1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 #endif 119 120 #ifdef CONFIG_CFS_BANDWIDTH 121 /* 122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 123 * each time a cfs_rq requests quota. 124 * 125 * Note: in the case that the slice exceeds the runtime remaining (either due 126 * to consumption or the quota being specified to be smaller than the slice) 127 * we will always only issue the remaining available time. 128 * 129 * (default: 5 msec, units: microseconds) 130 */ 131 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 132 #endif 133 134 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 135 { 136 lw->weight += inc; 137 lw->inv_weight = 0; 138 } 139 140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 141 { 142 lw->weight -= dec; 143 lw->inv_weight = 0; 144 } 145 146 static inline void update_load_set(struct load_weight *lw, unsigned long w) 147 { 148 lw->weight = w; 149 lw->inv_weight = 0; 150 } 151 152 /* 153 * Increase the granularity value when there are more CPUs, 154 * because with more CPUs the 'effective latency' as visible 155 * to users decreases. But the relationship is not linear, 156 * so pick a second-best guess by going with the log2 of the 157 * number of CPUs. 158 * 159 * This idea comes from the SD scheduler of Con Kolivas: 160 */ 161 static unsigned int get_update_sysctl_factor(void) 162 { 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 164 unsigned int factor; 165 166 switch (sysctl_sched_tunable_scaling) { 167 case SCHED_TUNABLESCALING_NONE: 168 factor = 1; 169 break; 170 case SCHED_TUNABLESCALING_LINEAR: 171 factor = cpus; 172 break; 173 case SCHED_TUNABLESCALING_LOG: 174 default: 175 factor = 1 + ilog2(cpus); 176 break; 177 } 178 179 return factor; 180 } 181 182 static void update_sysctl(void) 183 { 184 unsigned int factor = get_update_sysctl_factor(); 185 186 #define SET_SYSCTL(name) \ 187 (sysctl_##name = (factor) * normalized_sysctl_##name) 188 SET_SYSCTL(sched_min_granularity); 189 SET_SYSCTL(sched_latency); 190 SET_SYSCTL(sched_wakeup_granularity); 191 #undef SET_SYSCTL 192 } 193 194 void sched_init_granularity(void) 195 { 196 update_sysctl(); 197 } 198 199 #define WMULT_CONST (~0U) 200 #define WMULT_SHIFT 32 201 202 static void __update_inv_weight(struct load_weight *lw) 203 { 204 unsigned long w; 205 206 if (likely(lw->inv_weight)) 207 return; 208 209 w = scale_load_down(lw->weight); 210 211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 212 lw->inv_weight = 1; 213 else if (unlikely(!w)) 214 lw->inv_weight = WMULT_CONST; 215 else 216 lw->inv_weight = WMULT_CONST / w; 217 } 218 219 /* 220 * delta_exec * weight / lw.weight 221 * OR 222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 223 * 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 225 * we're guaranteed shift stays positive because inv_weight is guaranteed to 226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 227 * 228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 229 * weight/lw.weight <= 1, and therefore our shift will also be positive. 230 */ 231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 232 { 233 u64 fact = scale_load_down(weight); 234 int shift = WMULT_SHIFT; 235 236 __update_inv_weight(lw); 237 238 if (unlikely(fact >> 32)) { 239 while (fact >> 32) { 240 fact >>= 1; 241 shift--; 242 } 243 } 244 245 fact = mul_u32_u32(fact, lw->inv_weight); 246 247 while (fact >> 32) { 248 fact >>= 1; 249 shift--; 250 } 251 252 return mul_u64_u32_shr(delta_exec, fact, shift); 253 } 254 255 256 const struct sched_class fair_sched_class; 257 258 /************************************************************** 259 * CFS operations on generic schedulable entities: 260 */ 261 262 #ifdef CONFIG_FAIR_GROUP_SCHED 263 static inline struct task_struct *task_of(struct sched_entity *se) 264 { 265 SCHED_WARN_ON(!entity_is_task(se)); 266 return container_of(se, struct task_struct, se); 267 } 268 269 /* Walk up scheduling entities hierarchy */ 270 #define for_each_sched_entity(se) \ 271 for (; se; se = se->parent) 272 273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 274 { 275 return p->se.cfs_rq; 276 } 277 278 /* runqueue on which this entity is (to be) queued */ 279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 280 { 281 return se->cfs_rq; 282 } 283 284 /* runqueue "owned" by this group */ 285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 286 { 287 return grp->my_q; 288 } 289 290 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 291 { 292 if (!path) 293 return; 294 295 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 296 autogroup_path(cfs_rq->tg, path, len); 297 else if (cfs_rq && cfs_rq->tg->css.cgroup) 298 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 299 else 300 strlcpy(path, "(null)", len); 301 } 302 303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 304 { 305 struct rq *rq = rq_of(cfs_rq); 306 int cpu = cpu_of(rq); 307 308 if (cfs_rq->on_list) 309 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 310 311 cfs_rq->on_list = 1; 312 313 /* 314 * Ensure we either appear before our parent (if already 315 * enqueued) or force our parent to appear after us when it is 316 * enqueued. The fact that we always enqueue bottom-up 317 * reduces this to two cases and a special case for the root 318 * cfs_rq. Furthermore, it also means that we will always reset 319 * tmp_alone_branch either when the branch is connected 320 * to a tree or when we reach the top of the tree 321 */ 322 if (cfs_rq->tg->parent && 323 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 324 /* 325 * If parent is already on the list, we add the child 326 * just before. Thanks to circular linked property of 327 * the list, this means to put the child at the tail 328 * of the list that starts by parent. 329 */ 330 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 331 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 332 /* 333 * The branch is now connected to its tree so we can 334 * reset tmp_alone_branch to the beginning of the 335 * list. 336 */ 337 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 338 return true; 339 } 340 341 if (!cfs_rq->tg->parent) { 342 /* 343 * cfs rq without parent should be put 344 * at the tail of the list. 345 */ 346 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 347 &rq->leaf_cfs_rq_list); 348 /* 349 * We have reach the top of a tree so we can reset 350 * tmp_alone_branch to the beginning of the list. 351 */ 352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 353 return true; 354 } 355 356 /* 357 * The parent has not already been added so we want to 358 * make sure that it will be put after us. 359 * tmp_alone_branch points to the begin of the branch 360 * where we will add parent. 361 */ 362 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 363 /* 364 * update tmp_alone_branch to points to the new begin 365 * of the branch 366 */ 367 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 368 return false; 369 } 370 371 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 372 { 373 if (cfs_rq->on_list) { 374 struct rq *rq = rq_of(cfs_rq); 375 376 /* 377 * With cfs_rq being unthrottled/throttled during an enqueue, 378 * it can happen the tmp_alone_branch points the a leaf that 379 * we finally want to del. In this case, tmp_alone_branch moves 380 * to the prev element but it will point to rq->leaf_cfs_rq_list 381 * at the end of the enqueue. 382 */ 383 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 384 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 385 386 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 387 cfs_rq->on_list = 0; 388 } 389 } 390 391 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 392 { 393 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 394 } 395 396 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 399 leaf_cfs_rq_list) 400 401 /* Do the two (enqueued) entities belong to the same group ? */ 402 static inline struct cfs_rq * 403 is_same_group(struct sched_entity *se, struct sched_entity *pse) 404 { 405 if (se->cfs_rq == pse->cfs_rq) 406 return se->cfs_rq; 407 408 return NULL; 409 } 410 411 static inline struct sched_entity *parent_entity(struct sched_entity *se) 412 { 413 return se->parent; 414 } 415 416 static void 417 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 418 { 419 int se_depth, pse_depth; 420 421 /* 422 * preemption test can be made between sibling entities who are in the 423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 424 * both tasks until we find their ancestors who are siblings of common 425 * parent. 426 */ 427 428 /* First walk up until both entities are at same depth */ 429 se_depth = (*se)->depth; 430 pse_depth = (*pse)->depth; 431 432 while (se_depth > pse_depth) { 433 se_depth--; 434 *se = parent_entity(*se); 435 } 436 437 while (pse_depth > se_depth) { 438 pse_depth--; 439 *pse = parent_entity(*pse); 440 } 441 442 while (!is_same_group(*se, *pse)) { 443 *se = parent_entity(*se); 444 *pse = parent_entity(*pse); 445 } 446 } 447 448 #else /* !CONFIG_FAIR_GROUP_SCHED */ 449 450 static inline struct task_struct *task_of(struct sched_entity *se) 451 { 452 return container_of(se, struct task_struct, se); 453 } 454 455 #define for_each_sched_entity(se) \ 456 for (; se; se = NULL) 457 458 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 459 { 460 return &task_rq(p)->cfs; 461 } 462 463 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 464 { 465 struct task_struct *p = task_of(se); 466 struct rq *rq = task_rq(p); 467 468 return &rq->cfs; 469 } 470 471 /* runqueue "owned" by this group */ 472 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 473 { 474 return NULL; 475 } 476 477 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 478 { 479 if (path) 480 strlcpy(path, "(null)", len); 481 } 482 483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 484 { 485 return true; 486 } 487 488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 489 { 490 } 491 492 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 493 { 494 } 495 496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 498 499 static inline struct sched_entity *parent_entity(struct sched_entity *se) 500 { 501 return NULL; 502 } 503 504 static inline void 505 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 506 { 507 } 508 509 #endif /* CONFIG_FAIR_GROUP_SCHED */ 510 511 static __always_inline 512 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 513 514 /************************************************************** 515 * Scheduling class tree data structure manipulation methods: 516 */ 517 518 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 519 { 520 s64 delta = (s64)(vruntime - max_vruntime); 521 if (delta > 0) 522 max_vruntime = vruntime; 523 524 return max_vruntime; 525 } 526 527 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 528 { 529 s64 delta = (s64)(vruntime - min_vruntime); 530 if (delta < 0) 531 min_vruntime = vruntime; 532 533 return min_vruntime; 534 } 535 536 static inline int entity_before(struct sched_entity *a, 537 struct sched_entity *b) 538 { 539 return (s64)(a->vruntime - b->vruntime) < 0; 540 } 541 542 static void update_min_vruntime(struct cfs_rq *cfs_rq) 543 { 544 struct sched_entity *curr = cfs_rq->curr; 545 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 546 547 u64 vruntime = cfs_rq->min_vruntime; 548 549 if (curr) { 550 if (curr->on_rq) 551 vruntime = curr->vruntime; 552 else 553 curr = NULL; 554 } 555 556 if (leftmost) { /* non-empty tree */ 557 struct sched_entity *se; 558 se = rb_entry(leftmost, struct sched_entity, run_node); 559 560 if (!curr) 561 vruntime = se->vruntime; 562 else 563 vruntime = min_vruntime(vruntime, se->vruntime); 564 } 565 566 /* ensure we never gain time by being placed backwards. */ 567 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 568 #ifndef CONFIG_64BIT 569 smp_wmb(); 570 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 571 #endif 572 } 573 574 /* 575 * Enqueue an entity into the rb-tree: 576 */ 577 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 578 { 579 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 580 struct rb_node *parent = NULL; 581 struct sched_entity *entry; 582 bool leftmost = true; 583 584 /* 585 * Find the right place in the rbtree: 586 */ 587 while (*link) { 588 parent = *link; 589 entry = rb_entry(parent, struct sched_entity, run_node); 590 /* 591 * We dont care about collisions. Nodes with 592 * the same key stay together. 593 */ 594 if (entity_before(se, entry)) { 595 link = &parent->rb_left; 596 } else { 597 link = &parent->rb_right; 598 leftmost = false; 599 } 600 } 601 602 rb_link_node(&se->run_node, parent, link); 603 rb_insert_color_cached(&se->run_node, 604 &cfs_rq->tasks_timeline, leftmost); 605 } 606 607 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 608 { 609 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 610 } 611 612 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 613 { 614 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 615 616 if (!left) 617 return NULL; 618 619 return rb_entry(left, struct sched_entity, run_node); 620 } 621 622 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 623 { 624 struct rb_node *next = rb_next(&se->run_node); 625 626 if (!next) 627 return NULL; 628 629 return rb_entry(next, struct sched_entity, run_node); 630 } 631 632 #ifdef CONFIG_SCHED_DEBUG 633 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 634 { 635 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 636 637 if (!last) 638 return NULL; 639 640 return rb_entry(last, struct sched_entity, run_node); 641 } 642 643 /************************************************************** 644 * Scheduling class statistics methods: 645 */ 646 647 int sched_proc_update_handler(struct ctl_table *table, int write, 648 void *buffer, size_t *lenp, loff_t *ppos) 649 { 650 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 651 unsigned int factor = get_update_sysctl_factor(); 652 653 if (ret || !write) 654 return ret; 655 656 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 657 sysctl_sched_min_granularity); 658 659 #define WRT_SYSCTL(name) \ 660 (normalized_sysctl_##name = sysctl_##name / (factor)) 661 WRT_SYSCTL(sched_min_granularity); 662 WRT_SYSCTL(sched_latency); 663 WRT_SYSCTL(sched_wakeup_granularity); 664 #undef WRT_SYSCTL 665 666 return 0; 667 } 668 #endif 669 670 /* 671 * delta /= w 672 */ 673 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 674 { 675 if (unlikely(se->load.weight != NICE_0_LOAD)) 676 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 677 678 return delta; 679 } 680 681 /* 682 * The idea is to set a period in which each task runs once. 683 * 684 * When there are too many tasks (sched_nr_latency) we have to stretch 685 * this period because otherwise the slices get too small. 686 * 687 * p = (nr <= nl) ? l : l*nr/nl 688 */ 689 static u64 __sched_period(unsigned long nr_running) 690 { 691 if (unlikely(nr_running > sched_nr_latency)) 692 return nr_running * sysctl_sched_min_granularity; 693 else 694 return sysctl_sched_latency; 695 } 696 697 /* 698 * We calculate the wall-time slice from the period by taking a part 699 * proportional to the weight. 700 * 701 * s = p*P[w/rw] 702 */ 703 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 704 { 705 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 706 707 for_each_sched_entity(se) { 708 struct load_weight *load; 709 struct load_weight lw; 710 711 cfs_rq = cfs_rq_of(se); 712 load = &cfs_rq->load; 713 714 if (unlikely(!se->on_rq)) { 715 lw = cfs_rq->load; 716 717 update_load_add(&lw, se->load.weight); 718 load = &lw; 719 } 720 slice = __calc_delta(slice, se->load.weight, load); 721 } 722 return slice; 723 } 724 725 /* 726 * We calculate the vruntime slice of a to-be-inserted task. 727 * 728 * vs = s/w 729 */ 730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 731 { 732 return calc_delta_fair(sched_slice(cfs_rq, se), se); 733 } 734 735 #include "pelt.h" 736 #ifdef CONFIG_SMP 737 738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 739 static unsigned long task_h_load(struct task_struct *p); 740 static unsigned long capacity_of(int cpu); 741 742 /* Give new sched_entity start runnable values to heavy its load in infant time */ 743 void init_entity_runnable_average(struct sched_entity *se) 744 { 745 struct sched_avg *sa = &se->avg; 746 747 memset(sa, 0, sizeof(*sa)); 748 749 /* 750 * Tasks are initialized with full load to be seen as heavy tasks until 751 * they get a chance to stabilize to their real load level. 752 * Group entities are initialized with zero load to reflect the fact that 753 * nothing has been attached to the task group yet. 754 */ 755 if (entity_is_task(se)) 756 sa->load_avg = scale_load_down(se->load.weight); 757 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 759 } 760 761 static void attach_entity_cfs_rq(struct sched_entity *se); 762 763 /* 764 * With new tasks being created, their initial util_avgs are extrapolated 765 * based on the cfs_rq's current util_avg: 766 * 767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 768 * 769 * However, in many cases, the above util_avg does not give a desired 770 * value. Moreover, the sum of the util_avgs may be divergent, such 771 * as when the series is a harmonic series. 772 * 773 * To solve this problem, we also cap the util_avg of successive tasks to 774 * only 1/2 of the left utilization budget: 775 * 776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 777 * 778 * where n denotes the nth task and cpu_scale the CPU capacity. 779 * 780 * For example, for a CPU with 1024 of capacity, a simplest series from 781 * the beginning would be like: 782 * 783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 785 * 786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 787 * if util_avg > util_avg_cap. 788 */ 789 void post_init_entity_util_avg(struct task_struct *p) 790 { 791 struct sched_entity *se = &p->se; 792 struct cfs_rq *cfs_rq = cfs_rq_of(se); 793 struct sched_avg *sa = &se->avg; 794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 796 797 if (cap > 0) { 798 if (cfs_rq->avg.util_avg != 0) { 799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 800 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 801 802 if (sa->util_avg > cap) 803 sa->util_avg = cap; 804 } else { 805 sa->util_avg = cap; 806 } 807 } 808 809 sa->runnable_avg = cpu_scale; 810 811 if (p->sched_class != &fair_sched_class) { 812 /* 813 * For !fair tasks do: 814 * 815 update_cfs_rq_load_avg(now, cfs_rq); 816 attach_entity_load_avg(cfs_rq, se); 817 switched_from_fair(rq, p); 818 * 819 * such that the next switched_to_fair() has the 820 * expected state. 821 */ 822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 823 return; 824 } 825 826 attach_entity_cfs_rq(se); 827 } 828 829 #else /* !CONFIG_SMP */ 830 void init_entity_runnable_average(struct sched_entity *se) 831 { 832 } 833 void post_init_entity_util_avg(struct task_struct *p) 834 { 835 } 836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 837 { 838 } 839 #endif /* CONFIG_SMP */ 840 841 /* 842 * Update the current task's runtime statistics. 843 */ 844 static void update_curr(struct cfs_rq *cfs_rq) 845 { 846 struct sched_entity *curr = cfs_rq->curr; 847 u64 now = rq_clock_task(rq_of(cfs_rq)); 848 u64 delta_exec; 849 850 if (unlikely(!curr)) 851 return; 852 853 delta_exec = now - curr->exec_start; 854 if (unlikely((s64)delta_exec <= 0)) 855 return; 856 857 curr->exec_start = now; 858 859 schedstat_set(curr->statistics.exec_max, 860 max(delta_exec, curr->statistics.exec_max)); 861 862 curr->sum_exec_runtime += delta_exec; 863 schedstat_add(cfs_rq->exec_clock, delta_exec); 864 865 curr->vruntime += calc_delta_fair(delta_exec, curr); 866 update_min_vruntime(cfs_rq); 867 868 if (entity_is_task(curr)) { 869 struct task_struct *curtask = task_of(curr); 870 871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 872 cgroup_account_cputime(curtask, delta_exec); 873 account_group_exec_runtime(curtask, delta_exec); 874 } 875 876 account_cfs_rq_runtime(cfs_rq, delta_exec); 877 } 878 879 static void update_curr_fair(struct rq *rq) 880 { 881 update_curr(cfs_rq_of(&rq->curr->se)); 882 } 883 884 static inline void 885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 886 { 887 u64 wait_start, prev_wait_start; 888 889 if (!schedstat_enabled()) 890 return; 891 892 wait_start = rq_clock(rq_of(cfs_rq)); 893 prev_wait_start = schedstat_val(se->statistics.wait_start); 894 895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 896 likely(wait_start > prev_wait_start)) 897 wait_start -= prev_wait_start; 898 899 __schedstat_set(se->statistics.wait_start, wait_start); 900 } 901 902 static inline void 903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 904 { 905 struct task_struct *p; 906 u64 delta; 907 908 if (!schedstat_enabled()) 909 return; 910 911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 912 913 if (entity_is_task(se)) { 914 p = task_of(se); 915 if (task_on_rq_migrating(p)) { 916 /* 917 * Preserve migrating task's wait time so wait_start 918 * time stamp can be adjusted to accumulate wait time 919 * prior to migration. 920 */ 921 __schedstat_set(se->statistics.wait_start, delta); 922 return; 923 } 924 trace_sched_stat_wait(p, delta); 925 } 926 927 __schedstat_set(se->statistics.wait_max, 928 max(schedstat_val(se->statistics.wait_max), delta)); 929 __schedstat_inc(se->statistics.wait_count); 930 __schedstat_add(se->statistics.wait_sum, delta); 931 __schedstat_set(se->statistics.wait_start, 0); 932 } 933 934 static inline void 935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 936 { 937 struct task_struct *tsk = NULL; 938 u64 sleep_start, block_start; 939 940 if (!schedstat_enabled()) 941 return; 942 943 sleep_start = schedstat_val(se->statistics.sleep_start); 944 block_start = schedstat_val(se->statistics.block_start); 945 946 if (entity_is_task(se)) 947 tsk = task_of(se); 948 949 if (sleep_start) { 950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 951 952 if ((s64)delta < 0) 953 delta = 0; 954 955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 956 __schedstat_set(se->statistics.sleep_max, delta); 957 958 __schedstat_set(se->statistics.sleep_start, 0); 959 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 960 961 if (tsk) { 962 account_scheduler_latency(tsk, delta >> 10, 1); 963 trace_sched_stat_sleep(tsk, delta); 964 } 965 } 966 if (block_start) { 967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 968 969 if ((s64)delta < 0) 970 delta = 0; 971 972 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 973 __schedstat_set(se->statistics.block_max, delta); 974 975 __schedstat_set(se->statistics.block_start, 0); 976 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 977 978 if (tsk) { 979 if (tsk->in_iowait) { 980 __schedstat_add(se->statistics.iowait_sum, delta); 981 __schedstat_inc(se->statistics.iowait_count); 982 trace_sched_stat_iowait(tsk, delta); 983 } 984 985 trace_sched_stat_blocked(tsk, delta); 986 987 /* 988 * Blocking time is in units of nanosecs, so shift by 989 * 20 to get a milliseconds-range estimation of the 990 * amount of time that the task spent sleeping: 991 */ 992 if (unlikely(prof_on == SLEEP_PROFILING)) { 993 profile_hits(SLEEP_PROFILING, 994 (void *)get_wchan(tsk), 995 delta >> 20); 996 } 997 account_scheduler_latency(tsk, delta >> 10, 0); 998 } 999 } 1000 } 1001 1002 /* 1003 * Task is being enqueued - update stats: 1004 */ 1005 static inline void 1006 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1007 { 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Are we enqueueing a waiting task? (for current tasks 1013 * a dequeue/enqueue event is a NOP) 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_start(cfs_rq, se); 1017 1018 if (flags & ENQUEUE_WAKEUP) 1019 update_stats_enqueue_sleeper(cfs_rq, se); 1020 } 1021 1022 static inline void 1023 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1024 { 1025 1026 if (!schedstat_enabled()) 1027 return; 1028 1029 /* 1030 * Mark the end of the wait period if dequeueing a 1031 * waiting task: 1032 */ 1033 if (se != cfs_rq->curr) 1034 update_stats_wait_end(cfs_rq, se); 1035 1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1037 struct task_struct *tsk = task_of(se); 1038 1039 if (tsk->state & TASK_INTERRUPTIBLE) 1040 __schedstat_set(se->statistics.sleep_start, 1041 rq_clock(rq_of(cfs_rq))); 1042 if (tsk->state & TASK_UNINTERRUPTIBLE) 1043 __schedstat_set(se->statistics.block_start, 1044 rq_clock(rq_of(cfs_rq))); 1045 } 1046 } 1047 1048 /* 1049 * We are picking a new current task - update its stats: 1050 */ 1051 static inline void 1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1053 { 1054 /* 1055 * We are starting a new run period: 1056 */ 1057 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1058 } 1059 1060 /************************************************** 1061 * Scheduling class queueing methods: 1062 */ 1063 1064 #ifdef CONFIG_NUMA_BALANCING 1065 /* 1066 * Approximate time to scan a full NUMA task in ms. The task scan period is 1067 * calculated based on the tasks virtual memory size and 1068 * numa_balancing_scan_size. 1069 */ 1070 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1071 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1072 1073 /* Portion of address space to scan in MB */ 1074 unsigned int sysctl_numa_balancing_scan_size = 256; 1075 1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1077 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1078 1079 struct numa_group { 1080 refcount_t refcount; 1081 1082 spinlock_t lock; /* nr_tasks, tasks */ 1083 int nr_tasks; 1084 pid_t gid; 1085 int active_nodes; 1086 1087 struct rcu_head rcu; 1088 unsigned long total_faults; 1089 unsigned long max_faults_cpu; 1090 /* 1091 * Faults_cpu is used to decide whether memory should move 1092 * towards the CPU. As a consequence, these stats are weighted 1093 * more by CPU use than by memory faults. 1094 */ 1095 unsigned long *faults_cpu; 1096 unsigned long faults[0]; 1097 }; 1098 1099 /* 1100 * For functions that can be called in multiple contexts that permit reading 1101 * ->numa_group (see struct task_struct for locking rules). 1102 */ 1103 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1104 { 1105 return rcu_dereference_check(p->numa_group, p == current || 1106 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu))); 1107 } 1108 1109 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1110 { 1111 return rcu_dereference_protected(p->numa_group, p == current); 1112 } 1113 1114 static inline unsigned long group_faults_priv(struct numa_group *ng); 1115 static inline unsigned long group_faults_shared(struct numa_group *ng); 1116 1117 static unsigned int task_nr_scan_windows(struct task_struct *p) 1118 { 1119 unsigned long rss = 0; 1120 unsigned long nr_scan_pages; 1121 1122 /* 1123 * Calculations based on RSS as non-present and empty pages are skipped 1124 * by the PTE scanner and NUMA hinting faults should be trapped based 1125 * on resident pages 1126 */ 1127 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1128 rss = get_mm_rss(p->mm); 1129 if (!rss) 1130 rss = nr_scan_pages; 1131 1132 rss = round_up(rss, nr_scan_pages); 1133 return rss / nr_scan_pages; 1134 } 1135 1136 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1137 #define MAX_SCAN_WINDOW 2560 1138 1139 static unsigned int task_scan_min(struct task_struct *p) 1140 { 1141 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1142 unsigned int scan, floor; 1143 unsigned int windows = 1; 1144 1145 if (scan_size < MAX_SCAN_WINDOW) 1146 windows = MAX_SCAN_WINDOW / scan_size; 1147 floor = 1000 / windows; 1148 1149 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1150 return max_t(unsigned int, floor, scan); 1151 } 1152 1153 static unsigned int task_scan_start(struct task_struct *p) 1154 { 1155 unsigned long smin = task_scan_min(p); 1156 unsigned long period = smin; 1157 struct numa_group *ng; 1158 1159 /* Scale the maximum scan period with the amount of shared memory. */ 1160 rcu_read_lock(); 1161 ng = rcu_dereference(p->numa_group); 1162 if (ng) { 1163 unsigned long shared = group_faults_shared(ng); 1164 unsigned long private = group_faults_priv(ng); 1165 1166 period *= refcount_read(&ng->refcount); 1167 period *= shared + 1; 1168 period /= private + shared + 1; 1169 } 1170 rcu_read_unlock(); 1171 1172 return max(smin, period); 1173 } 1174 1175 static unsigned int task_scan_max(struct task_struct *p) 1176 { 1177 unsigned long smin = task_scan_min(p); 1178 unsigned long smax; 1179 struct numa_group *ng; 1180 1181 /* Watch for min being lower than max due to floor calculations */ 1182 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1183 1184 /* Scale the maximum scan period with the amount of shared memory. */ 1185 ng = deref_curr_numa_group(p); 1186 if (ng) { 1187 unsigned long shared = group_faults_shared(ng); 1188 unsigned long private = group_faults_priv(ng); 1189 unsigned long period = smax; 1190 1191 period *= refcount_read(&ng->refcount); 1192 period *= shared + 1; 1193 period /= private + shared + 1; 1194 1195 smax = max(smax, period); 1196 } 1197 1198 return max(smin, smax); 1199 } 1200 1201 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1202 { 1203 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1204 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1205 } 1206 1207 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1208 { 1209 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1210 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1211 } 1212 1213 /* Shared or private faults. */ 1214 #define NR_NUMA_HINT_FAULT_TYPES 2 1215 1216 /* Memory and CPU locality */ 1217 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1218 1219 /* Averaged statistics, and temporary buffers. */ 1220 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1221 1222 pid_t task_numa_group_id(struct task_struct *p) 1223 { 1224 struct numa_group *ng; 1225 pid_t gid = 0; 1226 1227 rcu_read_lock(); 1228 ng = rcu_dereference(p->numa_group); 1229 if (ng) 1230 gid = ng->gid; 1231 rcu_read_unlock(); 1232 1233 return gid; 1234 } 1235 1236 /* 1237 * The averaged statistics, shared & private, memory & CPU, 1238 * occupy the first half of the array. The second half of the 1239 * array is for current counters, which are averaged into the 1240 * first set by task_numa_placement. 1241 */ 1242 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1243 { 1244 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1245 } 1246 1247 static inline unsigned long task_faults(struct task_struct *p, int nid) 1248 { 1249 if (!p->numa_faults) 1250 return 0; 1251 1252 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1253 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1254 } 1255 1256 static inline unsigned long group_faults(struct task_struct *p, int nid) 1257 { 1258 struct numa_group *ng = deref_task_numa_group(p); 1259 1260 if (!ng) 1261 return 0; 1262 1263 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1264 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1265 } 1266 1267 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1268 { 1269 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1270 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1271 } 1272 1273 static inline unsigned long group_faults_priv(struct numa_group *ng) 1274 { 1275 unsigned long faults = 0; 1276 int node; 1277 1278 for_each_online_node(node) { 1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1280 } 1281 1282 return faults; 1283 } 1284 1285 static inline unsigned long group_faults_shared(struct numa_group *ng) 1286 { 1287 unsigned long faults = 0; 1288 int node; 1289 1290 for_each_online_node(node) { 1291 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1292 } 1293 1294 return faults; 1295 } 1296 1297 /* 1298 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1299 * considered part of a numa group's pseudo-interleaving set. Migrations 1300 * between these nodes are slowed down, to allow things to settle down. 1301 */ 1302 #define ACTIVE_NODE_FRACTION 3 1303 1304 static bool numa_is_active_node(int nid, struct numa_group *ng) 1305 { 1306 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1307 } 1308 1309 /* Handle placement on systems where not all nodes are directly connected. */ 1310 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1311 int maxdist, bool task) 1312 { 1313 unsigned long score = 0; 1314 int node; 1315 1316 /* 1317 * All nodes are directly connected, and the same distance 1318 * from each other. No need for fancy placement algorithms. 1319 */ 1320 if (sched_numa_topology_type == NUMA_DIRECT) 1321 return 0; 1322 1323 /* 1324 * This code is called for each node, introducing N^2 complexity, 1325 * which should be ok given the number of nodes rarely exceeds 8. 1326 */ 1327 for_each_online_node(node) { 1328 unsigned long faults; 1329 int dist = node_distance(nid, node); 1330 1331 /* 1332 * The furthest away nodes in the system are not interesting 1333 * for placement; nid was already counted. 1334 */ 1335 if (dist == sched_max_numa_distance || node == nid) 1336 continue; 1337 1338 /* 1339 * On systems with a backplane NUMA topology, compare groups 1340 * of nodes, and move tasks towards the group with the most 1341 * memory accesses. When comparing two nodes at distance 1342 * "hoplimit", only nodes closer by than "hoplimit" are part 1343 * of each group. Skip other nodes. 1344 */ 1345 if (sched_numa_topology_type == NUMA_BACKPLANE && 1346 dist >= maxdist) 1347 continue; 1348 1349 /* Add up the faults from nearby nodes. */ 1350 if (task) 1351 faults = task_faults(p, node); 1352 else 1353 faults = group_faults(p, node); 1354 1355 /* 1356 * On systems with a glueless mesh NUMA topology, there are 1357 * no fixed "groups of nodes". Instead, nodes that are not 1358 * directly connected bounce traffic through intermediate 1359 * nodes; a numa_group can occupy any set of nodes. 1360 * The further away a node is, the less the faults count. 1361 * This seems to result in good task placement. 1362 */ 1363 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1364 faults *= (sched_max_numa_distance - dist); 1365 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1366 } 1367 1368 score += faults; 1369 } 1370 1371 return score; 1372 } 1373 1374 /* 1375 * These return the fraction of accesses done by a particular task, or 1376 * task group, on a particular numa node. The group weight is given a 1377 * larger multiplier, in order to group tasks together that are almost 1378 * evenly spread out between numa nodes. 1379 */ 1380 static inline unsigned long task_weight(struct task_struct *p, int nid, 1381 int dist) 1382 { 1383 unsigned long faults, total_faults; 1384 1385 if (!p->numa_faults) 1386 return 0; 1387 1388 total_faults = p->total_numa_faults; 1389 1390 if (!total_faults) 1391 return 0; 1392 1393 faults = task_faults(p, nid); 1394 faults += score_nearby_nodes(p, nid, dist, true); 1395 1396 return 1000 * faults / total_faults; 1397 } 1398 1399 static inline unsigned long group_weight(struct task_struct *p, int nid, 1400 int dist) 1401 { 1402 struct numa_group *ng = deref_task_numa_group(p); 1403 unsigned long faults, total_faults; 1404 1405 if (!ng) 1406 return 0; 1407 1408 total_faults = ng->total_faults; 1409 1410 if (!total_faults) 1411 return 0; 1412 1413 faults = group_faults(p, nid); 1414 faults += score_nearby_nodes(p, nid, dist, false); 1415 1416 return 1000 * faults / total_faults; 1417 } 1418 1419 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1420 int src_nid, int dst_cpu) 1421 { 1422 struct numa_group *ng = deref_curr_numa_group(p); 1423 int dst_nid = cpu_to_node(dst_cpu); 1424 int last_cpupid, this_cpupid; 1425 1426 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1427 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1428 1429 /* 1430 * Allow first faults or private faults to migrate immediately early in 1431 * the lifetime of a task. The magic number 4 is based on waiting for 1432 * two full passes of the "multi-stage node selection" test that is 1433 * executed below. 1434 */ 1435 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1436 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1437 return true; 1438 1439 /* 1440 * Multi-stage node selection is used in conjunction with a periodic 1441 * migration fault to build a temporal task<->page relation. By using 1442 * a two-stage filter we remove short/unlikely relations. 1443 * 1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1445 * a task's usage of a particular page (n_p) per total usage of this 1446 * page (n_t) (in a given time-span) to a probability. 1447 * 1448 * Our periodic faults will sample this probability and getting the 1449 * same result twice in a row, given these samples are fully 1450 * independent, is then given by P(n)^2, provided our sample period 1451 * is sufficiently short compared to the usage pattern. 1452 * 1453 * This quadric squishes small probabilities, making it less likely we 1454 * act on an unlikely task<->page relation. 1455 */ 1456 if (!cpupid_pid_unset(last_cpupid) && 1457 cpupid_to_nid(last_cpupid) != dst_nid) 1458 return false; 1459 1460 /* Always allow migrate on private faults */ 1461 if (cpupid_match_pid(p, last_cpupid)) 1462 return true; 1463 1464 /* A shared fault, but p->numa_group has not been set up yet. */ 1465 if (!ng) 1466 return true; 1467 1468 /* 1469 * Destination node is much more heavily used than the source 1470 * node? Allow migration. 1471 */ 1472 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1473 ACTIVE_NODE_FRACTION) 1474 return true; 1475 1476 /* 1477 * Distribute memory according to CPU & memory use on each node, 1478 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1479 * 1480 * faults_cpu(dst) 3 faults_cpu(src) 1481 * --------------- * - > --------------- 1482 * faults_mem(dst) 4 faults_mem(src) 1483 */ 1484 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1485 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1486 } 1487 1488 /* 1489 * 'numa_type' describes the node at the moment of load balancing. 1490 */ 1491 enum numa_type { 1492 /* The node has spare capacity that can be used to run more tasks. */ 1493 node_has_spare = 0, 1494 /* 1495 * The node is fully used and the tasks don't compete for more CPU 1496 * cycles. Nevertheless, some tasks might wait before running. 1497 */ 1498 node_fully_busy, 1499 /* 1500 * The node is overloaded and can't provide expected CPU cycles to all 1501 * tasks. 1502 */ 1503 node_overloaded 1504 }; 1505 1506 /* Cached statistics for all CPUs within a node */ 1507 struct numa_stats { 1508 unsigned long load; 1509 unsigned long util; 1510 /* Total compute capacity of CPUs on a node */ 1511 unsigned long compute_capacity; 1512 unsigned int nr_running; 1513 unsigned int weight; 1514 enum numa_type node_type; 1515 int idle_cpu; 1516 }; 1517 1518 static inline bool is_core_idle(int cpu) 1519 { 1520 #ifdef CONFIG_SCHED_SMT 1521 int sibling; 1522 1523 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1524 if (cpu == sibling) 1525 continue; 1526 1527 if (!idle_cpu(cpu)) 1528 return false; 1529 } 1530 #endif 1531 1532 return true; 1533 } 1534 1535 struct task_numa_env { 1536 struct task_struct *p; 1537 1538 int src_cpu, src_nid; 1539 int dst_cpu, dst_nid; 1540 1541 struct numa_stats src_stats, dst_stats; 1542 1543 int imbalance_pct; 1544 int dist; 1545 1546 struct task_struct *best_task; 1547 long best_imp; 1548 int best_cpu; 1549 }; 1550 1551 static unsigned long cpu_load(struct rq *rq); 1552 static unsigned long cpu_util(int cpu); 1553 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running); 1554 1555 static inline enum 1556 numa_type numa_classify(unsigned int imbalance_pct, 1557 struct numa_stats *ns) 1558 { 1559 if ((ns->nr_running > ns->weight) && 1560 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct))) 1561 return node_overloaded; 1562 1563 if ((ns->nr_running < ns->weight) || 1564 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct))) 1565 return node_has_spare; 1566 1567 return node_fully_busy; 1568 } 1569 1570 #ifdef CONFIG_SCHED_SMT 1571 /* Forward declarations of select_idle_sibling helpers */ 1572 static inline bool test_idle_cores(int cpu, bool def); 1573 static inline int numa_idle_core(int idle_core, int cpu) 1574 { 1575 if (!static_branch_likely(&sched_smt_present) || 1576 idle_core >= 0 || !test_idle_cores(cpu, false)) 1577 return idle_core; 1578 1579 /* 1580 * Prefer cores instead of packing HT siblings 1581 * and triggering future load balancing. 1582 */ 1583 if (is_core_idle(cpu)) 1584 idle_core = cpu; 1585 1586 return idle_core; 1587 } 1588 #else 1589 static inline int numa_idle_core(int idle_core, int cpu) 1590 { 1591 return idle_core; 1592 } 1593 #endif 1594 1595 /* 1596 * Gather all necessary information to make NUMA balancing placement 1597 * decisions that are compatible with standard load balancer. This 1598 * borrows code and logic from update_sg_lb_stats but sharing a 1599 * common implementation is impractical. 1600 */ 1601 static void update_numa_stats(struct task_numa_env *env, 1602 struct numa_stats *ns, int nid, 1603 bool find_idle) 1604 { 1605 int cpu, idle_core = -1; 1606 1607 memset(ns, 0, sizeof(*ns)); 1608 ns->idle_cpu = -1; 1609 1610 rcu_read_lock(); 1611 for_each_cpu(cpu, cpumask_of_node(nid)) { 1612 struct rq *rq = cpu_rq(cpu); 1613 1614 ns->load += cpu_load(rq); 1615 ns->util += cpu_util(cpu); 1616 ns->nr_running += rq->cfs.h_nr_running; 1617 ns->compute_capacity += capacity_of(cpu); 1618 1619 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1620 if (READ_ONCE(rq->numa_migrate_on) || 1621 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1622 continue; 1623 1624 if (ns->idle_cpu == -1) 1625 ns->idle_cpu = cpu; 1626 1627 idle_core = numa_idle_core(idle_core, cpu); 1628 } 1629 } 1630 rcu_read_unlock(); 1631 1632 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1633 1634 ns->node_type = numa_classify(env->imbalance_pct, ns); 1635 1636 if (idle_core >= 0) 1637 ns->idle_cpu = idle_core; 1638 } 1639 1640 static void task_numa_assign(struct task_numa_env *env, 1641 struct task_struct *p, long imp) 1642 { 1643 struct rq *rq = cpu_rq(env->dst_cpu); 1644 1645 /* Check if run-queue part of active NUMA balance. */ 1646 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1647 int cpu; 1648 int start = env->dst_cpu; 1649 1650 /* Find alternative idle CPU. */ 1651 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1652 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1653 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1654 continue; 1655 } 1656 1657 env->dst_cpu = cpu; 1658 rq = cpu_rq(env->dst_cpu); 1659 if (!xchg(&rq->numa_migrate_on, 1)) 1660 goto assign; 1661 } 1662 1663 /* Failed to find an alternative idle CPU */ 1664 return; 1665 } 1666 1667 assign: 1668 /* 1669 * Clear previous best_cpu/rq numa-migrate flag, since task now 1670 * found a better CPU to move/swap. 1671 */ 1672 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1673 rq = cpu_rq(env->best_cpu); 1674 WRITE_ONCE(rq->numa_migrate_on, 0); 1675 } 1676 1677 if (env->best_task) 1678 put_task_struct(env->best_task); 1679 if (p) 1680 get_task_struct(p); 1681 1682 env->best_task = p; 1683 env->best_imp = imp; 1684 env->best_cpu = env->dst_cpu; 1685 } 1686 1687 static bool load_too_imbalanced(long src_load, long dst_load, 1688 struct task_numa_env *env) 1689 { 1690 long imb, old_imb; 1691 long orig_src_load, orig_dst_load; 1692 long src_capacity, dst_capacity; 1693 1694 /* 1695 * The load is corrected for the CPU capacity available on each node. 1696 * 1697 * src_load dst_load 1698 * ------------ vs --------- 1699 * src_capacity dst_capacity 1700 */ 1701 src_capacity = env->src_stats.compute_capacity; 1702 dst_capacity = env->dst_stats.compute_capacity; 1703 1704 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1705 1706 orig_src_load = env->src_stats.load; 1707 orig_dst_load = env->dst_stats.load; 1708 1709 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1710 1711 /* Would this change make things worse? */ 1712 return (imb > old_imb); 1713 } 1714 1715 /* 1716 * Maximum NUMA importance can be 1998 (2*999); 1717 * SMALLIMP @ 30 would be close to 1998/64. 1718 * Used to deter task migration. 1719 */ 1720 #define SMALLIMP 30 1721 1722 /* 1723 * This checks if the overall compute and NUMA accesses of the system would 1724 * be improved if the source tasks was migrated to the target dst_cpu taking 1725 * into account that it might be best if task running on the dst_cpu should 1726 * be exchanged with the source task 1727 */ 1728 static bool task_numa_compare(struct task_numa_env *env, 1729 long taskimp, long groupimp, bool maymove) 1730 { 1731 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1732 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1733 long imp = p_ng ? groupimp : taskimp; 1734 struct task_struct *cur; 1735 long src_load, dst_load; 1736 int dist = env->dist; 1737 long moveimp = imp; 1738 long load; 1739 bool stopsearch = false; 1740 1741 if (READ_ONCE(dst_rq->numa_migrate_on)) 1742 return false; 1743 1744 rcu_read_lock(); 1745 cur = rcu_dereference(dst_rq->curr); 1746 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1747 cur = NULL; 1748 1749 /* 1750 * Because we have preemption enabled we can get migrated around and 1751 * end try selecting ourselves (current == env->p) as a swap candidate. 1752 */ 1753 if (cur == env->p) { 1754 stopsearch = true; 1755 goto unlock; 1756 } 1757 1758 if (!cur) { 1759 if (maymove && moveimp >= env->best_imp) 1760 goto assign; 1761 else 1762 goto unlock; 1763 } 1764 1765 /* Skip this swap candidate if cannot move to the source cpu. */ 1766 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1767 goto unlock; 1768 1769 /* 1770 * Skip this swap candidate if it is not moving to its preferred 1771 * node and the best task is. 1772 */ 1773 if (env->best_task && 1774 env->best_task->numa_preferred_nid == env->src_nid && 1775 cur->numa_preferred_nid != env->src_nid) { 1776 goto unlock; 1777 } 1778 1779 /* 1780 * "imp" is the fault differential for the source task between the 1781 * source and destination node. Calculate the total differential for 1782 * the source task and potential destination task. The more negative 1783 * the value is, the more remote accesses that would be expected to 1784 * be incurred if the tasks were swapped. 1785 * 1786 * If dst and source tasks are in the same NUMA group, or not 1787 * in any group then look only at task weights. 1788 */ 1789 cur_ng = rcu_dereference(cur->numa_group); 1790 if (cur_ng == p_ng) { 1791 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1792 task_weight(cur, env->dst_nid, dist); 1793 /* 1794 * Add some hysteresis to prevent swapping the 1795 * tasks within a group over tiny differences. 1796 */ 1797 if (cur_ng) 1798 imp -= imp / 16; 1799 } else { 1800 /* 1801 * Compare the group weights. If a task is all by itself 1802 * (not part of a group), use the task weight instead. 1803 */ 1804 if (cur_ng && p_ng) 1805 imp += group_weight(cur, env->src_nid, dist) - 1806 group_weight(cur, env->dst_nid, dist); 1807 else 1808 imp += task_weight(cur, env->src_nid, dist) - 1809 task_weight(cur, env->dst_nid, dist); 1810 } 1811 1812 /* Discourage picking a task already on its preferred node */ 1813 if (cur->numa_preferred_nid == env->dst_nid) 1814 imp -= imp / 16; 1815 1816 /* 1817 * Encourage picking a task that moves to its preferred node. 1818 * This potentially makes imp larger than it's maximum of 1819 * 1998 (see SMALLIMP and task_weight for why) but in this 1820 * case, it does not matter. 1821 */ 1822 if (cur->numa_preferred_nid == env->src_nid) 1823 imp += imp / 8; 1824 1825 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1826 imp = moveimp; 1827 cur = NULL; 1828 goto assign; 1829 } 1830 1831 /* 1832 * Prefer swapping with a task moving to its preferred node over a 1833 * task that is not. 1834 */ 1835 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1836 env->best_task->numa_preferred_nid != env->src_nid) { 1837 goto assign; 1838 } 1839 1840 /* 1841 * If the NUMA importance is less than SMALLIMP, 1842 * task migration might only result in ping pong 1843 * of tasks and also hurt performance due to cache 1844 * misses. 1845 */ 1846 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1847 goto unlock; 1848 1849 /* 1850 * In the overloaded case, try and keep the load balanced. 1851 */ 1852 load = task_h_load(env->p) - task_h_load(cur); 1853 if (!load) 1854 goto assign; 1855 1856 dst_load = env->dst_stats.load + load; 1857 src_load = env->src_stats.load - load; 1858 1859 if (load_too_imbalanced(src_load, dst_load, env)) 1860 goto unlock; 1861 1862 assign: 1863 /* Evaluate an idle CPU for a task numa move. */ 1864 if (!cur) { 1865 int cpu = env->dst_stats.idle_cpu; 1866 1867 /* Nothing cached so current CPU went idle since the search. */ 1868 if (cpu < 0) 1869 cpu = env->dst_cpu; 1870 1871 /* 1872 * If the CPU is no longer truly idle and the previous best CPU 1873 * is, keep using it. 1874 */ 1875 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1876 idle_cpu(env->best_cpu)) { 1877 cpu = env->best_cpu; 1878 } 1879 1880 env->dst_cpu = cpu; 1881 } 1882 1883 task_numa_assign(env, cur, imp); 1884 1885 /* 1886 * If a move to idle is allowed because there is capacity or load 1887 * balance improves then stop the search. While a better swap 1888 * candidate may exist, a search is not free. 1889 */ 1890 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1891 stopsearch = true; 1892 1893 /* 1894 * If a swap candidate must be identified and the current best task 1895 * moves its preferred node then stop the search. 1896 */ 1897 if (!maymove && env->best_task && 1898 env->best_task->numa_preferred_nid == env->src_nid) { 1899 stopsearch = true; 1900 } 1901 unlock: 1902 rcu_read_unlock(); 1903 1904 return stopsearch; 1905 } 1906 1907 static void task_numa_find_cpu(struct task_numa_env *env, 1908 long taskimp, long groupimp) 1909 { 1910 bool maymove = false; 1911 int cpu; 1912 1913 /* 1914 * If dst node has spare capacity, then check if there is an 1915 * imbalance that would be overruled by the load balancer. 1916 */ 1917 if (env->dst_stats.node_type == node_has_spare) { 1918 unsigned int imbalance; 1919 int src_running, dst_running; 1920 1921 /* 1922 * Would movement cause an imbalance? Note that if src has 1923 * more running tasks that the imbalance is ignored as the 1924 * move improves the imbalance from the perspective of the 1925 * CPU load balancer. 1926 * */ 1927 src_running = env->src_stats.nr_running - 1; 1928 dst_running = env->dst_stats.nr_running + 1; 1929 imbalance = max(0, dst_running - src_running); 1930 imbalance = adjust_numa_imbalance(imbalance, src_running); 1931 1932 /* Use idle CPU if there is no imbalance */ 1933 if (!imbalance) { 1934 maymove = true; 1935 if (env->dst_stats.idle_cpu >= 0) { 1936 env->dst_cpu = env->dst_stats.idle_cpu; 1937 task_numa_assign(env, NULL, 0); 1938 return; 1939 } 1940 } 1941 } else { 1942 long src_load, dst_load, load; 1943 /* 1944 * If the improvement from just moving env->p direction is better 1945 * than swapping tasks around, check if a move is possible. 1946 */ 1947 load = task_h_load(env->p); 1948 dst_load = env->dst_stats.load + load; 1949 src_load = env->src_stats.load - load; 1950 maymove = !load_too_imbalanced(src_load, dst_load, env); 1951 } 1952 1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1954 /* Skip this CPU if the source task cannot migrate */ 1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1956 continue; 1957 1958 env->dst_cpu = cpu; 1959 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1960 break; 1961 } 1962 } 1963 1964 static int task_numa_migrate(struct task_struct *p) 1965 { 1966 struct task_numa_env env = { 1967 .p = p, 1968 1969 .src_cpu = task_cpu(p), 1970 .src_nid = task_node(p), 1971 1972 .imbalance_pct = 112, 1973 1974 .best_task = NULL, 1975 .best_imp = 0, 1976 .best_cpu = -1, 1977 }; 1978 unsigned long taskweight, groupweight; 1979 struct sched_domain *sd; 1980 long taskimp, groupimp; 1981 struct numa_group *ng; 1982 struct rq *best_rq; 1983 int nid, ret, dist; 1984 1985 /* 1986 * Pick the lowest SD_NUMA domain, as that would have the smallest 1987 * imbalance and would be the first to start moving tasks about. 1988 * 1989 * And we want to avoid any moving of tasks about, as that would create 1990 * random movement of tasks -- counter the numa conditions we're trying 1991 * to satisfy here. 1992 */ 1993 rcu_read_lock(); 1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1995 if (sd) 1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1997 rcu_read_unlock(); 1998 1999 /* 2000 * Cpusets can break the scheduler domain tree into smaller 2001 * balance domains, some of which do not cross NUMA boundaries. 2002 * Tasks that are "trapped" in such domains cannot be migrated 2003 * elsewhere, so there is no point in (re)trying. 2004 */ 2005 if (unlikely(!sd)) { 2006 sched_setnuma(p, task_node(p)); 2007 return -EINVAL; 2008 } 2009 2010 env.dst_nid = p->numa_preferred_nid; 2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2012 taskweight = task_weight(p, env.src_nid, dist); 2013 groupweight = group_weight(p, env.src_nid, dist); 2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2018 2019 /* Try to find a spot on the preferred nid. */ 2020 task_numa_find_cpu(&env, taskimp, groupimp); 2021 2022 /* 2023 * Look at other nodes in these cases: 2024 * - there is no space available on the preferred_nid 2025 * - the task is part of a numa_group that is interleaved across 2026 * multiple NUMA nodes; in order to better consolidate the group, 2027 * we need to check other locations. 2028 */ 2029 ng = deref_curr_numa_group(p); 2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2031 for_each_online_node(nid) { 2032 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2033 continue; 2034 2035 dist = node_distance(env.src_nid, env.dst_nid); 2036 if (sched_numa_topology_type == NUMA_BACKPLANE && 2037 dist != env.dist) { 2038 taskweight = task_weight(p, env.src_nid, dist); 2039 groupweight = group_weight(p, env.src_nid, dist); 2040 } 2041 2042 /* Only consider nodes where both task and groups benefit */ 2043 taskimp = task_weight(p, nid, dist) - taskweight; 2044 groupimp = group_weight(p, nid, dist) - groupweight; 2045 if (taskimp < 0 && groupimp < 0) 2046 continue; 2047 2048 env.dist = dist; 2049 env.dst_nid = nid; 2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2051 task_numa_find_cpu(&env, taskimp, groupimp); 2052 } 2053 } 2054 2055 /* 2056 * If the task is part of a workload that spans multiple NUMA nodes, 2057 * and is migrating into one of the workload's active nodes, remember 2058 * this node as the task's preferred numa node, so the workload can 2059 * settle down. 2060 * A task that migrated to a second choice node will be better off 2061 * trying for a better one later. Do not set the preferred node here. 2062 */ 2063 if (ng) { 2064 if (env.best_cpu == -1) 2065 nid = env.src_nid; 2066 else 2067 nid = cpu_to_node(env.best_cpu); 2068 2069 if (nid != p->numa_preferred_nid) 2070 sched_setnuma(p, nid); 2071 } 2072 2073 /* No better CPU than the current one was found. */ 2074 if (env.best_cpu == -1) { 2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2076 return -EAGAIN; 2077 } 2078 2079 best_rq = cpu_rq(env.best_cpu); 2080 if (env.best_task == NULL) { 2081 ret = migrate_task_to(p, env.best_cpu); 2082 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2083 if (ret != 0) 2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2085 return ret; 2086 } 2087 2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2089 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2090 2091 if (ret != 0) 2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2093 put_task_struct(env.best_task); 2094 return ret; 2095 } 2096 2097 /* Attempt to migrate a task to a CPU on the preferred node. */ 2098 static void numa_migrate_preferred(struct task_struct *p) 2099 { 2100 unsigned long interval = HZ; 2101 2102 /* This task has no NUMA fault statistics yet */ 2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2104 return; 2105 2106 /* Periodically retry migrating the task to the preferred node */ 2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2108 p->numa_migrate_retry = jiffies + interval; 2109 2110 /* Success if task is already running on preferred CPU */ 2111 if (task_node(p) == p->numa_preferred_nid) 2112 return; 2113 2114 /* Otherwise, try migrate to a CPU on the preferred node */ 2115 task_numa_migrate(p); 2116 } 2117 2118 /* 2119 * Find out how many nodes on the workload is actively running on. Do this by 2120 * tracking the nodes from which NUMA hinting faults are triggered. This can 2121 * be different from the set of nodes where the workload's memory is currently 2122 * located. 2123 */ 2124 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2125 { 2126 unsigned long faults, max_faults = 0; 2127 int nid, active_nodes = 0; 2128 2129 for_each_online_node(nid) { 2130 faults = group_faults_cpu(numa_group, nid); 2131 if (faults > max_faults) 2132 max_faults = faults; 2133 } 2134 2135 for_each_online_node(nid) { 2136 faults = group_faults_cpu(numa_group, nid); 2137 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2138 active_nodes++; 2139 } 2140 2141 numa_group->max_faults_cpu = max_faults; 2142 numa_group->active_nodes = active_nodes; 2143 } 2144 2145 /* 2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2147 * increments. The more local the fault statistics are, the higher the scan 2148 * period will be for the next scan window. If local/(local+remote) ratio is 2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2150 * the scan period will decrease. Aim for 70% local accesses. 2151 */ 2152 #define NUMA_PERIOD_SLOTS 10 2153 #define NUMA_PERIOD_THRESHOLD 7 2154 2155 /* 2156 * Increase the scan period (slow down scanning) if the majority of 2157 * our memory is already on our local node, or if the majority of 2158 * the page accesses are shared with other processes. 2159 * Otherwise, decrease the scan period. 2160 */ 2161 static void update_task_scan_period(struct task_struct *p, 2162 unsigned long shared, unsigned long private) 2163 { 2164 unsigned int period_slot; 2165 int lr_ratio, ps_ratio; 2166 int diff; 2167 2168 unsigned long remote = p->numa_faults_locality[0]; 2169 unsigned long local = p->numa_faults_locality[1]; 2170 2171 /* 2172 * If there were no record hinting faults then either the task is 2173 * completely idle or all activity is areas that are not of interest 2174 * to automatic numa balancing. Related to that, if there were failed 2175 * migration then it implies we are migrating too quickly or the local 2176 * node is overloaded. In either case, scan slower 2177 */ 2178 if (local + shared == 0 || p->numa_faults_locality[2]) { 2179 p->numa_scan_period = min(p->numa_scan_period_max, 2180 p->numa_scan_period << 1); 2181 2182 p->mm->numa_next_scan = jiffies + 2183 msecs_to_jiffies(p->numa_scan_period); 2184 2185 return; 2186 } 2187 2188 /* 2189 * Prepare to scale scan period relative to the current period. 2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2193 */ 2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2197 2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2199 /* 2200 * Most memory accesses are local. There is no need to 2201 * do fast NUMA scanning, since memory is already local. 2202 */ 2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2204 if (!slot) 2205 slot = 1; 2206 diff = slot * period_slot; 2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2208 /* 2209 * Most memory accesses are shared with other tasks. 2210 * There is no point in continuing fast NUMA scanning, 2211 * since other tasks may just move the memory elsewhere. 2212 */ 2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2214 if (!slot) 2215 slot = 1; 2216 diff = slot * period_slot; 2217 } else { 2218 /* 2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2220 * yet they are not on the local NUMA node. Speed up 2221 * NUMA scanning to get the memory moved over. 2222 */ 2223 int ratio = max(lr_ratio, ps_ratio); 2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2225 } 2226 2227 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2228 task_scan_min(p), task_scan_max(p)); 2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2230 } 2231 2232 /* 2233 * Get the fraction of time the task has been running since the last 2234 * NUMA placement cycle. The scheduler keeps similar statistics, but 2235 * decays those on a 32ms period, which is orders of magnitude off 2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2237 * stats only if the task is so new there are no NUMA statistics yet. 2238 */ 2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2240 { 2241 u64 runtime, delta, now; 2242 /* Use the start of this time slice to avoid calculations. */ 2243 now = p->se.exec_start; 2244 runtime = p->se.sum_exec_runtime; 2245 2246 if (p->last_task_numa_placement) { 2247 delta = runtime - p->last_sum_exec_runtime; 2248 *period = now - p->last_task_numa_placement; 2249 2250 /* Avoid time going backwards, prevent potential divide error: */ 2251 if (unlikely((s64)*period < 0)) 2252 *period = 0; 2253 } else { 2254 delta = p->se.avg.load_sum; 2255 *period = LOAD_AVG_MAX; 2256 } 2257 2258 p->last_sum_exec_runtime = runtime; 2259 p->last_task_numa_placement = now; 2260 2261 return delta; 2262 } 2263 2264 /* 2265 * Determine the preferred nid for a task in a numa_group. This needs to 2266 * be done in a way that produces consistent results with group_weight, 2267 * otherwise workloads might not converge. 2268 */ 2269 static int preferred_group_nid(struct task_struct *p, int nid) 2270 { 2271 nodemask_t nodes; 2272 int dist; 2273 2274 /* Direct connections between all NUMA nodes. */ 2275 if (sched_numa_topology_type == NUMA_DIRECT) 2276 return nid; 2277 2278 /* 2279 * On a system with glueless mesh NUMA topology, group_weight 2280 * scores nodes according to the number of NUMA hinting faults on 2281 * both the node itself, and on nearby nodes. 2282 */ 2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2284 unsigned long score, max_score = 0; 2285 int node, max_node = nid; 2286 2287 dist = sched_max_numa_distance; 2288 2289 for_each_online_node(node) { 2290 score = group_weight(p, node, dist); 2291 if (score > max_score) { 2292 max_score = score; 2293 max_node = node; 2294 } 2295 } 2296 return max_node; 2297 } 2298 2299 /* 2300 * Finding the preferred nid in a system with NUMA backplane 2301 * interconnect topology is more involved. The goal is to locate 2302 * tasks from numa_groups near each other in the system, and 2303 * untangle workloads from different sides of the system. This requires 2304 * searching down the hierarchy of node groups, recursively searching 2305 * inside the highest scoring group of nodes. The nodemask tricks 2306 * keep the complexity of the search down. 2307 */ 2308 nodes = node_online_map; 2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2310 unsigned long max_faults = 0; 2311 nodemask_t max_group = NODE_MASK_NONE; 2312 int a, b; 2313 2314 /* Are there nodes at this distance from each other? */ 2315 if (!find_numa_distance(dist)) 2316 continue; 2317 2318 for_each_node_mask(a, nodes) { 2319 unsigned long faults = 0; 2320 nodemask_t this_group; 2321 nodes_clear(this_group); 2322 2323 /* Sum group's NUMA faults; includes a==b case. */ 2324 for_each_node_mask(b, nodes) { 2325 if (node_distance(a, b) < dist) { 2326 faults += group_faults(p, b); 2327 node_set(b, this_group); 2328 node_clear(b, nodes); 2329 } 2330 } 2331 2332 /* Remember the top group. */ 2333 if (faults > max_faults) { 2334 max_faults = faults; 2335 max_group = this_group; 2336 /* 2337 * subtle: at the smallest distance there is 2338 * just one node left in each "group", the 2339 * winner is the preferred nid. 2340 */ 2341 nid = a; 2342 } 2343 } 2344 /* Next round, evaluate the nodes within max_group. */ 2345 if (!max_faults) 2346 break; 2347 nodes = max_group; 2348 } 2349 return nid; 2350 } 2351 2352 static void task_numa_placement(struct task_struct *p) 2353 { 2354 int seq, nid, max_nid = NUMA_NO_NODE; 2355 unsigned long max_faults = 0; 2356 unsigned long fault_types[2] = { 0, 0 }; 2357 unsigned long total_faults; 2358 u64 runtime, period; 2359 spinlock_t *group_lock = NULL; 2360 struct numa_group *ng; 2361 2362 /* 2363 * The p->mm->numa_scan_seq field gets updated without 2364 * exclusive access. Use READ_ONCE() here to ensure 2365 * that the field is read in a single access: 2366 */ 2367 seq = READ_ONCE(p->mm->numa_scan_seq); 2368 if (p->numa_scan_seq == seq) 2369 return; 2370 p->numa_scan_seq = seq; 2371 p->numa_scan_period_max = task_scan_max(p); 2372 2373 total_faults = p->numa_faults_locality[0] + 2374 p->numa_faults_locality[1]; 2375 runtime = numa_get_avg_runtime(p, &period); 2376 2377 /* If the task is part of a group prevent parallel updates to group stats */ 2378 ng = deref_curr_numa_group(p); 2379 if (ng) { 2380 group_lock = &ng->lock; 2381 spin_lock_irq(group_lock); 2382 } 2383 2384 /* Find the node with the highest number of faults */ 2385 for_each_online_node(nid) { 2386 /* Keep track of the offsets in numa_faults array */ 2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2388 unsigned long faults = 0, group_faults = 0; 2389 int priv; 2390 2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2392 long diff, f_diff, f_weight; 2393 2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2398 2399 /* Decay existing window, copy faults since last scan */ 2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2401 fault_types[priv] += p->numa_faults[membuf_idx]; 2402 p->numa_faults[membuf_idx] = 0; 2403 2404 /* 2405 * Normalize the faults_from, so all tasks in a group 2406 * count according to CPU use, instead of by the raw 2407 * number of faults. Tasks with little runtime have 2408 * little over-all impact on throughput, and thus their 2409 * faults are less important. 2410 */ 2411 f_weight = div64_u64(runtime << 16, period + 1); 2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2413 (total_faults + 1); 2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2415 p->numa_faults[cpubuf_idx] = 0; 2416 2417 p->numa_faults[mem_idx] += diff; 2418 p->numa_faults[cpu_idx] += f_diff; 2419 faults += p->numa_faults[mem_idx]; 2420 p->total_numa_faults += diff; 2421 if (ng) { 2422 /* 2423 * safe because we can only change our own group 2424 * 2425 * mem_idx represents the offset for a given 2426 * nid and priv in a specific region because it 2427 * is at the beginning of the numa_faults array. 2428 */ 2429 ng->faults[mem_idx] += diff; 2430 ng->faults_cpu[mem_idx] += f_diff; 2431 ng->total_faults += diff; 2432 group_faults += ng->faults[mem_idx]; 2433 } 2434 } 2435 2436 if (!ng) { 2437 if (faults > max_faults) { 2438 max_faults = faults; 2439 max_nid = nid; 2440 } 2441 } else if (group_faults > max_faults) { 2442 max_faults = group_faults; 2443 max_nid = nid; 2444 } 2445 } 2446 2447 if (ng) { 2448 numa_group_count_active_nodes(ng); 2449 spin_unlock_irq(group_lock); 2450 max_nid = preferred_group_nid(p, max_nid); 2451 } 2452 2453 if (max_faults) { 2454 /* Set the new preferred node */ 2455 if (max_nid != p->numa_preferred_nid) 2456 sched_setnuma(p, max_nid); 2457 } 2458 2459 update_task_scan_period(p, fault_types[0], fault_types[1]); 2460 } 2461 2462 static inline int get_numa_group(struct numa_group *grp) 2463 { 2464 return refcount_inc_not_zero(&grp->refcount); 2465 } 2466 2467 static inline void put_numa_group(struct numa_group *grp) 2468 { 2469 if (refcount_dec_and_test(&grp->refcount)) 2470 kfree_rcu(grp, rcu); 2471 } 2472 2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2474 int *priv) 2475 { 2476 struct numa_group *grp, *my_grp; 2477 struct task_struct *tsk; 2478 bool join = false; 2479 int cpu = cpupid_to_cpu(cpupid); 2480 int i; 2481 2482 if (unlikely(!deref_curr_numa_group(p))) { 2483 unsigned int size = sizeof(struct numa_group) + 2484 4*nr_node_ids*sizeof(unsigned long); 2485 2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2487 if (!grp) 2488 return; 2489 2490 refcount_set(&grp->refcount, 1); 2491 grp->active_nodes = 1; 2492 grp->max_faults_cpu = 0; 2493 spin_lock_init(&grp->lock); 2494 grp->gid = p->pid; 2495 /* Second half of the array tracks nids where faults happen */ 2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2497 nr_node_ids; 2498 2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2500 grp->faults[i] = p->numa_faults[i]; 2501 2502 grp->total_faults = p->total_numa_faults; 2503 2504 grp->nr_tasks++; 2505 rcu_assign_pointer(p->numa_group, grp); 2506 } 2507 2508 rcu_read_lock(); 2509 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2510 2511 if (!cpupid_match_pid(tsk, cpupid)) 2512 goto no_join; 2513 2514 grp = rcu_dereference(tsk->numa_group); 2515 if (!grp) 2516 goto no_join; 2517 2518 my_grp = deref_curr_numa_group(p); 2519 if (grp == my_grp) 2520 goto no_join; 2521 2522 /* 2523 * Only join the other group if its bigger; if we're the bigger group, 2524 * the other task will join us. 2525 */ 2526 if (my_grp->nr_tasks > grp->nr_tasks) 2527 goto no_join; 2528 2529 /* 2530 * Tie-break on the grp address. 2531 */ 2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2533 goto no_join; 2534 2535 /* Always join threads in the same process. */ 2536 if (tsk->mm == current->mm) 2537 join = true; 2538 2539 /* Simple filter to avoid false positives due to PID collisions */ 2540 if (flags & TNF_SHARED) 2541 join = true; 2542 2543 /* Update priv based on whether false sharing was detected */ 2544 *priv = !join; 2545 2546 if (join && !get_numa_group(grp)) 2547 goto no_join; 2548 2549 rcu_read_unlock(); 2550 2551 if (!join) 2552 return; 2553 2554 BUG_ON(irqs_disabled()); 2555 double_lock_irq(&my_grp->lock, &grp->lock); 2556 2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2558 my_grp->faults[i] -= p->numa_faults[i]; 2559 grp->faults[i] += p->numa_faults[i]; 2560 } 2561 my_grp->total_faults -= p->total_numa_faults; 2562 grp->total_faults += p->total_numa_faults; 2563 2564 my_grp->nr_tasks--; 2565 grp->nr_tasks++; 2566 2567 spin_unlock(&my_grp->lock); 2568 spin_unlock_irq(&grp->lock); 2569 2570 rcu_assign_pointer(p->numa_group, grp); 2571 2572 put_numa_group(my_grp); 2573 return; 2574 2575 no_join: 2576 rcu_read_unlock(); 2577 return; 2578 } 2579 2580 /* 2581 * Get rid of NUMA staticstics associated with a task (either current or dead). 2582 * If @final is set, the task is dead and has reached refcount zero, so we can 2583 * safely free all relevant data structures. Otherwise, there might be 2584 * concurrent reads from places like load balancing and procfs, and we should 2585 * reset the data back to default state without freeing ->numa_faults. 2586 */ 2587 void task_numa_free(struct task_struct *p, bool final) 2588 { 2589 /* safe: p either is current or is being freed by current */ 2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2591 unsigned long *numa_faults = p->numa_faults; 2592 unsigned long flags; 2593 int i; 2594 2595 if (!numa_faults) 2596 return; 2597 2598 if (grp) { 2599 spin_lock_irqsave(&grp->lock, flags); 2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2601 grp->faults[i] -= p->numa_faults[i]; 2602 grp->total_faults -= p->total_numa_faults; 2603 2604 grp->nr_tasks--; 2605 spin_unlock_irqrestore(&grp->lock, flags); 2606 RCU_INIT_POINTER(p->numa_group, NULL); 2607 put_numa_group(grp); 2608 } 2609 2610 if (final) { 2611 p->numa_faults = NULL; 2612 kfree(numa_faults); 2613 } else { 2614 p->total_numa_faults = 0; 2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2616 numa_faults[i] = 0; 2617 } 2618 } 2619 2620 /* 2621 * Got a PROT_NONE fault for a page on @node. 2622 */ 2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2624 { 2625 struct task_struct *p = current; 2626 bool migrated = flags & TNF_MIGRATED; 2627 int cpu_node = task_node(current); 2628 int local = !!(flags & TNF_FAULT_LOCAL); 2629 struct numa_group *ng; 2630 int priv; 2631 2632 if (!static_branch_likely(&sched_numa_balancing)) 2633 return; 2634 2635 /* for example, ksmd faulting in a user's mm */ 2636 if (!p->mm) 2637 return; 2638 2639 /* Allocate buffer to track faults on a per-node basis */ 2640 if (unlikely(!p->numa_faults)) { 2641 int size = sizeof(*p->numa_faults) * 2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2643 2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2645 if (!p->numa_faults) 2646 return; 2647 2648 p->total_numa_faults = 0; 2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2650 } 2651 2652 /* 2653 * First accesses are treated as private, otherwise consider accesses 2654 * to be private if the accessing pid has not changed 2655 */ 2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2657 priv = 1; 2658 } else { 2659 priv = cpupid_match_pid(p, last_cpupid); 2660 if (!priv && !(flags & TNF_NO_GROUP)) 2661 task_numa_group(p, last_cpupid, flags, &priv); 2662 } 2663 2664 /* 2665 * If a workload spans multiple NUMA nodes, a shared fault that 2666 * occurs wholly within the set of nodes that the workload is 2667 * actively using should be counted as local. This allows the 2668 * scan rate to slow down when a workload has settled down. 2669 */ 2670 ng = deref_curr_numa_group(p); 2671 if (!priv && !local && ng && ng->active_nodes > 1 && 2672 numa_is_active_node(cpu_node, ng) && 2673 numa_is_active_node(mem_node, ng)) 2674 local = 1; 2675 2676 /* 2677 * Retry to migrate task to preferred node periodically, in case it 2678 * previously failed, or the scheduler moved us. 2679 */ 2680 if (time_after(jiffies, p->numa_migrate_retry)) { 2681 task_numa_placement(p); 2682 numa_migrate_preferred(p); 2683 } 2684 2685 if (migrated) 2686 p->numa_pages_migrated += pages; 2687 if (flags & TNF_MIGRATE_FAIL) 2688 p->numa_faults_locality[2] += pages; 2689 2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2692 p->numa_faults_locality[local] += pages; 2693 } 2694 2695 static void reset_ptenuma_scan(struct task_struct *p) 2696 { 2697 /* 2698 * We only did a read acquisition of the mmap sem, so 2699 * p->mm->numa_scan_seq is written to without exclusive access 2700 * and the update is not guaranteed to be atomic. That's not 2701 * much of an issue though, since this is just used for 2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2703 * expensive, to avoid any form of compiler optimizations: 2704 */ 2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2706 p->mm->numa_scan_offset = 0; 2707 } 2708 2709 /* 2710 * The expensive part of numa migration is done from task_work context. 2711 * Triggered from task_tick_numa(). 2712 */ 2713 static void task_numa_work(struct callback_head *work) 2714 { 2715 unsigned long migrate, next_scan, now = jiffies; 2716 struct task_struct *p = current; 2717 struct mm_struct *mm = p->mm; 2718 u64 runtime = p->se.sum_exec_runtime; 2719 struct vm_area_struct *vma; 2720 unsigned long start, end; 2721 unsigned long nr_pte_updates = 0; 2722 long pages, virtpages; 2723 2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2725 2726 work->next = work; 2727 /* 2728 * Who cares about NUMA placement when they're dying. 2729 * 2730 * NOTE: make sure not to dereference p->mm before this check, 2731 * exit_task_work() happens _after_ exit_mm() so we could be called 2732 * without p->mm even though we still had it when we enqueued this 2733 * work. 2734 */ 2735 if (p->flags & PF_EXITING) 2736 return; 2737 2738 if (!mm->numa_next_scan) { 2739 mm->numa_next_scan = now + 2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2741 } 2742 2743 /* 2744 * Enforce maximal scan/migration frequency.. 2745 */ 2746 migrate = mm->numa_next_scan; 2747 if (time_before(now, migrate)) 2748 return; 2749 2750 if (p->numa_scan_period == 0) { 2751 p->numa_scan_period_max = task_scan_max(p); 2752 p->numa_scan_period = task_scan_start(p); 2753 } 2754 2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2757 return; 2758 2759 /* 2760 * Delay this task enough that another task of this mm will likely win 2761 * the next time around. 2762 */ 2763 p->node_stamp += 2 * TICK_NSEC; 2764 2765 start = mm->numa_scan_offset; 2766 pages = sysctl_numa_balancing_scan_size; 2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2768 virtpages = pages * 8; /* Scan up to this much virtual space */ 2769 if (!pages) 2770 return; 2771 2772 2773 if (!down_read_trylock(&mm->mmap_sem)) 2774 return; 2775 vma = find_vma(mm, start); 2776 if (!vma) { 2777 reset_ptenuma_scan(p); 2778 start = 0; 2779 vma = mm->mmap; 2780 } 2781 for (; vma; vma = vma->vm_next) { 2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2784 continue; 2785 } 2786 2787 /* 2788 * Shared library pages mapped by multiple processes are not 2789 * migrated as it is expected they are cache replicated. Avoid 2790 * hinting faults in read-only file-backed mappings or the vdso 2791 * as migrating the pages will be of marginal benefit. 2792 */ 2793 if (!vma->vm_mm || 2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2795 continue; 2796 2797 /* 2798 * Skip inaccessible VMAs to avoid any confusion between 2799 * PROT_NONE and NUMA hinting ptes 2800 */ 2801 if (!vma_is_accessible(vma)) 2802 continue; 2803 2804 do { 2805 start = max(start, vma->vm_start); 2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2807 end = min(end, vma->vm_end); 2808 nr_pte_updates = change_prot_numa(vma, start, end); 2809 2810 /* 2811 * Try to scan sysctl_numa_balancing_size worth of 2812 * hpages that have at least one present PTE that 2813 * is not already pte-numa. If the VMA contains 2814 * areas that are unused or already full of prot_numa 2815 * PTEs, scan up to virtpages, to skip through those 2816 * areas faster. 2817 */ 2818 if (nr_pte_updates) 2819 pages -= (end - start) >> PAGE_SHIFT; 2820 virtpages -= (end - start) >> PAGE_SHIFT; 2821 2822 start = end; 2823 if (pages <= 0 || virtpages <= 0) 2824 goto out; 2825 2826 cond_resched(); 2827 } while (end != vma->vm_end); 2828 } 2829 2830 out: 2831 /* 2832 * It is possible to reach the end of the VMA list but the last few 2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2834 * would find the !migratable VMA on the next scan but not reset the 2835 * scanner to the start so check it now. 2836 */ 2837 if (vma) 2838 mm->numa_scan_offset = start; 2839 else 2840 reset_ptenuma_scan(p); 2841 up_read(&mm->mmap_sem); 2842 2843 /* 2844 * Make sure tasks use at least 32x as much time to run other code 2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2846 * Usually update_task_scan_period slows down scanning enough; on an 2847 * overloaded system we need to limit overhead on a per task basis. 2848 */ 2849 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2850 u64 diff = p->se.sum_exec_runtime - runtime; 2851 p->node_stamp += 32 * diff; 2852 } 2853 } 2854 2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2856 { 2857 int mm_users = 0; 2858 struct mm_struct *mm = p->mm; 2859 2860 if (mm) { 2861 mm_users = atomic_read(&mm->mm_users); 2862 if (mm_users == 1) { 2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2864 mm->numa_scan_seq = 0; 2865 } 2866 } 2867 p->node_stamp = 0; 2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2870 /* Protect against double add, see task_tick_numa and task_numa_work */ 2871 p->numa_work.next = &p->numa_work; 2872 p->numa_faults = NULL; 2873 RCU_INIT_POINTER(p->numa_group, NULL); 2874 p->last_task_numa_placement = 0; 2875 p->last_sum_exec_runtime = 0; 2876 2877 init_task_work(&p->numa_work, task_numa_work); 2878 2879 /* New address space, reset the preferred nid */ 2880 if (!(clone_flags & CLONE_VM)) { 2881 p->numa_preferred_nid = NUMA_NO_NODE; 2882 return; 2883 } 2884 2885 /* 2886 * New thread, keep existing numa_preferred_nid which should be copied 2887 * already by arch_dup_task_struct but stagger when scans start. 2888 */ 2889 if (mm) { 2890 unsigned int delay; 2891 2892 delay = min_t(unsigned int, task_scan_max(current), 2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2894 delay += 2 * TICK_NSEC; 2895 p->node_stamp = delay; 2896 } 2897 } 2898 2899 /* 2900 * Drive the periodic memory faults.. 2901 */ 2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2903 { 2904 struct callback_head *work = &curr->numa_work; 2905 u64 period, now; 2906 2907 /* 2908 * We don't care about NUMA placement if we don't have memory. 2909 */ 2910 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2911 return; 2912 2913 /* 2914 * Using runtime rather than walltime has the dual advantage that 2915 * we (mostly) drive the selection from busy threads and that the 2916 * task needs to have done some actual work before we bother with 2917 * NUMA placement. 2918 */ 2919 now = curr->se.sum_exec_runtime; 2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2921 2922 if (now > curr->node_stamp + period) { 2923 if (!curr->node_stamp) 2924 curr->numa_scan_period = task_scan_start(curr); 2925 curr->node_stamp += period; 2926 2927 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2928 task_work_add(curr, work, true); 2929 } 2930 } 2931 2932 static void update_scan_period(struct task_struct *p, int new_cpu) 2933 { 2934 int src_nid = cpu_to_node(task_cpu(p)); 2935 int dst_nid = cpu_to_node(new_cpu); 2936 2937 if (!static_branch_likely(&sched_numa_balancing)) 2938 return; 2939 2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2941 return; 2942 2943 if (src_nid == dst_nid) 2944 return; 2945 2946 /* 2947 * Allow resets if faults have been trapped before one scan 2948 * has completed. This is most likely due to a new task that 2949 * is pulled cross-node due to wakeups or load balancing. 2950 */ 2951 if (p->numa_scan_seq) { 2952 /* 2953 * Avoid scan adjustments if moving to the preferred 2954 * node or if the task was not previously running on 2955 * the preferred node. 2956 */ 2957 if (dst_nid == p->numa_preferred_nid || 2958 (p->numa_preferred_nid != NUMA_NO_NODE && 2959 src_nid != p->numa_preferred_nid)) 2960 return; 2961 } 2962 2963 p->numa_scan_period = task_scan_start(p); 2964 } 2965 2966 #else 2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2968 { 2969 } 2970 2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2972 { 2973 } 2974 2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2976 { 2977 } 2978 2979 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2980 { 2981 } 2982 2983 #endif /* CONFIG_NUMA_BALANCING */ 2984 2985 static void 2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2987 { 2988 update_load_add(&cfs_rq->load, se->load.weight); 2989 #ifdef CONFIG_SMP 2990 if (entity_is_task(se)) { 2991 struct rq *rq = rq_of(cfs_rq); 2992 2993 account_numa_enqueue(rq, task_of(se)); 2994 list_add(&se->group_node, &rq->cfs_tasks); 2995 } 2996 #endif 2997 cfs_rq->nr_running++; 2998 } 2999 3000 static void 3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3002 { 3003 update_load_sub(&cfs_rq->load, se->load.weight); 3004 #ifdef CONFIG_SMP 3005 if (entity_is_task(se)) { 3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3007 list_del_init(&se->group_node); 3008 } 3009 #endif 3010 cfs_rq->nr_running--; 3011 } 3012 3013 /* 3014 * Signed add and clamp on underflow. 3015 * 3016 * Explicitly do a load-store to ensure the intermediate value never hits 3017 * memory. This allows lockless observations without ever seeing the negative 3018 * values. 3019 */ 3020 #define add_positive(_ptr, _val) do { \ 3021 typeof(_ptr) ptr = (_ptr); \ 3022 typeof(_val) val = (_val); \ 3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3024 \ 3025 res = var + val; \ 3026 \ 3027 if (val < 0 && res > var) \ 3028 res = 0; \ 3029 \ 3030 WRITE_ONCE(*ptr, res); \ 3031 } while (0) 3032 3033 /* 3034 * Unsigned subtract and clamp on underflow. 3035 * 3036 * Explicitly do a load-store to ensure the intermediate value never hits 3037 * memory. This allows lockless observations without ever seeing the negative 3038 * values. 3039 */ 3040 #define sub_positive(_ptr, _val) do { \ 3041 typeof(_ptr) ptr = (_ptr); \ 3042 typeof(*ptr) val = (_val); \ 3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3044 res = var - val; \ 3045 if (res > var) \ 3046 res = 0; \ 3047 WRITE_ONCE(*ptr, res); \ 3048 } while (0) 3049 3050 /* 3051 * Remove and clamp on negative, from a local variable. 3052 * 3053 * A variant of sub_positive(), which does not use explicit load-store 3054 * and is thus optimized for local variable updates. 3055 */ 3056 #define lsub_positive(_ptr, _val) do { \ 3057 typeof(_ptr) ptr = (_ptr); \ 3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3059 } while (0) 3060 3061 #ifdef CONFIG_SMP 3062 static inline void 3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3064 { 3065 cfs_rq->avg.load_avg += se->avg.load_avg; 3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3067 } 3068 3069 static inline void 3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3071 { 3072 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3073 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3074 } 3075 #else 3076 static inline void 3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3078 static inline void 3079 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3080 #endif 3081 3082 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3083 unsigned long weight) 3084 { 3085 if (se->on_rq) { 3086 /* commit outstanding execution time */ 3087 if (cfs_rq->curr == se) 3088 update_curr(cfs_rq); 3089 account_entity_dequeue(cfs_rq, se); 3090 } 3091 dequeue_load_avg(cfs_rq, se); 3092 3093 update_load_set(&se->load, weight); 3094 3095 #ifdef CONFIG_SMP 3096 do { 3097 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 3098 3099 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3100 } while (0); 3101 #endif 3102 3103 enqueue_load_avg(cfs_rq, se); 3104 if (se->on_rq) 3105 account_entity_enqueue(cfs_rq, se); 3106 3107 } 3108 3109 void reweight_task(struct task_struct *p, int prio) 3110 { 3111 struct sched_entity *se = &p->se; 3112 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3113 struct load_weight *load = &se->load; 3114 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3115 3116 reweight_entity(cfs_rq, se, weight); 3117 load->inv_weight = sched_prio_to_wmult[prio]; 3118 } 3119 3120 #ifdef CONFIG_FAIR_GROUP_SCHED 3121 #ifdef CONFIG_SMP 3122 /* 3123 * All this does is approximate the hierarchical proportion which includes that 3124 * global sum we all love to hate. 3125 * 3126 * That is, the weight of a group entity, is the proportional share of the 3127 * group weight based on the group runqueue weights. That is: 3128 * 3129 * tg->weight * grq->load.weight 3130 * ge->load.weight = ----------------------------- (1) 3131 * \Sum grq->load.weight 3132 * 3133 * Now, because computing that sum is prohibitively expensive to compute (been 3134 * there, done that) we approximate it with this average stuff. The average 3135 * moves slower and therefore the approximation is cheaper and more stable. 3136 * 3137 * So instead of the above, we substitute: 3138 * 3139 * grq->load.weight -> grq->avg.load_avg (2) 3140 * 3141 * which yields the following: 3142 * 3143 * tg->weight * grq->avg.load_avg 3144 * ge->load.weight = ------------------------------ (3) 3145 * tg->load_avg 3146 * 3147 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3148 * 3149 * That is shares_avg, and it is right (given the approximation (2)). 3150 * 3151 * The problem with it is that because the average is slow -- it was designed 3152 * to be exactly that of course -- this leads to transients in boundary 3153 * conditions. In specific, the case where the group was idle and we start the 3154 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3155 * yielding bad latency etc.. 3156 * 3157 * Now, in that special case (1) reduces to: 3158 * 3159 * tg->weight * grq->load.weight 3160 * ge->load.weight = ----------------------------- = tg->weight (4) 3161 * grp->load.weight 3162 * 3163 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3164 * 3165 * So what we do is modify our approximation (3) to approach (4) in the (near) 3166 * UP case, like: 3167 * 3168 * ge->load.weight = 3169 * 3170 * tg->weight * grq->load.weight 3171 * --------------------------------------------------- (5) 3172 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3173 * 3174 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3175 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3176 * 3177 * 3178 * tg->weight * grq->load.weight 3179 * ge->load.weight = ----------------------------- (6) 3180 * tg_load_avg' 3181 * 3182 * Where: 3183 * 3184 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3185 * max(grq->load.weight, grq->avg.load_avg) 3186 * 3187 * And that is shares_weight and is icky. In the (near) UP case it approaches 3188 * (4) while in the normal case it approaches (3). It consistently 3189 * overestimates the ge->load.weight and therefore: 3190 * 3191 * \Sum ge->load.weight >= tg->weight 3192 * 3193 * hence icky! 3194 */ 3195 static long calc_group_shares(struct cfs_rq *cfs_rq) 3196 { 3197 long tg_weight, tg_shares, load, shares; 3198 struct task_group *tg = cfs_rq->tg; 3199 3200 tg_shares = READ_ONCE(tg->shares); 3201 3202 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3203 3204 tg_weight = atomic_long_read(&tg->load_avg); 3205 3206 /* Ensure tg_weight >= load */ 3207 tg_weight -= cfs_rq->tg_load_avg_contrib; 3208 tg_weight += load; 3209 3210 shares = (tg_shares * load); 3211 if (tg_weight) 3212 shares /= tg_weight; 3213 3214 /* 3215 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3216 * of a group with small tg->shares value. It is a floor value which is 3217 * assigned as a minimum load.weight to the sched_entity representing 3218 * the group on a CPU. 3219 * 3220 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3221 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3222 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3223 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3224 * instead of 0. 3225 */ 3226 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3227 } 3228 #endif /* CONFIG_SMP */ 3229 3230 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3231 3232 /* 3233 * Recomputes the group entity based on the current state of its group 3234 * runqueue. 3235 */ 3236 static void update_cfs_group(struct sched_entity *se) 3237 { 3238 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3239 long shares; 3240 3241 if (!gcfs_rq) 3242 return; 3243 3244 if (throttled_hierarchy(gcfs_rq)) 3245 return; 3246 3247 #ifndef CONFIG_SMP 3248 shares = READ_ONCE(gcfs_rq->tg->shares); 3249 3250 if (likely(se->load.weight == shares)) 3251 return; 3252 #else 3253 shares = calc_group_shares(gcfs_rq); 3254 #endif 3255 3256 reweight_entity(cfs_rq_of(se), se, shares); 3257 } 3258 3259 #else /* CONFIG_FAIR_GROUP_SCHED */ 3260 static inline void update_cfs_group(struct sched_entity *se) 3261 { 3262 } 3263 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3264 3265 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3266 { 3267 struct rq *rq = rq_of(cfs_rq); 3268 3269 if (&rq->cfs == cfs_rq) { 3270 /* 3271 * There are a few boundary cases this might miss but it should 3272 * get called often enough that that should (hopefully) not be 3273 * a real problem. 3274 * 3275 * It will not get called when we go idle, because the idle 3276 * thread is a different class (!fair), nor will the utilization 3277 * number include things like RT tasks. 3278 * 3279 * As is, the util number is not freq-invariant (we'd have to 3280 * implement arch_scale_freq_capacity() for that). 3281 * 3282 * See cpu_util(). 3283 */ 3284 cpufreq_update_util(rq, flags); 3285 } 3286 } 3287 3288 #ifdef CONFIG_SMP 3289 #ifdef CONFIG_FAIR_GROUP_SCHED 3290 /** 3291 * update_tg_load_avg - update the tg's load avg 3292 * @cfs_rq: the cfs_rq whose avg changed 3293 * @force: update regardless of how small the difference 3294 * 3295 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3296 * However, because tg->load_avg is a global value there are performance 3297 * considerations. 3298 * 3299 * In order to avoid having to look at the other cfs_rq's, we use a 3300 * differential update where we store the last value we propagated. This in 3301 * turn allows skipping updates if the differential is 'small'. 3302 * 3303 * Updating tg's load_avg is necessary before update_cfs_share(). 3304 */ 3305 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3306 { 3307 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3308 3309 /* 3310 * No need to update load_avg for root_task_group as it is not used. 3311 */ 3312 if (cfs_rq->tg == &root_task_group) 3313 return; 3314 3315 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3316 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3317 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3318 } 3319 } 3320 3321 /* 3322 * Called within set_task_rq() right before setting a task's CPU. The 3323 * caller only guarantees p->pi_lock is held; no other assumptions, 3324 * including the state of rq->lock, should be made. 3325 */ 3326 void set_task_rq_fair(struct sched_entity *se, 3327 struct cfs_rq *prev, struct cfs_rq *next) 3328 { 3329 u64 p_last_update_time; 3330 u64 n_last_update_time; 3331 3332 if (!sched_feat(ATTACH_AGE_LOAD)) 3333 return; 3334 3335 /* 3336 * We are supposed to update the task to "current" time, then its up to 3337 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3338 * getting what current time is, so simply throw away the out-of-date 3339 * time. This will result in the wakee task is less decayed, but giving 3340 * the wakee more load sounds not bad. 3341 */ 3342 if (!(se->avg.last_update_time && prev)) 3343 return; 3344 3345 #ifndef CONFIG_64BIT 3346 { 3347 u64 p_last_update_time_copy; 3348 u64 n_last_update_time_copy; 3349 3350 do { 3351 p_last_update_time_copy = prev->load_last_update_time_copy; 3352 n_last_update_time_copy = next->load_last_update_time_copy; 3353 3354 smp_rmb(); 3355 3356 p_last_update_time = prev->avg.last_update_time; 3357 n_last_update_time = next->avg.last_update_time; 3358 3359 } while (p_last_update_time != p_last_update_time_copy || 3360 n_last_update_time != n_last_update_time_copy); 3361 } 3362 #else 3363 p_last_update_time = prev->avg.last_update_time; 3364 n_last_update_time = next->avg.last_update_time; 3365 #endif 3366 __update_load_avg_blocked_se(p_last_update_time, se); 3367 se->avg.last_update_time = n_last_update_time; 3368 } 3369 3370 3371 /* 3372 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3373 * propagate its contribution. The key to this propagation is the invariant 3374 * that for each group: 3375 * 3376 * ge->avg == grq->avg (1) 3377 * 3378 * _IFF_ we look at the pure running and runnable sums. Because they 3379 * represent the very same entity, just at different points in the hierarchy. 3380 * 3381 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3382 * and simply copies the running/runnable sum over (but still wrong, because 3383 * the group entity and group rq do not have their PELT windows aligned). 3384 * 3385 * However, update_tg_cfs_load() is more complex. So we have: 3386 * 3387 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3388 * 3389 * And since, like util, the runnable part should be directly transferable, 3390 * the following would _appear_ to be the straight forward approach: 3391 * 3392 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3393 * 3394 * And per (1) we have: 3395 * 3396 * ge->avg.runnable_avg == grq->avg.runnable_avg 3397 * 3398 * Which gives: 3399 * 3400 * ge->load.weight * grq->avg.load_avg 3401 * ge->avg.load_avg = ----------------------------------- (4) 3402 * grq->load.weight 3403 * 3404 * Except that is wrong! 3405 * 3406 * Because while for entities historical weight is not important and we 3407 * really only care about our future and therefore can consider a pure 3408 * runnable sum, runqueues can NOT do this. 3409 * 3410 * We specifically want runqueues to have a load_avg that includes 3411 * historical weights. Those represent the blocked load, the load we expect 3412 * to (shortly) return to us. This only works by keeping the weights as 3413 * integral part of the sum. We therefore cannot decompose as per (3). 3414 * 3415 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3416 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3417 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3418 * runnable section of these tasks overlap (or not). If they were to perfectly 3419 * align the rq as a whole would be runnable 2/3 of the time. If however we 3420 * always have at least 1 runnable task, the rq as a whole is always runnable. 3421 * 3422 * So we'll have to approximate.. :/ 3423 * 3424 * Given the constraint: 3425 * 3426 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3427 * 3428 * We can construct a rule that adds runnable to a rq by assuming minimal 3429 * overlap. 3430 * 3431 * On removal, we'll assume each task is equally runnable; which yields: 3432 * 3433 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3434 * 3435 * XXX: only do this for the part of runnable > running ? 3436 * 3437 */ 3438 3439 static inline void 3440 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3441 { 3442 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3443 3444 /* Nothing to update */ 3445 if (!delta) 3446 return; 3447 3448 /* 3449 * The relation between sum and avg is: 3450 * 3451 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3452 * 3453 * however, the PELT windows are not aligned between grq and gse. 3454 */ 3455 3456 /* Set new sched_entity's utilization */ 3457 se->avg.util_avg = gcfs_rq->avg.util_avg; 3458 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3459 3460 /* Update parent cfs_rq utilization */ 3461 add_positive(&cfs_rq->avg.util_avg, delta); 3462 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3463 } 3464 3465 static inline void 3466 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3467 { 3468 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3469 3470 /* Nothing to update */ 3471 if (!delta) 3472 return; 3473 3474 /* 3475 * The relation between sum and avg is: 3476 * 3477 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3478 * 3479 * however, the PELT windows are not aligned between grq and gse. 3480 */ 3481 3482 /* Set new sched_entity's runnable */ 3483 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3484 se->avg.runnable_sum = se->avg.runnable_avg * LOAD_AVG_MAX; 3485 3486 /* Update parent cfs_rq runnable */ 3487 add_positive(&cfs_rq->avg.runnable_avg, delta); 3488 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * LOAD_AVG_MAX; 3489 } 3490 3491 static inline void 3492 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3493 { 3494 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3495 unsigned long load_avg; 3496 u64 load_sum = 0; 3497 s64 delta_sum; 3498 3499 if (!runnable_sum) 3500 return; 3501 3502 gcfs_rq->prop_runnable_sum = 0; 3503 3504 if (runnable_sum >= 0) { 3505 /* 3506 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3507 * the CPU is saturated running == runnable. 3508 */ 3509 runnable_sum += se->avg.load_sum; 3510 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3511 } else { 3512 /* 3513 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3514 * assuming all tasks are equally runnable. 3515 */ 3516 if (scale_load_down(gcfs_rq->load.weight)) { 3517 load_sum = div_s64(gcfs_rq->avg.load_sum, 3518 scale_load_down(gcfs_rq->load.weight)); 3519 } 3520 3521 /* But make sure to not inflate se's runnable */ 3522 runnable_sum = min(se->avg.load_sum, load_sum); 3523 } 3524 3525 /* 3526 * runnable_sum can't be lower than running_sum 3527 * Rescale running sum to be in the same range as runnable sum 3528 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3529 * runnable_sum is in [0 : LOAD_AVG_MAX] 3530 */ 3531 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3532 runnable_sum = max(runnable_sum, running_sum); 3533 3534 load_sum = (s64)se_weight(se) * runnable_sum; 3535 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3536 3537 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3538 delta_avg = load_avg - se->avg.load_avg; 3539 3540 se->avg.load_sum = runnable_sum; 3541 se->avg.load_avg = load_avg; 3542 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3543 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3544 } 3545 3546 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3547 { 3548 cfs_rq->propagate = 1; 3549 cfs_rq->prop_runnable_sum += runnable_sum; 3550 } 3551 3552 /* Update task and its cfs_rq load average */ 3553 static inline int propagate_entity_load_avg(struct sched_entity *se) 3554 { 3555 struct cfs_rq *cfs_rq, *gcfs_rq; 3556 3557 if (entity_is_task(se)) 3558 return 0; 3559 3560 gcfs_rq = group_cfs_rq(se); 3561 if (!gcfs_rq->propagate) 3562 return 0; 3563 3564 gcfs_rq->propagate = 0; 3565 3566 cfs_rq = cfs_rq_of(se); 3567 3568 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3569 3570 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3571 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3572 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3573 3574 trace_pelt_cfs_tp(cfs_rq); 3575 trace_pelt_se_tp(se); 3576 3577 return 1; 3578 } 3579 3580 /* 3581 * Check if we need to update the load and the utilization of a blocked 3582 * group_entity: 3583 */ 3584 static inline bool skip_blocked_update(struct sched_entity *se) 3585 { 3586 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3587 3588 /* 3589 * If sched_entity still have not zero load or utilization, we have to 3590 * decay it: 3591 */ 3592 if (se->avg.load_avg || se->avg.util_avg) 3593 return false; 3594 3595 /* 3596 * If there is a pending propagation, we have to update the load and 3597 * the utilization of the sched_entity: 3598 */ 3599 if (gcfs_rq->propagate) 3600 return false; 3601 3602 /* 3603 * Otherwise, the load and the utilization of the sched_entity is 3604 * already zero and there is no pending propagation, so it will be a 3605 * waste of time to try to decay it: 3606 */ 3607 return true; 3608 } 3609 3610 #else /* CONFIG_FAIR_GROUP_SCHED */ 3611 3612 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3613 3614 static inline int propagate_entity_load_avg(struct sched_entity *se) 3615 { 3616 return 0; 3617 } 3618 3619 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3620 3621 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3622 3623 /** 3624 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3625 * @now: current time, as per cfs_rq_clock_pelt() 3626 * @cfs_rq: cfs_rq to update 3627 * 3628 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3629 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3630 * post_init_entity_util_avg(). 3631 * 3632 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3633 * 3634 * Returns true if the load decayed or we removed load. 3635 * 3636 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3637 * call update_tg_load_avg() when this function returns true. 3638 */ 3639 static inline int 3640 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3641 { 3642 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3643 struct sched_avg *sa = &cfs_rq->avg; 3644 int decayed = 0; 3645 3646 if (cfs_rq->removed.nr) { 3647 unsigned long r; 3648 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3649 3650 raw_spin_lock(&cfs_rq->removed.lock); 3651 swap(cfs_rq->removed.util_avg, removed_util); 3652 swap(cfs_rq->removed.load_avg, removed_load); 3653 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3654 cfs_rq->removed.nr = 0; 3655 raw_spin_unlock(&cfs_rq->removed.lock); 3656 3657 r = removed_load; 3658 sub_positive(&sa->load_avg, r); 3659 sub_positive(&sa->load_sum, r * divider); 3660 3661 r = removed_util; 3662 sub_positive(&sa->util_avg, r); 3663 sub_positive(&sa->util_sum, r * divider); 3664 3665 r = removed_runnable; 3666 sub_positive(&sa->runnable_avg, r); 3667 sub_positive(&sa->runnable_sum, r * divider); 3668 3669 /* 3670 * removed_runnable is the unweighted version of removed_load so we 3671 * can use it to estimate removed_load_sum. 3672 */ 3673 add_tg_cfs_propagate(cfs_rq, 3674 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3675 3676 decayed = 1; 3677 } 3678 3679 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3680 3681 #ifndef CONFIG_64BIT 3682 smp_wmb(); 3683 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3684 #endif 3685 3686 return decayed; 3687 } 3688 3689 /** 3690 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3691 * @cfs_rq: cfs_rq to attach to 3692 * @se: sched_entity to attach 3693 * 3694 * Must call update_cfs_rq_load_avg() before this, since we rely on 3695 * cfs_rq->avg.last_update_time being current. 3696 */ 3697 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3698 { 3699 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3700 3701 /* 3702 * When we attach the @se to the @cfs_rq, we must align the decay 3703 * window because without that, really weird and wonderful things can 3704 * happen. 3705 * 3706 * XXX illustrate 3707 */ 3708 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3709 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3710 3711 /* 3712 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3713 * period_contrib. This isn't strictly correct, but since we're 3714 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3715 * _sum a little. 3716 */ 3717 se->avg.util_sum = se->avg.util_avg * divider; 3718 3719 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3720 3721 se->avg.load_sum = divider; 3722 if (se_weight(se)) { 3723 se->avg.load_sum = 3724 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3725 } 3726 3727 enqueue_load_avg(cfs_rq, se); 3728 cfs_rq->avg.util_avg += se->avg.util_avg; 3729 cfs_rq->avg.util_sum += se->avg.util_sum; 3730 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3731 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3732 3733 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3734 3735 cfs_rq_util_change(cfs_rq, 0); 3736 3737 trace_pelt_cfs_tp(cfs_rq); 3738 } 3739 3740 /** 3741 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3742 * @cfs_rq: cfs_rq to detach from 3743 * @se: sched_entity to detach 3744 * 3745 * Must call update_cfs_rq_load_avg() before this, since we rely on 3746 * cfs_rq->avg.last_update_time being current. 3747 */ 3748 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3749 { 3750 dequeue_load_avg(cfs_rq, se); 3751 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3752 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3753 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3754 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3755 3756 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3757 3758 cfs_rq_util_change(cfs_rq, 0); 3759 3760 trace_pelt_cfs_tp(cfs_rq); 3761 } 3762 3763 /* 3764 * Optional action to be done while updating the load average 3765 */ 3766 #define UPDATE_TG 0x1 3767 #define SKIP_AGE_LOAD 0x2 3768 #define DO_ATTACH 0x4 3769 3770 /* Update task and its cfs_rq load average */ 3771 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3772 { 3773 u64 now = cfs_rq_clock_pelt(cfs_rq); 3774 int decayed; 3775 3776 /* 3777 * Track task load average for carrying it to new CPU after migrated, and 3778 * track group sched_entity load average for task_h_load calc in migration 3779 */ 3780 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3781 __update_load_avg_se(now, cfs_rq, se); 3782 3783 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3784 decayed |= propagate_entity_load_avg(se); 3785 3786 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3787 3788 /* 3789 * DO_ATTACH means we're here from enqueue_entity(). 3790 * !last_update_time means we've passed through 3791 * migrate_task_rq_fair() indicating we migrated. 3792 * 3793 * IOW we're enqueueing a task on a new CPU. 3794 */ 3795 attach_entity_load_avg(cfs_rq, se); 3796 update_tg_load_avg(cfs_rq, 0); 3797 3798 } else if (decayed) { 3799 cfs_rq_util_change(cfs_rq, 0); 3800 3801 if (flags & UPDATE_TG) 3802 update_tg_load_avg(cfs_rq, 0); 3803 } 3804 } 3805 3806 #ifndef CONFIG_64BIT 3807 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3808 { 3809 u64 last_update_time_copy; 3810 u64 last_update_time; 3811 3812 do { 3813 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3814 smp_rmb(); 3815 last_update_time = cfs_rq->avg.last_update_time; 3816 } while (last_update_time != last_update_time_copy); 3817 3818 return last_update_time; 3819 } 3820 #else 3821 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3822 { 3823 return cfs_rq->avg.last_update_time; 3824 } 3825 #endif 3826 3827 /* 3828 * Synchronize entity load avg of dequeued entity without locking 3829 * the previous rq. 3830 */ 3831 static void sync_entity_load_avg(struct sched_entity *se) 3832 { 3833 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3834 u64 last_update_time; 3835 3836 last_update_time = cfs_rq_last_update_time(cfs_rq); 3837 __update_load_avg_blocked_se(last_update_time, se); 3838 } 3839 3840 /* 3841 * Task first catches up with cfs_rq, and then subtract 3842 * itself from the cfs_rq (task must be off the queue now). 3843 */ 3844 static void remove_entity_load_avg(struct sched_entity *se) 3845 { 3846 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3847 unsigned long flags; 3848 3849 /* 3850 * tasks cannot exit without having gone through wake_up_new_task() -> 3851 * post_init_entity_util_avg() which will have added things to the 3852 * cfs_rq, so we can remove unconditionally. 3853 */ 3854 3855 sync_entity_load_avg(se); 3856 3857 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3858 ++cfs_rq->removed.nr; 3859 cfs_rq->removed.util_avg += se->avg.util_avg; 3860 cfs_rq->removed.load_avg += se->avg.load_avg; 3861 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3862 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3863 } 3864 3865 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3866 { 3867 return cfs_rq->avg.runnable_avg; 3868 } 3869 3870 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3871 { 3872 return cfs_rq->avg.load_avg; 3873 } 3874 3875 static inline unsigned long task_util(struct task_struct *p) 3876 { 3877 return READ_ONCE(p->se.avg.util_avg); 3878 } 3879 3880 static inline unsigned long _task_util_est(struct task_struct *p) 3881 { 3882 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3883 3884 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3885 } 3886 3887 static inline unsigned long task_util_est(struct task_struct *p) 3888 { 3889 return max(task_util(p), _task_util_est(p)); 3890 } 3891 3892 #ifdef CONFIG_UCLAMP_TASK 3893 static inline unsigned long uclamp_task_util(struct task_struct *p) 3894 { 3895 return clamp(task_util_est(p), 3896 uclamp_eff_value(p, UCLAMP_MIN), 3897 uclamp_eff_value(p, UCLAMP_MAX)); 3898 } 3899 #else 3900 static inline unsigned long uclamp_task_util(struct task_struct *p) 3901 { 3902 return task_util_est(p); 3903 } 3904 #endif 3905 3906 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3907 struct task_struct *p) 3908 { 3909 unsigned int enqueued; 3910 3911 if (!sched_feat(UTIL_EST)) 3912 return; 3913 3914 /* Update root cfs_rq's estimated utilization */ 3915 enqueued = cfs_rq->avg.util_est.enqueued; 3916 enqueued += _task_util_est(p); 3917 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3918 } 3919 3920 /* 3921 * Check if a (signed) value is within a specified (unsigned) margin, 3922 * based on the observation that: 3923 * 3924 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3925 * 3926 * NOTE: this only works when value + maring < INT_MAX. 3927 */ 3928 static inline bool within_margin(int value, int margin) 3929 { 3930 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3931 } 3932 3933 static void 3934 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3935 { 3936 long last_ewma_diff; 3937 struct util_est ue; 3938 int cpu; 3939 3940 if (!sched_feat(UTIL_EST)) 3941 return; 3942 3943 /* Update root cfs_rq's estimated utilization */ 3944 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3945 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3946 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3947 3948 /* 3949 * Skip update of task's estimated utilization when the task has not 3950 * yet completed an activation, e.g. being migrated. 3951 */ 3952 if (!task_sleep) 3953 return; 3954 3955 /* 3956 * If the PELT values haven't changed since enqueue time, 3957 * skip the util_est update. 3958 */ 3959 ue = p->se.avg.util_est; 3960 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3961 return; 3962 3963 /* 3964 * Reset EWMA on utilization increases, the moving average is used only 3965 * to smooth utilization decreases. 3966 */ 3967 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3968 if (sched_feat(UTIL_EST_FASTUP)) { 3969 if (ue.ewma < ue.enqueued) { 3970 ue.ewma = ue.enqueued; 3971 goto done; 3972 } 3973 } 3974 3975 /* 3976 * Skip update of task's estimated utilization when its EWMA is 3977 * already ~1% close to its last activation value. 3978 */ 3979 last_ewma_diff = ue.enqueued - ue.ewma; 3980 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3981 return; 3982 3983 /* 3984 * To avoid overestimation of actual task utilization, skip updates if 3985 * we cannot grant there is idle time in this CPU. 3986 */ 3987 cpu = cpu_of(rq_of(cfs_rq)); 3988 if (task_util(p) > capacity_orig_of(cpu)) 3989 return; 3990 3991 /* 3992 * Update Task's estimated utilization 3993 * 3994 * When *p completes an activation we can consolidate another sample 3995 * of the task size. This is done by storing the current PELT value 3996 * as ue.enqueued and by using this value to update the Exponential 3997 * Weighted Moving Average (EWMA): 3998 * 3999 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4000 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4001 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4002 * = w * ( last_ewma_diff ) + ewma(t-1) 4003 * = w * (last_ewma_diff + ewma(t-1) / w) 4004 * 4005 * Where 'w' is the weight of new samples, which is configured to be 4006 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4007 */ 4008 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4009 ue.ewma += last_ewma_diff; 4010 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4011 done: 4012 WRITE_ONCE(p->se.avg.util_est, ue); 4013 } 4014 4015 static inline int task_fits_capacity(struct task_struct *p, long capacity) 4016 { 4017 return fits_capacity(uclamp_task_util(p), capacity); 4018 } 4019 4020 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4021 { 4022 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4023 return; 4024 4025 if (!p) { 4026 rq->misfit_task_load = 0; 4027 return; 4028 } 4029 4030 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4031 rq->misfit_task_load = 0; 4032 return; 4033 } 4034 4035 rq->misfit_task_load = task_h_load(p); 4036 } 4037 4038 #else /* CONFIG_SMP */ 4039 4040 #define UPDATE_TG 0x0 4041 #define SKIP_AGE_LOAD 0x0 4042 #define DO_ATTACH 0x0 4043 4044 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4045 { 4046 cfs_rq_util_change(cfs_rq, 0); 4047 } 4048 4049 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4050 4051 static inline void 4052 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4053 static inline void 4054 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4055 4056 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 4057 { 4058 return 0; 4059 } 4060 4061 static inline void 4062 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4063 4064 static inline void 4065 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 4066 bool task_sleep) {} 4067 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4068 4069 #endif /* CONFIG_SMP */ 4070 4071 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4072 { 4073 #ifdef CONFIG_SCHED_DEBUG 4074 s64 d = se->vruntime - cfs_rq->min_vruntime; 4075 4076 if (d < 0) 4077 d = -d; 4078 4079 if (d > 3*sysctl_sched_latency) 4080 schedstat_inc(cfs_rq->nr_spread_over); 4081 #endif 4082 } 4083 4084 static void 4085 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4086 { 4087 u64 vruntime = cfs_rq->min_vruntime; 4088 4089 /* 4090 * The 'current' period is already promised to the current tasks, 4091 * however the extra weight of the new task will slow them down a 4092 * little, place the new task so that it fits in the slot that 4093 * stays open at the end. 4094 */ 4095 if (initial && sched_feat(START_DEBIT)) 4096 vruntime += sched_vslice(cfs_rq, se); 4097 4098 /* sleeps up to a single latency don't count. */ 4099 if (!initial) { 4100 unsigned long thresh = sysctl_sched_latency; 4101 4102 /* 4103 * Halve their sleep time's effect, to allow 4104 * for a gentler effect of sleepers: 4105 */ 4106 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4107 thresh >>= 1; 4108 4109 vruntime -= thresh; 4110 } 4111 4112 /* ensure we never gain time by being placed backwards. */ 4113 se->vruntime = max_vruntime(se->vruntime, vruntime); 4114 } 4115 4116 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4117 4118 static inline void check_schedstat_required(void) 4119 { 4120 #ifdef CONFIG_SCHEDSTATS 4121 if (schedstat_enabled()) 4122 return; 4123 4124 /* Force schedstat enabled if a dependent tracepoint is active */ 4125 if (trace_sched_stat_wait_enabled() || 4126 trace_sched_stat_sleep_enabled() || 4127 trace_sched_stat_iowait_enabled() || 4128 trace_sched_stat_blocked_enabled() || 4129 trace_sched_stat_runtime_enabled()) { 4130 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 4131 "stat_blocked and stat_runtime require the " 4132 "kernel parameter schedstats=enable or " 4133 "kernel.sched_schedstats=1\n"); 4134 } 4135 #endif 4136 } 4137 4138 static inline bool cfs_bandwidth_used(void); 4139 4140 /* 4141 * MIGRATION 4142 * 4143 * dequeue 4144 * update_curr() 4145 * update_min_vruntime() 4146 * vruntime -= min_vruntime 4147 * 4148 * enqueue 4149 * update_curr() 4150 * update_min_vruntime() 4151 * vruntime += min_vruntime 4152 * 4153 * this way the vruntime transition between RQs is done when both 4154 * min_vruntime are up-to-date. 4155 * 4156 * WAKEUP (remote) 4157 * 4158 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4159 * vruntime -= min_vruntime 4160 * 4161 * enqueue 4162 * update_curr() 4163 * update_min_vruntime() 4164 * vruntime += min_vruntime 4165 * 4166 * this way we don't have the most up-to-date min_vruntime on the originating 4167 * CPU and an up-to-date min_vruntime on the destination CPU. 4168 */ 4169 4170 static void 4171 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4172 { 4173 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4174 bool curr = cfs_rq->curr == se; 4175 4176 /* 4177 * If we're the current task, we must renormalise before calling 4178 * update_curr(). 4179 */ 4180 if (renorm && curr) 4181 se->vruntime += cfs_rq->min_vruntime; 4182 4183 update_curr(cfs_rq); 4184 4185 /* 4186 * Otherwise, renormalise after, such that we're placed at the current 4187 * moment in time, instead of some random moment in the past. Being 4188 * placed in the past could significantly boost this task to the 4189 * fairness detriment of existing tasks. 4190 */ 4191 if (renorm && !curr) 4192 se->vruntime += cfs_rq->min_vruntime; 4193 4194 /* 4195 * When enqueuing a sched_entity, we must: 4196 * - Update loads to have both entity and cfs_rq synced with now. 4197 * - Add its load to cfs_rq->runnable_avg 4198 * - For group_entity, update its weight to reflect the new share of 4199 * its group cfs_rq 4200 * - Add its new weight to cfs_rq->load.weight 4201 */ 4202 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4203 se_update_runnable(se); 4204 update_cfs_group(se); 4205 account_entity_enqueue(cfs_rq, se); 4206 4207 if (flags & ENQUEUE_WAKEUP) 4208 place_entity(cfs_rq, se, 0); 4209 4210 check_schedstat_required(); 4211 update_stats_enqueue(cfs_rq, se, flags); 4212 check_spread(cfs_rq, se); 4213 if (!curr) 4214 __enqueue_entity(cfs_rq, se); 4215 se->on_rq = 1; 4216 4217 /* 4218 * When bandwidth control is enabled, cfs might have been removed 4219 * because of a parent been throttled but cfs->nr_running > 1. Try to 4220 * add it unconditionnally. 4221 */ 4222 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4223 list_add_leaf_cfs_rq(cfs_rq); 4224 4225 if (cfs_rq->nr_running == 1) 4226 check_enqueue_throttle(cfs_rq); 4227 } 4228 4229 static void __clear_buddies_last(struct sched_entity *se) 4230 { 4231 for_each_sched_entity(se) { 4232 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4233 if (cfs_rq->last != se) 4234 break; 4235 4236 cfs_rq->last = NULL; 4237 } 4238 } 4239 4240 static void __clear_buddies_next(struct sched_entity *se) 4241 { 4242 for_each_sched_entity(se) { 4243 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4244 if (cfs_rq->next != se) 4245 break; 4246 4247 cfs_rq->next = NULL; 4248 } 4249 } 4250 4251 static void __clear_buddies_skip(struct sched_entity *se) 4252 { 4253 for_each_sched_entity(se) { 4254 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4255 if (cfs_rq->skip != se) 4256 break; 4257 4258 cfs_rq->skip = NULL; 4259 } 4260 } 4261 4262 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4263 { 4264 if (cfs_rq->last == se) 4265 __clear_buddies_last(se); 4266 4267 if (cfs_rq->next == se) 4268 __clear_buddies_next(se); 4269 4270 if (cfs_rq->skip == se) 4271 __clear_buddies_skip(se); 4272 } 4273 4274 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4275 4276 static void 4277 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4278 { 4279 /* 4280 * Update run-time statistics of the 'current'. 4281 */ 4282 update_curr(cfs_rq); 4283 4284 /* 4285 * When dequeuing a sched_entity, we must: 4286 * - Update loads to have both entity and cfs_rq synced with now. 4287 * - Subtract its load from the cfs_rq->runnable_avg. 4288 * - Subtract its previous weight from cfs_rq->load.weight. 4289 * - For group entity, update its weight to reflect the new share 4290 * of its group cfs_rq. 4291 */ 4292 update_load_avg(cfs_rq, se, UPDATE_TG); 4293 se_update_runnable(se); 4294 4295 update_stats_dequeue(cfs_rq, se, flags); 4296 4297 clear_buddies(cfs_rq, se); 4298 4299 if (se != cfs_rq->curr) 4300 __dequeue_entity(cfs_rq, se); 4301 se->on_rq = 0; 4302 account_entity_dequeue(cfs_rq, se); 4303 4304 /* 4305 * Normalize after update_curr(); which will also have moved 4306 * min_vruntime if @se is the one holding it back. But before doing 4307 * update_min_vruntime() again, which will discount @se's position and 4308 * can move min_vruntime forward still more. 4309 */ 4310 if (!(flags & DEQUEUE_SLEEP)) 4311 se->vruntime -= cfs_rq->min_vruntime; 4312 4313 /* return excess runtime on last dequeue */ 4314 return_cfs_rq_runtime(cfs_rq); 4315 4316 update_cfs_group(se); 4317 4318 /* 4319 * Now advance min_vruntime if @se was the entity holding it back, 4320 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4321 * put back on, and if we advance min_vruntime, we'll be placed back 4322 * further than we started -- ie. we'll be penalized. 4323 */ 4324 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4325 update_min_vruntime(cfs_rq); 4326 } 4327 4328 /* 4329 * Preempt the current task with a newly woken task if needed: 4330 */ 4331 static void 4332 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4333 { 4334 unsigned long ideal_runtime, delta_exec; 4335 struct sched_entity *se; 4336 s64 delta; 4337 4338 ideal_runtime = sched_slice(cfs_rq, curr); 4339 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4340 if (delta_exec > ideal_runtime) { 4341 resched_curr(rq_of(cfs_rq)); 4342 /* 4343 * The current task ran long enough, ensure it doesn't get 4344 * re-elected due to buddy favours. 4345 */ 4346 clear_buddies(cfs_rq, curr); 4347 return; 4348 } 4349 4350 /* 4351 * Ensure that a task that missed wakeup preemption by a 4352 * narrow margin doesn't have to wait for a full slice. 4353 * This also mitigates buddy induced latencies under load. 4354 */ 4355 if (delta_exec < sysctl_sched_min_granularity) 4356 return; 4357 4358 se = __pick_first_entity(cfs_rq); 4359 delta = curr->vruntime - se->vruntime; 4360 4361 if (delta < 0) 4362 return; 4363 4364 if (delta > ideal_runtime) 4365 resched_curr(rq_of(cfs_rq)); 4366 } 4367 4368 static void 4369 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4370 { 4371 /* 'current' is not kept within the tree. */ 4372 if (se->on_rq) { 4373 /* 4374 * Any task has to be enqueued before it get to execute on 4375 * a CPU. So account for the time it spent waiting on the 4376 * runqueue. 4377 */ 4378 update_stats_wait_end(cfs_rq, se); 4379 __dequeue_entity(cfs_rq, se); 4380 update_load_avg(cfs_rq, se, UPDATE_TG); 4381 } 4382 4383 update_stats_curr_start(cfs_rq, se); 4384 cfs_rq->curr = se; 4385 4386 /* 4387 * Track our maximum slice length, if the CPU's load is at 4388 * least twice that of our own weight (i.e. dont track it 4389 * when there are only lesser-weight tasks around): 4390 */ 4391 if (schedstat_enabled() && 4392 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4393 schedstat_set(se->statistics.slice_max, 4394 max((u64)schedstat_val(se->statistics.slice_max), 4395 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4396 } 4397 4398 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4399 } 4400 4401 static int 4402 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4403 4404 /* 4405 * Pick the next process, keeping these things in mind, in this order: 4406 * 1) keep things fair between processes/task groups 4407 * 2) pick the "next" process, since someone really wants that to run 4408 * 3) pick the "last" process, for cache locality 4409 * 4) do not run the "skip" process, if something else is available 4410 */ 4411 static struct sched_entity * 4412 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4413 { 4414 struct sched_entity *left = __pick_first_entity(cfs_rq); 4415 struct sched_entity *se; 4416 4417 /* 4418 * If curr is set we have to see if its left of the leftmost entity 4419 * still in the tree, provided there was anything in the tree at all. 4420 */ 4421 if (!left || (curr && entity_before(curr, left))) 4422 left = curr; 4423 4424 se = left; /* ideally we run the leftmost entity */ 4425 4426 /* 4427 * Avoid running the skip buddy, if running something else can 4428 * be done without getting too unfair. 4429 */ 4430 if (cfs_rq->skip == se) { 4431 struct sched_entity *second; 4432 4433 if (se == curr) { 4434 second = __pick_first_entity(cfs_rq); 4435 } else { 4436 second = __pick_next_entity(se); 4437 if (!second || (curr && entity_before(curr, second))) 4438 second = curr; 4439 } 4440 4441 if (second && wakeup_preempt_entity(second, left) < 1) 4442 se = second; 4443 } 4444 4445 /* 4446 * Prefer last buddy, try to return the CPU to a preempted task. 4447 */ 4448 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4449 se = cfs_rq->last; 4450 4451 /* 4452 * Someone really wants this to run. If it's not unfair, run it. 4453 */ 4454 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4455 se = cfs_rq->next; 4456 4457 clear_buddies(cfs_rq, se); 4458 4459 return se; 4460 } 4461 4462 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4463 4464 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4465 { 4466 /* 4467 * If still on the runqueue then deactivate_task() 4468 * was not called and update_curr() has to be done: 4469 */ 4470 if (prev->on_rq) 4471 update_curr(cfs_rq); 4472 4473 /* throttle cfs_rqs exceeding runtime */ 4474 check_cfs_rq_runtime(cfs_rq); 4475 4476 check_spread(cfs_rq, prev); 4477 4478 if (prev->on_rq) { 4479 update_stats_wait_start(cfs_rq, prev); 4480 /* Put 'current' back into the tree. */ 4481 __enqueue_entity(cfs_rq, prev); 4482 /* in !on_rq case, update occurred at dequeue */ 4483 update_load_avg(cfs_rq, prev, 0); 4484 } 4485 cfs_rq->curr = NULL; 4486 } 4487 4488 static void 4489 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4490 { 4491 /* 4492 * Update run-time statistics of the 'current'. 4493 */ 4494 update_curr(cfs_rq); 4495 4496 /* 4497 * Ensure that runnable average is periodically updated. 4498 */ 4499 update_load_avg(cfs_rq, curr, UPDATE_TG); 4500 update_cfs_group(curr); 4501 4502 #ifdef CONFIG_SCHED_HRTICK 4503 /* 4504 * queued ticks are scheduled to match the slice, so don't bother 4505 * validating it and just reschedule. 4506 */ 4507 if (queued) { 4508 resched_curr(rq_of(cfs_rq)); 4509 return; 4510 } 4511 /* 4512 * don't let the period tick interfere with the hrtick preemption 4513 */ 4514 if (!sched_feat(DOUBLE_TICK) && 4515 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4516 return; 4517 #endif 4518 4519 if (cfs_rq->nr_running > 1) 4520 check_preempt_tick(cfs_rq, curr); 4521 } 4522 4523 4524 /************************************************** 4525 * CFS bandwidth control machinery 4526 */ 4527 4528 #ifdef CONFIG_CFS_BANDWIDTH 4529 4530 #ifdef CONFIG_JUMP_LABEL 4531 static struct static_key __cfs_bandwidth_used; 4532 4533 static inline bool cfs_bandwidth_used(void) 4534 { 4535 return static_key_false(&__cfs_bandwidth_used); 4536 } 4537 4538 void cfs_bandwidth_usage_inc(void) 4539 { 4540 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4541 } 4542 4543 void cfs_bandwidth_usage_dec(void) 4544 { 4545 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4546 } 4547 #else /* CONFIG_JUMP_LABEL */ 4548 static bool cfs_bandwidth_used(void) 4549 { 4550 return true; 4551 } 4552 4553 void cfs_bandwidth_usage_inc(void) {} 4554 void cfs_bandwidth_usage_dec(void) {} 4555 #endif /* CONFIG_JUMP_LABEL */ 4556 4557 /* 4558 * default period for cfs group bandwidth. 4559 * default: 0.1s, units: nanoseconds 4560 */ 4561 static inline u64 default_cfs_period(void) 4562 { 4563 return 100000000ULL; 4564 } 4565 4566 static inline u64 sched_cfs_bandwidth_slice(void) 4567 { 4568 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4569 } 4570 4571 /* 4572 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4573 * directly instead of rq->clock to avoid adding additional synchronization 4574 * around rq->lock. 4575 * 4576 * requires cfs_b->lock 4577 */ 4578 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4579 { 4580 if (cfs_b->quota != RUNTIME_INF) 4581 cfs_b->runtime = cfs_b->quota; 4582 } 4583 4584 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4585 { 4586 return &tg->cfs_bandwidth; 4587 } 4588 4589 /* returns 0 on failure to allocate runtime */ 4590 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4591 { 4592 struct task_group *tg = cfs_rq->tg; 4593 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4594 u64 amount = 0, min_amount; 4595 4596 /* note: this is a positive sum as runtime_remaining <= 0 */ 4597 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4598 4599 raw_spin_lock(&cfs_b->lock); 4600 if (cfs_b->quota == RUNTIME_INF) 4601 amount = min_amount; 4602 else { 4603 start_cfs_bandwidth(cfs_b); 4604 4605 if (cfs_b->runtime > 0) { 4606 amount = min(cfs_b->runtime, min_amount); 4607 cfs_b->runtime -= amount; 4608 cfs_b->idle = 0; 4609 } 4610 } 4611 raw_spin_unlock(&cfs_b->lock); 4612 4613 cfs_rq->runtime_remaining += amount; 4614 4615 return cfs_rq->runtime_remaining > 0; 4616 } 4617 4618 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4619 { 4620 /* dock delta_exec before expiring quota (as it could span periods) */ 4621 cfs_rq->runtime_remaining -= delta_exec; 4622 4623 if (likely(cfs_rq->runtime_remaining > 0)) 4624 return; 4625 4626 if (cfs_rq->throttled) 4627 return; 4628 /* 4629 * if we're unable to extend our runtime we resched so that the active 4630 * hierarchy can be throttled 4631 */ 4632 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4633 resched_curr(rq_of(cfs_rq)); 4634 } 4635 4636 static __always_inline 4637 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4638 { 4639 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4640 return; 4641 4642 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4643 } 4644 4645 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4646 { 4647 return cfs_bandwidth_used() && cfs_rq->throttled; 4648 } 4649 4650 /* check whether cfs_rq, or any parent, is throttled */ 4651 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4652 { 4653 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4654 } 4655 4656 /* 4657 * Ensure that neither of the group entities corresponding to src_cpu or 4658 * dest_cpu are members of a throttled hierarchy when performing group 4659 * load-balance operations. 4660 */ 4661 static inline int throttled_lb_pair(struct task_group *tg, 4662 int src_cpu, int dest_cpu) 4663 { 4664 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4665 4666 src_cfs_rq = tg->cfs_rq[src_cpu]; 4667 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4668 4669 return throttled_hierarchy(src_cfs_rq) || 4670 throttled_hierarchy(dest_cfs_rq); 4671 } 4672 4673 static int tg_unthrottle_up(struct task_group *tg, void *data) 4674 { 4675 struct rq *rq = data; 4676 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4677 4678 cfs_rq->throttle_count--; 4679 if (!cfs_rq->throttle_count) { 4680 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4681 cfs_rq->throttled_clock_task; 4682 4683 /* Add cfs_rq with already running entity in the list */ 4684 if (cfs_rq->nr_running >= 1) 4685 list_add_leaf_cfs_rq(cfs_rq); 4686 } 4687 4688 return 0; 4689 } 4690 4691 static int tg_throttle_down(struct task_group *tg, void *data) 4692 { 4693 struct rq *rq = data; 4694 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4695 4696 /* group is entering throttled state, stop time */ 4697 if (!cfs_rq->throttle_count) { 4698 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4699 list_del_leaf_cfs_rq(cfs_rq); 4700 } 4701 cfs_rq->throttle_count++; 4702 4703 return 0; 4704 } 4705 4706 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4707 { 4708 struct rq *rq = rq_of(cfs_rq); 4709 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4710 struct sched_entity *se; 4711 long task_delta, idle_task_delta, dequeue = 1; 4712 bool empty; 4713 4714 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4715 4716 /* freeze hierarchy runnable averages while throttled */ 4717 rcu_read_lock(); 4718 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4719 rcu_read_unlock(); 4720 4721 task_delta = cfs_rq->h_nr_running; 4722 idle_task_delta = cfs_rq->idle_h_nr_running; 4723 for_each_sched_entity(se) { 4724 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4725 /* throttled entity or throttle-on-deactivate */ 4726 if (!se->on_rq) 4727 break; 4728 4729 if (dequeue) { 4730 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4731 } else { 4732 update_load_avg(qcfs_rq, se, 0); 4733 se_update_runnable(se); 4734 } 4735 4736 qcfs_rq->h_nr_running -= task_delta; 4737 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4738 4739 if (qcfs_rq->load.weight) 4740 dequeue = 0; 4741 } 4742 4743 if (!se) 4744 sub_nr_running(rq, task_delta); 4745 4746 cfs_rq->throttled = 1; 4747 cfs_rq->throttled_clock = rq_clock(rq); 4748 raw_spin_lock(&cfs_b->lock); 4749 empty = list_empty(&cfs_b->throttled_cfs_rq); 4750 4751 /* 4752 * Add to the _head_ of the list, so that an already-started 4753 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4754 * not running add to the tail so that later runqueues don't get starved. 4755 */ 4756 if (cfs_b->distribute_running) 4757 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4758 else 4759 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4760 4761 /* 4762 * If we're the first throttled task, make sure the bandwidth 4763 * timer is running. 4764 */ 4765 if (empty) 4766 start_cfs_bandwidth(cfs_b); 4767 4768 raw_spin_unlock(&cfs_b->lock); 4769 } 4770 4771 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4772 { 4773 struct rq *rq = rq_of(cfs_rq); 4774 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4775 struct sched_entity *se; 4776 int enqueue = 1; 4777 long task_delta, idle_task_delta; 4778 4779 se = cfs_rq->tg->se[cpu_of(rq)]; 4780 4781 cfs_rq->throttled = 0; 4782 4783 update_rq_clock(rq); 4784 4785 raw_spin_lock(&cfs_b->lock); 4786 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4787 list_del_rcu(&cfs_rq->throttled_list); 4788 raw_spin_unlock(&cfs_b->lock); 4789 4790 /* update hierarchical throttle state */ 4791 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4792 4793 if (!cfs_rq->load.weight) 4794 return; 4795 4796 task_delta = cfs_rq->h_nr_running; 4797 idle_task_delta = cfs_rq->idle_h_nr_running; 4798 for_each_sched_entity(se) { 4799 if (se->on_rq) 4800 enqueue = 0; 4801 4802 cfs_rq = cfs_rq_of(se); 4803 if (enqueue) { 4804 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4805 } else { 4806 update_load_avg(cfs_rq, se, 0); 4807 se_update_runnable(se); 4808 } 4809 4810 cfs_rq->h_nr_running += task_delta; 4811 cfs_rq->idle_h_nr_running += idle_task_delta; 4812 4813 if (cfs_rq_throttled(cfs_rq)) 4814 break; 4815 } 4816 4817 if (!se) 4818 add_nr_running(rq, task_delta); 4819 4820 /* 4821 * The cfs_rq_throttled() breaks in the above iteration can result in 4822 * incomplete leaf list maintenance, resulting in triggering the 4823 * assertion below. 4824 */ 4825 for_each_sched_entity(se) { 4826 cfs_rq = cfs_rq_of(se); 4827 4828 list_add_leaf_cfs_rq(cfs_rq); 4829 } 4830 4831 assert_list_leaf_cfs_rq(rq); 4832 4833 /* Determine whether we need to wake up potentially idle CPU: */ 4834 if (rq->curr == rq->idle && rq->cfs.nr_running) 4835 resched_curr(rq); 4836 } 4837 4838 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 4839 { 4840 struct cfs_rq *cfs_rq; 4841 u64 runtime, remaining = 1; 4842 4843 rcu_read_lock(); 4844 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4845 throttled_list) { 4846 struct rq *rq = rq_of(cfs_rq); 4847 struct rq_flags rf; 4848 4849 rq_lock_irqsave(rq, &rf); 4850 if (!cfs_rq_throttled(cfs_rq)) 4851 goto next; 4852 4853 /* By the above check, this should never be true */ 4854 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 4855 4856 raw_spin_lock(&cfs_b->lock); 4857 runtime = -cfs_rq->runtime_remaining + 1; 4858 if (runtime > cfs_b->runtime) 4859 runtime = cfs_b->runtime; 4860 cfs_b->runtime -= runtime; 4861 remaining = cfs_b->runtime; 4862 raw_spin_unlock(&cfs_b->lock); 4863 4864 cfs_rq->runtime_remaining += runtime; 4865 4866 /* we check whether we're throttled above */ 4867 if (cfs_rq->runtime_remaining > 0) 4868 unthrottle_cfs_rq(cfs_rq); 4869 4870 next: 4871 rq_unlock_irqrestore(rq, &rf); 4872 4873 if (!remaining) 4874 break; 4875 } 4876 rcu_read_unlock(); 4877 } 4878 4879 /* 4880 * Responsible for refilling a task_group's bandwidth and unthrottling its 4881 * cfs_rqs as appropriate. If there has been no activity within the last 4882 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4883 * used to track this state. 4884 */ 4885 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 4886 { 4887 int throttled; 4888 4889 /* no need to continue the timer with no bandwidth constraint */ 4890 if (cfs_b->quota == RUNTIME_INF) 4891 goto out_deactivate; 4892 4893 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4894 cfs_b->nr_periods += overrun; 4895 4896 /* 4897 * idle depends on !throttled (for the case of a large deficit), and if 4898 * we're going inactive then everything else can be deferred 4899 */ 4900 if (cfs_b->idle && !throttled) 4901 goto out_deactivate; 4902 4903 __refill_cfs_bandwidth_runtime(cfs_b); 4904 4905 if (!throttled) { 4906 /* mark as potentially idle for the upcoming period */ 4907 cfs_b->idle = 1; 4908 return 0; 4909 } 4910 4911 /* account preceding periods in which throttling occurred */ 4912 cfs_b->nr_throttled += overrun; 4913 4914 /* 4915 * This check is repeated as we release cfs_b->lock while we unthrottle. 4916 */ 4917 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4918 cfs_b->distribute_running = 1; 4919 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 4920 /* we can't nest cfs_b->lock while distributing bandwidth */ 4921 distribute_cfs_runtime(cfs_b); 4922 raw_spin_lock_irqsave(&cfs_b->lock, flags); 4923 4924 cfs_b->distribute_running = 0; 4925 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4926 } 4927 4928 /* 4929 * While we are ensured activity in the period following an 4930 * unthrottle, this also covers the case in which the new bandwidth is 4931 * insufficient to cover the existing bandwidth deficit. (Forcing the 4932 * timer to remain active while there are any throttled entities.) 4933 */ 4934 cfs_b->idle = 0; 4935 4936 return 0; 4937 4938 out_deactivate: 4939 return 1; 4940 } 4941 4942 /* a cfs_rq won't donate quota below this amount */ 4943 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4944 /* minimum remaining period time to redistribute slack quota */ 4945 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4946 /* how long we wait to gather additional slack before distributing */ 4947 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4948 4949 /* 4950 * Are we near the end of the current quota period? 4951 * 4952 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4953 * hrtimer base being cleared by hrtimer_start. In the case of 4954 * migrate_hrtimers, base is never cleared, so we are fine. 4955 */ 4956 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4957 { 4958 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4959 u64 remaining; 4960 4961 /* if the call-back is running a quota refresh is already occurring */ 4962 if (hrtimer_callback_running(refresh_timer)) 4963 return 1; 4964 4965 /* is a quota refresh about to occur? */ 4966 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4967 if (remaining < min_expire) 4968 return 1; 4969 4970 return 0; 4971 } 4972 4973 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4974 { 4975 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4976 4977 /* if there's a quota refresh soon don't bother with slack */ 4978 if (runtime_refresh_within(cfs_b, min_left)) 4979 return; 4980 4981 /* don't push forwards an existing deferred unthrottle */ 4982 if (cfs_b->slack_started) 4983 return; 4984 cfs_b->slack_started = true; 4985 4986 hrtimer_start(&cfs_b->slack_timer, 4987 ns_to_ktime(cfs_bandwidth_slack_period), 4988 HRTIMER_MODE_REL); 4989 } 4990 4991 /* we know any runtime found here is valid as update_curr() precedes return */ 4992 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4993 { 4994 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4995 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4996 4997 if (slack_runtime <= 0) 4998 return; 4999 5000 raw_spin_lock(&cfs_b->lock); 5001 if (cfs_b->quota != RUNTIME_INF) { 5002 cfs_b->runtime += slack_runtime; 5003 5004 /* we are under rq->lock, defer unthrottling using a timer */ 5005 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5006 !list_empty(&cfs_b->throttled_cfs_rq)) 5007 start_cfs_slack_bandwidth(cfs_b); 5008 } 5009 raw_spin_unlock(&cfs_b->lock); 5010 5011 /* even if it's not valid for return we don't want to try again */ 5012 cfs_rq->runtime_remaining -= slack_runtime; 5013 } 5014 5015 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5016 { 5017 if (!cfs_bandwidth_used()) 5018 return; 5019 5020 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5021 return; 5022 5023 __return_cfs_rq_runtime(cfs_rq); 5024 } 5025 5026 /* 5027 * This is done with a timer (instead of inline with bandwidth return) since 5028 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5029 */ 5030 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5031 { 5032 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5033 unsigned long flags; 5034 5035 /* confirm we're still not at a refresh boundary */ 5036 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5037 cfs_b->slack_started = false; 5038 if (cfs_b->distribute_running) { 5039 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5040 return; 5041 } 5042 5043 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5044 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5045 return; 5046 } 5047 5048 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5049 runtime = cfs_b->runtime; 5050 5051 if (runtime) 5052 cfs_b->distribute_running = 1; 5053 5054 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5055 5056 if (!runtime) 5057 return; 5058 5059 distribute_cfs_runtime(cfs_b); 5060 5061 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5062 cfs_b->distribute_running = 0; 5063 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5064 } 5065 5066 /* 5067 * When a group wakes up we want to make sure that its quota is not already 5068 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5069 * runtime as update_curr() throttling can not not trigger until it's on-rq. 5070 */ 5071 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5072 { 5073 if (!cfs_bandwidth_used()) 5074 return; 5075 5076 /* an active group must be handled by the update_curr()->put() path */ 5077 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5078 return; 5079 5080 /* ensure the group is not already throttled */ 5081 if (cfs_rq_throttled(cfs_rq)) 5082 return; 5083 5084 /* update runtime allocation */ 5085 account_cfs_rq_runtime(cfs_rq, 0); 5086 if (cfs_rq->runtime_remaining <= 0) 5087 throttle_cfs_rq(cfs_rq); 5088 } 5089 5090 static void sync_throttle(struct task_group *tg, int cpu) 5091 { 5092 struct cfs_rq *pcfs_rq, *cfs_rq; 5093 5094 if (!cfs_bandwidth_used()) 5095 return; 5096 5097 if (!tg->parent) 5098 return; 5099 5100 cfs_rq = tg->cfs_rq[cpu]; 5101 pcfs_rq = tg->parent->cfs_rq[cpu]; 5102 5103 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5104 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5105 } 5106 5107 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5108 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5109 { 5110 if (!cfs_bandwidth_used()) 5111 return false; 5112 5113 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5114 return false; 5115 5116 /* 5117 * it's possible for a throttled entity to be forced into a running 5118 * state (e.g. set_curr_task), in this case we're finished. 5119 */ 5120 if (cfs_rq_throttled(cfs_rq)) 5121 return true; 5122 5123 throttle_cfs_rq(cfs_rq); 5124 return true; 5125 } 5126 5127 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5128 { 5129 struct cfs_bandwidth *cfs_b = 5130 container_of(timer, struct cfs_bandwidth, slack_timer); 5131 5132 do_sched_cfs_slack_timer(cfs_b); 5133 5134 return HRTIMER_NORESTART; 5135 } 5136 5137 extern const u64 max_cfs_quota_period; 5138 5139 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5140 { 5141 struct cfs_bandwidth *cfs_b = 5142 container_of(timer, struct cfs_bandwidth, period_timer); 5143 unsigned long flags; 5144 int overrun; 5145 int idle = 0; 5146 int count = 0; 5147 5148 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5149 for (;;) { 5150 overrun = hrtimer_forward_now(timer, cfs_b->period); 5151 if (!overrun) 5152 break; 5153 5154 if (++count > 3) { 5155 u64 new, old = ktime_to_ns(cfs_b->period); 5156 5157 /* 5158 * Grow period by a factor of 2 to avoid losing precision. 5159 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5160 * to fail. 5161 */ 5162 new = old * 2; 5163 if (new < max_cfs_quota_period) { 5164 cfs_b->period = ns_to_ktime(new); 5165 cfs_b->quota *= 2; 5166 5167 pr_warn_ratelimited( 5168 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5169 smp_processor_id(), 5170 div_u64(new, NSEC_PER_USEC), 5171 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5172 } else { 5173 pr_warn_ratelimited( 5174 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5175 smp_processor_id(), 5176 div_u64(old, NSEC_PER_USEC), 5177 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5178 } 5179 5180 /* reset count so we don't come right back in here */ 5181 count = 0; 5182 } 5183 5184 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5185 } 5186 if (idle) 5187 cfs_b->period_active = 0; 5188 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5189 5190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5191 } 5192 5193 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5194 { 5195 raw_spin_lock_init(&cfs_b->lock); 5196 cfs_b->runtime = 0; 5197 cfs_b->quota = RUNTIME_INF; 5198 cfs_b->period = ns_to_ktime(default_cfs_period()); 5199 5200 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5201 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5202 cfs_b->period_timer.function = sched_cfs_period_timer; 5203 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5204 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5205 cfs_b->distribute_running = 0; 5206 cfs_b->slack_started = false; 5207 } 5208 5209 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5210 { 5211 cfs_rq->runtime_enabled = 0; 5212 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5213 } 5214 5215 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5216 { 5217 lockdep_assert_held(&cfs_b->lock); 5218 5219 if (cfs_b->period_active) 5220 return; 5221 5222 cfs_b->period_active = 1; 5223 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5224 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5225 } 5226 5227 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5228 { 5229 /* init_cfs_bandwidth() was not called */ 5230 if (!cfs_b->throttled_cfs_rq.next) 5231 return; 5232 5233 hrtimer_cancel(&cfs_b->period_timer); 5234 hrtimer_cancel(&cfs_b->slack_timer); 5235 } 5236 5237 /* 5238 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5239 * 5240 * The race is harmless, since modifying bandwidth settings of unhooked group 5241 * bits doesn't do much. 5242 */ 5243 5244 /* cpu online calback */ 5245 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5246 { 5247 struct task_group *tg; 5248 5249 lockdep_assert_held(&rq->lock); 5250 5251 rcu_read_lock(); 5252 list_for_each_entry_rcu(tg, &task_groups, list) { 5253 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5254 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5255 5256 raw_spin_lock(&cfs_b->lock); 5257 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5258 raw_spin_unlock(&cfs_b->lock); 5259 } 5260 rcu_read_unlock(); 5261 } 5262 5263 /* cpu offline callback */ 5264 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5265 { 5266 struct task_group *tg; 5267 5268 lockdep_assert_held(&rq->lock); 5269 5270 rcu_read_lock(); 5271 list_for_each_entry_rcu(tg, &task_groups, list) { 5272 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5273 5274 if (!cfs_rq->runtime_enabled) 5275 continue; 5276 5277 /* 5278 * clock_task is not advancing so we just need to make sure 5279 * there's some valid quota amount 5280 */ 5281 cfs_rq->runtime_remaining = 1; 5282 /* 5283 * Offline rq is schedulable till CPU is completely disabled 5284 * in take_cpu_down(), so we prevent new cfs throttling here. 5285 */ 5286 cfs_rq->runtime_enabled = 0; 5287 5288 if (cfs_rq_throttled(cfs_rq)) 5289 unthrottle_cfs_rq(cfs_rq); 5290 } 5291 rcu_read_unlock(); 5292 } 5293 5294 #else /* CONFIG_CFS_BANDWIDTH */ 5295 5296 static inline bool cfs_bandwidth_used(void) 5297 { 5298 return false; 5299 } 5300 5301 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5302 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5303 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5304 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5305 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5306 5307 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5308 { 5309 return 0; 5310 } 5311 5312 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5313 { 5314 return 0; 5315 } 5316 5317 static inline int throttled_lb_pair(struct task_group *tg, 5318 int src_cpu, int dest_cpu) 5319 { 5320 return 0; 5321 } 5322 5323 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5324 5325 #ifdef CONFIG_FAIR_GROUP_SCHED 5326 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5327 #endif 5328 5329 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5330 { 5331 return NULL; 5332 } 5333 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5334 static inline void update_runtime_enabled(struct rq *rq) {} 5335 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5336 5337 #endif /* CONFIG_CFS_BANDWIDTH */ 5338 5339 /************************************************** 5340 * CFS operations on tasks: 5341 */ 5342 5343 #ifdef CONFIG_SCHED_HRTICK 5344 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5345 { 5346 struct sched_entity *se = &p->se; 5347 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5348 5349 SCHED_WARN_ON(task_rq(p) != rq); 5350 5351 if (rq->cfs.h_nr_running > 1) { 5352 u64 slice = sched_slice(cfs_rq, se); 5353 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5354 s64 delta = slice - ran; 5355 5356 if (delta < 0) { 5357 if (rq->curr == p) 5358 resched_curr(rq); 5359 return; 5360 } 5361 hrtick_start(rq, delta); 5362 } 5363 } 5364 5365 /* 5366 * called from enqueue/dequeue and updates the hrtick when the 5367 * current task is from our class and nr_running is low enough 5368 * to matter. 5369 */ 5370 static void hrtick_update(struct rq *rq) 5371 { 5372 struct task_struct *curr = rq->curr; 5373 5374 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5375 return; 5376 5377 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5378 hrtick_start_fair(rq, curr); 5379 } 5380 #else /* !CONFIG_SCHED_HRTICK */ 5381 static inline void 5382 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5383 { 5384 } 5385 5386 static inline void hrtick_update(struct rq *rq) 5387 { 5388 } 5389 #endif 5390 5391 #ifdef CONFIG_SMP 5392 static inline unsigned long cpu_util(int cpu); 5393 5394 static inline bool cpu_overutilized(int cpu) 5395 { 5396 return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); 5397 } 5398 5399 static inline void update_overutilized_status(struct rq *rq) 5400 { 5401 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5402 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5403 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5404 } 5405 } 5406 #else 5407 static inline void update_overutilized_status(struct rq *rq) { } 5408 #endif 5409 5410 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5411 static int sched_idle_rq(struct rq *rq) 5412 { 5413 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5414 rq->nr_running); 5415 } 5416 5417 #ifdef CONFIG_SMP 5418 static int sched_idle_cpu(int cpu) 5419 { 5420 return sched_idle_rq(cpu_rq(cpu)); 5421 } 5422 #endif 5423 5424 /* 5425 * The enqueue_task method is called before nr_running is 5426 * increased. Here we update the fair scheduling stats and 5427 * then put the task into the rbtree: 5428 */ 5429 static void 5430 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5431 { 5432 struct cfs_rq *cfs_rq; 5433 struct sched_entity *se = &p->se; 5434 int idle_h_nr_running = task_has_idle_policy(p); 5435 5436 /* 5437 * The code below (indirectly) updates schedutil which looks at 5438 * the cfs_rq utilization to select a frequency. 5439 * Let's add the task's estimated utilization to the cfs_rq's 5440 * estimated utilization, before we update schedutil. 5441 */ 5442 util_est_enqueue(&rq->cfs, p); 5443 5444 /* 5445 * If in_iowait is set, the code below may not trigger any cpufreq 5446 * utilization updates, so do it here explicitly with the IOWAIT flag 5447 * passed. 5448 */ 5449 if (p->in_iowait) 5450 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5451 5452 for_each_sched_entity(se) { 5453 if (se->on_rq) 5454 break; 5455 cfs_rq = cfs_rq_of(se); 5456 enqueue_entity(cfs_rq, se, flags); 5457 5458 cfs_rq->h_nr_running++; 5459 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5460 5461 /* end evaluation on encountering a throttled cfs_rq */ 5462 if (cfs_rq_throttled(cfs_rq)) 5463 goto enqueue_throttle; 5464 5465 flags = ENQUEUE_WAKEUP; 5466 } 5467 5468 for_each_sched_entity(se) { 5469 cfs_rq = cfs_rq_of(se); 5470 5471 update_load_avg(cfs_rq, se, UPDATE_TG); 5472 se_update_runnable(se); 5473 update_cfs_group(se); 5474 5475 cfs_rq->h_nr_running++; 5476 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5477 5478 /* end evaluation on encountering a throttled cfs_rq */ 5479 if (cfs_rq_throttled(cfs_rq)) 5480 goto enqueue_throttle; 5481 } 5482 5483 enqueue_throttle: 5484 if (!se) { 5485 add_nr_running(rq, 1); 5486 /* 5487 * Since new tasks are assigned an initial util_avg equal to 5488 * half of the spare capacity of their CPU, tiny tasks have the 5489 * ability to cross the overutilized threshold, which will 5490 * result in the load balancer ruining all the task placement 5491 * done by EAS. As a way to mitigate that effect, do not account 5492 * for the first enqueue operation of new tasks during the 5493 * overutilized flag detection. 5494 * 5495 * A better way of solving this problem would be to wait for 5496 * the PELT signals of tasks to converge before taking them 5497 * into account, but that is not straightforward to implement, 5498 * and the following generally works well enough in practice. 5499 */ 5500 if (flags & ENQUEUE_WAKEUP) 5501 update_overutilized_status(rq); 5502 5503 } 5504 5505 if (cfs_bandwidth_used()) { 5506 /* 5507 * When bandwidth control is enabled; the cfs_rq_throttled() 5508 * breaks in the above iteration can result in incomplete 5509 * leaf list maintenance, resulting in triggering the assertion 5510 * below. 5511 */ 5512 for_each_sched_entity(se) { 5513 cfs_rq = cfs_rq_of(se); 5514 5515 if (list_add_leaf_cfs_rq(cfs_rq)) 5516 break; 5517 } 5518 } 5519 5520 assert_list_leaf_cfs_rq(rq); 5521 5522 hrtick_update(rq); 5523 } 5524 5525 static void set_next_buddy(struct sched_entity *se); 5526 5527 /* 5528 * The dequeue_task method is called before nr_running is 5529 * decreased. We remove the task from the rbtree and 5530 * update the fair scheduling stats: 5531 */ 5532 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5533 { 5534 struct cfs_rq *cfs_rq; 5535 struct sched_entity *se = &p->se; 5536 int task_sleep = flags & DEQUEUE_SLEEP; 5537 int idle_h_nr_running = task_has_idle_policy(p); 5538 bool was_sched_idle = sched_idle_rq(rq); 5539 5540 for_each_sched_entity(se) { 5541 cfs_rq = cfs_rq_of(se); 5542 dequeue_entity(cfs_rq, se, flags); 5543 5544 cfs_rq->h_nr_running--; 5545 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5546 5547 /* end evaluation on encountering a throttled cfs_rq */ 5548 if (cfs_rq_throttled(cfs_rq)) 5549 goto dequeue_throttle; 5550 5551 /* Don't dequeue parent if it has other entities besides us */ 5552 if (cfs_rq->load.weight) { 5553 /* Avoid re-evaluating load for this entity: */ 5554 se = parent_entity(se); 5555 /* 5556 * Bias pick_next to pick a task from this cfs_rq, as 5557 * p is sleeping when it is within its sched_slice. 5558 */ 5559 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5560 set_next_buddy(se); 5561 break; 5562 } 5563 flags |= DEQUEUE_SLEEP; 5564 } 5565 5566 for_each_sched_entity(se) { 5567 cfs_rq = cfs_rq_of(se); 5568 5569 update_load_avg(cfs_rq, se, UPDATE_TG); 5570 se_update_runnable(se); 5571 update_cfs_group(se); 5572 5573 cfs_rq->h_nr_running--; 5574 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5575 5576 /* end evaluation on encountering a throttled cfs_rq */ 5577 if (cfs_rq_throttled(cfs_rq)) 5578 goto dequeue_throttle; 5579 5580 } 5581 5582 dequeue_throttle: 5583 if (!se) 5584 sub_nr_running(rq, 1); 5585 5586 /* balance early to pull high priority tasks */ 5587 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5588 rq->next_balance = jiffies; 5589 5590 util_est_dequeue(&rq->cfs, p, task_sleep); 5591 hrtick_update(rq); 5592 } 5593 5594 #ifdef CONFIG_SMP 5595 5596 /* Working cpumask for: load_balance, load_balance_newidle. */ 5597 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5598 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5599 5600 #ifdef CONFIG_NO_HZ_COMMON 5601 5602 static struct { 5603 cpumask_var_t idle_cpus_mask; 5604 atomic_t nr_cpus; 5605 int has_blocked; /* Idle CPUS has blocked load */ 5606 unsigned long next_balance; /* in jiffy units */ 5607 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5608 } nohz ____cacheline_aligned; 5609 5610 #endif /* CONFIG_NO_HZ_COMMON */ 5611 5612 static unsigned long cpu_load(struct rq *rq) 5613 { 5614 return cfs_rq_load_avg(&rq->cfs); 5615 } 5616 5617 /* 5618 * cpu_load_without - compute CPU load without any contributions from *p 5619 * @cpu: the CPU which load is requested 5620 * @p: the task which load should be discounted 5621 * 5622 * The load of a CPU is defined by the load of tasks currently enqueued on that 5623 * CPU as well as tasks which are currently sleeping after an execution on that 5624 * CPU. 5625 * 5626 * This method returns the load of the specified CPU by discounting the load of 5627 * the specified task, whenever the task is currently contributing to the CPU 5628 * load. 5629 */ 5630 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5631 { 5632 struct cfs_rq *cfs_rq; 5633 unsigned int load; 5634 5635 /* Task has no contribution or is new */ 5636 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5637 return cpu_load(rq); 5638 5639 cfs_rq = &rq->cfs; 5640 load = READ_ONCE(cfs_rq->avg.load_avg); 5641 5642 /* Discount task's util from CPU's util */ 5643 lsub_positive(&load, task_h_load(p)); 5644 5645 return load; 5646 } 5647 5648 static unsigned long cpu_runnable(struct rq *rq) 5649 { 5650 return cfs_rq_runnable_avg(&rq->cfs); 5651 } 5652 5653 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5654 { 5655 struct cfs_rq *cfs_rq; 5656 unsigned int runnable; 5657 5658 /* Task has no contribution or is new */ 5659 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5660 return cpu_runnable(rq); 5661 5662 cfs_rq = &rq->cfs; 5663 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5664 5665 /* Discount task's runnable from CPU's runnable */ 5666 lsub_positive(&runnable, p->se.avg.runnable_avg); 5667 5668 return runnable; 5669 } 5670 5671 static unsigned long capacity_of(int cpu) 5672 { 5673 return cpu_rq(cpu)->cpu_capacity; 5674 } 5675 5676 static void record_wakee(struct task_struct *p) 5677 { 5678 /* 5679 * Only decay a single time; tasks that have less then 1 wakeup per 5680 * jiffy will not have built up many flips. 5681 */ 5682 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5683 current->wakee_flips >>= 1; 5684 current->wakee_flip_decay_ts = jiffies; 5685 } 5686 5687 if (current->last_wakee != p) { 5688 current->last_wakee = p; 5689 current->wakee_flips++; 5690 } 5691 } 5692 5693 /* 5694 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5695 * 5696 * A waker of many should wake a different task than the one last awakened 5697 * at a frequency roughly N times higher than one of its wakees. 5698 * 5699 * In order to determine whether we should let the load spread vs consolidating 5700 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5701 * partner, and a factor of lls_size higher frequency in the other. 5702 * 5703 * With both conditions met, we can be relatively sure that the relationship is 5704 * non-monogamous, with partner count exceeding socket size. 5705 * 5706 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5707 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5708 * socket size. 5709 */ 5710 static int wake_wide(struct task_struct *p) 5711 { 5712 unsigned int master = current->wakee_flips; 5713 unsigned int slave = p->wakee_flips; 5714 int factor = this_cpu_read(sd_llc_size); 5715 5716 if (master < slave) 5717 swap(master, slave); 5718 if (slave < factor || master < slave * factor) 5719 return 0; 5720 return 1; 5721 } 5722 5723 /* 5724 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5725 * soonest. For the purpose of speed we only consider the waking and previous 5726 * CPU. 5727 * 5728 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5729 * cache-affine and is (or will be) idle. 5730 * 5731 * wake_affine_weight() - considers the weight to reflect the average 5732 * scheduling latency of the CPUs. This seems to work 5733 * for the overloaded case. 5734 */ 5735 static int 5736 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5737 { 5738 /* 5739 * If this_cpu is idle, it implies the wakeup is from interrupt 5740 * context. Only allow the move if cache is shared. Otherwise an 5741 * interrupt intensive workload could force all tasks onto one 5742 * node depending on the IO topology or IRQ affinity settings. 5743 * 5744 * If the prev_cpu is idle and cache affine then avoid a migration. 5745 * There is no guarantee that the cache hot data from an interrupt 5746 * is more important than cache hot data on the prev_cpu and from 5747 * a cpufreq perspective, it's better to have higher utilisation 5748 * on one CPU. 5749 */ 5750 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5751 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5752 5753 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5754 return this_cpu; 5755 5756 return nr_cpumask_bits; 5757 } 5758 5759 static int 5760 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5761 int this_cpu, int prev_cpu, int sync) 5762 { 5763 s64 this_eff_load, prev_eff_load; 5764 unsigned long task_load; 5765 5766 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5767 5768 if (sync) { 5769 unsigned long current_load = task_h_load(current); 5770 5771 if (current_load > this_eff_load) 5772 return this_cpu; 5773 5774 this_eff_load -= current_load; 5775 } 5776 5777 task_load = task_h_load(p); 5778 5779 this_eff_load += task_load; 5780 if (sched_feat(WA_BIAS)) 5781 this_eff_load *= 100; 5782 this_eff_load *= capacity_of(prev_cpu); 5783 5784 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 5785 prev_eff_load -= task_load; 5786 if (sched_feat(WA_BIAS)) 5787 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5788 prev_eff_load *= capacity_of(this_cpu); 5789 5790 /* 5791 * If sync, adjust the weight of prev_eff_load such that if 5792 * prev_eff == this_eff that select_idle_sibling() will consider 5793 * stacking the wakee on top of the waker if no other CPU is 5794 * idle. 5795 */ 5796 if (sync) 5797 prev_eff_load += 1; 5798 5799 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5800 } 5801 5802 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5803 int this_cpu, int prev_cpu, int sync) 5804 { 5805 int target = nr_cpumask_bits; 5806 5807 if (sched_feat(WA_IDLE)) 5808 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5809 5810 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5811 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5812 5813 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5814 if (target == nr_cpumask_bits) 5815 return prev_cpu; 5816 5817 schedstat_inc(sd->ttwu_move_affine); 5818 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5819 return target; 5820 } 5821 5822 static struct sched_group * 5823 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5824 int this_cpu, int sd_flag); 5825 5826 /* 5827 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5828 */ 5829 static int 5830 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5831 { 5832 unsigned long load, min_load = ULONG_MAX; 5833 unsigned int min_exit_latency = UINT_MAX; 5834 u64 latest_idle_timestamp = 0; 5835 int least_loaded_cpu = this_cpu; 5836 int shallowest_idle_cpu = -1; 5837 int i; 5838 5839 /* Check if we have any choice: */ 5840 if (group->group_weight == 1) 5841 return cpumask_first(sched_group_span(group)); 5842 5843 /* Traverse only the allowed CPUs */ 5844 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 5845 if (sched_idle_cpu(i)) 5846 return i; 5847 5848 if (available_idle_cpu(i)) { 5849 struct rq *rq = cpu_rq(i); 5850 struct cpuidle_state *idle = idle_get_state(rq); 5851 if (idle && idle->exit_latency < min_exit_latency) { 5852 /* 5853 * We give priority to a CPU whose idle state 5854 * has the smallest exit latency irrespective 5855 * of any idle timestamp. 5856 */ 5857 min_exit_latency = idle->exit_latency; 5858 latest_idle_timestamp = rq->idle_stamp; 5859 shallowest_idle_cpu = i; 5860 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5861 rq->idle_stamp > latest_idle_timestamp) { 5862 /* 5863 * If equal or no active idle state, then 5864 * the most recently idled CPU might have 5865 * a warmer cache. 5866 */ 5867 latest_idle_timestamp = rq->idle_stamp; 5868 shallowest_idle_cpu = i; 5869 } 5870 } else if (shallowest_idle_cpu == -1) { 5871 load = cpu_load(cpu_rq(i)); 5872 if (load < min_load) { 5873 min_load = load; 5874 least_loaded_cpu = i; 5875 } 5876 } 5877 } 5878 5879 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5880 } 5881 5882 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5883 int cpu, int prev_cpu, int sd_flag) 5884 { 5885 int new_cpu = cpu; 5886 5887 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 5888 return prev_cpu; 5889 5890 /* 5891 * We need task's util for cpu_util_without, sync it up to 5892 * prev_cpu's last_update_time. 5893 */ 5894 if (!(sd_flag & SD_BALANCE_FORK)) 5895 sync_entity_load_avg(&p->se); 5896 5897 while (sd) { 5898 struct sched_group *group; 5899 struct sched_domain *tmp; 5900 int weight; 5901 5902 if (!(sd->flags & sd_flag)) { 5903 sd = sd->child; 5904 continue; 5905 } 5906 5907 group = find_idlest_group(sd, p, cpu, sd_flag); 5908 if (!group) { 5909 sd = sd->child; 5910 continue; 5911 } 5912 5913 new_cpu = find_idlest_group_cpu(group, p, cpu); 5914 if (new_cpu == cpu) { 5915 /* Now try balancing at a lower domain level of 'cpu': */ 5916 sd = sd->child; 5917 continue; 5918 } 5919 5920 /* Now try balancing at a lower domain level of 'new_cpu': */ 5921 cpu = new_cpu; 5922 weight = sd->span_weight; 5923 sd = NULL; 5924 for_each_domain(cpu, tmp) { 5925 if (weight <= tmp->span_weight) 5926 break; 5927 if (tmp->flags & sd_flag) 5928 sd = tmp; 5929 } 5930 } 5931 5932 return new_cpu; 5933 } 5934 5935 #ifdef CONFIG_SCHED_SMT 5936 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5937 EXPORT_SYMBOL_GPL(sched_smt_present); 5938 5939 static inline void set_idle_cores(int cpu, int val) 5940 { 5941 struct sched_domain_shared *sds; 5942 5943 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5944 if (sds) 5945 WRITE_ONCE(sds->has_idle_cores, val); 5946 } 5947 5948 static inline bool test_idle_cores(int cpu, bool def) 5949 { 5950 struct sched_domain_shared *sds; 5951 5952 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5953 if (sds) 5954 return READ_ONCE(sds->has_idle_cores); 5955 5956 return def; 5957 } 5958 5959 /* 5960 * Scans the local SMT mask to see if the entire core is idle, and records this 5961 * information in sd_llc_shared->has_idle_cores. 5962 * 5963 * Since SMT siblings share all cache levels, inspecting this limited remote 5964 * state should be fairly cheap. 5965 */ 5966 void __update_idle_core(struct rq *rq) 5967 { 5968 int core = cpu_of(rq); 5969 int cpu; 5970 5971 rcu_read_lock(); 5972 if (test_idle_cores(core, true)) 5973 goto unlock; 5974 5975 for_each_cpu(cpu, cpu_smt_mask(core)) { 5976 if (cpu == core) 5977 continue; 5978 5979 if (!available_idle_cpu(cpu)) 5980 goto unlock; 5981 } 5982 5983 set_idle_cores(core, 1); 5984 unlock: 5985 rcu_read_unlock(); 5986 } 5987 5988 /* 5989 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5990 * there are no idle cores left in the system; tracked through 5991 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5992 */ 5993 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5994 { 5995 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5996 int core, cpu; 5997 5998 if (!static_branch_likely(&sched_smt_present)) 5999 return -1; 6000 6001 if (!test_idle_cores(target, false)) 6002 return -1; 6003 6004 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6005 6006 for_each_cpu_wrap(core, cpus, target) { 6007 bool idle = true; 6008 6009 for_each_cpu(cpu, cpu_smt_mask(core)) { 6010 if (!available_idle_cpu(cpu)) { 6011 idle = false; 6012 break; 6013 } 6014 } 6015 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6016 6017 if (idle) 6018 return core; 6019 } 6020 6021 /* 6022 * Failed to find an idle core; stop looking for one. 6023 */ 6024 set_idle_cores(target, 0); 6025 6026 return -1; 6027 } 6028 6029 /* 6030 * Scan the local SMT mask for idle CPUs. 6031 */ 6032 static int select_idle_smt(struct task_struct *p, int target) 6033 { 6034 int cpu; 6035 6036 if (!static_branch_likely(&sched_smt_present)) 6037 return -1; 6038 6039 for_each_cpu(cpu, cpu_smt_mask(target)) { 6040 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6041 continue; 6042 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6043 return cpu; 6044 } 6045 6046 return -1; 6047 } 6048 6049 #else /* CONFIG_SCHED_SMT */ 6050 6051 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6052 { 6053 return -1; 6054 } 6055 6056 static inline int select_idle_smt(struct task_struct *p, int target) 6057 { 6058 return -1; 6059 } 6060 6061 #endif /* CONFIG_SCHED_SMT */ 6062 6063 /* 6064 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6065 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6066 * average idle time for this rq (as found in rq->avg_idle). 6067 */ 6068 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6069 { 6070 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6071 struct sched_domain *this_sd; 6072 u64 avg_cost, avg_idle; 6073 u64 time; 6074 int this = smp_processor_id(); 6075 int cpu, nr = INT_MAX; 6076 6077 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6078 if (!this_sd) 6079 return -1; 6080 6081 /* 6082 * Due to large variance we need a large fuzz factor; hackbench in 6083 * particularly is sensitive here. 6084 */ 6085 avg_idle = this_rq()->avg_idle / 512; 6086 avg_cost = this_sd->avg_scan_cost + 1; 6087 6088 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6089 return -1; 6090 6091 if (sched_feat(SIS_PROP)) { 6092 u64 span_avg = sd->span_weight * avg_idle; 6093 if (span_avg > 4*avg_cost) 6094 nr = div_u64(span_avg, avg_cost); 6095 else 6096 nr = 4; 6097 } 6098 6099 time = cpu_clock(this); 6100 6101 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6102 6103 for_each_cpu_wrap(cpu, cpus, target) { 6104 if (!--nr) 6105 return -1; 6106 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6107 break; 6108 } 6109 6110 time = cpu_clock(this) - time; 6111 update_avg(&this_sd->avg_scan_cost, time); 6112 6113 return cpu; 6114 } 6115 6116 /* 6117 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6118 * the task fits. If no CPU is big enough, but there are idle ones, try to 6119 * maximize capacity. 6120 */ 6121 static int 6122 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6123 { 6124 unsigned long best_cap = 0; 6125 int cpu, best_cpu = -1; 6126 struct cpumask *cpus; 6127 6128 sync_entity_load_avg(&p->se); 6129 6130 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6131 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6132 6133 for_each_cpu_wrap(cpu, cpus, target) { 6134 unsigned long cpu_cap = capacity_of(cpu); 6135 6136 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6137 continue; 6138 if (task_fits_capacity(p, cpu_cap)) 6139 return cpu; 6140 6141 if (cpu_cap > best_cap) { 6142 best_cap = cpu_cap; 6143 best_cpu = cpu; 6144 } 6145 } 6146 6147 return best_cpu; 6148 } 6149 6150 /* 6151 * Try and locate an idle core/thread in the LLC cache domain. 6152 */ 6153 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6154 { 6155 struct sched_domain *sd; 6156 int i, recent_used_cpu; 6157 6158 /* 6159 * For asymmetric CPU capacity systems, our domain of interest is 6160 * sd_asym_cpucapacity rather than sd_llc. 6161 */ 6162 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6163 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6164 /* 6165 * On an asymmetric CPU capacity system where an exclusive 6166 * cpuset defines a symmetric island (i.e. one unique 6167 * capacity_orig value through the cpuset), the key will be set 6168 * but the CPUs within that cpuset will not have a domain with 6169 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6170 * capacity path. 6171 */ 6172 if (!sd) 6173 goto symmetric; 6174 6175 i = select_idle_capacity(p, sd, target); 6176 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6177 } 6178 6179 symmetric: 6180 if (available_idle_cpu(target) || sched_idle_cpu(target)) 6181 return target; 6182 6183 /* 6184 * If the previous CPU is cache affine and idle, don't be stupid: 6185 */ 6186 if (prev != target && cpus_share_cache(prev, target) && 6187 (available_idle_cpu(prev) || sched_idle_cpu(prev))) 6188 return prev; 6189 6190 /* 6191 * Allow a per-cpu kthread to stack with the wakee if the 6192 * kworker thread and the tasks previous CPUs are the same. 6193 * The assumption is that the wakee queued work for the 6194 * per-cpu kthread that is now complete and the wakeup is 6195 * essentially a sync wakeup. An obvious example of this 6196 * pattern is IO completions. 6197 */ 6198 if (is_per_cpu_kthread(current) && 6199 prev == smp_processor_id() && 6200 this_rq()->nr_running <= 1) { 6201 return prev; 6202 } 6203 6204 /* Check a recently used CPU as a potential idle candidate: */ 6205 recent_used_cpu = p->recent_used_cpu; 6206 if (recent_used_cpu != prev && 6207 recent_used_cpu != target && 6208 cpus_share_cache(recent_used_cpu, target) && 6209 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6210 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) { 6211 /* 6212 * Replace recent_used_cpu with prev as it is a potential 6213 * candidate for the next wake: 6214 */ 6215 p->recent_used_cpu = prev; 6216 return recent_used_cpu; 6217 } 6218 6219 sd = rcu_dereference(per_cpu(sd_llc, target)); 6220 if (!sd) 6221 return target; 6222 6223 i = select_idle_core(p, sd, target); 6224 if ((unsigned)i < nr_cpumask_bits) 6225 return i; 6226 6227 i = select_idle_cpu(p, sd, target); 6228 if ((unsigned)i < nr_cpumask_bits) 6229 return i; 6230 6231 i = select_idle_smt(p, target); 6232 if ((unsigned)i < nr_cpumask_bits) 6233 return i; 6234 6235 return target; 6236 } 6237 6238 /** 6239 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6240 * @cpu: the CPU to get the utilization of 6241 * 6242 * The unit of the return value must be the one of capacity so we can compare 6243 * the utilization with the capacity of the CPU that is available for CFS task 6244 * (ie cpu_capacity). 6245 * 6246 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6247 * recent utilization of currently non-runnable tasks on a CPU. It represents 6248 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6249 * capacity_orig is the cpu_capacity available at the highest frequency 6250 * (arch_scale_freq_capacity()). 6251 * The utilization of a CPU converges towards a sum equal to or less than the 6252 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6253 * the running time on this CPU scaled by capacity_curr. 6254 * 6255 * The estimated utilization of a CPU is defined to be the maximum between its 6256 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6257 * currently RUNNABLE on that CPU. 6258 * This allows to properly represent the expected utilization of a CPU which 6259 * has just got a big task running since a long sleep period. At the same time 6260 * however it preserves the benefits of the "blocked utilization" in 6261 * describing the potential for other tasks waking up on the same CPU. 6262 * 6263 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6264 * higher than capacity_orig because of unfortunate rounding in 6265 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6266 * the average stabilizes with the new running time. We need to check that the 6267 * utilization stays within the range of [0..capacity_orig] and cap it if 6268 * necessary. Without utilization capping, a group could be seen as overloaded 6269 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6270 * available capacity. We allow utilization to overshoot capacity_curr (but not 6271 * capacity_orig) as it useful for predicting the capacity required after task 6272 * migrations (scheduler-driven DVFS). 6273 * 6274 * Return: the (estimated) utilization for the specified CPU 6275 */ 6276 static inline unsigned long cpu_util(int cpu) 6277 { 6278 struct cfs_rq *cfs_rq; 6279 unsigned int util; 6280 6281 cfs_rq = &cpu_rq(cpu)->cfs; 6282 util = READ_ONCE(cfs_rq->avg.util_avg); 6283 6284 if (sched_feat(UTIL_EST)) 6285 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6286 6287 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6288 } 6289 6290 /* 6291 * cpu_util_without: compute cpu utilization without any contributions from *p 6292 * @cpu: the CPU which utilization is requested 6293 * @p: the task which utilization should be discounted 6294 * 6295 * The utilization of a CPU is defined by the utilization of tasks currently 6296 * enqueued on that CPU as well as tasks which are currently sleeping after an 6297 * execution on that CPU. 6298 * 6299 * This method returns the utilization of the specified CPU by discounting the 6300 * utilization of the specified task, whenever the task is currently 6301 * contributing to the CPU utilization. 6302 */ 6303 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6304 { 6305 struct cfs_rq *cfs_rq; 6306 unsigned int util; 6307 6308 /* Task has no contribution or is new */ 6309 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6310 return cpu_util(cpu); 6311 6312 cfs_rq = &cpu_rq(cpu)->cfs; 6313 util = READ_ONCE(cfs_rq->avg.util_avg); 6314 6315 /* Discount task's util from CPU's util */ 6316 lsub_positive(&util, task_util(p)); 6317 6318 /* 6319 * Covered cases: 6320 * 6321 * a) if *p is the only task sleeping on this CPU, then: 6322 * cpu_util (== task_util) > util_est (== 0) 6323 * and thus we return: 6324 * cpu_util_without = (cpu_util - task_util) = 0 6325 * 6326 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6327 * IDLE, then: 6328 * cpu_util >= task_util 6329 * cpu_util > util_est (== 0) 6330 * and thus we discount *p's blocked utilization to return: 6331 * cpu_util_without = (cpu_util - task_util) >= 0 6332 * 6333 * c) if other tasks are RUNNABLE on that CPU and 6334 * util_est > cpu_util 6335 * then we use util_est since it returns a more restrictive 6336 * estimation of the spare capacity on that CPU, by just 6337 * considering the expected utilization of tasks already 6338 * runnable on that CPU. 6339 * 6340 * Cases a) and b) are covered by the above code, while case c) is 6341 * covered by the following code when estimated utilization is 6342 * enabled. 6343 */ 6344 if (sched_feat(UTIL_EST)) { 6345 unsigned int estimated = 6346 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6347 6348 /* 6349 * Despite the following checks we still have a small window 6350 * for a possible race, when an execl's select_task_rq_fair() 6351 * races with LB's detach_task(): 6352 * 6353 * detach_task() 6354 * p->on_rq = TASK_ON_RQ_MIGRATING; 6355 * ---------------------------------- A 6356 * deactivate_task() \ 6357 * dequeue_task() + RaceTime 6358 * util_est_dequeue() / 6359 * ---------------------------------- B 6360 * 6361 * The additional check on "current == p" it's required to 6362 * properly fix the execl regression and it helps in further 6363 * reducing the chances for the above race. 6364 */ 6365 if (unlikely(task_on_rq_queued(p) || current == p)) 6366 lsub_positive(&estimated, _task_util_est(p)); 6367 6368 util = max(util, estimated); 6369 } 6370 6371 /* 6372 * Utilization (estimated) can exceed the CPU capacity, thus let's 6373 * clamp to the maximum CPU capacity to ensure consistency with 6374 * the cpu_util call. 6375 */ 6376 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6377 } 6378 6379 /* 6380 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6381 * to @dst_cpu. 6382 */ 6383 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6384 { 6385 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6386 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6387 6388 /* 6389 * If @p migrates from @cpu to another, remove its contribution. Or, 6390 * if @p migrates from another CPU to @cpu, add its contribution. In 6391 * the other cases, @cpu is not impacted by the migration, so the 6392 * util_avg should already be correct. 6393 */ 6394 if (task_cpu(p) == cpu && dst_cpu != cpu) 6395 sub_positive(&util, task_util(p)); 6396 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6397 util += task_util(p); 6398 6399 if (sched_feat(UTIL_EST)) { 6400 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6401 6402 /* 6403 * During wake-up, the task isn't enqueued yet and doesn't 6404 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6405 * so just add it (if needed) to "simulate" what will be 6406 * cpu_util() after the task has been enqueued. 6407 */ 6408 if (dst_cpu == cpu) 6409 util_est += _task_util_est(p); 6410 6411 util = max(util, util_est); 6412 } 6413 6414 return min(util, capacity_orig_of(cpu)); 6415 } 6416 6417 /* 6418 * compute_energy(): Estimates the energy that @pd would consume if @p was 6419 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6420 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6421 * to compute what would be the energy if we decided to actually migrate that 6422 * task. 6423 */ 6424 static long 6425 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6426 { 6427 struct cpumask *pd_mask = perf_domain_span(pd); 6428 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6429 unsigned long max_util = 0, sum_util = 0; 6430 int cpu; 6431 6432 /* 6433 * The capacity state of CPUs of the current rd can be driven by CPUs 6434 * of another rd if they belong to the same pd. So, account for the 6435 * utilization of these CPUs too by masking pd with cpu_online_mask 6436 * instead of the rd span. 6437 * 6438 * If an entire pd is outside of the current rd, it will not appear in 6439 * its pd list and will not be accounted by compute_energy(). 6440 */ 6441 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6442 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu); 6443 struct task_struct *tsk = cpu == dst_cpu ? p : NULL; 6444 6445 /* 6446 * Busy time computation: utilization clamping is not 6447 * required since the ratio (sum_util / cpu_capacity) 6448 * is already enough to scale the EM reported power 6449 * consumption at the (eventually clamped) cpu_capacity. 6450 */ 6451 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6452 ENERGY_UTIL, NULL); 6453 6454 /* 6455 * Performance domain frequency: utilization clamping 6456 * must be considered since it affects the selection 6457 * of the performance domain frequency. 6458 * NOTE: in case RT tasks are running, by default the 6459 * FREQUENCY_UTIL's utilization can be max OPP. 6460 */ 6461 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap, 6462 FREQUENCY_UTIL, tsk); 6463 max_util = max(max_util, cpu_util); 6464 } 6465 6466 return em_pd_energy(pd->em_pd, max_util, sum_util); 6467 } 6468 6469 /* 6470 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6471 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6472 * spare capacity in each performance domain and uses it as a potential 6473 * candidate to execute the task. Then, it uses the Energy Model to figure 6474 * out which of the CPU candidates is the most energy-efficient. 6475 * 6476 * The rationale for this heuristic is as follows. In a performance domain, 6477 * all the most energy efficient CPU candidates (according to the Energy 6478 * Model) are those for which we'll request a low frequency. When there are 6479 * several CPUs for which the frequency request will be the same, we don't 6480 * have enough data to break the tie between them, because the Energy Model 6481 * only includes active power costs. With this model, if we assume that 6482 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6483 * the maximum spare capacity in a performance domain is guaranteed to be among 6484 * the best candidates of the performance domain. 6485 * 6486 * In practice, it could be preferable from an energy standpoint to pack 6487 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6488 * but that could also hurt our chances to go cluster idle, and we have no 6489 * ways to tell with the current Energy Model if this is actually a good 6490 * idea or not. So, find_energy_efficient_cpu() basically favors 6491 * cluster-packing, and spreading inside a cluster. That should at least be 6492 * a good thing for latency, and this is consistent with the idea that most 6493 * of the energy savings of EAS come from the asymmetry of the system, and 6494 * not so much from breaking the tie between identical CPUs. That's also the 6495 * reason why EAS is enabled in the topology code only for systems where 6496 * SD_ASYM_CPUCAPACITY is set. 6497 * 6498 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6499 * they don't have any useful utilization data yet and it's not possible to 6500 * forecast their impact on energy consumption. Consequently, they will be 6501 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6502 * to be energy-inefficient in some use-cases. The alternative would be to 6503 * bias new tasks towards specific types of CPUs first, or to try to infer 6504 * their util_avg from the parent task, but those heuristics could hurt 6505 * other use-cases too. So, until someone finds a better way to solve this, 6506 * let's keep things simple by re-using the existing slow path. 6507 */ 6508 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6509 { 6510 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6511 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6512 unsigned long cpu_cap, util, base_energy = 0; 6513 int cpu, best_energy_cpu = prev_cpu; 6514 struct sched_domain *sd; 6515 struct perf_domain *pd; 6516 6517 rcu_read_lock(); 6518 pd = rcu_dereference(rd->pd); 6519 if (!pd || READ_ONCE(rd->overutilized)) 6520 goto fail; 6521 6522 /* 6523 * Energy-aware wake-up happens on the lowest sched_domain starting 6524 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6525 */ 6526 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6527 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6528 sd = sd->parent; 6529 if (!sd) 6530 goto fail; 6531 6532 sync_entity_load_avg(&p->se); 6533 if (!task_util_est(p)) 6534 goto unlock; 6535 6536 for (; pd; pd = pd->next) { 6537 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6538 unsigned long base_energy_pd; 6539 int max_spare_cap_cpu = -1; 6540 6541 /* Compute the 'base' energy of the pd, without @p */ 6542 base_energy_pd = compute_energy(p, -1, pd); 6543 base_energy += base_energy_pd; 6544 6545 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6546 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6547 continue; 6548 6549 util = cpu_util_next(cpu, p, cpu); 6550 cpu_cap = capacity_of(cpu); 6551 spare_cap = cpu_cap - util; 6552 6553 /* 6554 * Skip CPUs that cannot satisfy the capacity request. 6555 * IOW, placing the task there would make the CPU 6556 * overutilized. Take uclamp into account to see how 6557 * much capacity we can get out of the CPU; this is 6558 * aligned with schedutil_cpu_util(). 6559 */ 6560 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6561 if (!fits_capacity(util, cpu_cap)) 6562 continue; 6563 6564 /* Always use prev_cpu as a candidate. */ 6565 if (cpu == prev_cpu) { 6566 prev_delta = compute_energy(p, prev_cpu, pd); 6567 prev_delta -= base_energy_pd; 6568 best_delta = min(best_delta, prev_delta); 6569 } 6570 6571 /* 6572 * Find the CPU with the maximum spare capacity in 6573 * the performance domain 6574 */ 6575 if (spare_cap > max_spare_cap) { 6576 max_spare_cap = spare_cap; 6577 max_spare_cap_cpu = cpu; 6578 } 6579 } 6580 6581 /* Evaluate the energy impact of using this CPU. */ 6582 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) { 6583 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6584 cur_delta -= base_energy_pd; 6585 if (cur_delta < best_delta) { 6586 best_delta = cur_delta; 6587 best_energy_cpu = max_spare_cap_cpu; 6588 } 6589 } 6590 } 6591 unlock: 6592 rcu_read_unlock(); 6593 6594 /* 6595 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6596 * least 6% of the energy used by prev_cpu. 6597 */ 6598 if (prev_delta == ULONG_MAX) 6599 return best_energy_cpu; 6600 6601 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6602 return best_energy_cpu; 6603 6604 return prev_cpu; 6605 6606 fail: 6607 rcu_read_unlock(); 6608 6609 return -1; 6610 } 6611 6612 /* 6613 * select_task_rq_fair: Select target runqueue for the waking task in domains 6614 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6615 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6616 * 6617 * Balances load by selecting the idlest CPU in the idlest group, or under 6618 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6619 * 6620 * Returns the target CPU number. 6621 * 6622 * preempt must be disabled. 6623 */ 6624 static int 6625 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6626 { 6627 struct sched_domain *tmp, *sd = NULL; 6628 int cpu = smp_processor_id(); 6629 int new_cpu = prev_cpu; 6630 int want_affine = 0; 6631 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6632 6633 if (sd_flag & SD_BALANCE_WAKE) { 6634 record_wakee(p); 6635 6636 if (sched_energy_enabled()) { 6637 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6638 if (new_cpu >= 0) 6639 return new_cpu; 6640 new_cpu = prev_cpu; 6641 } 6642 6643 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6644 } 6645 6646 rcu_read_lock(); 6647 for_each_domain(cpu, tmp) { 6648 if (!(tmp->flags & SD_LOAD_BALANCE)) 6649 break; 6650 6651 /* 6652 * If both 'cpu' and 'prev_cpu' are part of this domain, 6653 * cpu is a valid SD_WAKE_AFFINE target. 6654 */ 6655 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6656 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6657 if (cpu != prev_cpu) 6658 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6659 6660 sd = NULL; /* Prefer wake_affine over balance flags */ 6661 break; 6662 } 6663 6664 if (tmp->flags & sd_flag) 6665 sd = tmp; 6666 else if (!want_affine) 6667 break; 6668 } 6669 6670 if (unlikely(sd)) { 6671 /* Slow path */ 6672 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6673 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6674 /* Fast path */ 6675 6676 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6677 6678 if (want_affine) 6679 current->recent_used_cpu = cpu; 6680 } 6681 rcu_read_unlock(); 6682 6683 return new_cpu; 6684 } 6685 6686 static void detach_entity_cfs_rq(struct sched_entity *se); 6687 6688 /* 6689 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6690 * cfs_rq_of(p) references at time of call are still valid and identify the 6691 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6692 */ 6693 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6694 { 6695 /* 6696 * As blocked tasks retain absolute vruntime the migration needs to 6697 * deal with this by subtracting the old and adding the new 6698 * min_vruntime -- the latter is done by enqueue_entity() when placing 6699 * the task on the new runqueue. 6700 */ 6701 if (p->state == TASK_WAKING) { 6702 struct sched_entity *se = &p->se; 6703 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6704 u64 min_vruntime; 6705 6706 #ifndef CONFIG_64BIT 6707 u64 min_vruntime_copy; 6708 6709 do { 6710 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6711 smp_rmb(); 6712 min_vruntime = cfs_rq->min_vruntime; 6713 } while (min_vruntime != min_vruntime_copy); 6714 #else 6715 min_vruntime = cfs_rq->min_vruntime; 6716 #endif 6717 6718 se->vruntime -= min_vruntime; 6719 } 6720 6721 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6722 /* 6723 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6724 * rq->lock and can modify state directly. 6725 */ 6726 lockdep_assert_held(&task_rq(p)->lock); 6727 detach_entity_cfs_rq(&p->se); 6728 6729 } else { 6730 /* 6731 * We are supposed to update the task to "current" time, then 6732 * its up to date and ready to go to new CPU/cfs_rq. But we 6733 * have difficulty in getting what current time is, so simply 6734 * throw away the out-of-date time. This will result in the 6735 * wakee task is less decayed, but giving the wakee more load 6736 * sounds not bad. 6737 */ 6738 remove_entity_load_avg(&p->se); 6739 } 6740 6741 /* Tell new CPU we are migrated */ 6742 p->se.avg.last_update_time = 0; 6743 6744 /* We have migrated, no longer consider this task hot */ 6745 p->se.exec_start = 0; 6746 6747 update_scan_period(p, new_cpu); 6748 } 6749 6750 static void task_dead_fair(struct task_struct *p) 6751 { 6752 remove_entity_load_avg(&p->se); 6753 } 6754 6755 static int 6756 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6757 { 6758 if (rq->nr_running) 6759 return 1; 6760 6761 return newidle_balance(rq, rf) != 0; 6762 } 6763 #endif /* CONFIG_SMP */ 6764 6765 static unsigned long wakeup_gran(struct sched_entity *se) 6766 { 6767 unsigned long gran = sysctl_sched_wakeup_granularity; 6768 6769 /* 6770 * Since its curr running now, convert the gran from real-time 6771 * to virtual-time in his units. 6772 * 6773 * By using 'se' instead of 'curr' we penalize light tasks, so 6774 * they get preempted easier. That is, if 'se' < 'curr' then 6775 * the resulting gran will be larger, therefore penalizing the 6776 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6777 * be smaller, again penalizing the lighter task. 6778 * 6779 * This is especially important for buddies when the leftmost 6780 * task is higher priority than the buddy. 6781 */ 6782 return calc_delta_fair(gran, se); 6783 } 6784 6785 /* 6786 * Should 'se' preempt 'curr'. 6787 * 6788 * |s1 6789 * |s2 6790 * |s3 6791 * g 6792 * |<--->|c 6793 * 6794 * w(c, s1) = -1 6795 * w(c, s2) = 0 6796 * w(c, s3) = 1 6797 * 6798 */ 6799 static int 6800 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6801 { 6802 s64 gran, vdiff = curr->vruntime - se->vruntime; 6803 6804 if (vdiff <= 0) 6805 return -1; 6806 6807 gran = wakeup_gran(se); 6808 if (vdiff > gran) 6809 return 1; 6810 6811 return 0; 6812 } 6813 6814 static void set_last_buddy(struct sched_entity *se) 6815 { 6816 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6817 return; 6818 6819 for_each_sched_entity(se) { 6820 if (SCHED_WARN_ON(!se->on_rq)) 6821 return; 6822 cfs_rq_of(se)->last = se; 6823 } 6824 } 6825 6826 static void set_next_buddy(struct sched_entity *se) 6827 { 6828 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6829 return; 6830 6831 for_each_sched_entity(se) { 6832 if (SCHED_WARN_ON(!se->on_rq)) 6833 return; 6834 cfs_rq_of(se)->next = se; 6835 } 6836 } 6837 6838 static void set_skip_buddy(struct sched_entity *se) 6839 { 6840 for_each_sched_entity(se) 6841 cfs_rq_of(se)->skip = se; 6842 } 6843 6844 /* 6845 * Preempt the current task with a newly woken task if needed: 6846 */ 6847 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6848 { 6849 struct task_struct *curr = rq->curr; 6850 struct sched_entity *se = &curr->se, *pse = &p->se; 6851 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6852 int scale = cfs_rq->nr_running >= sched_nr_latency; 6853 int next_buddy_marked = 0; 6854 6855 if (unlikely(se == pse)) 6856 return; 6857 6858 /* 6859 * This is possible from callers such as attach_tasks(), in which we 6860 * unconditionally check_prempt_curr() after an enqueue (which may have 6861 * lead to a throttle). This both saves work and prevents false 6862 * next-buddy nomination below. 6863 */ 6864 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6865 return; 6866 6867 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6868 set_next_buddy(pse); 6869 next_buddy_marked = 1; 6870 } 6871 6872 /* 6873 * We can come here with TIF_NEED_RESCHED already set from new task 6874 * wake up path. 6875 * 6876 * Note: this also catches the edge-case of curr being in a throttled 6877 * group (e.g. via set_curr_task), since update_curr() (in the 6878 * enqueue of curr) will have resulted in resched being set. This 6879 * prevents us from potentially nominating it as a false LAST_BUDDY 6880 * below. 6881 */ 6882 if (test_tsk_need_resched(curr)) 6883 return; 6884 6885 /* Idle tasks are by definition preempted by non-idle tasks. */ 6886 if (unlikely(task_has_idle_policy(curr)) && 6887 likely(!task_has_idle_policy(p))) 6888 goto preempt; 6889 6890 /* 6891 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6892 * is driven by the tick): 6893 */ 6894 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6895 return; 6896 6897 find_matching_se(&se, &pse); 6898 update_curr(cfs_rq_of(se)); 6899 BUG_ON(!pse); 6900 if (wakeup_preempt_entity(se, pse) == 1) { 6901 /* 6902 * Bias pick_next to pick the sched entity that is 6903 * triggering this preemption. 6904 */ 6905 if (!next_buddy_marked) 6906 set_next_buddy(pse); 6907 goto preempt; 6908 } 6909 6910 return; 6911 6912 preempt: 6913 resched_curr(rq); 6914 /* 6915 * Only set the backward buddy when the current task is still 6916 * on the rq. This can happen when a wakeup gets interleaved 6917 * with schedule on the ->pre_schedule() or idle_balance() 6918 * point, either of which can * drop the rq lock. 6919 * 6920 * Also, during early boot the idle thread is in the fair class, 6921 * for obvious reasons its a bad idea to schedule back to it. 6922 */ 6923 if (unlikely(!se->on_rq || curr == rq->idle)) 6924 return; 6925 6926 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6927 set_last_buddy(se); 6928 } 6929 6930 struct task_struct * 6931 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6932 { 6933 struct cfs_rq *cfs_rq = &rq->cfs; 6934 struct sched_entity *se; 6935 struct task_struct *p; 6936 int new_tasks; 6937 6938 again: 6939 if (!sched_fair_runnable(rq)) 6940 goto idle; 6941 6942 #ifdef CONFIG_FAIR_GROUP_SCHED 6943 if (!prev || prev->sched_class != &fair_sched_class) 6944 goto simple; 6945 6946 /* 6947 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6948 * likely that a next task is from the same cgroup as the current. 6949 * 6950 * Therefore attempt to avoid putting and setting the entire cgroup 6951 * hierarchy, only change the part that actually changes. 6952 */ 6953 6954 do { 6955 struct sched_entity *curr = cfs_rq->curr; 6956 6957 /* 6958 * Since we got here without doing put_prev_entity() we also 6959 * have to consider cfs_rq->curr. If it is still a runnable 6960 * entity, update_curr() will update its vruntime, otherwise 6961 * forget we've ever seen it. 6962 */ 6963 if (curr) { 6964 if (curr->on_rq) 6965 update_curr(cfs_rq); 6966 else 6967 curr = NULL; 6968 6969 /* 6970 * This call to check_cfs_rq_runtime() will do the 6971 * throttle and dequeue its entity in the parent(s). 6972 * Therefore the nr_running test will indeed 6973 * be correct. 6974 */ 6975 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6976 cfs_rq = &rq->cfs; 6977 6978 if (!cfs_rq->nr_running) 6979 goto idle; 6980 6981 goto simple; 6982 } 6983 } 6984 6985 se = pick_next_entity(cfs_rq, curr); 6986 cfs_rq = group_cfs_rq(se); 6987 } while (cfs_rq); 6988 6989 p = task_of(se); 6990 6991 /* 6992 * Since we haven't yet done put_prev_entity and if the selected task 6993 * is a different task than we started out with, try and touch the 6994 * least amount of cfs_rqs. 6995 */ 6996 if (prev != p) { 6997 struct sched_entity *pse = &prev->se; 6998 6999 while (!(cfs_rq = is_same_group(se, pse))) { 7000 int se_depth = se->depth; 7001 int pse_depth = pse->depth; 7002 7003 if (se_depth <= pse_depth) { 7004 put_prev_entity(cfs_rq_of(pse), pse); 7005 pse = parent_entity(pse); 7006 } 7007 if (se_depth >= pse_depth) { 7008 set_next_entity(cfs_rq_of(se), se); 7009 se = parent_entity(se); 7010 } 7011 } 7012 7013 put_prev_entity(cfs_rq, pse); 7014 set_next_entity(cfs_rq, se); 7015 } 7016 7017 goto done; 7018 simple: 7019 #endif 7020 if (prev) 7021 put_prev_task(rq, prev); 7022 7023 do { 7024 se = pick_next_entity(cfs_rq, NULL); 7025 set_next_entity(cfs_rq, se); 7026 cfs_rq = group_cfs_rq(se); 7027 } while (cfs_rq); 7028 7029 p = task_of(se); 7030 7031 done: __maybe_unused; 7032 #ifdef CONFIG_SMP 7033 /* 7034 * Move the next running task to the front of 7035 * the list, so our cfs_tasks list becomes MRU 7036 * one. 7037 */ 7038 list_move(&p->se.group_node, &rq->cfs_tasks); 7039 #endif 7040 7041 if (hrtick_enabled(rq)) 7042 hrtick_start_fair(rq, p); 7043 7044 update_misfit_status(p, rq); 7045 7046 return p; 7047 7048 idle: 7049 if (!rf) 7050 return NULL; 7051 7052 new_tasks = newidle_balance(rq, rf); 7053 7054 /* 7055 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7056 * possible for any higher priority task to appear. In that case we 7057 * must re-start the pick_next_entity() loop. 7058 */ 7059 if (new_tasks < 0) 7060 return RETRY_TASK; 7061 7062 if (new_tasks > 0) 7063 goto again; 7064 7065 /* 7066 * rq is about to be idle, check if we need to update the 7067 * lost_idle_time of clock_pelt 7068 */ 7069 update_idle_rq_clock_pelt(rq); 7070 7071 return NULL; 7072 } 7073 7074 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7075 { 7076 return pick_next_task_fair(rq, NULL, NULL); 7077 } 7078 7079 /* 7080 * Account for a descheduled task: 7081 */ 7082 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7083 { 7084 struct sched_entity *se = &prev->se; 7085 struct cfs_rq *cfs_rq; 7086 7087 for_each_sched_entity(se) { 7088 cfs_rq = cfs_rq_of(se); 7089 put_prev_entity(cfs_rq, se); 7090 } 7091 } 7092 7093 /* 7094 * sched_yield() is very simple 7095 * 7096 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7097 */ 7098 static void yield_task_fair(struct rq *rq) 7099 { 7100 struct task_struct *curr = rq->curr; 7101 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7102 struct sched_entity *se = &curr->se; 7103 7104 /* 7105 * Are we the only task in the tree? 7106 */ 7107 if (unlikely(rq->nr_running == 1)) 7108 return; 7109 7110 clear_buddies(cfs_rq, se); 7111 7112 if (curr->policy != SCHED_BATCH) { 7113 update_rq_clock(rq); 7114 /* 7115 * Update run-time statistics of the 'current'. 7116 */ 7117 update_curr(cfs_rq); 7118 /* 7119 * Tell update_rq_clock() that we've just updated, 7120 * so we don't do microscopic update in schedule() 7121 * and double the fastpath cost. 7122 */ 7123 rq_clock_skip_update(rq); 7124 } 7125 7126 set_skip_buddy(se); 7127 } 7128 7129 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7130 { 7131 struct sched_entity *se = &p->se; 7132 7133 /* throttled hierarchies are not runnable */ 7134 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7135 return false; 7136 7137 /* Tell the scheduler that we'd really like pse to run next. */ 7138 set_next_buddy(se); 7139 7140 yield_task_fair(rq); 7141 7142 return true; 7143 } 7144 7145 #ifdef CONFIG_SMP 7146 /************************************************** 7147 * Fair scheduling class load-balancing methods. 7148 * 7149 * BASICS 7150 * 7151 * The purpose of load-balancing is to achieve the same basic fairness the 7152 * per-CPU scheduler provides, namely provide a proportional amount of compute 7153 * time to each task. This is expressed in the following equation: 7154 * 7155 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7156 * 7157 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7158 * W_i,0 is defined as: 7159 * 7160 * W_i,0 = \Sum_j w_i,j (2) 7161 * 7162 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7163 * is derived from the nice value as per sched_prio_to_weight[]. 7164 * 7165 * The weight average is an exponential decay average of the instantaneous 7166 * weight: 7167 * 7168 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7169 * 7170 * C_i is the compute capacity of CPU i, typically it is the 7171 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7172 * can also include other factors [XXX]. 7173 * 7174 * To achieve this balance we define a measure of imbalance which follows 7175 * directly from (1): 7176 * 7177 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7178 * 7179 * We them move tasks around to minimize the imbalance. In the continuous 7180 * function space it is obvious this converges, in the discrete case we get 7181 * a few fun cases generally called infeasible weight scenarios. 7182 * 7183 * [XXX expand on: 7184 * - infeasible weights; 7185 * - local vs global optima in the discrete case. ] 7186 * 7187 * 7188 * SCHED DOMAINS 7189 * 7190 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7191 * for all i,j solution, we create a tree of CPUs that follows the hardware 7192 * topology where each level pairs two lower groups (or better). This results 7193 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7194 * tree to only the first of the previous level and we decrease the frequency 7195 * of load-balance at each level inv. proportional to the number of CPUs in 7196 * the groups. 7197 * 7198 * This yields: 7199 * 7200 * log_2 n 1 n 7201 * \Sum { --- * --- * 2^i } = O(n) (5) 7202 * i = 0 2^i 2^i 7203 * `- size of each group 7204 * | | `- number of CPUs doing load-balance 7205 * | `- freq 7206 * `- sum over all levels 7207 * 7208 * Coupled with a limit on how many tasks we can migrate every balance pass, 7209 * this makes (5) the runtime complexity of the balancer. 7210 * 7211 * An important property here is that each CPU is still (indirectly) connected 7212 * to every other CPU in at most O(log n) steps: 7213 * 7214 * The adjacency matrix of the resulting graph is given by: 7215 * 7216 * log_2 n 7217 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7218 * k = 0 7219 * 7220 * And you'll find that: 7221 * 7222 * A^(log_2 n)_i,j != 0 for all i,j (7) 7223 * 7224 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7225 * The task movement gives a factor of O(m), giving a convergence complexity 7226 * of: 7227 * 7228 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7229 * 7230 * 7231 * WORK CONSERVING 7232 * 7233 * In order to avoid CPUs going idle while there's still work to do, new idle 7234 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7235 * tree itself instead of relying on other CPUs to bring it work. 7236 * 7237 * This adds some complexity to both (5) and (8) but it reduces the total idle 7238 * time. 7239 * 7240 * [XXX more?] 7241 * 7242 * 7243 * CGROUPS 7244 * 7245 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7246 * 7247 * s_k,i 7248 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7249 * S_k 7250 * 7251 * Where 7252 * 7253 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7254 * 7255 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7256 * 7257 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7258 * property. 7259 * 7260 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7261 * rewrite all of this once again.] 7262 */ 7263 7264 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7265 7266 enum fbq_type { regular, remote, all }; 7267 7268 /* 7269 * 'group_type' describes the group of CPUs at the moment of load balancing. 7270 * 7271 * The enum is ordered by pulling priority, with the group with lowest priority 7272 * first so the group_type can simply be compared when selecting the busiest 7273 * group. See update_sd_pick_busiest(). 7274 */ 7275 enum group_type { 7276 /* The group has spare capacity that can be used to run more tasks. */ 7277 group_has_spare = 0, 7278 /* 7279 * The group is fully used and the tasks don't compete for more CPU 7280 * cycles. Nevertheless, some tasks might wait before running. 7281 */ 7282 group_fully_busy, 7283 /* 7284 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7285 * and must be migrated to a more powerful CPU. 7286 */ 7287 group_misfit_task, 7288 /* 7289 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7290 * and the task should be migrated to it instead of running on the 7291 * current CPU. 7292 */ 7293 group_asym_packing, 7294 /* 7295 * The tasks' affinity constraints previously prevented the scheduler 7296 * from balancing the load across the system. 7297 */ 7298 group_imbalanced, 7299 /* 7300 * The CPU is overloaded and can't provide expected CPU cycles to all 7301 * tasks. 7302 */ 7303 group_overloaded 7304 }; 7305 7306 enum migration_type { 7307 migrate_load = 0, 7308 migrate_util, 7309 migrate_task, 7310 migrate_misfit 7311 }; 7312 7313 #define LBF_ALL_PINNED 0x01 7314 #define LBF_NEED_BREAK 0x02 7315 #define LBF_DST_PINNED 0x04 7316 #define LBF_SOME_PINNED 0x08 7317 #define LBF_NOHZ_STATS 0x10 7318 #define LBF_NOHZ_AGAIN 0x20 7319 7320 struct lb_env { 7321 struct sched_domain *sd; 7322 7323 struct rq *src_rq; 7324 int src_cpu; 7325 7326 int dst_cpu; 7327 struct rq *dst_rq; 7328 7329 struct cpumask *dst_grpmask; 7330 int new_dst_cpu; 7331 enum cpu_idle_type idle; 7332 long imbalance; 7333 /* The set of CPUs under consideration for load-balancing */ 7334 struct cpumask *cpus; 7335 7336 unsigned int flags; 7337 7338 unsigned int loop; 7339 unsigned int loop_break; 7340 unsigned int loop_max; 7341 7342 enum fbq_type fbq_type; 7343 enum migration_type migration_type; 7344 struct list_head tasks; 7345 }; 7346 7347 /* 7348 * Is this task likely cache-hot: 7349 */ 7350 static int task_hot(struct task_struct *p, struct lb_env *env) 7351 { 7352 s64 delta; 7353 7354 lockdep_assert_held(&env->src_rq->lock); 7355 7356 if (p->sched_class != &fair_sched_class) 7357 return 0; 7358 7359 if (unlikely(task_has_idle_policy(p))) 7360 return 0; 7361 7362 /* 7363 * Buddy candidates are cache hot: 7364 */ 7365 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7366 (&p->se == cfs_rq_of(&p->se)->next || 7367 &p->se == cfs_rq_of(&p->se)->last)) 7368 return 1; 7369 7370 if (sysctl_sched_migration_cost == -1) 7371 return 1; 7372 if (sysctl_sched_migration_cost == 0) 7373 return 0; 7374 7375 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7376 7377 return delta < (s64)sysctl_sched_migration_cost; 7378 } 7379 7380 #ifdef CONFIG_NUMA_BALANCING 7381 /* 7382 * Returns 1, if task migration degrades locality 7383 * Returns 0, if task migration improves locality i.e migration preferred. 7384 * Returns -1, if task migration is not affected by locality. 7385 */ 7386 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7387 { 7388 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7389 unsigned long src_weight, dst_weight; 7390 int src_nid, dst_nid, dist; 7391 7392 if (!static_branch_likely(&sched_numa_balancing)) 7393 return -1; 7394 7395 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7396 return -1; 7397 7398 src_nid = cpu_to_node(env->src_cpu); 7399 dst_nid = cpu_to_node(env->dst_cpu); 7400 7401 if (src_nid == dst_nid) 7402 return -1; 7403 7404 /* Migrating away from the preferred node is always bad. */ 7405 if (src_nid == p->numa_preferred_nid) { 7406 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7407 return 1; 7408 else 7409 return -1; 7410 } 7411 7412 /* Encourage migration to the preferred node. */ 7413 if (dst_nid == p->numa_preferred_nid) 7414 return 0; 7415 7416 /* Leaving a core idle is often worse than degrading locality. */ 7417 if (env->idle == CPU_IDLE) 7418 return -1; 7419 7420 dist = node_distance(src_nid, dst_nid); 7421 if (numa_group) { 7422 src_weight = group_weight(p, src_nid, dist); 7423 dst_weight = group_weight(p, dst_nid, dist); 7424 } else { 7425 src_weight = task_weight(p, src_nid, dist); 7426 dst_weight = task_weight(p, dst_nid, dist); 7427 } 7428 7429 return dst_weight < src_weight; 7430 } 7431 7432 #else 7433 static inline int migrate_degrades_locality(struct task_struct *p, 7434 struct lb_env *env) 7435 { 7436 return -1; 7437 } 7438 #endif 7439 7440 /* 7441 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7442 */ 7443 static 7444 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7445 { 7446 int tsk_cache_hot; 7447 7448 lockdep_assert_held(&env->src_rq->lock); 7449 7450 /* 7451 * We do not migrate tasks that are: 7452 * 1) throttled_lb_pair, or 7453 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7454 * 3) running (obviously), or 7455 * 4) are cache-hot on their current CPU. 7456 */ 7457 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7458 return 0; 7459 7460 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7461 int cpu; 7462 7463 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7464 7465 env->flags |= LBF_SOME_PINNED; 7466 7467 /* 7468 * Remember if this task can be migrated to any other CPU in 7469 * our sched_group. We may want to revisit it if we couldn't 7470 * meet load balance goals by pulling other tasks on src_cpu. 7471 * 7472 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7473 * already computed one in current iteration. 7474 */ 7475 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7476 return 0; 7477 7478 /* Prevent to re-select dst_cpu via env's CPUs: */ 7479 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7480 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7481 env->flags |= LBF_DST_PINNED; 7482 env->new_dst_cpu = cpu; 7483 break; 7484 } 7485 } 7486 7487 return 0; 7488 } 7489 7490 /* Record that we found atleast one task that could run on dst_cpu */ 7491 env->flags &= ~LBF_ALL_PINNED; 7492 7493 if (task_running(env->src_rq, p)) { 7494 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7495 return 0; 7496 } 7497 7498 /* 7499 * Aggressive migration if: 7500 * 1) destination numa is preferred 7501 * 2) task is cache cold, or 7502 * 3) too many balance attempts have failed. 7503 */ 7504 tsk_cache_hot = migrate_degrades_locality(p, env); 7505 if (tsk_cache_hot == -1) 7506 tsk_cache_hot = task_hot(p, env); 7507 7508 if (tsk_cache_hot <= 0 || 7509 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7510 if (tsk_cache_hot == 1) { 7511 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7512 schedstat_inc(p->se.statistics.nr_forced_migrations); 7513 } 7514 return 1; 7515 } 7516 7517 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7518 return 0; 7519 } 7520 7521 /* 7522 * detach_task() -- detach the task for the migration specified in env 7523 */ 7524 static void detach_task(struct task_struct *p, struct lb_env *env) 7525 { 7526 lockdep_assert_held(&env->src_rq->lock); 7527 7528 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7529 set_task_cpu(p, env->dst_cpu); 7530 } 7531 7532 /* 7533 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7534 * part of active balancing operations within "domain". 7535 * 7536 * Returns a task if successful and NULL otherwise. 7537 */ 7538 static struct task_struct *detach_one_task(struct lb_env *env) 7539 { 7540 struct task_struct *p; 7541 7542 lockdep_assert_held(&env->src_rq->lock); 7543 7544 list_for_each_entry_reverse(p, 7545 &env->src_rq->cfs_tasks, se.group_node) { 7546 if (!can_migrate_task(p, env)) 7547 continue; 7548 7549 detach_task(p, env); 7550 7551 /* 7552 * Right now, this is only the second place where 7553 * lb_gained[env->idle] is updated (other is detach_tasks) 7554 * so we can safely collect stats here rather than 7555 * inside detach_tasks(). 7556 */ 7557 schedstat_inc(env->sd->lb_gained[env->idle]); 7558 return p; 7559 } 7560 return NULL; 7561 } 7562 7563 static const unsigned int sched_nr_migrate_break = 32; 7564 7565 /* 7566 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7567 * busiest_rq, as part of a balancing operation within domain "sd". 7568 * 7569 * Returns number of detached tasks if successful and 0 otherwise. 7570 */ 7571 static int detach_tasks(struct lb_env *env) 7572 { 7573 struct list_head *tasks = &env->src_rq->cfs_tasks; 7574 unsigned long util, load; 7575 struct task_struct *p; 7576 int detached = 0; 7577 7578 lockdep_assert_held(&env->src_rq->lock); 7579 7580 if (env->imbalance <= 0) 7581 return 0; 7582 7583 while (!list_empty(tasks)) { 7584 /* 7585 * We don't want to steal all, otherwise we may be treated likewise, 7586 * which could at worst lead to a livelock crash. 7587 */ 7588 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7589 break; 7590 7591 p = list_last_entry(tasks, struct task_struct, se.group_node); 7592 7593 env->loop++; 7594 /* We've more or less seen every task there is, call it quits */ 7595 if (env->loop > env->loop_max) 7596 break; 7597 7598 /* take a breather every nr_migrate tasks */ 7599 if (env->loop > env->loop_break) { 7600 env->loop_break += sched_nr_migrate_break; 7601 env->flags |= LBF_NEED_BREAK; 7602 break; 7603 } 7604 7605 if (!can_migrate_task(p, env)) 7606 goto next; 7607 7608 switch (env->migration_type) { 7609 case migrate_load: 7610 load = task_h_load(p); 7611 7612 if (sched_feat(LB_MIN) && 7613 load < 16 && !env->sd->nr_balance_failed) 7614 goto next; 7615 7616 /* 7617 * Make sure that we don't migrate too much load. 7618 * Nevertheless, let relax the constraint if 7619 * scheduler fails to find a good waiting task to 7620 * migrate. 7621 */ 7622 if (load/2 > env->imbalance && 7623 env->sd->nr_balance_failed <= env->sd->cache_nice_tries) 7624 goto next; 7625 7626 env->imbalance -= load; 7627 break; 7628 7629 case migrate_util: 7630 util = task_util_est(p); 7631 7632 if (util > env->imbalance) 7633 goto next; 7634 7635 env->imbalance -= util; 7636 break; 7637 7638 case migrate_task: 7639 env->imbalance--; 7640 break; 7641 7642 case migrate_misfit: 7643 /* This is not a misfit task */ 7644 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7645 goto next; 7646 7647 env->imbalance = 0; 7648 break; 7649 } 7650 7651 detach_task(p, env); 7652 list_add(&p->se.group_node, &env->tasks); 7653 7654 detached++; 7655 7656 #ifdef CONFIG_PREEMPTION 7657 /* 7658 * NEWIDLE balancing is a source of latency, so preemptible 7659 * kernels will stop after the first task is detached to minimize 7660 * the critical section. 7661 */ 7662 if (env->idle == CPU_NEWLY_IDLE) 7663 break; 7664 #endif 7665 7666 /* 7667 * We only want to steal up to the prescribed amount of 7668 * load/util/tasks. 7669 */ 7670 if (env->imbalance <= 0) 7671 break; 7672 7673 continue; 7674 next: 7675 list_move(&p->se.group_node, tasks); 7676 } 7677 7678 /* 7679 * Right now, this is one of only two places we collect this stat 7680 * so we can safely collect detach_one_task() stats here rather 7681 * than inside detach_one_task(). 7682 */ 7683 schedstat_add(env->sd->lb_gained[env->idle], detached); 7684 7685 return detached; 7686 } 7687 7688 /* 7689 * attach_task() -- attach the task detached by detach_task() to its new rq. 7690 */ 7691 static void attach_task(struct rq *rq, struct task_struct *p) 7692 { 7693 lockdep_assert_held(&rq->lock); 7694 7695 BUG_ON(task_rq(p) != rq); 7696 activate_task(rq, p, ENQUEUE_NOCLOCK); 7697 check_preempt_curr(rq, p, 0); 7698 } 7699 7700 /* 7701 * attach_one_task() -- attaches the task returned from detach_one_task() to 7702 * its new rq. 7703 */ 7704 static void attach_one_task(struct rq *rq, struct task_struct *p) 7705 { 7706 struct rq_flags rf; 7707 7708 rq_lock(rq, &rf); 7709 update_rq_clock(rq); 7710 attach_task(rq, p); 7711 rq_unlock(rq, &rf); 7712 } 7713 7714 /* 7715 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7716 * new rq. 7717 */ 7718 static void attach_tasks(struct lb_env *env) 7719 { 7720 struct list_head *tasks = &env->tasks; 7721 struct task_struct *p; 7722 struct rq_flags rf; 7723 7724 rq_lock(env->dst_rq, &rf); 7725 update_rq_clock(env->dst_rq); 7726 7727 while (!list_empty(tasks)) { 7728 p = list_first_entry(tasks, struct task_struct, se.group_node); 7729 list_del_init(&p->se.group_node); 7730 7731 attach_task(env->dst_rq, p); 7732 } 7733 7734 rq_unlock(env->dst_rq, &rf); 7735 } 7736 7737 #ifdef CONFIG_NO_HZ_COMMON 7738 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7739 { 7740 if (cfs_rq->avg.load_avg) 7741 return true; 7742 7743 if (cfs_rq->avg.util_avg) 7744 return true; 7745 7746 return false; 7747 } 7748 7749 static inline bool others_have_blocked(struct rq *rq) 7750 { 7751 if (READ_ONCE(rq->avg_rt.util_avg)) 7752 return true; 7753 7754 if (READ_ONCE(rq->avg_dl.util_avg)) 7755 return true; 7756 7757 if (thermal_load_avg(rq)) 7758 return true; 7759 7760 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7761 if (READ_ONCE(rq->avg_irq.util_avg)) 7762 return true; 7763 #endif 7764 7765 return false; 7766 } 7767 7768 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 7769 { 7770 rq->last_blocked_load_update_tick = jiffies; 7771 7772 if (!has_blocked) 7773 rq->has_blocked_load = 0; 7774 } 7775 #else 7776 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 7777 static inline bool others_have_blocked(struct rq *rq) { return false; } 7778 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 7779 #endif 7780 7781 static bool __update_blocked_others(struct rq *rq, bool *done) 7782 { 7783 const struct sched_class *curr_class; 7784 u64 now = rq_clock_pelt(rq); 7785 unsigned long thermal_pressure; 7786 bool decayed; 7787 7788 /* 7789 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 7790 * DL and IRQ signals have been updated before updating CFS. 7791 */ 7792 curr_class = rq->curr->sched_class; 7793 7794 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 7795 7796 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 7797 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 7798 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 7799 update_irq_load_avg(rq, 0); 7800 7801 if (others_have_blocked(rq)) 7802 *done = false; 7803 7804 return decayed; 7805 } 7806 7807 #ifdef CONFIG_FAIR_GROUP_SCHED 7808 7809 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7810 { 7811 if (cfs_rq->load.weight) 7812 return false; 7813 7814 if (cfs_rq->avg.load_sum) 7815 return false; 7816 7817 if (cfs_rq->avg.util_sum) 7818 return false; 7819 7820 if (cfs_rq->avg.runnable_sum) 7821 return false; 7822 7823 return true; 7824 } 7825 7826 static bool __update_blocked_fair(struct rq *rq, bool *done) 7827 { 7828 struct cfs_rq *cfs_rq, *pos; 7829 bool decayed = false; 7830 int cpu = cpu_of(rq); 7831 7832 /* 7833 * Iterates the task_group tree in a bottom up fashion, see 7834 * list_add_leaf_cfs_rq() for details. 7835 */ 7836 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7837 struct sched_entity *se; 7838 7839 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 7840 update_tg_load_avg(cfs_rq, 0); 7841 7842 if (cfs_rq == &rq->cfs) 7843 decayed = true; 7844 } 7845 7846 /* Propagate pending load changes to the parent, if any: */ 7847 se = cfs_rq->tg->se[cpu]; 7848 if (se && !skip_blocked_update(se)) 7849 update_load_avg(cfs_rq_of(se), se, 0); 7850 7851 /* 7852 * There can be a lot of idle CPU cgroups. Don't let fully 7853 * decayed cfs_rqs linger on the list. 7854 */ 7855 if (cfs_rq_is_decayed(cfs_rq)) 7856 list_del_leaf_cfs_rq(cfs_rq); 7857 7858 /* Don't need periodic decay once load/util_avg are null */ 7859 if (cfs_rq_has_blocked(cfs_rq)) 7860 *done = false; 7861 } 7862 7863 return decayed; 7864 } 7865 7866 /* 7867 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7868 * This needs to be done in a top-down fashion because the load of a child 7869 * group is a fraction of its parents load. 7870 */ 7871 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7872 { 7873 struct rq *rq = rq_of(cfs_rq); 7874 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7875 unsigned long now = jiffies; 7876 unsigned long load; 7877 7878 if (cfs_rq->last_h_load_update == now) 7879 return; 7880 7881 WRITE_ONCE(cfs_rq->h_load_next, NULL); 7882 for_each_sched_entity(se) { 7883 cfs_rq = cfs_rq_of(se); 7884 WRITE_ONCE(cfs_rq->h_load_next, se); 7885 if (cfs_rq->last_h_load_update == now) 7886 break; 7887 } 7888 7889 if (!se) { 7890 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7891 cfs_rq->last_h_load_update = now; 7892 } 7893 7894 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 7895 load = cfs_rq->h_load; 7896 load = div64_ul(load * se->avg.load_avg, 7897 cfs_rq_load_avg(cfs_rq) + 1); 7898 cfs_rq = group_cfs_rq(se); 7899 cfs_rq->h_load = load; 7900 cfs_rq->last_h_load_update = now; 7901 } 7902 } 7903 7904 static unsigned long task_h_load(struct task_struct *p) 7905 { 7906 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7907 7908 update_cfs_rq_h_load(cfs_rq); 7909 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7910 cfs_rq_load_avg(cfs_rq) + 1); 7911 } 7912 #else 7913 static bool __update_blocked_fair(struct rq *rq, bool *done) 7914 { 7915 struct cfs_rq *cfs_rq = &rq->cfs; 7916 bool decayed; 7917 7918 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 7919 if (cfs_rq_has_blocked(cfs_rq)) 7920 *done = false; 7921 7922 return decayed; 7923 } 7924 7925 static unsigned long task_h_load(struct task_struct *p) 7926 { 7927 return p->se.avg.load_avg; 7928 } 7929 #endif 7930 7931 static void update_blocked_averages(int cpu) 7932 { 7933 bool decayed = false, done = true; 7934 struct rq *rq = cpu_rq(cpu); 7935 struct rq_flags rf; 7936 7937 rq_lock_irqsave(rq, &rf); 7938 update_rq_clock(rq); 7939 7940 decayed |= __update_blocked_others(rq, &done); 7941 decayed |= __update_blocked_fair(rq, &done); 7942 7943 update_blocked_load_status(rq, !done); 7944 if (decayed) 7945 cpufreq_update_util(rq, 0); 7946 rq_unlock_irqrestore(rq, &rf); 7947 } 7948 7949 /********** Helpers for find_busiest_group ************************/ 7950 7951 /* 7952 * sg_lb_stats - stats of a sched_group required for load_balancing 7953 */ 7954 struct sg_lb_stats { 7955 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7956 unsigned long group_load; /* Total load over the CPUs of the group */ 7957 unsigned long group_capacity; 7958 unsigned long group_util; /* Total utilization over the CPUs of the group */ 7959 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 7960 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 7961 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 7962 unsigned int idle_cpus; 7963 unsigned int group_weight; 7964 enum group_type group_type; 7965 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 7966 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7967 #ifdef CONFIG_NUMA_BALANCING 7968 unsigned int nr_numa_running; 7969 unsigned int nr_preferred_running; 7970 #endif 7971 }; 7972 7973 /* 7974 * sd_lb_stats - Structure to store the statistics of a sched_domain 7975 * during load balancing. 7976 */ 7977 struct sd_lb_stats { 7978 struct sched_group *busiest; /* Busiest group in this sd */ 7979 struct sched_group *local; /* Local group in this sd */ 7980 unsigned long total_load; /* Total load of all groups in sd */ 7981 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7982 unsigned long avg_load; /* Average load across all groups in sd */ 7983 unsigned int prefer_sibling; /* tasks should go to sibling first */ 7984 7985 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7986 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7987 }; 7988 7989 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7990 { 7991 /* 7992 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7993 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7994 * We must however set busiest_stat::group_type and 7995 * busiest_stat::idle_cpus to the worst busiest group because 7996 * update_sd_pick_busiest() reads these before assignment. 7997 */ 7998 *sds = (struct sd_lb_stats){ 7999 .busiest = NULL, 8000 .local = NULL, 8001 .total_load = 0UL, 8002 .total_capacity = 0UL, 8003 .busiest_stat = { 8004 .idle_cpus = UINT_MAX, 8005 .group_type = group_has_spare, 8006 }, 8007 }; 8008 } 8009 8010 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 8011 { 8012 struct rq *rq = cpu_rq(cpu); 8013 unsigned long max = arch_scale_cpu_capacity(cpu); 8014 unsigned long used, free; 8015 unsigned long irq; 8016 8017 irq = cpu_util_irq(rq); 8018 8019 if (unlikely(irq >= max)) 8020 return 1; 8021 8022 /* 8023 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8024 * (running and not running) with weights 0 and 1024 respectively. 8025 * avg_thermal.load_avg tracks thermal pressure and the weighted 8026 * average uses the actual delta max capacity(load). 8027 */ 8028 used = READ_ONCE(rq->avg_rt.util_avg); 8029 used += READ_ONCE(rq->avg_dl.util_avg); 8030 used += thermal_load_avg(rq); 8031 8032 if (unlikely(used >= max)) 8033 return 1; 8034 8035 free = max - used; 8036 8037 return scale_irq_capacity(free, irq, max); 8038 } 8039 8040 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8041 { 8042 unsigned long capacity = scale_rt_capacity(sd, cpu); 8043 struct sched_group *sdg = sd->groups; 8044 8045 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8046 8047 if (!capacity) 8048 capacity = 1; 8049 8050 cpu_rq(cpu)->cpu_capacity = capacity; 8051 sdg->sgc->capacity = capacity; 8052 sdg->sgc->min_capacity = capacity; 8053 sdg->sgc->max_capacity = capacity; 8054 } 8055 8056 void update_group_capacity(struct sched_domain *sd, int cpu) 8057 { 8058 struct sched_domain *child = sd->child; 8059 struct sched_group *group, *sdg = sd->groups; 8060 unsigned long capacity, min_capacity, max_capacity; 8061 unsigned long interval; 8062 8063 interval = msecs_to_jiffies(sd->balance_interval); 8064 interval = clamp(interval, 1UL, max_load_balance_interval); 8065 sdg->sgc->next_update = jiffies + interval; 8066 8067 if (!child) { 8068 update_cpu_capacity(sd, cpu); 8069 return; 8070 } 8071 8072 capacity = 0; 8073 min_capacity = ULONG_MAX; 8074 max_capacity = 0; 8075 8076 if (child->flags & SD_OVERLAP) { 8077 /* 8078 * SD_OVERLAP domains cannot assume that child groups 8079 * span the current group. 8080 */ 8081 8082 for_each_cpu(cpu, sched_group_span(sdg)) { 8083 unsigned long cpu_cap = capacity_of(cpu); 8084 8085 capacity += cpu_cap; 8086 min_capacity = min(cpu_cap, min_capacity); 8087 max_capacity = max(cpu_cap, max_capacity); 8088 } 8089 } else { 8090 /* 8091 * !SD_OVERLAP domains can assume that child groups 8092 * span the current group. 8093 */ 8094 8095 group = child->groups; 8096 do { 8097 struct sched_group_capacity *sgc = group->sgc; 8098 8099 capacity += sgc->capacity; 8100 min_capacity = min(sgc->min_capacity, min_capacity); 8101 max_capacity = max(sgc->max_capacity, max_capacity); 8102 group = group->next; 8103 } while (group != child->groups); 8104 } 8105 8106 sdg->sgc->capacity = capacity; 8107 sdg->sgc->min_capacity = min_capacity; 8108 sdg->sgc->max_capacity = max_capacity; 8109 } 8110 8111 /* 8112 * Check whether the capacity of the rq has been noticeably reduced by side 8113 * activity. The imbalance_pct is used for the threshold. 8114 * Return true is the capacity is reduced 8115 */ 8116 static inline int 8117 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8118 { 8119 return ((rq->cpu_capacity * sd->imbalance_pct) < 8120 (rq->cpu_capacity_orig * 100)); 8121 } 8122 8123 /* 8124 * Check whether a rq has a misfit task and if it looks like we can actually 8125 * help that task: we can migrate the task to a CPU of higher capacity, or 8126 * the task's current CPU is heavily pressured. 8127 */ 8128 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8129 { 8130 return rq->misfit_task_load && 8131 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8132 check_cpu_capacity(rq, sd)); 8133 } 8134 8135 /* 8136 * Group imbalance indicates (and tries to solve) the problem where balancing 8137 * groups is inadequate due to ->cpus_ptr constraints. 8138 * 8139 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8140 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8141 * Something like: 8142 * 8143 * { 0 1 2 3 } { 4 5 6 7 } 8144 * * * * * 8145 * 8146 * If we were to balance group-wise we'd place two tasks in the first group and 8147 * two tasks in the second group. Clearly this is undesired as it will overload 8148 * cpu 3 and leave one of the CPUs in the second group unused. 8149 * 8150 * The current solution to this issue is detecting the skew in the first group 8151 * by noticing the lower domain failed to reach balance and had difficulty 8152 * moving tasks due to affinity constraints. 8153 * 8154 * When this is so detected; this group becomes a candidate for busiest; see 8155 * update_sd_pick_busiest(). And calculate_imbalance() and 8156 * find_busiest_group() avoid some of the usual balance conditions to allow it 8157 * to create an effective group imbalance. 8158 * 8159 * This is a somewhat tricky proposition since the next run might not find the 8160 * group imbalance and decide the groups need to be balanced again. A most 8161 * subtle and fragile situation. 8162 */ 8163 8164 static inline int sg_imbalanced(struct sched_group *group) 8165 { 8166 return group->sgc->imbalance; 8167 } 8168 8169 /* 8170 * group_has_capacity returns true if the group has spare capacity that could 8171 * be used by some tasks. 8172 * We consider that a group has spare capacity if the * number of task is 8173 * smaller than the number of CPUs or if the utilization is lower than the 8174 * available capacity for CFS tasks. 8175 * For the latter, we use a threshold to stabilize the state, to take into 8176 * account the variance of the tasks' load and to return true if the available 8177 * capacity in meaningful for the load balancer. 8178 * As an example, an available capacity of 1% can appear but it doesn't make 8179 * any benefit for the load balance. 8180 */ 8181 static inline bool 8182 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8183 { 8184 if (sgs->sum_nr_running < sgs->group_weight) 8185 return true; 8186 8187 if ((sgs->group_capacity * imbalance_pct) < 8188 (sgs->group_runnable * 100)) 8189 return false; 8190 8191 if ((sgs->group_capacity * 100) > 8192 (sgs->group_util * imbalance_pct)) 8193 return true; 8194 8195 return false; 8196 } 8197 8198 /* 8199 * group_is_overloaded returns true if the group has more tasks than it can 8200 * handle. 8201 * group_is_overloaded is not equals to !group_has_capacity because a group 8202 * with the exact right number of tasks, has no more spare capacity but is not 8203 * overloaded so both group_has_capacity and group_is_overloaded return 8204 * false. 8205 */ 8206 static inline bool 8207 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8208 { 8209 if (sgs->sum_nr_running <= sgs->group_weight) 8210 return false; 8211 8212 if ((sgs->group_capacity * 100) < 8213 (sgs->group_util * imbalance_pct)) 8214 return true; 8215 8216 if ((sgs->group_capacity * imbalance_pct) < 8217 (sgs->group_runnable * 100)) 8218 return true; 8219 8220 return false; 8221 } 8222 8223 /* 8224 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8225 * per-CPU capacity than sched_group ref. 8226 */ 8227 static inline bool 8228 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8229 { 8230 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity); 8231 } 8232 8233 /* 8234 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8235 * per-CPU capacity_orig than sched_group ref. 8236 */ 8237 static inline bool 8238 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8239 { 8240 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity); 8241 } 8242 8243 static inline enum 8244 group_type group_classify(unsigned int imbalance_pct, 8245 struct sched_group *group, 8246 struct sg_lb_stats *sgs) 8247 { 8248 if (group_is_overloaded(imbalance_pct, sgs)) 8249 return group_overloaded; 8250 8251 if (sg_imbalanced(group)) 8252 return group_imbalanced; 8253 8254 if (sgs->group_asym_packing) 8255 return group_asym_packing; 8256 8257 if (sgs->group_misfit_task_load) 8258 return group_misfit_task; 8259 8260 if (!group_has_capacity(imbalance_pct, sgs)) 8261 return group_fully_busy; 8262 8263 return group_has_spare; 8264 } 8265 8266 static bool update_nohz_stats(struct rq *rq, bool force) 8267 { 8268 #ifdef CONFIG_NO_HZ_COMMON 8269 unsigned int cpu = rq->cpu; 8270 8271 if (!rq->has_blocked_load) 8272 return false; 8273 8274 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8275 return false; 8276 8277 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8278 return true; 8279 8280 update_blocked_averages(cpu); 8281 8282 return rq->has_blocked_load; 8283 #else 8284 return false; 8285 #endif 8286 } 8287 8288 /** 8289 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8290 * @env: The load balancing environment. 8291 * @group: sched_group whose statistics are to be updated. 8292 * @sgs: variable to hold the statistics for this group. 8293 * @sg_status: Holds flag indicating the status of the sched_group 8294 */ 8295 static inline void update_sg_lb_stats(struct lb_env *env, 8296 struct sched_group *group, 8297 struct sg_lb_stats *sgs, 8298 int *sg_status) 8299 { 8300 int i, nr_running, local_group; 8301 8302 memset(sgs, 0, sizeof(*sgs)); 8303 8304 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8305 8306 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8307 struct rq *rq = cpu_rq(i); 8308 8309 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8310 env->flags |= LBF_NOHZ_AGAIN; 8311 8312 sgs->group_load += cpu_load(rq); 8313 sgs->group_util += cpu_util(i); 8314 sgs->group_runnable += cpu_runnable(rq); 8315 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8316 8317 nr_running = rq->nr_running; 8318 sgs->sum_nr_running += nr_running; 8319 8320 if (nr_running > 1) 8321 *sg_status |= SG_OVERLOAD; 8322 8323 if (cpu_overutilized(i)) 8324 *sg_status |= SG_OVERUTILIZED; 8325 8326 #ifdef CONFIG_NUMA_BALANCING 8327 sgs->nr_numa_running += rq->nr_numa_running; 8328 sgs->nr_preferred_running += rq->nr_preferred_running; 8329 #endif 8330 /* 8331 * No need to call idle_cpu() if nr_running is not 0 8332 */ 8333 if (!nr_running && idle_cpu(i)) { 8334 sgs->idle_cpus++; 8335 /* Idle cpu can't have misfit task */ 8336 continue; 8337 } 8338 8339 if (local_group) 8340 continue; 8341 8342 /* Check for a misfit task on the cpu */ 8343 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8344 sgs->group_misfit_task_load < rq->misfit_task_load) { 8345 sgs->group_misfit_task_load = rq->misfit_task_load; 8346 *sg_status |= SG_OVERLOAD; 8347 } 8348 } 8349 8350 /* Check if dst CPU is idle and preferred to this group */ 8351 if (env->sd->flags & SD_ASYM_PACKING && 8352 env->idle != CPU_NOT_IDLE && 8353 sgs->sum_h_nr_running && 8354 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) { 8355 sgs->group_asym_packing = 1; 8356 } 8357 8358 sgs->group_capacity = group->sgc->capacity; 8359 8360 sgs->group_weight = group->group_weight; 8361 8362 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8363 8364 /* Computing avg_load makes sense only when group is overloaded */ 8365 if (sgs->group_type == group_overloaded) 8366 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8367 sgs->group_capacity; 8368 } 8369 8370 /** 8371 * update_sd_pick_busiest - return 1 on busiest group 8372 * @env: The load balancing environment. 8373 * @sds: sched_domain statistics 8374 * @sg: sched_group candidate to be checked for being the busiest 8375 * @sgs: sched_group statistics 8376 * 8377 * Determine if @sg is a busier group than the previously selected 8378 * busiest group. 8379 * 8380 * Return: %true if @sg is a busier group than the previously selected 8381 * busiest group. %false otherwise. 8382 */ 8383 static bool update_sd_pick_busiest(struct lb_env *env, 8384 struct sd_lb_stats *sds, 8385 struct sched_group *sg, 8386 struct sg_lb_stats *sgs) 8387 { 8388 struct sg_lb_stats *busiest = &sds->busiest_stat; 8389 8390 /* Make sure that there is at least one task to pull */ 8391 if (!sgs->sum_h_nr_running) 8392 return false; 8393 8394 /* 8395 * Don't try to pull misfit tasks we can't help. 8396 * We can use max_capacity here as reduction in capacity on some 8397 * CPUs in the group should either be possible to resolve 8398 * internally or be covered by avg_load imbalance (eventually). 8399 */ 8400 if (sgs->group_type == group_misfit_task && 8401 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8402 sds->local_stat.group_type != group_has_spare)) 8403 return false; 8404 8405 if (sgs->group_type > busiest->group_type) 8406 return true; 8407 8408 if (sgs->group_type < busiest->group_type) 8409 return false; 8410 8411 /* 8412 * The candidate and the current busiest group are the same type of 8413 * group. Let check which one is the busiest according to the type. 8414 */ 8415 8416 switch (sgs->group_type) { 8417 case group_overloaded: 8418 /* Select the overloaded group with highest avg_load. */ 8419 if (sgs->avg_load <= busiest->avg_load) 8420 return false; 8421 break; 8422 8423 case group_imbalanced: 8424 /* 8425 * Select the 1st imbalanced group as we don't have any way to 8426 * choose one more than another. 8427 */ 8428 return false; 8429 8430 case group_asym_packing: 8431 /* Prefer to move from lowest priority CPU's work */ 8432 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8433 return false; 8434 break; 8435 8436 case group_misfit_task: 8437 /* 8438 * If we have more than one misfit sg go with the biggest 8439 * misfit. 8440 */ 8441 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8442 return false; 8443 break; 8444 8445 case group_fully_busy: 8446 /* 8447 * Select the fully busy group with highest avg_load. In 8448 * theory, there is no need to pull task from such kind of 8449 * group because tasks have all compute capacity that they need 8450 * but we can still improve the overall throughput by reducing 8451 * contention when accessing shared HW resources. 8452 * 8453 * XXX for now avg_load is not computed and always 0 so we 8454 * select the 1st one. 8455 */ 8456 if (sgs->avg_load <= busiest->avg_load) 8457 return false; 8458 break; 8459 8460 case group_has_spare: 8461 /* 8462 * Select not overloaded group with lowest number of idle cpus 8463 * and highest number of running tasks. We could also compare 8464 * the spare capacity which is more stable but it can end up 8465 * that the group has less spare capacity but finally more idle 8466 * CPUs which means less opportunity to pull tasks. 8467 */ 8468 if (sgs->idle_cpus > busiest->idle_cpus) 8469 return false; 8470 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8471 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8472 return false; 8473 8474 break; 8475 } 8476 8477 /* 8478 * Candidate sg has no more than one task per CPU and has higher 8479 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8480 * throughput. Maximize throughput, power/energy consequences are not 8481 * considered. 8482 */ 8483 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8484 (sgs->group_type <= group_fully_busy) && 8485 (group_smaller_min_cpu_capacity(sds->local, sg))) 8486 return false; 8487 8488 return true; 8489 } 8490 8491 #ifdef CONFIG_NUMA_BALANCING 8492 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8493 { 8494 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8495 return regular; 8496 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8497 return remote; 8498 return all; 8499 } 8500 8501 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8502 { 8503 if (rq->nr_running > rq->nr_numa_running) 8504 return regular; 8505 if (rq->nr_running > rq->nr_preferred_running) 8506 return remote; 8507 return all; 8508 } 8509 #else 8510 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8511 { 8512 return all; 8513 } 8514 8515 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8516 { 8517 return regular; 8518 } 8519 #endif /* CONFIG_NUMA_BALANCING */ 8520 8521 8522 struct sg_lb_stats; 8523 8524 /* 8525 * task_running_on_cpu - return 1 if @p is running on @cpu. 8526 */ 8527 8528 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8529 { 8530 /* Task has no contribution or is new */ 8531 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8532 return 0; 8533 8534 if (task_on_rq_queued(p)) 8535 return 1; 8536 8537 return 0; 8538 } 8539 8540 /** 8541 * idle_cpu_without - would a given CPU be idle without p ? 8542 * @cpu: the processor on which idleness is tested. 8543 * @p: task which should be ignored. 8544 * 8545 * Return: 1 if the CPU would be idle. 0 otherwise. 8546 */ 8547 static int idle_cpu_without(int cpu, struct task_struct *p) 8548 { 8549 struct rq *rq = cpu_rq(cpu); 8550 8551 if (rq->curr != rq->idle && rq->curr != p) 8552 return 0; 8553 8554 /* 8555 * rq->nr_running can't be used but an updated version without the 8556 * impact of p on cpu must be used instead. The updated nr_running 8557 * be computed and tested before calling idle_cpu_without(). 8558 */ 8559 8560 #ifdef CONFIG_SMP 8561 if (!llist_empty(&rq->wake_list)) 8562 return 0; 8563 #endif 8564 8565 return 1; 8566 } 8567 8568 /* 8569 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8570 * @sd: The sched_domain level to look for idlest group. 8571 * @group: sched_group whose statistics are to be updated. 8572 * @sgs: variable to hold the statistics for this group. 8573 * @p: The task for which we look for the idlest group/CPU. 8574 */ 8575 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8576 struct sched_group *group, 8577 struct sg_lb_stats *sgs, 8578 struct task_struct *p) 8579 { 8580 int i, nr_running; 8581 8582 memset(sgs, 0, sizeof(*sgs)); 8583 8584 for_each_cpu(i, sched_group_span(group)) { 8585 struct rq *rq = cpu_rq(i); 8586 unsigned int local; 8587 8588 sgs->group_load += cpu_load_without(rq, p); 8589 sgs->group_util += cpu_util_without(i, p); 8590 sgs->group_runnable += cpu_runnable_without(rq, p); 8591 local = task_running_on_cpu(i, p); 8592 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8593 8594 nr_running = rq->nr_running - local; 8595 sgs->sum_nr_running += nr_running; 8596 8597 /* 8598 * No need to call idle_cpu_without() if nr_running is not 0 8599 */ 8600 if (!nr_running && idle_cpu_without(i, p)) 8601 sgs->idle_cpus++; 8602 8603 } 8604 8605 /* Check if task fits in the group */ 8606 if (sd->flags & SD_ASYM_CPUCAPACITY && 8607 !task_fits_capacity(p, group->sgc->max_capacity)) { 8608 sgs->group_misfit_task_load = 1; 8609 } 8610 8611 sgs->group_capacity = group->sgc->capacity; 8612 8613 sgs->group_weight = group->group_weight; 8614 8615 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8616 8617 /* 8618 * Computing avg_load makes sense only when group is fully busy or 8619 * overloaded 8620 */ 8621 if (sgs->group_type == group_fully_busy || 8622 sgs->group_type == group_overloaded) 8623 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8624 sgs->group_capacity; 8625 } 8626 8627 static bool update_pick_idlest(struct sched_group *idlest, 8628 struct sg_lb_stats *idlest_sgs, 8629 struct sched_group *group, 8630 struct sg_lb_stats *sgs) 8631 { 8632 if (sgs->group_type < idlest_sgs->group_type) 8633 return true; 8634 8635 if (sgs->group_type > idlest_sgs->group_type) 8636 return false; 8637 8638 /* 8639 * The candidate and the current idlest group are the same type of 8640 * group. Let check which one is the idlest according to the type. 8641 */ 8642 8643 switch (sgs->group_type) { 8644 case group_overloaded: 8645 case group_fully_busy: 8646 /* Select the group with lowest avg_load. */ 8647 if (idlest_sgs->avg_load <= sgs->avg_load) 8648 return false; 8649 break; 8650 8651 case group_imbalanced: 8652 case group_asym_packing: 8653 /* Those types are not used in the slow wakeup path */ 8654 return false; 8655 8656 case group_misfit_task: 8657 /* Select group with the highest max capacity */ 8658 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 8659 return false; 8660 break; 8661 8662 case group_has_spare: 8663 /* Select group with most idle CPUs */ 8664 if (idlest_sgs->idle_cpus >= sgs->idle_cpus) 8665 return false; 8666 break; 8667 } 8668 8669 return true; 8670 } 8671 8672 /* 8673 * find_idlest_group() finds and returns the least busy CPU group within the 8674 * domain. 8675 * 8676 * Assumes p is allowed on at least one CPU in sd. 8677 */ 8678 static struct sched_group * 8679 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 8680 int this_cpu, int sd_flag) 8681 { 8682 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 8683 struct sg_lb_stats local_sgs, tmp_sgs; 8684 struct sg_lb_stats *sgs; 8685 unsigned long imbalance; 8686 struct sg_lb_stats idlest_sgs = { 8687 .avg_load = UINT_MAX, 8688 .group_type = group_overloaded, 8689 }; 8690 8691 imbalance = scale_load_down(NICE_0_LOAD) * 8692 (sd->imbalance_pct-100) / 100; 8693 8694 do { 8695 int local_group; 8696 8697 /* Skip over this group if it has no CPUs allowed */ 8698 if (!cpumask_intersects(sched_group_span(group), 8699 p->cpus_ptr)) 8700 continue; 8701 8702 local_group = cpumask_test_cpu(this_cpu, 8703 sched_group_span(group)); 8704 8705 if (local_group) { 8706 sgs = &local_sgs; 8707 local = group; 8708 } else { 8709 sgs = &tmp_sgs; 8710 } 8711 8712 update_sg_wakeup_stats(sd, group, sgs, p); 8713 8714 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 8715 idlest = group; 8716 idlest_sgs = *sgs; 8717 } 8718 8719 } while (group = group->next, group != sd->groups); 8720 8721 8722 /* There is no idlest group to push tasks to */ 8723 if (!idlest) 8724 return NULL; 8725 8726 /* The local group has been skipped because of CPU affinity */ 8727 if (!local) 8728 return idlest; 8729 8730 /* 8731 * If the local group is idler than the selected idlest group 8732 * don't try and push the task. 8733 */ 8734 if (local_sgs.group_type < idlest_sgs.group_type) 8735 return NULL; 8736 8737 /* 8738 * If the local group is busier than the selected idlest group 8739 * try and push the task. 8740 */ 8741 if (local_sgs.group_type > idlest_sgs.group_type) 8742 return idlest; 8743 8744 switch (local_sgs.group_type) { 8745 case group_overloaded: 8746 case group_fully_busy: 8747 /* 8748 * When comparing groups across NUMA domains, it's possible for 8749 * the local domain to be very lightly loaded relative to the 8750 * remote domains but "imbalance" skews the comparison making 8751 * remote CPUs look much more favourable. When considering 8752 * cross-domain, add imbalance to the load on the remote node 8753 * and consider staying local. 8754 */ 8755 8756 if ((sd->flags & SD_NUMA) && 8757 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 8758 return NULL; 8759 8760 /* 8761 * If the local group is less loaded than the selected 8762 * idlest group don't try and push any tasks. 8763 */ 8764 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 8765 return NULL; 8766 8767 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 8768 return NULL; 8769 break; 8770 8771 case group_imbalanced: 8772 case group_asym_packing: 8773 /* Those type are not used in the slow wakeup path */ 8774 return NULL; 8775 8776 case group_misfit_task: 8777 /* Select group with the highest max capacity */ 8778 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 8779 return NULL; 8780 break; 8781 8782 case group_has_spare: 8783 if (sd->flags & SD_NUMA) { 8784 #ifdef CONFIG_NUMA_BALANCING 8785 int idlest_cpu; 8786 /* 8787 * If there is spare capacity at NUMA, try to select 8788 * the preferred node 8789 */ 8790 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 8791 return NULL; 8792 8793 idlest_cpu = cpumask_first(sched_group_span(idlest)); 8794 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 8795 return idlest; 8796 #endif 8797 /* 8798 * Otherwise, keep the task on this node to stay close 8799 * its wakeup source and improve locality. If there is 8800 * a real need of migration, periodic load balance will 8801 * take care of it. 8802 */ 8803 if (local_sgs.idle_cpus) 8804 return NULL; 8805 } 8806 8807 /* 8808 * Select group with highest number of idle CPUs. We could also 8809 * compare the utilization which is more stable but it can end 8810 * up that the group has less spare capacity but finally more 8811 * idle CPUs which means more opportunity to run task. 8812 */ 8813 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 8814 return NULL; 8815 break; 8816 } 8817 8818 return idlest; 8819 } 8820 8821 /** 8822 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8823 * @env: The load balancing environment. 8824 * @sds: variable to hold the statistics for this sched_domain. 8825 */ 8826 8827 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8828 { 8829 struct sched_domain *child = env->sd->child; 8830 struct sched_group *sg = env->sd->groups; 8831 struct sg_lb_stats *local = &sds->local_stat; 8832 struct sg_lb_stats tmp_sgs; 8833 int sg_status = 0; 8834 8835 #ifdef CONFIG_NO_HZ_COMMON 8836 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8837 env->flags |= LBF_NOHZ_STATS; 8838 #endif 8839 8840 do { 8841 struct sg_lb_stats *sgs = &tmp_sgs; 8842 int local_group; 8843 8844 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8845 if (local_group) { 8846 sds->local = sg; 8847 sgs = local; 8848 8849 if (env->idle != CPU_NEWLY_IDLE || 8850 time_after_eq(jiffies, sg->sgc->next_update)) 8851 update_group_capacity(env->sd, env->dst_cpu); 8852 } 8853 8854 update_sg_lb_stats(env, sg, sgs, &sg_status); 8855 8856 if (local_group) 8857 goto next_group; 8858 8859 8860 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8861 sds->busiest = sg; 8862 sds->busiest_stat = *sgs; 8863 } 8864 8865 next_group: 8866 /* Now, start updating sd_lb_stats */ 8867 sds->total_load += sgs->group_load; 8868 sds->total_capacity += sgs->group_capacity; 8869 8870 sg = sg->next; 8871 } while (sg != env->sd->groups); 8872 8873 /* Tag domain that child domain prefers tasks go to siblings first */ 8874 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8875 8876 #ifdef CONFIG_NO_HZ_COMMON 8877 if ((env->flags & LBF_NOHZ_AGAIN) && 8878 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8879 8880 WRITE_ONCE(nohz.next_blocked, 8881 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8882 } 8883 #endif 8884 8885 if (env->sd->flags & SD_NUMA) 8886 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8887 8888 if (!env->sd->parent) { 8889 struct root_domain *rd = env->dst_rq->rd; 8890 8891 /* update overload indicator if we are at root domain */ 8892 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8893 8894 /* Update over-utilization (tipping point, U >= 0) indicator */ 8895 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8896 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 8897 } else if (sg_status & SG_OVERUTILIZED) { 8898 struct root_domain *rd = env->dst_rq->rd; 8899 8900 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 8901 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 8902 } 8903 } 8904 8905 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running) 8906 { 8907 unsigned int imbalance_min; 8908 8909 /* 8910 * Allow a small imbalance based on a simple pair of communicating 8911 * tasks that remain local when the source domain is almost idle. 8912 */ 8913 imbalance_min = 2; 8914 if (src_nr_running <= imbalance_min) 8915 return 0; 8916 8917 return imbalance; 8918 } 8919 8920 /** 8921 * calculate_imbalance - Calculate the amount of imbalance present within the 8922 * groups of a given sched_domain during load balance. 8923 * @env: load balance environment 8924 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8925 */ 8926 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8927 { 8928 struct sg_lb_stats *local, *busiest; 8929 8930 local = &sds->local_stat; 8931 busiest = &sds->busiest_stat; 8932 8933 if (busiest->group_type == group_misfit_task) { 8934 /* Set imbalance to allow misfit tasks to be balanced. */ 8935 env->migration_type = migrate_misfit; 8936 env->imbalance = 1; 8937 return; 8938 } 8939 8940 if (busiest->group_type == group_asym_packing) { 8941 /* 8942 * In case of asym capacity, we will try to migrate all load to 8943 * the preferred CPU. 8944 */ 8945 env->migration_type = migrate_task; 8946 env->imbalance = busiest->sum_h_nr_running; 8947 return; 8948 } 8949 8950 if (busiest->group_type == group_imbalanced) { 8951 /* 8952 * In the group_imb case we cannot rely on group-wide averages 8953 * to ensure CPU-load equilibrium, try to move any task to fix 8954 * the imbalance. The next load balance will take care of 8955 * balancing back the system. 8956 */ 8957 env->migration_type = migrate_task; 8958 env->imbalance = 1; 8959 return; 8960 } 8961 8962 /* 8963 * Try to use spare capacity of local group without overloading it or 8964 * emptying busiest. 8965 */ 8966 if (local->group_type == group_has_spare) { 8967 if (busiest->group_type > group_fully_busy) { 8968 /* 8969 * If busiest is overloaded, try to fill spare 8970 * capacity. This might end up creating spare capacity 8971 * in busiest or busiest still being overloaded but 8972 * there is no simple way to directly compute the 8973 * amount of load to migrate in order to balance the 8974 * system. 8975 */ 8976 env->migration_type = migrate_util; 8977 env->imbalance = max(local->group_capacity, local->group_util) - 8978 local->group_util; 8979 8980 /* 8981 * In some cases, the group's utilization is max or even 8982 * higher than capacity because of migrations but the 8983 * local CPU is (newly) idle. There is at least one 8984 * waiting task in this overloaded busiest group. Let's 8985 * try to pull it. 8986 */ 8987 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 8988 env->migration_type = migrate_task; 8989 env->imbalance = 1; 8990 } 8991 8992 return; 8993 } 8994 8995 if (busiest->group_weight == 1 || sds->prefer_sibling) { 8996 unsigned int nr_diff = busiest->sum_nr_running; 8997 /* 8998 * When prefer sibling, evenly spread running tasks on 8999 * groups. 9000 */ 9001 env->migration_type = migrate_task; 9002 lsub_positive(&nr_diff, local->sum_nr_running); 9003 env->imbalance = nr_diff >> 1; 9004 } else { 9005 9006 /* 9007 * If there is no overload, we just want to even the number of 9008 * idle cpus. 9009 */ 9010 env->migration_type = migrate_task; 9011 env->imbalance = max_t(long, 0, (local->idle_cpus - 9012 busiest->idle_cpus) >> 1); 9013 } 9014 9015 /* Consider allowing a small imbalance between NUMA groups */ 9016 if (env->sd->flags & SD_NUMA) 9017 env->imbalance = adjust_numa_imbalance(env->imbalance, 9018 busiest->sum_nr_running); 9019 9020 return; 9021 } 9022 9023 /* 9024 * Local is fully busy but has to take more load to relieve the 9025 * busiest group 9026 */ 9027 if (local->group_type < group_overloaded) { 9028 /* 9029 * Local will become overloaded so the avg_load metrics are 9030 * finally needed. 9031 */ 9032 9033 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9034 local->group_capacity; 9035 9036 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9037 sds->total_capacity; 9038 /* 9039 * If the local group is more loaded than the selected 9040 * busiest group don't try to pull any tasks. 9041 */ 9042 if (local->avg_load >= busiest->avg_load) { 9043 env->imbalance = 0; 9044 return; 9045 } 9046 } 9047 9048 /* 9049 * Both group are or will become overloaded and we're trying to get all 9050 * the CPUs to the average_load, so we don't want to push ourselves 9051 * above the average load, nor do we wish to reduce the max loaded CPU 9052 * below the average load. At the same time, we also don't want to 9053 * reduce the group load below the group capacity. Thus we look for 9054 * the minimum possible imbalance. 9055 */ 9056 env->migration_type = migrate_load; 9057 env->imbalance = min( 9058 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9059 (sds->avg_load - local->avg_load) * local->group_capacity 9060 ) / SCHED_CAPACITY_SCALE; 9061 } 9062 9063 /******* find_busiest_group() helpers end here *********************/ 9064 9065 /* 9066 * Decision matrix according to the local and busiest group type: 9067 * 9068 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9069 * has_spare nr_idle balanced N/A N/A balanced balanced 9070 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9071 * misfit_task force N/A N/A N/A force force 9072 * asym_packing force force N/A N/A force force 9073 * imbalanced force force N/A N/A force force 9074 * overloaded force force N/A N/A force avg_load 9075 * 9076 * N/A : Not Applicable because already filtered while updating 9077 * statistics. 9078 * balanced : The system is balanced for these 2 groups. 9079 * force : Calculate the imbalance as load migration is probably needed. 9080 * avg_load : Only if imbalance is significant enough. 9081 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9082 * different in groups. 9083 */ 9084 9085 /** 9086 * find_busiest_group - Returns the busiest group within the sched_domain 9087 * if there is an imbalance. 9088 * 9089 * Also calculates the amount of runnable load which should be moved 9090 * to restore balance. 9091 * 9092 * @env: The load balancing environment. 9093 * 9094 * Return: - The busiest group if imbalance exists. 9095 */ 9096 static struct sched_group *find_busiest_group(struct lb_env *env) 9097 { 9098 struct sg_lb_stats *local, *busiest; 9099 struct sd_lb_stats sds; 9100 9101 init_sd_lb_stats(&sds); 9102 9103 /* 9104 * Compute the various statistics relevant for load balancing at 9105 * this level. 9106 */ 9107 update_sd_lb_stats(env, &sds); 9108 9109 if (sched_energy_enabled()) { 9110 struct root_domain *rd = env->dst_rq->rd; 9111 9112 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9113 goto out_balanced; 9114 } 9115 9116 local = &sds.local_stat; 9117 busiest = &sds.busiest_stat; 9118 9119 /* There is no busy sibling group to pull tasks from */ 9120 if (!sds.busiest) 9121 goto out_balanced; 9122 9123 /* Misfit tasks should be dealt with regardless of the avg load */ 9124 if (busiest->group_type == group_misfit_task) 9125 goto force_balance; 9126 9127 /* ASYM feature bypasses nice load balance check */ 9128 if (busiest->group_type == group_asym_packing) 9129 goto force_balance; 9130 9131 /* 9132 * If the busiest group is imbalanced the below checks don't 9133 * work because they assume all things are equal, which typically 9134 * isn't true due to cpus_ptr constraints and the like. 9135 */ 9136 if (busiest->group_type == group_imbalanced) 9137 goto force_balance; 9138 9139 /* 9140 * If the local group is busier than the selected busiest group 9141 * don't try and pull any tasks. 9142 */ 9143 if (local->group_type > busiest->group_type) 9144 goto out_balanced; 9145 9146 /* 9147 * When groups are overloaded, use the avg_load to ensure fairness 9148 * between tasks. 9149 */ 9150 if (local->group_type == group_overloaded) { 9151 /* 9152 * If the local group is more loaded than the selected 9153 * busiest group don't try to pull any tasks. 9154 */ 9155 if (local->avg_load >= busiest->avg_load) 9156 goto out_balanced; 9157 9158 /* XXX broken for overlapping NUMA groups */ 9159 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9160 sds.total_capacity; 9161 9162 /* 9163 * Don't pull any tasks if this group is already above the 9164 * domain average load. 9165 */ 9166 if (local->avg_load >= sds.avg_load) 9167 goto out_balanced; 9168 9169 /* 9170 * If the busiest group is more loaded, use imbalance_pct to be 9171 * conservative. 9172 */ 9173 if (100 * busiest->avg_load <= 9174 env->sd->imbalance_pct * local->avg_load) 9175 goto out_balanced; 9176 } 9177 9178 /* Try to move all excess tasks to child's sibling domain */ 9179 if (sds.prefer_sibling && local->group_type == group_has_spare && 9180 busiest->sum_nr_running > local->sum_nr_running + 1) 9181 goto force_balance; 9182 9183 if (busiest->group_type != group_overloaded) { 9184 if (env->idle == CPU_NOT_IDLE) 9185 /* 9186 * If the busiest group is not overloaded (and as a 9187 * result the local one too) but this CPU is already 9188 * busy, let another idle CPU try to pull task. 9189 */ 9190 goto out_balanced; 9191 9192 if (busiest->group_weight > 1 && 9193 local->idle_cpus <= (busiest->idle_cpus + 1)) 9194 /* 9195 * If the busiest group is not overloaded 9196 * and there is no imbalance between this and busiest 9197 * group wrt idle CPUs, it is balanced. The imbalance 9198 * becomes significant if the diff is greater than 1 9199 * otherwise we might end up to just move the imbalance 9200 * on another group. Of course this applies only if 9201 * there is more than 1 CPU per group. 9202 */ 9203 goto out_balanced; 9204 9205 if (busiest->sum_h_nr_running == 1) 9206 /* 9207 * busiest doesn't have any tasks waiting to run 9208 */ 9209 goto out_balanced; 9210 } 9211 9212 force_balance: 9213 /* Looks like there is an imbalance. Compute it */ 9214 calculate_imbalance(env, &sds); 9215 return env->imbalance ? sds.busiest : NULL; 9216 9217 out_balanced: 9218 env->imbalance = 0; 9219 return NULL; 9220 } 9221 9222 /* 9223 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9224 */ 9225 static struct rq *find_busiest_queue(struct lb_env *env, 9226 struct sched_group *group) 9227 { 9228 struct rq *busiest = NULL, *rq; 9229 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9230 unsigned int busiest_nr = 0; 9231 int i; 9232 9233 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9234 unsigned long capacity, load, util; 9235 unsigned int nr_running; 9236 enum fbq_type rt; 9237 9238 rq = cpu_rq(i); 9239 rt = fbq_classify_rq(rq); 9240 9241 /* 9242 * We classify groups/runqueues into three groups: 9243 * - regular: there are !numa tasks 9244 * - remote: there are numa tasks that run on the 'wrong' node 9245 * - all: there is no distinction 9246 * 9247 * In order to avoid migrating ideally placed numa tasks, 9248 * ignore those when there's better options. 9249 * 9250 * If we ignore the actual busiest queue to migrate another 9251 * task, the next balance pass can still reduce the busiest 9252 * queue by moving tasks around inside the node. 9253 * 9254 * If we cannot move enough load due to this classification 9255 * the next pass will adjust the group classification and 9256 * allow migration of more tasks. 9257 * 9258 * Both cases only affect the total convergence complexity. 9259 */ 9260 if (rt > env->fbq_type) 9261 continue; 9262 9263 capacity = capacity_of(i); 9264 nr_running = rq->cfs.h_nr_running; 9265 9266 /* 9267 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9268 * eventually lead to active_balancing high->low capacity. 9269 * Higher per-CPU capacity is considered better than balancing 9270 * average load. 9271 */ 9272 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9273 capacity_of(env->dst_cpu) < capacity && 9274 nr_running == 1) 9275 continue; 9276 9277 switch (env->migration_type) { 9278 case migrate_load: 9279 /* 9280 * When comparing with load imbalance, use cpu_load() 9281 * which is not scaled with the CPU capacity. 9282 */ 9283 load = cpu_load(rq); 9284 9285 if (nr_running == 1 && load > env->imbalance && 9286 !check_cpu_capacity(rq, env->sd)) 9287 break; 9288 9289 /* 9290 * For the load comparisons with the other CPUs, 9291 * consider the cpu_load() scaled with the CPU 9292 * capacity, so that the load can be moved away 9293 * from the CPU that is potentially running at a 9294 * lower capacity. 9295 * 9296 * Thus we're looking for max(load_i / capacity_i), 9297 * crosswise multiplication to rid ourselves of the 9298 * division works out to: 9299 * load_i * capacity_j > load_j * capacity_i; 9300 * where j is our previous maximum. 9301 */ 9302 if (load * busiest_capacity > busiest_load * capacity) { 9303 busiest_load = load; 9304 busiest_capacity = capacity; 9305 busiest = rq; 9306 } 9307 break; 9308 9309 case migrate_util: 9310 util = cpu_util(cpu_of(rq)); 9311 9312 /* 9313 * Don't try to pull utilization from a CPU with one 9314 * running task. Whatever its utilization, we will fail 9315 * detach the task. 9316 */ 9317 if (nr_running <= 1) 9318 continue; 9319 9320 if (busiest_util < util) { 9321 busiest_util = util; 9322 busiest = rq; 9323 } 9324 break; 9325 9326 case migrate_task: 9327 if (busiest_nr < nr_running) { 9328 busiest_nr = nr_running; 9329 busiest = rq; 9330 } 9331 break; 9332 9333 case migrate_misfit: 9334 /* 9335 * For ASYM_CPUCAPACITY domains with misfit tasks we 9336 * simply seek the "biggest" misfit task. 9337 */ 9338 if (rq->misfit_task_load > busiest_load) { 9339 busiest_load = rq->misfit_task_load; 9340 busiest = rq; 9341 } 9342 9343 break; 9344 9345 } 9346 } 9347 9348 return busiest; 9349 } 9350 9351 /* 9352 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9353 * so long as it is large enough. 9354 */ 9355 #define MAX_PINNED_INTERVAL 512 9356 9357 static inline bool 9358 asym_active_balance(struct lb_env *env) 9359 { 9360 /* 9361 * ASYM_PACKING needs to force migrate tasks from busy but 9362 * lower priority CPUs in order to pack all tasks in the 9363 * highest priority CPUs. 9364 */ 9365 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9366 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9367 } 9368 9369 static inline bool 9370 voluntary_active_balance(struct lb_env *env) 9371 { 9372 struct sched_domain *sd = env->sd; 9373 9374 if (asym_active_balance(env)) 9375 return 1; 9376 9377 /* 9378 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9379 * It's worth migrating the task if the src_cpu's capacity is reduced 9380 * because of other sched_class or IRQs if more capacity stays 9381 * available on dst_cpu. 9382 */ 9383 if ((env->idle != CPU_NOT_IDLE) && 9384 (env->src_rq->cfs.h_nr_running == 1)) { 9385 if ((check_cpu_capacity(env->src_rq, sd)) && 9386 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9387 return 1; 9388 } 9389 9390 if (env->migration_type == migrate_misfit) 9391 return 1; 9392 9393 return 0; 9394 } 9395 9396 static int need_active_balance(struct lb_env *env) 9397 { 9398 struct sched_domain *sd = env->sd; 9399 9400 if (voluntary_active_balance(env)) 9401 return 1; 9402 9403 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 9404 } 9405 9406 static int active_load_balance_cpu_stop(void *data); 9407 9408 static int should_we_balance(struct lb_env *env) 9409 { 9410 struct sched_group *sg = env->sd->groups; 9411 int cpu, balance_cpu = -1; 9412 9413 /* 9414 * Ensure the balancing environment is consistent; can happen 9415 * when the softirq triggers 'during' hotplug. 9416 */ 9417 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9418 return 0; 9419 9420 /* 9421 * In the newly idle case, we will allow all the CPUs 9422 * to do the newly idle load balance. 9423 */ 9424 if (env->idle == CPU_NEWLY_IDLE) 9425 return 1; 9426 9427 /* Try to find first idle CPU */ 9428 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9429 if (!idle_cpu(cpu)) 9430 continue; 9431 9432 balance_cpu = cpu; 9433 break; 9434 } 9435 9436 if (balance_cpu == -1) 9437 balance_cpu = group_balance_cpu(sg); 9438 9439 /* 9440 * First idle CPU or the first CPU(busiest) in this sched group 9441 * is eligible for doing load balancing at this and above domains. 9442 */ 9443 return balance_cpu == env->dst_cpu; 9444 } 9445 9446 /* 9447 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9448 * tasks if there is an imbalance. 9449 */ 9450 static int load_balance(int this_cpu, struct rq *this_rq, 9451 struct sched_domain *sd, enum cpu_idle_type idle, 9452 int *continue_balancing) 9453 { 9454 int ld_moved, cur_ld_moved, active_balance = 0; 9455 struct sched_domain *sd_parent = sd->parent; 9456 struct sched_group *group; 9457 struct rq *busiest; 9458 struct rq_flags rf; 9459 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9460 9461 struct lb_env env = { 9462 .sd = sd, 9463 .dst_cpu = this_cpu, 9464 .dst_rq = this_rq, 9465 .dst_grpmask = sched_group_span(sd->groups), 9466 .idle = idle, 9467 .loop_break = sched_nr_migrate_break, 9468 .cpus = cpus, 9469 .fbq_type = all, 9470 .tasks = LIST_HEAD_INIT(env.tasks), 9471 }; 9472 9473 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9474 9475 schedstat_inc(sd->lb_count[idle]); 9476 9477 redo: 9478 if (!should_we_balance(&env)) { 9479 *continue_balancing = 0; 9480 goto out_balanced; 9481 } 9482 9483 group = find_busiest_group(&env); 9484 if (!group) { 9485 schedstat_inc(sd->lb_nobusyg[idle]); 9486 goto out_balanced; 9487 } 9488 9489 busiest = find_busiest_queue(&env, group); 9490 if (!busiest) { 9491 schedstat_inc(sd->lb_nobusyq[idle]); 9492 goto out_balanced; 9493 } 9494 9495 BUG_ON(busiest == env.dst_rq); 9496 9497 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9498 9499 env.src_cpu = busiest->cpu; 9500 env.src_rq = busiest; 9501 9502 ld_moved = 0; 9503 if (busiest->nr_running > 1) { 9504 /* 9505 * Attempt to move tasks. If find_busiest_group has found 9506 * an imbalance but busiest->nr_running <= 1, the group is 9507 * still unbalanced. ld_moved simply stays zero, so it is 9508 * correctly treated as an imbalance. 9509 */ 9510 env.flags |= LBF_ALL_PINNED; 9511 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9512 9513 more_balance: 9514 rq_lock_irqsave(busiest, &rf); 9515 update_rq_clock(busiest); 9516 9517 /* 9518 * cur_ld_moved - load moved in current iteration 9519 * ld_moved - cumulative load moved across iterations 9520 */ 9521 cur_ld_moved = detach_tasks(&env); 9522 9523 /* 9524 * We've detached some tasks from busiest_rq. Every 9525 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9526 * unlock busiest->lock, and we are able to be sure 9527 * that nobody can manipulate the tasks in parallel. 9528 * See task_rq_lock() family for the details. 9529 */ 9530 9531 rq_unlock(busiest, &rf); 9532 9533 if (cur_ld_moved) { 9534 attach_tasks(&env); 9535 ld_moved += cur_ld_moved; 9536 } 9537 9538 local_irq_restore(rf.flags); 9539 9540 if (env.flags & LBF_NEED_BREAK) { 9541 env.flags &= ~LBF_NEED_BREAK; 9542 goto more_balance; 9543 } 9544 9545 /* 9546 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9547 * us and move them to an alternate dst_cpu in our sched_group 9548 * where they can run. The upper limit on how many times we 9549 * iterate on same src_cpu is dependent on number of CPUs in our 9550 * sched_group. 9551 * 9552 * This changes load balance semantics a bit on who can move 9553 * load to a given_cpu. In addition to the given_cpu itself 9554 * (or a ilb_cpu acting on its behalf where given_cpu is 9555 * nohz-idle), we now have balance_cpu in a position to move 9556 * load to given_cpu. In rare situations, this may cause 9557 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9558 * _independently_ and at _same_ time to move some load to 9559 * given_cpu) causing exceess load to be moved to given_cpu. 9560 * This however should not happen so much in practice and 9561 * moreover subsequent load balance cycles should correct the 9562 * excess load moved. 9563 */ 9564 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9565 9566 /* Prevent to re-select dst_cpu via env's CPUs */ 9567 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9568 9569 env.dst_rq = cpu_rq(env.new_dst_cpu); 9570 env.dst_cpu = env.new_dst_cpu; 9571 env.flags &= ~LBF_DST_PINNED; 9572 env.loop = 0; 9573 env.loop_break = sched_nr_migrate_break; 9574 9575 /* 9576 * Go back to "more_balance" rather than "redo" since we 9577 * need to continue with same src_cpu. 9578 */ 9579 goto more_balance; 9580 } 9581 9582 /* 9583 * We failed to reach balance because of affinity. 9584 */ 9585 if (sd_parent) { 9586 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9587 9588 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9589 *group_imbalance = 1; 9590 } 9591 9592 /* All tasks on this runqueue were pinned by CPU affinity */ 9593 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9594 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9595 /* 9596 * Attempting to continue load balancing at the current 9597 * sched_domain level only makes sense if there are 9598 * active CPUs remaining as possible busiest CPUs to 9599 * pull load from which are not contained within the 9600 * destination group that is receiving any migrated 9601 * load. 9602 */ 9603 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9604 env.loop = 0; 9605 env.loop_break = sched_nr_migrate_break; 9606 goto redo; 9607 } 9608 goto out_all_pinned; 9609 } 9610 } 9611 9612 if (!ld_moved) { 9613 schedstat_inc(sd->lb_failed[idle]); 9614 /* 9615 * Increment the failure counter only on periodic balance. 9616 * We do not want newidle balance, which can be very 9617 * frequent, pollute the failure counter causing 9618 * excessive cache_hot migrations and active balances. 9619 */ 9620 if (idle != CPU_NEWLY_IDLE) 9621 sd->nr_balance_failed++; 9622 9623 if (need_active_balance(&env)) { 9624 unsigned long flags; 9625 9626 raw_spin_lock_irqsave(&busiest->lock, flags); 9627 9628 /* 9629 * Don't kick the active_load_balance_cpu_stop, 9630 * if the curr task on busiest CPU can't be 9631 * moved to this_cpu: 9632 */ 9633 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 9634 raw_spin_unlock_irqrestore(&busiest->lock, 9635 flags); 9636 env.flags |= LBF_ALL_PINNED; 9637 goto out_one_pinned; 9638 } 9639 9640 /* 9641 * ->active_balance synchronizes accesses to 9642 * ->active_balance_work. Once set, it's cleared 9643 * only after active load balance is finished. 9644 */ 9645 if (!busiest->active_balance) { 9646 busiest->active_balance = 1; 9647 busiest->push_cpu = this_cpu; 9648 active_balance = 1; 9649 } 9650 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9651 9652 if (active_balance) { 9653 stop_one_cpu_nowait(cpu_of(busiest), 9654 active_load_balance_cpu_stop, busiest, 9655 &busiest->active_balance_work); 9656 } 9657 9658 /* We've kicked active balancing, force task migration. */ 9659 sd->nr_balance_failed = sd->cache_nice_tries+1; 9660 } 9661 } else 9662 sd->nr_balance_failed = 0; 9663 9664 if (likely(!active_balance) || voluntary_active_balance(&env)) { 9665 /* We were unbalanced, so reset the balancing interval */ 9666 sd->balance_interval = sd->min_interval; 9667 } else { 9668 /* 9669 * If we've begun active balancing, start to back off. This 9670 * case may not be covered by the all_pinned logic if there 9671 * is only 1 task on the busy runqueue (because we don't call 9672 * detach_tasks). 9673 */ 9674 if (sd->balance_interval < sd->max_interval) 9675 sd->balance_interval *= 2; 9676 } 9677 9678 goto out; 9679 9680 out_balanced: 9681 /* 9682 * We reach balance although we may have faced some affinity 9683 * constraints. Clear the imbalance flag only if other tasks got 9684 * a chance to move and fix the imbalance. 9685 */ 9686 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 9687 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9688 9689 if (*group_imbalance) 9690 *group_imbalance = 0; 9691 } 9692 9693 out_all_pinned: 9694 /* 9695 * We reach balance because all tasks are pinned at this level so 9696 * we can't migrate them. Let the imbalance flag set so parent level 9697 * can try to migrate them. 9698 */ 9699 schedstat_inc(sd->lb_balanced[idle]); 9700 9701 sd->nr_balance_failed = 0; 9702 9703 out_one_pinned: 9704 ld_moved = 0; 9705 9706 /* 9707 * newidle_balance() disregards balance intervals, so we could 9708 * repeatedly reach this code, which would lead to balance_interval 9709 * skyrocketting in a short amount of time. Skip the balance_interval 9710 * increase logic to avoid that. 9711 */ 9712 if (env.idle == CPU_NEWLY_IDLE) 9713 goto out; 9714 9715 /* tune up the balancing interval */ 9716 if ((env.flags & LBF_ALL_PINNED && 9717 sd->balance_interval < MAX_PINNED_INTERVAL) || 9718 sd->balance_interval < sd->max_interval) 9719 sd->balance_interval *= 2; 9720 out: 9721 return ld_moved; 9722 } 9723 9724 static inline unsigned long 9725 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9726 { 9727 unsigned long interval = sd->balance_interval; 9728 9729 if (cpu_busy) 9730 interval *= sd->busy_factor; 9731 9732 /* scale ms to jiffies */ 9733 interval = msecs_to_jiffies(interval); 9734 interval = clamp(interval, 1UL, max_load_balance_interval); 9735 9736 return interval; 9737 } 9738 9739 static inline void 9740 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9741 { 9742 unsigned long interval, next; 9743 9744 /* used by idle balance, so cpu_busy = 0 */ 9745 interval = get_sd_balance_interval(sd, 0); 9746 next = sd->last_balance + interval; 9747 9748 if (time_after(*next_balance, next)) 9749 *next_balance = next; 9750 } 9751 9752 /* 9753 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9754 * running tasks off the busiest CPU onto idle CPUs. It requires at 9755 * least 1 task to be running on each physical CPU where possible, and 9756 * avoids physical / logical imbalances. 9757 */ 9758 static int active_load_balance_cpu_stop(void *data) 9759 { 9760 struct rq *busiest_rq = data; 9761 int busiest_cpu = cpu_of(busiest_rq); 9762 int target_cpu = busiest_rq->push_cpu; 9763 struct rq *target_rq = cpu_rq(target_cpu); 9764 struct sched_domain *sd; 9765 struct task_struct *p = NULL; 9766 struct rq_flags rf; 9767 9768 rq_lock_irq(busiest_rq, &rf); 9769 /* 9770 * Between queueing the stop-work and running it is a hole in which 9771 * CPUs can become inactive. We should not move tasks from or to 9772 * inactive CPUs. 9773 */ 9774 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9775 goto out_unlock; 9776 9777 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9778 if (unlikely(busiest_cpu != smp_processor_id() || 9779 !busiest_rq->active_balance)) 9780 goto out_unlock; 9781 9782 /* Is there any task to move? */ 9783 if (busiest_rq->nr_running <= 1) 9784 goto out_unlock; 9785 9786 /* 9787 * This condition is "impossible", if it occurs 9788 * we need to fix it. Originally reported by 9789 * Bjorn Helgaas on a 128-CPU setup. 9790 */ 9791 BUG_ON(busiest_rq == target_rq); 9792 9793 /* Search for an sd spanning us and the target CPU. */ 9794 rcu_read_lock(); 9795 for_each_domain(target_cpu, sd) { 9796 if ((sd->flags & SD_LOAD_BALANCE) && 9797 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9798 break; 9799 } 9800 9801 if (likely(sd)) { 9802 struct lb_env env = { 9803 .sd = sd, 9804 .dst_cpu = target_cpu, 9805 .dst_rq = target_rq, 9806 .src_cpu = busiest_rq->cpu, 9807 .src_rq = busiest_rq, 9808 .idle = CPU_IDLE, 9809 /* 9810 * can_migrate_task() doesn't need to compute new_dst_cpu 9811 * for active balancing. Since we have CPU_IDLE, but no 9812 * @dst_grpmask we need to make that test go away with lying 9813 * about DST_PINNED. 9814 */ 9815 .flags = LBF_DST_PINNED, 9816 }; 9817 9818 schedstat_inc(sd->alb_count); 9819 update_rq_clock(busiest_rq); 9820 9821 p = detach_one_task(&env); 9822 if (p) { 9823 schedstat_inc(sd->alb_pushed); 9824 /* Active balancing done, reset the failure counter. */ 9825 sd->nr_balance_failed = 0; 9826 } else { 9827 schedstat_inc(sd->alb_failed); 9828 } 9829 } 9830 rcu_read_unlock(); 9831 out_unlock: 9832 busiest_rq->active_balance = 0; 9833 rq_unlock(busiest_rq, &rf); 9834 9835 if (p) 9836 attach_one_task(target_rq, p); 9837 9838 local_irq_enable(); 9839 9840 return 0; 9841 } 9842 9843 static DEFINE_SPINLOCK(balancing); 9844 9845 /* 9846 * Scale the max load_balance interval with the number of CPUs in the system. 9847 * This trades load-balance latency on larger machines for less cross talk. 9848 */ 9849 void update_max_interval(void) 9850 { 9851 max_load_balance_interval = HZ*num_online_cpus()/10; 9852 } 9853 9854 /* 9855 * It checks each scheduling domain to see if it is due to be balanced, 9856 * and initiates a balancing operation if so. 9857 * 9858 * Balancing parameters are set up in init_sched_domains. 9859 */ 9860 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9861 { 9862 int continue_balancing = 1; 9863 int cpu = rq->cpu; 9864 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9865 unsigned long interval; 9866 struct sched_domain *sd; 9867 /* Earliest time when we have to do rebalance again */ 9868 unsigned long next_balance = jiffies + 60*HZ; 9869 int update_next_balance = 0; 9870 int need_serialize, need_decay = 0; 9871 u64 max_cost = 0; 9872 9873 rcu_read_lock(); 9874 for_each_domain(cpu, sd) { 9875 /* 9876 * Decay the newidle max times here because this is a regular 9877 * visit to all the domains. Decay ~1% per second. 9878 */ 9879 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9880 sd->max_newidle_lb_cost = 9881 (sd->max_newidle_lb_cost * 253) / 256; 9882 sd->next_decay_max_lb_cost = jiffies + HZ; 9883 need_decay = 1; 9884 } 9885 max_cost += sd->max_newidle_lb_cost; 9886 9887 if (!(sd->flags & SD_LOAD_BALANCE)) 9888 continue; 9889 9890 /* 9891 * Stop the load balance at this level. There is another 9892 * CPU in our sched group which is doing load balancing more 9893 * actively. 9894 */ 9895 if (!continue_balancing) { 9896 if (need_decay) 9897 continue; 9898 break; 9899 } 9900 9901 interval = get_sd_balance_interval(sd, busy); 9902 9903 need_serialize = sd->flags & SD_SERIALIZE; 9904 if (need_serialize) { 9905 if (!spin_trylock(&balancing)) 9906 goto out; 9907 } 9908 9909 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9910 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9911 /* 9912 * The LBF_DST_PINNED logic could have changed 9913 * env->dst_cpu, so we can't know our idle 9914 * state even if we migrated tasks. Update it. 9915 */ 9916 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9917 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 9918 } 9919 sd->last_balance = jiffies; 9920 interval = get_sd_balance_interval(sd, busy); 9921 } 9922 if (need_serialize) 9923 spin_unlock(&balancing); 9924 out: 9925 if (time_after(next_balance, sd->last_balance + interval)) { 9926 next_balance = sd->last_balance + interval; 9927 update_next_balance = 1; 9928 } 9929 } 9930 if (need_decay) { 9931 /* 9932 * Ensure the rq-wide value also decays but keep it at a 9933 * reasonable floor to avoid funnies with rq->avg_idle. 9934 */ 9935 rq->max_idle_balance_cost = 9936 max((u64)sysctl_sched_migration_cost, max_cost); 9937 } 9938 rcu_read_unlock(); 9939 9940 /* 9941 * next_balance will be updated only when there is a need. 9942 * When the cpu is attached to null domain for ex, it will not be 9943 * updated. 9944 */ 9945 if (likely(update_next_balance)) { 9946 rq->next_balance = next_balance; 9947 9948 #ifdef CONFIG_NO_HZ_COMMON 9949 /* 9950 * If this CPU has been elected to perform the nohz idle 9951 * balance. Other idle CPUs have already rebalanced with 9952 * nohz_idle_balance() and nohz.next_balance has been 9953 * updated accordingly. This CPU is now running the idle load 9954 * balance for itself and we need to update the 9955 * nohz.next_balance accordingly. 9956 */ 9957 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9958 nohz.next_balance = rq->next_balance; 9959 #endif 9960 } 9961 } 9962 9963 static inline int on_null_domain(struct rq *rq) 9964 { 9965 return unlikely(!rcu_dereference_sched(rq->sd)); 9966 } 9967 9968 #ifdef CONFIG_NO_HZ_COMMON 9969 /* 9970 * idle load balancing details 9971 * - When one of the busy CPUs notice that there may be an idle rebalancing 9972 * needed, they will kick the idle load balancer, which then does idle 9973 * load balancing for all the idle CPUs. 9974 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set 9975 * anywhere yet. 9976 */ 9977 9978 static inline int find_new_ilb(void) 9979 { 9980 int ilb; 9981 9982 for_each_cpu_and(ilb, nohz.idle_cpus_mask, 9983 housekeeping_cpumask(HK_FLAG_MISC)) { 9984 if (idle_cpu(ilb)) 9985 return ilb; 9986 } 9987 9988 return nr_cpu_ids; 9989 } 9990 9991 /* 9992 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 9993 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one). 9994 */ 9995 static void kick_ilb(unsigned int flags) 9996 { 9997 int ilb_cpu; 9998 9999 nohz.next_balance++; 10000 10001 ilb_cpu = find_new_ilb(); 10002 10003 if (ilb_cpu >= nr_cpu_ids) 10004 return; 10005 10006 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10007 if (flags & NOHZ_KICK_MASK) 10008 return; 10009 10010 /* 10011 * Use smp_send_reschedule() instead of resched_cpu(). 10012 * This way we generate a sched IPI on the target CPU which 10013 * is idle. And the softirq performing nohz idle load balance 10014 * will be run before returning from the IPI. 10015 */ 10016 smp_send_reschedule(ilb_cpu); 10017 } 10018 10019 /* 10020 * Current decision point for kicking the idle load balancer in the presence 10021 * of idle CPUs in the system. 10022 */ 10023 static void nohz_balancer_kick(struct rq *rq) 10024 { 10025 unsigned long now = jiffies; 10026 struct sched_domain_shared *sds; 10027 struct sched_domain *sd; 10028 int nr_busy, i, cpu = rq->cpu; 10029 unsigned int flags = 0; 10030 10031 if (unlikely(rq->idle_balance)) 10032 return; 10033 10034 /* 10035 * We may be recently in ticked or tickless idle mode. At the first 10036 * busy tick after returning from idle, we will update the busy stats. 10037 */ 10038 nohz_balance_exit_idle(rq); 10039 10040 /* 10041 * None are in tickless mode and hence no need for NOHZ idle load 10042 * balancing. 10043 */ 10044 if (likely(!atomic_read(&nohz.nr_cpus))) 10045 return; 10046 10047 if (READ_ONCE(nohz.has_blocked) && 10048 time_after(now, READ_ONCE(nohz.next_blocked))) 10049 flags = NOHZ_STATS_KICK; 10050 10051 if (time_before(now, nohz.next_balance)) 10052 goto out; 10053 10054 if (rq->nr_running >= 2) { 10055 flags = NOHZ_KICK_MASK; 10056 goto out; 10057 } 10058 10059 rcu_read_lock(); 10060 10061 sd = rcu_dereference(rq->sd); 10062 if (sd) { 10063 /* 10064 * If there's a CFS task and the current CPU has reduced 10065 * capacity; kick the ILB to see if there's a better CPU to run 10066 * on. 10067 */ 10068 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10069 flags = NOHZ_KICK_MASK; 10070 goto unlock; 10071 } 10072 } 10073 10074 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10075 if (sd) { 10076 /* 10077 * When ASYM_PACKING; see if there's a more preferred CPU 10078 * currently idle; in which case, kick the ILB to move tasks 10079 * around. 10080 */ 10081 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10082 if (sched_asym_prefer(i, cpu)) { 10083 flags = NOHZ_KICK_MASK; 10084 goto unlock; 10085 } 10086 } 10087 } 10088 10089 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10090 if (sd) { 10091 /* 10092 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10093 * to run the misfit task on. 10094 */ 10095 if (check_misfit_status(rq, sd)) { 10096 flags = NOHZ_KICK_MASK; 10097 goto unlock; 10098 } 10099 10100 /* 10101 * For asymmetric systems, we do not want to nicely balance 10102 * cache use, instead we want to embrace asymmetry and only 10103 * ensure tasks have enough CPU capacity. 10104 * 10105 * Skip the LLC logic because it's not relevant in that case. 10106 */ 10107 goto unlock; 10108 } 10109 10110 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10111 if (sds) { 10112 /* 10113 * If there is an imbalance between LLC domains (IOW we could 10114 * increase the overall cache use), we need some less-loaded LLC 10115 * domain to pull some load. Likewise, we may need to spread 10116 * load within the current LLC domain (e.g. packed SMT cores but 10117 * other CPUs are idle). We can't really know from here how busy 10118 * the others are - so just get a nohz balance going if it looks 10119 * like this LLC domain has tasks we could move. 10120 */ 10121 nr_busy = atomic_read(&sds->nr_busy_cpus); 10122 if (nr_busy > 1) { 10123 flags = NOHZ_KICK_MASK; 10124 goto unlock; 10125 } 10126 } 10127 unlock: 10128 rcu_read_unlock(); 10129 out: 10130 if (flags) 10131 kick_ilb(flags); 10132 } 10133 10134 static void set_cpu_sd_state_busy(int cpu) 10135 { 10136 struct sched_domain *sd; 10137 10138 rcu_read_lock(); 10139 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10140 10141 if (!sd || !sd->nohz_idle) 10142 goto unlock; 10143 sd->nohz_idle = 0; 10144 10145 atomic_inc(&sd->shared->nr_busy_cpus); 10146 unlock: 10147 rcu_read_unlock(); 10148 } 10149 10150 void nohz_balance_exit_idle(struct rq *rq) 10151 { 10152 SCHED_WARN_ON(rq != this_rq()); 10153 10154 if (likely(!rq->nohz_tick_stopped)) 10155 return; 10156 10157 rq->nohz_tick_stopped = 0; 10158 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10159 atomic_dec(&nohz.nr_cpus); 10160 10161 set_cpu_sd_state_busy(rq->cpu); 10162 } 10163 10164 static void set_cpu_sd_state_idle(int cpu) 10165 { 10166 struct sched_domain *sd; 10167 10168 rcu_read_lock(); 10169 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10170 10171 if (!sd || sd->nohz_idle) 10172 goto unlock; 10173 sd->nohz_idle = 1; 10174 10175 atomic_dec(&sd->shared->nr_busy_cpus); 10176 unlock: 10177 rcu_read_unlock(); 10178 } 10179 10180 /* 10181 * This routine will record that the CPU is going idle with tick stopped. 10182 * This info will be used in performing idle load balancing in the future. 10183 */ 10184 void nohz_balance_enter_idle(int cpu) 10185 { 10186 struct rq *rq = cpu_rq(cpu); 10187 10188 SCHED_WARN_ON(cpu != smp_processor_id()); 10189 10190 /* If this CPU is going down, then nothing needs to be done: */ 10191 if (!cpu_active(cpu)) 10192 return; 10193 10194 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10195 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 10196 return; 10197 10198 /* 10199 * Can be set safely without rq->lock held 10200 * If a clear happens, it will have evaluated last additions because 10201 * rq->lock is held during the check and the clear 10202 */ 10203 rq->has_blocked_load = 1; 10204 10205 /* 10206 * The tick is still stopped but load could have been added in the 10207 * meantime. We set the nohz.has_blocked flag to trig a check of the 10208 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10209 * of nohz.has_blocked can only happen after checking the new load 10210 */ 10211 if (rq->nohz_tick_stopped) 10212 goto out; 10213 10214 /* If we're a completely isolated CPU, we don't play: */ 10215 if (on_null_domain(rq)) 10216 return; 10217 10218 rq->nohz_tick_stopped = 1; 10219 10220 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10221 atomic_inc(&nohz.nr_cpus); 10222 10223 /* 10224 * Ensures that if nohz_idle_balance() fails to observe our 10225 * @idle_cpus_mask store, it must observe the @has_blocked 10226 * store. 10227 */ 10228 smp_mb__after_atomic(); 10229 10230 set_cpu_sd_state_idle(cpu); 10231 10232 out: 10233 /* 10234 * Each time a cpu enter idle, we assume that it has blocked load and 10235 * enable the periodic update of the load of idle cpus 10236 */ 10237 WRITE_ONCE(nohz.has_blocked, 1); 10238 } 10239 10240 /* 10241 * Internal function that runs load balance for all idle cpus. The load balance 10242 * can be a simple update of blocked load or a complete load balance with 10243 * tasks movement depending of flags. 10244 * The function returns false if the loop has stopped before running 10245 * through all idle CPUs. 10246 */ 10247 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10248 enum cpu_idle_type idle) 10249 { 10250 /* Earliest time when we have to do rebalance again */ 10251 unsigned long now = jiffies; 10252 unsigned long next_balance = now + 60*HZ; 10253 bool has_blocked_load = false; 10254 int update_next_balance = 0; 10255 int this_cpu = this_rq->cpu; 10256 int balance_cpu; 10257 int ret = false; 10258 struct rq *rq; 10259 10260 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10261 10262 /* 10263 * We assume there will be no idle load after this update and clear 10264 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10265 * set the has_blocked flag and trig another update of idle load. 10266 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10267 * setting the flag, we are sure to not clear the state and not 10268 * check the load of an idle cpu. 10269 */ 10270 WRITE_ONCE(nohz.has_blocked, 0); 10271 10272 /* 10273 * Ensures that if we miss the CPU, we must see the has_blocked 10274 * store from nohz_balance_enter_idle(). 10275 */ 10276 smp_mb(); 10277 10278 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 10279 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 10280 continue; 10281 10282 /* 10283 * If this CPU gets work to do, stop the load balancing 10284 * work being done for other CPUs. Next load 10285 * balancing owner will pick it up. 10286 */ 10287 if (need_resched()) { 10288 has_blocked_load = true; 10289 goto abort; 10290 } 10291 10292 rq = cpu_rq(balance_cpu); 10293 10294 has_blocked_load |= update_nohz_stats(rq, true); 10295 10296 /* 10297 * If time for next balance is due, 10298 * do the balance. 10299 */ 10300 if (time_after_eq(jiffies, rq->next_balance)) { 10301 struct rq_flags rf; 10302 10303 rq_lock_irqsave(rq, &rf); 10304 update_rq_clock(rq); 10305 rq_unlock_irqrestore(rq, &rf); 10306 10307 if (flags & NOHZ_BALANCE_KICK) 10308 rebalance_domains(rq, CPU_IDLE); 10309 } 10310 10311 if (time_after(next_balance, rq->next_balance)) { 10312 next_balance = rq->next_balance; 10313 update_next_balance = 1; 10314 } 10315 } 10316 10317 /* Newly idle CPU doesn't need an update */ 10318 if (idle != CPU_NEWLY_IDLE) { 10319 update_blocked_averages(this_cpu); 10320 has_blocked_load |= this_rq->has_blocked_load; 10321 } 10322 10323 if (flags & NOHZ_BALANCE_KICK) 10324 rebalance_domains(this_rq, CPU_IDLE); 10325 10326 WRITE_ONCE(nohz.next_blocked, 10327 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10328 10329 /* The full idle balance loop has been done */ 10330 ret = true; 10331 10332 abort: 10333 /* There is still blocked load, enable periodic update */ 10334 if (has_blocked_load) 10335 WRITE_ONCE(nohz.has_blocked, 1); 10336 10337 /* 10338 * next_balance will be updated only when there is a need. 10339 * When the CPU is attached to null domain for ex, it will not be 10340 * updated. 10341 */ 10342 if (likely(update_next_balance)) 10343 nohz.next_balance = next_balance; 10344 10345 return ret; 10346 } 10347 10348 /* 10349 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10350 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10351 */ 10352 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10353 { 10354 int this_cpu = this_rq->cpu; 10355 unsigned int flags; 10356 10357 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 10358 return false; 10359 10360 if (idle != CPU_IDLE) { 10361 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 10362 return false; 10363 } 10364 10365 /* could be _relaxed() */ 10366 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 10367 if (!(flags & NOHZ_KICK_MASK)) 10368 return false; 10369 10370 _nohz_idle_balance(this_rq, flags, idle); 10371 10372 return true; 10373 } 10374 10375 static void nohz_newidle_balance(struct rq *this_rq) 10376 { 10377 int this_cpu = this_rq->cpu; 10378 10379 /* 10380 * This CPU doesn't want to be disturbed by scheduler 10381 * housekeeping 10382 */ 10383 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 10384 return; 10385 10386 /* Will wake up very soon. No time for doing anything else*/ 10387 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10388 return; 10389 10390 /* Don't need to update blocked load of idle CPUs*/ 10391 if (!READ_ONCE(nohz.has_blocked) || 10392 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10393 return; 10394 10395 raw_spin_unlock(&this_rq->lock); 10396 /* 10397 * This CPU is going to be idle and blocked load of idle CPUs 10398 * need to be updated. Run the ilb locally as it is a good 10399 * candidate for ilb instead of waking up another idle CPU. 10400 * Kick an normal ilb if we failed to do the update. 10401 */ 10402 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 10403 kick_ilb(NOHZ_STATS_KICK); 10404 raw_spin_lock(&this_rq->lock); 10405 } 10406 10407 #else /* !CONFIG_NO_HZ_COMMON */ 10408 static inline void nohz_balancer_kick(struct rq *rq) { } 10409 10410 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10411 { 10412 return false; 10413 } 10414 10415 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10416 #endif /* CONFIG_NO_HZ_COMMON */ 10417 10418 /* 10419 * idle_balance is called by schedule() if this_cpu is about to become 10420 * idle. Attempts to pull tasks from other CPUs. 10421 * 10422 * Returns: 10423 * < 0 - we released the lock and there are !fair tasks present 10424 * 0 - failed, no new tasks 10425 * > 0 - success, new (fair) tasks present 10426 */ 10427 int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10428 { 10429 unsigned long next_balance = jiffies + HZ; 10430 int this_cpu = this_rq->cpu; 10431 struct sched_domain *sd; 10432 int pulled_task = 0; 10433 u64 curr_cost = 0; 10434 10435 update_misfit_status(NULL, this_rq); 10436 /* 10437 * We must set idle_stamp _before_ calling idle_balance(), such that we 10438 * measure the duration of idle_balance() as idle time. 10439 */ 10440 this_rq->idle_stamp = rq_clock(this_rq); 10441 10442 /* 10443 * Do not pull tasks towards !active CPUs... 10444 */ 10445 if (!cpu_active(this_cpu)) 10446 return 0; 10447 10448 /* 10449 * This is OK, because current is on_cpu, which avoids it being picked 10450 * for load-balance and preemption/IRQs are still disabled avoiding 10451 * further scheduler activity on it and we're being very careful to 10452 * re-start the picking loop. 10453 */ 10454 rq_unpin_lock(this_rq, rf); 10455 10456 if (this_rq->avg_idle < sysctl_sched_migration_cost || 10457 !READ_ONCE(this_rq->rd->overload)) { 10458 10459 rcu_read_lock(); 10460 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10461 if (sd) 10462 update_next_balance(sd, &next_balance); 10463 rcu_read_unlock(); 10464 10465 nohz_newidle_balance(this_rq); 10466 10467 goto out; 10468 } 10469 10470 raw_spin_unlock(&this_rq->lock); 10471 10472 update_blocked_averages(this_cpu); 10473 rcu_read_lock(); 10474 for_each_domain(this_cpu, sd) { 10475 int continue_balancing = 1; 10476 u64 t0, domain_cost; 10477 10478 if (!(sd->flags & SD_LOAD_BALANCE)) 10479 continue; 10480 10481 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 10482 update_next_balance(sd, &next_balance); 10483 break; 10484 } 10485 10486 if (sd->flags & SD_BALANCE_NEWIDLE) { 10487 t0 = sched_clock_cpu(this_cpu); 10488 10489 pulled_task = load_balance(this_cpu, this_rq, 10490 sd, CPU_NEWLY_IDLE, 10491 &continue_balancing); 10492 10493 domain_cost = sched_clock_cpu(this_cpu) - t0; 10494 if (domain_cost > sd->max_newidle_lb_cost) 10495 sd->max_newidle_lb_cost = domain_cost; 10496 10497 curr_cost += domain_cost; 10498 } 10499 10500 update_next_balance(sd, &next_balance); 10501 10502 /* 10503 * Stop searching for tasks to pull if there are 10504 * now runnable tasks on this rq. 10505 */ 10506 if (pulled_task || this_rq->nr_running > 0) 10507 break; 10508 } 10509 rcu_read_unlock(); 10510 10511 raw_spin_lock(&this_rq->lock); 10512 10513 if (curr_cost > this_rq->max_idle_balance_cost) 10514 this_rq->max_idle_balance_cost = curr_cost; 10515 10516 out: 10517 /* 10518 * While browsing the domains, we released the rq lock, a task could 10519 * have been enqueued in the meantime. Since we're not going idle, 10520 * pretend we pulled a task. 10521 */ 10522 if (this_rq->cfs.h_nr_running && !pulled_task) 10523 pulled_task = 1; 10524 10525 /* Move the next balance forward */ 10526 if (time_after(this_rq->next_balance, next_balance)) 10527 this_rq->next_balance = next_balance; 10528 10529 /* Is there a task of a high priority class? */ 10530 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10531 pulled_task = -1; 10532 10533 if (pulled_task) 10534 this_rq->idle_stamp = 0; 10535 10536 rq_repin_lock(this_rq, rf); 10537 10538 return pulled_task; 10539 } 10540 10541 /* 10542 * run_rebalance_domains is triggered when needed from the scheduler tick. 10543 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10544 */ 10545 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10546 { 10547 struct rq *this_rq = this_rq(); 10548 enum cpu_idle_type idle = this_rq->idle_balance ? 10549 CPU_IDLE : CPU_NOT_IDLE; 10550 10551 /* 10552 * If this CPU has a pending nohz_balance_kick, then do the 10553 * balancing on behalf of the other idle CPUs whose ticks are 10554 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10555 * give the idle CPUs a chance to load balance. Else we may 10556 * load balance only within the local sched_domain hierarchy 10557 * and abort nohz_idle_balance altogether if we pull some load. 10558 */ 10559 if (nohz_idle_balance(this_rq, idle)) 10560 return; 10561 10562 /* normal load balance */ 10563 update_blocked_averages(this_rq->cpu); 10564 rebalance_domains(this_rq, idle); 10565 } 10566 10567 /* 10568 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10569 */ 10570 void trigger_load_balance(struct rq *rq) 10571 { 10572 /* Don't need to rebalance while attached to NULL domain */ 10573 if (unlikely(on_null_domain(rq))) 10574 return; 10575 10576 if (time_after_eq(jiffies, rq->next_balance)) 10577 raise_softirq(SCHED_SOFTIRQ); 10578 10579 nohz_balancer_kick(rq); 10580 } 10581 10582 static void rq_online_fair(struct rq *rq) 10583 { 10584 update_sysctl(); 10585 10586 update_runtime_enabled(rq); 10587 } 10588 10589 static void rq_offline_fair(struct rq *rq) 10590 { 10591 update_sysctl(); 10592 10593 /* Ensure any throttled groups are reachable by pick_next_task */ 10594 unthrottle_offline_cfs_rqs(rq); 10595 } 10596 10597 #endif /* CONFIG_SMP */ 10598 10599 /* 10600 * scheduler tick hitting a task of our scheduling class. 10601 * 10602 * NOTE: This function can be called remotely by the tick offload that 10603 * goes along full dynticks. Therefore no local assumption can be made 10604 * and everything must be accessed through the @rq and @curr passed in 10605 * parameters. 10606 */ 10607 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10608 { 10609 struct cfs_rq *cfs_rq; 10610 struct sched_entity *se = &curr->se; 10611 10612 for_each_sched_entity(se) { 10613 cfs_rq = cfs_rq_of(se); 10614 entity_tick(cfs_rq, se, queued); 10615 } 10616 10617 if (static_branch_unlikely(&sched_numa_balancing)) 10618 task_tick_numa(rq, curr); 10619 10620 update_misfit_status(curr, rq); 10621 update_overutilized_status(task_rq(curr)); 10622 } 10623 10624 /* 10625 * called on fork with the child task as argument from the parent's context 10626 * - child not yet on the tasklist 10627 * - preemption disabled 10628 */ 10629 static void task_fork_fair(struct task_struct *p) 10630 { 10631 struct cfs_rq *cfs_rq; 10632 struct sched_entity *se = &p->se, *curr; 10633 struct rq *rq = this_rq(); 10634 struct rq_flags rf; 10635 10636 rq_lock(rq, &rf); 10637 update_rq_clock(rq); 10638 10639 cfs_rq = task_cfs_rq(current); 10640 curr = cfs_rq->curr; 10641 if (curr) { 10642 update_curr(cfs_rq); 10643 se->vruntime = curr->vruntime; 10644 } 10645 place_entity(cfs_rq, se, 1); 10646 10647 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10648 /* 10649 * Upon rescheduling, sched_class::put_prev_task() will place 10650 * 'current' within the tree based on its new key value. 10651 */ 10652 swap(curr->vruntime, se->vruntime); 10653 resched_curr(rq); 10654 } 10655 10656 se->vruntime -= cfs_rq->min_vruntime; 10657 rq_unlock(rq, &rf); 10658 } 10659 10660 /* 10661 * Priority of the task has changed. Check to see if we preempt 10662 * the current task. 10663 */ 10664 static void 10665 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10666 { 10667 if (!task_on_rq_queued(p)) 10668 return; 10669 10670 if (rq->cfs.nr_running == 1) 10671 return; 10672 10673 /* 10674 * Reschedule if we are currently running on this runqueue and 10675 * our priority decreased, or if we are not currently running on 10676 * this runqueue and our priority is higher than the current's 10677 */ 10678 if (rq->curr == p) { 10679 if (p->prio > oldprio) 10680 resched_curr(rq); 10681 } else 10682 check_preempt_curr(rq, p, 0); 10683 } 10684 10685 static inline bool vruntime_normalized(struct task_struct *p) 10686 { 10687 struct sched_entity *se = &p->se; 10688 10689 /* 10690 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10691 * the dequeue_entity(.flags=0) will already have normalized the 10692 * vruntime. 10693 */ 10694 if (p->on_rq) 10695 return true; 10696 10697 /* 10698 * When !on_rq, vruntime of the task has usually NOT been normalized. 10699 * But there are some cases where it has already been normalized: 10700 * 10701 * - A forked child which is waiting for being woken up by 10702 * wake_up_new_task(). 10703 * - A task which has been woken up by try_to_wake_up() and 10704 * waiting for actually being woken up by sched_ttwu_pending(). 10705 */ 10706 if (!se->sum_exec_runtime || 10707 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10708 return true; 10709 10710 return false; 10711 } 10712 10713 #ifdef CONFIG_FAIR_GROUP_SCHED 10714 /* 10715 * Propagate the changes of the sched_entity across the tg tree to make it 10716 * visible to the root 10717 */ 10718 static void propagate_entity_cfs_rq(struct sched_entity *se) 10719 { 10720 struct cfs_rq *cfs_rq; 10721 10722 /* Start to propagate at parent */ 10723 se = se->parent; 10724 10725 for_each_sched_entity(se) { 10726 cfs_rq = cfs_rq_of(se); 10727 10728 if (cfs_rq_throttled(cfs_rq)) 10729 break; 10730 10731 update_load_avg(cfs_rq, se, UPDATE_TG); 10732 } 10733 } 10734 #else 10735 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10736 #endif 10737 10738 static void detach_entity_cfs_rq(struct sched_entity *se) 10739 { 10740 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10741 10742 /* Catch up with the cfs_rq and remove our load when we leave */ 10743 update_load_avg(cfs_rq, se, 0); 10744 detach_entity_load_avg(cfs_rq, se); 10745 update_tg_load_avg(cfs_rq, false); 10746 propagate_entity_cfs_rq(se); 10747 } 10748 10749 static void attach_entity_cfs_rq(struct sched_entity *se) 10750 { 10751 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10752 10753 #ifdef CONFIG_FAIR_GROUP_SCHED 10754 /* 10755 * Since the real-depth could have been changed (only FAIR 10756 * class maintain depth value), reset depth properly. 10757 */ 10758 se->depth = se->parent ? se->parent->depth + 1 : 0; 10759 #endif 10760 10761 /* Synchronize entity with its cfs_rq */ 10762 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10763 attach_entity_load_avg(cfs_rq, se); 10764 update_tg_load_avg(cfs_rq, false); 10765 propagate_entity_cfs_rq(se); 10766 } 10767 10768 static void detach_task_cfs_rq(struct task_struct *p) 10769 { 10770 struct sched_entity *se = &p->se; 10771 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10772 10773 if (!vruntime_normalized(p)) { 10774 /* 10775 * Fix up our vruntime so that the current sleep doesn't 10776 * cause 'unlimited' sleep bonus. 10777 */ 10778 place_entity(cfs_rq, se, 0); 10779 se->vruntime -= cfs_rq->min_vruntime; 10780 } 10781 10782 detach_entity_cfs_rq(se); 10783 } 10784 10785 static void attach_task_cfs_rq(struct task_struct *p) 10786 { 10787 struct sched_entity *se = &p->se; 10788 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10789 10790 attach_entity_cfs_rq(se); 10791 10792 if (!vruntime_normalized(p)) 10793 se->vruntime += cfs_rq->min_vruntime; 10794 } 10795 10796 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10797 { 10798 detach_task_cfs_rq(p); 10799 } 10800 10801 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10802 { 10803 attach_task_cfs_rq(p); 10804 10805 if (task_on_rq_queued(p)) { 10806 /* 10807 * We were most likely switched from sched_rt, so 10808 * kick off the schedule if running, otherwise just see 10809 * if we can still preempt the current task. 10810 */ 10811 if (rq->curr == p) 10812 resched_curr(rq); 10813 else 10814 check_preempt_curr(rq, p, 0); 10815 } 10816 } 10817 10818 /* Account for a task changing its policy or group. 10819 * 10820 * This routine is mostly called to set cfs_rq->curr field when a task 10821 * migrates between groups/classes. 10822 */ 10823 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 10824 { 10825 struct sched_entity *se = &p->se; 10826 10827 #ifdef CONFIG_SMP 10828 if (task_on_rq_queued(p)) { 10829 /* 10830 * Move the next running task to the front of the list, so our 10831 * cfs_tasks list becomes MRU one. 10832 */ 10833 list_move(&se->group_node, &rq->cfs_tasks); 10834 } 10835 #endif 10836 10837 for_each_sched_entity(se) { 10838 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10839 10840 set_next_entity(cfs_rq, se); 10841 /* ensure bandwidth has been allocated on our new cfs_rq */ 10842 account_cfs_rq_runtime(cfs_rq, 0); 10843 } 10844 } 10845 10846 void init_cfs_rq(struct cfs_rq *cfs_rq) 10847 { 10848 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10849 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10850 #ifndef CONFIG_64BIT 10851 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10852 #endif 10853 #ifdef CONFIG_SMP 10854 raw_spin_lock_init(&cfs_rq->removed.lock); 10855 #endif 10856 } 10857 10858 #ifdef CONFIG_FAIR_GROUP_SCHED 10859 static void task_set_group_fair(struct task_struct *p) 10860 { 10861 struct sched_entity *se = &p->se; 10862 10863 set_task_rq(p, task_cpu(p)); 10864 se->depth = se->parent ? se->parent->depth + 1 : 0; 10865 } 10866 10867 static void task_move_group_fair(struct task_struct *p) 10868 { 10869 detach_task_cfs_rq(p); 10870 set_task_rq(p, task_cpu(p)); 10871 10872 #ifdef CONFIG_SMP 10873 /* Tell se's cfs_rq has been changed -- migrated */ 10874 p->se.avg.last_update_time = 0; 10875 #endif 10876 attach_task_cfs_rq(p); 10877 } 10878 10879 static void task_change_group_fair(struct task_struct *p, int type) 10880 { 10881 switch (type) { 10882 case TASK_SET_GROUP: 10883 task_set_group_fair(p); 10884 break; 10885 10886 case TASK_MOVE_GROUP: 10887 task_move_group_fair(p); 10888 break; 10889 } 10890 } 10891 10892 void free_fair_sched_group(struct task_group *tg) 10893 { 10894 int i; 10895 10896 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10897 10898 for_each_possible_cpu(i) { 10899 if (tg->cfs_rq) 10900 kfree(tg->cfs_rq[i]); 10901 if (tg->se) 10902 kfree(tg->se[i]); 10903 } 10904 10905 kfree(tg->cfs_rq); 10906 kfree(tg->se); 10907 } 10908 10909 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10910 { 10911 struct sched_entity *se; 10912 struct cfs_rq *cfs_rq; 10913 int i; 10914 10915 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10916 if (!tg->cfs_rq) 10917 goto err; 10918 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10919 if (!tg->se) 10920 goto err; 10921 10922 tg->shares = NICE_0_LOAD; 10923 10924 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10925 10926 for_each_possible_cpu(i) { 10927 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10928 GFP_KERNEL, cpu_to_node(i)); 10929 if (!cfs_rq) 10930 goto err; 10931 10932 se = kzalloc_node(sizeof(struct sched_entity), 10933 GFP_KERNEL, cpu_to_node(i)); 10934 if (!se) 10935 goto err_free_rq; 10936 10937 init_cfs_rq(cfs_rq); 10938 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10939 init_entity_runnable_average(se); 10940 } 10941 10942 return 1; 10943 10944 err_free_rq: 10945 kfree(cfs_rq); 10946 err: 10947 return 0; 10948 } 10949 10950 void online_fair_sched_group(struct task_group *tg) 10951 { 10952 struct sched_entity *se; 10953 struct rq_flags rf; 10954 struct rq *rq; 10955 int i; 10956 10957 for_each_possible_cpu(i) { 10958 rq = cpu_rq(i); 10959 se = tg->se[i]; 10960 rq_lock_irq(rq, &rf); 10961 update_rq_clock(rq); 10962 attach_entity_cfs_rq(se); 10963 sync_throttle(tg, i); 10964 rq_unlock_irq(rq, &rf); 10965 } 10966 } 10967 10968 void unregister_fair_sched_group(struct task_group *tg) 10969 { 10970 unsigned long flags; 10971 struct rq *rq; 10972 int cpu; 10973 10974 for_each_possible_cpu(cpu) { 10975 if (tg->se[cpu]) 10976 remove_entity_load_avg(tg->se[cpu]); 10977 10978 /* 10979 * Only empty task groups can be destroyed; so we can speculatively 10980 * check on_list without danger of it being re-added. 10981 */ 10982 if (!tg->cfs_rq[cpu]->on_list) 10983 continue; 10984 10985 rq = cpu_rq(cpu); 10986 10987 raw_spin_lock_irqsave(&rq->lock, flags); 10988 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10989 raw_spin_unlock_irqrestore(&rq->lock, flags); 10990 } 10991 } 10992 10993 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10994 struct sched_entity *se, int cpu, 10995 struct sched_entity *parent) 10996 { 10997 struct rq *rq = cpu_rq(cpu); 10998 10999 cfs_rq->tg = tg; 11000 cfs_rq->rq = rq; 11001 init_cfs_rq_runtime(cfs_rq); 11002 11003 tg->cfs_rq[cpu] = cfs_rq; 11004 tg->se[cpu] = se; 11005 11006 /* se could be NULL for root_task_group */ 11007 if (!se) 11008 return; 11009 11010 if (!parent) { 11011 se->cfs_rq = &rq->cfs; 11012 se->depth = 0; 11013 } else { 11014 se->cfs_rq = parent->my_q; 11015 se->depth = parent->depth + 1; 11016 } 11017 11018 se->my_q = cfs_rq; 11019 /* guarantee group entities always have weight */ 11020 update_load_set(&se->load, NICE_0_LOAD); 11021 se->parent = parent; 11022 } 11023 11024 static DEFINE_MUTEX(shares_mutex); 11025 11026 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11027 { 11028 int i; 11029 11030 /* 11031 * We can't change the weight of the root cgroup. 11032 */ 11033 if (!tg->se[0]) 11034 return -EINVAL; 11035 11036 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11037 11038 mutex_lock(&shares_mutex); 11039 if (tg->shares == shares) 11040 goto done; 11041 11042 tg->shares = shares; 11043 for_each_possible_cpu(i) { 11044 struct rq *rq = cpu_rq(i); 11045 struct sched_entity *se = tg->se[i]; 11046 struct rq_flags rf; 11047 11048 /* Propagate contribution to hierarchy */ 11049 rq_lock_irqsave(rq, &rf); 11050 update_rq_clock(rq); 11051 for_each_sched_entity(se) { 11052 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11053 update_cfs_group(se); 11054 } 11055 rq_unlock_irqrestore(rq, &rf); 11056 } 11057 11058 done: 11059 mutex_unlock(&shares_mutex); 11060 return 0; 11061 } 11062 #else /* CONFIG_FAIR_GROUP_SCHED */ 11063 11064 void free_fair_sched_group(struct task_group *tg) { } 11065 11066 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11067 { 11068 return 1; 11069 } 11070 11071 void online_fair_sched_group(struct task_group *tg) { } 11072 11073 void unregister_fair_sched_group(struct task_group *tg) { } 11074 11075 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11076 11077 11078 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11079 { 11080 struct sched_entity *se = &task->se; 11081 unsigned int rr_interval = 0; 11082 11083 /* 11084 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11085 * idle runqueue: 11086 */ 11087 if (rq->cfs.load.weight) 11088 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11089 11090 return rr_interval; 11091 } 11092 11093 /* 11094 * All the scheduling class methods: 11095 */ 11096 const struct sched_class fair_sched_class = { 11097 .next = &idle_sched_class, 11098 .enqueue_task = enqueue_task_fair, 11099 .dequeue_task = dequeue_task_fair, 11100 .yield_task = yield_task_fair, 11101 .yield_to_task = yield_to_task_fair, 11102 11103 .check_preempt_curr = check_preempt_wakeup, 11104 11105 .pick_next_task = __pick_next_task_fair, 11106 .put_prev_task = put_prev_task_fair, 11107 .set_next_task = set_next_task_fair, 11108 11109 #ifdef CONFIG_SMP 11110 .balance = balance_fair, 11111 .select_task_rq = select_task_rq_fair, 11112 .migrate_task_rq = migrate_task_rq_fair, 11113 11114 .rq_online = rq_online_fair, 11115 .rq_offline = rq_offline_fair, 11116 11117 .task_dead = task_dead_fair, 11118 .set_cpus_allowed = set_cpus_allowed_common, 11119 #endif 11120 11121 .task_tick = task_tick_fair, 11122 .task_fork = task_fork_fair, 11123 11124 .prio_changed = prio_changed_fair, 11125 .switched_from = switched_from_fair, 11126 .switched_to = switched_to_fair, 11127 11128 .get_rr_interval = get_rr_interval_fair, 11129 11130 .update_curr = update_curr_fair, 11131 11132 #ifdef CONFIG_FAIR_GROUP_SCHED 11133 .task_change_group = task_change_group_fair, 11134 #endif 11135 11136 #ifdef CONFIG_UCLAMP_TASK 11137 .uclamp_enabled = 1, 11138 #endif 11139 }; 11140 11141 #ifdef CONFIG_SCHED_DEBUG 11142 void print_cfs_stats(struct seq_file *m, int cpu) 11143 { 11144 struct cfs_rq *cfs_rq, *pos; 11145 11146 rcu_read_lock(); 11147 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11148 print_cfs_rq(m, cpu, cfs_rq); 11149 rcu_read_unlock(); 11150 } 11151 11152 #ifdef CONFIG_NUMA_BALANCING 11153 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11154 { 11155 int node; 11156 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11157 struct numa_group *ng; 11158 11159 rcu_read_lock(); 11160 ng = rcu_dereference(p->numa_group); 11161 for_each_online_node(node) { 11162 if (p->numa_faults) { 11163 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11164 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11165 } 11166 if (ng) { 11167 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11168 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11169 } 11170 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11171 } 11172 rcu_read_unlock(); 11173 } 11174 #endif /* CONFIG_NUMA_BALANCING */ 11175 #endif /* CONFIG_SCHED_DEBUG */ 11176 11177 __init void init_sched_fair_class(void) 11178 { 11179 #ifdef CONFIG_SMP 11180 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11181 11182 #ifdef CONFIG_NO_HZ_COMMON 11183 nohz.next_balance = jiffies; 11184 nohz.next_blocked = jiffies; 11185 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11186 #endif 11187 #endif /* SMP */ 11188 11189 } 11190 11191 /* 11192 * Helper functions to facilitate extracting info from tracepoints. 11193 */ 11194 11195 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11196 { 11197 #ifdef CONFIG_SMP 11198 return cfs_rq ? &cfs_rq->avg : NULL; 11199 #else 11200 return NULL; 11201 #endif 11202 } 11203 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11204 11205 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11206 { 11207 if (!cfs_rq) { 11208 if (str) 11209 strlcpy(str, "(null)", len); 11210 else 11211 return NULL; 11212 } 11213 11214 cfs_rq_tg_path(cfs_rq, str, len); 11215 return str; 11216 } 11217 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11218 11219 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11220 { 11221 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11222 } 11223 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11224 11225 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11226 { 11227 #ifdef CONFIG_SMP 11228 return rq ? &rq->avg_rt : NULL; 11229 #else 11230 return NULL; 11231 #endif 11232 } 11233 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11234 11235 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11236 { 11237 #ifdef CONFIG_SMP 11238 return rq ? &rq->avg_dl : NULL; 11239 #else 11240 return NULL; 11241 #endif 11242 } 11243 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11244 11245 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11246 { 11247 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11248 return rq ? &rq->avg_irq : NULL; 11249 #else 11250 return NULL; 11251 #endif 11252 } 11253 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11254 11255 int sched_trace_rq_cpu(struct rq *rq) 11256 { 11257 return rq ? cpu_of(rq) : -1; 11258 } 11259 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11260 11261 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11262 { 11263 #ifdef CONFIG_SMP 11264 return rd ? rd->span : NULL; 11265 #else 11266 return NULL; 11267 #endif 11268 } 11269 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11270