1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 int sched_thermal_decay_shift; 82 static int __init setup_sched_thermal_decay_shift(char *str) 83 { 84 int _shift = 0; 85 86 if (kstrtoint(str, 0, &_shift)) 87 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 88 89 sched_thermal_decay_shift = clamp(_shift, 0, 10); 90 return 1; 91 } 92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 93 94 #ifdef CONFIG_SMP 95 /* 96 * For asym packing, by default the lower numbered CPU has higher priority. 97 */ 98 int __weak arch_asym_cpu_priority(int cpu) 99 { 100 return -cpu; 101 } 102 103 /* 104 * The margin used when comparing utilization with CPU capacity. 105 * 106 * (default: ~20%) 107 */ 108 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 109 110 /* 111 * The margin used when comparing CPU capacities. 112 * is 'cap1' noticeably greater than 'cap2' 113 * 114 * (default: ~5%) 115 */ 116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 117 #endif 118 119 #ifdef CONFIG_CFS_BANDWIDTH 120 /* 121 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 122 * each time a cfs_rq requests quota. 123 * 124 * Note: in the case that the slice exceeds the runtime remaining (either due 125 * to consumption or the quota being specified to be smaller than the slice) 126 * we will always only issue the remaining available time. 127 * 128 * (default: 5 msec, units: microseconds) 129 */ 130 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 131 #endif 132 133 #ifdef CONFIG_NUMA_BALANCING 134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 136 #endif 137 138 #ifdef CONFIG_SYSCTL 139 static struct ctl_table sched_fair_sysctls[] = { 140 #ifdef CONFIG_CFS_BANDWIDTH 141 { 142 .procname = "sched_cfs_bandwidth_slice_us", 143 .data = &sysctl_sched_cfs_bandwidth_slice, 144 .maxlen = sizeof(unsigned int), 145 .mode = 0644, 146 .proc_handler = proc_dointvec_minmax, 147 .extra1 = SYSCTL_ONE, 148 }, 149 #endif 150 #ifdef CONFIG_NUMA_BALANCING 151 { 152 .procname = "numa_balancing_promote_rate_limit_MBps", 153 .data = &sysctl_numa_balancing_promote_rate_limit, 154 .maxlen = sizeof(unsigned int), 155 .mode = 0644, 156 .proc_handler = proc_dointvec_minmax, 157 .extra1 = SYSCTL_ZERO, 158 }, 159 #endif /* CONFIG_NUMA_BALANCING */ 160 {} 161 }; 162 163 static int __init sched_fair_sysctl_init(void) 164 { 165 register_sysctl_init("kernel", sched_fair_sysctls); 166 return 0; 167 } 168 late_initcall(sched_fair_sysctl_init); 169 #endif 170 171 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 172 { 173 lw->weight += inc; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 178 { 179 lw->weight -= dec; 180 lw->inv_weight = 0; 181 } 182 183 static inline void update_load_set(struct load_weight *lw, unsigned long w) 184 { 185 lw->weight = w; 186 lw->inv_weight = 0; 187 } 188 189 /* 190 * Increase the granularity value when there are more CPUs, 191 * because with more CPUs the 'effective latency' as visible 192 * to users decreases. But the relationship is not linear, 193 * so pick a second-best guess by going with the log2 of the 194 * number of CPUs. 195 * 196 * This idea comes from the SD scheduler of Con Kolivas: 197 */ 198 static unsigned int get_update_sysctl_factor(void) 199 { 200 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 201 unsigned int factor; 202 203 switch (sysctl_sched_tunable_scaling) { 204 case SCHED_TUNABLESCALING_NONE: 205 factor = 1; 206 break; 207 case SCHED_TUNABLESCALING_LINEAR: 208 factor = cpus; 209 break; 210 case SCHED_TUNABLESCALING_LOG: 211 default: 212 factor = 1 + ilog2(cpus); 213 break; 214 } 215 216 return factor; 217 } 218 219 static void update_sysctl(void) 220 { 221 unsigned int factor = get_update_sysctl_factor(); 222 223 #define SET_SYSCTL(name) \ 224 (sysctl_##name = (factor) * normalized_sysctl_##name) 225 SET_SYSCTL(sched_base_slice); 226 #undef SET_SYSCTL 227 } 228 229 void __init sched_init_granularity(void) 230 { 231 update_sysctl(); 232 } 233 234 #define WMULT_CONST (~0U) 235 #define WMULT_SHIFT 32 236 237 static void __update_inv_weight(struct load_weight *lw) 238 { 239 unsigned long w; 240 241 if (likely(lw->inv_weight)) 242 return; 243 244 w = scale_load_down(lw->weight); 245 246 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 247 lw->inv_weight = 1; 248 else if (unlikely(!w)) 249 lw->inv_weight = WMULT_CONST; 250 else 251 lw->inv_weight = WMULT_CONST / w; 252 } 253 254 /* 255 * delta_exec * weight / lw.weight 256 * OR 257 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 258 * 259 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 260 * we're guaranteed shift stays positive because inv_weight is guaranteed to 261 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 262 * 263 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 264 * weight/lw.weight <= 1, and therefore our shift will also be positive. 265 */ 266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 267 { 268 u64 fact = scale_load_down(weight); 269 u32 fact_hi = (u32)(fact >> 32); 270 int shift = WMULT_SHIFT; 271 int fs; 272 273 __update_inv_weight(lw); 274 275 if (unlikely(fact_hi)) { 276 fs = fls(fact_hi); 277 shift -= fs; 278 fact >>= fs; 279 } 280 281 fact = mul_u32_u32(fact, lw->inv_weight); 282 283 fact_hi = (u32)(fact >> 32); 284 if (fact_hi) { 285 fs = fls(fact_hi); 286 shift -= fs; 287 fact >>= fs; 288 } 289 290 return mul_u64_u32_shr(delta_exec, fact, shift); 291 } 292 293 /* 294 * delta /= w 295 */ 296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 297 { 298 if (unlikely(se->load.weight != NICE_0_LOAD)) 299 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 300 301 return delta; 302 } 303 304 const struct sched_class fair_sched_class; 305 306 /************************************************************** 307 * CFS operations on generic schedulable entities: 308 */ 309 310 #ifdef CONFIG_FAIR_GROUP_SCHED 311 312 /* Walk up scheduling entities hierarchy */ 313 #define for_each_sched_entity(se) \ 314 for (; se; se = se->parent) 315 316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 317 { 318 struct rq *rq = rq_of(cfs_rq); 319 int cpu = cpu_of(rq); 320 321 if (cfs_rq->on_list) 322 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 323 324 cfs_rq->on_list = 1; 325 326 /* 327 * Ensure we either appear before our parent (if already 328 * enqueued) or force our parent to appear after us when it is 329 * enqueued. The fact that we always enqueue bottom-up 330 * reduces this to two cases and a special case for the root 331 * cfs_rq. Furthermore, it also means that we will always reset 332 * tmp_alone_branch either when the branch is connected 333 * to a tree or when we reach the top of the tree 334 */ 335 if (cfs_rq->tg->parent && 336 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 337 /* 338 * If parent is already on the list, we add the child 339 * just before. Thanks to circular linked property of 340 * the list, this means to put the child at the tail 341 * of the list that starts by parent. 342 */ 343 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 344 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 345 /* 346 * The branch is now connected to its tree so we can 347 * reset tmp_alone_branch to the beginning of the 348 * list. 349 */ 350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 351 return true; 352 } 353 354 if (!cfs_rq->tg->parent) { 355 /* 356 * cfs rq without parent should be put 357 * at the tail of the list. 358 */ 359 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 360 &rq->leaf_cfs_rq_list); 361 /* 362 * We have reach the top of a tree so we can reset 363 * tmp_alone_branch to the beginning of the list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 /* 370 * The parent has not already been added so we want to 371 * make sure that it will be put after us. 372 * tmp_alone_branch points to the begin of the branch 373 * where we will add parent. 374 */ 375 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 376 /* 377 * update tmp_alone_branch to points to the new begin 378 * of the branch 379 */ 380 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 381 return false; 382 } 383 384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 385 { 386 if (cfs_rq->on_list) { 387 struct rq *rq = rq_of(cfs_rq); 388 389 /* 390 * With cfs_rq being unthrottled/throttled during an enqueue, 391 * it can happen the tmp_alone_branch points the a leaf that 392 * we finally want to del. In this case, tmp_alone_branch moves 393 * to the prev element but it will point to rq->leaf_cfs_rq_list 394 * at the end of the enqueue. 395 */ 396 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 397 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 398 399 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 400 cfs_rq->on_list = 0; 401 } 402 } 403 404 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 405 { 406 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 407 } 408 409 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 411 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 412 leaf_cfs_rq_list) 413 414 /* Do the two (enqueued) entities belong to the same group ? */ 415 static inline struct cfs_rq * 416 is_same_group(struct sched_entity *se, struct sched_entity *pse) 417 { 418 if (se->cfs_rq == pse->cfs_rq) 419 return se->cfs_rq; 420 421 return NULL; 422 } 423 424 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 425 { 426 return se->parent; 427 } 428 429 static void 430 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 431 { 432 int se_depth, pse_depth; 433 434 /* 435 * preemption test can be made between sibling entities who are in the 436 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 437 * both tasks until we find their ancestors who are siblings of common 438 * parent. 439 */ 440 441 /* First walk up until both entities are at same depth */ 442 se_depth = (*se)->depth; 443 pse_depth = (*pse)->depth; 444 445 while (se_depth > pse_depth) { 446 se_depth--; 447 *se = parent_entity(*se); 448 } 449 450 while (pse_depth > se_depth) { 451 pse_depth--; 452 *pse = parent_entity(*pse); 453 } 454 455 while (!is_same_group(*se, *pse)) { 456 *se = parent_entity(*se); 457 *pse = parent_entity(*pse); 458 } 459 } 460 461 static int tg_is_idle(struct task_group *tg) 462 { 463 return tg->idle > 0; 464 } 465 466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 467 { 468 return cfs_rq->idle > 0; 469 } 470 471 static int se_is_idle(struct sched_entity *se) 472 { 473 if (entity_is_task(se)) 474 return task_has_idle_policy(task_of(se)); 475 return cfs_rq_is_idle(group_cfs_rq(se)); 476 } 477 478 #else /* !CONFIG_FAIR_GROUP_SCHED */ 479 480 #define for_each_sched_entity(se) \ 481 for (; se; se = NULL) 482 483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 484 { 485 return true; 486 } 487 488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 489 { 490 } 491 492 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 493 { 494 } 495 496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 498 499 static inline struct sched_entity *parent_entity(struct sched_entity *se) 500 { 501 return NULL; 502 } 503 504 static inline void 505 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 506 { 507 } 508 509 static inline int tg_is_idle(struct task_group *tg) 510 { 511 return 0; 512 } 513 514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 515 { 516 return 0; 517 } 518 519 static int se_is_idle(struct sched_entity *se) 520 { 521 return 0; 522 } 523 524 #endif /* CONFIG_FAIR_GROUP_SCHED */ 525 526 static __always_inline 527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 528 529 /************************************************************** 530 * Scheduling class tree data structure manipulation methods: 531 */ 532 533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 534 { 535 s64 delta = (s64)(vruntime - max_vruntime); 536 if (delta > 0) 537 max_vruntime = vruntime; 538 539 return max_vruntime; 540 } 541 542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 543 { 544 s64 delta = (s64)(vruntime - min_vruntime); 545 if (delta < 0) 546 min_vruntime = vruntime; 547 548 return min_vruntime; 549 } 550 551 static inline bool entity_before(const struct sched_entity *a, 552 const struct sched_entity *b) 553 { 554 return (s64)(a->vruntime - b->vruntime) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-continguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplcation could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceil */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 lag, limit; 698 699 SCHED_WARN_ON(!se->on_rq); 700 lag = avg_vruntime(cfs_rq) - se->vruntime; 701 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 se->vlag = clamp(lag, -limit, limit); 704 } 705 706 /* 707 * Entity is eligible once it received less service than it ought to have, 708 * eg. lag >= 0. 709 * 710 * lag_i = S - s_i = w_i*(V - v_i) 711 * 712 * lag_i >= 0 -> V >= v_i 713 * 714 * \Sum (v_i - v)*w_i 715 * V = ------------------ + v 716 * \Sum w_i 717 * 718 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 719 * 720 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 721 * to the loss in precision caused by the division. 722 */ 723 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 724 { 725 struct sched_entity *curr = cfs_rq->curr; 726 s64 avg = cfs_rq->avg_vruntime; 727 long load = cfs_rq->avg_load; 728 729 if (curr && curr->on_rq) { 730 unsigned long weight = scale_load_down(curr->load.weight); 731 732 avg += entity_key(cfs_rq, curr) * weight; 733 load += weight; 734 } 735 736 return avg >= entity_key(cfs_rq, se) * load; 737 } 738 739 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 740 { 741 u64 min_vruntime = cfs_rq->min_vruntime; 742 /* 743 * open coded max_vruntime() to allow updating avg_vruntime 744 */ 745 s64 delta = (s64)(vruntime - min_vruntime); 746 if (delta > 0) { 747 avg_vruntime_update(cfs_rq, delta); 748 min_vruntime = vruntime; 749 } 750 return min_vruntime; 751 } 752 753 static void update_min_vruntime(struct cfs_rq *cfs_rq) 754 { 755 struct sched_entity *se = __pick_first_entity(cfs_rq); 756 struct sched_entity *curr = cfs_rq->curr; 757 758 u64 vruntime = cfs_rq->min_vruntime; 759 760 if (curr) { 761 if (curr->on_rq) 762 vruntime = curr->vruntime; 763 else 764 curr = NULL; 765 } 766 767 if (se) { 768 if (!curr) 769 vruntime = se->vruntime; 770 else 771 vruntime = min_vruntime(vruntime, se->vruntime); 772 } 773 774 /* ensure we never gain time by being placed backwards. */ 775 u64_u32_store(cfs_rq->min_vruntime, 776 __update_min_vruntime(cfs_rq, vruntime)); 777 } 778 779 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 780 { 781 return entity_before(__node_2_se(a), __node_2_se(b)); 782 } 783 784 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 785 786 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) 787 { 788 if (node) { 789 struct sched_entity *rse = __node_2_se(node); 790 if (deadline_gt(min_deadline, se, rse)) 791 se->min_deadline = rse->min_deadline; 792 } 793 } 794 795 /* 796 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) 797 */ 798 static inline bool min_deadline_update(struct sched_entity *se, bool exit) 799 { 800 u64 old_min_deadline = se->min_deadline; 801 struct rb_node *node = &se->run_node; 802 803 se->min_deadline = se->deadline; 804 __update_min_deadline(se, node->rb_right); 805 __update_min_deadline(se, node->rb_left); 806 807 return se->min_deadline == old_min_deadline; 808 } 809 810 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, 811 run_node, min_deadline, min_deadline_update); 812 813 /* 814 * Enqueue an entity into the rb-tree: 815 */ 816 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 817 { 818 avg_vruntime_add(cfs_rq, se); 819 se->min_deadline = se->deadline; 820 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 821 __entity_less, &min_deadline_cb); 822 } 823 824 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 825 { 826 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 827 &min_deadline_cb); 828 avg_vruntime_sub(cfs_rq, se); 829 } 830 831 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 832 { 833 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 834 835 if (!left) 836 return NULL; 837 838 return __node_2_se(left); 839 } 840 841 /* 842 * Earliest Eligible Virtual Deadline First 843 * 844 * In order to provide latency guarantees for different request sizes 845 * EEVDF selects the best runnable task from two criteria: 846 * 847 * 1) the task must be eligible (must be owed service) 848 * 849 * 2) from those tasks that meet 1), we select the one 850 * with the earliest virtual deadline. 851 * 852 * We can do this in O(log n) time due to an augmented RB-tree. The 853 * tree keeps the entries sorted on service, but also functions as a 854 * heap based on the deadline by keeping: 855 * 856 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) 857 * 858 * Which allows an EDF like search on (sub)trees. 859 */ 860 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq) 861 { 862 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 863 struct sched_entity *curr = cfs_rq->curr; 864 struct sched_entity *best = NULL; 865 struct sched_entity *best_left = NULL; 866 867 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 868 curr = NULL; 869 best = curr; 870 871 /* 872 * Once selected, run a task until it either becomes non-eligible or 873 * until it gets a new slice. See the HACK in set_next_entity(). 874 */ 875 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 876 return curr; 877 878 while (node) { 879 struct sched_entity *se = __node_2_se(node); 880 881 /* 882 * If this entity is not eligible, try the left subtree. 883 */ 884 if (!entity_eligible(cfs_rq, se)) { 885 node = node->rb_left; 886 continue; 887 } 888 889 /* 890 * Now we heap search eligible trees for the best (min_)deadline 891 */ 892 if (!best || deadline_gt(deadline, best, se)) 893 best = se; 894 895 /* 896 * Every se in a left branch is eligible, keep track of the 897 * branch with the best min_deadline 898 */ 899 if (node->rb_left) { 900 struct sched_entity *left = __node_2_se(node->rb_left); 901 902 if (!best_left || deadline_gt(min_deadline, best_left, left)) 903 best_left = left; 904 905 /* 906 * min_deadline is in the left branch. rb_left and all 907 * descendants are eligible, so immediately switch to the second 908 * loop. 909 */ 910 if (left->min_deadline == se->min_deadline) 911 break; 912 } 913 914 /* min_deadline is at this node, no need to look right */ 915 if (se->deadline == se->min_deadline) 916 break; 917 918 /* else min_deadline is in the right branch. */ 919 node = node->rb_right; 920 } 921 922 /* 923 * We ran into an eligible node which is itself the best. 924 * (Or nr_running == 0 and both are NULL) 925 */ 926 if (!best_left || (s64)(best_left->min_deadline - best->deadline) > 0) 927 return best; 928 929 /* 930 * Now best_left and all of its children are eligible, and we are just 931 * looking for deadline == min_deadline 932 */ 933 node = &best_left->run_node; 934 while (node) { 935 struct sched_entity *se = __node_2_se(node); 936 937 /* min_deadline is the current node */ 938 if (se->deadline == se->min_deadline) 939 return se; 940 941 /* min_deadline is in the left branch */ 942 if (node->rb_left && 943 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { 944 node = node->rb_left; 945 continue; 946 } 947 948 /* else min_deadline is in the right branch */ 949 node = node->rb_right; 950 } 951 return NULL; 952 } 953 954 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 955 { 956 struct sched_entity *se = __pick_eevdf(cfs_rq); 957 958 if (!se) { 959 struct sched_entity *left = __pick_first_entity(cfs_rq); 960 if (left) { 961 pr_err("EEVDF scheduling fail, picking leftmost\n"); 962 return left; 963 } 964 } 965 966 return se; 967 } 968 969 #ifdef CONFIG_SCHED_DEBUG 970 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 971 { 972 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 973 974 if (!last) 975 return NULL; 976 977 return __node_2_se(last); 978 } 979 980 /************************************************************** 981 * Scheduling class statistics methods: 982 */ 983 #ifdef CONFIG_SMP 984 int sched_update_scaling(void) 985 { 986 unsigned int factor = get_update_sysctl_factor(); 987 988 #define WRT_SYSCTL(name) \ 989 (normalized_sysctl_##name = sysctl_##name / (factor)) 990 WRT_SYSCTL(sched_base_slice); 991 #undef WRT_SYSCTL 992 993 return 0; 994 } 995 #endif 996 #endif 997 998 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 999 1000 /* 1001 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1002 * this is probably good enough. 1003 */ 1004 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1005 { 1006 if ((s64)(se->vruntime - se->deadline) < 0) 1007 return; 1008 1009 /* 1010 * For EEVDF the virtual time slope is determined by w_i (iow. 1011 * nice) while the request time r_i is determined by 1012 * sysctl_sched_base_slice. 1013 */ 1014 se->slice = sysctl_sched_base_slice; 1015 1016 /* 1017 * EEVDF: vd_i = ve_i + r_i / w_i 1018 */ 1019 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1020 1021 /* 1022 * The task has consumed its request, reschedule. 1023 */ 1024 if (cfs_rq->nr_running > 1) { 1025 resched_curr(rq_of(cfs_rq)); 1026 clear_buddies(cfs_rq, se); 1027 } 1028 } 1029 1030 #include "pelt.h" 1031 #ifdef CONFIG_SMP 1032 1033 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1034 static unsigned long task_h_load(struct task_struct *p); 1035 static unsigned long capacity_of(int cpu); 1036 1037 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1038 void init_entity_runnable_average(struct sched_entity *se) 1039 { 1040 struct sched_avg *sa = &se->avg; 1041 1042 memset(sa, 0, sizeof(*sa)); 1043 1044 /* 1045 * Tasks are initialized with full load to be seen as heavy tasks until 1046 * they get a chance to stabilize to their real load level. 1047 * Group entities are initialized with zero load to reflect the fact that 1048 * nothing has been attached to the task group yet. 1049 */ 1050 if (entity_is_task(se)) 1051 sa->load_avg = scale_load_down(se->load.weight); 1052 1053 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1054 } 1055 1056 /* 1057 * With new tasks being created, their initial util_avgs are extrapolated 1058 * based on the cfs_rq's current util_avg: 1059 * 1060 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1061 * 1062 * However, in many cases, the above util_avg does not give a desired 1063 * value. Moreover, the sum of the util_avgs may be divergent, such 1064 * as when the series is a harmonic series. 1065 * 1066 * To solve this problem, we also cap the util_avg of successive tasks to 1067 * only 1/2 of the left utilization budget: 1068 * 1069 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1070 * 1071 * where n denotes the nth task and cpu_scale the CPU capacity. 1072 * 1073 * For example, for a CPU with 1024 of capacity, a simplest series from 1074 * the beginning would be like: 1075 * 1076 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1077 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1078 * 1079 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1080 * if util_avg > util_avg_cap. 1081 */ 1082 void post_init_entity_util_avg(struct task_struct *p) 1083 { 1084 struct sched_entity *se = &p->se; 1085 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1086 struct sched_avg *sa = &se->avg; 1087 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1088 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1089 1090 if (p->sched_class != &fair_sched_class) { 1091 /* 1092 * For !fair tasks do: 1093 * 1094 update_cfs_rq_load_avg(now, cfs_rq); 1095 attach_entity_load_avg(cfs_rq, se); 1096 switched_from_fair(rq, p); 1097 * 1098 * such that the next switched_to_fair() has the 1099 * expected state. 1100 */ 1101 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1102 return; 1103 } 1104 1105 if (cap > 0) { 1106 if (cfs_rq->avg.util_avg != 0) { 1107 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1108 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1109 1110 if (sa->util_avg > cap) 1111 sa->util_avg = cap; 1112 } else { 1113 sa->util_avg = cap; 1114 } 1115 } 1116 1117 sa->runnable_avg = sa->util_avg; 1118 } 1119 1120 #else /* !CONFIG_SMP */ 1121 void init_entity_runnable_average(struct sched_entity *se) 1122 { 1123 } 1124 void post_init_entity_util_avg(struct task_struct *p) 1125 { 1126 } 1127 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1128 { 1129 } 1130 #endif /* CONFIG_SMP */ 1131 1132 /* 1133 * Update the current task's runtime statistics. 1134 */ 1135 static void update_curr(struct cfs_rq *cfs_rq) 1136 { 1137 struct sched_entity *curr = cfs_rq->curr; 1138 u64 now = rq_clock_task(rq_of(cfs_rq)); 1139 u64 delta_exec; 1140 1141 if (unlikely(!curr)) 1142 return; 1143 1144 delta_exec = now - curr->exec_start; 1145 if (unlikely((s64)delta_exec <= 0)) 1146 return; 1147 1148 curr->exec_start = now; 1149 1150 if (schedstat_enabled()) { 1151 struct sched_statistics *stats; 1152 1153 stats = __schedstats_from_se(curr); 1154 __schedstat_set(stats->exec_max, 1155 max(delta_exec, stats->exec_max)); 1156 } 1157 1158 curr->sum_exec_runtime += delta_exec; 1159 schedstat_add(cfs_rq->exec_clock, delta_exec); 1160 1161 curr->vruntime += calc_delta_fair(delta_exec, curr); 1162 update_deadline(cfs_rq, curr); 1163 update_min_vruntime(cfs_rq); 1164 1165 if (entity_is_task(curr)) { 1166 struct task_struct *curtask = task_of(curr); 1167 1168 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 1169 cgroup_account_cputime(curtask, delta_exec); 1170 account_group_exec_runtime(curtask, delta_exec); 1171 } 1172 1173 account_cfs_rq_runtime(cfs_rq, delta_exec); 1174 } 1175 1176 static void update_curr_fair(struct rq *rq) 1177 { 1178 update_curr(cfs_rq_of(&rq->curr->se)); 1179 } 1180 1181 static inline void 1182 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1183 { 1184 struct sched_statistics *stats; 1185 struct task_struct *p = NULL; 1186 1187 if (!schedstat_enabled()) 1188 return; 1189 1190 stats = __schedstats_from_se(se); 1191 1192 if (entity_is_task(se)) 1193 p = task_of(se); 1194 1195 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1196 } 1197 1198 static inline void 1199 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1200 { 1201 struct sched_statistics *stats; 1202 struct task_struct *p = NULL; 1203 1204 if (!schedstat_enabled()) 1205 return; 1206 1207 stats = __schedstats_from_se(se); 1208 1209 /* 1210 * When the sched_schedstat changes from 0 to 1, some sched se 1211 * maybe already in the runqueue, the se->statistics.wait_start 1212 * will be 0.So it will let the delta wrong. We need to avoid this 1213 * scenario. 1214 */ 1215 if (unlikely(!schedstat_val(stats->wait_start))) 1216 return; 1217 1218 if (entity_is_task(se)) 1219 p = task_of(se); 1220 1221 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1222 } 1223 1224 static inline void 1225 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1226 { 1227 struct sched_statistics *stats; 1228 struct task_struct *tsk = NULL; 1229 1230 if (!schedstat_enabled()) 1231 return; 1232 1233 stats = __schedstats_from_se(se); 1234 1235 if (entity_is_task(se)) 1236 tsk = task_of(se); 1237 1238 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1239 } 1240 1241 /* 1242 * Task is being enqueued - update stats: 1243 */ 1244 static inline void 1245 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1246 { 1247 if (!schedstat_enabled()) 1248 return; 1249 1250 /* 1251 * Are we enqueueing a waiting task? (for current tasks 1252 * a dequeue/enqueue event is a NOP) 1253 */ 1254 if (se != cfs_rq->curr) 1255 update_stats_wait_start_fair(cfs_rq, se); 1256 1257 if (flags & ENQUEUE_WAKEUP) 1258 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1259 } 1260 1261 static inline void 1262 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1263 { 1264 1265 if (!schedstat_enabled()) 1266 return; 1267 1268 /* 1269 * Mark the end of the wait period if dequeueing a 1270 * waiting task: 1271 */ 1272 if (se != cfs_rq->curr) 1273 update_stats_wait_end_fair(cfs_rq, se); 1274 1275 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1276 struct task_struct *tsk = task_of(se); 1277 unsigned int state; 1278 1279 /* XXX racy against TTWU */ 1280 state = READ_ONCE(tsk->__state); 1281 if (state & TASK_INTERRUPTIBLE) 1282 __schedstat_set(tsk->stats.sleep_start, 1283 rq_clock(rq_of(cfs_rq))); 1284 if (state & TASK_UNINTERRUPTIBLE) 1285 __schedstat_set(tsk->stats.block_start, 1286 rq_clock(rq_of(cfs_rq))); 1287 } 1288 } 1289 1290 /* 1291 * We are picking a new current task - update its stats: 1292 */ 1293 static inline void 1294 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1295 { 1296 /* 1297 * We are starting a new run period: 1298 */ 1299 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1300 } 1301 1302 /************************************************** 1303 * Scheduling class queueing methods: 1304 */ 1305 1306 static inline bool is_core_idle(int cpu) 1307 { 1308 #ifdef CONFIG_SCHED_SMT 1309 int sibling; 1310 1311 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1312 if (cpu == sibling) 1313 continue; 1314 1315 if (!idle_cpu(sibling)) 1316 return false; 1317 } 1318 #endif 1319 1320 return true; 1321 } 1322 1323 #ifdef CONFIG_NUMA 1324 #define NUMA_IMBALANCE_MIN 2 1325 1326 static inline long 1327 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1328 { 1329 /* 1330 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1331 * threshold. Above this threshold, individual tasks may be contending 1332 * for both memory bandwidth and any shared HT resources. This is an 1333 * approximation as the number of running tasks may not be related to 1334 * the number of busy CPUs due to sched_setaffinity. 1335 */ 1336 if (dst_running > imb_numa_nr) 1337 return imbalance; 1338 1339 /* 1340 * Allow a small imbalance based on a simple pair of communicating 1341 * tasks that remain local when the destination is lightly loaded. 1342 */ 1343 if (imbalance <= NUMA_IMBALANCE_MIN) 1344 return 0; 1345 1346 return imbalance; 1347 } 1348 #endif /* CONFIG_NUMA */ 1349 1350 #ifdef CONFIG_NUMA_BALANCING 1351 /* 1352 * Approximate time to scan a full NUMA task in ms. The task scan period is 1353 * calculated based on the tasks virtual memory size and 1354 * numa_balancing_scan_size. 1355 */ 1356 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1357 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1358 1359 /* Portion of address space to scan in MB */ 1360 unsigned int sysctl_numa_balancing_scan_size = 256; 1361 1362 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1363 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1364 1365 /* The page with hint page fault latency < threshold in ms is considered hot */ 1366 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1367 1368 struct numa_group { 1369 refcount_t refcount; 1370 1371 spinlock_t lock; /* nr_tasks, tasks */ 1372 int nr_tasks; 1373 pid_t gid; 1374 int active_nodes; 1375 1376 struct rcu_head rcu; 1377 unsigned long total_faults; 1378 unsigned long max_faults_cpu; 1379 /* 1380 * faults[] array is split into two regions: faults_mem and faults_cpu. 1381 * 1382 * Faults_cpu is used to decide whether memory should move 1383 * towards the CPU. As a consequence, these stats are weighted 1384 * more by CPU use than by memory faults. 1385 */ 1386 unsigned long faults[]; 1387 }; 1388 1389 /* 1390 * For functions that can be called in multiple contexts that permit reading 1391 * ->numa_group (see struct task_struct for locking rules). 1392 */ 1393 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1394 { 1395 return rcu_dereference_check(p->numa_group, p == current || 1396 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1397 } 1398 1399 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1400 { 1401 return rcu_dereference_protected(p->numa_group, p == current); 1402 } 1403 1404 static inline unsigned long group_faults_priv(struct numa_group *ng); 1405 static inline unsigned long group_faults_shared(struct numa_group *ng); 1406 1407 static unsigned int task_nr_scan_windows(struct task_struct *p) 1408 { 1409 unsigned long rss = 0; 1410 unsigned long nr_scan_pages; 1411 1412 /* 1413 * Calculations based on RSS as non-present and empty pages are skipped 1414 * by the PTE scanner and NUMA hinting faults should be trapped based 1415 * on resident pages 1416 */ 1417 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1418 rss = get_mm_rss(p->mm); 1419 if (!rss) 1420 rss = nr_scan_pages; 1421 1422 rss = round_up(rss, nr_scan_pages); 1423 return rss / nr_scan_pages; 1424 } 1425 1426 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1427 #define MAX_SCAN_WINDOW 2560 1428 1429 static unsigned int task_scan_min(struct task_struct *p) 1430 { 1431 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1432 unsigned int scan, floor; 1433 unsigned int windows = 1; 1434 1435 if (scan_size < MAX_SCAN_WINDOW) 1436 windows = MAX_SCAN_WINDOW / scan_size; 1437 floor = 1000 / windows; 1438 1439 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1440 return max_t(unsigned int, floor, scan); 1441 } 1442 1443 static unsigned int task_scan_start(struct task_struct *p) 1444 { 1445 unsigned long smin = task_scan_min(p); 1446 unsigned long period = smin; 1447 struct numa_group *ng; 1448 1449 /* Scale the maximum scan period with the amount of shared memory. */ 1450 rcu_read_lock(); 1451 ng = rcu_dereference(p->numa_group); 1452 if (ng) { 1453 unsigned long shared = group_faults_shared(ng); 1454 unsigned long private = group_faults_priv(ng); 1455 1456 period *= refcount_read(&ng->refcount); 1457 period *= shared + 1; 1458 period /= private + shared + 1; 1459 } 1460 rcu_read_unlock(); 1461 1462 return max(smin, period); 1463 } 1464 1465 static unsigned int task_scan_max(struct task_struct *p) 1466 { 1467 unsigned long smin = task_scan_min(p); 1468 unsigned long smax; 1469 struct numa_group *ng; 1470 1471 /* Watch for min being lower than max due to floor calculations */ 1472 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1473 1474 /* Scale the maximum scan period with the amount of shared memory. */ 1475 ng = deref_curr_numa_group(p); 1476 if (ng) { 1477 unsigned long shared = group_faults_shared(ng); 1478 unsigned long private = group_faults_priv(ng); 1479 unsigned long period = smax; 1480 1481 period *= refcount_read(&ng->refcount); 1482 period *= shared + 1; 1483 period /= private + shared + 1; 1484 1485 smax = max(smax, period); 1486 } 1487 1488 return max(smin, smax); 1489 } 1490 1491 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1492 { 1493 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1494 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1495 } 1496 1497 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1498 { 1499 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1500 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1501 } 1502 1503 /* Shared or private faults. */ 1504 #define NR_NUMA_HINT_FAULT_TYPES 2 1505 1506 /* Memory and CPU locality */ 1507 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1508 1509 /* Averaged statistics, and temporary buffers. */ 1510 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1511 1512 pid_t task_numa_group_id(struct task_struct *p) 1513 { 1514 struct numa_group *ng; 1515 pid_t gid = 0; 1516 1517 rcu_read_lock(); 1518 ng = rcu_dereference(p->numa_group); 1519 if (ng) 1520 gid = ng->gid; 1521 rcu_read_unlock(); 1522 1523 return gid; 1524 } 1525 1526 /* 1527 * The averaged statistics, shared & private, memory & CPU, 1528 * occupy the first half of the array. The second half of the 1529 * array is for current counters, which are averaged into the 1530 * first set by task_numa_placement. 1531 */ 1532 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1533 { 1534 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1535 } 1536 1537 static inline unsigned long task_faults(struct task_struct *p, int nid) 1538 { 1539 if (!p->numa_faults) 1540 return 0; 1541 1542 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1543 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1544 } 1545 1546 static inline unsigned long group_faults(struct task_struct *p, int nid) 1547 { 1548 struct numa_group *ng = deref_task_numa_group(p); 1549 1550 if (!ng) 1551 return 0; 1552 1553 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1554 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1555 } 1556 1557 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1558 { 1559 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1560 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1561 } 1562 1563 static inline unsigned long group_faults_priv(struct numa_group *ng) 1564 { 1565 unsigned long faults = 0; 1566 int node; 1567 1568 for_each_online_node(node) { 1569 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1570 } 1571 1572 return faults; 1573 } 1574 1575 static inline unsigned long group_faults_shared(struct numa_group *ng) 1576 { 1577 unsigned long faults = 0; 1578 int node; 1579 1580 for_each_online_node(node) { 1581 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1582 } 1583 1584 return faults; 1585 } 1586 1587 /* 1588 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1589 * considered part of a numa group's pseudo-interleaving set. Migrations 1590 * between these nodes are slowed down, to allow things to settle down. 1591 */ 1592 #define ACTIVE_NODE_FRACTION 3 1593 1594 static bool numa_is_active_node(int nid, struct numa_group *ng) 1595 { 1596 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1597 } 1598 1599 /* Handle placement on systems where not all nodes are directly connected. */ 1600 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1601 int lim_dist, bool task) 1602 { 1603 unsigned long score = 0; 1604 int node, max_dist; 1605 1606 /* 1607 * All nodes are directly connected, and the same distance 1608 * from each other. No need for fancy placement algorithms. 1609 */ 1610 if (sched_numa_topology_type == NUMA_DIRECT) 1611 return 0; 1612 1613 /* sched_max_numa_distance may be changed in parallel. */ 1614 max_dist = READ_ONCE(sched_max_numa_distance); 1615 /* 1616 * This code is called for each node, introducing N^2 complexity, 1617 * which should be ok given the number of nodes rarely exceeds 8. 1618 */ 1619 for_each_online_node(node) { 1620 unsigned long faults; 1621 int dist = node_distance(nid, node); 1622 1623 /* 1624 * The furthest away nodes in the system are not interesting 1625 * for placement; nid was already counted. 1626 */ 1627 if (dist >= max_dist || node == nid) 1628 continue; 1629 1630 /* 1631 * On systems with a backplane NUMA topology, compare groups 1632 * of nodes, and move tasks towards the group with the most 1633 * memory accesses. When comparing two nodes at distance 1634 * "hoplimit", only nodes closer by than "hoplimit" are part 1635 * of each group. Skip other nodes. 1636 */ 1637 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1638 continue; 1639 1640 /* Add up the faults from nearby nodes. */ 1641 if (task) 1642 faults = task_faults(p, node); 1643 else 1644 faults = group_faults(p, node); 1645 1646 /* 1647 * On systems with a glueless mesh NUMA topology, there are 1648 * no fixed "groups of nodes". Instead, nodes that are not 1649 * directly connected bounce traffic through intermediate 1650 * nodes; a numa_group can occupy any set of nodes. 1651 * The further away a node is, the less the faults count. 1652 * This seems to result in good task placement. 1653 */ 1654 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1655 faults *= (max_dist - dist); 1656 faults /= (max_dist - LOCAL_DISTANCE); 1657 } 1658 1659 score += faults; 1660 } 1661 1662 return score; 1663 } 1664 1665 /* 1666 * These return the fraction of accesses done by a particular task, or 1667 * task group, on a particular numa node. The group weight is given a 1668 * larger multiplier, in order to group tasks together that are almost 1669 * evenly spread out between numa nodes. 1670 */ 1671 static inline unsigned long task_weight(struct task_struct *p, int nid, 1672 int dist) 1673 { 1674 unsigned long faults, total_faults; 1675 1676 if (!p->numa_faults) 1677 return 0; 1678 1679 total_faults = p->total_numa_faults; 1680 1681 if (!total_faults) 1682 return 0; 1683 1684 faults = task_faults(p, nid); 1685 faults += score_nearby_nodes(p, nid, dist, true); 1686 1687 return 1000 * faults / total_faults; 1688 } 1689 1690 static inline unsigned long group_weight(struct task_struct *p, int nid, 1691 int dist) 1692 { 1693 struct numa_group *ng = deref_task_numa_group(p); 1694 unsigned long faults, total_faults; 1695 1696 if (!ng) 1697 return 0; 1698 1699 total_faults = ng->total_faults; 1700 1701 if (!total_faults) 1702 return 0; 1703 1704 faults = group_faults(p, nid); 1705 faults += score_nearby_nodes(p, nid, dist, false); 1706 1707 return 1000 * faults / total_faults; 1708 } 1709 1710 /* 1711 * If memory tiering mode is enabled, cpupid of slow memory page is 1712 * used to record scan time instead of CPU and PID. When tiering mode 1713 * is disabled at run time, the scan time (in cpupid) will be 1714 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1715 * access out of array bound. 1716 */ 1717 static inline bool cpupid_valid(int cpupid) 1718 { 1719 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1720 } 1721 1722 /* 1723 * For memory tiering mode, if there are enough free pages (more than 1724 * enough watermark defined here) in fast memory node, to take full 1725 * advantage of fast memory capacity, all recently accessed slow 1726 * memory pages will be migrated to fast memory node without 1727 * considering hot threshold. 1728 */ 1729 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1730 { 1731 int z; 1732 unsigned long enough_wmark; 1733 1734 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1735 pgdat->node_present_pages >> 4); 1736 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1737 struct zone *zone = pgdat->node_zones + z; 1738 1739 if (!populated_zone(zone)) 1740 continue; 1741 1742 if (zone_watermark_ok(zone, 0, 1743 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1744 ZONE_MOVABLE, 0)) 1745 return true; 1746 } 1747 return false; 1748 } 1749 1750 /* 1751 * For memory tiering mode, when page tables are scanned, the scan 1752 * time will be recorded in struct page in addition to make page 1753 * PROT_NONE for slow memory page. So when the page is accessed, in 1754 * hint page fault handler, the hint page fault latency is calculated 1755 * via, 1756 * 1757 * hint page fault latency = hint page fault time - scan time 1758 * 1759 * The smaller the hint page fault latency, the higher the possibility 1760 * for the page to be hot. 1761 */ 1762 static int numa_hint_fault_latency(struct folio *folio) 1763 { 1764 int last_time, time; 1765 1766 time = jiffies_to_msecs(jiffies); 1767 last_time = folio_xchg_access_time(folio, time); 1768 1769 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1770 } 1771 1772 /* 1773 * For memory tiering mode, too high promotion/demotion throughput may 1774 * hurt application latency. So we provide a mechanism to rate limit 1775 * the number of pages that are tried to be promoted. 1776 */ 1777 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1778 unsigned long rate_limit, int nr) 1779 { 1780 unsigned long nr_cand; 1781 unsigned int now, start; 1782 1783 now = jiffies_to_msecs(jiffies); 1784 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1785 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1786 start = pgdat->nbp_rl_start; 1787 if (now - start > MSEC_PER_SEC && 1788 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1789 pgdat->nbp_rl_nr_cand = nr_cand; 1790 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1791 return true; 1792 return false; 1793 } 1794 1795 #define NUMA_MIGRATION_ADJUST_STEPS 16 1796 1797 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1798 unsigned long rate_limit, 1799 unsigned int ref_th) 1800 { 1801 unsigned int now, start, th_period, unit_th, th; 1802 unsigned long nr_cand, ref_cand, diff_cand; 1803 1804 now = jiffies_to_msecs(jiffies); 1805 th_period = sysctl_numa_balancing_scan_period_max; 1806 start = pgdat->nbp_th_start; 1807 if (now - start > th_period && 1808 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1809 ref_cand = rate_limit * 1810 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1811 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1812 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1813 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1814 th = pgdat->nbp_threshold ? : ref_th; 1815 if (diff_cand > ref_cand * 11 / 10) 1816 th = max(th - unit_th, unit_th); 1817 else if (diff_cand < ref_cand * 9 / 10) 1818 th = min(th + unit_th, ref_th * 2); 1819 pgdat->nbp_th_nr_cand = nr_cand; 1820 pgdat->nbp_threshold = th; 1821 } 1822 } 1823 1824 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1825 int src_nid, int dst_cpu) 1826 { 1827 struct numa_group *ng = deref_curr_numa_group(p); 1828 int dst_nid = cpu_to_node(dst_cpu); 1829 int last_cpupid, this_cpupid; 1830 1831 /* 1832 * The pages in slow memory node should be migrated according 1833 * to hot/cold instead of private/shared. 1834 */ 1835 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1836 !node_is_toptier(src_nid)) { 1837 struct pglist_data *pgdat; 1838 unsigned long rate_limit; 1839 unsigned int latency, th, def_th; 1840 1841 pgdat = NODE_DATA(dst_nid); 1842 if (pgdat_free_space_enough(pgdat)) { 1843 /* workload changed, reset hot threshold */ 1844 pgdat->nbp_threshold = 0; 1845 return true; 1846 } 1847 1848 def_th = sysctl_numa_balancing_hot_threshold; 1849 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1850 (20 - PAGE_SHIFT); 1851 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1852 1853 th = pgdat->nbp_threshold ? : def_th; 1854 latency = numa_hint_fault_latency(folio); 1855 if (latency >= th) 1856 return false; 1857 1858 return !numa_promotion_rate_limit(pgdat, rate_limit, 1859 folio_nr_pages(folio)); 1860 } 1861 1862 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1863 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1864 1865 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1866 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1867 return false; 1868 1869 /* 1870 * Allow first faults or private faults to migrate immediately early in 1871 * the lifetime of a task. The magic number 4 is based on waiting for 1872 * two full passes of the "multi-stage node selection" test that is 1873 * executed below. 1874 */ 1875 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1876 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1877 return true; 1878 1879 /* 1880 * Multi-stage node selection is used in conjunction with a periodic 1881 * migration fault to build a temporal task<->page relation. By using 1882 * a two-stage filter we remove short/unlikely relations. 1883 * 1884 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1885 * a task's usage of a particular page (n_p) per total usage of this 1886 * page (n_t) (in a given time-span) to a probability. 1887 * 1888 * Our periodic faults will sample this probability and getting the 1889 * same result twice in a row, given these samples are fully 1890 * independent, is then given by P(n)^2, provided our sample period 1891 * is sufficiently short compared to the usage pattern. 1892 * 1893 * This quadric squishes small probabilities, making it less likely we 1894 * act on an unlikely task<->page relation. 1895 */ 1896 if (!cpupid_pid_unset(last_cpupid) && 1897 cpupid_to_nid(last_cpupid) != dst_nid) 1898 return false; 1899 1900 /* Always allow migrate on private faults */ 1901 if (cpupid_match_pid(p, last_cpupid)) 1902 return true; 1903 1904 /* A shared fault, but p->numa_group has not been set up yet. */ 1905 if (!ng) 1906 return true; 1907 1908 /* 1909 * Destination node is much more heavily used than the source 1910 * node? Allow migration. 1911 */ 1912 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1913 ACTIVE_NODE_FRACTION) 1914 return true; 1915 1916 /* 1917 * Distribute memory according to CPU & memory use on each node, 1918 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1919 * 1920 * faults_cpu(dst) 3 faults_cpu(src) 1921 * --------------- * - > --------------- 1922 * faults_mem(dst) 4 faults_mem(src) 1923 */ 1924 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1925 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1926 } 1927 1928 /* 1929 * 'numa_type' describes the node at the moment of load balancing. 1930 */ 1931 enum numa_type { 1932 /* The node has spare capacity that can be used to run more tasks. */ 1933 node_has_spare = 0, 1934 /* 1935 * The node is fully used and the tasks don't compete for more CPU 1936 * cycles. Nevertheless, some tasks might wait before running. 1937 */ 1938 node_fully_busy, 1939 /* 1940 * The node is overloaded and can't provide expected CPU cycles to all 1941 * tasks. 1942 */ 1943 node_overloaded 1944 }; 1945 1946 /* Cached statistics for all CPUs within a node */ 1947 struct numa_stats { 1948 unsigned long load; 1949 unsigned long runnable; 1950 unsigned long util; 1951 /* Total compute capacity of CPUs on a node */ 1952 unsigned long compute_capacity; 1953 unsigned int nr_running; 1954 unsigned int weight; 1955 enum numa_type node_type; 1956 int idle_cpu; 1957 }; 1958 1959 struct task_numa_env { 1960 struct task_struct *p; 1961 1962 int src_cpu, src_nid; 1963 int dst_cpu, dst_nid; 1964 int imb_numa_nr; 1965 1966 struct numa_stats src_stats, dst_stats; 1967 1968 int imbalance_pct; 1969 int dist; 1970 1971 struct task_struct *best_task; 1972 long best_imp; 1973 int best_cpu; 1974 }; 1975 1976 static unsigned long cpu_load(struct rq *rq); 1977 static unsigned long cpu_runnable(struct rq *rq); 1978 1979 static inline enum 1980 numa_type numa_classify(unsigned int imbalance_pct, 1981 struct numa_stats *ns) 1982 { 1983 if ((ns->nr_running > ns->weight) && 1984 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1985 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1986 return node_overloaded; 1987 1988 if ((ns->nr_running < ns->weight) || 1989 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1990 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1991 return node_has_spare; 1992 1993 return node_fully_busy; 1994 } 1995 1996 #ifdef CONFIG_SCHED_SMT 1997 /* Forward declarations of select_idle_sibling helpers */ 1998 static inline bool test_idle_cores(int cpu); 1999 static inline int numa_idle_core(int idle_core, int cpu) 2000 { 2001 if (!static_branch_likely(&sched_smt_present) || 2002 idle_core >= 0 || !test_idle_cores(cpu)) 2003 return idle_core; 2004 2005 /* 2006 * Prefer cores instead of packing HT siblings 2007 * and triggering future load balancing. 2008 */ 2009 if (is_core_idle(cpu)) 2010 idle_core = cpu; 2011 2012 return idle_core; 2013 } 2014 #else 2015 static inline int numa_idle_core(int idle_core, int cpu) 2016 { 2017 return idle_core; 2018 } 2019 #endif 2020 2021 /* 2022 * Gather all necessary information to make NUMA balancing placement 2023 * decisions that are compatible with standard load balancer. This 2024 * borrows code and logic from update_sg_lb_stats but sharing a 2025 * common implementation is impractical. 2026 */ 2027 static void update_numa_stats(struct task_numa_env *env, 2028 struct numa_stats *ns, int nid, 2029 bool find_idle) 2030 { 2031 int cpu, idle_core = -1; 2032 2033 memset(ns, 0, sizeof(*ns)); 2034 ns->idle_cpu = -1; 2035 2036 rcu_read_lock(); 2037 for_each_cpu(cpu, cpumask_of_node(nid)) { 2038 struct rq *rq = cpu_rq(cpu); 2039 2040 ns->load += cpu_load(rq); 2041 ns->runnable += cpu_runnable(rq); 2042 ns->util += cpu_util_cfs(cpu); 2043 ns->nr_running += rq->cfs.h_nr_running; 2044 ns->compute_capacity += capacity_of(cpu); 2045 2046 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2047 if (READ_ONCE(rq->numa_migrate_on) || 2048 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2049 continue; 2050 2051 if (ns->idle_cpu == -1) 2052 ns->idle_cpu = cpu; 2053 2054 idle_core = numa_idle_core(idle_core, cpu); 2055 } 2056 } 2057 rcu_read_unlock(); 2058 2059 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2060 2061 ns->node_type = numa_classify(env->imbalance_pct, ns); 2062 2063 if (idle_core >= 0) 2064 ns->idle_cpu = idle_core; 2065 } 2066 2067 static void task_numa_assign(struct task_numa_env *env, 2068 struct task_struct *p, long imp) 2069 { 2070 struct rq *rq = cpu_rq(env->dst_cpu); 2071 2072 /* Check if run-queue part of active NUMA balance. */ 2073 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2074 int cpu; 2075 int start = env->dst_cpu; 2076 2077 /* Find alternative idle CPU. */ 2078 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2079 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2080 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2081 continue; 2082 } 2083 2084 env->dst_cpu = cpu; 2085 rq = cpu_rq(env->dst_cpu); 2086 if (!xchg(&rq->numa_migrate_on, 1)) 2087 goto assign; 2088 } 2089 2090 /* Failed to find an alternative idle CPU */ 2091 return; 2092 } 2093 2094 assign: 2095 /* 2096 * Clear previous best_cpu/rq numa-migrate flag, since task now 2097 * found a better CPU to move/swap. 2098 */ 2099 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2100 rq = cpu_rq(env->best_cpu); 2101 WRITE_ONCE(rq->numa_migrate_on, 0); 2102 } 2103 2104 if (env->best_task) 2105 put_task_struct(env->best_task); 2106 if (p) 2107 get_task_struct(p); 2108 2109 env->best_task = p; 2110 env->best_imp = imp; 2111 env->best_cpu = env->dst_cpu; 2112 } 2113 2114 static bool load_too_imbalanced(long src_load, long dst_load, 2115 struct task_numa_env *env) 2116 { 2117 long imb, old_imb; 2118 long orig_src_load, orig_dst_load; 2119 long src_capacity, dst_capacity; 2120 2121 /* 2122 * The load is corrected for the CPU capacity available on each node. 2123 * 2124 * src_load dst_load 2125 * ------------ vs --------- 2126 * src_capacity dst_capacity 2127 */ 2128 src_capacity = env->src_stats.compute_capacity; 2129 dst_capacity = env->dst_stats.compute_capacity; 2130 2131 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2132 2133 orig_src_load = env->src_stats.load; 2134 orig_dst_load = env->dst_stats.load; 2135 2136 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2137 2138 /* Would this change make things worse? */ 2139 return (imb > old_imb); 2140 } 2141 2142 /* 2143 * Maximum NUMA importance can be 1998 (2*999); 2144 * SMALLIMP @ 30 would be close to 1998/64. 2145 * Used to deter task migration. 2146 */ 2147 #define SMALLIMP 30 2148 2149 /* 2150 * This checks if the overall compute and NUMA accesses of the system would 2151 * be improved if the source tasks was migrated to the target dst_cpu taking 2152 * into account that it might be best if task running on the dst_cpu should 2153 * be exchanged with the source task 2154 */ 2155 static bool task_numa_compare(struct task_numa_env *env, 2156 long taskimp, long groupimp, bool maymove) 2157 { 2158 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2159 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2160 long imp = p_ng ? groupimp : taskimp; 2161 struct task_struct *cur; 2162 long src_load, dst_load; 2163 int dist = env->dist; 2164 long moveimp = imp; 2165 long load; 2166 bool stopsearch = false; 2167 2168 if (READ_ONCE(dst_rq->numa_migrate_on)) 2169 return false; 2170 2171 rcu_read_lock(); 2172 cur = rcu_dereference(dst_rq->curr); 2173 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2174 cur = NULL; 2175 2176 /* 2177 * Because we have preemption enabled we can get migrated around and 2178 * end try selecting ourselves (current == env->p) as a swap candidate. 2179 */ 2180 if (cur == env->p) { 2181 stopsearch = true; 2182 goto unlock; 2183 } 2184 2185 if (!cur) { 2186 if (maymove && moveimp >= env->best_imp) 2187 goto assign; 2188 else 2189 goto unlock; 2190 } 2191 2192 /* Skip this swap candidate if cannot move to the source cpu. */ 2193 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2194 goto unlock; 2195 2196 /* 2197 * Skip this swap candidate if it is not moving to its preferred 2198 * node and the best task is. 2199 */ 2200 if (env->best_task && 2201 env->best_task->numa_preferred_nid == env->src_nid && 2202 cur->numa_preferred_nid != env->src_nid) { 2203 goto unlock; 2204 } 2205 2206 /* 2207 * "imp" is the fault differential for the source task between the 2208 * source and destination node. Calculate the total differential for 2209 * the source task and potential destination task. The more negative 2210 * the value is, the more remote accesses that would be expected to 2211 * be incurred if the tasks were swapped. 2212 * 2213 * If dst and source tasks are in the same NUMA group, or not 2214 * in any group then look only at task weights. 2215 */ 2216 cur_ng = rcu_dereference(cur->numa_group); 2217 if (cur_ng == p_ng) { 2218 /* 2219 * Do not swap within a group or between tasks that have 2220 * no group if there is spare capacity. Swapping does 2221 * not address the load imbalance and helps one task at 2222 * the cost of punishing another. 2223 */ 2224 if (env->dst_stats.node_type == node_has_spare) 2225 goto unlock; 2226 2227 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2228 task_weight(cur, env->dst_nid, dist); 2229 /* 2230 * Add some hysteresis to prevent swapping the 2231 * tasks within a group over tiny differences. 2232 */ 2233 if (cur_ng) 2234 imp -= imp / 16; 2235 } else { 2236 /* 2237 * Compare the group weights. If a task is all by itself 2238 * (not part of a group), use the task weight instead. 2239 */ 2240 if (cur_ng && p_ng) 2241 imp += group_weight(cur, env->src_nid, dist) - 2242 group_weight(cur, env->dst_nid, dist); 2243 else 2244 imp += task_weight(cur, env->src_nid, dist) - 2245 task_weight(cur, env->dst_nid, dist); 2246 } 2247 2248 /* Discourage picking a task already on its preferred node */ 2249 if (cur->numa_preferred_nid == env->dst_nid) 2250 imp -= imp / 16; 2251 2252 /* 2253 * Encourage picking a task that moves to its preferred node. 2254 * This potentially makes imp larger than it's maximum of 2255 * 1998 (see SMALLIMP and task_weight for why) but in this 2256 * case, it does not matter. 2257 */ 2258 if (cur->numa_preferred_nid == env->src_nid) 2259 imp += imp / 8; 2260 2261 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2262 imp = moveimp; 2263 cur = NULL; 2264 goto assign; 2265 } 2266 2267 /* 2268 * Prefer swapping with a task moving to its preferred node over a 2269 * task that is not. 2270 */ 2271 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2272 env->best_task->numa_preferred_nid != env->src_nid) { 2273 goto assign; 2274 } 2275 2276 /* 2277 * If the NUMA importance is less than SMALLIMP, 2278 * task migration might only result in ping pong 2279 * of tasks and also hurt performance due to cache 2280 * misses. 2281 */ 2282 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2283 goto unlock; 2284 2285 /* 2286 * In the overloaded case, try and keep the load balanced. 2287 */ 2288 load = task_h_load(env->p) - task_h_load(cur); 2289 if (!load) 2290 goto assign; 2291 2292 dst_load = env->dst_stats.load + load; 2293 src_load = env->src_stats.load - load; 2294 2295 if (load_too_imbalanced(src_load, dst_load, env)) 2296 goto unlock; 2297 2298 assign: 2299 /* Evaluate an idle CPU for a task numa move. */ 2300 if (!cur) { 2301 int cpu = env->dst_stats.idle_cpu; 2302 2303 /* Nothing cached so current CPU went idle since the search. */ 2304 if (cpu < 0) 2305 cpu = env->dst_cpu; 2306 2307 /* 2308 * If the CPU is no longer truly idle and the previous best CPU 2309 * is, keep using it. 2310 */ 2311 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2312 idle_cpu(env->best_cpu)) { 2313 cpu = env->best_cpu; 2314 } 2315 2316 env->dst_cpu = cpu; 2317 } 2318 2319 task_numa_assign(env, cur, imp); 2320 2321 /* 2322 * If a move to idle is allowed because there is capacity or load 2323 * balance improves then stop the search. While a better swap 2324 * candidate may exist, a search is not free. 2325 */ 2326 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2327 stopsearch = true; 2328 2329 /* 2330 * If a swap candidate must be identified and the current best task 2331 * moves its preferred node then stop the search. 2332 */ 2333 if (!maymove && env->best_task && 2334 env->best_task->numa_preferred_nid == env->src_nid) { 2335 stopsearch = true; 2336 } 2337 unlock: 2338 rcu_read_unlock(); 2339 2340 return stopsearch; 2341 } 2342 2343 static void task_numa_find_cpu(struct task_numa_env *env, 2344 long taskimp, long groupimp) 2345 { 2346 bool maymove = false; 2347 int cpu; 2348 2349 /* 2350 * If dst node has spare capacity, then check if there is an 2351 * imbalance that would be overruled by the load balancer. 2352 */ 2353 if (env->dst_stats.node_type == node_has_spare) { 2354 unsigned int imbalance; 2355 int src_running, dst_running; 2356 2357 /* 2358 * Would movement cause an imbalance? Note that if src has 2359 * more running tasks that the imbalance is ignored as the 2360 * move improves the imbalance from the perspective of the 2361 * CPU load balancer. 2362 * */ 2363 src_running = env->src_stats.nr_running - 1; 2364 dst_running = env->dst_stats.nr_running + 1; 2365 imbalance = max(0, dst_running - src_running); 2366 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2367 env->imb_numa_nr); 2368 2369 /* Use idle CPU if there is no imbalance */ 2370 if (!imbalance) { 2371 maymove = true; 2372 if (env->dst_stats.idle_cpu >= 0) { 2373 env->dst_cpu = env->dst_stats.idle_cpu; 2374 task_numa_assign(env, NULL, 0); 2375 return; 2376 } 2377 } 2378 } else { 2379 long src_load, dst_load, load; 2380 /* 2381 * If the improvement from just moving env->p direction is better 2382 * than swapping tasks around, check if a move is possible. 2383 */ 2384 load = task_h_load(env->p); 2385 dst_load = env->dst_stats.load + load; 2386 src_load = env->src_stats.load - load; 2387 maymove = !load_too_imbalanced(src_load, dst_load, env); 2388 } 2389 2390 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2391 /* Skip this CPU if the source task cannot migrate */ 2392 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2393 continue; 2394 2395 env->dst_cpu = cpu; 2396 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2397 break; 2398 } 2399 } 2400 2401 static int task_numa_migrate(struct task_struct *p) 2402 { 2403 struct task_numa_env env = { 2404 .p = p, 2405 2406 .src_cpu = task_cpu(p), 2407 .src_nid = task_node(p), 2408 2409 .imbalance_pct = 112, 2410 2411 .best_task = NULL, 2412 .best_imp = 0, 2413 .best_cpu = -1, 2414 }; 2415 unsigned long taskweight, groupweight; 2416 struct sched_domain *sd; 2417 long taskimp, groupimp; 2418 struct numa_group *ng; 2419 struct rq *best_rq; 2420 int nid, ret, dist; 2421 2422 /* 2423 * Pick the lowest SD_NUMA domain, as that would have the smallest 2424 * imbalance and would be the first to start moving tasks about. 2425 * 2426 * And we want to avoid any moving of tasks about, as that would create 2427 * random movement of tasks -- counter the numa conditions we're trying 2428 * to satisfy here. 2429 */ 2430 rcu_read_lock(); 2431 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2432 if (sd) { 2433 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2434 env.imb_numa_nr = sd->imb_numa_nr; 2435 } 2436 rcu_read_unlock(); 2437 2438 /* 2439 * Cpusets can break the scheduler domain tree into smaller 2440 * balance domains, some of which do not cross NUMA boundaries. 2441 * Tasks that are "trapped" in such domains cannot be migrated 2442 * elsewhere, so there is no point in (re)trying. 2443 */ 2444 if (unlikely(!sd)) { 2445 sched_setnuma(p, task_node(p)); 2446 return -EINVAL; 2447 } 2448 2449 env.dst_nid = p->numa_preferred_nid; 2450 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2451 taskweight = task_weight(p, env.src_nid, dist); 2452 groupweight = group_weight(p, env.src_nid, dist); 2453 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2454 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2455 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2456 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2457 2458 /* Try to find a spot on the preferred nid. */ 2459 task_numa_find_cpu(&env, taskimp, groupimp); 2460 2461 /* 2462 * Look at other nodes in these cases: 2463 * - there is no space available on the preferred_nid 2464 * - the task is part of a numa_group that is interleaved across 2465 * multiple NUMA nodes; in order to better consolidate the group, 2466 * we need to check other locations. 2467 */ 2468 ng = deref_curr_numa_group(p); 2469 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2470 for_each_node_state(nid, N_CPU) { 2471 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2472 continue; 2473 2474 dist = node_distance(env.src_nid, env.dst_nid); 2475 if (sched_numa_topology_type == NUMA_BACKPLANE && 2476 dist != env.dist) { 2477 taskweight = task_weight(p, env.src_nid, dist); 2478 groupweight = group_weight(p, env.src_nid, dist); 2479 } 2480 2481 /* Only consider nodes where both task and groups benefit */ 2482 taskimp = task_weight(p, nid, dist) - taskweight; 2483 groupimp = group_weight(p, nid, dist) - groupweight; 2484 if (taskimp < 0 && groupimp < 0) 2485 continue; 2486 2487 env.dist = dist; 2488 env.dst_nid = nid; 2489 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2490 task_numa_find_cpu(&env, taskimp, groupimp); 2491 } 2492 } 2493 2494 /* 2495 * If the task is part of a workload that spans multiple NUMA nodes, 2496 * and is migrating into one of the workload's active nodes, remember 2497 * this node as the task's preferred numa node, so the workload can 2498 * settle down. 2499 * A task that migrated to a second choice node will be better off 2500 * trying for a better one later. Do not set the preferred node here. 2501 */ 2502 if (ng) { 2503 if (env.best_cpu == -1) 2504 nid = env.src_nid; 2505 else 2506 nid = cpu_to_node(env.best_cpu); 2507 2508 if (nid != p->numa_preferred_nid) 2509 sched_setnuma(p, nid); 2510 } 2511 2512 /* No better CPU than the current one was found. */ 2513 if (env.best_cpu == -1) { 2514 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2515 return -EAGAIN; 2516 } 2517 2518 best_rq = cpu_rq(env.best_cpu); 2519 if (env.best_task == NULL) { 2520 ret = migrate_task_to(p, env.best_cpu); 2521 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2522 if (ret != 0) 2523 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2524 return ret; 2525 } 2526 2527 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2528 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2529 2530 if (ret != 0) 2531 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2532 put_task_struct(env.best_task); 2533 return ret; 2534 } 2535 2536 /* Attempt to migrate a task to a CPU on the preferred node. */ 2537 static void numa_migrate_preferred(struct task_struct *p) 2538 { 2539 unsigned long interval = HZ; 2540 2541 /* This task has no NUMA fault statistics yet */ 2542 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2543 return; 2544 2545 /* Periodically retry migrating the task to the preferred node */ 2546 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2547 p->numa_migrate_retry = jiffies + interval; 2548 2549 /* Success if task is already running on preferred CPU */ 2550 if (task_node(p) == p->numa_preferred_nid) 2551 return; 2552 2553 /* Otherwise, try migrate to a CPU on the preferred node */ 2554 task_numa_migrate(p); 2555 } 2556 2557 /* 2558 * Find out how many nodes the workload is actively running on. Do this by 2559 * tracking the nodes from which NUMA hinting faults are triggered. This can 2560 * be different from the set of nodes where the workload's memory is currently 2561 * located. 2562 */ 2563 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2564 { 2565 unsigned long faults, max_faults = 0; 2566 int nid, active_nodes = 0; 2567 2568 for_each_node_state(nid, N_CPU) { 2569 faults = group_faults_cpu(numa_group, nid); 2570 if (faults > max_faults) 2571 max_faults = faults; 2572 } 2573 2574 for_each_node_state(nid, N_CPU) { 2575 faults = group_faults_cpu(numa_group, nid); 2576 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2577 active_nodes++; 2578 } 2579 2580 numa_group->max_faults_cpu = max_faults; 2581 numa_group->active_nodes = active_nodes; 2582 } 2583 2584 /* 2585 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2586 * increments. The more local the fault statistics are, the higher the scan 2587 * period will be for the next scan window. If local/(local+remote) ratio is 2588 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2589 * the scan period will decrease. Aim for 70% local accesses. 2590 */ 2591 #define NUMA_PERIOD_SLOTS 10 2592 #define NUMA_PERIOD_THRESHOLD 7 2593 2594 /* 2595 * Increase the scan period (slow down scanning) if the majority of 2596 * our memory is already on our local node, or if the majority of 2597 * the page accesses are shared with other processes. 2598 * Otherwise, decrease the scan period. 2599 */ 2600 static void update_task_scan_period(struct task_struct *p, 2601 unsigned long shared, unsigned long private) 2602 { 2603 unsigned int period_slot; 2604 int lr_ratio, ps_ratio; 2605 int diff; 2606 2607 unsigned long remote = p->numa_faults_locality[0]; 2608 unsigned long local = p->numa_faults_locality[1]; 2609 2610 /* 2611 * If there were no record hinting faults then either the task is 2612 * completely idle or all activity is in areas that are not of interest 2613 * to automatic numa balancing. Related to that, if there were failed 2614 * migration then it implies we are migrating too quickly or the local 2615 * node is overloaded. In either case, scan slower 2616 */ 2617 if (local + shared == 0 || p->numa_faults_locality[2]) { 2618 p->numa_scan_period = min(p->numa_scan_period_max, 2619 p->numa_scan_period << 1); 2620 2621 p->mm->numa_next_scan = jiffies + 2622 msecs_to_jiffies(p->numa_scan_period); 2623 2624 return; 2625 } 2626 2627 /* 2628 * Prepare to scale scan period relative to the current period. 2629 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2630 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2631 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2632 */ 2633 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2634 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2635 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2636 2637 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2638 /* 2639 * Most memory accesses are local. There is no need to 2640 * do fast NUMA scanning, since memory is already local. 2641 */ 2642 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2643 if (!slot) 2644 slot = 1; 2645 diff = slot * period_slot; 2646 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2647 /* 2648 * Most memory accesses are shared with other tasks. 2649 * There is no point in continuing fast NUMA scanning, 2650 * since other tasks may just move the memory elsewhere. 2651 */ 2652 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2653 if (!slot) 2654 slot = 1; 2655 diff = slot * period_slot; 2656 } else { 2657 /* 2658 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2659 * yet they are not on the local NUMA node. Speed up 2660 * NUMA scanning to get the memory moved over. 2661 */ 2662 int ratio = max(lr_ratio, ps_ratio); 2663 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2664 } 2665 2666 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2667 task_scan_min(p), task_scan_max(p)); 2668 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2669 } 2670 2671 /* 2672 * Get the fraction of time the task has been running since the last 2673 * NUMA placement cycle. The scheduler keeps similar statistics, but 2674 * decays those on a 32ms period, which is orders of magnitude off 2675 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2676 * stats only if the task is so new there are no NUMA statistics yet. 2677 */ 2678 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2679 { 2680 u64 runtime, delta, now; 2681 /* Use the start of this time slice to avoid calculations. */ 2682 now = p->se.exec_start; 2683 runtime = p->se.sum_exec_runtime; 2684 2685 if (p->last_task_numa_placement) { 2686 delta = runtime - p->last_sum_exec_runtime; 2687 *period = now - p->last_task_numa_placement; 2688 2689 /* Avoid time going backwards, prevent potential divide error: */ 2690 if (unlikely((s64)*period < 0)) 2691 *period = 0; 2692 } else { 2693 delta = p->se.avg.load_sum; 2694 *period = LOAD_AVG_MAX; 2695 } 2696 2697 p->last_sum_exec_runtime = runtime; 2698 p->last_task_numa_placement = now; 2699 2700 return delta; 2701 } 2702 2703 /* 2704 * Determine the preferred nid for a task in a numa_group. This needs to 2705 * be done in a way that produces consistent results with group_weight, 2706 * otherwise workloads might not converge. 2707 */ 2708 static int preferred_group_nid(struct task_struct *p, int nid) 2709 { 2710 nodemask_t nodes; 2711 int dist; 2712 2713 /* Direct connections between all NUMA nodes. */ 2714 if (sched_numa_topology_type == NUMA_DIRECT) 2715 return nid; 2716 2717 /* 2718 * On a system with glueless mesh NUMA topology, group_weight 2719 * scores nodes according to the number of NUMA hinting faults on 2720 * both the node itself, and on nearby nodes. 2721 */ 2722 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2723 unsigned long score, max_score = 0; 2724 int node, max_node = nid; 2725 2726 dist = sched_max_numa_distance; 2727 2728 for_each_node_state(node, N_CPU) { 2729 score = group_weight(p, node, dist); 2730 if (score > max_score) { 2731 max_score = score; 2732 max_node = node; 2733 } 2734 } 2735 return max_node; 2736 } 2737 2738 /* 2739 * Finding the preferred nid in a system with NUMA backplane 2740 * interconnect topology is more involved. The goal is to locate 2741 * tasks from numa_groups near each other in the system, and 2742 * untangle workloads from different sides of the system. This requires 2743 * searching down the hierarchy of node groups, recursively searching 2744 * inside the highest scoring group of nodes. The nodemask tricks 2745 * keep the complexity of the search down. 2746 */ 2747 nodes = node_states[N_CPU]; 2748 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2749 unsigned long max_faults = 0; 2750 nodemask_t max_group = NODE_MASK_NONE; 2751 int a, b; 2752 2753 /* Are there nodes at this distance from each other? */ 2754 if (!find_numa_distance(dist)) 2755 continue; 2756 2757 for_each_node_mask(a, nodes) { 2758 unsigned long faults = 0; 2759 nodemask_t this_group; 2760 nodes_clear(this_group); 2761 2762 /* Sum group's NUMA faults; includes a==b case. */ 2763 for_each_node_mask(b, nodes) { 2764 if (node_distance(a, b) < dist) { 2765 faults += group_faults(p, b); 2766 node_set(b, this_group); 2767 node_clear(b, nodes); 2768 } 2769 } 2770 2771 /* Remember the top group. */ 2772 if (faults > max_faults) { 2773 max_faults = faults; 2774 max_group = this_group; 2775 /* 2776 * subtle: at the smallest distance there is 2777 * just one node left in each "group", the 2778 * winner is the preferred nid. 2779 */ 2780 nid = a; 2781 } 2782 } 2783 /* Next round, evaluate the nodes within max_group. */ 2784 if (!max_faults) 2785 break; 2786 nodes = max_group; 2787 } 2788 return nid; 2789 } 2790 2791 static void task_numa_placement(struct task_struct *p) 2792 { 2793 int seq, nid, max_nid = NUMA_NO_NODE; 2794 unsigned long max_faults = 0; 2795 unsigned long fault_types[2] = { 0, 0 }; 2796 unsigned long total_faults; 2797 u64 runtime, period; 2798 spinlock_t *group_lock = NULL; 2799 struct numa_group *ng; 2800 2801 /* 2802 * The p->mm->numa_scan_seq field gets updated without 2803 * exclusive access. Use READ_ONCE() here to ensure 2804 * that the field is read in a single access: 2805 */ 2806 seq = READ_ONCE(p->mm->numa_scan_seq); 2807 if (p->numa_scan_seq == seq) 2808 return; 2809 p->numa_scan_seq = seq; 2810 p->numa_scan_period_max = task_scan_max(p); 2811 2812 total_faults = p->numa_faults_locality[0] + 2813 p->numa_faults_locality[1]; 2814 runtime = numa_get_avg_runtime(p, &period); 2815 2816 /* If the task is part of a group prevent parallel updates to group stats */ 2817 ng = deref_curr_numa_group(p); 2818 if (ng) { 2819 group_lock = &ng->lock; 2820 spin_lock_irq(group_lock); 2821 } 2822 2823 /* Find the node with the highest number of faults */ 2824 for_each_online_node(nid) { 2825 /* Keep track of the offsets in numa_faults array */ 2826 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2827 unsigned long faults = 0, group_faults = 0; 2828 int priv; 2829 2830 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2831 long diff, f_diff, f_weight; 2832 2833 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2834 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2835 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2836 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2837 2838 /* Decay existing window, copy faults since last scan */ 2839 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2840 fault_types[priv] += p->numa_faults[membuf_idx]; 2841 p->numa_faults[membuf_idx] = 0; 2842 2843 /* 2844 * Normalize the faults_from, so all tasks in a group 2845 * count according to CPU use, instead of by the raw 2846 * number of faults. Tasks with little runtime have 2847 * little over-all impact on throughput, and thus their 2848 * faults are less important. 2849 */ 2850 f_weight = div64_u64(runtime << 16, period + 1); 2851 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2852 (total_faults + 1); 2853 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2854 p->numa_faults[cpubuf_idx] = 0; 2855 2856 p->numa_faults[mem_idx] += diff; 2857 p->numa_faults[cpu_idx] += f_diff; 2858 faults += p->numa_faults[mem_idx]; 2859 p->total_numa_faults += diff; 2860 if (ng) { 2861 /* 2862 * safe because we can only change our own group 2863 * 2864 * mem_idx represents the offset for a given 2865 * nid and priv in a specific region because it 2866 * is at the beginning of the numa_faults array. 2867 */ 2868 ng->faults[mem_idx] += diff; 2869 ng->faults[cpu_idx] += f_diff; 2870 ng->total_faults += diff; 2871 group_faults += ng->faults[mem_idx]; 2872 } 2873 } 2874 2875 if (!ng) { 2876 if (faults > max_faults) { 2877 max_faults = faults; 2878 max_nid = nid; 2879 } 2880 } else if (group_faults > max_faults) { 2881 max_faults = group_faults; 2882 max_nid = nid; 2883 } 2884 } 2885 2886 /* Cannot migrate task to CPU-less node */ 2887 max_nid = numa_nearest_node(max_nid, N_CPU); 2888 2889 if (ng) { 2890 numa_group_count_active_nodes(ng); 2891 spin_unlock_irq(group_lock); 2892 max_nid = preferred_group_nid(p, max_nid); 2893 } 2894 2895 if (max_faults) { 2896 /* Set the new preferred node */ 2897 if (max_nid != p->numa_preferred_nid) 2898 sched_setnuma(p, max_nid); 2899 } 2900 2901 update_task_scan_period(p, fault_types[0], fault_types[1]); 2902 } 2903 2904 static inline int get_numa_group(struct numa_group *grp) 2905 { 2906 return refcount_inc_not_zero(&grp->refcount); 2907 } 2908 2909 static inline void put_numa_group(struct numa_group *grp) 2910 { 2911 if (refcount_dec_and_test(&grp->refcount)) 2912 kfree_rcu(grp, rcu); 2913 } 2914 2915 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2916 int *priv) 2917 { 2918 struct numa_group *grp, *my_grp; 2919 struct task_struct *tsk; 2920 bool join = false; 2921 int cpu = cpupid_to_cpu(cpupid); 2922 int i; 2923 2924 if (unlikely(!deref_curr_numa_group(p))) { 2925 unsigned int size = sizeof(struct numa_group) + 2926 NR_NUMA_HINT_FAULT_STATS * 2927 nr_node_ids * sizeof(unsigned long); 2928 2929 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2930 if (!grp) 2931 return; 2932 2933 refcount_set(&grp->refcount, 1); 2934 grp->active_nodes = 1; 2935 grp->max_faults_cpu = 0; 2936 spin_lock_init(&grp->lock); 2937 grp->gid = p->pid; 2938 2939 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2940 grp->faults[i] = p->numa_faults[i]; 2941 2942 grp->total_faults = p->total_numa_faults; 2943 2944 grp->nr_tasks++; 2945 rcu_assign_pointer(p->numa_group, grp); 2946 } 2947 2948 rcu_read_lock(); 2949 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2950 2951 if (!cpupid_match_pid(tsk, cpupid)) 2952 goto no_join; 2953 2954 grp = rcu_dereference(tsk->numa_group); 2955 if (!grp) 2956 goto no_join; 2957 2958 my_grp = deref_curr_numa_group(p); 2959 if (grp == my_grp) 2960 goto no_join; 2961 2962 /* 2963 * Only join the other group if its bigger; if we're the bigger group, 2964 * the other task will join us. 2965 */ 2966 if (my_grp->nr_tasks > grp->nr_tasks) 2967 goto no_join; 2968 2969 /* 2970 * Tie-break on the grp address. 2971 */ 2972 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2973 goto no_join; 2974 2975 /* Always join threads in the same process. */ 2976 if (tsk->mm == current->mm) 2977 join = true; 2978 2979 /* Simple filter to avoid false positives due to PID collisions */ 2980 if (flags & TNF_SHARED) 2981 join = true; 2982 2983 /* Update priv based on whether false sharing was detected */ 2984 *priv = !join; 2985 2986 if (join && !get_numa_group(grp)) 2987 goto no_join; 2988 2989 rcu_read_unlock(); 2990 2991 if (!join) 2992 return; 2993 2994 WARN_ON_ONCE(irqs_disabled()); 2995 double_lock_irq(&my_grp->lock, &grp->lock); 2996 2997 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2998 my_grp->faults[i] -= p->numa_faults[i]; 2999 grp->faults[i] += p->numa_faults[i]; 3000 } 3001 my_grp->total_faults -= p->total_numa_faults; 3002 grp->total_faults += p->total_numa_faults; 3003 3004 my_grp->nr_tasks--; 3005 grp->nr_tasks++; 3006 3007 spin_unlock(&my_grp->lock); 3008 spin_unlock_irq(&grp->lock); 3009 3010 rcu_assign_pointer(p->numa_group, grp); 3011 3012 put_numa_group(my_grp); 3013 return; 3014 3015 no_join: 3016 rcu_read_unlock(); 3017 return; 3018 } 3019 3020 /* 3021 * Get rid of NUMA statistics associated with a task (either current or dead). 3022 * If @final is set, the task is dead and has reached refcount zero, so we can 3023 * safely free all relevant data structures. Otherwise, there might be 3024 * concurrent reads from places like load balancing and procfs, and we should 3025 * reset the data back to default state without freeing ->numa_faults. 3026 */ 3027 void task_numa_free(struct task_struct *p, bool final) 3028 { 3029 /* safe: p either is current or is being freed by current */ 3030 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3031 unsigned long *numa_faults = p->numa_faults; 3032 unsigned long flags; 3033 int i; 3034 3035 if (!numa_faults) 3036 return; 3037 3038 if (grp) { 3039 spin_lock_irqsave(&grp->lock, flags); 3040 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3041 grp->faults[i] -= p->numa_faults[i]; 3042 grp->total_faults -= p->total_numa_faults; 3043 3044 grp->nr_tasks--; 3045 spin_unlock_irqrestore(&grp->lock, flags); 3046 RCU_INIT_POINTER(p->numa_group, NULL); 3047 put_numa_group(grp); 3048 } 3049 3050 if (final) { 3051 p->numa_faults = NULL; 3052 kfree(numa_faults); 3053 } else { 3054 p->total_numa_faults = 0; 3055 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3056 numa_faults[i] = 0; 3057 } 3058 } 3059 3060 /* 3061 * Got a PROT_NONE fault for a page on @node. 3062 */ 3063 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3064 { 3065 struct task_struct *p = current; 3066 bool migrated = flags & TNF_MIGRATED; 3067 int cpu_node = task_node(current); 3068 int local = !!(flags & TNF_FAULT_LOCAL); 3069 struct numa_group *ng; 3070 int priv; 3071 3072 if (!static_branch_likely(&sched_numa_balancing)) 3073 return; 3074 3075 /* for example, ksmd faulting in a user's mm */ 3076 if (!p->mm) 3077 return; 3078 3079 /* 3080 * NUMA faults statistics are unnecessary for the slow memory 3081 * node for memory tiering mode. 3082 */ 3083 if (!node_is_toptier(mem_node) && 3084 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3085 !cpupid_valid(last_cpupid))) 3086 return; 3087 3088 /* Allocate buffer to track faults on a per-node basis */ 3089 if (unlikely(!p->numa_faults)) { 3090 int size = sizeof(*p->numa_faults) * 3091 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3092 3093 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3094 if (!p->numa_faults) 3095 return; 3096 3097 p->total_numa_faults = 0; 3098 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3099 } 3100 3101 /* 3102 * First accesses are treated as private, otherwise consider accesses 3103 * to be private if the accessing pid has not changed 3104 */ 3105 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3106 priv = 1; 3107 } else { 3108 priv = cpupid_match_pid(p, last_cpupid); 3109 if (!priv && !(flags & TNF_NO_GROUP)) 3110 task_numa_group(p, last_cpupid, flags, &priv); 3111 } 3112 3113 /* 3114 * If a workload spans multiple NUMA nodes, a shared fault that 3115 * occurs wholly within the set of nodes that the workload is 3116 * actively using should be counted as local. This allows the 3117 * scan rate to slow down when a workload has settled down. 3118 */ 3119 ng = deref_curr_numa_group(p); 3120 if (!priv && !local && ng && ng->active_nodes > 1 && 3121 numa_is_active_node(cpu_node, ng) && 3122 numa_is_active_node(mem_node, ng)) 3123 local = 1; 3124 3125 /* 3126 * Retry to migrate task to preferred node periodically, in case it 3127 * previously failed, or the scheduler moved us. 3128 */ 3129 if (time_after(jiffies, p->numa_migrate_retry)) { 3130 task_numa_placement(p); 3131 numa_migrate_preferred(p); 3132 } 3133 3134 if (migrated) 3135 p->numa_pages_migrated += pages; 3136 if (flags & TNF_MIGRATE_FAIL) 3137 p->numa_faults_locality[2] += pages; 3138 3139 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3140 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3141 p->numa_faults_locality[local] += pages; 3142 } 3143 3144 static void reset_ptenuma_scan(struct task_struct *p) 3145 { 3146 /* 3147 * We only did a read acquisition of the mmap sem, so 3148 * p->mm->numa_scan_seq is written to without exclusive access 3149 * and the update is not guaranteed to be atomic. That's not 3150 * much of an issue though, since this is just used for 3151 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3152 * expensive, to avoid any form of compiler optimizations: 3153 */ 3154 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3155 p->mm->numa_scan_offset = 0; 3156 } 3157 3158 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3159 { 3160 unsigned long pids; 3161 /* 3162 * Allow unconditional access first two times, so that all the (pages) 3163 * of VMAs get prot_none fault introduced irrespective of accesses. 3164 * This is also done to avoid any side effect of task scanning 3165 * amplifying the unfairness of disjoint set of VMAs' access. 3166 */ 3167 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 3168 return true; 3169 3170 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3171 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3172 return true; 3173 3174 /* 3175 * Complete a scan that has already started regardless of PID access, or 3176 * some VMAs may never be scanned in multi-threaded applications: 3177 */ 3178 if (mm->numa_scan_offset > vma->vm_start) { 3179 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3180 return true; 3181 } 3182 3183 return false; 3184 } 3185 3186 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3187 3188 /* 3189 * The expensive part of numa migration is done from task_work context. 3190 * Triggered from task_tick_numa(). 3191 */ 3192 static void task_numa_work(struct callback_head *work) 3193 { 3194 unsigned long migrate, next_scan, now = jiffies; 3195 struct task_struct *p = current; 3196 struct mm_struct *mm = p->mm; 3197 u64 runtime = p->se.sum_exec_runtime; 3198 struct vm_area_struct *vma; 3199 unsigned long start, end; 3200 unsigned long nr_pte_updates = 0; 3201 long pages, virtpages; 3202 struct vma_iterator vmi; 3203 bool vma_pids_skipped; 3204 bool vma_pids_forced = false; 3205 3206 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3207 3208 work->next = work; 3209 /* 3210 * Who cares about NUMA placement when they're dying. 3211 * 3212 * NOTE: make sure not to dereference p->mm before this check, 3213 * exit_task_work() happens _after_ exit_mm() so we could be called 3214 * without p->mm even though we still had it when we enqueued this 3215 * work. 3216 */ 3217 if (p->flags & PF_EXITING) 3218 return; 3219 3220 if (!mm->numa_next_scan) { 3221 mm->numa_next_scan = now + 3222 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3223 } 3224 3225 /* 3226 * Enforce maximal scan/migration frequency.. 3227 */ 3228 migrate = mm->numa_next_scan; 3229 if (time_before(now, migrate)) 3230 return; 3231 3232 if (p->numa_scan_period == 0) { 3233 p->numa_scan_period_max = task_scan_max(p); 3234 p->numa_scan_period = task_scan_start(p); 3235 } 3236 3237 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3238 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3239 return; 3240 3241 /* 3242 * Delay this task enough that another task of this mm will likely win 3243 * the next time around. 3244 */ 3245 p->node_stamp += 2 * TICK_NSEC; 3246 3247 pages = sysctl_numa_balancing_scan_size; 3248 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3249 virtpages = pages * 8; /* Scan up to this much virtual space */ 3250 if (!pages) 3251 return; 3252 3253 3254 if (!mmap_read_trylock(mm)) 3255 return; 3256 3257 /* 3258 * VMAs are skipped if the current PID has not trapped a fault within 3259 * the VMA recently. Allow scanning to be forced if there is no 3260 * suitable VMA remaining. 3261 */ 3262 vma_pids_skipped = false; 3263 3264 retry_pids: 3265 start = mm->numa_scan_offset; 3266 vma_iter_init(&vmi, mm, start); 3267 vma = vma_next(&vmi); 3268 if (!vma) { 3269 reset_ptenuma_scan(p); 3270 start = 0; 3271 vma_iter_set(&vmi, start); 3272 vma = vma_next(&vmi); 3273 } 3274 3275 do { 3276 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3277 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3278 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3279 continue; 3280 } 3281 3282 /* 3283 * Shared library pages mapped by multiple processes are not 3284 * migrated as it is expected they are cache replicated. Avoid 3285 * hinting faults in read-only file-backed mappings or the vdso 3286 * as migrating the pages will be of marginal benefit. 3287 */ 3288 if (!vma->vm_mm || 3289 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3290 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3291 continue; 3292 } 3293 3294 /* 3295 * Skip inaccessible VMAs to avoid any confusion between 3296 * PROT_NONE and NUMA hinting ptes 3297 */ 3298 if (!vma_is_accessible(vma)) { 3299 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3300 continue; 3301 } 3302 3303 /* Initialise new per-VMA NUMAB state. */ 3304 if (!vma->numab_state) { 3305 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3306 GFP_KERNEL); 3307 if (!vma->numab_state) 3308 continue; 3309 3310 vma->numab_state->next_scan = now + 3311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3312 3313 /* Reset happens after 4 times scan delay of scan start */ 3314 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3315 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3316 3317 /* 3318 * Ensure prev_scan_seq does not match numa_scan_seq, 3319 * to prevent VMAs being skipped prematurely on the 3320 * first scan: 3321 */ 3322 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3323 } 3324 3325 /* 3326 * Scanning the VMA's of short lived tasks add more overhead. So 3327 * delay the scan for new VMAs. 3328 */ 3329 if (mm->numa_scan_seq && time_before(jiffies, 3330 vma->numab_state->next_scan)) { 3331 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3332 continue; 3333 } 3334 3335 /* RESET access PIDs regularly for old VMAs. */ 3336 if (mm->numa_scan_seq && 3337 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3338 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3339 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3340 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3341 vma->numab_state->pids_active[1] = 0; 3342 } 3343 3344 /* Do not rescan VMAs twice within the same sequence. */ 3345 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3346 mm->numa_scan_offset = vma->vm_end; 3347 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3348 continue; 3349 } 3350 3351 /* 3352 * Do not scan the VMA if task has not accessed it, unless no other 3353 * VMA candidate exists. 3354 */ 3355 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3356 vma_pids_skipped = true; 3357 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3358 continue; 3359 } 3360 3361 do { 3362 start = max(start, vma->vm_start); 3363 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3364 end = min(end, vma->vm_end); 3365 nr_pte_updates = change_prot_numa(vma, start, end); 3366 3367 /* 3368 * Try to scan sysctl_numa_balancing_size worth of 3369 * hpages that have at least one present PTE that 3370 * is not already pte-numa. If the VMA contains 3371 * areas that are unused or already full of prot_numa 3372 * PTEs, scan up to virtpages, to skip through those 3373 * areas faster. 3374 */ 3375 if (nr_pte_updates) 3376 pages -= (end - start) >> PAGE_SHIFT; 3377 virtpages -= (end - start) >> PAGE_SHIFT; 3378 3379 start = end; 3380 if (pages <= 0 || virtpages <= 0) 3381 goto out; 3382 3383 cond_resched(); 3384 } while (end != vma->vm_end); 3385 3386 /* VMA scan is complete, do not scan until next sequence. */ 3387 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3388 3389 /* 3390 * Only force scan within one VMA at a time, to limit the 3391 * cost of scanning a potentially uninteresting VMA. 3392 */ 3393 if (vma_pids_forced) 3394 break; 3395 } for_each_vma(vmi, vma); 3396 3397 /* 3398 * If no VMAs are remaining and VMAs were skipped due to the PID 3399 * not accessing the VMA previously, then force a scan to ensure 3400 * forward progress: 3401 */ 3402 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3403 vma_pids_forced = true; 3404 goto retry_pids; 3405 } 3406 3407 out: 3408 /* 3409 * It is possible to reach the end of the VMA list but the last few 3410 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3411 * would find the !migratable VMA on the next scan but not reset the 3412 * scanner to the start so check it now. 3413 */ 3414 if (vma) 3415 mm->numa_scan_offset = start; 3416 else 3417 reset_ptenuma_scan(p); 3418 mmap_read_unlock(mm); 3419 3420 /* 3421 * Make sure tasks use at least 32x as much time to run other code 3422 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3423 * Usually update_task_scan_period slows down scanning enough; on an 3424 * overloaded system we need to limit overhead on a per task basis. 3425 */ 3426 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3427 u64 diff = p->se.sum_exec_runtime - runtime; 3428 p->node_stamp += 32 * diff; 3429 } 3430 } 3431 3432 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3433 { 3434 int mm_users = 0; 3435 struct mm_struct *mm = p->mm; 3436 3437 if (mm) { 3438 mm_users = atomic_read(&mm->mm_users); 3439 if (mm_users == 1) { 3440 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3441 mm->numa_scan_seq = 0; 3442 } 3443 } 3444 p->node_stamp = 0; 3445 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3446 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3447 p->numa_migrate_retry = 0; 3448 /* Protect against double add, see task_tick_numa and task_numa_work */ 3449 p->numa_work.next = &p->numa_work; 3450 p->numa_faults = NULL; 3451 p->numa_pages_migrated = 0; 3452 p->total_numa_faults = 0; 3453 RCU_INIT_POINTER(p->numa_group, NULL); 3454 p->last_task_numa_placement = 0; 3455 p->last_sum_exec_runtime = 0; 3456 3457 init_task_work(&p->numa_work, task_numa_work); 3458 3459 /* New address space, reset the preferred nid */ 3460 if (!(clone_flags & CLONE_VM)) { 3461 p->numa_preferred_nid = NUMA_NO_NODE; 3462 return; 3463 } 3464 3465 /* 3466 * New thread, keep existing numa_preferred_nid which should be copied 3467 * already by arch_dup_task_struct but stagger when scans start. 3468 */ 3469 if (mm) { 3470 unsigned int delay; 3471 3472 delay = min_t(unsigned int, task_scan_max(current), 3473 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3474 delay += 2 * TICK_NSEC; 3475 p->node_stamp = delay; 3476 } 3477 } 3478 3479 /* 3480 * Drive the periodic memory faults.. 3481 */ 3482 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3483 { 3484 struct callback_head *work = &curr->numa_work; 3485 u64 period, now; 3486 3487 /* 3488 * We don't care about NUMA placement if we don't have memory. 3489 */ 3490 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3491 return; 3492 3493 /* 3494 * Using runtime rather than walltime has the dual advantage that 3495 * we (mostly) drive the selection from busy threads and that the 3496 * task needs to have done some actual work before we bother with 3497 * NUMA placement. 3498 */ 3499 now = curr->se.sum_exec_runtime; 3500 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3501 3502 if (now > curr->node_stamp + period) { 3503 if (!curr->node_stamp) 3504 curr->numa_scan_period = task_scan_start(curr); 3505 curr->node_stamp += period; 3506 3507 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3508 task_work_add(curr, work, TWA_RESUME); 3509 } 3510 } 3511 3512 static void update_scan_period(struct task_struct *p, int new_cpu) 3513 { 3514 int src_nid = cpu_to_node(task_cpu(p)); 3515 int dst_nid = cpu_to_node(new_cpu); 3516 3517 if (!static_branch_likely(&sched_numa_balancing)) 3518 return; 3519 3520 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3521 return; 3522 3523 if (src_nid == dst_nid) 3524 return; 3525 3526 /* 3527 * Allow resets if faults have been trapped before one scan 3528 * has completed. This is most likely due to a new task that 3529 * is pulled cross-node due to wakeups or load balancing. 3530 */ 3531 if (p->numa_scan_seq) { 3532 /* 3533 * Avoid scan adjustments if moving to the preferred 3534 * node or if the task was not previously running on 3535 * the preferred node. 3536 */ 3537 if (dst_nid == p->numa_preferred_nid || 3538 (p->numa_preferred_nid != NUMA_NO_NODE && 3539 src_nid != p->numa_preferred_nid)) 3540 return; 3541 } 3542 3543 p->numa_scan_period = task_scan_start(p); 3544 } 3545 3546 #else 3547 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3548 { 3549 } 3550 3551 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3552 { 3553 } 3554 3555 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3556 { 3557 } 3558 3559 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3560 { 3561 } 3562 3563 #endif /* CONFIG_NUMA_BALANCING */ 3564 3565 static void 3566 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3567 { 3568 update_load_add(&cfs_rq->load, se->load.weight); 3569 #ifdef CONFIG_SMP 3570 if (entity_is_task(se)) { 3571 struct rq *rq = rq_of(cfs_rq); 3572 3573 account_numa_enqueue(rq, task_of(se)); 3574 list_add(&se->group_node, &rq->cfs_tasks); 3575 } 3576 #endif 3577 cfs_rq->nr_running++; 3578 if (se_is_idle(se)) 3579 cfs_rq->idle_nr_running++; 3580 } 3581 3582 static void 3583 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3584 { 3585 update_load_sub(&cfs_rq->load, se->load.weight); 3586 #ifdef CONFIG_SMP 3587 if (entity_is_task(se)) { 3588 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3589 list_del_init(&se->group_node); 3590 } 3591 #endif 3592 cfs_rq->nr_running--; 3593 if (se_is_idle(se)) 3594 cfs_rq->idle_nr_running--; 3595 } 3596 3597 /* 3598 * Signed add and clamp on underflow. 3599 * 3600 * Explicitly do a load-store to ensure the intermediate value never hits 3601 * memory. This allows lockless observations without ever seeing the negative 3602 * values. 3603 */ 3604 #define add_positive(_ptr, _val) do { \ 3605 typeof(_ptr) ptr = (_ptr); \ 3606 typeof(_val) val = (_val); \ 3607 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3608 \ 3609 res = var + val; \ 3610 \ 3611 if (val < 0 && res > var) \ 3612 res = 0; \ 3613 \ 3614 WRITE_ONCE(*ptr, res); \ 3615 } while (0) 3616 3617 /* 3618 * Unsigned subtract and clamp on underflow. 3619 * 3620 * Explicitly do a load-store to ensure the intermediate value never hits 3621 * memory. This allows lockless observations without ever seeing the negative 3622 * values. 3623 */ 3624 #define sub_positive(_ptr, _val) do { \ 3625 typeof(_ptr) ptr = (_ptr); \ 3626 typeof(*ptr) val = (_val); \ 3627 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3628 res = var - val; \ 3629 if (res > var) \ 3630 res = 0; \ 3631 WRITE_ONCE(*ptr, res); \ 3632 } while (0) 3633 3634 /* 3635 * Remove and clamp on negative, from a local variable. 3636 * 3637 * A variant of sub_positive(), which does not use explicit load-store 3638 * and is thus optimized for local variable updates. 3639 */ 3640 #define lsub_positive(_ptr, _val) do { \ 3641 typeof(_ptr) ptr = (_ptr); \ 3642 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3643 } while (0) 3644 3645 #ifdef CONFIG_SMP 3646 static inline void 3647 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3648 { 3649 cfs_rq->avg.load_avg += se->avg.load_avg; 3650 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3651 } 3652 3653 static inline void 3654 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3655 { 3656 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3657 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3658 /* See update_cfs_rq_load_avg() */ 3659 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3660 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3661 } 3662 #else 3663 static inline void 3664 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3665 static inline void 3666 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3667 #endif 3668 3669 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3670 unsigned long weight) 3671 { 3672 unsigned long old_weight = se->load.weight; 3673 3674 if (se->on_rq) { 3675 /* commit outstanding execution time */ 3676 if (cfs_rq->curr == se) 3677 update_curr(cfs_rq); 3678 else 3679 avg_vruntime_sub(cfs_rq, se); 3680 update_load_sub(&cfs_rq->load, se->load.weight); 3681 } 3682 dequeue_load_avg(cfs_rq, se); 3683 3684 update_load_set(&se->load, weight); 3685 3686 if (!se->on_rq) { 3687 /* 3688 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3689 * we need to scale se->vlag when w_i changes. 3690 */ 3691 se->vlag = div_s64(se->vlag * old_weight, weight); 3692 } else { 3693 s64 deadline = se->deadline - se->vruntime; 3694 /* 3695 * When the weight changes, the virtual time slope changes and 3696 * we should adjust the relative virtual deadline accordingly. 3697 */ 3698 deadline = div_s64(deadline * old_weight, weight); 3699 se->deadline = se->vruntime + deadline; 3700 if (se != cfs_rq->curr) 3701 min_deadline_cb_propagate(&se->run_node, NULL); 3702 } 3703 3704 #ifdef CONFIG_SMP 3705 do { 3706 u32 divider = get_pelt_divider(&se->avg); 3707 3708 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3709 } while (0); 3710 #endif 3711 3712 enqueue_load_avg(cfs_rq, se); 3713 if (se->on_rq) { 3714 update_load_add(&cfs_rq->load, se->load.weight); 3715 if (cfs_rq->curr != se) 3716 avg_vruntime_add(cfs_rq, se); 3717 } 3718 } 3719 3720 void reweight_task(struct task_struct *p, int prio) 3721 { 3722 struct sched_entity *se = &p->se; 3723 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3724 struct load_weight *load = &se->load; 3725 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3726 3727 reweight_entity(cfs_rq, se, weight); 3728 load->inv_weight = sched_prio_to_wmult[prio]; 3729 } 3730 3731 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3732 3733 #ifdef CONFIG_FAIR_GROUP_SCHED 3734 #ifdef CONFIG_SMP 3735 /* 3736 * All this does is approximate the hierarchical proportion which includes that 3737 * global sum we all love to hate. 3738 * 3739 * That is, the weight of a group entity, is the proportional share of the 3740 * group weight based on the group runqueue weights. That is: 3741 * 3742 * tg->weight * grq->load.weight 3743 * ge->load.weight = ----------------------------- (1) 3744 * \Sum grq->load.weight 3745 * 3746 * Now, because computing that sum is prohibitively expensive to compute (been 3747 * there, done that) we approximate it with this average stuff. The average 3748 * moves slower and therefore the approximation is cheaper and more stable. 3749 * 3750 * So instead of the above, we substitute: 3751 * 3752 * grq->load.weight -> grq->avg.load_avg (2) 3753 * 3754 * which yields the following: 3755 * 3756 * tg->weight * grq->avg.load_avg 3757 * ge->load.weight = ------------------------------ (3) 3758 * tg->load_avg 3759 * 3760 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3761 * 3762 * That is shares_avg, and it is right (given the approximation (2)). 3763 * 3764 * The problem with it is that because the average is slow -- it was designed 3765 * to be exactly that of course -- this leads to transients in boundary 3766 * conditions. In specific, the case where the group was idle and we start the 3767 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3768 * yielding bad latency etc.. 3769 * 3770 * Now, in that special case (1) reduces to: 3771 * 3772 * tg->weight * grq->load.weight 3773 * ge->load.weight = ----------------------------- = tg->weight (4) 3774 * grp->load.weight 3775 * 3776 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3777 * 3778 * So what we do is modify our approximation (3) to approach (4) in the (near) 3779 * UP case, like: 3780 * 3781 * ge->load.weight = 3782 * 3783 * tg->weight * grq->load.weight 3784 * --------------------------------------------------- (5) 3785 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3786 * 3787 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3788 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3789 * 3790 * 3791 * tg->weight * grq->load.weight 3792 * ge->load.weight = ----------------------------- (6) 3793 * tg_load_avg' 3794 * 3795 * Where: 3796 * 3797 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3798 * max(grq->load.weight, grq->avg.load_avg) 3799 * 3800 * And that is shares_weight and is icky. In the (near) UP case it approaches 3801 * (4) while in the normal case it approaches (3). It consistently 3802 * overestimates the ge->load.weight and therefore: 3803 * 3804 * \Sum ge->load.weight >= tg->weight 3805 * 3806 * hence icky! 3807 */ 3808 static long calc_group_shares(struct cfs_rq *cfs_rq) 3809 { 3810 long tg_weight, tg_shares, load, shares; 3811 struct task_group *tg = cfs_rq->tg; 3812 3813 tg_shares = READ_ONCE(tg->shares); 3814 3815 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3816 3817 tg_weight = atomic_long_read(&tg->load_avg); 3818 3819 /* Ensure tg_weight >= load */ 3820 tg_weight -= cfs_rq->tg_load_avg_contrib; 3821 tg_weight += load; 3822 3823 shares = (tg_shares * load); 3824 if (tg_weight) 3825 shares /= tg_weight; 3826 3827 /* 3828 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3829 * of a group with small tg->shares value. It is a floor value which is 3830 * assigned as a minimum load.weight to the sched_entity representing 3831 * the group on a CPU. 3832 * 3833 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3834 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3835 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3836 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3837 * instead of 0. 3838 */ 3839 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3840 } 3841 #endif /* CONFIG_SMP */ 3842 3843 /* 3844 * Recomputes the group entity based on the current state of its group 3845 * runqueue. 3846 */ 3847 static void update_cfs_group(struct sched_entity *se) 3848 { 3849 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3850 long shares; 3851 3852 if (!gcfs_rq) 3853 return; 3854 3855 if (throttled_hierarchy(gcfs_rq)) 3856 return; 3857 3858 #ifndef CONFIG_SMP 3859 shares = READ_ONCE(gcfs_rq->tg->shares); 3860 3861 if (likely(se->load.weight == shares)) 3862 return; 3863 #else 3864 shares = calc_group_shares(gcfs_rq); 3865 #endif 3866 3867 reweight_entity(cfs_rq_of(se), se, shares); 3868 } 3869 3870 #else /* CONFIG_FAIR_GROUP_SCHED */ 3871 static inline void update_cfs_group(struct sched_entity *se) 3872 { 3873 } 3874 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3875 3876 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3877 { 3878 struct rq *rq = rq_of(cfs_rq); 3879 3880 if (&rq->cfs == cfs_rq) { 3881 /* 3882 * There are a few boundary cases this might miss but it should 3883 * get called often enough that that should (hopefully) not be 3884 * a real problem. 3885 * 3886 * It will not get called when we go idle, because the idle 3887 * thread is a different class (!fair), nor will the utilization 3888 * number include things like RT tasks. 3889 * 3890 * As is, the util number is not freq-invariant (we'd have to 3891 * implement arch_scale_freq_capacity() for that). 3892 * 3893 * See cpu_util_cfs(). 3894 */ 3895 cpufreq_update_util(rq, flags); 3896 } 3897 } 3898 3899 #ifdef CONFIG_SMP 3900 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3901 { 3902 if (sa->load_sum) 3903 return false; 3904 3905 if (sa->util_sum) 3906 return false; 3907 3908 if (sa->runnable_sum) 3909 return false; 3910 3911 /* 3912 * _avg must be null when _sum are null because _avg = _sum / divider 3913 * Make sure that rounding and/or propagation of PELT values never 3914 * break this. 3915 */ 3916 SCHED_WARN_ON(sa->load_avg || 3917 sa->util_avg || 3918 sa->runnable_avg); 3919 3920 return true; 3921 } 3922 3923 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3924 { 3925 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3926 cfs_rq->last_update_time_copy); 3927 } 3928 #ifdef CONFIG_FAIR_GROUP_SCHED 3929 /* 3930 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3931 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3932 * bottom-up, we only have to test whether the cfs_rq before us on the list 3933 * is our child. 3934 * If cfs_rq is not on the list, test whether a child needs its to be added to 3935 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3936 */ 3937 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3938 { 3939 struct cfs_rq *prev_cfs_rq; 3940 struct list_head *prev; 3941 3942 if (cfs_rq->on_list) { 3943 prev = cfs_rq->leaf_cfs_rq_list.prev; 3944 } else { 3945 struct rq *rq = rq_of(cfs_rq); 3946 3947 prev = rq->tmp_alone_branch; 3948 } 3949 3950 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3951 3952 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3953 } 3954 3955 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3956 { 3957 if (cfs_rq->load.weight) 3958 return false; 3959 3960 if (!load_avg_is_decayed(&cfs_rq->avg)) 3961 return false; 3962 3963 if (child_cfs_rq_on_list(cfs_rq)) 3964 return false; 3965 3966 return true; 3967 } 3968 3969 /** 3970 * update_tg_load_avg - update the tg's load avg 3971 * @cfs_rq: the cfs_rq whose avg changed 3972 * 3973 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3974 * However, because tg->load_avg is a global value there are performance 3975 * considerations. 3976 * 3977 * In order to avoid having to look at the other cfs_rq's, we use a 3978 * differential update where we store the last value we propagated. This in 3979 * turn allows skipping updates if the differential is 'small'. 3980 * 3981 * Updating tg's load_avg is necessary before update_cfs_share(). 3982 */ 3983 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3984 { 3985 long delta; 3986 u64 now; 3987 3988 /* 3989 * No need to update load_avg for root_task_group as it is not used. 3990 */ 3991 if (cfs_rq->tg == &root_task_group) 3992 return; 3993 3994 /* 3995 * For migration heavy workloads, access to tg->load_avg can be 3996 * unbound. Limit the update rate to at most once per ms. 3997 */ 3998 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 3999 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4000 return; 4001 4002 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4003 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4004 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4005 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4006 cfs_rq->last_update_tg_load_avg = now; 4007 } 4008 } 4009 4010 /* 4011 * Called within set_task_rq() right before setting a task's CPU. The 4012 * caller only guarantees p->pi_lock is held; no other assumptions, 4013 * including the state of rq->lock, should be made. 4014 */ 4015 void set_task_rq_fair(struct sched_entity *se, 4016 struct cfs_rq *prev, struct cfs_rq *next) 4017 { 4018 u64 p_last_update_time; 4019 u64 n_last_update_time; 4020 4021 if (!sched_feat(ATTACH_AGE_LOAD)) 4022 return; 4023 4024 /* 4025 * We are supposed to update the task to "current" time, then its up to 4026 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4027 * getting what current time is, so simply throw away the out-of-date 4028 * time. This will result in the wakee task is less decayed, but giving 4029 * the wakee more load sounds not bad. 4030 */ 4031 if (!(se->avg.last_update_time && prev)) 4032 return; 4033 4034 p_last_update_time = cfs_rq_last_update_time(prev); 4035 n_last_update_time = cfs_rq_last_update_time(next); 4036 4037 __update_load_avg_blocked_se(p_last_update_time, se); 4038 se->avg.last_update_time = n_last_update_time; 4039 } 4040 4041 /* 4042 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4043 * propagate its contribution. The key to this propagation is the invariant 4044 * that for each group: 4045 * 4046 * ge->avg == grq->avg (1) 4047 * 4048 * _IFF_ we look at the pure running and runnable sums. Because they 4049 * represent the very same entity, just at different points in the hierarchy. 4050 * 4051 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4052 * and simply copies the running/runnable sum over (but still wrong, because 4053 * the group entity and group rq do not have their PELT windows aligned). 4054 * 4055 * However, update_tg_cfs_load() is more complex. So we have: 4056 * 4057 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4058 * 4059 * And since, like util, the runnable part should be directly transferable, 4060 * the following would _appear_ to be the straight forward approach: 4061 * 4062 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4063 * 4064 * And per (1) we have: 4065 * 4066 * ge->avg.runnable_avg == grq->avg.runnable_avg 4067 * 4068 * Which gives: 4069 * 4070 * ge->load.weight * grq->avg.load_avg 4071 * ge->avg.load_avg = ----------------------------------- (4) 4072 * grq->load.weight 4073 * 4074 * Except that is wrong! 4075 * 4076 * Because while for entities historical weight is not important and we 4077 * really only care about our future and therefore can consider a pure 4078 * runnable sum, runqueues can NOT do this. 4079 * 4080 * We specifically want runqueues to have a load_avg that includes 4081 * historical weights. Those represent the blocked load, the load we expect 4082 * to (shortly) return to us. This only works by keeping the weights as 4083 * integral part of the sum. We therefore cannot decompose as per (3). 4084 * 4085 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4086 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4087 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4088 * runnable section of these tasks overlap (or not). If they were to perfectly 4089 * align the rq as a whole would be runnable 2/3 of the time. If however we 4090 * always have at least 1 runnable task, the rq as a whole is always runnable. 4091 * 4092 * So we'll have to approximate.. :/ 4093 * 4094 * Given the constraint: 4095 * 4096 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4097 * 4098 * We can construct a rule that adds runnable to a rq by assuming minimal 4099 * overlap. 4100 * 4101 * On removal, we'll assume each task is equally runnable; which yields: 4102 * 4103 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4104 * 4105 * XXX: only do this for the part of runnable > running ? 4106 * 4107 */ 4108 static inline void 4109 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4110 { 4111 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4112 u32 new_sum, divider; 4113 4114 /* Nothing to update */ 4115 if (!delta_avg) 4116 return; 4117 4118 /* 4119 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4120 * See ___update_load_avg() for details. 4121 */ 4122 divider = get_pelt_divider(&cfs_rq->avg); 4123 4124 4125 /* Set new sched_entity's utilization */ 4126 se->avg.util_avg = gcfs_rq->avg.util_avg; 4127 new_sum = se->avg.util_avg * divider; 4128 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4129 se->avg.util_sum = new_sum; 4130 4131 /* Update parent cfs_rq utilization */ 4132 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4133 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4134 4135 /* See update_cfs_rq_load_avg() */ 4136 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4137 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4138 } 4139 4140 static inline void 4141 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4142 { 4143 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4144 u32 new_sum, divider; 4145 4146 /* Nothing to update */ 4147 if (!delta_avg) 4148 return; 4149 4150 /* 4151 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4152 * See ___update_load_avg() for details. 4153 */ 4154 divider = get_pelt_divider(&cfs_rq->avg); 4155 4156 /* Set new sched_entity's runnable */ 4157 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4158 new_sum = se->avg.runnable_avg * divider; 4159 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4160 se->avg.runnable_sum = new_sum; 4161 4162 /* Update parent cfs_rq runnable */ 4163 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4164 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4165 /* See update_cfs_rq_load_avg() */ 4166 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4167 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4168 } 4169 4170 static inline void 4171 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4172 { 4173 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4174 unsigned long load_avg; 4175 u64 load_sum = 0; 4176 s64 delta_sum; 4177 u32 divider; 4178 4179 if (!runnable_sum) 4180 return; 4181 4182 gcfs_rq->prop_runnable_sum = 0; 4183 4184 /* 4185 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4186 * See ___update_load_avg() for details. 4187 */ 4188 divider = get_pelt_divider(&cfs_rq->avg); 4189 4190 if (runnable_sum >= 0) { 4191 /* 4192 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4193 * the CPU is saturated running == runnable. 4194 */ 4195 runnable_sum += se->avg.load_sum; 4196 runnable_sum = min_t(long, runnable_sum, divider); 4197 } else { 4198 /* 4199 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4200 * assuming all tasks are equally runnable. 4201 */ 4202 if (scale_load_down(gcfs_rq->load.weight)) { 4203 load_sum = div_u64(gcfs_rq->avg.load_sum, 4204 scale_load_down(gcfs_rq->load.weight)); 4205 } 4206 4207 /* But make sure to not inflate se's runnable */ 4208 runnable_sum = min(se->avg.load_sum, load_sum); 4209 } 4210 4211 /* 4212 * runnable_sum can't be lower than running_sum 4213 * Rescale running sum to be in the same range as runnable sum 4214 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4215 * runnable_sum is in [0 : LOAD_AVG_MAX] 4216 */ 4217 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4218 runnable_sum = max(runnable_sum, running_sum); 4219 4220 load_sum = se_weight(se) * runnable_sum; 4221 load_avg = div_u64(load_sum, divider); 4222 4223 delta_avg = load_avg - se->avg.load_avg; 4224 if (!delta_avg) 4225 return; 4226 4227 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4228 4229 se->avg.load_sum = runnable_sum; 4230 se->avg.load_avg = load_avg; 4231 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4232 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4233 /* See update_cfs_rq_load_avg() */ 4234 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4235 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4236 } 4237 4238 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4239 { 4240 cfs_rq->propagate = 1; 4241 cfs_rq->prop_runnable_sum += runnable_sum; 4242 } 4243 4244 /* Update task and its cfs_rq load average */ 4245 static inline int propagate_entity_load_avg(struct sched_entity *se) 4246 { 4247 struct cfs_rq *cfs_rq, *gcfs_rq; 4248 4249 if (entity_is_task(se)) 4250 return 0; 4251 4252 gcfs_rq = group_cfs_rq(se); 4253 if (!gcfs_rq->propagate) 4254 return 0; 4255 4256 gcfs_rq->propagate = 0; 4257 4258 cfs_rq = cfs_rq_of(se); 4259 4260 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4261 4262 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4263 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4264 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4265 4266 trace_pelt_cfs_tp(cfs_rq); 4267 trace_pelt_se_tp(se); 4268 4269 return 1; 4270 } 4271 4272 /* 4273 * Check if we need to update the load and the utilization of a blocked 4274 * group_entity: 4275 */ 4276 static inline bool skip_blocked_update(struct sched_entity *se) 4277 { 4278 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4279 4280 /* 4281 * If sched_entity still have not zero load or utilization, we have to 4282 * decay it: 4283 */ 4284 if (se->avg.load_avg || se->avg.util_avg) 4285 return false; 4286 4287 /* 4288 * If there is a pending propagation, we have to update the load and 4289 * the utilization of the sched_entity: 4290 */ 4291 if (gcfs_rq->propagate) 4292 return false; 4293 4294 /* 4295 * Otherwise, the load and the utilization of the sched_entity is 4296 * already zero and there is no pending propagation, so it will be a 4297 * waste of time to try to decay it: 4298 */ 4299 return true; 4300 } 4301 4302 #else /* CONFIG_FAIR_GROUP_SCHED */ 4303 4304 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4305 4306 static inline int propagate_entity_load_avg(struct sched_entity *se) 4307 { 4308 return 0; 4309 } 4310 4311 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4312 4313 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4314 4315 #ifdef CONFIG_NO_HZ_COMMON 4316 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4317 { 4318 u64 throttled = 0, now, lut; 4319 struct cfs_rq *cfs_rq; 4320 struct rq *rq; 4321 bool is_idle; 4322 4323 if (load_avg_is_decayed(&se->avg)) 4324 return; 4325 4326 cfs_rq = cfs_rq_of(se); 4327 rq = rq_of(cfs_rq); 4328 4329 rcu_read_lock(); 4330 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4331 rcu_read_unlock(); 4332 4333 /* 4334 * The lag estimation comes with a cost we don't want to pay all the 4335 * time. Hence, limiting to the case where the source CPU is idle and 4336 * we know we are at the greatest risk to have an outdated clock. 4337 */ 4338 if (!is_idle) 4339 return; 4340 4341 /* 4342 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4343 * 4344 * last_update_time (the cfs_rq's last_update_time) 4345 * = cfs_rq_clock_pelt()@cfs_rq_idle 4346 * = rq_clock_pelt()@cfs_rq_idle 4347 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4348 * 4349 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4350 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4351 * 4352 * rq_idle_lag (delta between now and rq's update) 4353 * = sched_clock_cpu() - rq_clock()@rq_idle 4354 * 4355 * We can then write: 4356 * 4357 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4358 * sched_clock_cpu() - rq_clock()@rq_idle 4359 * Where: 4360 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4361 * rq_clock()@rq_idle is rq->clock_idle 4362 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4363 * is cfs_rq->throttled_pelt_idle 4364 */ 4365 4366 #ifdef CONFIG_CFS_BANDWIDTH 4367 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4368 /* The clock has been stopped for throttling */ 4369 if (throttled == U64_MAX) 4370 return; 4371 #endif 4372 now = u64_u32_load(rq->clock_pelt_idle); 4373 /* 4374 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4375 * is observed the old clock_pelt_idle value and the new clock_idle, 4376 * which lead to an underestimation. The opposite would lead to an 4377 * overestimation. 4378 */ 4379 smp_rmb(); 4380 lut = cfs_rq_last_update_time(cfs_rq); 4381 4382 now -= throttled; 4383 if (now < lut) 4384 /* 4385 * cfs_rq->avg.last_update_time is more recent than our 4386 * estimation, let's use it. 4387 */ 4388 now = lut; 4389 else 4390 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4391 4392 __update_load_avg_blocked_se(now, se); 4393 } 4394 #else 4395 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4396 #endif 4397 4398 /** 4399 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4400 * @now: current time, as per cfs_rq_clock_pelt() 4401 * @cfs_rq: cfs_rq to update 4402 * 4403 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4404 * avg. The immediate corollary is that all (fair) tasks must be attached. 4405 * 4406 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4407 * 4408 * Return: true if the load decayed or we removed load. 4409 * 4410 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4411 * call update_tg_load_avg() when this function returns true. 4412 */ 4413 static inline int 4414 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4415 { 4416 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4417 struct sched_avg *sa = &cfs_rq->avg; 4418 int decayed = 0; 4419 4420 if (cfs_rq->removed.nr) { 4421 unsigned long r; 4422 u32 divider = get_pelt_divider(&cfs_rq->avg); 4423 4424 raw_spin_lock(&cfs_rq->removed.lock); 4425 swap(cfs_rq->removed.util_avg, removed_util); 4426 swap(cfs_rq->removed.load_avg, removed_load); 4427 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4428 cfs_rq->removed.nr = 0; 4429 raw_spin_unlock(&cfs_rq->removed.lock); 4430 4431 r = removed_load; 4432 sub_positive(&sa->load_avg, r); 4433 sub_positive(&sa->load_sum, r * divider); 4434 /* See sa->util_sum below */ 4435 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4436 4437 r = removed_util; 4438 sub_positive(&sa->util_avg, r); 4439 sub_positive(&sa->util_sum, r * divider); 4440 /* 4441 * Because of rounding, se->util_sum might ends up being +1 more than 4442 * cfs->util_sum. Although this is not a problem by itself, detaching 4443 * a lot of tasks with the rounding problem between 2 updates of 4444 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4445 * cfs_util_avg is not. 4446 * Check that util_sum is still above its lower bound for the new 4447 * util_avg. Given that period_contrib might have moved since the last 4448 * sync, we are only sure that util_sum must be above or equal to 4449 * util_avg * minimum possible divider 4450 */ 4451 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4452 4453 r = removed_runnable; 4454 sub_positive(&sa->runnable_avg, r); 4455 sub_positive(&sa->runnable_sum, r * divider); 4456 /* See sa->util_sum above */ 4457 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4458 sa->runnable_avg * PELT_MIN_DIVIDER); 4459 4460 /* 4461 * removed_runnable is the unweighted version of removed_load so we 4462 * can use it to estimate removed_load_sum. 4463 */ 4464 add_tg_cfs_propagate(cfs_rq, 4465 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4466 4467 decayed = 1; 4468 } 4469 4470 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4471 u64_u32_store_copy(sa->last_update_time, 4472 cfs_rq->last_update_time_copy, 4473 sa->last_update_time); 4474 return decayed; 4475 } 4476 4477 /** 4478 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4479 * @cfs_rq: cfs_rq to attach to 4480 * @se: sched_entity to attach 4481 * 4482 * Must call update_cfs_rq_load_avg() before this, since we rely on 4483 * cfs_rq->avg.last_update_time being current. 4484 */ 4485 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4486 { 4487 /* 4488 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4489 * See ___update_load_avg() for details. 4490 */ 4491 u32 divider = get_pelt_divider(&cfs_rq->avg); 4492 4493 /* 4494 * When we attach the @se to the @cfs_rq, we must align the decay 4495 * window because without that, really weird and wonderful things can 4496 * happen. 4497 * 4498 * XXX illustrate 4499 */ 4500 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4501 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4502 4503 /* 4504 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4505 * period_contrib. This isn't strictly correct, but since we're 4506 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4507 * _sum a little. 4508 */ 4509 se->avg.util_sum = se->avg.util_avg * divider; 4510 4511 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4512 4513 se->avg.load_sum = se->avg.load_avg * divider; 4514 if (se_weight(se) < se->avg.load_sum) 4515 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4516 else 4517 se->avg.load_sum = 1; 4518 4519 enqueue_load_avg(cfs_rq, se); 4520 cfs_rq->avg.util_avg += se->avg.util_avg; 4521 cfs_rq->avg.util_sum += se->avg.util_sum; 4522 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4523 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4524 4525 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4526 4527 cfs_rq_util_change(cfs_rq, 0); 4528 4529 trace_pelt_cfs_tp(cfs_rq); 4530 } 4531 4532 /** 4533 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4534 * @cfs_rq: cfs_rq to detach from 4535 * @se: sched_entity to detach 4536 * 4537 * Must call update_cfs_rq_load_avg() before this, since we rely on 4538 * cfs_rq->avg.last_update_time being current. 4539 */ 4540 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4541 { 4542 dequeue_load_avg(cfs_rq, se); 4543 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4544 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4545 /* See update_cfs_rq_load_avg() */ 4546 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4547 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4548 4549 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4550 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4551 /* See update_cfs_rq_load_avg() */ 4552 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4553 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4554 4555 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4556 4557 cfs_rq_util_change(cfs_rq, 0); 4558 4559 trace_pelt_cfs_tp(cfs_rq); 4560 } 4561 4562 /* 4563 * Optional action to be done while updating the load average 4564 */ 4565 #define UPDATE_TG 0x1 4566 #define SKIP_AGE_LOAD 0x2 4567 #define DO_ATTACH 0x4 4568 #define DO_DETACH 0x8 4569 4570 /* Update task and its cfs_rq load average */ 4571 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4572 { 4573 u64 now = cfs_rq_clock_pelt(cfs_rq); 4574 int decayed; 4575 4576 /* 4577 * Track task load average for carrying it to new CPU after migrated, and 4578 * track group sched_entity load average for task_h_load calc in migration 4579 */ 4580 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4581 __update_load_avg_se(now, cfs_rq, se); 4582 4583 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4584 decayed |= propagate_entity_load_avg(se); 4585 4586 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4587 4588 /* 4589 * DO_ATTACH means we're here from enqueue_entity(). 4590 * !last_update_time means we've passed through 4591 * migrate_task_rq_fair() indicating we migrated. 4592 * 4593 * IOW we're enqueueing a task on a new CPU. 4594 */ 4595 attach_entity_load_avg(cfs_rq, se); 4596 update_tg_load_avg(cfs_rq); 4597 4598 } else if (flags & DO_DETACH) { 4599 /* 4600 * DO_DETACH means we're here from dequeue_entity() 4601 * and we are migrating task out of the CPU. 4602 */ 4603 detach_entity_load_avg(cfs_rq, se); 4604 update_tg_load_avg(cfs_rq); 4605 } else if (decayed) { 4606 cfs_rq_util_change(cfs_rq, 0); 4607 4608 if (flags & UPDATE_TG) 4609 update_tg_load_avg(cfs_rq); 4610 } 4611 } 4612 4613 /* 4614 * Synchronize entity load avg of dequeued entity without locking 4615 * the previous rq. 4616 */ 4617 static void sync_entity_load_avg(struct sched_entity *se) 4618 { 4619 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4620 u64 last_update_time; 4621 4622 last_update_time = cfs_rq_last_update_time(cfs_rq); 4623 __update_load_avg_blocked_se(last_update_time, se); 4624 } 4625 4626 /* 4627 * Task first catches up with cfs_rq, and then subtract 4628 * itself from the cfs_rq (task must be off the queue now). 4629 */ 4630 static void remove_entity_load_avg(struct sched_entity *se) 4631 { 4632 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4633 unsigned long flags; 4634 4635 /* 4636 * tasks cannot exit without having gone through wake_up_new_task() -> 4637 * enqueue_task_fair() which will have added things to the cfs_rq, 4638 * so we can remove unconditionally. 4639 */ 4640 4641 sync_entity_load_avg(se); 4642 4643 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4644 ++cfs_rq->removed.nr; 4645 cfs_rq->removed.util_avg += se->avg.util_avg; 4646 cfs_rq->removed.load_avg += se->avg.load_avg; 4647 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4648 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4649 } 4650 4651 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4652 { 4653 return cfs_rq->avg.runnable_avg; 4654 } 4655 4656 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4657 { 4658 return cfs_rq->avg.load_avg; 4659 } 4660 4661 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4662 4663 static inline unsigned long task_util(struct task_struct *p) 4664 { 4665 return READ_ONCE(p->se.avg.util_avg); 4666 } 4667 4668 static inline unsigned long _task_util_est(struct task_struct *p) 4669 { 4670 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4671 4672 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4673 } 4674 4675 static inline unsigned long task_util_est(struct task_struct *p) 4676 { 4677 return max(task_util(p), _task_util_est(p)); 4678 } 4679 4680 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4681 struct task_struct *p) 4682 { 4683 unsigned int enqueued; 4684 4685 if (!sched_feat(UTIL_EST)) 4686 return; 4687 4688 /* Update root cfs_rq's estimated utilization */ 4689 enqueued = cfs_rq->avg.util_est.enqueued; 4690 enqueued += _task_util_est(p); 4691 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4692 4693 trace_sched_util_est_cfs_tp(cfs_rq); 4694 } 4695 4696 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4697 struct task_struct *p) 4698 { 4699 unsigned int enqueued; 4700 4701 if (!sched_feat(UTIL_EST)) 4702 return; 4703 4704 /* Update root cfs_rq's estimated utilization */ 4705 enqueued = cfs_rq->avg.util_est.enqueued; 4706 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4707 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4708 4709 trace_sched_util_est_cfs_tp(cfs_rq); 4710 } 4711 4712 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4713 4714 /* 4715 * Check if a (signed) value is within a specified (unsigned) margin, 4716 * based on the observation that: 4717 * 4718 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4719 * 4720 * NOTE: this only works when value + margin < INT_MAX. 4721 */ 4722 static inline bool within_margin(int value, int margin) 4723 { 4724 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4725 } 4726 4727 static inline void util_est_update(struct cfs_rq *cfs_rq, 4728 struct task_struct *p, 4729 bool task_sleep) 4730 { 4731 long last_ewma_diff, last_enqueued_diff; 4732 struct util_est ue; 4733 4734 if (!sched_feat(UTIL_EST)) 4735 return; 4736 4737 /* 4738 * Skip update of task's estimated utilization when the task has not 4739 * yet completed an activation, e.g. being migrated. 4740 */ 4741 if (!task_sleep) 4742 return; 4743 4744 /* 4745 * If the PELT values haven't changed since enqueue time, 4746 * skip the util_est update. 4747 */ 4748 ue = p->se.avg.util_est; 4749 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4750 return; 4751 4752 last_enqueued_diff = ue.enqueued; 4753 4754 /* 4755 * Reset EWMA on utilization increases, the moving average is used only 4756 * to smooth utilization decreases. 4757 */ 4758 ue.enqueued = task_util(p); 4759 if (sched_feat(UTIL_EST_FASTUP)) { 4760 if (ue.ewma < ue.enqueued) { 4761 ue.ewma = ue.enqueued; 4762 goto done; 4763 } 4764 } 4765 4766 /* 4767 * Skip update of task's estimated utilization when its members are 4768 * already ~1% close to its last activation value. 4769 */ 4770 last_ewma_diff = ue.enqueued - ue.ewma; 4771 last_enqueued_diff -= ue.enqueued; 4772 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4773 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4774 goto done; 4775 4776 return; 4777 } 4778 4779 /* 4780 * To avoid overestimation of actual task utilization, skip updates if 4781 * we cannot grant there is idle time in this CPU. 4782 */ 4783 if (task_util(p) > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4784 return; 4785 4786 /* 4787 * Update Task's estimated utilization 4788 * 4789 * When *p completes an activation we can consolidate another sample 4790 * of the task size. This is done by storing the current PELT value 4791 * as ue.enqueued and by using this value to update the Exponential 4792 * Weighted Moving Average (EWMA): 4793 * 4794 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4795 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4796 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4797 * = w * ( last_ewma_diff ) + ewma(t-1) 4798 * = w * (last_ewma_diff + ewma(t-1) / w) 4799 * 4800 * Where 'w' is the weight of new samples, which is configured to be 4801 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4802 */ 4803 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4804 ue.ewma += last_ewma_diff; 4805 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4806 done: 4807 ue.enqueued |= UTIL_AVG_UNCHANGED; 4808 WRITE_ONCE(p->se.avg.util_est, ue); 4809 4810 trace_sched_util_est_se_tp(&p->se); 4811 } 4812 4813 static inline int util_fits_cpu(unsigned long util, 4814 unsigned long uclamp_min, 4815 unsigned long uclamp_max, 4816 int cpu) 4817 { 4818 unsigned long capacity_orig, capacity_orig_thermal; 4819 unsigned long capacity = capacity_of(cpu); 4820 bool fits, uclamp_max_fits; 4821 4822 /* 4823 * Check if the real util fits without any uclamp boost/cap applied. 4824 */ 4825 fits = fits_capacity(util, capacity); 4826 4827 if (!uclamp_is_used()) 4828 return fits; 4829 4830 /* 4831 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4832 * uclamp_max. We only care about capacity pressure (by using 4833 * capacity_of()) for comparing against the real util. 4834 * 4835 * If a task is boosted to 1024 for example, we don't want a tiny 4836 * pressure to skew the check whether it fits a CPU or not. 4837 * 4838 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4839 * should fit a little cpu even if there's some pressure. 4840 * 4841 * Only exception is for thermal pressure since it has a direct impact 4842 * on available OPP of the system. 4843 * 4844 * We honour it for uclamp_min only as a drop in performance level 4845 * could result in not getting the requested minimum performance level. 4846 * 4847 * For uclamp_max, we can tolerate a drop in performance level as the 4848 * goal is to cap the task. So it's okay if it's getting less. 4849 */ 4850 capacity_orig = arch_scale_cpu_capacity(cpu); 4851 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4852 4853 /* 4854 * We want to force a task to fit a cpu as implied by uclamp_max. 4855 * But we do have some corner cases to cater for.. 4856 * 4857 * 4858 * C=z 4859 * | ___ 4860 * | C=y | | 4861 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4862 * | C=x | | | | 4863 * | ___ | | | | 4864 * | | | | | | | (util somewhere in this region) 4865 * | | | | | | | 4866 * | | | | | | | 4867 * +---------------------------------------- 4868 * cpu0 cpu1 cpu2 4869 * 4870 * In the above example if a task is capped to a specific performance 4871 * point, y, then when: 4872 * 4873 * * util = 80% of x then it does not fit on cpu0 and should migrate 4874 * to cpu1 4875 * * util = 80% of y then it is forced to fit on cpu1 to honour 4876 * uclamp_max request. 4877 * 4878 * which is what we're enforcing here. A task always fits if 4879 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4880 * the normal upmigration rules should withhold still. 4881 * 4882 * Only exception is when we are on max capacity, then we need to be 4883 * careful not to block overutilized state. This is so because: 4884 * 4885 * 1. There's no concept of capping at max_capacity! We can't go 4886 * beyond this performance level anyway. 4887 * 2. The system is being saturated when we're operating near 4888 * max capacity, it doesn't make sense to block overutilized. 4889 */ 4890 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4891 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4892 fits = fits || uclamp_max_fits; 4893 4894 /* 4895 * 4896 * C=z 4897 * | ___ (region a, capped, util >= uclamp_max) 4898 * | C=y | | 4899 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4900 * | C=x | | | | 4901 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4902 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4903 * | | | | | | | 4904 * | | | | | | | (region c, boosted, util < uclamp_min) 4905 * +---------------------------------------- 4906 * cpu0 cpu1 cpu2 4907 * 4908 * a) If util > uclamp_max, then we're capped, we don't care about 4909 * actual fitness value here. We only care if uclamp_max fits 4910 * capacity without taking margin/pressure into account. 4911 * See comment above. 4912 * 4913 * b) If uclamp_min <= util <= uclamp_max, then the normal 4914 * fits_capacity() rules apply. Except we need to ensure that we 4915 * enforce we remain within uclamp_max, see comment above. 4916 * 4917 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4918 * need to take into account the boosted value fits the CPU without 4919 * taking margin/pressure into account. 4920 * 4921 * Cases (a) and (b) are handled in the 'fits' variable already. We 4922 * just need to consider an extra check for case (c) after ensuring we 4923 * handle the case uclamp_min > uclamp_max. 4924 */ 4925 uclamp_min = min(uclamp_min, uclamp_max); 4926 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4927 return -1; 4928 4929 return fits; 4930 } 4931 4932 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4933 { 4934 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4935 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4936 unsigned long util = task_util_est(p); 4937 /* 4938 * Return true only if the cpu fully fits the task requirements, which 4939 * include the utilization but also the performance hints. 4940 */ 4941 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 4942 } 4943 4944 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4945 { 4946 if (!sched_asym_cpucap_active()) 4947 return; 4948 4949 if (!p || p->nr_cpus_allowed == 1) { 4950 rq->misfit_task_load = 0; 4951 return; 4952 } 4953 4954 if (task_fits_cpu(p, cpu_of(rq))) { 4955 rq->misfit_task_load = 0; 4956 return; 4957 } 4958 4959 /* 4960 * Make sure that misfit_task_load will not be null even if 4961 * task_h_load() returns 0. 4962 */ 4963 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4964 } 4965 4966 #else /* CONFIG_SMP */ 4967 4968 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4969 { 4970 return !cfs_rq->nr_running; 4971 } 4972 4973 #define UPDATE_TG 0x0 4974 #define SKIP_AGE_LOAD 0x0 4975 #define DO_ATTACH 0x0 4976 #define DO_DETACH 0x0 4977 4978 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4979 { 4980 cfs_rq_util_change(cfs_rq, 0); 4981 } 4982 4983 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4984 4985 static inline void 4986 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4987 static inline void 4988 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4989 4990 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4991 { 4992 return 0; 4993 } 4994 4995 static inline void 4996 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4997 4998 static inline void 4999 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5000 5001 static inline void 5002 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5003 bool task_sleep) {} 5004 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5005 5006 #endif /* CONFIG_SMP */ 5007 5008 static void 5009 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5010 { 5011 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5012 s64 lag = 0; 5013 5014 se->slice = sysctl_sched_base_slice; 5015 vslice = calc_delta_fair(se->slice, se); 5016 5017 /* 5018 * Due to how V is constructed as the weighted average of entities, 5019 * adding tasks with positive lag, or removing tasks with negative lag 5020 * will move 'time' backwards, this can screw around with the lag of 5021 * other tasks. 5022 * 5023 * EEVDF: placement strategy #1 / #2 5024 */ 5025 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5026 struct sched_entity *curr = cfs_rq->curr; 5027 unsigned long load; 5028 5029 lag = se->vlag; 5030 5031 /* 5032 * If we want to place a task and preserve lag, we have to 5033 * consider the effect of the new entity on the weighted 5034 * average and compensate for this, otherwise lag can quickly 5035 * evaporate. 5036 * 5037 * Lag is defined as: 5038 * 5039 * lag_i = S - s_i = w_i * (V - v_i) 5040 * 5041 * To avoid the 'w_i' term all over the place, we only track 5042 * the virtual lag: 5043 * 5044 * vl_i = V - v_i <=> v_i = V - vl_i 5045 * 5046 * And we take V to be the weighted average of all v: 5047 * 5048 * V = (\Sum w_j*v_j) / W 5049 * 5050 * Where W is: \Sum w_j 5051 * 5052 * Then, the weighted average after adding an entity with lag 5053 * vl_i is given by: 5054 * 5055 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5056 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5057 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5058 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5059 * = V - w_i*vl_i / (W + w_i) 5060 * 5061 * And the actual lag after adding an entity with vl_i is: 5062 * 5063 * vl'_i = V' - v_i 5064 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5065 * = vl_i - w_i*vl_i / (W + w_i) 5066 * 5067 * Which is strictly less than vl_i. So in order to preserve lag 5068 * we should inflate the lag before placement such that the 5069 * effective lag after placement comes out right. 5070 * 5071 * As such, invert the above relation for vl'_i to get the vl_i 5072 * we need to use such that the lag after placement is the lag 5073 * we computed before dequeue. 5074 * 5075 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5076 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5077 * 5078 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5079 * = W*vl_i 5080 * 5081 * vl_i = (W + w_i)*vl'_i / W 5082 */ 5083 load = cfs_rq->avg_load; 5084 if (curr && curr->on_rq) 5085 load += scale_load_down(curr->load.weight); 5086 5087 lag *= load + scale_load_down(se->load.weight); 5088 if (WARN_ON_ONCE(!load)) 5089 load = 1; 5090 lag = div_s64(lag, load); 5091 } 5092 5093 se->vruntime = vruntime - lag; 5094 5095 /* 5096 * When joining the competition; the exisiting tasks will be, 5097 * on average, halfway through their slice, as such start tasks 5098 * off with half a slice to ease into the competition. 5099 */ 5100 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5101 vslice /= 2; 5102 5103 /* 5104 * EEVDF: vd_i = ve_i + r_i/w_i 5105 */ 5106 se->deadline = se->vruntime + vslice; 5107 } 5108 5109 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5110 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5111 5112 static inline bool cfs_bandwidth_used(void); 5113 5114 static void 5115 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5116 { 5117 bool curr = cfs_rq->curr == se; 5118 5119 /* 5120 * If we're the current task, we must renormalise before calling 5121 * update_curr(). 5122 */ 5123 if (curr) 5124 place_entity(cfs_rq, se, flags); 5125 5126 update_curr(cfs_rq); 5127 5128 /* 5129 * When enqueuing a sched_entity, we must: 5130 * - Update loads to have both entity and cfs_rq synced with now. 5131 * - For group_entity, update its runnable_weight to reflect the new 5132 * h_nr_running of its group cfs_rq. 5133 * - For group_entity, update its weight to reflect the new share of 5134 * its group cfs_rq 5135 * - Add its new weight to cfs_rq->load.weight 5136 */ 5137 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5138 se_update_runnable(se); 5139 /* 5140 * XXX update_load_avg() above will have attached us to the pelt sum; 5141 * but update_cfs_group() here will re-adjust the weight and have to 5142 * undo/redo all that. Seems wasteful. 5143 */ 5144 update_cfs_group(se); 5145 5146 /* 5147 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5148 * we can place the entity. 5149 */ 5150 if (!curr) 5151 place_entity(cfs_rq, se, flags); 5152 5153 account_entity_enqueue(cfs_rq, se); 5154 5155 /* Entity has migrated, no longer consider this task hot */ 5156 if (flags & ENQUEUE_MIGRATED) 5157 se->exec_start = 0; 5158 5159 check_schedstat_required(); 5160 update_stats_enqueue_fair(cfs_rq, se, flags); 5161 if (!curr) 5162 __enqueue_entity(cfs_rq, se); 5163 se->on_rq = 1; 5164 5165 if (cfs_rq->nr_running == 1) { 5166 check_enqueue_throttle(cfs_rq); 5167 if (!throttled_hierarchy(cfs_rq)) { 5168 list_add_leaf_cfs_rq(cfs_rq); 5169 } else { 5170 #ifdef CONFIG_CFS_BANDWIDTH 5171 struct rq *rq = rq_of(cfs_rq); 5172 5173 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5174 cfs_rq->throttled_clock = rq_clock(rq); 5175 if (!cfs_rq->throttled_clock_self) 5176 cfs_rq->throttled_clock_self = rq_clock(rq); 5177 #endif 5178 } 5179 } 5180 } 5181 5182 static void __clear_buddies_next(struct sched_entity *se) 5183 { 5184 for_each_sched_entity(se) { 5185 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5186 if (cfs_rq->next != se) 5187 break; 5188 5189 cfs_rq->next = NULL; 5190 } 5191 } 5192 5193 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5194 { 5195 if (cfs_rq->next == se) 5196 __clear_buddies_next(se); 5197 } 5198 5199 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5200 5201 static void 5202 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5203 { 5204 int action = UPDATE_TG; 5205 5206 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5207 action |= DO_DETACH; 5208 5209 /* 5210 * Update run-time statistics of the 'current'. 5211 */ 5212 update_curr(cfs_rq); 5213 5214 /* 5215 * When dequeuing a sched_entity, we must: 5216 * - Update loads to have both entity and cfs_rq synced with now. 5217 * - For group_entity, update its runnable_weight to reflect the new 5218 * h_nr_running of its group cfs_rq. 5219 * - Subtract its previous weight from cfs_rq->load.weight. 5220 * - For group entity, update its weight to reflect the new share 5221 * of its group cfs_rq. 5222 */ 5223 update_load_avg(cfs_rq, se, action); 5224 se_update_runnable(se); 5225 5226 update_stats_dequeue_fair(cfs_rq, se, flags); 5227 5228 clear_buddies(cfs_rq, se); 5229 5230 update_entity_lag(cfs_rq, se); 5231 if (se != cfs_rq->curr) 5232 __dequeue_entity(cfs_rq, se); 5233 se->on_rq = 0; 5234 account_entity_dequeue(cfs_rq, se); 5235 5236 /* return excess runtime on last dequeue */ 5237 return_cfs_rq_runtime(cfs_rq); 5238 5239 update_cfs_group(se); 5240 5241 /* 5242 * Now advance min_vruntime if @se was the entity holding it back, 5243 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5244 * put back on, and if we advance min_vruntime, we'll be placed back 5245 * further than we started -- ie. we'll be penalized. 5246 */ 5247 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5248 update_min_vruntime(cfs_rq); 5249 5250 if (cfs_rq->nr_running == 0) 5251 update_idle_cfs_rq_clock_pelt(cfs_rq); 5252 } 5253 5254 static void 5255 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5256 { 5257 clear_buddies(cfs_rq, se); 5258 5259 /* 'current' is not kept within the tree. */ 5260 if (se->on_rq) { 5261 /* 5262 * Any task has to be enqueued before it get to execute on 5263 * a CPU. So account for the time it spent waiting on the 5264 * runqueue. 5265 */ 5266 update_stats_wait_end_fair(cfs_rq, se); 5267 __dequeue_entity(cfs_rq, se); 5268 update_load_avg(cfs_rq, se, UPDATE_TG); 5269 /* 5270 * HACK, stash a copy of deadline at the point of pick in vlag, 5271 * which isn't used until dequeue. 5272 */ 5273 se->vlag = se->deadline; 5274 } 5275 5276 update_stats_curr_start(cfs_rq, se); 5277 cfs_rq->curr = se; 5278 5279 /* 5280 * Track our maximum slice length, if the CPU's load is at 5281 * least twice that of our own weight (i.e. dont track it 5282 * when there are only lesser-weight tasks around): 5283 */ 5284 if (schedstat_enabled() && 5285 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5286 struct sched_statistics *stats; 5287 5288 stats = __schedstats_from_se(se); 5289 __schedstat_set(stats->slice_max, 5290 max((u64)stats->slice_max, 5291 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5292 } 5293 5294 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5295 } 5296 5297 /* 5298 * Pick the next process, keeping these things in mind, in this order: 5299 * 1) keep things fair between processes/task groups 5300 * 2) pick the "next" process, since someone really wants that to run 5301 * 3) pick the "last" process, for cache locality 5302 * 4) do not run the "skip" process, if something else is available 5303 */ 5304 static struct sched_entity * 5305 pick_next_entity(struct cfs_rq *cfs_rq) 5306 { 5307 /* 5308 * Enabling NEXT_BUDDY will affect latency but not fairness. 5309 */ 5310 if (sched_feat(NEXT_BUDDY) && 5311 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5312 return cfs_rq->next; 5313 5314 return pick_eevdf(cfs_rq); 5315 } 5316 5317 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5318 5319 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5320 { 5321 /* 5322 * If still on the runqueue then deactivate_task() 5323 * was not called and update_curr() has to be done: 5324 */ 5325 if (prev->on_rq) 5326 update_curr(cfs_rq); 5327 5328 /* throttle cfs_rqs exceeding runtime */ 5329 check_cfs_rq_runtime(cfs_rq); 5330 5331 if (prev->on_rq) { 5332 update_stats_wait_start_fair(cfs_rq, prev); 5333 /* Put 'current' back into the tree. */ 5334 __enqueue_entity(cfs_rq, prev); 5335 /* in !on_rq case, update occurred at dequeue */ 5336 update_load_avg(cfs_rq, prev, 0); 5337 } 5338 cfs_rq->curr = NULL; 5339 } 5340 5341 static void 5342 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5343 { 5344 /* 5345 * Update run-time statistics of the 'current'. 5346 */ 5347 update_curr(cfs_rq); 5348 5349 /* 5350 * Ensure that runnable average is periodically updated. 5351 */ 5352 update_load_avg(cfs_rq, curr, UPDATE_TG); 5353 update_cfs_group(curr); 5354 5355 #ifdef CONFIG_SCHED_HRTICK 5356 /* 5357 * queued ticks are scheduled to match the slice, so don't bother 5358 * validating it and just reschedule. 5359 */ 5360 if (queued) { 5361 resched_curr(rq_of(cfs_rq)); 5362 return; 5363 } 5364 /* 5365 * don't let the period tick interfere with the hrtick preemption 5366 */ 5367 if (!sched_feat(DOUBLE_TICK) && 5368 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5369 return; 5370 #endif 5371 } 5372 5373 5374 /************************************************** 5375 * CFS bandwidth control machinery 5376 */ 5377 5378 #ifdef CONFIG_CFS_BANDWIDTH 5379 5380 #ifdef CONFIG_JUMP_LABEL 5381 static struct static_key __cfs_bandwidth_used; 5382 5383 static inline bool cfs_bandwidth_used(void) 5384 { 5385 return static_key_false(&__cfs_bandwidth_used); 5386 } 5387 5388 void cfs_bandwidth_usage_inc(void) 5389 { 5390 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5391 } 5392 5393 void cfs_bandwidth_usage_dec(void) 5394 { 5395 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5396 } 5397 #else /* CONFIG_JUMP_LABEL */ 5398 static bool cfs_bandwidth_used(void) 5399 { 5400 return true; 5401 } 5402 5403 void cfs_bandwidth_usage_inc(void) {} 5404 void cfs_bandwidth_usage_dec(void) {} 5405 #endif /* CONFIG_JUMP_LABEL */ 5406 5407 /* 5408 * default period for cfs group bandwidth. 5409 * default: 0.1s, units: nanoseconds 5410 */ 5411 static inline u64 default_cfs_period(void) 5412 { 5413 return 100000000ULL; 5414 } 5415 5416 static inline u64 sched_cfs_bandwidth_slice(void) 5417 { 5418 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5419 } 5420 5421 /* 5422 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5423 * directly instead of rq->clock to avoid adding additional synchronization 5424 * around rq->lock. 5425 * 5426 * requires cfs_b->lock 5427 */ 5428 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5429 { 5430 s64 runtime; 5431 5432 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5433 return; 5434 5435 cfs_b->runtime += cfs_b->quota; 5436 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5437 if (runtime > 0) { 5438 cfs_b->burst_time += runtime; 5439 cfs_b->nr_burst++; 5440 } 5441 5442 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5443 cfs_b->runtime_snap = cfs_b->runtime; 5444 } 5445 5446 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5447 { 5448 return &tg->cfs_bandwidth; 5449 } 5450 5451 /* returns 0 on failure to allocate runtime */ 5452 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5453 struct cfs_rq *cfs_rq, u64 target_runtime) 5454 { 5455 u64 min_amount, amount = 0; 5456 5457 lockdep_assert_held(&cfs_b->lock); 5458 5459 /* note: this is a positive sum as runtime_remaining <= 0 */ 5460 min_amount = target_runtime - cfs_rq->runtime_remaining; 5461 5462 if (cfs_b->quota == RUNTIME_INF) 5463 amount = min_amount; 5464 else { 5465 start_cfs_bandwidth(cfs_b); 5466 5467 if (cfs_b->runtime > 0) { 5468 amount = min(cfs_b->runtime, min_amount); 5469 cfs_b->runtime -= amount; 5470 cfs_b->idle = 0; 5471 } 5472 } 5473 5474 cfs_rq->runtime_remaining += amount; 5475 5476 return cfs_rq->runtime_remaining > 0; 5477 } 5478 5479 /* returns 0 on failure to allocate runtime */ 5480 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5481 { 5482 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5483 int ret; 5484 5485 raw_spin_lock(&cfs_b->lock); 5486 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5487 raw_spin_unlock(&cfs_b->lock); 5488 5489 return ret; 5490 } 5491 5492 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5493 { 5494 /* dock delta_exec before expiring quota (as it could span periods) */ 5495 cfs_rq->runtime_remaining -= delta_exec; 5496 5497 if (likely(cfs_rq->runtime_remaining > 0)) 5498 return; 5499 5500 if (cfs_rq->throttled) 5501 return; 5502 /* 5503 * if we're unable to extend our runtime we resched so that the active 5504 * hierarchy can be throttled 5505 */ 5506 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5507 resched_curr(rq_of(cfs_rq)); 5508 } 5509 5510 static __always_inline 5511 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5512 { 5513 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5514 return; 5515 5516 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5517 } 5518 5519 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5520 { 5521 return cfs_bandwidth_used() && cfs_rq->throttled; 5522 } 5523 5524 /* check whether cfs_rq, or any parent, is throttled */ 5525 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5526 { 5527 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5528 } 5529 5530 /* 5531 * Ensure that neither of the group entities corresponding to src_cpu or 5532 * dest_cpu are members of a throttled hierarchy when performing group 5533 * load-balance operations. 5534 */ 5535 static inline int throttled_lb_pair(struct task_group *tg, 5536 int src_cpu, int dest_cpu) 5537 { 5538 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5539 5540 src_cfs_rq = tg->cfs_rq[src_cpu]; 5541 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5542 5543 return throttled_hierarchy(src_cfs_rq) || 5544 throttled_hierarchy(dest_cfs_rq); 5545 } 5546 5547 static int tg_unthrottle_up(struct task_group *tg, void *data) 5548 { 5549 struct rq *rq = data; 5550 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5551 5552 cfs_rq->throttle_count--; 5553 if (!cfs_rq->throttle_count) { 5554 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5555 cfs_rq->throttled_clock_pelt; 5556 5557 /* Add cfs_rq with load or one or more already running entities to the list */ 5558 if (!cfs_rq_is_decayed(cfs_rq)) 5559 list_add_leaf_cfs_rq(cfs_rq); 5560 5561 if (cfs_rq->throttled_clock_self) { 5562 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5563 5564 cfs_rq->throttled_clock_self = 0; 5565 5566 if (SCHED_WARN_ON((s64)delta < 0)) 5567 delta = 0; 5568 5569 cfs_rq->throttled_clock_self_time += delta; 5570 } 5571 } 5572 5573 return 0; 5574 } 5575 5576 static int tg_throttle_down(struct task_group *tg, void *data) 5577 { 5578 struct rq *rq = data; 5579 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5580 5581 /* group is entering throttled state, stop time */ 5582 if (!cfs_rq->throttle_count) { 5583 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5584 list_del_leaf_cfs_rq(cfs_rq); 5585 5586 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5587 if (cfs_rq->nr_running) 5588 cfs_rq->throttled_clock_self = rq_clock(rq); 5589 } 5590 cfs_rq->throttle_count++; 5591 5592 return 0; 5593 } 5594 5595 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5596 { 5597 struct rq *rq = rq_of(cfs_rq); 5598 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5599 struct sched_entity *se; 5600 long task_delta, idle_task_delta, dequeue = 1; 5601 5602 raw_spin_lock(&cfs_b->lock); 5603 /* This will start the period timer if necessary */ 5604 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5605 /* 5606 * We have raced with bandwidth becoming available, and if we 5607 * actually throttled the timer might not unthrottle us for an 5608 * entire period. We additionally needed to make sure that any 5609 * subsequent check_cfs_rq_runtime calls agree not to throttle 5610 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5611 * for 1ns of runtime rather than just check cfs_b. 5612 */ 5613 dequeue = 0; 5614 } else { 5615 list_add_tail_rcu(&cfs_rq->throttled_list, 5616 &cfs_b->throttled_cfs_rq); 5617 } 5618 raw_spin_unlock(&cfs_b->lock); 5619 5620 if (!dequeue) 5621 return false; /* Throttle no longer required. */ 5622 5623 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5624 5625 /* freeze hierarchy runnable averages while throttled */ 5626 rcu_read_lock(); 5627 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5628 rcu_read_unlock(); 5629 5630 task_delta = cfs_rq->h_nr_running; 5631 idle_task_delta = cfs_rq->idle_h_nr_running; 5632 for_each_sched_entity(se) { 5633 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5634 /* throttled entity or throttle-on-deactivate */ 5635 if (!se->on_rq) 5636 goto done; 5637 5638 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5639 5640 if (cfs_rq_is_idle(group_cfs_rq(se))) 5641 idle_task_delta = cfs_rq->h_nr_running; 5642 5643 qcfs_rq->h_nr_running -= task_delta; 5644 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5645 5646 if (qcfs_rq->load.weight) { 5647 /* Avoid re-evaluating load for this entity: */ 5648 se = parent_entity(se); 5649 break; 5650 } 5651 } 5652 5653 for_each_sched_entity(se) { 5654 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5655 /* throttled entity or throttle-on-deactivate */ 5656 if (!se->on_rq) 5657 goto done; 5658 5659 update_load_avg(qcfs_rq, se, 0); 5660 se_update_runnable(se); 5661 5662 if (cfs_rq_is_idle(group_cfs_rq(se))) 5663 idle_task_delta = cfs_rq->h_nr_running; 5664 5665 qcfs_rq->h_nr_running -= task_delta; 5666 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5667 } 5668 5669 /* At this point se is NULL and we are at root level*/ 5670 sub_nr_running(rq, task_delta); 5671 5672 done: 5673 /* 5674 * Note: distribution will already see us throttled via the 5675 * throttled-list. rq->lock protects completion. 5676 */ 5677 cfs_rq->throttled = 1; 5678 SCHED_WARN_ON(cfs_rq->throttled_clock); 5679 if (cfs_rq->nr_running) 5680 cfs_rq->throttled_clock = rq_clock(rq); 5681 return true; 5682 } 5683 5684 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5685 { 5686 struct rq *rq = rq_of(cfs_rq); 5687 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5688 struct sched_entity *se; 5689 long task_delta, idle_task_delta; 5690 5691 se = cfs_rq->tg->se[cpu_of(rq)]; 5692 5693 cfs_rq->throttled = 0; 5694 5695 update_rq_clock(rq); 5696 5697 raw_spin_lock(&cfs_b->lock); 5698 if (cfs_rq->throttled_clock) { 5699 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5700 cfs_rq->throttled_clock = 0; 5701 } 5702 list_del_rcu(&cfs_rq->throttled_list); 5703 raw_spin_unlock(&cfs_b->lock); 5704 5705 /* update hierarchical throttle state */ 5706 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5707 5708 if (!cfs_rq->load.weight) { 5709 if (!cfs_rq->on_list) 5710 return; 5711 /* 5712 * Nothing to run but something to decay (on_list)? 5713 * Complete the branch. 5714 */ 5715 for_each_sched_entity(se) { 5716 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5717 break; 5718 } 5719 goto unthrottle_throttle; 5720 } 5721 5722 task_delta = cfs_rq->h_nr_running; 5723 idle_task_delta = cfs_rq->idle_h_nr_running; 5724 for_each_sched_entity(se) { 5725 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5726 5727 if (se->on_rq) 5728 break; 5729 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5730 5731 if (cfs_rq_is_idle(group_cfs_rq(se))) 5732 idle_task_delta = cfs_rq->h_nr_running; 5733 5734 qcfs_rq->h_nr_running += task_delta; 5735 qcfs_rq->idle_h_nr_running += idle_task_delta; 5736 5737 /* end evaluation on encountering a throttled cfs_rq */ 5738 if (cfs_rq_throttled(qcfs_rq)) 5739 goto unthrottle_throttle; 5740 } 5741 5742 for_each_sched_entity(se) { 5743 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5744 5745 update_load_avg(qcfs_rq, se, UPDATE_TG); 5746 se_update_runnable(se); 5747 5748 if (cfs_rq_is_idle(group_cfs_rq(se))) 5749 idle_task_delta = cfs_rq->h_nr_running; 5750 5751 qcfs_rq->h_nr_running += task_delta; 5752 qcfs_rq->idle_h_nr_running += idle_task_delta; 5753 5754 /* end evaluation on encountering a throttled cfs_rq */ 5755 if (cfs_rq_throttled(qcfs_rq)) 5756 goto unthrottle_throttle; 5757 } 5758 5759 /* At this point se is NULL and we are at root level*/ 5760 add_nr_running(rq, task_delta); 5761 5762 unthrottle_throttle: 5763 assert_list_leaf_cfs_rq(rq); 5764 5765 /* Determine whether we need to wake up potentially idle CPU: */ 5766 if (rq->curr == rq->idle && rq->cfs.nr_running) 5767 resched_curr(rq); 5768 } 5769 5770 #ifdef CONFIG_SMP 5771 static void __cfsb_csd_unthrottle(void *arg) 5772 { 5773 struct cfs_rq *cursor, *tmp; 5774 struct rq *rq = arg; 5775 struct rq_flags rf; 5776 5777 rq_lock(rq, &rf); 5778 5779 /* 5780 * Iterating over the list can trigger several call to 5781 * update_rq_clock() in unthrottle_cfs_rq(). 5782 * Do it once and skip the potential next ones. 5783 */ 5784 update_rq_clock(rq); 5785 rq_clock_start_loop_update(rq); 5786 5787 /* 5788 * Since we hold rq lock we're safe from concurrent manipulation of 5789 * the CSD list. However, this RCU critical section annotates the 5790 * fact that we pair with sched_free_group_rcu(), so that we cannot 5791 * race with group being freed in the window between removing it 5792 * from the list and advancing to the next entry in the list. 5793 */ 5794 rcu_read_lock(); 5795 5796 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5797 throttled_csd_list) { 5798 list_del_init(&cursor->throttled_csd_list); 5799 5800 if (cfs_rq_throttled(cursor)) 5801 unthrottle_cfs_rq(cursor); 5802 } 5803 5804 rcu_read_unlock(); 5805 5806 rq_clock_stop_loop_update(rq); 5807 rq_unlock(rq, &rf); 5808 } 5809 5810 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5811 { 5812 struct rq *rq = rq_of(cfs_rq); 5813 bool first; 5814 5815 if (rq == this_rq()) { 5816 unthrottle_cfs_rq(cfs_rq); 5817 return; 5818 } 5819 5820 /* Already enqueued */ 5821 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5822 return; 5823 5824 first = list_empty(&rq->cfsb_csd_list); 5825 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5826 if (first) 5827 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5828 } 5829 #else 5830 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5831 { 5832 unthrottle_cfs_rq(cfs_rq); 5833 } 5834 #endif 5835 5836 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5837 { 5838 lockdep_assert_rq_held(rq_of(cfs_rq)); 5839 5840 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5841 cfs_rq->runtime_remaining <= 0)) 5842 return; 5843 5844 __unthrottle_cfs_rq_async(cfs_rq); 5845 } 5846 5847 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5848 { 5849 int this_cpu = smp_processor_id(); 5850 u64 runtime, remaining = 1; 5851 bool throttled = false; 5852 struct cfs_rq *cfs_rq, *tmp; 5853 struct rq_flags rf; 5854 struct rq *rq; 5855 LIST_HEAD(local_unthrottle); 5856 5857 rcu_read_lock(); 5858 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5859 throttled_list) { 5860 rq = rq_of(cfs_rq); 5861 5862 if (!remaining) { 5863 throttled = true; 5864 break; 5865 } 5866 5867 rq_lock_irqsave(rq, &rf); 5868 if (!cfs_rq_throttled(cfs_rq)) 5869 goto next; 5870 5871 /* Already queued for async unthrottle */ 5872 if (!list_empty(&cfs_rq->throttled_csd_list)) 5873 goto next; 5874 5875 /* By the above checks, this should never be true */ 5876 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5877 5878 raw_spin_lock(&cfs_b->lock); 5879 runtime = -cfs_rq->runtime_remaining + 1; 5880 if (runtime > cfs_b->runtime) 5881 runtime = cfs_b->runtime; 5882 cfs_b->runtime -= runtime; 5883 remaining = cfs_b->runtime; 5884 raw_spin_unlock(&cfs_b->lock); 5885 5886 cfs_rq->runtime_remaining += runtime; 5887 5888 /* we check whether we're throttled above */ 5889 if (cfs_rq->runtime_remaining > 0) { 5890 if (cpu_of(rq) != this_cpu) { 5891 unthrottle_cfs_rq_async(cfs_rq); 5892 } else { 5893 /* 5894 * We currently only expect to be unthrottling 5895 * a single cfs_rq locally. 5896 */ 5897 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 5898 list_add_tail(&cfs_rq->throttled_csd_list, 5899 &local_unthrottle); 5900 } 5901 } else { 5902 throttled = true; 5903 } 5904 5905 next: 5906 rq_unlock_irqrestore(rq, &rf); 5907 } 5908 5909 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 5910 throttled_csd_list) { 5911 struct rq *rq = rq_of(cfs_rq); 5912 5913 rq_lock_irqsave(rq, &rf); 5914 5915 list_del_init(&cfs_rq->throttled_csd_list); 5916 5917 if (cfs_rq_throttled(cfs_rq)) 5918 unthrottle_cfs_rq(cfs_rq); 5919 5920 rq_unlock_irqrestore(rq, &rf); 5921 } 5922 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 5923 5924 rcu_read_unlock(); 5925 5926 return throttled; 5927 } 5928 5929 /* 5930 * Responsible for refilling a task_group's bandwidth and unthrottling its 5931 * cfs_rqs as appropriate. If there has been no activity within the last 5932 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5933 * used to track this state. 5934 */ 5935 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5936 { 5937 int throttled; 5938 5939 /* no need to continue the timer with no bandwidth constraint */ 5940 if (cfs_b->quota == RUNTIME_INF) 5941 goto out_deactivate; 5942 5943 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5944 cfs_b->nr_periods += overrun; 5945 5946 /* Refill extra burst quota even if cfs_b->idle */ 5947 __refill_cfs_bandwidth_runtime(cfs_b); 5948 5949 /* 5950 * idle depends on !throttled (for the case of a large deficit), and if 5951 * we're going inactive then everything else can be deferred 5952 */ 5953 if (cfs_b->idle && !throttled) 5954 goto out_deactivate; 5955 5956 if (!throttled) { 5957 /* mark as potentially idle for the upcoming period */ 5958 cfs_b->idle = 1; 5959 return 0; 5960 } 5961 5962 /* account preceding periods in which throttling occurred */ 5963 cfs_b->nr_throttled += overrun; 5964 5965 /* 5966 * This check is repeated as we release cfs_b->lock while we unthrottle. 5967 */ 5968 while (throttled && cfs_b->runtime > 0) { 5969 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5970 /* we can't nest cfs_b->lock while distributing bandwidth */ 5971 throttled = distribute_cfs_runtime(cfs_b); 5972 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5973 } 5974 5975 /* 5976 * While we are ensured activity in the period following an 5977 * unthrottle, this also covers the case in which the new bandwidth is 5978 * insufficient to cover the existing bandwidth deficit. (Forcing the 5979 * timer to remain active while there are any throttled entities.) 5980 */ 5981 cfs_b->idle = 0; 5982 5983 return 0; 5984 5985 out_deactivate: 5986 return 1; 5987 } 5988 5989 /* a cfs_rq won't donate quota below this amount */ 5990 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5991 /* minimum remaining period time to redistribute slack quota */ 5992 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5993 /* how long we wait to gather additional slack before distributing */ 5994 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5995 5996 /* 5997 * Are we near the end of the current quota period? 5998 * 5999 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6000 * hrtimer base being cleared by hrtimer_start. In the case of 6001 * migrate_hrtimers, base is never cleared, so we are fine. 6002 */ 6003 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6004 { 6005 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6006 s64 remaining; 6007 6008 /* if the call-back is running a quota refresh is already occurring */ 6009 if (hrtimer_callback_running(refresh_timer)) 6010 return 1; 6011 6012 /* is a quota refresh about to occur? */ 6013 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6014 if (remaining < (s64)min_expire) 6015 return 1; 6016 6017 return 0; 6018 } 6019 6020 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6021 { 6022 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6023 6024 /* if there's a quota refresh soon don't bother with slack */ 6025 if (runtime_refresh_within(cfs_b, min_left)) 6026 return; 6027 6028 /* don't push forwards an existing deferred unthrottle */ 6029 if (cfs_b->slack_started) 6030 return; 6031 cfs_b->slack_started = true; 6032 6033 hrtimer_start(&cfs_b->slack_timer, 6034 ns_to_ktime(cfs_bandwidth_slack_period), 6035 HRTIMER_MODE_REL); 6036 } 6037 6038 /* we know any runtime found here is valid as update_curr() precedes return */ 6039 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6040 { 6041 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6042 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6043 6044 if (slack_runtime <= 0) 6045 return; 6046 6047 raw_spin_lock(&cfs_b->lock); 6048 if (cfs_b->quota != RUNTIME_INF) { 6049 cfs_b->runtime += slack_runtime; 6050 6051 /* we are under rq->lock, defer unthrottling using a timer */ 6052 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6053 !list_empty(&cfs_b->throttled_cfs_rq)) 6054 start_cfs_slack_bandwidth(cfs_b); 6055 } 6056 raw_spin_unlock(&cfs_b->lock); 6057 6058 /* even if it's not valid for return we don't want to try again */ 6059 cfs_rq->runtime_remaining -= slack_runtime; 6060 } 6061 6062 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6063 { 6064 if (!cfs_bandwidth_used()) 6065 return; 6066 6067 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6068 return; 6069 6070 __return_cfs_rq_runtime(cfs_rq); 6071 } 6072 6073 /* 6074 * This is done with a timer (instead of inline with bandwidth return) since 6075 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6076 */ 6077 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6078 { 6079 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6080 unsigned long flags; 6081 6082 /* confirm we're still not at a refresh boundary */ 6083 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6084 cfs_b->slack_started = false; 6085 6086 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6087 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6088 return; 6089 } 6090 6091 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6092 runtime = cfs_b->runtime; 6093 6094 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6095 6096 if (!runtime) 6097 return; 6098 6099 distribute_cfs_runtime(cfs_b); 6100 } 6101 6102 /* 6103 * When a group wakes up we want to make sure that its quota is not already 6104 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6105 * runtime as update_curr() throttling can not trigger until it's on-rq. 6106 */ 6107 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6108 { 6109 if (!cfs_bandwidth_used()) 6110 return; 6111 6112 /* an active group must be handled by the update_curr()->put() path */ 6113 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6114 return; 6115 6116 /* ensure the group is not already throttled */ 6117 if (cfs_rq_throttled(cfs_rq)) 6118 return; 6119 6120 /* update runtime allocation */ 6121 account_cfs_rq_runtime(cfs_rq, 0); 6122 if (cfs_rq->runtime_remaining <= 0) 6123 throttle_cfs_rq(cfs_rq); 6124 } 6125 6126 static void sync_throttle(struct task_group *tg, int cpu) 6127 { 6128 struct cfs_rq *pcfs_rq, *cfs_rq; 6129 6130 if (!cfs_bandwidth_used()) 6131 return; 6132 6133 if (!tg->parent) 6134 return; 6135 6136 cfs_rq = tg->cfs_rq[cpu]; 6137 pcfs_rq = tg->parent->cfs_rq[cpu]; 6138 6139 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6140 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6141 } 6142 6143 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6144 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6145 { 6146 if (!cfs_bandwidth_used()) 6147 return false; 6148 6149 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6150 return false; 6151 6152 /* 6153 * it's possible for a throttled entity to be forced into a running 6154 * state (e.g. set_curr_task), in this case we're finished. 6155 */ 6156 if (cfs_rq_throttled(cfs_rq)) 6157 return true; 6158 6159 return throttle_cfs_rq(cfs_rq); 6160 } 6161 6162 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6163 { 6164 struct cfs_bandwidth *cfs_b = 6165 container_of(timer, struct cfs_bandwidth, slack_timer); 6166 6167 do_sched_cfs_slack_timer(cfs_b); 6168 6169 return HRTIMER_NORESTART; 6170 } 6171 6172 extern const u64 max_cfs_quota_period; 6173 6174 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6175 { 6176 struct cfs_bandwidth *cfs_b = 6177 container_of(timer, struct cfs_bandwidth, period_timer); 6178 unsigned long flags; 6179 int overrun; 6180 int idle = 0; 6181 int count = 0; 6182 6183 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6184 for (;;) { 6185 overrun = hrtimer_forward_now(timer, cfs_b->period); 6186 if (!overrun) 6187 break; 6188 6189 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6190 6191 if (++count > 3) { 6192 u64 new, old = ktime_to_ns(cfs_b->period); 6193 6194 /* 6195 * Grow period by a factor of 2 to avoid losing precision. 6196 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6197 * to fail. 6198 */ 6199 new = old * 2; 6200 if (new < max_cfs_quota_period) { 6201 cfs_b->period = ns_to_ktime(new); 6202 cfs_b->quota *= 2; 6203 cfs_b->burst *= 2; 6204 6205 pr_warn_ratelimited( 6206 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6207 smp_processor_id(), 6208 div_u64(new, NSEC_PER_USEC), 6209 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6210 } else { 6211 pr_warn_ratelimited( 6212 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6213 smp_processor_id(), 6214 div_u64(old, NSEC_PER_USEC), 6215 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6216 } 6217 6218 /* reset count so we don't come right back in here */ 6219 count = 0; 6220 } 6221 } 6222 if (idle) 6223 cfs_b->period_active = 0; 6224 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6225 6226 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6227 } 6228 6229 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6230 { 6231 raw_spin_lock_init(&cfs_b->lock); 6232 cfs_b->runtime = 0; 6233 cfs_b->quota = RUNTIME_INF; 6234 cfs_b->period = ns_to_ktime(default_cfs_period()); 6235 cfs_b->burst = 0; 6236 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6237 6238 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6239 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6240 cfs_b->period_timer.function = sched_cfs_period_timer; 6241 6242 /* Add a random offset so that timers interleave */ 6243 hrtimer_set_expires(&cfs_b->period_timer, 6244 get_random_u32_below(cfs_b->period)); 6245 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6246 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6247 cfs_b->slack_started = false; 6248 } 6249 6250 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6251 { 6252 cfs_rq->runtime_enabled = 0; 6253 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6254 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6255 } 6256 6257 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6258 { 6259 lockdep_assert_held(&cfs_b->lock); 6260 6261 if (cfs_b->period_active) 6262 return; 6263 6264 cfs_b->period_active = 1; 6265 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6266 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6267 } 6268 6269 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6270 { 6271 int __maybe_unused i; 6272 6273 /* init_cfs_bandwidth() was not called */ 6274 if (!cfs_b->throttled_cfs_rq.next) 6275 return; 6276 6277 hrtimer_cancel(&cfs_b->period_timer); 6278 hrtimer_cancel(&cfs_b->slack_timer); 6279 6280 /* 6281 * It is possible that we still have some cfs_rq's pending on a CSD 6282 * list, though this race is very rare. In order for this to occur, we 6283 * must have raced with the last task leaving the group while there 6284 * exist throttled cfs_rq(s), and the period_timer must have queued the 6285 * CSD item but the remote cpu has not yet processed it. To handle this, 6286 * we can simply flush all pending CSD work inline here. We're 6287 * guaranteed at this point that no additional cfs_rq of this group can 6288 * join a CSD list. 6289 */ 6290 #ifdef CONFIG_SMP 6291 for_each_possible_cpu(i) { 6292 struct rq *rq = cpu_rq(i); 6293 unsigned long flags; 6294 6295 if (list_empty(&rq->cfsb_csd_list)) 6296 continue; 6297 6298 local_irq_save(flags); 6299 __cfsb_csd_unthrottle(rq); 6300 local_irq_restore(flags); 6301 } 6302 #endif 6303 } 6304 6305 /* 6306 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6307 * 6308 * The race is harmless, since modifying bandwidth settings of unhooked group 6309 * bits doesn't do much. 6310 */ 6311 6312 /* cpu online callback */ 6313 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6314 { 6315 struct task_group *tg; 6316 6317 lockdep_assert_rq_held(rq); 6318 6319 rcu_read_lock(); 6320 list_for_each_entry_rcu(tg, &task_groups, list) { 6321 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6322 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6323 6324 raw_spin_lock(&cfs_b->lock); 6325 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6326 raw_spin_unlock(&cfs_b->lock); 6327 } 6328 rcu_read_unlock(); 6329 } 6330 6331 /* cpu offline callback */ 6332 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6333 { 6334 struct task_group *tg; 6335 6336 lockdep_assert_rq_held(rq); 6337 6338 /* 6339 * The rq clock has already been updated in the 6340 * set_rq_offline(), so we should skip updating 6341 * the rq clock again in unthrottle_cfs_rq(). 6342 */ 6343 rq_clock_start_loop_update(rq); 6344 6345 rcu_read_lock(); 6346 list_for_each_entry_rcu(tg, &task_groups, list) { 6347 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6348 6349 if (!cfs_rq->runtime_enabled) 6350 continue; 6351 6352 /* 6353 * clock_task is not advancing so we just need to make sure 6354 * there's some valid quota amount 6355 */ 6356 cfs_rq->runtime_remaining = 1; 6357 /* 6358 * Offline rq is schedulable till CPU is completely disabled 6359 * in take_cpu_down(), so we prevent new cfs throttling here. 6360 */ 6361 cfs_rq->runtime_enabled = 0; 6362 6363 if (cfs_rq_throttled(cfs_rq)) 6364 unthrottle_cfs_rq(cfs_rq); 6365 } 6366 rcu_read_unlock(); 6367 6368 rq_clock_stop_loop_update(rq); 6369 } 6370 6371 bool cfs_task_bw_constrained(struct task_struct *p) 6372 { 6373 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6374 6375 if (!cfs_bandwidth_used()) 6376 return false; 6377 6378 if (cfs_rq->runtime_enabled || 6379 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6380 return true; 6381 6382 return false; 6383 } 6384 6385 #ifdef CONFIG_NO_HZ_FULL 6386 /* called from pick_next_task_fair() */ 6387 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6388 { 6389 int cpu = cpu_of(rq); 6390 6391 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6392 return; 6393 6394 if (!tick_nohz_full_cpu(cpu)) 6395 return; 6396 6397 if (rq->nr_running != 1) 6398 return; 6399 6400 /* 6401 * We know there is only one task runnable and we've just picked it. The 6402 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6403 * be otherwise able to stop the tick. Just need to check if we are using 6404 * bandwidth control. 6405 */ 6406 if (cfs_task_bw_constrained(p)) 6407 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6408 } 6409 #endif 6410 6411 #else /* CONFIG_CFS_BANDWIDTH */ 6412 6413 static inline bool cfs_bandwidth_used(void) 6414 { 6415 return false; 6416 } 6417 6418 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6419 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6420 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6421 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6422 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6423 6424 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6425 { 6426 return 0; 6427 } 6428 6429 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6430 { 6431 return 0; 6432 } 6433 6434 static inline int throttled_lb_pair(struct task_group *tg, 6435 int src_cpu, int dest_cpu) 6436 { 6437 return 0; 6438 } 6439 6440 #ifdef CONFIG_FAIR_GROUP_SCHED 6441 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6442 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6443 #endif 6444 6445 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6446 { 6447 return NULL; 6448 } 6449 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6450 static inline void update_runtime_enabled(struct rq *rq) {} 6451 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6452 #ifdef CONFIG_CGROUP_SCHED 6453 bool cfs_task_bw_constrained(struct task_struct *p) 6454 { 6455 return false; 6456 } 6457 #endif 6458 #endif /* CONFIG_CFS_BANDWIDTH */ 6459 6460 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6461 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6462 #endif 6463 6464 /************************************************** 6465 * CFS operations on tasks: 6466 */ 6467 6468 #ifdef CONFIG_SCHED_HRTICK 6469 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6470 { 6471 struct sched_entity *se = &p->se; 6472 6473 SCHED_WARN_ON(task_rq(p) != rq); 6474 6475 if (rq->cfs.h_nr_running > 1) { 6476 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6477 u64 slice = se->slice; 6478 s64 delta = slice - ran; 6479 6480 if (delta < 0) { 6481 if (task_current(rq, p)) 6482 resched_curr(rq); 6483 return; 6484 } 6485 hrtick_start(rq, delta); 6486 } 6487 } 6488 6489 /* 6490 * called from enqueue/dequeue and updates the hrtick when the 6491 * current task is from our class and nr_running is low enough 6492 * to matter. 6493 */ 6494 static void hrtick_update(struct rq *rq) 6495 { 6496 struct task_struct *curr = rq->curr; 6497 6498 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6499 return; 6500 6501 hrtick_start_fair(rq, curr); 6502 } 6503 #else /* !CONFIG_SCHED_HRTICK */ 6504 static inline void 6505 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6506 { 6507 } 6508 6509 static inline void hrtick_update(struct rq *rq) 6510 { 6511 } 6512 #endif 6513 6514 #ifdef CONFIG_SMP 6515 static inline bool cpu_overutilized(int cpu) 6516 { 6517 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6518 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6519 6520 /* Return true only if the utilization doesn't fit CPU's capacity */ 6521 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6522 } 6523 6524 static inline void update_overutilized_status(struct rq *rq) 6525 { 6526 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6527 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6528 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6529 } 6530 } 6531 #else 6532 static inline void update_overutilized_status(struct rq *rq) { } 6533 #endif 6534 6535 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6536 static int sched_idle_rq(struct rq *rq) 6537 { 6538 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6539 rq->nr_running); 6540 } 6541 6542 #ifdef CONFIG_SMP 6543 static int sched_idle_cpu(int cpu) 6544 { 6545 return sched_idle_rq(cpu_rq(cpu)); 6546 } 6547 #endif 6548 6549 /* 6550 * The enqueue_task method is called before nr_running is 6551 * increased. Here we update the fair scheduling stats and 6552 * then put the task into the rbtree: 6553 */ 6554 static void 6555 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6556 { 6557 struct cfs_rq *cfs_rq; 6558 struct sched_entity *se = &p->se; 6559 int idle_h_nr_running = task_has_idle_policy(p); 6560 int task_new = !(flags & ENQUEUE_WAKEUP); 6561 6562 /* 6563 * The code below (indirectly) updates schedutil which looks at 6564 * the cfs_rq utilization to select a frequency. 6565 * Let's add the task's estimated utilization to the cfs_rq's 6566 * estimated utilization, before we update schedutil. 6567 */ 6568 util_est_enqueue(&rq->cfs, p); 6569 6570 /* 6571 * If in_iowait is set, the code below may not trigger any cpufreq 6572 * utilization updates, so do it here explicitly with the IOWAIT flag 6573 * passed. 6574 */ 6575 if (p->in_iowait) 6576 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6577 6578 for_each_sched_entity(se) { 6579 if (se->on_rq) 6580 break; 6581 cfs_rq = cfs_rq_of(se); 6582 enqueue_entity(cfs_rq, se, flags); 6583 6584 cfs_rq->h_nr_running++; 6585 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6586 6587 if (cfs_rq_is_idle(cfs_rq)) 6588 idle_h_nr_running = 1; 6589 6590 /* end evaluation on encountering a throttled cfs_rq */ 6591 if (cfs_rq_throttled(cfs_rq)) 6592 goto enqueue_throttle; 6593 6594 flags = ENQUEUE_WAKEUP; 6595 } 6596 6597 for_each_sched_entity(se) { 6598 cfs_rq = cfs_rq_of(se); 6599 6600 update_load_avg(cfs_rq, se, UPDATE_TG); 6601 se_update_runnable(se); 6602 update_cfs_group(se); 6603 6604 cfs_rq->h_nr_running++; 6605 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6606 6607 if (cfs_rq_is_idle(cfs_rq)) 6608 idle_h_nr_running = 1; 6609 6610 /* end evaluation on encountering a throttled cfs_rq */ 6611 if (cfs_rq_throttled(cfs_rq)) 6612 goto enqueue_throttle; 6613 } 6614 6615 /* At this point se is NULL and we are at root level*/ 6616 add_nr_running(rq, 1); 6617 6618 /* 6619 * Since new tasks are assigned an initial util_avg equal to 6620 * half of the spare capacity of their CPU, tiny tasks have the 6621 * ability to cross the overutilized threshold, which will 6622 * result in the load balancer ruining all the task placement 6623 * done by EAS. As a way to mitigate that effect, do not account 6624 * for the first enqueue operation of new tasks during the 6625 * overutilized flag detection. 6626 * 6627 * A better way of solving this problem would be to wait for 6628 * the PELT signals of tasks to converge before taking them 6629 * into account, but that is not straightforward to implement, 6630 * and the following generally works well enough in practice. 6631 */ 6632 if (!task_new) 6633 update_overutilized_status(rq); 6634 6635 enqueue_throttle: 6636 assert_list_leaf_cfs_rq(rq); 6637 6638 hrtick_update(rq); 6639 } 6640 6641 static void set_next_buddy(struct sched_entity *se); 6642 6643 /* 6644 * The dequeue_task method is called before nr_running is 6645 * decreased. We remove the task from the rbtree and 6646 * update the fair scheduling stats: 6647 */ 6648 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6649 { 6650 struct cfs_rq *cfs_rq; 6651 struct sched_entity *se = &p->se; 6652 int task_sleep = flags & DEQUEUE_SLEEP; 6653 int idle_h_nr_running = task_has_idle_policy(p); 6654 bool was_sched_idle = sched_idle_rq(rq); 6655 6656 util_est_dequeue(&rq->cfs, p); 6657 6658 for_each_sched_entity(se) { 6659 cfs_rq = cfs_rq_of(se); 6660 dequeue_entity(cfs_rq, se, flags); 6661 6662 cfs_rq->h_nr_running--; 6663 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6664 6665 if (cfs_rq_is_idle(cfs_rq)) 6666 idle_h_nr_running = 1; 6667 6668 /* end evaluation on encountering a throttled cfs_rq */ 6669 if (cfs_rq_throttled(cfs_rq)) 6670 goto dequeue_throttle; 6671 6672 /* Don't dequeue parent if it has other entities besides us */ 6673 if (cfs_rq->load.weight) { 6674 /* Avoid re-evaluating load for this entity: */ 6675 se = parent_entity(se); 6676 /* 6677 * Bias pick_next to pick a task from this cfs_rq, as 6678 * p is sleeping when it is within its sched_slice. 6679 */ 6680 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6681 set_next_buddy(se); 6682 break; 6683 } 6684 flags |= DEQUEUE_SLEEP; 6685 } 6686 6687 for_each_sched_entity(se) { 6688 cfs_rq = cfs_rq_of(se); 6689 6690 update_load_avg(cfs_rq, se, UPDATE_TG); 6691 se_update_runnable(se); 6692 update_cfs_group(se); 6693 6694 cfs_rq->h_nr_running--; 6695 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6696 6697 if (cfs_rq_is_idle(cfs_rq)) 6698 idle_h_nr_running = 1; 6699 6700 /* end evaluation on encountering a throttled cfs_rq */ 6701 if (cfs_rq_throttled(cfs_rq)) 6702 goto dequeue_throttle; 6703 6704 } 6705 6706 /* At this point se is NULL and we are at root level*/ 6707 sub_nr_running(rq, 1); 6708 6709 /* balance early to pull high priority tasks */ 6710 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6711 rq->next_balance = jiffies; 6712 6713 dequeue_throttle: 6714 util_est_update(&rq->cfs, p, task_sleep); 6715 hrtick_update(rq); 6716 } 6717 6718 #ifdef CONFIG_SMP 6719 6720 /* Working cpumask for: load_balance, load_balance_newidle. */ 6721 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6722 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6723 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6724 6725 #ifdef CONFIG_NO_HZ_COMMON 6726 6727 static struct { 6728 cpumask_var_t idle_cpus_mask; 6729 atomic_t nr_cpus; 6730 int has_blocked; /* Idle CPUS has blocked load */ 6731 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6732 unsigned long next_balance; /* in jiffy units */ 6733 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6734 } nohz ____cacheline_aligned; 6735 6736 #endif /* CONFIG_NO_HZ_COMMON */ 6737 6738 static unsigned long cpu_load(struct rq *rq) 6739 { 6740 return cfs_rq_load_avg(&rq->cfs); 6741 } 6742 6743 /* 6744 * cpu_load_without - compute CPU load without any contributions from *p 6745 * @cpu: the CPU which load is requested 6746 * @p: the task which load should be discounted 6747 * 6748 * The load of a CPU is defined by the load of tasks currently enqueued on that 6749 * CPU as well as tasks which are currently sleeping after an execution on that 6750 * CPU. 6751 * 6752 * This method returns the load of the specified CPU by discounting the load of 6753 * the specified task, whenever the task is currently contributing to the CPU 6754 * load. 6755 */ 6756 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6757 { 6758 struct cfs_rq *cfs_rq; 6759 unsigned int load; 6760 6761 /* Task has no contribution or is new */ 6762 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6763 return cpu_load(rq); 6764 6765 cfs_rq = &rq->cfs; 6766 load = READ_ONCE(cfs_rq->avg.load_avg); 6767 6768 /* Discount task's util from CPU's util */ 6769 lsub_positive(&load, task_h_load(p)); 6770 6771 return load; 6772 } 6773 6774 static unsigned long cpu_runnable(struct rq *rq) 6775 { 6776 return cfs_rq_runnable_avg(&rq->cfs); 6777 } 6778 6779 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6780 { 6781 struct cfs_rq *cfs_rq; 6782 unsigned int runnable; 6783 6784 /* Task has no contribution or is new */ 6785 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6786 return cpu_runnable(rq); 6787 6788 cfs_rq = &rq->cfs; 6789 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6790 6791 /* Discount task's runnable from CPU's runnable */ 6792 lsub_positive(&runnable, p->se.avg.runnable_avg); 6793 6794 return runnable; 6795 } 6796 6797 static unsigned long capacity_of(int cpu) 6798 { 6799 return cpu_rq(cpu)->cpu_capacity; 6800 } 6801 6802 static void record_wakee(struct task_struct *p) 6803 { 6804 /* 6805 * Only decay a single time; tasks that have less then 1 wakeup per 6806 * jiffy will not have built up many flips. 6807 */ 6808 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6809 current->wakee_flips >>= 1; 6810 current->wakee_flip_decay_ts = jiffies; 6811 } 6812 6813 if (current->last_wakee != p) { 6814 current->last_wakee = p; 6815 current->wakee_flips++; 6816 } 6817 } 6818 6819 /* 6820 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6821 * 6822 * A waker of many should wake a different task than the one last awakened 6823 * at a frequency roughly N times higher than one of its wakees. 6824 * 6825 * In order to determine whether we should let the load spread vs consolidating 6826 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6827 * partner, and a factor of lls_size higher frequency in the other. 6828 * 6829 * With both conditions met, we can be relatively sure that the relationship is 6830 * non-monogamous, with partner count exceeding socket size. 6831 * 6832 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6833 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6834 * socket size. 6835 */ 6836 static int wake_wide(struct task_struct *p) 6837 { 6838 unsigned int master = current->wakee_flips; 6839 unsigned int slave = p->wakee_flips; 6840 int factor = __this_cpu_read(sd_llc_size); 6841 6842 if (master < slave) 6843 swap(master, slave); 6844 if (slave < factor || master < slave * factor) 6845 return 0; 6846 return 1; 6847 } 6848 6849 /* 6850 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6851 * soonest. For the purpose of speed we only consider the waking and previous 6852 * CPU. 6853 * 6854 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6855 * cache-affine and is (or will be) idle. 6856 * 6857 * wake_affine_weight() - considers the weight to reflect the average 6858 * scheduling latency of the CPUs. This seems to work 6859 * for the overloaded case. 6860 */ 6861 static int 6862 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6863 { 6864 /* 6865 * If this_cpu is idle, it implies the wakeup is from interrupt 6866 * context. Only allow the move if cache is shared. Otherwise an 6867 * interrupt intensive workload could force all tasks onto one 6868 * node depending on the IO topology or IRQ affinity settings. 6869 * 6870 * If the prev_cpu is idle and cache affine then avoid a migration. 6871 * There is no guarantee that the cache hot data from an interrupt 6872 * is more important than cache hot data on the prev_cpu and from 6873 * a cpufreq perspective, it's better to have higher utilisation 6874 * on one CPU. 6875 */ 6876 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6877 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6878 6879 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6880 return this_cpu; 6881 6882 if (available_idle_cpu(prev_cpu)) 6883 return prev_cpu; 6884 6885 return nr_cpumask_bits; 6886 } 6887 6888 static int 6889 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6890 int this_cpu, int prev_cpu, int sync) 6891 { 6892 s64 this_eff_load, prev_eff_load; 6893 unsigned long task_load; 6894 6895 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6896 6897 if (sync) { 6898 unsigned long current_load = task_h_load(current); 6899 6900 if (current_load > this_eff_load) 6901 return this_cpu; 6902 6903 this_eff_load -= current_load; 6904 } 6905 6906 task_load = task_h_load(p); 6907 6908 this_eff_load += task_load; 6909 if (sched_feat(WA_BIAS)) 6910 this_eff_load *= 100; 6911 this_eff_load *= capacity_of(prev_cpu); 6912 6913 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6914 prev_eff_load -= task_load; 6915 if (sched_feat(WA_BIAS)) 6916 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6917 prev_eff_load *= capacity_of(this_cpu); 6918 6919 /* 6920 * If sync, adjust the weight of prev_eff_load such that if 6921 * prev_eff == this_eff that select_idle_sibling() will consider 6922 * stacking the wakee on top of the waker if no other CPU is 6923 * idle. 6924 */ 6925 if (sync) 6926 prev_eff_load += 1; 6927 6928 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6929 } 6930 6931 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6932 int this_cpu, int prev_cpu, int sync) 6933 { 6934 int target = nr_cpumask_bits; 6935 6936 if (sched_feat(WA_IDLE)) 6937 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6938 6939 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6940 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6941 6942 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6943 if (target != this_cpu) 6944 return prev_cpu; 6945 6946 schedstat_inc(sd->ttwu_move_affine); 6947 schedstat_inc(p->stats.nr_wakeups_affine); 6948 return target; 6949 } 6950 6951 static struct sched_group * 6952 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6953 6954 /* 6955 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6956 */ 6957 static int 6958 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6959 { 6960 unsigned long load, min_load = ULONG_MAX; 6961 unsigned int min_exit_latency = UINT_MAX; 6962 u64 latest_idle_timestamp = 0; 6963 int least_loaded_cpu = this_cpu; 6964 int shallowest_idle_cpu = -1; 6965 int i; 6966 6967 /* Check if we have any choice: */ 6968 if (group->group_weight == 1) 6969 return cpumask_first(sched_group_span(group)); 6970 6971 /* Traverse only the allowed CPUs */ 6972 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6973 struct rq *rq = cpu_rq(i); 6974 6975 if (!sched_core_cookie_match(rq, p)) 6976 continue; 6977 6978 if (sched_idle_cpu(i)) 6979 return i; 6980 6981 if (available_idle_cpu(i)) { 6982 struct cpuidle_state *idle = idle_get_state(rq); 6983 if (idle && idle->exit_latency < min_exit_latency) { 6984 /* 6985 * We give priority to a CPU whose idle state 6986 * has the smallest exit latency irrespective 6987 * of any idle timestamp. 6988 */ 6989 min_exit_latency = idle->exit_latency; 6990 latest_idle_timestamp = rq->idle_stamp; 6991 shallowest_idle_cpu = i; 6992 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6993 rq->idle_stamp > latest_idle_timestamp) { 6994 /* 6995 * If equal or no active idle state, then 6996 * the most recently idled CPU might have 6997 * a warmer cache. 6998 */ 6999 latest_idle_timestamp = rq->idle_stamp; 7000 shallowest_idle_cpu = i; 7001 } 7002 } else if (shallowest_idle_cpu == -1) { 7003 load = cpu_load(cpu_rq(i)); 7004 if (load < min_load) { 7005 min_load = load; 7006 least_loaded_cpu = i; 7007 } 7008 } 7009 } 7010 7011 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7012 } 7013 7014 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 7015 int cpu, int prev_cpu, int sd_flag) 7016 { 7017 int new_cpu = cpu; 7018 7019 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7020 return prev_cpu; 7021 7022 /* 7023 * We need task's util for cpu_util_without, sync it up to 7024 * prev_cpu's last_update_time. 7025 */ 7026 if (!(sd_flag & SD_BALANCE_FORK)) 7027 sync_entity_load_avg(&p->se); 7028 7029 while (sd) { 7030 struct sched_group *group; 7031 struct sched_domain *tmp; 7032 int weight; 7033 7034 if (!(sd->flags & sd_flag)) { 7035 sd = sd->child; 7036 continue; 7037 } 7038 7039 group = find_idlest_group(sd, p, cpu); 7040 if (!group) { 7041 sd = sd->child; 7042 continue; 7043 } 7044 7045 new_cpu = find_idlest_group_cpu(group, p, cpu); 7046 if (new_cpu == cpu) { 7047 /* Now try balancing at a lower domain level of 'cpu': */ 7048 sd = sd->child; 7049 continue; 7050 } 7051 7052 /* Now try balancing at a lower domain level of 'new_cpu': */ 7053 cpu = new_cpu; 7054 weight = sd->span_weight; 7055 sd = NULL; 7056 for_each_domain(cpu, tmp) { 7057 if (weight <= tmp->span_weight) 7058 break; 7059 if (tmp->flags & sd_flag) 7060 sd = tmp; 7061 } 7062 } 7063 7064 return new_cpu; 7065 } 7066 7067 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7068 { 7069 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7070 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7071 return cpu; 7072 7073 return -1; 7074 } 7075 7076 #ifdef CONFIG_SCHED_SMT 7077 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7078 EXPORT_SYMBOL_GPL(sched_smt_present); 7079 7080 static inline void set_idle_cores(int cpu, int val) 7081 { 7082 struct sched_domain_shared *sds; 7083 7084 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7085 if (sds) 7086 WRITE_ONCE(sds->has_idle_cores, val); 7087 } 7088 7089 static inline bool test_idle_cores(int cpu) 7090 { 7091 struct sched_domain_shared *sds; 7092 7093 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7094 if (sds) 7095 return READ_ONCE(sds->has_idle_cores); 7096 7097 return false; 7098 } 7099 7100 /* 7101 * Scans the local SMT mask to see if the entire core is idle, and records this 7102 * information in sd_llc_shared->has_idle_cores. 7103 * 7104 * Since SMT siblings share all cache levels, inspecting this limited remote 7105 * state should be fairly cheap. 7106 */ 7107 void __update_idle_core(struct rq *rq) 7108 { 7109 int core = cpu_of(rq); 7110 int cpu; 7111 7112 rcu_read_lock(); 7113 if (test_idle_cores(core)) 7114 goto unlock; 7115 7116 for_each_cpu(cpu, cpu_smt_mask(core)) { 7117 if (cpu == core) 7118 continue; 7119 7120 if (!available_idle_cpu(cpu)) 7121 goto unlock; 7122 } 7123 7124 set_idle_cores(core, 1); 7125 unlock: 7126 rcu_read_unlock(); 7127 } 7128 7129 /* 7130 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7131 * there are no idle cores left in the system; tracked through 7132 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7133 */ 7134 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7135 { 7136 bool idle = true; 7137 int cpu; 7138 7139 for_each_cpu(cpu, cpu_smt_mask(core)) { 7140 if (!available_idle_cpu(cpu)) { 7141 idle = false; 7142 if (*idle_cpu == -1) { 7143 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 7144 *idle_cpu = cpu; 7145 break; 7146 } 7147 continue; 7148 } 7149 break; 7150 } 7151 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 7152 *idle_cpu = cpu; 7153 } 7154 7155 if (idle) 7156 return core; 7157 7158 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7159 return -1; 7160 } 7161 7162 /* 7163 * Scan the local SMT mask for idle CPUs. 7164 */ 7165 static int select_idle_smt(struct task_struct *p, int target) 7166 { 7167 int cpu; 7168 7169 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7170 if (cpu == target) 7171 continue; 7172 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7173 return cpu; 7174 } 7175 7176 return -1; 7177 } 7178 7179 #else /* CONFIG_SCHED_SMT */ 7180 7181 static inline void set_idle_cores(int cpu, int val) 7182 { 7183 } 7184 7185 static inline bool test_idle_cores(int cpu) 7186 { 7187 return false; 7188 } 7189 7190 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7191 { 7192 return __select_idle_cpu(core, p); 7193 } 7194 7195 static inline int select_idle_smt(struct task_struct *p, int target) 7196 { 7197 return -1; 7198 } 7199 7200 #endif /* CONFIG_SCHED_SMT */ 7201 7202 /* 7203 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7204 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7205 * average idle time for this rq (as found in rq->avg_idle). 7206 */ 7207 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7208 { 7209 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7210 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7211 struct sched_domain_shared *sd_share; 7212 7213 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7214 7215 if (sched_feat(SIS_UTIL)) { 7216 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7217 if (sd_share) { 7218 /* because !--nr is the condition to stop scan */ 7219 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7220 /* overloaded LLC is unlikely to have idle cpu/core */ 7221 if (nr == 1) 7222 return -1; 7223 } 7224 } 7225 7226 if (static_branch_unlikely(&sched_cluster_active)) { 7227 struct sched_group *sg = sd->groups; 7228 7229 if (sg->flags & SD_CLUSTER) { 7230 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7231 if (!cpumask_test_cpu(cpu, cpus)) 7232 continue; 7233 7234 if (has_idle_core) { 7235 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7236 if ((unsigned int)i < nr_cpumask_bits) 7237 return i; 7238 } else { 7239 if (--nr <= 0) 7240 return -1; 7241 idle_cpu = __select_idle_cpu(cpu, p); 7242 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7243 return idle_cpu; 7244 } 7245 } 7246 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7247 } 7248 } 7249 7250 for_each_cpu_wrap(cpu, cpus, target + 1) { 7251 if (has_idle_core) { 7252 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7253 if ((unsigned int)i < nr_cpumask_bits) 7254 return i; 7255 7256 } else { 7257 if (--nr <= 0) 7258 return -1; 7259 idle_cpu = __select_idle_cpu(cpu, p); 7260 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7261 break; 7262 } 7263 } 7264 7265 if (has_idle_core) 7266 set_idle_cores(target, false); 7267 7268 return idle_cpu; 7269 } 7270 7271 /* 7272 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7273 * the task fits. If no CPU is big enough, but there are idle ones, try to 7274 * maximize capacity. 7275 */ 7276 static int 7277 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7278 { 7279 unsigned long task_util, util_min, util_max, best_cap = 0; 7280 int fits, best_fits = 0; 7281 int cpu, best_cpu = -1; 7282 struct cpumask *cpus; 7283 7284 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7285 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7286 7287 task_util = task_util_est(p); 7288 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7289 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7290 7291 for_each_cpu_wrap(cpu, cpus, target) { 7292 unsigned long cpu_cap = capacity_of(cpu); 7293 7294 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7295 continue; 7296 7297 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7298 7299 /* This CPU fits with all requirements */ 7300 if (fits > 0) 7301 return cpu; 7302 /* 7303 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7304 * Look for the CPU with best capacity. 7305 */ 7306 else if (fits < 0) 7307 cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu)); 7308 7309 /* 7310 * First, select CPU which fits better (-1 being better than 0). 7311 * Then, select the one with best capacity at same level. 7312 */ 7313 if ((fits < best_fits) || 7314 ((fits == best_fits) && (cpu_cap > best_cap))) { 7315 best_cap = cpu_cap; 7316 best_cpu = cpu; 7317 best_fits = fits; 7318 } 7319 } 7320 7321 return best_cpu; 7322 } 7323 7324 static inline bool asym_fits_cpu(unsigned long util, 7325 unsigned long util_min, 7326 unsigned long util_max, 7327 int cpu) 7328 { 7329 if (sched_asym_cpucap_active()) 7330 /* 7331 * Return true only if the cpu fully fits the task requirements 7332 * which include the utilization and the performance hints. 7333 */ 7334 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7335 7336 return true; 7337 } 7338 7339 /* 7340 * Try and locate an idle core/thread in the LLC cache domain. 7341 */ 7342 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7343 { 7344 bool has_idle_core = false; 7345 struct sched_domain *sd; 7346 unsigned long task_util, util_min, util_max; 7347 int i, recent_used_cpu, prev_aff = -1; 7348 7349 /* 7350 * On asymmetric system, update task utilization because we will check 7351 * that the task fits with cpu's capacity. 7352 */ 7353 if (sched_asym_cpucap_active()) { 7354 sync_entity_load_avg(&p->se); 7355 task_util = task_util_est(p); 7356 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7357 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7358 } 7359 7360 /* 7361 * per-cpu select_rq_mask usage 7362 */ 7363 lockdep_assert_irqs_disabled(); 7364 7365 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7366 asym_fits_cpu(task_util, util_min, util_max, target)) 7367 return target; 7368 7369 /* 7370 * If the previous CPU is cache affine and idle, don't be stupid: 7371 */ 7372 if (prev != target && cpus_share_cache(prev, target) && 7373 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7374 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7375 7376 if (!static_branch_unlikely(&sched_cluster_active) || 7377 cpus_share_resources(prev, target)) 7378 return prev; 7379 7380 prev_aff = prev; 7381 } 7382 7383 /* 7384 * Allow a per-cpu kthread to stack with the wakee if the 7385 * kworker thread and the tasks previous CPUs are the same. 7386 * The assumption is that the wakee queued work for the 7387 * per-cpu kthread that is now complete and the wakeup is 7388 * essentially a sync wakeup. An obvious example of this 7389 * pattern is IO completions. 7390 */ 7391 if (is_per_cpu_kthread(current) && 7392 in_task() && 7393 prev == smp_processor_id() && 7394 this_rq()->nr_running <= 1 && 7395 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7396 return prev; 7397 } 7398 7399 /* Check a recently used CPU as a potential idle candidate: */ 7400 recent_used_cpu = p->recent_used_cpu; 7401 p->recent_used_cpu = prev; 7402 if (recent_used_cpu != prev && 7403 recent_used_cpu != target && 7404 cpus_share_cache(recent_used_cpu, target) && 7405 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7406 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7407 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7408 7409 if (!static_branch_unlikely(&sched_cluster_active) || 7410 cpus_share_resources(recent_used_cpu, target)) 7411 return recent_used_cpu; 7412 7413 } else { 7414 recent_used_cpu = -1; 7415 } 7416 7417 /* 7418 * For asymmetric CPU capacity systems, our domain of interest is 7419 * sd_asym_cpucapacity rather than sd_llc. 7420 */ 7421 if (sched_asym_cpucap_active()) { 7422 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7423 /* 7424 * On an asymmetric CPU capacity system where an exclusive 7425 * cpuset defines a symmetric island (i.e. one unique 7426 * capacity_orig value through the cpuset), the key will be set 7427 * but the CPUs within that cpuset will not have a domain with 7428 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7429 * capacity path. 7430 */ 7431 if (sd) { 7432 i = select_idle_capacity(p, sd, target); 7433 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7434 } 7435 } 7436 7437 sd = rcu_dereference(per_cpu(sd_llc, target)); 7438 if (!sd) 7439 return target; 7440 7441 if (sched_smt_active()) { 7442 has_idle_core = test_idle_cores(target); 7443 7444 if (!has_idle_core && cpus_share_cache(prev, target)) { 7445 i = select_idle_smt(p, prev); 7446 if ((unsigned int)i < nr_cpumask_bits) 7447 return i; 7448 } 7449 } 7450 7451 i = select_idle_cpu(p, sd, has_idle_core, target); 7452 if ((unsigned)i < nr_cpumask_bits) 7453 return i; 7454 7455 /* 7456 * For cluster machines which have lower sharing cache like L2 or 7457 * LLC Tag, we tend to find an idle CPU in the target's cluster 7458 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7459 * use them if possible when no idle CPU found in select_idle_cpu(). 7460 */ 7461 if ((unsigned int)prev_aff < nr_cpumask_bits) 7462 return prev_aff; 7463 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7464 return recent_used_cpu; 7465 7466 return target; 7467 } 7468 7469 /** 7470 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7471 * @cpu: the CPU to get the utilization for 7472 * @p: task for which the CPU utilization should be predicted or NULL 7473 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7474 * @boost: 1 to enable boosting, otherwise 0 7475 * 7476 * The unit of the return value must be the same as the one of CPU capacity 7477 * so that CPU utilization can be compared with CPU capacity. 7478 * 7479 * CPU utilization is the sum of running time of runnable tasks plus the 7480 * recent utilization of currently non-runnable tasks on that CPU. 7481 * It represents the amount of CPU capacity currently used by CFS tasks in 7482 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7483 * capacity at f_max. 7484 * 7485 * The estimated CPU utilization is defined as the maximum between CPU 7486 * utilization and sum of the estimated utilization of the currently 7487 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7488 * previously-executed tasks, which helps better deduce how busy a CPU will 7489 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7490 * of such a task would be significantly decayed at this point of time. 7491 * 7492 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7493 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7494 * utilization. Boosting is implemented in cpu_util() so that internal 7495 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7496 * latter via cpu_util_cfs_boost(). 7497 * 7498 * CPU utilization can be higher than the current CPU capacity 7499 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7500 * of rounding errors as well as task migrations or wakeups of new tasks. 7501 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7502 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7503 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7504 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7505 * though since this is useful for predicting the CPU capacity required 7506 * after task migrations (scheduler-driven DVFS). 7507 * 7508 * Return: (Boosted) (estimated) utilization for the specified CPU. 7509 */ 7510 static unsigned long 7511 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7512 { 7513 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7514 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7515 unsigned long runnable; 7516 7517 if (boost) { 7518 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7519 util = max(util, runnable); 7520 } 7521 7522 /* 7523 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7524 * contribution. If @p migrates from another CPU to @cpu add its 7525 * contribution. In all the other cases @cpu is not impacted by the 7526 * migration so its util_avg is already correct. 7527 */ 7528 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7529 lsub_positive(&util, task_util(p)); 7530 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7531 util += task_util(p); 7532 7533 if (sched_feat(UTIL_EST)) { 7534 unsigned long util_est; 7535 7536 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7537 7538 /* 7539 * During wake-up @p isn't enqueued yet and doesn't contribute 7540 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7541 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7542 * has been enqueued. 7543 * 7544 * During exec (@dst_cpu = -1) @p is enqueued and does 7545 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7546 * Remove it to "simulate" cpu_util without @p's contribution. 7547 * 7548 * Despite the task_on_rq_queued(@p) check there is still a 7549 * small window for a possible race when an exec 7550 * select_task_rq_fair() races with LB's detach_task(). 7551 * 7552 * detach_task() 7553 * deactivate_task() 7554 * p->on_rq = TASK_ON_RQ_MIGRATING; 7555 * -------------------------------- A 7556 * dequeue_task() \ 7557 * dequeue_task_fair() + Race Time 7558 * util_est_dequeue() / 7559 * -------------------------------- B 7560 * 7561 * The additional check "current == p" is required to further 7562 * reduce the race window. 7563 */ 7564 if (dst_cpu == cpu) 7565 util_est += _task_util_est(p); 7566 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7567 lsub_positive(&util_est, _task_util_est(p)); 7568 7569 util = max(util, util_est); 7570 } 7571 7572 return min(util, arch_scale_cpu_capacity(cpu)); 7573 } 7574 7575 unsigned long cpu_util_cfs(int cpu) 7576 { 7577 return cpu_util(cpu, NULL, -1, 0); 7578 } 7579 7580 unsigned long cpu_util_cfs_boost(int cpu) 7581 { 7582 return cpu_util(cpu, NULL, -1, 1); 7583 } 7584 7585 /* 7586 * cpu_util_without: compute cpu utilization without any contributions from *p 7587 * @cpu: the CPU which utilization is requested 7588 * @p: the task which utilization should be discounted 7589 * 7590 * The utilization of a CPU is defined by the utilization of tasks currently 7591 * enqueued on that CPU as well as tasks which are currently sleeping after an 7592 * execution on that CPU. 7593 * 7594 * This method returns the utilization of the specified CPU by discounting the 7595 * utilization of the specified task, whenever the task is currently 7596 * contributing to the CPU utilization. 7597 */ 7598 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7599 { 7600 /* Task has no contribution or is new */ 7601 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7602 p = NULL; 7603 7604 return cpu_util(cpu, p, -1, 0); 7605 } 7606 7607 /* 7608 * energy_env - Utilization landscape for energy estimation. 7609 * @task_busy_time: Utilization contribution by the task for which we test the 7610 * placement. Given by eenv_task_busy_time(). 7611 * @pd_busy_time: Utilization of the whole perf domain without the task 7612 * contribution. Given by eenv_pd_busy_time(). 7613 * @cpu_cap: Maximum CPU capacity for the perf domain. 7614 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7615 */ 7616 struct energy_env { 7617 unsigned long task_busy_time; 7618 unsigned long pd_busy_time; 7619 unsigned long cpu_cap; 7620 unsigned long pd_cap; 7621 }; 7622 7623 /* 7624 * Compute the task busy time for compute_energy(). This time cannot be 7625 * injected directly into effective_cpu_util() because of the IRQ scaling. 7626 * The latter only makes sense with the most recent CPUs where the task has 7627 * run. 7628 */ 7629 static inline void eenv_task_busy_time(struct energy_env *eenv, 7630 struct task_struct *p, int prev_cpu) 7631 { 7632 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7633 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7634 7635 if (unlikely(irq >= max_cap)) 7636 busy_time = max_cap; 7637 else 7638 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7639 7640 eenv->task_busy_time = busy_time; 7641 } 7642 7643 /* 7644 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7645 * utilization for each @pd_cpus, it however doesn't take into account 7646 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7647 * scale the EM reported power consumption at the (eventually clamped) 7648 * cpu_capacity. 7649 * 7650 * The contribution of the task @p for which we want to estimate the 7651 * energy cost is removed (by cpu_util()) and must be calculated 7652 * separately (see eenv_task_busy_time). This ensures: 7653 * 7654 * - A stable PD utilization, no matter which CPU of that PD we want to place 7655 * the task on. 7656 * 7657 * - A fair comparison between CPUs as the task contribution (task_util()) 7658 * will always be the same no matter which CPU utilization we rely on 7659 * (util_avg or util_est). 7660 * 7661 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7662 * exceed @eenv->pd_cap. 7663 */ 7664 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7665 struct cpumask *pd_cpus, 7666 struct task_struct *p) 7667 { 7668 unsigned long busy_time = 0; 7669 int cpu; 7670 7671 for_each_cpu(cpu, pd_cpus) { 7672 unsigned long util = cpu_util(cpu, p, -1, 0); 7673 7674 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7675 } 7676 7677 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7678 } 7679 7680 /* 7681 * Compute the maximum utilization for compute_energy() when the task @p 7682 * is placed on the cpu @dst_cpu. 7683 * 7684 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7685 * exceed @eenv->cpu_cap. 7686 */ 7687 static inline unsigned long 7688 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7689 struct task_struct *p, int dst_cpu) 7690 { 7691 unsigned long max_util = 0; 7692 int cpu; 7693 7694 for_each_cpu(cpu, pd_cpus) { 7695 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7696 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7697 unsigned long eff_util; 7698 7699 /* 7700 * Performance domain frequency: utilization clamping 7701 * must be considered since it affects the selection 7702 * of the performance domain frequency. 7703 * NOTE: in case RT tasks are running, by default the 7704 * FREQUENCY_UTIL's utilization can be max OPP. 7705 */ 7706 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7707 max_util = max(max_util, eff_util); 7708 } 7709 7710 return min(max_util, eenv->cpu_cap); 7711 } 7712 7713 /* 7714 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7715 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7716 * contribution is ignored. 7717 */ 7718 static inline unsigned long 7719 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7720 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7721 { 7722 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7723 unsigned long busy_time = eenv->pd_busy_time; 7724 unsigned long energy; 7725 7726 if (dst_cpu >= 0) 7727 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7728 7729 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7730 7731 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 7732 7733 return energy; 7734 } 7735 7736 /* 7737 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7738 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7739 * spare capacity in each performance domain and uses it as a potential 7740 * candidate to execute the task. Then, it uses the Energy Model to figure 7741 * out which of the CPU candidates is the most energy-efficient. 7742 * 7743 * The rationale for this heuristic is as follows. In a performance domain, 7744 * all the most energy efficient CPU candidates (according to the Energy 7745 * Model) are those for which we'll request a low frequency. When there are 7746 * several CPUs for which the frequency request will be the same, we don't 7747 * have enough data to break the tie between them, because the Energy Model 7748 * only includes active power costs. With this model, if we assume that 7749 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7750 * the maximum spare capacity in a performance domain is guaranteed to be among 7751 * the best candidates of the performance domain. 7752 * 7753 * In practice, it could be preferable from an energy standpoint to pack 7754 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7755 * but that could also hurt our chances to go cluster idle, and we have no 7756 * ways to tell with the current Energy Model if this is actually a good 7757 * idea or not. So, find_energy_efficient_cpu() basically favors 7758 * cluster-packing, and spreading inside a cluster. That should at least be 7759 * a good thing for latency, and this is consistent with the idea that most 7760 * of the energy savings of EAS come from the asymmetry of the system, and 7761 * not so much from breaking the tie between identical CPUs. That's also the 7762 * reason why EAS is enabled in the topology code only for systems where 7763 * SD_ASYM_CPUCAPACITY is set. 7764 * 7765 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7766 * they don't have any useful utilization data yet and it's not possible to 7767 * forecast their impact on energy consumption. Consequently, they will be 7768 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7769 * to be energy-inefficient in some use-cases. The alternative would be to 7770 * bias new tasks towards specific types of CPUs first, or to try to infer 7771 * their util_avg from the parent task, but those heuristics could hurt 7772 * other use-cases too. So, until someone finds a better way to solve this, 7773 * let's keep things simple by re-using the existing slow path. 7774 */ 7775 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7776 { 7777 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7778 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7779 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7780 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7781 struct root_domain *rd = this_rq()->rd; 7782 int cpu, best_energy_cpu, target = -1; 7783 int prev_fits = -1, best_fits = -1; 7784 unsigned long best_thermal_cap = 0; 7785 unsigned long prev_thermal_cap = 0; 7786 struct sched_domain *sd; 7787 struct perf_domain *pd; 7788 struct energy_env eenv; 7789 7790 rcu_read_lock(); 7791 pd = rcu_dereference(rd->pd); 7792 if (!pd || READ_ONCE(rd->overutilized)) 7793 goto unlock; 7794 7795 /* 7796 * Energy-aware wake-up happens on the lowest sched_domain starting 7797 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7798 */ 7799 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7800 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7801 sd = sd->parent; 7802 if (!sd) 7803 goto unlock; 7804 7805 target = prev_cpu; 7806 7807 sync_entity_load_avg(&p->se); 7808 if (!task_util_est(p) && p_util_min == 0) 7809 goto unlock; 7810 7811 eenv_task_busy_time(&eenv, p, prev_cpu); 7812 7813 for (; pd; pd = pd->next) { 7814 unsigned long util_min = p_util_min, util_max = p_util_max; 7815 unsigned long cpu_cap, cpu_thermal_cap, util; 7816 long prev_spare_cap = -1, max_spare_cap = -1; 7817 unsigned long rq_util_min, rq_util_max; 7818 unsigned long cur_delta, base_energy; 7819 int max_spare_cap_cpu = -1; 7820 int fits, max_fits = -1; 7821 7822 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7823 7824 if (cpumask_empty(cpus)) 7825 continue; 7826 7827 /* Account thermal pressure for the energy estimation */ 7828 cpu = cpumask_first(cpus); 7829 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7830 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7831 7832 eenv.cpu_cap = cpu_thermal_cap; 7833 eenv.pd_cap = 0; 7834 7835 for_each_cpu(cpu, cpus) { 7836 struct rq *rq = cpu_rq(cpu); 7837 7838 eenv.pd_cap += cpu_thermal_cap; 7839 7840 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7841 continue; 7842 7843 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7844 continue; 7845 7846 util = cpu_util(cpu, p, cpu, 0); 7847 cpu_cap = capacity_of(cpu); 7848 7849 /* 7850 * Skip CPUs that cannot satisfy the capacity request. 7851 * IOW, placing the task there would make the CPU 7852 * overutilized. Take uclamp into account to see how 7853 * much capacity we can get out of the CPU; this is 7854 * aligned with sched_cpu_util(). 7855 */ 7856 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7857 /* 7858 * Open code uclamp_rq_util_with() except for 7859 * the clamp() part. Ie: apply max aggregation 7860 * only. util_fits_cpu() logic requires to 7861 * operate on non clamped util but must use the 7862 * max-aggregated uclamp_{min, max}. 7863 */ 7864 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7865 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7866 7867 util_min = max(rq_util_min, p_util_min); 7868 util_max = max(rq_util_max, p_util_max); 7869 } 7870 7871 fits = util_fits_cpu(util, util_min, util_max, cpu); 7872 if (!fits) 7873 continue; 7874 7875 lsub_positive(&cpu_cap, util); 7876 7877 if (cpu == prev_cpu) { 7878 /* Always use prev_cpu as a candidate. */ 7879 prev_spare_cap = cpu_cap; 7880 prev_fits = fits; 7881 } else if ((fits > max_fits) || 7882 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 7883 /* 7884 * Find the CPU with the maximum spare capacity 7885 * among the remaining CPUs in the performance 7886 * domain. 7887 */ 7888 max_spare_cap = cpu_cap; 7889 max_spare_cap_cpu = cpu; 7890 max_fits = fits; 7891 } 7892 } 7893 7894 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 7895 continue; 7896 7897 eenv_pd_busy_time(&eenv, cpus, p); 7898 /* Compute the 'base' energy of the pd, without @p */ 7899 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7900 7901 /* Evaluate the energy impact of using prev_cpu. */ 7902 if (prev_spare_cap > -1) { 7903 prev_delta = compute_energy(&eenv, pd, cpus, p, 7904 prev_cpu); 7905 /* CPU utilization has changed */ 7906 if (prev_delta < base_energy) 7907 goto unlock; 7908 prev_delta -= base_energy; 7909 prev_thermal_cap = cpu_thermal_cap; 7910 best_delta = min(best_delta, prev_delta); 7911 } 7912 7913 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7914 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7915 /* Current best energy cpu fits better */ 7916 if (max_fits < best_fits) 7917 continue; 7918 7919 /* 7920 * Both don't fit performance hint (i.e. uclamp_min) 7921 * but best energy cpu has better capacity. 7922 */ 7923 if ((max_fits < 0) && 7924 (cpu_thermal_cap <= best_thermal_cap)) 7925 continue; 7926 7927 cur_delta = compute_energy(&eenv, pd, cpus, p, 7928 max_spare_cap_cpu); 7929 /* CPU utilization has changed */ 7930 if (cur_delta < base_energy) 7931 goto unlock; 7932 cur_delta -= base_energy; 7933 7934 /* 7935 * Both fit for the task but best energy cpu has lower 7936 * energy impact. 7937 */ 7938 if ((max_fits > 0) && (best_fits > 0) && 7939 (cur_delta >= best_delta)) 7940 continue; 7941 7942 best_delta = cur_delta; 7943 best_energy_cpu = max_spare_cap_cpu; 7944 best_fits = max_fits; 7945 best_thermal_cap = cpu_thermal_cap; 7946 } 7947 } 7948 rcu_read_unlock(); 7949 7950 if ((best_fits > prev_fits) || 7951 ((best_fits > 0) && (best_delta < prev_delta)) || 7952 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 7953 target = best_energy_cpu; 7954 7955 return target; 7956 7957 unlock: 7958 rcu_read_unlock(); 7959 7960 return target; 7961 } 7962 7963 /* 7964 * select_task_rq_fair: Select target runqueue for the waking task in domains 7965 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7966 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7967 * 7968 * Balances load by selecting the idlest CPU in the idlest group, or under 7969 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7970 * 7971 * Returns the target CPU number. 7972 */ 7973 static int 7974 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7975 { 7976 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7977 struct sched_domain *tmp, *sd = NULL; 7978 int cpu = smp_processor_id(); 7979 int new_cpu = prev_cpu; 7980 int want_affine = 0; 7981 /* SD_flags and WF_flags share the first nibble */ 7982 int sd_flag = wake_flags & 0xF; 7983 7984 /* 7985 * required for stable ->cpus_allowed 7986 */ 7987 lockdep_assert_held(&p->pi_lock); 7988 if (wake_flags & WF_TTWU) { 7989 record_wakee(p); 7990 7991 if ((wake_flags & WF_CURRENT_CPU) && 7992 cpumask_test_cpu(cpu, p->cpus_ptr)) 7993 return cpu; 7994 7995 if (sched_energy_enabled()) { 7996 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7997 if (new_cpu >= 0) 7998 return new_cpu; 7999 new_cpu = prev_cpu; 8000 } 8001 8002 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8003 } 8004 8005 rcu_read_lock(); 8006 for_each_domain(cpu, tmp) { 8007 /* 8008 * If both 'cpu' and 'prev_cpu' are part of this domain, 8009 * cpu is a valid SD_WAKE_AFFINE target. 8010 */ 8011 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8012 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8013 if (cpu != prev_cpu) 8014 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8015 8016 sd = NULL; /* Prefer wake_affine over balance flags */ 8017 break; 8018 } 8019 8020 /* 8021 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8022 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8023 * will usually go to the fast path. 8024 */ 8025 if (tmp->flags & sd_flag) 8026 sd = tmp; 8027 else if (!want_affine) 8028 break; 8029 } 8030 8031 if (unlikely(sd)) { 8032 /* Slow path */ 8033 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 8034 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8035 /* Fast path */ 8036 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8037 } 8038 rcu_read_unlock(); 8039 8040 return new_cpu; 8041 } 8042 8043 /* 8044 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8045 * cfs_rq_of(p) references at time of call are still valid and identify the 8046 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8047 */ 8048 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8049 { 8050 struct sched_entity *se = &p->se; 8051 8052 if (!task_on_rq_migrating(p)) { 8053 remove_entity_load_avg(se); 8054 8055 /* 8056 * Here, the task's PELT values have been updated according to 8057 * the current rq's clock. But if that clock hasn't been 8058 * updated in a while, a substantial idle time will be missed, 8059 * leading to an inflation after wake-up on the new rq. 8060 * 8061 * Estimate the missing time from the cfs_rq last_update_time 8062 * and update sched_avg to improve the PELT continuity after 8063 * migration. 8064 */ 8065 migrate_se_pelt_lag(se); 8066 } 8067 8068 /* Tell new CPU we are migrated */ 8069 se->avg.last_update_time = 0; 8070 8071 update_scan_period(p, new_cpu); 8072 } 8073 8074 static void task_dead_fair(struct task_struct *p) 8075 { 8076 remove_entity_load_avg(&p->se); 8077 } 8078 8079 static int 8080 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8081 { 8082 if (rq->nr_running) 8083 return 1; 8084 8085 return newidle_balance(rq, rf) != 0; 8086 } 8087 #endif /* CONFIG_SMP */ 8088 8089 static void set_next_buddy(struct sched_entity *se) 8090 { 8091 for_each_sched_entity(se) { 8092 if (SCHED_WARN_ON(!se->on_rq)) 8093 return; 8094 if (se_is_idle(se)) 8095 return; 8096 cfs_rq_of(se)->next = se; 8097 } 8098 } 8099 8100 /* 8101 * Preempt the current task with a newly woken task if needed: 8102 */ 8103 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8104 { 8105 struct task_struct *curr = rq->curr; 8106 struct sched_entity *se = &curr->se, *pse = &p->se; 8107 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8108 int next_buddy_marked = 0; 8109 int cse_is_idle, pse_is_idle; 8110 8111 if (unlikely(se == pse)) 8112 return; 8113 8114 /* 8115 * This is possible from callers such as attach_tasks(), in which we 8116 * unconditionally wakeup_preempt() after an enqueue (which may have 8117 * lead to a throttle). This both saves work and prevents false 8118 * next-buddy nomination below. 8119 */ 8120 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8121 return; 8122 8123 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8124 set_next_buddy(pse); 8125 next_buddy_marked = 1; 8126 } 8127 8128 /* 8129 * We can come here with TIF_NEED_RESCHED already set from new task 8130 * wake up path. 8131 * 8132 * Note: this also catches the edge-case of curr being in a throttled 8133 * group (e.g. via set_curr_task), since update_curr() (in the 8134 * enqueue of curr) will have resulted in resched being set. This 8135 * prevents us from potentially nominating it as a false LAST_BUDDY 8136 * below. 8137 */ 8138 if (test_tsk_need_resched(curr)) 8139 return; 8140 8141 /* Idle tasks are by definition preempted by non-idle tasks. */ 8142 if (unlikely(task_has_idle_policy(curr)) && 8143 likely(!task_has_idle_policy(p))) 8144 goto preempt; 8145 8146 /* 8147 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8148 * is driven by the tick): 8149 */ 8150 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8151 return; 8152 8153 find_matching_se(&se, &pse); 8154 WARN_ON_ONCE(!pse); 8155 8156 cse_is_idle = se_is_idle(se); 8157 pse_is_idle = se_is_idle(pse); 8158 8159 /* 8160 * Preempt an idle group in favor of a non-idle group (and don't preempt 8161 * in the inverse case). 8162 */ 8163 if (cse_is_idle && !pse_is_idle) 8164 goto preempt; 8165 if (cse_is_idle != pse_is_idle) 8166 return; 8167 8168 cfs_rq = cfs_rq_of(se); 8169 update_curr(cfs_rq); 8170 8171 /* 8172 * XXX pick_eevdf(cfs_rq) != se ? 8173 */ 8174 if (pick_eevdf(cfs_rq) == pse) 8175 goto preempt; 8176 8177 return; 8178 8179 preempt: 8180 resched_curr(rq); 8181 } 8182 8183 #ifdef CONFIG_SMP 8184 static struct task_struct *pick_task_fair(struct rq *rq) 8185 { 8186 struct sched_entity *se; 8187 struct cfs_rq *cfs_rq; 8188 8189 again: 8190 cfs_rq = &rq->cfs; 8191 if (!cfs_rq->nr_running) 8192 return NULL; 8193 8194 do { 8195 struct sched_entity *curr = cfs_rq->curr; 8196 8197 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8198 if (curr) { 8199 if (curr->on_rq) 8200 update_curr(cfs_rq); 8201 else 8202 curr = NULL; 8203 8204 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8205 goto again; 8206 } 8207 8208 se = pick_next_entity(cfs_rq); 8209 cfs_rq = group_cfs_rq(se); 8210 } while (cfs_rq); 8211 8212 return task_of(se); 8213 } 8214 #endif 8215 8216 struct task_struct * 8217 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8218 { 8219 struct cfs_rq *cfs_rq = &rq->cfs; 8220 struct sched_entity *se; 8221 struct task_struct *p; 8222 int new_tasks; 8223 8224 again: 8225 if (!sched_fair_runnable(rq)) 8226 goto idle; 8227 8228 #ifdef CONFIG_FAIR_GROUP_SCHED 8229 if (!prev || prev->sched_class != &fair_sched_class) 8230 goto simple; 8231 8232 /* 8233 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8234 * likely that a next task is from the same cgroup as the current. 8235 * 8236 * Therefore attempt to avoid putting and setting the entire cgroup 8237 * hierarchy, only change the part that actually changes. 8238 */ 8239 8240 do { 8241 struct sched_entity *curr = cfs_rq->curr; 8242 8243 /* 8244 * Since we got here without doing put_prev_entity() we also 8245 * have to consider cfs_rq->curr. If it is still a runnable 8246 * entity, update_curr() will update its vruntime, otherwise 8247 * forget we've ever seen it. 8248 */ 8249 if (curr) { 8250 if (curr->on_rq) 8251 update_curr(cfs_rq); 8252 else 8253 curr = NULL; 8254 8255 /* 8256 * This call to check_cfs_rq_runtime() will do the 8257 * throttle and dequeue its entity in the parent(s). 8258 * Therefore the nr_running test will indeed 8259 * be correct. 8260 */ 8261 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8262 cfs_rq = &rq->cfs; 8263 8264 if (!cfs_rq->nr_running) 8265 goto idle; 8266 8267 goto simple; 8268 } 8269 } 8270 8271 se = pick_next_entity(cfs_rq); 8272 cfs_rq = group_cfs_rq(se); 8273 } while (cfs_rq); 8274 8275 p = task_of(se); 8276 8277 /* 8278 * Since we haven't yet done put_prev_entity and if the selected task 8279 * is a different task than we started out with, try and touch the 8280 * least amount of cfs_rqs. 8281 */ 8282 if (prev != p) { 8283 struct sched_entity *pse = &prev->se; 8284 8285 while (!(cfs_rq = is_same_group(se, pse))) { 8286 int se_depth = se->depth; 8287 int pse_depth = pse->depth; 8288 8289 if (se_depth <= pse_depth) { 8290 put_prev_entity(cfs_rq_of(pse), pse); 8291 pse = parent_entity(pse); 8292 } 8293 if (se_depth >= pse_depth) { 8294 set_next_entity(cfs_rq_of(se), se); 8295 se = parent_entity(se); 8296 } 8297 } 8298 8299 put_prev_entity(cfs_rq, pse); 8300 set_next_entity(cfs_rq, se); 8301 } 8302 8303 goto done; 8304 simple: 8305 #endif 8306 if (prev) 8307 put_prev_task(rq, prev); 8308 8309 do { 8310 se = pick_next_entity(cfs_rq); 8311 set_next_entity(cfs_rq, se); 8312 cfs_rq = group_cfs_rq(se); 8313 } while (cfs_rq); 8314 8315 p = task_of(se); 8316 8317 done: __maybe_unused; 8318 #ifdef CONFIG_SMP 8319 /* 8320 * Move the next running task to the front of 8321 * the list, so our cfs_tasks list becomes MRU 8322 * one. 8323 */ 8324 list_move(&p->se.group_node, &rq->cfs_tasks); 8325 #endif 8326 8327 if (hrtick_enabled_fair(rq)) 8328 hrtick_start_fair(rq, p); 8329 8330 update_misfit_status(p, rq); 8331 sched_fair_update_stop_tick(rq, p); 8332 8333 return p; 8334 8335 idle: 8336 if (!rf) 8337 return NULL; 8338 8339 new_tasks = newidle_balance(rq, rf); 8340 8341 /* 8342 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8343 * possible for any higher priority task to appear. In that case we 8344 * must re-start the pick_next_entity() loop. 8345 */ 8346 if (new_tasks < 0) 8347 return RETRY_TASK; 8348 8349 if (new_tasks > 0) 8350 goto again; 8351 8352 /* 8353 * rq is about to be idle, check if we need to update the 8354 * lost_idle_time of clock_pelt 8355 */ 8356 update_idle_rq_clock_pelt(rq); 8357 8358 return NULL; 8359 } 8360 8361 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8362 { 8363 return pick_next_task_fair(rq, NULL, NULL); 8364 } 8365 8366 /* 8367 * Account for a descheduled task: 8368 */ 8369 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8370 { 8371 struct sched_entity *se = &prev->se; 8372 struct cfs_rq *cfs_rq; 8373 8374 for_each_sched_entity(se) { 8375 cfs_rq = cfs_rq_of(se); 8376 put_prev_entity(cfs_rq, se); 8377 } 8378 } 8379 8380 /* 8381 * sched_yield() is very simple 8382 */ 8383 static void yield_task_fair(struct rq *rq) 8384 { 8385 struct task_struct *curr = rq->curr; 8386 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8387 struct sched_entity *se = &curr->se; 8388 8389 /* 8390 * Are we the only task in the tree? 8391 */ 8392 if (unlikely(rq->nr_running == 1)) 8393 return; 8394 8395 clear_buddies(cfs_rq, se); 8396 8397 update_rq_clock(rq); 8398 /* 8399 * Update run-time statistics of the 'current'. 8400 */ 8401 update_curr(cfs_rq); 8402 /* 8403 * Tell update_rq_clock() that we've just updated, 8404 * so we don't do microscopic update in schedule() 8405 * and double the fastpath cost. 8406 */ 8407 rq_clock_skip_update(rq); 8408 8409 se->deadline += calc_delta_fair(se->slice, se); 8410 } 8411 8412 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8413 { 8414 struct sched_entity *se = &p->se; 8415 8416 /* throttled hierarchies are not runnable */ 8417 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8418 return false; 8419 8420 /* Tell the scheduler that we'd really like pse to run next. */ 8421 set_next_buddy(se); 8422 8423 yield_task_fair(rq); 8424 8425 return true; 8426 } 8427 8428 #ifdef CONFIG_SMP 8429 /************************************************** 8430 * Fair scheduling class load-balancing methods. 8431 * 8432 * BASICS 8433 * 8434 * The purpose of load-balancing is to achieve the same basic fairness the 8435 * per-CPU scheduler provides, namely provide a proportional amount of compute 8436 * time to each task. This is expressed in the following equation: 8437 * 8438 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8439 * 8440 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8441 * W_i,0 is defined as: 8442 * 8443 * W_i,0 = \Sum_j w_i,j (2) 8444 * 8445 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8446 * is derived from the nice value as per sched_prio_to_weight[]. 8447 * 8448 * The weight average is an exponential decay average of the instantaneous 8449 * weight: 8450 * 8451 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8452 * 8453 * C_i is the compute capacity of CPU i, typically it is the 8454 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8455 * can also include other factors [XXX]. 8456 * 8457 * To achieve this balance we define a measure of imbalance which follows 8458 * directly from (1): 8459 * 8460 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8461 * 8462 * We them move tasks around to minimize the imbalance. In the continuous 8463 * function space it is obvious this converges, in the discrete case we get 8464 * a few fun cases generally called infeasible weight scenarios. 8465 * 8466 * [XXX expand on: 8467 * - infeasible weights; 8468 * - local vs global optima in the discrete case. ] 8469 * 8470 * 8471 * SCHED DOMAINS 8472 * 8473 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8474 * for all i,j solution, we create a tree of CPUs that follows the hardware 8475 * topology where each level pairs two lower groups (or better). This results 8476 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8477 * tree to only the first of the previous level and we decrease the frequency 8478 * of load-balance at each level inv. proportional to the number of CPUs in 8479 * the groups. 8480 * 8481 * This yields: 8482 * 8483 * log_2 n 1 n 8484 * \Sum { --- * --- * 2^i } = O(n) (5) 8485 * i = 0 2^i 2^i 8486 * `- size of each group 8487 * | | `- number of CPUs doing load-balance 8488 * | `- freq 8489 * `- sum over all levels 8490 * 8491 * Coupled with a limit on how many tasks we can migrate every balance pass, 8492 * this makes (5) the runtime complexity of the balancer. 8493 * 8494 * An important property here is that each CPU is still (indirectly) connected 8495 * to every other CPU in at most O(log n) steps: 8496 * 8497 * The adjacency matrix of the resulting graph is given by: 8498 * 8499 * log_2 n 8500 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8501 * k = 0 8502 * 8503 * And you'll find that: 8504 * 8505 * A^(log_2 n)_i,j != 0 for all i,j (7) 8506 * 8507 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8508 * The task movement gives a factor of O(m), giving a convergence complexity 8509 * of: 8510 * 8511 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8512 * 8513 * 8514 * WORK CONSERVING 8515 * 8516 * In order to avoid CPUs going idle while there's still work to do, new idle 8517 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8518 * tree itself instead of relying on other CPUs to bring it work. 8519 * 8520 * This adds some complexity to both (5) and (8) but it reduces the total idle 8521 * time. 8522 * 8523 * [XXX more?] 8524 * 8525 * 8526 * CGROUPS 8527 * 8528 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8529 * 8530 * s_k,i 8531 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8532 * S_k 8533 * 8534 * Where 8535 * 8536 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8537 * 8538 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8539 * 8540 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8541 * property. 8542 * 8543 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8544 * rewrite all of this once again.] 8545 */ 8546 8547 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8548 8549 enum fbq_type { regular, remote, all }; 8550 8551 /* 8552 * 'group_type' describes the group of CPUs at the moment of load balancing. 8553 * 8554 * The enum is ordered by pulling priority, with the group with lowest priority 8555 * first so the group_type can simply be compared when selecting the busiest 8556 * group. See update_sd_pick_busiest(). 8557 */ 8558 enum group_type { 8559 /* The group has spare capacity that can be used to run more tasks. */ 8560 group_has_spare = 0, 8561 /* 8562 * The group is fully used and the tasks don't compete for more CPU 8563 * cycles. Nevertheless, some tasks might wait before running. 8564 */ 8565 group_fully_busy, 8566 /* 8567 * One task doesn't fit with CPU's capacity and must be migrated to a 8568 * more powerful CPU. 8569 */ 8570 group_misfit_task, 8571 /* 8572 * Balance SMT group that's fully busy. Can benefit from migration 8573 * a task on SMT with busy sibling to another CPU on idle core. 8574 */ 8575 group_smt_balance, 8576 /* 8577 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8578 * and the task should be migrated to it instead of running on the 8579 * current CPU. 8580 */ 8581 group_asym_packing, 8582 /* 8583 * The tasks' affinity constraints previously prevented the scheduler 8584 * from balancing the load across the system. 8585 */ 8586 group_imbalanced, 8587 /* 8588 * The CPU is overloaded and can't provide expected CPU cycles to all 8589 * tasks. 8590 */ 8591 group_overloaded 8592 }; 8593 8594 enum migration_type { 8595 migrate_load = 0, 8596 migrate_util, 8597 migrate_task, 8598 migrate_misfit 8599 }; 8600 8601 #define LBF_ALL_PINNED 0x01 8602 #define LBF_NEED_BREAK 0x02 8603 #define LBF_DST_PINNED 0x04 8604 #define LBF_SOME_PINNED 0x08 8605 #define LBF_ACTIVE_LB 0x10 8606 8607 struct lb_env { 8608 struct sched_domain *sd; 8609 8610 struct rq *src_rq; 8611 int src_cpu; 8612 8613 int dst_cpu; 8614 struct rq *dst_rq; 8615 8616 struct cpumask *dst_grpmask; 8617 int new_dst_cpu; 8618 enum cpu_idle_type idle; 8619 long imbalance; 8620 /* The set of CPUs under consideration for load-balancing */ 8621 struct cpumask *cpus; 8622 8623 unsigned int flags; 8624 8625 unsigned int loop; 8626 unsigned int loop_break; 8627 unsigned int loop_max; 8628 8629 enum fbq_type fbq_type; 8630 enum migration_type migration_type; 8631 struct list_head tasks; 8632 }; 8633 8634 /* 8635 * Is this task likely cache-hot: 8636 */ 8637 static int task_hot(struct task_struct *p, struct lb_env *env) 8638 { 8639 s64 delta; 8640 8641 lockdep_assert_rq_held(env->src_rq); 8642 8643 if (p->sched_class != &fair_sched_class) 8644 return 0; 8645 8646 if (unlikely(task_has_idle_policy(p))) 8647 return 0; 8648 8649 /* SMT siblings share cache */ 8650 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8651 return 0; 8652 8653 /* 8654 * Buddy candidates are cache hot: 8655 */ 8656 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8657 (&p->se == cfs_rq_of(&p->se)->next)) 8658 return 1; 8659 8660 if (sysctl_sched_migration_cost == -1) 8661 return 1; 8662 8663 /* 8664 * Don't migrate task if the task's cookie does not match 8665 * with the destination CPU's core cookie. 8666 */ 8667 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8668 return 1; 8669 8670 if (sysctl_sched_migration_cost == 0) 8671 return 0; 8672 8673 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8674 8675 return delta < (s64)sysctl_sched_migration_cost; 8676 } 8677 8678 #ifdef CONFIG_NUMA_BALANCING 8679 /* 8680 * Returns 1, if task migration degrades locality 8681 * Returns 0, if task migration improves locality i.e migration preferred. 8682 * Returns -1, if task migration is not affected by locality. 8683 */ 8684 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8685 { 8686 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8687 unsigned long src_weight, dst_weight; 8688 int src_nid, dst_nid, dist; 8689 8690 if (!static_branch_likely(&sched_numa_balancing)) 8691 return -1; 8692 8693 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8694 return -1; 8695 8696 src_nid = cpu_to_node(env->src_cpu); 8697 dst_nid = cpu_to_node(env->dst_cpu); 8698 8699 if (src_nid == dst_nid) 8700 return -1; 8701 8702 /* Migrating away from the preferred node is always bad. */ 8703 if (src_nid == p->numa_preferred_nid) { 8704 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8705 return 1; 8706 else 8707 return -1; 8708 } 8709 8710 /* Encourage migration to the preferred node. */ 8711 if (dst_nid == p->numa_preferred_nid) 8712 return 0; 8713 8714 /* Leaving a core idle is often worse than degrading locality. */ 8715 if (env->idle == CPU_IDLE) 8716 return -1; 8717 8718 dist = node_distance(src_nid, dst_nid); 8719 if (numa_group) { 8720 src_weight = group_weight(p, src_nid, dist); 8721 dst_weight = group_weight(p, dst_nid, dist); 8722 } else { 8723 src_weight = task_weight(p, src_nid, dist); 8724 dst_weight = task_weight(p, dst_nid, dist); 8725 } 8726 8727 return dst_weight < src_weight; 8728 } 8729 8730 #else 8731 static inline int migrate_degrades_locality(struct task_struct *p, 8732 struct lb_env *env) 8733 { 8734 return -1; 8735 } 8736 #endif 8737 8738 /* 8739 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8740 */ 8741 static 8742 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8743 { 8744 int tsk_cache_hot; 8745 8746 lockdep_assert_rq_held(env->src_rq); 8747 8748 /* 8749 * We do not migrate tasks that are: 8750 * 1) throttled_lb_pair, or 8751 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8752 * 3) running (obviously), or 8753 * 4) are cache-hot on their current CPU. 8754 */ 8755 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8756 return 0; 8757 8758 /* Disregard pcpu kthreads; they are where they need to be. */ 8759 if (kthread_is_per_cpu(p)) 8760 return 0; 8761 8762 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8763 int cpu; 8764 8765 schedstat_inc(p->stats.nr_failed_migrations_affine); 8766 8767 env->flags |= LBF_SOME_PINNED; 8768 8769 /* 8770 * Remember if this task can be migrated to any other CPU in 8771 * our sched_group. We may want to revisit it if we couldn't 8772 * meet load balance goals by pulling other tasks on src_cpu. 8773 * 8774 * Avoid computing new_dst_cpu 8775 * - for NEWLY_IDLE 8776 * - if we have already computed one in current iteration 8777 * - if it's an active balance 8778 */ 8779 if (env->idle == CPU_NEWLY_IDLE || 8780 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8781 return 0; 8782 8783 /* Prevent to re-select dst_cpu via env's CPUs: */ 8784 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8785 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8786 env->flags |= LBF_DST_PINNED; 8787 env->new_dst_cpu = cpu; 8788 break; 8789 } 8790 } 8791 8792 return 0; 8793 } 8794 8795 /* Record that we found at least one task that could run on dst_cpu */ 8796 env->flags &= ~LBF_ALL_PINNED; 8797 8798 if (task_on_cpu(env->src_rq, p)) { 8799 schedstat_inc(p->stats.nr_failed_migrations_running); 8800 return 0; 8801 } 8802 8803 /* 8804 * Aggressive migration if: 8805 * 1) active balance 8806 * 2) destination numa is preferred 8807 * 3) task is cache cold, or 8808 * 4) too many balance attempts have failed. 8809 */ 8810 if (env->flags & LBF_ACTIVE_LB) 8811 return 1; 8812 8813 tsk_cache_hot = migrate_degrades_locality(p, env); 8814 if (tsk_cache_hot == -1) 8815 tsk_cache_hot = task_hot(p, env); 8816 8817 if (tsk_cache_hot <= 0 || 8818 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8819 if (tsk_cache_hot == 1) { 8820 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8821 schedstat_inc(p->stats.nr_forced_migrations); 8822 } 8823 return 1; 8824 } 8825 8826 schedstat_inc(p->stats.nr_failed_migrations_hot); 8827 return 0; 8828 } 8829 8830 /* 8831 * detach_task() -- detach the task for the migration specified in env 8832 */ 8833 static void detach_task(struct task_struct *p, struct lb_env *env) 8834 { 8835 lockdep_assert_rq_held(env->src_rq); 8836 8837 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8838 set_task_cpu(p, env->dst_cpu); 8839 } 8840 8841 /* 8842 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8843 * part of active balancing operations within "domain". 8844 * 8845 * Returns a task if successful and NULL otherwise. 8846 */ 8847 static struct task_struct *detach_one_task(struct lb_env *env) 8848 { 8849 struct task_struct *p; 8850 8851 lockdep_assert_rq_held(env->src_rq); 8852 8853 list_for_each_entry_reverse(p, 8854 &env->src_rq->cfs_tasks, se.group_node) { 8855 if (!can_migrate_task(p, env)) 8856 continue; 8857 8858 detach_task(p, env); 8859 8860 /* 8861 * Right now, this is only the second place where 8862 * lb_gained[env->idle] is updated (other is detach_tasks) 8863 * so we can safely collect stats here rather than 8864 * inside detach_tasks(). 8865 */ 8866 schedstat_inc(env->sd->lb_gained[env->idle]); 8867 return p; 8868 } 8869 return NULL; 8870 } 8871 8872 /* 8873 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8874 * busiest_rq, as part of a balancing operation within domain "sd". 8875 * 8876 * Returns number of detached tasks if successful and 0 otherwise. 8877 */ 8878 static int detach_tasks(struct lb_env *env) 8879 { 8880 struct list_head *tasks = &env->src_rq->cfs_tasks; 8881 unsigned long util, load; 8882 struct task_struct *p; 8883 int detached = 0; 8884 8885 lockdep_assert_rq_held(env->src_rq); 8886 8887 /* 8888 * Source run queue has been emptied by another CPU, clear 8889 * LBF_ALL_PINNED flag as we will not test any task. 8890 */ 8891 if (env->src_rq->nr_running <= 1) { 8892 env->flags &= ~LBF_ALL_PINNED; 8893 return 0; 8894 } 8895 8896 if (env->imbalance <= 0) 8897 return 0; 8898 8899 while (!list_empty(tasks)) { 8900 /* 8901 * We don't want to steal all, otherwise we may be treated likewise, 8902 * which could at worst lead to a livelock crash. 8903 */ 8904 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8905 break; 8906 8907 env->loop++; 8908 /* 8909 * We've more or less seen every task there is, call it quits 8910 * unless we haven't found any movable task yet. 8911 */ 8912 if (env->loop > env->loop_max && 8913 !(env->flags & LBF_ALL_PINNED)) 8914 break; 8915 8916 /* take a breather every nr_migrate tasks */ 8917 if (env->loop > env->loop_break) { 8918 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8919 env->flags |= LBF_NEED_BREAK; 8920 break; 8921 } 8922 8923 p = list_last_entry(tasks, struct task_struct, se.group_node); 8924 8925 if (!can_migrate_task(p, env)) 8926 goto next; 8927 8928 switch (env->migration_type) { 8929 case migrate_load: 8930 /* 8931 * Depending of the number of CPUs and tasks and the 8932 * cgroup hierarchy, task_h_load() can return a null 8933 * value. Make sure that env->imbalance decreases 8934 * otherwise detach_tasks() will stop only after 8935 * detaching up to loop_max tasks. 8936 */ 8937 load = max_t(unsigned long, task_h_load(p), 1); 8938 8939 if (sched_feat(LB_MIN) && 8940 load < 16 && !env->sd->nr_balance_failed) 8941 goto next; 8942 8943 /* 8944 * Make sure that we don't migrate too much load. 8945 * Nevertheless, let relax the constraint if 8946 * scheduler fails to find a good waiting task to 8947 * migrate. 8948 */ 8949 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8950 goto next; 8951 8952 env->imbalance -= load; 8953 break; 8954 8955 case migrate_util: 8956 util = task_util_est(p); 8957 8958 if (util > env->imbalance) 8959 goto next; 8960 8961 env->imbalance -= util; 8962 break; 8963 8964 case migrate_task: 8965 env->imbalance--; 8966 break; 8967 8968 case migrate_misfit: 8969 /* This is not a misfit task */ 8970 if (task_fits_cpu(p, env->src_cpu)) 8971 goto next; 8972 8973 env->imbalance = 0; 8974 break; 8975 } 8976 8977 detach_task(p, env); 8978 list_add(&p->se.group_node, &env->tasks); 8979 8980 detached++; 8981 8982 #ifdef CONFIG_PREEMPTION 8983 /* 8984 * NEWIDLE balancing is a source of latency, so preemptible 8985 * kernels will stop after the first task is detached to minimize 8986 * the critical section. 8987 */ 8988 if (env->idle == CPU_NEWLY_IDLE) 8989 break; 8990 #endif 8991 8992 /* 8993 * We only want to steal up to the prescribed amount of 8994 * load/util/tasks. 8995 */ 8996 if (env->imbalance <= 0) 8997 break; 8998 8999 continue; 9000 next: 9001 list_move(&p->se.group_node, tasks); 9002 } 9003 9004 /* 9005 * Right now, this is one of only two places we collect this stat 9006 * so we can safely collect detach_one_task() stats here rather 9007 * than inside detach_one_task(). 9008 */ 9009 schedstat_add(env->sd->lb_gained[env->idle], detached); 9010 9011 return detached; 9012 } 9013 9014 /* 9015 * attach_task() -- attach the task detached by detach_task() to its new rq. 9016 */ 9017 static void attach_task(struct rq *rq, struct task_struct *p) 9018 { 9019 lockdep_assert_rq_held(rq); 9020 9021 WARN_ON_ONCE(task_rq(p) != rq); 9022 activate_task(rq, p, ENQUEUE_NOCLOCK); 9023 wakeup_preempt(rq, p, 0); 9024 } 9025 9026 /* 9027 * attach_one_task() -- attaches the task returned from detach_one_task() to 9028 * its new rq. 9029 */ 9030 static void attach_one_task(struct rq *rq, struct task_struct *p) 9031 { 9032 struct rq_flags rf; 9033 9034 rq_lock(rq, &rf); 9035 update_rq_clock(rq); 9036 attach_task(rq, p); 9037 rq_unlock(rq, &rf); 9038 } 9039 9040 /* 9041 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9042 * new rq. 9043 */ 9044 static void attach_tasks(struct lb_env *env) 9045 { 9046 struct list_head *tasks = &env->tasks; 9047 struct task_struct *p; 9048 struct rq_flags rf; 9049 9050 rq_lock(env->dst_rq, &rf); 9051 update_rq_clock(env->dst_rq); 9052 9053 while (!list_empty(tasks)) { 9054 p = list_first_entry(tasks, struct task_struct, se.group_node); 9055 list_del_init(&p->se.group_node); 9056 9057 attach_task(env->dst_rq, p); 9058 } 9059 9060 rq_unlock(env->dst_rq, &rf); 9061 } 9062 9063 #ifdef CONFIG_NO_HZ_COMMON 9064 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9065 { 9066 if (cfs_rq->avg.load_avg) 9067 return true; 9068 9069 if (cfs_rq->avg.util_avg) 9070 return true; 9071 9072 return false; 9073 } 9074 9075 static inline bool others_have_blocked(struct rq *rq) 9076 { 9077 if (READ_ONCE(rq->avg_rt.util_avg)) 9078 return true; 9079 9080 if (READ_ONCE(rq->avg_dl.util_avg)) 9081 return true; 9082 9083 if (thermal_load_avg(rq)) 9084 return true; 9085 9086 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 9087 if (READ_ONCE(rq->avg_irq.util_avg)) 9088 return true; 9089 #endif 9090 9091 return false; 9092 } 9093 9094 static inline void update_blocked_load_tick(struct rq *rq) 9095 { 9096 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9097 } 9098 9099 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9100 { 9101 if (!has_blocked) 9102 rq->has_blocked_load = 0; 9103 } 9104 #else 9105 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9106 static inline bool others_have_blocked(struct rq *rq) { return false; } 9107 static inline void update_blocked_load_tick(struct rq *rq) {} 9108 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9109 #endif 9110 9111 static bool __update_blocked_others(struct rq *rq, bool *done) 9112 { 9113 const struct sched_class *curr_class; 9114 u64 now = rq_clock_pelt(rq); 9115 unsigned long thermal_pressure; 9116 bool decayed; 9117 9118 /* 9119 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9120 * DL and IRQ signals have been updated before updating CFS. 9121 */ 9122 curr_class = rq->curr->sched_class; 9123 9124 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9125 9126 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9127 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9128 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9129 update_irq_load_avg(rq, 0); 9130 9131 if (others_have_blocked(rq)) 9132 *done = false; 9133 9134 return decayed; 9135 } 9136 9137 #ifdef CONFIG_FAIR_GROUP_SCHED 9138 9139 static bool __update_blocked_fair(struct rq *rq, bool *done) 9140 { 9141 struct cfs_rq *cfs_rq, *pos; 9142 bool decayed = false; 9143 int cpu = cpu_of(rq); 9144 9145 /* 9146 * Iterates the task_group tree in a bottom up fashion, see 9147 * list_add_leaf_cfs_rq() for details. 9148 */ 9149 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9150 struct sched_entity *se; 9151 9152 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9153 update_tg_load_avg(cfs_rq); 9154 9155 if (cfs_rq->nr_running == 0) 9156 update_idle_cfs_rq_clock_pelt(cfs_rq); 9157 9158 if (cfs_rq == &rq->cfs) 9159 decayed = true; 9160 } 9161 9162 /* Propagate pending load changes to the parent, if any: */ 9163 se = cfs_rq->tg->se[cpu]; 9164 if (se && !skip_blocked_update(se)) 9165 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9166 9167 /* 9168 * There can be a lot of idle CPU cgroups. Don't let fully 9169 * decayed cfs_rqs linger on the list. 9170 */ 9171 if (cfs_rq_is_decayed(cfs_rq)) 9172 list_del_leaf_cfs_rq(cfs_rq); 9173 9174 /* Don't need periodic decay once load/util_avg are null */ 9175 if (cfs_rq_has_blocked(cfs_rq)) 9176 *done = false; 9177 } 9178 9179 return decayed; 9180 } 9181 9182 /* 9183 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9184 * This needs to be done in a top-down fashion because the load of a child 9185 * group is a fraction of its parents load. 9186 */ 9187 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9188 { 9189 struct rq *rq = rq_of(cfs_rq); 9190 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9191 unsigned long now = jiffies; 9192 unsigned long load; 9193 9194 if (cfs_rq->last_h_load_update == now) 9195 return; 9196 9197 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9198 for_each_sched_entity(se) { 9199 cfs_rq = cfs_rq_of(se); 9200 WRITE_ONCE(cfs_rq->h_load_next, se); 9201 if (cfs_rq->last_h_load_update == now) 9202 break; 9203 } 9204 9205 if (!se) { 9206 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9207 cfs_rq->last_h_load_update = now; 9208 } 9209 9210 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9211 load = cfs_rq->h_load; 9212 load = div64_ul(load * se->avg.load_avg, 9213 cfs_rq_load_avg(cfs_rq) + 1); 9214 cfs_rq = group_cfs_rq(se); 9215 cfs_rq->h_load = load; 9216 cfs_rq->last_h_load_update = now; 9217 } 9218 } 9219 9220 static unsigned long task_h_load(struct task_struct *p) 9221 { 9222 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9223 9224 update_cfs_rq_h_load(cfs_rq); 9225 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9226 cfs_rq_load_avg(cfs_rq) + 1); 9227 } 9228 #else 9229 static bool __update_blocked_fair(struct rq *rq, bool *done) 9230 { 9231 struct cfs_rq *cfs_rq = &rq->cfs; 9232 bool decayed; 9233 9234 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9235 if (cfs_rq_has_blocked(cfs_rq)) 9236 *done = false; 9237 9238 return decayed; 9239 } 9240 9241 static unsigned long task_h_load(struct task_struct *p) 9242 { 9243 return p->se.avg.load_avg; 9244 } 9245 #endif 9246 9247 static void update_blocked_averages(int cpu) 9248 { 9249 bool decayed = false, done = true; 9250 struct rq *rq = cpu_rq(cpu); 9251 struct rq_flags rf; 9252 9253 rq_lock_irqsave(rq, &rf); 9254 update_blocked_load_tick(rq); 9255 update_rq_clock(rq); 9256 9257 decayed |= __update_blocked_others(rq, &done); 9258 decayed |= __update_blocked_fair(rq, &done); 9259 9260 update_blocked_load_status(rq, !done); 9261 if (decayed) 9262 cpufreq_update_util(rq, 0); 9263 rq_unlock_irqrestore(rq, &rf); 9264 } 9265 9266 /********** Helpers for find_busiest_group ************************/ 9267 9268 /* 9269 * sg_lb_stats - stats of a sched_group required for load_balancing 9270 */ 9271 struct sg_lb_stats { 9272 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9273 unsigned long group_load; /* Total load over the CPUs of the group */ 9274 unsigned long group_capacity; 9275 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9276 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9277 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9278 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9279 unsigned int idle_cpus; 9280 unsigned int group_weight; 9281 enum group_type group_type; 9282 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9283 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9284 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9285 #ifdef CONFIG_NUMA_BALANCING 9286 unsigned int nr_numa_running; 9287 unsigned int nr_preferred_running; 9288 #endif 9289 }; 9290 9291 /* 9292 * sd_lb_stats - Structure to store the statistics of a sched_domain 9293 * during load balancing. 9294 */ 9295 struct sd_lb_stats { 9296 struct sched_group *busiest; /* Busiest group in this sd */ 9297 struct sched_group *local; /* Local group in this sd */ 9298 unsigned long total_load; /* Total load of all groups in sd */ 9299 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9300 unsigned long avg_load; /* Average load across all groups in sd */ 9301 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9302 9303 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9304 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9305 }; 9306 9307 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9308 { 9309 /* 9310 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9311 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9312 * We must however set busiest_stat::group_type and 9313 * busiest_stat::idle_cpus to the worst busiest group because 9314 * update_sd_pick_busiest() reads these before assignment. 9315 */ 9316 *sds = (struct sd_lb_stats){ 9317 .busiest = NULL, 9318 .local = NULL, 9319 .total_load = 0UL, 9320 .total_capacity = 0UL, 9321 .busiest_stat = { 9322 .idle_cpus = UINT_MAX, 9323 .group_type = group_has_spare, 9324 }, 9325 }; 9326 } 9327 9328 static unsigned long scale_rt_capacity(int cpu) 9329 { 9330 struct rq *rq = cpu_rq(cpu); 9331 unsigned long max = arch_scale_cpu_capacity(cpu); 9332 unsigned long used, free; 9333 unsigned long irq; 9334 9335 irq = cpu_util_irq(rq); 9336 9337 if (unlikely(irq >= max)) 9338 return 1; 9339 9340 /* 9341 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9342 * (running and not running) with weights 0 and 1024 respectively. 9343 * avg_thermal.load_avg tracks thermal pressure and the weighted 9344 * average uses the actual delta max capacity(load). 9345 */ 9346 used = READ_ONCE(rq->avg_rt.util_avg); 9347 used += READ_ONCE(rq->avg_dl.util_avg); 9348 used += thermal_load_avg(rq); 9349 9350 if (unlikely(used >= max)) 9351 return 1; 9352 9353 free = max - used; 9354 9355 return scale_irq_capacity(free, irq, max); 9356 } 9357 9358 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9359 { 9360 unsigned long capacity = scale_rt_capacity(cpu); 9361 struct sched_group *sdg = sd->groups; 9362 9363 if (!capacity) 9364 capacity = 1; 9365 9366 cpu_rq(cpu)->cpu_capacity = capacity; 9367 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9368 9369 sdg->sgc->capacity = capacity; 9370 sdg->sgc->min_capacity = capacity; 9371 sdg->sgc->max_capacity = capacity; 9372 } 9373 9374 void update_group_capacity(struct sched_domain *sd, int cpu) 9375 { 9376 struct sched_domain *child = sd->child; 9377 struct sched_group *group, *sdg = sd->groups; 9378 unsigned long capacity, min_capacity, max_capacity; 9379 unsigned long interval; 9380 9381 interval = msecs_to_jiffies(sd->balance_interval); 9382 interval = clamp(interval, 1UL, max_load_balance_interval); 9383 sdg->sgc->next_update = jiffies + interval; 9384 9385 if (!child) { 9386 update_cpu_capacity(sd, cpu); 9387 return; 9388 } 9389 9390 capacity = 0; 9391 min_capacity = ULONG_MAX; 9392 max_capacity = 0; 9393 9394 if (child->flags & SD_OVERLAP) { 9395 /* 9396 * SD_OVERLAP domains cannot assume that child groups 9397 * span the current group. 9398 */ 9399 9400 for_each_cpu(cpu, sched_group_span(sdg)) { 9401 unsigned long cpu_cap = capacity_of(cpu); 9402 9403 capacity += cpu_cap; 9404 min_capacity = min(cpu_cap, min_capacity); 9405 max_capacity = max(cpu_cap, max_capacity); 9406 } 9407 } else { 9408 /* 9409 * !SD_OVERLAP domains can assume that child groups 9410 * span the current group. 9411 */ 9412 9413 group = child->groups; 9414 do { 9415 struct sched_group_capacity *sgc = group->sgc; 9416 9417 capacity += sgc->capacity; 9418 min_capacity = min(sgc->min_capacity, min_capacity); 9419 max_capacity = max(sgc->max_capacity, max_capacity); 9420 group = group->next; 9421 } while (group != child->groups); 9422 } 9423 9424 sdg->sgc->capacity = capacity; 9425 sdg->sgc->min_capacity = min_capacity; 9426 sdg->sgc->max_capacity = max_capacity; 9427 } 9428 9429 /* 9430 * Check whether the capacity of the rq has been noticeably reduced by side 9431 * activity. The imbalance_pct is used for the threshold. 9432 * Return true is the capacity is reduced 9433 */ 9434 static inline int 9435 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9436 { 9437 return ((rq->cpu_capacity * sd->imbalance_pct) < 9438 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9439 } 9440 9441 /* 9442 * Check whether a rq has a misfit task and if it looks like we can actually 9443 * help that task: we can migrate the task to a CPU of higher capacity, or 9444 * the task's current CPU is heavily pressured. 9445 */ 9446 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9447 { 9448 return rq->misfit_task_load && 9449 (arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity || 9450 check_cpu_capacity(rq, sd)); 9451 } 9452 9453 /* 9454 * Group imbalance indicates (and tries to solve) the problem where balancing 9455 * groups is inadequate due to ->cpus_ptr constraints. 9456 * 9457 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9458 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9459 * Something like: 9460 * 9461 * { 0 1 2 3 } { 4 5 6 7 } 9462 * * * * * 9463 * 9464 * If we were to balance group-wise we'd place two tasks in the first group and 9465 * two tasks in the second group. Clearly this is undesired as it will overload 9466 * cpu 3 and leave one of the CPUs in the second group unused. 9467 * 9468 * The current solution to this issue is detecting the skew in the first group 9469 * by noticing the lower domain failed to reach balance and had difficulty 9470 * moving tasks due to affinity constraints. 9471 * 9472 * When this is so detected; this group becomes a candidate for busiest; see 9473 * update_sd_pick_busiest(). And calculate_imbalance() and 9474 * find_busiest_group() avoid some of the usual balance conditions to allow it 9475 * to create an effective group imbalance. 9476 * 9477 * This is a somewhat tricky proposition since the next run might not find the 9478 * group imbalance and decide the groups need to be balanced again. A most 9479 * subtle and fragile situation. 9480 */ 9481 9482 static inline int sg_imbalanced(struct sched_group *group) 9483 { 9484 return group->sgc->imbalance; 9485 } 9486 9487 /* 9488 * group_has_capacity returns true if the group has spare capacity that could 9489 * be used by some tasks. 9490 * We consider that a group has spare capacity if the number of task is 9491 * smaller than the number of CPUs or if the utilization is lower than the 9492 * available capacity for CFS tasks. 9493 * For the latter, we use a threshold to stabilize the state, to take into 9494 * account the variance of the tasks' load and to return true if the available 9495 * capacity in meaningful for the load balancer. 9496 * As an example, an available capacity of 1% can appear but it doesn't make 9497 * any benefit for the load balance. 9498 */ 9499 static inline bool 9500 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9501 { 9502 if (sgs->sum_nr_running < sgs->group_weight) 9503 return true; 9504 9505 if ((sgs->group_capacity * imbalance_pct) < 9506 (sgs->group_runnable * 100)) 9507 return false; 9508 9509 if ((sgs->group_capacity * 100) > 9510 (sgs->group_util * imbalance_pct)) 9511 return true; 9512 9513 return false; 9514 } 9515 9516 /* 9517 * group_is_overloaded returns true if the group has more tasks than it can 9518 * handle. 9519 * group_is_overloaded is not equals to !group_has_capacity because a group 9520 * with the exact right number of tasks, has no more spare capacity but is not 9521 * overloaded so both group_has_capacity and group_is_overloaded return 9522 * false. 9523 */ 9524 static inline bool 9525 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9526 { 9527 if (sgs->sum_nr_running <= sgs->group_weight) 9528 return false; 9529 9530 if ((sgs->group_capacity * 100) < 9531 (sgs->group_util * imbalance_pct)) 9532 return true; 9533 9534 if ((sgs->group_capacity * imbalance_pct) < 9535 (sgs->group_runnable * 100)) 9536 return true; 9537 9538 return false; 9539 } 9540 9541 static inline enum 9542 group_type group_classify(unsigned int imbalance_pct, 9543 struct sched_group *group, 9544 struct sg_lb_stats *sgs) 9545 { 9546 if (group_is_overloaded(imbalance_pct, sgs)) 9547 return group_overloaded; 9548 9549 if (sg_imbalanced(group)) 9550 return group_imbalanced; 9551 9552 if (sgs->group_asym_packing) 9553 return group_asym_packing; 9554 9555 if (sgs->group_smt_balance) 9556 return group_smt_balance; 9557 9558 if (sgs->group_misfit_task_load) 9559 return group_misfit_task; 9560 9561 if (!group_has_capacity(imbalance_pct, sgs)) 9562 return group_fully_busy; 9563 9564 return group_has_spare; 9565 } 9566 9567 /** 9568 * sched_use_asym_prio - Check whether asym_packing priority must be used 9569 * @sd: The scheduling domain of the load balancing 9570 * @cpu: A CPU 9571 * 9572 * Always use CPU priority when balancing load between SMT siblings. When 9573 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9574 * use CPU priority if the whole core is idle. 9575 * 9576 * Returns: True if the priority of @cpu must be followed. False otherwise. 9577 */ 9578 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9579 { 9580 if (!sched_smt_active()) 9581 return true; 9582 9583 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9584 } 9585 9586 /** 9587 * sched_asym - Check if the destination CPU can do asym_packing load balance 9588 * @env: The load balancing environment 9589 * @sds: Load-balancing data with statistics of the local group 9590 * @sgs: Load-balancing statistics of the candidate busiest group 9591 * @group: The candidate busiest group 9592 * 9593 * @env::dst_cpu can do asym_packing if it has higher priority than the 9594 * preferred CPU of @group. 9595 * 9596 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9597 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9598 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9599 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9600 * 9601 * If we are balancing load within an SMT core, or at PKG domain level, always 9602 * proceed. 9603 * 9604 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9605 * otherwise. 9606 */ 9607 static inline bool 9608 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9609 struct sched_group *group) 9610 { 9611 /* Ensure that the whole local core is idle, if applicable. */ 9612 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9613 return false; 9614 9615 /* 9616 * CPU priorities does not make sense for SMT cores with more than one 9617 * busy sibling. 9618 */ 9619 if (group->flags & SD_SHARE_CPUCAPACITY) { 9620 if (sgs->group_weight - sgs->idle_cpus != 1) 9621 return false; 9622 } 9623 9624 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9625 } 9626 9627 /* One group has more than one SMT CPU while the other group does not */ 9628 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9629 struct sched_group *sg2) 9630 { 9631 if (!sg1 || !sg2) 9632 return false; 9633 9634 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9635 (sg2->flags & SD_SHARE_CPUCAPACITY); 9636 } 9637 9638 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9639 struct sched_group *group) 9640 { 9641 if (env->idle == CPU_NOT_IDLE) 9642 return false; 9643 9644 /* 9645 * For SMT source group, it is better to move a task 9646 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9647 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9648 * will not be on. 9649 */ 9650 if (group->flags & SD_SHARE_CPUCAPACITY && 9651 sgs->sum_h_nr_running > 1) 9652 return true; 9653 9654 return false; 9655 } 9656 9657 static inline long sibling_imbalance(struct lb_env *env, 9658 struct sd_lb_stats *sds, 9659 struct sg_lb_stats *busiest, 9660 struct sg_lb_stats *local) 9661 { 9662 int ncores_busiest, ncores_local; 9663 long imbalance; 9664 9665 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9666 return 0; 9667 9668 ncores_busiest = sds->busiest->cores; 9669 ncores_local = sds->local->cores; 9670 9671 if (ncores_busiest == ncores_local) { 9672 imbalance = busiest->sum_nr_running; 9673 lsub_positive(&imbalance, local->sum_nr_running); 9674 return imbalance; 9675 } 9676 9677 /* Balance such that nr_running/ncores ratio are same on both groups */ 9678 imbalance = ncores_local * busiest->sum_nr_running; 9679 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9680 /* Normalize imbalance and do rounding on normalization */ 9681 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9682 imbalance /= ncores_local + ncores_busiest; 9683 9684 /* Take advantage of resource in an empty sched group */ 9685 if (imbalance <= 1 && local->sum_nr_running == 0 && 9686 busiest->sum_nr_running > 1) 9687 imbalance = 2; 9688 9689 return imbalance; 9690 } 9691 9692 static inline bool 9693 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9694 { 9695 /* 9696 * When there is more than 1 task, the group_overloaded case already 9697 * takes care of cpu with reduced capacity 9698 */ 9699 if (rq->cfs.h_nr_running != 1) 9700 return false; 9701 9702 return check_cpu_capacity(rq, sd); 9703 } 9704 9705 /** 9706 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9707 * @env: The load balancing environment. 9708 * @sds: Load-balancing data with statistics of the local group. 9709 * @group: sched_group whose statistics are to be updated. 9710 * @sgs: variable to hold the statistics for this group. 9711 * @sg_status: Holds flag indicating the status of the sched_group 9712 */ 9713 static inline void update_sg_lb_stats(struct lb_env *env, 9714 struct sd_lb_stats *sds, 9715 struct sched_group *group, 9716 struct sg_lb_stats *sgs, 9717 int *sg_status) 9718 { 9719 int i, nr_running, local_group; 9720 9721 memset(sgs, 0, sizeof(*sgs)); 9722 9723 local_group = group == sds->local; 9724 9725 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9726 struct rq *rq = cpu_rq(i); 9727 unsigned long load = cpu_load(rq); 9728 9729 sgs->group_load += load; 9730 sgs->group_util += cpu_util_cfs(i); 9731 sgs->group_runnable += cpu_runnable(rq); 9732 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9733 9734 nr_running = rq->nr_running; 9735 sgs->sum_nr_running += nr_running; 9736 9737 if (nr_running > 1) 9738 *sg_status |= SG_OVERLOAD; 9739 9740 if (cpu_overutilized(i)) 9741 *sg_status |= SG_OVERUTILIZED; 9742 9743 #ifdef CONFIG_NUMA_BALANCING 9744 sgs->nr_numa_running += rq->nr_numa_running; 9745 sgs->nr_preferred_running += rq->nr_preferred_running; 9746 #endif 9747 /* 9748 * No need to call idle_cpu() if nr_running is not 0 9749 */ 9750 if (!nr_running && idle_cpu(i)) { 9751 sgs->idle_cpus++; 9752 /* Idle cpu can't have misfit task */ 9753 continue; 9754 } 9755 9756 if (local_group) 9757 continue; 9758 9759 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9760 /* Check for a misfit task on the cpu */ 9761 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9762 sgs->group_misfit_task_load = rq->misfit_task_load; 9763 *sg_status |= SG_OVERLOAD; 9764 } 9765 } else if ((env->idle != CPU_NOT_IDLE) && 9766 sched_reduced_capacity(rq, env->sd)) { 9767 /* Check for a task running on a CPU with reduced capacity */ 9768 if (sgs->group_misfit_task_load < load) 9769 sgs->group_misfit_task_load = load; 9770 } 9771 } 9772 9773 sgs->group_capacity = group->sgc->capacity; 9774 9775 sgs->group_weight = group->group_weight; 9776 9777 /* Check if dst CPU is idle and preferred to this group */ 9778 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9779 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9780 sched_asym(env, sds, sgs, group)) { 9781 sgs->group_asym_packing = 1; 9782 } 9783 9784 /* Check for loaded SMT group to be balanced to dst CPU */ 9785 if (!local_group && smt_balance(env, sgs, group)) 9786 sgs->group_smt_balance = 1; 9787 9788 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9789 9790 /* Computing avg_load makes sense only when group is overloaded */ 9791 if (sgs->group_type == group_overloaded) 9792 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9793 sgs->group_capacity; 9794 } 9795 9796 /** 9797 * update_sd_pick_busiest - return 1 on busiest group 9798 * @env: The load balancing environment. 9799 * @sds: sched_domain statistics 9800 * @sg: sched_group candidate to be checked for being the busiest 9801 * @sgs: sched_group statistics 9802 * 9803 * Determine if @sg is a busier group than the previously selected 9804 * busiest group. 9805 * 9806 * Return: %true if @sg is a busier group than the previously selected 9807 * busiest group. %false otherwise. 9808 */ 9809 static bool update_sd_pick_busiest(struct lb_env *env, 9810 struct sd_lb_stats *sds, 9811 struct sched_group *sg, 9812 struct sg_lb_stats *sgs) 9813 { 9814 struct sg_lb_stats *busiest = &sds->busiest_stat; 9815 9816 /* Make sure that there is at least one task to pull */ 9817 if (!sgs->sum_h_nr_running) 9818 return false; 9819 9820 /* 9821 * Don't try to pull misfit tasks we can't help. 9822 * We can use max_capacity here as reduction in capacity on some 9823 * CPUs in the group should either be possible to resolve 9824 * internally or be covered by avg_load imbalance (eventually). 9825 */ 9826 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9827 (sgs->group_type == group_misfit_task) && 9828 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9829 sds->local_stat.group_type != group_has_spare)) 9830 return false; 9831 9832 if (sgs->group_type > busiest->group_type) 9833 return true; 9834 9835 if (sgs->group_type < busiest->group_type) 9836 return false; 9837 9838 /* 9839 * The candidate and the current busiest group are the same type of 9840 * group. Let check which one is the busiest according to the type. 9841 */ 9842 9843 switch (sgs->group_type) { 9844 case group_overloaded: 9845 /* Select the overloaded group with highest avg_load. */ 9846 if (sgs->avg_load <= busiest->avg_load) 9847 return false; 9848 break; 9849 9850 case group_imbalanced: 9851 /* 9852 * Select the 1st imbalanced group as we don't have any way to 9853 * choose one more than another. 9854 */ 9855 return false; 9856 9857 case group_asym_packing: 9858 /* Prefer to move from lowest priority CPU's work */ 9859 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9860 return false; 9861 break; 9862 9863 case group_misfit_task: 9864 /* 9865 * If we have more than one misfit sg go with the biggest 9866 * misfit. 9867 */ 9868 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9869 return false; 9870 break; 9871 9872 case group_smt_balance: 9873 /* 9874 * Check if we have spare CPUs on either SMT group to 9875 * choose has spare or fully busy handling. 9876 */ 9877 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 9878 goto has_spare; 9879 9880 fallthrough; 9881 9882 case group_fully_busy: 9883 /* 9884 * Select the fully busy group with highest avg_load. In 9885 * theory, there is no need to pull task from such kind of 9886 * group because tasks have all compute capacity that they need 9887 * but we can still improve the overall throughput by reducing 9888 * contention when accessing shared HW resources. 9889 * 9890 * XXX for now avg_load is not computed and always 0 so we 9891 * select the 1st one, except if @sg is composed of SMT 9892 * siblings. 9893 */ 9894 9895 if (sgs->avg_load < busiest->avg_load) 9896 return false; 9897 9898 if (sgs->avg_load == busiest->avg_load) { 9899 /* 9900 * SMT sched groups need more help than non-SMT groups. 9901 * If @sg happens to also be SMT, either choice is good. 9902 */ 9903 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 9904 return false; 9905 } 9906 9907 break; 9908 9909 case group_has_spare: 9910 /* 9911 * Do not pick sg with SMT CPUs over sg with pure CPUs, 9912 * as we do not want to pull task off SMT core with one task 9913 * and make the core idle. 9914 */ 9915 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 9916 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 9917 return false; 9918 else 9919 return true; 9920 } 9921 has_spare: 9922 9923 /* 9924 * Select not overloaded group with lowest number of idle cpus 9925 * and highest number of running tasks. We could also compare 9926 * the spare capacity which is more stable but it can end up 9927 * that the group has less spare capacity but finally more idle 9928 * CPUs which means less opportunity to pull tasks. 9929 */ 9930 if (sgs->idle_cpus > busiest->idle_cpus) 9931 return false; 9932 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9933 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9934 return false; 9935 9936 break; 9937 } 9938 9939 /* 9940 * Candidate sg has no more than one task per CPU and has higher 9941 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9942 * throughput. Maximize throughput, power/energy consequences are not 9943 * considered. 9944 */ 9945 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9946 (sgs->group_type <= group_fully_busy) && 9947 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9948 return false; 9949 9950 return true; 9951 } 9952 9953 #ifdef CONFIG_NUMA_BALANCING 9954 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9955 { 9956 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9957 return regular; 9958 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9959 return remote; 9960 return all; 9961 } 9962 9963 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9964 { 9965 if (rq->nr_running > rq->nr_numa_running) 9966 return regular; 9967 if (rq->nr_running > rq->nr_preferred_running) 9968 return remote; 9969 return all; 9970 } 9971 #else 9972 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9973 { 9974 return all; 9975 } 9976 9977 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9978 { 9979 return regular; 9980 } 9981 #endif /* CONFIG_NUMA_BALANCING */ 9982 9983 9984 struct sg_lb_stats; 9985 9986 /* 9987 * task_running_on_cpu - return 1 if @p is running on @cpu. 9988 */ 9989 9990 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9991 { 9992 /* Task has no contribution or is new */ 9993 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9994 return 0; 9995 9996 if (task_on_rq_queued(p)) 9997 return 1; 9998 9999 return 0; 10000 } 10001 10002 /** 10003 * idle_cpu_without - would a given CPU be idle without p ? 10004 * @cpu: the processor on which idleness is tested. 10005 * @p: task which should be ignored. 10006 * 10007 * Return: 1 if the CPU would be idle. 0 otherwise. 10008 */ 10009 static int idle_cpu_without(int cpu, struct task_struct *p) 10010 { 10011 struct rq *rq = cpu_rq(cpu); 10012 10013 if (rq->curr != rq->idle && rq->curr != p) 10014 return 0; 10015 10016 /* 10017 * rq->nr_running can't be used but an updated version without the 10018 * impact of p on cpu must be used instead. The updated nr_running 10019 * be computed and tested before calling idle_cpu_without(). 10020 */ 10021 10022 #ifdef CONFIG_SMP 10023 if (rq->ttwu_pending) 10024 return 0; 10025 #endif 10026 10027 return 1; 10028 } 10029 10030 /* 10031 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10032 * @sd: The sched_domain level to look for idlest group. 10033 * @group: sched_group whose statistics are to be updated. 10034 * @sgs: variable to hold the statistics for this group. 10035 * @p: The task for which we look for the idlest group/CPU. 10036 */ 10037 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10038 struct sched_group *group, 10039 struct sg_lb_stats *sgs, 10040 struct task_struct *p) 10041 { 10042 int i, nr_running; 10043 10044 memset(sgs, 0, sizeof(*sgs)); 10045 10046 /* Assume that task can't fit any CPU of the group */ 10047 if (sd->flags & SD_ASYM_CPUCAPACITY) 10048 sgs->group_misfit_task_load = 1; 10049 10050 for_each_cpu(i, sched_group_span(group)) { 10051 struct rq *rq = cpu_rq(i); 10052 unsigned int local; 10053 10054 sgs->group_load += cpu_load_without(rq, p); 10055 sgs->group_util += cpu_util_without(i, p); 10056 sgs->group_runnable += cpu_runnable_without(rq, p); 10057 local = task_running_on_cpu(i, p); 10058 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10059 10060 nr_running = rq->nr_running - local; 10061 sgs->sum_nr_running += nr_running; 10062 10063 /* 10064 * No need to call idle_cpu_without() if nr_running is not 0 10065 */ 10066 if (!nr_running && idle_cpu_without(i, p)) 10067 sgs->idle_cpus++; 10068 10069 /* Check if task fits in the CPU */ 10070 if (sd->flags & SD_ASYM_CPUCAPACITY && 10071 sgs->group_misfit_task_load && 10072 task_fits_cpu(p, i)) 10073 sgs->group_misfit_task_load = 0; 10074 10075 } 10076 10077 sgs->group_capacity = group->sgc->capacity; 10078 10079 sgs->group_weight = group->group_weight; 10080 10081 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10082 10083 /* 10084 * Computing avg_load makes sense only when group is fully busy or 10085 * overloaded 10086 */ 10087 if (sgs->group_type == group_fully_busy || 10088 sgs->group_type == group_overloaded) 10089 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10090 sgs->group_capacity; 10091 } 10092 10093 static bool update_pick_idlest(struct sched_group *idlest, 10094 struct sg_lb_stats *idlest_sgs, 10095 struct sched_group *group, 10096 struct sg_lb_stats *sgs) 10097 { 10098 if (sgs->group_type < idlest_sgs->group_type) 10099 return true; 10100 10101 if (sgs->group_type > idlest_sgs->group_type) 10102 return false; 10103 10104 /* 10105 * The candidate and the current idlest group are the same type of 10106 * group. Let check which one is the idlest according to the type. 10107 */ 10108 10109 switch (sgs->group_type) { 10110 case group_overloaded: 10111 case group_fully_busy: 10112 /* Select the group with lowest avg_load. */ 10113 if (idlest_sgs->avg_load <= sgs->avg_load) 10114 return false; 10115 break; 10116 10117 case group_imbalanced: 10118 case group_asym_packing: 10119 case group_smt_balance: 10120 /* Those types are not used in the slow wakeup path */ 10121 return false; 10122 10123 case group_misfit_task: 10124 /* Select group with the highest max capacity */ 10125 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10126 return false; 10127 break; 10128 10129 case group_has_spare: 10130 /* Select group with most idle CPUs */ 10131 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10132 return false; 10133 10134 /* Select group with lowest group_util */ 10135 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10136 idlest_sgs->group_util <= sgs->group_util) 10137 return false; 10138 10139 break; 10140 } 10141 10142 return true; 10143 } 10144 10145 /* 10146 * find_idlest_group() finds and returns the least busy CPU group within the 10147 * domain. 10148 * 10149 * Assumes p is allowed on at least one CPU in sd. 10150 */ 10151 static struct sched_group * 10152 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10153 { 10154 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10155 struct sg_lb_stats local_sgs, tmp_sgs; 10156 struct sg_lb_stats *sgs; 10157 unsigned long imbalance; 10158 struct sg_lb_stats idlest_sgs = { 10159 .avg_load = UINT_MAX, 10160 .group_type = group_overloaded, 10161 }; 10162 10163 do { 10164 int local_group; 10165 10166 /* Skip over this group if it has no CPUs allowed */ 10167 if (!cpumask_intersects(sched_group_span(group), 10168 p->cpus_ptr)) 10169 continue; 10170 10171 /* Skip over this group if no cookie matched */ 10172 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10173 continue; 10174 10175 local_group = cpumask_test_cpu(this_cpu, 10176 sched_group_span(group)); 10177 10178 if (local_group) { 10179 sgs = &local_sgs; 10180 local = group; 10181 } else { 10182 sgs = &tmp_sgs; 10183 } 10184 10185 update_sg_wakeup_stats(sd, group, sgs, p); 10186 10187 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10188 idlest = group; 10189 idlest_sgs = *sgs; 10190 } 10191 10192 } while (group = group->next, group != sd->groups); 10193 10194 10195 /* There is no idlest group to push tasks to */ 10196 if (!idlest) 10197 return NULL; 10198 10199 /* The local group has been skipped because of CPU affinity */ 10200 if (!local) 10201 return idlest; 10202 10203 /* 10204 * If the local group is idler than the selected idlest group 10205 * don't try and push the task. 10206 */ 10207 if (local_sgs.group_type < idlest_sgs.group_type) 10208 return NULL; 10209 10210 /* 10211 * If the local group is busier than the selected idlest group 10212 * try and push the task. 10213 */ 10214 if (local_sgs.group_type > idlest_sgs.group_type) 10215 return idlest; 10216 10217 switch (local_sgs.group_type) { 10218 case group_overloaded: 10219 case group_fully_busy: 10220 10221 /* Calculate allowed imbalance based on load */ 10222 imbalance = scale_load_down(NICE_0_LOAD) * 10223 (sd->imbalance_pct-100) / 100; 10224 10225 /* 10226 * When comparing groups across NUMA domains, it's possible for 10227 * the local domain to be very lightly loaded relative to the 10228 * remote domains but "imbalance" skews the comparison making 10229 * remote CPUs look much more favourable. When considering 10230 * cross-domain, add imbalance to the load on the remote node 10231 * and consider staying local. 10232 */ 10233 10234 if ((sd->flags & SD_NUMA) && 10235 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10236 return NULL; 10237 10238 /* 10239 * If the local group is less loaded than the selected 10240 * idlest group don't try and push any tasks. 10241 */ 10242 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10243 return NULL; 10244 10245 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10246 return NULL; 10247 break; 10248 10249 case group_imbalanced: 10250 case group_asym_packing: 10251 case group_smt_balance: 10252 /* Those type are not used in the slow wakeup path */ 10253 return NULL; 10254 10255 case group_misfit_task: 10256 /* Select group with the highest max capacity */ 10257 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10258 return NULL; 10259 break; 10260 10261 case group_has_spare: 10262 #ifdef CONFIG_NUMA 10263 if (sd->flags & SD_NUMA) { 10264 int imb_numa_nr = sd->imb_numa_nr; 10265 #ifdef CONFIG_NUMA_BALANCING 10266 int idlest_cpu; 10267 /* 10268 * If there is spare capacity at NUMA, try to select 10269 * the preferred node 10270 */ 10271 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10272 return NULL; 10273 10274 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10275 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10276 return idlest; 10277 #endif /* CONFIG_NUMA_BALANCING */ 10278 /* 10279 * Otherwise, keep the task close to the wakeup source 10280 * and improve locality if the number of running tasks 10281 * would remain below threshold where an imbalance is 10282 * allowed while accounting for the possibility the 10283 * task is pinned to a subset of CPUs. If there is a 10284 * real need of migration, periodic load balance will 10285 * take care of it. 10286 */ 10287 if (p->nr_cpus_allowed != NR_CPUS) { 10288 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10289 10290 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10291 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10292 } 10293 10294 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10295 if (!adjust_numa_imbalance(imbalance, 10296 local_sgs.sum_nr_running + 1, 10297 imb_numa_nr)) { 10298 return NULL; 10299 } 10300 } 10301 #endif /* CONFIG_NUMA */ 10302 10303 /* 10304 * Select group with highest number of idle CPUs. We could also 10305 * compare the utilization which is more stable but it can end 10306 * up that the group has less spare capacity but finally more 10307 * idle CPUs which means more opportunity to run task. 10308 */ 10309 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10310 return NULL; 10311 break; 10312 } 10313 10314 return idlest; 10315 } 10316 10317 static void update_idle_cpu_scan(struct lb_env *env, 10318 unsigned long sum_util) 10319 { 10320 struct sched_domain_shared *sd_share; 10321 int llc_weight, pct; 10322 u64 x, y, tmp; 10323 /* 10324 * Update the number of CPUs to scan in LLC domain, which could 10325 * be used as a hint in select_idle_cpu(). The update of sd_share 10326 * could be expensive because it is within a shared cache line. 10327 * So the write of this hint only occurs during periodic load 10328 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10329 * can fire way more frequently than the former. 10330 */ 10331 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10332 return; 10333 10334 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10335 if (env->sd->span_weight != llc_weight) 10336 return; 10337 10338 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10339 if (!sd_share) 10340 return; 10341 10342 /* 10343 * The number of CPUs to search drops as sum_util increases, when 10344 * sum_util hits 85% or above, the scan stops. 10345 * The reason to choose 85% as the threshold is because this is the 10346 * imbalance_pct(117) when a LLC sched group is overloaded. 10347 * 10348 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10349 * and y'= y / SCHED_CAPACITY_SCALE 10350 * 10351 * x is the ratio of sum_util compared to the CPU capacity: 10352 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10353 * y' is the ratio of CPUs to be scanned in the LLC domain, 10354 * and the number of CPUs to scan is calculated by: 10355 * 10356 * nr_scan = llc_weight * y' [2] 10357 * 10358 * When x hits the threshold of overloaded, AKA, when 10359 * x = 100 / pct, y drops to 0. According to [1], 10360 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10361 * 10362 * Scale x by SCHED_CAPACITY_SCALE: 10363 * x' = sum_util / llc_weight; [3] 10364 * 10365 * and finally [1] becomes: 10366 * y = SCHED_CAPACITY_SCALE - 10367 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10368 * 10369 */ 10370 /* equation [3] */ 10371 x = sum_util; 10372 do_div(x, llc_weight); 10373 10374 /* equation [4] */ 10375 pct = env->sd->imbalance_pct; 10376 tmp = x * x * pct * pct; 10377 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10378 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10379 y = SCHED_CAPACITY_SCALE - tmp; 10380 10381 /* equation [2] */ 10382 y *= llc_weight; 10383 do_div(y, SCHED_CAPACITY_SCALE); 10384 if ((int)y != sd_share->nr_idle_scan) 10385 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10386 } 10387 10388 /** 10389 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10390 * @env: The load balancing environment. 10391 * @sds: variable to hold the statistics for this sched_domain. 10392 */ 10393 10394 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10395 { 10396 struct sched_group *sg = env->sd->groups; 10397 struct sg_lb_stats *local = &sds->local_stat; 10398 struct sg_lb_stats tmp_sgs; 10399 unsigned long sum_util = 0; 10400 int sg_status = 0; 10401 10402 do { 10403 struct sg_lb_stats *sgs = &tmp_sgs; 10404 int local_group; 10405 10406 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10407 if (local_group) { 10408 sds->local = sg; 10409 sgs = local; 10410 10411 if (env->idle != CPU_NEWLY_IDLE || 10412 time_after_eq(jiffies, sg->sgc->next_update)) 10413 update_group_capacity(env->sd, env->dst_cpu); 10414 } 10415 10416 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10417 10418 if (local_group) 10419 goto next_group; 10420 10421 10422 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10423 sds->busiest = sg; 10424 sds->busiest_stat = *sgs; 10425 } 10426 10427 next_group: 10428 /* Now, start updating sd_lb_stats */ 10429 sds->total_load += sgs->group_load; 10430 sds->total_capacity += sgs->group_capacity; 10431 10432 sum_util += sgs->group_util; 10433 sg = sg->next; 10434 } while (sg != env->sd->groups); 10435 10436 /* 10437 * Indicate that the child domain of the busiest group prefers tasks 10438 * go to a child's sibling domains first. NB the flags of a sched group 10439 * are those of the child domain. 10440 */ 10441 if (sds->busiest) 10442 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10443 10444 10445 if (env->sd->flags & SD_NUMA) 10446 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10447 10448 if (!env->sd->parent) { 10449 struct root_domain *rd = env->dst_rq->rd; 10450 10451 /* update overload indicator if we are at root domain */ 10452 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10453 10454 /* Update over-utilization (tipping point, U >= 0) indicator */ 10455 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10456 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10457 } else if (sg_status & SG_OVERUTILIZED) { 10458 struct root_domain *rd = env->dst_rq->rd; 10459 10460 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10461 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10462 } 10463 10464 update_idle_cpu_scan(env, sum_util); 10465 } 10466 10467 /** 10468 * calculate_imbalance - Calculate the amount of imbalance present within the 10469 * groups of a given sched_domain during load balance. 10470 * @env: load balance environment 10471 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10472 */ 10473 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10474 { 10475 struct sg_lb_stats *local, *busiest; 10476 10477 local = &sds->local_stat; 10478 busiest = &sds->busiest_stat; 10479 10480 if (busiest->group_type == group_misfit_task) { 10481 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10482 /* Set imbalance to allow misfit tasks to be balanced. */ 10483 env->migration_type = migrate_misfit; 10484 env->imbalance = 1; 10485 } else { 10486 /* 10487 * Set load imbalance to allow moving task from cpu 10488 * with reduced capacity. 10489 */ 10490 env->migration_type = migrate_load; 10491 env->imbalance = busiest->group_misfit_task_load; 10492 } 10493 return; 10494 } 10495 10496 if (busiest->group_type == group_asym_packing) { 10497 /* 10498 * In case of asym capacity, we will try to migrate all load to 10499 * the preferred CPU. 10500 */ 10501 env->migration_type = migrate_task; 10502 env->imbalance = busiest->sum_h_nr_running; 10503 return; 10504 } 10505 10506 if (busiest->group_type == group_smt_balance) { 10507 /* Reduce number of tasks sharing CPU capacity */ 10508 env->migration_type = migrate_task; 10509 env->imbalance = 1; 10510 return; 10511 } 10512 10513 if (busiest->group_type == group_imbalanced) { 10514 /* 10515 * In the group_imb case we cannot rely on group-wide averages 10516 * to ensure CPU-load equilibrium, try to move any task to fix 10517 * the imbalance. The next load balance will take care of 10518 * balancing back the system. 10519 */ 10520 env->migration_type = migrate_task; 10521 env->imbalance = 1; 10522 return; 10523 } 10524 10525 /* 10526 * Try to use spare capacity of local group without overloading it or 10527 * emptying busiest. 10528 */ 10529 if (local->group_type == group_has_spare) { 10530 if ((busiest->group_type > group_fully_busy) && 10531 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10532 /* 10533 * If busiest is overloaded, try to fill spare 10534 * capacity. This might end up creating spare capacity 10535 * in busiest or busiest still being overloaded but 10536 * there is no simple way to directly compute the 10537 * amount of load to migrate in order to balance the 10538 * system. 10539 */ 10540 env->migration_type = migrate_util; 10541 env->imbalance = max(local->group_capacity, local->group_util) - 10542 local->group_util; 10543 10544 /* 10545 * In some cases, the group's utilization is max or even 10546 * higher than capacity because of migrations but the 10547 * local CPU is (newly) idle. There is at least one 10548 * waiting task in this overloaded busiest group. Let's 10549 * try to pull it. 10550 */ 10551 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10552 env->migration_type = migrate_task; 10553 env->imbalance = 1; 10554 } 10555 10556 return; 10557 } 10558 10559 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10560 /* 10561 * When prefer sibling, evenly spread running tasks on 10562 * groups. 10563 */ 10564 env->migration_type = migrate_task; 10565 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10566 } else { 10567 10568 /* 10569 * If there is no overload, we just want to even the number of 10570 * idle cpus. 10571 */ 10572 env->migration_type = migrate_task; 10573 env->imbalance = max_t(long, 0, 10574 (local->idle_cpus - busiest->idle_cpus)); 10575 } 10576 10577 #ifdef CONFIG_NUMA 10578 /* Consider allowing a small imbalance between NUMA groups */ 10579 if (env->sd->flags & SD_NUMA) { 10580 env->imbalance = adjust_numa_imbalance(env->imbalance, 10581 local->sum_nr_running + 1, 10582 env->sd->imb_numa_nr); 10583 } 10584 #endif 10585 10586 /* Number of tasks to move to restore balance */ 10587 env->imbalance >>= 1; 10588 10589 return; 10590 } 10591 10592 /* 10593 * Local is fully busy but has to take more load to relieve the 10594 * busiest group 10595 */ 10596 if (local->group_type < group_overloaded) { 10597 /* 10598 * Local will become overloaded so the avg_load metrics are 10599 * finally needed. 10600 */ 10601 10602 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10603 local->group_capacity; 10604 10605 /* 10606 * If the local group is more loaded than the selected 10607 * busiest group don't try to pull any tasks. 10608 */ 10609 if (local->avg_load >= busiest->avg_load) { 10610 env->imbalance = 0; 10611 return; 10612 } 10613 10614 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10615 sds->total_capacity; 10616 10617 /* 10618 * If the local group is more loaded than the average system 10619 * load, don't try to pull any tasks. 10620 */ 10621 if (local->avg_load >= sds->avg_load) { 10622 env->imbalance = 0; 10623 return; 10624 } 10625 10626 } 10627 10628 /* 10629 * Both group are or will become overloaded and we're trying to get all 10630 * the CPUs to the average_load, so we don't want to push ourselves 10631 * above the average load, nor do we wish to reduce the max loaded CPU 10632 * below the average load. At the same time, we also don't want to 10633 * reduce the group load below the group capacity. Thus we look for 10634 * the minimum possible imbalance. 10635 */ 10636 env->migration_type = migrate_load; 10637 env->imbalance = min( 10638 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10639 (sds->avg_load - local->avg_load) * local->group_capacity 10640 ) / SCHED_CAPACITY_SCALE; 10641 } 10642 10643 /******* find_busiest_group() helpers end here *********************/ 10644 10645 /* 10646 * Decision matrix according to the local and busiest group type: 10647 * 10648 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10649 * has_spare nr_idle balanced N/A N/A balanced balanced 10650 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10651 * misfit_task force N/A N/A N/A N/A N/A 10652 * asym_packing force force N/A N/A force force 10653 * imbalanced force force N/A N/A force force 10654 * overloaded force force N/A N/A force avg_load 10655 * 10656 * N/A : Not Applicable because already filtered while updating 10657 * statistics. 10658 * balanced : The system is balanced for these 2 groups. 10659 * force : Calculate the imbalance as load migration is probably needed. 10660 * avg_load : Only if imbalance is significant enough. 10661 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10662 * different in groups. 10663 */ 10664 10665 /** 10666 * find_busiest_group - Returns the busiest group within the sched_domain 10667 * if there is an imbalance. 10668 * @env: The load balancing environment. 10669 * 10670 * Also calculates the amount of runnable load which should be moved 10671 * to restore balance. 10672 * 10673 * Return: - The busiest group if imbalance exists. 10674 */ 10675 static struct sched_group *find_busiest_group(struct lb_env *env) 10676 { 10677 struct sg_lb_stats *local, *busiest; 10678 struct sd_lb_stats sds; 10679 10680 init_sd_lb_stats(&sds); 10681 10682 /* 10683 * Compute the various statistics relevant for load balancing at 10684 * this level. 10685 */ 10686 update_sd_lb_stats(env, &sds); 10687 10688 /* There is no busy sibling group to pull tasks from */ 10689 if (!sds.busiest) 10690 goto out_balanced; 10691 10692 busiest = &sds.busiest_stat; 10693 10694 /* Misfit tasks should be dealt with regardless of the avg load */ 10695 if (busiest->group_type == group_misfit_task) 10696 goto force_balance; 10697 10698 if (sched_energy_enabled()) { 10699 struct root_domain *rd = env->dst_rq->rd; 10700 10701 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10702 goto out_balanced; 10703 } 10704 10705 /* ASYM feature bypasses nice load balance check */ 10706 if (busiest->group_type == group_asym_packing) 10707 goto force_balance; 10708 10709 /* 10710 * If the busiest group is imbalanced the below checks don't 10711 * work because they assume all things are equal, which typically 10712 * isn't true due to cpus_ptr constraints and the like. 10713 */ 10714 if (busiest->group_type == group_imbalanced) 10715 goto force_balance; 10716 10717 local = &sds.local_stat; 10718 /* 10719 * If the local group is busier than the selected busiest group 10720 * don't try and pull any tasks. 10721 */ 10722 if (local->group_type > busiest->group_type) 10723 goto out_balanced; 10724 10725 /* 10726 * When groups are overloaded, use the avg_load to ensure fairness 10727 * between tasks. 10728 */ 10729 if (local->group_type == group_overloaded) { 10730 /* 10731 * If the local group is more loaded than the selected 10732 * busiest group don't try to pull any tasks. 10733 */ 10734 if (local->avg_load >= busiest->avg_load) 10735 goto out_balanced; 10736 10737 /* XXX broken for overlapping NUMA groups */ 10738 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10739 sds.total_capacity; 10740 10741 /* 10742 * Don't pull any tasks if this group is already above the 10743 * domain average load. 10744 */ 10745 if (local->avg_load >= sds.avg_load) 10746 goto out_balanced; 10747 10748 /* 10749 * If the busiest group is more loaded, use imbalance_pct to be 10750 * conservative. 10751 */ 10752 if (100 * busiest->avg_load <= 10753 env->sd->imbalance_pct * local->avg_load) 10754 goto out_balanced; 10755 } 10756 10757 /* 10758 * Try to move all excess tasks to a sibling domain of the busiest 10759 * group's child domain. 10760 */ 10761 if (sds.prefer_sibling && local->group_type == group_has_spare && 10762 sibling_imbalance(env, &sds, busiest, local) > 1) 10763 goto force_balance; 10764 10765 if (busiest->group_type != group_overloaded) { 10766 if (env->idle == CPU_NOT_IDLE) { 10767 /* 10768 * If the busiest group is not overloaded (and as a 10769 * result the local one too) but this CPU is already 10770 * busy, let another idle CPU try to pull task. 10771 */ 10772 goto out_balanced; 10773 } 10774 10775 if (busiest->group_type == group_smt_balance && 10776 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10777 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10778 goto force_balance; 10779 } 10780 10781 if (busiest->group_weight > 1 && 10782 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10783 /* 10784 * If the busiest group is not overloaded 10785 * and there is no imbalance between this and busiest 10786 * group wrt idle CPUs, it is balanced. The imbalance 10787 * becomes significant if the diff is greater than 1 10788 * otherwise we might end up to just move the imbalance 10789 * on another group. Of course this applies only if 10790 * there is more than 1 CPU per group. 10791 */ 10792 goto out_balanced; 10793 } 10794 10795 if (busiest->sum_h_nr_running == 1) { 10796 /* 10797 * busiest doesn't have any tasks waiting to run 10798 */ 10799 goto out_balanced; 10800 } 10801 } 10802 10803 force_balance: 10804 /* Looks like there is an imbalance. Compute it */ 10805 calculate_imbalance(env, &sds); 10806 return env->imbalance ? sds.busiest : NULL; 10807 10808 out_balanced: 10809 env->imbalance = 0; 10810 return NULL; 10811 } 10812 10813 /* 10814 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10815 */ 10816 static struct rq *find_busiest_queue(struct lb_env *env, 10817 struct sched_group *group) 10818 { 10819 struct rq *busiest = NULL, *rq; 10820 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10821 unsigned int busiest_nr = 0; 10822 int i; 10823 10824 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10825 unsigned long capacity, load, util; 10826 unsigned int nr_running; 10827 enum fbq_type rt; 10828 10829 rq = cpu_rq(i); 10830 rt = fbq_classify_rq(rq); 10831 10832 /* 10833 * We classify groups/runqueues into three groups: 10834 * - regular: there are !numa tasks 10835 * - remote: there are numa tasks that run on the 'wrong' node 10836 * - all: there is no distinction 10837 * 10838 * In order to avoid migrating ideally placed numa tasks, 10839 * ignore those when there's better options. 10840 * 10841 * If we ignore the actual busiest queue to migrate another 10842 * task, the next balance pass can still reduce the busiest 10843 * queue by moving tasks around inside the node. 10844 * 10845 * If we cannot move enough load due to this classification 10846 * the next pass will adjust the group classification and 10847 * allow migration of more tasks. 10848 * 10849 * Both cases only affect the total convergence complexity. 10850 */ 10851 if (rt > env->fbq_type) 10852 continue; 10853 10854 nr_running = rq->cfs.h_nr_running; 10855 if (!nr_running) 10856 continue; 10857 10858 capacity = capacity_of(i); 10859 10860 /* 10861 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10862 * eventually lead to active_balancing high->low capacity. 10863 * Higher per-CPU capacity is considered better than balancing 10864 * average load. 10865 */ 10866 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10867 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10868 nr_running == 1) 10869 continue; 10870 10871 /* 10872 * Make sure we only pull tasks from a CPU of lower priority 10873 * when balancing between SMT siblings. 10874 * 10875 * If balancing between cores, let lower priority CPUs help 10876 * SMT cores with more than one busy sibling. 10877 */ 10878 if ((env->sd->flags & SD_ASYM_PACKING) && 10879 sched_use_asym_prio(env->sd, i) && 10880 sched_asym_prefer(i, env->dst_cpu) && 10881 nr_running == 1) 10882 continue; 10883 10884 switch (env->migration_type) { 10885 case migrate_load: 10886 /* 10887 * When comparing with load imbalance, use cpu_load() 10888 * which is not scaled with the CPU capacity. 10889 */ 10890 load = cpu_load(rq); 10891 10892 if (nr_running == 1 && load > env->imbalance && 10893 !check_cpu_capacity(rq, env->sd)) 10894 break; 10895 10896 /* 10897 * For the load comparisons with the other CPUs, 10898 * consider the cpu_load() scaled with the CPU 10899 * capacity, so that the load can be moved away 10900 * from the CPU that is potentially running at a 10901 * lower capacity. 10902 * 10903 * Thus we're looking for max(load_i / capacity_i), 10904 * crosswise multiplication to rid ourselves of the 10905 * division works out to: 10906 * load_i * capacity_j > load_j * capacity_i; 10907 * where j is our previous maximum. 10908 */ 10909 if (load * busiest_capacity > busiest_load * capacity) { 10910 busiest_load = load; 10911 busiest_capacity = capacity; 10912 busiest = rq; 10913 } 10914 break; 10915 10916 case migrate_util: 10917 util = cpu_util_cfs_boost(i); 10918 10919 /* 10920 * Don't try to pull utilization from a CPU with one 10921 * running task. Whatever its utilization, we will fail 10922 * detach the task. 10923 */ 10924 if (nr_running <= 1) 10925 continue; 10926 10927 if (busiest_util < util) { 10928 busiest_util = util; 10929 busiest = rq; 10930 } 10931 break; 10932 10933 case migrate_task: 10934 if (busiest_nr < nr_running) { 10935 busiest_nr = nr_running; 10936 busiest = rq; 10937 } 10938 break; 10939 10940 case migrate_misfit: 10941 /* 10942 * For ASYM_CPUCAPACITY domains with misfit tasks we 10943 * simply seek the "biggest" misfit task. 10944 */ 10945 if (rq->misfit_task_load > busiest_load) { 10946 busiest_load = rq->misfit_task_load; 10947 busiest = rq; 10948 } 10949 10950 break; 10951 10952 } 10953 } 10954 10955 return busiest; 10956 } 10957 10958 /* 10959 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10960 * so long as it is large enough. 10961 */ 10962 #define MAX_PINNED_INTERVAL 512 10963 10964 static inline bool 10965 asym_active_balance(struct lb_env *env) 10966 { 10967 /* 10968 * ASYM_PACKING needs to force migrate tasks from busy but lower 10969 * priority CPUs in order to pack all tasks in the highest priority 10970 * CPUs. When done between cores, do it only if the whole core if the 10971 * whole core is idle. 10972 * 10973 * If @env::src_cpu is an SMT core with busy siblings, let 10974 * the lower priority @env::dst_cpu help it. Do not follow 10975 * CPU priority. 10976 */ 10977 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10978 sched_use_asym_prio(env->sd, env->dst_cpu) && 10979 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 10980 !sched_use_asym_prio(env->sd, env->src_cpu)); 10981 } 10982 10983 static inline bool 10984 imbalanced_active_balance(struct lb_env *env) 10985 { 10986 struct sched_domain *sd = env->sd; 10987 10988 /* 10989 * The imbalanced case includes the case of pinned tasks preventing a fair 10990 * distribution of the load on the system but also the even distribution of the 10991 * threads on a system with spare capacity 10992 */ 10993 if ((env->migration_type == migrate_task) && 10994 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10995 return 1; 10996 10997 return 0; 10998 } 10999 11000 static int need_active_balance(struct lb_env *env) 11001 { 11002 struct sched_domain *sd = env->sd; 11003 11004 if (asym_active_balance(env)) 11005 return 1; 11006 11007 if (imbalanced_active_balance(env)) 11008 return 1; 11009 11010 /* 11011 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11012 * It's worth migrating the task if the src_cpu's capacity is reduced 11013 * because of other sched_class or IRQs if more capacity stays 11014 * available on dst_cpu. 11015 */ 11016 if ((env->idle != CPU_NOT_IDLE) && 11017 (env->src_rq->cfs.h_nr_running == 1)) { 11018 if ((check_cpu_capacity(env->src_rq, sd)) && 11019 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11020 return 1; 11021 } 11022 11023 if (env->migration_type == migrate_misfit) 11024 return 1; 11025 11026 return 0; 11027 } 11028 11029 static int active_load_balance_cpu_stop(void *data); 11030 11031 static int should_we_balance(struct lb_env *env) 11032 { 11033 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11034 struct sched_group *sg = env->sd->groups; 11035 int cpu, idle_smt = -1; 11036 11037 /* 11038 * Ensure the balancing environment is consistent; can happen 11039 * when the softirq triggers 'during' hotplug. 11040 */ 11041 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11042 return 0; 11043 11044 /* 11045 * In the newly idle case, we will allow all the CPUs 11046 * to do the newly idle load balance. 11047 * 11048 * However, we bail out if we already have tasks or a wakeup pending, 11049 * to optimize wakeup latency. 11050 */ 11051 if (env->idle == CPU_NEWLY_IDLE) { 11052 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11053 return 0; 11054 return 1; 11055 } 11056 11057 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11058 /* Try to find first idle CPU */ 11059 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11060 if (!idle_cpu(cpu)) 11061 continue; 11062 11063 /* 11064 * Don't balance to idle SMT in busy core right away when 11065 * balancing cores, but remember the first idle SMT CPU for 11066 * later consideration. Find CPU on an idle core first. 11067 */ 11068 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11069 if (idle_smt == -1) 11070 idle_smt = cpu; 11071 /* 11072 * If the core is not idle, and first SMT sibling which is 11073 * idle has been found, then its not needed to check other 11074 * SMT siblings for idleness: 11075 */ 11076 #ifdef CONFIG_SCHED_SMT 11077 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11078 #endif 11079 continue; 11080 } 11081 11082 /* Are we the first idle CPU? */ 11083 return cpu == env->dst_cpu; 11084 } 11085 11086 if (idle_smt == env->dst_cpu) 11087 return true; 11088 11089 /* Are we the first CPU of this group ? */ 11090 return group_balance_cpu(sg) == env->dst_cpu; 11091 } 11092 11093 /* 11094 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11095 * tasks if there is an imbalance. 11096 */ 11097 static int load_balance(int this_cpu, struct rq *this_rq, 11098 struct sched_domain *sd, enum cpu_idle_type idle, 11099 int *continue_balancing) 11100 { 11101 int ld_moved, cur_ld_moved, active_balance = 0; 11102 struct sched_domain *sd_parent = sd->parent; 11103 struct sched_group *group; 11104 struct rq *busiest; 11105 struct rq_flags rf; 11106 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11107 struct lb_env env = { 11108 .sd = sd, 11109 .dst_cpu = this_cpu, 11110 .dst_rq = this_rq, 11111 .dst_grpmask = group_balance_mask(sd->groups), 11112 .idle = idle, 11113 .loop_break = SCHED_NR_MIGRATE_BREAK, 11114 .cpus = cpus, 11115 .fbq_type = all, 11116 .tasks = LIST_HEAD_INIT(env.tasks), 11117 }; 11118 11119 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11120 11121 schedstat_inc(sd->lb_count[idle]); 11122 11123 redo: 11124 if (!should_we_balance(&env)) { 11125 *continue_balancing = 0; 11126 goto out_balanced; 11127 } 11128 11129 group = find_busiest_group(&env); 11130 if (!group) { 11131 schedstat_inc(sd->lb_nobusyg[idle]); 11132 goto out_balanced; 11133 } 11134 11135 busiest = find_busiest_queue(&env, group); 11136 if (!busiest) { 11137 schedstat_inc(sd->lb_nobusyq[idle]); 11138 goto out_balanced; 11139 } 11140 11141 WARN_ON_ONCE(busiest == env.dst_rq); 11142 11143 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11144 11145 env.src_cpu = busiest->cpu; 11146 env.src_rq = busiest; 11147 11148 ld_moved = 0; 11149 /* Clear this flag as soon as we find a pullable task */ 11150 env.flags |= LBF_ALL_PINNED; 11151 if (busiest->nr_running > 1) { 11152 /* 11153 * Attempt to move tasks. If find_busiest_group has found 11154 * an imbalance but busiest->nr_running <= 1, the group is 11155 * still unbalanced. ld_moved simply stays zero, so it is 11156 * correctly treated as an imbalance. 11157 */ 11158 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11159 11160 more_balance: 11161 rq_lock_irqsave(busiest, &rf); 11162 update_rq_clock(busiest); 11163 11164 /* 11165 * cur_ld_moved - load moved in current iteration 11166 * ld_moved - cumulative load moved across iterations 11167 */ 11168 cur_ld_moved = detach_tasks(&env); 11169 11170 /* 11171 * We've detached some tasks from busiest_rq. Every 11172 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11173 * unlock busiest->lock, and we are able to be sure 11174 * that nobody can manipulate the tasks in parallel. 11175 * See task_rq_lock() family for the details. 11176 */ 11177 11178 rq_unlock(busiest, &rf); 11179 11180 if (cur_ld_moved) { 11181 attach_tasks(&env); 11182 ld_moved += cur_ld_moved; 11183 } 11184 11185 local_irq_restore(rf.flags); 11186 11187 if (env.flags & LBF_NEED_BREAK) { 11188 env.flags &= ~LBF_NEED_BREAK; 11189 /* Stop if we tried all running tasks */ 11190 if (env.loop < busiest->nr_running) 11191 goto more_balance; 11192 } 11193 11194 /* 11195 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11196 * us and move them to an alternate dst_cpu in our sched_group 11197 * where they can run. The upper limit on how many times we 11198 * iterate on same src_cpu is dependent on number of CPUs in our 11199 * sched_group. 11200 * 11201 * This changes load balance semantics a bit on who can move 11202 * load to a given_cpu. In addition to the given_cpu itself 11203 * (or a ilb_cpu acting on its behalf where given_cpu is 11204 * nohz-idle), we now have balance_cpu in a position to move 11205 * load to given_cpu. In rare situations, this may cause 11206 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11207 * _independently_ and at _same_ time to move some load to 11208 * given_cpu) causing excess load to be moved to given_cpu. 11209 * This however should not happen so much in practice and 11210 * moreover subsequent load balance cycles should correct the 11211 * excess load moved. 11212 */ 11213 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11214 11215 /* Prevent to re-select dst_cpu via env's CPUs */ 11216 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11217 11218 env.dst_rq = cpu_rq(env.new_dst_cpu); 11219 env.dst_cpu = env.new_dst_cpu; 11220 env.flags &= ~LBF_DST_PINNED; 11221 env.loop = 0; 11222 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11223 11224 /* 11225 * Go back to "more_balance" rather than "redo" since we 11226 * need to continue with same src_cpu. 11227 */ 11228 goto more_balance; 11229 } 11230 11231 /* 11232 * We failed to reach balance because of affinity. 11233 */ 11234 if (sd_parent) { 11235 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11236 11237 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11238 *group_imbalance = 1; 11239 } 11240 11241 /* All tasks on this runqueue were pinned by CPU affinity */ 11242 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11243 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11244 /* 11245 * Attempting to continue load balancing at the current 11246 * sched_domain level only makes sense if there are 11247 * active CPUs remaining as possible busiest CPUs to 11248 * pull load from which are not contained within the 11249 * destination group that is receiving any migrated 11250 * load. 11251 */ 11252 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11253 env.loop = 0; 11254 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11255 goto redo; 11256 } 11257 goto out_all_pinned; 11258 } 11259 } 11260 11261 if (!ld_moved) { 11262 schedstat_inc(sd->lb_failed[idle]); 11263 /* 11264 * Increment the failure counter only on periodic balance. 11265 * We do not want newidle balance, which can be very 11266 * frequent, pollute the failure counter causing 11267 * excessive cache_hot migrations and active balances. 11268 */ 11269 if (idle != CPU_NEWLY_IDLE) 11270 sd->nr_balance_failed++; 11271 11272 if (need_active_balance(&env)) { 11273 unsigned long flags; 11274 11275 raw_spin_rq_lock_irqsave(busiest, flags); 11276 11277 /* 11278 * Don't kick the active_load_balance_cpu_stop, 11279 * if the curr task on busiest CPU can't be 11280 * moved to this_cpu: 11281 */ 11282 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11283 raw_spin_rq_unlock_irqrestore(busiest, flags); 11284 goto out_one_pinned; 11285 } 11286 11287 /* Record that we found at least one task that could run on this_cpu */ 11288 env.flags &= ~LBF_ALL_PINNED; 11289 11290 /* 11291 * ->active_balance synchronizes accesses to 11292 * ->active_balance_work. Once set, it's cleared 11293 * only after active load balance is finished. 11294 */ 11295 if (!busiest->active_balance) { 11296 busiest->active_balance = 1; 11297 busiest->push_cpu = this_cpu; 11298 active_balance = 1; 11299 } 11300 11301 preempt_disable(); 11302 raw_spin_rq_unlock_irqrestore(busiest, flags); 11303 if (active_balance) { 11304 stop_one_cpu_nowait(cpu_of(busiest), 11305 active_load_balance_cpu_stop, busiest, 11306 &busiest->active_balance_work); 11307 } 11308 preempt_enable(); 11309 } 11310 } else { 11311 sd->nr_balance_failed = 0; 11312 } 11313 11314 if (likely(!active_balance) || need_active_balance(&env)) { 11315 /* We were unbalanced, so reset the balancing interval */ 11316 sd->balance_interval = sd->min_interval; 11317 } 11318 11319 goto out; 11320 11321 out_balanced: 11322 /* 11323 * We reach balance although we may have faced some affinity 11324 * constraints. Clear the imbalance flag only if other tasks got 11325 * a chance to move and fix the imbalance. 11326 */ 11327 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11328 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11329 11330 if (*group_imbalance) 11331 *group_imbalance = 0; 11332 } 11333 11334 out_all_pinned: 11335 /* 11336 * We reach balance because all tasks are pinned at this level so 11337 * we can't migrate them. Let the imbalance flag set so parent level 11338 * can try to migrate them. 11339 */ 11340 schedstat_inc(sd->lb_balanced[idle]); 11341 11342 sd->nr_balance_failed = 0; 11343 11344 out_one_pinned: 11345 ld_moved = 0; 11346 11347 /* 11348 * newidle_balance() disregards balance intervals, so we could 11349 * repeatedly reach this code, which would lead to balance_interval 11350 * skyrocketing in a short amount of time. Skip the balance_interval 11351 * increase logic to avoid that. 11352 */ 11353 if (env.idle == CPU_NEWLY_IDLE) 11354 goto out; 11355 11356 /* tune up the balancing interval */ 11357 if ((env.flags & LBF_ALL_PINNED && 11358 sd->balance_interval < MAX_PINNED_INTERVAL) || 11359 sd->balance_interval < sd->max_interval) 11360 sd->balance_interval *= 2; 11361 out: 11362 return ld_moved; 11363 } 11364 11365 static inline unsigned long 11366 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11367 { 11368 unsigned long interval = sd->balance_interval; 11369 11370 if (cpu_busy) 11371 interval *= sd->busy_factor; 11372 11373 /* scale ms to jiffies */ 11374 interval = msecs_to_jiffies(interval); 11375 11376 /* 11377 * Reduce likelihood of busy balancing at higher domains racing with 11378 * balancing at lower domains by preventing their balancing periods 11379 * from being multiples of each other. 11380 */ 11381 if (cpu_busy) 11382 interval -= 1; 11383 11384 interval = clamp(interval, 1UL, max_load_balance_interval); 11385 11386 return interval; 11387 } 11388 11389 static inline void 11390 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11391 { 11392 unsigned long interval, next; 11393 11394 /* used by idle balance, so cpu_busy = 0 */ 11395 interval = get_sd_balance_interval(sd, 0); 11396 next = sd->last_balance + interval; 11397 11398 if (time_after(*next_balance, next)) 11399 *next_balance = next; 11400 } 11401 11402 /* 11403 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11404 * running tasks off the busiest CPU onto idle CPUs. It requires at 11405 * least 1 task to be running on each physical CPU where possible, and 11406 * avoids physical / logical imbalances. 11407 */ 11408 static int active_load_balance_cpu_stop(void *data) 11409 { 11410 struct rq *busiest_rq = data; 11411 int busiest_cpu = cpu_of(busiest_rq); 11412 int target_cpu = busiest_rq->push_cpu; 11413 struct rq *target_rq = cpu_rq(target_cpu); 11414 struct sched_domain *sd; 11415 struct task_struct *p = NULL; 11416 struct rq_flags rf; 11417 11418 rq_lock_irq(busiest_rq, &rf); 11419 /* 11420 * Between queueing the stop-work and running it is a hole in which 11421 * CPUs can become inactive. We should not move tasks from or to 11422 * inactive CPUs. 11423 */ 11424 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11425 goto out_unlock; 11426 11427 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11428 if (unlikely(busiest_cpu != smp_processor_id() || 11429 !busiest_rq->active_balance)) 11430 goto out_unlock; 11431 11432 /* Is there any task to move? */ 11433 if (busiest_rq->nr_running <= 1) 11434 goto out_unlock; 11435 11436 /* 11437 * This condition is "impossible", if it occurs 11438 * we need to fix it. Originally reported by 11439 * Bjorn Helgaas on a 128-CPU setup. 11440 */ 11441 WARN_ON_ONCE(busiest_rq == target_rq); 11442 11443 /* Search for an sd spanning us and the target CPU. */ 11444 rcu_read_lock(); 11445 for_each_domain(target_cpu, sd) { 11446 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11447 break; 11448 } 11449 11450 if (likely(sd)) { 11451 struct lb_env env = { 11452 .sd = sd, 11453 .dst_cpu = target_cpu, 11454 .dst_rq = target_rq, 11455 .src_cpu = busiest_rq->cpu, 11456 .src_rq = busiest_rq, 11457 .idle = CPU_IDLE, 11458 .flags = LBF_ACTIVE_LB, 11459 }; 11460 11461 schedstat_inc(sd->alb_count); 11462 update_rq_clock(busiest_rq); 11463 11464 p = detach_one_task(&env); 11465 if (p) { 11466 schedstat_inc(sd->alb_pushed); 11467 /* Active balancing done, reset the failure counter. */ 11468 sd->nr_balance_failed = 0; 11469 } else { 11470 schedstat_inc(sd->alb_failed); 11471 } 11472 } 11473 rcu_read_unlock(); 11474 out_unlock: 11475 busiest_rq->active_balance = 0; 11476 rq_unlock(busiest_rq, &rf); 11477 11478 if (p) 11479 attach_one_task(target_rq, p); 11480 11481 local_irq_enable(); 11482 11483 return 0; 11484 } 11485 11486 static DEFINE_SPINLOCK(balancing); 11487 11488 /* 11489 * Scale the max load_balance interval with the number of CPUs in the system. 11490 * This trades load-balance latency on larger machines for less cross talk. 11491 */ 11492 void update_max_interval(void) 11493 { 11494 max_load_balance_interval = HZ*num_online_cpus()/10; 11495 } 11496 11497 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11498 { 11499 if (cost > sd->max_newidle_lb_cost) { 11500 /* 11501 * Track max cost of a domain to make sure to not delay the 11502 * next wakeup on the CPU. 11503 */ 11504 sd->max_newidle_lb_cost = cost; 11505 sd->last_decay_max_lb_cost = jiffies; 11506 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11507 /* 11508 * Decay the newidle max times by ~1% per second to ensure that 11509 * it is not outdated and the current max cost is actually 11510 * shorter. 11511 */ 11512 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11513 sd->last_decay_max_lb_cost = jiffies; 11514 11515 return true; 11516 } 11517 11518 return false; 11519 } 11520 11521 /* 11522 * It checks each scheduling domain to see if it is due to be balanced, 11523 * and initiates a balancing operation if so. 11524 * 11525 * Balancing parameters are set up in init_sched_domains. 11526 */ 11527 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11528 { 11529 int continue_balancing = 1; 11530 int cpu = rq->cpu; 11531 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11532 unsigned long interval; 11533 struct sched_domain *sd; 11534 /* Earliest time when we have to do rebalance again */ 11535 unsigned long next_balance = jiffies + 60*HZ; 11536 int update_next_balance = 0; 11537 int need_serialize, need_decay = 0; 11538 u64 max_cost = 0; 11539 11540 rcu_read_lock(); 11541 for_each_domain(cpu, sd) { 11542 /* 11543 * Decay the newidle max times here because this is a regular 11544 * visit to all the domains. 11545 */ 11546 need_decay = update_newidle_cost(sd, 0); 11547 max_cost += sd->max_newidle_lb_cost; 11548 11549 /* 11550 * Stop the load balance at this level. There is another 11551 * CPU in our sched group which is doing load balancing more 11552 * actively. 11553 */ 11554 if (!continue_balancing) { 11555 if (need_decay) 11556 continue; 11557 break; 11558 } 11559 11560 interval = get_sd_balance_interval(sd, busy); 11561 11562 need_serialize = sd->flags & SD_SERIALIZE; 11563 if (need_serialize) { 11564 if (!spin_trylock(&balancing)) 11565 goto out; 11566 } 11567 11568 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11569 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11570 /* 11571 * The LBF_DST_PINNED logic could have changed 11572 * env->dst_cpu, so we can't know our idle 11573 * state even if we migrated tasks. Update it. 11574 */ 11575 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11576 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11577 } 11578 sd->last_balance = jiffies; 11579 interval = get_sd_balance_interval(sd, busy); 11580 } 11581 if (need_serialize) 11582 spin_unlock(&balancing); 11583 out: 11584 if (time_after(next_balance, sd->last_balance + interval)) { 11585 next_balance = sd->last_balance + interval; 11586 update_next_balance = 1; 11587 } 11588 } 11589 if (need_decay) { 11590 /* 11591 * Ensure the rq-wide value also decays but keep it at a 11592 * reasonable floor to avoid funnies with rq->avg_idle. 11593 */ 11594 rq->max_idle_balance_cost = 11595 max((u64)sysctl_sched_migration_cost, max_cost); 11596 } 11597 rcu_read_unlock(); 11598 11599 /* 11600 * next_balance will be updated only when there is a need. 11601 * When the cpu is attached to null domain for ex, it will not be 11602 * updated. 11603 */ 11604 if (likely(update_next_balance)) 11605 rq->next_balance = next_balance; 11606 11607 } 11608 11609 static inline int on_null_domain(struct rq *rq) 11610 { 11611 return unlikely(!rcu_dereference_sched(rq->sd)); 11612 } 11613 11614 #ifdef CONFIG_NO_HZ_COMMON 11615 /* 11616 * NOHZ idle load balancing (ILB) details: 11617 * 11618 * - When one of the busy CPUs notices that there may be an idle rebalancing 11619 * needed, they will kick the idle load balancer, which then does idle 11620 * load balancing for all the idle CPUs. 11621 * 11622 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 11623 * anywhere yet. 11624 */ 11625 static inline int find_new_ilb(void) 11626 { 11627 const struct cpumask *hk_mask; 11628 int ilb_cpu; 11629 11630 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11631 11632 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 11633 11634 if (ilb_cpu == smp_processor_id()) 11635 continue; 11636 11637 if (idle_cpu(ilb_cpu)) 11638 return ilb_cpu; 11639 } 11640 11641 return -1; 11642 } 11643 11644 /* 11645 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 11646 * SMP function call (IPI). 11647 * 11648 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11649 */ 11650 static void kick_ilb(unsigned int flags) 11651 { 11652 int ilb_cpu; 11653 11654 /* 11655 * Increase nohz.next_balance only when if full ilb is triggered but 11656 * not if we only update stats. 11657 */ 11658 if (flags & NOHZ_BALANCE_KICK) 11659 nohz.next_balance = jiffies+1; 11660 11661 ilb_cpu = find_new_ilb(); 11662 if (ilb_cpu < 0) 11663 return; 11664 11665 /* 11666 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11667 * the first flag owns it; cleared by nohz_csd_func(). 11668 */ 11669 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11670 if (flags & NOHZ_KICK_MASK) 11671 return; 11672 11673 /* 11674 * This way we generate an IPI on the target CPU which 11675 * is idle, and the softirq performing NOHZ idle load balancing 11676 * will be run before returning from the IPI. 11677 */ 11678 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11679 } 11680 11681 /* 11682 * Current decision point for kicking the idle load balancer in the presence 11683 * of idle CPUs in the system. 11684 */ 11685 static void nohz_balancer_kick(struct rq *rq) 11686 { 11687 unsigned long now = jiffies; 11688 struct sched_domain_shared *sds; 11689 struct sched_domain *sd; 11690 int nr_busy, i, cpu = rq->cpu; 11691 unsigned int flags = 0; 11692 11693 if (unlikely(rq->idle_balance)) 11694 return; 11695 11696 /* 11697 * We may be recently in ticked or tickless idle mode. At the first 11698 * busy tick after returning from idle, we will update the busy stats. 11699 */ 11700 nohz_balance_exit_idle(rq); 11701 11702 /* 11703 * None are in tickless mode and hence no need for NOHZ idle load 11704 * balancing: 11705 */ 11706 if (likely(!atomic_read(&nohz.nr_cpus))) 11707 return; 11708 11709 if (READ_ONCE(nohz.has_blocked) && 11710 time_after(now, READ_ONCE(nohz.next_blocked))) 11711 flags = NOHZ_STATS_KICK; 11712 11713 if (time_before(now, nohz.next_balance)) 11714 goto out; 11715 11716 if (rq->nr_running >= 2) { 11717 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11718 goto out; 11719 } 11720 11721 rcu_read_lock(); 11722 11723 sd = rcu_dereference(rq->sd); 11724 if (sd) { 11725 /* 11726 * If there's a runnable CFS task and the current CPU has reduced 11727 * capacity, kick the ILB to see if there's a better CPU to run on: 11728 */ 11729 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11730 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11731 goto unlock; 11732 } 11733 } 11734 11735 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11736 if (sd) { 11737 /* 11738 * When ASYM_PACKING; see if there's a more preferred CPU 11739 * currently idle; in which case, kick the ILB to move tasks 11740 * around. 11741 * 11742 * When balancing betwen cores, all the SMT siblings of the 11743 * preferred CPU must be idle. 11744 */ 11745 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11746 if (sched_use_asym_prio(sd, i) && 11747 sched_asym_prefer(i, cpu)) { 11748 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11749 goto unlock; 11750 } 11751 } 11752 } 11753 11754 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11755 if (sd) { 11756 /* 11757 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11758 * to run the misfit task on. 11759 */ 11760 if (check_misfit_status(rq, sd)) { 11761 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11762 goto unlock; 11763 } 11764 11765 /* 11766 * For asymmetric systems, we do not want to nicely balance 11767 * cache use, instead we want to embrace asymmetry and only 11768 * ensure tasks have enough CPU capacity. 11769 * 11770 * Skip the LLC logic because it's not relevant in that case. 11771 */ 11772 goto unlock; 11773 } 11774 11775 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11776 if (sds) { 11777 /* 11778 * If there is an imbalance between LLC domains (IOW we could 11779 * increase the overall cache utilization), we need a less-loaded LLC 11780 * domain to pull some load from. Likewise, we may need to spread 11781 * load within the current LLC domain (e.g. packed SMT cores but 11782 * other CPUs are idle). We can't really know from here how busy 11783 * the others are - so just get a NOHZ balance going if it looks 11784 * like this LLC domain has tasks we could move. 11785 */ 11786 nr_busy = atomic_read(&sds->nr_busy_cpus); 11787 if (nr_busy > 1) { 11788 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11789 goto unlock; 11790 } 11791 } 11792 unlock: 11793 rcu_read_unlock(); 11794 out: 11795 if (READ_ONCE(nohz.needs_update)) 11796 flags |= NOHZ_NEXT_KICK; 11797 11798 if (flags) 11799 kick_ilb(flags); 11800 } 11801 11802 static void set_cpu_sd_state_busy(int cpu) 11803 { 11804 struct sched_domain *sd; 11805 11806 rcu_read_lock(); 11807 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11808 11809 if (!sd || !sd->nohz_idle) 11810 goto unlock; 11811 sd->nohz_idle = 0; 11812 11813 atomic_inc(&sd->shared->nr_busy_cpus); 11814 unlock: 11815 rcu_read_unlock(); 11816 } 11817 11818 void nohz_balance_exit_idle(struct rq *rq) 11819 { 11820 SCHED_WARN_ON(rq != this_rq()); 11821 11822 if (likely(!rq->nohz_tick_stopped)) 11823 return; 11824 11825 rq->nohz_tick_stopped = 0; 11826 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11827 atomic_dec(&nohz.nr_cpus); 11828 11829 set_cpu_sd_state_busy(rq->cpu); 11830 } 11831 11832 static void set_cpu_sd_state_idle(int cpu) 11833 { 11834 struct sched_domain *sd; 11835 11836 rcu_read_lock(); 11837 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11838 11839 if (!sd || sd->nohz_idle) 11840 goto unlock; 11841 sd->nohz_idle = 1; 11842 11843 atomic_dec(&sd->shared->nr_busy_cpus); 11844 unlock: 11845 rcu_read_unlock(); 11846 } 11847 11848 /* 11849 * This routine will record that the CPU is going idle with tick stopped. 11850 * This info will be used in performing idle load balancing in the future. 11851 */ 11852 void nohz_balance_enter_idle(int cpu) 11853 { 11854 struct rq *rq = cpu_rq(cpu); 11855 11856 SCHED_WARN_ON(cpu != smp_processor_id()); 11857 11858 /* If this CPU is going down, then nothing needs to be done: */ 11859 if (!cpu_active(cpu)) 11860 return; 11861 11862 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11863 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11864 return; 11865 11866 /* 11867 * Can be set safely without rq->lock held 11868 * If a clear happens, it will have evaluated last additions because 11869 * rq->lock is held during the check and the clear 11870 */ 11871 rq->has_blocked_load = 1; 11872 11873 /* 11874 * The tick is still stopped but load could have been added in the 11875 * meantime. We set the nohz.has_blocked flag to trig a check of the 11876 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11877 * of nohz.has_blocked can only happen after checking the new load 11878 */ 11879 if (rq->nohz_tick_stopped) 11880 goto out; 11881 11882 /* If we're a completely isolated CPU, we don't play: */ 11883 if (on_null_domain(rq)) 11884 return; 11885 11886 rq->nohz_tick_stopped = 1; 11887 11888 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11889 atomic_inc(&nohz.nr_cpus); 11890 11891 /* 11892 * Ensures that if nohz_idle_balance() fails to observe our 11893 * @idle_cpus_mask store, it must observe the @has_blocked 11894 * and @needs_update stores. 11895 */ 11896 smp_mb__after_atomic(); 11897 11898 set_cpu_sd_state_idle(cpu); 11899 11900 WRITE_ONCE(nohz.needs_update, 1); 11901 out: 11902 /* 11903 * Each time a cpu enter idle, we assume that it has blocked load and 11904 * enable the periodic update of the load of idle cpus 11905 */ 11906 WRITE_ONCE(nohz.has_blocked, 1); 11907 } 11908 11909 static bool update_nohz_stats(struct rq *rq) 11910 { 11911 unsigned int cpu = rq->cpu; 11912 11913 if (!rq->has_blocked_load) 11914 return false; 11915 11916 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11917 return false; 11918 11919 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11920 return true; 11921 11922 update_blocked_averages(cpu); 11923 11924 return rq->has_blocked_load; 11925 } 11926 11927 /* 11928 * Internal function that runs load balance for all idle cpus. The load balance 11929 * can be a simple update of blocked load or a complete load balance with 11930 * tasks movement depending of flags. 11931 */ 11932 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11933 { 11934 /* Earliest time when we have to do rebalance again */ 11935 unsigned long now = jiffies; 11936 unsigned long next_balance = now + 60*HZ; 11937 bool has_blocked_load = false; 11938 int update_next_balance = 0; 11939 int this_cpu = this_rq->cpu; 11940 int balance_cpu; 11941 struct rq *rq; 11942 11943 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11944 11945 /* 11946 * We assume there will be no idle load after this update and clear 11947 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11948 * set the has_blocked flag and trigger another update of idle load. 11949 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11950 * setting the flag, we are sure to not clear the state and not 11951 * check the load of an idle cpu. 11952 * 11953 * Same applies to idle_cpus_mask vs needs_update. 11954 */ 11955 if (flags & NOHZ_STATS_KICK) 11956 WRITE_ONCE(nohz.has_blocked, 0); 11957 if (flags & NOHZ_NEXT_KICK) 11958 WRITE_ONCE(nohz.needs_update, 0); 11959 11960 /* 11961 * Ensures that if we miss the CPU, we must see the has_blocked 11962 * store from nohz_balance_enter_idle(). 11963 */ 11964 smp_mb(); 11965 11966 /* 11967 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11968 * chance for other idle cpu to pull load. 11969 */ 11970 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11971 if (!idle_cpu(balance_cpu)) 11972 continue; 11973 11974 /* 11975 * If this CPU gets work to do, stop the load balancing 11976 * work being done for other CPUs. Next load 11977 * balancing owner will pick it up. 11978 */ 11979 if (need_resched()) { 11980 if (flags & NOHZ_STATS_KICK) 11981 has_blocked_load = true; 11982 if (flags & NOHZ_NEXT_KICK) 11983 WRITE_ONCE(nohz.needs_update, 1); 11984 goto abort; 11985 } 11986 11987 rq = cpu_rq(balance_cpu); 11988 11989 if (flags & NOHZ_STATS_KICK) 11990 has_blocked_load |= update_nohz_stats(rq); 11991 11992 /* 11993 * If time for next balance is due, 11994 * do the balance. 11995 */ 11996 if (time_after_eq(jiffies, rq->next_balance)) { 11997 struct rq_flags rf; 11998 11999 rq_lock_irqsave(rq, &rf); 12000 update_rq_clock(rq); 12001 rq_unlock_irqrestore(rq, &rf); 12002 12003 if (flags & NOHZ_BALANCE_KICK) 12004 rebalance_domains(rq, CPU_IDLE); 12005 } 12006 12007 if (time_after(next_balance, rq->next_balance)) { 12008 next_balance = rq->next_balance; 12009 update_next_balance = 1; 12010 } 12011 } 12012 12013 /* 12014 * next_balance will be updated only when there is a need. 12015 * When the CPU is attached to null domain for ex, it will not be 12016 * updated. 12017 */ 12018 if (likely(update_next_balance)) 12019 nohz.next_balance = next_balance; 12020 12021 if (flags & NOHZ_STATS_KICK) 12022 WRITE_ONCE(nohz.next_blocked, 12023 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12024 12025 abort: 12026 /* There is still blocked load, enable periodic update */ 12027 if (has_blocked_load) 12028 WRITE_ONCE(nohz.has_blocked, 1); 12029 } 12030 12031 /* 12032 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12033 * rebalancing for all the cpus for whom scheduler ticks are stopped. 12034 */ 12035 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12036 { 12037 unsigned int flags = this_rq->nohz_idle_balance; 12038 12039 if (!flags) 12040 return false; 12041 12042 this_rq->nohz_idle_balance = 0; 12043 12044 if (idle != CPU_IDLE) 12045 return false; 12046 12047 _nohz_idle_balance(this_rq, flags); 12048 12049 return true; 12050 } 12051 12052 /* 12053 * Check if we need to directly run the ILB for updating blocked load before 12054 * entering idle state. Here we run ILB directly without issuing IPIs. 12055 * 12056 * Note that when this function is called, the tick may not yet be stopped on 12057 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12058 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12059 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12060 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12061 * called from this function on (this) CPU that's not yet in the mask. That's 12062 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12063 * updating the blocked load of already idle CPUs without waking up one of 12064 * those idle CPUs and outside the preempt disable / irq off phase of the local 12065 * cpu about to enter idle, because it can take a long time. 12066 */ 12067 void nohz_run_idle_balance(int cpu) 12068 { 12069 unsigned int flags; 12070 12071 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12072 12073 /* 12074 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12075 * (ie NOHZ_STATS_KICK set) and will do the same. 12076 */ 12077 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12078 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12079 } 12080 12081 static void nohz_newidle_balance(struct rq *this_rq) 12082 { 12083 int this_cpu = this_rq->cpu; 12084 12085 /* 12086 * This CPU doesn't want to be disturbed by scheduler 12087 * housekeeping 12088 */ 12089 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12090 return; 12091 12092 /* Will wake up very soon. No time for doing anything else*/ 12093 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12094 return; 12095 12096 /* Don't need to update blocked load of idle CPUs*/ 12097 if (!READ_ONCE(nohz.has_blocked) || 12098 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12099 return; 12100 12101 /* 12102 * Set the need to trigger ILB in order to update blocked load 12103 * before entering idle state. 12104 */ 12105 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12106 } 12107 12108 #else /* !CONFIG_NO_HZ_COMMON */ 12109 static inline void nohz_balancer_kick(struct rq *rq) { } 12110 12111 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12112 { 12113 return false; 12114 } 12115 12116 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12117 #endif /* CONFIG_NO_HZ_COMMON */ 12118 12119 /* 12120 * newidle_balance is called by schedule() if this_cpu is about to become 12121 * idle. Attempts to pull tasks from other CPUs. 12122 * 12123 * Returns: 12124 * < 0 - we released the lock and there are !fair tasks present 12125 * 0 - failed, no new tasks 12126 * > 0 - success, new (fair) tasks present 12127 */ 12128 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12129 { 12130 unsigned long next_balance = jiffies + HZ; 12131 int this_cpu = this_rq->cpu; 12132 u64 t0, t1, curr_cost = 0; 12133 struct sched_domain *sd; 12134 int pulled_task = 0; 12135 12136 update_misfit_status(NULL, this_rq); 12137 12138 /* 12139 * There is a task waiting to run. No need to search for one. 12140 * Return 0; the task will be enqueued when switching to idle. 12141 */ 12142 if (this_rq->ttwu_pending) 12143 return 0; 12144 12145 /* 12146 * We must set idle_stamp _before_ calling idle_balance(), such that we 12147 * measure the duration of idle_balance() as idle time. 12148 */ 12149 this_rq->idle_stamp = rq_clock(this_rq); 12150 12151 /* 12152 * Do not pull tasks towards !active CPUs... 12153 */ 12154 if (!cpu_active(this_cpu)) 12155 return 0; 12156 12157 /* 12158 * This is OK, because current is on_cpu, which avoids it being picked 12159 * for load-balance and preemption/IRQs are still disabled avoiding 12160 * further scheduler activity on it and we're being very careful to 12161 * re-start the picking loop. 12162 */ 12163 rq_unpin_lock(this_rq, rf); 12164 12165 rcu_read_lock(); 12166 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12167 12168 if (!READ_ONCE(this_rq->rd->overload) || 12169 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12170 12171 if (sd) 12172 update_next_balance(sd, &next_balance); 12173 rcu_read_unlock(); 12174 12175 goto out; 12176 } 12177 rcu_read_unlock(); 12178 12179 raw_spin_rq_unlock(this_rq); 12180 12181 t0 = sched_clock_cpu(this_cpu); 12182 update_blocked_averages(this_cpu); 12183 12184 rcu_read_lock(); 12185 for_each_domain(this_cpu, sd) { 12186 int continue_balancing = 1; 12187 u64 domain_cost; 12188 12189 update_next_balance(sd, &next_balance); 12190 12191 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12192 break; 12193 12194 if (sd->flags & SD_BALANCE_NEWIDLE) { 12195 12196 pulled_task = load_balance(this_cpu, this_rq, 12197 sd, CPU_NEWLY_IDLE, 12198 &continue_balancing); 12199 12200 t1 = sched_clock_cpu(this_cpu); 12201 domain_cost = t1 - t0; 12202 update_newidle_cost(sd, domain_cost); 12203 12204 curr_cost += domain_cost; 12205 t0 = t1; 12206 } 12207 12208 /* 12209 * Stop searching for tasks to pull if there are 12210 * now runnable tasks on this rq. 12211 */ 12212 if (pulled_task || this_rq->nr_running > 0 || 12213 this_rq->ttwu_pending) 12214 break; 12215 } 12216 rcu_read_unlock(); 12217 12218 raw_spin_rq_lock(this_rq); 12219 12220 if (curr_cost > this_rq->max_idle_balance_cost) 12221 this_rq->max_idle_balance_cost = curr_cost; 12222 12223 /* 12224 * While browsing the domains, we released the rq lock, a task could 12225 * have been enqueued in the meantime. Since we're not going idle, 12226 * pretend we pulled a task. 12227 */ 12228 if (this_rq->cfs.h_nr_running && !pulled_task) 12229 pulled_task = 1; 12230 12231 /* Is there a task of a high priority class? */ 12232 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12233 pulled_task = -1; 12234 12235 out: 12236 /* Move the next balance forward */ 12237 if (time_after(this_rq->next_balance, next_balance)) 12238 this_rq->next_balance = next_balance; 12239 12240 if (pulled_task) 12241 this_rq->idle_stamp = 0; 12242 else 12243 nohz_newidle_balance(this_rq); 12244 12245 rq_repin_lock(this_rq, rf); 12246 12247 return pulled_task; 12248 } 12249 12250 /* 12251 * run_rebalance_domains is triggered when needed from the scheduler tick. 12252 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12253 */ 12254 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12255 { 12256 struct rq *this_rq = this_rq(); 12257 enum cpu_idle_type idle = this_rq->idle_balance ? 12258 CPU_IDLE : CPU_NOT_IDLE; 12259 12260 /* 12261 * If this CPU has a pending nohz_balance_kick, then do the 12262 * balancing on behalf of the other idle CPUs whose ticks are 12263 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12264 * give the idle CPUs a chance to load balance. Else we may 12265 * load balance only within the local sched_domain hierarchy 12266 * and abort nohz_idle_balance altogether if we pull some load. 12267 */ 12268 if (nohz_idle_balance(this_rq, idle)) 12269 return; 12270 12271 /* normal load balance */ 12272 update_blocked_averages(this_rq->cpu); 12273 rebalance_domains(this_rq, idle); 12274 } 12275 12276 /* 12277 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12278 */ 12279 void trigger_load_balance(struct rq *rq) 12280 { 12281 /* 12282 * Don't need to rebalance while attached to NULL domain or 12283 * runqueue CPU is not active 12284 */ 12285 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12286 return; 12287 12288 if (time_after_eq(jiffies, rq->next_balance)) 12289 raise_softirq(SCHED_SOFTIRQ); 12290 12291 nohz_balancer_kick(rq); 12292 } 12293 12294 static void rq_online_fair(struct rq *rq) 12295 { 12296 update_sysctl(); 12297 12298 update_runtime_enabled(rq); 12299 } 12300 12301 static void rq_offline_fair(struct rq *rq) 12302 { 12303 update_sysctl(); 12304 12305 /* Ensure any throttled groups are reachable by pick_next_task */ 12306 unthrottle_offline_cfs_rqs(rq); 12307 } 12308 12309 #endif /* CONFIG_SMP */ 12310 12311 #ifdef CONFIG_SCHED_CORE 12312 static inline bool 12313 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12314 { 12315 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12316 u64 slice = se->slice; 12317 12318 return (rtime * min_nr_tasks > slice); 12319 } 12320 12321 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12322 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12323 { 12324 if (!sched_core_enabled(rq)) 12325 return; 12326 12327 /* 12328 * If runqueue has only one task which used up its slice and 12329 * if the sibling is forced idle, then trigger schedule to 12330 * give forced idle task a chance. 12331 * 12332 * sched_slice() considers only this active rq and it gets the 12333 * whole slice. But during force idle, we have siblings acting 12334 * like a single runqueue and hence we need to consider runnable 12335 * tasks on this CPU and the forced idle CPU. Ideally, we should 12336 * go through the forced idle rq, but that would be a perf hit. 12337 * We can assume that the forced idle CPU has at least 12338 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12339 * if we need to give up the CPU. 12340 */ 12341 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12342 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12343 resched_curr(rq); 12344 } 12345 12346 /* 12347 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12348 */ 12349 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12350 bool forceidle) 12351 { 12352 for_each_sched_entity(se) { 12353 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12354 12355 if (forceidle) { 12356 if (cfs_rq->forceidle_seq == fi_seq) 12357 break; 12358 cfs_rq->forceidle_seq = fi_seq; 12359 } 12360 12361 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12362 } 12363 } 12364 12365 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12366 { 12367 struct sched_entity *se = &p->se; 12368 12369 if (p->sched_class != &fair_sched_class) 12370 return; 12371 12372 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12373 } 12374 12375 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12376 bool in_fi) 12377 { 12378 struct rq *rq = task_rq(a); 12379 const struct sched_entity *sea = &a->se; 12380 const struct sched_entity *seb = &b->se; 12381 struct cfs_rq *cfs_rqa; 12382 struct cfs_rq *cfs_rqb; 12383 s64 delta; 12384 12385 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12386 12387 #ifdef CONFIG_FAIR_GROUP_SCHED 12388 /* 12389 * Find an se in the hierarchy for tasks a and b, such that the se's 12390 * are immediate siblings. 12391 */ 12392 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12393 int sea_depth = sea->depth; 12394 int seb_depth = seb->depth; 12395 12396 if (sea_depth >= seb_depth) 12397 sea = parent_entity(sea); 12398 if (sea_depth <= seb_depth) 12399 seb = parent_entity(seb); 12400 } 12401 12402 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12403 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12404 12405 cfs_rqa = sea->cfs_rq; 12406 cfs_rqb = seb->cfs_rq; 12407 #else 12408 cfs_rqa = &task_rq(a)->cfs; 12409 cfs_rqb = &task_rq(b)->cfs; 12410 #endif 12411 12412 /* 12413 * Find delta after normalizing se's vruntime with its cfs_rq's 12414 * min_vruntime_fi, which would have been updated in prior calls 12415 * to se_fi_update(). 12416 */ 12417 delta = (s64)(sea->vruntime - seb->vruntime) + 12418 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12419 12420 return delta > 0; 12421 } 12422 12423 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12424 { 12425 struct cfs_rq *cfs_rq; 12426 12427 #ifdef CONFIG_FAIR_GROUP_SCHED 12428 cfs_rq = task_group(p)->cfs_rq[cpu]; 12429 #else 12430 cfs_rq = &cpu_rq(cpu)->cfs; 12431 #endif 12432 return throttled_hierarchy(cfs_rq); 12433 } 12434 #else 12435 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12436 #endif 12437 12438 /* 12439 * scheduler tick hitting a task of our scheduling class. 12440 * 12441 * NOTE: This function can be called remotely by the tick offload that 12442 * goes along full dynticks. Therefore no local assumption can be made 12443 * and everything must be accessed through the @rq and @curr passed in 12444 * parameters. 12445 */ 12446 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12447 { 12448 struct cfs_rq *cfs_rq; 12449 struct sched_entity *se = &curr->se; 12450 12451 for_each_sched_entity(se) { 12452 cfs_rq = cfs_rq_of(se); 12453 entity_tick(cfs_rq, se, queued); 12454 } 12455 12456 if (static_branch_unlikely(&sched_numa_balancing)) 12457 task_tick_numa(rq, curr); 12458 12459 update_misfit_status(curr, rq); 12460 update_overutilized_status(task_rq(curr)); 12461 12462 task_tick_core(rq, curr); 12463 } 12464 12465 /* 12466 * called on fork with the child task as argument from the parent's context 12467 * - child not yet on the tasklist 12468 * - preemption disabled 12469 */ 12470 static void task_fork_fair(struct task_struct *p) 12471 { 12472 struct sched_entity *se = &p->se, *curr; 12473 struct cfs_rq *cfs_rq; 12474 struct rq *rq = this_rq(); 12475 struct rq_flags rf; 12476 12477 rq_lock(rq, &rf); 12478 update_rq_clock(rq); 12479 12480 cfs_rq = task_cfs_rq(current); 12481 curr = cfs_rq->curr; 12482 if (curr) 12483 update_curr(cfs_rq); 12484 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12485 rq_unlock(rq, &rf); 12486 } 12487 12488 /* 12489 * Priority of the task has changed. Check to see if we preempt 12490 * the current task. 12491 */ 12492 static void 12493 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12494 { 12495 if (!task_on_rq_queued(p)) 12496 return; 12497 12498 if (rq->cfs.nr_running == 1) 12499 return; 12500 12501 /* 12502 * Reschedule if we are currently running on this runqueue and 12503 * our priority decreased, or if we are not currently running on 12504 * this runqueue and our priority is higher than the current's 12505 */ 12506 if (task_current(rq, p)) { 12507 if (p->prio > oldprio) 12508 resched_curr(rq); 12509 } else 12510 wakeup_preempt(rq, p, 0); 12511 } 12512 12513 #ifdef CONFIG_FAIR_GROUP_SCHED 12514 /* 12515 * Propagate the changes of the sched_entity across the tg tree to make it 12516 * visible to the root 12517 */ 12518 static void propagate_entity_cfs_rq(struct sched_entity *se) 12519 { 12520 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12521 12522 if (cfs_rq_throttled(cfs_rq)) 12523 return; 12524 12525 if (!throttled_hierarchy(cfs_rq)) 12526 list_add_leaf_cfs_rq(cfs_rq); 12527 12528 /* Start to propagate at parent */ 12529 se = se->parent; 12530 12531 for_each_sched_entity(se) { 12532 cfs_rq = cfs_rq_of(se); 12533 12534 update_load_avg(cfs_rq, se, UPDATE_TG); 12535 12536 if (cfs_rq_throttled(cfs_rq)) 12537 break; 12538 12539 if (!throttled_hierarchy(cfs_rq)) 12540 list_add_leaf_cfs_rq(cfs_rq); 12541 } 12542 } 12543 #else 12544 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12545 #endif 12546 12547 static void detach_entity_cfs_rq(struct sched_entity *se) 12548 { 12549 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12550 12551 #ifdef CONFIG_SMP 12552 /* 12553 * In case the task sched_avg hasn't been attached: 12554 * - A forked task which hasn't been woken up by wake_up_new_task(). 12555 * - A task which has been woken up by try_to_wake_up() but is 12556 * waiting for actually being woken up by sched_ttwu_pending(). 12557 */ 12558 if (!se->avg.last_update_time) 12559 return; 12560 #endif 12561 12562 /* Catch up with the cfs_rq and remove our load when we leave */ 12563 update_load_avg(cfs_rq, se, 0); 12564 detach_entity_load_avg(cfs_rq, se); 12565 update_tg_load_avg(cfs_rq); 12566 propagate_entity_cfs_rq(se); 12567 } 12568 12569 static void attach_entity_cfs_rq(struct sched_entity *se) 12570 { 12571 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12572 12573 /* Synchronize entity with its cfs_rq */ 12574 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12575 attach_entity_load_avg(cfs_rq, se); 12576 update_tg_load_avg(cfs_rq); 12577 propagate_entity_cfs_rq(se); 12578 } 12579 12580 static void detach_task_cfs_rq(struct task_struct *p) 12581 { 12582 struct sched_entity *se = &p->se; 12583 12584 detach_entity_cfs_rq(se); 12585 } 12586 12587 static void attach_task_cfs_rq(struct task_struct *p) 12588 { 12589 struct sched_entity *se = &p->se; 12590 12591 attach_entity_cfs_rq(se); 12592 } 12593 12594 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12595 { 12596 detach_task_cfs_rq(p); 12597 } 12598 12599 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12600 { 12601 attach_task_cfs_rq(p); 12602 12603 if (task_on_rq_queued(p)) { 12604 /* 12605 * We were most likely switched from sched_rt, so 12606 * kick off the schedule if running, otherwise just see 12607 * if we can still preempt the current task. 12608 */ 12609 if (task_current(rq, p)) 12610 resched_curr(rq); 12611 else 12612 wakeup_preempt(rq, p, 0); 12613 } 12614 } 12615 12616 /* Account for a task changing its policy or group. 12617 * 12618 * This routine is mostly called to set cfs_rq->curr field when a task 12619 * migrates between groups/classes. 12620 */ 12621 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12622 { 12623 struct sched_entity *se = &p->se; 12624 12625 #ifdef CONFIG_SMP 12626 if (task_on_rq_queued(p)) { 12627 /* 12628 * Move the next running task to the front of the list, so our 12629 * cfs_tasks list becomes MRU one. 12630 */ 12631 list_move(&se->group_node, &rq->cfs_tasks); 12632 } 12633 #endif 12634 12635 for_each_sched_entity(se) { 12636 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12637 12638 set_next_entity(cfs_rq, se); 12639 /* ensure bandwidth has been allocated on our new cfs_rq */ 12640 account_cfs_rq_runtime(cfs_rq, 0); 12641 } 12642 } 12643 12644 void init_cfs_rq(struct cfs_rq *cfs_rq) 12645 { 12646 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12647 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12648 #ifdef CONFIG_SMP 12649 raw_spin_lock_init(&cfs_rq->removed.lock); 12650 #endif 12651 } 12652 12653 #ifdef CONFIG_FAIR_GROUP_SCHED 12654 static void task_change_group_fair(struct task_struct *p) 12655 { 12656 /* 12657 * We couldn't detach or attach a forked task which 12658 * hasn't been woken up by wake_up_new_task(). 12659 */ 12660 if (READ_ONCE(p->__state) == TASK_NEW) 12661 return; 12662 12663 detach_task_cfs_rq(p); 12664 12665 #ifdef CONFIG_SMP 12666 /* Tell se's cfs_rq has been changed -- migrated */ 12667 p->se.avg.last_update_time = 0; 12668 #endif 12669 set_task_rq(p, task_cpu(p)); 12670 attach_task_cfs_rq(p); 12671 } 12672 12673 void free_fair_sched_group(struct task_group *tg) 12674 { 12675 int i; 12676 12677 for_each_possible_cpu(i) { 12678 if (tg->cfs_rq) 12679 kfree(tg->cfs_rq[i]); 12680 if (tg->se) 12681 kfree(tg->se[i]); 12682 } 12683 12684 kfree(tg->cfs_rq); 12685 kfree(tg->se); 12686 } 12687 12688 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12689 { 12690 struct sched_entity *se; 12691 struct cfs_rq *cfs_rq; 12692 int i; 12693 12694 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12695 if (!tg->cfs_rq) 12696 goto err; 12697 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12698 if (!tg->se) 12699 goto err; 12700 12701 tg->shares = NICE_0_LOAD; 12702 12703 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12704 12705 for_each_possible_cpu(i) { 12706 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12707 GFP_KERNEL, cpu_to_node(i)); 12708 if (!cfs_rq) 12709 goto err; 12710 12711 se = kzalloc_node(sizeof(struct sched_entity_stats), 12712 GFP_KERNEL, cpu_to_node(i)); 12713 if (!se) 12714 goto err_free_rq; 12715 12716 init_cfs_rq(cfs_rq); 12717 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12718 init_entity_runnable_average(se); 12719 } 12720 12721 return 1; 12722 12723 err_free_rq: 12724 kfree(cfs_rq); 12725 err: 12726 return 0; 12727 } 12728 12729 void online_fair_sched_group(struct task_group *tg) 12730 { 12731 struct sched_entity *se; 12732 struct rq_flags rf; 12733 struct rq *rq; 12734 int i; 12735 12736 for_each_possible_cpu(i) { 12737 rq = cpu_rq(i); 12738 se = tg->se[i]; 12739 rq_lock_irq(rq, &rf); 12740 update_rq_clock(rq); 12741 attach_entity_cfs_rq(se); 12742 sync_throttle(tg, i); 12743 rq_unlock_irq(rq, &rf); 12744 } 12745 } 12746 12747 void unregister_fair_sched_group(struct task_group *tg) 12748 { 12749 unsigned long flags; 12750 struct rq *rq; 12751 int cpu; 12752 12753 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12754 12755 for_each_possible_cpu(cpu) { 12756 if (tg->se[cpu]) 12757 remove_entity_load_avg(tg->se[cpu]); 12758 12759 /* 12760 * Only empty task groups can be destroyed; so we can speculatively 12761 * check on_list without danger of it being re-added. 12762 */ 12763 if (!tg->cfs_rq[cpu]->on_list) 12764 continue; 12765 12766 rq = cpu_rq(cpu); 12767 12768 raw_spin_rq_lock_irqsave(rq, flags); 12769 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12770 raw_spin_rq_unlock_irqrestore(rq, flags); 12771 } 12772 } 12773 12774 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12775 struct sched_entity *se, int cpu, 12776 struct sched_entity *parent) 12777 { 12778 struct rq *rq = cpu_rq(cpu); 12779 12780 cfs_rq->tg = tg; 12781 cfs_rq->rq = rq; 12782 init_cfs_rq_runtime(cfs_rq); 12783 12784 tg->cfs_rq[cpu] = cfs_rq; 12785 tg->se[cpu] = se; 12786 12787 /* se could be NULL for root_task_group */ 12788 if (!se) 12789 return; 12790 12791 if (!parent) { 12792 se->cfs_rq = &rq->cfs; 12793 se->depth = 0; 12794 } else { 12795 se->cfs_rq = parent->my_q; 12796 se->depth = parent->depth + 1; 12797 } 12798 12799 se->my_q = cfs_rq; 12800 /* guarantee group entities always have weight */ 12801 update_load_set(&se->load, NICE_0_LOAD); 12802 se->parent = parent; 12803 } 12804 12805 static DEFINE_MUTEX(shares_mutex); 12806 12807 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12808 { 12809 int i; 12810 12811 lockdep_assert_held(&shares_mutex); 12812 12813 /* 12814 * We can't change the weight of the root cgroup. 12815 */ 12816 if (!tg->se[0]) 12817 return -EINVAL; 12818 12819 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12820 12821 if (tg->shares == shares) 12822 return 0; 12823 12824 tg->shares = shares; 12825 for_each_possible_cpu(i) { 12826 struct rq *rq = cpu_rq(i); 12827 struct sched_entity *se = tg->se[i]; 12828 struct rq_flags rf; 12829 12830 /* Propagate contribution to hierarchy */ 12831 rq_lock_irqsave(rq, &rf); 12832 update_rq_clock(rq); 12833 for_each_sched_entity(se) { 12834 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12835 update_cfs_group(se); 12836 } 12837 rq_unlock_irqrestore(rq, &rf); 12838 } 12839 12840 return 0; 12841 } 12842 12843 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12844 { 12845 int ret; 12846 12847 mutex_lock(&shares_mutex); 12848 if (tg_is_idle(tg)) 12849 ret = -EINVAL; 12850 else 12851 ret = __sched_group_set_shares(tg, shares); 12852 mutex_unlock(&shares_mutex); 12853 12854 return ret; 12855 } 12856 12857 int sched_group_set_idle(struct task_group *tg, long idle) 12858 { 12859 int i; 12860 12861 if (tg == &root_task_group) 12862 return -EINVAL; 12863 12864 if (idle < 0 || idle > 1) 12865 return -EINVAL; 12866 12867 mutex_lock(&shares_mutex); 12868 12869 if (tg->idle == idle) { 12870 mutex_unlock(&shares_mutex); 12871 return 0; 12872 } 12873 12874 tg->idle = idle; 12875 12876 for_each_possible_cpu(i) { 12877 struct rq *rq = cpu_rq(i); 12878 struct sched_entity *se = tg->se[i]; 12879 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12880 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12881 long idle_task_delta; 12882 struct rq_flags rf; 12883 12884 rq_lock_irqsave(rq, &rf); 12885 12886 grp_cfs_rq->idle = idle; 12887 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12888 goto next_cpu; 12889 12890 if (se->on_rq) { 12891 parent_cfs_rq = cfs_rq_of(se); 12892 if (cfs_rq_is_idle(grp_cfs_rq)) 12893 parent_cfs_rq->idle_nr_running++; 12894 else 12895 parent_cfs_rq->idle_nr_running--; 12896 } 12897 12898 idle_task_delta = grp_cfs_rq->h_nr_running - 12899 grp_cfs_rq->idle_h_nr_running; 12900 if (!cfs_rq_is_idle(grp_cfs_rq)) 12901 idle_task_delta *= -1; 12902 12903 for_each_sched_entity(se) { 12904 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12905 12906 if (!se->on_rq) 12907 break; 12908 12909 cfs_rq->idle_h_nr_running += idle_task_delta; 12910 12911 /* Already accounted at parent level and above. */ 12912 if (cfs_rq_is_idle(cfs_rq)) 12913 break; 12914 } 12915 12916 next_cpu: 12917 rq_unlock_irqrestore(rq, &rf); 12918 } 12919 12920 /* Idle groups have minimum weight. */ 12921 if (tg_is_idle(tg)) 12922 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12923 else 12924 __sched_group_set_shares(tg, NICE_0_LOAD); 12925 12926 mutex_unlock(&shares_mutex); 12927 return 0; 12928 } 12929 12930 #else /* CONFIG_FAIR_GROUP_SCHED */ 12931 12932 void free_fair_sched_group(struct task_group *tg) { } 12933 12934 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12935 { 12936 return 1; 12937 } 12938 12939 void online_fair_sched_group(struct task_group *tg) { } 12940 12941 void unregister_fair_sched_group(struct task_group *tg) { } 12942 12943 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12944 12945 12946 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12947 { 12948 struct sched_entity *se = &task->se; 12949 unsigned int rr_interval = 0; 12950 12951 /* 12952 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12953 * idle runqueue: 12954 */ 12955 if (rq->cfs.load.weight) 12956 rr_interval = NS_TO_JIFFIES(se->slice); 12957 12958 return rr_interval; 12959 } 12960 12961 /* 12962 * All the scheduling class methods: 12963 */ 12964 DEFINE_SCHED_CLASS(fair) = { 12965 12966 .enqueue_task = enqueue_task_fair, 12967 .dequeue_task = dequeue_task_fair, 12968 .yield_task = yield_task_fair, 12969 .yield_to_task = yield_to_task_fair, 12970 12971 .wakeup_preempt = check_preempt_wakeup_fair, 12972 12973 .pick_next_task = __pick_next_task_fair, 12974 .put_prev_task = put_prev_task_fair, 12975 .set_next_task = set_next_task_fair, 12976 12977 #ifdef CONFIG_SMP 12978 .balance = balance_fair, 12979 .pick_task = pick_task_fair, 12980 .select_task_rq = select_task_rq_fair, 12981 .migrate_task_rq = migrate_task_rq_fair, 12982 12983 .rq_online = rq_online_fair, 12984 .rq_offline = rq_offline_fair, 12985 12986 .task_dead = task_dead_fair, 12987 .set_cpus_allowed = set_cpus_allowed_common, 12988 #endif 12989 12990 .task_tick = task_tick_fair, 12991 .task_fork = task_fork_fair, 12992 12993 .prio_changed = prio_changed_fair, 12994 .switched_from = switched_from_fair, 12995 .switched_to = switched_to_fair, 12996 12997 .get_rr_interval = get_rr_interval_fair, 12998 12999 .update_curr = update_curr_fair, 13000 13001 #ifdef CONFIG_FAIR_GROUP_SCHED 13002 .task_change_group = task_change_group_fair, 13003 #endif 13004 13005 #ifdef CONFIG_SCHED_CORE 13006 .task_is_throttled = task_is_throttled_fair, 13007 #endif 13008 13009 #ifdef CONFIG_UCLAMP_TASK 13010 .uclamp_enabled = 1, 13011 #endif 13012 }; 13013 13014 #ifdef CONFIG_SCHED_DEBUG 13015 void print_cfs_stats(struct seq_file *m, int cpu) 13016 { 13017 struct cfs_rq *cfs_rq, *pos; 13018 13019 rcu_read_lock(); 13020 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13021 print_cfs_rq(m, cpu, cfs_rq); 13022 rcu_read_unlock(); 13023 } 13024 13025 #ifdef CONFIG_NUMA_BALANCING 13026 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13027 { 13028 int node; 13029 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13030 struct numa_group *ng; 13031 13032 rcu_read_lock(); 13033 ng = rcu_dereference(p->numa_group); 13034 for_each_online_node(node) { 13035 if (p->numa_faults) { 13036 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13037 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13038 } 13039 if (ng) { 13040 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13041 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13042 } 13043 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13044 } 13045 rcu_read_unlock(); 13046 } 13047 #endif /* CONFIG_NUMA_BALANCING */ 13048 #endif /* CONFIG_SCHED_DEBUG */ 13049 13050 __init void init_sched_fair_class(void) 13051 { 13052 #ifdef CONFIG_SMP 13053 int i; 13054 13055 for_each_possible_cpu(i) { 13056 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13057 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13058 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13059 GFP_KERNEL, cpu_to_node(i)); 13060 13061 #ifdef CONFIG_CFS_BANDWIDTH 13062 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13063 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13064 #endif 13065 } 13066 13067 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13068 13069 #ifdef CONFIG_NO_HZ_COMMON 13070 nohz.next_balance = jiffies; 13071 nohz.next_blocked = jiffies; 13072 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13073 #endif 13074 #endif /* SMP */ 13075 13076 } 13077