1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/slab.h> 27 #include <linux/profile.h> 28 #include <linux/interrupt.h> 29 30 #include <trace/events/sched.h> 31 32 #include "sched.h" 33 34 /* 35 * Targeted preemption latency for CPU-bound tasks: 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 37 * 38 * NOTE: this latency value is not the same as the concept of 39 * 'timeslice length' - timeslices in CFS are of variable length 40 * and have no persistent notion like in traditional, time-slice 41 * based scheduling concepts. 42 * 43 * (to see the precise effective timeslice length of your workload, 44 * run vmstat and monitor the context-switches (cs) field) 45 */ 46 unsigned int sysctl_sched_latency = 6000000ULL; 47 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 48 49 /* 50 * The initial- and re-scaling of tunables is configurable 51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 52 * 53 * Options are: 54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 57 */ 58 enum sched_tunable_scaling sysctl_sched_tunable_scaling 59 = SCHED_TUNABLESCALING_LOG; 60 61 /* 62 * Minimal preemption granularity for CPU-bound tasks: 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 64 */ 65 unsigned int sysctl_sched_min_granularity = 750000ULL; 66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 67 68 /* 69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 70 */ 71 static unsigned int sched_nr_latency = 8; 72 73 /* 74 * After fork, child runs first. If set to 0 (default) then 75 * parent will (try to) run first. 76 */ 77 unsigned int sysctl_sched_child_runs_first __read_mostly; 78 79 /* 80 * SCHED_OTHER wake-up granularity. 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 82 * 83 * This option delays the preemption effects of decoupled workloads 84 * and reduces their over-scheduling. Synchronous workloads will still 85 * have immediate wakeup/sleep latencies. 86 */ 87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 89 90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 91 92 /* 93 * The exponential sliding window over which load is averaged for shares 94 * distribution. 95 * (default: 10msec) 96 */ 97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 98 99 #ifdef CONFIG_CFS_BANDWIDTH 100 /* 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 102 * each time a cfs_rq requests quota. 103 * 104 * Note: in the case that the slice exceeds the runtime remaining (either due 105 * to consumption or the quota being specified to be smaller than the slice) 106 * we will always only issue the remaining available time. 107 * 108 * default: 5 msec, units: microseconds 109 */ 110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 111 #endif 112 113 /* 114 * Increase the granularity value when there are more CPUs, 115 * because with more CPUs the 'effective latency' as visible 116 * to users decreases. But the relationship is not linear, 117 * so pick a second-best guess by going with the log2 of the 118 * number of CPUs. 119 * 120 * This idea comes from the SD scheduler of Con Kolivas: 121 */ 122 static int get_update_sysctl_factor(void) 123 { 124 unsigned int cpus = min_t(int, num_online_cpus(), 8); 125 unsigned int factor; 126 127 switch (sysctl_sched_tunable_scaling) { 128 case SCHED_TUNABLESCALING_NONE: 129 factor = 1; 130 break; 131 case SCHED_TUNABLESCALING_LINEAR: 132 factor = cpus; 133 break; 134 case SCHED_TUNABLESCALING_LOG: 135 default: 136 factor = 1 + ilog2(cpus); 137 break; 138 } 139 140 return factor; 141 } 142 143 static void update_sysctl(void) 144 { 145 unsigned int factor = get_update_sysctl_factor(); 146 147 #define SET_SYSCTL(name) \ 148 (sysctl_##name = (factor) * normalized_sysctl_##name) 149 SET_SYSCTL(sched_min_granularity); 150 SET_SYSCTL(sched_latency); 151 SET_SYSCTL(sched_wakeup_granularity); 152 #undef SET_SYSCTL 153 } 154 155 void sched_init_granularity(void) 156 { 157 update_sysctl(); 158 } 159 160 #if BITS_PER_LONG == 32 161 # define WMULT_CONST (~0UL) 162 #else 163 # define WMULT_CONST (1UL << 32) 164 #endif 165 166 #define WMULT_SHIFT 32 167 168 /* 169 * Shift right and round: 170 */ 171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) 172 173 /* 174 * delta *= weight / lw 175 */ 176 static unsigned long 177 calc_delta_mine(unsigned long delta_exec, unsigned long weight, 178 struct load_weight *lw) 179 { 180 u64 tmp; 181 182 /* 183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched 184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than 185 * 2^SCHED_LOAD_RESOLUTION. 186 */ 187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) 188 tmp = (u64)delta_exec * scale_load_down(weight); 189 else 190 tmp = (u64)delta_exec; 191 192 if (!lw->inv_weight) { 193 unsigned long w = scale_load_down(lw->weight); 194 195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 196 lw->inv_weight = 1; 197 else if (unlikely(!w)) 198 lw->inv_weight = WMULT_CONST; 199 else 200 lw->inv_weight = WMULT_CONST / w; 201 } 202 203 /* 204 * Check whether we'd overflow the 64-bit multiplication: 205 */ 206 if (unlikely(tmp > WMULT_CONST)) 207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, 208 WMULT_SHIFT/2); 209 else 210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); 211 212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); 213 } 214 215 216 const struct sched_class fair_sched_class; 217 218 /************************************************************** 219 * CFS operations on generic schedulable entities: 220 */ 221 222 #ifdef CONFIG_FAIR_GROUP_SCHED 223 224 /* cpu runqueue to which this cfs_rq is attached */ 225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 226 { 227 return cfs_rq->rq; 228 } 229 230 /* An entity is a task if it doesn't "own" a runqueue */ 231 #define entity_is_task(se) (!se->my_q) 232 233 static inline struct task_struct *task_of(struct sched_entity *se) 234 { 235 #ifdef CONFIG_SCHED_DEBUG 236 WARN_ON_ONCE(!entity_is_task(se)); 237 #endif 238 return container_of(se, struct task_struct, se); 239 } 240 241 /* Walk up scheduling entities hierarchy */ 242 #define for_each_sched_entity(se) \ 243 for (; se; se = se->parent) 244 245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 246 { 247 return p->se.cfs_rq; 248 } 249 250 /* runqueue on which this entity is (to be) queued */ 251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 252 { 253 return se->cfs_rq; 254 } 255 256 /* runqueue "owned" by this group */ 257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 258 { 259 return grp->my_q; 260 } 261 262 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 263 { 264 if (!cfs_rq->on_list) { 265 /* 266 * Ensure we either appear before our parent (if already 267 * enqueued) or force our parent to appear after us when it is 268 * enqueued. The fact that we always enqueue bottom-up 269 * reduces this to two cases. 270 */ 271 if (cfs_rq->tg->parent && 272 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 273 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 274 &rq_of(cfs_rq)->leaf_cfs_rq_list); 275 } else { 276 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 277 &rq_of(cfs_rq)->leaf_cfs_rq_list); 278 } 279 280 cfs_rq->on_list = 1; 281 } 282 } 283 284 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 285 { 286 if (cfs_rq->on_list) { 287 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 288 cfs_rq->on_list = 0; 289 } 290 } 291 292 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 293 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 294 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 295 296 /* Do the two (enqueued) entities belong to the same group ? */ 297 static inline int 298 is_same_group(struct sched_entity *se, struct sched_entity *pse) 299 { 300 if (se->cfs_rq == pse->cfs_rq) 301 return 1; 302 303 return 0; 304 } 305 306 static inline struct sched_entity *parent_entity(struct sched_entity *se) 307 { 308 return se->parent; 309 } 310 311 /* return depth at which a sched entity is present in the hierarchy */ 312 static inline int depth_se(struct sched_entity *se) 313 { 314 int depth = 0; 315 316 for_each_sched_entity(se) 317 depth++; 318 319 return depth; 320 } 321 322 static void 323 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 324 { 325 int se_depth, pse_depth; 326 327 /* 328 * preemption test can be made between sibling entities who are in the 329 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 330 * both tasks until we find their ancestors who are siblings of common 331 * parent. 332 */ 333 334 /* First walk up until both entities are at same depth */ 335 se_depth = depth_se(*se); 336 pse_depth = depth_se(*pse); 337 338 while (se_depth > pse_depth) { 339 se_depth--; 340 *se = parent_entity(*se); 341 } 342 343 while (pse_depth > se_depth) { 344 pse_depth--; 345 *pse = parent_entity(*pse); 346 } 347 348 while (!is_same_group(*se, *pse)) { 349 *se = parent_entity(*se); 350 *pse = parent_entity(*pse); 351 } 352 } 353 354 #else /* !CONFIG_FAIR_GROUP_SCHED */ 355 356 static inline struct task_struct *task_of(struct sched_entity *se) 357 { 358 return container_of(se, struct task_struct, se); 359 } 360 361 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 362 { 363 return container_of(cfs_rq, struct rq, cfs); 364 } 365 366 #define entity_is_task(se) 1 367 368 #define for_each_sched_entity(se) \ 369 for (; se; se = NULL) 370 371 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 372 { 373 return &task_rq(p)->cfs; 374 } 375 376 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 377 { 378 struct task_struct *p = task_of(se); 379 struct rq *rq = task_rq(p); 380 381 return &rq->cfs; 382 } 383 384 /* runqueue "owned" by this group */ 385 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 386 { 387 return NULL; 388 } 389 390 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 391 { 392 } 393 394 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 395 { 396 } 397 398 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 399 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 400 401 static inline int 402 is_same_group(struct sched_entity *se, struct sched_entity *pse) 403 { 404 return 1; 405 } 406 407 static inline struct sched_entity *parent_entity(struct sched_entity *se) 408 { 409 return NULL; 410 } 411 412 static inline void 413 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 414 { 415 } 416 417 #endif /* CONFIG_FAIR_GROUP_SCHED */ 418 419 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 420 unsigned long delta_exec); 421 422 /************************************************************** 423 * Scheduling class tree data structure manipulation methods: 424 */ 425 426 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) 427 { 428 s64 delta = (s64)(vruntime - min_vruntime); 429 if (delta > 0) 430 min_vruntime = vruntime; 431 432 return min_vruntime; 433 } 434 435 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 436 { 437 s64 delta = (s64)(vruntime - min_vruntime); 438 if (delta < 0) 439 min_vruntime = vruntime; 440 441 return min_vruntime; 442 } 443 444 static inline int entity_before(struct sched_entity *a, 445 struct sched_entity *b) 446 { 447 return (s64)(a->vruntime - b->vruntime) < 0; 448 } 449 450 static void update_min_vruntime(struct cfs_rq *cfs_rq) 451 { 452 u64 vruntime = cfs_rq->min_vruntime; 453 454 if (cfs_rq->curr) 455 vruntime = cfs_rq->curr->vruntime; 456 457 if (cfs_rq->rb_leftmost) { 458 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 459 struct sched_entity, 460 run_node); 461 462 if (!cfs_rq->curr) 463 vruntime = se->vruntime; 464 else 465 vruntime = min_vruntime(vruntime, se->vruntime); 466 } 467 468 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 469 #ifndef CONFIG_64BIT 470 smp_wmb(); 471 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 472 #endif 473 } 474 475 /* 476 * Enqueue an entity into the rb-tree: 477 */ 478 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 479 { 480 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 481 struct rb_node *parent = NULL; 482 struct sched_entity *entry; 483 int leftmost = 1; 484 485 /* 486 * Find the right place in the rbtree: 487 */ 488 while (*link) { 489 parent = *link; 490 entry = rb_entry(parent, struct sched_entity, run_node); 491 /* 492 * We dont care about collisions. Nodes with 493 * the same key stay together. 494 */ 495 if (entity_before(se, entry)) { 496 link = &parent->rb_left; 497 } else { 498 link = &parent->rb_right; 499 leftmost = 0; 500 } 501 } 502 503 /* 504 * Maintain a cache of leftmost tree entries (it is frequently 505 * used): 506 */ 507 if (leftmost) 508 cfs_rq->rb_leftmost = &se->run_node; 509 510 rb_link_node(&se->run_node, parent, link); 511 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 512 } 513 514 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 515 { 516 if (cfs_rq->rb_leftmost == &se->run_node) { 517 struct rb_node *next_node; 518 519 next_node = rb_next(&se->run_node); 520 cfs_rq->rb_leftmost = next_node; 521 } 522 523 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 524 } 525 526 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 527 { 528 struct rb_node *left = cfs_rq->rb_leftmost; 529 530 if (!left) 531 return NULL; 532 533 return rb_entry(left, struct sched_entity, run_node); 534 } 535 536 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 537 { 538 struct rb_node *next = rb_next(&se->run_node); 539 540 if (!next) 541 return NULL; 542 543 return rb_entry(next, struct sched_entity, run_node); 544 } 545 546 #ifdef CONFIG_SCHED_DEBUG 547 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 548 { 549 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 550 551 if (!last) 552 return NULL; 553 554 return rb_entry(last, struct sched_entity, run_node); 555 } 556 557 /************************************************************** 558 * Scheduling class statistics methods: 559 */ 560 561 int sched_proc_update_handler(struct ctl_table *table, int write, 562 void __user *buffer, size_t *lenp, 563 loff_t *ppos) 564 { 565 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 566 int factor = get_update_sysctl_factor(); 567 568 if (ret || !write) 569 return ret; 570 571 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 572 sysctl_sched_min_granularity); 573 574 #define WRT_SYSCTL(name) \ 575 (normalized_sysctl_##name = sysctl_##name / (factor)) 576 WRT_SYSCTL(sched_min_granularity); 577 WRT_SYSCTL(sched_latency); 578 WRT_SYSCTL(sched_wakeup_granularity); 579 #undef WRT_SYSCTL 580 581 return 0; 582 } 583 #endif 584 585 /* 586 * delta /= w 587 */ 588 static inline unsigned long 589 calc_delta_fair(unsigned long delta, struct sched_entity *se) 590 { 591 if (unlikely(se->load.weight != NICE_0_LOAD)) 592 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); 593 594 return delta; 595 } 596 597 /* 598 * The idea is to set a period in which each task runs once. 599 * 600 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch 601 * this period because otherwise the slices get too small. 602 * 603 * p = (nr <= nl) ? l : l*nr/nl 604 */ 605 static u64 __sched_period(unsigned long nr_running) 606 { 607 u64 period = sysctl_sched_latency; 608 unsigned long nr_latency = sched_nr_latency; 609 610 if (unlikely(nr_running > nr_latency)) { 611 period = sysctl_sched_min_granularity; 612 period *= nr_running; 613 } 614 615 return period; 616 } 617 618 /* 619 * We calculate the wall-time slice from the period by taking a part 620 * proportional to the weight. 621 * 622 * s = p*P[w/rw] 623 */ 624 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 627 628 for_each_sched_entity(se) { 629 struct load_weight *load; 630 struct load_weight lw; 631 632 cfs_rq = cfs_rq_of(se); 633 load = &cfs_rq->load; 634 635 if (unlikely(!se->on_rq)) { 636 lw = cfs_rq->load; 637 638 update_load_add(&lw, se->load.weight); 639 load = &lw; 640 } 641 slice = calc_delta_mine(slice, se->load.weight, load); 642 } 643 return slice; 644 } 645 646 /* 647 * We calculate the vruntime slice of a to be inserted task 648 * 649 * vs = s/w 650 */ 651 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 652 { 653 return calc_delta_fair(sched_slice(cfs_rq, se), se); 654 } 655 656 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); 657 static void update_cfs_shares(struct cfs_rq *cfs_rq); 658 659 /* 660 * Update the current task's runtime statistics. Skip current tasks that 661 * are not in our scheduling class. 662 */ 663 static inline void 664 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, 665 unsigned long delta_exec) 666 { 667 unsigned long delta_exec_weighted; 668 669 schedstat_set(curr->statistics.exec_max, 670 max((u64)delta_exec, curr->statistics.exec_max)); 671 672 curr->sum_exec_runtime += delta_exec; 673 schedstat_add(cfs_rq, exec_clock, delta_exec); 674 delta_exec_weighted = calc_delta_fair(delta_exec, curr); 675 676 curr->vruntime += delta_exec_weighted; 677 update_min_vruntime(cfs_rq); 678 679 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED 680 cfs_rq->load_unacc_exec_time += delta_exec; 681 #endif 682 } 683 684 static void update_curr(struct cfs_rq *cfs_rq) 685 { 686 struct sched_entity *curr = cfs_rq->curr; 687 u64 now = rq_of(cfs_rq)->clock_task; 688 unsigned long delta_exec; 689 690 if (unlikely(!curr)) 691 return; 692 693 /* 694 * Get the amount of time the current task was running 695 * since the last time we changed load (this cannot 696 * overflow on 32 bits): 697 */ 698 delta_exec = (unsigned long)(now - curr->exec_start); 699 if (!delta_exec) 700 return; 701 702 __update_curr(cfs_rq, curr, delta_exec); 703 curr->exec_start = now; 704 705 if (entity_is_task(curr)) { 706 struct task_struct *curtask = task_of(curr); 707 708 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 709 cpuacct_charge(curtask, delta_exec); 710 account_group_exec_runtime(curtask, delta_exec); 711 } 712 713 account_cfs_rq_runtime(cfs_rq, delta_exec); 714 } 715 716 static inline void 717 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 718 { 719 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); 720 } 721 722 /* 723 * Task is being enqueued - update stats: 724 */ 725 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 726 { 727 /* 728 * Are we enqueueing a waiting task? (for current tasks 729 * a dequeue/enqueue event is a NOP) 730 */ 731 if (se != cfs_rq->curr) 732 update_stats_wait_start(cfs_rq, se); 733 } 734 735 static void 736 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 737 { 738 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 739 rq_of(cfs_rq)->clock - se->statistics.wait_start)); 740 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 741 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 742 rq_of(cfs_rq)->clock - se->statistics.wait_start); 743 #ifdef CONFIG_SCHEDSTATS 744 if (entity_is_task(se)) { 745 trace_sched_stat_wait(task_of(se), 746 rq_of(cfs_rq)->clock - se->statistics.wait_start); 747 } 748 #endif 749 schedstat_set(se->statistics.wait_start, 0); 750 } 751 752 static inline void 753 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 754 { 755 /* 756 * Mark the end of the wait period if dequeueing a 757 * waiting task: 758 */ 759 if (se != cfs_rq->curr) 760 update_stats_wait_end(cfs_rq, se); 761 } 762 763 /* 764 * We are picking a new current task - update its stats: 765 */ 766 static inline void 767 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 768 { 769 /* 770 * We are starting a new run period: 771 */ 772 se->exec_start = rq_of(cfs_rq)->clock_task; 773 } 774 775 /************************************************** 776 * Scheduling class queueing methods: 777 */ 778 779 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED 780 static void 781 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) 782 { 783 cfs_rq->task_weight += weight; 784 } 785 #else 786 static inline void 787 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) 788 { 789 } 790 #endif 791 792 static void 793 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 794 { 795 update_load_add(&cfs_rq->load, se->load.weight); 796 if (!parent_entity(se)) 797 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 798 if (entity_is_task(se)) { 799 add_cfs_task_weight(cfs_rq, se->load.weight); 800 list_add(&se->group_node, &cfs_rq->tasks); 801 } 802 cfs_rq->nr_running++; 803 } 804 805 static void 806 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 807 { 808 update_load_sub(&cfs_rq->load, se->load.weight); 809 if (!parent_entity(se)) 810 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 811 if (entity_is_task(se)) { 812 add_cfs_task_weight(cfs_rq, -se->load.weight); 813 list_del_init(&se->group_node); 814 } 815 cfs_rq->nr_running--; 816 } 817 818 #ifdef CONFIG_FAIR_GROUP_SCHED 819 /* we need this in update_cfs_load and load-balance functions below */ 820 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 821 # ifdef CONFIG_SMP 822 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, 823 int global_update) 824 { 825 struct task_group *tg = cfs_rq->tg; 826 long load_avg; 827 828 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); 829 load_avg -= cfs_rq->load_contribution; 830 831 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { 832 atomic_add(load_avg, &tg->load_weight); 833 cfs_rq->load_contribution += load_avg; 834 } 835 } 836 837 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 838 { 839 u64 period = sysctl_sched_shares_window; 840 u64 now, delta; 841 unsigned long load = cfs_rq->load.weight; 842 843 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq)) 844 return; 845 846 now = rq_of(cfs_rq)->clock_task; 847 delta = now - cfs_rq->load_stamp; 848 849 /* truncate load history at 4 idle periods */ 850 if (cfs_rq->load_stamp > cfs_rq->load_last && 851 now - cfs_rq->load_last > 4 * period) { 852 cfs_rq->load_period = 0; 853 cfs_rq->load_avg = 0; 854 delta = period - 1; 855 } 856 857 cfs_rq->load_stamp = now; 858 cfs_rq->load_unacc_exec_time = 0; 859 cfs_rq->load_period += delta; 860 if (load) { 861 cfs_rq->load_last = now; 862 cfs_rq->load_avg += delta * load; 863 } 864 865 /* consider updating load contribution on each fold or truncate */ 866 if (global_update || cfs_rq->load_period > period 867 || !cfs_rq->load_period) 868 update_cfs_rq_load_contribution(cfs_rq, global_update); 869 870 while (cfs_rq->load_period > period) { 871 /* 872 * Inline assembly required to prevent the compiler 873 * optimising this loop into a divmod call. 874 * See __iter_div_u64_rem() for another example of this. 875 */ 876 asm("" : "+rm" (cfs_rq->load_period)); 877 cfs_rq->load_period /= 2; 878 cfs_rq->load_avg /= 2; 879 } 880 881 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) 882 list_del_leaf_cfs_rq(cfs_rq); 883 } 884 885 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 886 { 887 long tg_weight; 888 889 /* 890 * Use this CPU's actual weight instead of the last load_contribution 891 * to gain a more accurate current total weight. See 892 * update_cfs_rq_load_contribution(). 893 */ 894 tg_weight = atomic_read(&tg->load_weight); 895 tg_weight -= cfs_rq->load_contribution; 896 tg_weight += cfs_rq->load.weight; 897 898 return tg_weight; 899 } 900 901 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 902 { 903 long tg_weight, load, shares; 904 905 tg_weight = calc_tg_weight(tg, cfs_rq); 906 load = cfs_rq->load.weight; 907 908 shares = (tg->shares * load); 909 if (tg_weight) 910 shares /= tg_weight; 911 912 if (shares < MIN_SHARES) 913 shares = MIN_SHARES; 914 if (shares > tg->shares) 915 shares = tg->shares; 916 917 return shares; 918 } 919 920 static void update_entity_shares_tick(struct cfs_rq *cfs_rq) 921 { 922 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { 923 update_cfs_load(cfs_rq, 0); 924 update_cfs_shares(cfs_rq); 925 } 926 } 927 # else /* CONFIG_SMP */ 928 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 929 { 930 } 931 932 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 933 { 934 return tg->shares; 935 } 936 937 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) 938 { 939 } 940 # endif /* CONFIG_SMP */ 941 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 942 unsigned long weight) 943 { 944 if (se->on_rq) { 945 /* commit outstanding execution time */ 946 if (cfs_rq->curr == se) 947 update_curr(cfs_rq); 948 account_entity_dequeue(cfs_rq, se); 949 } 950 951 update_load_set(&se->load, weight); 952 953 if (se->on_rq) 954 account_entity_enqueue(cfs_rq, se); 955 } 956 957 static void update_cfs_shares(struct cfs_rq *cfs_rq) 958 { 959 struct task_group *tg; 960 struct sched_entity *se; 961 long shares; 962 963 tg = cfs_rq->tg; 964 se = tg->se[cpu_of(rq_of(cfs_rq))]; 965 if (!se || throttled_hierarchy(cfs_rq)) 966 return; 967 #ifndef CONFIG_SMP 968 if (likely(se->load.weight == tg->shares)) 969 return; 970 #endif 971 shares = calc_cfs_shares(cfs_rq, tg); 972 973 reweight_entity(cfs_rq_of(se), se, shares); 974 } 975 #else /* CONFIG_FAIR_GROUP_SCHED */ 976 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) 977 { 978 } 979 980 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 981 { 982 } 983 984 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) 985 { 986 } 987 #endif /* CONFIG_FAIR_GROUP_SCHED */ 988 989 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 990 { 991 #ifdef CONFIG_SCHEDSTATS 992 struct task_struct *tsk = NULL; 993 994 if (entity_is_task(se)) 995 tsk = task_of(se); 996 997 if (se->statistics.sleep_start) { 998 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; 999 1000 if ((s64)delta < 0) 1001 delta = 0; 1002 1003 if (unlikely(delta > se->statistics.sleep_max)) 1004 se->statistics.sleep_max = delta; 1005 1006 se->statistics.sleep_start = 0; 1007 se->statistics.sum_sleep_runtime += delta; 1008 1009 if (tsk) { 1010 account_scheduler_latency(tsk, delta >> 10, 1); 1011 trace_sched_stat_sleep(tsk, delta); 1012 } 1013 } 1014 if (se->statistics.block_start) { 1015 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; 1016 1017 if ((s64)delta < 0) 1018 delta = 0; 1019 1020 if (unlikely(delta > se->statistics.block_max)) 1021 se->statistics.block_max = delta; 1022 1023 se->statistics.block_start = 0; 1024 se->statistics.sum_sleep_runtime += delta; 1025 1026 if (tsk) { 1027 if (tsk->in_iowait) { 1028 se->statistics.iowait_sum += delta; 1029 se->statistics.iowait_count++; 1030 trace_sched_stat_iowait(tsk, delta); 1031 } 1032 1033 trace_sched_stat_blocked(tsk, delta); 1034 1035 /* 1036 * Blocking time is in units of nanosecs, so shift by 1037 * 20 to get a milliseconds-range estimation of the 1038 * amount of time that the task spent sleeping: 1039 */ 1040 if (unlikely(prof_on == SLEEP_PROFILING)) { 1041 profile_hits(SLEEP_PROFILING, 1042 (void *)get_wchan(tsk), 1043 delta >> 20); 1044 } 1045 account_scheduler_latency(tsk, delta >> 10, 0); 1046 } 1047 } 1048 #endif 1049 } 1050 1051 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 1052 { 1053 #ifdef CONFIG_SCHED_DEBUG 1054 s64 d = se->vruntime - cfs_rq->min_vruntime; 1055 1056 if (d < 0) 1057 d = -d; 1058 1059 if (d > 3*sysctl_sched_latency) 1060 schedstat_inc(cfs_rq, nr_spread_over); 1061 #endif 1062 } 1063 1064 static void 1065 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 1066 { 1067 u64 vruntime = cfs_rq->min_vruntime; 1068 1069 /* 1070 * The 'current' period is already promised to the current tasks, 1071 * however the extra weight of the new task will slow them down a 1072 * little, place the new task so that it fits in the slot that 1073 * stays open at the end. 1074 */ 1075 if (initial && sched_feat(START_DEBIT)) 1076 vruntime += sched_vslice(cfs_rq, se); 1077 1078 /* sleeps up to a single latency don't count. */ 1079 if (!initial) { 1080 unsigned long thresh = sysctl_sched_latency; 1081 1082 /* 1083 * Halve their sleep time's effect, to allow 1084 * for a gentler effect of sleepers: 1085 */ 1086 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 1087 thresh >>= 1; 1088 1089 vruntime -= thresh; 1090 } 1091 1092 /* ensure we never gain time by being placed backwards. */ 1093 vruntime = max_vruntime(se->vruntime, vruntime); 1094 1095 se->vruntime = vruntime; 1096 } 1097 1098 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 1099 1100 static void 1101 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1102 { 1103 /* 1104 * Update the normalized vruntime before updating min_vruntime 1105 * through callig update_curr(). 1106 */ 1107 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 1108 se->vruntime += cfs_rq->min_vruntime; 1109 1110 /* 1111 * Update run-time statistics of the 'current'. 1112 */ 1113 update_curr(cfs_rq); 1114 update_cfs_load(cfs_rq, 0); 1115 account_entity_enqueue(cfs_rq, se); 1116 update_cfs_shares(cfs_rq); 1117 1118 if (flags & ENQUEUE_WAKEUP) { 1119 place_entity(cfs_rq, se, 0); 1120 enqueue_sleeper(cfs_rq, se); 1121 } 1122 1123 update_stats_enqueue(cfs_rq, se); 1124 check_spread(cfs_rq, se); 1125 if (se != cfs_rq->curr) 1126 __enqueue_entity(cfs_rq, se); 1127 se->on_rq = 1; 1128 1129 if (cfs_rq->nr_running == 1) { 1130 list_add_leaf_cfs_rq(cfs_rq); 1131 check_enqueue_throttle(cfs_rq); 1132 } 1133 } 1134 1135 static void __clear_buddies_last(struct sched_entity *se) 1136 { 1137 for_each_sched_entity(se) { 1138 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1139 if (cfs_rq->last == se) 1140 cfs_rq->last = NULL; 1141 else 1142 break; 1143 } 1144 } 1145 1146 static void __clear_buddies_next(struct sched_entity *se) 1147 { 1148 for_each_sched_entity(se) { 1149 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1150 if (cfs_rq->next == se) 1151 cfs_rq->next = NULL; 1152 else 1153 break; 1154 } 1155 } 1156 1157 static void __clear_buddies_skip(struct sched_entity *se) 1158 { 1159 for_each_sched_entity(se) { 1160 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1161 if (cfs_rq->skip == se) 1162 cfs_rq->skip = NULL; 1163 else 1164 break; 1165 } 1166 } 1167 1168 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 1169 { 1170 if (cfs_rq->last == se) 1171 __clear_buddies_last(se); 1172 1173 if (cfs_rq->next == se) 1174 __clear_buddies_next(se); 1175 1176 if (cfs_rq->skip == se) 1177 __clear_buddies_skip(se); 1178 } 1179 1180 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1181 1182 static void 1183 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1184 { 1185 /* 1186 * Update run-time statistics of the 'current'. 1187 */ 1188 update_curr(cfs_rq); 1189 1190 update_stats_dequeue(cfs_rq, se); 1191 if (flags & DEQUEUE_SLEEP) { 1192 #ifdef CONFIG_SCHEDSTATS 1193 if (entity_is_task(se)) { 1194 struct task_struct *tsk = task_of(se); 1195 1196 if (tsk->state & TASK_INTERRUPTIBLE) 1197 se->statistics.sleep_start = rq_of(cfs_rq)->clock; 1198 if (tsk->state & TASK_UNINTERRUPTIBLE) 1199 se->statistics.block_start = rq_of(cfs_rq)->clock; 1200 } 1201 #endif 1202 } 1203 1204 clear_buddies(cfs_rq, se); 1205 1206 if (se != cfs_rq->curr) 1207 __dequeue_entity(cfs_rq, se); 1208 se->on_rq = 0; 1209 update_cfs_load(cfs_rq, 0); 1210 account_entity_dequeue(cfs_rq, se); 1211 1212 /* 1213 * Normalize the entity after updating the min_vruntime because the 1214 * update can refer to the ->curr item and we need to reflect this 1215 * movement in our normalized position. 1216 */ 1217 if (!(flags & DEQUEUE_SLEEP)) 1218 se->vruntime -= cfs_rq->min_vruntime; 1219 1220 /* return excess runtime on last dequeue */ 1221 return_cfs_rq_runtime(cfs_rq); 1222 1223 update_min_vruntime(cfs_rq); 1224 update_cfs_shares(cfs_rq); 1225 } 1226 1227 /* 1228 * Preempt the current task with a newly woken task if needed: 1229 */ 1230 static void 1231 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1232 { 1233 unsigned long ideal_runtime, delta_exec; 1234 struct sched_entity *se; 1235 s64 delta; 1236 1237 ideal_runtime = sched_slice(cfs_rq, curr); 1238 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 1239 if (delta_exec > ideal_runtime) { 1240 resched_task(rq_of(cfs_rq)->curr); 1241 /* 1242 * The current task ran long enough, ensure it doesn't get 1243 * re-elected due to buddy favours. 1244 */ 1245 clear_buddies(cfs_rq, curr); 1246 return; 1247 } 1248 1249 /* 1250 * Ensure that a task that missed wakeup preemption by a 1251 * narrow margin doesn't have to wait for a full slice. 1252 * This also mitigates buddy induced latencies under load. 1253 */ 1254 if (delta_exec < sysctl_sched_min_granularity) 1255 return; 1256 1257 se = __pick_first_entity(cfs_rq); 1258 delta = curr->vruntime - se->vruntime; 1259 1260 if (delta < 0) 1261 return; 1262 1263 if (delta > ideal_runtime) 1264 resched_task(rq_of(cfs_rq)->curr); 1265 } 1266 1267 static void 1268 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 1269 { 1270 /* 'current' is not kept within the tree. */ 1271 if (se->on_rq) { 1272 /* 1273 * Any task has to be enqueued before it get to execute on 1274 * a CPU. So account for the time it spent waiting on the 1275 * runqueue. 1276 */ 1277 update_stats_wait_end(cfs_rq, se); 1278 __dequeue_entity(cfs_rq, se); 1279 } 1280 1281 update_stats_curr_start(cfs_rq, se); 1282 cfs_rq->curr = se; 1283 #ifdef CONFIG_SCHEDSTATS 1284 /* 1285 * Track our maximum slice length, if the CPU's load is at 1286 * least twice that of our own weight (i.e. dont track it 1287 * when there are only lesser-weight tasks around): 1288 */ 1289 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 1290 se->statistics.slice_max = max(se->statistics.slice_max, 1291 se->sum_exec_runtime - se->prev_sum_exec_runtime); 1292 } 1293 #endif 1294 se->prev_sum_exec_runtime = se->sum_exec_runtime; 1295 } 1296 1297 static int 1298 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 1299 1300 /* 1301 * Pick the next process, keeping these things in mind, in this order: 1302 * 1) keep things fair between processes/task groups 1303 * 2) pick the "next" process, since someone really wants that to run 1304 * 3) pick the "last" process, for cache locality 1305 * 4) do not run the "skip" process, if something else is available 1306 */ 1307 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) 1308 { 1309 struct sched_entity *se = __pick_first_entity(cfs_rq); 1310 struct sched_entity *left = se; 1311 1312 /* 1313 * Avoid running the skip buddy, if running something else can 1314 * be done without getting too unfair. 1315 */ 1316 if (cfs_rq->skip == se) { 1317 struct sched_entity *second = __pick_next_entity(se); 1318 if (second && wakeup_preempt_entity(second, left) < 1) 1319 se = second; 1320 } 1321 1322 /* 1323 * Prefer last buddy, try to return the CPU to a preempted task. 1324 */ 1325 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 1326 se = cfs_rq->last; 1327 1328 /* 1329 * Someone really wants this to run. If it's not unfair, run it. 1330 */ 1331 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 1332 se = cfs_rq->next; 1333 1334 clear_buddies(cfs_rq, se); 1335 1336 return se; 1337 } 1338 1339 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 1340 1341 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 1342 { 1343 /* 1344 * If still on the runqueue then deactivate_task() 1345 * was not called and update_curr() has to be done: 1346 */ 1347 if (prev->on_rq) 1348 update_curr(cfs_rq); 1349 1350 /* throttle cfs_rqs exceeding runtime */ 1351 check_cfs_rq_runtime(cfs_rq); 1352 1353 check_spread(cfs_rq, prev); 1354 if (prev->on_rq) { 1355 update_stats_wait_start(cfs_rq, prev); 1356 /* Put 'current' back into the tree. */ 1357 __enqueue_entity(cfs_rq, prev); 1358 } 1359 cfs_rq->curr = NULL; 1360 } 1361 1362 static void 1363 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 1364 { 1365 /* 1366 * Update run-time statistics of the 'current'. 1367 */ 1368 update_curr(cfs_rq); 1369 1370 /* 1371 * Update share accounting for long-running entities. 1372 */ 1373 update_entity_shares_tick(cfs_rq); 1374 1375 #ifdef CONFIG_SCHED_HRTICK 1376 /* 1377 * queued ticks are scheduled to match the slice, so don't bother 1378 * validating it and just reschedule. 1379 */ 1380 if (queued) { 1381 resched_task(rq_of(cfs_rq)->curr); 1382 return; 1383 } 1384 /* 1385 * don't let the period tick interfere with the hrtick preemption 1386 */ 1387 if (!sched_feat(DOUBLE_TICK) && 1388 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 1389 return; 1390 #endif 1391 1392 if (cfs_rq->nr_running > 1) 1393 check_preempt_tick(cfs_rq, curr); 1394 } 1395 1396 1397 /************************************************** 1398 * CFS bandwidth control machinery 1399 */ 1400 1401 #ifdef CONFIG_CFS_BANDWIDTH 1402 1403 #ifdef HAVE_JUMP_LABEL 1404 static struct jump_label_key __cfs_bandwidth_used; 1405 1406 static inline bool cfs_bandwidth_used(void) 1407 { 1408 return static_branch(&__cfs_bandwidth_used); 1409 } 1410 1411 void account_cfs_bandwidth_used(int enabled, int was_enabled) 1412 { 1413 /* only need to count groups transitioning between enabled/!enabled */ 1414 if (enabled && !was_enabled) 1415 jump_label_inc(&__cfs_bandwidth_used); 1416 else if (!enabled && was_enabled) 1417 jump_label_dec(&__cfs_bandwidth_used); 1418 } 1419 #else /* HAVE_JUMP_LABEL */ 1420 static bool cfs_bandwidth_used(void) 1421 { 1422 return true; 1423 } 1424 1425 void account_cfs_bandwidth_used(int enabled, int was_enabled) {} 1426 #endif /* HAVE_JUMP_LABEL */ 1427 1428 /* 1429 * default period for cfs group bandwidth. 1430 * default: 0.1s, units: nanoseconds 1431 */ 1432 static inline u64 default_cfs_period(void) 1433 { 1434 return 100000000ULL; 1435 } 1436 1437 static inline u64 sched_cfs_bandwidth_slice(void) 1438 { 1439 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 1440 } 1441 1442 /* 1443 * Replenish runtime according to assigned quota and update expiration time. 1444 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 1445 * additional synchronization around rq->lock. 1446 * 1447 * requires cfs_b->lock 1448 */ 1449 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 1450 { 1451 u64 now; 1452 1453 if (cfs_b->quota == RUNTIME_INF) 1454 return; 1455 1456 now = sched_clock_cpu(smp_processor_id()); 1457 cfs_b->runtime = cfs_b->quota; 1458 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 1459 } 1460 1461 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 1462 { 1463 return &tg->cfs_bandwidth; 1464 } 1465 1466 /* returns 0 on failure to allocate runtime */ 1467 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1468 { 1469 struct task_group *tg = cfs_rq->tg; 1470 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 1471 u64 amount = 0, min_amount, expires; 1472 1473 /* note: this is a positive sum as runtime_remaining <= 0 */ 1474 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 1475 1476 raw_spin_lock(&cfs_b->lock); 1477 if (cfs_b->quota == RUNTIME_INF) 1478 amount = min_amount; 1479 else { 1480 /* 1481 * If the bandwidth pool has become inactive, then at least one 1482 * period must have elapsed since the last consumption. 1483 * Refresh the global state and ensure bandwidth timer becomes 1484 * active. 1485 */ 1486 if (!cfs_b->timer_active) { 1487 __refill_cfs_bandwidth_runtime(cfs_b); 1488 __start_cfs_bandwidth(cfs_b); 1489 } 1490 1491 if (cfs_b->runtime > 0) { 1492 amount = min(cfs_b->runtime, min_amount); 1493 cfs_b->runtime -= amount; 1494 cfs_b->idle = 0; 1495 } 1496 } 1497 expires = cfs_b->runtime_expires; 1498 raw_spin_unlock(&cfs_b->lock); 1499 1500 cfs_rq->runtime_remaining += amount; 1501 /* 1502 * we may have advanced our local expiration to account for allowed 1503 * spread between our sched_clock and the one on which runtime was 1504 * issued. 1505 */ 1506 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 1507 cfs_rq->runtime_expires = expires; 1508 1509 return cfs_rq->runtime_remaining > 0; 1510 } 1511 1512 /* 1513 * Note: This depends on the synchronization provided by sched_clock and the 1514 * fact that rq->clock snapshots this value. 1515 */ 1516 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1517 { 1518 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1519 struct rq *rq = rq_of(cfs_rq); 1520 1521 /* if the deadline is ahead of our clock, nothing to do */ 1522 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0)) 1523 return; 1524 1525 if (cfs_rq->runtime_remaining < 0) 1526 return; 1527 1528 /* 1529 * If the local deadline has passed we have to consider the 1530 * possibility that our sched_clock is 'fast' and the global deadline 1531 * has not truly expired. 1532 * 1533 * Fortunately we can check determine whether this the case by checking 1534 * whether the global deadline has advanced. 1535 */ 1536 1537 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { 1538 /* extend local deadline, drift is bounded above by 2 ticks */ 1539 cfs_rq->runtime_expires += TICK_NSEC; 1540 } else { 1541 /* global deadline is ahead, expiration has passed */ 1542 cfs_rq->runtime_remaining = 0; 1543 } 1544 } 1545 1546 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 1547 unsigned long delta_exec) 1548 { 1549 /* dock delta_exec before expiring quota (as it could span periods) */ 1550 cfs_rq->runtime_remaining -= delta_exec; 1551 expire_cfs_rq_runtime(cfs_rq); 1552 1553 if (likely(cfs_rq->runtime_remaining > 0)) 1554 return; 1555 1556 /* 1557 * if we're unable to extend our runtime we resched so that the active 1558 * hierarchy can be throttled 1559 */ 1560 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 1561 resched_task(rq_of(cfs_rq)->curr); 1562 } 1563 1564 static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 1565 unsigned long delta_exec) 1566 { 1567 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 1568 return; 1569 1570 __account_cfs_rq_runtime(cfs_rq, delta_exec); 1571 } 1572 1573 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 1574 { 1575 return cfs_bandwidth_used() && cfs_rq->throttled; 1576 } 1577 1578 /* check whether cfs_rq, or any parent, is throttled */ 1579 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 1580 { 1581 return cfs_bandwidth_used() && cfs_rq->throttle_count; 1582 } 1583 1584 /* 1585 * Ensure that neither of the group entities corresponding to src_cpu or 1586 * dest_cpu are members of a throttled hierarchy when performing group 1587 * load-balance operations. 1588 */ 1589 static inline int throttled_lb_pair(struct task_group *tg, 1590 int src_cpu, int dest_cpu) 1591 { 1592 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 1593 1594 src_cfs_rq = tg->cfs_rq[src_cpu]; 1595 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 1596 1597 return throttled_hierarchy(src_cfs_rq) || 1598 throttled_hierarchy(dest_cfs_rq); 1599 } 1600 1601 /* updated child weight may affect parent so we have to do this bottom up */ 1602 static int tg_unthrottle_up(struct task_group *tg, void *data) 1603 { 1604 struct rq *rq = data; 1605 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 1606 1607 cfs_rq->throttle_count--; 1608 #ifdef CONFIG_SMP 1609 if (!cfs_rq->throttle_count) { 1610 u64 delta = rq->clock_task - cfs_rq->load_stamp; 1611 1612 /* leaving throttled state, advance shares averaging windows */ 1613 cfs_rq->load_stamp += delta; 1614 cfs_rq->load_last += delta; 1615 1616 /* update entity weight now that we are on_rq again */ 1617 update_cfs_shares(cfs_rq); 1618 } 1619 #endif 1620 1621 return 0; 1622 } 1623 1624 static int tg_throttle_down(struct task_group *tg, void *data) 1625 { 1626 struct rq *rq = data; 1627 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 1628 1629 /* group is entering throttled state, record last load */ 1630 if (!cfs_rq->throttle_count) 1631 update_cfs_load(cfs_rq, 0); 1632 cfs_rq->throttle_count++; 1633 1634 return 0; 1635 } 1636 1637 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 1638 { 1639 struct rq *rq = rq_of(cfs_rq); 1640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1641 struct sched_entity *se; 1642 long task_delta, dequeue = 1; 1643 1644 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 1645 1646 /* account load preceding throttle */ 1647 rcu_read_lock(); 1648 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 1649 rcu_read_unlock(); 1650 1651 task_delta = cfs_rq->h_nr_running; 1652 for_each_sched_entity(se) { 1653 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 1654 /* throttled entity or throttle-on-deactivate */ 1655 if (!se->on_rq) 1656 break; 1657 1658 if (dequeue) 1659 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 1660 qcfs_rq->h_nr_running -= task_delta; 1661 1662 if (qcfs_rq->load.weight) 1663 dequeue = 0; 1664 } 1665 1666 if (!se) 1667 rq->nr_running -= task_delta; 1668 1669 cfs_rq->throttled = 1; 1670 cfs_rq->throttled_timestamp = rq->clock; 1671 raw_spin_lock(&cfs_b->lock); 1672 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 1673 raw_spin_unlock(&cfs_b->lock); 1674 } 1675 1676 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 1677 { 1678 struct rq *rq = rq_of(cfs_rq); 1679 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1680 struct sched_entity *se; 1681 int enqueue = 1; 1682 long task_delta; 1683 1684 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 1685 1686 cfs_rq->throttled = 0; 1687 raw_spin_lock(&cfs_b->lock); 1688 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp; 1689 list_del_rcu(&cfs_rq->throttled_list); 1690 raw_spin_unlock(&cfs_b->lock); 1691 cfs_rq->throttled_timestamp = 0; 1692 1693 update_rq_clock(rq); 1694 /* update hierarchical throttle state */ 1695 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 1696 1697 if (!cfs_rq->load.weight) 1698 return; 1699 1700 task_delta = cfs_rq->h_nr_running; 1701 for_each_sched_entity(se) { 1702 if (se->on_rq) 1703 enqueue = 0; 1704 1705 cfs_rq = cfs_rq_of(se); 1706 if (enqueue) 1707 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 1708 cfs_rq->h_nr_running += task_delta; 1709 1710 if (cfs_rq_throttled(cfs_rq)) 1711 break; 1712 } 1713 1714 if (!se) 1715 rq->nr_running += task_delta; 1716 1717 /* determine whether we need to wake up potentially idle cpu */ 1718 if (rq->curr == rq->idle && rq->cfs.nr_running) 1719 resched_task(rq->curr); 1720 } 1721 1722 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 1723 u64 remaining, u64 expires) 1724 { 1725 struct cfs_rq *cfs_rq; 1726 u64 runtime = remaining; 1727 1728 rcu_read_lock(); 1729 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 1730 throttled_list) { 1731 struct rq *rq = rq_of(cfs_rq); 1732 1733 raw_spin_lock(&rq->lock); 1734 if (!cfs_rq_throttled(cfs_rq)) 1735 goto next; 1736 1737 runtime = -cfs_rq->runtime_remaining + 1; 1738 if (runtime > remaining) 1739 runtime = remaining; 1740 remaining -= runtime; 1741 1742 cfs_rq->runtime_remaining += runtime; 1743 cfs_rq->runtime_expires = expires; 1744 1745 /* we check whether we're throttled above */ 1746 if (cfs_rq->runtime_remaining > 0) 1747 unthrottle_cfs_rq(cfs_rq); 1748 1749 next: 1750 raw_spin_unlock(&rq->lock); 1751 1752 if (!remaining) 1753 break; 1754 } 1755 rcu_read_unlock(); 1756 1757 return remaining; 1758 } 1759 1760 /* 1761 * Responsible for refilling a task_group's bandwidth and unthrottling its 1762 * cfs_rqs as appropriate. If there has been no activity within the last 1763 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 1764 * used to track this state. 1765 */ 1766 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 1767 { 1768 u64 runtime, runtime_expires; 1769 int idle = 1, throttled; 1770 1771 raw_spin_lock(&cfs_b->lock); 1772 /* no need to continue the timer with no bandwidth constraint */ 1773 if (cfs_b->quota == RUNTIME_INF) 1774 goto out_unlock; 1775 1776 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 1777 /* idle depends on !throttled (for the case of a large deficit) */ 1778 idle = cfs_b->idle && !throttled; 1779 cfs_b->nr_periods += overrun; 1780 1781 /* if we're going inactive then everything else can be deferred */ 1782 if (idle) 1783 goto out_unlock; 1784 1785 __refill_cfs_bandwidth_runtime(cfs_b); 1786 1787 if (!throttled) { 1788 /* mark as potentially idle for the upcoming period */ 1789 cfs_b->idle = 1; 1790 goto out_unlock; 1791 } 1792 1793 /* account preceding periods in which throttling occurred */ 1794 cfs_b->nr_throttled += overrun; 1795 1796 /* 1797 * There are throttled entities so we must first use the new bandwidth 1798 * to unthrottle them before making it generally available. This 1799 * ensures that all existing debts will be paid before a new cfs_rq is 1800 * allowed to run. 1801 */ 1802 runtime = cfs_b->runtime; 1803 runtime_expires = cfs_b->runtime_expires; 1804 cfs_b->runtime = 0; 1805 1806 /* 1807 * This check is repeated as we are holding onto the new bandwidth 1808 * while we unthrottle. This can potentially race with an unthrottled 1809 * group trying to acquire new bandwidth from the global pool. 1810 */ 1811 while (throttled && runtime > 0) { 1812 raw_spin_unlock(&cfs_b->lock); 1813 /* we can't nest cfs_b->lock while distributing bandwidth */ 1814 runtime = distribute_cfs_runtime(cfs_b, runtime, 1815 runtime_expires); 1816 raw_spin_lock(&cfs_b->lock); 1817 1818 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 1819 } 1820 1821 /* return (any) remaining runtime */ 1822 cfs_b->runtime = runtime; 1823 /* 1824 * While we are ensured activity in the period following an 1825 * unthrottle, this also covers the case in which the new bandwidth is 1826 * insufficient to cover the existing bandwidth deficit. (Forcing the 1827 * timer to remain active while there are any throttled entities.) 1828 */ 1829 cfs_b->idle = 0; 1830 out_unlock: 1831 if (idle) 1832 cfs_b->timer_active = 0; 1833 raw_spin_unlock(&cfs_b->lock); 1834 1835 return idle; 1836 } 1837 1838 /* a cfs_rq won't donate quota below this amount */ 1839 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 1840 /* minimum remaining period time to redistribute slack quota */ 1841 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 1842 /* how long we wait to gather additional slack before distributing */ 1843 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 1844 1845 /* are we near the end of the current quota period? */ 1846 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 1847 { 1848 struct hrtimer *refresh_timer = &cfs_b->period_timer; 1849 u64 remaining; 1850 1851 /* if the call-back is running a quota refresh is already occurring */ 1852 if (hrtimer_callback_running(refresh_timer)) 1853 return 1; 1854 1855 /* is a quota refresh about to occur? */ 1856 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 1857 if (remaining < min_expire) 1858 return 1; 1859 1860 return 0; 1861 } 1862 1863 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 1864 { 1865 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 1866 1867 /* if there's a quota refresh soon don't bother with slack */ 1868 if (runtime_refresh_within(cfs_b, min_left)) 1869 return; 1870 1871 start_bandwidth_timer(&cfs_b->slack_timer, 1872 ns_to_ktime(cfs_bandwidth_slack_period)); 1873 } 1874 1875 /* we know any runtime found here is valid as update_curr() precedes return */ 1876 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1877 { 1878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 1879 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 1880 1881 if (slack_runtime <= 0) 1882 return; 1883 1884 raw_spin_lock(&cfs_b->lock); 1885 if (cfs_b->quota != RUNTIME_INF && 1886 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 1887 cfs_b->runtime += slack_runtime; 1888 1889 /* we are under rq->lock, defer unthrottling using a timer */ 1890 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 1891 !list_empty(&cfs_b->throttled_cfs_rq)) 1892 start_cfs_slack_bandwidth(cfs_b); 1893 } 1894 raw_spin_unlock(&cfs_b->lock); 1895 1896 /* even if it's not valid for return we don't want to try again */ 1897 cfs_rq->runtime_remaining -= slack_runtime; 1898 } 1899 1900 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1901 { 1902 if (!cfs_bandwidth_used()) 1903 return; 1904 1905 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 1906 return; 1907 1908 __return_cfs_rq_runtime(cfs_rq); 1909 } 1910 1911 /* 1912 * This is done with a timer (instead of inline with bandwidth return) since 1913 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 1914 */ 1915 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 1916 { 1917 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 1918 u64 expires; 1919 1920 /* confirm we're still not at a refresh boundary */ 1921 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) 1922 return; 1923 1924 raw_spin_lock(&cfs_b->lock); 1925 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { 1926 runtime = cfs_b->runtime; 1927 cfs_b->runtime = 0; 1928 } 1929 expires = cfs_b->runtime_expires; 1930 raw_spin_unlock(&cfs_b->lock); 1931 1932 if (!runtime) 1933 return; 1934 1935 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 1936 1937 raw_spin_lock(&cfs_b->lock); 1938 if (expires == cfs_b->runtime_expires) 1939 cfs_b->runtime = runtime; 1940 raw_spin_unlock(&cfs_b->lock); 1941 } 1942 1943 /* 1944 * When a group wakes up we want to make sure that its quota is not already 1945 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 1946 * runtime as update_curr() throttling can not not trigger until it's on-rq. 1947 */ 1948 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 1949 { 1950 if (!cfs_bandwidth_used()) 1951 return; 1952 1953 /* an active group must be handled by the update_curr()->put() path */ 1954 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 1955 return; 1956 1957 /* ensure the group is not already throttled */ 1958 if (cfs_rq_throttled(cfs_rq)) 1959 return; 1960 1961 /* update runtime allocation */ 1962 account_cfs_rq_runtime(cfs_rq, 0); 1963 if (cfs_rq->runtime_remaining <= 0) 1964 throttle_cfs_rq(cfs_rq); 1965 } 1966 1967 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 1968 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 1969 { 1970 if (!cfs_bandwidth_used()) 1971 return; 1972 1973 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 1974 return; 1975 1976 /* 1977 * it's possible for a throttled entity to be forced into a running 1978 * state (e.g. set_curr_task), in this case we're finished. 1979 */ 1980 if (cfs_rq_throttled(cfs_rq)) 1981 return; 1982 1983 throttle_cfs_rq(cfs_rq); 1984 } 1985 1986 static inline u64 default_cfs_period(void); 1987 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); 1988 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); 1989 1990 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 1991 { 1992 struct cfs_bandwidth *cfs_b = 1993 container_of(timer, struct cfs_bandwidth, slack_timer); 1994 do_sched_cfs_slack_timer(cfs_b); 1995 1996 return HRTIMER_NORESTART; 1997 } 1998 1999 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 2000 { 2001 struct cfs_bandwidth *cfs_b = 2002 container_of(timer, struct cfs_bandwidth, period_timer); 2003 ktime_t now; 2004 int overrun; 2005 int idle = 0; 2006 2007 for (;;) { 2008 now = hrtimer_cb_get_time(timer); 2009 overrun = hrtimer_forward(timer, now, cfs_b->period); 2010 2011 if (!overrun) 2012 break; 2013 2014 idle = do_sched_cfs_period_timer(cfs_b, overrun); 2015 } 2016 2017 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 2018 } 2019 2020 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2021 { 2022 raw_spin_lock_init(&cfs_b->lock); 2023 cfs_b->runtime = 0; 2024 cfs_b->quota = RUNTIME_INF; 2025 cfs_b->period = ns_to_ktime(default_cfs_period()); 2026 2027 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 2028 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2029 cfs_b->period_timer.function = sched_cfs_period_timer; 2030 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2031 cfs_b->slack_timer.function = sched_cfs_slack_timer; 2032 } 2033 2034 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 2035 { 2036 cfs_rq->runtime_enabled = 0; 2037 INIT_LIST_HEAD(&cfs_rq->throttled_list); 2038 } 2039 2040 /* requires cfs_b->lock, may release to reprogram timer */ 2041 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2042 { 2043 /* 2044 * The timer may be active because we're trying to set a new bandwidth 2045 * period or because we're racing with the tear-down path 2046 * (timer_active==0 becomes visible before the hrtimer call-back 2047 * terminates). In either case we ensure that it's re-programmed 2048 */ 2049 while (unlikely(hrtimer_active(&cfs_b->period_timer))) { 2050 raw_spin_unlock(&cfs_b->lock); 2051 /* ensure cfs_b->lock is available while we wait */ 2052 hrtimer_cancel(&cfs_b->period_timer); 2053 2054 raw_spin_lock(&cfs_b->lock); 2055 /* if someone else restarted the timer then we're done */ 2056 if (cfs_b->timer_active) 2057 return; 2058 } 2059 2060 cfs_b->timer_active = 1; 2061 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 2062 } 2063 2064 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 2065 { 2066 hrtimer_cancel(&cfs_b->period_timer); 2067 hrtimer_cancel(&cfs_b->slack_timer); 2068 } 2069 2070 void unthrottle_offline_cfs_rqs(struct rq *rq) 2071 { 2072 struct cfs_rq *cfs_rq; 2073 2074 for_each_leaf_cfs_rq(rq, cfs_rq) { 2075 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 2076 2077 if (!cfs_rq->runtime_enabled) 2078 continue; 2079 2080 /* 2081 * clock_task is not advancing so we just need to make sure 2082 * there's some valid quota amount 2083 */ 2084 cfs_rq->runtime_remaining = cfs_b->quota; 2085 if (cfs_rq_throttled(cfs_rq)) 2086 unthrottle_cfs_rq(cfs_rq); 2087 } 2088 } 2089 2090 #else /* CONFIG_CFS_BANDWIDTH */ 2091 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, 2092 unsigned long delta_exec) {} 2093 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2094 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 2095 static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2096 2097 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 2098 { 2099 return 0; 2100 } 2101 2102 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 2103 { 2104 return 0; 2105 } 2106 2107 static inline int throttled_lb_pair(struct task_group *tg, 2108 int src_cpu, int dest_cpu) 2109 { 2110 return 0; 2111 } 2112 2113 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2114 2115 #ifdef CONFIG_FAIR_GROUP_SCHED 2116 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 2117 #endif 2118 2119 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 2120 { 2121 return NULL; 2122 } 2123 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 2124 void unthrottle_offline_cfs_rqs(struct rq *rq) {} 2125 2126 #endif /* CONFIG_CFS_BANDWIDTH */ 2127 2128 /************************************************** 2129 * CFS operations on tasks: 2130 */ 2131 2132 #ifdef CONFIG_SCHED_HRTICK 2133 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 2134 { 2135 struct sched_entity *se = &p->se; 2136 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2137 2138 WARN_ON(task_rq(p) != rq); 2139 2140 if (cfs_rq->nr_running > 1) { 2141 u64 slice = sched_slice(cfs_rq, se); 2142 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 2143 s64 delta = slice - ran; 2144 2145 if (delta < 0) { 2146 if (rq->curr == p) 2147 resched_task(p); 2148 return; 2149 } 2150 2151 /* 2152 * Don't schedule slices shorter than 10000ns, that just 2153 * doesn't make sense. Rely on vruntime for fairness. 2154 */ 2155 if (rq->curr != p) 2156 delta = max_t(s64, 10000LL, delta); 2157 2158 hrtick_start(rq, delta); 2159 } 2160 } 2161 2162 /* 2163 * called from enqueue/dequeue and updates the hrtick when the 2164 * current task is from our class and nr_running is low enough 2165 * to matter. 2166 */ 2167 static void hrtick_update(struct rq *rq) 2168 { 2169 struct task_struct *curr = rq->curr; 2170 2171 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 2172 return; 2173 2174 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 2175 hrtick_start_fair(rq, curr); 2176 } 2177 #else /* !CONFIG_SCHED_HRTICK */ 2178 static inline void 2179 hrtick_start_fair(struct rq *rq, struct task_struct *p) 2180 { 2181 } 2182 2183 static inline void hrtick_update(struct rq *rq) 2184 { 2185 } 2186 #endif 2187 2188 /* 2189 * The enqueue_task method is called before nr_running is 2190 * increased. Here we update the fair scheduling stats and 2191 * then put the task into the rbtree: 2192 */ 2193 static void 2194 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2195 { 2196 struct cfs_rq *cfs_rq; 2197 struct sched_entity *se = &p->se; 2198 2199 for_each_sched_entity(se) { 2200 if (se->on_rq) 2201 break; 2202 cfs_rq = cfs_rq_of(se); 2203 enqueue_entity(cfs_rq, se, flags); 2204 2205 /* 2206 * end evaluation on encountering a throttled cfs_rq 2207 * 2208 * note: in the case of encountering a throttled cfs_rq we will 2209 * post the final h_nr_running increment below. 2210 */ 2211 if (cfs_rq_throttled(cfs_rq)) 2212 break; 2213 cfs_rq->h_nr_running++; 2214 2215 flags = ENQUEUE_WAKEUP; 2216 } 2217 2218 for_each_sched_entity(se) { 2219 cfs_rq = cfs_rq_of(se); 2220 cfs_rq->h_nr_running++; 2221 2222 if (cfs_rq_throttled(cfs_rq)) 2223 break; 2224 2225 update_cfs_load(cfs_rq, 0); 2226 update_cfs_shares(cfs_rq); 2227 } 2228 2229 if (!se) 2230 inc_nr_running(rq); 2231 hrtick_update(rq); 2232 } 2233 2234 static void set_next_buddy(struct sched_entity *se); 2235 2236 /* 2237 * The dequeue_task method is called before nr_running is 2238 * decreased. We remove the task from the rbtree and 2239 * update the fair scheduling stats: 2240 */ 2241 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 2242 { 2243 struct cfs_rq *cfs_rq; 2244 struct sched_entity *se = &p->se; 2245 int task_sleep = flags & DEQUEUE_SLEEP; 2246 2247 for_each_sched_entity(se) { 2248 cfs_rq = cfs_rq_of(se); 2249 dequeue_entity(cfs_rq, se, flags); 2250 2251 /* 2252 * end evaluation on encountering a throttled cfs_rq 2253 * 2254 * note: in the case of encountering a throttled cfs_rq we will 2255 * post the final h_nr_running decrement below. 2256 */ 2257 if (cfs_rq_throttled(cfs_rq)) 2258 break; 2259 cfs_rq->h_nr_running--; 2260 2261 /* Don't dequeue parent if it has other entities besides us */ 2262 if (cfs_rq->load.weight) { 2263 /* 2264 * Bias pick_next to pick a task from this cfs_rq, as 2265 * p is sleeping when it is within its sched_slice. 2266 */ 2267 if (task_sleep && parent_entity(se)) 2268 set_next_buddy(parent_entity(se)); 2269 2270 /* avoid re-evaluating load for this entity */ 2271 se = parent_entity(se); 2272 break; 2273 } 2274 flags |= DEQUEUE_SLEEP; 2275 } 2276 2277 for_each_sched_entity(se) { 2278 cfs_rq = cfs_rq_of(se); 2279 cfs_rq->h_nr_running--; 2280 2281 if (cfs_rq_throttled(cfs_rq)) 2282 break; 2283 2284 update_cfs_load(cfs_rq, 0); 2285 update_cfs_shares(cfs_rq); 2286 } 2287 2288 if (!se) 2289 dec_nr_running(rq); 2290 hrtick_update(rq); 2291 } 2292 2293 #ifdef CONFIG_SMP 2294 /* Used instead of source_load when we know the type == 0 */ 2295 static unsigned long weighted_cpuload(const int cpu) 2296 { 2297 return cpu_rq(cpu)->load.weight; 2298 } 2299 2300 /* 2301 * Return a low guess at the load of a migration-source cpu weighted 2302 * according to the scheduling class and "nice" value. 2303 * 2304 * We want to under-estimate the load of migration sources, to 2305 * balance conservatively. 2306 */ 2307 static unsigned long source_load(int cpu, int type) 2308 { 2309 struct rq *rq = cpu_rq(cpu); 2310 unsigned long total = weighted_cpuload(cpu); 2311 2312 if (type == 0 || !sched_feat(LB_BIAS)) 2313 return total; 2314 2315 return min(rq->cpu_load[type-1], total); 2316 } 2317 2318 /* 2319 * Return a high guess at the load of a migration-target cpu weighted 2320 * according to the scheduling class and "nice" value. 2321 */ 2322 static unsigned long target_load(int cpu, int type) 2323 { 2324 struct rq *rq = cpu_rq(cpu); 2325 unsigned long total = weighted_cpuload(cpu); 2326 2327 if (type == 0 || !sched_feat(LB_BIAS)) 2328 return total; 2329 2330 return max(rq->cpu_load[type-1], total); 2331 } 2332 2333 static unsigned long power_of(int cpu) 2334 { 2335 return cpu_rq(cpu)->cpu_power; 2336 } 2337 2338 static unsigned long cpu_avg_load_per_task(int cpu) 2339 { 2340 struct rq *rq = cpu_rq(cpu); 2341 unsigned long nr_running = ACCESS_ONCE(rq->nr_running); 2342 2343 if (nr_running) 2344 return rq->load.weight / nr_running; 2345 2346 return 0; 2347 } 2348 2349 2350 static void task_waking_fair(struct task_struct *p) 2351 { 2352 struct sched_entity *se = &p->se; 2353 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2354 u64 min_vruntime; 2355 2356 #ifndef CONFIG_64BIT 2357 u64 min_vruntime_copy; 2358 2359 do { 2360 min_vruntime_copy = cfs_rq->min_vruntime_copy; 2361 smp_rmb(); 2362 min_vruntime = cfs_rq->min_vruntime; 2363 } while (min_vruntime != min_vruntime_copy); 2364 #else 2365 min_vruntime = cfs_rq->min_vruntime; 2366 #endif 2367 2368 se->vruntime -= min_vruntime; 2369 } 2370 2371 #ifdef CONFIG_FAIR_GROUP_SCHED 2372 /* 2373 * effective_load() calculates the load change as seen from the root_task_group 2374 * 2375 * Adding load to a group doesn't make a group heavier, but can cause movement 2376 * of group shares between cpus. Assuming the shares were perfectly aligned one 2377 * can calculate the shift in shares. 2378 * 2379 * Calculate the effective load difference if @wl is added (subtracted) to @tg 2380 * on this @cpu and results in a total addition (subtraction) of @wg to the 2381 * total group weight. 2382 * 2383 * Given a runqueue weight distribution (rw_i) we can compute a shares 2384 * distribution (s_i) using: 2385 * 2386 * s_i = rw_i / \Sum rw_j (1) 2387 * 2388 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 2389 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 2390 * shares distribution (s_i): 2391 * 2392 * rw_i = { 2, 4, 1, 0 } 2393 * s_i = { 2/7, 4/7, 1/7, 0 } 2394 * 2395 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 2396 * task used to run on and the CPU the waker is running on), we need to 2397 * compute the effect of waking a task on either CPU and, in case of a sync 2398 * wakeup, compute the effect of the current task going to sleep. 2399 * 2400 * So for a change of @wl to the local @cpu with an overall group weight change 2401 * of @wl we can compute the new shares distribution (s'_i) using: 2402 * 2403 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 2404 * 2405 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 2406 * differences in waking a task to CPU 0. The additional task changes the 2407 * weight and shares distributions like: 2408 * 2409 * rw'_i = { 3, 4, 1, 0 } 2410 * s'_i = { 3/8, 4/8, 1/8, 0 } 2411 * 2412 * We can then compute the difference in effective weight by using: 2413 * 2414 * dw_i = S * (s'_i - s_i) (3) 2415 * 2416 * Where 'S' is the group weight as seen by its parent. 2417 * 2418 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 2419 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 2420 * 4/7) times the weight of the group. 2421 */ 2422 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 2423 { 2424 struct sched_entity *se = tg->se[cpu]; 2425 2426 if (!tg->parent) /* the trivial, non-cgroup case */ 2427 return wl; 2428 2429 for_each_sched_entity(se) { 2430 long w, W; 2431 2432 tg = se->my_q->tg; 2433 2434 /* 2435 * W = @wg + \Sum rw_j 2436 */ 2437 W = wg + calc_tg_weight(tg, se->my_q); 2438 2439 /* 2440 * w = rw_i + @wl 2441 */ 2442 w = se->my_q->load.weight + wl; 2443 2444 /* 2445 * wl = S * s'_i; see (2) 2446 */ 2447 if (W > 0 && w < W) 2448 wl = (w * tg->shares) / W; 2449 else 2450 wl = tg->shares; 2451 2452 /* 2453 * Per the above, wl is the new se->load.weight value; since 2454 * those are clipped to [MIN_SHARES, ...) do so now. See 2455 * calc_cfs_shares(). 2456 */ 2457 if (wl < MIN_SHARES) 2458 wl = MIN_SHARES; 2459 2460 /* 2461 * wl = dw_i = S * (s'_i - s_i); see (3) 2462 */ 2463 wl -= se->load.weight; 2464 2465 /* 2466 * Recursively apply this logic to all parent groups to compute 2467 * the final effective load change on the root group. Since 2468 * only the @tg group gets extra weight, all parent groups can 2469 * only redistribute existing shares. @wl is the shift in shares 2470 * resulting from this level per the above. 2471 */ 2472 wg = 0; 2473 } 2474 2475 return wl; 2476 } 2477 #else 2478 2479 static inline unsigned long effective_load(struct task_group *tg, int cpu, 2480 unsigned long wl, unsigned long wg) 2481 { 2482 return wl; 2483 } 2484 2485 #endif 2486 2487 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 2488 { 2489 s64 this_load, load; 2490 int idx, this_cpu, prev_cpu; 2491 unsigned long tl_per_task; 2492 struct task_group *tg; 2493 unsigned long weight; 2494 int balanced; 2495 2496 idx = sd->wake_idx; 2497 this_cpu = smp_processor_id(); 2498 prev_cpu = task_cpu(p); 2499 load = source_load(prev_cpu, idx); 2500 this_load = target_load(this_cpu, idx); 2501 2502 /* 2503 * If sync wakeup then subtract the (maximum possible) 2504 * effect of the currently running task from the load 2505 * of the current CPU: 2506 */ 2507 if (sync) { 2508 tg = task_group(current); 2509 weight = current->se.load.weight; 2510 2511 this_load += effective_load(tg, this_cpu, -weight, -weight); 2512 load += effective_load(tg, prev_cpu, 0, -weight); 2513 } 2514 2515 tg = task_group(p); 2516 weight = p->se.load.weight; 2517 2518 /* 2519 * In low-load situations, where prev_cpu is idle and this_cpu is idle 2520 * due to the sync cause above having dropped this_load to 0, we'll 2521 * always have an imbalance, but there's really nothing you can do 2522 * about that, so that's good too. 2523 * 2524 * Otherwise check if either cpus are near enough in load to allow this 2525 * task to be woken on this_cpu. 2526 */ 2527 if (this_load > 0) { 2528 s64 this_eff_load, prev_eff_load; 2529 2530 this_eff_load = 100; 2531 this_eff_load *= power_of(prev_cpu); 2532 this_eff_load *= this_load + 2533 effective_load(tg, this_cpu, weight, weight); 2534 2535 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 2536 prev_eff_load *= power_of(this_cpu); 2537 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 2538 2539 balanced = this_eff_load <= prev_eff_load; 2540 } else 2541 balanced = true; 2542 2543 /* 2544 * If the currently running task will sleep within 2545 * a reasonable amount of time then attract this newly 2546 * woken task: 2547 */ 2548 if (sync && balanced) 2549 return 1; 2550 2551 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 2552 tl_per_task = cpu_avg_load_per_task(this_cpu); 2553 2554 if (balanced || 2555 (this_load <= load && 2556 this_load + target_load(prev_cpu, idx) <= tl_per_task)) { 2557 /* 2558 * This domain has SD_WAKE_AFFINE and 2559 * p is cache cold in this domain, and 2560 * there is no bad imbalance. 2561 */ 2562 schedstat_inc(sd, ttwu_move_affine); 2563 schedstat_inc(p, se.statistics.nr_wakeups_affine); 2564 2565 return 1; 2566 } 2567 return 0; 2568 } 2569 2570 /* 2571 * find_idlest_group finds and returns the least busy CPU group within the 2572 * domain. 2573 */ 2574 static struct sched_group * 2575 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 2576 int this_cpu, int load_idx) 2577 { 2578 struct sched_group *idlest = NULL, *group = sd->groups; 2579 unsigned long min_load = ULONG_MAX, this_load = 0; 2580 int imbalance = 100 + (sd->imbalance_pct-100)/2; 2581 2582 do { 2583 unsigned long load, avg_load; 2584 int local_group; 2585 int i; 2586 2587 /* Skip over this group if it has no CPUs allowed */ 2588 if (!cpumask_intersects(sched_group_cpus(group), 2589 tsk_cpus_allowed(p))) 2590 continue; 2591 2592 local_group = cpumask_test_cpu(this_cpu, 2593 sched_group_cpus(group)); 2594 2595 /* Tally up the load of all CPUs in the group */ 2596 avg_load = 0; 2597 2598 for_each_cpu(i, sched_group_cpus(group)) { 2599 /* Bias balancing toward cpus of our domain */ 2600 if (local_group) 2601 load = source_load(i, load_idx); 2602 else 2603 load = target_load(i, load_idx); 2604 2605 avg_load += load; 2606 } 2607 2608 /* Adjust by relative CPU power of the group */ 2609 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; 2610 2611 if (local_group) { 2612 this_load = avg_load; 2613 } else if (avg_load < min_load) { 2614 min_load = avg_load; 2615 idlest = group; 2616 } 2617 } while (group = group->next, group != sd->groups); 2618 2619 if (!idlest || 100*this_load < imbalance*min_load) 2620 return NULL; 2621 return idlest; 2622 } 2623 2624 /* 2625 * find_idlest_cpu - find the idlest cpu among the cpus in group. 2626 */ 2627 static int 2628 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 2629 { 2630 unsigned long load, min_load = ULONG_MAX; 2631 int idlest = -1; 2632 int i; 2633 2634 /* Traverse only the allowed CPUs */ 2635 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 2636 load = weighted_cpuload(i); 2637 2638 if (load < min_load || (load == min_load && i == this_cpu)) { 2639 min_load = load; 2640 idlest = i; 2641 } 2642 } 2643 2644 return idlest; 2645 } 2646 2647 /* 2648 * Try and locate an idle CPU in the sched_domain. 2649 */ 2650 static int select_idle_sibling(struct task_struct *p, int target) 2651 { 2652 int cpu = smp_processor_id(); 2653 int prev_cpu = task_cpu(p); 2654 struct sched_domain *sd; 2655 struct sched_group *sg; 2656 int i; 2657 2658 /* 2659 * If the task is going to be woken-up on this cpu and if it is 2660 * already idle, then it is the right target. 2661 */ 2662 if (target == cpu && idle_cpu(cpu)) 2663 return cpu; 2664 2665 /* 2666 * If the task is going to be woken-up on the cpu where it previously 2667 * ran and if it is currently idle, then it the right target. 2668 */ 2669 if (target == prev_cpu && idle_cpu(prev_cpu)) 2670 return prev_cpu; 2671 2672 /* 2673 * Otherwise, iterate the domains and find an elegible idle cpu. 2674 */ 2675 rcu_read_lock(); 2676 2677 sd = rcu_dereference(per_cpu(sd_llc, target)); 2678 for_each_lower_domain(sd) { 2679 sg = sd->groups; 2680 do { 2681 if (!cpumask_intersects(sched_group_cpus(sg), 2682 tsk_cpus_allowed(p))) 2683 goto next; 2684 2685 for_each_cpu(i, sched_group_cpus(sg)) { 2686 if (!idle_cpu(i)) 2687 goto next; 2688 } 2689 2690 target = cpumask_first_and(sched_group_cpus(sg), 2691 tsk_cpus_allowed(p)); 2692 goto done; 2693 next: 2694 sg = sg->next; 2695 } while (sg != sd->groups); 2696 } 2697 done: 2698 rcu_read_unlock(); 2699 2700 return target; 2701 } 2702 2703 /* 2704 * sched_balance_self: balance the current task (running on cpu) in domains 2705 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and 2706 * SD_BALANCE_EXEC. 2707 * 2708 * Balance, ie. select the least loaded group. 2709 * 2710 * Returns the target CPU number, or the same CPU if no balancing is needed. 2711 * 2712 * preempt must be disabled. 2713 */ 2714 static int 2715 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) 2716 { 2717 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 2718 int cpu = smp_processor_id(); 2719 int prev_cpu = task_cpu(p); 2720 int new_cpu = cpu; 2721 int want_affine = 0; 2722 int want_sd = 1; 2723 int sync = wake_flags & WF_SYNC; 2724 2725 if (p->rt.nr_cpus_allowed == 1) 2726 return prev_cpu; 2727 2728 if (sd_flag & SD_BALANCE_WAKE) { 2729 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 2730 want_affine = 1; 2731 new_cpu = prev_cpu; 2732 } 2733 2734 rcu_read_lock(); 2735 for_each_domain(cpu, tmp) { 2736 if (!(tmp->flags & SD_LOAD_BALANCE)) 2737 continue; 2738 2739 /* 2740 * If power savings logic is enabled for a domain, see if we 2741 * are not overloaded, if so, don't balance wider. 2742 */ 2743 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { 2744 unsigned long power = 0; 2745 unsigned long nr_running = 0; 2746 unsigned long capacity; 2747 int i; 2748 2749 for_each_cpu(i, sched_domain_span(tmp)) { 2750 power += power_of(i); 2751 nr_running += cpu_rq(i)->cfs.nr_running; 2752 } 2753 2754 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); 2755 2756 if (tmp->flags & SD_POWERSAVINGS_BALANCE) 2757 nr_running /= 2; 2758 2759 if (nr_running < capacity) 2760 want_sd = 0; 2761 } 2762 2763 /* 2764 * If both cpu and prev_cpu are part of this domain, 2765 * cpu is a valid SD_WAKE_AFFINE target. 2766 */ 2767 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 2768 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 2769 affine_sd = tmp; 2770 want_affine = 0; 2771 } 2772 2773 if (!want_sd && !want_affine) 2774 break; 2775 2776 if (!(tmp->flags & sd_flag)) 2777 continue; 2778 2779 if (want_sd) 2780 sd = tmp; 2781 } 2782 2783 if (affine_sd) { 2784 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) 2785 prev_cpu = cpu; 2786 2787 new_cpu = select_idle_sibling(p, prev_cpu); 2788 goto unlock; 2789 } 2790 2791 while (sd) { 2792 int load_idx = sd->forkexec_idx; 2793 struct sched_group *group; 2794 int weight; 2795 2796 if (!(sd->flags & sd_flag)) { 2797 sd = sd->child; 2798 continue; 2799 } 2800 2801 if (sd_flag & SD_BALANCE_WAKE) 2802 load_idx = sd->wake_idx; 2803 2804 group = find_idlest_group(sd, p, cpu, load_idx); 2805 if (!group) { 2806 sd = sd->child; 2807 continue; 2808 } 2809 2810 new_cpu = find_idlest_cpu(group, p, cpu); 2811 if (new_cpu == -1 || new_cpu == cpu) { 2812 /* Now try balancing at a lower domain level of cpu */ 2813 sd = sd->child; 2814 continue; 2815 } 2816 2817 /* Now try balancing at a lower domain level of new_cpu */ 2818 cpu = new_cpu; 2819 weight = sd->span_weight; 2820 sd = NULL; 2821 for_each_domain(cpu, tmp) { 2822 if (weight <= tmp->span_weight) 2823 break; 2824 if (tmp->flags & sd_flag) 2825 sd = tmp; 2826 } 2827 /* while loop will break here if sd == NULL */ 2828 } 2829 unlock: 2830 rcu_read_unlock(); 2831 2832 return new_cpu; 2833 } 2834 #endif /* CONFIG_SMP */ 2835 2836 static unsigned long 2837 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 2838 { 2839 unsigned long gran = sysctl_sched_wakeup_granularity; 2840 2841 /* 2842 * Since its curr running now, convert the gran from real-time 2843 * to virtual-time in his units. 2844 * 2845 * By using 'se' instead of 'curr' we penalize light tasks, so 2846 * they get preempted easier. That is, if 'se' < 'curr' then 2847 * the resulting gran will be larger, therefore penalizing the 2848 * lighter, if otoh 'se' > 'curr' then the resulting gran will 2849 * be smaller, again penalizing the lighter task. 2850 * 2851 * This is especially important for buddies when the leftmost 2852 * task is higher priority than the buddy. 2853 */ 2854 return calc_delta_fair(gran, se); 2855 } 2856 2857 /* 2858 * Should 'se' preempt 'curr'. 2859 * 2860 * |s1 2861 * |s2 2862 * |s3 2863 * g 2864 * |<--->|c 2865 * 2866 * w(c, s1) = -1 2867 * w(c, s2) = 0 2868 * w(c, s3) = 1 2869 * 2870 */ 2871 static int 2872 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 2873 { 2874 s64 gran, vdiff = curr->vruntime - se->vruntime; 2875 2876 if (vdiff <= 0) 2877 return -1; 2878 2879 gran = wakeup_gran(curr, se); 2880 if (vdiff > gran) 2881 return 1; 2882 2883 return 0; 2884 } 2885 2886 static void set_last_buddy(struct sched_entity *se) 2887 { 2888 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 2889 return; 2890 2891 for_each_sched_entity(se) 2892 cfs_rq_of(se)->last = se; 2893 } 2894 2895 static void set_next_buddy(struct sched_entity *se) 2896 { 2897 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 2898 return; 2899 2900 for_each_sched_entity(se) 2901 cfs_rq_of(se)->next = se; 2902 } 2903 2904 static void set_skip_buddy(struct sched_entity *se) 2905 { 2906 for_each_sched_entity(se) 2907 cfs_rq_of(se)->skip = se; 2908 } 2909 2910 /* 2911 * Preempt the current task with a newly woken task if needed: 2912 */ 2913 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 2914 { 2915 struct task_struct *curr = rq->curr; 2916 struct sched_entity *se = &curr->se, *pse = &p->se; 2917 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 2918 int scale = cfs_rq->nr_running >= sched_nr_latency; 2919 int next_buddy_marked = 0; 2920 2921 if (unlikely(se == pse)) 2922 return; 2923 2924 /* 2925 * This is possible from callers such as pull_task(), in which we 2926 * unconditionally check_prempt_curr() after an enqueue (which may have 2927 * lead to a throttle). This both saves work and prevents false 2928 * next-buddy nomination below. 2929 */ 2930 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 2931 return; 2932 2933 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 2934 set_next_buddy(pse); 2935 next_buddy_marked = 1; 2936 } 2937 2938 /* 2939 * We can come here with TIF_NEED_RESCHED already set from new task 2940 * wake up path. 2941 * 2942 * Note: this also catches the edge-case of curr being in a throttled 2943 * group (e.g. via set_curr_task), since update_curr() (in the 2944 * enqueue of curr) will have resulted in resched being set. This 2945 * prevents us from potentially nominating it as a false LAST_BUDDY 2946 * below. 2947 */ 2948 if (test_tsk_need_resched(curr)) 2949 return; 2950 2951 /* Idle tasks are by definition preempted by non-idle tasks. */ 2952 if (unlikely(curr->policy == SCHED_IDLE) && 2953 likely(p->policy != SCHED_IDLE)) 2954 goto preempt; 2955 2956 /* 2957 * Batch and idle tasks do not preempt non-idle tasks (their preemption 2958 * is driven by the tick): 2959 */ 2960 if (unlikely(p->policy != SCHED_NORMAL)) 2961 return; 2962 2963 find_matching_se(&se, &pse); 2964 update_curr(cfs_rq_of(se)); 2965 BUG_ON(!pse); 2966 if (wakeup_preempt_entity(se, pse) == 1) { 2967 /* 2968 * Bias pick_next to pick the sched entity that is 2969 * triggering this preemption. 2970 */ 2971 if (!next_buddy_marked) 2972 set_next_buddy(pse); 2973 goto preempt; 2974 } 2975 2976 return; 2977 2978 preempt: 2979 resched_task(curr); 2980 /* 2981 * Only set the backward buddy when the current task is still 2982 * on the rq. This can happen when a wakeup gets interleaved 2983 * with schedule on the ->pre_schedule() or idle_balance() 2984 * point, either of which can * drop the rq lock. 2985 * 2986 * Also, during early boot the idle thread is in the fair class, 2987 * for obvious reasons its a bad idea to schedule back to it. 2988 */ 2989 if (unlikely(!se->on_rq || curr == rq->idle)) 2990 return; 2991 2992 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 2993 set_last_buddy(se); 2994 } 2995 2996 static struct task_struct *pick_next_task_fair(struct rq *rq) 2997 { 2998 struct task_struct *p; 2999 struct cfs_rq *cfs_rq = &rq->cfs; 3000 struct sched_entity *se; 3001 3002 if (!cfs_rq->nr_running) 3003 return NULL; 3004 3005 do { 3006 se = pick_next_entity(cfs_rq); 3007 set_next_entity(cfs_rq, se); 3008 cfs_rq = group_cfs_rq(se); 3009 } while (cfs_rq); 3010 3011 p = task_of(se); 3012 if (hrtick_enabled(rq)) 3013 hrtick_start_fair(rq, p); 3014 3015 return p; 3016 } 3017 3018 /* 3019 * Account for a descheduled task: 3020 */ 3021 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 3022 { 3023 struct sched_entity *se = &prev->se; 3024 struct cfs_rq *cfs_rq; 3025 3026 for_each_sched_entity(se) { 3027 cfs_rq = cfs_rq_of(se); 3028 put_prev_entity(cfs_rq, se); 3029 } 3030 } 3031 3032 /* 3033 * sched_yield() is very simple 3034 * 3035 * The magic of dealing with the ->skip buddy is in pick_next_entity. 3036 */ 3037 static void yield_task_fair(struct rq *rq) 3038 { 3039 struct task_struct *curr = rq->curr; 3040 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 3041 struct sched_entity *se = &curr->se; 3042 3043 /* 3044 * Are we the only task in the tree? 3045 */ 3046 if (unlikely(rq->nr_running == 1)) 3047 return; 3048 3049 clear_buddies(cfs_rq, se); 3050 3051 if (curr->policy != SCHED_BATCH) { 3052 update_rq_clock(rq); 3053 /* 3054 * Update run-time statistics of the 'current'. 3055 */ 3056 update_curr(cfs_rq); 3057 /* 3058 * Tell update_rq_clock() that we've just updated, 3059 * so we don't do microscopic update in schedule() 3060 * and double the fastpath cost. 3061 */ 3062 rq->skip_clock_update = 1; 3063 } 3064 3065 set_skip_buddy(se); 3066 } 3067 3068 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 3069 { 3070 struct sched_entity *se = &p->se; 3071 3072 /* throttled hierarchies are not runnable */ 3073 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 3074 return false; 3075 3076 /* Tell the scheduler that we'd really like pse to run next. */ 3077 set_next_buddy(se); 3078 3079 yield_task_fair(rq); 3080 3081 return true; 3082 } 3083 3084 #ifdef CONFIG_SMP 3085 /************************************************** 3086 * Fair scheduling class load-balancing methods: 3087 */ 3088 3089 /* 3090 * pull_task - move a task from a remote runqueue to the local runqueue. 3091 * Both runqueues must be locked. 3092 */ 3093 static void pull_task(struct rq *src_rq, struct task_struct *p, 3094 struct rq *this_rq, int this_cpu) 3095 { 3096 deactivate_task(src_rq, p, 0); 3097 set_task_cpu(p, this_cpu); 3098 activate_task(this_rq, p, 0); 3099 check_preempt_curr(this_rq, p, 0); 3100 } 3101 3102 /* 3103 * Is this task likely cache-hot: 3104 */ 3105 static int 3106 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) 3107 { 3108 s64 delta; 3109 3110 if (p->sched_class != &fair_sched_class) 3111 return 0; 3112 3113 if (unlikely(p->policy == SCHED_IDLE)) 3114 return 0; 3115 3116 /* 3117 * Buddy candidates are cache hot: 3118 */ 3119 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && 3120 (&p->se == cfs_rq_of(&p->se)->next || 3121 &p->se == cfs_rq_of(&p->se)->last)) 3122 return 1; 3123 3124 if (sysctl_sched_migration_cost == -1) 3125 return 1; 3126 if (sysctl_sched_migration_cost == 0) 3127 return 0; 3128 3129 delta = now - p->se.exec_start; 3130 3131 return delta < (s64)sysctl_sched_migration_cost; 3132 } 3133 3134 #define LBF_ALL_PINNED 0x01 3135 #define LBF_NEED_BREAK 0x02 /* clears into HAD_BREAK */ 3136 #define LBF_HAD_BREAK 0x04 3137 #define LBF_HAD_BREAKS 0x0C /* count HAD_BREAKs overflows into ABORT */ 3138 #define LBF_ABORT 0x10 3139 3140 /* 3141 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 3142 */ 3143 static 3144 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, 3145 struct sched_domain *sd, enum cpu_idle_type idle, 3146 int *lb_flags) 3147 { 3148 int tsk_cache_hot = 0; 3149 /* 3150 * We do not migrate tasks that are: 3151 * 1) running (obviously), or 3152 * 2) cannot be migrated to this CPU due to cpus_allowed, or 3153 * 3) are cache-hot on their current CPU. 3154 */ 3155 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) { 3156 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 3157 return 0; 3158 } 3159 *lb_flags &= ~LBF_ALL_PINNED; 3160 3161 if (task_running(rq, p)) { 3162 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 3163 return 0; 3164 } 3165 3166 /* 3167 * Aggressive migration if: 3168 * 1) task is cache cold, or 3169 * 2) too many balance attempts have failed. 3170 */ 3171 3172 tsk_cache_hot = task_hot(p, rq->clock_task, sd); 3173 if (!tsk_cache_hot || 3174 sd->nr_balance_failed > sd->cache_nice_tries) { 3175 #ifdef CONFIG_SCHEDSTATS 3176 if (tsk_cache_hot) { 3177 schedstat_inc(sd, lb_hot_gained[idle]); 3178 schedstat_inc(p, se.statistics.nr_forced_migrations); 3179 } 3180 #endif 3181 return 1; 3182 } 3183 3184 if (tsk_cache_hot) { 3185 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 3186 return 0; 3187 } 3188 return 1; 3189 } 3190 3191 /* 3192 * move_one_task tries to move exactly one task from busiest to this_rq, as 3193 * part of active balancing operations within "domain". 3194 * Returns 1 if successful and 0 otherwise. 3195 * 3196 * Called with both runqueues locked. 3197 */ 3198 static int 3199 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, 3200 struct sched_domain *sd, enum cpu_idle_type idle) 3201 { 3202 struct task_struct *p, *n; 3203 struct cfs_rq *cfs_rq; 3204 int pinned = 0; 3205 3206 for_each_leaf_cfs_rq(busiest, cfs_rq) { 3207 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { 3208 if (throttled_lb_pair(task_group(p), 3209 busiest->cpu, this_cpu)) 3210 break; 3211 3212 if (!can_migrate_task(p, busiest, this_cpu, 3213 sd, idle, &pinned)) 3214 continue; 3215 3216 pull_task(busiest, p, this_rq, this_cpu); 3217 /* 3218 * Right now, this is only the second place pull_task() 3219 * is called, so we can safely collect pull_task() 3220 * stats here rather than inside pull_task(). 3221 */ 3222 schedstat_inc(sd, lb_gained[idle]); 3223 return 1; 3224 } 3225 } 3226 3227 return 0; 3228 } 3229 3230 static unsigned long 3231 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, 3232 unsigned long max_load_move, struct sched_domain *sd, 3233 enum cpu_idle_type idle, int *lb_flags, 3234 struct cfs_rq *busiest_cfs_rq) 3235 { 3236 int loops = 0, pulled = 0; 3237 long rem_load_move = max_load_move; 3238 struct task_struct *p, *n; 3239 3240 if (max_load_move == 0) 3241 goto out; 3242 3243 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { 3244 if (loops++ > sysctl_sched_nr_migrate) { 3245 *lb_flags |= LBF_NEED_BREAK; 3246 break; 3247 } 3248 3249 if ((p->se.load.weight >> 1) > rem_load_move || 3250 !can_migrate_task(p, busiest, this_cpu, sd, idle, 3251 lb_flags)) 3252 continue; 3253 3254 pull_task(busiest, p, this_rq, this_cpu); 3255 pulled++; 3256 rem_load_move -= p->se.load.weight; 3257 3258 #ifdef CONFIG_PREEMPT 3259 /* 3260 * NEWIDLE balancing is a source of latency, so preemptible 3261 * kernels will stop after the first task is pulled to minimize 3262 * the critical section. 3263 */ 3264 if (idle == CPU_NEWLY_IDLE) { 3265 *lb_flags |= LBF_ABORT; 3266 break; 3267 } 3268 #endif 3269 3270 /* 3271 * We only want to steal up to the prescribed amount of 3272 * weighted load. 3273 */ 3274 if (rem_load_move <= 0) 3275 break; 3276 } 3277 out: 3278 /* 3279 * Right now, this is one of only two places pull_task() is called, 3280 * so we can safely collect pull_task() stats here rather than 3281 * inside pull_task(). 3282 */ 3283 schedstat_add(sd, lb_gained[idle], pulled); 3284 3285 return max_load_move - rem_load_move; 3286 } 3287 3288 #ifdef CONFIG_FAIR_GROUP_SCHED 3289 /* 3290 * update tg->load_weight by folding this cpu's load_avg 3291 */ 3292 static int update_shares_cpu(struct task_group *tg, int cpu) 3293 { 3294 struct cfs_rq *cfs_rq; 3295 unsigned long flags; 3296 struct rq *rq; 3297 3298 if (!tg->se[cpu]) 3299 return 0; 3300 3301 rq = cpu_rq(cpu); 3302 cfs_rq = tg->cfs_rq[cpu]; 3303 3304 raw_spin_lock_irqsave(&rq->lock, flags); 3305 3306 update_rq_clock(rq); 3307 update_cfs_load(cfs_rq, 1); 3308 3309 /* 3310 * We need to update shares after updating tg->load_weight in 3311 * order to adjust the weight of groups with long running tasks. 3312 */ 3313 update_cfs_shares(cfs_rq); 3314 3315 raw_spin_unlock_irqrestore(&rq->lock, flags); 3316 3317 return 0; 3318 } 3319 3320 static void update_shares(int cpu) 3321 { 3322 struct cfs_rq *cfs_rq; 3323 struct rq *rq = cpu_rq(cpu); 3324 3325 rcu_read_lock(); 3326 /* 3327 * Iterates the task_group tree in a bottom up fashion, see 3328 * list_add_leaf_cfs_rq() for details. 3329 */ 3330 for_each_leaf_cfs_rq(rq, cfs_rq) { 3331 /* throttled entities do not contribute to load */ 3332 if (throttled_hierarchy(cfs_rq)) 3333 continue; 3334 3335 update_shares_cpu(cfs_rq->tg, cpu); 3336 } 3337 rcu_read_unlock(); 3338 } 3339 3340 /* 3341 * Compute the cpu's hierarchical load factor for each task group. 3342 * This needs to be done in a top-down fashion because the load of a child 3343 * group is a fraction of its parents load. 3344 */ 3345 static int tg_load_down(struct task_group *tg, void *data) 3346 { 3347 unsigned long load; 3348 long cpu = (long)data; 3349 3350 if (!tg->parent) { 3351 load = cpu_rq(cpu)->load.weight; 3352 } else { 3353 load = tg->parent->cfs_rq[cpu]->h_load; 3354 load *= tg->se[cpu]->load.weight; 3355 load /= tg->parent->cfs_rq[cpu]->load.weight + 1; 3356 } 3357 3358 tg->cfs_rq[cpu]->h_load = load; 3359 3360 return 0; 3361 } 3362 3363 static void update_h_load(long cpu) 3364 { 3365 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); 3366 } 3367 3368 static unsigned long 3369 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 3370 unsigned long max_load_move, 3371 struct sched_domain *sd, enum cpu_idle_type idle, 3372 int *lb_flags) 3373 { 3374 long rem_load_move = max_load_move; 3375 struct cfs_rq *busiest_cfs_rq; 3376 3377 rcu_read_lock(); 3378 update_h_load(cpu_of(busiest)); 3379 3380 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) { 3381 unsigned long busiest_h_load = busiest_cfs_rq->h_load; 3382 unsigned long busiest_weight = busiest_cfs_rq->load.weight; 3383 u64 rem_load, moved_load; 3384 3385 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) 3386 break; 3387 3388 /* 3389 * empty group or part of a throttled hierarchy 3390 */ 3391 if (!busiest_cfs_rq->task_weight || 3392 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu)) 3393 continue; 3394 3395 rem_load = (u64)rem_load_move * busiest_weight; 3396 rem_load = div_u64(rem_load, busiest_h_load + 1); 3397 3398 moved_load = balance_tasks(this_rq, this_cpu, busiest, 3399 rem_load, sd, idle, lb_flags, 3400 busiest_cfs_rq); 3401 3402 if (!moved_load) 3403 continue; 3404 3405 moved_load *= busiest_h_load; 3406 moved_load = div_u64(moved_load, busiest_weight + 1); 3407 3408 rem_load_move -= moved_load; 3409 if (rem_load_move < 0) 3410 break; 3411 } 3412 rcu_read_unlock(); 3413 3414 return max_load_move - rem_load_move; 3415 } 3416 #else 3417 static inline void update_shares(int cpu) 3418 { 3419 } 3420 3421 static unsigned long 3422 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, 3423 unsigned long max_load_move, 3424 struct sched_domain *sd, enum cpu_idle_type idle, 3425 int *lb_flags) 3426 { 3427 return balance_tasks(this_rq, this_cpu, busiest, 3428 max_load_move, sd, idle, lb_flags, 3429 &busiest->cfs); 3430 } 3431 #endif 3432 3433 /* 3434 * move_tasks tries to move up to max_load_move weighted load from busiest to 3435 * this_rq, as part of a balancing operation within domain "sd". 3436 * Returns 1 if successful and 0 otherwise. 3437 * 3438 * Called with both runqueues locked. 3439 */ 3440 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, 3441 unsigned long max_load_move, 3442 struct sched_domain *sd, enum cpu_idle_type idle, 3443 int *lb_flags) 3444 { 3445 unsigned long total_load_moved = 0, load_moved; 3446 3447 do { 3448 load_moved = load_balance_fair(this_rq, this_cpu, busiest, 3449 max_load_move - total_load_moved, 3450 sd, idle, lb_flags); 3451 3452 total_load_moved += load_moved; 3453 3454 if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) 3455 break; 3456 3457 #ifdef CONFIG_PREEMPT 3458 /* 3459 * NEWIDLE balancing is a source of latency, so preemptible 3460 * kernels will stop after the first task is pulled to minimize 3461 * the critical section. 3462 */ 3463 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) { 3464 *lb_flags |= LBF_ABORT; 3465 break; 3466 } 3467 #endif 3468 } while (load_moved && max_load_move > total_load_moved); 3469 3470 return total_load_moved > 0; 3471 } 3472 3473 /********** Helpers for find_busiest_group ************************/ 3474 /* 3475 * sd_lb_stats - Structure to store the statistics of a sched_domain 3476 * during load balancing. 3477 */ 3478 struct sd_lb_stats { 3479 struct sched_group *busiest; /* Busiest group in this sd */ 3480 struct sched_group *this; /* Local group in this sd */ 3481 unsigned long total_load; /* Total load of all groups in sd */ 3482 unsigned long total_pwr; /* Total power of all groups in sd */ 3483 unsigned long avg_load; /* Average load across all groups in sd */ 3484 3485 /** Statistics of this group */ 3486 unsigned long this_load; 3487 unsigned long this_load_per_task; 3488 unsigned long this_nr_running; 3489 unsigned long this_has_capacity; 3490 unsigned int this_idle_cpus; 3491 3492 /* Statistics of the busiest group */ 3493 unsigned int busiest_idle_cpus; 3494 unsigned long max_load; 3495 unsigned long busiest_load_per_task; 3496 unsigned long busiest_nr_running; 3497 unsigned long busiest_group_capacity; 3498 unsigned long busiest_has_capacity; 3499 unsigned int busiest_group_weight; 3500 3501 int group_imb; /* Is there imbalance in this sd */ 3502 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 3503 int power_savings_balance; /* Is powersave balance needed for this sd */ 3504 struct sched_group *group_min; /* Least loaded group in sd */ 3505 struct sched_group *group_leader; /* Group which relieves group_min */ 3506 unsigned long min_load_per_task; /* load_per_task in group_min */ 3507 unsigned long leader_nr_running; /* Nr running of group_leader */ 3508 unsigned long min_nr_running; /* Nr running of group_min */ 3509 #endif 3510 }; 3511 3512 /* 3513 * sg_lb_stats - stats of a sched_group required for load_balancing 3514 */ 3515 struct sg_lb_stats { 3516 unsigned long avg_load; /*Avg load across the CPUs of the group */ 3517 unsigned long group_load; /* Total load over the CPUs of the group */ 3518 unsigned long sum_nr_running; /* Nr tasks running in the group */ 3519 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 3520 unsigned long group_capacity; 3521 unsigned long idle_cpus; 3522 unsigned long group_weight; 3523 int group_imb; /* Is there an imbalance in the group ? */ 3524 int group_has_capacity; /* Is there extra capacity in the group? */ 3525 }; 3526 3527 /** 3528 * get_sd_load_idx - Obtain the load index for a given sched domain. 3529 * @sd: The sched_domain whose load_idx is to be obtained. 3530 * @idle: The Idle status of the CPU for whose sd load_icx is obtained. 3531 */ 3532 static inline int get_sd_load_idx(struct sched_domain *sd, 3533 enum cpu_idle_type idle) 3534 { 3535 int load_idx; 3536 3537 switch (idle) { 3538 case CPU_NOT_IDLE: 3539 load_idx = sd->busy_idx; 3540 break; 3541 3542 case CPU_NEWLY_IDLE: 3543 load_idx = sd->newidle_idx; 3544 break; 3545 default: 3546 load_idx = sd->idle_idx; 3547 break; 3548 } 3549 3550 return load_idx; 3551 } 3552 3553 3554 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 3555 /** 3556 * init_sd_power_savings_stats - Initialize power savings statistics for 3557 * the given sched_domain, during load balancing. 3558 * 3559 * @sd: Sched domain whose power-savings statistics are to be initialized. 3560 * @sds: Variable containing the statistics for sd. 3561 * @idle: Idle status of the CPU at which we're performing load-balancing. 3562 */ 3563 static inline void init_sd_power_savings_stats(struct sched_domain *sd, 3564 struct sd_lb_stats *sds, enum cpu_idle_type idle) 3565 { 3566 /* 3567 * Busy processors will not participate in power savings 3568 * balance. 3569 */ 3570 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) 3571 sds->power_savings_balance = 0; 3572 else { 3573 sds->power_savings_balance = 1; 3574 sds->min_nr_running = ULONG_MAX; 3575 sds->leader_nr_running = 0; 3576 } 3577 } 3578 3579 /** 3580 * update_sd_power_savings_stats - Update the power saving stats for a 3581 * sched_domain while performing load balancing. 3582 * 3583 * @group: sched_group belonging to the sched_domain under consideration. 3584 * @sds: Variable containing the statistics of the sched_domain 3585 * @local_group: Does group contain the CPU for which we're performing 3586 * load balancing ? 3587 * @sgs: Variable containing the statistics of the group. 3588 */ 3589 static inline void update_sd_power_savings_stats(struct sched_group *group, 3590 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) 3591 { 3592 3593 if (!sds->power_savings_balance) 3594 return; 3595 3596 /* 3597 * If the local group is idle or completely loaded 3598 * no need to do power savings balance at this domain 3599 */ 3600 if (local_group && (sds->this_nr_running >= sgs->group_capacity || 3601 !sds->this_nr_running)) 3602 sds->power_savings_balance = 0; 3603 3604 /* 3605 * If a group is already running at full capacity or idle, 3606 * don't include that group in power savings calculations 3607 */ 3608 if (!sds->power_savings_balance || 3609 sgs->sum_nr_running >= sgs->group_capacity || 3610 !sgs->sum_nr_running) 3611 return; 3612 3613 /* 3614 * Calculate the group which has the least non-idle load. 3615 * This is the group from where we need to pick up the load 3616 * for saving power 3617 */ 3618 if ((sgs->sum_nr_running < sds->min_nr_running) || 3619 (sgs->sum_nr_running == sds->min_nr_running && 3620 group_first_cpu(group) > group_first_cpu(sds->group_min))) { 3621 sds->group_min = group; 3622 sds->min_nr_running = sgs->sum_nr_running; 3623 sds->min_load_per_task = sgs->sum_weighted_load / 3624 sgs->sum_nr_running; 3625 } 3626 3627 /* 3628 * Calculate the group which is almost near its 3629 * capacity but still has some space to pick up some load 3630 * from other group and save more power 3631 */ 3632 if (sgs->sum_nr_running + 1 > sgs->group_capacity) 3633 return; 3634 3635 if (sgs->sum_nr_running > sds->leader_nr_running || 3636 (sgs->sum_nr_running == sds->leader_nr_running && 3637 group_first_cpu(group) < group_first_cpu(sds->group_leader))) { 3638 sds->group_leader = group; 3639 sds->leader_nr_running = sgs->sum_nr_running; 3640 } 3641 } 3642 3643 /** 3644 * check_power_save_busiest_group - see if there is potential for some power-savings balance 3645 * @sds: Variable containing the statistics of the sched_domain 3646 * under consideration. 3647 * @this_cpu: Cpu at which we're currently performing load-balancing. 3648 * @imbalance: Variable to store the imbalance. 3649 * 3650 * Description: 3651 * Check if we have potential to perform some power-savings balance. 3652 * If yes, set the busiest group to be the least loaded group in the 3653 * sched_domain, so that it's CPUs can be put to idle. 3654 * 3655 * Returns 1 if there is potential to perform power-savings balance. 3656 * Else returns 0. 3657 */ 3658 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, 3659 int this_cpu, unsigned long *imbalance) 3660 { 3661 if (!sds->power_savings_balance) 3662 return 0; 3663 3664 if (sds->this != sds->group_leader || 3665 sds->group_leader == sds->group_min) 3666 return 0; 3667 3668 *imbalance = sds->min_load_per_task; 3669 sds->busiest = sds->group_min; 3670 3671 return 1; 3672 3673 } 3674 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 3675 static inline void init_sd_power_savings_stats(struct sched_domain *sd, 3676 struct sd_lb_stats *sds, enum cpu_idle_type idle) 3677 { 3678 return; 3679 } 3680 3681 static inline void update_sd_power_savings_stats(struct sched_group *group, 3682 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) 3683 { 3684 return; 3685 } 3686 3687 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, 3688 int this_cpu, unsigned long *imbalance) 3689 { 3690 return 0; 3691 } 3692 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ 3693 3694 3695 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) 3696 { 3697 return SCHED_POWER_SCALE; 3698 } 3699 3700 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) 3701 { 3702 return default_scale_freq_power(sd, cpu); 3703 } 3704 3705 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) 3706 { 3707 unsigned long weight = sd->span_weight; 3708 unsigned long smt_gain = sd->smt_gain; 3709 3710 smt_gain /= weight; 3711 3712 return smt_gain; 3713 } 3714 3715 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) 3716 { 3717 return default_scale_smt_power(sd, cpu); 3718 } 3719 3720 unsigned long scale_rt_power(int cpu) 3721 { 3722 struct rq *rq = cpu_rq(cpu); 3723 u64 total, available; 3724 3725 total = sched_avg_period() + (rq->clock - rq->age_stamp); 3726 3727 if (unlikely(total < rq->rt_avg)) { 3728 /* Ensures that power won't end up being negative */ 3729 available = 0; 3730 } else { 3731 available = total - rq->rt_avg; 3732 } 3733 3734 if (unlikely((s64)total < SCHED_POWER_SCALE)) 3735 total = SCHED_POWER_SCALE; 3736 3737 total >>= SCHED_POWER_SHIFT; 3738 3739 return div_u64(available, total); 3740 } 3741 3742 static void update_cpu_power(struct sched_domain *sd, int cpu) 3743 { 3744 unsigned long weight = sd->span_weight; 3745 unsigned long power = SCHED_POWER_SCALE; 3746 struct sched_group *sdg = sd->groups; 3747 3748 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { 3749 if (sched_feat(ARCH_POWER)) 3750 power *= arch_scale_smt_power(sd, cpu); 3751 else 3752 power *= default_scale_smt_power(sd, cpu); 3753 3754 power >>= SCHED_POWER_SHIFT; 3755 } 3756 3757 sdg->sgp->power_orig = power; 3758 3759 if (sched_feat(ARCH_POWER)) 3760 power *= arch_scale_freq_power(sd, cpu); 3761 else 3762 power *= default_scale_freq_power(sd, cpu); 3763 3764 power >>= SCHED_POWER_SHIFT; 3765 3766 power *= scale_rt_power(cpu); 3767 power >>= SCHED_POWER_SHIFT; 3768 3769 if (!power) 3770 power = 1; 3771 3772 cpu_rq(cpu)->cpu_power = power; 3773 sdg->sgp->power = power; 3774 } 3775 3776 void update_group_power(struct sched_domain *sd, int cpu) 3777 { 3778 struct sched_domain *child = sd->child; 3779 struct sched_group *group, *sdg = sd->groups; 3780 unsigned long power; 3781 3782 if (!child) { 3783 update_cpu_power(sd, cpu); 3784 return; 3785 } 3786 3787 power = 0; 3788 3789 group = child->groups; 3790 do { 3791 power += group->sgp->power; 3792 group = group->next; 3793 } while (group != child->groups); 3794 3795 sdg->sgp->power = power; 3796 } 3797 3798 /* 3799 * Try and fix up capacity for tiny siblings, this is needed when 3800 * things like SD_ASYM_PACKING need f_b_g to select another sibling 3801 * which on its own isn't powerful enough. 3802 * 3803 * See update_sd_pick_busiest() and check_asym_packing(). 3804 */ 3805 static inline int 3806 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 3807 { 3808 /* 3809 * Only siblings can have significantly less than SCHED_POWER_SCALE 3810 */ 3811 if (!(sd->flags & SD_SHARE_CPUPOWER)) 3812 return 0; 3813 3814 /* 3815 * If ~90% of the cpu_power is still there, we're good. 3816 */ 3817 if (group->sgp->power * 32 > group->sgp->power_orig * 29) 3818 return 1; 3819 3820 return 0; 3821 } 3822 3823 /** 3824 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 3825 * @sd: The sched_domain whose statistics are to be updated. 3826 * @group: sched_group whose statistics are to be updated. 3827 * @this_cpu: Cpu for which load balance is currently performed. 3828 * @idle: Idle status of this_cpu 3829 * @load_idx: Load index of sched_domain of this_cpu for load calc. 3830 * @local_group: Does group contain this_cpu. 3831 * @cpus: Set of cpus considered for load balancing. 3832 * @balance: Should we balance. 3833 * @sgs: variable to hold the statistics for this group. 3834 */ 3835 static inline void update_sg_lb_stats(struct sched_domain *sd, 3836 struct sched_group *group, int this_cpu, 3837 enum cpu_idle_type idle, int load_idx, 3838 int local_group, const struct cpumask *cpus, 3839 int *balance, struct sg_lb_stats *sgs) 3840 { 3841 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running; 3842 int i; 3843 unsigned int balance_cpu = -1, first_idle_cpu = 0; 3844 unsigned long avg_load_per_task = 0; 3845 3846 if (local_group) 3847 balance_cpu = group_first_cpu(group); 3848 3849 /* Tally up the load of all CPUs in the group */ 3850 max_cpu_load = 0; 3851 min_cpu_load = ~0UL; 3852 max_nr_running = 0; 3853 3854 for_each_cpu_and(i, sched_group_cpus(group), cpus) { 3855 struct rq *rq = cpu_rq(i); 3856 3857 /* Bias balancing toward cpus of our domain */ 3858 if (local_group) { 3859 if (idle_cpu(i) && !first_idle_cpu) { 3860 first_idle_cpu = 1; 3861 balance_cpu = i; 3862 } 3863 3864 load = target_load(i, load_idx); 3865 } else { 3866 load = source_load(i, load_idx); 3867 if (load > max_cpu_load) { 3868 max_cpu_load = load; 3869 max_nr_running = rq->nr_running; 3870 } 3871 if (min_cpu_load > load) 3872 min_cpu_load = load; 3873 } 3874 3875 sgs->group_load += load; 3876 sgs->sum_nr_running += rq->nr_running; 3877 sgs->sum_weighted_load += weighted_cpuload(i); 3878 if (idle_cpu(i)) 3879 sgs->idle_cpus++; 3880 } 3881 3882 /* 3883 * First idle cpu or the first cpu(busiest) in this sched group 3884 * is eligible for doing load balancing at this and above 3885 * domains. In the newly idle case, we will allow all the cpu's 3886 * to do the newly idle load balance. 3887 */ 3888 if (idle != CPU_NEWLY_IDLE && local_group) { 3889 if (balance_cpu != this_cpu) { 3890 *balance = 0; 3891 return; 3892 } 3893 update_group_power(sd, this_cpu); 3894 } 3895 3896 /* Adjust by relative CPU power of the group */ 3897 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; 3898 3899 /* 3900 * Consider the group unbalanced when the imbalance is larger 3901 * than the average weight of a task. 3902 * 3903 * APZ: with cgroup the avg task weight can vary wildly and 3904 * might not be a suitable number - should we keep a 3905 * normalized nr_running number somewhere that negates 3906 * the hierarchy? 3907 */ 3908 if (sgs->sum_nr_running) 3909 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 3910 3911 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1) 3912 sgs->group_imb = 1; 3913 3914 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, 3915 SCHED_POWER_SCALE); 3916 if (!sgs->group_capacity) 3917 sgs->group_capacity = fix_small_capacity(sd, group); 3918 sgs->group_weight = group->group_weight; 3919 3920 if (sgs->group_capacity > sgs->sum_nr_running) 3921 sgs->group_has_capacity = 1; 3922 } 3923 3924 /** 3925 * update_sd_pick_busiest - return 1 on busiest group 3926 * @sd: sched_domain whose statistics are to be checked 3927 * @sds: sched_domain statistics 3928 * @sg: sched_group candidate to be checked for being the busiest 3929 * @sgs: sched_group statistics 3930 * @this_cpu: the current cpu 3931 * 3932 * Determine if @sg is a busier group than the previously selected 3933 * busiest group. 3934 */ 3935 static bool update_sd_pick_busiest(struct sched_domain *sd, 3936 struct sd_lb_stats *sds, 3937 struct sched_group *sg, 3938 struct sg_lb_stats *sgs, 3939 int this_cpu) 3940 { 3941 if (sgs->avg_load <= sds->max_load) 3942 return false; 3943 3944 if (sgs->sum_nr_running > sgs->group_capacity) 3945 return true; 3946 3947 if (sgs->group_imb) 3948 return true; 3949 3950 /* 3951 * ASYM_PACKING needs to move all the work to the lowest 3952 * numbered CPUs in the group, therefore mark all groups 3953 * higher than ourself as busy. 3954 */ 3955 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && 3956 this_cpu < group_first_cpu(sg)) { 3957 if (!sds->busiest) 3958 return true; 3959 3960 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 3961 return true; 3962 } 3963 3964 return false; 3965 } 3966 3967 /** 3968 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 3969 * @sd: sched_domain whose statistics are to be updated. 3970 * @this_cpu: Cpu for which load balance is currently performed. 3971 * @idle: Idle status of this_cpu 3972 * @cpus: Set of cpus considered for load balancing. 3973 * @balance: Should we balance. 3974 * @sds: variable to hold the statistics for this sched_domain. 3975 */ 3976 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, 3977 enum cpu_idle_type idle, const struct cpumask *cpus, 3978 int *balance, struct sd_lb_stats *sds) 3979 { 3980 struct sched_domain *child = sd->child; 3981 struct sched_group *sg = sd->groups; 3982 struct sg_lb_stats sgs; 3983 int load_idx, prefer_sibling = 0; 3984 3985 if (child && child->flags & SD_PREFER_SIBLING) 3986 prefer_sibling = 1; 3987 3988 init_sd_power_savings_stats(sd, sds, idle); 3989 load_idx = get_sd_load_idx(sd, idle); 3990 3991 do { 3992 int local_group; 3993 3994 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); 3995 memset(&sgs, 0, sizeof(sgs)); 3996 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, 3997 local_group, cpus, balance, &sgs); 3998 3999 if (local_group && !(*balance)) 4000 return; 4001 4002 sds->total_load += sgs.group_load; 4003 sds->total_pwr += sg->sgp->power; 4004 4005 /* 4006 * In case the child domain prefers tasks go to siblings 4007 * first, lower the sg capacity to one so that we'll try 4008 * and move all the excess tasks away. We lower the capacity 4009 * of a group only if the local group has the capacity to fit 4010 * these excess tasks, i.e. nr_running < group_capacity. The 4011 * extra check prevents the case where you always pull from the 4012 * heaviest group when it is already under-utilized (possible 4013 * with a large weight task outweighs the tasks on the system). 4014 */ 4015 if (prefer_sibling && !local_group && sds->this_has_capacity) 4016 sgs.group_capacity = min(sgs.group_capacity, 1UL); 4017 4018 if (local_group) { 4019 sds->this_load = sgs.avg_load; 4020 sds->this = sg; 4021 sds->this_nr_running = sgs.sum_nr_running; 4022 sds->this_load_per_task = sgs.sum_weighted_load; 4023 sds->this_has_capacity = sgs.group_has_capacity; 4024 sds->this_idle_cpus = sgs.idle_cpus; 4025 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { 4026 sds->max_load = sgs.avg_load; 4027 sds->busiest = sg; 4028 sds->busiest_nr_running = sgs.sum_nr_running; 4029 sds->busiest_idle_cpus = sgs.idle_cpus; 4030 sds->busiest_group_capacity = sgs.group_capacity; 4031 sds->busiest_load_per_task = sgs.sum_weighted_load; 4032 sds->busiest_has_capacity = sgs.group_has_capacity; 4033 sds->busiest_group_weight = sgs.group_weight; 4034 sds->group_imb = sgs.group_imb; 4035 } 4036 4037 update_sd_power_savings_stats(sg, sds, local_group, &sgs); 4038 sg = sg->next; 4039 } while (sg != sd->groups); 4040 } 4041 4042 /** 4043 * check_asym_packing - Check to see if the group is packed into the 4044 * sched doman. 4045 * 4046 * This is primarily intended to used at the sibling level. Some 4047 * cores like POWER7 prefer to use lower numbered SMT threads. In the 4048 * case of POWER7, it can move to lower SMT modes only when higher 4049 * threads are idle. When in lower SMT modes, the threads will 4050 * perform better since they share less core resources. Hence when we 4051 * have idle threads, we want them to be the higher ones. 4052 * 4053 * This packing function is run on idle threads. It checks to see if 4054 * the busiest CPU in this domain (core in the P7 case) has a higher 4055 * CPU number than the packing function is being run on. Here we are 4056 * assuming lower CPU number will be equivalent to lower a SMT thread 4057 * number. 4058 * 4059 * Returns 1 when packing is required and a task should be moved to 4060 * this CPU. The amount of the imbalance is returned in *imbalance. 4061 * 4062 * @sd: The sched_domain whose packing is to be checked. 4063 * @sds: Statistics of the sched_domain which is to be packed 4064 * @this_cpu: The cpu at whose sched_domain we're performing load-balance. 4065 * @imbalance: returns amount of imbalanced due to packing. 4066 */ 4067 static int check_asym_packing(struct sched_domain *sd, 4068 struct sd_lb_stats *sds, 4069 int this_cpu, unsigned long *imbalance) 4070 { 4071 int busiest_cpu; 4072 4073 if (!(sd->flags & SD_ASYM_PACKING)) 4074 return 0; 4075 4076 if (!sds->busiest) 4077 return 0; 4078 4079 busiest_cpu = group_first_cpu(sds->busiest); 4080 if (this_cpu > busiest_cpu) 4081 return 0; 4082 4083 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power, 4084 SCHED_POWER_SCALE); 4085 return 1; 4086 } 4087 4088 /** 4089 * fix_small_imbalance - Calculate the minor imbalance that exists 4090 * amongst the groups of a sched_domain, during 4091 * load balancing. 4092 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 4093 * @this_cpu: The cpu at whose sched_domain we're performing load-balance. 4094 * @imbalance: Variable to store the imbalance. 4095 */ 4096 static inline void fix_small_imbalance(struct sd_lb_stats *sds, 4097 int this_cpu, unsigned long *imbalance) 4098 { 4099 unsigned long tmp, pwr_now = 0, pwr_move = 0; 4100 unsigned int imbn = 2; 4101 unsigned long scaled_busy_load_per_task; 4102 4103 if (sds->this_nr_running) { 4104 sds->this_load_per_task /= sds->this_nr_running; 4105 if (sds->busiest_load_per_task > 4106 sds->this_load_per_task) 4107 imbn = 1; 4108 } else 4109 sds->this_load_per_task = 4110 cpu_avg_load_per_task(this_cpu); 4111 4112 scaled_busy_load_per_task = sds->busiest_load_per_task 4113 * SCHED_POWER_SCALE; 4114 scaled_busy_load_per_task /= sds->busiest->sgp->power; 4115 4116 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= 4117 (scaled_busy_load_per_task * imbn)) { 4118 *imbalance = sds->busiest_load_per_task; 4119 return; 4120 } 4121 4122 /* 4123 * OK, we don't have enough imbalance to justify moving tasks, 4124 * however we may be able to increase total CPU power used by 4125 * moving them. 4126 */ 4127 4128 pwr_now += sds->busiest->sgp->power * 4129 min(sds->busiest_load_per_task, sds->max_load); 4130 pwr_now += sds->this->sgp->power * 4131 min(sds->this_load_per_task, sds->this_load); 4132 pwr_now /= SCHED_POWER_SCALE; 4133 4134 /* Amount of load we'd subtract */ 4135 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4136 sds->busiest->sgp->power; 4137 if (sds->max_load > tmp) 4138 pwr_move += sds->busiest->sgp->power * 4139 min(sds->busiest_load_per_task, sds->max_load - tmp); 4140 4141 /* Amount of load we'd add */ 4142 if (sds->max_load * sds->busiest->sgp->power < 4143 sds->busiest_load_per_task * SCHED_POWER_SCALE) 4144 tmp = (sds->max_load * sds->busiest->sgp->power) / 4145 sds->this->sgp->power; 4146 else 4147 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / 4148 sds->this->sgp->power; 4149 pwr_move += sds->this->sgp->power * 4150 min(sds->this_load_per_task, sds->this_load + tmp); 4151 pwr_move /= SCHED_POWER_SCALE; 4152 4153 /* Move if we gain throughput */ 4154 if (pwr_move > pwr_now) 4155 *imbalance = sds->busiest_load_per_task; 4156 } 4157 4158 /** 4159 * calculate_imbalance - Calculate the amount of imbalance present within the 4160 * groups of a given sched_domain during load balance. 4161 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 4162 * @this_cpu: Cpu for which currently load balance is being performed. 4163 * @imbalance: The variable to store the imbalance. 4164 */ 4165 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, 4166 unsigned long *imbalance) 4167 { 4168 unsigned long max_pull, load_above_capacity = ~0UL; 4169 4170 sds->busiest_load_per_task /= sds->busiest_nr_running; 4171 if (sds->group_imb) { 4172 sds->busiest_load_per_task = 4173 min(sds->busiest_load_per_task, sds->avg_load); 4174 } 4175 4176 /* 4177 * In the presence of smp nice balancing, certain scenarios can have 4178 * max load less than avg load(as we skip the groups at or below 4179 * its cpu_power, while calculating max_load..) 4180 */ 4181 if (sds->max_load < sds->avg_load) { 4182 *imbalance = 0; 4183 return fix_small_imbalance(sds, this_cpu, imbalance); 4184 } 4185 4186 if (!sds->group_imb) { 4187 /* 4188 * Don't want to pull so many tasks that a group would go idle. 4189 */ 4190 load_above_capacity = (sds->busiest_nr_running - 4191 sds->busiest_group_capacity); 4192 4193 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); 4194 4195 load_above_capacity /= sds->busiest->sgp->power; 4196 } 4197 4198 /* 4199 * We're trying to get all the cpus to the average_load, so we don't 4200 * want to push ourselves above the average load, nor do we wish to 4201 * reduce the max loaded cpu below the average load. At the same time, 4202 * we also don't want to reduce the group load below the group capacity 4203 * (so that we can implement power-savings policies etc). Thus we look 4204 * for the minimum possible imbalance. 4205 * Be careful of negative numbers as they'll appear as very large values 4206 * with unsigned longs. 4207 */ 4208 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); 4209 4210 /* How much load to actually move to equalise the imbalance */ 4211 *imbalance = min(max_pull * sds->busiest->sgp->power, 4212 (sds->avg_load - sds->this_load) * sds->this->sgp->power) 4213 / SCHED_POWER_SCALE; 4214 4215 /* 4216 * if *imbalance is less than the average load per runnable task 4217 * there is no guarantee that any tasks will be moved so we'll have 4218 * a think about bumping its value to force at least one task to be 4219 * moved 4220 */ 4221 if (*imbalance < sds->busiest_load_per_task) 4222 return fix_small_imbalance(sds, this_cpu, imbalance); 4223 4224 } 4225 4226 /******* find_busiest_group() helpers end here *********************/ 4227 4228 /** 4229 * find_busiest_group - Returns the busiest group within the sched_domain 4230 * if there is an imbalance. If there isn't an imbalance, and 4231 * the user has opted for power-savings, it returns a group whose 4232 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 4233 * such a group exists. 4234 * 4235 * Also calculates the amount of weighted load which should be moved 4236 * to restore balance. 4237 * 4238 * @sd: The sched_domain whose busiest group is to be returned. 4239 * @this_cpu: The cpu for which load balancing is currently being performed. 4240 * @imbalance: Variable which stores amount of weighted load which should 4241 * be moved to restore balance/put a group to idle. 4242 * @idle: The idle status of this_cpu. 4243 * @cpus: The set of CPUs under consideration for load-balancing. 4244 * @balance: Pointer to a variable indicating if this_cpu 4245 * is the appropriate cpu to perform load balancing at this_level. 4246 * 4247 * Returns: - the busiest group if imbalance exists. 4248 * - If no imbalance and user has opted for power-savings balance, 4249 * return the least loaded group whose CPUs can be 4250 * put to idle by rebalancing its tasks onto our group. 4251 */ 4252 static struct sched_group * 4253 find_busiest_group(struct sched_domain *sd, int this_cpu, 4254 unsigned long *imbalance, enum cpu_idle_type idle, 4255 const struct cpumask *cpus, int *balance) 4256 { 4257 struct sd_lb_stats sds; 4258 4259 memset(&sds, 0, sizeof(sds)); 4260 4261 /* 4262 * Compute the various statistics relavent for load balancing at 4263 * this level. 4264 */ 4265 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds); 4266 4267 /* 4268 * this_cpu is not the appropriate cpu to perform load balancing at 4269 * this level. 4270 */ 4271 if (!(*balance)) 4272 goto ret; 4273 4274 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && 4275 check_asym_packing(sd, &sds, this_cpu, imbalance)) 4276 return sds.busiest; 4277 4278 /* There is no busy sibling group to pull tasks from */ 4279 if (!sds.busiest || sds.busiest_nr_running == 0) 4280 goto out_balanced; 4281 4282 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; 4283 4284 /* 4285 * If the busiest group is imbalanced the below checks don't 4286 * work because they assumes all things are equal, which typically 4287 * isn't true due to cpus_allowed constraints and the like. 4288 */ 4289 if (sds.group_imb) 4290 goto force_balance; 4291 4292 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 4293 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && 4294 !sds.busiest_has_capacity) 4295 goto force_balance; 4296 4297 /* 4298 * If the local group is more busy than the selected busiest group 4299 * don't try and pull any tasks. 4300 */ 4301 if (sds.this_load >= sds.max_load) 4302 goto out_balanced; 4303 4304 /* 4305 * Don't pull any tasks if this group is already above the domain 4306 * average load. 4307 */ 4308 if (sds.this_load >= sds.avg_load) 4309 goto out_balanced; 4310 4311 if (idle == CPU_IDLE) { 4312 /* 4313 * This cpu is idle. If the busiest group load doesn't 4314 * have more tasks than the number of available cpu's and 4315 * there is no imbalance between this and busiest group 4316 * wrt to idle cpu's, it is balanced. 4317 */ 4318 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && 4319 sds.busiest_nr_running <= sds.busiest_group_weight) 4320 goto out_balanced; 4321 } else { 4322 /* 4323 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 4324 * imbalance_pct to be conservative. 4325 */ 4326 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) 4327 goto out_balanced; 4328 } 4329 4330 force_balance: 4331 /* Looks like there is an imbalance. Compute it */ 4332 calculate_imbalance(&sds, this_cpu, imbalance); 4333 return sds.busiest; 4334 4335 out_balanced: 4336 /* 4337 * There is no obvious imbalance. But check if we can do some balancing 4338 * to save power. 4339 */ 4340 if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) 4341 return sds.busiest; 4342 ret: 4343 *imbalance = 0; 4344 return NULL; 4345 } 4346 4347 /* 4348 * find_busiest_queue - find the busiest runqueue among the cpus in group. 4349 */ 4350 static struct rq * 4351 find_busiest_queue(struct sched_domain *sd, struct sched_group *group, 4352 enum cpu_idle_type idle, unsigned long imbalance, 4353 const struct cpumask *cpus) 4354 { 4355 struct rq *busiest = NULL, *rq; 4356 unsigned long max_load = 0; 4357 int i; 4358 4359 for_each_cpu(i, sched_group_cpus(group)) { 4360 unsigned long power = power_of(i); 4361 unsigned long capacity = DIV_ROUND_CLOSEST(power, 4362 SCHED_POWER_SCALE); 4363 unsigned long wl; 4364 4365 if (!capacity) 4366 capacity = fix_small_capacity(sd, group); 4367 4368 if (!cpumask_test_cpu(i, cpus)) 4369 continue; 4370 4371 rq = cpu_rq(i); 4372 wl = weighted_cpuload(i); 4373 4374 /* 4375 * When comparing with imbalance, use weighted_cpuload() 4376 * which is not scaled with the cpu power. 4377 */ 4378 if (capacity && rq->nr_running == 1 && wl > imbalance) 4379 continue; 4380 4381 /* 4382 * For the load comparisons with the other cpu's, consider 4383 * the weighted_cpuload() scaled with the cpu power, so that 4384 * the load can be moved away from the cpu that is potentially 4385 * running at a lower capacity. 4386 */ 4387 wl = (wl * SCHED_POWER_SCALE) / power; 4388 4389 if (wl > max_load) { 4390 max_load = wl; 4391 busiest = rq; 4392 } 4393 } 4394 4395 return busiest; 4396 } 4397 4398 /* 4399 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 4400 * so long as it is large enough. 4401 */ 4402 #define MAX_PINNED_INTERVAL 512 4403 4404 /* Working cpumask for load_balance and load_balance_newidle. */ 4405 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); 4406 4407 static int need_active_balance(struct sched_domain *sd, int idle, 4408 int busiest_cpu, int this_cpu) 4409 { 4410 if (idle == CPU_NEWLY_IDLE) { 4411 4412 /* 4413 * ASYM_PACKING needs to force migrate tasks from busy but 4414 * higher numbered CPUs in order to pack all tasks in the 4415 * lowest numbered CPUs. 4416 */ 4417 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) 4418 return 1; 4419 4420 /* 4421 * The only task running in a non-idle cpu can be moved to this 4422 * cpu in an attempt to completely freeup the other CPU 4423 * package. 4424 * 4425 * The package power saving logic comes from 4426 * find_busiest_group(). If there are no imbalance, then 4427 * f_b_g() will return NULL. However when sched_mc={1,2} then 4428 * f_b_g() will select a group from which a running task may be 4429 * pulled to this cpu in order to make the other package idle. 4430 * If there is no opportunity to make a package idle and if 4431 * there are no imbalance, then f_b_g() will return NULL and no 4432 * action will be taken in load_balance_newidle(). 4433 * 4434 * Under normal task pull operation due to imbalance, there 4435 * will be more than one task in the source run queue and 4436 * move_tasks() will succeed. ld_moved will be true and this 4437 * active balance code will not be triggered. 4438 */ 4439 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) 4440 return 0; 4441 } 4442 4443 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 4444 } 4445 4446 static int active_load_balance_cpu_stop(void *data); 4447 4448 /* 4449 * Check this_cpu to ensure it is balanced within domain. Attempt to move 4450 * tasks if there is an imbalance. 4451 */ 4452 static int load_balance(int this_cpu, struct rq *this_rq, 4453 struct sched_domain *sd, enum cpu_idle_type idle, 4454 int *balance) 4455 { 4456 int ld_moved, lb_flags = 0, active_balance = 0; 4457 struct sched_group *group; 4458 unsigned long imbalance; 4459 struct rq *busiest; 4460 unsigned long flags; 4461 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); 4462 4463 cpumask_copy(cpus, cpu_active_mask); 4464 4465 schedstat_inc(sd, lb_count[idle]); 4466 4467 redo: 4468 group = find_busiest_group(sd, this_cpu, &imbalance, idle, 4469 cpus, balance); 4470 4471 if (*balance == 0) 4472 goto out_balanced; 4473 4474 if (!group) { 4475 schedstat_inc(sd, lb_nobusyg[idle]); 4476 goto out_balanced; 4477 } 4478 4479 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); 4480 if (!busiest) { 4481 schedstat_inc(sd, lb_nobusyq[idle]); 4482 goto out_balanced; 4483 } 4484 4485 BUG_ON(busiest == this_rq); 4486 4487 schedstat_add(sd, lb_imbalance[idle], imbalance); 4488 4489 ld_moved = 0; 4490 if (busiest->nr_running > 1) { 4491 /* 4492 * Attempt to move tasks. If find_busiest_group has found 4493 * an imbalance but busiest->nr_running <= 1, the group is 4494 * still unbalanced. ld_moved simply stays zero, so it is 4495 * correctly treated as an imbalance. 4496 */ 4497 lb_flags |= LBF_ALL_PINNED; 4498 local_irq_save(flags); 4499 double_rq_lock(this_rq, busiest); 4500 ld_moved = move_tasks(this_rq, this_cpu, busiest, 4501 imbalance, sd, idle, &lb_flags); 4502 double_rq_unlock(this_rq, busiest); 4503 local_irq_restore(flags); 4504 4505 /* 4506 * some other cpu did the load balance for us. 4507 */ 4508 if (ld_moved && this_cpu != smp_processor_id()) 4509 resched_cpu(this_cpu); 4510 4511 if (lb_flags & LBF_ABORT) 4512 goto out_balanced; 4513 4514 if (lb_flags & LBF_NEED_BREAK) { 4515 lb_flags += LBF_HAD_BREAK - LBF_NEED_BREAK; 4516 if (lb_flags & LBF_ABORT) 4517 goto out_balanced; 4518 goto redo; 4519 } 4520 4521 /* All tasks on this runqueue were pinned by CPU affinity */ 4522 if (unlikely(lb_flags & LBF_ALL_PINNED)) { 4523 cpumask_clear_cpu(cpu_of(busiest), cpus); 4524 if (!cpumask_empty(cpus)) 4525 goto redo; 4526 goto out_balanced; 4527 } 4528 } 4529 4530 if (!ld_moved) { 4531 schedstat_inc(sd, lb_failed[idle]); 4532 /* 4533 * Increment the failure counter only on periodic balance. 4534 * We do not want newidle balance, which can be very 4535 * frequent, pollute the failure counter causing 4536 * excessive cache_hot migrations and active balances. 4537 */ 4538 if (idle != CPU_NEWLY_IDLE) 4539 sd->nr_balance_failed++; 4540 4541 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) { 4542 raw_spin_lock_irqsave(&busiest->lock, flags); 4543 4544 /* don't kick the active_load_balance_cpu_stop, 4545 * if the curr task on busiest cpu can't be 4546 * moved to this_cpu 4547 */ 4548 if (!cpumask_test_cpu(this_cpu, 4549 tsk_cpus_allowed(busiest->curr))) { 4550 raw_spin_unlock_irqrestore(&busiest->lock, 4551 flags); 4552 lb_flags |= LBF_ALL_PINNED; 4553 goto out_one_pinned; 4554 } 4555 4556 /* 4557 * ->active_balance synchronizes accesses to 4558 * ->active_balance_work. Once set, it's cleared 4559 * only after active load balance is finished. 4560 */ 4561 if (!busiest->active_balance) { 4562 busiest->active_balance = 1; 4563 busiest->push_cpu = this_cpu; 4564 active_balance = 1; 4565 } 4566 raw_spin_unlock_irqrestore(&busiest->lock, flags); 4567 4568 if (active_balance) 4569 stop_one_cpu_nowait(cpu_of(busiest), 4570 active_load_balance_cpu_stop, busiest, 4571 &busiest->active_balance_work); 4572 4573 /* 4574 * We've kicked active balancing, reset the failure 4575 * counter. 4576 */ 4577 sd->nr_balance_failed = sd->cache_nice_tries+1; 4578 } 4579 } else 4580 sd->nr_balance_failed = 0; 4581 4582 if (likely(!active_balance)) { 4583 /* We were unbalanced, so reset the balancing interval */ 4584 sd->balance_interval = sd->min_interval; 4585 } else { 4586 /* 4587 * If we've begun active balancing, start to back off. This 4588 * case may not be covered by the all_pinned logic if there 4589 * is only 1 task on the busy runqueue (because we don't call 4590 * move_tasks). 4591 */ 4592 if (sd->balance_interval < sd->max_interval) 4593 sd->balance_interval *= 2; 4594 } 4595 4596 goto out; 4597 4598 out_balanced: 4599 schedstat_inc(sd, lb_balanced[idle]); 4600 4601 sd->nr_balance_failed = 0; 4602 4603 out_one_pinned: 4604 /* tune up the balancing interval */ 4605 if (((lb_flags & LBF_ALL_PINNED) && 4606 sd->balance_interval < MAX_PINNED_INTERVAL) || 4607 (sd->balance_interval < sd->max_interval)) 4608 sd->balance_interval *= 2; 4609 4610 ld_moved = 0; 4611 out: 4612 return ld_moved; 4613 } 4614 4615 /* 4616 * idle_balance is called by schedule() if this_cpu is about to become 4617 * idle. Attempts to pull tasks from other CPUs. 4618 */ 4619 void idle_balance(int this_cpu, struct rq *this_rq) 4620 { 4621 struct sched_domain *sd; 4622 int pulled_task = 0; 4623 unsigned long next_balance = jiffies + HZ; 4624 4625 this_rq->idle_stamp = this_rq->clock; 4626 4627 if (this_rq->avg_idle < sysctl_sched_migration_cost) 4628 return; 4629 4630 /* 4631 * Drop the rq->lock, but keep IRQ/preempt disabled. 4632 */ 4633 raw_spin_unlock(&this_rq->lock); 4634 4635 update_shares(this_cpu); 4636 rcu_read_lock(); 4637 for_each_domain(this_cpu, sd) { 4638 unsigned long interval; 4639 int balance = 1; 4640 4641 if (!(sd->flags & SD_LOAD_BALANCE)) 4642 continue; 4643 4644 if (sd->flags & SD_BALANCE_NEWIDLE) { 4645 /* If we've pulled tasks over stop searching: */ 4646 pulled_task = load_balance(this_cpu, this_rq, 4647 sd, CPU_NEWLY_IDLE, &balance); 4648 } 4649 4650 interval = msecs_to_jiffies(sd->balance_interval); 4651 if (time_after(next_balance, sd->last_balance + interval)) 4652 next_balance = sd->last_balance + interval; 4653 if (pulled_task) { 4654 this_rq->idle_stamp = 0; 4655 break; 4656 } 4657 } 4658 rcu_read_unlock(); 4659 4660 raw_spin_lock(&this_rq->lock); 4661 4662 if (pulled_task || time_after(jiffies, this_rq->next_balance)) { 4663 /* 4664 * We are going idle. next_balance may be set based on 4665 * a busy processor. So reset next_balance. 4666 */ 4667 this_rq->next_balance = next_balance; 4668 } 4669 } 4670 4671 /* 4672 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 4673 * running tasks off the busiest CPU onto idle CPUs. It requires at 4674 * least 1 task to be running on each physical CPU where possible, and 4675 * avoids physical / logical imbalances. 4676 */ 4677 static int active_load_balance_cpu_stop(void *data) 4678 { 4679 struct rq *busiest_rq = data; 4680 int busiest_cpu = cpu_of(busiest_rq); 4681 int target_cpu = busiest_rq->push_cpu; 4682 struct rq *target_rq = cpu_rq(target_cpu); 4683 struct sched_domain *sd; 4684 4685 raw_spin_lock_irq(&busiest_rq->lock); 4686 4687 /* make sure the requested cpu hasn't gone down in the meantime */ 4688 if (unlikely(busiest_cpu != smp_processor_id() || 4689 !busiest_rq->active_balance)) 4690 goto out_unlock; 4691 4692 /* Is there any task to move? */ 4693 if (busiest_rq->nr_running <= 1) 4694 goto out_unlock; 4695 4696 /* 4697 * This condition is "impossible", if it occurs 4698 * we need to fix it. Originally reported by 4699 * Bjorn Helgaas on a 128-cpu setup. 4700 */ 4701 BUG_ON(busiest_rq == target_rq); 4702 4703 /* move a task from busiest_rq to target_rq */ 4704 double_lock_balance(busiest_rq, target_rq); 4705 4706 /* Search for an sd spanning us and the target CPU. */ 4707 rcu_read_lock(); 4708 for_each_domain(target_cpu, sd) { 4709 if ((sd->flags & SD_LOAD_BALANCE) && 4710 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 4711 break; 4712 } 4713 4714 if (likely(sd)) { 4715 schedstat_inc(sd, alb_count); 4716 4717 if (move_one_task(target_rq, target_cpu, busiest_rq, 4718 sd, CPU_IDLE)) 4719 schedstat_inc(sd, alb_pushed); 4720 else 4721 schedstat_inc(sd, alb_failed); 4722 } 4723 rcu_read_unlock(); 4724 double_unlock_balance(busiest_rq, target_rq); 4725 out_unlock: 4726 busiest_rq->active_balance = 0; 4727 raw_spin_unlock_irq(&busiest_rq->lock); 4728 return 0; 4729 } 4730 4731 #ifdef CONFIG_NO_HZ 4732 /* 4733 * idle load balancing details 4734 * - When one of the busy CPUs notice that there may be an idle rebalancing 4735 * needed, they will kick the idle load balancer, which then does idle 4736 * load balancing for all the idle CPUs. 4737 */ 4738 static struct { 4739 cpumask_var_t idle_cpus_mask; 4740 atomic_t nr_cpus; 4741 unsigned long next_balance; /* in jiffy units */ 4742 } nohz ____cacheline_aligned; 4743 4744 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) 4745 /** 4746 * lowest_flag_domain - Return lowest sched_domain containing flag. 4747 * @cpu: The cpu whose lowest level of sched domain is to 4748 * be returned. 4749 * @flag: The flag to check for the lowest sched_domain 4750 * for the given cpu. 4751 * 4752 * Returns the lowest sched_domain of a cpu which contains the given flag. 4753 */ 4754 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 4755 { 4756 struct sched_domain *sd; 4757 4758 for_each_domain(cpu, sd) 4759 if (sd->flags & flag) 4760 break; 4761 4762 return sd; 4763 } 4764 4765 /** 4766 * for_each_flag_domain - Iterates over sched_domains containing the flag. 4767 * @cpu: The cpu whose domains we're iterating over. 4768 * @sd: variable holding the value of the power_savings_sd 4769 * for cpu. 4770 * @flag: The flag to filter the sched_domains to be iterated. 4771 * 4772 * Iterates over all the scheduler domains for a given cpu that has the 'flag' 4773 * set, starting from the lowest sched_domain to the highest. 4774 */ 4775 #define for_each_flag_domain(cpu, sd, flag) \ 4776 for (sd = lowest_flag_domain(cpu, flag); \ 4777 (sd && (sd->flags & flag)); sd = sd->parent) 4778 4779 /** 4780 * find_new_ilb - Finds the optimum idle load balancer for nomination. 4781 * @cpu: The cpu which is nominating a new idle_load_balancer. 4782 * 4783 * Returns: Returns the id of the idle load balancer if it exists, 4784 * Else, returns >= nr_cpu_ids. 4785 * 4786 * This algorithm picks the idle load balancer such that it belongs to a 4787 * semi-idle powersavings sched_domain. The idea is to try and avoid 4788 * completely idle packages/cores just for the purpose of idle load balancing 4789 * when there are other idle cpu's which are better suited for that job. 4790 */ 4791 static int find_new_ilb(int cpu) 4792 { 4793 int ilb = cpumask_first(nohz.idle_cpus_mask); 4794 struct sched_group *ilbg; 4795 struct sched_domain *sd; 4796 4797 /* 4798 * Have idle load balancer selection from semi-idle packages only 4799 * when power-aware load balancing is enabled 4800 */ 4801 if (!(sched_smt_power_savings || sched_mc_power_savings)) 4802 goto out_done; 4803 4804 /* 4805 * Optimize for the case when we have no idle CPUs or only one 4806 * idle CPU. Don't walk the sched_domain hierarchy in such cases 4807 */ 4808 if (cpumask_weight(nohz.idle_cpus_mask) < 2) 4809 goto out_done; 4810 4811 rcu_read_lock(); 4812 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { 4813 ilbg = sd->groups; 4814 4815 do { 4816 if (ilbg->group_weight != 4817 atomic_read(&ilbg->sgp->nr_busy_cpus)) { 4818 ilb = cpumask_first_and(nohz.idle_cpus_mask, 4819 sched_group_cpus(ilbg)); 4820 goto unlock; 4821 } 4822 4823 ilbg = ilbg->next; 4824 4825 } while (ilbg != sd->groups); 4826 } 4827 unlock: 4828 rcu_read_unlock(); 4829 4830 out_done: 4831 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 4832 return ilb; 4833 4834 return nr_cpu_ids; 4835 } 4836 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ 4837 static inline int find_new_ilb(int call_cpu) 4838 { 4839 return nr_cpu_ids; 4840 } 4841 #endif 4842 4843 /* 4844 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 4845 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 4846 * CPU (if there is one). 4847 */ 4848 static void nohz_balancer_kick(int cpu) 4849 { 4850 int ilb_cpu; 4851 4852 nohz.next_balance++; 4853 4854 ilb_cpu = find_new_ilb(cpu); 4855 4856 if (ilb_cpu >= nr_cpu_ids) 4857 return; 4858 4859 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 4860 return; 4861 /* 4862 * Use smp_send_reschedule() instead of resched_cpu(). 4863 * This way we generate a sched IPI on the target cpu which 4864 * is idle. And the softirq performing nohz idle load balance 4865 * will be run before returning from the IPI. 4866 */ 4867 smp_send_reschedule(ilb_cpu); 4868 return; 4869 } 4870 4871 static inline void clear_nohz_tick_stopped(int cpu) 4872 { 4873 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 4874 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 4875 atomic_dec(&nohz.nr_cpus); 4876 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 4877 } 4878 } 4879 4880 static inline void set_cpu_sd_state_busy(void) 4881 { 4882 struct sched_domain *sd; 4883 int cpu = smp_processor_id(); 4884 4885 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu))) 4886 return; 4887 clear_bit(NOHZ_IDLE, nohz_flags(cpu)); 4888 4889 rcu_read_lock(); 4890 for_each_domain(cpu, sd) 4891 atomic_inc(&sd->groups->sgp->nr_busy_cpus); 4892 rcu_read_unlock(); 4893 } 4894 4895 void set_cpu_sd_state_idle(void) 4896 { 4897 struct sched_domain *sd; 4898 int cpu = smp_processor_id(); 4899 4900 if (test_bit(NOHZ_IDLE, nohz_flags(cpu))) 4901 return; 4902 set_bit(NOHZ_IDLE, nohz_flags(cpu)); 4903 4904 rcu_read_lock(); 4905 for_each_domain(cpu, sd) 4906 atomic_dec(&sd->groups->sgp->nr_busy_cpus); 4907 rcu_read_unlock(); 4908 } 4909 4910 /* 4911 * This routine will record that this cpu is going idle with tick stopped. 4912 * This info will be used in performing idle load balancing in the future. 4913 */ 4914 void select_nohz_load_balancer(int stop_tick) 4915 { 4916 int cpu = smp_processor_id(); 4917 4918 /* 4919 * If this cpu is going down, then nothing needs to be done. 4920 */ 4921 if (!cpu_active(cpu)) 4922 return; 4923 4924 if (stop_tick) { 4925 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 4926 return; 4927 4928 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 4929 atomic_inc(&nohz.nr_cpus); 4930 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 4931 } 4932 return; 4933 } 4934 4935 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb, 4936 unsigned long action, void *hcpu) 4937 { 4938 switch (action & ~CPU_TASKS_FROZEN) { 4939 case CPU_DYING: 4940 clear_nohz_tick_stopped(smp_processor_id()); 4941 return NOTIFY_OK; 4942 default: 4943 return NOTIFY_DONE; 4944 } 4945 } 4946 #endif 4947 4948 static DEFINE_SPINLOCK(balancing); 4949 4950 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 4951 4952 /* 4953 * Scale the max load_balance interval with the number of CPUs in the system. 4954 * This trades load-balance latency on larger machines for less cross talk. 4955 */ 4956 void update_max_interval(void) 4957 { 4958 max_load_balance_interval = HZ*num_online_cpus()/10; 4959 } 4960 4961 /* 4962 * It checks each scheduling domain to see if it is due to be balanced, 4963 * and initiates a balancing operation if so. 4964 * 4965 * Balancing parameters are set up in arch_init_sched_domains. 4966 */ 4967 static void rebalance_domains(int cpu, enum cpu_idle_type idle) 4968 { 4969 int balance = 1; 4970 struct rq *rq = cpu_rq(cpu); 4971 unsigned long interval; 4972 struct sched_domain *sd; 4973 /* Earliest time when we have to do rebalance again */ 4974 unsigned long next_balance = jiffies + 60*HZ; 4975 int update_next_balance = 0; 4976 int need_serialize; 4977 4978 update_shares(cpu); 4979 4980 rcu_read_lock(); 4981 for_each_domain(cpu, sd) { 4982 if (!(sd->flags & SD_LOAD_BALANCE)) 4983 continue; 4984 4985 interval = sd->balance_interval; 4986 if (idle != CPU_IDLE) 4987 interval *= sd->busy_factor; 4988 4989 /* scale ms to jiffies */ 4990 interval = msecs_to_jiffies(interval); 4991 interval = clamp(interval, 1UL, max_load_balance_interval); 4992 4993 need_serialize = sd->flags & SD_SERIALIZE; 4994 4995 if (need_serialize) { 4996 if (!spin_trylock(&balancing)) 4997 goto out; 4998 } 4999 5000 if (time_after_eq(jiffies, sd->last_balance + interval)) { 5001 if (load_balance(cpu, rq, sd, idle, &balance)) { 5002 /* 5003 * We've pulled tasks over so either we're no 5004 * longer idle. 5005 */ 5006 idle = CPU_NOT_IDLE; 5007 } 5008 sd->last_balance = jiffies; 5009 } 5010 if (need_serialize) 5011 spin_unlock(&balancing); 5012 out: 5013 if (time_after(next_balance, sd->last_balance + interval)) { 5014 next_balance = sd->last_balance + interval; 5015 update_next_balance = 1; 5016 } 5017 5018 /* 5019 * Stop the load balance at this level. There is another 5020 * CPU in our sched group which is doing load balancing more 5021 * actively. 5022 */ 5023 if (!balance) 5024 break; 5025 } 5026 rcu_read_unlock(); 5027 5028 /* 5029 * next_balance will be updated only when there is a need. 5030 * When the cpu is attached to null domain for ex, it will not be 5031 * updated. 5032 */ 5033 if (likely(update_next_balance)) 5034 rq->next_balance = next_balance; 5035 } 5036 5037 #ifdef CONFIG_NO_HZ 5038 /* 5039 * In CONFIG_NO_HZ case, the idle balance kickee will do the 5040 * rebalancing for all the cpus for whom scheduler ticks are stopped. 5041 */ 5042 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) 5043 { 5044 struct rq *this_rq = cpu_rq(this_cpu); 5045 struct rq *rq; 5046 int balance_cpu; 5047 5048 if (idle != CPU_IDLE || 5049 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 5050 goto end; 5051 5052 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 5053 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 5054 continue; 5055 5056 /* 5057 * If this cpu gets work to do, stop the load balancing 5058 * work being done for other cpus. Next load 5059 * balancing owner will pick it up. 5060 */ 5061 if (need_resched()) 5062 break; 5063 5064 raw_spin_lock_irq(&this_rq->lock); 5065 update_rq_clock(this_rq); 5066 update_cpu_load(this_rq); 5067 raw_spin_unlock_irq(&this_rq->lock); 5068 5069 rebalance_domains(balance_cpu, CPU_IDLE); 5070 5071 rq = cpu_rq(balance_cpu); 5072 if (time_after(this_rq->next_balance, rq->next_balance)) 5073 this_rq->next_balance = rq->next_balance; 5074 } 5075 nohz.next_balance = this_rq->next_balance; 5076 end: 5077 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 5078 } 5079 5080 /* 5081 * Current heuristic for kicking the idle load balancer in the presence 5082 * of an idle cpu is the system. 5083 * - This rq has more than one task. 5084 * - At any scheduler domain level, this cpu's scheduler group has multiple 5085 * busy cpu's exceeding the group's power. 5086 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 5087 * domain span are idle. 5088 */ 5089 static inline int nohz_kick_needed(struct rq *rq, int cpu) 5090 { 5091 unsigned long now = jiffies; 5092 struct sched_domain *sd; 5093 5094 if (unlikely(idle_cpu(cpu))) 5095 return 0; 5096 5097 /* 5098 * We may be recently in ticked or tickless idle mode. At the first 5099 * busy tick after returning from idle, we will update the busy stats. 5100 */ 5101 set_cpu_sd_state_busy(); 5102 clear_nohz_tick_stopped(cpu); 5103 5104 /* 5105 * None are in tickless mode and hence no need for NOHZ idle load 5106 * balancing. 5107 */ 5108 if (likely(!atomic_read(&nohz.nr_cpus))) 5109 return 0; 5110 5111 if (time_before(now, nohz.next_balance)) 5112 return 0; 5113 5114 if (rq->nr_running >= 2) 5115 goto need_kick; 5116 5117 rcu_read_lock(); 5118 for_each_domain(cpu, sd) { 5119 struct sched_group *sg = sd->groups; 5120 struct sched_group_power *sgp = sg->sgp; 5121 int nr_busy = atomic_read(&sgp->nr_busy_cpus); 5122 5123 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) 5124 goto need_kick_unlock; 5125 5126 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight 5127 && (cpumask_first_and(nohz.idle_cpus_mask, 5128 sched_domain_span(sd)) < cpu)) 5129 goto need_kick_unlock; 5130 5131 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) 5132 break; 5133 } 5134 rcu_read_unlock(); 5135 return 0; 5136 5137 need_kick_unlock: 5138 rcu_read_unlock(); 5139 need_kick: 5140 return 1; 5141 } 5142 #else 5143 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } 5144 #endif 5145 5146 /* 5147 * run_rebalance_domains is triggered when needed from the scheduler tick. 5148 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 5149 */ 5150 static void run_rebalance_domains(struct softirq_action *h) 5151 { 5152 int this_cpu = smp_processor_id(); 5153 struct rq *this_rq = cpu_rq(this_cpu); 5154 enum cpu_idle_type idle = this_rq->idle_balance ? 5155 CPU_IDLE : CPU_NOT_IDLE; 5156 5157 rebalance_domains(this_cpu, idle); 5158 5159 /* 5160 * If this cpu has a pending nohz_balance_kick, then do the 5161 * balancing on behalf of the other idle cpus whose ticks are 5162 * stopped. 5163 */ 5164 nohz_idle_balance(this_cpu, idle); 5165 } 5166 5167 static inline int on_null_domain(int cpu) 5168 { 5169 return !rcu_dereference_sched(cpu_rq(cpu)->sd); 5170 } 5171 5172 /* 5173 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 5174 */ 5175 void trigger_load_balance(struct rq *rq, int cpu) 5176 { 5177 /* Don't need to rebalance while attached to NULL domain */ 5178 if (time_after_eq(jiffies, rq->next_balance) && 5179 likely(!on_null_domain(cpu))) 5180 raise_softirq(SCHED_SOFTIRQ); 5181 #ifdef CONFIG_NO_HZ 5182 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) 5183 nohz_balancer_kick(cpu); 5184 #endif 5185 } 5186 5187 static void rq_online_fair(struct rq *rq) 5188 { 5189 update_sysctl(); 5190 } 5191 5192 static void rq_offline_fair(struct rq *rq) 5193 { 5194 update_sysctl(); 5195 } 5196 5197 #endif /* CONFIG_SMP */ 5198 5199 /* 5200 * scheduler tick hitting a task of our scheduling class: 5201 */ 5202 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 5203 { 5204 struct cfs_rq *cfs_rq; 5205 struct sched_entity *se = &curr->se; 5206 5207 for_each_sched_entity(se) { 5208 cfs_rq = cfs_rq_of(se); 5209 entity_tick(cfs_rq, se, queued); 5210 } 5211 } 5212 5213 /* 5214 * called on fork with the child task as argument from the parent's context 5215 * - child not yet on the tasklist 5216 * - preemption disabled 5217 */ 5218 static void task_fork_fair(struct task_struct *p) 5219 { 5220 struct cfs_rq *cfs_rq; 5221 struct sched_entity *se = &p->se, *curr; 5222 int this_cpu = smp_processor_id(); 5223 struct rq *rq = this_rq(); 5224 unsigned long flags; 5225 5226 raw_spin_lock_irqsave(&rq->lock, flags); 5227 5228 update_rq_clock(rq); 5229 5230 cfs_rq = task_cfs_rq(current); 5231 curr = cfs_rq->curr; 5232 5233 if (unlikely(task_cpu(p) != this_cpu)) { 5234 rcu_read_lock(); 5235 __set_task_cpu(p, this_cpu); 5236 rcu_read_unlock(); 5237 } 5238 5239 update_curr(cfs_rq); 5240 5241 if (curr) 5242 se->vruntime = curr->vruntime; 5243 place_entity(cfs_rq, se, 1); 5244 5245 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 5246 /* 5247 * Upon rescheduling, sched_class::put_prev_task() will place 5248 * 'current' within the tree based on its new key value. 5249 */ 5250 swap(curr->vruntime, se->vruntime); 5251 resched_task(rq->curr); 5252 } 5253 5254 se->vruntime -= cfs_rq->min_vruntime; 5255 5256 raw_spin_unlock_irqrestore(&rq->lock, flags); 5257 } 5258 5259 /* 5260 * Priority of the task has changed. Check to see if we preempt 5261 * the current task. 5262 */ 5263 static void 5264 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 5265 { 5266 if (!p->se.on_rq) 5267 return; 5268 5269 /* 5270 * Reschedule if we are currently running on this runqueue and 5271 * our priority decreased, or if we are not currently running on 5272 * this runqueue and our priority is higher than the current's 5273 */ 5274 if (rq->curr == p) { 5275 if (p->prio > oldprio) 5276 resched_task(rq->curr); 5277 } else 5278 check_preempt_curr(rq, p, 0); 5279 } 5280 5281 static void switched_from_fair(struct rq *rq, struct task_struct *p) 5282 { 5283 struct sched_entity *se = &p->se; 5284 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5285 5286 /* 5287 * Ensure the task's vruntime is normalized, so that when its 5288 * switched back to the fair class the enqueue_entity(.flags=0) will 5289 * do the right thing. 5290 * 5291 * If it was on_rq, then the dequeue_entity(.flags=0) will already 5292 * have normalized the vruntime, if it was !on_rq, then only when 5293 * the task is sleeping will it still have non-normalized vruntime. 5294 */ 5295 if (!se->on_rq && p->state != TASK_RUNNING) { 5296 /* 5297 * Fix up our vruntime so that the current sleep doesn't 5298 * cause 'unlimited' sleep bonus. 5299 */ 5300 place_entity(cfs_rq, se, 0); 5301 se->vruntime -= cfs_rq->min_vruntime; 5302 } 5303 } 5304 5305 /* 5306 * We switched to the sched_fair class. 5307 */ 5308 static void switched_to_fair(struct rq *rq, struct task_struct *p) 5309 { 5310 if (!p->se.on_rq) 5311 return; 5312 5313 /* 5314 * We were most likely switched from sched_rt, so 5315 * kick off the schedule if running, otherwise just see 5316 * if we can still preempt the current task. 5317 */ 5318 if (rq->curr == p) 5319 resched_task(rq->curr); 5320 else 5321 check_preempt_curr(rq, p, 0); 5322 } 5323 5324 /* Account for a task changing its policy or group. 5325 * 5326 * This routine is mostly called to set cfs_rq->curr field when a task 5327 * migrates between groups/classes. 5328 */ 5329 static void set_curr_task_fair(struct rq *rq) 5330 { 5331 struct sched_entity *se = &rq->curr->se; 5332 5333 for_each_sched_entity(se) { 5334 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5335 5336 set_next_entity(cfs_rq, se); 5337 /* ensure bandwidth has been allocated on our new cfs_rq */ 5338 account_cfs_rq_runtime(cfs_rq, 0); 5339 } 5340 } 5341 5342 void init_cfs_rq(struct cfs_rq *cfs_rq) 5343 { 5344 cfs_rq->tasks_timeline = RB_ROOT; 5345 INIT_LIST_HEAD(&cfs_rq->tasks); 5346 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 5347 #ifndef CONFIG_64BIT 5348 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 5349 #endif 5350 } 5351 5352 #ifdef CONFIG_FAIR_GROUP_SCHED 5353 static void task_move_group_fair(struct task_struct *p, int on_rq) 5354 { 5355 /* 5356 * If the task was not on the rq at the time of this cgroup movement 5357 * it must have been asleep, sleeping tasks keep their ->vruntime 5358 * absolute on their old rq until wakeup (needed for the fair sleeper 5359 * bonus in place_entity()). 5360 * 5361 * If it was on the rq, we've just 'preempted' it, which does convert 5362 * ->vruntime to a relative base. 5363 * 5364 * Make sure both cases convert their relative position when migrating 5365 * to another cgroup's rq. This does somewhat interfere with the 5366 * fair sleeper stuff for the first placement, but who cares. 5367 */ 5368 /* 5369 * When !on_rq, vruntime of the task has usually NOT been normalized. 5370 * But there are some cases where it has already been normalized: 5371 * 5372 * - Moving a forked child which is waiting for being woken up by 5373 * wake_up_new_task(). 5374 * - Moving a task which has been woken up by try_to_wake_up() and 5375 * waiting for actually being woken up by sched_ttwu_pending(). 5376 * 5377 * To prevent boost or penalty in the new cfs_rq caused by delta 5378 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 5379 */ 5380 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) 5381 on_rq = 1; 5382 5383 if (!on_rq) 5384 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; 5385 set_task_rq(p, task_cpu(p)); 5386 if (!on_rq) 5387 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; 5388 } 5389 5390 void free_fair_sched_group(struct task_group *tg) 5391 { 5392 int i; 5393 5394 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5395 5396 for_each_possible_cpu(i) { 5397 if (tg->cfs_rq) 5398 kfree(tg->cfs_rq[i]); 5399 if (tg->se) 5400 kfree(tg->se[i]); 5401 } 5402 5403 kfree(tg->cfs_rq); 5404 kfree(tg->se); 5405 } 5406 5407 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 5408 { 5409 struct cfs_rq *cfs_rq; 5410 struct sched_entity *se; 5411 int i; 5412 5413 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 5414 if (!tg->cfs_rq) 5415 goto err; 5416 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 5417 if (!tg->se) 5418 goto err; 5419 5420 tg->shares = NICE_0_LOAD; 5421 5422 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 5423 5424 for_each_possible_cpu(i) { 5425 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 5426 GFP_KERNEL, cpu_to_node(i)); 5427 if (!cfs_rq) 5428 goto err; 5429 5430 se = kzalloc_node(sizeof(struct sched_entity), 5431 GFP_KERNEL, cpu_to_node(i)); 5432 if (!se) 5433 goto err_free_rq; 5434 5435 init_cfs_rq(cfs_rq); 5436 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 5437 } 5438 5439 return 1; 5440 5441 err_free_rq: 5442 kfree(cfs_rq); 5443 err: 5444 return 0; 5445 } 5446 5447 void unregister_fair_sched_group(struct task_group *tg, int cpu) 5448 { 5449 struct rq *rq = cpu_rq(cpu); 5450 unsigned long flags; 5451 5452 /* 5453 * Only empty task groups can be destroyed; so we can speculatively 5454 * check on_list without danger of it being re-added. 5455 */ 5456 if (!tg->cfs_rq[cpu]->on_list) 5457 return; 5458 5459 raw_spin_lock_irqsave(&rq->lock, flags); 5460 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 5461 raw_spin_unlock_irqrestore(&rq->lock, flags); 5462 } 5463 5464 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 5465 struct sched_entity *se, int cpu, 5466 struct sched_entity *parent) 5467 { 5468 struct rq *rq = cpu_rq(cpu); 5469 5470 cfs_rq->tg = tg; 5471 cfs_rq->rq = rq; 5472 #ifdef CONFIG_SMP 5473 /* allow initial update_cfs_load() to truncate */ 5474 cfs_rq->load_stamp = 1; 5475 #endif 5476 init_cfs_rq_runtime(cfs_rq); 5477 5478 tg->cfs_rq[cpu] = cfs_rq; 5479 tg->se[cpu] = se; 5480 5481 /* se could be NULL for root_task_group */ 5482 if (!se) 5483 return; 5484 5485 if (!parent) 5486 se->cfs_rq = &rq->cfs; 5487 else 5488 se->cfs_rq = parent->my_q; 5489 5490 se->my_q = cfs_rq; 5491 update_load_set(&se->load, 0); 5492 se->parent = parent; 5493 } 5494 5495 static DEFINE_MUTEX(shares_mutex); 5496 5497 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 5498 { 5499 int i; 5500 unsigned long flags; 5501 5502 /* 5503 * We can't change the weight of the root cgroup. 5504 */ 5505 if (!tg->se[0]) 5506 return -EINVAL; 5507 5508 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 5509 5510 mutex_lock(&shares_mutex); 5511 if (tg->shares == shares) 5512 goto done; 5513 5514 tg->shares = shares; 5515 for_each_possible_cpu(i) { 5516 struct rq *rq = cpu_rq(i); 5517 struct sched_entity *se; 5518 5519 se = tg->se[i]; 5520 /* Propagate contribution to hierarchy */ 5521 raw_spin_lock_irqsave(&rq->lock, flags); 5522 for_each_sched_entity(se) 5523 update_cfs_shares(group_cfs_rq(se)); 5524 raw_spin_unlock_irqrestore(&rq->lock, flags); 5525 } 5526 5527 done: 5528 mutex_unlock(&shares_mutex); 5529 return 0; 5530 } 5531 #else /* CONFIG_FAIR_GROUP_SCHED */ 5532 5533 void free_fair_sched_group(struct task_group *tg) { } 5534 5535 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 5536 { 5537 return 1; 5538 } 5539 5540 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 5541 5542 #endif /* CONFIG_FAIR_GROUP_SCHED */ 5543 5544 5545 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 5546 { 5547 struct sched_entity *se = &task->se; 5548 unsigned int rr_interval = 0; 5549 5550 /* 5551 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 5552 * idle runqueue: 5553 */ 5554 if (rq->cfs.load.weight) 5555 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); 5556 5557 return rr_interval; 5558 } 5559 5560 /* 5561 * All the scheduling class methods: 5562 */ 5563 const struct sched_class fair_sched_class = { 5564 .next = &idle_sched_class, 5565 .enqueue_task = enqueue_task_fair, 5566 .dequeue_task = dequeue_task_fair, 5567 .yield_task = yield_task_fair, 5568 .yield_to_task = yield_to_task_fair, 5569 5570 .check_preempt_curr = check_preempt_wakeup, 5571 5572 .pick_next_task = pick_next_task_fair, 5573 .put_prev_task = put_prev_task_fair, 5574 5575 #ifdef CONFIG_SMP 5576 .select_task_rq = select_task_rq_fair, 5577 5578 .rq_online = rq_online_fair, 5579 .rq_offline = rq_offline_fair, 5580 5581 .task_waking = task_waking_fair, 5582 #endif 5583 5584 .set_curr_task = set_curr_task_fair, 5585 .task_tick = task_tick_fair, 5586 .task_fork = task_fork_fair, 5587 5588 .prio_changed = prio_changed_fair, 5589 .switched_from = switched_from_fair, 5590 .switched_to = switched_to_fair, 5591 5592 .get_rr_interval = get_rr_interval_fair, 5593 5594 #ifdef CONFIG_FAIR_GROUP_SCHED 5595 .task_move_group = task_move_group_fair, 5596 #endif 5597 }; 5598 5599 #ifdef CONFIG_SCHED_DEBUG 5600 void print_cfs_stats(struct seq_file *m, int cpu) 5601 { 5602 struct cfs_rq *cfs_rq; 5603 5604 rcu_read_lock(); 5605 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 5606 print_cfs_rq(m, cpu, cfs_rq); 5607 rcu_read_unlock(); 5608 } 5609 #endif 5610 5611 __init void init_sched_fair_class(void) 5612 { 5613 #ifdef CONFIG_SMP 5614 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 5615 5616 #ifdef CONFIG_NO_HZ 5617 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 5618 cpu_notifier(sched_ilb_notifier, 0); 5619 #endif 5620 #endif /* SMP */ 5621 5622 } 5623