits the task requirements, which 5052 * include the utilization but also the performance hints. 5053 */ 5054 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5055 } 5056 5057 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5058 { 5059 int cpu = cpu_of(rq); 5060 5061 if (!sched_asym_cpucap_active()) 5062 return; 5063 5064 /* 5065 * Affinity allows us to go somewhere higher? Or are we on biggest 5066 * available CPU already? Or do we fit into this CPU ? 5067 */ 5068 if (!p || (p->nr_cpus_allowed == 1) || 5069 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5070 task_fits_cpu(p, cpu)) { 5071 5072 rq->misfit_task_load = 0; 5073 return; 5074 } 5075 5076 /* 5077 * Make sure that misfit_task_load will not be null even if 5078 * task_h_load() returns 0. 5079 */ 5080 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5081 } 5082 5083 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5084 { 5085 struct sched_entity *se = &p->se; 5086 5087 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5088 if (attr->sched_runtime) { 5089 se->custom_slice = 1; 5090 se->slice = clamp_t(u64, attr->sched_runtime, 5091 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5092 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5093 } else { 5094 se->custom_slice = 0; 5095 se->slice = sysctl_sched_base_slice; 5096 } 5097 } 5098 5099 static void 5100 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5101 { 5102 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5103 s64 lag = 0; 5104 5105 if (!se->custom_slice) 5106 se->slice = sysctl_sched_base_slice; 5107 vslice = calc_delta_fair(se->slice, se); 5108 5109 /* 5110 * Due to how V is constructed as the weighted average of entities, 5111 * adding tasks with positive lag, or removing tasks with negative lag 5112 * will move 'time' backwards, this can screw around with the lag of 5113 * other tasks. 5114 * 5115 * EEVDF: placement strategy #1 / #2 5116 */ 5117 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5118 struct sched_entity *curr = cfs_rq->curr; 5119 unsigned long load; 5120 5121 lag = se->vlag; 5122 5123 /* 5124 * If we want to place a task and preserve lag, we have to 5125 * consider the effect of the new entity on the weighted 5126 * average and compensate for this, otherwise lag can quickly 5127 * evaporate. 5128 * 5129 * Lag is defined as: 5130 * 5131 * lag_i = S - s_i = w_i * (V - v_i) 5132 * 5133 * To avoid the 'w_i' term all over the place, we only track 5134 * the virtual lag: 5135 * 5136 * vl_i = V - v_i <=> v_i = V - vl_i 5137 * 5138 * And we take V to be the weighted average of all v: 5139 * 5140 * V = (\Sum w_j*v_j) / W 5141 * 5142 * Where W is: \Sum w_j 5143 * 5144 * Then, the weighted average after adding an entity with lag 5145 * vl_i is given by: 5146 * 5147 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5148 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5149 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5150 * = (V*(W + w_i) - w_i*vl_i) / (W + w_i) 5151 * = V - w_i*vl_i / (W + w_i) 5152 * 5153 * And the actual lag after adding an entity with vl_i is: 5154 * 5155 * vl'_i = V' - v_i 5156 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5157 * = vl_i - w_i*vl_i / (W + w_i) 5158 * 5159 * Which is strictly less than vl_i. So in order to preserve lag 5160 * we should inflate the lag before placement such that the 5161 * effective lag after placement comes out right. 5162 * 5163 * As such, invert the above relation for vl'_i to get the vl_i 5164 * we need to use such that the lag after placement is the lag 5165 * we computed before dequeue. 5166 * 5167 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5168 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5169 * 5170 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5171 * = W*vl_i 5172 * 5173 * vl_i = (W + w_i)*vl'_i / W 5174 */ 5175 load = cfs_rq->avg_load; 5176 if (curr && curr->on_rq) 5177 load += scale_load_down(curr->load.weight); 5178 5179 lag *= load + scale_load_down(se->load.weight); 5180 if (WARN_ON_ONCE(!load)) 5181 load = 1; 5182 lag = div_s64(lag, load); 5183 } 5184 5185 se->vruntime = vruntime - lag; 5186 5187 if (se->rel_deadline) { 5188 se->deadline += se->vruntime; 5189 se->rel_deadline = 0; 5190 return; 5191 } 5192 5193 /* 5194 * When joining the competition; the existing tasks will be, 5195 * on average, halfway through their slice, as such start tasks 5196 * off with half a slice to ease into the competition. 5197 */ 5198 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5199 vslice /= 2; 5200 5201 /* 5202 * EEVDF: vd_i = ve_i + r_i/w_i 5203 */ 5204 se->deadline = se->vruntime + vslice; 5205 } 5206 5207 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5208 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5209 5210 static void 5211 requeue_delayed_entity(struct sched_entity *se); 5212 5213 static void 5214 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5215 { 5216 bool curr = cfs_rq->curr == se; 5217 5218 /* 5219 * If we're the current task, we must renormalise before calling 5220 * update_curr(). 5221 */ 5222 if (curr) 5223 place_entity(cfs_rq, se, flags); 5224 5225 update_curr(cfs_rq); 5226 5227 /* 5228 * When enqueuing a sched_entity, we must: 5229 * - Update loads to have both entity and cfs_rq synced with now. 5230 * - For group_entity, update its runnable_weight to reflect the new 5231 * h_nr_runnable of its group cfs_rq. 5232 * - For group_entity, update its weight to reflect the new share of 5233 * its group cfs_rq 5234 * - Add its new weight to cfs_rq->load.weight 5235 */ 5236 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5237 se_update_runnable(se); 5238 /* 5239 * XXX update_load_avg() above will have attached us to the pelt sum; 5240 * but update_cfs_group() here will re-adjust the weight and have to 5241 * undo/redo all that. Seems wasteful. 5242 */ 5243 update_cfs_group(se); 5244 5245 /* 5246 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5247 * we can place the entity. 5248 */ 5249 if (!curr) 5250 place_entity(cfs_rq, se, flags); 5251 5252 account_entity_enqueue(cfs_rq, se); 5253 5254 /* Entity has migrated, no longer consider this task hot */ 5255 if (flags & ENQUEUE_MIGRATED) 5256 se->exec_start = 0; 5257 5258 check_schedstat_required(); 5259 update_stats_enqueue_fair(cfs_rq, se, flags); 5260 if (!curr) 5261 __enqueue_entity(cfs_rq, se); 5262 se->on_rq = 1; 5263 5264 if (cfs_rq->nr_queued == 1) { 5265 check_enqueue_throttle(cfs_rq); 5266 list_add_leaf_cfs_rq(cfs_rq); 5267 #ifdef CONFIG_CFS_BANDWIDTH 5268 if (cfs_rq->pelt_clock_throttled) { 5269 struct rq *rq = rq_of(cfs_rq); 5270 5271 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5272 cfs_rq->throttled_clock_pelt; 5273 cfs_rq->pelt_clock_throttled = 0; 5274 } 5275 #endif 5276 } 5277 } 5278 5279 static void __clear_buddies_next(struct sched_entity *se) 5280 { 5281 for_each_sched_entity(se) { 5282 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5283 if (cfs_rq->next != se) 5284 break; 5285 5286 cfs_rq->next = NULL; 5287 } 5288 } 5289 5290 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5291 { 5292 if (cfs_rq->next == se) 5293 __clear_buddies_next(se); 5294 } 5295 5296 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5297 5298 static void set_delayed(struct sched_entity *se) 5299 { 5300 se->sched_delayed = 1; 5301 5302 /* 5303 * Delayed se of cfs_rq have no tasks queued on them. 5304 * Do not adjust h_nr_runnable since dequeue_entities() 5305 * will account it for blocked tasks. 5306 */ 5307 if (!entity_is_task(se)) 5308 return; 5309 5310 for_each_sched_entity(se) { 5311 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5312 5313 cfs_rq->h_nr_runnable--; 5314 } 5315 } 5316 5317 static void clear_delayed(struct sched_entity *se) 5318 { 5319 se->sched_delayed = 0; 5320 5321 /* 5322 * Delayed se of cfs_rq have no tasks queued on them. 5323 * Do not adjust h_nr_runnable since a dequeue has 5324 * already accounted for it or an enqueue of a task 5325 * below it will account for it in enqueue_task_fair(). 5326 */ 5327 if (!entity_is_task(se)) 5328 return; 5329 5330 for_each_sched_entity(se) { 5331 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5332 5333 cfs_rq->h_nr_runnable++; 5334 } 5335 } 5336 5337 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5338 { 5339 clear_delayed(se); 5340 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5341 se->vlag = 0; 5342 } 5343 5344 static bool 5345 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5346 { 5347 bool sleep = flags & DEQUEUE_SLEEP; 5348 int action = UPDATE_TG; 5349 5350 update_curr(cfs_rq); 5351 clear_buddies(cfs_rq, se); 5352 5353 if (flags & DEQUEUE_DELAYED) { 5354 WARN_ON_ONCE(!se->sched_delayed); 5355 } else { 5356 bool delay = sleep; 5357 /* 5358 * DELAY_DEQUEUE relies on spurious wakeups, special task 5359 * states must not suffer spurious wakeups, excempt them. 5360 */ 5361 if (flags & (DEQUEUE_SPECIAL | DEQUEUE_THROTTLE)) 5362 delay = false; 5363 5364 WARN_ON_ONCE(delay && se->sched_delayed); 5365 5366 if (sched_feat(DELAY_DEQUEUE) && delay && 5367 !entity_eligible(cfs_rq, se)) { 5368 update_load_avg(cfs_rq, se, 0); 5369 set_delayed(se); 5370 return false; 5371 } 5372 } 5373 5374 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5375 action |= DO_DETACH; 5376 5377 /* 5378 * When dequeuing a sched_entity, we must: 5379 * - Update loads to have both entity and cfs_rq synced with now. 5380 * - For group_entity, update its runnable_weight to reflect the new 5381 * h_nr_runnable of its group cfs_rq. 5382 * - Subtract its previous weight from cfs_rq->load.weight. 5383 * - For group entity, update its weight to reflect the new share 5384 * of its group cfs_rq. 5385 */ 5386 update_load_avg(cfs_rq, se, action); 5387 se_update_runnable(se); 5388 5389 update_stats_dequeue_fair(cfs_rq, se, flags); 5390 5391 update_entity_lag(cfs_rq, se); 5392 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5393 se->deadline -= se->vruntime; 5394 se->rel_deadline = 1; 5395 } 5396 5397 if (se != cfs_rq->curr) 5398 __dequeue_entity(cfs_rq, se); 5399 se->on_rq = 0; 5400 account_entity_dequeue(cfs_rq, se); 5401 5402 /* return excess runtime on last dequeue */ 5403 return_cfs_rq_runtime(cfs_rq); 5404 5405 update_cfs_group(se); 5406 5407 if (flags & DEQUEUE_DELAYED) 5408 finish_delayed_dequeue_entity(se); 5409 5410 if (cfs_rq->nr_queued == 0) { 5411 update_idle_cfs_rq_clock_pelt(cfs_rq); 5412 #ifdef CONFIG_CFS_BANDWIDTH 5413 if (throttled_hierarchy(cfs_rq)) { 5414 struct rq *rq = rq_of(cfs_rq); 5415 5416 list_del_leaf_cfs_rq(cfs_rq); 5417 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5418 cfs_rq->pelt_clock_throttled = 1; 5419 } 5420 #endif 5421 } 5422 5423 return true; 5424 } 5425 5426 static void 5427 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5428 { 5429 clear_buddies(cfs_rq, se); 5430 5431 /* 'current' is not kept within the tree. */ 5432 if (se->on_rq) { 5433 /* 5434 * Any task has to be enqueued before it get to execute on 5435 * a CPU. So account for the time it spent waiting on the 5436 * runqueue. 5437 */ 5438 update_stats_wait_end_fair(cfs_rq, se); 5439 __dequeue_entity(cfs_rq, se); 5440 update_load_avg(cfs_rq, se, UPDATE_TG); 5441 5442 set_protect_slice(cfs_rq, se); 5443 } 5444 5445 update_stats_curr_start(cfs_rq, se); 5446 WARN_ON_ONCE(cfs_rq->curr); 5447 cfs_rq->curr = se; 5448 5449 /* 5450 * Track our maximum slice length, if the CPU's load is at 5451 * least twice that of our own weight (i.e. don't track it 5452 * when there are only lesser-weight tasks around): 5453 */ 5454 if (schedstat_enabled() && 5455 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5456 struct sched_statistics *stats; 5457 5458 stats = __schedstats_from_se(se); 5459 __schedstat_set(stats->slice_max, 5460 max((u64)stats->slice_max, 5461 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5462 } 5463 5464 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5465 } 5466 5467 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5468 5469 /* 5470 * Pick the next process, keeping these things in mind, in this order: 5471 * 1) keep things fair between processes/task groups 5472 * 2) pick the "next" process, since someone really wants that to run 5473 * 3) pick the "last" process, for cache locality 5474 * 4) do not run the "skip" process, if something else is available 5475 */ 5476 static struct sched_entity * 5477 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5478 { 5479 struct sched_entity *se; 5480 5481 se = pick_eevdf(cfs_rq); 5482 if (se->sched_delayed) { 5483 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5484 /* 5485 * Must not reference @se again, see __block_task(). 5486 */ 5487 return NULL; 5488 } 5489 return se; 5490 } 5491 5492 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5493 5494 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5495 { 5496 /* 5497 * If still on the runqueue then deactivate_task() 5498 * was not called and update_curr() has to be done: 5499 */ 5500 if (prev->on_rq) 5501 update_curr(cfs_rq); 5502 5503 /* throttle cfs_rqs exceeding runtime */ 5504 check_cfs_rq_runtime(cfs_rq); 5505 5506 if (prev->on_rq) { 5507 update_stats_wait_start_fair(cfs_rq, prev); 5508 /* Put 'current' back into the tree. */ 5509 __enqueue_entity(cfs_rq, prev); 5510 /* in !on_rq case, update occurred at dequeue */ 5511 update_load_avg(cfs_rq, prev, 0); 5512 } 5513 WARN_ON_ONCE(cfs_rq->curr != prev); 5514 cfs_rq->curr = NULL; 5515 } 5516 5517 static void 5518 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5519 { 5520 /* 5521 * Update run-time statistics of the 'current'. 5522 */ 5523 update_curr(cfs_rq); 5524 5525 /* 5526 * Ensure that runnable average is periodically updated. 5527 */ 5528 update_load_avg(cfs_rq, curr, UPDATE_TG); 5529 update_cfs_group(curr); 5530 5531 #ifdef CONFIG_SCHED_HRTICK 5532 /* 5533 * queued ticks are scheduled to match the slice, so don't bother 5534 * validating it and just reschedule. 5535 */ 5536 if (queued) { 5537 resched_curr_lazy(rq_of(cfs_rq)); 5538 return; 5539 } 5540 #endif 5541 } 5542 5543 5544 /************************************************** 5545 * CFS bandwidth control machinery 5546 */ 5547 5548 #ifdef CONFIG_CFS_BANDWIDTH 5549 5550 #ifdef CONFIG_JUMP_LABEL 5551 static struct static_key __cfs_bandwidth_used; 5552 5553 static inline bool cfs_bandwidth_used(void) 5554 { 5555 return static_key_false(&__cfs_bandwidth_used); 5556 } 5557 5558 void cfs_bandwidth_usage_inc(void) 5559 { 5560 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5561 } 5562 5563 void cfs_bandwidth_usage_dec(void) 5564 { 5565 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5566 } 5567 #else /* !CONFIG_JUMP_LABEL: */ 5568 static bool cfs_bandwidth_used(void) 5569 { 5570 return true; 5571 } 5572 5573 void cfs_bandwidth_usage_inc(void) {} 5574 void cfs_bandwidth_usage_dec(void) {} 5575 #endif /* !CONFIG_JUMP_LABEL */ 5576 5577 static inline u64 sched_cfs_bandwidth_slice(void) 5578 { 5579 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5580 } 5581 5582 /* 5583 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5584 * directly instead of rq->clock to avoid adding additional synchronization 5585 * around rq->lock. 5586 * 5587 * requires cfs_b->lock 5588 */ 5589 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5590 { 5591 s64 runtime; 5592 5593 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5594 return; 5595 5596 cfs_b->runtime += cfs_b->quota; 5597 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5598 if (runtime > 0) { 5599 cfs_b->burst_time += runtime; 5600 cfs_b->nr_burst++; 5601 } 5602 5603 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5604 cfs_b->runtime_snap = cfs_b->runtime; 5605 } 5606 5607 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5608 { 5609 return &tg->cfs_bandwidth; 5610 } 5611 5612 /* returns 0 on failure to allocate runtime */ 5613 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5614 struct cfs_rq *cfs_rq, u64 target_runtime) 5615 { 5616 u64 min_amount, amount = 0; 5617 5618 lockdep_assert_held(&cfs_b->lock); 5619 5620 /* note: this is a positive sum as runtime_remaining <= 0 */ 5621 min_amount = target_runtime - cfs_rq->runtime_remaining; 5622 5623 if (cfs_b->quota == RUNTIME_INF) 5624 amount = min_amount; 5625 else { 5626 start_cfs_bandwidth(cfs_b); 5627 5628 if (cfs_b->runtime > 0) { 5629 amount = min(cfs_b->runtime, min_amount); 5630 cfs_b->runtime -= amount; 5631 cfs_b->idle = 0; 5632 } 5633 } 5634 5635 cfs_rq->runtime_remaining += amount; 5636 5637 return cfs_rq->runtime_remaining > 0; 5638 } 5639 5640 /* returns 0 on failure to allocate runtime */ 5641 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5642 { 5643 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5644 int ret; 5645 5646 raw_spin_lock(&cfs_b->lock); 5647 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5648 raw_spin_unlock(&cfs_b->lock); 5649 5650 return ret; 5651 } 5652 5653 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5654 { 5655 /* dock delta_exec before expiring quota (as it could span periods) */ 5656 cfs_rq->runtime_remaining -= delta_exec; 5657 5658 if (likely(cfs_rq->runtime_remaining > 0)) 5659 return; 5660 5661 if (cfs_rq->throttled) 5662 return; 5663 /* 5664 * if we're unable to extend our runtime we resched so that the active 5665 * hierarchy can be throttled 5666 */ 5667 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5668 resched_curr(rq_of(cfs_rq)); 5669 } 5670 5671 static __always_inline 5672 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5673 { 5674 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5675 return; 5676 5677 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5678 } 5679 5680 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5681 { 5682 return cfs_bandwidth_used() && cfs_rq->throttled; 5683 } 5684 5685 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq) 5686 { 5687 return cfs_bandwidth_used() && cfs_rq->pelt_clock_throttled; 5688 } 5689 5690 /* check whether cfs_rq, or any parent, is throttled */ 5691 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5692 { 5693 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5694 } 5695 5696 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu) 5697 { 5698 return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]); 5699 } 5700 5701 static inline bool task_is_throttled(struct task_struct *p) 5702 { 5703 return cfs_bandwidth_used() && p->throttled; 5704 } 5705 5706 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags); 5707 static void throttle_cfs_rq_work(struct callback_head *work) 5708 { 5709 struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work); 5710 struct sched_entity *se; 5711 struct cfs_rq *cfs_rq; 5712 struct rq *rq; 5713 5714 WARN_ON_ONCE(p != current); 5715 p->sched_throttle_work.next = &p->sched_throttle_work; 5716 5717 /* 5718 * If task is exiting, then there won't be a return to userspace, so we 5719 * don't have to bother with any of this. 5720 */ 5721 if ((p->flags & PF_EXITING)) 5722 return; 5723 5724 scoped_guard(task_rq_lock, p) { 5725 se = &p->se; 5726 cfs_rq = cfs_rq_of(se); 5727 5728 /* Raced, forget */ 5729 if (p->sched_class != &fair_sched_class) 5730 return; 5731 5732 /* 5733 * If not in limbo, then either replenish has happened or this 5734 * task got migrated out of the throttled cfs_rq, move along. 5735 */ 5736 if (!cfs_rq->throttle_count) 5737 return; 5738 rq = scope.rq; 5739 update_rq_clock(rq); 5740 WARN_ON_ONCE(p->throttled || !list_empty(&p->throttle_node)); 5741 dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_THROTTLE); 5742 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list); 5743 /* 5744 * Must not set throttled before dequeue or dequeue will 5745 * mistakenly regard this task as an already throttled one. 5746 */ 5747 p->throttled = true; 5748 resched_curr(rq); 5749 } 5750 } 5751 5752 void init_cfs_throttle_work(struct task_struct *p) 5753 { 5754 init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work); 5755 /* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */ 5756 p->sched_throttle_work.next = &p->sched_throttle_work; 5757 INIT_LIST_HEAD(&p->throttle_node); 5758 } 5759 5760 /* 5761 * Task is throttled and someone wants to dequeue it again: 5762 * it could be sched/core when core needs to do things like 5763 * task affinity change, task group change, task sched class 5764 * change etc. and in these cases, DEQUEUE_SLEEP is not set; 5765 * or the task is blocked after throttled due to freezer etc. 5766 * and in these cases, DEQUEUE_SLEEP is set. 5767 */ 5768 static void detach_task_cfs_rq(struct task_struct *p); 5769 static void dequeue_throttled_task(struct task_struct *p, int flags) 5770 { 5771 WARN_ON_ONCE(p->se.on_rq); 5772 list_del_init(&p->throttle_node); 5773 5774 /* task blocked after throttled */ 5775 if (flags & DEQUEUE_SLEEP) { 5776 p->throttled = false; 5777 return; 5778 } 5779 5780 /* 5781 * task is migrating off its old cfs_rq, detach 5782 * the task's load from its old cfs_rq. 5783 */ 5784 if (task_on_rq_migrating(p)) 5785 detach_task_cfs_rq(p); 5786 } 5787 5788 static bool enqueue_throttled_task(struct task_struct *p) 5789 { 5790 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se); 5791 5792 /* @p should have gone through dequeue_throttled_task() first */ 5793 WARN_ON_ONCE(!list_empty(&p->throttle_node)); 5794 5795 /* 5796 * If the throttled task @p is enqueued to a throttled cfs_rq, 5797 * take the fast path by directly putting the task on the 5798 * target cfs_rq's limbo list. 5799 * 5800 * Do not do that when @p is current because the following race can 5801 * cause @p's group_node to be incorectly re-insterted in its rq's 5802 * cfs_tasks list, despite being throttled: 5803 * 5804 * cpuX cpuY 5805 * p ret2user 5806 * throttle_cfs_rq_work() sched_move_task(p) 5807 * LOCK task_rq_lock 5808 * dequeue_task_fair(p) 5809 * UNLOCK task_rq_lock 5810 * LOCK task_rq_lock 5811 * task_current_donor(p) == true 5812 * task_on_rq_queued(p) == true 5813 * dequeue_task(p) 5814 * put_prev_task(p) 5815 * sched_change_group() 5816 * enqueue_task(p) -> p's new cfs_rq 5817 * is throttled, go 5818 * fast path and skip 5819 * actual enqueue 5820 * set_next_task(p) 5821 * list_move(&se->group_node, &rq->cfs_tasks); // bug 5822 * schedule() 5823 * 5824 * In the above race case, @p current cfs_rq is in the same rq as 5825 * its previous cfs_rq because sched_move_task() only moves a task 5826 * to a different group from the same rq, so we can use its current 5827 * cfs_rq to derive rq and test if the task is current. 5828 */ 5829 if (throttled_hierarchy(cfs_rq) && 5830 !task_current_donor(rq_of(cfs_rq), p)) { 5831 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list); 5832 return true; 5833 } 5834 5835 /* we can't take the fast path, do an actual enqueue*/ 5836 p->throttled = false; 5837 return false; 5838 } 5839 5840 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags); 5841 static int tg_unthrottle_up(struct task_group *tg, void *data) 5842 { 5843 struct rq *rq = data; 5844 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5845 struct task_struct *p, *tmp; 5846 5847 if (--cfs_rq->throttle_count) 5848 return 0; 5849 5850 if (cfs_rq->pelt_clock_throttled) { 5851 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5852 cfs_rq->throttled_clock_pelt; 5853 cfs_rq->pelt_clock_throttled = 0; 5854 } 5855 5856 if (cfs_rq->throttled_clock_self) { 5857 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5858 5859 cfs_rq->throttled_clock_self = 0; 5860 5861 if (WARN_ON_ONCE((s64)delta < 0)) 5862 delta = 0; 5863 5864 cfs_rq->throttled_clock_self_time += delta; 5865 } 5866 5867 /* Re-enqueue the tasks that have been throttled at this level. */ 5868 list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) { 5869 list_del_init(&p->throttle_node); 5870 p->throttled = false; 5871 enqueue_task_fair(rq_of(cfs_rq), p, ENQUEUE_WAKEUP); 5872 } 5873 5874 /* Add cfs_rq with load or one or more already running entities to the list */ 5875 if (!cfs_rq_is_decayed(cfs_rq)) 5876 list_add_leaf_cfs_rq(cfs_rq); 5877 5878 return 0; 5879 } 5880 5881 static inline bool task_has_throttle_work(struct task_struct *p) 5882 { 5883 return p->sched_throttle_work.next != &p->sched_throttle_work; 5884 } 5885 5886 static inline void task_throttle_setup_work(struct task_struct *p) 5887 { 5888 if (task_has_throttle_work(p)) 5889 return; 5890 5891 /* 5892 * Kthreads and exiting tasks don't return to userspace, so adding the 5893 * work is pointless 5894 */ 5895 if ((p->flags & (PF_EXITING | PF_KTHREAD))) 5896 return; 5897 5898 task_work_add(p, &p->sched_throttle_work, TWA_RESUME); 5899 } 5900 5901 static void record_throttle_clock(struct cfs_rq *cfs_rq) 5902 { 5903 struct rq *rq = rq_of(cfs_rq); 5904 5905 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5906 cfs_rq->throttled_clock = rq_clock(rq); 5907 5908 if (!cfs_rq->throttled_clock_self) 5909 cfs_rq->throttled_clock_self = rq_clock(rq); 5910 } 5911 5912 static int tg_throttle_down(struct task_group *tg, void *data) 5913 { 5914 struct rq *rq = data; 5915 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5916 5917 if (cfs_rq->throttle_count++) 5918 return 0; 5919 5920 /* 5921 * For cfs_rqs that still have entities enqueued, PELT clock 5922 * stop happens at dequeue time when all entities are dequeued. 5923 */ 5924 if (!cfs_rq->nr_queued) { 5925 list_del_leaf_cfs_rq(cfs_rq); 5926 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5927 cfs_rq->pelt_clock_throttled = 1; 5928 } 5929 5930 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5931 WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list)); 5932 return 0; 5933 } 5934 5935 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5936 { 5937 struct rq *rq = rq_of(cfs_rq); 5938 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5939 int dequeue = 1; 5940 5941 raw_spin_lock(&cfs_b->lock); 5942 /* This will start the period timer if necessary */ 5943 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5944 /* 5945 * We have raced with bandwidth becoming available, and if we 5946 * actually throttled the timer might not unthrottle us for an 5947 * entire period. We additionally needed to make sure that any 5948 * subsequent check_cfs_rq_runtime calls agree not to throttle 5949 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5950 * for 1ns of runtime rather than just check cfs_b. 5951 */ 5952 dequeue = 0; 5953 } else { 5954 list_add_tail_rcu(&cfs_rq->throttled_list, 5955 &cfs_b->throttled_cfs_rq); 5956 } 5957 raw_spin_unlock(&cfs_b->lock); 5958 5959 if (!dequeue) 5960 return false; /* Throttle no longer required. */ 5961 5962 /* freeze hierarchy runnable averages while throttled */ 5963 rcu_read_lock(); 5964 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5965 rcu_read_unlock(); 5966 5967 /* 5968 * Note: distribution will already see us throttled via the 5969 * throttled-list. rq->lock protects completion. 5970 */ 5971 cfs_rq->throttled = 1; 5972 WARN_ON_ONCE(cfs_rq->throttled_clock); 5973 return true; 5974 } 5975 5976 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5977 { 5978 struct rq *rq = rq_of(cfs_rq); 5979 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5980 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5981 5982 /* 5983 * It's possible we are called with runtime_remaining < 0 due to things 5984 * like async unthrottled us with a positive runtime_remaining but other 5985 * still running entities consumed those runtime before we reached here. 5986 * 5987 * We can't unthrottle this cfs_rq without any runtime remaining because 5988 * any enqueue in tg_unthrottle_up() will immediately trigger a throttle, 5989 * which is not supposed to happen on unthrottle path. 5990 */ 5991 if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0) 5992 return; 5993 5994 cfs_rq->throttled = 0; 5995 5996 update_rq_clock(rq); 5997 5998 raw_spin_lock(&cfs_b->lock); 5999 if (cfs_rq->throttled_clock) { 6000 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6001 cfs_rq->throttled_clock = 0; 6002 } 6003 list_del_rcu(&cfs_rq->throttled_list); 6004 raw_spin_unlock(&cfs_b->lock); 6005 6006 /* update hierarchical throttle state */ 6007 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6008 6009 if (!cfs_rq->load.weight) { 6010 if (!cfs_rq->on_list) 6011 return; 6012 /* 6013 * Nothing to run but something to decay (on_list)? 6014 * Complete the branch. 6015 */ 6016 for_each_sched_entity(se) { 6017 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6018 break; 6019 } 6020 } 6021 6022 assert_list_leaf_cfs_rq(rq); 6023 6024 /* Determine whether we need to wake up potentially idle CPU: */ 6025 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6026 resched_curr(rq); 6027 } 6028 6029 static void __cfsb_csd_unthrottle(void *arg) 6030 { 6031 struct cfs_rq *cursor, *tmp; 6032 struct rq *rq = arg; 6033 struct rq_flags rf; 6034 6035 rq_lock(rq, &rf); 6036 6037 /* 6038 * Iterating over the list can trigger several call to 6039 * update_rq_clock() in unthrottle_cfs_rq(). 6040 * Do it once and skip the potential next ones. 6041 */ 6042 update_rq_clock(rq); 6043 rq_clock_start_loop_update(rq); 6044 6045 /* 6046 * Since we hold rq lock we're safe from concurrent manipulation of 6047 * the CSD list. However, this RCU critical section annotates the 6048 * fact that we pair with sched_free_group_rcu(), so that we cannot 6049 * race with group being freed in the window between removing it 6050 * from the list and advancing to the next entry in the list. 6051 */ 6052 rcu_read_lock(); 6053 6054 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6055 throttled_csd_list) { 6056 list_del_init(&cursor->throttled_csd_list); 6057 6058 if (cfs_rq_throttled(cursor)) 6059 unthrottle_cfs_rq(cursor); 6060 } 6061 6062 rcu_read_unlock(); 6063 6064 rq_clock_stop_loop_update(rq); 6065 rq_unlock(rq, &rf); 6066 } 6067 6068 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6069 { 6070 struct rq *rq = rq_of(cfs_rq); 6071 bool first; 6072 6073 if (rq == this_rq()) { 6074 unthrottle_cfs_rq(cfs_rq); 6075 return; 6076 } 6077 6078 /* Already enqueued */ 6079 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6080 return; 6081 6082 first = list_empty(&rq->cfsb_csd_list); 6083 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6084 if (first) 6085 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6086 } 6087 6088 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6089 { 6090 lockdep_assert_rq_held(rq_of(cfs_rq)); 6091 6092 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6093 cfs_rq->runtime_remaining <= 0)) 6094 return; 6095 6096 __unthrottle_cfs_rq_async(cfs_rq); 6097 } 6098 6099 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6100 { 6101 int this_cpu = smp_processor_id(); 6102 u64 runtime, remaining = 1; 6103 bool throttled = false; 6104 struct cfs_rq *cfs_rq, *tmp; 6105 struct rq_flags rf; 6106 struct rq *rq; 6107 LIST_HEAD(local_unthrottle); 6108 6109 rcu_read_lock(); 6110 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6111 throttled_list) { 6112 rq = rq_of(cfs_rq); 6113 6114 if (!remaining) { 6115 throttled = true; 6116 break; 6117 } 6118 6119 rq_lock_irqsave(rq, &rf); 6120 if (!cfs_rq_throttled(cfs_rq)) 6121 goto next; 6122 6123 /* Already queued for async unthrottle */ 6124 if (!list_empty(&cfs_rq->throttled_csd_list)) 6125 goto next; 6126 6127 /* By the above checks, this should never be true */ 6128 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6129 6130 raw_spin_lock(&cfs_b->lock); 6131 runtime = -cfs_rq->runtime_remaining + 1; 6132 if (runtime > cfs_b->runtime) 6133 runtime = cfs_b->runtime; 6134 cfs_b->runtime -= runtime; 6135 remaining = cfs_b->runtime; 6136 raw_spin_unlock(&cfs_b->lock); 6137 6138 cfs_rq->runtime_remaining += runtime; 6139 6140 /* we check whether we're throttled above */ 6141 if (cfs_rq->runtime_remaining > 0) { 6142 if (cpu_of(rq) != this_cpu) { 6143 unthrottle_cfs_rq_async(cfs_rq); 6144 } else { 6145 /* 6146 * We currently only expect to be unthrottling 6147 * a single cfs_rq locally. 6148 */ 6149 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6150 list_add_tail(&cfs_rq->throttled_csd_list, 6151 &local_unthrottle); 6152 } 6153 } else { 6154 throttled = true; 6155 } 6156 6157 next: 6158 rq_unlock_irqrestore(rq, &rf); 6159 } 6160 6161 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6162 throttled_csd_list) { 6163 struct rq *rq = rq_of(cfs_rq); 6164 6165 rq_lock_irqsave(rq, &rf); 6166 6167 list_del_init(&cfs_rq->throttled_csd_list); 6168 6169 if (cfs_rq_throttled(cfs_rq)) 6170 unthrottle_cfs_rq(cfs_rq); 6171 6172 rq_unlock_irqrestore(rq, &rf); 6173 } 6174 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6175 6176 rcu_read_unlock(); 6177 6178 return throttled; 6179 } 6180 6181 /* 6182 * Responsible for refilling a task_group's bandwidth and unthrottling its 6183 * cfs_rqs as appropriate. If there has been no activity within the last 6184 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6185 * used to track this state. 6186 */ 6187 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6188 { 6189 int throttled; 6190 6191 /* no need to continue the timer with no bandwidth constraint */ 6192 if (cfs_b->quota == RUNTIME_INF) 6193 goto out_deactivate; 6194 6195 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6196 cfs_b->nr_periods += overrun; 6197 6198 /* Refill extra burst quota even if cfs_b->idle */ 6199 __refill_cfs_bandwidth_runtime(cfs_b); 6200 6201 /* 6202 * idle depends on !throttled (for the case of a large deficit), and if 6203 * we're going inactive then everything else can be deferred 6204 */ 6205 if (cfs_b->idle && !throttled) 6206 goto out_deactivate; 6207 6208 if (!throttled) { 6209 /* mark as potentially idle for the upcoming period */ 6210 cfs_b->idle = 1; 6211 return 0; 6212 } 6213 6214 /* account preceding periods in which throttling occurred */ 6215 cfs_b->nr_throttled += overrun; 6216 6217 /* 6218 * This check is repeated as we release cfs_b->lock while we unthrottle. 6219 */ 6220 while (throttled && cfs_b->runtime > 0) { 6221 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6222 /* we can't nest cfs_b->lock while distributing bandwidth */ 6223 throttled = distribute_cfs_runtime(cfs_b); 6224 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6225 } 6226 6227 /* 6228 * While we are ensured activity in the period following an 6229 * unthrottle, this also covers the case in which the new bandwidth is 6230 * insufficient to cover the existing bandwidth deficit. (Forcing the 6231 * timer to remain active while there are any throttled entities.) 6232 */ 6233 cfs_b->idle = 0; 6234 6235 return 0; 6236 6237 out_deactivate: 6238 return 1; 6239 } 6240 6241 /* a cfs_rq won't donate quota below this amount */ 6242 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6243 /* minimum remaining period time to redistribute slack quota */ 6244 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6245 /* how long we wait to gather additional slack before distributing */ 6246 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6247 6248 /* 6249 * Are we near the end of the current quota period? 6250 * 6251 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6252 * hrtimer base being cleared by hrtimer_start. In the case of 6253 * migrate_hrtimers, base is never cleared, so we are fine. 6254 */ 6255 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6256 { 6257 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6258 s64 remaining; 6259 6260 /* if the call-back is running a quota refresh is already occurring */ 6261 if (hrtimer_callback_running(refresh_timer)) 6262 return 1; 6263 6264 /* is a quota refresh about to occur? */ 6265 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6266 if (remaining < (s64)min_expire) 6267 return 1; 6268 6269 return 0; 6270 } 6271 6272 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6273 { 6274 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6275 6276 /* if there's a quota refresh soon don't bother with slack */ 6277 if (runtime_refresh_within(cfs_b, min_left)) 6278 return; 6279 6280 /* don't push forwards an existing deferred unthrottle */ 6281 if (cfs_b->slack_started) 6282 return; 6283 cfs_b->slack_started = true; 6284 6285 hrtimer_start(&cfs_b->slack_timer, 6286 ns_to_ktime(cfs_bandwidth_slack_period), 6287 HRTIMER_MODE_REL); 6288 } 6289 6290 /* we know any runtime found here is valid as update_curr() precedes return */ 6291 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6292 { 6293 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6294 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6295 6296 if (slack_runtime <= 0) 6297 return; 6298 6299 raw_spin_lock(&cfs_b->lock); 6300 if (cfs_b->quota != RUNTIME_INF) { 6301 cfs_b->runtime += slack_runtime; 6302 6303 /* we are under rq->lock, defer unthrottling using a timer */ 6304 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6305 !list_empty(&cfs_b->throttled_cfs_rq)) 6306 start_cfs_slack_bandwidth(cfs_b); 6307 } 6308 raw_spin_unlock(&cfs_b->lock); 6309 6310 /* even if it's not valid for return we don't want to try again */ 6311 cfs_rq->runtime_remaining -= slack_runtime; 6312 } 6313 6314 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6315 { 6316 if (!cfs_bandwidth_used()) 6317 return; 6318 6319 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6320 return; 6321 6322 __return_cfs_rq_runtime(cfs_rq); 6323 } 6324 6325 /* 6326 * This is done with a timer (instead of inline with bandwidth return) since 6327 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6328 */ 6329 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6330 { 6331 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6332 unsigned long flags; 6333 6334 /* confirm we're still not at a refresh boundary */ 6335 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6336 cfs_b->slack_started = false; 6337 6338 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6339 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6340 return; 6341 } 6342 6343 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6344 runtime = cfs_b->runtime; 6345 6346 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6347 6348 if (!runtime) 6349 return; 6350 6351 distribute_cfs_runtime(cfs_b); 6352 } 6353 6354 /* 6355 * When a group wakes up we want to make sure that its quota is not already 6356 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6357 * runtime as update_curr() throttling can not trigger until it's on-rq. 6358 */ 6359 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6360 { 6361 if (!cfs_bandwidth_used()) 6362 return; 6363 6364 /* an active group must be handled by the update_curr()->put() path */ 6365 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6366 return; 6367 6368 /* ensure the group is not already throttled */ 6369 if (cfs_rq_throttled(cfs_rq)) 6370 return; 6371 6372 /* update runtime allocation */ 6373 account_cfs_rq_runtime(cfs_rq, 0); 6374 if (cfs_rq->runtime_remaining <= 0) 6375 throttle_cfs_rq(cfs_rq); 6376 } 6377 6378 static void sync_throttle(struct task_group *tg, int cpu) 6379 { 6380 struct cfs_rq *pcfs_rq, *cfs_rq; 6381 6382 if (!cfs_bandwidth_used()) 6383 return; 6384 6385 if (!tg->parent) 6386 return; 6387 6388 cfs_rq = tg->cfs_rq[cpu]; 6389 pcfs_rq = tg->parent->cfs_rq[cpu]; 6390 6391 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6392 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6393 6394 /* 6395 * It is not enough to sync the "pelt_clock_throttled" indicator 6396 * with the parent cfs_rq when the hierarchy is not queued. 6397 * Always join a throttled hierarchy with PELT clock throttled 6398 * and leaf it to the first enqueue, or distribution to 6399 * unthrottle the PELT clock. 6400 */ 6401 if (cfs_rq->throttle_count) 6402 cfs_rq->pelt_clock_throttled = 1; 6403 } 6404 6405 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6406 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6407 { 6408 if (!cfs_bandwidth_used()) 6409 return false; 6410 6411 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6412 return false; 6413 6414 /* 6415 * it's possible for a throttled entity to be forced into a running 6416 * state (e.g. set_curr_task), in this case we're finished. 6417 */ 6418 if (cfs_rq_throttled(cfs_rq)) 6419 return true; 6420 6421 return throttle_cfs_rq(cfs_rq); 6422 } 6423 6424 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6425 { 6426 struct cfs_bandwidth *cfs_b = 6427 container_of(timer, struct cfs_bandwidth, slack_timer); 6428 6429 do_sched_cfs_slack_timer(cfs_b); 6430 6431 return HRTIMER_NORESTART; 6432 } 6433 6434 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6435 { 6436 struct cfs_bandwidth *cfs_b = 6437 container_of(timer, struct cfs_bandwidth, period_timer); 6438 unsigned long flags; 6439 int overrun; 6440 int idle = 0; 6441 int count = 0; 6442 6443 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6444 for (;;) { 6445 overrun = hrtimer_forward_now(timer, cfs_b->period); 6446 if (!overrun) 6447 break; 6448 6449 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6450 6451 if (++count > 3) { 6452 u64 new, old = ktime_to_ns(cfs_b->period); 6453 6454 /* 6455 * Grow period by a factor of 2 to avoid losing precision. 6456 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6457 * to fail. 6458 */ 6459 new = old * 2; 6460 if (new < max_bw_quota_period_us * NSEC_PER_USEC) { 6461 cfs_b->period = ns_to_ktime(new); 6462 cfs_b->quota *= 2; 6463 cfs_b->burst *= 2; 6464 6465 pr_warn_ratelimited( 6466 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6467 smp_processor_id(), 6468 div_u64(new, NSEC_PER_USEC), 6469 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6470 } else { 6471 pr_warn_ratelimited( 6472 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6473 smp_processor_id(), 6474 div_u64(old, NSEC_PER_USEC), 6475 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6476 } 6477 6478 /* reset count so we don't come right back in here */ 6479 count = 0; 6480 } 6481 } 6482 if (idle) 6483 cfs_b->period_active = 0; 6484 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6485 6486 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6487 } 6488 6489 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6490 { 6491 raw_spin_lock_init(&cfs_b->lock); 6492 cfs_b->runtime = 0; 6493 cfs_b->quota = RUNTIME_INF; 6494 cfs_b->period = us_to_ktime(default_bw_period_us()); 6495 cfs_b->burst = 0; 6496 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6497 6498 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6499 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6500 HRTIMER_MODE_ABS_PINNED); 6501 6502 /* Add a random offset so that timers interleave */ 6503 hrtimer_set_expires(&cfs_b->period_timer, 6504 get_random_u32_below(cfs_b->period)); 6505 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6506 HRTIMER_MODE_REL); 6507 cfs_b->slack_started = false; 6508 } 6509 6510 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6511 { 6512 cfs_rq->runtime_enabled = 0; 6513 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6514 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6515 INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list); 6516 } 6517 6518 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6519 { 6520 lockdep_assert_held(&cfs_b->lock); 6521 6522 if (cfs_b->period_active) 6523 return; 6524 6525 cfs_b->period_active = 1; 6526 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6527 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6528 } 6529 6530 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6531 { 6532 int __maybe_unused i; 6533 6534 /* init_cfs_bandwidth() was not called */ 6535 if (!cfs_b->throttled_cfs_rq.next) 6536 return; 6537 6538 hrtimer_cancel(&cfs_b->period_timer); 6539 hrtimer_cancel(&cfs_b->slack_timer); 6540 6541 /* 6542 * It is possible that we still have some cfs_rq's pending on a CSD 6543 * list, though this race is very rare. In order for this to occur, we 6544 * must have raced with the last task leaving the group while there 6545 * exist throttled cfs_rq(s), and the period_timer must have queued the 6546 * CSD item but the remote cpu has not yet processed it. To handle this, 6547 * we can simply flush all pending CSD work inline here. We're 6548 * guaranteed at this point that no additional cfs_rq of this group can 6549 * join a CSD list. 6550 */ 6551 for_each_possible_cpu(i) { 6552 struct rq *rq = cpu_rq(i); 6553 unsigned long flags; 6554 6555 if (list_empty(&rq->cfsb_csd_list)) 6556 continue; 6557 6558 local_irq_save(flags); 6559 __cfsb_csd_unthrottle(rq); 6560 local_irq_restore(flags); 6561 } 6562 } 6563 6564 /* 6565 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6566 * 6567 * The race is harmless, since modifying bandwidth settings of unhooked group 6568 * bits doesn't do much. 6569 */ 6570 6571 /* cpu online callback */ 6572 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6573 { 6574 struct task_group *tg; 6575 6576 lockdep_assert_rq_held(rq); 6577 6578 rcu_read_lock(); 6579 list_for_each_entry_rcu(tg, &task_groups, list) { 6580 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6581 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6582 6583 raw_spin_lock(&cfs_b->lock); 6584 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6585 raw_spin_unlock(&cfs_b->lock); 6586 } 6587 rcu_read_unlock(); 6588 } 6589 6590 /* cpu offline callback */ 6591 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6592 { 6593 struct task_group *tg; 6594 6595 lockdep_assert_rq_held(rq); 6596 6597 // Do not unthrottle for an active CPU 6598 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6599 return; 6600 6601 /* 6602 * The rq clock has already been updated in the 6603 * set_rq_offline(), so we should skip updating 6604 * the rq clock again in unthrottle_cfs_rq(). 6605 */ 6606 rq_clock_start_loop_update(rq); 6607 6608 rcu_read_lock(); 6609 list_for_each_entry_rcu(tg, &task_groups, list) { 6610 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6611 6612 if (!cfs_rq->runtime_enabled) 6613 continue; 6614 6615 /* 6616 * Offline rq is schedulable till CPU is completely disabled 6617 * in take_cpu_down(), so we prevent new cfs throttling here. 6618 */ 6619 cfs_rq->runtime_enabled = 0; 6620 6621 if (!cfs_rq_throttled(cfs_rq)) 6622 continue; 6623 6624 /* 6625 * clock_task is not advancing so we just need to make sure 6626 * there's some valid quota amount 6627 */ 6628 cfs_rq->runtime_remaining = 1; 6629 unthrottle_cfs_rq(cfs_rq); 6630 } 6631 rcu_read_unlock(); 6632 6633 rq_clock_stop_loop_update(rq); 6634 } 6635 6636 bool cfs_task_bw_constrained(struct task_struct *p) 6637 { 6638 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6639 6640 if (!cfs_bandwidth_used()) 6641 return false; 6642 6643 if (cfs_rq->runtime_enabled || 6644 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6645 return true; 6646 6647 return false; 6648 } 6649 6650 #ifdef CONFIG_NO_HZ_FULL 6651 /* called from pick_next_task_fair() */ 6652 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6653 { 6654 int cpu = cpu_of(rq); 6655 6656 if (!cfs_bandwidth_used()) 6657 return; 6658 6659 if (!tick_nohz_full_cpu(cpu)) 6660 return; 6661 6662 if (rq->nr_running != 1) 6663 return; 6664 6665 /* 6666 * We know there is only one task runnable and we've just picked it. The 6667 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6668 * be otherwise able to stop the tick. Just need to check if we are using 6669 * bandwidth control. 6670 */ 6671 if (cfs_task_bw_constrained(p)) 6672 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6673 } 6674 #endif /* CONFIG_NO_HZ_FULL */ 6675 6676 #else /* !CONFIG_CFS_BANDWIDTH: */ 6677 6678 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6679 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6680 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6681 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6682 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6683 static void task_throttle_setup_work(struct task_struct *p) {} 6684 static bool task_is_throttled(struct task_struct *p) { return false; } 6685 static void dequeue_throttled_task(struct task_struct *p, int flags) {} 6686 static bool enqueue_throttled_task(struct task_struct *p) { return false; } 6687 static void record_throttle_clock(struct cfs_rq *cfs_rq) {} 6688 6689 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6690 { 6691 return 0; 6692 } 6693 6694 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq) 6695 { 6696 return false; 6697 } 6698 6699 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6700 { 6701 return 0; 6702 } 6703 6704 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu) 6705 { 6706 return 0; 6707 } 6708 6709 #ifdef CONFIG_FAIR_GROUP_SCHED 6710 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6711 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6712 #endif 6713 6714 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6715 { 6716 return NULL; 6717 } 6718 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6719 static inline void update_runtime_enabled(struct rq *rq) {} 6720 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6721 #ifdef CONFIG_CGROUP_SCHED 6722 bool cfs_task_bw_constrained(struct task_struct *p) 6723 { 6724 return false; 6725 } 6726 #endif 6727 #endif /* !CONFIG_CFS_BANDWIDTH */ 6728 6729 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6730 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6731 #endif 6732 6733 /************************************************** 6734 * CFS operations on tasks: 6735 */ 6736 6737 #ifdef CONFIG_SCHED_HRTICK 6738 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6739 { 6740 struct sched_entity *se = &p->se; 6741 6742 WARN_ON_ONCE(task_rq(p) != rq); 6743 6744 if (rq->cfs.h_nr_queued > 1) { 6745 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6746 u64 slice = se->slice; 6747 s64 delta = slice - ran; 6748 6749 if (delta < 0) { 6750 if (task_current_donor(rq, p)) 6751 resched_curr(rq); 6752 return; 6753 } 6754 hrtick_start(rq, delta); 6755 } 6756 } 6757 6758 /* 6759 * called from enqueue/dequeue and updates the hrtick when the 6760 * current task is from our class and nr_running is low enough 6761 * to matter. 6762 */ 6763 static void hrtick_update(struct rq *rq) 6764 { 6765 struct task_struct *donor = rq->donor; 6766 6767 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6768 return; 6769 6770 hrtick_start_fair(rq, donor); 6771 } 6772 #else /* !CONFIG_SCHED_HRTICK: */ 6773 static inline void 6774 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6775 { 6776 } 6777 6778 static inline void hrtick_update(struct rq *rq) 6779 { 6780 } 6781 #endif /* !CONFIG_SCHED_HRTICK */ 6782 6783 static inline bool cpu_overutilized(int cpu) 6784 { 6785 unsigned long rq_util_min, rq_util_max; 6786 6787 if (!sched_energy_enabled()) 6788 return false; 6789 6790 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6791 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6792 6793 /* Return true only if the utilization doesn't fit CPU's capacity */ 6794 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6795 } 6796 6797 /* 6798 * overutilized value make sense only if EAS is enabled 6799 */ 6800 static inline bool is_rd_overutilized(struct root_domain *rd) 6801 { 6802 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6803 } 6804 6805 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6806 { 6807 if (!sched_energy_enabled()) 6808 return; 6809 6810 WRITE_ONCE(rd->overutilized, flag); 6811 trace_sched_overutilized_tp(rd, flag); 6812 } 6813 6814 static inline void check_update_overutilized_status(struct rq *rq) 6815 { 6816 /* 6817 * overutilized field is used for load balancing decisions only 6818 * if energy aware scheduler is being used 6819 */ 6820 6821 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6822 set_rd_overutilized(rq->rd, 1); 6823 } 6824 6825 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6826 static int sched_idle_rq(struct rq *rq) 6827 { 6828 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6829 rq->nr_running); 6830 } 6831 6832 static int sched_idle_cpu(int cpu) 6833 { 6834 return sched_idle_rq(cpu_rq(cpu)); 6835 } 6836 6837 static void 6838 requeue_delayed_entity(struct sched_entity *se) 6839 { 6840 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6841 6842 /* 6843 * se->sched_delayed should imply: se->on_rq == 1. 6844 * Because a delayed entity is one that is still on 6845 * the runqueue competing until elegibility. 6846 */ 6847 WARN_ON_ONCE(!se->sched_delayed); 6848 WARN_ON_ONCE(!se->on_rq); 6849 6850 if (sched_feat(DELAY_ZERO)) { 6851 update_entity_lag(cfs_rq, se); 6852 if (se->vlag > 0) { 6853 cfs_rq->nr_queued--; 6854 if (se != cfs_rq->curr) 6855 __dequeue_entity(cfs_rq, se); 6856 se->vlag = 0; 6857 place_entity(cfs_rq, se, 0); 6858 if (se != cfs_rq->curr) 6859 __enqueue_entity(cfs_rq, se); 6860 cfs_rq->nr_queued++; 6861 } 6862 } 6863 6864 update_load_avg(cfs_rq, se, 0); 6865 clear_delayed(se); 6866 } 6867 6868 /* 6869 * The enqueue_task method is called before nr_running is 6870 * increased. Here we update the fair scheduling stats and 6871 * then put the task into the rbtree: 6872 */ 6873 static void 6874 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6875 { 6876 struct cfs_rq *cfs_rq; 6877 struct sched_entity *se = &p->se; 6878 int h_nr_idle = task_has_idle_policy(p); 6879 int h_nr_runnable = 1; 6880 int task_new = !(flags & ENQUEUE_WAKEUP); 6881 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6882 u64 slice = 0; 6883 6884 if (task_is_throttled(p) && enqueue_throttled_task(p)) 6885 return; 6886 6887 /* 6888 * The code below (indirectly) updates schedutil which looks at 6889 * the cfs_rq utilization to select a frequency. 6890 * Let's add the task's estimated utilization to the cfs_rq's 6891 * estimated utilization, before we update schedutil. 6892 */ 6893 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) 6894 util_est_enqueue(&rq->cfs, p); 6895 6896 if (flags & ENQUEUE_DELAYED) { 6897 requeue_delayed_entity(se); 6898 return; 6899 } 6900 6901 /* 6902 * If in_iowait is set, the code below may not trigger any cpufreq 6903 * utilization updates, so do it here explicitly with the IOWAIT flag 6904 * passed. 6905 */ 6906 if (p->in_iowait) 6907 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6908 6909 if (task_new && se->sched_delayed) 6910 h_nr_runnable = 0; 6911 6912 for_each_sched_entity(se) { 6913 if (se->on_rq) { 6914 if (se->sched_delayed) 6915 requeue_delayed_entity(se); 6916 break; 6917 } 6918 cfs_rq = cfs_rq_of(se); 6919 6920 /* 6921 * Basically set the slice of group entries to the min_slice of 6922 * their respective cfs_rq. This ensures the group can service 6923 * its entities in the desired time-frame. 6924 */ 6925 if (slice) { 6926 se->slice = slice; 6927 se->custom_slice = 1; 6928 } 6929 enqueue_entity(cfs_rq, se, flags); 6930 slice = cfs_rq_min_slice(cfs_rq); 6931 6932 cfs_rq->h_nr_runnable += h_nr_runnable; 6933 cfs_rq->h_nr_queued++; 6934 cfs_rq->h_nr_idle += h_nr_idle; 6935 6936 if (cfs_rq_is_idle(cfs_rq)) 6937 h_nr_idle = 1; 6938 6939 flags = ENQUEUE_WAKEUP; 6940 } 6941 6942 for_each_sched_entity(se) { 6943 cfs_rq = cfs_rq_of(se); 6944 6945 update_load_avg(cfs_rq, se, UPDATE_TG); 6946 se_update_runnable(se); 6947 update_cfs_group(se); 6948 6949 se->slice = slice; 6950 if (se != cfs_rq->curr) 6951 min_vruntime_cb_propagate(&se->run_node, NULL); 6952 slice = cfs_rq_min_slice(cfs_rq); 6953 6954 cfs_rq->h_nr_runnable += h_nr_runnable; 6955 cfs_rq->h_nr_queued++; 6956 cfs_rq->h_nr_idle += h_nr_idle; 6957 6958 if (cfs_rq_is_idle(cfs_rq)) 6959 h_nr_idle = 1; 6960 } 6961 6962 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6963 dl_server_start(&rq->fair_server); 6964 6965 /* At this point se is NULL and we are at root level*/ 6966 add_nr_running(rq, 1); 6967 6968 /* 6969 * Since new tasks are assigned an initial util_avg equal to 6970 * half of the spare capacity of their CPU, tiny tasks have the 6971 * ability to cross the overutilized threshold, which will 6972 * result in the load balancer ruining all the task placement 6973 * done by EAS. As a way to mitigate that effect, do not account 6974 * for the first enqueue operation of new tasks during the 6975 * overutilized flag detection. 6976 * 6977 * A better way of solving this problem would be to wait for 6978 * the PELT signals of tasks to converge before taking them 6979 * into account, but that is not straightforward to implement, 6980 * and the following generally works well enough in practice. 6981 */ 6982 if (!task_new) 6983 check_update_overutilized_status(rq); 6984 6985 assert_list_leaf_cfs_rq(rq); 6986 6987 hrtick_update(rq); 6988 } 6989 6990 /* 6991 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 6992 * failing half-way through and resume the dequeue later. 6993 * 6994 * Returns: 6995 * -1 - dequeue delayed 6996 * 0 - dequeue throttled 6997 * 1 - dequeue complete 6998 */ 6999 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7000 { 7001 bool was_sched_idle = sched_idle_rq(rq); 7002 bool task_sleep = flags & DEQUEUE_SLEEP; 7003 bool task_delayed = flags & DEQUEUE_DELAYED; 7004 bool task_throttled = flags & DEQUEUE_THROTTLE; 7005 struct task_struct *p = NULL; 7006 int h_nr_idle = 0; 7007 int h_nr_queued = 0; 7008 int h_nr_runnable = 0; 7009 struct cfs_rq *cfs_rq; 7010 u64 slice = 0; 7011 7012 if (entity_is_task(se)) { 7013 p = task_of(se); 7014 h_nr_queued = 1; 7015 h_nr_idle = task_has_idle_policy(p); 7016 if (task_sleep || task_delayed || !se->sched_delayed) 7017 h_nr_runnable = 1; 7018 } 7019 7020 for_each_sched_entity(se) { 7021 cfs_rq = cfs_rq_of(se); 7022 7023 if (!dequeue_entity(cfs_rq, se, flags)) { 7024 if (p && &p->se == se) 7025 return -1; 7026 7027 slice = cfs_rq_min_slice(cfs_rq); 7028 break; 7029 } 7030 7031 cfs_rq->h_nr_runnable -= h_nr_runnable; 7032 cfs_rq->h_nr_queued -= h_nr_queued; 7033 cfs_rq->h_nr_idle -= h_nr_idle; 7034 7035 if (cfs_rq_is_idle(cfs_rq)) 7036 h_nr_idle = h_nr_queued; 7037 7038 if (throttled_hierarchy(cfs_rq) && task_throttled) 7039 record_throttle_clock(cfs_rq); 7040 7041 /* Don't dequeue parent if it has other entities besides us */ 7042 if (cfs_rq->load.weight) { 7043 slice = cfs_rq_min_slice(cfs_rq); 7044 7045 /* Avoid re-evaluating load for this entity: */ 7046 se = parent_entity(se); 7047 /* 7048 * Bias pick_next to pick a task from this cfs_rq, as 7049 * p is sleeping when it is within its sched_slice. 7050 */ 7051 if (task_sleep && se) 7052 set_next_buddy(se); 7053 break; 7054 } 7055 flags |= DEQUEUE_SLEEP; 7056 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7057 } 7058 7059 for_each_sched_entity(se) { 7060 cfs_rq = cfs_rq_of(se); 7061 7062 update_load_avg(cfs_rq, se, UPDATE_TG); 7063 se_update_runnable(se); 7064 update_cfs_group(se); 7065 7066 se->slice = slice; 7067 if (se != cfs_rq->curr) 7068 min_vruntime_cb_propagate(&se->run_node, NULL); 7069 slice = cfs_rq_min_slice(cfs_rq); 7070 7071 cfs_rq->h_nr_runnable -= h_nr_runnable; 7072 cfs_rq->h_nr_queued -= h_nr_queued; 7073 cfs_rq->h_nr_idle -= h_nr_idle; 7074 7075 if (cfs_rq_is_idle(cfs_rq)) 7076 h_nr_idle = h_nr_queued; 7077 7078 if (throttled_hierarchy(cfs_rq) && task_throttled) 7079 record_throttle_clock(cfs_rq); 7080 } 7081 7082 sub_nr_running(rq, h_nr_queued); 7083 7084 /* balance early to pull high priority tasks */ 7085 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7086 rq->next_balance = jiffies; 7087 7088 if (p && task_delayed) { 7089 WARN_ON_ONCE(!task_sleep); 7090 WARN_ON_ONCE(p->on_rq != 1); 7091 7092 /* Fix-up what dequeue_task_fair() skipped */ 7093 hrtick_update(rq); 7094 7095 /* 7096 * Fix-up what block_task() skipped. 7097 * 7098 * Must be last, @p might not be valid after this. 7099 */ 7100 __block_task(rq, p); 7101 } 7102 7103 return 1; 7104 } 7105 7106 /* 7107 * The dequeue_task method is called before nr_running is 7108 * decreased. We remove the task from the rbtree and 7109 * update the fair scheduling stats: 7110 */ 7111 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7112 { 7113 if (task_is_throttled(p)) { 7114 dequeue_throttled_task(p, flags); 7115 return true; 7116 } 7117 7118 if (!p->se.sched_delayed) 7119 util_est_dequeue(&rq->cfs, p); 7120 7121 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7122 if (dequeue_entities(rq, &p->se, flags) < 0) 7123 return false; 7124 7125 /* 7126 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7127 */ 7128 7129 hrtick_update(rq); 7130 return true; 7131 } 7132 7133 static inline unsigned int cfs_h_nr_delayed(struct rq *rq) 7134 { 7135 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); 7136 } 7137 7138 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7139 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7140 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7141 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7142 7143 #ifdef CONFIG_NO_HZ_COMMON 7144 7145 static struct { 7146 cpumask_var_t idle_cpus_mask; 7147 atomic_t nr_cpus; 7148 int has_blocked; /* Idle CPUS has blocked load */ 7149 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7150 unsigned long next_balance; /* in jiffy units */ 7151 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7152 } nohz ____cacheline_aligned; 7153 7154 #endif /* CONFIG_NO_HZ_COMMON */ 7155 7156 static unsigned long cpu_load(struct rq *rq) 7157 { 7158 return cfs_rq_load_avg(&rq->cfs); 7159 } 7160 7161 /* 7162 * cpu_load_without - compute CPU load without any contributions from *p 7163 * @cpu: the CPU which load is requested 7164 * @p: the task which load should be discounted 7165 * 7166 * The load of a CPU is defined by the load of tasks currently enqueued on that 7167 * CPU as well as tasks which are currently sleeping after an execution on that 7168 * CPU. 7169 * 7170 * This method returns the load of the specified CPU by discounting the load of 7171 * the specified task, whenever the task is currently contributing to the CPU 7172 * load. 7173 */ 7174 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7175 { 7176 struct cfs_rq *cfs_rq; 7177 unsigned int load; 7178 7179 /* Task has no contribution or is new */ 7180 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7181 return cpu_load(rq); 7182 7183 cfs_rq = &rq->cfs; 7184 load = READ_ONCE(cfs_rq->avg.load_avg); 7185 7186 /* Discount task's util from CPU's util */ 7187 lsub_positive(&load, task_h_load(p)); 7188 7189 return load; 7190 } 7191 7192 static unsigned long cpu_runnable(struct rq *rq) 7193 { 7194 return cfs_rq_runnable_avg(&rq->cfs); 7195 } 7196 7197 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7198 { 7199 struct cfs_rq *cfs_rq; 7200 unsigned int runnable; 7201 7202 /* Task has no contribution or is new */ 7203 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7204 return cpu_runnable(rq); 7205 7206 cfs_rq = &rq->cfs; 7207 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7208 7209 /* Discount task's runnable from CPU's runnable */ 7210 lsub_positive(&runnable, p->se.avg.runnable_avg); 7211 7212 return runnable; 7213 } 7214 7215 static unsigned long capacity_of(int cpu) 7216 { 7217 return cpu_rq(cpu)->cpu_capacity; 7218 } 7219 7220 static void record_wakee(struct task_struct *p) 7221 { 7222 /* 7223 * Only decay a single time; tasks that have less then 1 wakeup per 7224 * jiffy will not have built up many flips. 7225 */ 7226 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7227 current->wakee_flips >>= 1; 7228 current->wakee_flip_decay_ts = jiffies; 7229 } 7230 7231 if (current->last_wakee != p) { 7232 current->last_wakee = p; 7233 current->wakee_flips++; 7234 } 7235 } 7236 7237 /* 7238 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7239 * 7240 * A waker of many should wake a different task than the one last awakened 7241 * at a frequency roughly N times higher than one of its wakees. 7242 * 7243 * In order to determine whether we should let the load spread vs consolidating 7244 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7245 * partner, and a factor of lls_size higher frequency in the other. 7246 * 7247 * With both conditions met, we can be relatively sure that the relationship is 7248 * non-monogamous, with partner count exceeding socket size. 7249 * 7250 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7251 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7252 * socket size. 7253 */ 7254 static int wake_wide(struct task_struct *p) 7255 { 7256 unsigned int master = current->wakee_flips; 7257 unsigned int slave = p->wakee_flips; 7258 int factor = __this_cpu_read(sd_llc_size); 7259 7260 if (master < slave) 7261 swap(master, slave); 7262 if (slave < factor || master < slave * factor) 7263 return 0; 7264 return 1; 7265 } 7266 7267 /* 7268 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7269 * soonest. For the purpose of speed we only consider the waking and previous 7270 * CPU. 7271 * 7272 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7273 * cache-affine and is (or will be) idle. 7274 * 7275 * wake_affine_weight() - considers the weight to reflect the average 7276 * scheduling latency of the CPUs. This seems to work 7277 * for the overloaded case. 7278 */ 7279 static int 7280 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7281 { 7282 /* 7283 * If this_cpu is idle, it implies the wakeup is from interrupt 7284 * context. Only allow the move if cache is shared. Otherwise an 7285 * interrupt intensive workload could force all tasks onto one 7286 * node depending on the IO topology or IRQ affinity settings. 7287 * 7288 * If the prev_cpu is idle and cache affine then avoid a migration. 7289 * There is no guarantee that the cache hot data from an interrupt 7290 * is more important than cache hot data on the prev_cpu and from 7291 * a cpufreq perspective, it's better to have higher utilisation 7292 * on one CPU. 7293 */ 7294 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7295 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7296 7297 if (sync) { 7298 struct rq *rq = cpu_rq(this_cpu); 7299 7300 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) 7301 return this_cpu; 7302 } 7303 7304 if (available_idle_cpu(prev_cpu)) 7305 return prev_cpu; 7306 7307 return nr_cpumask_bits; 7308 } 7309 7310 static int 7311 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7312 int this_cpu, int prev_cpu, int sync) 7313 { 7314 s64 this_eff_load, prev_eff_load; 7315 unsigned long task_load; 7316 7317 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7318 7319 if (sync) { 7320 unsigned long current_load = task_h_load(current); 7321 7322 if (current_load > this_eff_load) 7323 return this_cpu; 7324 7325 this_eff_load -= current_load; 7326 } 7327 7328 task_load = task_h_load(p); 7329 7330 this_eff_load += task_load; 7331 if (sched_feat(WA_BIAS)) 7332 this_eff_load *= 100; 7333 this_eff_load *= capacity_of(prev_cpu); 7334 7335 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7336 prev_eff_load -= task_load; 7337 if (sched_feat(WA_BIAS)) 7338 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7339 prev_eff_load *= capacity_of(this_cpu); 7340 7341 /* 7342 * If sync, adjust the weight of prev_eff_load such that if 7343 * prev_eff == this_eff that select_idle_sibling() will consider 7344 * stacking the wakee on top of the waker if no other CPU is 7345 * idle. 7346 */ 7347 if (sync) 7348 prev_eff_load += 1; 7349 7350 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7351 } 7352 7353 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7354 int this_cpu, int prev_cpu, int sync) 7355 { 7356 int target = nr_cpumask_bits; 7357 7358 if (sched_feat(WA_IDLE)) 7359 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7360 7361 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7362 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7363 7364 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7365 if (target != this_cpu) 7366 return prev_cpu; 7367 7368 schedstat_inc(sd->ttwu_move_affine); 7369 schedstat_inc(p->stats.nr_wakeups_affine); 7370 return target; 7371 } 7372 7373 static struct sched_group * 7374 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7375 7376 /* 7377 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7378 */ 7379 static int 7380 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7381 { 7382 unsigned long load, min_load = ULONG_MAX; 7383 unsigned int min_exit_latency = UINT_MAX; 7384 u64 latest_idle_timestamp = 0; 7385 int least_loaded_cpu = this_cpu; 7386 int shallowest_idle_cpu = -1; 7387 int i; 7388 7389 /* Check if we have any choice: */ 7390 if (group->group_weight == 1) 7391 return cpumask_first(sched_group_span(group)); 7392 7393 /* Traverse only the allowed CPUs */ 7394 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7395 struct rq *rq = cpu_rq(i); 7396 7397 if (!sched_core_cookie_match(rq, p)) 7398 continue; 7399 7400 if (sched_idle_cpu(i)) 7401 return i; 7402 7403 if (available_idle_cpu(i)) { 7404 struct cpuidle_state *idle = idle_get_state(rq); 7405 if (idle && idle->exit_latency < min_exit_latency) { 7406 /* 7407 * We give priority to a CPU whose idle state 7408 * has the smallest exit latency irrespective 7409 * of any idle timestamp. 7410 */ 7411 min_exit_latency = idle->exit_latency; 7412 latest_idle_timestamp = rq->idle_stamp; 7413 shallowest_idle_cpu = i; 7414 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7415 rq->idle_stamp > latest_idle_timestamp) { 7416 /* 7417 * If equal or no active idle state, then 7418 * the most recently idled CPU might have 7419 * a warmer cache. 7420 */ 7421 latest_idle_timestamp = rq->idle_stamp; 7422 shallowest_idle_cpu = i; 7423 } 7424 } else if (shallowest_idle_cpu == -1) { 7425 load = cpu_load(cpu_rq(i)); 7426 if (load < min_load) { 7427 min_load = load; 7428 least_loaded_cpu = i; 7429 } 7430 } 7431 } 7432 7433 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7434 } 7435 7436 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7437 int cpu, int prev_cpu, int sd_flag) 7438 { 7439 int new_cpu = cpu; 7440 7441 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7442 return prev_cpu; 7443 7444 /* 7445 * We need task's util for cpu_util_without, sync it up to 7446 * prev_cpu's last_update_time. 7447 */ 7448 if (!(sd_flag & SD_BALANCE_FORK)) 7449 sync_entity_load_avg(&p->se); 7450 7451 while (sd) { 7452 struct sched_group *group; 7453 struct sched_domain *tmp; 7454 int weight; 7455 7456 if (!(sd->flags & sd_flag)) { 7457 sd = sd->child; 7458 continue; 7459 } 7460 7461 group = sched_balance_find_dst_group(sd, p, cpu); 7462 if (!group) { 7463 sd = sd->child; 7464 continue; 7465 } 7466 7467 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7468 if (new_cpu == cpu) { 7469 /* Now try balancing at a lower domain level of 'cpu': */ 7470 sd = sd->child; 7471 continue; 7472 } 7473 7474 /* Now try balancing at a lower domain level of 'new_cpu': */ 7475 cpu = new_cpu; 7476 weight = sd->span_weight; 7477 sd = NULL; 7478 for_each_domain(cpu, tmp) { 7479 if (weight <= tmp->span_weight) 7480 break; 7481 if (tmp->flags & sd_flag) 7482 sd = tmp; 7483 } 7484 } 7485 7486 return new_cpu; 7487 } 7488 7489 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7490 { 7491 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7492 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7493 return cpu; 7494 7495 return -1; 7496 } 7497 7498 #ifdef CONFIG_SCHED_SMT 7499 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7500 EXPORT_SYMBOL_GPL(sched_smt_present); 7501 7502 static inline void set_idle_cores(int cpu, int val) 7503 { 7504 struct sched_domain_shared *sds; 7505 7506 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7507 if (sds) 7508 WRITE_ONCE(sds->has_idle_cores, val); 7509 } 7510 7511 static inline bool test_idle_cores(int cpu) 7512 { 7513 struct sched_domain_shared *sds; 7514 7515 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7516 if (sds) 7517 return READ_ONCE(sds->has_idle_cores); 7518 7519 return false; 7520 } 7521 7522 /* 7523 * Scans the local SMT mask to see if the entire core is idle, and records this 7524 * information in sd_llc_shared->has_idle_cores. 7525 * 7526 * Since SMT siblings share all cache levels, inspecting this limited remote 7527 * state should be fairly cheap. 7528 */ 7529 void __update_idle_core(struct rq *rq) 7530 { 7531 int core = cpu_of(rq); 7532 int cpu; 7533 7534 rcu_read_lock(); 7535 if (test_idle_cores(core)) 7536 goto unlock; 7537 7538 for_each_cpu(cpu, cpu_smt_mask(core)) { 7539 if (cpu == core) 7540 continue; 7541 7542 if (!available_idle_cpu(cpu)) 7543 goto unlock; 7544 } 7545 7546 set_idle_cores(core, 1); 7547 unlock: 7548 rcu_read_unlock(); 7549 } 7550 7551 /* 7552 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7553 * there are no idle cores left in the system; tracked through 7554 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7555 */ 7556 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7557 { 7558 bool idle = true; 7559 int cpu; 7560 7561 for_each_cpu(cpu, cpu_smt_mask(core)) { 7562 if (!available_idle_cpu(cpu)) { 7563 idle = false; 7564 if (*idle_cpu == -1) { 7565 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7566 *idle_cpu = cpu; 7567 break; 7568 } 7569 continue; 7570 } 7571 break; 7572 } 7573 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7574 *idle_cpu = cpu; 7575 } 7576 7577 if (idle) 7578 return core; 7579 7580 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7581 return -1; 7582 } 7583 7584 /* 7585 * Scan the local SMT mask for idle CPUs. 7586 */ 7587 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7588 { 7589 int cpu; 7590 7591 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7592 if (cpu == target) 7593 continue; 7594 /* 7595 * Check if the CPU is in the LLC scheduling domain of @target. 7596 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7597 */ 7598 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7599 continue; 7600 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7601 return cpu; 7602 } 7603 7604 return -1; 7605 } 7606 7607 #else /* !CONFIG_SCHED_SMT: */ 7608 7609 static inline void set_idle_cores(int cpu, int val) 7610 { 7611 } 7612 7613 static inline bool test_idle_cores(int cpu) 7614 { 7615 return false; 7616 } 7617 7618 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7619 { 7620 return __select_idle_cpu(core, p); 7621 } 7622 7623 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7624 { 7625 return -1; 7626 } 7627 7628 #endif /* !CONFIG_SCHED_SMT */ 7629 7630 /* 7631 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7632 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7633 * average idle time for this rq (as found in rq->avg_idle). 7634 */ 7635 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7636 { 7637 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7638 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7639 struct sched_domain_shared *sd_share; 7640 7641 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7642 7643 if (sched_feat(SIS_UTIL)) { 7644 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7645 if (sd_share) { 7646 /* because !--nr is the condition to stop scan */ 7647 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7648 /* overloaded LLC is unlikely to have idle cpu/core */ 7649 if (nr == 1) 7650 return -1; 7651 } 7652 } 7653 7654 if (static_branch_unlikely(&sched_cluster_active)) { 7655 struct sched_group *sg = sd->groups; 7656 7657 if (sg->flags & SD_CLUSTER) { 7658 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7659 if (!cpumask_test_cpu(cpu, cpus)) 7660 continue; 7661 7662 if (has_idle_core) { 7663 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7664 if ((unsigned int)i < nr_cpumask_bits) 7665 return i; 7666 } else { 7667 if (--nr <= 0) 7668 return -1; 7669 idle_cpu = __select_idle_cpu(cpu, p); 7670 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7671 return idle_cpu; 7672 } 7673 } 7674 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7675 } 7676 } 7677 7678 for_each_cpu_wrap(cpu, cpus, target + 1) { 7679 if (has_idle_core) { 7680 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7681 if ((unsigned int)i < nr_cpumask_bits) 7682 return i; 7683 7684 } else { 7685 if (--nr <= 0) 7686 return -1; 7687 idle_cpu = __select_idle_cpu(cpu, p); 7688 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7689 break; 7690 } 7691 } 7692 7693 if (has_idle_core) 7694 set_idle_cores(target, false); 7695 7696 return idle_cpu; 7697 } 7698 7699 /* 7700 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7701 * the task fits. If no CPU is big enough, but there are idle ones, try to 7702 * maximize capacity. 7703 */ 7704 static int 7705 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7706 { 7707 unsigned long task_util, util_min, util_max, best_cap = 0; 7708 int fits, best_fits = 0; 7709 int cpu, best_cpu = -1; 7710 struct cpumask *cpus; 7711 7712 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7713 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7714 7715 task_util = task_util_est(p); 7716 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7717 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7718 7719 for_each_cpu_wrap(cpu, cpus, target) { 7720 unsigned long cpu_cap = capacity_of(cpu); 7721 7722 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7723 continue; 7724 7725 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7726 7727 /* This CPU fits with all requirements */ 7728 if (fits > 0) 7729 return cpu; 7730 /* 7731 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7732 * Look for the CPU with best capacity. 7733 */ 7734 else if (fits < 0) 7735 cpu_cap = get_actual_cpu_capacity(cpu); 7736 7737 /* 7738 * First, select CPU which fits better (-1 being better than 0). 7739 * Then, select the one with best capacity at same level. 7740 */ 7741 if ((fits < best_fits) || 7742 ((fits == best_fits) && (cpu_cap > best_cap))) { 7743 best_cap = cpu_cap; 7744 best_cpu = cpu; 7745 best_fits = fits; 7746 } 7747 } 7748 7749 return best_cpu; 7750 } 7751 7752 static inline bool asym_fits_cpu(unsigned long util, 7753 unsigned long util_min, 7754 unsigned long util_max, 7755 int cpu) 7756 { 7757 if (sched_asym_cpucap_active()) 7758 /* 7759 * Return true only if the cpu fully fits the task requirements 7760 * which include the utilization and the performance hints. 7761 */ 7762 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7763 7764 return true; 7765 } 7766 7767 /* 7768 * Try and locate an idle core/thread in the LLC cache domain. 7769 */ 7770 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7771 { 7772 bool has_idle_core = false; 7773 struct sched_domain *sd; 7774 unsigned long task_util, util_min, util_max; 7775 int i, recent_used_cpu, prev_aff = -1; 7776 7777 /* 7778 * On asymmetric system, update task utilization because we will check 7779 * that the task fits with CPU's capacity. 7780 */ 7781 if (sched_asym_cpucap_active()) { 7782 sync_entity_load_avg(&p->se); 7783 task_util = task_util_est(p); 7784 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7785 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7786 } 7787 7788 /* 7789 * per-cpu select_rq_mask usage 7790 */ 7791 lockdep_assert_irqs_disabled(); 7792 7793 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7794 asym_fits_cpu(task_util, util_min, util_max, target)) 7795 return target; 7796 7797 /* 7798 * If the previous CPU is cache affine and idle, don't be stupid: 7799 */ 7800 if (prev != target && cpus_share_cache(prev, target) && 7801 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7802 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7803 7804 if (!static_branch_unlikely(&sched_cluster_active) || 7805 cpus_share_resources(prev, target)) 7806 return prev; 7807 7808 prev_aff = prev; 7809 } 7810 7811 /* 7812 * Allow a per-cpu kthread to stack with the wakee if the 7813 * kworker thread and the tasks previous CPUs are the same. 7814 * The assumption is that the wakee queued work for the 7815 * per-cpu kthread that is now complete and the wakeup is 7816 * essentially a sync wakeup. An obvious example of this 7817 * pattern is IO completions. 7818 */ 7819 if (is_per_cpu_kthread(current) && 7820 in_task() && 7821 prev == smp_processor_id() && 7822 this_rq()->nr_running <= 1 && 7823 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7824 return prev; 7825 } 7826 7827 /* Check a recently used CPU as a potential idle candidate: */ 7828 recent_used_cpu = p->recent_used_cpu; 7829 p->recent_used_cpu = prev; 7830 if (recent_used_cpu != prev && 7831 recent_used_cpu != target && 7832 cpus_share_cache(recent_used_cpu, target) && 7833 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7834 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7835 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7836 7837 if (!static_branch_unlikely(&sched_cluster_active) || 7838 cpus_share_resources(recent_used_cpu, target)) 7839 return recent_used_cpu; 7840 7841 } else { 7842 recent_used_cpu = -1; 7843 } 7844 7845 /* 7846 * For asymmetric CPU capacity systems, our domain of interest is 7847 * sd_asym_cpucapacity rather than sd_llc. 7848 */ 7849 if (sched_asym_cpucap_active()) { 7850 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7851 /* 7852 * On an asymmetric CPU capacity system where an exclusive 7853 * cpuset defines a symmetric island (i.e. one unique 7854 * capacity_orig value through the cpuset), the key will be set 7855 * but the CPUs within that cpuset will not have a domain with 7856 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7857 * capacity path. 7858 */ 7859 if (sd) { 7860 i = select_idle_capacity(p, sd, target); 7861 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7862 } 7863 } 7864 7865 sd = rcu_dereference(per_cpu(sd_llc, target)); 7866 if (!sd) 7867 return target; 7868 7869 if (sched_smt_active()) { 7870 has_idle_core = test_idle_cores(target); 7871 7872 if (!has_idle_core && cpus_share_cache(prev, target)) { 7873 i = select_idle_smt(p, sd, prev); 7874 if ((unsigned int)i < nr_cpumask_bits) 7875 return i; 7876 } 7877 } 7878 7879 i = select_idle_cpu(p, sd, has_idle_core, target); 7880 if ((unsigned)i < nr_cpumask_bits) 7881 return i; 7882 7883 /* 7884 * For cluster machines which have lower sharing cache like L2 or 7885 * LLC Tag, we tend to find an idle CPU in the target's cluster 7886 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7887 * use them if possible when no idle CPU found in select_idle_cpu(). 7888 */ 7889 if ((unsigned int)prev_aff < nr_cpumask_bits) 7890 return prev_aff; 7891 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7892 return recent_used_cpu; 7893 7894 return target; 7895 } 7896 7897 /** 7898 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7899 * @cpu: the CPU to get the utilization for 7900 * @p: task for which the CPU utilization should be predicted or NULL 7901 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7902 * @boost: 1 to enable boosting, otherwise 0 7903 * 7904 * The unit of the return value must be the same as the one of CPU capacity 7905 * so that CPU utilization can be compared with CPU capacity. 7906 * 7907 * CPU utilization is the sum of running time of runnable tasks plus the 7908 * recent utilization of currently non-runnable tasks on that CPU. 7909 * It represents the amount of CPU capacity currently used by CFS tasks in 7910 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7911 * capacity at f_max. 7912 * 7913 * The estimated CPU utilization is defined as the maximum between CPU 7914 * utilization and sum of the estimated utilization of the currently 7915 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7916 * previously-executed tasks, which helps better deduce how busy a CPU will 7917 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7918 * of such a task would be significantly decayed at this point of time. 7919 * 7920 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7921 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7922 * utilization. Boosting is implemented in cpu_util() so that internal 7923 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7924 * latter via cpu_util_cfs_boost(). 7925 * 7926 * CPU utilization can be higher than the current CPU capacity 7927 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7928 * of rounding errors as well as task migrations or wakeups of new tasks. 7929 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7930 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7931 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7932 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7933 * though since this is useful for predicting the CPU capacity required 7934 * after task migrations (scheduler-driven DVFS). 7935 * 7936 * Return: (Boosted) (estimated) utilization for the specified CPU. 7937 */ 7938 static unsigned long 7939 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7940 { 7941 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7942 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7943 unsigned long runnable; 7944 7945 if (boost) { 7946 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7947 util = max(util, runnable); 7948 } 7949 7950 /* 7951 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7952 * contribution. If @p migrates from another CPU to @cpu add its 7953 * contribution. In all the other cases @cpu is not impacted by the 7954 * migration so its util_avg is already correct. 7955 */ 7956 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7957 lsub_positive(&util, task_util(p)); 7958 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7959 util += task_util(p); 7960 7961 if (sched_feat(UTIL_EST)) { 7962 unsigned long util_est; 7963 7964 util_est = READ_ONCE(cfs_rq->avg.util_est); 7965 7966 /* 7967 * During wake-up @p isn't enqueued yet and doesn't contribute 7968 * to any cpu_rq(cpu)->cfs.avg.util_est. 7969 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7970 * has been enqueued. 7971 * 7972 * During exec (@dst_cpu = -1) @p is enqueued and does 7973 * contribute to cpu_rq(cpu)->cfs.util_est. 7974 * Remove it to "simulate" cpu_util without @p's contribution. 7975 * 7976 * Despite the task_on_rq_queued(@p) check there is still a 7977 * small window for a possible race when an exec 7978 * select_task_rq_fair() races with LB's detach_task(). 7979 * 7980 * detach_task() 7981 * deactivate_task() 7982 * p->on_rq = TASK_ON_RQ_MIGRATING; 7983 * -------------------------------- A 7984 * dequeue_task() \ 7985 * dequeue_task_fair() + Race Time 7986 * util_est_dequeue() / 7987 * -------------------------------- B 7988 * 7989 * The additional check "current == p" is required to further 7990 * reduce the race window. 7991 */ 7992 if (dst_cpu == cpu) 7993 util_est += _task_util_est(p); 7994 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7995 lsub_positive(&util_est, _task_util_est(p)); 7996 7997 util = max(util, util_est); 7998 } 7999 8000 return min(util, arch_scale_cpu_capacity(cpu)); 8001 } 8002 8003 unsigned long cpu_util_cfs(int cpu) 8004 { 8005 return cpu_util(cpu, NULL, -1, 0); 8006 } 8007 8008 unsigned long cpu_util_cfs_boost(int cpu) 8009 { 8010 return cpu_util(cpu, NULL, -1, 1); 8011 } 8012 8013 /* 8014 * cpu_util_without: compute cpu utilization without any contributions from *p 8015 * @cpu: the CPU which utilization is requested 8016 * @p: the task which utilization should be discounted 8017 * 8018 * The utilization of a CPU is defined by the utilization of tasks currently 8019 * enqueued on that CPU as well as tasks which are currently sleeping after an 8020 * execution on that CPU. 8021 * 8022 * This method returns the utilization of the specified CPU by discounting the 8023 * utilization of the specified task, whenever the task is currently 8024 * contributing to the CPU utilization. 8025 */ 8026 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8027 { 8028 /* Task has no contribution or is new */ 8029 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8030 p = NULL; 8031 8032 return cpu_util(cpu, p, -1, 0); 8033 } 8034 8035 /* 8036 * This function computes an effective utilization for the given CPU, to be 8037 * used for frequency selection given the linear relation: f = u * f_max. 8038 * 8039 * The scheduler tracks the following metrics: 8040 * 8041 * cpu_util_{cfs,rt,dl,irq}() 8042 * cpu_bw_dl() 8043 * 8044 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8045 * synchronized windows and are thus directly comparable. 8046 * 8047 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8048 * which excludes things like IRQ and steal-time. These latter are then accrued 8049 * in the IRQ utilization. 8050 * 8051 * The DL bandwidth number OTOH is not a measured metric but a value computed 8052 * based on the task model parameters and gives the minimal utilization 8053 * required to meet deadlines. 8054 */ 8055 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8056 unsigned long *min, 8057 unsigned long *max) 8058 { 8059 unsigned long util, irq, scale; 8060 struct rq *rq = cpu_rq(cpu); 8061 8062 scale = arch_scale_cpu_capacity(cpu); 8063 8064 /* 8065 * Early check to see if IRQ/steal time saturates the CPU, can be 8066 * because of inaccuracies in how we track these -- see 8067 * update_irq_load_avg(). 8068 */ 8069 irq = cpu_util_irq(rq); 8070 if (unlikely(irq >= scale)) { 8071 if (min) 8072 *min = scale; 8073 if (max) 8074 *max = scale; 8075 return scale; 8076 } 8077 8078 if (min) { 8079 /* 8080 * The minimum utilization returns the highest level between: 8081 * - the computed DL bandwidth needed with the IRQ pressure which 8082 * steals time to the deadline task. 8083 * - The minimum performance requirement for CFS and/or RT. 8084 */ 8085 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8086 8087 /* 8088 * When an RT task is runnable and uclamp is not used, we must 8089 * ensure that the task will run at maximum compute capacity. 8090 */ 8091 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8092 *min = max(*min, scale); 8093 } 8094 8095 /* 8096 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8097 * CFS tasks and we use the same metric to track the effective 8098 * utilization (PELT windows are synchronized) we can directly add them 8099 * to obtain the CPU's actual utilization. 8100 */ 8101 util = util_cfs + cpu_util_rt(rq); 8102 util += cpu_util_dl(rq); 8103 8104 /* 8105 * The maximum hint is a soft bandwidth requirement, which can be lower 8106 * than the actual utilization because of uclamp_max requirements. 8107 */ 8108 if (max) 8109 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8110 8111 if (util >= scale) 8112 return scale; 8113 8114 /* 8115 * There is still idle time; further improve the number by using the 8116 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8117 * need to scale the task numbers: 8118 * 8119 * max - irq 8120 * U' = irq + --------- * U 8121 * max 8122 */ 8123 util = scale_irq_capacity(util, irq, scale); 8124 util += irq; 8125 8126 return min(scale, util); 8127 } 8128 8129 unsigned long sched_cpu_util(int cpu) 8130 { 8131 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8132 } 8133 8134 /* 8135 * energy_env - Utilization landscape for energy estimation. 8136 * @task_busy_time: Utilization contribution by the task for which we test the 8137 * placement. Given by eenv_task_busy_time(). 8138 * @pd_busy_time: Utilization of the whole perf domain without the task 8139 * contribution. Given by eenv_pd_busy_time(). 8140 * @cpu_cap: Maximum CPU capacity for the perf domain. 8141 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8142 */ 8143 struct energy_env { 8144 unsigned long task_busy_time; 8145 unsigned long pd_busy_time; 8146 unsigned long cpu_cap; 8147 unsigned long pd_cap; 8148 }; 8149 8150 /* 8151 * Compute the task busy time for compute_energy(). This time cannot be 8152 * injected directly into effective_cpu_util() because of the IRQ scaling. 8153 * The latter only makes sense with the most recent CPUs where the task has 8154 * run. 8155 */ 8156 static inline void eenv_task_busy_time(struct energy_env *eenv, 8157 struct task_struct *p, int prev_cpu) 8158 { 8159 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8160 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8161 8162 if (unlikely(irq >= max_cap)) 8163 busy_time = max_cap; 8164 else 8165 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8166 8167 eenv->task_busy_time = busy_time; 8168 } 8169 8170 /* 8171 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8172 * utilization for each @pd_cpus, it however doesn't take into account 8173 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8174 * scale the EM reported power consumption at the (eventually clamped) 8175 * cpu_capacity. 8176 * 8177 * The contribution of the task @p for which we want to estimate the 8178 * energy cost is removed (by cpu_util()) and must be calculated 8179 * separately (see eenv_task_busy_time). This ensures: 8180 * 8181 * - A stable PD utilization, no matter which CPU of that PD we want to place 8182 * the task on. 8183 * 8184 * - A fair comparison between CPUs as the task contribution (task_util()) 8185 * will always be the same no matter which CPU utilization we rely on 8186 * (util_avg or util_est). 8187 * 8188 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8189 * exceed @eenv->pd_cap. 8190 */ 8191 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8192 struct cpumask *pd_cpus, 8193 struct task_struct *p) 8194 { 8195 unsigned long busy_time = 0; 8196 int cpu; 8197 8198 for_each_cpu(cpu, pd_cpus) { 8199 unsigned long util = cpu_util(cpu, p, -1, 0); 8200 8201 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8202 } 8203 8204 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8205 } 8206 8207 /* 8208 * Compute the maximum utilization for compute_energy() when the task @p 8209 * is placed on the cpu @dst_cpu. 8210 * 8211 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8212 * exceed @eenv->cpu_cap. 8213 */ 8214 static inline unsigned long 8215 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8216 struct task_struct *p, int dst_cpu) 8217 { 8218 unsigned long max_util = 0; 8219 int cpu; 8220 8221 for_each_cpu(cpu, pd_cpus) { 8222 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8223 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8224 unsigned long eff_util, min, max; 8225 8226 /* 8227 * Performance domain frequency: utilization clamping 8228 * must be considered since it affects the selection 8229 * of the performance domain frequency. 8230 * NOTE: in case RT tasks are running, by default the min 8231 * utilization can be max OPP. 8232 */ 8233 eff_util = effective_cpu_util(cpu, util, &min, &max); 8234 8235 /* Task's uclamp can modify min and max value */ 8236 if (tsk && uclamp_is_used()) { 8237 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8238 8239 /* 8240 * If there is no active max uclamp constraint, 8241 * directly use task's one, otherwise keep max. 8242 */ 8243 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8244 max = uclamp_eff_value(p, UCLAMP_MAX); 8245 else 8246 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8247 } 8248 8249 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8250 max_util = max(max_util, eff_util); 8251 } 8252 8253 return min(max_util, eenv->cpu_cap); 8254 } 8255 8256 /* 8257 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8258 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8259 * contribution is ignored. 8260 */ 8261 static inline unsigned long 8262 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8263 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8264 { 8265 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8266 unsigned long busy_time = eenv->pd_busy_time; 8267 unsigned long energy; 8268 8269 if (dst_cpu >= 0) 8270 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8271 8272 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8273 8274 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8275 8276 return energy; 8277 } 8278 8279 /* 8280 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8281 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8282 * spare capacity in each performance domain and uses it as a potential 8283 * candidate to execute the task. Then, it uses the Energy Model to figure 8284 * out which of the CPU candidates is the most energy-efficient. 8285 * 8286 * The rationale for this heuristic is as follows. In a performance domain, 8287 * all the most energy efficient CPU candidates (according to the Energy 8288 * Model) are those for which we'll request a low frequency. When there are 8289 * several CPUs for which the frequency request will be the same, we don't 8290 * have enough data to break the tie between them, because the Energy Model 8291 * only includes active power costs. With this model, if we assume that 8292 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8293 * the maximum spare capacity in a performance domain is guaranteed to be among 8294 * the best candidates of the performance domain. 8295 * 8296 * In practice, it could be preferable from an energy standpoint to pack 8297 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8298 * but that could also hurt our chances to go cluster idle, and we have no 8299 * ways to tell with the current Energy Model if this is actually a good 8300 * idea or not. So, find_energy_efficient_cpu() basically favors 8301 * cluster-packing, and spreading inside a cluster. That should at least be 8302 * a good thing for latency, and this is consistent with the idea that most 8303 * of the energy savings of EAS come from the asymmetry of the system, and 8304 * not so much from breaking the tie between identical CPUs. That's also the 8305 * reason why EAS is enabled in the topology code only for systems where 8306 * SD_ASYM_CPUCAPACITY is set. 8307 * 8308 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8309 * they don't have any useful utilization data yet and it's not possible to 8310 * forecast their impact on energy consumption. Consequently, they will be 8311 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8312 * to be energy-inefficient in some use-cases. The alternative would be to 8313 * bias new tasks towards specific types of CPUs first, or to try to infer 8314 * their util_avg from the parent task, but those heuristics could hurt 8315 * other use-cases too. So, until someone finds a better way to solve this, 8316 * let's keep things simple by re-using the existing slow path. 8317 */ 8318 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8319 { 8320 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8321 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8322 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8323 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8324 struct root_domain *rd = this_rq()->rd; 8325 int cpu, best_energy_cpu, target = -1; 8326 int prev_fits = -1, best_fits = -1; 8327 unsigned long best_actual_cap = 0; 8328 unsigned long prev_actual_cap = 0; 8329 struct sched_domain *sd; 8330 struct perf_domain *pd; 8331 struct energy_env eenv; 8332 8333 rcu_read_lock(); 8334 pd = rcu_dereference(rd->pd); 8335 if (!pd) 8336 goto unlock; 8337 8338 /* 8339 * Energy-aware wake-up happens on the lowest sched_domain starting 8340 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8341 */ 8342 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8343 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8344 sd = sd->parent; 8345 if (!sd) 8346 goto unlock; 8347 8348 target = prev_cpu; 8349 8350 sync_entity_load_avg(&p->se); 8351 if (!task_util_est(p) && p_util_min == 0) 8352 goto unlock; 8353 8354 eenv_task_busy_time(&eenv, p, prev_cpu); 8355 8356 for (; pd; pd = pd->next) { 8357 unsigned long util_min = p_util_min, util_max = p_util_max; 8358 unsigned long cpu_cap, cpu_actual_cap, util; 8359 long prev_spare_cap = -1, max_spare_cap = -1; 8360 unsigned long rq_util_min, rq_util_max; 8361 unsigned long cur_delta, base_energy; 8362 int max_spare_cap_cpu = -1; 8363 int fits, max_fits = -1; 8364 8365 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8366 8367 if (cpumask_empty(cpus)) 8368 continue; 8369 8370 /* Account external pressure for the energy estimation */ 8371 cpu = cpumask_first(cpus); 8372 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8373 8374 eenv.cpu_cap = cpu_actual_cap; 8375 eenv.pd_cap = 0; 8376 8377 for_each_cpu(cpu, cpus) { 8378 struct rq *rq = cpu_rq(cpu); 8379 8380 eenv.pd_cap += cpu_actual_cap; 8381 8382 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8383 continue; 8384 8385 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8386 continue; 8387 8388 util = cpu_util(cpu, p, cpu, 0); 8389 cpu_cap = capacity_of(cpu); 8390 8391 /* 8392 * Skip CPUs that cannot satisfy the capacity request. 8393 * IOW, placing the task there would make the CPU 8394 * overutilized. Take uclamp into account to see how 8395 * much capacity we can get out of the CPU; this is 8396 * aligned with sched_cpu_util(). 8397 */ 8398 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8399 /* 8400 * Open code uclamp_rq_util_with() except for 8401 * the clamp() part. I.e.: apply max aggregation 8402 * only. util_fits_cpu() logic requires to 8403 * operate on non clamped util but must use the 8404 * max-aggregated uclamp_{min, max}. 8405 */ 8406 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8407 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8408 8409 util_min = max(rq_util_min, p_util_min); 8410 util_max = max(rq_util_max, p_util_max); 8411 } 8412 8413 fits = util_fits_cpu(util, util_min, util_max, cpu); 8414 if (!fits) 8415 continue; 8416 8417 lsub_positive(&cpu_cap, util); 8418 8419 if (cpu == prev_cpu) { 8420 /* Always use prev_cpu as a candidate. */ 8421 prev_spare_cap = cpu_cap; 8422 prev_fits = fits; 8423 } else if ((fits > max_fits) || 8424 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8425 /* 8426 * Find the CPU with the maximum spare capacity 8427 * among the remaining CPUs in the performance 8428 * domain. 8429 */ 8430 max_spare_cap = cpu_cap; 8431 max_spare_cap_cpu = cpu; 8432 max_fits = fits; 8433 } 8434 } 8435 8436 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8437 continue; 8438 8439 eenv_pd_busy_time(&eenv, cpus, p); 8440 /* Compute the 'base' energy of the pd, without @p */ 8441 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8442 8443 /* Evaluate the energy impact of using prev_cpu. */ 8444 if (prev_spare_cap > -1) { 8445 prev_delta = compute_energy(&eenv, pd, cpus, p, 8446 prev_cpu); 8447 /* CPU utilization has changed */ 8448 if (prev_delta < base_energy) 8449 goto unlock; 8450 prev_delta -= base_energy; 8451 prev_actual_cap = cpu_actual_cap; 8452 best_delta = min(best_delta, prev_delta); 8453 } 8454 8455 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8456 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8457 /* Current best energy cpu fits better */ 8458 if (max_fits < best_fits) 8459 continue; 8460 8461 /* 8462 * Both don't fit performance hint (i.e. uclamp_min) 8463 * but best energy cpu has better capacity. 8464 */ 8465 if ((max_fits < 0) && 8466 (cpu_actual_cap <= best_actual_cap)) 8467 continue; 8468 8469 cur_delta = compute_energy(&eenv, pd, cpus, p, 8470 max_spare_cap_cpu); 8471 /* CPU utilization has changed */ 8472 if (cur_delta < base_energy) 8473 goto unlock; 8474 cur_delta -= base_energy; 8475 8476 /* 8477 * Both fit for the task but best energy cpu has lower 8478 * energy impact. 8479 */ 8480 if ((max_fits > 0) && (best_fits > 0) && 8481 (cur_delta >= best_delta)) 8482 continue; 8483 8484 best_delta = cur_delta; 8485 best_energy_cpu = max_spare_cap_cpu; 8486 best_fits = max_fits; 8487 best_actual_cap = cpu_actual_cap; 8488 } 8489 } 8490 rcu_read_unlock(); 8491 8492 if ((best_fits > prev_fits) || 8493 ((best_fits > 0) && (best_delta < prev_delta)) || 8494 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8495 target = best_energy_cpu; 8496 8497 return target; 8498 8499 unlock: 8500 rcu_read_unlock(); 8501 8502 return target; 8503 } 8504 8505 /* 8506 * select_task_rq_fair: Select target runqueue for the waking task in domains 8507 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8508 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8509 * 8510 * Balances load by selecting the idlest CPU in the idlest group, or under 8511 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8512 * 8513 * Returns the target CPU number. 8514 */ 8515 static int 8516 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8517 { 8518 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8519 struct sched_domain *tmp, *sd = NULL; 8520 int cpu = smp_processor_id(); 8521 int new_cpu = prev_cpu; 8522 int want_affine = 0; 8523 /* SD_flags and WF_flags share the first nibble */ 8524 int sd_flag = wake_flags & 0xF; 8525 8526 /* 8527 * required for stable ->cpus_allowed 8528 */ 8529 lockdep_assert_held(&p->pi_lock); 8530 if (wake_flags & WF_TTWU) { 8531 record_wakee(p); 8532 8533 if ((wake_flags & WF_CURRENT_CPU) && 8534 cpumask_test_cpu(cpu, p->cpus_ptr)) 8535 return cpu; 8536 8537 if (!is_rd_overutilized(this_rq()->rd)) { 8538 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8539 if (new_cpu >= 0) 8540 return new_cpu; 8541 new_cpu = prev_cpu; 8542 } 8543 8544 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8545 } 8546 8547 rcu_read_lock(); 8548 for_each_domain(cpu, tmp) { 8549 /* 8550 * If both 'cpu' and 'prev_cpu' are part of this domain, 8551 * cpu is a valid SD_WAKE_AFFINE target. 8552 */ 8553 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8554 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8555 if (cpu != prev_cpu) 8556 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8557 8558 sd = NULL; /* Prefer wake_affine over balance flags */ 8559 break; 8560 } 8561 8562 /* 8563 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8564 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8565 * will usually go to the fast path. 8566 */ 8567 if (tmp->flags & sd_flag) 8568 sd = tmp; 8569 else if (!want_affine) 8570 break; 8571 } 8572 8573 if (unlikely(sd)) { 8574 /* Slow path */ 8575 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8576 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8577 /* Fast path */ 8578 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8579 } 8580 rcu_read_unlock(); 8581 8582 return new_cpu; 8583 } 8584 8585 /* 8586 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8587 * cfs_rq_of(p) references at time of call are still valid and identify the 8588 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8589 */ 8590 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8591 { 8592 struct sched_entity *se = &p->se; 8593 8594 if (!task_on_rq_migrating(p)) { 8595 remove_entity_load_avg(se); 8596 8597 /* 8598 * Here, the task's PELT values have been updated according to 8599 * the current rq's clock. But if that clock hasn't been 8600 * updated in a while, a substantial idle time will be missed, 8601 * leading to an inflation after wake-up on the new rq. 8602 * 8603 * Estimate the missing time from the cfs_rq last_update_time 8604 * and update sched_avg to improve the PELT continuity after 8605 * migration. 8606 */ 8607 migrate_se_pelt_lag(se); 8608 } 8609 8610 /* Tell new CPU we are migrated */ 8611 se->avg.last_update_time = 0; 8612 8613 update_scan_period(p, new_cpu); 8614 } 8615 8616 static void task_dead_fair(struct task_struct *p) 8617 { 8618 struct sched_entity *se = &p->se; 8619 8620 if (se->sched_delayed) { 8621 struct rq_flags rf; 8622 struct rq *rq; 8623 8624 rq = task_rq_lock(p, &rf); 8625 if (se->sched_delayed) { 8626 update_rq_clock(rq); 8627 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8628 } 8629 task_rq_unlock(rq, p, &rf); 8630 } 8631 8632 remove_entity_load_avg(se); 8633 } 8634 8635 /* 8636 * Set the max capacity the task is allowed to run at for misfit detection. 8637 */ 8638 static void set_task_max_allowed_capacity(struct task_struct *p) 8639 { 8640 struct asym_cap_data *entry; 8641 8642 if (!sched_asym_cpucap_active()) 8643 return; 8644 8645 rcu_read_lock(); 8646 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8647 cpumask_t *cpumask; 8648 8649 cpumask = cpu_capacity_span(entry); 8650 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8651 continue; 8652 8653 p->max_allowed_capacity = entry->capacity; 8654 break; 8655 } 8656 rcu_read_unlock(); 8657 } 8658 8659 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8660 { 8661 set_cpus_allowed_common(p, ctx); 8662 set_task_max_allowed_capacity(p); 8663 } 8664 8665 static void set_next_buddy(struct sched_entity *se) 8666 { 8667 for_each_sched_entity(se) { 8668 if (WARN_ON_ONCE(!se->on_rq)) 8669 return; 8670 if (se_is_idle(se)) 8671 return; 8672 cfs_rq_of(se)->next = se; 8673 } 8674 } 8675 8676 enum preempt_wakeup_action { 8677 PREEMPT_WAKEUP_NONE, /* No preemption. */ 8678 PREEMPT_WAKEUP_SHORT, /* Ignore slice protection. */ 8679 PREEMPT_WAKEUP_PICK, /* Let __pick_eevdf() decide. */ 8680 PREEMPT_WAKEUP_RESCHED, /* Force reschedule. */ 8681 }; 8682 8683 static inline bool 8684 set_preempt_buddy(struct cfs_rq *cfs_rq, int wake_flags, 8685 struct sched_entity *pse, struct sched_entity *se) 8686 { 8687 /* 8688 * Keep existing buddy if the deadline is sooner than pse. 8689 * The older buddy may be cache cold and completely unrelated 8690 * to the current wakeup but that is unpredictable where as 8691 * obeying the deadline is more in line with EEVDF objectives. 8692 */ 8693 if (cfs_rq->next && entity_before(cfs_rq->next, pse)) 8694 return false; 8695 8696 set_next_buddy(pse); 8697 return true; 8698 } 8699 8700 /* 8701 * WF_SYNC|WF_TTWU indicates the waker expects to sleep but it is not 8702 * strictly enforced because the hint is either misunderstood or 8703 * multiple tasks must be woken up. 8704 */ 8705 static inline enum preempt_wakeup_action 8706 preempt_sync(struct rq *rq, int wake_flags, 8707 struct sched_entity *pse, struct sched_entity *se) 8708 { 8709 u64 threshold, delta; 8710 8711 /* 8712 * WF_SYNC without WF_TTWU is not expected so warn if it happens even 8713 * though it is likely harmless. 8714 */ 8715 WARN_ON_ONCE(!(wake_flags & WF_TTWU)); 8716 8717 threshold = sysctl_sched_migration_cost; 8718 delta = rq_clock_task(rq) - se->exec_start; 8719 if ((s64)delta < 0) 8720 delta = 0; 8721 8722 /* 8723 * WF_RQ_SELECTED implies the tasks are stacking on a CPU when they 8724 * could run on other CPUs. Reduce the threshold before preemption is 8725 * allowed to an arbitrary lower value as it is more likely (but not 8726 * guaranteed) the waker requires the wakee to finish. 8727 */ 8728 if (wake_flags & WF_RQ_SELECTED) 8729 threshold >>= 2; 8730 8731 /* 8732 * As WF_SYNC is not strictly obeyed, allow some runtime for batch 8733 * wakeups to be issued. 8734 */ 8735 if (entity_before(pse, se) && delta >= threshold) 8736 return PREEMPT_WAKEUP_RESCHED; 8737 8738 return PREEMPT_WAKEUP_NONE; 8739 } 8740 8741 /* 8742 * Preempt the current task with a newly woken task if needed: 8743 */ 8744 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8745 { 8746 enum preempt_wakeup_action preempt_action = PREEMPT_WAKEUP_PICK; 8747 struct task_struct *donor = rq->donor; 8748 struct sched_entity *se = &donor->se, *pse = &p->se; 8749 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8750 int cse_is_idle, pse_is_idle; 8751 8752 if (unlikely(se == pse)) 8753 return; 8754 8755 /* 8756 * This is possible from callers such as attach_tasks(), in which we 8757 * unconditionally wakeup_preempt() after an enqueue (which may have 8758 * lead to a throttle). This both saves work and prevents false 8759 * next-buddy nomination below. 8760 */ 8761 if (task_is_throttled(p)) 8762 return; 8763 8764 /* 8765 * We can come here with TIF_NEED_RESCHED already set from new task 8766 * wake up path. 8767 * 8768 * Note: this also catches the edge-case of curr being in a throttled 8769 * group (e.g. via set_curr_task), since update_curr() (in the 8770 * enqueue of curr) will have resulted in resched being set. This 8771 * prevents us from potentially nominating it as a false LAST_BUDDY 8772 * below. 8773 */ 8774 if (test_tsk_need_resched(rq->curr)) 8775 return; 8776 8777 if (!sched_feat(WAKEUP_PREEMPTION)) 8778 return; 8779 8780 find_matching_se(&se, &pse); 8781 WARN_ON_ONCE(!pse); 8782 8783 cse_is_idle = se_is_idle(se); 8784 pse_is_idle = se_is_idle(pse); 8785 8786 /* 8787 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8788 * in the inverse case). 8789 */ 8790 if (cse_is_idle && !pse_is_idle) { 8791 /* 8792 * When non-idle entity preempt an idle entity, 8793 * don't give idle entity slice protection. 8794 */ 8795 preempt_action = PREEMPT_WAKEUP_SHORT; 8796 goto preempt; 8797 } 8798 8799 if (cse_is_idle != pse_is_idle) 8800 return; 8801 8802 /* 8803 * BATCH and IDLE tasks do not preempt others. 8804 */ 8805 if (unlikely(!normal_policy(p->policy))) 8806 return; 8807 8808 cfs_rq = cfs_rq_of(se); 8809 update_curr(cfs_rq); 8810 /* 8811 * If @p has a shorter slice than current and @p is eligible, override 8812 * current's slice protection in order to allow preemption. 8813 */ 8814 if (sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice)) { 8815 preempt_action = PREEMPT_WAKEUP_SHORT; 8816 goto pick; 8817 } 8818 8819 /* 8820 * Ignore wakee preemption on WF_FORK as it is less likely that 8821 * there is shared data as exec often follow fork. Do not 8822 * preempt for tasks that are sched_delayed as it would violate 8823 * EEVDF to forcibly queue an ineligible task. 8824 */ 8825 if ((wake_flags & WF_FORK) || pse->sched_delayed) 8826 return; 8827 8828 /* 8829 * If @p potentially is completing work required by current then 8830 * consider preemption. 8831 * 8832 * Reschedule if waker is no longer eligible. */ 8833 if (in_task() && !entity_eligible(cfs_rq, se)) { 8834 preempt_action = PREEMPT_WAKEUP_RESCHED; 8835 goto preempt; 8836 } 8837 8838 /* Prefer picking wakee soon if appropriate. */ 8839 if (sched_feat(NEXT_BUDDY) && 8840 set_preempt_buddy(cfs_rq, wake_flags, pse, se)) { 8841 8842 /* 8843 * Decide whether to obey WF_SYNC hint for a new buddy. Old 8844 * buddies are ignored as they may not be relevant to the 8845 * waker and less likely to be cache hot. 8846 */ 8847 if (wake_flags & WF_SYNC) 8848 preempt_action = preempt_sync(rq, wake_flags, pse, se); 8849 } 8850 8851 switch (preempt_action) { 8852 case PREEMPT_WAKEUP_NONE: 8853 return; 8854 case PREEMPT_WAKEUP_RESCHED: 8855 goto preempt; 8856 case PREEMPT_WAKEUP_SHORT: 8857 fallthrough; 8858 case PREEMPT_WAKEUP_PICK: 8859 break; 8860 } 8861 8862 pick: 8863 /* 8864 * If @p has become the most eligible task, force preemption. 8865 */ 8866 if (__pick_eevdf(cfs_rq, preempt_action != PREEMPT_WAKEUP_SHORT) == pse) 8867 goto preempt; 8868 8869 if (sched_feat(RUN_TO_PARITY)) 8870 update_protect_slice(cfs_rq, se); 8871 8872 return; 8873 8874 preempt: 8875 if (preempt_action == PREEMPT_WAKEUP_SHORT) 8876 cancel_protect_slice(se); 8877 8878 resched_curr_lazy(rq); 8879 } 8880 8881 static struct task_struct *pick_task_fair(struct rq *rq, struct rq_flags *rf) 8882 { 8883 struct sched_entity *se; 8884 struct cfs_rq *cfs_rq; 8885 struct task_struct *p; 8886 bool throttled; 8887 8888 again: 8889 cfs_rq = &rq->cfs; 8890 if (!cfs_rq->nr_queued) 8891 return NULL; 8892 8893 throttled = false; 8894 8895 do { 8896 /* Might not have done put_prev_entity() */ 8897 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8898 update_curr(cfs_rq); 8899 8900 throttled |= check_cfs_rq_runtime(cfs_rq); 8901 8902 se = pick_next_entity(rq, cfs_rq); 8903 if (!se) 8904 goto again; 8905 cfs_rq = group_cfs_rq(se); 8906 } while (cfs_rq); 8907 8908 p = task_of(se); 8909 if (unlikely(throttled)) 8910 task_throttle_setup_work(p); 8911 return p; 8912 } 8913 8914 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8915 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8916 8917 struct task_struct * 8918 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8919 { 8920 struct sched_entity *se; 8921 struct task_struct *p; 8922 int new_tasks; 8923 8924 again: 8925 p = pick_task_fair(rq, rf); 8926 if (!p) 8927 goto idle; 8928 se = &p->se; 8929 8930 #ifdef CONFIG_FAIR_GROUP_SCHED 8931 if (prev->sched_class != &fair_sched_class) 8932 goto simple; 8933 8934 __put_prev_set_next_dl_server(rq, prev, p); 8935 8936 /* 8937 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8938 * likely that a next task is from the same cgroup as the current. 8939 * 8940 * Therefore attempt to avoid putting and setting the entire cgroup 8941 * hierarchy, only change the part that actually changes. 8942 * 8943 * Since we haven't yet done put_prev_entity and if the selected task 8944 * is a different task than we started out with, try and touch the 8945 * least amount of cfs_rqs. 8946 */ 8947 if (prev != p) { 8948 struct sched_entity *pse = &prev->se; 8949 struct cfs_rq *cfs_rq; 8950 8951 while (!(cfs_rq = is_same_group(se, pse))) { 8952 int se_depth = se->depth; 8953 int pse_depth = pse->depth; 8954 8955 if (se_depth <= pse_depth) { 8956 put_prev_entity(cfs_rq_of(pse), pse); 8957 pse = parent_entity(pse); 8958 } 8959 if (se_depth >= pse_depth) { 8960 set_next_entity(cfs_rq_of(se), se); 8961 se = parent_entity(se); 8962 } 8963 } 8964 8965 put_prev_entity(cfs_rq, pse); 8966 set_next_entity(cfs_rq, se); 8967 8968 __set_next_task_fair(rq, p, true); 8969 } 8970 8971 return p; 8972 8973 simple: 8974 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8975 put_prev_set_next_task(rq, prev, p); 8976 return p; 8977 8978 idle: 8979 if (rf) { 8980 new_tasks = sched_balance_newidle(rq, rf); 8981 8982 /* 8983 * Because sched_balance_newidle() releases (and re-acquires) 8984 * rq->lock, it is possible for any higher priority task to 8985 * appear. In that case we must re-start the pick_next_entity() 8986 * loop. 8987 */ 8988 if (new_tasks < 0) 8989 return RETRY_TASK; 8990 8991 if (new_tasks > 0) 8992 goto again; 8993 } 8994 8995 /* 8996 * rq is about to be idle, check if we need to update the 8997 * lost_idle_time of clock_pelt 8998 */ 8999 update_idle_rq_clock_pelt(rq); 9000 9001 return NULL; 9002 } 9003 9004 static struct task_struct * 9005 fair_server_pick_task(struct sched_dl_entity *dl_se, struct rq_flags *rf) 9006 { 9007 return pick_task_fair(dl_se->rq, rf); 9008 } 9009 9010 void fair_server_init(struct rq *rq) 9011 { 9012 struct sched_dl_entity *dl_se = &rq->fair_server; 9013 9014 init_dl_entity(dl_se); 9015 9016 dl_server_init(dl_se, rq, fair_server_pick_task); 9017 } 9018 9019 /* 9020 * Account for a descheduled task: 9021 */ 9022 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 9023 { 9024 struct sched_entity *se = &prev->se; 9025 struct cfs_rq *cfs_rq; 9026 9027 for_each_sched_entity(se) { 9028 cfs_rq = cfs_rq_of(se); 9029 put_prev_entity(cfs_rq, se); 9030 } 9031 } 9032 9033 /* 9034 * sched_yield() is very simple 9035 */ 9036 static void yield_task_fair(struct rq *rq) 9037 { 9038 struct task_struct *curr = rq->donor; 9039 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9040 struct sched_entity *se = &curr->se; 9041 9042 /* 9043 * Are we the only task in the tree? 9044 */ 9045 if (unlikely(rq->nr_running == 1)) 9046 return; 9047 9048 clear_buddies(cfs_rq, se); 9049 9050 update_rq_clock(rq); 9051 /* 9052 * Update run-time statistics of the 'current'. 9053 */ 9054 update_curr(cfs_rq); 9055 /* 9056 * Tell update_rq_clock() that we've just updated, 9057 * so we don't do microscopic update in schedule() 9058 * and double the fastpath cost. 9059 */ 9060 rq_clock_skip_update(rq); 9061 9062 /* 9063 * Forfeit the remaining vruntime, only if the entity is eligible. This 9064 * condition is necessary because in core scheduling we prefer to run 9065 * ineligible tasks rather than force idling. If this happens we may 9066 * end up in a loop where the core scheduler picks the yielding task, 9067 * which yields immediately again; without the condition the vruntime 9068 * ends up quickly running away. 9069 */ 9070 if (entity_eligible(cfs_rq, se)) { 9071 se->vruntime = se->deadline; 9072 se->deadline += calc_delta_fair(se->slice, se); 9073 } 9074 } 9075 9076 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9077 { 9078 struct sched_entity *se = &p->se; 9079 9080 /* !se->on_rq also covers throttled task */ 9081 if (!se->on_rq) 9082 return false; 9083 9084 /* Tell the scheduler that we'd really like se to run next. */ 9085 set_next_buddy(se); 9086 9087 yield_task_fair(rq); 9088 9089 return true; 9090 } 9091 9092 /************************************************** 9093 * Fair scheduling class load-balancing methods. 9094 * 9095 * BASICS 9096 * 9097 * The purpose of load-balancing is to achieve the same basic fairness the 9098 * per-CPU scheduler provides, namely provide a proportional amount of compute 9099 * time to each task. This is expressed in the following equation: 9100 * 9101 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9102 * 9103 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9104 * W_i,0 is defined as: 9105 * 9106 * W_i,0 = \Sum_j w_i,j (2) 9107 * 9108 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9109 * is derived from the nice value as per sched_prio_to_weight[]. 9110 * 9111 * The weight average is an exponential decay average of the instantaneous 9112 * weight: 9113 * 9114 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9115 * 9116 * C_i is the compute capacity of CPU i, typically it is the 9117 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9118 * can also include other factors [XXX]. 9119 * 9120 * To achieve this balance we define a measure of imbalance which follows 9121 * directly from (1): 9122 * 9123 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9124 * 9125 * We them move tasks around to minimize the imbalance. In the continuous 9126 * function space it is obvious this converges, in the discrete case we get 9127 * a few fun cases generally called infeasible weight scenarios. 9128 * 9129 * [XXX expand on: 9130 * - infeasible weights; 9131 * - local vs global optima in the discrete case. ] 9132 * 9133 * 9134 * SCHED DOMAINS 9135 * 9136 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9137 * for all i,j solution, we create a tree of CPUs that follows the hardware 9138 * topology where each level pairs two lower groups (or better). This results 9139 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9140 * tree to only the first of the previous level and we decrease the frequency 9141 * of load-balance at each level inversely proportional to the number of CPUs in 9142 * the groups. 9143 * 9144 * This yields: 9145 * 9146 * log_2 n 1 n 9147 * \Sum { --- * --- * 2^i } = O(n) (5) 9148 * i = 0 2^i 2^i 9149 * `- size of each group 9150 * | | `- number of CPUs doing load-balance 9151 * | `- freq 9152 * `- sum over all levels 9153 * 9154 * Coupled with a limit on how many tasks we can migrate every balance pass, 9155 * this makes (5) the runtime complexity of the balancer. 9156 * 9157 * An important property here is that each CPU is still (indirectly) connected 9158 * to every other CPU in at most O(log n) steps: 9159 * 9160 * The adjacency matrix of the resulting graph is given by: 9161 * 9162 * log_2 n 9163 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9164 * k = 0 9165 * 9166 * And you'll find that: 9167 * 9168 * A^(log_2 n)_i,j != 0 for all i,j (7) 9169 * 9170 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9171 * The task movement gives a factor of O(m), giving a convergence complexity 9172 * of: 9173 * 9174 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9175 * 9176 * 9177 * WORK CONSERVING 9178 * 9179 * In order to avoid CPUs going idle while there's still work to do, new idle 9180 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9181 * tree itself instead of relying on other CPUs to bring it work. 9182 * 9183 * This adds some complexity to both (5) and (8) but it reduces the total idle 9184 * time. 9185 * 9186 * [XXX more?] 9187 * 9188 * 9189 * CGROUPS 9190 * 9191 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9192 * 9193 * s_k,i 9194 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9195 * S_k 9196 * 9197 * Where 9198 * 9199 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9200 * 9201 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9202 * 9203 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9204 * property. 9205 * 9206 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9207 * rewrite all of this once again.] 9208 */ 9209 9210 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9211 9212 enum fbq_type { regular, remote, all }; 9213 9214 /* 9215 * 'group_type' describes the group of CPUs at the moment of load balancing. 9216 * 9217 * The enum is ordered by pulling priority, with the group with lowest priority 9218 * first so the group_type can simply be compared when selecting the busiest 9219 * group. See update_sd_pick_busiest(). 9220 */ 9221 enum group_type { 9222 /* The group has spare capacity that can be used to run more tasks. */ 9223 group_has_spare = 0, 9224 /* 9225 * The group is fully used and the tasks don't compete for more CPU 9226 * cycles. Nevertheless, some tasks might wait before running. 9227 */ 9228 group_fully_busy, 9229 /* 9230 * One task doesn't fit with CPU's capacity and must be migrated to a 9231 * more powerful CPU. 9232 */ 9233 group_misfit_task, 9234 /* 9235 * Balance SMT group that's fully busy. Can benefit from migration 9236 * a task on SMT with busy sibling to another CPU on idle core. 9237 */ 9238 group_smt_balance, 9239 /* 9240 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9241 * and the task should be migrated to it instead of running on the 9242 * current CPU. 9243 */ 9244 group_asym_packing, 9245 /* 9246 * The tasks' affinity constraints previously prevented the scheduler 9247 * from balancing the load across the system. 9248 */ 9249 group_imbalanced, 9250 /* 9251 * The CPU is overloaded and can't provide expected CPU cycles to all 9252 * tasks. 9253 */ 9254 group_overloaded 9255 }; 9256 9257 enum migration_type { 9258 migrate_load = 0, 9259 migrate_util, 9260 migrate_task, 9261 migrate_misfit 9262 }; 9263 9264 #define LBF_ALL_PINNED 0x01 9265 #define LBF_NEED_BREAK 0x02 9266 #define LBF_DST_PINNED 0x04 9267 #define LBF_SOME_PINNED 0x08 9268 #define LBF_ACTIVE_LB 0x10 9269 9270 struct lb_env { 9271 struct sched_domain *sd; 9272 9273 struct rq *src_rq; 9274 int src_cpu; 9275 9276 int dst_cpu; 9277 struct rq *dst_rq; 9278 9279 struct cpumask *dst_grpmask; 9280 int new_dst_cpu; 9281 enum cpu_idle_type idle; 9282 long imbalance; 9283 /* The set of CPUs under consideration for load-balancing */ 9284 struct cpumask *cpus; 9285 9286 unsigned int flags; 9287 9288 unsigned int loop; 9289 unsigned int loop_break; 9290 unsigned int loop_max; 9291 9292 enum fbq_type fbq_type; 9293 enum migration_type migration_type; 9294 struct list_head tasks; 9295 }; 9296 9297 /* 9298 * Is this task likely cache-hot: 9299 */ 9300 static int task_hot(struct task_struct *p, struct lb_env *env) 9301 { 9302 s64 delta; 9303 9304 lockdep_assert_rq_held(env->src_rq); 9305 9306 if (p->sched_class != &fair_sched_class) 9307 return 0; 9308 9309 if (unlikely(task_has_idle_policy(p))) 9310 return 0; 9311 9312 /* SMT siblings share cache */ 9313 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9314 return 0; 9315 9316 /* 9317 * Buddy candidates are cache hot: 9318 */ 9319 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9320 (&p->se == cfs_rq_of(&p->se)->next)) 9321 return 1; 9322 9323 if (sysctl_sched_migration_cost == -1) 9324 return 1; 9325 9326 /* 9327 * Don't migrate task if the task's cookie does not match 9328 * with the destination CPU's core cookie. 9329 */ 9330 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9331 return 1; 9332 9333 if (sysctl_sched_migration_cost == 0) 9334 return 0; 9335 9336 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9337 9338 return delta < (s64)sysctl_sched_migration_cost; 9339 } 9340 9341 #ifdef CONFIG_NUMA_BALANCING 9342 /* 9343 * Returns a positive value, if task migration degrades locality. 9344 * Returns 0, if task migration is not affected by locality. 9345 * Returns a negative value, if task migration improves locality i.e migration preferred. 9346 */ 9347 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9348 { 9349 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9350 unsigned long src_weight, dst_weight; 9351 int src_nid, dst_nid, dist; 9352 9353 if (!static_branch_likely(&sched_numa_balancing)) 9354 return 0; 9355 9356 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9357 return 0; 9358 9359 src_nid = cpu_to_node(env->src_cpu); 9360 dst_nid = cpu_to_node(env->dst_cpu); 9361 9362 if (src_nid == dst_nid) 9363 return 0; 9364 9365 /* Migrating away from the preferred node is always bad. */ 9366 if (src_nid == p->numa_preferred_nid) { 9367 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9368 return 1; 9369 else 9370 return 0; 9371 } 9372 9373 /* Encourage migration to the preferred node. */ 9374 if (dst_nid == p->numa_preferred_nid) 9375 return -1; 9376 9377 /* Leaving a core idle is often worse than degrading locality. */ 9378 if (env->idle == CPU_IDLE) 9379 return 0; 9380 9381 dist = node_distance(src_nid, dst_nid); 9382 if (numa_group) { 9383 src_weight = group_weight(p, src_nid, dist); 9384 dst_weight = group_weight(p, dst_nid, dist); 9385 } else { 9386 src_weight = task_weight(p, src_nid, dist); 9387 dst_weight = task_weight(p, dst_nid, dist); 9388 } 9389 9390 return src_weight - dst_weight; 9391 } 9392 9393 #else /* !CONFIG_NUMA_BALANCING: */ 9394 static inline long migrate_degrades_locality(struct task_struct *p, 9395 struct lb_env *env) 9396 { 9397 return 0; 9398 } 9399 #endif /* !CONFIG_NUMA_BALANCING */ 9400 9401 /* 9402 * Check whether the task is ineligible on the destination cpu 9403 * 9404 * When the PLACE_LAG scheduling feature is enabled and 9405 * dst_cfs_rq->nr_queued is greater than 1, if the task 9406 * is ineligible, it will also be ineligible when 9407 * it is migrated to the destination cpu. 9408 */ 9409 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9410 { 9411 struct cfs_rq *dst_cfs_rq; 9412 9413 #ifdef CONFIG_FAIR_GROUP_SCHED 9414 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9415 #else 9416 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9417 #endif 9418 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9419 !entity_eligible(task_cfs_rq(p), &p->se)) 9420 return 1; 9421 9422 return 0; 9423 } 9424 9425 /* 9426 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9427 */ 9428 static 9429 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9430 { 9431 long degrades, hot; 9432 9433 lockdep_assert_rq_held(env->src_rq); 9434 if (p->sched_task_hot) 9435 p->sched_task_hot = 0; 9436 9437 /* 9438 * We do not migrate tasks that are: 9439 * 1) delayed dequeued unless we migrate load, or 9440 * 2) target cfs_rq is in throttled hierarchy, or 9441 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9442 * 4) running (obviously), or 9443 * 5) are cache-hot on their current CPU, or 9444 * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled) 9445 */ 9446 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9447 return 0; 9448 9449 if (lb_throttled_hierarchy(p, env->dst_cpu)) 9450 return 0; 9451 9452 /* 9453 * We want to prioritize the migration of eligible tasks. 9454 * For ineligible tasks we soft-limit them and only allow 9455 * them to migrate when nr_balance_failed is non-zero to 9456 * avoid load-balancing trying very hard to balance the load. 9457 */ 9458 if (!env->sd->nr_balance_failed && 9459 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9460 return 0; 9461 9462 /* Disregard percpu kthreads; they are where they need to be. */ 9463 if (kthread_is_per_cpu(p)) 9464 return 0; 9465 9466 if (task_is_blocked(p)) 9467 return 0; 9468 9469 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9470 int cpu; 9471 9472 schedstat_inc(p->stats.nr_failed_migrations_affine); 9473 9474 env->flags |= LBF_SOME_PINNED; 9475 9476 /* 9477 * Remember if this task can be migrated to any other CPU in 9478 * our sched_group. We may want to revisit it if we couldn't 9479 * meet load balance goals by pulling other tasks on src_cpu. 9480 * 9481 * Avoid computing new_dst_cpu 9482 * - for NEWLY_IDLE 9483 * - if we have already computed one in current iteration 9484 * - if it's an active balance 9485 */ 9486 if (env->idle == CPU_NEWLY_IDLE || 9487 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9488 return 0; 9489 9490 /* Prevent to re-select dst_cpu via env's CPUs: */ 9491 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9492 9493 if (cpu < nr_cpu_ids) { 9494 env->flags |= LBF_DST_PINNED; 9495 env->new_dst_cpu = cpu; 9496 } 9497 9498 return 0; 9499 } 9500 9501 /* Record that we found at least one task that could run on dst_cpu */ 9502 env->flags &= ~LBF_ALL_PINNED; 9503 9504 if (task_on_cpu(env->src_rq, p) || 9505 task_current_donor(env->src_rq, p)) { 9506 schedstat_inc(p->stats.nr_failed_migrations_running); 9507 return 0; 9508 } 9509 9510 /* 9511 * Aggressive migration if: 9512 * 1) active balance 9513 * 2) destination numa is preferred 9514 * 3) task is cache cold, or 9515 * 4) too many balance attempts have failed. 9516 */ 9517 if (env->flags & LBF_ACTIVE_LB) 9518 return 1; 9519 9520 degrades = migrate_degrades_locality(p, env); 9521 if (!degrades) 9522 hot = task_hot(p, env); 9523 else 9524 hot = degrades > 0; 9525 9526 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9527 if (hot) 9528 p->sched_task_hot = 1; 9529 return 1; 9530 } 9531 9532 schedstat_inc(p->stats.nr_failed_migrations_hot); 9533 return 0; 9534 } 9535 9536 /* 9537 * detach_task() -- detach the task for the migration specified in env 9538 */ 9539 static void detach_task(struct task_struct *p, struct lb_env *env) 9540 { 9541 lockdep_assert_rq_held(env->src_rq); 9542 9543 if (p->sched_task_hot) { 9544 p->sched_task_hot = 0; 9545 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9546 schedstat_inc(p->stats.nr_forced_migrations); 9547 } 9548 9549 WARN_ON(task_current(env->src_rq, p)); 9550 WARN_ON(task_current_donor(env->src_rq, p)); 9551 9552 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9553 set_task_cpu(p, env->dst_cpu); 9554 } 9555 9556 /* 9557 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9558 * part of active balancing operations within "domain". 9559 * 9560 * Returns a task if successful and NULL otherwise. 9561 */ 9562 static struct task_struct *detach_one_task(struct lb_env *env) 9563 { 9564 struct task_struct *p; 9565 9566 lockdep_assert_rq_held(env->src_rq); 9567 9568 list_for_each_entry_reverse(p, 9569 &env->src_rq->cfs_tasks, se.group_node) { 9570 if (!can_migrate_task(p, env)) 9571 continue; 9572 9573 detach_task(p, env); 9574 9575 /* 9576 * Right now, this is only the second place where 9577 * lb_gained[env->idle] is updated (other is detach_tasks) 9578 * so we can safely collect stats here rather than 9579 * inside detach_tasks(). 9580 */ 9581 schedstat_inc(env->sd->lb_gained[env->idle]); 9582 return p; 9583 } 9584 return NULL; 9585 } 9586 9587 /* 9588 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9589 * busiest_rq, as part of a balancing operation within domain "sd". 9590 * 9591 * Returns number of detached tasks if successful and 0 otherwise. 9592 */ 9593 static int detach_tasks(struct lb_env *env) 9594 { 9595 struct list_head *tasks = &env->src_rq->cfs_tasks; 9596 unsigned long util, load; 9597 struct task_struct *p; 9598 int detached = 0; 9599 9600 lockdep_assert_rq_held(env->src_rq); 9601 9602 /* 9603 * Source run queue has been emptied by another CPU, clear 9604 * LBF_ALL_PINNED flag as we will not test any task. 9605 */ 9606 if (env->src_rq->nr_running <= 1) { 9607 env->flags &= ~LBF_ALL_PINNED; 9608 return 0; 9609 } 9610 9611 if (env->imbalance <= 0) 9612 return 0; 9613 9614 while (!list_empty(tasks)) { 9615 /* 9616 * We don't want to steal all, otherwise we may be treated likewise, 9617 * which could at worst lead to a livelock crash. 9618 */ 9619 if (env->idle && env->src_rq->nr_running <= 1) 9620 break; 9621 9622 env->loop++; 9623 /* We've more or less seen every task there is, call it quits */ 9624 if (env->loop > env->loop_max) 9625 break; 9626 9627 /* take a breather every nr_migrate tasks */ 9628 if (env->loop > env->loop_break) { 9629 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9630 env->flags |= LBF_NEED_BREAK; 9631 break; 9632 } 9633 9634 p = list_last_entry(tasks, struct task_struct, se.group_node); 9635 9636 if (!can_migrate_task(p, env)) 9637 goto next; 9638 9639 switch (env->migration_type) { 9640 case migrate_load: 9641 /* 9642 * Depending of the number of CPUs and tasks and the 9643 * cgroup hierarchy, task_h_load() can return a null 9644 * value. Make sure that env->imbalance decreases 9645 * otherwise detach_tasks() will stop only after 9646 * detaching up to loop_max tasks. 9647 */ 9648 load = max_t(unsigned long, task_h_load(p), 1); 9649 9650 if (sched_feat(LB_MIN) && 9651 load < 16 && !env->sd->nr_balance_failed) 9652 goto next; 9653 9654 /* 9655 * Make sure that we don't migrate too much load. 9656 * Nevertheless, let relax the constraint if 9657 * scheduler fails to find a good waiting task to 9658 * migrate. 9659 */ 9660 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9661 goto next; 9662 9663 env->imbalance -= load; 9664 break; 9665 9666 case migrate_util: 9667 util = task_util_est(p); 9668 9669 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9670 goto next; 9671 9672 env->imbalance -= util; 9673 break; 9674 9675 case migrate_task: 9676 env->imbalance--; 9677 break; 9678 9679 case migrate_misfit: 9680 /* This is not a misfit task */ 9681 if (task_fits_cpu(p, env->src_cpu)) 9682 goto next; 9683 9684 env->imbalance = 0; 9685 break; 9686 } 9687 9688 detach_task(p, env); 9689 list_add(&p->se.group_node, &env->tasks); 9690 9691 detached++; 9692 9693 #ifdef CONFIG_PREEMPTION 9694 /* 9695 * NEWIDLE balancing is a source of latency, so preemptible 9696 * kernels will stop after the first task is detached to minimize 9697 * the critical section. 9698 */ 9699 if (env->idle == CPU_NEWLY_IDLE) 9700 break; 9701 #endif 9702 9703 /* 9704 * We only want to steal up to the prescribed amount of 9705 * load/util/tasks. 9706 */ 9707 if (env->imbalance <= 0) 9708 break; 9709 9710 continue; 9711 next: 9712 if (p->sched_task_hot) 9713 schedstat_inc(p->stats.nr_failed_migrations_hot); 9714 9715 list_move(&p->se.group_node, tasks); 9716 } 9717 9718 /* 9719 * Right now, this is one of only two places we collect this stat 9720 * so we can safely collect detach_one_task() stats here rather 9721 * than inside detach_one_task(). 9722 */ 9723 schedstat_add(env->sd->lb_gained[env->idle], detached); 9724 9725 return detached; 9726 } 9727 9728 /* 9729 * attach_task() -- attach the task detached by detach_task() to its new rq. 9730 */ 9731 static void attach_task(struct rq *rq, struct task_struct *p) 9732 { 9733 lockdep_assert_rq_held(rq); 9734 9735 WARN_ON_ONCE(task_rq(p) != rq); 9736 activate_task(rq, p, ENQUEUE_NOCLOCK); 9737 wakeup_preempt(rq, p, 0); 9738 } 9739 9740 /* 9741 * attach_one_task() -- attaches the task returned from detach_one_task() to 9742 * its new rq. 9743 */ 9744 static void attach_one_task(struct rq *rq, struct task_struct *p) 9745 { 9746 struct rq_flags rf; 9747 9748 rq_lock(rq, &rf); 9749 update_rq_clock(rq); 9750 attach_task(rq, p); 9751 rq_unlock(rq, &rf); 9752 } 9753 9754 /* 9755 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9756 * new rq. 9757 */ 9758 static void attach_tasks(struct lb_env *env) 9759 { 9760 struct list_head *tasks = &env->tasks; 9761 struct task_struct *p; 9762 struct rq_flags rf; 9763 9764 rq_lock(env->dst_rq, &rf); 9765 update_rq_clock(env->dst_rq); 9766 9767 while (!list_empty(tasks)) { 9768 p = list_first_entry(tasks, struct task_struct, se.group_node); 9769 list_del_init(&p->se.group_node); 9770 9771 attach_task(env->dst_rq, p); 9772 } 9773 9774 rq_unlock(env->dst_rq, &rf); 9775 } 9776 9777 #ifdef CONFIG_NO_HZ_COMMON 9778 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9779 { 9780 if (cfs_rq->avg.load_avg) 9781 return true; 9782 9783 if (cfs_rq->avg.util_avg) 9784 return true; 9785 9786 return false; 9787 } 9788 9789 static inline bool others_have_blocked(struct rq *rq) 9790 { 9791 if (cpu_util_rt(rq)) 9792 return true; 9793 9794 if (cpu_util_dl(rq)) 9795 return true; 9796 9797 if (hw_load_avg(rq)) 9798 return true; 9799 9800 if (cpu_util_irq(rq)) 9801 return true; 9802 9803 return false; 9804 } 9805 9806 static inline void update_blocked_load_tick(struct rq *rq) 9807 { 9808 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9809 } 9810 9811 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9812 { 9813 if (!has_blocked) 9814 rq->has_blocked_load = 0; 9815 } 9816 #else /* !CONFIG_NO_HZ_COMMON: */ 9817 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9818 static inline bool others_have_blocked(struct rq *rq) { return false; } 9819 static inline void update_blocked_load_tick(struct rq *rq) {} 9820 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9821 #endif /* !CONFIG_NO_HZ_COMMON */ 9822 9823 static bool __update_blocked_others(struct rq *rq, bool *done) 9824 { 9825 bool updated; 9826 9827 /* 9828 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9829 * DL and IRQ signals have been updated before updating CFS. 9830 */ 9831 updated = update_other_load_avgs(rq); 9832 9833 if (others_have_blocked(rq)) 9834 *done = false; 9835 9836 return updated; 9837 } 9838 9839 #ifdef CONFIG_FAIR_GROUP_SCHED 9840 9841 static bool __update_blocked_fair(struct rq *rq, bool *done) 9842 { 9843 struct cfs_rq *cfs_rq, *pos; 9844 bool decayed = false; 9845 int cpu = cpu_of(rq); 9846 9847 /* 9848 * Iterates the task_group tree in a bottom up fashion, see 9849 * list_add_leaf_cfs_rq() for details. 9850 */ 9851 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9852 struct sched_entity *se; 9853 9854 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9855 update_tg_load_avg(cfs_rq); 9856 9857 if (cfs_rq->nr_queued == 0) 9858 update_idle_cfs_rq_clock_pelt(cfs_rq); 9859 9860 if (cfs_rq == &rq->cfs) 9861 decayed = true; 9862 } 9863 9864 /* Propagate pending load changes to the parent, if any: */ 9865 se = cfs_rq->tg->se[cpu]; 9866 if (se && !skip_blocked_update(se)) 9867 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9868 9869 /* 9870 * There can be a lot of idle CPU cgroups. Don't let fully 9871 * decayed cfs_rqs linger on the list. 9872 */ 9873 if (cfs_rq_is_decayed(cfs_rq)) 9874 list_del_leaf_cfs_rq(cfs_rq); 9875 9876 /* Don't need periodic decay once load/util_avg are null */ 9877 if (cfs_rq_has_blocked(cfs_rq)) 9878 *done = false; 9879 } 9880 9881 return decayed; 9882 } 9883 9884 /* 9885 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9886 * This needs to be done in a top-down fashion because the load of a child 9887 * group is a fraction of its parents load. 9888 */ 9889 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9890 { 9891 struct rq *rq = rq_of(cfs_rq); 9892 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9893 unsigned long now = jiffies; 9894 unsigned long load; 9895 9896 if (cfs_rq->last_h_load_update == now) 9897 return; 9898 9899 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9900 for_each_sched_entity(se) { 9901 cfs_rq = cfs_rq_of(se); 9902 WRITE_ONCE(cfs_rq->h_load_next, se); 9903 if (cfs_rq->last_h_load_update == now) 9904 break; 9905 } 9906 9907 if (!se) { 9908 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9909 cfs_rq->last_h_load_update = now; 9910 } 9911 9912 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9913 load = cfs_rq->h_load; 9914 load = div64_ul(load * se->avg.load_avg, 9915 cfs_rq_load_avg(cfs_rq) + 1); 9916 cfs_rq = group_cfs_rq(se); 9917 cfs_rq->h_load = load; 9918 cfs_rq->last_h_load_update = now; 9919 } 9920 } 9921 9922 static unsigned long task_h_load(struct task_struct *p) 9923 { 9924 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9925 9926 update_cfs_rq_h_load(cfs_rq); 9927 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9928 cfs_rq_load_avg(cfs_rq) + 1); 9929 } 9930 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 9931 static bool __update_blocked_fair(struct rq *rq, bool *done) 9932 { 9933 struct cfs_rq *cfs_rq = &rq->cfs; 9934 bool decayed; 9935 9936 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9937 if (cfs_rq_has_blocked(cfs_rq)) 9938 *done = false; 9939 9940 return decayed; 9941 } 9942 9943 static unsigned long task_h_load(struct task_struct *p) 9944 { 9945 return p->se.avg.load_avg; 9946 } 9947 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 9948 9949 static void sched_balance_update_blocked_averages(int cpu) 9950 { 9951 bool decayed = false, done = true; 9952 struct rq *rq = cpu_rq(cpu); 9953 struct rq_flags rf; 9954 9955 rq_lock_irqsave(rq, &rf); 9956 update_blocked_load_tick(rq); 9957 update_rq_clock(rq); 9958 9959 decayed |= __update_blocked_others(rq, &done); 9960 decayed |= __update_blocked_fair(rq, &done); 9961 9962 update_blocked_load_status(rq, !done); 9963 if (decayed) 9964 cpufreq_update_util(rq, 0); 9965 rq_unlock_irqrestore(rq, &rf); 9966 } 9967 9968 /********** Helpers for sched_balance_find_src_group ************************/ 9969 9970 /* 9971 * sg_lb_stats - stats of a sched_group required for load-balancing: 9972 */ 9973 struct sg_lb_stats { 9974 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9975 unsigned long group_load; /* Total load over the CPUs of the group */ 9976 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9977 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9978 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9979 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9980 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9981 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9982 unsigned int group_weight; 9983 enum group_type group_type; 9984 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9985 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9986 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9987 #ifdef CONFIG_NUMA_BALANCING 9988 unsigned int nr_numa_running; 9989 unsigned int nr_preferred_running; 9990 #endif 9991 }; 9992 9993 /* 9994 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9995 */ 9996 struct sd_lb_stats { 9997 struct sched_group *busiest; /* Busiest group in this sd */ 9998 struct sched_group *local; /* Local group in this sd */ 9999 unsigned long total_load; /* Total load of all groups in sd */ 10000 unsigned long total_capacity; /* Total capacity of all groups in sd */ 10001 unsigned long avg_load; /* Average load across all groups in sd */ 10002 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 10003 10004 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 10005 struct sg_lb_stats local_stat; /* Statistics of the local group */ 10006 }; 10007 10008 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 10009 { 10010 /* 10011 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 10012 * local_stat because update_sg_lb_stats() does a full clear/assignment. 10013 * We must however set busiest_stat::group_type and 10014 * busiest_stat::idle_cpus to the worst busiest group because 10015 * update_sd_pick_busiest() reads these before assignment. 10016 */ 10017 *sds = (struct sd_lb_stats){ 10018 .busiest = NULL, 10019 .local = NULL, 10020 .total_load = 0UL, 10021 .total_capacity = 0UL, 10022 .busiest_stat = { 10023 .idle_cpus = UINT_MAX, 10024 .group_type = group_has_spare, 10025 }, 10026 }; 10027 } 10028 10029 static unsigned long scale_rt_capacity(int cpu) 10030 { 10031 unsigned long max = get_actual_cpu_capacity(cpu); 10032 struct rq *rq = cpu_rq(cpu); 10033 unsigned long used, free; 10034 unsigned long irq; 10035 10036 irq = cpu_util_irq(rq); 10037 10038 if (unlikely(irq >= max)) 10039 return 1; 10040 10041 /* 10042 * avg_rt.util_avg and avg_dl.util_avg track binary signals 10043 * (running and not running) with weights 0 and 1024 respectively. 10044 */ 10045 used = cpu_util_rt(rq); 10046 used += cpu_util_dl(rq); 10047 10048 if (unlikely(used >= max)) 10049 return 1; 10050 10051 free = max - used; 10052 10053 return scale_irq_capacity(free, irq, max); 10054 } 10055 10056 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10057 { 10058 unsigned long capacity = scale_rt_capacity(cpu); 10059 struct sched_group *sdg = sd->groups; 10060 10061 if (!capacity) 10062 capacity = 1; 10063 10064 cpu_rq(cpu)->cpu_capacity = capacity; 10065 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10066 10067 sdg->sgc->capacity = capacity; 10068 sdg->sgc->min_capacity = capacity; 10069 sdg->sgc->max_capacity = capacity; 10070 } 10071 10072 void update_group_capacity(struct sched_domain *sd, int cpu) 10073 { 10074 struct sched_domain *child = sd->child; 10075 struct sched_group *group, *sdg = sd->groups; 10076 unsigned long capacity, min_capacity, max_capacity; 10077 unsigned long interval; 10078 10079 interval = msecs_to_jiffies(sd->balance_interval); 10080 interval = clamp(interval, 1UL, max_load_balance_interval); 10081 sdg->sgc->next_update = jiffies + interval; 10082 10083 if (!child) { 10084 update_cpu_capacity(sd, cpu); 10085 return; 10086 } 10087 10088 capacity = 0; 10089 min_capacity = ULONG_MAX; 10090 max_capacity = 0; 10091 10092 if (child->flags & SD_NUMA) { 10093 /* 10094 * SD_NUMA domains cannot assume that child groups 10095 * span the current group. 10096 */ 10097 10098 for_each_cpu(cpu, sched_group_span(sdg)) { 10099 unsigned long cpu_cap = capacity_of(cpu); 10100 10101 capacity += cpu_cap; 10102 min_capacity = min(cpu_cap, min_capacity); 10103 max_capacity = max(cpu_cap, max_capacity); 10104 } 10105 } else { 10106 /* 10107 * !SD_NUMA domains can assume that child groups 10108 * span the current group. 10109 */ 10110 10111 group = child->groups; 10112 do { 10113 struct sched_group_capacity *sgc = group->sgc; 10114 10115 capacity += sgc->capacity; 10116 min_capacity = min(sgc->min_capacity, min_capacity); 10117 max_capacity = max(sgc->max_capacity, max_capacity); 10118 group = group->next; 10119 } while (group != child->groups); 10120 } 10121 10122 sdg->sgc->capacity = capacity; 10123 sdg->sgc->min_capacity = min_capacity; 10124 sdg->sgc->max_capacity = max_capacity; 10125 } 10126 10127 /* 10128 * Check whether the capacity of the rq has been noticeably reduced by side 10129 * activity. The imbalance_pct is used for the threshold. 10130 * Return true is the capacity is reduced 10131 */ 10132 static inline int 10133 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10134 { 10135 return ((rq->cpu_capacity * sd->imbalance_pct) < 10136 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10137 } 10138 10139 /* Check if the rq has a misfit task */ 10140 static inline bool check_misfit_status(struct rq *rq) 10141 { 10142 return rq->misfit_task_load; 10143 } 10144 10145 /* 10146 * Group imbalance indicates (and tries to solve) the problem where balancing 10147 * groups is inadequate due to ->cpus_ptr constraints. 10148 * 10149 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10150 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10151 * Something like: 10152 * 10153 * { 0 1 2 3 } { 4 5 6 7 } 10154 * * * * * 10155 * 10156 * If we were to balance group-wise we'd place two tasks in the first group and 10157 * two tasks in the second group. Clearly this is undesired as it will overload 10158 * cpu 3 and leave one of the CPUs in the second group unused. 10159 * 10160 * The current solution to this issue is detecting the skew in the first group 10161 * by noticing the lower domain failed to reach balance and had difficulty 10162 * moving tasks due to affinity constraints. 10163 * 10164 * When this is so detected; this group becomes a candidate for busiest; see 10165 * update_sd_pick_busiest(). And calculate_imbalance() and 10166 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10167 * to create an effective group imbalance. 10168 * 10169 * This is a somewhat tricky proposition since the next run might not find the 10170 * group imbalance and decide the groups need to be balanced again. A most 10171 * subtle and fragile situation. 10172 */ 10173 10174 static inline int sg_imbalanced(struct sched_group *group) 10175 { 10176 return group->sgc->imbalance; 10177 } 10178 10179 /* 10180 * group_has_capacity returns true if the group has spare capacity that could 10181 * be used by some tasks. 10182 * We consider that a group has spare capacity if the number of task is 10183 * smaller than the number of CPUs or if the utilization is lower than the 10184 * available capacity for CFS tasks. 10185 * For the latter, we use a threshold to stabilize the state, to take into 10186 * account the variance of the tasks' load and to return true if the available 10187 * capacity in meaningful for the load balancer. 10188 * As an example, an available capacity of 1% can appear but it doesn't make 10189 * any benefit for the load balance. 10190 */ 10191 static inline bool 10192 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10193 { 10194 if (sgs->sum_nr_running < sgs->group_weight) 10195 return true; 10196 10197 if ((sgs->group_capacity * imbalance_pct) < 10198 (sgs->group_runnable * 100)) 10199 return false; 10200 10201 if ((sgs->group_capacity * 100) > 10202 (sgs->group_util * imbalance_pct)) 10203 return true; 10204 10205 return false; 10206 } 10207 10208 /* 10209 * group_is_overloaded returns true if the group has more tasks than it can 10210 * handle. 10211 * group_is_overloaded is not equals to !group_has_capacity because a group 10212 * with the exact right number of tasks, has no more spare capacity but is not 10213 * overloaded so both group_has_capacity and group_is_overloaded return 10214 * false. 10215 */ 10216 static inline bool 10217 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10218 { 10219 if (sgs->sum_nr_running <= sgs->group_weight) 10220 return false; 10221 10222 if ((sgs->group_capacity * 100) < 10223 (sgs->group_util * imbalance_pct)) 10224 return true; 10225 10226 if ((sgs->group_capacity * imbalance_pct) < 10227 (sgs->group_runnable * 100)) 10228 return true; 10229 10230 return false; 10231 } 10232 10233 static inline enum 10234 group_type group_classify(unsigned int imbalance_pct, 10235 struct sched_group *group, 10236 struct sg_lb_stats *sgs) 10237 { 10238 if (group_is_overloaded(imbalance_pct, sgs)) 10239 return group_overloaded; 10240 10241 if (sg_imbalanced(group)) 10242 return group_imbalanced; 10243 10244 if (sgs->group_asym_packing) 10245 return group_asym_packing; 10246 10247 if (sgs->group_smt_balance) 10248 return group_smt_balance; 10249 10250 if (sgs->group_misfit_task_load) 10251 return group_misfit_task; 10252 10253 if (!group_has_capacity(imbalance_pct, sgs)) 10254 return group_fully_busy; 10255 10256 return group_has_spare; 10257 } 10258 10259 /** 10260 * sched_use_asym_prio - Check whether asym_packing priority must be used 10261 * @sd: The scheduling domain of the load balancing 10262 * @cpu: A CPU 10263 * 10264 * Always use CPU priority when balancing load between SMT siblings. When 10265 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10266 * use CPU priority if the whole core is idle. 10267 * 10268 * Returns: True if the priority of @cpu must be followed. False otherwise. 10269 */ 10270 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10271 { 10272 if (!(sd->flags & SD_ASYM_PACKING)) 10273 return false; 10274 10275 if (!sched_smt_active()) 10276 return true; 10277 10278 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10279 } 10280 10281 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10282 { 10283 /* 10284 * First check if @dst_cpu can do asym_packing load balance. Only do it 10285 * if it has higher priority than @src_cpu. 10286 */ 10287 return sched_use_asym_prio(sd, dst_cpu) && 10288 sched_asym_prefer(dst_cpu, src_cpu); 10289 } 10290 10291 /** 10292 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10293 * @env: The load balancing environment 10294 * @sgs: Load-balancing statistics of the candidate busiest group 10295 * @group: The candidate busiest group 10296 * 10297 * @env::dst_cpu can do asym_packing if it has higher priority than the 10298 * preferred CPU of @group. 10299 * 10300 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10301 * otherwise. 10302 */ 10303 static inline bool 10304 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10305 { 10306 /* 10307 * CPU priorities do not make sense for SMT cores with more than one 10308 * busy sibling. 10309 */ 10310 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10311 (sgs->group_weight - sgs->idle_cpus != 1)) 10312 return false; 10313 10314 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); 10315 } 10316 10317 /* One group has more than one SMT CPU while the other group does not */ 10318 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10319 struct sched_group *sg2) 10320 { 10321 if (!sg1 || !sg2) 10322 return false; 10323 10324 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10325 (sg2->flags & SD_SHARE_CPUCAPACITY); 10326 } 10327 10328 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10329 struct sched_group *group) 10330 { 10331 if (!env->idle) 10332 return false; 10333 10334 /* 10335 * For SMT source group, it is better to move a task 10336 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10337 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10338 * will not be on. 10339 */ 10340 if (group->flags & SD_SHARE_CPUCAPACITY && 10341 sgs->sum_h_nr_running > 1) 10342 return true; 10343 10344 return false; 10345 } 10346 10347 static inline long sibling_imbalance(struct lb_env *env, 10348 struct sd_lb_stats *sds, 10349 struct sg_lb_stats *busiest, 10350 struct sg_lb_stats *local) 10351 { 10352 int ncores_busiest, ncores_local; 10353 long imbalance; 10354 10355 if (!env->idle || !busiest->sum_nr_running) 10356 return 0; 10357 10358 ncores_busiest = sds->busiest->cores; 10359 ncores_local = sds->local->cores; 10360 10361 if (ncores_busiest == ncores_local) { 10362 imbalance = busiest->sum_nr_running; 10363 lsub_positive(&imbalance, local->sum_nr_running); 10364 return imbalance; 10365 } 10366 10367 /* Balance such that nr_running/ncores ratio are same on both groups */ 10368 imbalance = ncores_local * busiest->sum_nr_running; 10369 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10370 /* Normalize imbalance and do rounding on normalization */ 10371 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10372 imbalance /= ncores_local + ncores_busiest; 10373 10374 /* Take advantage of resource in an empty sched group */ 10375 if (imbalance <= 1 && local->sum_nr_running == 0 && 10376 busiest->sum_nr_running > 1) 10377 imbalance = 2; 10378 10379 return imbalance; 10380 } 10381 10382 static inline bool 10383 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10384 { 10385 /* 10386 * When there is more than 1 task, the group_overloaded case already 10387 * takes care of cpu with reduced capacity 10388 */ 10389 if (rq->cfs.h_nr_runnable != 1) 10390 return false; 10391 10392 return check_cpu_capacity(rq, sd); 10393 } 10394 10395 /** 10396 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10397 * @env: The load balancing environment. 10398 * @sds: Load-balancing data with statistics of the local group. 10399 * @group: sched_group whose statistics are to be updated. 10400 * @sgs: variable to hold the statistics for this group. 10401 * @sg_overloaded: sched_group is overloaded 10402 * @sg_overutilized: sched_group is overutilized 10403 */ 10404 static inline void update_sg_lb_stats(struct lb_env *env, 10405 struct sd_lb_stats *sds, 10406 struct sched_group *group, 10407 struct sg_lb_stats *sgs, 10408 bool *sg_overloaded, 10409 bool *sg_overutilized) 10410 { 10411 int i, nr_running, local_group, sd_flags = env->sd->flags; 10412 bool balancing_at_rd = !env->sd->parent; 10413 10414 memset(sgs, 0, sizeof(*sgs)); 10415 10416 local_group = group == sds->local; 10417 10418 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10419 struct rq *rq = cpu_rq(i); 10420 unsigned long load = cpu_load(rq); 10421 10422 sgs->group_load += load; 10423 sgs->group_util += cpu_util_cfs(i); 10424 sgs->group_runnable += cpu_runnable(rq); 10425 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10426 10427 nr_running = rq->nr_running; 10428 sgs->sum_nr_running += nr_running; 10429 10430 if (cpu_overutilized(i)) 10431 *sg_overutilized = 1; 10432 10433 /* 10434 * No need to call idle_cpu() if nr_running is not 0 10435 */ 10436 if (!nr_running && idle_cpu(i)) { 10437 sgs->idle_cpus++; 10438 /* Idle cpu can't have misfit task */ 10439 continue; 10440 } 10441 10442 /* Overload indicator is only updated at root domain */ 10443 if (balancing_at_rd && nr_running > 1) 10444 *sg_overloaded = 1; 10445 10446 #ifdef CONFIG_NUMA_BALANCING 10447 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10448 if (sd_flags & SD_NUMA) { 10449 sgs->nr_numa_running += rq->nr_numa_running; 10450 sgs->nr_preferred_running += rq->nr_preferred_running; 10451 } 10452 #endif 10453 if (local_group) 10454 continue; 10455 10456 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10457 /* Check for a misfit task on the cpu */ 10458 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10459 sgs->group_misfit_task_load = rq->misfit_task_load; 10460 *sg_overloaded = 1; 10461 } 10462 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10463 /* Check for a task running on a CPU with reduced capacity */ 10464 if (sgs->group_misfit_task_load < load) 10465 sgs->group_misfit_task_load = load; 10466 } 10467 } 10468 10469 sgs->group_capacity = group->sgc->capacity; 10470 10471 sgs->group_weight = group->group_weight; 10472 10473 /* Check if dst CPU is idle and preferred to this group */ 10474 if (!local_group && env->idle && sgs->sum_h_nr_running && 10475 sched_group_asym(env, sgs, group)) 10476 sgs->group_asym_packing = 1; 10477 10478 /* Check for loaded SMT group to be balanced to dst CPU */ 10479 if (!local_group && smt_balance(env, sgs, group)) 10480 sgs->group_smt_balance = 1; 10481 10482 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10483 10484 /* Computing avg_load makes sense only when group is overloaded */ 10485 if (sgs->group_type == group_overloaded) 10486 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10487 sgs->group_capacity; 10488 } 10489 10490 /** 10491 * update_sd_pick_busiest - return 1 on busiest group 10492 * @env: The load balancing environment. 10493 * @sds: sched_domain statistics 10494 * @sg: sched_group candidate to be checked for being the busiest 10495 * @sgs: sched_group statistics 10496 * 10497 * Determine if @sg is a busier group than the previously selected 10498 * busiest group. 10499 * 10500 * Return: %true if @sg is a busier group than the previously selected 10501 * busiest group. %false otherwise. 10502 */ 10503 static bool update_sd_pick_busiest(struct lb_env *env, 10504 struct sd_lb_stats *sds, 10505 struct sched_group *sg, 10506 struct sg_lb_stats *sgs) 10507 { 10508 struct sg_lb_stats *busiest = &sds->busiest_stat; 10509 10510 /* Make sure that there is at least one task to pull */ 10511 if (!sgs->sum_h_nr_running) 10512 return false; 10513 10514 /* 10515 * Don't try to pull misfit tasks we can't help. 10516 * We can use max_capacity here as reduction in capacity on some 10517 * CPUs in the group should either be possible to resolve 10518 * internally or be covered by avg_load imbalance (eventually). 10519 */ 10520 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10521 (sgs->group_type == group_misfit_task) && 10522 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10523 sds->local_stat.group_type != group_has_spare)) 10524 return false; 10525 10526 if (sgs->group_type > busiest->group_type) 10527 return true; 10528 10529 if (sgs->group_type < busiest->group_type) 10530 return false; 10531 10532 /* 10533 * The candidate and the current busiest group are the same type of 10534 * group. Let check which one is the busiest according to the type. 10535 */ 10536 10537 switch (sgs->group_type) { 10538 case group_overloaded: 10539 /* Select the overloaded group with highest avg_load. */ 10540 return sgs->avg_load > busiest->avg_load; 10541 10542 case group_imbalanced: 10543 /* 10544 * Select the 1st imbalanced group as we don't have any way to 10545 * choose one more than another. 10546 */ 10547 return false; 10548 10549 case group_asym_packing: 10550 /* Prefer to move from lowest priority CPU's work */ 10551 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), 10552 READ_ONCE(sg->asym_prefer_cpu)); 10553 10554 case group_misfit_task: 10555 /* 10556 * If we have more than one misfit sg go with the biggest 10557 * misfit. 10558 */ 10559 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10560 10561 case group_smt_balance: 10562 /* 10563 * Check if we have spare CPUs on either SMT group to 10564 * choose has spare or fully busy handling. 10565 */ 10566 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10567 goto has_spare; 10568 10569 fallthrough; 10570 10571 case group_fully_busy: 10572 /* 10573 * Select the fully busy group with highest avg_load. In 10574 * theory, there is no need to pull task from such kind of 10575 * group because tasks have all compute capacity that they need 10576 * but we can still improve the overall throughput by reducing 10577 * contention when accessing shared HW resources. 10578 * 10579 * XXX for now avg_load is not computed and always 0 so we 10580 * select the 1st one, except if @sg is composed of SMT 10581 * siblings. 10582 */ 10583 10584 if (sgs->avg_load < busiest->avg_load) 10585 return false; 10586 10587 if (sgs->avg_load == busiest->avg_load) { 10588 /* 10589 * SMT sched groups need more help than non-SMT groups. 10590 * If @sg happens to also be SMT, either choice is good. 10591 */ 10592 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10593 return false; 10594 } 10595 10596 break; 10597 10598 case group_has_spare: 10599 /* 10600 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10601 * as we do not want to pull task off SMT core with one task 10602 * and make the core idle. 10603 */ 10604 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10605 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10606 return false; 10607 else 10608 return true; 10609 } 10610 has_spare: 10611 10612 /* 10613 * Select not overloaded group with lowest number of idle CPUs 10614 * and highest number of running tasks. We could also compare 10615 * the spare capacity which is more stable but it can end up 10616 * that the group has less spare capacity but finally more idle 10617 * CPUs which means less opportunity to pull tasks. 10618 */ 10619 if (sgs->idle_cpus > busiest->idle_cpus) 10620 return false; 10621 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10622 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10623 return false; 10624 10625 break; 10626 } 10627 10628 /* 10629 * Candidate sg has no more than one task per CPU and has higher 10630 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10631 * throughput. Maximize throughput, power/energy consequences are not 10632 * considered. 10633 */ 10634 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10635 (sgs->group_type <= group_fully_busy) && 10636 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10637 return false; 10638 10639 return true; 10640 } 10641 10642 #ifdef CONFIG_NUMA_BALANCING 10643 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10644 { 10645 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10646 return regular; 10647 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10648 return remote; 10649 return all; 10650 } 10651 10652 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10653 { 10654 if (rq->nr_running > rq->nr_numa_running) 10655 return regular; 10656 if (rq->nr_running > rq->nr_preferred_running) 10657 return remote; 10658 return all; 10659 } 10660 #else /* !CONFIG_NUMA_BALANCING: */ 10661 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10662 { 10663 return all; 10664 } 10665 10666 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10667 { 10668 return regular; 10669 } 10670 #endif /* !CONFIG_NUMA_BALANCING */ 10671 10672 10673 struct sg_lb_stats; 10674 10675 /* 10676 * task_running_on_cpu - return 1 if @p is running on @cpu. 10677 */ 10678 10679 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10680 { 10681 /* Task has no contribution or is new */ 10682 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10683 return 0; 10684 10685 if (task_on_rq_queued(p)) 10686 return 1; 10687 10688 return 0; 10689 } 10690 10691 /** 10692 * idle_cpu_without - would a given CPU be idle without p ? 10693 * @cpu: the processor on which idleness is tested. 10694 * @p: task which should be ignored. 10695 * 10696 * Return: 1 if the CPU would be idle. 0 otherwise. 10697 */ 10698 static int idle_cpu_without(int cpu, struct task_struct *p) 10699 { 10700 struct rq *rq = cpu_rq(cpu); 10701 10702 if (rq->curr != rq->idle && rq->curr != p) 10703 return 0; 10704 10705 /* 10706 * rq->nr_running can't be used but an updated version without the 10707 * impact of p on cpu must be used instead. The updated nr_running 10708 * be computed and tested before calling idle_cpu_without(). 10709 */ 10710 10711 if (rq->ttwu_pending) 10712 return 0; 10713 10714 return 1; 10715 } 10716 10717 /* 10718 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10719 * @sd: The sched_domain level to look for idlest group. 10720 * @group: sched_group whose statistics are to be updated. 10721 * @sgs: variable to hold the statistics for this group. 10722 * @p: The task for which we look for the idlest group/CPU. 10723 */ 10724 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10725 struct sched_group *group, 10726 struct sg_lb_stats *sgs, 10727 struct task_struct *p) 10728 { 10729 int i, nr_running; 10730 10731 memset(sgs, 0, sizeof(*sgs)); 10732 10733 /* Assume that task can't fit any CPU of the group */ 10734 if (sd->flags & SD_ASYM_CPUCAPACITY) 10735 sgs->group_misfit_task_load = 1; 10736 10737 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 10738 struct rq *rq = cpu_rq(i); 10739 unsigned int local; 10740 10741 sgs->group_load += cpu_load_without(rq, p); 10742 sgs->group_util += cpu_util_without(i, p); 10743 sgs->group_runnable += cpu_runnable_without(rq, p); 10744 local = task_running_on_cpu(i, p); 10745 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10746 10747 nr_running = rq->nr_running - local; 10748 sgs->sum_nr_running += nr_running; 10749 10750 /* 10751 * No need to call idle_cpu_without() if nr_running is not 0 10752 */ 10753 if (!nr_running && idle_cpu_without(i, p)) 10754 sgs->idle_cpus++; 10755 10756 /* Check if task fits in the CPU */ 10757 if (sd->flags & SD_ASYM_CPUCAPACITY && 10758 sgs->group_misfit_task_load && 10759 task_fits_cpu(p, i)) 10760 sgs->group_misfit_task_load = 0; 10761 10762 } 10763 10764 sgs->group_capacity = group->sgc->capacity; 10765 10766 sgs->group_weight = group->group_weight; 10767 10768 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10769 10770 /* 10771 * Computing avg_load makes sense only when group is fully busy or 10772 * overloaded 10773 */ 10774 if (sgs->group_type == group_fully_busy || 10775 sgs->group_type == group_overloaded) 10776 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10777 sgs->group_capacity; 10778 } 10779 10780 static bool update_pick_idlest(struct sched_group *idlest, 10781 struct sg_lb_stats *idlest_sgs, 10782 struct sched_group *group, 10783 struct sg_lb_stats *sgs) 10784 { 10785 if (sgs->group_type < idlest_sgs->group_type) 10786 return true; 10787 10788 if (sgs->group_type > idlest_sgs->group_type) 10789 return false; 10790 10791 /* 10792 * The candidate and the current idlest group are the same type of 10793 * group. Let check which one is the idlest according to the type. 10794 */ 10795 10796 switch (sgs->group_type) { 10797 case group_overloaded: 10798 case group_fully_busy: 10799 /* Select the group with lowest avg_load. */ 10800 if (idlest_sgs->avg_load <= sgs->avg_load) 10801 return false; 10802 break; 10803 10804 case group_imbalanced: 10805 case group_asym_packing: 10806 case group_smt_balance: 10807 /* Those types are not used in the slow wakeup path */ 10808 return false; 10809 10810 case group_misfit_task: 10811 /* Select group with the highest max capacity */ 10812 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10813 return false; 10814 break; 10815 10816 case group_has_spare: 10817 /* Select group with most idle CPUs */ 10818 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10819 return false; 10820 10821 /* Select group with lowest group_util */ 10822 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10823 idlest_sgs->group_util <= sgs->group_util) 10824 return false; 10825 10826 break; 10827 } 10828 10829 return true; 10830 } 10831 10832 /* 10833 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10834 * domain. 10835 * 10836 * Assumes p is allowed on at least one CPU in sd. 10837 */ 10838 static struct sched_group * 10839 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10840 { 10841 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10842 struct sg_lb_stats local_sgs, tmp_sgs; 10843 struct sg_lb_stats *sgs; 10844 unsigned long imbalance; 10845 struct sg_lb_stats idlest_sgs = { 10846 .avg_load = UINT_MAX, 10847 .group_type = group_overloaded, 10848 }; 10849 10850 do { 10851 int local_group; 10852 10853 /* Skip over this group if it has no CPUs allowed */ 10854 if (!cpumask_intersects(sched_group_span(group), 10855 p->cpus_ptr)) 10856 continue; 10857 10858 /* Skip over this group if no cookie matched */ 10859 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10860 continue; 10861 10862 local_group = cpumask_test_cpu(this_cpu, 10863 sched_group_span(group)); 10864 10865 if (local_group) { 10866 sgs = &local_sgs; 10867 local = group; 10868 } else { 10869 sgs = &tmp_sgs; 10870 } 10871 10872 update_sg_wakeup_stats(sd, group, sgs, p); 10873 10874 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10875 idlest = group; 10876 idlest_sgs = *sgs; 10877 } 10878 10879 } while (group = group->next, group != sd->groups); 10880 10881 10882 /* There is no idlest group to push tasks to */ 10883 if (!idlest) 10884 return NULL; 10885 10886 /* The local group has been skipped because of CPU affinity */ 10887 if (!local) 10888 return idlest; 10889 10890 /* 10891 * If the local group is idler than the selected idlest group 10892 * don't try and push the task. 10893 */ 10894 if (local_sgs.group_type < idlest_sgs.group_type) 10895 return NULL; 10896 10897 /* 10898 * If the local group is busier than the selected idlest group 10899 * try and push the task. 10900 */ 10901 if (local_sgs.group_type > idlest_sgs.group_type) 10902 return idlest; 10903 10904 switch (local_sgs.group_type) { 10905 case group_overloaded: 10906 case group_fully_busy: 10907 10908 /* Calculate allowed imbalance based on load */ 10909 imbalance = scale_load_down(NICE_0_LOAD) * 10910 (sd->imbalance_pct-100) / 100; 10911 10912 /* 10913 * When comparing groups across NUMA domains, it's possible for 10914 * the local domain to be very lightly loaded relative to the 10915 * remote domains but "imbalance" skews the comparison making 10916 * remote CPUs look much more favourable. When considering 10917 * cross-domain, add imbalance to the load on the remote node 10918 * and consider staying local. 10919 */ 10920 10921 if ((sd->flags & SD_NUMA) && 10922 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10923 return NULL; 10924 10925 /* 10926 * If the local group is less loaded than the selected 10927 * idlest group don't try and push any tasks. 10928 */ 10929 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10930 return NULL; 10931 10932 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10933 return NULL; 10934 break; 10935 10936 case group_imbalanced: 10937 case group_asym_packing: 10938 case group_smt_balance: 10939 /* Those type are not used in the slow wakeup path */ 10940 return NULL; 10941 10942 case group_misfit_task: 10943 /* Select group with the highest max capacity */ 10944 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10945 return NULL; 10946 break; 10947 10948 case group_has_spare: 10949 #ifdef CONFIG_NUMA 10950 if (sd->flags & SD_NUMA) { 10951 int imb_numa_nr = sd->imb_numa_nr; 10952 #ifdef CONFIG_NUMA_BALANCING 10953 int idlest_cpu; 10954 /* 10955 * If there is spare capacity at NUMA, try to select 10956 * the preferred node 10957 */ 10958 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10959 return NULL; 10960 10961 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10962 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10963 return idlest; 10964 #endif /* CONFIG_NUMA_BALANCING */ 10965 /* 10966 * Otherwise, keep the task close to the wakeup source 10967 * and improve locality if the number of running tasks 10968 * would remain below threshold where an imbalance is 10969 * allowed while accounting for the possibility the 10970 * task is pinned to a subset of CPUs. If there is a 10971 * real need of migration, periodic load balance will 10972 * take care of it. 10973 */ 10974 if (p->nr_cpus_allowed != NR_CPUS) { 10975 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10976 10977 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10978 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10979 } 10980 10981 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10982 if (!adjust_numa_imbalance(imbalance, 10983 local_sgs.sum_nr_running + 1, 10984 imb_numa_nr)) { 10985 return NULL; 10986 } 10987 } 10988 #endif /* CONFIG_NUMA */ 10989 10990 /* 10991 * Select group with highest number of idle CPUs. We could also 10992 * compare the utilization which is more stable but it can end 10993 * up that the group has less spare capacity but finally more 10994 * idle CPUs which means more opportunity to run task. 10995 */ 10996 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10997 return NULL; 10998 break; 10999 } 11000 11001 return idlest; 11002 } 11003 11004 static void update_idle_cpu_scan(struct lb_env *env, 11005 unsigned long sum_util) 11006 { 11007 struct sched_domain_shared *sd_share; 11008 int llc_weight, pct; 11009 u64 x, y, tmp; 11010 /* 11011 * Update the number of CPUs to scan in LLC domain, which could 11012 * be used as a hint in select_idle_cpu(). The update of sd_share 11013 * could be expensive because it is within a shared cache line. 11014 * So the write of this hint only occurs during periodic load 11015 * balancing, rather than CPU_NEWLY_IDLE, because the latter 11016 * can fire way more frequently than the former. 11017 */ 11018 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 11019 return; 11020 11021 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 11022 if (env->sd->span_weight != llc_weight) 11023 return; 11024 11025 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 11026 if (!sd_share) 11027 return; 11028 11029 /* 11030 * The number of CPUs to search drops as sum_util increases, when 11031 * sum_util hits 85% or above, the scan stops. 11032 * The reason to choose 85% as the threshold is because this is the 11033 * imbalance_pct(117) when a LLC sched group is overloaded. 11034 * 11035 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 11036 * and y'= y / SCHED_CAPACITY_SCALE 11037 * 11038 * x is the ratio of sum_util compared to the CPU capacity: 11039 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 11040 * y' is the ratio of CPUs to be scanned in the LLC domain, 11041 * and the number of CPUs to scan is calculated by: 11042 * 11043 * nr_scan = llc_weight * y' [2] 11044 * 11045 * When x hits the threshold of overloaded, AKA, when 11046 * x = 100 / pct, y drops to 0. According to [1], 11047 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 11048 * 11049 * Scale x by SCHED_CAPACITY_SCALE: 11050 * x' = sum_util / llc_weight; [3] 11051 * 11052 * and finally [1] becomes: 11053 * y = SCHED_CAPACITY_SCALE - 11054 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 11055 * 11056 */ 11057 /* equation [3] */ 11058 x = sum_util; 11059 do_div(x, llc_weight); 11060 11061 /* equation [4] */ 11062 pct = env->sd->imbalance_pct; 11063 tmp = x * x * pct * pct; 11064 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11065 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11066 y = SCHED_CAPACITY_SCALE - tmp; 11067 11068 /* equation [2] */ 11069 y *= llc_weight; 11070 do_div(y, SCHED_CAPACITY_SCALE); 11071 if ((int)y != sd_share->nr_idle_scan) 11072 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11073 } 11074 11075 /** 11076 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11077 * @env: The load balancing environment. 11078 * @sds: variable to hold the statistics for this sched_domain. 11079 */ 11080 11081 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11082 { 11083 struct sched_group *sg = env->sd->groups; 11084 struct sg_lb_stats *local = &sds->local_stat; 11085 struct sg_lb_stats tmp_sgs; 11086 unsigned long sum_util = 0; 11087 bool sg_overloaded = 0, sg_overutilized = 0; 11088 11089 do { 11090 struct sg_lb_stats *sgs = &tmp_sgs; 11091 int local_group; 11092 11093 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11094 if (local_group) { 11095 sds->local = sg; 11096 sgs = local; 11097 11098 if (env->idle != CPU_NEWLY_IDLE || 11099 time_after_eq(jiffies, sg->sgc->next_update)) 11100 update_group_capacity(env->sd, env->dst_cpu); 11101 } 11102 11103 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11104 11105 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11106 sds->busiest = sg; 11107 sds->busiest_stat = *sgs; 11108 } 11109 11110 /* Now, start updating sd_lb_stats */ 11111 sds->total_load += sgs->group_load; 11112 sds->total_capacity += sgs->group_capacity; 11113 11114 sum_util += sgs->group_util; 11115 sg = sg->next; 11116 } while (sg != env->sd->groups); 11117 11118 /* 11119 * Indicate that the child domain of the busiest group prefers tasks 11120 * go to a child's sibling domains first. NB the flags of a sched group 11121 * are those of the child domain. 11122 */ 11123 if (sds->busiest) 11124 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11125 11126 11127 if (env->sd->flags & SD_NUMA) 11128 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11129 11130 if (!env->sd->parent) { 11131 /* update overload indicator if we are at root domain */ 11132 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11133 11134 /* Update over-utilization (tipping point, U >= 0) indicator */ 11135 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11136 } else if (sg_overutilized) { 11137 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11138 } 11139 11140 update_idle_cpu_scan(env, sum_util); 11141 } 11142 11143 /** 11144 * calculate_imbalance - Calculate the amount of imbalance present within the 11145 * groups of a given sched_domain during load balance. 11146 * @env: load balance environment 11147 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11148 */ 11149 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11150 { 11151 struct sg_lb_stats *local, *busiest; 11152 11153 local = &sds->local_stat; 11154 busiest = &sds->busiest_stat; 11155 11156 if (busiest->group_type == group_misfit_task) { 11157 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11158 /* Set imbalance to allow misfit tasks to be balanced. */ 11159 env->migration_type = migrate_misfit; 11160 env->imbalance = 1; 11161 } else { 11162 /* 11163 * Set load imbalance to allow moving task from cpu 11164 * with reduced capacity. 11165 */ 11166 env->migration_type = migrate_load; 11167 env->imbalance = busiest->group_misfit_task_load; 11168 } 11169 return; 11170 } 11171 11172 if (busiest->group_type == group_asym_packing) { 11173 /* 11174 * In case of asym capacity, we will try to migrate all load to 11175 * the preferred CPU. 11176 */ 11177 env->migration_type = migrate_task; 11178 env->imbalance = busiest->sum_h_nr_running; 11179 return; 11180 } 11181 11182 if (busiest->group_type == group_smt_balance) { 11183 /* Reduce number of tasks sharing CPU capacity */ 11184 env->migration_type = migrate_task; 11185 env->imbalance = 1; 11186 return; 11187 } 11188 11189 if (busiest->group_type == group_imbalanced) { 11190 /* 11191 * In the group_imb case we cannot rely on group-wide averages 11192 * to ensure CPU-load equilibrium, try to move any task to fix 11193 * the imbalance. The next load balance will take care of 11194 * balancing back the system. 11195 */ 11196 env->migration_type = migrate_task; 11197 env->imbalance = 1; 11198 return; 11199 } 11200 11201 /* 11202 * Try to use spare capacity of local group without overloading it or 11203 * emptying busiest. 11204 */ 11205 if (local->group_type == group_has_spare) { 11206 if ((busiest->group_type > group_fully_busy) && 11207 !(env->sd->flags & SD_SHARE_LLC)) { 11208 /* 11209 * If busiest is overloaded, try to fill spare 11210 * capacity. This might end up creating spare capacity 11211 * in busiest or busiest still being overloaded but 11212 * there is no simple way to directly compute the 11213 * amount of load to migrate in order to balance the 11214 * system. 11215 */ 11216 env->migration_type = migrate_util; 11217 env->imbalance = max(local->group_capacity, local->group_util) - 11218 local->group_util; 11219 11220 /* 11221 * In some cases, the group's utilization is max or even 11222 * higher than capacity because of migrations but the 11223 * local CPU is (newly) idle. There is at least one 11224 * waiting task in this overloaded busiest group. Let's 11225 * try to pull it. 11226 */ 11227 if (env->idle && env->imbalance == 0) { 11228 env->migration_type = migrate_task; 11229 env->imbalance = 1; 11230 } 11231 11232 return; 11233 } 11234 11235 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11236 /* 11237 * When prefer sibling, evenly spread running tasks on 11238 * groups. 11239 */ 11240 env->migration_type = migrate_task; 11241 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11242 } else { 11243 11244 /* 11245 * If there is no overload, we just want to even the number of 11246 * idle CPUs. 11247 */ 11248 env->migration_type = migrate_task; 11249 env->imbalance = max_t(long, 0, 11250 (local->idle_cpus - busiest->idle_cpus)); 11251 } 11252 11253 #ifdef CONFIG_NUMA 11254 /* Consider allowing a small imbalance between NUMA groups */ 11255 if (env->sd->flags & SD_NUMA) { 11256 env->imbalance = adjust_numa_imbalance(env->imbalance, 11257 local->sum_nr_running + 1, 11258 env->sd->imb_numa_nr); 11259 } 11260 #endif 11261 11262 /* Number of tasks to move to restore balance */ 11263 env->imbalance >>= 1; 11264 11265 return; 11266 } 11267 11268 /* 11269 * Local is fully busy but has to take more load to relieve the 11270 * busiest group 11271 */ 11272 if (local->group_type < group_overloaded) { 11273 /* 11274 * Local will become overloaded so the avg_load metrics are 11275 * finally needed. 11276 */ 11277 11278 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11279 local->group_capacity; 11280 11281 /* 11282 * If the local group is more loaded than the selected 11283 * busiest group don't try to pull any tasks. 11284 */ 11285 if (local->avg_load >= busiest->avg_load) { 11286 env->imbalance = 0; 11287 return; 11288 } 11289 11290 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11291 sds->total_capacity; 11292 11293 /* 11294 * If the local group is more loaded than the average system 11295 * load, don't try to pull any tasks. 11296 */ 11297 if (local->avg_load >= sds->avg_load) { 11298 env->imbalance = 0; 11299 return; 11300 } 11301 11302 } 11303 11304 /* 11305 * Both group are or will become overloaded and we're trying to get all 11306 * the CPUs to the average_load, so we don't want to push ourselves 11307 * above the average load, nor do we wish to reduce the max loaded CPU 11308 * below the average load. At the same time, we also don't want to 11309 * reduce the group load below the group capacity. Thus we look for 11310 * the minimum possible imbalance. 11311 */ 11312 env->migration_type = migrate_load; 11313 env->imbalance = min( 11314 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11315 (sds->avg_load - local->avg_load) * local->group_capacity 11316 ) / SCHED_CAPACITY_SCALE; 11317 } 11318 11319 /******* sched_balance_find_src_group() helpers end here *********************/ 11320 11321 /* 11322 * Decision matrix according to the local and busiest group type: 11323 * 11324 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11325 * has_spare nr_idle balanced N/A N/A balanced balanced 11326 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11327 * misfit_task force N/A N/A N/A N/A N/A 11328 * asym_packing force force N/A N/A force force 11329 * imbalanced force force N/A N/A force force 11330 * overloaded force force N/A N/A force avg_load 11331 * 11332 * N/A : Not Applicable because already filtered while updating 11333 * statistics. 11334 * balanced : The system is balanced for these 2 groups. 11335 * force : Calculate the imbalance as load migration is probably needed. 11336 * avg_load : Only if imbalance is significant enough. 11337 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11338 * different in groups. 11339 */ 11340 11341 /** 11342 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11343 * if there is an imbalance. 11344 * @env: The load balancing environment. 11345 * 11346 * Also calculates the amount of runnable load which should be moved 11347 * to restore balance. 11348 * 11349 * Return: - The busiest group if imbalance exists. 11350 */ 11351 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11352 { 11353 struct sg_lb_stats *local, *busiest; 11354 struct sd_lb_stats sds; 11355 11356 init_sd_lb_stats(&sds); 11357 11358 /* 11359 * Compute the various statistics relevant for load balancing at 11360 * this level. 11361 */ 11362 update_sd_lb_stats(env, &sds); 11363 11364 /* There is no busy sibling group to pull tasks from */ 11365 if (!sds.busiest) 11366 goto out_balanced; 11367 11368 busiest = &sds.busiest_stat; 11369 11370 /* Misfit tasks should be dealt with regardless of the avg load */ 11371 if (busiest->group_type == group_misfit_task) 11372 goto force_balance; 11373 11374 if (!is_rd_overutilized(env->dst_rq->rd) && 11375 rcu_dereference(env->dst_rq->rd->pd)) 11376 goto out_balanced; 11377 11378 /* ASYM feature bypasses nice load balance check */ 11379 if (busiest->group_type == group_asym_packing) 11380 goto force_balance; 11381 11382 /* 11383 * If the busiest group is imbalanced the below checks don't 11384 * work because they assume all things are equal, which typically 11385 * isn't true due to cpus_ptr constraints and the like. 11386 */ 11387 if (busiest->group_type == group_imbalanced) 11388 goto force_balance; 11389 11390 local = &sds.local_stat; 11391 /* 11392 * If the local group is busier than the selected busiest group 11393 * don't try and pull any tasks. 11394 */ 11395 if (local->group_type > busiest->group_type) 11396 goto out_balanced; 11397 11398 /* 11399 * When groups are overloaded, use the avg_load to ensure fairness 11400 * between tasks. 11401 */ 11402 if (local->group_type == group_overloaded) { 11403 /* 11404 * If the local group is more loaded than the selected 11405 * busiest group don't try to pull any tasks. 11406 */ 11407 if (local->avg_load >= busiest->avg_load) 11408 goto out_balanced; 11409 11410 /* XXX broken for overlapping NUMA groups */ 11411 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11412 sds.total_capacity; 11413 11414 /* 11415 * Don't pull any tasks if this group is already above the 11416 * domain average load. 11417 */ 11418 if (local->avg_load >= sds.avg_load) 11419 goto out_balanced; 11420 11421 /* 11422 * If the busiest group is more loaded, use imbalance_pct to be 11423 * conservative. 11424 */ 11425 if (100 * busiest->avg_load <= 11426 env->sd->imbalance_pct * local->avg_load) 11427 goto out_balanced; 11428 } 11429 11430 /* 11431 * Try to move all excess tasks to a sibling domain of the busiest 11432 * group's child domain. 11433 */ 11434 if (sds.prefer_sibling && local->group_type == group_has_spare && 11435 sibling_imbalance(env, &sds, busiest, local) > 1) 11436 goto force_balance; 11437 11438 if (busiest->group_type != group_overloaded) { 11439 if (!env->idle) { 11440 /* 11441 * If the busiest group is not overloaded (and as a 11442 * result the local one too) but this CPU is already 11443 * busy, let another idle CPU try to pull task. 11444 */ 11445 goto out_balanced; 11446 } 11447 11448 if (busiest->group_type == group_smt_balance && 11449 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11450 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11451 goto force_balance; 11452 } 11453 11454 if (busiest->group_weight > 1 && 11455 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11456 /* 11457 * If the busiest group is not overloaded 11458 * and there is no imbalance between this and busiest 11459 * group wrt idle CPUs, it is balanced. The imbalance 11460 * becomes significant if the diff is greater than 1 11461 * otherwise we might end up to just move the imbalance 11462 * on another group. Of course this applies only if 11463 * there is more than 1 CPU per group. 11464 */ 11465 goto out_balanced; 11466 } 11467 11468 if (busiest->sum_h_nr_running == 1) { 11469 /* 11470 * busiest doesn't have any tasks waiting to run 11471 */ 11472 goto out_balanced; 11473 } 11474 } 11475 11476 force_balance: 11477 /* Looks like there is an imbalance. Compute it */ 11478 calculate_imbalance(env, &sds); 11479 return env->imbalance ? sds.busiest : NULL; 11480 11481 out_balanced: 11482 env->imbalance = 0; 11483 return NULL; 11484 } 11485 11486 /* 11487 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11488 */ 11489 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11490 struct sched_group *group) 11491 { 11492 struct rq *busiest = NULL, *rq; 11493 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11494 unsigned int busiest_nr = 0; 11495 int i; 11496 11497 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11498 unsigned long capacity, load, util; 11499 unsigned int nr_running; 11500 enum fbq_type rt; 11501 11502 rq = cpu_rq(i); 11503 rt = fbq_classify_rq(rq); 11504 11505 /* 11506 * We classify groups/runqueues into three groups: 11507 * - regular: there are !numa tasks 11508 * - remote: there are numa tasks that run on the 'wrong' node 11509 * - all: there is no distinction 11510 * 11511 * In order to avoid migrating ideally placed numa tasks, 11512 * ignore those when there's better options. 11513 * 11514 * If we ignore the actual busiest queue to migrate another 11515 * task, the next balance pass can still reduce the busiest 11516 * queue by moving tasks around inside the node. 11517 * 11518 * If we cannot move enough load due to this classification 11519 * the next pass will adjust the group classification and 11520 * allow migration of more tasks. 11521 * 11522 * Both cases only affect the total convergence complexity. 11523 */ 11524 if (rt > env->fbq_type) 11525 continue; 11526 11527 nr_running = rq->cfs.h_nr_runnable; 11528 if (!nr_running) 11529 continue; 11530 11531 capacity = capacity_of(i); 11532 11533 /* 11534 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11535 * eventually lead to active_balancing high->low capacity. 11536 * Higher per-CPU capacity is considered better than balancing 11537 * average load. 11538 */ 11539 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11540 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11541 nr_running == 1) 11542 continue; 11543 11544 /* 11545 * Make sure we only pull tasks from a CPU of lower priority 11546 * when balancing between SMT siblings. 11547 * 11548 * If balancing between cores, let lower priority CPUs help 11549 * SMT cores with more than one busy sibling. 11550 */ 11551 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11552 continue; 11553 11554 switch (env->migration_type) { 11555 case migrate_load: 11556 /* 11557 * When comparing with load imbalance, use cpu_load() 11558 * which is not scaled with the CPU capacity. 11559 */ 11560 load = cpu_load(rq); 11561 11562 if (nr_running == 1 && load > env->imbalance && 11563 !check_cpu_capacity(rq, env->sd)) 11564 break; 11565 11566 /* 11567 * For the load comparisons with the other CPUs, 11568 * consider the cpu_load() scaled with the CPU 11569 * capacity, so that the load can be moved away 11570 * from the CPU that is potentially running at a 11571 * lower capacity. 11572 * 11573 * Thus we're looking for max(load_i / capacity_i), 11574 * crosswise multiplication to rid ourselves of the 11575 * division works out to: 11576 * load_i * capacity_j > load_j * capacity_i; 11577 * where j is our previous maximum. 11578 */ 11579 if (load * busiest_capacity > busiest_load * capacity) { 11580 busiest_load = load; 11581 busiest_capacity = capacity; 11582 busiest = rq; 11583 } 11584 break; 11585 11586 case migrate_util: 11587 util = cpu_util_cfs_boost(i); 11588 11589 /* 11590 * Don't try to pull utilization from a CPU with one 11591 * running task. Whatever its utilization, we will fail 11592 * detach the task. 11593 */ 11594 if (nr_running <= 1) 11595 continue; 11596 11597 if (busiest_util < util) { 11598 busiest_util = util; 11599 busiest = rq; 11600 } 11601 break; 11602 11603 case migrate_task: 11604 if (busiest_nr < nr_running) { 11605 busiest_nr = nr_running; 11606 busiest = rq; 11607 } 11608 break; 11609 11610 case migrate_misfit: 11611 /* 11612 * For ASYM_CPUCAPACITY domains with misfit tasks we 11613 * simply seek the "biggest" misfit task. 11614 */ 11615 if (rq->misfit_task_load > busiest_load) { 11616 busiest_load = rq->misfit_task_load; 11617 busiest = rq; 11618 } 11619 11620 break; 11621 11622 } 11623 } 11624 11625 return busiest; 11626 } 11627 11628 /* 11629 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11630 * so long as it is large enough. 11631 */ 11632 #define MAX_PINNED_INTERVAL 512 11633 11634 static inline bool 11635 asym_active_balance(struct lb_env *env) 11636 { 11637 /* 11638 * ASYM_PACKING needs to force migrate tasks from busy but lower 11639 * priority CPUs in order to pack all tasks in the highest priority 11640 * CPUs. When done between cores, do it only if the whole core if the 11641 * whole core is idle. 11642 * 11643 * If @env::src_cpu is an SMT core with busy siblings, let 11644 * the lower priority @env::dst_cpu help it. Do not follow 11645 * CPU priority. 11646 */ 11647 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11648 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11649 !sched_use_asym_prio(env->sd, env->src_cpu)); 11650 } 11651 11652 static inline bool 11653 imbalanced_active_balance(struct lb_env *env) 11654 { 11655 struct sched_domain *sd = env->sd; 11656 11657 /* 11658 * The imbalanced case includes the case of pinned tasks preventing a fair 11659 * distribution of the load on the system but also the even distribution of the 11660 * threads on a system with spare capacity 11661 */ 11662 if ((env->migration_type == migrate_task) && 11663 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11664 return 1; 11665 11666 return 0; 11667 } 11668 11669 static int need_active_balance(struct lb_env *env) 11670 { 11671 struct sched_domain *sd = env->sd; 11672 11673 if (asym_active_balance(env)) 11674 return 1; 11675 11676 if (imbalanced_active_balance(env)) 11677 return 1; 11678 11679 /* 11680 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11681 * It's worth migrating the task if the src_cpu's capacity is reduced 11682 * because of other sched_class or IRQs if more capacity stays 11683 * available on dst_cpu. 11684 */ 11685 if (env->idle && 11686 (env->src_rq->cfs.h_nr_runnable == 1)) { 11687 if ((check_cpu_capacity(env->src_rq, sd)) && 11688 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11689 return 1; 11690 } 11691 11692 if (env->migration_type == migrate_misfit) 11693 return 1; 11694 11695 return 0; 11696 } 11697 11698 static int active_load_balance_cpu_stop(void *data); 11699 11700 static int should_we_balance(struct lb_env *env) 11701 { 11702 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11703 struct sched_group *sg = env->sd->groups; 11704 int cpu, idle_smt = -1; 11705 11706 /* 11707 * Ensure the balancing environment is consistent; can happen 11708 * when the softirq triggers 'during' hotplug. 11709 */ 11710 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11711 return 0; 11712 11713 /* 11714 * In the newly idle case, we will allow all the CPUs 11715 * to do the newly idle load balance. 11716 * 11717 * However, we bail out if we already have tasks or a wakeup pending, 11718 * to optimize wakeup latency. 11719 */ 11720 if (env->idle == CPU_NEWLY_IDLE) { 11721 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11722 return 0; 11723 return 1; 11724 } 11725 11726 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11727 /* Try to find first idle CPU */ 11728 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11729 if (!idle_cpu(cpu)) 11730 continue; 11731 11732 /* 11733 * Don't balance to idle SMT in busy core right away when 11734 * balancing cores, but remember the first idle SMT CPU for 11735 * later consideration. Find CPU on an idle core first. 11736 */ 11737 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11738 if (idle_smt == -1) 11739 idle_smt = cpu; 11740 /* 11741 * If the core is not idle, and first SMT sibling which is 11742 * idle has been found, then its not needed to check other 11743 * SMT siblings for idleness: 11744 */ 11745 #ifdef CONFIG_SCHED_SMT 11746 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11747 #endif 11748 continue; 11749 } 11750 11751 /* 11752 * Are we the first idle core in a non-SMT domain or higher, 11753 * or the first idle CPU in a SMT domain? 11754 */ 11755 return cpu == env->dst_cpu; 11756 } 11757 11758 /* Are we the first idle CPU with busy siblings? */ 11759 if (idle_smt != -1) 11760 return idle_smt == env->dst_cpu; 11761 11762 /* Are we the first CPU of this group ? */ 11763 return group_balance_cpu(sg) == env->dst_cpu; 11764 } 11765 11766 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11767 enum cpu_idle_type idle) 11768 { 11769 if (!schedstat_enabled()) 11770 return; 11771 11772 switch (env->migration_type) { 11773 case migrate_load: 11774 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11775 break; 11776 case migrate_util: 11777 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11778 break; 11779 case migrate_task: 11780 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11781 break; 11782 case migrate_misfit: 11783 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11784 break; 11785 } 11786 } 11787 11788 /* 11789 * This flag serializes load-balancing passes over large domains 11790 * (above the NODE topology level) - only one load-balancing instance 11791 * may run at a time, to reduce overhead on very large systems with 11792 * lots of CPUs and large NUMA distances. 11793 * 11794 * - Note that load-balancing passes triggered while another one 11795 * is executing are skipped and not re-tried. 11796 * 11797 * - Also note that this does not serialize rebalance_domains() 11798 * execution, as non-SD_SERIALIZE domains will still be 11799 * load-balanced in parallel. 11800 */ 11801 static atomic_t sched_balance_running = ATOMIC_INIT(0); 11802 11803 /* 11804 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11805 * tasks if there is an imbalance. 11806 */ 11807 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11808 struct sched_domain *sd, enum cpu_idle_type idle, 11809 int *continue_balancing) 11810 { 11811 int ld_moved, cur_ld_moved, active_balance = 0; 11812 struct sched_domain *sd_parent = sd->parent; 11813 struct sched_group *group; 11814 struct rq *busiest; 11815 struct rq_flags rf; 11816 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11817 struct lb_env env = { 11818 .sd = sd, 11819 .dst_cpu = this_cpu, 11820 .dst_rq = this_rq, 11821 .dst_grpmask = group_balance_mask(sd->groups), 11822 .idle = idle, 11823 .loop_break = SCHED_NR_MIGRATE_BREAK, 11824 .cpus = cpus, 11825 .fbq_type = all, 11826 .tasks = LIST_HEAD_INIT(env.tasks), 11827 }; 11828 bool need_unlock = false; 11829 11830 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11831 11832 schedstat_inc(sd->lb_count[idle]); 11833 11834 redo: 11835 if (!should_we_balance(&env)) { 11836 *continue_balancing = 0; 11837 goto out_balanced; 11838 } 11839 11840 if (!need_unlock && (sd->flags & SD_SERIALIZE)) { 11841 int zero = 0; 11842 if (!atomic_try_cmpxchg_acquire(&sched_balance_running, &zero, 1)) 11843 goto out_balanced; 11844 11845 need_unlock = true; 11846 } 11847 11848 group = sched_balance_find_src_group(&env); 11849 if (!group) { 11850 schedstat_inc(sd->lb_nobusyg[idle]); 11851 goto out_balanced; 11852 } 11853 11854 busiest = sched_balance_find_src_rq(&env, group); 11855 if (!busiest) { 11856 schedstat_inc(sd->lb_nobusyq[idle]); 11857 goto out_balanced; 11858 } 11859 11860 WARN_ON_ONCE(busiest == env.dst_rq); 11861 11862 update_lb_imbalance_stat(&env, sd, idle); 11863 11864 env.src_cpu = busiest->cpu; 11865 env.src_rq = busiest; 11866 11867 ld_moved = 0; 11868 /* Clear this flag as soon as we find a pullable task */ 11869 env.flags |= LBF_ALL_PINNED; 11870 if (busiest->nr_running > 1) { 11871 /* 11872 * Attempt to move tasks. If sched_balance_find_src_group has found 11873 * an imbalance but busiest->nr_running <= 1, the group is 11874 * still unbalanced. ld_moved simply stays zero, so it is 11875 * correctly treated as an imbalance. 11876 */ 11877 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11878 11879 more_balance: 11880 rq_lock_irqsave(busiest, &rf); 11881 update_rq_clock(busiest); 11882 11883 /* 11884 * cur_ld_moved - load moved in current iteration 11885 * ld_moved - cumulative load moved across iterations 11886 */ 11887 cur_ld_moved = detach_tasks(&env); 11888 11889 /* 11890 * We've detached some tasks from busiest_rq. Every 11891 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11892 * unlock busiest->lock, and we are able to be sure 11893 * that nobody can manipulate the tasks in parallel. 11894 * See task_rq_lock() family for the details. 11895 */ 11896 11897 rq_unlock(busiest, &rf); 11898 11899 if (cur_ld_moved) { 11900 attach_tasks(&env); 11901 ld_moved += cur_ld_moved; 11902 } 11903 11904 local_irq_restore(rf.flags); 11905 11906 if (env.flags & LBF_NEED_BREAK) { 11907 env.flags &= ~LBF_NEED_BREAK; 11908 goto more_balance; 11909 } 11910 11911 /* 11912 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11913 * us and move them to an alternate dst_cpu in our sched_group 11914 * where they can run. The upper limit on how many times we 11915 * iterate on same src_cpu is dependent on number of CPUs in our 11916 * sched_group. 11917 * 11918 * This changes load balance semantics a bit on who can move 11919 * load to a given_cpu. In addition to the given_cpu itself 11920 * (or a ilb_cpu acting on its behalf where given_cpu is 11921 * nohz-idle), we now have balance_cpu in a position to move 11922 * load to given_cpu. In rare situations, this may cause 11923 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11924 * _independently_ and at _same_ time to move some load to 11925 * given_cpu) causing excess load to be moved to given_cpu. 11926 * This however should not happen so much in practice and 11927 * moreover subsequent load balance cycles should correct the 11928 * excess load moved. 11929 */ 11930 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11931 11932 /* Prevent to re-select dst_cpu via env's CPUs */ 11933 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11934 11935 env.dst_rq = cpu_rq(env.new_dst_cpu); 11936 env.dst_cpu = env.new_dst_cpu; 11937 env.flags &= ~LBF_DST_PINNED; 11938 env.loop = 0; 11939 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11940 11941 /* 11942 * Go back to "more_balance" rather than "redo" since we 11943 * need to continue with same src_cpu. 11944 */ 11945 goto more_balance; 11946 } 11947 11948 /* 11949 * We failed to reach balance because of affinity. 11950 */ 11951 if (sd_parent) { 11952 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11953 11954 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11955 *group_imbalance = 1; 11956 } 11957 11958 /* All tasks on this runqueue were pinned by CPU affinity */ 11959 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11960 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11961 /* 11962 * Attempting to continue load balancing at the current 11963 * sched_domain level only makes sense if there are 11964 * active CPUs remaining as possible busiest CPUs to 11965 * pull load from which are not contained within the 11966 * destination group that is receiving any migrated 11967 * load. 11968 */ 11969 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11970 env.loop = 0; 11971 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11972 goto redo; 11973 } 11974 goto out_all_pinned; 11975 } 11976 } 11977 11978 if (!ld_moved) { 11979 schedstat_inc(sd->lb_failed[idle]); 11980 /* 11981 * Increment the failure counter only on periodic balance. 11982 * We do not want newidle balance, which can be very 11983 * frequent, pollute the failure counter causing 11984 * excessive cache_hot migrations and active balances. 11985 * 11986 * Similarly for migration_misfit which is not related to 11987 * load/util migration, don't pollute nr_balance_failed. 11988 */ 11989 if (idle != CPU_NEWLY_IDLE && 11990 env.migration_type != migrate_misfit) 11991 sd->nr_balance_failed++; 11992 11993 if (need_active_balance(&env)) { 11994 unsigned long flags; 11995 11996 raw_spin_rq_lock_irqsave(busiest, flags); 11997 11998 /* 11999 * Don't kick the active_load_balance_cpu_stop, 12000 * if the curr task on busiest CPU can't be 12001 * moved to this_cpu: 12002 */ 12003 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 12004 raw_spin_rq_unlock_irqrestore(busiest, flags); 12005 goto out_one_pinned; 12006 } 12007 12008 /* Record that we found at least one task that could run on this_cpu */ 12009 env.flags &= ~LBF_ALL_PINNED; 12010 12011 /* 12012 * ->active_balance synchronizes accesses to 12013 * ->active_balance_work. Once set, it's cleared 12014 * only after active load balance is finished. 12015 */ 12016 if (!busiest->active_balance) { 12017 busiest->active_balance = 1; 12018 busiest->push_cpu = this_cpu; 12019 active_balance = 1; 12020 } 12021 12022 preempt_disable(); 12023 raw_spin_rq_unlock_irqrestore(busiest, flags); 12024 if (active_balance) { 12025 stop_one_cpu_nowait(cpu_of(busiest), 12026 active_load_balance_cpu_stop, busiest, 12027 &busiest->active_balance_work); 12028 } 12029 preempt_enable(); 12030 } 12031 } else { 12032 sd->nr_balance_failed = 0; 12033 } 12034 12035 if (likely(!active_balance) || need_active_balance(&env)) { 12036 /* We were unbalanced, so reset the balancing interval */ 12037 sd->balance_interval = sd->min_interval; 12038 } 12039 12040 goto out; 12041 12042 out_balanced: 12043 /* 12044 * We reach balance although we may have faced some affinity 12045 * constraints. Clear the imbalance flag only if other tasks got 12046 * a chance to move and fix the imbalance. 12047 */ 12048 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 12049 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 12050 12051 if (*group_imbalance) 12052 *group_imbalance = 0; 12053 } 12054 12055 out_all_pinned: 12056 /* 12057 * We reach balance because all tasks are pinned at this level so 12058 * we can't migrate them. Let the imbalance flag set so parent level 12059 * can try to migrate them. 12060 */ 12061 schedstat_inc(sd->lb_balanced[idle]); 12062 12063 sd->nr_balance_failed = 0; 12064 12065 out_one_pinned: 12066 ld_moved = 0; 12067 12068 /* 12069 * sched_balance_newidle() disregards balance intervals, so we could 12070 * repeatedly reach this code, which would lead to balance_interval 12071 * skyrocketing in a short amount of time. Skip the balance_interval 12072 * increase logic to avoid that. 12073 * 12074 * Similarly misfit migration which is not necessarily an indication of 12075 * the system being busy and requires lb to backoff to let it settle 12076 * down. 12077 */ 12078 if (env.idle == CPU_NEWLY_IDLE || 12079 env.migration_type == migrate_misfit) 12080 goto out; 12081 12082 /* tune up the balancing interval */ 12083 if ((env.flags & LBF_ALL_PINNED && 12084 sd->balance_interval < MAX_PINNED_INTERVAL) || 12085 sd->balance_interval < sd->max_interval) 12086 sd->balance_interval *= 2; 12087 out: 12088 if (need_unlock) 12089 atomic_set_release(&sched_balance_running, 0); 12090 12091 return ld_moved; 12092 } 12093 12094 static inline unsigned long 12095 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 12096 { 12097 unsigned long interval = sd->balance_interval; 12098 12099 if (cpu_busy) 12100 interval *= sd->busy_factor; 12101 12102 /* scale ms to jiffies */ 12103 interval = msecs_to_jiffies(interval); 12104 12105 /* 12106 * Reduce likelihood of busy balancing at higher domains racing with 12107 * balancing at lower domains by preventing their balancing periods 12108 * from being multiples of each other. 12109 */ 12110 if (cpu_busy) 12111 interval -= 1; 12112 12113 interval = clamp(interval, 1UL, max_load_balance_interval); 12114 12115 return interval; 12116 } 12117 12118 static inline void 12119 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12120 { 12121 unsigned long interval, next; 12122 12123 /* used by idle balance, so cpu_busy = 0 */ 12124 interval = get_sd_balance_interval(sd, 0); 12125 next = sd->last_balance + interval; 12126 12127 if (time_after(*next_balance, next)) 12128 *next_balance = next; 12129 } 12130 12131 /* 12132 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12133 * running tasks off the busiest CPU onto idle CPUs. It requires at 12134 * least 1 task to be running on each physical CPU where possible, and 12135 * avoids physical / logical imbalances. 12136 */ 12137 static int active_load_balance_cpu_stop(void *data) 12138 { 12139 struct rq *busiest_rq = data; 12140 int busiest_cpu = cpu_of(busiest_rq); 12141 int target_cpu = busiest_rq->push_cpu; 12142 struct rq *target_rq = cpu_rq(target_cpu); 12143 struct sched_domain *sd; 12144 struct task_struct *p = NULL; 12145 struct rq_flags rf; 12146 12147 rq_lock_irq(busiest_rq, &rf); 12148 /* 12149 * Between queueing the stop-work and running it is a hole in which 12150 * CPUs can become inactive. We should not move tasks from or to 12151 * inactive CPUs. 12152 */ 12153 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12154 goto out_unlock; 12155 12156 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12157 if (unlikely(busiest_cpu != smp_processor_id() || 12158 !busiest_rq->active_balance)) 12159 goto out_unlock; 12160 12161 /* Is there any task to move? */ 12162 if (busiest_rq->nr_running <= 1) 12163 goto out_unlock; 12164 12165 /* 12166 * This condition is "impossible", if it occurs 12167 * we need to fix it. Originally reported by 12168 * Bjorn Helgaas on a 128-CPU setup. 12169 */ 12170 WARN_ON_ONCE(busiest_rq == target_rq); 12171 12172 /* Search for an sd spanning us and the target CPU. */ 12173 rcu_read_lock(); 12174 for_each_domain(target_cpu, sd) { 12175 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12176 break; 12177 } 12178 12179 if (likely(sd)) { 12180 struct lb_env env = { 12181 .sd = sd, 12182 .dst_cpu = target_cpu, 12183 .dst_rq = target_rq, 12184 .src_cpu = busiest_rq->cpu, 12185 .src_rq = busiest_rq, 12186 .idle = CPU_IDLE, 12187 .flags = LBF_ACTIVE_LB, 12188 }; 12189 12190 schedstat_inc(sd->alb_count); 12191 update_rq_clock(busiest_rq); 12192 12193 p = detach_one_task(&env); 12194 if (p) { 12195 schedstat_inc(sd->alb_pushed); 12196 /* Active balancing done, reset the failure counter. */ 12197 sd->nr_balance_failed = 0; 12198 } else { 12199 schedstat_inc(sd->alb_failed); 12200 } 12201 } 12202 rcu_read_unlock(); 12203 out_unlock: 12204 busiest_rq->active_balance = 0; 12205 rq_unlock(busiest_rq, &rf); 12206 12207 if (p) 12208 attach_one_task(target_rq, p); 12209 12210 local_irq_enable(); 12211 12212 return 0; 12213 } 12214 12215 /* 12216 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12217 * This trades load-balance latency on larger machines for less cross talk. 12218 */ 12219 void update_max_interval(void) 12220 { 12221 max_load_balance_interval = HZ*num_online_cpus()/10; 12222 } 12223 12224 static inline void update_newidle_stats(struct sched_domain *sd, unsigned int success) 12225 { 12226 sd->newidle_call++; 12227 sd->newidle_success += success; 12228 12229 if (sd->newidle_call >= 1024) { 12230 sd->newidle_ratio = sd->newidle_success; 12231 sd->newidle_call /= 2; 12232 sd->newidle_success /= 2; 12233 } 12234 } 12235 12236 static inline bool 12237 update_newidle_cost(struct sched_domain *sd, u64 cost, unsigned int success) 12238 { 12239 unsigned long next_decay = sd->last_decay_max_lb_cost + HZ; 12240 unsigned long now = jiffies; 12241 12242 if (cost) 12243 update_newidle_stats(sd, success); 12244 12245 if (cost > sd->max_newidle_lb_cost) { 12246 /* 12247 * Track max cost of a domain to make sure to not delay the 12248 * next wakeup on the CPU. 12249 */ 12250 sd->max_newidle_lb_cost = cost; 12251 sd->last_decay_max_lb_cost = now; 12252 12253 } else if (time_after(now, next_decay)) { 12254 /* 12255 * Decay the newidle max times by ~1% per second to ensure that 12256 * it is not outdated and the current max cost is actually 12257 * shorter. 12258 */ 12259 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12260 sd->last_decay_max_lb_cost = now; 12261 return true; 12262 } 12263 12264 return false; 12265 } 12266 12267 /* 12268 * It checks each scheduling domain to see if it is due to be balanced, 12269 * and initiates a balancing operation if so. 12270 * 12271 * Balancing parameters are set up in init_sched_domains. 12272 */ 12273 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12274 { 12275 int continue_balancing = 1; 12276 int cpu = rq->cpu; 12277 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12278 unsigned long interval; 12279 struct sched_domain *sd; 12280 /* Earliest time when we have to do rebalance again */ 12281 unsigned long next_balance = jiffies + 60*HZ; 12282 int update_next_balance = 0; 12283 int need_decay = 0; 12284 u64 max_cost = 0; 12285 12286 rcu_read_lock(); 12287 for_each_domain(cpu, sd) { 12288 /* 12289 * Decay the newidle max times here because this is a regular 12290 * visit to all the domains. 12291 */ 12292 need_decay = update_newidle_cost(sd, 0, 0); 12293 max_cost += sd->max_newidle_lb_cost; 12294 12295 /* 12296 * Stop the load balance at this level. There is another 12297 * CPU in our sched group which is doing load balancing more 12298 * actively. 12299 */ 12300 if (!continue_balancing) { 12301 if (need_decay) 12302 continue; 12303 break; 12304 } 12305 12306 interval = get_sd_balance_interval(sd, busy); 12307 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12308 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12309 /* 12310 * The LBF_DST_PINNED logic could have changed 12311 * env->dst_cpu, so we can't know our idle 12312 * state even if we migrated tasks. Update it. 12313 */ 12314 idle = idle_cpu(cpu); 12315 busy = !idle && !sched_idle_cpu(cpu); 12316 } 12317 sd->last_balance = jiffies; 12318 interval = get_sd_balance_interval(sd, busy); 12319 } 12320 if (time_after(next_balance, sd->last_balance + interval)) { 12321 next_balance = sd->last_balance + interval; 12322 update_next_balance = 1; 12323 } 12324 } 12325 if (need_decay) { 12326 /* 12327 * Ensure the rq-wide value also decays but keep it at a 12328 * reasonable floor to avoid funnies with rq->avg_idle. 12329 */ 12330 rq->max_idle_balance_cost = 12331 max((u64)sysctl_sched_migration_cost, max_cost); 12332 } 12333 rcu_read_unlock(); 12334 12335 /* 12336 * next_balance will be updated only when there is a need. 12337 * When the cpu is attached to null domain for ex, it will not be 12338 * updated. 12339 */ 12340 if (likely(update_next_balance)) 12341 rq->next_balance = next_balance; 12342 12343 } 12344 12345 static inline int on_null_domain(struct rq *rq) 12346 { 12347 return unlikely(!rcu_dereference_sched(rq->sd)); 12348 } 12349 12350 #ifdef CONFIG_NO_HZ_COMMON 12351 /* 12352 * NOHZ idle load balancing (ILB) details: 12353 * 12354 * - When one of the busy CPUs notices that there may be an idle rebalancing 12355 * needed, they will kick the idle load balancer, which then does idle 12356 * load balancing for all the idle CPUs. 12357 */ 12358 static inline int find_new_ilb(void) 12359 { 12360 const struct cpumask *hk_mask; 12361 int ilb_cpu; 12362 12363 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12364 12365 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12366 12367 if (ilb_cpu == smp_processor_id()) 12368 continue; 12369 12370 if (idle_cpu(ilb_cpu)) 12371 return ilb_cpu; 12372 } 12373 12374 return -1; 12375 } 12376 12377 /* 12378 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12379 * SMP function call (IPI). 12380 * 12381 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12382 * (if there is one). 12383 */ 12384 static void kick_ilb(unsigned int flags) 12385 { 12386 int ilb_cpu; 12387 12388 /* 12389 * Increase nohz.next_balance only when if full ilb is triggered but 12390 * not if we only update stats. 12391 */ 12392 if (flags & NOHZ_BALANCE_KICK) 12393 nohz.next_balance = jiffies+1; 12394 12395 ilb_cpu = find_new_ilb(); 12396 if (ilb_cpu < 0) 12397 return; 12398 12399 /* 12400 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12401 * i.e. all bits in flags are already set in ilb_cpu. 12402 */ 12403 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12404 return; 12405 12406 /* 12407 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12408 * the first flag owns it; cleared by nohz_csd_func(). 12409 */ 12410 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12411 if (flags & NOHZ_KICK_MASK) 12412 return; 12413 12414 /* 12415 * This way we generate an IPI on the target CPU which 12416 * is idle, and the softirq performing NOHZ idle load balancing 12417 * will be run before returning from the IPI. 12418 */ 12419 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12420 } 12421 12422 /* 12423 * Current decision point for kicking the idle load balancer in the presence 12424 * of idle CPUs in the system. 12425 */ 12426 static void nohz_balancer_kick(struct rq *rq) 12427 { 12428 unsigned long now = jiffies; 12429 struct sched_domain_shared *sds; 12430 struct sched_domain *sd; 12431 int nr_busy, i, cpu = rq->cpu; 12432 unsigned int flags = 0; 12433 12434 if (unlikely(rq->idle_balance)) 12435 return; 12436 12437 /* 12438 * We may be recently in ticked or tickless idle mode. At the first 12439 * busy tick after returning from idle, we will update the busy stats. 12440 */ 12441 nohz_balance_exit_idle(rq); 12442 12443 /* 12444 * None are in tickless mode and hence no need for NOHZ idle load 12445 * balancing: 12446 */ 12447 if (likely(!atomic_read(&nohz.nr_cpus))) 12448 return; 12449 12450 if (READ_ONCE(nohz.has_blocked) && 12451 time_after(now, READ_ONCE(nohz.next_blocked))) 12452 flags = NOHZ_STATS_KICK; 12453 12454 if (time_before(now, nohz.next_balance)) 12455 goto out; 12456 12457 if (rq->nr_running >= 2) { 12458 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12459 goto out; 12460 } 12461 12462 rcu_read_lock(); 12463 12464 sd = rcu_dereference(rq->sd); 12465 if (sd) { 12466 /* 12467 * If there's a runnable CFS task and the current CPU has reduced 12468 * capacity, kick the ILB to see if there's a better CPU to run on: 12469 */ 12470 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12471 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12472 goto unlock; 12473 } 12474 } 12475 12476 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12477 if (sd) { 12478 /* 12479 * When ASYM_PACKING; see if there's a more preferred CPU 12480 * currently idle; in which case, kick the ILB to move tasks 12481 * around. 12482 * 12483 * When balancing between cores, all the SMT siblings of the 12484 * preferred CPU must be idle. 12485 */ 12486 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12487 if (sched_asym(sd, i, cpu)) { 12488 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12489 goto unlock; 12490 } 12491 } 12492 } 12493 12494 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12495 if (sd) { 12496 /* 12497 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12498 * to run the misfit task on. 12499 */ 12500 if (check_misfit_status(rq)) { 12501 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12502 goto unlock; 12503 } 12504 12505 /* 12506 * For asymmetric systems, we do not want to nicely balance 12507 * cache use, instead we want to embrace asymmetry and only 12508 * ensure tasks have enough CPU capacity. 12509 * 12510 * Skip the LLC logic because it's not relevant in that case. 12511 */ 12512 goto unlock; 12513 } 12514 12515 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12516 if (sds) { 12517 /* 12518 * If there is an imbalance between LLC domains (IOW we could 12519 * increase the overall cache utilization), we need a less-loaded LLC 12520 * domain to pull some load from. Likewise, we may need to spread 12521 * load within the current LLC domain (e.g. packed SMT cores but 12522 * other CPUs are idle). We can't really know from here how busy 12523 * the others are - so just get a NOHZ balance going if it looks 12524 * like this LLC domain has tasks we could move. 12525 */ 12526 nr_busy = atomic_read(&sds->nr_busy_cpus); 12527 if (nr_busy > 1) { 12528 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12529 goto unlock; 12530 } 12531 } 12532 unlock: 12533 rcu_read_unlock(); 12534 out: 12535 if (READ_ONCE(nohz.needs_update)) 12536 flags |= NOHZ_NEXT_KICK; 12537 12538 if (flags) 12539 kick_ilb(flags); 12540 } 12541 12542 static void set_cpu_sd_state_busy(int cpu) 12543 { 12544 struct sched_domain *sd; 12545 12546 rcu_read_lock(); 12547 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12548 12549 if (!sd || !sd->nohz_idle) 12550 goto unlock; 12551 sd->nohz_idle = 0; 12552 12553 atomic_inc(&sd->shared->nr_busy_cpus); 12554 unlock: 12555 rcu_read_unlock(); 12556 } 12557 12558 void nohz_balance_exit_idle(struct rq *rq) 12559 { 12560 WARN_ON_ONCE(rq != this_rq()); 12561 12562 if (likely(!rq->nohz_tick_stopped)) 12563 return; 12564 12565 rq->nohz_tick_stopped = 0; 12566 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12567 atomic_dec(&nohz.nr_cpus); 12568 12569 set_cpu_sd_state_busy(rq->cpu); 12570 } 12571 12572 static void set_cpu_sd_state_idle(int cpu) 12573 { 12574 struct sched_domain *sd; 12575 12576 rcu_read_lock(); 12577 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12578 12579 if (!sd || sd->nohz_idle) 12580 goto unlock; 12581 sd->nohz_idle = 1; 12582 12583 atomic_dec(&sd->shared->nr_busy_cpus); 12584 unlock: 12585 rcu_read_unlock(); 12586 } 12587 12588 /* 12589 * This routine will record that the CPU is going idle with tick stopped. 12590 * This info will be used in performing idle load balancing in the future. 12591 */ 12592 void nohz_balance_enter_idle(int cpu) 12593 { 12594 struct rq *rq = cpu_rq(cpu); 12595 12596 WARN_ON_ONCE(cpu != smp_processor_id()); 12597 12598 /* If this CPU is going down, then nothing needs to be done: */ 12599 if (!cpu_active(cpu)) 12600 return; 12601 12602 /* 12603 * Can be set safely without rq->lock held 12604 * If a clear happens, it will have evaluated last additions because 12605 * rq->lock is held during the check and the clear 12606 */ 12607 rq->has_blocked_load = 1; 12608 12609 /* 12610 * The tick is still stopped but load could have been added in the 12611 * meantime. We set the nohz.has_blocked flag to trig a check of the 12612 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12613 * of nohz.has_blocked can only happen after checking the new load 12614 */ 12615 if (rq->nohz_tick_stopped) 12616 goto out; 12617 12618 /* If we're a completely isolated CPU, we don't play: */ 12619 if (on_null_domain(rq)) 12620 return; 12621 12622 rq->nohz_tick_stopped = 1; 12623 12624 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12625 atomic_inc(&nohz.nr_cpus); 12626 12627 /* 12628 * Ensures that if nohz_idle_balance() fails to observe our 12629 * @idle_cpus_mask store, it must observe the @has_blocked 12630 * and @needs_update stores. 12631 */ 12632 smp_mb__after_atomic(); 12633 12634 set_cpu_sd_state_idle(cpu); 12635 12636 WRITE_ONCE(nohz.needs_update, 1); 12637 out: 12638 /* 12639 * Each time a cpu enter idle, we assume that it has blocked load and 12640 * enable the periodic update of the load of idle CPUs 12641 */ 12642 WRITE_ONCE(nohz.has_blocked, 1); 12643 } 12644 12645 static bool update_nohz_stats(struct rq *rq) 12646 { 12647 unsigned int cpu = rq->cpu; 12648 12649 if (!rq->has_blocked_load) 12650 return false; 12651 12652 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12653 return false; 12654 12655 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12656 return true; 12657 12658 sched_balance_update_blocked_averages(cpu); 12659 12660 return rq->has_blocked_load; 12661 } 12662 12663 /* 12664 * Internal function that runs load balance for all idle CPUs. The load balance 12665 * can be a simple update of blocked load or a complete load balance with 12666 * tasks movement depending of flags. 12667 */ 12668 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12669 { 12670 /* Earliest time when we have to do rebalance again */ 12671 unsigned long now = jiffies; 12672 unsigned long next_balance = now + 60*HZ; 12673 bool has_blocked_load = false; 12674 int update_next_balance = 0; 12675 int this_cpu = this_rq->cpu; 12676 int balance_cpu; 12677 struct rq *rq; 12678 12679 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12680 12681 /* 12682 * We assume there will be no idle load after this update and clear 12683 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12684 * set the has_blocked flag and trigger another update of idle load. 12685 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12686 * setting the flag, we are sure to not clear the state and not 12687 * check the load of an idle cpu. 12688 * 12689 * Same applies to idle_cpus_mask vs needs_update. 12690 */ 12691 if (flags & NOHZ_STATS_KICK) 12692 WRITE_ONCE(nohz.has_blocked, 0); 12693 if (flags & NOHZ_NEXT_KICK) 12694 WRITE_ONCE(nohz.needs_update, 0); 12695 12696 /* 12697 * Ensures that if we miss the CPU, we must see the has_blocked 12698 * store from nohz_balance_enter_idle(). 12699 */ 12700 smp_mb(); 12701 12702 /* 12703 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12704 * chance for other idle cpu to pull load. 12705 */ 12706 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12707 if (!idle_cpu(balance_cpu)) 12708 continue; 12709 12710 /* 12711 * If this CPU gets work to do, stop the load balancing 12712 * work being done for other CPUs. Next load 12713 * balancing owner will pick it up. 12714 */ 12715 if (!idle_cpu(this_cpu) && need_resched()) { 12716 if (flags & NOHZ_STATS_KICK) 12717 has_blocked_load = true; 12718 if (flags & NOHZ_NEXT_KICK) 12719 WRITE_ONCE(nohz.needs_update, 1); 12720 goto abort; 12721 } 12722 12723 rq = cpu_rq(balance_cpu); 12724 12725 if (flags & NOHZ_STATS_KICK) 12726 has_blocked_load |= update_nohz_stats(rq); 12727 12728 /* 12729 * If time for next balance is due, 12730 * do the balance. 12731 */ 12732 if (time_after_eq(jiffies, rq->next_balance)) { 12733 struct rq_flags rf; 12734 12735 rq_lock_irqsave(rq, &rf); 12736 update_rq_clock(rq); 12737 rq_unlock_irqrestore(rq, &rf); 12738 12739 if (flags & NOHZ_BALANCE_KICK) 12740 sched_balance_domains(rq, CPU_IDLE); 12741 } 12742 12743 if (time_after(next_balance, rq->next_balance)) { 12744 next_balance = rq->next_balance; 12745 update_next_balance = 1; 12746 } 12747 } 12748 12749 /* 12750 * next_balance will be updated only when there is a need. 12751 * When the CPU is attached to null domain for ex, it will not be 12752 * updated. 12753 */ 12754 if (likely(update_next_balance)) 12755 nohz.next_balance = next_balance; 12756 12757 if (flags & NOHZ_STATS_KICK) 12758 WRITE_ONCE(nohz.next_blocked, 12759 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12760 12761 abort: 12762 /* There is still blocked load, enable periodic update */ 12763 if (has_blocked_load) 12764 WRITE_ONCE(nohz.has_blocked, 1); 12765 } 12766 12767 /* 12768 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12769 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12770 */ 12771 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12772 { 12773 unsigned int flags = this_rq->nohz_idle_balance; 12774 12775 if (!flags) 12776 return false; 12777 12778 this_rq->nohz_idle_balance = 0; 12779 12780 if (idle != CPU_IDLE) 12781 return false; 12782 12783 _nohz_idle_balance(this_rq, flags); 12784 12785 return true; 12786 } 12787 12788 /* 12789 * Check if we need to directly run the ILB for updating blocked load before 12790 * entering idle state. Here we run ILB directly without issuing IPIs. 12791 * 12792 * Note that when this function is called, the tick may not yet be stopped on 12793 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12794 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12795 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12796 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12797 * called from this function on (this) CPU that's not yet in the mask. That's 12798 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12799 * updating the blocked load of already idle CPUs without waking up one of 12800 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12801 * cpu about to enter idle, because it can take a long time. 12802 */ 12803 void nohz_run_idle_balance(int cpu) 12804 { 12805 unsigned int flags; 12806 12807 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12808 12809 /* 12810 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12811 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12812 */ 12813 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12814 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12815 } 12816 12817 static void nohz_newidle_balance(struct rq *this_rq) 12818 { 12819 int this_cpu = this_rq->cpu; 12820 12821 /* Will wake up very soon. No time for doing anything else*/ 12822 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12823 return; 12824 12825 /* Don't need to update blocked load of idle CPUs*/ 12826 if (!READ_ONCE(nohz.has_blocked) || 12827 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12828 return; 12829 12830 /* 12831 * Set the need to trigger ILB in order to update blocked load 12832 * before entering idle state. 12833 */ 12834 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12835 } 12836 12837 #else /* !CONFIG_NO_HZ_COMMON: */ 12838 static inline void nohz_balancer_kick(struct rq *rq) { } 12839 12840 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12841 { 12842 return false; 12843 } 12844 12845 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12846 #endif /* !CONFIG_NO_HZ_COMMON */ 12847 12848 /* 12849 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12850 * idle. Attempts to pull tasks from other CPUs. 12851 * 12852 * Returns: 12853 * < 0 - we released the lock and there are !fair tasks present 12854 * 0 - failed, no new tasks 12855 * > 0 - success, new (fair) tasks present 12856 */ 12857 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12858 { 12859 unsigned long next_balance = jiffies + HZ; 12860 int this_cpu = this_rq->cpu; 12861 int continue_balancing = 1; 12862 u64 t0, t1, curr_cost = 0; 12863 struct sched_domain *sd; 12864 int pulled_task = 0; 12865 12866 update_misfit_status(NULL, this_rq); 12867 12868 /* 12869 * There is a task waiting to run. No need to search for one. 12870 * Return 0; the task will be enqueued when switching to idle. 12871 */ 12872 if (this_rq->ttwu_pending) 12873 return 0; 12874 12875 /* 12876 * We must set idle_stamp _before_ calling sched_balance_rq() 12877 * for CPU_NEWLY_IDLE, such that we measure the this duration 12878 * as idle time. 12879 */ 12880 this_rq->idle_stamp = rq_clock(this_rq); 12881 12882 /* 12883 * Do not pull tasks towards !active CPUs... 12884 */ 12885 if (!cpu_active(this_cpu)) 12886 return 0; 12887 12888 /* 12889 * This is OK, because current is on_cpu, which avoids it being picked 12890 * for load-balance and preemption/IRQs are still disabled avoiding 12891 * further scheduler activity on it and we're being very careful to 12892 * re-start the picking loop. 12893 */ 12894 rq_unpin_lock(this_rq, rf); 12895 12896 rcu_read_lock(); 12897 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12898 if (!sd) { 12899 rcu_read_unlock(); 12900 goto out; 12901 } 12902 12903 if (!get_rd_overloaded(this_rq->rd) || 12904 this_rq->avg_idle < sd->max_newidle_lb_cost) { 12905 12906 update_next_balance(sd, &next_balance); 12907 rcu_read_unlock(); 12908 goto out; 12909 } 12910 rcu_read_unlock(); 12911 12912 rq_modified_clear(this_rq); 12913 raw_spin_rq_unlock(this_rq); 12914 12915 t0 = sched_clock_cpu(this_cpu); 12916 sched_balance_update_blocked_averages(this_cpu); 12917 12918 rcu_read_lock(); 12919 for_each_domain(this_cpu, sd) { 12920 u64 domain_cost; 12921 12922 update_next_balance(sd, &next_balance); 12923 12924 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12925 break; 12926 12927 if (sd->flags & SD_BALANCE_NEWIDLE) { 12928 unsigned int weight = 1; 12929 12930 if (sched_feat(NI_RANDOM)) { 12931 /* 12932 * Throw a 1k sided dice; and only run 12933 * newidle_balance according to the success 12934 * rate. 12935 */ 12936 u32 d1k = sched_rng() % 1024; 12937 weight = 1 + sd->newidle_ratio; 12938 if (d1k > weight) { 12939 update_newidle_stats(sd, 0); 12940 continue; 12941 } 12942 weight = (1024 + weight/2) / weight; 12943 } 12944 12945 pulled_task = sched_balance_rq(this_cpu, this_rq, 12946 sd, CPU_NEWLY_IDLE, 12947 &continue_balancing); 12948 12949 t1 = sched_clock_cpu(this_cpu); 12950 domain_cost = t1 - t0; 12951 curr_cost += domain_cost; 12952 t0 = t1; 12953 12954 /* 12955 * Track max cost of a domain to make sure to not delay the 12956 * next wakeup on the CPU. 12957 */ 12958 update_newidle_cost(sd, domain_cost, weight * !!pulled_task); 12959 } 12960 12961 /* 12962 * Stop searching for tasks to pull if there are 12963 * now runnable tasks on this rq. 12964 */ 12965 if (pulled_task || !continue_balancing) 12966 break; 12967 } 12968 rcu_read_unlock(); 12969 12970 raw_spin_rq_lock(this_rq); 12971 12972 if (curr_cost > this_rq->max_idle_balance_cost) 12973 this_rq->max_idle_balance_cost = curr_cost; 12974 12975 /* 12976 * While browsing the domains, we released the rq lock, a task could 12977 * have been enqueued in the meantime. Since we're not going idle, 12978 * pretend we pulled a task. 12979 */ 12980 if (this_rq->cfs.h_nr_queued && !pulled_task) 12981 pulled_task = 1; 12982 12983 /* If a higher prio class was modified, restart the pick */ 12984 if (rq_modified_above(this_rq, &fair_sched_class)) 12985 pulled_task = -1; 12986 12987 out: 12988 /* Move the next balance forward */ 12989 if (time_after(this_rq->next_balance, next_balance)) 12990 this_rq->next_balance = next_balance; 12991 12992 if (pulled_task) 12993 this_rq->idle_stamp = 0; 12994 else 12995 nohz_newidle_balance(this_rq); 12996 12997 rq_repin_lock(this_rq, rf); 12998 12999 return pulled_task; 13000 } 13001 13002 /* 13003 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 13004 * 13005 * - directly from the local sched_tick() for periodic load balancing 13006 * 13007 * - indirectly from a remote sched_tick() for NOHZ idle balancing 13008 * through the SMP cross-call nohz_csd_func() 13009 */ 13010 static __latent_entropy void sched_balance_softirq(void) 13011 { 13012 struct rq *this_rq = this_rq(); 13013 enum cpu_idle_type idle = this_rq->idle_balance; 13014 /* 13015 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 13016 * balancing on behalf of the other idle CPUs whose ticks are 13017 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 13018 * give the idle CPUs a chance to load balance. Else we may 13019 * load balance only within the local sched_domain hierarchy 13020 * and abort nohz_idle_balance altogether if we pull some load. 13021 */ 13022 if (nohz_idle_balance(this_rq, idle)) 13023 return; 13024 13025 /* normal load balance */ 13026 sched_balance_update_blocked_averages(this_rq->cpu); 13027 sched_balance_domains(this_rq, idle); 13028 } 13029 13030 /* 13031 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 13032 */ 13033 void sched_balance_trigger(struct rq *rq) 13034 { 13035 /* 13036 * Don't need to rebalance while attached to NULL domain or 13037 * runqueue CPU is not active 13038 */ 13039 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 13040 return; 13041 13042 if (time_after_eq(jiffies, rq->next_balance)) 13043 raise_softirq(SCHED_SOFTIRQ); 13044 13045 nohz_balancer_kick(rq); 13046 } 13047 13048 static void rq_online_fair(struct rq *rq) 13049 { 13050 update_sysctl(); 13051 13052 update_runtime_enabled(rq); 13053 } 13054 13055 static void rq_offline_fair(struct rq *rq) 13056 { 13057 update_sysctl(); 13058 13059 /* Ensure any throttled groups are reachable by pick_next_task */ 13060 unthrottle_offline_cfs_rqs(rq); 13061 13062 /* Ensure that we remove rq contribution to group share: */ 13063 clear_tg_offline_cfs_rqs(rq); 13064 } 13065 13066 #ifdef CONFIG_SCHED_CORE 13067 static inline bool 13068 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 13069 { 13070 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 13071 u64 slice = se->slice; 13072 13073 return (rtime * min_nr_tasks > slice); 13074 } 13075 13076 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 13077 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 13078 { 13079 if (!sched_core_enabled(rq)) 13080 return; 13081 13082 /* 13083 * If runqueue has only one task which used up its slice and 13084 * if the sibling is forced idle, then trigger schedule to 13085 * give forced idle task a chance. 13086 * 13087 * sched_slice() considers only this active rq and it gets the 13088 * whole slice. But during force idle, we have siblings acting 13089 * like a single runqueue and hence we need to consider runnable 13090 * tasks on this CPU and the forced idle CPU. Ideally, we should 13091 * go through the forced idle rq, but that would be a perf hit. 13092 * We can assume that the forced idle CPU has at least 13093 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 13094 * if we need to give up the CPU. 13095 */ 13096 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 13097 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 13098 resched_curr(rq); 13099 } 13100 13101 /* 13102 * Consider any infeasible weight scenario. Take for instance two tasks, 13103 * each bound to their respective sibling, one with weight 1 and one with 13104 * weight 2. Then the lower weight task will run ahead of the higher weight 13105 * task without bound. 13106 * 13107 * This utterly destroys the concept of a shared time base. 13108 * 13109 * Remember; all this is about a proportionally fair scheduling, where each 13110 * tasks receives: 13111 * 13112 * w_i 13113 * dt_i = ---------- dt (1) 13114 * \Sum_j w_j 13115 * 13116 * which we do by tracking a virtual time, s_i: 13117 * 13118 * 1 13119 * s_i = --- d[t]_i (2) 13120 * w_i 13121 * 13122 * Where d[t] is a delta of discrete time, while dt is an infinitesimal. 13123 * The immediate corollary is that the ideal schedule S, where (2) to use 13124 * an infinitesimal delta, is: 13125 * 13126 * 1 13127 * S = ---------- dt (3) 13128 * \Sum_i w_i 13129 * 13130 * From which we can define the lag, or deviation from the ideal, as: 13131 * 13132 * lag(i) = S - s_i (4) 13133 * 13134 * And since the one and only purpose is to approximate S, we get that: 13135 * 13136 * \Sum_i w_i lag(i) := 0 (5) 13137 * 13138 * If this were not so, we no longer converge to S, and we can no longer 13139 * claim our scheduler has any of the properties we derive from S. This is 13140 * exactly what you did above, you broke it! 13141 * 13142 * 13143 * Let's continue for a while though; to see if there is anything useful to 13144 * be learned. We can combine (1)-(3) or (4)-(5) and express S in s_i: 13145 * 13146 * \Sum_i w_i s_i 13147 * S = -------------- (6) 13148 * \Sum_i w_i 13149 * 13150 * Which gives us a way to compute S, given our s_i. Now, if you've read 13151 * our code, you know that we do not in fact do this, the reason for this 13152 * is two-fold. Firstly, computing S in that way requires a 64bit division 13153 * for every time we'd use it (see 12), and secondly, this only describes 13154 * the steady-state, it doesn't handle dynamics. 13155 * 13156 * Anyway, in (6): s_i -> x + (s_i - x), to get: 13157 * 13158 * \Sum_i w_i (s_i - x) 13159 * S - x = -------------------- (7) 13160 * \Sum_i w_i 13161 * 13162 * Which shows that S and s_i transform alike (which makes perfect sense 13163 * given that S is basically the (weighted) average of s_i). 13164 * 13165 * So the thing to remember is that the above is strictly UP. It is 13166 * possible to generalize to multiple runqueues -- however it gets really 13167 * yuck when you have to add affinity support, as illustrated by our very 13168 * first counter-example. 13169 * 13170 * Luckily I think we can avoid needing a full multi-queue variant for 13171 * core-scheduling (or load-balancing). The crucial observation is that we 13172 * only actually need this comparison in the presence of forced-idle; only 13173 * then do we need to tell if the stalled rq has higher priority over the 13174 * other. 13175 * 13176 * [XXX assumes SMT2; better consider the more general case, I suspect 13177 * it'll work out because our comparison is always between 2 rqs and the 13178 * answer is only interesting if one of them is forced-idle] 13179 * 13180 * And (under assumption of SMT2) when there is forced-idle, there is only 13181 * a single queue, so everything works like normal. 13182 * 13183 * Let, for our runqueue 'k': 13184 * 13185 * T_k = \Sum_i w_i s_i 13186 * W_k = \Sum_i w_i ; for all i of k (8) 13187 * 13188 * Then we can write (6) like: 13189 * 13190 * T_k 13191 * S_k = --- (9) 13192 * W_k 13193 * 13194 * From which immediately follows that: 13195 * 13196 * T_k + T_l 13197 * S_k+l = --------- (10) 13198 * W_k + W_l 13199 * 13200 * On which we can define a combined lag: 13201 * 13202 * lag_k+l(i) := S_k+l - s_i (11) 13203 * 13204 * And that gives us the tools to compare tasks across a combined runqueue. 13205 * 13206 * 13207 * Combined this gives the following: 13208 * 13209 * a) when a runqueue enters force-idle, sync it against it's sibling rq(s) 13210 * using (7); this only requires storing single 'time'-stamps. 13211 * 13212 * b) when comparing tasks between 2 runqueues of which one is forced-idle, 13213 * compare the combined lag, per (11). 13214 * 13215 * Now, of course cgroups (I so hate them) make this more interesting in 13216 * that a) seems to suggest we need to iterate all cgroup on a CPU at such 13217 * boundaries, but I think we can avoid that. The force-idle is for the 13218 * whole CPU, all it's rqs. So we can mark it in the root and lazily 13219 * propagate downward on demand. 13220 */ 13221 13222 /* 13223 * So this sync is basically a relative reset of S to 0. 13224 * 13225 * So with 2 queues, when one goes idle, we drop them both to 0 and one 13226 * then increases due to not being idle, and the idle one builds up lag to 13227 * get re-elected. So far so simple, right? 13228 * 13229 * When there's 3, we can have the situation where 2 run and one is idle, 13230 * we sync to 0 and let the idle one build up lag to get re-election. Now 13231 * suppose another one also drops idle. At this point dropping all to 0 13232 * again would destroy the built-up lag from the queue that was already 13233 * idle, not good. 13234 * 13235 * So instead of syncing everything, we can: 13236 * 13237 * less := !((s64)(s_a - s_b) <= 0) 13238 * 13239 * (v_a - S_a) - (v_b - S_b) == v_a - v_b - S_a + S_b 13240 * == v_a - (v_b - S_a + S_b) 13241 * 13242 * IOW, we can recast the (lag) comparison to a one-sided difference. 13243 * So if then, instead of syncing the whole queue, sync the idle queue 13244 * against the active queue with S_a + S_b at the point where we sync. 13245 * 13246 * (XXX consider the implication of living in a cyclic group: N / 2^n N) 13247 * 13248 * This gives us means of syncing single queues against the active queue, 13249 * and for already idle queues to preserve their build-up lag. 13250 * 13251 * Of course, then we get the situation where there's 2 active and one 13252 * going idle, who do we pick to sync against? Theory would have us sync 13253 * against the combined S, but as we've already demonstrated, there is no 13254 * such thing in infeasible weight scenarios. 13255 * 13256 * One thing I've considered; and this is where that core_active rudiment 13257 * came from, is having active queues sync up between themselves after 13258 * every tick. This limits the observed divergence due to the work 13259 * conservancy. 13260 * 13261 * On top of that, we can improve upon things by employing (10) here. 13262 */ 13263 13264 /* 13265 * se_fi_update - Update the cfs_rq->zero_vruntime_fi in a CFS hierarchy if needed. 13266 */ 13267 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 13268 bool forceidle) 13269 { 13270 for_each_sched_entity(se) { 13271 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13272 13273 if (forceidle) { 13274 if (cfs_rq->forceidle_seq == fi_seq) 13275 break; 13276 cfs_rq->forceidle_seq = fi_seq; 13277 } 13278 13279 cfs_rq->zero_vruntime_fi = cfs_rq->zero_vruntime; 13280 } 13281 } 13282 13283 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13284 { 13285 struct sched_entity *se = &p->se; 13286 13287 if (p->sched_class != &fair_sched_class) 13288 return; 13289 13290 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13291 } 13292 13293 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13294 bool in_fi) 13295 { 13296 struct rq *rq = task_rq(a); 13297 const struct sched_entity *sea = &a->se; 13298 const struct sched_entity *seb = &b->se; 13299 struct cfs_rq *cfs_rqa; 13300 struct cfs_rq *cfs_rqb; 13301 s64 delta; 13302 13303 WARN_ON_ONCE(task_rq(b)->core != rq->core); 13304 13305 #ifdef CONFIG_FAIR_GROUP_SCHED 13306 /* 13307 * Find an se in the hierarchy for tasks a and b, such that the se's 13308 * are immediate siblings. 13309 */ 13310 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13311 int sea_depth = sea->depth; 13312 int seb_depth = seb->depth; 13313 13314 if (sea_depth >= seb_depth) 13315 sea = parent_entity(sea); 13316 if (sea_depth <= seb_depth) 13317 seb = parent_entity(seb); 13318 } 13319 13320 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13321 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13322 13323 cfs_rqa = sea->cfs_rq; 13324 cfs_rqb = seb->cfs_rq; 13325 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 13326 cfs_rqa = &task_rq(a)->cfs; 13327 cfs_rqb = &task_rq(b)->cfs; 13328 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 13329 13330 /* 13331 * Find delta after normalizing se's vruntime with its cfs_rq's 13332 * zero_vruntime_fi, which would have been updated in prior calls 13333 * to se_fi_update(). 13334 */ 13335 delta = (s64)(sea->vruntime - seb->vruntime) + 13336 (s64)(cfs_rqb->zero_vruntime_fi - cfs_rqa->zero_vruntime_fi); 13337 13338 return delta > 0; 13339 } 13340 13341 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13342 { 13343 struct cfs_rq *cfs_rq; 13344 13345 #ifdef CONFIG_FAIR_GROUP_SCHED 13346 cfs_rq = task_group(p)->cfs_rq[cpu]; 13347 #else 13348 cfs_rq = &cpu_rq(cpu)->cfs; 13349 #endif 13350 return throttled_hierarchy(cfs_rq); 13351 } 13352 #else /* !CONFIG_SCHED_CORE: */ 13353 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13354 #endif /* !CONFIG_SCHED_CORE */ 13355 13356 /* 13357 * scheduler tick hitting a task of our scheduling class. 13358 * 13359 * NOTE: This function can be called remotely by the tick offload that 13360 * goes along full dynticks. Therefore no local assumption can be made 13361 * and everything must be accessed through the @rq and @curr passed in 13362 * parameters. 13363 */ 13364 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13365 { 13366 struct cfs_rq *cfs_rq; 13367 struct sched_entity *se = &curr->se; 13368 13369 for_each_sched_entity(se) { 13370 cfs_rq = cfs_rq_of(se); 13371 entity_tick(cfs_rq, se, queued); 13372 } 13373 13374 if (static_branch_unlikely(&sched_numa_balancing)) 13375 task_tick_numa(rq, curr); 13376 13377 update_misfit_status(curr, rq); 13378 check_update_overutilized_status(task_rq(curr)); 13379 13380 task_tick_core(rq, curr); 13381 } 13382 13383 /* 13384 * called on fork with the child task as argument from the parent's context 13385 * - child not yet on the tasklist 13386 * - preemption disabled 13387 */ 13388 static void task_fork_fair(struct task_struct *p) 13389 { 13390 set_task_max_allowed_capacity(p); 13391 } 13392 13393 /* 13394 * Priority of the task has changed. Check to see if we preempt 13395 * the current task. 13396 */ 13397 static void 13398 prio_changed_fair(struct rq *rq, struct task_struct *p, u64 oldprio) 13399 { 13400 if (!task_on_rq_queued(p)) 13401 return; 13402 13403 if (p->prio == oldprio) 13404 return; 13405 13406 if (rq->cfs.nr_queued == 1) 13407 return; 13408 13409 /* 13410 * Reschedule if we are currently running on this runqueue and 13411 * our priority decreased, or if we are not currently running on 13412 * this runqueue and our priority is higher than the current's 13413 */ 13414 if (task_current_donor(rq, p)) { 13415 if (p->prio > oldprio) 13416 resched_curr(rq); 13417 } else { 13418 wakeup_preempt(rq, p, 0); 13419 } 13420 } 13421 13422 #ifdef CONFIG_FAIR_GROUP_SCHED 13423 /* 13424 * Propagate the changes of the sched_entity across the tg tree to make it 13425 * visible to the root 13426 */ 13427 static void propagate_entity_cfs_rq(struct sched_entity *se) 13428 { 13429 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13430 13431 /* 13432 * If a task gets attached to this cfs_rq and before being queued, 13433 * it gets migrated to another CPU due to reasons like affinity 13434 * change, make sure this cfs_rq stays on leaf cfs_rq list to have 13435 * that removed load decayed or it can cause faireness problem. 13436 */ 13437 if (!cfs_rq_pelt_clock_throttled(cfs_rq)) 13438 list_add_leaf_cfs_rq(cfs_rq); 13439 13440 /* Start to propagate at parent */ 13441 se = se->parent; 13442 13443 for_each_sched_entity(se) { 13444 cfs_rq = cfs_rq_of(se); 13445 13446 update_load_avg(cfs_rq, se, UPDATE_TG); 13447 13448 if (!cfs_rq_pelt_clock_throttled(cfs_rq)) 13449 list_add_leaf_cfs_rq(cfs_rq); 13450 } 13451 13452 assert_list_leaf_cfs_rq(rq_of(cfs_rq)); 13453 } 13454 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 13455 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13456 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 13457 13458 static void detach_entity_cfs_rq(struct sched_entity *se) 13459 { 13460 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13461 13462 /* 13463 * In case the task sched_avg hasn't been attached: 13464 * - A forked task which hasn't been woken up by wake_up_new_task(). 13465 * - A task which has been woken up by try_to_wake_up() but is 13466 * waiting for actually being woken up by sched_ttwu_pending(). 13467 */ 13468 if (!se->avg.last_update_time) 13469 return; 13470 13471 /* Catch up with the cfs_rq and remove our load when we leave */ 13472 update_load_avg(cfs_rq, se, 0); 13473 detach_entity_load_avg(cfs_rq, se); 13474 update_tg_load_avg(cfs_rq); 13475 propagate_entity_cfs_rq(se); 13476 } 13477 13478 static void attach_entity_cfs_rq(struct sched_entity *se) 13479 { 13480 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13481 13482 /* Synchronize entity with its cfs_rq */ 13483 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13484 attach_entity_load_avg(cfs_rq, se); 13485 update_tg_load_avg(cfs_rq); 13486 propagate_entity_cfs_rq(se); 13487 } 13488 13489 static void detach_task_cfs_rq(struct task_struct *p) 13490 { 13491 struct sched_entity *se = &p->se; 13492 13493 detach_entity_cfs_rq(se); 13494 } 13495 13496 static void attach_task_cfs_rq(struct task_struct *p) 13497 { 13498 struct sched_entity *se = &p->se; 13499 13500 attach_entity_cfs_rq(se); 13501 } 13502 13503 static void switching_from_fair(struct rq *rq, struct task_struct *p) 13504 { 13505 if (p->se.sched_delayed) 13506 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 13507 } 13508 13509 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13510 { 13511 detach_task_cfs_rq(p); 13512 } 13513 13514 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13515 { 13516 WARN_ON_ONCE(p->se.sched_delayed); 13517 13518 attach_task_cfs_rq(p); 13519 13520 set_task_max_allowed_capacity(p); 13521 13522 if (task_on_rq_queued(p)) { 13523 /* 13524 * We were most likely switched from sched_rt, so 13525 * kick off the schedule if running, otherwise just see 13526 * if we can still preempt the current task. 13527 */ 13528 if (task_current_donor(rq, p)) 13529 resched_curr(rq); 13530 else 13531 wakeup_preempt(rq, p, 0); 13532 } 13533 } 13534 13535 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13536 { 13537 struct sched_entity *se = &p->se; 13538 13539 if (task_on_rq_queued(p)) { 13540 /* 13541 * Move the next running task to the front of the list, so our 13542 * cfs_tasks list becomes MRU one. 13543 */ 13544 list_move(&se->group_node, &rq->cfs_tasks); 13545 } 13546 if (!first) 13547 return; 13548 13549 WARN_ON_ONCE(se->sched_delayed); 13550 13551 if (hrtick_enabled_fair(rq)) 13552 hrtick_start_fair(rq, p); 13553 13554 update_misfit_status(p, rq); 13555 sched_fair_update_stop_tick(rq, p); 13556 } 13557 13558 /* 13559 * Account for a task changing its policy or group. 13560 * 13561 * This routine is mostly called to set cfs_rq->curr field when a task 13562 * migrates between groups/classes. 13563 */ 13564 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13565 { 13566 struct sched_entity *se = &p->se; 13567 13568 for_each_sched_entity(se) { 13569 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13570 13571 set_next_entity(cfs_rq, se); 13572 /* ensure bandwidth has been allocated on our new cfs_rq */ 13573 account_cfs_rq_runtime(cfs_rq, 0); 13574 } 13575 13576 __set_next_task_fair(rq, p, first); 13577 } 13578 13579 void init_cfs_rq(struct cfs_rq *cfs_rq) 13580 { 13581 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13582 cfs_rq->zero_vruntime = (u64)(-(1LL << 20)); 13583 raw_spin_lock_init(&cfs_rq->removed.lock); 13584 } 13585 13586 #ifdef CONFIG_FAIR_GROUP_SCHED 13587 static void task_change_group_fair(struct task_struct *p) 13588 { 13589 /* 13590 * We couldn't detach or attach a forked task which 13591 * hasn't been woken up by wake_up_new_task(). 13592 */ 13593 if (READ_ONCE(p->__state) == TASK_NEW) 13594 return; 13595 13596 detach_task_cfs_rq(p); 13597 13598 /* Tell se's cfs_rq has been changed -- migrated */ 13599 p->se.avg.last_update_time = 0; 13600 set_task_rq(p, task_cpu(p)); 13601 attach_task_cfs_rq(p); 13602 } 13603 13604 void free_fair_sched_group(struct task_group *tg) 13605 { 13606 int i; 13607 13608 for_each_possible_cpu(i) { 13609 if (tg->cfs_rq) 13610 kfree(tg->cfs_rq[i]); 13611 if (tg->se) 13612 kfree(tg->se[i]); 13613 } 13614 13615 kfree(tg->cfs_rq); 13616 kfree(tg->se); 13617 } 13618 13619 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13620 { 13621 struct sched_entity *se; 13622 struct cfs_rq *cfs_rq; 13623 int i; 13624 13625 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13626 if (!tg->cfs_rq) 13627 goto err; 13628 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13629 if (!tg->se) 13630 goto err; 13631 13632 tg->shares = NICE_0_LOAD; 13633 13634 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13635 13636 for_each_possible_cpu(i) { 13637 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13638 GFP_KERNEL, cpu_to_node(i)); 13639 if (!cfs_rq) 13640 goto err; 13641 13642 se = kzalloc_node(sizeof(struct sched_entity_stats), 13643 GFP_KERNEL, cpu_to_node(i)); 13644 if (!se) 13645 goto err_free_rq; 13646 13647 init_cfs_rq(cfs_rq); 13648 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13649 init_entity_runnable_average(se); 13650 } 13651 13652 return 1; 13653 13654 err_free_rq: 13655 kfree(cfs_rq); 13656 err: 13657 return 0; 13658 } 13659 13660 void online_fair_sched_group(struct task_group *tg) 13661 { 13662 struct sched_entity *se; 13663 struct rq_flags rf; 13664 struct rq *rq; 13665 int i; 13666 13667 for_each_possible_cpu(i) { 13668 rq = cpu_rq(i); 13669 se = tg->se[i]; 13670 rq_lock_irq(rq, &rf); 13671 update_rq_clock(rq); 13672 attach_entity_cfs_rq(se); 13673 sync_throttle(tg, i); 13674 rq_unlock_irq(rq, &rf); 13675 } 13676 } 13677 13678 void unregister_fair_sched_group(struct task_group *tg) 13679 { 13680 int cpu; 13681 13682 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13683 13684 for_each_possible_cpu(cpu) { 13685 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13686 struct sched_entity *se = tg->se[cpu]; 13687 struct rq *rq = cpu_rq(cpu); 13688 13689 if (se) { 13690 if (se->sched_delayed) { 13691 guard(rq_lock_irqsave)(rq); 13692 if (se->sched_delayed) { 13693 update_rq_clock(rq); 13694 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13695 } 13696 list_del_leaf_cfs_rq(cfs_rq); 13697 } 13698 remove_entity_load_avg(se); 13699 } 13700 13701 /* 13702 * Only empty task groups can be destroyed; so we can speculatively 13703 * check on_list without danger of it being re-added. 13704 */ 13705 if (cfs_rq->on_list) { 13706 guard(rq_lock_irqsave)(rq); 13707 list_del_leaf_cfs_rq(cfs_rq); 13708 } 13709 } 13710 } 13711 13712 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13713 struct sched_entity *se, int cpu, 13714 struct sched_entity *parent) 13715 { 13716 struct rq *rq = cpu_rq(cpu); 13717 13718 cfs_rq->tg = tg; 13719 cfs_rq->rq = rq; 13720 init_cfs_rq_runtime(cfs_rq); 13721 13722 tg->cfs_rq[cpu] = cfs_rq; 13723 tg->se[cpu] = se; 13724 13725 /* se could be NULL for root_task_group */ 13726 if (!se) 13727 return; 13728 13729 if (!parent) { 13730 se->cfs_rq = &rq->cfs; 13731 se->depth = 0; 13732 } else { 13733 se->cfs_rq = parent->my_q; 13734 se->depth = parent->depth + 1; 13735 } 13736 13737 se->my_q = cfs_rq; 13738 /* guarantee group entities always have weight */ 13739 update_load_set(&se->load, NICE_0_LOAD); 13740 se->parent = parent; 13741 } 13742 13743 static DEFINE_MUTEX(shares_mutex); 13744 13745 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13746 { 13747 int i; 13748 13749 lockdep_assert_held(&shares_mutex); 13750 13751 /* 13752 * We can't change the weight of the root cgroup. 13753 */ 13754 if (!tg->se[0]) 13755 return -EINVAL; 13756 13757 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13758 13759 if (tg->shares == shares) 13760 return 0; 13761 13762 tg->shares = shares; 13763 for_each_possible_cpu(i) { 13764 struct rq *rq = cpu_rq(i); 13765 struct sched_entity *se = tg->se[i]; 13766 struct rq_flags rf; 13767 13768 /* Propagate contribution to hierarchy */ 13769 rq_lock_irqsave(rq, &rf); 13770 update_rq_clock(rq); 13771 for_each_sched_entity(se) { 13772 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13773 update_cfs_group(se); 13774 } 13775 rq_unlock_irqrestore(rq, &rf); 13776 } 13777 13778 return 0; 13779 } 13780 13781 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13782 { 13783 int ret; 13784 13785 mutex_lock(&shares_mutex); 13786 if (tg_is_idle(tg)) 13787 ret = -EINVAL; 13788 else 13789 ret = __sched_group_set_shares(tg, shares); 13790 mutex_unlock(&shares_mutex); 13791 13792 return ret; 13793 } 13794 13795 int sched_group_set_idle(struct task_group *tg, long idle) 13796 { 13797 int i; 13798 13799 if (tg == &root_task_group) 13800 return -EINVAL; 13801 13802 if (idle < 0 || idle > 1) 13803 return -EINVAL; 13804 13805 mutex_lock(&shares_mutex); 13806 13807 if (tg->idle == idle) { 13808 mutex_unlock(&shares_mutex); 13809 return 0; 13810 } 13811 13812 tg->idle = idle; 13813 13814 for_each_possible_cpu(i) { 13815 struct rq *rq = cpu_rq(i); 13816 struct sched_entity *se = tg->se[i]; 13817 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13818 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13819 long idle_task_delta; 13820 struct rq_flags rf; 13821 13822 rq_lock_irqsave(rq, &rf); 13823 13824 grp_cfs_rq->idle = idle; 13825 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13826 goto next_cpu; 13827 13828 idle_task_delta = grp_cfs_rq->h_nr_queued - 13829 grp_cfs_rq->h_nr_idle; 13830 if (!cfs_rq_is_idle(grp_cfs_rq)) 13831 idle_task_delta *= -1; 13832 13833 for_each_sched_entity(se) { 13834 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13835 13836 if (!se->on_rq) 13837 break; 13838 13839 cfs_rq->h_nr_idle += idle_task_delta; 13840 13841 /* Already accounted at parent level and above. */ 13842 if (cfs_rq_is_idle(cfs_rq)) 13843 break; 13844 } 13845 13846 next_cpu: 13847 rq_unlock_irqrestore(rq, &rf); 13848 } 13849 13850 /* Idle groups have minimum weight. */ 13851 if (tg_is_idle(tg)) 13852 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13853 else 13854 __sched_group_set_shares(tg, NICE_0_LOAD); 13855 13856 mutex_unlock(&shares_mutex); 13857 return 0; 13858 } 13859 13860 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13861 13862 13863 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13864 { 13865 struct sched_entity *se = &task->se; 13866 unsigned int rr_interval = 0; 13867 13868 /* 13869 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13870 * idle runqueue: 13871 */ 13872 if (rq->cfs.load.weight) 13873 rr_interval = NS_TO_JIFFIES(se->slice); 13874 13875 return rr_interval; 13876 } 13877 13878 /* 13879 * All the scheduling class methods: 13880 */ 13881 DEFINE_SCHED_CLASS(fair) = { 13882 13883 .queue_mask = 2, 13884 13885 .enqueue_task = enqueue_task_fair, 13886 .dequeue_task = dequeue_task_fair, 13887 .yield_task = yield_task_fair, 13888 .yield_to_task = yield_to_task_fair, 13889 13890 .wakeup_preempt = check_preempt_wakeup_fair, 13891 13892 .pick_task = pick_task_fair, 13893 .pick_next_task = pick_next_task_fair, 13894 .put_prev_task = put_prev_task_fair, 13895 .set_next_task = set_next_task_fair, 13896 13897 .select_task_rq = select_task_rq_fair, 13898 .migrate_task_rq = migrate_task_rq_fair, 13899 13900 .rq_online = rq_online_fair, 13901 .rq_offline = rq_offline_fair, 13902 13903 .task_dead = task_dead_fair, 13904 .set_cpus_allowed = set_cpus_allowed_fair, 13905 13906 .task_tick = task_tick_fair, 13907 .task_fork = task_fork_fair, 13908 13909 .reweight_task = reweight_task_fair, 13910 .prio_changed = prio_changed_fair, 13911 .switching_from = switching_from_fair, 13912 .switched_from = switched_from_fair, 13913 .switched_to = switched_to_fair, 13914 13915 .get_rr_interval = get_rr_interval_fair, 13916 13917 .update_curr = update_curr_fair, 13918 13919 #ifdef CONFIG_FAIR_GROUP_SCHED 13920 .task_change_group = task_change_group_fair, 13921 #endif 13922 13923 #ifdef CONFIG_SCHED_CORE 13924 .task_is_throttled = task_is_throttled_fair, 13925 #endif 13926 13927 #ifdef CONFIG_UCLAMP_TASK 13928 .uclamp_enabled = 1, 13929 #endif 13930 }; 13931 13932 void print_cfs_stats(struct seq_file *m, int cpu) 13933 { 13934 struct cfs_rq *cfs_rq, *pos; 13935 13936 rcu_read_lock(); 13937 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13938 print_cfs_rq(m, cpu, cfs_rq); 13939 rcu_read_unlock(); 13940 } 13941 13942 #ifdef CONFIG_NUMA_BALANCING 13943 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13944 { 13945 int node; 13946 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13947 struct numa_group *ng; 13948 13949 rcu_read_lock(); 13950 ng = rcu_dereference(p->numa_group); 13951 for_each_online_node(node) { 13952 if (p->numa_faults) { 13953 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13954 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13955 } 13956 if (ng) { 13957 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13958 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13959 } 13960 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13961 } 13962 rcu_read_unlock(); 13963 } 13964 #endif /* CONFIG_NUMA_BALANCING */ 13965 13966 __init void init_sched_fair_class(void) 13967 { 13968 int i; 13969 13970 for_each_possible_cpu(i) { 13971 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13972 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13973 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13974 GFP_KERNEL, cpu_to_node(i)); 13975 13976 #ifdef CONFIG_CFS_BANDWIDTH 13977 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13978 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13979 #endif 13980 } 13981 13982 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13983 13984 #ifdef CONFIG_NO_HZ_COMMON 13985 nohz.next_balance = jiffies; 13986 nohz.next_blocked = jiffies; 13987 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13988 #endif 13989 } 13990