1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return task_has_idle_policy(task_of(se)); 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 783 } 784 785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 786 { 787 struct sched_entity *root = __pick_root_entity(cfs_rq); 788 struct sched_entity *curr = cfs_rq->curr; 789 u64 min_slice = ~0ULL; 790 791 if (curr && curr->on_rq) 792 min_slice = curr->slice; 793 794 if (root) 795 min_slice = min(min_slice, root->min_slice); 796 797 return min_slice; 798 } 799 800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 801 { 802 return entity_before(__node_2_se(a), __node_2_se(b)); 803 } 804 805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 806 807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 808 { 809 if (node) { 810 struct sched_entity *rse = __node_2_se(node); 811 if (vruntime_gt(min_vruntime, se, rse)) 812 se->min_vruntime = rse->min_vruntime; 813 } 814 } 815 816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 817 { 818 if (node) { 819 struct sched_entity *rse = __node_2_se(node); 820 if (rse->min_slice < se->min_slice) 821 se->min_slice = rse->min_slice; 822 } 823 } 824 825 /* 826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 827 */ 828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 829 { 830 u64 old_min_vruntime = se->min_vruntime; 831 u64 old_min_slice = se->min_slice; 832 struct rb_node *node = &se->run_node; 833 834 se->min_vruntime = se->vruntime; 835 __min_vruntime_update(se, node->rb_right); 836 __min_vruntime_update(se, node->rb_left); 837 838 se->min_slice = se->slice; 839 __min_slice_update(se, node->rb_right); 840 __min_slice_update(se, node->rb_left); 841 842 return se->min_vruntime == old_min_vruntime && 843 se->min_slice == old_min_slice; 844 } 845 846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 847 run_node, min_vruntime, min_vruntime_update); 848 849 /* 850 * Enqueue an entity into the rb-tree: 851 */ 852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 853 { 854 avg_vruntime_add(cfs_rq, se); 855 se->min_vruntime = se->vruntime; 856 se->min_slice = se->slice; 857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 858 __entity_less, &min_vruntime_cb); 859 } 860 861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 862 { 863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 864 &min_vruntime_cb); 865 avg_vruntime_sub(cfs_rq, se); 866 } 867 868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 869 { 870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 871 872 if (!root) 873 return NULL; 874 875 return __node_2_se(root); 876 } 877 878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 879 { 880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 881 882 if (!left) 883 return NULL; 884 885 return __node_2_se(left); 886 } 887 888 /* 889 * Earliest Eligible Virtual Deadline First 890 * 891 * In order to provide latency guarantees for different request sizes 892 * EEVDF selects the best runnable task from two criteria: 893 * 894 * 1) the task must be eligible (must be owed service) 895 * 896 * 2) from those tasks that meet 1), we select the one 897 * with the earliest virtual deadline. 898 * 899 * We can do this in O(log n) time due to an augmented RB-tree. The 900 * tree keeps the entries sorted on deadline, but also functions as a 901 * heap based on the vruntime by keeping: 902 * 903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 904 * 905 * Which allows tree pruning through eligibility. 906 */ 907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 908 { 909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 910 struct sched_entity *se = __pick_first_entity(cfs_rq); 911 struct sched_entity *curr = cfs_rq->curr; 912 struct sched_entity *best = NULL; 913 914 /* 915 * We can safely skip eligibility check if there is only one entity 916 * in this cfs_rq, saving some cycles. 917 */ 918 if (cfs_rq->nr_running == 1) 919 return curr && curr->on_rq ? curr : se; 920 921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 922 curr = NULL; 923 924 /* 925 * Once selected, run a task until it either becomes non-eligible or 926 * until it gets a new slice. See the HACK in set_next_entity(). 927 */ 928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 929 return curr; 930 931 /* Pick the leftmost entity if it's eligible */ 932 if (se && entity_eligible(cfs_rq, se)) { 933 best = se; 934 goto found; 935 } 936 937 /* Heap search for the EEVD entity */ 938 while (node) { 939 struct rb_node *left = node->rb_left; 940 941 /* 942 * Eligible entities in left subtree are always better 943 * choices, since they have earlier deadlines. 944 */ 945 if (left && vruntime_eligible(cfs_rq, 946 __node_2_se(left)->min_vruntime)) { 947 node = left; 948 continue; 949 } 950 951 se = __node_2_se(node); 952 953 /* 954 * The left subtree either is empty or has no eligible 955 * entity, so check the current node since it is the one 956 * with earliest deadline that might be eligible. 957 */ 958 if (entity_eligible(cfs_rq, se)) { 959 best = se; 960 break; 961 } 962 963 node = node->rb_right; 964 } 965 found: 966 if (!best || (curr && entity_before(curr, best))) 967 best = curr; 968 969 return best; 970 } 971 972 #ifdef CONFIG_SCHED_DEBUG 973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 974 { 975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 976 977 if (!last) 978 return NULL; 979 980 return __node_2_se(last); 981 } 982 983 /************************************************************** 984 * Scheduling class statistics methods: 985 */ 986 #ifdef CONFIG_SMP 987 int sched_update_scaling(void) 988 { 989 unsigned int factor = get_update_sysctl_factor(); 990 991 #define WRT_SYSCTL(name) \ 992 (normalized_sysctl_##name = sysctl_##name / (factor)) 993 WRT_SYSCTL(sched_base_slice); 994 #undef WRT_SYSCTL 995 996 return 0; 997 } 998 #endif 999 #endif 1000 1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1002 1003 /* 1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1005 * this is probably good enough. 1006 */ 1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1008 { 1009 if ((s64)(se->vruntime - se->deadline) < 0) 1010 return false; 1011 1012 /* 1013 * For EEVDF the virtual time slope is determined by w_i (iow. 1014 * nice) while the request time r_i is determined by 1015 * sysctl_sched_base_slice. 1016 */ 1017 if (!se->custom_slice) 1018 se->slice = sysctl_sched_base_slice; 1019 1020 /* 1021 * EEVDF: vd_i = ve_i + r_i / w_i 1022 */ 1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1024 1025 /* 1026 * The task has consumed its request, reschedule. 1027 */ 1028 return true; 1029 } 1030 1031 #include "pelt.h" 1032 #ifdef CONFIG_SMP 1033 1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1035 static unsigned long task_h_load(struct task_struct *p); 1036 static unsigned long capacity_of(int cpu); 1037 1038 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1039 void init_entity_runnable_average(struct sched_entity *se) 1040 { 1041 struct sched_avg *sa = &se->avg; 1042 1043 memset(sa, 0, sizeof(*sa)); 1044 1045 /* 1046 * Tasks are initialized with full load to be seen as heavy tasks until 1047 * they get a chance to stabilize to their real load level. 1048 * Group entities are initialized with zero load to reflect the fact that 1049 * nothing has been attached to the task group yet. 1050 */ 1051 if (entity_is_task(se)) 1052 sa->load_avg = scale_load_down(se->load.weight); 1053 1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1055 } 1056 1057 /* 1058 * With new tasks being created, their initial util_avgs are extrapolated 1059 * based on the cfs_rq's current util_avg: 1060 * 1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1062 * * se_weight(se) 1063 * 1064 * However, in many cases, the above util_avg does not give a desired 1065 * value. Moreover, the sum of the util_avgs may be divergent, such 1066 * as when the series is a harmonic series. 1067 * 1068 * To solve this problem, we also cap the util_avg of successive tasks to 1069 * only 1/2 of the left utilization budget: 1070 * 1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1072 * 1073 * where n denotes the nth task and cpu_scale the CPU capacity. 1074 * 1075 * For example, for a CPU with 1024 of capacity, a simplest series from 1076 * the beginning would be like: 1077 * 1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1080 * 1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1082 * if util_avg > util_avg_cap. 1083 */ 1084 void post_init_entity_util_avg(struct task_struct *p) 1085 { 1086 struct sched_entity *se = &p->se; 1087 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1088 struct sched_avg *sa = &se->avg; 1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1091 1092 if (p->sched_class != &fair_sched_class) { 1093 /* 1094 * For !fair tasks do: 1095 * 1096 update_cfs_rq_load_avg(now, cfs_rq); 1097 attach_entity_load_avg(cfs_rq, se); 1098 switched_from_fair(rq, p); 1099 * 1100 * such that the next switched_to_fair() has the 1101 * expected state. 1102 */ 1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1104 return; 1105 } 1106 1107 if (cap > 0) { 1108 if (cfs_rq->avg.util_avg != 0) { 1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1111 1112 if (sa->util_avg > cap) 1113 sa->util_avg = cap; 1114 } else { 1115 sa->util_avg = cap; 1116 } 1117 } 1118 1119 sa->runnable_avg = sa->util_avg; 1120 } 1121 1122 #else /* !CONFIG_SMP */ 1123 void init_entity_runnable_average(struct sched_entity *se) 1124 { 1125 } 1126 void post_init_entity_util_avg(struct task_struct *p) 1127 { 1128 } 1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1130 { 1131 } 1132 #endif /* CONFIG_SMP */ 1133 1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1135 { 1136 u64 now = rq_clock_task(rq); 1137 s64 delta_exec; 1138 1139 delta_exec = now - curr->exec_start; 1140 if (unlikely(delta_exec <= 0)) 1141 return delta_exec; 1142 1143 curr->exec_start = now; 1144 curr->sum_exec_runtime += delta_exec; 1145 1146 if (schedstat_enabled()) { 1147 struct sched_statistics *stats; 1148 1149 stats = __schedstats_from_se(curr); 1150 __schedstat_set(stats->exec_max, 1151 max(delta_exec, stats->exec_max)); 1152 } 1153 1154 return delta_exec; 1155 } 1156 1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1158 { 1159 trace_sched_stat_runtime(p, delta_exec); 1160 account_group_exec_runtime(p, delta_exec); 1161 cgroup_account_cputime(p, delta_exec); 1162 if (p->dl_server) 1163 dl_server_update(p->dl_server, delta_exec); 1164 } 1165 1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1167 { 1168 if (!sched_feat(PREEMPT_SHORT)) 1169 return false; 1170 1171 if (curr->vlag == curr->deadline) 1172 return false; 1173 1174 return !entity_eligible(cfs_rq, curr); 1175 } 1176 1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1178 struct sched_entity *pse, struct sched_entity *se) 1179 { 1180 if (!sched_feat(PREEMPT_SHORT)) 1181 return false; 1182 1183 if (pse->slice >= se->slice) 1184 return false; 1185 1186 if (!entity_eligible(cfs_rq, pse)) 1187 return false; 1188 1189 if (entity_before(pse, se)) 1190 return true; 1191 1192 if (!entity_eligible(cfs_rq, se)) 1193 return true; 1194 1195 return false; 1196 } 1197 1198 /* 1199 * Used by other classes to account runtime. 1200 */ 1201 s64 update_curr_common(struct rq *rq) 1202 { 1203 struct task_struct *donor = rq->donor; 1204 s64 delta_exec; 1205 1206 delta_exec = update_curr_se(rq, &donor->se); 1207 if (likely(delta_exec > 0)) 1208 update_curr_task(donor, delta_exec); 1209 1210 return delta_exec; 1211 } 1212 1213 /* 1214 * Update the current task's runtime statistics. 1215 */ 1216 static void update_curr(struct cfs_rq *cfs_rq) 1217 { 1218 struct sched_entity *curr = cfs_rq->curr; 1219 struct rq *rq = rq_of(cfs_rq); 1220 s64 delta_exec; 1221 bool resched; 1222 1223 if (unlikely(!curr)) 1224 return; 1225 1226 delta_exec = update_curr_se(rq, curr); 1227 if (unlikely(delta_exec <= 0)) 1228 return; 1229 1230 curr->vruntime += calc_delta_fair(delta_exec, curr); 1231 resched = update_deadline(cfs_rq, curr); 1232 update_min_vruntime(cfs_rq); 1233 1234 if (entity_is_task(curr)) { 1235 struct task_struct *p = task_of(curr); 1236 1237 update_curr_task(p, delta_exec); 1238 1239 /* 1240 * Any fair task that runs outside of fair_server should 1241 * account against fair_server such that it can account for 1242 * this time and possibly avoid running this period. 1243 */ 1244 if (p->dl_server != &rq->fair_server) 1245 dl_server_update(&rq->fair_server, delta_exec); 1246 } 1247 1248 account_cfs_rq_runtime(cfs_rq, delta_exec); 1249 1250 if (cfs_rq->nr_running == 1) 1251 return; 1252 1253 if (resched || did_preempt_short(cfs_rq, curr)) { 1254 resched_curr_lazy(rq); 1255 clear_buddies(cfs_rq, curr); 1256 } 1257 } 1258 1259 static void update_curr_fair(struct rq *rq) 1260 { 1261 update_curr(cfs_rq_of(&rq->donor->se)); 1262 } 1263 1264 static inline void 1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1266 { 1267 struct sched_statistics *stats; 1268 struct task_struct *p = NULL; 1269 1270 if (!schedstat_enabled()) 1271 return; 1272 1273 stats = __schedstats_from_se(se); 1274 1275 if (entity_is_task(se)) 1276 p = task_of(se); 1277 1278 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1279 } 1280 1281 static inline void 1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1283 { 1284 struct sched_statistics *stats; 1285 struct task_struct *p = NULL; 1286 1287 if (!schedstat_enabled()) 1288 return; 1289 1290 stats = __schedstats_from_se(se); 1291 1292 /* 1293 * When the sched_schedstat changes from 0 to 1, some sched se 1294 * maybe already in the runqueue, the se->statistics.wait_start 1295 * will be 0.So it will let the delta wrong. We need to avoid this 1296 * scenario. 1297 */ 1298 if (unlikely(!schedstat_val(stats->wait_start))) 1299 return; 1300 1301 if (entity_is_task(se)) 1302 p = task_of(se); 1303 1304 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1305 } 1306 1307 static inline void 1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1309 { 1310 struct sched_statistics *stats; 1311 struct task_struct *tsk = NULL; 1312 1313 if (!schedstat_enabled()) 1314 return; 1315 1316 stats = __schedstats_from_se(se); 1317 1318 if (entity_is_task(se)) 1319 tsk = task_of(se); 1320 1321 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1322 } 1323 1324 /* 1325 * Task is being enqueued - update stats: 1326 */ 1327 static inline void 1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1329 { 1330 if (!schedstat_enabled()) 1331 return; 1332 1333 /* 1334 * Are we enqueueing a waiting task? (for current tasks 1335 * a dequeue/enqueue event is a NOP) 1336 */ 1337 if (se != cfs_rq->curr) 1338 update_stats_wait_start_fair(cfs_rq, se); 1339 1340 if (flags & ENQUEUE_WAKEUP) 1341 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1342 } 1343 1344 static inline void 1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1346 { 1347 1348 if (!schedstat_enabled()) 1349 return; 1350 1351 /* 1352 * Mark the end of the wait period if dequeueing a 1353 * waiting task: 1354 */ 1355 if (se != cfs_rq->curr) 1356 update_stats_wait_end_fair(cfs_rq, se); 1357 1358 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1359 struct task_struct *tsk = task_of(se); 1360 unsigned int state; 1361 1362 /* XXX racy against TTWU */ 1363 state = READ_ONCE(tsk->__state); 1364 if (state & TASK_INTERRUPTIBLE) 1365 __schedstat_set(tsk->stats.sleep_start, 1366 rq_clock(rq_of(cfs_rq))); 1367 if (state & TASK_UNINTERRUPTIBLE) 1368 __schedstat_set(tsk->stats.block_start, 1369 rq_clock(rq_of(cfs_rq))); 1370 } 1371 } 1372 1373 /* 1374 * We are picking a new current task - update its stats: 1375 */ 1376 static inline void 1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1378 { 1379 /* 1380 * We are starting a new run period: 1381 */ 1382 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1383 } 1384 1385 /************************************************** 1386 * Scheduling class queueing methods: 1387 */ 1388 1389 static inline bool is_core_idle(int cpu) 1390 { 1391 #ifdef CONFIG_SCHED_SMT 1392 int sibling; 1393 1394 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1395 if (cpu == sibling) 1396 continue; 1397 1398 if (!idle_cpu(sibling)) 1399 return false; 1400 } 1401 #endif 1402 1403 return true; 1404 } 1405 1406 #ifdef CONFIG_NUMA 1407 #define NUMA_IMBALANCE_MIN 2 1408 1409 static inline long 1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1411 { 1412 /* 1413 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1414 * threshold. Above this threshold, individual tasks may be contending 1415 * for both memory bandwidth and any shared HT resources. This is an 1416 * approximation as the number of running tasks may not be related to 1417 * the number of busy CPUs due to sched_setaffinity. 1418 */ 1419 if (dst_running > imb_numa_nr) 1420 return imbalance; 1421 1422 /* 1423 * Allow a small imbalance based on a simple pair of communicating 1424 * tasks that remain local when the destination is lightly loaded. 1425 */ 1426 if (imbalance <= NUMA_IMBALANCE_MIN) 1427 return 0; 1428 1429 return imbalance; 1430 } 1431 #endif /* CONFIG_NUMA */ 1432 1433 #ifdef CONFIG_NUMA_BALANCING 1434 /* 1435 * Approximate time to scan a full NUMA task in ms. The task scan period is 1436 * calculated based on the tasks virtual memory size and 1437 * numa_balancing_scan_size. 1438 */ 1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1441 1442 /* Portion of address space to scan in MB */ 1443 unsigned int sysctl_numa_balancing_scan_size = 256; 1444 1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1446 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1447 1448 /* The page with hint page fault latency < threshold in ms is considered hot */ 1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1450 1451 struct numa_group { 1452 refcount_t refcount; 1453 1454 spinlock_t lock; /* nr_tasks, tasks */ 1455 int nr_tasks; 1456 pid_t gid; 1457 int active_nodes; 1458 1459 struct rcu_head rcu; 1460 unsigned long total_faults; 1461 unsigned long max_faults_cpu; 1462 /* 1463 * faults[] array is split into two regions: faults_mem and faults_cpu. 1464 * 1465 * Faults_cpu is used to decide whether memory should move 1466 * towards the CPU. As a consequence, these stats are weighted 1467 * more by CPU use than by memory faults. 1468 */ 1469 unsigned long faults[]; 1470 }; 1471 1472 /* 1473 * For functions that can be called in multiple contexts that permit reading 1474 * ->numa_group (see struct task_struct for locking rules). 1475 */ 1476 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1477 { 1478 return rcu_dereference_check(p->numa_group, p == current || 1479 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1480 } 1481 1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1483 { 1484 return rcu_dereference_protected(p->numa_group, p == current); 1485 } 1486 1487 static inline unsigned long group_faults_priv(struct numa_group *ng); 1488 static inline unsigned long group_faults_shared(struct numa_group *ng); 1489 1490 static unsigned int task_nr_scan_windows(struct task_struct *p) 1491 { 1492 unsigned long rss = 0; 1493 unsigned long nr_scan_pages; 1494 1495 /* 1496 * Calculations based on RSS as non-present and empty pages are skipped 1497 * by the PTE scanner and NUMA hinting faults should be trapped based 1498 * on resident pages 1499 */ 1500 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1501 rss = get_mm_rss(p->mm); 1502 if (!rss) 1503 rss = nr_scan_pages; 1504 1505 rss = round_up(rss, nr_scan_pages); 1506 return rss / nr_scan_pages; 1507 } 1508 1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1510 #define MAX_SCAN_WINDOW 2560 1511 1512 static unsigned int task_scan_min(struct task_struct *p) 1513 { 1514 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1515 unsigned int scan, floor; 1516 unsigned int windows = 1; 1517 1518 if (scan_size < MAX_SCAN_WINDOW) 1519 windows = MAX_SCAN_WINDOW / scan_size; 1520 floor = 1000 / windows; 1521 1522 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1523 return max_t(unsigned int, floor, scan); 1524 } 1525 1526 static unsigned int task_scan_start(struct task_struct *p) 1527 { 1528 unsigned long smin = task_scan_min(p); 1529 unsigned long period = smin; 1530 struct numa_group *ng; 1531 1532 /* Scale the maximum scan period with the amount of shared memory. */ 1533 rcu_read_lock(); 1534 ng = rcu_dereference(p->numa_group); 1535 if (ng) { 1536 unsigned long shared = group_faults_shared(ng); 1537 unsigned long private = group_faults_priv(ng); 1538 1539 period *= refcount_read(&ng->refcount); 1540 period *= shared + 1; 1541 period /= private + shared + 1; 1542 } 1543 rcu_read_unlock(); 1544 1545 return max(smin, period); 1546 } 1547 1548 static unsigned int task_scan_max(struct task_struct *p) 1549 { 1550 unsigned long smin = task_scan_min(p); 1551 unsigned long smax; 1552 struct numa_group *ng; 1553 1554 /* Watch for min being lower than max due to floor calculations */ 1555 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1556 1557 /* Scale the maximum scan period with the amount of shared memory. */ 1558 ng = deref_curr_numa_group(p); 1559 if (ng) { 1560 unsigned long shared = group_faults_shared(ng); 1561 unsigned long private = group_faults_priv(ng); 1562 unsigned long period = smax; 1563 1564 period *= refcount_read(&ng->refcount); 1565 period *= shared + 1; 1566 period /= private + shared + 1; 1567 1568 smax = max(smax, period); 1569 } 1570 1571 return max(smin, smax); 1572 } 1573 1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1575 { 1576 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1577 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1578 } 1579 1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1581 { 1582 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1583 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1584 } 1585 1586 /* Shared or private faults. */ 1587 #define NR_NUMA_HINT_FAULT_TYPES 2 1588 1589 /* Memory and CPU locality */ 1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1591 1592 /* Averaged statistics, and temporary buffers. */ 1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1594 1595 pid_t task_numa_group_id(struct task_struct *p) 1596 { 1597 struct numa_group *ng; 1598 pid_t gid = 0; 1599 1600 rcu_read_lock(); 1601 ng = rcu_dereference(p->numa_group); 1602 if (ng) 1603 gid = ng->gid; 1604 rcu_read_unlock(); 1605 1606 return gid; 1607 } 1608 1609 /* 1610 * The averaged statistics, shared & private, memory & CPU, 1611 * occupy the first half of the array. The second half of the 1612 * array is for current counters, which are averaged into the 1613 * first set by task_numa_placement. 1614 */ 1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1616 { 1617 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1618 } 1619 1620 static inline unsigned long task_faults(struct task_struct *p, int nid) 1621 { 1622 if (!p->numa_faults) 1623 return 0; 1624 1625 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1626 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1627 } 1628 1629 static inline unsigned long group_faults(struct task_struct *p, int nid) 1630 { 1631 struct numa_group *ng = deref_task_numa_group(p); 1632 1633 if (!ng) 1634 return 0; 1635 1636 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1637 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1638 } 1639 1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1641 { 1642 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1643 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1644 } 1645 1646 static inline unsigned long group_faults_priv(struct numa_group *ng) 1647 { 1648 unsigned long faults = 0; 1649 int node; 1650 1651 for_each_online_node(node) { 1652 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1653 } 1654 1655 return faults; 1656 } 1657 1658 static inline unsigned long group_faults_shared(struct numa_group *ng) 1659 { 1660 unsigned long faults = 0; 1661 int node; 1662 1663 for_each_online_node(node) { 1664 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1665 } 1666 1667 return faults; 1668 } 1669 1670 /* 1671 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1672 * considered part of a numa group's pseudo-interleaving set. Migrations 1673 * between these nodes are slowed down, to allow things to settle down. 1674 */ 1675 #define ACTIVE_NODE_FRACTION 3 1676 1677 static bool numa_is_active_node(int nid, struct numa_group *ng) 1678 { 1679 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1680 } 1681 1682 /* Handle placement on systems where not all nodes are directly connected. */ 1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1684 int lim_dist, bool task) 1685 { 1686 unsigned long score = 0; 1687 int node, max_dist; 1688 1689 /* 1690 * All nodes are directly connected, and the same distance 1691 * from each other. No need for fancy placement algorithms. 1692 */ 1693 if (sched_numa_topology_type == NUMA_DIRECT) 1694 return 0; 1695 1696 /* sched_max_numa_distance may be changed in parallel. */ 1697 max_dist = READ_ONCE(sched_max_numa_distance); 1698 /* 1699 * This code is called for each node, introducing N^2 complexity, 1700 * which should be OK given the number of nodes rarely exceeds 8. 1701 */ 1702 for_each_online_node(node) { 1703 unsigned long faults; 1704 int dist = node_distance(nid, node); 1705 1706 /* 1707 * The furthest away nodes in the system are not interesting 1708 * for placement; nid was already counted. 1709 */ 1710 if (dist >= max_dist || node == nid) 1711 continue; 1712 1713 /* 1714 * On systems with a backplane NUMA topology, compare groups 1715 * of nodes, and move tasks towards the group with the most 1716 * memory accesses. When comparing two nodes at distance 1717 * "hoplimit", only nodes closer by than "hoplimit" are part 1718 * of each group. Skip other nodes. 1719 */ 1720 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1721 continue; 1722 1723 /* Add up the faults from nearby nodes. */ 1724 if (task) 1725 faults = task_faults(p, node); 1726 else 1727 faults = group_faults(p, node); 1728 1729 /* 1730 * On systems with a glueless mesh NUMA topology, there are 1731 * no fixed "groups of nodes". Instead, nodes that are not 1732 * directly connected bounce traffic through intermediate 1733 * nodes; a numa_group can occupy any set of nodes. 1734 * The further away a node is, the less the faults count. 1735 * This seems to result in good task placement. 1736 */ 1737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1738 faults *= (max_dist - dist); 1739 faults /= (max_dist - LOCAL_DISTANCE); 1740 } 1741 1742 score += faults; 1743 } 1744 1745 return score; 1746 } 1747 1748 /* 1749 * These return the fraction of accesses done by a particular task, or 1750 * task group, on a particular numa node. The group weight is given a 1751 * larger multiplier, in order to group tasks together that are almost 1752 * evenly spread out between numa nodes. 1753 */ 1754 static inline unsigned long task_weight(struct task_struct *p, int nid, 1755 int dist) 1756 { 1757 unsigned long faults, total_faults; 1758 1759 if (!p->numa_faults) 1760 return 0; 1761 1762 total_faults = p->total_numa_faults; 1763 1764 if (!total_faults) 1765 return 0; 1766 1767 faults = task_faults(p, nid); 1768 faults += score_nearby_nodes(p, nid, dist, true); 1769 1770 return 1000 * faults / total_faults; 1771 } 1772 1773 static inline unsigned long group_weight(struct task_struct *p, int nid, 1774 int dist) 1775 { 1776 struct numa_group *ng = deref_task_numa_group(p); 1777 unsigned long faults, total_faults; 1778 1779 if (!ng) 1780 return 0; 1781 1782 total_faults = ng->total_faults; 1783 1784 if (!total_faults) 1785 return 0; 1786 1787 faults = group_faults(p, nid); 1788 faults += score_nearby_nodes(p, nid, dist, false); 1789 1790 return 1000 * faults / total_faults; 1791 } 1792 1793 /* 1794 * If memory tiering mode is enabled, cpupid of slow memory page is 1795 * used to record scan time instead of CPU and PID. When tiering mode 1796 * is disabled at run time, the scan time (in cpupid) will be 1797 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1798 * access out of array bound. 1799 */ 1800 static inline bool cpupid_valid(int cpupid) 1801 { 1802 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1803 } 1804 1805 /* 1806 * For memory tiering mode, if there are enough free pages (more than 1807 * enough watermark defined here) in fast memory node, to take full 1808 * advantage of fast memory capacity, all recently accessed slow 1809 * memory pages will be migrated to fast memory node without 1810 * considering hot threshold. 1811 */ 1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1813 { 1814 int z; 1815 unsigned long enough_wmark; 1816 1817 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1818 pgdat->node_present_pages >> 4); 1819 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1820 struct zone *zone = pgdat->node_zones + z; 1821 1822 if (!populated_zone(zone)) 1823 continue; 1824 1825 if (zone_watermark_ok(zone, 0, 1826 promo_wmark_pages(zone) + enough_wmark, 1827 ZONE_MOVABLE, 0)) 1828 return true; 1829 } 1830 return false; 1831 } 1832 1833 /* 1834 * For memory tiering mode, when page tables are scanned, the scan 1835 * time will be recorded in struct page in addition to make page 1836 * PROT_NONE for slow memory page. So when the page is accessed, in 1837 * hint page fault handler, the hint page fault latency is calculated 1838 * via, 1839 * 1840 * hint page fault latency = hint page fault time - scan time 1841 * 1842 * The smaller the hint page fault latency, the higher the possibility 1843 * for the page to be hot. 1844 */ 1845 static int numa_hint_fault_latency(struct folio *folio) 1846 { 1847 int last_time, time; 1848 1849 time = jiffies_to_msecs(jiffies); 1850 last_time = folio_xchg_access_time(folio, time); 1851 1852 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1853 } 1854 1855 /* 1856 * For memory tiering mode, too high promotion/demotion throughput may 1857 * hurt application latency. So we provide a mechanism to rate limit 1858 * the number of pages that are tried to be promoted. 1859 */ 1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1861 unsigned long rate_limit, int nr) 1862 { 1863 unsigned long nr_cand; 1864 unsigned int now, start; 1865 1866 now = jiffies_to_msecs(jiffies); 1867 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1868 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1869 start = pgdat->nbp_rl_start; 1870 if (now - start > MSEC_PER_SEC && 1871 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1872 pgdat->nbp_rl_nr_cand = nr_cand; 1873 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1874 return true; 1875 return false; 1876 } 1877 1878 #define NUMA_MIGRATION_ADJUST_STEPS 16 1879 1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1881 unsigned long rate_limit, 1882 unsigned int ref_th) 1883 { 1884 unsigned int now, start, th_period, unit_th, th; 1885 unsigned long nr_cand, ref_cand, diff_cand; 1886 1887 now = jiffies_to_msecs(jiffies); 1888 th_period = sysctl_numa_balancing_scan_period_max; 1889 start = pgdat->nbp_th_start; 1890 if (now - start > th_period && 1891 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1892 ref_cand = rate_limit * 1893 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1894 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1895 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1896 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1897 th = pgdat->nbp_threshold ? : ref_th; 1898 if (diff_cand > ref_cand * 11 / 10) 1899 th = max(th - unit_th, unit_th); 1900 else if (diff_cand < ref_cand * 9 / 10) 1901 th = min(th + unit_th, ref_th * 2); 1902 pgdat->nbp_th_nr_cand = nr_cand; 1903 pgdat->nbp_threshold = th; 1904 } 1905 } 1906 1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1908 int src_nid, int dst_cpu) 1909 { 1910 struct numa_group *ng = deref_curr_numa_group(p); 1911 int dst_nid = cpu_to_node(dst_cpu); 1912 int last_cpupid, this_cpupid; 1913 1914 /* 1915 * Cannot migrate to memoryless nodes. 1916 */ 1917 if (!node_state(dst_nid, N_MEMORY)) 1918 return false; 1919 1920 /* 1921 * The pages in slow memory node should be migrated according 1922 * to hot/cold instead of private/shared. 1923 */ 1924 if (folio_use_access_time(folio)) { 1925 struct pglist_data *pgdat; 1926 unsigned long rate_limit; 1927 unsigned int latency, th, def_th; 1928 1929 pgdat = NODE_DATA(dst_nid); 1930 if (pgdat_free_space_enough(pgdat)) { 1931 /* workload changed, reset hot threshold */ 1932 pgdat->nbp_threshold = 0; 1933 return true; 1934 } 1935 1936 def_th = sysctl_numa_balancing_hot_threshold; 1937 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1938 (20 - PAGE_SHIFT); 1939 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1940 1941 th = pgdat->nbp_threshold ? : def_th; 1942 latency = numa_hint_fault_latency(folio); 1943 if (latency >= th) 1944 return false; 1945 1946 return !numa_promotion_rate_limit(pgdat, rate_limit, 1947 folio_nr_pages(folio)); 1948 } 1949 1950 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1951 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1952 1953 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1954 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1955 return false; 1956 1957 /* 1958 * Allow first faults or private faults to migrate immediately early in 1959 * the lifetime of a task. The magic number 4 is based on waiting for 1960 * two full passes of the "multi-stage node selection" test that is 1961 * executed below. 1962 */ 1963 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1964 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1965 return true; 1966 1967 /* 1968 * Multi-stage node selection is used in conjunction with a periodic 1969 * migration fault to build a temporal task<->page relation. By using 1970 * a two-stage filter we remove short/unlikely relations. 1971 * 1972 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1973 * a task's usage of a particular page (n_p) per total usage of this 1974 * page (n_t) (in a given time-span) to a probability. 1975 * 1976 * Our periodic faults will sample this probability and getting the 1977 * same result twice in a row, given these samples are fully 1978 * independent, is then given by P(n)^2, provided our sample period 1979 * is sufficiently short compared to the usage pattern. 1980 * 1981 * This quadric squishes small probabilities, making it less likely we 1982 * act on an unlikely task<->page relation. 1983 */ 1984 if (!cpupid_pid_unset(last_cpupid) && 1985 cpupid_to_nid(last_cpupid) != dst_nid) 1986 return false; 1987 1988 /* Always allow migrate on private faults */ 1989 if (cpupid_match_pid(p, last_cpupid)) 1990 return true; 1991 1992 /* A shared fault, but p->numa_group has not been set up yet. */ 1993 if (!ng) 1994 return true; 1995 1996 /* 1997 * Destination node is much more heavily used than the source 1998 * node? Allow migration. 1999 */ 2000 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2001 ACTIVE_NODE_FRACTION) 2002 return true; 2003 2004 /* 2005 * Distribute memory according to CPU & memory use on each node, 2006 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2007 * 2008 * faults_cpu(dst) 3 faults_cpu(src) 2009 * --------------- * - > --------------- 2010 * faults_mem(dst) 4 faults_mem(src) 2011 */ 2012 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2013 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2014 } 2015 2016 /* 2017 * 'numa_type' describes the node at the moment of load balancing. 2018 */ 2019 enum numa_type { 2020 /* The node has spare capacity that can be used to run more tasks. */ 2021 node_has_spare = 0, 2022 /* 2023 * The node is fully used and the tasks don't compete for more CPU 2024 * cycles. Nevertheless, some tasks might wait before running. 2025 */ 2026 node_fully_busy, 2027 /* 2028 * The node is overloaded and can't provide expected CPU cycles to all 2029 * tasks. 2030 */ 2031 node_overloaded 2032 }; 2033 2034 /* Cached statistics for all CPUs within a node */ 2035 struct numa_stats { 2036 unsigned long load; 2037 unsigned long runnable; 2038 unsigned long util; 2039 /* Total compute capacity of CPUs on a node */ 2040 unsigned long compute_capacity; 2041 unsigned int nr_running; 2042 unsigned int weight; 2043 enum numa_type node_type; 2044 int idle_cpu; 2045 }; 2046 2047 struct task_numa_env { 2048 struct task_struct *p; 2049 2050 int src_cpu, src_nid; 2051 int dst_cpu, dst_nid; 2052 int imb_numa_nr; 2053 2054 struct numa_stats src_stats, dst_stats; 2055 2056 int imbalance_pct; 2057 int dist; 2058 2059 struct task_struct *best_task; 2060 long best_imp; 2061 int best_cpu; 2062 }; 2063 2064 static unsigned long cpu_load(struct rq *rq); 2065 static unsigned long cpu_runnable(struct rq *rq); 2066 2067 static inline enum 2068 numa_type numa_classify(unsigned int imbalance_pct, 2069 struct numa_stats *ns) 2070 { 2071 if ((ns->nr_running > ns->weight) && 2072 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2073 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2074 return node_overloaded; 2075 2076 if ((ns->nr_running < ns->weight) || 2077 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2078 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2079 return node_has_spare; 2080 2081 return node_fully_busy; 2082 } 2083 2084 #ifdef CONFIG_SCHED_SMT 2085 /* Forward declarations of select_idle_sibling helpers */ 2086 static inline bool test_idle_cores(int cpu); 2087 static inline int numa_idle_core(int idle_core, int cpu) 2088 { 2089 if (!static_branch_likely(&sched_smt_present) || 2090 idle_core >= 0 || !test_idle_cores(cpu)) 2091 return idle_core; 2092 2093 /* 2094 * Prefer cores instead of packing HT siblings 2095 * and triggering future load balancing. 2096 */ 2097 if (is_core_idle(cpu)) 2098 idle_core = cpu; 2099 2100 return idle_core; 2101 } 2102 #else 2103 static inline int numa_idle_core(int idle_core, int cpu) 2104 { 2105 return idle_core; 2106 } 2107 #endif 2108 2109 /* 2110 * Gather all necessary information to make NUMA balancing placement 2111 * decisions that are compatible with standard load balancer. This 2112 * borrows code and logic from update_sg_lb_stats but sharing a 2113 * common implementation is impractical. 2114 */ 2115 static void update_numa_stats(struct task_numa_env *env, 2116 struct numa_stats *ns, int nid, 2117 bool find_idle) 2118 { 2119 int cpu, idle_core = -1; 2120 2121 memset(ns, 0, sizeof(*ns)); 2122 ns->idle_cpu = -1; 2123 2124 rcu_read_lock(); 2125 for_each_cpu(cpu, cpumask_of_node(nid)) { 2126 struct rq *rq = cpu_rq(cpu); 2127 2128 ns->load += cpu_load(rq); 2129 ns->runnable += cpu_runnable(rq); 2130 ns->util += cpu_util_cfs(cpu); 2131 ns->nr_running += rq->cfs.h_nr_running; 2132 ns->compute_capacity += capacity_of(cpu); 2133 2134 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2135 if (READ_ONCE(rq->numa_migrate_on) || 2136 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2137 continue; 2138 2139 if (ns->idle_cpu == -1) 2140 ns->idle_cpu = cpu; 2141 2142 idle_core = numa_idle_core(idle_core, cpu); 2143 } 2144 } 2145 rcu_read_unlock(); 2146 2147 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2148 2149 ns->node_type = numa_classify(env->imbalance_pct, ns); 2150 2151 if (idle_core >= 0) 2152 ns->idle_cpu = idle_core; 2153 } 2154 2155 static void task_numa_assign(struct task_numa_env *env, 2156 struct task_struct *p, long imp) 2157 { 2158 struct rq *rq = cpu_rq(env->dst_cpu); 2159 2160 /* Check if run-queue part of active NUMA balance. */ 2161 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2162 int cpu; 2163 int start = env->dst_cpu; 2164 2165 /* Find alternative idle CPU. */ 2166 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2167 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2168 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2169 continue; 2170 } 2171 2172 env->dst_cpu = cpu; 2173 rq = cpu_rq(env->dst_cpu); 2174 if (!xchg(&rq->numa_migrate_on, 1)) 2175 goto assign; 2176 } 2177 2178 /* Failed to find an alternative idle CPU */ 2179 return; 2180 } 2181 2182 assign: 2183 /* 2184 * Clear previous best_cpu/rq numa-migrate flag, since task now 2185 * found a better CPU to move/swap. 2186 */ 2187 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2188 rq = cpu_rq(env->best_cpu); 2189 WRITE_ONCE(rq->numa_migrate_on, 0); 2190 } 2191 2192 if (env->best_task) 2193 put_task_struct(env->best_task); 2194 if (p) 2195 get_task_struct(p); 2196 2197 env->best_task = p; 2198 env->best_imp = imp; 2199 env->best_cpu = env->dst_cpu; 2200 } 2201 2202 static bool load_too_imbalanced(long src_load, long dst_load, 2203 struct task_numa_env *env) 2204 { 2205 long imb, old_imb; 2206 long orig_src_load, orig_dst_load; 2207 long src_capacity, dst_capacity; 2208 2209 /* 2210 * The load is corrected for the CPU capacity available on each node. 2211 * 2212 * src_load dst_load 2213 * ------------ vs --------- 2214 * src_capacity dst_capacity 2215 */ 2216 src_capacity = env->src_stats.compute_capacity; 2217 dst_capacity = env->dst_stats.compute_capacity; 2218 2219 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2220 2221 orig_src_load = env->src_stats.load; 2222 orig_dst_load = env->dst_stats.load; 2223 2224 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2225 2226 /* Would this change make things worse? */ 2227 return (imb > old_imb); 2228 } 2229 2230 /* 2231 * Maximum NUMA importance can be 1998 (2*999); 2232 * SMALLIMP @ 30 would be close to 1998/64. 2233 * Used to deter task migration. 2234 */ 2235 #define SMALLIMP 30 2236 2237 /* 2238 * This checks if the overall compute and NUMA accesses of the system would 2239 * be improved if the source tasks was migrated to the target dst_cpu taking 2240 * into account that it might be best if task running on the dst_cpu should 2241 * be exchanged with the source task 2242 */ 2243 static bool task_numa_compare(struct task_numa_env *env, 2244 long taskimp, long groupimp, bool maymove) 2245 { 2246 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2247 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2248 long imp = p_ng ? groupimp : taskimp; 2249 struct task_struct *cur; 2250 long src_load, dst_load; 2251 int dist = env->dist; 2252 long moveimp = imp; 2253 long load; 2254 bool stopsearch = false; 2255 2256 if (READ_ONCE(dst_rq->numa_migrate_on)) 2257 return false; 2258 2259 rcu_read_lock(); 2260 cur = rcu_dereference(dst_rq->curr); 2261 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2262 cur = NULL; 2263 2264 /* 2265 * Because we have preemption enabled we can get migrated around and 2266 * end try selecting ourselves (current == env->p) as a swap candidate. 2267 */ 2268 if (cur == env->p) { 2269 stopsearch = true; 2270 goto unlock; 2271 } 2272 2273 if (!cur) { 2274 if (maymove && moveimp >= env->best_imp) 2275 goto assign; 2276 else 2277 goto unlock; 2278 } 2279 2280 /* Skip this swap candidate if cannot move to the source cpu. */ 2281 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2282 goto unlock; 2283 2284 /* 2285 * Skip this swap candidate if it is not moving to its preferred 2286 * node and the best task is. 2287 */ 2288 if (env->best_task && 2289 env->best_task->numa_preferred_nid == env->src_nid && 2290 cur->numa_preferred_nid != env->src_nid) { 2291 goto unlock; 2292 } 2293 2294 /* 2295 * "imp" is the fault differential for the source task between the 2296 * source and destination node. Calculate the total differential for 2297 * the source task and potential destination task. The more negative 2298 * the value is, the more remote accesses that would be expected to 2299 * be incurred if the tasks were swapped. 2300 * 2301 * If dst and source tasks are in the same NUMA group, or not 2302 * in any group then look only at task weights. 2303 */ 2304 cur_ng = rcu_dereference(cur->numa_group); 2305 if (cur_ng == p_ng) { 2306 /* 2307 * Do not swap within a group or between tasks that have 2308 * no group if there is spare capacity. Swapping does 2309 * not address the load imbalance and helps one task at 2310 * the cost of punishing another. 2311 */ 2312 if (env->dst_stats.node_type == node_has_spare) 2313 goto unlock; 2314 2315 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2316 task_weight(cur, env->dst_nid, dist); 2317 /* 2318 * Add some hysteresis to prevent swapping the 2319 * tasks within a group over tiny differences. 2320 */ 2321 if (cur_ng) 2322 imp -= imp / 16; 2323 } else { 2324 /* 2325 * Compare the group weights. If a task is all by itself 2326 * (not part of a group), use the task weight instead. 2327 */ 2328 if (cur_ng && p_ng) 2329 imp += group_weight(cur, env->src_nid, dist) - 2330 group_weight(cur, env->dst_nid, dist); 2331 else 2332 imp += task_weight(cur, env->src_nid, dist) - 2333 task_weight(cur, env->dst_nid, dist); 2334 } 2335 2336 /* Discourage picking a task already on its preferred node */ 2337 if (cur->numa_preferred_nid == env->dst_nid) 2338 imp -= imp / 16; 2339 2340 /* 2341 * Encourage picking a task that moves to its preferred node. 2342 * This potentially makes imp larger than it's maximum of 2343 * 1998 (see SMALLIMP and task_weight for why) but in this 2344 * case, it does not matter. 2345 */ 2346 if (cur->numa_preferred_nid == env->src_nid) 2347 imp += imp / 8; 2348 2349 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2350 imp = moveimp; 2351 cur = NULL; 2352 goto assign; 2353 } 2354 2355 /* 2356 * Prefer swapping with a task moving to its preferred node over a 2357 * task that is not. 2358 */ 2359 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2360 env->best_task->numa_preferred_nid != env->src_nid) { 2361 goto assign; 2362 } 2363 2364 /* 2365 * If the NUMA importance is less than SMALLIMP, 2366 * task migration might only result in ping pong 2367 * of tasks and also hurt performance due to cache 2368 * misses. 2369 */ 2370 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2371 goto unlock; 2372 2373 /* 2374 * In the overloaded case, try and keep the load balanced. 2375 */ 2376 load = task_h_load(env->p) - task_h_load(cur); 2377 if (!load) 2378 goto assign; 2379 2380 dst_load = env->dst_stats.load + load; 2381 src_load = env->src_stats.load - load; 2382 2383 if (load_too_imbalanced(src_load, dst_load, env)) 2384 goto unlock; 2385 2386 assign: 2387 /* Evaluate an idle CPU for a task numa move. */ 2388 if (!cur) { 2389 int cpu = env->dst_stats.idle_cpu; 2390 2391 /* Nothing cached so current CPU went idle since the search. */ 2392 if (cpu < 0) 2393 cpu = env->dst_cpu; 2394 2395 /* 2396 * If the CPU is no longer truly idle and the previous best CPU 2397 * is, keep using it. 2398 */ 2399 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2400 idle_cpu(env->best_cpu)) { 2401 cpu = env->best_cpu; 2402 } 2403 2404 env->dst_cpu = cpu; 2405 } 2406 2407 task_numa_assign(env, cur, imp); 2408 2409 /* 2410 * If a move to idle is allowed because there is capacity or load 2411 * balance improves then stop the search. While a better swap 2412 * candidate may exist, a search is not free. 2413 */ 2414 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2415 stopsearch = true; 2416 2417 /* 2418 * If a swap candidate must be identified and the current best task 2419 * moves its preferred node then stop the search. 2420 */ 2421 if (!maymove && env->best_task && 2422 env->best_task->numa_preferred_nid == env->src_nid) { 2423 stopsearch = true; 2424 } 2425 unlock: 2426 rcu_read_unlock(); 2427 2428 return stopsearch; 2429 } 2430 2431 static void task_numa_find_cpu(struct task_numa_env *env, 2432 long taskimp, long groupimp) 2433 { 2434 bool maymove = false; 2435 int cpu; 2436 2437 /* 2438 * If dst node has spare capacity, then check if there is an 2439 * imbalance that would be overruled by the load balancer. 2440 */ 2441 if (env->dst_stats.node_type == node_has_spare) { 2442 unsigned int imbalance; 2443 int src_running, dst_running; 2444 2445 /* 2446 * Would movement cause an imbalance? Note that if src has 2447 * more running tasks that the imbalance is ignored as the 2448 * move improves the imbalance from the perspective of the 2449 * CPU load balancer. 2450 * */ 2451 src_running = env->src_stats.nr_running - 1; 2452 dst_running = env->dst_stats.nr_running + 1; 2453 imbalance = max(0, dst_running - src_running); 2454 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2455 env->imb_numa_nr); 2456 2457 /* Use idle CPU if there is no imbalance */ 2458 if (!imbalance) { 2459 maymove = true; 2460 if (env->dst_stats.idle_cpu >= 0) { 2461 env->dst_cpu = env->dst_stats.idle_cpu; 2462 task_numa_assign(env, NULL, 0); 2463 return; 2464 } 2465 } 2466 } else { 2467 long src_load, dst_load, load; 2468 /* 2469 * If the improvement from just moving env->p direction is better 2470 * than swapping tasks around, check if a move is possible. 2471 */ 2472 load = task_h_load(env->p); 2473 dst_load = env->dst_stats.load + load; 2474 src_load = env->src_stats.load - load; 2475 maymove = !load_too_imbalanced(src_load, dst_load, env); 2476 } 2477 2478 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2479 /* Skip this CPU if the source task cannot migrate */ 2480 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2481 continue; 2482 2483 env->dst_cpu = cpu; 2484 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2485 break; 2486 } 2487 } 2488 2489 static int task_numa_migrate(struct task_struct *p) 2490 { 2491 struct task_numa_env env = { 2492 .p = p, 2493 2494 .src_cpu = task_cpu(p), 2495 .src_nid = task_node(p), 2496 2497 .imbalance_pct = 112, 2498 2499 .best_task = NULL, 2500 .best_imp = 0, 2501 .best_cpu = -1, 2502 }; 2503 unsigned long taskweight, groupweight; 2504 struct sched_domain *sd; 2505 long taskimp, groupimp; 2506 struct numa_group *ng; 2507 struct rq *best_rq; 2508 int nid, ret, dist; 2509 2510 /* 2511 * Pick the lowest SD_NUMA domain, as that would have the smallest 2512 * imbalance and would be the first to start moving tasks about. 2513 * 2514 * And we want to avoid any moving of tasks about, as that would create 2515 * random movement of tasks -- counter the numa conditions we're trying 2516 * to satisfy here. 2517 */ 2518 rcu_read_lock(); 2519 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2520 if (sd) { 2521 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2522 env.imb_numa_nr = sd->imb_numa_nr; 2523 } 2524 rcu_read_unlock(); 2525 2526 /* 2527 * Cpusets can break the scheduler domain tree into smaller 2528 * balance domains, some of which do not cross NUMA boundaries. 2529 * Tasks that are "trapped" in such domains cannot be migrated 2530 * elsewhere, so there is no point in (re)trying. 2531 */ 2532 if (unlikely(!sd)) { 2533 sched_setnuma(p, task_node(p)); 2534 return -EINVAL; 2535 } 2536 2537 env.dst_nid = p->numa_preferred_nid; 2538 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2539 taskweight = task_weight(p, env.src_nid, dist); 2540 groupweight = group_weight(p, env.src_nid, dist); 2541 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2542 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2543 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2544 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2545 2546 /* Try to find a spot on the preferred nid. */ 2547 task_numa_find_cpu(&env, taskimp, groupimp); 2548 2549 /* 2550 * Look at other nodes in these cases: 2551 * - there is no space available on the preferred_nid 2552 * - the task is part of a numa_group that is interleaved across 2553 * multiple NUMA nodes; in order to better consolidate the group, 2554 * we need to check other locations. 2555 */ 2556 ng = deref_curr_numa_group(p); 2557 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2558 for_each_node_state(nid, N_CPU) { 2559 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2560 continue; 2561 2562 dist = node_distance(env.src_nid, env.dst_nid); 2563 if (sched_numa_topology_type == NUMA_BACKPLANE && 2564 dist != env.dist) { 2565 taskweight = task_weight(p, env.src_nid, dist); 2566 groupweight = group_weight(p, env.src_nid, dist); 2567 } 2568 2569 /* Only consider nodes where both task and groups benefit */ 2570 taskimp = task_weight(p, nid, dist) - taskweight; 2571 groupimp = group_weight(p, nid, dist) - groupweight; 2572 if (taskimp < 0 && groupimp < 0) 2573 continue; 2574 2575 env.dist = dist; 2576 env.dst_nid = nid; 2577 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2578 task_numa_find_cpu(&env, taskimp, groupimp); 2579 } 2580 } 2581 2582 /* 2583 * If the task is part of a workload that spans multiple NUMA nodes, 2584 * and is migrating into one of the workload's active nodes, remember 2585 * this node as the task's preferred numa node, so the workload can 2586 * settle down. 2587 * A task that migrated to a second choice node will be better off 2588 * trying for a better one later. Do not set the preferred node here. 2589 */ 2590 if (ng) { 2591 if (env.best_cpu == -1) 2592 nid = env.src_nid; 2593 else 2594 nid = cpu_to_node(env.best_cpu); 2595 2596 if (nid != p->numa_preferred_nid) 2597 sched_setnuma(p, nid); 2598 } 2599 2600 /* No better CPU than the current one was found. */ 2601 if (env.best_cpu == -1) { 2602 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2603 return -EAGAIN; 2604 } 2605 2606 best_rq = cpu_rq(env.best_cpu); 2607 if (env.best_task == NULL) { 2608 ret = migrate_task_to(p, env.best_cpu); 2609 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2610 if (ret != 0) 2611 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2612 return ret; 2613 } 2614 2615 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2616 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2617 2618 if (ret != 0) 2619 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2620 put_task_struct(env.best_task); 2621 return ret; 2622 } 2623 2624 /* Attempt to migrate a task to a CPU on the preferred node. */ 2625 static void numa_migrate_preferred(struct task_struct *p) 2626 { 2627 unsigned long interval = HZ; 2628 2629 /* This task has no NUMA fault statistics yet */ 2630 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2631 return; 2632 2633 /* Periodically retry migrating the task to the preferred node */ 2634 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2635 p->numa_migrate_retry = jiffies + interval; 2636 2637 /* Success if task is already running on preferred CPU */ 2638 if (task_node(p) == p->numa_preferred_nid) 2639 return; 2640 2641 /* Otherwise, try migrate to a CPU on the preferred node */ 2642 task_numa_migrate(p); 2643 } 2644 2645 /* 2646 * Find out how many nodes the workload is actively running on. Do this by 2647 * tracking the nodes from which NUMA hinting faults are triggered. This can 2648 * be different from the set of nodes where the workload's memory is currently 2649 * located. 2650 */ 2651 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2652 { 2653 unsigned long faults, max_faults = 0; 2654 int nid, active_nodes = 0; 2655 2656 for_each_node_state(nid, N_CPU) { 2657 faults = group_faults_cpu(numa_group, nid); 2658 if (faults > max_faults) 2659 max_faults = faults; 2660 } 2661 2662 for_each_node_state(nid, N_CPU) { 2663 faults = group_faults_cpu(numa_group, nid); 2664 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2665 active_nodes++; 2666 } 2667 2668 numa_group->max_faults_cpu = max_faults; 2669 numa_group->active_nodes = active_nodes; 2670 } 2671 2672 /* 2673 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2674 * increments. The more local the fault statistics are, the higher the scan 2675 * period will be for the next scan window. If local/(local+remote) ratio is 2676 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2677 * the scan period will decrease. Aim for 70% local accesses. 2678 */ 2679 #define NUMA_PERIOD_SLOTS 10 2680 #define NUMA_PERIOD_THRESHOLD 7 2681 2682 /* 2683 * Increase the scan period (slow down scanning) if the majority of 2684 * our memory is already on our local node, or if the majority of 2685 * the page accesses are shared with other processes. 2686 * Otherwise, decrease the scan period. 2687 */ 2688 static void update_task_scan_period(struct task_struct *p, 2689 unsigned long shared, unsigned long private) 2690 { 2691 unsigned int period_slot; 2692 int lr_ratio, ps_ratio; 2693 int diff; 2694 2695 unsigned long remote = p->numa_faults_locality[0]; 2696 unsigned long local = p->numa_faults_locality[1]; 2697 2698 /* 2699 * If there were no record hinting faults then either the task is 2700 * completely idle or all activity is in areas that are not of interest 2701 * to automatic numa balancing. Related to that, if there were failed 2702 * migration then it implies we are migrating too quickly or the local 2703 * node is overloaded. In either case, scan slower 2704 */ 2705 if (local + shared == 0 || p->numa_faults_locality[2]) { 2706 p->numa_scan_period = min(p->numa_scan_period_max, 2707 p->numa_scan_period << 1); 2708 2709 p->mm->numa_next_scan = jiffies + 2710 msecs_to_jiffies(p->numa_scan_period); 2711 2712 return; 2713 } 2714 2715 /* 2716 * Prepare to scale scan period relative to the current period. 2717 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2718 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2719 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2720 */ 2721 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2722 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2723 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2724 2725 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2726 /* 2727 * Most memory accesses are local. There is no need to 2728 * do fast NUMA scanning, since memory is already local. 2729 */ 2730 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2731 if (!slot) 2732 slot = 1; 2733 diff = slot * period_slot; 2734 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2735 /* 2736 * Most memory accesses are shared with other tasks. 2737 * There is no point in continuing fast NUMA scanning, 2738 * since other tasks may just move the memory elsewhere. 2739 */ 2740 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2741 if (!slot) 2742 slot = 1; 2743 diff = slot * period_slot; 2744 } else { 2745 /* 2746 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2747 * yet they are not on the local NUMA node. Speed up 2748 * NUMA scanning to get the memory moved over. 2749 */ 2750 int ratio = max(lr_ratio, ps_ratio); 2751 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2752 } 2753 2754 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2755 task_scan_min(p), task_scan_max(p)); 2756 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2757 } 2758 2759 /* 2760 * Get the fraction of time the task has been running since the last 2761 * NUMA placement cycle. The scheduler keeps similar statistics, but 2762 * decays those on a 32ms period, which is orders of magnitude off 2763 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2764 * stats only if the task is so new there are no NUMA statistics yet. 2765 */ 2766 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2767 { 2768 u64 runtime, delta, now; 2769 /* Use the start of this time slice to avoid calculations. */ 2770 now = p->se.exec_start; 2771 runtime = p->se.sum_exec_runtime; 2772 2773 if (p->last_task_numa_placement) { 2774 delta = runtime - p->last_sum_exec_runtime; 2775 *period = now - p->last_task_numa_placement; 2776 2777 /* Avoid time going backwards, prevent potential divide error: */ 2778 if (unlikely((s64)*period < 0)) 2779 *period = 0; 2780 } else { 2781 delta = p->se.avg.load_sum; 2782 *period = LOAD_AVG_MAX; 2783 } 2784 2785 p->last_sum_exec_runtime = runtime; 2786 p->last_task_numa_placement = now; 2787 2788 return delta; 2789 } 2790 2791 /* 2792 * Determine the preferred nid for a task in a numa_group. This needs to 2793 * be done in a way that produces consistent results with group_weight, 2794 * otherwise workloads might not converge. 2795 */ 2796 static int preferred_group_nid(struct task_struct *p, int nid) 2797 { 2798 nodemask_t nodes; 2799 int dist; 2800 2801 /* Direct connections between all NUMA nodes. */ 2802 if (sched_numa_topology_type == NUMA_DIRECT) 2803 return nid; 2804 2805 /* 2806 * On a system with glueless mesh NUMA topology, group_weight 2807 * scores nodes according to the number of NUMA hinting faults on 2808 * both the node itself, and on nearby nodes. 2809 */ 2810 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2811 unsigned long score, max_score = 0; 2812 int node, max_node = nid; 2813 2814 dist = sched_max_numa_distance; 2815 2816 for_each_node_state(node, N_CPU) { 2817 score = group_weight(p, node, dist); 2818 if (score > max_score) { 2819 max_score = score; 2820 max_node = node; 2821 } 2822 } 2823 return max_node; 2824 } 2825 2826 /* 2827 * Finding the preferred nid in a system with NUMA backplane 2828 * interconnect topology is more involved. The goal is to locate 2829 * tasks from numa_groups near each other in the system, and 2830 * untangle workloads from different sides of the system. This requires 2831 * searching down the hierarchy of node groups, recursively searching 2832 * inside the highest scoring group of nodes. The nodemask tricks 2833 * keep the complexity of the search down. 2834 */ 2835 nodes = node_states[N_CPU]; 2836 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2837 unsigned long max_faults = 0; 2838 nodemask_t max_group = NODE_MASK_NONE; 2839 int a, b; 2840 2841 /* Are there nodes at this distance from each other? */ 2842 if (!find_numa_distance(dist)) 2843 continue; 2844 2845 for_each_node_mask(a, nodes) { 2846 unsigned long faults = 0; 2847 nodemask_t this_group; 2848 nodes_clear(this_group); 2849 2850 /* Sum group's NUMA faults; includes a==b case. */ 2851 for_each_node_mask(b, nodes) { 2852 if (node_distance(a, b) < dist) { 2853 faults += group_faults(p, b); 2854 node_set(b, this_group); 2855 node_clear(b, nodes); 2856 } 2857 } 2858 2859 /* Remember the top group. */ 2860 if (faults > max_faults) { 2861 max_faults = faults; 2862 max_group = this_group; 2863 /* 2864 * subtle: at the smallest distance there is 2865 * just one node left in each "group", the 2866 * winner is the preferred nid. 2867 */ 2868 nid = a; 2869 } 2870 } 2871 /* Next round, evaluate the nodes within max_group. */ 2872 if (!max_faults) 2873 break; 2874 nodes = max_group; 2875 } 2876 return nid; 2877 } 2878 2879 static void task_numa_placement(struct task_struct *p) 2880 { 2881 int seq, nid, max_nid = NUMA_NO_NODE; 2882 unsigned long max_faults = 0; 2883 unsigned long fault_types[2] = { 0, 0 }; 2884 unsigned long total_faults; 2885 u64 runtime, period; 2886 spinlock_t *group_lock = NULL; 2887 struct numa_group *ng; 2888 2889 /* 2890 * The p->mm->numa_scan_seq field gets updated without 2891 * exclusive access. Use READ_ONCE() here to ensure 2892 * that the field is read in a single access: 2893 */ 2894 seq = READ_ONCE(p->mm->numa_scan_seq); 2895 if (p->numa_scan_seq == seq) 2896 return; 2897 p->numa_scan_seq = seq; 2898 p->numa_scan_period_max = task_scan_max(p); 2899 2900 total_faults = p->numa_faults_locality[0] + 2901 p->numa_faults_locality[1]; 2902 runtime = numa_get_avg_runtime(p, &period); 2903 2904 /* If the task is part of a group prevent parallel updates to group stats */ 2905 ng = deref_curr_numa_group(p); 2906 if (ng) { 2907 group_lock = &ng->lock; 2908 spin_lock_irq(group_lock); 2909 } 2910 2911 /* Find the node with the highest number of faults */ 2912 for_each_online_node(nid) { 2913 /* Keep track of the offsets in numa_faults array */ 2914 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2915 unsigned long faults = 0, group_faults = 0; 2916 int priv; 2917 2918 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2919 long diff, f_diff, f_weight; 2920 2921 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2922 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2923 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2924 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2925 2926 /* Decay existing window, copy faults since last scan */ 2927 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2928 fault_types[priv] += p->numa_faults[membuf_idx]; 2929 p->numa_faults[membuf_idx] = 0; 2930 2931 /* 2932 * Normalize the faults_from, so all tasks in a group 2933 * count according to CPU use, instead of by the raw 2934 * number of faults. Tasks with little runtime have 2935 * little over-all impact on throughput, and thus their 2936 * faults are less important. 2937 */ 2938 f_weight = div64_u64(runtime << 16, period + 1); 2939 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2940 (total_faults + 1); 2941 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2942 p->numa_faults[cpubuf_idx] = 0; 2943 2944 p->numa_faults[mem_idx] += diff; 2945 p->numa_faults[cpu_idx] += f_diff; 2946 faults += p->numa_faults[mem_idx]; 2947 p->total_numa_faults += diff; 2948 if (ng) { 2949 /* 2950 * safe because we can only change our own group 2951 * 2952 * mem_idx represents the offset for a given 2953 * nid and priv in a specific region because it 2954 * is at the beginning of the numa_faults array. 2955 */ 2956 ng->faults[mem_idx] += diff; 2957 ng->faults[cpu_idx] += f_diff; 2958 ng->total_faults += diff; 2959 group_faults += ng->faults[mem_idx]; 2960 } 2961 } 2962 2963 if (!ng) { 2964 if (faults > max_faults) { 2965 max_faults = faults; 2966 max_nid = nid; 2967 } 2968 } else if (group_faults > max_faults) { 2969 max_faults = group_faults; 2970 max_nid = nid; 2971 } 2972 } 2973 2974 /* Cannot migrate task to CPU-less node */ 2975 max_nid = numa_nearest_node(max_nid, N_CPU); 2976 2977 if (ng) { 2978 numa_group_count_active_nodes(ng); 2979 spin_unlock_irq(group_lock); 2980 max_nid = preferred_group_nid(p, max_nid); 2981 } 2982 2983 if (max_faults) { 2984 /* Set the new preferred node */ 2985 if (max_nid != p->numa_preferred_nid) 2986 sched_setnuma(p, max_nid); 2987 } 2988 2989 update_task_scan_period(p, fault_types[0], fault_types[1]); 2990 } 2991 2992 static inline int get_numa_group(struct numa_group *grp) 2993 { 2994 return refcount_inc_not_zero(&grp->refcount); 2995 } 2996 2997 static inline void put_numa_group(struct numa_group *grp) 2998 { 2999 if (refcount_dec_and_test(&grp->refcount)) 3000 kfree_rcu(grp, rcu); 3001 } 3002 3003 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3004 int *priv) 3005 { 3006 struct numa_group *grp, *my_grp; 3007 struct task_struct *tsk; 3008 bool join = false; 3009 int cpu = cpupid_to_cpu(cpupid); 3010 int i; 3011 3012 if (unlikely(!deref_curr_numa_group(p))) { 3013 unsigned int size = sizeof(struct numa_group) + 3014 NR_NUMA_HINT_FAULT_STATS * 3015 nr_node_ids * sizeof(unsigned long); 3016 3017 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3018 if (!grp) 3019 return; 3020 3021 refcount_set(&grp->refcount, 1); 3022 grp->active_nodes = 1; 3023 grp->max_faults_cpu = 0; 3024 spin_lock_init(&grp->lock); 3025 grp->gid = p->pid; 3026 3027 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3028 grp->faults[i] = p->numa_faults[i]; 3029 3030 grp->total_faults = p->total_numa_faults; 3031 3032 grp->nr_tasks++; 3033 rcu_assign_pointer(p->numa_group, grp); 3034 } 3035 3036 rcu_read_lock(); 3037 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3038 3039 if (!cpupid_match_pid(tsk, cpupid)) 3040 goto no_join; 3041 3042 grp = rcu_dereference(tsk->numa_group); 3043 if (!grp) 3044 goto no_join; 3045 3046 my_grp = deref_curr_numa_group(p); 3047 if (grp == my_grp) 3048 goto no_join; 3049 3050 /* 3051 * Only join the other group if its bigger; if we're the bigger group, 3052 * the other task will join us. 3053 */ 3054 if (my_grp->nr_tasks > grp->nr_tasks) 3055 goto no_join; 3056 3057 /* 3058 * Tie-break on the grp address. 3059 */ 3060 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3061 goto no_join; 3062 3063 /* Always join threads in the same process. */ 3064 if (tsk->mm == current->mm) 3065 join = true; 3066 3067 /* Simple filter to avoid false positives due to PID collisions */ 3068 if (flags & TNF_SHARED) 3069 join = true; 3070 3071 /* Update priv based on whether false sharing was detected */ 3072 *priv = !join; 3073 3074 if (join && !get_numa_group(grp)) 3075 goto no_join; 3076 3077 rcu_read_unlock(); 3078 3079 if (!join) 3080 return; 3081 3082 WARN_ON_ONCE(irqs_disabled()); 3083 double_lock_irq(&my_grp->lock, &grp->lock); 3084 3085 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3086 my_grp->faults[i] -= p->numa_faults[i]; 3087 grp->faults[i] += p->numa_faults[i]; 3088 } 3089 my_grp->total_faults -= p->total_numa_faults; 3090 grp->total_faults += p->total_numa_faults; 3091 3092 my_grp->nr_tasks--; 3093 grp->nr_tasks++; 3094 3095 spin_unlock(&my_grp->lock); 3096 spin_unlock_irq(&grp->lock); 3097 3098 rcu_assign_pointer(p->numa_group, grp); 3099 3100 put_numa_group(my_grp); 3101 return; 3102 3103 no_join: 3104 rcu_read_unlock(); 3105 return; 3106 } 3107 3108 /* 3109 * Get rid of NUMA statistics associated with a task (either current or dead). 3110 * If @final is set, the task is dead and has reached refcount zero, so we can 3111 * safely free all relevant data structures. Otherwise, there might be 3112 * concurrent reads from places like load balancing and procfs, and we should 3113 * reset the data back to default state without freeing ->numa_faults. 3114 */ 3115 void task_numa_free(struct task_struct *p, bool final) 3116 { 3117 /* safe: p either is current or is being freed by current */ 3118 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3119 unsigned long *numa_faults = p->numa_faults; 3120 unsigned long flags; 3121 int i; 3122 3123 if (!numa_faults) 3124 return; 3125 3126 if (grp) { 3127 spin_lock_irqsave(&grp->lock, flags); 3128 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3129 grp->faults[i] -= p->numa_faults[i]; 3130 grp->total_faults -= p->total_numa_faults; 3131 3132 grp->nr_tasks--; 3133 spin_unlock_irqrestore(&grp->lock, flags); 3134 RCU_INIT_POINTER(p->numa_group, NULL); 3135 put_numa_group(grp); 3136 } 3137 3138 if (final) { 3139 p->numa_faults = NULL; 3140 kfree(numa_faults); 3141 } else { 3142 p->total_numa_faults = 0; 3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3144 numa_faults[i] = 0; 3145 } 3146 } 3147 3148 /* 3149 * Got a PROT_NONE fault for a page on @node. 3150 */ 3151 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3152 { 3153 struct task_struct *p = current; 3154 bool migrated = flags & TNF_MIGRATED; 3155 int cpu_node = task_node(current); 3156 int local = !!(flags & TNF_FAULT_LOCAL); 3157 struct numa_group *ng; 3158 int priv; 3159 3160 if (!static_branch_likely(&sched_numa_balancing)) 3161 return; 3162 3163 /* for example, ksmd faulting in a user's mm */ 3164 if (!p->mm) 3165 return; 3166 3167 /* 3168 * NUMA faults statistics are unnecessary for the slow memory 3169 * node for memory tiering mode. 3170 */ 3171 if (!node_is_toptier(mem_node) && 3172 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3173 !cpupid_valid(last_cpupid))) 3174 return; 3175 3176 /* Allocate buffer to track faults on a per-node basis */ 3177 if (unlikely(!p->numa_faults)) { 3178 int size = sizeof(*p->numa_faults) * 3179 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3180 3181 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3182 if (!p->numa_faults) 3183 return; 3184 3185 p->total_numa_faults = 0; 3186 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3187 } 3188 3189 /* 3190 * First accesses are treated as private, otherwise consider accesses 3191 * to be private if the accessing pid has not changed 3192 */ 3193 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3194 priv = 1; 3195 } else { 3196 priv = cpupid_match_pid(p, last_cpupid); 3197 if (!priv && !(flags & TNF_NO_GROUP)) 3198 task_numa_group(p, last_cpupid, flags, &priv); 3199 } 3200 3201 /* 3202 * If a workload spans multiple NUMA nodes, a shared fault that 3203 * occurs wholly within the set of nodes that the workload is 3204 * actively using should be counted as local. This allows the 3205 * scan rate to slow down when a workload has settled down. 3206 */ 3207 ng = deref_curr_numa_group(p); 3208 if (!priv && !local && ng && ng->active_nodes > 1 && 3209 numa_is_active_node(cpu_node, ng) && 3210 numa_is_active_node(mem_node, ng)) 3211 local = 1; 3212 3213 /* 3214 * Retry to migrate task to preferred node periodically, in case it 3215 * previously failed, or the scheduler moved us. 3216 */ 3217 if (time_after(jiffies, p->numa_migrate_retry)) { 3218 task_numa_placement(p); 3219 numa_migrate_preferred(p); 3220 } 3221 3222 if (migrated) 3223 p->numa_pages_migrated += pages; 3224 if (flags & TNF_MIGRATE_FAIL) 3225 p->numa_faults_locality[2] += pages; 3226 3227 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3228 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3229 p->numa_faults_locality[local] += pages; 3230 } 3231 3232 static void reset_ptenuma_scan(struct task_struct *p) 3233 { 3234 /* 3235 * We only did a read acquisition of the mmap sem, so 3236 * p->mm->numa_scan_seq is written to without exclusive access 3237 * and the update is not guaranteed to be atomic. That's not 3238 * much of an issue though, since this is just used for 3239 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3240 * expensive, to avoid any form of compiler optimizations: 3241 */ 3242 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3243 p->mm->numa_scan_offset = 0; 3244 } 3245 3246 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3247 { 3248 unsigned long pids; 3249 /* 3250 * Allow unconditional access first two times, so that all the (pages) 3251 * of VMAs get prot_none fault introduced irrespective of accesses. 3252 * This is also done to avoid any side effect of task scanning 3253 * amplifying the unfairness of disjoint set of VMAs' access. 3254 */ 3255 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3256 return true; 3257 3258 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3259 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3260 return true; 3261 3262 /* 3263 * Complete a scan that has already started regardless of PID access, or 3264 * some VMAs may never be scanned in multi-threaded applications: 3265 */ 3266 if (mm->numa_scan_offset > vma->vm_start) { 3267 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3268 return true; 3269 } 3270 3271 /* 3272 * This vma has not been accessed for a while, and if the number 3273 * the threads in the same process is low, which means no other 3274 * threads can help scan this vma, force a vma scan. 3275 */ 3276 if (READ_ONCE(mm->numa_scan_seq) > 3277 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3278 return true; 3279 3280 return false; 3281 } 3282 3283 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3284 3285 /* 3286 * The expensive part of numa migration is done from task_work context. 3287 * Triggered from task_tick_numa(). 3288 */ 3289 static void task_numa_work(struct callback_head *work) 3290 { 3291 unsigned long migrate, next_scan, now = jiffies; 3292 struct task_struct *p = current; 3293 struct mm_struct *mm = p->mm; 3294 u64 runtime = p->se.sum_exec_runtime; 3295 struct vm_area_struct *vma; 3296 unsigned long start, end; 3297 unsigned long nr_pte_updates = 0; 3298 long pages, virtpages; 3299 struct vma_iterator vmi; 3300 bool vma_pids_skipped; 3301 bool vma_pids_forced = false; 3302 3303 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3304 3305 work->next = work; 3306 /* 3307 * Who cares about NUMA placement when they're dying. 3308 * 3309 * NOTE: make sure not to dereference p->mm before this check, 3310 * exit_task_work() happens _after_ exit_mm() so we could be called 3311 * without p->mm even though we still had it when we enqueued this 3312 * work. 3313 */ 3314 if (p->flags & PF_EXITING) 3315 return; 3316 3317 if (!mm->numa_next_scan) { 3318 mm->numa_next_scan = now + 3319 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3320 } 3321 3322 /* 3323 * Enforce maximal scan/migration frequency.. 3324 */ 3325 migrate = mm->numa_next_scan; 3326 if (time_before(now, migrate)) 3327 return; 3328 3329 if (p->numa_scan_period == 0) { 3330 p->numa_scan_period_max = task_scan_max(p); 3331 p->numa_scan_period = task_scan_start(p); 3332 } 3333 3334 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3335 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3336 return; 3337 3338 /* 3339 * Delay this task enough that another task of this mm will likely win 3340 * the next time around. 3341 */ 3342 p->node_stamp += 2 * TICK_NSEC; 3343 3344 pages = sysctl_numa_balancing_scan_size; 3345 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3346 virtpages = pages * 8; /* Scan up to this much virtual space */ 3347 if (!pages) 3348 return; 3349 3350 3351 if (!mmap_read_trylock(mm)) 3352 return; 3353 3354 /* 3355 * VMAs are skipped if the current PID has not trapped a fault within 3356 * the VMA recently. Allow scanning to be forced if there is no 3357 * suitable VMA remaining. 3358 */ 3359 vma_pids_skipped = false; 3360 3361 retry_pids: 3362 start = mm->numa_scan_offset; 3363 vma_iter_init(&vmi, mm, start); 3364 vma = vma_next(&vmi); 3365 if (!vma) { 3366 reset_ptenuma_scan(p); 3367 start = 0; 3368 vma_iter_set(&vmi, start); 3369 vma = vma_next(&vmi); 3370 } 3371 3372 for (; vma; vma = vma_next(&vmi)) { 3373 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3374 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3375 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3376 continue; 3377 } 3378 3379 /* 3380 * Shared library pages mapped by multiple processes are not 3381 * migrated as it is expected they are cache replicated. Avoid 3382 * hinting faults in read-only file-backed mappings or the vDSO 3383 * as migrating the pages will be of marginal benefit. 3384 */ 3385 if (!vma->vm_mm || 3386 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3387 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3388 continue; 3389 } 3390 3391 /* 3392 * Skip inaccessible VMAs to avoid any confusion between 3393 * PROT_NONE and NUMA hinting PTEs 3394 */ 3395 if (!vma_is_accessible(vma)) { 3396 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3397 continue; 3398 } 3399 3400 /* Initialise new per-VMA NUMAB state. */ 3401 if (!vma->numab_state) { 3402 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3403 GFP_KERNEL); 3404 if (!vma->numab_state) 3405 continue; 3406 3407 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3408 3409 vma->numab_state->next_scan = now + 3410 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3411 3412 /* Reset happens after 4 times scan delay of scan start */ 3413 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3414 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3415 3416 /* 3417 * Ensure prev_scan_seq does not match numa_scan_seq, 3418 * to prevent VMAs being skipped prematurely on the 3419 * first scan: 3420 */ 3421 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3422 } 3423 3424 /* 3425 * Scanning the VMAs of short lived tasks add more overhead. So 3426 * delay the scan for new VMAs. 3427 */ 3428 if (mm->numa_scan_seq && time_before(jiffies, 3429 vma->numab_state->next_scan)) { 3430 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3431 continue; 3432 } 3433 3434 /* RESET access PIDs regularly for old VMAs. */ 3435 if (mm->numa_scan_seq && 3436 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3437 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3438 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3439 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3440 vma->numab_state->pids_active[1] = 0; 3441 } 3442 3443 /* Do not rescan VMAs twice within the same sequence. */ 3444 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3445 mm->numa_scan_offset = vma->vm_end; 3446 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3447 continue; 3448 } 3449 3450 /* 3451 * Do not scan the VMA if task has not accessed it, unless no other 3452 * VMA candidate exists. 3453 */ 3454 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3455 vma_pids_skipped = true; 3456 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3457 continue; 3458 } 3459 3460 do { 3461 start = max(start, vma->vm_start); 3462 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3463 end = min(end, vma->vm_end); 3464 nr_pte_updates = change_prot_numa(vma, start, end); 3465 3466 /* 3467 * Try to scan sysctl_numa_balancing_size worth of 3468 * hpages that have at least one present PTE that 3469 * is not already PTE-numa. If the VMA contains 3470 * areas that are unused or already full of prot_numa 3471 * PTEs, scan up to virtpages, to skip through those 3472 * areas faster. 3473 */ 3474 if (nr_pte_updates) 3475 pages -= (end - start) >> PAGE_SHIFT; 3476 virtpages -= (end - start) >> PAGE_SHIFT; 3477 3478 start = end; 3479 if (pages <= 0 || virtpages <= 0) 3480 goto out; 3481 3482 cond_resched(); 3483 } while (end != vma->vm_end); 3484 3485 /* VMA scan is complete, do not scan until next sequence. */ 3486 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3487 3488 /* 3489 * Only force scan within one VMA at a time, to limit the 3490 * cost of scanning a potentially uninteresting VMA. 3491 */ 3492 if (vma_pids_forced) 3493 break; 3494 } 3495 3496 /* 3497 * If no VMAs are remaining and VMAs were skipped due to the PID 3498 * not accessing the VMA previously, then force a scan to ensure 3499 * forward progress: 3500 */ 3501 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3502 vma_pids_forced = true; 3503 goto retry_pids; 3504 } 3505 3506 out: 3507 /* 3508 * It is possible to reach the end of the VMA list but the last few 3509 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3510 * would find the !migratable VMA on the next scan but not reset the 3511 * scanner to the start so check it now. 3512 */ 3513 if (vma) 3514 mm->numa_scan_offset = start; 3515 else 3516 reset_ptenuma_scan(p); 3517 mmap_read_unlock(mm); 3518 3519 /* 3520 * Make sure tasks use at least 32x as much time to run other code 3521 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3522 * Usually update_task_scan_period slows down scanning enough; on an 3523 * overloaded system we need to limit overhead on a per task basis. 3524 */ 3525 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3526 u64 diff = p->se.sum_exec_runtime - runtime; 3527 p->node_stamp += 32 * diff; 3528 } 3529 } 3530 3531 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3532 { 3533 int mm_users = 0; 3534 struct mm_struct *mm = p->mm; 3535 3536 if (mm) { 3537 mm_users = atomic_read(&mm->mm_users); 3538 if (mm_users == 1) { 3539 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3540 mm->numa_scan_seq = 0; 3541 } 3542 } 3543 p->node_stamp = 0; 3544 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3545 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3546 p->numa_migrate_retry = 0; 3547 /* Protect against double add, see task_tick_numa and task_numa_work */ 3548 p->numa_work.next = &p->numa_work; 3549 p->numa_faults = NULL; 3550 p->numa_pages_migrated = 0; 3551 p->total_numa_faults = 0; 3552 RCU_INIT_POINTER(p->numa_group, NULL); 3553 p->last_task_numa_placement = 0; 3554 p->last_sum_exec_runtime = 0; 3555 3556 init_task_work(&p->numa_work, task_numa_work); 3557 3558 /* New address space, reset the preferred nid */ 3559 if (!(clone_flags & CLONE_VM)) { 3560 p->numa_preferred_nid = NUMA_NO_NODE; 3561 return; 3562 } 3563 3564 /* 3565 * New thread, keep existing numa_preferred_nid which should be copied 3566 * already by arch_dup_task_struct but stagger when scans start. 3567 */ 3568 if (mm) { 3569 unsigned int delay; 3570 3571 delay = min_t(unsigned int, task_scan_max(current), 3572 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3573 delay += 2 * TICK_NSEC; 3574 p->node_stamp = delay; 3575 } 3576 } 3577 3578 /* 3579 * Drive the periodic memory faults.. 3580 */ 3581 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3582 { 3583 struct callback_head *work = &curr->numa_work; 3584 u64 period, now; 3585 3586 /* 3587 * We don't care about NUMA placement if we don't have memory. 3588 */ 3589 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3590 return; 3591 3592 /* 3593 * Using runtime rather than walltime has the dual advantage that 3594 * we (mostly) drive the selection from busy threads and that the 3595 * task needs to have done some actual work before we bother with 3596 * NUMA placement. 3597 */ 3598 now = curr->se.sum_exec_runtime; 3599 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3600 3601 if (now > curr->node_stamp + period) { 3602 if (!curr->node_stamp) 3603 curr->numa_scan_period = task_scan_start(curr); 3604 curr->node_stamp += period; 3605 3606 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3607 task_work_add(curr, work, TWA_RESUME); 3608 } 3609 } 3610 3611 static void update_scan_period(struct task_struct *p, int new_cpu) 3612 { 3613 int src_nid = cpu_to_node(task_cpu(p)); 3614 int dst_nid = cpu_to_node(new_cpu); 3615 3616 if (!static_branch_likely(&sched_numa_balancing)) 3617 return; 3618 3619 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3620 return; 3621 3622 if (src_nid == dst_nid) 3623 return; 3624 3625 /* 3626 * Allow resets if faults have been trapped before one scan 3627 * has completed. This is most likely due to a new task that 3628 * is pulled cross-node due to wakeups or load balancing. 3629 */ 3630 if (p->numa_scan_seq) { 3631 /* 3632 * Avoid scan adjustments if moving to the preferred 3633 * node or if the task was not previously running on 3634 * the preferred node. 3635 */ 3636 if (dst_nid == p->numa_preferred_nid || 3637 (p->numa_preferred_nid != NUMA_NO_NODE && 3638 src_nid != p->numa_preferred_nid)) 3639 return; 3640 } 3641 3642 p->numa_scan_period = task_scan_start(p); 3643 } 3644 3645 #else 3646 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3647 { 3648 } 3649 3650 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3651 { 3652 } 3653 3654 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3655 { 3656 } 3657 3658 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3659 { 3660 } 3661 3662 #endif /* CONFIG_NUMA_BALANCING */ 3663 3664 static void 3665 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3666 { 3667 update_load_add(&cfs_rq->load, se->load.weight); 3668 #ifdef CONFIG_SMP 3669 if (entity_is_task(se)) { 3670 struct rq *rq = rq_of(cfs_rq); 3671 3672 account_numa_enqueue(rq, task_of(se)); 3673 list_add(&se->group_node, &rq->cfs_tasks); 3674 } 3675 #endif 3676 cfs_rq->nr_running++; 3677 if (se_is_idle(se)) 3678 cfs_rq->idle_nr_running++; 3679 } 3680 3681 static void 3682 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3683 { 3684 update_load_sub(&cfs_rq->load, se->load.weight); 3685 #ifdef CONFIG_SMP 3686 if (entity_is_task(se)) { 3687 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3688 list_del_init(&se->group_node); 3689 } 3690 #endif 3691 cfs_rq->nr_running--; 3692 if (se_is_idle(se)) 3693 cfs_rq->idle_nr_running--; 3694 } 3695 3696 /* 3697 * Signed add and clamp on underflow. 3698 * 3699 * Explicitly do a load-store to ensure the intermediate value never hits 3700 * memory. This allows lockless observations without ever seeing the negative 3701 * values. 3702 */ 3703 #define add_positive(_ptr, _val) do { \ 3704 typeof(_ptr) ptr = (_ptr); \ 3705 typeof(_val) val = (_val); \ 3706 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3707 \ 3708 res = var + val; \ 3709 \ 3710 if (val < 0 && res > var) \ 3711 res = 0; \ 3712 \ 3713 WRITE_ONCE(*ptr, res); \ 3714 } while (0) 3715 3716 /* 3717 * Unsigned subtract and clamp on underflow. 3718 * 3719 * Explicitly do a load-store to ensure the intermediate value never hits 3720 * memory. This allows lockless observations without ever seeing the negative 3721 * values. 3722 */ 3723 #define sub_positive(_ptr, _val) do { \ 3724 typeof(_ptr) ptr = (_ptr); \ 3725 typeof(*ptr) val = (_val); \ 3726 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3727 res = var - val; \ 3728 if (res > var) \ 3729 res = 0; \ 3730 WRITE_ONCE(*ptr, res); \ 3731 } while (0) 3732 3733 /* 3734 * Remove and clamp on negative, from a local variable. 3735 * 3736 * A variant of sub_positive(), which does not use explicit load-store 3737 * and is thus optimized for local variable updates. 3738 */ 3739 #define lsub_positive(_ptr, _val) do { \ 3740 typeof(_ptr) ptr = (_ptr); \ 3741 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3742 } while (0) 3743 3744 #ifdef CONFIG_SMP 3745 static inline void 3746 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3747 { 3748 cfs_rq->avg.load_avg += se->avg.load_avg; 3749 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3750 } 3751 3752 static inline void 3753 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3754 { 3755 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3756 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3757 /* See update_cfs_rq_load_avg() */ 3758 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3759 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3760 } 3761 #else 3762 static inline void 3763 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3764 static inline void 3765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3766 #endif 3767 3768 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3769 unsigned long weight) 3770 { 3771 unsigned long old_weight = se->load.weight; 3772 s64 vlag, vslice; 3773 3774 /* 3775 * VRUNTIME 3776 * -------- 3777 * 3778 * COROLLARY #1: The virtual runtime of the entity needs to be 3779 * adjusted if re-weight at !0-lag point. 3780 * 3781 * Proof: For contradiction assume this is not true, so we can 3782 * re-weight without changing vruntime at !0-lag point. 3783 * 3784 * Weight VRuntime Avg-VRuntime 3785 * before w v V 3786 * after w' v' V' 3787 * 3788 * Since lag needs to be preserved through re-weight: 3789 * 3790 * lag = (V - v)*w = (V'- v')*w', where v = v' 3791 * ==> V' = (V - v)*w/w' + v (1) 3792 * 3793 * Let W be the total weight of the entities before reweight, 3794 * since V' is the new weighted average of entities: 3795 * 3796 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3797 * 3798 * by using (1) & (2) we obtain: 3799 * 3800 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3801 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3802 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3803 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3804 * 3805 * Since we are doing at !0-lag point which means V != v, we 3806 * can simplify (3): 3807 * 3808 * ==> W / (W + w' - w) = w / w' 3809 * ==> Ww' = Ww + ww' - ww 3810 * ==> W * (w' - w) = w * (w' - w) 3811 * ==> W = w (re-weight indicates w' != w) 3812 * 3813 * So the cfs_rq contains only one entity, hence vruntime of 3814 * the entity @v should always equal to the cfs_rq's weighted 3815 * average vruntime @V, which means we will always re-weight 3816 * at 0-lag point, thus breach assumption. Proof completed. 3817 * 3818 * 3819 * COROLLARY #2: Re-weight does NOT affect weighted average 3820 * vruntime of all the entities. 3821 * 3822 * Proof: According to corollary #1, Eq. (1) should be: 3823 * 3824 * (V - v)*w = (V' - v')*w' 3825 * ==> v' = V' - (V - v)*w/w' (4) 3826 * 3827 * According to the weighted average formula, we have: 3828 * 3829 * V' = (WV - wv + w'v') / (W - w + w') 3830 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3831 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3832 * = (WV + w'V' - Vw) / (W - w + w') 3833 * 3834 * ==> V'*(W - w + w') = WV + w'V' - Vw 3835 * ==> V' * (W - w) = (W - w) * V (5) 3836 * 3837 * If the entity is the only one in the cfs_rq, then reweight 3838 * always occurs at 0-lag point, so V won't change. Or else 3839 * there are other entities, hence W != w, then Eq. (5) turns 3840 * into V' = V. So V won't change in either case, proof done. 3841 * 3842 * 3843 * So according to corollary #1 & #2, the effect of re-weight 3844 * on vruntime should be: 3845 * 3846 * v' = V' - (V - v) * w / w' (4) 3847 * = V - (V - v) * w / w' 3848 * = V - vl * w / w' 3849 * = V - vl' 3850 */ 3851 if (avruntime != se->vruntime) { 3852 vlag = entity_lag(avruntime, se); 3853 vlag = div_s64(vlag * old_weight, weight); 3854 se->vruntime = avruntime - vlag; 3855 } 3856 3857 /* 3858 * DEADLINE 3859 * -------- 3860 * 3861 * When the weight changes, the virtual time slope changes and 3862 * we should adjust the relative virtual deadline accordingly. 3863 * 3864 * d' = v' + (d - v)*w/w' 3865 * = V' - (V - v)*w/w' + (d - v)*w/w' 3866 * = V - (V - v)*w/w' + (d - v)*w/w' 3867 * = V + (d - V)*w/w' 3868 */ 3869 vslice = (s64)(se->deadline - avruntime); 3870 vslice = div_s64(vslice * old_weight, weight); 3871 se->deadline = avruntime + vslice; 3872 } 3873 3874 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3875 unsigned long weight) 3876 { 3877 bool curr = cfs_rq->curr == se; 3878 u64 avruntime; 3879 3880 if (se->on_rq) { 3881 /* commit outstanding execution time */ 3882 update_curr(cfs_rq); 3883 avruntime = avg_vruntime(cfs_rq); 3884 if (!curr) 3885 __dequeue_entity(cfs_rq, se); 3886 update_load_sub(&cfs_rq->load, se->load.weight); 3887 } 3888 dequeue_load_avg(cfs_rq, se); 3889 3890 if (se->on_rq) { 3891 reweight_eevdf(se, avruntime, weight); 3892 } else { 3893 /* 3894 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3895 * we need to scale se->vlag when w_i changes. 3896 */ 3897 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3898 } 3899 3900 update_load_set(&se->load, weight); 3901 3902 #ifdef CONFIG_SMP 3903 do { 3904 u32 divider = get_pelt_divider(&se->avg); 3905 3906 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3907 } while (0); 3908 #endif 3909 3910 enqueue_load_avg(cfs_rq, se); 3911 if (se->on_rq) { 3912 update_load_add(&cfs_rq->load, se->load.weight); 3913 if (!curr) 3914 __enqueue_entity(cfs_rq, se); 3915 3916 /* 3917 * The entity's vruntime has been adjusted, so let's check 3918 * whether the rq-wide min_vruntime needs updated too. Since 3919 * the calculations above require stable min_vruntime rather 3920 * than up-to-date one, we do the update at the end of the 3921 * reweight process. 3922 */ 3923 update_min_vruntime(cfs_rq); 3924 } 3925 } 3926 3927 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3928 const struct load_weight *lw) 3929 { 3930 struct sched_entity *se = &p->se; 3931 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3932 struct load_weight *load = &se->load; 3933 3934 reweight_entity(cfs_rq, se, lw->weight); 3935 load->inv_weight = lw->inv_weight; 3936 } 3937 3938 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3939 3940 #ifdef CONFIG_FAIR_GROUP_SCHED 3941 #ifdef CONFIG_SMP 3942 /* 3943 * All this does is approximate the hierarchical proportion which includes that 3944 * global sum we all love to hate. 3945 * 3946 * That is, the weight of a group entity, is the proportional share of the 3947 * group weight based on the group runqueue weights. That is: 3948 * 3949 * tg->weight * grq->load.weight 3950 * ge->load.weight = ----------------------------- (1) 3951 * \Sum grq->load.weight 3952 * 3953 * Now, because computing that sum is prohibitively expensive to compute (been 3954 * there, done that) we approximate it with this average stuff. The average 3955 * moves slower and therefore the approximation is cheaper and more stable. 3956 * 3957 * So instead of the above, we substitute: 3958 * 3959 * grq->load.weight -> grq->avg.load_avg (2) 3960 * 3961 * which yields the following: 3962 * 3963 * tg->weight * grq->avg.load_avg 3964 * ge->load.weight = ------------------------------ (3) 3965 * tg->load_avg 3966 * 3967 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3968 * 3969 * That is shares_avg, and it is right (given the approximation (2)). 3970 * 3971 * The problem with it is that because the average is slow -- it was designed 3972 * to be exactly that of course -- this leads to transients in boundary 3973 * conditions. In specific, the case where the group was idle and we start the 3974 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3975 * yielding bad latency etc.. 3976 * 3977 * Now, in that special case (1) reduces to: 3978 * 3979 * tg->weight * grq->load.weight 3980 * ge->load.weight = ----------------------------- = tg->weight (4) 3981 * grp->load.weight 3982 * 3983 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3984 * 3985 * So what we do is modify our approximation (3) to approach (4) in the (near) 3986 * UP case, like: 3987 * 3988 * ge->load.weight = 3989 * 3990 * tg->weight * grq->load.weight 3991 * --------------------------------------------------- (5) 3992 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3993 * 3994 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3995 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3996 * 3997 * 3998 * tg->weight * grq->load.weight 3999 * ge->load.weight = ----------------------------- (6) 4000 * tg_load_avg' 4001 * 4002 * Where: 4003 * 4004 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 4005 * max(grq->load.weight, grq->avg.load_avg) 4006 * 4007 * And that is shares_weight and is icky. In the (near) UP case it approaches 4008 * (4) while in the normal case it approaches (3). It consistently 4009 * overestimates the ge->load.weight and therefore: 4010 * 4011 * \Sum ge->load.weight >= tg->weight 4012 * 4013 * hence icky! 4014 */ 4015 static long calc_group_shares(struct cfs_rq *cfs_rq) 4016 { 4017 long tg_weight, tg_shares, load, shares; 4018 struct task_group *tg = cfs_rq->tg; 4019 4020 tg_shares = READ_ONCE(tg->shares); 4021 4022 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 4023 4024 tg_weight = atomic_long_read(&tg->load_avg); 4025 4026 /* Ensure tg_weight >= load */ 4027 tg_weight -= cfs_rq->tg_load_avg_contrib; 4028 tg_weight += load; 4029 4030 shares = (tg_shares * load); 4031 if (tg_weight) 4032 shares /= tg_weight; 4033 4034 /* 4035 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 4036 * of a group with small tg->shares value. It is a floor value which is 4037 * assigned as a minimum load.weight to the sched_entity representing 4038 * the group on a CPU. 4039 * 4040 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 4041 * on an 8-core system with 8 tasks each runnable on one CPU shares has 4042 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 4043 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 4044 * instead of 0. 4045 */ 4046 return clamp_t(long, shares, MIN_SHARES, tg_shares); 4047 } 4048 #endif /* CONFIG_SMP */ 4049 4050 /* 4051 * Recomputes the group entity based on the current state of its group 4052 * runqueue. 4053 */ 4054 static void update_cfs_group(struct sched_entity *se) 4055 { 4056 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4057 long shares; 4058 4059 if (!gcfs_rq) 4060 return; 4061 4062 if (throttled_hierarchy(gcfs_rq)) 4063 return; 4064 4065 #ifndef CONFIG_SMP 4066 shares = READ_ONCE(gcfs_rq->tg->shares); 4067 #else 4068 shares = calc_group_shares(gcfs_rq); 4069 #endif 4070 if (unlikely(se->load.weight != shares)) 4071 reweight_entity(cfs_rq_of(se), se, shares); 4072 } 4073 4074 #else /* CONFIG_FAIR_GROUP_SCHED */ 4075 static inline void update_cfs_group(struct sched_entity *se) 4076 { 4077 } 4078 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4079 4080 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4081 { 4082 struct rq *rq = rq_of(cfs_rq); 4083 4084 if (&rq->cfs == cfs_rq) { 4085 /* 4086 * There are a few boundary cases this might miss but it should 4087 * get called often enough that that should (hopefully) not be 4088 * a real problem. 4089 * 4090 * It will not get called when we go idle, because the idle 4091 * thread is a different class (!fair), nor will the utilization 4092 * number include things like RT tasks. 4093 * 4094 * As is, the util number is not freq-invariant (we'd have to 4095 * implement arch_scale_freq_capacity() for that). 4096 * 4097 * See cpu_util_cfs(). 4098 */ 4099 cpufreq_update_util(rq, flags); 4100 } 4101 } 4102 4103 #ifdef CONFIG_SMP 4104 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4105 { 4106 if (sa->load_sum) 4107 return false; 4108 4109 if (sa->util_sum) 4110 return false; 4111 4112 if (sa->runnable_sum) 4113 return false; 4114 4115 /* 4116 * _avg must be null when _sum are null because _avg = _sum / divider 4117 * Make sure that rounding and/or propagation of PELT values never 4118 * break this. 4119 */ 4120 SCHED_WARN_ON(sa->load_avg || 4121 sa->util_avg || 4122 sa->runnable_avg); 4123 4124 return true; 4125 } 4126 4127 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4128 { 4129 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4130 cfs_rq->last_update_time_copy); 4131 } 4132 #ifdef CONFIG_FAIR_GROUP_SCHED 4133 /* 4134 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4135 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4136 * bottom-up, we only have to test whether the cfs_rq before us on the list 4137 * is our child. 4138 * If cfs_rq is not on the list, test whether a child needs its to be added to 4139 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4140 */ 4141 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4142 { 4143 struct cfs_rq *prev_cfs_rq; 4144 struct list_head *prev; 4145 4146 if (cfs_rq->on_list) { 4147 prev = cfs_rq->leaf_cfs_rq_list.prev; 4148 } else { 4149 struct rq *rq = rq_of(cfs_rq); 4150 4151 prev = rq->tmp_alone_branch; 4152 } 4153 4154 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4155 4156 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4157 } 4158 4159 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4160 { 4161 if (cfs_rq->load.weight) 4162 return false; 4163 4164 if (!load_avg_is_decayed(&cfs_rq->avg)) 4165 return false; 4166 4167 if (child_cfs_rq_on_list(cfs_rq)) 4168 return false; 4169 4170 return true; 4171 } 4172 4173 /** 4174 * update_tg_load_avg - update the tg's load avg 4175 * @cfs_rq: the cfs_rq whose avg changed 4176 * 4177 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4178 * However, because tg->load_avg is a global value there are performance 4179 * considerations. 4180 * 4181 * In order to avoid having to look at the other cfs_rq's, we use a 4182 * differential update where we store the last value we propagated. This in 4183 * turn allows skipping updates if the differential is 'small'. 4184 * 4185 * Updating tg's load_avg is necessary before update_cfs_share(). 4186 */ 4187 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4188 { 4189 long delta; 4190 u64 now; 4191 4192 /* 4193 * No need to update load_avg for root_task_group as it is not used. 4194 */ 4195 if (cfs_rq->tg == &root_task_group) 4196 return; 4197 4198 /* rq has been offline and doesn't contribute to the share anymore: */ 4199 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4200 return; 4201 4202 /* 4203 * For migration heavy workloads, access to tg->load_avg can be 4204 * unbound. Limit the update rate to at most once per ms. 4205 */ 4206 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4207 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4208 return; 4209 4210 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4211 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4212 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4213 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4214 cfs_rq->last_update_tg_load_avg = now; 4215 } 4216 } 4217 4218 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4219 { 4220 long delta; 4221 u64 now; 4222 4223 /* 4224 * No need to update load_avg for root_task_group, as it is not used. 4225 */ 4226 if (cfs_rq->tg == &root_task_group) 4227 return; 4228 4229 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4230 delta = 0 - cfs_rq->tg_load_avg_contrib; 4231 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4232 cfs_rq->tg_load_avg_contrib = 0; 4233 cfs_rq->last_update_tg_load_avg = now; 4234 } 4235 4236 /* CPU offline callback: */ 4237 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4238 { 4239 struct task_group *tg; 4240 4241 lockdep_assert_rq_held(rq); 4242 4243 /* 4244 * The rq clock has already been updated in 4245 * set_rq_offline(), so we should skip updating 4246 * the rq clock again in unthrottle_cfs_rq(). 4247 */ 4248 rq_clock_start_loop_update(rq); 4249 4250 rcu_read_lock(); 4251 list_for_each_entry_rcu(tg, &task_groups, list) { 4252 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4253 4254 clear_tg_load_avg(cfs_rq); 4255 } 4256 rcu_read_unlock(); 4257 4258 rq_clock_stop_loop_update(rq); 4259 } 4260 4261 /* 4262 * Called within set_task_rq() right before setting a task's CPU. The 4263 * caller only guarantees p->pi_lock is held; no other assumptions, 4264 * including the state of rq->lock, should be made. 4265 */ 4266 void set_task_rq_fair(struct sched_entity *se, 4267 struct cfs_rq *prev, struct cfs_rq *next) 4268 { 4269 u64 p_last_update_time; 4270 u64 n_last_update_time; 4271 4272 if (!sched_feat(ATTACH_AGE_LOAD)) 4273 return; 4274 4275 /* 4276 * We are supposed to update the task to "current" time, then its up to 4277 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4278 * getting what current time is, so simply throw away the out-of-date 4279 * time. This will result in the wakee task is less decayed, but giving 4280 * the wakee more load sounds not bad. 4281 */ 4282 if (!(se->avg.last_update_time && prev)) 4283 return; 4284 4285 p_last_update_time = cfs_rq_last_update_time(prev); 4286 n_last_update_time = cfs_rq_last_update_time(next); 4287 4288 __update_load_avg_blocked_se(p_last_update_time, se); 4289 se->avg.last_update_time = n_last_update_time; 4290 } 4291 4292 /* 4293 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4294 * propagate its contribution. The key to this propagation is the invariant 4295 * that for each group: 4296 * 4297 * ge->avg == grq->avg (1) 4298 * 4299 * _IFF_ we look at the pure running and runnable sums. Because they 4300 * represent the very same entity, just at different points in the hierarchy. 4301 * 4302 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4303 * and simply copies the running/runnable sum over (but still wrong, because 4304 * the group entity and group rq do not have their PELT windows aligned). 4305 * 4306 * However, update_tg_cfs_load() is more complex. So we have: 4307 * 4308 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4309 * 4310 * And since, like util, the runnable part should be directly transferable, 4311 * the following would _appear_ to be the straight forward approach: 4312 * 4313 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4314 * 4315 * And per (1) we have: 4316 * 4317 * ge->avg.runnable_avg == grq->avg.runnable_avg 4318 * 4319 * Which gives: 4320 * 4321 * ge->load.weight * grq->avg.load_avg 4322 * ge->avg.load_avg = ----------------------------------- (4) 4323 * grq->load.weight 4324 * 4325 * Except that is wrong! 4326 * 4327 * Because while for entities historical weight is not important and we 4328 * really only care about our future and therefore can consider a pure 4329 * runnable sum, runqueues can NOT do this. 4330 * 4331 * We specifically want runqueues to have a load_avg that includes 4332 * historical weights. Those represent the blocked load, the load we expect 4333 * to (shortly) return to us. This only works by keeping the weights as 4334 * integral part of the sum. We therefore cannot decompose as per (3). 4335 * 4336 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4337 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4338 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4339 * runnable section of these tasks overlap (or not). If they were to perfectly 4340 * align the rq as a whole would be runnable 2/3 of the time. If however we 4341 * always have at least 1 runnable task, the rq as a whole is always runnable. 4342 * 4343 * So we'll have to approximate.. :/ 4344 * 4345 * Given the constraint: 4346 * 4347 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4348 * 4349 * We can construct a rule that adds runnable to a rq by assuming minimal 4350 * overlap. 4351 * 4352 * On removal, we'll assume each task is equally runnable; which yields: 4353 * 4354 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4355 * 4356 * XXX: only do this for the part of runnable > running ? 4357 * 4358 */ 4359 static inline void 4360 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4361 { 4362 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4363 u32 new_sum, divider; 4364 4365 /* Nothing to update */ 4366 if (!delta_avg) 4367 return; 4368 4369 /* 4370 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4371 * See ___update_load_avg() for details. 4372 */ 4373 divider = get_pelt_divider(&cfs_rq->avg); 4374 4375 4376 /* Set new sched_entity's utilization */ 4377 se->avg.util_avg = gcfs_rq->avg.util_avg; 4378 new_sum = se->avg.util_avg * divider; 4379 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4380 se->avg.util_sum = new_sum; 4381 4382 /* Update parent cfs_rq utilization */ 4383 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4384 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4385 4386 /* See update_cfs_rq_load_avg() */ 4387 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4388 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4389 } 4390 4391 static inline void 4392 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4393 { 4394 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4395 u32 new_sum, divider; 4396 4397 /* Nothing to update */ 4398 if (!delta_avg) 4399 return; 4400 4401 /* 4402 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4403 * See ___update_load_avg() for details. 4404 */ 4405 divider = get_pelt_divider(&cfs_rq->avg); 4406 4407 /* Set new sched_entity's runnable */ 4408 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4409 new_sum = se->avg.runnable_avg * divider; 4410 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4411 se->avg.runnable_sum = new_sum; 4412 4413 /* Update parent cfs_rq runnable */ 4414 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4415 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4416 /* See update_cfs_rq_load_avg() */ 4417 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4418 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4419 } 4420 4421 static inline void 4422 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4423 { 4424 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4425 unsigned long load_avg; 4426 u64 load_sum = 0; 4427 s64 delta_sum; 4428 u32 divider; 4429 4430 if (!runnable_sum) 4431 return; 4432 4433 gcfs_rq->prop_runnable_sum = 0; 4434 4435 /* 4436 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4437 * See ___update_load_avg() for details. 4438 */ 4439 divider = get_pelt_divider(&cfs_rq->avg); 4440 4441 if (runnable_sum >= 0) { 4442 /* 4443 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4444 * the CPU is saturated running == runnable. 4445 */ 4446 runnable_sum += se->avg.load_sum; 4447 runnable_sum = min_t(long, runnable_sum, divider); 4448 } else { 4449 /* 4450 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4451 * assuming all tasks are equally runnable. 4452 */ 4453 if (scale_load_down(gcfs_rq->load.weight)) { 4454 load_sum = div_u64(gcfs_rq->avg.load_sum, 4455 scale_load_down(gcfs_rq->load.weight)); 4456 } 4457 4458 /* But make sure to not inflate se's runnable */ 4459 runnable_sum = min(se->avg.load_sum, load_sum); 4460 } 4461 4462 /* 4463 * runnable_sum can't be lower than running_sum 4464 * Rescale running sum to be in the same range as runnable sum 4465 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4466 * runnable_sum is in [0 : LOAD_AVG_MAX] 4467 */ 4468 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4469 runnable_sum = max(runnable_sum, running_sum); 4470 4471 load_sum = se_weight(se) * runnable_sum; 4472 load_avg = div_u64(load_sum, divider); 4473 4474 delta_avg = load_avg - se->avg.load_avg; 4475 if (!delta_avg) 4476 return; 4477 4478 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4479 4480 se->avg.load_sum = runnable_sum; 4481 se->avg.load_avg = load_avg; 4482 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4483 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4484 /* See update_cfs_rq_load_avg() */ 4485 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4486 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4487 } 4488 4489 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4490 { 4491 cfs_rq->propagate = 1; 4492 cfs_rq->prop_runnable_sum += runnable_sum; 4493 } 4494 4495 /* Update task and its cfs_rq load average */ 4496 static inline int propagate_entity_load_avg(struct sched_entity *se) 4497 { 4498 struct cfs_rq *cfs_rq, *gcfs_rq; 4499 4500 if (entity_is_task(se)) 4501 return 0; 4502 4503 gcfs_rq = group_cfs_rq(se); 4504 if (!gcfs_rq->propagate) 4505 return 0; 4506 4507 gcfs_rq->propagate = 0; 4508 4509 cfs_rq = cfs_rq_of(se); 4510 4511 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4512 4513 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4514 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4515 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4516 4517 trace_pelt_cfs_tp(cfs_rq); 4518 trace_pelt_se_tp(se); 4519 4520 return 1; 4521 } 4522 4523 /* 4524 * Check if we need to update the load and the utilization of a blocked 4525 * group_entity: 4526 */ 4527 static inline bool skip_blocked_update(struct sched_entity *se) 4528 { 4529 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4530 4531 /* 4532 * If sched_entity still have not zero load or utilization, we have to 4533 * decay it: 4534 */ 4535 if (se->avg.load_avg || se->avg.util_avg) 4536 return false; 4537 4538 /* 4539 * If there is a pending propagation, we have to update the load and 4540 * the utilization of the sched_entity: 4541 */ 4542 if (gcfs_rq->propagate) 4543 return false; 4544 4545 /* 4546 * Otherwise, the load and the utilization of the sched_entity is 4547 * already zero and there is no pending propagation, so it will be a 4548 * waste of time to try to decay it: 4549 */ 4550 return true; 4551 } 4552 4553 #else /* CONFIG_FAIR_GROUP_SCHED */ 4554 4555 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4556 4557 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4558 4559 static inline int propagate_entity_load_avg(struct sched_entity *se) 4560 { 4561 return 0; 4562 } 4563 4564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4565 4566 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4567 4568 #ifdef CONFIG_NO_HZ_COMMON 4569 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4570 { 4571 u64 throttled = 0, now, lut; 4572 struct cfs_rq *cfs_rq; 4573 struct rq *rq; 4574 bool is_idle; 4575 4576 if (load_avg_is_decayed(&se->avg)) 4577 return; 4578 4579 cfs_rq = cfs_rq_of(se); 4580 rq = rq_of(cfs_rq); 4581 4582 rcu_read_lock(); 4583 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4584 rcu_read_unlock(); 4585 4586 /* 4587 * The lag estimation comes with a cost we don't want to pay all the 4588 * time. Hence, limiting to the case where the source CPU is idle and 4589 * we know we are at the greatest risk to have an outdated clock. 4590 */ 4591 if (!is_idle) 4592 return; 4593 4594 /* 4595 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4596 * 4597 * last_update_time (the cfs_rq's last_update_time) 4598 * = cfs_rq_clock_pelt()@cfs_rq_idle 4599 * = rq_clock_pelt()@cfs_rq_idle 4600 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4601 * 4602 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4603 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4604 * 4605 * rq_idle_lag (delta between now and rq's update) 4606 * = sched_clock_cpu() - rq_clock()@rq_idle 4607 * 4608 * We can then write: 4609 * 4610 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4611 * sched_clock_cpu() - rq_clock()@rq_idle 4612 * Where: 4613 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4614 * rq_clock()@rq_idle is rq->clock_idle 4615 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4616 * is cfs_rq->throttled_pelt_idle 4617 */ 4618 4619 #ifdef CONFIG_CFS_BANDWIDTH 4620 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4621 /* The clock has been stopped for throttling */ 4622 if (throttled == U64_MAX) 4623 return; 4624 #endif 4625 now = u64_u32_load(rq->clock_pelt_idle); 4626 /* 4627 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4628 * is observed the old clock_pelt_idle value and the new clock_idle, 4629 * which lead to an underestimation. The opposite would lead to an 4630 * overestimation. 4631 */ 4632 smp_rmb(); 4633 lut = cfs_rq_last_update_time(cfs_rq); 4634 4635 now -= throttled; 4636 if (now < lut) 4637 /* 4638 * cfs_rq->avg.last_update_time is more recent than our 4639 * estimation, let's use it. 4640 */ 4641 now = lut; 4642 else 4643 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4644 4645 __update_load_avg_blocked_se(now, se); 4646 } 4647 #else 4648 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4649 #endif 4650 4651 /** 4652 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4653 * @now: current time, as per cfs_rq_clock_pelt() 4654 * @cfs_rq: cfs_rq to update 4655 * 4656 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4657 * avg. The immediate corollary is that all (fair) tasks must be attached. 4658 * 4659 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4660 * 4661 * Return: true if the load decayed or we removed load. 4662 * 4663 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4664 * call update_tg_load_avg() when this function returns true. 4665 */ 4666 static inline int 4667 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4668 { 4669 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4670 struct sched_avg *sa = &cfs_rq->avg; 4671 int decayed = 0; 4672 4673 if (cfs_rq->removed.nr) { 4674 unsigned long r; 4675 u32 divider = get_pelt_divider(&cfs_rq->avg); 4676 4677 raw_spin_lock(&cfs_rq->removed.lock); 4678 swap(cfs_rq->removed.util_avg, removed_util); 4679 swap(cfs_rq->removed.load_avg, removed_load); 4680 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4681 cfs_rq->removed.nr = 0; 4682 raw_spin_unlock(&cfs_rq->removed.lock); 4683 4684 r = removed_load; 4685 sub_positive(&sa->load_avg, r); 4686 sub_positive(&sa->load_sum, r * divider); 4687 /* See sa->util_sum below */ 4688 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4689 4690 r = removed_util; 4691 sub_positive(&sa->util_avg, r); 4692 sub_positive(&sa->util_sum, r * divider); 4693 /* 4694 * Because of rounding, se->util_sum might ends up being +1 more than 4695 * cfs->util_sum. Although this is not a problem by itself, detaching 4696 * a lot of tasks with the rounding problem between 2 updates of 4697 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4698 * cfs_util_avg is not. 4699 * Check that util_sum is still above its lower bound for the new 4700 * util_avg. Given that period_contrib might have moved since the last 4701 * sync, we are only sure that util_sum must be above or equal to 4702 * util_avg * minimum possible divider 4703 */ 4704 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4705 4706 r = removed_runnable; 4707 sub_positive(&sa->runnable_avg, r); 4708 sub_positive(&sa->runnable_sum, r * divider); 4709 /* See sa->util_sum above */ 4710 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4711 sa->runnable_avg * PELT_MIN_DIVIDER); 4712 4713 /* 4714 * removed_runnable is the unweighted version of removed_load so we 4715 * can use it to estimate removed_load_sum. 4716 */ 4717 add_tg_cfs_propagate(cfs_rq, 4718 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4719 4720 decayed = 1; 4721 } 4722 4723 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4724 u64_u32_store_copy(sa->last_update_time, 4725 cfs_rq->last_update_time_copy, 4726 sa->last_update_time); 4727 return decayed; 4728 } 4729 4730 /** 4731 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4732 * @cfs_rq: cfs_rq to attach to 4733 * @se: sched_entity to attach 4734 * 4735 * Must call update_cfs_rq_load_avg() before this, since we rely on 4736 * cfs_rq->avg.last_update_time being current. 4737 */ 4738 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4739 { 4740 /* 4741 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4742 * See ___update_load_avg() for details. 4743 */ 4744 u32 divider = get_pelt_divider(&cfs_rq->avg); 4745 4746 /* 4747 * When we attach the @se to the @cfs_rq, we must align the decay 4748 * window because without that, really weird and wonderful things can 4749 * happen. 4750 * 4751 * XXX illustrate 4752 */ 4753 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4754 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4755 4756 /* 4757 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4758 * period_contrib. This isn't strictly correct, but since we're 4759 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4760 * _sum a little. 4761 */ 4762 se->avg.util_sum = se->avg.util_avg * divider; 4763 4764 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4765 4766 se->avg.load_sum = se->avg.load_avg * divider; 4767 if (se_weight(se) < se->avg.load_sum) 4768 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4769 else 4770 se->avg.load_sum = 1; 4771 4772 enqueue_load_avg(cfs_rq, se); 4773 cfs_rq->avg.util_avg += se->avg.util_avg; 4774 cfs_rq->avg.util_sum += se->avg.util_sum; 4775 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4776 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4777 4778 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4779 4780 cfs_rq_util_change(cfs_rq, 0); 4781 4782 trace_pelt_cfs_tp(cfs_rq); 4783 } 4784 4785 /** 4786 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4787 * @cfs_rq: cfs_rq to detach from 4788 * @se: sched_entity to detach 4789 * 4790 * Must call update_cfs_rq_load_avg() before this, since we rely on 4791 * cfs_rq->avg.last_update_time being current. 4792 */ 4793 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4794 { 4795 dequeue_load_avg(cfs_rq, se); 4796 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4797 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4798 /* See update_cfs_rq_load_avg() */ 4799 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4800 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4801 4802 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4803 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4804 /* See update_cfs_rq_load_avg() */ 4805 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4806 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4807 4808 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4809 4810 cfs_rq_util_change(cfs_rq, 0); 4811 4812 trace_pelt_cfs_tp(cfs_rq); 4813 } 4814 4815 /* 4816 * Optional action to be done while updating the load average 4817 */ 4818 #define UPDATE_TG 0x1 4819 #define SKIP_AGE_LOAD 0x2 4820 #define DO_ATTACH 0x4 4821 #define DO_DETACH 0x8 4822 4823 /* Update task and its cfs_rq load average */ 4824 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4825 { 4826 u64 now = cfs_rq_clock_pelt(cfs_rq); 4827 int decayed; 4828 4829 /* 4830 * Track task load average for carrying it to new CPU after migrated, and 4831 * track group sched_entity load average for task_h_load calculation in migration 4832 */ 4833 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4834 __update_load_avg_se(now, cfs_rq, se); 4835 4836 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4837 decayed |= propagate_entity_load_avg(se); 4838 4839 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4840 4841 /* 4842 * DO_ATTACH means we're here from enqueue_entity(). 4843 * !last_update_time means we've passed through 4844 * migrate_task_rq_fair() indicating we migrated. 4845 * 4846 * IOW we're enqueueing a task on a new CPU. 4847 */ 4848 attach_entity_load_avg(cfs_rq, se); 4849 update_tg_load_avg(cfs_rq); 4850 4851 } else if (flags & DO_DETACH) { 4852 /* 4853 * DO_DETACH means we're here from dequeue_entity() 4854 * and we are migrating task out of the CPU. 4855 */ 4856 detach_entity_load_avg(cfs_rq, se); 4857 update_tg_load_avg(cfs_rq); 4858 } else if (decayed) { 4859 cfs_rq_util_change(cfs_rq, 0); 4860 4861 if (flags & UPDATE_TG) 4862 update_tg_load_avg(cfs_rq); 4863 } 4864 } 4865 4866 /* 4867 * Synchronize entity load avg of dequeued entity without locking 4868 * the previous rq. 4869 */ 4870 static void sync_entity_load_avg(struct sched_entity *se) 4871 { 4872 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4873 u64 last_update_time; 4874 4875 last_update_time = cfs_rq_last_update_time(cfs_rq); 4876 __update_load_avg_blocked_se(last_update_time, se); 4877 } 4878 4879 /* 4880 * Task first catches up with cfs_rq, and then subtract 4881 * itself from the cfs_rq (task must be off the queue now). 4882 */ 4883 static void remove_entity_load_avg(struct sched_entity *se) 4884 { 4885 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4886 unsigned long flags; 4887 4888 /* 4889 * tasks cannot exit without having gone through wake_up_new_task() -> 4890 * enqueue_task_fair() which will have added things to the cfs_rq, 4891 * so we can remove unconditionally. 4892 */ 4893 4894 sync_entity_load_avg(se); 4895 4896 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4897 ++cfs_rq->removed.nr; 4898 cfs_rq->removed.util_avg += se->avg.util_avg; 4899 cfs_rq->removed.load_avg += se->avg.load_avg; 4900 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4901 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4902 } 4903 4904 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4905 { 4906 return cfs_rq->avg.runnable_avg; 4907 } 4908 4909 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4910 { 4911 return cfs_rq->avg.load_avg; 4912 } 4913 4914 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4915 4916 static inline unsigned long task_util(struct task_struct *p) 4917 { 4918 return READ_ONCE(p->se.avg.util_avg); 4919 } 4920 4921 static inline unsigned long task_runnable(struct task_struct *p) 4922 { 4923 return READ_ONCE(p->se.avg.runnable_avg); 4924 } 4925 4926 static inline unsigned long _task_util_est(struct task_struct *p) 4927 { 4928 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4929 } 4930 4931 static inline unsigned long task_util_est(struct task_struct *p) 4932 { 4933 return max(task_util(p), _task_util_est(p)); 4934 } 4935 4936 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4937 struct task_struct *p) 4938 { 4939 unsigned int enqueued; 4940 4941 if (!sched_feat(UTIL_EST)) 4942 return; 4943 4944 /* Update root cfs_rq's estimated utilization */ 4945 enqueued = cfs_rq->avg.util_est; 4946 enqueued += _task_util_est(p); 4947 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4948 4949 trace_sched_util_est_cfs_tp(cfs_rq); 4950 } 4951 4952 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4953 struct task_struct *p) 4954 { 4955 unsigned int enqueued; 4956 4957 if (!sched_feat(UTIL_EST)) 4958 return; 4959 4960 /* Update root cfs_rq's estimated utilization */ 4961 enqueued = cfs_rq->avg.util_est; 4962 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4963 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4964 4965 trace_sched_util_est_cfs_tp(cfs_rq); 4966 } 4967 4968 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4969 4970 static inline void util_est_update(struct cfs_rq *cfs_rq, 4971 struct task_struct *p, 4972 bool task_sleep) 4973 { 4974 unsigned int ewma, dequeued, last_ewma_diff; 4975 4976 if (!sched_feat(UTIL_EST)) 4977 return; 4978 4979 /* 4980 * Skip update of task's estimated utilization when the task has not 4981 * yet completed an activation, e.g. being migrated. 4982 */ 4983 if (!task_sleep) 4984 return; 4985 4986 /* Get current estimate of utilization */ 4987 ewma = READ_ONCE(p->se.avg.util_est); 4988 4989 /* 4990 * If the PELT values haven't changed since enqueue time, 4991 * skip the util_est update. 4992 */ 4993 if (ewma & UTIL_AVG_UNCHANGED) 4994 return; 4995 4996 /* Get utilization at dequeue */ 4997 dequeued = task_util(p); 4998 4999 /* 5000 * Reset EWMA on utilization increases, the moving average is used only 5001 * to smooth utilization decreases. 5002 */ 5003 if (ewma <= dequeued) { 5004 ewma = dequeued; 5005 goto done; 5006 } 5007 5008 /* 5009 * Skip update of task's estimated utilization when its members are 5010 * already ~1% close to its last activation value. 5011 */ 5012 last_ewma_diff = ewma - dequeued; 5013 if (last_ewma_diff < UTIL_EST_MARGIN) 5014 goto done; 5015 5016 /* 5017 * To avoid overestimation of actual task utilization, skip updates if 5018 * we cannot grant there is idle time in this CPU. 5019 */ 5020 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 5021 return; 5022 5023 /* 5024 * To avoid underestimate of task utilization, skip updates of EWMA if 5025 * we cannot grant that thread got all CPU time it wanted. 5026 */ 5027 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 5028 goto done; 5029 5030 5031 /* 5032 * Update Task's estimated utilization 5033 * 5034 * When *p completes an activation we can consolidate another sample 5035 * of the task size. This is done by using this value to update the 5036 * Exponential Weighted Moving Average (EWMA): 5037 * 5038 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 5039 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 5040 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 5041 * = w * ( -last_ewma_diff ) + ewma(t-1) 5042 * = w * (-last_ewma_diff + ewma(t-1) / w) 5043 * 5044 * Where 'w' is the weight of new samples, which is configured to be 5045 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 5046 */ 5047 ewma <<= UTIL_EST_WEIGHT_SHIFT; 5048 ewma -= last_ewma_diff; 5049 ewma >>= UTIL_EST_WEIGHT_SHIFT; 5050 done: 5051 ewma |= UTIL_AVG_UNCHANGED; 5052 WRITE_ONCE(p->se.avg.util_est, ewma); 5053 5054 trace_sched_util_est_se_tp(&p->se); 5055 } 5056 5057 static inline unsigned long get_actual_cpu_capacity(int cpu) 5058 { 5059 unsigned long capacity = arch_scale_cpu_capacity(cpu); 5060 5061 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 5062 5063 return capacity; 5064 } 5065 5066 static inline int util_fits_cpu(unsigned long util, 5067 unsigned long uclamp_min, 5068 unsigned long uclamp_max, 5069 int cpu) 5070 { 5071 unsigned long capacity = capacity_of(cpu); 5072 unsigned long capacity_orig; 5073 bool fits, uclamp_max_fits; 5074 5075 /* 5076 * Check if the real util fits without any uclamp boost/cap applied. 5077 */ 5078 fits = fits_capacity(util, capacity); 5079 5080 if (!uclamp_is_used()) 5081 return fits; 5082 5083 /* 5084 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5085 * uclamp_max. We only care about capacity pressure (by using 5086 * capacity_of()) for comparing against the real util. 5087 * 5088 * If a task is boosted to 1024 for example, we don't want a tiny 5089 * pressure to skew the check whether it fits a CPU or not. 5090 * 5091 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5092 * should fit a little cpu even if there's some pressure. 5093 * 5094 * Only exception is for HW or cpufreq pressure since it has a direct impact 5095 * on available OPP of the system. 5096 * 5097 * We honour it for uclamp_min only as a drop in performance level 5098 * could result in not getting the requested minimum performance level. 5099 * 5100 * For uclamp_max, we can tolerate a drop in performance level as the 5101 * goal is to cap the task. So it's okay if it's getting less. 5102 */ 5103 capacity_orig = arch_scale_cpu_capacity(cpu); 5104 5105 /* 5106 * We want to force a task to fit a cpu as implied by uclamp_max. 5107 * But we do have some corner cases to cater for.. 5108 * 5109 * 5110 * C=z 5111 * | ___ 5112 * | C=y | | 5113 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5114 * | C=x | | | | 5115 * | ___ | | | | 5116 * | | | | | | | (util somewhere in this region) 5117 * | | | | | | | 5118 * | | | | | | | 5119 * +---------------------------------------- 5120 * CPU0 CPU1 CPU2 5121 * 5122 * In the above example if a task is capped to a specific performance 5123 * point, y, then when: 5124 * 5125 * * util = 80% of x then it does not fit on CPU0 and should migrate 5126 * to CPU1 5127 * * util = 80% of y then it is forced to fit on CPU1 to honour 5128 * uclamp_max request. 5129 * 5130 * which is what we're enforcing here. A task always fits if 5131 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5132 * the normal upmigration rules should withhold still. 5133 * 5134 * Only exception is when we are on max capacity, then we need to be 5135 * careful not to block overutilized state. This is so because: 5136 * 5137 * 1. There's no concept of capping at max_capacity! We can't go 5138 * beyond this performance level anyway. 5139 * 2. The system is being saturated when we're operating near 5140 * max capacity, it doesn't make sense to block overutilized. 5141 */ 5142 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5143 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5144 fits = fits || uclamp_max_fits; 5145 5146 /* 5147 * 5148 * C=z 5149 * | ___ (region a, capped, util >= uclamp_max) 5150 * | C=y | | 5151 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5152 * | C=x | | | | 5153 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5154 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5155 * | | | | | | | 5156 * | | | | | | | (region c, boosted, util < uclamp_min) 5157 * +---------------------------------------- 5158 * CPU0 CPU1 CPU2 5159 * 5160 * a) If util > uclamp_max, then we're capped, we don't care about 5161 * actual fitness value here. We only care if uclamp_max fits 5162 * capacity without taking margin/pressure into account. 5163 * See comment above. 5164 * 5165 * b) If uclamp_min <= util <= uclamp_max, then the normal 5166 * fits_capacity() rules apply. Except we need to ensure that we 5167 * enforce we remain within uclamp_max, see comment above. 5168 * 5169 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5170 * need to take into account the boosted value fits the CPU without 5171 * taking margin/pressure into account. 5172 * 5173 * Cases (a) and (b) are handled in the 'fits' variable already. We 5174 * just need to consider an extra check for case (c) after ensuring we 5175 * handle the case uclamp_min > uclamp_max. 5176 */ 5177 uclamp_min = min(uclamp_min, uclamp_max); 5178 if (fits && (util < uclamp_min) && 5179 (uclamp_min > get_actual_cpu_capacity(cpu))) 5180 return -1; 5181 5182 return fits; 5183 } 5184 5185 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5186 { 5187 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5188 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5189 unsigned long util = task_util_est(p); 5190 /* 5191 * Return true only if the cpu fully fits the task requirements, which 5192 * include the utilization but also the performance hints. 5193 */ 5194 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5195 } 5196 5197 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5198 { 5199 int cpu = cpu_of(rq); 5200 5201 if (!sched_asym_cpucap_active()) 5202 return; 5203 5204 /* 5205 * Affinity allows us to go somewhere higher? Or are we on biggest 5206 * available CPU already? Or do we fit into this CPU ? 5207 */ 5208 if (!p || (p->nr_cpus_allowed == 1) || 5209 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5210 task_fits_cpu(p, cpu)) { 5211 5212 rq->misfit_task_load = 0; 5213 return; 5214 } 5215 5216 /* 5217 * Make sure that misfit_task_load will not be null even if 5218 * task_h_load() returns 0. 5219 */ 5220 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5221 } 5222 5223 #else /* CONFIG_SMP */ 5224 5225 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5226 { 5227 return !cfs_rq->nr_running; 5228 } 5229 5230 #define UPDATE_TG 0x0 5231 #define SKIP_AGE_LOAD 0x0 5232 #define DO_ATTACH 0x0 5233 #define DO_DETACH 0x0 5234 5235 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5236 { 5237 cfs_rq_util_change(cfs_rq, 0); 5238 } 5239 5240 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5241 5242 static inline void 5243 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5244 static inline void 5245 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5246 5247 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5248 { 5249 return 0; 5250 } 5251 5252 static inline void 5253 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5254 5255 static inline void 5256 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5257 5258 static inline void 5259 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5260 bool task_sleep) {} 5261 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5262 5263 #endif /* CONFIG_SMP */ 5264 5265 static void 5266 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5267 { 5268 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5269 s64 lag = 0; 5270 5271 if (!se->custom_slice) 5272 se->slice = sysctl_sched_base_slice; 5273 vslice = calc_delta_fair(se->slice, se); 5274 5275 /* 5276 * Due to how V is constructed as the weighted average of entities, 5277 * adding tasks with positive lag, or removing tasks with negative lag 5278 * will move 'time' backwards, this can screw around with the lag of 5279 * other tasks. 5280 * 5281 * EEVDF: placement strategy #1 / #2 5282 */ 5283 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) { 5284 struct sched_entity *curr = cfs_rq->curr; 5285 unsigned long load; 5286 5287 lag = se->vlag; 5288 5289 /* 5290 * If we want to place a task and preserve lag, we have to 5291 * consider the effect of the new entity on the weighted 5292 * average and compensate for this, otherwise lag can quickly 5293 * evaporate. 5294 * 5295 * Lag is defined as: 5296 * 5297 * lag_i = S - s_i = w_i * (V - v_i) 5298 * 5299 * To avoid the 'w_i' term all over the place, we only track 5300 * the virtual lag: 5301 * 5302 * vl_i = V - v_i <=> v_i = V - vl_i 5303 * 5304 * And we take V to be the weighted average of all v: 5305 * 5306 * V = (\Sum w_j*v_j) / W 5307 * 5308 * Where W is: \Sum w_j 5309 * 5310 * Then, the weighted average after adding an entity with lag 5311 * vl_i is given by: 5312 * 5313 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5314 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5315 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5316 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5317 * = V - w_i*vl_i / (W + w_i) 5318 * 5319 * And the actual lag after adding an entity with vl_i is: 5320 * 5321 * vl'_i = V' - v_i 5322 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5323 * = vl_i - w_i*vl_i / (W + w_i) 5324 * 5325 * Which is strictly less than vl_i. So in order to preserve lag 5326 * we should inflate the lag before placement such that the 5327 * effective lag after placement comes out right. 5328 * 5329 * As such, invert the above relation for vl'_i to get the vl_i 5330 * we need to use such that the lag after placement is the lag 5331 * we computed before dequeue. 5332 * 5333 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5334 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5335 * 5336 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5337 * = W*vl_i 5338 * 5339 * vl_i = (W + w_i)*vl'_i / W 5340 */ 5341 load = cfs_rq->avg_load; 5342 if (curr && curr->on_rq) 5343 load += scale_load_down(curr->load.weight); 5344 5345 lag *= load + scale_load_down(se->load.weight); 5346 if (WARN_ON_ONCE(!load)) 5347 load = 1; 5348 lag = div_s64(lag, load); 5349 } 5350 5351 se->vruntime = vruntime - lag; 5352 5353 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) { 5354 se->deadline += se->vruntime; 5355 se->rel_deadline = 0; 5356 return; 5357 } 5358 5359 /* 5360 * When joining the competition; the existing tasks will be, 5361 * on average, halfway through their slice, as such start tasks 5362 * off with half a slice to ease into the competition. 5363 */ 5364 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5365 vslice /= 2; 5366 5367 /* 5368 * EEVDF: vd_i = ve_i + r_i/w_i 5369 */ 5370 se->deadline = se->vruntime + vslice; 5371 } 5372 5373 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5374 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5375 5376 static inline bool cfs_bandwidth_used(void); 5377 5378 static void 5379 requeue_delayed_entity(struct sched_entity *se); 5380 5381 static void 5382 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5383 { 5384 bool curr = cfs_rq->curr == se; 5385 5386 /* 5387 * If we're the current task, we must renormalise before calling 5388 * update_curr(). 5389 */ 5390 if (curr) 5391 place_entity(cfs_rq, se, flags); 5392 5393 update_curr(cfs_rq); 5394 5395 /* 5396 * When enqueuing a sched_entity, we must: 5397 * - Update loads to have both entity and cfs_rq synced with now. 5398 * - For group_entity, update its runnable_weight to reflect the new 5399 * h_nr_running of its group cfs_rq. 5400 * - For group_entity, update its weight to reflect the new share of 5401 * its group cfs_rq 5402 * - Add its new weight to cfs_rq->load.weight 5403 */ 5404 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5405 se_update_runnable(se); 5406 /* 5407 * XXX update_load_avg() above will have attached us to the pelt sum; 5408 * but update_cfs_group() here will re-adjust the weight and have to 5409 * undo/redo all that. Seems wasteful. 5410 */ 5411 update_cfs_group(se); 5412 5413 /* 5414 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5415 * we can place the entity. 5416 */ 5417 if (!curr) 5418 place_entity(cfs_rq, se, flags); 5419 5420 account_entity_enqueue(cfs_rq, se); 5421 5422 /* Entity has migrated, no longer consider this task hot */ 5423 if (flags & ENQUEUE_MIGRATED) 5424 se->exec_start = 0; 5425 5426 check_schedstat_required(); 5427 update_stats_enqueue_fair(cfs_rq, se, flags); 5428 if (!curr) 5429 __enqueue_entity(cfs_rq, se); 5430 se->on_rq = 1; 5431 5432 if (cfs_rq->nr_running == 1) { 5433 check_enqueue_throttle(cfs_rq); 5434 if (!throttled_hierarchy(cfs_rq)) { 5435 list_add_leaf_cfs_rq(cfs_rq); 5436 } else { 5437 #ifdef CONFIG_CFS_BANDWIDTH 5438 struct rq *rq = rq_of(cfs_rq); 5439 5440 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5441 cfs_rq->throttled_clock = rq_clock(rq); 5442 if (!cfs_rq->throttled_clock_self) 5443 cfs_rq->throttled_clock_self = rq_clock(rq); 5444 #endif 5445 } 5446 } 5447 } 5448 5449 static void __clear_buddies_next(struct sched_entity *se) 5450 { 5451 for_each_sched_entity(se) { 5452 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5453 if (cfs_rq->next != se) 5454 break; 5455 5456 cfs_rq->next = NULL; 5457 } 5458 } 5459 5460 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5461 { 5462 if (cfs_rq->next == se) 5463 __clear_buddies_next(se); 5464 } 5465 5466 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5467 5468 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5469 { 5470 se->sched_delayed = 0; 5471 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5472 se->vlag = 0; 5473 } 5474 5475 static bool 5476 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5477 { 5478 bool sleep = flags & DEQUEUE_SLEEP; 5479 5480 update_curr(cfs_rq); 5481 5482 if (flags & DEQUEUE_DELAYED) { 5483 SCHED_WARN_ON(!se->sched_delayed); 5484 } else { 5485 bool delay = sleep; 5486 /* 5487 * DELAY_DEQUEUE relies on spurious wakeups, special task 5488 * states must not suffer spurious wakeups, excempt them. 5489 */ 5490 if (flags & DEQUEUE_SPECIAL) 5491 delay = false; 5492 5493 SCHED_WARN_ON(delay && se->sched_delayed); 5494 5495 if (sched_feat(DELAY_DEQUEUE) && delay && 5496 !entity_eligible(cfs_rq, se)) { 5497 if (cfs_rq->next == se) 5498 cfs_rq->next = NULL; 5499 update_load_avg(cfs_rq, se, 0); 5500 se->sched_delayed = 1; 5501 return false; 5502 } 5503 } 5504 5505 int action = UPDATE_TG; 5506 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5507 action |= DO_DETACH; 5508 5509 /* 5510 * When dequeuing a sched_entity, we must: 5511 * - Update loads to have both entity and cfs_rq synced with now. 5512 * - For group_entity, update its runnable_weight to reflect the new 5513 * h_nr_running of its group cfs_rq. 5514 * - Subtract its previous weight from cfs_rq->load.weight. 5515 * - For group entity, update its weight to reflect the new share 5516 * of its group cfs_rq. 5517 */ 5518 update_load_avg(cfs_rq, se, action); 5519 se_update_runnable(se); 5520 5521 update_stats_dequeue_fair(cfs_rq, se, flags); 5522 5523 clear_buddies(cfs_rq, se); 5524 5525 update_entity_lag(cfs_rq, se); 5526 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5527 se->deadline -= se->vruntime; 5528 se->rel_deadline = 1; 5529 } 5530 5531 if (se != cfs_rq->curr) 5532 __dequeue_entity(cfs_rq, se); 5533 se->on_rq = 0; 5534 account_entity_dequeue(cfs_rq, se); 5535 5536 /* return excess runtime on last dequeue */ 5537 return_cfs_rq_runtime(cfs_rq); 5538 5539 update_cfs_group(se); 5540 5541 /* 5542 * Now advance min_vruntime if @se was the entity holding it back, 5543 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5544 * put back on, and if we advance min_vruntime, we'll be placed back 5545 * further than we started -- i.e. we'll be penalized. 5546 */ 5547 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5548 update_min_vruntime(cfs_rq); 5549 5550 if (flags & DEQUEUE_DELAYED) 5551 finish_delayed_dequeue_entity(se); 5552 5553 if (cfs_rq->nr_running == 0) 5554 update_idle_cfs_rq_clock_pelt(cfs_rq); 5555 5556 return true; 5557 } 5558 5559 static void 5560 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5561 { 5562 clear_buddies(cfs_rq, se); 5563 5564 /* 'current' is not kept within the tree. */ 5565 if (se->on_rq) { 5566 /* 5567 * Any task has to be enqueued before it get to execute on 5568 * a CPU. So account for the time it spent waiting on the 5569 * runqueue. 5570 */ 5571 update_stats_wait_end_fair(cfs_rq, se); 5572 __dequeue_entity(cfs_rq, se); 5573 update_load_avg(cfs_rq, se, UPDATE_TG); 5574 /* 5575 * HACK, stash a copy of deadline at the point of pick in vlag, 5576 * which isn't used until dequeue. 5577 */ 5578 se->vlag = se->deadline; 5579 } 5580 5581 update_stats_curr_start(cfs_rq, se); 5582 SCHED_WARN_ON(cfs_rq->curr); 5583 cfs_rq->curr = se; 5584 5585 /* 5586 * Track our maximum slice length, if the CPU's load is at 5587 * least twice that of our own weight (i.e. don't track it 5588 * when there are only lesser-weight tasks around): 5589 */ 5590 if (schedstat_enabled() && 5591 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5592 struct sched_statistics *stats; 5593 5594 stats = __schedstats_from_se(se); 5595 __schedstat_set(stats->slice_max, 5596 max((u64)stats->slice_max, 5597 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5598 } 5599 5600 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5601 } 5602 5603 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5604 5605 /* 5606 * Pick the next process, keeping these things in mind, in this order: 5607 * 1) keep things fair between processes/task groups 5608 * 2) pick the "next" process, since someone really wants that to run 5609 * 3) pick the "last" process, for cache locality 5610 * 4) do not run the "skip" process, if something else is available 5611 */ 5612 static struct sched_entity * 5613 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5614 { 5615 /* 5616 * Enabling NEXT_BUDDY will affect latency but not fairness. 5617 */ 5618 if (sched_feat(NEXT_BUDDY) && 5619 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5620 /* ->next will never be delayed */ 5621 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5622 return cfs_rq->next; 5623 } 5624 5625 struct sched_entity *se = pick_eevdf(cfs_rq); 5626 if (se->sched_delayed) { 5627 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5628 /* 5629 * Must not reference @se again, see __block_task(). 5630 */ 5631 return NULL; 5632 } 5633 return se; 5634 } 5635 5636 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5637 5638 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5639 { 5640 /* 5641 * If still on the runqueue then deactivate_task() 5642 * was not called and update_curr() has to be done: 5643 */ 5644 if (prev->on_rq) 5645 update_curr(cfs_rq); 5646 5647 /* throttle cfs_rqs exceeding runtime */ 5648 check_cfs_rq_runtime(cfs_rq); 5649 5650 if (prev->on_rq) { 5651 update_stats_wait_start_fair(cfs_rq, prev); 5652 /* Put 'current' back into the tree. */ 5653 __enqueue_entity(cfs_rq, prev); 5654 /* in !on_rq case, update occurred at dequeue */ 5655 update_load_avg(cfs_rq, prev, 0); 5656 } 5657 SCHED_WARN_ON(cfs_rq->curr != prev); 5658 cfs_rq->curr = NULL; 5659 } 5660 5661 static void 5662 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5663 { 5664 /* 5665 * Update run-time statistics of the 'current'. 5666 */ 5667 update_curr(cfs_rq); 5668 5669 /* 5670 * Ensure that runnable average is periodically updated. 5671 */ 5672 update_load_avg(cfs_rq, curr, UPDATE_TG); 5673 update_cfs_group(curr); 5674 5675 #ifdef CONFIG_SCHED_HRTICK 5676 /* 5677 * queued ticks are scheduled to match the slice, so don't bother 5678 * validating it and just reschedule. 5679 */ 5680 if (queued) { 5681 resched_curr_lazy(rq_of(cfs_rq)); 5682 return; 5683 } 5684 #endif 5685 } 5686 5687 5688 /************************************************** 5689 * CFS bandwidth control machinery 5690 */ 5691 5692 #ifdef CONFIG_CFS_BANDWIDTH 5693 5694 #ifdef CONFIG_JUMP_LABEL 5695 static struct static_key __cfs_bandwidth_used; 5696 5697 static inline bool cfs_bandwidth_used(void) 5698 { 5699 return static_key_false(&__cfs_bandwidth_used); 5700 } 5701 5702 void cfs_bandwidth_usage_inc(void) 5703 { 5704 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5705 } 5706 5707 void cfs_bandwidth_usage_dec(void) 5708 { 5709 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5710 } 5711 #else /* CONFIG_JUMP_LABEL */ 5712 static bool cfs_bandwidth_used(void) 5713 { 5714 return true; 5715 } 5716 5717 void cfs_bandwidth_usage_inc(void) {} 5718 void cfs_bandwidth_usage_dec(void) {} 5719 #endif /* CONFIG_JUMP_LABEL */ 5720 5721 /* 5722 * default period for cfs group bandwidth. 5723 * default: 0.1s, units: nanoseconds 5724 */ 5725 static inline u64 default_cfs_period(void) 5726 { 5727 return 100000000ULL; 5728 } 5729 5730 static inline u64 sched_cfs_bandwidth_slice(void) 5731 { 5732 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5733 } 5734 5735 /* 5736 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5737 * directly instead of rq->clock to avoid adding additional synchronization 5738 * around rq->lock. 5739 * 5740 * requires cfs_b->lock 5741 */ 5742 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5743 { 5744 s64 runtime; 5745 5746 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5747 return; 5748 5749 cfs_b->runtime += cfs_b->quota; 5750 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5751 if (runtime > 0) { 5752 cfs_b->burst_time += runtime; 5753 cfs_b->nr_burst++; 5754 } 5755 5756 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5757 cfs_b->runtime_snap = cfs_b->runtime; 5758 } 5759 5760 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5761 { 5762 return &tg->cfs_bandwidth; 5763 } 5764 5765 /* returns 0 on failure to allocate runtime */ 5766 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5767 struct cfs_rq *cfs_rq, u64 target_runtime) 5768 { 5769 u64 min_amount, amount = 0; 5770 5771 lockdep_assert_held(&cfs_b->lock); 5772 5773 /* note: this is a positive sum as runtime_remaining <= 0 */ 5774 min_amount = target_runtime - cfs_rq->runtime_remaining; 5775 5776 if (cfs_b->quota == RUNTIME_INF) 5777 amount = min_amount; 5778 else { 5779 start_cfs_bandwidth(cfs_b); 5780 5781 if (cfs_b->runtime > 0) { 5782 amount = min(cfs_b->runtime, min_amount); 5783 cfs_b->runtime -= amount; 5784 cfs_b->idle = 0; 5785 } 5786 } 5787 5788 cfs_rq->runtime_remaining += amount; 5789 5790 return cfs_rq->runtime_remaining > 0; 5791 } 5792 5793 /* returns 0 on failure to allocate runtime */ 5794 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5795 { 5796 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5797 int ret; 5798 5799 raw_spin_lock(&cfs_b->lock); 5800 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5801 raw_spin_unlock(&cfs_b->lock); 5802 5803 return ret; 5804 } 5805 5806 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5807 { 5808 /* dock delta_exec before expiring quota (as it could span periods) */ 5809 cfs_rq->runtime_remaining -= delta_exec; 5810 5811 if (likely(cfs_rq->runtime_remaining > 0)) 5812 return; 5813 5814 if (cfs_rq->throttled) 5815 return; 5816 /* 5817 * if we're unable to extend our runtime we resched so that the active 5818 * hierarchy can be throttled 5819 */ 5820 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5821 resched_curr(rq_of(cfs_rq)); 5822 } 5823 5824 static __always_inline 5825 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5826 { 5827 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5828 return; 5829 5830 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5831 } 5832 5833 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5834 { 5835 return cfs_bandwidth_used() && cfs_rq->throttled; 5836 } 5837 5838 /* check whether cfs_rq, or any parent, is throttled */ 5839 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5840 { 5841 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5842 } 5843 5844 /* 5845 * Ensure that neither of the group entities corresponding to src_cpu or 5846 * dest_cpu are members of a throttled hierarchy when performing group 5847 * load-balance operations. 5848 */ 5849 static inline int throttled_lb_pair(struct task_group *tg, 5850 int src_cpu, int dest_cpu) 5851 { 5852 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5853 5854 src_cfs_rq = tg->cfs_rq[src_cpu]; 5855 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5856 5857 return throttled_hierarchy(src_cfs_rq) || 5858 throttled_hierarchy(dest_cfs_rq); 5859 } 5860 5861 static int tg_unthrottle_up(struct task_group *tg, void *data) 5862 { 5863 struct rq *rq = data; 5864 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5865 5866 cfs_rq->throttle_count--; 5867 if (!cfs_rq->throttle_count) { 5868 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5869 cfs_rq->throttled_clock_pelt; 5870 5871 /* Add cfs_rq with load or one or more already running entities to the list */ 5872 if (!cfs_rq_is_decayed(cfs_rq)) 5873 list_add_leaf_cfs_rq(cfs_rq); 5874 5875 if (cfs_rq->throttled_clock_self) { 5876 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5877 5878 cfs_rq->throttled_clock_self = 0; 5879 5880 if (SCHED_WARN_ON((s64)delta < 0)) 5881 delta = 0; 5882 5883 cfs_rq->throttled_clock_self_time += delta; 5884 } 5885 } 5886 5887 return 0; 5888 } 5889 5890 static int tg_throttle_down(struct task_group *tg, void *data) 5891 { 5892 struct rq *rq = data; 5893 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5894 5895 /* group is entering throttled state, stop time */ 5896 if (!cfs_rq->throttle_count) { 5897 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5898 list_del_leaf_cfs_rq(cfs_rq); 5899 5900 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5901 if (cfs_rq->nr_running) 5902 cfs_rq->throttled_clock_self = rq_clock(rq); 5903 } 5904 cfs_rq->throttle_count++; 5905 5906 return 0; 5907 } 5908 5909 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5910 { 5911 struct rq *rq = rq_of(cfs_rq); 5912 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5913 struct sched_entity *se; 5914 long task_delta, idle_task_delta, dequeue = 1; 5915 long rq_h_nr_running = rq->cfs.h_nr_running; 5916 5917 raw_spin_lock(&cfs_b->lock); 5918 /* This will start the period timer if necessary */ 5919 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5920 /* 5921 * We have raced with bandwidth becoming available, and if we 5922 * actually throttled the timer might not unthrottle us for an 5923 * entire period. We additionally needed to make sure that any 5924 * subsequent check_cfs_rq_runtime calls agree not to throttle 5925 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5926 * for 1ns of runtime rather than just check cfs_b. 5927 */ 5928 dequeue = 0; 5929 } else { 5930 list_add_tail_rcu(&cfs_rq->throttled_list, 5931 &cfs_b->throttled_cfs_rq); 5932 } 5933 raw_spin_unlock(&cfs_b->lock); 5934 5935 if (!dequeue) 5936 return false; /* Throttle no longer required. */ 5937 5938 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5939 5940 /* freeze hierarchy runnable averages while throttled */ 5941 rcu_read_lock(); 5942 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5943 rcu_read_unlock(); 5944 5945 task_delta = cfs_rq->h_nr_running; 5946 idle_task_delta = cfs_rq->idle_h_nr_running; 5947 for_each_sched_entity(se) { 5948 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5949 int flags; 5950 5951 /* throttled entity or throttle-on-deactivate */ 5952 if (!se->on_rq) 5953 goto done; 5954 5955 /* 5956 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5957 * This avoids teaching dequeue_entities() about throttled 5958 * entities and keeps things relatively simple. 5959 */ 5960 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5961 if (se->sched_delayed) 5962 flags |= DEQUEUE_DELAYED; 5963 dequeue_entity(qcfs_rq, se, flags); 5964 5965 if (cfs_rq_is_idle(group_cfs_rq(se))) 5966 idle_task_delta = cfs_rq->h_nr_running; 5967 5968 qcfs_rq->h_nr_running -= task_delta; 5969 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5970 5971 if (qcfs_rq->load.weight) { 5972 /* Avoid re-evaluating load for this entity: */ 5973 se = parent_entity(se); 5974 break; 5975 } 5976 } 5977 5978 for_each_sched_entity(se) { 5979 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5980 /* throttled entity or throttle-on-deactivate */ 5981 if (!se->on_rq) 5982 goto done; 5983 5984 update_load_avg(qcfs_rq, se, 0); 5985 se_update_runnable(se); 5986 5987 if (cfs_rq_is_idle(group_cfs_rq(se))) 5988 idle_task_delta = cfs_rq->h_nr_running; 5989 5990 qcfs_rq->h_nr_running -= task_delta; 5991 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5992 } 5993 5994 /* At this point se is NULL and we are at root level*/ 5995 sub_nr_running(rq, task_delta); 5996 5997 /* Stop the fair server if throttling resulted in no runnable tasks */ 5998 if (rq_h_nr_running && !rq->cfs.h_nr_running) 5999 dl_server_stop(&rq->fair_server); 6000 done: 6001 /* 6002 * Note: distribution will already see us throttled via the 6003 * throttled-list. rq->lock protects completion. 6004 */ 6005 cfs_rq->throttled = 1; 6006 SCHED_WARN_ON(cfs_rq->throttled_clock); 6007 if (cfs_rq->nr_running) 6008 cfs_rq->throttled_clock = rq_clock(rq); 6009 return true; 6010 } 6011 6012 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 6013 { 6014 struct rq *rq = rq_of(cfs_rq); 6015 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6016 struct sched_entity *se; 6017 long task_delta, idle_task_delta; 6018 long rq_h_nr_running = rq->cfs.h_nr_running; 6019 6020 se = cfs_rq->tg->se[cpu_of(rq)]; 6021 6022 cfs_rq->throttled = 0; 6023 6024 update_rq_clock(rq); 6025 6026 raw_spin_lock(&cfs_b->lock); 6027 if (cfs_rq->throttled_clock) { 6028 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6029 cfs_rq->throttled_clock = 0; 6030 } 6031 list_del_rcu(&cfs_rq->throttled_list); 6032 raw_spin_unlock(&cfs_b->lock); 6033 6034 /* update hierarchical throttle state */ 6035 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6036 6037 if (!cfs_rq->load.weight) { 6038 if (!cfs_rq->on_list) 6039 return; 6040 /* 6041 * Nothing to run but something to decay (on_list)? 6042 * Complete the branch. 6043 */ 6044 for_each_sched_entity(se) { 6045 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6046 break; 6047 } 6048 goto unthrottle_throttle; 6049 } 6050 6051 task_delta = cfs_rq->h_nr_running; 6052 idle_task_delta = cfs_rq->idle_h_nr_running; 6053 for_each_sched_entity(se) { 6054 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6055 6056 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6057 if (se->sched_delayed) { 6058 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6059 6060 dequeue_entity(qcfs_rq, se, flags); 6061 } else if (se->on_rq) 6062 break; 6063 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6064 6065 if (cfs_rq_is_idle(group_cfs_rq(se))) 6066 idle_task_delta = cfs_rq->h_nr_running; 6067 6068 qcfs_rq->h_nr_running += task_delta; 6069 qcfs_rq->idle_h_nr_running += idle_task_delta; 6070 6071 /* end evaluation on encountering a throttled cfs_rq */ 6072 if (cfs_rq_throttled(qcfs_rq)) 6073 goto unthrottle_throttle; 6074 } 6075 6076 for_each_sched_entity(se) { 6077 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6078 6079 update_load_avg(qcfs_rq, se, UPDATE_TG); 6080 se_update_runnable(se); 6081 6082 if (cfs_rq_is_idle(group_cfs_rq(se))) 6083 idle_task_delta = cfs_rq->h_nr_running; 6084 6085 qcfs_rq->h_nr_running += task_delta; 6086 qcfs_rq->idle_h_nr_running += idle_task_delta; 6087 6088 /* end evaluation on encountering a throttled cfs_rq */ 6089 if (cfs_rq_throttled(qcfs_rq)) 6090 goto unthrottle_throttle; 6091 } 6092 6093 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6094 if (!rq_h_nr_running && rq->cfs.h_nr_running) 6095 dl_server_start(&rq->fair_server); 6096 6097 /* At this point se is NULL and we are at root level*/ 6098 add_nr_running(rq, task_delta); 6099 6100 unthrottle_throttle: 6101 assert_list_leaf_cfs_rq(rq); 6102 6103 /* Determine whether we need to wake up potentially idle CPU: */ 6104 if (rq->curr == rq->idle && rq->cfs.nr_running) 6105 resched_curr(rq); 6106 } 6107 6108 #ifdef CONFIG_SMP 6109 static void __cfsb_csd_unthrottle(void *arg) 6110 { 6111 struct cfs_rq *cursor, *tmp; 6112 struct rq *rq = arg; 6113 struct rq_flags rf; 6114 6115 rq_lock(rq, &rf); 6116 6117 /* 6118 * Iterating over the list can trigger several call to 6119 * update_rq_clock() in unthrottle_cfs_rq(). 6120 * Do it once and skip the potential next ones. 6121 */ 6122 update_rq_clock(rq); 6123 rq_clock_start_loop_update(rq); 6124 6125 /* 6126 * Since we hold rq lock we're safe from concurrent manipulation of 6127 * the CSD list. However, this RCU critical section annotates the 6128 * fact that we pair with sched_free_group_rcu(), so that we cannot 6129 * race with group being freed in the window between removing it 6130 * from the list and advancing to the next entry in the list. 6131 */ 6132 rcu_read_lock(); 6133 6134 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6135 throttled_csd_list) { 6136 list_del_init(&cursor->throttled_csd_list); 6137 6138 if (cfs_rq_throttled(cursor)) 6139 unthrottle_cfs_rq(cursor); 6140 } 6141 6142 rcu_read_unlock(); 6143 6144 rq_clock_stop_loop_update(rq); 6145 rq_unlock(rq, &rf); 6146 } 6147 6148 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6149 { 6150 struct rq *rq = rq_of(cfs_rq); 6151 bool first; 6152 6153 if (rq == this_rq()) { 6154 unthrottle_cfs_rq(cfs_rq); 6155 return; 6156 } 6157 6158 /* Already enqueued */ 6159 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6160 return; 6161 6162 first = list_empty(&rq->cfsb_csd_list); 6163 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6164 if (first) 6165 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6166 } 6167 #else 6168 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6169 { 6170 unthrottle_cfs_rq(cfs_rq); 6171 } 6172 #endif 6173 6174 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6175 { 6176 lockdep_assert_rq_held(rq_of(cfs_rq)); 6177 6178 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6179 cfs_rq->runtime_remaining <= 0)) 6180 return; 6181 6182 __unthrottle_cfs_rq_async(cfs_rq); 6183 } 6184 6185 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6186 { 6187 int this_cpu = smp_processor_id(); 6188 u64 runtime, remaining = 1; 6189 bool throttled = false; 6190 struct cfs_rq *cfs_rq, *tmp; 6191 struct rq_flags rf; 6192 struct rq *rq; 6193 LIST_HEAD(local_unthrottle); 6194 6195 rcu_read_lock(); 6196 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6197 throttled_list) { 6198 rq = rq_of(cfs_rq); 6199 6200 if (!remaining) { 6201 throttled = true; 6202 break; 6203 } 6204 6205 rq_lock_irqsave(rq, &rf); 6206 if (!cfs_rq_throttled(cfs_rq)) 6207 goto next; 6208 6209 /* Already queued for async unthrottle */ 6210 if (!list_empty(&cfs_rq->throttled_csd_list)) 6211 goto next; 6212 6213 /* By the above checks, this should never be true */ 6214 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6215 6216 raw_spin_lock(&cfs_b->lock); 6217 runtime = -cfs_rq->runtime_remaining + 1; 6218 if (runtime > cfs_b->runtime) 6219 runtime = cfs_b->runtime; 6220 cfs_b->runtime -= runtime; 6221 remaining = cfs_b->runtime; 6222 raw_spin_unlock(&cfs_b->lock); 6223 6224 cfs_rq->runtime_remaining += runtime; 6225 6226 /* we check whether we're throttled above */ 6227 if (cfs_rq->runtime_remaining > 0) { 6228 if (cpu_of(rq) != this_cpu) { 6229 unthrottle_cfs_rq_async(cfs_rq); 6230 } else { 6231 /* 6232 * We currently only expect to be unthrottling 6233 * a single cfs_rq locally. 6234 */ 6235 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6236 list_add_tail(&cfs_rq->throttled_csd_list, 6237 &local_unthrottle); 6238 } 6239 } else { 6240 throttled = true; 6241 } 6242 6243 next: 6244 rq_unlock_irqrestore(rq, &rf); 6245 } 6246 6247 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6248 throttled_csd_list) { 6249 struct rq *rq = rq_of(cfs_rq); 6250 6251 rq_lock_irqsave(rq, &rf); 6252 6253 list_del_init(&cfs_rq->throttled_csd_list); 6254 6255 if (cfs_rq_throttled(cfs_rq)) 6256 unthrottle_cfs_rq(cfs_rq); 6257 6258 rq_unlock_irqrestore(rq, &rf); 6259 } 6260 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6261 6262 rcu_read_unlock(); 6263 6264 return throttled; 6265 } 6266 6267 /* 6268 * Responsible for refilling a task_group's bandwidth and unthrottling its 6269 * cfs_rqs as appropriate. If there has been no activity within the last 6270 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6271 * used to track this state. 6272 */ 6273 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6274 { 6275 int throttled; 6276 6277 /* no need to continue the timer with no bandwidth constraint */ 6278 if (cfs_b->quota == RUNTIME_INF) 6279 goto out_deactivate; 6280 6281 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6282 cfs_b->nr_periods += overrun; 6283 6284 /* Refill extra burst quota even if cfs_b->idle */ 6285 __refill_cfs_bandwidth_runtime(cfs_b); 6286 6287 /* 6288 * idle depends on !throttled (for the case of a large deficit), and if 6289 * we're going inactive then everything else can be deferred 6290 */ 6291 if (cfs_b->idle && !throttled) 6292 goto out_deactivate; 6293 6294 if (!throttled) { 6295 /* mark as potentially idle for the upcoming period */ 6296 cfs_b->idle = 1; 6297 return 0; 6298 } 6299 6300 /* account preceding periods in which throttling occurred */ 6301 cfs_b->nr_throttled += overrun; 6302 6303 /* 6304 * This check is repeated as we release cfs_b->lock while we unthrottle. 6305 */ 6306 while (throttled && cfs_b->runtime > 0) { 6307 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6308 /* we can't nest cfs_b->lock while distributing bandwidth */ 6309 throttled = distribute_cfs_runtime(cfs_b); 6310 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6311 } 6312 6313 /* 6314 * While we are ensured activity in the period following an 6315 * unthrottle, this also covers the case in which the new bandwidth is 6316 * insufficient to cover the existing bandwidth deficit. (Forcing the 6317 * timer to remain active while there are any throttled entities.) 6318 */ 6319 cfs_b->idle = 0; 6320 6321 return 0; 6322 6323 out_deactivate: 6324 return 1; 6325 } 6326 6327 /* a cfs_rq won't donate quota below this amount */ 6328 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6329 /* minimum remaining period time to redistribute slack quota */ 6330 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6331 /* how long we wait to gather additional slack before distributing */ 6332 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6333 6334 /* 6335 * Are we near the end of the current quota period? 6336 * 6337 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6338 * hrtimer base being cleared by hrtimer_start. In the case of 6339 * migrate_hrtimers, base is never cleared, so we are fine. 6340 */ 6341 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6342 { 6343 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6344 s64 remaining; 6345 6346 /* if the call-back is running a quota refresh is already occurring */ 6347 if (hrtimer_callback_running(refresh_timer)) 6348 return 1; 6349 6350 /* is a quota refresh about to occur? */ 6351 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6352 if (remaining < (s64)min_expire) 6353 return 1; 6354 6355 return 0; 6356 } 6357 6358 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6359 { 6360 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6361 6362 /* if there's a quota refresh soon don't bother with slack */ 6363 if (runtime_refresh_within(cfs_b, min_left)) 6364 return; 6365 6366 /* don't push forwards an existing deferred unthrottle */ 6367 if (cfs_b->slack_started) 6368 return; 6369 cfs_b->slack_started = true; 6370 6371 hrtimer_start(&cfs_b->slack_timer, 6372 ns_to_ktime(cfs_bandwidth_slack_period), 6373 HRTIMER_MODE_REL); 6374 } 6375 6376 /* we know any runtime found here is valid as update_curr() precedes return */ 6377 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6378 { 6379 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6380 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6381 6382 if (slack_runtime <= 0) 6383 return; 6384 6385 raw_spin_lock(&cfs_b->lock); 6386 if (cfs_b->quota != RUNTIME_INF) { 6387 cfs_b->runtime += slack_runtime; 6388 6389 /* we are under rq->lock, defer unthrottling using a timer */ 6390 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6391 !list_empty(&cfs_b->throttled_cfs_rq)) 6392 start_cfs_slack_bandwidth(cfs_b); 6393 } 6394 raw_spin_unlock(&cfs_b->lock); 6395 6396 /* even if it's not valid for return we don't want to try again */ 6397 cfs_rq->runtime_remaining -= slack_runtime; 6398 } 6399 6400 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6401 { 6402 if (!cfs_bandwidth_used()) 6403 return; 6404 6405 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6406 return; 6407 6408 __return_cfs_rq_runtime(cfs_rq); 6409 } 6410 6411 /* 6412 * This is done with a timer (instead of inline with bandwidth return) since 6413 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6414 */ 6415 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6416 { 6417 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6418 unsigned long flags; 6419 6420 /* confirm we're still not at a refresh boundary */ 6421 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6422 cfs_b->slack_started = false; 6423 6424 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6425 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6426 return; 6427 } 6428 6429 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6430 runtime = cfs_b->runtime; 6431 6432 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6433 6434 if (!runtime) 6435 return; 6436 6437 distribute_cfs_runtime(cfs_b); 6438 } 6439 6440 /* 6441 * When a group wakes up we want to make sure that its quota is not already 6442 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6443 * runtime as update_curr() throttling can not trigger until it's on-rq. 6444 */ 6445 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6446 { 6447 if (!cfs_bandwidth_used()) 6448 return; 6449 6450 /* an active group must be handled by the update_curr()->put() path */ 6451 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6452 return; 6453 6454 /* ensure the group is not already throttled */ 6455 if (cfs_rq_throttled(cfs_rq)) 6456 return; 6457 6458 /* update runtime allocation */ 6459 account_cfs_rq_runtime(cfs_rq, 0); 6460 if (cfs_rq->runtime_remaining <= 0) 6461 throttle_cfs_rq(cfs_rq); 6462 } 6463 6464 static void sync_throttle(struct task_group *tg, int cpu) 6465 { 6466 struct cfs_rq *pcfs_rq, *cfs_rq; 6467 6468 if (!cfs_bandwidth_used()) 6469 return; 6470 6471 if (!tg->parent) 6472 return; 6473 6474 cfs_rq = tg->cfs_rq[cpu]; 6475 pcfs_rq = tg->parent->cfs_rq[cpu]; 6476 6477 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6478 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6479 } 6480 6481 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6482 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6483 { 6484 if (!cfs_bandwidth_used()) 6485 return false; 6486 6487 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6488 return false; 6489 6490 /* 6491 * it's possible for a throttled entity to be forced into a running 6492 * state (e.g. set_curr_task), in this case we're finished. 6493 */ 6494 if (cfs_rq_throttled(cfs_rq)) 6495 return true; 6496 6497 return throttle_cfs_rq(cfs_rq); 6498 } 6499 6500 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6501 { 6502 struct cfs_bandwidth *cfs_b = 6503 container_of(timer, struct cfs_bandwidth, slack_timer); 6504 6505 do_sched_cfs_slack_timer(cfs_b); 6506 6507 return HRTIMER_NORESTART; 6508 } 6509 6510 extern const u64 max_cfs_quota_period; 6511 6512 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6513 { 6514 struct cfs_bandwidth *cfs_b = 6515 container_of(timer, struct cfs_bandwidth, period_timer); 6516 unsigned long flags; 6517 int overrun; 6518 int idle = 0; 6519 int count = 0; 6520 6521 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6522 for (;;) { 6523 overrun = hrtimer_forward_now(timer, cfs_b->period); 6524 if (!overrun) 6525 break; 6526 6527 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6528 6529 if (++count > 3) { 6530 u64 new, old = ktime_to_ns(cfs_b->period); 6531 6532 /* 6533 * Grow period by a factor of 2 to avoid losing precision. 6534 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6535 * to fail. 6536 */ 6537 new = old * 2; 6538 if (new < max_cfs_quota_period) { 6539 cfs_b->period = ns_to_ktime(new); 6540 cfs_b->quota *= 2; 6541 cfs_b->burst *= 2; 6542 6543 pr_warn_ratelimited( 6544 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6545 smp_processor_id(), 6546 div_u64(new, NSEC_PER_USEC), 6547 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6548 } else { 6549 pr_warn_ratelimited( 6550 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6551 smp_processor_id(), 6552 div_u64(old, NSEC_PER_USEC), 6553 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6554 } 6555 6556 /* reset count so we don't come right back in here */ 6557 count = 0; 6558 } 6559 } 6560 if (idle) 6561 cfs_b->period_active = 0; 6562 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6563 6564 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6565 } 6566 6567 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6568 { 6569 raw_spin_lock_init(&cfs_b->lock); 6570 cfs_b->runtime = 0; 6571 cfs_b->quota = RUNTIME_INF; 6572 cfs_b->period = ns_to_ktime(default_cfs_period()); 6573 cfs_b->burst = 0; 6574 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6575 6576 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6577 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6578 cfs_b->period_timer.function = sched_cfs_period_timer; 6579 6580 /* Add a random offset so that timers interleave */ 6581 hrtimer_set_expires(&cfs_b->period_timer, 6582 get_random_u32_below(cfs_b->period)); 6583 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6584 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6585 cfs_b->slack_started = false; 6586 } 6587 6588 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6589 { 6590 cfs_rq->runtime_enabled = 0; 6591 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6592 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6593 } 6594 6595 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6596 { 6597 lockdep_assert_held(&cfs_b->lock); 6598 6599 if (cfs_b->period_active) 6600 return; 6601 6602 cfs_b->period_active = 1; 6603 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6604 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6605 } 6606 6607 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6608 { 6609 int __maybe_unused i; 6610 6611 /* init_cfs_bandwidth() was not called */ 6612 if (!cfs_b->throttled_cfs_rq.next) 6613 return; 6614 6615 hrtimer_cancel(&cfs_b->period_timer); 6616 hrtimer_cancel(&cfs_b->slack_timer); 6617 6618 /* 6619 * It is possible that we still have some cfs_rq's pending on a CSD 6620 * list, though this race is very rare. In order for this to occur, we 6621 * must have raced with the last task leaving the group while there 6622 * exist throttled cfs_rq(s), and the period_timer must have queued the 6623 * CSD item but the remote cpu has not yet processed it. To handle this, 6624 * we can simply flush all pending CSD work inline here. We're 6625 * guaranteed at this point that no additional cfs_rq of this group can 6626 * join a CSD list. 6627 */ 6628 #ifdef CONFIG_SMP 6629 for_each_possible_cpu(i) { 6630 struct rq *rq = cpu_rq(i); 6631 unsigned long flags; 6632 6633 if (list_empty(&rq->cfsb_csd_list)) 6634 continue; 6635 6636 local_irq_save(flags); 6637 __cfsb_csd_unthrottle(rq); 6638 local_irq_restore(flags); 6639 } 6640 #endif 6641 } 6642 6643 /* 6644 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6645 * 6646 * The race is harmless, since modifying bandwidth settings of unhooked group 6647 * bits doesn't do much. 6648 */ 6649 6650 /* cpu online callback */ 6651 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6652 { 6653 struct task_group *tg; 6654 6655 lockdep_assert_rq_held(rq); 6656 6657 rcu_read_lock(); 6658 list_for_each_entry_rcu(tg, &task_groups, list) { 6659 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6660 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6661 6662 raw_spin_lock(&cfs_b->lock); 6663 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6664 raw_spin_unlock(&cfs_b->lock); 6665 } 6666 rcu_read_unlock(); 6667 } 6668 6669 /* cpu offline callback */ 6670 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6671 { 6672 struct task_group *tg; 6673 6674 lockdep_assert_rq_held(rq); 6675 6676 /* 6677 * The rq clock has already been updated in the 6678 * set_rq_offline(), so we should skip updating 6679 * the rq clock again in unthrottle_cfs_rq(). 6680 */ 6681 rq_clock_start_loop_update(rq); 6682 6683 rcu_read_lock(); 6684 list_for_each_entry_rcu(tg, &task_groups, list) { 6685 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6686 6687 if (!cfs_rq->runtime_enabled) 6688 continue; 6689 6690 /* 6691 * clock_task is not advancing so we just need to make sure 6692 * there's some valid quota amount 6693 */ 6694 cfs_rq->runtime_remaining = 1; 6695 /* 6696 * Offline rq is schedulable till CPU is completely disabled 6697 * in take_cpu_down(), so we prevent new cfs throttling here. 6698 */ 6699 cfs_rq->runtime_enabled = 0; 6700 6701 if (cfs_rq_throttled(cfs_rq)) 6702 unthrottle_cfs_rq(cfs_rq); 6703 } 6704 rcu_read_unlock(); 6705 6706 rq_clock_stop_loop_update(rq); 6707 } 6708 6709 bool cfs_task_bw_constrained(struct task_struct *p) 6710 { 6711 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6712 6713 if (!cfs_bandwidth_used()) 6714 return false; 6715 6716 if (cfs_rq->runtime_enabled || 6717 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6718 return true; 6719 6720 return false; 6721 } 6722 6723 #ifdef CONFIG_NO_HZ_FULL 6724 /* called from pick_next_task_fair() */ 6725 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6726 { 6727 int cpu = cpu_of(rq); 6728 6729 if (!cfs_bandwidth_used()) 6730 return; 6731 6732 if (!tick_nohz_full_cpu(cpu)) 6733 return; 6734 6735 if (rq->nr_running != 1) 6736 return; 6737 6738 /* 6739 * We know there is only one task runnable and we've just picked it. The 6740 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6741 * be otherwise able to stop the tick. Just need to check if we are using 6742 * bandwidth control. 6743 */ 6744 if (cfs_task_bw_constrained(p)) 6745 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6746 } 6747 #endif 6748 6749 #else /* CONFIG_CFS_BANDWIDTH */ 6750 6751 static inline bool cfs_bandwidth_used(void) 6752 { 6753 return false; 6754 } 6755 6756 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6757 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6758 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6759 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6760 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6761 6762 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6763 { 6764 return 0; 6765 } 6766 6767 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6768 { 6769 return 0; 6770 } 6771 6772 static inline int throttled_lb_pair(struct task_group *tg, 6773 int src_cpu, int dest_cpu) 6774 { 6775 return 0; 6776 } 6777 6778 #ifdef CONFIG_FAIR_GROUP_SCHED 6779 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6780 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6781 #endif 6782 6783 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6784 { 6785 return NULL; 6786 } 6787 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6788 static inline void update_runtime_enabled(struct rq *rq) {} 6789 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6790 #ifdef CONFIG_CGROUP_SCHED 6791 bool cfs_task_bw_constrained(struct task_struct *p) 6792 { 6793 return false; 6794 } 6795 #endif 6796 #endif /* CONFIG_CFS_BANDWIDTH */ 6797 6798 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6799 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6800 #endif 6801 6802 /************************************************** 6803 * CFS operations on tasks: 6804 */ 6805 6806 #ifdef CONFIG_SCHED_HRTICK 6807 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6808 { 6809 struct sched_entity *se = &p->se; 6810 6811 SCHED_WARN_ON(task_rq(p) != rq); 6812 6813 if (rq->cfs.h_nr_running > 1) { 6814 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6815 u64 slice = se->slice; 6816 s64 delta = slice - ran; 6817 6818 if (delta < 0) { 6819 if (task_current_donor(rq, p)) 6820 resched_curr(rq); 6821 return; 6822 } 6823 hrtick_start(rq, delta); 6824 } 6825 } 6826 6827 /* 6828 * called from enqueue/dequeue and updates the hrtick when the 6829 * current task is from our class and nr_running is low enough 6830 * to matter. 6831 */ 6832 static void hrtick_update(struct rq *rq) 6833 { 6834 struct task_struct *donor = rq->donor; 6835 6836 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6837 return; 6838 6839 hrtick_start_fair(rq, donor); 6840 } 6841 #else /* !CONFIG_SCHED_HRTICK */ 6842 static inline void 6843 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6844 { 6845 } 6846 6847 static inline void hrtick_update(struct rq *rq) 6848 { 6849 } 6850 #endif 6851 6852 #ifdef CONFIG_SMP 6853 static inline bool cpu_overutilized(int cpu) 6854 { 6855 unsigned long rq_util_min, rq_util_max; 6856 6857 if (!sched_energy_enabled()) 6858 return false; 6859 6860 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6861 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6862 6863 /* Return true only if the utilization doesn't fit CPU's capacity */ 6864 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6865 } 6866 6867 /* 6868 * overutilized value make sense only if EAS is enabled 6869 */ 6870 static inline bool is_rd_overutilized(struct root_domain *rd) 6871 { 6872 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6873 } 6874 6875 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6876 { 6877 if (!sched_energy_enabled()) 6878 return; 6879 6880 WRITE_ONCE(rd->overutilized, flag); 6881 trace_sched_overutilized_tp(rd, flag); 6882 } 6883 6884 static inline void check_update_overutilized_status(struct rq *rq) 6885 { 6886 /* 6887 * overutilized field is used for load balancing decisions only 6888 * if energy aware scheduler is being used 6889 */ 6890 6891 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6892 set_rd_overutilized(rq->rd, 1); 6893 } 6894 #else 6895 static inline void check_update_overutilized_status(struct rq *rq) { } 6896 #endif 6897 6898 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6899 static int sched_idle_rq(struct rq *rq) 6900 { 6901 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6902 rq->nr_running); 6903 } 6904 6905 #ifdef CONFIG_SMP 6906 static int sched_idle_cpu(int cpu) 6907 { 6908 return sched_idle_rq(cpu_rq(cpu)); 6909 } 6910 #endif 6911 6912 static void 6913 requeue_delayed_entity(struct sched_entity *se) 6914 { 6915 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6916 6917 /* 6918 * se->sched_delayed should imply: se->on_rq == 1. 6919 * Because a delayed entity is one that is still on 6920 * the runqueue competing until elegibility. 6921 */ 6922 SCHED_WARN_ON(!se->sched_delayed); 6923 SCHED_WARN_ON(!se->on_rq); 6924 6925 if (sched_feat(DELAY_ZERO)) { 6926 update_entity_lag(cfs_rq, se); 6927 if (se->vlag > 0) { 6928 cfs_rq->nr_running--; 6929 if (se != cfs_rq->curr) 6930 __dequeue_entity(cfs_rq, se); 6931 se->vlag = 0; 6932 place_entity(cfs_rq, se, 0); 6933 if (se != cfs_rq->curr) 6934 __enqueue_entity(cfs_rq, se); 6935 cfs_rq->nr_running++; 6936 } 6937 } 6938 6939 update_load_avg(cfs_rq, se, 0); 6940 se->sched_delayed = 0; 6941 } 6942 6943 /* 6944 * The enqueue_task method is called before nr_running is 6945 * increased. Here we update the fair scheduling stats and 6946 * then put the task into the rbtree: 6947 */ 6948 static void 6949 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6950 { 6951 struct cfs_rq *cfs_rq; 6952 struct sched_entity *se = &p->se; 6953 int idle_h_nr_running = task_has_idle_policy(p); 6954 int task_new = !(flags & ENQUEUE_WAKEUP); 6955 int rq_h_nr_running = rq->cfs.h_nr_running; 6956 u64 slice = 0; 6957 6958 /* 6959 * The code below (indirectly) updates schedutil which looks at 6960 * the cfs_rq utilization to select a frequency. 6961 * Let's add the task's estimated utilization to the cfs_rq's 6962 * estimated utilization, before we update schedutil. 6963 */ 6964 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6965 util_est_enqueue(&rq->cfs, p); 6966 6967 if (flags & ENQUEUE_DELAYED) { 6968 requeue_delayed_entity(se); 6969 return; 6970 } 6971 6972 /* 6973 * If in_iowait is set, the code below may not trigger any cpufreq 6974 * utilization updates, so do it here explicitly with the IOWAIT flag 6975 * passed. 6976 */ 6977 if (p->in_iowait) 6978 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6979 6980 for_each_sched_entity(se) { 6981 if (se->on_rq) { 6982 if (se->sched_delayed) 6983 requeue_delayed_entity(se); 6984 break; 6985 } 6986 cfs_rq = cfs_rq_of(se); 6987 6988 /* 6989 * Basically set the slice of group entries to the min_slice of 6990 * their respective cfs_rq. This ensures the group can service 6991 * its entities in the desired time-frame. 6992 */ 6993 if (slice) { 6994 se->slice = slice; 6995 se->custom_slice = 1; 6996 } 6997 enqueue_entity(cfs_rq, se, flags); 6998 slice = cfs_rq_min_slice(cfs_rq); 6999 7000 cfs_rq->h_nr_running++; 7001 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7002 7003 if (cfs_rq_is_idle(cfs_rq)) 7004 idle_h_nr_running = 1; 7005 7006 /* end evaluation on encountering a throttled cfs_rq */ 7007 if (cfs_rq_throttled(cfs_rq)) 7008 goto enqueue_throttle; 7009 7010 flags = ENQUEUE_WAKEUP; 7011 } 7012 7013 for_each_sched_entity(se) { 7014 cfs_rq = cfs_rq_of(se); 7015 7016 update_load_avg(cfs_rq, se, UPDATE_TG); 7017 se_update_runnable(se); 7018 update_cfs_group(se); 7019 7020 se->slice = slice; 7021 slice = cfs_rq_min_slice(cfs_rq); 7022 7023 cfs_rq->h_nr_running++; 7024 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7025 7026 if (cfs_rq_is_idle(cfs_rq)) 7027 idle_h_nr_running = 1; 7028 7029 /* end evaluation on encountering a throttled cfs_rq */ 7030 if (cfs_rq_throttled(cfs_rq)) 7031 goto enqueue_throttle; 7032 } 7033 7034 if (!rq_h_nr_running && rq->cfs.h_nr_running) { 7035 /* Account for idle runtime */ 7036 if (!rq->nr_running) 7037 dl_server_update_idle_time(rq, rq->curr); 7038 dl_server_start(&rq->fair_server); 7039 } 7040 7041 /* At this point se is NULL and we are at root level*/ 7042 add_nr_running(rq, 1); 7043 7044 /* 7045 * Since new tasks are assigned an initial util_avg equal to 7046 * half of the spare capacity of their CPU, tiny tasks have the 7047 * ability to cross the overutilized threshold, which will 7048 * result in the load balancer ruining all the task placement 7049 * done by EAS. As a way to mitigate that effect, do not account 7050 * for the first enqueue operation of new tasks during the 7051 * overutilized flag detection. 7052 * 7053 * A better way of solving this problem would be to wait for 7054 * the PELT signals of tasks to converge before taking them 7055 * into account, but that is not straightforward to implement, 7056 * and the following generally works well enough in practice. 7057 */ 7058 if (!task_new) 7059 check_update_overutilized_status(rq); 7060 7061 enqueue_throttle: 7062 assert_list_leaf_cfs_rq(rq); 7063 7064 hrtick_update(rq); 7065 } 7066 7067 static void set_next_buddy(struct sched_entity *se); 7068 7069 /* 7070 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7071 * failing half-way through and resume the dequeue later. 7072 * 7073 * Returns: 7074 * -1 - dequeue delayed 7075 * 0 - dequeue throttled 7076 * 1 - dequeue complete 7077 */ 7078 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7079 { 7080 bool was_sched_idle = sched_idle_rq(rq); 7081 int rq_h_nr_running = rq->cfs.h_nr_running; 7082 bool task_sleep = flags & DEQUEUE_SLEEP; 7083 bool task_delayed = flags & DEQUEUE_DELAYED; 7084 struct task_struct *p = NULL; 7085 int idle_h_nr_running = 0; 7086 int h_nr_running = 0; 7087 struct cfs_rq *cfs_rq; 7088 u64 slice = 0; 7089 7090 if (entity_is_task(se)) { 7091 p = task_of(se); 7092 h_nr_running = 1; 7093 idle_h_nr_running = task_has_idle_policy(p); 7094 } else { 7095 cfs_rq = group_cfs_rq(se); 7096 slice = cfs_rq_min_slice(cfs_rq); 7097 } 7098 7099 for_each_sched_entity(se) { 7100 cfs_rq = cfs_rq_of(se); 7101 7102 if (!dequeue_entity(cfs_rq, se, flags)) { 7103 if (p && &p->se == se) 7104 return -1; 7105 7106 break; 7107 } 7108 7109 cfs_rq->h_nr_running -= h_nr_running; 7110 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7111 7112 if (cfs_rq_is_idle(cfs_rq)) 7113 idle_h_nr_running = h_nr_running; 7114 7115 /* end evaluation on encountering a throttled cfs_rq */ 7116 if (cfs_rq_throttled(cfs_rq)) 7117 return 0; 7118 7119 /* Don't dequeue parent if it has other entities besides us */ 7120 if (cfs_rq->load.weight) { 7121 slice = cfs_rq_min_slice(cfs_rq); 7122 7123 /* Avoid re-evaluating load for this entity: */ 7124 se = parent_entity(se); 7125 /* 7126 * Bias pick_next to pick a task from this cfs_rq, as 7127 * p is sleeping when it is within its sched_slice. 7128 */ 7129 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7130 set_next_buddy(se); 7131 break; 7132 } 7133 flags |= DEQUEUE_SLEEP; 7134 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7135 } 7136 7137 for_each_sched_entity(se) { 7138 cfs_rq = cfs_rq_of(se); 7139 7140 update_load_avg(cfs_rq, se, UPDATE_TG); 7141 se_update_runnable(se); 7142 update_cfs_group(se); 7143 7144 se->slice = slice; 7145 slice = cfs_rq_min_slice(cfs_rq); 7146 7147 cfs_rq->h_nr_running -= h_nr_running; 7148 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7149 7150 if (cfs_rq_is_idle(cfs_rq)) 7151 idle_h_nr_running = h_nr_running; 7152 7153 /* end evaluation on encountering a throttled cfs_rq */ 7154 if (cfs_rq_throttled(cfs_rq)) 7155 return 0; 7156 } 7157 7158 sub_nr_running(rq, h_nr_running); 7159 7160 if (rq_h_nr_running && !rq->cfs.h_nr_running) 7161 dl_server_stop(&rq->fair_server); 7162 7163 /* balance early to pull high priority tasks */ 7164 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7165 rq->next_balance = jiffies; 7166 7167 if (p && task_delayed) { 7168 SCHED_WARN_ON(!task_sleep); 7169 SCHED_WARN_ON(p->on_rq != 1); 7170 7171 /* Fix-up what dequeue_task_fair() skipped */ 7172 hrtick_update(rq); 7173 7174 /* 7175 * Fix-up what block_task() skipped. 7176 * 7177 * Must be last, @p might not be valid after this. 7178 */ 7179 __block_task(rq, p); 7180 } 7181 7182 return 1; 7183 } 7184 7185 /* 7186 * The dequeue_task method is called before nr_running is 7187 * decreased. We remove the task from the rbtree and 7188 * update the fair scheduling stats: 7189 */ 7190 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7191 { 7192 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7193 util_est_dequeue(&rq->cfs, p); 7194 7195 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7196 if (dequeue_entities(rq, &p->se, flags) < 0) 7197 return false; 7198 7199 /* 7200 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7201 */ 7202 7203 hrtick_update(rq); 7204 return true; 7205 } 7206 7207 #ifdef CONFIG_SMP 7208 7209 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7210 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7211 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7212 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7213 7214 #ifdef CONFIG_NO_HZ_COMMON 7215 7216 static struct { 7217 cpumask_var_t idle_cpus_mask; 7218 atomic_t nr_cpus; 7219 int has_blocked; /* Idle CPUS has blocked load */ 7220 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7221 unsigned long next_balance; /* in jiffy units */ 7222 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7223 } nohz ____cacheline_aligned; 7224 7225 #endif /* CONFIG_NO_HZ_COMMON */ 7226 7227 static unsigned long cpu_load(struct rq *rq) 7228 { 7229 return cfs_rq_load_avg(&rq->cfs); 7230 } 7231 7232 /* 7233 * cpu_load_without - compute CPU load without any contributions from *p 7234 * @cpu: the CPU which load is requested 7235 * @p: the task which load should be discounted 7236 * 7237 * The load of a CPU is defined by the load of tasks currently enqueued on that 7238 * CPU as well as tasks which are currently sleeping after an execution on that 7239 * CPU. 7240 * 7241 * This method returns the load of the specified CPU by discounting the load of 7242 * the specified task, whenever the task is currently contributing to the CPU 7243 * load. 7244 */ 7245 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7246 { 7247 struct cfs_rq *cfs_rq; 7248 unsigned int load; 7249 7250 /* Task has no contribution or is new */ 7251 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7252 return cpu_load(rq); 7253 7254 cfs_rq = &rq->cfs; 7255 load = READ_ONCE(cfs_rq->avg.load_avg); 7256 7257 /* Discount task's util from CPU's util */ 7258 lsub_positive(&load, task_h_load(p)); 7259 7260 return load; 7261 } 7262 7263 static unsigned long cpu_runnable(struct rq *rq) 7264 { 7265 return cfs_rq_runnable_avg(&rq->cfs); 7266 } 7267 7268 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7269 { 7270 struct cfs_rq *cfs_rq; 7271 unsigned int runnable; 7272 7273 /* Task has no contribution or is new */ 7274 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7275 return cpu_runnable(rq); 7276 7277 cfs_rq = &rq->cfs; 7278 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7279 7280 /* Discount task's runnable from CPU's runnable */ 7281 lsub_positive(&runnable, p->se.avg.runnable_avg); 7282 7283 return runnable; 7284 } 7285 7286 static unsigned long capacity_of(int cpu) 7287 { 7288 return cpu_rq(cpu)->cpu_capacity; 7289 } 7290 7291 static void record_wakee(struct task_struct *p) 7292 { 7293 /* 7294 * Only decay a single time; tasks that have less then 1 wakeup per 7295 * jiffy will not have built up many flips. 7296 */ 7297 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7298 current->wakee_flips >>= 1; 7299 current->wakee_flip_decay_ts = jiffies; 7300 } 7301 7302 if (current->last_wakee != p) { 7303 current->last_wakee = p; 7304 current->wakee_flips++; 7305 } 7306 } 7307 7308 /* 7309 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7310 * 7311 * A waker of many should wake a different task than the one last awakened 7312 * at a frequency roughly N times higher than one of its wakees. 7313 * 7314 * In order to determine whether we should let the load spread vs consolidating 7315 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7316 * partner, and a factor of lls_size higher frequency in the other. 7317 * 7318 * With both conditions met, we can be relatively sure that the relationship is 7319 * non-monogamous, with partner count exceeding socket size. 7320 * 7321 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7322 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7323 * socket size. 7324 */ 7325 static int wake_wide(struct task_struct *p) 7326 { 7327 unsigned int master = current->wakee_flips; 7328 unsigned int slave = p->wakee_flips; 7329 int factor = __this_cpu_read(sd_llc_size); 7330 7331 if (master < slave) 7332 swap(master, slave); 7333 if (slave < factor || master < slave * factor) 7334 return 0; 7335 return 1; 7336 } 7337 7338 /* 7339 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7340 * soonest. For the purpose of speed we only consider the waking and previous 7341 * CPU. 7342 * 7343 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7344 * cache-affine and is (or will be) idle. 7345 * 7346 * wake_affine_weight() - considers the weight to reflect the average 7347 * scheduling latency of the CPUs. This seems to work 7348 * for the overloaded case. 7349 */ 7350 static int 7351 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7352 { 7353 /* 7354 * If this_cpu is idle, it implies the wakeup is from interrupt 7355 * context. Only allow the move if cache is shared. Otherwise an 7356 * interrupt intensive workload could force all tasks onto one 7357 * node depending on the IO topology or IRQ affinity settings. 7358 * 7359 * If the prev_cpu is idle and cache affine then avoid a migration. 7360 * There is no guarantee that the cache hot data from an interrupt 7361 * is more important than cache hot data on the prev_cpu and from 7362 * a cpufreq perspective, it's better to have higher utilisation 7363 * on one CPU. 7364 */ 7365 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7366 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7367 7368 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7369 return this_cpu; 7370 7371 if (available_idle_cpu(prev_cpu)) 7372 return prev_cpu; 7373 7374 return nr_cpumask_bits; 7375 } 7376 7377 static int 7378 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7379 int this_cpu, int prev_cpu, int sync) 7380 { 7381 s64 this_eff_load, prev_eff_load; 7382 unsigned long task_load; 7383 7384 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7385 7386 if (sync) { 7387 unsigned long current_load = task_h_load(current); 7388 7389 if (current_load > this_eff_load) 7390 return this_cpu; 7391 7392 this_eff_load -= current_load; 7393 } 7394 7395 task_load = task_h_load(p); 7396 7397 this_eff_load += task_load; 7398 if (sched_feat(WA_BIAS)) 7399 this_eff_load *= 100; 7400 this_eff_load *= capacity_of(prev_cpu); 7401 7402 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7403 prev_eff_load -= task_load; 7404 if (sched_feat(WA_BIAS)) 7405 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7406 prev_eff_load *= capacity_of(this_cpu); 7407 7408 /* 7409 * If sync, adjust the weight of prev_eff_load such that if 7410 * prev_eff == this_eff that select_idle_sibling() will consider 7411 * stacking the wakee on top of the waker if no other CPU is 7412 * idle. 7413 */ 7414 if (sync) 7415 prev_eff_load += 1; 7416 7417 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7418 } 7419 7420 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7421 int this_cpu, int prev_cpu, int sync) 7422 { 7423 int target = nr_cpumask_bits; 7424 7425 if (sched_feat(WA_IDLE)) 7426 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7427 7428 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7429 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7430 7431 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7432 if (target != this_cpu) 7433 return prev_cpu; 7434 7435 schedstat_inc(sd->ttwu_move_affine); 7436 schedstat_inc(p->stats.nr_wakeups_affine); 7437 return target; 7438 } 7439 7440 static struct sched_group * 7441 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7442 7443 /* 7444 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7445 */ 7446 static int 7447 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7448 { 7449 unsigned long load, min_load = ULONG_MAX; 7450 unsigned int min_exit_latency = UINT_MAX; 7451 u64 latest_idle_timestamp = 0; 7452 int least_loaded_cpu = this_cpu; 7453 int shallowest_idle_cpu = -1; 7454 int i; 7455 7456 /* Check if we have any choice: */ 7457 if (group->group_weight == 1) 7458 return cpumask_first(sched_group_span(group)); 7459 7460 /* Traverse only the allowed CPUs */ 7461 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7462 struct rq *rq = cpu_rq(i); 7463 7464 if (!sched_core_cookie_match(rq, p)) 7465 continue; 7466 7467 if (sched_idle_cpu(i)) 7468 return i; 7469 7470 if (available_idle_cpu(i)) { 7471 struct cpuidle_state *idle = idle_get_state(rq); 7472 if (idle && idle->exit_latency < min_exit_latency) { 7473 /* 7474 * We give priority to a CPU whose idle state 7475 * has the smallest exit latency irrespective 7476 * of any idle timestamp. 7477 */ 7478 min_exit_latency = idle->exit_latency; 7479 latest_idle_timestamp = rq->idle_stamp; 7480 shallowest_idle_cpu = i; 7481 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7482 rq->idle_stamp > latest_idle_timestamp) { 7483 /* 7484 * If equal or no active idle state, then 7485 * the most recently idled CPU might have 7486 * a warmer cache. 7487 */ 7488 latest_idle_timestamp = rq->idle_stamp; 7489 shallowest_idle_cpu = i; 7490 } 7491 } else if (shallowest_idle_cpu == -1) { 7492 load = cpu_load(cpu_rq(i)); 7493 if (load < min_load) { 7494 min_load = load; 7495 least_loaded_cpu = i; 7496 } 7497 } 7498 } 7499 7500 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7501 } 7502 7503 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7504 int cpu, int prev_cpu, int sd_flag) 7505 { 7506 int new_cpu = cpu; 7507 7508 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7509 return prev_cpu; 7510 7511 /* 7512 * We need task's util for cpu_util_without, sync it up to 7513 * prev_cpu's last_update_time. 7514 */ 7515 if (!(sd_flag & SD_BALANCE_FORK)) 7516 sync_entity_load_avg(&p->se); 7517 7518 while (sd) { 7519 struct sched_group *group; 7520 struct sched_domain *tmp; 7521 int weight; 7522 7523 if (!(sd->flags & sd_flag)) { 7524 sd = sd->child; 7525 continue; 7526 } 7527 7528 group = sched_balance_find_dst_group(sd, p, cpu); 7529 if (!group) { 7530 sd = sd->child; 7531 continue; 7532 } 7533 7534 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7535 if (new_cpu == cpu) { 7536 /* Now try balancing at a lower domain level of 'cpu': */ 7537 sd = sd->child; 7538 continue; 7539 } 7540 7541 /* Now try balancing at a lower domain level of 'new_cpu': */ 7542 cpu = new_cpu; 7543 weight = sd->span_weight; 7544 sd = NULL; 7545 for_each_domain(cpu, tmp) { 7546 if (weight <= tmp->span_weight) 7547 break; 7548 if (tmp->flags & sd_flag) 7549 sd = tmp; 7550 } 7551 } 7552 7553 return new_cpu; 7554 } 7555 7556 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7557 { 7558 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7559 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7560 return cpu; 7561 7562 return -1; 7563 } 7564 7565 #ifdef CONFIG_SCHED_SMT 7566 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7567 EXPORT_SYMBOL_GPL(sched_smt_present); 7568 7569 static inline void set_idle_cores(int cpu, int val) 7570 { 7571 struct sched_domain_shared *sds; 7572 7573 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7574 if (sds) 7575 WRITE_ONCE(sds->has_idle_cores, val); 7576 } 7577 7578 static inline bool test_idle_cores(int cpu) 7579 { 7580 struct sched_domain_shared *sds; 7581 7582 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7583 if (sds) 7584 return READ_ONCE(sds->has_idle_cores); 7585 7586 return false; 7587 } 7588 7589 /* 7590 * Scans the local SMT mask to see if the entire core is idle, and records this 7591 * information in sd_llc_shared->has_idle_cores. 7592 * 7593 * Since SMT siblings share all cache levels, inspecting this limited remote 7594 * state should be fairly cheap. 7595 */ 7596 void __update_idle_core(struct rq *rq) 7597 { 7598 int core = cpu_of(rq); 7599 int cpu; 7600 7601 rcu_read_lock(); 7602 if (test_idle_cores(core)) 7603 goto unlock; 7604 7605 for_each_cpu(cpu, cpu_smt_mask(core)) { 7606 if (cpu == core) 7607 continue; 7608 7609 if (!available_idle_cpu(cpu)) 7610 goto unlock; 7611 } 7612 7613 set_idle_cores(core, 1); 7614 unlock: 7615 rcu_read_unlock(); 7616 } 7617 7618 /* 7619 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7620 * there are no idle cores left in the system; tracked through 7621 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7622 */ 7623 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7624 { 7625 bool idle = true; 7626 int cpu; 7627 7628 for_each_cpu(cpu, cpu_smt_mask(core)) { 7629 if (!available_idle_cpu(cpu)) { 7630 idle = false; 7631 if (*idle_cpu == -1) { 7632 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7633 *idle_cpu = cpu; 7634 break; 7635 } 7636 continue; 7637 } 7638 break; 7639 } 7640 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7641 *idle_cpu = cpu; 7642 } 7643 7644 if (idle) 7645 return core; 7646 7647 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7648 return -1; 7649 } 7650 7651 /* 7652 * Scan the local SMT mask for idle CPUs. 7653 */ 7654 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7655 { 7656 int cpu; 7657 7658 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7659 if (cpu == target) 7660 continue; 7661 /* 7662 * Check if the CPU is in the LLC scheduling domain of @target. 7663 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7664 */ 7665 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7666 continue; 7667 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7668 return cpu; 7669 } 7670 7671 return -1; 7672 } 7673 7674 #else /* CONFIG_SCHED_SMT */ 7675 7676 static inline void set_idle_cores(int cpu, int val) 7677 { 7678 } 7679 7680 static inline bool test_idle_cores(int cpu) 7681 { 7682 return false; 7683 } 7684 7685 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7686 { 7687 return __select_idle_cpu(core, p); 7688 } 7689 7690 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7691 { 7692 return -1; 7693 } 7694 7695 #endif /* CONFIG_SCHED_SMT */ 7696 7697 /* 7698 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7699 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7700 * average idle time for this rq (as found in rq->avg_idle). 7701 */ 7702 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7703 { 7704 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7705 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7706 struct sched_domain_shared *sd_share; 7707 7708 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7709 7710 if (sched_feat(SIS_UTIL)) { 7711 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7712 if (sd_share) { 7713 /* because !--nr is the condition to stop scan */ 7714 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7715 /* overloaded LLC is unlikely to have idle cpu/core */ 7716 if (nr == 1) 7717 return -1; 7718 } 7719 } 7720 7721 if (static_branch_unlikely(&sched_cluster_active)) { 7722 struct sched_group *sg = sd->groups; 7723 7724 if (sg->flags & SD_CLUSTER) { 7725 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7726 if (!cpumask_test_cpu(cpu, cpus)) 7727 continue; 7728 7729 if (has_idle_core) { 7730 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7731 if ((unsigned int)i < nr_cpumask_bits) 7732 return i; 7733 } else { 7734 if (--nr <= 0) 7735 return -1; 7736 idle_cpu = __select_idle_cpu(cpu, p); 7737 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7738 return idle_cpu; 7739 } 7740 } 7741 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7742 } 7743 } 7744 7745 for_each_cpu_wrap(cpu, cpus, target + 1) { 7746 if (has_idle_core) { 7747 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7748 if ((unsigned int)i < nr_cpumask_bits) 7749 return i; 7750 7751 } else { 7752 if (--nr <= 0) 7753 return -1; 7754 idle_cpu = __select_idle_cpu(cpu, p); 7755 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7756 break; 7757 } 7758 } 7759 7760 if (has_idle_core) 7761 set_idle_cores(target, false); 7762 7763 return idle_cpu; 7764 } 7765 7766 /* 7767 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7768 * the task fits. If no CPU is big enough, but there are idle ones, try to 7769 * maximize capacity. 7770 */ 7771 static int 7772 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7773 { 7774 unsigned long task_util, util_min, util_max, best_cap = 0; 7775 int fits, best_fits = 0; 7776 int cpu, best_cpu = -1; 7777 struct cpumask *cpus; 7778 7779 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7780 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7781 7782 task_util = task_util_est(p); 7783 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7784 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7785 7786 for_each_cpu_wrap(cpu, cpus, target) { 7787 unsigned long cpu_cap = capacity_of(cpu); 7788 7789 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7790 continue; 7791 7792 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7793 7794 /* This CPU fits with all requirements */ 7795 if (fits > 0) 7796 return cpu; 7797 /* 7798 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7799 * Look for the CPU with best capacity. 7800 */ 7801 else if (fits < 0) 7802 cpu_cap = get_actual_cpu_capacity(cpu); 7803 7804 /* 7805 * First, select CPU which fits better (-1 being better than 0). 7806 * Then, select the one with best capacity at same level. 7807 */ 7808 if ((fits < best_fits) || 7809 ((fits == best_fits) && (cpu_cap > best_cap))) { 7810 best_cap = cpu_cap; 7811 best_cpu = cpu; 7812 best_fits = fits; 7813 } 7814 } 7815 7816 return best_cpu; 7817 } 7818 7819 static inline bool asym_fits_cpu(unsigned long util, 7820 unsigned long util_min, 7821 unsigned long util_max, 7822 int cpu) 7823 { 7824 if (sched_asym_cpucap_active()) 7825 /* 7826 * Return true only if the cpu fully fits the task requirements 7827 * which include the utilization and the performance hints. 7828 */ 7829 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7830 7831 return true; 7832 } 7833 7834 /* 7835 * Try and locate an idle core/thread in the LLC cache domain. 7836 */ 7837 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7838 { 7839 bool has_idle_core = false; 7840 struct sched_domain *sd; 7841 unsigned long task_util, util_min, util_max; 7842 int i, recent_used_cpu, prev_aff = -1; 7843 7844 /* 7845 * On asymmetric system, update task utilization because we will check 7846 * that the task fits with CPU's capacity. 7847 */ 7848 if (sched_asym_cpucap_active()) { 7849 sync_entity_load_avg(&p->se); 7850 task_util = task_util_est(p); 7851 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7852 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7853 } 7854 7855 /* 7856 * per-cpu select_rq_mask usage 7857 */ 7858 lockdep_assert_irqs_disabled(); 7859 7860 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7861 asym_fits_cpu(task_util, util_min, util_max, target)) 7862 return target; 7863 7864 /* 7865 * If the previous CPU is cache affine and idle, don't be stupid: 7866 */ 7867 if (prev != target && cpus_share_cache(prev, target) && 7868 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7869 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7870 7871 if (!static_branch_unlikely(&sched_cluster_active) || 7872 cpus_share_resources(prev, target)) 7873 return prev; 7874 7875 prev_aff = prev; 7876 } 7877 7878 /* 7879 * Allow a per-cpu kthread to stack with the wakee if the 7880 * kworker thread and the tasks previous CPUs are the same. 7881 * The assumption is that the wakee queued work for the 7882 * per-cpu kthread that is now complete and the wakeup is 7883 * essentially a sync wakeup. An obvious example of this 7884 * pattern is IO completions. 7885 */ 7886 if (is_per_cpu_kthread(current) && 7887 in_task() && 7888 prev == smp_processor_id() && 7889 this_rq()->nr_running <= 1 && 7890 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7891 return prev; 7892 } 7893 7894 /* Check a recently used CPU as a potential idle candidate: */ 7895 recent_used_cpu = p->recent_used_cpu; 7896 p->recent_used_cpu = prev; 7897 if (recent_used_cpu != prev && 7898 recent_used_cpu != target && 7899 cpus_share_cache(recent_used_cpu, target) && 7900 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7901 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7902 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7903 7904 if (!static_branch_unlikely(&sched_cluster_active) || 7905 cpus_share_resources(recent_used_cpu, target)) 7906 return recent_used_cpu; 7907 7908 } else { 7909 recent_used_cpu = -1; 7910 } 7911 7912 /* 7913 * For asymmetric CPU capacity systems, our domain of interest is 7914 * sd_asym_cpucapacity rather than sd_llc. 7915 */ 7916 if (sched_asym_cpucap_active()) { 7917 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7918 /* 7919 * On an asymmetric CPU capacity system where an exclusive 7920 * cpuset defines a symmetric island (i.e. one unique 7921 * capacity_orig value through the cpuset), the key will be set 7922 * but the CPUs within that cpuset will not have a domain with 7923 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7924 * capacity path. 7925 */ 7926 if (sd) { 7927 i = select_idle_capacity(p, sd, target); 7928 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7929 } 7930 } 7931 7932 sd = rcu_dereference(per_cpu(sd_llc, target)); 7933 if (!sd) 7934 return target; 7935 7936 if (sched_smt_active()) { 7937 has_idle_core = test_idle_cores(target); 7938 7939 if (!has_idle_core && cpus_share_cache(prev, target)) { 7940 i = select_idle_smt(p, sd, prev); 7941 if ((unsigned int)i < nr_cpumask_bits) 7942 return i; 7943 } 7944 } 7945 7946 i = select_idle_cpu(p, sd, has_idle_core, target); 7947 if ((unsigned)i < nr_cpumask_bits) 7948 return i; 7949 7950 /* 7951 * For cluster machines which have lower sharing cache like L2 or 7952 * LLC Tag, we tend to find an idle CPU in the target's cluster 7953 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7954 * use them if possible when no idle CPU found in select_idle_cpu(). 7955 */ 7956 if ((unsigned int)prev_aff < nr_cpumask_bits) 7957 return prev_aff; 7958 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7959 return recent_used_cpu; 7960 7961 return target; 7962 } 7963 7964 /** 7965 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7966 * @cpu: the CPU to get the utilization for 7967 * @p: task for which the CPU utilization should be predicted or NULL 7968 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7969 * @boost: 1 to enable boosting, otherwise 0 7970 * 7971 * The unit of the return value must be the same as the one of CPU capacity 7972 * so that CPU utilization can be compared with CPU capacity. 7973 * 7974 * CPU utilization is the sum of running time of runnable tasks plus the 7975 * recent utilization of currently non-runnable tasks on that CPU. 7976 * It represents the amount of CPU capacity currently used by CFS tasks in 7977 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7978 * capacity at f_max. 7979 * 7980 * The estimated CPU utilization is defined as the maximum between CPU 7981 * utilization and sum of the estimated utilization of the currently 7982 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7983 * previously-executed tasks, which helps better deduce how busy a CPU will 7984 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7985 * of such a task would be significantly decayed at this point of time. 7986 * 7987 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7988 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7989 * utilization. Boosting is implemented in cpu_util() so that internal 7990 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7991 * latter via cpu_util_cfs_boost(). 7992 * 7993 * CPU utilization can be higher than the current CPU capacity 7994 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7995 * of rounding errors as well as task migrations or wakeups of new tasks. 7996 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7997 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7998 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7999 * capacity. CPU utilization is allowed to overshoot current CPU capacity 8000 * though since this is useful for predicting the CPU capacity required 8001 * after task migrations (scheduler-driven DVFS). 8002 * 8003 * Return: (Boosted) (estimated) utilization for the specified CPU. 8004 */ 8005 static unsigned long 8006 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8007 { 8008 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8009 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8010 unsigned long runnable; 8011 8012 if (boost) { 8013 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8014 util = max(util, runnable); 8015 } 8016 8017 /* 8018 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8019 * contribution. If @p migrates from another CPU to @cpu add its 8020 * contribution. In all the other cases @cpu is not impacted by the 8021 * migration so its util_avg is already correct. 8022 */ 8023 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8024 lsub_positive(&util, task_util(p)); 8025 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8026 util += task_util(p); 8027 8028 if (sched_feat(UTIL_EST)) { 8029 unsigned long util_est; 8030 8031 util_est = READ_ONCE(cfs_rq->avg.util_est); 8032 8033 /* 8034 * During wake-up @p isn't enqueued yet and doesn't contribute 8035 * to any cpu_rq(cpu)->cfs.avg.util_est. 8036 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8037 * has been enqueued. 8038 * 8039 * During exec (@dst_cpu = -1) @p is enqueued and does 8040 * contribute to cpu_rq(cpu)->cfs.util_est. 8041 * Remove it to "simulate" cpu_util without @p's contribution. 8042 * 8043 * Despite the task_on_rq_queued(@p) check there is still a 8044 * small window for a possible race when an exec 8045 * select_task_rq_fair() races with LB's detach_task(). 8046 * 8047 * detach_task() 8048 * deactivate_task() 8049 * p->on_rq = TASK_ON_RQ_MIGRATING; 8050 * -------------------------------- A 8051 * dequeue_task() \ 8052 * dequeue_task_fair() + Race Time 8053 * util_est_dequeue() / 8054 * -------------------------------- B 8055 * 8056 * The additional check "current == p" is required to further 8057 * reduce the race window. 8058 */ 8059 if (dst_cpu == cpu) 8060 util_est += _task_util_est(p); 8061 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8062 lsub_positive(&util_est, _task_util_est(p)); 8063 8064 util = max(util, util_est); 8065 } 8066 8067 return min(util, arch_scale_cpu_capacity(cpu)); 8068 } 8069 8070 unsigned long cpu_util_cfs(int cpu) 8071 { 8072 return cpu_util(cpu, NULL, -1, 0); 8073 } 8074 8075 unsigned long cpu_util_cfs_boost(int cpu) 8076 { 8077 return cpu_util(cpu, NULL, -1, 1); 8078 } 8079 8080 /* 8081 * cpu_util_without: compute cpu utilization without any contributions from *p 8082 * @cpu: the CPU which utilization is requested 8083 * @p: the task which utilization should be discounted 8084 * 8085 * The utilization of a CPU is defined by the utilization of tasks currently 8086 * enqueued on that CPU as well as tasks which are currently sleeping after an 8087 * execution on that CPU. 8088 * 8089 * This method returns the utilization of the specified CPU by discounting the 8090 * utilization of the specified task, whenever the task is currently 8091 * contributing to the CPU utilization. 8092 */ 8093 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8094 { 8095 /* Task has no contribution or is new */ 8096 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8097 p = NULL; 8098 8099 return cpu_util(cpu, p, -1, 0); 8100 } 8101 8102 /* 8103 * This function computes an effective utilization for the given CPU, to be 8104 * used for frequency selection given the linear relation: f = u * f_max. 8105 * 8106 * The scheduler tracks the following metrics: 8107 * 8108 * cpu_util_{cfs,rt,dl,irq}() 8109 * cpu_bw_dl() 8110 * 8111 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8112 * synchronized windows and are thus directly comparable. 8113 * 8114 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8115 * which excludes things like IRQ and steal-time. These latter are then accrued 8116 * in the IRQ utilization. 8117 * 8118 * The DL bandwidth number OTOH is not a measured metric but a value computed 8119 * based on the task model parameters and gives the minimal utilization 8120 * required to meet deadlines. 8121 */ 8122 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8123 unsigned long *min, 8124 unsigned long *max) 8125 { 8126 unsigned long util, irq, scale; 8127 struct rq *rq = cpu_rq(cpu); 8128 8129 scale = arch_scale_cpu_capacity(cpu); 8130 8131 /* 8132 * Early check to see if IRQ/steal time saturates the CPU, can be 8133 * because of inaccuracies in how we track these -- see 8134 * update_irq_load_avg(). 8135 */ 8136 irq = cpu_util_irq(rq); 8137 if (unlikely(irq >= scale)) { 8138 if (min) 8139 *min = scale; 8140 if (max) 8141 *max = scale; 8142 return scale; 8143 } 8144 8145 if (min) { 8146 /* 8147 * The minimum utilization returns the highest level between: 8148 * - the computed DL bandwidth needed with the IRQ pressure which 8149 * steals time to the deadline task. 8150 * - The minimum performance requirement for CFS and/or RT. 8151 */ 8152 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8153 8154 /* 8155 * When an RT task is runnable and uclamp is not used, we must 8156 * ensure that the task will run at maximum compute capacity. 8157 */ 8158 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8159 *min = max(*min, scale); 8160 } 8161 8162 /* 8163 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8164 * CFS tasks and we use the same metric to track the effective 8165 * utilization (PELT windows are synchronized) we can directly add them 8166 * to obtain the CPU's actual utilization. 8167 */ 8168 util = util_cfs + cpu_util_rt(rq); 8169 util += cpu_util_dl(rq); 8170 8171 /* 8172 * The maximum hint is a soft bandwidth requirement, which can be lower 8173 * than the actual utilization because of uclamp_max requirements. 8174 */ 8175 if (max) 8176 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8177 8178 if (util >= scale) 8179 return scale; 8180 8181 /* 8182 * There is still idle time; further improve the number by using the 8183 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8184 * need to scale the task numbers: 8185 * 8186 * max - irq 8187 * U' = irq + --------- * U 8188 * max 8189 */ 8190 util = scale_irq_capacity(util, irq, scale); 8191 util += irq; 8192 8193 return min(scale, util); 8194 } 8195 8196 unsigned long sched_cpu_util(int cpu) 8197 { 8198 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8199 } 8200 8201 /* 8202 * energy_env - Utilization landscape for energy estimation. 8203 * @task_busy_time: Utilization contribution by the task for which we test the 8204 * placement. Given by eenv_task_busy_time(). 8205 * @pd_busy_time: Utilization of the whole perf domain without the task 8206 * contribution. Given by eenv_pd_busy_time(). 8207 * @cpu_cap: Maximum CPU capacity for the perf domain. 8208 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8209 */ 8210 struct energy_env { 8211 unsigned long task_busy_time; 8212 unsigned long pd_busy_time; 8213 unsigned long cpu_cap; 8214 unsigned long pd_cap; 8215 }; 8216 8217 /* 8218 * Compute the task busy time for compute_energy(). This time cannot be 8219 * injected directly into effective_cpu_util() because of the IRQ scaling. 8220 * The latter only makes sense with the most recent CPUs where the task has 8221 * run. 8222 */ 8223 static inline void eenv_task_busy_time(struct energy_env *eenv, 8224 struct task_struct *p, int prev_cpu) 8225 { 8226 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8227 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8228 8229 if (unlikely(irq >= max_cap)) 8230 busy_time = max_cap; 8231 else 8232 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8233 8234 eenv->task_busy_time = busy_time; 8235 } 8236 8237 /* 8238 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8239 * utilization for each @pd_cpus, it however doesn't take into account 8240 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8241 * scale the EM reported power consumption at the (eventually clamped) 8242 * cpu_capacity. 8243 * 8244 * The contribution of the task @p for which we want to estimate the 8245 * energy cost is removed (by cpu_util()) and must be calculated 8246 * separately (see eenv_task_busy_time). This ensures: 8247 * 8248 * - A stable PD utilization, no matter which CPU of that PD we want to place 8249 * the task on. 8250 * 8251 * - A fair comparison between CPUs as the task contribution (task_util()) 8252 * will always be the same no matter which CPU utilization we rely on 8253 * (util_avg or util_est). 8254 * 8255 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8256 * exceed @eenv->pd_cap. 8257 */ 8258 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8259 struct cpumask *pd_cpus, 8260 struct task_struct *p) 8261 { 8262 unsigned long busy_time = 0; 8263 int cpu; 8264 8265 for_each_cpu(cpu, pd_cpus) { 8266 unsigned long util = cpu_util(cpu, p, -1, 0); 8267 8268 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8269 } 8270 8271 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8272 } 8273 8274 /* 8275 * Compute the maximum utilization for compute_energy() when the task @p 8276 * is placed on the cpu @dst_cpu. 8277 * 8278 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8279 * exceed @eenv->cpu_cap. 8280 */ 8281 static inline unsigned long 8282 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8283 struct task_struct *p, int dst_cpu) 8284 { 8285 unsigned long max_util = 0; 8286 int cpu; 8287 8288 for_each_cpu(cpu, pd_cpus) { 8289 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8290 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8291 unsigned long eff_util, min, max; 8292 8293 /* 8294 * Performance domain frequency: utilization clamping 8295 * must be considered since it affects the selection 8296 * of the performance domain frequency. 8297 * NOTE: in case RT tasks are running, by default the min 8298 * utilization can be max OPP. 8299 */ 8300 eff_util = effective_cpu_util(cpu, util, &min, &max); 8301 8302 /* Task's uclamp can modify min and max value */ 8303 if (tsk && uclamp_is_used()) { 8304 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8305 8306 /* 8307 * If there is no active max uclamp constraint, 8308 * directly use task's one, otherwise keep max. 8309 */ 8310 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8311 max = uclamp_eff_value(p, UCLAMP_MAX); 8312 else 8313 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8314 } 8315 8316 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8317 max_util = max(max_util, eff_util); 8318 } 8319 8320 return min(max_util, eenv->cpu_cap); 8321 } 8322 8323 /* 8324 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8325 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8326 * contribution is ignored. 8327 */ 8328 static inline unsigned long 8329 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8330 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8331 { 8332 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8333 unsigned long busy_time = eenv->pd_busy_time; 8334 unsigned long energy; 8335 8336 if (dst_cpu >= 0) 8337 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8338 8339 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8340 8341 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8342 8343 return energy; 8344 } 8345 8346 /* 8347 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8348 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8349 * spare capacity in each performance domain and uses it as a potential 8350 * candidate to execute the task. Then, it uses the Energy Model to figure 8351 * out which of the CPU candidates is the most energy-efficient. 8352 * 8353 * The rationale for this heuristic is as follows. In a performance domain, 8354 * all the most energy efficient CPU candidates (according to the Energy 8355 * Model) are those for which we'll request a low frequency. When there are 8356 * several CPUs for which the frequency request will be the same, we don't 8357 * have enough data to break the tie between them, because the Energy Model 8358 * only includes active power costs. With this model, if we assume that 8359 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8360 * the maximum spare capacity in a performance domain is guaranteed to be among 8361 * the best candidates of the performance domain. 8362 * 8363 * In practice, it could be preferable from an energy standpoint to pack 8364 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8365 * but that could also hurt our chances to go cluster idle, and we have no 8366 * ways to tell with the current Energy Model if this is actually a good 8367 * idea or not. So, find_energy_efficient_cpu() basically favors 8368 * cluster-packing, and spreading inside a cluster. That should at least be 8369 * a good thing for latency, and this is consistent with the idea that most 8370 * of the energy savings of EAS come from the asymmetry of the system, and 8371 * not so much from breaking the tie between identical CPUs. That's also the 8372 * reason why EAS is enabled in the topology code only for systems where 8373 * SD_ASYM_CPUCAPACITY is set. 8374 * 8375 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8376 * they don't have any useful utilization data yet and it's not possible to 8377 * forecast their impact on energy consumption. Consequently, they will be 8378 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8379 * to be energy-inefficient in some use-cases. The alternative would be to 8380 * bias new tasks towards specific types of CPUs first, or to try to infer 8381 * their util_avg from the parent task, but those heuristics could hurt 8382 * other use-cases too. So, until someone finds a better way to solve this, 8383 * let's keep things simple by re-using the existing slow path. 8384 */ 8385 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8386 { 8387 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8388 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8389 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8390 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8391 struct root_domain *rd = this_rq()->rd; 8392 int cpu, best_energy_cpu, target = -1; 8393 int prev_fits = -1, best_fits = -1; 8394 unsigned long best_actual_cap = 0; 8395 unsigned long prev_actual_cap = 0; 8396 struct sched_domain *sd; 8397 struct perf_domain *pd; 8398 struct energy_env eenv; 8399 8400 rcu_read_lock(); 8401 pd = rcu_dereference(rd->pd); 8402 if (!pd) 8403 goto unlock; 8404 8405 /* 8406 * Energy-aware wake-up happens on the lowest sched_domain starting 8407 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8408 */ 8409 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8410 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8411 sd = sd->parent; 8412 if (!sd) 8413 goto unlock; 8414 8415 target = prev_cpu; 8416 8417 sync_entity_load_avg(&p->se); 8418 if (!task_util_est(p) && p_util_min == 0) 8419 goto unlock; 8420 8421 eenv_task_busy_time(&eenv, p, prev_cpu); 8422 8423 for (; pd; pd = pd->next) { 8424 unsigned long util_min = p_util_min, util_max = p_util_max; 8425 unsigned long cpu_cap, cpu_actual_cap, util; 8426 long prev_spare_cap = -1, max_spare_cap = -1; 8427 unsigned long rq_util_min, rq_util_max; 8428 unsigned long cur_delta, base_energy; 8429 int max_spare_cap_cpu = -1; 8430 int fits, max_fits = -1; 8431 8432 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8433 8434 if (cpumask_empty(cpus)) 8435 continue; 8436 8437 /* Account external pressure for the energy estimation */ 8438 cpu = cpumask_first(cpus); 8439 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8440 8441 eenv.cpu_cap = cpu_actual_cap; 8442 eenv.pd_cap = 0; 8443 8444 for_each_cpu(cpu, cpus) { 8445 struct rq *rq = cpu_rq(cpu); 8446 8447 eenv.pd_cap += cpu_actual_cap; 8448 8449 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8450 continue; 8451 8452 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8453 continue; 8454 8455 util = cpu_util(cpu, p, cpu, 0); 8456 cpu_cap = capacity_of(cpu); 8457 8458 /* 8459 * Skip CPUs that cannot satisfy the capacity request. 8460 * IOW, placing the task there would make the CPU 8461 * overutilized. Take uclamp into account to see how 8462 * much capacity we can get out of the CPU; this is 8463 * aligned with sched_cpu_util(). 8464 */ 8465 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8466 /* 8467 * Open code uclamp_rq_util_with() except for 8468 * the clamp() part. I.e.: apply max aggregation 8469 * only. util_fits_cpu() logic requires to 8470 * operate on non clamped util but must use the 8471 * max-aggregated uclamp_{min, max}. 8472 */ 8473 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8474 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8475 8476 util_min = max(rq_util_min, p_util_min); 8477 util_max = max(rq_util_max, p_util_max); 8478 } 8479 8480 fits = util_fits_cpu(util, util_min, util_max, cpu); 8481 if (!fits) 8482 continue; 8483 8484 lsub_positive(&cpu_cap, util); 8485 8486 if (cpu == prev_cpu) { 8487 /* Always use prev_cpu as a candidate. */ 8488 prev_spare_cap = cpu_cap; 8489 prev_fits = fits; 8490 } else if ((fits > max_fits) || 8491 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8492 /* 8493 * Find the CPU with the maximum spare capacity 8494 * among the remaining CPUs in the performance 8495 * domain. 8496 */ 8497 max_spare_cap = cpu_cap; 8498 max_spare_cap_cpu = cpu; 8499 max_fits = fits; 8500 } 8501 } 8502 8503 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8504 continue; 8505 8506 eenv_pd_busy_time(&eenv, cpus, p); 8507 /* Compute the 'base' energy of the pd, without @p */ 8508 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8509 8510 /* Evaluate the energy impact of using prev_cpu. */ 8511 if (prev_spare_cap > -1) { 8512 prev_delta = compute_energy(&eenv, pd, cpus, p, 8513 prev_cpu); 8514 /* CPU utilization has changed */ 8515 if (prev_delta < base_energy) 8516 goto unlock; 8517 prev_delta -= base_energy; 8518 prev_actual_cap = cpu_actual_cap; 8519 best_delta = min(best_delta, prev_delta); 8520 } 8521 8522 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8523 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8524 /* Current best energy cpu fits better */ 8525 if (max_fits < best_fits) 8526 continue; 8527 8528 /* 8529 * Both don't fit performance hint (i.e. uclamp_min) 8530 * but best energy cpu has better capacity. 8531 */ 8532 if ((max_fits < 0) && 8533 (cpu_actual_cap <= best_actual_cap)) 8534 continue; 8535 8536 cur_delta = compute_energy(&eenv, pd, cpus, p, 8537 max_spare_cap_cpu); 8538 /* CPU utilization has changed */ 8539 if (cur_delta < base_energy) 8540 goto unlock; 8541 cur_delta -= base_energy; 8542 8543 /* 8544 * Both fit for the task but best energy cpu has lower 8545 * energy impact. 8546 */ 8547 if ((max_fits > 0) && (best_fits > 0) && 8548 (cur_delta >= best_delta)) 8549 continue; 8550 8551 best_delta = cur_delta; 8552 best_energy_cpu = max_spare_cap_cpu; 8553 best_fits = max_fits; 8554 best_actual_cap = cpu_actual_cap; 8555 } 8556 } 8557 rcu_read_unlock(); 8558 8559 if ((best_fits > prev_fits) || 8560 ((best_fits > 0) && (best_delta < prev_delta)) || 8561 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8562 target = best_energy_cpu; 8563 8564 return target; 8565 8566 unlock: 8567 rcu_read_unlock(); 8568 8569 return target; 8570 } 8571 8572 /* 8573 * select_task_rq_fair: Select target runqueue for the waking task in domains 8574 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8575 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8576 * 8577 * Balances load by selecting the idlest CPU in the idlest group, or under 8578 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8579 * 8580 * Returns the target CPU number. 8581 */ 8582 static int 8583 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8584 { 8585 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8586 struct sched_domain *tmp, *sd = NULL; 8587 int cpu = smp_processor_id(); 8588 int new_cpu = prev_cpu; 8589 int want_affine = 0; 8590 /* SD_flags and WF_flags share the first nibble */ 8591 int sd_flag = wake_flags & 0xF; 8592 8593 /* 8594 * required for stable ->cpus_allowed 8595 */ 8596 lockdep_assert_held(&p->pi_lock); 8597 if (wake_flags & WF_TTWU) { 8598 record_wakee(p); 8599 8600 if ((wake_flags & WF_CURRENT_CPU) && 8601 cpumask_test_cpu(cpu, p->cpus_ptr)) 8602 return cpu; 8603 8604 if (!is_rd_overutilized(this_rq()->rd)) { 8605 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8606 if (new_cpu >= 0) 8607 return new_cpu; 8608 new_cpu = prev_cpu; 8609 } 8610 8611 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8612 } 8613 8614 rcu_read_lock(); 8615 for_each_domain(cpu, tmp) { 8616 /* 8617 * If both 'cpu' and 'prev_cpu' are part of this domain, 8618 * cpu is a valid SD_WAKE_AFFINE target. 8619 */ 8620 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8621 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8622 if (cpu != prev_cpu) 8623 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8624 8625 sd = NULL; /* Prefer wake_affine over balance flags */ 8626 break; 8627 } 8628 8629 /* 8630 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8631 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8632 * will usually go to the fast path. 8633 */ 8634 if (tmp->flags & sd_flag) 8635 sd = tmp; 8636 else if (!want_affine) 8637 break; 8638 } 8639 8640 if (unlikely(sd)) { 8641 /* Slow path */ 8642 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8643 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8644 /* Fast path */ 8645 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8646 } 8647 rcu_read_unlock(); 8648 8649 return new_cpu; 8650 } 8651 8652 /* 8653 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8654 * cfs_rq_of(p) references at time of call are still valid and identify the 8655 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8656 */ 8657 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8658 { 8659 struct sched_entity *se = &p->se; 8660 8661 if (!task_on_rq_migrating(p)) { 8662 remove_entity_load_avg(se); 8663 8664 /* 8665 * Here, the task's PELT values have been updated according to 8666 * the current rq's clock. But if that clock hasn't been 8667 * updated in a while, a substantial idle time will be missed, 8668 * leading to an inflation after wake-up on the new rq. 8669 * 8670 * Estimate the missing time from the cfs_rq last_update_time 8671 * and update sched_avg to improve the PELT continuity after 8672 * migration. 8673 */ 8674 migrate_se_pelt_lag(se); 8675 } 8676 8677 /* Tell new CPU we are migrated */ 8678 se->avg.last_update_time = 0; 8679 8680 update_scan_period(p, new_cpu); 8681 } 8682 8683 static void task_dead_fair(struct task_struct *p) 8684 { 8685 struct sched_entity *se = &p->se; 8686 8687 if (se->sched_delayed) { 8688 struct rq_flags rf; 8689 struct rq *rq; 8690 8691 rq = task_rq_lock(p, &rf); 8692 if (se->sched_delayed) { 8693 update_rq_clock(rq); 8694 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8695 } 8696 task_rq_unlock(rq, p, &rf); 8697 } 8698 8699 remove_entity_load_avg(se); 8700 } 8701 8702 /* 8703 * Set the max capacity the task is allowed to run at for misfit detection. 8704 */ 8705 static void set_task_max_allowed_capacity(struct task_struct *p) 8706 { 8707 struct asym_cap_data *entry; 8708 8709 if (!sched_asym_cpucap_active()) 8710 return; 8711 8712 rcu_read_lock(); 8713 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8714 cpumask_t *cpumask; 8715 8716 cpumask = cpu_capacity_span(entry); 8717 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8718 continue; 8719 8720 p->max_allowed_capacity = entry->capacity; 8721 break; 8722 } 8723 rcu_read_unlock(); 8724 } 8725 8726 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8727 { 8728 set_cpus_allowed_common(p, ctx); 8729 set_task_max_allowed_capacity(p); 8730 } 8731 8732 static int 8733 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8734 { 8735 if (sched_fair_runnable(rq)) 8736 return 1; 8737 8738 return sched_balance_newidle(rq, rf) != 0; 8739 } 8740 #else 8741 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8742 #endif /* CONFIG_SMP */ 8743 8744 static void set_next_buddy(struct sched_entity *se) 8745 { 8746 for_each_sched_entity(se) { 8747 if (SCHED_WARN_ON(!se->on_rq)) 8748 return; 8749 if (se_is_idle(se)) 8750 return; 8751 cfs_rq_of(se)->next = se; 8752 } 8753 } 8754 8755 /* 8756 * Preempt the current task with a newly woken task if needed: 8757 */ 8758 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8759 { 8760 struct task_struct *donor = rq->donor; 8761 struct sched_entity *se = &donor->se, *pse = &p->se; 8762 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8763 int cse_is_idle, pse_is_idle; 8764 8765 if (unlikely(se == pse)) 8766 return; 8767 8768 /* 8769 * This is possible from callers such as attach_tasks(), in which we 8770 * unconditionally wakeup_preempt() after an enqueue (which may have 8771 * lead to a throttle). This both saves work and prevents false 8772 * next-buddy nomination below. 8773 */ 8774 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8775 return; 8776 8777 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8778 set_next_buddy(pse); 8779 } 8780 8781 /* 8782 * We can come here with TIF_NEED_RESCHED already set from new task 8783 * wake up path. 8784 * 8785 * Note: this also catches the edge-case of curr being in a throttled 8786 * group (e.g. via set_curr_task), since update_curr() (in the 8787 * enqueue of curr) will have resulted in resched being set. This 8788 * prevents us from potentially nominating it as a false LAST_BUDDY 8789 * below. 8790 */ 8791 if (test_tsk_need_resched(rq->curr)) 8792 return; 8793 8794 if (!sched_feat(WAKEUP_PREEMPTION)) 8795 return; 8796 8797 find_matching_se(&se, &pse); 8798 WARN_ON_ONCE(!pse); 8799 8800 cse_is_idle = se_is_idle(se); 8801 pse_is_idle = se_is_idle(pse); 8802 8803 /* 8804 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8805 * in the inverse case). 8806 */ 8807 if (cse_is_idle && !pse_is_idle) 8808 goto preempt; 8809 if (cse_is_idle != pse_is_idle) 8810 return; 8811 8812 /* 8813 * BATCH and IDLE tasks do not preempt others. 8814 */ 8815 if (unlikely(!normal_policy(p->policy))) 8816 return; 8817 8818 cfs_rq = cfs_rq_of(se); 8819 update_curr(cfs_rq); 8820 /* 8821 * If @p has a shorter slice than current and @p is eligible, override 8822 * current's slice protection in order to allow preemption. 8823 * 8824 * Note that even if @p does not turn out to be the most eligible 8825 * task at this moment, current's slice protection will be lost. 8826 */ 8827 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) 8828 se->vlag = se->deadline + 1; 8829 8830 /* 8831 * If @p has become the most eligible task, force preemption. 8832 */ 8833 if (pick_eevdf(cfs_rq) == pse) 8834 goto preempt; 8835 8836 return; 8837 8838 preempt: 8839 resched_curr_lazy(rq); 8840 } 8841 8842 static struct task_struct *pick_task_fair(struct rq *rq) 8843 { 8844 struct sched_entity *se; 8845 struct cfs_rq *cfs_rq; 8846 8847 again: 8848 cfs_rq = &rq->cfs; 8849 if (!cfs_rq->nr_running) 8850 return NULL; 8851 8852 do { 8853 /* Might not have done put_prev_entity() */ 8854 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8855 update_curr(cfs_rq); 8856 8857 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8858 goto again; 8859 8860 se = pick_next_entity(rq, cfs_rq); 8861 if (!se) 8862 goto again; 8863 cfs_rq = group_cfs_rq(se); 8864 } while (cfs_rq); 8865 8866 return task_of(se); 8867 } 8868 8869 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8870 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8871 8872 struct task_struct * 8873 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8874 { 8875 struct sched_entity *se; 8876 struct task_struct *p; 8877 int new_tasks; 8878 8879 again: 8880 p = pick_task_fair(rq); 8881 if (!p) 8882 goto idle; 8883 se = &p->se; 8884 8885 #ifdef CONFIG_FAIR_GROUP_SCHED 8886 if (prev->sched_class != &fair_sched_class) 8887 goto simple; 8888 8889 __put_prev_set_next_dl_server(rq, prev, p); 8890 8891 /* 8892 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8893 * likely that a next task is from the same cgroup as the current. 8894 * 8895 * Therefore attempt to avoid putting and setting the entire cgroup 8896 * hierarchy, only change the part that actually changes. 8897 * 8898 * Since we haven't yet done put_prev_entity and if the selected task 8899 * is a different task than we started out with, try and touch the 8900 * least amount of cfs_rqs. 8901 */ 8902 if (prev != p) { 8903 struct sched_entity *pse = &prev->se; 8904 struct cfs_rq *cfs_rq; 8905 8906 while (!(cfs_rq = is_same_group(se, pse))) { 8907 int se_depth = se->depth; 8908 int pse_depth = pse->depth; 8909 8910 if (se_depth <= pse_depth) { 8911 put_prev_entity(cfs_rq_of(pse), pse); 8912 pse = parent_entity(pse); 8913 } 8914 if (se_depth >= pse_depth) { 8915 set_next_entity(cfs_rq_of(se), se); 8916 se = parent_entity(se); 8917 } 8918 } 8919 8920 put_prev_entity(cfs_rq, pse); 8921 set_next_entity(cfs_rq, se); 8922 8923 __set_next_task_fair(rq, p, true); 8924 } 8925 8926 return p; 8927 8928 simple: 8929 #endif 8930 put_prev_set_next_task(rq, prev, p); 8931 return p; 8932 8933 idle: 8934 if (!rf) 8935 return NULL; 8936 8937 new_tasks = sched_balance_newidle(rq, rf); 8938 8939 /* 8940 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8941 * possible for any higher priority task to appear. In that case we 8942 * must re-start the pick_next_entity() loop. 8943 */ 8944 if (new_tasks < 0) 8945 return RETRY_TASK; 8946 8947 if (new_tasks > 0) 8948 goto again; 8949 8950 /* 8951 * rq is about to be idle, check if we need to update the 8952 * lost_idle_time of clock_pelt 8953 */ 8954 update_idle_rq_clock_pelt(rq); 8955 8956 return NULL; 8957 } 8958 8959 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8960 { 8961 return pick_next_task_fair(rq, prev, NULL); 8962 } 8963 8964 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8965 { 8966 return !!dl_se->rq->cfs.nr_running; 8967 } 8968 8969 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8970 { 8971 return pick_task_fair(dl_se->rq); 8972 } 8973 8974 void fair_server_init(struct rq *rq) 8975 { 8976 struct sched_dl_entity *dl_se = &rq->fair_server; 8977 8978 init_dl_entity(dl_se); 8979 8980 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8981 } 8982 8983 /* 8984 * Account for a descheduled task: 8985 */ 8986 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8987 { 8988 struct sched_entity *se = &prev->se; 8989 struct cfs_rq *cfs_rq; 8990 8991 for_each_sched_entity(se) { 8992 cfs_rq = cfs_rq_of(se); 8993 put_prev_entity(cfs_rq, se); 8994 } 8995 } 8996 8997 /* 8998 * sched_yield() is very simple 8999 */ 9000 static void yield_task_fair(struct rq *rq) 9001 { 9002 struct task_struct *curr = rq->curr; 9003 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9004 struct sched_entity *se = &curr->se; 9005 9006 /* 9007 * Are we the only task in the tree? 9008 */ 9009 if (unlikely(rq->nr_running == 1)) 9010 return; 9011 9012 clear_buddies(cfs_rq, se); 9013 9014 update_rq_clock(rq); 9015 /* 9016 * Update run-time statistics of the 'current'. 9017 */ 9018 update_curr(cfs_rq); 9019 /* 9020 * Tell update_rq_clock() that we've just updated, 9021 * so we don't do microscopic update in schedule() 9022 * and double the fastpath cost. 9023 */ 9024 rq_clock_skip_update(rq); 9025 9026 se->deadline += calc_delta_fair(se->slice, se); 9027 } 9028 9029 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9030 { 9031 struct sched_entity *se = &p->se; 9032 9033 /* throttled hierarchies are not runnable */ 9034 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9035 return false; 9036 9037 /* Tell the scheduler that we'd really like se to run next. */ 9038 set_next_buddy(se); 9039 9040 yield_task_fair(rq); 9041 9042 return true; 9043 } 9044 9045 #ifdef CONFIG_SMP 9046 /************************************************** 9047 * Fair scheduling class load-balancing methods. 9048 * 9049 * BASICS 9050 * 9051 * The purpose of load-balancing is to achieve the same basic fairness the 9052 * per-CPU scheduler provides, namely provide a proportional amount of compute 9053 * time to each task. This is expressed in the following equation: 9054 * 9055 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9056 * 9057 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9058 * W_i,0 is defined as: 9059 * 9060 * W_i,0 = \Sum_j w_i,j (2) 9061 * 9062 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9063 * is derived from the nice value as per sched_prio_to_weight[]. 9064 * 9065 * The weight average is an exponential decay average of the instantaneous 9066 * weight: 9067 * 9068 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9069 * 9070 * C_i is the compute capacity of CPU i, typically it is the 9071 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9072 * can also include other factors [XXX]. 9073 * 9074 * To achieve this balance we define a measure of imbalance which follows 9075 * directly from (1): 9076 * 9077 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9078 * 9079 * We them move tasks around to minimize the imbalance. In the continuous 9080 * function space it is obvious this converges, in the discrete case we get 9081 * a few fun cases generally called infeasible weight scenarios. 9082 * 9083 * [XXX expand on: 9084 * - infeasible weights; 9085 * - local vs global optima in the discrete case. ] 9086 * 9087 * 9088 * SCHED DOMAINS 9089 * 9090 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9091 * for all i,j solution, we create a tree of CPUs that follows the hardware 9092 * topology where each level pairs two lower groups (or better). This results 9093 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9094 * tree to only the first of the previous level and we decrease the frequency 9095 * of load-balance at each level inversely proportional to the number of CPUs in 9096 * the groups. 9097 * 9098 * This yields: 9099 * 9100 * log_2 n 1 n 9101 * \Sum { --- * --- * 2^i } = O(n) (5) 9102 * i = 0 2^i 2^i 9103 * `- size of each group 9104 * | | `- number of CPUs doing load-balance 9105 * | `- freq 9106 * `- sum over all levels 9107 * 9108 * Coupled with a limit on how many tasks we can migrate every balance pass, 9109 * this makes (5) the runtime complexity of the balancer. 9110 * 9111 * An important property here is that each CPU is still (indirectly) connected 9112 * to every other CPU in at most O(log n) steps: 9113 * 9114 * The adjacency matrix of the resulting graph is given by: 9115 * 9116 * log_2 n 9117 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9118 * k = 0 9119 * 9120 * And you'll find that: 9121 * 9122 * A^(log_2 n)_i,j != 0 for all i,j (7) 9123 * 9124 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9125 * The task movement gives a factor of O(m), giving a convergence complexity 9126 * of: 9127 * 9128 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9129 * 9130 * 9131 * WORK CONSERVING 9132 * 9133 * In order to avoid CPUs going idle while there's still work to do, new idle 9134 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9135 * tree itself instead of relying on other CPUs to bring it work. 9136 * 9137 * This adds some complexity to both (5) and (8) but it reduces the total idle 9138 * time. 9139 * 9140 * [XXX more?] 9141 * 9142 * 9143 * CGROUPS 9144 * 9145 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9146 * 9147 * s_k,i 9148 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9149 * S_k 9150 * 9151 * Where 9152 * 9153 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9154 * 9155 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9156 * 9157 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9158 * property. 9159 * 9160 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9161 * rewrite all of this once again.] 9162 */ 9163 9164 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9165 9166 enum fbq_type { regular, remote, all }; 9167 9168 /* 9169 * 'group_type' describes the group of CPUs at the moment of load balancing. 9170 * 9171 * The enum is ordered by pulling priority, with the group with lowest priority 9172 * first so the group_type can simply be compared when selecting the busiest 9173 * group. See update_sd_pick_busiest(). 9174 */ 9175 enum group_type { 9176 /* The group has spare capacity that can be used to run more tasks. */ 9177 group_has_spare = 0, 9178 /* 9179 * The group is fully used and the tasks don't compete for more CPU 9180 * cycles. Nevertheless, some tasks might wait before running. 9181 */ 9182 group_fully_busy, 9183 /* 9184 * One task doesn't fit with CPU's capacity and must be migrated to a 9185 * more powerful CPU. 9186 */ 9187 group_misfit_task, 9188 /* 9189 * Balance SMT group that's fully busy. Can benefit from migration 9190 * a task on SMT with busy sibling to another CPU on idle core. 9191 */ 9192 group_smt_balance, 9193 /* 9194 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9195 * and the task should be migrated to it instead of running on the 9196 * current CPU. 9197 */ 9198 group_asym_packing, 9199 /* 9200 * The tasks' affinity constraints previously prevented the scheduler 9201 * from balancing the load across the system. 9202 */ 9203 group_imbalanced, 9204 /* 9205 * The CPU is overloaded and can't provide expected CPU cycles to all 9206 * tasks. 9207 */ 9208 group_overloaded 9209 }; 9210 9211 enum migration_type { 9212 migrate_load = 0, 9213 migrate_util, 9214 migrate_task, 9215 migrate_misfit 9216 }; 9217 9218 #define LBF_ALL_PINNED 0x01 9219 #define LBF_NEED_BREAK 0x02 9220 #define LBF_DST_PINNED 0x04 9221 #define LBF_SOME_PINNED 0x08 9222 #define LBF_ACTIVE_LB 0x10 9223 9224 struct lb_env { 9225 struct sched_domain *sd; 9226 9227 struct rq *src_rq; 9228 int src_cpu; 9229 9230 int dst_cpu; 9231 struct rq *dst_rq; 9232 9233 struct cpumask *dst_grpmask; 9234 int new_dst_cpu; 9235 enum cpu_idle_type idle; 9236 long imbalance; 9237 /* The set of CPUs under consideration for load-balancing */ 9238 struct cpumask *cpus; 9239 9240 unsigned int flags; 9241 9242 unsigned int loop; 9243 unsigned int loop_break; 9244 unsigned int loop_max; 9245 9246 enum fbq_type fbq_type; 9247 enum migration_type migration_type; 9248 struct list_head tasks; 9249 }; 9250 9251 /* 9252 * Is this task likely cache-hot: 9253 */ 9254 static int task_hot(struct task_struct *p, struct lb_env *env) 9255 { 9256 s64 delta; 9257 9258 lockdep_assert_rq_held(env->src_rq); 9259 9260 if (p->sched_class != &fair_sched_class) 9261 return 0; 9262 9263 if (unlikely(task_has_idle_policy(p))) 9264 return 0; 9265 9266 /* SMT siblings share cache */ 9267 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9268 return 0; 9269 9270 /* 9271 * Buddy candidates are cache hot: 9272 */ 9273 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9274 (&p->se == cfs_rq_of(&p->se)->next)) 9275 return 1; 9276 9277 if (sysctl_sched_migration_cost == -1) 9278 return 1; 9279 9280 /* 9281 * Don't migrate task if the task's cookie does not match 9282 * with the destination CPU's core cookie. 9283 */ 9284 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9285 return 1; 9286 9287 if (sysctl_sched_migration_cost == 0) 9288 return 0; 9289 9290 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9291 9292 return delta < (s64)sysctl_sched_migration_cost; 9293 } 9294 9295 #ifdef CONFIG_NUMA_BALANCING 9296 /* 9297 * Returns 1, if task migration degrades locality 9298 * Returns 0, if task migration improves locality i.e migration preferred. 9299 * Returns -1, if task migration is not affected by locality. 9300 */ 9301 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9302 { 9303 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9304 unsigned long src_weight, dst_weight; 9305 int src_nid, dst_nid, dist; 9306 9307 if (!static_branch_likely(&sched_numa_balancing)) 9308 return -1; 9309 9310 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9311 return -1; 9312 9313 src_nid = cpu_to_node(env->src_cpu); 9314 dst_nid = cpu_to_node(env->dst_cpu); 9315 9316 if (src_nid == dst_nid) 9317 return -1; 9318 9319 /* Migrating away from the preferred node is always bad. */ 9320 if (src_nid == p->numa_preferred_nid) { 9321 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9322 return 1; 9323 else 9324 return -1; 9325 } 9326 9327 /* Encourage migration to the preferred node. */ 9328 if (dst_nid == p->numa_preferred_nid) 9329 return 0; 9330 9331 /* Leaving a core idle is often worse than degrading locality. */ 9332 if (env->idle == CPU_IDLE) 9333 return -1; 9334 9335 dist = node_distance(src_nid, dst_nid); 9336 if (numa_group) { 9337 src_weight = group_weight(p, src_nid, dist); 9338 dst_weight = group_weight(p, dst_nid, dist); 9339 } else { 9340 src_weight = task_weight(p, src_nid, dist); 9341 dst_weight = task_weight(p, dst_nid, dist); 9342 } 9343 9344 return dst_weight < src_weight; 9345 } 9346 9347 #else 9348 static inline int migrate_degrades_locality(struct task_struct *p, 9349 struct lb_env *env) 9350 { 9351 return -1; 9352 } 9353 #endif 9354 9355 /* 9356 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9357 */ 9358 static 9359 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9360 { 9361 int tsk_cache_hot; 9362 9363 lockdep_assert_rq_held(env->src_rq); 9364 9365 /* 9366 * We do not migrate tasks that are: 9367 * 1) throttled_lb_pair, or 9368 * 2) cannot be migrated to this CPU due to cpus_ptr, or 9369 * 3) running (obviously), or 9370 * 4) are cache-hot on their current CPU. 9371 */ 9372 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9373 return 0; 9374 9375 /* Disregard percpu kthreads; they are where they need to be. */ 9376 if (kthread_is_per_cpu(p)) 9377 return 0; 9378 9379 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9380 int cpu; 9381 9382 schedstat_inc(p->stats.nr_failed_migrations_affine); 9383 9384 env->flags |= LBF_SOME_PINNED; 9385 9386 /* 9387 * Remember if this task can be migrated to any other CPU in 9388 * our sched_group. We may want to revisit it if we couldn't 9389 * meet load balance goals by pulling other tasks on src_cpu. 9390 * 9391 * Avoid computing new_dst_cpu 9392 * - for NEWLY_IDLE 9393 * - if we have already computed one in current iteration 9394 * - if it's an active balance 9395 */ 9396 if (env->idle == CPU_NEWLY_IDLE || 9397 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9398 return 0; 9399 9400 /* Prevent to re-select dst_cpu via env's CPUs: */ 9401 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9402 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9403 env->flags |= LBF_DST_PINNED; 9404 env->new_dst_cpu = cpu; 9405 break; 9406 } 9407 } 9408 9409 return 0; 9410 } 9411 9412 /* Record that we found at least one task that could run on dst_cpu */ 9413 env->flags &= ~LBF_ALL_PINNED; 9414 9415 if (task_on_cpu(env->src_rq, p)) { 9416 schedstat_inc(p->stats.nr_failed_migrations_running); 9417 return 0; 9418 } 9419 9420 /* 9421 * Aggressive migration if: 9422 * 1) active balance 9423 * 2) destination numa is preferred 9424 * 3) task is cache cold, or 9425 * 4) too many balance attempts have failed. 9426 */ 9427 if (env->flags & LBF_ACTIVE_LB) 9428 return 1; 9429 9430 tsk_cache_hot = migrate_degrades_locality(p, env); 9431 if (tsk_cache_hot == -1) 9432 tsk_cache_hot = task_hot(p, env); 9433 9434 if (tsk_cache_hot <= 0 || 9435 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9436 if (tsk_cache_hot == 1) { 9437 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9438 schedstat_inc(p->stats.nr_forced_migrations); 9439 } 9440 return 1; 9441 } 9442 9443 schedstat_inc(p->stats.nr_failed_migrations_hot); 9444 return 0; 9445 } 9446 9447 /* 9448 * detach_task() -- detach the task for the migration specified in env 9449 */ 9450 static void detach_task(struct task_struct *p, struct lb_env *env) 9451 { 9452 lockdep_assert_rq_held(env->src_rq); 9453 9454 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9455 set_task_cpu(p, env->dst_cpu); 9456 } 9457 9458 /* 9459 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9460 * part of active balancing operations within "domain". 9461 * 9462 * Returns a task if successful and NULL otherwise. 9463 */ 9464 static struct task_struct *detach_one_task(struct lb_env *env) 9465 { 9466 struct task_struct *p; 9467 9468 lockdep_assert_rq_held(env->src_rq); 9469 9470 list_for_each_entry_reverse(p, 9471 &env->src_rq->cfs_tasks, se.group_node) { 9472 if (!can_migrate_task(p, env)) 9473 continue; 9474 9475 detach_task(p, env); 9476 9477 /* 9478 * Right now, this is only the second place where 9479 * lb_gained[env->idle] is updated (other is detach_tasks) 9480 * so we can safely collect stats here rather than 9481 * inside detach_tasks(). 9482 */ 9483 schedstat_inc(env->sd->lb_gained[env->idle]); 9484 return p; 9485 } 9486 return NULL; 9487 } 9488 9489 /* 9490 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9491 * busiest_rq, as part of a balancing operation within domain "sd". 9492 * 9493 * Returns number of detached tasks if successful and 0 otherwise. 9494 */ 9495 static int detach_tasks(struct lb_env *env) 9496 { 9497 struct list_head *tasks = &env->src_rq->cfs_tasks; 9498 unsigned long util, load; 9499 struct task_struct *p; 9500 int detached = 0; 9501 9502 lockdep_assert_rq_held(env->src_rq); 9503 9504 /* 9505 * Source run queue has been emptied by another CPU, clear 9506 * LBF_ALL_PINNED flag as we will not test any task. 9507 */ 9508 if (env->src_rq->nr_running <= 1) { 9509 env->flags &= ~LBF_ALL_PINNED; 9510 return 0; 9511 } 9512 9513 if (env->imbalance <= 0) 9514 return 0; 9515 9516 while (!list_empty(tasks)) { 9517 /* 9518 * We don't want to steal all, otherwise we may be treated likewise, 9519 * which could at worst lead to a livelock crash. 9520 */ 9521 if (env->idle && env->src_rq->nr_running <= 1) 9522 break; 9523 9524 env->loop++; 9525 /* We've more or less seen every task there is, call it quits */ 9526 if (env->loop > env->loop_max) 9527 break; 9528 9529 /* take a breather every nr_migrate tasks */ 9530 if (env->loop > env->loop_break) { 9531 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9532 env->flags |= LBF_NEED_BREAK; 9533 break; 9534 } 9535 9536 p = list_last_entry(tasks, struct task_struct, se.group_node); 9537 9538 if (!can_migrate_task(p, env)) 9539 goto next; 9540 9541 switch (env->migration_type) { 9542 case migrate_load: 9543 /* 9544 * Depending of the number of CPUs and tasks and the 9545 * cgroup hierarchy, task_h_load() can return a null 9546 * value. Make sure that env->imbalance decreases 9547 * otherwise detach_tasks() will stop only after 9548 * detaching up to loop_max tasks. 9549 */ 9550 load = max_t(unsigned long, task_h_load(p), 1); 9551 9552 if (sched_feat(LB_MIN) && 9553 load < 16 && !env->sd->nr_balance_failed) 9554 goto next; 9555 9556 /* 9557 * Make sure that we don't migrate too much load. 9558 * Nevertheless, let relax the constraint if 9559 * scheduler fails to find a good waiting task to 9560 * migrate. 9561 */ 9562 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9563 goto next; 9564 9565 env->imbalance -= load; 9566 break; 9567 9568 case migrate_util: 9569 util = task_util_est(p); 9570 9571 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9572 goto next; 9573 9574 env->imbalance -= util; 9575 break; 9576 9577 case migrate_task: 9578 env->imbalance--; 9579 break; 9580 9581 case migrate_misfit: 9582 /* This is not a misfit task */ 9583 if (task_fits_cpu(p, env->src_cpu)) 9584 goto next; 9585 9586 env->imbalance = 0; 9587 break; 9588 } 9589 9590 detach_task(p, env); 9591 list_add(&p->se.group_node, &env->tasks); 9592 9593 detached++; 9594 9595 #ifdef CONFIG_PREEMPTION 9596 /* 9597 * NEWIDLE balancing is a source of latency, so preemptible 9598 * kernels will stop after the first task is detached to minimize 9599 * the critical section. 9600 */ 9601 if (env->idle == CPU_NEWLY_IDLE) 9602 break; 9603 #endif 9604 9605 /* 9606 * We only want to steal up to the prescribed amount of 9607 * load/util/tasks. 9608 */ 9609 if (env->imbalance <= 0) 9610 break; 9611 9612 continue; 9613 next: 9614 list_move(&p->se.group_node, tasks); 9615 } 9616 9617 /* 9618 * Right now, this is one of only two places we collect this stat 9619 * so we can safely collect detach_one_task() stats here rather 9620 * than inside detach_one_task(). 9621 */ 9622 schedstat_add(env->sd->lb_gained[env->idle], detached); 9623 9624 return detached; 9625 } 9626 9627 /* 9628 * attach_task() -- attach the task detached by detach_task() to its new rq. 9629 */ 9630 static void attach_task(struct rq *rq, struct task_struct *p) 9631 { 9632 lockdep_assert_rq_held(rq); 9633 9634 WARN_ON_ONCE(task_rq(p) != rq); 9635 activate_task(rq, p, ENQUEUE_NOCLOCK); 9636 wakeup_preempt(rq, p, 0); 9637 } 9638 9639 /* 9640 * attach_one_task() -- attaches the task returned from detach_one_task() to 9641 * its new rq. 9642 */ 9643 static void attach_one_task(struct rq *rq, struct task_struct *p) 9644 { 9645 struct rq_flags rf; 9646 9647 rq_lock(rq, &rf); 9648 update_rq_clock(rq); 9649 attach_task(rq, p); 9650 rq_unlock(rq, &rf); 9651 } 9652 9653 /* 9654 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9655 * new rq. 9656 */ 9657 static void attach_tasks(struct lb_env *env) 9658 { 9659 struct list_head *tasks = &env->tasks; 9660 struct task_struct *p; 9661 struct rq_flags rf; 9662 9663 rq_lock(env->dst_rq, &rf); 9664 update_rq_clock(env->dst_rq); 9665 9666 while (!list_empty(tasks)) { 9667 p = list_first_entry(tasks, struct task_struct, se.group_node); 9668 list_del_init(&p->se.group_node); 9669 9670 attach_task(env->dst_rq, p); 9671 } 9672 9673 rq_unlock(env->dst_rq, &rf); 9674 } 9675 9676 #ifdef CONFIG_NO_HZ_COMMON 9677 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9678 { 9679 if (cfs_rq->avg.load_avg) 9680 return true; 9681 9682 if (cfs_rq->avg.util_avg) 9683 return true; 9684 9685 return false; 9686 } 9687 9688 static inline bool others_have_blocked(struct rq *rq) 9689 { 9690 if (cpu_util_rt(rq)) 9691 return true; 9692 9693 if (cpu_util_dl(rq)) 9694 return true; 9695 9696 if (hw_load_avg(rq)) 9697 return true; 9698 9699 if (cpu_util_irq(rq)) 9700 return true; 9701 9702 return false; 9703 } 9704 9705 static inline void update_blocked_load_tick(struct rq *rq) 9706 { 9707 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9708 } 9709 9710 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9711 { 9712 if (!has_blocked) 9713 rq->has_blocked_load = 0; 9714 } 9715 #else 9716 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9717 static inline bool others_have_blocked(struct rq *rq) { return false; } 9718 static inline void update_blocked_load_tick(struct rq *rq) {} 9719 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9720 #endif 9721 9722 static bool __update_blocked_others(struct rq *rq, bool *done) 9723 { 9724 bool updated; 9725 9726 /* 9727 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9728 * DL and IRQ signals have been updated before updating CFS. 9729 */ 9730 updated = update_other_load_avgs(rq); 9731 9732 if (others_have_blocked(rq)) 9733 *done = false; 9734 9735 return updated; 9736 } 9737 9738 #ifdef CONFIG_FAIR_GROUP_SCHED 9739 9740 static bool __update_blocked_fair(struct rq *rq, bool *done) 9741 { 9742 struct cfs_rq *cfs_rq, *pos; 9743 bool decayed = false; 9744 int cpu = cpu_of(rq); 9745 9746 /* 9747 * Iterates the task_group tree in a bottom up fashion, see 9748 * list_add_leaf_cfs_rq() for details. 9749 */ 9750 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9751 struct sched_entity *se; 9752 9753 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9754 update_tg_load_avg(cfs_rq); 9755 9756 if (cfs_rq->nr_running == 0) 9757 update_idle_cfs_rq_clock_pelt(cfs_rq); 9758 9759 if (cfs_rq == &rq->cfs) 9760 decayed = true; 9761 } 9762 9763 /* Propagate pending load changes to the parent, if any: */ 9764 se = cfs_rq->tg->se[cpu]; 9765 if (se && !skip_blocked_update(se)) 9766 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9767 9768 /* 9769 * There can be a lot of idle CPU cgroups. Don't let fully 9770 * decayed cfs_rqs linger on the list. 9771 */ 9772 if (cfs_rq_is_decayed(cfs_rq)) 9773 list_del_leaf_cfs_rq(cfs_rq); 9774 9775 /* Don't need periodic decay once load/util_avg are null */ 9776 if (cfs_rq_has_blocked(cfs_rq)) 9777 *done = false; 9778 } 9779 9780 return decayed; 9781 } 9782 9783 /* 9784 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9785 * This needs to be done in a top-down fashion because the load of a child 9786 * group is a fraction of its parents load. 9787 */ 9788 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9789 { 9790 struct rq *rq = rq_of(cfs_rq); 9791 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9792 unsigned long now = jiffies; 9793 unsigned long load; 9794 9795 if (cfs_rq->last_h_load_update == now) 9796 return; 9797 9798 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9799 for_each_sched_entity(se) { 9800 cfs_rq = cfs_rq_of(se); 9801 WRITE_ONCE(cfs_rq->h_load_next, se); 9802 if (cfs_rq->last_h_load_update == now) 9803 break; 9804 } 9805 9806 if (!se) { 9807 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9808 cfs_rq->last_h_load_update = now; 9809 } 9810 9811 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9812 load = cfs_rq->h_load; 9813 load = div64_ul(load * se->avg.load_avg, 9814 cfs_rq_load_avg(cfs_rq) + 1); 9815 cfs_rq = group_cfs_rq(se); 9816 cfs_rq->h_load = load; 9817 cfs_rq->last_h_load_update = now; 9818 } 9819 } 9820 9821 static unsigned long task_h_load(struct task_struct *p) 9822 { 9823 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9824 9825 update_cfs_rq_h_load(cfs_rq); 9826 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9827 cfs_rq_load_avg(cfs_rq) + 1); 9828 } 9829 #else 9830 static bool __update_blocked_fair(struct rq *rq, bool *done) 9831 { 9832 struct cfs_rq *cfs_rq = &rq->cfs; 9833 bool decayed; 9834 9835 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9836 if (cfs_rq_has_blocked(cfs_rq)) 9837 *done = false; 9838 9839 return decayed; 9840 } 9841 9842 static unsigned long task_h_load(struct task_struct *p) 9843 { 9844 return p->se.avg.load_avg; 9845 } 9846 #endif 9847 9848 static void sched_balance_update_blocked_averages(int cpu) 9849 { 9850 bool decayed = false, done = true; 9851 struct rq *rq = cpu_rq(cpu); 9852 struct rq_flags rf; 9853 9854 rq_lock_irqsave(rq, &rf); 9855 update_blocked_load_tick(rq); 9856 update_rq_clock(rq); 9857 9858 decayed |= __update_blocked_others(rq, &done); 9859 decayed |= __update_blocked_fair(rq, &done); 9860 9861 update_blocked_load_status(rq, !done); 9862 if (decayed) 9863 cpufreq_update_util(rq, 0); 9864 rq_unlock_irqrestore(rq, &rf); 9865 } 9866 9867 /********** Helpers for sched_balance_find_src_group ************************/ 9868 9869 /* 9870 * sg_lb_stats - stats of a sched_group required for load-balancing: 9871 */ 9872 struct sg_lb_stats { 9873 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9874 unsigned long group_load; /* Total load over the CPUs of the group */ 9875 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9876 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9877 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9878 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9879 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9880 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9881 unsigned int group_weight; 9882 enum group_type group_type; 9883 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9884 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9885 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9886 #ifdef CONFIG_NUMA_BALANCING 9887 unsigned int nr_numa_running; 9888 unsigned int nr_preferred_running; 9889 #endif 9890 }; 9891 9892 /* 9893 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9894 */ 9895 struct sd_lb_stats { 9896 struct sched_group *busiest; /* Busiest group in this sd */ 9897 struct sched_group *local; /* Local group in this sd */ 9898 unsigned long total_load; /* Total load of all groups in sd */ 9899 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9900 unsigned long avg_load; /* Average load across all groups in sd */ 9901 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9902 9903 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9904 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9905 }; 9906 9907 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9908 { 9909 /* 9910 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9911 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9912 * We must however set busiest_stat::group_type and 9913 * busiest_stat::idle_cpus to the worst busiest group because 9914 * update_sd_pick_busiest() reads these before assignment. 9915 */ 9916 *sds = (struct sd_lb_stats){ 9917 .busiest = NULL, 9918 .local = NULL, 9919 .total_load = 0UL, 9920 .total_capacity = 0UL, 9921 .busiest_stat = { 9922 .idle_cpus = UINT_MAX, 9923 .group_type = group_has_spare, 9924 }, 9925 }; 9926 } 9927 9928 static unsigned long scale_rt_capacity(int cpu) 9929 { 9930 unsigned long max = get_actual_cpu_capacity(cpu); 9931 struct rq *rq = cpu_rq(cpu); 9932 unsigned long used, free; 9933 unsigned long irq; 9934 9935 irq = cpu_util_irq(rq); 9936 9937 if (unlikely(irq >= max)) 9938 return 1; 9939 9940 /* 9941 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9942 * (running and not running) with weights 0 and 1024 respectively. 9943 */ 9944 used = cpu_util_rt(rq); 9945 used += cpu_util_dl(rq); 9946 9947 if (unlikely(used >= max)) 9948 return 1; 9949 9950 free = max - used; 9951 9952 return scale_irq_capacity(free, irq, max); 9953 } 9954 9955 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9956 { 9957 unsigned long capacity = scale_rt_capacity(cpu); 9958 struct sched_group *sdg = sd->groups; 9959 9960 if (!capacity) 9961 capacity = 1; 9962 9963 cpu_rq(cpu)->cpu_capacity = capacity; 9964 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9965 9966 sdg->sgc->capacity = capacity; 9967 sdg->sgc->min_capacity = capacity; 9968 sdg->sgc->max_capacity = capacity; 9969 } 9970 9971 void update_group_capacity(struct sched_domain *sd, int cpu) 9972 { 9973 struct sched_domain *child = sd->child; 9974 struct sched_group *group, *sdg = sd->groups; 9975 unsigned long capacity, min_capacity, max_capacity; 9976 unsigned long interval; 9977 9978 interval = msecs_to_jiffies(sd->balance_interval); 9979 interval = clamp(interval, 1UL, max_load_balance_interval); 9980 sdg->sgc->next_update = jiffies + interval; 9981 9982 if (!child) { 9983 update_cpu_capacity(sd, cpu); 9984 return; 9985 } 9986 9987 capacity = 0; 9988 min_capacity = ULONG_MAX; 9989 max_capacity = 0; 9990 9991 if (child->flags & SD_OVERLAP) { 9992 /* 9993 * SD_OVERLAP domains cannot assume that child groups 9994 * span the current group. 9995 */ 9996 9997 for_each_cpu(cpu, sched_group_span(sdg)) { 9998 unsigned long cpu_cap = capacity_of(cpu); 9999 10000 capacity += cpu_cap; 10001 min_capacity = min(cpu_cap, min_capacity); 10002 max_capacity = max(cpu_cap, max_capacity); 10003 } 10004 } else { 10005 /* 10006 * !SD_OVERLAP domains can assume that child groups 10007 * span the current group. 10008 */ 10009 10010 group = child->groups; 10011 do { 10012 struct sched_group_capacity *sgc = group->sgc; 10013 10014 capacity += sgc->capacity; 10015 min_capacity = min(sgc->min_capacity, min_capacity); 10016 max_capacity = max(sgc->max_capacity, max_capacity); 10017 group = group->next; 10018 } while (group != child->groups); 10019 } 10020 10021 sdg->sgc->capacity = capacity; 10022 sdg->sgc->min_capacity = min_capacity; 10023 sdg->sgc->max_capacity = max_capacity; 10024 } 10025 10026 /* 10027 * Check whether the capacity of the rq has been noticeably reduced by side 10028 * activity. The imbalance_pct is used for the threshold. 10029 * Return true is the capacity is reduced 10030 */ 10031 static inline int 10032 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10033 { 10034 return ((rq->cpu_capacity * sd->imbalance_pct) < 10035 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10036 } 10037 10038 /* Check if the rq has a misfit task */ 10039 static inline bool check_misfit_status(struct rq *rq) 10040 { 10041 return rq->misfit_task_load; 10042 } 10043 10044 /* 10045 * Group imbalance indicates (and tries to solve) the problem where balancing 10046 * groups is inadequate due to ->cpus_ptr constraints. 10047 * 10048 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10049 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10050 * Something like: 10051 * 10052 * { 0 1 2 3 } { 4 5 6 7 } 10053 * * * * * 10054 * 10055 * If we were to balance group-wise we'd place two tasks in the first group and 10056 * two tasks in the second group. Clearly this is undesired as it will overload 10057 * cpu 3 and leave one of the CPUs in the second group unused. 10058 * 10059 * The current solution to this issue is detecting the skew in the first group 10060 * by noticing the lower domain failed to reach balance and had difficulty 10061 * moving tasks due to affinity constraints. 10062 * 10063 * When this is so detected; this group becomes a candidate for busiest; see 10064 * update_sd_pick_busiest(). And calculate_imbalance() and 10065 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10066 * to create an effective group imbalance. 10067 * 10068 * This is a somewhat tricky proposition since the next run might not find the 10069 * group imbalance and decide the groups need to be balanced again. A most 10070 * subtle and fragile situation. 10071 */ 10072 10073 static inline int sg_imbalanced(struct sched_group *group) 10074 { 10075 return group->sgc->imbalance; 10076 } 10077 10078 /* 10079 * group_has_capacity returns true if the group has spare capacity that could 10080 * be used by some tasks. 10081 * We consider that a group has spare capacity if the number of task is 10082 * smaller than the number of CPUs or if the utilization is lower than the 10083 * available capacity for CFS tasks. 10084 * For the latter, we use a threshold to stabilize the state, to take into 10085 * account the variance of the tasks' load and to return true if the available 10086 * capacity in meaningful for the load balancer. 10087 * As an example, an available capacity of 1% can appear but it doesn't make 10088 * any benefit for the load balance. 10089 */ 10090 static inline bool 10091 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10092 { 10093 if (sgs->sum_nr_running < sgs->group_weight) 10094 return true; 10095 10096 if ((sgs->group_capacity * imbalance_pct) < 10097 (sgs->group_runnable * 100)) 10098 return false; 10099 10100 if ((sgs->group_capacity * 100) > 10101 (sgs->group_util * imbalance_pct)) 10102 return true; 10103 10104 return false; 10105 } 10106 10107 /* 10108 * group_is_overloaded returns true if the group has more tasks than it can 10109 * handle. 10110 * group_is_overloaded is not equals to !group_has_capacity because a group 10111 * with the exact right number of tasks, has no more spare capacity but is not 10112 * overloaded so both group_has_capacity and group_is_overloaded return 10113 * false. 10114 */ 10115 static inline bool 10116 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10117 { 10118 if (sgs->sum_nr_running <= sgs->group_weight) 10119 return false; 10120 10121 if ((sgs->group_capacity * 100) < 10122 (sgs->group_util * imbalance_pct)) 10123 return true; 10124 10125 if ((sgs->group_capacity * imbalance_pct) < 10126 (sgs->group_runnable * 100)) 10127 return true; 10128 10129 return false; 10130 } 10131 10132 static inline enum 10133 group_type group_classify(unsigned int imbalance_pct, 10134 struct sched_group *group, 10135 struct sg_lb_stats *sgs) 10136 { 10137 if (group_is_overloaded(imbalance_pct, sgs)) 10138 return group_overloaded; 10139 10140 if (sg_imbalanced(group)) 10141 return group_imbalanced; 10142 10143 if (sgs->group_asym_packing) 10144 return group_asym_packing; 10145 10146 if (sgs->group_smt_balance) 10147 return group_smt_balance; 10148 10149 if (sgs->group_misfit_task_load) 10150 return group_misfit_task; 10151 10152 if (!group_has_capacity(imbalance_pct, sgs)) 10153 return group_fully_busy; 10154 10155 return group_has_spare; 10156 } 10157 10158 /** 10159 * sched_use_asym_prio - Check whether asym_packing priority must be used 10160 * @sd: The scheduling domain of the load balancing 10161 * @cpu: A CPU 10162 * 10163 * Always use CPU priority when balancing load between SMT siblings. When 10164 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10165 * use CPU priority if the whole core is idle. 10166 * 10167 * Returns: True if the priority of @cpu must be followed. False otherwise. 10168 */ 10169 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10170 { 10171 if (!(sd->flags & SD_ASYM_PACKING)) 10172 return false; 10173 10174 if (!sched_smt_active()) 10175 return true; 10176 10177 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10178 } 10179 10180 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10181 { 10182 /* 10183 * First check if @dst_cpu can do asym_packing load balance. Only do it 10184 * if it has higher priority than @src_cpu. 10185 */ 10186 return sched_use_asym_prio(sd, dst_cpu) && 10187 sched_asym_prefer(dst_cpu, src_cpu); 10188 } 10189 10190 /** 10191 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10192 * @env: The load balancing environment 10193 * @sgs: Load-balancing statistics of the candidate busiest group 10194 * @group: The candidate busiest group 10195 * 10196 * @env::dst_cpu can do asym_packing if it has higher priority than the 10197 * preferred CPU of @group. 10198 * 10199 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10200 * otherwise. 10201 */ 10202 static inline bool 10203 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10204 { 10205 /* 10206 * CPU priorities do not make sense for SMT cores with more than one 10207 * busy sibling. 10208 */ 10209 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10210 (sgs->group_weight - sgs->idle_cpus != 1)) 10211 return false; 10212 10213 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10214 } 10215 10216 /* One group has more than one SMT CPU while the other group does not */ 10217 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10218 struct sched_group *sg2) 10219 { 10220 if (!sg1 || !sg2) 10221 return false; 10222 10223 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10224 (sg2->flags & SD_SHARE_CPUCAPACITY); 10225 } 10226 10227 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10228 struct sched_group *group) 10229 { 10230 if (!env->idle) 10231 return false; 10232 10233 /* 10234 * For SMT source group, it is better to move a task 10235 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10236 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10237 * will not be on. 10238 */ 10239 if (group->flags & SD_SHARE_CPUCAPACITY && 10240 sgs->sum_h_nr_running > 1) 10241 return true; 10242 10243 return false; 10244 } 10245 10246 static inline long sibling_imbalance(struct lb_env *env, 10247 struct sd_lb_stats *sds, 10248 struct sg_lb_stats *busiest, 10249 struct sg_lb_stats *local) 10250 { 10251 int ncores_busiest, ncores_local; 10252 long imbalance; 10253 10254 if (!env->idle || !busiest->sum_nr_running) 10255 return 0; 10256 10257 ncores_busiest = sds->busiest->cores; 10258 ncores_local = sds->local->cores; 10259 10260 if (ncores_busiest == ncores_local) { 10261 imbalance = busiest->sum_nr_running; 10262 lsub_positive(&imbalance, local->sum_nr_running); 10263 return imbalance; 10264 } 10265 10266 /* Balance such that nr_running/ncores ratio are same on both groups */ 10267 imbalance = ncores_local * busiest->sum_nr_running; 10268 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10269 /* Normalize imbalance and do rounding on normalization */ 10270 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10271 imbalance /= ncores_local + ncores_busiest; 10272 10273 /* Take advantage of resource in an empty sched group */ 10274 if (imbalance <= 1 && local->sum_nr_running == 0 && 10275 busiest->sum_nr_running > 1) 10276 imbalance = 2; 10277 10278 return imbalance; 10279 } 10280 10281 static inline bool 10282 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10283 { 10284 /* 10285 * When there is more than 1 task, the group_overloaded case already 10286 * takes care of cpu with reduced capacity 10287 */ 10288 if (rq->cfs.h_nr_running != 1) 10289 return false; 10290 10291 return check_cpu_capacity(rq, sd); 10292 } 10293 10294 /** 10295 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10296 * @env: The load balancing environment. 10297 * @sds: Load-balancing data with statistics of the local group. 10298 * @group: sched_group whose statistics are to be updated. 10299 * @sgs: variable to hold the statistics for this group. 10300 * @sg_overloaded: sched_group is overloaded 10301 * @sg_overutilized: sched_group is overutilized 10302 */ 10303 static inline void update_sg_lb_stats(struct lb_env *env, 10304 struct sd_lb_stats *sds, 10305 struct sched_group *group, 10306 struct sg_lb_stats *sgs, 10307 bool *sg_overloaded, 10308 bool *sg_overutilized) 10309 { 10310 int i, nr_running, local_group; 10311 10312 memset(sgs, 0, sizeof(*sgs)); 10313 10314 local_group = group == sds->local; 10315 10316 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10317 struct rq *rq = cpu_rq(i); 10318 unsigned long load = cpu_load(rq); 10319 10320 sgs->group_load += load; 10321 sgs->group_util += cpu_util_cfs(i); 10322 sgs->group_runnable += cpu_runnable(rq); 10323 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 10324 10325 nr_running = rq->nr_running; 10326 sgs->sum_nr_running += nr_running; 10327 10328 if (nr_running > 1) 10329 *sg_overloaded = 1; 10330 10331 if (cpu_overutilized(i)) 10332 *sg_overutilized = 1; 10333 10334 #ifdef CONFIG_NUMA_BALANCING 10335 sgs->nr_numa_running += rq->nr_numa_running; 10336 sgs->nr_preferred_running += rq->nr_preferred_running; 10337 #endif 10338 /* 10339 * No need to call idle_cpu() if nr_running is not 0 10340 */ 10341 if (!nr_running && idle_cpu(i)) { 10342 sgs->idle_cpus++; 10343 /* Idle cpu can't have misfit task */ 10344 continue; 10345 } 10346 10347 if (local_group) 10348 continue; 10349 10350 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10351 /* Check for a misfit task on the cpu */ 10352 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10353 sgs->group_misfit_task_load = rq->misfit_task_load; 10354 *sg_overloaded = 1; 10355 } 10356 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10357 /* Check for a task running on a CPU with reduced capacity */ 10358 if (sgs->group_misfit_task_load < load) 10359 sgs->group_misfit_task_load = load; 10360 } 10361 } 10362 10363 sgs->group_capacity = group->sgc->capacity; 10364 10365 sgs->group_weight = group->group_weight; 10366 10367 /* Check if dst CPU is idle and preferred to this group */ 10368 if (!local_group && env->idle && sgs->sum_h_nr_running && 10369 sched_group_asym(env, sgs, group)) 10370 sgs->group_asym_packing = 1; 10371 10372 /* Check for loaded SMT group to be balanced to dst CPU */ 10373 if (!local_group && smt_balance(env, sgs, group)) 10374 sgs->group_smt_balance = 1; 10375 10376 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10377 10378 /* Computing avg_load makes sense only when group is overloaded */ 10379 if (sgs->group_type == group_overloaded) 10380 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10381 sgs->group_capacity; 10382 } 10383 10384 /** 10385 * update_sd_pick_busiest - return 1 on busiest group 10386 * @env: The load balancing environment. 10387 * @sds: sched_domain statistics 10388 * @sg: sched_group candidate to be checked for being the busiest 10389 * @sgs: sched_group statistics 10390 * 10391 * Determine if @sg is a busier group than the previously selected 10392 * busiest group. 10393 * 10394 * Return: %true if @sg is a busier group than the previously selected 10395 * busiest group. %false otherwise. 10396 */ 10397 static bool update_sd_pick_busiest(struct lb_env *env, 10398 struct sd_lb_stats *sds, 10399 struct sched_group *sg, 10400 struct sg_lb_stats *sgs) 10401 { 10402 struct sg_lb_stats *busiest = &sds->busiest_stat; 10403 10404 /* Make sure that there is at least one task to pull */ 10405 if (!sgs->sum_h_nr_running) 10406 return false; 10407 10408 /* 10409 * Don't try to pull misfit tasks we can't help. 10410 * We can use max_capacity here as reduction in capacity on some 10411 * CPUs in the group should either be possible to resolve 10412 * internally or be covered by avg_load imbalance (eventually). 10413 */ 10414 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10415 (sgs->group_type == group_misfit_task) && 10416 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10417 sds->local_stat.group_type != group_has_spare)) 10418 return false; 10419 10420 if (sgs->group_type > busiest->group_type) 10421 return true; 10422 10423 if (sgs->group_type < busiest->group_type) 10424 return false; 10425 10426 /* 10427 * The candidate and the current busiest group are the same type of 10428 * group. Let check which one is the busiest according to the type. 10429 */ 10430 10431 switch (sgs->group_type) { 10432 case group_overloaded: 10433 /* Select the overloaded group with highest avg_load. */ 10434 return sgs->avg_load > busiest->avg_load; 10435 10436 case group_imbalanced: 10437 /* 10438 * Select the 1st imbalanced group as we don't have any way to 10439 * choose one more than another. 10440 */ 10441 return false; 10442 10443 case group_asym_packing: 10444 /* Prefer to move from lowest priority CPU's work */ 10445 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10446 10447 case group_misfit_task: 10448 /* 10449 * If we have more than one misfit sg go with the biggest 10450 * misfit. 10451 */ 10452 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10453 10454 case group_smt_balance: 10455 /* 10456 * Check if we have spare CPUs on either SMT group to 10457 * choose has spare or fully busy handling. 10458 */ 10459 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10460 goto has_spare; 10461 10462 fallthrough; 10463 10464 case group_fully_busy: 10465 /* 10466 * Select the fully busy group with highest avg_load. In 10467 * theory, there is no need to pull task from such kind of 10468 * group because tasks have all compute capacity that they need 10469 * but we can still improve the overall throughput by reducing 10470 * contention when accessing shared HW resources. 10471 * 10472 * XXX for now avg_load is not computed and always 0 so we 10473 * select the 1st one, except if @sg is composed of SMT 10474 * siblings. 10475 */ 10476 10477 if (sgs->avg_load < busiest->avg_load) 10478 return false; 10479 10480 if (sgs->avg_load == busiest->avg_load) { 10481 /* 10482 * SMT sched groups need more help than non-SMT groups. 10483 * If @sg happens to also be SMT, either choice is good. 10484 */ 10485 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10486 return false; 10487 } 10488 10489 break; 10490 10491 case group_has_spare: 10492 /* 10493 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10494 * as we do not want to pull task off SMT core with one task 10495 * and make the core idle. 10496 */ 10497 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10498 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10499 return false; 10500 else 10501 return true; 10502 } 10503 has_spare: 10504 10505 /* 10506 * Select not overloaded group with lowest number of idle CPUs 10507 * and highest number of running tasks. We could also compare 10508 * the spare capacity which is more stable but it can end up 10509 * that the group has less spare capacity but finally more idle 10510 * CPUs which means less opportunity to pull tasks. 10511 */ 10512 if (sgs->idle_cpus > busiest->idle_cpus) 10513 return false; 10514 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10515 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10516 return false; 10517 10518 break; 10519 } 10520 10521 /* 10522 * Candidate sg has no more than one task per CPU and has higher 10523 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10524 * throughput. Maximize throughput, power/energy consequences are not 10525 * considered. 10526 */ 10527 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10528 (sgs->group_type <= group_fully_busy) && 10529 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10530 return false; 10531 10532 return true; 10533 } 10534 10535 #ifdef CONFIG_NUMA_BALANCING 10536 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10537 { 10538 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10539 return regular; 10540 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10541 return remote; 10542 return all; 10543 } 10544 10545 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10546 { 10547 if (rq->nr_running > rq->nr_numa_running) 10548 return regular; 10549 if (rq->nr_running > rq->nr_preferred_running) 10550 return remote; 10551 return all; 10552 } 10553 #else 10554 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10555 { 10556 return all; 10557 } 10558 10559 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10560 { 10561 return regular; 10562 } 10563 #endif /* CONFIG_NUMA_BALANCING */ 10564 10565 10566 struct sg_lb_stats; 10567 10568 /* 10569 * task_running_on_cpu - return 1 if @p is running on @cpu. 10570 */ 10571 10572 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10573 { 10574 /* Task has no contribution or is new */ 10575 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10576 return 0; 10577 10578 if (task_on_rq_queued(p)) 10579 return 1; 10580 10581 return 0; 10582 } 10583 10584 /** 10585 * idle_cpu_without - would a given CPU be idle without p ? 10586 * @cpu: the processor on which idleness is tested. 10587 * @p: task which should be ignored. 10588 * 10589 * Return: 1 if the CPU would be idle. 0 otherwise. 10590 */ 10591 static int idle_cpu_without(int cpu, struct task_struct *p) 10592 { 10593 struct rq *rq = cpu_rq(cpu); 10594 10595 if (rq->curr != rq->idle && rq->curr != p) 10596 return 0; 10597 10598 /* 10599 * rq->nr_running can't be used but an updated version without the 10600 * impact of p on cpu must be used instead. The updated nr_running 10601 * be computed and tested before calling idle_cpu_without(). 10602 */ 10603 10604 if (rq->ttwu_pending) 10605 return 0; 10606 10607 return 1; 10608 } 10609 10610 /* 10611 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10612 * @sd: The sched_domain level to look for idlest group. 10613 * @group: sched_group whose statistics are to be updated. 10614 * @sgs: variable to hold the statistics for this group. 10615 * @p: The task for which we look for the idlest group/CPU. 10616 */ 10617 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10618 struct sched_group *group, 10619 struct sg_lb_stats *sgs, 10620 struct task_struct *p) 10621 { 10622 int i, nr_running; 10623 10624 memset(sgs, 0, sizeof(*sgs)); 10625 10626 /* Assume that task can't fit any CPU of the group */ 10627 if (sd->flags & SD_ASYM_CPUCAPACITY) 10628 sgs->group_misfit_task_load = 1; 10629 10630 for_each_cpu(i, sched_group_span(group)) { 10631 struct rq *rq = cpu_rq(i); 10632 unsigned int local; 10633 10634 sgs->group_load += cpu_load_without(rq, p); 10635 sgs->group_util += cpu_util_without(i, p); 10636 sgs->group_runnable += cpu_runnable_without(rq, p); 10637 local = task_running_on_cpu(i, p); 10638 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10639 10640 nr_running = rq->nr_running - local; 10641 sgs->sum_nr_running += nr_running; 10642 10643 /* 10644 * No need to call idle_cpu_without() if nr_running is not 0 10645 */ 10646 if (!nr_running && idle_cpu_without(i, p)) 10647 sgs->idle_cpus++; 10648 10649 /* Check if task fits in the CPU */ 10650 if (sd->flags & SD_ASYM_CPUCAPACITY && 10651 sgs->group_misfit_task_load && 10652 task_fits_cpu(p, i)) 10653 sgs->group_misfit_task_load = 0; 10654 10655 } 10656 10657 sgs->group_capacity = group->sgc->capacity; 10658 10659 sgs->group_weight = group->group_weight; 10660 10661 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10662 10663 /* 10664 * Computing avg_load makes sense only when group is fully busy or 10665 * overloaded 10666 */ 10667 if (sgs->group_type == group_fully_busy || 10668 sgs->group_type == group_overloaded) 10669 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10670 sgs->group_capacity; 10671 } 10672 10673 static bool update_pick_idlest(struct sched_group *idlest, 10674 struct sg_lb_stats *idlest_sgs, 10675 struct sched_group *group, 10676 struct sg_lb_stats *sgs) 10677 { 10678 if (sgs->group_type < idlest_sgs->group_type) 10679 return true; 10680 10681 if (sgs->group_type > idlest_sgs->group_type) 10682 return false; 10683 10684 /* 10685 * The candidate and the current idlest group are the same type of 10686 * group. Let check which one is the idlest according to the type. 10687 */ 10688 10689 switch (sgs->group_type) { 10690 case group_overloaded: 10691 case group_fully_busy: 10692 /* Select the group with lowest avg_load. */ 10693 if (idlest_sgs->avg_load <= sgs->avg_load) 10694 return false; 10695 break; 10696 10697 case group_imbalanced: 10698 case group_asym_packing: 10699 case group_smt_balance: 10700 /* Those types are not used in the slow wakeup path */ 10701 return false; 10702 10703 case group_misfit_task: 10704 /* Select group with the highest max capacity */ 10705 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10706 return false; 10707 break; 10708 10709 case group_has_spare: 10710 /* Select group with most idle CPUs */ 10711 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10712 return false; 10713 10714 /* Select group with lowest group_util */ 10715 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10716 idlest_sgs->group_util <= sgs->group_util) 10717 return false; 10718 10719 break; 10720 } 10721 10722 return true; 10723 } 10724 10725 /* 10726 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10727 * domain. 10728 * 10729 * Assumes p is allowed on at least one CPU in sd. 10730 */ 10731 static struct sched_group * 10732 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10733 { 10734 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10735 struct sg_lb_stats local_sgs, tmp_sgs; 10736 struct sg_lb_stats *sgs; 10737 unsigned long imbalance; 10738 struct sg_lb_stats idlest_sgs = { 10739 .avg_load = UINT_MAX, 10740 .group_type = group_overloaded, 10741 }; 10742 10743 do { 10744 int local_group; 10745 10746 /* Skip over this group if it has no CPUs allowed */ 10747 if (!cpumask_intersects(sched_group_span(group), 10748 p->cpus_ptr)) 10749 continue; 10750 10751 /* Skip over this group if no cookie matched */ 10752 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10753 continue; 10754 10755 local_group = cpumask_test_cpu(this_cpu, 10756 sched_group_span(group)); 10757 10758 if (local_group) { 10759 sgs = &local_sgs; 10760 local = group; 10761 } else { 10762 sgs = &tmp_sgs; 10763 } 10764 10765 update_sg_wakeup_stats(sd, group, sgs, p); 10766 10767 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10768 idlest = group; 10769 idlest_sgs = *sgs; 10770 } 10771 10772 } while (group = group->next, group != sd->groups); 10773 10774 10775 /* There is no idlest group to push tasks to */ 10776 if (!idlest) 10777 return NULL; 10778 10779 /* The local group has been skipped because of CPU affinity */ 10780 if (!local) 10781 return idlest; 10782 10783 /* 10784 * If the local group is idler than the selected idlest group 10785 * don't try and push the task. 10786 */ 10787 if (local_sgs.group_type < idlest_sgs.group_type) 10788 return NULL; 10789 10790 /* 10791 * If the local group is busier than the selected idlest group 10792 * try and push the task. 10793 */ 10794 if (local_sgs.group_type > idlest_sgs.group_type) 10795 return idlest; 10796 10797 switch (local_sgs.group_type) { 10798 case group_overloaded: 10799 case group_fully_busy: 10800 10801 /* Calculate allowed imbalance based on load */ 10802 imbalance = scale_load_down(NICE_0_LOAD) * 10803 (sd->imbalance_pct-100) / 100; 10804 10805 /* 10806 * When comparing groups across NUMA domains, it's possible for 10807 * the local domain to be very lightly loaded relative to the 10808 * remote domains but "imbalance" skews the comparison making 10809 * remote CPUs look much more favourable. When considering 10810 * cross-domain, add imbalance to the load on the remote node 10811 * and consider staying local. 10812 */ 10813 10814 if ((sd->flags & SD_NUMA) && 10815 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10816 return NULL; 10817 10818 /* 10819 * If the local group is less loaded than the selected 10820 * idlest group don't try and push any tasks. 10821 */ 10822 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10823 return NULL; 10824 10825 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10826 return NULL; 10827 break; 10828 10829 case group_imbalanced: 10830 case group_asym_packing: 10831 case group_smt_balance: 10832 /* Those type are not used in the slow wakeup path */ 10833 return NULL; 10834 10835 case group_misfit_task: 10836 /* Select group with the highest max capacity */ 10837 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10838 return NULL; 10839 break; 10840 10841 case group_has_spare: 10842 #ifdef CONFIG_NUMA 10843 if (sd->flags & SD_NUMA) { 10844 int imb_numa_nr = sd->imb_numa_nr; 10845 #ifdef CONFIG_NUMA_BALANCING 10846 int idlest_cpu; 10847 /* 10848 * If there is spare capacity at NUMA, try to select 10849 * the preferred node 10850 */ 10851 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10852 return NULL; 10853 10854 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10855 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10856 return idlest; 10857 #endif /* CONFIG_NUMA_BALANCING */ 10858 /* 10859 * Otherwise, keep the task close to the wakeup source 10860 * and improve locality if the number of running tasks 10861 * would remain below threshold where an imbalance is 10862 * allowed while accounting for the possibility the 10863 * task is pinned to a subset of CPUs. If there is a 10864 * real need of migration, periodic load balance will 10865 * take care of it. 10866 */ 10867 if (p->nr_cpus_allowed != NR_CPUS) { 10868 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10869 10870 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10871 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10872 } 10873 10874 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10875 if (!adjust_numa_imbalance(imbalance, 10876 local_sgs.sum_nr_running + 1, 10877 imb_numa_nr)) { 10878 return NULL; 10879 } 10880 } 10881 #endif /* CONFIG_NUMA */ 10882 10883 /* 10884 * Select group with highest number of idle CPUs. We could also 10885 * compare the utilization which is more stable but it can end 10886 * up that the group has less spare capacity but finally more 10887 * idle CPUs which means more opportunity to run task. 10888 */ 10889 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10890 return NULL; 10891 break; 10892 } 10893 10894 return idlest; 10895 } 10896 10897 static void update_idle_cpu_scan(struct lb_env *env, 10898 unsigned long sum_util) 10899 { 10900 struct sched_domain_shared *sd_share; 10901 int llc_weight, pct; 10902 u64 x, y, tmp; 10903 /* 10904 * Update the number of CPUs to scan in LLC domain, which could 10905 * be used as a hint in select_idle_cpu(). The update of sd_share 10906 * could be expensive because it is within a shared cache line. 10907 * So the write of this hint only occurs during periodic load 10908 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10909 * can fire way more frequently than the former. 10910 */ 10911 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10912 return; 10913 10914 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10915 if (env->sd->span_weight != llc_weight) 10916 return; 10917 10918 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10919 if (!sd_share) 10920 return; 10921 10922 /* 10923 * The number of CPUs to search drops as sum_util increases, when 10924 * sum_util hits 85% or above, the scan stops. 10925 * The reason to choose 85% as the threshold is because this is the 10926 * imbalance_pct(117) when a LLC sched group is overloaded. 10927 * 10928 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10929 * and y'= y / SCHED_CAPACITY_SCALE 10930 * 10931 * x is the ratio of sum_util compared to the CPU capacity: 10932 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10933 * y' is the ratio of CPUs to be scanned in the LLC domain, 10934 * and the number of CPUs to scan is calculated by: 10935 * 10936 * nr_scan = llc_weight * y' [2] 10937 * 10938 * When x hits the threshold of overloaded, AKA, when 10939 * x = 100 / pct, y drops to 0. According to [1], 10940 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10941 * 10942 * Scale x by SCHED_CAPACITY_SCALE: 10943 * x' = sum_util / llc_weight; [3] 10944 * 10945 * and finally [1] becomes: 10946 * y = SCHED_CAPACITY_SCALE - 10947 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10948 * 10949 */ 10950 /* equation [3] */ 10951 x = sum_util; 10952 do_div(x, llc_weight); 10953 10954 /* equation [4] */ 10955 pct = env->sd->imbalance_pct; 10956 tmp = x * x * pct * pct; 10957 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10958 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10959 y = SCHED_CAPACITY_SCALE - tmp; 10960 10961 /* equation [2] */ 10962 y *= llc_weight; 10963 do_div(y, SCHED_CAPACITY_SCALE); 10964 if ((int)y != sd_share->nr_idle_scan) 10965 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10966 } 10967 10968 /** 10969 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10970 * @env: The load balancing environment. 10971 * @sds: variable to hold the statistics for this sched_domain. 10972 */ 10973 10974 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10975 { 10976 struct sched_group *sg = env->sd->groups; 10977 struct sg_lb_stats *local = &sds->local_stat; 10978 struct sg_lb_stats tmp_sgs; 10979 unsigned long sum_util = 0; 10980 bool sg_overloaded = 0, sg_overutilized = 0; 10981 10982 do { 10983 struct sg_lb_stats *sgs = &tmp_sgs; 10984 int local_group; 10985 10986 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10987 if (local_group) { 10988 sds->local = sg; 10989 sgs = local; 10990 10991 if (env->idle != CPU_NEWLY_IDLE || 10992 time_after_eq(jiffies, sg->sgc->next_update)) 10993 update_group_capacity(env->sd, env->dst_cpu); 10994 } 10995 10996 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10997 10998 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10999 sds->busiest = sg; 11000 sds->busiest_stat = *sgs; 11001 } 11002 11003 /* Now, start updating sd_lb_stats */ 11004 sds->total_load += sgs->group_load; 11005 sds->total_capacity += sgs->group_capacity; 11006 11007 sum_util += sgs->group_util; 11008 sg = sg->next; 11009 } while (sg != env->sd->groups); 11010 11011 /* 11012 * Indicate that the child domain of the busiest group prefers tasks 11013 * go to a child's sibling domains first. NB the flags of a sched group 11014 * are those of the child domain. 11015 */ 11016 if (sds->busiest) 11017 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11018 11019 11020 if (env->sd->flags & SD_NUMA) 11021 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11022 11023 if (!env->sd->parent) { 11024 /* update overload indicator if we are at root domain */ 11025 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11026 11027 /* Update over-utilization (tipping point, U >= 0) indicator */ 11028 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11029 } else if (sg_overutilized) { 11030 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11031 } 11032 11033 update_idle_cpu_scan(env, sum_util); 11034 } 11035 11036 /** 11037 * calculate_imbalance - Calculate the amount of imbalance present within the 11038 * groups of a given sched_domain during load balance. 11039 * @env: load balance environment 11040 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11041 */ 11042 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11043 { 11044 struct sg_lb_stats *local, *busiest; 11045 11046 local = &sds->local_stat; 11047 busiest = &sds->busiest_stat; 11048 11049 if (busiest->group_type == group_misfit_task) { 11050 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11051 /* Set imbalance to allow misfit tasks to be balanced. */ 11052 env->migration_type = migrate_misfit; 11053 env->imbalance = 1; 11054 } else { 11055 /* 11056 * Set load imbalance to allow moving task from cpu 11057 * with reduced capacity. 11058 */ 11059 env->migration_type = migrate_load; 11060 env->imbalance = busiest->group_misfit_task_load; 11061 } 11062 return; 11063 } 11064 11065 if (busiest->group_type == group_asym_packing) { 11066 /* 11067 * In case of asym capacity, we will try to migrate all load to 11068 * the preferred CPU. 11069 */ 11070 env->migration_type = migrate_task; 11071 env->imbalance = busiest->sum_h_nr_running; 11072 return; 11073 } 11074 11075 if (busiest->group_type == group_smt_balance) { 11076 /* Reduce number of tasks sharing CPU capacity */ 11077 env->migration_type = migrate_task; 11078 env->imbalance = 1; 11079 return; 11080 } 11081 11082 if (busiest->group_type == group_imbalanced) { 11083 /* 11084 * In the group_imb case we cannot rely on group-wide averages 11085 * to ensure CPU-load equilibrium, try to move any task to fix 11086 * the imbalance. The next load balance will take care of 11087 * balancing back the system. 11088 */ 11089 env->migration_type = migrate_task; 11090 env->imbalance = 1; 11091 return; 11092 } 11093 11094 /* 11095 * Try to use spare capacity of local group without overloading it or 11096 * emptying busiest. 11097 */ 11098 if (local->group_type == group_has_spare) { 11099 if ((busiest->group_type > group_fully_busy) && 11100 !(env->sd->flags & SD_SHARE_LLC)) { 11101 /* 11102 * If busiest is overloaded, try to fill spare 11103 * capacity. This might end up creating spare capacity 11104 * in busiest or busiest still being overloaded but 11105 * there is no simple way to directly compute the 11106 * amount of load to migrate in order to balance the 11107 * system. 11108 */ 11109 env->migration_type = migrate_util; 11110 env->imbalance = max(local->group_capacity, local->group_util) - 11111 local->group_util; 11112 11113 /* 11114 * In some cases, the group's utilization is max or even 11115 * higher than capacity because of migrations but the 11116 * local CPU is (newly) idle. There is at least one 11117 * waiting task in this overloaded busiest group. Let's 11118 * try to pull it. 11119 */ 11120 if (env->idle && env->imbalance == 0) { 11121 env->migration_type = migrate_task; 11122 env->imbalance = 1; 11123 } 11124 11125 return; 11126 } 11127 11128 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11129 /* 11130 * When prefer sibling, evenly spread running tasks on 11131 * groups. 11132 */ 11133 env->migration_type = migrate_task; 11134 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11135 } else { 11136 11137 /* 11138 * If there is no overload, we just want to even the number of 11139 * idle CPUs. 11140 */ 11141 env->migration_type = migrate_task; 11142 env->imbalance = max_t(long, 0, 11143 (local->idle_cpus - busiest->idle_cpus)); 11144 } 11145 11146 #ifdef CONFIG_NUMA 11147 /* Consider allowing a small imbalance between NUMA groups */ 11148 if (env->sd->flags & SD_NUMA) { 11149 env->imbalance = adjust_numa_imbalance(env->imbalance, 11150 local->sum_nr_running + 1, 11151 env->sd->imb_numa_nr); 11152 } 11153 #endif 11154 11155 /* Number of tasks to move to restore balance */ 11156 env->imbalance >>= 1; 11157 11158 return; 11159 } 11160 11161 /* 11162 * Local is fully busy but has to take more load to relieve the 11163 * busiest group 11164 */ 11165 if (local->group_type < group_overloaded) { 11166 /* 11167 * Local will become overloaded so the avg_load metrics are 11168 * finally needed. 11169 */ 11170 11171 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11172 local->group_capacity; 11173 11174 /* 11175 * If the local group is more loaded than the selected 11176 * busiest group don't try to pull any tasks. 11177 */ 11178 if (local->avg_load >= busiest->avg_load) { 11179 env->imbalance = 0; 11180 return; 11181 } 11182 11183 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11184 sds->total_capacity; 11185 11186 /* 11187 * If the local group is more loaded than the average system 11188 * load, don't try to pull any tasks. 11189 */ 11190 if (local->avg_load >= sds->avg_load) { 11191 env->imbalance = 0; 11192 return; 11193 } 11194 11195 } 11196 11197 /* 11198 * Both group are or will become overloaded and we're trying to get all 11199 * the CPUs to the average_load, so we don't want to push ourselves 11200 * above the average load, nor do we wish to reduce the max loaded CPU 11201 * below the average load. At the same time, we also don't want to 11202 * reduce the group load below the group capacity. Thus we look for 11203 * the minimum possible imbalance. 11204 */ 11205 env->migration_type = migrate_load; 11206 env->imbalance = min( 11207 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11208 (sds->avg_load - local->avg_load) * local->group_capacity 11209 ) / SCHED_CAPACITY_SCALE; 11210 } 11211 11212 /******* sched_balance_find_src_group() helpers end here *********************/ 11213 11214 /* 11215 * Decision matrix according to the local and busiest group type: 11216 * 11217 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11218 * has_spare nr_idle balanced N/A N/A balanced balanced 11219 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11220 * misfit_task force N/A N/A N/A N/A N/A 11221 * asym_packing force force N/A N/A force force 11222 * imbalanced force force N/A N/A force force 11223 * overloaded force force N/A N/A force avg_load 11224 * 11225 * N/A : Not Applicable because already filtered while updating 11226 * statistics. 11227 * balanced : The system is balanced for these 2 groups. 11228 * force : Calculate the imbalance as load migration is probably needed. 11229 * avg_load : Only if imbalance is significant enough. 11230 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11231 * different in groups. 11232 */ 11233 11234 /** 11235 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11236 * if there is an imbalance. 11237 * @env: The load balancing environment. 11238 * 11239 * Also calculates the amount of runnable load which should be moved 11240 * to restore balance. 11241 * 11242 * Return: - The busiest group if imbalance exists. 11243 */ 11244 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11245 { 11246 struct sg_lb_stats *local, *busiest; 11247 struct sd_lb_stats sds; 11248 11249 init_sd_lb_stats(&sds); 11250 11251 /* 11252 * Compute the various statistics relevant for load balancing at 11253 * this level. 11254 */ 11255 update_sd_lb_stats(env, &sds); 11256 11257 /* There is no busy sibling group to pull tasks from */ 11258 if (!sds.busiest) 11259 goto out_balanced; 11260 11261 busiest = &sds.busiest_stat; 11262 11263 /* Misfit tasks should be dealt with regardless of the avg load */ 11264 if (busiest->group_type == group_misfit_task) 11265 goto force_balance; 11266 11267 if (!is_rd_overutilized(env->dst_rq->rd) && 11268 rcu_dereference(env->dst_rq->rd->pd)) 11269 goto out_balanced; 11270 11271 /* ASYM feature bypasses nice load balance check */ 11272 if (busiest->group_type == group_asym_packing) 11273 goto force_balance; 11274 11275 /* 11276 * If the busiest group is imbalanced the below checks don't 11277 * work because they assume all things are equal, which typically 11278 * isn't true due to cpus_ptr constraints and the like. 11279 */ 11280 if (busiest->group_type == group_imbalanced) 11281 goto force_balance; 11282 11283 local = &sds.local_stat; 11284 /* 11285 * If the local group is busier than the selected busiest group 11286 * don't try and pull any tasks. 11287 */ 11288 if (local->group_type > busiest->group_type) 11289 goto out_balanced; 11290 11291 /* 11292 * When groups are overloaded, use the avg_load to ensure fairness 11293 * between tasks. 11294 */ 11295 if (local->group_type == group_overloaded) { 11296 /* 11297 * If the local group is more loaded than the selected 11298 * busiest group don't try to pull any tasks. 11299 */ 11300 if (local->avg_load >= busiest->avg_load) 11301 goto out_balanced; 11302 11303 /* XXX broken for overlapping NUMA groups */ 11304 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11305 sds.total_capacity; 11306 11307 /* 11308 * Don't pull any tasks if this group is already above the 11309 * domain average load. 11310 */ 11311 if (local->avg_load >= sds.avg_load) 11312 goto out_balanced; 11313 11314 /* 11315 * If the busiest group is more loaded, use imbalance_pct to be 11316 * conservative. 11317 */ 11318 if (100 * busiest->avg_load <= 11319 env->sd->imbalance_pct * local->avg_load) 11320 goto out_balanced; 11321 } 11322 11323 /* 11324 * Try to move all excess tasks to a sibling domain of the busiest 11325 * group's child domain. 11326 */ 11327 if (sds.prefer_sibling && local->group_type == group_has_spare && 11328 sibling_imbalance(env, &sds, busiest, local) > 1) 11329 goto force_balance; 11330 11331 if (busiest->group_type != group_overloaded) { 11332 if (!env->idle) { 11333 /* 11334 * If the busiest group is not overloaded (and as a 11335 * result the local one too) but this CPU is already 11336 * busy, let another idle CPU try to pull task. 11337 */ 11338 goto out_balanced; 11339 } 11340 11341 if (busiest->group_type == group_smt_balance && 11342 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11343 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11344 goto force_balance; 11345 } 11346 11347 if (busiest->group_weight > 1 && 11348 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11349 /* 11350 * If the busiest group is not overloaded 11351 * and there is no imbalance between this and busiest 11352 * group wrt idle CPUs, it is balanced. The imbalance 11353 * becomes significant if the diff is greater than 1 11354 * otherwise we might end up to just move the imbalance 11355 * on another group. Of course this applies only if 11356 * there is more than 1 CPU per group. 11357 */ 11358 goto out_balanced; 11359 } 11360 11361 if (busiest->sum_h_nr_running == 1) { 11362 /* 11363 * busiest doesn't have any tasks waiting to run 11364 */ 11365 goto out_balanced; 11366 } 11367 } 11368 11369 force_balance: 11370 /* Looks like there is an imbalance. Compute it */ 11371 calculate_imbalance(env, &sds); 11372 return env->imbalance ? sds.busiest : NULL; 11373 11374 out_balanced: 11375 env->imbalance = 0; 11376 return NULL; 11377 } 11378 11379 /* 11380 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11381 */ 11382 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11383 struct sched_group *group) 11384 { 11385 struct rq *busiest = NULL, *rq; 11386 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11387 unsigned int busiest_nr = 0; 11388 int i; 11389 11390 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11391 unsigned long capacity, load, util; 11392 unsigned int nr_running; 11393 enum fbq_type rt; 11394 11395 rq = cpu_rq(i); 11396 rt = fbq_classify_rq(rq); 11397 11398 /* 11399 * We classify groups/runqueues into three groups: 11400 * - regular: there are !numa tasks 11401 * - remote: there are numa tasks that run on the 'wrong' node 11402 * - all: there is no distinction 11403 * 11404 * In order to avoid migrating ideally placed numa tasks, 11405 * ignore those when there's better options. 11406 * 11407 * If we ignore the actual busiest queue to migrate another 11408 * task, the next balance pass can still reduce the busiest 11409 * queue by moving tasks around inside the node. 11410 * 11411 * If we cannot move enough load due to this classification 11412 * the next pass will adjust the group classification and 11413 * allow migration of more tasks. 11414 * 11415 * Both cases only affect the total convergence complexity. 11416 */ 11417 if (rt > env->fbq_type) 11418 continue; 11419 11420 nr_running = rq->cfs.h_nr_running; 11421 if (!nr_running) 11422 continue; 11423 11424 capacity = capacity_of(i); 11425 11426 /* 11427 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11428 * eventually lead to active_balancing high->low capacity. 11429 * Higher per-CPU capacity is considered better than balancing 11430 * average load. 11431 */ 11432 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11433 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11434 nr_running == 1) 11435 continue; 11436 11437 /* 11438 * Make sure we only pull tasks from a CPU of lower priority 11439 * when balancing between SMT siblings. 11440 * 11441 * If balancing between cores, let lower priority CPUs help 11442 * SMT cores with more than one busy sibling. 11443 */ 11444 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11445 continue; 11446 11447 switch (env->migration_type) { 11448 case migrate_load: 11449 /* 11450 * When comparing with load imbalance, use cpu_load() 11451 * which is not scaled with the CPU capacity. 11452 */ 11453 load = cpu_load(rq); 11454 11455 if (nr_running == 1 && load > env->imbalance && 11456 !check_cpu_capacity(rq, env->sd)) 11457 break; 11458 11459 /* 11460 * For the load comparisons with the other CPUs, 11461 * consider the cpu_load() scaled with the CPU 11462 * capacity, so that the load can be moved away 11463 * from the CPU that is potentially running at a 11464 * lower capacity. 11465 * 11466 * Thus we're looking for max(load_i / capacity_i), 11467 * crosswise multiplication to rid ourselves of the 11468 * division works out to: 11469 * load_i * capacity_j > load_j * capacity_i; 11470 * where j is our previous maximum. 11471 */ 11472 if (load * busiest_capacity > busiest_load * capacity) { 11473 busiest_load = load; 11474 busiest_capacity = capacity; 11475 busiest = rq; 11476 } 11477 break; 11478 11479 case migrate_util: 11480 util = cpu_util_cfs_boost(i); 11481 11482 /* 11483 * Don't try to pull utilization from a CPU with one 11484 * running task. Whatever its utilization, we will fail 11485 * detach the task. 11486 */ 11487 if (nr_running <= 1) 11488 continue; 11489 11490 if (busiest_util < util) { 11491 busiest_util = util; 11492 busiest = rq; 11493 } 11494 break; 11495 11496 case migrate_task: 11497 if (busiest_nr < nr_running) { 11498 busiest_nr = nr_running; 11499 busiest = rq; 11500 } 11501 break; 11502 11503 case migrate_misfit: 11504 /* 11505 * For ASYM_CPUCAPACITY domains with misfit tasks we 11506 * simply seek the "biggest" misfit task. 11507 */ 11508 if (rq->misfit_task_load > busiest_load) { 11509 busiest_load = rq->misfit_task_load; 11510 busiest = rq; 11511 } 11512 11513 break; 11514 11515 } 11516 } 11517 11518 return busiest; 11519 } 11520 11521 /* 11522 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11523 * so long as it is large enough. 11524 */ 11525 #define MAX_PINNED_INTERVAL 512 11526 11527 static inline bool 11528 asym_active_balance(struct lb_env *env) 11529 { 11530 /* 11531 * ASYM_PACKING needs to force migrate tasks from busy but lower 11532 * priority CPUs in order to pack all tasks in the highest priority 11533 * CPUs. When done between cores, do it only if the whole core if the 11534 * whole core is idle. 11535 * 11536 * If @env::src_cpu is an SMT core with busy siblings, let 11537 * the lower priority @env::dst_cpu help it. Do not follow 11538 * CPU priority. 11539 */ 11540 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11541 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11542 !sched_use_asym_prio(env->sd, env->src_cpu)); 11543 } 11544 11545 static inline bool 11546 imbalanced_active_balance(struct lb_env *env) 11547 { 11548 struct sched_domain *sd = env->sd; 11549 11550 /* 11551 * The imbalanced case includes the case of pinned tasks preventing a fair 11552 * distribution of the load on the system but also the even distribution of the 11553 * threads on a system with spare capacity 11554 */ 11555 if ((env->migration_type == migrate_task) && 11556 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11557 return 1; 11558 11559 return 0; 11560 } 11561 11562 static int need_active_balance(struct lb_env *env) 11563 { 11564 struct sched_domain *sd = env->sd; 11565 11566 if (asym_active_balance(env)) 11567 return 1; 11568 11569 if (imbalanced_active_balance(env)) 11570 return 1; 11571 11572 /* 11573 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11574 * It's worth migrating the task if the src_cpu's capacity is reduced 11575 * because of other sched_class or IRQs if more capacity stays 11576 * available on dst_cpu. 11577 */ 11578 if (env->idle && 11579 (env->src_rq->cfs.h_nr_running == 1)) { 11580 if ((check_cpu_capacity(env->src_rq, sd)) && 11581 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11582 return 1; 11583 } 11584 11585 if (env->migration_type == migrate_misfit) 11586 return 1; 11587 11588 return 0; 11589 } 11590 11591 static int active_load_balance_cpu_stop(void *data); 11592 11593 static int should_we_balance(struct lb_env *env) 11594 { 11595 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11596 struct sched_group *sg = env->sd->groups; 11597 int cpu, idle_smt = -1; 11598 11599 /* 11600 * Ensure the balancing environment is consistent; can happen 11601 * when the softirq triggers 'during' hotplug. 11602 */ 11603 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11604 return 0; 11605 11606 /* 11607 * In the newly idle case, we will allow all the CPUs 11608 * to do the newly idle load balance. 11609 * 11610 * However, we bail out if we already have tasks or a wakeup pending, 11611 * to optimize wakeup latency. 11612 */ 11613 if (env->idle == CPU_NEWLY_IDLE) { 11614 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11615 return 0; 11616 return 1; 11617 } 11618 11619 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11620 /* Try to find first idle CPU */ 11621 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11622 if (!idle_cpu(cpu)) 11623 continue; 11624 11625 /* 11626 * Don't balance to idle SMT in busy core right away when 11627 * balancing cores, but remember the first idle SMT CPU for 11628 * later consideration. Find CPU on an idle core first. 11629 */ 11630 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11631 if (idle_smt == -1) 11632 idle_smt = cpu; 11633 /* 11634 * If the core is not idle, and first SMT sibling which is 11635 * idle has been found, then its not needed to check other 11636 * SMT siblings for idleness: 11637 */ 11638 #ifdef CONFIG_SCHED_SMT 11639 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11640 #endif 11641 continue; 11642 } 11643 11644 /* 11645 * Are we the first idle core in a non-SMT domain or higher, 11646 * or the first idle CPU in a SMT domain? 11647 */ 11648 return cpu == env->dst_cpu; 11649 } 11650 11651 /* Are we the first idle CPU with busy siblings? */ 11652 if (idle_smt != -1) 11653 return idle_smt == env->dst_cpu; 11654 11655 /* Are we the first CPU of this group ? */ 11656 return group_balance_cpu(sg) == env->dst_cpu; 11657 } 11658 11659 /* 11660 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11661 * tasks if there is an imbalance. 11662 */ 11663 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11664 struct sched_domain *sd, enum cpu_idle_type idle, 11665 int *continue_balancing) 11666 { 11667 int ld_moved, cur_ld_moved, active_balance = 0; 11668 struct sched_domain *sd_parent = sd->parent; 11669 struct sched_group *group; 11670 struct rq *busiest; 11671 struct rq_flags rf; 11672 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11673 struct lb_env env = { 11674 .sd = sd, 11675 .dst_cpu = this_cpu, 11676 .dst_rq = this_rq, 11677 .dst_grpmask = group_balance_mask(sd->groups), 11678 .idle = idle, 11679 .loop_break = SCHED_NR_MIGRATE_BREAK, 11680 .cpus = cpus, 11681 .fbq_type = all, 11682 .tasks = LIST_HEAD_INIT(env.tasks), 11683 }; 11684 11685 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11686 11687 schedstat_inc(sd->lb_count[idle]); 11688 11689 redo: 11690 if (!should_we_balance(&env)) { 11691 *continue_balancing = 0; 11692 goto out_balanced; 11693 } 11694 11695 group = sched_balance_find_src_group(&env); 11696 if (!group) { 11697 schedstat_inc(sd->lb_nobusyg[idle]); 11698 goto out_balanced; 11699 } 11700 11701 busiest = sched_balance_find_src_rq(&env, group); 11702 if (!busiest) { 11703 schedstat_inc(sd->lb_nobusyq[idle]); 11704 goto out_balanced; 11705 } 11706 11707 WARN_ON_ONCE(busiest == env.dst_rq); 11708 11709 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11710 11711 env.src_cpu = busiest->cpu; 11712 env.src_rq = busiest; 11713 11714 ld_moved = 0; 11715 /* Clear this flag as soon as we find a pullable task */ 11716 env.flags |= LBF_ALL_PINNED; 11717 if (busiest->nr_running > 1) { 11718 /* 11719 * Attempt to move tasks. If sched_balance_find_src_group has found 11720 * an imbalance but busiest->nr_running <= 1, the group is 11721 * still unbalanced. ld_moved simply stays zero, so it is 11722 * correctly treated as an imbalance. 11723 */ 11724 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11725 11726 more_balance: 11727 rq_lock_irqsave(busiest, &rf); 11728 update_rq_clock(busiest); 11729 11730 /* 11731 * cur_ld_moved - load moved in current iteration 11732 * ld_moved - cumulative load moved across iterations 11733 */ 11734 cur_ld_moved = detach_tasks(&env); 11735 11736 /* 11737 * We've detached some tasks from busiest_rq. Every 11738 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11739 * unlock busiest->lock, and we are able to be sure 11740 * that nobody can manipulate the tasks in parallel. 11741 * See task_rq_lock() family for the details. 11742 */ 11743 11744 rq_unlock(busiest, &rf); 11745 11746 if (cur_ld_moved) { 11747 attach_tasks(&env); 11748 ld_moved += cur_ld_moved; 11749 } 11750 11751 local_irq_restore(rf.flags); 11752 11753 if (env.flags & LBF_NEED_BREAK) { 11754 env.flags &= ~LBF_NEED_BREAK; 11755 goto more_balance; 11756 } 11757 11758 /* 11759 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11760 * us and move them to an alternate dst_cpu in our sched_group 11761 * where they can run. The upper limit on how many times we 11762 * iterate on same src_cpu is dependent on number of CPUs in our 11763 * sched_group. 11764 * 11765 * This changes load balance semantics a bit on who can move 11766 * load to a given_cpu. In addition to the given_cpu itself 11767 * (or a ilb_cpu acting on its behalf where given_cpu is 11768 * nohz-idle), we now have balance_cpu in a position to move 11769 * load to given_cpu. In rare situations, this may cause 11770 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11771 * _independently_ and at _same_ time to move some load to 11772 * given_cpu) causing excess load to be moved to given_cpu. 11773 * This however should not happen so much in practice and 11774 * moreover subsequent load balance cycles should correct the 11775 * excess load moved. 11776 */ 11777 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11778 11779 /* Prevent to re-select dst_cpu via env's CPUs */ 11780 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11781 11782 env.dst_rq = cpu_rq(env.new_dst_cpu); 11783 env.dst_cpu = env.new_dst_cpu; 11784 env.flags &= ~LBF_DST_PINNED; 11785 env.loop = 0; 11786 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11787 11788 /* 11789 * Go back to "more_balance" rather than "redo" since we 11790 * need to continue with same src_cpu. 11791 */ 11792 goto more_balance; 11793 } 11794 11795 /* 11796 * We failed to reach balance because of affinity. 11797 */ 11798 if (sd_parent) { 11799 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11800 11801 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11802 *group_imbalance = 1; 11803 } 11804 11805 /* All tasks on this runqueue were pinned by CPU affinity */ 11806 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11807 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11808 /* 11809 * Attempting to continue load balancing at the current 11810 * sched_domain level only makes sense if there are 11811 * active CPUs remaining as possible busiest CPUs to 11812 * pull load from which are not contained within the 11813 * destination group that is receiving any migrated 11814 * load. 11815 */ 11816 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11817 env.loop = 0; 11818 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11819 goto redo; 11820 } 11821 goto out_all_pinned; 11822 } 11823 } 11824 11825 if (!ld_moved) { 11826 schedstat_inc(sd->lb_failed[idle]); 11827 /* 11828 * Increment the failure counter only on periodic balance. 11829 * We do not want newidle balance, which can be very 11830 * frequent, pollute the failure counter causing 11831 * excessive cache_hot migrations and active balances. 11832 * 11833 * Similarly for migration_misfit which is not related to 11834 * load/util migration, don't pollute nr_balance_failed. 11835 */ 11836 if (idle != CPU_NEWLY_IDLE && 11837 env.migration_type != migrate_misfit) 11838 sd->nr_balance_failed++; 11839 11840 if (need_active_balance(&env)) { 11841 unsigned long flags; 11842 11843 raw_spin_rq_lock_irqsave(busiest, flags); 11844 11845 /* 11846 * Don't kick the active_load_balance_cpu_stop, 11847 * if the curr task on busiest CPU can't be 11848 * moved to this_cpu: 11849 */ 11850 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11851 raw_spin_rq_unlock_irqrestore(busiest, flags); 11852 goto out_one_pinned; 11853 } 11854 11855 /* Record that we found at least one task that could run on this_cpu */ 11856 env.flags &= ~LBF_ALL_PINNED; 11857 11858 /* 11859 * ->active_balance synchronizes accesses to 11860 * ->active_balance_work. Once set, it's cleared 11861 * only after active load balance is finished. 11862 */ 11863 if (!busiest->active_balance) { 11864 busiest->active_balance = 1; 11865 busiest->push_cpu = this_cpu; 11866 active_balance = 1; 11867 } 11868 11869 preempt_disable(); 11870 raw_spin_rq_unlock_irqrestore(busiest, flags); 11871 if (active_balance) { 11872 stop_one_cpu_nowait(cpu_of(busiest), 11873 active_load_balance_cpu_stop, busiest, 11874 &busiest->active_balance_work); 11875 } 11876 preempt_enable(); 11877 } 11878 } else { 11879 sd->nr_balance_failed = 0; 11880 } 11881 11882 if (likely(!active_balance) || need_active_balance(&env)) { 11883 /* We were unbalanced, so reset the balancing interval */ 11884 sd->balance_interval = sd->min_interval; 11885 } 11886 11887 goto out; 11888 11889 out_balanced: 11890 /* 11891 * We reach balance although we may have faced some affinity 11892 * constraints. Clear the imbalance flag only if other tasks got 11893 * a chance to move and fix the imbalance. 11894 */ 11895 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11896 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11897 11898 if (*group_imbalance) 11899 *group_imbalance = 0; 11900 } 11901 11902 out_all_pinned: 11903 /* 11904 * We reach balance because all tasks are pinned at this level so 11905 * we can't migrate them. Let the imbalance flag set so parent level 11906 * can try to migrate them. 11907 */ 11908 schedstat_inc(sd->lb_balanced[idle]); 11909 11910 sd->nr_balance_failed = 0; 11911 11912 out_one_pinned: 11913 ld_moved = 0; 11914 11915 /* 11916 * sched_balance_newidle() disregards balance intervals, so we could 11917 * repeatedly reach this code, which would lead to balance_interval 11918 * skyrocketing in a short amount of time. Skip the balance_interval 11919 * increase logic to avoid that. 11920 * 11921 * Similarly misfit migration which is not necessarily an indication of 11922 * the system being busy and requires lb to backoff to let it settle 11923 * down. 11924 */ 11925 if (env.idle == CPU_NEWLY_IDLE || 11926 env.migration_type == migrate_misfit) 11927 goto out; 11928 11929 /* tune up the balancing interval */ 11930 if ((env.flags & LBF_ALL_PINNED && 11931 sd->balance_interval < MAX_PINNED_INTERVAL) || 11932 sd->balance_interval < sd->max_interval) 11933 sd->balance_interval *= 2; 11934 out: 11935 return ld_moved; 11936 } 11937 11938 static inline unsigned long 11939 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11940 { 11941 unsigned long interval = sd->balance_interval; 11942 11943 if (cpu_busy) 11944 interval *= sd->busy_factor; 11945 11946 /* scale ms to jiffies */ 11947 interval = msecs_to_jiffies(interval); 11948 11949 /* 11950 * Reduce likelihood of busy balancing at higher domains racing with 11951 * balancing at lower domains by preventing their balancing periods 11952 * from being multiples of each other. 11953 */ 11954 if (cpu_busy) 11955 interval -= 1; 11956 11957 interval = clamp(interval, 1UL, max_load_balance_interval); 11958 11959 return interval; 11960 } 11961 11962 static inline void 11963 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11964 { 11965 unsigned long interval, next; 11966 11967 /* used by idle balance, so cpu_busy = 0 */ 11968 interval = get_sd_balance_interval(sd, 0); 11969 next = sd->last_balance + interval; 11970 11971 if (time_after(*next_balance, next)) 11972 *next_balance = next; 11973 } 11974 11975 /* 11976 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11977 * running tasks off the busiest CPU onto idle CPUs. It requires at 11978 * least 1 task to be running on each physical CPU where possible, and 11979 * avoids physical / logical imbalances. 11980 */ 11981 static int active_load_balance_cpu_stop(void *data) 11982 { 11983 struct rq *busiest_rq = data; 11984 int busiest_cpu = cpu_of(busiest_rq); 11985 int target_cpu = busiest_rq->push_cpu; 11986 struct rq *target_rq = cpu_rq(target_cpu); 11987 struct sched_domain *sd; 11988 struct task_struct *p = NULL; 11989 struct rq_flags rf; 11990 11991 rq_lock_irq(busiest_rq, &rf); 11992 /* 11993 * Between queueing the stop-work and running it is a hole in which 11994 * CPUs can become inactive. We should not move tasks from or to 11995 * inactive CPUs. 11996 */ 11997 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11998 goto out_unlock; 11999 12000 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12001 if (unlikely(busiest_cpu != smp_processor_id() || 12002 !busiest_rq->active_balance)) 12003 goto out_unlock; 12004 12005 /* Is there any task to move? */ 12006 if (busiest_rq->nr_running <= 1) 12007 goto out_unlock; 12008 12009 /* 12010 * This condition is "impossible", if it occurs 12011 * we need to fix it. Originally reported by 12012 * Bjorn Helgaas on a 128-CPU setup. 12013 */ 12014 WARN_ON_ONCE(busiest_rq == target_rq); 12015 12016 /* Search for an sd spanning us and the target CPU. */ 12017 rcu_read_lock(); 12018 for_each_domain(target_cpu, sd) { 12019 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12020 break; 12021 } 12022 12023 if (likely(sd)) { 12024 struct lb_env env = { 12025 .sd = sd, 12026 .dst_cpu = target_cpu, 12027 .dst_rq = target_rq, 12028 .src_cpu = busiest_rq->cpu, 12029 .src_rq = busiest_rq, 12030 .idle = CPU_IDLE, 12031 .flags = LBF_ACTIVE_LB, 12032 }; 12033 12034 schedstat_inc(sd->alb_count); 12035 update_rq_clock(busiest_rq); 12036 12037 p = detach_one_task(&env); 12038 if (p) { 12039 schedstat_inc(sd->alb_pushed); 12040 /* Active balancing done, reset the failure counter. */ 12041 sd->nr_balance_failed = 0; 12042 } else { 12043 schedstat_inc(sd->alb_failed); 12044 } 12045 } 12046 rcu_read_unlock(); 12047 out_unlock: 12048 busiest_rq->active_balance = 0; 12049 rq_unlock(busiest_rq, &rf); 12050 12051 if (p) 12052 attach_one_task(target_rq, p); 12053 12054 local_irq_enable(); 12055 12056 return 0; 12057 } 12058 12059 /* 12060 * This flag serializes load-balancing passes over large domains 12061 * (above the NODE topology level) - only one load-balancing instance 12062 * may run at a time, to reduce overhead on very large systems with 12063 * lots of CPUs and large NUMA distances. 12064 * 12065 * - Note that load-balancing passes triggered while another one 12066 * is executing are skipped and not re-tried. 12067 * 12068 * - Also note that this does not serialize rebalance_domains() 12069 * execution, as non-SD_SERIALIZE domains will still be 12070 * load-balanced in parallel. 12071 */ 12072 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12073 12074 /* 12075 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12076 * This trades load-balance latency on larger machines for less cross talk. 12077 */ 12078 void update_max_interval(void) 12079 { 12080 max_load_balance_interval = HZ*num_online_cpus()/10; 12081 } 12082 12083 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12084 { 12085 if (cost > sd->max_newidle_lb_cost) { 12086 /* 12087 * Track max cost of a domain to make sure to not delay the 12088 * next wakeup on the CPU. 12089 */ 12090 sd->max_newidle_lb_cost = cost; 12091 sd->last_decay_max_lb_cost = jiffies; 12092 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12093 /* 12094 * Decay the newidle max times by ~1% per second to ensure that 12095 * it is not outdated and the current max cost is actually 12096 * shorter. 12097 */ 12098 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12099 sd->last_decay_max_lb_cost = jiffies; 12100 12101 return true; 12102 } 12103 12104 return false; 12105 } 12106 12107 /* 12108 * It checks each scheduling domain to see if it is due to be balanced, 12109 * and initiates a balancing operation if so. 12110 * 12111 * Balancing parameters are set up in init_sched_domains. 12112 */ 12113 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12114 { 12115 int continue_balancing = 1; 12116 int cpu = rq->cpu; 12117 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12118 unsigned long interval; 12119 struct sched_domain *sd; 12120 /* Earliest time when we have to do rebalance again */ 12121 unsigned long next_balance = jiffies + 60*HZ; 12122 int update_next_balance = 0; 12123 int need_serialize, need_decay = 0; 12124 u64 max_cost = 0; 12125 12126 rcu_read_lock(); 12127 for_each_domain(cpu, sd) { 12128 /* 12129 * Decay the newidle max times here because this is a regular 12130 * visit to all the domains. 12131 */ 12132 need_decay = update_newidle_cost(sd, 0); 12133 max_cost += sd->max_newidle_lb_cost; 12134 12135 /* 12136 * Stop the load balance at this level. There is another 12137 * CPU in our sched group which is doing load balancing more 12138 * actively. 12139 */ 12140 if (!continue_balancing) { 12141 if (need_decay) 12142 continue; 12143 break; 12144 } 12145 12146 interval = get_sd_balance_interval(sd, busy); 12147 12148 need_serialize = sd->flags & SD_SERIALIZE; 12149 if (need_serialize) { 12150 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12151 goto out; 12152 } 12153 12154 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12155 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12156 /* 12157 * The LBF_DST_PINNED logic could have changed 12158 * env->dst_cpu, so we can't know our idle 12159 * state even if we migrated tasks. Update it. 12160 */ 12161 idle = idle_cpu(cpu); 12162 busy = !idle && !sched_idle_cpu(cpu); 12163 } 12164 sd->last_balance = jiffies; 12165 interval = get_sd_balance_interval(sd, busy); 12166 } 12167 if (need_serialize) 12168 atomic_set_release(&sched_balance_running, 0); 12169 out: 12170 if (time_after(next_balance, sd->last_balance + interval)) { 12171 next_balance = sd->last_balance + interval; 12172 update_next_balance = 1; 12173 } 12174 } 12175 if (need_decay) { 12176 /* 12177 * Ensure the rq-wide value also decays but keep it at a 12178 * reasonable floor to avoid funnies with rq->avg_idle. 12179 */ 12180 rq->max_idle_balance_cost = 12181 max((u64)sysctl_sched_migration_cost, max_cost); 12182 } 12183 rcu_read_unlock(); 12184 12185 /* 12186 * next_balance will be updated only when there is a need. 12187 * When the cpu is attached to null domain for ex, it will not be 12188 * updated. 12189 */ 12190 if (likely(update_next_balance)) 12191 rq->next_balance = next_balance; 12192 12193 } 12194 12195 static inline int on_null_domain(struct rq *rq) 12196 { 12197 return unlikely(!rcu_dereference_sched(rq->sd)); 12198 } 12199 12200 #ifdef CONFIG_NO_HZ_COMMON 12201 /* 12202 * NOHZ idle load balancing (ILB) details: 12203 * 12204 * - When one of the busy CPUs notices that there may be an idle rebalancing 12205 * needed, they will kick the idle load balancer, which then does idle 12206 * load balancing for all the idle CPUs. 12207 * 12208 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 12209 * anywhere yet. 12210 */ 12211 static inline int find_new_ilb(void) 12212 { 12213 const struct cpumask *hk_mask; 12214 int ilb_cpu; 12215 12216 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 12217 12218 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12219 12220 if (ilb_cpu == smp_processor_id()) 12221 continue; 12222 12223 if (idle_cpu(ilb_cpu)) 12224 return ilb_cpu; 12225 } 12226 12227 return -1; 12228 } 12229 12230 /* 12231 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12232 * SMP function call (IPI). 12233 * 12234 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 12235 */ 12236 static void kick_ilb(unsigned int flags) 12237 { 12238 int ilb_cpu; 12239 12240 /* 12241 * Increase nohz.next_balance only when if full ilb is triggered but 12242 * not if we only update stats. 12243 */ 12244 if (flags & NOHZ_BALANCE_KICK) 12245 nohz.next_balance = jiffies+1; 12246 12247 ilb_cpu = find_new_ilb(); 12248 if (ilb_cpu < 0) 12249 return; 12250 12251 /* 12252 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12253 * i.e. all bits in flags are already set in ilb_cpu. 12254 */ 12255 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12256 return; 12257 12258 /* 12259 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12260 * the first flag owns it; cleared by nohz_csd_func(). 12261 */ 12262 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12263 if (flags & NOHZ_KICK_MASK) 12264 return; 12265 12266 /* 12267 * This way we generate an IPI on the target CPU which 12268 * is idle, and the softirq performing NOHZ idle load balancing 12269 * will be run before returning from the IPI. 12270 */ 12271 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12272 } 12273 12274 /* 12275 * Current decision point for kicking the idle load balancer in the presence 12276 * of idle CPUs in the system. 12277 */ 12278 static void nohz_balancer_kick(struct rq *rq) 12279 { 12280 unsigned long now = jiffies; 12281 struct sched_domain_shared *sds; 12282 struct sched_domain *sd; 12283 int nr_busy, i, cpu = rq->cpu; 12284 unsigned int flags = 0; 12285 12286 if (unlikely(rq->idle_balance)) 12287 return; 12288 12289 /* 12290 * We may be recently in ticked or tickless idle mode. At the first 12291 * busy tick after returning from idle, we will update the busy stats. 12292 */ 12293 nohz_balance_exit_idle(rq); 12294 12295 /* 12296 * None are in tickless mode and hence no need for NOHZ idle load 12297 * balancing: 12298 */ 12299 if (likely(!atomic_read(&nohz.nr_cpus))) 12300 return; 12301 12302 if (READ_ONCE(nohz.has_blocked) && 12303 time_after(now, READ_ONCE(nohz.next_blocked))) 12304 flags = NOHZ_STATS_KICK; 12305 12306 if (time_before(now, nohz.next_balance)) 12307 goto out; 12308 12309 if (rq->nr_running >= 2) { 12310 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12311 goto out; 12312 } 12313 12314 rcu_read_lock(); 12315 12316 sd = rcu_dereference(rq->sd); 12317 if (sd) { 12318 /* 12319 * If there's a runnable CFS task and the current CPU has reduced 12320 * capacity, kick the ILB to see if there's a better CPU to run on: 12321 */ 12322 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 12323 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12324 goto unlock; 12325 } 12326 } 12327 12328 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12329 if (sd) { 12330 /* 12331 * When ASYM_PACKING; see if there's a more preferred CPU 12332 * currently idle; in which case, kick the ILB to move tasks 12333 * around. 12334 * 12335 * When balancing between cores, all the SMT siblings of the 12336 * preferred CPU must be idle. 12337 */ 12338 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12339 if (sched_asym(sd, i, cpu)) { 12340 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12341 goto unlock; 12342 } 12343 } 12344 } 12345 12346 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12347 if (sd) { 12348 /* 12349 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12350 * to run the misfit task on. 12351 */ 12352 if (check_misfit_status(rq)) { 12353 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12354 goto unlock; 12355 } 12356 12357 /* 12358 * For asymmetric systems, we do not want to nicely balance 12359 * cache use, instead we want to embrace asymmetry and only 12360 * ensure tasks have enough CPU capacity. 12361 * 12362 * Skip the LLC logic because it's not relevant in that case. 12363 */ 12364 goto unlock; 12365 } 12366 12367 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12368 if (sds) { 12369 /* 12370 * If there is an imbalance between LLC domains (IOW we could 12371 * increase the overall cache utilization), we need a less-loaded LLC 12372 * domain to pull some load from. Likewise, we may need to spread 12373 * load within the current LLC domain (e.g. packed SMT cores but 12374 * other CPUs are idle). We can't really know from here how busy 12375 * the others are - so just get a NOHZ balance going if it looks 12376 * like this LLC domain has tasks we could move. 12377 */ 12378 nr_busy = atomic_read(&sds->nr_busy_cpus); 12379 if (nr_busy > 1) { 12380 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12381 goto unlock; 12382 } 12383 } 12384 unlock: 12385 rcu_read_unlock(); 12386 out: 12387 if (READ_ONCE(nohz.needs_update)) 12388 flags |= NOHZ_NEXT_KICK; 12389 12390 if (flags) 12391 kick_ilb(flags); 12392 } 12393 12394 static void set_cpu_sd_state_busy(int cpu) 12395 { 12396 struct sched_domain *sd; 12397 12398 rcu_read_lock(); 12399 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12400 12401 if (!sd || !sd->nohz_idle) 12402 goto unlock; 12403 sd->nohz_idle = 0; 12404 12405 atomic_inc(&sd->shared->nr_busy_cpus); 12406 unlock: 12407 rcu_read_unlock(); 12408 } 12409 12410 void nohz_balance_exit_idle(struct rq *rq) 12411 { 12412 SCHED_WARN_ON(rq != this_rq()); 12413 12414 if (likely(!rq->nohz_tick_stopped)) 12415 return; 12416 12417 rq->nohz_tick_stopped = 0; 12418 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12419 atomic_dec(&nohz.nr_cpus); 12420 12421 set_cpu_sd_state_busy(rq->cpu); 12422 } 12423 12424 static void set_cpu_sd_state_idle(int cpu) 12425 { 12426 struct sched_domain *sd; 12427 12428 rcu_read_lock(); 12429 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12430 12431 if (!sd || sd->nohz_idle) 12432 goto unlock; 12433 sd->nohz_idle = 1; 12434 12435 atomic_dec(&sd->shared->nr_busy_cpus); 12436 unlock: 12437 rcu_read_unlock(); 12438 } 12439 12440 /* 12441 * This routine will record that the CPU is going idle with tick stopped. 12442 * This info will be used in performing idle load balancing in the future. 12443 */ 12444 void nohz_balance_enter_idle(int cpu) 12445 { 12446 struct rq *rq = cpu_rq(cpu); 12447 12448 SCHED_WARN_ON(cpu != smp_processor_id()); 12449 12450 /* If this CPU is going down, then nothing needs to be done: */ 12451 if (!cpu_active(cpu)) 12452 return; 12453 12454 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12455 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12456 return; 12457 12458 /* 12459 * Can be set safely without rq->lock held 12460 * If a clear happens, it will have evaluated last additions because 12461 * rq->lock is held during the check and the clear 12462 */ 12463 rq->has_blocked_load = 1; 12464 12465 /* 12466 * The tick is still stopped but load could have been added in the 12467 * meantime. We set the nohz.has_blocked flag to trig a check of the 12468 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12469 * of nohz.has_blocked can only happen after checking the new load 12470 */ 12471 if (rq->nohz_tick_stopped) 12472 goto out; 12473 12474 /* If we're a completely isolated CPU, we don't play: */ 12475 if (on_null_domain(rq)) 12476 return; 12477 12478 rq->nohz_tick_stopped = 1; 12479 12480 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12481 atomic_inc(&nohz.nr_cpus); 12482 12483 /* 12484 * Ensures that if nohz_idle_balance() fails to observe our 12485 * @idle_cpus_mask store, it must observe the @has_blocked 12486 * and @needs_update stores. 12487 */ 12488 smp_mb__after_atomic(); 12489 12490 set_cpu_sd_state_idle(cpu); 12491 12492 WRITE_ONCE(nohz.needs_update, 1); 12493 out: 12494 /* 12495 * Each time a cpu enter idle, we assume that it has blocked load and 12496 * enable the periodic update of the load of idle CPUs 12497 */ 12498 WRITE_ONCE(nohz.has_blocked, 1); 12499 } 12500 12501 static bool update_nohz_stats(struct rq *rq) 12502 { 12503 unsigned int cpu = rq->cpu; 12504 12505 if (!rq->has_blocked_load) 12506 return false; 12507 12508 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12509 return false; 12510 12511 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12512 return true; 12513 12514 sched_balance_update_blocked_averages(cpu); 12515 12516 return rq->has_blocked_load; 12517 } 12518 12519 /* 12520 * Internal function that runs load balance for all idle CPUs. The load balance 12521 * can be a simple update of blocked load or a complete load balance with 12522 * tasks movement depending of flags. 12523 */ 12524 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12525 { 12526 /* Earliest time when we have to do rebalance again */ 12527 unsigned long now = jiffies; 12528 unsigned long next_balance = now + 60*HZ; 12529 bool has_blocked_load = false; 12530 int update_next_balance = 0; 12531 int this_cpu = this_rq->cpu; 12532 int balance_cpu; 12533 struct rq *rq; 12534 12535 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12536 12537 /* 12538 * We assume there will be no idle load after this update and clear 12539 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12540 * set the has_blocked flag and trigger another update of idle load. 12541 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12542 * setting the flag, we are sure to not clear the state and not 12543 * check the load of an idle cpu. 12544 * 12545 * Same applies to idle_cpus_mask vs needs_update. 12546 */ 12547 if (flags & NOHZ_STATS_KICK) 12548 WRITE_ONCE(nohz.has_blocked, 0); 12549 if (flags & NOHZ_NEXT_KICK) 12550 WRITE_ONCE(nohz.needs_update, 0); 12551 12552 /* 12553 * Ensures that if we miss the CPU, we must see the has_blocked 12554 * store from nohz_balance_enter_idle(). 12555 */ 12556 smp_mb(); 12557 12558 /* 12559 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12560 * chance for other idle cpu to pull load. 12561 */ 12562 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12563 if (!idle_cpu(balance_cpu)) 12564 continue; 12565 12566 /* 12567 * If this CPU gets work to do, stop the load balancing 12568 * work being done for other CPUs. Next load 12569 * balancing owner will pick it up. 12570 */ 12571 if (need_resched()) { 12572 if (flags & NOHZ_STATS_KICK) 12573 has_blocked_load = true; 12574 if (flags & NOHZ_NEXT_KICK) 12575 WRITE_ONCE(nohz.needs_update, 1); 12576 goto abort; 12577 } 12578 12579 rq = cpu_rq(balance_cpu); 12580 12581 if (flags & NOHZ_STATS_KICK) 12582 has_blocked_load |= update_nohz_stats(rq); 12583 12584 /* 12585 * If time for next balance is due, 12586 * do the balance. 12587 */ 12588 if (time_after_eq(jiffies, rq->next_balance)) { 12589 struct rq_flags rf; 12590 12591 rq_lock_irqsave(rq, &rf); 12592 update_rq_clock(rq); 12593 rq_unlock_irqrestore(rq, &rf); 12594 12595 if (flags & NOHZ_BALANCE_KICK) 12596 sched_balance_domains(rq, CPU_IDLE); 12597 } 12598 12599 if (time_after(next_balance, rq->next_balance)) { 12600 next_balance = rq->next_balance; 12601 update_next_balance = 1; 12602 } 12603 } 12604 12605 /* 12606 * next_balance will be updated only when there is a need. 12607 * When the CPU is attached to null domain for ex, it will not be 12608 * updated. 12609 */ 12610 if (likely(update_next_balance)) 12611 nohz.next_balance = next_balance; 12612 12613 if (flags & NOHZ_STATS_KICK) 12614 WRITE_ONCE(nohz.next_blocked, 12615 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12616 12617 abort: 12618 /* There is still blocked load, enable periodic update */ 12619 if (has_blocked_load) 12620 WRITE_ONCE(nohz.has_blocked, 1); 12621 } 12622 12623 /* 12624 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12625 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12626 */ 12627 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12628 { 12629 unsigned int flags = this_rq->nohz_idle_balance; 12630 12631 if (!flags) 12632 return false; 12633 12634 this_rq->nohz_idle_balance = 0; 12635 12636 if (idle != CPU_IDLE) 12637 return false; 12638 12639 _nohz_idle_balance(this_rq, flags); 12640 12641 return true; 12642 } 12643 12644 /* 12645 * Check if we need to directly run the ILB for updating blocked load before 12646 * entering idle state. Here we run ILB directly without issuing IPIs. 12647 * 12648 * Note that when this function is called, the tick may not yet be stopped on 12649 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12650 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12651 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12652 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12653 * called from this function on (this) CPU that's not yet in the mask. That's 12654 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12655 * updating the blocked load of already idle CPUs without waking up one of 12656 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12657 * cpu about to enter idle, because it can take a long time. 12658 */ 12659 void nohz_run_idle_balance(int cpu) 12660 { 12661 unsigned int flags; 12662 12663 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12664 12665 /* 12666 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12667 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12668 */ 12669 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12670 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12671 } 12672 12673 static void nohz_newidle_balance(struct rq *this_rq) 12674 { 12675 int this_cpu = this_rq->cpu; 12676 12677 /* 12678 * This CPU doesn't want to be disturbed by scheduler 12679 * housekeeping 12680 */ 12681 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12682 return; 12683 12684 /* Will wake up very soon. No time for doing anything else*/ 12685 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12686 return; 12687 12688 /* Don't need to update blocked load of idle CPUs*/ 12689 if (!READ_ONCE(nohz.has_blocked) || 12690 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12691 return; 12692 12693 /* 12694 * Set the need to trigger ILB in order to update blocked load 12695 * before entering idle state. 12696 */ 12697 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12698 } 12699 12700 #else /* !CONFIG_NO_HZ_COMMON */ 12701 static inline void nohz_balancer_kick(struct rq *rq) { } 12702 12703 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12704 { 12705 return false; 12706 } 12707 12708 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12709 #endif /* CONFIG_NO_HZ_COMMON */ 12710 12711 /* 12712 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12713 * idle. Attempts to pull tasks from other CPUs. 12714 * 12715 * Returns: 12716 * < 0 - we released the lock and there are !fair tasks present 12717 * 0 - failed, no new tasks 12718 * > 0 - success, new (fair) tasks present 12719 */ 12720 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12721 { 12722 unsigned long next_balance = jiffies + HZ; 12723 int this_cpu = this_rq->cpu; 12724 int continue_balancing = 1; 12725 u64 t0, t1, curr_cost = 0; 12726 struct sched_domain *sd; 12727 int pulled_task = 0; 12728 12729 update_misfit_status(NULL, this_rq); 12730 12731 /* 12732 * There is a task waiting to run. No need to search for one. 12733 * Return 0; the task will be enqueued when switching to idle. 12734 */ 12735 if (this_rq->ttwu_pending) 12736 return 0; 12737 12738 /* 12739 * We must set idle_stamp _before_ calling sched_balance_rq() 12740 * for CPU_NEWLY_IDLE, such that we measure the this duration 12741 * as idle time. 12742 */ 12743 this_rq->idle_stamp = rq_clock(this_rq); 12744 12745 /* 12746 * Do not pull tasks towards !active CPUs... 12747 */ 12748 if (!cpu_active(this_cpu)) 12749 return 0; 12750 12751 /* 12752 * This is OK, because current is on_cpu, which avoids it being picked 12753 * for load-balance and preemption/IRQs are still disabled avoiding 12754 * further scheduler activity on it and we're being very careful to 12755 * re-start the picking loop. 12756 */ 12757 rq_unpin_lock(this_rq, rf); 12758 12759 rcu_read_lock(); 12760 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12761 12762 if (!get_rd_overloaded(this_rq->rd) || 12763 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12764 12765 if (sd) 12766 update_next_balance(sd, &next_balance); 12767 rcu_read_unlock(); 12768 12769 goto out; 12770 } 12771 rcu_read_unlock(); 12772 12773 raw_spin_rq_unlock(this_rq); 12774 12775 t0 = sched_clock_cpu(this_cpu); 12776 sched_balance_update_blocked_averages(this_cpu); 12777 12778 rcu_read_lock(); 12779 for_each_domain(this_cpu, sd) { 12780 u64 domain_cost; 12781 12782 update_next_balance(sd, &next_balance); 12783 12784 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12785 break; 12786 12787 if (sd->flags & SD_BALANCE_NEWIDLE) { 12788 12789 pulled_task = sched_balance_rq(this_cpu, this_rq, 12790 sd, CPU_NEWLY_IDLE, 12791 &continue_balancing); 12792 12793 t1 = sched_clock_cpu(this_cpu); 12794 domain_cost = t1 - t0; 12795 update_newidle_cost(sd, domain_cost); 12796 12797 curr_cost += domain_cost; 12798 t0 = t1; 12799 } 12800 12801 /* 12802 * Stop searching for tasks to pull if there are 12803 * now runnable tasks on this rq. 12804 */ 12805 if (pulled_task || !continue_balancing) 12806 break; 12807 } 12808 rcu_read_unlock(); 12809 12810 raw_spin_rq_lock(this_rq); 12811 12812 if (curr_cost > this_rq->max_idle_balance_cost) 12813 this_rq->max_idle_balance_cost = curr_cost; 12814 12815 /* 12816 * While browsing the domains, we released the rq lock, a task could 12817 * have been enqueued in the meantime. Since we're not going idle, 12818 * pretend we pulled a task. 12819 */ 12820 if (this_rq->cfs.h_nr_running && !pulled_task) 12821 pulled_task = 1; 12822 12823 /* Is there a task of a high priority class? */ 12824 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12825 pulled_task = -1; 12826 12827 out: 12828 /* Move the next balance forward */ 12829 if (time_after(this_rq->next_balance, next_balance)) 12830 this_rq->next_balance = next_balance; 12831 12832 if (pulled_task) 12833 this_rq->idle_stamp = 0; 12834 else 12835 nohz_newidle_balance(this_rq); 12836 12837 rq_repin_lock(this_rq, rf); 12838 12839 return pulled_task; 12840 } 12841 12842 /* 12843 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12844 * 12845 * - directly from the local scheduler_tick() for periodic load balancing 12846 * 12847 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12848 * through the SMP cross-call nohz_csd_func() 12849 */ 12850 static __latent_entropy void sched_balance_softirq(void) 12851 { 12852 struct rq *this_rq = this_rq(); 12853 enum cpu_idle_type idle = this_rq->idle_balance; 12854 /* 12855 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12856 * balancing on behalf of the other idle CPUs whose ticks are 12857 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12858 * give the idle CPUs a chance to load balance. Else we may 12859 * load balance only within the local sched_domain hierarchy 12860 * and abort nohz_idle_balance altogether if we pull some load. 12861 */ 12862 if (nohz_idle_balance(this_rq, idle)) 12863 return; 12864 12865 /* normal load balance */ 12866 sched_balance_update_blocked_averages(this_rq->cpu); 12867 sched_balance_domains(this_rq, idle); 12868 } 12869 12870 /* 12871 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12872 */ 12873 void sched_balance_trigger(struct rq *rq) 12874 { 12875 /* 12876 * Don't need to rebalance while attached to NULL domain or 12877 * runqueue CPU is not active 12878 */ 12879 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12880 return; 12881 12882 if (time_after_eq(jiffies, rq->next_balance)) 12883 raise_softirq(SCHED_SOFTIRQ); 12884 12885 nohz_balancer_kick(rq); 12886 } 12887 12888 static void rq_online_fair(struct rq *rq) 12889 { 12890 update_sysctl(); 12891 12892 update_runtime_enabled(rq); 12893 } 12894 12895 static void rq_offline_fair(struct rq *rq) 12896 { 12897 update_sysctl(); 12898 12899 /* Ensure any throttled groups are reachable by pick_next_task */ 12900 unthrottle_offline_cfs_rqs(rq); 12901 12902 /* Ensure that we remove rq contribution to group share: */ 12903 clear_tg_offline_cfs_rqs(rq); 12904 } 12905 12906 #endif /* CONFIG_SMP */ 12907 12908 #ifdef CONFIG_SCHED_CORE 12909 static inline bool 12910 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12911 { 12912 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12913 u64 slice = se->slice; 12914 12915 return (rtime * min_nr_tasks > slice); 12916 } 12917 12918 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12919 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12920 { 12921 if (!sched_core_enabled(rq)) 12922 return; 12923 12924 /* 12925 * If runqueue has only one task which used up its slice and 12926 * if the sibling is forced idle, then trigger schedule to 12927 * give forced idle task a chance. 12928 * 12929 * sched_slice() considers only this active rq and it gets the 12930 * whole slice. But during force idle, we have siblings acting 12931 * like a single runqueue and hence we need to consider runnable 12932 * tasks on this CPU and the forced idle CPU. Ideally, we should 12933 * go through the forced idle rq, but that would be a perf hit. 12934 * We can assume that the forced idle CPU has at least 12935 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12936 * if we need to give up the CPU. 12937 */ 12938 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12939 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12940 resched_curr(rq); 12941 } 12942 12943 /* 12944 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12945 */ 12946 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12947 bool forceidle) 12948 { 12949 for_each_sched_entity(se) { 12950 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12951 12952 if (forceidle) { 12953 if (cfs_rq->forceidle_seq == fi_seq) 12954 break; 12955 cfs_rq->forceidle_seq = fi_seq; 12956 } 12957 12958 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12959 } 12960 } 12961 12962 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12963 { 12964 struct sched_entity *se = &p->se; 12965 12966 if (p->sched_class != &fair_sched_class) 12967 return; 12968 12969 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12970 } 12971 12972 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12973 bool in_fi) 12974 { 12975 struct rq *rq = task_rq(a); 12976 const struct sched_entity *sea = &a->se; 12977 const struct sched_entity *seb = &b->se; 12978 struct cfs_rq *cfs_rqa; 12979 struct cfs_rq *cfs_rqb; 12980 s64 delta; 12981 12982 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12983 12984 #ifdef CONFIG_FAIR_GROUP_SCHED 12985 /* 12986 * Find an se in the hierarchy for tasks a and b, such that the se's 12987 * are immediate siblings. 12988 */ 12989 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12990 int sea_depth = sea->depth; 12991 int seb_depth = seb->depth; 12992 12993 if (sea_depth >= seb_depth) 12994 sea = parent_entity(sea); 12995 if (sea_depth <= seb_depth) 12996 seb = parent_entity(seb); 12997 } 12998 12999 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13000 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13001 13002 cfs_rqa = sea->cfs_rq; 13003 cfs_rqb = seb->cfs_rq; 13004 #else 13005 cfs_rqa = &task_rq(a)->cfs; 13006 cfs_rqb = &task_rq(b)->cfs; 13007 #endif 13008 13009 /* 13010 * Find delta after normalizing se's vruntime with its cfs_rq's 13011 * min_vruntime_fi, which would have been updated in prior calls 13012 * to se_fi_update(). 13013 */ 13014 delta = (s64)(sea->vruntime - seb->vruntime) + 13015 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13016 13017 return delta > 0; 13018 } 13019 13020 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13021 { 13022 struct cfs_rq *cfs_rq; 13023 13024 #ifdef CONFIG_FAIR_GROUP_SCHED 13025 cfs_rq = task_group(p)->cfs_rq[cpu]; 13026 #else 13027 cfs_rq = &cpu_rq(cpu)->cfs; 13028 #endif 13029 return throttled_hierarchy(cfs_rq); 13030 } 13031 #else 13032 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13033 #endif 13034 13035 /* 13036 * scheduler tick hitting a task of our scheduling class. 13037 * 13038 * NOTE: This function can be called remotely by the tick offload that 13039 * goes along full dynticks. Therefore no local assumption can be made 13040 * and everything must be accessed through the @rq and @curr passed in 13041 * parameters. 13042 */ 13043 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13044 { 13045 struct cfs_rq *cfs_rq; 13046 struct sched_entity *se = &curr->se; 13047 13048 for_each_sched_entity(se) { 13049 cfs_rq = cfs_rq_of(se); 13050 entity_tick(cfs_rq, se, queued); 13051 } 13052 13053 if (static_branch_unlikely(&sched_numa_balancing)) 13054 task_tick_numa(rq, curr); 13055 13056 update_misfit_status(curr, rq); 13057 check_update_overutilized_status(task_rq(curr)); 13058 13059 task_tick_core(rq, curr); 13060 } 13061 13062 /* 13063 * called on fork with the child task as argument from the parent's context 13064 * - child not yet on the tasklist 13065 * - preemption disabled 13066 */ 13067 static void task_fork_fair(struct task_struct *p) 13068 { 13069 set_task_max_allowed_capacity(p); 13070 } 13071 13072 /* 13073 * Priority of the task has changed. Check to see if we preempt 13074 * the current task. 13075 */ 13076 static void 13077 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13078 { 13079 if (!task_on_rq_queued(p)) 13080 return; 13081 13082 if (rq->cfs.nr_running == 1) 13083 return; 13084 13085 /* 13086 * Reschedule if we are currently running on this runqueue and 13087 * our priority decreased, or if we are not currently running on 13088 * this runqueue and our priority is higher than the current's 13089 */ 13090 if (task_current_donor(rq, p)) { 13091 if (p->prio > oldprio) 13092 resched_curr(rq); 13093 } else 13094 wakeup_preempt(rq, p, 0); 13095 } 13096 13097 #ifdef CONFIG_FAIR_GROUP_SCHED 13098 /* 13099 * Propagate the changes of the sched_entity across the tg tree to make it 13100 * visible to the root 13101 */ 13102 static void propagate_entity_cfs_rq(struct sched_entity *se) 13103 { 13104 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13105 13106 if (cfs_rq_throttled(cfs_rq)) 13107 return; 13108 13109 if (!throttled_hierarchy(cfs_rq)) 13110 list_add_leaf_cfs_rq(cfs_rq); 13111 13112 /* Start to propagate at parent */ 13113 se = se->parent; 13114 13115 for_each_sched_entity(se) { 13116 cfs_rq = cfs_rq_of(se); 13117 13118 update_load_avg(cfs_rq, se, UPDATE_TG); 13119 13120 if (cfs_rq_throttled(cfs_rq)) 13121 break; 13122 13123 if (!throttled_hierarchy(cfs_rq)) 13124 list_add_leaf_cfs_rq(cfs_rq); 13125 } 13126 } 13127 #else 13128 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13129 #endif 13130 13131 static void detach_entity_cfs_rq(struct sched_entity *se) 13132 { 13133 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13134 13135 #ifdef CONFIG_SMP 13136 /* 13137 * In case the task sched_avg hasn't been attached: 13138 * - A forked task which hasn't been woken up by wake_up_new_task(). 13139 * - A task which has been woken up by try_to_wake_up() but is 13140 * waiting for actually being woken up by sched_ttwu_pending(). 13141 */ 13142 if (!se->avg.last_update_time) 13143 return; 13144 #endif 13145 13146 /* Catch up with the cfs_rq and remove our load when we leave */ 13147 update_load_avg(cfs_rq, se, 0); 13148 detach_entity_load_avg(cfs_rq, se); 13149 update_tg_load_avg(cfs_rq); 13150 propagate_entity_cfs_rq(se); 13151 } 13152 13153 static void attach_entity_cfs_rq(struct sched_entity *se) 13154 { 13155 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13156 13157 /* Synchronize entity with its cfs_rq */ 13158 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13159 attach_entity_load_avg(cfs_rq, se); 13160 update_tg_load_avg(cfs_rq); 13161 propagate_entity_cfs_rq(se); 13162 } 13163 13164 static void detach_task_cfs_rq(struct task_struct *p) 13165 { 13166 struct sched_entity *se = &p->se; 13167 13168 detach_entity_cfs_rq(se); 13169 } 13170 13171 static void attach_task_cfs_rq(struct task_struct *p) 13172 { 13173 struct sched_entity *se = &p->se; 13174 13175 attach_entity_cfs_rq(se); 13176 } 13177 13178 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13179 { 13180 detach_task_cfs_rq(p); 13181 } 13182 13183 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13184 { 13185 SCHED_WARN_ON(p->se.sched_delayed); 13186 13187 attach_task_cfs_rq(p); 13188 13189 set_task_max_allowed_capacity(p); 13190 13191 if (task_on_rq_queued(p)) { 13192 /* 13193 * We were most likely switched from sched_rt, so 13194 * kick off the schedule if running, otherwise just see 13195 * if we can still preempt the current task. 13196 */ 13197 if (task_current_donor(rq, p)) 13198 resched_curr(rq); 13199 else 13200 wakeup_preempt(rq, p, 0); 13201 } 13202 } 13203 13204 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13205 { 13206 struct sched_entity *se = &p->se; 13207 13208 #ifdef CONFIG_SMP 13209 if (task_on_rq_queued(p)) { 13210 /* 13211 * Move the next running task to the front of the list, so our 13212 * cfs_tasks list becomes MRU one. 13213 */ 13214 list_move(&se->group_node, &rq->cfs_tasks); 13215 } 13216 #endif 13217 if (!first) 13218 return; 13219 13220 SCHED_WARN_ON(se->sched_delayed); 13221 13222 if (hrtick_enabled_fair(rq)) 13223 hrtick_start_fair(rq, p); 13224 13225 update_misfit_status(p, rq); 13226 sched_fair_update_stop_tick(rq, p); 13227 } 13228 13229 /* 13230 * Account for a task changing its policy or group. 13231 * 13232 * This routine is mostly called to set cfs_rq->curr field when a task 13233 * migrates between groups/classes. 13234 */ 13235 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13236 { 13237 struct sched_entity *se = &p->se; 13238 13239 for_each_sched_entity(se) { 13240 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13241 13242 set_next_entity(cfs_rq, se); 13243 /* ensure bandwidth has been allocated on our new cfs_rq */ 13244 account_cfs_rq_runtime(cfs_rq, 0); 13245 } 13246 13247 __set_next_task_fair(rq, p, first); 13248 } 13249 13250 void init_cfs_rq(struct cfs_rq *cfs_rq) 13251 { 13252 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13253 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13254 #ifdef CONFIG_SMP 13255 raw_spin_lock_init(&cfs_rq->removed.lock); 13256 #endif 13257 } 13258 13259 #ifdef CONFIG_FAIR_GROUP_SCHED 13260 static void task_change_group_fair(struct task_struct *p) 13261 { 13262 /* 13263 * We couldn't detach or attach a forked task which 13264 * hasn't been woken up by wake_up_new_task(). 13265 */ 13266 if (READ_ONCE(p->__state) == TASK_NEW) 13267 return; 13268 13269 detach_task_cfs_rq(p); 13270 13271 #ifdef CONFIG_SMP 13272 /* Tell se's cfs_rq has been changed -- migrated */ 13273 p->se.avg.last_update_time = 0; 13274 #endif 13275 set_task_rq(p, task_cpu(p)); 13276 attach_task_cfs_rq(p); 13277 } 13278 13279 void free_fair_sched_group(struct task_group *tg) 13280 { 13281 int i; 13282 13283 for_each_possible_cpu(i) { 13284 if (tg->cfs_rq) 13285 kfree(tg->cfs_rq[i]); 13286 if (tg->se) 13287 kfree(tg->se[i]); 13288 } 13289 13290 kfree(tg->cfs_rq); 13291 kfree(tg->se); 13292 } 13293 13294 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13295 { 13296 struct sched_entity *se; 13297 struct cfs_rq *cfs_rq; 13298 int i; 13299 13300 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13301 if (!tg->cfs_rq) 13302 goto err; 13303 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13304 if (!tg->se) 13305 goto err; 13306 13307 tg->shares = NICE_0_LOAD; 13308 13309 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13310 13311 for_each_possible_cpu(i) { 13312 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13313 GFP_KERNEL, cpu_to_node(i)); 13314 if (!cfs_rq) 13315 goto err; 13316 13317 se = kzalloc_node(sizeof(struct sched_entity_stats), 13318 GFP_KERNEL, cpu_to_node(i)); 13319 if (!se) 13320 goto err_free_rq; 13321 13322 init_cfs_rq(cfs_rq); 13323 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13324 init_entity_runnable_average(se); 13325 } 13326 13327 return 1; 13328 13329 err_free_rq: 13330 kfree(cfs_rq); 13331 err: 13332 return 0; 13333 } 13334 13335 void online_fair_sched_group(struct task_group *tg) 13336 { 13337 struct sched_entity *se; 13338 struct rq_flags rf; 13339 struct rq *rq; 13340 int i; 13341 13342 for_each_possible_cpu(i) { 13343 rq = cpu_rq(i); 13344 se = tg->se[i]; 13345 rq_lock_irq(rq, &rf); 13346 update_rq_clock(rq); 13347 attach_entity_cfs_rq(se); 13348 sync_throttle(tg, i); 13349 rq_unlock_irq(rq, &rf); 13350 } 13351 } 13352 13353 void unregister_fair_sched_group(struct task_group *tg) 13354 { 13355 int cpu; 13356 13357 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13358 13359 for_each_possible_cpu(cpu) { 13360 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13361 struct sched_entity *se = tg->se[cpu]; 13362 struct rq *rq = cpu_rq(cpu); 13363 13364 if (se) { 13365 if (se->sched_delayed) { 13366 guard(rq_lock_irqsave)(rq); 13367 if (se->sched_delayed) { 13368 update_rq_clock(rq); 13369 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13370 } 13371 list_del_leaf_cfs_rq(cfs_rq); 13372 } 13373 remove_entity_load_avg(se); 13374 } 13375 13376 /* 13377 * Only empty task groups can be destroyed; so we can speculatively 13378 * check on_list without danger of it being re-added. 13379 */ 13380 if (cfs_rq->on_list) { 13381 guard(rq_lock_irqsave)(rq); 13382 list_del_leaf_cfs_rq(cfs_rq); 13383 } 13384 } 13385 } 13386 13387 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13388 struct sched_entity *se, int cpu, 13389 struct sched_entity *parent) 13390 { 13391 struct rq *rq = cpu_rq(cpu); 13392 13393 cfs_rq->tg = tg; 13394 cfs_rq->rq = rq; 13395 init_cfs_rq_runtime(cfs_rq); 13396 13397 tg->cfs_rq[cpu] = cfs_rq; 13398 tg->se[cpu] = se; 13399 13400 /* se could be NULL for root_task_group */ 13401 if (!se) 13402 return; 13403 13404 if (!parent) { 13405 se->cfs_rq = &rq->cfs; 13406 se->depth = 0; 13407 } else { 13408 se->cfs_rq = parent->my_q; 13409 se->depth = parent->depth + 1; 13410 } 13411 13412 se->my_q = cfs_rq; 13413 /* guarantee group entities always have weight */ 13414 update_load_set(&se->load, NICE_0_LOAD); 13415 se->parent = parent; 13416 } 13417 13418 static DEFINE_MUTEX(shares_mutex); 13419 13420 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13421 { 13422 int i; 13423 13424 lockdep_assert_held(&shares_mutex); 13425 13426 /* 13427 * We can't change the weight of the root cgroup. 13428 */ 13429 if (!tg->se[0]) 13430 return -EINVAL; 13431 13432 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13433 13434 if (tg->shares == shares) 13435 return 0; 13436 13437 tg->shares = shares; 13438 for_each_possible_cpu(i) { 13439 struct rq *rq = cpu_rq(i); 13440 struct sched_entity *se = tg->se[i]; 13441 struct rq_flags rf; 13442 13443 /* Propagate contribution to hierarchy */ 13444 rq_lock_irqsave(rq, &rf); 13445 update_rq_clock(rq); 13446 for_each_sched_entity(se) { 13447 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13448 update_cfs_group(se); 13449 } 13450 rq_unlock_irqrestore(rq, &rf); 13451 } 13452 13453 return 0; 13454 } 13455 13456 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13457 { 13458 int ret; 13459 13460 mutex_lock(&shares_mutex); 13461 if (tg_is_idle(tg)) 13462 ret = -EINVAL; 13463 else 13464 ret = __sched_group_set_shares(tg, shares); 13465 mutex_unlock(&shares_mutex); 13466 13467 return ret; 13468 } 13469 13470 int sched_group_set_idle(struct task_group *tg, long idle) 13471 { 13472 int i; 13473 13474 if (tg == &root_task_group) 13475 return -EINVAL; 13476 13477 if (idle < 0 || idle > 1) 13478 return -EINVAL; 13479 13480 mutex_lock(&shares_mutex); 13481 13482 if (tg->idle == idle) { 13483 mutex_unlock(&shares_mutex); 13484 return 0; 13485 } 13486 13487 tg->idle = idle; 13488 13489 for_each_possible_cpu(i) { 13490 struct rq *rq = cpu_rq(i); 13491 struct sched_entity *se = tg->se[i]; 13492 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13493 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13494 long idle_task_delta; 13495 struct rq_flags rf; 13496 13497 rq_lock_irqsave(rq, &rf); 13498 13499 grp_cfs_rq->idle = idle; 13500 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13501 goto next_cpu; 13502 13503 if (se->on_rq) { 13504 parent_cfs_rq = cfs_rq_of(se); 13505 if (cfs_rq_is_idle(grp_cfs_rq)) 13506 parent_cfs_rq->idle_nr_running++; 13507 else 13508 parent_cfs_rq->idle_nr_running--; 13509 } 13510 13511 idle_task_delta = grp_cfs_rq->h_nr_running - 13512 grp_cfs_rq->idle_h_nr_running; 13513 if (!cfs_rq_is_idle(grp_cfs_rq)) 13514 idle_task_delta *= -1; 13515 13516 for_each_sched_entity(se) { 13517 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13518 13519 if (!se->on_rq) 13520 break; 13521 13522 cfs_rq->idle_h_nr_running += idle_task_delta; 13523 13524 /* Already accounted at parent level and above. */ 13525 if (cfs_rq_is_idle(cfs_rq)) 13526 break; 13527 } 13528 13529 next_cpu: 13530 rq_unlock_irqrestore(rq, &rf); 13531 } 13532 13533 /* Idle groups have minimum weight. */ 13534 if (tg_is_idle(tg)) 13535 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13536 else 13537 __sched_group_set_shares(tg, NICE_0_LOAD); 13538 13539 mutex_unlock(&shares_mutex); 13540 return 0; 13541 } 13542 13543 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13544 13545 13546 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13547 { 13548 struct sched_entity *se = &task->se; 13549 unsigned int rr_interval = 0; 13550 13551 /* 13552 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13553 * idle runqueue: 13554 */ 13555 if (rq->cfs.load.weight) 13556 rr_interval = NS_TO_JIFFIES(se->slice); 13557 13558 return rr_interval; 13559 } 13560 13561 /* 13562 * All the scheduling class methods: 13563 */ 13564 DEFINE_SCHED_CLASS(fair) = { 13565 13566 .enqueue_task = enqueue_task_fair, 13567 .dequeue_task = dequeue_task_fair, 13568 .yield_task = yield_task_fair, 13569 .yield_to_task = yield_to_task_fair, 13570 13571 .wakeup_preempt = check_preempt_wakeup_fair, 13572 13573 .pick_task = pick_task_fair, 13574 .pick_next_task = __pick_next_task_fair, 13575 .put_prev_task = put_prev_task_fair, 13576 .set_next_task = set_next_task_fair, 13577 13578 #ifdef CONFIG_SMP 13579 .balance = balance_fair, 13580 .select_task_rq = select_task_rq_fair, 13581 .migrate_task_rq = migrate_task_rq_fair, 13582 13583 .rq_online = rq_online_fair, 13584 .rq_offline = rq_offline_fair, 13585 13586 .task_dead = task_dead_fair, 13587 .set_cpus_allowed = set_cpus_allowed_fair, 13588 #endif 13589 13590 .task_tick = task_tick_fair, 13591 .task_fork = task_fork_fair, 13592 13593 .reweight_task = reweight_task_fair, 13594 .prio_changed = prio_changed_fair, 13595 .switched_from = switched_from_fair, 13596 .switched_to = switched_to_fair, 13597 13598 .get_rr_interval = get_rr_interval_fair, 13599 13600 .update_curr = update_curr_fair, 13601 13602 #ifdef CONFIG_FAIR_GROUP_SCHED 13603 .task_change_group = task_change_group_fair, 13604 #endif 13605 13606 #ifdef CONFIG_SCHED_CORE 13607 .task_is_throttled = task_is_throttled_fair, 13608 #endif 13609 13610 #ifdef CONFIG_UCLAMP_TASK 13611 .uclamp_enabled = 1, 13612 #endif 13613 }; 13614 13615 #ifdef CONFIG_SCHED_DEBUG 13616 void print_cfs_stats(struct seq_file *m, int cpu) 13617 { 13618 struct cfs_rq *cfs_rq, *pos; 13619 13620 rcu_read_lock(); 13621 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13622 print_cfs_rq(m, cpu, cfs_rq); 13623 rcu_read_unlock(); 13624 } 13625 13626 #ifdef CONFIG_NUMA_BALANCING 13627 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13628 { 13629 int node; 13630 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13631 struct numa_group *ng; 13632 13633 rcu_read_lock(); 13634 ng = rcu_dereference(p->numa_group); 13635 for_each_online_node(node) { 13636 if (p->numa_faults) { 13637 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13638 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13639 } 13640 if (ng) { 13641 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13642 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13643 } 13644 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13645 } 13646 rcu_read_unlock(); 13647 } 13648 #endif /* CONFIG_NUMA_BALANCING */ 13649 #endif /* CONFIG_SCHED_DEBUG */ 13650 13651 __init void init_sched_fair_class(void) 13652 { 13653 #ifdef CONFIG_SMP 13654 int i; 13655 13656 for_each_possible_cpu(i) { 13657 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13658 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13659 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13660 GFP_KERNEL, cpu_to_node(i)); 13661 13662 #ifdef CONFIG_CFS_BANDWIDTH 13663 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13664 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13665 #endif 13666 } 13667 13668 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13669 13670 #ifdef CONFIG_NO_HZ_COMMON 13671 nohz.next_balance = jiffies; 13672 nohz.next_blocked = jiffies; 13673 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13674 #endif 13675 #endif /* SMP */ 13676 13677 } 13678