1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 /* 92 * For asym packing, by default the lower numbered CPU has higher priority. 93 */ 94 int __weak arch_asym_cpu_priority(int cpu) 95 { 96 return -cpu; 97 } 98 99 /* 100 * The margin used when comparing utilization with CPU capacity. 101 * 102 * (default: ~20%) 103 */ 104 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 105 106 /* 107 * The margin used when comparing CPU capacities. 108 * is 'cap1' noticeably greater than 'cap2' 109 * 110 * (default: ~5%) 111 */ 112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 113 114 #ifdef CONFIG_CFS_BANDWIDTH 115 /* 116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 117 * each time a cfs_rq requests quota. 118 * 119 * Note: in the case that the slice exceeds the runtime remaining (either due 120 * to consumption or the quota being specified to be smaller than the slice) 121 * we will always only issue the remaining available time. 122 * 123 * (default: 5 msec, units: microseconds) 124 */ 125 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 126 #endif 127 128 #ifdef CONFIG_NUMA_BALANCING 129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 131 #endif 132 133 #ifdef CONFIG_SYSCTL 134 static const struct ctl_table sched_fair_sysctls[] = { 135 #ifdef CONFIG_CFS_BANDWIDTH 136 { 137 .procname = "sched_cfs_bandwidth_slice_us", 138 .data = &sysctl_sched_cfs_bandwidth_slice, 139 .maxlen = sizeof(unsigned int), 140 .mode = 0644, 141 .proc_handler = proc_dointvec_minmax, 142 .extra1 = SYSCTL_ONE, 143 }, 144 #endif 145 #ifdef CONFIG_NUMA_BALANCING 146 { 147 .procname = "numa_balancing_promote_rate_limit_MBps", 148 .data = &sysctl_numa_balancing_promote_rate_limit, 149 .maxlen = sizeof(unsigned int), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 }, 154 #endif /* CONFIG_NUMA_BALANCING */ 155 }; 156 157 static int __init sched_fair_sysctl_init(void) 158 { 159 register_sysctl_init("kernel", sched_fair_sysctls); 160 return 0; 161 } 162 late_initcall(sched_fair_sysctl_init); 163 #endif /* CONFIG_SYSCTL */ 164 165 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 166 { 167 lw->weight += inc; 168 lw->inv_weight = 0; 169 } 170 171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 172 { 173 lw->weight -= dec; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_set(struct load_weight *lw, unsigned long w) 178 { 179 lw->weight = w; 180 lw->inv_weight = 0; 181 } 182 183 /* 184 * Increase the granularity value when there are more CPUs, 185 * because with more CPUs the 'effective latency' as visible 186 * to users decreases. But the relationship is not linear, 187 * so pick a second-best guess by going with the log2 of the 188 * number of CPUs. 189 * 190 * This idea comes from the SD scheduler of Con Kolivas: 191 */ 192 static unsigned int get_update_sysctl_factor(void) 193 { 194 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 195 unsigned int factor; 196 197 switch (sysctl_sched_tunable_scaling) { 198 case SCHED_TUNABLESCALING_NONE: 199 factor = 1; 200 break; 201 case SCHED_TUNABLESCALING_LINEAR: 202 factor = cpus; 203 break; 204 case SCHED_TUNABLESCALING_LOG: 205 default: 206 factor = 1 + ilog2(cpus); 207 break; 208 } 209 210 return factor; 211 } 212 213 static void update_sysctl(void) 214 { 215 unsigned int factor = get_update_sysctl_factor(); 216 217 #define SET_SYSCTL(name) \ 218 (sysctl_##name = (factor) * normalized_sysctl_##name) 219 SET_SYSCTL(sched_base_slice); 220 #undef SET_SYSCTL 221 } 222 223 void __init sched_init_granularity(void) 224 { 225 update_sysctl(); 226 } 227 228 #define WMULT_CONST (~0U) 229 #define WMULT_SHIFT 32 230 231 static void __update_inv_weight(struct load_weight *lw) 232 { 233 unsigned long w; 234 235 if (likely(lw->inv_weight)) 236 return; 237 238 w = scale_load_down(lw->weight); 239 240 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 241 lw->inv_weight = 1; 242 else if (unlikely(!w)) 243 lw->inv_weight = WMULT_CONST; 244 else 245 lw->inv_weight = WMULT_CONST / w; 246 } 247 248 /* 249 * delta_exec * weight / lw.weight 250 * OR 251 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 252 * 253 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 254 * we're guaranteed shift stays positive because inv_weight is guaranteed to 255 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 256 * 257 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 258 * weight/lw.weight <= 1, and therefore our shift will also be positive. 259 */ 260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 261 { 262 u64 fact = scale_load_down(weight); 263 u32 fact_hi = (u32)(fact >> 32); 264 int shift = WMULT_SHIFT; 265 int fs; 266 267 __update_inv_weight(lw); 268 269 if (unlikely(fact_hi)) { 270 fs = fls(fact_hi); 271 shift -= fs; 272 fact >>= fs; 273 } 274 275 fact = mul_u32_u32(fact, lw->inv_weight); 276 277 fact_hi = (u32)(fact >> 32); 278 if (fact_hi) { 279 fs = fls(fact_hi); 280 shift -= fs; 281 fact >>= fs; 282 } 283 284 return mul_u64_u32_shr(delta_exec, fact, shift); 285 } 286 287 /* 288 * delta /= w 289 */ 290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 291 { 292 if (unlikely(se->load.weight != NICE_0_LOAD)) 293 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 294 295 return delta; 296 } 297 298 const struct sched_class fair_sched_class; 299 300 /************************************************************** 301 * CFS operations on generic schedulable entities: 302 */ 303 304 #ifdef CONFIG_FAIR_GROUP_SCHED 305 306 /* Walk up scheduling entities hierarchy */ 307 #define for_each_sched_entity(se) \ 308 for (; se; se = se->parent) 309 310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 311 { 312 struct rq *rq = rq_of(cfs_rq); 313 int cpu = cpu_of(rq); 314 315 if (cfs_rq->on_list) 316 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 317 318 cfs_rq->on_list = 1; 319 320 /* 321 * Ensure we either appear before our parent (if already 322 * enqueued) or force our parent to appear after us when it is 323 * enqueued. The fact that we always enqueue bottom-up 324 * reduces this to two cases and a special case for the root 325 * cfs_rq. Furthermore, it also means that we will always reset 326 * tmp_alone_branch either when the branch is connected 327 * to a tree or when we reach the top of the tree 328 */ 329 if (cfs_rq->tg->parent && 330 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 331 /* 332 * If parent is already on the list, we add the child 333 * just before. Thanks to circular linked property of 334 * the list, this means to put the child at the tail 335 * of the list that starts by parent. 336 */ 337 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 338 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 339 /* 340 * The branch is now connected to its tree so we can 341 * reset tmp_alone_branch to the beginning of the 342 * list. 343 */ 344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 345 return true; 346 } 347 348 if (!cfs_rq->tg->parent) { 349 /* 350 * cfs rq without parent should be put 351 * at the tail of the list. 352 */ 353 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 354 &rq->leaf_cfs_rq_list); 355 /* 356 * We have reach the top of a tree so we can reset 357 * tmp_alone_branch to the beginning of the list. 358 */ 359 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 360 return true; 361 } 362 363 /* 364 * The parent has not already been added so we want to 365 * make sure that it will be put after us. 366 * tmp_alone_branch points to the begin of the branch 367 * where we will add parent. 368 */ 369 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 370 /* 371 * update tmp_alone_branch to points to the new begin 372 * of the branch 373 */ 374 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 375 return false; 376 } 377 378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 379 { 380 if (cfs_rq->on_list) { 381 struct rq *rq = rq_of(cfs_rq); 382 383 /* 384 * With cfs_rq being unthrottled/throttled during an enqueue, 385 * it can happen the tmp_alone_branch points to the leaf that 386 * we finally want to delete. In this case, tmp_alone_branch moves 387 * to the prev element but it will point to rq->leaf_cfs_rq_list 388 * at the end of the enqueue. 389 */ 390 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 391 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 392 393 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 394 cfs_rq->on_list = 0; 395 } 396 } 397 398 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 399 { 400 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 401 } 402 403 /* Iterate through all leaf cfs_rq's on a runqueue */ 404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 405 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 406 leaf_cfs_rq_list) 407 408 /* Do the two (enqueued) entities belong to the same group ? */ 409 static inline struct cfs_rq * 410 is_same_group(struct sched_entity *se, struct sched_entity *pse) 411 { 412 if (se->cfs_rq == pse->cfs_rq) 413 return se->cfs_rq; 414 415 return NULL; 416 } 417 418 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 419 { 420 return se->parent; 421 } 422 423 static void 424 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 425 { 426 int se_depth, pse_depth; 427 428 /* 429 * preemption test can be made between sibling entities who are in the 430 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 431 * both tasks until we find their ancestors who are siblings of common 432 * parent. 433 */ 434 435 /* First walk up until both entities are at same depth */ 436 se_depth = (*se)->depth; 437 pse_depth = (*pse)->depth; 438 439 while (se_depth > pse_depth) { 440 se_depth--; 441 *se = parent_entity(*se); 442 } 443 444 while (pse_depth > se_depth) { 445 pse_depth--; 446 *pse = parent_entity(*pse); 447 } 448 449 while (!is_same_group(*se, *pse)) { 450 *se = parent_entity(*se); 451 *pse = parent_entity(*pse); 452 } 453 } 454 455 static int tg_is_idle(struct task_group *tg) 456 { 457 return tg->idle > 0; 458 } 459 460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 461 { 462 return cfs_rq->idle > 0; 463 } 464 465 static int se_is_idle(struct sched_entity *se) 466 { 467 if (entity_is_task(se)) 468 return task_has_idle_policy(task_of(se)); 469 return cfs_rq_is_idle(group_cfs_rq(se)); 470 } 471 472 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 473 474 #define for_each_sched_entity(se) \ 475 for (; se; se = NULL) 476 477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 478 { 479 return true; 480 } 481 482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 483 { 484 } 485 486 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 487 { 488 } 489 490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 491 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 492 493 static inline struct sched_entity *parent_entity(struct sched_entity *se) 494 { 495 return NULL; 496 } 497 498 static inline void 499 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 500 { 501 } 502 503 static inline int tg_is_idle(struct task_group *tg) 504 { 505 return 0; 506 } 507 508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 509 { 510 return 0; 511 } 512 513 static int se_is_idle(struct sched_entity *se) 514 { 515 return task_has_idle_policy(task_of(se)); 516 } 517 518 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 519 520 static __always_inline 521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 522 523 /************************************************************** 524 * Scheduling class tree data structure manipulation methods: 525 */ 526 527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 528 { 529 s64 delta = (s64)(vruntime - max_vruntime); 530 if (delta > 0) 531 max_vruntime = vruntime; 532 533 return max_vruntime; 534 } 535 536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 537 { 538 s64 delta = (s64)(vruntime - min_vruntime); 539 if (delta < 0) 540 min_vruntime = vruntime; 541 542 return min_vruntime; 543 } 544 545 static inline bool entity_before(const struct sched_entity *a, 546 const struct sched_entity *b) 547 { 548 /* 549 * Tiebreak on vruntime seems unnecessary since it can 550 * hardly happen. 551 */ 552 return (s64)(a->deadline - b->deadline) < 0; 553 } 554 555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 556 { 557 return (s64)(se->vruntime - cfs_rq->min_vruntime); 558 } 559 560 #define __node_2_se(node) \ 561 rb_entry((node), struct sched_entity, run_node) 562 563 /* 564 * Compute virtual time from the per-task service numbers: 565 * 566 * Fair schedulers conserve lag: 567 * 568 * \Sum lag_i = 0 569 * 570 * Where lag_i is given by: 571 * 572 * lag_i = S - s_i = w_i * (V - v_i) 573 * 574 * Where S is the ideal service time and V is it's virtual time counterpart. 575 * Therefore: 576 * 577 * \Sum lag_i = 0 578 * \Sum w_i * (V - v_i) = 0 579 * \Sum w_i * V - w_i * v_i = 0 580 * 581 * From which we can solve an expression for V in v_i (which we have in 582 * se->vruntime): 583 * 584 * \Sum v_i * w_i \Sum v_i * w_i 585 * V = -------------- = -------------- 586 * \Sum w_i W 587 * 588 * Specifically, this is the weighted average of all entity virtual runtimes. 589 * 590 * [[ NOTE: this is only equal to the ideal scheduler under the condition 591 * that join/leave operations happen at lag_i = 0, otherwise the 592 * virtual time has non-contiguous motion equivalent to: 593 * 594 * V +-= lag_i / W 595 * 596 * Also see the comment in place_entity() that deals with this. ]] 597 * 598 * However, since v_i is u64, and the multiplication could easily overflow 599 * transform it into a relative form that uses smaller quantities: 600 * 601 * Substitute: v_i == (v_i - v0) + v0 602 * 603 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 604 * V = ---------------------------- = --------------------- + v0 605 * W W 606 * 607 * Which we track using: 608 * 609 * v0 := cfs_rq->min_vruntime 610 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 611 * \Sum w_i := cfs_rq->avg_load 612 * 613 * Since min_vruntime is a monotonic increasing variable that closely tracks 614 * the per-task service, these deltas: (v_i - v), will be in the order of the 615 * maximal (virtual) lag induced in the system due to quantisation. 616 * 617 * Also, we use scale_load_down() to reduce the size. 618 * 619 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 620 */ 621 static void 622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 623 { 624 unsigned long weight = scale_load_down(se->load.weight); 625 s64 key = entity_key(cfs_rq, se); 626 627 cfs_rq->avg_vruntime += key * weight; 628 cfs_rq->avg_load += weight; 629 } 630 631 static void 632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 633 { 634 unsigned long weight = scale_load_down(se->load.weight); 635 s64 key = entity_key(cfs_rq, se); 636 637 cfs_rq->avg_vruntime -= key * weight; 638 cfs_rq->avg_load -= weight; 639 } 640 641 static inline 642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 643 { 644 /* 645 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 646 */ 647 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 648 } 649 650 /* 651 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 652 * For this to be so, the result of this function must have a left bias. 653 */ 654 u64 avg_vruntime(struct cfs_rq *cfs_rq) 655 { 656 struct sched_entity *curr = cfs_rq->curr; 657 s64 avg = cfs_rq->avg_vruntime; 658 long load = cfs_rq->avg_load; 659 660 if (curr && curr->on_rq) { 661 unsigned long weight = scale_load_down(curr->load.weight); 662 663 avg += entity_key(cfs_rq, curr) * weight; 664 load += weight; 665 } 666 667 if (load) { 668 /* sign flips effective floor / ceiling */ 669 if (avg < 0) 670 avg -= (load - 1); 671 avg = div_s64(avg, load); 672 } 673 674 return cfs_rq->min_vruntime + avg; 675 } 676 677 /* 678 * lag_i = S - s_i = w_i * (V - v_i) 679 * 680 * However, since V is approximated by the weighted average of all entities it 681 * is possible -- by addition/removal/reweight to the tree -- to move V around 682 * and end up with a larger lag than we started with. 683 * 684 * Limit this to either double the slice length with a minimum of TICK_NSEC 685 * since that is the timing granularity. 686 * 687 * EEVDF gives the following limit for a steady state system: 688 * 689 * -r_max < lag < max(r_max, q) 690 * 691 * XXX could add max_slice to the augmented data to track this. 692 */ 693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 694 { 695 s64 vlag, limit; 696 697 WARN_ON_ONCE(!se->on_rq); 698 699 vlag = avg_vruntime(cfs_rq) - se->vruntime; 700 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 701 702 se->vlag = clamp(vlag, -limit, limit); 703 } 704 705 /* 706 * Entity is eligible once it received less service than it ought to have, 707 * eg. lag >= 0. 708 * 709 * lag_i = S - s_i = w_i*(V - v_i) 710 * 711 * lag_i >= 0 -> V >= v_i 712 * 713 * \Sum (v_i - v)*w_i 714 * V = ------------------ + v 715 * \Sum w_i 716 * 717 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 718 * 719 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 720 * to the loss in precision caused by the division. 721 */ 722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 723 { 724 struct sched_entity *curr = cfs_rq->curr; 725 s64 avg = cfs_rq->avg_vruntime; 726 long load = cfs_rq->avg_load; 727 728 if (curr && curr->on_rq) { 729 unsigned long weight = scale_load_down(curr->load.weight); 730 731 avg += entity_key(cfs_rq, curr) * weight; 732 load += weight; 733 } 734 735 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 736 } 737 738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 739 { 740 return vruntime_eligible(cfs_rq, se->vruntime); 741 } 742 743 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 744 { 745 u64 min_vruntime = cfs_rq->min_vruntime; 746 /* 747 * open coded max_vruntime() to allow updating avg_vruntime 748 */ 749 s64 delta = (s64)(vruntime - min_vruntime); 750 if (delta > 0) { 751 avg_vruntime_update(cfs_rq, delta); 752 min_vruntime = vruntime; 753 } 754 return min_vruntime; 755 } 756 757 static void update_min_vruntime(struct cfs_rq *cfs_rq) 758 { 759 struct sched_entity *se = __pick_root_entity(cfs_rq); 760 struct sched_entity *curr = cfs_rq->curr; 761 u64 vruntime = cfs_rq->min_vruntime; 762 763 if (curr) { 764 if (curr->on_rq) 765 vruntime = curr->vruntime; 766 else 767 curr = NULL; 768 } 769 770 if (se) { 771 if (!curr) 772 vruntime = se->min_vruntime; 773 else 774 vruntime = min_vruntime(vruntime, se->min_vruntime); 775 } 776 777 /* ensure we never gain time by being placed backwards. */ 778 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 779 } 780 781 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 782 { 783 struct sched_entity *root = __pick_root_entity(cfs_rq); 784 struct sched_entity *curr = cfs_rq->curr; 785 u64 min_slice = ~0ULL; 786 787 if (curr && curr->on_rq) 788 min_slice = curr->slice; 789 790 if (root) 791 min_slice = min(min_slice, root->min_slice); 792 793 return min_slice; 794 } 795 796 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 797 { 798 return entity_before(__node_2_se(a), __node_2_se(b)); 799 } 800 801 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 802 803 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 804 { 805 if (node) { 806 struct sched_entity *rse = __node_2_se(node); 807 if (vruntime_gt(min_vruntime, se, rse)) 808 se->min_vruntime = rse->min_vruntime; 809 } 810 } 811 812 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 813 { 814 if (node) { 815 struct sched_entity *rse = __node_2_se(node); 816 if (rse->min_slice < se->min_slice) 817 se->min_slice = rse->min_slice; 818 } 819 } 820 821 /* 822 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 823 */ 824 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 825 { 826 u64 old_min_vruntime = se->min_vruntime; 827 u64 old_min_slice = se->min_slice; 828 struct rb_node *node = &se->run_node; 829 830 se->min_vruntime = se->vruntime; 831 __min_vruntime_update(se, node->rb_right); 832 __min_vruntime_update(se, node->rb_left); 833 834 se->min_slice = se->slice; 835 __min_slice_update(se, node->rb_right); 836 __min_slice_update(se, node->rb_left); 837 838 return se->min_vruntime == old_min_vruntime && 839 se->min_slice == old_min_slice; 840 } 841 842 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 843 run_node, min_vruntime, min_vruntime_update); 844 845 /* 846 * Enqueue an entity into the rb-tree: 847 */ 848 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 849 { 850 avg_vruntime_add(cfs_rq, se); 851 se->min_vruntime = se->vruntime; 852 se->min_slice = se->slice; 853 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 854 __entity_less, &min_vruntime_cb); 855 } 856 857 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 858 { 859 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 860 &min_vruntime_cb); 861 avg_vruntime_sub(cfs_rq, se); 862 } 863 864 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 865 { 866 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 867 868 if (!root) 869 return NULL; 870 871 return __node_2_se(root); 872 } 873 874 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 875 { 876 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 877 878 if (!left) 879 return NULL; 880 881 return __node_2_se(left); 882 } 883 884 /* 885 * HACK, stash a copy of deadline at the point of pick in vlag, 886 * which isn't used until dequeue. 887 */ 888 static inline void set_protect_slice(struct sched_entity *se) 889 { 890 se->vlag = se->deadline; 891 } 892 893 static inline bool protect_slice(struct sched_entity *se) 894 { 895 return se->vlag == se->deadline; 896 } 897 898 static inline void cancel_protect_slice(struct sched_entity *se) 899 { 900 if (protect_slice(se)) 901 se->vlag = se->deadline + 1; 902 } 903 904 /* 905 * Earliest Eligible Virtual Deadline First 906 * 907 * In order to provide latency guarantees for different request sizes 908 * EEVDF selects the best runnable task from two criteria: 909 * 910 * 1) the task must be eligible (must be owed service) 911 * 912 * 2) from those tasks that meet 1), we select the one 913 * with the earliest virtual deadline. 914 * 915 * We can do this in O(log n) time due to an augmented RB-tree. The 916 * tree keeps the entries sorted on deadline, but also functions as a 917 * heap based on the vruntime by keeping: 918 * 919 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 920 * 921 * Which allows tree pruning through eligibility. 922 */ 923 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 924 { 925 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 926 struct sched_entity *se = __pick_first_entity(cfs_rq); 927 struct sched_entity *curr = cfs_rq->curr; 928 struct sched_entity *best = NULL; 929 930 /* 931 * We can safely skip eligibility check if there is only one entity 932 * in this cfs_rq, saving some cycles. 933 */ 934 if (cfs_rq->nr_queued == 1) 935 return curr && curr->on_rq ? curr : se; 936 937 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 938 curr = NULL; 939 940 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr)) 941 return curr; 942 943 /* Pick the leftmost entity if it's eligible */ 944 if (se && entity_eligible(cfs_rq, se)) { 945 best = se; 946 goto found; 947 } 948 949 /* Heap search for the EEVD entity */ 950 while (node) { 951 struct rb_node *left = node->rb_left; 952 953 /* 954 * Eligible entities in left subtree are always better 955 * choices, since they have earlier deadlines. 956 */ 957 if (left && vruntime_eligible(cfs_rq, 958 __node_2_se(left)->min_vruntime)) { 959 node = left; 960 continue; 961 } 962 963 se = __node_2_se(node); 964 965 /* 966 * The left subtree either is empty or has no eligible 967 * entity, so check the current node since it is the one 968 * with earliest deadline that might be eligible. 969 */ 970 if (entity_eligible(cfs_rq, se)) { 971 best = se; 972 break; 973 } 974 975 node = node->rb_right; 976 } 977 found: 978 if (!best || (curr && entity_before(curr, best))) 979 best = curr; 980 981 return best; 982 } 983 984 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 985 { 986 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 987 988 if (!last) 989 return NULL; 990 991 return __node_2_se(last); 992 } 993 994 /************************************************************** 995 * Scheduling class statistics methods: 996 */ 997 int sched_update_scaling(void) 998 { 999 unsigned int factor = get_update_sysctl_factor(); 1000 1001 #define WRT_SYSCTL(name) \ 1002 (normalized_sysctl_##name = sysctl_##name / (factor)) 1003 WRT_SYSCTL(sched_base_slice); 1004 #undef WRT_SYSCTL 1005 1006 return 0; 1007 } 1008 1009 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1010 1011 /* 1012 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1013 * this is probably good enough. 1014 */ 1015 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1016 { 1017 if ((s64)(se->vruntime - se->deadline) < 0) 1018 return false; 1019 1020 /* 1021 * For EEVDF the virtual time slope is determined by w_i (iow. 1022 * nice) while the request time r_i is determined by 1023 * sysctl_sched_base_slice. 1024 */ 1025 if (!se->custom_slice) 1026 se->slice = sysctl_sched_base_slice; 1027 1028 /* 1029 * EEVDF: vd_i = ve_i + r_i / w_i 1030 */ 1031 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1032 1033 /* 1034 * The task has consumed its request, reschedule. 1035 */ 1036 return true; 1037 } 1038 1039 #include "pelt.h" 1040 1041 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1042 static unsigned long task_h_load(struct task_struct *p); 1043 static unsigned long capacity_of(int cpu); 1044 1045 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1046 void init_entity_runnable_average(struct sched_entity *se) 1047 { 1048 struct sched_avg *sa = &se->avg; 1049 1050 memset(sa, 0, sizeof(*sa)); 1051 1052 /* 1053 * Tasks are initialized with full load to be seen as heavy tasks until 1054 * they get a chance to stabilize to their real load level. 1055 * Group entities are initialized with zero load to reflect the fact that 1056 * nothing has been attached to the task group yet. 1057 */ 1058 if (entity_is_task(se)) 1059 sa->load_avg = scale_load_down(se->load.weight); 1060 1061 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1062 } 1063 1064 /* 1065 * With new tasks being created, their initial util_avgs are extrapolated 1066 * based on the cfs_rq's current util_avg: 1067 * 1068 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1069 * * se_weight(se) 1070 * 1071 * However, in many cases, the above util_avg does not give a desired 1072 * value. Moreover, the sum of the util_avgs may be divergent, such 1073 * as when the series is a harmonic series. 1074 * 1075 * To solve this problem, we also cap the util_avg of successive tasks to 1076 * only 1/2 of the left utilization budget: 1077 * 1078 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1079 * 1080 * where n denotes the nth task and cpu_scale the CPU capacity. 1081 * 1082 * For example, for a CPU with 1024 of capacity, a simplest series from 1083 * the beginning would be like: 1084 * 1085 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1086 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1087 * 1088 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1089 * if util_avg > util_avg_cap. 1090 */ 1091 void post_init_entity_util_avg(struct task_struct *p) 1092 { 1093 struct sched_entity *se = &p->se; 1094 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1095 struct sched_avg *sa = &se->avg; 1096 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1097 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1098 1099 if (p->sched_class != &fair_sched_class) { 1100 /* 1101 * For !fair tasks do: 1102 * 1103 update_cfs_rq_load_avg(now, cfs_rq); 1104 attach_entity_load_avg(cfs_rq, se); 1105 switched_from_fair(rq, p); 1106 * 1107 * such that the next switched_to_fair() has the 1108 * expected state. 1109 */ 1110 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1111 return; 1112 } 1113 1114 if (cap > 0) { 1115 if (cfs_rq->avg.util_avg != 0) { 1116 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1117 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1118 1119 if (sa->util_avg > cap) 1120 sa->util_avg = cap; 1121 } else { 1122 sa->util_avg = cap; 1123 } 1124 } 1125 1126 sa->runnable_avg = sa->util_avg; 1127 } 1128 1129 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1130 { 1131 u64 now = rq_clock_task(rq); 1132 s64 delta_exec; 1133 1134 delta_exec = now - curr->exec_start; 1135 if (unlikely(delta_exec <= 0)) 1136 return delta_exec; 1137 1138 curr->exec_start = now; 1139 curr->sum_exec_runtime += delta_exec; 1140 1141 if (schedstat_enabled()) { 1142 struct sched_statistics *stats; 1143 1144 stats = __schedstats_from_se(curr); 1145 __schedstat_set(stats->exec_max, 1146 max(delta_exec, stats->exec_max)); 1147 } 1148 1149 return delta_exec; 1150 } 1151 1152 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1153 { 1154 trace_sched_stat_runtime(p, delta_exec); 1155 account_group_exec_runtime(p, delta_exec); 1156 cgroup_account_cputime(p, delta_exec); 1157 } 1158 1159 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1160 { 1161 if (!sched_feat(PREEMPT_SHORT)) 1162 return false; 1163 1164 if (curr->vlag == curr->deadline) 1165 return false; 1166 1167 return !entity_eligible(cfs_rq, curr); 1168 } 1169 1170 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1171 struct sched_entity *pse, struct sched_entity *se) 1172 { 1173 if (!sched_feat(PREEMPT_SHORT)) 1174 return false; 1175 1176 if (pse->slice >= se->slice) 1177 return false; 1178 1179 if (!entity_eligible(cfs_rq, pse)) 1180 return false; 1181 1182 if (entity_before(pse, se)) 1183 return true; 1184 1185 if (!entity_eligible(cfs_rq, se)) 1186 return true; 1187 1188 return false; 1189 } 1190 1191 /* 1192 * Used by other classes to account runtime. 1193 */ 1194 s64 update_curr_common(struct rq *rq) 1195 { 1196 struct task_struct *donor = rq->donor; 1197 s64 delta_exec; 1198 1199 delta_exec = update_curr_se(rq, &donor->se); 1200 if (likely(delta_exec > 0)) 1201 update_curr_task(donor, delta_exec); 1202 1203 return delta_exec; 1204 } 1205 1206 /* 1207 * Update the current task's runtime statistics. 1208 */ 1209 static void update_curr(struct cfs_rq *cfs_rq) 1210 { 1211 struct sched_entity *curr = cfs_rq->curr; 1212 struct rq *rq = rq_of(cfs_rq); 1213 s64 delta_exec; 1214 bool resched; 1215 1216 if (unlikely(!curr)) 1217 return; 1218 1219 delta_exec = update_curr_se(rq, curr); 1220 if (unlikely(delta_exec <= 0)) 1221 return; 1222 1223 curr->vruntime += calc_delta_fair(delta_exec, curr); 1224 resched = update_deadline(cfs_rq, curr); 1225 update_min_vruntime(cfs_rq); 1226 1227 if (entity_is_task(curr)) { 1228 struct task_struct *p = task_of(curr); 1229 1230 update_curr_task(p, delta_exec); 1231 1232 /* 1233 * If the fair_server is active, we need to account for the 1234 * fair_server time whether or not the task is running on 1235 * behalf of fair_server or not: 1236 * - If the task is running on behalf of fair_server, we need 1237 * to limit its time based on the assigned runtime. 1238 * - Fair task that runs outside of fair_server should account 1239 * against fair_server such that it can account for this time 1240 * and possibly avoid running this period. 1241 */ 1242 if (dl_server_active(&rq->fair_server)) 1243 dl_server_update(&rq->fair_server, delta_exec); 1244 } 1245 1246 account_cfs_rq_runtime(cfs_rq, delta_exec); 1247 1248 if (cfs_rq->nr_queued == 1) 1249 return; 1250 1251 if (resched || did_preempt_short(cfs_rq, curr)) { 1252 resched_curr_lazy(rq); 1253 clear_buddies(cfs_rq, curr); 1254 } 1255 } 1256 1257 static void update_curr_fair(struct rq *rq) 1258 { 1259 update_curr(cfs_rq_of(&rq->donor->se)); 1260 } 1261 1262 static inline void 1263 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1264 { 1265 struct sched_statistics *stats; 1266 struct task_struct *p = NULL; 1267 1268 if (!schedstat_enabled()) 1269 return; 1270 1271 stats = __schedstats_from_se(se); 1272 1273 if (entity_is_task(se)) 1274 p = task_of(se); 1275 1276 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1277 } 1278 1279 static inline void 1280 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1281 { 1282 struct sched_statistics *stats; 1283 struct task_struct *p = NULL; 1284 1285 if (!schedstat_enabled()) 1286 return; 1287 1288 stats = __schedstats_from_se(se); 1289 1290 /* 1291 * When the sched_schedstat changes from 0 to 1, some sched se 1292 * maybe already in the runqueue, the se->statistics.wait_start 1293 * will be 0.So it will let the delta wrong. We need to avoid this 1294 * scenario. 1295 */ 1296 if (unlikely(!schedstat_val(stats->wait_start))) 1297 return; 1298 1299 if (entity_is_task(se)) 1300 p = task_of(se); 1301 1302 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1303 } 1304 1305 static inline void 1306 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1307 { 1308 struct sched_statistics *stats; 1309 struct task_struct *tsk = NULL; 1310 1311 if (!schedstat_enabled()) 1312 return; 1313 1314 stats = __schedstats_from_se(se); 1315 1316 if (entity_is_task(se)) 1317 tsk = task_of(se); 1318 1319 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1320 } 1321 1322 /* 1323 * Task is being enqueued - update stats: 1324 */ 1325 static inline void 1326 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1327 { 1328 if (!schedstat_enabled()) 1329 return; 1330 1331 /* 1332 * Are we enqueueing a waiting task? (for current tasks 1333 * a dequeue/enqueue event is a NOP) 1334 */ 1335 if (se != cfs_rq->curr) 1336 update_stats_wait_start_fair(cfs_rq, se); 1337 1338 if (flags & ENQUEUE_WAKEUP) 1339 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1340 } 1341 1342 static inline void 1343 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1344 { 1345 1346 if (!schedstat_enabled()) 1347 return; 1348 1349 /* 1350 * Mark the end of the wait period if dequeueing a 1351 * waiting task: 1352 */ 1353 if (se != cfs_rq->curr) 1354 update_stats_wait_end_fair(cfs_rq, se); 1355 1356 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1357 struct task_struct *tsk = task_of(se); 1358 unsigned int state; 1359 1360 /* XXX racy against TTWU */ 1361 state = READ_ONCE(tsk->__state); 1362 if (state & TASK_INTERRUPTIBLE) 1363 __schedstat_set(tsk->stats.sleep_start, 1364 rq_clock(rq_of(cfs_rq))); 1365 if (state & TASK_UNINTERRUPTIBLE) 1366 __schedstat_set(tsk->stats.block_start, 1367 rq_clock(rq_of(cfs_rq))); 1368 } 1369 } 1370 1371 /* 1372 * We are picking a new current task - update its stats: 1373 */ 1374 static inline void 1375 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1376 { 1377 /* 1378 * We are starting a new run period: 1379 */ 1380 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1381 } 1382 1383 /************************************************** 1384 * Scheduling class queueing methods: 1385 */ 1386 1387 static inline bool is_core_idle(int cpu) 1388 { 1389 #ifdef CONFIG_SCHED_SMT 1390 int sibling; 1391 1392 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1393 if (cpu == sibling) 1394 continue; 1395 1396 if (!idle_cpu(sibling)) 1397 return false; 1398 } 1399 #endif 1400 1401 return true; 1402 } 1403 1404 #ifdef CONFIG_NUMA 1405 #define NUMA_IMBALANCE_MIN 2 1406 1407 static inline long 1408 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1409 { 1410 /* 1411 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1412 * threshold. Above this threshold, individual tasks may be contending 1413 * for both memory bandwidth and any shared HT resources. This is an 1414 * approximation as the number of running tasks may not be related to 1415 * the number of busy CPUs due to sched_setaffinity. 1416 */ 1417 if (dst_running > imb_numa_nr) 1418 return imbalance; 1419 1420 /* 1421 * Allow a small imbalance based on a simple pair of communicating 1422 * tasks that remain local when the destination is lightly loaded. 1423 */ 1424 if (imbalance <= NUMA_IMBALANCE_MIN) 1425 return 0; 1426 1427 return imbalance; 1428 } 1429 #endif /* CONFIG_NUMA */ 1430 1431 #ifdef CONFIG_NUMA_BALANCING 1432 /* 1433 * Approximate time to scan a full NUMA task in ms. The task scan period is 1434 * calculated based on the tasks virtual memory size and 1435 * numa_balancing_scan_size. 1436 */ 1437 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1438 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1439 1440 /* Portion of address space to scan in MB */ 1441 unsigned int sysctl_numa_balancing_scan_size = 256; 1442 1443 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1444 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1445 1446 /* The page with hint page fault latency < threshold in ms is considered hot */ 1447 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1448 1449 struct numa_group { 1450 refcount_t refcount; 1451 1452 spinlock_t lock; /* nr_tasks, tasks */ 1453 int nr_tasks; 1454 pid_t gid; 1455 int active_nodes; 1456 1457 struct rcu_head rcu; 1458 unsigned long total_faults; 1459 unsigned long max_faults_cpu; 1460 /* 1461 * faults[] array is split into two regions: faults_mem and faults_cpu. 1462 * 1463 * Faults_cpu is used to decide whether memory should move 1464 * towards the CPU. As a consequence, these stats are weighted 1465 * more by CPU use than by memory faults. 1466 */ 1467 unsigned long faults[]; 1468 }; 1469 1470 /* 1471 * For functions that can be called in multiple contexts that permit reading 1472 * ->numa_group (see struct task_struct for locking rules). 1473 */ 1474 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1475 { 1476 return rcu_dereference_check(p->numa_group, p == current || 1477 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1478 } 1479 1480 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1481 { 1482 return rcu_dereference_protected(p->numa_group, p == current); 1483 } 1484 1485 static inline unsigned long group_faults_priv(struct numa_group *ng); 1486 static inline unsigned long group_faults_shared(struct numa_group *ng); 1487 1488 static unsigned int task_nr_scan_windows(struct task_struct *p) 1489 { 1490 unsigned long rss = 0; 1491 unsigned long nr_scan_pages; 1492 1493 /* 1494 * Calculations based on RSS as non-present and empty pages are skipped 1495 * by the PTE scanner and NUMA hinting faults should be trapped based 1496 * on resident pages 1497 */ 1498 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1499 rss = get_mm_rss(p->mm); 1500 if (!rss) 1501 rss = nr_scan_pages; 1502 1503 rss = round_up(rss, nr_scan_pages); 1504 return rss / nr_scan_pages; 1505 } 1506 1507 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1508 #define MAX_SCAN_WINDOW 2560 1509 1510 static unsigned int task_scan_min(struct task_struct *p) 1511 { 1512 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1513 unsigned int scan, floor; 1514 unsigned int windows = 1; 1515 1516 if (scan_size < MAX_SCAN_WINDOW) 1517 windows = MAX_SCAN_WINDOW / scan_size; 1518 floor = 1000 / windows; 1519 1520 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1521 return max_t(unsigned int, floor, scan); 1522 } 1523 1524 static unsigned int task_scan_start(struct task_struct *p) 1525 { 1526 unsigned long smin = task_scan_min(p); 1527 unsigned long period = smin; 1528 struct numa_group *ng; 1529 1530 /* Scale the maximum scan period with the amount of shared memory. */ 1531 rcu_read_lock(); 1532 ng = rcu_dereference(p->numa_group); 1533 if (ng) { 1534 unsigned long shared = group_faults_shared(ng); 1535 unsigned long private = group_faults_priv(ng); 1536 1537 period *= refcount_read(&ng->refcount); 1538 period *= shared + 1; 1539 period /= private + shared + 1; 1540 } 1541 rcu_read_unlock(); 1542 1543 return max(smin, period); 1544 } 1545 1546 static unsigned int task_scan_max(struct task_struct *p) 1547 { 1548 unsigned long smin = task_scan_min(p); 1549 unsigned long smax; 1550 struct numa_group *ng; 1551 1552 /* Watch for min being lower than max due to floor calculations */ 1553 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1554 1555 /* Scale the maximum scan period with the amount of shared memory. */ 1556 ng = deref_curr_numa_group(p); 1557 if (ng) { 1558 unsigned long shared = group_faults_shared(ng); 1559 unsigned long private = group_faults_priv(ng); 1560 unsigned long period = smax; 1561 1562 period *= refcount_read(&ng->refcount); 1563 period *= shared + 1; 1564 period /= private + shared + 1; 1565 1566 smax = max(smax, period); 1567 } 1568 1569 return max(smin, smax); 1570 } 1571 1572 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1573 { 1574 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1575 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1576 } 1577 1578 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1579 { 1580 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1581 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1582 } 1583 1584 /* Shared or private faults. */ 1585 #define NR_NUMA_HINT_FAULT_TYPES 2 1586 1587 /* Memory and CPU locality */ 1588 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1589 1590 /* Averaged statistics, and temporary buffers. */ 1591 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1592 1593 pid_t task_numa_group_id(struct task_struct *p) 1594 { 1595 struct numa_group *ng; 1596 pid_t gid = 0; 1597 1598 rcu_read_lock(); 1599 ng = rcu_dereference(p->numa_group); 1600 if (ng) 1601 gid = ng->gid; 1602 rcu_read_unlock(); 1603 1604 return gid; 1605 } 1606 1607 /* 1608 * The averaged statistics, shared & private, memory & CPU, 1609 * occupy the first half of the array. The second half of the 1610 * array is for current counters, which are averaged into the 1611 * first set by task_numa_placement. 1612 */ 1613 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1614 { 1615 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1616 } 1617 1618 static inline unsigned long task_faults(struct task_struct *p, int nid) 1619 { 1620 if (!p->numa_faults) 1621 return 0; 1622 1623 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1624 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1625 } 1626 1627 static inline unsigned long group_faults(struct task_struct *p, int nid) 1628 { 1629 struct numa_group *ng = deref_task_numa_group(p); 1630 1631 if (!ng) 1632 return 0; 1633 1634 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1635 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1636 } 1637 1638 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1639 { 1640 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1641 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1642 } 1643 1644 static inline unsigned long group_faults_priv(struct numa_group *ng) 1645 { 1646 unsigned long faults = 0; 1647 int node; 1648 1649 for_each_online_node(node) { 1650 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1651 } 1652 1653 return faults; 1654 } 1655 1656 static inline unsigned long group_faults_shared(struct numa_group *ng) 1657 { 1658 unsigned long faults = 0; 1659 int node; 1660 1661 for_each_online_node(node) { 1662 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1663 } 1664 1665 return faults; 1666 } 1667 1668 /* 1669 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1670 * considered part of a numa group's pseudo-interleaving set. Migrations 1671 * between these nodes are slowed down, to allow things to settle down. 1672 */ 1673 #define ACTIVE_NODE_FRACTION 3 1674 1675 static bool numa_is_active_node(int nid, struct numa_group *ng) 1676 { 1677 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1678 } 1679 1680 /* Handle placement on systems where not all nodes are directly connected. */ 1681 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1682 int lim_dist, bool task) 1683 { 1684 unsigned long score = 0; 1685 int node, max_dist; 1686 1687 /* 1688 * All nodes are directly connected, and the same distance 1689 * from each other. No need for fancy placement algorithms. 1690 */ 1691 if (sched_numa_topology_type == NUMA_DIRECT) 1692 return 0; 1693 1694 /* sched_max_numa_distance may be changed in parallel. */ 1695 max_dist = READ_ONCE(sched_max_numa_distance); 1696 /* 1697 * This code is called for each node, introducing N^2 complexity, 1698 * which should be OK given the number of nodes rarely exceeds 8. 1699 */ 1700 for_each_online_node(node) { 1701 unsigned long faults; 1702 int dist = node_distance(nid, node); 1703 1704 /* 1705 * The furthest away nodes in the system are not interesting 1706 * for placement; nid was already counted. 1707 */ 1708 if (dist >= max_dist || node == nid) 1709 continue; 1710 1711 /* 1712 * On systems with a backplane NUMA topology, compare groups 1713 * of nodes, and move tasks towards the group with the most 1714 * memory accesses. When comparing two nodes at distance 1715 * "hoplimit", only nodes closer by than "hoplimit" are part 1716 * of each group. Skip other nodes. 1717 */ 1718 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1719 continue; 1720 1721 /* Add up the faults from nearby nodes. */ 1722 if (task) 1723 faults = task_faults(p, node); 1724 else 1725 faults = group_faults(p, node); 1726 1727 /* 1728 * On systems with a glueless mesh NUMA topology, there are 1729 * no fixed "groups of nodes". Instead, nodes that are not 1730 * directly connected bounce traffic through intermediate 1731 * nodes; a numa_group can occupy any set of nodes. 1732 * The further away a node is, the less the faults count. 1733 * This seems to result in good task placement. 1734 */ 1735 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1736 faults *= (max_dist - dist); 1737 faults /= (max_dist - LOCAL_DISTANCE); 1738 } 1739 1740 score += faults; 1741 } 1742 1743 return score; 1744 } 1745 1746 /* 1747 * These return the fraction of accesses done by a particular task, or 1748 * task group, on a particular numa node. The group weight is given a 1749 * larger multiplier, in order to group tasks together that are almost 1750 * evenly spread out between numa nodes. 1751 */ 1752 static inline unsigned long task_weight(struct task_struct *p, int nid, 1753 int dist) 1754 { 1755 unsigned long faults, total_faults; 1756 1757 if (!p->numa_faults) 1758 return 0; 1759 1760 total_faults = p->total_numa_faults; 1761 1762 if (!total_faults) 1763 return 0; 1764 1765 faults = task_faults(p, nid); 1766 faults += score_nearby_nodes(p, nid, dist, true); 1767 1768 return 1000 * faults / total_faults; 1769 } 1770 1771 static inline unsigned long group_weight(struct task_struct *p, int nid, 1772 int dist) 1773 { 1774 struct numa_group *ng = deref_task_numa_group(p); 1775 unsigned long faults, total_faults; 1776 1777 if (!ng) 1778 return 0; 1779 1780 total_faults = ng->total_faults; 1781 1782 if (!total_faults) 1783 return 0; 1784 1785 faults = group_faults(p, nid); 1786 faults += score_nearby_nodes(p, nid, dist, false); 1787 1788 return 1000 * faults / total_faults; 1789 } 1790 1791 /* 1792 * If memory tiering mode is enabled, cpupid of slow memory page is 1793 * used to record scan time instead of CPU and PID. When tiering mode 1794 * is disabled at run time, the scan time (in cpupid) will be 1795 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1796 * access out of array bound. 1797 */ 1798 static inline bool cpupid_valid(int cpupid) 1799 { 1800 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1801 } 1802 1803 /* 1804 * For memory tiering mode, if there are enough free pages (more than 1805 * enough watermark defined here) in fast memory node, to take full 1806 * advantage of fast memory capacity, all recently accessed slow 1807 * memory pages will be migrated to fast memory node without 1808 * considering hot threshold. 1809 */ 1810 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1811 { 1812 int z; 1813 unsigned long enough_wmark; 1814 1815 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1816 pgdat->node_present_pages >> 4); 1817 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1818 struct zone *zone = pgdat->node_zones + z; 1819 1820 if (!populated_zone(zone)) 1821 continue; 1822 1823 if (zone_watermark_ok(zone, 0, 1824 promo_wmark_pages(zone) + enough_wmark, 1825 ZONE_MOVABLE, 0)) 1826 return true; 1827 } 1828 return false; 1829 } 1830 1831 /* 1832 * For memory tiering mode, when page tables are scanned, the scan 1833 * time will be recorded in struct page in addition to make page 1834 * PROT_NONE for slow memory page. So when the page is accessed, in 1835 * hint page fault handler, the hint page fault latency is calculated 1836 * via, 1837 * 1838 * hint page fault latency = hint page fault time - scan time 1839 * 1840 * The smaller the hint page fault latency, the higher the possibility 1841 * for the page to be hot. 1842 */ 1843 static int numa_hint_fault_latency(struct folio *folio) 1844 { 1845 int last_time, time; 1846 1847 time = jiffies_to_msecs(jiffies); 1848 last_time = folio_xchg_access_time(folio, time); 1849 1850 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1851 } 1852 1853 /* 1854 * For memory tiering mode, too high promotion/demotion throughput may 1855 * hurt application latency. So we provide a mechanism to rate limit 1856 * the number of pages that are tried to be promoted. 1857 */ 1858 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1859 unsigned long rate_limit, int nr) 1860 { 1861 unsigned long nr_cand; 1862 unsigned int now, start; 1863 1864 now = jiffies_to_msecs(jiffies); 1865 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1866 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1867 start = pgdat->nbp_rl_start; 1868 if (now - start > MSEC_PER_SEC && 1869 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1870 pgdat->nbp_rl_nr_cand = nr_cand; 1871 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1872 return true; 1873 return false; 1874 } 1875 1876 #define NUMA_MIGRATION_ADJUST_STEPS 16 1877 1878 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1879 unsigned long rate_limit, 1880 unsigned int ref_th) 1881 { 1882 unsigned int now, start, th_period, unit_th, th; 1883 unsigned long nr_cand, ref_cand, diff_cand; 1884 1885 now = jiffies_to_msecs(jiffies); 1886 th_period = sysctl_numa_balancing_scan_period_max; 1887 start = pgdat->nbp_th_start; 1888 if (now - start > th_period && 1889 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1890 ref_cand = rate_limit * 1891 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1892 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1893 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1894 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1895 th = pgdat->nbp_threshold ? : ref_th; 1896 if (diff_cand > ref_cand * 11 / 10) 1897 th = max(th - unit_th, unit_th); 1898 else if (diff_cand < ref_cand * 9 / 10) 1899 th = min(th + unit_th, ref_th * 2); 1900 pgdat->nbp_th_nr_cand = nr_cand; 1901 pgdat->nbp_threshold = th; 1902 } 1903 } 1904 1905 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1906 int src_nid, int dst_cpu) 1907 { 1908 struct numa_group *ng = deref_curr_numa_group(p); 1909 int dst_nid = cpu_to_node(dst_cpu); 1910 int last_cpupid, this_cpupid; 1911 1912 /* 1913 * Cannot migrate to memoryless nodes. 1914 */ 1915 if (!node_state(dst_nid, N_MEMORY)) 1916 return false; 1917 1918 /* 1919 * The pages in slow memory node should be migrated according 1920 * to hot/cold instead of private/shared. 1921 */ 1922 if (folio_use_access_time(folio)) { 1923 struct pglist_data *pgdat; 1924 unsigned long rate_limit; 1925 unsigned int latency, th, def_th; 1926 1927 pgdat = NODE_DATA(dst_nid); 1928 if (pgdat_free_space_enough(pgdat)) { 1929 /* workload changed, reset hot threshold */ 1930 pgdat->nbp_threshold = 0; 1931 return true; 1932 } 1933 1934 def_th = sysctl_numa_balancing_hot_threshold; 1935 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1936 (20 - PAGE_SHIFT); 1937 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1938 1939 th = pgdat->nbp_threshold ? : def_th; 1940 latency = numa_hint_fault_latency(folio); 1941 if (latency >= th) 1942 return false; 1943 1944 return !numa_promotion_rate_limit(pgdat, rate_limit, 1945 folio_nr_pages(folio)); 1946 } 1947 1948 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1949 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1950 1951 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1952 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1953 return false; 1954 1955 /* 1956 * Allow first faults or private faults to migrate immediately early in 1957 * the lifetime of a task. The magic number 4 is based on waiting for 1958 * two full passes of the "multi-stage node selection" test that is 1959 * executed below. 1960 */ 1961 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1962 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1963 return true; 1964 1965 /* 1966 * Multi-stage node selection is used in conjunction with a periodic 1967 * migration fault to build a temporal task<->page relation. By using 1968 * a two-stage filter we remove short/unlikely relations. 1969 * 1970 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1971 * a task's usage of a particular page (n_p) per total usage of this 1972 * page (n_t) (in a given time-span) to a probability. 1973 * 1974 * Our periodic faults will sample this probability and getting the 1975 * same result twice in a row, given these samples are fully 1976 * independent, is then given by P(n)^2, provided our sample period 1977 * is sufficiently short compared to the usage pattern. 1978 * 1979 * This quadric squishes small probabilities, making it less likely we 1980 * act on an unlikely task<->page relation. 1981 */ 1982 if (!cpupid_pid_unset(last_cpupid) && 1983 cpupid_to_nid(last_cpupid) != dst_nid) 1984 return false; 1985 1986 /* Always allow migrate on private faults */ 1987 if (cpupid_match_pid(p, last_cpupid)) 1988 return true; 1989 1990 /* A shared fault, but p->numa_group has not been set up yet. */ 1991 if (!ng) 1992 return true; 1993 1994 /* 1995 * Destination node is much more heavily used than the source 1996 * node? Allow migration. 1997 */ 1998 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1999 ACTIVE_NODE_FRACTION) 2000 return true; 2001 2002 /* 2003 * Distribute memory according to CPU & memory use on each node, 2004 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2005 * 2006 * faults_cpu(dst) 3 faults_cpu(src) 2007 * --------------- * - > --------------- 2008 * faults_mem(dst) 4 faults_mem(src) 2009 */ 2010 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2011 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2012 } 2013 2014 /* 2015 * 'numa_type' describes the node at the moment of load balancing. 2016 */ 2017 enum numa_type { 2018 /* The node has spare capacity that can be used to run more tasks. */ 2019 node_has_spare = 0, 2020 /* 2021 * The node is fully used and the tasks don't compete for more CPU 2022 * cycles. Nevertheless, some tasks might wait before running. 2023 */ 2024 node_fully_busy, 2025 /* 2026 * The node is overloaded and can't provide expected CPU cycles to all 2027 * tasks. 2028 */ 2029 node_overloaded 2030 }; 2031 2032 /* Cached statistics for all CPUs within a node */ 2033 struct numa_stats { 2034 unsigned long load; 2035 unsigned long runnable; 2036 unsigned long util; 2037 /* Total compute capacity of CPUs on a node */ 2038 unsigned long compute_capacity; 2039 unsigned int nr_running; 2040 unsigned int weight; 2041 enum numa_type node_type; 2042 int idle_cpu; 2043 }; 2044 2045 struct task_numa_env { 2046 struct task_struct *p; 2047 2048 int src_cpu, src_nid; 2049 int dst_cpu, dst_nid; 2050 int imb_numa_nr; 2051 2052 struct numa_stats src_stats, dst_stats; 2053 2054 int imbalance_pct; 2055 int dist; 2056 2057 struct task_struct *best_task; 2058 long best_imp; 2059 int best_cpu; 2060 }; 2061 2062 static unsigned long cpu_load(struct rq *rq); 2063 static unsigned long cpu_runnable(struct rq *rq); 2064 2065 static inline enum 2066 numa_type numa_classify(unsigned int imbalance_pct, 2067 struct numa_stats *ns) 2068 { 2069 if ((ns->nr_running > ns->weight) && 2070 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2071 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2072 return node_overloaded; 2073 2074 if ((ns->nr_running < ns->weight) || 2075 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2076 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2077 return node_has_spare; 2078 2079 return node_fully_busy; 2080 } 2081 2082 #ifdef CONFIG_SCHED_SMT 2083 /* Forward declarations of select_idle_sibling helpers */ 2084 static inline bool test_idle_cores(int cpu); 2085 static inline int numa_idle_core(int idle_core, int cpu) 2086 { 2087 if (!static_branch_likely(&sched_smt_present) || 2088 idle_core >= 0 || !test_idle_cores(cpu)) 2089 return idle_core; 2090 2091 /* 2092 * Prefer cores instead of packing HT siblings 2093 * and triggering future load balancing. 2094 */ 2095 if (is_core_idle(cpu)) 2096 idle_core = cpu; 2097 2098 return idle_core; 2099 } 2100 #else /* !CONFIG_SCHED_SMT: */ 2101 static inline int numa_idle_core(int idle_core, int cpu) 2102 { 2103 return idle_core; 2104 } 2105 #endif /* !CONFIG_SCHED_SMT */ 2106 2107 /* 2108 * Gather all necessary information to make NUMA balancing placement 2109 * decisions that are compatible with standard load balancer. This 2110 * borrows code and logic from update_sg_lb_stats but sharing a 2111 * common implementation is impractical. 2112 */ 2113 static void update_numa_stats(struct task_numa_env *env, 2114 struct numa_stats *ns, int nid, 2115 bool find_idle) 2116 { 2117 int cpu, idle_core = -1; 2118 2119 memset(ns, 0, sizeof(*ns)); 2120 ns->idle_cpu = -1; 2121 2122 rcu_read_lock(); 2123 for_each_cpu(cpu, cpumask_of_node(nid)) { 2124 struct rq *rq = cpu_rq(cpu); 2125 2126 ns->load += cpu_load(rq); 2127 ns->runnable += cpu_runnable(rq); 2128 ns->util += cpu_util_cfs(cpu); 2129 ns->nr_running += rq->cfs.h_nr_runnable; 2130 ns->compute_capacity += capacity_of(cpu); 2131 2132 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2133 if (READ_ONCE(rq->numa_migrate_on) || 2134 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2135 continue; 2136 2137 if (ns->idle_cpu == -1) 2138 ns->idle_cpu = cpu; 2139 2140 idle_core = numa_idle_core(idle_core, cpu); 2141 } 2142 } 2143 rcu_read_unlock(); 2144 2145 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2146 2147 ns->node_type = numa_classify(env->imbalance_pct, ns); 2148 2149 if (idle_core >= 0) 2150 ns->idle_cpu = idle_core; 2151 } 2152 2153 static void task_numa_assign(struct task_numa_env *env, 2154 struct task_struct *p, long imp) 2155 { 2156 struct rq *rq = cpu_rq(env->dst_cpu); 2157 2158 /* Check if run-queue part of active NUMA balance. */ 2159 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2160 int cpu; 2161 int start = env->dst_cpu; 2162 2163 /* Find alternative idle CPU. */ 2164 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2165 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2166 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2167 continue; 2168 } 2169 2170 env->dst_cpu = cpu; 2171 rq = cpu_rq(env->dst_cpu); 2172 if (!xchg(&rq->numa_migrate_on, 1)) 2173 goto assign; 2174 } 2175 2176 /* Failed to find an alternative idle CPU */ 2177 return; 2178 } 2179 2180 assign: 2181 /* 2182 * Clear previous best_cpu/rq numa-migrate flag, since task now 2183 * found a better CPU to move/swap. 2184 */ 2185 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2186 rq = cpu_rq(env->best_cpu); 2187 WRITE_ONCE(rq->numa_migrate_on, 0); 2188 } 2189 2190 if (env->best_task) 2191 put_task_struct(env->best_task); 2192 if (p) 2193 get_task_struct(p); 2194 2195 env->best_task = p; 2196 env->best_imp = imp; 2197 env->best_cpu = env->dst_cpu; 2198 } 2199 2200 static bool load_too_imbalanced(long src_load, long dst_load, 2201 struct task_numa_env *env) 2202 { 2203 long imb, old_imb; 2204 long orig_src_load, orig_dst_load; 2205 long src_capacity, dst_capacity; 2206 2207 /* 2208 * The load is corrected for the CPU capacity available on each node. 2209 * 2210 * src_load dst_load 2211 * ------------ vs --------- 2212 * src_capacity dst_capacity 2213 */ 2214 src_capacity = env->src_stats.compute_capacity; 2215 dst_capacity = env->dst_stats.compute_capacity; 2216 2217 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2218 2219 orig_src_load = env->src_stats.load; 2220 orig_dst_load = env->dst_stats.load; 2221 2222 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2223 2224 /* Would this change make things worse? */ 2225 return (imb > old_imb); 2226 } 2227 2228 /* 2229 * Maximum NUMA importance can be 1998 (2*999); 2230 * SMALLIMP @ 30 would be close to 1998/64. 2231 * Used to deter task migration. 2232 */ 2233 #define SMALLIMP 30 2234 2235 /* 2236 * This checks if the overall compute and NUMA accesses of the system would 2237 * be improved if the source tasks was migrated to the target dst_cpu taking 2238 * into account that it might be best if task running on the dst_cpu should 2239 * be exchanged with the source task 2240 */ 2241 static bool task_numa_compare(struct task_numa_env *env, 2242 long taskimp, long groupimp, bool maymove) 2243 { 2244 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2245 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2246 long imp = p_ng ? groupimp : taskimp; 2247 struct task_struct *cur; 2248 long src_load, dst_load; 2249 int dist = env->dist; 2250 long moveimp = imp; 2251 long load; 2252 bool stopsearch = false; 2253 2254 if (READ_ONCE(dst_rq->numa_migrate_on)) 2255 return false; 2256 2257 rcu_read_lock(); 2258 cur = rcu_dereference(dst_rq->curr); 2259 if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) || 2260 !cur->mm)) 2261 cur = NULL; 2262 2263 /* 2264 * Because we have preemption enabled we can get migrated around and 2265 * end try selecting ourselves (current == env->p) as a swap candidate. 2266 */ 2267 if (cur == env->p) { 2268 stopsearch = true; 2269 goto unlock; 2270 } 2271 2272 if (!cur) { 2273 if (maymove && moveimp >= env->best_imp) 2274 goto assign; 2275 else 2276 goto unlock; 2277 } 2278 2279 /* Skip this swap candidate if cannot move to the source cpu. */ 2280 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2281 goto unlock; 2282 2283 /* 2284 * Skip this swap candidate if it is not moving to its preferred 2285 * node and the best task is. 2286 */ 2287 if (env->best_task && 2288 env->best_task->numa_preferred_nid == env->src_nid && 2289 cur->numa_preferred_nid != env->src_nid) { 2290 goto unlock; 2291 } 2292 2293 /* 2294 * "imp" is the fault differential for the source task between the 2295 * source and destination node. Calculate the total differential for 2296 * the source task and potential destination task. The more negative 2297 * the value is, the more remote accesses that would be expected to 2298 * be incurred if the tasks were swapped. 2299 * 2300 * If dst and source tasks are in the same NUMA group, or not 2301 * in any group then look only at task weights. 2302 */ 2303 cur_ng = rcu_dereference(cur->numa_group); 2304 if (cur_ng == p_ng) { 2305 /* 2306 * Do not swap within a group or between tasks that have 2307 * no group if there is spare capacity. Swapping does 2308 * not address the load imbalance and helps one task at 2309 * the cost of punishing another. 2310 */ 2311 if (env->dst_stats.node_type == node_has_spare) 2312 goto unlock; 2313 2314 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2315 task_weight(cur, env->dst_nid, dist); 2316 /* 2317 * Add some hysteresis to prevent swapping the 2318 * tasks within a group over tiny differences. 2319 */ 2320 if (cur_ng) 2321 imp -= imp / 16; 2322 } else { 2323 /* 2324 * Compare the group weights. If a task is all by itself 2325 * (not part of a group), use the task weight instead. 2326 */ 2327 if (cur_ng && p_ng) 2328 imp += group_weight(cur, env->src_nid, dist) - 2329 group_weight(cur, env->dst_nid, dist); 2330 else 2331 imp += task_weight(cur, env->src_nid, dist) - 2332 task_weight(cur, env->dst_nid, dist); 2333 } 2334 2335 /* Discourage picking a task already on its preferred node */ 2336 if (cur->numa_preferred_nid == env->dst_nid) 2337 imp -= imp / 16; 2338 2339 /* 2340 * Encourage picking a task that moves to its preferred node. 2341 * This potentially makes imp larger than it's maximum of 2342 * 1998 (see SMALLIMP and task_weight for why) but in this 2343 * case, it does not matter. 2344 */ 2345 if (cur->numa_preferred_nid == env->src_nid) 2346 imp += imp / 8; 2347 2348 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2349 imp = moveimp; 2350 cur = NULL; 2351 goto assign; 2352 } 2353 2354 /* 2355 * Prefer swapping with a task moving to its preferred node over a 2356 * task that is not. 2357 */ 2358 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2359 env->best_task->numa_preferred_nid != env->src_nid) { 2360 goto assign; 2361 } 2362 2363 /* 2364 * If the NUMA importance is less than SMALLIMP, 2365 * task migration might only result in ping pong 2366 * of tasks and also hurt performance due to cache 2367 * misses. 2368 */ 2369 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2370 goto unlock; 2371 2372 /* 2373 * In the overloaded case, try and keep the load balanced. 2374 */ 2375 load = task_h_load(env->p) - task_h_load(cur); 2376 if (!load) 2377 goto assign; 2378 2379 dst_load = env->dst_stats.load + load; 2380 src_load = env->src_stats.load - load; 2381 2382 if (load_too_imbalanced(src_load, dst_load, env)) 2383 goto unlock; 2384 2385 assign: 2386 /* Evaluate an idle CPU for a task numa move. */ 2387 if (!cur) { 2388 int cpu = env->dst_stats.idle_cpu; 2389 2390 /* Nothing cached so current CPU went idle since the search. */ 2391 if (cpu < 0) 2392 cpu = env->dst_cpu; 2393 2394 /* 2395 * If the CPU is no longer truly idle and the previous best CPU 2396 * is, keep using it. 2397 */ 2398 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2399 idle_cpu(env->best_cpu)) { 2400 cpu = env->best_cpu; 2401 } 2402 2403 env->dst_cpu = cpu; 2404 } 2405 2406 task_numa_assign(env, cur, imp); 2407 2408 /* 2409 * If a move to idle is allowed because there is capacity or load 2410 * balance improves then stop the search. While a better swap 2411 * candidate may exist, a search is not free. 2412 */ 2413 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2414 stopsearch = true; 2415 2416 /* 2417 * If a swap candidate must be identified and the current best task 2418 * moves its preferred node then stop the search. 2419 */ 2420 if (!maymove && env->best_task && 2421 env->best_task->numa_preferred_nid == env->src_nid) { 2422 stopsearch = true; 2423 } 2424 unlock: 2425 rcu_read_unlock(); 2426 2427 return stopsearch; 2428 } 2429 2430 static void task_numa_find_cpu(struct task_numa_env *env, 2431 long taskimp, long groupimp) 2432 { 2433 bool maymove = false; 2434 int cpu; 2435 2436 /* 2437 * If dst node has spare capacity, then check if there is an 2438 * imbalance that would be overruled by the load balancer. 2439 */ 2440 if (env->dst_stats.node_type == node_has_spare) { 2441 unsigned int imbalance; 2442 int src_running, dst_running; 2443 2444 /* 2445 * Would movement cause an imbalance? Note that if src has 2446 * more running tasks that the imbalance is ignored as the 2447 * move improves the imbalance from the perspective of the 2448 * CPU load balancer. 2449 * */ 2450 src_running = env->src_stats.nr_running - 1; 2451 dst_running = env->dst_stats.nr_running + 1; 2452 imbalance = max(0, dst_running - src_running); 2453 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2454 env->imb_numa_nr); 2455 2456 /* Use idle CPU if there is no imbalance */ 2457 if (!imbalance) { 2458 maymove = true; 2459 if (env->dst_stats.idle_cpu >= 0) { 2460 env->dst_cpu = env->dst_stats.idle_cpu; 2461 task_numa_assign(env, NULL, 0); 2462 return; 2463 } 2464 } 2465 } else { 2466 long src_load, dst_load, load; 2467 /* 2468 * If the improvement from just moving env->p direction is better 2469 * than swapping tasks around, check if a move is possible. 2470 */ 2471 load = task_h_load(env->p); 2472 dst_load = env->dst_stats.load + load; 2473 src_load = env->src_stats.load - load; 2474 maymove = !load_too_imbalanced(src_load, dst_load, env); 2475 } 2476 2477 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2478 /* Skip this CPU if the source task cannot migrate */ 2479 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2480 continue; 2481 2482 env->dst_cpu = cpu; 2483 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2484 break; 2485 } 2486 } 2487 2488 static int task_numa_migrate(struct task_struct *p) 2489 { 2490 struct task_numa_env env = { 2491 .p = p, 2492 2493 .src_cpu = task_cpu(p), 2494 .src_nid = task_node(p), 2495 2496 .imbalance_pct = 112, 2497 2498 .best_task = NULL, 2499 .best_imp = 0, 2500 .best_cpu = -1, 2501 }; 2502 unsigned long taskweight, groupweight; 2503 struct sched_domain *sd; 2504 long taskimp, groupimp; 2505 struct numa_group *ng; 2506 struct rq *best_rq; 2507 int nid, ret, dist; 2508 2509 /* 2510 * Pick the lowest SD_NUMA domain, as that would have the smallest 2511 * imbalance and would be the first to start moving tasks about. 2512 * 2513 * And we want to avoid any moving of tasks about, as that would create 2514 * random movement of tasks -- counter the numa conditions we're trying 2515 * to satisfy here. 2516 */ 2517 rcu_read_lock(); 2518 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2519 if (sd) { 2520 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2521 env.imb_numa_nr = sd->imb_numa_nr; 2522 } 2523 rcu_read_unlock(); 2524 2525 /* 2526 * Cpusets can break the scheduler domain tree into smaller 2527 * balance domains, some of which do not cross NUMA boundaries. 2528 * Tasks that are "trapped" in such domains cannot be migrated 2529 * elsewhere, so there is no point in (re)trying. 2530 */ 2531 if (unlikely(!sd)) { 2532 sched_setnuma(p, task_node(p)); 2533 return -EINVAL; 2534 } 2535 2536 env.dst_nid = p->numa_preferred_nid; 2537 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2538 taskweight = task_weight(p, env.src_nid, dist); 2539 groupweight = group_weight(p, env.src_nid, dist); 2540 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2541 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2542 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2543 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2544 2545 /* Try to find a spot on the preferred nid. */ 2546 task_numa_find_cpu(&env, taskimp, groupimp); 2547 2548 /* 2549 * Look at other nodes in these cases: 2550 * - there is no space available on the preferred_nid 2551 * - the task is part of a numa_group that is interleaved across 2552 * multiple NUMA nodes; in order to better consolidate the group, 2553 * we need to check other locations. 2554 */ 2555 ng = deref_curr_numa_group(p); 2556 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2557 for_each_node_state(nid, N_CPU) { 2558 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2559 continue; 2560 2561 dist = node_distance(env.src_nid, env.dst_nid); 2562 if (sched_numa_topology_type == NUMA_BACKPLANE && 2563 dist != env.dist) { 2564 taskweight = task_weight(p, env.src_nid, dist); 2565 groupweight = group_weight(p, env.src_nid, dist); 2566 } 2567 2568 /* Only consider nodes where both task and groups benefit */ 2569 taskimp = task_weight(p, nid, dist) - taskweight; 2570 groupimp = group_weight(p, nid, dist) - groupweight; 2571 if (taskimp < 0 && groupimp < 0) 2572 continue; 2573 2574 env.dist = dist; 2575 env.dst_nid = nid; 2576 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2577 task_numa_find_cpu(&env, taskimp, groupimp); 2578 } 2579 } 2580 2581 /* 2582 * If the task is part of a workload that spans multiple NUMA nodes, 2583 * and is migrating into one of the workload's active nodes, remember 2584 * this node as the task's preferred numa node, so the workload can 2585 * settle down. 2586 * A task that migrated to a second choice node will be better off 2587 * trying for a better one later. Do not set the preferred node here. 2588 */ 2589 if (ng) { 2590 if (env.best_cpu == -1) 2591 nid = env.src_nid; 2592 else 2593 nid = cpu_to_node(env.best_cpu); 2594 2595 if (nid != p->numa_preferred_nid) 2596 sched_setnuma(p, nid); 2597 } 2598 2599 /* No better CPU than the current one was found. */ 2600 if (env.best_cpu == -1) { 2601 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2602 return -EAGAIN; 2603 } 2604 2605 best_rq = cpu_rq(env.best_cpu); 2606 if (env.best_task == NULL) { 2607 ret = migrate_task_to(p, env.best_cpu); 2608 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2609 if (ret != 0) 2610 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2611 return ret; 2612 } 2613 2614 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2615 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2616 2617 if (ret != 0) 2618 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2619 put_task_struct(env.best_task); 2620 return ret; 2621 } 2622 2623 /* Attempt to migrate a task to a CPU on the preferred node. */ 2624 static void numa_migrate_preferred(struct task_struct *p) 2625 { 2626 unsigned long interval = HZ; 2627 2628 /* This task has no NUMA fault statistics yet */ 2629 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2630 return; 2631 2632 /* Periodically retry migrating the task to the preferred node */ 2633 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2634 p->numa_migrate_retry = jiffies + interval; 2635 2636 /* Success if task is already running on preferred CPU */ 2637 if (task_node(p) == p->numa_preferred_nid) 2638 return; 2639 2640 /* Otherwise, try migrate to a CPU on the preferred node */ 2641 task_numa_migrate(p); 2642 } 2643 2644 /* 2645 * Find out how many nodes the workload is actively running on. Do this by 2646 * tracking the nodes from which NUMA hinting faults are triggered. This can 2647 * be different from the set of nodes where the workload's memory is currently 2648 * located. 2649 */ 2650 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2651 { 2652 unsigned long faults, max_faults = 0; 2653 int nid, active_nodes = 0; 2654 2655 for_each_node_state(nid, N_CPU) { 2656 faults = group_faults_cpu(numa_group, nid); 2657 if (faults > max_faults) 2658 max_faults = faults; 2659 } 2660 2661 for_each_node_state(nid, N_CPU) { 2662 faults = group_faults_cpu(numa_group, nid); 2663 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2664 active_nodes++; 2665 } 2666 2667 numa_group->max_faults_cpu = max_faults; 2668 numa_group->active_nodes = active_nodes; 2669 } 2670 2671 /* 2672 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2673 * increments. The more local the fault statistics are, the higher the scan 2674 * period will be for the next scan window. If local/(local+remote) ratio is 2675 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2676 * the scan period will decrease. Aim for 70% local accesses. 2677 */ 2678 #define NUMA_PERIOD_SLOTS 10 2679 #define NUMA_PERIOD_THRESHOLD 7 2680 2681 /* 2682 * Increase the scan period (slow down scanning) if the majority of 2683 * our memory is already on our local node, or if the majority of 2684 * the page accesses are shared with other processes. 2685 * Otherwise, decrease the scan period. 2686 */ 2687 static void update_task_scan_period(struct task_struct *p, 2688 unsigned long shared, unsigned long private) 2689 { 2690 unsigned int period_slot; 2691 int lr_ratio, ps_ratio; 2692 int diff; 2693 2694 unsigned long remote = p->numa_faults_locality[0]; 2695 unsigned long local = p->numa_faults_locality[1]; 2696 2697 /* 2698 * If there were no record hinting faults then either the task is 2699 * completely idle or all activity is in areas that are not of interest 2700 * to automatic numa balancing. Related to that, if there were failed 2701 * migration then it implies we are migrating too quickly or the local 2702 * node is overloaded. In either case, scan slower 2703 */ 2704 if (local + shared == 0 || p->numa_faults_locality[2]) { 2705 p->numa_scan_period = min(p->numa_scan_period_max, 2706 p->numa_scan_period << 1); 2707 2708 p->mm->numa_next_scan = jiffies + 2709 msecs_to_jiffies(p->numa_scan_period); 2710 2711 return; 2712 } 2713 2714 /* 2715 * Prepare to scale scan period relative to the current period. 2716 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2717 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2718 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2719 */ 2720 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2721 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2722 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2723 2724 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2725 /* 2726 * Most memory accesses are local. There is no need to 2727 * do fast NUMA scanning, since memory is already local. 2728 */ 2729 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2730 if (!slot) 2731 slot = 1; 2732 diff = slot * period_slot; 2733 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2734 /* 2735 * Most memory accesses are shared with other tasks. 2736 * There is no point in continuing fast NUMA scanning, 2737 * since other tasks may just move the memory elsewhere. 2738 */ 2739 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2740 if (!slot) 2741 slot = 1; 2742 diff = slot * period_slot; 2743 } else { 2744 /* 2745 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2746 * yet they are not on the local NUMA node. Speed up 2747 * NUMA scanning to get the memory moved over. 2748 */ 2749 int ratio = max(lr_ratio, ps_ratio); 2750 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2751 } 2752 2753 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2754 task_scan_min(p), task_scan_max(p)); 2755 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2756 } 2757 2758 /* 2759 * Get the fraction of time the task has been running since the last 2760 * NUMA placement cycle. The scheduler keeps similar statistics, but 2761 * decays those on a 32ms period, which is orders of magnitude off 2762 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2763 * stats only if the task is so new there are no NUMA statistics yet. 2764 */ 2765 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2766 { 2767 u64 runtime, delta, now; 2768 /* Use the start of this time slice to avoid calculations. */ 2769 now = p->se.exec_start; 2770 runtime = p->se.sum_exec_runtime; 2771 2772 if (p->last_task_numa_placement) { 2773 delta = runtime - p->last_sum_exec_runtime; 2774 *period = now - p->last_task_numa_placement; 2775 2776 /* Avoid time going backwards, prevent potential divide error: */ 2777 if (unlikely((s64)*period < 0)) 2778 *period = 0; 2779 } else { 2780 delta = p->se.avg.load_sum; 2781 *period = LOAD_AVG_MAX; 2782 } 2783 2784 p->last_sum_exec_runtime = runtime; 2785 p->last_task_numa_placement = now; 2786 2787 return delta; 2788 } 2789 2790 /* 2791 * Determine the preferred nid for a task in a numa_group. This needs to 2792 * be done in a way that produces consistent results with group_weight, 2793 * otherwise workloads might not converge. 2794 */ 2795 static int preferred_group_nid(struct task_struct *p, int nid) 2796 { 2797 nodemask_t nodes; 2798 int dist; 2799 2800 /* Direct connections between all NUMA nodes. */ 2801 if (sched_numa_topology_type == NUMA_DIRECT) 2802 return nid; 2803 2804 /* 2805 * On a system with glueless mesh NUMA topology, group_weight 2806 * scores nodes according to the number of NUMA hinting faults on 2807 * both the node itself, and on nearby nodes. 2808 */ 2809 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2810 unsigned long score, max_score = 0; 2811 int node, max_node = nid; 2812 2813 dist = sched_max_numa_distance; 2814 2815 for_each_node_state(node, N_CPU) { 2816 score = group_weight(p, node, dist); 2817 if (score > max_score) { 2818 max_score = score; 2819 max_node = node; 2820 } 2821 } 2822 return max_node; 2823 } 2824 2825 /* 2826 * Finding the preferred nid in a system with NUMA backplane 2827 * interconnect topology is more involved. The goal is to locate 2828 * tasks from numa_groups near each other in the system, and 2829 * untangle workloads from different sides of the system. This requires 2830 * searching down the hierarchy of node groups, recursively searching 2831 * inside the highest scoring group of nodes. The nodemask tricks 2832 * keep the complexity of the search down. 2833 */ 2834 nodes = node_states[N_CPU]; 2835 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2836 unsigned long max_faults = 0; 2837 nodemask_t max_group = NODE_MASK_NONE; 2838 int a, b; 2839 2840 /* Are there nodes at this distance from each other? */ 2841 if (!find_numa_distance(dist)) 2842 continue; 2843 2844 for_each_node_mask(a, nodes) { 2845 unsigned long faults = 0; 2846 nodemask_t this_group; 2847 nodes_clear(this_group); 2848 2849 /* Sum group's NUMA faults; includes a==b case. */ 2850 for_each_node_mask(b, nodes) { 2851 if (node_distance(a, b) < dist) { 2852 faults += group_faults(p, b); 2853 node_set(b, this_group); 2854 node_clear(b, nodes); 2855 } 2856 } 2857 2858 /* Remember the top group. */ 2859 if (faults > max_faults) { 2860 max_faults = faults; 2861 max_group = this_group; 2862 /* 2863 * subtle: at the smallest distance there is 2864 * just one node left in each "group", the 2865 * winner is the preferred nid. 2866 */ 2867 nid = a; 2868 } 2869 } 2870 /* Next round, evaluate the nodes within max_group. */ 2871 if (!max_faults) 2872 break; 2873 nodes = max_group; 2874 } 2875 return nid; 2876 } 2877 2878 static void task_numa_placement(struct task_struct *p) 2879 { 2880 int seq, nid, max_nid = NUMA_NO_NODE; 2881 unsigned long max_faults = 0; 2882 unsigned long fault_types[2] = { 0, 0 }; 2883 unsigned long total_faults; 2884 u64 runtime, period; 2885 spinlock_t *group_lock = NULL; 2886 struct numa_group *ng; 2887 2888 /* 2889 * The p->mm->numa_scan_seq field gets updated without 2890 * exclusive access. Use READ_ONCE() here to ensure 2891 * that the field is read in a single access: 2892 */ 2893 seq = READ_ONCE(p->mm->numa_scan_seq); 2894 if (p->numa_scan_seq == seq) 2895 return; 2896 p->numa_scan_seq = seq; 2897 p->numa_scan_period_max = task_scan_max(p); 2898 2899 total_faults = p->numa_faults_locality[0] + 2900 p->numa_faults_locality[1]; 2901 runtime = numa_get_avg_runtime(p, &period); 2902 2903 /* If the task is part of a group prevent parallel updates to group stats */ 2904 ng = deref_curr_numa_group(p); 2905 if (ng) { 2906 group_lock = &ng->lock; 2907 spin_lock_irq(group_lock); 2908 } 2909 2910 /* Find the node with the highest number of faults */ 2911 for_each_online_node(nid) { 2912 /* Keep track of the offsets in numa_faults array */ 2913 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2914 unsigned long faults = 0, group_faults = 0; 2915 int priv; 2916 2917 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2918 long diff, f_diff, f_weight; 2919 2920 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2921 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2922 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2923 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2924 2925 /* Decay existing window, copy faults since last scan */ 2926 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2927 fault_types[priv] += p->numa_faults[membuf_idx]; 2928 p->numa_faults[membuf_idx] = 0; 2929 2930 /* 2931 * Normalize the faults_from, so all tasks in a group 2932 * count according to CPU use, instead of by the raw 2933 * number of faults. Tasks with little runtime have 2934 * little over-all impact on throughput, and thus their 2935 * faults are less important. 2936 */ 2937 f_weight = div64_u64(runtime << 16, period + 1); 2938 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2939 (total_faults + 1); 2940 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2941 p->numa_faults[cpubuf_idx] = 0; 2942 2943 p->numa_faults[mem_idx] += diff; 2944 p->numa_faults[cpu_idx] += f_diff; 2945 faults += p->numa_faults[mem_idx]; 2946 p->total_numa_faults += diff; 2947 if (ng) { 2948 /* 2949 * safe because we can only change our own group 2950 * 2951 * mem_idx represents the offset for a given 2952 * nid and priv in a specific region because it 2953 * is at the beginning of the numa_faults array. 2954 */ 2955 ng->faults[mem_idx] += diff; 2956 ng->faults[cpu_idx] += f_diff; 2957 ng->total_faults += diff; 2958 group_faults += ng->faults[mem_idx]; 2959 } 2960 } 2961 2962 if (!ng) { 2963 if (faults > max_faults) { 2964 max_faults = faults; 2965 max_nid = nid; 2966 } 2967 } else if (group_faults > max_faults) { 2968 max_faults = group_faults; 2969 max_nid = nid; 2970 } 2971 } 2972 2973 /* Cannot migrate task to CPU-less node */ 2974 max_nid = numa_nearest_node(max_nid, N_CPU); 2975 2976 if (ng) { 2977 numa_group_count_active_nodes(ng); 2978 spin_unlock_irq(group_lock); 2979 max_nid = preferred_group_nid(p, max_nid); 2980 } 2981 2982 if (max_faults) { 2983 /* Set the new preferred node */ 2984 if (max_nid != p->numa_preferred_nid) 2985 sched_setnuma(p, max_nid); 2986 } 2987 2988 update_task_scan_period(p, fault_types[0], fault_types[1]); 2989 } 2990 2991 static inline int get_numa_group(struct numa_group *grp) 2992 { 2993 return refcount_inc_not_zero(&grp->refcount); 2994 } 2995 2996 static inline void put_numa_group(struct numa_group *grp) 2997 { 2998 if (refcount_dec_and_test(&grp->refcount)) 2999 kfree_rcu(grp, rcu); 3000 } 3001 3002 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3003 int *priv) 3004 { 3005 struct numa_group *grp, *my_grp; 3006 struct task_struct *tsk; 3007 bool join = false; 3008 int cpu = cpupid_to_cpu(cpupid); 3009 int i; 3010 3011 if (unlikely(!deref_curr_numa_group(p))) { 3012 unsigned int size = sizeof(struct numa_group) + 3013 NR_NUMA_HINT_FAULT_STATS * 3014 nr_node_ids * sizeof(unsigned long); 3015 3016 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3017 if (!grp) 3018 return; 3019 3020 refcount_set(&grp->refcount, 1); 3021 grp->active_nodes = 1; 3022 grp->max_faults_cpu = 0; 3023 spin_lock_init(&grp->lock); 3024 grp->gid = p->pid; 3025 3026 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3027 grp->faults[i] = p->numa_faults[i]; 3028 3029 grp->total_faults = p->total_numa_faults; 3030 3031 grp->nr_tasks++; 3032 rcu_assign_pointer(p->numa_group, grp); 3033 } 3034 3035 rcu_read_lock(); 3036 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3037 3038 if (!cpupid_match_pid(tsk, cpupid)) 3039 goto no_join; 3040 3041 grp = rcu_dereference(tsk->numa_group); 3042 if (!grp) 3043 goto no_join; 3044 3045 my_grp = deref_curr_numa_group(p); 3046 if (grp == my_grp) 3047 goto no_join; 3048 3049 /* 3050 * Only join the other group if its bigger; if we're the bigger group, 3051 * the other task will join us. 3052 */ 3053 if (my_grp->nr_tasks > grp->nr_tasks) 3054 goto no_join; 3055 3056 /* 3057 * Tie-break on the grp address. 3058 */ 3059 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3060 goto no_join; 3061 3062 /* Always join threads in the same process. */ 3063 if (tsk->mm == current->mm) 3064 join = true; 3065 3066 /* Simple filter to avoid false positives due to PID collisions */ 3067 if (flags & TNF_SHARED) 3068 join = true; 3069 3070 /* Update priv based on whether false sharing was detected */ 3071 *priv = !join; 3072 3073 if (join && !get_numa_group(grp)) 3074 goto no_join; 3075 3076 rcu_read_unlock(); 3077 3078 if (!join) 3079 return; 3080 3081 WARN_ON_ONCE(irqs_disabled()); 3082 double_lock_irq(&my_grp->lock, &grp->lock); 3083 3084 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3085 my_grp->faults[i] -= p->numa_faults[i]; 3086 grp->faults[i] += p->numa_faults[i]; 3087 } 3088 my_grp->total_faults -= p->total_numa_faults; 3089 grp->total_faults += p->total_numa_faults; 3090 3091 my_grp->nr_tasks--; 3092 grp->nr_tasks++; 3093 3094 spin_unlock(&my_grp->lock); 3095 spin_unlock_irq(&grp->lock); 3096 3097 rcu_assign_pointer(p->numa_group, grp); 3098 3099 put_numa_group(my_grp); 3100 return; 3101 3102 no_join: 3103 rcu_read_unlock(); 3104 return; 3105 } 3106 3107 /* 3108 * Get rid of NUMA statistics associated with a task (either current or dead). 3109 * If @final is set, the task is dead and has reached refcount zero, so we can 3110 * safely free all relevant data structures. Otherwise, there might be 3111 * concurrent reads from places like load balancing and procfs, and we should 3112 * reset the data back to default state without freeing ->numa_faults. 3113 */ 3114 void task_numa_free(struct task_struct *p, bool final) 3115 { 3116 /* safe: p either is current or is being freed by current */ 3117 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3118 unsigned long *numa_faults = p->numa_faults; 3119 unsigned long flags; 3120 int i; 3121 3122 if (!numa_faults) 3123 return; 3124 3125 if (grp) { 3126 spin_lock_irqsave(&grp->lock, flags); 3127 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3128 grp->faults[i] -= p->numa_faults[i]; 3129 grp->total_faults -= p->total_numa_faults; 3130 3131 grp->nr_tasks--; 3132 spin_unlock_irqrestore(&grp->lock, flags); 3133 RCU_INIT_POINTER(p->numa_group, NULL); 3134 put_numa_group(grp); 3135 } 3136 3137 if (final) { 3138 p->numa_faults = NULL; 3139 kfree(numa_faults); 3140 } else { 3141 p->total_numa_faults = 0; 3142 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3143 numa_faults[i] = 0; 3144 } 3145 } 3146 3147 /* 3148 * Got a PROT_NONE fault for a page on @node. 3149 */ 3150 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3151 { 3152 struct task_struct *p = current; 3153 bool migrated = flags & TNF_MIGRATED; 3154 int cpu_node = task_node(current); 3155 int local = !!(flags & TNF_FAULT_LOCAL); 3156 struct numa_group *ng; 3157 int priv; 3158 3159 if (!static_branch_likely(&sched_numa_balancing)) 3160 return; 3161 3162 /* for example, ksmd faulting in a user's mm */ 3163 if (!p->mm) 3164 return; 3165 3166 /* 3167 * NUMA faults statistics are unnecessary for the slow memory 3168 * node for memory tiering mode. 3169 */ 3170 if (!node_is_toptier(mem_node) && 3171 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3172 !cpupid_valid(last_cpupid))) 3173 return; 3174 3175 /* Allocate buffer to track faults on a per-node basis */ 3176 if (unlikely(!p->numa_faults)) { 3177 int size = sizeof(*p->numa_faults) * 3178 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3179 3180 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3181 if (!p->numa_faults) 3182 return; 3183 3184 p->total_numa_faults = 0; 3185 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3186 } 3187 3188 /* 3189 * First accesses are treated as private, otherwise consider accesses 3190 * to be private if the accessing pid has not changed 3191 */ 3192 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3193 priv = 1; 3194 } else { 3195 priv = cpupid_match_pid(p, last_cpupid); 3196 if (!priv && !(flags & TNF_NO_GROUP)) 3197 task_numa_group(p, last_cpupid, flags, &priv); 3198 } 3199 3200 /* 3201 * If a workload spans multiple NUMA nodes, a shared fault that 3202 * occurs wholly within the set of nodes that the workload is 3203 * actively using should be counted as local. This allows the 3204 * scan rate to slow down when a workload has settled down. 3205 */ 3206 ng = deref_curr_numa_group(p); 3207 if (!priv && !local && ng && ng->active_nodes > 1 && 3208 numa_is_active_node(cpu_node, ng) && 3209 numa_is_active_node(mem_node, ng)) 3210 local = 1; 3211 3212 /* 3213 * Retry to migrate task to preferred node periodically, in case it 3214 * previously failed, or the scheduler moved us. 3215 */ 3216 if (time_after(jiffies, p->numa_migrate_retry)) { 3217 task_numa_placement(p); 3218 numa_migrate_preferred(p); 3219 } 3220 3221 if (migrated) 3222 p->numa_pages_migrated += pages; 3223 if (flags & TNF_MIGRATE_FAIL) 3224 p->numa_faults_locality[2] += pages; 3225 3226 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3227 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3228 p->numa_faults_locality[local] += pages; 3229 } 3230 3231 static void reset_ptenuma_scan(struct task_struct *p) 3232 { 3233 /* 3234 * We only did a read acquisition of the mmap sem, so 3235 * p->mm->numa_scan_seq is written to without exclusive access 3236 * and the update is not guaranteed to be atomic. That's not 3237 * much of an issue though, since this is just used for 3238 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3239 * expensive, to avoid any form of compiler optimizations: 3240 */ 3241 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3242 p->mm->numa_scan_offset = 0; 3243 } 3244 3245 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3246 { 3247 unsigned long pids; 3248 /* 3249 * Allow unconditional access first two times, so that all the (pages) 3250 * of VMAs get prot_none fault introduced irrespective of accesses. 3251 * This is also done to avoid any side effect of task scanning 3252 * amplifying the unfairness of disjoint set of VMAs' access. 3253 */ 3254 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3255 return true; 3256 3257 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3258 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3259 return true; 3260 3261 /* 3262 * Complete a scan that has already started regardless of PID access, or 3263 * some VMAs may never be scanned in multi-threaded applications: 3264 */ 3265 if (mm->numa_scan_offset > vma->vm_start) { 3266 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3267 return true; 3268 } 3269 3270 /* 3271 * This vma has not been accessed for a while, and if the number 3272 * the threads in the same process is low, which means no other 3273 * threads can help scan this vma, force a vma scan. 3274 */ 3275 if (READ_ONCE(mm->numa_scan_seq) > 3276 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3277 return true; 3278 3279 return false; 3280 } 3281 3282 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3283 3284 /* 3285 * The expensive part of numa migration is done from task_work context. 3286 * Triggered from task_tick_numa(). 3287 */ 3288 static void task_numa_work(struct callback_head *work) 3289 { 3290 unsigned long migrate, next_scan, now = jiffies; 3291 struct task_struct *p = current; 3292 struct mm_struct *mm = p->mm; 3293 u64 runtime = p->se.sum_exec_runtime; 3294 struct vm_area_struct *vma; 3295 unsigned long start, end; 3296 unsigned long nr_pte_updates = 0; 3297 long pages, virtpages; 3298 struct vma_iterator vmi; 3299 bool vma_pids_skipped; 3300 bool vma_pids_forced = false; 3301 3302 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3303 3304 work->next = work; 3305 /* 3306 * Who cares about NUMA placement when they're dying. 3307 * 3308 * NOTE: make sure not to dereference p->mm before this check, 3309 * exit_task_work() happens _after_ exit_mm() so we could be called 3310 * without p->mm even though we still had it when we enqueued this 3311 * work. 3312 */ 3313 if (p->flags & PF_EXITING) 3314 return; 3315 3316 /* 3317 * Memory is pinned to only one NUMA node via cpuset.mems, naturally 3318 * no page can be migrated. 3319 */ 3320 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { 3321 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); 3322 return; 3323 } 3324 3325 if (!mm->numa_next_scan) { 3326 mm->numa_next_scan = now + 3327 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3328 } 3329 3330 /* 3331 * Enforce maximal scan/migration frequency.. 3332 */ 3333 migrate = mm->numa_next_scan; 3334 if (time_before(now, migrate)) 3335 return; 3336 3337 if (p->numa_scan_period == 0) { 3338 p->numa_scan_period_max = task_scan_max(p); 3339 p->numa_scan_period = task_scan_start(p); 3340 } 3341 3342 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3343 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3344 return; 3345 3346 /* 3347 * Delay this task enough that another task of this mm will likely win 3348 * the next time around. 3349 */ 3350 p->node_stamp += 2 * TICK_NSEC; 3351 3352 pages = sysctl_numa_balancing_scan_size; 3353 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3354 virtpages = pages * 8; /* Scan up to this much virtual space */ 3355 if (!pages) 3356 return; 3357 3358 3359 if (!mmap_read_trylock(mm)) 3360 return; 3361 3362 /* 3363 * VMAs are skipped if the current PID has not trapped a fault within 3364 * the VMA recently. Allow scanning to be forced if there is no 3365 * suitable VMA remaining. 3366 */ 3367 vma_pids_skipped = false; 3368 3369 retry_pids: 3370 start = mm->numa_scan_offset; 3371 vma_iter_init(&vmi, mm, start); 3372 vma = vma_next(&vmi); 3373 if (!vma) { 3374 reset_ptenuma_scan(p); 3375 start = 0; 3376 vma_iter_set(&vmi, start); 3377 vma = vma_next(&vmi); 3378 } 3379 3380 for (; vma; vma = vma_next(&vmi)) { 3381 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3382 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3383 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3384 continue; 3385 } 3386 3387 /* 3388 * Shared library pages mapped by multiple processes are not 3389 * migrated as it is expected they are cache replicated. Avoid 3390 * hinting faults in read-only file-backed mappings or the vDSO 3391 * as migrating the pages will be of marginal benefit. 3392 */ 3393 if (!vma->vm_mm || 3394 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3395 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3396 continue; 3397 } 3398 3399 /* 3400 * Skip inaccessible VMAs to avoid any confusion between 3401 * PROT_NONE and NUMA hinting PTEs 3402 */ 3403 if (!vma_is_accessible(vma)) { 3404 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3405 continue; 3406 } 3407 3408 /* Initialise new per-VMA NUMAB state. */ 3409 if (!vma->numab_state) { 3410 struct vma_numab_state *ptr; 3411 3412 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3413 if (!ptr) 3414 continue; 3415 3416 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3417 kfree(ptr); 3418 continue; 3419 } 3420 3421 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3422 3423 vma->numab_state->next_scan = now + 3424 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3425 3426 /* Reset happens after 4 times scan delay of scan start */ 3427 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3428 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3429 3430 /* 3431 * Ensure prev_scan_seq does not match numa_scan_seq, 3432 * to prevent VMAs being skipped prematurely on the 3433 * first scan: 3434 */ 3435 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3436 } 3437 3438 /* 3439 * Scanning the VMAs of short lived tasks add more overhead. So 3440 * delay the scan for new VMAs. 3441 */ 3442 if (mm->numa_scan_seq && time_before(jiffies, 3443 vma->numab_state->next_scan)) { 3444 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3445 continue; 3446 } 3447 3448 /* RESET access PIDs regularly for old VMAs. */ 3449 if (mm->numa_scan_seq && 3450 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3451 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3452 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3453 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3454 vma->numab_state->pids_active[1] = 0; 3455 } 3456 3457 /* Do not rescan VMAs twice within the same sequence. */ 3458 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3459 mm->numa_scan_offset = vma->vm_end; 3460 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3461 continue; 3462 } 3463 3464 /* 3465 * Do not scan the VMA if task has not accessed it, unless no other 3466 * VMA candidate exists. 3467 */ 3468 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3469 vma_pids_skipped = true; 3470 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3471 continue; 3472 } 3473 3474 do { 3475 start = max(start, vma->vm_start); 3476 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3477 end = min(end, vma->vm_end); 3478 nr_pte_updates = change_prot_numa(vma, start, end); 3479 3480 /* 3481 * Try to scan sysctl_numa_balancing_size worth of 3482 * hpages that have at least one present PTE that 3483 * is not already PTE-numa. If the VMA contains 3484 * areas that are unused or already full of prot_numa 3485 * PTEs, scan up to virtpages, to skip through those 3486 * areas faster. 3487 */ 3488 if (nr_pte_updates) 3489 pages -= (end - start) >> PAGE_SHIFT; 3490 virtpages -= (end - start) >> PAGE_SHIFT; 3491 3492 start = end; 3493 if (pages <= 0 || virtpages <= 0) 3494 goto out; 3495 3496 cond_resched(); 3497 } while (end != vma->vm_end); 3498 3499 /* VMA scan is complete, do not scan until next sequence. */ 3500 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3501 3502 /* 3503 * Only force scan within one VMA at a time, to limit the 3504 * cost of scanning a potentially uninteresting VMA. 3505 */ 3506 if (vma_pids_forced) 3507 break; 3508 } 3509 3510 /* 3511 * If no VMAs are remaining and VMAs were skipped due to the PID 3512 * not accessing the VMA previously, then force a scan to ensure 3513 * forward progress: 3514 */ 3515 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3516 vma_pids_forced = true; 3517 goto retry_pids; 3518 } 3519 3520 out: 3521 /* 3522 * It is possible to reach the end of the VMA list but the last few 3523 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3524 * would find the !migratable VMA on the next scan but not reset the 3525 * scanner to the start so check it now. 3526 */ 3527 if (vma) 3528 mm->numa_scan_offset = start; 3529 else 3530 reset_ptenuma_scan(p); 3531 mmap_read_unlock(mm); 3532 3533 /* 3534 * Make sure tasks use at least 32x as much time to run other code 3535 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3536 * Usually update_task_scan_period slows down scanning enough; on an 3537 * overloaded system we need to limit overhead on a per task basis. 3538 */ 3539 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3540 u64 diff = p->se.sum_exec_runtime - runtime; 3541 p->node_stamp += 32 * diff; 3542 } 3543 } 3544 3545 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3546 { 3547 int mm_users = 0; 3548 struct mm_struct *mm = p->mm; 3549 3550 if (mm) { 3551 mm_users = atomic_read(&mm->mm_users); 3552 if (mm_users == 1) { 3553 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3554 mm->numa_scan_seq = 0; 3555 } 3556 } 3557 p->node_stamp = 0; 3558 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3559 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3560 p->numa_migrate_retry = 0; 3561 /* Protect against double add, see task_tick_numa and task_numa_work */ 3562 p->numa_work.next = &p->numa_work; 3563 p->numa_faults = NULL; 3564 p->numa_pages_migrated = 0; 3565 p->total_numa_faults = 0; 3566 RCU_INIT_POINTER(p->numa_group, NULL); 3567 p->last_task_numa_placement = 0; 3568 p->last_sum_exec_runtime = 0; 3569 3570 init_task_work(&p->numa_work, task_numa_work); 3571 3572 /* New address space, reset the preferred nid */ 3573 if (!(clone_flags & CLONE_VM)) { 3574 p->numa_preferred_nid = NUMA_NO_NODE; 3575 return; 3576 } 3577 3578 /* 3579 * New thread, keep existing numa_preferred_nid which should be copied 3580 * already by arch_dup_task_struct but stagger when scans start. 3581 */ 3582 if (mm) { 3583 unsigned int delay; 3584 3585 delay = min_t(unsigned int, task_scan_max(current), 3586 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3587 delay += 2 * TICK_NSEC; 3588 p->node_stamp = delay; 3589 } 3590 } 3591 3592 /* 3593 * Drive the periodic memory faults.. 3594 */ 3595 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3596 { 3597 struct callback_head *work = &curr->numa_work; 3598 u64 period, now; 3599 3600 /* 3601 * We don't care about NUMA placement if we don't have memory. 3602 */ 3603 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3604 return; 3605 3606 /* 3607 * Using runtime rather than walltime has the dual advantage that 3608 * we (mostly) drive the selection from busy threads and that the 3609 * task needs to have done some actual work before we bother with 3610 * NUMA placement. 3611 */ 3612 now = curr->se.sum_exec_runtime; 3613 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3614 3615 if (now > curr->node_stamp + period) { 3616 if (!curr->node_stamp) 3617 curr->numa_scan_period = task_scan_start(curr); 3618 curr->node_stamp += period; 3619 3620 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3621 task_work_add(curr, work, TWA_RESUME); 3622 } 3623 } 3624 3625 static void update_scan_period(struct task_struct *p, int new_cpu) 3626 { 3627 int src_nid = cpu_to_node(task_cpu(p)); 3628 int dst_nid = cpu_to_node(new_cpu); 3629 3630 if (!static_branch_likely(&sched_numa_balancing)) 3631 return; 3632 3633 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3634 return; 3635 3636 if (src_nid == dst_nid) 3637 return; 3638 3639 /* 3640 * Allow resets if faults have been trapped before one scan 3641 * has completed. This is most likely due to a new task that 3642 * is pulled cross-node due to wakeups or load balancing. 3643 */ 3644 if (p->numa_scan_seq) { 3645 /* 3646 * Avoid scan adjustments if moving to the preferred 3647 * node or if the task was not previously running on 3648 * the preferred node. 3649 */ 3650 if (dst_nid == p->numa_preferred_nid || 3651 (p->numa_preferred_nid != NUMA_NO_NODE && 3652 src_nid != p->numa_preferred_nid)) 3653 return; 3654 } 3655 3656 p->numa_scan_period = task_scan_start(p); 3657 } 3658 3659 #else /* !CONFIG_NUMA_BALANCING: */ 3660 3661 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3662 { 3663 } 3664 3665 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3666 { 3667 } 3668 3669 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3670 { 3671 } 3672 3673 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3674 { 3675 } 3676 3677 #endif /* !CONFIG_NUMA_BALANCING */ 3678 3679 static void 3680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3681 { 3682 update_load_add(&cfs_rq->load, se->load.weight); 3683 if (entity_is_task(se)) { 3684 struct rq *rq = rq_of(cfs_rq); 3685 3686 account_numa_enqueue(rq, task_of(se)); 3687 list_add(&se->group_node, &rq->cfs_tasks); 3688 } 3689 cfs_rq->nr_queued++; 3690 } 3691 3692 static void 3693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3694 { 3695 update_load_sub(&cfs_rq->load, se->load.weight); 3696 if (entity_is_task(se)) { 3697 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3698 list_del_init(&se->group_node); 3699 } 3700 cfs_rq->nr_queued--; 3701 } 3702 3703 /* 3704 * Signed add and clamp on underflow. 3705 * 3706 * Explicitly do a load-store to ensure the intermediate value never hits 3707 * memory. This allows lockless observations without ever seeing the negative 3708 * values. 3709 */ 3710 #define add_positive(_ptr, _val) do { \ 3711 typeof(_ptr) ptr = (_ptr); \ 3712 typeof(_val) val = (_val); \ 3713 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3714 \ 3715 res = var + val; \ 3716 \ 3717 if (val < 0 && res > var) \ 3718 res = 0; \ 3719 \ 3720 WRITE_ONCE(*ptr, res); \ 3721 } while (0) 3722 3723 /* 3724 * Unsigned subtract and clamp on underflow. 3725 * 3726 * Explicitly do a load-store to ensure the intermediate value never hits 3727 * memory. This allows lockless observations without ever seeing the negative 3728 * values. 3729 */ 3730 #define sub_positive(_ptr, _val) do { \ 3731 typeof(_ptr) ptr = (_ptr); \ 3732 typeof(*ptr) val = (_val); \ 3733 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3734 res = var - val; \ 3735 if (res > var) \ 3736 res = 0; \ 3737 WRITE_ONCE(*ptr, res); \ 3738 } while (0) 3739 3740 /* 3741 * Remove and clamp on negative, from a local variable. 3742 * 3743 * A variant of sub_positive(), which does not use explicit load-store 3744 * and is thus optimized for local variable updates. 3745 */ 3746 #define lsub_positive(_ptr, _val) do { \ 3747 typeof(_ptr) ptr = (_ptr); \ 3748 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3749 } while (0) 3750 3751 static inline void 3752 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3753 { 3754 cfs_rq->avg.load_avg += se->avg.load_avg; 3755 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3756 } 3757 3758 static inline void 3759 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3760 { 3761 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3762 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3763 /* See update_cfs_rq_load_avg() */ 3764 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3765 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3766 } 3767 3768 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3769 3770 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3771 unsigned long weight) 3772 { 3773 bool curr = cfs_rq->curr == se; 3774 3775 if (se->on_rq) { 3776 /* commit outstanding execution time */ 3777 update_curr(cfs_rq); 3778 update_entity_lag(cfs_rq, se); 3779 se->deadline -= se->vruntime; 3780 se->rel_deadline = 1; 3781 cfs_rq->nr_queued--; 3782 if (!curr) 3783 __dequeue_entity(cfs_rq, se); 3784 update_load_sub(&cfs_rq->load, se->load.weight); 3785 } 3786 dequeue_load_avg(cfs_rq, se); 3787 3788 /* 3789 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3790 * we need to scale se->vlag when w_i changes. 3791 */ 3792 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3793 if (se->rel_deadline) 3794 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3795 3796 update_load_set(&se->load, weight); 3797 3798 do { 3799 u32 divider = get_pelt_divider(&se->avg); 3800 3801 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3802 } while (0); 3803 3804 enqueue_load_avg(cfs_rq, se); 3805 if (se->on_rq) { 3806 place_entity(cfs_rq, se, 0); 3807 update_load_add(&cfs_rq->load, se->load.weight); 3808 if (!curr) 3809 __enqueue_entity(cfs_rq, se); 3810 cfs_rq->nr_queued++; 3811 3812 /* 3813 * The entity's vruntime has been adjusted, so let's check 3814 * whether the rq-wide min_vruntime needs updated too. Since 3815 * the calculations above require stable min_vruntime rather 3816 * than up-to-date one, we do the update at the end of the 3817 * reweight process. 3818 */ 3819 update_min_vruntime(cfs_rq); 3820 } 3821 } 3822 3823 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3824 const struct load_weight *lw) 3825 { 3826 struct sched_entity *se = &p->se; 3827 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3828 struct load_weight *load = &se->load; 3829 3830 reweight_entity(cfs_rq, se, lw->weight); 3831 load->inv_weight = lw->inv_weight; 3832 } 3833 3834 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3835 3836 #ifdef CONFIG_FAIR_GROUP_SCHED 3837 /* 3838 * All this does is approximate the hierarchical proportion which includes that 3839 * global sum we all love to hate. 3840 * 3841 * That is, the weight of a group entity, is the proportional share of the 3842 * group weight based on the group runqueue weights. That is: 3843 * 3844 * tg->weight * grq->load.weight 3845 * ge->load.weight = ----------------------------- (1) 3846 * \Sum grq->load.weight 3847 * 3848 * Now, because computing that sum is prohibitively expensive to compute (been 3849 * there, done that) we approximate it with this average stuff. The average 3850 * moves slower and therefore the approximation is cheaper and more stable. 3851 * 3852 * So instead of the above, we substitute: 3853 * 3854 * grq->load.weight -> grq->avg.load_avg (2) 3855 * 3856 * which yields the following: 3857 * 3858 * tg->weight * grq->avg.load_avg 3859 * ge->load.weight = ------------------------------ (3) 3860 * tg->load_avg 3861 * 3862 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3863 * 3864 * That is shares_avg, and it is right (given the approximation (2)). 3865 * 3866 * The problem with it is that because the average is slow -- it was designed 3867 * to be exactly that of course -- this leads to transients in boundary 3868 * conditions. In specific, the case where the group was idle and we start the 3869 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3870 * yielding bad latency etc.. 3871 * 3872 * Now, in that special case (1) reduces to: 3873 * 3874 * tg->weight * grq->load.weight 3875 * ge->load.weight = ----------------------------- = tg->weight (4) 3876 * grp->load.weight 3877 * 3878 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3879 * 3880 * So what we do is modify our approximation (3) to approach (4) in the (near) 3881 * UP case, like: 3882 * 3883 * ge->load.weight = 3884 * 3885 * tg->weight * grq->load.weight 3886 * --------------------------------------------------- (5) 3887 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3888 * 3889 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3890 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3891 * 3892 * 3893 * tg->weight * grq->load.weight 3894 * ge->load.weight = ----------------------------- (6) 3895 * tg_load_avg' 3896 * 3897 * Where: 3898 * 3899 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3900 * max(grq->load.weight, grq->avg.load_avg) 3901 * 3902 * And that is shares_weight and is icky. In the (near) UP case it approaches 3903 * (4) while in the normal case it approaches (3). It consistently 3904 * overestimates the ge->load.weight and therefore: 3905 * 3906 * \Sum ge->load.weight >= tg->weight 3907 * 3908 * hence icky! 3909 */ 3910 static long calc_group_shares(struct cfs_rq *cfs_rq) 3911 { 3912 long tg_weight, tg_shares, load, shares; 3913 struct task_group *tg = cfs_rq->tg; 3914 3915 tg_shares = READ_ONCE(tg->shares); 3916 3917 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3918 3919 tg_weight = atomic_long_read(&tg->load_avg); 3920 3921 /* Ensure tg_weight >= load */ 3922 tg_weight -= cfs_rq->tg_load_avg_contrib; 3923 tg_weight += load; 3924 3925 shares = (tg_shares * load); 3926 if (tg_weight) 3927 shares /= tg_weight; 3928 3929 /* 3930 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3931 * of a group with small tg->shares value. It is a floor value which is 3932 * assigned as a minimum load.weight to the sched_entity representing 3933 * the group on a CPU. 3934 * 3935 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3936 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3937 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3938 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3939 * instead of 0. 3940 */ 3941 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3942 } 3943 3944 /* 3945 * Recomputes the group entity based on the current state of its group 3946 * runqueue. 3947 */ 3948 static void update_cfs_group(struct sched_entity *se) 3949 { 3950 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3951 long shares; 3952 3953 /* 3954 * When a group becomes empty, preserve its weight. This matters for 3955 * DELAY_DEQUEUE. 3956 */ 3957 if (!gcfs_rq || !gcfs_rq->load.weight) 3958 return; 3959 3960 if (throttled_hierarchy(gcfs_rq)) 3961 return; 3962 3963 shares = calc_group_shares(gcfs_rq); 3964 if (unlikely(se->load.weight != shares)) 3965 reweight_entity(cfs_rq_of(se), se, shares); 3966 } 3967 3968 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 3969 static inline void update_cfs_group(struct sched_entity *se) 3970 { 3971 } 3972 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 3973 3974 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3975 { 3976 struct rq *rq = rq_of(cfs_rq); 3977 3978 if (&rq->cfs == cfs_rq) { 3979 /* 3980 * There are a few boundary cases this might miss but it should 3981 * get called often enough that that should (hopefully) not be 3982 * a real problem. 3983 * 3984 * It will not get called when we go idle, because the idle 3985 * thread is a different class (!fair), nor will the utilization 3986 * number include things like RT tasks. 3987 * 3988 * As is, the util number is not freq-invariant (we'd have to 3989 * implement arch_scale_freq_capacity() for that). 3990 * 3991 * See cpu_util_cfs(). 3992 */ 3993 cpufreq_update_util(rq, flags); 3994 } 3995 } 3996 3997 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3998 { 3999 if (sa->load_sum) 4000 return false; 4001 4002 if (sa->util_sum) 4003 return false; 4004 4005 if (sa->runnable_sum) 4006 return false; 4007 4008 /* 4009 * _avg must be null when _sum are null because _avg = _sum / divider 4010 * Make sure that rounding and/or propagation of PELT values never 4011 * break this. 4012 */ 4013 WARN_ON_ONCE(sa->load_avg || 4014 sa->util_avg || 4015 sa->runnable_avg); 4016 4017 return true; 4018 } 4019 4020 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4021 { 4022 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4023 cfs_rq->last_update_time_copy); 4024 } 4025 #ifdef CONFIG_FAIR_GROUP_SCHED 4026 /* 4027 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4028 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4029 * bottom-up, we only have to test whether the cfs_rq before us on the list 4030 * is our child. 4031 * If cfs_rq is not on the list, test whether a child needs its to be added to 4032 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4033 */ 4034 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4035 { 4036 struct cfs_rq *prev_cfs_rq; 4037 struct list_head *prev; 4038 struct rq *rq = rq_of(cfs_rq); 4039 4040 if (cfs_rq->on_list) { 4041 prev = cfs_rq->leaf_cfs_rq_list.prev; 4042 } else { 4043 prev = rq->tmp_alone_branch; 4044 } 4045 4046 if (prev == &rq->leaf_cfs_rq_list) 4047 return false; 4048 4049 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4050 4051 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4052 } 4053 4054 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4055 { 4056 if (cfs_rq->load.weight) 4057 return false; 4058 4059 if (!load_avg_is_decayed(&cfs_rq->avg)) 4060 return false; 4061 4062 if (child_cfs_rq_on_list(cfs_rq)) 4063 return false; 4064 4065 return true; 4066 } 4067 4068 /** 4069 * update_tg_load_avg - update the tg's load avg 4070 * @cfs_rq: the cfs_rq whose avg changed 4071 * 4072 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4073 * However, because tg->load_avg is a global value there are performance 4074 * considerations. 4075 * 4076 * In order to avoid having to look at the other cfs_rq's, we use a 4077 * differential update where we store the last value we propagated. This in 4078 * turn allows skipping updates if the differential is 'small'. 4079 * 4080 * Updating tg's load_avg is necessary before update_cfs_share(). 4081 */ 4082 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4083 { 4084 long delta; 4085 u64 now; 4086 4087 /* 4088 * No need to update load_avg for root_task_group as it is not used. 4089 */ 4090 if (cfs_rq->tg == &root_task_group) 4091 return; 4092 4093 /* rq has been offline and doesn't contribute to the share anymore: */ 4094 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4095 return; 4096 4097 /* 4098 * For migration heavy workloads, access to tg->load_avg can be 4099 * unbound. Limit the update rate to at most once per ms. 4100 */ 4101 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4102 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4103 return; 4104 4105 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4106 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4107 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4108 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4109 cfs_rq->last_update_tg_load_avg = now; 4110 } 4111 } 4112 4113 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4114 { 4115 long delta; 4116 u64 now; 4117 4118 /* 4119 * No need to update load_avg for root_task_group, as it is not used. 4120 */ 4121 if (cfs_rq->tg == &root_task_group) 4122 return; 4123 4124 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4125 delta = 0 - cfs_rq->tg_load_avg_contrib; 4126 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4127 cfs_rq->tg_load_avg_contrib = 0; 4128 cfs_rq->last_update_tg_load_avg = now; 4129 } 4130 4131 /* CPU offline callback: */ 4132 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4133 { 4134 struct task_group *tg; 4135 4136 lockdep_assert_rq_held(rq); 4137 4138 /* 4139 * The rq clock has already been updated in 4140 * set_rq_offline(), so we should skip updating 4141 * the rq clock again in unthrottle_cfs_rq(). 4142 */ 4143 rq_clock_start_loop_update(rq); 4144 4145 rcu_read_lock(); 4146 list_for_each_entry_rcu(tg, &task_groups, list) { 4147 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4148 4149 clear_tg_load_avg(cfs_rq); 4150 } 4151 rcu_read_unlock(); 4152 4153 rq_clock_stop_loop_update(rq); 4154 } 4155 4156 /* 4157 * Called within set_task_rq() right before setting a task's CPU. The 4158 * caller only guarantees p->pi_lock is held; no other assumptions, 4159 * including the state of rq->lock, should be made. 4160 */ 4161 void set_task_rq_fair(struct sched_entity *se, 4162 struct cfs_rq *prev, struct cfs_rq *next) 4163 { 4164 u64 p_last_update_time; 4165 u64 n_last_update_time; 4166 4167 if (!sched_feat(ATTACH_AGE_LOAD)) 4168 return; 4169 4170 /* 4171 * We are supposed to update the task to "current" time, then its up to 4172 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4173 * getting what current time is, so simply throw away the out-of-date 4174 * time. This will result in the wakee task is less decayed, but giving 4175 * the wakee more load sounds not bad. 4176 */ 4177 if (!(se->avg.last_update_time && prev)) 4178 return; 4179 4180 p_last_update_time = cfs_rq_last_update_time(prev); 4181 n_last_update_time = cfs_rq_last_update_time(next); 4182 4183 __update_load_avg_blocked_se(p_last_update_time, se); 4184 se->avg.last_update_time = n_last_update_time; 4185 } 4186 4187 /* 4188 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4189 * propagate its contribution. The key to this propagation is the invariant 4190 * that for each group: 4191 * 4192 * ge->avg == grq->avg (1) 4193 * 4194 * _IFF_ we look at the pure running and runnable sums. Because they 4195 * represent the very same entity, just at different points in the hierarchy. 4196 * 4197 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4198 * and simply copies the running/runnable sum over (but still wrong, because 4199 * the group entity and group rq do not have their PELT windows aligned). 4200 * 4201 * However, update_tg_cfs_load() is more complex. So we have: 4202 * 4203 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4204 * 4205 * And since, like util, the runnable part should be directly transferable, 4206 * the following would _appear_ to be the straight forward approach: 4207 * 4208 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4209 * 4210 * And per (1) we have: 4211 * 4212 * ge->avg.runnable_avg == grq->avg.runnable_avg 4213 * 4214 * Which gives: 4215 * 4216 * ge->load.weight * grq->avg.load_avg 4217 * ge->avg.load_avg = ----------------------------------- (4) 4218 * grq->load.weight 4219 * 4220 * Except that is wrong! 4221 * 4222 * Because while for entities historical weight is not important and we 4223 * really only care about our future and therefore can consider a pure 4224 * runnable sum, runqueues can NOT do this. 4225 * 4226 * We specifically want runqueues to have a load_avg that includes 4227 * historical weights. Those represent the blocked load, the load we expect 4228 * to (shortly) return to us. This only works by keeping the weights as 4229 * integral part of the sum. We therefore cannot decompose as per (3). 4230 * 4231 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4232 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4233 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4234 * runnable section of these tasks overlap (or not). If they were to perfectly 4235 * align the rq as a whole would be runnable 2/3 of the time. If however we 4236 * always have at least 1 runnable task, the rq as a whole is always runnable. 4237 * 4238 * So we'll have to approximate.. :/ 4239 * 4240 * Given the constraint: 4241 * 4242 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4243 * 4244 * We can construct a rule that adds runnable to a rq by assuming minimal 4245 * overlap. 4246 * 4247 * On removal, we'll assume each task is equally runnable; which yields: 4248 * 4249 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4250 * 4251 * XXX: only do this for the part of runnable > running ? 4252 * 4253 */ 4254 static inline void 4255 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4256 { 4257 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4258 u32 new_sum, divider; 4259 4260 /* Nothing to update */ 4261 if (!delta_avg) 4262 return; 4263 4264 /* 4265 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4266 * See ___update_load_avg() for details. 4267 */ 4268 divider = get_pelt_divider(&cfs_rq->avg); 4269 4270 4271 /* Set new sched_entity's utilization */ 4272 se->avg.util_avg = gcfs_rq->avg.util_avg; 4273 new_sum = se->avg.util_avg * divider; 4274 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4275 se->avg.util_sum = new_sum; 4276 4277 /* Update parent cfs_rq utilization */ 4278 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4279 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4280 4281 /* See update_cfs_rq_load_avg() */ 4282 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4283 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4284 } 4285 4286 static inline void 4287 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4288 { 4289 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4290 u32 new_sum, divider; 4291 4292 /* Nothing to update */ 4293 if (!delta_avg) 4294 return; 4295 4296 /* 4297 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4298 * See ___update_load_avg() for details. 4299 */ 4300 divider = get_pelt_divider(&cfs_rq->avg); 4301 4302 /* Set new sched_entity's runnable */ 4303 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4304 new_sum = se->avg.runnable_avg * divider; 4305 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4306 se->avg.runnable_sum = new_sum; 4307 4308 /* Update parent cfs_rq runnable */ 4309 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4310 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4311 /* See update_cfs_rq_load_avg() */ 4312 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4313 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4314 } 4315 4316 static inline void 4317 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4318 { 4319 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4320 unsigned long load_avg; 4321 u64 load_sum = 0; 4322 s64 delta_sum; 4323 u32 divider; 4324 4325 if (!runnable_sum) 4326 return; 4327 4328 gcfs_rq->prop_runnable_sum = 0; 4329 4330 /* 4331 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4332 * See ___update_load_avg() for details. 4333 */ 4334 divider = get_pelt_divider(&cfs_rq->avg); 4335 4336 if (runnable_sum >= 0) { 4337 /* 4338 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4339 * the CPU is saturated running == runnable. 4340 */ 4341 runnable_sum += se->avg.load_sum; 4342 runnable_sum = min_t(long, runnable_sum, divider); 4343 } else { 4344 /* 4345 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4346 * assuming all tasks are equally runnable. 4347 */ 4348 if (scale_load_down(gcfs_rq->load.weight)) { 4349 load_sum = div_u64(gcfs_rq->avg.load_sum, 4350 scale_load_down(gcfs_rq->load.weight)); 4351 } 4352 4353 /* But make sure to not inflate se's runnable */ 4354 runnable_sum = min(se->avg.load_sum, load_sum); 4355 } 4356 4357 /* 4358 * runnable_sum can't be lower than running_sum 4359 * Rescale running sum to be in the same range as runnable sum 4360 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4361 * runnable_sum is in [0 : LOAD_AVG_MAX] 4362 */ 4363 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4364 runnable_sum = max(runnable_sum, running_sum); 4365 4366 load_sum = se_weight(se) * runnable_sum; 4367 load_avg = div_u64(load_sum, divider); 4368 4369 delta_avg = load_avg - se->avg.load_avg; 4370 if (!delta_avg) 4371 return; 4372 4373 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4374 4375 se->avg.load_sum = runnable_sum; 4376 se->avg.load_avg = load_avg; 4377 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4378 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4379 /* See update_cfs_rq_load_avg() */ 4380 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4381 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4382 } 4383 4384 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4385 { 4386 cfs_rq->propagate = 1; 4387 cfs_rq->prop_runnable_sum += runnable_sum; 4388 } 4389 4390 /* Update task and its cfs_rq load average */ 4391 static inline int propagate_entity_load_avg(struct sched_entity *se) 4392 { 4393 struct cfs_rq *cfs_rq, *gcfs_rq; 4394 4395 if (entity_is_task(se)) 4396 return 0; 4397 4398 gcfs_rq = group_cfs_rq(se); 4399 if (!gcfs_rq->propagate) 4400 return 0; 4401 4402 gcfs_rq->propagate = 0; 4403 4404 cfs_rq = cfs_rq_of(se); 4405 4406 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4407 4408 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4409 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4410 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4411 4412 trace_pelt_cfs_tp(cfs_rq); 4413 trace_pelt_se_tp(se); 4414 4415 return 1; 4416 } 4417 4418 /* 4419 * Check if we need to update the load and the utilization of a blocked 4420 * group_entity: 4421 */ 4422 static inline bool skip_blocked_update(struct sched_entity *se) 4423 { 4424 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4425 4426 /* 4427 * If sched_entity still have not zero load or utilization, we have to 4428 * decay it: 4429 */ 4430 if (se->avg.load_avg || se->avg.util_avg) 4431 return false; 4432 4433 /* 4434 * If there is a pending propagation, we have to update the load and 4435 * the utilization of the sched_entity: 4436 */ 4437 if (gcfs_rq->propagate) 4438 return false; 4439 4440 /* 4441 * Otherwise, the load and the utilization of the sched_entity is 4442 * already zero and there is no pending propagation, so it will be a 4443 * waste of time to try to decay it: 4444 */ 4445 return true; 4446 } 4447 4448 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 4449 4450 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4451 4452 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4453 4454 static inline int propagate_entity_load_avg(struct sched_entity *se) 4455 { 4456 return 0; 4457 } 4458 4459 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4460 4461 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 4462 4463 #ifdef CONFIG_NO_HZ_COMMON 4464 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4465 { 4466 u64 throttled = 0, now, lut; 4467 struct cfs_rq *cfs_rq; 4468 struct rq *rq; 4469 bool is_idle; 4470 4471 if (load_avg_is_decayed(&se->avg)) 4472 return; 4473 4474 cfs_rq = cfs_rq_of(se); 4475 rq = rq_of(cfs_rq); 4476 4477 rcu_read_lock(); 4478 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4479 rcu_read_unlock(); 4480 4481 /* 4482 * The lag estimation comes with a cost we don't want to pay all the 4483 * time. Hence, limiting to the case where the source CPU is idle and 4484 * we know we are at the greatest risk to have an outdated clock. 4485 */ 4486 if (!is_idle) 4487 return; 4488 4489 /* 4490 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4491 * 4492 * last_update_time (the cfs_rq's last_update_time) 4493 * = cfs_rq_clock_pelt()@cfs_rq_idle 4494 * = rq_clock_pelt()@cfs_rq_idle 4495 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4496 * 4497 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4498 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4499 * 4500 * rq_idle_lag (delta between now and rq's update) 4501 * = sched_clock_cpu() - rq_clock()@rq_idle 4502 * 4503 * We can then write: 4504 * 4505 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4506 * sched_clock_cpu() - rq_clock()@rq_idle 4507 * Where: 4508 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4509 * rq_clock()@rq_idle is rq->clock_idle 4510 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4511 * is cfs_rq->throttled_pelt_idle 4512 */ 4513 4514 #ifdef CONFIG_CFS_BANDWIDTH 4515 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4516 /* The clock has been stopped for throttling */ 4517 if (throttled == U64_MAX) 4518 return; 4519 #endif 4520 now = u64_u32_load(rq->clock_pelt_idle); 4521 /* 4522 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4523 * is observed the old clock_pelt_idle value and the new clock_idle, 4524 * which lead to an underestimation. The opposite would lead to an 4525 * overestimation. 4526 */ 4527 smp_rmb(); 4528 lut = cfs_rq_last_update_time(cfs_rq); 4529 4530 now -= throttled; 4531 if (now < lut) 4532 /* 4533 * cfs_rq->avg.last_update_time is more recent than our 4534 * estimation, let's use it. 4535 */ 4536 now = lut; 4537 else 4538 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4539 4540 __update_load_avg_blocked_se(now, se); 4541 } 4542 #else /* !CONFIG_NO_HZ_COMMON: */ 4543 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4544 #endif /* !CONFIG_NO_HZ_COMMON */ 4545 4546 /** 4547 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4548 * @now: current time, as per cfs_rq_clock_pelt() 4549 * @cfs_rq: cfs_rq to update 4550 * 4551 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4552 * avg. The immediate corollary is that all (fair) tasks must be attached. 4553 * 4554 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4555 * 4556 * Return: true if the load decayed or we removed load. 4557 * 4558 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4559 * call update_tg_load_avg() when this function returns true. 4560 */ 4561 static inline int 4562 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4563 { 4564 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4565 struct sched_avg *sa = &cfs_rq->avg; 4566 int decayed = 0; 4567 4568 if (cfs_rq->removed.nr) { 4569 unsigned long r; 4570 u32 divider = get_pelt_divider(&cfs_rq->avg); 4571 4572 raw_spin_lock(&cfs_rq->removed.lock); 4573 swap(cfs_rq->removed.util_avg, removed_util); 4574 swap(cfs_rq->removed.load_avg, removed_load); 4575 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4576 cfs_rq->removed.nr = 0; 4577 raw_spin_unlock(&cfs_rq->removed.lock); 4578 4579 r = removed_load; 4580 sub_positive(&sa->load_avg, r); 4581 sub_positive(&sa->load_sum, r * divider); 4582 /* See sa->util_sum below */ 4583 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4584 4585 r = removed_util; 4586 sub_positive(&sa->util_avg, r); 4587 sub_positive(&sa->util_sum, r * divider); 4588 /* 4589 * Because of rounding, se->util_sum might ends up being +1 more than 4590 * cfs->util_sum. Although this is not a problem by itself, detaching 4591 * a lot of tasks with the rounding problem between 2 updates of 4592 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4593 * cfs_util_avg is not. 4594 * Check that util_sum is still above its lower bound for the new 4595 * util_avg. Given that period_contrib might have moved since the last 4596 * sync, we are only sure that util_sum must be above or equal to 4597 * util_avg * minimum possible divider 4598 */ 4599 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4600 4601 r = removed_runnable; 4602 sub_positive(&sa->runnable_avg, r); 4603 sub_positive(&sa->runnable_sum, r * divider); 4604 /* See sa->util_sum above */ 4605 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4606 sa->runnable_avg * PELT_MIN_DIVIDER); 4607 4608 /* 4609 * removed_runnable is the unweighted version of removed_load so we 4610 * can use it to estimate removed_load_sum. 4611 */ 4612 add_tg_cfs_propagate(cfs_rq, 4613 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4614 4615 decayed = 1; 4616 } 4617 4618 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4619 u64_u32_store_copy(sa->last_update_time, 4620 cfs_rq->last_update_time_copy, 4621 sa->last_update_time); 4622 return decayed; 4623 } 4624 4625 /** 4626 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4627 * @cfs_rq: cfs_rq to attach to 4628 * @se: sched_entity to attach 4629 * 4630 * Must call update_cfs_rq_load_avg() before this, since we rely on 4631 * cfs_rq->avg.last_update_time being current. 4632 */ 4633 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4634 { 4635 /* 4636 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4637 * See ___update_load_avg() for details. 4638 */ 4639 u32 divider = get_pelt_divider(&cfs_rq->avg); 4640 4641 /* 4642 * When we attach the @se to the @cfs_rq, we must align the decay 4643 * window because without that, really weird and wonderful things can 4644 * happen. 4645 * 4646 * XXX illustrate 4647 */ 4648 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4649 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4650 4651 /* 4652 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4653 * period_contrib. This isn't strictly correct, but since we're 4654 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4655 * _sum a little. 4656 */ 4657 se->avg.util_sum = se->avg.util_avg * divider; 4658 4659 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4660 4661 se->avg.load_sum = se->avg.load_avg * divider; 4662 if (se_weight(se) < se->avg.load_sum) 4663 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4664 else 4665 se->avg.load_sum = 1; 4666 4667 enqueue_load_avg(cfs_rq, se); 4668 cfs_rq->avg.util_avg += se->avg.util_avg; 4669 cfs_rq->avg.util_sum += se->avg.util_sum; 4670 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4671 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4672 4673 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4674 4675 cfs_rq_util_change(cfs_rq, 0); 4676 4677 trace_pelt_cfs_tp(cfs_rq); 4678 } 4679 4680 /** 4681 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4682 * @cfs_rq: cfs_rq to detach from 4683 * @se: sched_entity to detach 4684 * 4685 * Must call update_cfs_rq_load_avg() before this, since we rely on 4686 * cfs_rq->avg.last_update_time being current. 4687 */ 4688 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4689 { 4690 dequeue_load_avg(cfs_rq, se); 4691 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4692 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4693 /* See update_cfs_rq_load_avg() */ 4694 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4695 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4696 4697 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4698 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4699 /* See update_cfs_rq_load_avg() */ 4700 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4701 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4702 4703 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4704 4705 cfs_rq_util_change(cfs_rq, 0); 4706 4707 trace_pelt_cfs_tp(cfs_rq); 4708 } 4709 4710 /* 4711 * Optional action to be done while updating the load average 4712 */ 4713 #define UPDATE_TG 0x1 4714 #define SKIP_AGE_LOAD 0x2 4715 #define DO_ATTACH 0x4 4716 #define DO_DETACH 0x8 4717 4718 /* Update task and its cfs_rq load average */ 4719 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4720 { 4721 u64 now = cfs_rq_clock_pelt(cfs_rq); 4722 int decayed; 4723 4724 /* 4725 * Track task load average for carrying it to new CPU after migrated, and 4726 * track group sched_entity load average for task_h_load calculation in migration 4727 */ 4728 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4729 __update_load_avg_se(now, cfs_rq, se); 4730 4731 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4732 decayed |= propagate_entity_load_avg(se); 4733 4734 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4735 4736 /* 4737 * DO_ATTACH means we're here from enqueue_entity(). 4738 * !last_update_time means we've passed through 4739 * migrate_task_rq_fair() indicating we migrated. 4740 * 4741 * IOW we're enqueueing a task on a new CPU. 4742 */ 4743 attach_entity_load_avg(cfs_rq, se); 4744 update_tg_load_avg(cfs_rq); 4745 4746 } else if (flags & DO_DETACH) { 4747 /* 4748 * DO_DETACH means we're here from dequeue_entity() 4749 * and we are migrating task out of the CPU. 4750 */ 4751 detach_entity_load_avg(cfs_rq, se); 4752 update_tg_load_avg(cfs_rq); 4753 } else if (decayed) { 4754 cfs_rq_util_change(cfs_rq, 0); 4755 4756 if (flags & UPDATE_TG) 4757 update_tg_load_avg(cfs_rq); 4758 } 4759 } 4760 4761 /* 4762 * Synchronize entity load avg of dequeued entity without locking 4763 * the previous rq. 4764 */ 4765 static void sync_entity_load_avg(struct sched_entity *se) 4766 { 4767 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4768 u64 last_update_time; 4769 4770 last_update_time = cfs_rq_last_update_time(cfs_rq); 4771 __update_load_avg_blocked_se(last_update_time, se); 4772 } 4773 4774 /* 4775 * Task first catches up with cfs_rq, and then subtract 4776 * itself from the cfs_rq (task must be off the queue now). 4777 */ 4778 static void remove_entity_load_avg(struct sched_entity *se) 4779 { 4780 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4781 unsigned long flags; 4782 4783 /* 4784 * tasks cannot exit without having gone through wake_up_new_task() -> 4785 * enqueue_task_fair() which will have added things to the cfs_rq, 4786 * so we can remove unconditionally. 4787 */ 4788 4789 sync_entity_load_avg(se); 4790 4791 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4792 ++cfs_rq->removed.nr; 4793 cfs_rq->removed.util_avg += se->avg.util_avg; 4794 cfs_rq->removed.load_avg += se->avg.load_avg; 4795 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4796 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4797 } 4798 4799 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4800 { 4801 return cfs_rq->avg.runnable_avg; 4802 } 4803 4804 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4805 { 4806 return cfs_rq->avg.load_avg; 4807 } 4808 4809 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4810 4811 static inline unsigned long task_util(struct task_struct *p) 4812 { 4813 return READ_ONCE(p->se.avg.util_avg); 4814 } 4815 4816 static inline unsigned long task_runnable(struct task_struct *p) 4817 { 4818 return READ_ONCE(p->se.avg.runnable_avg); 4819 } 4820 4821 static inline unsigned long _task_util_est(struct task_struct *p) 4822 { 4823 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4824 } 4825 4826 static inline unsigned long task_util_est(struct task_struct *p) 4827 { 4828 return max(task_util(p), _task_util_est(p)); 4829 } 4830 4831 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4832 struct task_struct *p) 4833 { 4834 unsigned int enqueued; 4835 4836 if (!sched_feat(UTIL_EST)) 4837 return; 4838 4839 /* Update root cfs_rq's estimated utilization */ 4840 enqueued = cfs_rq->avg.util_est; 4841 enqueued += _task_util_est(p); 4842 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4843 4844 trace_sched_util_est_cfs_tp(cfs_rq); 4845 } 4846 4847 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4848 struct task_struct *p) 4849 { 4850 unsigned int enqueued; 4851 4852 if (!sched_feat(UTIL_EST)) 4853 return; 4854 4855 /* Update root cfs_rq's estimated utilization */ 4856 enqueued = cfs_rq->avg.util_est; 4857 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4858 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4859 4860 trace_sched_util_est_cfs_tp(cfs_rq); 4861 } 4862 4863 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4864 4865 static inline void util_est_update(struct cfs_rq *cfs_rq, 4866 struct task_struct *p, 4867 bool task_sleep) 4868 { 4869 unsigned int ewma, dequeued, last_ewma_diff; 4870 4871 if (!sched_feat(UTIL_EST)) 4872 return; 4873 4874 /* 4875 * Skip update of task's estimated utilization when the task has not 4876 * yet completed an activation, e.g. being migrated. 4877 */ 4878 if (!task_sleep) 4879 return; 4880 4881 /* Get current estimate of utilization */ 4882 ewma = READ_ONCE(p->se.avg.util_est); 4883 4884 /* 4885 * If the PELT values haven't changed since enqueue time, 4886 * skip the util_est update. 4887 */ 4888 if (ewma & UTIL_AVG_UNCHANGED) 4889 return; 4890 4891 /* Get utilization at dequeue */ 4892 dequeued = task_util(p); 4893 4894 /* 4895 * Reset EWMA on utilization increases, the moving average is used only 4896 * to smooth utilization decreases. 4897 */ 4898 if (ewma <= dequeued) { 4899 ewma = dequeued; 4900 goto done; 4901 } 4902 4903 /* 4904 * Skip update of task's estimated utilization when its members are 4905 * already ~1% close to its last activation value. 4906 */ 4907 last_ewma_diff = ewma - dequeued; 4908 if (last_ewma_diff < UTIL_EST_MARGIN) 4909 goto done; 4910 4911 /* 4912 * To avoid underestimate of task utilization, skip updates of EWMA if 4913 * we cannot grant that thread got all CPU time it wanted. 4914 */ 4915 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4916 goto done; 4917 4918 4919 /* 4920 * Update Task's estimated utilization 4921 * 4922 * When *p completes an activation we can consolidate another sample 4923 * of the task size. This is done by using this value to update the 4924 * Exponential Weighted Moving Average (EWMA): 4925 * 4926 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4927 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4928 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4929 * = w * ( -last_ewma_diff ) + ewma(t-1) 4930 * = w * (-last_ewma_diff + ewma(t-1) / w) 4931 * 4932 * Where 'w' is the weight of new samples, which is configured to be 4933 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4934 */ 4935 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4936 ewma -= last_ewma_diff; 4937 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4938 done: 4939 ewma |= UTIL_AVG_UNCHANGED; 4940 WRITE_ONCE(p->se.avg.util_est, ewma); 4941 4942 trace_sched_util_est_se_tp(&p->se); 4943 } 4944 4945 static inline unsigned long get_actual_cpu_capacity(int cpu) 4946 { 4947 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4948 4949 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4950 4951 return capacity; 4952 } 4953 4954 static inline int util_fits_cpu(unsigned long util, 4955 unsigned long uclamp_min, 4956 unsigned long uclamp_max, 4957 int cpu) 4958 { 4959 unsigned long capacity = capacity_of(cpu); 4960 unsigned long capacity_orig; 4961 bool fits, uclamp_max_fits; 4962 4963 /* 4964 * Check if the real util fits without any uclamp boost/cap applied. 4965 */ 4966 fits = fits_capacity(util, capacity); 4967 4968 if (!uclamp_is_used()) 4969 return fits; 4970 4971 /* 4972 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4973 * uclamp_max. We only care about capacity pressure (by using 4974 * capacity_of()) for comparing against the real util. 4975 * 4976 * If a task is boosted to 1024 for example, we don't want a tiny 4977 * pressure to skew the check whether it fits a CPU or not. 4978 * 4979 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4980 * should fit a little cpu even if there's some pressure. 4981 * 4982 * Only exception is for HW or cpufreq pressure since it has a direct impact 4983 * on available OPP of the system. 4984 * 4985 * We honour it for uclamp_min only as a drop in performance level 4986 * could result in not getting the requested minimum performance level. 4987 * 4988 * For uclamp_max, we can tolerate a drop in performance level as the 4989 * goal is to cap the task. So it's okay if it's getting less. 4990 */ 4991 capacity_orig = arch_scale_cpu_capacity(cpu); 4992 4993 /* 4994 * We want to force a task to fit a cpu as implied by uclamp_max. 4995 * But we do have some corner cases to cater for.. 4996 * 4997 * 4998 * C=z 4999 * | ___ 5000 * | C=y | | 5001 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5002 * | C=x | | | | 5003 * | ___ | | | | 5004 * | | | | | | | (util somewhere in this region) 5005 * | | | | | | | 5006 * | | | | | | | 5007 * +---------------------------------------- 5008 * CPU0 CPU1 CPU2 5009 * 5010 * In the above example if a task is capped to a specific performance 5011 * point, y, then when: 5012 * 5013 * * util = 80% of x then it does not fit on CPU0 and should migrate 5014 * to CPU1 5015 * * util = 80% of y then it is forced to fit on CPU1 to honour 5016 * uclamp_max request. 5017 * 5018 * which is what we're enforcing here. A task always fits if 5019 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5020 * the normal upmigration rules should withhold still. 5021 * 5022 * Only exception is when we are on max capacity, then we need to be 5023 * careful not to block overutilized state. This is so because: 5024 * 5025 * 1. There's no concept of capping at max_capacity! We can't go 5026 * beyond this performance level anyway. 5027 * 2. The system is being saturated when we're operating near 5028 * max capacity, it doesn't make sense to block overutilized. 5029 */ 5030 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5031 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5032 fits = fits || uclamp_max_fits; 5033 5034 /* 5035 * 5036 * C=z 5037 * | ___ (region a, capped, util >= uclamp_max) 5038 * | C=y | | 5039 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5040 * | C=x | | | | 5041 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5042 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5043 * | | | | | | | 5044 * | | | | | | | (region c, boosted, util < uclamp_min) 5045 * +---------------------------------------- 5046 * CPU0 CPU1 CPU2 5047 * 5048 * a) If util > uclamp_max, then we're capped, we don't care about 5049 * actual fitness value here. We only care if uclamp_max fits 5050 * capacity without taking margin/pressure into account. 5051 * See comment above. 5052 * 5053 * b) If uclamp_min <= util <= uclamp_max, then the normal 5054 * fits_capacity() rules apply. Except we need to ensure that we 5055 * enforce we remain within uclamp_max, see comment above. 5056 * 5057 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5058 * need to take into account the boosted value fits the CPU without 5059 * taking margin/pressure into account. 5060 * 5061 * Cases (a) and (b) are handled in the 'fits' variable already. We 5062 * just need to consider an extra check for case (c) after ensuring we 5063 * handle the case uclamp_min > uclamp_max. 5064 */ 5065 uclamp_min = min(uclamp_min, uclamp_max); 5066 if (fits && (util < uclamp_min) && 5067 (uclamp_min > get_actual_cpu_capacity(cpu))) 5068 return -1; 5069 5070 return fits; 5071 } 5072 5073 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5074 { 5075 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5076 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5077 unsigned long util = task_util_est(p); 5078 /* 5079 * Return true only if the cpu fully fits the task requirements, which 5080 * include the utilization but also the performance hints. 5081 */ 5082 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5083 } 5084 5085 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5086 { 5087 int cpu = cpu_of(rq); 5088 5089 if (!sched_asym_cpucap_active()) 5090 return; 5091 5092 /* 5093 * Affinity allows us to go somewhere higher? Or are we on biggest 5094 * available CPU already? Or do we fit into this CPU ? 5095 */ 5096 if (!p || (p->nr_cpus_allowed == 1) || 5097 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5098 task_fits_cpu(p, cpu)) { 5099 5100 rq->misfit_task_load = 0; 5101 return; 5102 } 5103 5104 /* 5105 * Make sure that misfit_task_load will not be null even if 5106 * task_h_load() returns 0. 5107 */ 5108 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5109 } 5110 5111 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5112 { 5113 struct sched_entity *se = &p->se; 5114 5115 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5116 if (attr->sched_runtime) { 5117 se->custom_slice = 1; 5118 se->slice = clamp_t(u64, attr->sched_runtime, 5119 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5120 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5121 } else { 5122 se->custom_slice = 0; 5123 se->slice = sysctl_sched_base_slice; 5124 } 5125 } 5126 5127 static void 5128 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5129 { 5130 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5131 s64 lag = 0; 5132 5133 if (!se->custom_slice) 5134 se->slice = sysctl_sched_base_slice; 5135 vslice = calc_delta_fair(se->slice, se); 5136 5137 /* 5138 * Due to how V is constructed as the weighted average of entities, 5139 * adding tasks with positive lag, or removing tasks with negative lag 5140 * will move 'time' backwards, this can screw around with the lag of 5141 * other tasks. 5142 * 5143 * EEVDF: placement strategy #1 / #2 5144 */ 5145 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5146 struct sched_entity *curr = cfs_rq->curr; 5147 unsigned long load; 5148 5149 lag = se->vlag; 5150 5151 /* 5152 * If we want to place a task and preserve lag, we have to 5153 * consider the effect of the new entity on the weighted 5154 * average and compensate for this, otherwise lag can quickly 5155 * evaporate. 5156 * 5157 * Lag is defined as: 5158 * 5159 * lag_i = S - s_i = w_i * (V - v_i) 5160 * 5161 * To avoid the 'w_i' term all over the place, we only track 5162 * the virtual lag: 5163 * 5164 * vl_i = V - v_i <=> v_i = V - vl_i 5165 * 5166 * And we take V to be the weighted average of all v: 5167 * 5168 * V = (\Sum w_j*v_j) / W 5169 * 5170 * Where W is: \Sum w_j 5171 * 5172 * Then, the weighted average after adding an entity with lag 5173 * vl_i is given by: 5174 * 5175 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5176 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5177 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5178 * = (V*(W + w_i) - w_i*vl_i) / (W + w_i) 5179 * = V - w_i*vl_i / (W + w_i) 5180 * 5181 * And the actual lag after adding an entity with vl_i is: 5182 * 5183 * vl'_i = V' - v_i 5184 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5185 * = vl_i - w_i*vl_i / (W + w_i) 5186 * 5187 * Which is strictly less than vl_i. So in order to preserve lag 5188 * we should inflate the lag before placement such that the 5189 * effective lag after placement comes out right. 5190 * 5191 * As such, invert the above relation for vl'_i to get the vl_i 5192 * we need to use such that the lag after placement is the lag 5193 * we computed before dequeue. 5194 * 5195 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5196 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5197 * 5198 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5199 * = W*vl_i 5200 * 5201 * vl_i = (W + w_i)*vl'_i / W 5202 */ 5203 load = cfs_rq->avg_load; 5204 if (curr && curr->on_rq) 5205 load += scale_load_down(curr->load.weight); 5206 5207 lag *= load + scale_load_down(se->load.weight); 5208 if (WARN_ON_ONCE(!load)) 5209 load = 1; 5210 lag = div_s64(lag, load); 5211 } 5212 5213 se->vruntime = vruntime - lag; 5214 5215 if (se->rel_deadline) { 5216 se->deadline += se->vruntime; 5217 se->rel_deadline = 0; 5218 return; 5219 } 5220 5221 /* 5222 * When joining the competition; the existing tasks will be, 5223 * on average, halfway through their slice, as such start tasks 5224 * off with half a slice to ease into the competition. 5225 */ 5226 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5227 vslice /= 2; 5228 5229 /* 5230 * EEVDF: vd_i = ve_i + r_i/w_i 5231 */ 5232 se->deadline = se->vruntime + vslice; 5233 } 5234 5235 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5236 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5237 5238 static void 5239 requeue_delayed_entity(struct sched_entity *se); 5240 5241 static void 5242 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5243 { 5244 bool curr = cfs_rq->curr == se; 5245 5246 /* 5247 * If we're the current task, we must renormalise before calling 5248 * update_curr(). 5249 */ 5250 if (curr) 5251 place_entity(cfs_rq, se, flags); 5252 5253 update_curr(cfs_rq); 5254 5255 /* 5256 * When enqueuing a sched_entity, we must: 5257 * - Update loads to have both entity and cfs_rq synced with now. 5258 * - For group_entity, update its runnable_weight to reflect the new 5259 * h_nr_runnable of its group cfs_rq. 5260 * - For group_entity, update its weight to reflect the new share of 5261 * its group cfs_rq 5262 * - Add its new weight to cfs_rq->load.weight 5263 */ 5264 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5265 se_update_runnable(se); 5266 /* 5267 * XXX update_load_avg() above will have attached us to the pelt sum; 5268 * but update_cfs_group() here will re-adjust the weight and have to 5269 * undo/redo all that. Seems wasteful. 5270 */ 5271 update_cfs_group(se); 5272 5273 /* 5274 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5275 * we can place the entity. 5276 */ 5277 if (!curr) 5278 place_entity(cfs_rq, se, flags); 5279 5280 account_entity_enqueue(cfs_rq, se); 5281 5282 /* Entity has migrated, no longer consider this task hot */ 5283 if (flags & ENQUEUE_MIGRATED) 5284 se->exec_start = 0; 5285 5286 check_schedstat_required(); 5287 update_stats_enqueue_fair(cfs_rq, se, flags); 5288 if (!curr) 5289 __enqueue_entity(cfs_rq, se); 5290 se->on_rq = 1; 5291 5292 if (cfs_rq->nr_queued == 1) { 5293 check_enqueue_throttle(cfs_rq); 5294 if (!throttled_hierarchy(cfs_rq)) { 5295 list_add_leaf_cfs_rq(cfs_rq); 5296 } else { 5297 #ifdef CONFIG_CFS_BANDWIDTH 5298 struct rq *rq = rq_of(cfs_rq); 5299 5300 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5301 cfs_rq->throttled_clock = rq_clock(rq); 5302 if (!cfs_rq->throttled_clock_self) 5303 cfs_rq->throttled_clock_self = rq_clock(rq); 5304 #endif 5305 } 5306 } 5307 } 5308 5309 static void __clear_buddies_next(struct sched_entity *se) 5310 { 5311 for_each_sched_entity(se) { 5312 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5313 if (cfs_rq->next != se) 5314 break; 5315 5316 cfs_rq->next = NULL; 5317 } 5318 } 5319 5320 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5321 { 5322 if (cfs_rq->next == se) 5323 __clear_buddies_next(se); 5324 } 5325 5326 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5327 5328 static void set_delayed(struct sched_entity *se) 5329 { 5330 se->sched_delayed = 1; 5331 5332 /* 5333 * Delayed se of cfs_rq have no tasks queued on them. 5334 * Do not adjust h_nr_runnable since dequeue_entities() 5335 * will account it for blocked tasks. 5336 */ 5337 if (!entity_is_task(se)) 5338 return; 5339 5340 for_each_sched_entity(se) { 5341 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5342 5343 cfs_rq->h_nr_runnable--; 5344 if (cfs_rq_throttled(cfs_rq)) 5345 break; 5346 } 5347 } 5348 5349 static void clear_delayed(struct sched_entity *se) 5350 { 5351 se->sched_delayed = 0; 5352 5353 /* 5354 * Delayed se of cfs_rq have no tasks queued on them. 5355 * Do not adjust h_nr_runnable since a dequeue has 5356 * already accounted for it or an enqueue of a task 5357 * below it will account for it in enqueue_task_fair(). 5358 */ 5359 if (!entity_is_task(se)) 5360 return; 5361 5362 for_each_sched_entity(se) { 5363 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5364 5365 cfs_rq->h_nr_runnable++; 5366 if (cfs_rq_throttled(cfs_rq)) 5367 break; 5368 } 5369 } 5370 5371 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5372 { 5373 clear_delayed(se); 5374 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5375 se->vlag = 0; 5376 } 5377 5378 static bool 5379 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5380 { 5381 bool sleep = flags & DEQUEUE_SLEEP; 5382 int action = UPDATE_TG; 5383 5384 update_curr(cfs_rq); 5385 clear_buddies(cfs_rq, se); 5386 5387 if (flags & DEQUEUE_DELAYED) { 5388 WARN_ON_ONCE(!se->sched_delayed); 5389 } else { 5390 bool delay = sleep; 5391 /* 5392 * DELAY_DEQUEUE relies on spurious wakeups, special task 5393 * states must not suffer spurious wakeups, excempt them. 5394 */ 5395 if (flags & DEQUEUE_SPECIAL) 5396 delay = false; 5397 5398 WARN_ON_ONCE(delay && se->sched_delayed); 5399 5400 if (sched_feat(DELAY_DEQUEUE) && delay && 5401 !entity_eligible(cfs_rq, se)) { 5402 update_load_avg(cfs_rq, se, 0); 5403 set_delayed(se); 5404 return false; 5405 } 5406 } 5407 5408 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5409 action |= DO_DETACH; 5410 5411 /* 5412 * When dequeuing a sched_entity, we must: 5413 * - Update loads to have both entity and cfs_rq synced with now. 5414 * - For group_entity, update its runnable_weight to reflect the new 5415 * h_nr_runnable of its group cfs_rq. 5416 * - Subtract its previous weight from cfs_rq->load.weight. 5417 * - For group entity, update its weight to reflect the new share 5418 * of its group cfs_rq. 5419 */ 5420 update_load_avg(cfs_rq, se, action); 5421 se_update_runnable(se); 5422 5423 update_stats_dequeue_fair(cfs_rq, se, flags); 5424 5425 update_entity_lag(cfs_rq, se); 5426 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5427 se->deadline -= se->vruntime; 5428 se->rel_deadline = 1; 5429 } 5430 5431 if (se != cfs_rq->curr) 5432 __dequeue_entity(cfs_rq, se); 5433 se->on_rq = 0; 5434 account_entity_dequeue(cfs_rq, se); 5435 5436 /* return excess runtime on last dequeue */ 5437 return_cfs_rq_runtime(cfs_rq); 5438 5439 update_cfs_group(se); 5440 5441 /* 5442 * Now advance min_vruntime if @se was the entity holding it back, 5443 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5444 * put back on, and if we advance min_vruntime, we'll be placed back 5445 * further than we started -- i.e. we'll be penalized. 5446 */ 5447 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5448 update_min_vruntime(cfs_rq); 5449 5450 if (flags & DEQUEUE_DELAYED) 5451 finish_delayed_dequeue_entity(se); 5452 5453 if (cfs_rq->nr_queued == 0) 5454 update_idle_cfs_rq_clock_pelt(cfs_rq); 5455 5456 return true; 5457 } 5458 5459 static void 5460 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5461 { 5462 clear_buddies(cfs_rq, se); 5463 5464 /* 'current' is not kept within the tree. */ 5465 if (se->on_rq) { 5466 /* 5467 * Any task has to be enqueued before it get to execute on 5468 * a CPU. So account for the time it spent waiting on the 5469 * runqueue. 5470 */ 5471 update_stats_wait_end_fair(cfs_rq, se); 5472 __dequeue_entity(cfs_rq, se); 5473 update_load_avg(cfs_rq, se, UPDATE_TG); 5474 5475 set_protect_slice(se); 5476 } 5477 5478 update_stats_curr_start(cfs_rq, se); 5479 WARN_ON_ONCE(cfs_rq->curr); 5480 cfs_rq->curr = se; 5481 5482 /* 5483 * Track our maximum slice length, if the CPU's load is at 5484 * least twice that of our own weight (i.e. don't track it 5485 * when there are only lesser-weight tasks around): 5486 */ 5487 if (schedstat_enabled() && 5488 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5489 struct sched_statistics *stats; 5490 5491 stats = __schedstats_from_se(se); 5492 __schedstat_set(stats->slice_max, 5493 max((u64)stats->slice_max, 5494 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5495 } 5496 5497 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5498 } 5499 5500 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5501 5502 /* 5503 * Pick the next process, keeping these things in mind, in this order: 5504 * 1) keep things fair between processes/task groups 5505 * 2) pick the "next" process, since someone really wants that to run 5506 * 3) pick the "last" process, for cache locality 5507 * 4) do not run the "skip" process, if something else is available 5508 */ 5509 static struct sched_entity * 5510 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5511 { 5512 struct sched_entity *se; 5513 5514 /* 5515 * Picking the ->next buddy will affect latency but not fairness. 5516 */ 5517 if (sched_feat(PICK_BUDDY) && 5518 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5519 /* ->next will never be delayed */ 5520 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 5521 return cfs_rq->next; 5522 } 5523 5524 se = pick_eevdf(cfs_rq); 5525 if (se->sched_delayed) { 5526 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5527 /* 5528 * Must not reference @se again, see __block_task(). 5529 */ 5530 return NULL; 5531 } 5532 return se; 5533 } 5534 5535 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5536 5537 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5538 { 5539 /* 5540 * If still on the runqueue then deactivate_task() 5541 * was not called and update_curr() has to be done: 5542 */ 5543 if (prev->on_rq) 5544 update_curr(cfs_rq); 5545 5546 /* throttle cfs_rqs exceeding runtime */ 5547 check_cfs_rq_runtime(cfs_rq); 5548 5549 if (prev->on_rq) { 5550 update_stats_wait_start_fair(cfs_rq, prev); 5551 /* Put 'current' back into the tree. */ 5552 __enqueue_entity(cfs_rq, prev); 5553 /* in !on_rq case, update occurred at dequeue */ 5554 update_load_avg(cfs_rq, prev, 0); 5555 } 5556 WARN_ON_ONCE(cfs_rq->curr != prev); 5557 cfs_rq->curr = NULL; 5558 } 5559 5560 static void 5561 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5562 { 5563 /* 5564 * Update run-time statistics of the 'current'. 5565 */ 5566 update_curr(cfs_rq); 5567 5568 /* 5569 * Ensure that runnable average is periodically updated. 5570 */ 5571 update_load_avg(cfs_rq, curr, UPDATE_TG); 5572 update_cfs_group(curr); 5573 5574 #ifdef CONFIG_SCHED_HRTICK 5575 /* 5576 * queued ticks are scheduled to match the slice, so don't bother 5577 * validating it and just reschedule. 5578 */ 5579 if (queued) { 5580 resched_curr_lazy(rq_of(cfs_rq)); 5581 return; 5582 } 5583 #endif 5584 } 5585 5586 5587 /************************************************** 5588 * CFS bandwidth control machinery 5589 */ 5590 5591 #ifdef CONFIG_CFS_BANDWIDTH 5592 5593 #ifdef CONFIG_JUMP_LABEL 5594 static struct static_key __cfs_bandwidth_used; 5595 5596 static inline bool cfs_bandwidth_used(void) 5597 { 5598 return static_key_false(&__cfs_bandwidth_used); 5599 } 5600 5601 void cfs_bandwidth_usage_inc(void) 5602 { 5603 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5604 } 5605 5606 void cfs_bandwidth_usage_dec(void) 5607 { 5608 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5609 } 5610 #else /* !CONFIG_JUMP_LABEL: */ 5611 static bool cfs_bandwidth_used(void) 5612 { 5613 return true; 5614 } 5615 5616 void cfs_bandwidth_usage_inc(void) {} 5617 void cfs_bandwidth_usage_dec(void) {} 5618 #endif /* !CONFIG_JUMP_LABEL */ 5619 5620 static inline u64 sched_cfs_bandwidth_slice(void) 5621 { 5622 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5623 } 5624 5625 /* 5626 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5627 * directly instead of rq->clock to avoid adding additional synchronization 5628 * around rq->lock. 5629 * 5630 * requires cfs_b->lock 5631 */ 5632 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5633 { 5634 s64 runtime; 5635 5636 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5637 return; 5638 5639 cfs_b->runtime += cfs_b->quota; 5640 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5641 if (runtime > 0) { 5642 cfs_b->burst_time += runtime; 5643 cfs_b->nr_burst++; 5644 } 5645 5646 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5647 cfs_b->runtime_snap = cfs_b->runtime; 5648 } 5649 5650 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5651 { 5652 return &tg->cfs_bandwidth; 5653 } 5654 5655 /* returns 0 on failure to allocate runtime */ 5656 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5657 struct cfs_rq *cfs_rq, u64 target_runtime) 5658 { 5659 u64 min_amount, amount = 0; 5660 5661 lockdep_assert_held(&cfs_b->lock); 5662 5663 /* note: this is a positive sum as runtime_remaining <= 0 */ 5664 min_amount = target_runtime - cfs_rq->runtime_remaining; 5665 5666 if (cfs_b->quota == RUNTIME_INF) 5667 amount = min_amount; 5668 else { 5669 start_cfs_bandwidth(cfs_b); 5670 5671 if (cfs_b->runtime > 0) { 5672 amount = min(cfs_b->runtime, min_amount); 5673 cfs_b->runtime -= amount; 5674 cfs_b->idle = 0; 5675 } 5676 } 5677 5678 cfs_rq->runtime_remaining += amount; 5679 5680 return cfs_rq->runtime_remaining > 0; 5681 } 5682 5683 /* returns 0 on failure to allocate runtime */ 5684 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5685 { 5686 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5687 int ret; 5688 5689 raw_spin_lock(&cfs_b->lock); 5690 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5691 raw_spin_unlock(&cfs_b->lock); 5692 5693 return ret; 5694 } 5695 5696 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5697 { 5698 /* dock delta_exec before expiring quota (as it could span periods) */ 5699 cfs_rq->runtime_remaining -= delta_exec; 5700 5701 if (likely(cfs_rq->runtime_remaining > 0)) 5702 return; 5703 5704 if (cfs_rq->throttled) 5705 return; 5706 /* 5707 * if we're unable to extend our runtime we resched so that the active 5708 * hierarchy can be throttled 5709 */ 5710 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5711 resched_curr(rq_of(cfs_rq)); 5712 } 5713 5714 static __always_inline 5715 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5716 { 5717 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5718 return; 5719 5720 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5721 } 5722 5723 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5724 { 5725 return cfs_bandwidth_used() && cfs_rq->throttled; 5726 } 5727 5728 /* check whether cfs_rq, or any parent, is throttled */ 5729 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5730 { 5731 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5732 } 5733 5734 /* 5735 * Ensure that neither of the group entities corresponding to src_cpu or 5736 * dest_cpu are members of a throttled hierarchy when performing group 5737 * load-balance operations. 5738 */ 5739 static inline int throttled_lb_pair(struct task_group *tg, 5740 int src_cpu, int dest_cpu) 5741 { 5742 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5743 5744 src_cfs_rq = tg->cfs_rq[src_cpu]; 5745 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5746 5747 return throttled_hierarchy(src_cfs_rq) || 5748 throttled_hierarchy(dest_cfs_rq); 5749 } 5750 5751 static int tg_unthrottle_up(struct task_group *tg, void *data) 5752 { 5753 struct rq *rq = data; 5754 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5755 5756 cfs_rq->throttle_count--; 5757 if (!cfs_rq->throttle_count) { 5758 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5759 cfs_rq->throttled_clock_pelt; 5760 5761 /* Add cfs_rq with load or one or more already running entities to the list */ 5762 if (!cfs_rq_is_decayed(cfs_rq)) 5763 list_add_leaf_cfs_rq(cfs_rq); 5764 5765 if (cfs_rq->throttled_clock_self) { 5766 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5767 5768 cfs_rq->throttled_clock_self = 0; 5769 5770 if (WARN_ON_ONCE((s64)delta < 0)) 5771 delta = 0; 5772 5773 cfs_rq->throttled_clock_self_time += delta; 5774 } 5775 } 5776 5777 return 0; 5778 } 5779 5780 static int tg_throttle_down(struct task_group *tg, void *data) 5781 { 5782 struct rq *rq = data; 5783 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5784 5785 /* group is entering throttled state, stop time */ 5786 if (!cfs_rq->throttle_count) { 5787 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5788 list_del_leaf_cfs_rq(cfs_rq); 5789 5790 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5791 if (cfs_rq->nr_queued) 5792 cfs_rq->throttled_clock_self = rq_clock(rq); 5793 } 5794 cfs_rq->throttle_count++; 5795 5796 return 0; 5797 } 5798 5799 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5800 { 5801 struct rq *rq = rq_of(cfs_rq); 5802 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5803 struct sched_entity *se; 5804 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5805 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5806 5807 raw_spin_lock(&cfs_b->lock); 5808 /* This will start the period timer if necessary */ 5809 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5810 /* 5811 * We have raced with bandwidth becoming available, and if we 5812 * actually throttled the timer might not unthrottle us for an 5813 * entire period. We additionally needed to make sure that any 5814 * subsequent check_cfs_rq_runtime calls agree not to throttle 5815 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5816 * for 1ns of runtime rather than just check cfs_b. 5817 */ 5818 dequeue = 0; 5819 } else { 5820 list_add_tail_rcu(&cfs_rq->throttled_list, 5821 &cfs_b->throttled_cfs_rq); 5822 } 5823 raw_spin_unlock(&cfs_b->lock); 5824 5825 if (!dequeue) 5826 return false; /* Throttle no longer required. */ 5827 5828 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5829 5830 /* freeze hierarchy runnable averages while throttled */ 5831 rcu_read_lock(); 5832 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5833 rcu_read_unlock(); 5834 5835 queued_delta = cfs_rq->h_nr_queued; 5836 runnable_delta = cfs_rq->h_nr_runnable; 5837 idle_delta = cfs_rq->h_nr_idle; 5838 for_each_sched_entity(se) { 5839 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5840 int flags; 5841 5842 /* throttled entity or throttle-on-deactivate */ 5843 if (!se->on_rq) 5844 goto done; 5845 5846 /* 5847 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5848 * This avoids teaching dequeue_entities() about throttled 5849 * entities and keeps things relatively simple. 5850 */ 5851 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5852 if (se->sched_delayed) 5853 flags |= DEQUEUE_DELAYED; 5854 dequeue_entity(qcfs_rq, se, flags); 5855 5856 if (cfs_rq_is_idle(group_cfs_rq(se))) 5857 idle_delta = cfs_rq->h_nr_queued; 5858 5859 qcfs_rq->h_nr_queued -= queued_delta; 5860 qcfs_rq->h_nr_runnable -= runnable_delta; 5861 qcfs_rq->h_nr_idle -= idle_delta; 5862 5863 if (qcfs_rq->load.weight) { 5864 /* Avoid re-evaluating load for this entity: */ 5865 se = parent_entity(se); 5866 break; 5867 } 5868 } 5869 5870 for_each_sched_entity(se) { 5871 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5872 /* throttled entity or throttle-on-deactivate */ 5873 if (!se->on_rq) 5874 goto done; 5875 5876 update_load_avg(qcfs_rq, se, 0); 5877 se_update_runnable(se); 5878 5879 if (cfs_rq_is_idle(group_cfs_rq(se))) 5880 idle_delta = cfs_rq->h_nr_queued; 5881 5882 qcfs_rq->h_nr_queued -= queued_delta; 5883 qcfs_rq->h_nr_runnable -= runnable_delta; 5884 qcfs_rq->h_nr_idle -= idle_delta; 5885 } 5886 5887 /* At this point se is NULL and we are at root level*/ 5888 sub_nr_running(rq, queued_delta); 5889 5890 /* Stop the fair server if throttling resulted in no runnable tasks */ 5891 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5892 dl_server_stop(&rq->fair_server); 5893 done: 5894 /* 5895 * Note: distribution will already see us throttled via the 5896 * throttled-list. rq->lock protects completion. 5897 */ 5898 cfs_rq->throttled = 1; 5899 WARN_ON_ONCE(cfs_rq->throttled_clock); 5900 if (cfs_rq->nr_queued) 5901 cfs_rq->throttled_clock = rq_clock(rq); 5902 return true; 5903 } 5904 5905 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5906 { 5907 struct rq *rq = rq_of(cfs_rq); 5908 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5909 struct sched_entity *se; 5910 long queued_delta, runnable_delta, idle_delta; 5911 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5912 5913 se = cfs_rq->tg->se[cpu_of(rq)]; 5914 5915 cfs_rq->throttled = 0; 5916 5917 update_rq_clock(rq); 5918 5919 raw_spin_lock(&cfs_b->lock); 5920 if (cfs_rq->throttled_clock) { 5921 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5922 cfs_rq->throttled_clock = 0; 5923 } 5924 list_del_rcu(&cfs_rq->throttled_list); 5925 raw_spin_unlock(&cfs_b->lock); 5926 5927 /* update hierarchical throttle state */ 5928 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5929 5930 if (!cfs_rq->load.weight) { 5931 if (!cfs_rq->on_list) 5932 return; 5933 /* 5934 * Nothing to run but something to decay (on_list)? 5935 * Complete the branch. 5936 */ 5937 for_each_sched_entity(se) { 5938 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5939 break; 5940 } 5941 goto unthrottle_throttle; 5942 } 5943 5944 queued_delta = cfs_rq->h_nr_queued; 5945 runnable_delta = cfs_rq->h_nr_runnable; 5946 idle_delta = cfs_rq->h_nr_idle; 5947 for_each_sched_entity(se) { 5948 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5949 5950 /* Handle any unfinished DELAY_DEQUEUE business first. */ 5951 if (se->sched_delayed) { 5952 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 5953 5954 dequeue_entity(qcfs_rq, se, flags); 5955 } else if (se->on_rq) 5956 break; 5957 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5958 5959 if (cfs_rq_is_idle(group_cfs_rq(se))) 5960 idle_delta = cfs_rq->h_nr_queued; 5961 5962 qcfs_rq->h_nr_queued += queued_delta; 5963 qcfs_rq->h_nr_runnable += runnable_delta; 5964 qcfs_rq->h_nr_idle += idle_delta; 5965 5966 /* end evaluation on encountering a throttled cfs_rq */ 5967 if (cfs_rq_throttled(qcfs_rq)) 5968 goto unthrottle_throttle; 5969 } 5970 5971 for_each_sched_entity(se) { 5972 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5973 5974 update_load_avg(qcfs_rq, se, UPDATE_TG); 5975 se_update_runnable(se); 5976 5977 if (cfs_rq_is_idle(group_cfs_rq(se))) 5978 idle_delta = cfs_rq->h_nr_queued; 5979 5980 qcfs_rq->h_nr_queued += queued_delta; 5981 qcfs_rq->h_nr_runnable += runnable_delta; 5982 qcfs_rq->h_nr_idle += idle_delta; 5983 5984 /* end evaluation on encountering a throttled cfs_rq */ 5985 if (cfs_rq_throttled(qcfs_rq)) 5986 goto unthrottle_throttle; 5987 } 5988 5989 /* Start the fair server if un-throttling resulted in new runnable tasks */ 5990 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 5991 dl_server_start(&rq->fair_server); 5992 5993 /* At this point se is NULL and we are at root level*/ 5994 add_nr_running(rq, queued_delta); 5995 5996 unthrottle_throttle: 5997 assert_list_leaf_cfs_rq(rq); 5998 5999 /* Determine whether we need to wake up potentially idle CPU: */ 6000 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6001 resched_curr(rq); 6002 } 6003 6004 static void __cfsb_csd_unthrottle(void *arg) 6005 { 6006 struct cfs_rq *cursor, *tmp; 6007 struct rq *rq = arg; 6008 struct rq_flags rf; 6009 6010 rq_lock(rq, &rf); 6011 6012 /* 6013 * Iterating over the list can trigger several call to 6014 * update_rq_clock() in unthrottle_cfs_rq(). 6015 * Do it once and skip the potential next ones. 6016 */ 6017 update_rq_clock(rq); 6018 rq_clock_start_loop_update(rq); 6019 6020 /* 6021 * Since we hold rq lock we're safe from concurrent manipulation of 6022 * the CSD list. However, this RCU critical section annotates the 6023 * fact that we pair with sched_free_group_rcu(), so that we cannot 6024 * race with group being freed in the window between removing it 6025 * from the list and advancing to the next entry in the list. 6026 */ 6027 rcu_read_lock(); 6028 6029 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6030 throttled_csd_list) { 6031 list_del_init(&cursor->throttled_csd_list); 6032 6033 if (cfs_rq_throttled(cursor)) 6034 unthrottle_cfs_rq(cursor); 6035 } 6036 6037 rcu_read_unlock(); 6038 6039 rq_clock_stop_loop_update(rq); 6040 rq_unlock(rq, &rf); 6041 } 6042 6043 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6044 { 6045 struct rq *rq = rq_of(cfs_rq); 6046 bool first; 6047 6048 if (rq == this_rq()) { 6049 unthrottle_cfs_rq(cfs_rq); 6050 return; 6051 } 6052 6053 /* Already enqueued */ 6054 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6055 return; 6056 6057 first = list_empty(&rq->cfsb_csd_list); 6058 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6059 if (first) 6060 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6061 } 6062 6063 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6064 { 6065 lockdep_assert_rq_held(rq_of(cfs_rq)); 6066 6067 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6068 cfs_rq->runtime_remaining <= 0)) 6069 return; 6070 6071 __unthrottle_cfs_rq_async(cfs_rq); 6072 } 6073 6074 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6075 { 6076 int this_cpu = smp_processor_id(); 6077 u64 runtime, remaining = 1; 6078 bool throttled = false; 6079 struct cfs_rq *cfs_rq, *tmp; 6080 struct rq_flags rf; 6081 struct rq *rq; 6082 LIST_HEAD(local_unthrottle); 6083 6084 rcu_read_lock(); 6085 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6086 throttled_list) { 6087 rq = rq_of(cfs_rq); 6088 6089 if (!remaining) { 6090 throttled = true; 6091 break; 6092 } 6093 6094 rq_lock_irqsave(rq, &rf); 6095 if (!cfs_rq_throttled(cfs_rq)) 6096 goto next; 6097 6098 /* Already queued for async unthrottle */ 6099 if (!list_empty(&cfs_rq->throttled_csd_list)) 6100 goto next; 6101 6102 /* By the above checks, this should never be true */ 6103 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6104 6105 raw_spin_lock(&cfs_b->lock); 6106 runtime = -cfs_rq->runtime_remaining + 1; 6107 if (runtime > cfs_b->runtime) 6108 runtime = cfs_b->runtime; 6109 cfs_b->runtime -= runtime; 6110 remaining = cfs_b->runtime; 6111 raw_spin_unlock(&cfs_b->lock); 6112 6113 cfs_rq->runtime_remaining += runtime; 6114 6115 /* we check whether we're throttled above */ 6116 if (cfs_rq->runtime_remaining > 0) { 6117 if (cpu_of(rq) != this_cpu) { 6118 unthrottle_cfs_rq_async(cfs_rq); 6119 } else { 6120 /* 6121 * We currently only expect to be unthrottling 6122 * a single cfs_rq locally. 6123 */ 6124 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6125 list_add_tail(&cfs_rq->throttled_csd_list, 6126 &local_unthrottle); 6127 } 6128 } else { 6129 throttled = true; 6130 } 6131 6132 next: 6133 rq_unlock_irqrestore(rq, &rf); 6134 } 6135 6136 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6137 throttled_csd_list) { 6138 struct rq *rq = rq_of(cfs_rq); 6139 6140 rq_lock_irqsave(rq, &rf); 6141 6142 list_del_init(&cfs_rq->throttled_csd_list); 6143 6144 if (cfs_rq_throttled(cfs_rq)) 6145 unthrottle_cfs_rq(cfs_rq); 6146 6147 rq_unlock_irqrestore(rq, &rf); 6148 } 6149 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6150 6151 rcu_read_unlock(); 6152 6153 return throttled; 6154 } 6155 6156 /* 6157 * Responsible for refilling a task_group's bandwidth and unthrottling its 6158 * cfs_rqs as appropriate. If there has been no activity within the last 6159 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6160 * used to track this state. 6161 */ 6162 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6163 { 6164 int throttled; 6165 6166 /* no need to continue the timer with no bandwidth constraint */ 6167 if (cfs_b->quota == RUNTIME_INF) 6168 goto out_deactivate; 6169 6170 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6171 cfs_b->nr_periods += overrun; 6172 6173 /* Refill extra burst quota even if cfs_b->idle */ 6174 __refill_cfs_bandwidth_runtime(cfs_b); 6175 6176 /* 6177 * idle depends on !throttled (for the case of a large deficit), and if 6178 * we're going inactive then everything else can be deferred 6179 */ 6180 if (cfs_b->idle && !throttled) 6181 goto out_deactivate; 6182 6183 if (!throttled) { 6184 /* mark as potentially idle for the upcoming period */ 6185 cfs_b->idle = 1; 6186 return 0; 6187 } 6188 6189 /* account preceding periods in which throttling occurred */ 6190 cfs_b->nr_throttled += overrun; 6191 6192 /* 6193 * This check is repeated as we release cfs_b->lock while we unthrottle. 6194 */ 6195 while (throttled && cfs_b->runtime > 0) { 6196 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6197 /* we can't nest cfs_b->lock while distributing bandwidth */ 6198 throttled = distribute_cfs_runtime(cfs_b); 6199 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6200 } 6201 6202 /* 6203 * While we are ensured activity in the period following an 6204 * unthrottle, this also covers the case in which the new bandwidth is 6205 * insufficient to cover the existing bandwidth deficit. (Forcing the 6206 * timer to remain active while there are any throttled entities.) 6207 */ 6208 cfs_b->idle = 0; 6209 6210 return 0; 6211 6212 out_deactivate: 6213 return 1; 6214 } 6215 6216 /* a cfs_rq won't donate quota below this amount */ 6217 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6218 /* minimum remaining period time to redistribute slack quota */ 6219 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6220 /* how long we wait to gather additional slack before distributing */ 6221 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6222 6223 /* 6224 * Are we near the end of the current quota period? 6225 * 6226 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6227 * hrtimer base being cleared by hrtimer_start. In the case of 6228 * migrate_hrtimers, base is never cleared, so we are fine. 6229 */ 6230 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6231 { 6232 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6233 s64 remaining; 6234 6235 /* if the call-back is running a quota refresh is already occurring */ 6236 if (hrtimer_callback_running(refresh_timer)) 6237 return 1; 6238 6239 /* is a quota refresh about to occur? */ 6240 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6241 if (remaining < (s64)min_expire) 6242 return 1; 6243 6244 return 0; 6245 } 6246 6247 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6248 { 6249 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6250 6251 /* if there's a quota refresh soon don't bother with slack */ 6252 if (runtime_refresh_within(cfs_b, min_left)) 6253 return; 6254 6255 /* don't push forwards an existing deferred unthrottle */ 6256 if (cfs_b->slack_started) 6257 return; 6258 cfs_b->slack_started = true; 6259 6260 hrtimer_start(&cfs_b->slack_timer, 6261 ns_to_ktime(cfs_bandwidth_slack_period), 6262 HRTIMER_MODE_REL); 6263 } 6264 6265 /* we know any runtime found here is valid as update_curr() precedes return */ 6266 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6267 { 6268 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6269 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6270 6271 if (slack_runtime <= 0) 6272 return; 6273 6274 raw_spin_lock(&cfs_b->lock); 6275 if (cfs_b->quota != RUNTIME_INF) { 6276 cfs_b->runtime += slack_runtime; 6277 6278 /* we are under rq->lock, defer unthrottling using a timer */ 6279 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6280 !list_empty(&cfs_b->throttled_cfs_rq)) 6281 start_cfs_slack_bandwidth(cfs_b); 6282 } 6283 raw_spin_unlock(&cfs_b->lock); 6284 6285 /* even if it's not valid for return we don't want to try again */ 6286 cfs_rq->runtime_remaining -= slack_runtime; 6287 } 6288 6289 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6290 { 6291 if (!cfs_bandwidth_used()) 6292 return; 6293 6294 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6295 return; 6296 6297 __return_cfs_rq_runtime(cfs_rq); 6298 } 6299 6300 /* 6301 * This is done with a timer (instead of inline with bandwidth return) since 6302 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6303 */ 6304 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6305 { 6306 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6307 unsigned long flags; 6308 6309 /* confirm we're still not at a refresh boundary */ 6310 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6311 cfs_b->slack_started = false; 6312 6313 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6314 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6315 return; 6316 } 6317 6318 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6319 runtime = cfs_b->runtime; 6320 6321 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6322 6323 if (!runtime) 6324 return; 6325 6326 distribute_cfs_runtime(cfs_b); 6327 } 6328 6329 /* 6330 * When a group wakes up we want to make sure that its quota is not already 6331 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6332 * runtime as update_curr() throttling can not trigger until it's on-rq. 6333 */ 6334 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6335 { 6336 if (!cfs_bandwidth_used()) 6337 return; 6338 6339 /* an active group must be handled by the update_curr()->put() path */ 6340 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6341 return; 6342 6343 /* ensure the group is not already throttled */ 6344 if (cfs_rq_throttled(cfs_rq)) 6345 return; 6346 6347 /* update runtime allocation */ 6348 account_cfs_rq_runtime(cfs_rq, 0); 6349 if (cfs_rq->runtime_remaining <= 0) 6350 throttle_cfs_rq(cfs_rq); 6351 } 6352 6353 static void sync_throttle(struct task_group *tg, int cpu) 6354 { 6355 struct cfs_rq *pcfs_rq, *cfs_rq; 6356 6357 if (!cfs_bandwidth_used()) 6358 return; 6359 6360 if (!tg->parent) 6361 return; 6362 6363 cfs_rq = tg->cfs_rq[cpu]; 6364 pcfs_rq = tg->parent->cfs_rq[cpu]; 6365 6366 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6367 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6368 } 6369 6370 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6371 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6372 { 6373 if (!cfs_bandwidth_used()) 6374 return false; 6375 6376 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6377 return false; 6378 6379 /* 6380 * it's possible for a throttled entity to be forced into a running 6381 * state (e.g. set_curr_task), in this case we're finished. 6382 */ 6383 if (cfs_rq_throttled(cfs_rq)) 6384 return true; 6385 6386 return throttle_cfs_rq(cfs_rq); 6387 } 6388 6389 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6390 { 6391 struct cfs_bandwidth *cfs_b = 6392 container_of(timer, struct cfs_bandwidth, slack_timer); 6393 6394 do_sched_cfs_slack_timer(cfs_b); 6395 6396 return HRTIMER_NORESTART; 6397 } 6398 6399 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6400 { 6401 struct cfs_bandwidth *cfs_b = 6402 container_of(timer, struct cfs_bandwidth, period_timer); 6403 unsigned long flags; 6404 int overrun; 6405 int idle = 0; 6406 int count = 0; 6407 6408 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6409 for (;;) { 6410 overrun = hrtimer_forward_now(timer, cfs_b->period); 6411 if (!overrun) 6412 break; 6413 6414 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6415 6416 if (++count > 3) { 6417 u64 new, old = ktime_to_ns(cfs_b->period); 6418 6419 /* 6420 * Grow period by a factor of 2 to avoid losing precision. 6421 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6422 * to fail. 6423 */ 6424 new = old * 2; 6425 if (new < max_bw_quota_period_us * NSEC_PER_USEC) { 6426 cfs_b->period = ns_to_ktime(new); 6427 cfs_b->quota *= 2; 6428 cfs_b->burst *= 2; 6429 6430 pr_warn_ratelimited( 6431 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6432 smp_processor_id(), 6433 div_u64(new, NSEC_PER_USEC), 6434 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6435 } else { 6436 pr_warn_ratelimited( 6437 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6438 smp_processor_id(), 6439 div_u64(old, NSEC_PER_USEC), 6440 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6441 } 6442 6443 /* reset count so we don't come right back in here */ 6444 count = 0; 6445 } 6446 } 6447 if (idle) 6448 cfs_b->period_active = 0; 6449 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6450 6451 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6452 } 6453 6454 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6455 { 6456 raw_spin_lock_init(&cfs_b->lock); 6457 cfs_b->runtime = 0; 6458 cfs_b->quota = RUNTIME_INF; 6459 cfs_b->period = us_to_ktime(default_bw_period_us()); 6460 cfs_b->burst = 0; 6461 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6462 6463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6464 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6465 HRTIMER_MODE_ABS_PINNED); 6466 6467 /* Add a random offset so that timers interleave */ 6468 hrtimer_set_expires(&cfs_b->period_timer, 6469 get_random_u32_below(cfs_b->period)); 6470 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6471 HRTIMER_MODE_REL); 6472 cfs_b->slack_started = false; 6473 } 6474 6475 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6476 { 6477 cfs_rq->runtime_enabled = 0; 6478 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6479 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6480 } 6481 6482 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6483 { 6484 lockdep_assert_held(&cfs_b->lock); 6485 6486 if (cfs_b->period_active) 6487 return; 6488 6489 cfs_b->period_active = 1; 6490 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6491 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6492 } 6493 6494 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6495 { 6496 int __maybe_unused i; 6497 6498 /* init_cfs_bandwidth() was not called */ 6499 if (!cfs_b->throttled_cfs_rq.next) 6500 return; 6501 6502 hrtimer_cancel(&cfs_b->period_timer); 6503 hrtimer_cancel(&cfs_b->slack_timer); 6504 6505 /* 6506 * It is possible that we still have some cfs_rq's pending on a CSD 6507 * list, though this race is very rare. In order for this to occur, we 6508 * must have raced with the last task leaving the group while there 6509 * exist throttled cfs_rq(s), and the period_timer must have queued the 6510 * CSD item but the remote cpu has not yet processed it. To handle this, 6511 * we can simply flush all pending CSD work inline here. We're 6512 * guaranteed at this point that no additional cfs_rq of this group can 6513 * join a CSD list. 6514 */ 6515 for_each_possible_cpu(i) { 6516 struct rq *rq = cpu_rq(i); 6517 unsigned long flags; 6518 6519 if (list_empty(&rq->cfsb_csd_list)) 6520 continue; 6521 6522 local_irq_save(flags); 6523 __cfsb_csd_unthrottle(rq); 6524 local_irq_restore(flags); 6525 } 6526 } 6527 6528 /* 6529 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6530 * 6531 * The race is harmless, since modifying bandwidth settings of unhooked group 6532 * bits doesn't do much. 6533 */ 6534 6535 /* cpu online callback */ 6536 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6537 { 6538 struct task_group *tg; 6539 6540 lockdep_assert_rq_held(rq); 6541 6542 rcu_read_lock(); 6543 list_for_each_entry_rcu(tg, &task_groups, list) { 6544 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6545 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6546 6547 raw_spin_lock(&cfs_b->lock); 6548 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6549 raw_spin_unlock(&cfs_b->lock); 6550 } 6551 rcu_read_unlock(); 6552 } 6553 6554 /* cpu offline callback */ 6555 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6556 { 6557 struct task_group *tg; 6558 6559 lockdep_assert_rq_held(rq); 6560 6561 // Do not unthrottle for an active CPU 6562 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6563 return; 6564 6565 /* 6566 * The rq clock has already been updated in the 6567 * set_rq_offline(), so we should skip updating 6568 * the rq clock again in unthrottle_cfs_rq(). 6569 */ 6570 rq_clock_start_loop_update(rq); 6571 6572 rcu_read_lock(); 6573 list_for_each_entry_rcu(tg, &task_groups, list) { 6574 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6575 6576 if (!cfs_rq->runtime_enabled) 6577 continue; 6578 6579 /* 6580 * Offline rq is schedulable till CPU is completely disabled 6581 * in take_cpu_down(), so we prevent new cfs throttling here. 6582 */ 6583 cfs_rq->runtime_enabled = 0; 6584 6585 if (!cfs_rq_throttled(cfs_rq)) 6586 continue; 6587 6588 /* 6589 * clock_task is not advancing so we just need to make sure 6590 * there's some valid quota amount 6591 */ 6592 cfs_rq->runtime_remaining = 1; 6593 unthrottle_cfs_rq(cfs_rq); 6594 } 6595 rcu_read_unlock(); 6596 6597 rq_clock_stop_loop_update(rq); 6598 } 6599 6600 bool cfs_task_bw_constrained(struct task_struct *p) 6601 { 6602 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6603 6604 if (!cfs_bandwidth_used()) 6605 return false; 6606 6607 if (cfs_rq->runtime_enabled || 6608 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6609 return true; 6610 6611 return false; 6612 } 6613 6614 #ifdef CONFIG_NO_HZ_FULL 6615 /* called from pick_next_task_fair() */ 6616 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6617 { 6618 int cpu = cpu_of(rq); 6619 6620 if (!cfs_bandwidth_used()) 6621 return; 6622 6623 if (!tick_nohz_full_cpu(cpu)) 6624 return; 6625 6626 if (rq->nr_running != 1) 6627 return; 6628 6629 /* 6630 * We know there is only one task runnable and we've just picked it. The 6631 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6632 * be otherwise able to stop the tick. Just need to check if we are using 6633 * bandwidth control. 6634 */ 6635 if (cfs_task_bw_constrained(p)) 6636 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6637 } 6638 #endif /* CONFIG_NO_HZ_FULL */ 6639 6640 #else /* !CONFIG_CFS_BANDWIDTH: */ 6641 6642 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6643 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6644 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6645 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6646 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6647 6648 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6649 { 6650 return 0; 6651 } 6652 6653 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6654 { 6655 return 0; 6656 } 6657 6658 static inline int throttled_lb_pair(struct task_group *tg, 6659 int src_cpu, int dest_cpu) 6660 { 6661 return 0; 6662 } 6663 6664 #ifdef CONFIG_FAIR_GROUP_SCHED 6665 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6666 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6667 #endif 6668 6669 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6670 { 6671 return NULL; 6672 } 6673 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6674 static inline void update_runtime_enabled(struct rq *rq) {} 6675 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6676 #ifdef CONFIG_CGROUP_SCHED 6677 bool cfs_task_bw_constrained(struct task_struct *p) 6678 { 6679 return false; 6680 } 6681 #endif 6682 #endif /* !CONFIG_CFS_BANDWIDTH */ 6683 6684 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6685 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6686 #endif 6687 6688 /************************************************** 6689 * CFS operations on tasks: 6690 */ 6691 6692 #ifdef CONFIG_SCHED_HRTICK 6693 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6694 { 6695 struct sched_entity *se = &p->se; 6696 6697 WARN_ON_ONCE(task_rq(p) != rq); 6698 6699 if (rq->cfs.h_nr_queued > 1) { 6700 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6701 u64 slice = se->slice; 6702 s64 delta = slice - ran; 6703 6704 if (delta < 0) { 6705 if (task_current_donor(rq, p)) 6706 resched_curr(rq); 6707 return; 6708 } 6709 hrtick_start(rq, delta); 6710 } 6711 } 6712 6713 /* 6714 * called from enqueue/dequeue and updates the hrtick when the 6715 * current task is from our class and nr_running is low enough 6716 * to matter. 6717 */ 6718 static void hrtick_update(struct rq *rq) 6719 { 6720 struct task_struct *donor = rq->donor; 6721 6722 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6723 return; 6724 6725 hrtick_start_fair(rq, donor); 6726 } 6727 #else /* !CONFIG_SCHED_HRTICK: */ 6728 static inline void 6729 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6730 { 6731 } 6732 6733 static inline void hrtick_update(struct rq *rq) 6734 { 6735 } 6736 #endif /* !CONFIG_SCHED_HRTICK */ 6737 6738 static inline bool cpu_overutilized(int cpu) 6739 { 6740 unsigned long rq_util_min, rq_util_max; 6741 6742 if (!sched_energy_enabled()) 6743 return false; 6744 6745 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6746 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6747 6748 /* Return true only if the utilization doesn't fit CPU's capacity */ 6749 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6750 } 6751 6752 /* 6753 * overutilized value make sense only if EAS is enabled 6754 */ 6755 static inline bool is_rd_overutilized(struct root_domain *rd) 6756 { 6757 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6758 } 6759 6760 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6761 { 6762 if (!sched_energy_enabled()) 6763 return; 6764 6765 WRITE_ONCE(rd->overutilized, flag); 6766 trace_sched_overutilized_tp(rd, flag); 6767 } 6768 6769 static inline void check_update_overutilized_status(struct rq *rq) 6770 { 6771 /* 6772 * overutilized field is used for load balancing decisions only 6773 * if energy aware scheduler is being used 6774 */ 6775 6776 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6777 set_rd_overutilized(rq->rd, 1); 6778 } 6779 6780 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6781 static int sched_idle_rq(struct rq *rq) 6782 { 6783 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6784 rq->nr_running); 6785 } 6786 6787 static int sched_idle_cpu(int cpu) 6788 { 6789 return sched_idle_rq(cpu_rq(cpu)); 6790 } 6791 6792 static void 6793 requeue_delayed_entity(struct sched_entity *se) 6794 { 6795 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6796 6797 /* 6798 * se->sched_delayed should imply: se->on_rq == 1. 6799 * Because a delayed entity is one that is still on 6800 * the runqueue competing until elegibility. 6801 */ 6802 WARN_ON_ONCE(!se->sched_delayed); 6803 WARN_ON_ONCE(!se->on_rq); 6804 6805 if (sched_feat(DELAY_ZERO)) { 6806 update_entity_lag(cfs_rq, se); 6807 if (se->vlag > 0) { 6808 cfs_rq->nr_queued--; 6809 if (se != cfs_rq->curr) 6810 __dequeue_entity(cfs_rq, se); 6811 se->vlag = 0; 6812 place_entity(cfs_rq, se, 0); 6813 if (se != cfs_rq->curr) 6814 __enqueue_entity(cfs_rq, se); 6815 cfs_rq->nr_queued++; 6816 } 6817 } 6818 6819 update_load_avg(cfs_rq, se, 0); 6820 clear_delayed(se); 6821 } 6822 6823 /* 6824 * The enqueue_task method is called before nr_running is 6825 * increased. Here we update the fair scheduling stats and 6826 * then put the task into the rbtree: 6827 */ 6828 static void 6829 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6830 { 6831 struct cfs_rq *cfs_rq; 6832 struct sched_entity *se = &p->se; 6833 int h_nr_idle = task_has_idle_policy(p); 6834 int h_nr_runnable = 1; 6835 int task_new = !(flags & ENQUEUE_WAKEUP); 6836 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6837 u64 slice = 0; 6838 6839 /* 6840 * The code below (indirectly) updates schedutil which looks at 6841 * the cfs_rq utilization to select a frequency. 6842 * Let's add the task's estimated utilization to the cfs_rq's 6843 * estimated utilization, before we update schedutil. 6844 */ 6845 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) 6846 util_est_enqueue(&rq->cfs, p); 6847 6848 if (flags & ENQUEUE_DELAYED) { 6849 requeue_delayed_entity(se); 6850 return; 6851 } 6852 6853 /* 6854 * If in_iowait is set, the code below may not trigger any cpufreq 6855 * utilization updates, so do it here explicitly with the IOWAIT flag 6856 * passed. 6857 */ 6858 if (p->in_iowait) 6859 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6860 6861 if (task_new && se->sched_delayed) 6862 h_nr_runnable = 0; 6863 6864 for_each_sched_entity(se) { 6865 if (se->on_rq) { 6866 if (se->sched_delayed) 6867 requeue_delayed_entity(se); 6868 break; 6869 } 6870 cfs_rq = cfs_rq_of(se); 6871 6872 /* 6873 * Basically set the slice of group entries to the min_slice of 6874 * their respective cfs_rq. This ensures the group can service 6875 * its entities in the desired time-frame. 6876 */ 6877 if (slice) { 6878 se->slice = slice; 6879 se->custom_slice = 1; 6880 } 6881 enqueue_entity(cfs_rq, se, flags); 6882 slice = cfs_rq_min_slice(cfs_rq); 6883 6884 cfs_rq->h_nr_runnable += h_nr_runnable; 6885 cfs_rq->h_nr_queued++; 6886 cfs_rq->h_nr_idle += h_nr_idle; 6887 6888 if (cfs_rq_is_idle(cfs_rq)) 6889 h_nr_idle = 1; 6890 6891 /* end evaluation on encountering a throttled cfs_rq */ 6892 if (cfs_rq_throttled(cfs_rq)) 6893 goto enqueue_throttle; 6894 6895 flags = ENQUEUE_WAKEUP; 6896 } 6897 6898 for_each_sched_entity(se) { 6899 cfs_rq = cfs_rq_of(se); 6900 6901 update_load_avg(cfs_rq, se, UPDATE_TG); 6902 se_update_runnable(se); 6903 update_cfs_group(se); 6904 6905 se->slice = slice; 6906 if (se != cfs_rq->curr) 6907 min_vruntime_cb_propagate(&se->run_node, NULL); 6908 slice = cfs_rq_min_slice(cfs_rq); 6909 6910 cfs_rq->h_nr_runnable += h_nr_runnable; 6911 cfs_rq->h_nr_queued++; 6912 cfs_rq->h_nr_idle += h_nr_idle; 6913 6914 if (cfs_rq_is_idle(cfs_rq)) 6915 h_nr_idle = 1; 6916 6917 /* end evaluation on encountering a throttled cfs_rq */ 6918 if (cfs_rq_throttled(cfs_rq)) 6919 goto enqueue_throttle; 6920 } 6921 6922 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 6923 /* Account for idle runtime */ 6924 if (!rq->nr_running) 6925 dl_server_update_idle_time(rq, rq->curr); 6926 dl_server_start(&rq->fair_server); 6927 } 6928 6929 /* At this point se is NULL and we are at root level*/ 6930 add_nr_running(rq, 1); 6931 6932 /* 6933 * Since new tasks are assigned an initial util_avg equal to 6934 * half of the spare capacity of their CPU, tiny tasks have the 6935 * ability to cross the overutilized threshold, which will 6936 * result in the load balancer ruining all the task placement 6937 * done by EAS. As a way to mitigate that effect, do not account 6938 * for the first enqueue operation of new tasks during the 6939 * overutilized flag detection. 6940 * 6941 * A better way of solving this problem would be to wait for 6942 * the PELT signals of tasks to converge before taking them 6943 * into account, but that is not straightforward to implement, 6944 * and the following generally works well enough in practice. 6945 */ 6946 if (!task_new) 6947 check_update_overutilized_status(rq); 6948 6949 enqueue_throttle: 6950 assert_list_leaf_cfs_rq(rq); 6951 6952 hrtick_update(rq); 6953 } 6954 6955 static void set_next_buddy(struct sched_entity *se); 6956 6957 /* 6958 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 6959 * failing half-way through and resume the dequeue later. 6960 * 6961 * Returns: 6962 * -1 - dequeue delayed 6963 * 0 - dequeue throttled 6964 * 1 - dequeue complete 6965 */ 6966 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 6967 { 6968 bool was_sched_idle = sched_idle_rq(rq); 6969 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6970 bool task_sleep = flags & DEQUEUE_SLEEP; 6971 bool task_delayed = flags & DEQUEUE_DELAYED; 6972 struct task_struct *p = NULL; 6973 int h_nr_idle = 0; 6974 int h_nr_queued = 0; 6975 int h_nr_runnable = 0; 6976 struct cfs_rq *cfs_rq; 6977 u64 slice = 0; 6978 6979 if (entity_is_task(se)) { 6980 p = task_of(se); 6981 h_nr_queued = 1; 6982 h_nr_idle = task_has_idle_policy(p); 6983 if (task_sleep || task_delayed || !se->sched_delayed) 6984 h_nr_runnable = 1; 6985 } 6986 6987 for_each_sched_entity(se) { 6988 cfs_rq = cfs_rq_of(se); 6989 6990 if (!dequeue_entity(cfs_rq, se, flags)) { 6991 if (p && &p->se == se) 6992 return -1; 6993 6994 slice = cfs_rq_min_slice(cfs_rq); 6995 break; 6996 } 6997 6998 cfs_rq->h_nr_runnable -= h_nr_runnable; 6999 cfs_rq->h_nr_queued -= h_nr_queued; 7000 cfs_rq->h_nr_idle -= h_nr_idle; 7001 7002 if (cfs_rq_is_idle(cfs_rq)) 7003 h_nr_idle = h_nr_queued; 7004 7005 /* end evaluation on encountering a throttled cfs_rq */ 7006 if (cfs_rq_throttled(cfs_rq)) 7007 return 0; 7008 7009 /* Don't dequeue parent if it has other entities besides us */ 7010 if (cfs_rq->load.weight) { 7011 slice = cfs_rq_min_slice(cfs_rq); 7012 7013 /* Avoid re-evaluating load for this entity: */ 7014 se = parent_entity(se); 7015 /* 7016 * Bias pick_next to pick a task from this cfs_rq, as 7017 * p is sleeping when it is within its sched_slice. 7018 */ 7019 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7020 set_next_buddy(se); 7021 break; 7022 } 7023 flags |= DEQUEUE_SLEEP; 7024 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7025 } 7026 7027 for_each_sched_entity(se) { 7028 cfs_rq = cfs_rq_of(se); 7029 7030 update_load_avg(cfs_rq, se, UPDATE_TG); 7031 se_update_runnable(se); 7032 update_cfs_group(se); 7033 7034 se->slice = slice; 7035 if (se != cfs_rq->curr) 7036 min_vruntime_cb_propagate(&se->run_node, NULL); 7037 slice = cfs_rq_min_slice(cfs_rq); 7038 7039 cfs_rq->h_nr_runnable -= h_nr_runnable; 7040 cfs_rq->h_nr_queued -= h_nr_queued; 7041 cfs_rq->h_nr_idle -= h_nr_idle; 7042 7043 if (cfs_rq_is_idle(cfs_rq)) 7044 h_nr_idle = h_nr_queued; 7045 7046 /* end evaluation on encountering a throttled cfs_rq */ 7047 if (cfs_rq_throttled(cfs_rq)) 7048 return 0; 7049 } 7050 7051 sub_nr_running(rq, h_nr_queued); 7052 7053 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7054 dl_server_stop(&rq->fair_server); 7055 7056 /* balance early to pull high priority tasks */ 7057 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7058 rq->next_balance = jiffies; 7059 7060 if (p && task_delayed) { 7061 WARN_ON_ONCE(!task_sleep); 7062 WARN_ON_ONCE(p->on_rq != 1); 7063 7064 /* Fix-up what dequeue_task_fair() skipped */ 7065 hrtick_update(rq); 7066 7067 /* 7068 * Fix-up what block_task() skipped. 7069 * 7070 * Must be last, @p might not be valid after this. 7071 */ 7072 __block_task(rq, p); 7073 } 7074 7075 return 1; 7076 } 7077 7078 /* 7079 * The dequeue_task method is called before nr_running is 7080 * decreased. We remove the task from the rbtree and 7081 * update the fair scheduling stats: 7082 */ 7083 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7084 { 7085 if (!p->se.sched_delayed) 7086 util_est_dequeue(&rq->cfs, p); 7087 7088 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7089 if (dequeue_entities(rq, &p->se, flags) < 0) 7090 return false; 7091 7092 /* 7093 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7094 */ 7095 7096 hrtick_update(rq); 7097 return true; 7098 } 7099 7100 static inline unsigned int cfs_h_nr_delayed(struct rq *rq) 7101 { 7102 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); 7103 } 7104 7105 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7106 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7107 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7108 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7109 7110 #ifdef CONFIG_NO_HZ_COMMON 7111 7112 static struct { 7113 cpumask_var_t idle_cpus_mask; 7114 atomic_t nr_cpus; 7115 int has_blocked; /* Idle CPUS has blocked load */ 7116 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7117 unsigned long next_balance; /* in jiffy units */ 7118 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7119 } nohz ____cacheline_aligned; 7120 7121 #endif /* CONFIG_NO_HZ_COMMON */ 7122 7123 static unsigned long cpu_load(struct rq *rq) 7124 { 7125 return cfs_rq_load_avg(&rq->cfs); 7126 } 7127 7128 /* 7129 * cpu_load_without - compute CPU load without any contributions from *p 7130 * @cpu: the CPU which load is requested 7131 * @p: the task which load should be discounted 7132 * 7133 * The load of a CPU is defined by the load of tasks currently enqueued on that 7134 * CPU as well as tasks which are currently sleeping after an execution on that 7135 * CPU. 7136 * 7137 * This method returns the load of the specified CPU by discounting the load of 7138 * the specified task, whenever the task is currently contributing to the CPU 7139 * load. 7140 */ 7141 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7142 { 7143 struct cfs_rq *cfs_rq; 7144 unsigned int load; 7145 7146 /* Task has no contribution or is new */ 7147 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7148 return cpu_load(rq); 7149 7150 cfs_rq = &rq->cfs; 7151 load = READ_ONCE(cfs_rq->avg.load_avg); 7152 7153 /* Discount task's util from CPU's util */ 7154 lsub_positive(&load, task_h_load(p)); 7155 7156 return load; 7157 } 7158 7159 static unsigned long cpu_runnable(struct rq *rq) 7160 { 7161 return cfs_rq_runnable_avg(&rq->cfs); 7162 } 7163 7164 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7165 { 7166 struct cfs_rq *cfs_rq; 7167 unsigned int runnable; 7168 7169 /* Task has no contribution or is new */ 7170 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7171 return cpu_runnable(rq); 7172 7173 cfs_rq = &rq->cfs; 7174 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7175 7176 /* Discount task's runnable from CPU's runnable */ 7177 lsub_positive(&runnable, p->se.avg.runnable_avg); 7178 7179 return runnable; 7180 } 7181 7182 static unsigned long capacity_of(int cpu) 7183 { 7184 return cpu_rq(cpu)->cpu_capacity; 7185 } 7186 7187 static void record_wakee(struct task_struct *p) 7188 { 7189 /* 7190 * Only decay a single time; tasks that have less then 1 wakeup per 7191 * jiffy will not have built up many flips. 7192 */ 7193 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7194 current->wakee_flips >>= 1; 7195 current->wakee_flip_decay_ts = jiffies; 7196 } 7197 7198 if (current->last_wakee != p) { 7199 current->last_wakee = p; 7200 current->wakee_flips++; 7201 } 7202 } 7203 7204 /* 7205 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7206 * 7207 * A waker of many should wake a different task than the one last awakened 7208 * at a frequency roughly N times higher than one of its wakees. 7209 * 7210 * In order to determine whether we should let the load spread vs consolidating 7211 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7212 * partner, and a factor of lls_size higher frequency in the other. 7213 * 7214 * With both conditions met, we can be relatively sure that the relationship is 7215 * non-monogamous, with partner count exceeding socket size. 7216 * 7217 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7218 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7219 * socket size. 7220 */ 7221 static int wake_wide(struct task_struct *p) 7222 { 7223 unsigned int master = current->wakee_flips; 7224 unsigned int slave = p->wakee_flips; 7225 int factor = __this_cpu_read(sd_llc_size); 7226 7227 if (master < slave) 7228 swap(master, slave); 7229 if (slave < factor || master < slave * factor) 7230 return 0; 7231 return 1; 7232 } 7233 7234 /* 7235 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7236 * soonest. For the purpose of speed we only consider the waking and previous 7237 * CPU. 7238 * 7239 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7240 * cache-affine and is (or will be) idle. 7241 * 7242 * wake_affine_weight() - considers the weight to reflect the average 7243 * scheduling latency of the CPUs. This seems to work 7244 * for the overloaded case. 7245 */ 7246 static int 7247 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7248 { 7249 /* 7250 * If this_cpu is idle, it implies the wakeup is from interrupt 7251 * context. Only allow the move if cache is shared. Otherwise an 7252 * interrupt intensive workload could force all tasks onto one 7253 * node depending on the IO topology or IRQ affinity settings. 7254 * 7255 * If the prev_cpu is idle and cache affine then avoid a migration. 7256 * There is no guarantee that the cache hot data from an interrupt 7257 * is more important than cache hot data on the prev_cpu and from 7258 * a cpufreq perspective, it's better to have higher utilisation 7259 * on one CPU. 7260 */ 7261 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7262 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7263 7264 if (sync) { 7265 struct rq *rq = cpu_rq(this_cpu); 7266 7267 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) 7268 return this_cpu; 7269 } 7270 7271 if (available_idle_cpu(prev_cpu)) 7272 return prev_cpu; 7273 7274 return nr_cpumask_bits; 7275 } 7276 7277 static int 7278 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7279 int this_cpu, int prev_cpu, int sync) 7280 { 7281 s64 this_eff_load, prev_eff_load; 7282 unsigned long task_load; 7283 7284 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7285 7286 if (sync) { 7287 unsigned long current_load = task_h_load(current); 7288 7289 if (current_load > this_eff_load) 7290 return this_cpu; 7291 7292 this_eff_load -= current_load; 7293 } 7294 7295 task_load = task_h_load(p); 7296 7297 this_eff_load += task_load; 7298 if (sched_feat(WA_BIAS)) 7299 this_eff_load *= 100; 7300 this_eff_load *= capacity_of(prev_cpu); 7301 7302 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7303 prev_eff_load -= task_load; 7304 if (sched_feat(WA_BIAS)) 7305 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7306 prev_eff_load *= capacity_of(this_cpu); 7307 7308 /* 7309 * If sync, adjust the weight of prev_eff_load such that if 7310 * prev_eff == this_eff that select_idle_sibling() will consider 7311 * stacking the wakee on top of the waker if no other CPU is 7312 * idle. 7313 */ 7314 if (sync) 7315 prev_eff_load += 1; 7316 7317 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7318 } 7319 7320 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7321 int this_cpu, int prev_cpu, int sync) 7322 { 7323 int target = nr_cpumask_bits; 7324 7325 if (sched_feat(WA_IDLE)) 7326 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7327 7328 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7329 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7330 7331 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7332 if (target != this_cpu) 7333 return prev_cpu; 7334 7335 schedstat_inc(sd->ttwu_move_affine); 7336 schedstat_inc(p->stats.nr_wakeups_affine); 7337 return target; 7338 } 7339 7340 static struct sched_group * 7341 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7342 7343 /* 7344 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7345 */ 7346 static int 7347 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7348 { 7349 unsigned long load, min_load = ULONG_MAX; 7350 unsigned int min_exit_latency = UINT_MAX; 7351 u64 latest_idle_timestamp = 0; 7352 int least_loaded_cpu = this_cpu; 7353 int shallowest_idle_cpu = -1; 7354 int i; 7355 7356 /* Check if we have any choice: */ 7357 if (group->group_weight == 1) 7358 return cpumask_first(sched_group_span(group)); 7359 7360 /* Traverse only the allowed CPUs */ 7361 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7362 struct rq *rq = cpu_rq(i); 7363 7364 if (!sched_core_cookie_match(rq, p)) 7365 continue; 7366 7367 if (sched_idle_cpu(i)) 7368 return i; 7369 7370 if (available_idle_cpu(i)) { 7371 struct cpuidle_state *idle = idle_get_state(rq); 7372 if (idle && idle->exit_latency < min_exit_latency) { 7373 /* 7374 * We give priority to a CPU whose idle state 7375 * has the smallest exit latency irrespective 7376 * of any idle timestamp. 7377 */ 7378 min_exit_latency = idle->exit_latency; 7379 latest_idle_timestamp = rq->idle_stamp; 7380 shallowest_idle_cpu = i; 7381 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7382 rq->idle_stamp > latest_idle_timestamp) { 7383 /* 7384 * If equal or no active idle state, then 7385 * the most recently idled CPU might have 7386 * a warmer cache. 7387 */ 7388 latest_idle_timestamp = rq->idle_stamp; 7389 shallowest_idle_cpu = i; 7390 } 7391 } else if (shallowest_idle_cpu == -1) { 7392 load = cpu_load(cpu_rq(i)); 7393 if (load < min_load) { 7394 min_load = load; 7395 least_loaded_cpu = i; 7396 } 7397 } 7398 } 7399 7400 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7401 } 7402 7403 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7404 int cpu, int prev_cpu, int sd_flag) 7405 { 7406 int new_cpu = cpu; 7407 7408 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7409 return prev_cpu; 7410 7411 /* 7412 * We need task's util for cpu_util_without, sync it up to 7413 * prev_cpu's last_update_time. 7414 */ 7415 if (!(sd_flag & SD_BALANCE_FORK)) 7416 sync_entity_load_avg(&p->se); 7417 7418 while (sd) { 7419 struct sched_group *group; 7420 struct sched_domain *tmp; 7421 int weight; 7422 7423 if (!(sd->flags & sd_flag)) { 7424 sd = sd->child; 7425 continue; 7426 } 7427 7428 group = sched_balance_find_dst_group(sd, p, cpu); 7429 if (!group) { 7430 sd = sd->child; 7431 continue; 7432 } 7433 7434 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7435 if (new_cpu == cpu) { 7436 /* Now try balancing at a lower domain level of 'cpu': */ 7437 sd = sd->child; 7438 continue; 7439 } 7440 7441 /* Now try balancing at a lower domain level of 'new_cpu': */ 7442 cpu = new_cpu; 7443 weight = sd->span_weight; 7444 sd = NULL; 7445 for_each_domain(cpu, tmp) { 7446 if (weight <= tmp->span_weight) 7447 break; 7448 if (tmp->flags & sd_flag) 7449 sd = tmp; 7450 } 7451 } 7452 7453 return new_cpu; 7454 } 7455 7456 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7457 { 7458 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7459 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7460 return cpu; 7461 7462 return -1; 7463 } 7464 7465 #ifdef CONFIG_SCHED_SMT 7466 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7467 EXPORT_SYMBOL_GPL(sched_smt_present); 7468 7469 static inline void set_idle_cores(int cpu, int val) 7470 { 7471 struct sched_domain_shared *sds; 7472 7473 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7474 if (sds) 7475 WRITE_ONCE(sds->has_idle_cores, val); 7476 } 7477 7478 static inline bool test_idle_cores(int cpu) 7479 { 7480 struct sched_domain_shared *sds; 7481 7482 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7483 if (sds) 7484 return READ_ONCE(sds->has_idle_cores); 7485 7486 return false; 7487 } 7488 7489 /* 7490 * Scans the local SMT mask to see if the entire core is idle, and records this 7491 * information in sd_llc_shared->has_idle_cores. 7492 * 7493 * Since SMT siblings share all cache levels, inspecting this limited remote 7494 * state should be fairly cheap. 7495 */ 7496 void __update_idle_core(struct rq *rq) 7497 { 7498 int core = cpu_of(rq); 7499 int cpu; 7500 7501 rcu_read_lock(); 7502 if (test_idle_cores(core)) 7503 goto unlock; 7504 7505 for_each_cpu(cpu, cpu_smt_mask(core)) { 7506 if (cpu == core) 7507 continue; 7508 7509 if (!available_idle_cpu(cpu)) 7510 goto unlock; 7511 } 7512 7513 set_idle_cores(core, 1); 7514 unlock: 7515 rcu_read_unlock(); 7516 } 7517 7518 /* 7519 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7520 * there are no idle cores left in the system; tracked through 7521 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7522 */ 7523 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7524 { 7525 bool idle = true; 7526 int cpu; 7527 7528 for_each_cpu(cpu, cpu_smt_mask(core)) { 7529 if (!available_idle_cpu(cpu)) { 7530 idle = false; 7531 if (*idle_cpu == -1) { 7532 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7533 *idle_cpu = cpu; 7534 break; 7535 } 7536 continue; 7537 } 7538 break; 7539 } 7540 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7541 *idle_cpu = cpu; 7542 } 7543 7544 if (idle) 7545 return core; 7546 7547 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7548 return -1; 7549 } 7550 7551 /* 7552 * Scan the local SMT mask for idle CPUs. 7553 */ 7554 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7555 { 7556 int cpu; 7557 7558 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7559 if (cpu == target) 7560 continue; 7561 /* 7562 * Check if the CPU is in the LLC scheduling domain of @target. 7563 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7564 */ 7565 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7566 continue; 7567 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7568 return cpu; 7569 } 7570 7571 return -1; 7572 } 7573 7574 #else /* !CONFIG_SCHED_SMT: */ 7575 7576 static inline void set_idle_cores(int cpu, int val) 7577 { 7578 } 7579 7580 static inline bool test_idle_cores(int cpu) 7581 { 7582 return false; 7583 } 7584 7585 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7586 { 7587 return __select_idle_cpu(core, p); 7588 } 7589 7590 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7591 { 7592 return -1; 7593 } 7594 7595 #endif /* !CONFIG_SCHED_SMT */ 7596 7597 /* 7598 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7599 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7600 * average idle time for this rq (as found in rq->avg_idle). 7601 */ 7602 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7603 { 7604 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7605 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7606 struct sched_domain_shared *sd_share; 7607 7608 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7609 7610 if (sched_feat(SIS_UTIL)) { 7611 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7612 if (sd_share) { 7613 /* because !--nr is the condition to stop scan */ 7614 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7615 /* overloaded LLC is unlikely to have idle cpu/core */ 7616 if (nr == 1) 7617 return -1; 7618 } 7619 } 7620 7621 if (static_branch_unlikely(&sched_cluster_active)) { 7622 struct sched_group *sg = sd->groups; 7623 7624 if (sg->flags & SD_CLUSTER) { 7625 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7626 if (!cpumask_test_cpu(cpu, cpus)) 7627 continue; 7628 7629 if (has_idle_core) { 7630 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7631 if ((unsigned int)i < nr_cpumask_bits) 7632 return i; 7633 } else { 7634 if (--nr <= 0) 7635 return -1; 7636 idle_cpu = __select_idle_cpu(cpu, p); 7637 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7638 return idle_cpu; 7639 } 7640 } 7641 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7642 } 7643 } 7644 7645 for_each_cpu_wrap(cpu, cpus, target + 1) { 7646 if (has_idle_core) { 7647 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7648 if ((unsigned int)i < nr_cpumask_bits) 7649 return i; 7650 7651 } else { 7652 if (--nr <= 0) 7653 return -1; 7654 idle_cpu = __select_idle_cpu(cpu, p); 7655 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7656 break; 7657 } 7658 } 7659 7660 if (has_idle_core) 7661 set_idle_cores(target, false); 7662 7663 return idle_cpu; 7664 } 7665 7666 /* 7667 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7668 * the task fits. If no CPU is big enough, but there are idle ones, try to 7669 * maximize capacity. 7670 */ 7671 static int 7672 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7673 { 7674 unsigned long task_util, util_min, util_max, best_cap = 0; 7675 int fits, best_fits = 0; 7676 int cpu, best_cpu = -1; 7677 struct cpumask *cpus; 7678 7679 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7680 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7681 7682 task_util = task_util_est(p); 7683 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7684 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7685 7686 for_each_cpu_wrap(cpu, cpus, target) { 7687 unsigned long cpu_cap = capacity_of(cpu); 7688 7689 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7690 continue; 7691 7692 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7693 7694 /* This CPU fits with all requirements */ 7695 if (fits > 0) 7696 return cpu; 7697 /* 7698 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7699 * Look for the CPU with best capacity. 7700 */ 7701 else if (fits < 0) 7702 cpu_cap = get_actual_cpu_capacity(cpu); 7703 7704 /* 7705 * First, select CPU which fits better (-1 being better than 0). 7706 * Then, select the one with best capacity at same level. 7707 */ 7708 if ((fits < best_fits) || 7709 ((fits == best_fits) && (cpu_cap > best_cap))) { 7710 best_cap = cpu_cap; 7711 best_cpu = cpu; 7712 best_fits = fits; 7713 } 7714 } 7715 7716 return best_cpu; 7717 } 7718 7719 static inline bool asym_fits_cpu(unsigned long util, 7720 unsigned long util_min, 7721 unsigned long util_max, 7722 int cpu) 7723 { 7724 if (sched_asym_cpucap_active()) 7725 /* 7726 * Return true only if the cpu fully fits the task requirements 7727 * which include the utilization and the performance hints. 7728 */ 7729 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7730 7731 return true; 7732 } 7733 7734 /* 7735 * Try and locate an idle core/thread in the LLC cache domain. 7736 */ 7737 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7738 { 7739 bool has_idle_core = false; 7740 struct sched_domain *sd; 7741 unsigned long task_util, util_min, util_max; 7742 int i, recent_used_cpu, prev_aff = -1; 7743 7744 /* 7745 * On asymmetric system, update task utilization because we will check 7746 * that the task fits with CPU's capacity. 7747 */ 7748 if (sched_asym_cpucap_active()) { 7749 sync_entity_load_avg(&p->se); 7750 task_util = task_util_est(p); 7751 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7752 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7753 } 7754 7755 /* 7756 * per-cpu select_rq_mask usage 7757 */ 7758 lockdep_assert_irqs_disabled(); 7759 7760 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7761 asym_fits_cpu(task_util, util_min, util_max, target)) 7762 return target; 7763 7764 /* 7765 * If the previous CPU is cache affine and idle, don't be stupid: 7766 */ 7767 if (prev != target && cpus_share_cache(prev, target) && 7768 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7769 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7770 7771 if (!static_branch_unlikely(&sched_cluster_active) || 7772 cpus_share_resources(prev, target)) 7773 return prev; 7774 7775 prev_aff = prev; 7776 } 7777 7778 /* 7779 * Allow a per-cpu kthread to stack with the wakee if the 7780 * kworker thread and the tasks previous CPUs are the same. 7781 * The assumption is that the wakee queued work for the 7782 * per-cpu kthread that is now complete and the wakeup is 7783 * essentially a sync wakeup. An obvious example of this 7784 * pattern is IO completions. 7785 */ 7786 if (is_per_cpu_kthread(current) && 7787 in_task() && 7788 prev == smp_processor_id() && 7789 this_rq()->nr_running <= 1 && 7790 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7791 return prev; 7792 } 7793 7794 /* Check a recently used CPU as a potential idle candidate: */ 7795 recent_used_cpu = p->recent_used_cpu; 7796 p->recent_used_cpu = prev; 7797 if (recent_used_cpu != prev && 7798 recent_used_cpu != target && 7799 cpus_share_cache(recent_used_cpu, target) && 7800 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7801 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7802 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7803 7804 if (!static_branch_unlikely(&sched_cluster_active) || 7805 cpus_share_resources(recent_used_cpu, target)) 7806 return recent_used_cpu; 7807 7808 } else { 7809 recent_used_cpu = -1; 7810 } 7811 7812 /* 7813 * For asymmetric CPU capacity systems, our domain of interest is 7814 * sd_asym_cpucapacity rather than sd_llc. 7815 */ 7816 if (sched_asym_cpucap_active()) { 7817 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7818 /* 7819 * On an asymmetric CPU capacity system where an exclusive 7820 * cpuset defines a symmetric island (i.e. one unique 7821 * capacity_orig value through the cpuset), the key will be set 7822 * but the CPUs within that cpuset will not have a domain with 7823 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7824 * capacity path. 7825 */ 7826 if (sd) { 7827 i = select_idle_capacity(p, sd, target); 7828 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7829 } 7830 } 7831 7832 sd = rcu_dereference(per_cpu(sd_llc, target)); 7833 if (!sd) 7834 return target; 7835 7836 if (sched_smt_active()) { 7837 has_idle_core = test_idle_cores(target); 7838 7839 if (!has_idle_core && cpus_share_cache(prev, target)) { 7840 i = select_idle_smt(p, sd, prev); 7841 if ((unsigned int)i < nr_cpumask_bits) 7842 return i; 7843 } 7844 } 7845 7846 i = select_idle_cpu(p, sd, has_idle_core, target); 7847 if ((unsigned)i < nr_cpumask_bits) 7848 return i; 7849 7850 /* 7851 * For cluster machines which have lower sharing cache like L2 or 7852 * LLC Tag, we tend to find an idle CPU in the target's cluster 7853 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7854 * use them if possible when no idle CPU found in select_idle_cpu(). 7855 */ 7856 if ((unsigned int)prev_aff < nr_cpumask_bits) 7857 return prev_aff; 7858 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7859 return recent_used_cpu; 7860 7861 return target; 7862 } 7863 7864 /** 7865 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7866 * @cpu: the CPU to get the utilization for 7867 * @p: task for which the CPU utilization should be predicted or NULL 7868 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7869 * @boost: 1 to enable boosting, otherwise 0 7870 * 7871 * The unit of the return value must be the same as the one of CPU capacity 7872 * so that CPU utilization can be compared with CPU capacity. 7873 * 7874 * CPU utilization is the sum of running time of runnable tasks plus the 7875 * recent utilization of currently non-runnable tasks on that CPU. 7876 * It represents the amount of CPU capacity currently used by CFS tasks in 7877 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7878 * capacity at f_max. 7879 * 7880 * The estimated CPU utilization is defined as the maximum between CPU 7881 * utilization and sum of the estimated utilization of the currently 7882 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7883 * previously-executed tasks, which helps better deduce how busy a CPU will 7884 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7885 * of such a task would be significantly decayed at this point of time. 7886 * 7887 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7888 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7889 * utilization. Boosting is implemented in cpu_util() so that internal 7890 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7891 * latter via cpu_util_cfs_boost(). 7892 * 7893 * CPU utilization can be higher than the current CPU capacity 7894 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7895 * of rounding errors as well as task migrations or wakeups of new tasks. 7896 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7897 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7898 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7899 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7900 * though since this is useful for predicting the CPU capacity required 7901 * after task migrations (scheduler-driven DVFS). 7902 * 7903 * Return: (Boosted) (estimated) utilization for the specified CPU. 7904 */ 7905 static unsigned long 7906 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7907 { 7908 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7909 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7910 unsigned long runnable; 7911 7912 if (boost) { 7913 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7914 util = max(util, runnable); 7915 } 7916 7917 /* 7918 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7919 * contribution. If @p migrates from another CPU to @cpu add its 7920 * contribution. In all the other cases @cpu is not impacted by the 7921 * migration so its util_avg is already correct. 7922 */ 7923 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7924 lsub_positive(&util, task_util(p)); 7925 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7926 util += task_util(p); 7927 7928 if (sched_feat(UTIL_EST)) { 7929 unsigned long util_est; 7930 7931 util_est = READ_ONCE(cfs_rq->avg.util_est); 7932 7933 /* 7934 * During wake-up @p isn't enqueued yet and doesn't contribute 7935 * to any cpu_rq(cpu)->cfs.avg.util_est. 7936 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7937 * has been enqueued. 7938 * 7939 * During exec (@dst_cpu = -1) @p is enqueued and does 7940 * contribute to cpu_rq(cpu)->cfs.util_est. 7941 * Remove it to "simulate" cpu_util without @p's contribution. 7942 * 7943 * Despite the task_on_rq_queued(@p) check there is still a 7944 * small window for a possible race when an exec 7945 * select_task_rq_fair() races with LB's detach_task(). 7946 * 7947 * detach_task() 7948 * deactivate_task() 7949 * p->on_rq = TASK_ON_RQ_MIGRATING; 7950 * -------------------------------- A 7951 * dequeue_task() \ 7952 * dequeue_task_fair() + Race Time 7953 * util_est_dequeue() / 7954 * -------------------------------- B 7955 * 7956 * The additional check "current == p" is required to further 7957 * reduce the race window. 7958 */ 7959 if (dst_cpu == cpu) 7960 util_est += _task_util_est(p); 7961 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7962 lsub_positive(&util_est, _task_util_est(p)); 7963 7964 util = max(util, util_est); 7965 } 7966 7967 return min(util, arch_scale_cpu_capacity(cpu)); 7968 } 7969 7970 unsigned long cpu_util_cfs(int cpu) 7971 { 7972 return cpu_util(cpu, NULL, -1, 0); 7973 } 7974 7975 unsigned long cpu_util_cfs_boost(int cpu) 7976 { 7977 return cpu_util(cpu, NULL, -1, 1); 7978 } 7979 7980 /* 7981 * cpu_util_without: compute cpu utilization without any contributions from *p 7982 * @cpu: the CPU which utilization is requested 7983 * @p: the task which utilization should be discounted 7984 * 7985 * The utilization of a CPU is defined by the utilization of tasks currently 7986 * enqueued on that CPU as well as tasks which are currently sleeping after an 7987 * execution on that CPU. 7988 * 7989 * This method returns the utilization of the specified CPU by discounting the 7990 * utilization of the specified task, whenever the task is currently 7991 * contributing to the CPU utilization. 7992 */ 7993 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7994 { 7995 /* Task has no contribution or is new */ 7996 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7997 p = NULL; 7998 7999 return cpu_util(cpu, p, -1, 0); 8000 } 8001 8002 /* 8003 * This function computes an effective utilization for the given CPU, to be 8004 * used for frequency selection given the linear relation: f = u * f_max. 8005 * 8006 * The scheduler tracks the following metrics: 8007 * 8008 * cpu_util_{cfs,rt,dl,irq}() 8009 * cpu_bw_dl() 8010 * 8011 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8012 * synchronized windows and are thus directly comparable. 8013 * 8014 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8015 * which excludes things like IRQ and steal-time. These latter are then accrued 8016 * in the IRQ utilization. 8017 * 8018 * The DL bandwidth number OTOH is not a measured metric but a value computed 8019 * based on the task model parameters and gives the minimal utilization 8020 * required to meet deadlines. 8021 */ 8022 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8023 unsigned long *min, 8024 unsigned long *max) 8025 { 8026 unsigned long util, irq, scale; 8027 struct rq *rq = cpu_rq(cpu); 8028 8029 scale = arch_scale_cpu_capacity(cpu); 8030 8031 /* 8032 * Early check to see if IRQ/steal time saturates the CPU, can be 8033 * because of inaccuracies in how we track these -- see 8034 * update_irq_load_avg(). 8035 */ 8036 irq = cpu_util_irq(rq); 8037 if (unlikely(irq >= scale)) { 8038 if (min) 8039 *min = scale; 8040 if (max) 8041 *max = scale; 8042 return scale; 8043 } 8044 8045 if (min) { 8046 /* 8047 * The minimum utilization returns the highest level between: 8048 * - the computed DL bandwidth needed with the IRQ pressure which 8049 * steals time to the deadline task. 8050 * - The minimum performance requirement for CFS and/or RT. 8051 */ 8052 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8053 8054 /* 8055 * When an RT task is runnable and uclamp is not used, we must 8056 * ensure that the task will run at maximum compute capacity. 8057 */ 8058 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8059 *min = max(*min, scale); 8060 } 8061 8062 /* 8063 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8064 * CFS tasks and we use the same metric to track the effective 8065 * utilization (PELT windows are synchronized) we can directly add them 8066 * to obtain the CPU's actual utilization. 8067 */ 8068 util = util_cfs + cpu_util_rt(rq); 8069 util += cpu_util_dl(rq); 8070 8071 /* 8072 * The maximum hint is a soft bandwidth requirement, which can be lower 8073 * than the actual utilization because of uclamp_max requirements. 8074 */ 8075 if (max) 8076 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8077 8078 if (util >= scale) 8079 return scale; 8080 8081 /* 8082 * There is still idle time; further improve the number by using the 8083 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8084 * need to scale the task numbers: 8085 * 8086 * max - irq 8087 * U' = irq + --------- * U 8088 * max 8089 */ 8090 util = scale_irq_capacity(util, irq, scale); 8091 util += irq; 8092 8093 return min(scale, util); 8094 } 8095 8096 unsigned long sched_cpu_util(int cpu) 8097 { 8098 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8099 } 8100 8101 /* 8102 * energy_env - Utilization landscape for energy estimation. 8103 * @task_busy_time: Utilization contribution by the task for which we test the 8104 * placement. Given by eenv_task_busy_time(). 8105 * @pd_busy_time: Utilization of the whole perf domain without the task 8106 * contribution. Given by eenv_pd_busy_time(). 8107 * @cpu_cap: Maximum CPU capacity for the perf domain. 8108 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8109 */ 8110 struct energy_env { 8111 unsigned long task_busy_time; 8112 unsigned long pd_busy_time; 8113 unsigned long cpu_cap; 8114 unsigned long pd_cap; 8115 }; 8116 8117 /* 8118 * Compute the task busy time for compute_energy(). This time cannot be 8119 * injected directly into effective_cpu_util() because of the IRQ scaling. 8120 * The latter only makes sense with the most recent CPUs where the task has 8121 * run. 8122 */ 8123 static inline void eenv_task_busy_time(struct energy_env *eenv, 8124 struct task_struct *p, int prev_cpu) 8125 { 8126 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8127 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8128 8129 if (unlikely(irq >= max_cap)) 8130 busy_time = max_cap; 8131 else 8132 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8133 8134 eenv->task_busy_time = busy_time; 8135 } 8136 8137 /* 8138 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8139 * utilization for each @pd_cpus, it however doesn't take into account 8140 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8141 * scale the EM reported power consumption at the (eventually clamped) 8142 * cpu_capacity. 8143 * 8144 * The contribution of the task @p for which we want to estimate the 8145 * energy cost is removed (by cpu_util()) and must be calculated 8146 * separately (see eenv_task_busy_time). This ensures: 8147 * 8148 * - A stable PD utilization, no matter which CPU of that PD we want to place 8149 * the task on. 8150 * 8151 * - A fair comparison between CPUs as the task contribution (task_util()) 8152 * will always be the same no matter which CPU utilization we rely on 8153 * (util_avg or util_est). 8154 * 8155 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8156 * exceed @eenv->pd_cap. 8157 */ 8158 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8159 struct cpumask *pd_cpus, 8160 struct task_struct *p) 8161 { 8162 unsigned long busy_time = 0; 8163 int cpu; 8164 8165 for_each_cpu(cpu, pd_cpus) { 8166 unsigned long util = cpu_util(cpu, p, -1, 0); 8167 8168 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8169 } 8170 8171 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8172 } 8173 8174 /* 8175 * Compute the maximum utilization for compute_energy() when the task @p 8176 * is placed on the cpu @dst_cpu. 8177 * 8178 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8179 * exceed @eenv->cpu_cap. 8180 */ 8181 static inline unsigned long 8182 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8183 struct task_struct *p, int dst_cpu) 8184 { 8185 unsigned long max_util = 0; 8186 int cpu; 8187 8188 for_each_cpu(cpu, pd_cpus) { 8189 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8190 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8191 unsigned long eff_util, min, max; 8192 8193 /* 8194 * Performance domain frequency: utilization clamping 8195 * must be considered since it affects the selection 8196 * of the performance domain frequency. 8197 * NOTE: in case RT tasks are running, by default the min 8198 * utilization can be max OPP. 8199 */ 8200 eff_util = effective_cpu_util(cpu, util, &min, &max); 8201 8202 /* Task's uclamp can modify min and max value */ 8203 if (tsk && uclamp_is_used()) { 8204 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8205 8206 /* 8207 * If there is no active max uclamp constraint, 8208 * directly use task's one, otherwise keep max. 8209 */ 8210 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8211 max = uclamp_eff_value(p, UCLAMP_MAX); 8212 else 8213 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8214 } 8215 8216 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8217 max_util = max(max_util, eff_util); 8218 } 8219 8220 return min(max_util, eenv->cpu_cap); 8221 } 8222 8223 /* 8224 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8225 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8226 * contribution is ignored. 8227 */ 8228 static inline unsigned long 8229 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8230 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8231 { 8232 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8233 unsigned long busy_time = eenv->pd_busy_time; 8234 unsigned long energy; 8235 8236 if (dst_cpu >= 0) 8237 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8238 8239 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8240 8241 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8242 8243 return energy; 8244 } 8245 8246 /* 8247 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8248 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8249 * spare capacity in each performance domain and uses it as a potential 8250 * candidate to execute the task. Then, it uses the Energy Model to figure 8251 * out which of the CPU candidates is the most energy-efficient. 8252 * 8253 * The rationale for this heuristic is as follows. In a performance domain, 8254 * all the most energy efficient CPU candidates (according to the Energy 8255 * Model) are those for which we'll request a low frequency. When there are 8256 * several CPUs for which the frequency request will be the same, we don't 8257 * have enough data to break the tie between them, because the Energy Model 8258 * only includes active power costs. With this model, if we assume that 8259 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8260 * the maximum spare capacity in a performance domain is guaranteed to be among 8261 * the best candidates of the performance domain. 8262 * 8263 * In practice, it could be preferable from an energy standpoint to pack 8264 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8265 * but that could also hurt our chances to go cluster idle, and we have no 8266 * ways to tell with the current Energy Model if this is actually a good 8267 * idea or not. So, find_energy_efficient_cpu() basically favors 8268 * cluster-packing, and spreading inside a cluster. That should at least be 8269 * a good thing for latency, and this is consistent with the idea that most 8270 * of the energy savings of EAS come from the asymmetry of the system, and 8271 * not so much from breaking the tie between identical CPUs. That's also the 8272 * reason why EAS is enabled in the topology code only for systems where 8273 * SD_ASYM_CPUCAPACITY is set. 8274 * 8275 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8276 * they don't have any useful utilization data yet and it's not possible to 8277 * forecast their impact on energy consumption. Consequently, they will be 8278 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8279 * to be energy-inefficient in some use-cases. The alternative would be to 8280 * bias new tasks towards specific types of CPUs first, or to try to infer 8281 * their util_avg from the parent task, but those heuristics could hurt 8282 * other use-cases too. So, until someone finds a better way to solve this, 8283 * let's keep things simple by re-using the existing slow path. 8284 */ 8285 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8286 { 8287 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8288 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8289 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8290 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8291 struct root_domain *rd = this_rq()->rd; 8292 int cpu, best_energy_cpu, target = -1; 8293 int prev_fits = -1, best_fits = -1; 8294 unsigned long best_actual_cap = 0; 8295 unsigned long prev_actual_cap = 0; 8296 struct sched_domain *sd; 8297 struct perf_domain *pd; 8298 struct energy_env eenv; 8299 8300 rcu_read_lock(); 8301 pd = rcu_dereference(rd->pd); 8302 if (!pd) 8303 goto unlock; 8304 8305 /* 8306 * Energy-aware wake-up happens on the lowest sched_domain starting 8307 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8308 */ 8309 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8310 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8311 sd = sd->parent; 8312 if (!sd) 8313 goto unlock; 8314 8315 target = prev_cpu; 8316 8317 sync_entity_load_avg(&p->se); 8318 if (!task_util_est(p) && p_util_min == 0) 8319 goto unlock; 8320 8321 eenv_task_busy_time(&eenv, p, prev_cpu); 8322 8323 for (; pd; pd = pd->next) { 8324 unsigned long util_min = p_util_min, util_max = p_util_max; 8325 unsigned long cpu_cap, cpu_actual_cap, util; 8326 long prev_spare_cap = -1, max_spare_cap = -1; 8327 unsigned long rq_util_min, rq_util_max; 8328 unsigned long cur_delta, base_energy; 8329 int max_spare_cap_cpu = -1; 8330 int fits, max_fits = -1; 8331 8332 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8333 8334 if (cpumask_empty(cpus)) 8335 continue; 8336 8337 /* Account external pressure for the energy estimation */ 8338 cpu = cpumask_first(cpus); 8339 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8340 8341 eenv.cpu_cap = cpu_actual_cap; 8342 eenv.pd_cap = 0; 8343 8344 for_each_cpu(cpu, cpus) { 8345 struct rq *rq = cpu_rq(cpu); 8346 8347 eenv.pd_cap += cpu_actual_cap; 8348 8349 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8350 continue; 8351 8352 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8353 continue; 8354 8355 util = cpu_util(cpu, p, cpu, 0); 8356 cpu_cap = capacity_of(cpu); 8357 8358 /* 8359 * Skip CPUs that cannot satisfy the capacity request. 8360 * IOW, placing the task there would make the CPU 8361 * overutilized. Take uclamp into account to see how 8362 * much capacity we can get out of the CPU; this is 8363 * aligned with sched_cpu_util(). 8364 */ 8365 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8366 /* 8367 * Open code uclamp_rq_util_with() except for 8368 * the clamp() part. I.e.: apply max aggregation 8369 * only. util_fits_cpu() logic requires to 8370 * operate on non clamped util but must use the 8371 * max-aggregated uclamp_{min, max}. 8372 */ 8373 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8374 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8375 8376 util_min = max(rq_util_min, p_util_min); 8377 util_max = max(rq_util_max, p_util_max); 8378 } 8379 8380 fits = util_fits_cpu(util, util_min, util_max, cpu); 8381 if (!fits) 8382 continue; 8383 8384 lsub_positive(&cpu_cap, util); 8385 8386 if (cpu == prev_cpu) { 8387 /* Always use prev_cpu as a candidate. */ 8388 prev_spare_cap = cpu_cap; 8389 prev_fits = fits; 8390 } else if ((fits > max_fits) || 8391 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8392 /* 8393 * Find the CPU with the maximum spare capacity 8394 * among the remaining CPUs in the performance 8395 * domain. 8396 */ 8397 max_spare_cap = cpu_cap; 8398 max_spare_cap_cpu = cpu; 8399 max_fits = fits; 8400 } 8401 } 8402 8403 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8404 continue; 8405 8406 eenv_pd_busy_time(&eenv, cpus, p); 8407 /* Compute the 'base' energy of the pd, without @p */ 8408 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8409 8410 /* Evaluate the energy impact of using prev_cpu. */ 8411 if (prev_spare_cap > -1) { 8412 prev_delta = compute_energy(&eenv, pd, cpus, p, 8413 prev_cpu); 8414 /* CPU utilization has changed */ 8415 if (prev_delta < base_energy) 8416 goto unlock; 8417 prev_delta -= base_energy; 8418 prev_actual_cap = cpu_actual_cap; 8419 best_delta = min(best_delta, prev_delta); 8420 } 8421 8422 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8423 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8424 /* Current best energy cpu fits better */ 8425 if (max_fits < best_fits) 8426 continue; 8427 8428 /* 8429 * Both don't fit performance hint (i.e. uclamp_min) 8430 * but best energy cpu has better capacity. 8431 */ 8432 if ((max_fits < 0) && 8433 (cpu_actual_cap <= best_actual_cap)) 8434 continue; 8435 8436 cur_delta = compute_energy(&eenv, pd, cpus, p, 8437 max_spare_cap_cpu); 8438 /* CPU utilization has changed */ 8439 if (cur_delta < base_energy) 8440 goto unlock; 8441 cur_delta -= base_energy; 8442 8443 /* 8444 * Both fit for the task but best energy cpu has lower 8445 * energy impact. 8446 */ 8447 if ((max_fits > 0) && (best_fits > 0) && 8448 (cur_delta >= best_delta)) 8449 continue; 8450 8451 best_delta = cur_delta; 8452 best_energy_cpu = max_spare_cap_cpu; 8453 best_fits = max_fits; 8454 best_actual_cap = cpu_actual_cap; 8455 } 8456 } 8457 rcu_read_unlock(); 8458 8459 if ((best_fits > prev_fits) || 8460 ((best_fits > 0) && (best_delta < prev_delta)) || 8461 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8462 target = best_energy_cpu; 8463 8464 return target; 8465 8466 unlock: 8467 rcu_read_unlock(); 8468 8469 return target; 8470 } 8471 8472 /* 8473 * select_task_rq_fair: Select target runqueue for the waking task in domains 8474 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8475 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8476 * 8477 * Balances load by selecting the idlest CPU in the idlest group, or under 8478 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8479 * 8480 * Returns the target CPU number. 8481 */ 8482 static int 8483 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8484 { 8485 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8486 struct sched_domain *tmp, *sd = NULL; 8487 int cpu = smp_processor_id(); 8488 int new_cpu = prev_cpu; 8489 int want_affine = 0; 8490 /* SD_flags and WF_flags share the first nibble */ 8491 int sd_flag = wake_flags & 0xF; 8492 8493 /* 8494 * required for stable ->cpus_allowed 8495 */ 8496 lockdep_assert_held(&p->pi_lock); 8497 if (wake_flags & WF_TTWU) { 8498 record_wakee(p); 8499 8500 if ((wake_flags & WF_CURRENT_CPU) && 8501 cpumask_test_cpu(cpu, p->cpus_ptr)) 8502 return cpu; 8503 8504 if (!is_rd_overutilized(this_rq()->rd)) { 8505 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8506 if (new_cpu >= 0) 8507 return new_cpu; 8508 new_cpu = prev_cpu; 8509 } 8510 8511 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8512 } 8513 8514 rcu_read_lock(); 8515 for_each_domain(cpu, tmp) { 8516 /* 8517 * If both 'cpu' and 'prev_cpu' are part of this domain, 8518 * cpu is a valid SD_WAKE_AFFINE target. 8519 */ 8520 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8521 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8522 if (cpu != prev_cpu) 8523 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8524 8525 sd = NULL; /* Prefer wake_affine over balance flags */ 8526 break; 8527 } 8528 8529 /* 8530 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8531 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8532 * will usually go to the fast path. 8533 */ 8534 if (tmp->flags & sd_flag) 8535 sd = tmp; 8536 else if (!want_affine) 8537 break; 8538 } 8539 8540 if (unlikely(sd)) { 8541 /* Slow path */ 8542 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8543 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8544 /* Fast path */ 8545 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8546 } 8547 rcu_read_unlock(); 8548 8549 return new_cpu; 8550 } 8551 8552 /* 8553 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8554 * cfs_rq_of(p) references at time of call are still valid and identify the 8555 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8556 */ 8557 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8558 { 8559 struct sched_entity *se = &p->se; 8560 8561 if (!task_on_rq_migrating(p)) { 8562 remove_entity_load_avg(se); 8563 8564 /* 8565 * Here, the task's PELT values have been updated according to 8566 * the current rq's clock. But if that clock hasn't been 8567 * updated in a while, a substantial idle time will be missed, 8568 * leading to an inflation after wake-up on the new rq. 8569 * 8570 * Estimate the missing time from the cfs_rq last_update_time 8571 * and update sched_avg to improve the PELT continuity after 8572 * migration. 8573 */ 8574 migrate_se_pelt_lag(se); 8575 } 8576 8577 /* Tell new CPU we are migrated */ 8578 se->avg.last_update_time = 0; 8579 8580 update_scan_period(p, new_cpu); 8581 } 8582 8583 static void task_dead_fair(struct task_struct *p) 8584 { 8585 struct sched_entity *se = &p->se; 8586 8587 if (se->sched_delayed) { 8588 struct rq_flags rf; 8589 struct rq *rq; 8590 8591 rq = task_rq_lock(p, &rf); 8592 if (se->sched_delayed) { 8593 update_rq_clock(rq); 8594 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8595 } 8596 task_rq_unlock(rq, p, &rf); 8597 } 8598 8599 remove_entity_load_avg(se); 8600 } 8601 8602 /* 8603 * Set the max capacity the task is allowed to run at for misfit detection. 8604 */ 8605 static void set_task_max_allowed_capacity(struct task_struct *p) 8606 { 8607 struct asym_cap_data *entry; 8608 8609 if (!sched_asym_cpucap_active()) 8610 return; 8611 8612 rcu_read_lock(); 8613 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8614 cpumask_t *cpumask; 8615 8616 cpumask = cpu_capacity_span(entry); 8617 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8618 continue; 8619 8620 p->max_allowed_capacity = entry->capacity; 8621 break; 8622 } 8623 rcu_read_unlock(); 8624 } 8625 8626 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8627 { 8628 set_cpus_allowed_common(p, ctx); 8629 set_task_max_allowed_capacity(p); 8630 } 8631 8632 static int 8633 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8634 { 8635 if (sched_fair_runnable(rq)) 8636 return 1; 8637 8638 return sched_balance_newidle(rq, rf) != 0; 8639 } 8640 8641 static void set_next_buddy(struct sched_entity *se) 8642 { 8643 for_each_sched_entity(se) { 8644 if (WARN_ON_ONCE(!se->on_rq)) 8645 return; 8646 if (se_is_idle(se)) 8647 return; 8648 cfs_rq_of(se)->next = se; 8649 } 8650 } 8651 8652 /* 8653 * Preempt the current task with a newly woken task if needed: 8654 */ 8655 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8656 { 8657 struct task_struct *donor = rq->donor; 8658 struct sched_entity *se = &donor->se, *pse = &p->se; 8659 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8660 int cse_is_idle, pse_is_idle; 8661 8662 if (unlikely(se == pse)) 8663 return; 8664 8665 /* 8666 * This is possible from callers such as attach_tasks(), in which we 8667 * unconditionally wakeup_preempt() after an enqueue (which may have 8668 * lead to a throttle). This both saves work and prevents false 8669 * next-buddy nomination below. 8670 */ 8671 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8672 return; 8673 8674 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8675 set_next_buddy(pse); 8676 } 8677 8678 /* 8679 * We can come here with TIF_NEED_RESCHED already set from new task 8680 * wake up path. 8681 * 8682 * Note: this also catches the edge-case of curr being in a throttled 8683 * group (e.g. via set_curr_task), since update_curr() (in the 8684 * enqueue of curr) will have resulted in resched being set. This 8685 * prevents us from potentially nominating it as a false LAST_BUDDY 8686 * below. 8687 */ 8688 if (test_tsk_need_resched(rq->curr)) 8689 return; 8690 8691 if (!sched_feat(WAKEUP_PREEMPTION)) 8692 return; 8693 8694 find_matching_se(&se, &pse); 8695 WARN_ON_ONCE(!pse); 8696 8697 cse_is_idle = se_is_idle(se); 8698 pse_is_idle = se_is_idle(pse); 8699 8700 /* 8701 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8702 * in the inverse case). 8703 */ 8704 if (cse_is_idle && !pse_is_idle) { 8705 /* 8706 * When non-idle entity preempt an idle entity, 8707 * don't give idle entity slice protection. 8708 */ 8709 cancel_protect_slice(se); 8710 goto preempt; 8711 } 8712 8713 if (cse_is_idle != pse_is_idle) 8714 return; 8715 8716 /* 8717 * BATCH and IDLE tasks do not preempt others. 8718 */ 8719 if (unlikely(!normal_policy(p->policy))) 8720 return; 8721 8722 cfs_rq = cfs_rq_of(se); 8723 update_curr(cfs_rq); 8724 /* 8725 * If @p has a shorter slice than current and @p is eligible, override 8726 * current's slice protection in order to allow preemption. 8727 * 8728 * Note that even if @p does not turn out to be the most eligible 8729 * task at this moment, current's slice protection will be lost. 8730 */ 8731 if (do_preempt_short(cfs_rq, pse, se)) 8732 cancel_protect_slice(se); 8733 8734 /* 8735 * If @p has become the most eligible task, force preemption. 8736 */ 8737 if (pick_eevdf(cfs_rq) == pse) 8738 goto preempt; 8739 8740 return; 8741 8742 preempt: 8743 resched_curr_lazy(rq); 8744 } 8745 8746 static struct task_struct *pick_task_fair(struct rq *rq) 8747 { 8748 struct sched_entity *se; 8749 struct cfs_rq *cfs_rq; 8750 8751 again: 8752 cfs_rq = &rq->cfs; 8753 if (!cfs_rq->nr_queued) 8754 return NULL; 8755 8756 do { 8757 /* Might not have done put_prev_entity() */ 8758 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8759 update_curr(cfs_rq); 8760 8761 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8762 goto again; 8763 8764 se = pick_next_entity(rq, cfs_rq); 8765 if (!se) 8766 goto again; 8767 cfs_rq = group_cfs_rq(se); 8768 } while (cfs_rq); 8769 8770 return task_of(se); 8771 } 8772 8773 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8774 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8775 8776 struct task_struct * 8777 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8778 { 8779 struct sched_entity *se; 8780 struct task_struct *p; 8781 int new_tasks; 8782 8783 again: 8784 p = pick_task_fair(rq); 8785 if (!p) 8786 goto idle; 8787 se = &p->se; 8788 8789 #ifdef CONFIG_FAIR_GROUP_SCHED 8790 if (prev->sched_class != &fair_sched_class) 8791 goto simple; 8792 8793 __put_prev_set_next_dl_server(rq, prev, p); 8794 8795 /* 8796 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8797 * likely that a next task is from the same cgroup as the current. 8798 * 8799 * Therefore attempt to avoid putting and setting the entire cgroup 8800 * hierarchy, only change the part that actually changes. 8801 * 8802 * Since we haven't yet done put_prev_entity and if the selected task 8803 * is a different task than we started out with, try and touch the 8804 * least amount of cfs_rqs. 8805 */ 8806 if (prev != p) { 8807 struct sched_entity *pse = &prev->se; 8808 struct cfs_rq *cfs_rq; 8809 8810 while (!(cfs_rq = is_same_group(se, pse))) { 8811 int se_depth = se->depth; 8812 int pse_depth = pse->depth; 8813 8814 if (se_depth <= pse_depth) { 8815 put_prev_entity(cfs_rq_of(pse), pse); 8816 pse = parent_entity(pse); 8817 } 8818 if (se_depth >= pse_depth) { 8819 set_next_entity(cfs_rq_of(se), se); 8820 se = parent_entity(se); 8821 } 8822 } 8823 8824 put_prev_entity(cfs_rq, pse); 8825 set_next_entity(cfs_rq, se); 8826 8827 __set_next_task_fair(rq, p, true); 8828 } 8829 8830 return p; 8831 8832 simple: 8833 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8834 put_prev_set_next_task(rq, prev, p); 8835 return p; 8836 8837 idle: 8838 if (!rf) 8839 return NULL; 8840 8841 new_tasks = sched_balance_newidle(rq, rf); 8842 8843 /* 8844 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8845 * possible for any higher priority task to appear. In that case we 8846 * must re-start the pick_next_entity() loop. 8847 */ 8848 if (new_tasks < 0) 8849 return RETRY_TASK; 8850 8851 if (new_tasks > 0) 8852 goto again; 8853 8854 /* 8855 * rq is about to be idle, check if we need to update the 8856 * lost_idle_time of clock_pelt 8857 */ 8858 update_idle_rq_clock_pelt(rq); 8859 8860 return NULL; 8861 } 8862 8863 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8864 { 8865 return pick_next_task_fair(rq, prev, NULL); 8866 } 8867 8868 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8869 { 8870 return !!dl_se->rq->cfs.nr_queued; 8871 } 8872 8873 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8874 { 8875 return pick_task_fair(dl_se->rq); 8876 } 8877 8878 void fair_server_init(struct rq *rq) 8879 { 8880 struct sched_dl_entity *dl_se = &rq->fair_server; 8881 8882 init_dl_entity(dl_se); 8883 8884 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8885 } 8886 8887 /* 8888 * Account for a descheduled task: 8889 */ 8890 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8891 { 8892 struct sched_entity *se = &prev->se; 8893 struct cfs_rq *cfs_rq; 8894 8895 for_each_sched_entity(se) { 8896 cfs_rq = cfs_rq_of(se); 8897 put_prev_entity(cfs_rq, se); 8898 } 8899 } 8900 8901 /* 8902 * sched_yield() is very simple 8903 */ 8904 static void yield_task_fair(struct rq *rq) 8905 { 8906 struct task_struct *curr = rq->curr; 8907 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8908 struct sched_entity *se = &curr->se; 8909 8910 /* 8911 * Are we the only task in the tree? 8912 */ 8913 if (unlikely(rq->nr_running == 1)) 8914 return; 8915 8916 clear_buddies(cfs_rq, se); 8917 8918 update_rq_clock(rq); 8919 /* 8920 * Update run-time statistics of the 'current'. 8921 */ 8922 update_curr(cfs_rq); 8923 /* 8924 * Tell update_rq_clock() that we've just updated, 8925 * so we don't do microscopic update in schedule() 8926 * and double the fastpath cost. 8927 */ 8928 rq_clock_skip_update(rq); 8929 8930 se->deadline += calc_delta_fair(se->slice, se); 8931 } 8932 8933 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8934 { 8935 struct sched_entity *se = &p->se; 8936 8937 /* throttled hierarchies are not runnable */ 8938 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8939 return false; 8940 8941 /* Tell the scheduler that we'd really like se to run next. */ 8942 set_next_buddy(se); 8943 8944 yield_task_fair(rq); 8945 8946 return true; 8947 } 8948 8949 /************************************************** 8950 * Fair scheduling class load-balancing methods. 8951 * 8952 * BASICS 8953 * 8954 * The purpose of load-balancing is to achieve the same basic fairness the 8955 * per-CPU scheduler provides, namely provide a proportional amount of compute 8956 * time to each task. This is expressed in the following equation: 8957 * 8958 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8959 * 8960 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8961 * W_i,0 is defined as: 8962 * 8963 * W_i,0 = \Sum_j w_i,j (2) 8964 * 8965 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8966 * is derived from the nice value as per sched_prio_to_weight[]. 8967 * 8968 * The weight average is an exponential decay average of the instantaneous 8969 * weight: 8970 * 8971 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8972 * 8973 * C_i is the compute capacity of CPU i, typically it is the 8974 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8975 * can also include other factors [XXX]. 8976 * 8977 * To achieve this balance we define a measure of imbalance which follows 8978 * directly from (1): 8979 * 8980 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8981 * 8982 * We them move tasks around to minimize the imbalance. In the continuous 8983 * function space it is obvious this converges, in the discrete case we get 8984 * a few fun cases generally called infeasible weight scenarios. 8985 * 8986 * [XXX expand on: 8987 * - infeasible weights; 8988 * - local vs global optima in the discrete case. ] 8989 * 8990 * 8991 * SCHED DOMAINS 8992 * 8993 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8994 * for all i,j solution, we create a tree of CPUs that follows the hardware 8995 * topology where each level pairs two lower groups (or better). This results 8996 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8997 * tree to only the first of the previous level and we decrease the frequency 8998 * of load-balance at each level inversely proportional to the number of CPUs in 8999 * the groups. 9000 * 9001 * This yields: 9002 * 9003 * log_2 n 1 n 9004 * \Sum { --- * --- * 2^i } = O(n) (5) 9005 * i = 0 2^i 2^i 9006 * `- size of each group 9007 * | | `- number of CPUs doing load-balance 9008 * | `- freq 9009 * `- sum over all levels 9010 * 9011 * Coupled with a limit on how many tasks we can migrate every balance pass, 9012 * this makes (5) the runtime complexity of the balancer. 9013 * 9014 * An important property here is that each CPU is still (indirectly) connected 9015 * to every other CPU in at most O(log n) steps: 9016 * 9017 * The adjacency matrix of the resulting graph is given by: 9018 * 9019 * log_2 n 9020 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9021 * k = 0 9022 * 9023 * And you'll find that: 9024 * 9025 * A^(log_2 n)_i,j != 0 for all i,j (7) 9026 * 9027 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9028 * The task movement gives a factor of O(m), giving a convergence complexity 9029 * of: 9030 * 9031 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9032 * 9033 * 9034 * WORK CONSERVING 9035 * 9036 * In order to avoid CPUs going idle while there's still work to do, new idle 9037 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9038 * tree itself instead of relying on other CPUs to bring it work. 9039 * 9040 * This adds some complexity to both (5) and (8) but it reduces the total idle 9041 * time. 9042 * 9043 * [XXX more?] 9044 * 9045 * 9046 * CGROUPS 9047 * 9048 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9049 * 9050 * s_k,i 9051 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9052 * S_k 9053 * 9054 * Where 9055 * 9056 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9057 * 9058 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9059 * 9060 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9061 * property. 9062 * 9063 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9064 * rewrite all of this once again.] 9065 */ 9066 9067 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9068 9069 enum fbq_type { regular, remote, all }; 9070 9071 /* 9072 * 'group_type' describes the group of CPUs at the moment of load balancing. 9073 * 9074 * The enum is ordered by pulling priority, with the group with lowest priority 9075 * first so the group_type can simply be compared when selecting the busiest 9076 * group. See update_sd_pick_busiest(). 9077 */ 9078 enum group_type { 9079 /* The group has spare capacity that can be used to run more tasks. */ 9080 group_has_spare = 0, 9081 /* 9082 * The group is fully used and the tasks don't compete for more CPU 9083 * cycles. Nevertheless, some tasks might wait before running. 9084 */ 9085 group_fully_busy, 9086 /* 9087 * One task doesn't fit with CPU's capacity and must be migrated to a 9088 * more powerful CPU. 9089 */ 9090 group_misfit_task, 9091 /* 9092 * Balance SMT group that's fully busy. Can benefit from migration 9093 * a task on SMT with busy sibling to another CPU on idle core. 9094 */ 9095 group_smt_balance, 9096 /* 9097 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9098 * and the task should be migrated to it instead of running on the 9099 * current CPU. 9100 */ 9101 group_asym_packing, 9102 /* 9103 * The tasks' affinity constraints previously prevented the scheduler 9104 * from balancing the load across the system. 9105 */ 9106 group_imbalanced, 9107 /* 9108 * The CPU is overloaded and can't provide expected CPU cycles to all 9109 * tasks. 9110 */ 9111 group_overloaded 9112 }; 9113 9114 enum migration_type { 9115 migrate_load = 0, 9116 migrate_util, 9117 migrate_task, 9118 migrate_misfit 9119 }; 9120 9121 #define LBF_ALL_PINNED 0x01 9122 #define LBF_NEED_BREAK 0x02 9123 #define LBF_DST_PINNED 0x04 9124 #define LBF_SOME_PINNED 0x08 9125 #define LBF_ACTIVE_LB 0x10 9126 9127 struct lb_env { 9128 struct sched_domain *sd; 9129 9130 struct rq *src_rq; 9131 int src_cpu; 9132 9133 int dst_cpu; 9134 struct rq *dst_rq; 9135 9136 struct cpumask *dst_grpmask; 9137 int new_dst_cpu; 9138 enum cpu_idle_type idle; 9139 long imbalance; 9140 /* The set of CPUs under consideration for load-balancing */ 9141 struct cpumask *cpus; 9142 9143 unsigned int flags; 9144 9145 unsigned int loop; 9146 unsigned int loop_break; 9147 unsigned int loop_max; 9148 9149 enum fbq_type fbq_type; 9150 enum migration_type migration_type; 9151 struct list_head tasks; 9152 }; 9153 9154 /* 9155 * Is this task likely cache-hot: 9156 */ 9157 static int task_hot(struct task_struct *p, struct lb_env *env) 9158 { 9159 s64 delta; 9160 9161 lockdep_assert_rq_held(env->src_rq); 9162 9163 if (p->sched_class != &fair_sched_class) 9164 return 0; 9165 9166 if (unlikely(task_has_idle_policy(p))) 9167 return 0; 9168 9169 /* SMT siblings share cache */ 9170 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9171 return 0; 9172 9173 /* 9174 * Buddy candidates are cache hot: 9175 */ 9176 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9177 (&p->se == cfs_rq_of(&p->se)->next)) 9178 return 1; 9179 9180 if (sysctl_sched_migration_cost == -1) 9181 return 1; 9182 9183 /* 9184 * Don't migrate task if the task's cookie does not match 9185 * with the destination CPU's core cookie. 9186 */ 9187 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9188 return 1; 9189 9190 if (sysctl_sched_migration_cost == 0) 9191 return 0; 9192 9193 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9194 9195 return delta < (s64)sysctl_sched_migration_cost; 9196 } 9197 9198 #ifdef CONFIG_NUMA_BALANCING 9199 /* 9200 * Returns a positive value, if task migration degrades locality. 9201 * Returns 0, if task migration is not affected by locality. 9202 * Returns a negative value, if task migration improves locality i.e migration preferred. 9203 */ 9204 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9205 { 9206 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9207 unsigned long src_weight, dst_weight; 9208 int src_nid, dst_nid, dist; 9209 9210 if (!static_branch_likely(&sched_numa_balancing)) 9211 return 0; 9212 9213 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9214 return 0; 9215 9216 src_nid = cpu_to_node(env->src_cpu); 9217 dst_nid = cpu_to_node(env->dst_cpu); 9218 9219 if (src_nid == dst_nid) 9220 return 0; 9221 9222 /* Migrating away from the preferred node is always bad. */ 9223 if (src_nid == p->numa_preferred_nid) { 9224 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9225 return 1; 9226 else 9227 return 0; 9228 } 9229 9230 /* Encourage migration to the preferred node. */ 9231 if (dst_nid == p->numa_preferred_nid) 9232 return -1; 9233 9234 /* Leaving a core idle is often worse than degrading locality. */ 9235 if (env->idle == CPU_IDLE) 9236 return 0; 9237 9238 dist = node_distance(src_nid, dst_nid); 9239 if (numa_group) { 9240 src_weight = group_weight(p, src_nid, dist); 9241 dst_weight = group_weight(p, dst_nid, dist); 9242 } else { 9243 src_weight = task_weight(p, src_nid, dist); 9244 dst_weight = task_weight(p, dst_nid, dist); 9245 } 9246 9247 return src_weight - dst_weight; 9248 } 9249 9250 #else /* !CONFIG_NUMA_BALANCING: */ 9251 static inline long migrate_degrades_locality(struct task_struct *p, 9252 struct lb_env *env) 9253 { 9254 return 0; 9255 } 9256 #endif /* !CONFIG_NUMA_BALANCING */ 9257 9258 /* 9259 * Check whether the task is ineligible on the destination cpu 9260 * 9261 * When the PLACE_LAG scheduling feature is enabled and 9262 * dst_cfs_rq->nr_queued is greater than 1, if the task 9263 * is ineligible, it will also be ineligible when 9264 * it is migrated to the destination cpu. 9265 */ 9266 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9267 { 9268 struct cfs_rq *dst_cfs_rq; 9269 9270 #ifdef CONFIG_FAIR_GROUP_SCHED 9271 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9272 #else 9273 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9274 #endif 9275 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9276 !entity_eligible(task_cfs_rq(p), &p->se)) 9277 return 1; 9278 9279 return 0; 9280 } 9281 9282 /* 9283 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9284 */ 9285 static 9286 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9287 { 9288 long degrades, hot; 9289 9290 lockdep_assert_rq_held(env->src_rq); 9291 if (p->sched_task_hot) 9292 p->sched_task_hot = 0; 9293 9294 /* 9295 * We do not migrate tasks that are: 9296 * 1) delayed dequeued unless we migrate load, or 9297 * 2) throttled_lb_pair, or 9298 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9299 * 4) running (obviously), or 9300 * 5) are cache-hot on their current CPU. 9301 */ 9302 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9303 return 0; 9304 9305 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9306 return 0; 9307 9308 /* 9309 * We want to prioritize the migration of eligible tasks. 9310 * For ineligible tasks we soft-limit them and only allow 9311 * them to migrate when nr_balance_failed is non-zero to 9312 * avoid load-balancing trying very hard to balance the load. 9313 */ 9314 if (!env->sd->nr_balance_failed && 9315 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9316 return 0; 9317 9318 /* Disregard percpu kthreads; they are where they need to be. */ 9319 if (kthread_is_per_cpu(p)) 9320 return 0; 9321 9322 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9323 int cpu; 9324 9325 schedstat_inc(p->stats.nr_failed_migrations_affine); 9326 9327 env->flags |= LBF_SOME_PINNED; 9328 9329 /* 9330 * Remember if this task can be migrated to any other CPU in 9331 * our sched_group. We may want to revisit it if we couldn't 9332 * meet load balance goals by pulling other tasks on src_cpu. 9333 * 9334 * Avoid computing new_dst_cpu 9335 * - for NEWLY_IDLE 9336 * - if we have already computed one in current iteration 9337 * - if it's an active balance 9338 */ 9339 if (env->idle == CPU_NEWLY_IDLE || 9340 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9341 return 0; 9342 9343 /* Prevent to re-select dst_cpu via env's CPUs: */ 9344 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9345 9346 if (cpu < nr_cpu_ids) { 9347 env->flags |= LBF_DST_PINNED; 9348 env->new_dst_cpu = cpu; 9349 } 9350 9351 return 0; 9352 } 9353 9354 /* Record that we found at least one task that could run on dst_cpu */ 9355 env->flags &= ~LBF_ALL_PINNED; 9356 9357 if (task_on_cpu(env->src_rq, p)) { 9358 schedstat_inc(p->stats.nr_failed_migrations_running); 9359 return 0; 9360 } 9361 9362 /* 9363 * Aggressive migration if: 9364 * 1) active balance 9365 * 2) destination numa is preferred 9366 * 3) task is cache cold, or 9367 * 4) too many balance attempts have failed. 9368 */ 9369 if (env->flags & LBF_ACTIVE_LB) 9370 return 1; 9371 9372 degrades = migrate_degrades_locality(p, env); 9373 if (!degrades) 9374 hot = task_hot(p, env); 9375 else 9376 hot = degrades > 0; 9377 9378 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9379 if (hot) 9380 p->sched_task_hot = 1; 9381 return 1; 9382 } 9383 9384 schedstat_inc(p->stats.nr_failed_migrations_hot); 9385 return 0; 9386 } 9387 9388 /* 9389 * detach_task() -- detach the task for the migration specified in env 9390 */ 9391 static void detach_task(struct task_struct *p, struct lb_env *env) 9392 { 9393 lockdep_assert_rq_held(env->src_rq); 9394 9395 if (p->sched_task_hot) { 9396 p->sched_task_hot = 0; 9397 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9398 schedstat_inc(p->stats.nr_forced_migrations); 9399 } 9400 9401 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9402 set_task_cpu(p, env->dst_cpu); 9403 } 9404 9405 /* 9406 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9407 * part of active balancing operations within "domain". 9408 * 9409 * Returns a task if successful and NULL otherwise. 9410 */ 9411 static struct task_struct *detach_one_task(struct lb_env *env) 9412 { 9413 struct task_struct *p; 9414 9415 lockdep_assert_rq_held(env->src_rq); 9416 9417 list_for_each_entry_reverse(p, 9418 &env->src_rq->cfs_tasks, se.group_node) { 9419 if (!can_migrate_task(p, env)) 9420 continue; 9421 9422 detach_task(p, env); 9423 9424 /* 9425 * Right now, this is only the second place where 9426 * lb_gained[env->idle] is updated (other is detach_tasks) 9427 * so we can safely collect stats here rather than 9428 * inside detach_tasks(). 9429 */ 9430 schedstat_inc(env->sd->lb_gained[env->idle]); 9431 return p; 9432 } 9433 return NULL; 9434 } 9435 9436 /* 9437 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9438 * busiest_rq, as part of a balancing operation within domain "sd". 9439 * 9440 * Returns number of detached tasks if successful and 0 otherwise. 9441 */ 9442 static int detach_tasks(struct lb_env *env) 9443 { 9444 struct list_head *tasks = &env->src_rq->cfs_tasks; 9445 unsigned long util, load; 9446 struct task_struct *p; 9447 int detached = 0; 9448 9449 lockdep_assert_rq_held(env->src_rq); 9450 9451 /* 9452 * Source run queue has been emptied by another CPU, clear 9453 * LBF_ALL_PINNED flag as we will not test any task. 9454 */ 9455 if (env->src_rq->nr_running <= 1) { 9456 env->flags &= ~LBF_ALL_PINNED; 9457 return 0; 9458 } 9459 9460 if (env->imbalance <= 0) 9461 return 0; 9462 9463 while (!list_empty(tasks)) { 9464 /* 9465 * We don't want to steal all, otherwise we may be treated likewise, 9466 * which could at worst lead to a livelock crash. 9467 */ 9468 if (env->idle && env->src_rq->nr_running <= 1) 9469 break; 9470 9471 env->loop++; 9472 /* We've more or less seen every task there is, call it quits */ 9473 if (env->loop > env->loop_max) 9474 break; 9475 9476 /* take a breather every nr_migrate tasks */ 9477 if (env->loop > env->loop_break) { 9478 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9479 env->flags |= LBF_NEED_BREAK; 9480 break; 9481 } 9482 9483 p = list_last_entry(tasks, struct task_struct, se.group_node); 9484 9485 if (!can_migrate_task(p, env)) 9486 goto next; 9487 9488 switch (env->migration_type) { 9489 case migrate_load: 9490 /* 9491 * Depending of the number of CPUs and tasks and the 9492 * cgroup hierarchy, task_h_load() can return a null 9493 * value. Make sure that env->imbalance decreases 9494 * otherwise detach_tasks() will stop only after 9495 * detaching up to loop_max tasks. 9496 */ 9497 load = max_t(unsigned long, task_h_load(p), 1); 9498 9499 if (sched_feat(LB_MIN) && 9500 load < 16 && !env->sd->nr_balance_failed) 9501 goto next; 9502 9503 /* 9504 * Make sure that we don't migrate too much load. 9505 * Nevertheless, let relax the constraint if 9506 * scheduler fails to find a good waiting task to 9507 * migrate. 9508 */ 9509 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9510 goto next; 9511 9512 env->imbalance -= load; 9513 break; 9514 9515 case migrate_util: 9516 util = task_util_est(p); 9517 9518 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9519 goto next; 9520 9521 env->imbalance -= util; 9522 break; 9523 9524 case migrate_task: 9525 env->imbalance--; 9526 break; 9527 9528 case migrate_misfit: 9529 /* This is not a misfit task */ 9530 if (task_fits_cpu(p, env->src_cpu)) 9531 goto next; 9532 9533 env->imbalance = 0; 9534 break; 9535 } 9536 9537 detach_task(p, env); 9538 list_add(&p->se.group_node, &env->tasks); 9539 9540 detached++; 9541 9542 #ifdef CONFIG_PREEMPTION 9543 /* 9544 * NEWIDLE balancing is a source of latency, so preemptible 9545 * kernels will stop after the first task is detached to minimize 9546 * the critical section. 9547 */ 9548 if (env->idle == CPU_NEWLY_IDLE) 9549 break; 9550 #endif 9551 9552 /* 9553 * We only want to steal up to the prescribed amount of 9554 * load/util/tasks. 9555 */ 9556 if (env->imbalance <= 0) 9557 break; 9558 9559 continue; 9560 next: 9561 if (p->sched_task_hot) 9562 schedstat_inc(p->stats.nr_failed_migrations_hot); 9563 9564 list_move(&p->se.group_node, tasks); 9565 } 9566 9567 /* 9568 * Right now, this is one of only two places we collect this stat 9569 * so we can safely collect detach_one_task() stats here rather 9570 * than inside detach_one_task(). 9571 */ 9572 schedstat_add(env->sd->lb_gained[env->idle], detached); 9573 9574 return detached; 9575 } 9576 9577 /* 9578 * attach_task() -- attach the task detached by detach_task() to its new rq. 9579 */ 9580 static void attach_task(struct rq *rq, struct task_struct *p) 9581 { 9582 lockdep_assert_rq_held(rq); 9583 9584 WARN_ON_ONCE(task_rq(p) != rq); 9585 activate_task(rq, p, ENQUEUE_NOCLOCK); 9586 wakeup_preempt(rq, p, 0); 9587 } 9588 9589 /* 9590 * attach_one_task() -- attaches the task returned from detach_one_task() to 9591 * its new rq. 9592 */ 9593 static void attach_one_task(struct rq *rq, struct task_struct *p) 9594 { 9595 struct rq_flags rf; 9596 9597 rq_lock(rq, &rf); 9598 update_rq_clock(rq); 9599 attach_task(rq, p); 9600 rq_unlock(rq, &rf); 9601 } 9602 9603 /* 9604 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9605 * new rq. 9606 */ 9607 static void attach_tasks(struct lb_env *env) 9608 { 9609 struct list_head *tasks = &env->tasks; 9610 struct task_struct *p; 9611 struct rq_flags rf; 9612 9613 rq_lock(env->dst_rq, &rf); 9614 update_rq_clock(env->dst_rq); 9615 9616 while (!list_empty(tasks)) { 9617 p = list_first_entry(tasks, struct task_struct, se.group_node); 9618 list_del_init(&p->se.group_node); 9619 9620 attach_task(env->dst_rq, p); 9621 } 9622 9623 rq_unlock(env->dst_rq, &rf); 9624 } 9625 9626 #ifdef CONFIG_NO_HZ_COMMON 9627 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9628 { 9629 if (cfs_rq->avg.load_avg) 9630 return true; 9631 9632 if (cfs_rq->avg.util_avg) 9633 return true; 9634 9635 return false; 9636 } 9637 9638 static inline bool others_have_blocked(struct rq *rq) 9639 { 9640 if (cpu_util_rt(rq)) 9641 return true; 9642 9643 if (cpu_util_dl(rq)) 9644 return true; 9645 9646 if (hw_load_avg(rq)) 9647 return true; 9648 9649 if (cpu_util_irq(rq)) 9650 return true; 9651 9652 return false; 9653 } 9654 9655 static inline void update_blocked_load_tick(struct rq *rq) 9656 { 9657 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9658 } 9659 9660 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9661 { 9662 if (!has_blocked) 9663 rq->has_blocked_load = 0; 9664 } 9665 #else /* !CONFIG_NO_HZ_COMMON: */ 9666 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9667 static inline bool others_have_blocked(struct rq *rq) { return false; } 9668 static inline void update_blocked_load_tick(struct rq *rq) {} 9669 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9670 #endif /* !CONFIG_NO_HZ_COMMON */ 9671 9672 static bool __update_blocked_others(struct rq *rq, bool *done) 9673 { 9674 bool updated; 9675 9676 /* 9677 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9678 * DL and IRQ signals have been updated before updating CFS. 9679 */ 9680 updated = update_other_load_avgs(rq); 9681 9682 if (others_have_blocked(rq)) 9683 *done = false; 9684 9685 return updated; 9686 } 9687 9688 #ifdef CONFIG_FAIR_GROUP_SCHED 9689 9690 static bool __update_blocked_fair(struct rq *rq, bool *done) 9691 { 9692 struct cfs_rq *cfs_rq, *pos; 9693 bool decayed = false; 9694 int cpu = cpu_of(rq); 9695 9696 /* 9697 * Iterates the task_group tree in a bottom up fashion, see 9698 * list_add_leaf_cfs_rq() for details. 9699 */ 9700 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9701 struct sched_entity *se; 9702 9703 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9704 update_tg_load_avg(cfs_rq); 9705 9706 if (cfs_rq->nr_queued == 0) 9707 update_idle_cfs_rq_clock_pelt(cfs_rq); 9708 9709 if (cfs_rq == &rq->cfs) 9710 decayed = true; 9711 } 9712 9713 /* Propagate pending load changes to the parent, if any: */ 9714 se = cfs_rq->tg->se[cpu]; 9715 if (se && !skip_blocked_update(se)) 9716 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9717 9718 /* 9719 * There can be a lot of idle CPU cgroups. Don't let fully 9720 * decayed cfs_rqs linger on the list. 9721 */ 9722 if (cfs_rq_is_decayed(cfs_rq)) 9723 list_del_leaf_cfs_rq(cfs_rq); 9724 9725 /* Don't need periodic decay once load/util_avg are null */ 9726 if (cfs_rq_has_blocked(cfs_rq)) 9727 *done = false; 9728 } 9729 9730 return decayed; 9731 } 9732 9733 /* 9734 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9735 * This needs to be done in a top-down fashion because the load of a child 9736 * group is a fraction of its parents load. 9737 */ 9738 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9739 { 9740 struct rq *rq = rq_of(cfs_rq); 9741 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9742 unsigned long now = jiffies; 9743 unsigned long load; 9744 9745 if (cfs_rq->last_h_load_update == now) 9746 return; 9747 9748 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9749 for_each_sched_entity(se) { 9750 cfs_rq = cfs_rq_of(se); 9751 WRITE_ONCE(cfs_rq->h_load_next, se); 9752 if (cfs_rq->last_h_load_update == now) 9753 break; 9754 } 9755 9756 if (!se) { 9757 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9758 cfs_rq->last_h_load_update = now; 9759 } 9760 9761 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9762 load = cfs_rq->h_load; 9763 load = div64_ul(load * se->avg.load_avg, 9764 cfs_rq_load_avg(cfs_rq) + 1); 9765 cfs_rq = group_cfs_rq(se); 9766 cfs_rq->h_load = load; 9767 cfs_rq->last_h_load_update = now; 9768 } 9769 } 9770 9771 static unsigned long task_h_load(struct task_struct *p) 9772 { 9773 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9774 9775 update_cfs_rq_h_load(cfs_rq); 9776 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9777 cfs_rq_load_avg(cfs_rq) + 1); 9778 } 9779 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 9780 static bool __update_blocked_fair(struct rq *rq, bool *done) 9781 { 9782 struct cfs_rq *cfs_rq = &rq->cfs; 9783 bool decayed; 9784 9785 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9786 if (cfs_rq_has_blocked(cfs_rq)) 9787 *done = false; 9788 9789 return decayed; 9790 } 9791 9792 static unsigned long task_h_load(struct task_struct *p) 9793 { 9794 return p->se.avg.load_avg; 9795 } 9796 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 9797 9798 static void sched_balance_update_blocked_averages(int cpu) 9799 { 9800 bool decayed = false, done = true; 9801 struct rq *rq = cpu_rq(cpu); 9802 struct rq_flags rf; 9803 9804 rq_lock_irqsave(rq, &rf); 9805 update_blocked_load_tick(rq); 9806 update_rq_clock(rq); 9807 9808 decayed |= __update_blocked_others(rq, &done); 9809 decayed |= __update_blocked_fair(rq, &done); 9810 9811 update_blocked_load_status(rq, !done); 9812 if (decayed) 9813 cpufreq_update_util(rq, 0); 9814 rq_unlock_irqrestore(rq, &rf); 9815 } 9816 9817 /********** Helpers for sched_balance_find_src_group ************************/ 9818 9819 /* 9820 * sg_lb_stats - stats of a sched_group required for load-balancing: 9821 */ 9822 struct sg_lb_stats { 9823 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9824 unsigned long group_load; /* Total load over the CPUs of the group */ 9825 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9826 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9827 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9828 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9829 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9830 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9831 unsigned int group_weight; 9832 enum group_type group_type; 9833 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9834 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9835 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9836 #ifdef CONFIG_NUMA_BALANCING 9837 unsigned int nr_numa_running; 9838 unsigned int nr_preferred_running; 9839 #endif 9840 }; 9841 9842 /* 9843 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9844 */ 9845 struct sd_lb_stats { 9846 struct sched_group *busiest; /* Busiest group in this sd */ 9847 struct sched_group *local; /* Local group in this sd */ 9848 unsigned long total_load; /* Total load of all groups in sd */ 9849 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9850 unsigned long avg_load; /* Average load across all groups in sd */ 9851 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9852 9853 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9854 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9855 }; 9856 9857 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9858 { 9859 /* 9860 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9861 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9862 * We must however set busiest_stat::group_type and 9863 * busiest_stat::idle_cpus to the worst busiest group because 9864 * update_sd_pick_busiest() reads these before assignment. 9865 */ 9866 *sds = (struct sd_lb_stats){ 9867 .busiest = NULL, 9868 .local = NULL, 9869 .total_load = 0UL, 9870 .total_capacity = 0UL, 9871 .busiest_stat = { 9872 .idle_cpus = UINT_MAX, 9873 .group_type = group_has_spare, 9874 }, 9875 }; 9876 } 9877 9878 static unsigned long scale_rt_capacity(int cpu) 9879 { 9880 unsigned long max = get_actual_cpu_capacity(cpu); 9881 struct rq *rq = cpu_rq(cpu); 9882 unsigned long used, free; 9883 unsigned long irq; 9884 9885 irq = cpu_util_irq(rq); 9886 9887 if (unlikely(irq >= max)) 9888 return 1; 9889 9890 /* 9891 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9892 * (running and not running) with weights 0 and 1024 respectively. 9893 */ 9894 used = cpu_util_rt(rq); 9895 used += cpu_util_dl(rq); 9896 9897 if (unlikely(used >= max)) 9898 return 1; 9899 9900 free = max - used; 9901 9902 return scale_irq_capacity(free, irq, max); 9903 } 9904 9905 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9906 { 9907 unsigned long capacity = scale_rt_capacity(cpu); 9908 struct sched_group *sdg = sd->groups; 9909 9910 if (!capacity) 9911 capacity = 1; 9912 9913 cpu_rq(cpu)->cpu_capacity = capacity; 9914 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9915 9916 sdg->sgc->capacity = capacity; 9917 sdg->sgc->min_capacity = capacity; 9918 sdg->sgc->max_capacity = capacity; 9919 } 9920 9921 void update_group_capacity(struct sched_domain *sd, int cpu) 9922 { 9923 struct sched_domain *child = sd->child; 9924 struct sched_group *group, *sdg = sd->groups; 9925 unsigned long capacity, min_capacity, max_capacity; 9926 unsigned long interval; 9927 9928 interval = msecs_to_jiffies(sd->balance_interval); 9929 interval = clamp(interval, 1UL, max_load_balance_interval); 9930 sdg->sgc->next_update = jiffies + interval; 9931 9932 if (!child) { 9933 update_cpu_capacity(sd, cpu); 9934 return; 9935 } 9936 9937 capacity = 0; 9938 min_capacity = ULONG_MAX; 9939 max_capacity = 0; 9940 9941 if (child->flags & SD_OVERLAP) { 9942 /* 9943 * SD_OVERLAP domains cannot assume that child groups 9944 * span the current group. 9945 */ 9946 9947 for_each_cpu(cpu, sched_group_span(sdg)) { 9948 unsigned long cpu_cap = capacity_of(cpu); 9949 9950 capacity += cpu_cap; 9951 min_capacity = min(cpu_cap, min_capacity); 9952 max_capacity = max(cpu_cap, max_capacity); 9953 } 9954 } else { 9955 /* 9956 * !SD_OVERLAP domains can assume that child groups 9957 * span the current group. 9958 */ 9959 9960 group = child->groups; 9961 do { 9962 struct sched_group_capacity *sgc = group->sgc; 9963 9964 capacity += sgc->capacity; 9965 min_capacity = min(sgc->min_capacity, min_capacity); 9966 max_capacity = max(sgc->max_capacity, max_capacity); 9967 group = group->next; 9968 } while (group != child->groups); 9969 } 9970 9971 sdg->sgc->capacity = capacity; 9972 sdg->sgc->min_capacity = min_capacity; 9973 sdg->sgc->max_capacity = max_capacity; 9974 } 9975 9976 /* 9977 * Check whether the capacity of the rq has been noticeably reduced by side 9978 * activity. The imbalance_pct is used for the threshold. 9979 * Return true is the capacity is reduced 9980 */ 9981 static inline int 9982 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9983 { 9984 return ((rq->cpu_capacity * sd->imbalance_pct) < 9985 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9986 } 9987 9988 /* Check if the rq has a misfit task */ 9989 static inline bool check_misfit_status(struct rq *rq) 9990 { 9991 return rq->misfit_task_load; 9992 } 9993 9994 /* 9995 * Group imbalance indicates (and tries to solve) the problem where balancing 9996 * groups is inadequate due to ->cpus_ptr constraints. 9997 * 9998 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9999 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10000 * Something like: 10001 * 10002 * { 0 1 2 3 } { 4 5 6 7 } 10003 * * * * * 10004 * 10005 * If we were to balance group-wise we'd place two tasks in the first group and 10006 * two tasks in the second group. Clearly this is undesired as it will overload 10007 * cpu 3 and leave one of the CPUs in the second group unused. 10008 * 10009 * The current solution to this issue is detecting the skew in the first group 10010 * by noticing the lower domain failed to reach balance and had difficulty 10011 * moving tasks due to affinity constraints. 10012 * 10013 * When this is so detected; this group becomes a candidate for busiest; see 10014 * update_sd_pick_busiest(). And calculate_imbalance() and 10015 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10016 * to create an effective group imbalance. 10017 * 10018 * This is a somewhat tricky proposition since the next run might not find the 10019 * group imbalance and decide the groups need to be balanced again. A most 10020 * subtle and fragile situation. 10021 */ 10022 10023 static inline int sg_imbalanced(struct sched_group *group) 10024 { 10025 return group->sgc->imbalance; 10026 } 10027 10028 /* 10029 * group_has_capacity returns true if the group has spare capacity that could 10030 * be used by some tasks. 10031 * We consider that a group has spare capacity if the number of task is 10032 * smaller than the number of CPUs or if the utilization is lower than the 10033 * available capacity for CFS tasks. 10034 * For the latter, we use a threshold to stabilize the state, to take into 10035 * account the variance of the tasks' load and to return true if the available 10036 * capacity in meaningful for the load balancer. 10037 * As an example, an available capacity of 1% can appear but it doesn't make 10038 * any benefit for the load balance. 10039 */ 10040 static inline bool 10041 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10042 { 10043 if (sgs->sum_nr_running < sgs->group_weight) 10044 return true; 10045 10046 if ((sgs->group_capacity * imbalance_pct) < 10047 (sgs->group_runnable * 100)) 10048 return false; 10049 10050 if ((sgs->group_capacity * 100) > 10051 (sgs->group_util * imbalance_pct)) 10052 return true; 10053 10054 return false; 10055 } 10056 10057 /* 10058 * group_is_overloaded returns true if the group has more tasks than it can 10059 * handle. 10060 * group_is_overloaded is not equals to !group_has_capacity because a group 10061 * with the exact right number of tasks, has no more spare capacity but is not 10062 * overloaded so both group_has_capacity and group_is_overloaded return 10063 * false. 10064 */ 10065 static inline bool 10066 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10067 { 10068 if (sgs->sum_nr_running <= sgs->group_weight) 10069 return false; 10070 10071 if ((sgs->group_capacity * 100) < 10072 (sgs->group_util * imbalance_pct)) 10073 return true; 10074 10075 if ((sgs->group_capacity * imbalance_pct) < 10076 (sgs->group_runnable * 100)) 10077 return true; 10078 10079 return false; 10080 } 10081 10082 static inline enum 10083 group_type group_classify(unsigned int imbalance_pct, 10084 struct sched_group *group, 10085 struct sg_lb_stats *sgs) 10086 { 10087 if (group_is_overloaded(imbalance_pct, sgs)) 10088 return group_overloaded; 10089 10090 if (sg_imbalanced(group)) 10091 return group_imbalanced; 10092 10093 if (sgs->group_asym_packing) 10094 return group_asym_packing; 10095 10096 if (sgs->group_smt_balance) 10097 return group_smt_balance; 10098 10099 if (sgs->group_misfit_task_load) 10100 return group_misfit_task; 10101 10102 if (!group_has_capacity(imbalance_pct, sgs)) 10103 return group_fully_busy; 10104 10105 return group_has_spare; 10106 } 10107 10108 /** 10109 * sched_use_asym_prio - Check whether asym_packing priority must be used 10110 * @sd: The scheduling domain of the load balancing 10111 * @cpu: A CPU 10112 * 10113 * Always use CPU priority when balancing load between SMT siblings. When 10114 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10115 * use CPU priority if the whole core is idle. 10116 * 10117 * Returns: True if the priority of @cpu must be followed. False otherwise. 10118 */ 10119 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10120 { 10121 if (!(sd->flags & SD_ASYM_PACKING)) 10122 return false; 10123 10124 if (!sched_smt_active()) 10125 return true; 10126 10127 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10128 } 10129 10130 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10131 { 10132 /* 10133 * First check if @dst_cpu can do asym_packing load balance. Only do it 10134 * if it has higher priority than @src_cpu. 10135 */ 10136 return sched_use_asym_prio(sd, dst_cpu) && 10137 sched_asym_prefer(dst_cpu, src_cpu); 10138 } 10139 10140 /** 10141 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10142 * @env: The load balancing environment 10143 * @sgs: Load-balancing statistics of the candidate busiest group 10144 * @group: The candidate busiest group 10145 * 10146 * @env::dst_cpu can do asym_packing if it has higher priority than the 10147 * preferred CPU of @group. 10148 * 10149 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10150 * otherwise. 10151 */ 10152 static inline bool 10153 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10154 { 10155 /* 10156 * CPU priorities do not make sense for SMT cores with more than one 10157 * busy sibling. 10158 */ 10159 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10160 (sgs->group_weight - sgs->idle_cpus != 1)) 10161 return false; 10162 10163 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); 10164 } 10165 10166 /* One group has more than one SMT CPU while the other group does not */ 10167 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10168 struct sched_group *sg2) 10169 { 10170 if (!sg1 || !sg2) 10171 return false; 10172 10173 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10174 (sg2->flags & SD_SHARE_CPUCAPACITY); 10175 } 10176 10177 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10178 struct sched_group *group) 10179 { 10180 if (!env->idle) 10181 return false; 10182 10183 /* 10184 * For SMT source group, it is better to move a task 10185 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10186 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10187 * will not be on. 10188 */ 10189 if (group->flags & SD_SHARE_CPUCAPACITY && 10190 sgs->sum_h_nr_running > 1) 10191 return true; 10192 10193 return false; 10194 } 10195 10196 static inline long sibling_imbalance(struct lb_env *env, 10197 struct sd_lb_stats *sds, 10198 struct sg_lb_stats *busiest, 10199 struct sg_lb_stats *local) 10200 { 10201 int ncores_busiest, ncores_local; 10202 long imbalance; 10203 10204 if (!env->idle || !busiest->sum_nr_running) 10205 return 0; 10206 10207 ncores_busiest = sds->busiest->cores; 10208 ncores_local = sds->local->cores; 10209 10210 if (ncores_busiest == ncores_local) { 10211 imbalance = busiest->sum_nr_running; 10212 lsub_positive(&imbalance, local->sum_nr_running); 10213 return imbalance; 10214 } 10215 10216 /* Balance such that nr_running/ncores ratio are same on both groups */ 10217 imbalance = ncores_local * busiest->sum_nr_running; 10218 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10219 /* Normalize imbalance and do rounding on normalization */ 10220 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10221 imbalance /= ncores_local + ncores_busiest; 10222 10223 /* Take advantage of resource in an empty sched group */ 10224 if (imbalance <= 1 && local->sum_nr_running == 0 && 10225 busiest->sum_nr_running > 1) 10226 imbalance = 2; 10227 10228 return imbalance; 10229 } 10230 10231 static inline bool 10232 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10233 { 10234 /* 10235 * When there is more than 1 task, the group_overloaded case already 10236 * takes care of cpu with reduced capacity 10237 */ 10238 if (rq->cfs.h_nr_runnable != 1) 10239 return false; 10240 10241 return check_cpu_capacity(rq, sd); 10242 } 10243 10244 /** 10245 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10246 * @env: The load balancing environment. 10247 * @sds: Load-balancing data with statistics of the local group. 10248 * @group: sched_group whose statistics are to be updated. 10249 * @sgs: variable to hold the statistics for this group. 10250 * @sg_overloaded: sched_group is overloaded 10251 * @sg_overutilized: sched_group is overutilized 10252 */ 10253 static inline void update_sg_lb_stats(struct lb_env *env, 10254 struct sd_lb_stats *sds, 10255 struct sched_group *group, 10256 struct sg_lb_stats *sgs, 10257 bool *sg_overloaded, 10258 bool *sg_overutilized) 10259 { 10260 int i, nr_running, local_group, sd_flags = env->sd->flags; 10261 bool balancing_at_rd = !env->sd->parent; 10262 10263 memset(sgs, 0, sizeof(*sgs)); 10264 10265 local_group = group == sds->local; 10266 10267 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10268 struct rq *rq = cpu_rq(i); 10269 unsigned long load = cpu_load(rq); 10270 10271 sgs->group_load += load; 10272 sgs->group_util += cpu_util_cfs(i); 10273 sgs->group_runnable += cpu_runnable(rq); 10274 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10275 10276 nr_running = rq->nr_running; 10277 sgs->sum_nr_running += nr_running; 10278 10279 if (cpu_overutilized(i)) 10280 *sg_overutilized = 1; 10281 10282 /* 10283 * No need to call idle_cpu() if nr_running is not 0 10284 */ 10285 if (!nr_running && idle_cpu(i)) { 10286 sgs->idle_cpus++; 10287 /* Idle cpu can't have misfit task */ 10288 continue; 10289 } 10290 10291 /* Overload indicator is only updated at root domain */ 10292 if (balancing_at_rd && nr_running > 1) 10293 *sg_overloaded = 1; 10294 10295 #ifdef CONFIG_NUMA_BALANCING 10296 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10297 if (sd_flags & SD_NUMA) { 10298 sgs->nr_numa_running += rq->nr_numa_running; 10299 sgs->nr_preferred_running += rq->nr_preferred_running; 10300 } 10301 #endif 10302 if (local_group) 10303 continue; 10304 10305 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10306 /* Check for a misfit task on the cpu */ 10307 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10308 sgs->group_misfit_task_load = rq->misfit_task_load; 10309 *sg_overloaded = 1; 10310 } 10311 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10312 /* Check for a task running on a CPU with reduced capacity */ 10313 if (sgs->group_misfit_task_load < load) 10314 sgs->group_misfit_task_load = load; 10315 } 10316 } 10317 10318 sgs->group_capacity = group->sgc->capacity; 10319 10320 sgs->group_weight = group->group_weight; 10321 10322 /* Check if dst CPU is idle and preferred to this group */ 10323 if (!local_group && env->idle && sgs->sum_h_nr_running && 10324 sched_group_asym(env, sgs, group)) 10325 sgs->group_asym_packing = 1; 10326 10327 /* Check for loaded SMT group to be balanced to dst CPU */ 10328 if (!local_group && smt_balance(env, sgs, group)) 10329 sgs->group_smt_balance = 1; 10330 10331 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10332 10333 /* Computing avg_load makes sense only when group is overloaded */ 10334 if (sgs->group_type == group_overloaded) 10335 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10336 sgs->group_capacity; 10337 } 10338 10339 /** 10340 * update_sd_pick_busiest - return 1 on busiest group 10341 * @env: The load balancing environment. 10342 * @sds: sched_domain statistics 10343 * @sg: sched_group candidate to be checked for being the busiest 10344 * @sgs: sched_group statistics 10345 * 10346 * Determine if @sg is a busier group than the previously selected 10347 * busiest group. 10348 * 10349 * Return: %true if @sg is a busier group than the previously selected 10350 * busiest group. %false otherwise. 10351 */ 10352 static bool update_sd_pick_busiest(struct lb_env *env, 10353 struct sd_lb_stats *sds, 10354 struct sched_group *sg, 10355 struct sg_lb_stats *sgs) 10356 { 10357 struct sg_lb_stats *busiest = &sds->busiest_stat; 10358 10359 /* Make sure that there is at least one task to pull */ 10360 if (!sgs->sum_h_nr_running) 10361 return false; 10362 10363 /* 10364 * Don't try to pull misfit tasks we can't help. 10365 * We can use max_capacity here as reduction in capacity on some 10366 * CPUs in the group should either be possible to resolve 10367 * internally or be covered by avg_load imbalance (eventually). 10368 */ 10369 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10370 (sgs->group_type == group_misfit_task) && 10371 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10372 sds->local_stat.group_type != group_has_spare)) 10373 return false; 10374 10375 if (sgs->group_type > busiest->group_type) 10376 return true; 10377 10378 if (sgs->group_type < busiest->group_type) 10379 return false; 10380 10381 /* 10382 * The candidate and the current busiest group are the same type of 10383 * group. Let check which one is the busiest according to the type. 10384 */ 10385 10386 switch (sgs->group_type) { 10387 case group_overloaded: 10388 /* Select the overloaded group with highest avg_load. */ 10389 return sgs->avg_load > busiest->avg_load; 10390 10391 case group_imbalanced: 10392 /* 10393 * Select the 1st imbalanced group as we don't have any way to 10394 * choose one more than another. 10395 */ 10396 return false; 10397 10398 case group_asym_packing: 10399 /* Prefer to move from lowest priority CPU's work */ 10400 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), 10401 READ_ONCE(sg->asym_prefer_cpu)); 10402 10403 case group_misfit_task: 10404 /* 10405 * If we have more than one misfit sg go with the biggest 10406 * misfit. 10407 */ 10408 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10409 10410 case group_smt_balance: 10411 /* 10412 * Check if we have spare CPUs on either SMT group to 10413 * choose has spare or fully busy handling. 10414 */ 10415 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10416 goto has_spare; 10417 10418 fallthrough; 10419 10420 case group_fully_busy: 10421 /* 10422 * Select the fully busy group with highest avg_load. In 10423 * theory, there is no need to pull task from such kind of 10424 * group because tasks have all compute capacity that they need 10425 * but we can still improve the overall throughput by reducing 10426 * contention when accessing shared HW resources. 10427 * 10428 * XXX for now avg_load is not computed and always 0 so we 10429 * select the 1st one, except if @sg is composed of SMT 10430 * siblings. 10431 */ 10432 10433 if (sgs->avg_load < busiest->avg_load) 10434 return false; 10435 10436 if (sgs->avg_load == busiest->avg_load) { 10437 /* 10438 * SMT sched groups need more help than non-SMT groups. 10439 * If @sg happens to also be SMT, either choice is good. 10440 */ 10441 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10442 return false; 10443 } 10444 10445 break; 10446 10447 case group_has_spare: 10448 /* 10449 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10450 * as we do not want to pull task off SMT core with one task 10451 * and make the core idle. 10452 */ 10453 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10454 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10455 return false; 10456 else 10457 return true; 10458 } 10459 has_spare: 10460 10461 /* 10462 * Select not overloaded group with lowest number of idle CPUs 10463 * and highest number of running tasks. We could also compare 10464 * the spare capacity which is more stable but it can end up 10465 * that the group has less spare capacity but finally more idle 10466 * CPUs which means less opportunity to pull tasks. 10467 */ 10468 if (sgs->idle_cpus > busiest->idle_cpus) 10469 return false; 10470 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10471 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10472 return false; 10473 10474 break; 10475 } 10476 10477 /* 10478 * Candidate sg has no more than one task per CPU and has higher 10479 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10480 * throughput. Maximize throughput, power/energy consequences are not 10481 * considered. 10482 */ 10483 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10484 (sgs->group_type <= group_fully_busy) && 10485 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10486 return false; 10487 10488 return true; 10489 } 10490 10491 #ifdef CONFIG_NUMA_BALANCING 10492 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10493 { 10494 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10495 return regular; 10496 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10497 return remote; 10498 return all; 10499 } 10500 10501 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10502 { 10503 if (rq->nr_running > rq->nr_numa_running) 10504 return regular; 10505 if (rq->nr_running > rq->nr_preferred_running) 10506 return remote; 10507 return all; 10508 } 10509 #else /* !CONFIG_NUMA_BALANCING: */ 10510 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10511 { 10512 return all; 10513 } 10514 10515 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10516 { 10517 return regular; 10518 } 10519 #endif /* !CONFIG_NUMA_BALANCING */ 10520 10521 10522 struct sg_lb_stats; 10523 10524 /* 10525 * task_running_on_cpu - return 1 if @p is running on @cpu. 10526 */ 10527 10528 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10529 { 10530 /* Task has no contribution or is new */ 10531 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10532 return 0; 10533 10534 if (task_on_rq_queued(p)) 10535 return 1; 10536 10537 return 0; 10538 } 10539 10540 /** 10541 * idle_cpu_without - would a given CPU be idle without p ? 10542 * @cpu: the processor on which idleness is tested. 10543 * @p: task which should be ignored. 10544 * 10545 * Return: 1 if the CPU would be idle. 0 otherwise. 10546 */ 10547 static int idle_cpu_without(int cpu, struct task_struct *p) 10548 { 10549 struct rq *rq = cpu_rq(cpu); 10550 10551 if (rq->curr != rq->idle && rq->curr != p) 10552 return 0; 10553 10554 /* 10555 * rq->nr_running can't be used but an updated version without the 10556 * impact of p on cpu must be used instead. The updated nr_running 10557 * be computed and tested before calling idle_cpu_without(). 10558 */ 10559 10560 if (rq->ttwu_pending) 10561 return 0; 10562 10563 return 1; 10564 } 10565 10566 /* 10567 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10568 * @sd: The sched_domain level to look for idlest group. 10569 * @group: sched_group whose statistics are to be updated. 10570 * @sgs: variable to hold the statistics for this group. 10571 * @p: The task for which we look for the idlest group/CPU. 10572 */ 10573 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10574 struct sched_group *group, 10575 struct sg_lb_stats *sgs, 10576 struct task_struct *p) 10577 { 10578 int i, nr_running; 10579 10580 memset(sgs, 0, sizeof(*sgs)); 10581 10582 /* Assume that task can't fit any CPU of the group */ 10583 if (sd->flags & SD_ASYM_CPUCAPACITY) 10584 sgs->group_misfit_task_load = 1; 10585 10586 for_each_cpu(i, sched_group_span(group)) { 10587 struct rq *rq = cpu_rq(i); 10588 unsigned int local; 10589 10590 sgs->group_load += cpu_load_without(rq, p); 10591 sgs->group_util += cpu_util_without(i, p); 10592 sgs->group_runnable += cpu_runnable_without(rq, p); 10593 local = task_running_on_cpu(i, p); 10594 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10595 10596 nr_running = rq->nr_running - local; 10597 sgs->sum_nr_running += nr_running; 10598 10599 /* 10600 * No need to call idle_cpu_without() if nr_running is not 0 10601 */ 10602 if (!nr_running && idle_cpu_without(i, p)) 10603 sgs->idle_cpus++; 10604 10605 /* Check if task fits in the CPU */ 10606 if (sd->flags & SD_ASYM_CPUCAPACITY && 10607 sgs->group_misfit_task_load && 10608 task_fits_cpu(p, i)) 10609 sgs->group_misfit_task_load = 0; 10610 10611 } 10612 10613 sgs->group_capacity = group->sgc->capacity; 10614 10615 sgs->group_weight = group->group_weight; 10616 10617 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10618 10619 /* 10620 * Computing avg_load makes sense only when group is fully busy or 10621 * overloaded 10622 */ 10623 if (sgs->group_type == group_fully_busy || 10624 sgs->group_type == group_overloaded) 10625 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10626 sgs->group_capacity; 10627 } 10628 10629 static bool update_pick_idlest(struct sched_group *idlest, 10630 struct sg_lb_stats *idlest_sgs, 10631 struct sched_group *group, 10632 struct sg_lb_stats *sgs) 10633 { 10634 if (sgs->group_type < idlest_sgs->group_type) 10635 return true; 10636 10637 if (sgs->group_type > idlest_sgs->group_type) 10638 return false; 10639 10640 /* 10641 * The candidate and the current idlest group are the same type of 10642 * group. Let check which one is the idlest according to the type. 10643 */ 10644 10645 switch (sgs->group_type) { 10646 case group_overloaded: 10647 case group_fully_busy: 10648 /* Select the group with lowest avg_load. */ 10649 if (idlest_sgs->avg_load <= sgs->avg_load) 10650 return false; 10651 break; 10652 10653 case group_imbalanced: 10654 case group_asym_packing: 10655 case group_smt_balance: 10656 /* Those types are not used in the slow wakeup path */ 10657 return false; 10658 10659 case group_misfit_task: 10660 /* Select group with the highest max capacity */ 10661 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10662 return false; 10663 break; 10664 10665 case group_has_spare: 10666 /* Select group with most idle CPUs */ 10667 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10668 return false; 10669 10670 /* Select group with lowest group_util */ 10671 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10672 idlest_sgs->group_util <= sgs->group_util) 10673 return false; 10674 10675 break; 10676 } 10677 10678 return true; 10679 } 10680 10681 /* 10682 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10683 * domain. 10684 * 10685 * Assumes p is allowed on at least one CPU in sd. 10686 */ 10687 static struct sched_group * 10688 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10689 { 10690 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10691 struct sg_lb_stats local_sgs, tmp_sgs; 10692 struct sg_lb_stats *sgs; 10693 unsigned long imbalance; 10694 struct sg_lb_stats idlest_sgs = { 10695 .avg_load = UINT_MAX, 10696 .group_type = group_overloaded, 10697 }; 10698 10699 do { 10700 int local_group; 10701 10702 /* Skip over this group if it has no CPUs allowed */ 10703 if (!cpumask_intersects(sched_group_span(group), 10704 p->cpus_ptr)) 10705 continue; 10706 10707 /* Skip over this group if no cookie matched */ 10708 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10709 continue; 10710 10711 local_group = cpumask_test_cpu(this_cpu, 10712 sched_group_span(group)); 10713 10714 if (local_group) { 10715 sgs = &local_sgs; 10716 local = group; 10717 } else { 10718 sgs = &tmp_sgs; 10719 } 10720 10721 update_sg_wakeup_stats(sd, group, sgs, p); 10722 10723 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10724 idlest = group; 10725 idlest_sgs = *sgs; 10726 } 10727 10728 } while (group = group->next, group != sd->groups); 10729 10730 10731 /* There is no idlest group to push tasks to */ 10732 if (!idlest) 10733 return NULL; 10734 10735 /* The local group has been skipped because of CPU affinity */ 10736 if (!local) 10737 return idlest; 10738 10739 /* 10740 * If the local group is idler than the selected idlest group 10741 * don't try and push the task. 10742 */ 10743 if (local_sgs.group_type < idlest_sgs.group_type) 10744 return NULL; 10745 10746 /* 10747 * If the local group is busier than the selected idlest group 10748 * try and push the task. 10749 */ 10750 if (local_sgs.group_type > idlest_sgs.group_type) 10751 return idlest; 10752 10753 switch (local_sgs.group_type) { 10754 case group_overloaded: 10755 case group_fully_busy: 10756 10757 /* Calculate allowed imbalance based on load */ 10758 imbalance = scale_load_down(NICE_0_LOAD) * 10759 (sd->imbalance_pct-100) / 100; 10760 10761 /* 10762 * When comparing groups across NUMA domains, it's possible for 10763 * the local domain to be very lightly loaded relative to the 10764 * remote domains but "imbalance" skews the comparison making 10765 * remote CPUs look much more favourable. When considering 10766 * cross-domain, add imbalance to the load on the remote node 10767 * and consider staying local. 10768 */ 10769 10770 if ((sd->flags & SD_NUMA) && 10771 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10772 return NULL; 10773 10774 /* 10775 * If the local group is less loaded than the selected 10776 * idlest group don't try and push any tasks. 10777 */ 10778 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10779 return NULL; 10780 10781 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10782 return NULL; 10783 break; 10784 10785 case group_imbalanced: 10786 case group_asym_packing: 10787 case group_smt_balance: 10788 /* Those type are not used in the slow wakeup path */ 10789 return NULL; 10790 10791 case group_misfit_task: 10792 /* Select group with the highest max capacity */ 10793 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10794 return NULL; 10795 break; 10796 10797 case group_has_spare: 10798 #ifdef CONFIG_NUMA 10799 if (sd->flags & SD_NUMA) { 10800 int imb_numa_nr = sd->imb_numa_nr; 10801 #ifdef CONFIG_NUMA_BALANCING 10802 int idlest_cpu; 10803 /* 10804 * If there is spare capacity at NUMA, try to select 10805 * the preferred node 10806 */ 10807 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10808 return NULL; 10809 10810 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10811 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10812 return idlest; 10813 #endif /* CONFIG_NUMA_BALANCING */ 10814 /* 10815 * Otherwise, keep the task close to the wakeup source 10816 * and improve locality if the number of running tasks 10817 * would remain below threshold where an imbalance is 10818 * allowed while accounting for the possibility the 10819 * task is pinned to a subset of CPUs. If there is a 10820 * real need of migration, periodic load balance will 10821 * take care of it. 10822 */ 10823 if (p->nr_cpus_allowed != NR_CPUS) { 10824 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10825 10826 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10827 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10828 } 10829 10830 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10831 if (!adjust_numa_imbalance(imbalance, 10832 local_sgs.sum_nr_running + 1, 10833 imb_numa_nr)) { 10834 return NULL; 10835 } 10836 } 10837 #endif /* CONFIG_NUMA */ 10838 10839 /* 10840 * Select group with highest number of idle CPUs. We could also 10841 * compare the utilization which is more stable but it can end 10842 * up that the group has less spare capacity but finally more 10843 * idle CPUs which means more opportunity to run task. 10844 */ 10845 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10846 return NULL; 10847 break; 10848 } 10849 10850 return idlest; 10851 } 10852 10853 static void update_idle_cpu_scan(struct lb_env *env, 10854 unsigned long sum_util) 10855 { 10856 struct sched_domain_shared *sd_share; 10857 int llc_weight, pct; 10858 u64 x, y, tmp; 10859 /* 10860 * Update the number of CPUs to scan in LLC domain, which could 10861 * be used as a hint in select_idle_cpu(). The update of sd_share 10862 * could be expensive because it is within a shared cache line. 10863 * So the write of this hint only occurs during periodic load 10864 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10865 * can fire way more frequently than the former. 10866 */ 10867 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10868 return; 10869 10870 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10871 if (env->sd->span_weight != llc_weight) 10872 return; 10873 10874 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10875 if (!sd_share) 10876 return; 10877 10878 /* 10879 * The number of CPUs to search drops as sum_util increases, when 10880 * sum_util hits 85% or above, the scan stops. 10881 * The reason to choose 85% as the threshold is because this is the 10882 * imbalance_pct(117) when a LLC sched group is overloaded. 10883 * 10884 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10885 * and y'= y / SCHED_CAPACITY_SCALE 10886 * 10887 * x is the ratio of sum_util compared to the CPU capacity: 10888 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10889 * y' is the ratio of CPUs to be scanned in the LLC domain, 10890 * and the number of CPUs to scan is calculated by: 10891 * 10892 * nr_scan = llc_weight * y' [2] 10893 * 10894 * When x hits the threshold of overloaded, AKA, when 10895 * x = 100 / pct, y drops to 0. According to [1], 10896 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10897 * 10898 * Scale x by SCHED_CAPACITY_SCALE: 10899 * x' = sum_util / llc_weight; [3] 10900 * 10901 * and finally [1] becomes: 10902 * y = SCHED_CAPACITY_SCALE - 10903 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10904 * 10905 */ 10906 /* equation [3] */ 10907 x = sum_util; 10908 do_div(x, llc_weight); 10909 10910 /* equation [4] */ 10911 pct = env->sd->imbalance_pct; 10912 tmp = x * x * pct * pct; 10913 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10914 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10915 y = SCHED_CAPACITY_SCALE - tmp; 10916 10917 /* equation [2] */ 10918 y *= llc_weight; 10919 do_div(y, SCHED_CAPACITY_SCALE); 10920 if ((int)y != sd_share->nr_idle_scan) 10921 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10922 } 10923 10924 /** 10925 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10926 * @env: The load balancing environment. 10927 * @sds: variable to hold the statistics for this sched_domain. 10928 */ 10929 10930 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10931 { 10932 struct sched_group *sg = env->sd->groups; 10933 struct sg_lb_stats *local = &sds->local_stat; 10934 struct sg_lb_stats tmp_sgs; 10935 unsigned long sum_util = 0; 10936 bool sg_overloaded = 0, sg_overutilized = 0; 10937 10938 do { 10939 struct sg_lb_stats *sgs = &tmp_sgs; 10940 int local_group; 10941 10942 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10943 if (local_group) { 10944 sds->local = sg; 10945 sgs = local; 10946 10947 if (env->idle != CPU_NEWLY_IDLE || 10948 time_after_eq(jiffies, sg->sgc->next_update)) 10949 update_group_capacity(env->sd, env->dst_cpu); 10950 } 10951 10952 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10953 10954 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10955 sds->busiest = sg; 10956 sds->busiest_stat = *sgs; 10957 } 10958 10959 /* Now, start updating sd_lb_stats */ 10960 sds->total_load += sgs->group_load; 10961 sds->total_capacity += sgs->group_capacity; 10962 10963 sum_util += sgs->group_util; 10964 sg = sg->next; 10965 } while (sg != env->sd->groups); 10966 10967 /* 10968 * Indicate that the child domain of the busiest group prefers tasks 10969 * go to a child's sibling domains first. NB the flags of a sched group 10970 * are those of the child domain. 10971 */ 10972 if (sds->busiest) 10973 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10974 10975 10976 if (env->sd->flags & SD_NUMA) 10977 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10978 10979 if (!env->sd->parent) { 10980 /* update overload indicator if we are at root domain */ 10981 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 10982 10983 /* Update over-utilization (tipping point, U >= 0) indicator */ 10984 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10985 } else if (sg_overutilized) { 10986 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10987 } 10988 10989 update_idle_cpu_scan(env, sum_util); 10990 } 10991 10992 /** 10993 * calculate_imbalance - Calculate the amount of imbalance present within the 10994 * groups of a given sched_domain during load balance. 10995 * @env: load balance environment 10996 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10997 */ 10998 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10999 { 11000 struct sg_lb_stats *local, *busiest; 11001 11002 local = &sds->local_stat; 11003 busiest = &sds->busiest_stat; 11004 11005 if (busiest->group_type == group_misfit_task) { 11006 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11007 /* Set imbalance to allow misfit tasks to be balanced. */ 11008 env->migration_type = migrate_misfit; 11009 env->imbalance = 1; 11010 } else { 11011 /* 11012 * Set load imbalance to allow moving task from cpu 11013 * with reduced capacity. 11014 */ 11015 env->migration_type = migrate_load; 11016 env->imbalance = busiest->group_misfit_task_load; 11017 } 11018 return; 11019 } 11020 11021 if (busiest->group_type == group_asym_packing) { 11022 /* 11023 * In case of asym capacity, we will try to migrate all load to 11024 * the preferred CPU. 11025 */ 11026 env->migration_type = migrate_task; 11027 env->imbalance = busiest->sum_h_nr_running; 11028 return; 11029 } 11030 11031 if (busiest->group_type == group_smt_balance) { 11032 /* Reduce number of tasks sharing CPU capacity */ 11033 env->migration_type = migrate_task; 11034 env->imbalance = 1; 11035 return; 11036 } 11037 11038 if (busiest->group_type == group_imbalanced) { 11039 /* 11040 * In the group_imb case we cannot rely on group-wide averages 11041 * to ensure CPU-load equilibrium, try to move any task to fix 11042 * the imbalance. The next load balance will take care of 11043 * balancing back the system. 11044 */ 11045 env->migration_type = migrate_task; 11046 env->imbalance = 1; 11047 return; 11048 } 11049 11050 /* 11051 * Try to use spare capacity of local group without overloading it or 11052 * emptying busiest. 11053 */ 11054 if (local->group_type == group_has_spare) { 11055 if ((busiest->group_type > group_fully_busy) && 11056 !(env->sd->flags & SD_SHARE_LLC)) { 11057 /* 11058 * If busiest is overloaded, try to fill spare 11059 * capacity. This might end up creating spare capacity 11060 * in busiest or busiest still being overloaded but 11061 * there is no simple way to directly compute the 11062 * amount of load to migrate in order to balance the 11063 * system. 11064 */ 11065 env->migration_type = migrate_util; 11066 env->imbalance = max(local->group_capacity, local->group_util) - 11067 local->group_util; 11068 11069 /* 11070 * In some cases, the group's utilization is max or even 11071 * higher than capacity because of migrations but the 11072 * local CPU is (newly) idle. There is at least one 11073 * waiting task in this overloaded busiest group. Let's 11074 * try to pull it. 11075 */ 11076 if (env->idle && env->imbalance == 0) { 11077 env->migration_type = migrate_task; 11078 env->imbalance = 1; 11079 } 11080 11081 return; 11082 } 11083 11084 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11085 /* 11086 * When prefer sibling, evenly spread running tasks on 11087 * groups. 11088 */ 11089 env->migration_type = migrate_task; 11090 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11091 } else { 11092 11093 /* 11094 * If there is no overload, we just want to even the number of 11095 * idle CPUs. 11096 */ 11097 env->migration_type = migrate_task; 11098 env->imbalance = max_t(long, 0, 11099 (local->idle_cpus - busiest->idle_cpus)); 11100 } 11101 11102 #ifdef CONFIG_NUMA 11103 /* Consider allowing a small imbalance between NUMA groups */ 11104 if (env->sd->flags & SD_NUMA) { 11105 env->imbalance = adjust_numa_imbalance(env->imbalance, 11106 local->sum_nr_running + 1, 11107 env->sd->imb_numa_nr); 11108 } 11109 #endif 11110 11111 /* Number of tasks to move to restore balance */ 11112 env->imbalance >>= 1; 11113 11114 return; 11115 } 11116 11117 /* 11118 * Local is fully busy but has to take more load to relieve the 11119 * busiest group 11120 */ 11121 if (local->group_type < group_overloaded) { 11122 /* 11123 * Local will become overloaded so the avg_load metrics are 11124 * finally needed. 11125 */ 11126 11127 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11128 local->group_capacity; 11129 11130 /* 11131 * If the local group is more loaded than the selected 11132 * busiest group don't try to pull any tasks. 11133 */ 11134 if (local->avg_load >= busiest->avg_load) { 11135 env->imbalance = 0; 11136 return; 11137 } 11138 11139 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11140 sds->total_capacity; 11141 11142 /* 11143 * If the local group is more loaded than the average system 11144 * load, don't try to pull any tasks. 11145 */ 11146 if (local->avg_load >= sds->avg_load) { 11147 env->imbalance = 0; 11148 return; 11149 } 11150 11151 } 11152 11153 /* 11154 * Both group are or will become overloaded and we're trying to get all 11155 * the CPUs to the average_load, so we don't want to push ourselves 11156 * above the average load, nor do we wish to reduce the max loaded CPU 11157 * below the average load. At the same time, we also don't want to 11158 * reduce the group load below the group capacity. Thus we look for 11159 * the minimum possible imbalance. 11160 */ 11161 env->migration_type = migrate_load; 11162 env->imbalance = min( 11163 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11164 (sds->avg_load - local->avg_load) * local->group_capacity 11165 ) / SCHED_CAPACITY_SCALE; 11166 } 11167 11168 /******* sched_balance_find_src_group() helpers end here *********************/ 11169 11170 /* 11171 * Decision matrix according to the local and busiest group type: 11172 * 11173 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11174 * has_spare nr_idle balanced N/A N/A balanced balanced 11175 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11176 * misfit_task force N/A N/A N/A N/A N/A 11177 * asym_packing force force N/A N/A force force 11178 * imbalanced force force N/A N/A force force 11179 * overloaded force force N/A N/A force avg_load 11180 * 11181 * N/A : Not Applicable because already filtered while updating 11182 * statistics. 11183 * balanced : The system is balanced for these 2 groups. 11184 * force : Calculate the imbalance as load migration is probably needed. 11185 * avg_load : Only if imbalance is significant enough. 11186 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11187 * different in groups. 11188 */ 11189 11190 /** 11191 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11192 * if there is an imbalance. 11193 * @env: The load balancing environment. 11194 * 11195 * Also calculates the amount of runnable load which should be moved 11196 * to restore balance. 11197 * 11198 * Return: - The busiest group if imbalance exists. 11199 */ 11200 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11201 { 11202 struct sg_lb_stats *local, *busiest; 11203 struct sd_lb_stats sds; 11204 11205 init_sd_lb_stats(&sds); 11206 11207 /* 11208 * Compute the various statistics relevant for load balancing at 11209 * this level. 11210 */ 11211 update_sd_lb_stats(env, &sds); 11212 11213 /* There is no busy sibling group to pull tasks from */ 11214 if (!sds.busiest) 11215 goto out_balanced; 11216 11217 busiest = &sds.busiest_stat; 11218 11219 /* Misfit tasks should be dealt with regardless of the avg load */ 11220 if (busiest->group_type == group_misfit_task) 11221 goto force_balance; 11222 11223 if (!is_rd_overutilized(env->dst_rq->rd) && 11224 rcu_dereference(env->dst_rq->rd->pd)) 11225 goto out_balanced; 11226 11227 /* ASYM feature bypasses nice load balance check */ 11228 if (busiest->group_type == group_asym_packing) 11229 goto force_balance; 11230 11231 /* 11232 * If the busiest group is imbalanced the below checks don't 11233 * work because they assume all things are equal, which typically 11234 * isn't true due to cpus_ptr constraints and the like. 11235 */ 11236 if (busiest->group_type == group_imbalanced) 11237 goto force_balance; 11238 11239 local = &sds.local_stat; 11240 /* 11241 * If the local group is busier than the selected busiest group 11242 * don't try and pull any tasks. 11243 */ 11244 if (local->group_type > busiest->group_type) 11245 goto out_balanced; 11246 11247 /* 11248 * When groups are overloaded, use the avg_load to ensure fairness 11249 * between tasks. 11250 */ 11251 if (local->group_type == group_overloaded) { 11252 /* 11253 * If the local group is more loaded than the selected 11254 * busiest group don't try to pull any tasks. 11255 */ 11256 if (local->avg_load >= busiest->avg_load) 11257 goto out_balanced; 11258 11259 /* XXX broken for overlapping NUMA groups */ 11260 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11261 sds.total_capacity; 11262 11263 /* 11264 * Don't pull any tasks if this group is already above the 11265 * domain average load. 11266 */ 11267 if (local->avg_load >= sds.avg_load) 11268 goto out_balanced; 11269 11270 /* 11271 * If the busiest group is more loaded, use imbalance_pct to be 11272 * conservative. 11273 */ 11274 if (100 * busiest->avg_load <= 11275 env->sd->imbalance_pct * local->avg_load) 11276 goto out_balanced; 11277 } 11278 11279 /* 11280 * Try to move all excess tasks to a sibling domain of the busiest 11281 * group's child domain. 11282 */ 11283 if (sds.prefer_sibling && local->group_type == group_has_spare && 11284 sibling_imbalance(env, &sds, busiest, local) > 1) 11285 goto force_balance; 11286 11287 if (busiest->group_type != group_overloaded) { 11288 if (!env->idle) { 11289 /* 11290 * If the busiest group is not overloaded (and as a 11291 * result the local one too) but this CPU is already 11292 * busy, let another idle CPU try to pull task. 11293 */ 11294 goto out_balanced; 11295 } 11296 11297 if (busiest->group_type == group_smt_balance && 11298 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11299 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11300 goto force_balance; 11301 } 11302 11303 if (busiest->group_weight > 1 && 11304 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11305 /* 11306 * If the busiest group is not overloaded 11307 * and there is no imbalance between this and busiest 11308 * group wrt idle CPUs, it is balanced. The imbalance 11309 * becomes significant if the diff is greater than 1 11310 * otherwise we might end up to just move the imbalance 11311 * on another group. Of course this applies only if 11312 * there is more than 1 CPU per group. 11313 */ 11314 goto out_balanced; 11315 } 11316 11317 if (busiest->sum_h_nr_running == 1) { 11318 /* 11319 * busiest doesn't have any tasks waiting to run 11320 */ 11321 goto out_balanced; 11322 } 11323 } 11324 11325 force_balance: 11326 /* Looks like there is an imbalance. Compute it */ 11327 calculate_imbalance(env, &sds); 11328 return env->imbalance ? sds.busiest : NULL; 11329 11330 out_balanced: 11331 env->imbalance = 0; 11332 return NULL; 11333 } 11334 11335 /* 11336 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11337 */ 11338 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11339 struct sched_group *group) 11340 { 11341 struct rq *busiest = NULL, *rq; 11342 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11343 unsigned int busiest_nr = 0; 11344 int i; 11345 11346 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11347 unsigned long capacity, load, util; 11348 unsigned int nr_running; 11349 enum fbq_type rt; 11350 11351 rq = cpu_rq(i); 11352 rt = fbq_classify_rq(rq); 11353 11354 /* 11355 * We classify groups/runqueues into three groups: 11356 * - regular: there are !numa tasks 11357 * - remote: there are numa tasks that run on the 'wrong' node 11358 * - all: there is no distinction 11359 * 11360 * In order to avoid migrating ideally placed numa tasks, 11361 * ignore those when there's better options. 11362 * 11363 * If we ignore the actual busiest queue to migrate another 11364 * task, the next balance pass can still reduce the busiest 11365 * queue by moving tasks around inside the node. 11366 * 11367 * If we cannot move enough load due to this classification 11368 * the next pass will adjust the group classification and 11369 * allow migration of more tasks. 11370 * 11371 * Both cases only affect the total convergence complexity. 11372 */ 11373 if (rt > env->fbq_type) 11374 continue; 11375 11376 nr_running = rq->cfs.h_nr_runnable; 11377 if (!nr_running) 11378 continue; 11379 11380 capacity = capacity_of(i); 11381 11382 /* 11383 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11384 * eventually lead to active_balancing high->low capacity. 11385 * Higher per-CPU capacity is considered better than balancing 11386 * average load. 11387 */ 11388 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11389 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11390 nr_running == 1) 11391 continue; 11392 11393 /* 11394 * Make sure we only pull tasks from a CPU of lower priority 11395 * when balancing between SMT siblings. 11396 * 11397 * If balancing between cores, let lower priority CPUs help 11398 * SMT cores with more than one busy sibling. 11399 */ 11400 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11401 continue; 11402 11403 switch (env->migration_type) { 11404 case migrate_load: 11405 /* 11406 * When comparing with load imbalance, use cpu_load() 11407 * which is not scaled with the CPU capacity. 11408 */ 11409 load = cpu_load(rq); 11410 11411 if (nr_running == 1 && load > env->imbalance && 11412 !check_cpu_capacity(rq, env->sd)) 11413 break; 11414 11415 /* 11416 * For the load comparisons with the other CPUs, 11417 * consider the cpu_load() scaled with the CPU 11418 * capacity, so that the load can be moved away 11419 * from the CPU that is potentially running at a 11420 * lower capacity. 11421 * 11422 * Thus we're looking for max(load_i / capacity_i), 11423 * crosswise multiplication to rid ourselves of the 11424 * division works out to: 11425 * load_i * capacity_j > load_j * capacity_i; 11426 * where j is our previous maximum. 11427 */ 11428 if (load * busiest_capacity > busiest_load * capacity) { 11429 busiest_load = load; 11430 busiest_capacity = capacity; 11431 busiest = rq; 11432 } 11433 break; 11434 11435 case migrate_util: 11436 util = cpu_util_cfs_boost(i); 11437 11438 /* 11439 * Don't try to pull utilization from a CPU with one 11440 * running task. Whatever its utilization, we will fail 11441 * detach the task. 11442 */ 11443 if (nr_running <= 1) 11444 continue; 11445 11446 if (busiest_util < util) { 11447 busiest_util = util; 11448 busiest = rq; 11449 } 11450 break; 11451 11452 case migrate_task: 11453 if (busiest_nr < nr_running) { 11454 busiest_nr = nr_running; 11455 busiest = rq; 11456 } 11457 break; 11458 11459 case migrate_misfit: 11460 /* 11461 * For ASYM_CPUCAPACITY domains with misfit tasks we 11462 * simply seek the "biggest" misfit task. 11463 */ 11464 if (rq->misfit_task_load > busiest_load) { 11465 busiest_load = rq->misfit_task_load; 11466 busiest = rq; 11467 } 11468 11469 break; 11470 11471 } 11472 } 11473 11474 return busiest; 11475 } 11476 11477 /* 11478 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11479 * so long as it is large enough. 11480 */ 11481 #define MAX_PINNED_INTERVAL 512 11482 11483 static inline bool 11484 asym_active_balance(struct lb_env *env) 11485 { 11486 /* 11487 * ASYM_PACKING needs to force migrate tasks from busy but lower 11488 * priority CPUs in order to pack all tasks in the highest priority 11489 * CPUs. When done between cores, do it only if the whole core if the 11490 * whole core is idle. 11491 * 11492 * If @env::src_cpu is an SMT core with busy siblings, let 11493 * the lower priority @env::dst_cpu help it. Do not follow 11494 * CPU priority. 11495 */ 11496 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11497 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11498 !sched_use_asym_prio(env->sd, env->src_cpu)); 11499 } 11500 11501 static inline bool 11502 imbalanced_active_balance(struct lb_env *env) 11503 { 11504 struct sched_domain *sd = env->sd; 11505 11506 /* 11507 * The imbalanced case includes the case of pinned tasks preventing a fair 11508 * distribution of the load on the system but also the even distribution of the 11509 * threads on a system with spare capacity 11510 */ 11511 if ((env->migration_type == migrate_task) && 11512 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11513 return 1; 11514 11515 return 0; 11516 } 11517 11518 static int need_active_balance(struct lb_env *env) 11519 { 11520 struct sched_domain *sd = env->sd; 11521 11522 if (asym_active_balance(env)) 11523 return 1; 11524 11525 if (imbalanced_active_balance(env)) 11526 return 1; 11527 11528 /* 11529 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11530 * It's worth migrating the task if the src_cpu's capacity is reduced 11531 * because of other sched_class or IRQs if more capacity stays 11532 * available on dst_cpu. 11533 */ 11534 if (env->idle && 11535 (env->src_rq->cfs.h_nr_runnable == 1)) { 11536 if ((check_cpu_capacity(env->src_rq, sd)) && 11537 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11538 return 1; 11539 } 11540 11541 if (env->migration_type == migrate_misfit) 11542 return 1; 11543 11544 return 0; 11545 } 11546 11547 static int active_load_balance_cpu_stop(void *data); 11548 11549 static int should_we_balance(struct lb_env *env) 11550 { 11551 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11552 struct sched_group *sg = env->sd->groups; 11553 int cpu, idle_smt = -1; 11554 11555 /* 11556 * Ensure the balancing environment is consistent; can happen 11557 * when the softirq triggers 'during' hotplug. 11558 */ 11559 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11560 return 0; 11561 11562 /* 11563 * In the newly idle case, we will allow all the CPUs 11564 * to do the newly idle load balance. 11565 * 11566 * However, we bail out if we already have tasks or a wakeup pending, 11567 * to optimize wakeup latency. 11568 */ 11569 if (env->idle == CPU_NEWLY_IDLE) { 11570 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11571 return 0; 11572 return 1; 11573 } 11574 11575 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11576 /* Try to find first idle CPU */ 11577 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11578 if (!idle_cpu(cpu)) 11579 continue; 11580 11581 /* 11582 * Don't balance to idle SMT in busy core right away when 11583 * balancing cores, but remember the first idle SMT CPU for 11584 * later consideration. Find CPU on an idle core first. 11585 */ 11586 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11587 if (idle_smt == -1) 11588 idle_smt = cpu; 11589 /* 11590 * If the core is not idle, and first SMT sibling which is 11591 * idle has been found, then its not needed to check other 11592 * SMT siblings for idleness: 11593 */ 11594 #ifdef CONFIG_SCHED_SMT 11595 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11596 #endif 11597 continue; 11598 } 11599 11600 /* 11601 * Are we the first idle core in a non-SMT domain or higher, 11602 * or the first idle CPU in a SMT domain? 11603 */ 11604 return cpu == env->dst_cpu; 11605 } 11606 11607 /* Are we the first idle CPU with busy siblings? */ 11608 if (idle_smt != -1) 11609 return idle_smt == env->dst_cpu; 11610 11611 /* Are we the first CPU of this group ? */ 11612 return group_balance_cpu(sg) == env->dst_cpu; 11613 } 11614 11615 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11616 enum cpu_idle_type idle) 11617 { 11618 if (!schedstat_enabled()) 11619 return; 11620 11621 switch (env->migration_type) { 11622 case migrate_load: 11623 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11624 break; 11625 case migrate_util: 11626 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11627 break; 11628 case migrate_task: 11629 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11630 break; 11631 case migrate_misfit: 11632 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11633 break; 11634 } 11635 } 11636 11637 /* 11638 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11639 * tasks if there is an imbalance. 11640 */ 11641 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11642 struct sched_domain *sd, enum cpu_idle_type idle, 11643 int *continue_balancing) 11644 { 11645 int ld_moved, cur_ld_moved, active_balance = 0; 11646 struct sched_domain *sd_parent = sd->parent; 11647 struct sched_group *group; 11648 struct rq *busiest; 11649 struct rq_flags rf; 11650 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11651 struct lb_env env = { 11652 .sd = sd, 11653 .dst_cpu = this_cpu, 11654 .dst_rq = this_rq, 11655 .dst_grpmask = group_balance_mask(sd->groups), 11656 .idle = idle, 11657 .loop_break = SCHED_NR_MIGRATE_BREAK, 11658 .cpus = cpus, 11659 .fbq_type = all, 11660 .tasks = LIST_HEAD_INIT(env.tasks), 11661 }; 11662 11663 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11664 11665 schedstat_inc(sd->lb_count[idle]); 11666 11667 redo: 11668 if (!should_we_balance(&env)) { 11669 *continue_balancing = 0; 11670 goto out_balanced; 11671 } 11672 11673 group = sched_balance_find_src_group(&env); 11674 if (!group) { 11675 schedstat_inc(sd->lb_nobusyg[idle]); 11676 goto out_balanced; 11677 } 11678 11679 busiest = sched_balance_find_src_rq(&env, group); 11680 if (!busiest) { 11681 schedstat_inc(sd->lb_nobusyq[idle]); 11682 goto out_balanced; 11683 } 11684 11685 WARN_ON_ONCE(busiest == env.dst_rq); 11686 11687 update_lb_imbalance_stat(&env, sd, idle); 11688 11689 env.src_cpu = busiest->cpu; 11690 env.src_rq = busiest; 11691 11692 ld_moved = 0; 11693 /* Clear this flag as soon as we find a pullable task */ 11694 env.flags |= LBF_ALL_PINNED; 11695 if (busiest->nr_running > 1) { 11696 /* 11697 * Attempt to move tasks. If sched_balance_find_src_group has found 11698 * an imbalance but busiest->nr_running <= 1, the group is 11699 * still unbalanced. ld_moved simply stays zero, so it is 11700 * correctly treated as an imbalance. 11701 */ 11702 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11703 11704 more_balance: 11705 rq_lock_irqsave(busiest, &rf); 11706 update_rq_clock(busiest); 11707 11708 /* 11709 * cur_ld_moved - load moved in current iteration 11710 * ld_moved - cumulative load moved across iterations 11711 */ 11712 cur_ld_moved = detach_tasks(&env); 11713 11714 /* 11715 * We've detached some tasks from busiest_rq. Every 11716 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11717 * unlock busiest->lock, and we are able to be sure 11718 * that nobody can manipulate the tasks in parallel. 11719 * See task_rq_lock() family for the details. 11720 */ 11721 11722 rq_unlock(busiest, &rf); 11723 11724 if (cur_ld_moved) { 11725 attach_tasks(&env); 11726 ld_moved += cur_ld_moved; 11727 } 11728 11729 local_irq_restore(rf.flags); 11730 11731 if (env.flags & LBF_NEED_BREAK) { 11732 env.flags &= ~LBF_NEED_BREAK; 11733 goto more_balance; 11734 } 11735 11736 /* 11737 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11738 * us and move them to an alternate dst_cpu in our sched_group 11739 * where they can run. The upper limit on how many times we 11740 * iterate on same src_cpu is dependent on number of CPUs in our 11741 * sched_group. 11742 * 11743 * This changes load balance semantics a bit on who can move 11744 * load to a given_cpu. In addition to the given_cpu itself 11745 * (or a ilb_cpu acting on its behalf where given_cpu is 11746 * nohz-idle), we now have balance_cpu in a position to move 11747 * load to given_cpu. In rare situations, this may cause 11748 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11749 * _independently_ and at _same_ time to move some load to 11750 * given_cpu) causing excess load to be moved to given_cpu. 11751 * This however should not happen so much in practice and 11752 * moreover subsequent load balance cycles should correct the 11753 * excess load moved. 11754 */ 11755 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11756 11757 /* Prevent to re-select dst_cpu via env's CPUs */ 11758 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11759 11760 env.dst_rq = cpu_rq(env.new_dst_cpu); 11761 env.dst_cpu = env.new_dst_cpu; 11762 env.flags &= ~LBF_DST_PINNED; 11763 env.loop = 0; 11764 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11765 11766 /* 11767 * Go back to "more_balance" rather than "redo" since we 11768 * need to continue with same src_cpu. 11769 */ 11770 goto more_balance; 11771 } 11772 11773 /* 11774 * We failed to reach balance because of affinity. 11775 */ 11776 if (sd_parent) { 11777 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11778 11779 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11780 *group_imbalance = 1; 11781 } 11782 11783 /* All tasks on this runqueue were pinned by CPU affinity */ 11784 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11785 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11786 /* 11787 * Attempting to continue load balancing at the current 11788 * sched_domain level only makes sense if there are 11789 * active CPUs remaining as possible busiest CPUs to 11790 * pull load from which are not contained within the 11791 * destination group that is receiving any migrated 11792 * load. 11793 */ 11794 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11795 env.loop = 0; 11796 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11797 goto redo; 11798 } 11799 goto out_all_pinned; 11800 } 11801 } 11802 11803 if (!ld_moved) { 11804 schedstat_inc(sd->lb_failed[idle]); 11805 /* 11806 * Increment the failure counter only on periodic balance. 11807 * We do not want newidle balance, which can be very 11808 * frequent, pollute the failure counter causing 11809 * excessive cache_hot migrations and active balances. 11810 * 11811 * Similarly for migration_misfit which is not related to 11812 * load/util migration, don't pollute nr_balance_failed. 11813 */ 11814 if (idle != CPU_NEWLY_IDLE && 11815 env.migration_type != migrate_misfit) 11816 sd->nr_balance_failed++; 11817 11818 if (need_active_balance(&env)) { 11819 unsigned long flags; 11820 11821 raw_spin_rq_lock_irqsave(busiest, flags); 11822 11823 /* 11824 * Don't kick the active_load_balance_cpu_stop, 11825 * if the curr task on busiest CPU can't be 11826 * moved to this_cpu: 11827 */ 11828 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11829 raw_spin_rq_unlock_irqrestore(busiest, flags); 11830 goto out_one_pinned; 11831 } 11832 11833 /* Record that we found at least one task that could run on this_cpu */ 11834 env.flags &= ~LBF_ALL_PINNED; 11835 11836 /* 11837 * ->active_balance synchronizes accesses to 11838 * ->active_balance_work. Once set, it's cleared 11839 * only after active load balance is finished. 11840 */ 11841 if (!busiest->active_balance) { 11842 busiest->active_balance = 1; 11843 busiest->push_cpu = this_cpu; 11844 active_balance = 1; 11845 } 11846 11847 preempt_disable(); 11848 raw_spin_rq_unlock_irqrestore(busiest, flags); 11849 if (active_balance) { 11850 stop_one_cpu_nowait(cpu_of(busiest), 11851 active_load_balance_cpu_stop, busiest, 11852 &busiest->active_balance_work); 11853 } 11854 preempt_enable(); 11855 } 11856 } else { 11857 sd->nr_balance_failed = 0; 11858 } 11859 11860 if (likely(!active_balance) || need_active_balance(&env)) { 11861 /* We were unbalanced, so reset the balancing interval */ 11862 sd->balance_interval = sd->min_interval; 11863 } 11864 11865 goto out; 11866 11867 out_balanced: 11868 /* 11869 * We reach balance although we may have faced some affinity 11870 * constraints. Clear the imbalance flag only if other tasks got 11871 * a chance to move and fix the imbalance. 11872 */ 11873 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11874 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11875 11876 if (*group_imbalance) 11877 *group_imbalance = 0; 11878 } 11879 11880 out_all_pinned: 11881 /* 11882 * We reach balance because all tasks are pinned at this level so 11883 * we can't migrate them. Let the imbalance flag set so parent level 11884 * can try to migrate them. 11885 */ 11886 schedstat_inc(sd->lb_balanced[idle]); 11887 11888 sd->nr_balance_failed = 0; 11889 11890 out_one_pinned: 11891 ld_moved = 0; 11892 11893 /* 11894 * sched_balance_newidle() disregards balance intervals, so we could 11895 * repeatedly reach this code, which would lead to balance_interval 11896 * skyrocketing in a short amount of time. Skip the balance_interval 11897 * increase logic to avoid that. 11898 * 11899 * Similarly misfit migration which is not necessarily an indication of 11900 * the system being busy and requires lb to backoff to let it settle 11901 * down. 11902 */ 11903 if (env.idle == CPU_NEWLY_IDLE || 11904 env.migration_type == migrate_misfit) 11905 goto out; 11906 11907 /* tune up the balancing interval */ 11908 if ((env.flags & LBF_ALL_PINNED && 11909 sd->balance_interval < MAX_PINNED_INTERVAL) || 11910 sd->balance_interval < sd->max_interval) 11911 sd->balance_interval *= 2; 11912 out: 11913 return ld_moved; 11914 } 11915 11916 static inline unsigned long 11917 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11918 { 11919 unsigned long interval = sd->balance_interval; 11920 11921 if (cpu_busy) 11922 interval *= sd->busy_factor; 11923 11924 /* scale ms to jiffies */ 11925 interval = msecs_to_jiffies(interval); 11926 11927 /* 11928 * Reduce likelihood of busy balancing at higher domains racing with 11929 * balancing at lower domains by preventing their balancing periods 11930 * from being multiples of each other. 11931 */ 11932 if (cpu_busy) 11933 interval -= 1; 11934 11935 interval = clamp(interval, 1UL, max_load_balance_interval); 11936 11937 return interval; 11938 } 11939 11940 static inline void 11941 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11942 { 11943 unsigned long interval, next; 11944 11945 /* used by idle balance, so cpu_busy = 0 */ 11946 interval = get_sd_balance_interval(sd, 0); 11947 next = sd->last_balance + interval; 11948 11949 if (time_after(*next_balance, next)) 11950 *next_balance = next; 11951 } 11952 11953 /* 11954 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11955 * running tasks off the busiest CPU onto idle CPUs. It requires at 11956 * least 1 task to be running on each physical CPU where possible, and 11957 * avoids physical / logical imbalances. 11958 */ 11959 static int active_load_balance_cpu_stop(void *data) 11960 { 11961 struct rq *busiest_rq = data; 11962 int busiest_cpu = cpu_of(busiest_rq); 11963 int target_cpu = busiest_rq->push_cpu; 11964 struct rq *target_rq = cpu_rq(target_cpu); 11965 struct sched_domain *sd; 11966 struct task_struct *p = NULL; 11967 struct rq_flags rf; 11968 11969 rq_lock_irq(busiest_rq, &rf); 11970 /* 11971 * Between queueing the stop-work and running it is a hole in which 11972 * CPUs can become inactive. We should not move tasks from or to 11973 * inactive CPUs. 11974 */ 11975 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11976 goto out_unlock; 11977 11978 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11979 if (unlikely(busiest_cpu != smp_processor_id() || 11980 !busiest_rq->active_balance)) 11981 goto out_unlock; 11982 11983 /* Is there any task to move? */ 11984 if (busiest_rq->nr_running <= 1) 11985 goto out_unlock; 11986 11987 /* 11988 * This condition is "impossible", if it occurs 11989 * we need to fix it. Originally reported by 11990 * Bjorn Helgaas on a 128-CPU setup. 11991 */ 11992 WARN_ON_ONCE(busiest_rq == target_rq); 11993 11994 /* Search for an sd spanning us and the target CPU. */ 11995 rcu_read_lock(); 11996 for_each_domain(target_cpu, sd) { 11997 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11998 break; 11999 } 12000 12001 if (likely(sd)) { 12002 struct lb_env env = { 12003 .sd = sd, 12004 .dst_cpu = target_cpu, 12005 .dst_rq = target_rq, 12006 .src_cpu = busiest_rq->cpu, 12007 .src_rq = busiest_rq, 12008 .idle = CPU_IDLE, 12009 .flags = LBF_ACTIVE_LB, 12010 }; 12011 12012 schedstat_inc(sd->alb_count); 12013 update_rq_clock(busiest_rq); 12014 12015 p = detach_one_task(&env); 12016 if (p) { 12017 schedstat_inc(sd->alb_pushed); 12018 /* Active balancing done, reset the failure counter. */ 12019 sd->nr_balance_failed = 0; 12020 } else { 12021 schedstat_inc(sd->alb_failed); 12022 } 12023 } 12024 rcu_read_unlock(); 12025 out_unlock: 12026 busiest_rq->active_balance = 0; 12027 rq_unlock(busiest_rq, &rf); 12028 12029 if (p) 12030 attach_one_task(target_rq, p); 12031 12032 local_irq_enable(); 12033 12034 return 0; 12035 } 12036 12037 /* 12038 * This flag serializes load-balancing passes over large domains 12039 * (above the NODE topology level) - only one load-balancing instance 12040 * may run at a time, to reduce overhead on very large systems with 12041 * lots of CPUs and large NUMA distances. 12042 * 12043 * - Note that load-balancing passes triggered while another one 12044 * is executing are skipped and not re-tried. 12045 * 12046 * - Also note that this does not serialize rebalance_domains() 12047 * execution, as non-SD_SERIALIZE domains will still be 12048 * load-balanced in parallel. 12049 */ 12050 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12051 12052 /* 12053 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12054 * This trades load-balance latency on larger machines for less cross talk. 12055 */ 12056 void update_max_interval(void) 12057 { 12058 max_load_balance_interval = HZ*num_online_cpus()/10; 12059 } 12060 12061 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12062 { 12063 if (cost > sd->max_newidle_lb_cost) { 12064 /* 12065 * Track max cost of a domain to make sure to not delay the 12066 * next wakeup on the CPU. 12067 */ 12068 sd->max_newidle_lb_cost = cost; 12069 sd->last_decay_max_lb_cost = jiffies; 12070 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12071 /* 12072 * Decay the newidle max times by ~1% per second to ensure that 12073 * it is not outdated and the current max cost is actually 12074 * shorter. 12075 */ 12076 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12077 sd->last_decay_max_lb_cost = jiffies; 12078 12079 return true; 12080 } 12081 12082 return false; 12083 } 12084 12085 /* 12086 * It checks each scheduling domain to see if it is due to be balanced, 12087 * and initiates a balancing operation if so. 12088 * 12089 * Balancing parameters are set up in init_sched_domains. 12090 */ 12091 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12092 { 12093 int continue_balancing = 1; 12094 int cpu = rq->cpu; 12095 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12096 unsigned long interval; 12097 struct sched_domain *sd; 12098 /* Earliest time when we have to do rebalance again */ 12099 unsigned long next_balance = jiffies + 60*HZ; 12100 int update_next_balance = 0; 12101 int need_serialize, need_decay = 0; 12102 u64 max_cost = 0; 12103 12104 rcu_read_lock(); 12105 for_each_domain(cpu, sd) { 12106 /* 12107 * Decay the newidle max times here because this is a regular 12108 * visit to all the domains. 12109 */ 12110 need_decay = update_newidle_cost(sd, 0); 12111 max_cost += sd->max_newidle_lb_cost; 12112 12113 /* 12114 * Stop the load balance at this level. There is another 12115 * CPU in our sched group which is doing load balancing more 12116 * actively. 12117 */ 12118 if (!continue_balancing) { 12119 if (need_decay) 12120 continue; 12121 break; 12122 } 12123 12124 interval = get_sd_balance_interval(sd, busy); 12125 12126 need_serialize = sd->flags & SD_SERIALIZE; 12127 if (need_serialize) { 12128 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12129 goto out; 12130 } 12131 12132 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12133 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12134 /* 12135 * The LBF_DST_PINNED logic could have changed 12136 * env->dst_cpu, so we can't know our idle 12137 * state even if we migrated tasks. Update it. 12138 */ 12139 idle = idle_cpu(cpu); 12140 busy = !idle && !sched_idle_cpu(cpu); 12141 } 12142 sd->last_balance = jiffies; 12143 interval = get_sd_balance_interval(sd, busy); 12144 } 12145 if (need_serialize) 12146 atomic_set_release(&sched_balance_running, 0); 12147 out: 12148 if (time_after(next_balance, sd->last_balance + interval)) { 12149 next_balance = sd->last_balance + interval; 12150 update_next_balance = 1; 12151 } 12152 } 12153 if (need_decay) { 12154 /* 12155 * Ensure the rq-wide value also decays but keep it at a 12156 * reasonable floor to avoid funnies with rq->avg_idle. 12157 */ 12158 rq->max_idle_balance_cost = 12159 max((u64)sysctl_sched_migration_cost, max_cost); 12160 } 12161 rcu_read_unlock(); 12162 12163 /* 12164 * next_balance will be updated only when there is a need. 12165 * When the cpu is attached to null domain for ex, it will not be 12166 * updated. 12167 */ 12168 if (likely(update_next_balance)) 12169 rq->next_balance = next_balance; 12170 12171 } 12172 12173 static inline int on_null_domain(struct rq *rq) 12174 { 12175 return unlikely(!rcu_dereference_sched(rq->sd)); 12176 } 12177 12178 #ifdef CONFIG_NO_HZ_COMMON 12179 /* 12180 * NOHZ idle load balancing (ILB) details: 12181 * 12182 * - When one of the busy CPUs notices that there may be an idle rebalancing 12183 * needed, they will kick the idle load balancer, which then does idle 12184 * load balancing for all the idle CPUs. 12185 */ 12186 static inline int find_new_ilb(void) 12187 { 12188 const struct cpumask *hk_mask; 12189 int ilb_cpu; 12190 12191 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12192 12193 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12194 12195 if (ilb_cpu == smp_processor_id()) 12196 continue; 12197 12198 if (idle_cpu(ilb_cpu)) 12199 return ilb_cpu; 12200 } 12201 12202 return -1; 12203 } 12204 12205 /* 12206 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12207 * SMP function call (IPI). 12208 * 12209 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12210 * (if there is one). 12211 */ 12212 static void kick_ilb(unsigned int flags) 12213 { 12214 int ilb_cpu; 12215 12216 /* 12217 * Increase nohz.next_balance only when if full ilb is triggered but 12218 * not if we only update stats. 12219 */ 12220 if (flags & NOHZ_BALANCE_KICK) 12221 nohz.next_balance = jiffies+1; 12222 12223 ilb_cpu = find_new_ilb(); 12224 if (ilb_cpu < 0) 12225 return; 12226 12227 /* 12228 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12229 * i.e. all bits in flags are already set in ilb_cpu. 12230 */ 12231 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12232 return; 12233 12234 /* 12235 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12236 * the first flag owns it; cleared by nohz_csd_func(). 12237 */ 12238 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12239 if (flags & NOHZ_KICK_MASK) 12240 return; 12241 12242 /* 12243 * This way we generate an IPI on the target CPU which 12244 * is idle, and the softirq performing NOHZ idle load balancing 12245 * will be run before returning from the IPI. 12246 */ 12247 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12248 } 12249 12250 /* 12251 * Current decision point for kicking the idle load balancer in the presence 12252 * of idle CPUs in the system. 12253 */ 12254 static void nohz_balancer_kick(struct rq *rq) 12255 { 12256 unsigned long now = jiffies; 12257 struct sched_domain_shared *sds; 12258 struct sched_domain *sd; 12259 int nr_busy, i, cpu = rq->cpu; 12260 unsigned int flags = 0; 12261 12262 if (unlikely(rq->idle_balance)) 12263 return; 12264 12265 /* 12266 * We may be recently in ticked or tickless idle mode. At the first 12267 * busy tick after returning from idle, we will update the busy stats. 12268 */ 12269 nohz_balance_exit_idle(rq); 12270 12271 /* 12272 * None are in tickless mode and hence no need for NOHZ idle load 12273 * balancing: 12274 */ 12275 if (likely(!atomic_read(&nohz.nr_cpus))) 12276 return; 12277 12278 if (READ_ONCE(nohz.has_blocked) && 12279 time_after(now, READ_ONCE(nohz.next_blocked))) 12280 flags = NOHZ_STATS_KICK; 12281 12282 if (time_before(now, nohz.next_balance)) 12283 goto out; 12284 12285 if (rq->nr_running >= 2) { 12286 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12287 goto out; 12288 } 12289 12290 rcu_read_lock(); 12291 12292 sd = rcu_dereference(rq->sd); 12293 if (sd) { 12294 /* 12295 * If there's a runnable CFS task and the current CPU has reduced 12296 * capacity, kick the ILB to see if there's a better CPU to run on: 12297 */ 12298 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12299 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12300 goto unlock; 12301 } 12302 } 12303 12304 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12305 if (sd) { 12306 /* 12307 * When ASYM_PACKING; see if there's a more preferred CPU 12308 * currently idle; in which case, kick the ILB to move tasks 12309 * around. 12310 * 12311 * When balancing between cores, all the SMT siblings of the 12312 * preferred CPU must be idle. 12313 */ 12314 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12315 if (sched_asym(sd, i, cpu)) { 12316 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12317 goto unlock; 12318 } 12319 } 12320 } 12321 12322 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12323 if (sd) { 12324 /* 12325 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12326 * to run the misfit task on. 12327 */ 12328 if (check_misfit_status(rq)) { 12329 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12330 goto unlock; 12331 } 12332 12333 /* 12334 * For asymmetric systems, we do not want to nicely balance 12335 * cache use, instead we want to embrace asymmetry and only 12336 * ensure tasks have enough CPU capacity. 12337 * 12338 * Skip the LLC logic because it's not relevant in that case. 12339 */ 12340 goto unlock; 12341 } 12342 12343 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12344 if (sds) { 12345 /* 12346 * If there is an imbalance between LLC domains (IOW we could 12347 * increase the overall cache utilization), we need a less-loaded LLC 12348 * domain to pull some load from. Likewise, we may need to spread 12349 * load within the current LLC domain (e.g. packed SMT cores but 12350 * other CPUs are idle). We can't really know from here how busy 12351 * the others are - so just get a NOHZ balance going if it looks 12352 * like this LLC domain has tasks we could move. 12353 */ 12354 nr_busy = atomic_read(&sds->nr_busy_cpus); 12355 if (nr_busy > 1) { 12356 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12357 goto unlock; 12358 } 12359 } 12360 unlock: 12361 rcu_read_unlock(); 12362 out: 12363 if (READ_ONCE(nohz.needs_update)) 12364 flags |= NOHZ_NEXT_KICK; 12365 12366 if (flags) 12367 kick_ilb(flags); 12368 } 12369 12370 static void set_cpu_sd_state_busy(int cpu) 12371 { 12372 struct sched_domain *sd; 12373 12374 rcu_read_lock(); 12375 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12376 12377 if (!sd || !sd->nohz_idle) 12378 goto unlock; 12379 sd->nohz_idle = 0; 12380 12381 atomic_inc(&sd->shared->nr_busy_cpus); 12382 unlock: 12383 rcu_read_unlock(); 12384 } 12385 12386 void nohz_balance_exit_idle(struct rq *rq) 12387 { 12388 WARN_ON_ONCE(rq != this_rq()); 12389 12390 if (likely(!rq->nohz_tick_stopped)) 12391 return; 12392 12393 rq->nohz_tick_stopped = 0; 12394 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12395 atomic_dec(&nohz.nr_cpus); 12396 12397 set_cpu_sd_state_busy(rq->cpu); 12398 } 12399 12400 static void set_cpu_sd_state_idle(int cpu) 12401 { 12402 struct sched_domain *sd; 12403 12404 rcu_read_lock(); 12405 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12406 12407 if (!sd || sd->nohz_idle) 12408 goto unlock; 12409 sd->nohz_idle = 1; 12410 12411 atomic_dec(&sd->shared->nr_busy_cpus); 12412 unlock: 12413 rcu_read_unlock(); 12414 } 12415 12416 /* 12417 * This routine will record that the CPU is going idle with tick stopped. 12418 * This info will be used in performing idle load balancing in the future. 12419 */ 12420 void nohz_balance_enter_idle(int cpu) 12421 { 12422 struct rq *rq = cpu_rq(cpu); 12423 12424 WARN_ON_ONCE(cpu != smp_processor_id()); 12425 12426 /* If this CPU is going down, then nothing needs to be done: */ 12427 if (!cpu_active(cpu)) 12428 return; 12429 12430 /* 12431 * Can be set safely without rq->lock held 12432 * If a clear happens, it will have evaluated last additions because 12433 * rq->lock is held during the check and the clear 12434 */ 12435 rq->has_blocked_load = 1; 12436 12437 /* 12438 * The tick is still stopped but load could have been added in the 12439 * meantime. We set the nohz.has_blocked flag to trig a check of the 12440 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12441 * of nohz.has_blocked can only happen after checking the new load 12442 */ 12443 if (rq->nohz_tick_stopped) 12444 goto out; 12445 12446 /* If we're a completely isolated CPU, we don't play: */ 12447 if (on_null_domain(rq)) 12448 return; 12449 12450 rq->nohz_tick_stopped = 1; 12451 12452 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12453 atomic_inc(&nohz.nr_cpus); 12454 12455 /* 12456 * Ensures that if nohz_idle_balance() fails to observe our 12457 * @idle_cpus_mask store, it must observe the @has_blocked 12458 * and @needs_update stores. 12459 */ 12460 smp_mb__after_atomic(); 12461 12462 set_cpu_sd_state_idle(cpu); 12463 12464 WRITE_ONCE(nohz.needs_update, 1); 12465 out: 12466 /* 12467 * Each time a cpu enter idle, we assume that it has blocked load and 12468 * enable the periodic update of the load of idle CPUs 12469 */ 12470 WRITE_ONCE(nohz.has_blocked, 1); 12471 } 12472 12473 static bool update_nohz_stats(struct rq *rq) 12474 { 12475 unsigned int cpu = rq->cpu; 12476 12477 if (!rq->has_blocked_load) 12478 return false; 12479 12480 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12481 return false; 12482 12483 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12484 return true; 12485 12486 sched_balance_update_blocked_averages(cpu); 12487 12488 return rq->has_blocked_load; 12489 } 12490 12491 /* 12492 * Internal function that runs load balance for all idle CPUs. The load balance 12493 * can be a simple update of blocked load or a complete load balance with 12494 * tasks movement depending of flags. 12495 */ 12496 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12497 { 12498 /* Earliest time when we have to do rebalance again */ 12499 unsigned long now = jiffies; 12500 unsigned long next_balance = now + 60*HZ; 12501 bool has_blocked_load = false; 12502 int update_next_balance = 0; 12503 int this_cpu = this_rq->cpu; 12504 int balance_cpu; 12505 struct rq *rq; 12506 12507 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12508 12509 /* 12510 * We assume there will be no idle load after this update and clear 12511 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12512 * set the has_blocked flag and trigger another update of idle load. 12513 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12514 * setting the flag, we are sure to not clear the state and not 12515 * check the load of an idle cpu. 12516 * 12517 * Same applies to idle_cpus_mask vs needs_update. 12518 */ 12519 if (flags & NOHZ_STATS_KICK) 12520 WRITE_ONCE(nohz.has_blocked, 0); 12521 if (flags & NOHZ_NEXT_KICK) 12522 WRITE_ONCE(nohz.needs_update, 0); 12523 12524 /* 12525 * Ensures that if we miss the CPU, we must see the has_blocked 12526 * store from nohz_balance_enter_idle(). 12527 */ 12528 smp_mb(); 12529 12530 /* 12531 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12532 * chance for other idle cpu to pull load. 12533 */ 12534 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12535 if (!idle_cpu(balance_cpu)) 12536 continue; 12537 12538 /* 12539 * If this CPU gets work to do, stop the load balancing 12540 * work being done for other CPUs. Next load 12541 * balancing owner will pick it up. 12542 */ 12543 if (!idle_cpu(this_cpu) && need_resched()) { 12544 if (flags & NOHZ_STATS_KICK) 12545 has_blocked_load = true; 12546 if (flags & NOHZ_NEXT_KICK) 12547 WRITE_ONCE(nohz.needs_update, 1); 12548 goto abort; 12549 } 12550 12551 rq = cpu_rq(balance_cpu); 12552 12553 if (flags & NOHZ_STATS_KICK) 12554 has_blocked_load |= update_nohz_stats(rq); 12555 12556 /* 12557 * If time for next balance is due, 12558 * do the balance. 12559 */ 12560 if (time_after_eq(jiffies, rq->next_balance)) { 12561 struct rq_flags rf; 12562 12563 rq_lock_irqsave(rq, &rf); 12564 update_rq_clock(rq); 12565 rq_unlock_irqrestore(rq, &rf); 12566 12567 if (flags & NOHZ_BALANCE_KICK) 12568 sched_balance_domains(rq, CPU_IDLE); 12569 } 12570 12571 if (time_after(next_balance, rq->next_balance)) { 12572 next_balance = rq->next_balance; 12573 update_next_balance = 1; 12574 } 12575 } 12576 12577 /* 12578 * next_balance will be updated only when there is a need. 12579 * When the CPU is attached to null domain for ex, it will not be 12580 * updated. 12581 */ 12582 if (likely(update_next_balance)) 12583 nohz.next_balance = next_balance; 12584 12585 if (flags & NOHZ_STATS_KICK) 12586 WRITE_ONCE(nohz.next_blocked, 12587 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12588 12589 abort: 12590 /* There is still blocked load, enable periodic update */ 12591 if (has_blocked_load) 12592 WRITE_ONCE(nohz.has_blocked, 1); 12593 } 12594 12595 /* 12596 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12597 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12598 */ 12599 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12600 { 12601 unsigned int flags = this_rq->nohz_idle_balance; 12602 12603 if (!flags) 12604 return false; 12605 12606 this_rq->nohz_idle_balance = 0; 12607 12608 if (idle != CPU_IDLE) 12609 return false; 12610 12611 _nohz_idle_balance(this_rq, flags); 12612 12613 return true; 12614 } 12615 12616 /* 12617 * Check if we need to directly run the ILB for updating blocked load before 12618 * entering idle state. Here we run ILB directly without issuing IPIs. 12619 * 12620 * Note that when this function is called, the tick may not yet be stopped on 12621 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12622 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12623 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12624 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12625 * called from this function on (this) CPU that's not yet in the mask. That's 12626 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12627 * updating the blocked load of already idle CPUs without waking up one of 12628 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12629 * cpu about to enter idle, because it can take a long time. 12630 */ 12631 void nohz_run_idle_balance(int cpu) 12632 { 12633 unsigned int flags; 12634 12635 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12636 12637 /* 12638 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12639 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12640 */ 12641 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12642 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12643 } 12644 12645 static void nohz_newidle_balance(struct rq *this_rq) 12646 { 12647 int this_cpu = this_rq->cpu; 12648 12649 /* Will wake up very soon. No time for doing anything else*/ 12650 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12651 return; 12652 12653 /* Don't need to update blocked load of idle CPUs*/ 12654 if (!READ_ONCE(nohz.has_blocked) || 12655 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12656 return; 12657 12658 /* 12659 * Set the need to trigger ILB in order to update blocked load 12660 * before entering idle state. 12661 */ 12662 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12663 } 12664 12665 #else /* !CONFIG_NO_HZ_COMMON: */ 12666 static inline void nohz_balancer_kick(struct rq *rq) { } 12667 12668 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12669 { 12670 return false; 12671 } 12672 12673 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12674 #endif /* !CONFIG_NO_HZ_COMMON */ 12675 12676 /* 12677 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12678 * idle. Attempts to pull tasks from other CPUs. 12679 * 12680 * Returns: 12681 * < 0 - we released the lock and there are !fair tasks present 12682 * 0 - failed, no new tasks 12683 * > 0 - success, new (fair) tasks present 12684 */ 12685 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12686 { 12687 unsigned long next_balance = jiffies + HZ; 12688 int this_cpu = this_rq->cpu; 12689 int continue_balancing = 1; 12690 u64 t0, t1, curr_cost = 0; 12691 struct sched_domain *sd; 12692 int pulled_task = 0; 12693 12694 update_misfit_status(NULL, this_rq); 12695 12696 /* 12697 * There is a task waiting to run. No need to search for one. 12698 * Return 0; the task will be enqueued when switching to idle. 12699 */ 12700 if (this_rq->ttwu_pending) 12701 return 0; 12702 12703 /* 12704 * We must set idle_stamp _before_ calling sched_balance_rq() 12705 * for CPU_NEWLY_IDLE, such that we measure the this duration 12706 * as idle time. 12707 */ 12708 this_rq->idle_stamp = rq_clock(this_rq); 12709 12710 /* 12711 * Do not pull tasks towards !active CPUs... 12712 */ 12713 if (!cpu_active(this_cpu)) 12714 return 0; 12715 12716 /* 12717 * This is OK, because current is on_cpu, which avoids it being picked 12718 * for load-balance and preemption/IRQs are still disabled avoiding 12719 * further scheduler activity on it and we're being very careful to 12720 * re-start the picking loop. 12721 */ 12722 rq_unpin_lock(this_rq, rf); 12723 12724 rcu_read_lock(); 12725 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12726 12727 if (!get_rd_overloaded(this_rq->rd) || 12728 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12729 12730 if (sd) 12731 update_next_balance(sd, &next_balance); 12732 rcu_read_unlock(); 12733 12734 goto out; 12735 } 12736 rcu_read_unlock(); 12737 12738 raw_spin_rq_unlock(this_rq); 12739 12740 t0 = sched_clock_cpu(this_cpu); 12741 sched_balance_update_blocked_averages(this_cpu); 12742 12743 rcu_read_lock(); 12744 for_each_domain(this_cpu, sd) { 12745 u64 domain_cost; 12746 12747 update_next_balance(sd, &next_balance); 12748 12749 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12750 break; 12751 12752 if (sd->flags & SD_BALANCE_NEWIDLE) { 12753 12754 pulled_task = sched_balance_rq(this_cpu, this_rq, 12755 sd, CPU_NEWLY_IDLE, 12756 &continue_balancing); 12757 12758 t1 = sched_clock_cpu(this_cpu); 12759 domain_cost = t1 - t0; 12760 update_newidle_cost(sd, domain_cost); 12761 12762 curr_cost += domain_cost; 12763 t0 = t1; 12764 } 12765 12766 /* 12767 * Stop searching for tasks to pull if there are 12768 * now runnable tasks on this rq. 12769 */ 12770 if (pulled_task || !continue_balancing) 12771 break; 12772 } 12773 rcu_read_unlock(); 12774 12775 raw_spin_rq_lock(this_rq); 12776 12777 if (curr_cost > this_rq->max_idle_balance_cost) 12778 this_rq->max_idle_balance_cost = curr_cost; 12779 12780 /* 12781 * While browsing the domains, we released the rq lock, a task could 12782 * have been enqueued in the meantime. Since we're not going idle, 12783 * pretend we pulled a task. 12784 */ 12785 if (this_rq->cfs.h_nr_queued && !pulled_task) 12786 pulled_task = 1; 12787 12788 /* Is there a task of a high priority class? */ 12789 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12790 pulled_task = -1; 12791 12792 out: 12793 /* Move the next balance forward */ 12794 if (time_after(this_rq->next_balance, next_balance)) 12795 this_rq->next_balance = next_balance; 12796 12797 if (pulled_task) 12798 this_rq->idle_stamp = 0; 12799 else 12800 nohz_newidle_balance(this_rq); 12801 12802 rq_repin_lock(this_rq, rf); 12803 12804 return pulled_task; 12805 } 12806 12807 /* 12808 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12809 * 12810 * - directly from the local sched_tick() for periodic load balancing 12811 * 12812 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12813 * through the SMP cross-call nohz_csd_func() 12814 */ 12815 static __latent_entropy void sched_balance_softirq(void) 12816 { 12817 struct rq *this_rq = this_rq(); 12818 enum cpu_idle_type idle = this_rq->idle_balance; 12819 /* 12820 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12821 * balancing on behalf of the other idle CPUs whose ticks are 12822 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12823 * give the idle CPUs a chance to load balance. Else we may 12824 * load balance only within the local sched_domain hierarchy 12825 * and abort nohz_idle_balance altogether if we pull some load. 12826 */ 12827 if (nohz_idle_balance(this_rq, idle)) 12828 return; 12829 12830 /* normal load balance */ 12831 sched_balance_update_blocked_averages(this_rq->cpu); 12832 sched_balance_domains(this_rq, idle); 12833 } 12834 12835 /* 12836 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12837 */ 12838 void sched_balance_trigger(struct rq *rq) 12839 { 12840 /* 12841 * Don't need to rebalance while attached to NULL domain or 12842 * runqueue CPU is not active 12843 */ 12844 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12845 return; 12846 12847 if (time_after_eq(jiffies, rq->next_balance)) 12848 raise_softirq(SCHED_SOFTIRQ); 12849 12850 nohz_balancer_kick(rq); 12851 } 12852 12853 static void rq_online_fair(struct rq *rq) 12854 { 12855 update_sysctl(); 12856 12857 update_runtime_enabled(rq); 12858 } 12859 12860 static void rq_offline_fair(struct rq *rq) 12861 { 12862 update_sysctl(); 12863 12864 /* Ensure any throttled groups are reachable by pick_next_task */ 12865 unthrottle_offline_cfs_rqs(rq); 12866 12867 /* Ensure that we remove rq contribution to group share: */ 12868 clear_tg_offline_cfs_rqs(rq); 12869 } 12870 12871 #ifdef CONFIG_SCHED_CORE 12872 static inline bool 12873 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12874 { 12875 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12876 u64 slice = se->slice; 12877 12878 return (rtime * min_nr_tasks > slice); 12879 } 12880 12881 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12882 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12883 { 12884 if (!sched_core_enabled(rq)) 12885 return; 12886 12887 /* 12888 * If runqueue has only one task which used up its slice and 12889 * if the sibling is forced idle, then trigger schedule to 12890 * give forced idle task a chance. 12891 * 12892 * sched_slice() considers only this active rq and it gets the 12893 * whole slice. But during force idle, we have siblings acting 12894 * like a single runqueue and hence we need to consider runnable 12895 * tasks on this CPU and the forced idle CPU. Ideally, we should 12896 * go through the forced idle rq, but that would be a perf hit. 12897 * We can assume that the forced idle CPU has at least 12898 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12899 * if we need to give up the CPU. 12900 */ 12901 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 12902 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12903 resched_curr(rq); 12904 } 12905 12906 /* 12907 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12908 */ 12909 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12910 bool forceidle) 12911 { 12912 for_each_sched_entity(se) { 12913 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12914 12915 if (forceidle) { 12916 if (cfs_rq->forceidle_seq == fi_seq) 12917 break; 12918 cfs_rq->forceidle_seq = fi_seq; 12919 } 12920 12921 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12922 } 12923 } 12924 12925 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12926 { 12927 struct sched_entity *se = &p->se; 12928 12929 if (p->sched_class != &fair_sched_class) 12930 return; 12931 12932 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12933 } 12934 12935 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12936 bool in_fi) 12937 { 12938 struct rq *rq = task_rq(a); 12939 const struct sched_entity *sea = &a->se; 12940 const struct sched_entity *seb = &b->se; 12941 struct cfs_rq *cfs_rqa; 12942 struct cfs_rq *cfs_rqb; 12943 s64 delta; 12944 12945 WARN_ON_ONCE(task_rq(b)->core != rq->core); 12946 12947 #ifdef CONFIG_FAIR_GROUP_SCHED 12948 /* 12949 * Find an se in the hierarchy for tasks a and b, such that the se's 12950 * are immediate siblings. 12951 */ 12952 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12953 int sea_depth = sea->depth; 12954 int seb_depth = seb->depth; 12955 12956 if (sea_depth >= seb_depth) 12957 sea = parent_entity(sea); 12958 if (sea_depth <= seb_depth) 12959 seb = parent_entity(seb); 12960 } 12961 12962 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12963 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12964 12965 cfs_rqa = sea->cfs_rq; 12966 cfs_rqb = seb->cfs_rq; 12967 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 12968 cfs_rqa = &task_rq(a)->cfs; 12969 cfs_rqb = &task_rq(b)->cfs; 12970 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 12971 12972 /* 12973 * Find delta after normalizing se's vruntime with its cfs_rq's 12974 * min_vruntime_fi, which would have been updated in prior calls 12975 * to se_fi_update(). 12976 */ 12977 delta = (s64)(sea->vruntime - seb->vruntime) + 12978 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12979 12980 return delta > 0; 12981 } 12982 12983 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12984 { 12985 struct cfs_rq *cfs_rq; 12986 12987 #ifdef CONFIG_FAIR_GROUP_SCHED 12988 cfs_rq = task_group(p)->cfs_rq[cpu]; 12989 #else 12990 cfs_rq = &cpu_rq(cpu)->cfs; 12991 #endif 12992 return throttled_hierarchy(cfs_rq); 12993 } 12994 #else /* !CONFIG_SCHED_CORE: */ 12995 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12996 #endif /* !CONFIG_SCHED_CORE */ 12997 12998 /* 12999 * scheduler tick hitting a task of our scheduling class. 13000 * 13001 * NOTE: This function can be called remotely by the tick offload that 13002 * goes along full dynticks. Therefore no local assumption can be made 13003 * and everything must be accessed through the @rq and @curr passed in 13004 * parameters. 13005 */ 13006 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13007 { 13008 struct cfs_rq *cfs_rq; 13009 struct sched_entity *se = &curr->se; 13010 13011 for_each_sched_entity(se) { 13012 cfs_rq = cfs_rq_of(se); 13013 entity_tick(cfs_rq, se, queued); 13014 } 13015 13016 if (static_branch_unlikely(&sched_numa_balancing)) 13017 task_tick_numa(rq, curr); 13018 13019 update_misfit_status(curr, rq); 13020 check_update_overutilized_status(task_rq(curr)); 13021 13022 task_tick_core(rq, curr); 13023 } 13024 13025 /* 13026 * called on fork with the child task as argument from the parent's context 13027 * - child not yet on the tasklist 13028 * - preemption disabled 13029 */ 13030 static void task_fork_fair(struct task_struct *p) 13031 { 13032 set_task_max_allowed_capacity(p); 13033 } 13034 13035 /* 13036 * Priority of the task has changed. Check to see if we preempt 13037 * the current task. 13038 */ 13039 static void 13040 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13041 { 13042 if (!task_on_rq_queued(p)) 13043 return; 13044 13045 if (rq->cfs.nr_queued == 1) 13046 return; 13047 13048 /* 13049 * Reschedule if we are currently running on this runqueue and 13050 * our priority decreased, or if we are not currently running on 13051 * this runqueue and our priority is higher than the current's 13052 */ 13053 if (task_current_donor(rq, p)) { 13054 if (p->prio > oldprio) 13055 resched_curr(rq); 13056 } else 13057 wakeup_preempt(rq, p, 0); 13058 } 13059 13060 #ifdef CONFIG_FAIR_GROUP_SCHED 13061 /* 13062 * Propagate the changes of the sched_entity across the tg tree to make it 13063 * visible to the root 13064 */ 13065 static void propagate_entity_cfs_rq(struct sched_entity *se) 13066 { 13067 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13068 13069 if (cfs_rq_throttled(cfs_rq)) 13070 return; 13071 13072 if (!throttled_hierarchy(cfs_rq)) 13073 list_add_leaf_cfs_rq(cfs_rq); 13074 13075 /* Start to propagate at parent */ 13076 se = se->parent; 13077 13078 for_each_sched_entity(se) { 13079 cfs_rq = cfs_rq_of(se); 13080 13081 update_load_avg(cfs_rq, se, UPDATE_TG); 13082 13083 if (cfs_rq_throttled(cfs_rq)) 13084 break; 13085 13086 if (!throttled_hierarchy(cfs_rq)) 13087 list_add_leaf_cfs_rq(cfs_rq); 13088 } 13089 } 13090 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 13091 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13092 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 13093 13094 static void detach_entity_cfs_rq(struct sched_entity *se) 13095 { 13096 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13097 13098 /* 13099 * In case the task sched_avg hasn't been attached: 13100 * - A forked task which hasn't been woken up by wake_up_new_task(). 13101 * - A task which has been woken up by try_to_wake_up() but is 13102 * waiting for actually being woken up by sched_ttwu_pending(). 13103 */ 13104 if (!se->avg.last_update_time) 13105 return; 13106 13107 /* Catch up with the cfs_rq and remove our load when we leave */ 13108 update_load_avg(cfs_rq, se, 0); 13109 detach_entity_load_avg(cfs_rq, se); 13110 update_tg_load_avg(cfs_rq); 13111 propagate_entity_cfs_rq(se); 13112 } 13113 13114 static void attach_entity_cfs_rq(struct sched_entity *se) 13115 { 13116 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13117 13118 /* Synchronize entity with its cfs_rq */ 13119 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13120 attach_entity_load_avg(cfs_rq, se); 13121 update_tg_load_avg(cfs_rq); 13122 propagate_entity_cfs_rq(se); 13123 } 13124 13125 static void detach_task_cfs_rq(struct task_struct *p) 13126 { 13127 struct sched_entity *se = &p->se; 13128 13129 detach_entity_cfs_rq(se); 13130 } 13131 13132 static void attach_task_cfs_rq(struct task_struct *p) 13133 { 13134 struct sched_entity *se = &p->se; 13135 13136 attach_entity_cfs_rq(se); 13137 } 13138 13139 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13140 { 13141 detach_task_cfs_rq(p); 13142 } 13143 13144 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13145 { 13146 WARN_ON_ONCE(p->se.sched_delayed); 13147 13148 attach_task_cfs_rq(p); 13149 13150 set_task_max_allowed_capacity(p); 13151 13152 if (task_on_rq_queued(p)) { 13153 /* 13154 * We were most likely switched from sched_rt, so 13155 * kick off the schedule if running, otherwise just see 13156 * if we can still preempt the current task. 13157 */ 13158 if (task_current_donor(rq, p)) 13159 resched_curr(rq); 13160 else 13161 wakeup_preempt(rq, p, 0); 13162 } 13163 } 13164 13165 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13166 { 13167 struct sched_entity *se = &p->se; 13168 13169 if (task_on_rq_queued(p)) { 13170 /* 13171 * Move the next running task to the front of the list, so our 13172 * cfs_tasks list becomes MRU one. 13173 */ 13174 list_move(&se->group_node, &rq->cfs_tasks); 13175 } 13176 if (!first) 13177 return; 13178 13179 WARN_ON_ONCE(se->sched_delayed); 13180 13181 if (hrtick_enabled_fair(rq)) 13182 hrtick_start_fair(rq, p); 13183 13184 update_misfit_status(p, rq); 13185 sched_fair_update_stop_tick(rq, p); 13186 } 13187 13188 /* 13189 * Account for a task changing its policy or group. 13190 * 13191 * This routine is mostly called to set cfs_rq->curr field when a task 13192 * migrates between groups/classes. 13193 */ 13194 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13195 { 13196 struct sched_entity *se = &p->se; 13197 13198 for_each_sched_entity(se) { 13199 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13200 13201 set_next_entity(cfs_rq, se); 13202 /* ensure bandwidth has been allocated on our new cfs_rq */ 13203 account_cfs_rq_runtime(cfs_rq, 0); 13204 } 13205 13206 __set_next_task_fair(rq, p, first); 13207 } 13208 13209 void init_cfs_rq(struct cfs_rq *cfs_rq) 13210 { 13211 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13212 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13213 raw_spin_lock_init(&cfs_rq->removed.lock); 13214 } 13215 13216 #ifdef CONFIG_FAIR_GROUP_SCHED 13217 static void task_change_group_fair(struct task_struct *p) 13218 { 13219 /* 13220 * We couldn't detach or attach a forked task which 13221 * hasn't been woken up by wake_up_new_task(). 13222 */ 13223 if (READ_ONCE(p->__state) == TASK_NEW) 13224 return; 13225 13226 detach_task_cfs_rq(p); 13227 13228 /* Tell se's cfs_rq has been changed -- migrated */ 13229 p->se.avg.last_update_time = 0; 13230 set_task_rq(p, task_cpu(p)); 13231 attach_task_cfs_rq(p); 13232 } 13233 13234 void free_fair_sched_group(struct task_group *tg) 13235 { 13236 int i; 13237 13238 for_each_possible_cpu(i) { 13239 if (tg->cfs_rq) 13240 kfree(tg->cfs_rq[i]); 13241 if (tg->se) 13242 kfree(tg->se[i]); 13243 } 13244 13245 kfree(tg->cfs_rq); 13246 kfree(tg->se); 13247 } 13248 13249 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13250 { 13251 struct sched_entity *se; 13252 struct cfs_rq *cfs_rq; 13253 int i; 13254 13255 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13256 if (!tg->cfs_rq) 13257 goto err; 13258 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13259 if (!tg->se) 13260 goto err; 13261 13262 tg->shares = NICE_0_LOAD; 13263 13264 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13265 13266 for_each_possible_cpu(i) { 13267 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13268 GFP_KERNEL, cpu_to_node(i)); 13269 if (!cfs_rq) 13270 goto err; 13271 13272 se = kzalloc_node(sizeof(struct sched_entity_stats), 13273 GFP_KERNEL, cpu_to_node(i)); 13274 if (!se) 13275 goto err_free_rq; 13276 13277 init_cfs_rq(cfs_rq); 13278 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13279 init_entity_runnable_average(se); 13280 } 13281 13282 return 1; 13283 13284 err_free_rq: 13285 kfree(cfs_rq); 13286 err: 13287 return 0; 13288 } 13289 13290 void online_fair_sched_group(struct task_group *tg) 13291 { 13292 struct sched_entity *se; 13293 struct rq_flags rf; 13294 struct rq *rq; 13295 int i; 13296 13297 for_each_possible_cpu(i) { 13298 rq = cpu_rq(i); 13299 se = tg->se[i]; 13300 rq_lock_irq(rq, &rf); 13301 update_rq_clock(rq); 13302 attach_entity_cfs_rq(se); 13303 sync_throttle(tg, i); 13304 rq_unlock_irq(rq, &rf); 13305 } 13306 } 13307 13308 void unregister_fair_sched_group(struct task_group *tg) 13309 { 13310 int cpu; 13311 13312 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13313 13314 for_each_possible_cpu(cpu) { 13315 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13316 struct sched_entity *se = tg->se[cpu]; 13317 struct rq *rq = cpu_rq(cpu); 13318 13319 if (se) { 13320 if (se->sched_delayed) { 13321 guard(rq_lock_irqsave)(rq); 13322 if (se->sched_delayed) { 13323 update_rq_clock(rq); 13324 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13325 } 13326 list_del_leaf_cfs_rq(cfs_rq); 13327 } 13328 remove_entity_load_avg(se); 13329 } 13330 13331 /* 13332 * Only empty task groups can be destroyed; so we can speculatively 13333 * check on_list without danger of it being re-added. 13334 */ 13335 if (cfs_rq->on_list) { 13336 guard(rq_lock_irqsave)(rq); 13337 list_del_leaf_cfs_rq(cfs_rq); 13338 } 13339 } 13340 } 13341 13342 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13343 struct sched_entity *se, int cpu, 13344 struct sched_entity *parent) 13345 { 13346 struct rq *rq = cpu_rq(cpu); 13347 13348 cfs_rq->tg = tg; 13349 cfs_rq->rq = rq; 13350 init_cfs_rq_runtime(cfs_rq); 13351 13352 tg->cfs_rq[cpu] = cfs_rq; 13353 tg->se[cpu] = se; 13354 13355 /* se could be NULL for root_task_group */ 13356 if (!se) 13357 return; 13358 13359 if (!parent) { 13360 se->cfs_rq = &rq->cfs; 13361 se->depth = 0; 13362 } else { 13363 se->cfs_rq = parent->my_q; 13364 se->depth = parent->depth + 1; 13365 } 13366 13367 se->my_q = cfs_rq; 13368 /* guarantee group entities always have weight */ 13369 update_load_set(&se->load, NICE_0_LOAD); 13370 se->parent = parent; 13371 } 13372 13373 static DEFINE_MUTEX(shares_mutex); 13374 13375 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13376 { 13377 int i; 13378 13379 lockdep_assert_held(&shares_mutex); 13380 13381 /* 13382 * We can't change the weight of the root cgroup. 13383 */ 13384 if (!tg->se[0]) 13385 return -EINVAL; 13386 13387 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13388 13389 if (tg->shares == shares) 13390 return 0; 13391 13392 tg->shares = shares; 13393 for_each_possible_cpu(i) { 13394 struct rq *rq = cpu_rq(i); 13395 struct sched_entity *se = tg->se[i]; 13396 struct rq_flags rf; 13397 13398 /* Propagate contribution to hierarchy */ 13399 rq_lock_irqsave(rq, &rf); 13400 update_rq_clock(rq); 13401 for_each_sched_entity(se) { 13402 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13403 update_cfs_group(se); 13404 } 13405 rq_unlock_irqrestore(rq, &rf); 13406 } 13407 13408 return 0; 13409 } 13410 13411 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13412 { 13413 int ret; 13414 13415 mutex_lock(&shares_mutex); 13416 if (tg_is_idle(tg)) 13417 ret = -EINVAL; 13418 else 13419 ret = __sched_group_set_shares(tg, shares); 13420 mutex_unlock(&shares_mutex); 13421 13422 return ret; 13423 } 13424 13425 int sched_group_set_idle(struct task_group *tg, long idle) 13426 { 13427 int i; 13428 13429 if (tg == &root_task_group) 13430 return -EINVAL; 13431 13432 if (idle < 0 || idle > 1) 13433 return -EINVAL; 13434 13435 mutex_lock(&shares_mutex); 13436 13437 if (tg->idle == idle) { 13438 mutex_unlock(&shares_mutex); 13439 return 0; 13440 } 13441 13442 tg->idle = idle; 13443 13444 for_each_possible_cpu(i) { 13445 struct rq *rq = cpu_rq(i); 13446 struct sched_entity *se = tg->se[i]; 13447 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13448 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13449 long idle_task_delta; 13450 struct rq_flags rf; 13451 13452 rq_lock_irqsave(rq, &rf); 13453 13454 grp_cfs_rq->idle = idle; 13455 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13456 goto next_cpu; 13457 13458 idle_task_delta = grp_cfs_rq->h_nr_queued - 13459 grp_cfs_rq->h_nr_idle; 13460 if (!cfs_rq_is_idle(grp_cfs_rq)) 13461 idle_task_delta *= -1; 13462 13463 for_each_sched_entity(se) { 13464 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13465 13466 if (!se->on_rq) 13467 break; 13468 13469 cfs_rq->h_nr_idle += idle_task_delta; 13470 13471 /* Already accounted at parent level and above. */ 13472 if (cfs_rq_is_idle(cfs_rq)) 13473 break; 13474 } 13475 13476 next_cpu: 13477 rq_unlock_irqrestore(rq, &rf); 13478 } 13479 13480 /* Idle groups have minimum weight. */ 13481 if (tg_is_idle(tg)) 13482 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13483 else 13484 __sched_group_set_shares(tg, NICE_0_LOAD); 13485 13486 mutex_unlock(&shares_mutex); 13487 return 0; 13488 } 13489 13490 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13491 13492 13493 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13494 { 13495 struct sched_entity *se = &task->se; 13496 unsigned int rr_interval = 0; 13497 13498 /* 13499 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13500 * idle runqueue: 13501 */ 13502 if (rq->cfs.load.weight) 13503 rr_interval = NS_TO_JIFFIES(se->slice); 13504 13505 return rr_interval; 13506 } 13507 13508 /* 13509 * All the scheduling class methods: 13510 */ 13511 DEFINE_SCHED_CLASS(fair) = { 13512 13513 .enqueue_task = enqueue_task_fair, 13514 .dequeue_task = dequeue_task_fair, 13515 .yield_task = yield_task_fair, 13516 .yield_to_task = yield_to_task_fair, 13517 13518 .wakeup_preempt = check_preempt_wakeup_fair, 13519 13520 .pick_task = pick_task_fair, 13521 .pick_next_task = __pick_next_task_fair, 13522 .put_prev_task = put_prev_task_fair, 13523 .set_next_task = set_next_task_fair, 13524 13525 .balance = balance_fair, 13526 .select_task_rq = select_task_rq_fair, 13527 .migrate_task_rq = migrate_task_rq_fair, 13528 13529 .rq_online = rq_online_fair, 13530 .rq_offline = rq_offline_fair, 13531 13532 .task_dead = task_dead_fair, 13533 .set_cpus_allowed = set_cpus_allowed_fair, 13534 13535 .task_tick = task_tick_fair, 13536 .task_fork = task_fork_fair, 13537 13538 .reweight_task = reweight_task_fair, 13539 .prio_changed = prio_changed_fair, 13540 .switched_from = switched_from_fair, 13541 .switched_to = switched_to_fair, 13542 13543 .get_rr_interval = get_rr_interval_fair, 13544 13545 .update_curr = update_curr_fair, 13546 13547 #ifdef CONFIG_FAIR_GROUP_SCHED 13548 .task_change_group = task_change_group_fair, 13549 #endif 13550 13551 #ifdef CONFIG_SCHED_CORE 13552 .task_is_throttled = task_is_throttled_fair, 13553 #endif 13554 13555 #ifdef CONFIG_UCLAMP_TASK 13556 .uclamp_enabled = 1, 13557 #endif 13558 }; 13559 13560 void print_cfs_stats(struct seq_file *m, int cpu) 13561 { 13562 struct cfs_rq *cfs_rq, *pos; 13563 13564 rcu_read_lock(); 13565 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13566 print_cfs_rq(m, cpu, cfs_rq); 13567 rcu_read_unlock(); 13568 } 13569 13570 #ifdef CONFIG_NUMA_BALANCING 13571 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13572 { 13573 int node; 13574 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13575 struct numa_group *ng; 13576 13577 rcu_read_lock(); 13578 ng = rcu_dereference(p->numa_group); 13579 for_each_online_node(node) { 13580 if (p->numa_faults) { 13581 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13582 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13583 } 13584 if (ng) { 13585 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13586 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13587 } 13588 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13589 } 13590 rcu_read_unlock(); 13591 } 13592 #endif /* CONFIG_NUMA_BALANCING */ 13593 13594 __init void init_sched_fair_class(void) 13595 { 13596 int i; 13597 13598 for_each_possible_cpu(i) { 13599 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13600 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13601 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13602 GFP_KERNEL, cpu_to_node(i)); 13603 13604 #ifdef CONFIG_CFS_BANDWIDTH 13605 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13606 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13607 #endif 13608 } 13609 13610 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13611 13612 #ifdef CONFIG_NO_HZ_COMMON 13613 nohz.next_balance = jiffies; 13614 nohz.next_blocked = jiffies; 13615 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13616 #endif 13617 } 13618