1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return task_has_idle_policy(task_of(se)); 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 783 } 784 785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 786 { 787 struct sched_entity *root = __pick_root_entity(cfs_rq); 788 struct sched_entity *curr = cfs_rq->curr; 789 u64 min_slice = ~0ULL; 790 791 if (curr && curr->on_rq) 792 min_slice = curr->slice; 793 794 if (root) 795 min_slice = min(min_slice, root->min_slice); 796 797 return min_slice; 798 } 799 800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 801 { 802 return entity_before(__node_2_se(a), __node_2_se(b)); 803 } 804 805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 806 807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 808 { 809 if (node) { 810 struct sched_entity *rse = __node_2_se(node); 811 if (vruntime_gt(min_vruntime, se, rse)) 812 se->min_vruntime = rse->min_vruntime; 813 } 814 } 815 816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 817 { 818 if (node) { 819 struct sched_entity *rse = __node_2_se(node); 820 if (rse->min_slice < se->min_slice) 821 se->min_slice = rse->min_slice; 822 } 823 } 824 825 /* 826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 827 */ 828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 829 { 830 u64 old_min_vruntime = se->min_vruntime; 831 u64 old_min_slice = se->min_slice; 832 struct rb_node *node = &se->run_node; 833 834 se->min_vruntime = se->vruntime; 835 __min_vruntime_update(se, node->rb_right); 836 __min_vruntime_update(se, node->rb_left); 837 838 se->min_slice = se->slice; 839 __min_slice_update(se, node->rb_right); 840 __min_slice_update(se, node->rb_left); 841 842 return se->min_vruntime == old_min_vruntime && 843 se->min_slice == old_min_slice; 844 } 845 846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 847 run_node, min_vruntime, min_vruntime_update); 848 849 /* 850 * Enqueue an entity into the rb-tree: 851 */ 852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 853 { 854 avg_vruntime_add(cfs_rq, se); 855 se->min_vruntime = se->vruntime; 856 se->min_slice = se->slice; 857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 858 __entity_less, &min_vruntime_cb); 859 } 860 861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 862 { 863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 864 &min_vruntime_cb); 865 avg_vruntime_sub(cfs_rq, se); 866 } 867 868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 869 { 870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 871 872 if (!root) 873 return NULL; 874 875 return __node_2_se(root); 876 } 877 878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 879 { 880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 881 882 if (!left) 883 return NULL; 884 885 return __node_2_se(left); 886 } 887 888 /* 889 * Earliest Eligible Virtual Deadline First 890 * 891 * In order to provide latency guarantees for different request sizes 892 * EEVDF selects the best runnable task from two criteria: 893 * 894 * 1) the task must be eligible (must be owed service) 895 * 896 * 2) from those tasks that meet 1), we select the one 897 * with the earliest virtual deadline. 898 * 899 * We can do this in O(log n) time due to an augmented RB-tree. The 900 * tree keeps the entries sorted on deadline, but also functions as a 901 * heap based on the vruntime by keeping: 902 * 903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 904 * 905 * Which allows tree pruning through eligibility. 906 */ 907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 908 { 909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 910 struct sched_entity *se = __pick_first_entity(cfs_rq); 911 struct sched_entity *curr = cfs_rq->curr; 912 struct sched_entity *best = NULL; 913 914 /* 915 * We can safely skip eligibility check if there is only one entity 916 * in this cfs_rq, saving some cycles. 917 */ 918 if (cfs_rq->nr_running == 1) 919 return curr && curr->on_rq ? curr : se; 920 921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 922 curr = NULL; 923 924 /* 925 * Once selected, run a task until it either becomes non-eligible or 926 * until it gets a new slice. See the HACK in set_next_entity(). 927 */ 928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 929 return curr; 930 931 /* Pick the leftmost entity if it's eligible */ 932 if (se && entity_eligible(cfs_rq, se)) { 933 best = se; 934 goto found; 935 } 936 937 /* Heap search for the EEVD entity */ 938 while (node) { 939 struct rb_node *left = node->rb_left; 940 941 /* 942 * Eligible entities in left subtree are always better 943 * choices, since they have earlier deadlines. 944 */ 945 if (left && vruntime_eligible(cfs_rq, 946 __node_2_se(left)->min_vruntime)) { 947 node = left; 948 continue; 949 } 950 951 se = __node_2_se(node); 952 953 /* 954 * The left subtree either is empty or has no eligible 955 * entity, so check the current node since it is the one 956 * with earliest deadline that might be eligible. 957 */ 958 if (entity_eligible(cfs_rq, se)) { 959 best = se; 960 break; 961 } 962 963 node = node->rb_right; 964 } 965 found: 966 if (!best || (curr && entity_before(curr, best))) 967 best = curr; 968 969 return best; 970 } 971 972 #ifdef CONFIG_SCHED_DEBUG 973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 974 { 975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 976 977 if (!last) 978 return NULL; 979 980 return __node_2_se(last); 981 } 982 983 /************************************************************** 984 * Scheduling class statistics methods: 985 */ 986 #ifdef CONFIG_SMP 987 int sched_update_scaling(void) 988 { 989 unsigned int factor = get_update_sysctl_factor(); 990 991 #define WRT_SYSCTL(name) \ 992 (normalized_sysctl_##name = sysctl_##name / (factor)) 993 WRT_SYSCTL(sched_base_slice); 994 #undef WRT_SYSCTL 995 996 return 0; 997 } 998 #endif 999 #endif 1000 1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1002 1003 /* 1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1005 * this is probably good enough. 1006 */ 1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1008 { 1009 if ((s64)(se->vruntime - se->deadline) < 0) 1010 return false; 1011 1012 /* 1013 * For EEVDF the virtual time slope is determined by w_i (iow. 1014 * nice) while the request time r_i is determined by 1015 * sysctl_sched_base_slice. 1016 */ 1017 if (!se->custom_slice) 1018 se->slice = sysctl_sched_base_slice; 1019 1020 /* 1021 * EEVDF: vd_i = ve_i + r_i / w_i 1022 */ 1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1024 1025 /* 1026 * The task has consumed its request, reschedule. 1027 */ 1028 return true; 1029 } 1030 1031 #include "pelt.h" 1032 #ifdef CONFIG_SMP 1033 1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1035 static unsigned long task_h_load(struct task_struct *p); 1036 static unsigned long capacity_of(int cpu); 1037 1038 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1039 void init_entity_runnable_average(struct sched_entity *se) 1040 { 1041 struct sched_avg *sa = &se->avg; 1042 1043 memset(sa, 0, sizeof(*sa)); 1044 1045 /* 1046 * Tasks are initialized with full load to be seen as heavy tasks until 1047 * they get a chance to stabilize to their real load level. 1048 * Group entities are initialized with zero load to reflect the fact that 1049 * nothing has been attached to the task group yet. 1050 */ 1051 if (entity_is_task(se)) 1052 sa->load_avg = scale_load_down(se->load.weight); 1053 1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1055 } 1056 1057 /* 1058 * With new tasks being created, their initial util_avgs are extrapolated 1059 * based on the cfs_rq's current util_avg: 1060 * 1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1062 * * se_weight(se) 1063 * 1064 * However, in many cases, the above util_avg does not give a desired 1065 * value. Moreover, the sum of the util_avgs may be divergent, such 1066 * as when the series is a harmonic series. 1067 * 1068 * To solve this problem, we also cap the util_avg of successive tasks to 1069 * only 1/2 of the left utilization budget: 1070 * 1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1072 * 1073 * where n denotes the nth task and cpu_scale the CPU capacity. 1074 * 1075 * For example, for a CPU with 1024 of capacity, a simplest series from 1076 * the beginning would be like: 1077 * 1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1080 * 1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1082 * if util_avg > util_avg_cap. 1083 */ 1084 void post_init_entity_util_avg(struct task_struct *p) 1085 { 1086 struct sched_entity *se = &p->se; 1087 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1088 struct sched_avg *sa = &se->avg; 1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1091 1092 if (p->sched_class != &fair_sched_class) { 1093 /* 1094 * For !fair tasks do: 1095 * 1096 update_cfs_rq_load_avg(now, cfs_rq); 1097 attach_entity_load_avg(cfs_rq, se); 1098 switched_from_fair(rq, p); 1099 * 1100 * such that the next switched_to_fair() has the 1101 * expected state. 1102 */ 1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1104 return; 1105 } 1106 1107 if (cap > 0) { 1108 if (cfs_rq->avg.util_avg != 0) { 1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1111 1112 if (sa->util_avg > cap) 1113 sa->util_avg = cap; 1114 } else { 1115 sa->util_avg = cap; 1116 } 1117 } 1118 1119 sa->runnable_avg = sa->util_avg; 1120 } 1121 1122 #else /* !CONFIG_SMP */ 1123 void init_entity_runnable_average(struct sched_entity *se) 1124 { 1125 } 1126 void post_init_entity_util_avg(struct task_struct *p) 1127 { 1128 } 1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1130 { 1131 } 1132 #endif /* CONFIG_SMP */ 1133 1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1135 { 1136 u64 now = rq_clock_task(rq); 1137 s64 delta_exec; 1138 1139 delta_exec = now - curr->exec_start; 1140 if (unlikely(delta_exec <= 0)) 1141 return delta_exec; 1142 1143 curr->exec_start = now; 1144 curr->sum_exec_runtime += delta_exec; 1145 1146 if (schedstat_enabled()) { 1147 struct sched_statistics *stats; 1148 1149 stats = __schedstats_from_se(curr); 1150 __schedstat_set(stats->exec_max, 1151 max(delta_exec, stats->exec_max)); 1152 } 1153 1154 return delta_exec; 1155 } 1156 1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1158 { 1159 trace_sched_stat_runtime(p, delta_exec); 1160 account_group_exec_runtime(p, delta_exec); 1161 cgroup_account_cputime(p, delta_exec); 1162 } 1163 1164 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1165 { 1166 if (!sched_feat(PREEMPT_SHORT)) 1167 return false; 1168 1169 if (curr->vlag == curr->deadline) 1170 return false; 1171 1172 return !entity_eligible(cfs_rq, curr); 1173 } 1174 1175 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1176 struct sched_entity *pse, struct sched_entity *se) 1177 { 1178 if (!sched_feat(PREEMPT_SHORT)) 1179 return false; 1180 1181 if (pse->slice >= se->slice) 1182 return false; 1183 1184 if (!entity_eligible(cfs_rq, pse)) 1185 return false; 1186 1187 if (entity_before(pse, se)) 1188 return true; 1189 1190 if (!entity_eligible(cfs_rq, se)) 1191 return true; 1192 1193 return false; 1194 } 1195 1196 /* 1197 * Used by other classes to account runtime. 1198 */ 1199 s64 update_curr_common(struct rq *rq) 1200 { 1201 struct task_struct *donor = rq->donor; 1202 s64 delta_exec; 1203 1204 delta_exec = update_curr_se(rq, &donor->se); 1205 if (likely(delta_exec > 0)) 1206 update_curr_task(donor, delta_exec); 1207 1208 return delta_exec; 1209 } 1210 1211 /* 1212 * Update the current task's runtime statistics. 1213 */ 1214 static void update_curr(struct cfs_rq *cfs_rq) 1215 { 1216 struct sched_entity *curr = cfs_rq->curr; 1217 struct rq *rq = rq_of(cfs_rq); 1218 s64 delta_exec; 1219 bool resched; 1220 1221 if (unlikely(!curr)) 1222 return; 1223 1224 delta_exec = update_curr_se(rq, curr); 1225 if (unlikely(delta_exec <= 0)) 1226 return; 1227 1228 curr->vruntime += calc_delta_fair(delta_exec, curr); 1229 resched = update_deadline(cfs_rq, curr); 1230 update_min_vruntime(cfs_rq); 1231 1232 if (entity_is_task(curr)) { 1233 struct task_struct *p = task_of(curr); 1234 1235 update_curr_task(p, delta_exec); 1236 1237 /* 1238 * If the fair_server is active, we need to account for the 1239 * fair_server time whether or not the task is running on 1240 * behalf of fair_server or not: 1241 * - If the task is running on behalf of fair_server, we need 1242 * to limit its time based on the assigned runtime. 1243 * - Fair task that runs outside of fair_server should account 1244 * against fair_server such that it can account for this time 1245 * and possibly avoid running this period. 1246 */ 1247 if (dl_server_active(&rq->fair_server)) 1248 dl_server_update(&rq->fair_server, delta_exec); 1249 } 1250 1251 account_cfs_rq_runtime(cfs_rq, delta_exec); 1252 1253 if (cfs_rq->nr_running == 1) 1254 return; 1255 1256 if (resched || did_preempt_short(cfs_rq, curr)) { 1257 resched_curr_lazy(rq); 1258 clear_buddies(cfs_rq, curr); 1259 } 1260 } 1261 1262 static void update_curr_fair(struct rq *rq) 1263 { 1264 update_curr(cfs_rq_of(&rq->donor->se)); 1265 } 1266 1267 static inline void 1268 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1269 { 1270 struct sched_statistics *stats; 1271 struct task_struct *p = NULL; 1272 1273 if (!schedstat_enabled()) 1274 return; 1275 1276 stats = __schedstats_from_se(se); 1277 1278 if (entity_is_task(se)) 1279 p = task_of(se); 1280 1281 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1282 } 1283 1284 static inline void 1285 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1286 { 1287 struct sched_statistics *stats; 1288 struct task_struct *p = NULL; 1289 1290 if (!schedstat_enabled()) 1291 return; 1292 1293 stats = __schedstats_from_se(se); 1294 1295 /* 1296 * When the sched_schedstat changes from 0 to 1, some sched se 1297 * maybe already in the runqueue, the se->statistics.wait_start 1298 * will be 0.So it will let the delta wrong. We need to avoid this 1299 * scenario. 1300 */ 1301 if (unlikely(!schedstat_val(stats->wait_start))) 1302 return; 1303 1304 if (entity_is_task(se)) 1305 p = task_of(se); 1306 1307 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1308 } 1309 1310 static inline void 1311 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1312 { 1313 struct sched_statistics *stats; 1314 struct task_struct *tsk = NULL; 1315 1316 if (!schedstat_enabled()) 1317 return; 1318 1319 stats = __schedstats_from_se(se); 1320 1321 if (entity_is_task(se)) 1322 tsk = task_of(se); 1323 1324 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1325 } 1326 1327 /* 1328 * Task is being enqueued - update stats: 1329 */ 1330 static inline void 1331 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1332 { 1333 if (!schedstat_enabled()) 1334 return; 1335 1336 /* 1337 * Are we enqueueing a waiting task? (for current tasks 1338 * a dequeue/enqueue event is a NOP) 1339 */ 1340 if (se != cfs_rq->curr) 1341 update_stats_wait_start_fair(cfs_rq, se); 1342 1343 if (flags & ENQUEUE_WAKEUP) 1344 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1345 } 1346 1347 static inline void 1348 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1349 { 1350 1351 if (!schedstat_enabled()) 1352 return; 1353 1354 /* 1355 * Mark the end of the wait period if dequeueing a 1356 * waiting task: 1357 */ 1358 if (se != cfs_rq->curr) 1359 update_stats_wait_end_fair(cfs_rq, se); 1360 1361 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1362 struct task_struct *tsk = task_of(se); 1363 unsigned int state; 1364 1365 /* XXX racy against TTWU */ 1366 state = READ_ONCE(tsk->__state); 1367 if (state & TASK_INTERRUPTIBLE) 1368 __schedstat_set(tsk->stats.sleep_start, 1369 rq_clock(rq_of(cfs_rq))); 1370 if (state & TASK_UNINTERRUPTIBLE) 1371 __schedstat_set(tsk->stats.block_start, 1372 rq_clock(rq_of(cfs_rq))); 1373 } 1374 } 1375 1376 /* 1377 * We are picking a new current task - update its stats: 1378 */ 1379 static inline void 1380 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1381 { 1382 /* 1383 * We are starting a new run period: 1384 */ 1385 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1386 } 1387 1388 /************************************************** 1389 * Scheduling class queueing methods: 1390 */ 1391 1392 static inline bool is_core_idle(int cpu) 1393 { 1394 #ifdef CONFIG_SCHED_SMT 1395 int sibling; 1396 1397 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1398 if (cpu == sibling) 1399 continue; 1400 1401 if (!idle_cpu(sibling)) 1402 return false; 1403 } 1404 #endif 1405 1406 return true; 1407 } 1408 1409 #ifdef CONFIG_NUMA 1410 #define NUMA_IMBALANCE_MIN 2 1411 1412 static inline long 1413 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1414 { 1415 /* 1416 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1417 * threshold. Above this threshold, individual tasks may be contending 1418 * for both memory bandwidth and any shared HT resources. This is an 1419 * approximation as the number of running tasks may not be related to 1420 * the number of busy CPUs due to sched_setaffinity. 1421 */ 1422 if (dst_running > imb_numa_nr) 1423 return imbalance; 1424 1425 /* 1426 * Allow a small imbalance based on a simple pair of communicating 1427 * tasks that remain local when the destination is lightly loaded. 1428 */ 1429 if (imbalance <= NUMA_IMBALANCE_MIN) 1430 return 0; 1431 1432 return imbalance; 1433 } 1434 #endif /* CONFIG_NUMA */ 1435 1436 #ifdef CONFIG_NUMA_BALANCING 1437 /* 1438 * Approximate time to scan a full NUMA task in ms. The task scan period is 1439 * calculated based on the tasks virtual memory size and 1440 * numa_balancing_scan_size. 1441 */ 1442 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1443 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1444 1445 /* Portion of address space to scan in MB */ 1446 unsigned int sysctl_numa_balancing_scan_size = 256; 1447 1448 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1449 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1450 1451 /* The page with hint page fault latency < threshold in ms is considered hot */ 1452 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1453 1454 struct numa_group { 1455 refcount_t refcount; 1456 1457 spinlock_t lock; /* nr_tasks, tasks */ 1458 int nr_tasks; 1459 pid_t gid; 1460 int active_nodes; 1461 1462 struct rcu_head rcu; 1463 unsigned long total_faults; 1464 unsigned long max_faults_cpu; 1465 /* 1466 * faults[] array is split into two regions: faults_mem and faults_cpu. 1467 * 1468 * Faults_cpu is used to decide whether memory should move 1469 * towards the CPU. As a consequence, these stats are weighted 1470 * more by CPU use than by memory faults. 1471 */ 1472 unsigned long faults[]; 1473 }; 1474 1475 /* 1476 * For functions that can be called in multiple contexts that permit reading 1477 * ->numa_group (see struct task_struct for locking rules). 1478 */ 1479 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1480 { 1481 return rcu_dereference_check(p->numa_group, p == current || 1482 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1483 } 1484 1485 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1486 { 1487 return rcu_dereference_protected(p->numa_group, p == current); 1488 } 1489 1490 static inline unsigned long group_faults_priv(struct numa_group *ng); 1491 static inline unsigned long group_faults_shared(struct numa_group *ng); 1492 1493 static unsigned int task_nr_scan_windows(struct task_struct *p) 1494 { 1495 unsigned long rss = 0; 1496 unsigned long nr_scan_pages; 1497 1498 /* 1499 * Calculations based on RSS as non-present and empty pages are skipped 1500 * by the PTE scanner and NUMA hinting faults should be trapped based 1501 * on resident pages 1502 */ 1503 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1504 rss = get_mm_rss(p->mm); 1505 if (!rss) 1506 rss = nr_scan_pages; 1507 1508 rss = round_up(rss, nr_scan_pages); 1509 return rss / nr_scan_pages; 1510 } 1511 1512 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1513 #define MAX_SCAN_WINDOW 2560 1514 1515 static unsigned int task_scan_min(struct task_struct *p) 1516 { 1517 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1518 unsigned int scan, floor; 1519 unsigned int windows = 1; 1520 1521 if (scan_size < MAX_SCAN_WINDOW) 1522 windows = MAX_SCAN_WINDOW / scan_size; 1523 floor = 1000 / windows; 1524 1525 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1526 return max_t(unsigned int, floor, scan); 1527 } 1528 1529 static unsigned int task_scan_start(struct task_struct *p) 1530 { 1531 unsigned long smin = task_scan_min(p); 1532 unsigned long period = smin; 1533 struct numa_group *ng; 1534 1535 /* Scale the maximum scan period with the amount of shared memory. */ 1536 rcu_read_lock(); 1537 ng = rcu_dereference(p->numa_group); 1538 if (ng) { 1539 unsigned long shared = group_faults_shared(ng); 1540 unsigned long private = group_faults_priv(ng); 1541 1542 period *= refcount_read(&ng->refcount); 1543 period *= shared + 1; 1544 period /= private + shared + 1; 1545 } 1546 rcu_read_unlock(); 1547 1548 return max(smin, period); 1549 } 1550 1551 static unsigned int task_scan_max(struct task_struct *p) 1552 { 1553 unsigned long smin = task_scan_min(p); 1554 unsigned long smax; 1555 struct numa_group *ng; 1556 1557 /* Watch for min being lower than max due to floor calculations */ 1558 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1559 1560 /* Scale the maximum scan period with the amount of shared memory. */ 1561 ng = deref_curr_numa_group(p); 1562 if (ng) { 1563 unsigned long shared = group_faults_shared(ng); 1564 unsigned long private = group_faults_priv(ng); 1565 unsigned long period = smax; 1566 1567 period *= refcount_read(&ng->refcount); 1568 period *= shared + 1; 1569 period /= private + shared + 1; 1570 1571 smax = max(smax, period); 1572 } 1573 1574 return max(smin, smax); 1575 } 1576 1577 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1578 { 1579 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1580 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1581 } 1582 1583 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1584 { 1585 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1586 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1587 } 1588 1589 /* Shared or private faults. */ 1590 #define NR_NUMA_HINT_FAULT_TYPES 2 1591 1592 /* Memory and CPU locality */ 1593 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1594 1595 /* Averaged statistics, and temporary buffers. */ 1596 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1597 1598 pid_t task_numa_group_id(struct task_struct *p) 1599 { 1600 struct numa_group *ng; 1601 pid_t gid = 0; 1602 1603 rcu_read_lock(); 1604 ng = rcu_dereference(p->numa_group); 1605 if (ng) 1606 gid = ng->gid; 1607 rcu_read_unlock(); 1608 1609 return gid; 1610 } 1611 1612 /* 1613 * The averaged statistics, shared & private, memory & CPU, 1614 * occupy the first half of the array. The second half of the 1615 * array is for current counters, which are averaged into the 1616 * first set by task_numa_placement. 1617 */ 1618 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1619 { 1620 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1621 } 1622 1623 static inline unsigned long task_faults(struct task_struct *p, int nid) 1624 { 1625 if (!p->numa_faults) 1626 return 0; 1627 1628 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1629 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1630 } 1631 1632 static inline unsigned long group_faults(struct task_struct *p, int nid) 1633 { 1634 struct numa_group *ng = deref_task_numa_group(p); 1635 1636 if (!ng) 1637 return 0; 1638 1639 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1640 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1641 } 1642 1643 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1644 { 1645 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1646 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1647 } 1648 1649 static inline unsigned long group_faults_priv(struct numa_group *ng) 1650 { 1651 unsigned long faults = 0; 1652 int node; 1653 1654 for_each_online_node(node) { 1655 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1656 } 1657 1658 return faults; 1659 } 1660 1661 static inline unsigned long group_faults_shared(struct numa_group *ng) 1662 { 1663 unsigned long faults = 0; 1664 int node; 1665 1666 for_each_online_node(node) { 1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1668 } 1669 1670 return faults; 1671 } 1672 1673 /* 1674 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1675 * considered part of a numa group's pseudo-interleaving set. Migrations 1676 * between these nodes are slowed down, to allow things to settle down. 1677 */ 1678 #define ACTIVE_NODE_FRACTION 3 1679 1680 static bool numa_is_active_node(int nid, struct numa_group *ng) 1681 { 1682 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1683 } 1684 1685 /* Handle placement on systems where not all nodes are directly connected. */ 1686 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1687 int lim_dist, bool task) 1688 { 1689 unsigned long score = 0; 1690 int node, max_dist; 1691 1692 /* 1693 * All nodes are directly connected, and the same distance 1694 * from each other. No need for fancy placement algorithms. 1695 */ 1696 if (sched_numa_topology_type == NUMA_DIRECT) 1697 return 0; 1698 1699 /* sched_max_numa_distance may be changed in parallel. */ 1700 max_dist = READ_ONCE(sched_max_numa_distance); 1701 /* 1702 * This code is called for each node, introducing N^2 complexity, 1703 * which should be OK given the number of nodes rarely exceeds 8. 1704 */ 1705 for_each_online_node(node) { 1706 unsigned long faults; 1707 int dist = node_distance(nid, node); 1708 1709 /* 1710 * The furthest away nodes in the system are not interesting 1711 * for placement; nid was already counted. 1712 */ 1713 if (dist >= max_dist || node == nid) 1714 continue; 1715 1716 /* 1717 * On systems with a backplane NUMA topology, compare groups 1718 * of nodes, and move tasks towards the group with the most 1719 * memory accesses. When comparing two nodes at distance 1720 * "hoplimit", only nodes closer by than "hoplimit" are part 1721 * of each group. Skip other nodes. 1722 */ 1723 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1724 continue; 1725 1726 /* Add up the faults from nearby nodes. */ 1727 if (task) 1728 faults = task_faults(p, node); 1729 else 1730 faults = group_faults(p, node); 1731 1732 /* 1733 * On systems with a glueless mesh NUMA topology, there are 1734 * no fixed "groups of nodes". Instead, nodes that are not 1735 * directly connected bounce traffic through intermediate 1736 * nodes; a numa_group can occupy any set of nodes. 1737 * The further away a node is, the less the faults count. 1738 * This seems to result in good task placement. 1739 */ 1740 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1741 faults *= (max_dist - dist); 1742 faults /= (max_dist - LOCAL_DISTANCE); 1743 } 1744 1745 score += faults; 1746 } 1747 1748 return score; 1749 } 1750 1751 /* 1752 * These return the fraction of accesses done by a particular task, or 1753 * task group, on a particular numa node. The group weight is given a 1754 * larger multiplier, in order to group tasks together that are almost 1755 * evenly spread out between numa nodes. 1756 */ 1757 static inline unsigned long task_weight(struct task_struct *p, int nid, 1758 int dist) 1759 { 1760 unsigned long faults, total_faults; 1761 1762 if (!p->numa_faults) 1763 return 0; 1764 1765 total_faults = p->total_numa_faults; 1766 1767 if (!total_faults) 1768 return 0; 1769 1770 faults = task_faults(p, nid); 1771 faults += score_nearby_nodes(p, nid, dist, true); 1772 1773 return 1000 * faults / total_faults; 1774 } 1775 1776 static inline unsigned long group_weight(struct task_struct *p, int nid, 1777 int dist) 1778 { 1779 struct numa_group *ng = deref_task_numa_group(p); 1780 unsigned long faults, total_faults; 1781 1782 if (!ng) 1783 return 0; 1784 1785 total_faults = ng->total_faults; 1786 1787 if (!total_faults) 1788 return 0; 1789 1790 faults = group_faults(p, nid); 1791 faults += score_nearby_nodes(p, nid, dist, false); 1792 1793 return 1000 * faults / total_faults; 1794 } 1795 1796 /* 1797 * If memory tiering mode is enabled, cpupid of slow memory page is 1798 * used to record scan time instead of CPU and PID. When tiering mode 1799 * is disabled at run time, the scan time (in cpupid) will be 1800 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1801 * access out of array bound. 1802 */ 1803 static inline bool cpupid_valid(int cpupid) 1804 { 1805 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1806 } 1807 1808 /* 1809 * For memory tiering mode, if there are enough free pages (more than 1810 * enough watermark defined here) in fast memory node, to take full 1811 * advantage of fast memory capacity, all recently accessed slow 1812 * memory pages will be migrated to fast memory node without 1813 * considering hot threshold. 1814 */ 1815 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1816 { 1817 int z; 1818 unsigned long enough_wmark; 1819 1820 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1821 pgdat->node_present_pages >> 4); 1822 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1823 struct zone *zone = pgdat->node_zones + z; 1824 1825 if (!populated_zone(zone)) 1826 continue; 1827 1828 if (zone_watermark_ok(zone, 0, 1829 promo_wmark_pages(zone) + enough_wmark, 1830 ZONE_MOVABLE, 0)) 1831 return true; 1832 } 1833 return false; 1834 } 1835 1836 /* 1837 * For memory tiering mode, when page tables are scanned, the scan 1838 * time will be recorded in struct page in addition to make page 1839 * PROT_NONE for slow memory page. So when the page is accessed, in 1840 * hint page fault handler, the hint page fault latency is calculated 1841 * via, 1842 * 1843 * hint page fault latency = hint page fault time - scan time 1844 * 1845 * The smaller the hint page fault latency, the higher the possibility 1846 * for the page to be hot. 1847 */ 1848 static int numa_hint_fault_latency(struct folio *folio) 1849 { 1850 int last_time, time; 1851 1852 time = jiffies_to_msecs(jiffies); 1853 last_time = folio_xchg_access_time(folio, time); 1854 1855 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1856 } 1857 1858 /* 1859 * For memory tiering mode, too high promotion/demotion throughput may 1860 * hurt application latency. So we provide a mechanism to rate limit 1861 * the number of pages that are tried to be promoted. 1862 */ 1863 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1864 unsigned long rate_limit, int nr) 1865 { 1866 unsigned long nr_cand; 1867 unsigned int now, start; 1868 1869 now = jiffies_to_msecs(jiffies); 1870 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1871 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1872 start = pgdat->nbp_rl_start; 1873 if (now - start > MSEC_PER_SEC && 1874 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1875 pgdat->nbp_rl_nr_cand = nr_cand; 1876 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1877 return true; 1878 return false; 1879 } 1880 1881 #define NUMA_MIGRATION_ADJUST_STEPS 16 1882 1883 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1884 unsigned long rate_limit, 1885 unsigned int ref_th) 1886 { 1887 unsigned int now, start, th_period, unit_th, th; 1888 unsigned long nr_cand, ref_cand, diff_cand; 1889 1890 now = jiffies_to_msecs(jiffies); 1891 th_period = sysctl_numa_balancing_scan_period_max; 1892 start = pgdat->nbp_th_start; 1893 if (now - start > th_period && 1894 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1895 ref_cand = rate_limit * 1896 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1897 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1898 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1899 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1900 th = pgdat->nbp_threshold ? : ref_th; 1901 if (diff_cand > ref_cand * 11 / 10) 1902 th = max(th - unit_th, unit_th); 1903 else if (diff_cand < ref_cand * 9 / 10) 1904 th = min(th + unit_th, ref_th * 2); 1905 pgdat->nbp_th_nr_cand = nr_cand; 1906 pgdat->nbp_threshold = th; 1907 } 1908 } 1909 1910 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1911 int src_nid, int dst_cpu) 1912 { 1913 struct numa_group *ng = deref_curr_numa_group(p); 1914 int dst_nid = cpu_to_node(dst_cpu); 1915 int last_cpupid, this_cpupid; 1916 1917 /* 1918 * Cannot migrate to memoryless nodes. 1919 */ 1920 if (!node_state(dst_nid, N_MEMORY)) 1921 return false; 1922 1923 /* 1924 * The pages in slow memory node should be migrated according 1925 * to hot/cold instead of private/shared. 1926 */ 1927 if (folio_use_access_time(folio)) { 1928 struct pglist_data *pgdat; 1929 unsigned long rate_limit; 1930 unsigned int latency, th, def_th; 1931 1932 pgdat = NODE_DATA(dst_nid); 1933 if (pgdat_free_space_enough(pgdat)) { 1934 /* workload changed, reset hot threshold */ 1935 pgdat->nbp_threshold = 0; 1936 return true; 1937 } 1938 1939 def_th = sysctl_numa_balancing_hot_threshold; 1940 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1941 (20 - PAGE_SHIFT); 1942 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1943 1944 th = pgdat->nbp_threshold ? : def_th; 1945 latency = numa_hint_fault_latency(folio); 1946 if (latency >= th) 1947 return false; 1948 1949 return !numa_promotion_rate_limit(pgdat, rate_limit, 1950 folio_nr_pages(folio)); 1951 } 1952 1953 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1954 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1955 1956 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1957 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1958 return false; 1959 1960 /* 1961 * Allow first faults or private faults to migrate immediately early in 1962 * the lifetime of a task. The magic number 4 is based on waiting for 1963 * two full passes of the "multi-stage node selection" test that is 1964 * executed below. 1965 */ 1966 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1967 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1968 return true; 1969 1970 /* 1971 * Multi-stage node selection is used in conjunction with a periodic 1972 * migration fault to build a temporal task<->page relation. By using 1973 * a two-stage filter we remove short/unlikely relations. 1974 * 1975 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1976 * a task's usage of a particular page (n_p) per total usage of this 1977 * page (n_t) (in a given time-span) to a probability. 1978 * 1979 * Our periodic faults will sample this probability and getting the 1980 * same result twice in a row, given these samples are fully 1981 * independent, is then given by P(n)^2, provided our sample period 1982 * is sufficiently short compared to the usage pattern. 1983 * 1984 * This quadric squishes small probabilities, making it less likely we 1985 * act on an unlikely task<->page relation. 1986 */ 1987 if (!cpupid_pid_unset(last_cpupid) && 1988 cpupid_to_nid(last_cpupid) != dst_nid) 1989 return false; 1990 1991 /* Always allow migrate on private faults */ 1992 if (cpupid_match_pid(p, last_cpupid)) 1993 return true; 1994 1995 /* A shared fault, but p->numa_group has not been set up yet. */ 1996 if (!ng) 1997 return true; 1998 1999 /* 2000 * Destination node is much more heavily used than the source 2001 * node? Allow migration. 2002 */ 2003 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2004 ACTIVE_NODE_FRACTION) 2005 return true; 2006 2007 /* 2008 * Distribute memory according to CPU & memory use on each node, 2009 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2010 * 2011 * faults_cpu(dst) 3 faults_cpu(src) 2012 * --------------- * - > --------------- 2013 * faults_mem(dst) 4 faults_mem(src) 2014 */ 2015 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2016 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2017 } 2018 2019 /* 2020 * 'numa_type' describes the node at the moment of load balancing. 2021 */ 2022 enum numa_type { 2023 /* The node has spare capacity that can be used to run more tasks. */ 2024 node_has_spare = 0, 2025 /* 2026 * The node is fully used and the tasks don't compete for more CPU 2027 * cycles. Nevertheless, some tasks might wait before running. 2028 */ 2029 node_fully_busy, 2030 /* 2031 * The node is overloaded and can't provide expected CPU cycles to all 2032 * tasks. 2033 */ 2034 node_overloaded 2035 }; 2036 2037 /* Cached statistics for all CPUs within a node */ 2038 struct numa_stats { 2039 unsigned long load; 2040 unsigned long runnable; 2041 unsigned long util; 2042 /* Total compute capacity of CPUs on a node */ 2043 unsigned long compute_capacity; 2044 unsigned int nr_running; 2045 unsigned int weight; 2046 enum numa_type node_type; 2047 int idle_cpu; 2048 }; 2049 2050 struct task_numa_env { 2051 struct task_struct *p; 2052 2053 int src_cpu, src_nid; 2054 int dst_cpu, dst_nid; 2055 int imb_numa_nr; 2056 2057 struct numa_stats src_stats, dst_stats; 2058 2059 int imbalance_pct; 2060 int dist; 2061 2062 struct task_struct *best_task; 2063 long best_imp; 2064 int best_cpu; 2065 }; 2066 2067 static unsigned long cpu_load(struct rq *rq); 2068 static unsigned long cpu_runnable(struct rq *rq); 2069 2070 static inline enum 2071 numa_type numa_classify(unsigned int imbalance_pct, 2072 struct numa_stats *ns) 2073 { 2074 if ((ns->nr_running > ns->weight) && 2075 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2076 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2077 return node_overloaded; 2078 2079 if ((ns->nr_running < ns->weight) || 2080 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2081 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2082 return node_has_spare; 2083 2084 return node_fully_busy; 2085 } 2086 2087 #ifdef CONFIG_SCHED_SMT 2088 /* Forward declarations of select_idle_sibling helpers */ 2089 static inline bool test_idle_cores(int cpu); 2090 static inline int numa_idle_core(int idle_core, int cpu) 2091 { 2092 if (!static_branch_likely(&sched_smt_present) || 2093 idle_core >= 0 || !test_idle_cores(cpu)) 2094 return idle_core; 2095 2096 /* 2097 * Prefer cores instead of packing HT siblings 2098 * and triggering future load balancing. 2099 */ 2100 if (is_core_idle(cpu)) 2101 idle_core = cpu; 2102 2103 return idle_core; 2104 } 2105 #else 2106 static inline int numa_idle_core(int idle_core, int cpu) 2107 { 2108 return idle_core; 2109 } 2110 #endif 2111 2112 /* 2113 * Gather all necessary information to make NUMA balancing placement 2114 * decisions that are compatible with standard load balancer. This 2115 * borrows code and logic from update_sg_lb_stats but sharing a 2116 * common implementation is impractical. 2117 */ 2118 static void update_numa_stats(struct task_numa_env *env, 2119 struct numa_stats *ns, int nid, 2120 bool find_idle) 2121 { 2122 int cpu, idle_core = -1; 2123 2124 memset(ns, 0, sizeof(*ns)); 2125 ns->idle_cpu = -1; 2126 2127 rcu_read_lock(); 2128 for_each_cpu(cpu, cpumask_of_node(nid)) { 2129 struct rq *rq = cpu_rq(cpu); 2130 2131 ns->load += cpu_load(rq); 2132 ns->runnable += cpu_runnable(rq); 2133 ns->util += cpu_util_cfs(cpu); 2134 ns->nr_running += rq->cfs.h_nr_running; 2135 ns->compute_capacity += capacity_of(cpu); 2136 2137 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2138 if (READ_ONCE(rq->numa_migrate_on) || 2139 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2140 continue; 2141 2142 if (ns->idle_cpu == -1) 2143 ns->idle_cpu = cpu; 2144 2145 idle_core = numa_idle_core(idle_core, cpu); 2146 } 2147 } 2148 rcu_read_unlock(); 2149 2150 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2151 2152 ns->node_type = numa_classify(env->imbalance_pct, ns); 2153 2154 if (idle_core >= 0) 2155 ns->idle_cpu = idle_core; 2156 } 2157 2158 static void task_numa_assign(struct task_numa_env *env, 2159 struct task_struct *p, long imp) 2160 { 2161 struct rq *rq = cpu_rq(env->dst_cpu); 2162 2163 /* Check if run-queue part of active NUMA balance. */ 2164 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2165 int cpu; 2166 int start = env->dst_cpu; 2167 2168 /* Find alternative idle CPU. */ 2169 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2170 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2171 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2172 continue; 2173 } 2174 2175 env->dst_cpu = cpu; 2176 rq = cpu_rq(env->dst_cpu); 2177 if (!xchg(&rq->numa_migrate_on, 1)) 2178 goto assign; 2179 } 2180 2181 /* Failed to find an alternative idle CPU */ 2182 return; 2183 } 2184 2185 assign: 2186 /* 2187 * Clear previous best_cpu/rq numa-migrate flag, since task now 2188 * found a better CPU to move/swap. 2189 */ 2190 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2191 rq = cpu_rq(env->best_cpu); 2192 WRITE_ONCE(rq->numa_migrate_on, 0); 2193 } 2194 2195 if (env->best_task) 2196 put_task_struct(env->best_task); 2197 if (p) 2198 get_task_struct(p); 2199 2200 env->best_task = p; 2201 env->best_imp = imp; 2202 env->best_cpu = env->dst_cpu; 2203 } 2204 2205 static bool load_too_imbalanced(long src_load, long dst_load, 2206 struct task_numa_env *env) 2207 { 2208 long imb, old_imb; 2209 long orig_src_load, orig_dst_load; 2210 long src_capacity, dst_capacity; 2211 2212 /* 2213 * The load is corrected for the CPU capacity available on each node. 2214 * 2215 * src_load dst_load 2216 * ------------ vs --------- 2217 * src_capacity dst_capacity 2218 */ 2219 src_capacity = env->src_stats.compute_capacity; 2220 dst_capacity = env->dst_stats.compute_capacity; 2221 2222 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2223 2224 orig_src_load = env->src_stats.load; 2225 orig_dst_load = env->dst_stats.load; 2226 2227 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2228 2229 /* Would this change make things worse? */ 2230 return (imb > old_imb); 2231 } 2232 2233 /* 2234 * Maximum NUMA importance can be 1998 (2*999); 2235 * SMALLIMP @ 30 would be close to 1998/64. 2236 * Used to deter task migration. 2237 */ 2238 #define SMALLIMP 30 2239 2240 /* 2241 * This checks if the overall compute and NUMA accesses of the system would 2242 * be improved if the source tasks was migrated to the target dst_cpu taking 2243 * into account that it might be best if task running on the dst_cpu should 2244 * be exchanged with the source task 2245 */ 2246 static bool task_numa_compare(struct task_numa_env *env, 2247 long taskimp, long groupimp, bool maymove) 2248 { 2249 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2250 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2251 long imp = p_ng ? groupimp : taskimp; 2252 struct task_struct *cur; 2253 long src_load, dst_load; 2254 int dist = env->dist; 2255 long moveimp = imp; 2256 long load; 2257 bool stopsearch = false; 2258 2259 if (READ_ONCE(dst_rq->numa_migrate_on)) 2260 return false; 2261 2262 rcu_read_lock(); 2263 cur = rcu_dereference(dst_rq->curr); 2264 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2265 cur = NULL; 2266 2267 /* 2268 * Because we have preemption enabled we can get migrated around and 2269 * end try selecting ourselves (current == env->p) as a swap candidate. 2270 */ 2271 if (cur == env->p) { 2272 stopsearch = true; 2273 goto unlock; 2274 } 2275 2276 if (!cur) { 2277 if (maymove && moveimp >= env->best_imp) 2278 goto assign; 2279 else 2280 goto unlock; 2281 } 2282 2283 /* Skip this swap candidate if cannot move to the source cpu. */ 2284 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2285 goto unlock; 2286 2287 /* 2288 * Skip this swap candidate if it is not moving to its preferred 2289 * node and the best task is. 2290 */ 2291 if (env->best_task && 2292 env->best_task->numa_preferred_nid == env->src_nid && 2293 cur->numa_preferred_nid != env->src_nid) { 2294 goto unlock; 2295 } 2296 2297 /* 2298 * "imp" is the fault differential for the source task between the 2299 * source and destination node. Calculate the total differential for 2300 * the source task and potential destination task. The more negative 2301 * the value is, the more remote accesses that would be expected to 2302 * be incurred if the tasks were swapped. 2303 * 2304 * If dst and source tasks are in the same NUMA group, or not 2305 * in any group then look only at task weights. 2306 */ 2307 cur_ng = rcu_dereference(cur->numa_group); 2308 if (cur_ng == p_ng) { 2309 /* 2310 * Do not swap within a group or between tasks that have 2311 * no group if there is spare capacity. Swapping does 2312 * not address the load imbalance and helps one task at 2313 * the cost of punishing another. 2314 */ 2315 if (env->dst_stats.node_type == node_has_spare) 2316 goto unlock; 2317 2318 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2319 task_weight(cur, env->dst_nid, dist); 2320 /* 2321 * Add some hysteresis to prevent swapping the 2322 * tasks within a group over tiny differences. 2323 */ 2324 if (cur_ng) 2325 imp -= imp / 16; 2326 } else { 2327 /* 2328 * Compare the group weights. If a task is all by itself 2329 * (not part of a group), use the task weight instead. 2330 */ 2331 if (cur_ng && p_ng) 2332 imp += group_weight(cur, env->src_nid, dist) - 2333 group_weight(cur, env->dst_nid, dist); 2334 else 2335 imp += task_weight(cur, env->src_nid, dist) - 2336 task_weight(cur, env->dst_nid, dist); 2337 } 2338 2339 /* Discourage picking a task already on its preferred node */ 2340 if (cur->numa_preferred_nid == env->dst_nid) 2341 imp -= imp / 16; 2342 2343 /* 2344 * Encourage picking a task that moves to its preferred node. 2345 * This potentially makes imp larger than it's maximum of 2346 * 1998 (see SMALLIMP and task_weight for why) but in this 2347 * case, it does not matter. 2348 */ 2349 if (cur->numa_preferred_nid == env->src_nid) 2350 imp += imp / 8; 2351 2352 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2353 imp = moveimp; 2354 cur = NULL; 2355 goto assign; 2356 } 2357 2358 /* 2359 * Prefer swapping with a task moving to its preferred node over a 2360 * task that is not. 2361 */ 2362 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2363 env->best_task->numa_preferred_nid != env->src_nid) { 2364 goto assign; 2365 } 2366 2367 /* 2368 * If the NUMA importance is less than SMALLIMP, 2369 * task migration might only result in ping pong 2370 * of tasks and also hurt performance due to cache 2371 * misses. 2372 */ 2373 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2374 goto unlock; 2375 2376 /* 2377 * In the overloaded case, try and keep the load balanced. 2378 */ 2379 load = task_h_load(env->p) - task_h_load(cur); 2380 if (!load) 2381 goto assign; 2382 2383 dst_load = env->dst_stats.load + load; 2384 src_load = env->src_stats.load - load; 2385 2386 if (load_too_imbalanced(src_load, dst_load, env)) 2387 goto unlock; 2388 2389 assign: 2390 /* Evaluate an idle CPU for a task numa move. */ 2391 if (!cur) { 2392 int cpu = env->dst_stats.idle_cpu; 2393 2394 /* Nothing cached so current CPU went idle since the search. */ 2395 if (cpu < 0) 2396 cpu = env->dst_cpu; 2397 2398 /* 2399 * If the CPU is no longer truly idle and the previous best CPU 2400 * is, keep using it. 2401 */ 2402 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2403 idle_cpu(env->best_cpu)) { 2404 cpu = env->best_cpu; 2405 } 2406 2407 env->dst_cpu = cpu; 2408 } 2409 2410 task_numa_assign(env, cur, imp); 2411 2412 /* 2413 * If a move to idle is allowed because there is capacity or load 2414 * balance improves then stop the search. While a better swap 2415 * candidate may exist, a search is not free. 2416 */ 2417 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2418 stopsearch = true; 2419 2420 /* 2421 * If a swap candidate must be identified and the current best task 2422 * moves its preferred node then stop the search. 2423 */ 2424 if (!maymove && env->best_task && 2425 env->best_task->numa_preferred_nid == env->src_nid) { 2426 stopsearch = true; 2427 } 2428 unlock: 2429 rcu_read_unlock(); 2430 2431 return stopsearch; 2432 } 2433 2434 static void task_numa_find_cpu(struct task_numa_env *env, 2435 long taskimp, long groupimp) 2436 { 2437 bool maymove = false; 2438 int cpu; 2439 2440 /* 2441 * If dst node has spare capacity, then check if there is an 2442 * imbalance that would be overruled by the load balancer. 2443 */ 2444 if (env->dst_stats.node_type == node_has_spare) { 2445 unsigned int imbalance; 2446 int src_running, dst_running; 2447 2448 /* 2449 * Would movement cause an imbalance? Note that if src has 2450 * more running tasks that the imbalance is ignored as the 2451 * move improves the imbalance from the perspective of the 2452 * CPU load balancer. 2453 * */ 2454 src_running = env->src_stats.nr_running - 1; 2455 dst_running = env->dst_stats.nr_running + 1; 2456 imbalance = max(0, dst_running - src_running); 2457 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2458 env->imb_numa_nr); 2459 2460 /* Use idle CPU if there is no imbalance */ 2461 if (!imbalance) { 2462 maymove = true; 2463 if (env->dst_stats.idle_cpu >= 0) { 2464 env->dst_cpu = env->dst_stats.idle_cpu; 2465 task_numa_assign(env, NULL, 0); 2466 return; 2467 } 2468 } 2469 } else { 2470 long src_load, dst_load, load; 2471 /* 2472 * If the improvement from just moving env->p direction is better 2473 * than swapping tasks around, check if a move is possible. 2474 */ 2475 load = task_h_load(env->p); 2476 dst_load = env->dst_stats.load + load; 2477 src_load = env->src_stats.load - load; 2478 maymove = !load_too_imbalanced(src_load, dst_load, env); 2479 } 2480 2481 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2482 /* Skip this CPU if the source task cannot migrate */ 2483 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2484 continue; 2485 2486 env->dst_cpu = cpu; 2487 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2488 break; 2489 } 2490 } 2491 2492 static int task_numa_migrate(struct task_struct *p) 2493 { 2494 struct task_numa_env env = { 2495 .p = p, 2496 2497 .src_cpu = task_cpu(p), 2498 .src_nid = task_node(p), 2499 2500 .imbalance_pct = 112, 2501 2502 .best_task = NULL, 2503 .best_imp = 0, 2504 .best_cpu = -1, 2505 }; 2506 unsigned long taskweight, groupweight; 2507 struct sched_domain *sd; 2508 long taskimp, groupimp; 2509 struct numa_group *ng; 2510 struct rq *best_rq; 2511 int nid, ret, dist; 2512 2513 /* 2514 * Pick the lowest SD_NUMA domain, as that would have the smallest 2515 * imbalance and would be the first to start moving tasks about. 2516 * 2517 * And we want to avoid any moving of tasks about, as that would create 2518 * random movement of tasks -- counter the numa conditions we're trying 2519 * to satisfy here. 2520 */ 2521 rcu_read_lock(); 2522 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2523 if (sd) { 2524 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2525 env.imb_numa_nr = sd->imb_numa_nr; 2526 } 2527 rcu_read_unlock(); 2528 2529 /* 2530 * Cpusets can break the scheduler domain tree into smaller 2531 * balance domains, some of which do not cross NUMA boundaries. 2532 * Tasks that are "trapped" in such domains cannot be migrated 2533 * elsewhere, so there is no point in (re)trying. 2534 */ 2535 if (unlikely(!sd)) { 2536 sched_setnuma(p, task_node(p)); 2537 return -EINVAL; 2538 } 2539 2540 env.dst_nid = p->numa_preferred_nid; 2541 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2542 taskweight = task_weight(p, env.src_nid, dist); 2543 groupweight = group_weight(p, env.src_nid, dist); 2544 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2545 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2546 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2547 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2548 2549 /* Try to find a spot on the preferred nid. */ 2550 task_numa_find_cpu(&env, taskimp, groupimp); 2551 2552 /* 2553 * Look at other nodes in these cases: 2554 * - there is no space available on the preferred_nid 2555 * - the task is part of a numa_group that is interleaved across 2556 * multiple NUMA nodes; in order to better consolidate the group, 2557 * we need to check other locations. 2558 */ 2559 ng = deref_curr_numa_group(p); 2560 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2561 for_each_node_state(nid, N_CPU) { 2562 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2563 continue; 2564 2565 dist = node_distance(env.src_nid, env.dst_nid); 2566 if (sched_numa_topology_type == NUMA_BACKPLANE && 2567 dist != env.dist) { 2568 taskweight = task_weight(p, env.src_nid, dist); 2569 groupweight = group_weight(p, env.src_nid, dist); 2570 } 2571 2572 /* Only consider nodes where both task and groups benefit */ 2573 taskimp = task_weight(p, nid, dist) - taskweight; 2574 groupimp = group_weight(p, nid, dist) - groupweight; 2575 if (taskimp < 0 && groupimp < 0) 2576 continue; 2577 2578 env.dist = dist; 2579 env.dst_nid = nid; 2580 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2581 task_numa_find_cpu(&env, taskimp, groupimp); 2582 } 2583 } 2584 2585 /* 2586 * If the task is part of a workload that spans multiple NUMA nodes, 2587 * and is migrating into one of the workload's active nodes, remember 2588 * this node as the task's preferred numa node, so the workload can 2589 * settle down. 2590 * A task that migrated to a second choice node will be better off 2591 * trying for a better one later. Do not set the preferred node here. 2592 */ 2593 if (ng) { 2594 if (env.best_cpu == -1) 2595 nid = env.src_nid; 2596 else 2597 nid = cpu_to_node(env.best_cpu); 2598 2599 if (nid != p->numa_preferred_nid) 2600 sched_setnuma(p, nid); 2601 } 2602 2603 /* No better CPU than the current one was found. */ 2604 if (env.best_cpu == -1) { 2605 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2606 return -EAGAIN; 2607 } 2608 2609 best_rq = cpu_rq(env.best_cpu); 2610 if (env.best_task == NULL) { 2611 ret = migrate_task_to(p, env.best_cpu); 2612 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2613 if (ret != 0) 2614 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2615 return ret; 2616 } 2617 2618 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2619 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2620 2621 if (ret != 0) 2622 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2623 put_task_struct(env.best_task); 2624 return ret; 2625 } 2626 2627 /* Attempt to migrate a task to a CPU on the preferred node. */ 2628 static void numa_migrate_preferred(struct task_struct *p) 2629 { 2630 unsigned long interval = HZ; 2631 2632 /* This task has no NUMA fault statistics yet */ 2633 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2634 return; 2635 2636 /* Periodically retry migrating the task to the preferred node */ 2637 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2638 p->numa_migrate_retry = jiffies + interval; 2639 2640 /* Success if task is already running on preferred CPU */ 2641 if (task_node(p) == p->numa_preferred_nid) 2642 return; 2643 2644 /* Otherwise, try migrate to a CPU on the preferred node */ 2645 task_numa_migrate(p); 2646 } 2647 2648 /* 2649 * Find out how many nodes the workload is actively running on. Do this by 2650 * tracking the nodes from which NUMA hinting faults are triggered. This can 2651 * be different from the set of nodes where the workload's memory is currently 2652 * located. 2653 */ 2654 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2655 { 2656 unsigned long faults, max_faults = 0; 2657 int nid, active_nodes = 0; 2658 2659 for_each_node_state(nid, N_CPU) { 2660 faults = group_faults_cpu(numa_group, nid); 2661 if (faults > max_faults) 2662 max_faults = faults; 2663 } 2664 2665 for_each_node_state(nid, N_CPU) { 2666 faults = group_faults_cpu(numa_group, nid); 2667 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2668 active_nodes++; 2669 } 2670 2671 numa_group->max_faults_cpu = max_faults; 2672 numa_group->active_nodes = active_nodes; 2673 } 2674 2675 /* 2676 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2677 * increments. The more local the fault statistics are, the higher the scan 2678 * period will be for the next scan window. If local/(local+remote) ratio is 2679 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2680 * the scan period will decrease. Aim for 70% local accesses. 2681 */ 2682 #define NUMA_PERIOD_SLOTS 10 2683 #define NUMA_PERIOD_THRESHOLD 7 2684 2685 /* 2686 * Increase the scan period (slow down scanning) if the majority of 2687 * our memory is already on our local node, or if the majority of 2688 * the page accesses are shared with other processes. 2689 * Otherwise, decrease the scan period. 2690 */ 2691 static void update_task_scan_period(struct task_struct *p, 2692 unsigned long shared, unsigned long private) 2693 { 2694 unsigned int period_slot; 2695 int lr_ratio, ps_ratio; 2696 int diff; 2697 2698 unsigned long remote = p->numa_faults_locality[0]; 2699 unsigned long local = p->numa_faults_locality[1]; 2700 2701 /* 2702 * If there were no record hinting faults then either the task is 2703 * completely idle or all activity is in areas that are not of interest 2704 * to automatic numa balancing. Related to that, if there were failed 2705 * migration then it implies we are migrating too quickly or the local 2706 * node is overloaded. In either case, scan slower 2707 */ 2708 if (local + shared == 0 || p->numa_faults_locality[2]) { 2709 p->numa_scan_period = min(p->numa_scan_period_max, 2710 p->numa_scan_period << 1); 2711 2712 p->mm->numa_next_scan = jiffies + 2713 msecs_to_jiffies(p->numa_scan_period); 2714 2715 return; 2716 } 2717 2718 /* 2719 * Prepare to scale scan period relative to the current period. 2720 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2721 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2722 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2723 */ 2724 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2725 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2726 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2727 2728 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2729 /* 2730 * Most memory accesses are local. There is no need to 2731 * do fast NUMA scanning, since memory is already local. 2732 */ 2733 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2734 if (!slot) 2735 slot = 1; 2736 diff = slot * period_slot; 2737 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2738 /* 2739 * Most memory accesses are shared with other tasks. 2740 * There is no point in continuing fast NUMA scanning, 2741 * since other tasks may just move the memory elsewhere. 2742 */ 2743 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2744 if (!slot) 2745 slot = 1; 2746 diff = slot * period_slot; 2747 } else { 2748 /* 2749 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2750 * yet they are not on the local NUMA node. Speed up 2751 * NUMA scanning to get the memory moved over. 2752 */ 2753 int ratio = max(lr_ratio, ps_ratio); 2754 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2755 } 2756 2757 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2758 task_scan_min(p), task_scan_max(p)); 2759 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2760 } 2761 2762 /* 2763 * Get the fraction of time the task has been running since the last 2764 * NUMA placement cycle. The scheduler keeps similar statistics, but 2765 * decays those on a 32ms period, which is orders of magnitude off 2766 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2767 * stats only if the task is so new there are no NUMA statistics yet. 2768 */ 2769 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2770 { 2771 u64 runtime, delta, now; 2772 /* Use the start of this time slice to avoid calculations. */ 2773 now = p->se.exec_start; 2774 runtime = p->se.sum_exec_runtime; 2775 2776 if (p->last_task_numa_placement) { 2777 delta = runtime - p->last_sum_exec_runtime; 2778 *period = now - p->last_task_numa_placement; 2779 2780 /* Avoid time going backwards, prevent potential divide error: */ 2781 if (unlikely((s64)*period < 0)) 2782 *period = 0; 2783 } else { 2784 delta = p->se.avg.load_sum; 2785 *period = LOAD_AVG_MAX; 2786 } 2787 2788 p->last_sum_exec_runtime = runtime; 2789 p->last_task_numa_placement = now; 2790 2791 return delta; 2792 } 2793 2794 /* 2795 * Determine the preferred nid for a task in a numa_group. This needs to 2796 * be done in a way that produces consistent results with group_weight, 2797 * otherwise workloads might not converge. 2798 */ 2799 static int preferred_group_nid(struct task_struct *p, int nid) 2800 { 2801 nodemask_t nodes; 2802 int dist; 2803 2804 /* Direct connections between all NUMA nodes. */ 2805 if (sched_numa_topology_type == NUMA_DIRECT) 2806 return nid; 2807 2808 /* 2809 * On a system with glueless mesh NUMA topology, group_weight 2810 * scores nodes according to the number of NUMA hinting faults on 2811 * both the node itself, and on nearby nodes. 2812 */ 2813 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2814 unsigned long score, max_score = 0; 2815 int node, max_node = nid; 2816 2817 dist = sched_max_numa_distance; 2818 2819 for_each_node_state(node, N_CPU) { 2820 score = group_weight(p, node, dist); 2821 if (score > max_score) { 2822 max_score = score; 2823 max_node = node; 2824 } 2825 } 2826 return max_node; 2827 } 2828 2829 /* 2830 * Finding the preferred nid in a system with NUMA backplane 2831 * interconnect topology is more involved. The goal is to locate 2832 * tasks from numa_groups near each other in the system, and 2833 * untangle workloads from different sides of the system. This requires 2834 * searching down the hierarchy of node groups, recursively searching 2835 * inside the highest scoring group of nodes. The nodemask tricks 2836 * keep the complexity of the search down. 2837 */ 2838 nodes = node_states[N_CPU]; 2839 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2840 unsigned long max_faults = 0; 2841 nodemask_t max_group = NODE_MASK_NONE; 2842 int a, b; 2843 2844 /* Are there nodes at this distance from each other? */ 2845 if (!find_numa_distance(dist)) 2846 continue; 2847 2848 for_each_node_mask(a, nodes) { 2849 unsigned long faults = 0; 2850 nodemask_t this_group; 2851 nodes_clear(this_group); 2852 2853 /* Sum group's NUMA faults; includes a==b case. */ 2854 for_each_node_mask(b, nodes) { 2855 if (node_distance(a, b) < dist) { 2856 faults += group_faults(p, b); 2857 node_set(b, this_group); 2858 node_clear(b, nodes); 2859 } 2860 } 2861 2862 /* Remember the top group. */ 2863 if (faults > max_faults) { 2864 max_faults = faults; 2865 max_group = this_group; 2866 /* 2867 * subtle: at the smallest distance there is 2868 * just one node left in each "group", the 2869 * winner is the preferred nid. 2870 */ 2871 nid = a; 2872 } 2873 } 2874 /* Next round, evaluate the nodes within max_group. */ 2875 if (!max_faults) 2876 break; 2877 nodes = max_group; 2878 } 2879 return nid; 2880 } 2881 2882 static void task_numa_placement(struct task_struct *p) 2883 { 2884 int seq, nid, max_nid = NUMA_NO_NODE; 2885 unsigned long max_faults = 0; 2886 unsigned long fault_types[2] = { 0, 0 }; 2887 unsigned long total_faults; 2888 u64 runtime, period; 2889 spinlock_t *group_lock = NULL; 2890 struct numa_group *ng; 2891 2892 /* 2893 * The p->mm->numa_scan_seq field gets updated without 2894 * exclusive access. Use READ_ONCE() here to ensure 2895 * that the field is read in a single access: 2896 */ 2897 seq = READ_ONCE(p->mm->numa_scan_seq); 2898 if (p->numa_scan_seq == seq) 2899 return; 2900 p->numa_scan_seq = seq; 2901 p->numa_scan_period_max = task_scan_max(p); 2902 2903 total_faults = p->numa_faults_locality[0] + 2904 p->numa_faults_locality[1]; 2905 runtime = numa_get_avg_runtime(p, &period); 2906 2907 /* If the task is part of a group prevent parallel updates to group stats */ 2908 ng = deref_curr_numa_group(p); 2909 if (ng) { 2910 group_lock = &ng->lock; 2911 spin_lock_irq(group_lock); 2912 } 2913 2914 /* Find the node with the highest number of faults */ 2915 for_each_online_node(nid) { 2916 /* Keep track of the offsets in numa_faults array */ 2917 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2918 unsigned long faults = 0, group_faults = 0; 2919 int priv; 2920 2921 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2922 long diff, f_diff, f_weight; 2923 2924 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2925 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2926 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2927 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2928 2929 /* Decay existing window, copy faults since last scan */ 2930 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2931 fault_types[priv] += p->numa_faults[membuf_idx]; 2932 p->numa_faults[membuf_idx] = 0; 2933 2934 /* 2935 * Normalize the faults_from, so all tasks in a group 2936 * count according to CPU use, instead of by the raw 2937 * number of faults. Tasks with little runtime have 2938 * little over-all impact on throughput, and thus their 2939 * faults are less important. 2940 */ 2941 f_weight = div64_u64(runtime << 16, period + 1); 2942 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2943 (total_faults + 1); 2944 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2945 p->numa_faults[cpubuf_idx] = 0; 2946 2947 p->numa_faults[mem_idx] += diff; 2948 p->numa_faults[cpu_idx] += f_diff; 2949 faults += p->numa_faults[mem_idx]; 2950 p->total_numa_faults += diff; 2951 if (ng) { 2952 /* 2953 * safe because we can only change our own group 2954 * 2955 * mem_idx represents the offset for a given 2956 * nid and priv in a specific region because it 2957 * is at the beginning of the numa_faults array. 2958 */ 2959 ng->faults[mem_idx] += diff; 2960 ng->faults[cpu_idx] += f_diff; 2961 ng->total_faults += diff; 2962 group_faults += ng->faults[mem_idx]; 2963 } 2964 } 2965 2966 if (!ng) { 2967 if (faults > max_faults) { 2968 max_faults = faults; 2969 max_nid = nid; 2970 } 2971 } else if (group_faults > max_faults) { 2972 max_faults = group_faults; 2973 max_nid = nid; 2974 } 2975 } 2976 2977 /* Cannot migrate task to CPU-less node */ 2978 max_nid = numa_nearest_node(max_nid, N_CPU); 2979 2980 if (ng) { 2981 numa_group_count_active_nodes(ng); 2982 spin_unlock_irq(group_lock); 2983 max_nid = preferred_group_nid(p, max_nid); 2984 } 2985 2986 if (max_faults) { 2987 /* Set the new preferred node */ 2988 if (max_nid != p->numa_preferred_nid) 2989 sched_setnuma(p, max_nid); 2990 } 2991 2992 update_task_scan_period(p, fault_types[0], fault_types[1]); 2993 } 2994 2995 static inline int get_numa_group(struct numa_group *grp) 2996 { 2997 return refcount_inc_not_zero(&grp->refcount); 2998 } 2999 3000 static inline void put_numa_group(struct numa_group *grp) 3001 { 3002 if (refcount_dec_and_test(&grp->refcount)) 3003 kfree_rcu(grp, rcu); 3004 } 3005 3006 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3007 int *priv) 3008 { 3009 struct numa_group *grp, *my_grp; 3010 struct task_struct *tsk; 3011 bool join = false; 3012 int cpu = cpupid_to_cpu(cpupid); 3013 int i; 3014 3015 if (unlikely(!deref_curr_numa_group(p))) { 3016 unsigned int size = sizeof(struct numa_group) + 3017 NR_NUMA_HINT_FAULT_STATS * 3018 nr_node_ids * sizeof(unsigned long); 3019 3020 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3021 if (!grp) 3022 return; 3023 3024 refcount_set(&grp->refcount, 1); 3025 grp->active_nodes = 1; 3026 grp->max_faults_cpu = 0; 3027 spin_lock_init(&grp->lock); 3028 grp->gid = p->pid; 3029 3030 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3031 grp->faults[i] = p->numa_faults[i]; 3032 3033 grp->total_faults = p->total_numa_faults; 3034 3035 grp->nr_tasks++; 3036 rcu_assign_pointer(p->numa_group, grp); 3037 } 3038 3039 rcu_read_lock(); 3040 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3041 3042 if (!cpupid_match_pid(tsk, cpupid)) 3043 goto no_join; 3044 3045 grp = rcu_dereference(tsk->numa_group); 3046 if (!grp) 3047 goto no_join; 3048 3049 my_grp = deref_curr_numa_group(p); 3050 if (grp == my_grp) 3051 goto no_join; 3052 3053 /* 3054 * Only join the other group if its bigger; if we're the bigger group, 3055 * the other task will join us. 3056 */ 3057 if (my_grp->nr_tasks > grp->nr_tasks) 3058 goto no_join; 3059 3060 /* 3061 * Tie-break on the grp address. 3062 */ 3063 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3064 goto no_join; 3065 3066 /* Always join threads in the same process. */ 3067 if (tsk->mm == current->mm) 3068 join = true; 3069 3070 /* Simple filter to avoid false positives due to PID collisions */ 3071 if (flags & TNF_SHARED) 3072 join = true; 3073 3074 /* Update priv based on whether false sharing was detected */ 3075 *priv = !join; 3076 3077 if (join && !get_numa_group(grp)) 3078 goto no_join; 3079 3080 rcu_read_unlock(); 3081 3082 if (!join) 3083 return; 3084 3085 WARN_ON_ONCE(irqs_disabled()); 3086 double_lock_irq(&my_grp->lock, &grp->lock); 3087 3088 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3089 my_grp->faults[i] -= p->numa_faults[i]; 3090 grp->faults[i] += p->numa_faults[i]; 3091 } 3092 my_grp->total_faults -= p->total_numa_faults; 3093 grp->total_faults += p->total_numa_faults; 3094 3095 my_grp->nr_tasks--; 3096 grp->nr_tasks++; 3097 3098 spin_unlock(&my_grp->lock); 3099 spin_unlock_irq(&grp->lock); 3100 3101 rcu_assign_pointer(p->numa_group, grp); 3102 3103 put_numa_group(my_grp); 3104 return; 3105 3106 no_join: 3107 rcu_read_unlock(); 3108 return; 3109 } 3110 3111 /* 3112 * Get rid of NUMA statistics associated with a task (either current or dead). 3113 * If @final is set, the task is dead and has reached refcount zero, so we can 3114 * safely free all relevant data structures. Otherwise, there might be 3115 * concurrent reads from places like load balancing and procfs, and we should 3116 * reset the data back to default state without freeing ->numa_faults. 3117 */ 3118 void task_numa_free(struct task_struct *p, bool final) 3119 { 3120 /* safe: p either is current or is being freed by current */ 3121 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3122 unsigned long *numa_faults = p->numa_faults; 3123 unsigned long flags; 3124 int i; 3125 3126 if (!numa_faults) 3127 return; 3128 3129 if (grp) { 3130 spin_lock_irqsave(&grp->lock, flags); 3131 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3132 grp->faults[i] -= p->numa_faults[i]; 3133 grp->total_faults -= p->total_numa_faults; 3134 3135 grp->nr_tasks--; 3136 spin_unlock_irqrestore(&grp->lock, flags); 3137 RCU_INIT_POINTER(p->numa_group, NULL); 3138 put_numa_group(grp); 3139 } 3140 3141 if (final) { 3142 p->numa_faults = NULL; 3143 kfree(numa_faults); 3144 } else { 3145 p->total_numa_faults = 0; 3146 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3147 numa_faults[i] = 0; 3148 } 3149 } 3150 3151 /* 3152 * Got a PROT_NONE fault for a page on @node. 3153 */ 3154 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3155 { 3156 struct task_struct *p = current; 3157 bool migrated = flags & TNF_MIGRATED; 3158 int cpu_node = task_node(current); 3159 int local = !!(flags & TNF_FAULT_LOCAL); 3160 struct numa_group *ng; 3161 int priv; 3162 3163 if (!static_branch_likely(&sched_numa_balancing)) 3164 return; 3165 3166 /* for example, ksmd faulting in a user's mm */ 3167 if (!p->mm) 3168 return; 3169 3170 /* 3171 * NUMA faults statistics are unnecessary for the slow memory 3172 * node for memory tiering mode. 3173 */ 3174 if (!node_is_toptier(mem_node) && 3175 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3176 !cpupid_valid(last_cpupid))) 3177 return; 3178 3179 /* Allocate buffer to track faults on a per-node basis */ 3180 if (unlikely(!p->numa_faults)) { 3181 int size = sizeof(*p->numa_faults) * 3182 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3183 3184 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3185 if (!p->numa_faults) 3186 return; 3187 3188 p->total_numa_faults = 0; 3189 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3190 } 3191 3192 /* 3193 * First accesses are treated as private, otherwise consider accesses 3194 * to be private if the accessing pid has not changed 3195 */ 3196 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3197 priv = 1; 3198 } else { 3199 priv = cpupid_match_pid(p, last_cpupid); 3200 if (!priv && !(flags & TNF_NO_GROUP)) 3201 task_numa_group(p, last_cpupid, flags, &priv); 3202 } 3203 3204 /* 3205 * If a workload spans multiple NUMA nodes, a shared fault that 3206 * occurs wholly within the set of nodes that the workload is 3207 * actively using should be counted as local. This allows the 3208 * scan rate to slow down when a workload has settled down. 3209 */ 3210 ng = deref_curr_numa_group(p); 3211 if (!priv && !local && ng && ng->active_nodes > 1 && 3212 numa_is_active_node(cpu_node, ng) && 3213 numa_is_active_node(mem_node, ng)) 3214 local = 1; 3215 3216 /* 3217 * Retry to migrate task to preferred node periodically, in case it 3218 * previously failed, or the scheduler moved us. 3219 */ 3220 if (time_after(jiffies, p->numa_migrate_retry)) { 3221 task_numa_placement(p); 3222 numa_migrate_preferred(p); 3223 } 3224 3225 if (migrated) 3226 p->numa_pages_migrated += pages; 3227 if (flags & TNF_MIGRATE_FAIL) 3228 p->numa_faults_locality[2] += pages; 3229 3230 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3231 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3232 p->numa_faults_locality[local] += pages; 3233 } 3234 3235 static void reset_ptenuma_scan(struct task_struct *p) 3236 { 3237 /* 3238 * We only did a read acquisition of the mmap sem, so 3239 * p->mm->numa_scan_seq is written to without exclusive access 3240 * and the update is not guaranteed to be atomic. That's not 3241 * much of an issue though, since this is just used for 3242 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3243 * expensive, to avoid any form of compiler optimizations: 3244 */ 3245 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3246 p->mm->numa_scan_offset = 0; 3247 } 3248 3249 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3250 { 3251 unsigned long pids; 3252 /* 3253 * Allow unconditional access first two times, so that all the (pages) 3254 * of VMAs get prot_none fault introduced irrespective of accesses. 3255 * This is also done to avoid any side effect of task scanning 3256 * amplifying the unfairness of disjoint set of VMAs' access. 3257 */ 3258 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3259 return true; 3260 3261 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3262 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3263 return true; 3264 3265 /* 3266 * Complete a scan that has already started regardless of PID access, or 3267 * some VMAs may never be scanned in multi-threaded applications: 3268 */ 3269 if (mm->numa_scan_offset > vma->vm_start) { 3270 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3271 return true; 3272 } 3273 3274 /* 3275 * This vma has not been accessed for a while, and if the number 3276 * the threads in the same process is low, which means no other 3277 * threads can help scan this vma, force a vma scan. 3278 */ 3279 if (READ_ONCE(mm->numa_scan_seq) > 3280 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3281 return true; 3282 3283 return false; 3284 } 3285 3286 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3287 3288 /* 3289 * The expensive part of numa migration is done from task_work context. 3290 * Triggered from task_tick_numa(). 3291 */ 3292 static void task_numa_work(struct callback_head *work) 3293 { 3294 unsigned long migrate, next_scan, now = jiffies; 3295 struct task_struct *p = current; 3296 struct mm_struct *mm = p->mm; 3297 u64 runtime = p->se.sum_exec_runtime; 3298 struct vm_area_struct *vma; 3299 unsigned long start, end; 3300 unsigned long nr_pte_updates = 0; 3301 long pages, virtpages; 3302 struct vma_iterator vmi; 3303 bool vma_pids_skipped; 3304 bool vma_pids_forced = false; 3305 3306 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3307 3308 work->next = work; 3309 /* 3310 * Who cares about NUMA placement when they're dying. 3311 * 3312 * NOTE: make sure not to dereference p->mm before this check, 3313 * exit_task_work() happens _after_ exit_mm() so we could be called 3314 * without p->mm even though we still had it when we enqueued this 3315 * work. 3316 */ 3317 if (p->flags & PF_EXITING) 3318 return; 3319 3320 if (!mm->numa_next_scan) { 3321 mm->numa_next_scan = now + 3322 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3323 } 3324 3325 /* 3326 * Enforce maximal scan/migration frequency.. 3327 */ 3328 migrate = mm->numa_next_scan; 3329 if (time_before(now, migrate)) 3330 return; 3331 3332 if (p->numa_scan_period == 0) { 3333 p->numa_scan_period_max = task_scan_max(p); 3334 p->numa_scan_period = task_scan_start(p); 3335 } 3336 3337 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3338 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3339 return; 3340 3341 /* 3342 * Delay this task enough that another task of this mm will likely win 3343 * the next time around. 3344 */ 3345 p->node_stamp += 2 * TICK_NSEC; 3346 3347 pages = sysctl_numa_balancing_scan_size; 3348 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3349 virtpages = pages * 8; /* Scan up to this much virtual space */ 3350 if (!pages) 3351 return; 3352 3353 3354 if (!mmap_read_trylock(mm)) 3355 return; 3356 3357 /* 3358 * VMAs are skipped if the current PID has not trapped a fault within 3359 * the VMA recently. Allow scanning to be forced if there is no 3360 * suitable VMA remaining. 3361 */ 3362 vma_pids_skipped = false; 3363 3364 retry_pids: 3365 start = mm->numa_scan_offset; 3366 vma_iter_init(&vmi, mm, start); 3367 vma = vma_next(&vmi); 3368 if (!vma) { 3369 reset_ptenuma_scan(p); 3370 start = 0; 3371 vma_iter_set(&vmi, start); 3372 vma = vma_next(&vmi); 3373 } 3374 3375 for (; vma; vma = vma_next(&vmi)) { 3376 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3377 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3378 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3379 continue; 3380 } 3381 3382 /* 3383 * Shared library pages mapped by multiple processes are not 3384 * migrated as it is expected they are cache replicated. Avoid 3385 * hinting faults in read-only file-backed mappings or the vDSO 3386 * as migrating the pages will be of marginal benefit. 3387 */ 3388 if (!vma->vm_mm || 3389 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3390 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3391 continue; 3392 } 3393 3394 /* 3395 * Skip inaccessible VMAs to avoid any confusion between 3396 * PROT_NONE and NUMA hinting PTEs 3397 */ 3398 if (!vma_is_accessible(vma)) { 3399 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3400 continue; 3401 } 3402 3403 /* Initialise new per-VMA NUMAB state. */ 3404 if (!vma->numab_state) { 3405 struct vma_numab_state *ptr; 3406 3407 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3408 if (!ptr) 3409 continue; 3410 3411 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3412 kfree(ptr); 3413 continue; 3414 } 3415 3416 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3417 3418 vma->numab_state->next_scan = now + 3419 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3420 3421 /* Reset happens after 4 times scan delay of scan start */ 3422 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3423 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3424 3425 /* 3426 * Ensure prev_scan_seq does not match numa_scan_seq, 3427 * to prevent VMAs being skipped prematurely on the 3428 * first scan: 3429 */ 3430 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3431 } 3432 3433 /* 3434 * Scanning the VMAs of short lived tasks add more overhead. So 3435 * delay the scan for new VMAs. 3436 */ 3437 if (mm->numa_scan_seq && time_before(jiffies, 3438 vma->numab_state->next_scan)) { 3439 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3440 continue; 3441 } 3442 3443 /* RESET access PIDs regularly for old VMAs. */ 3444 if (mm->numa_scan_seq && 3445 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3446 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3447 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3448 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3449 vma->numab_state->pids_active[1] = 0; 3450 } 3451 3452 /* Do not rescan VMAs twice within the same sequence. */ 3453 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3454 mm->numa_scan_offset = vma->vm_end; 3455 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3456 continue; 3457 } 3458 3459 /* 3460 * Do not scan the VMA if task has not accessed it, unless no other 3461 * VMA candidate exists. 3462 */ 3463 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3464 vma_pids_skipped = true; 3465 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3466 continue; 3467 } 3468 3469 do { 3470 start = max(start, vma->vm_start); 3471 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3472 end = min(end, vma->vm_end); 3473 nr_pte_updates = change_prot_numa(vma, start, end); 3474 3475 /* 3476 * Try to scan sysctl_numa_balancing_size worth of 3477 * hpages that have at least one present PTE that 3478 * is not already PTE-numa. If the VMA contains 3479 * areas that are unused or already full of prot_numa 3480 * PTEs, scan up to virtpages, to skip through those 3481 * areas faster. 3482 */ 3483 if (nr_pte_updates) 3484 pages -= (end - start) >> PAGE_SHIFT; 3485 virtpages -= (end - start) >> PAGE_SHIFT; 3486 3487 start = end; 3488 if (pages <= 0 || virtpages <= 0) 3489 goto out; 3490 3491 cond_resched(); 3492 } while (end != vma->vm_end); 3493 3494 /* VMA scan is complete, do not scan until next sequence. */ 3495 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3496 3497 /* 3498 * Only force scan within one VMA at a time, to limit the 3499 * cost of scanning a potentially uninteresting VMA. 3500 */ 3501 if (vma_pids_forced) 3502 break; 3503 } 3504 3505 /* 3506 * If no VMAs are remaining and VMAs were skipped due to the PID 3507 * not accessing the VMA previously, then force a scan to ensure 3508 * forward progress: 3509 */ 3510 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3511 vma_pids_forced = true; 3512 goto retry_pids; 3513 } 3514 3515 out: 3516 /* 3517 * It is possible to reach the end of the VMA list but the last few 3518 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3519 * would find the !migratable VMA on the next scan but not reset the 3520 * scanner to the start so check it now. 3521 */ 3522 if (vma) 3523 mm->numa_scan_offset = start; 3524 else 3525 reset_ptenuma_scan(p); 3526 mmap_read_unlock(mm); 3527 3528 /* 3529 * Make sure tasks use at least 32x as much time to run other code 3530 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3531 * Usually update_task_scan_period slows down scanning enough; on an 3532 * overloaded system we need to limit overhead on a per task basis. 3533 */ 3534 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3535 u64 diff = p->se.sum_exec_runtime - runtime; 3536 p->node_stamp += 32 * diff; 3537 } 3538 } 3539 3540 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3541 { 3542 int mm_users = 0; 3543 struct mm_struct *mm = p->mm; 3544 3545 if (mm) { 3546 mm_users = atomic_read(&mm->mm_users); 3547 if (mm_users == 1) { 3548 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3549 mm->numa_scan_seq = 0; 3550 } 3551 } 3552 p->node_stamp = 0; 3553 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3554 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3555 p->numa_migrate_retry = 0; 3556 /* Protect against double add, see task_tick_numa and task_numa_work */ 3557 p->numa_work.next = &p->numa_work; 3558 p->numa_faults = NULL; 3559 p->numa_pages_migrated = 0; 3560 p->total_numa_faults = 0; 3561 RCU_INIT_POINTER(p->numa_group, NULL); 3562 p->last_task_numa_placement = 0; 3563 p->last_sum_exec_runtime = 0; 3564 3565 init_task_work(&p->numa_work, task_numa_work); 3566 3567 /* New address space, reset the preferred nid */ 3568 if (!(clone_flags & CLONE_VM)) { 3569 p->numa_preferred_nid = NUMA_NO_NODE; 3570 return; 3571 } 3572 3573 /* 3574 * New thread, keep existing numa_preferred_nid which should be copied 3575 * already by arch_dup_task_struct but stagger when scans start. 3576 */ 3577 if (mm) { 3578 unsigned int delay; 3579 3580 delay = min_t(unsigned int, task_scan_max(current), 3581 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3582 delay += 2 * TICK_NSEC; 3583 p->node_stamp = delay; 3584 } 3585 } 3586 3587 /* 3588 * Drive the periodic memory faults.. 3589 */ 3590 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3591 { 3592 struct callback_head *work = &curr->numa_work; 3593 u64 period, now; 3594 3595 /* 3596 * We don't care about NUMA placement if we don't have memory. 3597 */ 3598 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3599 return; 3600 3601 /* 3602 * Using runtime rather than walltime has the dual advantage that 3603 * we (mostly) drive the selection from busy threads and that the 3604 * task needs to have done some actual work before we bother with 3605 * NUMA placement. 3606 */ 3607 now = curr->se.sum_exec_runtime; 3608 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3609 3610 if (now > curr->node_stamp + period) { 3611 if (!curr->node_stamp) 3612 curr->numa_scan_period = task_scan_start(curr); 3613 curr->node_stamp += period; 3614 3615 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3616 task_work_add(curr, work, TWA_RESUME); 3617 } 3618 } 3619 3620 static void update_scan_period(struct task_struct *p, int new_cpu) 3621 { 3622 int src_nid = cpu_to_node(task_cpu(p)); 3623 int dst_nid = cpu_to_node(new_cpu); 3624 3625 if (!static_branch_likely(&sched_numa_balancing)) 3626 return; 3627 3628 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3629 return; 3630 3631 if (src_nid == dst_nid) 3632 return; 3633 3634 /* 3635 * Allow resets if faults have been trapped before one scan 3636 * has completed. This is most likely due to a new task that 3637 * is pulled cross-node due to wakeups or load balancing. 3638 */ 3639 if (p->numa_scan_seq) { 3640 /* 3641 * Avoid scan adjustments if moving to the preferred 3642 * node or if the task was not previously running on 3643 * the preferred node. 3644 */ 3645 if (dst_nid == p->numa_preferred_nid || 3646 (p->numa_preferred_nid != NUMA_NO_NODE && 3647 src_nid != p->numa_preferred_nid)) 3648 return; 3649 } 3650 3651 p->numa_scan_period = task_scan_start(p); 3652 } 3653 3654 #else 3655 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3656 { 3657 } 3658 3659 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3660 { 3661 } 3662 3663 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3664 { 3665 } 3666 3667 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3668 { 3669 } 3670 3671 #endif /* CONFIG_NUMA_BALANCING */ 3672 3673 static void 3674 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3675 { 3676 update_load_add(&cfs_rq->load, se->load.weight); 3677 #ifdef CONFIG_SMP 3678 if (entity_is_task(se)) { 3679 struct rq *rq = rq_of(cfs_rq); 3680 3681 account_numa_enqueue(rq, task_of(se)); 3682 list_add(&se->group_node, &rq->cfs_tasks); 3683 } 3684 #endif 3685 cfs_rq->nr_running++; 3686 if (se_is_idle(se)) 3687 cfs_rq->idle_nr_running++; 3688 } 3689 3690 static void 3691 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3692 { 3693 update_load_sub(&cfs_rq->load, se->load.weight); 3694 #ifdef CONFIG_SMP 3695 if (entity_is_task(se)) { 3696 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3697 list_del_init(&se->group_node); 3698 } 3699 #endif 3700 cfs_rq->nr_running--; 3701 if (se_is_idle(se)) 3702 cfs_rq->idle_nr_running--; 3703 } 3704 3705 /* 3706 * Signed add and clamp on underflow. 3707 * 3708 * Explicitly do a load-store to ensure the intermediate value never hits 3709 * memory. This allows lockless observations without ever seeing the negative 3710 * values. 3711 */ 3712 #define add_positive(_ptr, _val) do { \ 3713 typeof(_ptr) ptr = (_ptr); \ 3714 typeof(_val) val = (_val); \ 3715 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3716 \ 3717 res = var + val; \ 3718 \ 3719 if (val < 0 && res > var) \ 3720 res = 0; \ 3721 \ 3722 WRITE_ONCE(*ptr, res); \ 3723 } while (0) 3724 3725 /* 3726 * Unsigned subtract and clamp on underflow. 3727 * 3728 * Explicitly do a load-store to ensure the intermediate value never hits 3729 * memory. This allows lockless observations without ever seeing the negative 3730 * values. 3731 */ 3732 #define sub_positive(_ptr, _val) do { \ 3733 typeof(_ptr) ptr = (_ptr); \ 3734 typeof(*ptr) val = (_val); \ 3735 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3736 res = var - val; \ 3737 if (res > var) \ 3738 res = 0; \ 3739 WRITE_ONCE(*ptr, res); \ 3740 } while (0) 3741 3742 /* 3743 * Remove and clamp on negative, from a local variable. 3744 * 3745 * A variant of sub_positive(), which does not use explicit load-store 3746 * and is thus optimized for local variable updates. 3747 */ 3748 #define lsub_positive(_ptr, _val) do { \ 3749 typeof(_ptr) ptr = (_ptr); \ 3750 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3751 } while (0) 3752 3753 #ifdef CONFIG_SMP 3754 static inline void 3755 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3756 { 3757 cfs_rq->avg.load_avg += se->avg.load_avg; 3758 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3759 } 3760 3761 static inline void 3762 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3763 { 3764 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3765 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3766 /* See update_cfs_rq_load_avg() */ 3767 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3768 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3769 } 3770 #else 3771 static inline void 3772 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3773 static inline void 3774 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3775 #endif 3776 3777 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3778 unsigned long weight) 3779 { 3780 unsigned long old_weight = se->load.weight; 3781 s64 vlag, vslice; 3782 3783 /* 3784 * VRUNTIME 3785 * -------- 3786 * 3787 * COROLLARY #1: The virtual runtime of the entity needs to be 3788 * adjusted if re-weight at !0-lag point. 3789 * 3790 * Proof: For contradiction assume this is not true, so we can 3791 * re-weight without changing vruntime at !0-lag point. 3792 * 3793 * Weight VRuntime Avg-VRuntime 3794 * before w v V 3795 * after w' v' V' 3796 * 3797 * Since lag needs to be preserved through re-weight: 3798 * 3799 * lag = (V - v)*w = (V'- v')*w', where v = v' 3800 * ==> V' = (V - v)*w/w' + v (1) 3801 * 3802 * Let W be the total weight of the entities before reweight, 3803 * since V' is the new weighted average of entities: 3804 * 3805 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3806 * 3807 * by using (1) & (2) we obtain: 3808 * 3809 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3810 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3811 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3812 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3813 * 3814 * Since we are doing at !0-lag point which means V != v, we 3815 * can simplify (3): 3816 * 3817 * ==> W / (W + w' - w) = w / w' 3818 * ==> Ww' = Ww + ww' - ww 3819 * ==> W * (w' - w) = w * (w' - w) 3820 * ==> W = w (re-weight indicates w' != w) 3821 * 3822 * So the cfs_rq contains only one entity, hence vruntime of 3823 * the entity @v should always equal to the cfs_rq's weighted 3824 * average vruntime @V, which means we will always re-weight 3825 * at 0-lag point, thus breach assumption. Proof completed. 3826 * 3827 * 3828 * COROLLARY #2: Re-weight does NOT affect weighted average 3829 * vruntime of all the entities. 3830 * 3831 * Proof: According to corollary #1, Eq. (1) should be: 3832 * 3833 * (V - v)*w = (V' - v')*w' 3834 * ==> v' = V' - (V - v)*w/w' (4) 3835 * 3836 * According to the weighted average formula, we have: 3837 * 3838 * V' = (WV - wv + w'v') / (W - w + w') 3839 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3840 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3841 * = (WV + w'V' - Vw) / (W - w + w') 3842 * 3843 * ==> V'*(W - w + w') = WV + w'V' - Vw 3844 * ==> V' * (W - w) = (W - w) * V (5) 3845 * 3846 * If the entity is the only one in the cfs_rq, then reweight 3847 * always occurs at 0-lag point, so V won't change. Or else 3848 * there are other entities, hence W != w, then Eq. (5) turns 3849 * into V' = V. So V won't change in either case, proof done. 3850 * 3851 * 3852 * So according to corollary #1 & #2, the effect of re-weight 3853 * on vruntime should be: 3854 * 3855 * v' = V' - (V - v) * w / w' (4) 3856 * = V - (V - v) * w / w' 3857 * = V - vl * w / w' 3858 * = V - vl' 3859 */ 3860 if (avruntime != se->vruntime) { 3861 vlag = entity_lag(avruntime, se); 3862 vlag = div_s64(vlag * old_weight, weight); 3863 se->vruntime = avruntime - vlag; 3864 } 3865 3866 /* 3867 * DEADLINE 3868 * -------- 3869 * 3870 * When the weight changes, the virtual time slope changes and 3871 * we should adjust the relative virtual deadline accordingly. 3872 * 3873 * d' = v' + (d - v)*w/w' 3874 * = V' - (V - v)*w/w' + (d - v)*w/w' 3875 * = V - (V - v)*w/w' + (d - v)*w/w' 3876 * = V + (d - V)*w/w' 3877 */ 3878 vslice = (s64)(se->deadline - avruntime); 3879 vslice = div_s64(vslice * old_weight, weight); 3880 se->deadline = avruntime + vslice; 3881 } 3882 3883 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3884 unsigned long weight) 3885 { 3886 bool curr = cfs_rq->curr == se; 3887 u64 avruntime; 3888 3889 if (se->on_rq) { 3890 /* commit outstanding execution time */ 3891 update_curr(cfs_rq); 3892 avruntime = avg_vruntime(cfs_rq); 3893 if (!curr) 3894 __dequeue_entity(cfs_rq, se); 3895 update_load_sub(&cfs_rq->load, se->load.weight); 3896 } 3897 dequeue_load_avg(cfs_rq, se); 3898 3899 if (se->on_rq) { 3900 reweight_eevdf(se, avruntime, weight); 3901 } else { 3902 /* 3903 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3904 * we need to scale se->vlag when w_i changes. 3905 */ 3906 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3907 } 3908 3909 update_load_set(&se->load, weight); 3910 3911 #ifdef CONFIG_SMP 3912 do { 3913 u32 divider = get_pelt_divider(&se->avg); 3914 3915 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3916 } while (0); 3917 #endif 3918 3919 enqueue_load_avg(cfs_rq, se); 3920 if (se->on_rq) { 3921 update_load_add(&cfs_rq->load, se->load.weight); 3922 if (!curr) 3923 __enqueue_entity(cfs_rq, se); 3924 3925 /* 3926 * The entity's vruntime has been adjusted, so let's check 3927 * whether the rq-wide min_vruntime needs updated too. Since 3928 * the calculations above require stable min_vruntime rather 3929 * than up-to-date one, we do the update at the end of the 3930 * reweight process. 3931 */ 3932 update_min_vruntime(cfs_rq); 3933 } 3934 } 3935 3936 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3937 const struct load_weight *lw) 3938 { 3939 struct sched_entity *se = &p->se; 3940 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3941 struct load_weight *load = &se->load; 3942 3943 reweight_entity(cfs_rq, se, lw->weight); 3944 load->inv_weight = lw->inv_weight; 3945 } 3946 3947 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3948 3949 #ifdef CONFIG_FAIR_GROUP_SCHED 3950 #ifdef CONFIG_SMP 3951 /* 3952 * All this does is approximate the hierarchical proportion which includes that 3953 * global sum we all love to hate. 3954 * 3955 * That is, the weight of a group entity, is the proportional share of the 3956 * group weight based on the group runqueue weights. That is: 3957 * 3958 * tg->weight * grq->load.weight 3959 * ge->load.weight = ----------------------------- (1) 3960 * \Sum grq->load.weight 3961 * 3962 * Now, because computing that sum is prohibitively expensive to compute (been 3963 * there, done that) we approximate it with this average stuff. The average 3964 * moves slower and therefore the approximation is cheaper and more stable. 3965 * 3966 * So instead of the above, we substitute: 3967 * 3968 * grq->load.weight -> grq->avg.load_avg (2) 3969 * 3970 * which yields the following: 3971 * 3972 * tg->weight * grq->avg.load_avg 3973 * ge->load.weight = ------------------------------ (3) 3974 * tg->load_avg 3975 * 3976 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3977 * 3978 * That is shares_avg, and it is right (given the approximation (2)). 3979 * 3980 * The problem with it is that because the average is slow -- it was designed 3981 * to be exactly that of course -- this leads to transients in boundary 3982 * conditions. In specific, the case where the group was idle and we start the 3983 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3984 * yielding bad latency etc.. 3985 * 3986 * Now, in that special case (1) reduces to: 3987 * 3988 * tg->weight * grq->load.weight 3989 * ge->load.weight = ----------------------------- = tg->weight (4) 3990 * grp->load.weight 3991 * 3992 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3993 * 3994 * So what we do is modify our approximation (3) to approach (4) in the (near) 3995 * UP case, like: 3996 * 3997 * ge->load.weight = 3998 * 3999 * tg->weight * grq->load.weight 4000 * --------------------------------------------------- (5) 4001 * tg->load_avg - grq->avg.load_avg + grq->load.weight 4002 * 4003 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 4004 * we need to use grq->avg.load_avg as its lower bound, which then gives: 4005 * 4006 * 4007 * tg->weight * grq->load.weight 4008 * ge->load.weight = ----------------------------- (6) 4009 * tg_load_avg' 4010 * 4011 * Where: 4012 * 4013 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 4014 * max(grq->load.weight, grq->avg.load_avg) 4015 * 4016 * And that is shares_weight and is icky. In the (near) UP case it approaches 4017 * (4) while in the normal case it approaches (3). It consistently 4018 * overestimates the ge->load.weight and therefore: 4019 * 4020 * \Sum ge->load.weight >= tg->weight 4021 * 4022 * hence icky! 4023 */ 4024 static long calc_group_shares(struct cfs_rq *cfs_rq) 4025 { 4026 long tg_weight, tg_shares, load, shares; 4027 struct task_group *tg = cfs_rq->tg; 4028 4029 tg_shares = READ_ONCE(tg->shares); 4030 4031 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 4032 4033 tg_weight = atomic_long_read(&tg->load_avg); 4034 4035 /* Ensure tg_weight >= load */ 4036 tg_weight -= cfs_rq->tg_load_avg_contrib; 4037 tg_weight += load; 4038 4039 shares = (tg_shares * load); 4040 if (tg_weight) 4041 shares /= tg_weight; 4042 4043 /* 4044 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 4045 * of a group with small tg->shares value. It is a floor value which is 4046 * assigned as a minimum load.weight to the sched_entity representing 4047 * the group on a CPU. 4048 * 4049 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 4050 * on an 8-core system with 8 tasks each runnable on one CPU shares has 4051 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 4052 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 4053 * instead of 0. 4054 */ 4055 return clamp_t(long, shares, MIN_SHARES, tg_shares); 4056 } 4057 #endif /* CONFIG_SMP */ 4058 4059 /* 4060 * Recomputes the group entity based on the current state of its group 4061 * runqueue. 4062 */ 4063 static void update_cfs_group(struct sched_entity *se) 4064 { 4065 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4066 long shares; 4067 4068 if (!gcfs_rq) 4069 return; 4070 4071 if (throttled_hierarchy(gcfs_rq)) 4072 return; 4073 4074 #ifndef CONFIG_SMP 4075 shares = READ_ONCE(gcfs_rq->tg->shares); 4076 #else 4077 shares = calc_group_shares(gcfs_rq); 4078 #endif 4079 if (unlikely(se->load.weight != shares)) 4080 reweight_entity(cfs_rq_of(se), se, shares); 4081 } 4082 4083 #else /* CONFIG_FAIR_GROUP_SCHED */ 4084 static inline void update_cfs_group(struct sched_entity *se) 4085 { 4086 } 4087 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4088 4089 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4090 { 4091 struct rq *rq = rq_of(cfs_rq); 4092 4093 if (&rq->cfs == cfs_rq) { 4094 /* 4095 * There are a few boundary cases this might miss but it should 4096 * get called often enough that that should (hopefully) not be 4097 * a real problem. 4098 * 4099 * It will not get called when we go idle, because the idle 4100 * thread is a different class (!fair), nor will the utilization 4101 * number include things like RT tasks. 4102 * 4103 * As is, the util number is not freq-invariant (we'd have to 4104 * implement arch_scale_freq_capacity() for that). 4105 * 4106 * See cpu_util_cfs(). 4107 */ 4108 cpufreq_update_util(rq, flags); 4109 } 4110 } 4111 4112 #ifdef CONFIG_SMP 4113 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4114 { 4115 if (sa->load_sum) 4116 return false; 4117 4118 if (sa->util_sum) 4119 return false; 4120 4121 if (sa->runnable_sum) 4122 return false; 4123 4124 /* 4125 * _avg must be null when _sum are null because _avg = _sum / divider 4126 * Make sure that rounding and/or propagation of PELT values never 4127 * break this. 4128 */ 4129 SCHED_WARN_ON(sa->load_avg || 4130 sa->util_avg || 4131 sa->runnable_avg); 4132 4133 return true; 4134 } 4135 4136 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4137 { 4138 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4139 cfs_rq->last_update_time_copy); 4140 } 4141 #ifdef CONFIG_FAIR_GROUP_SCHED 4142 /* 4143 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4144 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4145 * bottom-up, we only have to test whether the cfs_rq before us on the list 4146 * is our child. 4147 * If cfs_rq is not on the list, test whether a child needs its to be added to 4148 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4149 */ 4150 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4151 { 4152 struct cfs_rq *prev_cfs_rq; 4153 struct list_head *prev; 4154 4155 if (cfs_rq->on_list) { 4156 prev = cfs_rq->leaf_cfs_rq_list.prev; 4157 } else { 4158 struct rq *rq = rq_of(cfs_rq); 4159 4160 prev = rq->tmp_alone_branch; 4161 } 4162 4163 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4164 4165 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4166 } 4167 4168 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4169 { 4170 if (cfs_rq->load.weight) 4171 return false; 4172 4173 if (!load_avg_is_decayed(&cfs_rq->avg)) 4174 return false; 4175 4176 if (child_cfs_rq_on_list(cfs_rq)) 4177 return false; 4178 4179 return true; 4180 } 4181 4182 /** 4183 * update_tg_load_avg - update the tg's load avg 4184 * @cfs_rq: the cfs_rq whose avg changed 4185 * 4186 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4187 * However, because tg->load_avg is a global value there are performance 4188 * considerations. 4189 * 4190 * In order to avoid having to look at the other cfs_rq's, we use a 4191 * differential update where we store the last value we propagated. This in 4192 * turn allows skipping updates if the differential is 'small'. 4193 * 4194 * Updating tg's load_avg is necessary before update_cfs_share(). 4195 */ 4196 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4197 { 4198 long delta; 4199 u64 now; 4200 4201 /* 4202 * No need to update load_avg for root_task_group as it is not used. 4203 */ 4204 if (cfs_rq->tg == &root_task_group) 4205 return; 4206 4207 /* rq has been offline and doesn't contribute to the share anymore: */ 4208 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4209 return; 4210 4211 /* 4212 * For migration heavy workloads, access to tg->load_avg can be 4213 * unbound. Limit the update rate to at most once per ms. 4214 */ 4215 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4216 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4217 return; 4218 4219 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4220 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4221 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4222 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4223 cfs_rq->last_update_tg_load_avg = now; 4224 } 4225 } 4226 4227 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4228 { 4229 long delta; 4230 u64 now; 4231 4232 /* 4233 * No need to update load_avg for root_task_group, as it is not used. 4234 */ 4235 if (cfs_rq->tg == &root_task_group) 4236 return; 4237 4238 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4239 delta = 0 - cfs_rq->tg_load_avg_contrib; 4240 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4241 cfs_rq->tg_load_avg_contrib = 0; 4242 cfs_rq->last_update_tg_load_avg = now; 4243 } 4244 4245 /* CPU offline callback: */ 4246 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4247 { 4248 struct task_group *tg; 4249 4250 lockdep_assert_rq_held(rq); 4251 4252 /* 4253 * The rq clock has already been updated in 4254 * set_rq_offline(), so we should skip updating 4255 * the rq clock again in unthrottle_cfs_rq(). 4256 */ 4257 rq_clock_start_loop_update(rq); 4258 4259 rcu_read_lock(); 4260 list_for_each_entry_rcu(tg, &task_groups, list) { 4261 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4262 4263 clear_tg_load_avg(cfs_rq); 4264 } 4265 rcu_read_unlock(); 4266 4267 rq_clock_stop_loop_update(rq); 4268 } 4269 4270 /* 4271 * Called within set_task_rq() right before setting a task's CPU. The 4272 * caller only guarantees p->pi_lock is held; no other assumptions, 4273 * including the state of rq->lock, should be made. 4274 */ 4275 void set_task_rq_fair(struct sched_entity *se, 4276 struct cfs_rq *prev, struct cfs_rq *next) 4277 { 4278 u64 p_last_update_time; 4279 u64 n_last_update_time; 4280 4281 if (!sched_feat(ATTACH_AGE_LOAD)) 4282 return; 4283 4284 /* 4285 * We are supposed to update the task to "current" time, then its up to 4286 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4287 * getting what current time is, so simply throw away the out-of-date 4288 * time. This will result in the wakee task is less decayed, but giving 4289 * the wakee more load sounds not bad. 4290 */ 4291 if (!(se->avg.last_update_time && prev)) 4292 return; 4293 4294 p_last_update_time = cfs_rq_last_update_time(prev); 4295 n_last_update_time = cfs_rq_last_update_time(next); 4296 4297 __update_load_avg_blocked_se(p_last_update_time, se); 4298 se->avg.last_update_time = n_last_update_time; 4299 } 4300 4301 /* 4302 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4303 * propagate its contribution. The key to this propagation is the invariant 4304 * that for each group: 4305 * 4306 * ge->avg == grq->avg (1) 4307 * 4308 * _IFF_ we look at the pure running and runnable sums. Because they 4309 * represent the very same entity, just at different points in the hierarchy. 4310 * 4311 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4312 * and simply copies the running/runnable sum over (but still wrong, because 4313 * the group entity and group rq do not have their PELT windows aligned). 4314 * 4315 * However, update_tg_cfs_load() is more complex. So we have: 4316 * 4317 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4318 * 4319 * And since, like util, the runnable part should be directly transferable, 4320 * the following would _appear_ to be the straight forward approach: 4321 * 4322 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4323 * 4324 * And per (1) we have: 4325 * 4326 * ge->avg.runnable_avg == grq->avg.runnable_avg 4327 * 4328 * Which gives: 4329 * 4330 * ge->load.weight * grq->avg.load_avg 4331 * ge->avg.load_avg = ----------------------------------- (4) 4332 * grq->load.weight 4333 * 4334 * Except that is wrong! 4335 * 4336 * Because while for entities historical weight is not important and we 4337 * really only care about our future and therefore can consider a pure 4338 * runnable sum, runqueues can NOT do this. 4339 * 4340 * We specifically want runqueues to have a load_avg that includes 4341 * historical weights. Those represent the blocked load, the load we expect 4342 * to (shortly) return to us. This only works by keeping the weights as 4343 * integral part of the sum. We therefore cannot decompose as per (3). 4344 * 4345 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4346 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4347 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4348 * runnable section of these tasks overlap (or not). If they were to perfectly 4349 * align the rq as a whole would be runnable 2/3 of the time. If however we 4350 * always have at least 1 runnable task, the rq as a whole is always runnable. 4351 * 4352 * So we'll have to approximate.. :/ 4353 * 4354 * Given the constraint: 4355 * 4356 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4357 * 4358 * We can construct a rule that adds runnable to a rq by assuming minimal 4359 * overlap. 4360 * 4361 * On removal, we'll assume each task is equally runnable; which yields: 4362 * 4363 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4364 * 4365 * XXX: only do this for the part of runnable > running ? 4366 * 4367 */ 4368 static inline void 4369 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4370 { 4371 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4372 u32 new_sum, divider; 4373 4374 /* Nothing to update */ 4375 if (!delta_avg) 4376 return; 4377 4378 /* 4379 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4380 * See ___update_load_avg() for details. 4381 */ 4382 divider = get_pelt_divider(&cfs_rq->avg); 4383 4384 4385 /* Set new sched_entity's utilization */ 4386 se->avg.util_avg = gcfs_rq->avg.util_avg; 4387 new_sum = se->avg.util_avg * divider; 4388 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4389 se->avg.util_sum = new_sum; 4390 4391 /* Update parent cfs_rq utilization */ 4392 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4393 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4394 4395 /* See update_cfs_rq_load_avg() */ 4396 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4397 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4398 } 4399 4400 static inline void 4401 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4402 { 4403 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4404 u32 new_sum, divider; 4405 4406 /* Nothing to update */ 4407 if (!delta_avg) 4408 return; 4409 4410 /* 4411 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4412 * See ___update_load_avg() for details. 4413 */ 4414 divider = get_pelt_divider(&cfs_rq->avg); 4415 4416 /* Set new sched_entity's runnable */ 4417 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4418 new_sum = se->avg.runnable_avg * divider; 4419 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4420 se->avg.runnable_sum = new_sum; 4421 4422 /* Update parent cfs_rq runnable */ 4423 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4424 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4425 /* See update_cfs_rq_load_avg() */ 4426 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4427 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4428 } 4429 4430 static inline void 4431 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4432 { 4433 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4434 unsigned long load_avg; 4435 u64 load_sum = 0; 4436 s64 delta_sum; 4437 u32 divider; 4438 4439 if (!runnable_sum) 4440 return; 4441 4442 gcfs_rq->prop_runnable_sum = 0; 4443 4444 /* 4445 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4446 * See ___update_load_avg() for details. 4447 */ 4448 divider = get_pelt_divider(&cfs_rq->avg); 4449 4450 if (runnable_sum >= 0) { 4451 /* 4452 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4453 * the CPU is saturated running == runnable. 4454 */ 4455 runnable_sum += se->avg.load_sum; 4456 runnable_sum = min_t(long, runnable_sum, divider); 4457 } else { 4458 /* 4459 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4460 * assuming all tasks are equally runnable. 4461 */ 4462 if (scale_load_down(gcfs_rq->load.weight)) { 4463 load_sum = div_u64(gcfs_rq->avg.load_sum, 4464 scale_load_down(gcfs_rq->load.weight)); 4465 } 4466 4467 /* But make sure to not inflate se's runnable */ 4468 runnable_sum = min(se->avg.load_sum, load_sum); 4469 } 4470 4471 /* 4472 * runnable_sum can't be lower than running_sum 4473 * Rescale running sum to be in the same range as runnable sum 4474 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4475 * runnable_sum is in [0 : LOAD_AVG_MAX] 4476 */ 4477 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4478 runnable_sum = max(runnable_sum, running_sum); 4479 4480 load_sum = se_weight(se) * runnable_sum; 4481 load_avg = div_u64(load_sum, divider); 4482 4483 delta_avg = load_avg - se->avg.load_avg; 4484 if (!delta_avg) 4485 return; 4486 4487 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4488 4489 se->avg.load_sum = runnable_sum; 4490 se->avg.load_avg = load_avg; 4491 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4492 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4493 /* See update_cfs_rq_load_avg() */ 4494 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4495 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4496 } 4497 4498 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4499 { 4500 cfs_rq->propagate = 1; 4501 cfs_rq->prop_runnable_sum += runnable_sum; 4502 } 4503 4504 /* Update task and its cfs_rq load average */ 4505 static inline int propagate_entity_load_avg(struct sched_entity *se) 4506 { 4507 struct cfs_rq *cfs_rq, *gcfs_rq; 4508 4509 if (entity_is_task(se)) 4510 return 0; 4511 4512 gcfs_rq = group_cfs_rq(se); 4513 if (!gcfs_rq->propagate) 4514 return 0; 4515 4516 gcfs_rq->propagate = 0; 4517 4518 cfs_rq = cfs_rq_of(se); 4519 4520 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4521 4522 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4523 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4524 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4525 4526 trace_pelt_cfs_tp(cfs_rq); 4527 trace_pelt_se_tp(se); 4528 4529 return 1; 4530 } 4531 4532 /* 4533 * Check if we need to update the load and the utilization of a blocked 4534 * group_entity: 4535 */ 4536 static inline bool skip_blocked_update(struct sched_entity *se) 4537 { 4538 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4539 4540 /* 4541 * If sched_entity still have not zero load or utilization, we have to 4542 * decay it: 4543 */ 4544 if (se->avg.load_avg || se->avg.util_avg) 4545 return false; 4546 4547 /* 4548 * If there is a pending propagation, we have to update the load and 4549 * the utilization of the sched_entity: 4550 */ 4551 if (gcfs_rq->propagate) 4552 return false; 4553 4554 /* 4555 * Otherwise, the load and the utilization of the sched_entity is 4556 * already zero and there is no pending propagation, so it will be a 4557 * waste of time to try to decay it: 4558 */ 4559 return true; 4560 } 4561 4562 #else /* CONFIG_FAIR_GROUP_SCHED */ 4563 4564 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4565 4566 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4567 4568 static inline int propagate_entity_load_avg(struct sched_entity *se) 4569 { 4570 return 0; 4571 } 4572 4573 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4574 4575 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4576 4577 #ifdef CONFIG_NO_HZ_COMMON 4578 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4579 { 4580 u64 throttled = 0, now, lut; 4581 struct cfs_rq *cfs_rq; 4582 struct rq *rq; 4583 bool is_idle; 4584 4585 if (load_avg_is_decayed(&se->avg)) 4586 return; 4587 4588 cfs_rq = cfs_rq_of(se); 4589 rq = rq_of(cfs_rq); 4590 4591 rcu_read_lock(); 4592 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4593 rcu_read_unlock(); 4594 4595 /* 4596 * The lag estimation comes with a cost we don't want to pay all the 4597 * time. Hence, limiting to the case where the source CPU is idle and 4598 * we know we are at the greatest risk to have an outdated clock. 4599 */ 4600 if (!is_idle) 4601 return; 4602 4603 /* 4604 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4605 * 4606 * last_update_time (the cfs_rq's last_update_time) 4607 * = cfs_rq_clock_pelt()@cfs_rq_idle 4608 * = rq_clock_pelt()@cfs_rq_idle 4609 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4610 * 4611 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4612 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4613 * 4614 * rq_idle_lag (delta between now and rq's update) 4615 * = sched_clock_cpu() - rq_clock()@rq_idle 4616 * 4617 * We can then write: 4618 * 4619 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4620 * sched_clock_cpu() - rq_clock()@rq_idle 4621 * Where: 4622 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4623 * rq_clock()@rq_idle is rq->clock_idle 4624 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4625 * is cfs_rq->throttled_pelt_idle 4626 */ 4627 4628 #ifdef CONFIG_CFS_BANDWIDTH 4629 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4630 /* The clock has been stopped for throttling */ 4631 if (throttled == U64_MAX) 4632 return; 4633 #endif 4634 now = u64_u32_load(rq->clock_pelt_idle); 4635 /* 4636 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4637 * is observed the old clock_pelt_idle value and the new clock_idle, 4638 * which lead to an underestimation. The opposite would lead to an 4639 * overestimation. 4640 */ 4641 smp_rmb(); 4642 lut = cfs_rq_last_update_time(cfs_rq); 4643 4644 now -= throttled; 4645 if (now < lut) 4646 /* 4647 * cfs_rq->avg.last_update_time is more recent than our 4648 * estimation, let's use it. 4649 */ 4650 now = lut; 4651 else 4652 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4653 4654 __update_load_avg_blocked_se(now, se); 4655 } 4656 #else 4657 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4658 #endif 4659 4660 /** 4661 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4662 * @now: current time, as per cfs_rq_clock_pelt() 4663 * @cfs_rq: cfs_rq to update 4664 * 4665 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4666 * avg. The immediate corollary is that all (fair) tasks must be attached. 4667 * 4668 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4669 * 4670 * Return: true if the load decayed or we removed load. 4671 * 4672 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4673 * call update_tg_load_avg() when this function returns true. 4674 */ 4675 static inline int 4676 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4677 { 4678 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4679 struct sched_avg *sa = &cfs_rq->avg; 4680 int decayed = 0; 4681 4682 if (cfs_rq->removed.nr) { 4683 unsigned long r; 4684 u32 divider = get_pelt_divider(&cfs_rq->avg); 4685 4686 raw_spin_lock(&cfs_rq->removed.lock); 4687 swap(cfs_rq->removed.util_avg, removed_util); 4688 swap(cfs_rq->removed.load_avg, removed_load); 4689 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4690 cfs_rq->removed.nr = 0; 4691 raw_spin_unlock(&cfs_rq->removed.lock); 4692 4693 r = removed_load; 4694 sub_positive(&sa->load_avg, r); 4695 sub_positive(&sa->load_sum, r * divider); 4696 /* See sa->util_sum below */ 4697 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4698 4699 r = removed_util; 4700 sub_positive(&sa->util_avg, r); 4701 sub_positive(&sa->util_sum, r * divider); 4702 /* 4703 * Because of rounding, se->util_sum might ends up being +1 more than 4704 * cfs->util_sum. Although this is not a problem by itself, detaching 4705 * a lot of tasks with the rounding problem between 2 updates of 4706 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4707 * cfs_util_avg is not. 4708 * Check that util_sum is still above its lower bound for the new 4709 * util_avg. Given that period_contrib might have moved since the last 4710 * sync, we are only sure that util_sum must be above or equal to 4711 * util_avg * minimum possible divider 4712 */ 4713 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4714 4715 r = removed_runnable; 4716 sub_positive(&sa->runnable_avg, r); 4717 sub_positive(&sa->runnable_sum, r * divider); 4718 /* See sa->util_sum above */ 4719 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4720 sa->runnable_avg * PELT_MIN_DIVIDER); 4721 4722 /* 4723 * removed_runnable is the unweighted version of removed_load so we 4724 * can use it to estimate removed_load_sum. 4725 */ 4726 add_tg_cfs_propagate(cfs_rq, 4727 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4728 4729 decayed = 1; 4730 } 4731 4732 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4733 u64_u32_store_copy(sa->last_update_time, 4734 cfs_rq->last_update_time_copy, 4735 sa->last_update_time); 4736 return decayed; 4737 } 4738 4739 /** 4740 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4741 * @cfs_rq: cfs_rq to attach to 4742 * @se: sched_entity to attach 4743 * 4744 * Must call update_cfs_rq_load_avg() before this, since we rely on 4745 * cfs_rq->avg.last_update_time being current. 4746 */ 4747 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4748 { 4749 /* 4750 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4751 * See ___update_load_avg() for details. 4752 */ 4753 u32 divider = get_pelt_divider(&cfs_rq->avg); 4754 4755 /* 4756 * When we attach the @se to the @cfs_rq, we must align the decay 4757 * window because without that, really weird and wonderful things can 4758 * happen. 4759 * 4760 * XXX illustrate 4761 */ 4762 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4763 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4764 4765 /* 4766 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4767 * period_contrib. This isn't strictly correct, but since we're 4768 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4769 * _sum a little. 4770 */ 4771 se->avg.util_sum = se->avg.util_avg * divider; 4772 4773 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4774 4775 se->avg.load_sum = se->avg.load_avg * divider; 4776 if (se_weight(se) < se->avg.load_sum) 4777 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4778 else 4779 se->avg.load_sum = 1; 4780 4781 enqueue_load_avg(cfs_rq, se); 4782 cfs_rq->avg.util_avg += se->avg.util_avg; 4783 cfs_rq->avg.util_sum += se->avg.util_sum; 4784 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4785 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4786 4787 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4788 4789 cfs_rq_util_change(cfs_rq, 0); 4790 4791 trace_pelt_cfs_tp(cfs_rq); 4792 } 4793 4794 /** 4795 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4796 * @cfs_rq: cfs_rq to detach from 4797 * @se: sched_entity to detach 4798 * 4799 * Must call update_cfs_rq_load_avg() before this, since we rely on 4800 * cfs_rq->avg.last_update_time being current. 4801 */ 4802 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4803 { 4804 dequeue_load_avg(cfs_rq, se); 4805 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4806 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4807 /* See update_cfs_rq_load_avg() */ 4808 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4809 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4810 4811 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4812 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4813 /* See update_cfs_rq_load_avg() */ 4814 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4815 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4816 4817 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4818 4819 cfs_rq_util_change(cfs_rq, 0); 4820 4821 trace_pelt_cfs_tp(cfs_rq); 4822 } 4823 4824 /* 4825 * Optional action to be done while updating the load average 4826 */ 4827 #define UPDATE_TG 0x1 4828 #define SKIP_AGE_LOAD 0x2 4829 #define DO_ATTACH 0x4 4830 #define DO_DETACH 0x8 4831 4832 /* Update task and its cfs_rq load average */ 4833 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4834 { 4835 u64 now = cfs_rq_clock_pelt(cfs_rq); 4836 int decayed; 4837 4838 /* 4839 * Track task load average for carrying it to new CPU after migrated, and 4840 * track group sched_entity load average for task_h_load calculation in migration 4841 */ 4842 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4843 __update_load_avg_se(now, cfs_rq, se); 4844 4845 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4846 decayed |= propagate_entity_load_avg(se); 4847 4848 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4849 4850 /* 4851 * DO_ATTACH means we're here from enqueue_entity(). 4852 * !last_update_time means we've passed through 4853 * migrate_task_rq_fair() indicating we migrated. 4854 * 4855 * IOW we're enqueueing a task on a new CPU. 4856 */ 4857 attach_entity_load_avg(cfs_rq, se); 4858 update_tg_load_avg(cfs_rq); 4859 4860 } else if (flags & DO_DETACH) { 4861 /* 4862 * DO_DETACH means we're here from dequeue_entity() 4863 * and we are migrating task out of the CPU. 4864 */ 4865 detach_entity_load_avg(cfs_rq, se); 4866 update_tg_load_avg(cfs_rq); 4867 } else if (decayed) { 4868 cfs_rq_util_change(cfs_rq, 0); 4869 4870 if (flags & UPDATE_TG) 4871 update_tg_load_avg(cfs_rq); 4872 } 4873 } 4874 4875 /* 4876 * Synchronize entity load avg of dequeued entity without locking 4877 * the previous rq. 4878 */ 4879 static void sync_entity_load_avg(struct sched_entity *se) 4880 { 4881 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4882 u64 last_update_time; 4883 4884 last_update_time = cfs_rq_last_update_time(cfs_rq); 4885 __update_load_avg_blocked_se(last_update_time, se); 4886 } 4887 4888 /* 4889 * Task first catches up with cfs_rq, and then subtract 4890 * itself from the cfs_rq (task must be off the queue now). 4891 */ 4892 static void remove_entity_load_avg(struct sched_entity *se) 4893 { 4894 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4895 unsigned long flags; 4896 4897 /* 4898 * tasks cannot exit without having gone through wake_up_new_task() -> 4899 * enqueue_task_fair() which will have added things to the cfs_rq, 4900 * so we can remove unconditionally. 4901 */ 4902 4903 sync_entity_load_avg(se); 4904 4905 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4906 ++cfs_rq->removed.nr; 4907 cfs_rq->removed.util_avg += se->avg.util_avg; 4908 cfs_rq->removed.load_avg += se->avg.load_avg; 4909 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4910 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4911 } 4912 4913 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4914 { 4915 return cfs_rq->avg.runnable_avg; 4916 } 4917 4918 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4919 { 4920 return cfs_rq->avg.load_avg; 4921 } 4922 4923 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4924 4925 static inline unsigned long task_util(struct task_struct *p) 4926 { 4927 return READ_ONCE(p->se.avg.util_avg); 4928 } 4929 4930 static inline unsigned long task_runnable(struct task_struct *p) 4931 { 4932 return READ_ONCE(p->se.avg.runnable_avg); 4933 } 4934 4935 static inline unsigned long _task_util_est(struct task_struct *p) 4936 { 4937 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4938 } 4939 4940 static inline unsigned long task_util_est(struct task_struct *p) 4941 { 4942 return max(task_util(p), _task_util_est(p)); 4943 } 4944 4945 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4946 struct task_struct *p) 4947 { 4948 unsigned int enqueued; 4949 4950 if (!sched_feat(UTIL_EST)) 4951 return; 4952 4953 /* Update root cfs_rq's estimated utilization */ 4954 enqueued = cfs_rq->avg.util_est; 4955 enqueued += _task_util_est(p); 4956 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4957 4958 trace_sched_util_est_cfs_tp(cfs_rq); 4959 } 4960 4961 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4962 struct task_struct *p) 4963 { 4964 unsigned int enqueued; 4965 4966 if (!sched_feat(UTIL_EST)) 4967 return; 4968 4969 /* Update root cfs_rq's estimated utilization */ 4970 enqueued = cfs_rq->avg.util_est; 4971 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4972 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4973 4974 trace_sched_util_est_cfs_tp(cfs_rq); 4975 } 4976 4977 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4978 4979 static inline void util_est_update(struct cfs_rq *cfs_rq, 4980 struct task_struct *p, 4981 bool task_sleep) 4982 { 4983 unsigned int ewma, dequeued, last_ewma_diff; 4984 4985 if (!sched_feat(UTIL_EST)) 4986 return; 4987 4988 /* 4989 * Skip update of task's estimated utilization when the task has not 4990 * yet completed an activation, e.g. being migrated. 4991 */ 4992 if (!task_sleep) 4993 return; 4994 4995 /* Get current estimate of utilization */ 4996 ewma = READ_ONCE(p->se.avg.util_est); 4997 4998 /* 4999 * If the PELT values haven't changed since enqueue time, 5000 * skip the util_est update. 5001 */ 5002 if (ewma & UTIL_AVG_UNCHANGED) 5003 return; 5004 5005 /* Get utilization at dequeue */ 5006 dequeued = task_util(p); 5007 5008 /* 5009 * Reset EWMA on utilization increases, the moving average is used only 5010 * to smooth utilization decreases. 5011 */ 5012 if (ewma <= dequeued) { 5013 ewma = dequeued; 5014 goto done; 5015 } 5016 5017 /* 5018 * Skip update of task's estimated utilization when its members are 5019 * already ~1% close to its last activation value. 5020 */ 5021 last_ewma_diff = ewma - dequeued; 5022 if (last_ewma_diff < UTIL_EST_MARGIN) 5023 goto done; 5024 5025 /* 5026 * To avoid overestimation of actual task utilization, skip updates if 5027 * we cannot grant there is idle time in this CPU. 5028 */ 5029 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 5030 return; 5031 5032 /* 5033 * To avoid underestimate of task utilization, skip updates of EWMA if 5034 * we cannot grant that thread got all CPU time it wanted. 5035 */ 5036 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 5037 goto done; 5038 5039 5040 /* 5041 * Update Task's estimated utilization 5042 * 5043 * When *p completes an activation we can consolidate another sample 5044 * of the task size. This is done by using this value to update the 5045 * Exponential Weighted Moving Average (EWMA): 5046 * 5047 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 5048 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 5049 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 5050 * = w * ( -last_ewma_diff ) + ewma(t-1) 5051 * = w * (-last_ewma_diff + ewma(t-1) / w) 5052 * 5053 * Where 'w' is the weight of new samples, which is configured to be 5054 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 5055 */ 5056 ewma <<= UTIL_EST_WEIGHT_SHIFT; 5057 ewma -= last_ewma_diff; 5058 ewma >>= UTIL_EST_WEIGHT_SHIFT; 5059 done: 5060 ewma |= UTIL_AVG_UNCHANGED; 5061 WRITE_ONCE(p->se.avg.util_est, ewma); 5062 5063 trace_sched_util_est_se_tp(&p->se); 5064 } 5065 5066 static inline unsigned long get_actual_cpu_capacity(int cpu) 5067 { 5068 unsigned long capacity = arch_scale_cpu_capacity(cpu); 5069 5070 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 5071 5072 return capacity; 5073 } 5074 5075 static inline int util_fits_cpu(unsigned long util, 5076 unsigned long uclamp_min, 5077 unsigned long uclamp_max, 5078 int cpu) 5079 { 5080 unsigned long capacity = capacity_of(cpu); 5081 unsigned long capacity_orig; 5082 bool fits, uclamp_max_fits; 5083 5084 /* 5085 * Check if the real util fits without any uclamp boost/cap applied. 5086 */ 5087 fits = fits_capacity(util, capacity); 5088 5089 if (!uclamp_is_used()) 5090 return fits; 5091 5092 /* 5093 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5094 * uclamp_max. We only care about capacity pressure (by using 5095 * capacity_of()) for comparing against the real util. 5096 * 5097 * If a task is boosted to 1024 for example, we don't want a tiny 5098 * pressure to skew the check whether it fits a CPU or not. 5099 * 5100 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5101 * should fit a little cpu even if there's some pressure. 5102 * 5103 * Only exception is for HW or cpufreq pressure since it has a direct impact 5104 * on available OPP of the system. 5105 * 5106 * We honour it for uclamp_min only as a drop in performance level 5107 * could result in not getting the requested minimum performance level. 5108 * 5109 * For uclamp_max, we can tolerate a drop in performance level as the 5110 * goal is to cap the task. So it's okay if it's getting less. 5111 */ 5112 capacity_orig = arch_scale_cpu_capacity(cpu); 5113 5114 /* 5115 * We want to force a task to fit a cpu as implied by uclamp_max. 5116 * But we do have some corner cases to cater for.. 5117 * 5118 * 5119 * C=z 5120 * | ___ 5121 * | C=y | | 5122 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5123 * | C=x | | | | 5124 * | ___ | | | | 5125 * | | | | | | | (util somewhere in this region) 5126 * | | | | | | | 5127 * | | | | | | | 5128 * +---------------------------------------- 5129 * CPU0 CPU1 CPU2 5130 * 5131 * In the above example if a task is capped to a specific performance 5132 * point, y, then when: 5133 * 5134 * * util = 80% of x then it does not fit on CPU0 and should migrate 5135 * to CPU1 5136 * * util = 80% of y then it is forced to fit on CPU1 to honour 5137 * uclamp_max request. 5138 * 5139 * which is what we're enforcing here. A task always fits if 5140 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5141 * the normal upmigration rules should withhold still. 5142 * 5143 * Only exception is when we are on max capacity, then we need to be 5144 * careful not to block overutilized state. This is so because: 5145 * 5146 * 1. There's no concept of capping at max_capacity! We can't go 5147 * beyond this performance level anyway. 5148 * 2. The system is being saturated when we're operating near 5149 * max capacity, it doesn't make sense to block overutilized. 5150 */ 5151 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5152 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5153 fits = fits || uclamp_max_fits; 5154 5155 /* 5156 * 5157 * C=z 5158 * | ___ (region a, capped, util >= uclamp_max) 5159 * | C=y | | 5160 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5161 * | C=x | | | | 5162 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5163 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5164 * | | | | | | | 5165 * | | | | | | | (region c, boosted, util < uclamp_min) 5166 * +---------------------------------------- 5167 * CPU0 CPU1 CPU2 5168 * 5169 * a) If util > uclamp_max, then we're capped, we don't care about 5170 * actual fitness value here. We only care if uclamp_max fits 5171 * capacity without taking margin/pressure into account. 5172 * See comment above. 5173 * 5174 * b) If uclamp_min <= util <= uclamp_max, then the normal 5175 * fits_capacity() rules apply. Except we need to ensure that we 5176 * enforce we remain within uclamp_max, see comment above. 5177 * 5178 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5179 * need to take into account the boosted value fits the CPU without 5180 * taking margin/pressure into account. 5181 * 5182 * Cases (a) and (b) are handled in the 'fits' variable already. We 5183 * just need to consider an extra check for case (c) after ensuring we 5184 * handle the case uclamp_min > uclamp_max. 5185 */ 5186 uclamp_min = min(uclamp_min, uclamp_max); 5187 if (fits && (util < uclamp_min) && 5188 (uclamp_min > get_actual_cpu_capacity(cpu))) 5189 return -1; 5190 5191 return fits; 5192 } 5193 5194 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5195 { 5196 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5197 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5198 unsigned long util = task_util_est(p); 5199 /* 5200 * Return true only if the cpu fully fits the task requirements, which 5201 * include the utilization but also the performance hints. 5202 */ 5203 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5204 } 5205 5206 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5207 { 5208 int cpu = cpu_of(rq); 5209 5210 if (!sched_asym_cpucap_active()) 5211 return; 5212 5213 /* 5214 * Affinity allows us to go somewhere higher? Or are we on biggest 5215 * available CPU already? Or do we fit into this CPU ? 5216 */ 5217 if (!p || (p->nr_cpus_allowed == 1) || 5218 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5219 task_fits_cpu(p, cpu)) { 5220 5221 rq->misfit_task_load = 0; 5222 return; 5223 } 5224 5225 /* 5226 * Make sure that misfit_task_load will not be null even if 5227 * task_h_load() returns 0. 5228 */ 5229 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5230 } 5231 5232 #else /* CONFIG_SMP */ 5233 5234 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5235 { 5236 return !cfs_rq->nr_running; 5237 } 5238 5239 #define UPDATE_TG 0x0 5240 #define SKIP_AGE_LOAD 0x0 5241 #define DO_ATTACH 0x0 5242 #define DO_DETACH 0x0 5243 5244 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5245 { 5246 cfs_rq_util_change(cfs_rq, 0); 5247 } 5248 5249 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5250 5251 static inline void 5252 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5253 static inline void 5254 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5255 5256 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5257 { 5258 return 0; 5259 } 5260 5261 static inline void 5262 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5263 5264 static inline void 5265 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5266 5267 static inline void 5268 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5269 bool task_sleep) {} 5270 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5271 5272 #endif /* CONFIG_SMP */ 5273 5274 static void 5275 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5276 { 5277 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5278 s64 lag = 0; 5279 5280 if (!se->custom_slice) 5281 se->slice = sysctl_sched_base_slice; 5282 vslice = calc_delta_fair(se->slice, se); 5283 5284 /* 5285 * Due to how V is constructed as the weighted average of entities, 5286 * adding tasks with positive lag, or removing tasks with negative lag 5287 * will move 'time' backwards, this can screw around with the lag of 5288 * other tasks. 5289 * 5290 * EEVDF: placement strategy #1 / #2 5291 */ 5292 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) { 5293 struct sched_entity *curr = cfs_rq->curr; 5294 unsigned long load; 5295 5296 lag = se->vlag; 5297 5298 /* 5299 * If we want to place a task and preserve lag, we have to 5300 * consider the effect of the new entity on the weighted 5301 * average and compensate for this, otherwise lag can quickly 5302 * evaporate. 5303 * 5304 * Lag is defined as: 5305 * 5306 * lag_i = S - s_i = w_i * (V - v_i) 5307 * 5308 * To avoid the 'w_i' term all over the place, we only track 5309 * the virtual lag: 5310 * 5311 * vl_i = V - v_i <=> v_i = V - vl_i 5312 * 5313 * And we take V to be the weighted average of all v: 5314 * 5315 * V = (\Sum w_j*v_j) / W 5316 * 5317 * Where W is: \Sum w_j 5318 * 5319 * Then, the weighted average after adding an entity with lag 5320 * vl_i is given by: 5321 * 5322 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5323 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5324 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5325 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5326 * = V - w_i*vl_i / (W + w_i) 5327 * 5328 * And the actual lag after adding an entity with vl_i is: 5329 * 5330 * vl'_i = V' - v_i 5331 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5332 * = vl_i - w_i*vl_i / (W + w_i) 5333 * 5334 * Which is strictly less than vl_i. So in order to preserve lag 5335 * we should inflate the lag before placement such that the 5336 * effective lag after placement comes out right. 5337 * 5338 * As such, invert the above relation for vl'_i to get the vl_i 5339 * we need to use such that the lag after placement is the lag 5340 * we computed before dequeue. 5341 * 5342 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5343 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5344 * 5345 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5346 * = W*vl_i 5347 * 5348 * vl_i = (W + w_i)*vl'_i / W 5349 */ 5350 load = cfs_rq->avg_load; 5351 if (curr && curr->on_rq) 5352 load += scale_load_down(curr->load.weight); 5353 5354 lag *= load + scale_load_down(se->load.weight); 5355 if (WARN_ON_ONCE(!load)) 5356 load = 1; 5357 lag = div_s64(lag, load); 5358 } 5359 5360 se->vruntime = vruntime - lag; 5361 5362 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) { 5363 se->deadline += se->vruntime; 5364 se->rel_deadline = 0; 5365 return; 5366 } 5367 5368 /* 5369 * When joining the competition; the existing tasks will be, 5370 * on average, halfway through their slice, as such start tasks 5371 * off with half a slice to ease into the competition. 5372 */ 5373 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5374 vslice /= 2; 5375 5376 /* 5377 * EEVDF: vd_i = ve_i + r_i/w_i 5378 */ 5379 se->deadline = se->vruntime + vslice; 5380 } 5381 5382 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5383 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5384 5385 static inline bool cfs_bandwidth_used(void); 5386 5387 static void 5388 requeue_delayed_entity(struct sched_entity *se); 5389 5390 static void 5391 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5392 { 5393 bool curr = cfs_rq->curr == se; 5394 5395 /* 5396 * If we're the current task, we must renormalise before calling 5397 * update_curr(). 5398 */ 5399 if (curr) 5400 place_entity(cfs_rq, se, flags); 5401 5402 update_curr(cfs_rq); 5403 5404 /* 5405 * When enqueuing a sched_entity, we must: 5406 * - Update loads to have both entity and cfs_rq synced with now. 5407 * - For group_entity, update its runnable_weight to reflect the new 5408 * h_nr_running of its group cfs_rq. 5409 * - For group_entity, update its weight to reflect the new share of 5410 * its group cfs_rq 5411 * - Add its new weight to cfs_rq->load.weight 5412 */ 5413 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5414 se_update_runnable(se); 5415 /* 5416 * XXX update_load_avg() above will have attached us to the pelt sum; 5417 * but update_cfs_group() here will re-adjust the weight and have to 5418 * undo/redo all that. Seems wasteful. 5419 */ 5420 update_cfs_group(se); 5421 5422 /* 5423 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5424 * we can place the entity. 5425 */ 5426 if (!curr) 5427 place_entity(cfs_rq, se, flags); 5428 5429 account_entity_enqueue(cfs_rq, se); 5430 5431 /* Entity has migrated, no longer consider this task hot */ 5432 if (flags & ENQUEUE_MIGRATED) 5433 se->exec_start = 0; 5434 5435 check_schedstat_required(); 5436 update_stats_enqueue_fair(cfs_rq, se, flags); 5437 if (!curr) 5438 __enqueue_entity(cfs_rq, se); 5439 se->on_rq = 1; 5440 5441 if (cfs_rq->nr_running == 1) { 5442 check_enqueue_throttle(cfs_rq); 5443 if (!throttled_hierarchy(cfs_rq)) { 5444 list_add_leaf_cfs_rq(cfs_rq); 5445 } else { 5446 #ifdef CONFIG_CFS_BANDWIDTH 5447 struct rq *rq = rq_of(cfs_rq); 5448 5449 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5450 cfs_rq->throttled_clock = rq_clock(rq); 5451 if (!cfs_rq->throttled_clock_self) 5452 cfs_rq->throttled_clock_self = rq_clock(rq); 5453 #endif 5454 } 5455 } 5456 } 5457 5458 static void __clear_buddies_next(struct sched_entity *se) 5459 { 5460 for_each_sched_entity(se) { 5461 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5462 if (cfs_rq->next != se) 5463 break; 5464 5465 cfs_rq->next = NULL; 5466 } 5467 } 5468 5469 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5470 { 5471 if (cfs_rq->next == se) 5472 __clear_buddies_next(se); 5473 } 5474 5475 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5476 5477 static void set_delayed(struct sched_entity *se) 5478 { 5479 se->sched_delayed = 1; 5480 for_each_sched_entity(se) { 5481 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5482 5483 cfs_rq->h_nr_delayed++; 5484 if (cfs_rq_throttled(cfs_rq)) 5485 break; 5486 } 5487 } 5488 5489 static void clear_delayed(struct sched_entity *se) 5490 { 5491 se->sched_delayed = 0; 5492 for_each_sched_entity(se) { 5493 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5494 5495 cfs_rq->h_nr_delayed--; 5496 if (cfs_rq_throttled(cfs_rq)) 5497 break; 5498 } 5499 } 5500 5501 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5502 { 5503 clear_delayed(se); 5504 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5505 se->vlag = 0; 5506 } 5507 5508 static bool 5509 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5510 { 5511 bool sleep = flags & DEQUEUE_SLEEP; 5512 5513 update_curr(cfs_rq); 5514 clear_buddies(cfs_rq, se); 5515 5516 if (flags & DEQUEUE_DELAYED) { 5517 SCHED_WARN_ON(!se->sched_delayed); 5518 } else { 5519 bool delay = sleep; 5520 /* 5521 * DELAY_DEQUEUE relies on spurious wakeups, special task 5522 * states must not suffer spurious wakeups, excempt them. 5523 */ 5524 if (flags & DEQUEUE_SPECIAL) 5525 delay = false; 5526 5527 SCHED_WARN_ON(delay && se->sched_delayed); 5528 5529 if (sched_feat(DELAY_DEQUEUE) && delay && 5530 !entity_eligible(cfs_rq, se)) { 5531 update_load_avg(cfs_rq, se, 0); 5532 set_delayed(se); 5533 return false; 5534 } 5535 } 5536 5537 int action = UPDATE_TG; 5538 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5539 action |= DO_DETACH; 5540 5541 /* 5542 * When dequeuing a sched_entity, we must: 5543 * - Update loads to have both entity and cfs_rq synced with now. 5544 * - For group_entity, update its runnable_weight to reflect the new 5545 * h_nr_running of its group cfs_rq. 5546 * - Subtract its previous weight from cfs_rq->load.weight. 5547 * - For group entity, update its weight to reflect the new share 5548 * of its group cfs_rq. 5549 */ 5550 update_load_avg(cfs_rq, se, action); 5551 se_update_runnable(se); 5552 5553 update_stats_dequeue_fair(cfs_rq, se, flags); 5554 5555 update_entity_lag(cfs_rq, se); 5556 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5557 se->deadline -= se->vruntime; 5558 se->rel_deadline = 1; 5559 } 5560 5561 if (se != cfs_rq->curr) 5562 __dequeue_entity(cfs_rq, se); 5563 se->on_rq = 0; 5564 account_entity_dequeue(cfs_rq, se); 5565 5566 /* return excess runtime on last dequeue */ 5567 return_cfs_rq_runtime(cfs_rq); 5568 5569 update_cfs_group(se); 5570 5571 /* 5572 * Now advance min_vruntime if @se was the entity holding it back, 5573 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5574 * put back on, and if we advance min_vruntime, we'll be placed back 5575 * further than we started -- i.e. we'll be penalized. 5576 */ 5577 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5578 update_min_vruntime(cfs_rq); 5579 5580 if (flags & DEQUEUE_DELAYED) 5581 finish_delayed_dequeue_entity(se); 5582 5583 if (cfs_rq->nr_running == 0) 5584 update_idle_cfs_rq_clock_pelt(cfs_rq); 5585 5586 return true; 5587 } 5588 5589 static void 5590 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5591 { 5592 clear_buddies(cfs_rq, se); 5593 5594 /* 'current' is not kept within the tree. */ 5595 if (se->on_rq) { 5596 /* 5597 * Any task has to be enqueued before it get to execute on 5598 * a CPU. So account for the time it spent waiting on the 5599 * runqueue. 5600 */ 5601 update_stats_wait_end_fair(cfs_rq, se); 5602 __dequeue_entity(cfs_rq, se); 5603 update_load_avg(cfs_rq, se, UPDATE_TG); 5604 /* 5605 * HACK, stash a copy of deadline at the point of pick in vlag, 5606 * which isn't used until dequeue. 5607 */ 5608 se->vlag = se->deadline; 5609 } 5610 5611 update_stats_curr_start(cfs_rq, se); 5612 SCHED_WARN_ON(cfs_rq->curr); 5613 cfs_rq->curr = se; 5614 5615 /* 5616 * Track our maximum slice length, if the CPU's load is at 5617 * least twice that of our own weight (i.e. don't track it 5618 * when there are only lesser-weight tasks around): 5619 */ 5620 if (schedstat_enabled() && 5621 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5622 struct sched_statistics *stats; 5623 5624 stats = __schedstats_from_se(se); 5625 __schedstat_set(stats->slice_max, 5626 max((u64)stats->slice_max, 5627 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5628 } 5629 5630 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5631 } 5632 5633 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5634 5635 /* 5636 * Pick the next process, keeping these things in mind, in this order: 5637 * 1) keep things fair between processes/task groups 5638 * 2) pick the "next" process, since someone really wants that to run 5639 * 3) pick the "last" process, for cache locality 5640 * 4) do not run the "skip" process, if something else is available 5641 */ 5642 static struct sched_entity * 5643 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5644 { 5645 /* 5646 * Enabling NEXT_BUDDY will affect latency but not fairness. 5647 */ 5648 if (sched_feat(NEXT_BUDDY) && 5649 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5650 /* ->next will never be delayed */ 5651 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5652 return cfs_rq->next; 5653 } 5654 5655 struct sched_entity *se = pick_eevdf(cfs_rq); 5656 if (se->sched_delayed) { 5657 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5658 /* 5659 * Must not reference @se again, see __block_task(). 5660 */ 5661 return NULL; 5662 } 5663 return se; 5664 } 5665 5666 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5667 5668 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5669 { 5670 /* 5671 * If still on the runqueue then deactivate_task() 5672 * was not called and update_curr() has to be done: 5673 */ 5674 if (prev->on_rq) 5675 update_curr(cfs_rq); 5676 5677 /* throttle cfs_rqs exceeding runtime */ 5678 check_cfs_rq_runtime(cfs_rq); 5679 5680 if (prev->on_rq) { 5681 update_stats_wait_start_fair(cfs_rq, prev); 5682 /* Put 'current' back into the tree. */ 5683 __enqueue_entity(cfs_rq, prev); 5684 /* in !on_rq case, update occurred at dequeue */ 5685 update_load_avg(cfs_rq, prev, 0); 5686 } 5687 SCHED_WARN_ON(cfs_rq->curr != prev); 5688 cfs_rq->curr = NULL; 5689 } 5690 5691 static void 5692 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5693 { 5694 /* 5695 * Update run-time statistics of the 'current'. 5696 */ 5697 update_curr(cfs_rq); 5698 5699 /* 5700 * Ensure that runnable average is periodically updated. 5701 */ 5702 update_load_avg(cfs_rq, curr, UPDATE_TG); 5703 update_cfs_group(curr); 5704 5705 #ifdef CONFIG_SCHED_HRTICK 5706 /* 5707 * queued ticks are scheduled to match the slice, so don't bother 5708 * validating it and just reschedule. 5709 */ 5710 if (queued) { 5711 resched_curr_lazy(rq_of(cfs_rq)); 5712 return; 5713 } 5714 #endif 5715 } 5716 5717 5718 /************************************************** 5719 * CFS bandwidth control machinery 5720 */ 5721 5722 #ifdef CONFIG_CFS_BANDWIDTH 5723 5724 #ifdef CONFIG_JUMP_LABEL 5725 static struct static_key __cfs_bandwidth_used; 5726 5727 static inline bool cfs_bandwidth_used(void) 5728 { 5729 return static_key_false(&__cfs_bandwidth_used); 5730 } 5731 5732 void cfs_bandwidth_usage_inc(void) 5733 { 5734 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5735 } 5736 5737 void cfs_bandwidth_usage_dec(void) 5738 { 5739 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5740 } 5741 #else /* CONFIG_JUMP_LABEL */ 5742 static bool cfs_bandwidth_used(void) 5743 { 5744 return true; 5745 } 5746 5747 void cfs_bandwidth_usage_inc(void) {} 5748 void cfs_bandwidth_usage_dec(void) {} 5749 #endif /* CONFIG_JUMP_LABEL */ 5750 5751 /* 5752 * default period for cfs group bandwidth. 5753 * default: 0.1s, units: nanoseconds 5754 */ 5755 static inline u64 default_cfs_period(void) 5756 { 5757 return 100000000ULL; 5758 } 5759 5760 static inline u64 sched_cfs_bandwidth_slice(void) 5761 { 5762 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5763 } 5764 5765 /* 5766 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5767 * directly instead of rq->clock to avoid adding additional synchronization 5768 * around rq->lock. 5769 * 5770 * requires cfs_b->lock 5771 */ 5772 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5773 { 5774 s64 runtime; 5775 5776 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5777 return; 5778 5779 cfs_b->runtime += cfs_b->quota; 5780 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5781 if (runtime > 0) { 5782 cfs_b->burst_time += runtime; 5783 cfs_b->nr_burst++; 5784 } 5785 5786 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5787 cfs_b->runtime_snap = cfs_b->runtime; 5788 } 5789 5790 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5791 { 5792 return &tg->cfs_bandwidth; 5793 } 5794 5795 /* returns 0 on failure to allocate runtime */ 5796 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5797 struct cfs_rq *cfs_rq, u64 target_runtime) 5798 { 5799 u64 min_amount, amount = 0; 5800 5801 lockdep_assert_held(&cfs_b->lock); 5802 5803 /* note: this is a positive sum as runtime_remaining <= 0 */ 5804 min_amount = target_runtime - cfs_rq->runtime_remaining; 5805 5806 if (cfs_b->quota == RUNTIME_INF) 5807 amount = min_amount; 5808 else { 5809 start_cfs_bandwidth(cfs_b); 5810 5811 if (cfs_b->runtime > 0) { 5812 amount = min(cfs_b->runtime, min_amount); 5813 cfs_b->runtime -= amount; 5814 cfs_b->idle = 0; 5815 } 5816 } 5817 5818 cfs_rq->runtime_remaining += amount; 5819 5820 return cfs_rq->runtime_remaining > 0; 5821 } 5822 5823 /* returns 0 on failure to allocate runtime */ 5824 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5825 { 5826 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5827 int ret; 5828 5829 raw_spin_lock(&cfs_b->lock); 5830 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5831 raw_spin_unlock(&cfs_b->lock); 5832 5833 return ret; 5834 } 5835 5836 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5837 { 5838 /* dock delta_exec before expiring quota (as it could span periods) */ 5839 cfs_rq->runtime_remaining -= delta_exec; 5840 5841 if (likely(cfs_rq->runtime_remaining > 0)) 5842 return; 5843 5844 if (cfs_rq->throttled) 5845 return; 5846 /* 5847 * if we're unable to extend our runtime we resched so that the active 5848 * hierarchy can be throttled 5849 */ 5850 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5851 resched_curr(rq_of(cfs_rq)); 5852 } 5853 5854 static __always_inline 5855 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5856 { 5857 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5858 return; 5859 5860 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5861 } 5862 5863 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5864 { 5865 return cfs_bandwidth_used() && cfs_rq->throttled; 5866 } 5867 5868 /* check whether cfs_rq, or any parent, is throttled */ 5869 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5870 { 5871 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5872 } 5873 5874 /* 5875 * Ensure that neither of the group entities corresponding to src_cpu or 5876 * dest_cpu are members of a throttled hierarchy when performing group 5877 * load-balance operations. 5878 */ 5879 static inline int throttled_lb_pair(struct task_group *tg, 5880 int src_cpu, int dest_cpu) 5881 { 5882 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5883 5884 src_cfs_rq = tg->cfs_rq[src_cpu]; 5885 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5886 5887 return throttled_hierarchy(src_cfs_rq) || 5888 throttled_hierarchy(dest_cfs_rq); 5889 } 5890 5891 static int tg_unthrottle_up(struct task_group *tg, void *data) 5892 { 5893 struct rq *rq = data; 5894 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5895 5896 cfs_rq->throttle_count--; 5897 if (!cfs_rq->throttle_count) { 5898 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5899 cfs_rq->throttled_clock_pelt; 5900 5901 /* Add cfs_rq with load or one or more already running entities to the list */ 5902 if (!cfs_rq_is_decayed(cfs_rq)) 5903 list_add_leaf_cfs_rq(cfs_rq); 5904 5905 if (cfs_rq->throttled_clock_self) { 5906 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5907 5908 cfs_rq->throttled_clock_self = 0; 5909 5910 if (SCHED_WARN_ON((s64)delta < 0)) 5911 delta = 0; 5912 5913 cfs_rq->throttled_clock_self_time += delta; 5914 } 5915 } 5916 5917 return 0; 5918 } 5919 5920 static int tg_throttle_down(struct task_group *tg, void *data) 5921 { 5922 struct rq *rq = data; 5923 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5924 5925 /* group is entering throttled state, stop time */ 5926 if (!cfs_rq->throttle_count) { 5927 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5928 list_del_leaf_cfs_rq(cfs_rq); 5929 5930 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5931 if (cfs_rq->nr_running) 5932 cfs_rq->throttled_clock_self = rq_clock(rq); 5933 } 5934 cfs_rq->throttle_count++; 5935 5936 return 0; 5937 } 5938 5939 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5940 { 5941 struct rq *rq = rq_of(cfs_rq); 5942 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5943 struct sched_entity *se; 5944 long task_delta, idle_task_delta, delayed_delta, dequeue = 1; 5945 long rq_h_nr_running = rq->cfs.h_nr_running; 5946 5947 raw_spin_lock(&cfs_b->lock); 5948 /* This will start the period timer if necessary */ 5949 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5950 /* 5951 * We have raced with bandwidth becoming available, and if we 5952 * actually throttled the timer might not unthrottle us for an 5953 * entire period. We additionally needed to make sure that any 5954 * subsequent check_cfs_rq_runtime calls agree not to throttle 5955 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5956 * for 1ns of runtime rather than just check cfs_b. 5957 */ 5958 dequeue = 0; 5959 } else { 5960 list_add_tail_rcu(&cfs_rq->throttled_list, 5961 &cfs_b->throttled_cfs_rq); 5962 } 5963 raw_spin_unlock(&cfs_b->lock); 5964 5965 if (!dequeue) 5966 return false; /* Throttle no longer required. */ 5967 5968 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5969 5970 /* freeze hierarchy runnable averages while throttled */ 5971 rcu_read_lock(); 5972 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5973 rcu_read_unlock(); 5974 5975 task_delta = cfs_rq->h_nr_running; 5976 idle_task_delta = cfs_rq->idle_h_nr_running; 5977 delayed_delta = cfs_rq->h_nr_delayed; 5978 for_each_sched_entity(se) { 5979 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5980 int flags; 5981 5982 /* throttled entity or throttle-on-deactivate */ 5983 if (!se->on_rq) 5984 goto done; 5985 5986 /* 5987 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5988 * This avoids teaching dequeue_entities() about throttled 5989 * entities and keeps things relatively simple. 5990 */ 5991 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5992 if (se->sched_delayed) 5993 flags |= DEQUEUE_DELAYED; 5994 dequeue_entity(qcfs_rq, se, flags); 5995 5996 if (cfs_rq_is_idle(group_cfs_rq(se))) 5997 idle_task_delta = cfs_rq->h_nr_running; 5998 5999 qcfs_rq->h_nr_running -= task_delta; 6000 qcfs_rq->idle_h_nr_running -= idle_task_delta; 6001 qcfs_rq->h_nr_delayed -= delayed_delta; 6002 6003 if (qcfs_rq->load.weight) { 6004 /* Avoid re-evaluating load for this entity: */ 6005 se = parent_entity(se); 6006 break; 6007 } 6008 } 6009 6010 for_each_sched_entity(se) { 6011 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6012 /* throttled entity or throttle-on-deactivate */ 6013 if (!se->on_rq) 6014 goto done; 6015 6016 update_load_avg(qcfs_rq, se, 0); 6017 se_update_runnable(se); 6018 6019 if (cfs_rq_is_idle(group_cfs_rq(se))) 6020 idle_task_delta = cfs_rq->h_nr_running; 6021 6022 qcfs_rq->h_nr_running -= task_delta; 6023 qcfs_rq->idle_h_nr_running -= idle_task_delta; 6024 qcfs_rq->h_nr_delayed -= delayed_delta; 6025 } 6026 6027 /* At this point se is NULL and we are at root level*/ 6028 sub_nr_running(rq, task_delta); 6029 6030 /* Stop the fair server if throttling resulted in no runnable tasks */ 6031 if (rq_h_nr_running && !rq->cfs.h_nr_running) 6032 dl_server_stop(&rq->fair_server); 6033 done: 6034 /* 6035 * Note: distribution will already see us throttled via the 6036 * throttled-list. rq->lock protects completion. 6037 */ 6038 cfs_rq->throttled = 1; 6039 SCHED_WARN_ON(cfs_rq->throttled_clock); 6040 if (cfs_rq->nr_running) 6041 cfs_rq->throttled_clock = rq_clock(rq); 6042 return true; 6043 } 6044 6045 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 6046 { 6047 struct rq *rq = rq_of(cfs_rq); 6048 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6049 struct sched_entity *se; 6050 long task_delta, idle_task_delta, delayed_delta; 6051 long rq_h_nr_running = rq->cfs.h_nr_running; 6052 6053 se = cfs_rq->tg->se[cpu_of(rq)]; 6054 6055 cfs_rq->throttled = 0; 6056 6057 update_rq_clock(rq); 6058 6059 raw_spin_lock(&cfs_b->lock); 6060 if (cfs_rq->throttled_clock) { 6061 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6062 cfs_rq->throttled_clock = 0; 6063 } 6064 list_del_rcu(&cfs_rq->throttled_list); 6065 raw_spin_unlock(&cfs_b->lock); 6066 6067 /* update hierarchical throttle state */ 6068 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6069 6070 if (!cfs_rq->load.weight) { 6071 if (!cfs_rq->on_list) 6072 return; 6073 /* 6074 * Nothing to run but something to decay (on_list)? 6075 * Complete the branch. 6076 */ 6077 for_each_sched_entity(se) { 6078 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6079 break; 6080 } 6081 goto unthrottle_throttle; 6082 } 6083 6084 task_delta = cfs_rq->h_nr_running; 6085 idle_task_delta = cfs_rq->idle_h_nr_running; 6086 delayed_delta = cfs_rq->h_nr_delayed; 6087 for_each_sched_entity(se) { 6088 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6089 6090 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6091 if (se->sched_delayed) { 6092 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6093 6094 dequeue_entity(qcfs_rq, se, flags); 6095 } else if (se->on_rq) 6096 break; 6097 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6098 6099 if (cfs_rq_is_idle(group_cfs_rq(se))) 6100 idle_task_delta = cfs_rq->h_nr_running; 6101 6102 qcfs_rq->h_nr_running += task_delta; 6103 qcfs_rq->idle_h_nr_running += idle_task_delta; 6104 qcfs_rq->h_nr_delayed += delayed_delta; 6105 6106 /* end evaluation on encountering a throttled cfs_rq */ 6107 if (cfs_rq_throttled(qcfs_rq)) 6108 goto unthrottle_throttle; 6109 } 6110 6111 for_each_sched_entity(se) { 6112 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6113 6114 update_load_avg(qcfs_rq, se, UPDATE_TG); 6115 se_update_runnable(se); 6116 6117 if (cfs_rq_is_idle(group_cfs_rq(se))) 6118 idle_task_delta = cfs_rq->h_nr_running; 6119 6120 qcfs_rq->h_nr_running += task_delta; 6121 qcfs_rq->idle_h_nr_running += idle_task_delta; 6122 qcfs_rq->h_nr_delayed += delayed_delta; 6123 6124 /* end evaluation on encountering a throttled cfs_rq */ 6125 if (cfs_rq_throttled(qcfs_rq)) 6126 goto unthrottle_throttle; 6127 } 6128 6129 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6130 if (!rq_h_nr_running && rq->cfs.h_nr_running) 6131 dl_server_start(&rq->fair_server); 6132 6133 /* At this point se is NULL and we are at root level*/ 6134 add_nr_running(rq, task_delta); 6135 6136 unthrottle_throttle: 6137 assert_list_leaf_cfs_rq(rq); 6138 6139 /* Determine whether we need to wake up potentially idle CPU: */ 6140 if (rq->curr == rq->idle && rq->cfs.nr_running) 6141 resched_curr(rq); 6142 } 6143 6144 #ifdef CONFIG_SMP 6145 static void __cfsb_csd_unthrottle(void *arg) 6146 { 6147 struct cfs_rq *cursor, *tmp; 6148 struct rq *rq = arg; 6149 struct rq_flags rf; 6150 6151 rq_lock(rq, &rf); 6152 6153 /* 6154 * Iterating over the list can trigger several call to 6155 * update_rq_clock() in unthrottle_cfs_rq(). 6156 * Do it once and skip the potential next ones. 6157 */ 6158 update_rq_clock(rq); 6159 rq_clock_start_loop_update(rq); 6160 6161 /* 6162 * Since we hold rq lock we're safe from concurrent manipulation of 6163 * the CSD list. However, this RCU critical section annotates the 6164 * fact that we pair with sched_free_group_rcu(), so that we cannot 6165 * race with group being freed in the window between removing it 6166 * from the list and advancing to the next entry in the list. 6167 */ 6168 rcu_read_lock(); 6169 6170 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6171 throttled_csd_list) { 6172 list_del_init(&cursor->throttled_csd_list); 6173 6174 if (cfs_rq_throttled(cursor)) 6175 unthrottle_cfs_rq(cursor); 6176 } 6177 6178 rcu_read_unlock(); 6179 6180 rq_clock_stop_loop_update(rq); 6181 rq_unlock(rq, &rf); 6182 } 6183 6184 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6185 { 6186 struct rq *rq = rq_of(cfs_rq); 6187 bool first; 6188 6189 if (rq == this_rq()) { 6190 unthrottle_cfs_rq(cfs_rq); 6191 return; 6192 } 6193 6194 /* Already enqueued */ 6195 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6196 return; 6197 6198 first = list_empty(&rq->cfsb_csd_list); 6199 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6200 if (first) 6201 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6202 } 6203 #else 6204 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6205 { 6206 unthrottle_cfs_rq(cfs_rq); 6207 } 6208 #endif 6209 6210 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6211 { 6212 lockdep_assert_rq_held(rq_of(cfs_rq)); 6213 6214 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6215 cfs_rq->runtime_remaining <= 0)) 6216 return; 6217 6218 __unthrottle_cfs_rq_async(cfs_rq); 6219 } 6220 6221 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6222 { 6223 int this_cpu = smp_processor_id(); 6224 u64 runtime, remaining = 1; 6225 bool throttled = false; 6226 struct cfs_rq *cfs_rq, *tmp; 6227 struct rq_flags rf; 6228 struct rq *rq; 6229 LIST_HEAD(local_unthrottle); 6230 6231 rcu_read_lock(); 6232 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6233 throttled_list) { 6234 rq = rq_of(cfs_rq); 6235 6236 if (!remaining) { 6237 throttled = true; 6238 break; 6239 } 6240 6241 rq_lock_irqsave(rq, &rf); 6242 if (!cfs_rq_throttled(cfs_rq)) 6243 goto next; 6244 6245 /* Already queued for async unthrottle */ 6246 if (!list_empty(&cfs_rq->throttled_csd_list)) 6247 goto next; 6248 6249 /* By the above checks, this should never be true */ 6250 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6251 6252 raw_spin_lock(&cfs_b->lock); 6253 runtime = -cfs_rq->runtime_remaining + 1; 6254 if (runtime > cfs_b->runtime) 6255 runtime = cfs_b->runtime; 6256 cfs_b->runtime -= runtime; 6257 remaining = cfs_b->runtime; 6258 raw_spin_unlock(&cfs_b->lock); 6259 6260 cfs_rq->runtime_remaining += runtime; 6261 6262 /* we check whether we're throttled above */ 6263 if (cfs_rq->runtime_remaining > 0) { 6264 if (cpu_of(rq) != this_cpu) { 6265 unthrottle_cfs_rq_async(cfs_rq); 6266 } else { 6267 /* 6268 * We currently only expect to be unthrottling 6269 * a single cfs_rq locally. 6270 */ 6271 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6272 list_add_tail(&cfs_rq->throttled_csd_list, 6273 &local_unthrottle); 6274 } 6275 } else { 6276 throttled = true; 6277 } 6278 6279 next: 6280 rq_unlock_irqrestore(rq, &rf); 6281 } 6282 6283 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6284 throttled_csd_list) { 6285 struct rq *rq = rq_of(cfs_rq); 6286 6287 rq_lock_irqsave(rq, &rf); 6288 6289 list_del_init(&cfs_rq->throttled_csd_list); 6290 6291 if (cfs_rq_throttled(cfs_rq)) 6292 unthrottle_cfs_rq(cfs_rq); 6293 6294 rq_unlock_irqrestore(rq, &rf); 6295 } 6296 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6297 6298 rcu_read_unlock(); 6299 6300 return throttled; 6301 } 6302 6303 /* 6304 * Responsible for refilling a task_group's bandwidth and unthrottling its 6305 * cfs_rqs as appropriate. If there has been no activity within the last 6306 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6307 * used to track this state. 6308 */ 6309 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6310 { 6311 int throttled; 6312 6313 /* no need to continue the timer with no bandwidth constraint */ 6314 if (cfs_b->quota == RUNTIME_INF) 6315 goto out_deactivate; 6316 6317 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6318 cfs_b->nr_periods += overrun; 6319 6320 /* Refill extra burst quota even if cfs_b->idle */ 6321 __refill_cfs_bandwidth_runtime(cfs_b); 6322 6323 /* 6324 * idle depends on !throttled (for the case of a large deficit), and if 6325 * we're going inactive then everything else can be deferred 6326 */ 6327 if (cfs_b->idle && !throttled) 6328 goto out_deactivate; 6329 6330 if (!throttled) { 6331 /* mark as potentially idle for the upcoming period */ 6332 cfs_b->idle = 1; 6333 return 0; 6334 } 6335 6336 /* account preceding periods in which throttling occurred */ 6337 cfs_b->nr_throttled += overrun; 6338 6339 /* 6340 * This check is repeated as we release cfs_b->lock while we unthrottle. 6341 */ 6342 while (throttled && cfs_b->runtime > 0) { 6343 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6344 /* we can't nest cfs_b->lock while distributing bandwidth */ 6345 throttled = distribute_cfs_runtime(cfs_b); 6346 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6347 } 6348 6349 /* 6350 * While we are ensured activity in the period following an 6351 * unthrottle, this also covers the case in which the new bandwidth is 6352 * insufficient to cover the existing bandwidth deficit. (Forcing the 6353 * timer to remain active while there are any throttled entities.) 6354 */ 6355 cfs_b->idle = 0; 6356 6357 return 0; 6358 6359 out_deactivate: 6360 return 1; 6361 } 6362 6363 /* a cfs_rq won't donate quota below this amount */ 6364 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6365 /* minimum remaining period time to redistribute slack quota */ 6366 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6367 /* how long we wait to gather additional slack before distributing */ 6368 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6369 6370 /* 6371 * Are we near the end of the current quota period? 6372 * 6373 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6374 * hrtimer base being cleared by hrtimer_start. In the case of 6375 * migrate_hrtimers, base is never cleared, so we are fine. 6376 */ 6377 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6378 { 6379 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6380 s64 remaining; 6381 6382 /* if the call-back is running a quota refresh is already occurring */ 6383 if (hrtimer_callback_running(refresh_timer)) 6384 return 1; 6385 6386 /* is a quota refresh about to occur? */ 6387 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6388 if (remaining < (s64)min_expire) 6389 return 1; 6390 6391 return 0; 6392 } 6393 6394 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6395 { 6396 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6397 6398 /* if there's a quota refresh soon don't bother with slack */ 6399 if (runtime_refresh_within(cfs_b, min_left)) 6400 return; 6401 6402 /* don't push forwards an existing deferred unthrottle */ 6403 if (cfs_b->slack_started) 6404 return; 6405 cfs_b->slack_started = true; 6406 6407 hrtimer_start(&cfs_b->slack_timer, 6408 ns_to_ktime(cfs_bandwidth_slack_period), 6409 HRTIMER_MODE_REL); 6410 } 6411 6412 /* we know any runtime found here is valid as update_curr() precedes return */ 6413 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6414 { 6415 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6416 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6417 6418 if (slack_runtime <= 0) 6419 return; 6420 6421 raw_spin_lock(&cfs_b->lock); 6422 if (cfs_b->quota != RUNTIME_INF) { 6423 cfs_b->runtime += slack_runtime; 6424 6425 /* we are under rq->lock, defer unthrottling using a timer */ 6426 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6427 !list_empty(&cfs_b->throttled_cfs_rq)) 6428 start_cfs_slack_bandwidth(cfs_b); 6429 } 6430 raw_spin_unlock(&cfs_b->lock); 6431 6432 /* even if it's not valid for return we don't want to try again */ 6433 cfs_rq->runtime_remaining -= slack_runtime; 6434 } 6435 6436 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6437 { 6438 if (!cfs_bandwidth_used()) 6439 return; 6440 6441 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6442 return; 6443 6444 __return_cfs_rq_runtime(cfs_rq); 6445 } 6446 6447 /* 6448 * This is done with a timer (instead of inline with bandwidth return) since 6449 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6450 */ 6451 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6452 { 6453 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6454 unsigned long flags; 6455 6456 /* confirm we're still not at a refresh boundary */ 6457 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6458 cfs_b->slack_started = false; 6459 6460 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6461 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6462 return; 6463 } 6464 6465 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6466 runtime = cfs_b->runtime; 6467 6468 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6469 6470 if (!runtime) 6471 return; 6472 6473 distribute_cfs_runtime(cfs_b); 6474 } 6475 6476 /* 6477 * When a group wakes up we want to make sure that its quota is not already 6478 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6479 * runtime as update_curr() throttling can not trigger until it's on-rq. 6480 */ 6481 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6482 { 6483 if (!cfs_bandwidth_used()) 6484 return; 6485 6486 /* an active group must be handled by the update_curr()->put() path */ 6487 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6488 return; 6489 6490 /* ensure the group is not already throttled */ 6491 if (cfs_rq_throttled(cfs_rq)) 6492 return; 6493 6494 /* update runtime allocation */ 6495 account_cfs_rq_runtime(cfs_rq, 0); 6496 if (cfs_rq->runtime_remaining <= 0) 6497 throttle_cfs_rq(cfs_rq); 6498 } 6499 6500 static void sync_throttle(struct task_group *tg, int cpu) 6501 { 6502 struct cfs_rq *pcfs_rq, *cfs_rq; 6503 6504 if (!cfs_bandwidth_used()) 6505 return; 6506 6507 if (!tg->parent) 6508 return; 6509 6510 cfs_rq = tg->cfs_rq[cpu]; 6511 pcfs_rq = tg->parent->cfs_rq[cpu]; 6512 6513 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6514 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6515 } 6516 6517 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6518 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6519 { 6520 if (!cfs_bandwidth_used()) 6521 return false; 6522 6523 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6524 return false; 6525 6526 /* 6527 * it's possible for a throttled entity to be forced into a running 6528 * state (e.g. set_curr_task), in this case we're finished. 6529 */ 6530 if (cfs_rq_throttled(cfs_rq)) 6531 return true; 6532 6533 return throttle_cfs_rq(cfs_rq); 6534 } 6535 6536 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6537 { 6538 struct cfs_bandwidth *cfs_b = 6539 container_of(timer, struct cfs_bandwidth, slack_timer); 6540 6541 do_sched_cfs_slack_timer(cfs_b); 6542 6543 return HRTIMER_NORESTART; 6544 } 6545 6546 extern const u64 max_cfs_quota_period; 6547 6548 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6549 { 6550 struct cfs_bandwidth *cfs_b = 6551 container_of(timer, struct cfs_bandwidth, period_timer); 6552 unsigned long flags; 6553 int overrun; 6554 int idle = 0; 6555 int count = 0; 6556 6557 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6558 for (;;) { 6559 overrun = hrtimer_forward_now(timer, cfs_b->period); 6560 if (!overrun) 6561 break; 6562 6563 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6564 6565 if (++count > 3) { 6566 u64 new, old = ktime_to_ns(cfs_b->period); 6567 6568 /* 6569 * Grow period by a factor of 2 to avoid losing precision. 6570 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6571 * to fail. 6572 */ 6573 new = old * 2; 6574 if (new < max_cfs_quota_period) { 6575 cfs_b->period = ns_to_ktime(new); 6576 cfs_b->quota *= 2; 6577 cfs_b->burst *= 2; 6578 6579 pr_warn_ratelimited( 6580 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6581 smp_processor_id(), 6582 div_u64(new, NSEC_PER_USEC), 6583 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6584 } else { 6585 pr_warn_ratelimited( 6586 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6587 smp_processor_id(), 6588 div_u64(old, NSEC_PER_USEC), 6589 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6590 } 6591 6592 /* reset count so we don't come right back in here */ 6593 count = 0; 6594 } 6595 } 6596 if (idle) 6597 cfs_b->period_active = 0; 6598 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6599 6600 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6601 } 6602 6603 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6604 { 6605 raw_spin_lock_init(&cfs_b->lock); 6606 cfs_b->runtime = 0; 6607 cfs_b->quota = RUNTIME_INF; 6608 cfs_b->period = ns_to_ktime(default_cfs_period()); 6609 cfs_b->burst = 0; 6610 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6611 6612 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6613 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6614 cfs_b->period_timer.function = sched_cfs_period_timer; 6615 6616 /* Add a random offset so that timers interleave */ 6617 hrtimer_set_expires(&cfs_b->period_timer, 6618 get_random_u32_below(cfs_b->period)); 6619 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6620 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6621 cfs_b->slack_started = false; 6622 } 6623 6624 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6625 { 6626 cfs_rq->runtime_enabled = 0; 6627 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6628 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6629 } 6630 6631 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6632 { 6633 lockdep_assert_held(&cfs_b->lock); 6634 6635 if (cfs_b->period_active) 6636 return; 6637 6638 cfs_b->period_active = 1; 6639 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6640 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6641 } 6642 6643 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6644 { 6645 int __maybe_unused i; 6646 6647 /* init_cfs_bandwidth() was not called */ 6648 if (!cfs_b->throttled_cfs_rq.next) 6649 return; 6650 6651 hrtimer_cancel(&cfs_b->period_timer); 6652 hrtimer_cancel(&cfs_b->slack_timer); 6653 6654 /* 6655 * It is possible that we still have some cfs_rq's pending on a CSD 6656 * list, though this race is very rare. In order for this to occur, we 6657 * must have raced with the last task leaving the group while there 6658 * exist throttled cfs_rq(s), and the period_timer must have queued the 6659 * CSD item but the remote cpu has not yet processed it. To handle this, 6660 * we can simply flush all pending CSD work inline here. We're 6661 * guaranteed at this point that no additional cfs_rq of this group can 6662 * join a CSD list. 6663 */ 6664 #ifdef CONFIG_SMP 6665 for_each_possible_cpu(i) { 6666 struct rq *rq = cpu_rq(i); 6667 unsigned long flags; 6668 6669 if (list_empty(&rq->cfsb_csd_list)) 6670 continue; 6671 6672 local_irq_save(flags); 6673 __cfsb_csd_unthrottle(rq); 6674 local_irq_restore(flags); 6675 } 6676 #endif 6677 } 6678 6679 /* 6680 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6681 * 6682 * The race is harmless, since modifying bandwidth settings of unhooked group 6683 * bits doesn't do much. 6684 */ 6685 6686 /* cpu online callback */ 6687 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6688 { 6689 struct task_group *tg; 6690 6691 lockdep_assert_rq_held(rq); 6692 6693 rcu_read_lock(); 6694 list_for_each_entry_rcu(tg, &task_groups, list) { 6695 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6696 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6697 6698 raw_spin_lock(&cfs_b->lock); 6699 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6700 raw_spin_unlock(&cfs_b->lock); 6701 } 6702 rcu_read_unlock(); 6703 } 6704 6705 /* cpu offline callback */ 6706 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6707 { 6708 struct task_group *tg; 6709 6710 lockdep_assert_rq_held(rq); 6711 6712 /* 6713 * The rq clock has already been updated in the 6714 * set_rq_offline(), so we should skip updating 6715 * the rq clock again in unthrottle_cfs_rq(). 6716 */ 6717 rq_clock_start_loop_update(rq); 6718 6719 rcu_read_lock(); 6720 list_for_each_entry_rcu(tg, &task_groups, list) { 6721 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6722 6723 if (!cfs_rq->runtime_enabled) 6724 continue; 6725 6726 /* 6727 * clock_task is not advancing so we just need to make sure 6728 * there's some valid quota amount 6729 */ 6730 cfs_rq->runtime_remaining = 1; 6731 /* 6732 * Offline rq is schedulable till CPU is completely disabled 6733 * in take_cpu_down(), so we prevent new cfs throttling here. 6734 */ 6735 cfs_rq->runtime_enabled = 0; 6736 6737 if (cfs_rq_throttled(cfs_rq)) 6738 unthrottle_cfs_rq(cfs_rq); 6739 } 6740 rcu_read_unlock(); 6741 6742 rq_clock_stop_loop_update(rq); 6743 } 6744 6745 bool cfs_task_bw_constrained(struct task_struct *p) 6746 { 6747 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6748 6749 if (!cfs_bandwidth_used()) 6750 return false; 6751 6752 if (cfs_rq->runtime_enabled || 6753 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6754 return true; 6755 6756 return false; 6757 } 6758 6759 #ifdef CONFIG_NO_HZ_FULL 6760 /* called from pick_next_task_fair() */ 6761 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6762 { 6763 int cpu = cpu_of(rq); 6764 6765 if (!cfs_bandwidth_used()) 6766 return; 6767 6768 if (!tick_nohz_full_cpu(cpu)) 6769 return; 6770 6771 if (rq->nr_running != 1) 6772 return; 6773 6774 /* 6775 * We know there is only one task runnable and we've just picked it. The 6776 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6777 * be otherwise able to stop the tick. Just need to check if we are using 6778 * bandwidth control. 6779 */ 6780 if (cfs_task_bw_constrained(p)) 6781 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6782 } 6783 #endif 6784 6785 #else /* CONFIG_CFS_BANDWIDTH */ 6786 6787 static inline bool cfs_bandwidth_used(void) 6788 { 6789 return false; 6790 } 6791 6792 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6793 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6794 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6795 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6796 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6797 6798 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6799 { 6800 return 0; 6801 } 6802 6803 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6804 { 6805 return 0; 6806 } 6807 6808 static inline int throttled_lb_pair(struct task_group *tg, 6809 int src_cpu, int dest_cpu) 6810 { 6811 return 0; 6812 } 6813 6814 #ifdef CONFIG_FAIR_GROUP_SCHED 6815 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6816 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6817 #endif 6818 6819 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6820 { 6821 return NULL; 6822 } 6823 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6824 static inline void update_runtime_enabled(struct rq *rq) {} 6825 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6826 #ifdef CONFIG_CGROUP_SCHED 6827 bool cfs_task_bw_constrained(struct task_struct *p) 6828 { 6829 return false; 6830 } 6831 #endif 6832 #endif /* CONFIG_CFS_BANDWIDTH */ 6833 6834 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6835 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6836 #endif 6837 6838 /************************************************** 6839 * CFS operations on tasks: 6840 */ 6841 6842 #ifdef CONFIG_SCHED_HRTICK 6843 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6844 { 6845 struct sched_entity *se = &p->se; 6846 6847 SCHED_WARN_ON(task_rq(p) != rq); 6848 6849 if (rq->cfs.h_nr_running > 1) { 6850 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6851 u64 slice = se->slice; 6852 s64 delta = slice - ran; 6853 6854 if (delta < 0) { 6855 if (task_current_donor(rq, p)) 6856 resched_curr(rq); 6857 return; 6858 } 6859 hrtick_start(rq, delta); 6860 } 6861 } 6862 6863 /* 6864 * called from enqueue/dequeue and updates the hrtick when the 6865 * current task is from our class and nr_running is low enough 6866 * to matter. 6867 */ 6868 static void hrtick_update(struct rq *rq) 6869 { 6870 struct task_struct *donor = rq->donor; 6871 6872 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6873 return; 6874 6875 hrtick_start_fair(rq, donor); 6876 } 6877 #else /* !CONFIG_SCHED_HRTICK */ 6878 static inline void 6879 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6880 { 6881 } 6882 6883 static inline void hrtick_update(struct rq *rq) 6884 { 6885 } 6886 #endif 6887 6888 #ifdef CONFIG_SMP 6889 static inline bool cpu_overutilized(int cpu) 6890 { 6891 unsigned long rq_util_min, rq_util_max; 6892 6893 if (!sched_energy_enabled()) 6894 return false; 6895 6896 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6897 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6898 6899 /* Return true only if the utilization doesn't fit CPU's capacity */ 6900 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6901 } 6902 6903 /* 6904 * overutilized value make sense only if EAS is enabled 6905 */ 6906 static inline bool is_rd_overutilized(struct root_domain *rd) 6907 { 6908 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6909 } 6910 6911 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6912 { 6913 if (!sched_energy_enabled()) 6914 return; 6915 6916 WRITE_ONCE(rd->overutilized, flag); 6917 trace_sched_overutilized_tp(rd, flag); 6918 } 6919 6920 static inline void check_update_overutilized_status(struct rq *rq) 6921 { 6922 /* 6923 * overutilized field is used for load balancing decisions only 6924 * if energy aware scheduler is being used 6925 */ 6926 6927 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6928 set_rd_overutilized(rq->rd, 1); 6929 } 6930 #else 6931 static inline void check_update_overutilized_status(struct rq *rq) { } 6932 #endif 6933 6934 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6935 static int sched_idle_rq(struct rq *rq) 6936 { 6937 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6938 rq->nr_running); 6939 } 6940 6941 #ifdef CONFIG_SMP 6942 static int sched_idle_cpu(int cpu) 6943 { 6944 return sched_idle_rq(cpu_rq(cpu)); 6945 } 6946 #endif 6947 6948 static void 6949 requeue_delayed_entity(struct sched_entity *se) 6950 { 6951 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6952 6953 /* 6954 * se->sched_delayed should imply: se->on_rq == 1. 6955 * Because a delayed entity is one that is still on 6956 * the runqueue competing until elegibility. 6957 */ 6958 SCHED_WARN_ON(!se->sched_delayed); 6959 SCHED_WARN_ON(!se->on_rq); 6960 6961 if (sched_feat(DELAY_ZERO)) { 6962 update_entity_lag(cfs_rq, se); 6963 if (se->vlag > 0) { 6964 cfs_rq->nr_running--; 6965 if (se != cfs_rq->curr) 6966 __dequeue_entity(cfs_rq, se); 6967 se->vlag = 0; 6968 place_entity(cfs_rq, se, 0); 6969 if (se != cfs_rq->curr) 6970 __enqueue_entity(cfs_rq, se); 6971 cfs_rq->nr_running++; 6972 } 6973 } 6974 6975 update_load_avg(cfs_rq, se, 0); 6976 clear_delayed(se); 6977 } 6978 6979 /* 6980 * The enqueue_task method is called before nr_running is 6981 * increased. Here we update the fair scheduling stats and 6982 * then put the task into the rbtree: 6983 */ 6984 static void 6985 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6986 { 6987 struct cfs_rq *cfs_rq; 6988 struct sched_entity *se = &p->se; 6989 int idle_h_nr_running = task_has_idle_policy(p); 6990 int h_nr_delayed = 0; 6991 int task_new = !(flags & ENQUEUE_WAKEUP); 6992 int rq_h_nr_running = rq->cfs.h_nr_running; 6993 u64 slice = 0; 6994 6995 /* 6996 * The code below (indirectly) updates schedutil which looks at 6997 * the cfs_rq utilization to select a frequency. 6998 * Let's add the task's estimated utilization to the cfs_rq's 6999 * estimated utilization, before we update schedutil. 7000 */ 7001 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 7002 util_est_enqueue(&rq->cfs, p); 7003 7004 if (flags & ENQUEUE_DELAYED) { 7005 requeue_delayed_entity(se); 7006 return; 7007 } 7008 7009 /* 7010 * If in_iowait is set, the code below may not trigger any cpufreq 7011 * utilization updates, so do it here explicitly with the IOWAIT flag 7012 * passed. 7013 */ 7014 if (p->in_iowait) 7015 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 7016 7017 if (task_new) 7018 h_nr_delayed = !!se->sched_delayed; 7019 7020 for_each_sched_entity(se) { 7021 if (se->on_rq) { 7022 if (se->sched_delayed) 7023 requeue_delayed_entity(se); 7024 break; 7025 } 7026 cfs_rq = cfs_rq_of(se); 7027 7028 /* 7029 * Basically set the slice of group entries to the min_slice of 7030 * their respective cfs_rq. This ensures the group can service 7031 * its entities in the desired time-frame. 7032 */ 7033 if (slice) { 7034 se->slice = slice; 7035 se->custom_slice = 1; 7036 } 7037 enqueue_entity(cfs_rq, se, flags); 7038 slice = cfs_rq_min_slice(cfs_rq); 7039 7040 cfs_rq->h_nr_running++; 7041 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7042 cfs_rq->h_nr_delayed += h_nr_delayed; 7043 7044 if (cfs_rq_is_idle(cfs_rq)) 7045 idle_h_nr_running = 1; 7046 7047 /* end evaluation on encountering a throttled cfs_rq */ 7048 if (cfs_rq_throttled(cfs_rq)) 7049 goto enqueue_throttle; 7050 7051 flags = ENQUEUE_WAKEUP; 7052 } 7053 7054 for_each_sched_entity(se) { 7055 cfs_rq = cfs_rq_of(se); 7056 7057 update_load_avg(cfs_rq, se, UPDATE_TG); 7058 se_update_runnable(se); 7059 update_cfs_group(se); 7060 7061 se->slice = slice; 7062 slice = cfs_rq_min_slice(cfs_rq); 7063 7064 cfs_rq->h_nr_running++; 7065 cfs_rq->idle_h_nr_running += idle_h_nr_running; 7066 cfs_rq->h_nr_delayed += h_nr_delayed; 7067 7068 if (cfs_rq_is_idle(cfs_rq)) 7069 idle_h_nr_running = 1; 7070 7071 /* end evaluation on encountering a throttled cfs_rq */ 7072 if (cfs_rq_throttled(cfs_rq)) 7073 goto enqueue_throttle; 7074 } 7075 7076 if (!rq_h_nr_running && rq->cfs.h_nr_running) { 7077 /* Account for idle runtime */ 7078 if (!rq->nr_running) 7079 dl_server_update_idle_time(rq, rq->curr); 7080 dl_server_start(&rq->fair_server); 7081 } 7082 7083 /* At this point se is NULL and we are at root level*/ 7084 add_nr_running(rq, 1); 7085 7086 /* 7087 * Since new tasks are assigned an initial util_avg equal to 7088 * half of the spare capacity of their CPU, tiny tasks have the 7089 * ability to cross the overutilized threshold, which will 7090 * result in the load balancer ruining all the task placement 7091 * done by EAS. As a way to mitigate that effect, do not account 7092 * for the first enqueue operation of new tasks during the 7093 * overutilized flag detection. 7094 * 7095 * A better way of solving this problem would be to wait for 7096 * the PELT signals of tasks to converge before taking them 7097 * into account, but that is not straightforward to implement, 7098 * and the following generally works well enough in practice. 7099 */ 7100 if (!task_new) 7101 check_update_overutilized_status(rq); 7102 7103 enqueue_throttle: 7104 assert_list_leaf_cfs_rq(rq); 7105 7106 hrtick_update(rq); 7107 } 7108 7109 static void set_next_buddy(struct sched_entity *se); 7110 7111 /* 7112 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7113 * failing half-way through and resume the dequeue later. 7114 * 7115 * Returns: 7116 * -1 - dequeue delayed 7117 * 0 - dequeue throttled 7118 * 1 - dequeue complete 7119 */ 7120 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7121 { 7122 bool was_sched_idle = sched_idle_rq(rq); 7123 int rq_h_nr_running = rq->cfs.h_nr_running; 7124 bool task_sleep = flags & DEQUEUE_SLEEP; 7125 bool task_delayed = flags & DEQUEUE_DELAYED; 7126 struct task_struct *p = NULL; 7127 int idle_h_nr_running = 0; 7128 int h_nr_running = 0; 7129 int h_nr_delayed = 0; 7130 struct cfs_rq *cfs_rq; 7131 u64 slice = 0; 7132 7133 if (entity_is_task(se)) { 7134 p = task_of(se); 7135 h_nr_running = 1; 7136 idle_h_nr_running = task_has_idle_policy(p); 7137 if (!task_sleep && !task_delayed) 7138 h_nr_delayed = !!se->sched_delayed; 7139 } else { 7140 cfs_rq = group_cfs_rq(se); 7141 slice = cfs_rq_min_slice(cfs_rq); 7142 } 7143 7144 for_each_sched_entity(se) { 7145 cfs_rq = cfs_rq_of(se); 7146 7147 if (!dequeue_entity(cfs_rq, se, flags)) { 7148 if (p && &p->se == se) 7149 return -1; 7150 7151 break; 7152 } 7153 7154 cfs_rq->h_nr_running -= h_nr_running; 7155 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7156 cfs_rq->h_nr_delayed -= h_nr_delayed; 7157 7158 if (cfs_rq_is_idle(cfs_rq)) 7159 idle_h_nr_running = h_nr_running; 7160 7161 /* end evaluation on encountering a throttled cfs_rq */ 7162 if (cfs_rq_throttled(cfs_rq)) 7163 return 0; 7164 7165 /* Don't dequeue parent if it has other entities besides us */ 7166 if (cfs_rq->load.weight) { 7167 slice = cfs_rq_min_slice(cfs_rq); 7168 7169 /* Avoid re-evaluating load for this entity: */ 7170 se = parent_entity(se); 7171 /* 7172 * Bias pick_next to pick a task from this cfs_rq, as 7173 * p is sleeping when it is within its sched_slice. 7174 */ 7175 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7176 set_next_buddy(se); 7177 break; 7178 } 7179 flags |= DEQUEUE_SLEEP; 7180 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7181 } 7182 7183 for_each_sched_entity(se) { 7184 cfs_rq = cfs_rq_of(se); 7185 7186 update_load_avg(cfs_rq, se, UPDATE_TG); 7187 se_update_runnable(se); 7188 update_cfs_group(se); 7189 7190 se->slice = slice; 7191 slice = cfs_rq_min_slice(cfs_rq); 7192 7193 cfs_rq->h_nr_running -= h_nr_running; 7194 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 7195 cfs_rq->h_nr_delayed -= h_nr_delayed; 7196 7197 if (cfs_rq_is_idle(cfs_rq)) 7198 idle_h_nr_running = h_nr_running; 7199 7200 /* end evaluation on encountering a throttled cfs_rq */ 7201 if (cfs_rq_throttled(cfs_rq)) 7202 return 0; 7203 } 7204 7205 sub_nr_running(rq, h_nr_running); 7206 7207 if (rq_h_nr_running && !rq->cfs.h_nr_running) 7208 dl_server_stop(&rq->fair_server); 7209 7210 /* balance early to pull high priority tasks */ 7211 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7212 rq->next_balance = jiffies; 7213 7214 if (p && task_delayed) { 7215 SCHED_WARN_ON(!task_sleep); 7216 SCHED_WARN_ON(p->on_rq != 1); 7217 7218 /* Fix-up what dequeue_task_fair() skipped */ 7219 hrtick_update(rq); 7220 7221 /* 7222 * Fix-up what block_task() skipped. 7223 * 7224 * Must be last, @p might not be valid after this. 7225 */ 7226 __block_task(rq, p); 7227 } 7228 7229 return 1; 7230 } 7231 7232 /* 7233 * The dequeue_task method is called before nr_running is 7234 * decreased. We remove the task from the rbtree and 7235 * update the fair scheduling stats: 7236 */ 7237 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7238 { 7239 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7240 util_est_dequeue(&rq->cfs, p); 7241 7242 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7243 if (dequeue_entities(rq, &p->se, flags) < 0) 7244 return false; 7245 7246 /* 7247 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7248 */ 7249 7250 hrtick_update(rq); 7251 return true; 7252 } 7253 7254 #ifdef CONFIG_SMP 7255 7256 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7257 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7258 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7259 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7260 7261 #ifdef CONFIG_NO_HZ_COMMON 7262 7263 static struct { 7264 cpumask_var_t idle_cpus_mask; 7265 atomic_t nr_cpus; 7266 int has_blocked; /* Idle CPUS has blocked load */ 7267 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7268 unsigned long next_balance; /* in jiffy units */ 7269 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7270 } nohz ____cacheline_aligned; 7271 7272 #endif /* CONFIG_NO_HZ_COMMON */ 7273 7274 static unsigned long cpu_load(struct rq *rq) 7275 { 7276 return cfs_rq_load_avg(&rq->cfs); 7277 } 7278 7279 /* 7280 * cpu_load_without - compute CPU load without any contributions from *p 7281 * @cpu: the CPU which load is requested 7282 * @p: the task which load should be discounted 7283 * 7284 * The load of a CPU is defined by the load of tasks currently enqueued on that 7285 * CPU as well as tasks which are currently sleeping after an execution on that 7286 * CPU. 7287 * 7288 * This method returns the load of the specified CPU by discounting the load of 7289 * the specified task, whenever the task is currently contributing to the CPU 7290 * load. 7291 */ 7292 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7293 { 7294 struct cfs_rq *cfs_rq; 7295 unsigned int load; 7296 7297 /* Task has no contribution or is new */ 7298 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7299 return cpu_load(rq); 7300 7301 cfs_rq = &rq->cfs; 7302 load = READ_ONCE(cfs_rq->avg.load_avg); 7303 7304 /* Discount task's util from CPU's util */ 7305 lsub_positive(&load, task_h_load(p)); 7306 7307 return load; 7308 } 7309 7310 static unsigned long cpu_runnable(struct rq *rq) 7311 { 7312 return cfs_rq_runnable_avg(&rq->cfs); 7313 } 7314 7315 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7316 { 7317 struct cfs_rq *cfs_rq; 7318 unsigned int runnable; 7319 7320 /* Task has no contribution or is new */ 7321 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7322 return cpu_runnable(rq); 7323 7324 cfs_rq = &rq->cfs; 7325 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7326 7327 /* Discount task's runnable from CPU's runnable */ 7328 lsub_positive(&runnable, p->se.avg.runnable_avg); 7329 7330 return runnable; 7331 } 7332 7333 static unsigned long capacity_of(int cpu) 7334 { 7335 return cpu_rq(cpu)->cpu_capacity; 7336 } 7337 7338 static void record_wakee(struct task_struct *p) 7339 { 7340 /* 7341 * Only decay a single time; tasks that have less then 1 wakeup per 7342 * jiffy will not have built up many flips. 7343 */ 7344 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7345 current->wakee_flips >>= 1; 7346 current->wakee_flip_decay_ts = jiffies; 7347 } 7348 7349 if (current->last_wakee != p) { 7350 current->last_wakee = p; 7351 current->wakee_flips++; 7352 } 7353 } 7354 7355 /* 7356 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7357 * 7358 * A waker of many should wake a different task than the one last awakened 7359 * at a frequency roughly N times higher than one of its wakees. 7360 * 7361 * In order to determine whether we should let the load spread vs consolidating 7362 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7363 * partner, and a factor of lls_size higher frequency in the other. 7364 * 7365 * With both conditions met, we can be relatively sure that the relationship is 7366 * non-monogamous, with partner count exceeding socket size. 7367 * 7368 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7369 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7370 * socket size. 7371 */ 7372 static int wake_wide(struct task_struct *p) 7373 { 7374 unsigned int master = current->wakee_flips; 7375 unsigned int slave = p->wakee_flips; 7376 int factor = __this_cpu_read(sd_llc_size); 7377 7378 if (master < slave) 7379 swap(master, slave); 7380 if (slave < factor || master < slave * factor) 7381 return 0; 7382 return 1; 7383 } 7384 7385 /* 7386 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7387 * soonest. For the purpose of speed we only consider the waking and previous 7388 * CPU. 7389 * 7390 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7391 * cache-affine and is (or will be) idle. 7392 * 7393 * wake_affine_weight() - considers the weight to reflect the average 7394 * scheduling latency of the CPUs. This seems to work 7395 * for the overloaded case. 7396 */ 7397 static int 7398 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7399 { 7400 /* 7401 * If this_cpu is idle, it implies the wakeup is from interrupt 7402 * context. Only allow the move if cache is shared. Otherwise an 7403 * interrupt intensive workload could force all tasks onto one 7404 * node depending on the IO topology or IRQ affinity settings. 7405 * 7406 * If the prev_cpu is idle and cache affine then avoid a migration. 7407 * There is no guarantee that the cache hot data from an interrupt 7408 * is more important than cache hot data on the prev_cpu and from 7409 * a cpufreq perspective, it's better to have higher utilisation 7410 * on one CPU. 7411 */ 7412 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7413 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7414 7415 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7416 return this_cpu; 7417 7418 if (available_idle_cpu(prev_cpu)) 7419 return prev_cpu; 7420 7421 return nr_cpumask_bits; 7422 } 7423 7424 static int 7425 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7426 int this_cpu, int prev_cpu, int sync) 7427 { 7428 s64 this_eff_load, prev_eff_load; 7429 unsigned long task_load; 7430 7431 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7432 7433 if (sync) { 7434 unsigned long current_load = task_h_load(current); 7435 7436 if (current_load > this_eff_load) 7437 return this_cpu; 7438 7439 this_eff_load -= current_load; 7440 } 7441 7442 task_load = task_h_load(p); 7443 7444 this_eff_load += task_load; 7445 if (sched_feat(WA_BIAS)) 7446 this_eff_load *= 100; 7447 this_eff_load *= capacity_of(prev_cpu); 7448 7449 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7450 prev_eff_load -= task_load; 7451 if (sched_feat(WA_BIAS)) 7452 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7453 prev_eff_load *= capacity_of(this_cpu); 7454 7455 /* 7456 * If sync, adjust the weight of prev_eff_load such that if 7457 * prev_eff == this_eff that select_idle_sibling() will consider 7458 * stacking the wakee on top of the waker if no other CPU is 7459 * idle. 7460 */ 7461 if (sync) 7462 prev_eff_load += 1; 7463 7464 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7465 } 7466 7467 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7468 int this_cpu, int prev_cpu, int sync) 7469 { 7470 int target = nr_cpumask_bits; 7471 7472 if (sched_feat(WA_IDLE)) 7473 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7474 7475 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7476 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7477 7478 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7479 if (target != this_cpu) 7480 return prev_cpu; 7481 7482 schedstat_inc(sd->ttwu_move_affine); 7483 schedstat_inc(p->stats.nr_wakeups_affine); 7484 return target; 7485 } 7486 7487 static struct sched_group * 7488 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7489 7490 /* 7491 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7492 */ 7493 static int 7494 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7495 { 7496 unsigned long load, min_load = ULONG_MAX; 7497 unsigned int min_exit_latency = UINT_MAX; 7498 u64 latest_idle_timestamp = 0; 7499 int least_loaded_cpu = this_cpu; 7500 int shallowest_idle_cpu = -1; 7501 int i; 7502 7503 /* Check if we have any choice: */ 7504 if (group->group_weight == 1) 7505 return cpumask_first(sched_group_span(group)); 7506 7507 /* Traverse only the allowed CPUs */ 7508 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7509 struct rq *rq = cpu_rq(i); 7510 7511 if (!sched_core_cookie_match(rq, p)) 7512 continue; 7513 7514 if (sched_idle_cpu(i)) 7515 return i; 7516 7517 if (available_idle_cpu(i)) { 7518 struct cpuidle_state *idle = idle_get_state(rq); 7519 if (idle && idle->exit_latency < min_exit_latency) { 7520 /* 7521 * We give priority to a CPU whose idle state 7522 * has the smallest exit latency irrespective 7523 * of any idle timestamp. 7524 */ 7525 min_exit_latency = idle->exit_latency; 7526 latest_idle_timestamp = rq->idle_stamp; 7527 shallowest_idle_cpu = i; 7528 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7529 rq->idle_stamp > latest_idle_timestamp) { 7530 /* 7531 * If equal or no active idle state, then 7532 * the most recently idled CPU might have 7533 * a warmer cache. 7534 */ 7535 latest_idle_timestamp = rq->idle_stamp; 7536 shallowest_idle_cpu = i; 7537 } 7538 } else if (shallowest_idle_cpu == -1) { 7539 load = cpu_load(cpu_rq(i)); 7540 if (load < min_load) { 7541 min_load = load; 7542 least_loaded_cpu = i; 7543 } 7544 } 7545 } 7546 7547 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7548 } 7549 7550 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7551 int cpu, int prev_cpu, int sd_flag) 7552 { 7553 int new_cpu = cpu; 7554 7555 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7556 return prev_cpu; 7557 7558 /* 7559 * We need task's util for cpu_util_without, sync it up to 7560 * prev_cpu's last_update_time. 7561 */ 7562 if (!(sd_flag & SD_BALANCE_FORK)) 7563 sync_entity_load_avg(&p->se); 7564 7565 while (sd) { 7566 struct sched_group *group; 7567 struct sched_domain *tmp; 7568 int weight; 7569 7570 if (!(sd->flags & sd_flag)) { 7571 sd = sd->child; 7572 continue; 7573 } 7574 7575 group = sched_balance_find_dst_group(sd, p, cpu); 7576 if (!group) { 7577 sd = sd->child; 7578 continue; 7579 } 7580 7581 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7582 if (new_cpu == cpu) { 7583 /* Now try balancing at a lower domain level of 'cpu': */ 7584 sd = sd->child; 7585 continue; 7586 } 7587 7588 /* Now try balancing at a lower domain level of 'new_cpu': */ 7589 cpu = new_cpu; 7590 weight = sd->span_weight; 7591 sd = NULL; 7592 for_each_domain(cpu, tmp) { 7593 if (weight <= tmp->span_weight) 7594 break; 7595 if (tmp->flags & sd_flag) 7596 sd = tmp; 7597 } 7598 } 7599 7600 return new_cpu; 7601 } 7602 7603 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7604 { 7605 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7606 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7607 return cpu; 7608 7609 return -1; 7610 } 7611 7612 #ifdef CONFIG_SCHED_SMT 7613 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7614 EXPORT_SYMBOL_GPL(sched_smt_present); 7615 7616 static inline void set_idle_cores(int cpu, int val) 7617 { 7618 struct sched_domain_shared *sds; 7619 7620 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7621 if (sds) 7622 WRITE_ONCE(sds->has_idle_cores, val); 7623 } 7624 7625 static inline bool test_idle_cores(int cpu) 7626 { 7627 struct sched_domain_shared *sds; 7628 7629 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7630 if (sds) 7631 return READ_ONCE(sds->has_idle_cores); 7632 7633 return false; 7634 } 7635 7636 /* 7637 * Scans the local SMT mask to see if the entire core is idle, and records this 7638 * information in sd_llc_shared->has_idle_cores. 7639 * 7640 * Since SMT siblings share all cache levels, inspecting this limited remote 7641 * state should be fairly cheap. 7642 */ 7643 void __update_idle_core(struct rq *rq) 7644 { 7645 int core = cpu_of(rq); 7646 int cpu; 7647 7648 rcu_read_lock(); 7649 if (test_idle_cores(core)) 7650 goto unlock; 7651 7652 for_each_cpu(cpu, cpu_smt_mask(core)) { 7653 if (cpu == core) 7654 continue; 7655 7656 if (!available_idle_cpu(cpu)) 7657 goto unlock; 7658 } 7659 7660 set_idle_cores(core, 1); 7661 unlock: 7662 rcu_read_unlock(); 7663 } 7664 7665 /* 7666 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7667 * there are no idle cores left in the system; tracked through 7668 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7669 */ 7670 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7671 { 7672 bool idle = true; 7673 int cpu; 7674 7675 for_each_cpu(cpu, cpu_smt_mask(core)) { 7676 if (!available_idle_cpu(cpu)) { 7677 idle = false; 7678 if (*idle_cpu == -1) { 7679 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7680 *idle_cpu = cpu; 7681 break; 7682 } 7683 continue; 7684 } 7685 break; 7686 } 7687 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7688 *idle_cpu = cpu; 7689 } 7690 7691 if (idle) 7692 return core; 7693 7694 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7695 return -1; 7696 } 7697 7698 /* 7699 * Scan the local SMT mask for idle CPUs. 7700 */ 7701 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7702 { 7703 int cpu; 7704 7705 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7706 if (cpu == target) 7707 continue; 7708 /* 7709 * Check if the CPU is in the LLC scheduling domain of @target. 7710 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7711 */ 7712 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7713 continue; 7714 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7715 return cpu; 7716 } 7717 7718 return -1; 7719 } 7720 7721 #else /* CONFIG_SCHED_SMT */ 7722 7723 static inline void set_idle_cores(int cpu, int val) 7724 { 7725 } 7726 7727 static inline bool test_idle_cores(int cpu) 7728 { 7729 return false; 7730 } 7731 7732 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7733 { 7734 return __select_idle_cpu(core, p); 7735 } 7736 7737 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7738 { 7739 return -1; 7740 } 7741 7742 #endif /* CONFIG_SCHED_SMT */ 7743 7744 /* 7745 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7746 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7747 * average idle time for this rq (as found in rq->avg_idle). 7748 */ 7749 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7750 { 7751 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7752 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7753 struct sched_domain_shared *sd_share; 7754 7755 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7756 7757 if (sched_feat(SIS_UTIL)) { 7758 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7759 if (sd_share) { 7760 /* because !--nr is the condition to stop scan */ 7761 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7762 /* overloaded LLC is unlikely to have idle cpu/core */ 7763 if (nr == 1) 7764 return -1; 7765 } 7766 } 7767 7768 if (static_branch_unlikely(&sched_cluster_active)) { 7769 struct sched_group *sg = sd->groups; 7770 7771 if (sg->flags & SD_CLUSTER) { 7772 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7773 if (!cpumask_test_cpu(cpu, cpus)) 7774 continue; 7775 7776 if (has_idle_core) { 7777 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7778 if ((unsigned int)i < nr_cpumask_bits) 7779 return i; 7780 } else { 7781 if (--nr <= 0) 7782 return -1; 7783 idle_cpu = __select_idle_cpu(cpu, p); 7784 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7785 return idle_cpu; 7786 } 7787 } 7788 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7789 } 7790 } 7791 7792 for_each_cpu_wrap(cpu, cpus, target + 1) { 7793 if (has_idle_core) { 7794 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7795 if ((unsigned int)i < nr_cpumask_bits) 7796 return i; 7797 7798 } else { 7799 if (--nr <= 0) 7800 return -1; 7801 idle_cpu = __select_idle_cpu(cpu, p); 7802 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7803 break; 7804 } 7805 } 7806 7807 if (has_idle_core) 7808 set_idle_cores(target, false); 7809 7810 return idle_cpu; 7811 } 7812 7813 /* 7814 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7815 * the task fits. If no CPU is big enough, but there are idle ones, try to 7816 * maximize capacity. 7817 */ 7818 static int 7819 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7820 { 7821 unsigned long task_util, util_min, util_max, best_cap = 0; 7822 int fits, best_fits = 0; 7823 int cpu, best_cpu = -1; 7824 struct cpumask *cpus; 7825 7826 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7827 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7828 7829 task_util = task_util_est(p); 7830 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7831 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7832 7833 for_each_cpu_wrap(cpu, cpus, target) { 7834 unsigned long cpu_cap = capacity_of(cpu); 7835 7836 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7837 continue; 7838 7839 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7840 7841 /* This CPU fits with all requirements */ 7842 if (fits > 0) 7843 return cpu; 7844 /* 7845 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7846 * Look for the CPU with best capacity. 7847 */ 7848 else if (fits < 0) 7849 cpu_cap = get_actual_cpu_capacity(cpu); 7850 7851 /* 7852 * First, select CPU which fits better (-1 being better than 0). 7853 * Then, select the one with best capacity at same level. 7854 */ 7855 if ((fits < best_fits) || 7856 ((fits == best_fits) && (cpu_cap > best_cap))) { 7857 best_cap = cpu_cap; 7858 best_cpu = cpu; 7859 best_fits = fits; 7860 } 7861 } 7862 7863 return best_cpu; 7864 } 7865 7866 static inline bool asym_fits_cpu(unsigned long util, 7867 unsigned long util_min, 7868 unsigned long util_max, 7869 int cpu) 7870 { 7871 if (sched_asym_cpucap_active()) 7872 /* 7873 * Return true only if the cpu fully fits the task requirements 7874 * which include the utilization and the performance hints. 7875 */ 7876 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7877 7878 return true; 7879 } 7880 7881 /* 7882 * Try and locate an idle core/thread in the LLC cache domain. 7883 */ 7884 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7885 { 7886 bool has_idle_core = false; 7887 struct sched_domain *sd; 7888 unsigned long task_util, util_min, util_max; 7889 int i, recent_used_cpu, prev_aff = -1; 7890 7891 /* 7892 * On asymmetric system, update task utilization because we will check 7893 * that the task fits with CPU's capacity. 7894 */ 7895 if (sched_asym_cpucap_active()) { 7896 sync_entity_load_avg(&p->se); 7897 task_util = task_util_est(p); 7898 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7899 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7900 } 7901 7902 /* 7903 * per-cpu select_rq_mask usage 7904 */ 7905 lockdep_assert_irqs_disabled(); 7906 7907 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7908 asym_fits_cpu(task_util, util_min, util_max, target)) 7909 return target; 7910 7911 /* 7912 * If the previous CPU is cache affine and idle, don't be stupid: 7913 */ 7914 if (prev != target && cpus_share_cache(prev, target) && 7915 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7916 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7917 7918 if (!static_branch_unlikely(&sched_cluster_active) || 7919 cpus_share_resources(prev, target)) 7920 return prev; 7921 7922 prev_aff = prev; 7923 } 7924 7925 /* 7926 * Allow a per-cpu kthread to stack with the wakee if the 7927 * kworker thread and the tasks previous CPUs are the same. 7928 * The assumption is that the wakee queued work for the 7929 * per-cpu kthread that is now complete and the wakeup is 7930 * essentially a sync wakeup. An obvious example of this 7931 * pattern is IO completions. 7932 */ 7933 if (is_per_cpu_kthread(current) && 7934 in_task() && 7935 prev == smp_processor_id() && 7936 this_rq()->nr_running <= 1 && 7937 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7938 return prev; 7939 } 7940 7941 /* Check a recently used CPU as a potential idle candidate: */ 7942 recent_used_cpu = p->recent_used_cpu; 7943 p->recent_used_cpu = prev; 7944 if (recent_used_cpu != prev && 7945 recent_used_cpu != target && 7946 cpus_share_cache(recent_used_cpu, target) && 7947 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7948 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7949 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7950 7951 if (!static_branch_unlikely(&sched_cluster_active) || 7952 cpus_share_resources(recent_used_cpu, target)) 7953 return recent_used_cpu; 7954 7955 } else { 7956 recent_used_cpu = -1; 7957 } 7958 7959 /* 7960 * For asymmetric CPU capacity systems, our domain of interest is 7961 * sd_asym_cpucapacity rather than sd_llc. 7962 */ 7963 if (sched_asym_cpucap_active()) { 7964 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7965 /* 7966 * On an asymmetric CPU capacity system where an exclusive 7967 * cpuset defines a symmetric island (i.e. one unique 7968 * capacity_orig value through the cpuset), the key will be set 7969 * but the CPUs within that cpuset will not have a domain with 7970 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7971 * capacity path. 7972 */ 7973 if (sd) { 7974 i = select_idle_capacity(p, sd, target); 7975 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7976 } 7977 } 7978 7979 sd = rcu_dereference(per_cpu(sd_llc, target)); 7980 if (!sd) 7981 return target; 7982 7983 if (sched_smt_active()) { 7984 has_idle_core = test_idle_cores(target); 7985 7986 if (!has_idle_core && cpus_share_cache(prev, target)) { 7987 i = select_idle_smt(p, sd, prev); 7988 if ((unsigned int)i < nr_cpumask_bits) 7989 return i; 7990 } 7991 } 7992 7993 i = select_idle_cpu(p, sd, has_idle_core, target); 7994 if ((unsigned)i < nr_cpumask_bits) 7995 return i; 7996 7997 /* 7998 * For cluster machines which have lower sharing cache like L2 or 7999 * LLC Tag, we tend to find an idle CPU in the target's cluster 8000 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 8001 * use them if possible when no idle CPU found in select_idle_cpu(). 8002 */ 8003 if ((unsigned int)prev_aff < nr_cpumask_bits) 8004 return prev_aff; 8005 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 8006 return recent_used_cpu; 8007 8008 return target; 8009 } 8010 8011 /** 8012 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 8013 * @cpu: the CPU to get the utilization for 8014 * @p: task for which the CPU utilization should be predicted or NULL 8015 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 8016 * @boost: 1 to enable boosting, otherwise 0 8017 * 8018 * The unit of the return value must be the same as the one of CPU capacity 8019 * so that CPU utilization can be compared with CPU capacity. 8020 * 8021 * CPU utilization is the sum of running time of runnable tasks plus the 8022 * recent utilization of currently non-runnable tasks on that CPU. 8023 * It represents the amount of CPU capacity currently used by CFS tasks in 8024 * the range [0..max CPU capacity] with max CPU capacity being the CPU 8025 * capacity at f_max. 8026 * 8027 * The estimated CPU utilization is defined as the maximum between CPU 8028 * utilization and sum of the estimated utilization of the currently 8029 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 8030 * previously-executed tasks, which helps better deduce how busy a CPU will 8031 * be when a long-sleeping task wakes up. The contribution to CPU utilization 8032 * of such a task would be significantly decayed at this point of time. 8033 * 8034 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 8035 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 8036 * utilization. Boosting is implemented in cpu_util() so that internal 8037 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 8038 * latter via cpu_util_cfs_boost(). 8039 * 8040 * CPU utilization can be higher than the current CPU capacity 8041 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 8042 * of rounding errors as well as task migrations or wakeups of new tasks. 8043 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 8044 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 8045 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 8046 * capacity. CPU utilization is allowed to overshoot current CPU capacity 8047 * though since this is useful for predicting the CPU capacity required 8048 * after task migrations (scheduler-driven DVFS). 8049 * 8050 * Return: (Boosted) (estimated) utilization for the specified CPU. 8051 */ 8052 static unsigned long 8053 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8054 { 8055 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8056 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8057 unsigned long runnable; 8058 8059 if (boost) { 8060 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8061 util = max(util, runnable); 8062 } 8063 8064 /* 8065 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8066 * contribution. If @p migrates from another CPU to @cpu add its 8067 * contribution. In all the other cases @cpu is not impacted by the 8068 * migration so its util_avg is already correct. 8069 */ 8070 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8071 lsub_positive(&util, task_util(p)); 8072 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8073 util += task_util(p); 8074 8075 if (sched_feat(UTIL_EST)) { 8076 unsigned long util_est; 8077 8078 util_est = READ_ONCE(cfs_rq->avg.util_est); 8079 8080 /* 8081 * During wake-up @p isn't enqueued yet and doesn't contribute 8082 * to any cpu_rq(cpu)->cfs.avg.util_est. 8083 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8084 * has been enqueued. 8085 * 8086 * During exec (@dst_cpu = -1) @p is enqueued and does 8087 * contribute to cpu_rq(cpu)->cfs.util_est. 8088 * Remove it to "simulate" cpu_util without @p's contribution. 8089 * 8090 * Despite the task_on_rq_queued(@p) check there is still a 8091 * small window for a possible race when an exec 8092 * select_task_rq_fair() races with LB's detach_task(). 8093 * 8094 * detach_task() 8095 * deactivate_task() 8096 * p->on_rq = TASK_ON_RQ_MIGRATING; 8097 * -------------------------------- A 8098 * dequeue_task() \ 8099 * dequeue_task_fair() + Race Time 8100 * util_est_dequeue() / 8101 * -------------------------------- B 8102 * 8103 * The additional check "current == p" is required to further 8104 * reduce the race window. 8105 */ 8106 if (dst_cpu == cpu) 8107 util_est += _task_util_est(p); 8108 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8109 lsub_positive(&util_est, _task_util_est(p)); 8110 8111 util = max(util, util_est); 8112 } 8113 8114 return min(util, arch_scale_cpu_capacity(cpu)); 8115 } 8116 8117 unsigned long cpu_util_cfs(int cpu) 8118 { 8119 return cpu_util(cpu, NULL, -1, 0); 8120 } 8121 8122 unsigned long cpu_util_cfs_boost(int cpu) 8123 { 8124 return cpu_util(cpu, NULL, -1, 1); 8125 } 8126 8127 /* 8128 * cpu_util_without: compute cpu utilization without any contributions from *p 8129 * @cpu: the CPU which utilization is requested 8130 * @p: the task which utilization should be discounted 8131 * 8132 * The utilization of a CPU is defined by the utilization of tasks currently 8133 * enqueued on that CPU as well as tasks which are currently sleeping after an 8134 * execution on that CPU. 8135 * 8136 * This method returns the utilization of the specified CPU by discounting the 8137 * utilization of the specified task, whenever the task is currently 8138 * contributing to the CPU utilization. 8139 */ 8140 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8141 { 8142 /* Task has no contribution or is new */ 8143 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8144 p = NULL; 8145 8146 return cpu_util(cpu, p, -1, 0); 8147 } 8148 8149 /* 8150 * This function computes an effective utilization for the given CPU, to be 8151 * used for frequency selection given the linear relation: f = u * f_max. 8152 * 8153 * The scheduler tracks the following metrics: 8154 * 8155 * cpu_util_{cfs,rt,dl,irq}() 8156 * cpu_bw_dl() 8157 * 8158 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8159 * synchronized windows and are thus directly comparable. 8160 * 8161 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8162 * which excludes things like IRQ and steal-time. These latter are then accrued 8163 * in the IRQ utilization. 8164 * 8165 * The DL bandwidth number OTOH is not a measured metric but a value computed 8166 * based on the task model parameters and gives the minimal utilization 8167 * required to meet deadlines. 8168 */ 8169 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8170 unsigned long *min, 8171 unsigned long *max) 8172 { 8173 unsigned long util, irq, scale; 8174 struct rq *rq = cpu_rq(cpu); 8175 8176 scale = arch_scale_cpu_capacity(cpu); 8177 8178 /* 8179 * Early check to see if IRQ/steal time saturates the CPU, can be 8180 * because of inaccuracies in how we track these -- see 8181 * update_irq_load_avg(). 8182 */ 8183 irq = cpu_util_irq(rq); 8184 if (unlikely(irq >= scale)) { 8185 if (min) 8186 *min = scale; 8187 if (max) 8188 *max = scale; 8189 return scale; 8190 } 8191 8192 if (min) { 8193 /* 8194 * The minimum utilization returns the highest level between: 8195 * - the computed DL bandwidth needed with the IRQ pressure which 8196 * steals time to the deadline task. 8197 * - The minimum performance requirement for CFS and/or RT. 8198 */ 8199 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8200 8201 /* 8202 * When an RT task is runnable and uclamp is not used, we must 8203 * ensure that the task will run at maximum compute capacity. 8204 */ 8205 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8206 *min = max(*min, scale); 8207 } 8208 8209 /* 8210 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8211 * CFS tasks and we use the same metric to track the effective 8212 * utilization (PELT windows are synchronized) we can directly add them 8213 * to obtain the CPU's actual utilization. 8214 */ 8215 util = util_cfs + cpu_util_rt(rq); 8216 util += cpu_util_dl(rq); 8217 8218 /* 8219 * The maximum hint is a soft bandwidth requirement, which can be lower 8220 * than the actual utilization because of uclamp_max requirements. 8221 */ 8222 if (max) 8223 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8224 8225 if (util >= scale) 8226 return scale; 8227 8228 /* 8229 * There is still idle time; further improve the number by using the 8230 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8231 * need to scale the task numbers: 8232 * 8233 * max - irq 8234 * U' = irq + --------- * U 8235 * max 8236 */ 8237 util = scale_irq_capacity(util, irq, scale); 8238 util += irq; 8239 8240 return min(scale, util); 8241 } 8242 8243 unsigned long sched_cpu_util(int cpu) 8244 { 8245 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8246 } 8247 8248 /* 8249 * energy_env - Utilization landscape for energy estimation. 8250 * @task_busy_time: Utilization contribution by the task for which we test the 8251 * placement. Given by eenv_task_busy_time(). 8252 * @pd_busy_time: Utilization of the whole perf domain without the task 8253 * contribution. Given by eenv_pd_busy_time(). 8254 * @cpu_cap: Maximum CPU capacity for the perf domain. 8255 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8256 */ 8257 struct energy_env { 8258 unsigned long task_busy_time; 8259 unsigned long pd_busy_time; 8260 unsigned long cpu_cap; 8261 unsigned long pd_cap; 8262 }; 8263 8264 /* 8265 * Compute the task busy time for compute_energy(). This time cannot be 8266 * injected directly into effective_cpu_util() because of the IRQ scaling. 8267 * The latter only makes sense with the most recent CPUs where the task has 8268 * run. 8269 */ 8270 static inline void eenv_task_busy_time(struct energy_env *eenv, 8271 struct task_struct *p, int prev_cpu) 8272 { 8273 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8274 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8275 8276 if (unlikely(irq >= max_cap)) 8277 busy_time = max_cap; 8278 else 8279 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8280 8281 eenv->task_busy_time = busy_time; 8282 } 8283 8284 /* 8285 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8286 * utilization for each @pd_cpus, it however doesn't take into account 8287 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8288 * scale the EM reported power consumption at the (eventually clamped) 8289 * cpu_capacity. 8290 * 8291 * The contribution of the task @p for which we want to estimate the 8292 * energy cost is removed (by cpu_util()) and must be calculated 8293 * separately (see eenv_task_busy_time). This ensures: 8294 * 8295 * - A stable PD utilization, no matter which CPU of that PD we want to place 8296 * the task on. 8297 * 8298 * - A fair comparison between CPUs as the task contribution (task_util()) 8299 * will always be the same no matter which CPU utilization we rely on 8300 * (util_avg or util_est). 8301 * 8302 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8303 * exceed @eenv->pd_cap. 8304 */ 8305 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8306 struct cpumask *pd_cpus, 8307 struct task_struct *p) 8308 { 8309 unsigned long busy_time = 0; 8310 int cpu; 8311 8312 for_each_cpu(cpu, pd_cpus) { 8313 unsigned long util = cpu_util(cpu, p, -1, 0); 8314 8315 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8316 } 8317 8318 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8319 } 8320 8321 /* 8322 * Compute the maximum utilization for compute_energy() when the task @p 8323 * is placed on the cpu @dst_cpu. 8324 * 8325 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8326 * exceed @eenv->cpu_cap. 8327 */ 8328 static inline unsigned long 8329 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8330 struct task_struct *p, int dst_cpu) 8331 { 8332 unsigned long max_util = 0; 8333 int cpu; 8334 8335 for_each_cpu(cpu, pd_cpus) { 8336 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8337 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8338 unsigned long eff_util, min, max; 8339 8340 /* 8341 * Performance domain frequency: utilization clamping 8342 * must be considered since it affects the selection 8343 * of the performance domain frequency. 8344 * NOTE: in case RT tasks are running, by default the min 8345 * utilization can be max OPP. 8346 */ 8347 eff_util = effective_cpu_util(cpu, util, &min, &max); 8348 8349 /* Task's uclamp can modify min and max value */ 8350 if (tsk && uclamp_is_used()) { 8351 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8352 8353 /* 8354 * If there is no active max uclamp constraint, 8355 * directly use task's one, otherwise keep max. 8356 */ 8357 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8358 max = uclamp_eff_value(p, UCLAMP_MAX); 8359 else 8360 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8361 } 8362 8363 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8364 max_util = max(max_util, eff_util); 8365 } 8366 8367 return min(max_util, eenv->cpu_cap); 8368 } 8369 8370 /* 8371 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8372 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8373 * contribution is ignored. 8374 */ 8375 static inline unsigned long 8376 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8377 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8378 { 8379 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8380 unsigned long busy_time = eenv->pd_busy_time; 8381 unsigned long energy; 8382 8383 if (dst_cpu >= 0) 8384 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8385 8386 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8387 8388 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8389 8390 return energy; 8391 } 8392 8393 /* 8394 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8395 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8396 * spare capacity in each performance domain and uses it as a potential 8397 * candidate to execute the task. Then, it uses the Energy Model to figure 8398 * out which of the CPU candidates is the most energy-efficient. 8399 * 8400 * The rationale for this heuristic is as follows. In a performance domain, 8401 * all the most energy efficient CPU candidates (according to the Energy 8402 * Model) are those for which we'll request a low frequency. When there are 8403 * several CPUs for which the frequency request will be the same, we don't 8404 * have enough data to break the tie between them, because the Energy Model 8405 * only includes active power costs. With this model, if we assume that 8406 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8407 * the maximum spare capacity in a performance domain is guaranteed to be among 8408 * the best candidates of the performance domain. 8409 * 8410 * In practice, it could be preferable from an energy standpoint to pack 8411 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8412 * but that could also hurt our chances to go cluster idle, and we have no 8413 * ways to tell with the current Energy Model if this is actually a good 8414 * idea or not. So, find_energy_efficient_cpu() basically favors 8415 * cluster-packing, and spreading inside a cluster. That should at least be 8416 * a good thing for latency, and this is consistent with the idea that most 8417 * of the energy savings of EAS come from the asymmetry of the system, and 8418 * not so much from breaking the tie between identical CPUs. That's also the 8419 * reason why EAS is enabled in the topology code only for systems where 8420 * SD_ASYM_CPUCAPACITY is set. 8421 * 8422 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8423 * they don't have any useful utilization data yet and it's not possible to 8424 * forecast their impact on energy consumption. Consequently, they will be 8425 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8426 * to be energy-inefficient in some use-cases. The alternative would be to 8427 * bias new tasks towards specific types of CPUs first, or to try to infer 8428 * their util_avg from the parent task, but those heuristics could hurt 8429 * other use-cases too. So, until someone finds a better way to solve this, 8430 * let's keep things simple by re-using the existing slow path. 8431 */ 8432 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8433 { 8434 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8435 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8436 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8437 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8438 struct root_domain *rd = this_rq()->rd; 8439 int cpu, best_energy_cpu, target = -1; 8440 int prev_fits = -1, best_fits = -1; 8441 unsigned long best_actual_cap = 0; 8442 unsigned long prev_actual_cap = 0; 8443 struct sched_domain *sd; 8444 struct perf_domain *pd; 8445 struct energy_env eenv; 8446 8447 rcu_read_lock(); 8448 pd = rcu_dereference(rd->pd); 8449 if (!pd) 8450 goto unlock; 8451 8452 /* 8453 * Energy-aware wake-up happens on the lowest sched_domain starting 8454 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8455 */ 8456 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8457 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8458 sd = sd->parent; 8459 if (!sd) 8460 goto unlock; 8461 8462 target = prev_cpu; 8463 8464 sync_entity_load_avg(&p->se); 8465 if (!task_util_est(p) && p_util_min == 0) 8466 goto unlock; 8467 8468 eenv_task_busy_time(&eenv, p, prev_cpu); 8469 8470 for (; pd; pd = pd->next) { 8471 unsigned long util_min = p_util_min, util_max = p_util_max; 8472 unsigned long cpu_cap, cpu_actual_cap, util; 8473 long prev_spare_cap = -1, max_spare_cap = -1; 8474 unsigned long rq_util_min, rq_util_max; 8475 unsigned long cur_delta, base_energy; 8476 int max_spare_cap_cpu = -1; 8477 int fits, max_fits = -1; 8478 8479 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8480 8481 if (cpumask_empty(cpus)) 8482 continue; 8483 8484 /* Account external pressure for the energy estimation */ 8485 cpu = cpumask_first(cpus); 8486 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8487 8488 eenv.cpu_cap = cpu_actual_cap; 8489 eenv.pd_cap = 0; 8490 8491 for_each_cpu(cpu, cpus) { 8492 struct rq *rq = cpu_rq(cpu); 8493 8494 eenv.pd_cap += cpu_actual_cap; 8495 8496 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8497 continue; 8498 8499 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8500 continue; 8501 8502 util = cpu_util(cpu, p, cpu, 0); 8503 cpu_cap = capacity_of(cpu); 8504 8505 /* 8506 * Skip CPUs that cannot satisfy the capacity request. 8507 * IOW, placing the task there would make the CPU 8508 * overutilized. Take uclamp into account to see how 8509 * much capacity we can get out of the CPU; this is 8510 * aligned with sched_cpu_util(). 8511 */ 8512 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8513 /* 8514 * Open code uclamp_rq_util_with() except for 8515 * the clamp() part. I.e.: apply max aggregation 8516 * only. util_fits_cpu() logic requires to 8517 * operate on non clamped util but must use the 8518 * max-aggregated uclamp_{min, max}. 8519 */ 8520 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8521 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8522 8523 util_min = max(rq_util_min, p_util_min); 8524 util_max = max(rq_util_max, p_util_max); 8525 } 8526 8527 fits = util_fits_cpu(util, util_min, util_max, cpu); 8528 if (!fits) 8529 continue; 8530 8531 lsub_positive(&cpu_cap, util); 8532 8533 if (cpu == prev_cpu) { 8534 /* Always use prev_cpu as a candidate. */ 8535 prev_spare_cap = cpu_cap; 8536 prev_fits = fits; 8537 } else if ((fits > max_fits) || 8538 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8539 /* 8540 * Find the CPU with the maximum spare capacity 8541 * among the remaining CPUs in the performance 8542 * domain. 8543 */ 8544 max_spare_cap = cpu_cap; 8545 max_spare_cap_cpu = cpu; 8546 max_fits = fits; 8547 } 8548 } 8549 8550 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8551 continue; 8552 8553 eenv_pd_busy_time(&eenv, cpus, p); 8554 /* Compute the 'base' energy of the pd, without @p */ 8555 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8556 8557 /* Evaluate the energy impact of using prev_cpu. */ 8558 if (prev_spare_cap > -1) { 8559 prev_delta = compute_energy(&eenv, pd, cpus, p, 8560 prev_cpu); 8561 /* CPU utilization has changed */ 8562 if (prev_delta < base_energy) 8563 goto unlock; 8564 prev_delta -= base_energy; 8565 prev_actual_cap = cpu_actual_cap; 8566 best_delta = min(best_delta, prev_delta); 8567 } 8568 8569 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8570 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8571 /* Current best energy cpu fits better */ 8572 if (max_fits < best_fits) 8573 continue; 8574 8575 /* 8576 * Both don't fit performance hint (i.e. uclamp_min) 8577 * but best energy cpu has better capacity. 8578 */ 8579 if ((max_fits < 0) && 8580 (cpu_actual_cap <= best_actual_cap)) 8581 continue; 8582 8583 cur_delta = compute_energy(&eenv, pd, cpus, p, 8584 max_spare_cap_cpu); 8585 /* CPU utilization has changed */ 8586 if (cur_delta < base_energy) 8587 goto unlock; 8588 cur_delta -= base_energy; 8589 8590 /* 8591 * Both fit for the task but best energy cpu has lower 8592 * energy impact. 8593 */ 8594 if ((max_fits > 0) && (best_fits > 0) && 8595 (cur_delta >= best_delta)) 8596 continue; 8597 8598 best_delta = cur_delta; 8599 best_energy_cpu = max_spare_cap_cpu; 8600 best_fits = max_fits; 8601 best_actual_cap = cpu_actual_cap; 8602 } 8603 } 8604 rcu_read_unlock(); 8605 8606 if ((best_fits > prev_fits) || 8607 ((best_fits > 0) && (best_delta < prev_delta)) || 8608 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8609 target = best_energy_cpu; 8610 8611 return target; 8612 8613 unlock: 8614 rcu_read_unlock(); 8615 8616 return target; 8617 } 8618 8619 /* 8620 * select_task_rq_fair: Select target runqueue for the waking task in domains 8621 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8622 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8623 * 8624 * Balances load by selecting the idlest CPU in the idlest group, or under 8625 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8626 * 8627 * Returns the target CPU number. 8628 */ 8629 static int 8630 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8631 { 8632 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8633 struct sched_domain *tmp, *sd = NULL; 8634 int cpu = smp_processor_id(); 8635 int new_cpu = prev_cpu; 8636 int want_affine = 0; 8637 /* SD_flags and WF_flags share the first nibble */ 8638 int sd_flag = wake_flags & 0xF; 8639 8640 /* 8641 * required for stable ->cpus_allowed 8642 */ 8643 lockdep_assert_held(&p->pi_lock); 8644 if (wake_flags & WF_TTWU) { 8645 record_wakee(p); 8646 8647 if ((wake_flags & WF_CURRENT_CPU) && 8648 cpumask_test_cpu(cpu, p->cpus_ptr)) 8649 return cpu; 8650 8651 if (!is_rd_overutilized(this_rq()->rd)) { 8652 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8653 if (new_cpu >= 0) 8654 return new_cpu; 8655 new_cpu = prev_cpu; 8656 } 8657 8658 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8659 } 8660 8661 rcu_read_lock(); 8662 for_each_domain(cpu, tmp) { 8663 /* 8664 * If both 'cpu' and 'prev_cpu' are part of this domain, 8665 * cpu is a valid SD_WAKE_AFFINE target. 8666 */ 8667 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8668 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8669 if (cpu != prev_cpu) 8670 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8671 8672 sd = NULL; /* Prefer wake_affine over balance flags */ 8673 break; 8674 } 8675 8676 /* 8677 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8678 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8679 * will usually go to the fast path. 8680 */ 8681 if (tmp->flags & sd_flag) 8682 sd = tmp; 8683 else if (!want_affine) 8684 break; 8685 } 8686 8687 if (unlikely(sd)) { 8688 /* Slow path */ 8689 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8690 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8691 /* Fast path */ 8692 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8693 } 8694 rcu_read_unlock(); 8695 8696 return new_cpu; 8697 } 8698 8699 /* 8700 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8701 * cfs_rq_of(p) references at time of call are still valid and identify the 8702 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8703 */ 8704 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8705 { 8706 struct sched_entity *se = &p->se; 8707 8708 if (!task_on_rq_migrating(p)) { 8709 remove_entity_load_avg(se); 8710 8711 /* 8712 * Here, the task's PELT values have been updated according to 8713 * the current rq's clock. But if that clock hasn't been 8714 * updated in a while, a substantial idle time will be missed, 8715 * leading to an inflation after wake-up on the new rq. 8716 * 8717 * Estimate the missing time from the cfs_rq last_update_time 8718 * and update sched_avg to improve the PELT continuity after 8719 * migration. 8720 */ 8721 migrate_se_pelt_lag(se); 8722 } 8723 8724 /* Tell new CPU we are migrated */ 8725 se->avg.last_update_time = 0; 8726 8727 update_scan_period(p, new_cpu); 8728 } 8729 8730 static void task_dead_fair(struct task_struct *p) 8731 { 8732 struct sched_entity *se = &p->se; 8733 8734 if (se->sched_delayed) { 8735 struct rq_flags rf; 8736 struct rq *rq; 8737 8738 rq = task_rq_lock(p, &rf); 8739 if (se->sched_delayed) { 8740 update_rq_clock(rq); 8741 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8742 } 8743 task_rq_unlock(rq, p, &rf); 8744 } 8745 8746 remove_entity_load_avg(se); 8747 } 8748 8749 /* 8750 * Set the max capacity the task is allowed to run at for misfit detection. 8751 */ 8752 static void set_task_max_allowed_capacity(struct task_struct *p) 8753 { 8754 struct asym_cap_data *entry; 8755 8756 if (!sched_asym_cpucap_active()) 8757 return; 8758 8759 rcu_read_lock(); 8760 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8761 cpumask_t *cpumask; 8762 8763 cpumask = cpu_capacity_span(entry); 8764 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8765 continue; 8766 8767 p->max_allowed_capacity = entry->capacity; 8768 break; 8769 } 8770 rcu_read_unlock(); 8771 } 8772 8773 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8774 { 8775 set_cpus_allowed_common(p, ctx); 8776 set_task_max_allowed_capacity(p); 8777 } 8778 8779 static int 8780 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8781 { 8782 if (sched_fair_runnable(rq)) 8783 return 1; 8784 8785 return sched_balance_newidle(rq, rf) != 0; 8786 } 8787 #else 8788 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8789 #endif /* CONFIG_SMP */ 8790 8791 static void set_next_buddy(struct sched_entity *se) 8792 { 8793 for_each_sched_entity(se) { 8794 if (SCHED_WARN_ON(!se->on_rq)) 8795 return; 8796 if (se_is_idle(se)) 8797 return; 8798 cfs_rq_of(se)->next = se; 8799 } 8800 } 8801 8802 /* 8803 * Preempt the current task with a newly woken task if needed: 8804 */ 8805 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8806 { 8807 struct task_struct *donor = rq->donor; 8808 struct sched_entity *se = &donor->se, *pse = &p->se; 8809 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8810 int cse_is_idle, pse_is_idle; 8811 8812 if (unlikely(se == pse)) 8813 return; 8814 8815 /* 8816 * This is possible from callers such as attach_tasks(), in which we 8817 * unconditionally wakeup_preempt() after an enqueue (which may have 8818 * lead to a throttle). This both saves work and prevents false 8819 * next-buddy nomination below. 8820 */ 8821 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8822 return; 8823 8824 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8825 set_next_buddy(pse); 8826 } 8827 8828 /* 8829 * We can come here with TIF_NEED_RESCHED already set from new task 8830 * wake up path. 8831 * 8832 * Note: this also catches the edge-case of curr being in a throttled 8833 * group (e.g. via set_curr_task), since update_curr() (in the 8834 * enqueue of curr) will have resulted in resched being set. This 8835 * prevents us from potentially nominating it as a false LAST_BUDDY 8836 * below. 8837 */ 8838 if (test_tsk_need_resched(rq->curr)) 8839 return; 8840 8841 if (!sched_feat(WAKEUP_PREEMPTION)) 8842 return; 8843 8844 find_matching_se(&se, &pse); 8845 WARN_ON_ONCE(!pse); 8846 8847 cse_is_idle = se_is_idle(se); 8848 pse_is_idle = se_is_idle(pse); 8849 8850 /* 8851 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8852 * in the inverse case). 8853 */ 8854 if (cse_is_idle && !pse_is_idle) 8855 goto preempt; 8856 if (cse_is_idle != pse_is_idle) 8857 return; 8858 8859 /* 8860 * BATCH and IDLE tasks do not preempt others. 8861 */ 8862 if (unlikely(!normal_policy(p->policy))) 8863 return; 8864 8865 cfs_rq = cfs_rq_of(se); 8866 update_curr(cfs_rq); 8867 /* 8868 * If @p has a shorter slice than current and @p is eligible, override 8869 * current's slice protection in order to allow preemption. 8870 * 8871 * Note that even if @p does not turn out to be the most eligible 8872 * task at this moment, current's slice protection will be lost. 8873 */ 8874 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) 8875 se->vlag = se->deadline + 1; 8876 8877 /* 8878 * If @p has become the most eligible task, force preemption. 8879 */ 8880 if (pick_eevdf(cfs_rq) == pse) 8881 goto preempt; 8882 8883 return; 8884 8885 preempt: 8886 resched_curr_lazy(rq); 8887 } 8888 8889 static struct task_struct *pick_task_fair(struct rq *rq) 8890 { 8891 struct sched_entity *se; 8892 struct cfs_rq *cfs_rq; 8893 8894 again: 8895 cfs_rq = &rq->cfs; 8896 if (!cfs_rq->nr_running) 8897 return NULL; 8898 8899 do { 8900 /* Might not have done put_prev_entity() */ 8901 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8902 update_curr(cfs_rq); 8903 8904 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8905 goto again; 8906 8907 se = pick_next_entity(rq, cfs_rq); 8908 if (!se) 8909 goto again; 8910 cfs_rq = group_cfs_rq(se); 8911 } while (cfs_rq); 8912 8913 return task_of(se); 8914 } 8915 8916 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8917 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8918 8919 struct task_struct * 8920 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8921 { 8922 struct sched_entity *se; 8923 struct task_struct *p; 8924 int new_tasks; 8925 8926 again: 8927 p = pick_task_fair(rq); 8928 if (!p) 8929 goto idle; 8930 se = &p->se; 8931 8932 #ifdef CONFIG_FAIR_GROUP_SCHED 8933 if (prev->sched_class != &fair_sched_class) 8934 goto simple; 8935 8936 __put_prev_set_next_dl_server(rq, prev, p); 8937 8938 /* 8939 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8940 * likely that a next task is from the same cgroup as the current. 8941 * 8942 * Therefore attempt to avoid putting and setting the entire cgroup 8943 * hierarchy, only change the part that actually changes. 8944 * 8945 * Since we haven't yet done put_prev_entity and if the selected task 8946 * is a different task than we started out with, try and touch the 8947 * least amount of cfs_rqs. 8948 */ 8949 if (prev != p) { 8950 struct sched_entity *pse = &prev->se; 8951 struct cfs_rq *cfs_rq; 8952 8953 while (!(cfs_rq = is_same_group(se, pse))) { 8954 int se_depth = se->depth; 8955 int pse_depth = pse->depth; 8956 8957 if (se_depth <= pse_depth) { 8958 put_prev_entity(cfs_rq_of(pse), pse); 8959 pse = parent_entity(pse); 8960 } 8961 if (se_depth >= pse_depth) { 8962 set_next_entity(cfs_rq_of(se), se); 8963 se = parent_entity(se); 8964 } 8965 } 8966 8967 put_prev_entity(cfs_rq, pse); 8968 set_next_entity(cfs_rq, se); 8969 8970 __set_next_task_fair(rq, p, true); 8971 } 8972 8973 return p; 8974 8975 simple: 8976 #endif 8977 put_prev_set_next_task(rq, prev, p); 8978 return p; 8979 8980 idle: 8981 if (!rf) 8982 return NULL; 8983 8984 new_tasks = sched_balance_newidle(rq, rf); 8985 8986 /* 8987 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8988 * possible for any higher priority task to appear. In that case we 8989 * must re-start the pick_next_entity() loop. 8990 */ 8991 if (new_tasks < 0) 8992 return RETRY_TASK; 8993 8994 if (new_tasks > 0) 8995 goto again; 8996 8997 /* 8998 * rq is about to be idle, check if we need to update the 8999 * lost_idle_time of clock_pelt 9000 */ 9001 update_idle_rq_clock_pelt(rq); 9002 9003 return NULL; 9004 } 9005 9006 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 9007 { 9008 return pick_next_task_fair(rq, prev, NULL); 9009 } 9010 9011 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 9012 { 9013 return !!dl_se->rq->cfs.nr_running; 9014 } 9015 9016 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 9017 { 9018 return pick_task_fair(dl_se->rq); 9019 } 9020 9021 void fair_server_init(struct rq *rq) 9022 { 9023 struct sched_dl_entity *dl_se = &rq->fair_server; 9024 9025 init_dl_entity(dl_se); 9026 9027 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 9028 } 9029 9030 /* 9031 * Account for a descheduled task: 9032 */ 9033 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 9034 { 9035 struct sched_entity *se = &prev->se; 9036 struct cfs_rq *cfs_rq; 9037 9038 for_each_sched_entity(se) { 9039 cfs_rq = cfs_rq_of(se); 9040 put_prev_entity(cfs_rq, se); 9041 } 9042 } 9043 9044 /* 9045 * sched_yield() is very simple 9046 */ 9047 static void yield_task_fair(struct rq *rq) 9048 { 9049 struct task_struct *curr = rq->curr; 9050 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9051 struct sched_entity *se = &curr->se; 9052 9053 /* 9054 * Are we the only task in the tree? 9055 */ 9056 if (unlikely(rq->nr_running == 1)) 9057 return; 9058 9059 clear_buddies(cfs_rq, se); 9060 9061 update_rq_clock(rq); 9062 /* 9063 * Update run-time statistics of the 'current'. 9064 */ 9065 update_curr(cfs_rq); 9066 /* 9067 * Tell update_rq_clock() that we've just updated, 9068 * so we don't do microscopic update in schedule() 9069 * and double the fastpath cost. 9070 */ 9071 rq_clock_skip_update(rq); 9072 9073 se->deadline += calc_delta_fair(se->slice, se); 9074 } 9075 9076 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9077 { 9078 struct sched_entity *se = &p->se; 9079 9080 /* throttled hierarchies are not runnable */ 9081 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9082 return false; 9083 9084 /* Tell the scheduler that we'd really like se to run next. */ 9085 set_next_buddy(se); 9086 9087 yield_task_fair(rq); 9088 9089 return true; 9090 } 9091 9092 #ifdef CONFIG_SMP 9093 /************************************************** 9094 * Fair scheduling class load-balancing methods. 9095 * 9096 * BASICS 9097 * 9098 * The purpose of load-balancing is to achieve the same basic fairness the 9099 * per-CPU scheduler provides, namely provide a proportional amount of compute 9100 * time to each task. This is expressed in the following equation: 9101 * 9102 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9103 * 9104 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9105 * W_i,0 is defined as: 9106 * 9107 * W_i,0 = \Sum_j w_i,j (2) 9108 * 9109 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9110 * is derived from the nice value as per sched_prio_to_weight[]. 9111 * 9112 * The weight average is an exponential decay average of the instantaneous 9113 * weight: 9114 * 9115 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9116 * 9117 * C_i is the compute capacity of CPU i, typically it is the 9118 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9119 * can also include other factors [XXX]. 9120 * 9121 * To achieve this balance we define a measure of imbalance which follows 9122 * directly from (1): 9123 * 9124 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9125 * 9126 * We them move tasks around to minimize the imbalance. In the continuous 9127 * function space it is obvious this converges, in the discrete case we get 9128 * a few fun cases generally called infeasible weight scenarios. 9129 * 9130 * [XXX expand on: 9131 * - infeasible weights; 9132 * - local vs global optima in the discrete case. ] 9133 * 9134 * 9135 * SCHED DOMAINS 9136 * 9137 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9138 * for all i,j solution, we create a tree of CPUs that follows the hardware 9139 * topology where each level pairs two lower groups (or better). This results 9140 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9141 * tree to only the first of the previous level and we decrease the frequency 9142 * of load-balance at each level inversely proportional to the number of CPUs in 9143 * the groups. 9144 * 9145 * This yields: 9146 * 9147 * log_2 n 1 n 9148 * \Sum { --- * --- * 2^i } = O(n) (5) 9149 * i = 0 2^i 2^i 9150 * `- size of each group 9151 * | | `- number of CPUs doing load-balance 9152 * | `- freq 9153 * `- sum over all levels 9154 * 9155 * Coupled with a limit on how many tasks we can migrate every balance pass, 9156 * this makes (5) the runtime complexity of the balancer. 9157 * 9158 * An important property here is that each CPU is still (indirectly) connected 9159 * to every other CPU in at most O(log n) steps: 9160 * 9161 * The adjacency matrix of the resulting graph is given by: 9162 * 9163 * log_2 n 9164 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9165 * k = 0 9166 * 9167 * And you'll find that: 9168 * 9169 * A^(log_2 n)_i,j != 0 for all i,j (7) 9170 * 9171 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9172 * The task movement gives a factor of O(m), giving a convergence complexity 9173 * of: 9174 * 9175 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9176 * 9177 * 9178 * WORK CONSERVING 9179 * 9180 * In order to avoid CPUs going idle while there's still work to do, new idle 9181 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9182 * tree itself instead of relying on other CPUs to bring it work. 9183 * 9184 * This adds some complexity to both (5) and (8) but it reduces the total idle 9185 * time. 9186 * 9187 * [XXX more?] 9188 * 9189 * 9190 * CGROUPS 9191 * 9192 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9193 * 9194 * s_k,i 9195 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9196 * S_k 9197 * 9198 * Where 9199 * 9200 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9201 * 9202 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9203 * 9204 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9205 * property. 9206 * 9207 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9208 * rewrite all of this once again.] 9209 */ 9210 9211 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9212 9213 enum fbq_type { regular, remote, all }; 9214 9215 /* 9216 * 'group_type' describes the group of CPUs at the moment of load balancing. 9217 * 9218 * The enum is ordered by pulling priority, with the group with lowest priority 9219 * first so the group_type can simply be compared when selecting the busiest 9220 * group. See update_sd_pick_busiest(). 9221 */ 9222 enum group_type { 9223 /* The group has spare capacity that can be used to run more tasks. */ 9224 group_has_spare = 0, 9225 /* 9226 * The group is fully used and the tasks don't compete for more CPU 9227 * cycles. Nevertheless, some tasks might wait before running. 9228 */ 9229 group_fully_busy, 9230 /* 9231 * One task doesn't fit with CPU's capacity and must be migrated to a 9232 * more powerful CPU. 9233 */ 9234 group_misfit_task, 9235 /* 9236 * Balance SMT group that's fully busy. Can benefit from migration 9237 * a task on SMT with busy sibling to another CPU on idle core. 9238 */ 9239 group_smt_balance, 9240 /* 9241 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9242 * and the task should be migrated to it instead of running on the 9243 * current CPU. 9244 */ 9245 group_asym_packing, 9246 /* 9247 * The tasks' affinity constraints previously prevented the scheduler 9248 * from balancing the load across the system. 9249 */ 9250 group_imbalanced, 9251 /* 9252 * The CPU is overloaded and can't provide expected CPU cycles to all 9253 * tasks. 9254 */ 9255 group_overloaded 9256 }; 9257 9258 enum migration_type { 9259 migrate_load = 0, 9260 migrate_util, 9261 migrate_task, 9262 migrate_misfit 9263 }; 9264 9265 #define LBF_ALL_PINNED 0x01 9266 #define LBF_NEED_BREAK 0x02 9267 #define LBF_DST_PINNED 0x04 9268 #define LBF_SOME_PINNED 0x08 9269 #define LBF_ACTIVE_LB 0x10 9270 9271 struct lb_env { 9272 struct sched_domain *sd; 9273 9274 struct rq *src_rq; 9275 int src_cpu; 9276 9277 int dst_cpu; 9278 struct rq *dst_rq; 9279 9280 struct cpumask *dst_grpmask; 9281 int new_dst_cpu; 9282 enum cpu_idle_type idle; 9283 long imbalance; 9284 /* The set of CPUs under consideration for load-balancing */ 9285 struct cpumask *cpus; 9286 9287 unsigned int flags; 9288 9289 unsigned int loop; 9290 unsigned int loop_break; 9291 unsigned int loop_max; 9292 9293 enum fbq_type fbq_type; 9294 enum migration_type migration_type; 9295 struct list_head tasks; 9296 }; 9297 9298 /* 9299 * Is this task likely cache-hot: 9300 */ 9301 static int task_hot(struct task_struct *p, struct lb_env *env) 9302 { 9303 s64 delta; 9304 9305 lockdep_assert_rq_held(env->src_rq); 9306 9307 if (p->sched_class != &fair_sched_class) 9308 return 0; 9309 9310 if (unlikely(task_has_idle_policy(p))) 9311 return 0; 9312 9313 /* SMT siblings share cache */ 9314 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9315 return 0; 9316 9317 /* 9318 * Buddy candidates are cache hot: 9319 */ 9320 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9321 (&p->se == cfs_rq_of(&p->se)->next)) 9322 return 1; 9323 9324 if (sysctl_sched_migration_cost == -1) 9325 return 1; 9326 9327 /* 9328 * Don't migrate task if the task's cookie does not match 9329 * with the destination CPU's core cookie. 9330 */ 9331 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9332 return 1; 9333 9334 if (sysctl_sched_migration_cost == 0) 9335 return 0; 9336 9337 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9338 9339 return delta < (s64)sysctl_sched_migration_cost; 9340 } 9341 9342 #ifdef CONFIG_NUMA_BALANCING 9343 /* 9344 * Returns 1, if task migration degrades locality 9345 * Returns 0, if task migration improves locality i.e migration preferred. 9346 * Returns -1, if task migration is not affected by locality. 9347 */ 9348 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9349 { 9350 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9351 unsigned long src_weight, dst_weight; 9352 int src_nid, dst_nid, dist; 9353 9354 if (!static_branch_likely(&sched_numa_balancing)) 9355 return -1; 9356 9357 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9358 return -1; 9359 9360 src_nid = cpu_to_node(env->src_cpu); 9361 dst_nid = cpu_to_node(env->dst_cpu); 9362 9363 if (src_nid == dst_nid) 9364 return -1; 9365 9366 /* Migrating away from the preferred node is always bad. */ 9367 if (src_nid == p->numa_preferred_nid) { 9368 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9369 return 1; 9370 else 9371 return -1; 9372 } 9373 9374 /* Encourage migration to the preferred node. */ 9375 if (dst_nid == p->numa_preferred_nid) 9376 return 0; 9377 9378 /* Leaving a core idle is often worse than degrading locality. */ 9379 if (env->idle == CPU_IDLE) 9380 return -1; 9381 9382 dist = node_distance(src_nid, dst_nid); 9383 if (numa_group) { 9384 src_weight = group_weight(p, src_nid, dist); 9385 dst_weight = group_weight(p, dst_nid, dist); 9386 } else { 9387 src_weight = task_weight(p, src_nid, dist); 9388 dst_weight = task_weight(p, dst_nid, dist); 9389 } 9390 9391 return dst_weight < src_weight; 9392 } 9393 9394 #else 9395 static inline int migrate_degrades_locality(struct task_struct *p, 9396 struct lb_env *env) 9397 { 9398 return -1; 9399 } 9400 #endif 9401 9402 /* 9403 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9404 */ 9405 static 9406 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9407 { 9408 int tsk_cache_hot; 9409 9410 lockdep_assert_rq_held(env->src_rq); 9411 9412 /* 9413 * We do not migrate tasks that are: 9414 * 1) throttled_lb_pair, or 9415 * 2) cannot be migrated to this CPU due to cpus_ptr, or 9416 * 3) running (obviously), or 9417 * 4) are cache-hot on their current CPU. 9418 */ 9419 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9420 return 0; 9421 9422 /* Disregard percpu kthreads; they are where they need to be. */ 9423 if (kthread_is_per_cpu(p)) 9424 return 0; 9425 9426 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9427 int cpu; 9428 9429 schedstat_inc(p->stats.nr_failed_migrations_affine); 9430 9431 env->flags |= LBF_SOME_PINNED; 9432 9433 /* 9434 * Remember if this task can be migrated to any other CPU in 9435 * our sched_group. We may want to revisit it if we couldn't 9436 * meet load balance goals by pulling other tasks on src_cpu. 9437 * 9438 * Avoid computing new_dst_cpu 9439 * - for NEWLY_IDLE 9440 * - if we have already computed one in current iteration 9441 * - if it's an active balance 9442 */ 9443 if (env->idle == CPU_NEWLY_IDLE || 9444 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9445 return 0; 9446 9447 /* Prevent to re-select dst_cpu via env's CPUs: */ 9448 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9449 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9450 env->flags |= LBF_DST_PINNED; 9451 env->new_dst_cpu = cpu; 9452 break; 9453 } 9454 } 9455 9456 return 0; 9457 } 9458 9459 /* Record that we found at least one task that could run on dst_cpu */ 9460 env->flags &= ~LBF_ALL_PINNED; 9461 9462 if (task_on_cpu(env->src_rq, p)) { 9463 schedstat_inc(p->stats.nr_failed_migrations_running); 9464 return 0; 9465 } 9466 9467 /* 9468 * Aggressive migration if: 9469 * 1) active balance 9470 * 2) destination numa is preferred 9471 * 3) task is cache cold, or 9472 * 4) too many balance attempts have failed. 9473 */ 9474 if (env->flags & LBF_ACTIVE_LB) 9475 return 1; 9476 9477 tsk_cache_hot = migrate_degrades_locality(p, env); 9478 if (tsk_cache_hot == -1) 9479 tsk_cache_hot = task_hot(p, env); 9480 9481 if (tsk_cache_hot <= 0 || 9482 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9483 if (tsk_cache_hot == 1) { 9484 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9485 schedstat_inc(p->stats.nr_forced_migrations); 9486 } 9487 return 1; 9488 } 9489 9490 schedstat_inc(p->stats.nr_failed_migrations_hot); 9491 return 0; 9492 } 9493 9494 /* 9495 * detach_task() -- detach the task for the migration specified in env 9496 */ 9497 static void detach_task(struct task_struct *p, struct lb_env *env) 9498 { 9499 lockdep_assert_rq_held(env->src_rq); 9500 9501 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9502 set_task_cpu(p, env->dst_cpu); 9503 } 9504 9505 /* 9506 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9507 * part of active balancing operations within "domain". 9508 * 9509 * Returns a task if successful and NULL otherwise. 9510 */ 9511 static struct task_struct *detach_one_task(struct lb_env *env) 9512 { 9513 struct task_struct *p; 9514 9515 lockdep_assert_rq_held(env->src_rq); 9516 9517 list_for_each_entry_reverse(p, 9518 &env->src_rq->cfs_tasks, se.group_node) { 9519 if (!can_migrate_task(p, env)) 9520 continue; 9521 9522 detach_task(p, env); 9523 9524 /* 9525 * Right now, this is only the second place where 9526 * lb_gained[env->idle] is updated (other is detach_tasks) 9527 * so we can safely collect stats here rather than 9528 * inside detach_tasks(). 9529 */ 9530 schedstat_inc(env->sd->lb_gained[env->idle]); 9531 return p; 9532 } 9533 return NULL; 9534 } 9535 9536 /* 9537 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9538 * busiest_rq, as part of a balancing operation within domain "sd". 9539 * 9540 * Returns number of detached tasks if successful and 0 otherwise. 9541 */ 9542 static int detach_tasks(struct lb_env *env) 9543 { 9544 struct list_head *tasks = &env->src_rq->cfs_tasks; 9545 unsigned long util, load; 9546 struct task_struct *p; 9547 int detached = 0; 9548 9549 lockdep_assert_rq_held(env->src_rq); 9550 9551 /* 9552 * Source run queue has been emptied by another CPU, clear 9553 * LBF_ALL_PINNED flag as we will not test any task. 9554 */ 9555 if (env->src_rq->nr_running <= 1) { 9556 env->flags &= ~LBF_ALL_PINNED; 9557 return 0; 9558 } 9559 9560 if (env->imbalance <= 0) 9561 return 0; 9562 9563 while (!list_empty(tasks)) { 9564 /* 9565 * We don't want to steal all, otherwise we may be treated likewise, 9566 * which could at worst lead to a livelock crash. 9567 */ 9568 if (env->idle && env->src_rq->nr_running <= 1) 9569 break; 9570 9571 env->loop++; 9572 /* We've more or less seen every task there is, call it quits */ 9573 if (env->loop > env->loop_max) 9574 break; 9575 9576 /* take a breather every nr_migrate tasks */ 9577 if (env->loop > env->loop_break) { 9578 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9579 env->flags |= LBF_NEED_BREAK; 9580 break; 9581 } 9582 9583 p = list_last_entry(tasks, struct task_struct, se.group_node); 9584 9585 if (!can_migrate_task(p, env)) 9586 goto next; 9587 9588 switch (env->migration_type) { 9589 case migrate_load: 9590 /* 9591 * Depending of the number of CPUs and tasks and the 9592 * cgroup hierarchy, task_h_load() can return a null 9593 * value. Make sure that env->imbalance decreases 9594 * otherwise detach_tasks() will stop only after 9595 * detaching up to loop_max tasks. 9596 */ 9597 load = max_t(unsigned long, task_h_load(p), 1); 9598 9599 if (sched_feat(LB_MIN) && 9600 load < 16 && !env->sd->nr_balance_failed) 9601 goto next; 9602 9603 /* 9604 * Make sure that we don't migrate too much load. 9605 * Nevertheless, let relax the constraint if 9606 * scheduler fails to find a good waiting task to 9607 * migrate. 9608 */ 9609 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9610 goto next; 9611 9612 env->imbalance -= load; 9613 break; 9614 9615 case migrate_util: 9616 util = task_util_est(p); 9617 9618 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9619 goto next; 9620 9621 env->imbalance -= util; 9622 break; 9623 9624 case migrate_task: 9625 env->imbalance--; 9626 break; 9627 9628 case migrate_misfit: 9629 /* This is not a misfit task */ 9630 if (task_fits_cpu(p, env->src_cpu)) 9631 goto next; 9632 9633 env->imbalance = 0; 9634 break; 9635 } 9636 9637 detach_task(p, env); 9638 list_add(&p->se.group_node, &env->tasks); 9639 9640 detached++; 9641 9642 #ifdef CONFIG_PREEMPTION 9643 /* 9644 * NEWIDLE balancing is a source of latency, so preemptible 9645 * kernels will stop after the first task is detached to minimize 9646 * the critical section. 9647 */ 9648 if (env->idle == CPU_NEWLY_IDLE) 9649 break; 9650 #endif 9651 9652 /* 9653 * We only want to steal up to the prescribed amount of 9654 * load/util/tasks. 9655 */ 9656 if (env->imbalance <= 0) 9657 break; 9658 9659 continue; 9660 next: 9661 list_move(&p->se.group_node, tasks); 9662 } 9663 9664 /* 9665 * Right now, this is one of only two places we collect this stat 9666 * so we can safely collect detach_one_task() stats here rather 9667 * than inside detach_one_task(). 9668 */ 9669 schedstat_add(env->sd->lb_gained[env->idle], detached); 9670 9671 return detached; 9672 } 9673 9674 /* 9675 * attach_task() -- attach the task detached by detach_task() to its new rq. 9676 */ 9677 static void attach_task(struct rq *rq, struct task_struct *p) 9678 { 9679 lockdep_assert_rq_held(rq); 9680 9681 WARN_ON_ONCE(task_rq(p) != rq); 9682 activate_task(rq, p, ENQUEUE_NOCLOCK); 9683 wakeup_preempt(rq, p, 0); 9684 } 9685 9686 /* 9687 * attach_one_task() -- attaches the task returned from detach_one_task() to 9688 * its new rq. 9689 */ 9690 static void attach_one_task(struct rq *rq, struct task_struct *p) 9691 { 9692 struct rq_flags rf; 9693 9694 rq_lock(rq, &rf); 9695 update_rq_clock(rq); 9696 attach_task(rq, p); 9697 rq_unlock(rq, &rf); 9698 } 9699 9700 /* 9701 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9702 * new rq. 9703 */ 9704 static void attach_tasks(struct lb_env *env) 9705 { 9706 struct list_head *tasks = &env->tasks; 9707 struct task_struct *p; 9708 struct rq_flags rf; 9709 9710 rq_lock(env->dst_rq, &rf); 9711 update_rq_clock(env->dst_rq); 9712 9713 while (!list_empty(tasks)) { 9714 p = list_first_entry(tasks, struct task_struct, se.group_node); 9715 list_del_init(&p->se.group_node); 9716 9717 attach_task(env->dst_rq, p); 9718 } 9719 9720 rq_unlock(env->dst_rq, &rf); 9721 } 9722 9723 #ifdef CONFIG_NO_HZ_COMMON 9724 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9725 { 9726 if (cfs_rq->avg.load_avg) 9727 return true; 9728 9729 if (cfs_rq->avg.util_avg) 9730 return true; 9731 9732 return false; 9733 } 9734 9735 static inline bool others_have_blocked(struct rq *rq) 9736 { 9737 if (cpu_util_rt(rq)) 9738 return true; 9739 9740 if (cpu_util_dl(rq)) 9741 return true; 9742 9743 if (hw_load_avg(rq)) 9744 return true; 9745 9746 if (cpu_util_irq(rq)) 9747 return true; 9748 9749 return false; 9750 } 9751 9752 static inline void update_blocked_load_tick(struct rq *rq) 9753 { 9754 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9755 } 9756 9757 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9758 { 9759 if (!has_blocked) 9760 rq->has_blocked_load = 0; 9761 } 9762 #else 9763 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9764 static inline bool others_have_blocked(struct rq *rq) { return false; } 9765 static inline void update_blocked_load_tick(struct rq *rq) {} 9766 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9767 #endif 9768 9769 static bool __update_blocked_others(struct rq *rq, bool *done) 9770 { 9771 bool updated; 9772 9773 /* 9774 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9775 * DL and IRQ signals have been updated before updating CFS. 9776 */ 9777 updated = update_other_load_avgs(rq); 9778 9779 if (others_have_blocked(rq)) 9780 *done = false; 9781 9782 return updated; 9783 } 9784 9785 #ifdef CONFIG_FAIR_GROUP_SCHED 9786 9787 static bool __update_blocked_fair(struct rq *rq, bool *done) 9788 { 9789 struct cfs_rq *cfs_rq, *pos; 9790 bool decayed = false; 9791 int cpu = cpu_of(rq); 9792 9793 /* 9794 * Iterates the task_group tree in a bottom up fashion, see 9795 * list_add_leaf_cfs_rq() for details. 9796 */ 9797 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9798 struct sched_entity *se; 9799 9800 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9801 update_tg_load_avg(cfs_rq); 9802 9803 if (cfs_rq->nr_running == 0) 9804 update_idle_cfs_rq_clock_pelt(cfs_rq); 9805 9806 if (cfs_rq == &rq->cfs) 9807 decayed = true; 9808 } 9809 9810 /* Propagate pending load changes to the parent, if any: */ 9811 se = cfs_rq->tg->se[cpu]; 9812 if (se && !skip_blocked_update(se)) 9813 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9814 9815 /* 9816 * There can be a lot of idle CPU cgroups. Don't let fully 9817 * decayed cfs_rqs linger on the list. 9818 */ 9819 if (cfs_rq_is_decayed(cfs_rq)) 9820 list_del_leaf_cfs_rq(cfs_rq); 9821 9822 /* Don't need periodic decay once load/util_avg are null */ 9823 if (cfs_rq_has_blocked(cfs_rq)) 9824 *done = false; 9825 } 9826 9827 return decayed; 9828 } 9829 9830 /* 9831 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9832 * This needs to be done in a top-down fashion because the load of a child 9833 * group is a fraction of its parents load. 9834 */ 9835 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9836 { 9837 struct rq *rq = rq_of(cfs_rq); 9838 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9839 unsigned long now = jiffies; 9840 unsigned long load; 9841 9842 if (cfs_rq->last_h_load_update == now) 9843 return; 9844 9845 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9846 for_each_sched_entity(se) { 9847 cfs_rq = cfs_rq_of(se); 9848 WRITE_ONCE(cfs_rq->h_load_next, se); 9849 if (cfs_rq->last_h_load_update == now) 9850 break; 9851 } 9852 9853 if (!se) { 9854 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9855 cfs_rq->last_h_load_update = now; 9856 } 9857 9858 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9859 load = cfs_rq->h_load; 9860 load = div64_ul(load * se->avg.load_avg, 9861 cfs_rq_load_avg(cfs_rq) + 1); 9862 cfs_rq = group_cfs_rq(se); 9863 cfs_rq->h_load = load; 9864 cfs_rq->last_h_load_update = now; 9865 } 9866 } 9867 9868 static unsigned long task_h_load(struct task_struct *p) 9869 { 9870 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9871 9872 update_cfs_rq_h_load(cfs_rq); 9873 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9874 cfs_rq_load_avg(cfs_rq) + 1); 9875 } 9876 #else 9877 static bool __update_blocked_fair(struct rq *rq, bool *done) 9878 { 9879 struct cfs_rq *cfs_rq = &rq->cfs; 9880 bool decayed; 9881 9882 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9883 if (cfs_rq_has_blocked(cfs_rq)) 9884 *done = false; 9885 9886 return decayed; 9887 } 9888 9889 static unsigned long task_h_load(struct task_struct *p) 9890 { 9891 return p->se.avg.load_avg; 9892 } 9893 #endif 9894 9895 static void sched_balance_update_blocked_averages(int cpu) 9896 { 9897 bool decayed = false, done = true; 9898 struct rq *rq = cpu_rq(cpu); 9899 struct rq_flags rf; 9900 9901 rq_lock_irqsave(rq, &rf); 9902 update_blocked_load_tick(rq); 9903 update_rq_clock(rq); 9904 9905 decayed |= __update_blocked_others(rq, &done); 9906 decayed |= __update_blocked_fair(rq, &done); 9907 9908 update_blocked_load_status(rq, !done); 9909 if (decayed) 9910 cpufreq_update_util(rq, 0); 9911 rq_unlock_irqrestore(rq, &rf); 9912 } 9913 9914 /********** Helpers for sched_balance_find_src_group ************************/ 9915 9916 /* 9917 * sg_lb_stats - stats of a sched_group required for load-balancing: 9918 */ 9919 struct sg_lb_stats { 9920 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9921 unsigned long group_load; /* Total load over the CPUs of the group */ 9922 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9923 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9924 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9925 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9926 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9927 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9928 unsigned int group_weight; 9929 enum group_type group_type; 9930 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9931 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9932 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9933 #ifdef CONFIG_NUMA_BALANCING 9934 unsigned int nr_numa_running; 9935 unsigned int nr_preferred_running; 9936 #endif 9937 }; 9938 9939 /* 9940 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9941 */ 9942 struct sd_lb_stats { 9943 struct sched_group *busiest; /* Busiest group in this sd */ 9944 struct sched_group *local; /* Local group in this sd */ 9945 unsigned long total_load; /* Total load of all groups in sd */ 9946 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9947 unsigned long avg_load; /* Average load across all groups in sd */ 9948 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9949 9950 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9951 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9952 }; 9953 9954 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9955 { 9956 /* 9957 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9958 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9959 * We must however set busiest_stat::group_type and 9960 * busiest_stat::idle_cpus to the worst busiest group because 9961 * update_sd_pick_busiest() reads these before assignment. 9962 */ 9963 *sds = (struct sd_lb_stats){ 9964 .busiest = NULL, 9965 .local = NULL, 9966 .total_load = 0UL, 9967 .total_capacity = 0UL, 9968 .busiest_stat = { 9969 .idle_cpus = UINT_MAX, 9970 .group_type = group_has_spare, 9971 }, 9972 }; 9973 } 9974 9975 static unsigned long scale_rt_capacity(int cpu) 9976 { 9977 unsigned long max = get_actual_cpu_capacity(cpu); 9978 struct rq *rq = cpu_rq(cpu); 9979 unsigned long used, free; 9980 unsigned long irq; 9981 9982 irq = cpu_util_irq(rq); 9983 9984 if (unlikely(irq >= max)) 9985 return 1; 9986 9987 /* 9988 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9989 * (running and not running) with weights 0 and 1024 respectively. 9990 */ 9991 used = cpu_util_rt(rq); 9992 used += cpu_util_dl(rq); 9993 9994 if (unlikely(used >= max)) 9995 return 1; 9996 9997 free = max - used; 9998 9999 return scale_irq_capacity(free, irq, max); 10000 } 10001 10002 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10003 { 10004 unsigned long capacity = scale_rt_capacity(cpu); 10005 struct sched_group *sdg = sd->groups; 10006 10007 if (!capacity) 10008 capacity = 1; 10009 10010 cpu_rq(cpu)->cpu_capacity = capacity; 10011 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10012 10013 sdg->sgc->capacity = capacity; 10014 sdg->sgc->min_capacity = capacity; 10015 sdg->sgc->max_capacity = capacity; 10016 } 10017 10018 void update_group_capacity(struct sched_domain *sd, int cpu) 10019 { 10020 struct sched_domain *child = sd->child; 10021 struct sched_group *group, *sdg = sd->groups; 10022 unsigned long capacity, min_capacity, max_capacity; 10023 unsigned long interval; 10024 10025 interval = msecs_to_jiffies(sd->balance_interval); 10026 interval = clamp(interval, 1UL, max_load_balance_interval); 10027 sdg->sgc->next_update = jiffies + interval; 10028 10029 if (!child) { 10030 update_cpu_capacity(sd, cpu); 10031 return; 10032 } 10033 10034 capacity = 0; 10035 min_capacity = ULONG_MAX; 10036 max_capacity = 0; 10037 10038 if (child->flags & SD_OVERLAP) { 10039 /* 10040 * SD_OVERLAP domains cannot assume that child groups 10041 * span the current group. 10042 */ 10043 10044 for_each_cpu(cpu, sched_group_span(sdg)) { 10045 unsigned long cpu_cap = capacity_of(cpu); 10046 10047 capacity += cpu_cap; 10048 min_capacity = min(cpu_cap, min_capacity); 10049 max_capacity = max(cpu_cap, max_capacity); 10050 } 10051 } else { 10052 /* 10053 * !SD_OVERLAP domains can assume that child groups 10054 * span the current group. 10055 */ 10056 10057 group = child->groups; 10058 do { 10059 struct sched_group_capacity *sgc = group->sgc; 10060 10061 capacity += sgc->capacity; 10062 min_capacity = min(sgc->min_capacity, min_capacity); 10063 max_capacity = max(sgc->max_capacity, max_capacity); 10064 group = group->next; 10065 } while (group != child->groups); 10066 } 10067 10068 sdg->sgc->capacity = capacity; 10069 sdg->sgc->min_capacity = min_capacity; 10070 sdg->sgc->max_capacity = max_capacity; 10071 } 10072 10073 /* 10074 * Check whether the capacity of the rq has been noticeably reduced by side 10075 * activity. The imbalance_pct is used for the threshold. 10076 * Return true is the capacity is reduced 10077 */ 10078 static inline int 10079 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10080 { 10081 return ((rq->cpu_capacity * sd->imbalance_pct) < 10082 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10083 } 10084 10085 /* Check if the rq has a misfit task */ 10086 static inline bool check_misfit_status(struct rq *rq) 10087 { 10088 return rq->misfit_task_load; 10089 } 10090 10091 /* 10092 * Group imbalance indicates (and tries to solve) the problem where balancing 10093 * groups is inadequate due to ->cpus_ptr constraints. 10094 * 10095 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10096 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10097 * Something like: 10098 * 10099 * { 0 1 2 3 } { 4 5 6 7 } 10100 * * * * * 10101 * 10102 * If we were to balance group-wise we'd place two tasks in the first group and 10103 * two tasks in the second group. Clearly this is undesired as it will overload 10104 * cpu 3 and leave one of the CPUs in the second group unused. 10105 * 10106 * The current solution to this issue is detecting the skew in the first group 10107 * by noticing the lower domain failed to reach balance and had difficulty 10108 * moving tasks due to affinity constraints. 10109 * 10110 * When this is so detected; this group becomes a candidate for busiest; see 10111 * update_sd_pick_busiest(). And calculate_imbalance() and 10112 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10113 * to create an effective group imbalance. 10114 * 10115 * This is a somewhat tricky proposition since the next run might not find the 10116 * group imbalance and decide the groups need to be balanced again. A most 10117 * subtle and fragile situation. 10118 */ 10119 10120 static inline int sg_imbalanced(struct sched_group *group) 10121 { 10122 return group->sgc->imbalance; 10123 } 10124 10125 /* 10126 * group_has_capacity returns true if the group has spare capacity that could 10127 * be used by some tasks. 10128 * We consider that a group has spare capacity if the number of task is 10129 * smaller than the number of CPUs or if the utilization is lower than the 10130 * available capacity for CFS tasks. 10131 * For the latter, we use a threshold to stabilize the state, to take into 10132 * account the variance of the tasks' load and to return true if the available 10133 * capacity in meaningful for the load balancer. 10134 * As an example, an available capacity of 1% can appear but it doesn't make 10135 * any benefit for the load balance. 10136 */ 10137 static inline bool 10138 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10139 { 10140 if (sgs->sum_nr_running < sgs->group_weight) 10141 return true; 10142 10143 if ((sgs->group_capacity * imbalance_pct) < 10144 (sgs->group_runnable * 100)) 10145 return false; 10146 10147 if ((sgs->group_capacity * 100) > 10148 (sgs->group_util * imbalance_pct)) 10149 return true; 10150 10151 return false; 10152 } 10153 10154 /* 10155 * group_is_overloaded returns true if the group has more tasks than it can 10156 * handle. 10157 * group_is_overloaded is not equals to !group_has_capacity because a group 10158 * with the exact right number of tasks, has no more spare capacity but is not 10159 * overloaded so both group_has_capacity and group_is_overloaded return 10160 * false. 10161 */ 10162 static inline bool 10163 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10164 { 10165 if (sgs->sum_nr_running <= sgs->group_weight) 10166 return false; 10167 10168 if ((sgs->group_capacity * 100) < 10169 (sgs->group_util * imbalance_pct)) 10170 return true; 10171 10172 if ((sgs->group_capacity * imbalance_pct) < 10173 (sgs->group_runnable * 100)) 10174 return true; 10175 10176 return false; 10177 } 10178 10179 static inline enum 10180 group_type group_classify(unsigned int imbalance_pct, 10181 struct sched_group *group, 10182 struct sg_lb_stats *sgs) 10183 { 10184 if (group_is_overloaded(imbalance_pct, sgs)) 10185 return group_overloaded; 10186 10187 if (sg_imbalanced(group)) 10188 return group_imbalanced; 10189 10190 if (sgs->group_asym_packing) 10191 return group_asym_packing; 10192 10193 if (sgs->group_smt_balance) 10194 return group_smt_balance; 10195 10196 if (sgs->group_misfit_task_load) 10197 return group_misfit_task; 10198 10199 if (!group_has_capacity(imbalance_pct, sgs)) 10200 return group_fully_busy; 10201 10202 return group_has_spare; 10203 } 10204 10205 /** 10206 * sched_use_asym_prio - Check whether asym_packing priority must be used 10207 * @sd: The scheduling domain of the load balancing 10208 * @cpu: A CPU 10209 * 10210 * Always use CPU priority when balancing load between SMT siblings. When 10211 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10212 * use CPU priority if the whole core is idle. 10213 * 10214 * Returns: True if the priority of @cpu must be followed. False otherwise. 10215 */ 10216 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10217 { 10218 if (!(sd->flags & SD_ASYM_PACKING)) 10219 return false; 10220 10221 if (!sched_smt_active()) 10222 return true; 10223 10224 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10225 } 10226 10227 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10228 { 10229 /* 10230 * First check if @dst_cpu can do asym_packing load balance. Only do it 10231 * if it has higher priority than @src_cpu. 10232 */ 10233 return sched_use_asym_prio(sd, dst_cpu) && 10234 sched_asym_prefer(dst_cpu, src_cpu); 10235 } 10236 10237 /** 10238 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10239 * @env: The load balancing environment 10240 * @sgs: Load-balancing statistics of the candidate busiest group 10241 * @group: The candidate busiest group 10242 * 10243 * @env::dst_cpu can do asym_packing if it has higher priority than the 10244 * preferred CPU of @group. 10245 * 10246 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10247 * otherwise. 10248 */ 10249 static inline bool 10250 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10251 { 10252 /* 10253 * CPU priorities do not make sense for SMT cores with more than one 10254 * busy sibling. 10255 */ 10256 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10257 (sgs->group_weight - sgs->idle_cpus != 1)) 10258 return false; 10259 10260 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10261 } 10262 10263 /* One group has more than one SMT CPU while the other group does not */ 10264 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10265 struct sched_group *sg2) 10266 { 10267 if (!sg1 || !sg2) 10268 return false; 10269 10270 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10271 (sg2->flags & SD_SHARE_CPUCAPACITY); 10272 } 10273 10274 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10275 struct sched_group *group) 10276 { 10277 if (!env->idle) 10278 return false; 10279 10280 /* 10281 * For SMT source group, it is better to move a task 10282 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10283 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10284 * will not be on. 10285 */ 10286 if (group->flags & SD_SHARE_CPUCAPACITY && 10287 sgs->sum_h_nr_running > 1) 10288 return true; 10289 10290 return false; 10291 } 10292 10293 static inline long sibling_imbalance(struct lb_env *env, 10294 struct sd_lb_stats *sds, 10295 struct sg_lb_stats *busiest, 10296 struct sg_lb_stats *local) 10297 { 10298 int ncores_busiest, ncores_local; 10299 long imbalance; 10300 10301 if (!env->idle || !busiest->sum_nr_running) 10302 return 0; 10303 10304 ncores_busiest = sds->busiest->cores; 10305 ncores_local = sds->local->cores; 10306 10307 if (ncores_busiest == ncores_local) { 10308 imbalance = busiest->sum_nr_running; 10309 lsub_positive(&imbalance, local->sum_nr_running); 10310 return imbalance; 10311 } 10312 10313 /* Balance such that nr_running/ncores ratio are same on both groups */ 10314 imbalance = ncores_local * busiest->sum_nr_running; 10315 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10316 /* Normalize imbalance and do rounding on normalization */ 10317 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10318 imbalance /= ncores_local + ncores_busiest; 10319 10320 /* Take advantage of resource in an empty sched group */ 10321 if (imbalance <= 1 && local->sum_nr_running == 0 && 10322 busiest->sum_nr_running > 1) 10323 imbalance = 2; 10324 10325 return imbalance; 10326 } 10327 10328 static inline bool 10329 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10330 { 10331 /* 10332 * When there is more than 1 task, the group_overloaded case already 10333 * takes care of cpu with reduced capacity 10334 */ 10335 if (rq->cfs.h_nr_running != 1) 10336 return false; 10337 10338 return check_cpu_capacity(rq, sd); 10339 } 10340 10341 /** 10342 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10343 * @env: The load balancing environment. 10344 * @sds: Load-balancing data with statistics of the local group. 10345 * @group: sched_group whose statistics are to be updated. 10346 * @sgs: variable to hold the statistics for this group. 10347 * @sg_overloaded: sched_group is overloaded 10348 * @sg_overutilized: sched_group is overutilized 10349 */ 10350 static inline void update_sg_lb_stats(struct lb_env *env, 10351 struct sd_lb_stats *sds, 10352 struct sched_group *group, 10353 struct sg_lb_stats *sgs, 10354 bool *sg_overloaded, 10355 bool *sg_overutilized) 10356 { 10357 int i, nr_running, local_group; 10358 10359 memset(sgs, 0, sizeof(*sgs)); 10360 10361 local_group = group == sds->local; 10362 10363 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10364 struct rq *rq = cpu_rq(i); 10365 unsigned long load = cpu_load(rq); 10366 10367 sgs->group_load += load; 10368 sgs->group_util += cpu_util_cfs(i); 10369 sgs->group_runnable += cpu_runnable(rq); 10370 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 10371 10372 nr_running = rq->nr_running; 10373 sgs->sum_nr_running += nr_running; 10374 10375 if (nr_running > 1) 10376 *sg_overloaded = 1; 10377 10378 if (cpu_overutilized(i)) 10379 *sg_overutilized = 1; 10380 10381 #ifdef CONFIG_NUMA_BALANCING 10382 sgs->nr_numa_running += rq->nr_numa_running; 10383 sgs->nr_preferred_running += rq->nr_preferred_running; 10384 #endif 10385 /* 10386 * No need to call idle_cpu() if nr_running is not 0 10387 */ 10388 if (!nr_running && idle_cpu(i)) { 10389 sgs->idle_cpus++; 10390 /* Idle cpu can't have misfit task */ 10391 continue; 10392 } 10393 10394 if (local_group) 10395 continue; 10396 10397 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10398 /* Check for a misfit task on the cpu */ 10399 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10400 sgs->group_misfit_task_load = rq->misfit_task_load; 10401 *sg_overloaded = 1; 10402 } 10403 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10404 /* Check for a task running on a CPU with reduced capacity */ 10405 if (sgs->group_misfit_task_load < load) 10406 sgs->group_misfit_task_load = load; 10407 } 10408 } 10409 10410 sgs->group_capacity = group->sgc->capacity; 10411 10412 sgs->group_weight = group->group_weight; 10413 10414 /* Check if dst CPU is idle and preferred to this group */ 10415 if (!local_group && env->idle && sgs->sum_h_nr_running && 10416 sched_group_asym(env, sgs, group)) 10417 sgs->group_asym_packing = 1; 10418 10419 /* Check for loaded SMT group to be balanced to dst CPU */ 10420 if (!local_group && smt_balance(env, sgs, group)) 10421 sgs->group_smt_balance = 1; 10422 10423 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10424 10425 /* Computing avg_load makes sense only when group is overloaded */ 10426 if (sgs->group_type == group_overloaded) 10427 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10428 sgs->group_capacity; 10429 } 10430 10431 /** 10432 * update_sd_pick_busiest - return 1 on busiest group 10433 * @env: The load balancing environment. 10434 * @sds: sched_domain statistics 10435 * @sg: sched_group candidate to be checked for being the busiest 10436 * @sgs: sched_group statistics 10437 * 10438 * Determine if @sg is a busier group than the previously selected 10439 * busiest group. 10440 * 10441 * Return: %true if @sg is a busier group than the previously selected 10442 * busiest group. %false otherwise. 10443 */ 10444 static bool update_sd_pick_busiest(struct lb_env *env, 10445 struct sd_lb_stats *sds, 10446 struct sched_group *sg, 10447 struct sg_lb_stats *sgs) 10448 { 10449 struct sg_lb_stats *busiest = &sds->busiest_stat; 10450 10451 /* Make sure that there is at least one task to pull */ 10452 if (!sgs->sum_h_nr_running) 10453 return false; 10454 10455 /* 10456 * Don't try to pull misfit tasks we can't help. 10457 * We can use max_capacity here as reduction in capacity on some 10458 * CPUs in the group should either be possible to resolve 10459 * internally or be covered by avg_load imbalance (eventually). 10460 */ 10461 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10462 (sgs->group_type == group_misfit_task) && 10463 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10464 sds->local_stat.group_type != group_has_spare)) 10465 return false; 10466 10467 if (sgs->group_type > busiest->group_type) 10468 return true; 10469 10470 if (sgs->group_type < busiest->group_type) 10471 return false; 10472 10473 /* 10474 * The candidate and the current busiest group are the same type of 10475 * group. Let check which one is the busiest according to the type. 10476 */ 10477 10478 switch (sgs->group_type) { 10479 case group_overloaded: 10480 /* Select the overloaded group with highest avg_load. */ 10481 return sgs->avg_load > busiest->avg_load; 10482 10483 case group_imbalanced: 10484 /* 10485 * Select the 1st imbalanced group as we don't have any way to 10486 * choose one more than another. 10487 */ 10488 return false; 10489 10490 case group_asym_packing: 10491 /* Prefer to move from lowest priority CPU's work */ 10492 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10493 10494 case group_misfit_task: 10495 /* 10496 * If we have more than one misfit sg go with the biggest 10497 * misfit. 10498 */ 10499 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10500 10501 case group_smt_balance: 10502 /* 10503 * Check if we have spare CPUs on either SMT group to 10504 * choose has spare or fully busy handling. 10505 */ 10506 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10507 goto has_spare; 10508 10509 fallthrough; 10510 10511 case group_fully_busy: 10512 /* 10513 * Select the fully busy group with highest avg_load. In 10514 * theory, there is no need to pull task from such kind of 10515 * group because tasks have all compute capacity that they need 10516 * but we can still improve the overall throughput by reducing 10517 * contention when accessing shared HW resources. 10518 * 10519 * XXX for now avg_load is not computed and always 0 so we 10520 * select the 1st one, except if @sg is composed of SMT 10521 * siblings. 10522 */ 10523 10524 if (sgs->avg_load < busiest->avg_load) 10525 return false; 10526 10527 if (sgs->avg_load == busiest->avg_load) { 10528 /* 10529 * SMT sched groups need more help than non-SMT groups. 10530 * If @sg happens to also be SMT, either choice is good. 10531 */ 10532 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10533 return false; 10534 } 10535 10536 break; 10537 10538 case group_has_spare: 10539 /* 10540 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10541 * as we do not want to pull task off SMT core with one task 10542 * and make the core idle. 10543 */ 10544 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10545 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10546 return false; 10547 else 10548 return true; 10549 } 10550 has_spare: 10551 10552 /* 10553 * Select not overloaded group with lowest number of idle CPUs 10554 * and highest number of running tasks. We could also compare 10555 * the spare capacity which is more stable but it can end up 10556 * that the group has less spare capacity but finally more idle 10557 * CPUs which means less opportunity to pull tasks. 10558 */ 10559 if (sgs->idle_cpus > busiest->idle_cpus) 10560 return false; 10561 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10562 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10563 return false; 10564 10565 break; 10566 } 10567 10568 /* 10569 * Candidate sg has no more than one task per CPU and has higher 10570 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10571 * throughput. Maximize throughput, power/energy consequences are not 10572 * considered. 10573 */ 10574 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10575 (sgs->group_type <= group_fully_busy) && 10576 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10577 return false; 10578 10579 return true; 10580 } 10581 10582 #ifdef CONFIG_NUMA_BALANCING 10583 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10584 { 10585 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10586 return regular; 10587 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10588 return remote; 10589 return all; 10590 } 10591 10592 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10593 { 10594 if (rq->nr_running > rq->nr_numa_running) 10595 return regular; 10596 if (rq->nr_running > rq->nr_preferred_running) 10597 return remote; 10598 return all; 10599 } 10600 #else 10601 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10602 { 10603 return all; 10604 } 10605 10606 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10607 { 10608 return regular; 10609 } 10610 #endif /* CONFIG_NUMA_BALANCING */ 10611 10612 10613 struct sg_lb_stats; 10614 10615 /* 10616 * task_running_on_cpu - return 1 if @p is running on @cpu. 10617 */ 10618 10619 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10620 { 10621 /* Task has no contribution or is new */ 10622 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10623 return 0; 10624 10625 if (task_on_rq_queued(p)) 10626 return 1; 10627 10628 return 0; 10629 } 10630 10631 /** 10632 * idle_cpu_without - would a given CPU be idle without p ? 10633 * @cpu: the processor on which idleness is tested. 10634 * @p: task which should be ignored. 10635 * 10636 * Return: 1 if the CPU would be idle. 0 otherwise. 10637 */ 10638 static int idle_cpu_without(int cpu, struct task_struct *p) 10639 { 10640 struct rq *rq = cpu_rq(cpu); 10641 10642 if (rq->curr != rq->idle && rq->curr != p) 10643 return 0; 10644 10645 /* 10646 * rq->nr_running can't be used but an updated version without the 10647 * impact of p on cpu must be used instead. The updated nr_running 10648 * be computed and tested before calling idle_cpu_without(). 10649 */ 10650 10651 if (rq->ttwu_pending) 10652 return 0; 10653 10654 return 1; 10655 } 10656 10657 /* 10658 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10659 * @sd: The sched_domain level to look for idlest group. 10660 * @group: sched_group whose statistics are to be updated. 10661 * @sgs: variable to hold the statistics for this group. 10662 * @p: The task for which we look for the idlest group/CPU. 10663 */ 10664 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10665 struct sched_group *group, 10666 struct sg_lb_stats *sgs, 10667 struct task_struct *p) 10668 { 10669 int i, nr_running; 10670 10671 memset(sgs, 0, sizeof(*sgs)); 10672 10673 /* Assume that task can't fit any CPU of the group */ 10674 if (sd->flags & SD_ASYM_CPUCAPACITY) 10675 sgs->group_misfit_task_load = 1; 10676 10677 for_each_cpu(i, sched_group_span(group)) { 10678 struct rq *rq = cpu_rq(i); 10679 unsigned int local; 10680 10681 sgs->group_load += cpu_load_without(rq, p); 10682 sgs->group_util += cpu_util_without(i, p); 10683 sgs->group_runnable += cpu_runnable_without(rq, p); 10684 local = task_running_on_cpu(i, p); 10685 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10686 10687 nr_running = rq->nr_running - local; 10688 sgs->sum_nr_running += nr_running; 10689 10690 /* 10691 * No need to call idle_cpu_without() if nr_running is not 0 10692 */ 10693 if (!nr_running && idle_cpu_without(i, p)) 10694 sgs->idle_cpus++; 10695 10696 /* Check if task fits in the CPU */ 10697 if (sd->flags & SD_ASYM_CPUCAPACITY && 10698 sgs->group_misfit_task_load && 10699 task_fits_cpu(p, i)) 10700 sgs->group_misfit_task_load = 0; 10701 10702 } 10703 10704 sgs->group_capacity = group->sgc->capacity; 10705 10706 sgs->group_weight = group->group_weight; 10707 10708 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10709 10710 /* 10711 * Computing avg_load makes sense only when group is fully busy or 10712 * overloaded 10713 */ 10714 if (sgs->group_type == group_fully_busy || 10715 sgs->group_type == group_overloaded) 10716 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10717 sgs->group_capacity; 10718 } 10719 10720 static bool update_pick_idlest(struct sched_group *idlest, 10721 struct sg_lb_stats *idlest_sgs, 10722 struct sched_group *group, 10723 struct sg_lb_stats *sgs) 10724 { 10725 if (sgs->group_type < idlest_sgs->group_type) 10726 return true; 10727 10728 if (sgs->group_type > idlest_sgs->group_type) 10729 return false; 10730 10731 /* 10732 * The candidate and the current idlest group are the same type of 10733 * group. Let check which one is the idlest according to the type. 10734 */ 10735 10736 switch (sgs->group_type) { 10737 case group_overloaded: 10738 case group_fully_busy: 10739 /* Select the group with lowest avg_load. */ 10740 if (idlest_sgs->avg_load <= sgs->avg_load) 10741 return false; 10742 break; 10743 10744 case group_imbalanced: 10745 case group_asym_packing: 10746 case group_smt_balance: 10747 /* Those types are not used in the slow wakeup path */ 10748 return false; 10749 10750 case group_misfit_task: 10751 /* Select group with the highest max capacity */ 10752 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10753 return false; 10754 break; 10755 10756 case group_has_spare: 10757 /* Select group with most idle CPUs */ 10758 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10759 return false; 10760 10761 /* Select group with lowest group_util */ 10762 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10763 idlest_sgs->group_util <= sgs->group_util) 10764 return false; 10765 10766 break; 10767 } 10768 10769 return true; 10770 } 10771 10772 /* 10773 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10774 * domain. 10775 * 10776 * Assumes p is allowed on at least one CPU in sd. 10777 */ 10778 static struct sched_group * 10779 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10780 { 10781 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10782 struct sg_lb_stats local_sgs, tmp_sgs; 10783 struct sg_lb_stats *sgs; 10784 unsigned long imbalance; 10785 struct sg_lb_stats idlest_sgs = { 10786 .avg_load = UINT_MAX, 10787 .group_type = group_overloaded, 10788 }; 10789 10790 do { 10791 int local_group; 10792 10793 /* Skip over this group if it has no CPUs allowed */ 10794 if (!cpumask_intersects(sched_group_span(group), 10795 p->cpus_ptr)) 10796 continue; 10797 10798 /* Skip over this group if no cookie matched */ 10799 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10800 continue; 10801 10802 local_group = cpumask_test_cpu(this_cpu, 10803 sched_group_span(group)); 10804 10805 if (local_group) { 10806 sgs = &local_sgs; 10807 local = group; 10808 } else { 10809 sgs = &tmp_sgs; 10810 } 10811 10812 update_sg_wakeup_stats(sd, group, sgs, p); 10813 10814 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10815 idlest = group; 10816 idlest_sgs = *sgs; 10817 } 10818 10819 } while (group = group->next, group != sd->groups); 10820 10821 10822 /* There is no idlest group to push tasks to */ 10823 if (!idlest) 10824 return NULL; 10825 10826 /* The local group has been skipped because of CPU affinity */ 10827 if (!local) 10828 return idlest; 10829 10830 /* 10831 * If the local group is idler than the selected idlest group 10832 * don't try and push the task. 10833 */ 10834 if (local_sgs.group_type < idlest_sgs.group_type) 10835 return NULL; 10836 10837 /* 10838 * If the local group is busier than the selected idlest group 10839 * try and push the task. 10840 */ 10841 if (local_sgs.group_type > idlest_sgs.group_type) 10842 return idlest; 10843 10844 switch (local_sgs.group_type) { 10845 case group_overloaded: 10846 case group_fully_busy: 10847 10848 /* Calculate allowed imbalance based on load */ 10849 imbalance = scale_load_down(NICE_0_LOAD) * 10850 (sd->imbalance_pct-100) / 100; 10851 10852 /* 10853 * When comparing groups across NUMA domains, it's possible for 10854 * the local domain to be very lightly loaded relative to the 10855 * remote domains but "imbalance" skews the comparison making 10856 * remote CPUs look much more favourable. When considering 10857 * cross-domain, add imbalance to the load on the remote node 10858 * and consider staying local. 10859 */ 10860 10861 if ((sd->flags & SD_NUMA) && 10862 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10863 return NULL; 10864 10865 /* 10866 * If the local group is less loaded than the selected 10867 * idlest group don't try and push any tasks. 10868 */ 10869 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10870 return NULL; 10871 10872 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10873 return NULL; 10874 break; 10875 10876 case group_imbalanced: 10877 case group_asym_packing: 10878 case group_smt_balance: 10879 /* Those type are not used in the slow wakeup path */ 10880 return NULL; 10881 10882 case group_misfit_task: 10883 /* Select group with the highest max capacity */ 10884 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10885 return NULL; 10886 break; 10887 10888 case group_has_spare: 10889 #ifdef CONFIG_NUMA 10890 if (sd->flags & SD_NUMA) { 10891 int imb_numa_nr = sd->imb_numa_nr; 10892 #ifdef CONFIG_NUMA_BALANCING 10893 int idlest_cpu; 10894 /* 10895 * If there is spare capacity at NUMA, try to select 10896 * the preferred node 10897 */ 10898 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10899 return NULL; 10900 10901 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10902 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10903 return idlest; 10904 #endif /* CONFIG_NUMA_BALANCING */ 10905 /* 10906 * Otherwise, keep the task close to the wakeup source 10907 * and improve locality if the number of running tasks 10908 * would remain below threshold where an imbalance is 10909 * allowed while accounting for the possibility the 10910 * task is pinned to a subset of CPUs. If there is a 10911 * real need of migration, periodic load balance will 10912 * take care of it. 10913 */ 10914 if (p->nr_cpus_allowed != NR_CPUS) { 10915 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10916 10917 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10918 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10919 } 10920 10921 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10922 if (!adjust_numa_imbalance(imbalance, 10923 local_sgs.sum_nr_running + 1, 10924 imb_numa_nr)) { 10925 return NULL; 10926 } 10927 } 10928 #endif /* CONFIG_NUMA */ 10929 10930 /* 10931 * Select group with highest number of idle CPUs. We could also 10932 * compare the utilization which is more stable but it can end 10933 * up that the group has less spare capacity but finally more 10934 * idle CPUs which means more opportunity to run task. 10935 */ 10936 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10937 return NULL; 10938 break; 10939 } 10940 10941 return idlest; 10942 } 10943 10944 static void update_idle_cpu_scan(struct lb_env *env, 10945 unsigned long sum_util) 10946 { 10947 struct sched_domain_shared *sd_share; 10948 int llc_weight, pct; 10949 u64 x, y, tmp; 10950 /* 10951 * Update the number of CPUs to scan in LLC domain, which could 10952 * be used as a hint in select_idle_cpu(). The update of sd_share 10953 * could be expensive because it is within a shared cache line. 10954 * So the write of this hint only occurs during periodic load 10955 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10956 * can fire way more frequently than the former. 10957 */ 10958 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10959 return; 10960 10961 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10962 if (env->sd->span_weight != llc_weight) 10963 return; 10964 10965 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10966 if (!sd_share) 10967 return; 10968 10969 /* 10970 * The number of CPUs to search drops as sum_util increases, when 10971 * sum_util hits 85% or above, the scan stops. 10972 * The reason to choose 85% as the threshold is because this is the 10973 * imbalance_pct(117) when a LLC sched group is overloaded. 10974 * 10975 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10976 * and y'= y / SCHED_CAPACITY_SCALE 10977 * 10978 * x is the ratio of sum_util compared to the CPU capacity: 10979 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10980 * y' is the ratio of CPUs to be scanned in the LLC domain, 10981 * and the number of CPUs to scan is calculated by: 10982 * 10983 * nr_scan = llc_weight * y' [2] 10984 * 10985 * When x hits the threshold of overloaded, AKA, when 10986 * x = 100 / pct, y drops to 0. According to [1], 10987 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10988 * 10989 * Scale x by SCHED_CAPACITY_SCALE: 10990 * x' = sum_util / llc_weight; [3] 10991 * 10992 * and finally [1] becomes: 10993 * y = SCHED_CAPACITY_SCALE - 10994 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10995 * 10996 */ 10997 /* equation [3] */ 10998 x = sum_util; 10999 do_div(x, llc_weight); 11000 11001 /* equation [4] */ 11002 pct = env->sd->imbalance_pct; 11003 tmp = x * x * pct * pct; 11004 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11005 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11006 y = SCHED_CAPACITY_SCALE - tmp; 11007 11008 /* equation [2] */ 11009 y *= llc_weight; 11010 do_div(y, SCHED_CAPACITY_SCALE); 11011 if ((int)y != sd_share->nr_idle_scan) 11012 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11013 } 11014 11015 /** 11016 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11017 * @env: The load balancing environment. 11018 * @sds: variable to hold the statistics for this sched_domain. 11019 */ 11020 11021 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11022 { 11023 struct sched_group *sg = env->sd->groups; 11024 struct sg_lb_stats *local = &sds->local_stat; 11025 struct sg_lb_stats tmp_sgs; 11026 unsigned long sum_util = 0; 11027 bool sg_overloaded = 0, sg_overutilized = 0; 11028 11029 do { 11030 struct sg_lb_stats *sgs = &tmp_sgs; 11031 int local_group; 11032 11033 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11034 if (local_group) { 11035 sds->local = sg; 11036 sgs = local; 11037 11038 if (env->idle != CPU_NEWLY_IDLE || 11039 time_after_eq(jiffies, sg->sgc->next_update)) 11040 update_group_capacity(env->sd, env->dst_cpu); 11041 } 11042 11043 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11044 11045 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11046 sds->busiest = sg; 11047 sds->busiest_stat = *sgs; 11048 } 11049 11050 /* Now, start updating sd_lb_stats */ 11051 sds->total_load += sgs->group_load; 11052 sds->total_capacity += sgs->group_capacity; 11053 11054 sum_util += sgs->group_util; 11055 sg = sg->next; 11056 } while (sg != env->sd->groups); 11057 11058 /* 11059 * Indicate that the child domain of the busiest group prefers tasks 11060 * go to a child's sibling domains first. NB the flags of a sched group 11061 * are those of the child domain. 11062 */ 11063 if (sds->busiest) 11064 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11065 11066 11067 if (env->sd->flags & SD_NUMA) 11068 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11069 11070 if (!env->sd->parent) { 11071 /* update overload indicator if we are at root domain */ 11072 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11073 11074 /* Update over-utilization (tipping point, U >= 0) indicator */ 11075 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11076 } else if (sg_overutilized) { 11077 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11078 } 11079 11080 update_idle_cpu_scan(env, sum_util); 11081 } 11082 11083 /** 11084 * calculate_imbalance - Calculate the amount of imbalance present within the 11085 * groups of a given sched_domain during load balance. 11086 * @env: load balance environment 11087 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11088 */ 11089 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11090 { 11091 struct sg_lb_stats *local, *busiest; 11092 11093 local = &sds->local_stat; 11094 busiest = &sds->busiest_stat; 11095 11096 if (busiest->group_type == group_misfit_task) { 11097 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11098 /* Set imbalance to allow misfit tasks to be balanced. */ 11099 env->migration_type = migrate_misfit; 11100 env->imbalance = 1; 11101 } else { 11102 /* 11103 * Set load imbalance to allow moving task from cpu 11104 * with reduced capacity. 11105 */ 11106 env->migration_type = migrate_load; 11107 env->imbalance = busiest->group_misfit_task_load; 11108 } 11109 return; 11110 } 11111 11112 if (busiest->group_type == group_asym_packing) { 11113 /* 11114 * In case of asym capacity, we will try to migrate all load to 11115 * the preferred CPU. 11116 */ 11117 env->migration_type = migrate_task; 11118 env->imbalance = busiest->sum_h_nr_running; 11119 return; 11120 } 11121 11122 if (busiest->group_type == group_smt_balance) { 11123 /* Reduce number of tasks sharing CPU capacity */ 11124 env->migration_type = migrate_task; 11125 env->imbalance = 1; 11126 return; 11127 } 11128 11129 if (busiest->group_type == group_imbalanced) { 11130 /* 11131 * In the group_imb case we cannot rely on group-wide averages 11132 * to ensure CPU-load equilibrium, try to move any task to fix 11133 * the imbalance. The next load balance will take care of 11134 * balancing back the system. 11135 */ 11136 env->migration_type = migrate_task; 11137 env->imbalance = 1; 11138 return; 11139 } 11140 11141 /* 11142 * Try to use spare capacity of local group without overloading it or 11143 * emptying busiest. 11144 */ 11145 if (local->group_type == group_has_spare) { 11146 if ((busiest->group_type > group_fully_busy) && 11147 !(env->sd->flags & SD_SHARE_LLC)) { 11148 /* 11149 * If busiest is overloaded, try to fill spare 11150 * capacity. This might end up creating spare capacity 11151 * in busiest or busiest still being overloaded but 11152 * there is no simple way to directly compute the 11153 * amount of load to migrate in order to balance the 11154 * system. 11155 */ 11156 env->migration_type = migrate_util; 11157 env->imbalance = max(local->group_capacity, local->group_util) - 11158 local->group_util; 11159 11160 /* 11161 * In some cases, the group's utilization is max or even 11162 * higher than capacity because of migrations but the 11163 * local CPU is (newly) idle. There is at least one 11164 * waiting task in this overloaded busiest group. Let's 11165 * try to pull it. 11166 */ 11167 if (env->idle && env->imbalance == 0) { 11168 env->migration_type = migrate_task; 11169 env->imbalance = 1; 11170 } 11171 11172 return; 11173 } 11174 11175 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11176 /* 11177 * When prefer sibling, evenly spread running tasks on 11178 * groups. 11179 */ 11180 env->migration_type = migrate_task; 11181 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11182 } else { 11183 11184 /* 11185 * If there is no overload, we just want to even the number of 11186 * idle CPUs. 11187 */ 11188 env->migration_type = migrate_task; 11189 env->imbalance = max_t(long, 0, 11190 (local->idle_cpus - busiest->idle_cpus)); 11191 } 11192 11193 #ifdef CONFIG_NUMA 11194 /* Consider allowing a small imbalance between NUMA groups */ 11195 if (env->sd->flags & SD_NUMA) { 11196 env->imbalance = adjust_numa_imbalance(env->imbalance, 11197 local->sum_nr_running + 1, 11198 env->sd->imb_numa_nr); 11199 } 11200 #endif 11201 11202 /* Number of tasks to move to restore balance */ 11203 env->imbalance >>= 1; 11204 11205 return; 11206 } 11207 11208 /* 11209 * Local is fully busy but has to take more load to relieve the 11210 * busiest group 11211 */ 11212 if (local->group_type < group_overloaded) { 11213 /* 11214 * Local will become overloaded so the avg_load metrics are 11215 * finally needed. 11216 */ 11217 11218 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11219 local->group_capacity; 11220 11221 /* 11222 * If the local group is more loaded than the selected 11223 * busiest group don't try to pull any tasks. 11224 */ 11225 if (local->avg_load >= busiest->avg_load) { 11226 env->imbalance = 0; 11227 return; 11228 } 11229 11230 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11231 sds->total_capacity; 11232 11233 /* 11234 * If the local group is more loaded than the average system 11235 * load, don't try to pull any tasks. 11236 */ 11237 if (local->avg_load >= sds->avg_load) { 11238 env->imbalance = 0; 11239 return; 11240 } 11241 11242 } 11243 11244 /* 11245 * Both group are or will become overloaded and we're trying to get all 11246 * the CPUs to the average_load, so we don't want to push ourselves 11247 * above the average load, nor do we wish to reduce the max loaded CPU 11248 * below the average load. At the same time, we also don't want to 11249 * reduce the group load below the group capacity. Thus we look for 11250 * the minimum possible imbalance. 11251 */ 11252 env->migration_type = migrate_load; 11253 env->imbalance = min( 11254 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11255 (sds->avg_load - local->avg_load) * local->group_capacity 11256 ) / SCHED_CAPACITY_SCALE; 11257 } 11258 11259 /******* sched_balance_find_src_group() helpers end here *********************/ 11260 11261 /* 11262 * Decision matrix according to the local and busiest group type: 11263 * 11264 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11265 * has_spare nr_idle balanced N/A N/A balanced balanced 11266 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11267 * misfit_task force N/A N/A N/A N/A N/A 11268 * asym_packing force force N/A N/A force force 11269 * imbalanced force force N/A N/A force force 11270 * overloaded force force N/A N/A force avg_load 11271 * 11272 * N/A : Not Applicable because already filtered while updating 11273 * statistics. 11274 * balanced : The system is balanced for these 2 groups. 11275 * force : Calculate the imbalance as load migration is probably needed. 11276 * avg_load : Only if imbalance is significant enough. 11277 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11278 * different in groups. 11279 */ 11280 11281 /** 11282 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11283 * if there is an imbalance. 11284 * @env: The load balancing environment. 11285 * 11286 * Also calculates the amount of runnable load which should be moved 11287 * to restore balance. 11288 * 11289 * Return: - The busiest group if imbalance exists. 11290 */ 11291 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11292 { 11293 struct sg_lb_stats *local, *busiest; 11294 struct sd_lb_stats sds; 11295 11296 init_sd_lb_stats(&sds); 11297 11298 /* 11299 * Compute the various statistics relevant for load balancing at 11300 * this level. 11301 */ 11302 update_sd_lb_stats(env, &sds); 11303 11304 /* There is no busy sibling group to pull tasks from */ 11305 if (!sds.busiest) 11306 goto out_balanced; 11307 11308 busiest = &sds.busiest_stat; 11309 11310 /* Misfit tasks should be dealt with regardless of the avg load */ 11311 if (busiest->group_type == group_misfit_task) 11312 goto force_balance; 11313 11314 if (!is_rd_overutilized(env->dst_rq->rd) && 11315 rcu_dereference(env->dst_rq->rd->pd)) 11316 goto out_balanced; 11317 11318 /* ASYM feature bypasses nice load balance check */ 11319 if (busiest->group_type == group_asym_packing) 11320 goto force_balance; 11321 11322 /* 11323 * If the busiest group is imbalanced the below checks don't 11324 * work because they assume all things are equal, which typically 11325 * isn't true due to cpus_ptr constraints and the like. 11326 */ 11327 if (busiest->group_type == group_imbalanced) 11328 goto force_balance; 11329 11330 local = &sds.local_stat; 11331 /* 11332 * If the local group is busier than the selected busiest group 11333 * don't try and pull any tasks. 11334 */ 11335 if (local->group_type > busiest->group_type) 11336 goto out_balanced; 11337 11338 /* 11339 * When groups are overloaded, use the avg_load to ensure fairness 11340 * between tasks. 11341 */ 11342 if (local->group_type == group_overloaded) { 11343 /* 11344 * If the local group is more loaded than the selected 11345 * busiest group don't try to pull any tasks. 11346 */ 11347 if (local->avg_load >= busiest->avg_load) 11348 goto out_balanced; 11349 11350 /* XXX broken for overlapping NUMA groups */ 11351 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11352 sds.total_capacity; 11353 11354 /* 11355 * Don't pull any tasks if this group is already above the 11356 * domain average load. 11357 */ 11358 if (local->avg_load >= sds.avg_load) 11359 goto out_balanced; 11360 11361 /* 11362 * If the busiest group is more loaded, use imbalance_pct to be 11363 * conservative. 11364 */ 11365 if (100 * busiest->avg_load <= 11366 env->sd->imbalance_pct * local->avg_load) 11367 goto out_balanced; 11368 } 11369 11370 /* 11371 * Try to move all excess tasks to a sibling domain of the busiest 11372 * group's child domain. 11373 */ 11374 if (sds.prefer_sibling && local->group_type == group_has_spare && 11375 sibling_imbalance(env, &sds, busiest, local) > 1) 11376 goto force_balance; 11377 11378 if (busiest->group_type != group_overloaded) { 11379 if (!env->idle) { 11380 /* 11381 * If the busiest group is not overloaded (and as a 11382 * result the local one too) but this CPU is already 11383 * busy, let another idle CPU try to pull task. 11384 */ 11385 goto out_balanced; 11386 } 11387 11388 if (busiest->group_type == group_smt_balance && 11389 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11390 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11391 goto force_balance; 11392 } 11393 11394 if (busiest->group_weight > 1 && 11395 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11396 /* 11397 * If the busiest group is not overloaded 11398 * and there is no imbalance between this and busiest 11399 * group wrt idle CPUs, it is balanced. The imbalance 11400 * becomes significant if the diff is greater than 1 11401 * otherwise we might end up to just move the imbalance 11402 * on another group. Of course this applies only if 11403 * there is more than 1 CPU per group. 11404 */ 11405 goto out_balanced; 11406 } 11407 11408 if (busiest->sum_h_nr_running == 1) { 11409 /* 11410 * busiest doesn't have any tasks waiting to run 11411 */ 11412 goto out_balanced; 11413 } 11414 } 11415 11416 force_balance: 11417 /* Looks like there is an imbalance. Compute it */ 11418 calculate_imbalance(env, &sds); 11419 return env->imbalance ? sds.busiest : NULL; 11420 11421 out_balanced: 11422 env->imbalance = 0; 11423 return NULL; 11424 } 11425 11426 /* 11427 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11428 */ 11429 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11430 struct sched_group *group) 11431 { 11432 struct rq *busiest = NULL, *rq; 11433 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11434 unsigned int busiest_nr = 0; 11435 int i; 11436 11437 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11438 unsigned long capacity, load, util; 11439 unsigned int nr_running; 11440 enum fbq_type rt; 11441 11442 rq = cpu_rq(i); 11443 rt = fbq_classify_rq(rq); 11444 11445 /* 11446 * We classify groups/runqueues into three groups: 11447 * - regular: there are !numa tasks 11448 * - remote: there are numa tasks that run on the 'wrong' node 11449 * - all: there is no distinction 11450 * 11451 * In order to avoid migrating ideally placed numa tasks, 11452 * ignore those when there's better options. 11453 * 11454 * If we ignore the actual busiest queue to migrate another 11455 * task, the next balance pass can still reduce the busiest 11456 * queue by moving tasks around inside the node. 11457 * 11458 * If we cannot move enough load due to this classification 11459 * the next pass will adjust the group classification and 11460 * allow migration of more tasks. 11461 * 11462 * Both cases only affect the total convergence complexity. 11463 */ 11464 if (rt > env->fbq_type) 11465 continue; 11466 11467 nr_running = rq->cfs.h_nr_running; 11468 if (!nr_running) 11469 continue; 11470 11471 capacity = capacity_of(i); 11472 11473 /* 11474 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11475 * eventually lead to active_balancing high->low capacity. 11476 * Higher per-CPU capacity is considered better than balancing 11477 * average load. 11478 */ 11479 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11480 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11481 nr_running == 1) 11482 continue; 11483 11484 /* 11485 * Make sure we only pull tasks from a CPU of lower priority 11486 * when balancing between SMT siblings. 11487 * 11488 * If balancing between cores, let lower priority CPUs help 11489 * SMT cores with more than one busy sibling. 11490 */ 11491 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11492 continue; 11493 11494 switch (env->migration_type) { 11495 case migrate_load: 11496 /* 11497 * When comparing with load imbalance, use cpu_load() 11498 * which is not scaled with the CPU capacity. 11499 */ 11500 load = cpu_load(rq); 11501 11502 if (nr_running == 1 && load > env->imbalance && 11503 !check_cpu_capacity(rq, env->sd)) 11504 break; 11505 11506 /* 11507 * For the load comparisons with the other CPUs, 11508 * consider the cpu_load() scaled with the CPU 11509 * capacity, so that the load can be moved away 11510 * from the CPU that is potentially running at a 11511 * lower capacity. 11512 * 11513 * Thus we're looking for max(load_i / capacity_i), 11514 * crosswise multiplication to rid ourselves of the 11515 * division works out to: 11516 * load_i * capacity_j > load_j * capacity_i; 11517 * where j is our previous maximum. 11518 */ 11519 if (load * busiest_capacity > busiest_load * capacity) { 11520 busiest_load = load; 11521 busiest_capacity = capacity; 11522 busiest = rq; 11523 } 11524 break; 11525 11526 case migrate_util: 11527 util = cpu_util_cfs_boost(i); 11528 11529 /* 11530 * Don't try to pull utilization from a CPU with one 11531 * running task. Whatever its utilization, we will fail 11532 * detach the task. 11533 */ 11534 if (nr_running <= 1) 11535 continue; 11536 11537 if (busiest_util < util) { 11538 busiest_util = util; 11539 busiest = rq; 11540 } 11541 break; 11542 11543 case migrate_task: 11544 if (busiest_nr < nr_running) { 11545 busiest_nr = nr_running; 11546 busiest = rq; 11547 } 11548 break; 11549 11550 case migrate_misfit: 11551 /* 11552 * For ASYM_CPUCAPACITY domains with misfit tasks we 11553 * simply seek the "biggest" misfit task. 11554 */ 11555 if (rq->misfit_task_load > busiest_load) { 11556 busiest_load = rq->misfit_task_load; 11557 busiest = rq; 11558 } 11559 11560 break; 11561 11562 } 11563 } 11564 11565 return busiest; 11566 } 11567 11568 /* 11569 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11570 * so long as it is large enough. 11571 */ 11572 #define MAX_PINNED_INTERVAL 512 11573 11574 static inline bool 11575 asym_active_balance(struct lb_env *env) 11576 { 11577 /* 11578 * ASYM_PACKING needs to force migrate tasks from busy but lower 11579 * priority CPUs in order to pack all tasks in the highest priority 11580 * CPUs. When done between cores, do it only if the whole core if the 11581 * whole core is idle. 11582 * 11583 * If @env::src_cpu is an SMT core with busy siblings, let 11584 * the lower priority @env::dst_cpu help it. Do not follow 11585 * CPU priority. 11586 */ 11587 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11588 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11589 !sched_use_asym_prio(env->sd, env->src_cpu)); 11590 } 11591 11592 static inline bool 11593 imbalanced_active_balance(struct lb_env *env) 11594 { 11595 struct sched_domain *sd = env->sd; 11596 11597 /* 11598 * The imbalanced case includes the case of pinned tasks preventing a fair 11599 * distribution of the load on the system but also the even distribution of the 11600 * threads on a system with spare capacity 11601 */ 11602 if ((env->migration_type == migrate_task) && 11603 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11604 return 1; 11605 11606 return 0; 11607 } 11608 11609 static int need_active_balance(struct lb_env *env) 11610 { 11611 struct sched_domain *sd = env->sd; 11612 11613 if (asym_active_balance(env)) 11614 return 1; 11615 11616 if (imbalanced_active_balance(env)) 11617 return 1; 11618 11619 /* 11620 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11621 * It's worth migrating the task if the src_cpu's capacity is reduced 11622 * because of other sched_class or IRQs if more capacity stays 11623 * available on dst_cpu. 11624 */ 11625 if (env->idle && 11626 (env->src_rq->cfs.h_nr_running == 1)) { 11627 if ((check_cpu_capacity(env->src_rq, sd)) && 11628 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11629 return 1; 11630 } 11631 11632 if (env->migration_type == migrate_misfit) 11633 return 1; 11634 11635 return 0; 11636 } 11637 11638 static int active_load_balance_cpu_stop(void *data); 11639 11640 static int should_we_balance(struct lb_env *env) 11641 { 11642 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11643 struct sched_group *sg = env->sd->groups; 11644 int cpu, idle_smt = -1; 11645 11646 /* 11647 * Ensure the balancing environment is consistent; can happen 11648 * when the softirq triggers 'during' hotplug. 11649 */ 11650 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11651 return 0; 11652 11653 /* 11654 * In the newly idle case, we will allow all the CPUs 11655 * to do the newly idle load balance. 11656 * 11657 * However, we bail out if we already have tasks or a wakeup pending, 11658 * to optimize wakeup latency. 11659 */ 11660 if (env->idle == CPU_NEWLY_IDLE) { 11661 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11662 return 0; 11663 return 1; 11664 } 11665 11666 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11667 /* Try to find first idle CPU */ 11668 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11669 if (!idle_cpu(cpu)) 11670 continue; 11671 11672 /* 11673 * Don't balance to idle SMT in busy core right away when 11674 * balancing cores, but remember the first idle SMT CPU for 11675 * later consideration. Find CPU on an idle core first. 11676 */ 11677 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11678 if (idle_smt == -1) 11679 idle_smt = cpu; 11680 /* 11681 * If the core is not idle, and first SMT sibling which is 11682 * idle has been found, then its not needed to check other 11683 * SMT siblings for idleness: 11684 */ 11685 #ifdef CONFIG_SCHED_SMT 11686 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11687 #endif 11688 continue; 11689 } 11690 11691 /* 11692 * Are we the first idle core in a non-SMT domain or higher, 11693 * or the first idle CPU in a SMT domain? 11694 */ 11695 return cpu == env->dst_cpu; 11696 } 11697 11698 /* Are we the first idle CPU with busy siblings? */ 11699 if (idle_smt != -1) 11700 return idle_smt == env->dst_cpu; 11701 11702 /* Are we the first CPU of this group ? */ 11703 return group_balance_cpu(sg) == env->dst_cpu; 11704 } 11705 11706 /* 11707 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11708 * tasks if there is an imbalance. 11709 */ 11710 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11711 struct sched_domain *sd, enum cpu_idle_type idle, 11712 int *continue_balancing) 11713 { 11714 int ld_moved, cur_ld_moved, active_balance = 0; 11715 struct sched_domain *sd_parent = sd->parent; 11716 struct sched_group *group; 11717 struct rq *busiest; 11718 struct rq_flags rf; 11719 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11720 struct lb_env env = { 11721 .sd = sd, 11722 .dst_cpu = this_cpu, 11723 .dst_rq = this_rq, 11724 .dst_grpmask = group_balance_mask(sd->groups), 11725 .idle = idle, 11726 .loop_break = SCHED_NR_MIGRATE_BREAK, 11727 .cpus = cpus, 11728 .fbq_type = all, 11729 .tasks = LIST_HEAD_INIT(env.tasks), 11730 }; 11731 11732 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11733 11734 schedstat_inc(sd->lb_count[idle]); 11735 11736 redo: 11737 if (!should_we_balance(&env)) { 11738 *continue_balancing = 0; 11739 goto out_balanced; 11740 } 11741 11742 group = sched_balance_find_src_group(&env); 11743 if (!group) { 11744 schedstat_inc(sd->lb_nobusyg[idle]); 11745 goto out_balanced; 11746 } 11747 11748 busiest = sched_balance_find_src_rq(&env, group); 11749 if (!busiest) { 11750 schedstat_inc(sd->lb_nobusyq[idle]); 11751 goto out_balanced; 11752 } 11753 11754 WARN_ON_ONCE(busiest == env.dst_rq); 11755 11756 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11757 11758 env.src_cpu = busiest->cpu; 11759 env.src_rq = busiest; 11760 11761 ld_moved = 0; 11762 /* Clear this flag as soon as we find a pullable task */ 11763 env.flags |= LBF_ALL_PINNED; 11764 if (busiest->nr_running > 1) { 11765 /* 11766 * Attempt to move tasks. If sched_balance_find_src_group has found 11767 * an imbalance but busiest->nr_running <= 1, the group is 11768 * still unbalanced. ld_moved simply stays zero, so it is 11769 * correctly treated as an imbalance. 11770 */ 11771 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11772 11773 more_balance: 11774 rq_lock_irqsave(busiest, &rf); 11775 update_rq_clock(busiest); 11776 11777 /* 11778 * cur_ld_moved - load moved in current iteration 11779 * ld_moved - cumulative load moved across iterations 11780 */ 11781 cur_ld_moved = detach_tasks(&env); 11782 11783 /* 11784 * We've detached some tasks from busiest_rq. Every 11785 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11786 * unlock busiest->lock, and we are able to be sure 11787 * that nobody can manipulate the tasks in parallel. 11788 * See task_rq_lock() family for the details. 11789 */ 11790 11791 rq_unlock(busiest, &rf); 11792 11793 if (cur_ld_moved) { 11794 attach_tasks(&env); 11795 ld_moved += cur_ld_moved; 11796 } 11797 11798 local_irq_restore(rf.flags); 11799 11800 if (env.flags & LBF_NEED_BREAK) { 11801 env.flags &= ~LBF_NEED_BREAK; 11802 goto more_balance; 11803 } 11804 11805 /* 11806 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11807 * us and move them to an alternate dst_cpu in our sched_group 11808 * where they can run. The upper limit on how many times we 11809 * iterate on same src_cpu is dependent on number of CPUs in our 11810 * sched_group. 11811 * 11812 * This changes load balance semantics a bit on who can move 11813 * load to a given_cpu. In addition to the given_cpu itself 11814 * (or a ilb_cpu acting on its behalf where given_cpu is 11815 * nohz-idle), we now have balance_cpu in a position to move 11816 * load to given_cpu. In rare situations, this may cause 11817 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11818 * _independently_ and at _same_ time to move some load to 11819 * given_cpu) causing excess load to be moved to given_cpu. 11820 * This however should not happen so much in practice and 11821 * moreover subsequent load balance cycles should correct the 11822 * excess load moved. 11823 */ 11824 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11825 11826 /* Prevent to re-select dst_cpu via env's CPUs */ 11827 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11828 11829 env.dst_rq = cpu_rq(env.new_dst_cpu); 11830 env.dst_cpu = env.new_dst_cpu; 11831 env.flags &= ~LBF_DST_PINNED; 11832 env.loop = 0; 11833 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11834 11835 /* 11836 * Go back to "more_balance" rather than "redo" since we 11837 * need to continue with same src_cpu. 11838 */ 11839 goto more_balance; 11840 } 11841 11842 /* 11843 * We failed to reach balance because of affinity. 11844 */ 11845 if (sd_parent) { 11846 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11847 11848 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11849 *group_imbalance = 1; 11850 } 11851 11852 /* All tasks on this runqueue were pinned by CPU affinity */ 11853 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11854 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11855 /* 11856 * Attempting to continue load balancing at the current 11857 * sched_domain level only makes sense if there are 11858 * active CPUs remaining as possible busiest CPUs to 11859 * pull load from which are not contained within the 11860 * destination group that is receiving any migrated 11861 * load. 11862 */ 11863 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11864 env.loop = 0; 11865 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11866 goto redo; 11867 } 11868 goto out_all_pinned; 11869 } 11870 } 11871 11872 if (!ld_moved) { 11873 schedstat_inc(sd->lb_failed[idle]); 11874 /* 11875 * Increment the failure counter only on periodic balance. 11876 * We do not want newidle balance, which can be very 11877 * frequent, pollute the failure counter causing 11878 * excessive cache_hot migrations and active balances. 11879 * 11880 * Similarly for migration_misfit which is not related to 11881 * load/util migration, don't pollute nr_balance_failed. 11882 */ 11883 if (idle != CPU_NEWLY_IDLE && 11884 env.migration_type != migrate_misfit) 11885 sd->nr_balance_failed++; 11886 11887 if (need_active_balance(&env)) { 11888 unsigned long flags; 11889 11890 raw_spin_rq_lock_irqsave(busiest, flags); 11891 11892 /* 11893 * Don't kick the active_load_balance_cpu_stop, 11894 * if the curr task on busiest CPU can't be 11895 * moved to this_cpu: 11896 */ 11897 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11898 raw_spin_rq_unlock_irqrestore(busiest, flags); 11899 goto out_one_pinned; 11900 } 11901 11902 /* Record that we found at least one task that could run on this_cpu */ 11903 env.flags &= ~LBF_ALL_PINNED; 11904 11905 /* 11906 * ->active_balance synchronizes accesses to 11907 * ->active_balance_work. Once set, it's cleared 11908 * only after active load balance is finished. 11909 */ 11910 if (!busiest->active_balance) { 11911 busiest->active_balance = 1; 11912 busiest->push_cpu = this_cpu; 11913 active_balance = 1; 11914 } 11915 11916 preempt_disable(); 11917 raw_spin_rq_unlock_irqrestore(busiest, flags); 11918 if (active_balance) { 11919 stop_one_cpu_nowait(cpu_of(busiest), 11920 active_load_balance_cpu_stop, busiest, 11921 &busiest->active_balance_work); 11922 } 11923 preempt_enable(); 11924 } 11925 } else { 11926 sd->nr_balance_failed = 0; 11927 } 11928 11929 if (likely(!active_balance) || need_active_balance(&env)) { 11930 /* We were unbalanced, so reset the balancing interval */ 11931 sd->balance_interval = sd->min_interval; 11932 } 11933 11934 goto out; 11935 11936 out_balanced: 11937 /* 11938 * We reach balance although we may have faced some affinity 11939 * constraints. Clear the imbalance flag only if other tasks got 11940 * a chance to move and fix the imbalance. 11941 */ 11942 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11943 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11944 11945 if (*group_imbalance) 11946 *group_imbalance = 0; 11947 } 11948 11949 out_all_pinned: 11950 /* 11951 * We reach balance because all tasks are pinned at this level so 11952 * we can't migrate them. Let the imbalance flag set so parent level 11953 * can try to migrate them. 11954 */ 11955 schedstat_inc(sd->lb_balanced[idle]); 11956 11957 sd->nr_balance_failed = 0; 11958 11959 out_one_pinned: 11960 ld_moved = 0; 11961 11962 /* 11963 * sched_balance_newidle() disregards balance intervals, so we could 11964 * repeatedly reach this code, which would lead to balance_interval 11965 * skyrocketing in a short amount of time. Skip the balance_interval 11966 * increase logic to avoid that. 11967 * 11968 * Similarly misfit migration which is not necessarily an indication of 11969 * the system being busy and requires lb to backoff to let it settle 11970 * down. 11971 */ 11972 if (env.idle == CPU_NEWLY_IDLE || 11973 env.migration_type == migrate_misfit) 11974 goto out; 11975 11976 /* tune up the balancing interval */ 11977 if ((env.flags & LBF_ALL_PINNED && 11978 sd->balance_interval < MAX_PINNED_INTERVAL) || 11979 sd->balance_interval < sd->max_interval) 11980 sd->balance_interval *= 2; 11981 out: 11982 return ld_moved; 11983 } 11984 11985 static inline unsigned long 11986 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11987 { 11988 unsigned long interval = sd->balance_interval; 11989 11990 if (cpu_busy) 11991 interval *= sd->busy_factor; 11992 11993 /* scale ms to jiffies */ 11994 interval = msecs_to_jiffies(interval); 11995 11996 /* 11997 * Reduce likelihood of busy balancing at higher domains racing with 11998 * balancing at lower domains by preventing their balancing periods 11999 * from being multiples of each other. 12000 */ 12001 if (cpu_busy) 12002 interval -= 1; 12003 12004 interval = clamp(interval, 1UL, max_load_balance_interval); 12005 12006 return interval; 12007 } 12008 12009 static inline void 12010 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12011 { 12012 unsigned long interval, next; 12013 12014 /* used by idle balance, so cpu_busy = 0 */ 12015 interval = get_sd_balance_interval(sd, 0); 12016 next = sd->last_balance + interval; 12017 12018 if (time_after(*next_balance, next)) 12019 *next_balance = next; 12020 } 12021 12022 /* 12023 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12024 * running tasks off the busiest CPU onto idle CPUs. It requires at 12025 * least 1 task to be running on each physical CPU where possible, and 12026 * avoids physical / logical imbalances. 12027 */ 12028 static int active_load_balance_cpu_stop(void *data) 12029 { 12030 struct rq *busiest_rq = data; 12031 int busiest_cpu = cpu_of(busiest_rq); 12032 int target_cpu = busiest_rq->push_cpu; 12033 struct rq *target_rq = cpu_rq(target_cpu); 12034 struct sched_domain *sd; 12035 struct task_struct *p = NULL; 12036 struct rq_flags rf; 12037 12038 rq_lock_irq(busiest_rq, &rf); 12039 /* 12040 * Between queueing the stop-work and running it is a hole in which 12041 * CPUs can become inactive. We should not move tasks from or to 12042 * inactive CPUs. 12043 */ 12044 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12045 goto out_unlock; 12046 12047 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12048 if (unlikely(busiest_cpu != smp_processor_id() || 12049 !busiest_rq->active_balance)) 12050 goto out_unlock; 12051 12052 /* Is there any task to move? */ 12053 if (busiest_rq->nr_running <= 1) 12054 goto out_unlock; 12055 12056 /* 12057 * This condition is "impossible", if it occurs 12058 * we need to fix it. Originally reported by 12059 * Bjorn Helgaas on a 128-CPU setup. 12060 */ 12061 WARN_ON_ONCE(busiest_rq == target_rq); 12062 12063 /* Search for an sd spanning us and the target CPU. */ 12064 rcu_read_lock(); 12065 for_each_domain(target_cpu, sd) { 12066 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12067 break; 12068 } 12069 12070 if (likely(sd)) { 12071 struct lb_env env = { 12072 .sd = sd, 12073 .dst_cpu = target_cpu, 12074 .dst_rq = target_rq, 12075 .src_cpu = busiest_rq->cpu, 12076 .src_rq = busiest_rq, 12077 .idle = CPU_IDLE, 12078 .flags = LBF_ACTIVE_LB, 12079 }; 12080 12081 schedstat_inc(sd->alb_count); 12082 update_rq_clock(busiest_rq); 12083 12084 p = detach_one_task(&env); 12085 if (p) { 12086 schedstat_inc(sd->alb_pushed); 12087 /* Active balancing done, reset the failure counter. */ 12088 sd->nr_balance_failed = 0; 12089 } else { 12090 schedstat_inc(sd->alb_failed); 12091 } 12092 } 12093 rcu_read_unlock(); 12094 out_unlock: 12095 busiest_rq->active_balance = 0; 12096 rq_unlock(busiest_rq, &rf); 12097 12098 if (p) 12099 attach_one_task(target_rq, p); 12100 12101 local_irq_enable(); 12102 12103 return 0; 12104 } 12105 12106 /* 12107 * This flag serializes load-balancing passes over large domains 12108 * (above the NODE topology level) - only one load-balancing instance 12109 * may run at a time, to reduce overhead on very large systems with 12110 * lots of CPUs and large NUMA distances. 12111 * 12112 * - Note that load-balancing passes triggered while another one 12113 * is executing are skipped and not re-tried. 12114 * 12115 * - Also note that this does not serialize rebalance_domains() 12116 * execution, as non-SD_SERIALIZE domains will still be 12117 * load-balanced in parallel. 12118 */ 12119 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12120 12121 /* 12122 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12123 * This trades load-balance latency on larger machines for less cross talk. 12124 */ 12125 void update_max_interval(void) 12126 { 12127 max_load_balance_interval = HZ*num_online_cpus()/10; 12128 } 12129 12130 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12131 { 12132 if (cost > sd->max_newidle_lb_cost) { 12133 /* 12134 * Track max cost of a domain to make sure to not delay the 12135 * next wakeup on the CPU. 12136 */ 12137 sd->max_newidle_lb_cost = cost; 12138 sd->last_decay_max_lb_cost = jiffies; 12139 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12140 /* 12141 * Decay the newidle max times by ~1% per second to ensure that 12142 * it is not outdated and the current max cost is actually 12143 * shorter. 12144 */ 12145 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12146 sd->last_decay_max_lb_cost = jiffies; 12147 12148 return true; 12149 } 12150 12151 return false; 12152 } 12153 12154 /* 12155 * It checks each scheduling domain to see if it is due to be balanced, 12156 * and initiates a balancing operation if so. 12157 * 12158 * Balancing parameters are set up in init_sched_domains. 12159 */ 12160 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12161 { 12162 int continue_balancing = 1; 12163 int cpu = rq->cpu; 12164 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12165 unsigned long interval; 12166 struct sched_domain *sd; 12167 /* Earliest time when we have to do rebalance again */ 12168 unsigned long next_balance = jiffies + 60*HZ; 12169 int update_next_balance = 0; 12170 int need_serialize, need_decay = 0; 12171 u64 max_cost = 0; 12172 12173 rcu_read_lock(); 12174 for_each_domain(cpu, sd) { 12175 /* 12176 * Decay the newidle max times here because this is a regular 12177 * visit to all the domains. 12178 */ 12179 need_decay = update_newidle_cost(sd, 0); 12180 max_cost += sd->max_newidle_lb_cost; 12181 12182 /* 12183 * Stop the load balance at this level. There is another 12184 * CPU in our sched group which is doing load balancing more 12185 * actively. 12186 */ 12187 if (!continue_balancing) { 12188 if (need_decay) 12189 continue; 12190 break; 12191 } 12192 12193 interval = get_sd_balance_interval(sd, busy); 12194 12195 need_serialize = sd->flags & SD_SERIALIZE; 12196 if (need_serialize) { 12197 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12198 goto out; 12199 } 12200 12201 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12202 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12203 /* 12204 * The LBF_DST_PINNED logic could have changed 12205 * env->dst_cpu, so we can't know our idle 12206 * state even if we migrated tasks. Update it. 12207 */ 12208 idle = idle_cpu(cpu); 12209 busy = !idle && !sched_idle_cpu(cpu); 12210 } 12211 sd->last_balance = jiffies; 12212 interval = get_sd_balance_interval(sd, busy); 12213 } 12214 if (need_serialize) 12215 atomic_set_release(&sched_balance_running, 0); 12216 out: 12217 if (time_after(next_balance, sd->last_balance + interval)) { 12218 next_balance = sd->last_balance + interval; 12219 update_next_balance = 1; 12220 } 12221 } 12222 if (need_decay) { 12223 /* 12224 * Ensure the rq-wide value also decays but keep it at a 12225 * reasonable floor to avoid funnies with rq->avg_idle. 12226 */ 12227 rq->max_idle_balance_cost = 12228 max((u64)sysctl_sched_migration_cost, max_cost); 12229 } 12230 rcu_read_unlock(); 12231 12232 /* 12233 * next_balance will be updated only when there is a need. 12234 * When the cpu is attached to null domain for ex, it will not be 12235 * updated. 12236 */ 12237 if (likely(update_next_balance)) 12238 rq->next_balance = next_balance; 12239 12240 } 12241 12242 static inline int on_null_domain(struct rq *rq) 12243 { 12244 return unlikely(!rcu_dereference_sched(rq->sd)); 12245 } 12246 12247 #ifdef CONFIG_NO_HZ_COMMON 12248 /* 12249 * NOHZ idle load balancing (ILB) details: 12250 * 12251 * - When one of the busy CPUs notices that there may be an idle rebalancing 12252 * needed, they will kick the idle load balancer, which then does idle 12253 * load balancing for all the idle CPUs. 12254 * 12255 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 12256 * anywhere yet. 12257 */ 12258 static inline int find_new_ilb(void) 12259 { 12260 const struct cpumask *hk_mask; 12261 int ilb_cpu; 12262 12263 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 12264 12265 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12266 12267 if (ilb_cpu == smp_processor_id()) 12268 continue; 12269 12270 if (idle_cpu(ilb_cpu)) 12271 return ilb_cpu; 12272 } 12273 12274 return -1; 12275 } 12276 12277 /* 12278 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12279 * SMP function call (IPI). 12280 * 12281 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 12282 */ 12283 static void kick_ilb(unsigned int flags) 12284 { 12285 int ilb_cpu; 12286 12287 /* 12288 * Increase nohz.next_balance only when if full ilb is triggered but 12289 * not if we only update stats. 12290 */ 12291 if (flags & NOHZ_BALANCE_KICK) 12292 nohz.next_balance = jiffies+1; 12293 12294 ilb_cpu = find_new_ilb(); 12295 if (ilb_cpu < 0) 12296 return; 12297 12298 /* 12299 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12300 * i.e. all bits in flags are already set in ilb_cpu. 12301 */ 12302 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12303 return; 12304 12305 /* 12306 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12307 * the first flag owns it; cleared by nohz_csd_func(). 12308 */ 12309 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12310 if (flags & NOHZ_KICK_MASK) 12311 return; 12312 12313 /* 12314 * This way we generate an IPI on the target CPU which 12315 * is idle, and the softirq performing NOHZ idle load balancing 12316 * will be run before returning from the IPI. 12317 */ 12318 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12319 } 12320 12321 /* 12322 * Current decision point for kicking the idle load balancer in the presence 12323 * of idle CPUs in the system. 12324 */ 12325 static void nohz_balancer_kick(struct rq *rq) 12326 { 12327 unsigned long now = jiffies; 12328 struct sched_domain_shared *sds; 12329 struct sched_domain *sd; 12330 int nr_busy, i, cpu = rq->cpu; 12331 unsigned int flags = 0; 12332 12333 if (unlikely(rq->idle_balance)) 12334 return; 12335 12336 /* 12337 * We may be recently in ticked or tickless idle mode. At the first 12338 * busy tick after returning from idle, we will update the busy stats. 12339 */ 12340 nohz_balance_exit_idle(rq); 12341 12342 /* 12343 * None are in tickless mode and hence no need for NOHZ idle load 12344 * balancing: 12345 */ 12346 if (likely(!atomic_read(&nohz.nr_cpus))) 12347 return; 12348 12349 if (READ_ONCE(nohz.has_blocked) && 12350 time_after(now, READ_ONCE(nohz.next_blocked))) 12351 flags = NOHZ_STATS_KICK; 12352 12353 if (time_before(now, nohz.next_balance)) 12354 goto out; 12355 12356 if (rq->nr_running >= 2) { 12357 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12358 goto out; 12359 } 12360 12361 rcu_read_lock(); 12362 12363 sd = rcu_dereference(rq->sd); 12364 if (sd) { 12365 /* 12366 * If there's a runnable CFS task and the current CPU has reduced 12367 * capacity, kick the ILB to see if there's a better CPU to run on: 12368 */ 12369 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 12370 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12371 goto unlock; 12372 } 12373 } 12374 12375 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12376 if (sd) { 12377 /* 12378 * When ASYM_PACKING; see if there's a more preferred CPU 12379 * currently idle; in which case, kick the ILB to move tasks 12380 * around. 12381 * 12382 * When balancing between cores, all the SMT siblings of the 12383 * preferred CPU must be idle. 12384 */ 12385 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12386 if (sched_asym(sd, i, cpu)) { 12387 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12388 goto unlock; 12389 } 12390 } 12391 } 12392 12393 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12394 if (sd) { 12395 /* 12396 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12397 * to run the misfit task on. 12398 */ 12399 if (check_misfit_status(rq)) { 12400 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12401 goto unlock; 12402 } 12403 12404 /* 12405 * For asymmetric systems, we do not want to nicely balance 12406 * cache use, instead we want to embrace asymmetry and only 12407 * ensure tasks have enough CPU capacity. 12408 * 12409 * Skip the LLC logic because it's not relevant in that case. 12410 */ 12411 goto unlock; 12412 } 12413 12414 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12415 if (sds) { 12416 /* 12417 * If there is an imbalance between LLC domains (IOW we could 12418 * increase the overall cache utilization), we need a less-loaded LLC 12419 * domain to pull some load from. Likewise, we may need to spread 12420 * load within the current LLC domain (e.g. packed SMT cores but 12421 * other CPUs are idle). We can't really know from here how busy 12422 * the others are - so just get a NOHZ balance going if it looks 12423 * like this LLC domain has tasks we could move. 12424 */ 12425 nr_busy = atomic_read(&sds->nr_busy_cpus); 12426 if (nr_busy > 1) { 12427 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12428 goto unlock; 12429 } 12430 } 12431 unlock: 12432 rcu_read_unlock(); 12433 out: 12434 if (READ_ONCE(nohz.needs_update)) 12435 flags |= NOHZ_NEXT_KICK; 12436 12437 if (flags) 12438 kick_ilb(flags); 12439 } 12440 12441 static void set_cpu_sd_state_busy(int cpu) 12442 { 12443 struct sched_domain *sd; 12444 12445 rcu_read_lock(); 12446 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12447 12448 if (!sd || !sd->nohz_idle) 12449 goto unlock; 12450 sd->nohz_idle = 0; 12451 12452 atomic_inc(&sd->shared->nr_busy_cpus); 12453 unlock: 12454 rcu_read_unlock(); 12455 } 12456 12457 void nohz_balance_exit_idle(struct rq *rq) 12458 { 12459 SCHED_WARN_ON(rq != this_rq()); 12460 12461 if (likely(!rq->nohz_tick_stopped)) 12462 return; 12463 12464 rq->nohz_tick_stopped = 0; 12465 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12466 atomic_dec(&nohz.nr_cpus); 12467 12468 set_cpu_sd_state_busy(rq->cpu); 12469 } 12470 12471 static void set_cpu_sd_state_idle(int cpu) 12472 { 12473 struct sched_domain *sd; 12474 12475 rcu_read_lock(); 12476 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12477 12478 if (!sd || sd->nohz_idle) 12479 goto unlock; 12480 sd->nohz_idle = 1; 12481 12482 atomic_dec(&sd->shared->nr_busy_cpus); 12483 unlock: 12484 rcu_read_unlock(); 12485 } 12486 12487 /* 12488 * This routine will record that the CPU is going idle with tick stopped. 12489 * This info will be used in performing idle load balancing in the future. 12490 */ 12491 void nohz_balance_enter_idle(int cpu) 12492 { 12493 struct rq *rq = cpu_rq(cpu); 12494 12495 SCHED_WARN_ON(cpu != smp_processor_id()); 12496 12497 /* If this CPU is going down, then nothing needs to be done: */ 12498 if (!cpu_active(cpu)) 12499 return; 12500 12501 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12502 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12503 return; 12504 12505 /* 12506 * Can be set safely without rq->lock held 12507 * If a clear happens, it will have evaluated last additions because 12508 * rq->lock is held during the check and the clear 12509 */ 12510 rq->has_blocked_load = 1; 12511 12512 /* 12513 * The tick is still stopped but load could have been added in the 12514 * meantime. We set the nohz.has_blocked flag to trig a check of the 12515 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12516 * of nohz.has_blocked can only happen after checking the new load 12517 */ 12518 if (rq->nohz_tick_stopped) 12519 goto out; 12520 12521 /* If we're a completely isolated CPU, we don't play: */ 12522 if (on_null_domain(rq)) 12523 return; 12524 12525 rq->nohz_tick_stopped = 1; 12526 12527 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12528 atomic_inc(&nohz.nr_cpus); 12529 12530 /* 12531 * Ensures that if nohz_idle_balance() fails to observe our 12532 * @idle_cpus_mask store, it must observe the @has_blocked 12533 * and @needs_update stores. 12534 */ 12535 smp_mb__after_atomic(); 12536 12537 set_cpu_sd_state_idle(cpu); 12538 12539 WRITE_ONCE(nohz.needs_update, 1); 12540 out: 12541 /* 12542 * Each time a cpu enter idle, we assume that it has blocked load and 12543 * enable the periodic update of the load of idle CPUs 12544 */ 12545 WRITE_ONCE(nohz.has_blocked, 1); 12546 } 12547 12548 static bool update_nohz_stats(struct rq *rq) 12549 { 12550 unsigned int cpu = rq->cpu; 12551 12552 if (!rq->has_blocked_load) 12553 return false; 12554 12555 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12556 return false; 12557 12558 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12559 return true; 12560 12561 sched_balance_update_blocked_averages(cpu); 12562 12563 return rq->has_blocked_load; 12564 } 12565 12566 /* 12567 * Internal function that runs load balance for all idle CPUs. The load balance 12568 * can be a simple update of blocked load or a complete load balance with 12569 * tasks movement depending of flags. 12570 */ 12571 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12572 { 12573 /* Earliest time when we have to do rebalance again */ 12574 unsigned long now = jiffies; 12575 unsigned long next_balance = now + 60*HZ; 12576 bool has_blocked_load = false; 12577 int update_next_balance = 0; 12578 int this_cpu = this_rq->cpu; 12579 int balance_cpu; 12580 struct rq *rq; 12581 12582 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12583 12584 /* 12585 * We assume there will be no idle load after this update and clear 12586 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12587 * set the has_blocked flag and trigger another update of idle load. 12588 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12589 * setting the flag, we are sure to not clear the state and not 12590 * check the load of an idle cpu. 12591 * 12592 * Same applies to idle_cpus_mask vs needs_update. 12593 */ 12594 if (flags & NOHZ_STATS_KICK) 12595 WRITE_ONCE(nohz.has_blocked, 0); 12596 if (flags & NOHZ_NEXT_KICK) 12597 WRITE_ONCE(nohz.needs_update, 0); 12598 12599 /* 12600 * Ensures that if we miss the CPU, we must see the has_blocked 12601 * store from nohz_balance_enter_idle(). 12602 */ 12603 smp_mb(); 12604 12605 /* 12606 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12607 * chance for other idle cpu to pull load. 12608 */ 12609 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12610 if (!idle_cpu(balance_cpu)) 12611 continue; 12612 12613 /* 12614 * If this CPU gets work to do, stop the load balancing 12615 * work being done for other CPUs. Next load 12616 * balancing owner will pick it up. 12617 */ 12618 if (!idle_cpu(this_cpu) && need_resched()) { 12619 if (flags & NOHZ_STATS_KICK) 12620 has_blocked_load = true; 12621 if (flags & NOHZ_NEXT_KICK) 12622 WRITE_ONCE(nohz.needs_update, 1); 12623 goto abort; 12624 } 12625 12626 rq = cpu_rq(balance_cpu); 12627 12628 if (flags & NOHZ_STATS_KICK) 12629 has_blocked_load |= update_nohz_stats(rq); 12630 12631 /* 12632 * If time for next balance is due, 12633 * do the balance. 12634 */ 12635 if (time_after_eq(jiffies, rq->next_balance)) { 12636 struct rq_flags rf; 12637 12638 rq_lock_irqsave(rq, &rf); 12639 update_rq_clock(rq); 12640 rq_unlock_irqrestore(rq, &rf); 12641 12642 if (flags & NOHZ_BALANCE_KICK) 12643 sched_balance_domains(rq, CPU_IDLE); 12644 } 12645 12646 if (time_after(next_balance, rq->next_balance)) { 12647 next_balance = rq->next_balance; 12648 update_next_balance = 1; 12649 } 12650 } 12651 12652 /* 12653 * next_balance will be updated only when there is a need. 12654 * When the CPU is attached to null domain for ex, it will not be 12655 * updated. 12656 */ 12657 if (likely(update_next_balance)) 12658 nohz.next_balance = next_balance; 12659 12660 if (flags & NOHZ_STATS_KICK) 12661 WRITE_ONCE(nohz.next_blocked, 12662 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12663 12664 abort: 12665 /* There is still blocked load, enable periodic update */ 12666 if (has_blocked_load) 12667 WRITE_ONCE(nohz.has_blocked, 1); 12668 } 12669 12670 /* 12671 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12672 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12673 */ 12674 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12675 { 12676 unsigned int flags = this_rq->nohz_idle_balance; 12677 12678 if (!flags) 12679 return false; 12680 12681 this_rq->nohz_idle_balance = 0; 12682 12683 if (idle != CPU_IDLE) 12684 return false; 12685 12686 _nohz_idle_balance(this_rq, flags); 12687 12688 return true; 12689 } 12690 12691 /* 12692 * Check if we need to directly run the ILB for updating blocked load before 12693 * entering idle state. Here we run ILB directly without issuing IPIs. 12694 * 12695 * Note that when this function is called, the tick may not yet be stopped on 12696 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12697 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12698 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12699 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12700 * called from this function on (this) CPU that's not yet in the mask. That's 12701 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12702 * updating the blocked load of already idle CPUs without waking up one of 12703 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12704 * cpu about to enter idle, because it can take a long time. 12705 */ 12706 void nohz_run_idle_balance(int cpu) 12707 { 12708 unsigned int flags; 12709 12710 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12711 12712 /* 12713 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12714 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12715 */ 12716 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12717 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12718 } 12719 12720 static void nohz_newidle_balance(struct rq *this_rq) 12721 { 12722 int this_cpu = this_rq->cpu; 12723 12724 /* 12725 * This CPU doesn't want to be disturbed by scheduler 12726 * housekeeping 12727 */ 12728 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12729 return; 12730 12731 /* Will wake up very soon. No time for doing anything else*/ 12732 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12733 return; 12734 12735 /* Don't need to update blocked load of idle CPUs*/ 12736 if (!READ_ONCE(nohz.has_blocked) || 12737 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12738 return; 12739 12740 /* 12741 * Set the need to trigger ILB in order to update blocked load 12742 * before entering idle state. 12743 */ 12744 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12745 } 12746 12747 #else /* !CONFIG_NO_HZ_COMMON */ 12748 static inline void nohz_balancer_kick(struct rq *rq) { } 12749 12750 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12751 { 12752 return false; 12753 } 12754 12755 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12756 #endif /* CONFIG_NO_HZ_COMMON */ 12757 12758 /* 12759 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12760 * idle. Attempts to pull tasks from other CPUs. 12761 * 12762 * Returns: 12763 * < 0 - we released the lock and there are !fair tasks present 12764 * 0 - failed, no new tasks 12765 * > 0 - success, new (fair) tasks present 12766 */ 12767 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12768 { 12769 unsigned long next_balance = jiffies + HZ; 12770 int this_cpu = this_rq->cpu; 12771 int continue_balancing = 1; 12772 u64 t0, t1, curr_cost = 0; 12773 struct sched_domain *sd; 12774 int pulled_task = 0; 12775 12776 update_misfit_status(NULL, this_rq); 12777 12778 /* 12779 * There is a task waiting to run. No need to search for one. 12780 * Return 0; the task will be enqueued when switching to idle. 12781 */ 12782 if (this_rq->ttwu_pending) 12783 return 0; 12784 12785 /* 12786 * We must set idle_stamp _before_ calling sched_balance_rq() 12787 * for CPU_NEWLY_IDLE, such that we measure the this duration 12788 * as idle time. 12789 */ 12790 this_rq->idle_stamp = rq_clock(this_rq); 12791 12792 /* 12793 * Do not pull tasks towards !active CPUs... 12794 */ 12795 if (!cpu_active(this_cpu)) 12796 return 0; 12797 12798 /* 12799 * This is OK, because current is on_cpu, which avoids it being picked 12800 * for load-balance and preemption/IRQs are still disabled avoiding 12801 * further scheduler activity on it and we're being very careful to 12802 * re-start the picking loop. 12803 */ 12804 rq_unpin_lock(this_rq, rf); 12805 12806 rcu_read_lock(); 12807 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12808 12809 if (!get_rd_overloaded(this_rq->rd) || 12810 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12811 12812 if (sd) 12813 update_next_balance(sd, &next_balance); 12814 rcu_read_unlock(); 12815 12816 goto out; 12817 } 12818 rcu_read_unlock(); 12819 12820 raw_spin_rq_unlock(this_rq); 12821 12822 t0 = sched_clock_cpu(this_cpu); 12823 sched_balance_update_blocked_averages(this_cpu); 12824 12825 rcu_read_lock(); 12826 for_each_domain(this_cpu, sd) { 12827 u64 domain_cost; 12828 12829 update_next_balance(sd, &next_balance); 12830 12831 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12832 break; 12833 12834 if (sd->flags & SD_BALANCE_NEWIDLE) { 12835 12836 pulled_task = sched_balance_rq(this_cpu, this_rq, 12837 sd, CPU_NEWLY_IDLE, 12838 &continue_balancing); 12839 12840 t1 = sched_clock_cpu(this_cpu); 12841 domain_cost = t1 - t0; 12842 update_newidle_cost(sd, domain_cost); 12843 12844 curr_cost += domain_cost; 12845 t0 = t1; 12846 } 12847 12848 /* 12849 * Stop searching for tasks to pull if there are 12850 * now runnable tasks on this rq. 12851 */ 12852 if (pulled_task || !continue_balancing) 12853 break; 12854 } 12855 rcu_read_unlock(); 12856 12857 raw_spin_rq_lock(this_rq); 12858 12859 if (curr_cost > this_rq->max_idle_balance_cost) 12860 this_rq->max_idle_balance_cost = curr_cost; 12861 12862 /* 12863 * While browsing the domains, we released the rq lock, a task could 12864 * have been enqueued in the meantime. Since we're not going idle, 12865 * pretend we pulled a task. 12866 */ 12867 if (this_rq->cfs.h_nr_running && !pulled_task) 12868 pulled_task = 1; 12869 12870 /* Is there a task of a high priority class? */ 12871 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12872 pulled_task = -1; 12873 12874 out: 12875 /* Move the next balance forward */ 12876 if (time_after(this_rq->next_balance, next_balance)) 12877 this_rq->next_balance = next_balance; 12878 12879 if (pulled_task) 12880 this_rq->idle_stamp = 0; 12881 else 12882 nohz_newidle_balance(this_rq); 12883 12884 rq_repin_lock(this_rq, rf); 12885 12886 return pulled_task; 12887 } 12888 12889 /* 12890 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12891 * 12892 * - directly from the local scheduler_tick() for periodic load balancing 12893 * 12894 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12895 * through the SMP cross-call nohz_csd_func() 12896 */ 12897 static __latent_entropy void sched_balance_softirq(void) 12898 { 12899 struct rq *this_rq = this_rq(); 12900 enum cpu_idle_type idle = this_rq->idle_balance; 12901 /* 12902 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12903 * balancing on behalf of the other idle CPUs whose ticks are 12904 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12905 * give the idle CPUs a chance to load balance. Else we may 12906 * load balance only within the local sched_domain hierarchy 12907 * and abort nohz_idle_balance altogether if we pull some load. 12908 */ 12909 if (nohz_idle_balance(this_rq, idle)) 12910 return; 12911 12912 /* normal load balance */ 12913 sched_balance_update_blocked_averages(this_rq->cpu); 12914 sched_balance_domains(this_rq, idle); 12915 } 12916 12917 /* 12918 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12919 */ 12920 void sched_balance_trigger(struct rq *rq) 12921 { 12922 /* 12923 * Don't need to rebalance while attached to NULL domain or 12924 * runqueue CPU is not active 12925 */ 12926 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12927 return; 12928 12929 if (time_after_eq(jiffies, rq->next_balance)) 12930 raise_softirq(SCHED_SOFTIRQ); 12931 12932 nohz_balancer_kick(rq); 12933 } 12934 12935 static void rq_online_fair(struct rq *rq) 12936 { 12937 update_sysctl(); 12938 12939 update_runtime_enabled(rq); 12940 } 12941 12942 static void rq_offline_fair(struct rq *rq) 12943 { 12944 update_sysctl(); 12945 12946 /* Ensure any throttled groups are reachable by pick_next_task */ 12947 unthrottle_offline_cfs_rqs(rq); 12948 12949 /* Ensure that we remove rq contribution to group share: */ 12950 clear_tg_offline_cfs_rqs(rq); 12951 } 12952 12953 #endif /* CONFIG_SMP */ 12954 12955 #ifdef CONFIG_SCHED_CORE 12956 static inline bool 12957 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12958 { 12959 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12960 u64 slice = se->slice; 12961 12962 return (rtime * min_nr_tasks > slice); 12963 } 12964 12965 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12966 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12967 { 12968 if (!sched_core_enabled(rq)) 12969 return; 12970 12971 /* 12972 * If runqueue has only one task which used up its slice and 12973 * if the sibling is forced idle, then trigger schedule to 12974 * give forced idle task a chance. 12975 * 12976 * sched_slice() considers only this active rq and it gets the 12977 * whole slice. But during force idle, we have siblings acting 12978 * like a single runqueue and hence we need to consider runnable 12979 * tasks on this CPU and the forced idle CPU. Ideally, we should 12980 * go through the forced idle rq, but that would be a perf hit. 12981 * We can assume that the forced idle CPU has at least 12982 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12983 * if we need to give up the CPU. 12984 */ 12985 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12986 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12987 resched_curr(rq); 12988 } 12989 12990 /* 12991 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12992 */ 12993 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12994 bool forceidle) 12995 { 12996 for_each_sched_entity(se) { 12997 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12998 12999 if (forceidle) { 13000 if (cfs_rq->forceidle_seq == fi_seq) 13001 break; 13002 cfs_rq->forceidle_seq = fi_seq; 13003 } 13004 13005 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 13006 } 13007 } 13008 13009 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13010 { 13011 struct sched_entity *se = &p->se; 13012 13013 if (p->sched_class != &fair_sched_class) 13014 return; 13015 13016 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13017 } 13018 13019 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13020 bool in_fi) 13021 { 13022 struct rq *rq = task_rq(a); 13023 const struct sched_entity *sea = &a->se; 13024 const struct sched_entity *seb = &b->se; 13025 struct cfs_rq *cfs_rqa; 13026 struct cfs_rq *cfs_rqb; 13027 s64 delta; 13028 13029 SCHED_WARN_ON(task_rq(b)->core != rq->core); 13030 13031 #ifdef CONFIG_FAIR_GROUP_SCHED 13032 /* 13033 * Find an se in the hierarchy for tasks a and b, such that the se's 13034 * are immediate siblings. 13035 */ 13036 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13037 int sea_depth = sea->depth; 13038 int seb_depth = seb->depth; 13039 13040 if (sea_depth >= seb_depth) 13041 sea = parent_entity(sea); 13042 if (sea_depth <= seb_depth) 13043 seb = parent_entity(seb); 13044 } 13045 13046 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13047 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13048 13049 cfs_rqa = sea->cfs_rq; 13050 cfs_rqb = seb->cfs_rq; 13051 #else 13052 cfs_rqa = &task_rq(a)->cfs; 13053 cfs_rqb = &task_rq(b)->cfs; 13054 #endif 13055 13056 /* 13057 * Find delta after normalizing se's vruntime with its cfs_rq's 13058 * min_vruntime_fi, which would have been updated in prior calls 13059 * to se_fi_update(). 13060 */ 13061 delta = (s64)(sea->vruntime - seb->vruntime) + 13062 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13063 13064 return delta > 0; 13065 } 13066 13067 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13068 { 13069 struct cfs_rq *cfs_rq; 13070 13071 #ifdef CONFIG_FAIR_GROUP_SCHED 13072 cfs_rq = task_group(p)->cfs_rq[cpu]; 13073 #else 13074 cfs_rq = &cpu_rq(cpu)->cfs; 13075 #endif 13076 return throttled_hierarchy(cfs_rq); 13077 } 13078 #else 13079 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13080 #endif 13081 13082 /* 13083 * scheduler tick hitting a task of our scheduling class. 13084 * 13085 * NOTE: This function can be called remotely by the tick offload that 13086 * goes along full dynticks. Therefore no local assumption can be made 13087 * and everything must be accessed through the @rq and @curr passed in 13088 * parameters. 13089 */ 13090 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13091 { 13092 struct cfs_rq *cfs_rq; 13093 struct sched_entity *se = &curr->se; 13094 13095 for_each_sched_entity(se) { 13096 cfs_rq = cfs_rq_of(se); 13097 entity_tick(cfs_rq, se, queued); 13098 } 13099 13100 if (static_branch_unlikely(&sched_numa_balancing)) 13101 task_tick_numa(rq, curr); 13102 13103 update_misfit_status(curr, rq); 13104 check_update_overutilized_status(task_rq(curr)); 13105 13106 task_tick_core(rq, curr); 13107 } 13108 13109 /* 13110 * called on fork with the child task as argument from the parent's context 13111 * - child not yet on the tasklist 13112 * - preemption disabled 13113 */ 13114 static void task_fork_fair(struct task_struct *p) 13115 { 13116 set_task_max_allowed_capacity(p); 13117 } 13118 13119 /* 13120 * Priority of the task has changed. Check to see if we preempt 13121 * the current task. 13122 */ 13123 static void 13124 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13125 { 13126 if (!task_on_rq_queued(p)) 13127 return; 13128 13129 if (rq->cfs.nr_running == 1) 13130 return; 13131 13132 /* 13133 * Reschedule if we are currently running on this runqueue and 13134 * our priority decreased, or if we are not currently running on 13135 * this runqueue and our priority is higher than the current's 13136 */ 13137 if (task_current_donor(rq, p)) { 13138 if (p->prio > oldprio) 13139 resched_curr(rq); 13140 } else 13141 wakeup_preempt(rq, p, 0); 13142 } 13143 13144 #ifdef CONFIG_FAIR_GROUP_SCHED 13145 /* 13146 * Propagate the changes of the sched_entity across the tg tree to make it 13147 * visible to the root 13148 */ 13149 static void propagate_entity_cfs_rq(struct sched_entity *se) 13150 { 13151 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13152 13153 if (cfs_rq_throttled(cfs_rq)) 13154 return; 13155 13156 if (!throttled_hierarchy(cfs_rq)) 13157 list_add_leaf_cfs_rq(cfs_rq); 13158 13159 /* Start to propagate at parent */ 13160 se = se->parent; 13161 13162 for_each_sched_entity(se) { 13163 cfs_rq = cfs_rq_of(se); 13164 13165 update_load_avg(cfs_rq, se, UPDATE_TG); 13166 13167 if (cfs_rq_throttled(cfs_rq)) 13168 break; 13169 13170 if (!throttled_hierarchy(cfs_rq)) 13171 list_add_leaf_cfs_rq(cfs_rq); 13172 } 13173 } 13174 #else 13175 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13176 #endif 13177 13178 static void detach_entity_cfs_rq(struct sched_entity *se) 13179 { 13180 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13181 13182 #ifdef CONFIG_SMP 13183 /* 13184 * In case the task sched_avg hasn't been attached: 13185 * - A forked task which hasn't been woken up by wake_up_new_task(). 13186 * - A task which has been woken up by try_to_wake_up() but is 13187 * waiting for actually being woken up by sched_ttwu_pending(). 13188 */ 13189 if (!se->avg.last_update_time) 13190 return; 13191 #endif 13192 13193 /* Catch up with the cfs_rq and remove our load when we leave */ 13194 update_load_avg(cfs_rq, se, 0); 13195 detach_entity_load_avg(cfs_rq, se); 13196 update_tg_load_avg(cfs_rq); 13197 propagate_entity_cfs_rq(se); 13198 } 13199 13200 static void attach_entity_cfs_rq(struct sched_entity *se) 13201 { 13202 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13203 13204 /* Synchronize entity with its cfs_rq */ 13205 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13206 attach_entity_load_avg(cfs_rq, se); 13207 update_tg_load_avg(cfs_rq); 13208 propagate_entity_cfs_rq(se); 13209 } 13210 13211 static void detach_task_cfs_rq(struct task_struct *p) 13212 { 13213 struct sched_entity *se = &p->se; 13214 13215 detach_entity_cfs_rq(se); 13216 } 13217 13218 static void attach_task_cfs_rq(struct task_struct *p) 13219 { 13220 struct sched_entity *se = &p->se; 13221 13222 attach_entity_cfs_rq(se); 13223 } 13224 13225 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13226 { 13227 detach_task_cfs_rq(p); 13228 } 13229 13230 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13231 { 13232 SCHED_WARN_ON(p->se.sched_delayed); 13233 13234 attach_task_cfs_rq(p); 13235 13236 set_task_max_allowed_capacity(p); 13237 13238 if (task_on_rq_queued(p)) { 13239 /* 13240 * We were most likely switched from sched_rt, so 13241 * kick off the schedule if running, otherwise just see 13242 * if we can still preempt the current task. 13243 */ 13244 if (task_current_donor(rq, p)) 13245 resched_curr(rq); 13246 else 13247 wakeup_preempt(rq, p, 0); 13248 } 13249 } 13250 13251 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13252 { 13253 struct sched_entity *se = &p->se; 13254 13255 #ifdef CONFIG_SMP 13256 if (task_on_rq_queued(p)) { 13257 /* 13258 * Move the next running task to the front of the list, so our 13259 * cfs_tasks list becomes MRU one. 13260 */ 13261 list_move(&se->group_node, &rq->cfs_tasks); 13262 } 13263 #endif 13264 if (!first) 13265 return; 13266 13267 SCHED_WARN_ON(se->sched_delayed); 13268 13269 if (hrtick_enabled_fair(rq)) 13270 hrtick_start_fair(rq, p); 13271 13272 update_misfit_status(p, rq); 13273 sched_fair_update_stop_tick(rq, p); 13274 } 13275 13276 /* 13277 * Account for a task changing its policy or group. 13278 * 13279 * This routine is mostly called to set cfs_rq->curr field when a task 13280 * migrates between groups/classes. 13281 */ 13282 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13283 { 13284 struct sched_entity *se = &p->se; 13285 13286 for_each_sched_entity(se) { 13287 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13288 13289 set_next_entity(cfs_rq, se); 13290 /* ensure bandwidth has been allocated on our new cfs_rq */ 13291 account_cfs_rq_runtime(cfs_rq, 0); 13292 } 13293 13294 __set_next_task_fair(rq, p, first); 13295 } 13296 13297 void init_cfs_rq(struct cfs_rq *cfs_rq) 13298 { 13299 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13300 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13301 #ifdef CONFIG_SMP 13302 raw_spin_lock_init(&cfs_rq->removed.lock); 13303 #endif 13304 } 13305 13306 #ifdef CONFIG_FAIR_GROUP_SCHED 13307 static void task_change_group_fair(struct task_struct *p) 13308 { 13309 /* 13310 * We couldn't detach or attach a forked task which 13311 * hasn't been woken up by wake_up_new_task(). 13312 */ 13313 if (READ_ONCE(p->__state) == TASK_NEW) 13314 return; 13315 13316 detach_task_cfs_rq(p); 13317 13318 #ifdef CONFIG_SMP 13319 /* Tell se's cfs_rq has been changed -- migrated */ 13320 p->se.avg.last_update_time = 0; 13321 #endif 13322 set_task_rq(p, task_cpu(p)); 13323 attach_task_cfs_rq(p); 13324 } 13325 13326 void free_fair_sched_group(struct task_group *tg) 13327 { 13328 int i; 13329 13330 for_each_possible_cpu(i) { 13331 if (tg->cfs_rq) 13332 kfree(tg->cfs_rq[i]); 13333 if (tg->se) 13334 kfree(tg->se[i]); 13335 } 13336 13337 kfree(tg->cfs_rq); 13338 kfree(tg->se); 13339 } 13340 13341 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13342 { 13343 struct sched_entity *se; 13344 struct cfs_rq *cfs_rq; 13345 int i; 13346 13347 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13348 if (!tg->cfs_rq) 13349 goto err; 13350 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13351 if (!tg->se) 13352 goto err; 13353 13354 tg->shares = NICE_0_LOAD; 13355 13356 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13357 13358 for_each_possible_cpu(i) { 13359 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13360 GFP_KERNEL, cpu_to_node(i)); 13361 if (!cfs_rq) 13362 goto err; 13363 13364 se = kzalloc_node(sizeof(struct sched_entity_stats), 13365 GFP_KERNEL, cpu_to_node(i)); 13366 if (!se) 13367 goto err_free_rq; 13368 13369 init_cfs_rq(cfs_rq); 13370 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13371 init_entity_runnable_average(se); 13372 } 13373 13374 return 1; 13375 13376 err_free_rq: 13377 kfree(cfs_rq); 13378 err: 13379 return 0; 13380 } 13381 13382 void online_fair_sched_group(struct task_group *tg) 13383 { 13384 struct sched_entity *se; 13385 struct rq_flags rf; 13386 struct rq *rq; 13387 int i; 13388 13389 for_each_possible_cpu(i) { 13390 rq = cpu_rq(i); 13391 se = tg->se[i]; 13392 rq_lock_irq(rq, &rf); 13393 update_rq_clock(rq); 13394 attach_entity_cfs_rq(se); 13395 sync_throttle(tg, i); 13396 rq_unlock_irq(rq, &rf); 13397 } 13398 } 13399 13400 void unregister_fair_sched_group(struct task_group *tg) 13401 { 13402 int cpu; 13403 13404 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13405 13406 for_each_possible_cpu(cpu) { 13407 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13408 struct sched_entity *se = tg->se[cpu]; 13409 struct rq *rq = cpu_rq(cpu); 13410 13411 if (se) { 13412 if (se->sched_delayed) { 13413 guard(rq_lock_irqsave)(rq); 13414 if (se->sched_delayed) { 13415 update_rq_clock(rq); 13416 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13417 } 13418 list_del_leaf_cfs_rq(cfs_rq); 13419 } 13420 remove_entity_load_avg(se); 13421 } 13422 13423 /* 13424 * Only empty task groups can be destroyed; so we can speculatively 13425 * check on_list without danger of it being re-added. 13426 */ 13427 if (cfs_rq->on_list) { 13428 guard(rq_lock_irqsave)(rq); 13429 list_del_leaf_cfs_rq(cfs_rq); 13430 } 13431 } 13432 } 13433 13434 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13435 struct sched_entity *se, int cpu, 13436 struct sched_entity *parent) 13437 { 13438 struct rq *rq = cpu_rq(cpu); 13439 13440 cfs_rq->tg = tg; 13441 cfs_rq->rq = rq; 13442 init_cfs_rq_runtime(cfs_rq); 13443 13444 tg->cfs_rq[cpu] = cfs_rq; 13445 tg->se[cpu] = se; 13446 13447 /* se could be NULL for root_task_group */ 13448 if (!se) 13449 return; 13450 13451 if (!parent) { 13452 se->cfs_rq = &rq->cfs; 13453 se->depth = 0; 13454 } else { 13455 se->cfs_rq = parent->my_q; 13456 se->depth = parent->depth + 1; 13457 } 13458 13459 se->my_q = cfs_rq; 13460 /* guarantee group entities always have weight */ 13461 update_load_set(&se->load, NICE_0_LOAD); 13462 se->parent = parent; 13463 } 13464 13465 static DEFINE_MUTEX(shares_mutex); 13466 13467 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13468 { 13469 int i; 13470 13471 lockdep_assert_held(&shares_mutex); 13472 13473 /* 13474 * We can't change the weight of the root cgroup. 13475 */ 13476 if (!tg->se[0]) 13477 return -EINVAL; 13478 13479 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13480 13481 if (tg->shares == shares) 13482 return 0; 13483 13484 tg->shares = shares; 13485 for_each_possible_cpu(i) { 13486 struct rq *rq = cpu_rq(i); 13487 struct sched_entity *se = tg->se[i]; 13488 struct rq_flags rf; 13489 13490 /* Propagate contribution to hierarchy */ 13491 rq_lock_irqsave(rq, &rf); 13492 update_rq_clock(rq); 13493 for_each_sched_entity(se) { 13494 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13495 update_cfs_group(se); 13496 } 13497 rq_unlock_irqrestore(rq, &rf); 13498 } 13499 13500 return 0; 13501 } 13502 13503 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13504 { 13505 int ret; 13506 13507 mutex_lock(&shares_mutex); 13508 if (tg_is_idle(tg)) 13509 ret = -EINVAL; 13510 else 13511 ret = __sched_group_set_shares(tg, shares); 13512 mutex_unlock(&shares_mutex); 13513 13514 return ret; 13515 } 13516 13517 int sched_group_set_idle(struct task_group *tg, long idle) 13518 { 13519 int i; 13520 13521 if (tg == &root_task_group) 13522 return -EINVAL; 13523 13524 if (idle < 0 || idle > 1) 13525 return -EINVAL; 13526 13527 mutex_lock(&shares_mutex); 13528 13529 if (tg->idle == idle) { 13530 mutex_unlock(&shares_mutex); 13531 return 0; 13532 } 13533 13534 tg->idle = idle; 13535 13536 for_each_possible_cpu(i) { 13537 struct rq *rq = cpu_rq(i); 13538 struct sched_entity *se = tg->se[i]; 13539 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13540 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13541 long idle_task_delta; 13542 struct rq_flags rf; 13543 13544 rq_lock_irqsave(rq, &rf); 13545 13546 grp_cfs_rq->idle = idle; 13547 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13548 goto next_cpu; 13549 13550 if (se->on_rq) { 13551 parent_cfs_rq = cfs_rq_of(se); 13552 if (cfs_rq_is_idle(grp_cfs_rq)) 13553 parent_cfs_rq->idle_nr_running++; 13554 else 13555 parent_cfs_rq->idle_nr_running--; 13556 } 13557 13558 idle_task_delta = grp_cfs_rq->h_nr_running - 13559 grp_cfs_rq->idle_h_nr_running; 13560 if (!cfs_rq_is_idle(grp_cfs_rq)) 13561 idle_task_delta *= -1; 13562 13563 for_each_sched_entity(se) { 13564 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13565 13566 if (!se->on_rq) 13567 break; 13568 13569 cfs_rq->idle_h_nr_running += idle_task_delta; 13570 13571 /* Already accounted at parent level and above. */ 13572 if (cfs_rq_is_idle(cfs_rq)) 13573 break; 13574 } 13575 13576 next_cpu: 13577 rq_unlock_irqrestore(rq, &rf); 13578 } 13579 13580 /* Idle groups have minimum weight. */ 13581 if (tg_is_idle(tg)) 13582 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13583 else 13584 __sched_group_set_shares(tg, NICE_0_LOAD); 13585 13586 mutex_unlock(&shares_mutex); 13587 return 0; 13588 } 13589 13590 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13591 13592 13593 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13594 { 13595 struct sched_entity *se = &task->se; 13596 unsigned int rr_interval = 0; 13597 13598 /* 13599 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13600 * idle runqueue: 13601 */ 13602 if (rq->cfs.load.weight) 13603 rr_interval = NS_TO_JIFFIES(se->slice); 13604 13605 return rr_interval; 13606 } 13607 13608 /* 13609 * All the scheduling class methods: 13610 */ 13611 DEFINE_SCHED_CLASS(fair) = { 13612 13613 .enqueue_task = enqueue_task_fair, 13614 .dequeue_task = dequeue_task_fair, 13615 .yield_task = yield_task_fair, 13616 .yield_to_task = yield_to_task_fair, 13617 13618 .wakeup_preempt = check_preempt_wakeup_fair, 13619 13620 .pick_task = pick_task_fair, 13621 .pick_next_task = __pick_next_task_fair, 13622 .put_prev_task = put_prev_task_fair, 13623 .set_next_task = set_next_task_fair, 13624 13625 #ifdef CONFIG_SMP 13626 .balance = balance_fair, 13627 .select_task_rq = select_task_rq_fair, 13628 .migrate_task_rq = migrate_task_rq_fair, 13629 13630 .rq_online = rq_online_fair, 13631 .rq_offline = rq_offline_fair, 13632 13633 .task_dead = task_dead_fair, 13634 .set_cpus_allowed = set_cpus_allowed_fair, 13635 #endif 13636 13637 .task_tick = task_tick_fair, 13638 .task_fork = task_fork_fair, 13639 13640 .reweight_task = reweight_task_fair, 13641 .prio_changed = prio_changed_fair, 13642 .switched_from = switched_from_fair, 13643 .switched_to = switched_to_fair, 13644 13645 .get_rr_interval = get_rr_interval_fair, 13646 13647 .update_curr = update_curr_fair, 13648 13649 #ifdef CONFIG_FAIR_GROUP_SCHED 13650 .task_change_group = task_change_group_fair, 13651 #endif 13652 13653 #ifdef CONFIG_SCHED_CORE 13654 .task_is_throttled = task_is_throttled_fair, 13655 #endif 13656 13657 #ifdef CONFIG_UCLAMP_TASK 13658 .uclamp_enabled = 1, 13659 #endif 13660 }; 13661 13662 #ifdef CONFIG_SCHED_DEBUG 13663 void print_cfs_stats(struct seq_file *m, int cpu) 13664 { 13665 struct cfs_rq *cfs_rq, *pos; 13666 13667 rcu_read_lock(); 13668 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13669 print_cfs_rq(m, cpu, cfs_rq); 13670 rcu_read_unlock(); 13671 } 13672 13673 #ifdef CONFIG_NUMA_BALANCING 13674 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13675 { 13676 int node; 13677 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13678 struct numa_group *ng; 13679 13680 rcu_read_lock(); 13681 ng = rcu_dereference(p->numa_group); 13682 for_each_online_node(node) { 13683 if (p->numa_faults) { 13684 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13685 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13686 } 13687 if (ng) { 13688 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13689 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13690 } 13691 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13692 } 13693 rcu_read_unlock(); 13694 } 13695 #endif /* CONFIG_NUMA_BALANCING */ 13696 #endif /* CONFIG_SCHED_DEBUG */ 13697 13698 __init void init_sched_fair_class(void) 13699 { 13700 #ifdef CONFIG_SMP 13701 int i; 13702 13703 for_each_possible_cpu(i) { 13704 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13705 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13706 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13707 GFP_KERNEL, cpu_to_node(i)); 13708 13709 #ifdef CONFIG_CFS_BANDWIDTH 13710 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13711 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13712 #endif 13713 } 13714 13715 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13716 13717 #ifdef CONFIG_NO_HZ_COMMON 13718 nohz.next_balance = jiffies; 13719 nohz.next_blocked = jiffies; 13720 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13721 #endif 13722 #endif /* SMP */ 13723 13724 } 13725