xref: /linux/kernel/sched/fair.c (revision 5d085ad2e68cceec8332b23ea8f630a28b506366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 	int _shift = 0;
93 
94 	if (kstrtoint(str, 0, &_shift))
95 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96 
97 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 	return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered CPU has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 
111 /*
112  * The margin used when comparing utilization with CPU capacity.
113  *
114  * (default: ~20%)
115  */
116 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
117 
118 #endif
119 
120 #ifdef CONFIG_CFS_BANDWIDTH
121 /*
122  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123  * each time a cfs_rq requests quota.
124  *
125  * Note: in the case that the slice exceeds the runtime remaining (either due
126  * to consumption or the quota being specified to be smaller than the slice)
127  * we will always only issue the remaining available time.
128  *
129  * (default: 5 msec, units: microseconds)
130  */
131 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
132 #endif
133 
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 	lw->weight += inc;
137 	lw->inv_weight = 0;
138 }
139 
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 	lw->weight -= dec;
143 	lw->inv_weight = 0;
144 }
145 
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 	lw->weight = w;
149 	lw->inv_weight = 0;
150 }
151 
152 /*
153  * Increase the granularity value when there are more CPUs,
154  * because with more CPUs the 'effective latency' as visible
155  * to users decreases. But the relationship is not linear,
156  * so pick a second-best guess by going with the log2 of the
157  * number of CPUs.
158  *
159  * This idea comes from the SD scheduler of Con Kolivas:
160  */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 	unsigned int factor;
165 
166 	switch (sysctl_sched_tunable_scaling) {
167 	case SCHED_TUNABLESCALING_NONE:
168 		factor = 1;
169 		break;
170 	case SCHED_TUNABLESCALING_LINEAR:
171 		factor = cpus;
172 		break;
173 	case SCHED_TUNABLESCALING_LOG:
174 	default:
175 		factor = 1 + ilog2(cpus);
176 		break;
177 	}
178 
179 	return factor;
180 }
181 
182 static void update_sysctl(void)
183 {
184 	unsigned int factor = get_update_sysctl_factor();
185 
186 #define SET_SYSCTL(name) \
187 	(sysctl_##name = (factor) * normalized_sysctl_##name)
188 	SET_SYSCTL(sched_min_granularity);
189 	SET_SYSCTL(sched_latency);
190 	SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193 
194 void sched_init_granularity(void)
195 {
196 	update_sysctl();
197 }
198 
199 #define WMULT_CONST	(~0U)
200 #define WMULT_SHIFT	32
201 
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 	unsigned long w;
205 
206 	if (likely(lw->inv_weight))
207 		return;
208 
209 	w = scale_load_down(lw->weight);
210 
211 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 		lw->inv_weight = 1;
213 	else if (unlikely(!w))
214 		lw->inv_weight = WMULT_CONST;
215 	else
216 		lw->inv_weight = WMULT_CONST / w;
217 }
218 
219 /*
220  * delta_exec * weight / lw.weight
221  *   OR
222  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223  *
224  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225  * we're guaranteed shift stays positive because inv_weight is guaranteed to
226  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227  *
228  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229  * weight/lw.weight <= 1, and therefore our shift will also be positive.
230  */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 	u64 fact = scale_load_down(weight);
234 	int shift = WMULT_SHIFT;
235 
236 	__update_inv_weight(lw);
237 
238 	if (unlikely(fact >> 32)) {
239 		while (fact >> 32) {
240 			fact >>= 1;
241 			shift--;
242 		}
243 	}
244 
245 	fact = mul_u32_u32(fact, lw->inv_weight);
246 
247 	while (fact >> 32) {
248 		fact >>= 1;
249 		shift--;
250 	}
251 
252 	return mul_u64_u32_shr(delta_exec, fact, shift);
253 }
254 
255 
256 const struct sched_class fair_sched_class;
257 
258 /**************************************************************
259  * CFS operations on generic schedulable entities:
260  */
261 
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 static inline struct task_struct *task_of(struct sched_entity *se)
264 {
265 	SCHED_WARN_ON(!entity_is_task(se));
266 	return container_of(se, struct task_struct, se);
267 }
268 
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 		for (; se; se = se->parent)
272 
273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274 {
275 	return p->se.cfs_rq;
276 }
277 
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280 {
281 	return se->cfs_rq;
282 }
283 
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286 {
287 	return grp->my_q;
288 }
289 
290 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
291 {
292 	if (!path)
293 		return;
294 
295 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
296 		autogroup_path(cfs_rq->tg, path, len);
297 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
298 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
299 	else
300 		strlcpy(path, "(null)", len);
301 }
302 
303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
304 {
305 	struct rq *rq = rq_of(cfs_rq);
306 	int cpu = cpu_of(rq);
307 
308 	if (cfs_rq->on_list)
309 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
310 
311 	cfs_rq->on_list = 1;
312 
313 	/*
314 	 * Ensure we either appear before our parent (if already
315 	 * enqueued) or force our parent to appear after us when it is
316 	 * enqueued. The fact that we always enqueue bottom-up
317 	 * reduces this to two cases and a special case for the root
318 	 * cfs_rq. Furthermore, it also means that we will always reset
319 	 * tmp_alone_branch either when the branch is connected
320 	 * to a tree or when we reach the top of the tree
321 	 */
322 	if (cfs_rq->tg->parent &&
323 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
324 		/*
325 		 * If parent is already on the list, we add the child
326 		 * just before. Thanks to circular linked property of
327 		 * the list, this means to put the child at the tail
328 		 * of the list that starts by parent.
329 		 */
330 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
331 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
332 		/*
333 		 * The branch is now connected to its tree so we can
334 		 * reset tmp_alone_branch to the beginning of the
335 		 * list.
336 		 */
337 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
338 		return true;
339 	}
340 
341 	if (!cfs_rq->tg->parent) {
342 		/*
343 		 * cfs rq without parent should be put
344 		 * at the tail of the list.
345 		 */
346 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
347 			&rq->leaf_cfs_rq_list);
348 		/*
349 		 * We have reach the top of a tree so we can reset
350 		 * tmp_alone_branch to the beginning of the list.
351 		 */
352 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
353 		return true;
354 	}
355 
356 	/*
357 	 * The parent has not already been added so we want to
358 	 * make sure that it will be put after us.
359 	 * tmp_alone_branch points to the begin of the branch
360 	 * where we will add parent.
361 	 */
362 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
363 	/*
364 	 * update tmp_alone_branch to points to the new begin
365 	 * of the branch
366 	 */
367 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
368 	return false;
369 }
370 
371 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
372 {
373 	if (cfs_rq->on_list) {
374 		struct rq *rq = rq_of(cfs_rq);
375 
376 		/*
377 		 * With cfs_rq being unthrottled/throttled during an enqueue,
378 		 * it can happen the tmp_alone_branch points the a leaf that
379 		 * we finally want to del. In this case, tmp_alone_branch moves
380 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 		 * at the end of the enqueue.
382 		 */
383 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
384 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
385 
386 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
387 		cfs_rq->on_list = 0;
388 	}
389 }
390 
391 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
392 {
393 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
394 }
395 
396 /* Iterate thr' all leaf cfs_rq's on a runqueue */
397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
398 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
399 				 leaf_cfs_rq_list)
400 
401 /* Do the two (enqueued) entities belong to the same group ? */
402 static inline struct cfs_rq *
403 is_same_group(struct sched_entity *se, struct sched_entity *pse)
404 {
405 	if (se->cfs_rq == pse->cfs_rq)
406 		return se->cfs_rq;
407 
408 	return NULL;
409 }
410 
411 static inline struct sched_entity *parent_entity(struct sched_entity *se)
412 {
413 	return se->parent;
414 }
415 
416 static void
417 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
418 {
419 	int se_depth, pse_depth;
420 
421 	/*
422 	 * preemption test can be made between sibling entities who are in the
423 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 	 * both tasks until we find their ancestors who are siblings of common
425 	 * parent.
426 	 */
427 
428 	/* First walk up until both entities are at same depth */
429 	se_depth = (*se)->depth;
430 	pse_depth = (*pse)->depth;
431 
432 	while (se_depth > pse_depth) {
433 		se_depth--;
434 		*se = parent_entity(*se);
435 	}
436 
437 	while (pse_depth > se_depth) {
438 		pse_depth--;
439 		*pse = parent_entity(*pse);
440 	}
441 
442 	while (!is_same_group(*se, *pse)) {
443 		*se = parent_entity(*se);
444 		*pse = parent_entity(*pse);
445 	}
446 }
447 
448 #else	/* !CONFIG_FAIR_GROUP_SCHED */
449 
450 static inline struct task_struct *task_of(struct sched_entity *se)
451 {
452 	return container_of(se, struct task_struct, se);
453 }
454 
455 #define for_each_sched_entity(se) \
456 		for (; se; se = NULL)
457 
458 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
459 {
460 	return &task_rq(p)->cfs;
461 }
462 
463 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
464 {
465 	struct task_struct *p = task_of(se);
466 	struct rq *rq = task_rq(p);
467 
468 	return &rq->cfs;
469 }
470 
471 /* runqueue "owned" by this group */
472 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
473 {
474 	return NULL;
475 }
476 
477 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
478 {
479 	if (path)
480 		strlcpy(path, "(null)", len);
481 }
482 
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 {
485 	return true;
486 }
487 
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489 {
490 }
491 
492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493 {
494 }
495 
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
497 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498 
499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
500 {
501 	return NULL;
502 }
503 
504 static inline void
505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506 {
507 }
508 
509 #endif	/* CONFIG_FAIR_GROUP_SCHED */
510 
511 static __always_inline
512 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
513 
514 /**************************************************************
515  * Scheduling class tree data structure manipulation methods:
516  */
517 
518 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
519 {
520 	s64 delta = (s64)(vruntime - max_vruntime);
521 	if (delta > 0)
522 		max_vruntime = vruntime;
523 
524 	return max_vruntime;
525 }
526 
527 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
528 {
529 	s64 delta = (s64)(vruntime - min_vruntime);
530 	if (delta < 0)
531 		min_vruntime = vruntime;
532 
533 	return min_vruntime;
534 }
535 
536 static inline int entity_before(struct sched_entity *a,
537 				struct sched_entity *b)
538 {
539 	return (s64)(a->vruntime - b->vruntime) < 0;
540 }
541 
542 static void update_min_vruntime(struct cfs_rq *cfs_rq)
543 {
544 	struct sched_entity *curr = cfs_rq->curr;
545 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
546 
547 	u64 vruntime = cfs_rq->min_vruntime;
548 
549 	if (curr) {
550 		if (curr->on_rq)
551 			vruntime = curr->vruntime;
552 		else
553 			curr = NULL;
554 	}
555 
556 	if (leftmost) { /* non-empty tree */
557 		struct sched_entity *se;
558 		se = rb_entry(leftmost, struct sched_entity, run_node);
559 
560 		if (!curr)
561 			vruntime = se->vruntime;
562 		else
563 			vruntime = min_vruntime(vruntime, se->vruntime);
564 	}
565 
566 	/* ensure we never gain time by being placed backwards. */
567 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
568 #ifndef CONFIG_64BIT
569 	smp_wmb();
570 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
571 #endif
572 }
573 
574 /*
575  * Enqueue an entity into the rb-tree:
576  */
577 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
578 {
579 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
580 	struct rb_node *parent = NULL;
581 	struct sched_entity *entry;
582 	bool leftmost = true;
583 
584 	/*
585 	 * Find the right place in the rbtree:
586 	 */
587 	while (*link) {
588 		parent = *link;
589 		entry = rb_entry(parent, struct sched_entity, run_node);
590 		/*
591 		 * We dont care about collisions. Nodes with
592 		 * the same key stay together.
593 		 */
594 		if (entity_before(se, entry)) {
595 			link = &parent->rb_left;
596 		} else {
597 			link = &parent->rb_right;
598 			leftmost = false;
599 		}
600 	}
601 
602 	rb_link_node(&se->run_node, parent, link);
603 	rb_insert_color_cached(&se->run_node,
604 			       &cfs_rq->tasks_timeline, leftmost);
605 }
606 
607 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
608 {
609 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
610 }
611 
612 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
613 {
614 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
615 
616 	if (!left)
617 		return NULL;
618 
619 	return rb_entry(left, struct sched_entity, run_node);
620 }
621 
622 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
623 {
624 	struct rb_node *next = rb_next(&se->run_node);
625 
626 	if (!next)
627 		return NULL;
628 
629 	return rb_entry(next, struct sched_entity, run_node);
630 }
631 
632 #ifdef CONFIG_SCHED_DEBUG
633 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
634 {
635 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
636 
637 	if (!last)
638 		return NULL;
639 
640 	return rb_entry(last, struct sched_entity, run_node);
641 }
642 
643 /**************************************************************
644  * Scheduling class statistics methods:
645  */
646 
647 int sched_proc_update_handler(struct ctl_table *table, int write,
648 		void *buffer, size_t *lenp, loff_t *ppos)
649 {
650 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
651 	unsigned int factor = get_update_sysctl_factor();
652 
653 	if (ret || !write)
654 		return ret;
655 
656 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
657 					sysctl_sched_min_granularity);
658 
659 #define WRT_SYSCTL(name) \
660 	(normalized_sysctl_##name = sysctl_##name / (factor))
661 	WRT_SYSCTL(sched_min_granularity);
662 	WRT_SYSCTL(sched_latency);
663 	WRT_SYSCTL(sched_wakeup_granularity);
664 #undef WRT_SYSCTL
665 
666 	return 0;
667 }
668 #endif
669 
670 /*
671  * delta /= w
672  */
673 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
674 {
675 	if (unlikely(se->load.weight != NICE_0_LOAD))
676 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
677 
678 	return delta;
679 }
680 
681 /*
682  * The idea is to set a period in which each task runs once.
683  *
684  * When there are too many tasks (sched_nr_latency) we have to stretch
685  * this period because otherwise the slices get too small.
686  *
687  * p = (nr <= nl) ? l : l*nr/nl
688  */
689 static u64 __sched_period(unsigned long nr_running)
690 {
691 	if (unlikely(nr_running > sched_nr_latency))
692 		return nr_running * sysctl_sched_min_granularity;
693 	else
694 		return sysctl_sched_latency;
695 }
696 
697 /*
698  * We calculate the wall-time slice from the period by taking a part
699  * proportional to the weight.
700  *
701  * s = p*P[w/rw]
702  */
703 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
704 {
705 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
706 
707 	for_each_sched_entity(se) {
708 		struct load_weight *load;
709 		struct load_weight lw;
710 
711 		cfs_rq = cfs_rq_of(se);
712 		load = &cfs_rq->load;
713 
714 		if (unlikely(!se->on_rq)) {
715 			lw = cfs_rq->load;
716 
717 			update_load_add(&lw, se->load.weight);
718 			load = &lw;
719 		}
720 		slice = __calc_delta(slice, se->load.weight, load);
721 	}
722 	return slice;
723 }
724 
725 /*
726  * We calculate the vruntime slice of a to-be-inserted task.
727  *
728  * vs = s/w
729  */
730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
733 }
734 
735 #include "pelt.h"
736 #ifdef CONFIG_SMP
737 
738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
739 static unsigned long task_h_load(struct task_struct *p);
740 static unsigned long capacity_of(int cpu);
741 
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity *se)
744 {
745 	struct sched_avg *sa = &se->avg;
746 
747 	memset(sa, 0, sizeof(*sa));
748 
749 	/*
750 	 * Tasks are initialized with full load to be seen as heavy tasks until
751 	 * they get a chance to stabilize to their real load level.
752 	 * Group entities are initialized with zero load to reflect the fact that
753 	 * nothing has been attached to the task group yet.
754 	 */
755 	if (entity_is_task(se))
756 		sa->load_avg = scale_load_down(se->load.weight);
757 
758 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 }
760 
761 static void attach_entity_cfs_rq(struct sched_entity *se);
762 
763 /*
764  * With new tasks being created, their initial util_avgs are extrapolated
765  * based on the cfs_rq's current util_avg:
766  *
767  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768  *
769  * However, in many cases, the above util_avg does not give a desired
770  * value. Moreover, the sum of the util_avgs may be divergent, such
771  * as when the series is a harmonic series.
772  *
773  * To solve this problem, we also cap the util_avg of successive tasks to
774  * only 1/2 of the left utilization budget:
775  *
776  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
777  *
778  * where n denotes the nth task and cpu_scale the CPU capacity.
779  *
780  * For example, for a CPU with 1024 of capacity, a simplest series from
781  * the beginning would be like:
782  *
783  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
784  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785  *
786  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787  * if util_avg > util_avg_cap.
788  */
789 void post_init_entity_util_avg(struct task_struct *p)
790 {
791 	struct sched_entity *se = &p->se;
792 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 	struct sched_avg *sa = &se->avg;
794 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
795 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
796 
797 	if (cap > 0) {
798 		if (cfs_rq->avg.util_avg != 0) {
799 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
800 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801 
802 			if (sa->util_avg > cap)
803 				sa->util_avg = cap;
804 		} else {
805 			sa->util_avg = cap;
806 		}
807 	}
808 
809 	sa->runnable_avg = cpu_scale;
810 
811 	if (p->sched_class != &fair_sched_class) {
812 		/*
813 		 * For !fair tasks do:
814 		 *
815 		update_cfs_rq_load_avg(now, cfs_rq);
816 		attach_entity_load_avg(cfs_rq, se);
817 		switched_from_fair(rq, p);
818 		 *
819 		 * such that the next switched_to_fair() has the
820 		 * expected state.
821 		 */
822 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 		return;
824 	}
825 
826 	attach_entity_cfs_rq(se);
827 }
828 
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
831 {
832 }
833 void post_init_entity_util_avg(struct task_struct *p)
834 {
835 }
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
837 {
838 }
839 #endif /* CONFIG_SMP */
840 
841 /*
842  * Update the current task's runtime statistics.
843  */
844 static void update_curr(struct cfs_rq *cfs_rq)
845 {
846 	struct sched_entity *curr = cfs_rq->curr;
847 	u64 now = rq_clock_task(rq_of(cfs_rq));
848 	u64 delta_exec;
849 
850 	if (unlikely(!curr))
851 		return;
852 
853 	delta_exec = now - curr->exec_start;
854 	if (unlikely((s64)delta_exec <= 0))
855 		return;
856 
857 	curr->exec_start = now;
858 
859 	schedstat_set(curr->statistics.exec_max,
860 		      max(delta_exec, curr->statistics.exec_max));
861 
862 	curr->sum_exec_runtime += delta_exec;
863 	schedstat_add(cfs_rq->exec_clock, delta_exec);
864 
865 	curr->vruntime += calc_delta_fair(delta_exec, curr);
866 	update_min_vruntime(cfs_rq);
867 
868 	if (entity_is_task(curr)) {
869 		struct task_struct *curtask = task_of(curr);
870 
871 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
872 		cgroup_account_cputime(curtask, delta_exec);
873 		account_group_exec_runtime(curtask, delta_exec);
874 	}
875 
876 	account_cfs_rq_runtime(cfs_rq, delta_exec);
877 }
878 
879 static void update_curr_fair(struct rq *rq)
880 {
881 	update_curr(cfs_rq_of(&rq->curr->se));
882 }
883 
884 static inline void
885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
886 {
887 	u64 wait_start, prev_wait_start;
888 
889 	if (!schedstat_enabled())
890 		return;
891 
892 	wait_start = rq_clock(rq_of(cfs_rq));
893 	prev_wait_start = schedstat_val(se->statistics.wait_start);
894 
895 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
896 	    likely(wait_start > prev_wait_start))
897 		wait_start -= prev_wait_start;
898 
899 	__schedstat_set(se->statistics.wait_start, wait_start);
900 }
901 
902 static inline void
903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
904 {
905 	struct task_struct *p;
906 	u64 delta;
907 
908 	if (!schedstat_enabled())
909 		return;
910 
911 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
912 
913 	if (entity_is_task(se)) {
914 		p = task_of(se);
915 		if (task_on_rq_migrating(p)) {
916 			/*
917 			 * Preserve migrating task's wait time so wait_start
918 			 * time stamp can be adjusted to accumulate wait time
919 			 * prior to migration.
920 			 */
921 			__schedstat_set(se->statistics.wait_start, delta);
922 			return;
923 		}
924 		trace_sched_stat_wait(p, delta);
925 	}
926 
927 	__schedstat_set(se->statistics.wait_max,
928 		      max(schedstat_val(se->statistics.wait_max), delta));
929 	__schedstat_inc(se->statistics.wait_count);
930 	__schedstat_add(se->statistics.wait_sum, delta);
931 	__schedstat_set(se->statistics.wait_start, 0);
932 }
933 
934 static inline void
935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
936 {
937 	struct task_struct *tsk = NULL;
938 	u64 sleep_start, block_start;
939 
940 	if (!schedstat_enabled())
941 		return;
942 
943 	sleep_start = schedstat_val(se->statistics.sleep_start);
944 	block_start = schedstat_val(se->statistics.block_start);
945 
946 	if (entity_is_task(se))
947 		tsk = task_of(se);
948 
949 	if (sleep_start) {
950 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
951 
952 		if ((s64)delta < 0)
953 			delta = 0;
954 
955 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
956 			__schedstat_set(se->statistics.sleep_max, delta);
957 
958 		__schedstat_set(se->statistics.sleep_start, 0);
959 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
960 
961 		if (tsk) {
962 			account_scheduler_latency(tsk, delta >> 10, 1);
963 			trace_sched_stat_sleep(tsk, delta);
964 		}
965 	}
966 	if (block_start) {
967 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
968 
969 		if ((s64)delta < 0)
970 			delta = 0;
971 
972 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
973 			__schedstat_set(se->statistics.block_max, delta);
974 
975 		__schedstat_set(se->statistics.block_start, 0);
976 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
977 
978 		if (tsk) {
979 			if (tsk->in_iowait) {
980 				__schedstat_add(se->statistics.iowait_sum, delta);
981 				__schedstat_inc(se->statistics.iowait_count);
982 				trace_sched_stat_iowait(tsk, delta);
983 			}
984 
985 			trace_sched_stat_blocked(tsk, delta);
986 
987 			/*
988 			 * Blocking time is in units of nanosecs, so shift by
989 			 * 20 to get a milliseconds-range estimation of the
990 			 * amount of time that the task spent sleeping:
991 			 */
992 			if (unlikely(prof_on == SLEEP_PROFILING)) {
993 				profile_hits(SLEEP_PROFILING,
994 						(void *)get_wchan(tsk),
995 						delta >> 20);
996 			}
997 			account_scheduler_latency(tsk, delta >> 10, 0);
998 		}
999 	}
1000 }
1001 
1002 /*
1003  * Task is being enqueued - update stats:
1004  */
1005 static inline void
1006 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1007 {
1008 	if (!schedstat_enabled())
1009 		return;
1010 
1011 	/*
1012 	 * Are we enqueueing a waiting task? (for current tasks
1013 	 * a dequeue/enqueue event is a NOP)
1014 	 */
1015 	if (se != cfs_rq->curr)
1016 		update_stats_wait_start(cfs_rq, se);
1017 
1018 	if (flags & ENQUEUE_WAKEUP)
1019 		update_stats_enqueue_sleeper(cfs_rq, se);
1020 }
1021 
1022 static inline void
1023 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024 {
1025 
1026 	if (!schedstat_enabled())
1027 		return;
1028 
1029 	/*
1030 	 * Mark the end of the wait period if dequeueing a
1031 	 * waiting task:
1032 	 */
1033 	if (se != cfs_rq->curr)
1034 		update_stats_wait_end(cfs_rq, se);
1035 
1036 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 		struct task_struct *tsk = task_of(se);
1038 
1039 		if (tsk->state & TASK_INTERRUPTIBLE)
1040 			__schedstat_set(se->statistics.sleep_start,
1041 				      rq_clock(rq_of(cfs_rq)));
1042 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1043 			__schedstat_set(se->statistics.block_start,
1044 				      rq_clock(rq_of(cfs_rq)));
1045 	}
1046 }
1047 
1048 /*
1049  * We are picking a new current task - update its stats:
1050  */
1051 static inline void
1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1053 {
1054 	/*
1055 	 * We are starting a new run period:
1056 	 */
1057 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1058 }
1059 
1060 /**************************************************
1061  * Scheduling class queueing methods:
1062  */
1063 
1064 #ifdef CONFIG_NUMA_BALANCING
1065 /*
1066  * Approximate time to scan a full NUMA task in ms. The task scan period is
1067  * calculated based on the tasks virtual memory size and
1068  * numa_balancing_scan_size.
1069  */
1070 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1071 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1072 
1073 /* Portion of address space to scan in MB */
1074 unsigned int sysctl_numa_balancing_scan_size = 256;
1075 
1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1078 
1079 struct numa_group {
1080 	refcount_t refcount;
1081 
1082 	spinlock_t lock; /* nr_tasks, tasks */
1083 	int nr_tasks;
1084 	pid_t gid;
1085 	int active_nodes;
1086 
1087 	struct rcu_head rcu;
1088 	unsigned long total_faults;
1089 	unsigned long max_faults_cpu;
1090 	/*
1091 	 * Faults_cpu is used to decide whether memory should move
1092 	 * towards the CPU. As a consequence, these stats are weighted
1093 	 * more by CPU use than by memory faults.
1094 	 */
1095 	unsigned long *faults_cpu;
1096 	unsigned long faults[0];
1097 };
1098 
1099 /*
1100  * For functions that can be called in multiple contexts that permit reading
1101  * ->numa_group (see struct task_struct for locking rules).
1102  */
1103 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1104 {
1105 	return rcu_dereference_check(p->numa_group, p == current ||
1106 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1107 }
1108 
1109 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1110 {
1111 	return rcu_dereference_protected(p->numa_group, p == current);
1112 }
1113 
1114 static inline unsigned long group_faults_priv(struct numa_group *ng);
1115 static inline unsigned long group_faults_shared(struct numa_group *ng);
1116 
1117 static unsigned int task_nr_scan_windows(struct task_struct *p)
1118 {
1119 	unsigned long rss = 0;
1120 	unsigned long nr_scan_pages;
1121 
1122 	/*
1123 	 * Calculations based on RSS as non-present and empty pages are skipped
1124 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1125 	 * on resident pages
1126 	 */
1127 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1128 	rss = get_mm_rss(p->mm);
1129 	if (!rss)
1130 		rss = nr_scan_pages;
1131 
1132 	rss = round_up(rss, nr_scan_pages);
1133 	return rss / nr_scan_pages;
1134 }
1135 
1136 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1137 #define MAX_SCAN_WINDOW 2560
1138 
1139 static unsigned int task_scan_min(struct task_struct *p)
1140 {
1141 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1142 	unsigned int scan, floor;
1143 	unsigned int windows = 1;
1144 
1145 	if (scan_size < MAX_SCAN_WINDOW)
1146 		windows = MAX_SCAN_WINDOW / scan_size;
1147 	floor = 1000 / windows;
1148 
1149 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1150 	return max_t(unsigned int, floor, scan);
1151 }
1152 
1153 static unsigned int task_scan_start(struct task_struct *p)
1154 {
1155 	unsigned long smin = task_scan_min(p);
1156 	unsigned long period = smin;
1157 	struct numa_group *ng;
1158 
1159 	/* Scale the maximum scan period with the amount of shared memory. */
1160 	rcu_read_lock();
1161 	ng = rcu_dereference(p->numa_group);
1162 	if (ng) {
1163 		unsigned long shared = group_faults_shared(ng);
1164 		unsigned long private = group_faults_priv(ng);
1165 
1166 		period *= refcount_read(&ng->refcount);
1167 		period *= shared + 1;
1168 		period /= private + shared + 1;
1169 	}
1170 	rcu_read_unlock();
1171 
1172 	return max(smin, period);
1173 }
1174 
1175 static unsigned int task_scan_max(struct task_struct *p)
1176 {
1177 	unsigned long smin = task_scan_min(p);
1178 	unsigned long smax;
1179 	struct numa_group *ng;
1180 
1181 	/* Watch for min being lower than max due to floor calculations */
1182 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1183 
1184 	/* Scale the maximum scan period with the amount of shared memory. */
1185 	ng = deref_curr_numa_group(p);
1186 	if (ng) {
1187 		unsigned long shared = group_faults_shared(ng);
1188 		unsigned long private = group_faults_priv(ng);
1189 		unsigned long period = smax;
1190 
1191 		period *= refcount_read(&ng->refcount);
1192 		period *= shared + 1;
1193 		period /= private + shared + 1;
1194 
1195 		smax = max(smax, period);
1196 	}
1197 
1198 	return max(smin, smax);
1199 }
1200 
1201 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1202 {
1203 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1204 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1205 }
1206 
1207 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1208 {
1209 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1210 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1211 }
1212 
1213 /* Shared or private faults. */
1214 #define NR_NUMA_HINT_FAULT_TYPES 2
1215 
1216 /* Memory and CPU locality */
1217 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1218 
1219 /* Averaged statistics, and temporary buffers. */
1220 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1221 
1222 pid_t task_numa_group_id(struct task_struct *p)
1223 {
1224 	struct numa_group *ng;
1225 	pid_t gid = 0;
1226 
1227 	rcu_read_lock();
1228 	ng = rcu_dereference(p->numa_group);
1229 	if (ng)
1230 		gid = ng->gid;
1231 	rcu_read_unlock();
1232 
1233 	return gid;
1234 }
1235 
1236 /*
1237  * The averaged statistics, shared & private, memory & CPU,
1238  * occupy the first half of the array. The second half of the
1239  * array is for current counters, which are averaged into the
1240  * first set by task_numa_placement.
1241  */
1242 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1243 {
1244 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1245 }
1246 
1247 static inline unsigned long task_faults(struct task_struct *p, int nid)
1248 {
1249 	if (!p->numa_faults)
1250 		return 0;
1251 
1252 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1254 }
1255 
1256 static inline unsigned long group_faults(struct task_struct *p, int nid)
1257 {
1258 	struct numa_group *ng = deref_task_numa_group(p);
1259 
1260 	if (!ng)
1261 		return 0;
1262 
1263 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1264 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1265 }
1266 
1267 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1268 {
1269 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1270 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1271 }
1272 
1273 static inline unsigned long group_faults_priv(struct numa_group *ng)
1274 {
1275 	unsigned long faults = 0;
1276 	int node;
1277 
1278 	for_each_online_node(node) {
1279 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1280 	}
1281 
1282 	return faults;
1283 }
1284 
1285 static inline unsigned long group_faults_shared(struct numa_group *ng)
1286 {
1287 	unsigned long faults = 0;
1288 	int node;
1289 
1290 	for_each_online_node(node) {
1291 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1292 	}
1293 
1294 	return faults;
1295 }
1296 
1297 /*
1298  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1299  * considered part of a numa group's pseudo-interleaving set. Migrations
1300  * between these nodes are slowed down, to allow things to settle down.
1301  */
1302 #define ACTIVE_NODE_FRACTION 3
1303 
1304 static bool numa_is_active_node(int nid, struct numa_group *ng)
1305 {
1306 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1307 }
1308 
1309 /* Handle placement on systems where not all nodes are directly connected. */
1310 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1311 					int maxdist, bool task)
1312 {
1313 	unsigned long score = 0;
1314 	int node;
1315 
1316 	/*
1317 	 * All nodes are directly connected, and the same distance
1318 	 * from each other. No need for fancy placement algorithms.
1319 	 */
1320 	if (sched_numa_topology_type == NUMA_DIRECT)
1321 		return 0;
1322 
1323 	/*
1324 	 * This code is called for each node, introducing N^2 complexity,
1325 	 * which should be ok given the number of nodes rarely exceeds 8.
1326 	 */
1327 	for_each_online_node(node) {
1328 		unsigned long faults;
1329 		int dist = node_distance(nid, node);
1330 
1331 		/*
1332 		 * The furthest away nodes in the system are not interesting
1333 		 * for placement; nid was already counted.
1334 		 */
1335 		if (dist == sched_max_numa_distance || node == nid)
1336 			continue;
1337 
1338 		/*
1339 		 * On systems with a backplane NUMA topology, compare groups
1340 		 * of nodes, and move tasks towards the group with the most
1341 		 * memory accesses. When comparing two nodes at distance
1342 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1343 		 * of each group. Skip other nodes.
1344 		 */
1345 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1346 					dist >= maxdist)
1347 			continue;
1348 
1349 		/* Add up the faults from nearby nodes. */
1350 		if (task)
1351 			faults = task_faults(p, node);
1352 		else
1353 			faults = group_faults(p, node);
1354 
1355 		/*
1356 		 * On systems with a glueless mesh NUMA topology, there are
1357 		 * no fixed "groups of nodes". Instead, nodes that are not
1358 		 * directly connected bounce traffic through intermediate
1359 		 * nodes; a numa_group can occupy any set of nodes.
1360 		 * The further away a node is, the less the faults count.
1361 		 * This seems to result in good task placement.
1362 		 */
1363 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1364 			faults *= (sched_max_numa_distance - dist);
1365 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1366 		}
1367 
1368 		score += faults;
1369 	}
1370 
1371 	return score;
1372 }
1373 
1374 /*
1375  * These return the fraction of accesses done by a particular task, or
1376  * task group, on a particular numa node.  The group weight is given a
1377  * larger multiplier, in order to group tasks together that are almost
1378  * evenly spread out between numa nodes.
1379  */
1380 static inline unsigned long task_weight(struct task_struct *p, int nid,
1381 					int dist)
1382 {
1383 	unsigned long faults, total_faults;
1384 
1385 	if (!p->numa_faults)
1386 		return 0;
1387 
1388 	total_faults = p->total_numa_faults;
1389 
1390 	if (!total_faults)
1391 		return 0;
1392 
1393 	faults = task_faults(p, nid);
1394 	faults += score_nearby_nodes(p, nid, dist, true);
1395 
1396 	return 1000 * faults / total_faults;
1397 }
1398 
1399 static inline unsigned long group_weight(struct task_struct *p, int nid,
1400 					 int dist)
1401 {
1402 	struct numa_group *ng = deref_task_numa_group(p);
1403 	unsigned long faults, total_faults;
1404 
1405 	if (!ng)
1406 		return 0;
1407 
1408 	total_faults = ng->total_faults;
1409 
1410 	if (!total_faults)
1411 		return 0;
1412 
1413 	faults = group_faults(p, nid);
1414 	faults += score_nearby_nodes(p, nid, dist, false);
1415 
1416 	return 1000 * faults / total_faults;
1417 }
1418 
1419 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1420 				int src_nid, int dst_cpu)
1421 {
1422 	struct numa_group *ng = deref_curr_numa_group(p);
1423 	int dst_nid = cpu_to_node(dst_cpu);
1424 	int last_cpupid, this_cpupid;
1425 
1426 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1427 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1428 
1429 	/*
1430 	 * Allow first faults or private faults to migrate immediately early in
1431 	 * the lifetime of a task. The magic number 4 is based on waiting for
1432 	 * two full passes of the "multi-stage node selection" test that is
1433 	 * executed below.
1434 	 */
1435 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1436 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1437 		return true;
1438 
1439 	/*
1440 	 * Multi-stage node selection is used in conjunction with a periodic
1441 	 * migration fault to build a temporal task<->page relation. By using
1442 	 * a two-stage filter we remove short/unlikely relations.
1443 	 *
1444 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1445 	 * a task's usage of a particular page (n_p) per total usage of this
1446 	 * page (n_t) (in a given time-span) to a probability.
1447 	 *
1448 	 * Our periodic faults will sample this probability and getting the
1449 	 * same result twice in a row, given these samples are fully
1450 	 * independent, is then given by P(n)^2, provided our sample period
1451 	 * is sufficiently short compared to the usage pattern.
1452 	 *
1453 	 * This quadric squishes small probabilities, making it less likely we
1454 	 * act on an unlikely task<->page relation.
1455 	 */
1456 	if (!cpupid_pid_unset(last_cpupid) &&
1457 				cpupid_to_nid(last_cpupid) != dst_nid)
1458 		return false;
1459 
1460 	/* Always allow migrate on private faults */
1461 	if (cpupid_match_pid(p, last_cpupid))
1462 		return true;
1463 
1464 	/* A shared fault, but p->numa_group has not been set up yet. */
1465 	if (!ng)
1466 		return true;
1467 
1468 	/*
1469 	 * Destination node is much more heavily used than the source
1470 	 * node? Allow migration.
1471 	 */
1472 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1473 					ACTIVE_NODE_FRACTION)
1474 		return true;
1475 
1476 	/*
1477 	 * Distribute memory according to CPU & memory use on each node,
1478 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1479 	 *
1480 	 * faults_cpu(dst)   3   faults_cpu(src)
1481 	 * --------------- * - > ---------------
1482 	 * faults_mem(dst)   4   faults_mem(src)
1483 	 */
1484 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1485 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1486 }
1487 
1488 /*
1489  * 'numa_type' describes the node at the moment of load balancing.
1490  */
1491 enum numa_type {
1492 	/* The node has spare capacity that can be used to run more tasks.  */
1493 	node_has_spare = 0,
1494 	/*
1495 	 * The node is fully used and the tasks don't compete for more CPU
1496 	 * cycles. Nevertheless, some tasks might wait before running.
1497 	 */
1498 	node_fully_busy,
1499 	/*
1500 	 * The node is overloaded and can't provide expected CPU cycles to all
1501 	 * tasks.
1502 	 */
1503 	node_overloaded
1504 };
1505 
1506 /* Cached statistics for all CPUs within a node */
1507 struct numa_stats {
1508 	unsigned long load;
1509 	unsigned long util;
1510 	/* Total compute capacity of CPUs on a node */
1511 	unsigned long compute_capacity;
1512 	unsigned int nr_running;
1513 	unsigned int weight;
1514 	enum numa_type node_type;
1515 	int idle_cpu;
1516 };
1517 
1518 static inline bool is_core_idle(int cpu)
1519 {
1520 #ifdef CONFIG_SCHED_SMT
1521 	int sibling;
1522 
1523 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1524 		if (cpu == sibling)
1525 			continue;
1526 
1527 		if (!idle_cpu(cpu))
1528 			return false;
1529 	}
1530 #endif
1531 
1532 	return true;
1533 }
1534 
1535 struct task_numa_env {
1536 	struct task_struct *p;
1537 
1538 	int src_cpu, src_nid;
1539 	int dst_cpu, dst_nid;
1540 
1541 	struct numa_stats src_stats, dst_stats;
1542 
1543 	int imbalance_pct;
1544 	int dist;
1545 
1546 	struct task_struct *best_task;
1547 	long best_imp;
1548 	int best_cpu;
1549 };
1550 
1551 static unsigned long cpu_load(struct rq *rq);
1552 static unsigned long cpu_util(int cpu);
1553 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
1554 
1555 static inline enum
1556 numa_type numa_classify(unsigned int imbalance_pct,
1557 			 struct numa_stats *ns)
1558 {
1559 	if ((ns->nr_running > ns->weight) &&
1560 	    ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1561 		return node_overloaded;
1562 
1563 	if ((ns->nr_running < ns->weight) ||
1564 	    ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1565 		return node_has_spare;
1566 
1567 	return node_fully_busy;
1568 }
1569 
1570 #ifdef CONFIG_SCHED_SMT
1571 /* Forward declarations of select_idle_sibling helpers */
1572 static inline bool test_idle_cores(int cpu, bool def);
1573 static inline int numa_idle_core(int idle_core, int cpu)
1574 {
1575 	if (!static_branch_likely(&sched_smt_present) ||
1576 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1577 		return idle_core;
1578 
1579 	/*
1580 	 * Prefer cores instead of packing HT siblings
1581 	 * and triggering future load balancing.
1582 	 */
1583 	if (is_core_idle(cpu))
1584 		idle_core = cpu;
1585 
1586 	return idle_core;
1587 }
1588 #else
1589 static inline int numa_idle_core(int idle_core, int cpu)
1590 {
1591 	return idle_core;
1592 }
1593 #endif
1594 
1595 /*
1596  * Gather all necessary information to make NUMA balancing placement
1597  * decisions that are compatible with standard load balancer. This
1598  * borrows code and logic from update_sg_lb_stats but sharing a
1599  * common implementation is impractical.
1600  */
1601 static void update_numa_stats(struct task_numa_env *env,
1602 			      struct numa_stats *ns, int nid,
1603 			      bool find_idle)
1604 {
1605 	int cpu, idle_core = -1;
1606 
1607 	memset(ns, 0, sizeof(*ns));
1608 	ns->idle_cpu = -1;
1609 
1610 	rcu_read_lock();
1611 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1612 		struct rq *rq = cpu_rq(cpu);
1613 
1614 		ns->load += cpu_load(rq);
1615 		ns->util += cpu_util(cpu);
1616 		ns->nr_running += rq->cfs.h_nr_running;
1617 		ns->compute_capacity += capacity_of(cpu);
1618 
1619 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1620 			if (READ_ONCE(rq->numa_migrate_on) ||
1621 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1622 				continue;
1623 
1624 			if (ns->idle_cpu == -1)
1625 				ns->idle_cpu = cpu;
1626 
1627 			idle_core = numa_idle_core(idle_core, cpu);
1628 		}
1629 	}
1630 	rcu_read_unlock();
1631 
1632 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1633 
1634 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1635 
1636 	if (idle_core >= 0)
1637 		ns->idle_cpu = idle_core;
1638 }
1639 
1640 static void task_numa_assign(struct task_numa_env *env,
1641 			     struct task_struct *p, long imp)
1642 {
1643 	struct rq *rq = cpu_rq(env->dst_cpu);
1644 
1645 	/* Check if run-queue part of active NUMA balance. */
1646 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1647 		int cpu;
1648 		int start = env->dst_cpu;
1649 
1650 		/* Find alternative idle CPU. */
1651 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1652 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1653 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1654 				continue;
1655 			}
1656 
1657 			env->dst_cpu = cpu;
1658 			rq = cpu_rq(env->dst_cpu);
1659 			if (!xchg(&rq->numa_migrate_on, 1))
1660 				goto assign;
1661 		}
1662 
1663 		/* Failed to find an alternative idle CPU */
1664 		return;
1665 	}
1666 
1667 assign:
1668 	/*
1669 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1670 	 * found a better CPU to move/swap.
1671 	 */
1672 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1673 		rq = cpu_rq(env->best_cpu);
1674 		WRITE_ONCE(rq->numa_migrate_on, 0);
1675 	}
1676 
1677 	if (env->best_task)
1678 		put_task_struct(env->best_task);
1679 	if (p)
1680 		get_task_struct(p);
1681 
1682 	env->best_task = p;
1683 	env->best_imp = imp;
1684 	env->best_cpu = env->dst_cpu;
1685 }
1686 
1687 static bool load_too_imbalanced(long src_load, long dst_load,
1688 				struct task_numa_env *env)
1689 {
1690 	long imb, old_imb;
1691 	long orig_src_load, orig_dst_load;
1692 	long src_capacity, dst_capacity;
1693 
1694 	/*
1695 	 * The load is corrected for the CPU capacity available on each node.
1696 	 *
1697 	 * src_load        dst_load
1698 	 * ------------ vs ---------
1699 	 * src_capacity    dst_capacity
1700 	 */
1701 	src_capacity = env->src_stats.compute_capacity;
1702 	dst_capacity = env->dst_stats.compute_capacity;
1703 
1704 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1705 
1706 	orig_src_load = env->src_stats.load;
1707 	orig_dst_load = env->dst_stats.load;
1708 
1709 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1710 
1711 	/* Would this change make things worse? */
1712 	return (imb > old_imb);
1713 }
1714 
1715 /*
1716  * Maximum NUMA importance can be 1998 (2*999);
1717  * SMALLIMP @ 30 would be close to 1998/64.
1718  * Used to deter task migration.
1719  */
1720 #define SMALLIMP	30
1721 
1722 /*
1723  * This checks if the overall compute and NUMA accesses of the system would
1724  * be improved if the source tasks was migrated to the target dst_cpu taking
1725  * into account that it might be best if task running on the dst_cpu should
1726  * be exchanged with the source task
1727  */
1728 static bool task_numa_compare(struct task_numa_env *env,
1729 			      long taskimp, long groupimp, bool maymove)
1730 {
1731 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1732 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1733 	long imp = p_ng ? groupimp : taskimp;
1734 	struct task_struct *cur;
1735 	long src_load, dst_load;
1736 	int dist = env->dist;
1737 	long moveimp = imp;
1738 	long load;
1739 	bool stopsearch = false;
1740 
1741 	if (READ_ONCE(dst_rq->numa_migrate_on))
1742 		return false;
1743 
1744 	rcu_read_lock();
1745 	cur = rcu_dereference(dst_rq->curr);
1746 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1747 		cur = NULL;
1748 
1749 	/*
1750 	 * Because we have preemption enabled we can get migrated around and
1751 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1752 	 */
1753 	if (cur == env->p) {
1754 		stopsearch = true;
1755 		goto unlock;
1756 	}
1757 
1758 	if (!cur) {
1759 		if (maymove && moveimp >= env->best_imp)
1760 			goto assign;
1761 		else
1762 			goto unlock;
1763 	}
1764 
1765 	/* Skip this swap candidate if cannot move to the source cpu. */
1766 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1767 		goto unlock;
1768 
1769 	/*
1770 	 * Skip this swap candidate if it is not moving to its preferred
1771 	 * node and the best task is.
1772 	 */
1773 	if (env->best_task &&
1774 	    env->best_task->numa_preferred_nid == env->src_nid &&
1775 	    cur->numa_preferred_nid != env->src_nid) {
1776 		goto unlock;
1777 	}
1778 
1779 	/*
1780 	 * "imp" is the fault differential for the source task between the
1781 	 * source and destination node. Calculate the total differential for
1782 	 * the source task and potential destination task. The more negative
1783 	 * the value is, the more remote accesses that would be expected to
1784 	 * be incurred if the tasks were swapped.
1785 	 *
1786 	 * If dst and source tasks are in the same NUMA group, or not
1787 	 * in any group then look only at task weights.
1788 	 */
1789 	cur_ng = rcu_dereference(cur->numa_group);
1790 	if (cur_ng == p_ng) {
1791 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1792 		      task_weight(cur, env->dst_nid, dist);
1793 		/*
1794 		 * Add some hysteresis to prevent swapping the
1795 		 * tasks within a group over tiny differences.
1796 		 */
1797 		if (cur_ng)
1798 			imp -= imp / 16;
1799 	} else {
1800 		/*
1801 		 * Compare the group weights. If a task is all by itself
1802 		 * (not part of a group), use the task weight instead.
1803 		 */
1804 		if (cur_ng && p_ng)
1805 			imp += group_weight(cur, env->src_nid, dist) -
1806 			       group_weight(cur, env->dst_nid, dist);
1807 		else
1808 			imp += task_weight(cur, env->src_nid, dist) -
1809 			       task_weight(cur, env->dst_nid, dist);
1810 	}
1811 
1812 	/* Discourage picking a task already on its preferred node */
1813 	if (cur->numa_preferred_nid == env->dst_nid)
1814 		imp -= imp / 16;
1815 
1816 	/*
1817 	 * Encourage picking a task that moves to its preferred node.
1818 	 * This potentially makes imp larger than it's maximum of
1819 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1820 	 * case, it does not matter.
1821 	 */
1822 	if (cur->numa_preferred_nid == env->src_nid)
1823 		imp += imp / 8;
1824 
1825 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1826 		imp = moveimp;
1827 		cur = NULL;
1828 		goto assign;
1829 	}
1830 
1831 	/*
1832 	 * Prefer swapping with a task moving to its preferred node over a
1833 	 * task that is not.
1834 	 */
1835 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1836 	    env->best_task->numa_preferred_nid != env->src_nid) {
1837 		goto assign;
1838 	}
1839 
1840 	/*
1841 	 * If the NUMA importance is less than SMALLIMP,
1842 	 * task migration might only result in ping pong
1843 	 * of tasks and also hurt performance due to cache
1844 	 * misses.
1845 	 */
1846 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1847 		goto unlock;
1848 
1849 	/*
1850 	 * In the overloaded case, try and keep the load balanced.
1851 	 */
1852 	load = task_h_load(env->p) - task_h_load(cur);
1853 	if (!load)
1854 		goto assign;
1855 
1856 	dst_load = env->dst_stats.load + load;
1857 	src_load = env->src_stats.load - load;
1858 
1859 	if (load_too_imbalanced(src_load, dst_load, env))
1860 		goto unlock;
1861 
1862 assign:
1863 	/* Evaluate an idle CPU for a task numa move. */
1864 	if (!cur) {
1865 		int cpu = env->dst_stats.idle_cpu;
1866 
1867 		/* Nothing cached so current CPU went idle since the search. */
1868 		if (cpu < 0)
1869 			cpu = env->dst_cpu;
1870 
1871 		/*
1872 		 * If the CPU is no longer truly idle and the previous best CPU
1873 		 * is, keep using it.
1874 		 */
1875 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1876 		    idle_cpu(env->best_cpu)) {
1877 			cpu = env->best_cpu;
1878 		}
1879 
1880 		env->dst_cpu = cpu;
1881 	}
1882 
1883 	task_numa_assign(env, cur, imp);
1884 
1885 	/*
1886 	 * If a move to idle is allowed because there is capacity or load
1887 	 * balance improves then stop the search. While a better swap
1888 	 * candidate may exist, a search is not free.
1889 	 */
1890 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1891 		stopsearch = true;
1892 
1893 	/*
1894 	 * If a swap candidate must be identified and the current best task
1895 	 * moves its preferred node then stop the search.
1896 	 */
1897 	if (!maymove && env->best_task &&
1898 	    env->best_task->numa_preferred_nid == env->src_nid) {
1899 		stopsearch = true;
1900 	}
1901 unlock:
1902 	rcu_read_unlock();
1903 
1904 	return stopsearch;
1905 }
1906 
1907 static void task_numa_find_cpu(struct task_numa_env *env,
1908 				long taskimp, long groupimp)
1909 {
1910 	bool maymove = false;
1911 	int cpu;
1912 
1913 	/*
1914 	 * If dst node has spare capacity, then check if there is an
1915 	 * imbalance that would be overruled by the load balancer.
1916 	 */
1917 	if (env->dst_stats.node_type == node_has_spare) {
1918 		unsigned int imbalance;
1919 		int src_running, dst_running;
1920 
1921 		/*
1922 		 * Would movement cause an imbalance? Note that if src has
1923 		 * more running tasks that the imbalance is ignored as the
1924 		 * move improves the imbalance from the perspective of the
1925 		 * CPU load balancer.
1926 		 * */
1927 		src_running = env->src_stats.nr_running - 1;
1928 		dst_running = env->dst_stats.nr_running + 1;
1929 		imbalance = max(0, dst_running - src_running);
1930 		imbalance = adjust_numa_imbalance(imbalance, src_running);
1931 
1932 		/* Use idle CPU if there is no imbalance */
1933 		if (!imbalance) {
1934 			maymove = true;
1935 			if (env->dst_stats.idle_cpu >= 0) {
1936 				env->dst_cpu = env->dst_stats.idle_cpu;
1937 				task_numa_assign(env, NULL, 0);
1938 				return;
1939 			}
1940 		}
1941 	} else {
1942 		long src_load, dst_load, load;
1943 		/*
1944 		 * If the improvement from just moving env->p direction is better
1945 		 * than swapping tasks around, check if a move is possible.
1946 		 */
1947 		load = task_h_load(env->p);
1948 		dst_load = env->dst_stats.load + load;
1949 		src_load = env->src_stats.load - load;
1950 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1951 	}
1952 
1953 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1954 		/* Skip this CPU if the source task cannot migrate */
1955 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1956 			continue;
1957 
1958 		env->dst_cpu = cpu;
1959 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1960 			break;
1961 	}
1962 }
1963 
1964 static int task_numa_migrate(struct task_struct *p)
1965 {
1966 	struct task_numa_env env = {
1967 		.p = p,
1968 
1969 		.src_cpu = task_cpu(p),
1970 		.src_nid = task_node(p),
1971 
1972 		.imbalance_pct = 112,
1973 
1974 		.best_task = NULL,
1975 		.best_imp = 0,
1976 		.best_cpu = -1,
1977 	};
1978 	unsigned long taskweight, groupweight;
1979 	struct sched_domain *sd;
1980 	long taskimp, groupimp;
1981 	struct numa_group *ng;
1982 	struct rq *best_rq;
1983 	int nid, ret, dist;
1984 
1985 	/*
1986 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 	 * imbalance and would be the first to start moving tasks about.
1988 	 *
1989 	 * And we want to avoid any moving of tasks about, as that would create
1990 	 * random movement of tasks -- counter the numa conditions we're trying
1991 	 * to satisfy here.
1992 	 */
1993 	rcu_read_lock();
1994 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1995 	if (sd)
1996 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1997 	rcu_read_unlock();
1998 
1999 	/*
2000 	 * Cpusets can break the scheduler domain tree into smaller
2001 	 * balance domains, some of which do not cross NUMA boundaries.
2002 	 * Tasks that are "trapped" in such domains cannot be migrated
2003 	 * elsewhere, so there is no point in (re)trying.
2004 	 */
2005 	if (unlikely(!sd)) {
2006 		sched_setnuma(p, task_node(p));
2007 		return -EINVAL;
2008 	}
2009 
2010 	env.dst_nid = p->numa_preferred_nid;
2011 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2012 	taskweight = task_weight(p, env.src_nid, dist);
2013 	groupweight = group_weight(p, env.src_nid, dist);
2014 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2015 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2016 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2017 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2018 
2019 	/* Try to find a spot on the preferred nid. */
2020 	task_numa_find_cpu(&env, taskimp, groupimp);
2021 
2022 	/*
2023 	 * Look at other nodes in these cases:
2024 	 * - there is no space available on the preferred_nid
2025 	 * - the task is part of a numa_group that is interleaved across
2026 	 *   multiple NUMA nodes; in order to better consolidate the group,
2027 	 *   we need to check other locations.
2028 	 */
2029 	ng = deref_curr_numa_group(p);
2030 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2031 		for_each_online_node(nid) {
2032 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2033 				continue;
2034 
2035 			dist = node_distance(env.src_nid, env.dst_nid);
2036 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2037 						dist != env.dist) {
2038 				taskweight = task_weight(p, env.src_nid, dist);
2039 				groupweight = group_weight(p, env.src_nid, dist);
2040 			}
2041 
2042 			/* Only consider nodes where both task and groups benefit */
2043 			taskimp = task_weight(p, nid, dist) - taskweight;
2044 			groupimp = group_weight(p, nid, dist) - groupweight;
2045 			if (taskimp < 0 && groupimp < 0)
2046 				continue;
2047 
2048 			env.dist = dist;
2049 			env.dst_nid = nid;
2050 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2051 			task_numa_find_cpu(&env, taskimp, groupimp);
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * If the task is part of a workload that spans multiple NUMA nodes,
2057 	 * and is migrating into one of the workload's active nodes, remember
2058 	 * this node as the task's preferred numa node, so the workload can
2059 	 * settle down.
2060 	 * A task that migrated to a second choice node will be better off
2061 	 * trying for a better one later. Do not set the preferred node here.
2062 	 */
2063 	if (ng) {
2064 		if (env.best_cpu == -1)
2065 			nid = env.src_nid;
2066 		else
2067 			nid = cpu_to_node(env.best_cpu);
2068 
2069 		if (nid != p->numa_preferred_nid)
2070 			sched_setnuma(p, nid);
2071 	}
2072 
2073 	/* No better CPU than the current one was found. */
2074 	if (env.best_cpu == -1) {
2075 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2076 		return -EAGAIN;
2077 	}
2078 
2079 	best_rq = cpu_rq(env.best_cpu);
2080 	if (env.best_task == NULL) {
2081 		ret = migrate_task_to(p, env.best_cpu);
2082 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2083 		if (ret != 0)
2084 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2085 		return ret;
2086 	}
2087 
2088 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2089 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2090 
2091 	if (ret != 0)
2092 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2093 	put_task_struct(env.best_task);
2094 	return ret;
2095 }
2096 
2097 /* Attempt to migrate a task to a CPU on the preferred node. */
2098 static void numa_migrate_preferred(struct task_struct *p)
2099 {
2100 	unsigned long interval = HZ;
2101 
2102 	/* This task has no NUMA fault statistics yet */
2103 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2104 		return;
2105 
2106 	/* Periodically retry migrating the task to the preferred node */
2107 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2108 	p->numa_migrate_retry = jiffies + interval;
2109 
2110 	/* Success if task is already running on preferred CPU */
2111 	if (task_node(p) == p->numa_preferred_nid)
2112 		return;
2113 
2114 	/* Otherwise, try migrate to a CPU on the preferred node */
2115 	task_numa_migrate(p);
2116 }
2117 
2118 /*
2119  * Find out how many nodes on the workload is actively running on. Do this by
2120  * tracking the nodes from which NUMA hinting faults are triggered. This can
2121  * be different from the set of nodes where the workload's memory is currently
2122  * located.
2123  */
2124 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2125 {
2126 	unsigned long faults, max_faults = 0;
2127 	int nid, active_nodes = 0;
2128 
2129 	for_each_online_node(nid) {
2130 		faults = group_faults_cpu(numa_group, nid);
2131 		if (faults > max_faults)
2132 			max_faults = faults;
2133 	}
2134 
2135 	for_each_online_node(nid) {
2136 		faults = group_faults_cpu(numa_group, nid);
2137 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2138 			active_nodes++;
2139 	}
2140 
2141 	numa_group->max_faults_cpu = max_faults;
2142 	numa_group->active_nodes = active_nodes;
2143 }
2144 
2145 /*
2146  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147  * increments. The more local the fault statistics are, the higher the scan
2148  * period will be for the next scan window. If local/(local+remote) ratio is
2149  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150  * the scan period will decrease. Aim for 70% local accesses.
2151  */
2152 #define NUMA_PERIOD_SLOTS 10
2153 #define NUMA_PERIOD_THRESHOLD 7
2154 
2155 /*
2156  * Increase the scan period (slow down scanning) if the majority of
2157  * our memory is already on our local node, or if the majority of
2158  * the page accesses are shared with other processes.
2159  * Otherwise, decrease the scan period.
2160  */
2161 static void update_task_scan_period(struct task_struct *p,
2162 			unsigned long shared, unsigned long private)
2163 {
2164 	unsigned int period_slot;
2165 	int lr_ratio, ps_ratio;
2166 	int diff;
2167 
2168 	unsigned long remote = p->numa_faults_locality[0];
2169 	unsigned long local = p->numa_faults_locality[1];
2170 
2171 	/*
2172 	 * If there were no record hinting faults then either the task is
2173 	 * completely idle or all activity is areas that are not of interest
2174 	 * to automatic numa balancing. Related to that, if there were failed
2175 	 * migration then it implies we are migrating too quickly or the local
2176 	 * node is overloaded. In either case, scan slower
2177 	 */
2178 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2179 		p->numa_scan_period = min(p->numa_scan_period_max,
2180 			p->numa_scan_period << 1);
2181 
2182 		p->mm->numa_next_scan = jiffies +
2183 			msecs_to_jiffies(p->numa_scan_period);
2184 
2185 		return;
2186 	}
2187 
2188 	/*
2189 	 * Prepare to scale scan period relative to the current period.
2190 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2193 	 */
2194 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2195 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2196 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2197 
2198 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2199 		/*
2200 		 * Most memory accesses are local. There is no need to
2201 		 * do fast NUMA scanning, since memory is already local.
2202 		 */
2203 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2204 		if (!slot)
2205 			slot = 1;
2206 		diff = slot * period_slot;
2207 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2208 		/*
2209 		 * Most memory accesses are shared with other tasks.
2210 		 * There is no point in continuing fast NUMA scanning,
2211 		 * since other tasks may just move the memory elsewhere.
2212 		 */
2213 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2214 		if (!slot)
2215 			slot = 1;
2216 		diff = slot * period_slot;
2217 	} else {
2218 		/*
2219 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 		 * yet they are not on the local NUMA node. Speed up
2221 		 * NUMA scanning to get the memory moved over.
2222 		 */
2223 		int ratio = max(lr_ratio, ps_ratio);
2224 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2225 	}
2226 
2227 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2228 			task_scan_min(p), task_scan_max(p));
2229 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2230 }
2231 
2232 /*
2233  * Get the fraction of time the task has been running since the last
2234  * NUMA placement cycle. The scheduler keeps similar statistics, but
2235  * decays those on a 32ms period, which is orders of magnitude off
2236  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237  * stats only if the task is so new there are no NUMA statistics yet.
2238  */
2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2240 {
2241 	u64 runtime, delta, now;
2242 	/* Use the start of this time slice to avoid calculations. */
2243 	now = p->se.exec_start;
2244 	runtime = p->se.sum_exec_runtime;
2245 
2246 	if (p->last_task_numa_placement) {
2247 		delta = runtime - p->last_sum_exec_runtime;
2248 		*period = now - p->last_task_numa_placement;
2249 
2250 		/* Avoid time going backwards, prevent potential divide error: */
2251 		if (unlikely((s64)*period < 0))
2252 			*period = 0;
2253 	} else {
2254 		delta = p->se.avg.load_sum;
2255 		*period = LOAD_AVG_MAX;
2256 	}
2257 
2258 	p->last_sum_exec_runtime = runtime;
2259 	p->last_task_numa_placement = now;
2260 
2261 	return delta;
2262 }
2263 
2264 /*
2265  * Determine the preferred nid for a task in a numa_group. This needs to
2266  * be done in a way that produces consistent results with group_weight,
2267  * otherwise workloads might not converge.
2268  */
2269 static int preferred_group_nid(struct task_struct *p, int nid)
2270 {
2271 	nodemask_t nodes;
2272 	int dist;
2273 
2274 	/* Direct connections between all NUMA nodes. */
2275 	if (sched_numa_topology_type == NUMA_DIRECT)
2276 		return nid;
2277 
2278 	/*
2279 	 * On a system with glueless mesh NUMA topology, group_weight
2280 	 * scores nodes according to the number of NUMA hinting faults on
2281 	 * both the node itself, and on nearby nodes.
2282 	 */
2283 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2284 		unsigned long score, max_score = 0;
2285 		int node, max_node = nid;
2286 
2287 		dist = sched_max_numa_distance;
2288 
2289 		for_each_online_node(node) {
2290 			score = group_weight(p, node, dist);
2291 			if (score > max_score) {
2292 				max_score = score;
2293 				max_node = node;
2294 			}
2295 		}
2296 		return max_node;
2297 	}
2298 
2299 	/*
2300 	 * Finding the preferred nid in a system with NUMA backplane
2301 	 * interconnect topology is more involved. The goal is to locate
2302 	 * tasks from numa_groups near each other in the system, and
2303 	 * untangle workloads from different sides of the system. This requires
2304 	 * searching down the hierarchy of node groups, recursively searching
2305 	 * inside the highest scoring group of nodes. The nodemask tricks
2306 	 * keep the complexity of the search down.
2307 	 */
2308 	nodes = node_online_map;
2309 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2310 		unsigned long max_faults = 0;
2311 		nodemask_t max_group = NODE_MASK_NONE;
2312 		int a, b;
2313 
2314 		/* Are there nodes at this distance from each other? */
2315 		if (!find_numa_distance(dist))
2316 			continue;
2317 
2318 		for_each_node_mask(a, nodes) {
2319 			unsigned long faults = 0;
2320 			nodemask_t this_group;
2321 			nodes_clear(this_group);
2322 
2323 			/* Sum group's NUMA faults; includes a==b case. */
2324 			for_each_node_mask(b, nodes) {
2325 				if (node_distance(a, b) < dist) {
2326 					faults += group_faults(p, b);
2327 					node_set(b, this_group);
2328 					node_clear(b, nodes);
2329 				}
2330 			}
2331 
2332 			/* Remember the top group. */
2333 			if (faults > max_faults) {
2334 				max_faults = faults;
2335 				max_group = this_group;
2336 				/*
2337 				 * subtle: at the smallest distance there is
2338 				 * just one node left in each "group", the
2339 				 * winner is the preferred nid.
2340 				 */
2341 				nid = a;
2342 			}
2343 		}
2344 		/* Next round, evaluate the nodes within max_group. */
2345 		if (!max_faults)
2346 			break;
2347 		nodes = max_group;
2348 	}
2349 	return nid;
2350 }
2351 
2352 static void task_numa_placement(struct task_struct *p)
2353 {
2354 	int seq, nid, max_nid = NUMA_NO_NODE;
2355 	unsigned long max_faults = 0;
2356 	unsigned long fault_types[2] = { 0, 0 };
2357 	unsigned long total_faults;
2358 	u64 runtime, period;
2359 	spinlock_t *group_lock = NULL;
2360 	struct numa_group *ng;
2361 
2362 	/*
2363 	 * The p->mm->numa_scan_seq field gets updated without
2364 	 * exclusive access. Use READ_ONCE() here to ensure
2365 	 * that the field is read in a single access:
2366 	 */
2367 	seq = READ_ONCE(p->mm->numa_scan_seq);
2368 	if (p->numa_scan_seq == seq)
2369 		return;
2370 	p->numa_scan_seq = seq;
2371 	p->numa_scan_period_max = task_scan_max(p);
2372 
2373 	total_faults = p->numa_faults_locality[0] +
2374 		       p->numa_faults_locality[1];
2375 	runtime = numa_get_avg_runtime(p, &period);
2376 
2377 	/* If the task is part of a group prevent parallel updates to group stats */
2378 	ng = deref_curr_numa_group(p);
2379 	if (ng) {
2380 		group_lock = &ng->lock;
2381 		spin_lock_irq(group_lock);
2382 	}
2383 
2384 	/* Find the node with the highest number of faults */
2385 	for_each_online_node(nid) {
2386 		/* Keep track of the offsets in numa_faults array */
2387 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2388 		unsigned long faults = 0, group_faults = 0;
2389 		int priv;
2390 
2391 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2392 			long diff, f_diff, f_weight;
2393 
2394 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2395 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2396 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2397 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2398 
2399 			/* Decay existing window, copy faults since last scan */
2400 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2401 			fault_types[priv] += p->numa_faults[membuf_idx];
2402 			p->numa_faults[membuf_idx] = 0;
2403 
2404 			/*
2405 			 * Normalize the faults_from, so all tasks in a group
2406 			 * count according to CPU use, instead of by the raw
2407 			 * number of faults. Tasks with little runtime have
2408 			 * little over-all impact on throughput, and thus their
2409 			 * faults are less important.
2410 			 */
2411 			f_weight = div64_u64(runtime << 16, period + 1);
2412 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2413 				   (total_faults + 1);
2414 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2415 			p->numa_faults[cpubuf_idx] = 0;
2416 
2417 			p->numa_faults[mem_idx] += diff;
2418 			p->numa_faults[cpu_idx] += f_diff;
2419 			faults += p->numa_faults[mem_idx];
2420 			p->total_numa_faults += diff;
2421 			if (ng) {
2422 				/*
2423 				 * safe because we can only change our own group
2424 				 *
2425 				 * mem_idx represents the offset for a given
2426 				 * nid and priv in a specific region because it
2427 				 * is at the beginning of the numa_faults array.
2428 				 */
2429 				ng->faults[mem_idx] += diff;
2430 				ng->faults_cpu[mem_idx] += f_diff;
2431 				ng->total_faults += diff;
2432 				group_faults += ng->faults[mem_idx];
2433 			}
2434 		}
2435 
2436 		if (!ng) {
2437 			if (faults > max_faults) {
2438 				max_faults = faults;
2439 				max_nid = nid;
2440 			}
2441 		} else if (group_faults > max_faults) {
2442 			max_faults = group_faults;
2443 			max_nid = nid;
2444 		}
2445 	}
2446 
2447 	if (ng) {
2448 		numa_group_count_active_nodes(ng);
2449 		spin_unlock_irq(group_lock);
2450 		max_nid = preferred_group_nid(p, max_nid);
2451 	}
2452 
2453 	if (max_faults) {
2454 		/* Set the new preferred node */
2455 		if (max_nid != p->numa_preferred_nid)
2456 			sched_setnuma(p, max_nid);
2457 	}
2458 
2459 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2460 }
2461 
2462 static inline int get_numa_group(struct numa_group *grp)
2463 {
2464 	return refcount_inc_not_zero(&grp->refcount);
2465 }
2466 
2467 static inline void put_numa_group(struct numa_group *grp)
2468 {
2469 	if (refcount_dec_and_test(&grp->refcount))
2470 		kfree_rcu(grp, rcu);
2471 }
2472 
2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2474 			int *priv)
2475 {
2476 	struct numa_group *grp, *my_grp;
2477 	struct task_struct *tsk;
2478 	bool join = false;
2479 	int cpu = cpupid_to_cpu(cpupid);
2480 	int i;
2481 
2482 	if (unlikely(!deref_curr_numa_group(p))) {
2483 		unsigned int size = sizeof(struct numa_group) +
2484 				    4*nr_node_ids*sizeof(unsigned long);
2485 
2486 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2487 		if (!grp)
2488 			return;
2489 
2490 		refcount_set(&grp->refcount, 1);
2491 		grp->active_nodes = 1;
2492 		grp->max_faults_cpu = 0;
2493 		spin_lock_init(&grp->lock);
2494 		grp->gid = p->pid;
2495 		/* Second half of the array tracks nids where faults happen */
2496 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2497 						nr_node_ids;
2498 
2499 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2500 			grp->faults[i] = p->numa_faults[i];
2501 
2502 		grp->total_faults = p->total_numa_faults;
2503 
2504 		grp->nr_tasks++;
2505 		rcu_assign_pointer(p->numa_group, grp);
2506 	}
2507 
2508 	rcu_read_lock();
2509 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2510 
2511 	if (!cpupid_match_pid(tsk, cpupid))
2512 		goto no_join;
2513 
2514 	grp = rcu_dereference(tsk->numa_group);
2515 	if (!grp)
2516 		goto no_join;
2517 
2518 	my_grp = deref_curr_numa_group(p);
2519 	if (grp == my_grp)
2520 		goto no_join;
2521 
2522 	/*
2523 	 * Only join the other group if its bigger; if we're the bigger group,
2524 	 * the other task will join us.
2525 	 */
2526 	if (my_grp->nr_tasks > grp->nr_tasks)
2527 		goto no_join;
2528 
2529 	/*
2530 	 * Tie-break on the grp address.
2531 	 */
2532 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2533 		goto no_join;
2534 
2535 	/* Always join threads in the same process. */
2536 	if (tsk->mm == current->mm)
2537 		join = true;
2538 
2539 	/* Simple filter to avoid false positives due to PID collisions */
2540 	if (flags & TNF_SHARED)
2541 		join = true;
2542 
2543 	/* Update priv based on whether false sharing was detected */
2544 	*priv = !join;
2545 
2546 	if (join && !get_numa_group(grp))
2547 		goto no_join;
2548 
2549 	rcu_read_unlock();
2550 
2551 	if (!join)
2552 		return;
2553 
2554 	BUG_ON(irqs_disabled());
2555 	double_lock_irq(&my_grp->lock, &grp->lock);
2556 
2557 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2558 		my_grp->faults[i] -= p->numa_faults[i];
2559 		grp->faults[i] += p->numa_faults[i];
2560 	}
2561 	my_grp->total_faults -= p->total_numa_faults;
2562 	grp->total_faults += p->total_numa_faults;
2563 
2564 	my_grp->nr_tasks--;
2565 	grp->nr_tasks++;
2566 
2567 	spin_unlock(&my_grp->lock);
2568 	spin_unlock_irq(&grp->lock);
2569 
2570 	rcu_assign_pointer(p->numa_group, grp);
2571 
2572 	put_numa_group(my_grp);
2573 	return;
2574 
2575 no_join:
2576 	rcu_read_unlock();
2577 	return;
2578 }
2579 
2580 /*
2581  * Get rid of NUMA staticstics associated with a task (either current or dead).
2582  * If @final is set, the task is dead and has reached refcount zero, so we can
2583  * safely free all relevant data structures. Otherwise, there might be
2584  * concurrent reads from places like load balancing and procfs, and we should
2585  * reset the data back to default state without freeing ->numa_faults.
2586  */
2587 void task_numa_free(struct task_struct *p, bool final)
2588 {
2589 	/* safe: p either is current or is being freed by current */
2590 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2591 	unsigned long *numa_faults = p->numa_faults;
2592 	unsigned long flags;
2593 	int i;
2594 
2595 	if (!numa_faults)
2596 		return;
2597 
2598 	if (grp) {
2599 		spin_lock_irqsave(&grp->lock, flags);
2600 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2601 			grp->faults[i] -= p->numa_faults[i];
2602 		grp->total_faults -= p->total_numa_faults;
2603 
2604 		grp->nr_tasks--;
2605 		spin_unlock_irqrestore(&grp->lock, flags);
2606 		RCU_INIT_POINTER(p->numa_group, NULL);
2607 		put_numa_group(grp);
2608 	}
2609 
2610 	if (final) {
2611 		p->numa_faults = NULL;
2612 		kfree(numa_faults);
2613 	} else {
2614 		p->total_numa_faults = 0;
2615 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2616 			numa_faults[i] = 0;
2617 	}
2618 }
2619 
2620 /*
2621  * Got a PROT_NONE fault for a page on @node.
2622  */
2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2624 {
2625 	struct task_struct *p = current;
2626 	bool migrated = flags & TNF_MIGRATED;
2627 	int cpu_node = task_node(current);
2628 	int local = !!(flags & TNF_FAULT_LOCAL);
2629 	struct numa_group *ng;
2630 	int priv;
2631 
2632 	if (!static_branch_likely(&sched_numa_balancing))
2633 		return;
2634 
2635 	/* for example, ksmd faulting in a user's mm */
2636 	if (!p->mm)
2637 		return;
2638 
2639 	/* Allocate buffer to track faults on a per-node basis */
2640 	if (unlikely(!p->numa_faults)) {
2641 		int size = sizeof(*p->numa_faults) *
2642 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2643 
2644 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2645 		if (!p->numa_faults)
2646 			return;
2647 
2648 		p->total_numa_faults = 0;
2649 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2650 	}
2651 
2652 	/*
2653 	 * First accesses are treated as private, otherwise consider accesses
2654 	 * to be private if the accessing pid has not changed
2655 	 */
2656 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2657 		priv = 1;
2658 	} else {
2659 		priv = cpupid_match_pid(p, last_cpupid);
2660 		if (!priv && !(flags & TNF_NO_GROUP))
2661 			task_numa_group(p, last_cpupid, flags, &priv);
2662 	}
2663 
2664 	/*
2665 	 * If a workload spans multiple NUMA nodes, a shared fault that
2666 	 * occurs wholly within the set of nodes that the workload is
2667 	 * actively using should be counted as local. This allows the
2668 	 * scan rate to slow down when a workload has settled down.
2669 	 */
2670 	ng = deref_curr_numa_group(p);
2671 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2672 				numa_is_active_node(cpu_node, ng) &&
2673 				numa_is_active_node(mem_node, ng))
2674 		local = 1;
2675 
2676 	/*
2677 	 * Retry to migrate task to preferred node periodically, in case it
2678 	 * previously failed, or the scheduler moved us.
2679 	 */
2680 	if (time_after(jiffies, p->numa_migrate_retry)) {
2681 		task_numa_placement(p);
2682 		numa_migrate_preferred(p);
2683 	}
2684 
2685 	if (migrated)
2686 		p->numa_pages_migrated += pages;
2687 	if (flags & TNF_MIGRATE_FAIL)
2688 		p->numa_faults_locality[2] += pages;
2689 
2690 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2691 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2692 	p->numa_faults_locality[local] += pages;
2693 }
2694 
2695 static void reset_ptenuma_scan(struct task_struct *p)
2696 {
2697 	/*
2698 	 * We only did a read acquisition of the mmap sem, so
2699 	 * p->mm->numa_scan_seq is written to without exclusive access
2700 	 * and the update is not guaranteed to be atomic. That's not
2701 	 * much of an issue though, since this is just used for
2702 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 	 * expensive, to avoid any form of compiler optimizations:
2704 	 */
2705 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2706 	p->mm->numa_scan_offset = 0;
2707 }
2708 
2709 /*
2710  * The expensive part of numa migration is done from task_work context.
2711  * Triggered from task_tick_numa().
2712  */
2713 static void task_numa_work(struct callback_head *work)
2714 {
2715 	unsigned long migrate, next_scan, now = jiffies;
2716 	struct task_struct *p = current;
2717 	struct mm_struct *mm = p->mm;
2718 	u64 runtime = p->se.sum_exec_runtime;
2719 	struct vm_area_struct *vma;
2720 	unsigned long start, end;
2721 	unsigned long nr_pte_updates = 0;
2722 	long pages, virtpages;
2723 
2724 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2725 
2726 	work->next = work;
2727 	/*
2728 	 * Who cares about NUMA placement when they're dying.
2729 	 *
2730 	 * NOTE: make sure not to dereference p->mm before this check,
2731 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 	 * without p->mm even though we still had it when we enqueued this
2733 	 * work.
2734 	 */
2735 	if (p->flags & PF_EXITING)
2736 		return;
2737 
2738 	if (!mm->numa_next_scan) {
2739 		mm->numa_next_scan = now +
2740 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2741 	}
2742 
2743 	/*
2744 	 * Enforce maximal scan/migration frequency..
2745 	 */
2746 	migrate = mm->numa_next_scan;
2747 	if (time_before(now, migrate))
2748 		return;
2749 
2750 	if (p->numa_scan_period == 0) {
2751 		p->numa_scan_period_max = task_scan_max(p);
2752 		p->numa_scan_period = task_scan_start(p);
2753 	}
2754 
2755 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2756 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2757 		return;
2758 
2759 	/*
2760 	 * Delay this task enough that another task of this mm will likely win
2761 	 * the next time around.
2762 	 */
2763 	p->node_stamp += 2 * TICK_NSEC;
2764 
2765 	start = mm->numa_scan_offset;
2766 	pages = sysctl_numa_balancing_scan_size;
2767 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2768 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2769 	if (!pages)
2770 		return;
2771 
2772 
2773 	if (!down_read_trylock(&mm->mmap_sem))
2774 		return;
2775 	vma = find_vma(mm, start);
2776 	if (!vma) {
2777 		reset_ptenuma_scan(p);
2778 		start = 0;
2779 		vma = mm->mmap;
2780 	}
2781 	for (; vma; vma = vma->vm_next) {
2782 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2783 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2784 			continue;
2785 		}
2786 
2787 		/*
2788 		 * Shared library pages mapped by multiple processes are not
2789 		 * migrated as it is expected they are cache replicated. Avoid
2790 		 * hinting faults in read-only file-backed mappings or the vdso
2791 		 * as migrating the pages will be of marginal benefit.
2792 		 */
2793 		if (!vma->vm_mm ||
2794 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2795 			continue;
2796 
2797 		/*
2798 		 * Skip inaccessible VMAs to avoid any confusion between
2799 		 * PROT_NONE and NUMA hinting ptes
2800 		 */
2801 		if (!vma_is_accessible(vma))
2802 			continue;
2803 
2804 		do {
2805 			start = max(start, vma->vm_start);
2806 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2807 			end = min(end, vma->vm_end);
2808 			nr_pte_updates = change_prot_numa(vma, start, end);
2809 
2810 			/*
2811 			 * Try to scan sysctl_numa_balancing_size worth of
2812 			 * hpages that have at least one present PTE that
2813 			 * is not already pte-numa. If the VMA contains
2814 			 * areas that are unused or already full of prot_numa
2815 			 * PTEs, scan up to virtpages, to skip through those
2816 			 * areas faster.
2817 			 */
2818 			if (nr_pte_updates)
2819 				pages -= (end - start) >> PAGE_SHIFT;
2820 			virtpages -= (end - start) >> PAGE_SHIFT;
2821 
2822 			start = end;
2823 			if (pages <= 0 || virtpages <= 0)
2824 				goto out;
2825 
2826 			cond_resched();
2827 		} while (end != vma->vm_end);
2828 	}
2829 
2830 out:
2831 	/*
2832 	 * It is possible to reach the end of the VMA list but the last few
2833 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 	 * would find the !migratable VMA on the next scan but not reset the
2835 	 * scanner to the start so check it now.
2836 	 */
2837 	if (vma)
2838 		mm->numa_scan_offset = start;
2839 	else
2840 		reset_ptenuma_scan(p);
2841 	up_read(&mm->mmap_sem);
2842 
2843 	/*
2844 	 * Make sure tasks use at least 32x as much time to run other code
2845 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 	 * Usually update_task_scan_period slows down scanning enough; on an
2847 	 * overloaded system we need to limit overhead on a per task basis.
2848 	 */
2849 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2850 		u64 diff = p->se.sum_exec_runtime - runtime;
2851 		p->node_stamp += 32 * diff;
2852 	}
2853 }
2854 
2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2856 {
2857 	int mm_users = 0;
2858 	struct mm_struct *mm = p->mm;
2859 
2860 	if (mm) {
2861 		mm_users = atomic_read(&mm->mm_users);
2862 		if (mm_users == 1) {
2863 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2864 			mm->numa_scan_seq = 0;
2865 		}
2866 	}
2867 	p->node_stamp			= 0;
2868 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2869 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2870 	/* Protect against double add, see task_tick_numa and task_numa_work */
2871 	p->numa_work.next		= &p->numa_work;
2872 	p->numa_faults			= NULL;
2873 	RCU_INIT_POINTER(p->numa_group, NULL);
2874 	p->last_task_numa_placement	= 0;
2875 	p->last_sum_exec_runtime	= 0;
2876 
2877 	init_task_work(&p->numa_work, task_numa_work);
2878 
2879 	/* New address space, reset the preferred nid */
2880 	if (!(clone_flags & CLONE_VM)) {
2881 		p->numa_preferred_nid = NUMA_NO_NODE;
2882 		return;
2883 	}
2884 
2885 	/*
2886 	 * New thread, keep existing numa_preferred_nid which should be copied
2887 	 * already by arch_dup_task_struct but stagger when scans start.
2888 	 */
2889 	if (mm) {
2890 		unsigned int delay;
2891 
2892 		delay = min_t(unsigned int, task_scan_max(current),
2893 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2894 		delay += 2 * TICK_NSEC;
2895 		p->node_stamp = delay;
2896 	}
2897 }
2898 
2899 /*
2900  * Drive the periodic memory faults..
2901  */
2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2903 {
2904 	struct callback_head *work = &curr->numa_work;
2905 	u64 period, now;
2906 
2907 	/*
2908 	 * We don't care about NUMA placement if we don't have memory.
2909 	 */
2910 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2911 		return;
2912 
2913 	/*
2914 	 * Using runtime rather than walltime has the dual advantage that
2915 	 * we (mostly) drive the selection from busy threads and that the
2916 	 * task needs to have done some actual work before we bother with
2917 	 * NUMA placement.
2918 	 */
2919 	now = curr->se.sum_exec_runtime;
2920 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2921 
2922 	if (now > curr->node_stamp + period) {
2923 		if (!curr->node_stamp)
2924 			curr->numa_scan_period = task_scan_start(curr);
2925 		curr->node_stamp += period;
2926 
2927 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2928 			task_work_add(curr, work, true);
2929 	}
2930 }
2931 
2932 static void update_scan_period(struct task_struct *p, int new_cpu)
2933 {
2934 	int src_nid = cpu_to_node(task_cpu(p));
2935 	int dst_nid = cpu_to_node(new_cpu);
2936 
2937 	if (!static_branch_likely(&sched_numa_balancing))
2938 		return;
2939 
2940 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2941 		return;
2942 
2943 	if (src_nid == dst_nid)
2944 		return;
2945 
2946 	/*
2947 	 * Allow resets if faults have been trapped before one scan
2948 	 * has completed. This is most likely due to a new task that
2949 	 * is pulled cross-node due to wakeups or load balancing.
2950 	 */
2951 	if (p->numa_scan_seq) {
2952 		/*
2953 		 * Avoid scan adjustments if moving to the preferred
2954 		 * node or if the task was not previously running on
2955 		 * the preferred node.
2956 		 */
2957 		if (dst_nid == p->numa_preferred_nid ||
2958 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2959 			src_nid != p->numa_preferred_nid))
2960 			return;
2961 	}
2962 
2963 	p->numa_scan_period = task_scan_start(p);
2964 }
2965 
2966 #else
2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2968 {
2969 }
2970 
2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2972 {
2973 }
2974 
2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2976 {
2977 }
2978 
2979 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2980 {
2981 }
2982 
2983 #endif /* CONFIG_NUMA_BALANCING */
2984 
2985 static void
2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2987 {
2988 	update_load_add(&cfs_rq->load, se->load.weight);
2989 #ifdef CONFIG_SMP
2990 	if (entity_is_task(se)) {
2991 		struct rq *rq = rq_of(cfs_rq);
2992 
2993 		account_numa_enqueue(rq, task_of(se));
2994 		list_add(&se->group_node, &rq->cfs_tasks);
2995 	}
2996 #endif
2997 	cfs_rq->nr_running++;
2998 }
2999 
3000 static void
3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002 {
3003 	update_load_sub(&cfs_rq->load, se->load.weight);
3004 #ifdef CONFIG_SMP
3005 	if (entity_is_task(se)) {
3006 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3007 		list_del_init(&se->group_node);
3008 	}
3009 #endif
3010 	cfs_rq->nr_running--;
3011 }
3012 
3013 /*
3014  * Signed add and clamp on underflow.
3015  *
3016  * Explicitly do a load-store to ensure the intermediate value never hits
3017  * memory. This allows lockless observations without ever seeing the negative
3018  * values.
3019  */
3020 #define add_positive(_ptr, _val) do {                           \
3021 	typeof(_ptr) ptr = (_ptr);                              \
3022 	typeof(_val) val = (_val);                              \
3023 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3024 								\
3025 	res = var + val;                                        \
3026 								\
3027 	if (val < 0 && res > var)                               \
3028 		res = 0;                                        \
3029 								\
3030 	WRITE_ONCE(*ptr, res);                                  \
3031 } while (0)
3032 
3033 /*
3034  * Unsigned subtract and clamp on underflow.
3035  *
3036  * Explicitly do a load-store to ensure the intermediate value never hits
3037  * memory. This allows lockless observations without ever seeing the negative
3038  * values.
3039  */
3040 #define sub_positive(_ptr, _val) do {				\
3041 	typeof(_ptr) ptr = (_ptr);				\
3042 	typeof(*ptr) val = (_val);				\
3043 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3044 	res = var - val;					\
3045 	if (res > var)						\
3046 		res = 0;					\
3047 	WRITE_ONCE(*ptr, res);					\
3048 } while (0)
3049 
3050 /*
3051  * Remove and clamp on negative, from a local variable.
3052  *
3053  * A variant of sub_positive(), which does not use explicit load-store
3054  * and is thus optimized for local variable updates.
3055  */
3056 #define lsub_positive(_ptr, _val) do {				\
3057 	typeof(_ptr) ptr = (_ptr);				\
3058 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3059 } while (0)
3060 
3061 #ifdef CONFIG_SMP
3062 static inline void
3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3064 {
3065 	cfs_rq->avg.load_avg += se->avg.load_avg;
3066 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3067 }
3068 
3069 static inline void
3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3071 {
3072 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3073 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3074 }
3075 #else
3076 static inline void
3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3078 static inline void
3079 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3080 #endif
3081 
3082 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3083 			    unsigned long weight)
3084 {
3085 	if (se->on_rq) {
3086 		/* commit outstanding execution time */
3087 		if (cfs_rq->curr == se)
3088 			update_curr(cfs_rq);
3089 		account_entity_dequeue(cfs_rq, se);
3090 	}
3091 	dequeue_load_avg(cfs_rq, se);
3092 
3093 	update_load_set(&se->load, weight);
3094 
3095 #ifdef CONFIG_SMP
3096 	do {
3097 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
3098 
3099 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3100 	} while (0);
3101 #endif
3102 
3103 	enqueue_load_avg(cfs_rq, se);
3104 	if (se->on_rq)
3105 		account_entity_enqueue(cfs_rq, se);
3106 
3107 }
3108 
3109 void reweight_task(struct task_struct *p, int prio)
3110 {
3111 	struct sched_entity *se = &p->se;
3112 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3113 	struct load_weight *load = &se->load;
3114 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3115 
3116 	reweight_entity(cfs_rq, se, weight);
3117 	load->inv_weight = sched_prio_to_wmult[prio];
3118 }
3119 
3120 #ifdef CONFIG_FAIR_GROUP_SCHED
3121 #ifdef CONFIG_SMP
3122 /*
3123  * All this does is approximate the hierarchical proportion which includes that
3124  * global sum we all love to hate.
3125  *
3126  * That is, the weight of a group entity, is the proportional share of the
3127  * group weight based on the group runqueue weights. That is:
3128  *
3129  *                     tg->weight * grq->load.weight
3130  *   ge->load.weight = -----------------------------               (1)
3131  *			  \Sum grq->load.weight
3132  *
3133  * Now, because computing that sum is prohibitively expensive to compute (been
3134  * there, done that) we approximate it with this average stuff. The average
3135  * moves slower and therefore the approximation is cheaper and more stable.
3136  *
3137  * So instead of the above, we substitute:
3138  *
3139  *   grq->load.weight -> grq->avg.load_avg                         (2)
3140  *
3141  * which yields the following:
3142  *
3143  *                     tg->weight * grq->avg.load_avg
3144  *   ge->load.weight = ------------------------------              (3)
3145  *				tg->load_avg
3146  *
3147  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3148  *
3149  * That is shares_avg, and it is right (given the approximation (2)).
3150  *
3151  * The problem with it is that because the average is slow -- it was designed
3152  * to be exactly that of course -- this leads to transients in boundary
3153  * conditions. In specific, the case where the group was idle and we start the
3154  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3155  * yielding bad latency etc..
3156  *
3157  * Now, in that special case (1) reduces to:
3158  *
3159  *                     tg->weight * grq->load.weight
3160  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3161  *			    grp->load.weight
3162  *
3163  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3164  *
3165  * So what we do is modify our approximation (3) to approach (4) in the (near)
3166  * UP case, like:
3167  *
3168  *   ge->load.weight =
3169  *
3170  *              tg->weight * grq->load.weight
3171  *     ---------------------------------------------------         (5)
3172  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3173  *
3174  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3175  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3176  *
3177  *
3178  *                     tg->weight * grq->load.weight
3179  *   ge->load.weight = -----------------------------		   (6)
3180  *				tg_load_avg'
3181  *
3182  * Where:
3183  *
3184  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3185  *                  max(grq->load.weight, grq->avg.load_avg)
3186  *
3187  * And that is shares_weight and is icky. In the (near) UP case it approaches
3188  * (4) while in the normal case it approaches (3). It consistently
3189  * overestimates the ge->load.weight and therefore:
3190  *
3191  *   \Sum ge->load.weight >= tg->weight
3192  *
3193  * hence icky!
3194  */
3195 static long calc_group_shares(struct cfs_rq *cfs_rq)
3196 {
3197 	long tg_weight, tg_shares, load, shares;
3198 	struct task_group *tg = cfs_rq->tg;
3199 
3200 	tg_shares = READ_ONCE(tg->shares);
3201 
3202 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3203 
3204 	tg_weight = atomic_long_read(&tg->load_avg);
3205 
3206 	/* Ensure tg_weight >= load */
3207 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3208 	tg_weight += load;
3209 
3210 	shares = (tg_shares * load);
3211 	if (tg_weight)
3212 		shares /= tg_weight;
3213 
3214 	/*
3215 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3216 	 * of a group with small tg->shares value. It is a floor value which is
3217 	 * assigned as a minimum load.weight to the sched_entity representing
3218 	 * the group on a CPU.
3219 	 *
3220 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3221 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3222 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3223 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3224 	 * instead of 0.
3225 	 */
3226 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3227 }
3228 #endif /* CONFIG_SMP */
3229 
3230 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3231 
3232 /*
3233  * Recomputes the group entity based on the current state of its group
3234  * runqueue.
3235  */
3236 static void update_cfs_group(struct sched_entity *se)
3237 {
3238 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3239 	long shares;
3240 
3241 	if (!gcfs_rq)
3242 		return;
3243 
3244 	if (throttled_hierarchy(gcfs_rq))
3245 		return;
3246 
3247 #ifndef CONFIG_SMP
3248 	shares = READ_ONCE(gcfs_rq->tg->shares);
3249 
3250 	if (likely(se->load.weight == shares))
3251 		return;
3252 #else
3253 	shares   = calc_group_shares(gcfs_rq);
3254 #endif
3255 
3256 	reweight_entity(cfs_rq_of(se), se, shares);
3257 }
3258 
3259 #else /* CONFIG_FAIR_GROUP_SCHED */
3260 static inline void update_cfs_group(struct sched_entity *se)
3261 {
3262 }
3263 #endif /* CONFIG_FAIR_GROUP_SCHED */
3264 
3265 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3266 {
3267 	struct rq *rq = rq_of(cfs_rq);
3268 
3269 	if (&rq->cfs == cfs_rq) {
3270 		/*
3271 		 * There are a few boundary cases this might miss but it should
3272 		 * get called often enough that that should (hopefully) not be
3273 		 * a real problem.
3274 		 *
3275 		 * It will not get called when we go idle, because the idle
3276 		 * thread is a different class (!fair), nor will the utilization
3277 		 * number include things like RT tasks.
3278 		 *
3279 		 * As is, the util number is not freq-invariant (we'd have to
3280 		 * implement arch_scale_freq_capacity() for that).
3281 		 *
3282 		 * See cpu_util().
3283 		 */
3284 		cpufreq_update_util(rq, flags);
3285 	}
3286 }
3287 
3288 #ifdef CONFIG_SMP
3289 #ifdef CONFIG_FAIR_GROUP_SCHED
3290 /**
3291  * update_tg_load_avg - update the tg's load avg
3292  * @cfs_rq: the cfs_rq whose avg changed
3293  * @force: update regardless of how small the difference
3294  *
3295  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3296  * However, because tg->load_avg is a global value there are performance
3297  * considerations.
3298  *
3299  * In order to avoid having to look at the other cfs_rq's, we use a
3300  * differential update where we store the last value we propagated. This in
3301  * turn allows skipping updates if the differential is 'small'.
3302  *
3303  * Updating tg's load_avg is necessary before update_cfs_share().
3304  */
3305 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3306 {
3307 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3308 
3309 	/*
3310 	 * No need to update load_avg for root_task_group as it is not used.
3311 	 */
3312 	if (cfs_rq->tg == &root_task_group)
3313 		return;
3314 
3315 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3316 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3317 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3318 	}
3319 }
3320 
3321 /*
3322  * Called within set_task_rq() right before setting a task's CPU. The
3323  * caller only guarantees p->pi_lock is held; no other assumptions,
3324  * including the state of rq->lock, should be made.
3325  */
3326 void set_task_rq_fair(struct sched_entity *se,
3327 		      struct cfs_rq *prev, struct cfs_rq *next)
3328 {
3329 	u64 p_last_update_time;
3330 	u64 n_last_update_time;
3331 
3332 	if (!sched_feat(ATTACH_AGE_LOAD))
3333 		return;
3334 
3335 	/*
3336 	 * We are supposed to update the task to "current" time, then its up to
3337 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3338 	 * getting what current time is, so simply throw away the out-of-date
3339 	 * time. This will result in the wakee task is less decayed, but giving
3340 	 * the wakee more load sounds not bad.
3341 	 */
3342 	if (!(se->avg.last_update_time && prev))
3343 		return;
3344 
3345 #ifndef CONFIG_64BIT
3346 	{
3347 		u64 p_last_update_time_copy;
3348 		u64 n_last_update_time_copy;
3349 
3350 		do {
3351 			p_last_update_time_copy = prev->load_last_update_time_copy;
3352 			n_last_update_time_copy = next->load_last_update_time_copy;
3353 
3354 			smp_rmb();
3355 
3356 			p_last_update_time = prev->avg.last_update_time;
3357 			n_last_update_time = next->avg.last_update_time;
3358 
3359 		} while (p_last_update_time != p_last_update_time_copy ||
3360 			 n_last_update_time != n_last_update_time_copy);
3361 	}
3362 #else
3363 	p_last_update_time = prev->avg.last_update_time;
3364 	n_last_update_time = next->avg.last_update_time;
3365 #endif
3366 	__update_load_avg_blocked_se(p_last_update_time, se);
3367 	se->avg.last_update_time = n_last_update_time;
3368 }
3369 
3370 
3371 /*
3372  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3373  * propagate its contribution. The key to this propagation is the invariant
3374  * that for each group:
3375  *
3376  *   ge->avg == grq->avg						(1)
3377  *
3378  * _IFF_ we look at the pure running and runnable sums. Because they
3379  * represent the very same entity, just at different points in the hierarchy.
3380  *
3381  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3382  * and simply copies the running/runnable sum over (but still wrong, because
3383  * the group entity and group rq do not have their PELT windows aligned).
3384  *
3385  * However, update_tg_cfs_load() is more complex. So we have:
3386  *
3387  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3388  *
3389  * And since, like util, the runnable part should be directly transferable,
3390  * the following would _appear_ to be the straight forward approach:
3391  *
3392  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3393  *
3394  * And per (1) we have:
3395  *
3396  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3397  *
3398  * Which gives:
3399  *
3400  *                      ge->load.weight * grq->avg.load_avg
3401  *   ge->avg.load_avg = -----------------------------------		(4)
3402  *                               grq->load.weight
3403  *
3404  * Except that is wrong!
3405  *
3406  * Because while for entities historical weight is not important and we
3407  * really only care about our future and therefore can consider a pure
3408  * runnable sum, runqueues can NOT do this.
3409  *
3410  * We specifically want runqueues to have a load_avg that includes
3411  * historical weights. Those represent the blocked load, the load we expect
3412  * to (shortly) return to us. This only works by keeping the weights as
3413  * integral part of the sum. We therefore cannot decompose as per (3).
3414  *
3415  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3416  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3417  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3418  * runnable section of these tasks overlap (or not). If they were to perfectly
3419  * align the rq as a whole would be runnable 2/3 of the time. If however we
3420  * always have at least 1 runnable task, the rq as a whole is always runnable.
3421  *
3422  * So we'll have to approximate.. :/
3423  *
3424  * Given the constraint:
3425  *
3426  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3427  *
3428  * We can construct a rule that adds runnable to a rq by assuming minimal
3429  * overlap.
3430  *
3431  * On removal, we'll assume each task is equally runnable; which yields:
3432  *
3433  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3434  *
3435  * XXX: only do this for the part of runnable > running ?
3436  *
3437  */
3438 
3439 static inline void
3440 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3441 {
3442 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3443 
3444 	/* Nothing to update */
3445 	if (!delta)
3446 		return;
3447 
3448 	/*
3449 	 * The relation between sum and avg is:
3450 	 *
3451 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3452 	 *
3453 	 * however, the PELT windows are not aligned between grq and gse.
3454 	 */
3455 
3456 	/* Set new sched_entity's utilization */
3457 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3458 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3459 
3460 	/* Update parent cfs_rq utilization */
3461 	add_positive(&cfs_rq->avg.util_avg, delta);
3462 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3463 }
3464 
3465 static inline void
3466 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3467 {
3468 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3469 
3470 	/* Nothing to update */
3471 	if (!delta)
3472 		return;
3473 
3474 	/*
3475 	 * The relation between sum and avg is:
3476 	 *
3477 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3478 	 *
3479 	 * however, the PELT windows are not aligned between grq and gse.
3480 	 */
3481 
3482 	/* Set new sched_entity's runnable */
3483 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3484 	se->avg.runnable_sum = se->avg.runnable_avg * LOAD_AVG_MAX;
3485 
3486 	/* Update parent cfs_rq runnable */
3487 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3488 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * LOAD_AVG_MAX;
3489 }
3490 
3491 static inline void
3492 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3493 {
3494 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3495 	unsigned long load_avg;
3496 	u64 load_sum = 0;
3497 	s64 delta_sum;
3498 
3499 	if (!runnable_sum)
3500 		return;
3501 
3502 	gcfs_rq->prop_runnable_sum = 0;
3503 
3504 	if (runnable_sum >= 0) {
3505 		/*
3506 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3507 		 * the CPU is saturated running == runnable.
3508 		 */
3509 		runnable_sum += se->avg.load_sum;
3510 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3511 	} else {
3512 		/*
3513 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3514 		 * assuming all tasks are equally runnable.
3515 		 */
3516 		if (scale_load_down(gcfs_rq->load.weight)) {
3517 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3518 				scale_load_down(gcfs_rq->load.weight));
3519 		}
3520 
3521 		/* But make sure to not inflate se's runnable */
3522 		runnable_sum = min(se->avg.load_sum, load_sum);
3523 	}
3524 
3525 	/*
3526 	 * runnable_sum can't be lower than running_sum
3527 	 * Rescale running sum to be in the same range as runnable sum
3528 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3529 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3530 	 */
3531 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3532 	runnable_sum = max(runnable_sum, running_sum);
3533 
3534 	load_sum = (s64)se_weight(se) * runnable_sum;
3535 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3536 
3537 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3538 	delta_avg = load_avg - se->avg.load_avg;
3539 
3540 	se->avg.load_sum = runnable_sum;
3541 	se->avg.load_avg = load_avg;
3542 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3543 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3544 }
3545 
3546 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3547 {
3548 	cfs_rq->propagate = 1;
3549 	cfs_rq->prop_runnable_sum += runnable_sum;
3550 }
3551 
3552 /* Update task and its cfs_rq load average */
3553 static inline int propagate_entity_load_avg(struct sched_entity *se)
3554 {
3555 	struct cfs_rq *cfs_rq, *gcfs_rq;
3556 
3557 	if (entity_is_task(se))
3558 		return 0;
3559 
3560 	gcfs_rq = group_cfs_rq(se);
3561 	if (!gcfs_rq->propagate)
3562 		return 0;
3563 
3564 	gcfs_rq->propagate = 0;
3565 
3566 	cfs_rq = cfs_rq_of(se);
3567 
3568 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3569 
3570 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3571 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3572 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3573 
3574 	trace_pelt_cfs_tp(cfs_rq);
3575 	trace_pelt_se_tp(se);
3576 
3577 	return 1;
3578 }
3579 
3580 /*
3581  * Check if we need to update the load and the utilization of a blocked
3582  * group_entity:
3583  */
3584 static inline bool skip_blocked_update(struct sched_entity *se)
3585 {
3586 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3587 
3588 	/*
3589 	 * If sched_entity still have not zero load or utilization, we have to
3590 	 * decay it:
3591 	 */
3592 	if (se->avg.load_avg || se->avg.util_avg)
3593 		return false;
3594 
3595 	/*
3596 	 * If there is a pending propagation, we have to update the load and
3597 	 * the utilization of the sched_entity:
3598 	 */
3599 	if (gcfs_rq->propagate)
3600 		return false;
3601 
3602 	/*
3603 	 * Otherwise, the load and the utilization of the sched_entity is
3604 	 * already zero and there is no pending propagation, so it will be a
3605 	 * waste of time to try to decay it:
3606 	 */
3607 	return true;
3608 }
3609 
3610 #else /* CONFIG_FAIR_GROUP_SCHED */
3611 
3612 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3613 
3614 static inline int propagate_entity_load_avg(struct sched_entity *se)
3615 {
3616 	return 0;
3617 }
3618 
3619 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3620 
3621 #endif /* CONFIG_FAIR_GROUP_SCHED */
3622 
3623 /**
3624  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3625  * @now: current time, as per cfs_rq_clock_pelt()
3626  * @cfs_rq: cfs_rq to update
3627  *
3628  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3629  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3630  * post_init_entity_util_avg().
3631  *
3632  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3633  *
3634  * Returns true if the load decayed or we removed load.
3635  *
3636  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3637  * call update_tg_load_avg() when this function returns true.
3638  */
3639 static inline int
3640 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3641 {
3642 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3643 	struct sched_avg *sa = &cfs_rq->avg;
3644 	int decayed = 0;
3645 
3646 	if (cfs_rq->removed.nr) {
3647 		unsigned long r;
3648 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3649 
3650 		raw_spin_lock(&cfs_rq->removed.lock);
3651 		swap(cfs_rq->removed.util_avg, removed_util);
3652 		swap(cfs_rq->removed.load_avg, removed_load);
3653 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3654 		cfs_rq->removed.nr = 0;
3655 		raw_spin_unlock(&cfs_rq->removed.lock);
3656 
3657 		r = removed_load;
3658 		sub_positive(&sa->load_avg, r);
3659 		sub_positive(&sa->load_sum, r * divider);
3660 
3661 		r = removed_util;
3662 		sub_positive(&sa->util_avg, r);
3663 		sub_positive(&sa->util_sum, r * divider);
3664 
3665 		r = removed_runnable;
3666 		sub_positive(&sa->runnable_avg, r);
3667 		sub_positive(&sa->runnable_sum, r * divider);
3668 
3669 		/*
3670 		 * removed_runnable is the unweighted version of removed_load so we
3671 		 * can use it to estimate removed_load_sum.
3672 		 */
3673 		add_tg_cfs_propagate(cfs_rq,
3674 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3675 
3676 		decayed = 1;
3677 	}
3678 
3679 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3680 
3681 #ifndef CONFIG_64BIT
3682 	smp_wmb();
3683 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3684 #endif
3685 
3686 	return decayed;
3687 }
3688 
3689 /**
3690  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3691  * @cfs_rq: cfs_rq to attach to
3692  * @se: sched_entity to attach
3693  *
3694  * Must call update_cfs_rq_load_avg() before this, since we rely on
3695  * cfs_rq->avg.last_update_time being current.
3696  */
3697 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3698 {
3699 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3700 
3701 	/*
3702 	 * When we attach the @se to the @cfs_rq, we must align the decay
3703 	 * window because without that, really weird and wonderful things can
3704 	 * happen.
3705 	 *
3706 	 * XXX illustrate
3707 	 */
3708 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3709 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3710 
3711 	/*
3712 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3713 	 * period_contrib. This isn't strictly correct, but since we're
3714 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3715 	 * _sum a little.
3716 	 */
3717 	se->avg.util_sum = se->avg.util_avg * divider;
3718 
3719 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3720 
3721 	se->avg.load_sum = divider;
3722 	if (se_weight(se)) {
3723 		se->avg.load_sum =
3724 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3725 	}
3726 
3727 	enqueue_load_avg(cfs_rq, se);
3728 	cfs_rq->avg.util_avg += se->avg.util_avg;
3729 	cfs_rq->avg.util_sum += se->avg.util_sum;
3730 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3731 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3732 
3733 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3734 
3735 	cfs_rq_util_change(cfs_rq, 0);
3736 
3737 	trace_pelt_cfs_tp(cfs_rq);
3738 }
3739 
3740 /**
3741  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3742  * @cfs_rq: cfs_rq to detach from
3743  * @se: sched_entity to detach
3744  *
3745  * Must call update_cfs_rq_load_avg() before this, since we rely on
3746  * cfs_rq->avg.last_update_time being current.
3747  */
3748 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3749 {
3750 	dequeue_load_avg(cfs_rq, se);
3751 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3752 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3753 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3754 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3755 
3756 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3757 
3758 	cfs_rq_util_change(cfs_rq, 0);
3759 
3760 	trace_pelt_cfs_tp(cfs_rq);
3761 }
3762 
3763 /*
3764  * Optional action to be done while updating the load average
3765  */
3766 #define UPDATE_TG	0x1
3767 #define SKIP_AGE_LOAD	0x2
3768 #define DO_ATTACH	0x4
3769 
3770 /* Update task and its cfs_rq load average */
3771 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3772 {
3773 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3774 	int decayed;
3775 
3776 	/*
3777 	 * Track task load average for carrying it to new CPU after migrated, and
3778 	 * track group sched_entity load average for task_h_load calc in migration
3779 	 */
3780 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3781 		__update_load_avg_se(now, cfs_rq, se);
3782 
3783 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3784 	decayed |= propagate_entity_load_avg(se);
3785 
3786 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3787 
3788 		/*
3789 		 * DO_ATTACH means we're here from enqueue_entity().
3790 		 * !last_update_time means we've passed through
3791 		 * migrate_task_rq_fair() indicating we migrated.
3792 		 *
3793 		 * IOW we're enqueueing a task on a new CPU.
3794 		 */
3795 		attach_entity_load_avg(cfs_rq, se);
3796 		update_tg_load_avg(cfs_rq, 0);
3797 
3798 	} else if (decayed) {
3799 		cfs_rq_util_change(cfs_rq, 0);
3800 
3801 		if (flags & UPDATE_TG)
3802 			update_tg_load_avg(cfs_rq, 0);
3803 	}
3804 }
3805 
3806 #ifndef CONFIG_64BIT
3807 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3808 {
3809 	u64 last_update_time_copy;
3810 	u64 last_update_time;
3811 
3812 	do {
3813 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3814 		smp_rmb();
3815 		last_update_time = cfs_rq->avg.last_update_time;
3816 	} while (last_update_time != last_update_time_copy);
3817 
3818 	return last_update_time;
3819 }
3820 #else
3821 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3822 {
3823 	return cfs_rq->avg.last_update_time;
3824 }
3825 #endif
3826 
3827 /*
3828  * Synchronize entity load avg of dequeued entity without locking
3829  * the previous rq.
3830  */
3831 static void sync_entity_load_avg(struct sched_entity *se)
3832 {
3833 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3834 	u64 last_update_time;
3835 
3836 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3837 	__update_load_avg_blocked_se(last_update_time, se);
3838 }
3839 
3840 /*
3841  * Task first catches up with cfs_rq, and then subtract
3842  * itself from the cfs_rq (task must be off the queue now).
3843  */
3844 static void remove_entity_load_avg(struct sched_entity *se)
3845 {
3846 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3847 	unsigned long flags;
3848 
3849 	/*
3850 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3851 	 * post_init_entity_util_avg() which will have added things to the
3852 	 * cfs_rq, so we can remove unconditionally.
3853 	 */
3854 
3855 	sync_entity_load_avg(se);
3856 
3857 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3858 	++cfs_rq->removed.nr;
3859 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3860 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3861 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3862 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3863 }
3864 
3865 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3866 {
3867 	return cfs_rq->avg.runnable_avg;
3868 }
3869 
3870 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3871 {
3872 	return cfs_rq->avg.load_avg;
3873 }
3874 
3875 static inline unsigned long task_util(struct task_struct *p)
3876 {
3877 	return READ_ONCE(p->se.avg.util_avg);
3878 }
3879 
3880 static inline unsigned long _task_util_est(struct task_struct *p)
3881 {
3882 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3883 
3884 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3885 }
3886 
3887 static inline unsigned long task_util_est(struct task_struct *p)
3888 {
3889 	return max(task_util(p), _task_util_est(p));
3890 }
3891 
3892 #ifdef CONFIG_UCLAMP_TASK
3893 static inline unsigned long uclamp_task_util(struct task_struct *p)
3894 {
3895 	return clamp(task_util_est(p),
3896 		     uclamp_eff_value(p, UCLAMP_MIN),
3897 		     uclamp_eff_value(p, UCLAMP_MAX));
3898 }
3899 #else
3900 static inline unsigned long uclamp_task_util(struct task_struct *p)
3901 {
3902 	return task_util_est(p);
3903 }
3904 #endif
3905 
3906 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3907 				    struct task_struct *p)
3908 {
3909 	unsigned int enqueued;
3910 
3911 	if (!sched_feat(UTIL_EST))
3912 		return;
3913 
3914 	/* Update root cfs_rq's estimated utilization */
3915 	enqueued  = cfs_rq->avg.util_est.enqueued;
3916 	enqueued += _task_util_est(p);
3917 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3918 }
3919 
3920 /*
3921  * Check if a (signed) value is within a specified (unsigned) margin,
3922  * based on the observation that:
3923  *
3924  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3925  *
3926  * NOTE: this only works when value + maring < INT_MAX.
3927  */
3928 static inline bool within_margin(int value, int margin)
3929 {
3930 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3931 }
3932 
3933 static void
3934 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3935 {
3936 	long last_ewma_diff;
3937 	struct util_est ue;
3938 	int cpu;
3939 
3940 	if (!sched_feat(UTIL_EST))
3941 		return;
3942 
3943 	/* Update root cfs_rq's estimated utilization */
3944 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3945 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3946 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3947 
3948 	/*
3949 	 * Skip update of task's estimated utilization when the task has not
3950 	 * yet completed an activation, e.g. being migrated.
3951 	 */
3952 	if (!task_sleep)
3953 		return;
3954 
3955 	/*
3956 	 * If the PELT values haven't changed since enqueue time,
3957 	 * skip the util_est update.
3958 	 */
3959 	ue = p->se.avg.util_est;
3960 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3961 		return;
3962 
3963 	/*
3964 	 * Reset EWMA on utilization increases, the moving average is used only
3965 	 * to smooth utilization decreases.
3966 	 */
3967 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3968 	if (sched_feat(UTIL_EST_FASTUP)) {
3969 		if (ue.ewma < ue.enqueued) {
3970 			ue.ewma = ue.enqueued;
3971 			goto done;
3972 		}
3973 	}
3974 
3975 	/*
3976 	 * Skip update of task's estimated utilization when its EWMA is
3977 	 * already ~1% close to its last activation value.
3978 	 */
3979 	last_ewma_diff = ue.enqueued - ue.ewma;
3980 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3981 		return;
3982 
3983 	/*
3984 	 * To avoid overestimation of actual task utilization, skip updates if
3985 	 * we cannot grant there is idle time in this CPU.
3986 	 */
3987 	cpu = cpu_of(rq_of(cfs_rq));
3988 	if (task_util(p) > capacity_orig_of(cpu))
3989 		return;
3990 
3991 	/*
3992 	 * Update Task's estimated utilization
3993 	 *
3994 	 * When *p completes an activation we can consolidate another sample
3995 	 * of the task size. This is done by storing the current PELT value
3996 	 * as ue.enqueued and by using this value to update the Exponential
3997 	 * Weighted Moving Average (EWMA):
3998 	 *
3999 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4000 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4001 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4002 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4003 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4004 	 *
4005 	 * Where 'w' is the weight of new samples, which is configured to be
4006 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4007 	 */
4008 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4009 	ue.ewma  += last_ewma_diff;
4010 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4011 done:
4012 	WRITE_ONCE(p->se.avg.util_est, ue);
4013 }
4014 
4015 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4016 {
4017 	return fits_capacity(uclamp_task_util(p), capacity);
4018 }
4019 
4020 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4021 {
4022 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4023 		return;
4024 
4025 	if (!p) {
4026 		rq->misfit_task_load = 0;
4027 		return;
4028 	}
4029 
4030 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4031 		rq->misfit_task_load = 0;
4032 		return;
4033 	}
4034 
4035 	rq->misfit_task_load = task_h_load(p);
4036 }
4037 
4038 #else /* CONFIG_SMP */
4039 
4040 #define UPDATE_TG	0x0
4041 #define SKIP_AGE_LOAD	0x0
4042 #define DO_ATTACH	0x0
4043 
4044 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4045 {
4046 	cfs_rq_util_change(cfs_rq, 0);
4047 }
4048 
4049 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4050 
4051 static inline void
4052 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4053 static inline void
4054 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4055 
4056 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
4057 {
4058 	return 0;
4059 }
4060 
4061 static inline void
4062 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4063 
4064 static inline void
4065 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4066 		 bool task_sleep) {}
4067 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4068 
4069 #endif /* CONFIG_SMP */
4070 
4071 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4072 {
4073 #ifdef CONFIG_SCHED_DEBUG
4074 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4075 
4076 	if (d < 0)
4077 		d = -d;
4078 
4079 	if (d > 3*sysctl_sched_latency)
4080 		schedstat_inc(cfs_rq->nr_spread_over);
4081 #endif
4082 }
4083 
4084 static void
4085 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4086 {
4087 	u64 vruntime = cfs_rq->min_vruntime;
4088 
4089 	/*
4090 	 * The 'current' period is already promised to the current tasks,
4091 	 * however the extra weight of the new task will slow them down a
4092 	 * little, place the new task so that it fits in the slot that
4093 	 * stays open at the end.
4094 	 */
4095 	if (initial && sched_feat(START_DEBIT))
4096 		vruntime += sched_vslice(cfs_rq, se);
4097 
4098 	/* sleeps up to a single latency don't count. */
4099 	if (!initial) {
4100 		unsigned long thresh = sysctl_sched_latency;
4101 
4102 		/*
4103 		 * Halve their sleep time's effect, to allow
4104 		 * for a gentler effect of sleepers:
4105 		 */
4106 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4107 			thresh >>= 1;
4108 
4109 		vruntime -= thresh;
4110 	}
4111 
4112 	/* ensure we never gain time by being placed backwards. */
4113 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4114 }
4115 
4116 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4117 
4118 static inline void check_schedstat_required(void)
4119 {
4120 #ifdef CONFIG_SCHEDSTATS
4121 	if (schedstat_enabled())
4122 		return;
4123 
4124 	/* Force schedstat enabled if a dependent tracepoint is active */
4125 	if (trace_sched_stat_wait_enabled()    ||
4126 			trace_sched_stat_sleep_enabled()   ||
4127 			trace_sched_stat_iowait_enabled()  ||
4128 			trace_sched_stat_blocked_enabled() ||
4129 			trace_sched_stat_runtime_enabled())  {
4130 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4131 			     "stat_blocked and stat_runtime require the "
4132 			     "kernel parameter schedstats=enable or "
4133 			     "kernel.sched_schedstats=1\n");
4134 	}
4135 #endif
4136 }
4137 
4138 static inline bool cfs_bandwidth_used(void);
4139 
4140 /*
4141  * MIGRATION
4142  *
4143  *	dequeue
4144  *	  update_curr()
4145  *	    update_min_vruntime()
4146  *	  vruntime -= min_vruntime
4147  *
4148  *	enqueue
4149  *	  update_curr()
4150  *	    update_min_vruntime()
4151  *	  vruntime += min_vruntime
4152  *
4153  * this way the vruntime transition between RQs is done when both
4154  * min_vruntime are up-to-date.
4155  *
4156  * WAKEUP (remote)
4157  *
4158  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4159  *	  vruntime -= min_vruntime
4160  *
4161  *	enqueue
4162  *	  update_curr()
4163  *	    update_min_vruntime()
4164  *	  vruntime += min_vruntime
4165  *
4166  * this way we don't have the most up-to-date min_vruntime on the originating
4167  * CPU and an up-to-date min_vruntime on the destination CPU.
4168  */
4169 
4170 static void
4171 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4172 {
4173 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4174 	bool curr = cfs_rq->curr == se;
4175 
4176 	/*
4177 	 * If we're the current task, we must renormalise before calling
4178 	 * update_curr().
4179 	 */
4180 	if (renorm && curr)
4181 		se->vruntime += cfs_rq->min_vruntime;
4182 
4183 	update_curr(cfs_rq);
4184 
4185 	/*
4186 	 * Otherwise, renormalise after, such that we're placed at the current
4187 	 * moment in time, instead of some random moment in the past. Being
4188 	 * placed in the past could significantly boost this task to the
4189 	 * fairness detriment of existing tasks.
4190 	 */
4191 	if (renorm && !curr)
4192 		se->vruntime += cfs_rq->min_vruntime;
4193 
4194 	/*
4195 	 * When enqueuing a sched_entity, we must:
4196 	 *   - Update loads to have both entity and cfs_rq synced with now.
4197 	 *   - Add its load to cfs_rq->runnable_avg
4198 	 *   - For group_entity, update its weight to reflect the new share of
4199 	 *     its group cfs_rq
4200 	 *   - Add its new weight to cfs_rq->load.weight
4201 	 */
4202 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4203 	se_update_runnable(se);
4204 	update_cfs_group(se);
4205 	account_entity_enqueue(cfs_rq, se);
4206 
4207 	if (flags & ENQUEUE_WAKEUP)
4208 		place_entity(cfs_rq, se, 0);
4209 
4210 	check_schedstat_required();
4211 	update_stats_enqueue(cfs_rq, se, flags);
4212 	check_spread(cfs_rq, se);
4213 	if (!curr)
4214 		__enqueue_entity(cfs_rq, se);
4215 	se->on_rq = 1;
4216 
4217 	/*
4218 	 * When bandwidth control is enabled, cfs might have been removed
4219 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4220 	 * add it unconditionnally.
4221 	 */
4222 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4223 		list_add_leaf_cfs_rq(cfs_rq);
4224 
4225 	if (cfs_rq->nr_running == 1)
4226 		check_enqueue_throttle(cfs_rq);
4227 }
4228 
4229 static void __clear_buddies_last(struct sched_entity *se)
4230 {
4231 	for_each_sched_entity(se) {
4232 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4233 		if (cfs_rq->last != se)
4234 			break;
4235 
4236 		cfs_rq->last = NULL;
4237 	}
4238 }
4239 
4240 static void __clear_buddies_next(struct sched_entity *se)
4241 {
4242 	for_each_sched_entity(se) {
4243 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4244 		if (cfs_rq->next != se)
4245 			break;
4246 
4247 		cfs_rq->next = NULL;
4248 	}
4249 }
4250 
4251 static void __clear_buddies_skip(struct sched_entity *se)
4252 {
4253 	for_each_sched_entity(se) {
4254 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4255 		if (cfs_rq->skip != se)
4256 			break;
4257 
4258 		cfs_rq->skip = NULL;
4259 	}
4260 }
4261 
4262 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4263 {
4264 	if (cfs_rq->last == se)
4265 		__clear_buddies_last(se);
4266 
4267 	if (cfs_rq->next == se)
4268 		__clear_buddies_next(se);
4269 
4270 	if (cfs_rq->skip == se)
4271 		__clear_buddies_skip(se);
4272 }
4273 
4274 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4275 
4276 static void
4277 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4278 {
4279 	/*
4280 	 * Update run-time statistics of the 'current'.
4281 	 */
4282 	update_curr(cfs_rq);
4283 
4284 	/*
4285 	 * When dequeuing a sched_entity, we must:
4286 	 *   - Update loads to have both entity and cfs_rq synced with now.
4287 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4288 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4289 	 *   - For group entity, update its weight to reflect the new share
4290 	 *     of its group cfs_rq.
4291 	 */
4292 	update_load_avg(cfs_rq, se, UPDATE_TG);
4293 	se_update_runnable(se);
4294 
4295 	update_stats_dequeue(cfs_rq, se, flags);
4296 
4297 	clear_buddies(cfs_rq, se);
4298 
4299 	if (se != cfs_rq->curr)
4300 		__dequeue_entity(cfs_rq, se);
4301 	se->on_rq = 0;
4302 	account_entity_dequeue(cfs_rq, se);
4303 
4304 	/*
4305 	 * Normalize after update_curr(); which will also have moved
4306 	 * min_vruntime if @se is the one holding it back. But before doing
4307 	 * update_min_vruntime() again, which will discount @se's position and
4308 	 * can move min_vruntime forward still more.
4309 	 */
4310 	if (!(flags & DEQUEUE_SLEEP))
4311 		se->vruntime -= cfs_rq->min_vruntime;
4312 
4313 	/* return excess runtime on last dequeue */
4314 	return_cfs_rq_runtime(cfs_rq);
4315 
4316 	update_cfs_group(se);
4317 
4318 	/*
4319 	 * Now advance min_vruntime if @se was the entity holding it back,
4320 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4321 	 * put back on, and if we advance min_vruntime, we'll be placed back
4322 	 * further than we started -- ie. we'll be penalized.
4323 	 */
4324 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4325 		update_min_vruntime(cfs_rq);
4326 }
4327 
4328 /*
4329  * Preempt the current task with a newly woken task if needed:
4330  */
4331 static void
4332 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4333 {
4334 	unsigned long ideal_runtime, delta_exec;
4335 	struct sched_entity *se;
4336 	s64 delta;
4337 
4338 	ideal_runtime = sched_slice(cfs_rq, curr);
4339 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4340 	if (delta_exec > ideal_runtime) {
4341 		resched_curr(rq_of(cfs_rq));
4342 		/*
4343 		 * The current task ran long enough, ensure it doesn't get
4344 		 * re-elected due to buddy favours.
4345 		 */
4346 		clear_buddies(cfs_rq, curr);
4347 		return;
4348 	}
4349 
4350 	/*
4351 	 * Ensure that a task that missed wakeup preemption by a
4352 	 * narrow margin doesn't have to wait for a full slice.
4353 	 * This also mitigates buddy induced latencies under load.
4354 	 */
4355 	if (delta_exec < sysctl_sched_min_granularity)
4356 		return;
4357 
4358 	se = __pick_first_entity(cfs_rq);
4359 	delta = curr->vruntime - se->vruntime;
4360 
4361 	if (delta < 0)
4362 		return;
4363 
4364 	if (delta > ideal_runtime)
4365 		resched_curr(rq_of(cfs_rq));
4366 }
4367 
4368 static void
4369 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4370 {
4371 	/* 'current' is not kept within the tree. */
4372 	if (se->on_rq) {
4373 		/*
4374 		 * Any task has to be enqueued before it get to execute on
4375 		 * a CPU. So account for the time it spent waiting on the
4376 		 * runqueue.
4377 		 */
4378 		update_stats_wait_end(cfs_rq, se);
4379 		__dequeue_entity(cfs_rq, se);
4380 		update_load_avg(cfs_rq, se, UPDATE_TG);
4381 	}
4382 
4383 	update_stats_curr_start(cfs_rq, se);
4384 	cfs_rq->curr = se;
4385 
4386 	/*
4387 	 * Track our maximum slice length, if the CPU's load is at
4388 	 * least twice that of our own weight (i.e. dont track it
4389 	 * when there are only lesser-weight tasks around):
4390 	 */
4391 	if (schedstat_enabled() &&
4392 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4393 		schedstat_set(se->statistics.slice_max,
4394 			max((u64)schedstat_val(se->statistics.slice_max),
4395 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4396 	}
4397 
4398 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4399 }
4400 
4401 static int
4402 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4403 
4404 /*
4405  * Pick the next process, keeping these things in mind, in this order:
4406  * 1) keep things fair between processes/task groups
4407  * 2) pick the "next" process, since someone really wants that to run
4408  * 3) pick the "last" process, for cache locality
4409  * 4) do not run the "skip" process, if something else is available
4410  */
4411 static struct sched_entity *
4412 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4413 {
4414 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4415 	struct sched_entity *se;
4416 
4417 	/*
4418 	 * If curr is set we have to see if its left of the leftmost entity
4419 	 * still in the tree, provided there was anything in the tree at all.
4420 	 */
4421 	if (!left || (curr && entity_before(curr, left)))
4422 		left = curr;
4423 
4424 	se = left; /* ideally we run the leftmost entity */
4425 
4426 	/*
4427 	 * Avoid running the skip buddy, if running something else can
4428 	 * be done without getting too unfair.
4429 	 */
4430 	if (cfs_rq->skip == se) {
4431 		struct sched_entity *second;
4432 
4433 		if (se == curr) {
4434 			second = __pick_first_entity(cfs_rq);
4435 		} else {
4436 			second = __pick_next_entity(se);
4437 			if (!second || (curr && entity_before(curr, second)))
4438 				second = curr;
4439 		}
4440 
4441 		if (second && wakeup_preempt_entity(second, left) < 1)
4442 			se = second;
4443 	}
4444 
4445 	/*
4446 	 * Prefer last buddy, try to return the CPU to a preempted task.
4447 	 */
4448 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4449 		se = cfs_rq->last;
4450 
4451 	/*
4452 	 * Someone really wants this to run. If it's not unfair, run it.
4453 	 */
4454 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4455 		se = cfs_rq->next;
4456 
4457 	clear_buddies(cfs_rq, se);
4458 
4459 	return se;
4460 }
4461 
4462 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4463 
4464 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4465 {
4466 	/*
4467 	 * If still on the runqueue then deactivate_task()
4468 	 * was not called and update_curr() has to be done:
4469 	 */
4470 	if (prev->on_rq)
4471 		update_curr(cfs_rq);
4472 
4473 	/* throttle cfs_rqs exceeding runtime */
4474 	check_cfs_rq_runtime(cfs_rq);
4475 
4476 	check_spread(cfs_rq, prev);
4477 
4478 	if (prev->on_rq) {
4479 		update_stats_wait_start(cfs_rq, prev);
4480 		/* Put 'current' back into the tree. */
4481 		__enqueue_entity(cfs_rq, prev);
4482 		/* in !on_rq case, update occurred at dequeue */
4483 		update_load_avg(cfs_rq, prev, 0);
4484 	}
4485 	cfs_rq->curr = NULL;
4486 }
4487 
4488 static void
4489 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4490 {
4491 	/*
4492 	 * Update run-time statistics of the 'current'.
4493 	 */
4494 	update_curr(cfs_rq);
4495 
4496 	/*
4497 	 * Ensure that runnable average is periodically updated.
4498 	 */
4499 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4500 	update_cfs_group(curr);
4501 
4502 #ifdef CONFIG_SCHED_HRTICK
4503 	/*
4504 	 * queued ticks are scheduled to match the slice, so don't bother
4505 	 * validating it and just reschedule.
4506 	 */
4507 	if (queued) {
4508 		resched_curr(rq_of(cfs_rq));
4509 		return;
4510 	}
4511 	/*
4512 	 * don't let the period tick interfere with the hrtick preemption
4513 	 */
4514 	if (!sched_feat(DOUBLE_TICK) &&
4515 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4516 		return;
4517 #endif
4518 
4519 	if (cfs_rq->nr_running > 1)
4520 		check_preempt_tick(cfs_rq, curr);
4521 }
4522 
4523 
4524 /**************************************************
4525  * CFS bandwidth control machinery
4526  */
4527 
4528 #ifdef CONFIG_CFS_BANDWIDTH
4529 
4530 #ifdef CONFIG_JUMP_LABEL
4531 static struct static_key __cfs_bandwidth_used;
4532 
4533 static inline bool cfs_bandwidth_used(void)
4534 {
4535 	return static_key_false(&__cfs_bandwidth_used);
4536 }
4537 
4538 void cfs_bandwidth_usage_inc(void)
4539 {
4540 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4541 }
4542 
4543 void cfs_bandwidth_usage_dec(void)
4544 {
4545 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4546 }
4547 #else /* CONFIG_JUMP_LABEL */
4548 static bool cfs_bandwidth_used(void)
4549 {
4550 	return true;
4551 }
4552 
4553 void cfs_bandwidth_usage_inc(void) {}
4554 void cfs_bandwidth_usage_dec(void) {}
4555 #endif /* CONFIG_JUMP_LABEL */
4556 
4557 /*
4558  * default period for cfs group bandwidth.
4559  * default: 0.1s, units: nanoseconds
4560  */
4561 static inline u64 default_cfs_period(void)
4562 {
4563 	return 100000000ULL;
4564 }
4565 
4566 static inline u64 sched_cfs_bandwidth_slice(void)
4567 {
4568 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4569 }
4570 
4571 /*
4572  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4573  * directly instead of rq->clock to avoid adding additional synchronization
4574  * around rq->lock.
4575  *
4576  * requires cfs_b->lock
4577  */
4578 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4579 {
4580 	if (cfs_b->quota != RUNTIME_INF)
4581 		cfs_b->runtime = cfs_b->quota;
4582 }
4583 
4584 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4585 {
4586 	return &tg->cfs_bandwidth;
4587 }
4588 
4589 /* returns 0 on failure to allocate runtime */
4590 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4591 {
4592 	struct task_group *tg = cfs_rq->tg;
4593 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4594 	u64 amount = 0, min_amount;
4595 
4596 	/* note: this is a positive sum as runtime_remaining <= 0 */
4597 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4598 
4599 	raw_spin_lock(&cfs_b->lock);
4600 	if (cfs_b->quota == RUNTIME_INF)
4601 		amount = min_amount;
4602 	else {
4603 		start_cfs_bandwidth(cfs_b);
4604 
4605 		if (cfs_b->runtime > 0) {
4606 			amount = min(cfs_b->runtime, min_amount);
4607 			cfs_b->runtime -= amount;
4608 			cfs_b->idle = 0;
4609 		}
4610 	}
4611 	raw_spin_unlock(&cfs_b->lock);
4612 
4613 	cfs_rq->runtime_remaining += amount;
4614 
4615 	return cfs_rq->runtime_remaining > 0;
4616 }
4617 
4618 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4619 {
4620 	/* dock delta_exec before expiring quota (as it could span periods) */
4621 	cfs_rq->runtime_remaining -= delta_exec;
4622 
4623 	if (likely(cfs_rq->runtime_remaining > 0))
4624 		return;
4625 
4626 	if (cfs_rq->throttled)
4627 		return;
4628 	/*
4629 	 * if we're unable to extend our runtime we resched so that the active
4630 	 * hierarchy can be throttled
4631 	 */
4632 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4633 		resched_curr(rq_of(cfs_rq));
4634 }
4635 
4636 static __always_inline
4637 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4638 {
4639 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4640 		return;
4641 
4642 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4643 }
4644 
4645 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4646 {
4647 	return cfs_bandwidth_used() && cfs_rq->throttled;
4648 }
4649 
4650 /* check whether cfs_rq, or any parent, is throttled */
4651 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4652 {
4653 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4654 }
4655 
4656 /*
4657  * Ensure that neither of the group entities corresponding to src_cpu or
4658  * dest_cpu are members of a throttled hierarchy when performing group
4659  * load-balance operations.
4660  */
4661 static inline int throttled_lb_pair(struct task_group *tg,
4662 				    int src_cpu, int dest_cpu)
4663 {
4664 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4665 
4666 	src_cfs_rq = tg->cfs_rq[src_cpu];
4667 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4668 
4669 	return throttled_hierarchy(src_cfs_rq) ||
4670 	       throttled_hierarchy(dest_cfs_rq);
4671 }
4672 
4673 static int tg_unthrottle_up(struct task_group *tg, void *data)
4674 {
4675 	struct rq *rq = data;
4676 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4677 
4678 	cfs_rq->throttle_count--;
4679 	if (!cfs_rq->throttle_count) {
4680 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4681 					     cfs_rq->throttled_clock_task;
4682 
4683 		/* Add cfs_rq with already running entity in the list */
4684 		if (cfs_rq->nr_running >= 1)
4685 			list_add_leaf_cfs_rq(cfs_rq);
4686 	}
4687 
4688 	return 0;
4689 }
4690 
4691 static int tg_throttle_down(struct task_group *tg, void *data)
4692 {
4693 	struct rq *rq = data;
4694 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4695 
4696 	/* group is entering throttled state, stop time */
4697 	if (!cfs_rq->throttle_count) {
4698 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4699 		list_del_leaf_cfs_rq(cfs_rq);
4700 	}
4701 	cfs_rq->throttle_count++;
4702 
4703 	return 0;
4704 }
4705 
4706 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4707 {
4708 	struct rq *rq = rq_of(cfs_rq);
4709 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4710 	struct sched_entity *se;
4711 	long task_delta, idle_task_delta, dequeue = 1;
4712 	bool empty;
4713 
4714 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4715 
4716 	/* freeze hierarchy runnable averages while throttled */
4717 	rcu_read_lock();
4718 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4719 	rcu_read_unlock();
4720 
4721 	task_delta = cfs_rq->h_nr_running;
4722 	idle_task_delta = cfs_rq->idle_h_nr_running;
4723 	for_each_sched_entity(se) {
4724 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4725 		/* throttled entity or throttle-on-deactivate */
4726 		if (!se->on_rq)
4727 			break;
4728 
4729 		if (dequeue) {
4730 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4731 		} else {
4732 			update_load_avg(qcfs_rq, se, 0);
4733 			se_update_runnable(se);
4734 		}
4735 
4736 		qcfs_rq->h_nr_running -= task_delta;
4737 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4738 
4739 		if (qcfs_rq->load.weight)
4740 			dequeue = 0;
4741 	}
4742 
4743 	if (!se)
4744 		sub_nr_running(rq, task_delta);
4745 
4746 	cfs_rq->throttled = 1;
4747 	cfs_rq->throttled_clock = rq_clock(rq);
4748 	raw_spin_lock(&cfs_b->lock);
4749 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4750 
4751 	/*
4752 	 * Add to the _head_ of the list, so that an already-started
4753 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4754 	 * not running add to the tail so that later runqueues don't get starved.
4755 	 */
4756 	if (cfs_b->distribute_running)
4757 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4758 	else
4759 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4760 
4761 	/*
4762 	 * If we're the first throttled task, make sure the bandwidth
4763 	 * timer is running.
4764 	 */
4765 	if (empty)
4766 		start_cfs_bandwidth(cfs_b);
4767 
4768 	raw_spin_unlock(&cfs_b->lock);
4769 }
4770 
4771 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4772 {
4773 	struct rq *rq = rq_of(cfs_rq);
4774 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4775 	struct sched_entity *se;
4776 	int enqueue = 1;
4777 	long task_delta, idle_task_delta;
4778 
4779 	se = cfs_rq->tg->se[cpu_of(rq)];
4780 
4781 	cfs_rq->throttled = 0;
4782 
4783 	update_rq_clock(rq);
4784 
4785 	raw_spin_lock(&cfs_b->lock);
4786 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4787 	list_del_rcu(&cfs_rq->throttled_list);
4788 	raw_spin_unlock(&cfs_b->lock);
4789 
4790 	/* update hierarchical throttle state */
4791 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4792 
4793 	if (!cfs_rq->load.weight)
4794 		return;
4795 
4796 	task_delta = cfs_rq->h_nr_running;
4797 	idle_task_delta = cfs_rq->idle_h_nr_running;
4798 	for_each_sched_entity(se) {
4799 		if (se->on_rq)
4800 			enqueue = 0;
4801 
4802 		cfs_rq = cfs_rq_of(se);
4803 		if (enqueue) {
4804 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4805 		} else {
4806 			update_load_avg(cfs_rq, se, 0);
4807 			se_update_runnable(se);
4808 		}
4809 
4810 		cfs_rq->h_nr_running += task_delta;
4811 		cfs_rq->idle_h_nr_running += idle_task_delta;
4812 
4813 		if (cfs_rq_throttled(cfs_rq))
4814 			break;
4815 	}
4816 
4817 	if (!se)
4818 		add_nr_running(rq, task_delta);
4819 
4820 	/*
4821 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4822 	 * incomplete leaf list maintenance, resulting in triggering the
4823 	 * assertion below.
4824 	 */
4825 	for_each_sched_entity(se) {
4826 		cfs_rq = cfs_rq_of(se);
4827 
4828 		list_add_leaf_cfs_rq(cfs_rq);
4829 	}
4830 
4831 	assert_list_leaf_cfs_rq(rq);
4832 
4833 	/* Determine whether we need to wake up potentially idle CPU: */
4834 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4835 		resched_curr(rq);
4836 }
4837 
4838 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4839 {
4840 	struct cfs_rq *cfs_rq;
4841 	u64 runtime, remaining = 1;
4842 
4843 	rcu_read_lock();
4844 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4845 				throttled_list) {
4846 		struct rq *rq = rq_of(cfs_rq);
4847 		struct rq_flags rf;
4848 
4849 		rq_lock_irqsave(rq, &rf);
4850 		if (!cfs_rq_throttled(cfs_rq))
4851 			goto next;
4852 
4853 		/* By the above check, this should never be true */
4854 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4855 
4856 		raw_spin_lock(&cfs_b->lock);
4857 		runtime = -cfs_rq->runtime_remaining + 1;
4858 		if (runtime > cfs_b->runtime)
4859 			runtime = cfs_b->runtime;
4860 		cfs_b->runtime -= runtime;
4861 		remaining = cfs_b->runtime;
4862 		raw_spin_unlock(&cfs_b->lock);
4863 
4864 		cfs_rq->runtime_remaining += runtime;
4865 
4866 		/* we check whether we're throttled above */
4867 		if (cfs_rq->runtime_remaining > 0)
4868 			unthrottle_cfs_rq(cfs_rq);
4869 
4870 next:
4871 		rq_unlock_irqrestore(rq, &rf);
4872 
4873 		if (!remaining)
4874 			break;
4875 	}
4876 	rcu_read_unlock();
4877 }
4878 
4879 /*
4880  * Responsible for refilling a task_group's bandwidth and unthrottling its
4881  * cfs_rqs as appropriate. If there has been no activity within the last
4882  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4883  * used to track this state.
4884  */
4885 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4886 {
4887 	int throttled;
4888 
4889 	/* no need to continue the timer with no bandwidth constraint */
4890 	if (cfs_b->quota == RUNTIME_INF)
4891 		goto out_deactivate;
4892 
4893 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4894 	cfs_b->nr_periods += overrun;
4895 
4896 	/*
4897 	 * idle depends on !throttled (for the case of a large deficit), and if
4898 	 * we're going inactive then everything else can be deferred
4899 	 */
4900 	if (cfs_b->idle && !throttled)
4901 		goto out_deactivate;
4902 
4903 	__refill_cfs_bandwidth_runtime(cfs_b);
4904 
4905 	if (!throttled) {
4906 		/* mark as potentially idle for the upcoming period */
4907 		cfs_b->idle = 1;
4908 		return 0;
4909 	}
4910 
4911 	/* account preceding periods in which throttling occurred */
4912 	cfs_b->nr_throttled += overrun;
4913 
4914 	/*
4915 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
4916 	 */
4917 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4918 		cfs_b->distribute_running = 1;
4919 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4920 		/* we can't nest cfs_b->lock while distributing bandwidth */
4921 		distribute_cfs_runtime(cfs_b);
4922 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4923 
4924 		cfs_b->distribute_running = 0;
4925 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4926 	}
4927 
4928 	/*
4929 	 * While we are ensured activity in the period following an
4930 	 * unthrottle, this also covers the case in which the new bandwidth is
4931 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4932 	 * timer to remain active while there are any throttled entities.)
4933 	 */
4934 	cfs_b->idle = 0;
4935 
4936 	return 0;
4937 
4938 out_deactivate:
4939 	return 1;
4940 }
4941 
4942 /* a cfs_rq won't donate quota below this amount */
4943 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4944 /* minimum remaining period time to redistribute slack quota */
4945 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4946 /* how long we wait to gather additional slack before distributing */
4947 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4948 
4949 /*
4950  * Are we near the end of the current quota period?
4951  *
4952  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4953  * hrtimer base being cleared by hrtimer_start. In the case of
4954  * migrate_hrtimers, base is never cleared, so we are fine.
4955  */
4956 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4957 {
4958 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4959 	u64 remaining;
4960 
4961 	/* if the call-back is running a quota refresh is already occurring */
4962 	if (hrtimer_callback_running(refresh_timer))
4963 		return 1;
4964 
4965 	/* is a quota refresh about to occur? */
4966 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4967 	if (remaining < min_expire)
4968 		return 1;
4969 
4970 	return 0;
4971 }
4972 
4973 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4974 {
4975 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4976 
4977 	/* if there's a quota refresh soon don't bother with slack */
4978 	if (runtime_refresh_within(cfs_b, min_left))
4979 		return;
4980 
4981 	/* don't push forwards an existing deferred unthrottle */
4982 	if (cfs_b->slack_started)
4983 		return;
4984 	cfs_b->slack_started = true;
4985 
4986 	hrtimer_start(&cfs_b->slack_timer,
4987 			ns_to_ktime(cfs_bandwidth_slack_period),
4988 			HRTIMER_MODE_REL);
4989 }
4990 
4991 /* we know any runtime found here is valid as update_curr() precedes return */
4992 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4993 {
4994 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4995 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4996 
4997 	if (slack_runtime <= 0)
4998 		return;
4999 
5000 	raw_spin_lock(&cfs_b->lock);
5001 	if (cfs_b->quota != RUNTIME_INF) {
5002 		cfs_b->runtime += slack_runtime;
5003 
5004 		/* we are under rq->lock, defer unthrottling using a timer */
5005 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5006 		    !list_empty(&cfs_b->throttled_cfs_rq))
5007 			start_cfs_slack_bandwidth(cfs_b);
5008 	}
5009 	raw_spin_unlock(&cfs_b->lock);
5010 
5011 	/* even if it's not valid for return we don't want to try again */
5012 	cfs_rq->runtime_remaining -= slack_runtime;
5013 }
5014 
5015 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5016 {
5017 	if (!cfs_bandwidth_used())
5018 		return;
5019 
5020 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5021 		return;
5022 
5023 	__return_cfs_rq_runtime(cfs_rq);
5024 }
5025 
5026 /*
5027  * This is done with a timer (instead of inline with bandwidth return) since
5028  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5029  */
5030 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5031 {
5032 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5033 	unsigned long flags;
5034 
5035 	/* confirm we're still not at a refresh boundary */
5036 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5037 	cfs_b->slack_started = false;
5038 	if (cfs_b->distribute_running) {
5039 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5040 		return;
5041 	}
5042 
5043 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5044 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5045 		return;
5046 	}
5047 
5048 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5049 		runtime = cfs_b->runtime;
5050 
5051 	if (runtime)
5052 		cfs_b->distribute_running = 1;
5053 
5054 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5055 
5056 	if (!runtime)
5057 		return;
5058 
5059 	distribute_cfs_runtime(cfs_b);
5060 
5061 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5062 	cfs_b->distribute_running = 0;
5063 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5064 }
5065 
5066 /*
5067  * When a group wakes up we want to make sure that its quota is not already
5068  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5069  * runtime as update_curr() throttling can not not trigger until it's on-rq.
5070  */
5071 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5072 {
5073 	if (!cfs_bandwidth_used())
5074 		return;
5075 
5076 	/* an active group must be handled by the update_curr()->put() path */
5077 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5078 		return;
5079 
5080 	/* ensure the group is not already throttled */
5081 	if (cfs_rq_throttled(cfs_rq))
5082 		return;
5083 
5084 	/* update runtime allocation */
5085 	account_cfs_rq_runtime(cfs_rq, 0);
5086 	if (cfs_rq->runtime_remaining <= 0)
5087 		throttle_cfs_rq(cfs_rq);
5088 }
5089 
5090 static void sync_throttle(struct task_group *tg, int cpu)
5091 {
5092 	struct cfs_rq *pcfs_rq, *cfs_rq;
5093 
5094 	if (!cfs_bandwidth_used())
5095 		return;
5096 
5097 	if (!tg->parent)
5098 		return;
5099 
5100 	cfs_rq = tg->cfs_rq[cpu];
5101 	pcfs_rq = tg->parent->cfs_rq[cpu];
5102 
5103 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5104 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5105 }
5106 
5107 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5108 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5109 {
5110 	if (!cfs_bandwidth_used())
5111 		return false;
5112 
5113 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5114 		return false;
5115 
5116 	/*
5117 	 * it's possible for a throttled entity to be forced into a running
5118 	 * state (e.g. set_curr_task), in this case we're finished.
5119 	 */
5120 	if (cfs_rq_throttled(cfs_rq))
5121 		return true;
5122 
5123 	throttle_cfs_rq(cfs_rq);
5124 	return true;
5125 }
5126 
5127 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5128 {
5129 	struct cfs_bandwidth *cfs_b =
5130 		container_of(timer, struct cfs_bandwidth, slack_timer);
5131 
5132 	do_sched_cfs_slack_timer(cfs_b);
5133 
5134 	return HRTIMER_NORESTART;
5135 }
5136 
5137 extern const u64 max_cfs_quota_period;
5138 
5139 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5140 {
5141 	struct cfs_bandwidth *cfs_b =
5142 		container_of(timer, struct cfs_bandwidth, period_timer);
5143 	unsigned long flags;
5144 	int overrun;
5145 	int idle = 0;
5146 	int count = 0;
5147 
5148 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5149 	for (;;) {
5150 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5151 		if (!overrun)
5152 			break;
5153 
5154 		if (++count > 3) {
5155 			u64 new, old = ktime_to_ns(cfs_b->period);
5156 
5157 			/*
5158 			 * Grow period by a factor of 2 to avoid losing precision.
5159 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5160 			 * to fail.
5161 			 */
5162 			new = old * 2;
5163 			if (new < max_cfs_quota_period) {
5164 				cfs_b->period = ns_to_ktime(new);
5165 				cfs_b->quota *= 2;
5166 
5167 				pr_warn_ratelimited(
5168 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5169 					smp_processor_id(),
5170 					div_u64(new, NSEC_PER_USEC),
5171 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5172 			} else {
5173 				pr_warn_ratelimited(
5174 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5175 					smp_processor_id(),
5176 					div_u64(old, NSEC_PER_USEC),
5177 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5178 			}
5179 
5180 			/* reset count so we don't come right back in here */
5181 			count = 0;
5182 		}
5183 
5184 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5185 	}
5186 	if (idle)
5187 		cfs_b->period_active = 0;
5188 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5189 
5190 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5191 }
5192 
5193 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5194 {
5195 	raw_spin_lock_init(&cfs_b->lock);
5196 	cfs_b->runtime = 0;
5197 	cfs_b->quota = RUNTIME_INF;
5198 	cfs_b->period = ns_to_ktime(default_cfs_period());
5199 
5200 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5201 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5202 	cfs_b->period_timer.function = sched_cfs_period_timer;
5203 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5204 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5205 	cfs_b->distribute_running = 0;
5206 	cfs_b->slack_started = false;
5207 }
5208 
5209 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5210 {
5211 	cfs_rq->runtime_enabled = 0;
5212 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5213 }
5214 
5215 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5216 {
5217 	lockdep_assert_held(&cfs_b->lock);
5218 
5219 	if (cfs_b->period_active)
5220 		return;
5221 
5222 	cfs_b->period_active = 1;
5223 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5224 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5225 }
5226 
5227 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5228 {
5229 	/* init_cfs_bandwidth() was not called */
5230 	if (!cfs_b->throttled_cfs_rq.next)
5231 		return;
5232 
5233 	hrtimer_cancel(&cfs_b->period_timer);
5234 	hrtimer_cancel(&cfs_b->slack_timer);
5235 }
5236 
5237 /*
5238  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5239  *
5240  * The race is harmless, since modifying bandwidth settings of unhooked group
5241  * bits doesn't do much.
5242  */
5243 
5244 /* cpu online calback */
5245 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5246 {
5247 	struct task_group *tg;
5248 
5249 	lockdep_assert_held(&rq->lock);
5250 
5251 	rcu_read_lock();
5252 	list_for_each_entry_rcu(tg, &task_groups, list) {
5253 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5254 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5255 
5256 		raw_spin_lock(&cfs_b->lock);
5257 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5258 		raw_spin_unlock(&cfs_b->lock);
5259 	}
5260 	rcu_read_unlock();
5261 }
5262 
5263 /* cpu offline callback */
5264 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5265 {
5266 	struct task_group *tg;
5267 
5268 	lockdep_assert_held(&rq->lock);
5269 
5270 	rcu_read_lock();
5271 	list_for_each_entry_rcu(tg, &task_groups, list) {
5272 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5273 
5274 		if (!cfs_rq->runtime_enabled)
5275 			continue;
5276 
5277 		/*
5278 		 * clock_task is not advancing so we just need to make sure
5279 		 * there's some valid quota amount
5280 		 */
5281 		cfs_rq->runtime_remaining = 1;
5282 		/*
5283 		 * Offline rq is schedulable till CPU is completely disabled
5284 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5285 		 */
5286 		cfs_rq->runtime_enabled = 0;
5287 
5288 		if (cfs_rq_throttled(cfs_rq))
5289 			unthrottle_cfs_rq(cfs_rq);
5290 	}
5291 	rcu_read_unlock();
5292 }
5293 
5294 #else /* CONFIG_CFS_BANDWIDTH */
5295 
5296 static inline bool cfs_bandwidth_used(void)
5297 {
5298 	return false;
5299 }
5300 
5301 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5302 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5303 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5304 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5305 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5306 
5307 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5308 {
5309 	return 0;
5310 }
5311 
5312 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5313 {
5314 	return 0;
5315 }
5316 
5317 static inline int throttled_lb_pair(struct task_group *tg,
5318 				    int src_cpu, int dest_cpu)
5319 {
5320 	return 0;
5321 }
5322 
5323 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5324 
5325 #ifdef CONFIG_FAIR_GROUP_SCHED
5326 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5327 #endif
5328 
5329 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5330 {
5331 	return NULL;
5332 }
5333 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5334 static inline void update_runtime_enabled(struct rq *rq) {}
5335 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5336 
5337 #endif /* CONFIG_CFS_BANDWIDTH */
5338 
5339 /**************************************************
5340  * CFS operations on tasks:
5341  */
5342 
5343 #ifdef CONFIG_SCHED_HRTICK
5344 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5345 {
5346 	struct sched_entity *se = &p->se;
5347 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5348 
5349 	SCHED_WARN_ON(task_rq(p) != rq);
5350 
5351 	if (rq->cfs.h_nr_running > 1) {
5352 		u64 slice = sched_slice(cfs_rq, se);
5353 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5354 		s64 delta = slice - ran;
5355 
5356 		if (delta < 0) {
5357 			if (rq->curr == p)
5358 				resched_curr(rq);
5359 			return;
5360 		}
5361 		hrtick_start(rq, delta);
5362 	}
5363 }
5364 
5365 /*
5366  * called from enqueue/dequeue and updates the hrtick when the
5367  * current task is from our class and nr_running is low enough
5368  * to matter.
5369  */
5370 static void hrtick_update(struct rq *rq)
5371 {
5372 	struct task_struct *curr = rq->curr;
5373 
5374 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5375 		return;
5376 
5377 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5378 		hrtick_start_fair(rq, curr);
5379 }
5380 #else /* !CONFIG_SCHED_HRTICK */
5381 static inline void
5382 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5383 {
5384 }
5385 
5386 static inline void hrtick_update(struct rq *rq)
5387 {
5388 }
5389 #endif
5390 
5391 #ifdef CONFIG_SMP
5392 static inline unsigned long cpu_util(int cpu);
5393 
5394 static inline bool cpu_overutilized(int cpu)
5395 {
5396 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5397 }
5398 
5399 static inline void update_overutilized_status(struct rq *rq)
5400 {
5401 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5402 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5403 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5404 	}
5405 }
5406 #else
5407 static inline void update_overutilized_status(struct rq *rq) { }
5408 #endif
5409 
5410 /* Runqueue only has SCHED_IDLE tasks enqueued */
5411 static int sched_idle_rq(struct rq *rq)
5412 {
5413 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5414 			rq->nr_running);
5415 }
5416 
5417 #ifdef CONFIG_SMP
5418 static int sched_idle_cpu(int cpu)
5419 {
5420 	return sched_idle_rq(cpu_rq(cpu));
5421 }
5422 #endif
5423 
5424 /*
5425  * The enqueue_task method is called before nr_running is
5426  * increased. Here we update the fair scheduling stats and
5427  * then put the task into the rbtree:
5428  */
5429 static void
5430 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5431 {
5432 	struct cfs_rq *cfs_rq;
5433 	struct sched_entity *se = &p->se;
5434 	int idle_h_nr_running = task_has_idle_policy(p);
5435 
5436 	/*
5437 	 * The code below (indirectly) updates schedutil which looks at
5438 	 * the cfs_rq utilization to select a frequency.
5439 	 * Let's add the task's estimated utilization to the cfs_rq's
5440 	 * estimated utilization, before we update schedutil.
5441 	 */
5442 	util_est_enqueue(&rq->cfs, p);
5443 
5444 	/*
5445 	 * If in_iowait is set, the code below may not trigger any cpufreq
5446 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5447 	 * passed.
5448 	 */
5449 	if (p->in_iowait)
5450 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5451 
5452 	for_each_sched_entity(se) {
5453 		if (se->on_rq)
5454 			break;
5455 		cfs_rq = cfs_rq_of(se);
5456 		enqueue_entity(cfs_rq, se, flags);
5457 
5458 		cfs_rq->h_nr_running++;
5459 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5460 
5461 		/* end evaluation on encountering a throttled cfs_rq */
5462 		if (cfs_rq_throttled(cfs_rq))
5463 			goto enqueue_throttle;
5464 
5465 		flags = ENQUEUE_WAKEUP;
5466 	}
5467 
5468 	for_each_sched_entity(se) {
5469 		cfs_rq = cfs_rq_of(se);
5470 
5471 		update_load_avg(cfs_rq, se, UPDATE_TG);
5472 		se_update_runnable(se);
5473 		update_cfs_group(se);
5474 
5475 		cfs_rq->h_nr_running++;
5476 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5477 
5478 		/* end evaluation on encountering a throttled cfs_rq */
5479 		if (cfs_rq_throttled(cfs_rq))
5480 			goto enqueue_throttle;
5481 	}
5482 
5483 enqueue_throttle:
5484 	if (!se) {
5485 		add_nr_running(rq, 1);
5486 		/*
5487 		 * Since new tasks are assigned an initial util_avg equal to
5488 		 * half of the spare capacity of their CPU, tiny tasks have the
5489 		 * ability to cross the overutilized threshold, which will
5490 		 * result in the load balancer ruining all the task placement
5491 		 * done by EAS. As a way to mitigate that effect, do not account
5492 		 * for the first enqueue operation of new tasks during the
5493 		 * overutilized flag detection.
5494 		 *
5495 		 * A better way of solving this problem would be to wait for
5496 		 * the PELT signals of tasks to converge before taking them
5497 		 * into account, but that is not straightforward to implement,
5498 		 * and the following generally works well enough in practice.
5499 		 */
5500 		if (flags & ENQUEUE_WAKEUP)
5501 			update_overutilized_status(rq);
5502 
5503 	}
5504 
5505 	if (cfs_bandwidth_used()) {
5506 		/*
5507 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5508 		 * breaks in the above iteration can result in incomplete
5509 		 * leaf list maintenance, resulting in triggering the assertion
5510 		 * below.
5511 		 */
5512 		for_each_sched_entity(se) {
5513 			cfs_rq = cfs_rq_of(se);
5514 
5515 			if (list_add_leaf_cfs_rq(cfs_rq))
5516 				break;
5517 		}
5518 	}
5519 
5520 	assert_list_leaf_cfs_rq(rq);
5521 
5522 	hrtick_update(rq);
5523 }
5524 
5525 static void set_next_buddy(struct sched_entity *se);
5526 
5527 /*
5528  * The dequeue_task method is called before nr_running is
5529  * decreased. We remove the task from the rbtree and
5530  * update the fair scheduling stats:
5531  */
5532 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5533 {
5534 	struct cfs_rq *cfs_rq;
5535 	struct sched_entity *se = &p->se;
5536 	int task_sleep = flags & DEQUEUE_SLEEP;
5537 	int idle_h_nr_running = task_has_idle_policy(p);
5538 	bool was_sched_idle = sched_idle_rq(rq);
5539 
5540 	for_each_sched_entity(se) {
5541 		cfs_rq = cfs_rq_of(se);
5542 		dequeue_entity(cfs_rq, se, flags);
5543 
5544 		cfs_rq->h_nr_running--;
5545 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5546 
5547 		/* end evaluation on encountering a throttled cfs_rq */
5548 		if (cfs_rq_throttled(cfs_rq))
5549 			goto dequeue_throttle;
5550 
5551 		/* Don't dequeue parent if it has other entities besides us */
5552 		if (cfs_rq->load.weight) {
5553 			/* Avoid re-evaluating load for this entity: */
5554 			se = parent_entity(se);
5555 			/*
5556 			 * Bias pick_next to pick a task from this cfs_rq, as
5557 			 * p is sleeping when it is within its sched_slice.
5558 			 */
5559 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5560 				set_next_buddy(se);
5561 			break;
5562 		}
5563 		flags |= DEQUEUE_SLEEP;
5564 	}
5565 
5566 	for_each_sched_entity(se) {
5567 		cfs_rq = cfs_rq_of(se);
5568 
5569 		update_load_avg(cfs_rq, se, UPDATE_TG);
5570 		se_update_runnable(se);
5571 		update_cfs_group(se);
5572 
5573 		cfs_rq->h_nr_running--;
5574 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5575 
5576 		/* end evaluation on encountering a throttled cfs_rq */
5577 		if (cfs_rq_throttled(cfs_rq))
5578 			goto dequeue_throttle;
5579 
5580 	}
5581 
5582 dequeue_throttle:
5583 	if (!se)
5584 		sub_nr_running(rq, 1);
5585 
5586 	/* balance early to pull high priority tasks */
5587 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5588 		rq->next_balance = jiffies;
5589 
5590 	util_est_dequeue(&rq->cfs, p, task_sleep);
5591 	hrtick_update(rq);
5592 }
5593 
5594 #ifdef CONFIG_SMP
5595 
5596 /* Working cpumask for: load_balance, load_balance_newidle. */
5597 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5598 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5599 
5600 #ifdef CONFIG_NO_HZ_COMMON
5601 
5602 static struct {
5603 	cpumask_var_t idle_cpus_mask;
5604 	atomic_t nr_cpus;
5605 	int has_blocked;		/* Idle CPUS has blocked load */
5606 	unsigned long next_balance;     /* in jiffy units */
5607 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5608 } nohz ____cacheline_aligned;
5609 
5610 #endif /* CONFIG_NO_HZ_COMMON */
5611 
5612 static unsigned long cpu_load(struct rq *rq)
5613 {
5614 	return cfs_rq_load_avg(&rq->cfs);
5615 }
5616 
5617 /*
5618  * cpu_load_without - compute CPU load without any contributions from *p
5619  * @cpu: the CPU which load is requested
5620  * @p: the task which load should be discounted
5621  *
5622  * The load of a CPU is defined by the load of tasks currently enqueued on that
5623  * CPU as well as tasks which are currently sleeping after an execution on that
5624  * CPU.
5625  *
5626  * This method returns the load of the specified CPU by discounting the load of
5627  * the specified task, whenever the task is currently contributing to the CPU
5628  * load.
5629  */
5630 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5631 {
5632 	struct cfs_rq *cfs_rq;
5633 	unsigned int load;
5634 
5635 	/* Task has no contribution or is new */
5636 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5637 		return cpu_load(rq);
5638 
5639 	cfs_rq = &rq->cfs;
5640 	load = READ_ONCE(cfs_rq->avg.load_avg);
5641 
5642 	/* Discount task's util from CPU's util */
5643 	lsub_positive(&load, task_h_load(p));
5644 
5645 	return load;
5646 }
5647 
5648 static unsigned long cpu_runnable(struct rq *rq)
5649 {
5650 	return cfs_rq_runnable_avg(&rq->cfs);
5651 }
5652 
5653 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5654 {
5655 	struct cfs_rq *cfs_rq;
5656 	unsigned int runnable;
5657 
5658 	/* Task has no contribution or is new */
5659 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5660 		return cpu_runnable(rq);
5661 
5662 	cfs_rq = &rq->cfs;
5663 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5664 
5665 	/* Discount task's runnable from CPU's runnable */
5666 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5667 
5668 	return runnable;
5669 }
5670 
5671 static unsigned long capacity_of(int cpu)
5672 {
5673 	return cpu_rq(cpu)->cpu_capacity;
5674 }
5675 
5676 static void record_wakee(struct task_struct *p)
5677 {
5678 	/*
5679 	 * Only decay a single time; tasks that have less then 1 wakeup per
5680 	 * jiffy will not have built up many flips.
5681 	 */
5682 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5683 		current->wakee_flips >>= 1;
5684 		current->wakee_flip_decay_ts = jiffies;
5685 	}
5686 
5687 	if (current->last_wakee != p) {
5688 		current->last_wakee = p;
5689 		current->wakee_flips++;
5690 	}
5691 }
5692 
5693 /*
5694  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5695  *
5696  * A waker of many should wake a different task than the one last awakened
5697  * at a frequency roughly N times higher than one of its wakees.
5698  *
5699  * In order to determine whether we should let the load spread vs consolidating
5700  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5701  * partner, and a factor of lls_size higher frequency in the other.
5702  *
5703  * With both conditions met, we can be relatively sure that the relationship is
5704  * non-monogamous, with partner count exceeding socket size.
5705  *
5706  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5707  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5708  * socket size.
5709  */
5710 static int wake_wide(struct task_struct *p)
5711 {
5712 	unsigned int master = current->wakee_flips;
5713 	unsigned int slave = p->wakee_flips;
5714 	int factor = this_cpu_read(sd_llc_size);
5715 
5716 	if (master < slave)
5717 		swap(master, slave);
5718 	if (slave < factor || master < slave * factor)
5719 		return 0;
5720 	return 1;
5721 }
5722 
5723 /*
5724  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5725  * soonest. For the purpose of speed we only consider the waking and previous
5726  * CPU.
5727  *
5728  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5729  *			cache-affine and is (or	will be) idle.
5730  *
5731  * wake_affine_weight() - considers the weight to reflect the average
5732  *			  scheduling latency of the CPUs. This seems to work
5733  *			  for the overloaded case.
5734  */
5735 static int
5736 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5737 {
5738 	/*
5739 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5740 	 * context. Only allow the move if cache is shared. Otherwise an
5741 	 * interrupt intensive workload could force all tasks onto one
5742 	 * node depending on the IO topology or IRQ affinity settings.
5743 	 *
5744 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5745 	 * There is no guarantee that the cache hot data from an interrupt
5746 	 * is more important than cache hot data on the prev_cpu and from
5747 	 * a cpufreq perspective, it's better to have higher utilisation
5748 	 * on one CPU.
5749 	 */
5750 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5751 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5752 
5753 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5754 		return this_cpu;
5755 
5756 	return nr_cpumask_bits;
5757 }
5758 
5759 static int
5760 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5761 		   int this_cpu, int prev_cpu, int sync)
5762 {
5763 	s64 this_eff_load, prev_eff_load;
5764 	unsigned long task_load;
5765 
5766 	this_eff_load = cpu_load(cpu_rq(this_cpu));
5767 
5768 	if (sync) {
5769 		unsigned long current_load = task_h_load(current);
5770 
5771 		if (current_load > this_eff_load)
5772 			return this_cpu;
5773 
5774 		this_eff_load -= current_load;
5775 	}
5776 
5777 	task_load = task_h_load(p);
5778 
5779 	this_eff_load += task_load;
5780 	if (sched_feat(WA_BIAS))
5781 		this_eff_load *= 100;
5782 	this_eff_load *= capacity_of(prev_cpu);
5783 
5784 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5785 	prev_eff_load -= task_load;
5786 	if (sched_feat(WA_BIAS))
5787 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5788 	prev_eff_load *= capacity_of(this_cpu);
5789 
5790 	/*
5791 	 * If sync, adjust the weight of prev_eff_load such that if
5792 	 * prev_eff == this_eff that select_idle_sibling() will consider
5793 	 * stacking the wakee on top of the waker if no other CPU is
5794 	 * idle.
5795 	 */
5796 	if (sync)
5797 		prev_eff_load += 1;
5798 
5799 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5800 }
5801 
5802 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5803 		       int this_cpu, int prev_cpu, int sync)
5804 {
5805 	int target = nr_cpumask_bits;
5806 
5807 	if (sched_feat(WA_IDLE))
5808 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5809 
5810 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5811 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5812 
5813 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5814 	if (target == nr_cpumask_bits)
5815 		return prev_cpu;
5816 
5817 	schedstat_inc(sd->ttwu_move_affine);
5818 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5819 	return target;
5820 }
5821 
5822 static struct sched_group *
5823 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5824 		  int this_cpu, int sd_flag);
5825 
5826 /*
5827  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5828  */
5829 static int
5830 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5831 {
5832 	unsigned long load, min_load = ULONG_MAX;
5833 	unsigned int min_exit_latency = UINT_MAX;
5834 	u64 latest_idle_timestamp = 0;
5835 	int least_loaded_cpu = this_cpu;
5836 	int shallowest_idle_cpu = -1;
5837 	int i;
5838 
5839 	/* Check if we have any choice: */
5840 	if (group->group_weight == 1)
5841 		return cpumask_first(sched_group_span(group));
5842 
5843 	/* Traverse only the allowed CPUs */
5844 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5845 		if (sched_idle_cpu(i))
5846 			return i;
5847 
5848 		if (available_idle_cpu(i)) {
5849 			struct rq *rq = cpu_rq(i);
5850 			struct cpuidle_state *idle = idle_get_state(rq);
5851 			if (idle && idle->exit_latency < min_exit_latency) {
5852 				/*
5853 				 * We give priority to a CPU whose idle state
5854 				 * has the smallest exit latency irrespective
5855 				 * of any idle timestamp.
5856 				 */
5857 				min_exit_latency = idle->exit_latency;
5858 				latest_idle_timestamp = rq->idle_stamp;
5859 				shallowest_idle_cpu = i;
5860 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5861 				   rq->idle_stamp > latest_idle_timestamp) {
5862 				/*
5863 				 * If equal or no active idle state, then
5864 				 * the most recently idled CPU might have
5865 				 * a warmer cache.
5866 				 */
5867 				latest_idle_timestamp = rq->idle_stamp;
5868 				shallowest_idle_cpu = i;
5869 			}
5870 		} else if (shallowest_idle_cpu == -1) {
5871 			load = cpu_load(cpu_rq(i));
5872 			if (load < min_load) {
5873 				min_load = load;
5874 				least_loaded_cpu = i;
5875 			}
5876 		}
5877 	}
5878 
5879 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5880 }
5881 
5882 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5883 				  int cpu, int prev_cpu, int sd_flag)
5884 {
5885 	int new_cpu = cpu;
5886 
5887 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5888 		return prev_cpu;
5889 
5890 	/*
5891 	 * We need task's util for cpu_util_without, sync it up to
5892 	 * prev_cpu's last_update_time.
5893 	 */
5894 	if (!(sd_flag & SD_BALANCE_FORK))
5895 		sync_entity_load_avg(&p->se);
5896 
5897 	while (sd) {
5898 		struct sched_group *group;
5899 		struct sched_domain *tmp;
5900 		int weight;
5901 
5902 		if (!(sd->flags & sd_flag)) {
5903 			sd = sd->child;
5904 			continue;
5905 		}
5906 
5907 		group = find_idlest_group(sd, p, cpu, sd_flag);
5908 		if (!group) {
5909 			sd = sd->child;
5910 			continue;
5911 		}
5912 
5913 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5914 		if (new_cpu == cpu) {
5915 			/* Now try balancing at a lower domain level of 'cpu': */
5916 			sd = sd->child;
5917 			continue;
5918 		}
5919 
5920 		/* Now try balancing at a lower domain level of 'new_cpu': */
5921 		cpu = new_cpu;
5922 		weight = sd->span_weight;
5923 		sd = NULL;
5924 		for_each_domain(cpu, tmp) {
5925 			if (weight <= tmp->span_weight)
5926 				break;
5927 			if (tmp->flags & sd_flag)
5928 				sd = tmp;
5929 		}
5930 	}
5931 
5932 	return new_cpu;
5933 }
5934 
5935 #ifdef CONFIG_SCHED_SMT
5936 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5937 EXPORT_SYMBOL_GPL(sched_smt_present);
5938 
5939 static inline void set_idle_cores(int cpu, int val)
5940 {
5941 	struct sched_domain_shared *sds;
5942 
5943 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5944 	if (sds)
5945 		WRITE_ONCE(sds->has_idle_cores, val);
5946 }
5947 
5948 static inline bool test_idle_cores(int cpu, bool def)
5949 {
5950 	struct sched_domain_shared *sds;
5951 
5952 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5953 	if (sds)
5954 		return READ_ONCE(sds->has_idle_cores);
5955 
5956 	return def;
5957 }
5958 
5959 /*
5960  * Scans the local SMT mask to see if the entire core is idle, and records this
5961  * information in sd_llc_shared->has_idle_cores.
5962  *
5963  * Since SMT siblings share all cache levels, inspecting this limited remote
5964  * state should be fairly cheap.
5965  */
5966 void __update_idle_core(struct rq *rq)
5967 {
5968 	int core = cpu_of(rq);
5969 	int cpu;
5970 
5971 	rcu_read_lock();
5972 	if (test_idle_cores(core, true))
5973 		goto unlock;
5974 
5975 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5976 		if (cpu == core)
5977 			continue;
5978 
5979 		if (!available_idle_cpu(cpu))
5980 			goto unlock;
5981 	}
5982 
5983 	set_idle_cores(core, 1);
5984 unlock:
5985 	rcu_read_unlock();
5986 }
5987 
5988 /*
5989  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5990  * there are no idle cores left in the system; tracked through
5991  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5992  */
5993 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5994 {
5995 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5996 	int core, cpu;
5997 
5998 	if (!static_branch_likely(&sched_smt_present))
5999 		return -1;
6000 
6001 	if (!test_idle_cores(target, false))
6002 		return -1;
6003 
6004 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6005 
6006 	for_each_cpu_wrap(core, cpus, target) {
6007 		bool idle = true;
6008 
6009 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6010 			if (!available_idle_cpu(cpu)) {
6011 				idle = false;
6012 				break;
6013 			}
6014 		}
6015 		cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6016 
6017 		if (idle)
6018 			return core;
6019 	}
6020 
6021 	/*
6022 	 * Failed to find an idle core; stop looking for one.
6023 	 */
6024 	set_idle_cores(target, 0);
6025 
6026 	return -1;
6027 }
6028 
6029 /*
6030  * Scan the local SMT mask for idle CPUs.
6031  */
6032 static int select_idle_smt(struct task_struct *p, int target)
6033 {
6034 	int cpu;
6035 
6036 	if (!static_branch_likely(&sched_smt_present))
6037 		return -1;
6038 
6039 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6040 		if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6041 			continue;
6042 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6043 			return cpu;
6044 	}
6045 
6046 	return -1;
6047 }
6048 
6049 #else /* CONFIG_SCHED_SMT */
6050 
6051 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6052 {
6053 	return -1;
6054 }
6055 
6056 static inline int select_idle_smt(struct task_struct *p, int target)
6057 {
6058 	return -1;
6059 }
6060 
6061 #endif /* CONFIG_SCHED_SMT */
6062 
6063 /*
6064  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6065  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6066  * average idle time for this rq (as found in rq->avg_idle).
6067  */
6068 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6069 {
6070 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6071 	struct sched_domain *this_sd;
6072 	u64 avg_cost, avg_idle;
6073 	u64 time;
6074 	int this = smp_processor_id();
6075 	int cpu, nr = INT_MAX;
6076 
6077 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6078 	if (!this_sd)
6079 		return -1;
6080 
6081 	/*
6082 	 * Due to large variance we need a large fuzz factor; hackbench in
6083 	 * particularly is sensitive here.
6084 	 */
6085 	avg_idle = this_rq()->avg_idle / 512;
6086 	avg_cost = this_sd->avg_scan_cost + 1;
6087 
6088 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6089 		return -1;
6090 
6091 	if (sched_feat(SIS_PROP)) {
6092 		u64 span_avg = sd->span_weight * avg_idle;
6093 		if (span_avg > 4*avg_cost)
6094 			nr = div_u64(span_avg, avg_cost);
6095 		else
6096 			nr = 4;
6097 	}
6098 
6099 	time = cpu_clock(this);
6100 
6101 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6102 
6103 	for_each_cpu_wrap(cpu, cpus, target) {
6104 		if (!--nr)
6105 			return -1;
6106 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6107 			break;
6108 	}
6109 
6110 	time = cpu_clock(this) - time;
6111 	update_avg(&this_sd->avg_scan_cost, time);
6112 
6113 	return cpu;
6114 }
6115 
6116 /*
6117  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6118  * the task fits. If no CPU is big enough, but there are idle ones, try to
6119  * maximize capacity.
6120  */
6121 static int
6122 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6123 {
6124 	unsigned long best_cap = 0;
6125 	int cpu, best_cpu = -1;
6126 	struct cpumask *cpus;
6127 
6128 	sync_entity_load_avg(&p->se);
6129 
6130 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6131 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6132 
6133 	for_each_cpu_wrap(cpu, cpus, target) {
6134 		unsigned long cpu_cap = capacity_of(cpu);
6135 
6136 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6137 			continue;
6138 		if (task_fits_capacity(p, cpu_cap))
6139 			return cpu;
6140 
6141 		if (cpu_cap > best_cap) {
6142 			best_cap = cpu_cap;
6143 			best_cpu = cpu;
6144 		}
6145 	}
6146 
6147 	return best_cpu;
6148 }
6149 
6150 /*
6151  * Try and locate an idle core/thread in the LLC cache domain.
6152  */
6153 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6154 {
6155 	struct sched_domain *sd;
6156 	int i, recent_used_cpu;
6157 
6158 	/*
6159 	 * For asymmetric CPU capacity systems, our domain of interest is
6160 	 * sd_asym_cpucapacity rather than sd_llc.
6161 	 */
6162 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6163 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6164 		/*
6165 		 * On an asymmetric CPU capacity system where an exclusive
6166 		 * cpuset defines a symmetric island (i.e. one unique
6167 		 * capacity_orig value through the cpuset), the key will be set
6168 		 * but the CPUs within that cpuset will not have a domain with
6169 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6170 		 * capacity path.
6171 		 */
6172 		if (!sd)
6173 			goto symmetric;
6174 
6175 		i = select_idle_capacity(p, sd, target);
6176 		return ((unsigned)i < nr_cpumask_bits) ? i : target;
6177 	}
6178 
6179 symmetric:
6180 	if (available_idle_cpu(target) || sched_idle_cpu(target))
6181 		return target;
6182 
6183 	/*
6184 	 * If the previous CPU is cache affine and idle, don't be stupid:
6185 	 */
6186 	if (prev != target && cpus_share_cache(prev, target) &&
6187 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6188 		return prev;
6189 
6190 	/*
6191 	 * Allow a per-cpu kthread to stack with the wakee if the
6192 	 * kworker thread and the tasks previous CPUs are the same.
6193 	 * The assumption is that the wakee queued work for the
6194 	 * per-cpu kthread that is now complete and the wakeup is
6195 	 * essentially a sync wakeup. An obvious example of this
6196 	 * pattern is IO completions.
6197 	 */
6198 	if (is_per_cpu_kthread(current) &&
6199 	    prev == smp_processor_id() &&
6200 	    this_rq()->nr_running <= 1) {
6201 		return prev;
6202 	}
6203 
6204 	/* Check a recently used CPU as a potential idle candidate: */
6205 	recent_used_cpu = p->recent_used_cpu;
6206 	if (recent_used_cpu != prev &&
6207 	    recent_used_cpu != target &&
6208 	    cpus_share_cache(recent_used_cpu, target) &&
6209 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6210 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6211 		/*
6212 		 * Replace recent_used_cpu with prev as it is a potential
6213 		 * candidate for the next wake:
6214 		 */
6215 		p->recent_used_cpu = prev;
6216 		return recent_used_cpu;
6217 	}
6218 
6219 	sd = rcu_dereference(per_cpu(sd_llc, target));
6220 	if (!sd)
6221 		return target;
6222 
6223 	i = select_idle_core(p, sd, target);
6224 	if ((unsigned)i < nr_cpumask_bits)
6225 		return i;
6226 
6227 	i = select_idle_cpu(p, sd, target);
6228 	if ((unsigned)i < nr_cpumask_bits)
6229 		return i;
6230 
6231 	i = select_idle_smt(p, target);
6232 	if ((unsigned)i < nr_cpumask_bits)
6233 		return i;
6234 
6235 	return target;
6236 }
6237 
6238 /**
6239  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6240  * @cpu: the CPU to get the utilization of
6241  *
6242  * The unit of the return value must be the one of capacity so we can compare
6243  * the utilization with the capacity of the CPU that is available for CFS task
6244  * (ie cpu_capacity).
6245  *
6246  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6247  * recent utilization of currently non-runnable tasks on a CPU. It represents
6248  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6249  * capacity_orig is the cpu_capacity available at the highest frequency
6250  * (arch_scale_freq_capacity()).
6251  * The utilization of a CPU converges towards a sum equal to or less than the
6252  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6253  * the running time on this CPU scaled by capacity_curr.
6254  *
6255  * The estimated utilization of a CPU is defined to be the maximum between its
6256  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6257  * currently RUNNABLE on that CPU.
6258  * This allows to properly represent the expected utilization of a CPU which
6259  * has just got a big task running since a long sleep period. At the same time
6260  * however it preserves the benefits of the "blocked utilization" in
6261  * describing the potential for other tasks waking up on the same CPU.
6262  *
6263  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6264  * higher than capacity_orig because of unfortunate rounding in
6265  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6266  * the average stabilizes with the new running time. We need to check that the
6267  * utilization stays within the range of [0..capacity_orig] and cap it if
6268  * necessary. Without utilization capping, a group could be seen as overloaded
6269  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6270  * available capacity. We allow utilization to overshoot capacity_curr (but not
6271  * capacity_orig) as it useful for predicting the capacity required after task
6272  * migrations (scheduler-driven DVFS).
6273  *
6274  * Return: the (estimated) utilization for the specified CPU
6275  */
6276 static inline unsigned long cpu_util(int cpu)
6277 {
6278 	struct cfs_rq *cfs_rq;
6279 	unsigned int util;
6280 
6281 	cfs_rq = &cpu_rq(cpu)->cfs;
6282 	util = READ_ONCE(cfs_rq->avg.util_avg);
6283 
6284 	if (sched_feat(UTIL_EST))
6285 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6286 
6287 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6288 }
6289 
6290 /*
6291  * cpu_util_without: compute cpu utilization without any contributions from *p
6292  * @cpu: the CPU which utilization is requested
6293  * @p: the task which utilization should be discounted
6294  *
6295  * The utilization of a CPU is defined by the utilization of tasks currently
6296  * enqueued on that CPU as well as tasks which are currently sleeping after an
6297  * execution on that CPU.
6298  *
6299  * This method returns the utilization of the specified CPU by discounting the
6300  * utilization of the specified task, whenever the task is currently
6301  * contributing to the CPU utilization.
6302  */
6303 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6304 {
6305 	struct cfs_rq *cfs_rq;
6306 	unsigned int util;
6307 
6308 	/* Task has no contribution or is new */
6309 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6310 		return cpu_util(cpu);
6311 
6312 	cfs_rq = &cpu_rq(cpu)->cfs;
6313 	util = READ_ONCE(cfs_rq->avg.util_avg);
6314 
6315 	/* Discount task's util from CPU's util */
6316 	lsub_positive(&util, task_util(p));
6317 
6318 	/*
6319 	 * Covered cases:
6320 	 *
6321 	 * a) if *p is the only task sleeping on this CPU, then:
6322 	 *      cpu_util (== task_util) > util_est (== 0)
6323 	 *    and thus we return:
6324 	 *      cpu_util_without = (cpu_util - task_util) = 0
6325 	 *
6326 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6327 	 *    IDLE, then:
6328 	 *      cpu_util >= task_util
6329 	 *      cpu_util > util_est (== 0)
6330 	 *    and thus we discount *p's blocked utilization to return:
6331 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6332 	 *
6333 	 * c) if other tasks are RUNNABLE on that CPU and
6334 	 *      util_est > cpu_util
6335 	 *    then we use util_est since it returns a more restrictive
6336 	 *    estimation of the spare capacity on that CPU, by just
6337 	 *    considering the expected utilization of tasks already
6338 	 *    runnable on that CPU.
6339 	 *
6340 	 * Cases a) and b) are covered by the above code, while case c) is
6341 	 * covered by the following code when estimated utilization is
6342 	 * enabled.
6343 	 */
6344 	if (sched_feat(UTIL_EST)) {
6345 		unsigned int estimated =
6346 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6347 
6348 		/*
6349 		 * Despite the following checks we still have a small window
6350 		 * for a possible race, when an execl's select_task_rq_fair()
6351 		 * races with LB's detach_task():
6352 		 *
6353 		 *   detach_task()
6354 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6355 		 *     ---------------------------------- A
6356 		 *     deactivate_task()                   \
6357 		 *       dequeue_task()                     + RaceTime
6358 		 *         util_est_dequeue()              /
6359 		 *     ---------------------------------- B
6360 		 *
6361 		 * The additional check on "current == p" it's required to
6362 		 * properly fix the execl regression and it helps in further
6363 		 * reducing the chances for the above race.
6364 		 */
6365 		if (unlikely(task_on_rq_queued(p) || current == p))
6366 			lsub_positive(&estimated, _task_util_est(p));
6367 
6368 		util = max(util, estimated);
6369 	}
6370 
6371 	/*
6372 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6373 	 * clamp to the maximum CPU capacity to ensure consistency with
6374 	 * the cpu_util call.
6375 	 */
6376 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6377 }
6378 
6379 /*
6380  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6381  * to @dst_cpu.
6382  */
6383 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6384 {
6385 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6386 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6387 
6388 	/*
6389 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6390 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6391 	 * the other cases, @cpu is not impacted by the migration, so the
6392 	 * util_avg should already be correct.
6393 	 */
6394 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6395 		sub_positive(&util, task_util(p));
6396 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6397 		util += task_util(p);
6398 
6399 	if (sched_feat(UTIL_EST)) {
6400 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6401 
6402 		/*
6403 		 * During wake-up, the task isn't enqueued yet and doesn't
6404 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6405 		 * so just add it (if needed) to "simulate" what will be
6406 		 * cpu_util() after the task has been enqueued.
6407 		 */
6408 		if (dst_cpu == cpu)
6409 			util_est += _task_util_est(p);
6410 
6411 		util = max(util, util_est);
6412 	}
6413 
6414 	return min(util, capacity_orig_of(cpu));
6415 }
6416 
6417 /*
6418  * compute_energy(): Estimates the energy that @pd would consume if @p was
6419  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6420  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6421  * to compute what would be the energy if we decided to actually migrate that
6422  * task.
6423  */
6424 static long
6425 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6426 {
6427 	struct cpumask *pd_mask = perf_domain_span(pd);
6428 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6429 	unsigned long max_util = 0, sum_util = 0;
6430 	int cpu;
6431 
6432 	/*
6433 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6434 	 * of another rd if they belong to the same pd. So, account for the
6435 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6436 	 * instead of the rd span.
6437 	 *
6438 	 * If an entire pd is outside of the current rd, it will not appear in
6439 	 * its pd list and will not be accounted by compute_energy().
6440 	 */
6441 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6442 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6443 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6444 
6445 		/*
6446 		 * Busy time computation: utilization clamping is not
6447 		 * required since the ratio (sum_util / cpu_capacity)
6448 		 * is already enough to scale the EM reported power
6449 		 * consumption at the (eventually clamped) cpu_capacity.
6450 		 */
6451 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6452 					       ENERGY_UTIL, NULL);
6453 
6454 		/*
6455 		 * Performance domain frequency: utilization clamping
6456 		 * must be considered since it affects the selection
6457 		 * of the performance domain frequency.
6458 		 * NOTE: in case RT tasks are running, by default the
6459 		 * FREQUENCY_UTIL's utilization can be max OPP.
6460 		 */
6461 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6462 					      FREQUENCY_UTIL, tsk);
6463 		max_util = max(max_util, cpu_util);
6464 	}
6465 
6466 	return em_pd_energy(pd->em_pd, max_util, sum_util);
6467 }
6468 
6469 /*
6470  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6471  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6472  * spare capacity in each performance domain and uses it as a potential
6473  * candidate to execute the task. Then, it uses the Energy Model to figure
6474  * out which of the CPU candidates is the most energy-efficient.
6475  *
6476  * The rationale for this heuristic is as follows. In a performance domain,
6477  * all the most energy efficient CPU candidates (according to the Energy
6478  * Model) are those for which we'll request a low frequency. When there are
6479  * several CPUs for which the frequency request will be the same, we don't
6480  * have enough data to break the tie between them, because the Energy Model
6481  * only includes active power costs. With this model, if we assume that
6482  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6483  * the maximum spare capacity in a performance domain is guaranteed to be among
6484  * the best candidates of the performance domain.
6485  *
6486  * In practice, it could be preferable from an energy standpoint to pack
6487  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6488  * but that could also hurt our chances to go cluster idle, and we have no
6489  * ways to tell with the current Energy Model if this is actually a good
6490  * idea or not. So, find_energy_efficient_cpu() basically favors
6491  * cluster-packing, and spreading inside a cluster. That should at least be
6492  * a good thing for latency, and this is consistent with the idea that most
6493  * of the energy savings of EAS come from the asymmetry of the system, and
6494  * not so much from breaking the tie between identical CPUs. That's also the
6495  * reason why EAS is enabled in the topology code only for systems where
6496  * SD_ASYM_CPUCAPACITY is set.
6497  *
6498  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6499  * they don't have any useful utilization data yet and it's not possible to
6500  * forecast their impact on energy consumption. Consequently, they will be
6501  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6502  * to be energy-inefficient in some use-cases. The alternative would be to
6503  * bias new tasks towards specific types of CPUs first, or to try to infer
6504  * their util_avg from the parent task, but those heuristics could hurt
6505  * other use-cases too. So, until someone finds a better way to solve this,
6506  * let's keep things simple by re-using the existing slow path.
6507  */
6508 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6509 {
6510 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6511 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6512 	unsigned long cpu_cap, util, base_energy = 0;
6513 	int cpu, best_energy_cpu = prev_cpu;
6514 	struct sched_domain *sd;
6515 	struct perf_domain *pd;
6516 
6517 	rcu_read_lock();
6518 	pd = rcu_dereference(rd->pd);
6519 	if (!pd || READ_ONCE(rd->overutilized))
6520 		goto fail;
6521 
6522 	/*
6523 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6524 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6525 	 */
6526 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6527 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6528 		sd = sd->parent;
6529 	if (!sd)
6530 		goto fail;
6531 
6532 	sync_entity_load_avg(&p->se);
6533 	if (!task_util_est(p))
6534 		goto unlock;
6535 
6536 	for (; pd; pd = pd->next) {
6537 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6538 		unsigned long base_energy_pd;
6539 		int max_spare_cap_cpu = -1;
6540 
6541 		/* Compute the 'base' energy of the pd, without @p */
6542 		base_energy_pd = compute_energy(p, -1, pd);
6543 		base_energy += base_energy_pd;
6544 
6545 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6546 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6547 				continue;
6548 
6549 			util = cpu_util_next(cpu, p, cpu);
6550 			cpu_cap = capacity_of(cpu);
6551 			spare_cap = cpu_cap - util;
6552 
6553 			/*
6554 			 * Skip CPUs that cannot satisfy the capacity request.
6555 			 * IOW, placing the task there would make the CPU
6556 			 * overutilized. Take uclamp into account to see how
6557 			 * much capacity we can get out of the CPU; this is
6558 			 * aligned with schedutil_cpu_util().
6559 			 */
6560 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6561 			if (!fits_capacity(util, cpu_cap))
6562 				continue;
6563 
6564 			/* Always use prev_cpu as a candidate. */
6565 			if (cpu == prev_cpu) {
6566 				prev_delta = compute_energy(p, prev_cpu, pd);
6567 				prev_delta -= base_energy_pd;
6568 				best_delta = min(best_delta, prev_delta);
6569 			}
6570 
6571 			/*
6572 			 * Find the CPU with the maximum spare capacity in
6573 			 * the performance domain
6574 			 */
6575 			if (spare_cap > max_spare_cap) {
6576 				max_spare_cap = spare_cap;
6577 				max_spare_cap_cpu = cpu;
6578 			}
6579 		}
6580 
6581 		/* Evaluate the energy impact of using this CPU. */
6582 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6583 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6584 			cur_delta -= base_energy_pd;
6585 			if (cur_delta < best_delta) {
6586 				best_delta = cur_delta;
6587 				best_energy_cpu = max_spare_cap_cpu;
6588 			}
6589 		}
6590 	}
6591 unlock:
6592 	rcu_read_unlock();
6593 
6594 	/*
6595 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6596 	 * least 6% of the energy used by prev_cpu.
6597 	 */
6598 	if (prev_delta == ULONG_MAX)
6599 		return best_energy_cpu;
6600 
6601 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6602 		return best_energy_cpu;
6603 
6604 	return prev_cpu;
6605 
6606 fail:
6607 	rcu_read_unlock();
6608 
6609 	return -1;
6610 }
6611 
6612 /*
6613  * select_task_rq_fair: Select target runqueue for the waking task in domains
6614  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6615  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6616  *
6617  * Balances load by selecting the idlest CPU in the idlest group, or under
6618  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6619  *
6620  * Returns the target CPU number.
6621  *
6622  * preempt must be disabled.
6623  */
6624 static int
6625 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6626 {
6627 	struct sched_domain *tmp, *sd = NULL;
6628 	int cpu = smp_processor_id();
6629 	int new_cpu = prev_cpu;
6630 	int want_affine = 0;
6631 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6632 
6633 	if (sd_flag & SD_BALANCE_WAKE) {
6634 		record_wakee(p);
6635 
6636 		if (sched_energy_enabled()) {
6637 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6638 			if (new_cpu >= 0)
6639 				return new_cpu;
6640 			new_cpu = prev_cpu;
6641 		}
6642 
6643 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6644 	}
6645 
6646 	rcu_read_lock();
6647 	for_each_domain(cpu, tmp) {
6648 		if (!(tmp->flags & SD_LOAD_BALANCE))
6649 			break;
6650 
6651 		/*
6652 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6653 		 * cpu is a valid SD_WAKE_AFFINE target.
6654 		 */
6655 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6656 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6657 			if (cpu != prev_cpu)
6658 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6659 
6660 			sd = NULL; /* Prefer wake_affine over balance flags */
6661 			break;
6662 		}
6663 
6664 		if (tmp->flags & sd_flag)
6665 			sd = tmp;
6666 		else if (!want_affine)
6667 			break;
6668 	}
6669 
6670 	if (unlikely(sd)) {
6671 		/* Slow path */
6672 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6673 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6674 		/* Fast path */
6675 
6676 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6677 
6678 		if (want_affine)
6679 			current->recent_used_cpu = cpu;
6680 	}
6681 	rcu_read_unlock();
6682 
6683 	return new_cpu;
6684 }
6685 
6686 static void detach_entity_cfs_rq(struct sched_entity *se);
6687 
6688 /*
6689  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6690  * cfs_rq_of(p) references at time of call are still valid and identify the
6691  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6692  */
6693 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6694 {
6695 	/*
6696 	 * As blocked tasks retain absolute vruntime the migration needs to
6697 	 * deal with this by subtracting the old and adding the new
6698 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6699 	 * the task on the new runqueue.
6700 	 */
6701 	if (p->state == TASK_WAKING) {
6702 		struct sched_entity *se = &p->se;
6703 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6704 		u64 min_vruntime;
6705 
6706 #ifndef CONFIG_64BIT
6707 		u64 min_vruntime_copy;
6708 
6709 		do {
6710 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6711 			smp_rmb();
6712 			min_vruntime = cfs_rq->min_vruntime;
6713 		} while (min_vruntime != min_vruntime_copy);
6714 #else
6715 		min_vruntime = cfs_rq->min_vruntime;
6716 #endif
6717 
6718 		se->vruntime -= min_vruntime;
6719 	}
6720 
6721 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6722 		/*
6723 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6724 		 * rq->lock and can modify state directly.
6725 		 */
6726 		lockdep_assert_held(&task_rq(p)->lock);
6727 		detach_entity_cfs_rq(&p->se);
6728 
6729 	} else {
6730 		/*
6731 		 * We are supposed to update the task to "current" time, then
6732 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6733 		 * have difficulty in getting what current time is, so simply
6734 		 * throw away the out-of-date time. This will result in the
6735 		 * wakee task is less decayed, but giving the wakee more load
6736 		 * sounds not bad.
6737 		 */
6738 		remove_entity_load_avg(&p->se);
6739 	}
6740 
6741 	/* Tell new CPU we are migrated */
6742 	p->se.avg.last_update_time = 0;
6743 
6744 	/* We have migrated, no longer consider this task hot */
6745 	p->se.exec_start = 0;
6746 
6747 	update_scan_period(p, new_cpu);
6748 }
6749 
6750 static void task_dead_fair(struct task_struct *p)
6751 {
6752 	remove_entity_load_avg(&p->se);
6753 }
6754 
6755 static int
6756 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6757 {
6758 	if (rq->nr_running)
6759 		return 1;
6760 
6761 	return newidle_balance(rq, rf) != 0;
6762 }
6763 #endif /* CONFIG_SMP */
6764 
6765 static unsigned long wakeup_gran(struct sched_entity *se)
6766 {
6767 	unsigned long gran = sysctl_sched_wakeup_granularity;
6768 
6769 	/*
6770 	 * Since its curr running now, convert the gran from real-time
6771 	 * to virtual-time in his units.
6772 	 *
6773 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6774 	 * they get preempted easier. That is, if 'se' < 'curr' then
6775 	 * the resulting gran will be larger, therefore penalizing the
6776 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6777 	 * be smaller, again penalizing the lighter task.
6778 	 *
6779 	 * This is especially important for buddies when the leftmost
6780 	 * task is higher priority than the buddy.
6781 	 */
6782 	return calc_delta_fair(gran, se);
6783 }
6784 
6785 /*
6786  * Should 'se' preempt 'curr'.
6787  *
6788  *             |s1
6789  *        |s2
6790  *   |s3
6791  *         g
6792  *      |<--->|c
6793  *
6794  *  w(c, s1) = -1
6795  *  w(c, s2) =  0
6796  *  w(c, s3) =  1
6797  *
6798  */
6799 static int
6800 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6801 {
6802 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6803 
6804 	if (vdiff <= 0)
6805 		return -1;
6806 
6807 	gran = wakeup_gran(se);
6808 	if (vdiff > gran)
6809 		return 1;
6810 
6811 	return 0;
6812 }
6813 
6814 static void set_last_buddy(struct sched_entity *se)
6815 {
6816 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6817 		return;
6818 
6819 	for_each_sched_entity(se) {
6820 		if (SCHED_WARN_ON(!se->on_rq))
6821 			return;
6822 		cfs_rq_of(se)->last = se;
6823 	}
6824 }
6825 
6826 static void set_next_buddy(struct sched_entity *se)
6827 {
6828 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6829 		return;
6830 
6831 	for_each_sched_entity(se) {
6832 		if (SCHED_WARN_ON(!se->on_rq))
6833 			return;
6834 		cfs_rq_of(se)->next = se;
6835 	}
6836 }
6837 
6838 static void set_skip_buddy(struct sched_entity *se)
6839 {
6840 	for_each_sched_entity(se)
6841 		cfs_rq_of(se)->skip = se;
6842 }
6843 
6844 /*
6845  * Preempt the current task with a newly woken task if needed:
6846  */
6847 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6848 {
6849 	struct task_struct *curr = rq->curr;
6850 	struct sched_entity *se = &curr->se, *pse = &p->se;
6851 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6852 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6853 	int next_buddy_marked = 0;
6854 
6855 	if (unlikely(se == pse))
6856 		return;
6857 
6858 	/*
6859 	 * This is possible from callers such as attach_tasks(), in which we
6860 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6861 	 * lead to a throttle).  This both saves work and prevents false
6862 	 * next-buddy nomination below.
6863 	 */
6864 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6865 		return;
6866 
6867 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6868 		set_next_buddy(pse);
6869 		next_buddy_marked = 1;
6870 	}
6871 
6872 	/*
6873 	 * We can come here with TIF_NEED_RESCHED already set from new task
6874 	 * wake up path.
6875 	 *
6876 	 * Note: this also catches the edge-case of curr being in a throttled
6877 	 * group (e.g. via set_curr_task), since update_curr() (in the
6878 	 * enqueue of curr) will have resulted in resched being set.  This
6879 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6880 	 * below.
6881 	 */
6882 	if (test_tsk_need_resched(curr))
6883 		return;
6884 
6885 	/* Idle tasks are by definition preempted by non-idle tasks. */
6886 	if (unlikely(task_has_idle_policy(curr)) &&
6887 	    likely(!task_has_idle_policy(p)))
6888 		goto preempt;
6889 
6890 	/*
6891 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6892 	 * is driven by the tick):
6893 	 */
6894 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6895 		return;
6896 
6897 	find_matching_se(&se, &pse);
6898 	update_curr(cfs_rq_of(se));
6899 	BUG_ON(!pse);
6900 	if (wakeup_preempt_entity(se, pse) == 1) {
6901 		/*
6902 		 * Bias pick_next to pick the sched entity that is
6903 		 * triggering this preemption.
6904 		 */
6905 		if (!next_buddy_marked)
6906 			set_next_buddy(pse);
6907 		goto preempt;
6908 	}
6909 
6910 	return;
6911 
6912 preempt:
6913 	resched_curr(rq);
6914 	/*
6915 	 * Only set the backward buddy when the current task is still
6916 	 * on the rq. This can happen when a wakeup gets interleaved
6917 	 * with schedule on the ->pre_schedule() or idle_balance()
6918 	 * point, either of which can * drop the rq lock.
6919 	 *
6920 	 * Also, during early boot the idle thread is in the fair class,
6921 	 * for obvious reasons its a bad idea to schedule back to it.
6922 	 */
6923 	if (unlikely(!se->on_rq || curr == rq->idle))
6924 		return;
6925 
6926 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6927 		set_last_buddy(se);
6928 }
6929 
6930 struct task_struct *
6931 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6932 {
6933 	struct cfs_rq *cfs_rq = &rq->cfs;
6934 	struct sched_entity *se;
6935 	struct task_struct *p;
6936 	int new_tasks;
6937 
6938 again:
6939 	if (!sched_fair_runnable(rq))
6940 		goto idle;
6941 
6942 #ifdef CONFIG_FAIR_GROUP_SCHED
6943 	if (!prev || prev->sched_class != &fair_sched_class)
6944 		goto simple;
6945 
6946 	/*
6947 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6948 	 * likely that a next task is from the same cgroup as the current.
6949 	 *
6950 	 * Therefore attempt to avoid putting and setting the entire cgroup
6951 	 * hierarchy, only change the part that actually changes.
6952 	 */
6953 
6954 	do {
6955 		struct sched_entity *curr = cfs_rq->curr;
6956 
6957 		/*
6958 		 * Since we got here without doing put_prev_entity() we also
6959 		 * have to consider cfs_rq->curr. If it is still a runnable
6960 		 * entity, update_curr() will update its vruntime, otherwise
6961 		 * forget we've ever seen it.
6962 		 */
6963 		if (curr) {
6964 			if (curr->on_rq)
6965 				update_curr(cfs_rq);
6966 			else
6967 				curr = NULL;
6968 
6969 			/*
6970 			 * This call to check_cfs_rq_runtime() will do the
6971 			 * throttle and dequeue its entity in the parent(s).
6972 			 * Therefore the nr_running test will indeed
6973 			 * be correct.
6974 			 */
6975 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6976 				cfs_rq = &rq->cfs;
6977 
6978 				if (!cfs_rq->nr_running)
6979 					goto idle;
6980 
6981 				goto simple;
6982 			}
6983 		}
6984 
6985 		se = pick_next_entity(cfs_rq, curr);
6986 		cfs_rq = group_cfs_rq(se);
6987 	} while (cfs_rq);
6988 
6989 	p = task_of(se);
6990 
6991 	/*
6992 	 * Since we haven't yet done put_prev_entity and if the selected task
6993 	 * is a different task than we started out with, try and touch the
6994 	 * least amount of cfs_rqs.
6995 	 */
6996 	if (prev != p) {
6997 		struct sched_entity *pse = &prev->se;
6998 
6999 		while (!(cfs_rq = is_same_group(se, pse))) {
7000 			int se_depth = se->depth;
7001 			int pse_depth = pse->depth;
7002 
7003 			if (se_depth <= pse_depth) {
7004 				put_prev_entity(cfs_rq_of(pse), pse);
7005 				pse = parent_entity(pse);
7006 			}
7007 			if (se_depth >= pse_depth) {
7008 				set_next_entity(cfs_rq_of(se), se);
7009 				se = parent_entity(se);
7010 			}
7011 		}
7012 
7013 		put_prev_entity(cfs_rq, pse);
7014 		set_next_entity(cfs_rq, se);
7015 	}
7016 
7017 	goto done;
7018 simple:
7019 #endif
7020 	if (prev)
7021 		put_prev_task(rq, prev);
7022 
7023 	do {
7024 		se = pick_next_entity(cfs_rq, NULL);
7025 		set_next_entity(cfs_rq, se);
7026 		cfs_rq = group_cfs_rq(se);
7027 	} while (cfs_rq);
7028 
7029 	p = task_of(se);
7030 
7031 done: __maybe_unused;
7032 #ifdef CONFIG_SMP
7033 	/*
7034 	 * Move the next running task to the front of
7035 	 * the list, so our cfs_tasks list becomes MRU
7036 	 * one.
7037 	 */
7038 	list_move(&p->se.group_node, &rq->cfs_tasks);
7039 #endif
7040 
7041 	if (hrtick_enabled(rq))
7042 		hrtick_start_fair(rq, p);
7043 
7044 	update_misfit_status(p, rq);
7045 
7046 	return p;
7047 
7048 idle:
7049 	if (!rf)
7050 		return NULL;
7051 
7052 	new_tasks = newidle_balance(rq, rf);
7053 
7054 	/*
7055 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7056 	 * possible for any higher priority task to appear. In that case we
7057 	 * must re-start the pick_next_entity() loop.
7058 	 */
7059 	if (new_tasks < 0)
7060 		return RETRY_TASK;
7061 
7062 	if (new_tasks > 0)
7063 		goto again;
7064 
7065 	/*
7066 	 * rq is about to be idle, check if we need to update the
7067 	 * lost_idle_time of clock_pelt
7068 	 */
7069 	update_idle_rq_clock_pelt(rq);
7070 
7071 	return NULL;
7072 }
7073 
7074 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7075 {
7076 	return pick_next_task_fair(rq, NULL, NULL);
7077 }
7078 
7079 /*
7080  * Account for a descheduled task:
7081  */
7082 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7083 {
7084 	struct sched_entity *se = &prev->se;
7085 	struct cfs_rq *cfs_rq;
7086 
7087 	for_each_sched_entity(se) {
7088 		cfs_rq = cfs_rq_of(se);
7089 		put_prev_entity(cfs_rq, se);
7090 	}
7091 }
7092 
7093 /*
7094  * sched_yield() is very simple
7095  *
7096  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7097  */
7098 static void yield_task_fair(struct rq *rq)
7099 {
7100 	struct task_struct *curr = rq->curr;
7101 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7102 	struct sched_entity *se = &curr->se;
7103 
7104 	/*
7105 	 * Are we the only task in the tree?
7106 	 */
7107 	if (unlikely(rq->nr_running == 1))
7108 		return;
7109 
7110 	clear_buddies(cfs_rq, se);
7111 
7112 	if (curr->policy != SCHED_BATCH) {
7113 		update_rq_clock(rq);
7114 		/*
7115 		 * Update run-time statistics of the 'current'.
7116 		 */
7117 		update_curr(cfs_rq);
7118 		/*
7119 		 * Tell update_rq_clock() that we've just updated,
7120 		 * so we don't do microscopic update in schedule()
7121 		 * and double the fastpath cost.
7122 		 */
7123 		rq_clock_skip_update(rq);
7124 	}
7125 
7126 	set_skip_buddy(se);
7127 }
7128 
7129 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7130 {
7131 	struct sched_entity *se = &p->se;
7132 
7133 	/* throttled hierarchies are not runnable */
7134 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7135 		return false;
7136 
7137 	/* Tell the scheduler that we'd really like pse to run next. */
7138 	set_next_buddy(se);
7139 
7140 	yield_task_fair(rq);
7141 
7142 	return true;
7143 }
7144 
7145 #ifdef CONFIG_SMP
7146 /**************************************************
7147  * Fair scheduling class load-balancing methods.
7148  *
7149  * BASICS
7150  *
7151  * The purpose of load-balancing is to achieve the same basic fairness the
7152  * per-CPU scheduler provides, namely provide a proportional amount of compute
7153  * time to each task. This is expressed in the following equation:
7154  *
7155  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7156  *
7157  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7158  * W_i,0 is defined as:
7159  *
7160  *   W_i,0 = \Sum_j w_i,j                                             (2)
7161  *
7162  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7163  * is derived from the nice value as per sched_prio_to_weight[].
7164  *
7165  * The weight average is an exponential decay average of the instantaneous
7166  * weight:
7167  *
7168  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7169  *
7170  * C_i is the compute capacity of CPU i, typically it is the
7171  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7172  * can also include other factors [XXX].
7173  *
7174  * To achieve this balance we define a measure of imbalance which follows
7175  * directly from (1):
7176  *
7177  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7178  *
7179  * We them move tasks around to minimize the imbalance. In the continuous
7180  * function space it is obvious this converges, in the discrete case we get
7181  * a few fun cases generally called infeasible weight scenarios.
7182  *
7183  * [XXX expand on:
7184  *     - infeasible weights;
7185  *     - local vs global optima in the discrete case. ]
7186  *
7187  *
7188  * SCHED DOMAINS
7189  *
7190  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7191  * for all i,j solution, we create a tree of CPUs that follows the hardware
7192  * topology where each level pairs two lower groups (or better). This results
7193  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7194  * tree to only the first of the previous level and we decrease the frequency
7195  * of load-balance at each level inv. proportional to the number of CPUs in
7196  * the groups.
7197  *
7198  * This yields:
7199  *
7200  *     log_2 n     1     n
7201  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7202  *     i = 0      2^i   2^i
7203  *                               `- size of each group
7204  *         |         |     `- number of CPUs doing load-balance
7205  *         |         `- freq
7206  *         `- sum over all levels
7207  *
7208  * Coupled with a limit on how many tasks we can migrate every balance pass,
7209  * this makes (5) the runtime complexity of the balancer.
7210  *
7211  * An important property here is that each CPU is still (indirectly) connected
7212  * to every other CPU in at most O(log n) steps:
7213  *
7214  * The adjacency matrix of the resulting graph is given by:
7215  *
7216  *             log_2 n
7217  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7218  *             k = 0
7219  *
7220  * And you'll find that:
7221  *
7222  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7223  *
7224  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7225  * The task movement gives a factor of O(m), giving a convergence complexity
7226  * of:
7227  *
7228  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7229  *
7230  *
7231  * WORK CONSERVING
7232  *
7233  * In order to avoid CPUs going idle while there's still work to do, new idle
7234  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7235  * tree itself instead of relying on other CPUs to bring it work.
7236  *
7237  * This adds some complexity to both (5) and (8) but it reduces the total idle
7238  * time.
7239  *
7240  * [XXX more?]
7241  *
7242  *
7243  * CGROUPS
7244  *
7245  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7246  *
7247  *                                s_k,i
7248  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7249  *                                 S_k
7250  *
7251  * Where
7252  *
7253  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7254  *
7255  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7256  *
7257  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7258  * property.
7259  *
7260  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7261  *      rewrite all of this once again.]
7262  */
7263 
7264 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7265 
7266 enum fbq_type { regular, remote, all };
7267 
7268 /*
7269  * 'group_type' describes the group of CPUs at the moment of load balancing.
7270  *
7271  * The enum is ordered by pulling priority, with the group with lowest priority
7272  * first so the group_type can simply be compared when selecting the busiest
7273  * group. See update_sd_pick_busiest().
7274  */
7275 enum group_type {
7276 	/* The group has spare capacity that can be used to run more tasks.  */
7277 	group_has_spare = 0,
7278 	/*
7279 	 * The group is fully used and the tasks don't compete for more CPU
7280 	 * cycles. Nevertheless, some tasks might wait before running.
7281 	 */
7282 	group_fully_busy,
7283 	/*
7284 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7285 	 * and must be migrated to a more powerful CPU.
7286 	 */
7287 	group_misfit_task,
7288 	/*
7289 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7290 	 * and the task should be migrated to it instead of running on the
7291 	 * current CPU.
7292 	 */
7293 	group_asym_packing,
7294 	/*
7295 	 * The tasks' affinity constraints previously prevented the scheduler
7296 	 * from balancing the load across the system.
7297 	 */
7298 	group_imbalanced,
7299 	/*
7300 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7301 	 * tasks.
7302 	 */
7303 	group_overloaded
7304 };
7305 
7306 enum migration_type {
7307 	migrate_load = 0,
7308 	migrate_util,
7309 	migrate_task,
7310 	migrate_misfit
7311 };
7312 
7313 #define LBF_ALL_PINNED	0x01
7314 #define LBF_NEED_BREAK	0x02
7315 #define LBF_DST_PINNED  0x04
7316 #define LBF_SOME_PINNED	0x08
7317 #define LBF_NOHZ_STATS	0x10
7318 #define LBF_NOHZ_AGAIN	0x20
7319 
7320 struct lb_env {
7321 	struct sched_domain	*sd;
7322 
7323 	struct rq		*src_rq;
7324 	int			src_cpu;
7325 
7326 	int			dst_cpu;
7327 	struct rq		*dst_rq;
7328 
7329 	struct cpumask		*dst_grpmask;
7330 	int			new_dst_cpu;
7331 	enum cpu_idle_type	idle;
7332 	long			imbalance;
7333 	/* The set of CPUs under consideration for load-balancing */
7334 	struct cpumask		*cpus;
7335 
7336 	unsigned int		flags;
7337 
7338 	unsigned int		loop;
7339 	unsigned int		loop_break;
7340 	unsigned int		loop_max;
7341 
7342 	enum fbq_type		fbq_type;
7343 	enum migration_type	migration_type;
7344 	struct list_head	tasks;
7345 };
7346 
7347 /*
7348  * Is this task likely cache-hot:
7349  */
7350 static int task_hot(struct task_struct *p, struct lb_env *env)
7351 {
7352 	s64 delta;
7353 
7354 	lockdep_assert_held(&env->src_rq->lock);
7355 
7356 	if (p->sched_class != &fair_sched_class)
7357 		return 0;
7358 
7359 	if (unlikely(task_has_idle_policy(p)))
7360 		return 0;
7361 
7362 	/*
7363 	 * Buddy candidates are cache hot:
7364 	 */
7365 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7366 			(&p->se == cfs_rq_of(&p->se)->next ||
7367 			 &p->se == cfs_rq_of(&p->se)->last))
7368 		return 1;
7369 
7370 	if (sysctl_sched_migration_cost == -1)
7371 		return 1;
7372 	if (sysctl_sched_migration_cost == 0)
7373 		return 0;
7374 
7375 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7376 
7377 	return delta < (s64)sysctl_sched_migration_cost;
7378 }
7379 
7380 #ifdef CONFIG_NUMA_BALANCING
7381 /*
7382  * Returns 1, if task migration degrades locality
7383  * Returns 0, if task migration improves locality i.e migration preferred.
7384  * Returns -1, if task migration is not affected by locality.
7385  */
7386 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7387 {
7388 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7389 	unsigned long src_weight, dst_weight;
7390 	int src_nid, dst_nid, dist;
7391 
7392 	if (!static_branch_likely(&sched_numa_balancing))
7393 		return -1;
7394 
7395 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7396 		return -1;
7397 
7398 	src_nid = cpu_to_node(env->src_cpu);
7399 	dst_nid = cpu_to_node(env->dst_cpu);
7400 
7401 	if (src_nid == dst_nid)
7402 		return -1;
7403 
7404 	/* Migrating away from the preferred node is always bad. */
7405 	if (src_nid == p->numa_preferred_nid) {
7406 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7407 			return 1;
7408 		else
7409 			return -1;
7410 	}
7411 
7412 	/* Encourage migration to the preferred node. */
7413 	if (dst_nid == p->numa_preferred_nid)
7414 		return 0;
7415 
7416 	/* Leaving a core idle is often worse than degrading locality. */
7417 	if (env->idle == CPU_IDLE)
7418 		return -1;
7419 
7420 	dist = node_distance(src_nid, dst_nid);
7421 	if (numa_group) {
7422 		src_weight = group_weight(p, src_nid, dist);
7423 		dst_weight = group_weight(p, dst_nid, dist);
7424 	} else {
7425 		src_weight = task_weight(p, src_nid, dist);
7426 		dst_weight = task_weight(p, dst_nid, dist);
7427 	}
7428 
7429 	return dst_weight < src_weight;
7430 }
7431 
7432 #else
7433 static inline int migrate_degrades_locality(struct task_struct *p,
7434 					     struct lb_env *env)
7435 {
7436 	return -1;
7437 }
7438 #endif
7439 
7440 /*
7441  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7442  */
7443 static
7444 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7445 {
7446 	int tsk_cache_hot;
7447 
7448 	lockdep_assert_held(&env->src_rq->lock);
7449 
7450 	/*
7451 	 * We do not migrate tasks that are:
7452 	 * 1) throttled_lb_pair, or
7453 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7454 	 * 3) running (obviously), or
7455 	 * 4) are cache-hot on their current CPU.
7456 	 */
7457 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7458 		return 0;
7459 
7460 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7461 		int cpu;
7462 
7463 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7464 
7465 		env->flags |= LBF_SOME_PINNED;
7466 
7467 		/*
7468 		 * Remember if this task can be migrated to any other CPU in
7469 		 * our sched_group. We may want to revisit it if we couldn't
7470 		 * meet load balance goals by pulling other tasks on src_cpu.
7471 		 *
7472 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7473 		 * already computed one in current iteration.
7474 		 */
7475 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7476 			return 0;
7477 
7478 		/* Prevent to re-select dst_cpu via env's CPUs: */
7479 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7480 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7481 				env->flags |= LBF_DST_PINNED;
7482 				env->new_dst_cpu = cpu;
7483 				break;
7484 			}
7485 		}
7486 
7487 		return 0;
7488 	}
7489 
7490 	/* Record that we found atleast one task that could run on dst_cpu */
7491 	env->flags &= ~LBF_ALL_PINNED;
7492 
7493 	if (task_running(env->src_rq, p)) {
7494 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7495 		return 0;
7496 	}
7497 
7498 	/*
7499 	 * Aggressive migration if:
7500 	 * 1) destination numa is preferred
7501 	 * 2) task is cache cold, or
7502 	 * 3) too many balance attempts have failed.
7503 	 */
7504 	tsk_cache_hot = migrate_degrades_locality(p, env);
7505 	if (tsk_cache_hot == -1)
7506 		tsk_cache_hot = task_hot(p, env);
7507 
7508 	if (tsk_cache_hot <= 0 ||
7509 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7510 		if (tsk_cache_hot == 1) {
7511 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7512 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7513 		}
7514 		return 1;
7515 	}
7516 
7517 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7518 	return 0;
7519 }
7520 
7521 /*
7522  * detach_task() -- detach the task for the migration specified in env
7523  */
7524 static void detach_task(struct task_struct *p, struct lb_env *env)
7525 {
7526 	lockdep_assert_held(&env->src_rq->lock);
7527 
7528 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7529 	set_task_cpu(p, env->dst_cpu);
7530 }
7531 
7532 /*
7533  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7534  * part of active balancing operations within "domain".
7535  *
7536  * Returns a task if successful and NULL otherwise.
7537  */
7538 static struct task_struct *detach_one_task(struct lb_env *env)
7539 {
7540 	struct task_struct *p;
7541 
7542 	lockdep_assert_held(&env->src_rq->lock);
7543 
7544 	list_for_each_entry_reverse(p,
7545 			&env->src_rq->cfs_tasks, se.group_node) {
7546 		if (!can_migrate_task(p, env))
7547 			continue;
7548 
7549 		detach_task(p, env);
7550 
7551 		/*
7552 		 * Right now, this is only the second place where
7553 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7554 		 * so we can safely collect stats here rather than
7555 		 * inside detach_tasks().
7556 		 */
7557 		schedstat_inc(env->sd->lb_gained[env->idle]);
7558 		return p;
7559 	}
7560 	return NULL;
7561 }
7562 
7563 static const unsigned int sched_nr_migrate_break = 32;
7564 
7565 /*
7566  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7567  * busiest_rq, as part of a balancing operation within domain "sd".
7568  *
7569  * Returns number of detached tasks if successful and 0 otherwise.
7570  */
7571 static int detach_tasks(struct lb_env *env)
7572 {
7573 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7574 	unsigned long util, load;
7575 	struct task_struct *p;
7576 	int detached = 0;
7577 
7578 	lockdep_assert_held(&env->src_rq->lock);
7579 
7580 	if (env->imbalance <= 0)
7581 		return 0;
7582 
7583 	while (!list_empty(tasks)) {
7584 		/*
7585 		 * We don't want to steal all, otherwise we may be treated likewise,
7586 		 * which could at worst lead to a livelock crash.
7587 		 */
7588 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7589 			break;
7590 
7591 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7592 
7593 		env->loop++;
7594 		/* We've more or less seen every task there is, call it quits */
7595 		if (env->loop > env->loop_max)
7596 			break;
7597 
7598 		/* take a breather every nr_migrate tasks */
7599 		if (env->loop > env->loop_break) {
7600 			env->loop_break += sched_nr_migrate_break;
7601 			env->flags |= LBF_NEED_BREAK;
7602 			break;
7603 		}
7604 
7605 		if (!can_migrate_task(p, env))
7606 			goto next;
7607 
7608 		switch (env->migration_type) {
7609 		case migrate_load:
7610 			load = task_h_load(p);
7611 
7612 			if (sched_feat(LB_MIN) &&
7613 			    load < 16 && !env->sd->nr_balance_failed)
7614 				goto next;
7615 
7616 			/*
7617 			 * Make sure that we don't migrate too much load.
7618 			 * Nevertheless, let relax the constraint if
7619 			 * scheduler fails to find a good waiting task to
7620 			 * migrate.
7621 			 */
7622 			if (load/2 > env->imbalance &&
7623 			    env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7624 				goto next;
7625 
7626 			env->imbalance -= load;
7627 			break;
7628 
7629 		case migrate_util:
7630 			util = task_util_est(p);
7631 
7632 			if (util > env->imbalance)
7633 				goto next;
7634 
7635 			env->imbalance -= util;
7636 			break;
7637 
7638 		case migrate_task:
7639 			env->imbalance--;
7640 			break;
7641 
7642 		case migrate_misfit:
7643 			/* This is not a misfit task */
7644 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7645 				goto next;
7646 
7647 			env->imbalance = 0;
7648 			break;
7649 		}
7650 
7651 		detach_task(p, env);
7652 		list_add(&p->se.group_node, &env->tasks);
7653 
7654 		detached++;
7655 
7656 #ifdef CONFIG_PREEMPTION
7657 		/*
7658 		 * NEWIDLE balancing is a source of latency, so preemptible
7659 		 * kernels will stop after the first task is detached to minimize
7660 		 * the critical section.
7661 		 */
7662 		if (env->idle == CPU_NEWLY_IDLE)
7663 			break;
7664 #endif
7665 
7666 		/*
7667 		 * We only want to steal up to the prescribed amount of
7668 		 * load/util/tasks.
7669 		 */
7670 		if (env->imbalance <= 0)
7671 			break;
7672 
7673 		continue;
7674 next:
7675 		list_move(&p->se.group_node, tasks);
7676 	}
7677 
7678 	/*
7679 	 * Right now, this is one of only two places we collect this stat
7680 	 * so we can safely collect detach_one_task() stats here rather
7681 	 * than inside detach_one_task().
7682 	 */
7683 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7684 
7685 	return detached;
7686 }
7687 
7688 /*
7689  * attach_task() -- attach the task detached by detach_task() to its new rq.
7690  */
7691 static void attach_task(struct rq *rq, struct task_struct *p)
7692 {
7693 	lockdep_assert_held(&rq->lock);
7694 
7695 	BUG_ON(task_rq(p) != rq);
7696 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7697 	check_preempt_curr(rq, p, 0);
7698 }
7699 
7700 /*
7701  * attach_one_task() -- attaches the task returned from detach_one_task() to
7702  * its new rq.
7703  */
7704 static void attach_one_task(struct rq *rq, struct task_struct *p)
7705 {
7706 	struct rq_flags rf;
7707 
7708 	rq_lock(rq, &rf);
7709 	update_rq_clock(rq);
7710 	attach_task(rq, p);
7711 	rq_unlock(rq, &rf);
7712 }
7713 
7714 /*
7715  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7716  * new rq.
7717  */
7718 static void attach_tasks(struct lb_env *env)
7719 {
7720 	struct list_head *tasks = &env->tasks;
7721 	struct task_struct *p;
7722 	struct rq_flags rf;
7723 
7724 	rq_lock(env->dst_rq, &rf);
7725 	update_rq_clock(env->dst_rq);
7726 
7727 	while (!list_empty(tasks)) {
7728 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7729 		list_del_init(&p->se.group_node);
7730 
7731 		attach_task(env->dst_rq, p);
7732 	}
7733 
7734 	rq_unlock(env->dst_rq, &rf);
7735 }
7736 
7737 #ifdef CONFIG_NO_HZ_COMMON
7738 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7739 {
7740 	if (cfs_rq->avg.load_avg)
7741 		return true;
7742 
7743 	if (cfs_rq->avg.util_avg)
7744 		return true;
7745 
7746 	return false;
7747 }
7748 
7749 static inline bool others_have_blocked(struct rq *rq)
7750 {
7751 	if (READ_ONCE(rq->avg_rt.util_avg))
7752 		return true;
7753 
7754 	if (READ_ONCE(rq->avg_dl.util_avg))
7755 		return true;
7756 
7757 	if (thermal_load_avg(rq))
7758 		return true;
7759 
7760 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7761 	if (READ_ONCE(rq->avg_irq.util_avg))
7762 		return true;
7763 #endif
7764 
7765 	return false;
7766 }
7767 
7768 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7769 {
7770 	rq->last_blocked_load_update_tick = jiffies;
7771 
7772 	if (!has_blocked)
7773 		rq->has_blocked_load = 0;
7774 }
7775 #else
7776 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7777 static inline bool others_have_blocked(struct rq *rq) { return false; }
7778 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7779 #endif
7780 
7781 static bool __update_blocked_others(struct rq *rq, bool *done)
7782 {
7783 	const struct sched_class *curr_class;
7784 	u64 now = rq_clock_pelt(rq);
7785 	unsigned long thermal_pressure;
7786 	bool decayed;
7787 
7788 	/*
7789 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7790 	 * DL and IRQ signals have been updated before updating CFS.
7791 	 */
7792 	curr_class = rq->curr->sched_class;
7793 
7794 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7795 
7796 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7797 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7798 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7799 		  update_irq_load_avg(rq, 0);
7800 
7801 	if (others_have_blocked(rq))
7802 		*done = false;
7803 
7804 	return decayed;
7805 }
7806 
7807 #ifdef CONFIG_FAIR_GROUP_SCHED
7808 
7809 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7810 {
7811 	if (cfs_rq->load.weight)
7812 		return false;
7813 
7814 	if (cfs_rq->avg.load_sum)
7815 		return false;
7816 
7817 	if (cfs_rq->avg.util_sum)
7818 		return false;
7819 
7820 	if (cfs_rq->avg.runnable_sum)
7821 		return false;
7822 
7823 	return true;
7824 }
7825 
7826 static bool __update_blocked_fair(struct rq *rq, bool *done)
7827 {
7828 	struct cfs_rq *cfs_rq, *pos;
7829 	bool decayed = false;
7830 	int cpu = cpu_of(rq);
7831 
7832 	/*
7833 	 * Iterates the task_group tree in a bottom up fashion, see
7834 	 * list_add_leaf_cfs_rq() for details.
7835 	 */
7836 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7837 		struct sched_entity *se;
7838 
7839 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7840 			update_tg_load_avg(cfs_rq, 0);
7841 
7842 			if (cfs_rq == &rq->cfs)
7843 				decayed = true;
7844 		}
7845 
7846 		/* Propagate pending load changes to the parent, if any: */
7847 		se = cfs_rq->tg->se[cpu];
7848 		if (se && !skip_blocked_update(se))
7849 			update_load_avg(cfs_rq_of(se), se, 0);
7850 
7851 		/*
7852 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7853 		 * decayed cfs_rqs linger on the list.
7854 		 */
7855 		if (cfs_rq_is_decayed(cfs_rq))
7856 			list_del_leaf_cfs_rq(cfs_rq);
7857 
7858 		/* Don't need periodic decay once load/util_avg are null */
7859 		if (cfs_rq_has_blocked(cfs_rq))
7860 			*done = false;
7861 	}
7862 
7863 	return decayed;
7864 }
7865 
7866 /*
7867  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7868  * This needs to be done in a top-down fashion because the load of a child
7869  * group is a fraction of its parents load.
7870  */
7871 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7872 {
7873 	struct rq *rq = rq_of(cfs_rq);
7874 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7875 	unsigned long now = jiffies;
7876 	unsigned long load;
7877 
7878 	if (cfs_rq->last_h_load_update == now)
7879 		return;
7880 
7881 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7882 	for_each_sched_entity(se) {
7883 		cfs_rq = cfs_rq_of(se);
7884 		WRITE_ONCE(cfs_rq->h_load_next, se);
7885 		if (cfs_rq->last_h_load_update == now)
7886 			break;
7887 	}
7888 
7889 	if (!se) {
7890 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7891 		cfs_rq->last_h_load_update = now;
7892 	}
7893 
7894 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7895 		load = cfs_rq->h_load;
7896 		load = div64_ul(load * se->avg.load_avg,
7897 			cfs_rq_load_avg(cfs_rq) + 1);
7898 		cfs_rq = group_cfs_rq(se);
7899 		cfs_rq->h_load = load;
7900 		cfs_rq->last_h_load_update = now;
7901 	}
7902 }
7903 
7904 static unsigned long task_h_load(struct task_struct *p)
7905 {
7906 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7907 
7908 	update_cfs_rq_h_load(cfs_rq);
7909 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7910 			cfs_rq_load_avg(cfs_rq) + 1);
7911 }
7912 #else
7913 static bool __update_blocked_fair(struct rq *rq, bool *done)
7914 {
7915 	struct cfs_rq *cfs_rq = &rq->cfs;
7916 	bool decayed;
7917 
7918 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7919 	if (cfs_rq_has_blocked(cfs_rq))
7920 		*done = false;
7921 
7922 	return decayed;
7923 }
7924 
7925 static unsigned long task_h_load(struct task_struct *p)
7926 {
7927 	return p->se.avg.load_avg;
7928 }
7929 #endif
7930 
7931 static void update_blocked_averages(int cpu)
7932 {
7933 	bool decayed = false, done = true;
7934 	struct rq *rq = cpu_rq(cpu);
7935 	struct rq_flags rf;
7936 
7937 	rq_lock_irqsave(rq, &rf);
7938 	update_rq_clock(rq);
7939 
7940 	decayed |= __update_blocked_others(rq, &done);
7941 	decayed |= __update_blocked_fair(rq, &done);
7942 
7943 	update_blocked_load_status(rq, !done);
7944 	if (decayed)
7945 		cpufreq_update_util(rq, 0);
7946 	rq_unlock_irqrestore(rq, &rf);
7947 }
7948 
7949 /********** Helpers for find_busiest_group ************************/
7950 
7951 /*
7952  * sg_lb_stats - stats of a sched_group required for load_balancing
7953  */
7954 struct sg_lb_stats {
7955 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7956 	unsigned long group_load; /* Total load over the CPUs of the group */
7957 	unsigned long group_capacity;
7958 	unsigned long group_util; /* Total utilization over the CPUs of the group */
7959 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
7960 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
7961 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
7962 	unsigned int idle_cpus;
7963 	unsigned int group_weight;
7964 	enum group_type group_type;
7965 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
7966 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7967 #ifdef CONFIG_NUMA_BALANCING
7968 	unsigned int nr_numa_running;
7969 	unsigned int nr_preferred_running;
7970 #endif
7971 };
7972 
7973 /*
7974  * sd_lb_stats - Structure to store the statistics of a sched_domain
7975  *		 during load balancing.
7976  */
7977 struct sd_lb_stats {
7978 	struct sched_group *busiest;	/* Busiest group in this sd */
7979 	struct sched_group *local;	/* Local group in this sd */
7980 	unsigned long total_load;	/* Total load of all groups in sd */
7981 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7982 	unsigned long avg_load;	/* Average load across all groups in sd */
7983 	unsigned int prefer_sibling; /* tasks should go to sibling first */
7984 
7985 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7986 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7987 };
7988 
7989 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7990 {
7991 	/*
7992 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7993 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7994 	 * We must however set busiest_stat::group_type and
7995 	 * busiest_stat::idle_cpus to the worst busiest group because
7996 	 * update_sd_pick_busiest() reads these before assignment.
7997 	 */
7998 	*sds = (struct sd_lb_stats){
7999 		.busiest = NULL,
8000 		.local = NULL,
8001 		.total_load = 0UL,
8002 		.total_capacity = 0UL,
8003 		.busiest_stat = {
8004 			.idle_cpus = UINT_MAX,
8005 			.group_type = group_has_spare,
8006 		},
8007 	};
8008 }
8009 
8010 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
8011 {
8012 	struct rq *rq = cpu_rq(cpu);
8013 	unsigned long max = arch_scale_cpu_capacity(cpu);
8014 	unsigned long used, free;
8015 	unsigned long irq;
8016 
8017 	irq = cpu_util_irq(rq);
8018 
8019 	if (unlikely(irq >= max))
8020 		return 1;
8021 
8022 	/*
8023 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8024 	 * (running and not running) with weights 0 and 1024 respectively.
8025 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8026 	 * average uses the actual delta max capacity(load).
8027 	 */
8028 	used = READ_ONCE(rq->avg_rt.util_avg);
8029 	used += READ_ONCE(rq->avg_dl.util_avg);
8030 	used += thermal_load_avg(rq);
8031 
8032 	if (unlikely(used >= max))
8033 		return 1;
8034 
8035 	free = max - used;
8036 
8037 	return scale_irq_capacity(free, irq, max);
8038 }
8039 
8040 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8041 {
8042 	unsigned long capacity = scale_rt_capacity(sd, cpu);
8043 	struct sched_group *sdg = sd->groups;
8044 
8045 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8046 
8047 	if (!capacity)
8048 		capacity = 1;
8049 
8050 	cpu_rq(cpu)->cpu_capacity = capacity;
8051 	sdg->sgc->capacity = capacity;
8052 	sdg->sgc->min_capacity = capacity;
8053 	sdg->sgc->max_capacity = capacity;
8054 }
8055 
8056 void update_group_capacity(struct sched_domain *sd, int cpu)
8057 {
8058 	struct sched_domain *child = sd->child;
8059 	struct sched_group *group, *sdg = sd->groups;
8060 	unsigned long capacity, min_capacity, max_capacity;
8061 	unsigned long interval;
8062 
8063 	interval = msecs_to_jiffies(sd->balance_interval);
8064 	interval = clamp(interval, 1UL, max_load_balance_interval);
8065 	sdg->sgc->next_update = jiffies + interval;
8066 
8067 	if (!child) {
8068 		update_cpu_capacity(sd, cpu);
8069 		return;
8070 	}
8071 
8072 	capacity = 0;
8073 	min_capacity = ULONG_MAX;
8074 	max_capacity = 0;
8075 
8076 	if (child->flags & SD_OVERLAP) {
8077 		/*
8078 		 * SD_OVERLAP domains cannot assume that child groups
8079 		 * span the current group.
8080 		 */
8081 
8082 		for_each_cpu(cpu, sched_group_span(sdg)) {
8083 			unsigned long cpu_cap = capacity_of(cpu);
8084 
8085 			capacity += cpu_cap;
8086 			min_capacity = min(cpu_cap, min_capacity);
8087 			max_capacity = max(cpu_cap, max_capacity);
8088 		}
8089 	} else  {
8090 		/*
8091 		 * !SD_OVERLAP domains can assume that child groups
8092 		 * span the current group.
8093 		 */
8094 
8095 		group = child->groups;
8096 		do {
8097 			struct sched_group_capacity *sgc = group->sgc;
8098 
8099 			capacity += sgc->capacity;
8100 			min_capacity = min(sgc->min_capacity, min_capacity);
8101 			max_capacity = max(sgc->max_capacity, max_capacity);
8102 			group = group->next;
8103 		} while (group != child->groups);
8104 	}
8105 
8106 	sdg->sgc->capacity = capacity;
8107 	sdg->sgc->min_capacity = min_capacity;
8108 	sdg->sgc->max_capacity = max_capacity;
8109 }
8110 
8111 /*
8112  * Check whether the capacity of the rq has been noticeably reduced by side
8113  * activity. The imbalance_pct is used for the threshold.
8114  * Return true is the capacity is reduced
8115  */
8116 static inline int
8117 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8118 {
8119 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8120 				(rq->cpu_capacity_orig * 100));
8121 }
8122 
8123 /*
8124  * Check whether a rq has a misfit task and if it looks like we can actually
8125  * help that task: we can migrate the task to a CPU of higher capacity, or
8126  * the task's current CPU is heavily pressured.
8127  */
8128 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8129 {
8130 	return rq->misfit_task_load &&
8131 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8132 		 check_cpu_capacity(rq, sd));
8133 }
8134 
8135 /*
8136  * Group imbalance indicates (and tries to solve) the problem where balancing
8137  * groups is inadequate due to ->cpus_ptr constraints.
8138  *
8139  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8140  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8141  * Something like:
8142  *
8143  *	{ 0 1 2 3 } { 4 5 6 7 }
8144  *	        *     * * *
8145  *
8146  * If we were to balance group-wise we'd place two tasks in the first group and
8147  * two tasks in the second group. Clearly this is undesired as it will overload
8148  * cpu 3 and leave one of the CPUs in the second group unused.
8149  *
8150  * The current solution to this issue is detecting the skew in the first group
8151  * by noticing the lower domain failed to reach balance and had difficulty
8152  * moving tasks due to affinity constraints.
8153  *
8154  * When this is so detected; this group becomes a candidate for busiest; see
8155  * update_sd_pick_busiest(). And calculate_imbalance() and
8156  * find_busiest_group() avoid some of the usual balance conditions to allow it
8157  * to create an effective group imbalance.
8158  *
8159  * This is a somewhat tricky proposition since the next run might not find the
8160  * group imbalance and decide the groups need to be balanced again. A most
8161  * subtle and fragile situation.
8162  */
8163 
8164 static inline int sg_imbalanced(struct sched_group *group)
8165 {
8166 	return group->sgc->imbalance;
8167 }
8168 
8169 /*
8170  * group_has_capacity returns true if the group has spare capacity that could
8171  * be used by some tasks.
8172  * We consider that a group has spare capacity if the  * number of task is
8173  * smaller than the number of CPUs or if the utilization is lower than the
8174  * available capacity for CFS tasks.
8175  * For the latter, we use a threshold to stabilize the state, to take into
8176  * account the variance of the tasks' load and to return true if the available
8177  * capacity in meaningful for the load balancer.
8178  * As an example, an available capacity of 1% can appear but it doesn't make
8179  * any benefit for the load balance.
8180  */
8181 static inline bool
8182 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8183 {
8184 	if (sgs->sum_nr_running < sgs->group_weight)
8185 		return true;
8186 
8187 	if ((sgs->group_capacity * imbalance_pct) <
8188 			(sgs->group_runnable * 100))
8189 		return false;
8190 
8191 	if ((sgs->group_capacity * 100) >
8192 			(sgs->group_util * imbalance_pct))
8193 		return true;
8194 
8195 	return false;
8196 }
8197 
8198 /*
8199  *  group_is_overloaded returns true if the group has more tasks than it can
8200  *  handle.
8201  *  group_is_overloaded is not equals to !group_has_capacity because a group
8202  *  with the exact right number of tasks, has no more spare capacity but is not
8203  *  overloaded so both group_has_capacity and group_is_overloaded return
8204  *  false.
8205  */
8206 static inline bool
8207 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8208 {
8209 	if (sgs->sum_nr_running <= sgs->group_weight)
8210 		return false;
8211 
8212 	if ((sgs->group_capacity * 100) <
8213 			(sgs->group_util * imbalance_pct))
8214 		return true;
8215 
8216 	if ((sgs->group_capacity * imbalance_pct) <
8217 			(sgs->group_runnable * 100))
8218 		return true;
8219 
8220 	return false;
8221 }
8222 
8223 /*
8224  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8225  * per-CPU capacity than sched_group ref.
8226  */
8227 static inline bool
8228 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8229 {
8230 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8231 }
8232 
8233 /*
8234  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8235  * per-CPU capacity_orig than sched_group ref.
8236  */
8237 static inline bool
8238 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8239 {
8240 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8241 }
8242 
8243 static inline enum
8244 group_type group_classify(unsigned int imbalance_pct,
8245 			  struct sched_group *group,
8246 			  struct sg_lb_stats *sgs)
8247 {
8248 	if (group_is_overloaded(imbalance_pct, sgs))
8249 		return group_overloaded;
8250 
8251 	if (sg_imbalanced(group))
8252 		return group_imbalanced;
8253 
8254 	if (sgs->group_asym_packing)
8255 		return group_asym_packing;
8256 
8257 	if (sgs->group_misfit_task_load)
8258 		return group_misfit_task;
8259 
8260 	if (!group_has_capacity(imbalance_pct, sgs))
8261 		return group_fully_busy;
8262 
8263 	return group_has_spare;
8264 }
8265 
8266 static bool update_nohz_stats(struct rq *rq, bool force)
8267 {
8268 #ifdef CONFIG_NO_HZ_COMMON
8269 	unsigned int cpu = rq->cpu;
8270 
8271 	if (!rq->has_blocked_load)
8272 		return false;
8273 
8274 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8275 		return false;
8276 
8277 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8278 		return true;
8279 
8280 	update_blocked_averages(cpu);
8281 
8282 	return rq->has_blocked_load;
8283 #else
8284 	return false;
8285 #endif
8286 }
8287 
8288 /**
8289  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8290  * @env: The load balancing environment.
8291  * @group: sched_group whose statistics are to be updated.
8292  * @sgs: variable to hold the statistics for this group.
8293  * @sg_status: Holds flag indicating the status of the sched_group
8294  */
8295 static inline void update_sg_lb_stats(struct lb_env *env,
8296 				      struct sched_group *group,
8297 				      struct sg_lb_stats *sgs,
8298 				      int *sg_status)
8299 {
8300 	int i, nr_running, local_group;
8301 
8302 	memset(sgs, 0, sizeof(*sgs));
8303 
8304 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8305 
8306 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8307 		struct rq *rq = cpu_rq(i);
8308 
8309 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8310 			env->flags |= LBF_NOHZ_AGAIN;
8311 
8312 		sgs->group_load += cpu_load(rq);
8313 		sgs->group_util += cpu_util(i);
8314 		sgs->group_runnable += cpu_runnable(rq);
8315 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8316 
8317 		nr_running = rq->nr_running;
8318 		sgs->sum_nr_running += nr_running;
8319 
8320 		if (nr_running > 1)
8321 			*sg_status |= SG_OVERLOAD;
8322 
8323 		if (cpu_overutilized(i))
8324 			*sg_status |= SG_OVERUTILIZED;
8325 
8326 #ifdef CONFIG_NUMA_BALANCING
8327 		sgs->nr_numa_running += rq->nr_numa_running;
8328 		sgs->nr_preferred_running += rq->nr_preferred_running;
8329 #endif
8330 		/*
8331 		 * No need to call idle_cpu() if nr_running is not 0
8332 		 */
8333 		if (!nr_running && idle_cpu(i)) {
8334 			sgs->idle_cpus++;
8335 			/* Idle cpu can't have misfit task */
8336 			continue;
8337 		}
8338 
8339 		if (local_group)
8340 			continue;
8341 
8342 		/* Check for a misfit task on the cpu */
8343 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8344 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8345 			sgs->group_misfit_task_load = rq->misfit_task_load;
8346 			*sg_status |= SG_OVERLOAD;
8347 		}
8348 	}
8349 
8350 	/* Check if dst CPU is idle and preferred to this group */
8351 	if (env->sd->flags & SD_ASYM_PACKING &&
8352 	    env->idle != CPU_NOT_IDLE &&
8353 	    sgs->sum_h_nr_running &&
8354 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8355 		sgs->group_asym_packing = 1;
8356 	}
8357 
8358 	sgs->group_capacity = group->sgc->capacity;
8359 
8360 	sgs->group_weight = group->group_weight;
8361 
8362 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8363 
8364 	/* Computing avg_load makes sense only when group is overloaded */
8365 	if (sgs->group_type == group_overloaded)
8366 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8367 				sgs->group_capacity;
8368 }
8369 
8370 /**
8371  * update_sd_pick_busiest - return 1 on busiest group
8372  * @env: The load balancing environment.
8373  * @sds: sched_domain statistics
8374  * @sg: sched_group candidate to be checked for being the busiest
8375  * @sgs: sched_group statistics
8376  *
8377  * Determine if @sg is a busier group than the previously selected
8378  * busiest group.
8379  *
8380  * Return: %true if @sg is a busier group than the previously selected
8381  * busiest group. %false otherwise.
8382  */
8383 static bool update_sd_pick_busiest(struct lb_env *env,
8384 				   struct sd_lb_stats *sds,
8385 				   struct sched_group *sg,
8386 				   struct sg_lb_stats *sgs)
8387 {
8388 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8389 
8390 	/* Make sure that there is at least one task to pull */
8391 	if (!sgs->sum_h_nr_running)
8392 		return false;
8393 
8394 	/*
8395 	 * Don't try to pull misfit tasks we can't help.
8396 	 * We can use max_capacity here as reduction in capacity on some
8397 	 * CPUs in the group should either be possible to resolve
8398 	 * internally or be covered by avg_load imbalance (eventually).
8399 	 */
8400 	if (sgs->group_type == group_misfit_task &&
8401 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8402 	     sds->local_stat.group_type != group_has_spare))
8403 		return false;
8404 
8405 	if (sgs->group_type > busiest->group_type)
8406 		return true;
8407 
8408 	if (sgs->group_type < busiest->group_type)
8409 		return false;
8410 
8411 	/*
8412 	 * The candidate and the current busiest group are the same type of
8413 	 * group. Let check which one is the busiest according to the type.
8414 	 */
8415 
8416 	switch (sgs->group_type) {
8417 	case group_overloaded:
8418 		/* Select the overloaded group with highest avg_load. */
8419 		if (sgs->avg_load <= busiest->avg_load)
8420 			return false;
8421 		break;
8422 
8423 	case group_imbalanced:
8424 		/*
8425 		 * Select the 1st imbalanced group as we don't have any way to
8426 		 * choose one more than another.
8427 		 */
8428 		return false;
8429 
8430 	case group_asym_packing:
8431 		/* Prefer to move from lowest priority CPU's work */
8432 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8433 			return false;
8434 		break;
8435 
8436 	case group_misfit_task:
8437 		/*
8438 		 * If we have more than one misfit sg go with the biggest
8439 		 * misfit.
8440 		 */
8441 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8442 			return false;
8443 		break;
8444 
8445 	case group_fully_busy:
8446 		/*
8447 		 * Select the fully busy group with highest avg_load. In
8448 		 * theory, there is no need to pull task from such kind of
8449 		 * group because tasks have all compute capacity that they need
8450 		 * but we can still improve the overall throughput by reducing
8451 		 * contention when accessing shared HW resources.
8452 		 *
8453 		 * XXX for now avg_load is not computed and always 0 so we
8454 		 * select the 1st one.
8455 		 */
8456 		if (sgs->avg_load <= busiest->avg_load)
8457 			return false;
8458 		break;
8459 
8460 	case group_has_spare:
8461 		/*
8462 		 * Select not overloaded group with lowest number of idle cpus
8463 		 * and highest number of running tasks. We could also compare
8464 		 * the spare capacity which is more stable but it can end up
8465 		 * that the group has less spare capacity but finally more idle
8466 		 * CPUs which means less opportunity to pull tasks.
8467 		 */
8468 		if (sgs->idle_cpus > busiest->idle_cpus)
8469 			return false;
8470 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8471 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8472 			return false;
8473 
8474 		break;
8475 	}
8476 
8477 	/*
8478 	 * Candidate sg has no more than one task per CPU and has higher
8479 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8480 	 * throughput. Maximize throughput, power/energy consequences are not
8481 	 * considered.
8482 	 */
8483 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8484 	    (sgs->group_type <= group_fully_busy) &&
8485 	    (group_smaller_min_cpu_capacity(sds->local, sg)))
8486 		return false;
8487 
8488 	return true;
8489 }
8490 
8491 #ifdef CONFIG_NUMA_BALANCING
8492 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8493 {
8494 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8495 		return regular;
8496 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8497 		return remote;
8498 	return all;
8499 }
8500 
8501 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8502 {
8503 	if (rq->nr_running > rq->nr_numa_running)
8504 		return regular;
8505 	if (rq->nr_running > rq->nr_preferred_running)
8506 		return remote;
8507 	return all;
8508 }
8509 #else
8510 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8511 {
8512 	return all;
8513 }
8514 
8515 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8516 {
8517 	return regular;
8518 }
8519 #endif /* CONFIG_NUMA_BALANCING */
8520 
8521 
8522 struct sg_lb_stats;
8523 
8524 /*
8525  * task_running_on_cpu - return 1 if @p is running on @cpu.
8526  */
8527 
8528 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8529 {
8530 	/* Task has no contribution or is new */
8531 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8532 		return 0;
8533 
8534 	if (task_on_rq_queued(p))
8535 		return 1;
8536 
8537 	return 0;
8538 }
8539 
8540 /**
8541  * idle_cpu_without - would a given CPU be idle without p ?
8542  * @cpu: the processor on which idleness is tested.
8543  * @p: task which should be ignored.
8544  *
8545  * Return: 1 if the CPU would be idle. 0 otherwise.
8546  */
8547 static int idle_cpu_without(int cpu, struct task_struct *p)
8548 {
8549 	struct rq *rq = cpu_rq(cpu);
8550 
8551 	if (rq->curr != rq->idle && rq->curr != p)
8552 		return 0;
8553 
8554 	/*
8555 	 * rq->nr_running can't be used but an updated version without the
8556 	 * impact of p on cpu must be used instead. The updated nr_running
8557 	 * be computed and tested before calling idle_cpu_without().
8558 	 */
8559 
8560 #ifdef CONFIG_SMP
8561 	if (!llist_empty(&rq->wake_list))
8562 		return 0;
8563 #endif
8564 
8565 	return 1;
8566 }
8567 
8568 /*
8569  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8570  * @sd: The sched_domain level to look for idlest group.
8571  * @group: sched_group whose statistics are to be updated.
8572  * @sgs: variable to hold the statistics for this group.
8573  * @p: The task for which we look for the idlest group/CPU.
8574  */
8575 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8576 					  struct sched_group *group,
8577 					  struct sg_lb_stats *sgs,
8578 					  struct task_struct *p)
8579 {
8580 	int i, nr_running;
8581 
8582 	memset(sgs, 0, sizeof(*sgs));
8583 
8584 	for_each_cpu(i, sched_group_span(group)) {
8585 		struct rq *rq = cpu_rq(i);
8586 		unsigned int local;
8587 
8588 		sgs->group_load += cpu_load_without(rq, p);
8589 		sgs->group_util += cpu_util_without(i, p);
8590 		sgs->group_runnable += cpu_runnable_without(rq, p);
8591 		local = task_running_on_cpu(i, p);
8592 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8593 
8594 		nr_running = rq->nr_running - local;
8595 		sgs->sum_nr_running += nr_running;
8596 
8597 		/*
8598 		 * No need to call idle_cpu_without() if nr_running is not 0
8599 		 */
8600 		if (!nr_running && idle_cpu_without(i, p))
8601 			sgs->idle_cpus++;
8602 
8603 	}
8604 
8605 	/* Check if task fits in the group */
8606 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8607 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8608 		sgs->group_misfit_task_load = 1;
8609 	}
8610 
8611 	sgs->group_capacity = group->sgc->capacity;
8612 
8613 	sgs->group_weight = group->group_weight;
8614 
8615 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8616 
8617 	/*
8618 	 * Computing avg_load makes sense only when group is fully busy or
8619 	 * overloaded
8620 	 */
8621 	if (sgs->group_type == group_fully_busy ||
8622 		sgs->group_type == group_overloaded)
8623 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8624 				sgs->group_capacity;
8625 }
8626 
8627 static bool update_pick_idlest(struct sched_group *idlest,
8628 			       struct sg_lb_stats *idlest_sgs,
8629 			       struct sched_group *group,
8630 			       struct sg_lb_stats *sgs)
8631 {
8632 	if (sgs->group_type < idlest_sgs->group_type)
8633 		return true;
8634 
8635 	if (sgs->group_type > idlest_sgs->group_type)
8636 		return false;
8637 
8638 	/*
8639 	 * The candidate and the current idlest group are the same type of
8640 	 * group. Let check which one is the idlest according to the type.
8641 	 */
8642 
8643 	switch (sgs->group_type) {
8644 	case group_overloaded:
8645 	case group_fully_busy:
8646 		/* Select the group with lowest avg_load. */
8647 		if (idlest_sgs->avg_load <= sgs->avg_load)
8648 			return false;
8649 		break;
8650 
8651 	case group_imbalanced:
8652 	case group_asym_packing:
8653 		/* Those types are not used in the slow wakeup path */
8654 		return false;
8655 
8656 	case group_misfit_task:
8657 		/* Select group with the highest max capacity */
8658 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8659 			return false;
8660 		break;
8661 
8662 	case group_has_spare:
8663 		/* Select group with most idle CPUs */
8664 		if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8665 			return false;
8666 		break;
8667 	}
8668 
8669 	return true;
8670 }
8671 
8672 /*
8673  * find_idlest_group() finds and returns the least busy CPU group within the
8674  * domain.
8675  *
8676  * Assumes p is allowed on at least one CPU in sd.
8677  */
8678 static struct sched_group *
8679 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
8680 		  int this_cpu, int sd_flag)
8681 {
8682 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8683 	struct sg_lb_stats local_sgs, tmp_sgs;
8684 	struct sg_lb_stats *sgs;
8685 	unsigned long imbalance;
8686 	struct sg_lb_stats idlest_sgs = {
8687 			.avg_load = UINT_MAX,
8688 			.group_type = group_overloaded,
8689 	};
8690 
8691 	imbalance = scale_load_down(NICE_0_LOAD) *
8692 				(sd->imbalance_pct-100) / 100;
8693 
8694 	do {
8695 		int local_group;
8696 
8697 		/* Skip over this group if it has no CPUs allowed */
8698 		if (!cpumask_intersects(sched_group_span(group),
8699 					p->cpus_ptr))
8700 			continue;
8701 
8702 		local_group = cpumask_test_cpu(this_cpu,
8703 					       sched_group_span(group));
8704 
8705 		if (local_group) {
8706 			sgs = &local_sgs;
8707 			local = group;
8708 		} else {
8709 			sgs = &tmp_sgs;
8710 		}
8711 
8712 		update_sg_wakeup_stats(sd, group, sgs, p);
8713 
8714 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8715 			idlest = group;
8716 			idlest_sgs = *sgs;
8717 		}
8718 
8719 	} while (group = group->next, group != sd->groups);
8720 
8721 
8722 	/* There is no idlest group to push tasks to */
8723 	if (!idlest)
8724 		return NULL;
8725 
8726 	/* The local group has been skipped because of CPU affinity */
8727 	if (!local)
8728 		return idlest;
8729 
8730 	/*
8731 	 * If the local group is idler than the selected idlest group
8732 	 * don't try and push the task.
8733 	 */
8734 	if (local_sgs.group_type < idlest_sgs.group_type)
8735 		return NULL;
8736 
8737 	/*
8738 	 * If the local group is busier than the selected idlest group
8739 	 * try and push the task.
8740 	 */
8741 	if (local_sgs.group_type > idlest_sgs.group_type)
8742 		return idlest;
8743 
8744 	switch (local_sgs.group_type) {
8745 	case group_overloaded:
8746 	case group_fully_busy:
8747 		/*
8748 		 * When comparing groups across NUMA domains, it's possible for
8749 		 * the local domain to be very lightly loaded relative to the
8750 		 * remote domains but "imbalance" skews the comparison making
8751 		 * remote CPUs look much more favourable. When considering
8752 		 * cross-domain, add imbalance to the load on the remote node
8753 		 * and consider staying local.
8754 		 */
8755 
8756 		if ((sd->flags & SD_NUMA) &&
8757 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8758 			return NULL;
8759 
8760 		/*
8761 		 * If the local group is less loaded than the selected
8762 		 * idlest group don't try and push any tasks.
8763 		 */
8764 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8765 			return NULL;
8766 
8767 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8768 			return NULL;
8769 		break;
8770 
8771 	case group_imbalanced:
8772 	case group_asym_packing:
8773 		/* Those type are not used in the slow wakeup path */
8774 		return NULL;
8775 
8776 	case group_misfit_task:
8777 		/* Select group with the highest max capacity */
8778 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8779 			return NULL;
8780 		break;
8781 
8782 	case group_has_spare:
8783 		if (sd->flags & SD_NUMA) {
8784 #ifdef CONFIG_NUMA_BALANCING
8785 			int idlest_cpu;
8786 			/*
8787 			 * If there is spare capacity at NUMA, try to select
8788 			 * the preferred node
8789 			 */
8790 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8791 				return NULL;
8792 
8793 			idlest_cpu = cpumask_first(sched_group_span(idlest));
8794 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8795 				return idlest;
8796 #endif
8797 			/*
8798 			 * Otherwise, keep the task on this node to stay close
8799 			 * its wakeup source and improve locality. If there is
8800 			 * a real need of migration, periodic load balance will
8801 			 * take care of it.
8802 			 */
8803 			if (local_sgs.idle_cpus)
8804 				return NULL;
8805 		}
8806 
8807 		/*
8808 		 * Select group with highest number of idle CPUs. We could also
8809 		 * compare the utilization which is more stable but it can end
8810 		 * up that the group has less spare capacity but finally more
8811 		 * idle CPUs which means more opportunity to run task.
8812 		 */
8813 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8814 			return NULL;
8815 		break;
8816 	}
8817 
8818 	return idlest;
8819 }
8820 
8821 /**
8822  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8823  * @env: The load balancing environment.
8824  * @sds: variable to hold the statistics for this sched_domain.
8825  */
8826 
8827 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8828 {
8829 	struct sched_domain *child = env->sd->child;
8830 	struct sched_group *sg = env->sd->groups;
8831 	struct sg_lb_stats *local = &sds->local_stat;
8832 	struct sg_lb_stats tmp_sgs;
8833 	int sg_status = 0;
8834 
8835 #ifdef CONFIG_NO_HZ_COMMON
8836 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8837 		env->flags |= LBF_NOHZ_STATS;
8838 #endif
8839 
8840 	do {
8841 		struct sg_lb_stats *sgs = &tmp_sgs;
8842 		int local_group;
8843 
8844 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8845 		if (local_group) {
8846 			sds->local = sg;
8847 			sgs = local;
8848 
8849 			if (env->idle != CPU_NEWLY_IDLE ||
8850 			    time_after_eq(jiffies, sg->sgc->next_update))
8851 				update_group_capacity(env->sd, env->dst_cpu);
8852 		}
8853 
8854 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8855 
8856 		if (local_group)
8857 			goto next_group;
8858 
8859 
8860 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8861 			sds->busiest = sg;
8862 			sds->busiest_stat = *sgs;
8863 		}
8864 
8865 next_group:
8866 		/* Now, start updating sd_lb_stats */
8867 		sds->total_load += sgs->group_load;
8868 		sds->total_capacity += sgs->group_capacity;
8869 
8870 		sg = sg->next;
8871 	} while (sg != env->sd->groups);
8872 
8873 	/* Tag domain that child domain prefers tasks go to siblings first */
8874 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8875 
8876 #ifdef CONFIG_NO_HZ_COMMON
8877 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8878 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8879 
8880 		WRITE_ONCE(nohz.next_blocked,
8881 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8882 	}
8883 #endif
8884 
8885 	if (env->sd->flags & SD_NUMA)
8886 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8887 
8888 	if (!env->sd->parent) {
8889 		struct root_domain *rd = env->dst_rq->rd;
8890 
8891 		/* update overload indicator if we are at root domain */
8892 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8893 
8894 		/* Update over-utilization (tipping point, U >= 0) indicator */
8895 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8896 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8897 	} else if (sg_status & SG_OVERUTILIZED) {
8898 		struct root_domain *rd = env->dst_rq->rd;
8899 
8900 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8901 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8902 	}
8903 }
8904 
8905 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8906 {
8907 	unsigned int imbalance_min;
8908 
8909 	/*
8910 	 * Allow a small imbalance based on a simple pair of communicating
8911 	 * tasks that remain local when the source domain is almost idle.
8912 	 */
8913 	imbalance_min = 2;
8914 	if (src_nr_running <= imbalance_min)
8915 		return 0;
8916 
8917 	return imbalance;
8918 }
8919 
8920 /**
8921  * calculate_imbalance - Calculate the amount of imbalance present within the
8922  *			 groups of a given sched_domain during load balance.
8923  * @env: load balance environment
8924  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8925  */
8926 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8927 {
8928 	struct sg_lb_stats *local, *busiest;
8929 
8930 	local = &sds->local_stat;
8931 	busiest = &sds->busiest_stat;
8932 
8933 	if (busiest->group_type == group_misfit_task) {
8934 		/* Set imbalance to allow misfit tasks to be balanced. */
8935 		env->migration_type = migrate_misfit;
8936 		env->imbalance = 1;
8937 		return;
8938 	}
8939 
8940 	if (busiest->group_type == group_asym_packing) {
8941 		/*
8942 		 * In case of asym capacity, we will try to migrate all load to
8943 		 * the preferred CPU.
8944 		 */
8945 		env->migration_type = migrate_task;
8946 		env->imbalance = busiest->sum_h_nr_running;
8947 		return;
8948 	}
8949 
8950 	if (busiest->group_type == group_imbalanced) {
8951 		/*
8952 		 * In the group_imb case we cannot rely on group-wide averages
8953 		 * to ensure CPU-load equilibrium, try to move any task to fix
8954 		 * the imbalance. The next load balance will take care of
8955 		 * balancing back the system.
8956 		 */
8957 		env->migration_type = migrate_task;
8958 		env->imbalance = 1;
8959 		return;
8960 	}
8961 
8962 	/*
8963 	 * Try to use spare capacity of local group without overloading it or
8964 	 * emptying busiest.
8965 	 */
8966 	if (local->group_type == group_has_spare) {
8967 		if (busiest->group_type > group_fully_busy) {
8968 			/*
8969 			 * If busiest is overloaded, try to fill spare
8970 			 * capacity. This might end up creating spare capacity
8971 			 * in busiest or busiest still being overloaded but
8972 			 * there is no simple way to directly compute the
8973 			 * amount of load to migrate in order to balance the
8974 			 * system.
8975 			 */
8976 			env->migration_type = migrate_util;
8977 			env->imbalance = max(local->group_capacity, local->group_util) -
8978 					 local->group_util;
8979 
8980 			/*
8981 			 * In some cases, the group's utilization is max or even
8982 			 * higher than capacity because of migrations but the
8983 			 * local CPU is (newly) idle. There is at least one
8984 			 * waiting task in this overloaded busiest group. Let's
8985 			 * try to pull it.
8986 			 */
8987 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
8988 				env->migration_type = migrate_task;
8989 				env->imbalance = 1;
8990 			}
8991 
8992 			return;
8993 		}
8994 
8995 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
8996 			unsigned int nr_diff = busiest->sum_nr_running;
8997 			/*
8998 			 * When prefer sibling, evenly spread running tasks on
8999 			 * groups.
9000 			 */
9001 			env->migration_type = migrate_task;
9002 			lsub_positive(&nr_diff, local->sum_nr_running);
9003 			env->imbalance = nr_diff >> 1;
9004 		} else {
9005 
9006 			/*
9007 			 * If there is no overload, we just want to even the number of
9008 			 * idle cpus.
9009 			 */
9010 			env->migration_type = migrate_task;
9011 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9012 						 busiest->idle_cpus) >> 1);
9013 		}
9014 
9015 		/* Consider allowing a small imbalance between NUMA groups */
9016 		if (env->sd->flags & SD_NUMA)
9017 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9018 						busiest->sum_nr_running);
9019 
9020 		return;
9021 	}
9022 
9023 	/*
9024 	 * Local is fully busy but has to take more load to relieve the
9025 	 * busiest group
9026 	 */
9027 	if (local->group_type < group_overloaded) {
9028 		/*
9029 		 * Local will become overloaded so the avg_load metrics are
9030 		 * finally needed.
9031 		 */
9032 
9033 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9034 				  local->group_capacity;
9035 
9036 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9037 				sds->total_capacity;
9038 		/*
9039 		 * If the local group is more loaded than the selected
9040 		 * busiest group don't try to pull any tasks.
9041 		 */
9042 		if (local->avg_load >= busiest->avg_load) {
9043 			env->imbalance = 0;
9044 			return;
9045 		}
9046 	}
9047 
9048 	/*
9049 	 * Both group are or will become overloaded and we're trying to get all
9050 	 * the CPUs to the average_load, so we don't want to push ourselves
9051 	 * above the average load, nor do we wish to reduce the max loaded CPU
9052 	 * below the average load. At the same time, we also don't want to
9053 	 * reduce the group load below the group capacity. Thus we look for
9054 	 * the minimum possible imbalance.
9055 	 */
9056 	env->migration_type = migrate_load;
9057 	env->imbalance = min(
9058 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9059 		(sds->avg_load - local->avg_load) * local->group_capacity
9060 	) / SCHED_CAPACITY_SCALE;
9061 }
9062 
9063 /******* find_busiest_group() helpers end here *********************/
9064 
9065 /*
9066  * Decision matrix according to the local and busiest group type:
9067  *
9068  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9069  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9070  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9071  * misfit_task      force     N/A        N/A    N/A  force      force
9072  * asym_packing     force     force      N/A    N/A  force      force
9073  * imbalanced       force     force      N/A    N/A  force      force
9074  * overloaded       force     force      N/A    N/A  force      avg_load
9075  *
9076  * N/A :      Not Applicable because already filtered while updating
9077  *            statistics.
9078  * balanced : The system is balanced for these 2 groups.
9079  * force :    Calculate the imbalance as load migration is probably needed.
9080  * avg_load : Only if imbalance is significant enough.
9081  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9082  *            different in groups.
9083  */
9084 
9085 /**
9086  * find_busiest_group - Returns the busiest group within the sched_domain
9087  * if there is an imbalance.
9088  *
9089  * Also calculates the amount of runnable load which should be moved
9090  * to restore balance.
9091  *
9092  * @env: The load balancing environment.
9093  *
9094  * Return:	- The busiest group if imbalance exists.
9095  */
9096 static struct sched_group *find_busiest_group(struct lb_env *env)
9097 {
9098 	struct sg_lb_stats *local, *busiest;
9099 	struct sd_lb_stats sds;
9100 
9101 	init_sd_lb_stats(&sds);
9102 
9103 	/*
9104 	 * Compute the various statistics relevant for load balancing at
9105 	 * this level.
9106 	 */
9107 	update_sd_lb_stats(env, &sds);
9108 
9109 	if (sched_energy_enabled()) {
9110 		struct root_domain *rd = env->dst_rq->rd;
9111 
9112 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9113 			goto out_balanced;
9114 	}
9115 
9116 	local = &sds.local_stat;
9117 	busiest = &sds.busiest_stat;
9118 
9119 	/* There is no busy sibling group to pull tasks from */
9120 	if (!sds.busiest)
9121 		goto out_balanced;
9122 
9123 	/* Misfit tasks should be dealt with regardless of the avg load */
9124 	if (busiest->group_type == group_misfit_task)
9125 		goto force_balance;
9126 
9127 	/* ASYM feature bypasses nice load balance check */
9128 	if (busiest->group_type == group_asym_packing)
9129 		goto force_balance;
9130 
9131 	/*
9132 	 * If the busiest group is imbalanced the below checks don't
9133 	 * work because they assume all things are equal, which typically
9134 	 * isn't true due to cpus_ptr constraints and the like.
9135 	 */
9136 	if (busiest->group_type == group_imbalanced)
9137 		goto force_balance;
9138 
9139 	/*
9140 	 * If the local group is busier than the selected busiest group
9141 	 * don't try and pull any tasks.
9142 	 */
9143 	if (local->group_type > busiest->group_type)
9144 		goto out_balanced;
9145 
9146 	/*
9147 	 * When groups are overloaded, use the avg_load to ensure fairness
9148 	 * between tasks.
9149 	 */
9150 	if (local->group_type == group_overloaded) {
9151 		/*
9152 		 * If the local group is more loaded than the selected
9153 		 * busiest group don't try to pull any tasks.
9154 		 */
9155 		if (local->avg_load >= busiest->avg_load)
9156 			goto out_balanced;
9157 
9158 		/* XXX broken for overlapping NUMA groups */
9159 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9160 				sds.total_capacity;
9161 
9162 		/*
9163 		 * Don't pull any tasks if this group is already above the
9164 		 * domain average load.
9165 		 */
9166 		if (local->avg_load >= sds.avg_load)
9167 			goto out_balanced;
9168 
9169 		/*
9170 		 * If the busiest group is more loaded, use imbalance_pct to be
9171 		 * conservative.
9172 		 */
9173 		if (100 * busiest->avg_load <=
9174 				env->sd->imbalance_pct * local->avg_load)
9175 			goto out_balanced;
9176 	}
9177 
9178 	/* Try to move all excess tasks to child's sibling domain */
9179 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9180 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9181 		goto force_balance;
9182 
9183 	if (busiest->group_type != group_overloaded) {
9184 		if (env->idle == CPU_NOT_IDLE)
9185 			/*
9186 			 * If the busiest group is not overloaded (and as a
9187 			 * result the local one too) but this CPU is already
9188 			 * busy, let another idle CPU try to pull task.
9189 			 */
9190 			goto out_balanced;
9191 
9192 		if (busiest->group_weight > 1 &&
9193 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9194 			/*
9195 			 * If the busiest group is not overloaded
9196 			 * and there is no imbalance between this and busiest
9197 			 * group wrt idle CPUs, it is balanced. The imbalance
9198 			 * becomes significant if the diff is greater than 1
9199 			 * otherwise we might end up to just move the imbalance
9200 			 * on another group. Of course this applies only if
9201 			 * there is more than 1 CPU per group.
9202 			 */
9203 			goto out_balanced;
9204 
9205 		if (busiest->sum_h_nr_running == 1)
9206 			/*
9207 			 * busiest doesn't have any tasks waiting to run
9208 			 */
9209 			goto out_balanced;
9210 	}
9211 
9212 force_balance:
9213 	/* Looks like there is an imbalance. Compute it */
9214 	calculate_imbalance(env, &sds);
9215 	return env->imbalance ? sds.busiest : NULL;
9216 
9217 out_balanced:
9218 	env->imbalance = 0;
9219 	return NULL;
9220 }
9221 
9222 /*
9223  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9224  */
9225 static struct rq *find_busiest_queue(struct lb_env *env,
9226 				     struct sched_group *group)
9227 {
9228 	struct rq *busiest = NULL, *rq;
9229 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9230 	unsigned int busiest_nr = 0;
9231 	int i;
9232 
9233 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9234 		unsigned long capacity, load, util;
9235 		unsigned int nr_running;
9236 		enum fbq_type rt;
9237 
9238 		rq = cpu_rq(i);
9239 		rt = fbq_classify_rq(rq);
9240 
9241 		/*
9242 		 * We classify groups/runqueues into three groups:
9243 		 *  - regular: there are !numa tasks
9244 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9245 		 *  - all:     there is no distinction
9246 		 *
9247 		 * In order to avoid migrating ideally placed numa tasks,
9248 		 * ignore those when there's better options.
9249 		 *
9250 		 * If we ignore the actual busiest queue to migrate another
9251 		 * task, the next balance pass can still reduce the busiest
9252 		 * queue by moving tasks around inside the node.
9253 		 *
9254 		 * If we cannot move enough load due to this classification
9255 		 * the next pass will adjust the group classification and
9256 		 * allow migration of more tasks.
9257 		 *
9258 		 * Both cases only affect the total convergence complexity.
9259 		 */
9260 		if (rt > env->fbq_type)
9261 			continue;
9262 
9263 		capacity = capacity_of(i);
9264 		nr_running = rq->cfs.h_nr_running;
9265 
9266 		/*
9267 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9268 		 * eventually lead to active_balancing high->low capacity.
9269 		 * Higher per-CPU capacity is considered better than balancing
9270 		 * average load.
9271 		 */
9272 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9273 		    capacity_of(env->dst_cpu) < capacity &&
9274 		    nr_running == 1)
9275 			continue;
9276 
9277 		switch (env->migration_type) {
9278 		case migrate_load:
9279 			/*
9280 			 * When comparing with load imbalance, use cpu_load()
9281 			 * which is not scaled with the CPU capacity.
9282 			 */
9283 			load = cpu_load(rq);
9284 
9285 			if (nr_running == 1 && load > env->imbalance &&
9286 			    !check_cpu_capacity(rq, env->sd))
9287 				break;
9288 
9289 			/*
9290 			 * For the load comparisons with the other CPUs,
9291 			 * consider the cpu_load() scaled with the CPU
9292 			 * capacity, so that the load can be moved away
9293 			 * from the CPU that is potentially running at a
9294 			 * lower capacity.
9295 			 *
9296 			 * Thus we're looking for max(load_i / capacity_i),
9297 			 * crosswise multiplication to rid ourselves of the
9298 			 * division works out to:
9299 			 * load_i * capacity_j > load_j * capacity_i;
9300 			 * where j is our previous maximum.
9301 			 */
9302 			if (load * busiest_capacity > busiest_load * capacity) {
9303 				busiest_load = load;
9304 				busiest_capacity = capacity;
9305 				busiest = rq;
9306 			}
9307 			break;
9308 
9309 		case migrate_util:
9310 			util = cpu_util(cpu_of(rq));
9311 
9312 			/*
9313 			 * Don't try to pull utilization from a CPU with one
9314 			 * running task. Whatever its utilization, we will fail
9315 			 * detach the task.
9316 			 */
9317 			if (nr_running <= 1)
9318 				continue;
9319 
9320 			if (busiest_util < util) {
9321 				busiest_util = util;
9322 				busiest = rq;
9323 			}
9324 			break;
9325 
9326 		case migrate_task:
9327 			if (busiest_nr < nr_running) {
9328 				busiest_nr = nr_running;
9329 				busiest = rq;
9330 			}
9331 			break;
9332 
9333 		case migrate_misfit:
9334 			/*
9335 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9336 			 * simply seek the "biggest" misfit task.
9337 			 */
9338 			if (rq->misfit_task_load > busiest_load) {
9339 				busiest_load = rq->misfit_task_load;
9340 				busiest = rq;
9341 			}
9342 
9343 			break;
9344 
9345 		}
9346 	}
9347 
9348 	return busiest;
9349 }
9350 
9351 /*
9352  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9353  * so long as it is large enough.
9354  */
9355 #define MAX_PINNED_INTERVAL	512
9356 
9357 static inline bool
9358 asym_active_balance(struct lb_env *env)
9359 {
9360 	/*
9361 	 * ASYM_PACKING needs to force migrate tasks from busy but
9362 	 * lower priority CPUs in order to pack all tasks in the
9363 	 * highest priority CPUs.
9364 	 */
9365 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9366 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9367 }
9368 
9369 static inline bool
9370 voluntary_active_balance(struct lb_env *env)
9371 {
9372 	struct sched_domain *sd = env->sd;
9373 
9374 	if (asym_active_balance(env))
9375 		return 1;
9376 
9377 	/*
9378 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9379 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9380 	 * because of other sched_class or IRQs if more capacity stays
9381 	 * available on dst_cpu.
9382 	 */
9383 	if ((env->idle != CPU_NOT_IDLE) &&
9384 	    (env->src_rq->cfs.h_nr_running == 1)) {
9385 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9386 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9387 			return 1;
9388 	}
9389 
9390 	if (env->migration_type == migrate_misfit)
9391 		return 1;
9392 
9393 	return 0;
9394 }
9395 
9396 static int need_active_balance(struct lb_env *env)
9397 {
9398 	struct sched_domain *sd = env->sd;
9399 
9400 	if (voluntary_active_balance(env))
9401 		return 1;
9402 
9403 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9404 }
9405 
9406 static int active_load_balance_cpu_stop(void *data);
9407 
9408 static int should_we_balance(struct lb_env *env)
9409 {
9410 	struct sched_group *sg = env->sd->groups;
9411 	int cpu, balance_cpu = -1;
9412 
9413 	/*
9414 	 * Ensure the balancing environment is consistent; can happen
9415 	 * when the softirq triggers 'during' hotplug.
9416 	 */
9417 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9418 		return 0;
9419 
9420 	/*
9421 	 * In the newly idle case, we will allow all the CPUs
9422 	 * to do the newly idle load balance.
9423 	 */
9424 	if (env->idle == CPU_NEWLY_IDLE)
9425 		return 1;
9426 
9427 	/* Try to find first idle CPU */
9428 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9429 		if (!idle_cpu(cpu))
9430 			continue;
9431 
9432 		balance_cpu = cpu;
9433 		break;
9434 	}
9435 
9436 	if (balance_cpu == -1)
9437 		balance_cpu = group_balance_cpu(sg);
9438 
9439 	/*
9440 	 * First idle CPU or the first CPU(busiest) in this sched group
9441 	 * is eligible for doing load balancing at this and above domains.
9442 	 */
9443 	return balance_cpu == env->dst_cpu;
9444 }
9445 
9446 /*
9447  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9448  * tasks if there is an imbalance.
9449  */
9450 static int load_balance(int this_cpu, struct rq *this_rq,
9451 			struct sched_domain *sd, enum cpu_idle_type idle,
9452 			int *continue_balancing)
9453 {
9454 	int ld_moved, cur_ld_moved, active_balance = 0;
9455 	struct sched_domain *sd_parent = sd->parent;
9456 	struct sched_group *group;
9457 	struct rq *busiest;
9458 	struct rq_flags rf;
9459 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9460 
9461 	struct lb_env env = {
9462 		.sd		= sd,
9463 		.dst_cpu	= this_cpu,
9464 		.dst_rq		= this_rq,
9465 		.dst_grpmask    = sched_group_span(sd->groups),
9466 		.idle		= idle,
9467 		.loop_break	= sched_nr_migrate_break,
9468 		.cpus		= cpus,
9469 		.fbq_type	= all,
9470 		.tasks		= LIST_HEAD_INIT(env.tasks),
9471 	};
9472 
9473 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9474 
9475 	schedstat_inc(sd->lb_count[idle]);
9476 
9477 redo:
9478 	if (!should_we_balance(&env)) {
9479 		*continue_balancing = 0;
9480 		goto out_balanced;
9481 	}
9482 
9483 	group = find_busiest_group(&env);
9484 	if (!group) {
9485 		schedstat_inc(sd->lb_nobusyg[idle]);
9486 		goto out_balanced;
9487 	}
9488 
9489 	busiest = find_busiest_queue(&env, group);
9490 	if (!busiest) {
9491 		schedstat_inc(sd->lb_nobusyq[idle]);
9492 		goto out_balanced;
9493 	}
9494 
9495 	BUG_ON(busiest == env.dst_rq);
9496 
9497 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9498 
9499 	env.src_cpu = busiest->cpu;
9500 	env.src_rq = busiest;
9501 
9502 	ld_moved = 0;
9503 	if (busiest->nr_running > 1) {
9504 		/*
9505 		 * Attempt to move tasks. If find_busiest_group has found
9506 		 * an imbalance but busiest->nr_running <= 1, the group is
9507 		 * still unbalanced. ld_moved simply stays zero, so it is
9508 		 * correctly treated as an imbalance.
9509 		 */
9510 		env.flags |= LBF_ALL_PINNED;
9511 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9512 
9513 more_balance:
9514 		rq_lock_irqsave(busiest, &rf);
9515 		update_rq_clock(busiest);
9516 
9517 		/*
9518 		 * cur_ld_moved - load moved in current iteration
9519 		 * ld_moved     - cumulative load moved across iterations
9520 		 */
9521 		cur_ld_moved = detach_tasks(&env);
9522 
9523 		/*
9524 		 * We've detached some tasks from busiest_rq. Every
9525 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9526 		 * unlock busiest->lock, and we are able to be sure
9527 		 * that nobody can manipulate the tasks in parallel.
9528 		 * See task_rq_lock() family for the details.
9529 		 */
9530 
9531 		rq_unlock(busiest, &rf);
9532 
9533 		if (cur_ld_moved) {
9534 			attach_tasks(&env);
9535 			ld_moved += cur_ld_moved;
9536 		}
9537 
9538 		local_irq_restore(rf.flags);
9539 
9540 		if (env.flags & LBF_NEED_BREAK) {
9541 			env.flags &= ~LBF_NEED_BREAK;
9542 			goto more_balance;
9543 		}
9544 
9545 		/*
9546 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9547 		 * us and move them to an alternate dst_cpu in our sched_group
9548 		 * where they can run. The upper limit on how many times we
9549 		 * iterate on same src_cpu is dependent on number of CPUs in our
9550 		 * sched_group.
9551 		 *
9552 		 * This changes load balance semantics a bit on who can move
9553 		 * load to a given_cpu. In addition to the given_cpu itself
9554 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9555 		 * nohz-idle), we now have balance_cpu in a position to move
9556 		 * load to given_cpu. In rare situations, this may cause
9557 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9558 		 * _independently_ and at _same_ time to move some load to
9559 		 * given_cpu) causing exceess load to be moved to given_cpu.
9560 		 * This however should not happen so much in practice and
9561 		 * moreover subsequent load balance cycles should correct the
9562 		 * excess load moved.
9563 		 */
9564 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9565 
9566 			/* Prevent to re-select dst_cpu via env's CPUs */
9567 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9568 
9569 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9570 			env.dst_cpu	 = env.new_dst_cpu;
9571 			env.flags	&= ~LBF_DST_PINNED;
9572 			env.loop	 = 0;
9573 			env.loop_break	 = sched_nr_migrate_break;
9574 
9575 			/*
9576 			 * Go back to "more_balance" rather than "redo" since we
9577 			 * need to continue with same src_cpu.
9578 			 */
9579 			goto more_balance;
9580 		}
9581 
9582 		/*
9583 		 * We failed to reach balance because of affinity.
9584 		 */
9585 		if (sd_parent) {
9586 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9587 
9588 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9589 				*group_imbalance = 1;
9590 		}
9591 
9592 		/* All tasks on this runqueue were pinned by CPU affinity */
9593 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9594 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9595 			/*
9596 			 * Attempting to continue load balancing at the current
9597 			 * sched_domain level only makes sense if there are
9598 			 * active CPUs remaining as possible busiest CPUs to
9599 			 * pull load from which are not contained within the
9600 			 * destination group that is receiving any migrated
9601 			 * load.
9602 			 */
9603 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9604 				env.loop = 0;
9605 				env.loop_break = sched_nr_migrate_break;
9606 				goto redo;
9607 			}
9608 			goto out_all_pinned;
9609 		}
9610 	}
9611 
9612 	if (!ld_moved) {
9613 		schedstat_inc(sd->lb_failed[idle]);
9614 		/*
9615 		 * Increment the failure counter only on periodic balance.
9616 		 * We do not want newidle balance, which can be very
9617 		 * frequent, pollute the failure counter causing
9618 		 * excessive cache_hot migrations and active balances.
9619 		 */
9620 		if (idle != CPU_NEWLY_IDLE)
9621 			sd->nr_balance_failed++;
9622 
9623 		if (need_active_balance(&env)) {
9624 			unsigned long flags;
9625 
9626 			raw_spin_lock_irqsave(&busiest->lock, flags);
9627 
9628 			/*
9629 			 * Don't kick the active_load_balance_cpu_stop,
9630 			 * if the curr task on busiest CPU can't be
9631 			 * moved to this_cpu:
9632 			 */
9633 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9634 				raw_spin_unlock_irqrestore(&busiest->lock,
9635 							    flags);
9636 				env.flags |= LBF_ALL_PINNED;
9637 				goto out_one_pinned;
9638 			}
9639 
9640 			/*
9641 			 * ->active_balance synchronizes accesses to
9642 			 * ->active_balance_work.  Once set, it's cleared
9643 			 * only after active load balance is finished.
9644 			 */
9645 			if (!busiest->active_balance) {
9646 				busiest->active_balance = 1;
9647 				busiest->push_cpu = this_cpu;
9648 				active_balance = 1;
9649 			}
9650 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9651 
9652 			if (active_balance) {
9653 				stop_one_cpu_nowait(cpu_of(busiest),
9654 					active_load_balance_cpu_stop, busiest,
9655 					&busiest->active_balance_work);
9656 			}
9657 
9658 			/* We've kicked active balancing, force task migration. */
9659 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9660 		}
9661 	} else
9662 		sd->nr_balance_failed = 0;
9663 
9664 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9665 		/* We were unbalanced, so reset the balancing interval */
9666 		sd->balance_interval = sd->min_interval;
9667 	} else {
9668 		/*
9669 		 * If we've begun active balancing, start to back off. This
9670 		 * case may not be covered by the all_pinned logic if there
9671 		 * is only 1 task on the busy runqueue (because we don't call
9672 		 * detach_tasks).
9673 		 */
9674 		if (sd->balance_interval < sd->max_interval)
9675 			sd->balance_interval *= 2;
9676 	}
9677 
9678 	goto out;
9679 
9680 out_balanced:
9681 	/*
9682 	 * We reach balance although we may have faced some affinity
9683 	 * constraints. Clear the imbalance flag only if other tasks got
9684 	 * a chance to move and fix the imbalance.
9685 	 */
9686 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9687 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9688 
9689 		if (*group_imbalance)
9690 			*group_imbalance = 0;
9691 	}
9692 
9693 out_all_pinned:
9694 	/*
9695 	 * We reach balance because all tasks are pinned at this level so
9696 	 * we can't migrate them. Let the imbalance flag set so parent level
9697 	 * can try to migrate them.
9698 	 */
9699 	schedstat_inc(sd->lb_balanced[idle]);
9700 
9701 	sd->nr_balance_failed = 0;
9702 
9703 out_one_pinned:
9704 	ld_moved = 0;
9705 
9706 	/*
9707 	 * newidle_balance() disregards balance intervals, so we could
9708 	 * repeatedly reach this code, which would lead to balance_interval
9709 	 * skyrocketting in a short amount of time. Skip the balance_interval
9710 	 * increase logic to avoid that.
9711 	 */
9712 	if (env.idle == CPU_NEWLY_IDLE)
9713 		goto out;
9714 
9715 	/* tune up the balancing interval */
9716 	if ((env.flags & LBF_ALL_PINNED &&
9717 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9718 	    sd->balance_interval < sd->max_interval)
9719 		sd->balance_interval *= 2;
9720 out:
9721 	return ld_moved;
9722 }
9723 
9724 static inline unsigned long
9725 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9726 {
9727 	unsigned long interval = sd->balance_interval;
9728 
9729 	if (cpu_busy)
9730 		interval *= sd->busy_factor;
9731 
9732 	/* scale ms to jiffies */
9733 	interval = msecs_to_jiffies(interval);
9734 	interval = clamp(interval, 1UL, max_load_balance_interval);
9735 
9736 	return interval;
9737 }
9738 
9739 static inline void
9740 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9741 {
9742 	unsigned long interval, next;
9743 
9744 	/* used by idle balance, so cpu_busy = 0 */
9745 	interval = get_sd_balance_interval(sd, 0);
9746 	next = sd->last_balance + interval;
9747 
9748 	if (time_after(*next_balance, next))
9749 		*next_balance = next;
9750 }
9751 
9752 /*
9753  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9754  * running tasks off the busiest CPU onto idle CPUs. It requires at
9755  * least 1 task to be running on each physical CPU where possible, and
9756  * avoids physical / logical imbalances.
9757  */
9758 static int active_load_balance_cpu_stop(void *data)
9759 {
9760 	struct rq *busiest_rq = data;
9761 	int busiest_cpu = cpu_of(busiest_rq);
9762 	int target_cpu = busiest_rq->push_cpu;
9763 	struct rq *target_rq = cpu_rq(target_cpu);
9764 	struct sched_domain *sd;
9765 	struct task_struct *p = NULL;
9766 	struct rq_flags rf;
9767 
9768 	rq_lock_irq(busiest_rq, &rf);
9769 	/*
9770 	 * Between queueing the stop-work and running it is a hole in which
9771 	 * CPUs can become inactive. We should not move tasks from or to
9772 	 * inactive CPUs.
9773 	 */
9774 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9775 		goto out_unlock;
9776 
9777 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9778 	if (unlikely(busiest_cpu != smp_processor_id() ||
9779 		     !busiest_rq->active_balance))
9780 		goto out_unlock;
9781 
9782 	/* Is there any task to move? */
9783 	if (busiest_rq->nr_running <= 1)
9784 		goto out_unlock;
9785 
9786 	/*
9787 	 * This condition is "impossible", if it occurs
9788 	 * we need to fix it. Originally reported by
9789 	 * Bjorn Helgaas on a 128-CPU setup.
9790 	 */
9791 	BUG_ON(busiest_rq == target_rq);
9792 
9793 	/* Search for an sd spanning us and the target CPU. */
9794 	rcu_read_lock();
9795 	for_each_domain(target_cpu, sd) {
9796 		if ((sd->flags & SD_LOAD_BALANCE) &&
9797 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9798 				break;
9799 	}
9800 
9801 	if (likely(sd)) {
9802 		struct lb_env env = {
9803 			.sd		= sd,
9804 			.dst_cpu	= target_cpu,
9805 			.dst_rq		= target_rq,
9806 			.src_cpu	= busiest_rq->cpu,
9807 			.src_rq		= busiest_rq,
9808 			.idle		= CPU_IDLE,
9809 			/*
9810 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9811 			 * for active balancing. Since we have CPU_IDLE, but no
9812 			 * @dst_grpmask we need to make that test go away with lying
9813 			 * about DST_PINNED.
9814 			 */
9815 			.flags		= LBF_DST_PINNED,
9816 		};
9817 
9818 		schedstat_inc(sd->alb_count);
9819 		update_rq_clock(busiest_rq);
9820 
9821 		p = detach_one_task(&env);
9822 		if (p) {
9823 			schedstat_inc(sd->alb_pushed);
9824 			/* Active balancing done, reset the failure counter. */
9825 			sd->nr_balance_failed = 0;
9826 		} else {
9827 			schedstat_inc(sd->alb_failed);
9828 		}
9829 	}
9830 	rcu_read_unlock();
9831 out_unlock:
9832 	busiest_rq->active_balance = 0;
9833 	rq_unlock(busiest_rq, &rf);
9834 
9835 	if (p)
9836 		attach_one_task(target_rq, p);
9837 
9838 	local_irq_enable();
9839 
9840 	return 0;
9841 }
9842 
9843 static DEFINE_SPINLOCK(balancing);
9844 
9845 /*
9846  * Scale the max load_balance interval with the number of CPUs in the system.
9847  * This trades load-balance latency on larger machines for less cross talk.
9848  */
9849 void update_max_interval(void)
9850 {
9851 	max_load_balance_interval = HZ*num_online_cpus()/10;
9852 }
9853 
9854 /*
9855  * It checks each scheduling domain to see if it is due to be balanced,
9856  * and initiates a balancing operation if so.
9857  *
9858  * Balancing parameters are set up in init_sched_domains.
9859  */
9860 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9861 {
9862 	int continue_balancing = 1;
9863 	int cpu = rq->cpu;
9864 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9865 	unsigned long interval;
9866 	struct sched_domain *sd;
9867 	/* Earliest time when we have to do rebalance again */
9868 	unsigned long next_balance = jiffies + 60*HZ;
9869 	int update_next_balance = 0;
9870 	int need_serialize, need_decay = 0;
9871 	u64 max_cost = 0;
9872 
9873 	rcu_read_lock();
9874 	for_each_domain(cpu, sd) {
9875 		/*
9876 		 * Decay the newidle max times here because this is a regular
9877 		 * visit to all the domains. Decay ~1% per second.
9878 		 */
9879 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9880 			sd->max_newidle_lb_cost =
9881 				(sd->max_newidle_lb_cost * 253) / 256;
9882 			sd->next_decay_max_lb_cost = jiffies + HZ;
9883 			need_decay = 1;
9884 		}
9885 		max_cost += sd->max_newidle_lb_cost;
9886 
9887 		if (!(sd->flags & SD_LOAD_BALANCE))
9888 			continue;
9889 
9890 		/*
9891 		 * Stop the load balance at this level. There is another
9892 		 * CPU in our sched group which is doing load balancing more
9893 		 * actively.
9894 		 */
9895 		if (!continue_balancing) {
9896 			if (need_decay)
9897 				continue;
9898 			break;
9899 		}
9900 
9901 		interval = get_sd_balance_interval(sd, busy);
9902 
9903 		need_serialize = sd->flags & SD_SERIALIZE;
9904 		if (need_serialize) {
9905 			if (!spin_trylock(&balancing))
9906 				goto out;
9907 		}
9908 
9909 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9910 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9911 				/*
9912 				 * The LBF_DST_PINNED logic could have changed
9913 				 * env->dst_cpu, so we can't know our idle
9914 				 * state even if we migrated tasks. Update it.
9915 				 */
9916 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9917 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9918 			}
9919 			sd->last_balance = jiffies;
9920 			interval = get_sd_balance_interval(sd, busy);
9921 		}
9922 		if (need_serialize)
9923 			spin_unlock(&balancing);
9924 out:
9925 		if (time_after(next_balance, sd->last_balance + interval)) {
9926 			next_balance = sd->last_balance + interval;
9927 			update_next_balance = 1;
9928 		}
9929 	}
9930 	if (need_decay) {
9931 		/*
9932 		 * Ensure the rq-wide value also decays but keep it at a
9933 		 * reasonable floor to avoid funnies with rq->avg_idle.
9934 		 */
9935 		rq->max_idle_balance_cost =
9936 			max((u64)sysctl_sched_migration_cost, max_cost);
9937 	}
9938 	rcu_read_unlock();
9939 
9940 	/*
9941 	 * next_balance will be updated only when there is a need.
9942 	 * When the cpu is attached to null domain for ex, it will not be
9943 	 * updated.
9944 	 */
9945 	if (likely(update_next_balance)) {
9946 		rq->next_balance = next_balance;
9947 
9948 #ifdef CONFIG_NO_HZ_COMMON
9949 		/*
9950 		 * If this CPU has been elected to perform the nohz idle
9951 		 * balance. Other idle CPUs have already rebalanced with
9952 		 * nohz_idle_balance() and nohz.next_balance has been
9953 		 * updated accordingly. This CPU is now running the idle load
9954 		 * balance for itself and we need to update the
9955 		 * nohz.next_balance accordingly.
9956 		 */
9957 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9958 			nohz.next_balance = rq->next_balance;
9959 #endif
9960 	}
9961 }
9962 
9963 static inline int on_null_domain(struct rq *rq)
9964 {
9965 	return unlikely(!rcu_dereference_sched(rq->sd));
9966 }
9967 
9968 #ifdef CONFIG_NO_HZ_COMMON
9969 /*
9970  * idle load balancing details
9971  * - When one of the busy CPUs notice that there may be an idle rebalancing
9972  *   needed, they will kick the idle load balancer, which then does idle
9973  *   load balancing for all the idle CPUs.
9974  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9975  *   anywhere yet.
9976  */
9977 
9978 static inline int find_new_ilb(void)
9979 {
9980 	int ilb;
9981 
9982 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9983 			      housekeeping_cpumask(HK_FLAG_MISC)) {
9984 		if (idle_cpu(ilb))
9985 			return ilb;
9986 	}
9987 
9988 	return nr_cpu_ids;
9989 }
9990 
9991 /*
9992  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9993  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9994  */
9995 static void kick_ilb(unsigned int flags)
9996 {
9997 	int ilb_cpu;
9998 
9999 	nohz.next_balance++;
10000 
10001 	ilb_cpu = find_new_ilb();
10002 
10003 	if (ilb_cpu >= nr_cpu_ids)
10004 		return;
10005 
10006 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10007 	if (flags & NOHZ_KICK_MASK)
10008 		return;
10009 
10010 	/*
10011 	 * Use smp_send_reschedule() instead of resched_cpu().
10012 	 * This way we generate a sched IPI on the target CPU which
10013 	 * is idle. And the softirq performing nohz idle load balance
10014 	 * will be run before returning from the IPI.
10015 	 */
10016 	smp_send_reschedule(ilb_cpu);
10017 }
10018 
10019 /*
10020  * Current decision point for kicking the idle load balancer in the presence
10021  * of idle CPUs in the system.
10022  */
10023 static void nohz_balancer_kick(struct rq *rq)
10024 {
10025 	unsigned long now = jiffies;
10026 	struct sched_domain_shared *sds;
10027 	struct sched_domain *sd;
10028 	int nr_busy, i, cpu = rq->cpu;
10029 	unsigned int flags = 0;
10030 
10031 	if (unlikely(rq->idle_balance))
10032 		return;
10033 
10034 	/*
10035 	 * We may be recently in ticked or tickless idle mode. At the first
10036 	 * busy tick after returning from idle, we will update the busy stats.
10037 	 */
10038 	nohz_balance_exit_idle(rq);
10039 
10040 	/*
10041 	 * None are in tickless mode and hence no need for NOHZ idle load
10042 	 * balancing.
10043 	 */
10044 	if (likely(!atomic_read(&nohz.nr_cpus)))
10045 		return;
10046 
10047 	if (READ_ONCE(nohz.has_blocked) &&
10048 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10049 		flags = NOHZ_STATS_KICK;
10050 
10051 	if (time_before(now, nohz.next_balance))
10052 		goto out;
10053 
10054 	if (rq->nr_running >= 2) {
10055 		flags = NOHZ_KICK_MASK;
10056 		goto out;
10057 	}
10058 
10059 	rcu_read_lock();
10060 
10061 	sd = rcu_dereference(rq->sd);
10062 	if (sd) {
10063 		/*
10064 		 * If there's a CFS task and the current CPU has reduced
10065 		 * capacity; kick the ILB to see if there's a better CPU to run
10066 		 * on.
10067 		 */
10068 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10069 			flags = NOHZ_KICK_MASK;
10070 			goto unlock;
10071 		}
10072 	}
10073 
10074 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10075 	if (sd) {
10076 		/*
10077 		 * When ASYM_PACKING; see if there's a more preferred CPU
10078 		 * currently idle; in which case, kick the ILB to move tasks
10079 		 * around.
10080 		 */
10081 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10082 			if (sched_asym_prefer(i, cpu)) {
10083 				flags = NOHZ_KICK_MASK;
10084 				goto unlock;
10085 			}
10086 		}
10087 	}
10088 
10089 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10090 	if (sd) {
10091 		/*
10092 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10093 		 * to run the misfit task on.
10094 		 */
10095 		if (check_misfit_status(rq, sd)) {
10096 			flags = NOHZ_KICK_MASK;
10097 			goto unlock;
10098 		}
10099 
10100 		/*
10101 		 * For asymmetric systems, we do not want to nicely balance
10102 		 * cache use, instead we want to embrace asymmetry and only
10103 		 * ensure tasks have enough CPU capacity.
10104 		 *
10105 		 * Skip the LLC logic because it's not relevant in that case.
10106 		 */
10107 		goto unlock;
10108 	}
10109 
10110 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10111 	if (sds) {
10112 		/*
10113 		 * If there is an imbalance between LLC domains (IOW we could
10114 		 * increase the overall cache use), we need some less-loaded LLC
10115 		 * domain to pull some load. Likewise, we may need to spread
10116 		 * load within the current LLC domain (e.g. packed SMT cores but
10117 		 * other CPUs are idle). We can't really know from here how busy
10118 		 * the others are - so just get a nohz balance going if it looks
10119 		 * like this LLC domain has tasks we could move.
10120 		 */
10121 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10122 		if (nr_busy > 1) {
10123 			flags = NOHZ_KICK_MASK;
10124 			goto unlock;
10125 		}
10126 	}
10127 unlock:
10128 	rcu_read_unlock();
10129 out:
10130 	if (flags)
10131 		kick_ilb(flags);
10132 }
10133 
10134 static void set_cpu_sd_state_busy(int cpu)
10135 {
10136 	struct sched_domain *sd;
10137 
10138 	rcu_read_lock();
10139 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10140 
10141 	if (!sd || !sd->nohz_idle)
10142 		goto unlock;
10143 	sd->nohz_idle = 0;
10144 
10145 	atomic_inc(&sd->shared->nr_busy_cpus);
10146 unlock:
10147 	rcu_read_unlock();
10148 }
10149 
10150 void nohz_balance_exit_idle(struct rq *rq)
10151 {
10152 	SCHED_WARN_ON(rq != this_rq());
10153 
10154 	if (likely(!rq->nohz_tick_stopped))
10155 		return;
10156 
10157 	rq->nohz_tick_stopped = 0;
10158 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10159 	atomic_dec(&nohz.nr_cpus);
10160 
10161 	set_cpu_sd_state_busy(rq->cpu);
10162 }
10163 
10164 static void set_cpu_sd_state_idle(int cpu)
10165 {
10166 	struct sched_domain *sd;
10167 
10168 	rcu_read_lock();
10169 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10170 
10171 	if (!sd || sd->nohz_idle)
10172 		goto unlock;
10173 	sd->nohz_idle = 1;
10174 
10175 	atomic_dec(&sd->shared->nr_busy_cpus);
10176 unlock:
10177 	rcu_read_unlock();
10178 }
10179 
10180 /*
10181  * This routine will record that the CPU is going idle with tick stopped.
10182  * This info will be used in performing idle load balancing in the future.
10183  */
10184 void nohz_balance_enter_idle(int cpu)
10185 {
10186 	struct rq *rq = cpu_rq(cpu);
10187 
10188 	SCHED_WARN_ON(cpu != smp_processor_id());
10189 
10190 	/* If this CPU is going down, then nothing needs to be done: */
10191 	if (!cpu_active(cpu))
10192 		return;
10193 
10194 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10195 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10196 		return;
10197 
10198 	/*
10199 	 * Can be set safely without rq->lock held
10200 	 * If a clear happens, it will have evaluated last additions because
10201 	 * rq->lock is held during the check and the clear
10202 	 */
10203 	rq->has_blocked_load = 1;
10204 
10205 	/*
10206 	 * The tick is still stopped but load could have been added in the
10207 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10208 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10209 	 * of nohz.has_blocked can only happen after checking the new load
10210 	 */
10211 	if (rq->nohz_tick_stopped)
10212 		goto out;
10213 
10214 	/* If we're a completely isolated CPU, we don't play: */
10215 	if (on_null_domain(rq))
10216 		return;
10217 
10218 	rq->nohz_tick_stopped = 1;
10219 
10220 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10221 	atomic_inc(&nohz.nr_cpus);
10222 
10223 	/*
10224 	 * Ensures that if nohz_idle_balance() fails to observe our
10225 	 * @idle_cpus_mask store, it must observe the @has_blocked
10226 	 * store.
10227 	 */
10228 	smp_mb__after_atomic();
10229 
10230 	set_cpu_sd_state_idle(cpu);
10231 
10232 out:
10233 	/*
10234 	 * Each time a cpu enter idle, we assume that it has blocked load and
10235 	 * enable the periodic update of the load of idle cpus
10236 	 */
10237 	WRITE_ONCE(nohz.has_blocked, 1);
10238 }
10239 
10240 /*
10241  * Internal function that runs load balance for all idle cpus. The load balance
10242  * can be a simple update of blocked load or a complete load balance with
10243  * tasks movement depending of flags.
10244  * The function returns false if the loop has stopped before running
10245  * through all idle CPUs.
10246  */
10247 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10248 			       enum cpu_idle_type idle)
10249 {
10250 	/* Earliest time when we have to do rebalance again */
10251 	unsigned long now = jiffies;
10252 	unsigned long next_balance = now + 60*HZ;
10253 	bool has_blocked_load = false;
10254 	int update_next_balance = 0;
10255 	int this_cpu = this_rq->cpu;
10256 	int balance_cpu;
10257 	int ret = false;
10258 	struct rq *rq;
10259 
10260 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10261 
10262 	/*
10263 	 * We assume there will be no idle load after this update and clear
10264 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10265 	 * set the has_blocked flag and trig another update of idle load.
10266 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10267 	 * setting the flag, we are sure to not clear the state and not
10268 	 * check the load of an idle cpu.
10269 	 */
10270 	WRITE_ONCE(nohz.has_blocked, 0);
10271 
10272 	/*
10273 	 * Ensures that if we miss the CPU, we must see the has_blocked
10274 	 * store from nohz_balance_enter_idle().
10275 	 */
10276 	smp_mb();
10277 
10278 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10279 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10280 			continue;
10281 
10282 		/*
10283 		 * If this CPU gets work to do, stop the load balancing
10284 		 * work being done for other CPUs. Next load
10285 		 * balancing owner will pick it up.
10286 		 */
10287 		if (need_resched()) {
10288 			has_blocked_load = true;
10289 			goto abort;
10290 		}
10291 
10292 		rq = cpu_rq(balance_cpu);
10293 
10294 		has_blocked_load |= update_nohz_stats(rq, true);
10295 
10296 		/*
10297 		 * If time for next balance is due,
10298 		 * do the balance.
10299 		 */
10300 		if (time_after_eq(jiffies, rq->next_balance)) {
10301 			struct rq_flags rf;
10302 
10303 			rq_lock_irqsave(rq, &rf);
10304 			update_rq_clock(rq);
10305 			rq_unlock_irqrestore(rq, &rf);
10306 
10307 			if (flags & NOHZ_BALANCE_KICK)
10308 				rebalance_domains(rq, CPU_IDLE);
10309 		}
10310 
10311 		if (time_after(next_balance, rq->next_balance)) {
10312 			next_balance = rq->next_balance;
10313 			update_next_balance = 1;
10314 		}
10315 	}
10316 
10317 	/* Newly idle CPU doesn't need an update */
10318 	if (idle != CPU_NEWLY_IDLE) {
10319 		update_blocked_averages(this_cpu);
10320 		has_blocked_load |= this_rq->has_blocked_load;
10321 	}
10322 
10323 	if (flags & NOHZ_BALANCE_KICK)
10324 		rebalance_domains(this_rq, CPU_IDLE);
10325 
10326 	WRITE_ONCE(nohz.next_blocked,
10327 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10328 
10329 	/* The full idle balance loop has been done */
10330 	ret = true;
10331 
10332 abort:
10333 	/* There is still blocked load, enable periodic update */
10334 	if (has_blocked_load)
10335 		WRITE_ONCE(nohz.has_blocked, 1);
10336 
10337 	/*
10338 	 * next_balance will be updated only when there is a need.
10339 	 * When the CPU is attached to null domain for ex, it will not be
10340 	 * updated.
10341 	 */
10342 	if (likely(update_next_balance))
10343 		nohz.next_balance = next_balance;
10344 
10345 	return ret;
10346 }
10347 
10348 /*
10349  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10350  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10351  */
10352 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10353 {
10354 	int this_cpu = this_rq->cpu;
10355 	unsigned int flags;
10356 
10357 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
10358 		return false;
10359 
10360 	if (idle != CPU_IDLE) {
10361 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10362 		return false;
10363 	}
10364 
10365 	/* could be _relaxed() */
10366 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10367 	if (!(flags & NOHZ_KICK_MASK))
10368 		return false;
10369 
10370 	_nohz_idle_balance(this_rq, flags, idle);
10371 
10372 	return true;
10373 }
10374 
10375 static void nohz_newidle_balance(struct rq *this_rq)
10376 {
10377 	int this_cpu = this_rq->cpu;
10378 
10379 	/*
10380 	 * This CPU doesn't want to be disturbed by scheduler
10381 	 * housekeeping
10382 	 */
10383 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10384 		return;
10385 
10386 	/* Will wake up very soon. No time for doing anything else*/
10387 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10388 		return;
10389 
10390 	/* Don't need to update blocked load of idle CPUs*/
10391 	if (!READ_ONCE(nohz.has_blocked) ||
10392 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10393 		return;
10394 
10395 	raw_spin_unlock(&this_rq->lock);
10396 	/*
10397 	 * This CPU is going to be idle and blocked load of idle CPUs
10398 	 * need to be updated. Run the ilb locally as it is a good
10399 	 * candidate for ilb instead of waking up another idle CPU.
10400 	 * Kick an normal ilb if we failed to do the update.
10401 	 */
10402 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10403 		kick_ilb(NOHZ_STATS_KICK);
10404 	raw_spin_lock(&this_rq->lock);
10405 }
10406 
10407 #else /* !CONFIG_NO_HZ_COMMON */
10408 static inline void nohz_balancer_kick(struct rq *rq) { }
10409 
10410 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10411 {
10412 	return false;
10413 }
10414 
10415 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10416 #endif /* CONFIG_NO_HZ_COMMON */
10417 
10418 /*
10419  * idle_balance is called by schedule() if this_cpu is about to become
10420  * idle. Attempts to pull tasks from other CPUs.
10421  *
10422  * Returns:
10423  *   < 0 - we released the lock and there are !fair tasks present
10424  *     0 - failed, no new tasks
10425  *   > 0 - success, new (fair) tasks present
10426  */
10427 int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10428 {
10429 	unsigned long next_balance = jiffies + HZ;
10430 	int this_cpu = this_rq->cpu;
10431 	struct sched_domain *sd;
10432 	int pulled_task = 0;
10433 	u64 curr_cost = 0;
10434 
10435 	update_misfit_status(NULL, this_rq);
10436 	/*
10437 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10438 	 * measure the duration of idle_balance() as idle time.
10439 	 */
10440 	this_rq->idle_stamp = rq_clock(this_rq);
10441 
10442 	/*
10443 	 * Do not pull tasks towards !active CPUs...
10444 	 */
10445 	if (!cpu_active(this_cpu))
10446 		return 0;
10447 
10448 	/*
10449 	 * This is OK, because current is on_cpu, which avoids it being picked
10450 	 * for load-balance and preemption/IRQs are still disabled avoiding
10451 	 * further scheduler activity on it and we're being very careful to
10452 	 * re-start the picking loop.
10453 	 */
10454 	rq_unpin_lock(this_rq, rf);
10455 
10456 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10457 	    !READ_ONCE(this_rq->rd->overload)) {
10458 
10459 		rcu_read_lock();
10460 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10461 		if (sd)
10462 			update_next_balance(sd, &next_balance);
10463 		rcu_read_unlock();
10464 
10465 		nohz_newidle_balance(this_rq);
10466 
10467 		goto out;
10468 	}
10469 
10470 	raw_spin_unlock(&this_rq->lock);
10471 
10472 	update_blocked_averages(this_cpu);
10473 	rcu_read_lock();
10474 	for_each_domain(this_cpu, sd) {
10475 		int continue_balancing = 1;
10476 		u64 t0, domain_cost;
10477 
10478 		if (!(sd->flags & SD_LOAD_BALANCE))
10479 			continue;
10480 
10481 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10482 			update_next_balance(sd, &next_balance);
10483 			break;
10484 		}
10485 
10486 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10487 			t0 = sched_clock_cpu(this_cpu);
10488 
10489 			pulled_task = load_balance(this_cpu, this_rq,
10490 						   sd, CPU_NEWLY_IDLE,
10491 						   &continue_balancing);
10492 
10493 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10494 			if (domain_cost > sd->max_newidle_lb_cost)
10495 				sd->max_newidle_lb_cost = domain_cost;
10496 
10497 			curr_cost += domain_cost;
10498 		}
10499 
10500 		update_next_balance(sd, &next_balance);
10501 
10502 		/*
10503 		 * Stop searching for tasks to pull if there are
10504 		 * now runnable tasks on this rq.
10505 		 */
10506 		if (pulled_task || this_rq->nr_running > 0)
10507 			break;
10508 	}
10509 	rcu_read_unlock();
10510 
10511 	raw_spin_lock(&this_rq->lock);
10512 
10513 	if (curr_cost > this_rq->max_idle_balance_cost)
10514 		this_rq->max_idle_balance_cost = curr_cost;
10515 
10516 out:
10517 	/*
10518 	 * While browsing the domains, we released the rq lock, a task could
10519 	 * have been enqueued in the meantime. Since we're not going idle,
10520 	 * pretend we pulled a task.
10521 	 */
10522 	if (this_rq->cfs.h_nr_running && !pulled_task)
10523 		pulled_task = 1;
10524 
10525 	/* Move the next balance forward */
10526 	if (time_after(this_rq->next_balance, next_balance))
10527 		this_rq->next_balance = next_balance;
10528 
10529 	/* Is there a task of a high priority class? */
10530 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10531 		pulled_task = -1;
10532 
10533 	if (pulled_task)
10534 		this_rq->idle_stamp = 0;
10535 
10536 	rq_repin_lock(this_rq, rf);
10537 
10538 	return pulled_task;
10539 }
10540 
10541 /*
10542  * run_rebalance_domains is triggered when needed from the scheduler tick.
10543  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10544  */
10545 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10546 {
10547 	struct rq *this_rq = this_rq();
10548 	enum cpu_idle_type idle = this_rq->idle_balance ?
10549 						CPU_IDLE : CPU_NOT_IDLE;
10550 
10551 	/*
10552 	 * If this CPU has a pending nohz_balance_kick, then do the
10553 	 * balancing on behalf of the other idle CPUs whose ticks are
10554 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10555 	 * give the idle CPUs a chance to load balance. Else we may
10556 	 * load balance only within the local sched_domain hierarchy
10557 	 * and abort nohz_idle_balance altogether if we pull some load.
10558 	 */
10559 	if (nohz_idle_balance(this_rq, idle))
10560 		return;
10561 
10562 	/* normal load balance */
10563 	update_blocked_averages(this_rq->cpu);
10564 	rebalance_domains(this_rq, idle);
10565 }
10566 
10567 /*
10568  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10569  */
10570 void trigger_load_balance(struct rq *rq)
10571 {
10572 	/* Don't need to rebalance while attached to NULL domain */
10573 	if (unlikely(on_null_domain(rq)))
10574 		return;
10575 
10576 	if (time_after_eq(jiffies, rq->next_balance))
10577 		raise_softirq(SCHED_SOFTIRQ);
10578 
10579 	nohz_balancer_kick(rq);
10580 }
10581 
10582 static void rq_online_fair(struct rq *rq)
10583 {
10584 	update_sysctl();
10585 
10586 	update_runtime_enabled(rq);
10587 }
10588 
10589 static void rq_offline_fair(struct rq *rq)
10590 {
10591 	update_sysctl();
10592 
10593 	/* Ensure any throttled groups are reachable by pick_next_task */
10594 	unthrottle_offline_cfs_rqs(rq);
10595 }
10596 
10597 #endif /* CONFIG_SMP */
10598 
10599 /*
10600  * scheduler tick hitting a task of our scheduling class.
10601  *
10602  * NOTE: This function can be called remotely by the tick offload that
10603  * goes along full dynticks. Therefore no local assumption can be made
10604  * and everything must be accessed through the @rq and @curr passed in
10605  * parameters.
10606  */
10607 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10608 {
10609 	struct cfs_rq *cfs_rq;
10610 	struct sched_entity *se = &curr->se;
10611 
10612 	for_each_sched_entity(se) {
10613 		cfs_rq = cfs_rq_of(se);
10614 		entity_tick(cfs_rq, se, queued);
10615 	}
10616 
10617 	if (static_branch_unlikely(&sched_numa_balancing))
10618 		task_tick_numa(rq, curr);
10619 
10620 	update_misfit_status(curr, rq);
10621 	update_overutilized_status(task_rq(curr));
10622 }
10623 
10624 /*
10625  * called on fork with the child task as argument from the parent's context
10626  *  - child not yet on the tasklist
10627  *  - preemption disabled
10628  */
10629 static void task_fork_fair(struct task_struct *p)
10630 {
10631 	struct cfs_rq *cfs_rq;
10632 	struct sched_entity *se = &p->se, *curr;
10633 	struct rq *rq = this_rq();
10634 	struct rq_flags rf;
10635 
10636 	rq_lock(rq, &rf);
10637 	update_rq_clock(rq);
10638 
10639 	cfs_rq = task_cfs_rq(current);
10640 	curr = cfs_rq->curr;
10641 	if (curr) {
10642 		update_curr(cfs_rq);
10643 		se->vruntime = curr->vruntime;
10644 	}
10645 	place_entity(cfs_rq, se, 1);
10646 
10647 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10648 		/*
10649 		 * Upon rescheduling, sched_class::put_prev_task() will place
10650 		 * 'current' within the tree based on its new key value.
10651 		 */
10652 		swap(curr->vruntime, se->vruntime);
10653 		resched_curr(rq);
10654 	}
10655 
10656 	se->vruntime -= cfs_rq->min_vruntime;
10657 	rq_unlock(rq, &rf);
10658 }
10659 
10660 /*
10661  * Priority of the task has changed. Check to see if we preempt
10662  * the current task.
10663  */
10664 static void
10665 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10666 {
10667 	if (!task_on_rq_queued(p))
10668 		return;
10669 
10670 	if (rq->cfs.nr_running == 1)
10671 		return;
10672 
10673 	/*
10674 	 * Reschedule if we are currently running on this runqueue and
10675 	 * our priority decreased, or if we are not currently running on
10676 	 * this runqueue and our priority is higher than the current's
10677 	 */
10678 	if (rq->curr == p) {
10679 		if (p->prio > oldprio)
10680 			resched_curr(rq);
10681 	} else
10682 		check_preempt_curr(rq, p, 0);
10683 }
10684 
10685 static inline bool vruntime_normalized(struct task_struct *p)
10686 {
10687 	struct sched_entity *se = &p->se;
10688 
10689 	/*
10690 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10691 	 * the dequeue_entity(.flags=0) will already have normalized the
10692 	 * vruntime.
10693 	 */
10694 	if (p->on_rq)
10695 		return true;
10696 
10697 	/*
10698 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10699 	 * But there are some cases where it has already been normalized:
10700 	 *
10701 	 * - A forked child which is waiting for being woken up by
10702 	 *   wake_up_new_task().
10703 	 * - A task which has been woken up by try_to_wake_up() and
10704 	 *   waiting for actually being woken up by sched_ttwu_pending().
10705 	 */
10706 	if (!se->sum_exec_runtime ||
10707 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10708 		return true;
10709 
10710 	return false;
10711 }
10712 
10713 #ifdef CONFIG_FAIR_GROUP_SCHED
10714 /*
10715  * Propagate the changes of the sched_entity across the tg tree to make it
10716  * visible to the root
10717  */
10718 static void propagate_entity_cfs_rq(struct sched_entity *se)
10719 {
10720 	struct cfs_rq *cfs_rq;
10721 
10722 	/* Start to propagate at parent */
10723 	se = se->parent;
10724 
10725 	for_each_sched_entity(se) {
10726 		cfs_rq = cfs_rq_of(se);
10727 
10728 		if (cfs_rq_throttled(cfs_rq))
10729 			break;
10730 
10731 		update_load_avg(cfs_rq, se, UPDATE_TG);
10732 	}
10733 }
10734 #else
10735 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10736 #endif
10737 
10738 static void detach_entity_cfs_rq(struct sched_entity *se)
10739 {
10740 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10741 
10742 	/* Catch up with the cfs_rq and remove our load when we leave */
10743 	update_load_avg(cfs_rq, se, 0);
10744 	detach_entity_load_avg(cfs_rq, se);
10745 	update_tg_load_avg(cfs_rq, false);
10746 	propagate_entity_cfs_rq(se);
10747 }
10748 
10749 static void attach_entity_cfs_rq(struct sched_entity *se)
10750 {
10751 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10752 
10753 #ifdef CONFIG_FAIR_GROUP_SCHED
10754 	/*
10755 	 * Since the real-depth could have been changed (only FAIR
10756 	 * class maintain depth value), reset depth properly.
10757 	 */
10758 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10759 #endif
10760 
10761 	/* Synchronize entity with its cfs_rq */
10762 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10763 	attach_entity_load_avg(cfs_rq, se);
10764 	update_tg_load_avg(cfs_rq, false);
10765 	propagate_entity_cfs_rq(se);
10766 }
10767 
10768 static void detach_task_cfs_rq(struct task_struct *p)
10769 {
10770 	struct sched_entity *se = &p->se;
10771 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10772 
10773 	if (!vruntime_normalized(p)) {
10774 		/*
10775 		 * Fix up our vruntime so that the current sleep doesn't
10776 		 * cause 'unlimited' sleep bonus.
10777 		 */
10778 		place_entity(cfs_rq, se, 0);
10779 		se->vruntime -= cfs_rq->min_vruntime;
10780 	}
10781 
10782 	detach_entity_cfs_rq(se);
10783 }
10784 
10785 static void attach_task_cfs_rq(struct task_struct *p)
10786 {
10787 	struct sched_entity *se = &p->se;
10788 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10789 
10790 	attach_entity_cfs_rq(se);
10791 
10792 	if (!vruntime_normalized(p))
10793 		se->vruntime += cfs_rq->min_vruntime;
10794 }
10795 
10796 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10797 {
10798 	detach_task_cfs_rq(p);
10799 }
10800 
10801 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10802 {
10803 	attach_task_cfs_rq(p);
10804 
10805 	if (task_on_rq_queued(p)) {
10806 		/*
10807 		 * We were most likely switched from sched_rt, so
10808 		 * kick off the schedule if running, otherwise just see
10809 		 * if we can still preempt the current task.
10810 		 */
10811 		if (rq->curr == p)
10812 			resched_curr(rq);
10813 		else
10814 			check_preempt_curr(rq, p, 0);
10815 	}
10816 }
10817 
10818 /* Account for a task changing its policy or group.
10819  *
10820  * This routine is mostly called to set cfs_rq->curr field when a task
10821  * migrates between groups/classes.
10822  */
10823 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10824 {
10825 	struct sched_entity *se = &p->se;
10826 
10827 #ifdef CONFIG_SMP
10828 	if (task_on_rq_queued(p)) {
10829 		/*
10830 		 * Move the next running task to the front of the list, so our
10831 		 * cfs_tasks list becomes MRU one.
10832 		 */
10833 		list_move(&se->group_node, &rq->cfs_tasks);
10834 	}
10835 #endif
10836 
10837 	for_each_sched_entity(se) {
10838 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10839 
10840 		set_next_entity(cfs_rq, se);
10841 		/* ensure bandwidth has been allocated on our new cfs_rq */
10842 		account_cfs_rq_runtime(cfs_rq, 0);
10843 	}
10844 }
10845 
10846 void init_cfs_rq(struct cfs_rq *cfs_rq)
10847 {
10848 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10849 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10850 #ifndef CONFIG_64BIT
10851 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10852 #endif
10853 #ifdef CONFIG_SMP
10854 	raw_spin_lock_init(&cfs_rq->removed.lock);
10855 #endif
10856 }
10857 
10858 #ifdef CONFIG_FAIR_GROUP_SCHED
10859 static void task_set_group_fair(struct task_struct *p)
10860 {
10861 	struct sched_entity *se = &p->se;
10862 
10863 	set_task_rq(p, task_cpu(p));
10864 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10865 }
10866 
10867 static void task_move_group_fair(struct task_struct *p)
10868 {
10869 	detach_task_cfs_rq(p);
10870 	set_task_rq(p, task_cpu(p));
10871 
10872 #ifdef CONFIG_SMP
10873 	/* Tell se's cfs_rq has been changed -- migrated */
10874 	p->se.avg.last_update_time = 0;
10875 #endif
10876 	attach_task_cfs_rq(p);
10877 }
10878 
10879 static void task_change_group_fair(struct task_struct *p, int type)
10880 {
10881 	switch (type) {
10882 	case TASK_SET_GROUP:
10883 		task_set_group_fair(p);
10884 		break;
10885 
10886 	case TASK_MOVE_GROUP:
10887 		task_move_group_fair(p);
10888 		break;
10889 	}
10890 }
10891 
10892 void free_fair_sched_group(struct task_group *tg)
10893 {
10894 	int i;
10895 
10896 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10897 
10898 	for_each_possible_cpu(i) {
10899 		if (tg->cfs_rq)
10900 			kfree(tg->cfs_rq[i]);
10901 		if (tg->se)
10902 			kfree(tg->se[i]);
10903 	}
10904 
10905 	kfree(tg->cfs_rq);
10906 	kfree(tg->se);
10907 }
10908 
10909 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10910 {
10911 	struct sched_entity *se;
10912 	struct cfs_rq *cfs_rq;
10913 	int i;
10914 
10915 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10916 	if (!tg->cfs_rq)
10917 		goto err;
10918 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10919 	if (!tg->se)
10920 		goto err;
10921 
10922 	tg->shares = NICE_0_LOAD;
10923 
10924 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10925 
10926 	for_each_possible_cpu(i) {
10927 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10928 				      GFP_KERNEL, cpu_to_node(i));
10929 		if (!cfs_rq)
10930 			goto err;
10931 
10932 		se = kzalloc_node(sizeof(struct sched_entity),
10933 				  GFP_KERNEL, cpu_to_node(i));
10934 		if (!se)
10935 			goto err_free_rq;
10936 
10937 		init_cfs_rq(cfs_rq);
10938 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10939 		init_entity_runnable_average(se);
10940 	}
10941 
10942 	return 1;
10943 
10944 err_free_rq:
10945 	kfree(cfs_rq);
10946 err:
10947 	return 0;
10948 }
10949 
10950 void online_fair_sched_group(struct task_group *tg)
10951 {
10952 	struct sched_entity *se;
10953 	struct rq_flags rf;
10954 	struct rq *rq;
10955 	int i;
10956 
10957 	for_each_possible_cpu(i) {
10958 		rq = cpu_rq(i);
10959 		se = tg->se[i];
10960 		rq_lock_irq(rq, &rf);
10961 		update_rq_clock(rq);
10962 		attach_entity_cfs_rq(se);
10963 		sync_throttle(tg, i);
10964 		rq_unlock_irq(rq, &rf);
10965 	}
10966 }
10967 
10968 void unregister_fair_sched_group(struct task_group *tg)
10969 {
10970 	unsigned long flags;
10971 	struct rq *rq;
10972 	int cpu;
10973 
10974 	for_each_possible_cpu(cpu) {
10975 		if (tg->se[cpu])
10976 			remove_entity_load_avg(tg->se[cpu]);
10977 
10978 		/*
10979 		 * Only empty task groups can be destroyed; so we can speculatively
10980 		 * check on_list without danger of it being re-added.
10981 		 */
10982 		if (!tg->cfs_rq[cpu]->on_list)
10983 			continue;
10984 
10985 		rq = cpu_rq(cpu);
10986 
10987 		raw_spin_lock_irqsave(&rq->lock, flags);
10988 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10989 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10990 	}
10991 }
10992 
10993 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10994 			struct sched_entity *se, int cpu,
10995 			struct sched_entity *parent)
10996 {
10997 	struct rq *rq = cpu_rq(cpu);
10998 
10999 	cfs_rq->tg = tg;
11000 	cfs_rq->rq = rq;
11001 	init_cfs_rq_runtime(cfs_rq);
11002 
11003 	tg->cfs_rq[cpu] = cfs_rq;
11004 	tg->se[cpu] = se;
11005 
11006 	/* se could be NULL for root_task_group */
11007 	if (!se)
11008 		return;
11009 
11010 	if (!parent) {
11011 		se->cfs_rq = &rq->cfs;
11012 		se->depth = 0;
11013 	} else {
11014 		se->cfs_rq = parent->my_q;
11015 		se->depth = parent->depth + 1;
11016 	}
11017 
11018 	se->my_q = cfs_rq;
11019 	/* guarantee group entities always have weight */
11020 	update_load_set(&se->load, NICE_0_LOAD);
11021 	se->parent = parent;
11022 }
11023 
11024 static DEFINE_MUTEX(shares_mutex);
11025 
11026 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11027 {
11028 	int i;
11029 
11030 	/*
11031 	 * We can't change the weight of the root cgroup.
11032 	 */
11033 	if (!tg->se[0])
11034 		return -EINVAL;
11035 
11036 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11037 
11038 	mutex_lock(&shares_mutex);
11039 	if (tg->shares == shares)
11040 		goto done;
11041 
11042 	tg->shares = shares;
11043 	for_each_possible_cpu(i) {
11044 		struct rq *rq = cpu_rq(i);
11045 		struct sched_entity *se = tg->se[i];
11046 		struct rq_flags rf;
11047 
11048 		/* Propagate contribution to hierarchy */
11049 		rq_lock_irqsave(rq, &rf);
11050 		update_rq_clock(rq);
11051 		for_each_sched_entity(se) {
11052 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11053 			update_cfs_group(se);
11054 		}
11055 		rq_unlock_irqrestore(rq, &rf);
11056 	}
11057 
11058 done:
11059 	mutex_unlock(&shares_mutex);
11060 	return 0;
11061 }
11062 #else /* CONFIG_FAIR_GROUP_SCHED */
11063 
11064 void free_fair_sched_group(struct task_group *tg) { }
11065 
11066 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11067 {
11068 	return 1;
11069 }
11070 
11071 void online_fair_sched_group(struct task_group *tg) { }
11072 
11073 void unregister_fair_sched_group(struct task_group *tg) { }
11074 
11075 #endif /* CONFIG_FAIR_GROUP_SCHED */
11076 
11077 
11078 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11079 {
11080 	struct sched_entity *se = &task->se;
11081 	unsigned int rr_interval = 0;
11082 
11083 	/*
11084 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11085 	 * idle runqueue:
11086 	 */
11087 	if (rq->cfs.load.weight)
11088 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11089 
11090 	return rr_interval;
11091 }
11092 
11093 /*
11094  * All the scheduling class methods:
11095  */
11096 const struct sched_class fair_sched_class = {
11097 	.next			= &idle_sched_class,
11098 	.enqueue_task		= enqueue_task_fair,
11099 	.dequeue_task		= dequeue_task_fair,
11100 	.yield_task		= yield_task_fair,
11101 	.yield_to_task		= yield_to_task_fair,
11102 
11103 	.check_preempt_curr	= check_preempt_wakeup,
11104 
11105 	.pick_next_task		= __pick_next_task_fair,
11106 	.put_prev_task		= put_prev_task_fair,
11107 	.set_next_task          = set_next_task_fair,
11108 
11109 #ifdef CONFIG_SMP
11110 	.balance		= balance_fair,
11111 	.select_task_rq		= select_task_rq_fair,
11112 	.migrate_task_rq	= migrate_task_rq_fair,
11113 
11114 	.rq_online		= rq_online_fair,
11115 	.rq_offline		= rq_offline_fair,
11116 
11117 	.task_dead		= task_dead_fair,
11118 	.set_cpus_allowed	= set_cpus_allowed_common,
11119 #endif
11120 
11121 	.task_tick		= task_tick_fair,
11122 	.task_fork		= task_fork_fair,
11123 
11124 	.prio_changed		= prio_changed_fair,
11125 	.switched_from		= switched_from_fair,
11126 	.switched_to		= switched_to_fair,
11127 
11128 	.get_rr_interval	= get_rr_interval_fair,
11129 
11130 	.update_curr		= update_curr_fair,
11131 
11132 #ifdef CONFIG_FAIR_GROUP_SCHED
11133 	.task_change_group	= task_change_group_fair,
11134 #endif
11135 
11136 #ifdef CONFIG_UCLAMP_TASK
11137 	.uclamp_enabled		= 1,
11138 #endif
11139 };
11140 
11141 #ifdef CONFIG_SCHED_DEBUG
11142 void print_cfs_stats(struct seq_file *m, int cpu)
11143 {
11144 	struct cfs_rq *cfs_rq, *pos;
11145 
11146 	rcu_read_lock();
11147 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11148 		print_cfs_rq(m, cpu, cfs_rq);
11149 	rcu_read_unlock();
11150 }
11151 
11152 #ifdef CONFIG_NUMA_BALANCING
11153 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11154 {
11155 	int node;
11156 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11157 	struct numa_group *ng;
11158 
11159 	rcu_read_lock();
11160 	ng = rcu_dereference(p->numa_group);
11161 	for_each_online_node(node) {
11162 		if (p->numa_faults) {
11163 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11164 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11165 		}
11166 		if (ng) {
11167 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11168 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11169 		}
11170 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11171 	}
11172 	rcu_read_unlock();
11173 }
11174 #endif /* CONFIG_NUMA_BALANCING */
11175 #endif /* CONFIG_SCHED_DEBUG */
11176 
11177 __init void init_sched_fair_class(void)
11178 {
11179 #ifdef CONFIG_SMP
11180 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11181 
11182 #ifdef CONFIG_NO_HZ_COMMON
11183 	nohz.next_balance = jiffies;
11184 	nohz.next_blocked = jiffies;
11185 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11186 #endif
11187 #endif /* SMP */
11188 
11189 }
11190 
11191 /*
11192  * Helper functions to facilitate extracting info from tracepoints.
11193  */
11194 
11195 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11196 {
11197 #ifdef CONFIG_SMP
11198 	return cfs_rq ? &cfs_rq->avg : NULL;
11199 #else
11200 	return NULL;
11201 #endif
11202 }
11203 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11204 
11205 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11206 {
11207 	if (!cfs_rq) {
11208 		if (str)
11209 			strlcpy(str, "(null)", len);
11210 		else
11211 			return NULL;
11212 	}
11213 
11214 	cfs_rq_tg_path(cfs_rq, str, len);
11215 	return str;
11216 }
11217 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11218 
11219 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11220 {
11221 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11222 }
11223 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11224 
11225 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11226 {
11227 #ifdef CONFIG_SMP
11228 	return rq ? &rq->avg_rt : NULL;
11229 #else
11230 	return NULL;
11231 #endif
11232 }
11233 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11234 
11235 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11236 {
11237 #ifdef CONFIG_SMP
11238 	return rq ? &rq->avg_dl : NULL;
11239 #else
11240 	return NULL;
11241 #endif
11242 }
11243 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11244 
11245 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11246 {
11247 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11248 	return rq ? &rq->avg_irq : NULL;
11249 #else
11250 	return NULL;
11251 #endif
11252 }
11253 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11254 
11255 int sched_trace_rq_cpu(struct rq *rq)
11256 {
11257 	return rq ? cpu_of(rq) : -1;
11258 }
11259 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11260 
11261 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11262 {
11263 #ifdef CONFIG_SMP
11264 	return rd ? rd->span : NULL;
11265 #else
11266 	return NULL;
11267 #endif
11268 }
11269 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11270