xref: /linux/kernel/sched/fair.c (revision 7e611710acf966df1e14bcf4e067385e38e549a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41 
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52 
53 #include <asm/switch_to.h>
54 
55 #include <uapi/linux/sched/types.h>
56 
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60 
61 /*
62  * The initial- and re-scaling of tunables is configurable
63  *
64  * Options are:
65  *
66  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
67  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69  *
70  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71  */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73 
74 /*
75  * Minimal preemption granularity for CPU-bound tasks:
76  *
77  * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
78  */
79 unsigned int sysctl_sched_base_slice			= 700000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice	= 700000ULL;
81 
82 __read_mostly unsigned int sysctl_sched_migration_cost	= 500000UL;
83 
84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 	return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90 
91 /*
92  * For asym packing, by default the lower numbered CPU has higher priority.
93  */
94 int __weak arch_asym_cpu_priority(int cpu)
95 {
96 	return -cpu;
97 }
98 
99 /*
100  * The margin used when comparing utilization with CPU capacity.
101  *
102  * (default: ~20%)
103  */
104 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
105 
106 /*
107  * The margin used when comparing CPU capacities.
108  * is 'cap1' noticeably greater than 'cap2'
109  *
110  * (default: ~5%)
111  */
112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
113 
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117  * each time a cfs_rq requests quota.
118  *
119  * Note: in the case that the slice exceeds the runtime remaining (either due
120  * to consumption or the quota being specified to be smaller than the slice)
121  * we will always only issue the remaining available time.
122  *
123  * (default: 5 msec, units: microseconds)
124  */
125 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
126 #endif
127 
128 #ifdef CONFIG_NUMA_BALANCING
129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
131 #endif
132 
133 #ifdef CONFIG_SYSCTL
134 static const struct ctl_table sched_fair_sysctls[] = {
135 #ifdef CONFIG_CFS_BANDWIDTH
136 	{
137 		.procname       = "sched_cfs_bandwidth_slice_us",
138 		.data           = &sysctl_sched_cfs_bandwidth_slice,
139 		.maxlen         = sizeof(unsigned int),
140 		.mode           = 0644,
141 		.proc_handler   = proc_dointvec_minmax,
142 		.extra1         = SYSCTL_ONE,
143 	},
144 #endif
145 #ifdef CONFIG_NUMA_BALANCING
146 	{
147 		.procname	= "numa_balancing_promote_rate_limit_MBps",
148 		.data		= &sysctl_numa_balancing_promote_rate_limit,
149 		.maxlen		= sizeof(unsigned int),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 	},
154 #endif /* CONFIG_NUMA_BALANCING */
155 };
156 
157 static int __init sched_fair_sysctl_init(void)
158 {
159 	register_sysctl_init("kernel", sched_fair_sysctls);
160 	return 0;
161 }
162 late_initcall(sched_fair_sysctl_init);
163 #endif /* CONFIG_SYSCTL */
164 
165 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
166 {
167 	lw->weight += inc;
168 	lw->inv_weight = 0;
169 }
170 
171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
172 {
173 	lw->weight -= dec;
174 	lw->inv_weight = 0;
175 }
176 
177 static inline void update_load_set(struct load_weight *lw, unsigned long w)
178 {
179 	lw->weight = w;
180 	lw->inv_weight = 0;
181 }
182 
183 /*
184  * Increase the granularity value when there are more CPUs,
185  * because with more CPUs the 'effective latency' as visible
186  * to users decreases. But the relationship is not linear,
187  * so pick a second-best guess by going with the log2 of the
188  * number of CPUs.
189  *
190  * This idea comes from the SD scheduler of Con Kolivas:
191  */
192 static unsigned int get_update_sysctl_factor(void)
193 {
194 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
195 	unsigned int factor;
196 
197 	switch (sysctl_sched_tunable_scaling) {
198 	case SCHED_TUNABLESCALING_NONE:
199 		factor = 1;
200 		break;
201 	case SCHED_TUNABLESCALING_LINEAR:
202 		factor = cpus;
203 		break;
204 	case SCHED_TUNABLESCALING_LOG:
205 	default:
206 		factor = 1 + ilog2(cpus);
207 		break;
208 	}
209 
210 	return factor;
211 }
212 
213 static void update_sysctl(void)
214 {
215 	unsigned int factor = get_update_sysctl_factor();
216 
217 #define SET_SYSCTL(name) \
218 	(sysctl_##name = (factor) * normalized_sysctl_##name)
219 	SET_SYSCTL(sched_base_slice);
220 #undef SET_SYSCTL
221 }
222 
223 void __init sched_init_granularity(void)
224 {
225 	update_sysctl();
226 }
227 
228 #define WMULT_CONST	(~0U)
229 #define WMULT_SHIFT	32
230 
231 static void __update_inv_weight(struct load_weight *lw)
232 {
233 	unsigned long w;
234 
235 	if (likely(lw->inv_weight))
236 		return;
237 
238 	w = scale_load_down(lw->weight);
239 
240 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
241 		lw->inv_weight = 1;
242 	else if (unlikely(!w))
243 		lw->inv_weight = WMULT_CONST;
244 	else
245 		lw->inv_weight = WMULT_CONST / w;
246 }
247 
248 /*
249  * delta_exec * weight / lw.weight
250  *   OR
251  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252  *
253  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
254  * we're guaranteed shift stays positive because inv_weight is guaranteed to
255  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256  *
257  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
258  * weight/lw.weight <= 1, and therefore our shift will also be positive.
259  */
260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
261 {
262 	u64 fact = scale_load_down(weight);
263 	u32 fact_hi = (u32)(fact >> 32);
264 	int shift = WMULT_SHIFT;
265 	int fs;
266 
267 	__update_inv_weight(lw);
268 
269 	if (unlikely(fact_hi)) {
270 		fs = fls(fact_hi);
271 		shift -= fs;
272 		fact >>= fs;
273 	}
274 
275 	fact = mul_u32_u32(fact, lw->inv_weight);
276 
277 	fact_hi = (u32)(fact >> 32);
278 	if (fact_hi) {
279 		fs = fls(fact_hi);
280 		shift -= fs;
281 		fact >>= fs;
282 	}
283 
284 	return mul_u64_u32_shr(delta_exec, fact, shift);
285 }
286 
287 /*
288  * delta /= w
289  */
290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
291 {
292 	if (unlikely(se->load.weight != NICE_0_LOAD))
293 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
294 
295 	return delta;
296 }
297 
298 const struct sched_class fair_sched_class;
299 
300 /**************************************************************
301  * CFS operations on generic schedulable entities:
302  */
303 
304 #ifdef CONFIG_FAIR_GROUP_SCHED
305 
306 /* Walk up scheduling entities hierarchy */
307 #define for_each_sched_entity(se) \
308 		for (; se; se = se->parent)
309 
310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 	struct rq *rq = rq_of(cfs_rq);
313 	int cpu = cpu_of(rq);
314 
315 	if (cfs_rq->on_list)
316 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
317 
318 	cfs_rq->on_list = 1;
319 
320 	/*
321 	 * Ensure we either appear before our parent (if already
322 	 * enqueued) or force our parent to appear after us when it is
323 	 * enqueued. The fact that we always enqueue bottom-up
324 	 * reduces this to two cases and a special case for the root
325 	 * cfs_rq. Furthermore, it also means that we will always reset
326 	 * tmp_alone_branch either when the branch is connected
327 	 * to a tree or when we reach the top of the tree
328 	 */
329 	if (cfs_rq->tg->parent &&
330 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
331 		/*
332 		 * If parent is already on the list, we add the child
333 		 * just before. Thanks to circular linked property of
334 		 * the list, this means to put the child at the tail
335 		 * of the list that starts by parent.
336 		 */
337 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
338 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
339 		/*
340 		 * The branch is now connected to its tree so we can
341 		 * reset tmp_alone_branch to the beginning of the
342 		 * list.
343 		 */
344 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 		return true;
346 	}
347 
348 	if (!cfs_rq->tg->parent) {
349 		/*
350 		 * cfs rq without parent should be put
351 		 * at the tail of the list.
352 		 */
353 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
354 			&rq->leaf_cfs_rq_list);
355 		/*
356 		 * We have reach the top of a tree so we can reset
357 		 * tmp_alone_branch to the beginning of the list.
358 		 */
359 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
360 		return true;
361 	}
362 
363 	/*
364 	 * The parent has not already been added so we want to
365 	 * make sure that it will be put after us.
366 	 * tmp_alone_branch points to the begin of the branch
367 	 * where we will add parent.
368 	 */
369 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
370 	/*
371 	 * update tmp_alone_branch to points to the new begin
372 	 * of the branch
373 	 */
374 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
375 	return false;
376 }
377 
378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
379 {
380 	if (cfs_rq->on_list) {
381 		struct rq *rq = rq_of(cfs_rq);
382 
383 		/*
384 		 * With cfs_rq being unthrottled/throttled during an enqueue,
385 		 * it can happen the tmp_alone_branch points to the leaf that
386 		 * we finally want to delete. In this case, tmp_alone_branch moves
387 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
388 		 * at the end of the enqueue.
389 		 */
390 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
391 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
392 
393 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
394 		cfs_rq->on_list = 0;
395 	}
396 }
397 
398 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
399 {
400 	WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
401 }
402 
403 /* Iterate through all leaf cfs_rq's on a runqueue */
404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
405 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
406 				 leaf_cfs_rq_list)
407 
408 /* Do the two (enqueued) entities belong to the same group ? */
409 static inline struct cfs_rq *
410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 	if (se->cfs_rq == pse->cfs_rq)
413 		return se->cfs_rq;
414 
415 	return NULL;
416 }
417 
418 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
419 {
420 	return se->parent;
421 }
422 
423 static void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 	int se_depth, pse_depth;
427 
428 	/*
429 	 * preemption test can be made between sibling entities who are in the
430 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
431 	 * both tasks until we find their ancestors who are siblings of common
432 	 * parent.
433 	 */
434 
435 	/* First walk up until both entities are at same depth */
436 	se_depth = (*se)->depth;
437 	pse_depth = (*pse)->depth;
438 
439 	while (se_depth > pse_depth) {
440 		se_depth--;
441 		*se = parent_entity(*se);
442 	}
443 
444 	while (pse_depth > se_depth) {
445 		pse_depth--;
446 		*pse = parent_entity(*pse);
447 	}
448 
449 	while (!is_same_group(*se, *pse)) {
450 		*se = parent_entity(*se);
451 		*pse = parent_entity(*pse);
452 	}
453 }
454 
455 static int tg_is_idle(struct task_group *tg)
456 {
457 	return tg->idle > 0;
458 }
459 
460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
461 {
462 	return cfs_rq->idle > 0;
463 }
464 
465 static int se_is_idle(struct sched_entity *se)
466 {
467 	if (entity_is_task(se))
468 		return task_has_idle_policy(task_of(se));
469 	return cfs_rq_is_idle(group_cfs_rq(se));
470 }
471 
472 #else /* !CONFIG_FAIR_GROUP_SCHED: */
473 
474 #define for_each_sched_entity(se) \
475 		for (; se; se = NULL)
476 
477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
478 {
479 	return true;
480 }
481 
482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
483 {
484 }
485 
486 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
487 {
488 }
489 
490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
491 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492 
493 static inline struct sched_entity *parent_entity(struct sched_entity *se)
494 {
495 	return NULL;
496 }
497 
498 static inline void
499 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
500 {
501 }
502 
503 static inline int tg_is_idle(struct task_group *tg)
504 {
505 	return 0;
506 }
507 
508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
509 {
510 	return 0;
511 }
512 
513 static int se_is_idle(struct sched_entity *se)
514 {
515 	return task_has_idle_policy(task_of(se));
516 }
517 
518 #endif /* !CONFIG_FAIR_GROUP_SCHED */
519 
520 static __always_inline
521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
522 
523 /**************************************************************
524  * Scheduling class tree data structure manipulation methods:
525  */
526 
527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
528 {
529 	s64 delta = (s64)(vruntime - max_vruntime);
530 	if (delta > 0)
531 		max_vruntime = vruntime;
532 
533 	return max_vruntime;
534 }
535 
536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
537 {
538 	s64 delta = (s64)(vruntime - min_vruntime);
539 	if (delta < 0)
540 		min_vruntime = vruntime;
541 
542 	return min_vruntime;
543 }
544 
545 static inline bool entity_before(const struct sched_entity *a,
546 				 const struct sched_entity *b)
547 {
548 	/*
549 	 * Tiebreak on vruntime seems unnecessary since it can
550 	 * hardly happen.
551 	 */
552 	return (s64)(a->deadline - b->deadline) < 0;
553 }
554 
555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 {
557 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
558 }
559 
560 #define __node_2_se(node) \
561 	rb_entry((node), struct sched_entity, run_node)
562 
563 /*
564  * Compute virtual time from the per-task service numbers:
565  *
566  * Fair schedulers conserve lag:
567  *
568  *   \Sum lag_i = 0
569  *
570  * Where lag_i is given by:
571  *
572  *   lag_i = S - s_i = w_i * (V - v_i)
573  *
574  * Where S is the ideal service time and V is it's virtual time counterpart.
575  * Therefore:
576  *
577  *   \Sum lag_i = 0
578  *   \Sum w_i * (V - v_i) = 0
579  *   \Sum w_i * V - w_i * v_i = 0
580  *
581  * From which we can solve an expression for V in v_i (which we have in
582  * se->vruntime):
583  *
584  *       \Sum v_i * w_i   \Sum v_i * w_i
585  *   V = -------------- = --------------
586  *          \Sum w_i            W
587  *
588  * Specifically, this is the weighted average of all entity virtual runtimes.
589  *
590  * [[ NOTE: this is only equal to the ideal scheduler under the condition
591  *          that join/leave operations happen at lag_i = 0, otherwise the
592  *          virtual time has non-contiguous motion equivalent to:
593  *
594  *	      V +-= lag_i / W
595  *
596  *	    Also see the comment in place_entity() that deals with this. ]]
597  *
598  * However, since v_i is u64, and the multiplication could easily overflow
599  * transform it into a relative form that uses smaller quantities:
600  *
601  * Substitute: v_i == (v_i - v0) + v0
602  *
603  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
604  * V = ---------------------------- = --------------------- + v0
605  *                  W                            W
606  *
607  * Which we track using:
608  *
609  *                    v0 := cfs_rq->min_vruntime
610  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
611  *              \Sum w_i := cfs_rq->avg_load
612  *
613  * Since min_vruntime is a monotonic increasing variable that closely tracks
614  * the per-task service, these deltas: (v_i - v), will be in the order of the
615  * maximal (virtual) lag induced in the system due to quantisation.
616  *
617  * Also, we use scale_load_down() to reduce the size.
618  *
619  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
620  */
621 static void
622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 {
624 	unsigned long weight = scale_load_down(se->load.weight);
625 	s64 key = entity_key(cfs_rq, se);
626 
627 	cfs_rq->avg_vruntime += key * weight;
628 	cfs_rq->avg_load += weight;
629 }
630 
631 static void
632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 	unsigned long weight = scale_load_down(se->load.weight);
635 	s64 key = entity_key(cfs_rq, se);
636 
637 	cfs_rq->avg_vruntime -= key * weight;
638 	cfs_rq->avg_load -= weight;
639 }
640 
641 static inline
642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
643 {
644 	/*
645 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 	 */
647 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
648 }
649 
650 /*
651  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
652  * For this to be so, the result of this function must have a left bias.
653  */
654 u64 avg_vruntime(struct cfs_rq *cfs_rq)
655 {
656 	struct sched_entity *curr = cfs_rq->curr;
657 	s64 avg = cfs_rq->avg_vruntime;
658 	long load = cfs_rq->avg_load;
659 
660 	if (curr && curr->on_rq) {
661 		unsigned long weight = scale_load_down(curr->load.weight);
662 
663 		avg += entity_key(cfs_rq, curr) * weight;
664 		load += weight;
665 	}
666 
667 	if (load) {
668 		/* sign flips effective floor / ceiling */
669 		if (avg < 0)
670 			avg -= (load - 1);
671 		avg = div_s64(avg, load);
672 	}
673 
674 	return cfs_rq->min_vruntime + avg;
675 }
676 
677 /*
678  * lag_i = S - s_i = w_i * (V - v_i)
679  *
680  * However, since V is approximated by the weighted average of all entities it
681  * is possible -- by addition/removal/reweight to the tree -- to move V around
682  * and end up with a larger lag than we started with.
683  *
684  * Limit this to either double the slice length with a minimum of TICK_NSEC
685  * since that is the timing granularity.
686  *
687  * EEVDF gives the following limit for a steady state system:
688  *
689  *   -r_max < lag < max(r_max, q)
690  *
691  * XXX could add max_slice to the augmented data to track this.
692  */
693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 	s64 vlag, limit;
696 
697 	WARN_ON_ONCE(!se->on_rq);
698 
699 	vlag = avg_vruntime(cfs_rq) - se->vruntime;
700 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
701 
702 	se->vlag = clamp(vlag, -limit, limit);
703 }
704 
705 /*
706  * Entity is eligible once it received less service than it ought to have,
707  * eg. lag >= 0.
708  *
709  * lag_i = S - s_i = w_i*(V - v_i)
710  *
711  * lag_i >= 0 -> V >= v_i
712  *
713  *     \Sum (v_i - v)*w_i
714  * V = ------------------ + v
715  *          \Sum w_i
716  *
717  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
718  *
719  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
720  *       to the loss in precision caused by the division.
721  */
722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
723 {
724 	struct sched_entity *curr = cfs_rq->curr;
725 	s64 avg = cfs_rq->avg_vruntime;
726 	long load = cfs_rq->avg_load;
727 
728 	if (curr && curr->on_rq) {
729 		unsigned long weight = scale_load_down(curr->load.weight);
730 
731 		avg += entity_key(cfs_rq, curr) * weight;
732 		load += weight;
733 	}
734 
735 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
736 }
737 
738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 	return vruntime_eligible(cfs_rq, se->vruntime);
741 }
742 
743 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
744 {
745 	u64 min_vruntime = cfs_rq->min_vruntime;
746 	/*
747 	 * open coded max_vruntime() to allow updating avg_vruntime
748 	 */
749 	s64 delta = (s64)(vruntime - min_vruntime);
750 	if (delta > 0) {
751 		avg_vruntime_update(cfs_rq, delta);
752 		min_vruntime = vruntime;
753 	}
754 	return min_vruntime;
755 }
756 
757 static void update_min_vruntime(struct cfs_rq *cfs_rq)
758 {
759 	struct sched_entity *se = __pick_root_entity(cfs_rq);
760 	struct sched_entity *curr = cfs_rq->curr;
761 	u64 vruntime = cfs_rq->min_vruntime;
762 
763 	if (curr) {
764 		if (curr->on_rq)
765 			vruntime = curr->vruntime;
766 		else
767 			curr = NULL;
768 	}
769 
770 	if (se) {
771 		if (!curr)
772 			vruntime = se->min_vruntime;
773 		else
774 			vruntime = min_vruntime(vruntime, se->min_vruntime);
775 	}
776 
777 	/* ensure we never gain time by being placed backwards. */
778 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
779 }
780 
781 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
782 {
783 	struct sched_entity *root = __pick_root_entity(cfs_rq);
784 	struct sched_entity *curr = cfs_rq->curr;
785 	u64 min_slice = ~0ULL;
786 
787 	if (curr && curr->on_rq)
788 		min_slice = curr->slice;
789 
790 	if (root)
791 		min_slice = min(min_slice, root->min_slice);
792 
793 	return min_slice;
794 }
795 
796 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
797 {
798 	return entity_before(__node_2_se(a), __node_2_se(b));
799 }
800 
801 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
802 
803 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
804 {
805 	if (node) {
806 		struct sched_entity *rse = __node_2_se(node);
807 		if (vruntime_gt(min_vruntime, se, rse))
808 			se->min_vruntime = rse->min_vruntime;
809 	}
810 }
811 
812 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
813 {
814 	if (node) {
815 		struct sched_entity *rse = __node_2_se(node);
816 		if (rse->min_slice < se->min_slice)
817 			se->min_slice = rse->min_slice;
818 	}
819 }
820 
821 /*
822  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
823  */
824 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
825 {
826 	u64 old_min_vruntime = se->min_vruntime;
827 	u64 old_min_slice = se->min_slice;
828 	struct rb_node *node = &se->run_node;
829 
830 	se->min_vruntime = se->vruntime;
831 	__min_vruntime_update(se, node->rb_right);
832 	__min_vruntime_update(se, node->rb_left);
833 
834 	se->min_slice = se->slice;
835 	__min_slice_update(se, node->rb_right);
836 	__min_slice_update(se, node->rb_left);
837 
838 	return se->min_vruntime == old_min_vruntime &&
839 	       se->min_slice == old_min_slice;
840 }
841 
842 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
843 		     run_node, min_vruntime, min_vruntime_update);
844 
845 /*
846  * Enqueue an entity into the rb-tree:
847  */
848 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
849 {
850 	avg_vruntime_add(cfs_rq, se);
851 	se->min_vruntime = se->vruntime;
852 	se->min_slice = se->slice;
853 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
854 				__entity_less, &min_vruntime_cb);
855 }
856 
857 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
858 {
859 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
860 				  &min_vruntime_cb);
861 	avg_vruntime_sub(cfs_rq, se);
862 }
863 
864 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
865 {
866 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
867 
868 	if (!root)
869 		return NULL;
870 
871 	return __node_2_se(root);
872 }
873 
874 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
875 {
876 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
877 
878 	if (!left)
879 		return NULL;
880 
881 	return __node_2_se(left);
882 }
883 
884 /*
885  * HACK, stash a copy of deadline at the point of pick in vlag,
886  * which isn't used until dequeue.
887  */
888 static inline void set_protect_slice(struct sched_entity *se)
889 {
890 	se->vlag = se->deadline;
891 }
892 
893 static inline bool protect_slice(struct sched_entity *se)
894 {
895 	return se->vlag == se->deadline;
896 }
897 
898 static inline void cancel_protect_slice(struct sched_entity *se)
899 {
900 	if (protect_slice(se))
901 		se->vlag = se->deadline + 1;
902 }
903 
904 /*
905  * Earliest Eligible Virtual Deadline First
906  *
907  * In order to provide latency guarantees for different request sizes
908  * EEVDF selects the best runnable task from two criteria:
909  *
910  *  1) the task must be eligible (must be owed service)
911  *
912  *  2) from those tasks that meet 1), we select the one
913  *     with the earliest virtual deadline.
914  *
915  * We can do this in O(log n) time due to an augmented RB-tree. The
916  * tree keeps the entries sorted on deadline, but also functions as a
917  * heap based on the vruntime by keeping:
918  *
919  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
920  *
921  * Which allows tree pruning through eligibility.
922  */
923 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
924 {
925 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
926 	struct sched_entity *se = __pick_first_entity(cfs_rq);
927 	struct sched_entity *curr = cfs_rq->curr;
928 	struct sched_entity *best = NULL;
929 
930 	/*
931 	 * We can safely skip eligibility check if there is only one entity
932 	 * in this cfs_rq, saving some cycles.
933 	 */
934 	if (cfs_rq->nr_queued == 1)
935 		return curr && curr->on_rq ? curr : se;
936 
937 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
938 		curr = NULL;
939 
940 	if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr))
941 		return curr;
942 
943 	/* Pick the leftmost entity if it's eligible */
944 	if (se && entity_eligible(cfs_rq, se)) {
945 		best = se;
946 		goto found;
947 	}
948 
949 	/* Heap search for the EEVD entity */
950 	while (node) {
951 		struct rb_node *left = node->rb_left;
952 
953 		/*
954 		 * Eligible entities in left subtree are always better
955 		 * choices, since they have earlier deadlines.
956 		 */
957 		if (left && vruntime_eligible(cfs_rq,
958 					__node_2_se(left)->min_vruntime)) {
959 			node = left;
960 			continue;
961 		}
962 
963 		se = __node_2_se(node);
964 
965 		/*
966 		 * The left subtree either is empty or has no eligible
967 		 * entity, so check the current node since it is the one
968 		 * with earliest deadline that might be eligible.
969 		 */
970 		if (entity_eligible(cfs_rq, se)) {
971 			best = se;
972 			break;
973 		}
974 
975 		node = node->rb_right;
976 	}
977 found:
978 	if (!best || (curr && entity_before(curr, best)))
979 		best = curr;
980 
981 	return best;
982 }
983 
984 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
985 {
986 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
987 
988 	if (!last)
989 		return NULL;
990 
991 	return __node_2_se(last);
992 }
993 
994 /**************************************************************
995  * Scheduling class statistics methods:
996  */
997 int sched_update_scaling(void)
998 {
999 	unsigned int factor = get_update_sysctl_factor();
1000 
1001 #define WRT_SYSCTL(name) \
1002 	(normalized_sysctl_##name = sysctl_##name / (factor))
1003 	WRT_SYSCTL(sched_base_slice);
1004 #undef WRT_SYSCTL
1005 
1006 	return 0;
1007 }
1008 
1009 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1010 
1011 /*
1012  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1013  * this is probably good enough.
1014  */
1015 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1016 {
1017 	if ((s64)(se->vruntime - se->deadline) < 0)
1018 		return false;
1019 
1020 	/*
1021 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1022 	 * nice) while the request time r_i is determined by
1023 	 * sysctl_sched_base_slice.
1024 	 */
1025 	if (!se->custom_slice)
1026 		se->slice = sysctl_sched_base_slice;
1027 
1028 	/*
1029 	 * EEVDF: vd_i = ve_i + r_i / w_i
1030 	 */
1031 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1032 
1033 	/*
1034 	 * The task has consumed its request, reschedule.
1035 	 */
1036 	return true;
1037 }
1038 
1039 #include "pelt.h"
1040 
1041 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1042 static unsigned long task_h_load(struct task_struct *p);
1043 static unsigned long capacity_of(int cpu);
1044 
1045 /* Give new sched_entity start runnable values to heavy its load in infant time */
1046 void init_entity_runnable_average(struct sched_entity *se)
1047 {
1048 	struct sched_avg *sa = &se->avg;
1049 
1050 	memset(sa, 0, sizeof(*sa));
1051 
1052 	/*
1053 	 * Tasks are initialized with full load to be seen as heavy tasks until
1054 	 * they get a chance to stabilize to their real load level.
1055 	 * Group entities are initialized with zero load to reflect the fact that
1056 	 * nothing has been attached to the task group yet.
1057 	 */
1058 	if (entity_is_task(se))
1059 		sa->load_avg = scale_load_down(se->load.weight);
1060 
1061 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1062 }
1063 
1064 /*
1065  * With new tasks being created, their initial util_avgs are extrapolated
1066  * based on the cfs_rq's current util_avg:
1067  *
1068  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1069  *		* se_weight(se)
1070  *
1071  * However, in many cases, the above util_avg does not give a desired
1072  * value. Moreover, the sum of the util_avgs may be divergent, such
1073  * as when the series is a harmonic series.
1074  *
1075  * To solve this problem, we also cap the util_avg of successive tasks to
1076  * only 1/2 of the left utilization budget:
1077  *
1078  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1079  *
1080  * where n denotes the nth task and cpu_scale the CPU capacity.
1081  *
1082  * For example, for a CPU with 1024 of capacity, a simplest series from
1083  * the beginning would be like:
1084  *
1085  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1086  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1087  *
1088  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1089  * if util_avg > util_avg_cap.
1090  */
1091 void post_init_entity_util_avg(struct task_struct *p)
1092 {
1093 	struct sched_entity *se = &p->se;
1094 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1095 	struct sched_avg *sa = &se->avg;
1096 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1097 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1098 
1099 	if (p->sched_class != &fair_sched_class) {
1100 		/*
1101 		 * For !fair tasks do:
1102 		 *
1103 		update_cfs_rq_load_avg(now, cfs_rq);
1104 		attach_entity_load_avg(cfs_rq, se);
1105 		switched_from_fair(rq, p);
1106 		 *
1107 		 * such that the next switched_to_fair() has the
1108 		 * expected state.
1109 		 */
1110 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1111 		return;
1112 	}
1113 
1114 	if (cap > 0) {
1115 		if (cfs_rq->avg.util_avg != 0) {
1116 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1117 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1118 
1119 			if (sa->util_avg > cap)
1120 				sa->util_avg = cap;
1121 		} else {
1122 			sa->util_avg = cap;
1123 		}
1124 	}
1125 
1126 	sa->runnable_avg = sa->util_avg;
1127 }
1128 
1129 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1130 {
1131 	u64 now = rq_clock_task(rq);
1132 	s64 delta_exec;
1133 
1134 	delta_exec = now - curr->exec_start;
1135 	if (unlikely(delta_exec <= 0))
1136 		return delta_exec;
1137 
1138 	curr->exec_start = now;
1139 	curr->sum_exec_runtime += delta_exec;
1140 
1141 	if (schedstat_enabled()) {
1142 		struct sched_statistics *stats;
1143 
1144 		stats = __schedstats_from_se(curr);
1145 		__schedstat_set(stats->exec_max,
1146 				max(delta_exec, stats->exec_max));
1147 	}
1148 
1149 	return delta_exec;
1150 }
1151 
1152 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1153 {
1154 	trace_sched_stat_runtime(p, delta_exec);
1155 	account_group_exec_runtime(p, delta_exec);
1156 	cgroup_account_cputime(p, delta_exec);
1157 }
1158 
1159 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1160 {
1161 	if (!sched_feat(PREEMPT_SHORT))
1162 		return false;
1163 
1164 	if (curr->vlag == curr->deadline)
1165 		return false;
1166 
1167 	return !entity_eligible(cfs_rq, curr);
1168 }
1169 
1170 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1171 				    struct sched_entity *pse, struct sched_entity *se)
1172 {
1173 	if (!sched_feat(PREEMPT_SHORT))
1174 		return false;
1175 
1176 	if (pse->slice >= se->slice)
1177 		return false;
1178 
1179 	if (!entity_eligible(cfs_rq, pse))
1180 		return false;
1181 
1182 	if (entity_before(pse, se))
1183 		return true;
1184 
1185 	if (!entity_eligible(cfs_rq, se))
1186 		return true;
1187 
1188 	return false;
1189 }
1190 
1191 /*
1192  * Used by other classes to account runtime.
1193  */
1194 s64 update_curr_common(struct rq *rq)
1195 {
1196 	struct task_struct *donor = rq->donor;
1197 	s64 delta_exec;
1198 
1199 	delta_exec = update_curr_se(rq, &donor->se);
1200 	if (likely(delta_exec > 0))
1201 		update_curr_task(donor, delta_exec);
1202 
1203 	return delta_exec;
1204 }
1205 
1206 /*
1207  * Update the current task's runtime statistics.
1208  */
1209 static void update_curr(struct cfs_rq *cfs_rq)
1210 {
1211 	struct sched_entity *curr = cfs_rq->curr;
1212 	struct rq *rq = rq_of(cfs_rq);
1213 	s64 delta_exec;
1214 	bool resched;
1215 
1216 	if (unlikely(!curr))
1217 		return;
1218 
1219 	delta_exec = update_curr_se(rq, curr);
1220 	if (unlikely(delta_exec <= 0))
1221 		return;
1222 
1223 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1224 	resched = update_deadline(cfs_rq, curr);
1225 	update_min_vruntime(cfs_rq);
1226 
1227 	if (entity_is_task(curr)) {
1228 		struct task_struct *p = task_of(curr);
1229 
1230 		update_curr_task(p, delta_exec);
1231 
1232 		/*
1233 		 * If the fair_server is active, we need to account for the
1234 		 * fair_server time whether or not the task is running on
1235 		 * behalf of fair_server or not:
1236 		 *  - If the task is running on behalf of fair_server, we need
1237 		 *    to limit its time based on the assigned runtime.
1238 		 *  - Fair task that runs outside of fair_server should account
1239 		 *    against fair_server such that it can account for this time
1240 		 *    and possibly avoid running this period.
1241 		 */
1242 		if (dl_server_active(&rq->fair_server))
1243 			dl_server_update(&rq->fair_server, delta_exec);
1244 	}
1245 
1246 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1247 
1248 	if (cfs_rq->nr_queued == 1)
1249 		return;
1250 
1251 	if (resched || did_preempt_short(cfs_rq, curr)) {
1252 		resched_curr_lazy(rq);
1253 		clear_buddies(cfs_rq, curr);
1254 	}
1255 }
1256 
1257 static void update_curr_fair(struct rq *rq)
1258 {
1259 	update_curr(cfs_rq_of(&rq->donor->se));
1260 }
1261 
1262 static inline void
1263 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1264 {
1265 	struct sched_statistics *stats;
1266 	struct task_struct *p = NULL;
1267 
1268 	if (!schedstat_enabled())
1269 		return;
1270 
1271 	stats = __schedstats_from_se(se);
1272 
1273 	if (entity_is_task(se))
1274 		p = task_of(se);
1275 
1276 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1277 }
1278 
1279 static inline void
1280 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1281 {
1282 	struct sched_statistics *stats;
1283 	struct task_struct *p = NULL;
1284 
1285 	if (!schedstat_enabled())
1286 		return;
1287 
1288 	stats = __schedstats_from_se(se);
1289 
1290 	/*
1291 	 * When the sched_schedstat changes from 0 to 1, some sched se
1292 	 * maybe already in the runqueue, the se->statistics.wait_start
1293 	 * will be 0.So it will let the delta wrong. We need to avoid this
1294 	 * scenario.
1295 	 */
1296 	if (unlikely(!schedstat_val(stats->wait_start)))
1297 		return;
1298 
1299 	if (entity_is_task(se))
1300 		p = task_of(se);
1301 
1302 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1303 }
1304 
1305 static inline void
1306 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1307 {
1308 	struct sched_statistics *stats;
1309 	struct task_struct *tsk = NULL;
1310 
1311 	if (!schedstat_enabled())
1312 		return;
1313 
1314 	stats = __schedstats_from_se(se);
1315 
1316 	if (entity_is_task(se))
1317 		tsk = task_of(se);
1318 
1319 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1320 }
1321 
1322 /*
1323  * Task is being enqueued - update stats:
1324  */
1325 static inline void
1326 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1327 {
1328 	if (!schedstat_enabled())
1329 		return;
1330 
1331 	/*
1332 	 * Are we enqueueing a waiting task? (for current tasks
1333 	 * a dequeue/enqueue event is a NOP)
1334 	 */
1335 	if (se != cfs_rq->curr)
1336 		update_stats_wait_start_fair(cfs_rq, se);
1337 
1338 	if (flags & ENQUEUE_WAKEUP)
1339 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1340 }
1341 
1342 static inline void
1343 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1344 {
1345 
1346 	if (!schedstat_enabled())
1347 		return;
1348 
1349 	/*
1350 	 * Mark the end of the wait period if dequeueing a
1351 	 * waiting task:
1352 	 */
1353 	if (se != cfs_rq->curr)
1354 		update_stats_wait_end_fair(cfs_rq, se);
1355 
1356 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1357 		struct task_struct *tsk = task_of(se);
1358 		unsigned int state;
1359 
1360 		/* XXX racy against TTWU */
1361 		state = READ_ONCE(tsk->__state);
1362 		if (state & TASK_INTERRUPTIBLE)
1363 			__schedstat_set(tsk->stats.sleep_start,
1364 				      rq_clock(rq_of(cfs_rq)));
1365 		if (state & TASK_UNINTERRUPTIBLE)
1366 			__schedstat_set(tsk->stats.block_start,
1367 				      rq_clock(rq_of(cfs_rq)));
1368 	}
1369 }
1370 
1371 /*
1372  * We are picking a new current task - update its stats:
1373  */
1374 static inline void
1375 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1376 {
1377 	/*
1378 	 * We are starting a new run period:
1379 	 */
1380 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1381 }
1382 
1383 /**************************************************
1384  * Scheduling class queueing methods:
1385  */
1386 
1387 static inline bool is_core_idle(int cpu)
1388 {
1389 #ifdef CONFIG_SCHED_SMT
1390 	int sibling;
1391 
1392 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1393 		if (cpu == sibling)
1394 			continue;
1395 
1396 		if (!idle_cpu(sibling))
1397 			return false;
1398 	}
1399 #endif
1400 
1401 	return true;
1402 }
1403 
1404 #ifdef CONFIG_NUMA
1405 #define NUMA_IMBALANCE_MIN 2
1406 
1407 static inline long
1408 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1409 {
1410 	/*
1411 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1412 	 * threshold. Above this threshold, individual tasks may be contending
1413 	 * for both memory bandwidth and any shared HT resources.  This is an
1414 	 * approximation as the number of running tasks may not be related to
1415 	 * the number of busy CPUs due to sched_setaffinity.
1416 	 */
1417 	if (dst_running > imb_numa_nr)
1418 		return imbalance;
1419 
1420 	/*
1421 	 * Allow a small imbalance based on a simple pair of communicating
1422 	 * tasks that remain local when the destination is lightly loaded.
1423 	 */
1424 	if (imbalance <= NUMA_IMBALANCE_MIN)
1425 		return 0;
1426 
1427 	return imbalance;
1428 }
1429 #endif /* CONFIG_NUMA */
1430 
1431 #ifdef CONFIG_NUMA_BALANCING
1432 /*
1433  * Approximate time to scan a full NUMA task in ms. The task scan period is
1434  * calculated based on the tasks virtual memory size and
1435  * numa_balancing_scan_size.
1436  */
1437 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1438 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1439 
1440 /* Portion of address space to scan in MB */
1441 unsigned int sysctl_numa_balancing_scan_size = 256;
1442 
1443 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1444 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1445 
1446 /* The page with hint page fault latency < threshold in ms is considered hot */
1447 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1448 
1449 struct numa_group {
1450 	refcount_t refcount;
1451 
1452 	spinlock_t lock; /* nr_tasks, tasks */
1453 	int nr_tasks;
1454 	pid_t gid;
1455 	int active_nodes;
1456 
1457 	struct rcu_head rcu;
1458 	unsigned long total_faults;
1459 	unsigned long max_faults_cpu;
1460 	/*
1461 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1462 	 *
1463 	 * Faults_cpu is used to decide whether memory should move
1464 	 * towards the CPU. As a consequence, these stats are weighted
1465 	 * more by CPU use than by memory faults.
1466 	 */
1467 	unsigned long faults[];
1468 };
1469 
1470 /*
1471  * For functions that can be called in multiple contexts that permit reading
1472  * ->numa_group (see struct task_struct for locking rules).
1473  */
1474 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1475 {
1476 	return rcu_dereference_check(p->numa_group, p == current ||
1477 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1478 }
1479 
1480 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1481 {
1482 	return rcu_dereference_protected(p->numa_group, p == current);
1483 }
1484 
1485 static inline unsigned long group_faults_priv(struct numa_group *ng);
1486 static inline unsigned long group_faults_shared(struct numa_group *ng);
1487 
1488 static unsigned int task_nr_scan_windows(struct task_struct *p)
1489 {
1490 	unsigned long rss = 0;
1491 	unsigned long nr_scan_pages;
1492 
1493 	/*
1494 	 * Calculations based on RSS as non-present and empty pages are skipped
1495 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1496 	 * on resident pages
1497 	 */
1498 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1499 	rss = get_mm_rss(p->mm);
1500 	if (!rss)
1501 		rss = nr_scan_pages;
1502 
1503 	rss = round_up(rss, nr_scan_pages);
1504 	return rss / nr_scan_pages;
1505 }
1506 
1507 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1508 #define MAX_SCAN_WINDOW 2560
1509 
1510 static unsigned int task_scan_min(struct task_struct *p)
1511 {
1512 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1513 	unsigned int scan, floor;
1514 	unsigned int windows = 1;
1515 
1516 	if (scan_size < MAX_SCAN_WINDOW)
1517 		windows = MAX_SCAN_WINDOW / scan_size;
1518 	floor = 1000 / windows;
1519 
1520 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1521 	return max_t(unsigned int, floor, scan);
1522 }
1523 
1524 static unsigned int task_scan_start(struct task_struct *p)
1525 {
1526 	unsigned long smin = task_scan_min(p);
1527 	unsigned long period = smin;
1528 	struct numa_group *ng;
1529 
1530 	/* Scale the maximum scan period with the amount of shared memory. */
1531 	rcu_read_lock();
1532 	ng = rcu_dereference(p->numa_group);
1533 	if (ng) {
1534 		unsigned long shared = group_faults_shared(ng);
1535 		unsigned long private = group_faults_priv(ng);
1536 
1537 		period *= refcount_read(&ng->refcount);
1538 		period *= shared + 1;
1539 		period /= private + shared + 1;
1540 	}
1541 	rcu_read_unlock();
1542 
1543 	return max(smin, period);
1544 }
1545 
1546 static unsigned int task_scan_max(struct task_struct *p)
1547 {
1548 	unsigned long smin = task_scan_min(p);
1549 	unsigned long smax;
1550 	struct numa_group *ng;
1551 
1552 	/* Watch for min being lower than max due to floor calculations */
1553 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1554 
1555 	/* Scale the maximum scan period with the amount of shared memory. */
1556 	ng = deref_curr_numa_group(p);
1557 	if (ng) {
1558 		unsigned long shared = group_faults_shared(ng);
1559 		unsigned long private = group_faults_priv(ng);
1560 		unsigned long period = smax;
1561 
1562 		period *= refcount_read(&ng->refcount);
1563 		period *= shared + 1;
1564 		period /= private + shared + 1;
1565 
1566 		smax = max(smax, period);
1567 	}
1568 
1569 	return max(smin, smax);
1570 }
1571 
1572 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1573 {
1574 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1575 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1576 }
1577 
1578 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1579 {
1580 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1581 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1582 }
1583 
1584 /* Shared or private faults. */
1585 #define NR_NUMA_HINT_FAULT_TYPES 2
1586 
1587 /* Memory and CPU locality */
1588 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1589 
1590 /* Averaged statistics, and temporary buffers. */
1591 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1592 
1593 pid_t task_numa_group_id(struct task_struct *p)
1594 {
1595 	struct numa_group *ng;
1596 	pid_t gid = 0;
1597 
1598 	rcu_read_lock();
1599 	ng = rcu_dereference(p->numa_group);
1600 	if (ng)
1601 		gid = ng->gid;
1602 	rcu_read_unlock();
1603 
1604 	return gid;
1605 }
1606 
1607 /*
1608  * The averaged statistics, shared & private, memory & CPU,
1609  * occupy the first half of the array. The second half of the
1610  * array is for current counters, which are averaged into the
1611  * first set by task_numa_placement.
1612  */
1613 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1614 {
1615 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1616 }
1617 
1618 static inline unsigned long task_faults(struct task_struct *p, int nid)
1619 {
1620 	if (!p->numa_faults)
1621 		return 0;
1622 
1623 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1624 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1625 }
1626 
1627 static inline unsigned long group_faults(struct task_struct *p, int nid)
1628 {
1629 	struct numa_group *ng = deref_task_numa_group(p);
1630 
1631 	if (!ng)
1632 		return 0;
1633 
1634 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1635 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1636 }
1637 
1638 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1639 {
1640 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1641 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1642 }
1643 
1644 static inline unsigned long group_faults_priv(struct numa_group *ng)
1645 {
1646 	unsigned long faults = 0;
1647 	int node;
1648 
1649 	for_each_online_node(node) {
1650 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1651 	}
1652 
1653 	return faults;
1654 }
1655 
1656 static inline unsigned long group_faults_shared(struct numa_group *ng)
1657 {
1658 	unsigned long faults = 0;
1659 	int node;
1660 
1661 	for_each_online_node(node) {
1662 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1663 	}
1664 
1665 	return faults;
1666 }
1667 
1668 /*
1669  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1670  * considered part of a numa group's pseudo-interleaving set. Migrations
1671  * between these nodes are slowed down, to allow things to settle down.
1672  */
1673 #define ACTIVE_NODE_FRACTION 3
1674 
1675 static bool numa_is_active_node(int nid, struct numa_group *ng)
1676 {
1677 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1678 }
1679 
1680 /* Handle placement on systems where not all nodes are directly connected. */
1681 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1682 					int lim_dist, bool task)
1683 {
1684 	unsigned long score = 0;
1685 	int node, max_dist;
1686 
1687 	/*
1688 	 * All nodes are directly connected, and the same distance
1689 	 * from each other. No need for fancy placement algorithms.
1690 	 */
1691 	if (sched_numa_topology_type == NUMA_DIRECT)
1692 		return 0;
1693 
1694 	/* sched_max_numa_distance may be changed in parallel. */
1695 	max_dist = READ_ONCE(sched_max_numa_distance);
1696 	/*
1697 	 * This code is called for each node, introducing N^2 complexity,
1698 	 * which should be OK given the number of nodes rarely exceeds 8.
1699 	 */
1700 	for_each_online_node(node) {
1701 		unsigned long faults;
1702 		int dist = node_distance(nid, node);
1703 
1704 		/*
1705 		 * The furthest away nodes in the system are not interesting
1706 		 * for placement; nid was already counted.
1707 		 */
1708 		if (dist >= max_dist || node == nid)
1709 			continue;
1710 
1711 		/*
1712 		 * On systems with a backplane NUMA topology, compare groups
1713 		 * of nodes, and move tasks towards the group with the most
1714 		 * memory accesses. When comparing two nodes at distance
1715 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1716 		 * of each group. Skip other nodes.
1717 		 */
1718 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1719 			continue;
1720 
1721 		/* Add up the faults from nearby nodes. */
1722 		if (task)
1723 			faults = task_faults(p, node);
1724 		else
1725 			faults = group_faults(p, node);
1726 
1727 		/*
1728 		 * On systems with a glueless mesh NUMA topology, there are
1729 		 * no fixed "groups of nodes". Instead, nodes that are not
1730 		 * directly connected bounce traffic through intermediate
1731 		 * nodes; a numa_group can occupy any set of nodes.
1732 		 * The further away a node is, the less the faults count.
1733 		 * This seems to result in good task placement.
1734 		 */
1735 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1736 			faults *= (max_dist - dist);
1737 			faults /= (max_dist - LOCAL_DISTANCE);
1738 		}
1739 
1740 		score += faults;
1741 	}
1742 
1743 	return score;
1744 }
1745 
1746 /*
1747  * These return the fraction of accesses done by a particular task, or
1748  * task group, on a particular numa node.  The group weight is given a
1749  * larger multiplier, in order to group tasks together that are almost
1750  * evenly spread out between numa nodes.
1751  */
1752 static inline unsigned long task_weight(struct task_struct *p, int nid,
1753 					int dist)
1754 {
1755 	unsigned long faults, total_faults;
1756 
1757 	if (!p->numa_faults)
1758 		return 0;
1759 
1760 	total_faults = p->total_numa_faults;
1761 
1762 	if (!total_faults)
1763 		return 0;
1764 
1765 	faults = task_faults(p, nid);
1766 	faults += score_nearby_nodes(p, nid, dist, true);
1767 
1768 	return 1000 * faults / total_faults;
1769 }
1770 
1771 static inline unsigned long group_weight(struct task_struct *p, int nid,
1772 					 int dist)
1773 {
1774 	struct numa_group *ng = deref_task_numa_group(p);
1775 	unsigned long faults, total_faults;
1776 
1777 	if (!ng)
1778 		return 0;
1779 
1780 	total_faults = ng->total_faults;
1781 
1782 	if (!total_faults)
1783 		return 0;
1784 
1785 	faults = group_faults(p, nid);
1786 	faults += score_nearby_nodes(p, nid, dist, false);
1787 
1788 	return 1000 * faults / total_faults;
1789 }
1790 
1791 /*
1792  * If memory tiering mode is enabled, cpupid of slow memory page is
1793  * used to record scan time instead of CPU and PID.  When tiering mode
1794  * is disabled at run time, the scan time (in cpupid) will be
1795  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1796  * access out of array bound.
1797  */
1798 static inline bool cpupid_valid(int cpupid)
1799 {
1800 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1801 }
1802 
1803 /*
1804  * For memory tiering mode, if there are enough free pages (more than
1805  * enough watermark defined here) in fast memory node, to take full
1806  * advantage of fast memory capacity, all recently accessed slow
1807  * memory pages will be migrated to fast memory node without
1808  * considering hot threshold.
1809  */
1810 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1811 {
1812 	int z;
1813 	unsigned long enough_wmark;
1814 
1815 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1816 			   pgdat->node_present_pages >> 4);
1817 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1818 		struct zone *zone = pgdat->node_zones + z;
1819 
1820 		if (!populated_zone(zone))
1821 			continue;
1822 
1823 		if (zone_watermark_ok(zone, 0,
1824 				      promo_wmark_pages(zone) + enough_wmark,
1825 				      ZONE_MOVABLE, 0))
1826 			return true;
1827 	}
1828 	return false;
1829 }
1830 
1831 /*
1832  * For memory tiering mode, when page tables are scanned, the scan
1833  * time will be recorded in struct page in addition to make page
1834  * PROT_NONE for slow memory page.  So when the page is accessed, in
1835  * hint page fault handler, the hint page fault latency is calculated
1836  * via,
1837  *
1838  *	hint page fault latency = hint page fault time - scan time
1839  *
1840  * The smaller the hint page fault latency, the higher the possibility
1841  * for the page to be hot.
1842  */
1843 static int numa_hint_fault_latency(struct folio *folio)
1844 {
1845 	int last_time, time;
1846 
1847 	time = jiffies_to_msecs(jiffies);
1848 	last_time = folio_xchg_access_time(folio, time);
1849 
1850 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1851 }
1852 
1853 /*
1854  * For memory tiering mode, too high promotion/demotion throughput may
1855  * hurt application latency.  So we provide a mechanism to rate limit
1856  * the number of pages that are tried to be promoted.
1857  */
1858 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1859 				      unsigned long rate_limit, int nr)
1860 {
1861 	unsigned long nr_cand;
1862 	unsigned int now, start;
1863 
1864 	now = jiffies_to_msecs(jiffies);
1865 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1866 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1867 	start = pgdat->nbp_rl_start;
1868 	if (now - start > MSEC_PER_SEC &&
1869 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1870 		pgdat->nbp_rl_nr_cand = nr_cand;
1871 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1872 		return true;
1873 	return false;
1874 }
1875 
1876 #define NUMA_MIGRATION_ADJUST_STEPS	16
1877 
1878 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1879 					    unsigned long rate_limit,
1880 					    unsigned int ref_th)
1881 {
1882 	unsigned int now, start, th_period, unit_th, th;
1883 	unsigned long nr_cand, ref_cand, diff_cand;
1884 
1885 	now = jiffies_to_msecs(jiffies);
1886 	th_period = sysctl_numa_balancing_scan_period_max;
1887 	start = pgdat->nbp_th_start;
1888 	if (now - start > th_period &&
1889 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1890 		ref_cand = rate_limit *
1891 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1892 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1893 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1894 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1895 		th = pgdat->nbp_threshold ? : ref_th;
1896 		if (diff_cand > ref_cand * 11 / 10)
1897 			th = max(th - unit_th, unit_th);
1898 		else if (diff_cand < ref_cand * 9 / 10)
1899 			th = min(th + unit_th, ref_th * 2);
1900 		pgdat->nbp_th_nr_cand = nr_cand;
1901 		pgdat->nbp_threshold = th;
1902 	}
1903 }
1904 
1905 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1906 				int src_nid, int dst_cpu)
1907 {
1908 	struct numa_group *ng = deref_curr_numa_group(p);
1909 	int dst_nid = cpu_to_node(dst_cpu);
1910 	int last_cpupid, this_cpupid;
1911 
1912 	/*
1913 	 * Cannot migrate to memoryless nodes.
1914 	 */
1915 	if (!node_state(dst_nid, N_MEMORY))
1916 		return false;
1917 
1918 	/*
1919 	 * The pages in slow memory node should be migrated according
1920 	 * to hot/cold instead of private/shared.
1921 	 */
1922 	if (folio_use_access_time(folio)) {
1923 		struct pglist_data *pgdat;
1924 		unsigned long rate_limit;
1925 		unsigned int latency, th, def_th;
1926 
1927 		pgdat = NODE_DATA(dst_nid);
1928 		if (pgdat_free_space_enough(pgdat)) {
1929 			/* workload changed, reset hot threshold */
1930 			pgdat->nbp_threshold = 0;
1931 			return true;
1932 		}
1933 
1934 		def_th = sysctl_numa_balancing_hot_threshold;
1935 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1936 			(20 - PAGE_SHIFT);
1937 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1938 
1939 		th = pgdat->nbp_threshold ? : def_th;
1940 		latency = numa_hint_fault_latency(folio);
1941 		if (latency >= th)
1942 			return false;
1943 
1944 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1945 						  folio_nr_pages(folio));
1946 	}
1947 
1948 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1949 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1950 
1951 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1952 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1953 		return false;
1954 
1955 	/*
1956 	 * Allow first faults or private faults to migrate immediately early in
1957 	 * the lifetime of a task. The magic number 4 is based on waiting for
1958 	 * two full passes of the "multi-stage node selection" test that is
1959 	 * executed below.
1960 	 */
1961 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1962 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1963 		return true;
1964 
1965 	/*
1966 	 * Multi-stage node selection is used in conjunction with a periodic
1967 	 * migration fault to build a temporal task<->page relation. By using
1968 	 * a two-stage filter we remove short/unlikely relations.
1969 	 *
1970 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1971 	 * a task's usage of a particular page (n_p) per total usage of this
1972 	 * page (n_t) (in a given time-span) to a probability.
1973 	 *
1974 	 * Our periodic faults will sample this probability and getting the
1975 	 * same result twice in a row, given these samples are fully
1976 	 * independent, is then given by P(n)^2, provided our sample period
1977 	 * is sufficiently short compared to the usage pattern.
1978 	 *
1979 	 * This quadric squishes small probabilities, making it less likely we
1980 	 * act on an unlikely task<->page relation.
1981 	 */
1982 	if (!cpupid_pid_unset(last_cpupid) &&
1983 				cpupid_to_nid(last_cpupid) != dst_nid)
1984 		return false;
1985 
1986 	/* Always allow migrate on private faults */
1987 	if (cpupid_match_pid(p, last_cpupid))
1988 		return true;
1989 
1990 	/* A shared fault, but p->numa_group has not been set up yet. */
1991 	if (!ng)
1992 		return true;
1993 
1994 	/*
1995 	 * Destination node is much more heavily used than the source
1996 	 * node? Allow migration.
1997 	 */
1998 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1999 					ACTIVE_NODE_FRACTION)
2000 		return true;
2001 
2002 	/*
2003 	 * Distribute memory according to CPU & memory use on each node,
2004 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2005 	 *
2006 	 * faults_cpu(dst)   3   faults_cpu(src)
2007 	 * --------------- * - > ---------------
2008 	 * faults_mem(dst)   4   faults_mem(src)
2009 	 */
2010 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2011 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2012 }
2013 
2014 /*
2015  * 'numa_type' describes the node at the moment of load balancing.
2016  */
2017 enum numa_type {
2018 	/* The node has spare capacity that can be used to run more tasks.  */
2019 	node_has_spare = 0,
2020 	/*
2021 	 * The node is fully used and the tasks don't compete for more CPU
2022 	 * cycles. Nevertheless, some tasks might wait before running.
2023 	 */
2024 	node_fully_busy,
2025 	/*
2026 	 * The node is overloaded and can't provide expected CPU cycles to all
2027 	 * tasks.
2028 	 */
2029 	node_overloaded
2030 };
2031 
2032 /* Cached statistics for all CPUs within a node */
2033 struct numa_stats {
2034 	unsigned long load;
2035 	unsigned long runnable;
2036 	unsigned long util;
2037 	/* Total compute capacity of CPUs on a node */
2038 	unsigned long compute_capacity;
2039 	unsigned int nr_running;
2040 	unsigned int weight;
2041 	enum numa_type node_type;
2042 	int idle_cpu;
2043 };
2044 
2045 struct task_numa_env {
2046 	struct task_struct *p;
2047 
2048 	int src_cpu, src_nid;
2049 	int dst_cpu, dst_nid;
2050 	int imb_numa_nr;
2051 
2052 	struct numa_stats src_stats, dst_stats;
2053 
2054 	int imbalance_pct;
2055 	int dist;
2056 
2057 	struct task_struct *best_task;
2058 	long best_imp;
2059 	int best_cpu;
2060 };
2061 
2062 static unsigned long cpu_load(struct rq *rq);
2063 static unsigned long cpu_runnable(struct rq *rq);
2064 
2065 static inline enum
2066 numa_type numa_classify(unsigned int imbalance_pct,
2067 			 struct numa_stats *ns)
2068 {
2069 	if ((ns->nr_running > ns->weight) &&
2070 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2071 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2072 		return node_overloaded;
2073 
2074 	if ((ns->nr_running < ns->weight) ||
2075 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2076 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2077 		return node_has_spare;
2078 
2079 	return node_fully_busy;
2080 }
2081 
2082 #ifdef CONFIG_SCHED_SMT
2083 /* Forward declarations of select_idle_sibling helpers */
2084 static inline bool test_idle_cores(int cpu);
2085 static inline int numa_idle_core(int idle_core, int cpu)
2086 {
2087 	if (!static_branch_likely(&sched_smt_present) ||
2088 	    idle_core >= 0 || !test_idle_cores(cpu))
2089 		return idle_core;
2090 
2091 	/*
2092 	 * Prefer cores instead of packing HT siblings
2093 	 * and triggering future load balancing.
2094 	 */
2095 	if (is_core_idle(cpu))
2096 		idle_core = cpu;
2097 
2098 	return idle_core;
2099 }
2100 #else /* !CONFIG_SCHED_SMT: */
2101 static inline int numa_idle_core(int idle_core, int cpu)
2102 {
2103 	return idle_core;
2104 }
2105 #endif /* !CONFIG_SCHED_SMT */
2106 
2107 /*
2108  * Gather all necessary information to make NUMA balancing placement
2109  * decisions that are compatible with standard load balancer. This
2110  * borrows code and logic from update_sg_lb_stats but sharing a
2111  * common implementation is impractical.
2112  */
2113 static void update_numa_stats(struct task_numa_env *env,
2114 			      struct numa_stats *ns, int nid,
2115 			      bool find_idle)
2116 {
2117 	int cpu, idle_core = -1;
2118 
2119 	memset(ns, 0, sizeof(*ns));
2120 	ns->idle_cpu = -1;
2121 
2122 	rcu_read_lock();
2123 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2124 		struct rq *rq = cpu_rq(cpu);
2125 
2126 		ns->load += cpu_load(rq);
2127 		ns->runnable += cpu_runnable(rq);
2128 		ns->util += cpu_util_cfs(cpu);
2129 		ns->nr_running += rq->cfs.h_nr_runnable;
2130 		ns->compute_capacity += capacity_of(cpu);
2131 
2132 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2133 			if (READ_ONCE(rq->numa_migrate_on) ||
2134 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2135 				continue;
2136 
2137 			if (ns->idle_cpu == -1)
2138 				ns->idle_cpu = cpu;
2139 
2140 			idle_core = numa_idle_core(idle_core, cpu);
2141 		}
2142 	}
2143 	rcu_read_unlock();
2144 
2145 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2146 
2147 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2148 
2149 	if (idle_core >= 0)
2150 		ns->idle_cpu = idle_core;
2151 }
2152 
2153 static void task_numa_assign(struct task_numa_env *env,
2154 			     struct task_struct *p, long imp)
2155 {
2156 	struct rq *rq = cpu_rq(env->dst_cpu);
2157 
2158 	/* Check if run-queue part of active NUMA balance. */
2159 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2160 		int cpu;
2161 		int start = env->dst_cpu;
2162 
2163 		/* Find alternative idle CPU. */
2164 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2165 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2166 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2167 				continue;
2168 			}
2169 
2170 			env->dst_cpu = cpu;
2171 			rq = cpu_rq(env->dst_cpu);
2172 			if (!xchg(&rq->numa_migrate_on, 1))
2173 				goto assign;
2174 		}
2175 
2176 		/* Failed to find an alternative idle CPU */
2177 		return;
2178 	}
2179 
2180 assign:
2181 	/*
2182 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2183 	 * found a better CPU to move/swap.
2184 	 */
2185 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2186 		rq = cpu_rq(env->best_cpu);
2187 		WRITE_ONCE(rq->numa_migrate_on, 0);
2188 	}
2189 
2190 	if (env->best_task)
2191 		put_task_struct(env->best_task);
2192 	if (p)
2193 		get_task_struct(p);
2194 
2195 	env->best_task = p;
2196 	env->best_imp = imp;
2197 	env->best_cpu = env->dst_cpu;
2198 }
2199 
2200 static bool load_too_imbalanced(long src_load, long dst_load,
2201 				struct task_numa_env *env)
2202 {
2203 	long imb, old_imb;
2204 	long orig_src_load, orig_dst_load;
2205 	long src_capacity, dst_capacity;
2206 
2207 	/*
2208 	 * The load is corrected for the CPU capacity available on each node.
2209 	 *
2210 	 * src_load        dst_load
2211 	 * ------------ vs ---------
2212 	 * src_capacity    dst_capacity
2213 	 */
2214 	src_capacity = env->src_stats.compute_capacity;
2215 	dst_capacity = env->dst_stats.compute_capacity;
2216 
2217 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2218 
2219 	orig_src_load = env->src_stats.load;
2220 	orig_dst_load = env->dst_stats.load;
2221 
2222 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2223 
2224 	/* Would this change make things worse? */
2225 	return (imb > old_imb);
2226 }
2227 
2228 /*
2229  * Maximum NUMA importance can be 1998 (2*999);
2230  * SMALLIMP @ 30 would be close to 1998/64.
2231  * Used to deter task migration.
2232  */
2233 #define SMALLIMP	30
2234 
2235 /*
2236  * This checks if the overall compute and NUMA accesses of the system would
2237  * be improved if the source tasks was migrated to the target dst_cpu taking
2238  * into account that it might be best if task running on the dst_cpu should
2239  * be exchanged with the source task
2240  */
2241 static bool task_numa_compare(struct task_numa_env *env,
2242 			      long taskimp, long groupimp, bool maymove)
2243 {
2244 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2245 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2246 	long imp = p_ng ? groupimp : taskimp;
2247 	struct task_struct *cur;
2248 	long src_load, dst_load;
2249 	int dist = env->dist;
2250 	long moveimp = imp;
2251 	long load;
2252 	bool stopsearch = false;
2253 
2254 	if (READ_ONCE(dst_rq->numa_migrate_on))
2255 		return false;
2256 
2257 	rcu_read_lock();
2258 	cur = rcu_dereference(dst_rq->curr);
2259 	if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
2260 		    !cur->mm))
2261 		cur = NULL;
2262 
2263 	/*
2264 	 * Because we have preemption enabled we can get migrated around and
2265 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2266 	 */
2267 	if (cur == env->p) {
2268 		stopsearch = true;
2269 		goto unlock;
2270 	}
2271 
2272 	if (!cur) {
2273 		if (maymove && moveimp >= env->best_imp)
2274 			goto assign;
2275 		else
2276 			goto unlock;
2277 	}
2278 
2279 	/* Skip this swap candidate if cannot move to the source cpu. */
2280 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2281 		goto unlock;
2282 
2283 	/*
2284 	 * Skip this swap candidate if it is not moving to its preferred
2285 	 * node and the best task is.
2286 	 */
2287 	if (env->best_task &&
2288 	    env->best_task->numa_preferred_nid == env->src_nid &&
2289 	    cur->numa_preferred_nid != env->src_nid) {
2290 		goto unlock;
2291 	}
2292 
2293 	/*
2294 	 * "imp" is the fault differential for the source task between the
2295 	 * source and destination node. Calculate the total differential for
2296 	 * the source task and potential destination task. The more negative
2297 	 * the value is, the more remote accesses that would be expected to
2298 	 * be incurred if the tasks were swapped.
2299 	 *
2300 	 * If dst and source tasks are in the same NUMA group, or not
2301 	 * in any group then look only at task weights.
2302 	 */
2303 	cur_ng = rcu_dereference(cur->numa_group);
2304 	if (cur_ng == p_ng) {
2305 		/*
2306 		 * Do not swap within a group or between tasks that have
2307 		 * no group if there is spare capacity. Swapping does
2308 		 * not address the load imbalance and helps one task at
2309 		 * the cost of punishing another.
2310 		 */
2311 		if (env->dst_stats.node_type == node_has_spare)
2312 			goto unlock;
2313 
2314 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2315 		      task_weight(cur, env->dst_nid, dist);
2316 		/*
2317 		 * Add some hysteresis to prevent swapping the
2318 		 * tasks within a group over tiny differences.
2319 		 */
2320 		if (cur_ng)
2321 			imp -= imp / 16;
2322 	} else {
2323 		/*
2324 		 * Compare the group weights. If a task is all by itself
2325 		 * (not part of a group), use the task weight instead.
2326 		 */
2327 		if (cur_ng && p_ng)
2328 			imp += group_weight(cur, env->src_nid, dist) -
2329 			       group_weight(cur, env->dst_nid, dist);
2330 		else
2331 			imp += task_weight(cur, env->src_nid, dist) -
2332 			       task_weight(cur, env->dst_nid, dist);
2333 	}
2334 
2335 	/* Discourage picking a task already on its preferred node */
2336 	if (cur->numa_preferred_nid == env->dst_nid)
2337 		imp -= imp / 16;
2338 
2339 	/*
2340 	 * Encourage picking a task that moves to its preferred node.
2341 	 * This potentially makes imp larger than it's maximum of
2342 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2343 	 * case, it does not matter.
2344 	 */
2345 	if (cur->numa_preferred_nid == env->src_nid)
2346 		imp += imp / 8;
2347 
2348 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2349 		imp = moveimp;
2350 		cur = NULL;
2351 		goto assign;
2352 	}
2353 
2354 	/*
2355 	 * Prefer swapping with a task moving to its preferred node over a
2356 	 * task that is not.
2357 	 */
2358 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2359 	    env->best_task->numa_preferred_nid != env->src_nid) {
2360 		goto assign;
2361 	}
2362 
2363 	/*
2364 	 * If the NUMA importance is less than SMALLIMP,
2365 	 * task migration might only result in ping pong
2366 	 * of tasks and also hurt performance due to cache
2367 	 * misses.
2368 	 */
2369 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2370 		goto unlock;
2371 
2372 	/*
2373 	 * In the overloaded case, try and keep the load balanced.
2374 	 */
2375 	load = task_h_load(env->p) - task_h_load(cur);
2376 	if (!load)
2377 		goto assign;
2378 
2379 	dst_load = env->dst_stats.load + load;
2380 	src_load = env->src_stats.load - load;
2381 
2382 	if (load_too_imbalanced(src_load, dst_load, env))
2383 		goto unlock;
2384 
2385 assign:
2386 	/* Evaluate an idle CPU for a task numa move. */
2387 	if (!cur) {
2388 		int cpu = env->dst_stats.idle_cpu;
2389 
2390 		/* Nothing cached so current CPU went idle since the search. */
2391 		if (cpu < 0)
2392 			cpu = env->dst_cpu;
2393 
2394 		/*
2395 		 * If the CPU is no longer truly idle and the previous best CPU
2396 		 * is, keep using it.
2397 		 */
2398 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2399 		    idle_cpu(env->best_cpu)) {
2400 			cpu = env->best_cpu;
2401 		}
2402 
2403 		env->dst_cpu = cpu;
2404 	}
2405 
2406 	task_numa_assign(env, cur, imp);
2407 
2408 	/*
2409 	 * If a move to idle is allowed because there is capacity or load
2410 	 * balance improves then stop the search. While a better swap
2411 	 * candidate may exist, a search is not free.
2412 	 */
2413 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2414 		stopsearch = true;
2415 
2416 	/*
2417 	 * If a swap candidate must be identified and the current best task
2418 	 * moves its preferred node then stop the search.
2419 	 */
2420 	if (!maymove && env->best_task &&
2421 	    env->best_task->numa_preferred_nid == env->src_nid) {
2422 		stopsearch = true;
2423 	}
2424 unlock:
2425 	rcu_read_unlock();
2426 
2427 	return stopsearch;
2428 }
2429 
2430 static void task_numa_find_cpu(struct task_numa_env *env,
2431 				long taskimp, long groupimp)
2432 {
2433 	bool maymove = false;
2434 	int cpu;
2435 
2436 	/*
2437 	 * If dst node has spare capacity, then check if there is an
2438 	 * imbalance that would be overruled by the load balancer.
2439 	 */
2440 	if (env->dst_stats.node_type == node_has_spare) {
2441 		unsigned int imbalance;
2442 		int src_running, dst_running;
2443 
2444 		/*
2445 		 * Would movement cause an imbalance? Note that if src has
2446 		 * more running tasks that the imbalance is ignored as the
2447 		 * move improves the imbalance from the perspective of the
2448 		 * CPU load balancer.
2449 		 * */
2450 		src_running = env->src_stats.nr_running - 1;
2451 		dst_running = env->dst_stats.nr_running + 1;
2452 		imbalance = max(0, dst_running - src_running);
2453 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2454 						  env->imb_numa_nr);
2455 
2456 		/* Use idle CPU if there is no imbalance */
2457 		if (!imbalance) {
2458 			maymove = true;
2459 			if (env->dst_stats.idle_cpu >= 0) {
2460 				env->dst_cpu = env->dst_stats.idle_cpu;
2461 				task_numa_assign(env, NULL, 0);
2462 				return;
2463 			}
2464 		}
2465 	} else {
2466 		long src_load, dst_load, load;
2467 		/*
2468 		 * If the improvement from just moving env->p direction is better
2469 		 * than swapping tasks around, check if a move is possible.
2470 		 */
2471 		load = task_h_load(env->p);
2472 		dst_load = env->dst_stats.load + load;
2473 		src_load = env->src_stats.load - load;
2474 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2475 	}
2476 
2477 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2478 		/* Skip this CPU if the source task cannot migrate */
2479 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2480 			continue;
2481 
2482 		env->dst_cpu = cpu;
2483 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2484 			break;
2485 	}
2486 }
2487 
2488 static int task_numa_migrate(struct task_struct *p)
2489 {
2490 	struct task_numa_env env = {
2491 		.p = p,
2492 
2493 		.src_cpu = task_cpu(p),
2494 		.src_nid = task_node(p),
2495 
2496 		.imbalance_pct = 112,
2497 
2498 		.best_task = NULL,
2499 		.best_imp = 0,
2500 		.best_cpu = -1,
2501 	};
2502 	unsigned long taskweight, groupweight;
2503 	struct sched_domain *sd;
2504 	long taskimp, groupimp;
2505 	struct numa_group *ng;
2506 	struct rq *best_rq;
2507 	int nid, ret, dist;
2508 
2509 	/*
2510 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2511 	 * imbalance and would be the first to start moving tasks about.
2512 	 *
2513 	 * And we want to avoid any moving of tasks about, as that would create
2514 	 * random movement of tasks -- counter the numa conditions we're trying
2515 	 * to satisfy here.
2516 	 */
2517 	rcu_read_lock();
2518 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2519 	if (sd) {
2520 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2521 		env.imb_numa_nr = sd->imb_numa_nr;
2522 	}
2523 	rcu_read_unlock();
2524 
2525 	/*
2526 	 * Cpusets can break the scheduler domain tree into smaller
2527 	 * balance domains, some of which do not cross NUMA boundaries.
2528 	 * Tasks that are "trapped" in such domains cannot be migrated
2529 	 * elsewhere, so there is no point in (re)trying.
2530 	 */
2531 	if (unlikely(!sd)) {
2532 		sched_setnuma(p, task_node(p));
2533 		return -EINVAL;
2534 	}
2535 
2536 	env.dst_nid = p->numa_preferred_nid;
2537 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2538 	taskweight = task_weight(p, env.src_nid, dist);
2539 	groupweight = group_weight(p, env.src_nid, dist);
2540 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2541 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2542 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2543 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2544 
2545 	/* Try to find a spot on the preferred nid. */
2546 	task_numa_find_cpu(&env, taskimp, groupimp);
2547 
2548 	/*
2549 	 * Look at other nodes in these cases:
2550 	 * - there is no space available on the preferred_nid
2551 	 * - the task is part of a numa_group that is interleaved across
2552 	 *   multiple NUMA nodes; in order to better consolidate the group,
2553 	 *   we need to check other locations.
2554 	 */
2555 	ng = deref_curr_numa_group(p);
2556 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2557 		for_each_node_state(nid, N_CPU) {
2558 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2559 				continue;
2560 
2561 			dist = node_distance(env.src_nid, env.dst_nid);
2562 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2563 						dist != env.dist) {
2564 				taskweight = task_weight(p, env.src_nid, dist);
2565 				groupweight = group_weight(p, env.src_nid, dist);
2566 			}
2567 
2568 			/* Only consider nodes where both task and groups benefit */
2569 			taskimp = task_weight(p, nid, dist) - taskweight;
2570 			groupimp = group_weight(p, nid, dist) - groupweight;
2571 			if (taskimp < 0 && groupimp < 0)
2572 				continue;
2573 
2574 			env.dist = dist;
2575 			env.dst_nid = nid;
2576 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2577 			task_numa_find_cpu(&env, taskimp, groupimp);
2578 		}
2579 	}
2580 
2581 	/*
2582 	 * If the task is part of a workload that spans multiple NUMA nodes,
2583 	 * and is migrating into one of the workload's active nodes, remember
2584 	 * this node as the task's preferred numa node, so the workload can
2585 	 * settle down.
2586 	 * A task that migrated to a second choice node will be better off
2587 	 * trying for a better one later. Do not set the preferred node here.
2588 	 */
2589 	if (ng) {
2590 		if (env.best_cpu == -1)
2591 			nid = env.src_nid;
2592 		else
2593 			nid = cpu_to_node(env.best_cpu);
2594 
2595 		if (nid != p->numa_preferred_nid)
2596 			sched_setnuma(p, nid);
2597 	}
2598 
2599 	/* No better CPU than the current one was found. */
2600 	if (env.best_cpu == -1) {
2601 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2602 		return -EAGAIN;
2603 	}
2604 
2605 	best_rq = cpu_rq(env.best_cpu);
2606 	if (env.best_task == NULL) {
2607 		ret = migrate_task_to(p, env.best_cpu);
2608 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2609 		if (ret != 0)
2610 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2611 		return ret;
2612 	}
2613 
2614 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2615 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2616 
2617 	if (ret != 0)
2618 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2619 	put_task_struct(env.best_task);
2620 	return ret;
2621 }
2622 
2623 /* Attempt to migrate a task to a CPU on the preferred node. */
2624 static void numa_migrate_preferred(struct task_struct *p)
2625 {
2626 	unsigned long interval = HZ;
2627 
2628 	/* This task has no NUMA fault statistics yet */
2629 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2630 		return;
2631 
2632 	/* Periodically retry migrating the task to the preferred node */
2633 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2634 	p->numa_migrate_retry = jiffies + interval;
2635 
2636 	/* Success if task is already running on preferred CPU */
2637 	if (task_node(p) == p->numa_preferred_nid)
2638 		return;
2639 
2640 	/* Otherwise, try migrate to a CPU on the preferred node */
2641 	task_numa_migrate(p);
2642 }
2643 
2644 /*
2645  * Find out how many nodes the workload is actively running on. Do this by
2646  * tracking the nodes from which NUMA hinting faults are triggered. This can
2647  * be different from the set of nodes where the workload's memory is currently
2648  * located.
2649  */
2650 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2651 {
2652 	unsigned long faults, max_faults = 0;
2653 	int nid, active_nodes = 0;
2654 
2655 	for_each_node_state(nid, N_CPU) {
2656 		faults = group_faults_cpu(numa_group, nid);
2657 		if (faults > max_faults)
2658 			max_faults = faults;
2659 	}
2660 
2661 	for_each_node_state(nid, N_CPU) {
2662 		faults = group_faults_cpu(numa_group, nid);
2663 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2664 			active_nodes++;
2665 	}
2666 
2667 	numa_group->max_faults_cpu = max_faults;
2668 	numa_group->active_nodes = active_nodes;
2669 }
2670 
2671 /*
2672  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2673  * increments. The more local the fault statistics are, the higher the scan
2674  * period will be for the next scan window. If local/(local+remote) ratio is
2675  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2676  * the scan period will decrease. Aim for 70% local accesses.
2677  */
2678 #define NUMA_PERIOD_SLOTS 10
2679 #define NUMA_PERIOD_THRESHOLD 7
2680 
2681 /*
2682  * Increase the scan period (slow down scanning) if the majority of
2683  * our memory is already on our local node, or if the majority of
2684  * the page accesses are shared with other processes.
2685  * Otherwise, decrease the scan period.
2686  */
2687 static void update_task_scan_period(struct task_struct *p,
2688 			unsigned long shared, unsigned long private)
2689 {
2690 	unsigned int period_slot;
2691 	int lr_ratio, ps_ratio;
2692 	int diff;
2693 
2694 	unsigned long remote = p->numa_faults_locality[0];
2695 	unsigned long local = p->numa_faults_locality[1];
2696 
2697 	/*
2698 	 * If there were no record hinting faults then either the task is
2699 	 * completely idle or all activity is in areas that are not of interest
2700 	 * to automatic numa balancing. Related to that, if there were failed
2701 	 * migration then it implies we are migrating too quickly or the local
2702 	 * node is overloaded. In either case, scan slower
2703 	 */
2704 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2705 		p->numa_scan_period = min(p->numa_scan_period_max,
2706 			p->numa_scan_period << 1);
2707 
2708 		p->mm->numa_next_scan = jiffies +
2709 			msecs_to_jiffies(p->numa_scan_period);
2710 
2711 		return;
2712 	}
2713 
2714 	/*
2715 	 * Prepare to scale scan period relative to the current period.
2716 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2717 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2718 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2719 	 */
2720 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2721 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2722 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2723 
2724 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2725 		/*
2726 		 * Most memory accesses are local. There is no need to
2727 		 * do fast NUMA scanning, since memory is already local.
2728 		 */
2729 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2730 		if (!slot)
2731 			slot = 1;
2732 		diff = slot * period_slot;
2733 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2734 		/*
2735 		 * Most memory accesses are shared with other tasks.
2736 		 * There is no point in continuing fast NUMA scanning,
2737 		 * since other tasks may just move the memory elsewhere.
2738 		 */
2739 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2740 		if (!slot)
2741 			slot = 1;
2742 		diff = slot * period_slot;
2743 	} else {
2744 		/*
2745 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2746 		 * yet they are not on the local NUMA node. Speed up
2747 		 * NUMA scanning to get the memory moved over.
2748 		 */
2749 		int ratio = max(lr_ratio, ps_ratio);
2750 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2751 	}
2752 
2753 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2754 			task_scan_min(p), task_scan_max(p));
2755 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2756 }
2757 
2758 /*
2759  * Get the fraction of time the task has been running since the last
2760  * NUMA placement cycle. The scheduler keeps similar statistics, but
2761  * decays those on a 32ms period, which is orders of magnitude off
2762  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2763  * stats only if the task is so new there are no NUMA statistics yet.
2764  */
2765 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2766 {
2767 	u64 runtime, delta, now;
2768 	/* Use the start of this time slice to avoid calculations. */
2769 	now = p->se.exec_start;
2770 	runtime = p->se.sum_exec_runtime;
2771 
2772 	if (p->last_task_numa_placement) {
2773 		delta = runtime - p->last_sum_exec_runtime;
2774 		*period = now - p->last_task_numa_placement;
2775 
2776 		/* Avoid time going backwards, prevent potential divide error: */
2777 		if (unlikely((s64)*period < 0))
2778 			*period = 0;
2779 	} else {
2780 		delta = p->se.avg.load_sum;
2781 		*period = LOAD_AVG_MAX;
2782 	}
2783 
2784 	p->last_sum_exec_runtime = runtime;
2785 	p->last_task_numa_placement = now;
2786 
2787 	return delta;
2788 }
2789 
2790 /*
2791  * Determine the preferred nid for a task in a numa_group. This needs to
2792  * be done in a way that produces consistent results with group_weight,
2793  * otherwise workloads might not converge.
2794  */
2795 static int preferred_group_nid(struct task_struct *p, int nid)
2796 {
2797 	nodemask_t nodes;
2798 	int dist;
2799 
2800 	/* Direct connections between all NUMA nodes. */
2801 	if (sched_numa_topology_type == NUMA_DIRECT)
2802 		return nid;
2803 
2804 	/*
2805 	 * On a system with glueless mesh NUMA topology, group_weight
2806 	 * scores nodes according to the number of NUMA hinting faults on
2807 	 * both the node itself, and on nearby nodes.
2808 	 */
2809 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2810 		unsigned long score, max_score = 0;
2811 		int node, max_node = nid;
2812 
2813 		dist = sched_max_numa_distance;
2814 
2815 		for_each_node_state(node, N_CPU) {
2816 			score = group_weight(p, node, dist);
2817 			if (score > max_score) {
2818 				max_score = score;
2819 				max_node = node;
2820 			}
2821 		}
2822 		return max_node;
2823 	}
2824 
2825 	/*
2826 	 * Finding the preferred nid in a system with NUMA backplane
2827 	 * interconnect topology is more involved. The goal is to locate
2828 	 * tasks from numa_groups near each other in the system, and
2829 	 * untangle workloads from different sides of the system. This requires
2830 	 * searching down the hierarchy of node groups, recursively searching
2831 	 * inside the highest scoring group of nodes. The nodemask tricks
2832 	 * keep the complexity of the search down.
2833 	 */
2834 	nodes = node_states[N_CPU];
2835 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2836 		unsigned long max_faults = 0;
2837 		nodemask_t max_group = NODE_MASK_NONE;
2838 		int a, b;
2839 
2840 		/* Are there nodes at this distance from each other? */
2841 		if (!find_numa_distance(dist))
2842 			continue;
2843 
2844 		for_each_node_mask(a, nodes) {
2845 			unsigned long faults = 0;
2846 			nodemask_t this_group;
2847 			nodes_clear(this_group);
2848 
2849 			/* Sum group's NUMA faults; includes a==b case. */
2850 			for_each_node_mask(b, nodes) {
2851 				if (node_distance(a, b) < dist) {
2852 					faults += group_faults(p, b);
2853 					node_set(b, this_group);
2854 					node_clear(b, nodes);
2855 				}
2856 			}
2857 
2858 			/* Remember the top group. */
2859 			if (faults > max_faults) {
2860 				max_faults = faults;
2861 				max_group = this_group;
2862 				/*
2863 				 * subtle: at the smallest distance there is
2864 				 * just one node left in each "group", the
2865 				 * winner is the preferred nid.
2866 				 */
2867 				nid = a;
2868 			}
2869 		}
2870 		/* Next round, evaluate the nodes within max_group. */
2871 		if (!max_faults)
2872 			break;
2873 		nodes = max_group;
2874 	}
2875 	return nid;
2876 }
2877 
2878 static void task_numa_placement(struct task_struct *p)
2879 {
2880 	int seq, nid, max_nid = NUMA_NO_NODE;
2881 	unsigned long max_faults = 0;
2882 	unsigned long fault_types[2] = { 0, 0 };
2883 	unsigned long total_faults;
2884 	u64 runtime, period;
2885 	spinlock_t *group_lock = NULL;
2886 	struct numa_group *ng;
2887 
2888 	/*
2889 	 * The p->mm->numa_scan_seq field gets updated without
2890 	 * exclusive access. Use READ_ONCE() here to ensure
2891 	 * that the field is read in a single access:
2892 	 */
2893 	seq = READ_ONCE(p->mm->numa_scan_seq);
2894 	if (p->numa_scan_seq == seq)
2895 		return;
2896 	p->numa_scan_seq = seq;
2897 	p->numa_scan_period_max = task_scan_max(p);
2898 
2899 	total_faults = p->numa_faults_locality[0] +
2900 		       p->numa_faults_locality[1];
2901 	runtime = numa_get_avg_runtime(p, &period);
2902 
2903 	/* If the task is part of a group prevent parallel updates to group stats */
2904 	ng = deref_curr_numa_group(p);
2905 	if (ng) {
2906 		group_lock = &ng->lock;
2907 		spin_lock_irq(group_lock);
2908 	}
2909 
2910 	/* Find the node with the highest number of faults */
2911 	for_each_online_node(nid) {
2912 		/* Keep track of the offsets in numa_faults array */
2913 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2914 		unsigned long faults = 0, group_faults = 0;
2915 		int priv;
2916 
2917 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2918 			long diff, f_diff, f_weight;
2919 
2920 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2921 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2922 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2923 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2924 
2925 			/* Decay existing window, copy faults since last scan */
2926 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2927 			fault_types[priv] += p->numa_faults[membuf_idx];
2928 			p->numa_faults[membuf_idx] = 0;
2929 
2930 			/*
2931 			 * Normalize the faults_from, so all tasks in a group
2932 			 * count according to CPU use, instead of by the raw
2933 			 * number of faults. Tasks with little runtime have
2934 			 * little over-all impact on throughput, and thus their
2935 			 * faults are less important.
2936 			 */
2937 			f_weight = div64_u64(runtime << 16, period + 1);
2938 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2939 				   (total_faults + 1);
2940 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2941 			p->numa_faults[cpubuf_idx] = 0;
2942 
2943 			p->numa_faults[mem_idx] += diff;
2944 			p->numa_faults[cpu_idx] += f_diff;
2945 			faults += p->numa_faults[mem_idx];
2946 			p->total_numa_faults += diff;
2947 			if (ng) {
2948 				/*
2949 				 * safe because we can only change our own group
2950 				 *
2951 				 * mem_idx represents the offset for a given
2952 				 * nid and priv in a specific region because it
2953 				 * is at the beginning of the numa_faults array.
2954 				 */
2955 				ng->faults[mem_idx] += diff;
2956 				ng->faults[cpu_idx] += f_diff;
2957 				ng->total_faults += diff;
2958 				group_faults += ng->faults[mem_idx];
2959 			}
2960 		}
2961 
2962 		if (!ng) {
2963 			if (faults > max_faults) {
2964 				max_faults = faults;
2965 				max_nid = nid;
2966 			}
2967 		} else if (group_faults > max_faults) {
2968 			max_faults = group_faults;
2969 			max_nid = nid;
2970 		}
2971 	}
2972 
2973 	/* Cannot migrate task to CPU-less node */
2974 	max_nid = numa_nearest_node(max_nid, N_CPU);
2975 
2976 	if (ng) {
2977 		numa_group_count_active_nodes(ng);
2978 		spin_unlock_irq(group_lock);
2979 		max_nid = preferred_group_nid(p, max_nid);
2980 	}
2981 
2982 	if (max_faults) {
2983 		/* Set the new preferred node */
2984 		if (max_nid != p->numa_preferred_nid)
2985 			sched_setnuma(p, max_nid);
2986 	}
2987 
2988 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2989 }
2990 
2991 static inline int get_numa_group(struct numa_group *grp)
2992 {
2993 	return refcount_inc_not_zero(&grp->refcount);
2994 }
2995 
2996 static inline void put_numa_group(struct numa_group *grp)
2997 {
2998 	if (refcount_dec_and_test(&grp->refcount))
2999 		kfree_rcu(grp, rcu);
3000 }
3001 
3002 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3003 			int *priv)
3004 {
3005 	struct numa_group *grp, *my_grp;
3006 	struct task_struct *tsk;
3007 	bool join = false;
3008 	int cpu = cpupid_to_cpu(cpupid);
3009 	int i;
3010 
3011 	if (unlikely(!deref_curr_numa_group(p))) {
3012 		unsigned int size = sizeof(struct numa_group) +
3013 				    NR_NUMA_HINT_FAULT_STATS *
3014 				    nr_node_ids * sizeof(unsigned long);
3015 
3016 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3017 		if (!grp)
3018 			return;
3019 
3020 		refcount_set(&grp->refcount, 1);
3021 		grp->active_nodes = 1;
3022 		grp->max_faults_cpu = 0;
3023 		spin_lock_init(&grp->lock);
3024 		grp->gid = p->pid;
3025 
3026 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3027 			grp->faults[i] = p->numa_faults[i];
3028 
3029 		grp->total_faults = p->total_numa_faults;
3030 
3031 		grp->nr_tasks++;
3032 		rcu_assign_pointer(p->numa_group, grp);
3033 	}
3034 
3035 	rcu_read_lock();
3036 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3037 
3038 	if (!cpupid_match_pid(tsk, cpupid))
3039 		goto no_join;
3040 
3041 	grp = rcu_dereference(tsk->numa_group);
3042 	if (!grp)
3043 		goto no_join;
3044 
3045 	my_grp = deref_curr_numa_group(p);
3046 	if (grp == my_grp)
3047 		goto no_join;
3048 
3049 	/*
3050 	 * Only join the other group if its bigger; if we're the bigger group,
3051 	 * the other task will join us.
3052 	 */
3053 	if (my_grp->nr_tasks > grp->nr_tasks)
3054 		goto no_join;
3055 
3056 	/*
3057 	 * Tie-break on the grp address.
3058 	 */
3059 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3060 		goto no_join;
3061 
3062 	/* Always join threads in the same process. */
3063 	if (tsk->mm == current->mm)
3064 		join = true;
3065 
3066 	/* Simple filter to avoid false positives due to PID collisions */
3067 	if (flags & TNF_SHARED)
3068 		join = true;
3069 
3070 	/* Update priv based on whether false sharing was detected */
3071 	*priv = !join;
3072 
3073 	if (join && !get_numa_group(grp))
3074 		goto no_join;
3075 
3076 	rcu_read_unlock();
3077 
3078 	if (!join)
3079 		return;
3080 
3081 	WARN_ON_ONCE(irqs_disabled());
3082 	double_lock_irq(&my_grp->lock, &grp->lock);
3083 
3084 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3085 		my_grp->faults[i] -= p->numa_faults[i];
3086 		grp->faults[i] += p->numa_faults[i];
3087 	}
3088 	my_grp->total_faults -= p->total_numa_faults;
3089 	grp->total_faults += p->total_numa_faults;
3090 
3091 	my_grp->nr_tasks--;
3092 	grp->nr_tasks++;
3093 
3094 	spin_unlock(&my_grp->lock);
3095 	spin_unlock_irq(&grp->lock);
3096 
3097 	rcu_assign_pointer(p->numa_group, grp);
3098 
3099 	put_numa_group(my_grp);
3100 	return;
3101 
3102 no_join:
3103 	rcu_read_unlock();
3104 	return;
3105 }
3106 
3107 /*
3108  * Get rid of NUMA statistics associated with a task (either current or dead).
3109  * If @final is set, the task is dead and has reached refcount zero, so we can
3110  * safely free all relevant data structures. Otherwise, there might be
3111  * concurrent reads from places like load balancing and procfs, and we should
3112  * reset the data back to default state without freeing ->numa_faults.
3113  */
3114 void task_numa_free(struct task_struct *p, bool final)
3115 {
3116 	/* safe: p either is current or is being freed by current */
3117 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3118 	unsigned long *numa_faults = p->numa_faults;
3119 	unsigned long flags;
3120 	int i;
3121 
3122 	if (!numa_faults)
3123 		return;
3124 
3125 	if (grp) {
3126 		spin_lock_irqsave(&grp->lock, flags);
3127 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3128 			grp->faults[i] -= p->numa_faults[i];
3129 		grp->total_faults -= p->total_numa_faults;
3130 
3131 		grp->nr_tasks--;
3132 		spin_unlock_irqrestore(&grp->lock, flags);
3133 		RCU_INIT_POINTER(p->numa_group, NULL);
3134 		put_numa_group(grp);
3135 	}
3136 
3137 	if (final) {
3138 		p->numa_faults = NULL;
3139 		kfree(numa_faults);
3140 	} else {
3141 		p->total_numa_faults = 0;
3142 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3143 			numa_faults[i] = 0;
3144 	}
3145 }
3146 
3147 /*
3148  * Got a PROT_NONE fault for a page on @node.
3149  */
3150 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3151 {
3152 	struct task_struct *p = current;
3153 	bool migrated = flags & TNF_MIGRATED;
3154 	int cpu_node = task_node(current);
3155 	int local = !!(flags & TNF_FAULT_LOCAL);
3156 	struct numa_group *ng;
3157 	int priv;
3158 
3159 	if (!static_branch_likely(&sched_numa_balancing))
3160 		return;
3161 
3162 	/* for example, ksmd faulting in a user's mm */
3163 	if (!p->mm)
3164 		return;
3165 
3166 	/*
3167 	 * NUMA faults statistics are unnecessary for the slow memory
3168 	 * node for memory tiering mode.
3169 	 */
3170 	if (!node_is_toptier(mem_node) &&
3171 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3172 	     !cpupid_valid(last_cpupid)))
3173 		return;
3174 
3175 	/* Allocate buffer to track faults on a per-node basis */
3176 	if (unlikely(!p->numa_faults)) {
3177 		int size = sizeof(*p->numa_faults) *
3178 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3179 
3180 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3181 		if (!p->numa_faults)
3182 			return;
3183 
3184 		p->total_numa_faults = 0;
3185 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3186 	}
3187 
3188 	/*
3189 	 * First accesses are treated as private, otherwise consider accesses
3190 	 * to be private if the accessing pid has not changed
3191 	 */
3192 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3193 		priv = 1;
3194 	} else {
3195 		priv = cpupid_match_pid(p, last_cpupid);
3196 		if (!priv && !(flags & TNF_NO_GROUP))
3197 			task_numa_group(p, last_cpupid, flags, &priv);
3198 	}
3199 
3200 	/*
3201 	 * If a workload spans multiple NUMA nodes, a shared fault that
3202 	 * occurs wholly within the set of nodes that the workload is
3203 	 * actively using should be counted as local. This allows the
3204 	 * scan rate to slow down when a workload has settled down.
3205 	 */
3206 	ng = deref_curr_numa_group(p);
3207 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3208 				numa_is_active_node(cpu_node, ng) &&
3209 				numa_is_active_node(mem_node, ng))
3210 		local = 1;
3211 
3212 	/*
3213 	 * Retry to migrate task to preferred node periodically, in case it
3214 	 * previously failed, or the scheduler moved us.
3215 	 */
3216 	if (time_after(jiffies, p->numa_migrate_retry)) {
3217 		task_numa_placement(p);
3218 		numa_migrate_preferred(p);
3219 	}
3220 
3221 	if (migrated)
3222 		p->numa_pages_migrated += pages;
3223 	if (flags & TNF_MIGRATE_FAIL)
3224 		p->numa_faults_locality[2] += pages;
3225 
3226 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3227 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3228 	p->numa_faults_locality[local] += pages;
3229 }
3230 
3231 static void reset_ptenuma_scan(struct task_struct *p)
3232 {
3233 	/*
3234 	 * We only did a read acquisition of the mmap sem, so
3235 	 * p->mm->numa_scan_seq is written to without exclusive access
3236 	 * and the update is not guaranteed to be atomic. That's not
3237 	 * much of an issue though, since this is just used for
3238 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3239 	 * expensive, to avoid any form of compiler optimizations:
3240 	 */
3241 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3242 	p->mm->numa_scan_offset = 0;
3243 }
3244 
3245 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3246 {
3247 	unsigned long pids;
3248 	/*
3249 	 * Allow unconditional access first two times, so that all the (pages)
3250 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3251 	 * This is also done to avoid any side effect of task scanning
3252 	 * amplifying the unfairness of disjoint set of VMAs' access.
3253 	 */
3254 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3255 		return true;
3256 
3257 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3258 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3259 		return true;
3260 
3261 	/*
3262 	 * Complete a scan that has already started regardless of PID access, or
3263 	 * some VMAs may never be scanned in multi-threaded applications:
3264 	 */
3265 	if (mm->numa_scan_offset > vma->vm_start) {
3266 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3267 		return true;
3268 	}
3269 
3270 	/*
3271 	 * This vma has not been accessed for a while, and if the number
3272 	 * the threads in the same process is low, which means no other
3273 	 * threads can help scan this vma, force a vma scan.
3274 	 */
3275 	if (READ_ONCE(mm->numa_scan_seq) >
3276 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3277 		return true;
3278 
3279 	return false;
3280 }
3281 
3282 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3283 
3284 /*
3285  * The expensive part of numa migration is done from task_work context.
3286  * Triggered from task_tick_numa().
3287  */
3288 static void task_numa_work(struct callback_head *work)
3289 {
3290 	unsigned long migrate, next_scan, now = jiffies;
3291 	struct task_struct *p = current;
3292 	struct mm_struct *mm = p->mm;
3293 	u64 runtime = p->se.sum_exec_runtime;
3294 	struct vm_area_struct *vma;
3295 	unsigned long start, end;
3296 	unsigned long nr_pte_updates = 0;
3297 	long pages, virtpages;
3298 	struct vma_iterator vmi;
3299 	bool vma_pids_skipped;
3300 	bool vma_pids_forced = false;
3301 
3302 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
3303 
3304 	work->next = work;
3305 	/*
3306 	 * Who cares about NUMA placement when they're dying.
3307 	 *
3308 	 * NOTE: make sure not to dereference p->mm before this check,
3309 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3310 	 * without p->mm even though we still had it when we enqueued this
3311 	 * work.
3312 	 */
3313 	if (p->flags & PF_EXITING)
3314 		return;
3315 
3316 	/*
3317 	 * Memory is pinned to only one NUMA node via cpuset.mems, naturally
3318 	 * no page can be migrated.
3319 	 */
3320 	if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
3321 		trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
3322 		return;
3323 	}
3324 
3325 	if (!mm->numa_next_scan) {
3326 		mm->numa_next_scan = now +
3327 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3328 	}
3329 
3330 	/*
3331 	 * Enforce maximal scan/migration frequency..
3332 	 */
3333 	migrate = mm->numa_next_scan;
3334 	if (time_before(now, migrate))
3335 		return;
3336 
3337 	if (p->numa_scan_period == 0) {
3338 		p->numa_scan_period_max = task_scan_max(p);
3339 		p->numa_scan_period = task_scan_start(p);
3340 	}
3341 
3342 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3343 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3344 		return;
3345 
3346 	/*
3347 	 * Delay this task enough that another task of this mm will likely win
3348 	 * the next time around.
3349 	 */
3350 	p->node_stamp += 2 * TICK_NSEC;
3351 
3352 	pages = sysctl_numa_balancing_scan_size;
3353 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3354 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3355 	if (!pages)
3356 		return;
3357 
3358 
3359 	if (!mmap_read_trylock(mm))
3360 		return;
3361 
3362 	/*
3363 	 * VMAs are skipped if the current PID has not trapped a fault within
3364 	 * the VMA recently. Allow scanning to be forced if there is no
3365 	 * suitable VMA remaining.
3366 	 */
3367 	vma_pids_skipped = false;
3368 
3369 retry_pids:
3370 	start = mm->numa_scan_offset;
3371 	vma_iter_init(&vmi, mm, start);
3372 	vma = vma_next(&vmi);
3373 	if (!vma) {
3374 		reset_ptenuma_scan(p);
3375 		start = 0;
3376 		vma_iter_set(&vmi, start);
3377 		vma = vma_next(&vmi);
3378 	}
3379 
3380 	for (; vma; vma = vma_next(&vmi)) {
3381 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3382 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3383 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3384 			continue;
3385 		}
3386 
3387 		/*
3388 		 * Shared library pages mapped by multiple processes are not
3389 		 * migrated as it is expected they are cache replicated. Avoid
3390 		 * hinting faults in read-only file-backed mappings or the vDSO
3391 		 * as migrating the pages will be of marginal benefit.
3392 		 */
3393 		if (!vma->vm_mm ||
3394 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3395 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3396 			continue;
3397 		}
3398 
3399 		/*
3400 		 * Skip inaccessible VMAs to avoid any confusion between
3401 		 * PROT_NONE and NUMA hinting PTEs
3402 		 */
3403 		if (!vma_is_accessible(vma)) {
3404 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3405 			continue;
3406 		}
3407 
3408 		/* Initialise new per-VMA NUMAB state. */
3409 		if (!vma->numab_state) {
3410 			struct vma_numab_state *ptr;
3411 
3412 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3413 			if (!ptr)
3414 				continue;
3415 
3416 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3417 				kfree(ptr);
3418 				continue;
3419 			}
3420 
3421 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3422 
3423 			vma->numab_state->next_scan = now +
3424 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3425 
3426 			/* Reset happens after 4 times scan delay of scan start */
3427 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3428 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3429 
3430 			/*
3431 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3432 			 * to prevent VMAs being skipped prematurely on the
3433 			 * first scan:
3434 			 */
3435 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3436 		}
3437 
3438 		/*
3439 		 * Scanning the VMAs of short lived tasks add more overhead. So
3440 		 * delay the scan for new VMAs.
3441 		 */
3442 		if (mm->numa_scan_seq && time_before(jiffies,
3443 						vma->numab_state->next_scan)) {
3444 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3445 			continue;
3446 		}
3447 
3448 		/* RESET access PIDs regularly for old VMAs. */
3449 		if (mm->numa_scan_seq &&
3450 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3451 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3452 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3453 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3454 			vma->numab_state->pids_active[1] = 0;
3455 		}
3456 
3457 		/* Do not rescan VMAs twice within the same sequence. */
3458 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3459 			mm->numa_scan_offset = vma->vm_end;
3460 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3461 			continue;
3462 		}
3463 
3464 		/*
3465 		 * Do not scan the VMA if task has not accessed it, unless no other
3466 		 * VMA candidate exists.
3467 		 */
3468 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3469 			vma_pids_skipped = true;
3470 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3471 			continue;
3472 		}
3473 
3474 		do {
3475 			start = max(start, vma->vm_start);
3476 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3477 			end = min(end, vma->vm_end);
3478 			nr_pte_updates = change_prot_numa(vma, start, end);
3479 
3480 			/*
3481 			 * Try to scan sysctl_numa_balancing_size worth of
3482 			 * hpages that have at least one present PTE that
3483 			 * is not already PTE-numa. If the VMA contains
3484 			 * areas that are unused or already full of prot_numa
3485 			 * PTEs, scan up to virtpages, to skip through those
3486 			 * areas faster.
3487 			 */
3488 			if (nr_pte_updates)
3489 				pages -= (end - start) >> PAGE_SHIFT;
3490 			virtpages -= (end - start) >> PAGE_SHIFT;
3491 
3492 			start = end;
3493 			if (pages <= 0 || virtpages <= 0)
3494 				goto out;
3495 
3496 			cond_resched();
3497 		} while (end != vma->vm_end);
3498 
3499 		/* VMA scan is complete, do not scan until next sequence. */
3500 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3501 
3502 		/*
3503 		 * Only force scan within one VMA at a time, to limit the
3504 		 * cost of scanning a potentially uninteresting VMA.
3505 		 */
3506 		if (vma_pids_forced)
3507 			break;
3508 	}
3509 
3510 	/*
3511 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3512 	 * not accessing the VMA previously, then force a scan to ensure
3513 	 * forward progress:
3514 	 */
3515 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3516 		vma_pids_forced = true;
3517 		goto retry_pids;
3518 	}
3519 
3520 out:
3521 	/*
3522 	 * It is possible to reach the end of the VMA list but the last few
3523 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3524 	 * would find the !migratable VMA on the next scan but not reset the
3525 	 * scanner to the start so check it now.
3526 	 */
3527 	if (vma)
3528 		mm->numa_scan_offset = start;
3529 	else
3530 		reset_ptenuma_scan(p);
3531 	mmap_read_unlock(mm);
3532 
3533 	/*
3534 	 * Make sure tasks use at least 32x as much time to run other code
3535 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3536 	 * Usually update_task_scan_period slows down scanning enough; on an
3537 	 * overloaded system we need to limit overhead on a per task basis.
3538 	 */
3539 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3540 		u64 diff = p->se.sum_exec_runtime - runtime;
3541 		p->node_stamp += 32 * diff;
3542 	}
3543 }
3544 
3545 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3546 {
3547 	int mm_users = 0;
3548 	struct mm_struct *mm = p->mm;
3549 
3550 	if (mm) {
3551 		mm_users = atomic_read(&mm->mm_users);
3552 		if (mm_users == 1) {
3553 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3554 			mm->numa_scan_seq = 0;
3555 		}
3556 	}
3557 	p->node_stamp			= 0;
3558 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3559 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3560 	p->numa_migrate_retry		= 0;
3561 	/* Protect against double add, see task_tick_numa and task_numa_work */
3562 	p->numa_work.next		= &p->numa_work;
3563 	p->numa_faults			= NULL;
3564 	p->numa_pages_migrated		= 0;
3565 	p->total_numa_faults		= 0;
3566 	RCU_INIT_POINTER(p->numa_group, NULL);
3567 	p->last_task_numa_placement	= 0;
3568 	p->last_sum_exec_runtime	= 0;
3569 
3570 	init_task_work(&p->numa_work, task_numa_work);
3571 
3572 	/* New address space, reset the preferred nid */
3573 	if (!(clone_flags & CLONE_VM)) {
3574 		p->numa_preferred_nid = NUMA_NO_NODE;
3575 		return;
3576 	}
3577 
3578 	/*
3579 	 * New thread, keep existing numa_preferred_nid which should be copied
3580 	 * already by arch_dup_task_struct but stagger when scans start.
3581 	 */
3582 	if (mm) {
3583 		unsigned int delay;
3584 
3585 		delay = min_t(unsigned int, task_scan_max(current),
3586 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3587 		delay += 2 * TICK_NSEC;
3588 		p->node_stamp = delay;
3589 	}
3590 }
3591 
3592 /*
3593  * Drive the periodic memory faults..
3594  */
3595 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3596 {
3597 	struct callback_head *work = &curr->numa_work;
3598 	u64 period, now;
3599 
3600 	/*
3601 	 * We don't care about NUMA placement if we don't have memory.
3602 	 */
3603 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3604 		return;
3605 
3606 	/*
3607 	 * Using runtime rather than walltime has the dual advantage that
3608 	 * we (mostly) drive the selection from busy threads and that the
3609 	 * task needs to have done some actual work before we bother with
3610 	 * NUMA placement.
3611 	 */
3612 	now = curr->se.sum_exec_runtime;
3613 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3614 
3615 	if (now > curr->node_stamp + period) {
3616 		if (!curr->node_stamp)
3617 			curr->numa_scan_period = task_scan_start(curr);
3618 		curr->node_stamp += period;
3619 
3620 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3621 			task_work_add(curr, work, TWA_RESUME);
3622 	}
3623 }
3624 
3625 static void update_scan_period(struct task_struct *p, int new_cpu)
3626 {
3627 	int src_nid = cpu_to_node(task_cpu(p));
3628 	int dst_nid = cpu_to_node(new_cpu);
3629 
3630 	if (!static_branch_likely(&sched_numa_balancing))
3631 		return;
3632 
3633 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3634 		return;
3635 
3636 	if (src_nid == dst_nid)
3637 		return;
3638 
3639 	/*
3640 	 * Allow resets if faults have been trapped before one scan
3641 	 * has completed. This is most likely due to a new task that
3642 	 * is pulled cross-node due to wakeups or load balancing.
3643 	 */
3644 	if (p->numa_scan_seq) {
3645 		/*
3646 		 * Avoid scan adjustments if moving to the preferred
3647 		 * node or if the task was not previously running on
3648 		 * the preferred node.
3649 		 */
3650 		if (dst_nid == p->numa_preferred_nid ||
3651 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3652 			src_nid != p->numa_preferred_nid))
3653 			return;
3654 	}
3655 
3656 	p->numa_scan_period = task_scan_start(p);
3657 }
3658 
3659 #else /* !CONFIG_NUMA_BALANCING: */
3660 
3661 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3662 {
3663 }
3664 
3665 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3666 {
3667 }
3668 
3669 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3670 {
3671 }
3672 
3673 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3674 {
3675 }
3676 
3677 #endif /* !CONFIG_NUMA_BALANCING */
3678 
3679 static void
3680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3681 {
3682 	update_load_add(&cfs_rq->load, se->load.weight);
3683 	if (entity_is_task(se)) {
3684 		struct rq *rq = rq_of(cfs_rq);
3685 
3686 		account_numa_enqueue(rq, task_of(se));
3687 		list_add(&se->group_node, &rq->cfs_tasks);
3688 	}
3689 	cfs_rq->nr_queued++;
3690 }
3691 
3692 static void
3693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3694 {
3695 	update_load_sub(&cfs_rq->load, se->load.weight);
3696 	if (entity_is_task(se)) {
3697 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3698 		list_del_init(&se->group_node);
3699 	}
3700 	cfs_rq->nr_queued--;
3701 }
3702 
3703 /*
3704  * Signed add and clamp on underflow.
3705  *
3706  * Explicitly do a load-store to ensure the intermediate value never hits
3707  * memory. This allows lockless observations without ever seeing the negative
3708  * values.
3709  */
3710 #define add_positive(_ptr, _val) do {                           \
3711 	typeof(_ptr) ptr = (_ptr);                              \
3712 	typeof(_val) val = (_val);                              \
3713 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3714 								\
3715 	res = var + val;                                        \
3716 								\
3717 	if (val < 0 && res > var)                               \
3718 		res = 0;                                        \
3719 								\
3720 	WRITE_ONCE(*ptr, res);                                  \
3721 } while (0)
3722 
3723 /*
3724  * Unsigned subtract and clamp on underflow.
3725  *
3726  * Explicitly do a load-store to ensure the intermediate value never hits
3727  * memory. This allows lockless observations without ever seeing the negative
3728  * values.
3729  */
3730 #define sub_positive(_ptr, _val) do {				\
3731 	typeof(_ptr) ptr = (_ptr);				\
3732 	typeof(*ptr) val = (_val);				\
3733 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3734 	res = var - val;					\
3735 	if (res > var)						\
3736 		res = 0;					\
3737 	WRITE_ONCE(*ptr, res);					\
3738 } while (0)
3739 
3740 /*
3741  * Remove and clamp on negative, from a local variable.
3742  *
3743  * A variant of sub_positive(), which does not use explicit load-store
3744  * and is thus optimized for local variable updates.
3745  */
3746 #define lsub_positive(_ptr, _val) do {				\
3747 	typeof(_ptr) ptr = (_ptr);				\
3748 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3749 } while (0)
3750 
3751 static inline void
3752 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753 {
3754 	cfs_rq->avg.load_avg += se->avg.load_avg;
3755 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3756 }
3757 
3758 static inline void
3759 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760 {
3761 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3762 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3763 	/* See update_cfs_rq_load_avg() */
3764 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3765 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3766 }
3767 
3768 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3769 
3770 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3771 			    unsigned long weight)
3772 {
3773 	bool curr = cfs_rq->curr == se;
3774 
3775 	if (se->on_rq) {
3776 		/* commit outstanding execution time */
3777 		update_curr(cfs_rq);
3778 		update_entity_lag(cfs_rq, se);
3779 		se->deadline -= se->vruntime;
3780 		se->rel_deadline = 1;
3781 		cfs_rq->nr_queued--;
3782 		if (!curr)
3783 			__dequeue_entity(cfs_rq, se);
3784 		update_load_sub(&cfs_rq->load, se->load.weight);
3785 	}
3786 	dequeue_load_avg(cfs_rq, se);
3787 
3788 	/*
3789 	 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3790 	 * we need to scale se->vlag when w_i changes.
3791 	 */
3792 	se->vlag = div_s64(se->vlag * se->load.weight, weight);
3793 	if (se->rel_deadline)
3794 		se->deadline = div_s64(se->deadline * se->load.weight, weight);
3795 
3796 	update_load_set(&se->load, weight);
3797 
3798 	do {
3799 		u32 divider = get_pelt_divider(&se->avg);
3800 
3801 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3802 	} while (0);
3803 
3804 	enqueue_load_avg(cfs_rq, se);
3805 	if (se->on_rq) {
3806 		place_entity(cfs_rq, se, 0);
3807 		update_load_add(&cfs_rq->load, se->load.weight);
3808 		if (!curr)
3809 			__enqueue_entity(cfs_rq, se);
3810 		cfs_rq->nr_queued++;
3811 
3812 		/*
3813 		 * The entity's vruntime has been adjusted, so let's check
3814 		 * whether the rq-wide min_vruntime needs updated too. Since
3815 		 * the calculations above require stable min_vruntime rather
3816 		 * than up-to-date one, we do the update at the end of the
3817 		 * reweight process.
3818 		 */
3819 		update_min_vruntime(cfs_rq);
3820 	}
3821 }
3822 
3823 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3824 			       const struct load_weight *lw)
3825 {
3826 	struct sched_entity *se = &p->se;
3827 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3828 	struct load_weight *load = &se->load;
3829 
3830 	reweight_entity(cfs_rq, se, lw->weight);
3831 	load->inv_weight = lw->inv_weight;
3832 }
3833 
3834 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3835 
3836 #ifdef CONFIG_FAIR_GROUP_SCHED
3837 /*
3838  * All this does is approximate the hierarchical proportion which includes that
3839  * global sum we all love to hate.
3840  *
3841  * That is, the weight of a group entity, is the proportional share of the
3842  * group weight based on the group runqueue weights. That is:
3843  *
3844  *                     tg->weight * grq->load.weight
3845  *   ge->load.weight = -----------------------------               (1)
3846  *                       \Sum grq->load.weight
3847  *
3848  * Now, because computing that sum is prohibitively expensive to compute (been
3849  * there, done that) we approximate it with this average stuff. The average
3850  * moves slower and therefore the approximation is cheaper and more stable.
3851  *
3852  * So instead of the above, we substitute:
3853  *
3854  *   grq->load.weight -> grq->avg.load_avg                         (2)
3855  *
3856  * which yields the following:
3857  *
3858  *                     tg->weight * grq->avg.load_avg
3859  *   ge->load.weight = ------------------------------              (3)
3860  *                             tg->load_avg
3861  *
3862  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3863  *
3864  * That is shares_avg, and it is right (given the approximation (2)).
3865  *
3866  * The problem with it is that because the average is slow -- it was designed
3867  * to be exactly that of course -- this leads to transients in boundary
3868  * conditions. In specific, the case where the group was idle and we start the
3869  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3870  * yielding bad latency etc..
3871  *
3872  * Now, in that special case (1) reduces to:
3873  *
3874  *                     tg->weight * grq->load.weight
3875  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3876  *                         grp->load.weight
3877  *
3878  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3879  *
3880  * So what we do is modify our approximation (3) to approach (4) in the (near)
3881  * UP case, like:
3882  *
3883  *   ge->load.weight =
3884  *
3885  *              tg->weight * grq->load.weight
3886  *     ---------------------------------------------------         (5)
3887  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3888  *
3889  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3890  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3891  *
3892  *
3893  *                     tg->weight * grq->load.weight
3894  *   ge->load.weight = -----------------------------		   (6)
3895  *                             tg_load_avg'
3896  *
3897  * Where:
3898  *
3899  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3900  *                  max(grq->load.weight, grq->avg.load_avg)
3901  *
3902  * And that is shares_weight and is icky. In the (near) UP case it approaches
3903  * (4) while in the normal case it approaches (3). It consistently
3904  * overestimates the ge->load.weight and therefore:
3905  *
3906  *   \Sum ge->load.weight >= tg->weight
3907  *
3908  * hence icky!
3909  */
3910 static long calc_group_shares(struct cfs_rq *cfs_rq)
3911 {
3912 	long tg_weight, tg_shares, load, shares;
3913 	struct task_group *tg = cfs_rq->tg;
3914 
3915 	tg_shares = READ_ONCE(tg->shares);
3916 
3917 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3918 
3919 	tg_weight = atomic_long_read(&tg->load_avg);
3920 
3921 	/* Ensure tg_weight >= load */
3922 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3923 	tg_weight += load;
3924 
3925 	shares = (tg_shares * load);
3926 	if (tg_weight)
3927 		shares /= tg_weight;
3928 
3929 	/*
3930 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3931 	 * of a group with small tg->shares value. It is a floor value which is
3932 	 * assigned as a minimum load.weight to the sched_entity representing
3933 	 * the group on a CPU.
3934 	 *
3935 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3936 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3937 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3938 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3939 	 * instead of 0.
3940 	 */
3941 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3942 }
3943 
3944 /*
3945  * Recomputes the group entity based on the current state of its group
3946  * runqueue.
3947  */
3948 static void update_cfs_group(struct sched_entity *se)
3949 {
3950 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3951 	long shares;
3952 
3953 	/*
3954 	 * When a group becomes empty, preserve its weight. This matters for
3955 	 * DELAY_DEQUEUE.
3956 	 */
3957 	if (!gcfs_rq || !gcfs_rq->load.weight)
3958 		return;
3959 
3960 	if (throttled_hierarchy(gcfs_rq))
3961 		return;
3962 
3963 	shares = calc_group_shares(gcfs_rq);
3964 	if (unlikely(se->load.weight != shares))
3965 		reweight_entity(cfs_rq_of(se), se, shares);
3966 }
3967 
3968 #else /* !CONFIG_FAIR_GROUP_SCHED: */
3969 static inline void update_cfs_group(struct sched_entity *se)
3970 {
3971 }
3972 #endif /* !CONFIG_FAIR_GROUP_SCHED */
3973 
3974 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3975 {
3976 	struct rq *rq = rq_of(cfs_rq);
3977 
3978 	if (&rq->cfs == cfs_rq) {
3979 		/*
3980 		 * There are a few boundary cases this might miss but it should
3981 		 * get called often enough that that should (hopefully) not be
3982 		 * a real problem.
3983 		 *
3984 		 * It will not get called when we go idle, because the idle
3985 		 * thread is a different class (!fair), nor will the utilization
3986 		 * number include things like RT tasks.
3987 		 *
3988 		 * As is, the util number is not freq-invariant (we'd have to
3989 		 * implement arch_scale_freq_capacity() for that).
3990 		 *
3991 		 * See cpu_util_cfs().
3992 		 */
3993 		cpufreq_update_util(rq, flags);
3994 	}
3995 }
3996 
3997 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3998 {
3999 	if (sa->load_sum)
4000 		return false;
4001 
4002 	if (sa->util_sum)
4003 		return false;
4004 
4005 	if (sa->runnable_sum)
4006 		return false;
4007 
4008 	/*
4009 	 * _avg must be null when _sum are null because _avg = _sum / divider
4010 	 * Make sure that rounding and/or propagation of PELT values never
4011 	 * break this.
4012 	 */
4013 	WARN_ON_ONCE(sa->load_avg ||
4014 		      sa->util_avg ||
4015 		      sa->runnable_avg);
4016 
4017 	return true;
4018 }
4019 
4020 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4021 {
4022 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4023 				 cfs_rq->last_update_time_copy);
4024 }
4025 #ifdef CONFIG_FAIR_GROUP_SCHED
4026 /*
4027  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4028  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4029  * bottom-up, we only have to test whether the cfs_rq before us on the list
4030  * is our child.
4031  * If cfs_rq is not on the list, test whether a child needs its to be added to
4032  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4033  */
4034 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4035 {
4036 	struct cfs_rq *prev_cfs_rq;
4037 	struct list_head *prev;
4038 	struct rq *rq = rq_of(cfs_rq);
4039 
4040 	if (cfs_rq->on_list) {
4041 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4042 	} else {
4043 		prev = rq->tmp_alone_branch;
4044 	}
4045 
4046 	if (prev == &rq->leaf_cfs_rq_list)
4047 		return false;
4048 
4049 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4050 
4051 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4052 }
4053 
4054 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4055 {
4056 	if (cfs_rq->load.weight)
4057 		return false;
4058 
4059 	if (!load_avg_is_decayed(&cfs_rq->avg))
4060 		return false;
4061 
4062 	if (child_cfs_rq_on_list(cfs_rq))
4063 		return false;
4064 
4065 	return true;
4066 }
4067 
4068 /**
4069  * update_tg_load_avg - update the tg's load avg
4070  * @cfs_rq: the cfs_rq whose avg changed
4071  *
4072  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4073  * However, because tg->load_avg is a global value there are performance
4074  * considerations.
4075  *
4076  * In order to avoid having to look at the other cfs_rq's, we use a
4077  * differential update where we store the last value we propagated. This in
4078  * turn allows skipping updates if the differential is 'small'.
4079  *
4080  * Updating tg's load_avg is necessary before update_cfs_share().
4081  */
4082 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4083 {
4084 	long delta;
4085 	u64 now;
4086 
4087 	/*
4088 	 * No need to update load_avg for root_task_group as it is not used.
4089 	 */
4090 	if (cfs_rq->tg == &root_task_group)
4091 		return;
4092 
4093 	/* rq has been offline and doesn't contribute to the share anymore: */
4094 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4095 		return;
4096 
4097 	/*
4098 	 * For migration heavy workloads, access to tg->load_avg can be
4099 	 * unbound. Limit the update rate to at most once per ms.
4100 	 */
4101 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4102 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4103 		return;
4104 
4105 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4106 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4107 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4108 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4109 		cfs_rq->last_update_tg_load_avg = now;
4110 	}
4111 }
4112 
4113 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4114 {
4115 	long delta;
4116 	u64 now;
4117 
4118 	/*
4119 	 * No need to update load_avg for root_task_group, as it is not used.
4120 	 */
4121 	if (cfs_rq->tg == &root_task_group)
4122 		return;
4123 
4124 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4125 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4126 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4127 	cfs_rq->tg_load_avg_contrib = 0;
4128 	cfs_rq->last_update_tg_load_avg = now;
4129 }
4130 
4131 /* CPU offline callback: */
4132 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4133 {
4134 	struct task_group *tg;
4135 
4136 	lockdep_assert_rq_held(rq);
4137 
4138 	/*
4139 	 * The rq clock has already been updated in
4140 	 * set_rq_offline(), so we should skip updating
4141 	 * the rq clock again in unthrottle_cfs_rq().
4142 	 */
4143 	rq_clock_start_loop_update(rq);
4144 
4145 	rcu_read_lock();
4146 	list_for_each_entry_rcu(tg, &task_groups, list) {
4147 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4148 
4149 		clear_tg_load_avg(cfs_rq);
4150 	}
4151 	rcu_read_unlock();
4152 
4153 	rq_clock_stop_loop_update(rq);
4154 }
4155 
4156 /*
4157  * Called within set_task_rq() right before setting a task's CPU. The
4158  * caller only guarantees p->pi_lock is held; no other assumptions,
4159  * including the state of rq->lock, should be made.
4160  */
4161 void set_task_rq_fair(struct sched_entity *se,
4162 		      struct cfs_rq *prev, struct cfs_rq *next)
4163 {
4164 	u64 p_last_update_time;
4165 	u64 n_last_update_time;
4166 
4167 	if (!sched_feat(ATTACH_AGE_LOAD))
4168 		return;
4169 
4170 	/*
4171 	 * We are supposed to update the task to "current" time, then its up to
4172 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4173 	 * getting what current time is, so simply throw away the out-of-date
4174 	 * time. This will result in the wakee task is less decayed, but giving
4175 	 * the wakee more load sounds not bad.
4176 	 */
4177 	if (!(se->avg.last_update_time && prev))
4178 		return;
4179 
4180 	p_last_update_time = cfs_rq_last_update_time(prev);
4181 	n_last_update_time = cfs_rq_last_update_time(next);
4182 
4183 	__update_load_avg_blocked_se(p_last_update_time, se);
4184 	se->avg.last_update_time = n_last_update_time;
4185 }
4186 
4187 /*
4188  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4189  * propagate its contribution. The key to this propagation is the invariant
4190  * that for each group:
4191  *
4192  *   ge->avg == grq->avg						(1)
4193  *
4194  * _IFF_ we look at the pure running and runnable sums. Because they
4195  * represent the very same entity, just at different points in the hierarchy.
4196  *
4197  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4198  * and simply copies the running/runnable sum over (but still wrong, because
4199  * the group entity and group rq do not have their PELT windows aligned).
4200  *
4201  * However, update_tg_cfs_load() is more complex. So we have:
4202  *
4203  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4204  *
4205  * And since, like util, the runnable part should be directly transferable,
4206  * the following would _appear_ to be the straight forward approach:
4207  *
4208  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4209  *
4210  * And per (1) we have:
4211  *
4212  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4213  *
4214  * Which gives:
4215  *
4216  *                      ge->load.weight * grq->avg.load_avg
4217  *   ge->avg.load_avg = -----------------------------------		(4)
4218  *                               grq->load.weight
4219  *
4220  * Except that is wrong!
4221  *
4222  * Because while for entities historical weight is not important and we
4223  * really only care about our future and therefore can consider a pure
4224  * runnable sum, runqueues can NOT do this.
4225  *
4226  * We specifically want runqueues to have a load_avg that includes
4227  * historical weights. Those represent the blocked load, the load we expect
4228  * to (shortly) return to us. This only works by keeping the weights as
4229  * integral part of the sum. We therefore cannot decompose as per (3).
4230  *
4231  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4232  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4233  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4234  * runnable section of these tasks overlap (or not). If they were to perfectly
4235  * align the rq as a whole would be runnable 2/3 of the time. If however we
4236  * always have at least 1 runnable task, the rq as a whole is always runnable.
4237  *
4238  * So we'll have to approximate.. :/
4239  *
4240  * Given the constraint:
4241  *
4242  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4243  *
4244  * We can construct a rule that adds runnable to a rq by assuming minimal
4245  * overlap.
4246  *
4247  * On removal, we'll assume each task is equally runnable; which yields:
4248  *
4249  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4250  *
4251  * XXX: only do this for the part of runnable > running ?
4252  *
4253  */
4254 static inline void
4255 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4256 {
4257 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4258 	u32 new_sum, divider;
4259 
4260 	/* Nothing to update */
4261 	if (!delta_avg)
4262 		return;
4263 
4264 	/*
4265 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4266 	 * See ___update_load_avg() for details.
4267 	 */
4268 	divider = get_pelt_divider(&cfs_rq->avg);
4269 
4270 
4271 	/* Set new sched_entity's utilization */
4272 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4273 	new_sum = se->avg.util_avg * divider;
4274 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4275 	se->avg.util_sum = new_sum;
4276 
4277 	/* Update parent cfs_rq utilization */
4278 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4279 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4280 
4281 	/* See update_cfs_rq_load_avg() */
4282 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4283 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4284 }
4285 
4286 static inline void
4287 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4288 {
4289 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4290 	u32 new_sum, divider;
4291 
4292 	/* Nothing to update */
4293 	if (!delta_avg)
4294 		return;
4295 
4296 	/*
4297 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4298 	 * See ___update_load_avg() for details.
4299 	 */
4300 	divider = get_pelt_divider(&cfs_rq->avg);
4301 
4302 	/* Set new sched_entity's runnable */
4303 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4304 	new_sum = se->avg.runnable_avg * divider;
4305 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4306 	se->avg.runnable_sum = new_sum;
4307 
4308 	/* Update parent cfs_rq runnable */
4309 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4310 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4311 	/* See update_cfs_rq_load_avg() */
4312 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4313 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4314 }
4315 
4316 static inline void
4317 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4318 {
4319 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4320 	unsigned long load_avg;
4321 	u64 load_sum = 0;
4322 	s64 delta_sum;
4323 	u32 divider;
4324 
4325 	if (!runnable_sum)
4326 		return;
4327 
4328 	gcfs_rq->prop_runnable_sum = 0;
4329 
4330 	/*
4331 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4332 	 * See ___update_load_avg() for details.
4333 	 */
4334 	divider = get_pelt_divider(&cfs_rq->avg);
4335 
4336 	if (runnable_sum >= 0) {
4337 		/*
4338 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4339 		 * the CPU is saturated running == runnable.
4340 		 */
4341 		runnable_sum += se->avg.load_sum;
4342 		runnable_sum = min_t(long, runnable_sum, divider);
4343 	} else {
4344 		/*
4345 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4346 		 * assuming all tasks are equally runnable.
4347 		 */
4348 		if (scale_load_down(gcfs_rq->load.weight)) {
4349 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4350 				scale_load_down(gcfs_rq->load.weight));
4351 		}
4352 
4353 		/* But make sure to not inflate se's runnable */
4354 		runnable_sum = min(se->avg.load_sum, load_sum);
4355 	}
4356 
4357 	/*
4358 	 * runnable_sum can't be lower than running_sum
4359 	 * Rescale running sum to be in the same range as runnable sum
4360 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4361 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4362 	 */
4363 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4364 	runnable_sum = max(runnable_sum, running_sum);
4365 
4366 	load_sum = se_weight(se) * runnable_sum;
4367 	load_avg = div_u64(load_sum, divider);
4368 
4369 	delta_avg = load_avg - se->avg.load_avg;
4370 	if (!delta_avg)
4371 		return;
4372 
4373 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4374 
4375 	se->avg.load_sum = runnable_sum;
4376 	se->avg.load_avg = load_avg;
4377 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4378 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4379 	/* See update_cfs_rq_load_avg() */
4380 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4381 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4382 }
4383 
4384 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4385 {
4386 	cfs_rq->propagate = 1;
4387 	cfs_rq->prop_runnable_sum += runnable_sum;
4388 }
4389 
4390 /* Update task and its cfs_rq load average */
4391 static inline int propagate_entity_load_avg(struct sched_entity *se)
4392 {
4393 	struct cfs_rq *cfs_rq, *gcfs_rq;
4394 
4395 	if (entity_is_task(se))
4396 		return 0;
4397 
4398 	gcfs_rq = group_cfs_rq(se);
4399 	if (!gcfs_rq->propagate)
4400 		return 0;
4401 
4402 	gcfs_rq->propagate = 0;
4403 
4404 	cfs_rq = cfs_rq_of(se);
4405 
4406 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4407 
4408 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4409 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4410 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4411 
4412 	trace_pelt_cfs_tp(cfs_rq);
4413 	trace_pelt_se_tp(se);
4414 
4415 	return 1;
4416 }
4417 
4418 /*
4419  * Check if we need to update the load and the utilization of a blocked
4420  * group_entity:
4421  */
4422 static inline bool skip_blocked_update(struct sched_entity *se)
4423 {
4424 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4425 
4426 	/*
4427 	 * If sched_entity still have not zero load or utilization, we have to
4428 	 * decay it:
4429 	 */
4430 	if (se->avg.load_avg || se->avg.util_avg)
4431 		return false;
4432 
4433 	/*
4434 	 * If there is a pending propagation, we have to update the load and
4435 	 * the utilization of the sched_entity:
4436 	 */
4437 	if (gcfs_rq->propagate)
4438 		return false;
4439 
4440 	/*
4441 	 * Otherwise, the load and the utilization of the sched_entity is
4442 	 * already zero and there is no pending propagation, so it will be a
4443 	 * waste of time to try to decay it:
4444 	 */
4445 	return true;
4446 }
4447 
4448 #else /* !CONFIG_FAIR_GROUP_SCHED: */
4449 
4450 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4451 
4452 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4453 
4454 static inline int propagate_entity_load_avg(struct sched_entity *se)
4455 {
4456 	return 0;
4457 }
4458 
4459 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4460 
4461 #endif /* !CONFIG_FAIR_GROUP_SCHED */
4462 
4463 #ifdef CONFIG_NO_HZ_COMMON
4464 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4465 {
4466 	u64 throttled = 0, now, lut;
4467 	struct cfs_rq *cfs_rq;
4468 	struct rq *rq;
4469 	bool is_idle;
4470 
4471 	if (load_avg_is_decayed(&se->avg))
4472 		return;
4473 
4474 	cfs_rq = cfs_rq_of(se);
4475 	rq = rq_of(cfs_rq);
4476 
4477 	rcu_read_lock();
4478 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4479 	rcu_read_unlock();
4480 
4481 	/*
4482 	 * The lag estimation comes with a cost we don't want to pay all the
4483 	 * time. Hence, limiting to the case where the source CPU is idle and
4484 	 * we know we are at the greatest risk to have an outdated clock.
4485 	 */
4486 	if (!is_idle)
4487 		return;
4488 
4489 	/*
4490 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4491 	 *
4492 	 *   last_update_time (the cfs_rq's last_update_time)
4493 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4494 	 *      = rq_clock_pelt()@cfs_rq_idle
4495 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4496 	 *
4497 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4498 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4499 	 *
4500 	 *   rq_idle_lag (delta between now and rq's update)
4501 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4502 	 *
4503 	 * We can then write:
4504 	 *
4505 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4506 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4507 	 * Where:
4508 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4509 	 *      rq_clock()@rq_idle      is rq->clock_idle
4510 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4511 	 *                              is cfs_rq->throttled_pelt_idle
4512 	 */
4513 
4514 #ifdef CONFIG_CFS_BANDWIDTH
4515 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4516 	/* The clock has been stopped for throttling */
4517 	if (throttled == U64_MAX)
4518 		return;
4519 #endif
4520 	now = u64_u32_load(rq->clock_pelt_idle);
4521 	/*
4522 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4523 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4524 	 * which lead to an underestimation. The opposite would lead to an
4525 	 * overestimation.
4526 	 */
4527 	smp_rmb();
4528 	lut = cfs_rq_last_update_time(cfs_rq);
4529 
4530 	now -= throttled;
4531 	if (now < lut)
4532 		/*
4533 		 * cfs_rq->avg.last_update_time is more recent than our
4534 		 * estimation, let's use it.
4535 		 */
4536 		now = lut;
4537 	else
4538 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4539 
4540 	__update_load_avg_blocked_se(now, se);
4541 }
4542 #else /* !CONFIG_NO_HZ_COMMON: */
4543 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4544 #endif /* !CONFIG_NO_HZ_COMMON */
4545 
4546 /**
4547  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4548  * @now: current time, as per cfs_rq_clock_pelt()
4549  * @cfs_rq: cfs_rq to update
4550  *
4551  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4552  * avg. The immediate corollary is that all (fair) tasks must be attached.
4553  *
4554  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4555  *
4556  * Return: true if the load decayed or we removed load.
4557  *
4558  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4559  * call update_tg_load_avg() when this function returns true.
4560  */
4561 static inline int
4562 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4563 {
4564 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4565 	struct sched_avg *sa = &cfs_rq->avg;
4566 	int decayed = 0;
4567 
4568 	if (cfs_rq->removed.nr) {
4569 		unsigned long r;
4570 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4571 
4572 		raw_spin_lock(&cfs_rq->removed.lock);
4573 		swap(cfs_rq->removed.util_avg, removed_util);
4574 		swap(cfs_rq->removed.load_avg, removed_load);
4575 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4576 		cfs_rq->removed.nr = 0;
4577 		raw_spin_unlock(&cfs_rq->removed.lock);
4578 
4579 		r = removed_load;
4580 		sub_positive(&sa->load_avg, r);
4581 		sub_positive(&sa->load_sum, r * divider);
4582 		/* See sa->util_sum below */
4583 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4584 
4585 		r = removed_util;
4586 		sub_positive(&sa->util_avg, r);
4587 		sub_positive(&sa->util_sum, r * divider);
4588 		/*
4589 		 * Because of rounding, se->util_sum might ends up being +1 more than
4590 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4591 		 * a lot of tasks with the rounding problem between 2 updates of
4592 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4593 		 * cfs_util_avg is not.
4594 		 * Check that util_sum is still above its lower bound for the new
4595 		 * util_avg. Given that period_contrib might have moved since the last
4596 		 * sync, we are only sure that util_sum must be above or equal to
4597 		 *    util_avg * minimum possible divider
4598 		 */
4599 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4600 
4601 		r = removed_runnable;
4602 		sub_positive(&sa->runnable_avg, r);
4603 		sub_positive(&sa->runnable_sum, r * divider);
4604 		/* See sa->util_sum above */
4605 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4606 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4607 
4608 		/*
4609 		 * removed_runnable is the unweighted version of removed_load so we
4610 		 * can use it to estimate removed_load_sum.
4611 		 */
4612 		add_tg_cfs_propagate(cfs_rq,
4613 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4614 
4615 		decayed = 1;
4616 	}
4617 
4618 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4619 	u64_u32_store_copy(sa->last_update_time,
4620 			   cfs_rq->last_update_time_copy,
4621 			   sa->last_update_time);
4622 	return decayed;
4623 }
4624 
4625 /**
4626  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4627  * @cfs_rq: cfs_rq to attach to
4628  * @se: sched_entity to attach
4629  *
4630  * Must call update_cfs_rq_load_avg() before this, since we rely on
4631  * cfs_rq->avg.last_update_time being current.
4632  */
4633 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4634 {
4635 	/*
4636 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4637 	 * See ___update_load_avg() for details.
4638 	 */
4639 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4640 
4641 	/*
4642 	 * When we attach the @se to the @cfs_rq, we must align the decay
4643 	 * window because without that, really weird and wonderful things can
4644 	 * happen.
4645 	 *
4646 	 * XXX illustrate
4647 	 */
4648 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4649 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4650 
4651 	/*
4652 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4653 	 * period_contrib. This isn't strictly correct, but since we're
4654 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4655 	 * _sum a little.
4656 	 */
4657 	se->avg.util_sum = se->avg.util_avg * divider;
4658 
4659 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4660 
4661 	se->avg.load_sum = se->avg.load_avg * divider;
4662 	if (se_weight(se) < se->avg.load_sum)
4663 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4664 	else
4665 		se->avg.load_sum = 1;
4666 
4667 	enqueue_load_avg(cfs_rq, se);
4668 	cfs_rq->avg.util_avg += se->avg.util_avg;
4669 	cfs_rq->avg.util_sum += se->avg.util_sum;
4670 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4671 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4672 
4673 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4674 
4675 	cfs_rq_util_change(cfs_rq, 0);
4676 
4677 	trace_pelt_cfs_tp(cfs_rq);
4678 }
4679 
4680 /**
4681  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4682  * @cfs_rq: cfs_rq to detach from
4683  * @se: sched_entity to detach
4684  *
4685  * Must call update_cfs_rq_load_avg() before this, since we rely on
4686  * cfs_rq->avg.last_update_time being current.
4687  */
4688 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4689 {
4690 	dequeue_load_avg(cfs_rq, se);
4691 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4692 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4693 	/* See update_cfs_rq_load_avg() */
4694 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4695 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4696 
4697 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4698 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4699 	/* See update_cfs_rq_load_avg() */
4700 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4701 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4702 
4703 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4704 
4705 	cfs_rq_util_change(cfs_rq, 0);
4706 
4707 	trace_pelt_cfs_tp(cfs_rq);
4708 }
4709 
4710 /*
4711  * Optional action to be done while updating the load average
4712  */
4713 #define UPDATE_TG	0x1
4714 #define SKIP_AGE_LOAD	0x2
4715 #define DO_ATTACH	0x4
4716 #define DO_DETACH	0x8
4717 
4718 /* Update task and its cfs_rq load average */
4719 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4720 {
4721 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4722 	int decayed;
4723 
4724 	/*
4725 	 * Track task load average for carrying it to new CPU after migrated, and
4726 	 * track group sched_entity load average for task_h_load calculation in migration
4727 	 */
4728 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4729 		__update_load_avg_se(now, cfs_rq, se);
4730 
4731 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4732 	decayed |= propagate_entity_load_avg(se);
4733 
4734 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4735 
4736 		/*
4737 		 * DO_ATTACH means we're here from enqueue_entity().
4738 		 * !last_update_time means we've passed through
4739 		 * migrate_task_rq_fair() indicating we migrated.
4740 		 *
4741 		 * IOW we're enqueueing a task on a new CPU.
4742 		 */
4743 		attach_entity_load_avg(cfs_rq, se);
4744 		update_tg_load_avg(cfs_rq);
4745 
4746 	} else if (flags & DO_DETACH) {
4747 		/*
4748 		 * DO_DETACH means we're here from dequeue_entity()
4749 		 * and we are migrating task out of the CPU.
4750 		 */
4751 		detach_entity_load_avg(cfs_rq, se);
4752 		update_tg_load_avg(cfs_rq);
4753 	} else if (decayed) {
4754 		cfs_rq_util_change(cfs_rq, 0);
4755 
4756 		if (flags & UPDATE_TG)
4757 			update_tg_load_avg(cfs_rq);
4758 	}
4759 }
4760 
4761 /*
4762  * Synchronize entity load avg of dequeued entity without locking
4763  * the previous rq.
4764  */
4765 static void sync_entity_load_avg(struct sched_entity *se)
4766 {
4767 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4768 	u64 last_update_time;
4769 
4770 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4771 	__update_load_avg_blocked_se(last_update_time, se);
4772 }
4773 
4774 /*
4775  * Task first catches up with cfs_rq, and then subtract
4776  * itself from the cfs_rq (task must be off the queue now).
4777  */
4778 static void remove_entity_load_avg(struct sched_entity *se)
4779 {
4780 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4781 	unsigned long flags;
4782 
4783 	/*
4784 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4785 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4786 	 * so we can remove unconditionally.
4787 	 */
4788 
4789 	sync_entity_load_avg(se);
4790 
4791 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4792 	++cfs_rq->removed.nr;
4793 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4794 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4795 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4796 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4797 }
4798 
4799 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4800 {
4801 	return cfs_rq->avg.runnable_avg;
4802 }
4803 
4804 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4805 {
4806 	return cfs_rq->avg.load_avg;
4807 }
4808 
4809 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4810 
4811 static inline unsigned long task_util(struct task_struct *p)
4812 {
4813 	return READ_ONCE(p->se.avg.util_avg);
4814 }
4815 
4816 static inline unsigned long task_runnable(struct task_struct *p)
4817 {
4818 	return READ_ONCE(p->se.avg.runnable_avg);
4819 }
4820 
4821 static inline unsigned long _task_util_est(struct task_struct *p)
4822 {
4823 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4824 }
4825 
4826 static inline unsigned long task_util_est(struct task_struct *p)
4827 {
4828 	return max(task_util(p), _task_util_est(p));
4829 }
4830 
4831 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4832 				    struct task_struct *p)
4833 {
4834 	unsigned int enqueued;
4835 
4836 	if (!sched_feat(UTIL_EST))
4837 		return;
4838 
4839 	/* Update root cfs_rq's estimated utilization */
4840 	enqueued  = cfs_rq->avg.util_est;
4841 	enqueued += _task_util_est(p);
4842 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4843 
4844 	trace_sched_util_est_cfs_tp(cfs_rq);
4845 }
4846 
4847 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4848 				    struct task_struct *p)
4849 {
4850 	unsigned int enqueued;
4851 
4852 	if (!sched_feat(UTIL_EST))
4853 		return;
4854 
4855 	/* Update root cfs_rq's estimated utilization */
4856 	enqueued  = cfs_rq->avg.util_est;
4857 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4858 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4859 
4860 	trace_sched_util_est_cfs_tp(cfs_rq);
4861 }
4862 
4863 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4864 
4865 static inline void util_est_update(struct cfs_rq *cfs_rq,
4866 				   struct task_struct *p,
4867 				   bool task_sleep)
4868 {
4869 	unsigned int ewma, dequeued, last_ewma_diff;
4870 
4871 	if (!sched_feat(UTIL_EST))
4872 		return;
4873 
4874 	/*
4875 	 * Skip update of task's estimated utilization when the task has not
4876 	 * yet completed an activation, e.g. being migrated.
4877 	 */
4878 	if (!task_sleep)
4879 		return;
4880 
4881 	/* Get current estimate of utilization */
4882 	ewma = READ_ONCE(p->se.avg.util_est);
4883 
4884 	/*
4885 	 * If the PELT values haven't changed since enqueue time,
4886 	 * skip the util_est update.
4887 	 */
4888 	if (ewma & UTIL_AVG_UNCHANGED)
4889 		return;
4890 
4891 	/* Get utilization at dequeue */
4892 	dequeued = task_util(p);
4893 
4894 	/*
4895 	 * Reset EWMA on utilization increases, the moving average is used only
4896 	 * to smooth utilization decreases.
4897 	 */
4898 	if (ewma <= dequeued) {
4899 		ewma = dequeued;
4900 		goto done;
4901 	}
4902 
4903 	/*
4904 	 * Skip update of task's estimated utilization when its members are
4905 	 * already ~1% close to its last activation value.
4906 	 */
4907 	last_ewma_diff = ewma - dequeued;
4908 	if (last_ewma_diff < UTIL_EST_MARGIN)
4909 		goto done;
4910 
4911 	/*
4912 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4913 	 * we cannot grant that thread got all CPU time it wanted.
4914 	 */
4915 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4916 		goto done;
4917 
4918 
4919 	/*
4920 	 * Update Task's estimated utilization
4921 	 *
4922 	 * When *p completes an activation we can consolidate another sample
4923 	 * of the task size. This is done by using this value to update the
4924 	 * Exponential Weighted Moving Average (EWMA):
4925 	 *
4926 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4927 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4928 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4929 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4930 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4931 	 *
4932 	 * Where 'w' is the weight of new samples, which is configured to be
4933 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4934 	 */
4935 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4936 	ewma  -= last_ewma_diff;
4937 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4938 done:
4939 	ewma |= UTIL_AVG_UNCHANGED;
4940 	WRITE_ONCE(p->se.avg.util_est, ewma);
4941 
4942 	trace_sched_util_est_se_tp(&p->se);
4943 }
4944 
4945 static inline unsigned long get_actual_cpu_capacity(int cpu)
4946 {
4947 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4948 
4949 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4950 
4951 	return capacity;
4952 }
4953 
4954 static inline int util_fits_cpu(unsigned long util,
4955 				unsigned long uclamp_min,
4956 				unsigned long uclamp_max,
4957 				int cpu)
4958 {
4959 	unsigned long capacity = capacity_of(cpu);
4960 	unsigned long capacity_orig;
4961 	bool fits, uclamp_max_fits;
4962 
4963 	/*
4964 	 * Check if the real util fits without any uclamp boost/cap applied.
4965 	 */
4966 	fits = fits_capacity(util, capacity);
4967 
4968 	if (!uclamp_is_used())
4969 		return fits;
4970 
4971 	/*
4972 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4973 	 * uclamp_max. We only care about capacity pressure (by using
4974 	 * capacity_of()) for comparing against the real util.
4975 	 *
4976 	 * If a task is boosted to 1024 for example, we don't want a tiny
4977 	 * pressure to skew the check whether it fits a CPU or not.
4978 	 *
4979 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4980 	 * should fit a little cpu even if there's some pressure.
4981 	 *
4982 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
4983 	 * on available OPP of the system.
4984 	 *
4985 	 * We honour it for uclamp_min only as a drop in performance level
4986 	 * could result in not getting the requested minimum performance level.
4987 	 *
4988 	 * For uclamp_max, we can tolerate a drop in performance level as the
4989 	 * goal is to cap the task. So it's okay if it's getting less.
4990 	 */
4991 	capacity_orig = arch_scale_cpu_capacity(cpu);
4992 
4993 	/*
4994 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4995 	 * But we do have some corner cases to cater for..
4996 	 *
4997 	 *
4998 	 *                                 C=z
4999 	 *   |                             ___
5000 	 *   |                  C=y       |   |
5001 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5002 	 *   |      C=x        |   |      |   |
5003 	 *   |      ___        |   |      |   |
5004 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5005 	 *   |     |   |       |   |      |   |
5006 	 *   |     |   |       |   |      |   |
5007 	 *   +----------------------------------------
5008 	 *         CPU0        CPU1       CPU2
5009 	 *
5010 	 *   In the above example if a task is capped to a specific performance
5011 	 *   point, y, then when:
5012 	 *
5013 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5014 	 *     to CPU1
5015 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5016 	 *     uclamp_max request.
5017 	 *
5018 	 *   which is what we're enforcing here. A task always fits if
5019 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5020 	 *   the normal upmigration rules should withhold still.
5021 	 *
5022 	 *   Only exception is when we are on max capacity, then we need to be
5023 	 *   careful not to block overutilized state. This is so because:
5024 	 *
5025 	 *     1. There's no concept of capping at max_capacity! We can't go
5026 	 *        beyond this performance level anyway.
5027 	 *     2. The system is being saturated when we're operating near
5028 	 *        max capacity, it doesn't make sense to block overutilized.
5029 	 */
5030 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5031 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5032 	fits = fits || uclamp_max_fits;
5033 
5034 	/*
5035 	 *
5036 	 *                                 C=z
5037 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5038 	 *   |                  C=y       |   |
5039 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5040 	 *   |      C=x        |   |      |   |
5041 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5042 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5043 	 *   |     |   |       |   |      |   |
5044 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5045 	 *   +----------------------------------------
5046 	 *         CPU0        CPU1       CPU2
5047 	 *
5048 	 * a) If util > uclamp_max, then we're capped, we don't care about
5049 	 *    actual fitness value here. We only care if uclamp_max fits
5050 	 *    capacity without taking margin/pressure into account.
5051 	 *    See comment above.
5052 	 *
5053 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5054 	 *    fits_capacity() rules apply. Except we need to ensure that we
5055 	 *    enforce we remain within uclamp_max, see comment above.
5056 	 *
5057 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5058 	 *    need to take into account the boosted value fits the CPU without
5059 	 *    taking margin/pressure into account.
5060 	 *
5061 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5062 	 * just need to consider an extra check for case (c) after ensuring we
5063 	 * handle the case uclamp_min > uclamp_max.
5064 	 */
5065 	uclamp_min = min(uclamp_min, uclamp_max);
5066 	if (fits && (util < uclamp_min) &&
5067 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5068 		return -1;
5069 
5070 	return fits;
5071 }
5072 
5073 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5074 {
5075 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5076 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5077 	unsigned long util = task_util_est(p);
5078 	/*
5079 	 * Return true only if the cpu fully fits the task requirements, which
5080 	 * include the utilization but also the performance hints.
5081 	 */
5082 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5083 }
5084 
5085 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5086 {
5087 	int cpu = cpu_of(rq);
5088 
5089 	if (!sched_asym_cpucap_active())
5090 		return;
5091 
5092 	/*
5093 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5094 	 * available CPU already? Or do we fit into this CPU ?
5095 	 */
5096 	if (!p || (p->nr_cpus_allowed == 1) ||
5097 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5098 	    task_fits_cpu(p, cpu)) {
5099 
5100 		rq->misfit_task_load = 0;
5101 		return;
5102 	}
5103 
5104 	/*
5105 	 * Make sure that misfit_task_load will not be null even if
5106 	 * task_h_load() returns 0.
5107 	 */
5108 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5109 }
5110 
5111 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5112 {
5113 	struct sched_entity *se = &p->se;
5114 
5115 	p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5116 	if (attr->sched_runtime) {
5117 		se->custom_slice = 1;
5118 		se->slice = clamp_t(u64, attr->sched_runtime,
5119 				      NSEC_PER_MSEC/10,   /* HZ=1000 * 10 */
5120 				      NSEC_PER_MSEC*100); /* HZ=100  / 10 */
5121 	} else {
5122 		se->custom_slice = 0;
5123 		se->slice = sysctl_sched_base_slice;
5124 	}
5125 }
5126 
5127 static void
5128 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5129 {
5130 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5131 	s64 lag = 0;
5132 
5133 	if (!se->custom_slice)
5134 		se->slice = sysctl_sched_base_slice;
5135 	vslice = calc_delta_fair(se->slice, se);
5136 
5137 	/*
5138 	 * Due to how V is constructed as the weighted average of entities,
5139 	 * adding tasks with positive lag, or removing tasks with negative lag
5140 	 * will move 'time' backwards, this can screw around with the lag of
5141 	 * other tasks.
5142 	 *
5143 	 * EEVDF: placement strategy #1 / #2
5144 	 */
5145 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5146 		struct sched_entity *curr = cfs_rq->curr;
5147 		unsigned long load;
5148 
5149 		lag = se->vlag;
5150 
5151 		/*
5152 		 * If we want to place a task and preserve lag, we have to
5153 		 * consider the effect of the new entity on the weighted
5154 		 * average and compensate for this, otherwise lag can quickly
5155 		 * evaporate.
5156 		 *
5157 		 * Lag is defined as:
5158 		 *
5159 		 *   lag_i = S - s_i = w_i * (V - v_i)
5160 		 *
5161 		 * To avoid the 'w_i' term all over the place, we only track
5162 		 * the virtual lag:
5163 		 *
5164 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5165 		 *
5166 		 * And we take V to be the weighted average of all v:
5167 		 *
5168 		 *   V = (\Sum w_j*v_j) / W
5169 		 *
5170 		 * Where W is: \Sum w_j
5171 		 *
5172 		 * Then, the weighted average after adding an entity with lag
5173 		 * vl_i is given by:
5174 		 *
5175 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5176 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5177 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5178 		 *      = (V*(W + w_i) - w_i*vl_i) / (W + w_i)
5179 		 *      = V - w_i*vl_i / (W + w_i)
5180 		 *
5181 		 * And the actual lag after adding an entity with vl_i is:
5182 		 *
5183 		 *   vl'_i = V' - v_i
5184 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5185 		 *         = vl_i - w_i*vl_i / (W + w_i)
5186 		 *
5187 		 * Which is strictly less than vl_i. So in order to preserve lag
5188 		 * we should inflate the lag before placement such that the
5189 		 * effective lag after placement comes out right.
5190 		 *
5191 		 * As such, invert the above relation for vl'_i to get the vl_i
5192 		 * we need to use such that the lag after placement is the lag
5193 		 * we computed before dequeue.
5194 		 *
5195 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5196 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5197 		 *
5198 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5199 		 *                   = W*vl_i
5200 		 *
5201 		 *   vl_i = (W + w_i)*vl'_i / W
5202 		 */
5203 		load = cfs_rq->avg_load;
5204 		if (curr && curr->on_rq)
5205 			load += scale_load_down(curr->load.weight);
5206 
5207 		lag *= load + scale_load_down(se->load.weight);
5208 		if (WARN_ON_ONCE(!load))
5209 			load = 1;
5210 		lag = div_s64(lag, load);
5211 	}
5212 
5213 	se->vruntime = vruntime - lag;
5214 
5215 	if (se->rel_deadline) {
5216 		se->deadline += se->vruntime;
5217 		se->rel_deadline = 0;
5218 		return;
5219 	}
5220 
5221 	/*
5222 	 * When joining the competition; the existing tasks will be,
5223 	 * on average, halfway through their slice, as such start tasks
5224 	 * off with half a slice to ease into the competition.
5225 	 */
5226 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5227 		vslice /= 2;
5228 
5229 	/*
5230 	 * EEVDF: vd_i = ve_i + r_i/w_i
5231 	 */
5232 	se->deadline = se->vruntime + vslice;
5233 }
5234 
5235 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5236 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5237 
5238 static void
5239 requeue_delayed_entity(struct sched_entity *se);
5240 
5241 static void
5242 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5243 {
5244 	bool curr = cfs_rq->curr == se;
5245 
5246 	/*
5247 	 * If we're the current task, we must renormalise before calling
5248 	 * update_curr().
5249 	 */
5250 	if (curr)
5251 		place_entity(cfs_rq, se, flags);
5252 
5253 	update_curr(cfs_rq);
5254 
5255 	/*
5256 	 * When enqueuing a sched_entity, we must:
5257 	 *   - Update loads to have both entity and cfs_rq synced with now.
5258 	 *   - For group_entity, update its runnable_weight to reflect the new
5259 	 *     h_nr_runnable of its group cfs_rq.
5260 	 *   - For group_entity, update its weight to reflect the new share of
5261 	 *     its group cfs_rq
5262 	 *   - Add its new weight to cfs_rq->load.weight
5263 	 */
5264 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5265 	se_update_runnable(se);
5266 	/*
5267 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5268 	 * but update_cfs_group() here will re-adjust the weight and have to
5269 	 * undo/redo all that. Seems wasteful.
5270 	 */
5271 	update_cfs_group(se);
5272 
5273 	/*
5274 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5275 	 * we can place the entity.
5276 	 */
5277 	if (!curr)
5278 		place_entity(cfs_rq, se, flags);
5279 
5280 	account_entity_enqueue(cfs_rq, se);
5281 
5282 	/* Entity has migrated, no longer consider this task hot */
5283 	if (flags & ENQUEUE_MIGRATED)
5284 		se->exec_start = 0;
5285 
5286 	check_schedstat_required();
5287 	update_stats_enqueue_fair(cfs_rq, se, flags);
5288 	if (!curr)
5289 		__enqueue_entity(cfs_rq, se);
5290 	se->on_rq = 1;
5291 
5292 	if (cfs_rq->nr_queued == 1) {
5293 		check_enqueue_throttle(cfs_rq);
5294 		if (!throttled_hierarchy(cfs_rq)) {
5295 			list_add_leaf_cfs_rq(cfs_rq);
5296 		} else {
5297 #ifdef CONFIG_CFS_BANDWIDTH
5298 			struct rq *rq = rq_of(cfs_rq);
5299 
5300 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5301 				cfs_rq->throttled_clock = rq_clock(rq);
5302 			if (!cfs_rq->throttled_clock_self)
5303 				cfs_rq->throttled_clock_self = rq_clock(rq);
5304 #endif
5305 		}
5306 	}
5307 }
5308 
5309 static void __clear_buddies_next(struct sched_entity *se)
5310 {
5311 	for_each_sched_entity(se) {
5312 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5313 		if (cfs_rq->next != se)
5314 			break;
5315 
5316 		cfs_rq->next = NULL;
5317 	}
5318 }
5319 
5320 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5321 {
5322 	if (cfs_rq->next == se)
5323 		__clear_buddies_next(se);
5324 }
5325 
5326 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5327 
5328 static void set_delayed(struct sched_entity *se)
5329 {
5330 	se->sched_delayed = 1;
5331 
5332 	/*
5333 	 * Delayed se of cfs_rq have no tasks queued on them.
5334 	 * Do not adjust h_nr_runnable since dequeue_entities()
5335 	 * will account it for blocked tasks.
5336 	 */
5337 	if (!entity_is_task(se))
5338 		return;
5339 
5340 	for_each_sched_entity(se) {
5341 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5342 
5343 		cfs_rq->h_nr_runnable--;
5344 		if (cfs_rq_throttled(cfs_rq))
5345 			break;
5346 	}
5347 }
5348 
5349 static void clear_delayed(struct sched_entity *se)
5350 {
5351 	se->sched_delayed = 0;
5352 
5353 	/*
5354 	 * Delayed se of cfs_rq have no tasks queued on them.
5355 	 * Do not adjust h_nr_runnable since a dequeue has
5356 	 * already accounted for it or an enqueue of a task
5357 	 * below it will account for it in enqueue_task_fair().
5358 	 */
5359 	if (!entity_is_task(se))
5360 		return;
5361 
5362 	for_each_sched_entity(se) {
5363 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5364 
5365 		cfs_rq->h_nr_runnable++;
5366 		if (cfs_rq_throttled(cfs_rq))
5367 			break;
5368 	}
5369 }
5370 
5371 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5372 {
5373 	clear_delayed(se);
5374 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5375 		se->vlag = 0;
5376 }
5377 
5378 static bool
5379 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5380 {
5381 	bool sleep = flags & DEQUEUE_SLEEP;
5382 	int action = UPDATE_TG;
5383 
5384 	update_curr(cfs_rq);
5385 	clear_buddies(cfs_rq, se);
5386 
5387 	if (flags & DEQUEUE_DELAYED) {
5388 		WARN_ON_ONCE(!se->sched_delayed);
5389 	} else {
5390 		bool delay = sleep;
5391 		/*
5392 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5393 		 * states must not suffer spurious wakeups, excempt them.
5394 		 */
5395 		if (flags & DEQUEUE_SPECIAL)
5396 			delay = false;
5397 
5398 		WARN_ON_ONCE(delay && se->sched_delayed);
5399 
5400 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5401 		    !entity_eligible(cfs_rq, se)) {
5402 			update_load_avg(cfs_rq, se, 0);
5403 			set_delayed(se);
5404 			return false;
5405 		}
5406 	}
5407 
5408 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5409 		action |= DO_DETACH;
5410 
5411 	/*
5412 	 * When dequeuing a sched_entity, we must:
5413 	 *   - Update loads to have both entity and cfs_rq synced with now.
5414 	 *   - For group_entity, update its runnable_weight to reflect the new
5415 	 *     h_nr_runnable of its group cfs_rq.
5416 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5417 	 *   - For group entity, update its weight to reflect the new share
5418 	 *     of its group cfs_rq.
5419 	 */
5420 	update_load_avg(cfs_rq, se, action);
5421 	se_update_runnable(se);
5422 
5423 	update_stats_dequeue_fair(cfs_rq, se, flags);
5424 
5425 	update_entity_lag(cfs_rq, se);
5426 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5427 		se->deadline -= se->vruntime;
5428 		se->rel_deadline = 1;
5429 	}
5430 
5431 	if (se != cfs_rq->curr)
5432 		__dequeue_entity(cfs_rq, se);
5433 	se->on_rq = 0;
5434 	account_entity_dequeue(cfs_rq, se);
5435 
5436 	/* return excess runtime on last dequeue */
5437 	return_cfs_rq_runtime(cfs_rq);
5438 
5439 	update_cfs_group(se);
5440 
5441 	/*
5442 	 * Now advance min_vruntime if @se was the entity holding it back,
5443 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5444 	 * put back on, and if we advance min_vruntime, we'll be placed back
5445 	 * further than we started -- i.e. we'll be penalized.
5446 	 */
5447 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5448 		update_min_vruntime(cfs_rq);
5449 
5450 	if (flags & DEQUEUE_DELAYED)
5451 		finish_delayed_dequeue_entity(se);
5452 
5453 	if (cfs_rq->nr_queued == 0)
5454 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5455 
5456 	return true;
5457 }
5458 
5459 static void
5460 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5461 {
5462 	clear_buddies(cfs_rq, se);
5463 
5464 	/* 'current' is not kept within the tree. */
5465 	if (se->on_rq) {
5466 		/*
5467 		 * Any task has to be enqueued before it get to execute on
5468 		 * a CPU. So account for the time it spent waiting on the
5469 		 * runqueue.
5470 		 */
5471 		update_stats_wait_end_fair(cfs_rq, se);
5472 		__dequeue_entity(cfs_rq, se);
5473 		update_load_avg(cfs_rq, se, UPDATE_TG);
5474 
5475 		set_protect_slice(se);
5476 	}
5477 
5478 	update_stats_curr_start(cfs_rq, se);
5479 	WARN_ON_ONCE(cfs_rq->curr);
5480 	cfs_rq->curr = se;
5481 
5482 	/*
5483 	 * Track our maximum slice length, if the CPU's load is at
5484 	 * least twice that of our own weight (i.e. don't track it
5485 	 * when there are only lesser-weight tasks around):
5486 	 */
5487 	if (schedstat_enabled() &&
5488 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5489 		struct sched_statistics *stats;
5490 
5491 		stats = __schedstats_from_se(se);
5492 		__schedstat_set(stats->slice_max,
5493 				max((u64)stats->slice_max,
5494 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5495 	}
5496 
5497 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5498 }
5499 
5500 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5501 
5502 /*
5503  * Pick the next process, keeping these things in mind, in this order:
5504  * 1) keep things fair between processes/task groups
5505  * 2) pick the "next" process, since someone really wants that to run
5506  * 3) pick the "last" process, for cache locality
5507  * 4) do not run the "skip" process, if something else is available
5508  */
5509 static struct sched_entity *
5510 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5511 {
5512 	struct sched_entity *se;
5513 
5514 	/*
5515 	 * Picking the ->next buddy will affect latency but not fairness.
5516 	 */
5517 	if (sched_feat(PICK_BUDDY) &&
5518 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5519 		/* ->next will never be delayed */
5520 		WARN_ON_ONCE(cfs_rq->next->sched_delayed);
5521 		return cfs_rq->next;
5522 	}
5523 
5524 	se = pick_eevdf(cfs_rq);
5525 	if (se->sched_delayed) {
5526 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5527 		/*
5528 		 * Must not reference @se again, see __block_task().
5529 		 */
5530 		return NULL;
5531 	}
5532 	return se;
5533 }
5534 
5535 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5536 
5537 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5538 {
5539 	/*
5540 	 * If still on the runqueue then deactivate_task()
5541 	 * was not called and update_curr() has to be done:
5542 	 */
5543 	if (prev->on_rq)
5544 		update_curr(cfs_rq);
5545 
5546 	/* throttle cfs_rqs exceeding runtime */
5547 	check_cfs_rq_runtime(cfs_rq);
5548 
5549 	if (prev->on_rq) {
5550 		update_stats_wait_start_fair(cfs_rq, prev);
5551 		/* Put 'current' back into the tree. */
5552 		__enqueue_entity(cfs_rq, prev);
5553 		/* in !on_rq case, update occurred at dequeue */
5554 		update_load_avg(cfs_rq, prev, 0);
5555 	}
5556 	WARN_ON_ONCE(cfs_rq->curr != prev);
5557 	cfs_rq->curr = NULL;
5558 }
5559 
5560 static void
5561 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5562 {
5563 	/*
5564 	 * Update run-time statistics of the 'current'.
5565 	 */
5566 	update_curr(cfs_rq);
5567 
5568 	/*
5569 	 * Ensure that runnable average is periodically updated.
5570 	 */
5571 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5572 	update_cfs_group(curr);
5573 
5574 #ifdef CONFIG_SCHED_HRTICK
5575 	/*
5576 	 * queued ticks are scheduled to match the slice, so don't bother
5577 	 * validating it and just reschedule.
5578 	 */
5579 	if (queued) {
5580 		resched_curr_lazy(rq_of(cfs_rq));
5581 		return;
5582 	}
5583 #endif
5584 }
5585 
5586 
5587 /**************************************************
5588  * CFS bandwidth control machinery
5589  */
5590 
5591 #ifdef CONFIG_CFS_BANDWIDTH
5592 
5593 #ifdef CONFIG_JUMP_LABEL
5594 static struct static_key __cfs_bandwidth_used;
5595 
5596 static inline bool cfs_bandwidth_used(void)
5597 {
5598 	return static_key_false(&__cfs_bandwidth_used);
5599 }
5600 
5601 void cfs_bandwidth_usage_inc(void)
5602 {
5603 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5604 }
5605 
5606 void cfs_bandwidth_usage_dec(void)
5607 {
5608 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5609 }
5610 #else /* !CONFIG_JUMP_LABEL: */
5611 static bool cfs_bandwidth_used(void)
5612 {
5613 	return true;
5614 }
5615 
5616 void cfs_bandwidth_usage_inc(void) {}
5617 void cfs_bandwidth_usage_dec(void) {}
5618 #endif /* !CONFIG_JUMP_LABEL */
5619 
5620 static inline u64 sched_cfs_bandwidth_slice(void)
5621 {
5622 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5623 }
5624 
5625 /*
5626  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5627  * directly instead of rq->clock to avoid adding additional synchronization
5628  * around rq->lock.
5629  *
5630  * requires cfs_b->lock
5631  */
5632 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5633 {
5634 	s64 runtime;
5635 
5636 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5637 		return;
5638 
5639 	cfs_b->runtime += cfs_b->quota;
5640 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5641 	if (runtime > 0) {
5642 		cfs_b->burst_time += runtime;
5643 		cfs_b->nr_burst++;
5644 	}
5645 
5646 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5647 	cfs_b->runtime_snap = cfs_b->runtime;
5648 }
5649 
5650 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5651 {
5652 	return &tg->cfs_bandwidth;
5653 }
5654 
5655 /* returns 0 on failure to allocate runtime */
5656 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5657 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5658 {
5659 	u64 min_amount, amount = 0;
5660 
5661 	lockdep_assert_held(&cfs_b->lock);
5662 
5663 	/* note: this is a positive sum as runtime_remaining <= 0 */
5664 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5665 
5666 	if (cfs_b->quota == RUNTIME_INF)
5667 		amount = min_amount;
5668 	else {
5669 		start_cfs_bandwidth(cfs_b);
5670 
5671 		if (cfs_b->runtime > 0) {
5672 			amount = min(cfs_b->runtime, min_amount);
5673 			cfs_b->runtime -= amount;
5674 			cfs_b->idle = 0;
5675 		}
5676 	}
5677 
5678 	cfs_rq->runtime_remaining += amount;
5679 
5680 	return cfs_rq->runtime_remaining > 0;
5681 }
5682 
5683 /* returns 0 on failure to allocate runtime */
5684 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5685 {
5686 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5687 	int ret;
5688 
5689 	raw_spin_lock(&cfs_b->lock);
5690 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5691 	raw_spin_unlock(&cfs_b->lock);
5692 
5693 	return ret;
5694 }
5695 
5696 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5697 {
5698 	/* dock delta_exec before expiring quota (as it could span periods) */
5699 	cfs_rq->runtime_remaining -= delta_exec;
5700 
5701 	if (likely(cfs_rq->runtime_remaining > 0))
5702 		return;
5703 
5704 	if (cfs_rq->throttled)
5705 		return;
5706 	/*
5707 	 * if we're unable to extend our runtime we resched so that the active
5708 	 * hierarchy can be throttled
5709 	 */
5710 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5711 		resched_curr(rq_of(cfs_rq));
5712 }
5713 
5714 static __always_inline
5715 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5716 {
5717 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5718 		return;
5719 
5720 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5721 }
5722 
5723 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5724 {
5725 	return cfs_bandwidth_used() && cfs_rq->throttled;
5726 }
5727 
5728 /* check whether cfs_rq, or any parent, is throttled */
5729 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5730 {
5731 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5732 }
5733 
5734 /*
5735  * Ensure that neither of the group entities corresponding to src_cpu or
5736  * dest_cpu are members of a throttled hierarchy when performing group
5737  * load-balance operations.
5738  */
5739 static inline int throttled_lb_pair(struct task_group *tg,
5740 				    int src_cpu, int dest_cpu)
5741 {
5742 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5743 
5744 	src_cfs_rq = tg->cfs_rq[src_cpu];
5745 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5746 
5747 	return throttled_hierarchy(src_cfs_rq) ||
5748 	       throttled_hierarchy(dest_cfs_rq);
5749 }
5750 
5751 static int tg_unthrottle_up(struct task_group *tg, void *data)
5752 {
5753 	struct rq *rq = data;
5754 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5755 
5756 	cfs_rq->throttle_count--;
5757 	if (!cfs_rq->throttle_count) {
5758 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5759 					     cfs_rq->throttled_clock_pelt;
5760 
5761 		/* Add cfs_rq with load or one or more already running entities to the list */
5762 		if (!cfs_rq_is_decayed(cfs_rq))
5763 			list_add_leaf_cfs_rq(cfs_rq);
5764 
5765 		if (cfs_rq->throttled_clock_self) {
5766 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5767 
5768 			cfs_rq->throttled_clock_self = 0;
5769 
5770 			if (WARN_ON_ONCE((s64)delta < 0))
5771 				delta = 0;
5772 
5773 			cfs_rq->throttled_clock_self_time += delta;
5774 		}
5775 	}
5776 
5777 	return 0;
5778 }
5779 
5780 static int tg_throttle_down(struct task_group *tg, void *data)
5781 {
5782 	struct rq *rq = data;
5783 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5784 
5785 	/* group is entering throttled state, stop time */
5786 	if (!cfs_rq->throttle_count) {
5787 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5788 		list_del_leaf_cfs_rq(cfs_rq);
5789 
5790 		WARN_ON_ONCE(cfs_rq->throttled_clock_self);
5791 		if (cfs_rq->nr_queued)
5792 			cfs_rq->throttled_clock_self = rq_clock(rq);
5793 	}
5794 	cfs_rq->throttle_count++;
5795 
5796 	return 0;
5797 }
5798 
5799 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5800 {
5801 	struct rq *rq = rq_of(cfs_rq);
5802 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5803 	struct sched_entity *se;
5804 	long queued_delta, runnable_delta, idle_delta, dequeue = 1;
5805 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
5806 
5807 	raw_spin_lock(&cfs_b->lock);
5808 	/* This will start the period timer if necessary */
5809 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5810 		/*
5811 		 * We have raced with bandwidth becoming available, and if we
5812 		 * actually throttled the timer might not unthrottle us for an
5813 		 * entire period. We additionally needed to make sure that any
5814 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5815 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5816 		 * for 1ns of runtime rather than just check cfs_b.
5817 		 */
5818 		dequeue = 0;
5819 	} else {
5820 		list_add_tail_rcu(&cfs_rq->throttled_list,
5821 				  &cfs_b->throttled_cfs_rq);
5822 	}
5823 	raw_spin_unlock(&cfs_b->lock);
5824 
5825 	if (!dequeue)
5826 		return false;  /* Throttle no longer required. */
5827 
5828 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5829 
5830 	/* freeze hierarchy runnable averages while throttled */
5831 	rcu_read_lock();
5832 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5833 	rcu_read_unlock();
5834 
5835 	queued_delta = cfs_rq->h_nr_queued;
5836 	runnable_delta = cfs_rq->h_nr_runnable;
5837 	idle_delta = cfs_rq->h_nr_idle;
5838 	for_each_sched_entity(se) {
5839 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5840 		int flags;
5841 
5842 		/* throttled entity or throttle-on-deactivate */
5843 		if (!se->on_rq)
5844 			goto done;
5845 
5846 		/*
5847 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5848 		 * This avoids teaching dequeue_entities() about throttled
5849 		 * entities and keeps things relatively simple.
5850 		 */
5851 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5852 		if (se->sched_delayed)
5853 			flags |= DEQUEUE_DELAYED;
5854 		dequeue_entity(qcfs_rq, se, flags);
5855 
5856 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5857 			idle_delta = cfs_rq->h_nr_queued;
5858 
5859 		qcfs_rq->h_nr_queued -= queued_delta;
5860 		qcfs_rq->h_nr_runnable -= runnable_delta;
5861 		qcfs_rq->h_nr_idle -= idle_delta;
5862 
5863 		if (qcfs_rq->load.weight) {
5864 			/* Avoid re-evaluating load for this entity: */
5865 			se = parent_entity(se);
5866 			break;
5867 		}
5868 	}
5869 
5870 	for_each_sched_entity(se) {
5871 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5872 		/* throttled entity or throttle-on-deactivate */
5873 		if (!se->on_rq)
5874 			goto done;
5875 
5876 		update_load_avg(qcfs_rq, se, 0);
5877 		se_update_runnable(se);
5878 
5879 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5880 			idle_delta = cfs_rq->h_nr_queued;
5881 
5882 		qcfs_rq->h_nr_queued -= queued_delta;
5883 		qcfs_rq->h_nr_runnable -= runnable_delta;
5884 		qcfs_rq->h_nr_idle -= idle_delta;
5885 	}
5886 
5887 	/* At this point se is NULL and we are at root level*/
5888 	sub_nr_running(rq, queued_delta);
5889 
5890 	/* Stop the fair server if throttling resulted in no runnable tasks */
5891 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
5892 		dl_server_stop(&rq->fair_server);
5893 done:
5894 	/*
5895 	 * Note: distribution will already see us throttled via the
5896 	 * throttled-list.  rq->lock protects completion.
5897 	 */
5898 	cfs_rq->throttled = 1;
5899 	WARN_ON_ONCE(cfs_rq->throttled_clock);
5900 	if (cfs_rq->nr_queued)
5901 		cfs_rq->throttled_clock = rq_clock(rq);
5902 	return true;
5903 }
5904 
5905 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5906 {
5907 	struct rq *rq = rq_of(cfs_rq);
5908 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5909 	struct sched_entity *se;
5910 	long queued_delta, runnable_delta, idle_delta;
5911 	long rq_h_nr_queued = rq->cfs.h_nr_queued;
5912 
5913 	se = cfs_rq->tg->se[cpu_of(rq)];
5914 
5915 	cfs_rq->throttled = 0;
5916 
5917 	update_rq_clock(rq);
5918 
5919 	raw_spin_lock(&cfs_b->lock);
5920 	if (cfs_rq->throttled_clock) {
5921 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5922 		cfs_rq->throttled_clock = 0;
5923 	}
5924 	list_del_rcu(&cfs_rq->throttled_list);
5925 	raw_spin_unlock(&cfs_b->lock);
5926 
5927 	/* update hierarchical throttle state */
5928 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5929 
5930 	if (!cfs_rq->load.weight) {
5931 		if (!cfs_rq->on_list)
5932 			return;
5933 		/*
5934 		 * Nothing to run but something to decay (on_list)?
5935 		 * Complete the branch.
5936 		 */
5937 		for_each_sched_entity(se) {
5938 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5939 				break;
5940 		}
5941 		goto unthrottle_throttle;
5942 	}
5943 
5944 	queued_delta = cfs_rq->h_nr_queued;
5945 	runnable_delta = cfs_rq->h_nr_runnable;
5946 	idle_delta = cfs_rq->h_nr_idle;
5947 	for_each_sched_entity(se) {
5948 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5949 
5950 		/* Handle any unfinished DELAY_DEQUEUE business first. */
5951 		if (se->sched_delayed) {
5952 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
5953 
5954 			dequeue_entity(qcfs_rq, se, flags);
5955 		} else if (se->on_rq)
5956 			break;
5957 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5958 
5959 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5960 			idle_delta = cfs_rq->h_nr_queued;
5961 
5962 		qcfs_rq->h_nr_queued += queued_delta;
5963 		qcfs_rq->h_nr_runnable += runnable_delta;
5964 		qcfs_rq->h_nr_idle += idle_delta;
5965 
5966 		/* end evaluation on encountering a throttled cfs_rq */
5967 		if (cfs_rq_throttled(qcfs_rq))
5968 			goto unthrottle_throttle;
5969 	}
5970 
5971 	for_each_sched_entity(se) {
5972 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5973 
5974 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5975 		se_update_runnable(se);
5976 
5977 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5978 			idle_delta = cfs_rq->h_nr_queued;
5979 
5980 		qcfs_rq->h_nr_queued += queued_delta;
5981 		qcfs_rq->h_nr_runnable += runnable_delta;
5982 		qcfs_rq->h_nr_idle += idle_delta;
5983 
5984 		/* end evaluation on encountering a throttled cfs_rq */
5985 		if (cfs_rq_throttled(qcfs_rq))
5986 			goto unthrottle_throttle;
5987 	}
5988 
5989 	/* Start the fair server if un-throttling resulted in new runnable tasks */
5990 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued)
5991 		dl_server_start(&rq->fair_server);
5992 
5993 	/* At this point se is NULL and we are at root level*/
5994 	add_nr_running(rq, queued_delta);
5995 
5996 unthrottle_throttle:
5997 	assert_list_leaf_cfs_rq(rq);
5998 
5999 	/* Determine whether we need to wake up potentially idle CPU: */
6000 	if (rq->curr == rq->idle && rq->cfs.nr_queued)
6001 		resched_curr(rq);
6002 }
6003 
6004 static void __cfsb_csd_unthrottle(void *arg)
6005 {
6006 	struct cfs_rq *cursor, *tmp;
6007 	struct rq *rq = arg;
6008 	struct rq_flags rf;
6009 
6010 	rq_lock(rq, &rf);
6011 
6012 	/*
6013 	 * Iterating over the list can trigger several call to
6014 	 * update_rq_clock() in unthrottle_cfs_rq().
6015 	 * Do it once and skip the potential next ones.
6016 	 */
6017 	update_rq_clock(rq);
6018 	rq_clock_start_loop_update(rq);
6019 
6020 	/*
6021 	 * Since we hold rq lock we're safe from concurrent manipulation of
6022 	 * the CSD list. However, this RCU critical section annotates the
6023 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6024 	 * race with group being freed in the window between removing it
6025 	 * from the list and advancing to the next entry in the list.
6026 	 */
6027 	rcu_read_lock();
6028 
6029 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6030 				 throttled_csd_list) {
6031 		list_del_init(&cursor->throttled_csd_list);
6032 
6033 		if (cfs_rq_throttled(cursor))
6034 			unthrottle_cfs_rq(cursor);
6035 	}
6036 
6037 	rcu_read_unlock();
6038 
6039 	rq_clock_stop_loop_update(rq);
6040 	rq_unlock(rq, &rf);
6041 }
6042 
6043 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6044 {
6045 	struct rq *rq = rq_of(cfs_rq);
6046 	bool first;
6047 
6048 	if (rq == this_rq()) {
6049 		unthrottle_cfs_rq(cfs_rq);
6050 		return;
6051 	}
6052 
6053 	/* Already enqueued */
6054 	if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
6055 		return;
6056 
6057 	first = list_empty(&rq->cfsb_csd_list);
6058 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6059 	if (first)
6060 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6061 }
6062 
6063 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6064 {
6065 	lockdep_assert_rq_held(rq_of(cfs_rq));
6066 
6067 	if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
6068 	    cfs_rq->runtime_remaining <= 0))
6069 		return;
6070 
6071 	__unthrottle_cfs_rq_async(cfs_rq);
6072 }
6073 
6074 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6075 {
6076 	int this_cpu = smp_processor_id();
6077 	u64 runtime, remaining = 1;
6078 	bool throttled = false;
6079 	struct cfs_rq *cfs_rq, *tmp;
6080 	struct rq_flags rf;
6081 	struct rq *rq;
6082 	LIST_HEAD(local_unthrottle);
6083 
6084 	rcu_read_lock();
6085 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6086 				throttled_list) {
6087 		rq = rq_of(cfs_rq);
6088 
6089 		if (!remaining) {
6090 			throttled = true;
6091 			break;
6092 		}
6093 
6094 		rq_lock_irqsave(rq, &rf);
6095 		if (!cfs_rq_throttled(cfs_rq))
6096 			goto next;
6097 
6098 		/* Already queued for async unthrottle */
6099 		if (!list_empty(&cfs_rq->throttled_csd_list))
6100 			goto next;
6101 
6102 		/* By the above checks, this should never be true */
6103 		WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
6104 
6105 		raw_spin_lock(&cfs_b->lock);
6106 		runtime = -cfs_rq->runtime_remaining + 1;
6107 		if (runtime > cfs_b->runtime)
6108 			runtime = cfs_b->runtime;
6109 		cfs_b->runtime -= runtime;
6110 		remaining = cfs_b->runtime;
6111 		raw_spin_unlock(&cfs_b->lock);
6112 
6113 		cfs_rq->runtime_remaining += runtime;
6114 
6115 		/* we check whether we're throttled above */
6116 		if (cfs_rq->runtime_remaining > 0) {
6117 			if (cpu_of(rq) != this_cpu) {
6118 				unthrottle_cfs_rq_async(cfs_rq);
6119 			} else {
6120 				/*
6121 				 * We currently only expect to be unthrottling
6122 				 * a single cfs_rq locally.
6123 				 */
6124 				WARN_ON_ONCE(!list_empty(&local_unthrottle));
6125 				list_add_tail(&cfs_rq->throttled_csd_list,
6126 					      &local_unthrottle);
6127 			}
6128 		} else {
6129 			throttled = true;
6130 		}
6131 
6132 next:
6133 		rq_unlock_irqrestore(rq, &rf);
6134 	}
6135 
6136 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6137 				 throttled_csd_list) {
6138 		struct rq *rq = rq_of(cfs_rq);
6139 
6140 		rq_lock_irqsave(rq, &rf);
6141 
6142 		list_del_init(&cfs_rq->throttled_csd_list);
6143 
6144 		if (cfs_rq_throttled(cfs_rq))
6145 			unthrottle_cfs_rq(cfs_rq);
6146 
6147 		rq_unlock_irqrestore(rq, &rf);
6148 	}
6149 	WARN_ON_ONCE(!list_empty(&local_unthrottle));
6150 
6151 	rcu_read_unlock();
6152 
6153 	return throttled;
6154 }
6155 
6156 /*
6157  * Responsible for refilling a task_group's bandwidth and unthrottling its
6158  * cfs_rqs as appropriate. If there has been no activity within the last
6159  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6160  * used to track this state.
6161  */
6162 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6163 {
6164 	int throttled;
6165 
6166 	/* no need to continue the timer with no bandwidth constraint */
6167 	if (cfs_b->quota == RUNTIME_INF)
6168 		goto out_deactivate;
6169 
6170 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6171 	cfs_b->nr_periods += overrun;
6172 
6173 	/* Refill extra burst quota even if cfs_b->idle */
6174 	__refill_cfs_bandwidth_runtime(cfs_b);
6175 
6176 	/*
6177 	 * idle depends on !throttled (for the case of a large deficit), and if
6178 	 * we're going inactive then everything else can be deferred
6179 	 */
6180 	if (cfs_b->idle && !throttled)
6181 		goto out_deactivate;
6182 
6183 	if (!throttled) {
6184 		/* mark as potentially idle for the upcoming period */
6185 		cfs_b->idle = 1;
6186 		return 0;
6187 	}
6188 
6189 	/* account preceding periods in which throttling occurred */
6190 	cfs_b->nr_throttled += overrun;
6191 
6192 	/*
6193 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6194 	 */
6195 	while (throttled && cfs_b->runtime > 0) {
6196 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6197 		/* we can't nest cfs_b->lock while distributing bandwidth */
6198 		throttled = distribute_cfs_runtime(cfs_b);
6199 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6200 	}
6201 
6202 	/*
6203 	 * While we are ensured activity in the period following an
6204 	 * unthrottle, this also covers the case in which the new bandwidth is
6205 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6206 	 * timer to remain active while there are any throttled entities.)
6207 	 */
6208 	cfs_b->idle = 0;
6209 
6210 	return 0;
6211 
6212 out_deactivate:
6213 	return 1;
6214 }
6215 
6216 /* a cfs_rq won't donate quota below this amount */
6217 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6218 /* minimum remaining period time to redistribute slack quota */
6219 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6220 /* how long we wait to gather additional slack before distributing */
6221 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6222 
6223 /*
6224  * Are we near the end of the current quota period?
6225  *
6226  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6227  * hrtimer base being cleared by hrtimer_start. In the case of
6228  * migrate_hrtimers, base is never cleared, so we are fine.
6229  */
6230 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6231 {
6232 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6233 	s64 remaining;
6234 
6235 	/* if the call-back is running a quota refresh is already occurring */
6236 	if (hrtimer_callback_running(refresh_timer))
6237 		return 1;
6238 
6239 	/* is a quota refresh about to occur? */
6240 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6241 	if (remaining < (s64)min_expire)
6242 		return 1;
6243 
6244 	return 0;
6245 }
6246 
6247 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6248 {
6249 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6250 
6251 	/* if there's a quota refresh soon don't bother with slack */
6252 	if (runtime_refresh_within(cfs_b, min_left))
6253 		return;
6254 
6255 	/* don't push forwards an existing deferred unthrottle */
6256 	if (cfs_b->slack_started)
6257 		return;
6258 	cfs_b->slack_started = true;
6259 
6260 	hrtimer_start(&cfs_b->slack_timer,
6261 			ns_to_ktime(cfs_bandwidth_slack_period),
6262 			HRTIMER_MODE_REL);
6263 }
6264 
6265 /* we know any runtime found here is valid as update_curr() precedes return */
6266 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6267 {
6268 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6269 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6270 
6271 	if (slack_runtime <= 0)
6272 		return;
6273 
6274 	raw_spin_lock(&cfs_b->lock);
6275 	if (cfs_b->quota != RUNTIME_INF) {
6276 		cfs_b->runtime += slack_runtime;
6277 
6278 		/* we are under rq->lock, defer unthrottling using a timer */
6279 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6280 		    !list_empty(&cfs_b->throttled_cfs_rq))
6281 			start_cfs_slack_bandwidth(cfs_b);
6282 	}
6283 	raw_spin_unlock(&cfs_b->lock);
6284 
6285 	/* even if it's not valid for return we don't want to try again */
6286 	cfs_rq->runtime_remaining -= slack_runtime;
6287 }
6288 
6289 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6290 {
6291 	if (!cfs_bandwidth_used())
6292 		return;
6293 
6294 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6295 		return;
6296 
6297 	__return_cfs_rq_runtime(cfs_rq);
6298 }
6299 
6300 /*
6301  * This is done with a timer (instead of inline with bandwidth return) since
6302  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6303  */
6304 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6305 {
6306 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6307 	unsigned long flags;
6308 
6309 	/* confirm we're still not at a refresh boundary */
6310 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6311 	cfs_b->slack_started = false;
6312 
6313 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6314 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6315 		return;
6316 	}
6317 
6318 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6319 		runtime = cfs_b->runtime;
6320 
6321 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6322 
6323 	if (!runtime)
6324 		return;
6325 
6326 	distribute_cfs_runtime(cfs_b);
6327 }
6328 
6329 /*
6330  * When a group wakes up we want to make sure that its quota is not already
6331  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6332  * runtime as update_curr() throttling can not trigger until it's on-rq.
6333  */
6334 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6335 {
6336 	if (!cfs_bandwidth_used())
6337 		return;
6338 
6339 	/* an active group must be handled by the update_curr()->put() path */
6340 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6341 		return;
6342 
6343 	/* ensure the group is not already throttled */
6344 	if (cfs_rq_throttled(cfs_rq))
6345 		return;
6346 
6347 	/* update runtime allocation */
6348 	account_cfs_rq_runtime(cfs_rq, 0);
6349 	if (cfs_rq->runtime_remaining <= 0)
6350 		throttle_cfs_rq(cfs_rq);
6351 }
6352 
6353 static void sync_throttle(struct task_group *tg, int cpu)
6354 {
6355 	struct cfs_rq *pcfs_rq, *cfs_rq;
6356 
6357 	if (!cfs_bandwidth_used())
6358 		return;
6359 
6360 	if (!tg->parent)
6361 		return;
6362 
6363 	cfs_rq = tg->cfs_rq[cpu];
6364 	pcfs_rq = tg->parent->cfs_rq[cpu];
6365 
6366 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6367 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6368 }
6369 
6370 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6371 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6372 {
6373 	if (!cfs_bandwidth_used())
6374 		return false;
6375 
6376 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6377 		return false;
6378 
6379 	/*
6380 	 * it's possible for a throttled entity to be forced into a running
6381 	 * state (e.g. set_curr_task), in this case we're finished.
6382 	 */
6383 	if (cfs_rq_throttled(cfs_rq))
6384 		return true;
6385 
6386 	return throttle_cfs_rq(cfs_rq);
6387 }
6388 
6389 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6390 {
6391 	struct cfs_bandwidth *cfs_b =
6392 		container_of(timer, struct cfs_bandwidth, slack_timer);
6393 
6394 	do_sched_cfs_slack_timer(cfs_b);
6395 
6396 	return HRTIMER_NORESTART;
6397 }
6398 
6399 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6400 {
6401 	struct cfs_bandwidth *cfs_b =
6402 		container_of(timer, struct cfs_bandwidth, period_timer);
6403 	unsigned long flags;
6404 	int overrun;
6405 	int idle = 0;
6406 	int count = 0;
6407 
6408 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6409 	for (;;) {
6410 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6411 		if (!overrun)
6412 			break;
6413 
6414 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6415 
6416 		if (++count > 3) {
6417 			u64 new, old = ktime_to_ns(cfs_b->period);
6418 
6419 			/*
6420 			 * Grow period by a factor of 2 to avoid losing precision.
6421 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6422 			 * to fail.
6423 			 */
6424 			new = old * 2;
6425 			if (new < max_bw_quota_period_us * NSEC_PER_USEC) {
6426 				cfs_b->period = ns_to_ktime(new);
6427 				cfs_b->quota *= 2;
6428 				cfs_b->burst *= 2;
6429 
6430 				pr_warn_ratelimited(
6431 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6432 					smp_processor_id(),
6433 					div_u64(new, NSEC_PER_USEC),
6434 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6435 			} else {
6436 				pr_warn_ratelimited(
6437 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6438 					smp_processor_id(),
6439 					div_u64(old, NSEC_PER_USEC),
6440 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6441 			}
6442 
6443 			/* reset count so we don't come right back in here */
6444 			count = 0;
6445 		}
6446 	}
6447 	if (idle)
6448 		cfs_b->period_active = 0;
6449 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6450 
6451 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6452 }
6453 
6454 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6455 {
6456 	raw_spin_lock_init(&cfs_b->lock);
6457 	cfs_b->runtime = 0;
6458 	cfs_b->quota = RUNTIME_INF;
6459 	cfs_b->period = us_to_ktime(default_bw_period_us());
6460 	cfs_b->burst = 0;
6461 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6462 
6463 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6464 	hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
6465 		      HRTIMER_MODE_ABS_PINNED);
6466 
6467 	/* Add a random offset so that timers interleave */
6468 	hrtimer_set_expires(&cfs_b->period_timer,
6469 			    get_random_u32_below(cfs_b->period));
6470 	hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
6471 		      HRTIMER_MODE_REL);
6472 	cfs_b->slack_started = false;
6473 }
6474 
6475 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6476 {
6477 	cfs_rq->runtime_enabled = 0;
6478 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6479 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6480 }
6481 
6482 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6483 {
6484 	lockdep_assert_held(&cfs_b->lock);
6485 
6486 	if (cfs_b->period_active)
6487 		return;
6488 
6489 	cfs_b->period_active = 1;
6490 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6491 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6492 }
6493 
6494 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6495 {
6496 	int __maybe_unused i;
6497 
6498 	/* init_cfs_bandwidth() was not called */
6499 	if (!cfs_b->throttled_cfs_rq.next)
6500 		return;
6501 
6502 	hrtimer_cancel(&cfs_b->period_timer);
6503 	hrtimer_cancel(&cfs_b->slack_timer);
6504 
6505 	/*
6506 	 * It is possible that we still have some cfs_rq's pending on a CSD
6507 	 * list, though this race is very rare. In order for this to occur, we
6508 	 * must have raced with the last task leaving the group while there
6509 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6510 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6511 	 * we can simply flush all pending CSD work inline here. We're
6512 	 * guaranteed at this point that no additional cfs_rq of this group can
6513 	 * join a CSD list.
6514 	 */
6515 	for_each_possible_cpu(i) {
6516 		struct rq *rq = cpu_rq(i);
6517 		unsigned long flags;
6518 
6519 		if (list_empty(&rq->cfsb_csd_list))
6520 			continue;
6521 
6522 		local_irq_save(flags);
6523 		__cfsb_csd_unthrottle(rq);
6524 		local_irq_restore(flags);
6525 	}
6526 }
6527 
6528 /*
6529  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6530  *
6531  * The race is harmless, since modifying bandwidth settings of unhooked group
6532  * bits doesn't do much.
6533  */
6534 
6535 /* cpu online callback */
6536 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6537 {
6538 	struct task_group *tg;
6539 
6540 	lockdep_assert_rq_held(rq);
6541 
6542 	rcu_read_lock();
6543 	list_for_each_entry_rcu(tg, &task_groups, list) {
6544 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6545 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6546 
6547 		raw_spin_lock(&cfs_b->lock);
6548 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6549 		raw_spin_unlock(&cfs_b->lock);
6550 	}
6551 	rcu_read_unlock();
6552 }
6553 
6554 /* cpu offline callback */
6555 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6556 {
6557 	struct task_group *tg;
6558 
6559 	lockdep_assert_rq_held(rq);
6560 
6561 	// Do not unthrottle for an active CPU
6562 	if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6563 		return;
6564 
6565 	/*
6566 	 * The rq clock has already been updated in the
6567 	 * set_rq_offline(), so we should skip updating
6568 	 * the rq clock again in unthrottle_cfs_rq().
6569 	 */
6570 	rq_clock_start_loop_update(rq);
6571 
6572 	rcu_read_lock();
6573 	list_for_each_entry_rcu(tg, &task_groups, list) {
6574 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6575 
6576 		if (!cfs_rq->runtime_enabled)
6577 			continue;
6578 
6579 		/*
6580 		 * Offline rq is schedulable till CPU is completely disabled
6581 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6582 		 */
6583 		cfs_rq->runtime_enabled = 0;
6584 
6585 		if (!cfs_rq_throttled(cfs_rq))
6586 			continue;
6587 
6588 		/*
6589 		 * clock_task is not advancing so we just need to make sure
6590 		 * there's some valid quota amount
6591 		 */
6592 		cfs_rq->runtime_remaining = 1;
6593 		unthrottle_cfs_rq(cfs_rq);
6594 	}
6595 	rcu_read_unlock();
6596 
6597 	rq_clock_stop_loop_update(rq);
6598 }
6599 
6600 bool cfs_task_bw_constrained(struct task_struct *p)
6601 {
6602 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6603 
6604 	if (!cfs_bandwidth_used())
6605 		return false;
6606 
6607 	if (cfs_rq->runtime_enabled ||
6608 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6609 		return true;
6610 
6611 	return false;
6612 }
6613 
6614 #ifdef CONFIG_NO_HZ_FULL
6615 /* called from pick_next_task_fair() */
6616 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6617 {
6618 	int cpu = cpu_of(rq);
6619 
6620 	if (!cfs_bandwidth_used())
6621 		return;
6622 
6623 	if (!tick_nohz_full_cpu(cpu))
6624 		return;
6625 
6626 	if (rq->nr_running != 1)
6627 		return;
6628 
6629 	/*
6630 	 *  We know there is only one task runnable and we've just picked it. The
6631 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6632 	 *  be otherwise able to stop the tick. Just need to check if we are using
6633 	 *  bandwidth control.
6634 	 */
6635 	if (cfs_task_bw_constrained(p))
6636 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6637 }
6638 #endif /* CONFIG_NO_HZ_FULL */
6639 
6640 #else /* !CONFIG_CFS_BANDWIDTH: */
6641 
6642 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6643 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6644 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6645 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6646 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6647 
6648 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6649 {
6650 	return 0;
6651 }
6652 
6653 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6654 {
6655 	return 0;
6656 }
6657 
6658 static inline int throttled_lb_pair(struct task_group *tg,
6659 				    int src_cpu, int dest_cpu)
6660 {
6661 	return 0;
6662 }
6663 
6664 #ifdef CONFIG_FAIR_GROUP_SCHED
6665 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6666 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6667 #endif
6668 
6669 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6670 {
6671 	return NULL;
6672 }
6673 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6674 static inline void update_runtime_enabled(struct rq *rq) {}
6675 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6676 #ifdef CONFIG_CGROUP_SCHED
6677 bool cfs_task_bw_constrained(struct task_struct *p)
6678 {
6679 	return false;
6680 }
6681 #endif
6682 #endif /* !CONFIG_CFS_BANDWIDTH */
6683 
6684 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6685 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6686 #endif
6687 
6688 /**************************************************
6689  * CFS operations on tasks:
6690  */
6691 
6692 #ifdef CONFIG_SCHED_HRTICK
6693 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6694 {
6695 	struct sched_entity *se = &p->se;
6696 
6697 	WARN_ON_ONCE(task_rq(p) != rq);
6698 
6699 	if (rq->cfs.h_nr_queued > 1) {
6700 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6701 		u64 slice = se->slice;
6702 		s64 delta = slice - ran;
6703 
6704 		if (delta < 0) {
6705 			if (task_current_donor(rq, p))
6706 				resched_curr(rq);
6707 			return;
6708 		}
6709 		hrtick_start(rq, delta);
6710 	}
6711 }
6712 
6713 /*
6714  * called from enqueue/dequeue and updates the hrtick when the
6715  * current task is from our class and nr_running is low enough
6716  * to matter.
6717  */
6718 static void hrtick_update(struct rq *rq)
6719 {
6720 	struct task_struct *donor = rq->donor;
6721 
6722 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6723 		return;
6724 
6725 	hrtick_start_fair(rq, donor);
6726 }
6727 #else /* !CONFIG_SCHED_HRTICK: */
6728 static inline void
6729 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6730 {
6731 }
6732 
6733 static inline void hrtick_update(struct rq *rq)
6734 {
6735 }
6736 #endif /* !CONFIG_SCHED_HRTICK */
6737 
6738 static inline bool cpu_overutilized(int cpu)
6739 {
6740 	unsigned long  rq_util_min, rq_util_max;
6741 
6742 	if (!sched_energy_enabled())
6743 		return false;
6744 
6745 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6746 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6747 
6748 	/* Return true only if the utilization doesn't fit CPU's capacity */
6749 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6750 }
6751 
6752 /*
6753  * overutilized value make sense only if EAS is enabled
6754  */
6755 static inline bool is_rd_overutilized(struct root_domain *rd)
6756 {
6757 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6758 }
6759 
6760 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6761 {
6762 	if (!sched_energy_enabled())
6763 		return;
6764 
6765 	WRITE_ONCE(rd->overutilized, flag);
6766 	trace_sched_overutilized_tp(rd, flag);
6767 }
6768 
6769 static inline void check_update_overutilized_status(struct rq *rq)
6770 {
6771 	/*
6772 	 * overutilized field is used for load balancing decisions only
6773 	 * if energy aware scheduler is being used
6774 	 */
6775 
6776 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6777 		set_rd_overutilized(rq->rd, 1);
6778 }
6779 
6780 /* Runqueue only has SCHED_IDLE tasks enqueued */
6781 static int sched_idle_rq(struct rq *rq)
6782 {
6783 	return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6784 			rq->nr_running);
6785 }
6786 
6787 static int sched_idle_cpu(int cpu)
6788 {
6789 	return sched_idle_rq(cpu_rq(cpu));
6790 }
6791 
6792 static void
6793 requeue_delayed_entity(struct sched_entity *se)
6794 {
6795 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6796 
6797 	/*
6798 	 * se->sched_delayed should imply: se->on_rq == 1.
6799 	 * Because a delayed entity is one that is still on
6800 	 * the runqueue competing until elegibility.
6801 	 */
6802 	WARN_ON_ONCE(!se->sched_delayed);
6803 	WARN_ON_ONCE(!se->on_rq);
6804 
6805 	if (sched_feat(DELAY_ZERO)) {
6806 		update_entity_lag(cfs_rq, se);
6807 		if (se->vlag > 0) {
6808 			cfs_rq->nr_queued--;
6809 			if (se != cfs_rq->curr)
6810 				__dequeue_entity(cfs_rq, se);
6811 			se->vlag = 0;
6812 			place_entity(cfs_rq, se, 0);
6813 			if (se != cfs_rq->curr)
6814 				__enqueue_entity(cfs_rq, se);
6815 			cfs_rq->nr_queued++;
6816 		}
6817 	}
6818 
6819 	update_load_avg(cfs_rq, se, 0);
6820 	clear_delayed(se);
6821 }
6822 
6823 /*
6824  * The enqueue_task method is called before nr_running is
6825  * increased. Here we update the fair scheduling stats and
6826  * then put the task into the rbtree:
6827  */
6828 static void
6829 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6830 {
6831 	struct cfs_rq *cfs_rq;
6832 	struct sched_entity *se = &p->se;
6833 	int h_nr_idle = task_has_idle_policy(p);
6834 	int h_nr_runnable = 1;
6835 	int task_new = !(flags & ENQUEUE_WAKEUP);
6836 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
6837 	u64 slice = 0;
6838 
6839 	/*
6840 	 * The code below (indirectly) updates schedutil which looks at
6841 	 * the cfs_rq utilization to select a frequency.
6842 	 * Let's add the task's estimated utilization to the cfs_rq's
6843 	 * estimated utilization, before we update schedutil.
6844 	 */
6845 	if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
6846 		util_est_enqueue(&rq->cfs, p);
6847 
6848 	if (flags & ENQUEUE_DELAYED) {
6849 		requeue_delayed_entity(se);
6850 		return;
6851 	}
6852 
6853 	/*
6854 	 * If in_iowait is set, the code below may not trigger any cpufreq
6855 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6856 	 * passed.
6857 	 */
6858 	if (p->in_iowait)
6859 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6860 
6861 	if (task_new && se->sched_delayed)
6862 		h_nr_runnable = 0;
6863 
6864 	for_each_sched_entity(se) {
6865 		if (se->on_rq) {
6866 			if (se->sched_delayed)
6867 				requeue_delayed_entity(se);
6868 			break;
6869 		}
6870 		cfs_rq = cfs_rq_of(se);
6871 
6872 		/*
6873 		 * Basically set the slice of group entries to the min_slice of
6874 		 * their respective cfs_rq. This ensures the group can service
6875 		 * its entities in the desired time-frame.
6876 		 */
6877 		if (slice) {
6878 			se->slice = slice;
6879 			se->custom_slice = 1;
6880 		}
6881 		enqueue_entity(cfs_rq, se, flags);
6882 		slice = cfs_rq_min_slice(cfs_rq);
6883 
6884 		cfs_rq->h_nr_runnable += h_nr_runnable;
6885 		cfs_rq->h_nr_queued++;
6886 		cfs_rq->h_nr_idle += h_nr_idle;
6887 
6888 		if (cfs_rq_is_idle(cfs_rq))
6889 			h_nr_idle = 1;
6890 
6891 		/* end evaluation on encountering a throttled cfs_rq */
6892 		if (cfs_rq_throttled(cfs_rq))
6893 			goto enqueue_throttle;
6894 
6895 		flags = ENQUEUE_WAKEUP;
6896 	}
6897 
6898 	for_each_sched_entity(se) {
6899 		cfs_rq = cfs_rq_of(se);
6900 
6901 		update_load_avg(cfs_rq, se, UPDATE_TG);
6902 		se_update_runnable(se);
6903 		update_cfs_group(se);
6904 
6905 		se->slice = slice;
6906 		if (se != cfs_rq->curr)
6907 			min_vruntime_cb_propagate(&se->run_node, NULL);
6908 		slice = cfs_rq_min_slice(cfs_rq);
6909 
6910 		cfs_rq->h_nr_runnable += h_nr_runnable;
6911 		cfs_rq->h_nr_queued++;
6912 		cfs_rq->h_nr_idle += h_nr_idle;
6913 
6914 		if (cfs_rq_is_idle(cfs_rq))
6915 			h_nr_idle = 1;
6916 
6917 		/* end evaluation on encountering a throttled cfs_rq */
6918 		if (cfs_rq_throttled(cfs_rq))
6919 			goto enqueue_throttle;
6920 	}
6921 
6922 	if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
6923 		/* Account for idle runtime */
6924 		if (!rq->nr_running)
6925 			dl_server_update_idle_time(rq, rq->curr);
6926 		dl_server_start(&rq->fair_server);
6927 	}
6928 
6929 	/* At this point se is NULL and we are at root level*/
6930 	add_nr_running(rq, 1);
6931 
6932 	/*
6933 	 * Since new tasks are assigned an initial util_avg equal to
6934 	 * half of the spare capacity of their CPU, tiny tasks have the
6935 	 * ability to cross the overutilized threshold, which will
6936 	 * result in the load balancer ruining all the task placement
6937 	 * done by EAS. As a way to mitigate that effect, do not account
6938 	 * for the first enqueue operation of new tasks during the
6939 	 * overutilized flag detection.
6940 	 *
6941 	 * A better way of solving this problem would be to wait for
6942 	 * the PELT signals of tasks to converge before taking them
6943 	 * into account, but that is not straightforward to implement,
6944 	 * and the following generally works well enough in practice.
6945 	 */
6946 	if (!task_new)
6947 		check_update_overutilized_status(rq);
6948 
6949 enqueue_throttle:
6950 	assert_list_leaf_cfs_rq(rq);
6951 
6952 	hrtick_update(rq);
6953 }
6954 
6955 static void set_next_buddy(struct sched_entity *se);
6956 
6957 /*
6958  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
6959  * failing half-way through and resume the dequeue later.
6960  *
6961  * Returns:
6962  * -1 - dequeue delayed
6963  *  0 - dequeue throttled
6964  *  1 - dequeue complete
6965  */
6966 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
6967 {
6968 	bool was_sched_idle = sched_idle_rq(rq);
6969 	int rq_h_nr_queued = rq->cfs.h_nr_queued;
6970 	bool task_sleep = flags & DEQUEUE_SLEEP;
6971 	bool task_delayed = flags & DEQUEUE_DELAYED;
6972 	struct task_struct *p = NULL;
6973 	int h_nr_idle = 0;
6974 	int h_nr_queued = 0;
6975 	int h_nr_runnable = 0;
6976 	struct cfs_rq *cfs_rq;
6977 	u64 slice = 0;
6978 
6979 	if (entity_is_task(se)) {
6980 		p = task_of(se);
6981 		h_nr_queued = 1;
6982 		h_nr_idle = task_has_idle_policy(p);
6983 		if (task_sleep || task_delayed || !se->sched_delayed)
6984 			h_nr_runnable = 1;
6985 	}
6986 
6987 	for_each_sched_entity(se) {
6988 		cfs_rq = cfs_rq_of(se);
6989 
6990 		if (!dequeue_entity(cfs_rq, se, flags)) {
6991 			if (p && &p->se == se)
6992 				return -1;
6993 
6994 			slice = cfs_rq_min_slice(cfs_rq);
6995 			break;
6996 		}
6997 
6998 		cfs_rq->h_nr_runnable -= h_nr_runnable;
6999 		cfs_rq->h_nr_queued -= h_nr_queued;
7000 		cfs_rq->h_nr_idle -= h_nr_idle;
7001 
7002 		if (cfs_rq_is_idle(cfs_rq))
7003 			h_nr_idle = h_nr_queued;
7004 
7005 		/* end evaluation on encountering a throttled cfs_rq */
7006 		if (cfs_rq_throttled(cfs_rq))
7007 			return 0;
7008 
7009 		/* Don't dequeue parent if it has other entities besides us */
7010 		if (cfs_rq->load.weight) {
7011 			slice = cfs_rq_min_slice(cfs_rq);
7012 
7013 			/* Avoid re-evaluating load for this entity: */
7014 			se = parent_entity(se);
7015 			/*
7016 			 * Bias pick_next to pick a task from this cfs_rq, as
7017 			 * p is sleeping when it is within its sched_slice.
7018 			 */
7019 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7020 				set_next_buddy(se);
7021 			break;
7022 		}
7023 		flags |= DEQUEUE_SLEEP;
7024 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7025 	}
7026 
7027 	for_each_sched_entity(se) {
7028 		cfs_rq = cfs_rq_of(se);
7029 
7030 		update_load_avg(cfs_rq, se, UPDATE_TG);
7031 		se_update_runnable(se);
7032 		update_cfs_group(se);
7033 
7034 		se->slice = slice;
7035 		if (se != cfs_rq->curr)
7036 			min_vruntime_cb_propagate(&se->run_node, NULL);
7037 		slice = cfs_rq_min_slice(cfs_rq);
7038 
7039 		cfs_rq->h_nr_runnable -= h_nr_runnable;
7040 		cfs_rq->h_nr_queued -= h_nr_queued;
7041 		cfs_rq->h_nr_idle -= h_nr_idle;
7042 
7043 		if (cfs_rq_is_idle(cfs_rq))
7044 			h_nr_idle = h_nr_queued;
7045 
7046 		/* end evaluation on encountering a throttled cfs_rq */
7047 		if (cfs_rq_throttled(cfs_rq))
7048 			return 0;
7049 	}
7050 
7051 	sub_nr_running(rq, h_nr_queued);
7052 
7053 	if (rq_h_nr_queued && !rq->cfs.h_nr_queued)
7054 		dl_server_stop(&rq->fair_server);
7055 
7056 	/* balance early to pull high priority tasks */
7057 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7058 		rq->next_balance = jiffies;
7059 
7060 	if (p && task_delayed) {
7061 		WARN_ON_ONCE(!task_sleep);
7062 		WARN_ON_ONCE(p->on_rq != 1);
7063 
7064 		/* Fix-up what dequeue_task_fair() skipped */
7065 		hrtick_update(rq);
7066 
7067 		/*
7068 		 * Fix-up what block_task() skipped.
7069 		 *
7070 		 * Must be last, @p might not be valid after this.
7071 		 */
7072 		__block_task(rq, p);
7073 	}
7074 
7075 	return 1;
7076 }
7077 
7078 /*
7079  * The dequeue_task method is called before nr_running is
7080  * decreased. We remove the task from the rbtree and
7081  * update the fair scheduling stats:
7082  */
7083 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7084 {
7085 	if (!p->se.sched_delayed)
7086 		util_est_dequeue(&rq->cfs, p);
7087 
7088 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7089 	if (dequeue_entities(rq, &p->se, flags) < 0)
7090 		return false;
7091 
7092 	/*
7093 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7094 	 */
7095 
7096 	hrtick_update(rq);
7097 	return true;
7098 }
7099 
7100 static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
7101 {
7102 	return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
7103 }
7104 
7105 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7106 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7107 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7108 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7109 
7110 #ifdef CONFIG_NO_HZ_COMMON
7111 
7112 static struct {
7113 	cpumask_var_t idle_cpus_mask;
7114 	atomic_t nr_cpus;
7115 	int has_blocked;		/* Idle CPUS has blocked load */
7116 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7117 	unsigned long next_balance;     /* in jiffy units */
7118 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7119 } nohz ____cacheline_aligned;
7120 
7121 #endif /* CONFIG_NO_HZ_COMMON */
7122 
7123 static unsigned long cpu_load(struct rq *rq)
7124 {
7125 	return cfs_rq_load_avg(&rq->cfs);
7126 }
7127 
7128 /*
7129  * cpu_load_without - compute CPU load without any contributions from *p
7130  * @cpu: the CPU which load is requested
7131  * @p: the task which load should be discounted
7132  *
7133  * The load of a CPU is defined by the load of tasks currently enqueued on that
7134  * CPU as well as tasks which are currently sleeping after an execution on that
7135  * CPU.
7136  *
7137  * This method returns the load of the specified CPU by discounting the load of
7138  * the specified task, whenever the task is currently contributing to the CPU
7139  * load.
7140  */
7141 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7142 {
7143 	struct cfs_rq *cfs_rq;
7144 	unsigned int load;
7145 
7146 	/* Task has no contribution or is new */
7147 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7148 		return cpu_load(rq);
7149 
7150 	cfs_rq = &rq->cfs;
7151 	load = READ_ONCE(cfs_rq->avg.load_avg);
7152 
7153 	/* Discount task's util from CPU's util */
7154 	lsub_positive(&load, task_h_load(p));
7155 
7156 	return load;
7157 }
7158 
7159 static unsigned long cpu_runnable(struct rq *rq)
7160 {
7161 	return cfs_rq_runnable_avg(&rq->cfs);
7162 }
7163 
7164 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7165 {
7166 	struct cfs_rq *cfs_rq;
7167 	unsigned int runnable;
7168 
7169 	/* Task has no contribution or is new */
7170 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7171 		return cpu_runnable(rq);
7172 
7173 	cfs_rq = &rq->cfs;
7174 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7175 
7176 	/* Discount task's runnable from CPU's runnable */
7177 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7178 
7179 	return runnable;
7180 }
7181 
7182 static unsigned long capacity_of(int cpu)
7183 {
7184 	return cpu_rq(cpu)->cpu_capacity;
7185 }
7186 
7187 static void record_wakee(struct task_struct *p)
7188 {
7189 	/*
7190 	 * Only decay a single time; tasks that have less then 1 wakeup per
7191 	 * jiffy will not have built up many flips.
7192 	 */
7193 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7194 		current->wakee_flips >>= 1;
7195 		current->wakee_flip_decay_ts = jiffies;
7196 	}
7197 
7198 	if (current->last_wakee != p) {
7199 		current->last_wakee = p;
7200 		current->wakee_flips++;
7201 	}
7202 }
7203 
7204 /*
7205  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7206  *
7207  * A waker of many should wake a different task than the one last awakened
7208  * at a frequency roughly N times higher than one of its wakees.
7209  *
7210  * In order to determine whether we should let the load spread vs consolidating
7211  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7212  * partner, and a factor of lls_size higher frequency in the other.
7213  *
7214  * With both conditions met, we can be relatively sure that the relationship is
7215  * non-monogamous, with partner count exceeding socket size.
7216  *
7217  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7218  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7219  * socket size.
7220  */
7221 static int wake_wide(struct task_struct *p)
7222 {
7223 	unsigned int master = current->wakee_flips;
7224 	unsigned int slave = p->wakee_flips;
7225 	int factor = __this_cpu_read(sd_llc_size);
7226 
7227 	if (master < slave)
7228 		swap(master, slave);
7229 	if (slave < factor || master < slave * factor)
7230 		return 0;
7231 	return 1;
7232 }
7233 
7234 /*
7235  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7236  * soonest. For the purpose of speed we only consider the waking and previous
7237  * CPU.
7238  *
7239  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7240  *			cache-affine and is (or	will be) idle.
7241  *
7242  * wake_affine_weight() - considers the weight to reflect the average
7243  *			  scheduling latency of the CPUs. This seems to work
7244  *			  for the overloaded case.
7245  */
7246 static int
7247 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7248 {
7249 	/*
7250 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7251 	 * context. Only allow the move if cache is shared. Otherwise an
7252 	 * interrupt intensive workload could force all tasks onto one
7253 	 * node depending on the IO topology or IRQ affinity settings.
7254 	 *
7255 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7256 	 * There is no guarantee that the cache hot data from an interrupt
7257 	 * is more important than cache hot data on the prev_cpu and from
7258 	 * a cpufreq perspective, it's better to have higher utilisation
7259 	 * on one CPU.
7260 	 */
7261 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7262 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7263 
7264 	if (sync) {
7265 		struct rq *rq = cpu_rq(this_cpu);
7266 
7267 		if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
7268 			return this_cpu;
7269 	}
7270 
7271 	if (available_idle_cpu(prev_cpu))
7272 		return prev_cpu;
7273 
7274 	return nr_cpumask_bits;
7275 }
7276 
7277 static int
7278 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7279 		   int this_cpu, int prev_cpu, int sync)
7280 {
7281 	s64 this_eff_load, prev_eff_load;
7282 	unsigned long task_load;
7283 
7284 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7285 
7286 	if (sync) {
7287 		unsigned long current_load = task_h_load(current);
7288 
7289 		if (current_load > this_eff_load)
7290 			return this_cpu;
7291 
7292 		this_eff_load -= current_load;
7293 	}
7294 
7295 	task_load = task_h_load(p);
7296 
7297 	this_eff_load += task_load;
7298 	if (sched_feat(WA_BIAS))
7299 		this_eff_load *= 100;
7300 	this_eff_load *= capacity_of(prev_cpu);
7301 
7302 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7303 	prev_eff_load -= task_load;
7304 	if (sched_feat(WA_BIAS))
7305 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7306 	prev_eff_load *= capacity_of(this_cpu);
7307 
7308 	/*
7309 	 * If sync, adjust the weight of prev_eff_load such that if
7310 	 * prev_eff == this_eff that select_idle_sibling() will consider
7311 	 * stacking the wakee on top of the waker if no other CPU is
7312 	 * idle.
7313 	 */
7314 	if (sync)
7315 		prev_eff_load += 1;
7316 
7317 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7318 }
7319 
7320 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7321 		       int this_cpu, int prev_cpu, int sync)
7322 {
7323 	int target = nr_cpumask_bits;
7324 
7325 	if (sched_feat(WA_IDLE))
7326 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7327 
7328 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7329 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7330 
7331 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7332 	if (target != this_cpu)
7333 		return prev_cpu;
7334 
7335 	schedstat_inc(sd->ttwu_move_affine);
7336 	schedstat_inc(p->stats.nr_wakeups_affine);
7337 	return target;
7338 }
7339 
7340 static struct sched_group *
7341 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7342 
7343 /*
7344  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7345  */
7346 static int
7347 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7348 {
7349 	unsigned long load, min_load = ULONG_MAX;
7350 	unsigned int min_exit_latency = UINT_MAX;
7351 	u64 latest_idle_timestamp = 0;
7352 	int least_loaded_cpu = this_cpu;
7353 	int shallowest_idle_cpu = -1;
7354 	int i;
7355 
7356 	/* Check if we have any choice: */
7357 	if (group->group_weight == 1)
7358 		return cpumask_first(sched_group_span(group));
7359 
7360 	/* Traverse only the allowed CPUs */
7361 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7362 		struct rq *rq = cpu_rq(i);
7363 
7364 		if (!sched_core_cookie_match(rq, p))
7365 			continue;
7366 
7367 		if (sched_idle_cpu(i))
7368 			return i;
7369 
7370 		if (available_idle_cpu(i)) {
7371 			struct cpuidle_state *idle = idle_get_state(rq);
7372 			if (idle && idle->exit_latency < min_exit_latency) {
7373 				/*
7374 				 * We give priority to a CPU whose idle state
7375 				 * has the smallest exit latency irrespective
7376 				 * of any idle timestamp.
7377 				 */
7378 				min_exit_latency = idle->exit_latency;
7379 				latest_idle_timestamp = rq->idle_stamp;
7380 				shallowest_idle_cpu = i;
7381 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7382 				   rq->idle_stamp > latest_idle_timestamp) {
7383 				/*
7384 				 * If equal or no active idle state, then
7385 				 * the most recently idled CPU might have
7386 				 * a warmer cache.
7387 				 */
7388 				latest_idle_timestamp = rq->idle_stamp;
7389 				shallowest_idle_cpu = i;
7390 			}
7391 		} else if (shallowest_idle_cpu == -1) {
7392 			load = cpu_load(cpu_rq(i));
7393 			if (load < min_load) {
7394 				min_load = load;
7395 				least_loaded_cpu = i;
7396 			}
7397 		}
7398 	}
7399 
7400 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7401 }
7402 
7403 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7404 				  int cpu, int prev_cpu, int sd_flag)
7405 {
7406 	int new_cpu = cpu;
7407 
7408 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7409 		return prev_cpu;
7410 
7411 	/*
7412 	 * We need task's util for cpu_util_without, sync it up to
7413 	 * prev_cpu's last_update_time.
7414 	 */
7415 	if (!(sd_flag & SD_BALANCE_FORK))
7416 		sync_entity_load_avg(&p->se);
7417 
7418 	while (sd) {
7419 		struct sched_group *group;
7420 		struct sched_domain *tmp;
7421 		int weight;
7422 
7423 		if (!(sd->flags & sd_flag)) {
7424 			sd = sd->child;
7425 			continue;
7426 		}
7427 
7428 		group = sched_balance_find_dst_group(sd, p, cpu);
7429 		if (!group) {
7430 			sd = sd->child;
7431 			continue;
7432 		}
7433 
7434 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7435 		if (new_cpu == cpu) {
7436 			/* Now try balancing at a lower domain level of 'cpu': */
7437 			sd = sd->child;
7438 			continue;
7439 		}
7440 
7441 		/* Now try balancing at a lower domain level of 'new_cpu': */
7442 		cpu = new_cpu;
7443 		weight = sd->span_weight;
7444 		sd = NULL;
7445 		for_each_domain(cpu, tmp) {
7446 			if (weight <= tmp->span_weight)
7447 				break;
7448 			if (tmp->flags & sd_flag)
7449 				sd = tmp;
7450 		}
7451 	}
7452 
7453 	return new_cpu;
7454 }
7455 
7456 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7457 {
7458 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7459 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7460 		return cpu;
7461 
7462 	return -1;
7463 }
7464 
7465 #ifdef CONFIG_SCHED_SMT
7466 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7467 EXPORT_SYMBOL_GPL(sched_smt_present);
7468 
7469 static inline void set_idle_cores(int cpu, int val)
7470 {
7471 	struct sched_domain_shared *sds;
7472 
7473 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7474 	if (sds)
7475 		WRITE_ONCE(sds->has_idle_cores, val);
7476 }
7477 
7478 static inline bool test_idle_cores(int cpu)
7479 {
7480 	struct sched_domain_shared *sds;
7481 
7482 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7483 	if (sds)
7484 		return READ_ONCE(sds->has_idle_cores);
7485 
7486 	return false;
7487 }
7488 
7489 /*
7490  * Scans the local SMT mask to see if the entire core is idle, and records this
7491  * information in sd_llc_shared->has_idle_cores.
7492  *
7493  * Since SMT siblings share all cache levels, inspecting this limited remote
7494  * state should be fairly cheap.
7495  */
7496 void __update_idle_core(struct rq *rq)
7497 {
7498 	int core = cpu_of(rq);
7499 	int cpu;
7500 
7501 	rcu_read_lock();
7502 	if (test_idle_cores(core))
7503 		goto unlock;
7504 
7505 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7506 		if (cpu == core)
7507 			continue;
7508 
7509 		if (!available_idle_cpu(cpu))
7510 			goto unlock;
7511 	}
7512 
7513 	set_idle_cores(core, 1);
7514 unlock:
7515 	rcu_read_unlock();
7516 }
7517 
7518 /*
7519  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7520  * there are no idle cores left in the system; tracked through
7521  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7522  */
7523 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7524 {
7525 	bool idle = true;
7526 	int cpu;
7527 
7528 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7529 		if (!available_idle_cpu(cpu)) {
7530 			idle = false;
7531 			if (*idle_cpu == -1) {
7532 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7533 					*idle_cpu = cpu;
7534 					break;
7535 				}
7536 				continue;
7537 			}
7538 			break;
7539 		}
7540 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7541 			*idle_cpu = cpu;
7542 	}
7543 
7544 	if (idle)
7545 		return core;
7546 
7547 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7548 	return -1;
7549 }
7550 
7551 /*
7552  * Scan the local SMT mask for idle CPUs.
7553  */
7554 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7555 {
7556 	int cpu;
7557 
7558 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7559 		if (cpu == target)
7560 			continue;
7561 		/*
7562 		 * Check if the CPU is in the LLC scheduling domain of @target.
7563 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7564 		 */
7565 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7566 			continue;
7567 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7568 			return cpu;
7569 	}
7570 
7571 	return -1;
7572 }
7573 
7574 #else /* !CONFIG_SCHED_SMT: */
7575 
7576 static inline void set_idle_cores(int cpu, int val)
7577 {
7578 }
7579 
7580 static inline bool test_idle_cores(int cpu)
7581 {
7582 	return false;
7583 }
7584 
7585 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7586 {
7587 	return __select_idle_cpu(core, p);
7588 }
7589 
7590 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7591 {
7592 	return -1;
7593 }
7594 
7595 #endif /* !CONFIG_SCHED_SMT */
7596 
7597 /*
7598  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7599  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7600  * average idle time for this rq (as found in rq->avg_idle).
7601  */
7602 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7603 {
7604 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7605 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7606 	struct sched_domain_shared *sd_share;
7607 
7608 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7609 
7610 	if (sched_feat(SIS_UTIL)) {
7611 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7612 		if (sd_share) {
7613 			/* because !--nr is the condition to stop scan */
7614 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7615 			/* overloaded LLC is unlikely to have idle cpu/core */
7616 			if (nr == 1)
7617 				return -1;
7618 		}
7619 	}
7620 
7621 	if (static_branch_unlikely(&sched_cluster_active)) {
7622 		struct sched_group *sg = sd->groups;
7623 
7624 		if (sg->flags & SD_CLUSTER) {
7625 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7626 				if (!cpumask_test_cpu(cpu, cpus))
7627 					continue;
7628 
7629 				if (has_idle_core) {
7630 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7631 					if ((unsigned int)i < nr_cpumask_bits)
7632 						return i;
7633 				} else {
7634 					if (--nr <= 0)
7635 						return -1;
7636 					idle_cpu = __select_idle_cpu(cpu, p);
7637 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7638 						return idle_cpu;
7639 				}
7640 			}
7641 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7642 		}
7643 	}
7644 
7645 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7646 		if (has_idle_core) {
7647 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7648 			if ((unsigned int)i < nr_cpumask_bits)
7649 				return i;
7650 
7651 		} else {
7652 			if (--nr <= 0)
7653 				return -1;
7654 			idle_cpu = __select_idle_cpu(cpu, p);
7655 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7656 				break;
7657 		}
7658 	}
7659 
7660 	if (has_idle_core)
7661 		set_idle_cores(target, false);
7662 
7663 	return idle_cpu;
7664 }
7665 
7666 /*
7667  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7668  * the task fits. If no CPU is big enough, but there are idle ones, try to
7669  * maximize capacity.
7670  */
7671 static int
7672 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7673 {
7674 	unsigned long task_util, util_min, util_max, best_cap = 0;
7675 	int fits, best_fits = 0;
7676 	int cpu, best_cpu = -1;
7677 	struct cpumask *cpus;
7678 
7679 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7680 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7681 
7682 	task_util = task_util_est(p);
7683 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7684 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7685 
7686 	for_each_cpu_wrap(cpu, cpus, target) {
7687 		unsigned long cpu_cap = capacity_of(cpu);
7688 
7689 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7690 			continue;
7691 
7692 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7693 
7694 		/* This CPU fits with all requirements */
7695 		if (fits > 0)
7696 			return cpu;
7697 		/*
7698 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7699 		 * Look for the CPU with best capacity.
7700 		 */
7701 		else if (fits < 0)
7702 			cpu_cap = get_actual_cpu_capacity(cpu);
7703 
7704 		/*
7705 		 * First, select CPU which fits better (-1 being better than 0).
7706 		 * Then, select the one with best capacity at same level.
7707 		 */
7708 		if ((fits < best_fits) ||
7709 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7710 			best_cap = cpu_cap;
7711 			best_cpu = cpu;
7712 			best_fits = fits;
7713 		}
7714 	}
7715 
7716 	return best_cpu;
7717 }
7718 
7719 static inline bool asym_fits_cpu(unsigned long util,
7720 				 unsigned long util_min,
7721 				 unsigned long util_max,
7722 				 int cpu)
7723 {
7724 	if (sched_asym_cpucap_active())
7725 		/*
7726 		 * Return true only if the cpu fully fits the task requirements
7727 		 * which include the utilization and the performance hints.
7728 		 */
7729 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7730 
7731 	return true;
7732 }
7733 
7734 /*
7735  * Try and locate an idle core/thread in the LLC cache domain.
7736  */
7737 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7738 {
7739 	bool has_idle_core = false;
7740 	struct sched_domain *sd;
7741 	unsigned long task_util, util_min, util_max;
7742 	int i, recent_used_cpu, prev_aff = -1;
7743 
7744 	/*
7745 	 * On asymmetric system, update task utilization because we will check
7746 	 * that the task fits with CPU's capacity.
7747 	 */
7748 	if (sched_asym_cpucap_active()) {
7749 		sync_entity_load_avg(&p->se);
7750 		task_util = task_util_est(p);
7751 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7752 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7753 	}
7754 
7755 	/*
7756 	 * per-cpu select_rq_mask usage
7757 	 */
7758 	lockdep_assert_irqs_disabled();
7759 
7760 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7761 	    asym_fits_cpu(task_util, util_min, util_max, target))
7762 		return target;
7763 
7764 	/*
7765 	 * If the previous CPU is cache affine and idle, don't be stupid:
7766 	 */
7767 	if (prev != target && cpus_share_cache(prev, target) &&
7768 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7769 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7770 
7771 		if (!static_branch_unlikely(&sched_cluster_active) ||
7772 		    cpus_share_resources(prev, target))
7773 			return prev;
7774 
7775 		prev_aff = prev;
7776 	}
7777 
7778 	/*
7779 	 * Allow a per-cpu kthread to stack with the wakee if the
7780 	 * kworker thread and the tasks previous CPUs are the same.
7781 	 * The assumption is that the wakee queued work for the
7782 	 * per-cpu kthread that is now complete and the wakeup is
7783 	 * essentially a sync wakeup. An obvious example of this
7784 	 * pattern is IO completions.
7785 	 */
7786 	if (is_per_cpu_kthread(current) &&
7787 	    in_task() &&
7788 	    prev == smp_processor_id() &&
7789 	    this_rq()->nr_running <= 1 &&
7790 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7791 		return prev;
7792 	}
7793 
7794 	/* Check a recently used CPU as a potential idle candidate: */
7795 	recent_used_cpu = p->recent_used_cpu;
7796 	p->recent_used_cpu = prev;
7797 	if (recent_used_cpu != prev &&
7798 	    recent_used_cpu != target &&
7799 	    cpus_share_cache(recent_used_cpu, target) &&
7800 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7801 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7802 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7803 
7804 		if (!static_branch_unlikely(&sched_cluster_active) ||
7805 		    cpus_share_resources(recent_used_cpu, target))
7806 			return recent_used_cpu;
7807 
7808 	} else {
7809 		recent_used_cpu = -1;
7810 	}
7811 
7812 	/*
7813 	 * For asymmetric CPU capacity systems, our domain of interest is
7814 	 * sd_asym_cpucapacity rather than sd_llc.
7815 	 */
7816 	if (sched_asym_cpucap_active()) {
7817 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7818 		/*
7819 		 * On an asymmetric CPU capacity system where an exclusive
7820 		 * cpuset defines a symmetric island (i.e. one unique
7821 		 * capacity_orig value through the cpuset), the key will be set
7822 		 * but the CPUs within that cpuset will not have a domain with
7823 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7824 		 * capacity path.
7825 		 */
7826 		if (sd) {
7827 			i = select_idle_capacity(p, sd, target);
7828 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7829 		}
7830 	}
7831 
7832 	sd = rcu_dereference(per_cpu(sd_llc, target));
7833 	if (!sd)
7834 		return target;
7835 
7836 	if (sched_smt_active()) {
7837 		has_idle_core = test_idle_cores(target);
7838 
7839 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7840 			i = select_idle_smt(p, sd, prev);
7841 			if ((unsigned int)i < nr_cpumask_bits)
7842 				return i;
7843 		}
7844 	}
7845 
7846 	i = select_idle_cpu(p, sd, has_idle_core, target);
7847 	if ((unsigned)i < nr_cpumask_bits)
7848 		return i;
7849 
7850 	/*
7851 	 * For cluster machines which have lower sharing cache like L2 or
7852 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7853 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7854 	 * use them if possible when no idle CPU found in select_idle_cpu().
7855 	 */
7856 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7857 		return prev_aff;
7858 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7859 		return recent_used_cpu;
7860 
7861 	return target;
7862 }
7863 
7864 /**
7865  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7866  * @cpu: the CPU to get the utilization for
7867  * @p: task for which the CPU utilization should be predicted or NULL
7868  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7869  * @boost: 1 to enable boosting, otherwise 0
7870  *
7871  * The unit of the return value must be the same as the one of CPU capacity
7872  * so that CPU utilization can be compared with CPU capacity.
7873  *
7874  * CPU utilization is the sum of running time of runnable tasks plus the
7875  * recent utilization of currently non-runnable tasks on that CPU.
7876  * It represents the amount of CPU capacity currently used by CFS tasks in
7877  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7878  * capacity at f_max.
7879  *
7880  * The estimated CPU utilization is defined as the maximum between CPU
7881  * utilization and sum of the estimated utilization of the currently
7882  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7883  * previously-executed tasks, which helps better deduce how busy a CPU will
7884  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7885  * of such a task would be significantly decayed at this point of time.
7886  *
7887  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7888  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7889  * utilization. Boosting is implemented in cpu_util() so that internal
7890  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7891  * latter via cpu_util_cfs_boost().
7892  *
7893  * CPU utilization can be higher than the current CPU capacity
7894  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7895  * of rounding errors as well as task migrations or wakeups of new tasks.
7896  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7897  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7898  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7899  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7900  * though since this is useful for predicting the CPU capacity required
7901  * after task migrations (scheduler-driven DVFS).
7902  *
7903  * Return: (Boosted) (estimated) utilization for the specified CPU.
7904  */
7905 static unsigned long
7906 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7907 {
7908 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7909 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7910 	unsigned long runnable;
7911 
7912 	if (boost) {
7913 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7914 		util = max(util, runnable);
7915 	}
7916 
7917 	/*
7918 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7919 	 * contribution. If @p migrates from another CPU to @cpu add its
7920 	 * contribution. In all the other cases @cpu is not impacted by the
7921 	 * migration so its util_avg is already correct.
7922 	 */
7923 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7924 		lsub_positive(&util, task_util(p));
7925 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7926 		util += task_util(p);
7927 
7928 	if (sched_feat(UTIL_EST)) {
7929 		unsigned long util_est;
7930 
7931 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7932 
7933 		/*
7934 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7935 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7936 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7937 		 * has been enqueued.
7938 		 *
7939 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7940 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7941 		 * Remove it to "simulate" cpu_util without @p's contribution.
7942 		 *
7943 		 * Despite the task_on_rq_queued(@p) check there is still a
7944 		 * small window for a possible race when an exec
7945 		 * select_task_rq_fair() races with LB's detach_task().
7946 		 *
7947 		 *   detach_task()
7948 		 *     deactivate_task()
7949 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7950 		 *       -------------------------------- A
7951 		 *       dequeue_task()                    \
7952 		 *         dequeue_task_fair()              + Race Time
7953 		 *           util_est_dequeue()            /
7954 		 *       -------------------------------- B
7955 		 *
7956 		 * The additional check "current == p" is required to further
7957 		 * reduce the race window.
7958 		 */
7959 		if (dst_cpu == cpu)
7960 			util_est += _task_util_est(p);
7961 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7962 			lsub_positive(&util_est, _task_util_est(p));
7963 
7964 		util = max(util, util_est);
7965 	}
7966 
7967 	return min(util, arch_scale_cpu_capacity(cpu));
7968 }
7969 
7970 unsigned long cpu_util_cfs(int cpu)
7971 {
7972 	return cpu_util(cpu, NULL, -1, 0);
7973 }
7974 
7975 unsigned long cpu_util_cfs_boost(int cpu)
7976 {
7977 	return cpu_util(cpu, NULL, -1, 1);
7978 }
7979 
7980 /*
7981  * cpu_util_without: compute cpu utilization without any contributions from *p
7982  * @cpu: the CPU which utilization is requested
7983  * @p: the task which utilization should be discounted
7984  *
7985  * The utilization of a CPU is defined by the utilization of tasks currently
7986  * enqueued on that CPU as well as tasks which are currently sleeping after an
7987  * execution on that CPU.
7988  *
7989  * This method returns the utilization of the specified CPU by discounting the
7990  * utilization of the specified task, whenever the task is currently
7991  * contributing to the CPU utilization.
7992  */
7993 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7994 {
7995 	/* Task has no contribution or is new */
7996 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7997 		p = NULL;
7998 
7999 	return cpu_util(cpu, p, -1, 0);
8000 }
8001 
8002 /*
8003  * This function computes an effective utilization for the given CPU, to be
8004  * used for frequency selection given the linear relation: f = u * f_max.
8005  *
8006  * The scheduler tracks the following metrics:
8007  *
8008  *   cpu_util_{cfs,rt,dl,irq}()
8009  *   cpu_bw_dl()
8010  *
8011  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8012  * synchronized windows and are thus directly comparable.
8013  *
8014  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8015  * which excludes things like IRQ and steal-time. These latter are then accrued
8016  * in the IRQ utilization.
8017  *
8018  * The DL bandwidth number OTOH is not a measured metric but a value computed
8019  * based on the task model parameters and gives the minimal utilization
8020  * required to meet deadlines.
8021  */
8022 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8023 				 unsigned long *min,
8024 				 unsigned long *max)
8025 {
8026 	unsigned long util, irq, scale;
8027 	struct rq *rq = cpu_rq(cpu);
8028 
8029 	scale = arch_scale_cpu_capacity(cpu);
8030 
8031 	/*
8032 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8033 	 * because of inaccuracies in how we track these -- see
8034 	 * update_irq_load_avg().
8035 	 */
8036 	irq = cpu_util_irq(rq);
8037 	if (unlikely(irq >= scale)) {
8038 		if (min)
8039 			*min = scale;
8040 		if (max)
8041 			*max = scale;
8042 		return scale;
8043 	}
8044 
8045 	if (min) {
8046 		/*
8047 		 * The minimum utilization returns the highest level between:
8048 		 * - the computed DL bandwidth needed with the IRQ pressure which
8049 		 *   steals time to the deadline task.
8050 		 * - The minimum performance requirement for CFS and/or RT.
8051 		 */
8052 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8053 
8054 		/*
8055 		 * When an RT task is runnable and uclamp is not used, we must
8056 		 * ensure that the task will run at maximum compute capacity.
8057 		 */
8058 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8059 			*min = max(*min, scale);
8060 	}
8061 
8062 	/*
8063 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8064 	 * CFS tasks and we use the same metric to track the effective
8065 	 * utilization (PELT windows are synchronized) we can directly add them
8066 	 * to obtain the CPU's actual utilization.
8067 	 */
8068 	util = util_cfs + cpu_util_rt(rq);
8069 	util += cpu_util_dl(rq);
8070 
8071 	/*
8072 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8073 	 * than the actual utilization because of uclamp_max requirements.
8074 	 */
8075 	if (max)
8076 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8077 
8078 	if (util >= scale)
8079 		return scale;
8080 
8081 	/*
8082 	 * There is still idle time; further improve the number by using the
8083 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8084 	 * need to scale the task numbers:
8085 	 *
8086 	 *              max - irq
8087 	 *   U' = irq + --------- * U
8088 	 *                 max
8089 	 */
8090 	util = scale_irq_capacity(util, irq, scale);
8091 	util += irq;
8092 
8093 	return min(scale, util);
8094 }
8095 
8096 unsigned long sched_cpu_util(int cpu)
8097 {
8098 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8099 }
8100 
8101 /*
8102  * energy_env - Utilization landscape for energy estimation.
8103  * @task_busy_time: Utilization contribution by the task for which we test the
8104  *                  placement. Given by eenv_task_busy_time().
8105  * @pd_busy_time:   Utilization of the whole perf domain without the task
8106  *                  contribution. Given by eenv_pd_busy_time().
8107  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8108  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8109  */
8110 struct energy_env {
8111 	unsigned long task_busy_time;
8112 	unsigned long pd_busy_time;
8113 	unsigned long cpu_cap;
8114 	unsigned long pd_cap;
8115 };
8116 
8117 /*
8118  * Compute the task busy time for compute_energy(). This time cannot be
8119  * injected directly into effective_cpu_util() because of the IRQ scaling.
8120  * The latter only makes sense with the most recent CPUs where the task has
8121  * run.
8122  */
8123 static inline void eenv_task_busy_time(struct energy_env *eenv,
8124 				       struct task_struct *p, int prev_cpu)
8125 {
8126 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8127 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8128 
8129 	if (unlikely(irq >= max_cap))
8130 		busy_time = max_cap;
8131 	else
8132 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8133 
8134 	eenv->task_busy_time = busy_time;
8135 }
8136 
8137 /*
8138  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8139  * utilization for each @pd_cpus, it however doesn't take into account
8140  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8141  * scale the EM reported power consumption at the (eventually clamped)
8142  * cpu_capacity.
8143  *
8144  * The contribution of the task @p for which we want to estimate the
8145  * energy cost is removed (by cpu_util()) and must be calculated
8146  * separately (see eenv_task_busy_time). This ensures:
8147  *
8148  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8149  *     the task on.
8150  *
8151  *   - A fair comparison between CPUs as the task contribution (task_util())
8152  *     will always be the same no matter which CPU utilization we rely on
8153  *     (util_avg or util_est).
8154  *
8155  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8156  * exceed @eenv->pd_cap.
8157  */
8158 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8159 				     struct cpumask *pd_cpus,
8160 				     struct task_struct *p)
8161 {
8162 	unsigned long busy_time = 0;
8163 	int cpu;
8164 
8165 	for_each_cpu(cpu, pd_cpus) {
8166 		unsigned long util = cpu_util(cpu, p, -1, 0);
8167 
8168 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8169 	}
8170 
8171 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8172 }
8173 
8174 /*
8175  * Compute the maximum utilization for compute_energy() when the task @p
8176  * is placed on the cpu @dst_cpu.
8177  *
8178  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8179  * exceed @eenv->cpu_cap.
8180  */
8181 static inline unsigned long
8182 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8183 		 struct task_struct *p, int dst_cpu)
8184 {
8185 	unsigned long max_util = 0;
8186 	int cpu;
8187 
8188 	for_each_cpu(cpu, pd_cpus) {
8189 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8190 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8191 		unsigned long eff_util, min, max;
8192 
8193 		/*
8194 		 * Performance domain frequency: utilization clamping
8195 		 * must be considered since it affects the selection
8196 		 * of the performance domain frequency.
8197 		 * NOTE: in case RT tasks are running, by default the min
8198 		 * utilization can be max OPP.
8199 		 */
8200 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8201 
8202 		/* Task's uclamp can modify min and max value */
8203 		if (tsk && uclamp_is_used()) {
8204 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8205 
8206 			/*
8207 			 * If there is no active max uclamp constraint,
8208 			 * directly use task's one, otherwise keep max.
8209 			 */
8210 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8211 				max = uclamp_eff_value(p, UCLAMP_MAX);
8212 			else
8213 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8214 		}
8215 
8216 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8217 		max_util = max(max_util, eff_util);
8218 	}
8219 
8220 	return min(max_util, eenv->cpu_cap);
8221 }
8222 
8223 /*
8224  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8225  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8226  * contribution is ignored.
8227  */
8228 static inline unsigned long
8229 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8230 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8231 {
8232 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8233 	unsigned long busy_time = eenv->pd_busy_time;
8234 	unsigned long energy;
8235 
8236 	if (dst_cpu >= 0)
8237 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8238 
8239 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8240 
8241 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8242 
8243 	return energy;
8244 }
8245 
8246 /*
8247  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8248  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8249  * spare capacity in each performance domain and uses it as a potential
8250  * candidate to execute the task. Then, it uses the Energy Model to figure
8251  * out which of the CPU candidates is the most energy-efficient.
8252  *
8253  * The rationale for this heuristic is as follows. In a performance domain,
8254  * all the most energy efficient CPU candidates (according to the Energy
8255  * Model) are those for which we'll request a low frequency. When there are
8256  * several CPUs for which the frequency request will be the same, we don't
8257  * have enough data to break the tie between them, because the Energy Model
8258  * only includes active power costs. With this model, if we assume that
8259  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8260  * the maximum spare capacity in a performance domain is guaranteed to be among
8261  * the best candidates of the performance domain.
8262  *
8263  * In practice, it could be preferable from an energy standpoint to pack
8264  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8265  * but that could also hurt our chances to go cluster idle, and we have no
8266  * ways to tell with the current Energy Model if this is actually a good
8267  * idea or not. So, find_energy_efficient_cpu() basically favors
8268  * cluster-packing, and spreading inside a cluster. That should at least be
8269  * a good thing for latency, and this is consistent with the idea that most
8270  * of the energy savings of EAS come from the asymmetry of the system, and
8271  * not so much from breaking the tie between identical CPUs. That's also the
8272  * reason why EAS is enabled in the topology code only for systems where
8273  * SD_ASYM_CPUCAPACITY is set.
8274  *
8275  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8276  * they don't have any useful utilization data yet and it's not possible to
8277  * forecast their impact on energy consumption. Consequently, they will be
8278  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8279  * to be energy-inefficient in some use-cases. The alternative would be to
8280  * bias new tasks towards specific types of CPUs first, or to try to infer
8281  * their util_avg from the parent task, but those heuristics could hurt
8282  * other use-cases too. So, until someone finds a better way to solve this,
8283  * let's keep things simple by re-using the existing slow path.
8284  */
8285 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8286 {
8287 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8288 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8289 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8290 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8291 	struct root_domain *rd = this_rq()->rd;
8292 	int cpu, best_energy_cpu, target = -1;
8293 	int prev_fits = -1, best_fits = -1;
8294 	unsigned long best_actual_cap = 0;
8295 	unsigned long prev_actual_cap = 0;
8296 	struct sched_domain *sd;
8297 	struct perf_domain *pd;
8298 	struct energy_env eenv;
8299 
8300 	rcu_read_lock();
8301 	pd = rcu_dereference(rd->pd);
8302 	if (!pd)
8303 		goto unlock;
8304 
8305 	/*
8306 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8307 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8308 	 */
8309 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8310 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8311 		sd = sd->parent;
8312 	if (!sd)
8313 		goto unlock;
8314 
8315 	target = prev_cpu;
8316 
8317 	sync_entity_load_avg(&p->se);
8318 	if (!task_util_est(p) && p_util_min == 0)
8319 		goto unlock;
8320 
8321 	eenv_task_busy_time(&eenv, p, prev_cpu);
8322 
8323 	for (; pd; pd = pd->next) {
8324 		unsigned long util_min = p_util_min, util_max = p_util_max;
8325 		unsigned long cpu_cap, cpu_actual_cap, util;
8326 		long prev_spare_cap = -1, max_spare_cap = -1;
8327 		unsigned long rq_util_min, rq_util_max;
8328 		unsigned long cur_delta, base_energy;
8329 		int max_spare_cap_cpu = -1;
8330 		int fits, max_fits = -1;
8331 
8332 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8333 
8334 		if (cpumask_empty(cpus))
8335 			continue;
8336 
8337 		/* Account external pressure for the energy estimation */
8338 		cpu = cpumask_first(cpus);
8339 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8340 
8341 		eenv.cpu_cap = cpu_actual_cap;
8342 		eenv.pd_cap = 0;
8343 
8344 		for_each_cpu(cpu, cpus) {
8345 			struct rq *rq = cpu_rq(cpu);
8346 
8347 			eenv.pd_cap += cpu_actual_cap;
8348 
8349 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8350 				continue;
8351 
8352 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8353 				continue;
8354 
8355 			util = cpu_util(cpu, p, cpu, 0);
8356 			cpu_cap = capacity_of(cpu);
8357 
8358 			/*
8359 			 * Skip CPUs that cannot satisfy the capacity request.
8360 			 * IOW, placing the task there would make the CPU
8361 			 * overutilized. Take uclamp into account to see how
8362 			 * much capacity we can get out of the CPU; this is
8363 			 * aligned with sched_cpu_util().
8364 			 */
8365 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8366 				/*
8367 				 * Open code uclamp_rq_util_with() except for
8368 				 * the clamp() part. I.e.: apply max aggregation
8369 				 * only. util_fits_cpu() logic requires to
8370 				 * operate on non clamped util but must use the
8371 				 * max-aggregated uclamp_{min, max}.
8372 				 */
8373 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8374 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8375 
8376 				util_min = max(rq_util_min, p_util_min);
8377 				util_max = max(rq_util_max, p_util_max);
8378 			}
8379 
8380 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8381 			if (!fits)
8382 				continue;
8383 
8384 			lsub_positive(&cpu_cap, util);
8385 
8386 			if (cpu == prev_cpu) {
8387 				/* Always use prev_cpu as a candidate. */
8388 				prev_spare_cap = cpu_cap;
8389 				prev_fits = fits;
8390 			} else if ((fits > max_fits) ||
8391 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8392 				/*
8393 				 * Find the CPU with the maximum spare capacity
8394 				 * among the remaining CPUs in the performance
8395 				 * domain.
8396 				 */
8397 				max_spare_cap = cpu_cap;
8398 				max_spare_cap_cpu = cpu;
8399 				max_fits = fits;
8400 			}
8401 		}
8402 
8403 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8404 			continue;
8405 
8406 		eenv_pd_busy_time(&eenv, cpus, p);
8407 		/* Compute the 'base' energy of the pd, without @p */
8408 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8409 
8410 		/* Evaluate the energy impact of using prev_cpu. */
8411 		if (prev_spare_cap > -1) {
8412 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8413 						    prev_cpu);
8414 			/* CPU utilization has changed */
8415 			if (prev_delta < base_energy)
8416 				goto unlock;
8417 			prev_delta -= base_energy;
8418 			prev_actual_cap = cpu_actual_cap;
8419 			best_delta = min(best_delta, prev_delta);
8420 		}
8421 
8422 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8423 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8424 			/* Current best energy cpu fits better */
8425 			if (max_fits < best_fits)
8426 				continue;
8427 
8428 			/*
8429 			 * Both don't fit performance hint (i.e. uclamp_min)
8430 			 * but best energy cpu has better capacity.
8431 			 */
8432 			if ((max_fits < 0) &&
8433 			    (cpu_actual_cap <= best_actual_cap))
8434 				continue;
8435 
8436 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8437 						   max_spare_cap_cpu);
8438 			/* CPU utilization has changed */
8439 			if (cur_delta < base_energy)
8440 				goto unlock;
8441 			cur_delta -= base_energy;
8442 
8443 			/*
8444 			 * Both fit for the task but best energy cpu has lower
8445 			 * energy impact.
8446 			 */
8447 			if ((max_fits > 0) && (best_fits > 0) &&
8448 			    (cur_delta >= best_delta))
8449 				continue;
8450 
8451 			best_delta = cur_delta;
8452 			best_energy_cpu = max_spare_cap_cpu;
8453 			best_fits = max_fits;
8454 			best_actual_cap = cpu_actual_cap;
8455 		}
8456 	}
8457 	rcu_read_unlock();
8458 
8459 	if ((best_fits > prev_fits) ||
8460 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8461 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8462 		target = best_energy_cpu;
8463 
8464 	return target;
8465 
8466 unlock:
8467 	rcu_read_unlock();
8468 
8469 	return target;
8470 }
8471 
8472 /*
8473  * select_task_rq_fair: Select target runqueue for the waking task in domains
8474  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8475  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8476  *
8477  * Balances load by selecting the idlest CPU in the idlest group, or under
8478  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8479  *
8480  * Returns the target CPU number.
8481  */
8482 static int
8483 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8484 {
8485 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8486 	struct sched_domain *tmp, *sd = NULL;
8487 	int cpu = smp_processor_id();
8488 	int new_cpu = prev_cpu;
8489 	int want_affine = 0;
8490 	/* SD_flags and WF_flags share the first nibble */
8491 	int sd_flag = wake_flags & 0xF;
8492 
8493 	/*
8494 	 * required for stable ->cpus_allowed
8495 	 */
8496 	lockdep_assert_held(&p->pi_lock);
8497 	if (wake_flags & WF_TTWU) {
8498 		record_wakee(p);
8499 
8500 		if ((wake_flags & WF_CURRENT_CPU) &&
8501 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8502 			return cpu;
8503 
8504 		if (!is_rd_overutilized(this_rq()->rd)) {
8505 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8506 			if (new_cpu >= 0)
8507 				return new_cpu;
8508 			new_cpu = prev_cpu;
8509 		}
8510 
8511 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8512 	}
8513 
8514 	rcu_read_lock();
8515 	for_each_domain(cpu, tmp) {
8516 		/*
8517 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8518 		 * cpu is a valid SD_WAKE_AFFINE target.
8519 		 */
8520 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8521 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8522 			if (cpu != prev_cpu)
8523 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8524 
8525 			sd = NULL; /* Prefer wake_affine over balance flags */
8526 			break;
8527 		}
8528 
8529 		/*
8530 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8531 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8532 		 * will usually go to the fast path.
8533 		 */
8534 		if (tmp->flags & sd_flag)
8535 			sd = tmp;
8536 		else if (!want_affine)
8537 			break;
8538 	}
8539 
8540 	if (unlikely(sd)) {
8541 		/* Slow path */
8542 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8543 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8544 		/* Fast path */
8545 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8546 	}
8547 	rcu_read_unlock();
8548 
8549 	return new_cpu;
8550 }
8551 
8552 /*
8553  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8554  * cfs_rq_of(p) references at time of call are still valid and identify the
8555  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8556  */
8557 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8558 {
8559 	struct sched_entity *se = &p->se;
8560 
8561 	if (!task_on_rq_migrating(p)) {
8562 		remove_entity_load_avg(se);
8563 
8564 		/*
8565 		 * Here, the task's PELT values have been updated according to
8566 		 * the current rq's clock. But if that clock hasn't been
8567 		 * updated in a while, a substantial idle time will be missed,
8568 		 * leading to an inflation after wake-up on the new rq.
8569 		 *
8570 		 * Estimate the missing time from the cfs_rq last_update_time
8571 		 * and update sched_avg to improve the PELT continuity after
8572 		 * migration.
8573 		 */
8574 		migrate_se_pelt_lag(se);
8575 	}
8576 
8577 	/* Tell new CPU we are migrated */
8578 	se->avg.last_update_time = 0;
8579 
8580 	update_scan_period(p, new_cpu);
8581 }
8582 
8583 static void task_dead_fair(struct task_struct *p)
8584 {
8585 	struct sched_entity *se = &p->se;
8586 
8587 	if (se->sched_delayed) {
8588 		struct rq_flags rf;
8589 		struct rq *rq;
8590 
8591 		rq = task_rq_lock(p, &rf);
8592 		if (se->sched_delayed) {
8593 			update_rq_clock(rq);
8594 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8595 		}
8596 		task_rq_unlock(rq, p, &rf);
8597 	}
8598 
8599 	remove_entity_load_avg(se);
8600 }
8601 
8602 /*
8603  * Set the max capacity the task is allowed to run at for misfit detection.
8604  */
8605 static void set_task_max_allowed_capacity(struct task_struct *p)
8606 {
8607 	struct asym_cap_data *entry;
8608 
8609 	if (!sched_asym_cpucap_active())
8610 		return;
8611 
8612 	rcu_read_lock();
8613 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8614 		cpumask_t *cpumask;
8615 
8616 		cpumask = cpu_capacity_span(entry);
8617 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8618 			continue;
8619 
8620 		p->max_allowed_capacity = entry->capacity;
8621 		break;
8622 	}
8623 	rcu_read_unlock();
8624 }
8625 
8626 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8627 {
8628 	set_cpus_allowed_common(p, ctx);
8629 	set_task_max_allowed_capacity(p);
8630 }
8631 
8632 static int
8633 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8634 {
8635 	if (sched_fair_runnable(rq))
8636 		return 1;
8637 
8638 	return sched_balance_newidle(rq, rf) != 0;
8639 }
8640 
8641 static void set_next_buddy(struct sched_entity *se)
8642 {
8643 	for_each_sched_entity(se) {
8644 		if (WARN_ON_ONCE(!se->on_rq))
8645 			return;
8646 		if (se_is_idle(se))
8647 			return;
8648 		cfs_rq_of(se)->next = se;
8649 	}
8650 }
8651 
8652 /*
8653  * Preempt the current task with a newly woken task if needed:
8654  */
8655 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8656 {
8657 	struct task_struct *donor = rq->donor;
8658 	struct sched_entity *se = &donor->se, *pse = &p->se;
8659 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8660 	int cse_is_idle, pse_is_idle;
8661 
8662 	if (unlikely(se == pse))
8663 		return;
8664 
8665 	/*
8666 	 * This is possible from callers such as attach_tasks(), in which we
8667 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8668 	 * lead to a throttle).  This both saves work and prevents false
8669 	 * next-buddy nomination below.
8670 	 */
8671 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8672 		return;
8673 
8674 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8675 		set_next_buddy(pse);
8676 	}
8677 
8678 	/*
8679 	 * We can come here with TIF_NEED_RESCHED already set from new task
8680 	 * wake up path.
8681 	 *
8682 	 * Note: this also catches the edge-case of curr being in a throttled
8683 	 * group (e.g. via set_curr_task), since update_curr() (in the
8684 	 * enqueue of curr) will have resulted in resched being set.  This
8685 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8686 	 * below.
8687 	 */
8688 	if (test_tsk_need_resched(rq->curr))
8689 		return;
8690 
8691 	if (!sched_feat(WAKEUP_PREEMPTION))
8692 		return;
8693 
8694 	find_matching_se(&se, &pse);
8695 	WARN_ON_ONCE(!pse);
8696 
8697 	cse_is_idle = se_is_idle(se);
8698 	pse_is_idle = se_is_idle(pse);
8699 
8700 	/*
8701 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8702 	 * in the inverse case).
8703 	 */
8704 	if (cse_is_idle && !pse_is_idle) {
8705 		/*
8706 		 * When non-idle entity preempt an idle entity,
8707 		 * don't give idle entity slice protection.
8708 		 */
8709 		cancel_protect_slice(se);
8710 		goto preempt;
8711 	}
8712 
8713 	if (cse_is_idle != pse_is_idle)
8714 		return;
8715 
8716 	/*
8717 	 * BATCH and IDLE tasks do not preempt others.
8718 	 */
8719 	if (unlikely(!normal_policy(p->policy)))
8720 		return;
8721 
8722 	cfs_rq = cfs_rq_of(se);
8723 	update_curr(cfs_rq);
8724 	/*
8725 	 * If @p has a shorter slice than current and @p is eligible, override
8726 	 * current's slice protection in order to allow preemption.
8727 	 *
8728 	 * Note that even if @p does not turn out to be the most eligible
8729 	 * task at this moment, current's slice protection will be lost.
8730 	 */
8731 	if (do_preempt_short(cfs_rq, pse, se))
8732 		cancel_protect_slice(se);
8733 
8734 	/*
8735 	 * If @p has become the most eligible task, force preemption.
8736 	 */
8737 	if (pick_eevdf(cfs_rq) == pse)
8738 		goto preempt;
8739 
8740 	return;
8741 
8742 preempt:
8743 	resched_curr_lazy(rq);
8744 }
8745 
8746 static struct task_struct *pick_task_fair(struct rq *rq)
8747 {
8748 	struct sched_entity *se;
8749 	struct cfs_rq *cfs_rq;
8750 
8751 again:
8752 	cfs_rq = &rq->cfs;
8753 	if (!cfs_rq->nr_queued)
8754 		return NULL;
8755 
8756 	do {
8757 		/* Might not have done put_prev_entity() */
8758 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8759 			update_curr(cfs_rq);
8760 
8761 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8762 			goto again;
8763 
8764 		se = pick_next_entity(rq, cfs_rq);
8765 		if (!se)
8766 			goto again;
8767 		cfs_rq = group_cfs_rq(se);
8768 	} while (cfs_rq);
8769 
8770 	return task_of(se);
8771 }
8772 
8773 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8774 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8775 
8776 struct task_struct *
8777 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8778 {
8779 	struct sched_entity *se;
8780 	struct task_struct *p;
8781 	int new_tasks;
8782 
8783 again:
8784 	p = pick_task_fair(rq);
8785 	if (!p)
8786 		goto idle;
8787 	se = &p->se;
8788 
8789 #ifdef CONFIG_FAIR_GROUP_SCHED
8790 	if (prev->sched_class != &fair_sched_class)
8791 		goto simple;
8792 
8793 	__put_prev_set_next_dl_server(rq, prev, p);
8794 
8795 	/*
8796 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8797 	 * likely that a next task is from the same cgroup as the current.
8798 	 *
8799 	 * Therefore attempt to avoid putting and setting the entire cgroup
8800 	 * hierarchy, only change the part that actually changes.
8801 	 *
8802 	 * Since we haven't yet done put_prev_entity and if the selected task
8803 	 * is a different task than we started out with, try and touch the
8804 	 * least amount of cfs_rqs.
8805 	 */
8806 	if (prev != p) {
8807 		struct sched_entity *pse = &prev->se;
8808 		struct cfs_rq *cfs_rq;
8809 
8810 		while (!(cfs_rq = is_same_group(se, pse))) {
8811 			int se_depth = se->depth;
8812 			int pse_depth = pse->depth;
8813 
8814 			if (se_depth <= pse_depth) {
8815 				put_prev_entity(cfs_rq_of(pse), pse);
8816 				pse = parent_entity(pse);
8817 			}
8818 			if (se_depth >= pse_depth) {
8819 				set_next_entity(cfs_rq_of(se), se);
8820 				se = parent_entity(se);
8821 			}
8822 		}
8823 
8824 		put_prev_entity(cfs_rq, pse);
8825 		set_next_entity(cfs_rq, se);
8826 
8827 		__set_next_task_fair(rq, p, true);
8828 	}
8829 
8830 	return p;
8831 
8832 simple:
8833 #endif /* CONFIG_FAIR_GROUP_SCHED */
8834 	put_prev_set_next_task(rq, prev, p);
8835 	return p;
8836 
8837 idle:
8838 	if (!rf)
8839 		return NULL;
8840 
8841 	new_tasks = sched_balance_newidle(rq, rf);
8842 
8843 	/*
8844 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8845 	 * possible for any higher priority task to appear. In that case we
8846 	 * must re-start the pick_next_entity() loop.
8847 	 */
8848 	if (new_tasks < 0)
8849 		return RETRY_TASK;
8850 
8851 	if (new_tasks > 0)
8852 		goto again;
8853 
8854 	/*
8855 	 * rq is about to be idle, check if we need to update the
8856 	 * lost_idle_time of clock_pelt
8857 	 */
8858 	update_idle_rq_clock_pelt(rq);
8859 
8860 	return NULL;
8861 }
8862 
8863 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8864 {
8865 	return pick_next_task_fair(rq, prev, NULL);
8866 }
8867 
8868 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8869 {
8870 	return !!dl_se->rq->cfs.nr_queued;
8871 }
8872 
8873 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8874 {
8875 	return pick_task_fair(dl_se->rq);
8876 }
8877 
8878 void fair_server_init(struct rq *rq)
8879 {
8880 	struct sched_dl_entity *dl_se = &rq->fair_server;
8881 
8882 	init_dl_entity(dl_se);
8883 
8884 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8885 }
8886 
8887 /*
8888  * Account for a descheduled task:
8889  */
8890 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8891 {
8892 	struct sched_entity *se = &prev->se;
8893 	struct cfs_rq *cfs_rq;
8894 
8895 	for_each_sched_entity(se) {
8896 		cfs_rq = cfs_rq_of(se);
8897 		put_prev_entity(cfs_rq, se);
8898 	}
8899 }
8900 
8901 /*
8902  * sched_yield() is very simple
8903  */
8904 static void yield_task_fair(struct rq *rq)
8905 {
8906 	struct task_struct *curr = rq->curr;
8907 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8908 	struct sched_entity *se = &curr->se;
8909 
8910 	/*
8911 	 * Are we the only task in the tree?
8912 	 */
8913 	if (unlikely(rq->nr_running == 1))
8914 		return;
8915 
8916 	clear_buddies(cfs_rq, se);
8917 
8918 	update_rq_clock(rq);
8919 	/*
8920 	 * Update run-time statistics of the 'current'.
8921 	 */
8922 	update_curr(cfs_rq);
8923 	/*
8924 	 * Tell update_rq_clock() that we've just updated,
8925 	 * so we don't do microscopic update in schedule()
8926 	 * and double the fastpath cost.
8927 	 */
8928 	rq_clock_skip_update(rq);
8929 
8930 	se->deadline += calc_delta_fair(se->slice, se);
8931 }
8932 
8933 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8934 {
8935 	struct sched_entity *se = &p->se;
8936 
8937 	/* throttled hierarchies are not runnable */
8938 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8939 		return false;
8940 
8941 	/* Tell the scheduler that we'd really like se to run next. */
8942 	set_next_buddy(se);
8943 
8944 	yield_task_fair(rq);
8945 
8946 	return true;
8947 }
8948 
8949 /**************************************************
8950  * Fair scheduling class load-balancing methods.
8951  *
8952  * BASICS
8953  *
8954  * The purpose of load-balancing is to achieve the same basic fairness the
8955  * per-CPU scheduler provides, namely provide a proportional amount of compute
8956  * time to each task. This is expressed in the following equation:
8957  *
8958  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8959  *
8960  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8961  * W_i,0 is defined as:
8962  *
8963  *   W_i,0 = \Sum_j w_i,j                                             (2)
8964  *
8965  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8966  * is derived from the nice value as per sched_prio_to_weight[].
8967  *
8968  * The weight average is an exponential decay average of the instantaneous
8969  * weight:
8970  *
8971  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8972  *
8973  * C_i is the compute capacity of CPU i, typically it is the
8974  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8975  * can also include other factors [XXX].
8976  *
8977  * To achieve this balance we define a measure of imbalance which follows
8978  * directly from (1):
8979  *
8980  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8981  *
8982  * We them move tasks around to minimize the imbalance. In the continuous
8983  * function space it is obvious this converges, in the discrete case we get
8984  * a few fun cases generally called infeasible weight scenarios.
8985  *
8986  * [XXX expand on:
8987  *     - infeasible weights;
8988  *     - local vs global optima in the discrete case. ]
8989  *
8990  *
8991  * SCHED DOMAINS
8992  *
8993  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8994  * for all i,j solution, we create a tree of CPUs that follows the hardware
8995  * topology where each level pairs two lower groups (or better). This results
8996  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8997  * tree to only the first of the previous level and we decrease the frequency
8998  * of load-balance at each level inversely proportional to the number of CPUs in
8999  * the groups.
9000  *
9001  * This yields:
9002  *
9003  *     log_2 n     1     n
9004  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9005  *     i = 0      2^i   2^i
9006  *                               `- size of each group
9007  *         |         |     `- number of CPUs doing load-balance
9008  *         |         `- freq
9009  *         `- sum over all levels
9010  *
9011  * Coupled with a limit on how many tasks we can migrate every balance pass,
9012  * this makes (5) the runtime complexity of the balancer.
9013  *
9014  * An important property here is that each CPU is still (indirectly) connected
9015  * to every other CPU in at most O(log n) steps:
9016  *
9017  * The adjacency matrix of the resulting graph is given by:
9018  *
9019  *             log_2 n
9020  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9021  *             k = 0
9022  *
9023  * And you'll find that:
9024  *
9025  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9026  *
9027  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9028  * The task movement gives a factor of O(m), giving a convergence complexity
9029  * of:
9030  *
9031  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9032  *
9033  *
9034  * WORK CONSERVING
9035  *
9036  * In order to avoid CPUs going idle while there's still work to do, new idle
9037  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9038  * tree itself instead of relying on other CPUs to bring it work.
9039  *
9040  * This adds some complexity to both (5) and (8) but it reduces the total idle
9041  * time.
9042  *
9043  * [XXX more?]
9044  *
9045  *
9046  * CGROUPS
9047  *
9048  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9049  *
9050  *                                s_k,i
9051  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9052  *                                 S_k
9053  *
9054  * Where
9055  *
9056  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9057  *
9058  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9059  *
9060  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9061  * property.
9062  *
9063  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9064  *      rewrite all of this once again.]
9065  */
9066 
9067 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9068 
9069 enum fbq_type { regular, remote, all };
9070 
9071 /*
9072  * 'group_type' describes the group of CPUs at the moment of load balancing.
9073  *
9074  * The enum is ordered by pulling priority, with the group with lowest priority
9075  * first so the group_type can simply be compared when selecting the busiest
9076  * group. See update_sd_pick_busiest().
9077  */
9078 enum group_type {
9079 	/* The group has spare capacity that can be used to run more tasks.  */
9080 	group_has_spare = 0,
9081 	/*
9082 	 * The group is fully used and the tasks don't compete for more CPU
9083 	 * cycles. Nevertheless, some tasks might wait before running.
9084 	 */
9085 	group_fully_busy,
9086 	/*
9087 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9088 	 * more powerful CPU.
9089 	 */
9090 	group_misfit_task,
9091 	/*
9092 	 * Balance SMT group that's fully busy. Can benefit from migration
9093 	 * a task on SMT with busy sibling to another CPU on idle core.
9094 	 */
9095 	group_smt_balance,
9096 	/*
9097 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9098 	 * and the task should be migrated to it instead of running on the
9099 	 * current CPU.
9100 	 */
9101 	group_asym_packing,
9102 	/*
9103 	 * The tasks' affinity constraints previously prevented the scheduler
9104 	 * from balancing the load across the system.
9105 	 */
9106 	group_imbalanced,
9107 	/*
9108 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9109 	 * tasks.
9110 	 */
9111 	group_overloaded
9112 };
9113 
9114 enum migration_type {
9115 	migrate_load = 0,
9116 	migrate_util,
9117 	migrate_task,
9118 	migrate_misfit
9119 };
9120 
9121 #define LBF_ALL_PINNED	0x01
9122 #define LBF_NEED_BREAK	0x02
9123 #define LBF_DST_PINNED  0x04
9124 #define LBF_SOME_PINNED	0x08
9125 #define LBF_ACTIVE_LB	0x10
9126 
9127 struct lb_env {
9128 	struct sched_domain	*sd;
9129 
9130 	struct rq		*src_rq;
9131 	int			src_cpu;
9132 
9133 	int			dst_cpu;
9134 	struct rq		*dst_rq;
9135 
9136 	struct cpumask		*dst_grpmask;
9137 	int			new_dst_cpu;
9138 	enum cpu_idle_type	idle;
9139 	long			imbalance;
9140 	/* The set of CPUs under consideration for load-balancing */
9141 	struct cpumask		*cpus;
9142 
9143 	unsigned int		flags;
9144 
9145 	unsigned int		loop;
9146 	unsigned int		loop_break;
9147 	unsigned int		loop_max;
9148 
9149 	enum fbq_type		fbq_type;
9150 	enum migration_type	migration_type;
9151 	struct list_head	tasks;
9152 };
9153 
9154 /*
9155  * Is this task likely cache-hot:
9156  */
9157 static int task_hot(struct task_struct *p, struct lb_env *env)
9158 {
9159 	s64 delta;
9160 
9161 	lockdep_assert_rq_held(env->src_rq);
9162 
9163 	if (p->sched_class != &fair_sched_class)
9164 		return 0;
9165 
9166 	if (unlikely(task_has_idle_policy(p)))
9167 		return 0;
9168 
9169 	/* SMT siblings share cache */
9170 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9171 		return 0;
9172 
9173 	/*
9174 	 * Buddy candidates are cache hot:
9175 	 */
9176 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9177 	    (&p->se == cfs_rq_of(&p->se)->next))
9178 		return 1;
9179 
9180 	if (sysctl_sched_migration_cost == -1)
9181 		return 1;
9182 
9183 	/*
9184 	 * Don't migrate task if the task's cookie does not match
9185 	 * with the destination CPU's core cookie.
9186 	 */
9187 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9188 		return 1;
9189 
9190 	if (sysctl_sched_migration_cost == 0)
9191 		return 0;
9192 
9193 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9194 
9195 	return delta < (s64)sysctl_sched_migration_cost;
9196 }
9197 
9198 #ifdef CONFIG_NUMA_BALANCING
9199 /*
9200  * Returns a positive value, if task migration degrades locality.
9201  * Returns 0, if task migration is not affected by locality.
9202  * Returns a negative value, if task migration improves locality i.e migration preferred.
9203  */
9204 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9205 {
9206 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9207 	unsigned long src_weight, dst_weight;
9208 	int src_nid, dst_nid, dist;
9209 
9210 	if (!static_branch_likely(&sched_numa_balancing))
9211 		return 0;
9212 
9213 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9214 		return 0;
9215 
9216 	src_nid = cpu_to_node(env->src_cpu);
9217 	dst_nid = cpu_to_node(env->dst_cpu);
9218 
9219 	if (src_nid == dst_nid)
9220 		return 0;
9221 
9222 	/* Migrating away from the preferred node is always bad. */
9223 	if (src_nid == p->numa_preferred_nid) {
9224 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9225 			return 1;
9226 		else
9227 			return 0;
9228 	}
9229 
9230 	/* Encourage migration to the preferred node. */
9231 	if (dst_nid == p->numa_preferred_nid)
9232 		return -1;
9233 
9234 	/* Leaving a core idle is often worse than degrading locality. */
9235 	if (env->idle == CPU_IDLE)
9236 		return 0;
9237 
9238 	dist = node_distance(src_nid, dst_nid);
9239 	if (numa_group) {
9240 		src_weight = group_weight(p, src_nid, dist);
9241 		dst_weight = group_weight(p, dst_nid, dist);
9242 	} else {
9243 		src_weight = task_weight(p, src_nid, dist);
9244 		dst_weight = task_weight(p, dst_nid, dist);
9245 	}
9246 
9247 	return src_weight - dst_weight;
9248 }
9249 
9250 #else /* !CONFIG_NUMA_BALANCING: */
9251 static inline long migrate_degrades_locality(struct task_struct *p,
9252 					     struct lb_env *env)
9253 {
9254 	return 0;
9255 }
9256 #endif /* !CONFIG_NUMA_BALANCING */
9257 
9258 /*
9259  * Check whether the task is ineligible on the destination cpu
9260  *
9261  * When the PLACE_LAG scheduling feature is enabled and
9262  * dst_cfs_rq->nr_queued is greater than 1, if the task
9263  * is ineligible, it will also be ineligible when
9264  * it is migrated to the destination cpu.
9265  */
9266 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9267 {
9268 	struct cfs_rq *dst_cfs_rq;
9269 
9270 #ifdef CONFIG_FAIR_GROUP_SCHED
9271 	dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9272 #else
9273 	dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9274 #endif
9275 	if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9276 	    !entity_eligible(task_cfs_rq(p), &p->se))
9277 		return 1;
9278 
9279 	return 0;
9280 }
9281 
9282 /*
9283  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9284  */
9285 static
9286 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9287 {
9288 	long degrades, hot;
9289 
9290 	lockdep_assert_rq_held(env->src_rq);
9291 	if (p->sched_task_hot)
9292 		p->sched_task_hot = 0;
9293 
9294 	/*
9295 	 * We do not migrate tasks that are:
9296 	 * 1) delayed dequeued unless we migrate load, or
9297 	 * 2) throttled_lb_pair, or
9298 	 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9299 	 * 4) running (obviously), or
9300 	 * 5) are cache-hot on their current CPU.
9301 	 */
9302 	if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9303 		return 0;
9304 
9305 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9306 		return 0;
9307 
9308 	/*
9309 	 * We want to prioritize the migration of eligible tasks.
9310 	 * For ineligible tasks we soft-limit them and only allow
9311 	 * them to migrate when nr_balance_failed is non-zero to
9312 	 * avoid load-balancing trying very hard to balance the load.
9313 	 */
9314 	if (!env->sd->nr_balance_failed &&
9315 	    task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9316 		return 0;
9317 
9318 	/* Disregard percpu kthreads; they are where they need to be. */
9319 	if (kthread_is_per_cpu(p))
9320 		return 0;
9321 
9322 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9323 		int cpu;
9324 
9325 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9326 
9327 		env->flags |= LBF_SOME_PINNED;
9328 
9329 		/*
9330 		 * Remember if this task can be migrated to any other CPU in
9331 		 * our sched_group. We may want to revisit it if we couldn't
9332 		 * meet load balance goals by pulling other tasks on src_cpu.
9333 		 *
9334 		 * Avoid computing new_dst_cpu
9335 		 * - for NEWLY_IDLE
9336 		 * - if we have already computed one in current iteration
9337 		 * - if it's an active balance
9338 		 */
9339 		if (env->idle == CPU_NEWLY_IDLE ||
9340 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9341 			return 0;
9342 
9343 		/* Prevent to re-select dst_cpu via env's CPUs: */
9344 		cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
9345 
9346 		if (cpu < nr_cpu_ids) {
9347 			env->flags |= LBF_DST_PINNED;
9348 			env->new_dst_cpu = cpu;
9349 		}
9350 
9351 		return 0;
9352 	}
9353 
9354 	/* Record that we found at least one task that could run on dst_cpu */
9355 	env->flags &= ~LBF_ALL_PINNED;
9356 
9357 	if (task_on_cpu(env->src_rq, p)) {
9358 		schedstat_inc(p->stats.nr_failed_migrations_running);
9359 		return 0;
9360 	}
9361 
9362 	/*
9363 	 * Aggressive migration if:
9364 	 * 1) active balance
9365 	 * 2) destination numa is preferred
9366 	 * 3) task is cache cold, or
9367 	 * 4) too many balance attempts have failed.
9368 	 */
9369 	if (env->flags & LBF_ACTIVE_LB)
9370 		return 1;
9371 
9372 	degrades = migrate_degrades_locality(p, env);
9373 	if (!degrades)
9374 		hot = task_hot(p, env);
9375 	else
9376 		hot = degrades > 0;
9377 
9378 	if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9379 		if (hot)
9380 			p->sched_task_hot = 1;
9381 		return 1;
9382 	}
9383 
9384 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9385 	return 0;
9386 }
9387 
9388 /*
9389  * detach_task() -- detach the task for the migration specified in env
9390  */
9391 static void detach_task(struct task_struct *p, struct lb_env *env)
9392 {
9393 	lockdep_assert_rq_held(env->src_rq);
9394 
9395 	if (p->sched_task_hot) {
9396 		p->sched_task_hot = 0;
9397 		schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9398 		schedstat_inc(p->stats.nr_forced_migrations);
9399 	}
9400 
9401 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9402 	set_task_cpu(p, env->dst_cpu);
9403 }
9404 
9405 /*
9406  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9407  * part of active balancing operations within "domain".
9408  *
9409  * Returns a task if successful and NULL otherwise.
9410  */
9411 static struct task_struct *detach_one_task(struct lb_env *env)
9412 {
9413 	struct task_struct *p;
9414 
9415 	lockdep_assert_rq_held(env->src_rq);
9416 
9417 	list_for_each_entry_reverse(p,
9418 			&env->src_rq->cfs_tasks, se.group_node) {
9419 		if (!can_migrate_task(p, env))
9420 			continue;
9421 
9422 		detach_task(p, env);
9423 
9424 		/*
9425 		 * Right now, this is only the second place where
9426 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9427 		 * so we can safely collect stats here rather than
9428 		 * inside detach_tasks().
9429 		 */
9430 		schedstat_inc(env->sd->lb_gained[env->idle]);
9431 		return p;
9432 	}
9433 	return NULL;
9434 }
9435 
9436 /*
9437  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9438  * busiest_rq, as part of a balancing operation within domain "sd".
9439  *
9440  * Returns number of detached tasks if successful and 0 otherwise.
9441  */
9442 static int detach_tasks(struct lb_env *env)
9443 {
9444 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9445 	unsigned long util, load;
9446 	struct task_struct *p;
9447 	int detached = 0;
9448 
9449 	lockdep_assert_rq_held(env->src_rq);
9450 
9451 	/*
9452 	 * Source run queue has been emptied by another CPU, clear
9453 	 * LBF_ALL_PINNED flag as we will not test any task.
9454 	 */
9455 	if (env->src_rq->nr_running <= 1) {
9456 		env->flags &= ~LBF_ALL_PINNED;
9457 		return 0;
9458 	}
9459 
9460 	if (env->imbalance <= 0)
9461 		return 0;
9462 
9463 	while (!list_empty(tasks)) {
9464 		/*
9465 		 * We don't want to steal all, otherwise we may be treated likewise,
9466 		 * which could at worst lead to a livelock crash.
9467 		 */
9468 		if (env->idle && env->src_rq->nr_running <= 1)
9469 			break;
9470 
9471 		env->loop++;
9472 		/* We've more or less seen every task there is, call it quits */
9473 		if (env->loop > env->loop_max)
9474 			break;
9475 
9476 		/* take a breather every nr_migrate tasks */
9477 		if (env->loop > env->loop_break) {
9478 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9479 			env->flags |= LBF_NEED_BREAK;
9480 			break;
9481 		}
9482 
9483 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9484 
9485 		if (!can_migrate_task(p, env))
9486 			goto next;
9487 
9488 		switch (env->migration_type) {
9489 		case migrate_load:
9490 			/*
9491 			 * Depending of the number of CPUs and tasks and the
9492 			 * cgroup hierarchy, task_h_load() can return a null
9493 			 * value. Make sure that env->imbalance decreases
9494 			 * otherwise detach_tasks() will stop only after
9495 			 * detaching up to loop_max tasks.
9496 			 */
9497 			load = max_t(unsigned long, task_h_load(p), 1);
9498 
9499 			if (sched_feat(LB_MIN) &&
9500 			    load < 16 && !env->sd->nr_balance_failed)
9501 				goto next;
9502 
9503 			/*
9504 			 * Make sure that we don't migrate too much load.
9505 			 * Nevertheless, let relax the constraint if
9506 			 * scheduler fails to find a good waiting task to
9507 			 * migrate.
9508 			 */
9509 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9510 				goto next;
9511 
9512 			env->imbalance -= load;
9513 			break;
9514 
9515 		case migrate_util:
9516 			util = task_util_est(p);
9517 
9518 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9519 				goto next;
9520 
9521 			env->imbalance -= util;
9522 			break;
9523 
9524 		case migrate_task:
9525 			env->imbalance--;
9526 			break;
9527 
9528 		case migrate_misfit:
9529 			/* This is not a misfit task */
9530 			if (task_fits_cpu(p, env->src_cpu))
9531 				goto next;
9532 
9533 			env->imbalance = 0;
9534 			break;
9535 		}
9536 
9537 		detach_task(p, env);
9538 		list_add(&p->se.group_node, &env->tasks);
9539 
9540 		detached++;
9541 
9542 #ifdef CONFIG_PREEMPTION
9543 		/*
9544 		 * NEWIDLE balancing is a source of latency, so preemptible
9545 		 * kernels will stop after the first task is detached to minimize
9546 		 * the critical section.
9547 		 */
9548 		if (env->idle == CPU_NEWLY_IDLE)
9549 			break;
9550 #endif
9551 
9552 		/*
9553 		 * We only want to steal up to the prescribed amount of
9554 		 * load/util/tasks.
9555 		 */
9556 		if (env->imbalance <= 0)
9557 			break;
9558 
9559 		continue;
9560 next:
9561 		if (p->sched_task_hot)
9562 			schedstat_inc(p->stats.nr_failed_migrations_hot);
9563 
9564 		list_move(&p->se.group_node, tasks);
9565 	}
9566 
9567 	/*
9568 	 * Right now, this is one of only two places we collect this stat
9569 	 * so we can safely collect detach_one_task() stats here rather
9570 	 * than inside detach_one_task().
9571 	 */
9572 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9573 
9574 	return detached;
9575 }
9576 
9577 /*
9578  * attach_task() -- attach the task detached by detach_task() to its new rq.
9579  */
9580 static void attach_task(struct rq *rq, struct task_struct *p)
9581 {
9582 	lockdep_assert_rq_held(rq);
9583 
9584 	WARN_ON_ONCE(task_rq(p) != rq);
9585 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9586 	wakeup_preempt(rq, p, 0);
9587 }
9588 
9589 /*
9590  * attach_one_task() -- attaches the task returned from detach_one_task() to
9591  * its new rq.
9592  */
9593 static void attach_one_task(struct rq *rq, struct task_struct *p)
9594 {
9595 	struct rq_flags rf;
9596 
9597 	rq_lock(rq, &rf);
9598 	update_rq_clock(rq);
9599 	attach_task(rq, p);
9600 	rq_unlock(rq, &rf);
9601 }
9602 
9603 /*
9604  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9605  * new rq.
9606  */
9607 static void attach_tasks(struct lb_env *env)
9608 {
9609 	struct list_head *tasks = &env->tasks;
9610 	struct task_struct *p;
9611 	struct rq_flags rf;
9612 
9613 	rq_lock(env->dst_rq, &rf);
9614 	update_rq_clock(env->dst_rq);
9615 
9616 	while (!list_empty(tasks)) {
9617 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9618 		list_del_init(&p->se.group_node);
9619 
9620 		attach_task(env->dst_rq, p);
9621 	}
9622 
9623 	rq_unlock(env->dst_rq, &rf);
9624 }
9625 
9626 #ifdef CONFIG_NO_HZ_COMMON
9627 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9628 {
9629 	if (cfs_rq->avg.load_avg)
9630 		return true;
9631 
9632 	if (cfs_rq->avg.util_avg)
9633 		return true;
9634 
9635 	return false;
9636 }
9637 
9638 static inline bool others_have_blocked(struct rq *rq)
9639 {
9640 	if (cpu_util_rt(rq))
9641 		return true;
9642 
9643 	if (cpu_util_dl(rq))
9644 		return true;
9645 
9646 	if (hw_load_avg(rq))
9647 		return true;
9648 
9649 	if (cpu_util_irq(rq))
9650 		return true;
9651 
9652 	return false;
9653 }
9654 
9655 static inline void update_blocked_load_tick(struct rq *rq)
9656 {
9657 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9658 }
9659 
9660 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9661 {
9662 	if (!has_blocked)
9663 		rq->has_blocked_load = 0;
9664 }
9665 #else /* !CONFIG_NO_HZ_COMMON: */
9666 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9667 static inline bool others_have_blocked(struct rq *rq) { return false; }
9668 static inline void update_blocked_load_tick(struct rq *rq) {}
9669 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9670 #endif /* !CONFIG_NO_HZ_COMMON */
9671 
9672 static bool __update_blocked_others(struct rq *rq, bool *done)
9673 {
9674 	bool updated;
9675 
9676 	/*
9677 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9678 	 * DL and IRQ signals have been updated before updating CFS.
9679 	 */
9680 	updated = update_other_load_avgs(rq);
9681 
9682 	if (others_have_blocked(rq))
9683 		*done = false;
9684 
9685 	return updated;
9686 }
9687 
9688 #ifdef CONFIG_FAIR_GROUP_SCHED
9689 
9690 static bool __update_blocked_fair(struct rq *rq, bool *done)
9691 {
9692 	struct cfs_rq *cfs_rq, *pos;
9693 	bool decayed = false;
9694 	int cpu = cpu_of(rq);
9695 
9696 	/*
9697 	 * Iterates the task_group tree in a bottom up fashion, see
9698 	 * list_add_leaf_cfs_rq() for details.
9699 	 */
9700 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9701 		struct sched_entity *se;
9702 
9703 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9704 			update_tg_load_avg(cfs_rq);
9705 
9706 			if (cfs_rq->nr_queued == 0)
9707 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9708 
9709 			if (cfs_rq == &rq->cfs)
9710 				decayed = true;
9711 		}
9712 
9713 		/* Propagate pending load changes to the parent, if any: */
9714 		se = cfs_rq->tg->se[cpu];
9715 		if (se && !skip_blocked_update(se))
9716 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9717 
9718 		/*
9719 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9720 		 * decayed cfs_rqs linger on the list.
9721 		 */
9722 		if (cfs_rq_is_decayed(cfs_rq))
9723 			list_del_leaf_cfs_rq(cfs_rq);
9724 
9725 		/* Don't need periodic decay once load/util_avg are null */
9726 		if (cfs_rq_has_blocked(cfs_rq))
9727 			*done = false;
9728 	}
9729 
9730 	return decayed;
9731 }
9732 
9733 /*
9734  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9735  * This needs to be done in a top-down fashion because the load of a child
9736  * group is a fraction of its parents load.
9737  */
9738 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9739 {
9740 	struct rq *rq = rq_of(cfs_rq);
9741 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9742 	unsigned long now = jiffies;
9743 	unsigned long load;
9744 
9745 	if (cfs_rq->last_h_load_update == now)
9746 		return;
9747 
9748 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9749 	for_each_sched_entity(se) {
9750 		cfs_rq = cfs_rq_of(se);
9751 		WRITE_ONCE(cfs_rq->h_load_next, se);
9752 		if (cfs_rq->last_h_load_update == now)
9753 			break;
9754 	}
9755 
9756 	if (!se) {
9757 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9758 		cfs_rq->last_h_load_update = now;
9759 	}
9760 
9761 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9762 		load = cfs_rq->h_load;
9763 		load = div64_ul(load * se->avg.load_avg,
9764 			cfs_rq_load_avg(cfs_rq) + 1);
9765 		cfs_rq = group_cfs_rq(se);
9766 		cfs_rq->h_load = load;
9767 		cfs_rq->last_h_load_update = now;
9768 	}
9769 }
9770 
9771 static unsigned long task_h_load(struct task_struct *p)
9772 {
9773 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9774 
9775 	update_cfs_rq_h_load(cfs_rq);
9776 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9777 			cfs_rq_load_avg(cfs_rq) + 1);
9778 }
9779 #else /* !CONFIG_FAIR_GROUP_SCHED: */
9780 static bool __update_blocked_fair(struct rq *rq, bool *done)
9781 {
9782 	struct cfs_rq *cfs_rq = &rq->cfs;
9783 	bool decayed;
9784 
9785 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9786 	if (cfs_rq_has_blocked(cfs_rq))
9787 		*done = false;
9788 
9789 	return decayed;
9790 }
9791 
9792 static unsigned long task_h_load(struct task_struct *p)
9793 {
9794 	return p->se.avg.load_avg;
9795 }
9796 #endif /* !CONFIG_FAIR_GROUP_SCHED */
9797 
9798 static void sched_balance_update_blocked_averages(int cpu)
9799 {
9800 	bool decayed = false, done = true;
9801 	struct rq *rq = cpu_rq(cpu);
9802 	struct rq_flags rf;
9803 
9804 	rq_lock_irqsave(rq, &rf);
9805 	update_blocked_load_tick(rq);
9806 	update_rq_clock(rq);
9807 
9808 	decayed |= __update_blocked_others(rq, &done);
9809 	decayed |= __update_blocked_fair(rq, &done);
9810 
9811 	update_blocked_load_status(rq, !done);
9812 	if (decayed)
9813 		cpufreq_update_util(rq, 0);
9814 	rq_unlock_irqrestore(rq, &rf);
9815 }
9816 
9817 /********** Helpers for sched_balance_find_src_group ************************/
9818 
9819 /*
9820  * sg_lb_stats - stats of a sched_group required for load-balancing:
9821  */
9822 struct sg_lb_stats {
9823 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9824 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9825 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9826 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9827 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9828 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9829 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9830 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9831 	unsigned int group_weight;
9832 	enum group_type group_type;
9833 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9834 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9835 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9836 #ifdef CONFIG_NUMA_BALANCING
9837 	unsigned int nr_numa_running;
9838 	unsigned int nr_preferred_running;
9839 #endif
9840 };
9841 
9842 /*
9843  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9844  */
9845 struct sd_lb_stats {
9846 	struct sched_group *busiest;		/* Busiest group in this sd */
9847 	struct sched_group *local;		/* Local group in this sd */
9848 	unsigned long total_load;		/* Total load of all groups in sd */
9849 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9850 	unsigned long avg_load;			/* Average load across all groups in sd */
9851 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9852 
9853 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9854 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9855 };
9856 
9857 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9858 {
9859 	/*
9860 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9861 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9862 	 * We must however set busiest_stat::group_type and
9863 	 * busiest_stat::idle_cpus to the worst busiest group because
9864 	 * update_sd_pick_busiest() reads these before assignment.
9865 	 */
9866 	*sds = (struct sd_lb_stats){
9867 		.busiest = NULL,
9868 		.local = NULL,
9869 		.total_load = 0UL,
9870 		.total_capacity = 0UL,
9871 		.busiest_stat = {
9872 			.idle_cpus = UINT_MAX,
9873 			.group_type = group_has_spare,
9874 		},
9875 	};
9876 }
9877 
9878 static unsigned long scale_rt_capacity(int cpu)
9879 {
9880 	unsigned long max = get_actual_cpu_capacity(cpu);
9881 	struct rq *rq = cpu_rq(cpu);
9882 	unsigned long used, free;
9883 	unsigned long irq;
9884 
9885 	irq = cpu_util_irq(rq);
9886 
9887 	if (unlikely(irq >= max))
9888 		return 1;
9889 
9890 	/*
9891 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9892 	 * (running and not running) with weights 0 and 1024 respectively.
9893 	 */
9894 	used = cpu_util_rt(rq);
9895 	used += cpu_util_dl(rq);
9896 
9897 	if (unlikely(used >= max))
9898 		return 1;
9899 
9900 	free = max - used;
9901 
9902 	return scale_irq_capacity(free, irq, max);
9903 }
9904 
9905 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9906 {
9907 	unsigned long capacity = scale_rt_capacity(cpu);
9908 	struct sched_group *sdg = sd->groups;
9909 
9910 	if (!capacity)
9911 		capacity = 1;
9912 
9913 	cpu_rq(cpu)->cpu_capacity = capacity;
9914 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9915 
9916 	sdg->sgc->capacity = capacity;
9917 	sdg->sgc->min_capacity = capacity;
9918 	sdg->sgc->max_capacity = capacity;
9919 }
9920 
9921 void update_group_capacity(struct sched_domain *sd, int cpu)
9922 {
9923 	struct sched_domain *child = sd->child;
9924 	struct sched_group *group, *sdg = sd->groups;
9925 	unsigned long capacity, min_capacity, max_capacity;
9926 	unsigned long interval;
9927 
9928 	interval = msecs_to_jiffies(sd->balance_interval);
9929 	interval = clamp(interval, 1UL, max_load_balance_interval);
9930 	sdg->sgc->next_update = jiffies + interval;
9931 
9932 	if (!child) {
9933 		update_cpu_capacity(sd, cpu);
9934 		return;
9935 	}
9936 
9937 	capacity = 0;
9938 	min_capacity = ULONG_MAX;
9939 	max_capacity = 0;
9940 
9941 	if (child->flags & SD_OVERLAP) {
9942 		/*
9943 		 * SD_OVERLAP domains cannot assume that child groups
9944 		 * span the current group.
9945 		 */
9946 
9947 		for_each_cpu(cpu, sched_group_span(sdg)) {
9948 			unsigned long cpu_cap = capacity_of(cpu);
9949 
9950 			capacity += cpu_cap;
9951 			min_capacity = min(cpu_cap, min_capacity);
9952 			max_capacity = max(cpu_cap, max_capacity);
9953 		}
9954 	} else  {
9955 		/*
9956 		 * !SD_OVERLAP domains can assume that child groups
9957 		 * span the current group.
9958 		 */
9959 
9960 		group = child->groups;
9961 		do {
9962 			struct sched_group_capacity *sgc = group->sgc;
9963 
9964 			capacity += sgc->capacity;
9965 			min_capacity = min(sgc->min_capacity, min_capacity);
9966 			max_capacity = max(sgc->max_capacity, max_capacity);
9967 			group = group->next;
9968 		} while (group != child->groups);
9969 	}
9970 
9971 	sdg->sgc->capacity = capacity;
9972 	sdg->sgc->min_capacity = min_capacity;
9973 	sdg->sgc->max_capacity = max_capacity;
9974 }
9975 
9976 /*
9977  * Check whether the capacity of the rq has been noticeably reduced by side
9978  * activity. The imbalance_pct is used for the threshold.
9979  * Return true is the capacity is reduced
9980  */
9981 static inline int
9982 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9983 {
9984 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9985 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9986 }
9987 
9988 /* Check if the rq has a misfit task */
9989 static inline bool check_misfit_status(struct rq *rq)
9990 {
9991 	return rq->misfit_task_load;
9992 }
9993 
9994 /*
9995  * Group imbalance indicates (and tries to solve) the problem where balancing
9996  * groups is inadequate due to ->cpus_ptr constraints.
9997  *
9998  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9999  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10000  * Something like:
10001  *
10002  *	{ 0 1 2 3 } { 4 5 6 7 }
10003  *	        *     * * *
10004  *
10005  * If we were to balance group-wise we'd place two tasks in the first group and
10006  * two tasks in the second group. Clearly this is undesired as it will overload
10007  * cpu 3 and leave one of the CPUs in the second group unused.
10008  *
10009  * The current solution to this issue is detecting the skew in the first group
10010  * by noticing the lower domain failed to reach balance and had difficulty
10011  * moving tasks due to affinity constraints.
10012  *
10013  * When this is so detected; this group becomes a candidate for busiest; see
10014  * update_sd_pick_busiest(). And calculate_imbalance() and
10015  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10016  * to create an effective group imbalance.
10017  *
10018  * This is a somewhat tricky proposition since the next run might not find the
10019  * group imbalance and decide the groups need to be balanced again. A most
10020  * subtle and fragile situation.
10021  */
10022 
10023 static inline int sg_imbalanced(struct sched_group *group)
10024 {
10025 	return group->sgc->imbalance;
10026 }
10027 
10028 /*
10029  * group_has_capacity returns true if the group has spare capacity that could
10030  * be used by some tasks.
10031  * We consider that a group has spare capacity if the number of task is
10032  * smaller than the number of CPUs or if the utilization is lower than the
10033  * available capacity for CFS tasks.
10034  * For the latter, we use a threshold to stabilize the state, to take into
10035  * account the variance of the tasks' load and to return true if the available
10036  * capacity in meaningful for the load balancer.
10037  * As an example, an available capacity of 1% can appear but it doesn't make
10038  * any benefit for the load balance.
10039  */
10040 static inline bool
10041 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10042 {
10043 	if (sgs->sum_nr_running < sgs->group_weight)
10044 		return true;
10045 
10046 	if ((sgs->group_capacity * imbalance_pct) <
10047 			(sgs->group_runnable * 100))
10048 		return false;
10049 
10050 	if ((sgs->group_capacity * 100) >
10051 			(sgs->group_util * imbalance_pct))
10052 		return true;
10053 
10054 	return false;
10055 }
10056 
10057 /*
10058  *  group_is_overloaded returns true if the group has more tasks than it can
10059  *  handle.
10060  *  group_is_overloaded is not equals to !group_has_capacity because a group
10061  *  with the exact right number of tasks, has no more spare capacity but is not
10062  *  overloaded so both group_has_capacity and group_is_overloaded return
10063  *  false.
10064  */
10065 static inline bool
10066 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10067 {
10068 	if (sgs->sum_nr_running <= sgs->group_weight)
10069 		return false;
10070 
10071 	if ((sgs->group_capacity * 100) <
10072 			(sgs->group_util * imbalance_pct))
10073 		return true;
10074 
10075 	if ((sgs->group_capacity * imbalance_pct) <
10076 			(sgs->group_runnable * 100))
10077 		return true;
10078 
10079 	return false;
10080 }
10081 
10082 static inline enum
10083 group_type group_classify(unsigned int imbalance_pct,
10084 			  struct sched_group *group,
10085 			  struct sg_lb_stats *sgs)
10086 {
10087 	if (group_is_overloaded(imbalance_pct, sgs))
10088 		return group_overloaded;
10089 
10090 	if (sg_imbalanced(group))
10091 		return group_imbalanced;
10092 
10093 	if (sgs->group_asym_packing)
10094 		return group_asym_packing;
10095 
10096 	if (sgs->group_smt_balance)
10097 		return group_smt_balance;
10098 
10099 	if (sgs->group_misfit_task_load)
10100 		return group_misfit_task;
10101 
10102 	if (!group_has_capacity(imbalance_pct, sgs))
10103 		return group_fully_busy;
10104 
10105 	return group_has_spare;
10106 }
10107 
10108 /**
10109  * sched_use_asym_prio - Check whether asym_packing priority must be used
10110  * @sd:		The scheduling domain of the load balancing
10111  * @cpu:	A CPU
10112  *
10113  * Always use CPU priority when balancing load between SMT siblings. When
10114  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10115  * use CPU priority if the whole core is idle.
10116  *
10117  * Returns: True if the priority of @cpu must be followed. False otherwise.
10118  */
10119 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10120 {
10121 	if (!(sd->flags & SD_ASYM_PACKING))
10122 		return false;
10123 
10124 	if (!sched_smt_active())
10125 		return true;
10126 
10127 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10128 }
10129 
10130 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10131 {
10132 	/*
10133 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10134 	 * if it has higher priority than @src_cpu.
10135 	 */
10136 	return sched_use_asym_prio(sd, dst_cpu) &&
10137 		sched_asym_prefer(dst_cpu, src_cpu);
10138 }
10139 
10140 /**
10141  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10142  * @env:	The load balancing environment
10143  * @sgs:	Load-balancing statistics of the candidate busiest group
10144  * @group:	The candidate busiest group
10145  *
10146  * @env::dst_cpu can do asym_packing if it has higher priority than the
10147  * preferred CPU of @group.
10148  *
10149  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10150  * otherwise.
10151  */
10152 static inline bool
10153 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10154 {
10155 	/*
10156 	 * CPU priorities do not make sense for SMT cores with more than one
10157 	 * busy sibling.
10158 	 */
10159 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10160 	    (sgs->group_weight - sgs->idle_cpus != 1))
10161 		return false;
10162 
10163 	return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
10164 }
10165 
10166 /* One group has more than one SMT CPU while the other group does not */
10167 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10168 				    struct sched_group *sg2)
10169 {
10170 	if (!sg1 || !sg2)
10171 		return false;
10172 
10173 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10174 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10175 }
10176 
10177 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10178 			       struct sched_group *group)
10179 {
10180 	if (!env->idle)
10181 		return false;
10182 
10183 	/*
10184 	 * For SMT source group, it is better to move a task
10185 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10186 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10187 	 * will not be on.
10188 	 */
10189 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10190 	    sgs->sum_h_nr_running > 1)
10191 		return true;
10192 
10193 	return false;
10194 }
10195 
10196 static inline long sibling_imbalance(struct lb_env *env,
10197 				    struct sd_lb_stats *sds,
10198 				    struct sg_lb_stats *busiest,
10199 				    struct sg_lb_stats *local)
10200 {
10201 	int ncores_busiest, ncores_local;
10202 	long imbalance;
10203 
10204 	if (!env->idle || !busiest->sum_nr_running)
10205 		return 0;
10206 
10207 	ncores_busiest = sds->busiest->cores;
10208 	ncores_local = sds->local->cores;
10209 
10210 	if (ncores_busiest == ncores_local) {
10211 		imbalance = busiest->sum_nr_running;
10212 		lsub_positive(&imbalance, local->sum_nr_running);
10213 		return imbalance;
10214 	}
10215 
10216 	/* Balance such that nr_running/ncores ratio are same on both groups */
10217 	imbalance = ncores_local * busiest->sum_nr_running;
10218 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10219 	/* Normalize imbalance and do rounding on normalization */
10220 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10221 	imbalance /= ncores_local + ncores_busiest;
10222 
10223 	/* Take advantage of resource in an empty sched group */
10224 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10225 	    busiest->sum_nr_running > 1)
10226 		imbalance = 2;
10227 
10228 	return imbalance;
10229 }
10230 
10231 static inline bool
10232 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10233 {
10234 	/*
10235 	 * When there is more than 1 task, the group_overloaded case already
10236 	 * takes care of cpu with reduced capacity
10237 	 */
10238 	if (rq->cfs.h_nr_runnable != 1)
10239 		return false;
10240 
10241 	return check_cpu_capacity(rq, sd);
10242 }
10243 
10244 /**
10245  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10246  * @env: The load balancing environment.
10247  * @sds: Load-balancing data with statistics of the local group.
10248  * @group: sched_group whose statistics are to be updated.
10249  * @sgs: variable to hold the statistics for this group.
10250  * @sg_overloaded: sched_group is overloaded
10251  * @sg_overutilized: sched_group is overutilized
10252  */
10253 static inline void update_sg_lb_stats(struct lb_env *env,
10254 				      struct sd_lb_stats *sds,
10255 				      struct sched_group *group,
10256 				      struct sg_lb_stats *sgs,
10257 				      bool *sg_overloaded,
10258 				      bool *sg_overutilized)
10259 {
10260 	int i, nr_running, local_group, sd_flags = env->sd->flags;
10261 	bool balancing_at_rd = !env->sd->parent;
10262 
10263 	memset(sgs, 0, sizeof(*sgs));
10264 
10265 	local_group = group == sds->local;
10266 
10267 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10268 		struct rq *rq = cpu_rq(i);
10269 		unsigned long load = cpu_load(rq);
10270 
10271 		sgs->group_load += load;
10272 		sgs->group_util += cpu_util_cfs(i);
10273 		sgs->group_runnable += cpu_runnable(rq);
10274 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10275 
10276 		nr_running = rq->nr_running;
10277 		sgs->sum_nr_running += nr_running;
10278 
10279 		if (cpu_overutilized(i))
10280 			*sg_overutilized = 1;
10281 
10282 		/*
10283 		 * No need to call idle_cpu() if nr_running is not 0
10284 		 */
10285 		if (!nr_running && idle_cpu(i)) {
10286 			sgs->idle_cpus++;
10287 			/* Idle cpu can't have misfit task */
10288 			continue;
10289 		}
10290 
10291 		/* Overload indicator is only updated at root domain */
10292 		if (balancing_at_rd && nr_running > 1)
10293 			*sg_overloaded = 1;
10294 
10295 #ifdef CONFIG_NUMA_BALANCING
10296 		/* Only fbq_classify_group() uses this to classify NUMA groups */
10297 		if (sd_flags & SD_NUMA) {
10298 			sgs->nr_numa_running += rq->nr_numa_running;
10299 			sgs->nr_preferred_running += rq->nr_preferred_running;
10300 		}
10301 #endif
10302 		if (local_group)
10303 			continue;
10304 
10305 		if (sd_flags & SD_ASYM_CPUCAPACITY) {
10306 			/* Check for a misfit task on the cpu */
10307 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10308 				sgs->group_misfit_task_load = rq->misfit_task_load;
10309 				*sg_overloaded = 1;
10310 			}
10311 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10312 			/* Check for a task running on a CPU with reduced capacity */
10313 			if (sgs->group_misfit_task_load < load)
10314 				sgs->group_misfit_task_load = load;
10315 		}
10316 	}
10317 
10318 	sgs->group_capacity = group->sgc->capacity;
10319 
10320 	sgs->group_weight = group->group_weight;
10321 
10322 	/* Check if dst CPU is idle and preferred to this group */
10323 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10324 	    sched_group_asym(env, sgs, group))
10325 		sgs->group_asym_packing = 1;
10326 
10327 	/* Check for loaded SMT group to be balanced to dst CPU */
10328 	if (!local_group && smt_balance(env, sgs, group))
10329 		sgs->group_smt_balance = 1;
10330 
10331 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10332 
10333 	/* Computing avg_load makes sense only when group is overloaded */
10334 	if (sgs->group_type == group_overloaded)
10335 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10336 				sgs->group_capacity;
10337 }
10338 
10339 /**
10340  * update_sd_pick_busiest - return 1 on busiest group
10341  * @env: The load balancing environment.
10342  * @sds: sched_domain statistics
10343  * @sg: sched_group candidate to be checked for being the busiest
10344  * @sgs: sched_group statistics
10345  *
10346  * Determine if @sg is a busier group than the previously selected
10347  * busiest group.
10348  *
10349  * Return: %true if @sg is a busier group than the previously selected
10350  * busiest group. %false otherwise.
10351  */
10352 static bool update_sd_pick_busiest(struct lb_env *env,
10353 				   struct sd_lb_stats *sds,
10354 				   struct sched_group *sg,
10355 				   struct sg_lb_stats *sgs)
10356 {
10357 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10358 
10359 	/* Make sure that there is at least one task to pull */
10360 	if (!sgs->sum_h_nr_running)
10361 		return false;
10362 
10363 	/*
10364 	 * Don't try to pull misfit tasks we can't help.
10365 	 * We can use max_capacity here as reduction in capacity on some
10366 	 * CPUs in the group should either be possible to resolve
10367 	 * internally or be covered by avg_load imbalance (eventually).
10368 	 */
10369 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10370 	    (sgs->group_type == group_misfit_task) &&
10371 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10372 	     sds->local_stat.group_type != group_has_spare))
10373 		return false;
10374 
10375 	if (sgs->group_type > busiest->group_type)
10376 		return true;
10377 
10378 	if (sgs->group_type < busiest->group_type)
10379 		return false;
10380 
10381 	/*
10382 	 * The candidate and the current busiest group are the same type of
10383 	 * group. Let check which one is the busiest according to the type.
10384 	 */
10385 
10386 	switch (sgs->group_type) {
10387 	case group_overloaded:
10388 		/* Select the overloaded group with highest avg_load. */
10389 		return sgs->avg_load > busiest->avg_load;
10390 
10391 	case group_imbalanced:
10392 		/*
10393 		 * Select the 1st imbalanced group as we don't have any way to
10394 		 * choose one more than another.
10395 		 */
10396 		return false;
10397 
10398 	case group_asym_packing:
10399 		/* Prefer to move from lowest priority CPU's work */
10400 		return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
10401 					 READ_ONCE(sg->asym_prefer_cpu));
10402 
10403 	case group_misfit_task:
10404 		/*
10405 		 * If we have more than one misfit sg go with the biggest
10406 		 * misfit.
10407 		 */
10408 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10409 
10410 	case group_smt_balance:
10411 		/*
10412 		 * Check if we have spare CPUs on either SMT group to
10413 		 * choose has spare or fully busy handling.
10414 		 */
10415 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10416 			goto has_spare;
10417 
10418 		fallthrough;
10419 
10420 	case group_fully_busy:
10421 		/*
10422 		 * Select the fully busy group with highest avg_load. In
10423 		 * theory, there is no need to pull task from such kind of
10424 		 * group because tasks have all compute capacity that they need
10425 		 * but we can still improve the overall throughput by reducing
10426 		 * contention when accessing shared HW resources.
10427 		 *
10428 		 * XXX for now avg_load is not computed and always 0 so we
10429 		 * select the 1st one, except if @sg is composed of SMT
10430 		 * siblings.
10431 		 */
10432 
10433 		if (sgs->avg_load < busiest->avg_load)
10434 			return false;
10435 
10436 		if (sgs->avg_load == busiest->avg_load) {
10437 			/*
10438 			 * SMT sched groups need more help than non-SMT groups.
10439 			 * If @sg happens to also be SMT, either choice is good.
10440 			 */
10441 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10442 				return false;
10443 		}
10444 
10445 		break;
10446 
10447 	case group_has_spare:
10448 		/*
10449 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10450 		 * as we do not want to pull task off SMT core with one task
10451 		 * and make the core idle.
10452 		 */
10453 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10454 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10455 				return false;
10456 			else
10457 				return true;
10458 		}
10459 has_spare:
10460 
10461 		/*
10462 		 * Select not overloaded group with lowest number of idle CPUs
10463 		 * and highest number of running tasks. We could also compare
10464 		 * the spare capacity which is more stable but it can end up
10465 		 * that the group has less spare capacity but finally more idle
10466 		 * CPUs which means less opportunity to pull tasks.
10467 		 */
10468 		if (sgs->idle_cpus > busiest->idle_cpus)
10469 			return false;
10470 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10471 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10472 			return false;
10473 
10474 		break;
10475 	}
10476 
10477 	/*
10478 	 * Candidate sg has no more than one task per CPU and has higher
10479 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10480 	 * throughput. Maximize throughput, power/energy consequences are not
10481 	 * considered.
10482 	 */
10483 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10484 	    (sgs->group_type <= group_fully_busy) &&
10485 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10486 		return false;
10487 
10488 	return true;
10489 }
10490 
10491 #ifdef CONFIG_NUMA_BALANCING
10492 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10493 {
10494 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10495 		return regular;
10496 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10497 		return remote;
10498 	return all;
10499 }
10500 
10501 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10502 {
10503 	if (rq->nr_running > rq->nr_numa_running)
10504 		return regular;
10505 	if (rq->nr_running > rq->nr_preferred_running)
10506 		return remote;
10507 	return all;
10508 }
10509 #else /* !CONFIG_NUMA_BALANCING: */
10510 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10511 {
10512 	return all;
10513 }
10514 
10515 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10516 {
10517 	return regular;
10518 }
10519 #endif /* !CONFIG_NUMA_BALANCING */
10520 
10521 
10522 struct sg_lb_stats;
10523 
10524 /*
10525  * task_running_on_cpu - return 1 if @p is running on @cpu.
10526  */
10527 
10528 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10529 {
10530 	/* Task has no contribution or is new */
10531 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10532 		return 0;
10533 
10534 	if (task_on_rq_queued(p))
10535 		return 1;
10536 
10537 	return 0;
10538 }
10539 
10540 /**
10541  * idle_cpu_without - would a given CPU be idle without p ?
10542  * @cpu: the processor on which idleness is tested.
10543  * @p: task which should be ignored.
10544  *
10545  * Return: 1 if the CPU would be idle. 0 otherwise.
10546  */
10547 static int idle_cpu_without(int cpu, struct task_struct *p)
10548 {
10549 	struct rq *rq = cpu_rq(cpu);
10550 
10551 	if (rq->curr != rq->idle && rq->curr != p)
10552 		return 0;
10553 
10554 	/*
10555 	 * rq->nr_running can't be used but an updated version without the
10556 	 * impact of p on cpu must be used instead. The updated nr_running
10557 	 * be computed and tested before calling idle_cpu_without().
10558 	 */
10559 
10560 	if (rq->ttwu_pending)
10561 		return 0;
10562 
10563 	return 1;
10564 }
10565 
10566 /*
10567  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10568  * @sd: The sched_domain level to look for idlest group.
10569  * @group: sched_group whose statistics are to be updated.
10570  * @sgs: variable to hold the statistics for this group.
10571  * @p: The task for which we look for the idlest group/CPU.
10572  */
10573 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10574 					  struct sched_group *group,
10575 					  struct sg_lb_stats *sgs,
10576 					  struct task_struct *p)
10577 {
10578 	int i, nr_running;
10579 
10580 	memset(sgs, 0, sizeof(*sgs));
10581 
10582 	/* Assume that task can't fit any CPU of the group */
10583 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10584 		sgs->group_misfit_task_load = 1;
10585 
10586 	for_each_cpu(i, sched_group_span(group)) {
10587 		struct rq *rq = cpu_rq(i);
10588 		unsigned int local;
10589 
10590 		sgs->group_load += cpu_load_without(rq, p);
10591 		sgs->group_util += cpu_util_without(i, p);
10592 		sgs->group_runnable += cpu_runnable_without(rq, p);
10593 		local = task_running_on_cpu(i, p);
10594 		sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10595 
10596 		nr_running = rq->nr_running - local;
10597 		sgs->sum_nr_running += nr_running;
10598 
10599 		/*
10600 		 * No need to call idle_cpu_without() if nr_running is not 0
10601 		 */
10602 		if (!nr_running && idle_cpu_without(i, p))
10603 			sgs->idle_cpus++;
10604 
10605 		/* Check if task fits in the CPU */
10606 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10607 		    sgs->group_misfit_task_load &&
10608 		    task_fits_cpu(p, i))
10609 			sgs->group_misfit_task_load = 0;
10610 
10611 	}
10612 
10613 	sgs->group_capacity = group->sgc->capacity;
10614 
10615 	sgs->group_weight = group->group_weight;
10616 
10617 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10618 
10619 	/*
10620 	 * Computing avg_load makes sense only when group is fully busy or
10621 	 * overloaded
10622 	 */
10623 	if (sgs->group_type == group_fully_busy ||
10624 		sgs->group_type == group_overloaded)
10625 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10626 				sgs->group_capacity;
10627 }
10628 
10629 static bool update_pick_idlest(struct sched_group *idlest,
10630 			       struct sg_lb_stats *idlest_sgs,
10631 			       struct sched_group *group,
10632 			       struct sg_lb_stats *sgs)
10633 {
10634 	if (sgs->group_type < idlest_sgs->group_type)
10635 		return true;
10636 
10637 	if (sgs->group_type > idlest_sgs->group_type)
10638 		return false;
10639 
10640 	/*
10641 	 * The candidate and the current idlest group are the same type of
10642 	 * group. Let check which one is the idlest according to the type.
10643 	 */
10644 
10645 	switch (sgs->group_type) {
10646 	case group_overloaded:
10647 	case group_fully_busy:
10648 		/* Select the group with lowest avg_load. */
10649 		if (idlest_sgs->avg_load <= sgs->avg_load)
10650 			return false;
10651 		break;
10652 
10653 	case group_imbalanced:
10654 	case group_asym_packing:
10655 	case group_smt_balance:
10656 		/* Those types are not used in the slow wakeup path */
10657 		return false;
10658 
10659 	case group_misfit_task:
10660 		/* Select group with the highest max capacity */
10661 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10662 			return false;
10663 		break;
10664 
10665 	case group_has_spare:
10666 		/* Select group with most idle CPUs */
10667 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10668 			return false;
10669 
10670 		/* Select group with lowest group_util */
10671 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10672 			idlest_sgs->group_util <= sgs->group_util)
10673 			return false;
10674 
10675 		break;
10676 	}
10677 
10678 	return true;
10679 }
10680 
10681 /*
10682  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10683  * domain.
10684  *
10685  * Assumes p is allowed on at least one CPU in sd.
10686  */
10687 static struct sched_group *
10688 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10689 {
10690 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10691 	struct sg_lb_stats local_sgs, tmp_sgs;
10692 	struct sg_lb_stats *sgs;
10693 	unsigned long imbalance;
10694 	struct sg_lb_stats idlest_sgs = {
10695 			.avg_load = UINT_MAX,
10696 			.group_type = group_overloaded,
10697 	};
10698 
10699 	do {
10700 		int local_group;
10701 
10702 		/* Skip over this group if it has no CPUs allowed */
10703 		if (!cpumask_intersects(sched_group_span(group),
10704 					p->cpus_ptr))
10705 			continue;
10706 
10707 		/* Skip over this group if no cookie matched */
10708 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10709 			continue;
10710 
10711 		local_group = cpumask_test_cpu(this_cpu,
10712 					       sched_group_span(group));
10713 
10714 		if (local_group) {
10715 			sgs = &local_sgs;
10716 			local = group;
10717 		} else {
10718 			sgs = &tmp_sgs;
10719 		}
10720 
10721 		update_sg_wakeup_stats(sd, group, sgs, p);
10722 
10723 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10724 			idlest = group;
10725 			idlest_sgs = *sgs;
10726 		}
10727 
10728 	} while (group = group->next, group != sd->groups);
10729 
10730 
10731 	/* There is no idlest group to push tasks to */
10732 	if (!idlest)
10733 		return NULL;
10734 
10735 	/* The local group has been skipped because of CPU affinity */
10736 	if (!local)
10737 		return idlest;
10738 
10739 	/*
10740 	 * If the local group is idler than the selected idlest group
10741 	 * don't try and push the task.
10742 	 */
10743 	if (local_sgs.group_type < idlest_sgs.group_type)
10744 		return NULL;
10745 
10746 	/*
10747 	 * If the local group is busier than the selected idlest group
10748 	 * try and push the task.
10749 	 */
10750 	if (local_sgs.group_type > idlest_sgs.group_type)
10751 		return idlest;
10752 
10753 	switch (local_sgs.group_type) {
10754 	case group_overloaded:
10755 	case group_fully_busy:
10756 
10757 		/* Calculate allowed imbalance based on load */
10758 		imbalance = scale_load_down(NICE_0_LOAD) *
10759 				(sd->imbalance_pct-100) / 100;
10760 
10761 		/*
10762 		 * When comparing groups across NUMA domains, it's possible for
10763 		 * the local domain to be very lightly loaded relative to the
10764 		 * remote domains but "imbalance" skews the comparison making
10765 		 * remote CPUs look much more favourable. When considering
10766 		 * cross-domain, add imbalance to the load on the remote node
10767 		 * and consider staying local.
10768 		 */
10769 
10770 		if ((sd->flags & SD_NUMA) &&
10771 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10772 			return NULL;
10773 
10774 		/*
10775 		 * If the local group is less loaded than the selected
10776 		 * idlest group don't try and push any tasks.
10777 		 */
10778 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10779 			return NULL;
10780 
10781 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10782 			return NULL;
10783 		break;
10784 
10785 	case group_imbalanced:
10786 	case group_asym_packing:
10787 	case group_smt_balance:
10788 		/* Those type are not used in the slow wakeup path */
10789 		return NULL;
10790 
10791 	case group_misfit_task:
10792 		/* Select group with the highest max capacity */
10793 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10794 			return NULL;
10795 		break;
10796 
10797 	case group_has_spare:
10798 #ifdef CONFIG_NUMA
10799 		if (sd->flags & SD_NUMA) {
10800 			int imb_numa_nr = sd->imb_numa_nr;
10801 #ifdef CONFIG_NUMA_BALANCING
10802 			int idlest_cpu;
10803 			/*
10804 			 * If there is spare capacity at NUMA, try to select
10805 			 * the preferred node
10806 			 */
10807 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10808 				return NULL;
10809 
10810 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10811 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10812 				return idlest;
10813 #endif /* CONFIG_NUMA_BALANCING */
10814 			/*
10815 			 * Otherwise, keep the task close to the wakeup source
10816 			 * and improve locality if the number of running tasks
10817 			 * would remain below threshold where an imbalance is
10818 			 * allowed while accounting for the possibility the
10819 			 * task is pinned to a subset of CPUs. If there is a
10820 			 * real need of migration, periodic load balance will
10821 			 * take care of it.
10822 			 */
10823 			if (p->nr_cpus_allowed != NR_CPUS) {
10824 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10825 
10826 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10827 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10828 			}
10829 
10830 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10831 			if (!adjust_numa_imbalance(imbalance,
10832 						   local_sgs.sum_nr_running + 1,
10833 						   imb_numa_nr)) {
10834 				return NULL;
10835 			}
10836 		}
10837 #endif /* CONFIG_NUMA */
10838 
10839 		/*
10840 		 * Select group with highest number of idle CPUs. We could also
10841 		 * compare the utilization which is more stable but it can end
10842 		 * up that the group has less spare capacity but finally more
10843 		 * idle CPUs which means more opportunity to run task.
10844 		 */
10845 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10846 			return NULL;
10847 		break;
10848 	}
10849 
10850 	return idlest;
10851 }
10852 
10853 static void update_idle_cpu_scan(struct lb_env *env,
10854 				 unsigned long sum_util)
10855 {
10856 	struct sched_domain_shared *sd_share;
10857 	int llc_weight, pct;
10858 	u64 x, y, tmp;
10859 	/*
10860 	 * Update the number of CPUs to scan in LLC domain, which could
10861 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10862 	 * could be expensive because it is within a shared cache line.
10863 	 * So the write of this hint only occurs during periodic load
10864 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10865 	 * can fire way more frequently than the former.
10866 	 */
10867 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10868 		return;
10869 
10870 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10871 	if (env->sd->span_weight != llc_weight)
10872 		return;
10873 
10874 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10875 	if (!sd_share)
10876 		return;
10877 
10878 	/*
10879 	 * The number of CPUs to search drops as sum_util increases, when
10880 	 * sum_util hits 85% or above, the scan stops.
10881 	 * The reason to choose 85% as the threshold is because this is the
10882 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10883 	 *
10884 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10885 	 * and y'= y / SCHED_CAPACITY_SCALE
10886 	 *
10887 	 * x is the ratio of sum_util compared to the CPU capacity:
10888 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10889 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10890 	 * and the number of CPUs to scan is calculated by:
10891 	 *
10892 	 * nr_scan = llc_weight * y'                                    [2]
10893 	 *
10894 	 * When x hits the threshold of overloaded, AKA, when
10895 	 * x = 100 / pct, y drops to 0. According to [1],
10896 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10897 	 *
10898 	 * Scale x by SCHED_CAPACITY_SCALE:
10899 	 * x' = sum_util / llc_weight;                                  [3]
10900 	 *
10901 	 * and finally [1] becomes:
10902 	 * y = SCHED_CAPACITY_SCALE -
10903 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10904 	 *
10905 	 */
10906 	/* equation [3] */
10907 	x = sum_util;
10908 	do_div(x, llc_weight);
10909 
10910 	/* equation [4] */
10911 	pct = env->sd->imbalance_pct;
10912 	tmp = x * x * pct * pct;
10913 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10914 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10915 	y = SCHED_CAPACITY_SCALE - tmp;
10916 
10917 	/* equation [2] */
10918 	y *= llc_weight;
10919 	do_div(y, SCHED_CAPACITY_SCALE);
10920 	if ((int)y != sd_share->nr_idle_scan)
10921 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10922 }
10923 
10924 /**
10925  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10926  * @env: The load balancing environment.
10927  * @sds: variable to hold the statistics for this sched_domain.
10928  */
10929 
10930 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10931 {
10932 	struct sched_group *sg = env->sd->groups;
10933 	struct sg_lb_stats *local = &sds->local_stat;
10934 	struct sg_lb_stats tmp_sgs;
10935 	unsigned long sum_util = 0;
10936 	bool sg_overloaded = 0, sg_overutilized = 0;
10937 
10938 	do {
10939 		struct sg_lb_stats *sgs = &tmp_sgs;
10940 		int local_group;
10941 
10942 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10943 		if (local_group) {
10944 			sds->local = sg;
10945 			sgs = local;
10946 
10947 			if (env->idle != CPU_NEWLY_IDLE ||
10948 			    time_after_eq(jiffies, sg->sgc->next_update))
10949 				update_group_capacity(env->sd, env->dst_cpu);
10950 		}
10951 
10952 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10953 
10954 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10955 			sds->busiest = sg;
10956 			sds->busiest_stat = *sgs;
10957 		}
10958 
10959 		/* Now, start updating sd_lb_stats */
10960 		sds->total_load += sgs->group_load;
10961 		sds->total_capacity += sgs->group_capacity;
10962 
10963 		sum_util += sgs->group_util;
10964 		sg = sg->next;
10965 	} while (sg != env->sd->groups);
10966 
10967 	/*
10968 	 * Indicate that the child domain of the busiest group prefers tasks
10969 	 * go to a child's sibling domains first. NB the flags of a sched group
10970 	 * are those of the child domain.
10971 	 */
10972 	if (sds->busiest)
10973 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10974 
10975 
10976 	if (env->sd->flags & SD_NUMA)
10977 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10978 
10979 	if (!env->sd->parent) {
10980 		/* update overload indicator if we are at root domain */
10981 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
10982 
10983 		/* Update over-utilization (tipping point, U >= 0) indicator */
10984 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10985 	} else if (sg_overutilized) {
10986 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10987 	}
10988 
10989 	update_idle_cpu_scan(env, sum_util);
10990 }
10991 
10992 /**
10993  * calculate_imbalance - Calculate the amount of imbalance present within the
10994  *			 groups of a given sched_domain during load balance.
10995  * @env: load balance environment
10996  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10997  */
10998 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10999 {
11000 	struct sg_lb_stats *local, *busiest;
11001 
11002 	local = &sds->local_stat;
11003 	busiest = &sds->busiest_stat;
11004 
11005 	if (busiest->group_type == group_misfit_task) {
11006 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11007 			/* Set imbalance to allow misfit tasks to be balanced. */
11008 			env->migration_type = migrate_misfit;
11009 			env->imbalance = 1;
11010 		} else {
11011 			/*
11012 			 * Set load imbalance to allow moving task from cpu
11013 			 * with reduced capacity.
11014 			 */
11015 			env->migration_type = migrate_load;
11016 			env->imbalance = busiest->group_misfit_task_load;
11017 		}
11018 		return;
11019 	}
11020 
11021 	if (busiest->group_type == group_asym_packing) {
11022 		/*
11023 		 * In case of asym capacity, we will try to migrate all load to
11024 		 * the preferred CPU.
11025 		 */
11026 		env->migration_type = migrate_task;
11027 		env->imbalance = busiest->sum_h_nr_running;
11028 		return;
11029 	}
11030 
11031 	if (busiest->group_type == group_smt_balance) {
11032 		/* Reduce number of tasks sharing CPU capacity */
11033 		env->migration_type = migrate_task;
11034 		env->imbalance = 1;
11035 		return;
11036 	}
11037 
11038 	if (busiest->group_type == group_imbalanced) {
11039 		/*
11040 		 * In the group_imb case we cannot rely on group-wide averages
11041 		 * to ensure CPU-load equilibrium, try to move any task to fix
11042 		 * the imbalance. The next load balance will take care of
11043 		 * balancing back the system.
11044 		 */
11045 		env->migration_type = migrate_task;
11046 		env->imbalance = 1;
11047 		return;
11048 	}
11049 
11050 	/*
11051 	 * Try to use spare capacity of local group without overloading it or
11052 	 * emptying busiest.
11053 	 */
11054 	if (local->group_type == group_has_spare) {
11055 		if ((busiest->group_type > group_fully_busy) &&
11056 		    !(env->sd->flags & SD_SHARE_LLC)) {
11057 			/*
11058 			 * If busiest is overloaded, try to fill spare
11059 			 * capacity. This might end up creating spare capacity
11060 			 * in busiest or busiest still being overloaded but
11061 			 * there is no simple way to directly compute the
11062 			 * amount of load to migrate in order to balance the
11063 			 * system.
11064 			 */
11065 			env->migration_type = migrate_util;
11066 			env->imbalance = max(local->group_capacity, local->group_util) -
11067 					 local->group_util;
11068 
11069 			/*
11070 			 * In some cases, the group's utilization is max or even
11071 			 * higher than capacity because of migrations but the
11072 			 * local CPU is (newly) idle. There is at least one
11073 			 * waiting task in this overloaded busiest group. Let's
11074 			 * try to pull it.
11075 			 */
11076 			if (env->idle && env->imbalance == 0) {
11077 				env->migration_type = migrate_task;
11078 				env->imbalance = 1;
11079 			}
11080 
11081 			return;
11082 		}
11083 
11084 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11085 			/*
11086 			 * When prefer sibling, evenly spread running tasks on
11087 			 * groups.
11088 			 */
11089 			env->migration_type = migrate_task;
11090 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11091 		} else {
11092 
11093 			/*
11094 			 * If there is no overload, we just want to even the number of
11095 			 * idle CPUs.
11096 			 */
11097 			env->migration_type = migrate_task;
11098 			env->imbalance = max_t(long, 0,
11099 					       (local->idle_cpus - busiest->idle_cpus));
11100 		}
11101 
11102 #ifdef CONFIG_NUMA
11103 		/* Consider allowing a small imbalance between NUMA groups */
11104 		if (env->sd->flags & SD_NUMA) {
11105 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11106 							       local->sum_nr_running + 1,
11107 							       env->sd->imb_numa_nr);
11108 		}
11109 #endif
11110 
11111 		/* Number of tasks to move to restore balance */
11112 		env->imbalance >>= 1;
11113 
11114 		return;
11115 	}
11116 
11117 	/*
11118 	 * Local is fully busy but has to take more load to relieve the
11119 	 * busiest group
11120 	 */
11121 	if (local->group_type < group_overloaded) {
11122 		/*
11123 		 * Local will become overloaded so the avg_load metrics are
11124 		 * finally needed.
11125 		 */
11126 
11127 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11128 				  local->group_capacity;
11129 
11130 		/*
11131 		 * If the local group is more loaded than the selected
11132 		 * busiest group don't try to pull any tasks.
11133 		 */
11134 		if (local->avg_load >= busiest->avg_load) {
11135 			env->imbalance = 0;
11136 			return;
11137 		}
11138 
11139 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11140 				sds->total_capacity;
11141 
11142 		/*
11143 		 * If the local group is more loaded than the average system
11144 		 * load, don't try to pull any tasks.
11145 		 */
11146 		if (local->avg_load >= sds->avg_load) {
11147 			env->imbalance = 0;
11148 			return;
11149 		}
11150 
11151 	}
11152 
11153 	/*
11154 	 * Both group are or will become overloaded and we're trying to get all
11155 	 * the CPUs to the average_load, so we don't want to push ourselves
11156 	 * above the average load, nor do we wish to reduce the max loaded CPU
11157 	 * below the average load. At the same time, we also don't want to
11158 	 * reduce the group load below the group capacity. Thus we look for
11159 	 * the minimum possible imbalance.
11160 	 */
11161 	env->migration_type = migrate_load;
11162 	env->imbalance = min(
11163 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11164 		(sds->avg_load - local->avg_load) * local->group_capacity
11165 	) / SCHED_CAPACITY_SCALE;
11166 }
11167 
11168 /******* sched_balance_find_src_group() helpers end here *********************/
11169 
11170 /*
11171  * Decision matrix according to the local and busiest group type:
11172  *
11173  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11174  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11175  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11176  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11177  * asym_packing     force     force      N/A    N/A  force      force
11178  * imbalanced       force     force      N/A    N/A  force      force
11179  * overloaded       force     force      N/A    N/A  force      avg_load
11180  *
11181  * N/A :      Not Applicable because already filtered while updating
11182  *            statistics.
11183  * balanced : The system is balanced for these 2 groups.
11184  * force :    Calculate the imbalance as load migration is probably needed.
11185  * avg_load : Only if imbalance is significant enough.
11186  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11187  *            different in groups.
11188  */
11189 
11190 /**
11191  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11192  * if there is an imbalance.
11193  * @env: The load balancing environment.
11194  *
11195  * Also calculates the amount of runnable load which should be moved
11196  * to restore balance.
11197  *
11198  * Return:	- The busiest group if imbalance exists.
11199  */
11200 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11201 {
11202 	struct sg_lb_stats *local, *busiest;
11203 	struct sd_lb_stats sds;
11204 
11205 	init_sd_lb_stats(&sds);
11206 
11207 	/*
11208 	 * Compute the various statistics relevant for load balancing at
11209 	 * this level.
11210 	 */
11211 	update_sd_lb_stats(env, &sds);
11212 
11213 	/* There is no busy sibling group to pull tasks from */
11214 	if (!sds.busiest)
11215 		goto out_balanced;
11216 
11217 	busiest = &sds.busiest_stat;
11218 
11219 	/* Misfit tasks should be dealt with regardless of the avg load */
11220 	if (busiest->group_type == group_misfit_task)
11221 		goto force_balance;
11222 
11223 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11224 	    rcu_dereference(env->dst_rq->rd->pd))
11225 		goto out_balanced;
11226 
11227 	/* ASYM feature bypasses nice load balance check */
11228 	if (busiest->group_type == group_asym_packing)
11229 		goto force_balance;
11230 
11231 	/*
11232 	 * If the busiest group is imbalanced the below checks don't
11233 	 * work because they assume all things are equal, which typically
11234 	 * isn't true due to cpus_ptr constraints and the like.
11235 	 */
11236 	if (busiest->group_type == group_imbalanced)
11237 		goto force_balance;
11238 
11239 	local = &sds.local_stat;
11240 	/*
11241 	 * If the local group is busier than the selected busiest group
11242 	 * don't try and pull any tasks.
11243 	 */
11244 	if (local->group_type > busiest->group_type)
11245 		goto out_balanced;
11246 
11247 	/*
11248 	 * When groups are overloaded, use the avg_load to ensure fairness
11249 	 * between tasks.
11250 	 */
11251 	if (local->group_type == group_overloaded) {
11252 		/*
11253 		 * If the local group is more loaded than the selected
11254 		 * busiest group don't try to pull any tasks.
11255 		 */
11256 		if (local->avg_load >= busiest->avg_load)
11257 			goto out_balanced;
11258 
11259 		/* XXX broken for overlapping NUMA groups */
11260 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11261 				sds.total_capacity;
11262 
11263 		/*
11264 		 * Don't pull any tasks if this group is already above the
11265 		 * domain average load.
11266 		 */
11267 		if (local->avg_load >= sds.avg_load)
11268 			goto out_balanced;
11269 
11270 		/*
11271 		 * If the busiest group is more loaded, use imbalance_pct to be
11272 		 * conservative.
11273 		 */
11274 		if (100 * busiest->avg_load <=
11275 				env->sd->imbalance_pct * local->avg_load)
11276 			goto out_balanced;
11277 	}
11278 
11279 	/*
11280 	 * Try to move all excess tasks to a sibling domain of the busiest
11281 	 * group's child domain.
11282 	 */
11283 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11284 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11285 		goto force_balance;
11286 
11287 	if (busiest->group_type != group_overloaded) {
11288 		if (!env->idle) {
11289 			/*
11290 			 * If the busiest group is not overloaded (and as a
11291 			 * result the local one too) but this CPU is already
11292 			 * busy, let another idle CPU try to pull task.
11293 			 */
11294 			goto out_balanced;
11295 		}
11296 
11297 		if (busiest->group_type == group_smt_balance &&
11298 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11299 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11300 			goto force_balance;
11301 		}
11302 
11303 		if (busiest->group_weight > 1 &&
11304 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11305 			/*
11306 			 * If the busiest group is not overloaded
11307 			 * and there is no imbalance between this and busiest
11308 			 * group wrt idle CPUs, it is balanced. The imbalance
11309 			 * becomes significant if the diff is greater than 1
11310 			 * otherwise we might end up to just move the imbalance
11311 			 * on another group. Of course this applies only if
11312 			 * there is more than 1 CPU per group.
11313 			 */
11314 			goto out_balanced;
11315 		}
11316 
11317 		if (busiest->sum_h_nr_running == 1) {
11318 			/*
11319 			 * busiest doesn't have any tasks waiting to run
11320 			 */
11321 			goto out_balanced;
11322 		}
11323 	}
11324 
11325 force_balance:
11326 	/* Looks like there is an imbalance. Compute it */
11327 	calculate_imbalance(env, &sds);
11328 	return env->imbalance ? sds.busiest : NULL;
11329 
11330 out_balanced:
11331 	env->imbalance = 0;
11332 	return NULL;
11333 }
11334 
11335 /*
11336  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11337  */
11338 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11339 				     struct sched_group *group)
11340 {
11341 	struct rq *busiest = NULL, *rq;
11342 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11343 	unsigned int busiest_nr = 0;
11344 	int i;
11345 
11346 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11347 		unsigned long capacity, load, util;
11348 		unsigned int nr_running;
11349 		enum fbq_type rt;
11350 
11351 		rq = cpu_rq(i);
11352 		rt = fbq_classify_rq(rq);
11353 
11354 		/*
11355 		 * We classify groups/runqueues into three groups:
11356 		 *  - regular: there are !numa tasks
11357 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11358 		 *  - all:     there is no distinction
11359 		 *
11360 		 * In order to avoid migrating ideally placed numa tasks,
11361 		 * ignore those when there's better options.
11362 		 *
11363 		 * If we ignore the actual busiest queue to migrate another
11364 		 * task, the next balance pass can still reduce the busiest
11365 		 * queue by moving tasks around inside the node.
11366 		 *
11367 		 * If we cannot move enough load due to this classification
11368 		 * the next pass will adjust the group classification and
11369 		 * allow migration of more tasks.
11370 		 *
11371 		 * Both cases only affect the total convergence complexity.
11372 		 */
11373 		if (rt > env->fbq_type)
11374 			continue;
11375 
11376 		nr_running = rq->cfs.h_nr_runnable;
11377 		if (!nr_running)
11378 			continue;
11379 
11380 		capacity = capacity_of(i);
11381 
11382 		/*
11383 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11384 		 * eventually lead to active_balancing high->low capacity.
11385 		 * Higher per-CPU capacity is considered better than balancing
11386 		 * average load.
11387 		 */
11388 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11389 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11390 		    nr_running == 1)
11391 			continue;
11392 
11393 		/*
11394 		 * Make sure we only pull tasks from a CPU of lower priority
11395 		 * when balancing between SMT siblings.
11396 		 *
11397 		 * If balancing between cores, let lower priority CPUs help
11398 		 * SMT cores with more than one busy sibling.
11399 		 */
11400 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11401 			continue;
11402 
11403 		switch (env->migration_type) {
11404 		case migrate_load:
11405 			/*
11406 			 * When comparing with load imbalance, use cpu_load()
11407 			 * which is not scaled with the CPU capacity.
11408 			 */
11409 			load = cpu_load(rq);
11410 
11411 			if (nr_running == 1 && load > env->imbalance &&
11412 			    !check_cpu_capacity(rq, env->sd))
11413 				break;
11414 
11415 			/*
11416 			 * For the load comparisons with the other CPUs,
11417 			 * consider the cpu_load() scaled with the CPU
11418 			 * capacity, so that the load can be moved away
11419 			 * from the CPU that is potentially running at a
11420 			 * lower capacity.
11421 			 *
11422 			 * Thus we're looking for max(load_i / capacity_i),
11423 			 * crosswise multiplication to rid ourselves of the
11424 			 * division works out to:
11425 			 * load_i * capacity_j > load_j * capacity_i;
11426 			 * where j is our previous maximum.
11427 			 */
11428 			if (load * busiest_capacity > busiest_load * capacity) {
11429 				busiest_load = load;
11430 				busiest_capacity = capacity;
11431 				busiest = rq;
11432 			}
11433 			break;
11434 
11435 		case migrate_util:
11436 			util = cpu_util_cfs_boost(i);
11437 
11438 			/*
11439 			 * Don't try to pull utilization from a CPU with one
11440 			 * running task. Whatever its utilization, we will fail
11441 			 * detach the task.
11442 			 */
11443 			if (nr_running <= 1)
11444 				continue;
11445 
11446 			if (busiest_util < util) {
11447 				busiest_util = util;
11448 				busiest = rq;
11449 			}
11450 			break;
11451 
11452 		case migrate_task:
11453 			if (busiest_nr < nr_running) {
11454 				busiest_nr = nr_running;
11455 				busiest = rq;
11456 			}
11457 			break;
11458 
11459 		case migrate_misfit:
11460 			/*
11461 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11462 			 * simply seek the "biggest" misfit task.
11463 			 */
11464 			if (rq->misfit_task_load > busiest_load) {
11465 				busiest_load = rq->misfit_task_load;
11466 				busiest = rq;
11467 			}
11468 
11469 			break;
11470 
11471 		}
11472 	}
11473 
11474 	return busiest;
11475 }
11476 
11477 /*
11478  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11479  * so long as it is large enough.
11480  */
11481 #define MAX_PINNED_INTERVAL	512
11482 
11483 static inline bool
11484 asym_active_balance(struct lb_env *env)
11485 {
11486 	/*
11487 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11488 	 * priority CPUs in order to pack all tasks in the highest priority
11489 	 * CPUs. When done between cores, do it only if the whole core if the
11490 	 * whole core is idle.
11491 	 *
11492 	 * If @env::src_cpu is an SMT core with busy siblings, let
11493 	 * the lower priority @env::dst_cpu help it. Do not follow
11494 	 * CPU priority.
11495 	 */
11496 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11497 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11498 		!sched_use_asym_prio(env->sd, env->src_cpu));
11499 }
11500 
11501 static inline bool
11502 imbalanced_active_balance(struct lb_env *env)
11503 {
11504 	struct sched_domain *sd = env->sd;
11505 
11506 	/*
11507 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11508 	 * distribution of the load on the system but also the even distribution of the
11509 	 * threads on a system with spare capacity
11510 	 */
11511 	if ((env->migration_type == migrate_task) &&
11512 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11513 		return 1;
11514 
11515 	return 0;
11516 }
11517 
11518 static int need_active_balance(struct lb_env *env)
11519 {
11520 	struct sched_domain *sd = env->sd;
11521 
11522 	if (asym_active_balance(env))
11523 		return 1;
11524 
11525 	if (imbalanced_active_balance(env))
11526 		return 1;
11527 
11528 	/*
11529 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11530 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11531 	 * because of other sched_class or IRQs if more capacity stays
11532 	 * available on dst_cpu.
11533 	 */
11534 	if (env->idle &&
11535 	    (env->src_rq->cfs.h_nr_runnable == 1)) {
11536 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11537 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11538 			return 1;
11539 	}
11540 
11541 	if (env->migration_type == migrate_misfit)
11542 		return 1;
11543 
11544 	return 0;
11545 }
11546 
11547 static int active_load_balance_cpu_stop(void *data);
11548 
11549 static int should_we_balance(struct lb_env *env)
11550 {
11551 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11552 	struct sched_group *sg = env->sd->groups;
11553 	int cpu, idle_smt = -1;
11554 
11555 	/*
11556 	 * Ensure the balancing environment is consistent; can happen
11557 	 * when the softirq triggers 'during' hotplug.
11558 	 */
11559 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11560 		return 0;
11561 
11562 	/*
11563 	 * In the newly idle case, we will allow all the CPUs
11564 	 * to do the newly idle load balance.
11565 	 *
11566 	 * However, we bail out if we already have tasks or a wakeup pending,
11567 	 * to optimize wakeup latency.
11568 	 */
11569 	if (env->idle == CPU_NEWLY_IDLE) {
11570 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11571 			return 0;
11572 		return 1;
11573 	}
11574 
11575 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11576 	/* Try to find first idle CPU */
11577 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11578 		if (!idle_cpu(cpu))
11579 			continue;
11580 
11581 		/*
11582 		 * Don't balance to idle SMT in busy core right away when
11583 		 * balancing cores, but remember the first idle SMT CPU for
11584 		 * later consideration.  Find CPU on an idle core first.
11585 		 */
11586 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11587 			if (idle_smt == -1)
11588 				idle_smt = cpu;
11589 			/*
11590 			 * If the core is not idle, and first SMT sibling which is
11591 			 * idle has been found, then its not needed to check other
11592 			 * SMT siblings for idleness:
11593 			 */
11594 #ifdef CONFIG_SCHED_SMT
11595 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11596 #endif
11597 			continue;
11598 		}
11599 
11600 		/*
11601 		 * Are we the first idle core in a non-SMT domain or higher,
11602 		 * or the first idle CPU in a SMT domain?
11603 		 */
11604 		return cpu == env->dst_cpu;
11605 	}
11606 
11607 	/* Are we the first idle CPU with busy siblings? */
11608 	if (idle_smt != -1)
11609 		return idle_smt == env->dst_cpu;
11610 
11611 	/* Are we the first CPU of this group ? */
11612 	return group_balance_cpu(sg) == env->dst_cpu;
11613 }
11614 
11615 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11616 				     enum cpu_idle_type idle)
11617 {
11618 	if (!schedstat_enabled())
11619 		return;
11620 
11621 	switch (env->migration_type) {
11622 	case migrate_load:
11623 		__schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11624 		break;
11625 	case migrate_util:
11626 		__schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11627 		break;
11628 	case migrate_task:
11629 		__schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11630 		break;
11631 	case migrate_misfit:
11632 		__schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11633 		break;
11634 	}
11635 }
11636 
11637 /*
11638  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11639  * tasks if there is an imbalance.
11640  */
11641 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11642 			struct sched_domain *sd, enum cpu_idle_type idle,
11643 			int *continue_balancing)
11644 {
11645 	int ld_moved, cur_ld_moved, active_balance = 0;
11646 	struct sched_domain *sd_parent = sd->parent;
11647 	struct sched_group *group;
11648 	struct rq *busiest;
11649 	struct rq_flags rf;
11650 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11651 	struct lb_env env = {
11652 		.sd		= sd,
11653 		.dst_cpu	= this_cpu,
11654 		.dst_rq		= this_rq,
11655 		.dst_grpmask    = group_balance_mask(sd->groups),
11656 		.idle		= idle,
11657 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11658 		.cpus		= cpus,
11659 		.fbq_type	= all,
11660 		.tasks		= LIST_HEAD_INIT(env.tasks),
11661 	};
11662 
11663 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11664 
11665 	schedstat_inc(sd->lb_count[idle]);
11666 
11667 redo:
11668 	if (!should_we_balance(&env)) {
11669 		*continue_balancing = 0;
11670 		goto out_balanced;
11671 	}
11672 
11673 	group = sched_balance_find_src_group(&env);
11674 	if (!group) {
11675 		schedstat_inc(sd->lb_nobusyg[idle]);
11676 		goto out_balanced;
11677 	}
11678 
11679 	busiest = sched_balance_find_src_rq(&env, group);
11680 	if (!busiest) {
11681 		schedstat_inc(sd->lb_nobusyq[idle]);
11682 		goto out_balanced;
11683 	}
11684 
11685 	WARN_ON_ONCE(busiest == env.dst_rq);
11686 
11687 	update_lb_imbalance_stat(&env, sd, idle);
11688 
11689 	env.src_cpu = busiest->cpu;
11690 	env.src_rq = busiest;
11691 
11692 	ld_moved = 0;
11693 	/* Clear this flag as soon as we find a pullable task */
11694 	env.flags |= LBF_ALL_PINNED;
11695 	if (busiest->nr_running > 1) {
11696 		/*
11697 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11698 		 * an imbalance but busiest->nr_running <= 1, the group is
11699 		 * still unbalanced. ld_moved simply stays zero, so it is
11700 		 * correctly treated as an imbalance.
11701 		 */
11702 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11703 
11704 more_balance:
11705 		rq_lock_irqsave(busiest, &rf);
11706 		update_rq_clock(busiest);
11707 
11708 		/*
11709 		 * cur_ld_moved - load moved in current iteration
11710 		 * ld_moved     - cumulative load moved across iterations
11711 		 */
11712 		cur_ld_moved = detach_tasks(&env);
11713 
11714 		/*
11715 		 * We've detached some tasks from busiest_rq. Every
11716 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11717 		 * unlock busiest->lock, and we are able to be sure
11718 		 * that nobody can manipulate the tasks in parallel.
11719 		 * See task_rq_lock() family for the details.
11720 		 */
11721 
11722 		rq_unlock(busiest, &rf);
11723 
11724 		if (cur_ld_moved) {
11725 			attach_tasks(&env);
11726 			ld_moved += cur_ld_moved;
11727 		}
11728 
11729 		local_irq_restore(rf.flags);
11730 
11731 		if (env.flags & LBF_NEED_BREAK) {
11732 			env.flags &= ~LBF_NEED_BREAK;
11733 			goto more_balance;
11734 		}
11735 
11736 		/*
11737 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11738 		 * us and move them to an alternate dst_cpu in our sched_group
11739 		 * where they can run. The upper limit on how many times we
11740 		 * iterate on same src_cpu is dependent on number of CPUs in our
11741 		 * sched_group.
11742 		 *
11743 		 * This changes load balance semantics a bit on who can move
11744 		 * load to a given_cpu. In addition to the given_cpu itself
11745 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11746 		 * nohz-idle), we now have balance_cpu in a position to move
11747 		 * load to given_cpu. In rare situations, this may cause
11748 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11749 		 * _independently_ and at _same_ time to move some load to
11750 		 * given_cpu) causing excess load to be moved to given_cpu.
11751 		 * This however should not happen so much in practice and
11752 		 * moreover subsequent load balance cycles should correct the
11753 		 * excess load moved.
11754 		 */
11755 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11756 
11757 			/* Prevent to re-select dst_cpu via env's CPUs */
11758 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11759 
11760 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11761 			env.dst_cpu	 = env.new_dst_cpu;
11762 			env.flags	&= ~LBF_DST_PINNED;
11763 			env.loop	 = 0;
11764 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11765 
11766 			/*
11767 			 * Go back to "more_balance" rather than "redo" since we
11768 			 * need to continue with same src_cpu.
11769 			 */
11770 			goto more_balance;
11771 		}
11772 
11773 		/*
11774 		 * We failed to reach balance because of affinity.
11775 		 */
11776 		if (sd_parent) {
11777 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11778 
11779 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11780 				*group_imbalance = 1;
11781 		}
11782 
11783 		/* All tasks on this runqueue were pinned by CPU affinity */
11784 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11785 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11786 			/*
11787 			 * Attempting to continue load balancing at the current
11788 			 * sched_domain level only makes sense if there are
11789 			 * active CPUs remaining as possible busiest CPUs to
11790 			 * pull load from which are not contained within the
11791 			 * destination group that is receiving any migrated
11792 			 * load.
11793 			 */
11794 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11795 				env.loop = 0;
11796 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11797 				goto redo;
11798 			}
11799 			goto out_all_pinned;
11800 		}
11801 	}
11802 
11803 	if (!ld_moved) {
11804 		schedstat_inc(sd->lb_failed[idle]);
11805 		/*
11806 		 * Increment the failure counter only on periodic balance.
11807 		 * We do not want newidle balance, which can be very
11808 		 * frequent, pollute the failure counter causing
11809 		 * excessive cache_hot migrations and active balances.
11810 		 *
11811 		 * Similarly for migration_misfit which is not related to
11812 		 * load/util migration, don't pollute nr_balance_failed.
11813 		 */
11814 		if (idle != CPU_NEWLY_IDLE &&
11815 		    env.migration_type != migrate_misfit)
11816 			sd->nr_balance_failed++;
11817 
11818 		if (need_active_balance(&env)) {
11819 			unsigned long flags;
11820 
11821 			raw_spin_rq_lock_irqsave(busiest, flags);
11822 
11823 			/*
11824 			 * Don't kick the active_load_balance_cpu_stop,
11825 			 * if the curr task on busiest CPU can't be
11826 			 * moved to this_cpu:
11827 			 */
11828 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11829 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11830 				goto out_one_pinned;
11831 			}
11832 
11833 			/* Record that we found at least one task that could run on this_cpu */
11834 			env.flags &= ~LBF_ALL_PINNED;
11835 
11836 			/*
11837 			 * ->active_balance synchronizes accesses to
11838 			 * ->active_balance_work.  Once set, it's cleared
11839 			 * only after active load balance is finished.
11840 			 */
11841 			if (!busiest->active_balance) {
11842 				busiest->active_balance = 1;
11843 				busiest->push_cpu = this_cpu;
11844 				active_balance = 1;
11845 			}
11846 
11847 			preempt_disable();
11848 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11849 			if (active_balance) {
11850 				stop_one_cpu_nowait(cpu_of(busiest),
11851 					active_load_balance_cpu_stop, busiest,
11852 					&busiest->active_balance_work);
11853 			}
11854 			preempt_enable();
11855 		}
11856 	} else {
11857 		sd->nr_balance_failed = 0;
11858 	}
11859 
11860 	if (likely(!active_balance) || need_active_balance(&env)) {
11861 		/* We were unbalanced, so reset the balancing interval */
11862 		sd->balance_interval = sd->min_interval;
11863 	}
11864 
11865 	goto out;
11866 
11867 out_balanced:
11868 	/*
11869 	 * We reach balance although we may have faced some affinity
11870 	 * constraints. Clear the imbalance flag only if other tasks got
11871 	 * a chance to move and fix the imbalance.
11872 	 */
11873 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11874 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11875 
11876 		if (*group_imbalance)
11877 			*group_imbalance = 0;
11878 	}
11879 
11880 out_all_pinned:
11881 	/*
11882 	 * We reach balance because all tasks are pinned at this level so
11883 	 * we can't migrate them. Let the imbalance flag set so parent level
11884 	 * can try to migrate them.
11885 	 */
11886 	schedstat_inc(sd->lb_balanced[idle]);
11887 
11888 	sd->nr_balance_failed = 0;
11889 
11890 out_one_pinned:
11891 	ld_moved = 0;
11892 
11893 	/*
11894 	 * sched_balance_newidle() disregards balance intervals, so we could
11895 	 * repeatedly reach this code, which would lead to balance_interval
11896 	 * skyrocketing in a short amount of time. Skip the balance_interval
11897 	 * increase logic to avoid that.
11898 	 *
11899 	 * Similarly misfit migration which is not necessarily an indication of
11900 	 * the system being busy and requires lb to backoff to let it settle
11901 	 * down.
11902 	 */
11903 	if (env.idle == CPU_NEWLY_IDLE ||
11904 	    env.migration_type == migrate_misfit)
11905 		goto out;
11906 
11907 	/* tune up the balancing interval */
11908 	if ((env.flags & LBF_ALL_PINNED &&
11909 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11910 	    sd->balance_interval < sd->max_interval)
11911 		sd->balance_interval *= 2;
11912 out:
11913 	return ld_moved;
11914 }
11915 
11916 static inline unsigned long
11917 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11918 {
11919 	unsigned long interval = sd->balance_interval;
11920 
11921 	if (cpu_busy)
11922 		interval *= sd->busy_factor;
11923 
11924 	/* scale ms to jiffies */
11925 	interval = msecs_to_jiffies(interval);
11926 
11927 	/*
11928 	 * Reduce likelihood of busy balancing at higher domains racing with
11929 	 * balancing at lower domains by preventing their balancing periods
11930 	 * from being multiples of each other.
11931 	 */
11932 	if (cpu_busy)
11933 		interval -= 1;
11934 
11935 	interval = clamp(interval, 1UL, max_load_balance_interval);
11936 
11937 	return interval;
11938 }
11939 
11940 static inline void
11941 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11942 {
11943 	unsigned long interval, next;
11944 
11945 	/* used by idle balance, so cpu_busy = 0 */
11946 	interval = get_sd_balance_interval(sd, 0);
11947 	next = sd->last_balance + interval;
11948 
11949 	if (time_after(*next_balance, next))
11950 		*next_balance = next;
11951 }
11952 
11953 /*
11954  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11955  * running tasks off the busiest CPU onto idle CPUs. It requires at
11956  * least 1 task to be running on each physical CPU where possible, and
11957  * avoids physical / logical imbalances.
11958  */
11959 static int active_load_balance_cpu_stop(void *data)
11960 {
11961 	struct rq *busiest_rq = data;
11962 	int busiest_cpu = cpu_of(busiest_rq);
11963 	int target_cpu = busiest_rq->push_cpu;
11964 	struct rq *target_rq = cpu_rq(target_cpu);
11965 	struct sched_domain *sd;
11966 	struct task_struct *p = NULL;
11967 	struct rq_flags rf;
11968 
11969 	rq_lock_irq(busiest_rq, &rf);
11970 	/*
11971 	 * Between queueing the stop-work and running it is a hole in which
11972 	 * CPUs can become inactive. We should not move tasks from or to
11973 	 * inactive CPUs.
11974 	 */
11975 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11976 		goto out_unlock;
11977 
11978 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11979 	if (unlikely(busiest_cpu != smp_processor_id() ||
11980 		     !busiest_rq->active_balance))
11981 		goto out_unlock;
11982 
11983 	/* Is there any task to move? */
11984 	if (busiest_rq->nr_running <= 1)
11985 		goto out_unlock;
11986 
11987 	/*
11988 	 * This condition is "impossible", if it occurs
11989 	 * we need to fix it. Originally reported by
11990 	 * Bjorn Helgaas on a 128-CPU setup.
11991 	 */
11992 	WARN_ON_ONCE(busiest_rq == target_rq);
11993 
11994 	/* Search for an sd spanning us and the target CPU. */
11995 	rcu_read_lock();
11996 	for_each_domain(target_cpu, sd) {
11997 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11998 			break;
11999 	}
12000 
12001 	if (likely(sd)) {
12002 		struct lb_env env = {
12003 			.sd		= sd,
12004 			.dst_cpu	= target_cpu,
12005 			.dst_rq		= target_rq,
12006 			.src_cpu	= busiest_rq->cpu,
12007 			.src_rq		= busiest_rq,
12008 			.idle		= CPU_IDLE,
12009 			.flags		= LBF_ACTIVE_LB,
12010 		};
12011 
12012 		schedstat_inc(sd->alb_count);
12013 		update_rq_clock(busiest_rq);
12014 
12015 		p = detach_one_task(&env);
12016 		if (p) {
12017 			schedstat_inc(sd->alb_pushed);
12018 			/* Active balancing done, reset the failure counter. */
12019 			sd->nr_balance_failed = 0;
12020 		} else {
12021 			schedstat_inc(sd->alb_failed);
12022 		}
12023 	}
12024 	rcu_read_unlock();
12025 out_unlock:
12026 	busiest_rq->active_balance = 0;
12027 	rq_unlock(busiest_rq, &rf);
12028 
12029 	if (p)
12030 		attach_one_task(target_rq, p);
12031 
12032 	local_irq_enable();
12033 
12034 	return 0;
12035 }
12036 
12037 /*
12038  * This flag serializes load-balancing passes over large domains
12039  * (above the NODE topology level) - only one load-balancing instance
12040  * may run at a time, to reduce overhead on very large systems with
12041  * lots of CPUs and large NUMA distances.
12042  *
12043  * - Note that load-balancing passes triggered while another one
12044  *   is executing are skipped and not re-tried.
12045  *
12046  * - Also note that this does not serialize rebalance_domains()
12047  *   execution, as non-SD_SERIALIZE domains will still be
12048  *   load-balanced in parallel.
12049  */
12050 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12051 
12052 /*
12053  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12054  * This trades load-balance latency on larger machines for less cross talk.
12055  */
12056 void update_max_interval(void)
12057 {
12058 	max_load_balance_interval = HZ*num_online_cpus()/10;
12059 }
12060 
12061 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12062 {
12063 	if (cost > sd->max_newidle_lb_cost) {
12064 		/*
12065 		 * Track max cost of a domain to make sure to not delay the
12066 		 * next wakeup on the CPU.
12067 		 */
12068 		sd->max_newidle_lb_cost = cost;
12069 		sd->last_decay_max_lb_cost = jiffies;
12070 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12071 		/*
12072 		 * Decay the newidle max times by ~1% per second to ensure that
12073 		 * it is not outdated and the current max cost is actually
12074 		 * shorter.
12075 		 */
12076 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12077 		sd->last_decay_max_lb_cost = jiffies;
12078 
12079 		return true;
12080 	}
12081 
12082 	return false;
12083 }
12084 
12085 /*
12086  * It checks each scheduling domain to see if it is due to be balanced,
12087  * and initiates a balancing operation if so.
12088  *
12089  * Balancing parameters are set up in init_sched_domains.
12090  */
12091 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12092 {
12093 	int continue_balancing = 1;
12094 	int cpu = rq->cpu;
12095 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12096 	unsigned long interval;
12097 	struct sched_domain *sd;
12098 	/* Earliest time when we have to do rebalance again */
12099 	unsigned long next_balance = jiffies + 60*HZ;
12100 	int update_next_balance = 0;
12101 	int need_serialize, need_decay = 0;
12102 	u64 max_cost = 0;
12103 
12104 	rcu_read_lock();
12105 	for_each_domain(cpu, sd) {
12106 		/*
12107 		 * Decay the newidle max times here because this is a regular
12108 		 * visit to all the domains.
12109 		 */
12110 		need_decay = update_newidle_cost(sd, 0);
12111 		max_cost += sd->max_newidle_lb_cost;
12112 
12113 		/*
12114 		 * Stop the load balance at this level. There is another
12115 		 * CPU in our sched group which is doing load balancing more
12116 		 * actively.
12117 		 */
12118 		if (!continue_balancing) {
12119 			if (need_decay)
12120 				continue;
12121 			break;
12122 		}
12123 
12124 		interval = get_sd_balance_interval(sd, busy);
12125 
12126 		need_serialize = sd->flags & SD_SERIALIZE;
12127 		if (need_serialize) {
12128 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12129 				goto out;
12130 		}
12131 
12132 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12133 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12134 				/*
12135 				 * The LBF_DST_PINNED logic could have changed
12136 				 * env->dst_cpu, so we can't know our idle
12137 				 * state even if we migrated tasks. Update it.
12138 				 */
12139 				idle = idle_cpu(cpu);
12140 				busy = !idle && !sched_idle_cpu(cpu);
12141 			}
12142 			sd->last_balance = jiffies;
12143 			interval = get_sd_balance_interval(sd, busy);
12144 		}
12145 		if (need_serialize)
12146 			atomic_set_release(&sched_balance_running, 0);
12147 out:
12148 		if (time_after(next_balance, sd->last_balance + interval)) {
12149 			next_balance = sd->last_balance + interval;
12150 			update_next_balance = 1;
12151 		}
12152 	}
12153 	if (need_decay) {
12154 		/*
12155 		 * Ensure the rq-wide value also decays but keep it at a
12156 		 * reasonable floor to avoid funnies with rq->avg_idle.
12157 		 */
12158 		rq->max_idle_balance_cost =
12159 			max((u64)sysctl_sched_migration_cost, max_cost);
12160 	}
12161 	rcu_read_unlock();
12162 
12163 	/*
12164 	 * next_balance will be updated only when there is a need.
12165 	 * When the cpu is attached to null domain for ex, it will not be
12166 	 * updated.
12167 	 */
12168 	if (likely(update_next_balance))
12169 		rq->next_balance = next_balance;
12170 
12171 }
12172 
12173 static inline int on_null_domain(struct rq *rq)
12174 {
12175 	return unlikely(!rcu_dereference_sched(rq->sd));
12176 }
12177 
12178 #ifdef CONFIG_NO_HZ_COMMON
12179 /*
12180  * NOHZ idle load balancing (ILB) details:
12181  *
12182  * - When one of the busy CPUs notices that there may be an idle rebalancing
12183  *   needed, they will kick the idle load balancer, which then does idle
12184  *   load balancing for all the idle CPUs.
12185  */
12186 static inline int find_new_ilb(void)
12187 {
12188 	const struct cpumask *hk_mask;
12189 	int ilb_cpu;
12190 
12191 	hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12192 
12193 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12194 
12195 		if (ilb_cpu == smp_processor_id())
12196 			continue;
12197 
12198 		if (idle_cpu(ilb_cpu))
12199 			return ilb_cpu;
12200 	}
12201 
12202 	return -1;
12203 }
12204 
12205 /*
12206  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12207  * SMP function call (IPI).
12208  *
12209  * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12210  * (if there is one).
12211  */
12212 static void kick_ilb(unsigned int flags)
12213 {
12214 	int ilb_cpu;
12215 
12216 	/*
12217 	 * Increase nohz.next_balance only when if full ilb is triggered but
12218 	 * not if we only update stats.
12219 	 */
12220 	if (flags & NOHZ_BALANCE_KICK)
12221 		nohz.next_balance = jiffies+1;
12222 
12223 	ilb_cpu = find_new_ilb();
12224 	if (ilb_cpu < 0)
12225 		return;
12226 
12227 	/*
12228 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12229 	 * i.e. all bits in flags are already set in ilb_cpu.
12230 	 */
12231 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12232 		return;
12233 
12234 	/*
12235 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12236 	 * the first flag owns it; cleared by nohz_csd_func().
12237 	 */
12238 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12239 	if (flags & NOHZ_KICK_MASK)
12240 		return;
12241 
12242 	/*
12243 	 * This way we generate an IPI on the target CPU which
12244 	 * is idle, and the softirq performing NOHZ idle load balancing
12245 	 * will be run before returning from the IPI.
12246 	 */
12247 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12248 }
12249 
12250 /*
12251  * Current decision point for kicking the idle load balancer in the presence
12252  * of idle CPUs in the system.
12253  */
12254 static void nohz_balancer_kick(struct rq *rq)
12255 {
12256 	unsigned long now = jiffies;
12257 	struct sched_domain_shared *sds;
12258 	struct sched_domain *sd;
12259 	int nr_busy, i, cpu = rq->cpu;
12260 	unsigned int flags = 0;
12261 
12262 	if (unlikely(rq->idle_balance))
12263 		return;
12264 
12265 	/*
12266 	 * We may be recently in ticked or tickless idle mode. At the first
12267 	 * busy tick after returning from idle, we will update the busy stats.
12268 	 */
12269 	nohz_balance_exit_idle(rq);
12270 
12271 	/*
12272 	 * None are in tickless mode and hence no need for NOHZ idle load
12273 	 * balancing:
12274 	 */
12275 	if (likely(!atomic_read(&nohz.nr_cpus)))
12276 		return;
12277 
12278 	if (READ_ONCE(nohz.has_blocked) &&
12279 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12280 		flags = NOHZ_STATS_KICK;
12281 
12282 	if (time_before(now, nohz.next_balance))
12283 		goto out;
12284 
12285 	if (rq->nr_running >= 2) {
12286 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12287 		goto out;
12288 	}
12289 
12290 	rcu_read_lock();
12291 
12292 	sd = rcu_dereference(rq->sd);
12293 	if (sd) {
12294 		/*
12295 		 * If there's a runnable CFS task and the current CPU has reduced
12296 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12297 		 */
12298 		if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12299 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12300 			goto unlock;
12301 		}
12302 	}
12303 
12304 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12305 	if (sd) {
12306 		/*
12307 		 * When ASYM_PACKING; see if there's a more preferred CPU
12308 		 * currently idle; in which case, kick the ILB to move tasks
12309 		 * around.
12310 		 *
12311 		 * When balancing between cores, all the SMT siblings of the
12312 		 * preferred CPU must be idle.
12313 		 */
12314 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12315 			if (sched_asym(sd, i, cpu)) {
12316 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12317 				goto unlock;
12318 			}
12319 		}
12320 	}
12321 
12322 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12323 	if (sd) {
12324 		/*
12325 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12326 		 * to run the misfit task on.
12327 		 */
12328 		if (check_misfit_status(rq)) {
12329 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12330 			goto unlock;
12331 		}
12332 
12333 		/*
12334 		 * For asymmetric systems, we do not want to nicely balance
12335 		 * cache use, instead we want to embrace asymmetry and only
12336 		 * ensure tasks have enough CPU capacity.
12337 		 *
12338 		 * Skip the LLC logic because it's not relevant in that case.
12339 		 */
12340 		goto unlock;
12341 	}
12342 
12343 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12344 	if (sds) {
12345 		/*
12346 		 * If there is an imbalance between LLC domains (IOW we could
12347 		 * increase the overall cache utilization), we need a less-loaded LLC
12348 		 * domain to pull some load from. Likewise, we may need to spread
12349 		 * load within the current LLC domain (e.g. packed SMT cores but
12350 		 * other CPUs are idle). We can't really know from here how busy
12351 		 * the others are - so just get a NOHZ balance going if it looks
12352 		 * like this LLC domain has tasks we could move.
12353 		 */
12354 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12355 		if (nr_busy > 1) {
12356 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12357 			goto unlock;
12358 		}
12359 	}
12360 unlock:
12361 	rcu_read_unlock();
12362 out:
12363 	if (READ_ONCE(nohz.needs_update))
12364 		flags |= NOHZ_NEXT_KICK;
12365 
12366 	if (flags)
12367 		kick_ilb(flags);
12368 }
12369 
12370 static void set_cpu_sd_state_busy(int cpu)
12371 {
12372 	struct sched_domain *sd;
12373 
12374 	rcu_read_lock();
12375 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12376 
12377 	if (!sd || !sd->nohz_idle)
12378 		goto unlock;
12379 	sd->nohz_idle = 0;
12380 
12381 	atomic_inc(&sd->shared->nr_busy_cpus);
12382 unlock:
12383 	rcu_read_unlock();
12384 }
12385 
12386 void nohz_balance_exit_idle(struct rq *rq)
12387 {
12388 	WARN_ON_ONCE(rq != this_rq());
12389 
12390 	if (likely(!rq->nohz_tick_stopped))
12391 		return;
12392 
12393 	rq->nohz_tick_stopped = 0;
12394 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12395 	atomic_dec(&nohz.nr_cpus);
12396 
12397 	set_cpu_sd_state_busy(rq->cpu);
12398 }
12399 
12400 static void set_cpu_sd_state_idle(int cpu)
12401 {
12402 	struct sched_domain *sd;
12403 
12404 	rcu_read_lock();
12405 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12406 
12407 	if (!sd || sd->nohz_idle)
12408 		goto unlock;
12409 	sd->nohz_idle = 1;
12410 
12411 	atomic_dec(&sd->shared->nr_busy_cpus);
12412 unlock:
12413 	rcu_read_unlock();
12414 }
12415 
12416 /*
12417  * This routine will record that the CPU is going idle with tick stopped.
12418  * This info will be used in performing idle load balancing in the future.
12419  */
12420 void nohz_balance_enter_idle(int cpu)
12421 {
12422 	struct rq *rq = cpu_rq(cpu);
12423 
12424 	WARN_ON_ONCE(cpu != smp_processor_id());
12425 
12426 	/* If this CPU is going down, then nothing needs to be done: */
12427 	if (!cpu_active(cpu))
12428 		return;
12429 
12430 	/*
12431 	 * Can be set safely without rq->lock held
12432 	 * If a clear happens, it will have evaluated last additions because
12433 	 * rq->lock is held during the check and the clear
12434 	 */
12435 	rq->has_blocked_load = 1;
12436 
12437 	/*
12438 	 * The tick is still stopped but load could have been added in the
12439 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12440 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12441 	 * of nohz.has_blocked can only happen after checking the new load
12442 	 */
12443 	if (rq->nohz_tick_stopped)
12444 		goto out;
12445 
12446 	/* If we're a completely isolated CPU, we don't play: */
12447 	if (on_null_domain(rq))
12448 		return;
12449 
12450 	rq->nohz_tick_stopped = 1;
12451 
12452 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12453 	atomic_inc(&nohz.nr_cpus);
12454 
12455 	/*
12456 	 * Ensures that if nohz_idle_balance() fails to observe our
12457 	 * @idle_cpus_mask store, it must observe the @has_blocked
12458 	 * and @needs_update stores.
12459 	 */
12460 	smp_mb__after_atomic();
12461 
12462 	set_cpu_sd_state_idle(cpu);
12463 
12464 	WRITE_ONCE(nohz.needs_update, 1);
12465 out:
12466 	/*
12467 	 * Each time a cpu enter idle, we assume that it has blocked load and
12468 	 * enable the periodic update of the load of idle CPUs
12469 	 */
12470 	WRITE_ONCE(nohz.has_blocked, 1);
12471 }
12472 
12473 static bool update_nohz_stats(struct rq *rq)
12474 {
12475 	unsigned int cpu = rq->cpu;
12476 
12477 	if (!rq->has_blocked_load)
12478 		return false;
12479 
12480 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12481 		return false;
12482 
12483 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12484 		return true;
12485 
12486 	sched_balance_update_blocked_averages(cpu);
12487 
12488 	return rq->has_blocked_load;
12489 }
12490 
12491 /*
12492  * Internal function that runs load balance for all idle CPUs. The load balance
12493  * can be a simple update of blocked load or a complete load balance with
12494  * tasks movement depending of flags.
12495  */
12496 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12497 {
12498 	/* Earliest time when we have to do rebalance again */
12499 	unsigned long now = jiffies;
12500 	unsigned long next_balance = now + 60*HZ;
12501 	bool has_blocked_load = false;
12502 	int update_next_balance = 0;
12503 	int this_cpu = this_rq->cpu;
12504 	int balance_cpu;
12505 	struct rq *rq;
12506 
12507 	WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12508 
12509 	/*
12510 	 * We assume there will be no idle load after this update and clear
12511 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12512 	 * set the has_blocked flag and trigger another update of idle load.
12513 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12514 	 * setting the flag, we are sure to not clear the state and not
12515 	 * check the load of an idle cpu.
12516 	 *
12517 	 * Same applies to idle_cpus_mask vs needs_update.
12518 	 */
12519 	if (flags & NOHZ_STATS_KICK)
12520 		WRITE_ONCE(nohz.has_blocked, 0);
12521 	if (flags & NOHZ_NEXT_KICK)
12522 		WRITE_ONCE(nohz.needs_update, 0);
12523 
12524 	/*
12525 	 * Ensures that if we miss the CPU, we must see the has_blocked
12526 	 * store from nohz_balance_enter_idle().
12527 	 */
12528 	smp_mb();
12529 
12530 	/*
12531 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12532 	 * chance for other idle cpu to pull load.
12533 	 */
12534 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12535 		if (!idle_cpu(balance_cpu))
12536 			continue;
12537 
12538 		/*
12539 		 * If this CPU gets work to do, stop the load balancing
12540 		 * work being done for other CPUs. Next load
12541 		 * balancing owner will pick it up.
12542 		 */
12543 		if (!idle_cpu(this_cpu) && need_resched()) {
12544 			if (flags & NOHZ_STATS_KICK)
12545 				has_blocked_load = true;
12546 			if (flags & NOHZ_NEXT_KICK)
12547 				WRITE_ONCE(nohz.needs_update, 1);
12548 			goto abort;
12549 		}
12550 
12551 		rq = cpu_rq(balance_cpu);
12552 
12553 		if (flags & NOHZ_STATS_KICK)
12554 			has_blocked_load |= update_nohz_stats(rq);
12555 
12556 		/*
12557 		 * If time for next balance is due,
12558 		 * do the balance.
12559 		 */
12560 		if (time_after_eq(jiffies, rq->next_balance)) {
12561 			struct rq_flags rf;
12562 
12563 			rq_lock_irqsave(rq, &rf);
12564 			update_rq_clock(rq);
12565 			rq_unlock_irqrestore(rq, &rf);
12566 
12567 			if (flags & NOHZ_BALANCE_KICK)
12568 				sched_balance_domains(rq, CPU_IDLE);
12569 		}
12570 
12571 		if (time_after(next_balance, rq->next_balance)) {
12572 			next_balance = rq->next_balance;
12573 			update_next_balance = 1;
12574 		}
12575 	}
12576 
12577 	/*
12578 	 * next_balance will be updated only when there is a need.
12579 	 * When the CPU is attached to null domain for ex, it will not be
12580 	 * updated.
12581 	 */
12582 	if (likely(update_next_balance))
12583 		nohz.next_balance = next_balance;
12584 
12585 	if (flags & NOHZ_STATS_KICK)
12586 		WRITE_ONCE(nohz.next_blocked,
12587 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12588 
12589 abort:
12590 	/* There is still blocked load, enable periodic update */
12591 	if (has_blocked_load)
12592 		WRITE_ONCE(nohz.has_blocked, 1);
12593 }
12594 
12595 /*
12596  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12597  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12598  */
12599 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12600 {
12601 	unsigned int flags = this_rq->nohz_idle_balance;
12602 
12603 	if (!flags)
12604 		return false;
12605 
12606 	this_rq->nohz_idle_balance = 0;
12607 
12608 	if (idle != CPU_IDLE)
12609 		return false;
12610 
12611 	_nohz_idle_balance(this_rq, flags);
12612 
12613 	return true;
12614 }
12615 
12616 /*
12617  * Check if we need to directly run the ILB for updating blocked load before
12618  * entering idle state. Here we run ILB directly without issuing IPIs.
12619  *
12620  * Note that when this function is called, the tick may not yet be stopped on
12621  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12622  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12623  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12624  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12625  * called from this function on (this) CPU that's not yet in the mask. That's
12626  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12627  * updating the blocked load of already idle CPUs without waking up one of
12628  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12629  * cpu about to enter idle, because it can take a long time.
12630  */
12631 void nohz_run_idle_balance(int cpu)
12632 {
12633 	unsigned int flags;
12634 
12635 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12636 
12637 	/*
12638 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12639 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12640 	 */
12641 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12642 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12643 }
12644 
12645 static void nohz_newidle_balance(struct rq *this_rq)
12646 {
12647 	int this_cpu = this_rq->cpu;
12648 
12649 	/* Will wake up very soon. No time for doing anything else*/
12650 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12651 		return;
12652 
12653 	/* Don't need to update blocked load of idle CPUs*/
12654 	if (!READ_ONCE(nohz.has_blocked) ||
12655 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12656 		return;
12657 
12658 	/*
12659 	 * Set the need to trigger ILB in order to update blocked load
12660 	 * before entering idle state.
12661 	 */
12662 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12663 }
12664 
12665 #else /* !CONFIG_NO_HZ_COMMON: */
12666 static inline void nohz_balancer_kick(struct rq *rq) { }
12667 
12668 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12669 {
12670 	return false;
12671 }
12672 
12673 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12674 #endif /* !CONFIG_NO_HZ_COMMON */
12675 
12676 /*
12677  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12678  * idle. Attempts to pull tasks from other CPUs.
12679  *
12680  * Returns:
12681  *   < 0 - we released the lock and there are !fair tasks present
12682  *     0 - failed, no new tasks
12683  *   > 0 - success, new (fair) tasks present
12684  */
12685 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12686 {
12687 	unsigned long next_balance = jiffies + HZ;
12688 	int this_cpu = this_rq->cpu;
12689 	int continue_balancing = 1;
12690 	u64 t0, t1, curr_cost = 0;
12691 	struct sched_domain *sd;
12692 	int pulled_task = 0;
12693 
12694 	update_misfit_status(NULL, this_rq);
12695 
12696 	/*
12697 	 * There is a task waiting to run. No need to search for one.
12698 	 * Return 0; the task will be enqueued when switching to idle.
12699 	 */
12700 	if (this_rq->ttwu_pending)
12701 		return 0;
12702 
12703 	/*
12704 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12705 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12706 	 * as idle time.
12707 	 */
12708 	this_rq->idle_stamp = rq_clock(this_rq);
12709 
12710 	/*
12711 	 * Do not pull tasks towards !active CPUs...
12712 	 */
12713 	if (!cpu_active(this_cpu))
12714 		return 0;
12715 
12716 	/*
12717 	 * This is OK, because current is on_cpu, which avoids it being picked
12718 	 * for load-balance and preemption/IRQs are still disabled avoiding
12719 	 * further scheduler activity on it and we're being very careful to
12720 	 * re-start the picking loop.
12721 	 */
12722 	rq_unpin_lock(this_rq, rf);
12723 
12724 	rcu_read_lock();
12725 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12726 
12727 	if (!get_rd_overloaded(this_rq->rd) ||
12728 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12729 
12730 		if (sd)
12731 			update_next_balance(sd, &next_balance);
12732 		rcu_read_unlock();
12733 
12734 		goto out;
12735 	}
12736 	rcu_read_unlock();
12737 
12738 	raw_spin_rq_unlock(this_rq);
12739 
12740 	t0 = sched_clock_cpu(this_cpu);
12741 	sched_balance_update_blocked_averages(this_cpu);
12742 
12743 	rcu_read_lock();
12744 	for_each_domain(this_cpu, sd) {
12745 		u64 domain_cost;
12746 
12747 		update_next_balance(sd, &next_balance);
12748 
12749 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12750 			break;
12751 
12752 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12753 
12754 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12755 						   sd, CPU_NEWLY_IDLE,
12756 						   &continue_balancing);
12757 
12758 			t1 = sched_clock_cpu(this_cpu);
12759 			domain_cost = t1 - t0;
12760 			update_newidle_cost(sd, domain_cost);
12761 
12762 			curr_cost += domain_cost;
12763 			t0 = t1;
12764 		}
12765 
12766 		/*
12767 		 * Stop searching for tasks to pull if there are
12768 		 * now runnable tasks on this rq.
12769 		 */
12770 		if (pulled_task || !continue_balancing)
12771 			break;
12772 	}
12773 	rcu_read_unlock();
12774 
12775 	raw_spin_rq_lock(this_rq);
12776 
12777 	if (curr_cost > this_rq->max_idle_balance_cost)
12778 		this_rq->max_idle_balance_cost = curr_cost;
12779 
12780 	/*
12781 	 * While browsing the domains, we released the rq lock, a task could
12782 	 * have been enqueued in the meantime. Since we're not going idle,
12783 	 * pretend we pulled a task.
12784 	 */
12785 	if (this_rq->cfs.h_nr_queued && !pulled_task)
12786 		pulled_task = 1;
12787 
12788 	/* Is there a task of a high priority class? */
12789 	if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12790 		pulled_task = -1;
12791 
12792 out:
12793 	/* Move the next balance forward */
12794 	if (time_after(this_rq->next_balance, next_balance))
12795 		this_rq->next_balance = next_balance;
12796 
12797 	if (pulled_task)
12798 		this_rq->idle_stamp = 0;
12799 	else
12800 		nohz_newidle_balance(this_rq);
12801 
12802 	rq_repin_lock(this_rq, rf);
12803 
12804 	return pulled_task;
12805 }
12806 
12807 /*
12808  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12809  *
12810  * - directly from the local sched_tick() for periodic load balancing
12811  *
12812  * - indirectly from a remote sched_tick() for NOHZ idle balancing
12813  *   through the SMP cross-call nohz_csd_func()
12814  */
12815 static __latent_entropy void sched_balance_softirq(void)
12816 {
12817 	struct rq *this_rq = this_rq();
12818 	enum cpu_idle_type idle = this_rq->idle_balance;
12819 	/*
12820 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12821 	 * balancing on behalf of the other idle CPUs whose ticks are
12822 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12823 	 * give the idle CPUs a chance to load balance. Else we may
12824 	 * load balance only within the local sched_domain hierarchy
12825 	 * and abort nohz_idle_balance altogether if we pull some load.
12826 	 */
12827 	if (nohz_idle_balance(this_rq, idle))
12828 		return;
12829 
12830 	/* normal load balance */
12831 	sched_balance_update_blocked_averages(this_rq->cpu);
12832 	sched_balance_domains(this_rq, idle);
12833 }
12834 
12835 /*
12836  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12837  */
12838 void sched_balance_trigger(struct rq *rq)
12839 {
12840 	/*
12841 	 * Don't need to rebalance while attached to NULL domain or
12842 	 * runqueue CPU is not active
12843 	 */
12844 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12845 		return;
12846 
12847 	if (time_after_eq(jiffies, rq->next_balance))
12848 		raise_softirq(SCHED_SOFTIRQ);
12849 
12850 	nohz_balancer_kick(rq);
12851 }
12852 
12853 static void rq_online_fair(struct rq *rq)
12854 {
12855 	update_sysctl();
12856 
12857 	update_runtime_enabled(rq);
12858 }
12859 
12860 static void rq_offline_fair(struct rq *rq)
12861 {
12862 	update_sysctl();
12863 
12864 	/* Ensure any throttled groups are reachable by pick_next_task */
12865 	unthrottle_offline_cfs_rqs(rq);
12866 
12867 	/* Ensure that we remove rq contribution to group share: */
12868 	clear_tg_offline_cfs_rqs(rq);
12869 }
12870 
12871 #ifdef CONFIG_SCHED_CORE
12872 static inline bool
12873 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12874 {
12875 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12876 	u64 slice = se->slice;
12877 
12878 	return (rtime * min_nr_tasks > slice);
12879 }
12880 
12881 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12882 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12883 {
12884 	if (!sched_core_enabled(rq))
12885 		return;
12886 
12887 	/*
12888 	 * If runqueue has only one task which used up its slice and
12889 	 * if the sibling is forced idle, then trigger schedule to
12890 	 * give forced idle task a chance.
12891 	 *
12892 	 * sched_slice() considers only this active rq and it gets the
12893 	 * whole slice. But during force idle, we have siblings acting
12894 	 * like a single runqueue and hence we need to consider runnable
12895 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12896 	 * go through the forced idle rq, but that would be a perf hit.
12897 	 * We can assume that the forced idle CPU has at least
12898 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12899 	 * if we need to give up the CPU.
12900 	 */
12901 	if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
12902 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12903 		resched_curr(rq);
12904 }
12905 
12906 /*
12907  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12908  */
12909 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12910 			 bool forceidle)
12911 {
12912 	for_each_sched_entity(se) {
12913 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12914 
12915 		if (forceidle) {
12916 			if (cfs_rq->forceidle_seq == fi_seq)
12917 				break;
12918 			cfs_rq->forceidle_seq = fi_seq;
12919 		}
12920 
12921 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12922 	}
12923 }
12924 
12925 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12926 {
12927 	struct sched_entity *se = &p->se;
12928 
12929 	if (p->sched_class != &fair_sched_class)
12930 		return;
12931 
12932 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12933 }
12934 
12935 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12936 			bool in_fi)
12937 {
12938 	struct rq *rq = task_rq(a);
12939 	const struct sched_entity *sea = &a->se;
12940 	const struct sched_entity *seb = &b->se;
12941 	struct cfs_rq *cfs_rqa;
12942 	struct cfs_rq *cfs_rqb;
12943 	s64 delta;
12944 
12945 	WARN_ON_ONCE(task_rq(b)->core != rq->core);
12946 
12947 #ifdef CONFIG_FAIR_GROUP_SCHED
12948 	/*
12949 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12950 	 * are immediate siblings.
12951 	 */
12952 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12953 		int sea_depth = sea->depth;
12954 		int seb_depth = seb->depth;
12955 
12956 		if (sea_depth >= seb_depth)
12957 			sea = parent_entity(sea);
12958 		if (sea_depth <= seb_depth)
12959 			seb = parent_entity(seb);
12960 	}
12961 
12962 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12963 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12964 
12965 	cfs_rqa = sea->cfs_rq;
12966 	cfs_rqb = seb->cfs_rq;
12967 #else /* !CONFIG_FAIR_GROUP_SCHED: */
12968 	cfs_rqa = &task_rq(a)->cfs;
12969 	cfs_rqb = &task_rq(b)->cfs;
12970 #endif /* !CONFIG_FAIR_GROUP_SCHED */
12971 
12972 	/*
12973 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12974 	 * min_vruntime_fi, which would have been updated in prior calls
12975 	 * to se_fi_update().
12976 	 */
12977 	delta = (s64)(sea->vruntime - seb->vruntime) +
12978 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12979 
12980 	return delta > 0;
12981 }
12982 
12983 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12984 {
12985 	struct cfs_rq *cfs_rq;
12986 
12987 #ifdef CONFIG_FAIR_GROUP_SCHED
12988 	cfs_rq = task_group(p)->cfs_rq[cpu];
12989 #else
12990 	cfs_rq = &cpu_rq(cpu)->cfs;
12991 #endif
12992 	return throttled_hierarchy(cfs_rq);
12993 }
12994 #else /* !CONFIG_SCHED_CORE: */
12995 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12996 #endif /* !CONFIG_SCHED_CORE */
12997 
12998 /*
12999  * scheduler tick hitting a task of our scheduling class.
13000  *
13001  * NOTE: This function can be called remotely by the tick offload that
13002  * goes along full dynticks. Therefore no local assumption can be made
13003  * and everything must be accessed through the @rq and @curr passed in
13004  * parameters.
13005  */
13006 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13007 {
13008 	struct cfs_rq *cfs_rq;
13009 	struct sched_entity *se = &curr->se;
13010 
13011 	for_each_sched_entity(se) {
13012 		cfs_rq = cfs_rq_of(se);
13013 		entity_tick(cfs_rq, se, queued);
13014 	}
13015 
13016 	if (static_branch_unlikely(&sched_numa_balancing))
13017 		task_tick_numa(rq, curr);
13018 
13019 	update_misfit_status(curr, rq);
13020 	check_update_overutilized_status(task_rq(curr));
13021 
13022 	task_tick_core(rq, curr);
13023 }
13024 
13025 /*
13026  * called on fork with the child task as argument from the parent's context
13027  *  - child not yet on the tasklist
13028  *  - preemption disabled
13029  */
13030 static void task_fork_fair(struct task_struct *p)
13031 {
13032 	set_task_max_allowed_capacity(p);
13033 }
13034 
13035 /*
13036  * Priority of the task has changed. Check to see if we preempt
13037  * the current task.
13038  */
13039 static void
13040 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13041 {
13042 	if (!task_on_rq_queued(p))
13043 		return;
13044 
13045 	if (rq->cfs.nr_queued == 1)
13046 		return;
13047 
13048 	/*
13049 	 * Reschedule if we are currently running on this runqueue and
13050 	 * our priority decreased, or if we are not currently running on
13051 	 * this runqueue and our priority is higher than the current's
13052 	 */
13053 	if (task_current_donor(rq, p)) {
13054 		if (p->prio > oldprio)
13055 			resched_curr(rq);
13056 	} else
13057 		wakeup_preempt(rq, p, 0);
13058 }
13059 
13060 #ifdef CONFIG_FAIR_GROUP_SCHED
13061 /*
13062  * Propagate the changes of the sched_entity across the tg tree to make it
13063  * visible to the root
13064  */
13065 static void propagate_entity_cfs_rq(struct sched_entity *se)
13066 {
13067 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13068 
13069 	if (cfs_rq_throttled(cfs_rq))
13070 		return;
13071 
13072 	if (!throttled_hierarchy(cfs_rq))
13073 		list_add_leaf_cfs_rq(cfs_rq);
13074 
13075 	/* Start to propagate at parent */
13076 	se = se->parent;
13077 
13078 	for_each_sched_entity(se) {
13079 		cfs_rq = cfs_rq_of(se);
13080 
13081 		update_load_avg(cfs_rq, se, UPDATE_TG);
13082 
13083 		if (cfs_rq_throttled(cfs_rq))
13084 			break;
13085 
13086 		if (!throttled_hierarchy(cfs_rq))
13087 			list_add_leaf_cfs_rq(cfs_rq);
13088 	}
13089 }
13090 #else /* !CONFIG_FAIR_GROUP_SCHED: */
13091 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13092 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13093 
13094 static void detach_entity_cfs_rq(struct sched_entity *se)
13095 {
13096 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13097 
13098 	/*
13099 	 * In case the task sched_avg hasn't been attached:
13100 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13101 	 * - A task which has been woken up by try_to_wake_up() but is
13102 	 *   waiting for actually being woken up by sched_ttwu_pending().
13103 	 */
13104 	if (!se->avg.last_update_time)
13105 		return;
13106 
13107 	/* Catch up with the cfs_rq and remove our load when we leave */
13108 	update_load_avg(cfs_rq, se, 0);
13109 	detach_entity_load_avg(cfs_rq, se);
13110 	update_tg_load_avg(cfs_rq);
13111 	propagate_entity_cfs_rq(se);
13112 }
13113 
13114 static void attach_entity_cfs_rq(struct sched_entity *se)
13115 {
13116 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13117 
13118 	/* Synchronize entity with its cfs_rq */
13119 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13120 	attach_entity_load_avg(cfs_rq, se);
13121 	update_tg_load_avg(cfs_rq);
13122 	propagate_entity_cfs_rq(se);
13123 }
13124 
13125 static void detach_task_cfs_rq(struct task_struct *p)
13126 {
13127 	struct sched_entity *se = &p->se;
13128 
13129 	detach_entity_cfs_rq(se);
13130 }
13131 
13132 static void attach_task_cfs_rq(struct task_struct *p)
13133 {
13134 	struct sched_entity *se = &p->se;
13135 
13136 	attach_entity_cfs_rq(se);
13137 }
13138 
13139 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13140 {
13141 	detach_task_cfs_rq(p);
13142 }
13143 
13144 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13145 {
13146 	WARN_ON_ONCE(p->se.sched_delayed);
13147 
13148 	attach_task_cfs_rq(p);
13149 
13150 	set_task_max_allowed_capacity(p);
13151 
13152 	if (task_on_rq_queued(p)) {
13153 		/*
13154 		 * We were most likely switched from sched_rt, so
13155 		 * kick off the schedule if running, otherwise just see
13156 		 * if we can still preempt the current task.
13157 		 */
13158 		if (task_current_donor(rq, p))
13159 			resched_curr(rq);
13160 		else
13161 			wakeup_preempt(rq, p, 0);
13162 	}
13163 }
13164 
13165 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13166 {
13167 	struct sched_entity *se = &p->se;
13168 
13169 	if (task_on_rq_queued(p)) {
13170 		/*
13171 		 * Move the next running task to the front of the list, so our
13172 		 * cfs_tasks list becomes MRU one.
13173 		 */
13174 		list_move(&se->group_node, &rq->cfs_tasks);
13175 	}
13176 	if (!first)
13177 		return;
13178 
13179 	WARN_ON_ONCE(se->sched_delayed);
13180 
13181 	if (hrtick_enabled_fair(rq))
13182 		hrtick_start_fair(rq, p);
13183 
13184 	update_misfit_status(p, rq);
13185 	sched_fair_update_stop_tick(rq, p);
13186 }
13187 
13188 /*
13189  * Account for a task changing its policy or group.
13190  *
13191  * This routine is mostly called to set cfs_rq->curr field when a task
13192  * migrates between groups/classes.
13193  */
13194 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13195 {
13196 	struct sched_entity *se = &p->se;
13197 
13198 	for_each_sched_entity(se) {
13199 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13200 
13201 		set_next_entity(cfs_rq, se);
13202 		/* ensure bandwidth has been allocated on our new cfs_rq */
13203 		account_cfs_rq_runtime(cfs_rq, 0);
13204 	}
13205 
13206 	__set_next_task_fair(rq, p, first);
13207 }
13208 
13209 void init_cfs_rq(struct cfs_rq *cfs_rq)
13210 {
13211 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13212 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13213 	raw_spin_lock_init(&cfs_rq->removed.lock);
13214 }
13215 
13216 #ifdef CONFIG_FAIR_GROUP_SCHED
13217 static void task_change_group_fair(struct task_struct *p)
13218 {
13219 	/*
13220 	 * We couldn't detach or attach a forked task which
13221 	 * hasn't been woken up by wake_up_new_task().
13222 	 */
13223 	if (READ_ONCE(p->__state) == TASK_NEW)
13224 		return;
13225 
13226 	detach_task_cfs_rq(p);
13227 
13228 	/* Tell se's cfs_rq has been changed -- migrated */
13229 	p->se.avg.last_update_time = 0;
13230 	set_task_rq(p, task_cpu(p));
13231 	attach_task_cfs_rq(p);
13232 }
13233 
13234 void free_fair_sched_group(struct task_group *tg)
13235 {
13236 	int i;
13237 
13238 	for_each_possible_cpu(i) {
13239 		if (tg->cfs_rq)
13240 			kfree(tg->cfs_rq[i]);
13241 		if (tg->se)
13242 			kfree(tg->se[i]);
13243 	}
13244 
13245 	kfree(tg->cfs_rq);
13246 	kfree(tg->se);
13247 }
13248 
13249 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13250 {
13251 	struct sched_entity *se;
13252 	struct cfs_rq *cfs_rq;
13253 	int i;
13254 
13255 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13256 	if (!tg->cfs_rq)
13257 		goto err;
13258 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13259 	if (!tg->se)
13260 		goto err;
13261 
13262 	tg->shares = NICE_0_LOAD;
13263 
13264 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13265 
13266 	for_each_possible_cpu(i) {
13267 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13268 				      GFP_KERNEL, cpu_to_node(i));
13269 		if (!cfs_rq)
13270 			goto err;
13271 
13272 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13273 				  GFP_KERNEL, cpu_to_node(i));
13274 		if (!se)
13275 			goto err_free_rq;
13276 
13277 		init_cfs_rq(cfs_rq);
13278 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13279 		init_entity_runnable_average(se);
13280 	}
13281 
13282 	return 1;
13283 
13284 err_free_rq:
13285 	kfree(cfs_rq);
13286 err:
13287 	return 0;
13288 }
13289 
13290 void online_fair_sched_group(struct task_group *tg)
13291 {
13292 	struct sched_entity *se;
13293 	struct rq_flags rf;
13294 	struct rq *rq;
13295 	int i;
13296 
13297 	for_each_possible_cpu(i) {
13298 		rq = cpu_rq(i);
13299 		se = tg->se[i];
13300 		rq_lock_irq(rq, &rf);
13301 		update_rq_clock(rq);
13302 		attach_entity_cfs_rq(se);
13303 		sync_throttle(tg, i);
13304 		rq_unlock_irq(rq, &rf);
13305 	}
13306 }
13307 
13308 void unregister_fair_sched_group(struct task_group *tg)
13309 {
13310 	int cpu;
13311 
13312 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13313 
13314 	for_each_possible_cpu(cpu) {
13315 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13316 		struct sched_entity *se = tg->se[cpu];
13317 		struct rq *rq = cpu_rq(cpu);
13318 
13319 		if (se) {
13320 			if (se->sched_delayed) {
13321 				guard(rq_lock_irqsave)(rq);
13322 				if (se->sched_delayed) {
13323 					update_rq_clock(rq);
13324 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13325 				}
13326 				list_del_leaf_cfs_rq(cfs_rq);
13327 			}
13328 			remove_entity_load_avg(se);
13329 		}
13330 
13331 		/*
13332 		 * Only empty task groups can be destroyed; so we can speculatively
13333 		 * check on_list without danger of it being re-added.
13334 		 */
13335 		if (cfs_rq->on_list) {
13336 			guard(rq_lock_irqsave)(rq);
13337 			list_del_leaf_cfs_rq(cfs_rq);
13338 		}
13339 	}
13340 }
13341 
13342 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13343 			struct sched_entity *se, int cpu,
13344 			struct sched_entity *parent)
13345 {
13346 	struct rq *rq = cpu_rq(cpu);
13347 
13348 	cfs_rq->tg = tg;
13349 	cfs_rq->rq = rq;
13350 	init_cfs_rq_runtime(cfs_rq);
13351 
13352 	tg->cfs_rq[cpu] = cfs_rq;
13353 	tg->se[cpu] = se;
13354 
13355 	/* se could be NULL for root_task_group */
13356 	if (!se)
13357 		return;
13358 
13359 	if (!parent) {
13360 		se->cfs_rq = &rq->cfs;
13361 		se->depth = 0;
13362 	} else {
13363 		se->cfs_rq = parent->my_q;
13364 		se->depth = parent->depth + 1;
13365 	}
13366 
13367 	se->my_q = cfs_rq;
13368 	/* guarantee group entities always have weight */
13369 	update_load_set(&se->load, NICE_0_LOAD);
13370 	se->parent = parent;
13371 }
13372 
13373 static DEFINE_MUTEX(shares_mutex);
13374 
13375 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13376 {
13377 	int i;
13378 
13379 	lockdep_assert_held(&shares_mutex);
13380 
13381 	/*
13382 	 * We can't change the weight of the root cgroup.
13383 	 */
13384 	if (!tg->se[0])
13385 		return -EINVAL;
13386 
13387 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13388 
13389 	if (tg->shares == shares)
13390 		return 0;
13391 
13392 	tg->shares = shares;
13393 	for_each_possible_cpu(i) {
13394 		struct rq *rq = cpu_rq(i);
13395 		struct sched_entity *se = tg->se[i];
13396 		struct rq_flags rf;
13397 
13398 		/* Propagate contribution to hierarchy */
13399 		rq_lock_irqsave(rq, &rf);
13400 		update_rq_clock(rq);
13401 		for_each_sched_entity(se) {
13402 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13403 			update_cfs_group(se);
13404 		}
13405 		rq_unlock_irqrestore(rq, &rf);
13406 	}
13407 
13408 	return 0;
13409 }
13410 
13411 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13412 {
13413 	int ret;
13414 
13415 	mutex_lock(&shares_mutex);
13416 	if (tg_is_idle(tg))
13417 		ret = -EINVAL;
13418 	else
13419 		ret = __sched_group_set_shares(tg, shares);
13420 	mutex_unlock(&shares_mutex);
13421 
13422 	return ret;
13423 }
13424 
13425 int sched_group_set_idle(struct task_group *tg, long idle)
13426 {
13427 	int i;
13428 
13429 	if (tg == &root_task_group)
13430 		return -EINVAL;
13431 
13432 	if (idle < 0 || idle > 1)
13433 		return -EINVAL;
13434 
13435 	mutex_lock(&shares_mutex);
13436 
13437 	if (tg->idle == idle) {
13438 		mutex_unlock(&shares_mutex);
13439 		return 0;
13440 	}
13441 
13442 	tg->idle = idle;
13443 
13444 	for_each_possible_cpu(i) {
13445 		struct rq *rq = cpu_rq(i);
13446 		struct sched_entity *se = tg->se[i];
13447 		struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13448 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13449 		long idle_task_delta;
13450 		struct rq_flags rf;
13451 
13452 		rq_lock_irqsave(rq, &rf);
13453 
13454 		grp_cfs_rq->idle = idle;
13455 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13456 			goto next_cpu;
13457 
13458 		idle_task_delta = grp_cfs_rq->h_nr_queued -
13459 				  grp_cfs_rq->h_nr_idle;
13460 		if (!cfs_rq_is_idle(grp_cfs_rq))
13461 			idle_task_delta *= -1;
13462 
13463 		for_each_sched_entity(se) {
13464 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13465 
13466 			if (!se->on_rq)
13467 				break;
13468 
13469 			cfs_rq->h_nr_idle += idle_task_delta;
13470 
13471 			/* Already accounted at parent level and above. */
13472 			if (cfs_rq_is_idle(cfs_rq))
13473 				break;
13474 		}
13475 
13476 next_cpu:
13477 		rq_unlock_irqrestore(rq, &rf);
13478 	}
13479 
13480 	/* Idle groups have minimum weight. */
13481 	if (tg_is_idle(tg))
13482 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13483 	else
13484 		__sched_group_set_shares(tg, NICE_0_LOAD);
13485 
13486 	mutex_unlock(&shares_mutex);
13487 	return 0;
13488 }
13489 
13490 #endif /* CONFIG_FAIR_GROUP_SCHED */
13491 
13492 
13493 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13494 {
13495 	struct sched_entity *se = &task->se;
13496 	unsigned int rr_interval = 0;
13497 
13498 	/*
13499 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13500 	 * idle runqueue:
13501 	 */
13502 	if (rq->cfs.load.weight)
13503 		rr_interval = NS_TO_JIFFIES(se->slice);
13504 
13505 	return rr_interval;
13506 }
13507 
13508 /*
13509  * All the scheduling class methods:
13510  */
13511 DEFINE_SCHED_CLASS(fair) = {
13512 
13513 	.enqueue_task		= enqueue_task_fair,
13514 	.dequeue_task		= dequeue_task_fair,
13515 	.yield_task		= yield_task_fair,
13516 	.yield_to_task		= yield_to_task_fair,
13517 
13518 	.wakeup_preempt		= check_preempt_wakeup_fair,
13519 
13520 	.pick_task		= pick_task_fair,
13521 	.pick_next_task		= __pick_next_task_fair,
13522 	.put_prev_task		= put_prev_task_fair,
13523 	.set_next_task          = set_next_task_fair,
13524 
13525 	.balance		= balance_fair,
13526 	.select_task_rq		= select_task_rq_fair,
13527 	.migrate_task_rq	= migrate_task_rq_fair,
13528 
13529 	.rq_online		= rq_online_fair,
13530 	.rq_offline		= rq_offline_fair,
13531 
13532 	.task_dead		= task_dead_fair,
13533 	.set_cpus_allowed	= set_cpus_allowed_fair,
13534 
13535 	.task_tick		= task_tick_fair,
13536 	.task_fork		= task_fork_fair,
13537 
13538 	.reweight_task		= reweight_task_fair,
13539 	.prio_changed		= prio_changed_fair,
13540 	.switched_from		= switched_from_fair,
13541 	.switched_to		= switched_to_fair,
13542 
13543 	.get_rr_interval	= get_rr_interval_fair,
13544 
13545 	.update_curr		= update_curr_fair,
13546 
13547 #ifdef CONFIG_FAIR_GROUP_SCHED
13548 	.task_change_group	= task_change_group_fair,
13549 #endif
13550 
13551 #ifdef CONFIG_SCHED_CORE
13552 	.task_is_throttled	= task_is_throttled_fair,
13553 #endif
13554 
13555 #ifdef CONFIG_UCLAMP_TASK
13556 	.uclamp_enabled		= 1,
13557 #endif
13558 };
13559 
13560 void print_cfs_stats(struct seq_file *m, int cpu)
13561 {
13562 	struct cfs_rq *cfs_rq, *pos;
13563 
13564 	rcu_read_lock();
13565 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13566 		print_cfs_rq(m, cpu, cfs_rq);
13567 	rcu_read_unlock();
13568 }
13569 
13570 #ifdef CONFIG_NUMA_BALANCING
13571 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13572 {
13573 	int node;
13574 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13575 	struct numa_group *ng;
13576 
13577 	rcu_read_lock();
13578 	ng = rcu_dereference(p->numa_group);
13579 	for_each_online_node(node) {
13580 		if (p->numa_faults) {
13581 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13582 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13583 		}
13584 		if (ng) {
13585 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13586 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13587 		}
13588 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13589 	}
13590 	rcu_read_unlock();
13591 }
13592 #endif /* CONFIG_NUMA_BALANCING */
13593 
13594 __init void init_sched_fair_class(void)
13595 {
13596 	int i;
13597 
13598 	for_each_possible_cpu(i) {
13599 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13600 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13601 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13602 					GFP_KERNEL, cpu_to_node(i));
13603 
13604 #ifdef CONFIG_CFS_BANDWIDTH
13605 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13606 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13607 #endif
13608 	}
13609 
13610 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13611 
13612 #ifdef CONFIG_NO_HZ_COMMON
13613 	nohz.next_balance = jiffies;
13614 	nohz.next_blocked = jiffies;
13615 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13616 #endif
13617 }
13618