xref: /linux/kernel/sched/fair.c (revision 79ac11393328fb1717d17c12e3c0eef0e9fa0647)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 int sched_thermal_decay_shift;
82 static int __init setup_sched_thermal_decay_shift(char *str)
83 {
84 	int _shift = 0;
85 
86 	if (kstrtoint(str, 0, &_shift))
87 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
88 
89 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
90 	return 1;
91 }
92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
93 
94 #ifdef CONFIG_SMP
95 /*
96  * For asym packing, by default the lower numbered CPU has higher priority.
97  */
98 int __weak arch_asym_cpu_priority(int cpu)
99 {
100 	return -cpu;
101 }
102 
103 /*
104  * The margin used when comparing utilization with CPU capacity.
105  *
106  * (default: ~20%)
107  */
108 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
109 
110 /*
111  * The margin used when comparing CPU capacities.
112  * is 'cap1' noticeably greater than 'cap2'
113  *
114  * (default: ~5%)
115  */
116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
117 #endif
118 
119 #ifdef CONFIG_CFS_BANDWIDTH
120 /*
121  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
122  * each time a cfs_rq requests quota.
123  *
124  * Note: in the case that the slice exceeds the runtime remaining (either due
125  * to consumption or the quota being specified to be smaller than the slice)
126  * we will always only issue the remaining available time.
127  *
128  * (default: 5 msec, units: microseconds)
129  */
130 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
131 #endif
132 
133 #ifdef CONFIG_NUMA_BALANCING
134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
136 #endif
137 
138 #ifdef CONFIG_SYSCTL
139 static struct ctl_table sched_fair_sysctls[] = {
140 #ifdef CONFIG_CFS_BANDWIDTH
141 	{
142 		.procname       = "sched_cfs_bandwidth_slice_us",
143 		.data           = &sysctl_sched_cfs_bandwidth_slice,
144 		.maxlen         = sizeof(unsigned int),
145 		.mode           = 0644,
146 		.proc_handler   = proc_dointvec_minmax,
147 		.extra1         = SYSCTL_ONE,
148 	},
149 #endif
150 #ifdef CONFIG_NUMA_BALANCING
151 	{
152 		.procname	= "numa_balancing_promote_rate_limit_MBps",
153 		.data		= &sysctl_numa_balancing_promote_rate_limit,
154 		.maxlen		= sizeof(unsigned int),
155 		.mode		= 0644,
156 		.proc_handler	= proc_dointvec_minmax,
157 		.extra1		= SYSCTL_ZERO,
158 	},
159 #endif /* CONFIG_NUMA_BALANCING */
160 	{}
161 };
162 
163 static int __init sched_fair_sysctl_init(void)
164 {
165 	register_sysctl_init("kernel", sched_fair_sysctls);
166 	return 0;
167 }
168 late_initcall(sched_fair_sysctl_init);
169 #endif
170 
171 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
172 {
173 	lw->weight += inc;
174 	lw->inv_weight = 0;
175 }
176 
177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
178 {
179 	lw->weight -= dec;
180 	lw->inv_weight = 0;
181 }
182 
183 static inline void update_load_set(struct load_weight *lw, unsigned long w)
184 {
185 	lw->weight = w;
186 	lw->inv_weight = 0;
187 }
188 
189 /*
190  * Increase the granularity value when there are more CPUs,
191  * because with more CPUs the 'effective latency' as visible
192  * to users decreases. But the relationship is not linear,
193  * so pick a second-best guess by going with the log2 of the
194  * number of CPUs.
195  *
196  * This idea comes from the SD scheduler of Con Kolivas:
197  */
198 static unsigned int get_update_sysctl_factor(void)
199 {
200 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
201 	unsigned int factor;
202 
203 	switch (sysctl_sched_tunable_scaling) {
204 	case SCHED_TUNABLESCALING_NONE:
205 		factor = 1;
206 		break;
207 	case SCHED_TUNABLESCALING_LINEAR:
208 		factor = cpus;
209 		break;
210 	case SCHED_TUNABLESCALING_LOG:
211 	default:
212 		factor = 1 + ilog2(cpus);
213 		break;
214 	}
215 
216 	return factor;
217 }
218 
219 static void update_sysctl(void)
220 {
221 	unsigned int factor = get_update_sysctl_factor();
222 
223 #define SET_SYSCTL(name) \
224 	(sysctl_##name = (factor) * normalized_sysctl_##name)
225 	SET_SYSCTL(sched_base_slice);
226 #undef SET_SYSCTL
227 }
228 
229 void __init sched_init_granularity(void)
230 {
231 	update_sysctl();
232 }
233 
234 #define WMULT_CONST	(~0U)
235 #define WMULT_SHIFT	32
236 
237 static void __update_inv_weight(struct load_weight *lw)
238 {
239 	unsigned long w;
240 
241 	if (likely(lw->inv_weight))
242 		return;
243 
244 	w = scale_load_down(lw->weight);
245 
246 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
247 		lw->inv_weight = 1;
248 	else if (unlikely(!w))
249 		lw->inv_weight = WMULT_CONST;
250 	else
251 		lw->inv_weight = WMULT_CONST / w;
252 }
253 
254 /*
255  * delta_exec * weight / lw.weight
256  *   OR
257  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
258  *
259  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
260  * we're guaranteed shift stays positive because inv_weight is guaranteed to
261  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
262  *
263  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
264  * weight/lw.weight <= 1, and therefore our shift will also be positive.
265  */
266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
267 {
268 	u64 fact = scale_load_down(weight);
269 	u32 fact_hi = (u32)(fact >> 32);
270 	int shift = WMULT_SHIFT;
271 	int fs;
272 
273 	__update_inv_weight(lw);
274 
275 	if (unlikely(fact_hi)) {
276 		fs = fls(fact_hi);
277 		shift -= fs;
278 		fact >>= fs;
279 	}
280 
281 	fact = mul_u32_u32(fact, lw->inv_weight);
282 
283 	fact_hi = (u32)(fact >> 32);
284 	if (fact_hi) {
285 		fs = fls(fact_hi);
286 		shift -= fs;
287 		fact >>= fs;
288 	}
289 
290 	return mul_u64_u32_shr(delta_exec, fact, shift);
291 }
292 
293 /*
294  * delta /= w
295  */
296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
297 {
298 	if (unlikely(se->load.weight != NICE_0_LOAD))
299 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
300 
301 	return delta;
302 }
303 
304 const struct sched_class fair_sched_class;
305 
306 /**************************************************************
307  * CFS operations on generic schedulable entities:
308  */
309 
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 
312 /* Walk up scheduling entities hierarchy */
313 #define for_each_sched_entity(se) \
314 		for (; se; se = se->parent)
315 
316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
317 {
318 	struct rq *rq = rq_of(cfs_rq);
319 	int cpu = cpu_of(rq);
320 
321 	if (cfs_rq->on_list)
322 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
323 
324 	cfs_rq->on_list = 1;
325 
326 	/*
327 	 * Ensure we either appear before our parent (if already
328 	 * enqueued) or force our parent to appear after us when it is
329 	 * enqueued. The fact that we always enqueue bottom-up
330 	 * reduces this to two cases and a special case for the root
331 	 * cfs_rq. Furthermore, it also means that we will always reset
332 	 * tmp_alone_branch either when the branch is connected
333 	 * to a tree or when we reach the top of the tree
334 	 */
335 	if (cfs_rq->tg->parent &&
336 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
337 		/*
338 		 * If parent is already on the list, we add the child
339 		 * just before. Thanks to circular linked property of
340 		 * the list, this means to put the child at the tail
341 		 * of the list that starts by parent.
342 		 */
343 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
344 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
345 		/*
346 		 * The branch is now connected to its tree so we can
347 		 * reset tmp_alone_branch to the beginning of the
348 		 * list.
349 		 */
350 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 		return true;
352 	}
353 
354 	if (!cfs_rq->tg->parent) {
355 		/*
356 		 * cfs rq without parent should be put
357 		 * at the tail of the list.
358 		 */
359 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
360 			&rq->leaf_cfs_rq_list);
361 		/*
362 		 * We have reach the top of a tree so we can reset
363 		 * tmp_alone_branch to the beginning of the list.
364 		 */
365 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 		return true;
367 	}
368 
369 	/*
370 	 * The parent has not already been added so we want to
371 	 * make sure that it will be put after us.
372 	 * tmp_alone_branch points to the begin of the branch
373 	 * where we will add parent.
374 	 */
375 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
376 	/*
377 	 * update tmp_alone_branch to points to the new begin
378 	 * of the branch
379 	 */
380 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
381 	return false;
382 }
383 
384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
385 {
386 	if (cfs_rq->on_list) {
387 		struct rq *rq = rq_of(cfs_rq);
388 
389 		/*
390 		 * With cfs_rq being unthrottled/throttled during an enqueue,
391 		 * it can happen the tmp_alone_branch points the a leaf that
392 		 * we finally want to del. In this case, tmp_alone_branch moves
393 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
394 		 * at the end of the enqueue.
395 		 */
396 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
397 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
398 
399 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
400 		cfs_rq->on_list = 0;
401 	}
402 }
403 
404 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
405 {
406 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
407 }
408 
409 /* Iterate thr' all leaf cfs_rq's on a runqueue */
410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
411 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
412 				 leaf_cfs_rq_list)
413 
414 /* Do the two (enqueued) entities belong to the same group ? */
415 static inline struct cfs_rq *
416 is_same_group(struct sched_entity *se, struct sched_entity *pse)
417 {
418 	if (se->cfs_rq == pse->cfs_rq)
419 		return se->cfs_rq;
420 
421 	return NULL;
422 }
423 
424 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
425 {
426 	return se->parent;
427 }
428 
429 static void
430 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
431 {
432 	int se_depth, pse_depth;
433 
434 	/*
435 	 * preemption test can be made between sibling entities who are in the
436 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
437 	 * both tasks until we find their ancestors who are siblings of common
438 	 * parent.
439 	 */
440 
441 	/* First walk up until both entities are at same depth */
442 	se_depth = (*se)->depth;
443 	pse_depth = (*pse)->depth;
444 
445 	while (se_depth > pse_depth) {
446 		se_depth--;
447 		*se = parent_entity(*se);
448 	}
449 
450 	while (pse_depth > se_depth) {
451 		pse_depth--;
452 		*pse = parent_entity(*pse);
453 	}
454 
455 	while (!is_same_group(*se, *pse)) {
456 		*se = parent_entity(*se);
457 		*pse = parent_entity(*pse);
458 	}
459 }
460 
461 static int tg_is_idle(struct task_group *tg)
462 {
463 	return tg->idle > 0;
464 }
465 
466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
467 {
468 	return cfs_rq->idle > 0;
469 }
470 
471 static int se_is_idle(struct sched_entity *se)
472 {
473 	if (entity_is_task(se))
474 		return task_has_idle_policy(task_of(se));
475 	return cfs_rq_is_idle(group_cfs_rq(se));
476 }
477 
478 #else	/* !CONFIG_FAIR_GROUP_SCHED */
479 
480 #define for_each_sched_entity(se) \
481 		for (; se; se = NULL)
482 
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 {
485 	return true;
486 }
487 
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489 {
490 }
491 
492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493 {
494 }
495 
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
497 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498 
499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
500 {
501 	return NULL;
502 }
503 
504 static inline void
505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506 {
507 }
508 
509 static inline int tg_is_idle(struct task_group *tg)
510 {
511 	return 0;
512 }
513 
514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
515 {
516 	return 0;
517 }
518 
519 static int se_is_idle(struct sched_entity *se)
520 {
521 	return 0;
522 }
523 
524 #endif	/* CONFIG_FAIR_GROUP_SCHED */
525 
526 static __always_inline
527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
528 
529 /**************************************************************
530  * Scheduling class tree data structure manipulation methods:
531  */
532 
533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
534 {
535 	s64 delta = (s64)(vruntime - max_vruntime);
536 	if (delta > 0)
537 		max_vruntime = vruntime;
538 
539 	return max_vruntime;
540 }
541 
542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
543 {
544 	s64 delta = (s64)(vruntime - min_vruntime);
545 	if (delta < 0)
546 		min_vruntime = vruntime;
547 
548 	return min_vruntime;
549 }
550 
551 static inline bool entity_before(const struct sched_entity *a,
552 				 const struct sched_entity *b)
553 {
554 	return (s64)(a->vruntime - b->vruntime) < 0;
555 }
556 
557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
558 {
559 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
560 }
561 
562 #define __node_2_se(node) \
563 	rb_entry((node), struct sched_entity, run_node)
564 
565 /*
566  * Compute virtual time from the per-task service numbers:
567  *
568  * Fair schedulers conserve lag:
569  *
570  *   \Sum lag_i = 0
571  *
572  * Where lag_i is given by:
573  *
574  *   lag_i = S - s_i = w_i * (V - v_i)
575  *
576  * Where S is the ideal service time and V is it's virtual time counterpart.
577  * Therefore:
578  *
579  *   \Sum lag_i = 0
580  *   \Sum w_i * (V - v_i) = 0
581  *   \Sum w_i * V - w_i * v_i = 0
582  *
583  * From which we can solve an expression for V in v_i (which we have in
584  * se->vruntime):
585  *
586  *       \Sum v_i * w_i   \Sum v_i * w_i
587  *   V = -------------- = --------------
588  *          \Sum w_i            W
589  *
590  * Specifically, this is the weighted average of all entity virtual runtimes.
591  *
592  * [[ NOTE: this is only equal to the ideal scheduler under the condition
593  *          that join/leave operations happen at lag_i = 0, otherwise the
594  *          virtual time has non-continguous motion equivalent to:
595  *
596  *	      V +-= lag_i / W
597  *
598  *	    Also see the comment in place_entity() that deals with this. ]]
599  *
600  * However, since v_i is u64, and the multiplcation could easily overflow
601  * transform it into a relative form that uses smaller quantities:
602  *
603  * Substitute: v_i == (v_i - v0) + v0
604  *
605  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
606  * V = ---------------------------- = --------------------- + v0
607  *                  W                            W
608  *
609  * Which we track using:
610  *
611  *                    v0 := cfs_rq->min_vruntime
612  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
613  *              \Sum w_i := cfs_rq->avg_load
614  *
615  * Since min_vruntime is a monotonic increasing variable that closely tracks
616  * the per-task service, these deltas: (v_i - v), will be in the order of the
617  * maximal (virtual) lag induced in the system due to quantisation.
618  *
619  * Also, we use scale_load_down() to reduce the size.
620  *
621  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
622  */
623 static void
624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
625 {
626 	unsigned long weight = scale_load_down(se->load.weight);
627 	s64 key = entity_key(cfs_rq, se);
628 
629 	cfs_rq->avg_vruntime += key * weight;
630 	cfs_rq->avg_load += weight;
631 }
632 
633 static void
634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
635 {
636 	unsigned long weight = scale_load_down(se->load.weight);
637 	s64 key = entity_key(cfs_rq, se);
638 
639 	cfs_rq->avg_vruntime -= key * weight;
640 	cfs_rq->avg_load -= weight;
641 }
642 
643 static inline
644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
645 {
646 	/*
647 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
648 	 */
649 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
650 }
651 
652 /*
653  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
654  * For this to be so, the result of this function must have a left bias.
655  */
656 u64 avg_vruntime(struct cfs_rq *cfs_rq)
657 {
658 	struct sched_entity *curr = cfs_rq->curr;
659 	s64 avg = cfs_rq->avg_vruntime;
660 	long load = cfs_rq->avg_load;
661 
662 	if (curr && curr->on_rq) {
663 		unsigned long weight = scale_load_down(curr->load.weight);
664 
665 		avg += entity_key(cfs_rq, curr) * weight;
666 		load += weight;
667 	}
668 
669 	if (load) {
670 		/* sign flips effective floor / ceil */
671 		if (avg < 0)
672 			avg -= (load - 1);
673 		avg = div_s64(avg, load);
674 	}
675 
676 	return cfs_rq->min_vruntime + avg;
677 }
678 
679 /*
680  * lag_i = S - s_i = w_i * (V - v_i)
681  *
682  * However, since V is approximated by the weighted average of all entities it
683  * is possible -- by addition/removal/reweight to the tree -- to move V around
684  * and end up with a larger lag than we started with.
685  *
686  * Limit this to either double the slice length with a minimum of TICK_NSEC
687  * since that is the timing granularity.
688  *
689  * EEVDF gives the following limit for a steady state system:
690  *
691  *   -r_max < lag < max(r_max, q)
692  *
693  * XXX could add max_slice to the augmented data to track this.
694  */
695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
696 {
697 	s64 lag, limit;
698 
699 	SCHED_WARN_ON(!se->on_rq);
700 	lag = avg_vruntime(cfs_rq) - se->vruntime;
701 
702 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
703 	se->vlag = clamp(lag, -limit, limit);
704 }
705 
706 /*
707  * Entity is eligible once it received less service than it ought to have,
708  * eg. lag >= 0.
709  *
710  * lag_i = S - s_i = w_i*(V - v_i)
711  *
712  * lag_i >= 0 -> V >= v_i
713  *
714  *     \Sum (v_i - v)*w_i
715  * V = ------------------ + v
716  *          \Sum w_i
717  *
718  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
719  *
720  * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
721  *       to the loss in precision caused by the division.
722  */
723 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
724 {
725 	struct sched_entity *curr = cfs_rq->curr;
726 	s64 avg = cfs_rq->avg_vruntime;
727 	long load = cfs_rq->avg_load;
728 
729 	if (curr && curr->on_rq) {
730 		unsigned long weight = scale_load_down(curr->load.weight);
731 
732 		avg += entity_key(cfs_rq, curr) * weight;
733 		load += weight;
734 	}
735 
736 	return avg >= entity_key(cfs_rq, se) * load;
737 }
738 
739 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
740 {
741 	u64 min_vruntime = cfs_rq->min_vruntime;
742 	/*
743 	 * open coded max_vruntime() to allow updating avg_vruntime
744 	 */
745 	s64 delta = (s64)(vruntime - min_vruntime);
746 	if (delta > 0) {
747 		avg_vruntime_update(cfs_rq, delta);
748 		min_vruntime = vruntime;
749 	}
750 	return min_vruntime;
751 }
752 
753 static void update_min_vruntime(struct cfs_rq *cfs_rq)
754 {
755 	struct sched_entity *se = __pick_first_entity(cfs_rq);
756 	struct sched_entity *curr = cfs_rq->curr;
757 
758 	u64 vruntime = cfs_rq->min_vruntime;
759 
760 	if (curr) {
761 		if (curr->on_rq)
762 			vruntime = curr->vruntime;
763 		else
764 			curr = NULL;
765 	}
766 
767 	if (se) {
768 		if (!curr)
769 			vruntime = se->vruntime;
770 		else
771 			vruntime = min_vruntime(vruntime, se->vruntime);
772 	}
773 
774 	/* ensure we never gain time by being placed backwards. */
775 	u64_u32_store(cfs_rq->min_vruntime,
776 		      __update_min_vruntime(cfs_rq, vruntime));
777 }
778 
779 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
780 {
781 	return entity_before(__node_2_se(a), __node_2_se(b));
782 }
783 
784 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
785 
786 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node)
787 {
788 	if (node) {
789 		struct sched_entity *rse = __node_2_se(node);
790 		if (deadline_gt(min_deadline, se, rse))
791 			se->min_deadline = rse->min_deadline;
792 	}
793 }
794 
795 /*
796  * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline)
797  */
798 static inline bool min_deadline_update(struct sched_entity *se, bool exit)
799 {
800 	u64 old_min_deadline = se->min_deadline;
801 	struct rb_node *node = &se->run_node;
802 
803 	se->min_deadline = se->deadline;
804 	__update_min_deadline(se, node->rb_right);
805 	__update_min_deadline(se, node->rb_left);
806 
807 	return se->min_deadline == old_min_deadline;
808 }
809 
810 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity,
811 		     run_node, min_deadline, min_deadline_update);
812 
813 /*
814  * Enqueue an entity into the rb-tree:
815  */
816 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
817 {
818 	avg_vruntime_add(cfs_rq, se);
819 	se->min_deadline = se->deadline;
820 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
821 				__entity_less, &min_deadline_cb);
822 }
823 
824 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
825 {
826 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
827 				  &min_deadline_cb);
828 	avg_vruntime_sub(cfs_rq, se);
829 }
830 
831 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
832 {
833 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
834 
835 	if (!left)
836 		return NULL;
837 
838 	return __node_2_se(left);
839 }
840 
841 /*
842  * Earliest Eligible Virtual Deadline First
843  *
844  * In order to provide latency guarantees for different request sizes
845  * EEVDF selects the best runnable task from two criteria:
846  *
847  *  1) the task must be eligible (must be owed service)
848  *
849  *  2) from those tasks that meet 1), we select the one
850  *     with the earliest virtual deadline.
851  *
852  * We can do this in O(log n) time due to an augmented RB-tree. The
853  * tree keeps the entries sorted on service, but also functions as a
854  * heap based on the deadline by keeping:
855  *
856  *  se->min_deadline = min(se->deadline, se->{left,right}->min_deadline)
857  *
858  * Which allows an EDF like search on (sub)trees.
859  */
860 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq)
861 {
862 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
863 	struct sched_entity *curr = cfs_rq->curr;
864 	struct sched_entity *best = NULL;
865 	struct sched_entity *best_left = NULL;
866 
867 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
868 		curr = NULL;
869 	best = curr;
870 
871 	/*
872 	 * Once selected, run a task until it either becomes non-eligible or
873 	 * until it gets a new slice. See the HACK in set_next_entity().
874 	 */
875 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
876 		return curr;
877 
878 	while (node) {
879 		struct sched_entity *se = __node_2_se(node);
880 
881 		/*
882 		 * If this entity is not eligible, try the left subtree.
883 		 */
884 		if (!entity_eligible(cfs_rq, se)) {
885 			node = node->rb_left;
886 			continue;
887 		}
888 
889 		/*
890 		 * Now we heap search eligible trees for the best (min_)deadline
891 		 */
892 		if (!best || deadline_gt(deadline, best, se))
893 			best = se;
894 
895 		/*
896 		 * Every se in a left branch is eligible, keep track of the
897 		 * branch with the best min_deadline
898 		 */
899 		if (node->rb_left) {
900 			struct sched_entity *left = __node_2_se(node->rb_left);
901 
902 			if (!best_left || deadline_gt(min_deadline, best_left, left))
903 				best_left = left;
904 
905 			/*
906 			 * min_deadline is in the left branch. rb_left and all
907 			 * descendants are eligible, so immediately switch to the second
908 			 * loop.
909 			 */
910 			if (left->min_deadline == se->min_deadline)
911 				break;
912 		}
913 
914 		/* min_deadline is at this node, no need to look right */
915 		if (se->deadline == se->min_deadline)
916 			break;
917 
918 		/* else min_deadline is in the right branch. */
919 		node = node->rb_right;
920 	}
921 
922 	/*
923 	 * We ran into an eligible node which is itself the best.
924 	 * (Or nr_running == 0 and both are NULL)
925 	 */
926 	if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0)
927 		return best;
928 
929 	/*
930 	 * Now best_left and all of its children are eligible, and we are just
931 	 * looking for deadline == min_deadline
932 	 */
933 	node = &best_left->run_node;
934 	while (node) {
935 		struct sched_entity *se = __node_2_se(node);
936 
937 		/* min_deadline is the current node */
938 		if (se->deadline == se->min_deadline)
939 			return se;
940 
941 		/* min_deadline is in the left branch */
942 		if (node->rb_left &&
943 		    __node_2_se(node->rb_left)->min_deadline == se->min_deadline) {
944 			node = node->rb_left;
945 			continue;
946 		}
947 
948 		/* else min_deadline is in the right branch */
949 		node = node->rb_right;
950 	}
951 	return NULL;
952 }
953 
954 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
955 {
956 	struct sched_entity *se = __pick_eevdf(cfs_rq);
957 
958 	if (!se) {
959 		struct sched_entity *left = __pick_first_entity(cfs_rq);
960 		if (left) {
961 			pr_err("EEVDF scheduling fail, picking leftmost\n");
962 			return left;
963 		}
964 	}
965 
966 	return se;
967 }
968 
969 #ifdef CONFIG_SCHED_DEBUG
970 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
971 {
972 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
973 
974 	if (!last)
975 		return NULL;
976 
977 	return __node_2_se(last);
978 }
979 
980 /**************************************************************
981  * Scheduling class statistics methods:
982  */
983 #ifdef CONFIG_SMP
984 int sched_update_scaling(void)
985 {
986 	unsigned int factor = get_update_sysctl_factor();
987 
988 #define WRT_SYSCTL(name) \
989 	(normalized_sysctl_##name = sysctl_##name / (factor))
990 	WRT_SYSCTL(sched_base_slice);
991 #undef WRT_SYSCTL
992 
993 	return 0;
994 }
995 #endif
996 #endif
997 
998 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
999 
1000 /*
1001  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1002  * this is probably good enough.
1003  */
1004 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1005 {
1006 	if ((s64)(se->vruntime - se->deadline) < 0)
1007 		return;
1008 
1009 	/*
1010 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1011 	 * nice) while the request time r_i is determined by
1012 	 * sysctl_sched_base_slice.
1013 	 */
1014 	se->slice = sysctl_sched_base_slice;
1015 
1016 	/*
1017 	 * EEVDF: vd_i = ve_i + r_i / w_i
1018 	 */
1019 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1020 
1021 	/*
1022 	 * The task has consumed its request, reschedule.
1023 	 */
1024 	if (cfs_rq->nr_running > 1) {
1025 		resched_curr(rq_of(cfs_rq));
1026 		clear_buddies(cfs_rq, se);
1027 	}
1028 }
1029 
1030 #include "pelt.h"
1031 #ifdef CONFIG_SMP
1032 
1033 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1034 static unsigned long task_h_load(struct task_struct *p);
1035 static unsigned long capacity_of(int cpu);
1036 
1037 /* Give new sched_entity start runnable values to heavy its load in infant time */
1038 void init_entity_runnable_average(struct sched_entity *se)
1039 {
1040 	struct sched_avg *sa = &se->avg;
1041 
1042 	memset(sa, 0, sizeof(*sa));
1043 
1044 	/*
1045 	 * Tasks are initialized with full load to be seen as heavy tasks until
1046 	 * they get a chance to stabilize to their real load level.
1047 	 * Group entities are initialized with zero load to reflect the fact that
1048 	 * nothing has been attached to the task group yet.
1049 	 */
1050 	if (entity_is_task(se))
1051 		sa->load_avg = scale_load_down(se->load.weight);
1052 
1053 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1054 }
1055 
1056 /*
1057  * With new tasks being created, their initial util_avgs are extrapolated
1058  * based on the cfs_rq's current util_avg:
1059  *
1060  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1061  *
1062  * However, in many cases, the above util_avg does not give a desired
1063  * value. Moreover, the sum of the util_avgs may be divergent, such
1064  * as when the series is a harmonic series.
1065  *
1066  * To solve this problem, we also cap the util_avg of successive tasks to
1067  * only 1/2 of the left utilization budget:
1068  *
1069  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1070  *
1071  * where n denotes the nth task and cpu_scale the CPU capacity.
1072  *
1073  * For example, for a CPU with 1024 of capacity, a simplest series from
1074  * the beginning would be like:
1075  *
1076  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1077  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1078  *
1079  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1080  * if util_avg > util_avg_cap.
1081  */
1082 void post_init_entity_util_avg(struct task_struct *p)
1083 {
1084 	struct sched_entity *se = &p->se;
1085 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1086 	struct sched_avg *sa = &se->avg;
1087 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1088 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1089 
1090 	if (p->sched_class != &fair_sched_class) {
1091 		/*
1092 		 * For !fair tasks do:
1093 		 *
1094 		update_cfs_rq_load_avg(now, cfs_rq);
1095 		attach_entity_load_avg(cfs_rq, se);
1096 		switched_from_fair(rq, p);
1097 		 *
1098 		 * such that the next switched_to_fair() has the
1099 		 * expected state.
1100 		 */
1101 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1102 		return;
1103 	}
1104 
1105 	if (cap > 0) {
1106 		if (cfs_rq->avg.util_avg != 0) {
1107 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
1108 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1109 
1110 			if (sa->util_avg > cap)
1111 				sa->util_avg = cap;
1112 		} else {
1113 			sa->util_avg = cap;
1114 		}
1115 	}
1116 
1117 	sa->runnable_avg = sa->util_avg;
1118 }
1119 
1120 #else /* !CONFIG_SMP */
1121 void init_entity_runnable_average(struct sched_entity *se)
1122 {
1123 }
1124 void post_init_entity_util_avg(struct task_struct *p)
1125 {
1126 }
1127 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1128 {
1129 }
1130 #endif /* CONFIG_SMP */
1131 
1132 /*
1133  * Update the current task's runtime statistics.
1134  */
1135 static void update_curr(struct cfs_rq *cfs_rq)
1136 {
1137 	struct sched_entity *curr = cfs_rq->curr;
1138 	u64 now = rq_clock_task(rq_of(cfs_rq));
1139 	u64 delta_exec;
1140 
1141 	if (unlikely(!curr))
1142 		return;
1143 
1144 	delta_exec = now - curr->exec_start;
1145 	if (unlikely((s64)delta_exec <= 0))
1146 		return;
1147 
1148 	curr->exec_start = now;
1149 
1150 	if (schedstat_enabled()) {
1151 		struct sched_statistics *stats;
1152 
1153 		stats = __schedstats_from_se(curr);
1154 		__schedstat_set(stats->exec_max,
1155 				max(delta_exec, stats->exec_max));
1156 	}
1157 
1158 	curr->sum_exec_runtime += delta_exec;
1159 	schedstat_add(cfs_rq->exec_clock, delta_exec);
1160 
1161 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1162 	update_deadline(cfs_rq, curr);
1163 	update_min_vruntime(cfs_rq);
1164 
1165 	if (entity_is_task(curr)) {
1166 		struct task_struct *curtask = task_of(curr);
1167 
1168 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
1169 		cgroup_account_cputime(curtask, delta_exec);
1170 		account_group_exec_runtime(curtask, delta_exec);
1171 	}
1172 
1173 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1174 }
1175 
1176 static void update_curr_fair(struct rq *rq)
1177 {
1178 	update_curr(cfs_rq_of(&rq->curr->se));
1179 }
1180 
1181 static inline void
1182 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1183 {
1184 	struct sched_statistics *stats;
1185 	struct task_struct *p = NULL;
1186 
1187 	if (!schedstat_enabled())
1188 		return;
1189 
1190 	stats = __schedstats_from_se(se);
1191 
1192 	if (entity_is_task(se))
1193 		p = task_of(se);
1194 
1195 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1196 }
1197 
1198 static inline void
1199 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1200 {
1201 	struct sched_statistics *stats;
1202 	struct task_struct *p = NULL;
1203 
1204 	if (!schedstat_enabled())
1205 		return;
1206 
1207 	stats = __schedstats_from_se(se);
1208 
1209 	/*
1210 	 * When the sched_schedstat changes from 0 to 1, some sched se
1211 	 * maybe already in the runqueue, the se->statistics.wait_start
1212 	 * will be 0.So it will let the delta wrong. We need to avoid this
1213 	 * scenario.
1214 	 */
1215 	if (unlikely(!schedstat_val(stats->wait_start)))
1216 		return;
1217 
1218 	if (entity_is_task(se))
1219 		p = task_of(se);
1220 
1221 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1222 }
1223 
1224 static inline void
1225 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1226 {
1227 	struct sched_statistics *stats;
1228 	struct task_struct *tsk = NULL;
1229 
1230 	if (!schedstat_enabled())
1231 		return;
1232 
1233 	stats = __schedstats_from_se(se);
1234 
1235 	if (entity_is_task(se))
1236 		tsk = task_of(se);
1237 
1238 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1239 }
1240 
1241 /*
1242  * Task is being enqueued - update stats:
1243  */
1244 static inline void
1245 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1246 {
1247 	if (!schedstat_enabled())
1248 		return;
1249 
1250 	/*
1251 	 * Are we enqueueing a waiting task? (for current tasks
1252 	 * a dequeue/enqueue event is a NOP)
1253 	 */
1254 	if (se != cfs_rq->curr)
1255 		update_stats_wait_start_fair(cfs_rq, se);
1256 
1257 	if (flags & ENQUEUE_WAKEUP)
1258 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1259 }
1260 
1261 static inline void
1262 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1263 {
1264 
1265 	if (!schedstat_enabled())
1266 		return;
1267 
1268 	/*
1269 	 * Mark the end of the wait period if dequeueing a
1270 	 * waiting task:
1271 	 */
1272 	if (se != cfs_rq->curr)
1273 		update_stats_wait_end_fair(cfs_rq, se);
1274 
1275 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1276 		struct task_struct *tsk = task_of(se);
1277 		unsigned int state;
1278 
1279 		/* XXX racy against TTWU */
1280 		state = READ_ONCE(tsk->__state);
1281 		if (state & TASK_INTERRUPTIBLE)
1282 			__schedstat_set(tsk->stats.sleep_start,
1283 				      rq_clock(rq_of(cfs_rq)));
1284 		if (state & TASK_UNINTERRUPTIBLE)
1285 			__schedstat_set(tsk->stats.block_start,
1286 				      rq_clock(rq_of(cfs_rq)));
1287 	}
1288 }
1289 
1290 /*
1291  * We are picking a new current task - update its stats:
1292  */
1293 static inline void
1294 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1295 {
1296 	/*
1297 	 * We are starting a new run period:
1298 	 */
1299 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1300 }
1301 
1302 /**************************************************
1303  * Scheduling class queueing methods:
1304  */
1305 
1306 static inline bool is_core_idle(int cpu)
1307 {
1308 #ifdef CONFIG_SCHED_SMT
1309 	int sibling;
1310 
1311 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1312 		if (cpu == sibling)
1313 			continue;
1314 
1315 		if (!idle_cpu(sibling))
1316 			return false;
1317 	}
1318 #endif
1319 
1320 	return true;
1321 }
1322 
1323 #ifdef CONFIG_NUMA
1324 #define NUMA_IMBALANCE_MIN 2
1325 
1326 static inline long
1327 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1328 {
1329 	/*
1330 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1331 	 * threshold. Above this threshold, individual tasks may be contending
1332 	 * for both memory bandwidth and any shared HT resources.  This is an
1333 	 * approximation as the number of running tasks may not be related to
1334 	 * the number of busy CPUs due to sched_setaffinity.
1335 	 */
1336 	if (dst_running > imb_numa_nr)
1337 		return imbalance;
1338 
1339 	/*
1340 	 * Allow a small imbalance based on a simple pair of communicating
1341 	 * tasks that remain local when the destination is lightly loaded.
1342 	 */
1343 	if (imbalance <= NUMA_IMBALANCE_MIN)
1344 		return 0;
1345 
1346 	return imbalance;
1347 }
1348 #endif /* CONFIG_NUMA */
1349 
1350 #ifdef CONFIG_NUMA_BALANCING
1351 /*
1352  * Approximate time to scan a full NUMA task in ms. The task scan period is
1353  * calculated based on the tasks virtual memory size and
1354  * numa_balancing_scan_size.
1355  */
1356 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1357 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1358 
1359 /* Portion of address space to scan in MB */
1360 unsigned int sysctl_numa_balancing_scan_size = 256;
1361 
1362 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1363 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1364 
1365 /* The page with hint page fault latency < threshold in ms is considered hot */
1366 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1367 
1368 struct numa_group {
1369 	refcount_t refcount;
1370 
1371 	spinlock_t lock; /* nr_tasks, tasks */
1372 	int nr_tasks;
1373 	pid_t gid;
1374 	int active_nodes;
1375 
1376 	struct rcu_head rcu;
1377 	unsigned long total_faults;
1378 	unsigned long max_faults_cpu;
1379 	/*
1380 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1381 	 *
1382 	 * Faults_cpu is used to decide whether memory should move
1383 	 * towards the CPU. As a consequence, these stats are weighted
1384 	 * more by CPU use than by memory faults.
1385 	 */
1386 	unsigned long faults[];
1387 };
1388 
1389 /*
1390  * For functions that can be called in multiple contexts that permit reading
1391  * ->numa_group (see struct task_struct for locking rules).
1392  */
1393 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1394 {
1395 	return rcu_dereference_check(p->numa_group, p == current ||
1396 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1397 }
1398 
1399 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1400 {
1401 	return rcu_dereference_protected(p->numa_group, p == current);
1402 }
1403 
1404 static inline unsigned long group_faults_priv(struct numa_group *ng);
1405 static inline unsigned long group_faults_shared(struct numa_group *ng);
1406 
1407 static unsigned int task_nr_scan_windows(struct task_struct *p)
1408 {
1409 	unsigned long rss = 0;
1410 	unsigned long nr_scan_pages;
1411 
1412 	/*
1413 	 * Calculations based on RSS as non-present and empty pages are skipped
1414 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1415 	 * on resident pages
1416 	 */
1417 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1418 	rss = get_mm_rss(p->mm);
1419 	if (!rss)
1420 		rss = nr_scan_pages;
1421 
1422 	rss = round_up(rss, nr_scan_pages);
1423 	return rss / nr_scan_pages;
1424 }
1425 
1426 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1427 #define MAX_SCAN_WINDOW 2560
1428 
1429 static unsigned int task_scan_min(struct task_struct *p)
1430 {
1431 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1432 	unsigned int scan, floor;
1433 	unsigned int windows = 1;
1434 
1435 	if (scan_size < MAX_SCAN_WINDOW)
1436 		windows = MAX_SCAN_WINDOW / scan_size;
1437 	floor = 1000 / windows;
1438 
1439 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1440 	return max_t(unsigned int, floor, scan);
1441 }
1442 
1443 static unsigned int task_scan_start(struct task_struct *p)
1444 {
1445 	unsigned long smin = task_scan_min(p);
1446 	unsigned long period = smin;
1447 	struct numa_group *ng;
1448 
1449 	/* Scale the maximum scan period with the amount of shared memory. */
1450 	rcu_read_lock();
1451 	ng = rcu_dereference(p->numa_group);
1452 	if (ng) {
1453 		unsigned long shared = group_faults_shared(ng);
1454 		unsigned long private = group_faults_priv(ng);
1455 
1456 		period *= refcount_read(&ng->refcount);
1457 		period *= shared + 1;
1458 		period /= private + shared + 1;
1459 	}
1460 	rcu_read_unlock();
1461 
1462 	return max(smin, period);
1463 }
1464 
1465 static unsigned int task_scan_max(struct task_struct *p)
1466 {
1467 	unsigned long smin = task_scan_min(p);
1468 	unsigned long smax;
1469 	struct numa_group *ng;
1470 
1471 	/* Watch for min being lower than max due to floor calculations */
1472 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1473 
1474 	/* Scale the maximum scan period with the amount of shared memory. */
1475 	ng = deref_curr_numa_group(p);
1476 	if (ng) {
1477 		unsigned long shared = group_faults_shared(ng);
1478 		unsigned long private = group_faults_priv(ng);
1479 		unsigned long period = smax;
1480 
1481 		period *= refcount_read(&ng->refcount);
1482 		period *= shared + 1;
1483 		period /= private + shared + 1;
1484 
1485 		smax = max(smax, period);
1486 	}
1487 
1488 	return max(smin, smax);
1489 }
1490 
1491 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1492 {
1493 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1494 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1495 }
1496 
1497 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1498 {
1499 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1500 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1501 }
1502 
1503 /* Shared or private faults. */
1504 #define NR_NUMA_HINT_FAULT_TYPES 2
1505 
1506 /* Memory and CPU locality */
1507 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1508 
1509 /* Averaged statistics, and temporary buffers. */
1510 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1511 
1512 pid_t task_numa_group_id(struct task_struct *p)
1513 {
1514 	struct numa_group *ng;
1515 	pid_t gid = 0;
1516 
1517 	rcu_read_lock();
1518 	ng = rcu_dereference(p->numa_group);
1519 	if (ng)
1520 		gid = ng->gid;
1521 	rcu_read_unlock();
1522 
1523 	return gid;
1524 }
1525 
1526 /*
1527  * The averaged statistics, shared & private, memory & CPU,
1528  * occupy the first half of the array. The second half of the
1529  * array is for current counters, which are averaged into the
1530  * first set by task_numa_placement.
1531  */
1532 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1533 {
1534 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1535 }
1536 
1537 static inline unsigned long task_faults(struct task_struct *p, int nid)
1538 {
1539 	if (!p->numa_faults)
1540 		return 0;
1541 
1542 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1543 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1544 }
1545 
1546 static inline unsigned long group_faults(struct task_struct *p, int nid)
1547 {
1548 	struct numa_group *ng = deref_task_numa_group(p);
1549 
1550 	if (!ng)
1551 		return 0;
1552 
1553 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1554 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1555 }
1556 
1557 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1558 {
1559 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1560 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1561 }
1562 
1563 static inline unsigned long group_faults_priv(struct numa_group *ng)
1564 {
1565 	unsigned long faults = 0;
1566 	int node;
1567 
1568 	for_each_online_node(node) {
1569 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1570 	}
1571 
1572 	return faults;
1573 }
1574 
1575 static inline unsigned long group_faults_shared(struct numa_group *ng)
1576 {
1577 	unsigned long faults = 0;
1578 	int node;
1579 
1580 	for_each_online_node(node) {
1581 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1582 	}
1583 
1584 	return faults;
1585 }
1586 
1587 /*
1588  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1589  * considered part of a numa group's pseudo-interleaving set. Migrations
1590  * between these nodes are slowed down, to allow things to settle down.
1591  */
1592 #define ACTIVE_NODE_FRACTION 3
1593 
1594 static bool numa_is_active_node(int nid, struct numa_group *ng)
1595 {
1596 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1597 }
1598 
1599 /* Handle placement on systems where not all nodes are directly connected. */
1600 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1601 					int lim_dist, bool task)
1602 {
1603 	unsigned long score = 0;
1604 	int node, max_dist;
1605 
1606 	/*
1607 	 * All nodes are directly connected, and the same distance
1608 	 * from each other. No need for fancy placement algorithms.
1609 	 */
1610 	if (sched_numa_topology_type == NUMA_DIRECT)
1611 		return 0;
1612 
1613 	/* sched_max_numa_distance may be changed in parallel. */
1614 	max_dist = READ_ONCE(sched_max_numa_distance);
1615 	/*
1616 	 * This code is called for each node, introducing N^2 complexity,
1617 	 * which should be ok given the number of nodes rarely exceeds 8.
1618 	 */
1619 	for_each_online_node(node) {
1620 		unsigned long faults;
1621 		int dist = node_distance(nid, node);
1622 
1623 		/*
1624 		 * The furthest away nodes in the system are not interesting
1625 		 * for placement; nid was already counted.
1626 		 */
1627 		if (dist >= max_dist || node == nid)
1628 			continue;
1629 
1630 		/*
1631 		 * On systems with a backplane NUMA topology, compare groups
1632 		 * of nodes, and move tasks towards the group with the most
1633 		 * memory accesses. When comparing two nodes at distance
1634 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1635 		 * of each group. Skip other nodes.
1636 		 */
1637 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1638 			continue;
1639 
1640 		/* Add up the faults from nearby nodes. */
1641 		if (task)
1642 			faults = task_faults(p, node);
1643 		else
1644 			faults = group_faults(p, node);
1645 
1646 		/*
1647 		 * On systems with a glueless mesh NUMA topology, there are
1648 		 * no fixed "groups of nodes". Instead, nodes that are not
1649 		 * directly connected bounce traffic through intermediate
1650 		 * nodes; a numa_group can occupy any set of nodes.
1651 		 * The further away a node is, the less the faults count.
1652 		 * This seems to result in good task placement.
1653 		 */
1654 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1655 			faults *= (max_dist - dist);
1656 			faults /= (max_dist - LOCAL_DISTANCE);
1657 		}
1658 
1659 		score += faults;
1660 	}
1661 
1662 	return score;
1663 }
1664 
1665 /*
1666  * These return the fraction of accesses done by a particular task, or
1667  * task group, on a particular numa node.  The group weight is given a
1668  * larger multiplier, in order to group tasks together that are almost
1669  * evenly spread out between numa nodes.
1670  */
1671 static inline unsigned long task_weight(struct task_struct *p, int nid,
1672 					int dist)
1673 {
1674 	unsigned long faults, total_faults;
1675 
1676 	if (!p->numa_faults)
1677 		return 0;
1678 
1679 	total_faults = p->total_numa_faults;
1680 
1681 	if (!total_faults)
1682 		return 0;
1683 
1684 	faults = task_faults(p, nid);
1685 	faults += score_nearby_nodes(p, nid, dist, true);
1686 
1687 	return 1000 * faults / total_faults;
1688 }
1689 
1690 static inline unsigned long group_weight(struct task_struct *p, int nid,
1691 					 int dist)
1692 {
1693 	struct numa_group *ng = deref_task_numa_group(p);
1694 	unsigned long faults, total_faults;
1695 
1696 	if (!ng)
1697 		return 0;
1698 
1699 	total_faults = ng->total_faults;
1700 
1701 	if (!total_faults)
1702 		return 0;
1703 
1704 	faults = group_faults(p, nid);
1705 	faults += score_nearby_nodes(p, nid, dist, false);
1706 
1707 	return 1000 * faults / total_faults;
1708 }
1709 
1710 /*
1711  * If memory tiering mode is enabled, cpupid of slow memory page is
1712  * used to record scan time instead of CPU and PID.  When tiering mode
1713  * is disabled at run time, the scan time (in cpupid) will be
1714  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1715  * access out of array bound.
1716  */
1717 static inline bool cpupid_valid(int cpupid)
1718 {
1719 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1720 }
1721 
1722 /*
1723  * For memory tiering mode, if there are enough free pages (more than
1724  * enough watermark defined here) in fast memory node, to take full
1725  * advantage of fast memory capacity, all recently accessed slow
1726  * memory pages will be migrated to fast memory node without
1727  * considering hot threshold.
1728  */
1729 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1730 {
1731 	int z;
1732 	unsigned long enough_wmark;
1733 
1734 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1735 			   pgdat->node_present_pages >> 4);
1736 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1737 		struct zone *zone = pgdat->node_zones + z;
1738 
1739 		if (!populated_zone(zone))
1740 			continue;
1741 
1742 		if (zone_watermark_ok(zone, 0,
1743 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1744 				      ZONE_MOVABLE, 0))
1745 			return true;
1746 	}
1747 	return false;
1748 }
1749 
1750 /*
1751  * For memory tiering mode, when page tables are scanned, the scan
1752  * time will be recorded in struct page in addition to make page
1753  * PROT_NONE for slow memory page.  So when the page is accessed, in
1754  * hint page fault handler, the hint page fault latency is calculated
1755  * via,
1756  *
1757  *	hint page fault latency = hint page fault time - scan time
1758  *
1759  * The smaller the hint page fault latency, the higher the possibility
1760  * for the page to be hot.
1761  */
1762 static int numa_hint_fault_latency(struct folio *folio)
1763 {
1764 	int last_time, time;
1765 
1766 	time = jiffies_to_msecs(jiffies);
1767 	last_time = folio_xchg_access_time(folio, time);
1768 
1769 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1770 }
1771 
1772 /*
1773  * For memory tiering mode, too high promotion/demotion throughput may
1774  * hurt application latency.  So we provide a mechanism to rate limit
1775  * the number of pages that are tried to be promoted.
1776  */
1777 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1778 				      unsigned long rate_limit, int nr)
1779 {
1780 	unsigned long nr_cand;
1781 	unsigned int now, start;
1782 
1783 	now = jiffies_to_msecs(jiffies);
1784 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1785 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1786 	start = pgdat->nbp_rl_start;
1787 	if (now - start > MSEC_PER_SEC &&
1788 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1789 		pgdat->nbp_rl_nr_cand = nr_cand;
1790 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1791 		return true;
1792 	return false;
1793 }
1794 
1795 #define NUMA_MIGRATION_ADJUST_STEPS	16
1796 
1797 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1798 					    unsigned long rate_limit,
1799 					    unsigned int ref_th)
1800 {
1801 	unsigned int now, start, th_period, unit_th, th;
1802 	unsigned long nr_cand, ref_cand, diff_cand;
1803 
1804 	now = jiffies_to_msecs(jiffies);
1805 	th_period = sysctl_numa_balancing_scan_period_max;
1806 	start = pgdat->nbp_th_start;
1807 	if (now - start > th_period &&
1808 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1809 		ref_cand = rate_limit *
1810 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1811 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1812 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1813 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1814 		th = pgdat->nbp_threshold ? : ref_th;
1815 		if (diff_cand > ref_cand * 11 / 10)
1816 			th = max(th - unit_th, unit_th);
1817 		else if (diff_cand < ref_cand * 9 / 10)
1818 			th = min(th + unit_th, ref_th * 2);
1819 		pgdat->nbp_th_nr_cand = nr_cand;
1820 		pgdat->nbp_threshold = th;
1821 	}
1822 }
1823 
1824 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1825 				int src_nid, int dst_cpu)
1826 {
1827 	struct numa_group *ng = deref_curr_numa_group(p);
1828 	int dst_nid = cpu_to_node(dst_cpu);
1829 	int last_cpupid, this_cpupid;
1830 
1831 	/*
1832 	 * The pages in slow memory node should be migrated according
1833 	 * to hot/cold instead of private/shared.
1834 	 */
1835 	if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1836 	    !node_is_toptier(src_nid)) {
1837 		struct pglist_data *pgdat;
1838 		unsigned long rate_limit;
1839 		unsigned int latency, th, def_th;
1840 
1841 		pgdat = NODE_DATA(dst_nid);
1842 		if (pgdat_free_space_enough(pgdat)) {
1843 			/* workload changed, reset hot threshold */
1844 			pgdat->nbp_threshold = 0;
1845 			return true;
1846 		}
1847 
1848 		def_th = sysctl_numa_balancing_hot_threshold;
1849 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1850 			(20 - PAGE_SHIFT);
1851 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1852 
1853 		th = pgdat->nbp_threshold ? : def_th;
1854 		latency = numa_hint_fault_latency(folio);
1855 		if (latency >= th)
1856 			return false;
1857 
1858 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1859 						  folio_nr_pages(folio));
1860 	}
1861 
1862 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1863 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1864 
1865 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1866 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1867 		return false;
1868 
1869 	/*
1870 	 * Allow first faults or private faults to migrate immediately early in
1871 	 * the lifetime of a task. The magic number 4 is based on waiting for
1872 	 * two full passes of the "multi-stage node selection" test that is
1873 	 * executed below.
1874 	 */
1875 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1876 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1877 		return true;
1878 
1879 	/*
1880 	 * Multi-stage node selection is used in conjunction with a periodic
1881 	 * migration fault to build a temporal task<->page relation. By using
1882 	 * a two-stage filter we remove short/unlikely relations.
1883 	 *
1884 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1885 	 * a task's usage of a particular page (n_p) per total usage of this
1886 	 * page (n_t) (in a given time-span) to a probability.
1887 	 *
1888 	 * Our periodic faults will sample this probability and getting the
1889 	 * same result twice in a row, given these samples are fully
1890 	 * independent, is then given by P(n)^2, provided our sample period
1891 	 * is sufficiently short compared to the usage pattern.
1892 	 *
1893 	 * This quadric squishes small probabilities, making it less likely we
1894 	 * act on an unlikely task<->page relation.
1895 	 */
1896 	if (!cpupid_pid_unset(last_cpupid) &&
1897 				cpupid_to_nid(last_cpupid) != dst_nid)
1898 		return false;
1899 
1900 	/* Always allow migrate on private faults */
1901 	if (cpupid_match_pid(p, last_cpupid))
1902 		return true;
1903 
1904 	/* A shared fault, but p->numa_group has not been set up yet. */
1905 	if (!ng)
1906 		return true;
1907 
1908 	/*
1909 	 * Destination node is much more heavily used than the source
1910 	 * node? Allow migration.
1911 	 */
1912 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1913 					ACTIVE_NODE_FRACTION)
1914 		return true;
1915 
1916 	/*
1917 	 * Distribute memory according to CPU & memory use on each node,
1918 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1919 	 *
1920 	 * faults_cpu(dst)   3   faults_cpu(src)
1921 	 * --------------- * - > ---------------
1922 	 * faults_mem(dst)   4   faults_mem(src)
1923 	 */
1924 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1925 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1926 }
1927 
1928 /*
1929  * 'numa_type' describes the node at the moment of load balancing.
1930  */
1931 enum numa_type {
1932 	/* The node has spare capacity that can be used to run more tasks.  */
1933 	node_has_spare = 0,
1934 	/*
1935 	 * The node is fully used and the tasks don't compete for more CPU
1936 	 * cycles. Nevertheless, some tasks might wait before running.
1937 	 */
1938 	node_fully_busy,
1939 	/*
1940 	 * The node is overloaded and can't provide expected CPU cycles to all
1941 	 * tasks.
1942 	 */
1943 	node_overloaded
1944 };
1945 
1946 /* Cached statistics for all CPUs within a node */
1947 struct numa_stats {
1948 	unsigned long load;
1949 	unsigned long runnable;
1950 	unsigned long util;
1951 	/* Total compute capacity of CPUs on a node */
1952 	unsigned long compute_capacity;
1953 	unsigned int nr_running;
1954 	unsigned int weight;
1955 	enum numa_type node_type;
1956 	int idle_cpu;
1957 };
1958 
1959 struct task_numa_env {
1960 	struct task_struct *p;
1961 
1962 	int src_cpu, src_nid;
1963 	int dst_cpu, dst_nid;
1964 	int imb_numa_nr;
1965 
1966 	struct numa_stats src_stats, dst_stats;
1967 
1968 	int imbalance_pct;
1969 	int dist;
1970 
1971 	struct task_struct *best_task;
1972 	long best_imp;
1973 	int best_cpu;
1974 };
1975 
1976 static unsigned long cpu_load(struct rq *rq);
1977 static unsigned long cpu_runnable(struct rq *rq);
1978 
1979 static inline enum
1980 numa_type numa_classify(unsigned int imbalance_pct,
1981 			 struct numa_stats *ns)
1982 {
1983 	if ((ns->nr_running > ns->weight) &&
1984 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1985 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1986 		return node_overloaded;
1987 
1988 	if ((ns->nr_running < ns->weight) ||
1989 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1990 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1991 		return node_has_spare;
1992 
1993 	return node_fully_busy;
1994 }
1995 
1996 #ifdef CONFIG_SCHED_SMT
1997 /* Forward declarations of select_idle_sibling helpers */
1998 static inline bool test_idle_cores(int cpu);
1999 static inline int numa_idle_core(int idle_core, int cpu)
2000 {
2001 	if (!static_branch_likely(&sched_smt_present) ||
2002 	    idle_core >= 0 || !test_idle_cores(cpu))
2003 		return idle_core;
2004 
2005 	/*
2006 	 * Prefer cores instead of packing HT siblings
2007 	 * and triggering future load balancing.
2008 	 */
2009 	if (is_core_idle(cpu))
2010 		idle_core = cpu;
2011 
2012 	return idle_core;
2013 }
2014 #else
2015 static inline int numa_idle_core(int idle_core, int cpu)
2016 {
2017 	return idle_core;
2018 }
2019 #endif
2020 
2021 /*
2022  * Gather all necessary information to make NUMA balancing placement
2023  * decisions that are compatible with standard load balancer. This
2024  * borrows code and logic from update_sg_lb_stats but sharing a
2025  * common implementation is impractical.
2026  */
2027 static void update_numa_stats(struct task_numa_env *env,
2028 			      struct numa_stats *ns, int nid,
2029 			      bool find_idle)
2030 {
2031 	int cpu, idle_core = -1;
2032 
2033 	memset(ns, 0, sizeof(*ns));
2034 	ns->idle_cpu = -1;
2035 
2036 	rcu_read_lock();
2037 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2038 		struct rq *rq = cpu_rq(cpu);
2039 
2040 		ns->load += cpu_load(rq);
2041 		ns->runnable += cpu_runnable(rq);
2042 		ns->util += cpu_util_cfs(cpu);
2043 		ns->nr_running += rq->cfs.h_nr_running;
2044 		ns->compute_capacity += capacity_of(cpu);
2045 
2046 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2047 			if (READ_ONCE(rq->numa_migrate_on) ||
2048 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2049 				continue;
2050 
2051 			if (ns->idle_cpu == -1)
2052 				ns->idle_cpu = cpu;
2053 
2054 			idle_core = numa_idle_core(idle_core, cpu);
2055 		}
2056 	}
2057 	rcu_read_unlock();
2058 
2059 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2060 
2061 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2062 
2063 	if (idle_core >= 0)
2064 		ns->idle_cpu = idle_core;
2065 }
2066 
2067 static void task_numa_assign(struct task_numa_env *env,
2068 			     struct task_struct *p, long imp)
2069 {
2070 	struct rq *rq = cpu_rq(env->dst_cpu);
2071 
2072 	/* Check if run-queue part of active NUMA balance. */
2073 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2074 		int cpu;
2075 		int start = env->dst_cpu;
2076 
2077 		/* Find alternative idle CPU. */
2078 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2079 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2080 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2081 				continue;
2082 			}
2083 
2084 			env->dst_cpu = cpu;
2085 			rq = cpu_rq(env->dst_cpu);
2086 			if (!xchg(&rq->numa_migrate_on, 1))
2087 				goto assign;
2088 		}
2089 
2090 		/* Failed to find an alternative idle CPU */
2091 		return;
2092 	}
2093 
2094 assign:
2095 	/*
2096 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2097 	 * found a better CPU to move/swap.
2098 	 */
2099 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2100 		rq = cpu_rq(env->best_cpu);
2101 		WRITE_ONCE(rq->numa_migrate_on, 0);
2102 	}
2103 
2104 	if (env->best_task)
2105 		put_task_struct(env->best_task);
2106 	if (p)
2107 		get_task_struct(p);
2108 
2109 	env->best_task = p;
2110 	env->best_imp = imp;
2111 	env->best_cpu = env->dst_cpu;
2112 }
2113 
2114 static bool load_too_imbalanced(long src_load, long dst_load,
2115 				struct task_numa_env *env)
2116 {
2117 	long imb, old_imb;
2118 	long orig_src_load, orig_dst_load;
2119 	long src_capacity, dst_capacity;
2120 
2121 	/*
2122 	 * The load is corrected for the CPU capacity available on each node.
2123 	 *
2124 	 * src_load        dst_load
2125 	 * ------------ vs ---------
2126 	 * src_capacity    dst_capacity
2127 	 */
2128 	src_capacity = env->src_stats.compute_capacity;
2129 	dst_capacity = env->dst_stats.compute_capacity;
2130 
2131 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2132 
2133 	orig_src_load = env->src_stats.load;
2134 	orig_dst_load = env->dst_stats.load;
2135 
2136 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2137 
2138 	/* Would this change make things worse? */
2139 	return (imb > old_imb);
2140 }
2141 
2142 /*
2143  * Maximum NUMA importance can be 1998 (2*999);
2144  * SMALLIMP @ 30 would be close to 1998/64.
2145  * Used to deter task migration.
2146  */
2147 #define SMALLIMP	30
2148 
2149 /*
2150  * This checks if the overall compute and NUMA accesses of the system would
2151  * be improved if the source tasks was migrated to the target dst_cpu taking
2152  * into account that it might be best if task running on the dst_cpu should
2153  * be exchanged with the source task
2154  */
2155 static bool task_numa_compare(struct task_numa_env *env,
2156 			      long taskimp, long groupimp, bool maymove)
2157 {
2158 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2159 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2160 	long imp = p_ng ? groupimp : taskimp;
2161 	struct task_struct *cur;
2162 	long src_load, dst_load;
2163 	int dist = env->dist;
2164 	long moveimp = imp;
2165 	long load;
2166 	bool stopsearch = false;
2167 
2168 	if (READ_ONCE(dst_rq->numa_migrate_on))
2169 		return false;
2170 
2171 	rcu_read_lock();
2172 	cur = rcu_dereference(dst_rq->curr);
2173 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2174 		cur = NULL;
2175 
2176 	/*
2177 	 * Because we have preemption enabled we can get migrated around and
2178 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2179 	 */
2180 	if (cur == env->p) {
2181 		stopsearch = true;
2182 		goto unlock;
2183 	}
2184 
2185 	if (!cur) {
2186 		if (maymove && moveimp >= env->best_imp)
2187 			goto assign;
2188 		else
2189 			goto unlock;
2190 	}
2191 
2192 	/* Skip this swap candidate if cannot move to the source cpu. */
2193 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2194 		goto unlock;
2195 
2196 	/*
2197 	 * Skip this swap candidate if it is not moving to its preferred
2198 	 * node and the best task is.
2199 	 */
2200 	if (env->best_task &&
2201 	    env->best_task->numa_preferred_nid == env->src_nid &&
2202 	    cur->numa_preferred_nid != env->src_nid) {
2203 		goto unlock;
2204 	}
2205 
2206 	/*
2207 	 * "imp" is the fault differential for the source task between the
2208 	 * source and destination node. Calculate the total differential for
2209 	 * the source task and potential destination task. The more negative
2210 	 * the value is, the more remote accesses that would be expected to
2211 	 * be incurred if the tasks were swapped.
2212 	 *
2213 	 * If dst and source tasks are in the same NUMA group, or not
2214 	 * in any group then look only at task weights.
2215 	 */
2216 	cur_ng = rcu_dereference(cur->numa_group);
2217 	if (cur_ng == p_ng) {
2218 		/*
2219 		 * Do not swap within a group or between tasks that have
2220 		 * no group if there is spare capacity. Swapping does
2221 		 * not address the load imbalance and helps one task at
2222 		 * the cost of punishing another.
2223 		 */
2224 		if (env->dst_stats.node_type == node_has_spare)
2225 			goto unlock;
2226 
2227 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2228 		      task_weight(cur, env->dst_nid, dist);
2229 		/*
2230 		 * Add some hysteresis to prevent swapping the
2231 		 * tasks within a group over tiny differences.
2232 		 */
2233 		if (cur_ng)
2234 			imp -= imp / 16;
2235 	} else {
2236 		/*
2237 		 * Compare the group weights. If a task is all by itself
2238 		 * (not part of a group), use the task weight instead.
2239 		 */
2240 		if (cur_ng && p_ng)
2241 			imp += group_weight(cur, env->src_nid, dist) -
2242 			       group_weight(cur, env->dst_nid, dist);
2243 		else
2244 			imp += task_weight(cur, env->src_nid, dist) -
2245 			       task_weight(cur, env->dst_nid, dist);
2246 	}
2247 
2248 	/* Discourage picking a task already on its preferred node */
2249 	if (cur->numa_preferred_nid == env->dst_nid)
2250 		imp -= imp / 16;
2251 
2252 	/*
2253 	 * Encourage picking a task that moves to its preferred node.
2254 	 * This potentially makes imp larger than it's maximum of
2255 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2256 	 * case, it does not matter.
2257 	 */
2258 	if (cur->numa_preferred_nid == env->src_nid)
2259 		imp += imp / 8;
2260 
2261 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2262 		imp = moveimp;
2263 		cur = NULL;
2264 		goto assign;
2265 	}
2266 
2267 	/*
2268 	 * Prefer swapping with a task moving to its preferred node over a
2269 	 * task that is not.
2270 	 */
2271 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2272 	    env->best_task->numa_preferred_nid != env->src_nid) {
2273 		goto assign;
2274 	}
2275 
2276 	/*
2277 	 * If the NUMA importance is less than SMALLIMP,
2278 	 * task migration might only result in ping pong
2279 	 * of tasks and also hurt performance due to cache
2280 	 * misses.
2281 	 */
2282 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2283 		goto unlock;
2284 
2285 	/*
2286 	 * In the overloaded case, try and keep the load balanced.
2287 	 */
2288 	load = task_h_load(env->p) - task_h_load(cur);
2289 	if (!load)
2290 		goto assign;
2291 
2292 	dst_load = env->dst_stats.load + load;
2293 	src_load = env->src_stats.load - load;
2294 
2295 	if (load_too_imbalanced(src_load, dst_load, env))
2296 		goto unlock;
2297 
2298 assign:
2299 	/* Evaluate an idle CPU for a task numa move. */
2300 	if (!cur) {
2301 		int cpu = env->dst_stats.idle_cpu;
2302 
2303 		/* Nothing cached so current CPU went idle since the search. */
2304 		if (cpu < 0)
2305 			cpu = env->dst_cpu;
2306 
2307 		/*
2308 		 * If the CPU is no longer truly idle and the previous best CPU
2309 		 * is, keep using it.
2310 		 */
2311 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2312 		    idle_cpu(env->best_cpu)) {
2313 			cpu = env->best_cpu;
2314 		}
2315 
2316 		env->dst_cpu = cpu;
2317 	}
2318 
2319 	task_numa_assign(env, cur, imp);
2320 
2321 	/*
2322 	 * If a move to idle is allowed because there is capacity or load
2323 	 * balance improves then stop the search. While a better swap
2324 	 * candidate may exist, a search is not free.
2325 	 */
2326 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2327 		stopsearch = true;
2328 
2329 	/*
2330 	 * If a swap candidate must be identified and the current best task
2331 	 * moves its preferred node then stop the search.
2332 	 */
2333 	if (!maymove && env->best_task &&
2334 	    env->best_task->numa_preferred_nid == env->src_nid) {
2335 		stopsearch = true;
2336 	}
2337 unlock:
2338 	rcu_read_unlock();
2339 
2340 	return stopsearch;
2341 }
2342 
2343 static void task_numa_find_cpu(struct task_numa_env *env,
2344 				long taskimp, long groupimp)
2345 {
2346 	bool maymove = false;
2347 	int cpu;
2348 
2349 	/*
2350 	 * If dst node has spare capacity, then check if there is an
2351 	 * imbalance that would be overruled by the load balancer.
2352 	 */
2353 	if (env->dst_stats.node_type == node_has_spare) {
2354 		unsigned int imbalance;
2355 		int src_running, dst_running;
2356 
2357 		/*
2358 		 * Would movement cause an imbalance? Note that if src has
2359 		 * more running tasks that the imbalance is ignored as the
2360 		 * move improves the imbalance from the perspective of the
2361 		 * CPU load balancer.
2362 		 * */
2363 		src_running = env->src_stats.nr_running - 1;
2364 		dst_running = env->dst_stats.nr_running + 1;
2365 		imbalance = max(0, dst_running - src_running);
2366 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2367 						  env->imb_numa_nr);
2368 
2369 		/* Use idle CPU if there is no imbalance */
2370 		if (!imbalance) {
2371 			maymove = true;
2372 			if (env->dst_stats.idle_cpu >= 0) {
2373 				env->dst_cpu = env->dst_stats.idle_cpu;
2374 				task_numa_assign(env, NULL, 0);
2375 				return;
2376 			}
2377 		}
2378 	} else {
2379 		long src_load, dst_load, load;
2380 		/*
2381 		 * If the improvement from just moving env->p direction is better
2382 		 * than swapping tasks around, check if a move is possible.
2383 		 */
2384 		load = task_h_load(env->p);
2385 		dst_load = env->dst_stats.load + load;
2386 		src_load = env->src_stats.load - load;
2387 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2388 	}
2389 
2390 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2391 		/* Skip this CPU if the source task cannot migrate */
2392 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2393 			continue;
2394 
2395 		env->dst_cpu = cpu;
2396 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2397 			break;
2398 	}
2399 }
2400 
2401 static int task_numa_migrate(struct task_struct *p)
2402 {
2403 	struct task_numa_env env = {
2404 		.p = p,
2405 
2406 		.src_cpu = task_cpu(p),
2407 		.src_nid = task_node(p),
2408 
2409 		.imbalance_pct = 112,
2410 
2411 		.best_task = NULL,
2412 		.best_imp = 0,
2413 		.best_cpu = -1,
2414 	};
2415 	unsigned long taskweight, groupweight;
2416 	struct sched_domain *sd;
2417 	long taskimp, groupimp;
2418 	struct numa_group *ng;
2419 	struct rq *best_rq;
2420 	int nid, ret, dist;
2421 
2422 	/*
2423 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2424 	 * imbalance and would be the first to start moving tasks about.
2425 	 *
2426 	 * And we want to avoid any moving of tasks about, as that would create
2427 	 * random movement of tasks -- counter the numa conditions we're trying
2428 	 * to satisfy here.
2429 	 */
2430 	rcu_read_lock();
2431 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2432 	if (sd) {
2433 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2434 		env.imb_numa_nr = sd->imb_numa_nr;
2435 	}
2436 	rcu_read_unlock();
2437 
2438 	/*
2439 	 * Cpusets can break the scheduler domain tree into smaller
2440 	 * balance domains, some of which do not cross NUMA boundaries.
2441 	 * Tasks that are "trapped" in such domains cannot be migrated
2442 	 * elsewhere, so there is no point in (re)trying.
2443 	 */
2444 	if (unlikely(!sd)) {
2445 		sched_setnuma(p, task_node(p));
2446 		return -EINVAL;
2447 	}
2448 
2449 	env.dst_nid = p->numa_preferred_nid;
2450 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2451 	taskweight = task_weight(p, env.src_nid, dist);
2452 	groupweight = group_weight(p, env.src_nid, dist);
2453 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2454 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2455 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2456 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2457 
2458 	/* Try to find a spot on the preferred nid. */
2459 	task_numa_find_cpu(&env, taskimp, groupimp);
2460 
2461 	/*
2462 	 * Look at other nodes in these cases:
2463 	 * - there is no space available on the preferred_nid
2464 	 * - the task is part of a numa_group that is interleaved across
2465 	 *   multiple NUMA nodes; in order to better consolidate the group,
2466 	 *   we need to check other locations.
2467 	 */
2468 	ng = deref_curr_numa_group(p);
2469 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2470 		for_each_node_state(nid, N_CPU) {
2471 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2472 				continue;
2473 
2474 			dist = node_distance(env.src_nid, env.dst_nid);
2475 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2476 						dist != env.dist) {
2477 				taskweight = task_weight(p, env.src_nid, dist);
2478 				groupweight = group_weight(p, env.src_nid, dist);
2479 			}
2480 
2481 			/* Only consider nodes where both task and groups benefit */
2482 			taskimp = task_weight(p, nid, dist) - taskweight;
2483 			groupimp = group_weight(p, nid, dist) - groupweight;
2484 			if (taskimp < 0 && groupimp < 0)
2485 				continue;
2486 
2487 			env.dist = dist;
2488 			env.dst_nid = nid;
2489 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2490 			task_numa_find_cpu(&env, taskimp, groupimp);
2491 		}
2492 	}
2493 
2494 	/*
2495 	 * If the task is part of a workload that spans multiple NUMA nodes,
2496 	 * and is migrating into one of the workload's active nodes, remember
2497 	 * this node as the task's preferred numa node, so the workload can
2498 	 * settle down.
2499 	 * A task that migrated to a second choice node will be better off
2500 	 * trying for a better one later. Do not set the preferred node here.
2501 	 */
2502 	if (ng) {
2503 		if (env.best_cpu == -1)
2504 			nid = env.src_nid;
2505 		else
2506 			nid = cpu_to_node(env.best_cpu);
2507 
2508 		if (nid != p->numa_preferred_nid)
2509 			sched_setnuma(p, nid);
2510 	}
2511 
2512 	/* No better CPU than the current one was found. */
2513 	if (env.best_cpu == -1) {
2514 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2515 		return -EAGAIN;
2516 	}
2517 
2518 	best_rq = cpu_rq(env.best_cpu);
2519 	if (env.best_task == NULL) {
2520 		ret = migrate_task_to(p, env.best_cpu);
2521 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2522 		if (ret != 0)
2523 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2524 		return ret;
2525 	}
2526 
2527 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2528 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2529 
2530 	if (ret != 0)
2531 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2532 	put_task_struct(env.best_task);
2533 	return ret;
2534 }
2535 
2536 /* Attempt to migrate a task to a CPU on the preferred node. */
2537 static void numa_migrate_preferred(struct task_struct *p)
2538 {
2539 	unsigned long interval = HZ;
2540 
2541 	/* This task has no NUMA fault statistics yet */
2542 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2543 		return;
2544 
2545 	/* Periodically retry migrating the task to the preferred node */
2546 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2547 	p->numa_migrate_retry = jiffies + interval;
2548 
2549 	/* Success if task is already running on preferred CPU */
2550 	if (task_node(p) == p->numa_preferred_nid)
2551 		return;
2552 
2553 	/* Otherwise, try migrate to a CPU on the preferred node */
2554 	task_numa_migrate(p);
2555 }
2556 
2557 /*
2558  * Find out how many nodes the workload is actively running on. Do this by
2559  * tracking the nodes from which NUMA hinting faults are triggered. This can
2560  * be different from the set of nodes where the workload's memory is currently
2561  * located.
2562  */
2563 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2564 {
2565 	unsigned long faults, max_faults = 0;
2566 	int nid, active_nodes = 0;
2567 
2568 	for_each_node_state(nid, N_CPU) {
2569 		faults = group_faults_cpu(numa_group, nid);
2570 		if (faults > max_faults)
2571 			max_faults = faults;
2572 	}
2573 
2574 	for_each_node_state(nid, N_CPU) {
2575 		faults = group_faults_cpu(numa_group, nid);
2576 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2577 			active_nodes++;
2578 	}
2579 
2580 	numa_group->max_faults_cpu = max_faults;
2581 	numa_group->active_nodes = active_nodes;
2582 }
2583 
2584 /*
2585  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2586  * increments. The more local the fault statistics are, the higher the scan
2587  * period will be for the next scan window. If local/(local+remote) ratio is
2588  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2589  * the scan period will decrease. Aim for 70% local accesses.
2590  */
2591 #define NUMA_PERIOD_SLOTS 10
2592 #define NUMA_PERIOD_THRESHOLD 7
2593 
2594 /*
2595  * Increase the scan period (slow down scanning) if the majority of
2596  * our memory is already on our local node, or if the majority of
2597  * the page accesses are shared with other processes.
2598  * Otherwise, decrease the scan period.
2599  */
2600 static void update_task_scan_period(struct task_struct *p,
2601 			unsigned long shared, unsigned long private)
2602 {
2603 	unsigned int period_slot;
2604 	int lr_ratio, ps_ratio;
2605 	int diff;
2606 
2607 	unsigned long remote = p->numa_faults_locality[0];
2608 	unsigned long local = p->numa_faults_locality[1];
2609 
2610 	/*
2611 	 * If there were no record hinting faults then either the task is
2612 	 * completely idle or all activity is in areas that are not of interest
2613 	 * to automatic numa balancing. Related to that, if there were failed
2614 	 * migration then it implies we are migrating too quickly or the local
2615 	 * node is overloaded. In either case, scan slower
2616 	 */
2617 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2618 		p->numa_scan_period = min(p->numa_scan_period_max,
2619 			p->numa_scan_period << 1);
2620 
2621 		p->mm->numa_next_scan = jiffies +
2622 			msecs_to_jiffies(p->numa_scan_period);
2623 
2624 		return;
2625 	}
2626 
2627 	/*
2628 	 * Prepare to scale scan period relative to the current period.
2629 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2630 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2631 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2632 	 */
2633 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2634 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2635 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2636 
2637 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2638 		/*
2639 		 * Most memory accesses are local. There is no need to
2640 		 * do fast NUMA scanning, since memory is already local.
2641 		 */
2642 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2643 		if (!slot)
2644 			slot = 1;
2645 		diff = slot * period_slot;
2646 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2647 		/*
2648 		 * Most memory accesses are shared with other tasks.
2649 		 * There is no point in continuing fast NUMA scanning,
2650 		 * since other tasks may just move the memory elsewhere.
2651 		 */
2652 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2653 		if (!slot)
2654 			slot = 1;
2655 		diff = slot * period_slot;
2656 	} else {
2657 		/*
2658 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2659 		 * yet they are not on the local NUMA node. Speed up
2660 		 * NUMA scanning to get the memory moved over.
2661 		 */
2662 		int ratio = max(lr_ratio, ps_ratio);
2663 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2664 	}
2665 
2666 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2667 			task_scan_min(p), task_scan_max(p));
2668 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2669 }
2670 
2671 /*
2672  * Get the fraction of time the task has been running since the last
2673  * NUMA placement cycle. The scheduler keeps similar statistics, but
2674  * decays those on a 32ms period, which is orders of magnitude off
2675  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2676  * stats only if the task is so new there are no NUMA statistics yet.
2677  */
2678 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2679 {
2680 	u64 runtime, delta, now;
2681 	/* Use the start of this time slice to avoid calculations. */
2682 	now = p->se.exec_start;
2683 	runtime = p->se.sum_exec_runtime;
2684 
2685 	if (p->last_task_numa_placement) {
2686 		delta = runtime - p->last_sum_exec_runtime;
2687 		*period = now - p->last_task_numa_placement;
2688 
2689 		/* Avoid time going backwards, prevent potential divide error: */
2690 		if (unlikely((s64)*period < 0))
2691 			*period = 0;
2692 	} else {
2693 		delta = p->se.avg.load_sum;
2694 		*period = LOAD_AVG_MAX;
2695 	}
2696 
2697 	p->last_sum_exec_runtime = runtime;
2698 	p->last_task_numa_placement = now;
2699 
2700 	return delta;
2701 }
2702 
2703 /*
2704  * Determine the preferred nid for a task in a numa_group. This needs to
2705  * be done in a way that produces consistent results with group_weight,
2706  * otherwise workloads might not converge.
2707  */
2708 static int preferred_group_nid(struct task_struct *p, int nid)
2709 {
2710 	nodemask_t nodes;
2711 	int dist;
2712 
2713 	/* Direct connections between all NUMA nodes. */
2714 	if (sched_numa_topology_type == NUMA_DIRECT)
2715 		return nid;
2716 
2717 	/*
2718 	 * On a system with glueless mesh NUMA topology, group_weight
2719 	 * scores nodes according to the number of NUMA hinting faults on
2720 	 * both the node itself, and on nearby nodes.
2721 	 */
2722 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2723 		unsigned long score, max_score = 0;
2724 		int node, max_node = nid;
2725 
2726 		dist = sched_max_numa_distance;
2727 
2728 		for_each_node_state(node, N_CPU) {
2729 			score = group_weight(p, node, dist);
2730 			if (score > max_score) {
2731 				max_score = score;
2732 				max_node = node;
2733 			}
2734 		}
2735 		return max_node;
2736 	}
2737 
2738 	/*
2739 	 * Finding the preferred nid in a system with NUMA backplane
2740 	 * interconnect topology is more involved. The goal is to locate
2741 	 * tasks from numa_groups near each other in the system, and
2742 	 * untangle workloads from different sides of the system. This requires
2743 	 * searching down the hierarchy of node groups, recursively searching
2744 	 * inside the highest scoring group of nodes. The nodemask tricks
2745 	 * keep the complexity of the search down.
2746 	 */
2747 	nodes = node_states[N_CPU];
2748 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2749 		unsigned long max_faults = 0;
2750 		nodemask_t max_group = NODE_MASK_NONE;
2751 		int a, b;
2752 
2753 		/* Are there nodes at this distance from each other? */
2754 		if (!find_numa_distance(dist))
2755 			continue;
2756 
2757 		for_each_node_mask(a, nodes) {
2758 			unsigned long faults = 0;
2759 			nodemask_t this_group;
2760 			nodes_clear(this_group);
2761 
2762 			/* Sum group's NUMA faults; includes a==b case. */
2763 			for_each_node_mask(b, nodes) {
2764 				if (node_distance(a, b) < dist) {
2765 					faults += group_faults(p, b);
2766 					node_set(b, this_group);
2767 					node_clear(b, nodes);
2768 				}
2769 			}
2770 
2771 			/* Remember the top group. */
2772 			if (faults > max_faults) {
2773 				max_faults = faults;
2774 				max_group = this_group;
2775 				/*
2776 				 * subtle: at the smallest distance there is
2777 				 * just one node left in each "group", the
2778 				 * winner is the preferred nid.
2779 				 */
2780 				nid = a;
2781 			}
2782 		}
2783 		/* Next round, evaluate the nodes within max_group. */
2784 		if (!max_faults)
2785 			break;
2786 		nodes = max_group;
2787 	}
2788 	return nid;
2789 }
2790 
2791 static void task_numa_placement(struct task_struct *p)
2792 {
2793 	int seq, nid, max_nid = NUMA_NO_NODE;
2794 	unsigned long max_faults = 0;
2795 	unsigned long fault_types[2] = { 0, 0 };
2796 	unsigned long total_faults;
2797 	u64 runtime, period;
2798 	spinlock_t *group_lock = NULL;
2799 	struct numa_group *ng;
2800 
2801 	/*
2802 	 * The p->mm->numa_scan_seq field gets updated without
2803 	 * exclusive access. Use READ_ONCE() here to ensure
2804 	 * that the field is read in a single access:
2805 	 */
2806 	seq = READ_ONCE(p->mm->numa_scan_seq);
2807 	if (p->numa_scan_seq == seq)
2808 		return;
2809 	p->numa_scan_seq = seq;
2810 	p->numa_scan_period_max = task_scan_max(p);
2811 
2812 	total_faults = p->numa_faults_locality[0] +
2813 		       p->numa_faults_locality[1];
2814 	runtime = numa_get_avg_runtime(p, &period);
2815 
2816 	/* If the task is part of a group prevent parallel updates to group stats */
2817 	ng = deref_curr_numa_group(p);
2818 	if (ng) {
2819 		group_lock = &ng->lock;
2820 		spin_lock_irq(group_lock);
2821 	}
2822 
2823 	/* Find the node with the highest number of faults */
2824 	for_each_online_node(nid) {
2825 		/* Keep track of the offsets in numa_faults array */
2826 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2827 		unsigned long faults = 0, group_faults = 0;
2828 		int priv;
2829 
2830 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2831 			long diff, f_diff, f_weight;
2832 
2833 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2834 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2835 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2836 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2837 
2838 			/* Decay existing window, copy faults since last scan */
2839 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2840 			fault_types[priv] += p->numa_faults[membuf_idx];
2841 			p->numa_faults[membuf_idx] = 0;
2842 
2843 			/*
2844 			 * Normalize the faults_from, so all tasks in a group
2845 			 * count according to CPU use, instead of by the raw
2846 			 * number of faults. Tasks with little runtime have
2847 			 * little over-all impact on throughput, and thus their
2848 			 * faults are less important.
2849 			 */
2850 			f_weight = div64_u64(runtime << 16, period + 1);
2851 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2852 				   (total_faults + 1);
2853 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2854 			p->numa_faults[cpubuf_idx] = 0;
2855 
2856 			p->numa_faults[mem_idx] += diff;
2857 			p->numa_faults[cpu_idx] += f_diff;
2858 			faults += p->numa_faults[mem_idx];
2859 			p->total_numa_faults += diff;
2860 			if (ng) {
2861 				/*
2862 				 * safe because we can only change our own group
2863 				 *
2864 				 * mem_idx represents the offset for a given
2865 				 * nid and priv in a specific region because it
2866 				 * is at the beginning of the numa_faults array.
2867 				 */
2868 				ng->faults[mem_idx] += diff;
2869 				ng->faults[cpu_idx] += f_diff;
2870 				ng->total_faults += diff;
2871 				group_faults += ng->faults[mem_idx];
2872 			}
2873 		}
2874 
2875 		if (!ng) {
2876 			if (faults > max_faults) {
2877 				max_faults = faults;
2878 				max_nid = nid;
2879 			}
2880 		} else if (group_faults > max_faults) {
2881 			max_faults = group_faults;
2882 			max_nid = nid;
2883 		}
2884 	}
2885 
2886 	/* Cannot migrate task to CPU-less node */
2887 	max_nid = numa_nearest_node(max_nid, N_CPU);
2888 
2889 	if (ng) {
2890 		numa_group_count_active_nodes(ng);
2891 		spin_unlock_irq(group_lock);
2892 		max_nid = preferred_group_nid(p, max_nid);
2893 	}
2894 
2895 	if (max_faults) {
2896 		/* Set the new preferred node */
2897 		if (max_nid != p->numa_preferred_nid)
2898 			sched_setnuma(p, max_nid);
2899 	}
2900 
2901 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2902 }
2903 
2904 static inline int get_numa_group(struct numa_group *grp)
2905 {
2906 	return refcount_inc_not_zero(&grp->refcount);
2907 }
2908 
2909 static inline void put_numa_group(struct numa_group *grp)
2910 {
2911 	if (refcount_dec_and_test(&grp->refcount))
2912 		kfree_rcu(grp, rcu);
2913 }
2914 
2915 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2916 			int *priv)
2917 {
2918 	struct numa_group *grp, *my_grp;
2919 	struct task_struct *tsk;
2920 	bool join = false;
2921 	int cpu = cpupid_to_cpu(cpupid);
2922 	int i;
2923 
2924 	if (unlikely(!deref_curr_numa_group(p))) {
2925 		unsigned int size = sizeof(struct numa_group) +
2926 				    NR_NUMA_HINT_FAULT_STATS *
2927 				    nr_node_ids * sizeof(unsigned long);
2928 
2929 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2930 		if (!grp)
2931 			return;
2932 
2933 		refcount_set(&grp->refcount, 1);
2934 		grp->active_nodes = 1;
2935 		grp->max_faults_cpu = 0;
2936 		spin_lock_init(&grp->lock);
2937 		grp->gid = p->pid;
2938 
2939 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2940 			grp->faults[i] = p->numa_faults[i];
2941 
2942 		grp->total_faults = p->total_numa_faults;
2943 
2944 		grp->nr_tasks++;
2945 		rcu_assign_pointer(p->numa_group, grp);
2946 	}
2947 
2948 	rcu_read_lock();
2949 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2950 
2951 	if (!cpupid_match_pid(tsk, cpupid))
2952 		goto no_join;
2953 
2954 	grp = rcu_dereference(tsk->numa_group);
2955 	if (!grp)
2956 		goto no_join;
2957 
2958 	my_grp = deref_curr_numa_group(p);
2959 	if (grp == my_grp)
2960 		goto no_join;
2961 
2962 	/*
2963 	 * Only join the other group if its bigger; if we're the bigger group,
2964 	 * the other task will join us.
2965 	 */
2966 	if (my_grp->nr_tasks > grp->nr_tasks)
2967 		goto no_join;
2968 
2969 	/*
2970 	 * Tie-break on the grp address.
2971 	 */
2972 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2973 		goto no_join;
2974 
2975 	/* Always join threads in the same process. */
2976 	if (tsk->mm == current->mm)
2977 		join = true;
2978 
2979 	/* Simple filter to avoid false positives due to PID collisions */
2980 	if (flags & TNF_SHARED)
2981 		join = true;
2982 
2983 	/* Update priv based on whether false sharing was detected */
2984 	*priv = !join;
2985 
2986 	if (join && !get_numa_group(grp))
2987 		goto no_join;
2988 
2989 	rcu_read_unlock();
2990 
2991 	if (!join)
2992 		return;
2993 
2994 	WARN_ON_ONCE(irqs_disabled());
2995 	double_lock_irq(&my_grp->lock, &grp->lock);
2996 
2997 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2998 		my_grp->faults[i] -= p->numa_faults[i];
2999 		grp->faults[i] += p->numa_faults[i];
3000 	}
3001 	my_grp->total_faults -= p->total_numa_faults;
3002 	grp->total_faults += p->total_numa_faults;
3003 
3004 	my_grp->nr_tasks--;
3005 	grp->nr_tasks++;
3006 
3007 	spin_unlock(&my_grp->lock);
3008 	spin_unlock_irq(&grp->lock);
3009 
3010 	rcu_assign_pointer(p->numa_group, grp);
3011 
3012 	put_numa_group(my_grp);
3013 	return;
3014 
3015 no_join:
3016 	rcu_read_unlock();
3017 	return;
3018 }
3019 
3020 /*
3021  * Get rid of NUMA statistics associated with a task (either current or dead).
3022  * If @final is set, the task is dead and has reached refcount zero, so we can
3023  * safely free all relevant data structures. Otherwise, there might be
3024  * concurrent reads from places like load balancing and procfs, and we should
3025  * reset the data back to default state without freeing ->numa_faults.
3026  */
3027 void task_numa_free(struct task_struct *p, bool final)
3028 {
3029 	/* safe: p either is current or is being freed by current */
3030 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3031 	unsigned long *numa_faults = p->numa_faults;
3032 	unsigned long flags;
3033 	int i;
3034 
3035 	if (!numa_faults)
3036 		return;
3037 
3038 	if (grp) {
3039 		spin_lock_irqsave(&grp->lock, flags);
3040 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3041 			grp->faults[i] -= p->numa_faults[i];
3042 		grp->total_faults -= p->total_numa_faults;
3043 
3044 		grp->nr_tasks--;
3045 		spin_unlock_irqrestore(&grp->lock, flags);
3046 		RCU_INIT_POINTER(p->numa_group, NULL);
3047 		put_numa_group(grp);
3048 	}
3049 
3050 	if (final) {
3051 		p->numa_faults = NULL;
3052 		kfree(numa_faults);
3053 	} else {
3054 		p->total_numa_faults = 0;
3055 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3056 			numa_faults[i] = 0;
3057 	}
3058 }
3059 
3060 /*
3061  * Got a PROT_NONE fault for a page on @node.
3062  */
3063 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3064 {
3065 	struct task_struct *p = current;
3066 	bool migrated = flags & TNF_MIGRATED;
3067 	int cpu_node = task_node(current);
3068 	int local = !!(flags & TNF_FAULT_LOCAL);
3069 	struct numa_group *ng;
3070 	int priv;
3071 
3072 	if (!static_branch_likely(&sched_numa_balancing))
3073 		return;
3074 
3075 	/* for example, ksmd faulting in a user's mm */
3076 	if (!p->mm)
3077 		return;
3078 
3079 	/*
3080 	 * NUMA faults statistics are unnecessary for the slow memory
3081 	 * node for memory tiering mode.
3082 	 */
3083 	if (!node_is_toptier(mem_node) &&
3084 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3085 	     !cpupid_valid(last_cpupid)))
3086 		return;
3087 
3088 	/* Allocate buffer to track faults on a per-node basis */
3089 	if (unlikely(!p->numa_faults)) {
3090 		int size = sizeof(*p->numa_faults) *
3091 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3092 
3093 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3094 		if (!p->numa_faults)
3095 			return;
3096 
3097 		p->total_numa_faults = 0;
3098 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3099 	}
3100 
3101 	/*
3102 	 * First accesses are treated as private, otherwise consider accesses
3103 	 * to be private if the accessing pid has not changed
3104 	 */
3105 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3106 		priv = 1;
3107 	} else {
3108 		priv = cpupid_match_pid(p, last_cpupid);
3109 		if (!priv && !(flags & TNF_NO_GROUP))
3110 			task_numa_group(p, last_cpupid, flags, &priv);
3111 	}
3112 
3113 	/*
3114 	 * If a workload spans multiple NUMA nodes, a shared fault that
3115 	 * occurs wholly within the set of nodes that the workload is
3116 	 * actively using should be counted as local. This allows the
3117 	 * scan rate to slow down when a workload has settled down.
3118 	 */
3119 	ng = deref_curr_numa_group(p);
3120 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3121 				numa_is_active_node(cpu_node, ng) &&
3122 				numa_is_active_node(mem_node, ng))
3123 		local = 1;
3124 
3125 	/*
3126 	 * Retry to migrate task to preferred node periodically, in case it
3127 	 * previously failed, or the scheduler moved us.
3128 	 */
3129 	if (time_after(jiffies, p->numa_migrate_retry)) {
3130 		task_numa_placement(p);
3131 		numa_migrate_preferred(p);
3132 	}
3133 
3134 	if (migrated)
3135 		p->numa_pages_migrated += pages;
3136 	if (flags & TNF_MIGRATE_FAIL)
3137 		p->numa_faults_locality[2] += pages;
3138 
3139 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3140 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3141 	p->numa_faults_locality[local] += pages;
3142 }
3143 
3144 static void reset_ptenuma_scan(struct task_struct *p)
3145 {
3146 	/*
3147 	 * We only did a read acquisition of the mmap sem, so
3148 	 * p->mm->numa_scan_seq is written to without exclusive access
3149 	 * and the update is not guaranteed to be atomic. That's not
3150 	 * much of an issue though, since this is just used for
3151 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3152 	 * expensive, to avoid any form of compiler optimizations:
3153 	 */
3154 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3155 	p->mm->numa_scan_offset = 0;
3156 }
3157 
3158 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3159 {
3160 	unsigned long pids;
3161 	/*
3162 	 * Allow unconditional access first two times, so that all the (pages)
3163 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3164 	 * This is also done to avoid any side effect of task scanning
3165 	 * amplifying the unfairness of disjoint set of VMAs' access.
3166 	 */
3167 	if (READ_ONCE(current->mm->numa_scan_seq) < 2)
3168 		return true;
3169 
3170 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3171 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3172 		return true;
3173 
3174 	/*
3175 	 * Complete a scan that has already started regardless of PID access, or
3176 	 * some VMAs may never be scanned in multi-threaded applications:
3177 	 */
3178 	if (mm->numa_scan_offset > vma->vm_start) {
3179 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3180 		return true;
3181 	}
3182 
3183 	return false;
3184 }
3185 
3186 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3187 
3188 /*
3189  * The expensive part of numa migration is done from task_work context.
3190  * Triggered from task_tick_numa().
3191  */
3192 static void task_numa_work(struct callback_head *work)
3193 {
3194 	unsigned long migrate, next_scan, now = jiffies;
3195 	struct task_struct *p = current;
3196 	struct mm_struct *mm = p->mm;
3197 	u64 runtime = p->se.sum_exec_runtime;
3198 	struct vm_area_struct *vma;
3199 	unsigned long start, end;
3200 	unsigned long nr_pte_updates = 0;
3201 	long pages, virtpages;
3202 	struct vma_iterator vmi;
3203 	bool vma_pids_skipped;
3204 	bool vma_pids_forced = false;
3205 
3206 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3207 
3208 	work->next = work;
3209 	/*
3210 	 * Who cares about NUMA placement when they're dying.
3211 	 *
3212 	 * NOTE: make sure not to dereference p->mm before this check,
3213 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3214 	 * without p->mm even though we still had it when we enqueued this
3215 	 * work.
3216 	 */
3217 	if (p->flags & PF_EXITING)
3218 		return;
3219 
3220 	if (!mm->numa_next_scan) {
3221 		mm->numa_next_scan = now +
3222 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3223 	}
3224 
3225 	/*
3226 	 * Enforce maximal scan/migration frequency..
3227 	 */
3228 	migrate = mm->numa_next_scan;
3229 	if (time_before(now, migrate))
3230 		return;
3231 
3232 	if (p->numa_scan_period == 0) {
3233 		p->numa_scan_period_max = task_scan_max(p);
3234 		p->numa_scan_period = task_scan_start(p);
3235 	}
3236 
3237 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3238 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3239 		return;
3240 
3241 	/*
3242 	 * Delay this task enough that another task of this mm will likely win
3243 	 * the next time around.
3244 	 */
3245 	p->node_stamp += 2 * TICK_NSEC;
3246 
3247 	pages = sysctl_numa_balancing_scan_size;
3248 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3249 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3250 	if (!pages)
3251 		return;
3252 
3253 
3254 	if (!mmap_read_trylock(mm))
3255 		return;
3256 
3257 	/*
3258 	 * VMAs are skipped if the current PID has not trapped a fault within
3259 	 * the VMA recently. Allow scanning to be forced if there is no
3260 	 * suitable VMA remaining.
3261 	 */
3262 	vma_pids_skipped = false;
3263 
3264 retry_pids:
3265 	start = mm->numa_scan_offset;
3266 	vma_iter_init(&vmi, mm, start);
3267 	vma = vma_next(&vmi);
3268 	if (!vma) {
3269 		reset_ptenuma_scan(p);
3270 		start = 0;
3271 		vma_iter_set(&vmi, start);
3272 		vma = vma_next(&vmi);
3273 	}
3274 
3275 	do {
3276 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3277 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3278 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3279 			continue;
3280 		}
3281 
3282 		/*
3283 		 * Shared library pages mapped by multiple processes are not
3284 		 * migrated as it is expected they are cache replicated. Avoid
3285 		 * hinting faults in read-only file-backed mappings or the vdso
3286 		 * as migrating the pages will be of marginal benefit.
3287 		 */
3288 		if (!vma->vm_mm ||
3289 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3290 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3291 			continue;
3292 		}
3293 
3294 		/*
3295 		 * Skip inaccessible VMAs to avoid any confusion between
3296 		 * PROT_NONE and NUMA hinting ptes
3297 		 */
3298 		if (!vma_is_accessible(vma)) {
3299 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3300 			continue;
3301 		}
3302 
3303 		/* Initialise new per-VMA NUMAB state. */
3304 		if (!vma->numab_state) {
3305 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3306 				GFP_KERNEL);
3307 			if (!vma->numab_state)
3308 				continue;
3309 
3310 			vma->numab_state->next_scan = now +
3311 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3312 
3313 			/* Reset happens after 4 times scan delay of scan start */
3314 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3315 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3316 
3317 			/*
3318 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3319 			 * to prevent VMAs being skipped prematurely on the
3320 			 * first scan:
3321 			 */
3322 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3323 		}
3324 
3325 		/*
3326 		 * Scanning the VMA's of short lived tasks add more overhead. So
3327 		 * delay the scan for new VMAs.
3328 		 */
3329 		if (mm->numa_scan_seq && time_before(jiffies,
3330 						vma->numab_state->next_scan)) {
3331 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3332 			continue;
3333 		}
3334 
3335 		/* RESET access PIDs regularly for old VMAs. */
3336 		if (mm->numa_scan_seq &&
3337 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3338 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3339 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3340 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3341 			vma->numab_state->pids_active[1] = 0;
3342 		}
3343 
3344 		/* Do not rescan VMAs twice within the same sequence. */
3345 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3346 			mm->numa_scan_offset = vma->vm_end;
3347 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3348 			continue;
3349 		}
3350 
3351 		/*
3352 		 * Do not scan the VMA if task has not accessed it, unless no other
3353 		 * VMA candidate exists.
3354 		 */
3355 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3356 			vma_pids_skipped = true;
3357 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3358 			continue;
3359 		}
3360 
3361 		do {
3362 			start = max(start, vma->vm_start);
3363 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3364 			end = min(end, vma->vm_end);
3365 			nr_pte_updates = change_prot_numa(vma, start, end);
3366 
3367 			/*
3368 			 * Try to scan sysctl_numa_balancing_size worth of
3369 			 * hpages that have at least one present PTE that
3370 			 * is not already pte-numa. If the VMA contains
3371 			 * areas that are unused or already full of prot_numa
3372 			 * PTEs, scan up to virtpages, to skip through those
3373 			 * areas faster.
3374 			 */
3375 			if (nr_pte_updates)
3376 				pages -= (end - start) >> PAGE_SHIFT;
3377 			virtpages -= (end - start) >> PAGE_SHIFT;
3378 
3379 			start = end;
3380 			if (pages <= 0 || virtpages <= 0)
3381 				goto out;
3382 
3383 			cond_resched();
3384 		} while (end != vma->vm_end);
3385 
3386 		/* VMA scan is complete, do not scan until next sequence. */
3387 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3388 
3389 		/*
3390 		 * Only force scan within one VMA at a time, to limit the
3391 		 * cost of scanning a potentially uninteresting VMA.
3392 		 */
3393 		if (vma_pids_forced)
3394 			break;
3395 	} for_each_vma(vmi, vma);
3396 
3397 	/*
3398 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3399 	 * not accessing the VMA previously, then force a scan to ensure
3400 	 * forward progress:
3401 	 */
3402 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3403 		vma_pids_forced = true;
3404 		goto retry_pids;
3405 	}
3406 
3407 out:
3408 	/*
3409 	 * It is possible to reach the end of the VMA list but the last few
3410 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3411 	 * would find the !migratable VMA on the next scan but not reset the
3412 	 * scanner to the start so check it now.
3413 	 */
3414 	if (vma)
3415 		mm->numa_scan_offset = start;
3416 	else
3417 		reset_ptenuma_scan(p);
3418 	mmap_read_unlock(mm);
3419 
3420 	/*
3421 	 * Make sure tasks use at least 32x as much time to run other code
3422 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3423 	 * Usually update_task_scan_period slows down scanning enough; on an
3424 	 * overloaded system we need to limit overhead on a per task basis.
3425 	 */
3426 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3427 		u64 diff = p->se.sum_exec_runtime - runtime;
3428 		p->node_stamp += 32 * diff;
3429 	}
3430 }
3431 
3432 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3433 {
3434 	int mm_users = 0;
3435 	struct mm_struct *mm = p->mm;
3436 
3437 	if (mm) {
3438 		mm_users = atomic_read(&mm->mm_users);
3439 		if (mm_users == 1) {
3440 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3441 			mm->numa_scan_seq = 0;
3442 		}
3443 	}
3444 	p->node_stamp			= 0;
3445 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3446 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3447 	p->numa_migrate_retry		= 0;
3448 	/* Protect against double add, see task_tick_numa and task_numa_work */
3449 	p->numa_work.next		= &p->numa_work;
3450 	p->numa_faults			= NULL;
3451 	p->numa_pages_migrated		= 0;
3452 	p->total_numa_faults		= 0;
3453 	RCU_INIT_POINTER(p->numa_group, NULL);
3454 	p->last_task_numa_placement	= 0;
3455 	p->last_sum_exec_runtime	= 0;
3456 
3457 	init_task_work(&p->numa_work, task_numa_work);
3458 
3459 	/* New address space, reset the preferred nid */
3460 	if (!(clone_flags & CLONE_VM)) {
3461 		p->numa_preferred_nid = NUMA_NO_NODE;
3462 		return;
3463 	}
3464 
3465 	/*
3466 	 * New thread, keep existing numa_preferred_nid which should be copied
3467 	 * already by arch_dup_task_struct but stagger when scans start.
3468 	 */
3469 	if (mm) {
3470 		unsigned int delay;
3471 
3472 		delay = min_t(unsigned int, task_scan_max(current),
3473 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3474 		delay += 2 * TICK_NSEC;
3475 		p->node_stamp = delay;
3476 	}
3477 }
3478 
3479 /*
3480  * Drive the periodic memory faults..
3481  */
3482 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3483 {
3484 	struct callback_head *work = &curr->numa_work;
3485 	u64 period, now;
3486 
3487 	/*
3488 	 * We don't care about NUMA placement if we don't have memory.
3489 	 */
3490 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3491 		return;
3492 
3493 	/*
3494 	 * Using runtime rather than walltime has the dual advantage that
3495 	 * we (mostly) drive the selection from busy threads and that the
3496 	 * task needs to have done some actual work before we bother with
3497 	 * NUMA placement.
3498 	 */
3499 	now = curr->se.sum_exec_runtime;
3500 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3501 
3502 	if (now > curr->node_stamp + period) {
3503 		if (!curr->node_stamp)
3504 			curr->numa_scan_period = task_scan_start(curr);
3505 		curr->node_stamp += period;
3506 
3507 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3508 			task_work_add(curr, work, TWA_RESUME);
3509 	}
3510 }
3511 
3512 static void update_scan_period(struct task_struct *p, int new_cpu)
3513 {
3514 	int src_nid = cpu_to_node(task_cpu(p));
3515 	int dst_nid = cpu_to_node(new_cpu);
3516 
3517 	if (!static_branch_likely(&sched_numa_balancing))
3518 		return;
3519 
3520 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3521 		return;
3522 
3523 	if (src_nid == dst_nid)
3524 		return;
3525 
3526 	/*
3527 	 * Allow resets if faults have been trapped before one scan
3528 	 * has completed. This is most likely due to a new task that
3529 	 * is pulled cross-node due to wakeups or load balancing.
3530 	 */
3531 	if (p->numa_scan_seq) {
3532 		/*
3533 		 * Avoid scan adjustments if moving to the preferred
3534 		 * node or if the task was not previously running on
3535 		 * the preferred node.
3536 		 */
3537 		if (dst_nid == p->numa_preferred_nid ||
3538 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3539 			src_nid != p->numa_preferred_nid))
3540 			return;
3541 	}
3542 
3543 	p->numa_scan_period = task_scan_start(p);
3544 }
3545 
3546 #else
3547 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3548 {
3549 }
3550 
3551 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3552 {
3553 }
3554 
3555 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3556 {
3557 }
3558 
3559 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3560 {
3561 }
3562 
3563 #endif /* CONFIG_NUMA_BALANCING */
3564 
3565 static void
3566 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3567 {
3568 	update_load_add(&cfs_rq->load, se->load.weight);
3569 #ifdef CONFIG_SMP
3570 	if (entity_is_task(se)) {
3571 		struct rq *rq = rq_of(cfs_rq);
3572 
3573 		account_numa_enqueue(rq, task_of(se));
3574 		list_add(&se->group_node, &rq->cfs_tasks);
3575 	}
3576 #endif
3577 	cfs_rq->nr_running++;
3578 	if (se_is_idle(se))
3579 		cfs_rq->idle_nr_running++;
3580 }
3581 
3582 static void
3583 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3584 {
3585 	update_load_sub(&cfs_rq->load, se->load.weight);
3586 #ifdef CONFIG_SMP
3587 	if (entity_is_task(se)) {
3588 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3589 		list_del_init(&se->group_node);
3590 	}
3591 #endif
3592 	cfs_rq->nr_running--;
3593 	if (se_is_idle(se))
3594 		cfs_rq->idle_nr_running--;
3595 }
3596 
3597 /*
3598  * Signed add and clamp on underflow.
3599  *
3600  * Explicitly do a load-store to ensure the intermediate value never hits
3601  * memory. This allows lockless observations without ever seeing the negative
3602  * values.
3603  */
3604 #define add_positive(_ptr, _val) do {                           \
3605 	typeof(_ptr) ptr = (_ptr);                              \
3606 	typeof(_val) val = (_val);                              \
3607 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3608 								\
3609 	res = var + val;                                        \
3610 								\
3611 	if (val < 0 && res > var)                               \
3612 		res = 0;                                        \
3613 								\
3614 	WRITE_ONCE(*ptr, res);                                  \
3615 } while (0)
3616 
3617 /*
3618  * Unsigned subtract and clamp on underflow.
3619  *
3620  * Explicitly do a load-store to ensure the intermediate value never hits
3621  * memory. This allows lockless observations without ever seeing the negative
3622  * values.
3623  */
3624 #define sub_positive(_ptr, _val) do {				\
3625 	typeof(_ptr) ptr = (_ptr);				\
3626 	typeof(*ptr) val = (_val);				\
3627 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3628 	res = var - val;					\
3629 	if (res > var)						\
3630 		res = 0;					\
3631 	WRITE_ONCE(*ptr, res);					\
3632 } while (0)
3633 
3634 /*
3635  * Remove and clamp on negative, from a local variable.
3636  *
3637  * A variant of sub_positive(), which does not use explicit load-store
3638  * and is thus optimized for local variable updates.
3639  */
3640 #define lsub_positive(_ptr, _val) do {				\
3641 	typeof(_ptr) ptr = (_ptr);				\
3642 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3643 } while (0)
3644 
3645 #ifdef CONFIG_SMP
3646 static inline void
3647 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3648 {
3649 	cfs_rq->avg.load_avg += se->avg.load_avg;
3650 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3651 }
3652 
3653 static inline void
3654 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3655 {
3656 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3657 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3658 	/* See update_cfs_rq_load_avg() */
3659 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3660 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3661 }
3662 #else
3663 static inline void
3664 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3665 static inline void
3666 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3667 #endif
3668 
3669 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se,
3670 			   unsigned long weight)
3671 {
3672 	unsigned long old_weight = se->load.weight;
3673 	u64 avruntime = avg_vruntime(cfs_rq);
3674 	s64 vlag, vslice;
3675 
3676 	/*
3677 	 * VRUNTIME
3678 	 * ========
3679 	 *
3680 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3681 	 * adjusted if re-weight at !0-lag point.
3682 	 *
3683 	 * Proof: For contradiction assume this is not true, so we can
3684 	 * re-weight without changing vruntime at !0-lag point.
3685 	 *
3686 	 *             Weight	VRuntime   Avg-VRuntime
3687 	 *     before    w          v            V
3688 	 *      after    w'         v'           V'
3689 	 *
3690 	 * Since lag needs to be preserved through re-weight:
3691 	 *
3692 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3693 	 *	==>	V' = (V - v)*w/w' + v		(1)
3694 	 *
3695 	 * Let W be the total weight of the entities before reweight,
3696 	 * since V' is the new weighted average of entities:
3697 	 *
3698 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3699 	 *
3700 	 * by using (1) & (2) we obtain:
3701 	 *
3702 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3703 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3704 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3705 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3706 	 *
3707 	 * Since we are doing at !0-lag point which means V != v, we
3708 	 * can simplify (3):
3709 	 *
3710 	 *	==>	W / (W + w' - w) = w / w'
3711 	 *	==>	Ww' = Ww + ww' - ww
3712 	 *	==>	W * (w' - w) = w * (w' - w)
3713 	 *	==>	W = w	(re-weight indicates w' != w)
3714 	 *
3715 	 * So the cfs_rq contains only one entity, hence vruntime of
3716 	 * the entity @v should always equal to the cfs_rq's weighted
3717 	 * average vruntime @V, which means we will always re-weight
3718 	 * at 0-lag point, thus breach assumption. Proof completed.
3719 	 *
3720 	 *
3721 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3722 	 * vruntime of all the entities.
3723 	 *
3724 	 * Proof: According to corollary #1, Eq. (1) should be:
3725 	 *
3726 	 *	(V - v)*w = (V' - v')*w'
3727 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3728 	 *
3729 	 * According to the weighted average formula, we have:
3730 	 *
3731 	 *	V' = (WV - wv + w'v') / (W - w + w')
3732 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3733 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3734 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3735 	 *
3736 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3737 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3738 	 *
3739 	 * If the entity is the only one in the cfs_rq, then reweight
3740 	 * always occurs at 0-lag point, so V won't change. Or else
3741 	 * there are other entities, hence W != w, then Eq. (5) turns
3742 	 * into V' = V. So V won't change in either case, proof done.
3743 	 *
3744 	 *
3745 	 * So according to corollary #1 & #2, the effect of re-weight
3746 	 * on vruntime should be:
3747 	 *
3748 	 *	v' = V' - (V - v) * w / w'		(4)
3749 	 *	   = V  - (V - v) * w / w'
3750 	 *	   = V  - vl * w / w'
3751 	 *	   = V  - vl'
3752 	 */
3753 	if (avruntime != se->vruntime) {
3754 		vlag = (s64)(avruntime - se->vruntime);
3755 		vlag = div_s64(vlag * old_weight, weight);
3756 		se->vruntime = avruntime - vlag;
3757 	}
3758 
3759 	/*
3760 	 * DEADLINE
3761 	 * ========
3762 	 *
3763 	 * When the weight changes, the virtual time slope changes and
3764 	 * we should adjust the relative virtual deadline accordingly.
3765 	 *
3766 	 *	d' = v' + (d - v)*w/w'
3767 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3768 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3769 	 *	   = V  + (d - V)*w/w'
3770 	 */
3771 	vslice = (s64)(se->deadline - avruntime);
3772 	vslice = div_s64(vslice * old_weight, weight);
3773 	se->deadline = avruntime + vslice;
3774 }
3775 
3776 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3777 			    unsigned long weight)
3778 {
3779 	bool curr = cfs_rq->curr == se;
3780 
3781 	if (se->on_rq) {
3782 		/* commit outstanding execution time */
3783 		if (curr)
3784 			update_curr(cfs_rq);
3785 		else
3786 			__dequeue_entity(cfs_rq, se);
3787 		update_load_sub(&cfs_rq->load, se->load.weight);
3788 	}
3789 	dequeue_load_avg(cfs_rq, se);
3790 
3791 	if (!se->on_rq) {
3792 		/*
3793 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3794 		 * we need to scale se->vlag when w_i changes.
3795 		 */
3796 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3797 	} else {
3798 		reweight_eevdf(cfs_rq, se, weight);
3799 	}
3800 
3801 	update_load_set(&se->load, weight);
3802 
3803 #ifdef CONFIG_SMP
3804 	do {
3805 		u32 divider = get_pelt_divider(&se->avg);
3806 
3807 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3808 	} while (0);
3809 #endif
3810 
3811 	enqueue_load_avg(cfs_rq, se);
3812 	if (se->on_rq) {
3813 		update_load_add(&cfs_rq->load, se->load.weight);
3814 		if (!curr) {
3815 			/*
3816 			 * The entity's vruntime has been adjusted, so let's check
3817 			 * whether the rq-wide min_vruntime needs updated too. Since
3818 			 * the calculations above require stable min_vruntime rather
3819 			 * than up-to-date one, we do the update at the end of the
3820 			 * reweight process.
3821 			 */
3822 			__enqueue_entity(cfs_rq, se);
3823 			update_min_vruntime(cfs_rq);
3824 		}
3825 	}
3826 }
3827 
3828 void reweight_task(struct task_struct *p, int prio)
3829 {
3830 	struct sched_entity *se = &p->se;
3831 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3832 	struct load_weight *load = &se->load;
3833 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3834 
3835 	reweight_entity(cfs_rq, se, weight);
3836 	load->inv_weight = sched_prio_to_wmult[prio];
3837 }
3838 
3839 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3840 
3841 #ifdef CONFIG_FAIR_GROUP_SCHED
3842 #ifdef CONFIG_SMP
3843 /*
3844  * All this does is approximate the hierarchical proportion which includes that
3845  * global sum we all love to hate.
3846  *
3847  * That is, the weight of a group entity, is the proportional share of the
3848  * group weight based on the group runqueue weights. That is:
3849  *
3850  *                     tg->weight * grq->load.weight
3851  *   ge->load.weight = -----------------------------               (1)
3852  *                       \Sum grq->load.weight
3853  *
3854  * Now, because computing that sum is prohibitively expensive to compute (been
3855  * there, done that) we approximate it with this average stuff. The average
3856  * moves slower and therefore the approximation is cheaper and more stable.
3857  *
3858  * So instead of the above, we substitute:
3859  *
3860  *   grq->load.weight -> grq->avg.load_avg                         (2)
3861  *
3862  * which yields the following:
3863  *
3864  *                     tg->weight * grq->avg.load_avg
3865  *   ge->load.weight = ------------------------------              (3)
3866  *                             tg->load_avg
3867  *
3868  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3869  *
3870  * That is shares_avg, and it is right (given the approximation (2)).
3871  *
3872  * The problem with it is that because the average is slow -- it was designed
3873  * to be exactly that of course -- this leads to transients in boundary
3874  * conditions. In specific, the case where the group was idle and we start the
3875  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3876  * yielding bad latency etc..
3877  *
3878  * Now, in that special case (1) reduces to:
3879  *
3880  *                     tg->weight * grq->load.weight
3881  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3882  *                         grp->load.weight
3883  *
3884  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3885  *
3886  * So what we do is modify our approximation (3) to approach (4) in the (near)
3887  * UP case, like:
3888  *
3889  *   ge->load.weight =
3890  *
3891  *              tg->weight * grq->load.weight
3892  *     ---------------------------------------------------         (5)
3893  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3894  *
3895  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3896  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3897  *
3898  *
3899  *                     tg->weight * grq->load.weight
3900  *   ge->load.weight = -----------------------------		   (6)
3901  *                             tg_load_avg'
3902  *
3903  * Where:
3904  *
3905  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3906  *                  max(grq->load.weight, grq->avg.load_avg)
3907  *
3908  * And that is shares_weight and is icky. In the (near) UP case it approaches
3909  * (4) while in the normal case it approaches (3). It consistently
3910  * overestimates the ge->load.weight and therefore:
3911  *
3912  *   \Sum ge->load.weight >= tg->weight
3913  *
3914  * hence icky!
3915  */
3916 static long calc_group_shares(struct cfs_rq *cfs_rq)
3917 {
3918 	long tg_weight, tg_shares, load, shares;
3919 	struct task_group *tg = cfs_rq->tg;
3920 
3921 	tg_shares = READ_ONCE(tg->shares);
3922 
3923 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3924 
3925 	tg_weight = atomic_long_read(&tg->load_avg);
3926 
3927 	/* Ensure tg_weight >= load */
3928 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3929 	tg_weight += load;
3930 
3931 	shares = (tg_shares * load);
3932 	if (tg_weight)
3933 		shares /= tg_weight;
3934 
3935 	/*
3936 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3937 	 * of a group with small tg->shares value. It is a floor value which is
3938 	 * assigned as a minimum load.weight to the sched_entity representing
3939 	 * the group on a CPU.
3940 	 *
3941 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3942 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3943 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3944 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3945 	 * instead of 0.
3946 	 */
3947 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3948 }
3949 #endif /* CONFIG_SMP */
3950 
3951 /*
3952  * Recomputes the group entity based on the current state of its group
3953  * runqueue.
3954  */
3955 static void update_cfs_group(struct sched_entity *se)
3956 {
3957 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3958 	long shares;
3959 
3960 	if (!gcfs_rq)
3961 		return;
3962 
3963 	if (throttled_hierarchy(gcfs_rq))
3964 		return;
3965 
3966 #ifndef CONFIG_SMP
3967 	shares = READ_ONCE(gcfs_rq->tg->shares);
3968 #else
3969 	shares = calc_group_shares(gcfs_rq);
3970 #endif
3971 	if (unlikely(se->load.weight != shares))
3972 		reweight_entity(cfs_rq_of(se), se, shares);
3973 }
3974 
3975 #else /* CONFIG_FAIR_GROUP_SCHED */
3976 static inline void update_cfs_group(struct sched_entity *se)
3977 {
3978 }
3979 #endif /* CONFIG_FAIR_GROUP_SCHED */
3980 
3981 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3982 {
3983 	struct rq *rq = rq_of(cfs_rq);
3984 
3985 	if (&rq->cfs == cfs_rq) {
3986 		/*
3987 		 * There are a few boundary cases this might miss but it should
3988 		 * get called often enough that that should (hopefully) not be
3989 		 * a real problem.
3990 		 *
3991 		 * It will not get called when we go idle, because the idle
3992 		 * thread is a different class (!fair), nor will the utilization
3993 		 * number include things like RT tasks.
3994 		 *
3995 		 * As is, the util number is not freq-invariant (we'd have to
3996 		 * implement arch_scale_freq_capacity() for that).
3997 		 *
3998 		 * See cpu_util_cfs().
3999 		 */
4000 		cpufreq_update_util(rq, flags);
4001 	}
4002 }
4003 
4004 #ifdef CONFIG_SMP
4005 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4006 {
4007 	if (sa->load_sum)
4008 		return false;
4009 
4010 	if (sa->util_sum)
4011 		return false;
4012 
4013 	if (sa->runnable_sum)
4014 		return false;
4015 
4016 	/*
4017 	 * _avg must be null when _sum are null because _avg = _sum / divider
4018 	 * Make sure that rounding and/or propagation of PELT values never
4019 	 * break this.
4020 	 */
4021 	SCHED_WARN_ON(sa->load_avg ||
4022 		      sa->util_avg ||
4023 		      sa->runnable_avg);
4024 
4025 	return true;
4026 }
4027 
4028 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4029 {
4030 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4031 				 cfs_rq->last_update_time_copy);
4032 }
4033 #ifdef CONFIG_FAIR_GROUP_SCHED
4034 /*
4035  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4036  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4037  * bottom-up, we only have to test whether the cfs_rq before us on the list
4038  * is our child.
4039  * If cfs_rq is not on the list, test whether a child needs its to be added to
4040  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4041  */
4042 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4043 {
4044 	struct cfs_rq *prev_cfs_rq;
4045 	struct list_head *prev;
4046 
4047 	if (cfs_rq->on_list) {
4048 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4049 	} else {
4050 		struct rq *rq = rq_of(cfs_rq);
4051 
4052 		prev = rq->tmp_alone_branch;
4053 	}
4054 
4055 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4056 
4057 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4058 }
4059 
4060 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4061 {
4062 	if (cfs_rq->load.weight)
4063 		return false;
4064 
4065 	if (!load_avg_is_decayed(&cfs_rq->avg))
4066 		return false;
4067 
4068 	if (child_cfs_rq_on_list(cfs_rq))
4069 		return false;
4070 
4071 	return true;
4072 }
4073 
4074 /**
4075  * update_tg_load_avg - update the tg's load avg
4076  * @cfs_rq: the cfs_rq whose avg changed
4077  *
4078  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4079  * However, because tg->load_avg is a global value there are performance
4080  * considerations.
4081  *
4082  * In order to avoid having to look at the other cfs_rq's, we use a
4083  * differential update where we store the last value we propagated. This in
4084  * turn allows skipping updates if the differential is 'small'.
4085  *
4086  * Updating tg's load_avg is necessary before update_cfs_share().
4087  */
4088 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4089 {
4090 	long delta;
4091 	u64 now;
4092 
4093 	/*
4094 	 * No need to update load_avg for root_task_group as it is not used.
4095 	 */
4096 	if (cfs_rq->tg == &root_task_group)
4097 		return;
4098 
4099 	/*
4100 	 * For migration heavy workloads, access to tg->load_avg can be
4101 	 * unbound. Limit the update rate to at most once per ms.
4102 	 */
4103 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4104 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4105 		return;
4106 
4107 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4108 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4109 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4110 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4111 		cfs_rq->last_update_tg_load_avg = now;
4112 	}
4113 }
4114 
4115 /*
4116  * Called within set_task_rq() right before setting a task's CPU. The
4117  * caller only guarantees p->pi_lock is held; no other assumptions,
4118  * including the state of rq->lock, should be made.
4119  */
4120 void set_task_rq_fair(struct sched_entity *se,
4121 		      struct cfs_rq *prev, struct cfs_rq *next)
4122 {
4123 	u64 p_last_update_time;
4124 	u64 n_last_update_time;
4125 
4126 	if (!sched_feat(ATTACH_AGE_LOAD))
4127 		return;
4128 
4129 	/*
4130 	 * We are supposed to update the task to "current" time, then its up to
4131 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4132 	 * getting what current time is, so simply throw away the out-of-date
4133 	 * time. This will result in the wakee task is less decayed, but giving
4134 	 * the wakee more load sounds not bad.
4135 	 */
4136 	if (!(se->avg.last_update_time && prev))
4137 		return;
4138 
4139 	p_last_update_time = cfs_rq_last_update_time(prev);
4140 	n_last_update_time = cfs_rq_last_update_time(next);
4141 
4142 	__update_load_avg_blocked_se(p_last_update_time, se);
4143 	se->avg.last_update_time = n_last_update_time;
4144 }
4145 
4146 /*
4147  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4148  * propagate its contribution. The key to this propagation is the invariant
4149  * that for each group:
4150  *
4151  *   ge->avg == grq->avg						(1)
4152  *
4153  * _IFF_ we look at the pure running and runnable sums. Because they
4154  * represent the very same entity, just at different points in the hierarchy.
4155  *
4156  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4157  * and simply copies the running/runnable sum over (but still wrong, because
4158  * the group entity and group rq do not have their PELT windows aligned).
4159  *
4160  * However, update_tg_cfs_load() is more complex. So we have:
4161  *
4162  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4163  *
4164  * And since, like util, the runnable part should be directly transferable,
4165  * the following would _appear_ to be the straight forward approach:
4166  *
4167  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4168  *
4169  * And per (1) we have:
4170  *
4171  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4172  *
4173  * Which gives:
4174  *
4175  *                      ge->load.weight * grq->avg.load_avg
4176  *   ge->avg.load_avg = -----------------------------------		(4)
4177  *                               grq->load.weight
4178  *
4179  * Except that is wrong!
4180  *
4181  * Because while for entities historical weight is not important and we
4182  * really only care about our future and therefore can consider a pure
4183  * runnable sum, runqueues can NOT do this.
4184  *
4185  * We specifically want runqueues to have a load_avg that includes
4186  * historical weights. Those represent the blocked load, the load we expect
4187  * to (shortly) return to us. This only works by keeping the weights as
4188  * integral part of the sum. We therefore cannot decompose as per (3).
4189  *
4190  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4191  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4192  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4193  * runnable section of these tasks overlap (or not). If they were to perfectly
4194  * align the rq as a whole would be runnable 2/3 of the time. If however we
4195  * always have at least 1 runnable task, the rq as a whole is always runnable.
4196  *
4197  * So we'll have to approximate.. :/
4198  *
4199  * Given the constraint:
4200  *
4201  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4202  *
4203  * We can construct a rule that adds runnable to a rq by assuming minimal
4204  * overlap.
4205  *
4206  * On removal, we'll assume each task is equally runnable; which yields:
4207  *
4208  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4209  *
4210  * XXX: only do this for the part of runnable > running ?
4211  *
4212  */
4213 static inline void
4214 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4215 {
4216 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4217 	u32 new_sum, divider;
4218 
4219 	/* Nothing to update */
4220 	if (!delta_avg)
4221 		return;
4222 
4223 	/*
4224 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4225 	 * See ___update_load_avg() for details.
4226 	 */
4227 	divider = get_pelt_divider(&cfs_rq->avg);
4228 
4229 
4230 	/* Set new sched_entity's utilization */
4231 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4232 	new_sum = se->avg.util_avg * divider;
4233 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4234 	se->avg.util_sum = new_sum;
4235 
4236 	/* Update parent cfs_rq utilization */
4237 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4238 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4239 
4240 	/* See update_cfs_rq_load_avg() */
4241 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4242 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4243 }
4244 
4245 static inline void
4246 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4247 {
4248 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4249 	u32 new_sum, divider;
4250 
4251 	/* Nothing to update */
4252 	if (!delta_avg)
4253 		return;
4254 
4255 	/*
4256 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4257 	 * See ___update_load_avg() for details.
4258 	 */
4259 	divider = get_pelt_divider(&cfs_rq->avg);
4260 
4261 	/* Set new sched_entity's runnable */
4262 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4263 	new_sum = se->avg.runnable_avg * divider;
4264 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4265 	se->avg.runnable_sum = new_sum;
4266 
4267 	/* Update parent cfs_rq runnable */
4268 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4269 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4270 	/* See update_cfs_rq_load_avg() */
4271 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4272 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4273 }
4274 
4275 static inline void
4276 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4277 {
4278 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4279 	unsigned long load_avg;
4280 	u64 load_sum = 0;
4281 	s64 delta_sum;
4282 	u32 divider;
4283 
4284 	if (!runnable_sum)
4285 		return;
4286 
4287 	gcfs_rq->prop_runnable_sum = 0;
4288 
4289 	/*
4290 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4291 	 * See ___update_load_avg() for details.
4292 	 */
4293 	divider = get_pelt_divider(&cfs_rq->avg);
4294 
4295 	if (runnable_sum >= 0) {
4296 		/*
4297 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4298 		 * the CPU is saturated running == runnable.
4299 		 */
4300 		runnable_sum += se->avg.load_sum;
4301 		runnable_sum = min_t(long, runnable_sum, divider);
4302 	} else {
4303 		/*
4304 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4305 		 * assuming all tasks are equally runnable.
4306 		 */
4307 		if (scale_load_down(gcfs_rq->load.weight)) {
4308 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4309 				scale_load_down(gcfs_rq->load.weight));
4310 		}
4311 
4312 		/* But make sure to not inflate se's runnable */
4313 		runnable_sum = min(se->avg.load_sum, load_sum);
4314 	}
4315 
4316 	/*
4317 	 * runnable_sum can't be lower than running_sum
4318 	 * Rescale running sum to be in the same range as runnable sum
4319 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4320 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4321 	 */
4322 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4323 	runnable_sum = max(runnable_sum, running_sum);
4324 
4325 	load_sum = se_weight(se) * runnable_sum;
4326 	load_avg = div_u64(load_sum, divider);
4327 
4328 	delta_avg = load_avg - se->avg.load_avg;
4329 	if (!delta_avg)
4330 		return;
4331 
4332 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4333 
4334 	se->avg.load_sum = runnable_sum;
4335 	se->avg.load_avg = load_avg;
4336 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4337 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4338 	/* See update_cfs_rq_load_avg() */
4339 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4340 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4341 }
4342 
4343 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4344 {
4345 	cfs_rq->propagate = 1;
4346 	cfs_rq->prop_runnable_sum += runnable_sum;
4347 }
4348 
4349 /* Update task and its cfs_rq load average */
4350 static inline int propagate_entity_load_avg(struct sched_entity *se)
4351 {
4352 	struct cfs_rq *cfs_rq, *gcfs_rq;
4353 
4354 	if (entity_is_task(se))
4355 		return 0;
4356 
4357 	gcfs_rq = group_cfs_rq(se);
4358 	if (!gcfs_rq->propagate)
4359 		return 0;
4360 
4361 	gcfs_rq->propagate = 0;
4362 
4363 	cfs_rq = cfs_rq_of(se);
4364 
4365 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4366 
4367 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4368 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4369 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4370 
4371 	trace_pelt_cfs_tp(cfs_rq);
4372 	trace_pelt_se_tp(se);
4373 
4374 	return 1;
4375 }
4376 
4377 /*
4378  * Check if we need to update the load and the utilization of a blocked
4379  * group_entity:
4380  */
4381 static inline bool skip_blocked_update(struct sched_entity *se)
4382 {
4383 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4384 
4385 	/*
4386 	 * If sched_entity still have not zero load or utilization, we have to
4387 	 * decay it:
4388 	 */
4389 	if (se->avg.load_avg || se->avg.util_avg)
4390 		return false;
4391 
4392 	/*
4393 	 * If there is a pending propagation, we have to update the load and
4394 	 * the utilization of the sched_entity:
4395 	 */
4396 	if (gcfs_rq->propagate)
4397 		return false;
4398 
4399 	/*
4400 	 * Otherwise, the load and the utilization of the sched_entity is
4401 	 * already zero and there is no pending propagation, so it will be a
4402 	 * waste of time to try to decay it:
4403 	 */
4404 	return true;
4405 }
4406 
4407 #else /* CONFIG_FAIR_GROUP_SCHED */
4408 
4409 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4410 
4411 static inline int propagate_entity_load_avg(struct sched_entity *se)
4412 {
4413 	return 0;
4414 }
4415 
4416 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4417 
4418 #endif /* CONFIG_FAIR_GROUP_SCHED */
4419 
4420 #ifdef CONFIG_NO_HZ_COMMON
4421 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4422 {
4423 	u64 throttled = 0, now, lut;
4424 	struct cfs_rq *cfs_rq;
4425 	struct rq *rq;
4426 	bool is_idle;
4427 
4428 	if (load_avg_is_decayed(&se->avg))
4429 		return;
4430 
4431 	cfs_rq = cfs_rq_of(se);
4432 	rq = rq_of(cfs_rq);
4433 
4434 	rcu_read_lock();
4435 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4436 	rcu_read_unlock();
4437 
4438 	/*
4439 	 * The lag estimation comes with a cost we don't want to pay all the
4440 	 * time. Hence, limiting to the case where the source CPU is idle and
4441 	 * we know we are at the greatest risk to have an outdated clock.
4442 	 */
4443 	if (!is_idle)
4444 		return;
4445 
4446 	/*
4447 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4448 	 *
4449 	 *   last_update_time (the cfs_rq's last_update_time)
4450 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4451 	 *      = rq_clock_pelt()@cfs_rq_idle
4452 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4453 	 *
4454 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4455 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4456 	 *
4457 	 *   rq_idle_lag (delta between now and rq's update)
4458 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4459 	 *
4460 	 * We can then write:
4461 	 *
4462 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4463 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4464 	 * Where:
4465 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4466 	 *      rq_clock()@rq_idle      is rq->clock_idle
4467 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4468 	 *                              is cfs_rq->throttled_pelt_idle
4469 	 */
4470 
4471 #ifdef CONFIG_CFS_BANDWIDTH
4472 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4473 	/* The clock has been stopped for throttling */
4474 	if (throttled == U64_MAX)
4475 		return;
4476 #endif
4477 	now = u64_u32_load(rq->clock_pelt_idle);
4478 	/*
4479 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4480 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4481 	 * which lead to an underestimation. The opposite would lead to an
4482 	 * overestimation.
4483 	 */
4484 	smp_rmb();
4485 	lut = cfs_rq_last_update_time(cfs_rq);
4486 
4487 	now -= throttled;
4488 	if (now < lut)
4489 		/*
4490 		 * cfs_rq->avg.last_update_time is more recent than our
4491 		 * estimation, let's use it.
4492 		 */
4493 		now = lut;
4494 	else
4495 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4496 
4497 	__update_load_avg_blocked_se(now, se);
4498 }
4499 #else
4500 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4501 #endif
4502 
4503 /**
4504  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4505  * @now: current time, as per cfs_rq_clock_pelt()
4506  * @cfs_rq: cfs_rq to update
4507  *
4508  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4509  * avg. The immediate corollary is that all (fair) tasks must be attached.
4510  *
4511  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4512  *
4513  * Return: true if the load decayed or we removed load.
4514  *
4515  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4516  * call update_tg_load_avg() when this function returns true.
4517  */
4518 static inline int
4519 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4520 {
4521 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4522 	struct sched_avg *sa = &cfs_rq->avg;
4523 	int decayed = 0;
4524 
4525 	if (cfs_rq->removed.nr) {
4526 		unsigned long r;
4527 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4528 
4529 		raw_spin_lock(&cfs_rq->removed.lock);
4530 		swap(cfs_rq->removed.util_avg, removed_util);
4531 		swap(cfs_rq->removed.load_avg, removed_load);
4532 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4533 		cfs_rq->removed.nr = 0;
4534 		raw_spin_unlock(&cfs_rq->removed.lock);
4535 
4536 		r = removed_load;
4537 		sub_positive(&sa->load_avg, r);
4538 		sub_positive(&sa->load_sum, r * divider);
4539 		/* See sa->util_sum below */
4540 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4541 
4542 		r = removed_util;
4543 		sub_positive(&sa->util_avg, r);
4544 		sub_positive(&sa->util_sum, r * divider);
4545 		/*
4546 		 * Because of rounding, se->util_sum might ends up being +1 more than
4547 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4548 		 * a lot of tasks with the rounding problem between 2 updates of
4549 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4550 		 * cfs_util_avg is not.
4551 		 * Check that util_sum is still above its lower bound for the new
4552 		 * util_avg. Given that period_contrib might have moved since the last
4553 		 * sync, we are only sure that util_sum must be above or equal to
4554 		 *    util_avg * minimum possible divider
4555 		 */
4556 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4557 
4558 		r = removed_runnable;
4559 		sub_positive(&sa->runnable_avg, r);
4560 		sub_positive(&sa->runnable_sum, r * divider);
4561 		/* See sa->util_sum above */
4562 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4563 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4564 
4565 		/*
4566 		 * removed_runnable is the unweighted version of removed_load so we
4567 		 * can use it to estimate removed_load_sum.
4568 		 */
4569 		add_tg_cfs_propagate(cfs_rq,
4570 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4571 
4572 		decayed = 1;
4573 	}
4574 
4575 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4576 	u64_u32_store_copy(sa->last_update_time,
4577 			   cfs_rq->last_update_time_copy,
4578 			   sa->last_update_time);
4579 	return decayed;
4580 }
4581 
4582 /**
4583  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4584  * @cfs_rq: cfs_rq to attach to
4585  * @se: sched_entity to attach
4586  *
4587  * Must call update_cfs_rq_load_avg() before this, since we rely on
4588  * cfs_rq->avg.last_update_time being current.
4589  */
4590 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4591 {
4592 	/*
4593 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4594 	 * See ___update_load_avg() for details.
4595 	 */
4596 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4597 
4598 	/*
4599 	 * When we attach the @se to the @cfs_rq, we must align the decay
4600 	 * window because without that, really weird and wonderful things can
4601 	 * happen.
4602 	 *
4603 	 * XXX illustrate
4604 	 */
4605 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4606 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4607 
4608 	/*
4609 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4610 	 * period_contrib. This isn't strictly correct, but since we're
4611 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4612 	 * _sum a little.
4613 	 */
4614 	se->avg.util_sum = se->avg.util_avg * divider;
4615 
4616 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4617 
4618 	se->avg.load_sum = se->avg.load_avg * divider;
4619 	if (se_weight(se) < se->avg.load_sum)
4620 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4621 	else
4622 		se->avg.load_sum = 1;
4623 
4624 	enqueue_load_avg(cfs_rq, se);
4625 	cfs_rq->avg.util_avg += se->avg.util_avg;
4626 	cfs_rq->avg.util_sum += se->avg.util_sum;
4627 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4628 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4629 
4630 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4631 
4632 	cfs_rq_util_change(cfs_rq, 0);
4633 
4634 	trace_pelt_cfs_tp(cfs_rq);
4635 }
4636 
4637 /**
4638  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4639  * @cfs_rq: cfs_rq to detach from
4640  * @se: sched_entity to detach
4641  *
4642  * Must call update_cfs_rq_load_avg() before this, since we rely on
4643  * cfs_rq->avg.last_update_time being current.
4644  */
4645 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4646 {
4647 	dequeue_load_avg(cfs_rq, se);
4648 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4649 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4650 	/* See update_cfs_rq_load_avg() */
4651 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4652 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4653 
4654 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4655 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4656 	/* See update_cfs_rq_load_avg() */
4657 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4658 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4659 
4660 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4661 
4662 	cfs_rq_util_change(cfs_rq, 0);
4663 
4664 	trace_pelt_cfs_tp(cfs_rq);
4665 }
4666 
4667 /*
4668  * Optional action to be done while updating the load average
4669  */
4670 #define UPDATE_TG	0x1
4671 #define SKIP_AGE_LOAD	0x2
4672 #define DO_ATTACH	0x4
4673 #define DO_DETACH	0x8
4674 
4675 /* Update task and its cfs_rq load average */
4676 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4677 {
4678 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4679 	int decayed;
4680 
4681 	/*
4682 	 * Track task load average for carrying it to new CPU after migrated, and
4683 	 * track group sched_entity load average for task_h_load calc in migration
4684 	 */
4685 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4686 		__update_load_avg_se(now, cfs_rq, se);
4687 
4688 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4689 	decayed |= propagate_entity_load_avg(se);
4690 
4691 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4692 
4693 		/*
4694 		 * DO_ATTACH means we're here from enqueue_entity().
4695 		 * !last_update_time means we've passed through
4696 		 * migrate_task_rq_fair() indicating we migrated.
4697 		 *
4698 		 * IOW we're enqueueing a task on a new CPU.
4699 		 */
4700 		attach_entity_load_avg(cfs_rq, se);
4701 		update_tg_load_avg(cfs_rq);
4702 
4703 	} else if (flags & DO_DETACH) {
4704 		/*
4705 		 * DO_DETACH means we're here from dequeue_entity()
4706 		 * and we are migrating task out of the CPU.
4707 		 */
4708 		detach_entity_load_avg(cfs_rq, se);
4709 		update_tg_load_avg(cfs_rq);
4710 	} else if (decayed) {
4711 		cfs_rq_util_change(cfs_rq, 0);
4712 
4713 		if (flags & UPDATE_TG)
4714 			update_tg_load_avg(cfs_rq);
4715 	}
4716 }
4717 
4718 /*
4719  * Synchronize entity load avg of dequeued entity without locking
4720  * the previous rq.
4721  */
4722 static void sync_entity_load_avg(struct sched_entity *se)
4723 {
4724 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4725 	u64 last_update_time;
4726 
4727 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4728 	__update_load_avg_blocked_se(last_update_time, se);
4729 }
4730 
4731 /*
4732  * Task first catches up with cfs_rq, and then subtract
4733  * itself from the cfs_rq (task must be off the queue now).
4734  */
4735 static void remove_entity_load_avg(struct sched_entity *se)
4736 {
4737 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4738 	unsigned long flags;
4739 
4740 	/*
4741 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4742 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4743 	 * so we can remove unconditionally.
4744 	 */
4745 
4746 	sync_entity_load_avg(se);
4747 
4748 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4749 	++cfs_rq->removed.nr;
4750 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4751 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4752 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4753 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4754 }
4755 
4756 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4757 {
4758 	return cfs_rq->avg.runnable_avg;
4759 }
4760 
4761 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4762 {
4763 	return cfs_rq->avg.load_avg;
4764 }
4765 
4766 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4767 
4768 static inline unsigned long task_util(struct task_struct *p)
4769 {
4770 	return READ_ONCE(p->se.avg.util_avg);
4771 }
4772 
4773 static inline unsigned long _task_util_est(struct task_struct *p)
4774 {
4775 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4776 
4777 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4778 }
4779 
4780 static inline unsigned long task_util_est(struct task_struct *p)
4781 {
4782 	return max(task_util(p), _task_util_est(p));
4783 }
4784 
4785 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4786 				    struct task_struct *p)
4787 {
4788 	unsigned int enqueued;
4789 
4790 	if (!sched_feat(UTIL_EST))
4791 		return;
4792 
4793 	/* Update root cfs_rq's estimated utilization */
4794 	enqueued  = cfs_rq->avg.util_est.enqueued;
4795 	enqueued += _task_util_est(p);
4796 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4797 
4798 	trace_sched_util_est_cfs_tp(cfs_rq);
4799 }
4800 
4801 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4802 				    struct task_struct *p)
4803 {
4804 	unsigned int enqueued;
4805 
4806 	if (!sched_feat(UTIL_EST))
4807 		return;
4808 
4809 	/* Update root cfs_rq's estimated utilization */
4810 	enqueued  = cfs_rq->avg.util_est.enqueued;
4811 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4812 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4813 
4814 	trace_sched_util_est_cfs_tp(cfs_rq);
4815 }
4816 
4817 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4818 
4819 /*
4820  * Check if a (signed) value is within a specified (unsigned) margin,
4821  * based on the observation that:
4822  *
4823  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4824  *
4825  * NOTE: this only works when value + margin < INT_MAX.
4826  */
4827 static inline bool within_margin(int value, int margin)
4828 {
4829 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4830 }
4831 
4832 static inline void util_est_update(struct cfs_rq *cfs_rq,
4833 				   struct task_struct *p,
4834 				   bool task_sleep)
4835 {
4836 	long last_ewma_diff, last_enqueued_diff;
4837 	struct util_est ue;
4838 
4839 	if (!sched_feat(UTIL_EST))
4840 		return;
4841 
4842 	/*
4843 	 * Skip update of task's estimated utilization when the task has not
4844 	 * yet completed an activation, e.g. being migrated.
4845 	 */
4846 	if (!task_sleep)
4847 		return;
4848 
4849 	/*
4850 	 * If the PELT values haven't changed since enqueue time,
4851 	 * skip the util_est update.
4852 	 */
4853 	ue = p->se.avg.util_est;
4854 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4855 		return;
4856 
4857 	last_enqueued_diff = ue.enqueued;
4858 
4859 	/*
4860 	 * Reset EWMA on utilization increases, the moving average is used only
4861 	 * to smooth utilization decreases.
4862 	 */
4863 	ue.enqueued = task_util(p);
4864 	if (sched_feat(UTIL_EST_FASTUP)) {
4865 		if (ue.ewma < ue.enqueued) {
4866 			ue.ewma = ue.enqueued;
4867 			goto done;
4868 		}
4869 	}
4870 
4871 	/*
4872 	 * Skip update of task's estimated utilization when its members are
4873 	 * already ~1% close to its last activation value.
4874 	 */
4875 	last_ewma_diff = ue.enqueued - ue.ewma;
4876 	last_enqueued_diff -= ue.enqueued;
4877 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4878 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4879 			goto done;
4880 
4881 		return;
4882 	}
4883 
4884 	/*
4885 	 * To avoid overestimation of actual task utilization, skip updates if
4886 	 * we cannot grant there is idle time in this CPU.
4887 	 */
4888 	if (task_util(p) > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4889 		return;
4890 
4891 	/*
4892 	 * Update Task's estimated utilization
4893 	 *
4894 	 * When *p completes an activation we can consolidate another sample
4895 	 * of the task size. This is done by storing the current PELT value
4896 	 * as ue.enqueued and by using this value to update the Exponential
4897 	 * Weighted Moving Average (EWMA):
4898 	 *
4899 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4900 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4901 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4902 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4903 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4904 	 *
4905 	 * Where 'w' is the weight of new samples, which is configured to be
4906 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4907 	 */
4908 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4909 	ue.ewma  += last_ewma_diff;
4910 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4911 done:
4912 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4913 	WRITE_ONCE(p->se.avg.util_est, ue);
4914 
4915 	trace_sched_util_est_se_tp(&p->se);
4916 }
4917 
4918 static inline int util_fits_cpu(unsigned long util,
4919 				unsigned long uclamp_min,
4920 				unsigned long uclamp_max,
4921 				int cpu)
4922 {
4923 	unsigned long capacity_orig, capacity_orig_thermal;
4924 	unsigned long capacity = capacity_of(cpu);
4925 	bool fits, uclamp_max_fits;
4926 
4927 	/*
4928 	 * Check if the real util fits without any uclamp boost/cap applied.
4929 	 */
4930 	fits = fits_capacity(util, capacity);
4931 
4932 	if (!uclamp_is_used())
4933 		return fits;
4934 
4935 	/*
4936 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4937 	 * uclamp_max. We only care about capacity pressure (by using
4938 	 * capacity_of()) for comparing against the real util.
4939 	 *
4940 	 * If a task is boosted to 1024 for example, we don't want a tiny
4941 	 * pressure to skew the check whether it fits a CPU or not.
4942 	 *
4943 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4944 	 * should fit a little cpu even if there's some pressure.
4945 	 *
4946 	 * Only exception is for thermal pressure since it has a direct impact
4947 	 * on available OPP of the system.
4948 	 *
4949 	 * We honour it for uclamp_min only as a drop in performance level
4950 	 * could result in not getting the requested minimum performance level.
4951 	 *
4952 	 * For uclamp_max, we can tolerate a drop in performance level as the
4953 	 * goal is to cap the task. So it's okay if it's getting less.
4954 	 */
4955 	capacity_orig = arch_scale_cpu_capacity(cpu);
4956 	capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4957 
4958 	/*
4959 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4960 	 * But we do have some corner cases to cater for..
4961 	 *
4962 	 *
4963 	 *                                 C=z
4964 	 *   |                             ___
4965 	 *   |                  C=y       |   |
4966 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4967 	 *   |      C=x        |   |      |   |
4968 	 *   |      ___        |   |      |   |
4969 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4970 	 *   |     |   |       |   |      |   |
4971 	 *   |     |   |       |   |      |   |
4972 	 *   +----------------------------------------
4973 	 *         cpu0        cpu1       cpu2
4974 	 *
4975 	 *   In the above example if a task is capped to a specific performance
4976 	 *   point, y, then when:
4977 	 *
4978 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4979 	 *     to cpu1
4980 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4981 	 *     uclamp_max request.
4982 	 *
4983 	 *   which is what we're enforcing here. A task always fits if
4984 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4985 	 *   the normal upmigration rules should withhold still.
4986 	 *
4987 	 *   Only exception is when we are on max capacity, then we need to be
4988 	 *   careful not to block overutilized state. This is so because:
4989 	 *
4990 	 *     1. There's no concept of capping at max_capacity! We can't go
4991 	 *        beyond this performance level anyway.
4992 	 *     2. The system is being saturated when we're operating near
4993 	 *        max capacity, it doesn't make sense to block overutilized.
4994 	 */
4995 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4996 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4997 	fits = fits || uclamp_max_fits;
4998 
4999 	/*
5000 	 *
5001 	 *                                 C=z
5002 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5003 	 *   |                  C=y       |   |
5004 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5005 	 *   |      C=x        |   |      |   |
5006 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5007 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5008 	 *   |     |   |       |   |      |   |
5009 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5010 	 *   +----------------------------------------
5011 	 *         cpu0        cpu1       cpu2
5012 	 *
5013 	 * a) If util > uclamp_max, then we're capped, we don't care about
5014 	 *    actual fitness value here. We only care if uclamp_max fits
5015 	 *    capacity without taking margin/pressure into account.
5016 	 *    See comment above.
5017 	 *
5018 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5019 	 *    fits_capacity() rules apply. Except we need to ensure that we
5020 	 *    enforce we remain within uclamp_max, see comment above.
5021 	 *
5022 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5023 	 *    need to take into account the boosted value fits the CPU without
5024 	 *    taking margin/pressure into account.
5025 	 *
5026 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5027 	 * just need to consider an extra check for case (c) after ensuring we
5028 	 * handle the case uclamp_min > uclamp_max.
5029 	 */
5030 	uclamp_min = min(uclamp_min, uclamp_max);
5031 	if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5032 		return -1;
5033 
5034 	return fits;
5035 }
5036 
5037 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5038 {
5039 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5040 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5041 	unsigned long util = task_util_est(p);
5042 	/*
5043 	 * Return true only if the cpu fully fits the task requirements, which
5044 	 * include the utilization but also the performance hints.
5045 	 */
5046 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5047 }
5048 
5049 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5050 {
5051 	if (!sched_asym_cpucap_active())
5052 		return;
5053 
5054 	if (!p || p->nr_cpus_allowed == 1) {
5055 		rq->misfit_task_load = 0;
5056 		return;
5057 	}
5058 
5059 	if (task_fits_cpu(p, cpu_of(rq))) {
5060 		rq->misfit_task_load = 0;
5061 		return;
5062 	}
5063 
5064 	/*
5065 	 * Make sure that misfit_task_load will not be null even if
5066 	 * task_h_load() returns 0.
5067 	 */
5068 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5069 }
5070 
5071 #else /* CONFIG_SMP */
5072 
5073 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5074 {
5075 	return !cfs_rq->nr_running;
5076 }
5077 
5078 #define UPDATE_TG	0x0
5079 #define SKIP_AGE_LOAD	0x0
5080 #define DO_ATTACH	0x0
5081 #define DO_DETACH	0x0
5082 
5083 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5084 {
5085 	cfs_rq_util_change(cfs_rq, 0);
5086 }
5087 
5088 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5089 
5090 static inline void
5091 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5092 static inline void
5093 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5094 
5095 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5096 {
5097 	return 0;
5098 }
5099 
5100 static inline void
5101 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5102 
5103 static inline void
5104 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5105 
5106 static inline void
5107 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5108 		bool task_sleep) {}
5109 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5110 
5111 #endif /* CONFIG_SMP */
5112 
5113 static void
5114 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5115 {
5116 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5117 	s64 lag = 0;
5118 
5119 	se->slice = sysctl_sched_base_slice;
5120 	vslice = calc_delta_fair(se->slice, se);
5121 
5122 	/*
5123 	 * Due to how V is constructed as the weighted average of entities,
5124 	 * adding tasks with positive lag, or removing tasks with negative lag
5125 	 * will move 'time' backwards, this can screw around with the lag of
5126 	 * other tasks.
5127 	 *
5128 	 * EEVDF: placement strategy #1 / #2
5129 	 */
5130 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5131 		struct sched_entity *curr = cfs_rq->curr;
5132 		unsigned long load;
5133 
5134 		lag = se->vlag;
5135 
5136 		/*
5137 		 * If we want to place a task and preserve lag, we have to
5138 		 * consider the effect of the new entity on the weighted
5139 		 * average and compensate for this, otherwise lag can quickly
5140 		 * evaporate.
5141 		 *
5142 		 * Lag is defined as:
5143 		 *
5144 		 *   lag_i = S - s_i = w_i * (V - v_i)
5145 		 *
5146 		 * To avoid the 'w_i' term all over the place, we only track
5147 		 * the virtual lag:
5148 		 *
5149 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5150 		 *
5151 		 * And we take V to be the weighted average of all v:
5152 		 *
5153 		 *   V = (\Sum w_j*v_j) / W
5154 		 *
5155 		 * Where W is: \Sum w_j
5156 		 *
5157 		 * Then, the weighted average after adding an entity with lag
5158 		 * vl_i is given by:
5159 		 *
5160 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5161 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5162 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5163 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5164 		 *      = V - w_i*vl_i / (W + w_i)
5165 		 *
5166 		 * And the actual lag after adding an entity with vl_i is:
5167 		 *
5168 		 *   vl'_i = V' - v_i
5169 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5170 		 *         = vl_i - w_i*vl_i / (W + w_i)
5171 		 *
5172 		 * Which is strictly less than vl_i. So in order to preserve lag
5173 		 * we should inflate the lag before placement such that the
5174 		 * effective lag after placement comes out right.
5175 		 *
5176 		 * As such, invert the above relation for vl'_i to get the vl_i
5177 		 * we need to use such that the lag after placement is the lag
5178 		 * we computed before dequeue.
5179 		 *
5180 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5181 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5182 		 *
5183 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5184 		 *                   = W*vl_i
5185 		 *
5186 		 *   vl_i = (W + w_i)*vl'_i / W
5187 		 */
5188 		load = cfs_rq->avg_load;
5189 		if (curr && curr->on_rq)
5190 			load += scale_load_down(curr->load.weight);
5191 
5192 		lag *= load + scale_load_down(se->load.weight);
5193 		if (WARN_ON_ONCE(!load))
5194 			load = 1;
5195 		lag = div_s64(lag, load);
5196 	}
5197 
5198 	se->vruntime = vruntime - lag;
5199 
5200 	/*
5201 	 * When joining the competition; the exisiting tasks will be,
5202 	 * on average, halfway through their slice, as such start tasks
5203 	 * off with half a slice to ease into the competition.
5204 	 */
5205 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5206 		vslice /= 2;
5207 
5208 	/*
5209 	 * EEVDF: vd_i = ve_i + r_i/w_i
5210 	 */
5211 	se->deadline = se->vruntime + vslice;
5212 }
5213 
5214 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5215 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5216 
5217 static inline bool cfs_bandwidth_used(void);
5218 
5219 static void
5220 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5221 {
5222 	bool curr = cfs_rq->curr == se;
5223 
5224 	/*
5225 	 * If we're the current task, we must renormalise before calling
5226 	 * update_curr().
5227 	 */
5228 	if (curr)
5229 		place_entity(cfs_rq, se, flags);
5230 
5231 	update_curr(cfs_rq);
5232 
5233 	/*
5234 	 * When enqueuing a sched_entity, we must:
5235 	 *   - Update loads to have both entity and cfs_rq synced with now.
5236 	 *   - For group_entity, update its runnable_weight to reflect the new
5237 	 *     h_nr_running of its group cfs_rq.
5238 	 *   - For group_entity, update its weight to reflect the new share of
5239 	 *     its group cfs_rq
5240 	 *   - Add its new weight to cfs_rq->load.weight
5241 	 */
5242 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5243 	se_update_runnable(se);
5244 	/*
5245 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5246 	 * but update_cfs_group() here will re-adjust the weight and have to
5247 	 * undo/redo all that. Seems wasteful.
5248 	 */
5249 	update_cfs_group(se);
5250 
5251 	/*
5252 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5253 	 * we can place the entity.
5254 	 */
5255 	if (!curr)
5256 		place_entity(cfs_rq, se, flags);
5257 
5258 	account_entity_enqueue(cfs_rq, se);
5259 
5260 	/* Entity has migrated, no longer consider this task hot */
5261 	if (flags & ENQUEUE_MIGRATED)
5262 		se->exec_start = 0;
5263 
5264 	check_schedstat_required();
5265 	update_stats_enqueue_fair(cfs_rq, se, flags);
5266 	if (!curr)
5267 		__enqueue_entity(cfs_rq, se);
5268 	se->on_rq = 1;
5269 
5270 	if (cfs_rq->nr_running == 1) {
5271 		check_enqueue_throttle(cfs_rq);
5272 		if (!throttled_hierarchy(cfs_rq)) {
5273 			list_add_leaf_cfs_rq(cfs_rq);
5274 		} else {
5275 #ifdef CONFIG_CFS_BANDWIDTH
5276 			struct rq *rq = rq_of(cfs_rq);
5277 
5278 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5279 				cfs_rq->throttled_clock = rq_clock(rq);
5280 			if (!cfs_rq->throttled_clock_self)
5281 				cfs_rq->throttled_clock_self = rq_clock(rq);
5282 #endif
5283 		}
5284 	}
5285 }
5286 
5287 static void __clear_buddies_next(struct sched_entity *se)
5288 {
5289 	for_each_sched_entity(se) {
5290 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5291 		if (cfs_rq->next != se)
5292 			break;
5293 
5294 		cfs_rq->next = NULL;
5295 	}
5296 }
5297 
5298 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5299 {
5300 	if (cfs_rq->next == se)
5301 		__clear_buddies_next(se);
5302 }
5303 
5304 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5305 
5306 static void
5307 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5308 {
5309 	int action = UPDATE_TG;
5310 
5311 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5312 		action |= DO_DETACH;
5313 
5314 	/*
5315 	 * Update run-time statistics of the 'current'.
5316 	 */
5317 	update_curr(cfs_rq);
5318 
5319 	/*
5320 	 * When dequeuing a sched_entity, we must:
5321 	 *   - Update loads to have both entity and cfs_rq synced with now.
5322 	 *   - For group_entity, update its runnable_weight to reflect the new
5323 	 *     h_nr_running of its group cfs_rq.
5324 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5325 	 *   - For group entity, update its weight to reflect the new share
5326 	 *     of its group cfs_rq.
5327 	 */
5328 	update_load_avg(cfs_rq, se, action);
5329 	se_update_runnable(se);
5330 
5331 	update_stats_dequeue_fair(cfs_rq, se, flags);
5332 
5333 	clear_buddies(cfs_rq, se);
5334 
5335 	update_entity_lag(cfs_rq, se);
5336 	if (se != cfs_rq->curr)
5337 		__dequeue_entity(cfs_rq, se);
5338 	se->on_rq = 0;
5339 	account_entity_dequeue(cfs_rq, se);
5340 
5341 	/* return excess runtime on last dequeue */
5342 	return_cfs_rq_runtime(cfs_rq);
5343 
5344 	update_cfs_group(se);
5345 
5346 	/*
5347 	 * Now advance min_vruntime if @se was the entity holding it back,
5348 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5349 	 * put back on, and if we advance min_vruntime, we'll be placed back
5350 	 * further than we started -- ie. we'll be penalized.
5351 	 */
5352 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5353 		update_min_vruntime(cfs_rq);
5354 
5355 	if (cfs_rq->nr_running == 0)
5356 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5357 }
5358 
5359 static void
5360 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5361 {
5362 	clear_buddies(cfs_rq, se);
5363 
5364 	/* 'current' is not kept within the tree. */
5365 	if (se->on_rq) {
5366 		/*
5367 		 * Any task has to be enqueued before it get to execute on
5368 		 * a CPU. So account for the time it spent waiting on the
5369 		 * runqueue.
5370 		 */
5371 		update_stats_wait_end_fair(cfs_rq, se);
5372 		__dequeue_entity(cfs_rq, se);
5373 		update_load_avg(cfs_rq, se, UPDATE_TG);
5374 		/*
5375 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5376 		 * which isn't used until dequeue.
5377 		 */
5378 		se->vlag = se->deadline;
5379 	}
5380 
5381 	update_stats_curr_start(cfs_rq, se);
5382 	cfs_rq->curr = se;
5383 
5384 	/*
5385 	 * Track our maximum slice length, if the CPU's load is at
5386 	 * least twice that of our own weight (i.e. dont track it
5387 	 * when there are only lesser-weight tasks around):
5388 	 */
5389 	if (schedstat_enabled() &&
5390 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5391 		struct sched_statistics *stats;
5392 
5393 		stats = __schedstats_from_se(se);
5394 		__schedstat_set(stats->slice_max,
5395 				max((u64)stats->slice_max,
5396 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5397 	}
5398 
5399 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5400 }
5401 
5402 /*
5403  * Pick the next process, keeping these things in mind, in this order:
5404  * 1) keep things fair between processes/task groups
5405  * 2) pick the "next" process, since someone really wants that to run
5406  * 3) pick the "last" process, for cache locality
5407  * 4) do not run the "skip" process, if something else is available
5408  */
5409 static struct sched_entity *
5410 pick_next_entity(struct cfs_rq *cfs_rq)
5411 {
5412 	/*
5413 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5414 	 */
5415 	if (sched_feat(NEXT_BUDDY) &&
5416 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5417 		return cfs_rq->next;
5418 
5419 	return pick_eevdf(cfs_rq);
5420 }
5421 
5422 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5423 
5424 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5425 {
5426 	/*
5427 	 * If still on the runqueue then deactivate_task()
5428 	 * was not called and update_curr() has to be done:
5429 	 */
5430 	if (prev->on_rq)
5431 		update_curr(cfs_rq);
5432 
5433 	/* throttle cfs_rqs exceeding runtime */
5434 	check_cfs_rq_runtime(cfs_rq);
5435 
5436 	if (prev->on_rq) {
5437 		update_stats_wait_start_fair(cfs_rq, prev);
5438 		/* Put 'current' back into the tree. */
5439 		__enqueue_entity(cfs_rq, prev);
5440 		/* in !on_rq case, update occurred at dequeue */
5441 		update_load_avg(cfs_rq, prev, 0);
5442 	}
5443 	cfs_rq->curr = NULL;
5444 }
5445 
5446 static void
5447 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5448 {
5449 	/*
5450 	 * Update run-time statistics of the 'current'.
5451 	 */
5452 	update_curr(cfs_rq);
5453 
5454 	/*
5455 	 * Ensure that runnable average is periodically updated.
5456 	 */
5457 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5458 	update_cfs_group(curr);
5459 
5460 #ifdef CONFIG_SCHED_HRTICK
5461 	/*
5462 	 * queued ticks are scheduled to match the slice, so don't bother
5463 	 * validating it and just reschedule.
5464 	 */
5465 	if (queued) {
5466 		resched_curr(rq_of(cfs_rq));
5467 		return;
5468 	}
5469 	/*
5470 	 * don't let the period tick interfere with the hrtick preemption
5471 	 */
5472 	if (!sched_feat(DOUBLE_TICK) &&
5473 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5474 		return;
5475 #endif
5476 }
5477 
5478 
5479 /**************************************************
5480  * CFS bandwidth control machinery
5481  */
5482 
5483 #ifdef CONFIG_CFS_BANDWIDTH
5484 
5485 #ifdef CONFIG_JUMP_LABEL
5486 static struct static_key __cfs_bandwidth_used;
5487 
5488 static inline bool cfs_bandwidth_used(void)
5489 {
5490 	return static_key_false(&__cfs_bandwidth_used);
5491 }
5492 
5493 void cfs_bandwidth_usage_inc(void)
5494 {
5495 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5496 }
5497 
5498 void cfs_bandwidth_usage_dec(void)
5499 {
5500 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5501 }
5502 #else /* CONFIG_JUMP_LABEL */
5503 static bool cfs_bandwidth_used(void)
5504 {
5505 	return true;
5506 }
5507 
5508 void cfs_bandwidth_usage_inc(void) {}
5509 void cfs_bandwidth_usage_dec(void) {}
5510 #endif /* CONFIG_JUMP_LABEL */
5511 
5512 /*
5513  * default period for cfs group bandwidth.
5514  * default: 0.1s, units: nanoseconds
5515  */
5516 static inline u64 default_cfs_period(void)
5517 {
5518 	return 100000000ULL;
5519 }
5520 
5521 static inline u64 sched_cfs_bandwidth_slice(void)
5522 {
5523 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5524 }
5525 
5526 /*
5527  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5528  * directly instead of rq->clock to avoid adding additional synchronization
5529  * around rq->lock.
5530  *
5531  * requires cfs_b->lock
5532  */
5533 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5534 {
5535 	s64 runtime;
5536 
5537 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5538 		return;
5539 
5540 	cfs_b->runtime += cfs_b->quota;
5541 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5542 	if (runtime > 0) {
5543 		cfs_b->burst_time += runtime;
5544 		cfs_b->nr_burst++;
5545 	}
5546 
5547 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5548 	cfs_b->runtime_snap = cfs_b->runtime;
5549 }
5550 
5551 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5552 {
5553 	return &tg->cfs_bandwidth;
5554 }
5555 
5556 /* returns 0 on failure to allocate runtime */
5557 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5558 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5559 {
5560 	u64 min_amount, amount = 0;
5561 
5562 	lockdep_assert_held(&cfs_b->lock);
5563 
5564 	/* note: this is a positive sum as runtime_remaining <= 0 */
5565 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5566 
5567 	if (cfs_b->quota == RUNTIME_INF)
5568 		amount = min_amount;
5569 	else {
5570 		start_cfs_bandwidth(cfs_b);
5571 
5572 		if (cfs_b->runtime > 0) {
5573 			amount = min(cfs_b->runtime, min_amount);
5574 			cfs_b->runtime -= amount;
5575 			cfs_b->idle = 0;
5576 		}
5577 	}
5578 
5579 	cfs_rq->runtime_remaining += amount;
5580 
5581 	return cfs_rq->runtime_remaining > 0;
5582 }
5583 
5584 /* returns 0 on failure to allocate runtime */
5585 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5586 {
5587 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5588 	int ret;
5589 
5590 	raw_spin_lock(&cfs_b->lock);
5591 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5592 	raw_spin_unlock(&cfs_b->lock);
5593 
5594 	return ret;
5595 }
5596 
5597 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5598 {
5599 	/* dock delta_exec before expiring quota (as it could span periods) */
5600 	cfs_rq->runtime_remaining -= delta_exec;
5601 
5602 	if (likely(cfs_rq->runtime_remaining > 0))
5603 		return;
5604 
5605 	if (cfs_rq->throttled)
5606 		return;
5607 	/*
5608 	 * if we're unable to extend our runtime we resched so that the active
5609 	 * hierarchy can be throttled
5610 	 */
5611 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5612 		resched_curr(rq_of(cfs_rq));
5613 }
5614 
5615 static __always_inline
5616 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5617 {
5618 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5619 		return;
5620 
5621 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5622 }
5623 
5624 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5625 {
5626 	return cfs_bandwidth_used() && cfs_rq->throttled;
5627 }
5628 
5629 /* check whether cfs_rq, or any parent, is throttled */
5630 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5631 {
5632 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5633 }
5634 
5635 /*
5636  * Ensure that neither of the group entities corresponding to src_cpu or
5637  * dest_cpu are members of a throttled hierarchy when performing group
5638  * load-balance operations.
5639  */
5640 static inline int throttled_lb_pair(struct task_group *tg,
5641 				    int src_cpu, int dest_cpu)
5642 {
5643 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5644 
5645 	src_cfs_rq = tg->cfs_rq[src_cpu];
5646 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5647 
5648 	return throttled_hierarchy(src_cfs_rq) ||
5649 	       throttled_hierarchy(dest_cfs_rq);
5650 }
5651 
5652 static int tg_unthrottle_up(struct task_group *tg, void *data)
5653 {
5654 	struct rq *rq = data;
5655 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5656 
5657 	cfs_rq->throttle_count--;
5658 	if (!cfs_rq->throttle_count) {
5659 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5660 					     cfs_rq->throttled_clock_pelt;
5661 
5662 		/* Add cfs_rq with load or one or more already running entities to the list */
5663 		if (!cfs_rq_is_decayed(cfs_rq))
5664 			list_add_leaf_cfs_rq(cfs_rq);
5665 
5666 		if (cfs_rq->throttled_clock_self) {
5667 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5668 
5669 			cfs_rq->throttled_clock_self = 0;
5670 
5671 			if (SCHED_WARN_ON((s64)delta < 0))
5672 				delta = 0;
5673 
5674 			cfs_rq->throttled_clock_self_time += delta;
5675 		}
5676 	}
5677 
5678 	return 0;
5679 }
5680 
5681 static int tg_throttle_down(struct task_group *tg, void *data)
5682 {
5683 	struct rq *rq = data;
5684 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5685 
5686 	/* group is entering throttled state, stop time */
5687 	if (!cfs_rq->throttle_count) {
5688 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5689 		list_del_leaf_cfs_rq(cfs_rq);
5690 
5691 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5692 		if (cfs_rq->nr_running)
5693 			cfs_rq->throttled_clock_self = rq_clock(rq);
5694 	}
5695 	cfs_rq->throttle_count++;
5696 
5697 	return 0;
5698 }
5699 
5700 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5701 {
5702 	struct rq *rq = rq_of(cfs_rq);
5703 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5704 	struct sched_entity *se;
5705 	long task_delta, idle_task_delta, dequeue = 1;
5706 
5707 	raw_spin_lock(&cfs_b->lock);
5708 	/* This will start the period timer if necessary */
5709 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5710 		/*
5711 		 * We have raced with bandwidth becoming available, and if we
5712 		 * actually throttled the timer might not unthrottle us for an
5713 		 * entire period. We additionally needed to make sure that any
5714 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5715 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5716 		 * for 1ns of runtime rather than just check cfs_b.
5717 		 */
5718 		dequeue = 0;
5719 	} else {
5720 		list_add_tail_rcu(&cfs_rq->throttled_list,
5721 				  &cfs_b->throttled_cfs_rq);
5722 	}
5723 	raw_spin_unlock(&cfs_b->lock);
5724 
5725 	if (!dequeue)
5726 		return false;  /* Throttle no longer required. */
5727 
5728 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5729 
5730 	/* freeze hierarchy runnable averages while throttled */
5731 	rcu_read_lock();
5732 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5733 	rcu_read_unlock();
5734 
5735 	task_delta = cfs_rq->h_nr_running;
5736 	idle_task_delta = cfs_rq->idle_h_nr_running;
5737 	for_each_sched_entity(se) {
5738 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5739 		/* throttled entity or throttle-on-deactivate */
5740 		if (!se->on_rq)
5741 			goto done;
5742 
5743 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5744 
5745 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5746 			idle_task_delta = cfs_rq->h_nr_running;
5747 
5748 		qcfs_rq->h_nr_running -= task_delta;
5749 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5750 
5751 		if (qcfs_rq->load.weight) {
5752 			/* Avoid re-evaluating load for this entity: */
5753 			se = parent_entity(se);
5754 			break;
5755 		}
5756 	}
5757 
5758 	for_each_sched_entity(se) {
5759 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5760 		/* throttled entity or throttle-on-deactivate */
5761 		if (!se->on_rq)
5762 			goto done;
5763 
5764 		update_load_avg(qcfs_rq, se, 0);
5765 		se_update_runnable(se);
5766 
5767 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5768 			idle_task_delta = cfs_rq->h_nr_running;
5769 
5770 		qcfs_rq->h_nr_running -= task_delta;
5771 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5772 	}
5773 
5774 	/* At this point se is NULL and we are at root level*/
5775 	sub_nr_running(rq, task_delta);
5776 
5777 done:
5778 	/*
5779 	 * Note: distribution will already see us throttled via the
5780 	 * throttled-list.  rq->lock protects completion.
5781 	 */
5782 	cfs_rq->throttled = 1;
5783 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5784 	if (cfs_rq->nr_running)
5785 		cfs_rq->throttled_clock = rq_clock(rq);
5786 	return true;
5787 }
5788 
5789 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5790 {
5791 	struct rq *rq = rq_of(cfs_rq);
5792 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5793 	struct sched_entity *se;
5794 	long task_delta, idle_task_delta;
5795 
5796 	se = cfs_rq->tg->se[cpu_of(rq)];
5797 
5798 	cfs_rq->throttled = 0;
5799 
5800 	update_rq_clock(rq);
5801 
5802 	raw_spin_lock(&cfs_b->lock);
5803 	if (cfs_rq->throttled_clock) {
5804 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5805 		cfs_rq->throttled_clock = 0;
5806 	}
5807 	list_del_rcu(&cfs_rq->throttled_list);
5808 	raw_spin_unlock(&cfs_b->lock);
5809 
5810 	/* update hierarchical throttle state */
5811 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5812 
5813 	if (!cfs_rq->load.weight) {
5814 		if (!cfs_rq->on_list)
5815 			return;
5816 		/*
5817 		 * Nothing to run but something to decay (on_list)?
5818 		 * Complete the branch.
5819 		 */
5820 		for_each_sched_entity(se) {
5821 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5822 				break;
5823 		}
5824 		goto unthrottle_throttle;
5825 	}
5826 
5827 	task_delta = cfs_rq->h_nr_running;
5828 	idle_task_delta = cfs_rq->idle_h_nr_running;
5829 	for_each_sched_entity(se) {
5830 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5831 
5832 		if (se->on_rq)
5833 			break;
5834 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5835 
5836 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5837 			idle_task_delta = cfs_rq->h_nr_running;
5838 
5839 		qcfs_rq->h_nr_running += task_delta;
5840 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5841 
5842 		/* end evaluation on encountering a throttled cfs_rq */
5843 		if (cfs_rq_throttled(qcfs_rq))
5844 			goto unthrottle_throttle;
5845 	}
5846 
5847 	for_each_sched_entity(se) {
5848 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5849 
5850 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5851 		se_update_runnable(se);
5852 
5853 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5854 			idle_task_delta = cfs_rq->h_nr_running;
5855 
5856 		qcfs_rq->h_nr_running += task_delta;
5857 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5858 
5859 		/* end evaluation on encountering a throttled cfs_rq */
5860 		if (cfs_rq_throttled(qcfs_rq))
5861 			goto unthrottle_throttle;
5862 	}
5863 
5864 	/* At this point se is NULL and we are at root level*/
5865 	add_nr_running(rq, task_delta);
5866 
5867 unthrottle_throttle:
5868 	assert_list_leaf_cfs_rq(rq);
5869 
5870 	/* Determine whether we need to wake up potentially idle CPU: */
5871 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5872 		resched_curr(rq);
5873 }
5874 
5875 #ifdef CONFIG_SMP
5876 static void __cfsb_csd_unthrottle(void *arg)
5877 {
5878 	struct cfs_rq *cursor, *tmp;
5879 	struct rq *rq = arg;
5880 	struct rq_flags rf;
5881 
5882 	rq_lock(rq, &rf);
5883 
5884 	/*
5885 	 * Iterating over the list can trigger several call to
5886 	 * update_rq_clock() in unthrottle_cfs_rq().
5887 	 * Do it once and skip the potential next ones.
5888 	 */
5889 	update_rq_clock(rq);
5890 	rq_clock_start_loop_update(rq);
5891 
5892 	/*
5893 	 * Since we hold rq lock we're safe from concurrent manipulation of
5894 	 * the CSD list. However, this RCU critical section annotates the
5895 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5896 	 * race with group being freed in the window between removing it
5897 	 * from the list and advancing to the next entry in the list.
5898 	 */
5899 	rcu_read_lock();
5900 
5901 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5902 				 throttled_csd_list) {
5903 		list_del_init(&cursor->throttled_csd_list);
5904 
5905 		if (cfs_rq_throttled(cursor))
5906 			unthrottle_cfs_rq(cursor);
5907 	}
5908 
5909 	rcu_read_unlock();
5910 
5911 	rq_clock_stop_loop_update(rq);
5912 	rq_unlock(rq, &rf);
5913 }
5914 
5915 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5916 {
5917 	struct rq *rq = rq_of(cfs_rq);
5918 	bool first;
5919 
5920 	if (rq == this_rq()) {
5921 		unthrottle_cfs_rq(cfs_rq);
5922 		return;
5923 	}
5924 
5925 	/* Already enqueued */
5926 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5927 		return;
5928 
5929 	first = list_empty(&rq->cfsb_csd_list);
5930 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5931 	if (first)
5932 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5933 }
5934 #else
5935 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5936 {
5937 	unthrottle_cfs_rq(cfs_rq);
5938 }
5939 #endif
5940 
5941 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5942 {
5943 	lockdep_assert_rq_held(rq_of(cfs_rq));
5944 
5945 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5946 	    cfs_rq->runtime_remaining <= 0))
5947 		return;
5948 
5949 	__unthrottle_cfs_rq_async(cfs_rq);
5950 }
5951 
5952 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5953 {
5954 	int this_cpu = smp_processor_id();
5955 	u64 runtime, remaining = 1;
5956 	bool throttled = false;
5957 	struct cfs_rq *cfs_rq, *tmp;
5958 	struct rq_flags rf;
5959 	struct rq *rq;
5960 	LIST_HEAD(local_unthrottle);
5961 
5962 	rcu_read_lock();
5963 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5964 				throttled_list) {
5965 		rq = rq_of(cfs_rq);
5966 
5967 		if (!remaining) {
5968 			throttled = true;
5969 			break;
5970 		}
5971 
5972 		rq_lock_irqsave(rq, &rf);
5973 		if (!cfs_rq_throttled(cfs_rq))
5974 			goto next;
5975 
5976 		/* Already queued for async unthrottle */
5977 		if (!list_empty(&cfs_rq->throttled_csd_list))
5978 			goto next;
5979 
5980 		/* By the above checks, this should never be true */
5981 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5982 
5983 		raw_spin_lock(&cfs_b->lock);
5984 		runtime = -cfs_rq->runtime_remaining + 1;
5985 		if (runtime > cfs_b->runtime)
5986 			runtime = cfs_b->runtime;
5987 		cfs_b->runtime -= runtime;
5988 		remaining = cfs_b->runtime;
5989 		raw_spin_unlock(&cfs_b->lock);
5990 
5991 		cfs_rq->runtime_remaining += runtime;
5992 
5993 		/* we check whether we're throttled above */
5994 		if (cfs_rq->runtime_remaining > 0) {
5995 			if (cpu_of(rq) != this_cpu) {
5996 				unthrottle_cfs_rq_async(cfs_rq);
5997 			} else {
5998 				/*
5999 				 * We currently only expect to be unthrottling
6000 				 * a single cfs_rq locally.
6001 				 */
6002 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6003 				list_add_tail(&cfs_rq->throttled_csd_list,
6004 					      &local_unthrottle);
6005 			}
6006 		} else {
6007 			throttled = true;
6008 		}
6009 
6010 next:
6011 		rq_unlock_irqrestore(rq, &rf);
6012 	}
6013 
6014 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6015 				 throttled_csd_list) {
6016 		struct rq *rq = rq_of(cfs_rq);
6017 
6018 		rq_lock_irqsave(rq, &rf);
6019 
6020 		list_del_init(&cfs_rq->throttled_csd_list);
6021 
6022 		if (cfs_rq_throttled(cfs_rq))
6023 			unthrottle_cfs_rq(cfs_rq);
6024 
6025 		rq_unlock_irqrestore(rq, &rf);
6026 	}
6027 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6028 
6029 	rcu_read_unlock();
6030 
6031 	return throttled;
6032 }
6033 
6034 /*
6035  * Responsible for refilling a task_group's bandwidth and unthrottling its
6036  * cfs_rqs as appropriate. If there has been no activity within the last
6037  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6038  * used to track this state.
6039  */
6040 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6041 {
6042 	int throttled;
6043 
6044 	/* no need to continue the timer with no bandwidth constraint */
6045 	if (cfs_b->quota == RUNTIME_INF)
6046 		goto out_deactivate;
6047 
6048 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6049 	cfs_b->nr_periods += overrun;
6050 
6051 	/* Refill extra burst quota even if cfs_b->idle */
6052 	__refill_cfs_bandwidth_runtime(cfs_b);
6053 
6054 	/*
6055 	 * idle depends on !throttled (for the case of a large deficit), and if
6056 	 * we're going inactive then everything else can be deferred
6057 	 */
6058 	if (cfs_b->idle && !throttled)
6059 		goto out_deactivate;
6060 
6061 	if (!throttled) {
6062 		/* mark as potentially idle for the upcoming period */
6063 		cfs_b->idle = 1;
6064 		return 0;
6065 	}
6066 
6067 	/* account preceding periods in which throttling occurred */
6068 	cfs_b->nr_throttled += overrun;
6069 
6070 	/*
6071 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6072 	 */
6073 	while (throttled && cfs_b->runtime > 0) {
6074 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6075 		/* we can't nest cfs_b->lock while distributing bandwidth */
6076 		throttled = distribute_cfs_runtime(cfs_b);
6077 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6078 	}
6079 
6080 	/*
6081 	 * While we are ensured activity in the period following an
6082 	 * unthrottle, this also covers the case in which the new bandwidth is
6083 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6084 	 * timer to remain active while there are any throttled entities.)
6085 	 */
6086 	cfs_b->idle = 0;
6087 
6088 	return 0;
6089 
6090 out_deactivate:
6091 	return 1;
6092 }
6093 
6094 /* a cfs_rq won't donate quota below this amount */
6095 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6096 /* minimum remaining period time to redistribute slack quota */
6097 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6098 /* how long we wait to gather additional slack before distributing */
6099 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6100 
6101 /*
6102  * Are we near the end of the current quota period?
6103  *
6104  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6105  * hrtimer base being cleared by hrtimer_start. In the case of
6106  * migrate_hrtimers, base is never cleared, so we are fine.
6107  */
6108 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6109 {
6110 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6111 	s64 remaining;
6112 
6113 	/* if the call-back is running a quota refresh is already occurring */
6114 	if (hrtimer_callback_running(refresh_timer))
6115 		return 1;
6116 
6117 	/* is a quota refresh about to occur? */
6118 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6119 	if (remaining < (s64)min_expire)
6120 		return 1;
6121 
6122 	return 0;
6123 }
6124 
6125 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6126 {
6127 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6128 
6129 	/* if there's a quota refresh soon don't bother with slack */
6130 	if (runtime_refresh_within(cfs_b, min_left))
6131 		return;
6132 
6133 	/* don't push forwards an existing deferred unthrottle */
6134 	if (cfs_b->slack_started)
6135 		return;
6136 	cfs_b->slack_started = true;
6137 
6138 	hrtimer_start(&cfs_b->slack_timer,
6139 			ns_to_ktime(cfs_bandwidth_slack_period),
6140 			HRTIMER_MODE_REL);
6141 }
6142 
6143 /* we know any runtime found here is valid as update_curr() precedes return */
6144 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6145 {
6146 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6147 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6148 
6149 	if (slack_runtime <= 0)
6150 		return;
6151 
6152 	raw_spin_lock(&cfs_b->lock);
6153 	if (cfs_b->quota != RUNTIME_INF) {
6154 		cfs_b->runtime += slack_runtime;
6155 
6156 		/* we are under rq->lock, defer unthrottling using a timer */
6157 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6158 		    !list_empty(&cfs_b->throttled_cfs_rq))
6159 			start_cfs_slack_bandwidth(cfs_b);
6160 	}
6161 	raw_spin_unlock(&cfs_b->lock);
6162 
6163 	/* even if it's not valid for return we don't want to try again */
6164 	cfs_rq->runtime_remaining -= slack_runtime;
6165 }
6166 
6167 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6168 {
6169 	if (!cfs_bandwidth_used())
6170 		return;
6171 
6172 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6173 		return;
6174 
6175 	__return_cfs_rq_runtime(cfs_rq);
6176 }
6177 
6178 /*
6179  * This is done with a timer (instead of inline with bandwidth return) since
6180  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6181  */
6182 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6183 {
6184 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6185 	unsigned long flags;
6186 
6187 	/* confirm we're still not at a refresh boundary */
6188 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6189 	cfs_b->slack_started = false;
6190 
6191 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6192 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6193 		return;
6194 	}
6195 
6196 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6197 		runtime = cfs_b->runtime;
6198 
6199 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6200 
6201 	if (!runtime)
6202 		return;
6203 
6204 	distribute_cfs_runtime(cfs_b);
6205 }
6206 
6207 /*
6208  * When a group wakes up we want to make sure that its quota is not already
6209  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6210  * runtime as update_curr() throttling can not trigger until it's on-rq.
6211  */
6212 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6213 {
6214 	if (!cfs_bandwidth_used())
6215 		return;
6216 
6217 	/* an active group must be handled by the update_curr()->put() path */
6218 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6219 		return;
6220 
6221 	/* ensure the group is not already throttled */
6222 	if (cfs_rq_throttled(cfs_rq))
6223 		return;
6224 
6225 	/* update runtime allocation */
6226 	account_cfs_rq_runtime(cfs_rq, 0);
6227 	if (cfs_rq->runtime_remaining <= 0)
6228 		throttle_cfs_rq(cfs_rq);
6229 }
6230 
6231 static void sync_throttle(struct task_group *tg, int cpu)
6232 {
6233 	struct cfs_rq *pcfs_rq, *cfs_rq;
6234 
6235 	if (!cfs_bandwidth_used())
6236 		return;
6237 
6238 	if (!tg->parent)
6239 		return;
6240 
6241 	cfs_rq = tg->cfs_rq[cpu];
6242 	pcfs_rq = tg->parent->cfs_rq[cpu];
6243 
6244 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6245 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6246 }
6247 
6248 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6249 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6250 {
6251 	if (!cfs_bandwidth_used())
6252 		return false;
6253 
6254 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6255 		return false;
6256 
6257 	/*
6258 	 * it's possible for a throttled entity to be forced into a running
6259 	 * state (e.g. set_curr_task), in this case we're finished.
6260 	 */
6261 	if (cfs_rq_throttled(cfs_rq))
6262 		return true;
6263 
6264 	return throttle_cfs_rq(cfs_rq);
6265 }
6266 
6267 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6268 {
6269 	struct cfs_bandwidth *cfs_b =
6270 		container_of(timer, struct cfs_bandwidth, slack_timer);
6271 
6272 	do_sched_cfs_slack_timer(cfs_b);
6273 
6274 	return HRTIMER_NORESTART;
6275 }
6276 
6277 extern const u64 max_cfs_quota_period;
6278 
6279 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6280 {
6281 	struct cfs_bandwidth *cfs_b =
6282 		container_of(timer, struct cfs_bandwidth, period_timer);
6283 	unsigned long flags;
6284 	int overrun;
6285 	int idle = 0;
6286 	int count = 0;
6287 
6288 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6289 	for (;;) {
6290 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6291 		if (!overrun)
6292 			break;
6293 
6294 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6295 
6296 		if (++count > 3) {
6297 			u64 new, old = ktime_to_ns(cfs_b->period);
6298 
6299 			/*
6300 			 * Grow period by a factor of 2 to avoid losing precision.
6301 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6302 			 * to fail.
6303 			 */
6304 			new = old * 2;
6305 			if (new < max_cfs_quota_period) {
6306 				cfs_b->period = ns_to_ktime(new);
6307 				cfs_b->quota *= 2;
6308 				cfs_b->burst *= 2;
6309 
6310 				pr_warn_ratelimited(
6311 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6312 					smp_processor_id(),
6313 					div_u64(new, NSEC_PER_USEC),
6314 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6315 			} else {
6316 				pr_warn_ratelimited(
6317 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6318 					smp_processor_id(),
6319 					div_u64(old, NSEC_PER_USEC),
6320 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6321 			}
6322 
6323 			/* reset count so we don't come right back in here */
6324 			count = 0;
6325 		}
6326 	}
6327 	if (idle)
6328 		cfs_b->period_active = 0;
6329 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6330 
6331 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6332 }
6333 
6334 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6335 {
6336 	raw_spin_lock_init(&cfs_b->lock);
6337 	cfs_b->runtime = 0;
6338 	cfs_b->quota = RUNTIME_INF;
6339 	cfs_b->period = ns_to_ktime(default_cfs_period());
6340 	cfs_b->burst = 0;
6341 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6342 
6343 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6344 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6345 	cfs_b->period_timer.function = sched_cfs_period_timer;
6346 
6347 	/* Add a random offset so that timers interleave */
6348 	hrtimer_set_expires(&cfs_b->period_timer,
6349 			    get_random_u32_below(cfs_b->period));
6350 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6351 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6352 	cfs_b->slack_started = false;
6353 }
6354 
6355 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6356 {
6357 	cfs_rq->runtime_enabled = 0;
6358 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6359 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6360 }
6361 
6362 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6363 {
6364 	lockdep_assert_held(&cfs_b->lock);
6365 
6366 	if (cfs_b->period_active)
6367 		return;
6368 
6369 	cfs_b->period_active = 1;
6370 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6371 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6372 }
6373 
6374 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6375 {
6376 	int __maybe_unused i;
6377 
6378 	/* init_cfs_bandwidth() was not called */
6379 	if (!cfs_b->throttled_cfs_rq.next)
6380 		return;
6381 
6382 	hrtimer_cancel(&cfs_b->period_timer);
6383 	hrtimer_cancel(&cfs_b->slack_timer);
6384 
6385 	/*
6386 	 * It is possible that we still have some cfs_rq's pending on a CSD
6387 	 * list, though this race is very rare. In order for this to occur, we
6388 	 * must have raced with the last task leaving the group while there
6389 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6390 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6391 	 * we can simply flush all pending CSD work inline here. We're
6392 	 * guaranteed at this point that no additional cfs_rq of this group can
6393 	 * join a CSD list.
6394 	 */
6395 #ifdef CONFIG_SMP
6396 	for_each_possible_cpu(i) {
6397 		struct rq *rq = cpu_rq(i);
6398 		unsigned long flags;
6399 
6400 		if (list_empty(&rq->cfsb_csd_list))
6401 			continue;
6402 
6403 		local_irq_save(flags);
6404 		__cfsb_csd_unthrottle(rq);
6405 		local_irq_restore(flags);
6406 	}
6407 #endif
6408 }
6409 
6410 /*
6411  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6412  *
6413  * The race is harmless, since modifying bandwidth settings of unhooked group
6414  * bits doesn't do much.
6415  */
6416 
6417 /* cpu online callback */
6418 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6419 {
6420 	struct task_group *tg;
6421 
6422 	lockdep_assert_rq_held(rq);
6423 
6424 	rcu_read_lock();
6425 	list_for_each_entry_rcu(tg, &task_groups, list) {
6426 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6427 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6428 
6429 		raw_spin_lock(&cfs_b->lock);
6430 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6431 		raw_spin_unlock(&cfs_b->lock);
6432 	}
6433 	rcu_read_unlock();
6434 }
6435 
6436 /* cpu offline callback */
6437 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6438 {
6439 	struct task_group *tg;
6440 
6441 	lockdep_assert_rq_held(rq);
6442 
6443 	/*
6444 	 * The rq clock has already been updated in the
6445 	 * set_rq_offline(), so we should skip updating
6446 	 * the rq clock again in unthrottle_cfs_rq().
6447 	 */
6448 	rq_clock_start_loop_update(rq);
6449 
6450 	rcu_read_lock();
6451 	list_for_each_entry_rcu(tg, &task_groups, list) {
6452 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6453 
6454 		if (!cfs_rq->runtime_enabled)
6455 			continue;
6456 
6457 		/*
6458 		 * clock_task is not advancing so we just need to make sure
6459 		 * there's some valid quota amount
6460 		 */
6461 		cfs_rq->runtime_remaining = 1;
6462 		/*
6463 		 * Offline rq is schedulable till CPU is completely disabled
6464 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6465 		 */
6466 		cfs_rq->runtime_enabled = 0;
6467 
6468 		if (cfs_rq_throttled(cfs_rq))
6469 			unthrottle_cfs_rq(cfs_rq);
6470 	}
6471 	rcu_read_unlock();
6472 
6473 	rq_clock_stop_loop_update(rq);
6474 }
6475 
6476 bool cfs_task_bw_constrained(struct task_struct *p)
6477 {
6478 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6479 
6480 	if (!cfs_bandwidth_used())
6481 		return false;
6482 
6483 	if (cfs_rq->runtime_enabled ||
6484 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6485 		return true;
6486 
6487 	return false;
6488 }
6489 
6490 #ifdef CONFIG_NO_HZ_FULL
6491 /* called from pick_next_task_fair() */
6492 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6493 {
6494 	int cpu = cpu_of(rq);
6495 
6496 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6497 		return;
6498 
6499 	if (!tick_nohz_full_cpu(cpu))
6500 		return;
6501 
6502 	if (rq->nr_running != 1)
6503 		return;
6504 
6505 	/*
6506 	 *  We know there is only one task runnable and we've just picked it. The
6507 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6508 	 *  be otherwise able to stop the tick. Just need to check if we are using
6509 	 *  bandwidth control.
6510 	 */
6511 	if (cfs_task_bw_constrained(p))
6512 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6513 }
6514 #endif
6515 
6516 #else /* CONFIG_CFS_BANDWIDTH */
6517 
6518 static inline bool cfs_bandwidth_used(void)
6519 {
6520 	return false;
6521 }
6522 
6523 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6524 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6525 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6526 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6527 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6528 
6529 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6530 {
6531 	return 0;
6532 }
6533 
6534 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6535 {
6536 	return 0;
6537 }
6538 
6539 static inline int throttled_lb_pair(struct task_group *tg,
6540 				    int src_cpu, int dest_cpu)
6541 {
6542 	return 0;
6543 }
6544 
6545 #ifdef CONFIG_FAIR_GROUP_SCHED
6546 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6547 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6548 #endif
6549 
6550 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6551 {
6552 	return NULL;
6553 }
6554 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6555 static inline void update_runtime_enabled(struct rq *rq) {}
6556 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6557 #ifdef CONFIG_CGROUP_SCHED
6558 bool cfs_task_bw_constrained(struct task_struct *p)
6559 {
6560 	return false;
6561 }
6562 #endif
6563 #endif /* CONFIG_CFS_BANDWIDTH */
6564 
6565 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6566 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6567 #endif
6568 
6569 /**************************************************
6570  * CFS operations on tasks:
6571  */
6572 
6573 #ifdef CONFIG_SCHED_HRTICK
6574 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6575 {
6576 	struct sched_entity *se = &p->se;
6577 
6578 	SCHED_WARN_ON(task_rq(p) != rq);
6579 
6580 	if (rq->cfs.h_nr_running > 1) {
6581 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6582 		u64 slice = se->slice;
6583 		s64 delta = slice - ran;
6584 
6585 		if (delta < 0) {
6586 			if (task_current(rq, p))
6587 				resched_curr(rq);
6588 			return;
6589 		}
6590 		hrtick_start(rq, delta);
6591 	}
6592 }
6593 
6594 /*
6595  * called from enqueue/dequeue and updates the hrtick when the
6596  * current task is from our class and nr_running is low enough
6597  * to matter.
6598  */
6599 static void hrtick_update(struct rq *rq)
6600 {
6601 	struct task_struct *curr = rq->curr;
6602 
6603 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6604 		return;
6605 
6606 	hrtick_start_fair(rq, curr);
6607 }
6608 #else /* !CONFIG_SCHED_HRTICK */
6609 static inline void
6610 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6611 {
6612 }
6613 
6614 static inline void hrtick_update(struct rq *rq)
6615 {
6616 }
6617 #endif
6618 
6619 #ifdef CONFIG_SMP
6620 static inline bool cpu_overutilized(int cpu)
6621 {
6622 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6623 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6624 
6625 	/* Return true only if the utilization doesn't fit CPU's capacity */
6626 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6627 }
6628 
6629 static inline void update_overutilized_status(struct rq *rq)
6630 {
6631 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6632 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6633 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6634 	}
6635 }
6636 #else
6637 static inline void update_overutilized_status(struct rq *rq) { }
6638 #endif
6639 
6640 /* Runqueue only has SCHED_IDLE tasks enqueued */
6641 static int sched_idle_rq(struct rq *rq)
6642 {
6643 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6644 			rq->nr_running);
6645 }
6646 
6647 #ifdef CONFIG_SMP
6648 static int sched_idle_cpu(int cpu)
6649 {
6650 	return sched_idle_rq(cpu_rq(cpu));
6651 }
6652 #endif
6653 
6654 /*
6655  * The enqueue_task method is called before nr_running is
6656  * increased. Here we update the fair scheduling stats and
6657  * then put the task into the rbtree:
6658  */
6659 static void
6660 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6661 {
6662 	struct cfs_rq *cfs_rq;
6663 	struct sched_entity *se = &p->se;
6664 	int idle_h_nr_running = task_has_idle_policy(p);
6665 	int task_new = !(flags & ENQUEUE_WAKEUP);
6666 
6667 	/*
6668 	 * The code below (indirectly) updates schedutil which looks at
6669 	 * the cfs_rq utilization to select a frequency.
6670 	 * Let's add the task's estimated utilization to the cfs_rq's
6671 	 * estimated utilization, before we update schedutil.
6672 	 */
6673 	util_est_enqueue(&rq->cfs, p);
6674 
6675 	/*
6676 	 * If in_iowait is set, the code below may not trigger any cpufreq
6677 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6678 	 * passed.
6679 	 */
6680 	if (p->in_iowait)
6681 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6682 
6683 	for_each_sched_entity(se) {
6684 		if (se->on_rq)
6685 			break;
6686 		cfs_rq = cfs_rq_of(se);
6687 		enqueue_entity(cfs_rq, se, flags);
6688 
6689 		cfs_rq->h_nr_running++;
6690 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6691 
6692 		if (cfs_rq_is_idle(cfs_rq))
6693 			idle_h_nr_running = 1;
6694 
6695 		/* end evaluation on encountering a throttled cfs_rq */
6696 		if (cfs_rq_throttled(cfs_rq))
6697 			goto enqueue_throttle;
6698 
6699 		flags = ENQUEUE_WAKEUP;
6700 	}
6701 
6702 	for_each_sched_entity(se) {
6703 		cfs_rq = cfs_rq_of(se);
6704 
6705 		update_load_avg(cfs_rq, se, UPDATE_TG);
6706 		se_update_runnable(se);
6707 		update_cfs_group(se);
6708 
6709 		cfs_rq->h_nr_running++;
6710 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6711 
6712 		if (cfs_rq_is_idle(cfs_rq))
6713 			idle_h_nr_running = 1;
6714 
6715 		/* end evaluation on encountering a throttled cfs_rq */
6716 		if (cfs_rq_throttled(cfs_rq))
6717 			goto enqueue_throttle;
6718 	}
6719 
6720 	/* At this point se is NULL and we are at root level*/
6721 	add_nr_running(rq, 1);
6722 
6723 	/*
6724 	 * Since new tasks are assigned an initial util_avg equal to
6725 	 * half of the spare capacity of their CPU, tiny tasks have the
6726 	 * ability to cross the overutilized threshold, which will
6727 	 * result in the load balancer ruining all the task placement
6728 	 * done by EAS. As a way to mitigate that effect, do not account
6729 	 * for the first enqueue operation of new tasks during the
6730 	 * overutilized flag detection.
6731 	 *
6732 	 * A better way of solving this problem would be to wait for
6733 	 * the PELT signals of tasks to converge before taking them
6734 	 * into account, but that is not straightforward to implement,
6735 	 * and the following generally works well enough in practice.
6736 	 */
6737 	if (!task_new)
6738 		update_overutilized_status(rq);
6739 
6740 enqueue_throttle:
6741 	assert_list_leaf_cfs_rq(rq);
6742 
6743 	hrtick_update(rq);
6744 }
6745 
6746 static void set_next_buddy(struct sched_entity *se);
6747 
6748 /*
6749  * The dequeue_task method is called before nr_running is
6750  * decreased. We remove the task from the rbtree and
6751  * update the fair scheduling stats:
6752  */
6753 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6754 {
6755 	struct cfs_rq *cfs_rq;
6756 	struct sched_entity *se = &p->se;
6757 	int task_sleep = flags & DEQUEUE_SLEEP;
6758 	int idle_h_nr_running = task_has_idle_policy(p);
6759 	bool was_sched_idle = sched_idle_rq(rq);
6760 
6761 	util_est_dequeue(&rq->cfs, p);
6762 
6763 	for_each_sched_entity(se) {
6764 		cfs_rq = cfs_rq_of(se);
6765 		dequeue_entity(cfs_rq, se, flags);
6766 
6767 		cfs_rq->h_nr_running--;
6768 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6769 
6770 		if (cfs_rq_is_idle(cfs_rq))
6771 			idle_h_nr_running = 1;
6772 
6773 		/* end evaluation on encountering a throttled cfs_rq */
6774 		if (cfs_rq_throttled(cfs_rq))
6775 			goto dequeue_throttle;
6776 
6777 		/* Don't dequeue parent if it has other entities besides us */
6778 		if (cfs_rq->load.weight) {
6779 			/* Avoid re-evaluating load for this entity: */
6780 			se = parent_entity(se);
6781 			/*
6782 			 * Bias pick_next to pick a task from this cfs_rq, as
6783 			 * p is sleeping when it is within its sched_slice.
6784 			 */
6785 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6786 				set_next_buddy(se);
6787 			break;
6788 		}
6789 		flags |= DEQUEUE_SLEEP;
6790 	}
6791 
6792 	for_each_sched_entity(se) {
6793 		cfs_rq = cfs_rq_of(se);
6794 
6795 		update_load_avg(cfs_rq, se, UPDATE_TG);
6796 		se_update_runnable(se);
6797 		update_cfs_group(se);
6798 
6799 		cfs_rq->h_nr_running--;
6800 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6801 
6802 		if (cfs_rq_is_idle(cfs_rq))
6803 			idle_h_nr_running = 1;
6804 
6805 		/* end evaluation on encountering a throttled cfs_rq */
6806 		if (cfs_rq_throttled(cfs_rq))
6807 			goto dequeue_throttle;
6808 
6809 	}
6810 
6811 	/* At this point se is NULL and we are at root level*/
6812 	sub_nr_running(rq, 1);
6813 
6814 	/* balance early to pull high priority tasks */
6815 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6816 		rq->next_balance = jiffies;
6817 
6818 dequeue_throttle:
6819 	util_est_update(&rq->cfs, p, task_sleep);
6820 	hrtick_update(rq);
6821 }
6822 
6823 #ifdef CONFIG_SMP
6824 
6825 /* Working cpumask for: load_balance, load_balance_newidle. */
6826 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6827 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6828 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6829 
6830 #ifdef CONFIG_NO_HZ_COMMON
6831 
6832 static struct {
6833 	cpumask_var_t idle_cpus_mask;
6834 	atomic_t nr_cpus;
6835 	int has_blocked;		/* Idle CPUS has blocked load */
6836 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6837 	unsigned long next_balance;     /* in jiffy units */
6838 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6839 } nohz ____cacheline_aligned;
6840 
6841 #endif /* CONFIG_NO_HZ_COMMON */
6842 
6843 static unsigned long cpu_load(struct rq *rq)
6844 {
6845 	return cfs_rq_load_avg(&rq->cfs);
6846 }
6847 
6848 /*
6849  * cpu_load_without - compute CPU load without any contributions from *p
6850  * @cpu: the CPU which load is requested
6851  * @p: the task which load should be discounted
6852  *
6853  * The load of a CPU is defined by the load of tasks currently enqueued on that
6854  * CPU as well as tasks which are currently sleeping after an execution on that
6855  * CPU.
6856  *
6857  * This method returns the load of the specified CPU by discounting the load of
6858  * the specified task, whenever the task is currently contributing to the CPU
6859  * load.
6860  */
6861 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6862 {
6863 	struct cfs_rq *cfs_rq;
6864 	unsigned int load;
6865 
6866 	/* Task has no contribution or is new */
6867 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6868 		return cpu_load(rq);
6869 
6870 	cfs_rq = &rq->cfs;
6871 	load = READ_ONCE(cfs_rq->avg.load_avg);
6872 
6873 	/* Discount task's util from CPU's util */
6874 	lsub_positive(&load, task_h_load(p));
6875 
6876 	return load;
6877 }
6878 
6879 static unsigned long cpu_runnable(struct rq *rq)
6880 {
6881 	return cfs_rq_runnable_avg(&rq->cfs);
6882 }
6883 
6884 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6885 {
6886 	struct cfs_rq *cfs_rq;
6887 	unsigned int runnable;
6888 
6889 	/* Task has no contribution or is new */
6890 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6891 		return cpu_runnable(rq);
6892 
6893 	cfs_rq = &rq->cfs;
6894 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6895 
6896 	/* Discount task's runnable from CPU's runnable */
6897 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6898 
6899 	return runnable;
6900 }
6901 
6902 static unsigned long capacity_of(int cpu)
6903 {
6904 	return cpu_rq(cpu)->cpu_capacity;
6905 }
6906 
6907 static void record_wakee(struct task_struct *p)
6908 {
6909 	/*
6910 	 * Only decay a single time; tasks that have less then 1 wakeup per
6911 	 * jiffy will not have built up many flips.
6912 	 */
6913 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6914 		current->wakee_flips >>= 1;
6915 		current->wakee_flip_decay_ts = jiffies;
6916 	}
6917 
6918 	if (current->last_wakee != p) {
6919 		current->last_wakee = p;
6920 		current->wakee_flips++;
6921 	}
6922 }
6923 
6924 /*
6925  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6926  *
6927  * A waker of many should wake a different task than the one last awakened
6928  * at a frequency roughly N times higher than one of its wakees.
6929  *
6930  * In order to determine whether we should let the load spread vs consolidating
6931  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6932  * partner, and a factor of lls_size higher frequency in the other.
6933  *
6934  * With both conditions met, we can be relatively sure that the relationship is
6935  * non-monogamous, with partner count exceeding socket size.
6936  *
6937  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6938  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6939  * socket size.
6940  */
6941 static int wake_wide(struct task_struct *p)
6942 {
6943 	unsigned int master = current->wakee_flips;
6944 	unsigned int slave = p->wakee_flips;
6945 	int factor = __this_cpu_read(sd_llc_size);
6946 
6947 	if (master < slave)
6948 		swap(master, slave);
6949 	if (slave < factor || master < slave * factor)
6950 		return 0;
6951 	return 1;
6952 }
6953 
6954 /*
6955  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6956  * soonest. For the purpose of speed we only consider the waking and previous
6957  * CPU.
6958  *
6959  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6960  *			cache-affine and is (or	will be) idle.
6961  *
6962  * wake_affine_weight() - considers the weight to reflect the average
6963  *			  scheduling latency of the CPUs. This seems to work
6964  *			  for the overloaded case.
6965  */
6966 static int
6967 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6968 {
6969 	/*
6970 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6971 	 * context. Only allow the move if cache is shared. Otherwise an
6972 	 * interrupt intensive workload could force all tasks onto one
6973 	 * node depending on the IO topology or IRQ affinity settings.
6974 	 *
6975 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6976 	 * There is no guarantee that the cache hot data from an interrupt
6977 	 * is more important than cache hot data on the prev_cpu and from
6978 	 * a cpufreq perspective, it's better to have higher utilisation
6979 	 * on one CPU.
6980 	 */
6981 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6982 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6983 
6984 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6985 		return this_cpu;
6986 
6987 	if (available_idle_cpu(prev_cpu))
6988 		return prev_cpu;
6989 
6990 	return nr_cpumask_bits;
6991 }
6992 
6993 static int
6994 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6995 		   int this_cpu, int prev_cpu, int sync)
6996 {
6997 	s64 this_eff_load, prev_eff_load;
6998 	unsigned long task_load;
6999 
7000 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7001 
7002 	if (sync) {
7003 		unsigned long current_load = task_h_load(current);
7004 
7005 		if (current_load > this_eff_load)
7006 			return this_cpu;
7007 
7008 		this_eff_load -= current_load;
7009 	}
7010 
7011 	task_load = task_h_load(p);
7012 
7013 	this_eff_load += task_load;
7014 	if (sched_feat(WA_BIAS))
7015 		this_eff_load *= 100;
7016 	this_eff_load *= capacity_of(prev_cpu);
7017 
7018 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7019 	prev_eff_load -= task_load;
7020 	if (sched_feat(WA_BIAS))
7021 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7022 	prev_eff_load *= capacity_of(this_cpu);
7023 
7024 	/*
7025 	 * If sync, adjust the weight of prev_eff_load such that if
7026 	 * prev_eff == this_eff that select_idle_sibling() will consider
7027 	 * stacking the wakee on top of the waker if no other CPU is
7028 	 * idle.
7029 	 */
7030 	if (sync)
7031 		prev_eff_load += 1;
7032 
7033 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7034 }
7035 
7036 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7037 		       int this_cpu, int prev_cpu, int sync)
7038 {
7039 	int target = nr_cpumask_bits;
7040 
7041 	if (sched_feat(WA_IDLE))
7042 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7043 
7044 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7045 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7046 
7047 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7048 	if (target != this_cpu)
7049 		return prev_cpu;
7050 
7051 	schedstat_inc(sd->ttwu_move_affine);
7052 	schedstat_inc(p->stats.nr_wakeups_affine);
7053 	return target;
7054 }
7055 
7056 static struct sched_group *
7057 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7058 
7059 /*
7060  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7061  */
7062 static int
7063 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7064 {
7065 	unsigned long load, min_load = ULONG_MAX;
7066 	unsigned int min_exit_latency = UINT_MAX;
7067 	u64 latest_idle_timestamp = 0;
7068 	int least_loaded_cpu = this_cpu;
7069 	int shallowest_idle_cpu = -1;
7070 	int i;
7071 
7072 	/* Check if we have any choice: */
7073 	if (group->group_weight == 1)
7074 		return cpumask_first(sched_group_span(group));
7075 
7076 	/* Traverse only the allowed CPUs */
7077 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7078 		struct rq *rq = cpu_rq(i);
7079 
7080 		if (!sched_core_cookie_match(rq, p))
7081 			continue;
7082 
7083 		if (sched_idle_cpu(i))
7084 			return i;
7085 
7086 		if (available_idle_cpu(i)) {
7087 			struct cpuidle_state *idle = idle_get_state(rq);
7088 			if (idle && idle->exit_latency < min_exit_latency) {
7089 				/*
7090 				 * We give priority to a CPU whose idle state
7091 				 * has the smallest exit latency irrespective
7092 				 * of any idle timestamp.
7093 				 */
7094 				min_exit_latency = idle->exit_latency;
7095 				latest_idle_timestamp = rq->idle_stamp;
7096 				shallowest_idle_cpu = i;
7097 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7098 				   rq->idle_stamp > latest_idle_timestamp) {
7099 				/*
7100 				 * If equal or no active idle state, then
7101 				 * the most recently idled CPU might have
7102 				 * a warmer cache.
7103 				 */
7104 				latest_idle_timestamp = rq->idle_stamp;
7105 				shallowest_idle_cpu = i;
7106 			}
7107 		} else if (shallowest_idle_cpu == -1) {
7108 			load = cpu_load(cpu_rq(i));
7109 			if (load < min_load) {
7110 				min_load = load;
7111 				least_loaded_cpu = i;
7112 			}
7113 		}
7114 	}
7115 
7116 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7117 }
7118 
7119 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7120 				  int cpu, int prev_cpu, int sd_flag)
7121 {
7122 	int new_cpu = cpu;
7123 
7124 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7125 		return prev_cpu;
7126 
7127 	/*
7128 	 * We need task's util for cpu_util_without, sync it up to
7129 	 * prev_cpu's last_update_time.
7130 	 */
7131 	if (!(sd_flag & SD_BALANCE_FORK))
7132 		sync_entity_load_avg(&p->se);
7133 
7134 	while (sd) {
7135 		struct sched_group *group;
7136 		struct sched_domain *tmp;
7137 		int weight;
7138 
7139 		if (!(sd->flags & sd_flag)) {
7140 			sd = sd->child;
7141 			continue;
7142 		}
7143 
7144 		group = find_idlest_group(sd, p, cpu);
7145 		if (!group) {
7146 			sd = sd->child;
7147 			continue;
7148 		}
7149 
7150 		new_cpu = find_idlest_group_cpu(group, p, cpu);
7151 		if (new_cpu == cpu) {
7152 			/* Now try balancing at a lower domain level of 'cpu': */
7153 			sd = sd->child;
7154 			continue;
7155 		}
7156 
7157 		/* Now try balancing at a lower domain level of 'new_cpu': */
7158 		cpu = new_cpu;
7159 		weight = sd->span_weight;
7160 		sd = NULL;
7161 		for_each_domain(cpu, tmp) {
7162 			if (weight <= tmp->span_weight)
7163 				break;
7164 			if (tmp->flags & sd_flag)
7165 				sd = tmp;
7166 		}
7167 	}
7168 
7169 	return new_cpu;
7170 }
7171 
7172 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7173 {
7174 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7175 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7176 		return cpu;
7177 
7178 	return -1;
7179 }
7180 
7181 #ifdef CONFIG_SCHED_SMT
7182 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7183 EXPORT_SYMBOL_GPL(sched_smt_present);
7184 
7185 static inline void set_idle_cores(int cpu, int val)
7186 {
7187 	struct sched_domain_shared *sds;
7188 
7189 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7190 	if (sds)
7191 		WRITE_ONCE(sds->has_idle_cores, val);
7192 }
7193 
7194 static inline bool test_idle_cores(int cpu)
7195 {
7196 	struct sched_domain_shared *sds;
7197 
7198 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7199 	if (sds)
7200 		return READ_ONCE(sds->has_idle_cores);
7201 
7202 	return false;
7203 }
7204 
7205 /*
7206  * Scans the local SMT mask to see if the entire core is idle, and records this
7207  * information in sd_llc_shared->has_idle_cores.
7208  *
7209  * Since SMT siblings share all cache levels, inspecting this limited remote
7210  * state should be fairly cheap.
7211  */
7212 void __update_idle_core(struct rq *rq)
7213 {
7214 	int core = cpu_of(rq);
7215 	int cpu;
7216 
7217 	rcu_read_lock();
7218 	if (test_idle_cores(core))
7219 		goto unlock;
7220 
7221 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7222 		if (cpu == core)
7223 			continue;
7224 
7225 		if (!available_idle_cpu(cpu))
7226 			goto unlock;
7227 	}
7228 
7229 	set_idle_cores(core, 1);
7230 unlock:
7231 	rcu_read_unlock();
7232 }
7233 
7234 /*
7235  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7236  * there are no idle cores left in the system; tracked through
7237  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7238  */
7239 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7240 {
7241 	bool idle = true;
7242 	int cpu;
7243 
7244 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7245 		if (!available_idle_cpu(cpu)) {
7246 			idle = false;
7247 			if (*idle_cpu == -1) {
7248 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
7249 					*idle_cpu = cpu;
7250 					break;
7251 				}
7252 				continue;
7253 			}
7254 			break;
7255 		}
7256 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
7257 			*idle_cpu = cpu;
7258 	}
7259 
7260 	if (idle)
7261 		return core;
7262 
7263 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7264 	return -1;
7265 }
7266 
7267 /*
7268  * Scan the local SMT mask for idle CPUs.
7269  */
7270 static int select_idle_smt(struct task_struct *p, int target)
7271 {
7272 	int cpu;
7273 
7274 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7275 		if (cpu == target)
7276 			continue;
7277 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7278 			return cpu;
7279 	}
7280 
7281 	return -1;
7282 }
7283 
7284 #else /* CONFIG_SCHED_SMT */
7285 
7286 static inline void set_idle_cores(int cpu, int val)
7287 {
7288 }
7289 
7290 static inline bool test_idle_cores(int cpu)
7291 {
7292 	return false;
7293 }
7294 
7295 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7296 {
7297 	return __select_idle_cpu(core, p);
7298 }
7299 
7300 static inline int select_idle_smt(struct task_struct *p, int target)
7301 {
7302 	return -1;
7303 }
7304 
7305 #endif /* CONFIG_SCHED_SMT */
7306 
7307 /*
7308  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7309  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7310  * average idle time for this rq (as found in rq->avg_idle).
7311  */
7312 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7313 {
7314 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7315 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7316 	struct sched_domain_shared *sd_share;
7317 
7318 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7319 
7320 	if (sched_feat(SIS_UTIL)) {
7321 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7322 		if (sd_share) {
7323 			/* because !--nr is the condition to stop scan */
7324 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7325 			/* overloaded LLC is unlikely to have idle cpu/core */
7326 			if (nr == 1)
7327 				return -1;
7328 		}
7329 	}
7330 
7331 	if (static_branch_unlikely(&sched_cluster_active)) {
7332 		struct sched_group *sg = sd->groups;
7333 
7334 		if (sg->flags & SD_CLUSTER) {
7335 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7336 				if (!cpumask_test_cpu(cpu, cpus))
7337 					continue;
7338 
7339 				if (has_idle_core) {
7340 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7341 					if ((unsigned int)i < nr_cpumask_bits)
7342 						return i;
7343 				} else {
7344 					if (--nr <= 0)
7345 						return -1;
7346 					idle_cpu = __select_idle_cpu(cpu, p);
7347 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7348 						return idle_cpu;
7349 				}
7350 			}
7351 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7352 		}
7353 	}
7354 
7355 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7356 		if (has_idle_core) {
7357 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7358 			if ((unsigned int)i < nr_cpumask_bits)
7359 				return i;
7360 
7361 		} else {
7362 			if (--nr <= 0)
7363 				return -1;
7364 			idle_cpu = __select_idle_cpu(cpu, p);
7365 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7366 				break;
7367 		}
7368 	}
7369 
7370 	if (has_idle_core)
7371 		set_idle_cores(target, false);
7372 
7373 	return idle_cpu;
7374 }
7375 
7376 /*
7377  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7378  * the task fits. If no CPU is big enough, but there are idle ones, try to
7379  * maximize capacity.
7380  */
7381 static int
7382 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7383 {
7384 	unsigned long task_util, util_min, util_max, best_cap = 0;
7385 	int fits, best_fits = 0;
7386 	int cpu, best_cpu = -1;
7387 	struct cpumask *cpus;
7388 
7389 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7390 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7391 
7392 	task_util = task_util_est(p);
7393 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7394 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7395 
7396 	for_each_cpu_wrap(cpu, cpus, target) {
7397 		unsigned long cpu_cap = capacity_of(cpu);
7398 
7399 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7400 			continue;
7401 
7402 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7403 
7404 		/* This CPU fits with all requirements */
7405 		if (fits > 0)
7406 			return cpu;
7407 		/*
7408 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7409 		 * Look for the CPU with best capacity.
7410 		 */
7411 		else if (fits < 0)
7412 			cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
7413 
7414 		/*
7415 		 * First, select CPU which fits better (-1 being better than 0).
7416 		 * Then, select the one with best capacity at same level.
7417 		 */
7418 		if ((fits < best_fits) ||
7419 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7420 			best_cap = cpu_cap;
7421 			best_cpu = cpu;
7422 			best_fits = fits;
7423 		}
7424 	}
7425 
7426 	return best_cpu;
7427 }
7428 
7429 static inline bool asym_fits_cpu(unsigned long util,
7430 				 unsigned long util_min,
7431 				 unsigned long util_max,
7432 				 int cpu)
7433 {
7434 	if (sched_asym_cpucap_active())
7435 		/*
7436 		 * Return true only if the cpu fully fits the task requirements
7437 		 * which include the utilization and the performance hints.
7438 		 */
7439 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7440 
7441 	return true;
7442 }
7443 
7444 /*
7445  * Try and locate an idle core/thread in the LLC cache domain.
7446  */
7447 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7448 {
7449 	bool has_idle_core = false;
7450 	struct sched_domain *sd;
7451 	unsigned long task_util, util_min, util_max;
7452 	int i, recent_used_cpu, prev_aff = -1;
7453 
7454 	/*
7455 	 * On asymmetric system, update task utilization because we will check
7456 	 * that the task fits with cpu's capacity.
7457 	 */
7458 	if (sched_asym_cpucap_active()) {
7459 		sync_entity_load_avg(&p->se);
7460 		task_util = task_util_est(p);
7461 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7462 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7463 	}
7464 
7465 	/*
7466 	 * per-cpu select_rq_mask usage
7467 	 */
7468 	lockdep_assert_irqs_disabled();
7469 
7470 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7471 	    asym_fits_cpu(task_util, util_min, util_max, target))
7472 		return target;
7473 
7474 	/*
7475 	 * If the previous CPU is cache affine and idle, don't be stupid:
7476 	 */
7477 	if (prev != target && cpus_share_cache(prev, target) &&
7478 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7479 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7480 
7481 		if (!static_branch_unlikely(&sched_cluster_active) ||
7482 		    cpus_share_resources(prev, target))
7483 			return prev;
7484 
7485 		prev_aff = prev;
7486 	}
7487 
7488 	/*
7489 	 * Allow a per-cpu kthread to stack with the wakee if the
7490 	 * kworker thread and the tasks previous CPUs are the same.
7491 	 * The assumption is that the wakee queued work for the
7492 	 * per-cpu kthread that is now complete and the wakeup is
7493 	 * essentially a sync wakeup. An obvious example of this
7494 	 * pattern is IO completions.
7495 	 */
7496 	if (is_per_cpu_kthread(current) &&
7497 	    in_task() &&
7498 	    prev == smp_processor_id() &&
7499 	    this_rq()->nr_running <= 1 &&
7500 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7501 		return prev;
7502 	}
7503 
7504 	/* Check a recently used CPU as a potential idle candidate: */
7505 	recent_used_cpu = p->recent_used_cpu;
7506 	p->recent_used_cpu = prev;
7507 	if (recent_used_cpu != prev &&
7508 	    recent_used_cpu != target &&
7509 	    cpus_share_cache(recent_used_cpu, target) &&
7510 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7511 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7512 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7513 
7514 		if (!static_branch_unlikely(&sched_cluster_active) ||
7515 		    cpus_share_resources(recent_used_cpu, target))
7516 			return recent_used_cpu;
7517 
7518 	} else {
7519 		recent_used_cpu = -1;
7520 	}
7521 
7522 	/*
7523 	 * For asymmetric CPU capacity systems, our domain of interest is
7524 	 * sd_asym_cpucapacity rather than sd_llc.
7525 	 */
7526 	if (sched_asym_cpucap_active()) {
7527 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7528 		/*
7529 		 * On an asymmetric CPU capacity system where an exclusive
7530 		 * cpuset defines a symmetric island (i.e. one unique
7531 		 * capacity_orig value through the cpuset), the key will be set
7532 		 * but the CPUs within that cpuset will not have a domain with
7533 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7534 		 * capacity path.
7535 		 */
7536 		if (sd) {
7537 			i = select_idle_capacity(p, sd, target);
7538 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7539 		}
7540 	}
7541 
7542 	sd = rcu_dereference(per_cpu(sd_llc, target));
7543 	if (!sd)
7544 		return target;
7545 
7546 	if (sched_smt_active()) {
7547 		has_idle_core = test_idle_cores(target);
7548 
7549 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7550 			i = select_idle_smt(p, prev);
7551 			if ((unsigned int)i < nr_cpumask_bits)
7552 				return i;
7553 		}
7554 	}
7555 
7556 	i = select_idle_cpu(p, sd, has_idle_core, target);
7557 	if ((unsigned)i < nr_cpumask_bits)
7558 		return i;
7559 
7560 	/*
7561 	 * For cluster machines which have lower sharing cache like L2 or
7562 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7563 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7564 	 * use them if possible when no idle CPU found in select_idle_cpu().
7565 	 */
7566 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7567 		return prev_aff;
7568 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7569 		return recent_used_cpu;
7570 
7571 	return target;
7572 }
7573 
7574 /**
7575  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7576  * @cpu: the CPU to get the utilization for
7577  * @p: task for which the CPU utilization should be predicted or NULL
7578  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7579  * @boost: 1 to enable boosting, otherwise 0
7580  *
7581  * The unit of the return value must be the same as the one of CPU capacity
7582  * so that CPU utilization can be compared with CPU capacity.
7583  *
7584  * CPU utilization is the sum of running time of runnable tasks plus the
7585  * recent utilization of currently non-runnable tasks on that CPU.
7586  * It represents the amount of CPU capacity currently used by CFS tasks in
7587  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7588  * capacity at f_max.
7589  *
7590  * The estimated CPU utilization is defined as the maximum between CPU
7591  * utilization and sum of the estimated utilization of the currently
7592  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7593  * previously-executed tasks, which helps better deduce how busy a CPU will
7594  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7595  * of such a task would be significantly decayed at this point of time.
7596  *
7597  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7598  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7599  * utilization. Boosting is implemented in cpu_util() so that internal
7600  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7601  * latter via cpu_util_cfs_boost().
7602  *
7603  * CPU utilization can be higher than the current CPU capacity
7604  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7605  * of rounding errors as well as task migrations or wakeups of new tasks.
7606  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7607  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7608  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7609  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7610  * though since this is useful for predicting the CPU capacity required
7611  * after task migrations (scheduler-driven DVFS).
7612  *
7613  * Return: (Boosted) (estimated) utilization for the specified CPU.
7614  */
7615 static unsigned long
7616 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7617 {
7618 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7619 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7620 	unsigned long runnable;
7621 
7622 	if (boost) {
7623 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7624 		util = max(util, runnable);
7625 	}
7626 
7627 	/*
7628 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7629 	 * contribution. If @p migrates from another CPU to @cpu add its
7630 	 * contribution. In all the other cases @cpu is not impacted by the
7631 	 * migration so its util_avg is already correct.
7632 	 */
7633 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7634 		lsub_positive(&util, task_util(p));
7635 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7636 		util += task_util(p);
7637 
7638 	if (sched_feat(UTIL_EST)) {
7639 		unsigned long util_est;
7640 
7641 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
7642 
7643 		/*
7644 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7645 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
7646 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7647 		 * has been enqueued.
7648 		 *
7649 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7650 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
7651 		 * Remove it to "simulate" cpu_util without @p's contribution.
7652 		 *
7653 		 * Despite the task_on_rq_queued(@p) check there is still a
7654 		 * small window for a possible race when an exec
7655 		 * select_task_rq_fair() races with LB's detach_task().
7656 		 *
7657 		 *   detach_task()
7658 		 *     deactivate_task()
7659 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7660 		 *       -------------------------------- A
7661 		 *       dequeue_task()                    \
7662 		 *         dequeue_task_fair()              + Race Time
7663 		 *           util_est_dequeue()            /
7664 		 *       -------------------------------- B
7665 		 *
7666 		 * The additional check "current == p" is required to further
7667 		 * reduce the race window.
7668 		 */
7669 		if (dst_cpu == cpu)
7670 			util_est += _task_util_est(p);
7671 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7672 			lsub_positive(&util_est, _task_util_est(p));
7673 
7674 		util = max(util, util_est);
7675 	}
7676 
7677 	return min(util, arch_scale_cpu_capacity(cpu));
7678 }
7679 
7680 unsigned long cpu_util_cfs(int cpu)
7681 {
7682 	return cpu_util(cpu, NULL, -1, 0);
7683 }
7684 
7685 unsigned long cpu_util_cfs_boost(int cpu)
7686 {
7687 	return cpu_util(cpu, NULL, -1, 1);
7688 }
7689 
7690 /*
7691  * cpu_util_without: compute cpu utilization without any contributions from *p
7692  * @cpu: the CPU which utilization is requested
7693  * @p: the task which utilization should be discounted
7694  *
7695  * The utilization of a CPU is defined by the utilization of tasks currently
7696  * enqueued on that CPU as well as tasks which are currently sleeping after an
7697  * execution on that CPU.
7698  *
7699  * This method returns the utilization of the specified CPU by discounting the
7700  * utilization of the specified task, whenever the task is currently
7701  * contributing to the CPU utilization.
7702  */
7703 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7704 {
7705 	/* Task has no contribution or is new */
7706 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7707 		p = NULL;
7708 
7709 	return cpu_util(cpu, p, -1, 0);
7710 }
7711 
7712 /*
7713  * energy_env - Utilization landscape for energy estimation.
7714  * @task_busy_time: Utilization contribution by the task for which we test the
7715  *                  placement. Given by eenv_task_busy_time().
7716  * @pd_busy_time:   Utilization of the whole perf domain without the task
7717  *                  contribution. Given by eenv_pd_busy_time().
7718  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7719  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7720  */
7721 struct energy_env {
7722 	unsigned long task_busy_time;
7723 	unsigned long pd_busy_time;
7724 	unsigned long cpu_cap;
7725 	unsigned long pd_cap;
7726 };
7727 
7728 /*
7729  * Compute the task busy time for compute_energy(). This time cannot be
7730  * injected directly into effective_cpu_util() because of the IRQ scaling.
7731  * The latter only makes sense with the most recent CPUs where the task has
7732  * run.
7733  */
7734 static inline void eenv_task_busy_time(struct energy_env *eenv,
7735 				       struct task_struct *p, int prev_cpu)
7736 {
7737 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7738 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7739 
7740 	if (unlikely(irq >= max_cap))
7741 		busy_time = max_cap;
7742 	else
7743 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7744 
7745 	eenv->task_busy_time = busy_time;
7746 }
7747 
7748 /*
7749  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7750  * utilization for each @pd_cpus, it however doesn't take into account
7751  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7752  * scale the EM reported power consumption at the (eventually clamped)
7753  * cpu_capacity.
7754  *
7755  * The contribution of the task @p for which we want to estimate the
7756  * energy cost is removed (by cpu_util()) and must be calculated
7757  * separately (see eenv_task_busy_time). This ensures:
7758  *
7759  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7760  *     the task on.
7761  *
7762  *   - A fair comparison between CPUs as the task contribution (task_util())
7763  *     will always be the same no matter which CPU utilization we rely on
7764  *     (util_avg or util_est).
7765  *
7766  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7767  * exceed @eenv->pd_cap.
7768  */
7769 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7770 				     struct cpumask *pd_cpus,
7771 				     struct task_struct *p)
7772 {
7773 	unsigned long busy_time = 0;
7774 	int cpu;
7775 
7776 	for_each_cpu(cpu, pd_cpus) {
7777 		unsigned long util = cpu_util(cpu, p, -1, 0);
7778 
7779 		busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL);
7780 	}
7781 
7782 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7783 }
7784 
7785 /*
7786  * Compute the maximum utilization for compute_energy() when the task @p
7787  * is placed on the cpu @dst_cpu.
7788  *
7789  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7790  * exceed @eenv->cpu_cap.
7791  */
7792 static inline unsigned long
7793 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7794 		 struct task_struct *p, int dst_cpu)
7795 {
7796 	unsigned long max_util = 0;
7797 	int cpu;
7798 
7799 	for_each_cpu(cpu, pd_cpus) {
7800 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7801 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7802 		unsigned long eff_util;
7803 
7804 		/*
7805 		 * Performance domain frequency: utilization clamping
7806 		 * must be considered since it affects the selection
7807 		 * of the performance domain frequency.
7808 		 * NOTE: in case RT tasks are running, by default the
7809 		 * FREQUENCY_UTIL's utilization can be max OPP.
7810 		 */
7811 		eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk);
7812 		max_util = max(max_util, eff_util);
7813 	}
7814 
7815 	return min(max_util, eenv->cpu_cap);
7816 }
7817 
7818 /*
7819  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7820  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7821  * contribution is ignored.
7822  */
7823 static inline unsigned long
7824 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7825 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7826 {
7827 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7828 	unsigned long busy_time = eenv->pd_busy_time;
7829 	unsigned long energy;
7830 
7831 	if (dst_cpu >= 0)
7832 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7833 
7834 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7835 
7836 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7837 
7838 	return energy;
7839 }
7840 
7841 /*
7842  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7843  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7844  * spare capacity in each performance domain and uses it as a potential
7845  * candidate to execute the task. Then, it uses the Energy Model to figure
7846  * out which of the CPU candidates is the most energy-efficient.
7847  *
7848  * The rationale for this heuristic is as follows. In a performance domain,
7849  * all the most energy efficient CPU candidates (according to the Energy
7850  * Model) are those for which we'll request a low frequency. When there are
7851  * several CPUs for which the frequency request will be the same, we don't
7852  * have enough data to break the tie between them, because the Energy Model
7853  * only includes active power costs. With this model, if we assume that
7854  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7855  * the maximum spare capacity in a performance domain is guaranteed to be among
7856  * the best candidates of the performance domain.
7857  *
7858  * In practice, it could be preferable from an energy standpoint to pack
7859  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7860  * but that could also hurt our chances to go cluster idle, and we have no
7861  * ways to tell with the current Energy Model if this is actually a good
7862  * idea or not. So, find_energy_efficient_cpu() basically favors
7863  * cluster-packing, and spreading inside a cluster. That should at least be
7864  * a good thing for latency, and this is consistent with the idea that most
7865  * of the energy savings of EAS come from the asymmetry of the system, and
7866  * not so much from breaking the tie between identical CPUs. That's also the
7867  * reason why EAS is enabled in the topology code only for systems where
7868  * SD_ASYM_CPUCAPACITY is set.
7869  *
7870  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7871  * they don't have any useful utilization data yet and it's not possible to
7872  * forecast their impact on energy consumption. Consequently, they will be
7873  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7874  * to be energy-inefficient in some use-cases. The alternative would be to
7875  * bias new tasks towards specific types of CPUs first, or to try to infer
7876  * their util_avg from the parent task, but those heuristics could hurt
7877  * other use-cases too. So, until someone finds a better way to solve this,
7878  * let's keep things simple by re-using the existing slow path.
7879  */
7880 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7881 {
7882 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7883 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7884 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7885 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7886 	struct root_domain *rd = this_rq()->rd;
7887 	int cpu, best_energy_cpu, target = -1;
7888 	int prev_fits = -1, best_fits = -1;
7889 	unsigned long best_thermal_cap = 0;
7890 	unsigned long prev_thermal_cap = 0;
7891 	struct sched_domain *sd;
7892 	struct perf_domain *pd;
7893 	struct energy_env eenv;
7894 
7895 	rcu_read_lock();
7896 	pd = rcu_dereference(rd->pd);
7897 	if (!pd || READ_ONCE(rd->overutilized))
7898 		goto unlock;
7899 
7900 	/*
7901 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7902 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7903 	 */
7904 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7905 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7906 		sd = sd->parent;
7907 	if (!sd)
7908 		goto unlock;
7909 
7910 	target = prev_cpu;
7911 
7912 	sync_entity_load_avg(&p->se);
7913 	if (!task_util_est(p) && p_util_min == 0)
7914 		goto unlock;
7915 
7916 	eenv_task_busy_time(&eenv, p, prev_cpu);
7917 
7918 	for (; pd; pd = pd->next) {
7919 		unsigned long util_min = p_util_min, util_max = p_util_max;
7920 		unsigned long cpu_cap, cpu_thermal_cap, util;
7921 		long prev_spare_cap = -1, max_spare_cap = -1;
7922 		unsigned long rq_util_min, rq_util_max;
7923 		unsigned long cur_delta, base_energy;
7924 		int max_spare_cap_cpu = -1;
7925 		int fits, max_fits = -1;
7926 
7927 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7928 
7929 		if (cpumask_empty(cpus))
7930 			continue;
7931 
7932 		/* Account thermal pressure for the energy estimation */
7933 		cpu = cpumask_first(cpus);
7934 		cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7935 		cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7936 
7937 		eenv.cpu_cap = cpu_thermal_cap;
7938 		eenv.pd_cap = 0;
7939 
7940 		for_each_cpu(cpu, cpus) {
7941 			struct rq *rq = cpu_rq(cpu);
7942 
7943 			eenv.pd_cap += cpu_thermal_cap;
7944 
7945 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7946 				continue;
7947 
7948 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7949 				continue;
7950 
7951 			util = cpu_util(cpu, p, cpu, 0);
7952 			cpu_cap = capacity_of(cpu);
7953 
7954 			/*
7955 			 * Skip CPUs that cannot satisfy the capacity request.
7956 			 * IOW, placing the task there would make the CPU
7957 			 * overutilized. Take uclamp into account to see how
7958 			 * much capacity we can get out of the CPU; this is
7959 			 * aligned with sched_cpu_util().
7960 			 */
7961 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7962 				/*
7963 				 * Open code uclamp_rq_util_with() except for
7964 				 * the clamp() part. Ie: apply max aggregation
7965 				 * only. util_fits_cpu() logic requires to
7966 				 * operate on non clamped util but must use the
7967 				 * max-aggregated uclamp_{min, max}.
7968 				 */
7969 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7970 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7971 
7972 				util_min = max(rq_util_min, p_util_min);
7973 				util_max = max(rq_util_max, p_util_max);
7974 			}
7975 
7976 			fits = util_fits_cpu(util, util_min, util_max, cpu);
7977 			if (!fits)
7978 				continue;
7979 
7980 			lsub_positive(&cpu_cap, util);
7981 
7982 			if (cpu == prev_cpu) {
7983 				/* Always use prev_cpu as a candidate. */
7984 				prev_spare_cap = cpu_cap;
7985 				prev_fits = fits;
7986 			} else if ((fits > max_fits) ||
7987 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
7988 				/*
7989 				 * Find the CPU with the maximum spare capacity
7990 				 * among the remaining CPUs in the performance
7991 				 * domain.
7992 				 */
7993 				max_spare_cap = cpu_cap;
7994 				max_spare_cap_cpu = cpu;
7995 				max_fits = fits;
7996 			}
7997 		}
7998 
7999 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8000 			continue;
8001 
8002 		eenv_pd_busy_time(&eenv, cpus, p);
8003 		/* Compute the 'base' energy of the pd, without @p */
8004 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8005 
8006 		/* Evaluate the energy impact of using prev_cpu. */
8007 		if (prev_spare_cap > -1) {
8008 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8009 						    prev_cpu);
8010 			/* CPU utilization has changed */
8011 			if (prev_delta < base_energy)
8012 				goto unlock;
8013 			prev_delta -= base_energy;
8014 			prev_thermal_cap = cpu_thermal_cap;
8015 			best_delta = min(best_delta, prev_delta);
8016 		}
8017 
8018 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8019 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8020 			/* Current best energy cpu fits better */
8021 			if (max_fits < best_fits)
8022 				continue;
8023 
8024 			/*
8025 			 * Both don't fit performance hint (i.e. uclamp_min)
8026 			 * but best energy cpu has better capacity.
8027 			 */
8028 			if ((max_fits < 0) &&
8029 			    (cpu_thermal_cap <= best_thermal_cap))
8030 				continue;
8031 
8032 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8033 						   max_spare_cap_cpu);
8034 			/* CPU utilization has changed */
8035 			if (cur_delta < base_energy)
8036 				goto unlock;
8037 			cur_delta -= base_energy;
8038 
8039 			/*
8040 			 * Both fit for the task but best energy cpu has lower
8041 			 * energy impact.
8042 			 */
8043 			if ((max_fits > 0) && (best_fits > 0) &&
8044 			    (cur_delta >= best_delta))
8045 				continue;
8046 
8047 			best_delta = cur_delta;
8048 			best_energy_cpu = max_spare_cap_cpu;
8049 			best_fits = max_fits;
8050 			best_thermal_cap = cpu_thermal_cap;
8051 		}
8052 	}
8053 	rcu_read_unlock();
8054 
8055 	if ((best_fits > prev_fits) ||
8056 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8057 	    ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8058 		target = best_energy_cpu;
8059 
8060 	return target;
8061 
8062 unlock:
8063 	rcu_read_unlock();
8064 
8065 	return target;
8066 }
8067 
8068 /*
8069  * select_task_rq_fair: Select target runqueue for the waking task in domains
8070  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8071  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8072  *
8073  * Balances load by selecting the idlest CPU in the idlest group, or under
8074  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8075  *
8076  * Returns the target CPU number.
8077  */
8078 static int
8079 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8080 {
8081 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8082 	struct sched_domain *tmp, *sd = NULL;
8083 	int cpu = smp_processor_id();
8084 	int new_cpu = prev_cpu;
8085 	int want_affine = 0;
8086 	/* SD_flags and WF_flags share the first nibble */
8087 	int sd_flag = wake_flags & 0xF;
8088 
8089 	/*
8090 	 * required for stable ->cpus_allowed
8091 	 */
8092 	lockdep_assert_held(&p->pi_lock);
8093 	if (wake_flags & WF_TTWU) {
8094 		record_wakee(p);
8095 
8096 		if ((wake_flags & WF_CURRENT_CPU) &&
8097 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8098 			return cpu;
8099 
8100 		if (sched_energy_enabled()) {
8101 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8102 			if (new_cpu >= 0)
8103 				return new_cpu;
8104 			new_cpu = prev_cpu;
8105 		}
8106 
8107 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8108 	}
8109 
8110 	rcu_read_lock();
8111 	for_each_domain(cpu, tmp) {
8112 		/*
8113 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8114 		 * cpu is a valid SD_WAKE_AFFINE target.
8115 		 */
8116 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8117 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8118 			if (cpu != prev_cpu)
8119 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8120 
8121 			sd = NULL; /* Prefer wake_affine over balance flags */
8122 			break;
8123 		}
8124 
8125 		/*
8126 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8127 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8128 		 * will usually go to the fast path.
8129 		 */
8130 		if (tmp->flags & sd_flag)
8131 			sd = tmp;
8132 		else if (!want_affine)
8133 			break;
8134 	}
8135 
8136 	if (unlikely(sd)) {
8137 		/* Slow path */
8138 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8139 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8140 		/* Fast path */
8141 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8142 	}
8143 	rcu_read_unlock();
8144 
8145 	return new_cpu;
8146 }
8147 
8148 /*
8149  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8150  * cfs_rq_of(p) references at time of call are still valid and identify the
8151  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8152  */
8153 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8154 {
8155 	struct sched_entity *se = &p->se;
8156 
8157 	if (!task_on_rq_migrating(p)) {
8158 		remove_entity_load_avg(se);
8159 
8160 		/*
8161 		 * Here, the task's PELT values have been updated according to
8162 		 * the current rq's clock. But if that clock hasn't been
8163 		 * updated in a while, a substantial idle time will be missed,
8164 		 * leading to an inflation after wake-up on the new rq.
8165 		 *
8166 		 * Estimate the missing time from the cfs_rq last_update_time
8167 		 * and update sched_avg to improve the PELT continuity after
8168 		 * migration.
8169 		 */
8170 		migrate_se_pelt_lag(se);
8171 	}
8172 
8173 	/* Tell new CPU we are migrated */
8174 	se->avg.last_update_time = 0;
8175 
8176 	update_scan_period(p, new_cpu);
8177 }
8178 
8179 static void task_dead_fair(struct task_struct *p)
8180 {
8181 	remove_entity_load_avg(&p->se);
8182 }
8183 
8184 static int
8185 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8186 {
8187 	if (rq->nr_running)
8188 		return 1;
8189 
8190 	return newidle_balance(rq, rf) != 0;
8191 }
8192 #endif /* CONFIG_SMP */
8193 
8194 static void set_next_buddy(struct sched_entity *se)
8195 {
8196 	for_each_sched_entity(se) {
8197 		if (SCHED_WARN_ON(!se->on_rq))
8198 			return;
8199 		if (se_is_idle(se))
8200 			return;
8201 		cfs_rq_of(se)->next = se;
8202 	}
8203 }
8204 
8205 /*
8206  * Preempt the current task with a newly woken task if needed:
8207  */
8208 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8209 {
8210 	struct task_struct *curr = rq->curr;
8211 	struct sched_entity *se = &curr->se, *pse = &p->se;
8212 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8213 	int next_buddy_marked = 0;
8214 	int cse_is_idle, pse_is_idle;
8215 
8216 	if (unlikely(se == pse))
8217 		return;
8218 
8219 	/*
8220 	 * This is possible from callers such as attach_tasks(), in which we
8221 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8222 	 * lead to a throttle).  This both saves work and prevents false
8223 	 * next-buddy nomination below.
8224 	 */
8225 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8226 		return;
8227 
8228 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8229 		set_next_buddy(pse);
8230 		next_buddy_marked = 1;
8231 	}
8232 
8233 	/*
8234 	 * We can come here with TIF_NEED_RESCHED already set from new task
8235 	 * wake up path.
8236 	 *
8237 	 * Note: this also catches the edge-case of curr being in a throttled
8238 	 * group (e.g. via set_curr_task), since update_curr() (in the
8239 	 * enqueue of curr) will have resulted in resched being set.  This
8240 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8241 	 * below.
8242 	 */
8243 	if (test_tsk_need_resched(curr))
8244 		return;
8245 
8246 	/* Idle tasks are by definition preempted by non-idle tasks. */
8247 	if (unlikely(task_has_idle_policy(curr)) &&
8248 	    likely(!task_has_idle_policy(p)))
8249 		goto preempt;
8250 
8251 	/*
8252 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8253 	 * is driven by the tick):
8254 	 */
8255 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8256 		return;
8257 
8258 	find_matching_se(&se, &pse);
8259 	WARN_ON_ONCE(!pse);
8260 
8261 	cse_is_idle = se_is_idle(se);
8262 	pse_is_idle = se_is_idle(pse);
8263 
8264 	/*
8265 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8266 	 * in the inverse case).
8267 	 */
8268 	if (cse_is_idle && !pse_is_idle)
8269 		goto preempt;
8270 	if (cse_is_idle != pse_is_idle)
8271 		return;
8272 
8273 	cfs_rq = cfs_rq_of(se);
8274 	update_curr(cfs_rq);
8275 
8276 	/*
8277 	 * XXX pick_eevdf(cfs_rq) != se ?
8278 	 */
8279 	if (pick_eevdf(cfs_rq) == pse)
8280 		goto preempt;
8281 
8282 	return;
8283 
8284 preempt:
8285 	resched_curr(rq);
8286 }
8287 
8288 #ifdef CONFIG_SMP
8289 static struct task_struct *pick_task_fair(struct rq *rq)
8290 {
8291 	struct sched_entity *se;
8292 	struct cfs_rq *cfs_rq;
8293 
8294 again:
8295 	cfs_rq = &rq->cfs;
8296 	if (!cfs_rq->nr_running)
8297 		return NULL;
8298 
8299 	do {
8300 		struct sched_entity *curr = cfs_rq->curr;
8301 
8302 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8303 		if (curr) {
8304 			if (curr->on_rq)
8305 				update_curr(cfs_rq);
8306 			else
8307 				curr = NULL;
8308 
8309 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8310 				goto again;
8311 		}
8312 
8313 		se = pick_next_entity(cfs_rq);
8314 		cfs_rq = group_cfs_rq(se);
8315 	} while (cfs_rq);
8316 
8317 	return task_of(se);
8318 }
8319 #endif
8320 
8321 struct task_struct *
8322 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8323 {
8324 	struct cfs_rq *cfs_rq = &rq->cfs;
8325 	struct sched_entity *se;
8326 	struct task_struct *p;
8327 	int new_tasks;
8328 
8329 again:
8330 	if (!sched_fair_runnable(rq))
8331 		goto idle;
8332 
8333 #ifdef CONFIG_FAIR_GROUP_SCHED
8334 	if (!prev || prev->sched_class != &fair_sched_class)
8335 		goto simple;
8336 
8337 	/*
8338 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8339 	 * likely that a next task is from the same cgroup as the current.
8340 	 *
8341 	 * Therefore attempt to avoid putting and setting the entire cgroup
8342 	 * hierarchy, only change the part that actually changes.
8343 	 */
8344 
8345 	do {
8346 		struct sched_entity *curr = cfs_rq->curr;
8347 
8348 		/*
8349 		 * Since we got here without doing put_prev_entity() we also
8350 		 * have to consider cfs_rq->curr. If it is still a runnable
8351 		 * entity, update_curr() will update its vruntime, otherwise
8352 		 * forget we've ever seen it.
8353 		 */
8354 		if (curr) {
8355 			if (curr->on_rq)
8356 				update_curr(cfs_rq);
8357 			else
8358 				curr = NULL;
8359 
8360 			/*
8361 			 * This call to check_cfs_rq_runtime() will do the
8362 			 * throttle and dequeue its entity in the parent(s).
8363 			 * Therefore the nr_running test will indeed
8364 			 * be correct.
8365 			 */
8366 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8367 				cfs_rq = &rq->cfs;
8368 
8369 				if (!cfs_rq->nr_running)
8370 					goto idle;
8371 
8372 				goto simple;
8373 			}
8374 		}
8375 
8376 		se = pick_next_entity(cfs_rq);
8377 		cfs_rq = group_cfs_rq(se);
8378 	} while (cfs_rq);
8379 
8380 	p = task_of(se);
8381 
8382 	/*
8383 	 * Since we haven't yet done put_prev_entity and if the selected task
8384 	 * is a different task than we started out with, try and touch the
8385 	 * least amount of cfs_rqs.
8386 	 */
8387 	if (prev != p) {
8388 		struct sched_entity *pse = &prev->se;
8389 
8390 		while (!(cfs_rq = is_same_group(se, pse))) {
8391 			int se_depth = se->depth;
8392 			int pse_depth = pse->depth;
8393 
8394 			if (se_depth <= pse_depth) {
8395 				put_prev_entity(cfs_rq_of(pse), pse);
8396 				pse = parent_entity(pse);
8397 			}
8398 			if (se_depth >= pse_depth) {
8399 				set_next_entity(cfs_rq_of(se), se);
8400 				se = parent_entity(se);
8401 			}
8402 		}
8403 
8404 		put_prev_entity(cfs_rq, pse);
8405 		set_next_entity(cfs_rq, se);
8406 	}
8407 
8408 	goto done;
8409 simple:
8410 #endif
8411 	if (prev)
8412 		put_prev_task(rq, prev);
8413 
8414 	do {
8415 		se = pick_next_entity(cfs_rq);
8416 		set_next_entity(cfs_rq, se);
8417 		cfs_rq = group_cfs_rq(se);
8418 	} while (cfs_rq);
8419 
8420 	p = task_of(se);
8421 
8422 done: __maybe_unused;
8423 #ifdef CONFIG_SMP
8424 	/*
8425 	 * Move the next running task to the front of
8426 	 * the list, so our cfs_tasks list becomes MRU
8427 	 * one.
8428 	 */
8429 	list_move(&p->se.group_node, &rq->cfs_tasks);
8430 #endif
8431 
8432 	if (hrtick_enabled_fair(rq))
8433 		hrtick_start_fair(rq, p);
8434 
8435 	update_misfit_status(p, rq);
8436 	sched_fair_update_stop_tick(rq, p);
8437 
8438 	return p;
8439 
8440 idle:
8441 	if (!rf)
8442 		return NULL;
8443 
8444 	new_tasks = newidle_balance(rq, rf);
8445 
8446 	/*
8447 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8448 	 * possible for any higher priority task to appear. In that case we
8449 	 * must re-start the pick_next_entity() loop.
8450 	 */
8451 	if (new_tasks < 0)
8452 		return RETRY_TASK;
8453 
8454 	if (new_tasks > 0)
8455 		goto again;
8456 
8457 	/*
8458 	 * rq is about to be idle, check if we need to update the
8459 	 * lost_idle_time of clock_pelt
8460 	 */
8461 	update_idle_rq_clock_pelt(rq);
8462 
8463 	return NULL;
8464 }
8465 
8466 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8467 {
8468 	return pick_next_task_fair(rq, NULL, NULL);
8469 }
8470 
8471 /*
8472  * Account for a descheduled task:
8473  */
8474 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8475 {
8476 	struct sched_entity *se = &prev->se;
8477 	struct cfs_rq *cfs_rq;
8478 
8479 	for_each_sched_entity(se) {
8480 		cfs_rq = cfs_rq_of(se);
8481 		put_prev_entity(cfs_rq, se);
8482 	}
8483 }
8484 
8485 /*
8486  * sched_yield() is very simple
8487  */
8488 static void yield_task_fair(struct rq *rq)
8489 {
8490 	struct task_struct *curr = rq->curr;
8491 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8492 	struct sched_entity *se = &curr->se;
8493 
8494 	/*
8495 	 * Are we the only task in the tree?
8496 	 */
8497 	if (unlikely(rq->nr_running == 1))
8498 		return;
8499 
8500 	clear_buddies(cfs_rq, se);
8501 
8502 	update_rq_clock(rq);
8503 	/*
8504 	 * Update run-time statistics of the 'current'.
8505 	 */
8506 	update_curr(cfs_rq);
8507 	/*
8508 	 * Tell update_rq_clock() that we've just updated,
8509 	 * so we don't do microscopic update in schedule()
8510 	 * and double the fastpath cost.
8511 	 */
8512 	rq_clock_skip_update(rq);
8513 
8514 	se->deadline += calc_delta_fair(se->slice, se);
8515 }
8516 
8517 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8518 {
8519 	struct sched_entity *se = &p->se;
8520 
8521 	/* throttled hierarchies are not runnable */
8522 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8523 		return false;
8524 
8525 	/* Tell the scheduler that we'd really like pse to run next. */
8526 	set_next_buddy(se);
8527 
8528 	yield_task_fair(rq);
8529 
8530 	return true;
8531 }
8532 
8533 #ifdef CONFIG_SMP
8534 /**************************************************
8535  * Fair scheduling class load-balancing methods.
8536  *
8537  * BASICS
8538  *
8539  * The purpose of load-balancing is to achieve the same basic fairness the
8540  * per-CPU scheduler provides, namely provide a proportional amount of compute
8541  * time to each task. This is expressed in the following equation:
8542  *
8543  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8544  *
8545  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8546  * W_i,0 is defined as:
8547  *
8548  *   W_i,0 = \Sum_j w_i,j                                             (2)
8549  *
8550  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8551  * is derived from the nice value as per sched_prio_to_weight[].
8552  *
8553  * The weight average is an exponential decay average of the instantaneous
8554  * weight:
8555  *
8556  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8557  *
8558  * C_i is the compute capacity of CPU i, typically it is the
8559  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8560  * can also include other factors [XXX].
8561  *
8562  * To achieve this balance we define a measure of imbalance which follows
8563  * directly from (1):
8564  *
8565  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8566  *
8567  * We them move tasks around to minimize the imbalance. In the continuous
8568  * function space it is obvious this converges, in the discrete case we get
8569  * a few fun cases generally called infeasible weight scenarios.
8570  *
8571  * [XXX expand on:
8572  *     - infeasible weights;
8573  *     - local vs global optima in the discrete case. ]
8574  *
8575  *
8576  * SCHED DOMAINS
8577  *
8578  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8579  * for all i,j solution, we create a tree of CPUs that follows the hardware
8580  * topology where each level pairs two lower groups (or better). This results
8581  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8582  * tree to only the first of the previous level and we decrease the frequency
8583  * of load-balance at each level inv. proportional to the number of CPUs in
8584  * the groups.
8585  *
8586  * This yields:
8587  *
8588  *     log_2 n     1     n
8589  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8590  *     i = 0      2^i   2^i
8591  *                               `- size of each group
8592  *         |         |     `- number of CPUs doing load-balance
8593  *         |         `- freq
8594  *         `- sum over all levels
8595  *
8596  * Coupled with a limit on how many tasks we can migrate every balance pass,
8597  * this makes (5) the runtime complexity of the balancer.
8598  *
8599  * An important property here is that each CPU is still (indirectly) connected
8600  * to every other CPU in at most O(log n) steps:
8601  *
8602  * The adjacency matrix of the resulting graph is given by:
8603  *
8604  *             log_2 n
8605  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8606  *             k = 0
8607  *
8608  * And you'll find that:
8609  *
8610  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8611  *
8612  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8613  * The task movement gives a factor of O(m), giving a convergence complexity
8614  * of:
8615  *
8616  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8617  *
8618  *
8619  * WORK CONSERVING
8620  *
8621  * In order to avoid CPUs going idle while there's still work to do, new idle
8622  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8623  * tree itself instead of relying on other CPUs to bring it work.
8624  *
8625  * This adds some complexity to both (5) and (8) but it reduces the total idle
8626  * time.
8627  *
8628  * [XXX more?]
8629  *
8630  *
8631  * CGROUPS
8632  *
8633  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8634  *
8635  *                                s_k,i
8636  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8637  *                                 S_k
8638  *
8639  * Where
8640  *
8641  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8642  *
8643  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8644  *
8645  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8646  * property.
8647  *
8648  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8649  *      rewrite all of this once again.]
8650  */
8651 
8652 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8653 
8654 enum fbq_type { regular, remote, all };
8655 
8656 /*
8657  * 'group_type' describes the group of CPUs at the moment of load balancing.
8658  *
8659  * The enum is ordered by pulling priority, with the group with lowest priority
8660  * first so the group_type can simply be compared when selecting the busiest
8661  * group. See update_sd_pick_busiest().
8662  */
8663 enum group_type {
8664 	/* The group has spare capacity that can be used to run more tasks.  */
8665 	group_has_spare = 0,
8666 	/*
8667 	 * The group is fully used and the tasks don't compete for more CPU
8668 	 * cycles. Nevertheless, some tasks might wait before running.
8669 	 */
8670 	group_fully_busy,
8671 	/*
8672 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8673 	 * more powerful CPU.
8674 	 */
8675 	group_misfit_task,
8676 	/*
8677 	 * Balance SMT group that's fully busy. Can benefit from migration
8678 	 * a task on SMT with busy sibling to another CPU on idle core.
8679 	 */
8680 	group_smt_balance,
8681 	/*
8682 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8683 	 * and the task should be migrated to it instead of running on the
8684 	 * current CPU.
8685 	 */
8686 	group_asym_packing,
8687 	/*
8688 	 * The tasks' affinity constraints previously prevented the scheduler
8689 	 * from balancing the load across the system.
8690 	 */
8691 	group_imbalanced,
8692 	/*
8693 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8694 	 * tasks.
8695 	 */
8696 	group_overloaded
8697 };
8698 
8699 enum migration_type {
8700 	migrate_load = 0,
8701 	migrate_util,
8702 	migrate_task,
8703 	migrate_misfit
8704 };
8705 
8706 #define LBF_ALL_PINNED	0x01
8707 #define LBF_NEED_BREAK	0x02
8708 #define LBF_DST_PINNED  0x04
8709 #define LBF_SOME_PINNED	0x08
8710 #define LBF_ACTIVE_LB	0x10
8711 
8712 struct lb_env {
8713 	struct sched_domain	*sd;
8714 
8715 	struct rq		*src_rq;
8716 	int			src_cpu;
8717 
8718 	int			dst_cpu;
8719 	struct rq		*dst_rq;
8720 
8721 	struct cpumask		*dst_grpmask;
8722 	int			new_dst_cpu;
8723 	enum cpu_idle_type	idle;
8724 	long			imbalance;
8725 	/* The set of CPUs under consideration for load-balancing */
8726 	struct cpumask		*cpus;
8727 
8728 	unsigned int		flags;
8729 
8730 	unsigned int		loop;
8731 	unsigned int		loop_break;
8732 	unsigned int		loop_max;
8733 
8734 	enum fbq_type		fbq_type;
8735 	enum migration_type	migration_type;
8736 	struct list_head	tasks;
8737 };
8738 
8739 /*
8740  * Is this task likely cache-hot:
8741  */
8742 static int task_hot(struct task_struct *p, struct lb_env *env)
8743 {
8744 	s64 delta;
8745 
8746 	lockdep_assert_rq_held(env->src_rq);
8747 
8748 	if (p->sched_class != &fair_sched_class)
8749 		return 0;
8750 
8751 	if (unlikely(task_has_idle_policy(p)))
8752 		return 0;
8753 
8754 	/* SMT siblings share cache */
8755 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8756 		return 0;
8757 
8758 	/*
8759 	 * Buddy candidates are cache hot:
8760 	 */
8761 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8762 	    (&p->se == cfs_rq_of(&p->se)->next))
8763 		return 1;
8764 
8765 	if (sysctl_sched_migration_cost == -1)
8766 		return 1;
8767 
8768 	/*
8769 	 * Don't migrate task if the task's cookie does not match
8770 	 * with the destination CPU's core cookie.
8771 	 */
8772 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8773 		return 1;
8774 
8775 	if (sysctl_sched_migration_cost == 0)
8776 		return 0;
8777 
8778 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8779 
8780 	return delta < (s64)sysctl_sched_migration_cost;
8781 }
8782 
8783 #ifdef CONFIG_NUMA_BALANCING
8784 /*
8785  * Returns 1, if task migration degrades locality
8786  * Returns 0, if task migration improves locality i.e migration preferred.
8787  * Returns -1, if task migration is not affected by locality.
8788  */
8789 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8790 {
8791 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8792 	unsigned long src_weight, dst_weight;
8793 	int src_nid, dst_nid, dist;
8794 
8795 	if (!static_branch_likely(&sched_numa_balancing))
8796 		return -1;
8797 
8798 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8799 		return -1;
8800 
8801 	src_nid = cpu_to_node(env->src_cpu);
8802 	dst_nid = cpu_to_node(env->dst_cpu);
8803 
8804 	if (src_nid == dst_nid)
8805 		return -1;
8806 
8807 	/* Migrating away from the preferred node is always bad. */
8808 	if (src_nid == p->numa_preferred_nid) {
8809 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8810 			return 1;
8811 		else
8812 			return -1;
8813 	}
8814 
8815 	/* Encourage migration to the preferred node. */
8816 	if (dst_nid == p->numa_preferred_nid)
8817 		return 0;
8818 
8819 	/* Leaving a core idle is often worse than degrading locality. */
8820 	if (env->idle == CPU_IDLE)
8821 		return -1;
8822 
8823 	dist = node_distance(src_nid, dst_nid);
8824 	if (numa_group) {
8825 		src_weight = group_weight(p, src_nid, dist);
8826 		dst_weight = group_weight(p, dst_nid, dist);
8827 	} else {
8828 		src_weight = task_weight(p, src_nid, dist);
8829 		dst_weight = task_weight(p, dst_nid, dist);
8830 	}
8831 
8832 	return dst_weight < src_weight;
8833 }
8834 
8835 #else
8836 static inline int migrate_degrades_locality(struct task_struct *p,
8837 					     struct lb_env *env)
8838 {
8839 	return -1;
8840 }
8841 #endif
8842 
8843 /*
8844  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8845  */
8846 static
8847 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8848 {
8849 	int tsk_cache_hot;
8850 
8851 	lockdep_assert_rq_held(env->src_rq);
8852 
8853 	/*
8854 	 * We do not migrate tasks that are:
8855 	 * 1) throttled_lb_pair, or
8856 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8857 	 * 3) running (obviously), or
8858 	 * 4) are cache-hot on their current CPU.
8859 	 */
8860 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8861 		return 0;
8862 
8863 	/* Disregard pcpu kthreads; they are where they need to be. */
8864 	if (kthread_is_per_cpu(p))
8865 		return 0;
8866 
8867 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8868 		int cpu;
8869 
8870 		schedstat_inc(p->stats.nr_failed_migrations_affine);
8871 
8872 		env->flags |= LBF_SOME_PINNED;
8873 
8874 		/*
8875 		 * Remember if this task can be migrated to any other CPU in
8876 		 * our sched_group. We may want to revisit it if we couldn't
8877 		 * meet load balance goals by pulling other tasks on src_cpu.
8878 		 *
8879 		 * Avoid computing new_dst_cpu
8880 		 * - for NEWLY_IDLE
8881 		 * - if we have already computed one in current iteration
8882 		 * - if it's an active balance
8883 		 */
8884 		if (env->idle == CPU_NEWLY_IDLE ||
8885 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8886 			return 0;
8887 
8888 		/* Prevent to re-select dst_cpu via env's CPUs: */
8889 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8890 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8891 				env->flags |= LBF_DST_PINNED;
8892 				env->new_dst_cpu = cpu;
8893 				break;
8894 			}
8895 		}
8896 
8897 		return 0;
8898 	}
8899 
8900 	/* Record that we found at least one task that could run on dst_cpu */
8901 	env->flags &= ~LBF_ALL_PINNED;
8902 
8903 	if (task_on_cpu(env->src_rq, p)) {
8904 		schedstat_inc(p->stats.nr_failed_migrations_running);
8905 		return 0;
8906 	}
8907 
8908 	/*
8909 	 * Aggressive migration if:
8910 	 * 1) active balance
8911 	 * 2) destination numa is preferred
8912 	 * 3) task is cache cold, or
8913 	 * 4) too many balance attempts have failed.
8914 	 */
8915 	if (env->flags & LBF_ACTIVE_LB)
8916 		return 1;
8917 
8918 	tsk_cache_hot = migrate_degrades_locality(p, env);
8919 	if (tsk_cache_hot == -1)
8920 		tsk_cache_hot = task_hot(p, env);
8921 
8922 	if (tsk_cache_hot <= 0 ||
8923 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8924 		if (tsk_cache_hot == 1) {
8925 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8926 			schedstat_inc(p->stats.nr_forced_migrations);
8927 		}
8928 		return 1;
8929 	}
8930 
8931 	schedstat_inc(p->stats.nr_failed_migrations_hot);
8932 	return 0;
8933 }
8934 
8935 /*
8936  * detach_task() -- detach the task for the migration specified in env
8937  */
8938 static void detach_task(struct task_struct *p, struct lb_env *env)
8939 {
8940 	lockdep_assert_rq_held(env->src_rq);
8941 
8942 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8943 	set_task_cpu(p, env->dst_cpu);
8944 }
8945 
8946 /*
8947  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8948  * part of active balancing operations within "domain".
8949  *
8950  * Returns a task if successful and NULL otherwise.
8951  */
8952 static struct task_struct *detach_one_task(struct lb_env *env)
8953 {
8954 	struct task_struct *p;
8955 
8956 	lockdep_assert_rq_held(env->src_rq);
8957 
8958 	list_for_each_entry_reverse(p,
8959 			&env->src_rq->cfs_tasks, se.group_node) {
8960 		if (!can_migrate_task(p, env))
8961 			continue;
8962 
8963 		detach_task(p, env);
8964 
8965 		/*
8966 		 * Right now, this is only the second place where
8967 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8968 		 * so we can safely collect stats here rather than
8969 		 * inside detach_tasks().
8970 		 */
8971 		schedstat_inc(env->sd->lb_gained[env->idle]);
8972 		return p;
8973 	}
8974 	return NULL;
8975 }
8976 
8977 /*
8978  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8979  * busiest_rq, as part of a balancing operation within domain "sd".
8980  *
8981  * Returns number of detached tasks if successful and 0 otherwise.
8982  */
8983 static int detach_tasks(struct lb_env *env)
8984 {
8985 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8986 	unsigned long util, load;
8987 	struct task_struct *p;
8988 	int detached = 0;
8989 
8990 	lockdep_assert_rq_held(env->src_rq);
8991 
8992 	/*
8993 	 * Source run queue has been emptied by another CPU, clear
8994 	 * LBF_ALL_PINNED flag as we will not test any task.
8995 	 */
8996 	if (env->src_rq->nr_running <= 1) {
8997 		env->flags &= ~LBF_ALL_PINNED;
8998 		return 0;
8999 	}
9000 
9001 	if (env->imbalance <= 0)
9002 		return 0;
9003 
9004 	while (!list_empty(tasks)) {
9005 		/*
9006 		 * We don't want to steal all, otherwise we may be treated likewise,
9007 		 * which could at worst lead to a livelock crash.
9008 		 */
9009 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9010 			break;
9011 
9012 		env->loop++;
9013 		/*
9014 		 * We've more or less seen every task there is, call it quits
9015 		 * unless we haven't found any movable task yet.
9016 		 */
9017 		if (env->loop > env->loop_max &&
9018 		    !(env->flags & LBF_ALL_PINNED))
9019 			break;
9020 
9021 		/* take a breather every nr_migrate tasks */
9022 		if (env->loop > env->loop_break) {
9023 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9024 			env->flags |= LBF_NEED_BREAK;
9025 			break;
9026 		}
9027 
9028 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9029 
9030 		if (!can_migrate_task(p, env))
9031 			goto next;
9032 
9033 		switch (env->migration_type) {
9034 		case migrate_load:
9035 			/*
9036 			 * Depending of the number of CPUs and tasks and the
9037 			 * cgroup hierarchy, task_h_load() can return a null
9038 			 * value. Make sure that env->imbalance decreases
9039 			 * otherwise detach_tasks() will stop only after
9040 			 * detaching up to loop_max tasks.
9041 			 */
9042 			load = max_t(unsigned long, task_h_load(p), 1);
9043 
9044 			if (sched_feat(LB_MIN) &&
9045 			    load < 16 && !env->sd->nr_balance_failed)
9046 				goto next;
9047 
9048 			/*
9049 			 * Make sure that we don't migrate too much load.
9050 			 * Nevertheless, let relax the constraint if
9051 			 * scheduler fails to find a good waiting task to
9052 			 * migrate.
9053 			 */
9054 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9055 				goto next;
9056 
9057 			env->imbalance -= load;
9058 			break;
9059 
9060 		case migrate_util:
9061 			util = task_util_est(p);
9062 
9063 			if (util > env->imbalance)
9064 				goto next;
9065 
9066 			env->imbalance -= util;
9067 			break;
9068 
9069 		case migrate_task:
9070 			env->imbalance--;
9071 			break;
9072 
9073 		case migrate_misfit:
9074 			/* This is not a misfit task */
9075 			if (task_fits_cpu(p, env->src_cpu))
9076 				goto next;
9077 
9078 			env->imbalance = 0;
9079 			break;
9080 		}
9081 
9082 		detach_task(p, env);
9083 		list_add(&p->se.group_node, &env->tasks);
9084 
9085 		detached++;
9086 
9087 #ifdef CONFIG_PREEMPTION
9088 		/*
9089 		 * NEWIDLE balancing is a source of latency, so preemptible
9090 		 * kernels will stop after the first task is detached to minimize
9091 		 * the critical section.
9092 		 */
9093 		if (env->idle == CPU_NEWLY_IDLE)
9094 			break;
9095 #endif
9096 
9097 		/*
9098 		 * We only want to steal up to the prescribed amount of
9099 		 * load/util/tasks.
9100 		 */
9101 		if (env->imbalance <= 0)
9102 			break;
9103 
9104 		continue;
9105 next:
9106 		list_move(&p->se.group_node, tasks);
9107 	}
9108 
9109 	/*
9110 	 * Right now, this is one of only two places we collect this stat
9111 	 * so we can safely collect detach_one_task() stats here rather
9112 	 * than inside detach_one_task().
9113 	 */
9114 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9115 
9116 	return detached;
9117 }
9118 
9119 /*
9120  * attach_task() -- attach the task detached by detach_task() to its new rq.
9121  */
9122 static void attach_task(struct rq *rq, struct task_struct *p)
9123 {
9124 	lockdep_assert_rq_held(rq);
9125 
9126 	WARN_ON_ONCE(task_rq(p) != rq);
9127 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9128 	wakeup_preempt(rq, p, 0);
9129 }
9130 
9131 /*
9132  * attach_one_task() -- attaches the task returned from detach_one_task() to
9133  * its new rq.
9134  */
9135 static void attach_one_task(struct rq *rq, struct task_struct *p)
9136 {
9137 	struct rq_flags rf;
9138 
9139 	rq_lock(rq, &rf);
9140 	update_rq_clock(rq);
9141 	attach_task(rq, p);
9142 	rq_unlock(rq, &rf);
9143 }
9144 
9145 /*
9146  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9147  * new rq.
9148  */
9149 static void attach_tasks(struct lb_env *env)
9150 {
9151 	struct list_head *tasks = &env->tasks;
9152 	struct task_struct *p;
9153 	struct rq_flags rf;
9154 
9155 	rq_lock(env->dst_rq, &rf);
9156 	update_rq_clock(env->dst_rq);
9157 
9158 	while (!list_empty(tasks)) {
9159 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9160 		list_del_init(&p->se.group_node);
9161 
9162 		attach_task(env->dst_rq, p);
9163 	}
9164 
9165 	rq_unlock(env->dst_rq, &rf);
9166 }
9167 
9168 #ifdef CONFIG_NO_HZ_COMMON
9169 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9170 {
9171 	if (cfs_rq->avg.load_avg)
9172 		return true;
9173 
9174 	if (cfs_rq->avg.util_avg)
9175 		return true;
9176 
9177 	return false;
9178 }
9179 
9180 static inline bool others_have_blocked(struct rq *rq)
9181 {
9182 	if (READ_ONCE(rq->avg_rt.util_avg))
9183 		return true;
9184 
9185 	if (READ_ONCE(rq->avg_dl.util_avg))
9186 		return true;
9187 
9188 	if (thermal_load_avg(rq))
9189 		return true;
9190 
9191 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9192 	if (READ_ONCE(rq->avg_irq.util_avg))
9193 		return true;
9194 #endif
9195 
9196 	return false;
9197 }
9198 
9199 static inline void update_blocked_load_tick(struct rq *rq)
9200 {
9201 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9202 }
9203 
9204 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9205 {
9206 	if (!has_blocked)
9207 		rq->has_blocked_load = 0;
9208 }
9209 #else
9210 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9211 static inline bool others_have_blocked(struct rq *rq) { return false; }
9212 static inline void update_blocked_load_tick(struct rq *rq) {}
9213 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9214 #endif
9215 
9216 static bool __update_blocked_others(struct rq *rq, bool *done)
9217 {
9218 	const struct sched_class *curr_class;
9219 	u64 now = rq_clock_pelt(rq);
9220 	unsigned long thermal_pressure;
9221 	bool decayed;
9222 
9223 	/*
9224 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9225 	 * DL and IRQ signals have been updated before updating CFS.
9226 	 */
9227 	curr_class = rq->curr->sched_class;
9228 
9229 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9230 
9231 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9232 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9233 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9234 		  update_irq_load_avg(rq, 0);
9235 
9236 	if (others_have_blocked(rq))
9237 		*done = false;
9238 
9239 	return decayed;
9240 }
9241 
9242 #ifdef CONFIG_FAIR_GROUP_SCHED
9243 
9244 static bool __update_blocked_fair(struct rq *rq, bool *done)
9245 {
9246 	struct cfs_rq *cfs_rq, *pos;
9247 	bool decayed = false;
9248 	int cpu = cpu_of(rq);
9249 
9250 	/*
9251 	 * Iterates the task_group tree in a bottom up fashion, see
9252 	 * list_add_leaf_cfs_rq() for details.
9253 	 */
9254 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9255 		struct sched_entity *se;
9256 
9257 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9258 			update_tg_load_avg(cfs_rq);
9259 
9260 			if (cfs_rq->nr_running == 0)
9261 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9262 
9263 			if (cfs_rq == &rq->cfs)
9264 				decayed = true;
9265 		}
9266 
9267 		/* Propagate pending load changes to the parent, if any: */
9268 		se = cfs_rq->tg->se[cpu];
9269 		if (se && !skip_blocked_update(se))
9270 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9271 
9272 		/*
9273 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9274 		 * decayed cfs_rqs linger on the list.
9275 		 */
9276 		if (cfs_rq_is_decayed(cfs_rq))
9277 			list_del_leaf_cfs_rq(cfs_rq);
9278 
9279 		/* Don't need periodic decay once load/util_avg are null */
9280 		if (cfs_rq_has_blocked(cfs_rq))
9281 			*done = false;
9282 	}
9283 
9284 	return decayed;
9285 }
9286 
9287 /*
9288  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9289  * This needs to be done in a top-down fashion because the load of a child
9290  * group is a fraction of its parents load.
9291  */
9292 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9293 {
9294 	struct rq *rq = rq_of(cfs_rq);
9295 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9296 	unsigned long now = jiffies;
9297 	unsigned long load;
9298 
9299 	if (cfs_rq->last_h_load_update == now)
9300 		return;
9301 
9302 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9303 	for_each_sched_entity(se) {
9304 		cfs_rq = cfs_rq_of(se);
9305 		WRITE_ONCE(cfs_rq->h_load_next, se);
9306 		if (cfs_rq->last_h_load_update == now)
9307 			break;
9308 	}
9309 
9310 	if (!se) {
9311 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9312 		cfs_rq->last_h_load_update = now;
9313 	}
9314 
9315 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9316 		load = cfs_rq->h_load;
9317 		load = div64_ul(load * se->avg.load_avg,
9318 			cfs_rq_load_avg(cfs_rq) + 1);
9319 		cfs_rq = group_cfs_rq(se);
9320 		cfs_rq->h_load = load;
9321 		cfs_rq->last_h_load_update = now;
9322 	}
9323 }
9324 
9325 static unsigned long task_h_load(struct task_struct *p)
9326 {
9327 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9328 
9329 	update_cfs_rq_h_load(cfs_rq);
9330 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9331 			cfs_rq_load_avg(cfs_rq) + 1);
9332 }
9333 #else
9334 static bool __update_blocked_fair(struct rq *rq, bool *done)
9335 {
9336 	struct cfs_rq *cfs_rq = &rq->cfs;
9337 	bool decayed;
9338 
9339 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9340 	if (cfs_rq_has_blocked(cfs_rq))
9341 		*done = false;
9342 
9343 	return decayed;
9344 }
9345 
9346 static unsigned long task_h_load(struct task_struct *p)
9347 {
9348 	return p->se.avg.load_avg;
9349 }
9350 #endif
9351 
9352 static void update_blocked_averages(int cpu)
9353 {
9354 	bool decayed = false, done = true;
9355 	struct rq *rq = cpu_rq(cpu);
9356 	struct rq_flags rf;
9357 
9358 	rq_lock_irqsave(rq, &rf);
9359 	update_blocked_load_tick(rq);
9360 	update_rq_clock(rq);
9361 
9362 	decayed |= __update_blocked_others(rq, &done);
9363 	decayed |= __update_blocked_fair(rq, &done);
9364 
9365 	update_blocked_load_status(rq, !done);
9366 	if (decayed)
9367 		cpufreq_update_util(rq, 0);
9368 	rq_unlock_irqrestore(rq, &rf);
9369 }
9370 
9371 /********** Helpers for find_busiest_group ************************/
9372 
9373 /*
9374  * sg_lb_stats - stats of a sched_group required for load_balancing
9375  */
9376 struct sg_lb_stats {
9377 	unsigned long avg_load; /*Avg load across the CPUs of the group */
9378 	unsigned long group_load; /* Total load over the CPUs of the group */
9379 	unsigned long group_capacity;
9380 	unsigned long group_util; /* Total utilization over the CPUs of the group */
9381 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9382 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
9383 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9384 	unsigned int idle_cpus;
9385 	unsigned int group_weight;
9386 	enum group_type group_type;
9387 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9388 	unsigned int group_smt_balance;  /* Task on busy SMT be moved */
9389 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9390 #ifdef CONFIG_NUMA_BALANCING
9391 	unsigned int nr_numa_running;
9392 	unsigned int nr_preferred_running;
9393 #endif
9394 };
9395 
9396 /*
9397  * sd_lb_stats - Structure to store the statistics of a sched_domain
9398  *		 during load balancing.
9399  */
9400 struct sd_lb_stats {
9401 	struct sched_group *busiest;	/* Busiest group in this sd */
9402 	struct sched_group *local;	/* Local group in this sd */
9403 	unsigned long total_load;	/* Total load of all groups in sd */
9404 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
9405 	unsigned long avg_load;	/* Average load across all groups in sd */
9406 	unsigned int prefer_sibling; /* tasks should go to sibling first */
9407 
9408 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9409 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
9410 };
9411 
9412 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9413 {
9414 	/*
9415 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9416 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9417 	 * We must however set busiest_stat::group_type and
9418 	 * busiest_stat::idle_cpus to the worst busiest group because
9419 	 * update_sd_pick_busiest() reads these before assignment.
9420 	 */
9421 	*sds = (struct sd_lb_stats){
9422 		.busiest = NULL,
9423 		.local = NULL,
9424 		.total_load = 0UL,
9425 		.total_capacity = 0UL,
9426 		.busiest_stat = {
9427 			.idle_cpus = UINT_MAX,
9428 			.group_type = group_has_spare,
9429 		},
9430 	};
9431 }
9432 
9433 static unsigned long scale_rt_capacity(int cpu)
9434 {
9435 	struct rq *rq = cpu_rq(cpu);
9436 	unsigned long max = arch_scale_cpu_capacity(cpu);
9437 	unsigned long used, free;
9438 	unsigned long irq;
9439 
9440 	irq = cpu_util_irq(rq);
9441 
9442 	if (unlikely(irq >= max))
9443 		return 1;
9444 
9445 	/*
9446 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9447 	 * (running and not running) with weights 0 and 1024 respectively.
9448 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
9449 	 * average uses the actual delta max capacity(load).
9450 	 */
9451 	used = READ_ONCE(rq->avg_rt.util_avg);
9452 	used += READ_ONCE(rq->avg_dl.util_avg);
9453 	used += thermal_load_avg(rq);
9454 
9455 	if (unlikely(used >= max))
9456 		return 1;
9457 
9458 	free = max - used;
9459 
9460 	return scale_irq_capacity(free, irq, max);
9461 }
9462 
9463 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9464 {
9465 	unsigned long capacity = scale_rt_capacity(cpu);
9466 	struct sched_group *sdg = sd->groups;
9467 
9468 	if (!capacity)
9469 		capacity = 1;
9470 
9471 	cpu_rq(cpu)->cpu_capacity = capacity;
9472 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9473 
9474 	sdg->sgc->capacity = capacity;
9475 	sdg->sgc->min_capacity = capacity;
9476 	sdg->sgc->max_capacity = capacity;
9477 }
9478 
9479 void update_group_capacity(struct sched_domain *sd, int cpu)
9480 {
9481 	struct sched_domain *child = sd->child;
9482 	struct sched_group *group, *sdg = sd->groups;
9483 	unsigned long capacity, min_capacity, max_capacity;
9484 	unsigned long interval;
9485 
9486 	interval = msecs_to_jiffies(sd->balance_interval);
9487 	interval = clamp(interval, 1UL, max_load_balance_interval);
9488 	sdg->sgc->next_update = jiffies + interval;
9489 
9490 	if (!child) {
9491 		update_cpu_capacity(sd, cpu);
9492 		return;
9493 	}
9494 
9495 	capacity = 0;
9496 	min_capacity = ULONG_MAX;
9497 	max_capacity = 0;
9498 
9499 	if (child->flags & SD_OVERLAP) {
9500 		/*
9501 		 * SD_OVERLAP domains cannot assume that child groups
9502 		 * span the current group.
9503 		 */
9504 
9505 		for_each_cpu(cpu, sched_group_span(sdg)) {
9506 			unsigned long cpu_cap = capacity_of(cpu);
9507 
9508 			capacity += cpu_cap;
9509 			min_capacity = min(cpu_cap, min_capacity);
9510 			max_capacity = max(cpu_cap, max_capacity);
9511 		}
9512 	} else  {
9513 		/*
9514 		 * !SD_OVERLAP domains can assume that child groups
9515 		 * span the current group.
9516 		 */
9517 
9518 		group = child->groups;
9519 		do {
9520 			struct sched_group_capacity *sgc = group->sgc;
9521 
9522 			capacity += sgc->capacity;
9523 			min_capacity = min(sgc->min_capacity, min_capacity);
9524 			max_capacity = max(sgc->max_capacity, max_capacity);
9525 			group = group->next;
9526 		} while (group != child->groups);
9527 	}
9528 
9529 	sdg->sgc->capacity = capacity;
9530 	sdg->sgc->min_capacity = min_capacity;
9531 	sdg->sgc->max_capacity = max_capacity;
9532 }
9533 
9534 /*
9535  * Check whether the capacity of the rq has been noticeably reduced by side
9536  * activity. The imbalance_pct is used for the threshold.
9537  * Return true is the capacity is reduced
9538  */
9539 static inline int
9540 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9541 {
9542 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9543 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9544 }
9545 
9546 /*
9547  * Check whether a rq has a misfit task and if it looks like we can actually
9548  * help that task: we can migrate the task to a CPU of higher capacity, or
9549  * the task's current CPU is heavily pressured.
9550  */
9551 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9552 {
9553 	return rq->misfit_task_load &&
9554 		(arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
9555 		 check_cpu_capacity(rq, sd));
9556 }
9557 
9558 /*
9559  * Group imbalance indicates (and tries to solve) the problem where balancing
9560  * groups is inadequate due to ->cpus_ptr constraints.
9561  *
9562  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9563  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9564  * Something like:
9565  *
9566  *	{ 0 1 2 3 } { 4 5 6 7 }
9567  *	        *     * * *
9568  *
9569  * If we were to balance group-wise we'd place two tasks in the first group and
9570  * two tasks in the second group. Clearly this is undesired as it will overload
9571  * cpu 3 and leave one of the CPUs in the second group unused.
9572  *
9573  * The current solution to this issue is detecting the skew in the first group
9574  * by noticing the lower domain failed to reach balance and had difficulty
9575  * moving tasks due to affinity constraints.
9576  *
9577  * When this is so detected; this group becomes a candidate for busiest; see
9578  * update_sd_pick_busiest(). And calculate_imbalance() and
9579  * find_busiest_group() avoid some of the usual balance conditions to allow it
9580  * to create an effective group imbalance.
9581  *
9582  * This is a somewhat tricky proposition since the next run might not find the
9583  * group imbalance and decide the groups need to be balanced again. A most
9584  * subtle and fragile situation.
9585  */
9586 
9587 static inline int sg_imbalanced(struct sched_group *group)
9588 {
9589 	return group->sgc->imbalance;
9590 }
9591 
9592 /*
9593  * group_has_capacity returns true if the group has spare capacity that could
9594  * be used by some tasks.
9595  * We consider that a group has spare capacity if the number of task is
9596  * smaller than the number of CPUs or if the utilization is lower than the
9597  * available capacity for CFS tasks.
9598  * For the latter, we use a threshold to stabilize the state, to take into
9599  * account the variance of the tasks' load and to return true if the available
9600  * capacity in meaningful for the load balancer.
9601  * As an example, an available capacity of 1% can appear but it doesn't make
9602  * any benefit for the load balance.
9603  */
9604 static inline bool
9605 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9606 {
9607 	if (sgs->sum_nr_running < sgs->group_weight)
9608 		return true;
9609 
9610 	if ((sgs->group_capacity * imbalance_pct) <
9611 			(sgs->group_runnable * 100))
9612 		return false;
9613 
9614 	if ((sgs->group_capacity * 100) >
9615 			(sgs->group_util * imbalance_pct))
9616 		return true;
9617 
9618 	return false;
9619 }
9620 
9621 /*
9622  *  group_is_overloaded returns true if the group has more tasks than it can
9623  *  handle.
9624  *  group_is_overloaded is not equals to !group_has_capacity because a group
9625  *  with the exact right number of tasks, has no more spare capacity but is not
9626  *  overloaded so both group_has_capacity and group_is_overloaded return
9627  *  false.
9628  */
9629 static inline bool
9630 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9631 {
9632 	if (sgs->sum_nr_running <= sgs->group_weight)
9633 		return false;
9634 
9635 	if ((sgs->group_capacity * 100) <
9636 			(sgs->group_util * imbalance_pct))
9637 		return true;
9638 
9639 	if ((sgs->group_capacity * imbalance_pct) <
9640 			(sgs->group_runnable * 100))
9641 		return true;
9642 
9643 	return false;
9644 }
9645 
9646 static inline enum
9647 group_type group_classify(unsigned int imbalance_pct,
9648 			  struct sched_group *group,
9649 			  struct sg_lb_stats *sgs)
9650 {
9651 	if (group_is_overloaded(imbalance_pct, sgs))
9652 		return group_overloaded;
9653 
9654 	if (sg_imbalanced(group))
9655 		return group_imbalanced;
9656 
9657 	if (sgs->group_asym_packing)
9658 		return group_asym_packing;
9659 
9660 	if (sgs->group_smt_balance)
9661 		return group_smt_balance;
9662 
9663 	if (sgs->group_misfit_task_load)
9664 		return group_misfit_task;
9665 
9666 	if (!group_has_capacity(imbalance_pct, sgs))
9667 		return group_fully_busy;
9668 
9669 	return group_has_spare;
9670 }
9671 
9672 /**
9673  * sched_use_asym_prio - Check whether asym_packing priority must be used
9674  * @sd:		The scheduling domain of the load balancing
9675  * @cpu:	A CPU
9676  *
9677  * Always use CPU priority when balancing load between SMT siblings. When
9678  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9679  * use CPU priority if the whole core is idle.
9680  *
9681  * Returns: True if the priority of @cpu must be followed. False otherwise.
9682  */
9683 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9684 {
9685 	if (!sched_smt_active())
9686 		return true;
9687 
9688 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9689 }
9690 
9691 /**
9692  * sched_asym - Check if the destination CPU can do asym_packing load balance
9693  * @env:	The load balancing environment
9694  * @sds:	Load-balancing data with statistics of the local group
9695  * @sgs:	Load-balancing statistics of the candidate busiest group
9696  * @group:	The candidate busiest group
9697  *
9698  * @env::dst_cpu can do asym_packing if it has higher priority than the
9699  * preferred CPU of @group.
9700  *
9701  * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9702  * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9703  * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9704  * imbalances in the number of CPUS are dealt with in find_busiest_group().
9705  *
9706  * If we are balancing load within an SMT core, or at PKG domain level, always
9707  * proceed.
9708  *
9709  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9710  * otherwise.
9711  */
9712 static inline bool
9713 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
9714 	   struct sched_group *group)
9715 {
9716 	/* Ensure that the whole local core is idle, if applicable. */
9717 	if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9718 		return false;
9719 
9720 	/*
9721 	 * CPU priorities does not make sense for SMT cores with more than one
9722 	 * busy sibling.
9723 	 */
9724 	if (group->flags & SD_SHARE_CPUCAPACITY) {
9725 		if (sgs->group_weight - sgs->idle_cpus != 1)
9726 			return false;
9727 	}
9728 
9729 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9730 }
9731 
9732 /* One group has more than one SMT CPU while the other group does not */
9733 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9734 				    struct sched_group *sg2)
9735 {
9736 	if (!sg1 || !sg2)
9737 		return false;
9738 
9739 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9740 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9741 }
9742 
9743 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9744 			       struct sched_group *group)
9745 {
9746 	if (env->idle == CPU_NOT_IDLE)
9747 		return false;
9748 
9749 	/*
9750 	 * For SMT source group, it is better to move a task
9751 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9752 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9753 	 * will not be on.
9754 	 */
9755 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9756 	    sgs->sum_h_nr_running > 1)
9757 		return true;
9758 
9759 	return false;
9760 }
9761 
9762 static inline long sibling_imbalance(struct lb_env *env,
9763 				    struct sd_lb_stats *sds,
9764 				    struct sg_lb_stats *busiest,
9765 				    struct sg_lb_stats *local)
9766 {
9767 	int ncores_busiest, ncores_local;
9768 	long imbalance;
9769 
9770 	if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9771 		return 0;
9772 
9773 	ncores_busiest = sds->busiest->cores;
9774 	ncores_local = sds->local->cores;
9775 
9776 	if (ncores_busiest == ncores_local) {
9777 		imbalance = busiest->sum_nr_running;
9778 		lsub_positive(&imbalance, local->sum_nr_running);
9779 		return imbalance;
9780 	}
9781 
9782 	/* Balance such that nr_running/ncores ratio are same on both groups */
9783 	imbalance = ncores_local * busiest->sum_nr_running;
9784 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9785 	/* Normalize imbalance and do rounding on normalization */
9786 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9787 	imbalance /= ncores_local + ncores_busiest;
9788 
9789 	/* Take advantage of resource in an empty sched group */
9790 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9791 	    busiest->sum_nr_running > 1)
9792 		imbalance = 2;
9793 
9794 	return imbalance;
9795 }
9796 
9797 static inline bool
9798 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9799 {
9800 	/*
9801 	 * When there is more than 1 task, the group_overloaded case already
9802 	 * takes care of cpu with reduced capacity
9803 	 */
9804 	if (rq->cfs.h_nr_running != 1)
9805 		return false;
9806 
9807 	return check_cpu_capacity(rq, sd);
9808 }
9809 
9810 /**
9811  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9812  * @env: The load balancing environment.
9813  * @sds: Load-balancing data with statistics of the local group.
9814  * @group: sched_group whose statistics are to be updated.
9815  * @sgs: variable to hold the statistics for this group.
9816  * @sg_status: Holds flag indicating the status of the sched_group
9817  */
9818 static inline void update_sg_lb_stats(struct lb_env *env,
9819 				      struct sd_lb_stats *sds,
9820 				      struct sched_group *group,
9821 				      struct sg_lb_stats *sgs,
9822 				      int *sg_status)
9823 {
9824 	int i, nr_running, local_group;
9825 
9826 	memset(sgs, 0, sizeof(*sgs));
9827 
9828 	local_group = group == sds->local;
9829 
9830 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9831 		struct rq *rq = cpu_rq(i);
9832 		unsigned long load = cpu_load(rq);
9833 
9834 		sgs->group_load += load;
9835 		sgs->group_util += cpu_util_cfs(i);
9836 		sgs->group_runnable += cpu_runnable(rq);
9837 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9838 
9839 		nr_running = rq->nr_running;
9840 		sgs->sum_nr_running += nr_running;
9841 
9842 		if (nr_running > 1)
9843 			*sg_status |= SG_OVERLOAD;
9844 
9845 		if (cpu_overutilized(i))
9846 			*sg_status |= SG_OVERUTILIZED;
9847 
9848 #ifdef CONFIG_NUMA_BALANCING
9849 		sgs->nr_numa_running += rq->nr_numa_running;
9850 		sgs->nr_preferred_running += rq->nr_preferred_running;
9851 #endif
9852 		/*
9853 		 * No need to call idle_cpu() if nr_running is not 0
9854 		 */
9855 		if (!nr_running && idle_cpu(i)) {
9856 			sgs->idle_cpus++;
9857 			/* Idle cpu can't have misfit task */
9858 			continue;
9859 		}
9860 
9861 		if (local_group)
9862 			continue;
9863 
9864 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9865 			/* Check for a misfit task on the cpu */
9866 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9867 				sgs->group_misfit_task_load = rq->misfit_task_load;
9868 				*sg_status |= SG_OVERLOAD;
9869 			}
9870 		} else if ((env->idle != CPU_NOT_IDLE) &&
9871 			   sched_reduced_capacity(rq, env->sd)) {
9872 			/* Check for a task running on a CPU with reduced capacity */
9873 			if (sgs->group_misfit_task_load < load)
9874 				sgs->group_misfit_task_load = load;
9875 		}
9876 	}
9877 
9878 	sgs->group_capacity = group->sgc->capacity;
9879 
9880 	sgs->group_weight = group->group_weight;
9881 
9882 	/* Check if dst CPU is idle and preferred to this group */
9883 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9884 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9885 	    sched_asym(env, sds, sgs, group)) {
9886 		sgs->group_asym_packing = 1;
9887 	}
9888 
9889 	/* Check for loaded SMT group to be balanced to dst CPU */
9890 	if (!local_group && smt_balance(env, sgs, group))
9891 		sgs->group_smt_balance = 1;
9892 
9893 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9894 
9895 	/* Computing avg_load makes sense only when group is overloaded */
9896 	if (sgs->group_type == group_overloaded)
9897 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9898 				sgs->group_capacity;
9899 }
9900 
9901 /**
9902  * update_sd_pick_busiest - return 1 on busiest group
9903  * @env: The load balancing environment.
9904  * @sds: sched_domain statistics
9905  * @sg: sched_group candidate to be checked for being the busiest
9906  * @sgs: sched_group statistics
9907  *
9908  * Determine if @sg is a busier group than the previously selected
9909  * busiest group.
9910  *
9911  * Return: %true if @sg is a busier group than the previously selected
9912  * busiest group. %false otherwise.
9913  */
9914 static bool update_sd_pick_busiest(struct lb_env *env,
9915 				   struct sd_lb_stats *sds,
9916 				   struct sched_group *sg,
9917 				   struct sg_lb_stats *sgs)
9918 {
9919 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9920 
9921 	/* Make sure that there is at least one task to pull */
9922 	if (!sgs->sum_h_nr_running)
9923 		return false;
9924 
9925 	/*
9926 	 * Don't try to pull misfit tasks we can't help.
9927 	 * We can use max_capacity here as reduction in capacity on some
9928 	 * CPUs in the group should either be possible to resolve
9929 	 * internally or be covered by avg_load imbalance (eventually).
9930 	 */
9931 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9932 	    (sgs->group_type == group_misfit_task) &&
9933 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9934 	     sds->local_stat.group_type != group_has_spare))
9935 		return false;
9936 
9937 	if (sgs->group_type > busiest->group_type)
9938 		return true;
9939 
9940 	if (sgs->group_type < busiest->group_type)
9941 		return false;
9942 
9943 	/*
9944 	 * The candidate and the current busiest group are the same type of
9945 	 * group. Let check which one is the busiest according to the type.
9946 	 */
9947 
9948 	switch (sgs->group_type) {
9949 	case group_overloaded:
9950 		/* Select the overloaded group with highest avg_load. */
9951 		if (sgs->avg_load <= busiest->avg_load)
9952 			return false;
9953 		break;
9954 
9955 	case group_imbalanced:
9956 		/*
9957 		 * Select the 1st imbalanced group as we don't have any way to
9958 		 * choose one more than another.
9959 		 */
9960 		return false;
9961 
9962 	case group_asym_packing:
9963 		/* Prefer to move from lowest priority CPU's work */
9964 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9965 			return false;
9966 		break;
9967 
9968 	case group_misfit_task:
9969 		/*
9970 		 * If we have more than one misfit sg go with the biggest
9971 		 * misfit.
9972 		 */
9973 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9974 			return false;
9975 		break;
9976 
9977 	case group_smt_balance:
9978 		/*
9979 		 * Check if we have spare CPUs on either SMT group to
9980 		 * choose has spare or fully busy handling.
9981 		 */
9982 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
9983 			goto has_spare;
9984 
9985 		fallthrough;
9986 
9987 	case group_fully_busy:
9988 		/*
9989 		 * Select the fully busy group with highest avg_load. In
9990 		 * theory, there is no need to pull task from such kind of
9991 		 * group because tasks have all compute capacity that they need
9992 		 * but we can still improve the overall throughput by reducing
9993 		 * contention when accessing shared HW resources.
9994 		 *
9995 		 * XXX for now avg_load is not computed and always 0 so we
9996 		 * select the 1st one, except if @sg is composed of SMT
9997 		 * siblings.
9998 		 */
9999 
10000 		if (sgs->avg_load < busiest->avg_load)
10001 			return false;
10002 
10003 		if (sgs->avg_load == busiest->avg_load) {
10004 			/*
10005 			 * SMT sched groups need more help than non-SMT groups.
10006 			 * If @sg happens to also be SMT, either choice is good.
10007 			 */
10008 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10009 				return false;
10010 		}
10011 
10012 		break;
10013 
10014 	case group_has_spare:
10015 		/*
10016 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10017 		 * as we do not want to pull task off SMT core with one task
10018 		 * and make the core idle.
10019 		 */
10020 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10021 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10022 				return false;
10023 			else
10024 				return true;
10025 		}
10026 has_spare:
10027 
10028 		/*
10029 		 * Select not overloaded group with lowest number of idle cpus
10030 		 * and highest number of running tasks. We could also compare
10031 		 * the spare capacity which is more stable but it can end up
10032 		 * that the group has less spare capacity but finally more idle
10033 		 * CPUs which means less opportunity to pull tasks.
10034 		 */
10035 		if (sgs->idle_cpus > busiest->idle_cpus)
10036 			return false;
10037 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10038 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10039 			return false;
10040 
10041 		break;
10042 	}
10043 
10044 	/*
10045 	 * Candidate sg has no more than one task per CPU and has higher
10046 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10047 	 * throughput. Maximize throughput, power/energy consequences are not
10048 	 * considered.
10049 	 */
10050 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10051 	    (sgs->group_type <= group_fully_busy) &&
10052 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10053 		return false;
10054 
10055 	return true;
10056 }
10057 
10058 #ifdef CONFIG_NUMA_BALANCING
10059 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10060 {
10061 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10062 		return regular;
10063 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10064 		return remote;
10065 	return all;
10066 }
10067 
10068 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10069 {
10070 	if (rq->nr_running > rq->nr_numa_running)
10071 		return regular;
10072 	if (rq->nr_running > rq->nr_preferred_running)
10073 		return remote;
10074 	return all;
10075 }
10076 #else
10077 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10078 {
10079 	return all;
10080 }
10081 
10082 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10083 {
10084 	return regular;
10085 }
10086 #endif /* CONFIG_NUMA_BALANCING */
10087 
10088 
10089 struct sg_lb_stats;
10090 
10091 /*
10092  * task_running_on_cpu - return 1 if @p is running on @cpu.
10093  */
10094 
10095 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10096 {
10097 	/* Task has no contribution or is new */
10098 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10099 		return 0;
10100 
10101 	if (task_on_rq_queued(p))
10102 		return 1;
10103 
10104 	return 0;
10105 }
10106 
10107 /**
10108  * idle_cpu_without - would a given CPU be idle without p ?
10109  * @cpu: the processor on which idleness is tested.
10110  * @p: task which should be ignored.
10111  *
10112  * Return: 1 if the CPU would be idle. 0 otherwise.
10113  */
10114 static int idle_cpu_without(int cpu, struct task_struct *p)
10115 {
10116 	struct rq *rq = cpu_rq(cpu);
10117 
10118 	if (rq->curr != rq->idle && rq->curr != p)
10119 		return 0;
10120 
10121 	/*
10122 	 * rq->nr_running can't be used but an updated version without the
10123 	 * impact of p on cpu must be used instead. The updated nr_running
10124 	 * be computed and tested before calling idle_cpu_without().
10125 	 */
10126 
10127 #ifdef CONFIG_SMP
10128 	if (rq->ttwu_pending)
10129 		return 0;
10130 #endif
10131 
10132 	return 1;
10133 }
10134 
10135 /*
10136  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10137  * @sd: The sched_domain level to look for idlest group.
10138  * @group: sched_group whose statistics are to be updated.
10139  * @sgs: variable to hold the statistics for this group.
10140  * @p: The task for which we look for the idlest group/CPU.
10141  */
10142 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10143 					  struct sched_group *group,
10144 					  struct sg_lb_stats *sgs,
10145 					  struct task_struct *p)
10146 {
10147 	int i, nr_running;
10148 
10149 	memset(sgs, 0, sizeof(*sgs));
10150 
10151 	/* Assume that task can't fit any CPU of the group */
10152 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10153 		sgs->group_misfit_task_load = 1;
10154 
10155 	for_each_cpu(i, sched_group_span(group)) {
10156 		struct rq *rq = cpu_rq(i);
10157 		unsigned int local;
10158 
10159 		sgs->group_load += cpu_load_without(rq, p);
10160 		sgs->group_util += cpu_util_without(i, p);
10161 		sgs->group_runnable += cpu_runnable_without(rq, p);
10162 		local = task_running_on_cpu(i, p);
10163 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10164 
10165 		nr_running = rq->nr_running - local;
10166 		sgs->sum_nr_running += nr_running;
10167 
10168 		/*
10169 		 * No need to call idle_cpu_without() if nr_running is not 0
10170 		 */
10171 		if (!nr_running && idle_cpu_without(i, p))
10172 			sgs->idle_cpus++;
10173 
10174 		/* Check if task fits in the CPU */
10175 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10176 		    sgs->group_misfit_task_load &&
10177 		    task_fits_cpu(p, i))
10178 			sgs->group_misfit_task_load = 0;
10179 
10180 	}
10181 
10182 	sgs->group_capacity = group->sgc->capacity;
10183 
10184 	sgs->group_weight = group->group_weight;
10185 
10186 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10187 
10188 	/*
10189 	 * Computing avg_load makes sense only when group is fully busy or
10190 	 * overloaded
10191 	 */
10192 	if (sgs->group_type == group_fully_busy ||
10193 		sgs->group_type == group_overloaded)
10194 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10195 				sgs->group_capacity;
10196 }
10197 
10198 static bool update_pick_idlest(struct sched_group *idlest,
10199 			       struct sg_lb_stats *idlest_sgs,
10200 			       struct sched_group *group,
10201 			       struct sg_lb_stats *sgs)
10202 {
10203 	if (sgs->group_type < idlest_sgs->group_type)
10204 		return true;
10205 
10206 	if (sgs->group_type > idlest_sgs->group_type)
10207 		return false;
10208 
10209 	/*
10210 	 * The candidate and the current idlest group are the same type of
10211 	 * group. Let check which one is the idlest according to the type.
10212 	 */
10213 
10214 	switch (sgs->group_type) {
10215 	case group_overloaded:
10216 	case group_fully_busy:
10217 		/* Select the group with lowest avg_load. */
10218 		if (idlest_sgs->avg_load <= sgs->avg_load)
10219 			return false;
10220 		break;
10221 
10222 	case group_imbalanced:
10223 	case group_asym_packing:
10224 	case group_smt_balance:
10225 		/* Those types are not used in the slow wakeup path */
10226 		return false;
10227 
10228 	case group_misfit_task:
10229 		/* Select group with the highest max capacity */
10230 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10231 			return false;
10232 		break;
10233 
10234 	case group_has_spare:
10235 		/* Select group with most idle CPUs */
10236 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10237 			return false;
10238 
10239 		/* Select group with lowest group_util */
10240 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10241 			idlest_sgs->group_util <= sgs->group_util)
10242 			return false;
10243 
10244 		break;
10245 	}
10246 
10247 	return true;
10248 }
10249 
10250 /*
10251  * find_idlest_group() finds and returns the least busy CPU group within the
10252  * domain.
10253  *
10254  * Assumes p is allowed on at least one CPU in sd.
10255  */
10256 static struct sched_group *
10257 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10258 {
10259 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10260 	struct sg_lb_stats local_sgs, tmp_sgs;
10261 	struct sg_lb_stats *sgs;
10262 	unsigned long imbalance;
10263 	struct sg_lb_stats idlest_sgs = {
10264 			.avg_load = UINT_MAX,
10265 			.group_type = group_overloaded,
10266 	};
10267 
10268 	do {
10269 		int local_group;
10270 
10271 		/* Skip over this group if it has no CPUs allowed */
10272 		if (!cpumask_intersects(sched_group_span(group),
10273 					p->cpus_ptr))
10274 			continue;
10275 
10276 		/* Skip over this group if no cookie matched */
10277 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10278 			continue;
10279 
10280 		local_group = cpumask_test_cpu(this_cpu,
10281 					       sched_group_span(group));
10282 
10283 		if (local_group) {
10284 			sgs = &local_sgs;
10285 			local = group;
10286 		} else {
10287 			sgs = &tmp_sgs;
10288 		}
10289 
10290 		update_sg_wakeup_stats(sd, group, sgs, p);
10291 
10292 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10293 			idlest = group;
10294 			idlest_sgs = *sgs;
10295 		}
10296 
10297 	} while (group = group->next, group != sd->groups);
10298 
10299 
10300 	/* There is no idlest group to push tasks to */
10301 	if (!idlest)
10302 		return NULL;
10303 
10304 	/* The local group has been skipped because of CPU affinity */
10305 	if (!local)
10306 		return idlest;
10307 
10308 	/*
10309 	 * If the local group is idler than the selected idlest group
10310 	 * don't try and push the task.
10311 	 */
10312 	if (local_sgs.group_type < idlest_sgs.group_type)
10313 		return NULL;
10314 
10315 	/*
10316 	 * If the local group is busier than the selected idlest group
10317 	 * try and push the task.
10318 	 */
10319 	if (local_sgs.group_type > idlest_sgs.group_type)
10320 		return idlest;
10321 
10322 	switch (local_sgs.group_type) {
10323 	case group_overloaded:
10324 	case group_fully_busy:
10325 
10326 		/* Calculate allowed imbalance based on load */
10327 		imbalance = scale_load_down(NICE_0_LOAD) *
10328 				(sd->imbalance_pct-100) / 100;
10329 
10330 		/*
10331 		 * When comparing groups across NUMA domains, it's possible for
10332 		 * the local domain to be very lightly loaded relative to the
10333 		 * remote domains but "imbalance" skews the comparison making
10334 		 * remote CPUs look much more favourable. When considering
10335 		 * cross-domain, add imbalance to the load on the remote node
10336 		 * and consider staying local.
10337 		 */
10338 
10339 		if ((sd->flags & SD_NUMA) &&
10340 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10341 			return NULL;
10342 
10343 		/*
10344 		 * If the local group is less loaded than the selected
10345 		 * idlest group don't try and push any tasks.
10346 		 */
10347 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10348 			return NULL;
10349 
10350 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10351 			return NULL;
10352 		break;
10353 
10354 	case group_imbalanced:
10355 	case group_asym_packing:
10356 	case group_smt_balance:
10357 		/* Those type are not used in the slow wakeup path */
10358 		return NULL;
10359 
10360 	case group_misfit_task:
10361 		/* Select group with the highest max capacity */
10362 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10363 			return NULL;
10364 		break;
10365 
10366 	case group_has_spare:
10367 #ifdef CONFIG_NUMA
10368 		if (sd->flags & SD_NUMA) {
10369 			int imb_numa_nr = sd->imb_numa_nr;
10370 #ifdef CONFIG_NUMA_BALANCING
10371 			int idlest_cpu;
10372 			/*
10373 			 * If there is spare capacity at NUMA, try to select
10374 			 * the preferred node
10375 			 */
10376 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10377 				return NULL;
10378 
10379 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10380 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10381 				return idlest;
10382 #endif /* CONFIG_NUMA_BALANCING */
10383 			/*
10384 			 * Otherwise, keep the task close to the wakeup source
10385 			 * and improve locality if the number of running tasks
10386 			 * would remain below threshold where an imbalance is
10387 			 * allowed while accounting for the possibility the
10388 			 * task is pinned to a subset of CPUs. If there is a
10389 			 * real need of migration, periodic load balance will
10390 			 * take care of it.
10391 			 */
10392 			if (p->nr_cpus_allowed != NR_CPUS) {
10393 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10394 
10395 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10396 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10397 			}
10398 
10399 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10400 			if (!adjust_numa_imbalance(imbalance,
10401 						   local_sgs.sum_nr_running + 1,
10402 						   imb_numa_nr)) {
10403 				return NULL;
10404 			}
10405 		}
10406 #endif /* CONFIG_NUMA */
10407 
10408 		/*
10409 		 * Select group with highest number of idle CPUs. We could also
10410 		 * compare the utilization which is more stable but it can end
10411 		 * up that the group has less spare capacity but finally more
10412 		 * idle CPUs which means more opportunity to run task.
10413 		 */
10414 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10415 			return NULL;
10416 		break;
10417 	}
10418 
10419 	return idlest;
10420 }
10421 
10422 static void update_idle_cpu_scan(struct lb_env *env,
10423 				 unsigned long sum_util)
10424 {
10425 	struct sched_domain_shared *sd_share;
10426 	int llc_weight, pct;
10427 	u64 x, y, tmp;
10428 	/*
10429 	 * Update the number of CPUs to scan in LLC domain, which could
10430 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10431 	 * could be expensive because it is within a shared cache line.
10432 	 * So the write of this hint only occurs during periodic load
10433 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10434 	 * can fire way more frequently than the former.
10435 	 */
10436 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10437 		return;
10438 
10439 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10440 	if (env->sd->span_weight != llc_weight)
10441 		return;
10442 
10443 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10444 	if (!sd_share)
10445 		return;
10446 
10447 	/*
10448 	 * The number of CPUs to search drops as sum_util increases, when
10449 	 * sum_util hits 85% or above, the scan stops.
10450 	 * The reason to choose 85% as the threshold is because this is the
10451 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10452 	 *
10453 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10454 	 * and y'= y / SCHED_CAPACITY_SCALE
10455 	 *
10456 	 * x is the ratio of sum_util compared to the CPU capacity:
10457 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10458 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10459 	 * and the number of CPUs to scan is calculated by:
10460 	 *
10461 	 * nr_scan = llc_weight * y'                                    [2]
10462 	 *
10463 	 * When x hits the threshold of overloaded, AKA, when
10464 	 * x = 100 / pct, y drops to 0. According to [1],
10465 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10466 	 *
10467 	 * Scale x by SCHED_CAPACITY_SCALE:
10468 	 * x' = sum_util / llc_weight;                                  [3]
10469 	 *
10470 	 * and finally [1] becomes:
10471 	 * y = SCHED_CAPACITY_SCALE -
10472 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10473 	 *
10474 	 */
10475 	/* equation [3] */
10476 	x = sum_util;
10477 	do_div(x, llc_weight);
10478 
10479 	/* equation [4] */
10480 	pct = env->sd->imbalance_pct;
10481 	tmp = x * x * pct * pct;
10482 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10483 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10484 	y = SCHED_CAPACITY_SCALE - tmp;
10485 
10486 	/* equation [2] */
10487 	y *= llc_weight;
10488 	do_div(y, SCHED_CAPACITY_SCALE);
10489 	if ((int)y != sd_share->nr_idle_scan)
10490 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10491 }
10492 
10493 /**
10494  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10495  * @env: The load balancing environment.
10496  * @sds: variable to hold the statistics for this sched_domain.
10497  */
10498 
10499 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10500 {
10501 	struct sched_group *sg = env->sd->groups;
10502 	struct sg_lb_stats *local = &sds->local_stat;
10503 	struct sg_lb_stats tmp_sgs;
10504 	unsigned long sum_util = 0;
10505 	int sg_status = 0;
10506 
10507 	do {
10508 		struct sg_lb_stats *sgs = &tmp_sgs;
10509 		int local_group;
10510 
10511 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10512 		if (local_group) {
10513 			sds->local = sg;
10514 			sgs = local;
10515 
10516 			if (env->idle != CPU_NEWLY_IDLE ||
10517 			    time_after_eq(jiffies, sg->sgc->next_update))
10518 				update_group_capacity(env->sd, env->dst_cpu);
10519 		}
10520 
10521 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10522 
10523 		if (local_group)
10524 			goto next_group;
10525 
10526 
10527 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10528 			sds->busiest = sg;
10529 			sds->busiest_stat = *sgs;
10530 		}
10531 
10532 next_group:
10533 		/* Now, start updating sd_lb_stats */
10534 		sds->total_load += sgs->group_load;
10535 		sds->total_capacity += sgs->group_capacity;
10536 
10537 		sum_util += sgs->group_util;
10538 		sg = sg->next;
10539 	} while (sg != env->sd->groups);
10540 
10541 	/*
10542 	 * Indicate that the child domain of the busiest group prefers tasks
10543 	 * go to a child's sibling domains first. NB the flags of a sched group
10544 	 * are those of the child domain.
10545 	 */
10546 	if (sds->busiest)
10547 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10548 
10549 
10550 	if (env->sd->flags & SD_NUMA)
10551 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10552 
10553 	if (!env->sd->parent) {
10554 		struct root_domain *rd = env->dst_rq->rd;
10555 
10556 		/* update overload indicator if we are at root domain */
10557 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10558 
10559 		/* Update over-utilization (tipping point, U >= 0) indicator */
10560 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10561 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10562 	} else if (sg_status & SG_OVERUTILIZED) {
10563 		struct root_domain *rd = env->dst_rq->rd;
10564 
10565 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10566 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10567 	}
10568 
10569 	update_idle_cpu_scan(env, sum_util);
10570 }
10571 
10572 /**
10573  * calculate_imbalance - Calculate the amount of imbalance present within the
10574  *			 groups of a given sched_domain during load balance.
10575  * @env: load balance environment
10576  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10577  */
10578 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10579 {
10580 	struct sg_lb_stats *local, *busiest;
10581 
10582 	local = &sds->local_stat;
10583 	busiest = &sds->busiest_stat;
10584 
10585 	if (busiest->group_type == group_misfit_task) {
10586 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10587 			/* Set imbalance to allow misfit tasks to be balanced. */
10588 			env->migration_type = migrate_misfit;
10589 			env->imbalance = 1;
10590 		} else {
10591 			/*
10592 			 * Set load imbalance to allow moving task from cpu
10593 			 * with reduced capacity.
10594 			 */
10595 			env->migration_type = migrate_load;
10596 			env->imbalance = busiest->group_misfit_task_load;
10597 		}
10598 		return;
10599 	}
10600 
10601 	if (busiest->group_type == group_asym_packing) {
10602 		/*
10603 		 * In case of asym capacity, we will try to migrate all load to
10604 		 * the preferred CPU.
10605 		 */
10606 		env->migration_type = migrate_task;
10607 		env->imbalance = busiest->sum_h_nr_running;
10608 		return;
10609 	}
10610 
10611 	if (busiest->group_type == group_smt_balance) {
10612 		/* Reduce number of tasks sharing CPU capacity */
10613 		env->migration_type = migrate_task;
10614 		env->imbalance = 1;
10615 		return;
10616 	}
10617 
10618 	if (busiest->group_type == group_imbalanced) {
10619 		/*
10620 		 * In the group_imb case we cannot rely on group-wide averages
10621 		 * to ensure CPU-load equilibrium, try to move any task to fix
10622 		 * the imbalance. The next load balance will take care of
10623 		 * balancing back the system.
10624 		 */
10625 		env->migration_type = migrate_task;
10626 		env->imbalance = 1;
10627 		return;
10628 	}
10629 
10630 	/*
10631 	 * Try to use spare capacity of local group without overloading it or
10632 	 * emptying busiest.
10633 	 */
10634 	if (local->group_type == group_has_spare) {
10635 		if ((busiest->group_type > group_fully_busy) &&
10636 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10637 			/*
10638 			 * If busiest is overloaded, try to fill spare
10639 			 * capacity. This might end up creating spare capacity
10640 			 * in busiest or busiest still being overloaded but
10641 			 * there is no simple way to directly compute the
10642 			 * amount of load to migrate in order to balance the
10643 			 * system.
10644 			 */
10645 			env->migration_type = migrate_util;
10646 			env->imbalance = max(local->group_capacity, local->group_util) -
10647 					 local->group_util;
10648 
10649 			/*
10650 			 * In some cases, the group's utilization is max or even
10651 			 * higher than capacity because of migrations but the
10652 			 * local CPU is (newly) idle. There is at least one
10653 			 * waiting task in this overloaded busiest group. Let's
10654 			 * try to pull it.
10655 			 */
10656 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10657 				env->migration_type = migrate_task;
10658 				env->imbalance = 1;
10659 			}
10660 
10661 			return;
10662 		}
10663 
10664 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10665 			/*
10666 			 * When prefer sibling, evenly spread running tasks on
10667 			 * groups.
10668 			 */
10669 			env->migration_type = migrate_task;
10670 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10671 		} else {
10672 
10673 			/*
10674 			 * If there is no overload, we just want to even the number of
10675 			 * idle cpus.
10676 			 */
10677 			env->migration_type = migrate_task;
10678 			env->imbalance = max_t(long, 0,
10679 					       (local->idle_cpus - busiest->idle_cpus));
10680 		}
10681 
10682 #ifdef CONFIG_NUMA
10683 		/* Consider allowing a small imbalance between NUMA groups */
10684 		if (env->sd->flags & SD_NUMA) {
10685 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10686 							       local->sum_nr_running + 1,
10687 							       env->sd->imb_numa_nr);
10688 		}
10689 #endif
10690 
10691 		/* Number of tasks to move to restore balance */
10692 		env->imbalance >>= 1;
10693 
10694 		return;
10695 	}
10696 
10697 	/*
10698 	 * Local is fully busy but has to take more load to relieve the
10699 	 * busiest group
10700 	 */
10701 	if (local->group_type < group_overloaded) {
10702 		/*
10703 		 * Local will become overloaded so the avg_load metrics are
10704 		 * finally needed.
10705 		 */
10706 
10707 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10708 				  local->group_capacity;
10709 
10710 		/*
10711 		 * If the local group is more loaded than the selected
10712 		 * busiest group don't try to pull any tasks.
10713 		 */
10714 		if (local->avg_load >= busiest->avg_load) {
10715 			env->imbalance = 0;
10716 			return;
10717 		}
10718 
10719 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10720 				sds->total_capacity;
10721 
10722 		/*
10723 		 * If the local group is more loaded than the average system
10724 		 * load, don't try to pull any tasks.
10725 		 */
10726 		if (local->avg_load >= sds->avg_load) {
10727 			env->imbalance = 0;
10728 			return;
10729 		}
10730 
10731 	}
10732 
10733 	/*
10734 	 * Both group are or will become overloaded and we're trying to get all
10735 	 * the CPUs to the average_load, so we don't want to push ourselves
10736 	 * above the average load, nor do we wish to reduce the max loaded CPU
10737 	 * below the average load. At the same time, we also don't want to
10738 	 * reduce the group load below the group capacity. Thus we look for
10739 	 * the minimum possible imbalance.
10740 	 */
10741 	env->migration_type = migrate_load;
10742 	env->imbalance = min(
10743 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10744 		(sds->avg_load - local->avg_load) * local->group_capacity
10745 	) / SCHED_CAPACITY_SCALE;
10746 }
10747 
10748 /******* find_busiest_group() helpers end here *********************/
10749 
10750 /*
10751  * Decision matrix according to the local and busiest group type:
10752  *
10753  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10754  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10755  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10756  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10757  * asym_packing     force     force      N/A    N/A  force      force
10758  * imbalanced       force     force      N/A    N/A  force      force
10759  * overloaded       force     force      N/A    N/A  force      avg_load
10760  *
10761  * N/A :      Not Applicable because already filtered while updating
10762  *            statistics.
10763  * balanced : The system is balanced for these 2 groups.
10764  * force :    Calculate the imbalance as load migration is probably needed.
10765  * avg_load : Only if imbalance is significant enough.
10766  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10767  *            different in groups.
10768  */
10769 
10770 /**
10771  * find_busiest_group - Returns the busiest group within the sched_domain
10772  * if there is an imbalance.
10773  * @env: The load balancing environment.
10774  *
10775  * Also calculates the amount of runnable load which should be moved
10776  * to restore balance.
10777  *
10778  * Return:	- The busiest group if imbalance exists.
10779  */
10780 static struct sched_group *find_busiest_group(struct lb_env *env)
10781 {
10782 	struct sg_lb_stats *local, *busiest;
10783 	struct sd_lb_stats sds;
10784 
10785 	init_sd_lb_stats(&sds);
10786 
10787 	/*
10788 	 * Compute the various statistics relevant for load balancing at
10789 	 * this level.
10790 	 */
10791 	update_sd_lb_stats(env, &sds);
10792 
10793 	/* There is no busy sibling group to pull tasks from */
10794 	if (!sds.busiest)
10795 		goto out_balanced;
10796 
10797 	busiest = &sds.busiest_stat;
10798 
10799 	/* Misfit tasks should be dealt with regardless of the avg load */
10800 	if (busiest->group_type == group_misfit_task)
10801 		goto force_balance;
10802 
10803 	if (sched_energy_enabled()) {
10804 		struct root_domain *rd = env->dst_rq->rd;
10805 
10806 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10807 			goto out_balanced;
10808 	}
10809 
10810 	/* ASYM feature bypasses nice load balance check */
10811 	if (busiest->group_type == group_asym_packing)
10812 		goto force_balance;
10813 
10814 	/*
10815 	 * If the busiest group is imbalanced the below checks don't
10816 	 * work because they assume all things are equal, which typically
10817 	 * isn't true due to cpus_ptr constraints and the like.
10818 	 */
10819 	if (busiest->group_type == group_imbalanced)
10820 		goto force_balance;
10821 
10822 	local = &sds.local_stat;
10823 	/*
10824 	 * If the local group is busier than the selected busiest group
10825 	 * don't try and pull any tasks.
10826 	 */
10827 	if (local->group_type > busiest->group_type)
10828 		goto out_balanced;
10829 
10830 	/*
10831 	 * When groups are overloaded, use the avg_load to ensure fairness
10832 	 * between tasks.
10833 	 */
10834 	if (local->group_type == group_overloaded) {
10835 		/*
10836 		 * If the local group is more loaded than the selected
10837 		 * busiest group don't try to pull any tasks.
10838 		 */
10839 		if (local->avg_load >= busiest->avg_load)
10840 			goto out_balanced;
10841 
10842 		/* XXX broken for overlapping NUMA groups */
10843 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10844 				sds.total_capacity;
10845 
10846 		/*
10847 		 * Don't pull any tasks if this group is already above the
10848 		 * domain average load.
10849 		 */
10850 		if (local->avg_load >= sds.avg_load)
10851 			goto out_balanced;
10852 
10853 		/*
10854 		 * If the busiest group is more loaded, use imbalance_pct to be
10855 		 * conservative.
10856 		 */
10857 		if (100 * busiest->avg_load <=
10858 				env->sd->imbalance_pct * local->avg_load)
10859 			goto out_balanced;
10860 	}
10861 
10862 	/*
10863 	 * Try to move all excess tasks to a sibling domain of the busiest
10864 	 * group's child domain.
10865 	 */
10866 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10867 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10868 		goto force_balance;
10869 
10870 	if (busiest->group_type != group_overloaded) {
10871 		if (env->idle == CPU_NOT_IDLE) {
10872 			/*
10873 			 * If the busiest group is not overloaded (and as a
10874 			 * result the local one too) but this CPU is already
10875 			 * busy, let another idle CPU try to pull task.
10876 			 */
10877 			goto out_balanced;
10878 		}
10879 
10880 		if (busiest->group_type == group_smt_balance &&
10881 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10882 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10883 			goto force_balance;
10884 		}
10885 
10886 		if (busiest->group_weight > 1 &&
10887 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10888 			/*
10889 			 * If the busiest group is not overloaded
10890 			 * and there is no imbalance between this and busiest
10891 			 * group wrt idle CPUs, it is balanced. The imbalance
10892 			 * becomes significant if the diff is greater than 1
10893 			 * otherwise we might end up to just move the imbalance
10894 			 * on another group. Of course this applies only if
10895 			 * there is more than 1 CPU per group.
10896 			 */
10897 			goto out_balanced;
10898 		}
10899 
10900 		if (busiest->sum_h_nr_running == 1) {
10901 			/*
10902 			 * busiest doesn't have any tasks waiting to run
10903 			 */
10904 			goto out_balanced;
10905 		}
10906 	}
10907 
10908 force_balance:
10909 	/* Looks like there is an imbalance. Compute it */
10910 	calculate_imbalance(env, &sds);
10911 	return env->imbalance ? sds.busiest : NULL;
10912 
10913 out_balanced:
10914 	env->imbalance = 0;
10915 	return NULL;
10916 }
10917 
10918 /*
10919  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10920  */
10921 static struct rq *find_busiest_queue(struct lb_env *env,
10922 				     struct sched_group *group)
10923 {
10924 	struct rq *busiest = NULL, *rq;
10925 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10926 	unsigned int busiest_nr = 0;
10927 	int i;
10928 
10929 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10930 		unsigned long capacity, load, util;
10931 		unsigned int nr_running;
10932 		enum fbq_type rt;
10933 
10934 		rq = cpu_rq(i);
10935 		rt = fbq_classify_rq(rq);
10936 
10937 		/*
10938 		 * We classify groups/runqueues into three groups:
10939 		 *  - regular: there are !numa tasks
10940 		 *  - remote:  there are numa tasks that run on the 'wrong' node
10941 		 *  - all:     there is no distinction
10942 		 *
10943 		 * In order to avoid migrating ideally placed numa tasks,
10944 		 * ignore those when there's better options.
10945 		 *
10946 		 * If we ignore the actual busiest queue to migrate another
10947 		 * task, the next balance pass can still reduce the busiest
10948 		 * queue by moving tasks around inside the node.
10949 		 *
10950 		 * If we cannot move enough load due to this classification
10951 		 * the next pass will adjust the group classification and
10952 		 * allow migration of more tasks.
10953 		 *
10954 		 * Both cases only affect the total convergence complexity.
10955 		 */
10956 		if (rt > env->fbq_type)
10957 			continue;
10958 
10959 		nr_running = rq->cfs.h_nr_running;
10960 		if (!nr_running)
10961 			continue;
10962 
10963 		capacity = capacity_of(i);
10964 
10965 		/*
10966 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
10967 		 * eventually lead to active_balancing high->low capacity.
10968 		 * Higher per-CPU capacity is considered better than balancing
10969 		 * average load.
10970 		 */
10971 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10972 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
10973 		    nr_running == 1)
10974 			continue;
10975 
10976 		/*
10977 		 * Make sure we only pull tasks from a CPU of lower priority
10978 		 * when balancing between SMT siblings.
10979 		 *
10980 		 * If balancing between cores, let lower priority CPUs help
10981 		 * SMT cores with more than one busy sibling.
10982 		 */
10983 		if ((env->sd->flags & SD_ASYM_PACKING) &&
10984 		    sched_use_asym_prio(env->sd, i) &&
10985 		    sched_asym_prefer(i, env->dst_cpu) &&
10986 		    nr_running == 1)
10987 			continue;
10988 
10989 		switch (env->migration_type) {
10990 		case migrate_load:
10991 			/*
10992 			 * When comparing with load imbalance, use cpu_load()
10993 			 * which is not scaled with the CPU capacity.
10994 			 */
10995 			load = cpu_load(rq);
10996 
10997 			if (nr_running == 1 && load > env->imbalance &&
10998 			    !check_cpu_capacity(rq, env->sd))
10999 				break;
11000 
11001 			/*
11002 			 * For the load comparisons with the other CPUs,
11003 			 * consider the cpu_load() scaled with the CPU
11004 			 * capacity, so that the load can be moved away
11005 			 * from the CPU that is potentially running at a
11006 			 * lower capacity.
11007 			 *
11008 			 * Thus we're looking for max(load_i / capacity_i),
11009 			 * crosswise multiplication to rid ourselves of the
11010 			 * division works out to:
11011 			 * load_i * capacity_j > load_j * capacity_i;
11012 			 * where j is our previous maximum.
11013 			 */
11014 			if (load * busiest_capacity > busiest_load * capacity) {
11015 				busiest_load = load;
11016 				busiest_capacity = capacity;
11017 				busiest = rq;
11018 			}
11019 			break;
11020 
11021 		case migrate_util:
11022 			util = cpu_util_cfs_boost(i);
11023 
11024 			/*
11025 			 * Don't try to pull utilization from a CPU with one
11026 			 * running task. Whatever its utilization, we will fail
11027 			 * detach the task.
11028 			 */
11029 			if (nr_running <= 1)
11030 				continue;
11031 
11032 			if (busiest_util < util) {
11033 				busiest_util = util;
11034 				busiest = rq;
11035 			}
11036 			break;
11037 
11038 		case migrate_task:
11039 			if (busiest_nr < nr_running) {
11040 				busiest_nr = nr_running;
11041 				busiest = rq;
11042 			}
11043 			break;
11044 
11045 		case migrate_misfit:
11046 			/*
11047 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11048 			 * simply seek the "biggest" misfit task.
11049 			 */
11050 			if (rq->misfit_task_load > busiest_load) {
11051 				busiest_load = rq->misfit_task_load;
11052 				busiest = rq;
11053 			}
11054 
11055 			break;
11056 
11057 		}
11058 	}
11059 
11060 	return busiest;
11061 }
11062 
11063 /*
11064  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11065  * so long as it is large enough.
11066  */
11067 #define MAX_PINNED_INTERVAL	512
11068 
11069 static inline bool
11070 asym_active_balance(struct lb_env *env)
11071 {
11072 	/*
11073 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11074 	 * priority CPUs in order to pack all tasks in the highest priority
11075 	 * CPUs. When done between cores, do it only if the whole core if the
11076 	 * whole core is idle.
11077 	 *
11078 	 * If @env::src_cpu is an SMT core with busy siblings, let
11079 	 * the lower priority @env::dst_cpu help it. Do not follow
11080 	 * CPU priority.
11081 	 */
11082 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11083 	       sched_use_asym_prio(env->sd, env->dst_cpu) &&
11084 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11085 		!sched_use_asym_prio(env->sd, env->src_cpu));
11086 }
11087 
11088 static inline bool
11089 imbalanced_active_balance(struct lb_env *env)
11090 {
11091 	struct sched_domain *sd = env->sd;
11092 
11093 	/*
11094 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11095 	 * distribution of the load on the system but also the even distribution of the
11096 	 * threads on a system with spare capacity
11097 	 */
11098 	if ((env->migration_type == migrate_task) &&
11099 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11100 		return 1;
11101 
11102 	return 0;
11103 }
11104 
11105 static int need_active_balance(struct lb_env *env)
11106 {
11107 	struct sched_domain *sd = env->sd;
11108 
11109 	if (asym_active_balance(env))
11110 		return 1;
11111 
11112 	if (imbalanced_active_balance(env))
11113 		return 1;
11114 
11115 	/*
11116 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11117 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11118 	 * because of other sched_class or IRQs if more capacity stays
11119 	 * available on dst_cpu.
11120 	 */
11121 	if ((env->idle != CPU_NOT_IDLE) &&
11122 	    (env->src_rq->cfs.h_nr_running == 1)) {
11123 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11124 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11125 			return 1;
11126 	}
11127 
11128 	if (env->migration_type == migrate_misfit)
11129 		return 1;
11130 
11131 	return 0;
11132 }
11133 
11134 static int active_load_balance_cpu_stop(void *data);
11135 
11136 static int should_we_balance(struct lb_env *env)
11137 {
11138 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11139 	struct sched_group *sg = env->sd->groups;
11140 	int cpu, idle_smt = -1;
11141 
11142 	/*
11143 	 * Ensure the balancing environment is consistent; can happen
11144 	 * when the softirq triggers 'during' hotplug.
11145 	 */
11146 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11147 		return 0;
11148 
11149 	/*
11150 	 * In the newly idle case, we will allow all the CPUs
11151 	 * to do the newly idle load balance.
11152 	 *
11153 	 * However, we bail out if we already have tasks or a wakeup pending,
11154 	 * to optimize wakeup latency.
11155 	 */
11156 	if (env->idle == CPU_NEWLY_IDLE) {
11157 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11158 			return 0;
11159 		return 1;
11160 	}
11161 
11162 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11163 	/* Try to find first idle CPU */
11164 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11165 		if (!idle_cpu(cpu))
11166 			continue;
11167 
11168 		/*
11169 		 * Don't balance to idle SMT in busy core right away when
11170 		 * balancing cores, but remember the first idle SMT CPU for
11171 		 * later consideration.  Find CPU on an idle core first.
11172 		 */
11173 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11174 			if (idle_smt == -1)
11175 				idle_smt = cpu;
11176 			/*
11177 			 * If the core is not idle, and first SMT sibling which is
11178 			 * idle has been found, then its not needed to check other
11179 			 * SMT siblings for idleness:
11180 			 */
11181 #ifdef CONFIG_SCHED_SMT
11182 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11183 #endif
11184 			continue;
11185 		}
11186 
11187 		/*
11188 		 * Are we the first idle core in a non-SMT domain or higher,
11189 		 * or the first idle CPU in a SMT domain?
11190 		 */
11191 		return cpu == env->dst_cpu;
11192 	}
11193 
11194 	/* Are we the first idle CPU with busy siblings? */
11195 	if (idle_smt != -1)
11196 		return idle_smt == env->dst_cpu;
11197 
11198 	/* Are we the first CPU of this group ? */
11199 	return group_balance_cpu(sg) == env->dst_cpu;
11200 }
11201 
11202 /*
11203  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11204  * tasks if there is an imbalance.
11205  */
11206 static int load_balance(int this_cpu, struct rq *this_rq,
11207 			struct sched_domain *sd, enum cpu_idle_type idle,
11208 			int *continue_balancing)
11209 {
11210 	int ld_moved, cur_ld_moved, active_balance = 0;
11211 	struct sched_domain *sd_parent = sd->parent;
11212 	struct sched_group *group;
11213 	struct rq *busiest;
11214 	struct rq_flags rf;
11215 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11216 	struct lb_env env = {
11217 		.sd		= sd,
11218 		.dst_cpu	= this_cpu,
11219 		.dst_rq		= this_rq,
11220 		.dst_grpmask    = group_balance_mask(sd->groups),
11221 		.idle		= idle,
11222 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11223 		.cpus		= cpus,
11224 		.fbq_type	= all,
11225 		.tasks		= LIST_HEAD_INIT(env.tasks),
11226 	};
11227 
11228 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11229 
11230 	schedstat_inc(sd->lb_count[idle]);
11231 
11232 redo:
11233 	if (!should_we_balance(&env)) {
11234 		*continue_balancing = 0;
11235 		goto out_balanced;
11236 	}
11237 
11238 	group = find_busiest_group(&env);
11239 	if (!group) {
11240 		schedstat_inc(sd->lb_nobusyg[idle]);
11241 		goto out_balanced;
11242 	}
11243 
11244 	busiest = find_busiest_queue(&env, group);
11245 	if (!busiest) {
11246 		schedstat_inc(sd->lb_nobusyq[idle]);
11247 		goto out_balanced;
11248 	}
11249 
11250 	WARN_ON_ONCE(busiest == env.dst_rq);
11251 
11252 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11253 
11254 	env.src_cpu = busiest->cpu;
11255 	env.src_rq = busiest;
11256 
11257 	ld_moved = 0;
11258 	/* Clear this flag as soon as we find a pullable task */
11259 	env.flags |= LBF_ALL_PINNED;
11260 	if (busiest->nr_running > 1) {
11261 		/*
11262 		 * Attempt to move tasks. If find_busiest_group has found
11263 		 * an imbalance but busiest->nr_running <= 1, the group is
11264 		 * still unbalanced. ld_moved simply stays zero, so it is
11265 		 * correctly treated as an imbalance.
11266 		 */
11267 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11268 
11269 more_balance:
11270 		rq_lock_irqsave(busiest, &rf);
11271 		update_rq_clock(busiest);
11272 
11273 		/*
11274 		 * cur_ld_moved - load moved in current iteration
11275 		 * ld_moved     - cumulative load moved across iterations
11276 		 */
11277 		cur_ld_moved = detach_tasks(&env);
11278 
11279 		/*
11280 		 * We've detached some tasks from busiest_rq. Every
11281 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11282 		 * unlock busiest->lock, and we are able to be sure
11283 		 * that nobody can manipulate the tasks in parallel.
11284 		 * See task_rq_lock() family for the details.
11285 		 */
11286 
11287 		rq_unlock(busiest, &rf);
11288 
11289 		if (cur_ld_moved) {
11290 			attach_tasks(&env);
11291 			ld_moved += cur_ld_moved;
11292 		}
11293 
11294 		local_irq_restore(rf.flags);
11295 
11296 		if (env.flags & LBF_NEED_BREAK) {
11297 			env.flags &= ~LBF_NEED_BREAK;
11298 			/* Stop if we tried all running tasks */
11299 			if (env.loop < busiest->nr_running)
11300 				goto more_balance;
11301 		}
11302 
11303 		/*
11304 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11305 		 * us and move them to an alternate dst_cpu in our sched_group
11306 		 * where they can run. The upper limit on how many times we
11307 		 * iterate on same src_cpu is dependent on number of CPUs in our
11308 		 * sched_group.
11309 		 *
11310 		 * This changes load balance semantics a bit on who can move
11311 		 * load to a given_cpu. In addition to the given_cpu itself
11312 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11313 		 * nohz-idle), we now have balance_cpu in a position to move
11314 		 * load to given_cpu. In rare situations, this may cause
11315 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11316 		 * _independently_ and at _same_ time to move some load to
11317 		 * given_cpu) causing excess load to be moved to given_cpu.
11318 		 * This however should not happen so much in practice and
11319 		 * moreover subsequent load balance cycles should correct the
11320 		 * excess load moved.
11321 		 */
11322 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11323 
11324 			/* Prevent to re-select dst_cpu via env's CPUs */
11325 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11326 
11327 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11328 			env.dst_cpu	 = env.new_dst_cpu;
11329 			env.flags	&= ~LBF_DST_PINNED;
11330 			env.loop	 = 0;
11331 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11332 
11333 			/*
11334 			 * Go back to "more_balance" rather than "redo" since we
11335 			 * need to continue with same src_cpu.
11336 			 */
11337 			goto more_balance;
11338 		}
11339 
11340 		/*
11341 		 * We failed to reach balance because of affinity.
11342 		 */
11343 		if (sd_parent) {
11344 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11345 
11346 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11347 				*group_imbalance = 1;
11348 		}
11349 
11350 		/* All tasks on this runqueue were pinned by CPU affinity */
11351 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11352 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11353 			/*
11354 			 * Attempting to continue load balancing at the current
11355 			 * sched_domain level only makes sense if there are
11356 			 * active CPUs remaining as possible busiest CPUs to
11357 			 * pull load from which are not contained within the
11358 			 * destination group that is receiving any migrated
11359 			 * load.
11360 			 */
11361 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11362 				env.loop = 0;
11363 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11364 				goto redo;
11365 			}
11366 			goto out_all_pinned;
11367 		}
11368 	}
11369 
11370 	if (!ld_moved) {
11371 		schedstat_inc(sd->lb_failed[idle]);
11372 		/*
11373 		 * Increment the failure counter only on periodic balance.
11374 		 * We do not want newidle balance, which can be very
11375 		 * frequent, pollute the failure counter causing
11376 		 * excessive cache_hot migrations and active balances.
11377 		 */
11378 		if (idle != CPU_NEWLY_IDLE)
11379 			sd->nr_balance_failed++;
11380 
11381 		if (need_active_balance(&env)) {
11382 			unsigned long flags;
11383 
11384 			raw_spin_rq_lock_irqsave(busiest, flags);
11385 
11386 			/*
11387 			 * Don't kick the active_load_balance_cpu_stop,
11388 			 * if the curr task on busiest CPU can't be
11389 			 * moved to this_cpu:
11390 			 */
11391 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11392 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11393 				goto out_one_pinned;
11394 			}
11395 
11396 			/* Record that we found at least one task that could run on this_cpu */
11397 			env.flags &= ~LBF_ALL_PINNED;
11398 
11399 			/*
11400 			 * ->active_balance synchronizes accesses to
11401 			 * ->active_balance_work.  Once set, it's cleared
11402 			 * only after active load balance is finished.
11403 			 */
11404 			if (!busiest->active_balance) {
11405 				busiest->active_balance = 1;
11406 				busiest->push_cpu = this_cpu;
11407 				active_balance = 1;
11408 			}
11409 
11410 			preempt_disable();
11411 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11412 			if (active_balance) {
11413 				stop_one_cpu_nowait(cpu_of(busiest),
11414 					active_load_balance_cpu_stop, busiest,
11415 					&busiest->active_balance_work);
11416 			}
11417 			preempt_enable();
11418 		}
11419 	} else {
11420 		sd->nr_balance_failed = 0;
11421 	}
11422 
11423 	if (likely(!active_balance) || need_active_balance(&env)) {
11424 		/* We were unbalanced, so reset the balancing interval */
11425 		sd->balance_interval = sd->min_interval;
11426 	}
11427 
11428 	goto out;
11429 
11430 out_balanced:
11431 	/*
11432 	 * We reach balance although we may have faced some affinity
11433 	 * constraints. Clear the imbalance flag only if other tasks got
11434 	 * a chance to move and fix the imbalance.
11435 	 */
11436 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11437 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11438 
11439 		if (*group_imbalance)
11440 			*group_imbalance = 0;
11441 	}
11442 
11443 out_all_pinned:
11444 	/*
11445 	 * We reach balance because all tasks are pinned at this level so
11446 	 * we can't migrate them. Let the imbalance flag set so parent level
11447 	 * can try to migrate them.
11448 	 */
11449 	schedstat_inc(sd->lb_balanced[idle]);
11450 
11451 	sd->nr_balance_failed = 0;
11452 
11453 out_one_pinned:
11454 	ld_moved = 0;
11455 
11456 	/*
11457 	 * newidle_balance() disregards balance intervals, so we could
11458 	 * repeatedly reach this code, which would lead to balance_interval
11459 	 * skyrocketing in a short amount of time. Skip the balance_interval
11460 	 * increase logic to avoid that.
11461 	 */
11462 	if (env.idle == CPU_NEWLY_IDLE)
11463 		goto out;
11464 
11465 	/* tune up the balancing interval */
11466 	if ((env.flags & LBF_ALL_PINNED &&
11467 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11468 	    sd->balance_interval < sd->max_interval)
11469 		sd->balance_interval *= 2;
11470 out:
11471 	return ld_moved;
11472 }
11473 
11474 static inline unsigned long
11475 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11476 {
11477 	unsigned long interval = sd->balance_interval;
11478 
11479 	if (cpu_busy)
11480 		interval *= sd->busy_factor;
11481 
11482 	/* scale ms to jiffies */
11483 	interval = msecs_to_jiffies(interval);
11484 
11485 	/*
11486 	 * Reduce likelihood of busy balancing at higher domains racing with
11487 	 * balancing at lower domains by preventing their balancing periods
11488 	 * from being multiples of each other.
11489 	 */
11490 	if (cpu_busy)
11491 		interval -= 1;
11492 
11493 	interval = clamp(interval, 1UL, max_load_balance_interval);
11494 
11495 	return interval;
11496 }
11497 
11498 static inline void
11499 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11500 {
11501 	unsigned long interval, next;
11502 
11503 	/* used by idle balance, so cpu_busy = 0 */
11504 	interval = get_sd_balance_interval(sd, 0);
11505 	next = sd->last_balance + interval;
11506 
11507 	if (time_after(*next_balance, next))
11508 		*next_balance = next;
11509 }
11510 
11511 /*
11512  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11513  * running tasks off the busiest CPU onto idle CPUs. It requires at
11514  * least 1 task to be running on each physical CPU where possible, and
11515  * avoids physical / logical imbalances.
11516  */
11517 static int active_load_balance_cpu_stop(void *data)
11518 {
11519 	struct rq *busiest_rq = data;
11520 	int busiest_cpu = cpu_of(busiest_rq);
11521 	int target_cpu = busiest_rq->push_cpu;
11522 	struct rq *target_rq = cpu_rq(target_cpu);
11523 	struct sched_domain *sd;
11524 	struct task_struct *p = NULL;
11525 	struct rq_flags rf;
11526 
11527 	rq_lock_irq(busiest_rq, &rf);
11528 	/*
11529 	 * Between queueing the stop-work and running it is a hole in which
11530 	 * CPUs can become inactive. We should not move tasks from or to
11531 	 * inactive CPUs.
11532 	 */
11533 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11534 		goto out_unlock;
11535 
11536 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11537 	if (unlikely(busiest_cpu != smp_processor_id() ||
11538 		     !busiest_rq->active_balance))
11539 		goto out_unlock;
11540 
11541 	/* Is there any task to move? */
11542 	if (busiest_rq->nr_running <= 1)
11543 		goto out_unlock;
11544 
11545 	/*
11546 	 * This condition is "impossible", if it occurs
11547 	 * we need to fix it. Originally reported by
11548 	 * Bjorn Helgaas on a 128-CPU setup.
11549 	 */
11550 	WARN_ON_ONCE(busiest_rq == target_rq);
11551 
11552 	/* Search for an sd spanning us and the target CPU. */
11553 	rcu_read_lock();
11554 	for_each_domain(target_cpu, sd) {
11555 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11556 			break;
11557 	}
11558 
11559 	if (likely(sd)) {
11560 		struct lb_env env = {
11561 			.sd		= sd,
11562 			.dst_cpu	= target_cpu,
11563 			.dst_rq		= target_rq,
11564 			.src_cpu	= busiest_rq->cpu,
11565 			.src_rq		= busiest_rq,
11566 			.idle		= CPU_IDLE,
11567 			.flags		= LBF_ACTIVE_LB,
11568 		};
11569 
11570 		schedstat_inc(sd->alb_count);
11571 		update_rq_clock(busiest_rq);
11572 
11573 		p = detach_one_task(&env);
11574 		if (p) {
11575 			schedstat_inc(sd->alb_pushed);
11576 			/* Active balancing done, reset the failure counter. */
11577 			sd->nr_balance_failed = 0;
11578 		} else {
11579 			schedstat_inc(sd->alb_failed);
11580 		}
11581 	}
11582 	rcu_read_unlock();
11583 out_unlock:
11584 	busiest_rq->active_balance = 0;
11585 	rq_unlock(busiest_rq, &rf);
11586 
11587 	if (p)
11588 		attach_one_task(target_rq, p);
11589 
11590 	local_irq_enable();
11591 
11592 	return 0;
11593 }
11594 
11595 static DEFINE_SPINLOCK(balancing);
11596 
11597 /*
11598  * Scale the max load_balance interval with the number of CPUs in the system.
11599  * This trades load-balance latency on larger machines for less cross talk.
11600  */
11601 void update_max_interval(void)
11602 {
11603 	max_load_balance_interval = HZ*num_online_cpus()/10;
11604 }
11605 
11606 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11607 {
11608 	if (cost > sd->max_newidle_lb_cost) {
11609 		/*
11610 		 * Track max cost of a domain to make sure to not delay the
11611 		 * next wakeup on the CPU.
11612 		 */
11613 		sd->max_newidle_lb_cost = cost;
11614 		sd->last_decay_max_lb_cost = jiffies;
11615 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11616 		/*
11617 		 * Decay the newidle max times by ~1% per second to ensure that
11618 		 * it is not outdated and the current max cost is actually
11619 		 * shorter.
11620 		 */
11621 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11622 		sd->last_decay_max_lb_cost = jiffies;
11623 
11624 		return true;
11625 	}
11626 
11627 	return false;
11628 }
11629 
11630 /*
11631  * It checks each scheduling domain to see if it is due to be balanced,
11632  * and initiates a balancing operation if so.
11633  *
11634  * Balancing parameters are set up in init_sched_domains.
11635  */
11636 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11637 {
11638 	int continue_balancing = 1;
11639 	int cpu = rq->cpu;
11640 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11641 	unsigned long interval;
11642 	struct sched_domain *sd;
11643 	/* Earliest time when we have to do rebalance again */
11644 	unsigned long next_balance = jiffies + 60*HZ;
11645 	int update_next_balance = 0;
11646 	int need_serialize, need_decay = 0;
11647 	u64 max_cost = 0;
11648 
11649 	rcu_read_lock();
11650 	for_each_domain(cpu, sd) {
11651 		/*
11652 		 * Decay the newidle max times here because this is a regular
11653 		 * visit to all the domains.
11654 		 */
11655 		need_decay = update_newidle_cost(sd, 0);
11656 		max_cost += sd->max_newidle_lb_cost;
11657 
11658 		/*
11659 		 * Stop the load balance at this level. There is another
11660 		 * CPU in our sched group which is doing load balancing more
11661 		 * actively.
11662 		 */
11663 		if (!continue_balancing) {
11664 			if (need_decay)
11665 				continue;
11666 			break;
11667 		}
11668 
11669 		interval = get_sd_balance_interval(sd, busy);
11670 
11671 		need_serialize = sd->flags & SD_SERIALIZE;
11672 		if (need_serialize) {
11673 			if (!spin_trylock(&balancing))
11674 				goto out;
11675 		}
11676 
11677 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11678 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11679 				/*
11680 				 * The LBF_DST_PINNED logic could have changed
11681 				 * env->dst_cpu, so we can't know our idle
11682 				 * state even if we migrated tasks. Update it.
11683 				 */
11684 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11685 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11686 			}
11687 			sd->last_balance = jiffies;
11688 			interval = get_sd_balance_interval(sd, busy);
11689 		}
11690 		if (need_serialize)
11691 			spin_unlock(&balancing);
11692 out:
11693 		if (time_after(next_balance, sd->last_balance + interval)) {
11694 			next_balance = sd->last_balance + interval;
11695 			update_next_balance = 1;
11696 		}
11697 	}
11698 	if (need_decay) {
11699 		/*
11700 		 * Ensure the rq-wide value also decays but keep it at a
11701 		 * reasonable floor to avoid funnies with rq->avg_idle.
11702 		 */
11703 		rq->max_idle_balance_cost =
11704 			max((u64)sysctl_sched_migration_cost, max_cost);
11705 	}
11706 	rcu_read_unlock();
11707 
11708 	/*
11709 	 * next_balance will be updated only when there is a need.
11710 	 * When the cpu is attached to null domain for ex, it will not be
11711 	 * updated.
11712 	 */
11713 	if (likely(update_next_balance))
11714 		rq->next_balance = next_balance;
11715 
11716 }
11717 
11718 static inline int on_null_domain(struct rq *rq)
11719 {
11720 	return unlikely(!rcu_dereference_sched(rq->sd));
11721 }
11722 
11723 #ifdef CONFIG_NO_HZ_COMMON
11724 /*
11725  * NOHZ idle load balancing (ILB) details:
11726  *
11727  * - When one of the busy CPUs notices that there may be an idle rebalancing
11728  *   needed, they will kick the idle load balancer, which then does idle
11729  *   load balancing for all the idle CPUs.
11730  *
11731  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11732  *   anywhere yet.
11733  */
11734 static inline int find_new_ilb(void)
11735 {
11736 	const struct cpumask *hk_mask;
11737 	int ilb_cpu;
11738 
11739 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11740 
11741 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11742 
11743 		if (ilb_cpu == smp_processor_id())
11744 			continue;
11745 
11746 		if (idle_cpu(ilb_cpu))
11747 			return ilb_cpu;
11748 	}
11749 
11750 	return -1;
11751 }
11752 
11753 /*
11754  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11755  * SMP function call (IPI).
11756  *
11757  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11758  */
11759 static void kick_ilb(unsigned int flags)
11760 {
11761 	int ilb_cpu;
11762 
11763 	/*
11764 	 * Increase nohz.next_balance only when if full ilb is triggered but
11765 	 * not if we only update stats.
11766 	 */
11767 	if (flags & NOHZ_BALANCE_KICK)
11768 		nohz.next_balance = jiffies+1;
11769 
11770 	ilb_cpu = find_new_ilb();
11771 	if (ilb_cpu < 0)
11772 		return;
11773 
11774 	/*
11775 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11776 	 * the first flag owns it; cleared by nohz_csd_func().
11777 	 */
11778 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11779 	if (flags & NOHZ_KICK_MASK)
11780 		return;
11781 
11782 	/*
11783 	 * This way we generate an IPI on the target CPU which
11784 	 * is idle, and the softirq performing NOHZ idle load balancing
11785 	 * will be run before returning from the IPI.
11786 	 */
11787 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11788 }
11789 
11790 /*
11791  * Current decision point for kicking the idle load balancer in the presence
11792  * of idle CPUs in the system.
11793  */
11794 static void nohz_balancer_kick(struct rq *rq)
11795 {
11796 	unsigned long now = jiffies;
11797 	struct sched_domain_shared *sds;
11798 	struct sched_domain *sd;
11799 	int nr_busy, i, cpu = rq->cpu;
11800 	unsigned int flags = 0;
11801 
11802 	if (unlikely(rq->idle_balance))
11803 		return;
11804 
11805 	/*
11806 	 * We may be recently in ticked or tickless idle mode. At the first
11807 	 * busy tick after returning from idle, we will update the busy stats.
11808 	 */
11809 	nohz_balance_exit_idle(rq);
11810 
11811 	/*
11812 	 * None are in tickless mode and hence no need for NOHZ idle load
11813 	 * balancing:
11814 	 */
11815 	if (likely(!atomic_read(&nohz.nr_cpus)))
11816 		return;
11817 
11818 	if (READ_ONCE(nohz.has_blocked) &&
11819 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11820 		flags = NOHZ_STATS_KICK;
11821 
11822 	if (time_before(now, nohz.next_balance))
11823 		goto out;
11824 
11825 	if (rq->nr_running >= 2) {
11826 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11827 		goto out;
11828 	}
11829 
11830 	rcu_read_lock();
11831 
11832 	sd = rcu_dereference(rq->sd);
11833 	if (sd) {
11834 		/*
11835 		 * If there's a runnable CFS task and the current CPU has reduced
11836 		 * capacity, kick the ILB to see if there's a better CPU to run on:
11837 		 */
11838 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11839 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11840 			goto unlock;
11841 		}
11842 	}
11843 
11844 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11845 	if (sd) {
11846 		/*
11847 		 * When ASYM_PACKING; see if there's a more preferred CPU
11848 		 * currently idle; in which case, kick the ILB to move tasks
11849 		 * around.
11850 		 *
11851 		 * When balancing betwen cores, all the SMT siblings of the
11852 		 * preferred CPU must be idle.
11853 		 */
11854 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11855 			if (sched_use_asym_prio(sd, i) &&
11856 			    sched_asym_prefer(i, cpu)) {
11857 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11858 				goto unlock;
11859 			}
11860 		}
11861 	}
11862 
11863 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11864 	if (sd) {
11865 		/*
11866 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11867 		 * to run the misfit task on.
11868 		 */
11869 		if (check_misfit_status(rq, sd)) {
11870 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11871 			goto unlock;
11872 		}
11873 
11874 		/*
11875 		 * For asymmetric systems, we do not want to nicely balance
11876 		 * cache use, instead we want to embrace asymmetry and only
11877 		 * ensure tasks have enough CPU capacity.
11878 		 *
11879 		 * Skip the LLC logic because it's not relevant in that case.
11880 		 */
11881 		goto unlock;
11882 	}
11883 
11884 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11885 	if (sds) {
11886 		/*
11887 		 * If there is an imbalance between LLC domains (IOW we could
11888 		 * increase the overall cache utilization), we need a less-loaded LLC
11889 		 * domain to pull some load from. Likewise, we may need to spread
11890 		 * load within the current LLC domain (e.g. packed SMT cores but
11891 		 * other CPUs are idle). We can't really know from here how busy
11892 		 * the others are - so just get a NOHZ balance going if it looks
11893 		 * like this LLC domain has tasks we could move.
11894 		 */
11895 		nr_busy = atomic_read(&sds->nr_busy_cpus);
11896 		if (nr_busy > 1) {
11897 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11898 			goto unlock;
11899 		}
11900 	}
11901 unlock:
11902 	rcu_read_unlock();
11903 out:
11904 	if (READ_ONCE(nohz.needs_update))
11905 		flags |= NOHZ_NEXT_KICK;
11906 
11907 	if (flags)
11908 		kick_ilb(flags);
11909 }
11910 
11911 static void set_cpu_sd_state_busy(int cpu)
11912 {
11913 	struct sched_domain *sd;
11914 
11915 	rcu_read_lock();
11916 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11917 
11918 	if (!sd || !sd->nohz_idle)
11919 		goto unlock;
11920 	sd->nohz_idle = 0;
11921 
11922 	atomic_inc(&sd->shared->nr_busy_cpus);
11923 unlock:
11924 	rcu_read_unlock();
11925 }
11926 
11927 void nohz_balance_exit_idle(struct rq *rq)
11928 {
11929 	SCHED_WARN_ON(rq != this_rq());
11930 
11931 	if (likely(!rq->nohz_tick_stopped))
11932 		return;
11933 
11934 	rq->nohz_tick_stopped = 0;
11935 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11936 	atomic_dec(&nohz.nr_cpus);
11937 
11938 	set_cpu_sd_state_busy(rq->cpu);
11939 }
11940 
11941 static void set_cpu_sd_state_idle(int cpu)
11942 {
11943 	struct sched_domain *sd;
11944 
11945 	rcu_read_lock();
11946 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
11947 
11948 	if (!sd || sd->nohz_idle)
11949 		goto unlock;
11950 	sd->nohz_idle = 1;
11951 
11952 	atomic_dec(&sd->shared->nr_busy_cpus);
11953 unlock:
11954 	rcu_read_unlock();
11955 }
11956 
11957 /*
11958  * This routine will record that the CPU is going idle with tick stopped.
11959  * This info will be used in performing idle load balancing in the future.
11960  */
11961 void nohz_balance_enter_idle(int cpu)
11962 {
11963 	struct rq *rq = cpu_rq(cpu);
11964 
11965 	SCHED_WARN_ON(cpu != smp_processor_id());
11966 
11967 	/* If this CPU is going down, then nothing needs to be done: */
11968 	if (!cpu_active(cpu))
11969 		return;
11970 
11971 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
11972 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
11973 		return;
11974 
11975 	/*
11976 	 * Can be set safely without rq->lock held
11977 	 * If a clear happens, it will have evaluated last additions because
11978 	 * rq->lock is held during the check and the clear
11979 	 */
11980 	rq->has_blocked_load = 1;
11981 
11982 	/*
11983 	 * The tick is still stopped but load could have been added in the
11984 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11985 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11986 	 * of nohz.has_blocked can only happen after checking the new load
11987 	 */
11988 	if (rq->nohz_tick_stopped)
11989 		goto out;
11990 
11991 	/* If we're a completely isolated CPU, we don't play: */
11992 	if (on_null_domain(rq))
11993 		return;
11994 
11995 	rq->nohz_tick_stopped = 1;
11996 
11997 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11998 	atomic_inc(&nohz.nr_cpus);
11999 
12000 	/*
12001 	 * Ensures that if nohz_idle_balance() fails to observe our
12002 	 * @idle_cpus_mask store, it must observe the @has_blocked
12003 	 * and @needs_update stores.
12004 	 */
12005 	smp_mb__after_atomic();
12006 
12007 	set_cpu_sd_state_idle(cpu);
12008 
12009 	WRITE_ONCE(nohz.needs_update, 1);
12010 out:
12011 	/*
12012 	 * Each time a cpu enter idle, we assume that it has blocked load and
12013 	 * enable the periodic update of the load of idle cpus
12014 	 */
12015 	WRITE_ONCE(nohz.has_blocked, 1);
12016 }
12017 
12018 static bool update_nohz_stats(struct rq *rq)
12019 {
12020 	unsigned int cpu = rq->cpu;
12021 
12022 	if (!rq->has_blocked_load)
12023 		return false;
12024 
12025 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12026 		return false;
12027 
12028 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12029 		return true;
12030 
12031 	update_blocked_averages(cpu);
12032 
12033 	return rq->has_blocked_load;
12034 }
12035 
12036 /*
12037  * Internal function that runs load balance for all idle cpus. The load balance
12038  * can be a simple update of blocked load or a complete load balance with
12039  * tasks movement depending of flags.
12040  */
12041 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12042 {
12043 	/* Earliest time when we have to do rebalance again */
12044 	unsigned long now = jiffies;
12045 	unsigned long next_balance = now + 60*HZ;
12046 	bool has_blocked_load = false;
12047 	int update_next_balance = 0;
12048 	int this_cpu = this_rq->cpu;
12049 	int balance_cpu;
12050 	struct rq *rq;
12051 
12052 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12053 
12054 	/*
12055 	 * We assume there will be no idle load after this update and clear
12056 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12057 	 * set the has_blocked flag and trigger another update of idle load.
12058 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12059 	 * setting the flag, we are sure to not clear the state and not
12060 	 * check the load of an idle cpu.
12061 	 *
12062 	 * Same applies to idle_cpus_mask vs needs_update.
12063 	 */
12064 	if (flags & NOHZ_STATS_KICK)
12065 		WRITE_ONCE(nohz.has_blocked, 0);
12066 	if (flags & NOHZ_NEXT_KICK)
12067 		WRITE_ONCE(nohz.needs_update, 0);
12068 
12069 	/*
12070 	 * Ensures that if we miss the CPU, we must see the has_blocked
12071 	 * store from nohz_balance_enter_idle().
12072 	 */
12073 	smp_mb();
12074 
12075 	/*
12076 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12077 	 * chance for other idle cpu to pull load.
12078 	 */
12079 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12080 		if (!idle_cpu(balance_cpu))
12081 			continue;
12082 
12083 		/*
12084 		 * If this CPU gets work to do, stop the load balancing
12085 		 * work being done for other CPUs. Next load
12086 		 * balancing owner will pick it up.
12087 		 */
12088 		if (need_resched()) {
12089 			if (flags & NOHZ_STATS_KICK)
12090 				has_blocked_load = true;
12091 			if (flags & NOHZ_NEXT_KICK)
12092 				WRITE_ONCE(nohz.needs_update, 1);
12093 			goto abort;
12094 		}
12095 
12096 		rq = cpu_rq(balance_cpu);
12097 
12098 		if (flags & NOHZ_STATS_KICK)
12099 			has_blocked_load |= update_nohz_stats(rq);
12100 
12101 		/*
12102 		 * If time for next balance is due,
12103 		 * do the balance.
12104 		 */
12105 		if (time_after_eq(jiffies, rq->next_balance)) {
12106 			struct rq_flags rf;
12107 
12108 			rq_lock_irqsave(rq, &rf);
12109 			update_rq_clock(rq);
12110 			rq_unlock_irqrestore(rq, &rf);
12111 
12112 			if (flags & NOHZ_BALANCE_KICK)
12113 				rebalance_domains(rq, CPU_IDLE);
12114 		}
12115 
12116 		if (time_after(next_balance, rq->next_balance)) {
12117 			next_balance = rq->next_balance;
12118 			update_next_balance = 1;
12119 		}
12120 	}
12121 
12122 	/*
12123 	 * next_balance will be updated only when there is a need.
12124 	 * When the CPU is attached to null domain for ex, it will not be
12125 	 * updated.
12126 	 */
12127 	if (likely(update_next_balance))
12128 		nohz.next_balance = next_balance;
12129 
12130 	if (flags & NOHZ_STATS_KICK)
12131 		WRITE_ONCE(nohz.next_blocked,
12132 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12133 
12134 abort:
12135 	/* There is still blocked load, enable periodic update */
12136 	if (has_blocked_load)
12137 		WRITE_ONCE(nohz.has_blocked, 1);
12138 }
12139 
12140 /*
12141  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12142  * rebalancing for all the cpus for whom scheduler ticks are stopped.
12143  */
12144 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12145 {
12146 	unsigned int flags = this_rq->nohz_idle_balance;
12147 
12148 	if (!flags)
12149 		return false;
12150 
12151 	this_rq->nohz_idle_balance = 0;
12152 
12153 	if (idle != CPU_IDLE)
12154 		return false;
12155 
12156 	_nohz_idle_balance(this_rq, flags);
12157 
12158 	return true;
12159 }
12160 
12161 /*
12162  * Check if we need to directly run the ILB for updating blocked load before
12163  * entering idle state. Here we run ILB directly without issuing IPIs.
12164  *
12165  * Note that when this function is called, the tick may not yet be stopped on
12166  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12167  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12168  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12169  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12170  * called from this function on (this) CPU that's not yet in the mask. That's
12171  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12172  * updating the blocked load of already idle CPUs without waking up one of
12173  * those idle CPUs and outside the preempt disable / irq off phase of the local
12174  * cpu about to enter idle, because it can take a long time.
12175  */
12176 void nohz_run_idle_balance(int cpu)
12177 {
12178 	unsigned int flags;
12179 
12180 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12181 
12182 	/*
12183 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12184 	 * (ie NOHZ_STATS_KICK set) and will do the same.
12185 	 */
12186 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12187 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12188 }
12189 
12190 static void nohz_newidle_balance(struct rq *this_rq)
12191 {
12192 	int this_cpu = this_rq->cpu;
12193 
12194 	/*
12195 	 * This CPU doesn't want to be disturbed by scheduler
12196 	 * housekeeping
12197 	 */
12198 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12199 		return;
12200 
12201 	/* Will wake up very soon. No time for doing anything else*/
12202 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12203 		return;
12204 
12205 	/* Don't need to update blocked load of idle CPUs*/
12206 	if (!READ_ONCE(nohz.has_blocked) ||
12207 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12208 		return;
12209 
12210 	/*
12211 	 * Set the need to trigger ILB in order to update blocked load
12212 	 * before entering idle state.
12213 	 */
12214 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12215 }
12216 
12217 #else /* !CONFIG_NO_HZ_COMMON */
12218 static inline void nohz_balancer_kick(struct rq *rq) { }
12219 
12220 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12221 {
12222 	return false;
12223 }
12224 
12225 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12226 #endif /* CONFIG_NO_HZ_COMMON */
12227 
12228 /*
12229  * newidle_balance is called by schedule() if this_cpu is about to become
12230  * idle. Attempts to pull tasks from other CPUs.
12231  *
12232  * Returns:
12233  *   < 0 - we released the lock and there are !fair tasks present
12234  *     0 - failed, no new tasks
12235  *   > 0 - success, new (fair) tasks present
12236  */
12237 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12238 {
12239 	unsigned long next_balance = jiffies + HZ;
12240 	int this_cpu = this_rq->cpu;
12241 	u64 t0, t1, curr_cost = 0;
12242 	struct sched_domain *sd;
12243 	int pulled_task = 0;
12244 
12245 	update_misfit_status(NULL, this_rq);
12246 
12247 	/*
12248 	 * There is a task waiting to run. No need to search for one.
12249 	 * Return 0; the task will be enqueued when switching to idle.
12250 	 */
12251 	if (this_rq->ttwu_pending)
12252 		return 0;
12253 
12254 	/*
12255 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
12256 	 * measure the duration of idle_balance() as idle time.
12257 	 */
12258 	this_rq->idle_stamp = rq_clock(this_rq);
12259 
12260 	/*
12261 	 * Do not pull tasks towards !active CPUs...
12262 	 */
12263 	if (!cpu_active(this_cpu))
12264 		return 0;
12265 
12266 	/*
12267 	 * This is OK, because current is on_cpu, which avoids it being picked
12268 	 * for load-balance and preemption/IRQs are still disabled avoiding
12269 	 * further scheduler activity on it and we're being very careful to
12270 	 * re-start the picking loop.
12271 	 */
12272 	rq_unpin_lock(this_rq, rf);
12273 
12274 	rcu_read_lock();
12275 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12276 
12277 	if (!READ_ONCE(this_rq->rd->overload) ||
12278 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12279 
12280 		if (sd)
12281 			update_next_balance(sd, &next_balance);
12282 		rcu_read_unlock();
12283 
12284 		goto out;
12285 	}
12286 	rcu_read_unlock();
12287 
12288 	raw_spin_rq_unlock(this_rq);
12289 
12290 	t0 = sched_clock_cpu(this_cpu);
12291 	update_blocked_averages(this_cpu);
12292 
12293 	rcu_read_lock();
12294 	for_each_domain(this_cpu, sd) {
12295 		int continue_balancing = 1;
12296 		u64 domain_cost;
12297 
12298 		update_next_balance(sd, &next_balance);
12299 
12300 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12301 			break;
12302 
12303 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12304 
12305 			pulled_task = load_balance(this_cpu, this_rq,
12306 						   sd, CPU_NEWLY_IDLE,
12307 						   &continue_balancing);
12308 
12309 			t1 = sched_clock_cpu(this_cpu);
12310 			domain_cost = t1 - t0;
12311 			update_newidle_cost(sd, domain_cost);
12312 
12313 			curr_cost += domain_cost;
12314 			t0 = t1;
12315 		}
12316 
12317 		/*
12318 		 * Stop searching for tasks to pull if there are
12319 		 * now runnable tasks on this rq.
12320 		 */
12321 		if (pulled_task || this_rq->nr_running > 0 ||
12322 		    this_rq->ttwu_pending)
12323 			break;
12324 	}
12325 	rcu_read_unlock();
12326 
12327 	raw_spin_rq_lock(this_rq);
12328 
12329 	if (curr_cost > this_rq->max_idle_balance_cost)
12330 		this_rq->max_idle_balance_cost = curr_cost;
12331 
12332 	/*
12333 	 * While browsing the domains, we released the rq lock, a task could
12334 	 * have been enqueued in the meantime. Since we're not going idle,
12335 	 * pretend we pulled a task.
12336 	 */
12337 	if (this_rq->cfs.h_nr_running && !pulled_task)
12338 		pulled_task = 1;
12339 
12340 	/* Is there a task of a high priority class? */
12341 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12342 		pulled_task = -1;
12343 
12344 out:
12345 	/* Move the next balance forward */
12346 	if (time_after(this_rq->next_balance, next_balance))
12347 		this_rq->next_balance = next_balance;
12348 
12349 	if (pulled_task)
12350 		this_rq->idle_stamp = 0;
12351 	else
12352 		nohz_newidle_balance(this_rq);
12353 
12354 	rq_repin_lock(this_rq, rf);
12355 
12356 	return pulled_task;
12357 }
12358 
12359 /*
12360  * run_rebalance_domains is triggered when needed from the scheduler tick.
12361  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12362  */
12363 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12364 {
12365 	struct rq *this_rq = this_rq();
12366 	enum cpu_idle_type idle = this_rq->idle_balance ?
12367 						CPU_IDLE : CPU_NOT_IDLE;
12368 
12369 	/*
12370 	 * If this CPU has a pending nohz_balance_kick, then do the
12371 	 * balancing on behalf of the other idle CPUs whose ticks are
12372 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12373 	 * give the idle CPUs a chance to load balance. Else we may
12374 	 * load balance only within the local sched_domain hierarchy
12375 	 * and abort nohz_idle_balance altogether if we pull some load.
12376 	 */
12377 	if (nohz_idle_balance(this_rq, idle))
12378 		return;
12379 
12380 	/* normal load balance */
12381 	update_blocked_averages(this_rq->cpu);
12382 	rebalance_domains(this_rq, idle);
12383 }
12384 
12385 /*
12386  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12387  */
12388 void trigger_load_balance(struct rq *rq)
12389 {
12390 	/*
12391 	 * Don't need to rebalance while attached to NULL domain or
12392 	 * runqueue CPU is not active
12393 	 */
12394 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12395 		return;
12396 
12397 	if (time_after_eq(jiffies, rq->next_balance))
12398 		raise_softirq(SCHED_SOFTIRQ);
12399 
12400 	nohz_balancer_kick(rq);
12401 }
12402 
12403 static void rq_online_fair(struct rq *rq)
12404 {
12405 	update_sysctl();
12406 
12407 	update_runtime_enabled(rq);
12408 }
12409 
12410 static void rq_offline_fair(struct rq *rq)
12411 {
12412 	update_sysctl();
12413 
12414 	/* Ensure any throttled groups are reachable by pick_next_task */
12415 	unthrottle_offline_cfs_rqs(rq);
12416 }
12417 
12418 #endif /* CONFIG_SMP */
12419 
12420 #ifdef CONFIG_SCHED_CORE
12421 static inline bool
12422 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12423 {
12424 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12425 	u64 slice = se->slice;
12426 
12427 	return (rtime * min_nr_tasks > slice);
12428 }
12429 
12430 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12431 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12432 {
12433 	if (!sched_core_enabled(rq))
12434 		return;
12435 
12436 	/*
12437 	 * If runqueue has only one task which used up its slice and
12438 	 * if the sibling is forced idle, then trigger schedule to
12439 	 * give forced idle task a chance.
12440 	 *
12441 	 * sched_slice() considers only this active rq and it gets the
12442 	 * whole slice. But during force idle, we have siblings acting
12443 	 * like a single runqueue and hence we need to consider runnable
12444 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12445 	 * go through the forced idle rq, but that would be a perf hit.
12446 	 * We can assume that the forced idle CPU has at least
12447 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12448 	 * if we need to give up the CPU.
12449 	 */
12450 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12451 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12452 		resched_curr(rq);
12453 }
12454 
12455 /*
12456  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12457  */
12458 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12459 			 bool forceidle)
12460 {
12461 	for_each_sched_entity(se) {
12462 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12463 
12464 		if (forceidle) {
12465 			if (cfs_rq->forceidle_seq == fi_seq)
12466 				break;
12467 			cfs_rq->forceidle_seq = fi_seq;
12468 		}
12469 
12470 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12471 	}
12472 }
12473 
12474 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12475 {
12476 	struct sched_entity *se = &p->se;
12477 
12478 	if (p->sched_class != &fair_sched_class)
12479 		return;
12480 
12481 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12482 }
12483 
12484 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12485 			bool in_fi)
12486 {
12487 	struct rq *rq = task_rq(a);
12488 	const struct sched_entity *sea = &a->se;
12489 	const struct sched_entity *seb = &b->se;
12490 	struct cfs_rq *cfs_rqa;
12491 	struct cfs_rq *cfs_rqb;
12492 	s64 delta;
12493 
12494 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12495 
12496 #ifdef CONFIG_FAIR_GROUP_SCHED
12497 	/*
12498 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12499 	 * are immediate siblings.
12500 	 */
12501 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12502 		int sea_depth = sea->depth;
12503 		int seb_depth = seb->depth;
12504 
12505 		if (sea_depth >= seb_depth)
12506 			sea = parent_entity(sea);
12507 		if (sea_depth <= seb_depth)
12508 			seb = parent_entity(seb);
12509 	}
12510 
12511 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12512 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12513 
12514 	cfs_rqa = sea->cfs_rq;
12515 	cfs_rqb = seb->cfs_rq;
12516 #else
12517 	cfs_rqa = &task_rq(a)->cfs;
12518 	cfs_rqb = &task_rq(b)->cfs;
12519 #endif
12520 
12521 	/*
12522 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12523 	 * min_vruntime_fi, which would have been updated in prior calls
12524 	 * to se_fi_update().
12525 	 */
12526 	delta = (s64)(sea->vruntime - seb->vruntime) +
12527 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12528 
12529 	return delta > 0;
12530 }
12531 
12532 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12533 {
12534 	struct cfs_rq *cfs_rq;
12535 
12536 #ifdef CONFIG_FAIR_GROUP_SCHED
12537 	cfs_rq = task_group(p)->cfs_rq[cpu];
12538 #else
12539 	cfs_rq = &cpu_rq(cpu)->cfs;
12540 #endif
12541 	return throttled_hierarchy(cfs_rq);
12542 }
12543 #else
12544 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12545 #endif
12546 
12547 /*
12548  * scheduler tick hitting a task of our scheduling class.
12549  *
12550  * NOTE: This function can be called remotely by the tick offload that
12551  * goes along full dynticks. Therefore no local assumption can be made
12552  * and everything must be accessed through the @rq and @curr passed in
12553  * parameters.
12554  */
12555 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12556 {
12557 	struct cfs_rq *cfs_rq;
12558 	struct sched_entity *se = &curr->se;
12559 
12560 	for_each_sched_entity(se) {
12561 		cfs_rq = cfs_rq_of(se);
12562 		entity_tick(cfs_rq, se, queued);
12563 	}
12564 
12565 	if (static_branch_unlikely(&sched_numa_balancing))
12566 		task_tick_numa(rq, curr);
12567 
12568 	update_misfit_status(curr, rq);
12569 	update_overutilized_status(task_rq(curr));
12570 
12571 	task_tick_core(rq, curr);
12572 }
12573 
12574 /*
12575  * called on fork with the child task as argument from the parent's context
12576  *  - child not yet on the tasklist
12577  *  - preemption disabled
12578  */
12579 static void task_fork_fair(struct task_struct *p)
12580 {
12581 	struct sched_entity *se = &p->se, *curr;
12582 	struct cfs_rq *cfs_rq;
12583 	struct rq *rq = this_rq();
12584 	struct rq_flags rf;
12585 
12586 	rq_lock(rq, &rf);
12587 	update_rq_clock(rq);
12588 
12589 	cfs_rq = task_cfs_rq(current);
12590 	curr = cfs_rq->curr;
12591 	if (curr)
12592 		update_curr(cfs_rq);
12593 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12594 	rq_unlock(rq, &rf);
12595 }
12596 
12597 /*
12598  * Priority of the task has changed. Check to see if we preempt
12599  * the current task.
12600  */
12601 static void
12602 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12603 {
12604 	if (!task_on_rq_queued(p))
12605 		return;
12606 
12607 	if (rq->cfs.nr_running == 1)
12608 		return;
12609 
12610 	/*
12611 	 * Reschedule if we are currently running on this runqueue and
12612 	 * our priority decreased, or if we are not currently running on
12613 	 * this runqueue and our priority is higher than the current's
12614 	 */
12615 	if (task_current(rq, p)) {
12616 		if (p->prio > oldprio)
12617 			resched_curr(rq);
12618 	} else
12619 		wakeup_preempt(rq, p, 0);
12620 }
12621 
12622 #ifdef CONFIG_FAIR_GROUP_SCHED
12623 /*
12624  * Propagate the changes of the sched_entity across the tg tree to make it
12625  * visible to the root
12626  */
12627 static void propagate_entity_cfs_rq(struct sched_entity *se)
12628 {
12629 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12630 
12631 	if (cfs_rq_throttled(cfs_rq))
12632 		return;
12633 
12634 	if (!throttled_hierarchy(cfs_rq))
12635 		list_add_leaf_cfs_rq(cfs_rq);
12636 
12637 	/* Start to propagate at parent */
12638 	se = se->parent;
12639 
12640 	for_each_sched_entity(se) {
12641 		cfs_rq = cfs_rq_of(se);
12642 
12643 		update_load_avg(cfs_rq, se, UPDATE_TG);
12644 
12645 		if (cfs_rq_throttled(cfs_rq))
12646 			break;
12647 
12648 		if (!throttled_hierarchy(cfs_rq))
12649 			list_add_leaf_cfs_rq(cfs_rq);
12650 	}
12651 }
12652 #else
12653 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12654 #endif
12655 
12656 static void detach_entity_cfs_rq(struct sched_entity *se)
12657 {
12658 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12659 
12660 #ifdef CONFIG_SMP
12661 	/*
12662 	 * In case the task sched_avg hasn't been attached:
12663 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12664 	 * - A task which has been woken up by try_to_wake_up() but is
12665 	 *   waiting for actually being woken up by sched_ttwu_pending().
12666 	 */
12667 	if (!se->avg.last_update_time)
12668 		return;
12669 #endif
12670 
12671 	/* Catch up with the cfs_rq and remove our load when we leave */
12672 	update_load_avg(cfs_rq, se, 0);
12673 	detach_entity_load_avg(cfs_rq, se);
12674 	update_tg_load_avg(cfs_rq);
12675 	propagate_entity_cfs_rq(se);
12676 }
12677 
12678 static void attach_entity_cfs_rq(struct sched_entity *se)
12679 {
12680 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12681 
12682 	/* Synchronize entity with its cfs_rq */
12683 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12684 	attach_entity_load_avg(cfs_rq, se);
12685 	update_tg_load_avg(cfs_rq);
12686 	propagate_entity_cfs_rq(se);
12687 }
12688 
12689 static void detach_task_cfs_rq(struct task_struct *p)
12690 {
12691 	struct sched_entity *se = &p->se;
12692 
12693 	detach_entity_cfs_rq(se);
12694 }
12695 
12696 static void attach_task_cfs_rq(struct task_struct *p)
12697 {
12698 	struct sched_entity *se = &p->se;
12699 
12700 	attach_entity_cfs_rq(se);
12701 }
12702 
12703 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12704 {
12705 	detach_task_cfs_rq(p);
12706 }
12707 
12708 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12709 {
12710 	attach_task_cfs_rq(p);
12711 
12712 	if (task_on_rq_queued(p)) {
12713 		/*
12714 		 * We were most likely switched from sched_rt, so
12715 		 * kick off the schedule if running, otherwise just see
12716 		 * if we can still preempt the current task.
12717 		 */
12718 		if (task_current(rq, p))
12719 			resched_curr(rq);
12720 		else
12721 			wakeup_preempt(rq, p, 0);
12722 	}
12723 }
12724 
12725 /* Account for a task changing its policy or group.
12726  *
12727  * This routine is mostly called to set cfs_rq->curr field when a task
12728  * migrates between groups/classes.
12729  */
12730 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12731 {
12732 	struct sched_entity *se = &p->se;
12733 
12734 #ifdef CONFIG_SMP
12735 	if (task_on_rq_queued(p)) {
12736 		/*
12737 		 * Move the next running task to the front of the list, so our
12738 		 * cfs_tasks list becomes MRU one.
12739 		 */
12740 		list_move(&se->group_node, &rq->cfs_tasks);
12741 	}
12742 #endif
12743 
12744 	for_each_sched_entity(se) {
12745 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12746 
12747 		set_next_entity(cfs_rq, se);
12748 		/* ensure bandwidth has been allocated on our new cfs_rq */
12749 		account_cfs_rq_runtime(cfs_rq, 0);
12750 	}
12751 }
12752 
12753 void init_cfs_rq(struct cfs_rq *cfs_rq)
12754 {
12755 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12756 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12757 #ifdef CONFIG_SMP
12758 	raw_spin_lock_init(&cfs_rq->removed.lock);
12759 #endif
12760 }
12761 
12762 #ifdef CONFIG_FAIR_GROUP_SCHED
12763 static void task_change_group_fair(struct task_struct *p)
12764 {
12765 	/*
12766 	 * We couldn't detach or attach a forked task which
12767 	 * hasn't been woken up by wake_up_new_task().
12768 	 */
12769 	if (READ_ONCE(p->__state) == TASK_NEW)
12770 		return;
12771 
12772 	detach_task_cfs_rq(p);
12773 
12774 #ifdef CONFIG_SMP
12775 	/* Tell se's cfs_rq has been changed -- migrated */
12776 	p->se.avg.last_update_time = 0;
12777 #endif
12778 	set_task_rq(p, task_cpu(p));
12779 	attach_task_cfs_rq(p);
12780 }
12781 
12782 void free_fair_sched_group(struct task_group *tg)
12783 {
12784 	int i;
12785 
12786 	for_each_possible_cpu(i) {
12787 		if (tg->cfs_rq)
12788 			kfree(tg->cfs_rq[i]);
12789 		if (tg->se)
12790 			kfree(tg->se[i]);
12791 	}
12792 
12793 	kfree(tg->cfs_rq);
12794 	kfree(tg->se);
12795 }
12796 
12797 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12798 {
12799 	struct sched_entity *se;
12800 	struct cfs_rq *cfs_rq;
12801 	int i;
12802 
12803 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12804 	if (!tg->cfs_rq)
12805 		goto err;
12806 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12807 	if (!tg->se)
12808 		goto err;
12809 
12810 	tg->shares = NICE_0_LOAD;
12811 
12812 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12813 
12814 	for_each_possible_cpu(i) {
12815 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12816 				      GFP_KERNEL, cpu_to_node(i));
12817 		if (!cfs_rq)
12818 			goto err;
12819 
12820 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12821 				  GFP_KERNEL, cpu_to_node(i));
12822 		if (!se)
12823 			goto err_free_rq;
12824 
12825 		init_cfs_rq(cfs_rq);
12826 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12827 		init_entity_runnable_average(se);
12828 	}
12829 
12830 	return 1;
12831 
12832 err_free_rq:
12833 	kfree(cfs_rq);
12834 err:
12835 	return 0;
12836 }
12837 
12838 void online_fair_sched_group(struct task_group *tg)
12839 {
12840 	struct sched_entity *se;
12841 	struct rq_flags rf;
12842 	struct rq *rq;
12843 	int i;
12844 
12845 	for_each_possible_cpu(i) {
12846 		rq = cpu_rq(i);
12847 		se = tg->se[i];
12848 		rq_lock_irq(rq, &rf);
12849 		update_rq_clock(rq);
12850 		attach_entity_cfs_rq(se);
12851 		sync_throttle(tg, i);
12852 		rq_unlock_irq(rq, &rf);
12853 	}
12854 }
12855 
12856 void unregister_fair_sched_group(struct task_group *tg)
12857 {
12858 	unsigned long flags;
12859 	struct rq *rq;
12860 	int cpu;
12861 
12862 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12863 
12864 	for_each_possible_cpu(cpu) {
12865 		if (tg->se[cpu])
12866 			remove_entity_load_avg(tg->se[cpu]);
12867 
12868 		/*
12869 		 * Only empty task groups can be destroyed; so we can speculatively
12870 		 * check on_list without danger of it being re-added.
12871 		 */
12872 		if (!tg->cfs_rq[cpu]->on_list)
12873 			continue;
12874 
12875 		rq = cpu_rq(cpu);
12876 
12877 		raw_spin_rq_lock_irqsave(rq, flags);
12878 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12879 		raw_spin_rq_unlock_irqrestore(rq, flags);
12880 	}
12881 }
12882 
12883 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12884 			struct sched_entity *se, int cpu,
12885 			struct sched_entity *parent)
12886 {
12887 	struct rq *rq = cpu_rq(cpu);
12888 
12889 	cfs_rq->tg = tg;
12890 	cfs_rq->rq = rq;
12891 	init_cfs_rq_runtime(cfs_rq);
12892 
12893 	tg->cfs_rq[cpu] = cfs_rq;
12894 	tg->se[cpu] = se;
12895 
12896 	/* se could be NULL for root_task_group */
12897 	if (!se)
12898 		return;
12899 
12900 	if (!parent) {
12901 		se->cfs_rq = &rq->cfs;
12902 		se->depth = 0;
12903 	} else {
12904 		se->cfs_rq = parent->my_q;
12905 		se->depth = parent->depth + 1;
12906 	}
12907 
12908 	se->my_q = cfs_rq;
12909 	/* guarantee group entities always have weight */
12910 	update_load_set(&se->load, NICE_0_LOAD);
12911 	se->parent = parent;
12912 }
12913 
12914 static DEFINE_MUTEX(shares_mutex);
12915 
12916 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12917 {
12918 	int i;
12919 
12920 	lockdep_assert_held(&shares_mutex);
12921 
12922 	/*
12923 	 * We can't change the weight of the root cgroup.
12924 	 */
12925 	if (!tg->se[0])
12926 		return -EINVAL;
12927 
12928 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12929 
12930 	if (tg->shares == shares)
12931 		return 0;
12932 
12933 	tg->shares = shares;
12934 	for_each_possible_cpu(i) {
12935 		struct rq *rq = cpu_rq(i);
12936 		struct sched_entity *se = tg->se[i];
12937 		struct rq_flags rf;
12938 
12939 		/* Propagate contribution to hierarchy */
12940 		rq_lock_irqsave(rq, &rf);
12941 		update_rq_clock(rq);
12942 		for_each_sched_entity(se) {
12943 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
12944 			update_cfs_group(se);
12945 		}
12946 		rq_unlock_irqrestore(rq, &rf);
12947 	}
12948 
12949 	return 0;
12950 }
12951 
12952 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
12953 {
12954 	int ret;
12955 
12956 	mutex_lock(&shares_mutex);
12957 	if (tg_is_idle(tg))
12958 		ret = -EINVAL;
12959 	else
12960 		ret = __sched_group_set_shares(tg, shares);
12961 	mutex_unlock(&shares_mutex);
12962 
12963 	return ret;
12964 }
12965 
12966 int sched_group_set_idle(struct task_group *tg, long idle)
12967 {
12968 	int i;
12969 
12970 	if (tg == &root_task_group)
12971 		return -EINVAL;
12972 
12973 	if (idle < 0 || idle > 1)
12974 		return -EINVAL;
12975 
12976 	mutex_lock(&shares_mutex);
12977 
12978 	if (tg->idle == idle) {
12979 		mutex_unlock(&shares_mutex);
12980 		return 0;
12981 	}
12982 
12983 	tg->idle = idle;
12984 
12985 	for_each_possible_cpu(i) {
12986 		struct rq *rq = cpu_rq(i);
12987 		struct sched_entity *se = tg->se[i];
12988 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
12989 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
12990 		long idle_task_delta;
12991 		struct rq_flags rf;
12992 
12993 		rq_lock_irqsave(rq, &rf);
12994 
12995 		grp_cfs_rq->idle = idle;
12996 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
12997 			goto next_cpu;
12998 
12999 		if (se->on_rq) {
13000 			parent_cfs_rq = cfs_rq_of(se);
13001 			if (cfs_rq_is_idle(grp_cfs_rq))
13002 				parent_cfs_rq->idle_nr_running++;
13003 			else
13004 				parent_cfs_rq->idle_nr_running--;
13005 		}
13006 
13007 		idle_task_delta = grp_cfs_rq->h_nr_running -
13008 				  grp_cfs_rq->idle_h_nr_running;
13009 		if (!cfs_rq_is_idle(grp_cfs_rq))
13010 			idle_task_delta *= -1;
13011 
13012 		for_each_sched_entity(se) {
13013 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13014 
13015 			if (!se->on_rq)
13016 				break;
13017 
13018 			cfs_rq->idle_h_nr_running += idle_task_delta;
13019 
13020 			/* Already accounted at parent level and above. */
13021 			if (cfs_rq_is_idle(cfs_rq))
13022 				break;
13023 		}
13024 
13025 next_cpu:
13026 		rq_unlock_irqrestore(rq, &rf);
13027 	}
13028 
13029 	/* Idle groups have minimum weight. */
13030 	if (tg_is_idle(tg))
13031 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13032 	else
13033 		__sched_group_set_shares(tg, NICE_0_LOAD);
13034 
13035 	mutex_unlock(&shares_mutex);
13036 	return 0;
13037 }
13038 
13039 #else /* CONFIG_FAIR_GROUP_SCHED */
13040 
13041 void free_fair_sched_group(struct task_group *tg) { }
13042 
13043 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13044 {
13045 	return 1;
13046 }
13047 
13048 void online_fair_sched_group(struct task_group *tg) { }
13049 
13050 void unregister_fair_sched_group(struct task_group *tg) { }
13051 
13052 #endif /* CONFIG_FAIR_GROUP_SCHED */
13053 
13054 
13055 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13056 {
13057 	struct sched_entity *se = &task->se;
13058 	unsigned int rr_interval = 0;
13059 
13060 	/*
13061 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13062 	 * idle runqueue:
13063 	 */
13064 	if (rq->cfs.load.weight)
13065 		rr_interval = NS_TO_JIFFIES(se->slice);
13066 
13067 	return rr_interval;
13068 }
13069 
13070 /*
13071  * All the scheduling class methods:
13072  */
13073 DEFINE_SCHED_CLASS(fair) = {
13074 
13075 	.enqueue_task		= enqueue_task_fair,
13076 	.dequeue_task		= dequeue_task_fair,
13077 	.yield_task		= yield_task_fair,
13078 	.yield_to_task		= yield_to_task_fair,
13079 
13080 	.wakeup_preempt		= check_preempt_wakeup_fair,
13081 
13082 	.pick_next_task		= __pick_next_task_fair,
13083 	.put_prev_task		= put_prev_task_fair,
13084 	.set_next_task          = set_next_task_fair,
13085 
13086 #ifdef CONFIG_SMP
13087 	.balance		= balance_fair,
13088 	.pick_task		= pick_task_fair,
13089 	.select_task_rq		= select_task_rq_fair,
13090 	.migrate_task_rq	= migrate_task_rq_fair,
13091 
13092 	.rq_online		= rq_online_fair,
13093 	.rq_offline		= rq_offline_fair,
13094 
13095 	.task_dead		= task_dead_fair,
13096 	.set_cpus_allowed	= set_cpus_allowed_common,
13097 #endif
13098 
13099 	.task_tick		= task_tick_fair,
13100 	.task_fork		= task_fork_fair,
13101 
13102 	.prio_changed		= prio_changed_fair,
13103 	.switched_from		= switched_from_fair,
13104 	.switched_to		= switched_to_fair,
13105 
13106 	.get_rr_interval	= get_rr_interval_fair,
13107 
13108 	.update_curr		= update_curr_fair,
13109 
13110 #ifdef CONFIG_FAIR_GROUP_SCHED
13111 	.task_change_group	= task_change_group_fair,
13112 #endif
13113 
13114 #ifdef CONFIG_SCHED_CORE
13115 	.task_is_throttled	= task_is_throttled_fair,
13116 #endif
13117 
13118 #ifdef CONFIG_UCLAMP_TASK
13119 	.uclamp_enabled		= 1,
13120 #endif
13121 };
13122 
13123 #ifdef CONFIG_SCHED_DEBUG
13124 void print_cfs_stats(struct seq_file *m, int cpu)
13125 {
13126 	struct cfs_rq *cfs_rq, *pos;
13127 
13128 	rcu_read_lock();
13129 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13130 		print_cfs_rq(m, cpu, cfs_rq);
13131 	rcu_read_unlock();
13132 }
13133 
13134 #ifdef CONFIG_NUMA_BALANCING
13135 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13136 {
13137 	int node;
13138 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13139 	struct numa_group *ng;
13140 
13141 	rcu_read_lock();
13142 	ng = rcu_dereference(p->numa_group);
13143 	for_each_online_node(node) {
13144 		if (p->numa_faults) {
13145 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13146 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13147 		}
13148 		if (ng) {
13149 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13150 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13151 		}
13152 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13153 	}
13154 	rcu_read_unlock();
13155 }
13156 #endif /* CONFIG_NUMA_BALANCING */
13157 #endif /* CONFIG_SCHED_DEBUG */
13158 
13159 __init void init_sched_fair_class(void)
13160 {
13161 #ifdef CONFIG_SMP
13162 	int i;
13163 
13164 	for_each_possible_cpu(i) {
13165 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13166 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13167 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13168 					GFP_KERNEL, cpu_to_node(i));
13169 
13170 #ifdef CONFIG_CFS_BANDWIDTH
13171 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13172 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13173 #endif
13174 	}
13175 
13176 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13177 
13178 #ifdef CONFIG_NO_HZ_COMMON
13179 	nohz.next_balance = jiffies;
13180 	nohz.next_blocked = jiffies;
13181 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13182 #endif
13183 #endif /* SMP */
13184 
13185 }
13186