xref: /linux/kernel/sched/fair.c (revision 5cfe477f6a3f9a4d9b2906d442964f2115b0403f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 
40 #include <linux/cpuidle.h>
41 #include <linux/interrupt.h>
42 #include <linux/mempolicy.h>
43 #include <linux/mutex_api.h>
44 #include <linux/profile.h>
45 #include <linux/psi.h>
46 #include <linux/ratelimit.h>
47 #include <linux/task_work.h>
48 
49 #include <asm/switch_to.h>
50 
51 #include <linux/sched/cond_resched.h>
52 
53 #include "sched.h"
54 #include "stats.h"
55 #include "autogroup.h"
56 
57 /*
58  * Targeted preemption latency for CPU-bound tasks:
59  *
60  * NOTE: this latency value is not the same as the concept of
61  * 'timeslice length' - timeslices in CFS are of variable length
62  * and have no persistent notion like in traditional, time-slice
63  * based scheduling concepts.
64  *
65  * (to see the precise effective timeslice length of your workload,
66  *  run vmstat and monitor the context-switches (cs) field)
67  *
68  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
69  */
70 unsigned int sysctl_sched_latency			= 6000000ULL;
71 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
72 
73 /*
74  * The initial- and re-scaling of tunables is configurable
75  *
76  * Options are:
77  *
78  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
79  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
80  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
81  *
82  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
83  */
84 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
85 
86 /*
87  * Minimal preemption granularity for CPU-bound tasks:
88  *
89  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
90  */
91 unsigned int sysctl_sched_min_granularity			= 750000ULL;
92 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
93 
94 /*
95  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
96  * Applies only when SCHED_IDLE tasks compete with normal tasks.
97  *
98  * (default: 0.75 msec)
99  */
100 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
101 
102 /*
103  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
104  */
105 static unsigned int sched_nr_latency = 8;
106 
107 /*
108  * After fork, child runs first. If set to 0 (default) then
109  * parent will (try to) run first.
110  */
111 unsigned int sysctl_sched_child_runs_first __read_mostly;
112 
113 /*
114  * SCHED_OTHER wake-up granularity.
115  *
116  * This option delays the preemption effects of decoupled workloads
117  * and reduces their over-scheduling. Synchronous workloads will still
118  * have immediate wakeup/sleep latencies.
119  *
120  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
121  */
122 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
123 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
124 
125 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
126 
127 int sched_thermal_decay_shift;
128 static int __init setup_sched_thermal_decay_shift(char *str)
129 {
130 	int _shift = 0;
131 
132 	if (kstrtoint(str, 0, &_shift))
133 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
134 
135 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
136 	return 1;
137 }
138 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
139 
140 #ifdef CONFIG_SMP
141 /*
142  * For asym packing, by default the lower numbered CPU has higher priority.
143  */
144 int __weak arch_asym_cpu_priority(int cpu)
145 {
146 	return -cpu;
147 }
148 
149 /*
150  * The margin used when comparing utilization with CPU capacity.
151  *
152  * (default: ~20%)
153  */
154 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
155 
156 /*
157  * The margin used when comparing CPU capacities.
158  * is 'cap1' noticeably greater than 'cap2'
159  *
160  * (default: ~5%)
161  */
162 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
163 #endif
164 
165 #ifdef CONFIG_CFS_BANDWIDTH
166 /*
167  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
168  * each time a cfs_rq requests quota.
169  *
170  * Note: in the case that the slice exceeds the runtime remaining (either due
171  * to consumption or the quota being specified to be smaller than the slice)
172  * we will always only issue the remaining available time.
173  *
174  * (default: 5 msec, units: microseconds)
175  */
176 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
177 #endif
178 
179 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
180 {
181 	lw->weight += inc;
182 	lw->inv_weight = 0;
183 }
184 
185 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
186 {
187 	lw->weight -= dec;
188 	lw->inv_weight = 0;
189 }
190 
191 static inline void update_load_set(struct load_weight *lw, unsigned long w)
192 {
193 	lw->weight = w;
194 	lw->inv_weight = 0;
195 }
196 
197 /*
198  * Increase the granularity value when there are more CPUs,
199  * because with more CPUs the 'effective latency' as visible
200  * to users decreases. But the relationship is not linear,
201  * so pick a second-best guess by going with the log2 of the
202  * number of CPUs.
203  *
204  * This idea comes from the SD scheduler of Con Kolivas:
205  */
206 static unsigned int get_update_sysctl_factor(void)
207 {
208 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
209 	unsigned int factor;
210 
211 	switch (sysctl_sched_tunable_scaling) {
212 	case SCHED_TUNABLESCALING_NONE:
213 		factor = 1;
214 		break;
215 	case SCHED_TUNABLESCALING_LINEAR:
216 		factor = cpus;
217 		break;
218 	case SCHED_TUNABLESCALING_LOG:
219 	default:
220 		factor = 1 + ilog2(cpus);
221 		break;
222 	}
223 
224 	return factor;
225 }
226 
227 static void update_sysctl(void)
228 {
229 	unsigned int factor = get_update_sysctl_factor();
230 
231 #define SET_SYSCTL(name) \
232 	(sysctl_##name = (factor) * normalized_sysctl_##name)
233 	SET_SYSCTL(sched_min_granularity);
234 	SET_SYSCTL(sched_latency);
235 	SET_SYSCTL(sched_wakeup_granularity);
236 #undef SET_SYSCTL
237 }
238 
239 void __init sched_init_granularity(void)
240 {
241 	update_sysctl();
242 }
243 
244 #define WMULT_CONST	(~0U)
245 #define WMULT_SHIFT	32
246 
247 static void __update_inv_weight(struct load_weight *lw)
248 {
249 	unsigned long w;
250 
251 	if (likely(lw->inv_weight))
252 		return;
253 
254 	w = scale_load_down(lw->weight);
255 
256 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
257 		lw->inv_weight = 1;
258 	else if (unlikely(!w))
259 		lw->inv_weight = WMULT_CONST;
260 	else
261 		lw->inv_weight = WMULT_CONST / w;
262 }
263 
264 /*
265  * delta_exec * weight / lw.weight
266  *   OR
267  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
268  *
269  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
270  * we're guaranteed shift stays positive because inv_weight is guaranteed to
271  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
272  *
273  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
274  * weight/lw.weight <= 1, and therefore our shift will also be positive.
275  */
276 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
277 {
278 	u64 fact = scale_load_down(weight);
279 	u32 fact_hi = (u32)(fact >> 32);
280 	int shift = WMULT_SHIFT;
281 	int fs;
282 
283 	__update_inv_weight(lw);
284 
285 	if (unlikely(fact_hi)) {
286 		fs = fls(fact_hi);
287 		shift -= fs;
288 		fact >>= fs;
289 	}
290 
291 	fact = mul_u32_u32(fact, lw->inv_weight);
292 
293 	fact_hi = (u32)(fact >> 32);
294 	if (fact_hi) {
295 		fs = fls(fact_hi);
296 		shift -= fs;
297 		fact >>= fs;
298 	}
299 
300 	return mul_u64_u32_shr(delta_exec, fact, shift);
301 }
302 
303 
304 const struct sched_class fair_sched_class;
305 
306 /**************************************************************
307  * CFS operations on generic schedulable entities:
308  */
309 
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 
312 /* Walk up scheduling entities hierarchy */
313 #define for_each_sched_entity(se) \
314 		for (; se; se = se->parent)
315 
316 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
317 {
318 	if (!path)
319 		return;
320 
321 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
322 		autogroup_path(cfs_rq->tg, path, len);
323 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
324 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
325 	else
326 		strlcpy(path, "(null)", len);
327 }
328 
329 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
330 {
331 	struct rq *rq = rq_of(cfs_rq);
332 	int cpu = cpu_of(rq);
333 
334 	if (cfs_rq->on_list)
335 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
336 
337 	cfs_rq->on_list = 1;
338 
339 	/*
340 	 * Ensure we either appear before our parent (if already
341 	 * enqueued) or force our parent to appear after us when it is
342 	 * enqueued. The fact that we always enqueue bottom-up
343 	 * reduces this to two cases and a special case for the root
344 	 * cfs_rq. Furthermore, it also means that we will always reset
345 	 * tmp_alone_branch either when the branch is connected
346 	 * to a tree or when we reach the top of the tree
347 	 */
348 	if (cfs_rq->tg->parent &&
349 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
350 		/*
351 		 * If parent is already on the list, we add the child
352 		 * just before. Thanks to circular linked property of
353 		 * the list, this means to put the child at the tail
354 		 * of the list that starts by parent.
355 		 */
356 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
357 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
358 		/*
359 		 * The branch is now connected to its tree so we can
360 		 * reset tmp_alone_branch to the beginning of the
361 		 * list.
362 		 */
363 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
364 		return true;
365 	}
366 
367 	if (!cfs_rq->tg->parent) {
368 		/*
369 		 * cfs rq without parent should be put
370 		 * at the tail of the list.
371 		 */
372 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
373 			&rq->leaf_cfs_rq_list);
374 		/*
375 		 * We have reach the top of a tree so we can reset
376 		 * tmp_alone_branch to the beginning of the list.
377 		 */
378 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
379 		return true;
380 	}
381 
382 	/*
383 	 * The parent has not already been added so we want to
384 	 * make sure that it will be put after us.
385 	 * tmp_alone_branch points to the begin of the branch
386 	 * where we will add parent.
387 	 */
388 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
389 	/*
390 	 * update tmp_alone_branch to points to the new begin
391 	 * of the branch
392 	 */
393 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
394 	return false;
395 }
396 
397 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
398 {
399 	if (cfs_rq->on_list) {
400 		struct rq *rq = rq_of(cfs_rq);
401 
402 		/*
403 		 * With cfs_rq being unthrottled/throttled during an enqueue,
404 		 * it can happen the tmp_alone_branch points the a leaf that
405 		 * we finally want to del. In this case, tmp_alone_branch moves
406 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
407 		 * at the end of the enqueue.
408 		 */
409 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
410 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
411 
412 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
413 		cfs_rq->on_list = 0;
414 	}
415 }
416 
417 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
418 {
419 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
420 }
421 
422 /* Iterate thr' all leaf cfs_rq's on a runqueue */
423 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
424 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
425 				 leaf_cfs_rq_list)
426 
427 /* Do the two (enqueued) entities belong to the same group ? */
428 static inline struct cfs_rq *
429 is_same_group(struct sched_entity *se, struct sched_entity *pse)
430 {
431 	if (se->cfs_rq == pse->cfs_rq)
432 		return se->cfs_rq;
433 
434 	return NULL;
435 }
436 
437 static inline struct sched_entity *parent_entity(struct sched_entity *se)
438 {
439 	return se->parent;
440 }
441 
442 static void
443 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
444 {
445 	int se_depth, pse_depth;
446 
447 	/*
448 	 * preemption test can be made between sibling entities who are in the
449 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
450 	 * both tasks until we find their ancestors who are siblings of common
451 	 * parent.
452 	 */
453 
454 	/* First walk up until both entities are at same depth */
455 	se_depth = (*se)->depth;
456 	pse_depth = (*pse)->depth;
457 
458 	while (se_depth > pse_depth) {
459 		se_depth--;
460 		*se = parent_entity(*se);
461 	}
462 
463 	while (pse_depth > se_depth) {
464 		pse_depth--;
465 		*pse = parent_entity(*pse);
466 	}
467 
468 	while (!is_same_group(*se, *pse)) {
469 		*se = parent_entity(*se);
470 		*pse = parent_entity(*pse);
471 	}
472 }
473 
474 static int tg_is_idle(struct task_group *tg)
475 {
476 	return tg->idle > 0;
477 }
478 
479 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
480 {
481 	return cfs_rq->idle > 0;
482 }
483 
484 static int se_is_idle(struct sched_entity *se)
485 {
486 	if (entity_is_task(se))
487 		return task_has_idle_policy(task_of(se));
488 	return cfs_rq_is_idle(group_cfs_rq(se));
489 }
490 
491 #else	/* !CONFIG_FAIR_GROUP_SCHED */
492 
493 #define for_each_sched_entity(se) \
494 		for (; se; se = NULL)
495 
496 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
497 {
498 	if (path)
499 		strlcpy(path, "(null)", len);
500 }
501 
502 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
503 {
504 	return true;
505 }
506 
507 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
508 {
509 }
510 
511 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
512 {
513 }
514 
515 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
516 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
517 
518 static inline struct sched_entity *parent_entity(struct sched_entity *se)
519 {
520 	return NULL;
521 }
522 
523 static inline void
524 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
525 {
526 }
527 
528 static inline int tg_is_idle(struct task_group *tg)
529 {
530 	return 0;
531 }
532 
533 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
534 {
535 	return 0;
536 }
537 
538 static int se_is_idle(struct sched_entity *se)
539 {
540 	return 0;
541 }
542 
543 #endif	/* CONFIG_FAIR_GROUP_SCHED */
544 
545 static __always_inline
546 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
547 
548 /**************************************************************
549  * Scheduling class tree data structure manipulation methods:
550  */
551 
552 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
553 {
554 	s64 delta = (s64)(vruntime - max_vruntime);
555 	if (delta > 0)
556 		max_vruntime = vruntime;
557 
558 	return max_vruntime;
559 }
560 
561 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
562 {
563 	s64 delta = (s64)(vruntime - min_vruntime);
564 	if (delta < 0)
565 		min_vruntime = vruntime;
566 
567 	return min_vruntime;
568 }
569 
570 static inline bool entity_before(struct sched_entity *a,
571 				struct sched_entity *b)
572 {
573 	return (s64)(a->vruntime - b->vruntime) < 0;
574 }
575 
576 #define __node_2_se(node) \
577 	rb_entry((node), struct sched_entity, run_node)
578 
579 static void update_min_vruntime(struct cfs_rq *cfs_rq)
580 {
581 	struct sched_entity *curr = cfs_rq->curr;
582 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
583 
584 	u64 vruntime = cfs_rq->min_vruntime;
585 
586 	if (curr) {
587 		if (curr->on_rq)
588 			vruntime = curr->vruntime;
589 		else
590 			curr = NULL;
591 	}
592 
593 	if (leftmost) { /* non-empty tree */
594 		struct sched_entity *se = __node_2_se(leftmost);
595 
596 		if (!curr)
597 			vruntime = se->vruntime;
598 		else
599 			vruntime = min_vruntime(vruntime, se->vruntime);
600 	}
601 
602 	/* ensure we never gain time by being placed backwards. */
603 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
604 #ifndef CONFIG_64BIT
605 	smp_wmb();
606 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
607 #endif
608 }
609 
610 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
611 {
612 	return entity_before(__node_2_se(a), __node_2_se(b));
613 }
614 
615 /*
616  * Enqueue an entity into the rb-tree:
617  */
618 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
619 {
620 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
621 }
622 
623 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
624 {
625 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
626 }
627 
628 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
629 {
630 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
631 
632 	if (!left)
633 		return NULL;
634 
635 	return __node_2_se(left);
636 }
637 
638 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
639 {
640 	struct rb_node *next = rb_next(&se->run_node);
641 
642 	if (!next)
643 		return NULL;
644 
645 	return __node_2_se(next);
646 }
647 
648 #ifdef CONFIG_SCHED_DEBUG
649 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
650 {
651 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
652 
653 	if (!last)
654 		return NULL;
655 
656 	return __node_2_se(last);
657 }
658 
659 /**************************************************************
660  * Scheduling class statistics methods:
661  */
662 
663 int sched_update_scaling(void)
664 {
665 	unsigned int factor = get_update_sysctl_factor();
666 
667 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
668 					sysctl_sched_min_granularity);
669 
670 #define WRT_SYSCTL(name) \
671 	(normalized_sysctl_##name = sysctl_##name / (factor))
672 	WRT_SYSCTL(sched_min_granularity);
673 	WRT_SYSCTL(sched_latency);
674 	WRT_SYSCTL(sched_wakeup_granularity);
675 #undef WRT_SYSCTL
676 
677 	return 0;
678 }
679 #endif
680 
681 /*
682  * delta /= w
683  */
684 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
685 {
686 	if (unlikely(se->load.weight != NICE_0_LOAD))
687 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
688 
689 	return delta;
690 }
691 
692 /*
693  * The idea is to set a period in which each task runs once.
694  *
695  * When there are too many tasks (sched_nr_latency) we have to stretch
696  * this period because otherwise the slices get too small.
697  *
698  * p = (nr <= nl) ? l : l*nr/nl
699  */
700 static u64 __sched_period(unsigned long nr_running)
701 {
702 	if (unlikely(nr_running > sched_nr_latency))
703 		return nr_running * sysctl_sched_min_granularity;
704 	else
705 		return sysctl_sched_latency;
706 }
707 
708 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
709 
710 /*
711  * We calculate the wall-time slice from the period by taking a part
712  * proportional to the weight.
713  *
714  * s = p*P[w/rw]
715  */
716 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
717 {
718 	unsigned int nr_running = cfs_rq->nr_running;
719 	struct sched_entity *init_se = se;
720 	unsigned int min_gran;
721 	u64 slice;
722 
723 	if (sched_feat(ALT_PERIOD))
724 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
725 
726 	slice = __sched_period(nr_running + !se->on_rq);
727 
728 	for_each_sched_entity(se) {
729 		struct load_weight *load;
730 		struct load_weight lw;
731 		struct cfs_rq *qcfs_rq;
732 
733 		qcfs_rq = cfs_rq_of(se);
734 		load = &qcfs_rq->load;
735 
736 		if (unlikely(!se->on_rq)) {
737 			lw = qcfs_rq->load;
738 
739 			update_load_add(&lw, se->load.weight);
740 			load = &lw;
741 		}
742 		slice = __calc_delta(slice, se->load.weight, load);
743 	}
744 
745 	if (sched_feat(BASE_SLICE)) {
746 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
747 			min_gran = sysctl_sched_idle_min_granularity;
748 		else
749 			min_gran = sysctl_sched_min_granularity;
750 
751 		slice = max_t(u64, slice, min_gran);
752 	}
753 
754 	return slice;
755 }
756 
757 /*
758  * We calculate the vruntime slice of a to-be-inserted task.
759  *
760  * vs = s/w
761  */
762 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
763 {
764 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
765 }
766 
767 #include "pelt.h"
768 #ifdef CONFIG_SMP
769 
770 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
771 static unsigned long task_h_load(struct task_struct *p);
772 static unsigned long capacity_of(int cpu);
773 
774 /* Give new sched_entity start runnable values to heavy its load in infant time */
775 void init_entity_runnable_average(struct sched_entity *se)
776 {
777 	struct sched_avg *sa = &se->avg;
778 
779 	memset(sa, 0, sizeof(*sa));
780 
781 	/*
782 	 * Tasks are initialized with full load to be seen as heavy tasks until
783 	 * they get a chance to stabilize to their real load level.
784 	 * Group entities are initialized with zero load to reflect the fact that
785 	 * nothing has been attached to the task group yet.
786 	 */
787 	if (entity_is_task(se))
788 		sa->load_avg = scale_load_down(se->load.weight);
789 
790 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
791 }
792 
793 static void attach_entity_cfs_rq(struct sched_entity *se);
794 
795 /*
796  * With new tasks being created, their initial util_avgs are extrapolated
797  * based on the cfs_rq's current util_avg:
798  *
799  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
800  *
801  * However, in many cases, the above util_avg does not give a desired
802  * value. Moreover, the sum of the util_avgs may be divergent, such
803  * as when the series is a harmonic series.
804  *
805  * To solve this problem, we also cap the util_avg of successive tasks to
806  * only 1/2 of the left utilization budget:
807  *
808  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
809  *
810  * where n denotes the nth task and cpu_scale the CPU capacity.
811  *
812  * For example, for a CPU with 1024 of capacity, a simplest series from
813  * the beginning would be like:
814  *
815  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
816  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
817  *
818  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
819  * if util_avg > util_avg_cap.
820  */
821 void post_init_entity_util_avg(struct task_struct *p)
822 {
823 	struct sched_entity *se = &p->se;
824 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
825 	struct sched_avg *sa = &se->avg;
826 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
827 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
828 
829 	if (cap > 0) {
830 		if (cfs_rq->avg.util_avg != 0) {
831 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
832 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
833 
834 			if (sa->util_avg > cap)
835 				sa->util_avg = cap;
836 		} else {
837 			sa->util_avg = cap;
838 		}
839 	}
840 
841 	sa->runnable_avg = sa->util_avg;
842 
843 	if (p->sched_class != &fair_sched_class) {
844 		/*
845 		 * For !fair tasks do:
846 		 *
847 		update_cfs_rq_load_avg(now, cfs_rq);
848 		attach_entity_load_avg(cfs_rq, se);
849 		switched_from_fair(rq, p);
850 		 *
851 		 * such that the next switched_to_fair() has the
852 		 * expected state.
853 		 */
854 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
855 		return;
856 	}
857 
858 	attach_entity_cfs_rq(se);
859 }
860 
861 #else /* !CONFIG_SMP */
862 void init_entity_runnable_average(struct sched_entity *se)
863 {
864 }
865 void post_init_entity_util_avg(struct task_struct *p)
866 {
867 }
868 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
869 {
870 }
871 #endif /* CONFIG_SMP */
872 
873 /*
874  * Update the current task's runtime statistics.
875  */
876 static void update_curr(struct cfs_rq *cfs_rq)
877 {
878 	struct sched_entity *curr = cfs_rq->curr;
879 	u64 now = rq_clock_task(rq_of(cfs_rq));
880 	u64 delta_exec;
881 
882 	if (unlikely(!curr))
883 		return;
884 
885 	delta_exec = now - curr->exec_start;
886 	if (unlikely((s64)delta_exec <= 0))
887 		return;
888 
889 	curr->exec_start = now;
890 
891 	if (schedstat_enabled()) {
892 		struct sched_statistics *stats;
893 
894 		stats = __schedstats_from_se(curr);
895 		__schedstat_set(stats->exec_max,
896 				max(delta_exec, stats->exec_max));
897 	}
898 
899 	curr->sum_exec_runtime += delta_exec;
900 	schedstat_add(cfs_rq->exec_clock, delta_exec);
901 
902 	curr->vruntime += calc_delta_fair(delta_exec, curr);
903 	update_min_vruntime(cfs_rq);
904 
905 	if (entity_is_task(curr)) {
906 		struct task_struct *curtask = task_of(curr);
907 
908 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
909 		cgroup_account_cputime(curtask, delta_exec);
910 		account_group_exec_runtime(curtask, delta_exec);
911 	}
912 
913 	account_cfs_rq_runtime(cfs_rq, delta_exec);
914 }
915 
916 static void update_curr_fair(struct rq *rq)
917 {
918 	update_curr(cfs_rq_of(&rq->curr->se));
919 }
920 
921 static inline void
922 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
923 {
924 	struct sched_statistics *stats;
925 	struct task_struct *p = NULL;
926 
927 	if (!schedstat_enabled())
928 		return;
929 
930 	stats = __schedstats_from_se(se);
931 
932 	if (entity_is_task(se))
933 		p = task_of(se);
934 
935 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
936 }
937 
938 static inline void
939 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
940 {
941 	struct sched_statistics *stats;
942 	struct task_struct *p = NULL;
943 
944 	if (!schedstat_enabled())
945 		return;
946 
947 	stats = __schedstats_from_se(se);
948 
949 	/*
950 	 * When the sched_schedstat changes from 0 to 1, some sched se
951 	 * maybe already in the runqueue, the se->statistics.wait_start
952 	 * will be 0.So it will let the delta wrong. We need to avoid this
953 	 * scenario.
954 	 */
955 	if (unlikely(!schedstat_val(stats->wait_start)))
956 		return;
957 
958 	if (entity_is_task(se))
959 		p = task_of(se);
960 
961 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
962 }
963 
964 static inline void
965 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
966 {
967 	struct sched_statistics *stats;
968 	struct task_struct *tsk = NULL;
969 
970 	if (!schedstat_enabled())
971 		return;
972 
973 	stats = __schedstats_from_se(se);
974 
975 	if (entity_is_task(se))
976 		tsk = task_of(se);
977 
978 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
979 }
980 
981 /*
982  * Task is being enqueued - update stats:
983  */
984 static inline void
985 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
986 {
987 	if (!schedstat_enabled())
988 		return;
989 
990 	/*
991 	 * Are we enqueueing a waiting task? (for current tasks
992 	 * a dequeue/enqueue event is a NOP)
993 	 */
994 	if (se != cfs_rq->curr)
995 		update_stats_wait_start_fair(cfs_rq, se);
996 
997 	if (flags & ENQUEUE_WAKEUP)
998 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
999 }
1000 
1001 static inline void
1002 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1003 {
1004 
1005 	if (!schedstat_enabled())
1006 		return;
1007 
1008 	/*
1009 	 * Mark the end of the wait period if dequeueing a
1010 	 * waiting task:
1011 	 */
1012 	if (se != cfs_rq->curr)
1013 		update_stats_wait_end_fair(cfs_rq, se);
1014 
1015 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1016 		struct task_struct *tsk = task_of(se);
1017 		unsigned int state;
1018 
1019 		/* XXX racy against TTWU */
1020 		state = READ_ONCE(tsk->__state);
1021 		if (state & TASK_INTERRUPTIBLE)
1022 			__schedstat_set(tsk->stats.sleep_start,
1023 				      rq_clock(rq_of(cfs_rq)));
1024 		if (state & TASK_UNINTERRUPTIBLE)
1025 			__schedstat_set(tsk->stats.block_start,
1026 				      rq_clock(rq_of(cfs_rq)));
1027 	}
1028 }
1029 
1030 /*
1031  * We are picking a new current task - update its stats:
1032  */
1033 static inline void
1034 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1035 {
1036 	/*
1037 	 * We are starting a new run period:
1038 	 */
1039 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1040 }
1041 
1042 /**************************************************
1043  * Scheduling class queueing methods:
1044  */
1045 
1046 #ifdef CONFIG_NUMA_BALANCING
1047 /*
1048  * Approximate time to scan a full NUMA task in ms. The task scan period is
1049  * calculated based on the tasks virtual memory size and
1050  * numa_balancing_scan_size.
1051  */
1052 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1053 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1054 
1055 /* Portion of address space to scan in MB */
1056 unsigned int sysctl_numa_balancing_scan_size = 256;
1057 
1058 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1059 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1060 
1061 struct numa_group {
1062 	refcount_t refcount;
1063 
1064 	spinlock_t lock; /* nr_tasks, tasks */
1065 	int nr_tasks;
1066 	pid_t gid;
1067 	int active_nodes;
1068 
1069 	struct rcu_head rcu;
1070 	unsigned long total_faults;
1071 	unsigned long max_faults_cpu;
1072 	/*
1073 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1074 	 *
1075 	 * Faults_cpu is used to decide whether memory should move
1076 	 * towards the CPU. As a consequence, these stats are weighted
1077 	 * more by CPU use than by memory faults.
1078 	 */
1079 	unsigned long faults[];
1080 };
1081 
1082 /*
1083  * For functions that can be called in multiple contexts that permit reading
1084  * ->numa_group (see struct task_struct for locking rules).
1085  */
1086 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1087 {
1088 	return rcu_dereference_check(p->numa_group, p == current ||
1089 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1090 }
1091 
1092 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1093 {
1094 	return rcu_dereference_protected(p->numa_group, p == current);
1095 }
1096 
1097 static inline unsigned long group_faults_priv(struct numa_group *ng);
1098 static inline unsigned long group_faults_shared(struct numa_group *ng);
1099 
1100 static unsigned int task_nr_scan_windows(struct task_struct *p)
1101 {
1102 	unsigned long rss = 0;
1103 	unsigned long nr_scan_pages;
1104 
1105 	/*
1106 	 * Calculations based on RSS as non-present and empty pages are skipped
1107 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1108 	 * on resident pages
1109 	 */
1110 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1111 	rss = get_mm_rss(p->mm);
1112 	if (!rss)
1113 		rss = nr_scan_pages;
1114 
1115 	rss = round_up(rss, nr_scan_pages);
1116 	return rss / nr_scan_pages;
1117 }
1118 
1119 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1120 #define MAX_SCAN_WINDOW 2560
1121 
1122 static unsigned int task_scan_min(struct task_struct *p)
1123 {
1124 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1125 	unsigned int scan, floor;
1126 	unsigned int windows = 1;
1127 
1128 	if (scan_size < MAX_SCAN_WINDOW)
1129 		windows = MAX_SCAN_WINDOW / scan_size;
1130 	floor = 1000 / windows;
1131 
1132 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1133 	return max_t(unsigned int, floor, scan);
1134 }
1135 
1136 static unsigned int task_scan_start(struct task_struct *p)
1137 {
1138 	unsigned long smin = task_scan_min(p);
1139 	unsigned long period = smin;
1140 	struct numa_group *ng;
1141 
1142 	/* Scale the maximum scan period with the amount of shared memory. */
1143 	rcu_read_lock();
1144 	ng = rcu_dereference(p->numa_group);
1145 	if (ng) {
1146 		unsigned long shared = group_faults_shared(ng);
1147 		unsigned long private = group_faults_priv(ng);
1148 
1149 		period *= refcount_read(&ng->refcount);
1150 		period *= shared + 1;
1151 		period /= private + shared + 1;
1152 	}
1153 	rcu_read_unlock();
1154 
1155 	return max(smin, period);
1156 }
1157 
1158 static unsigned int task_scan_max(struct task_struct *p)
1159 {
1160 	unsigned long smin = task_scan_min(p);
1161 	unsigned long smax;
1162 	struct numa_group *ng;
1163 
1164 	/* Watch for min being lower than max due to floor calculations */
1165 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1166 
1167 	/* Scale the maximum scan period with the amount of shared memory. */
1168 	ng = deref_curr_numa_group(p);
1169 	if (ng) {
1170 		unsigned long shared = group_faults_shared(ng);
1171 		unsigned long private = group_faults_priv(ng);
1172 		unsigned long period = smax;
1173 
1174 		period *= refcount_read(&ng->refcount);
1175 		period *= shared + 1;
1176 		period /= private + shared + 1;
1177 
1178 		smax = max(smax, period);
1179 	}
1180 
1181 	return max(smin, smax);
1182 }
1183 
1184 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1185 {
1186 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1187 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1188 }
1189 
1190 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1191 {
1192 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1193 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1194 }
1195 
1196 /* Shared or private faults. */
1197 #define NR_NUMA_HINT_FAULT_TYPES 2
1198 
1199 /* Memory and CPU locality */
1200 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1201 
1202 /* Averaged statistics, and temporary buffers. */
1203 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1204 
1205 pid_t task_numa_group_id(struct task_struct *p)
1206 {
1207 	struct numa_group *ng;
1208 	pid_t gid = 0;
1209 
1210 	rcu_read_lock();
1211 	ng = rcu_dereference(p->numa_group);
1212 	if (ng)
1213 		gid = ng->gid;
1214 	rcu_read_unlock();
1215 
1216 	return gid;
1217 }
1218 
1219 /*
1220  * The averaged statistics, shared & private, memory & CPU,
1221  * occupy the first half of the array. The second half of the
1222  * array is for current counters, which are averaged into the
1223  * first set by task_numa_placement.
1224  */
1225 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1226 {
1227 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1228 }
1229 
1230 static inline unsigned long task_faults(struct task_struct *p, int nid)
1231 {
1232 	if (!p->numa_faults)
1233 		return 0;
1234 
1235 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1236 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1237 }
1238 
1239 static inline unsigned long group_faults(struct task_struct *p, int nid)
1240 {
1241 	struct numa_group *ng = deref_task_numa_group(p);
1242 
1243 	if (!ng)
1244 		return 0;
1245 
1246 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1247 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1248 }
1249 
1250 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1251 {
1252 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1253 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1254 }
1255 
1256 static inline unsigned long group_faults_priv(struct numa_group *ng)
1257 {
1258 	unsigned long faults = 0;
1259 	int node;
1260 
1261 	for_each_online_node(node) {
1262 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1263 	}
1264 
1265 	return faults;
1266 }
1267 
1268 static inline unsigned long group_faults_shared(struct numa_group *ng)
1269 {
1270 	unsigned long faults = 0;
1271 	int node;
1272 
1273 	for_each_online_node(node) {
1274 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1275 	}
1276 
1277 	return faults;
1278 }
1279 
1280 /*
1281  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1282  * considered part of a numa group's pseudo-interleaving set. Migrations
1283  * between these nodes are slowed down, to allow things to settle down.
1284  */
1285 #define ACTIVE_NODE_FRACTION 3
1286 
1287 static bool numa_is_active_node(int nid, struct numa_group *ng)
1288 {
1289 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1290 }
1291 
1292 /* Handle placement on systems where not all nodes are directly connected. */
1293 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1294 					int lim_dist, bool task)
1295 {
1296 	unsigned long score = 0;
1297 	int node, max_dist;
1298 
1299 	/*
1300 	 * All nodes are directly connected, and the same distance
1301 	 * from each other. No need for fancy placement algorithms.
1302 	 */
1303 	if (sched_numa_topology_type == NUMA_DIRECT)
1304 		return 0;
1305 
1306 	/* sched_max_numa_distance may be changed in parallel. */
1307 	max_dist = READ_ONCE(sched_max_numa_distance);
1308 	/*
1309 	 * This code is called for each node, introducing N^2 complexity,
1310 	 * which should be ok given the number of nodes rarely exceeds 8.
1311 	 */
1312 	for_each_online_node(node) {
1313 		unsigned long faults;
1314 		int dist = node_distance(nid, node);
1315 
1316 		/*
1317 		 * The furthest away nodes in the system are not interesting
1318 		 * for placement; nid was already counted.
1319 		 */
1320 		if (dist >= max_dist || node == nid)
1321 			continue;
1322 
1323 		/*
1324 		 * On systems with a backplane NUMA topology, compare groups
1325 		 * of nodes, and move tasks towards the group with the most
1326 		 * memory accesses. When comparing two nodes at distance
1327 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1328 		 * of each group. Skip other nodes.
1329 		 */
1330 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1331 			continue;
1332 
1333 		/* Add up the faults from nearby nodes. */
1334 		if (task)
1335 			faults = task_faults(p, node);
1336 		else
1337 			faults = group_faults(p, node);
1338 
1339 		/*
1340 		 * On systems with a glueless mesh NUMA topology, there are
1341 		 * no fixed "groups of nodes". Instead, nodes that are not
1342 		 * directly connected bounce traffic through intermediate
1343 		 * nodes; a numa_group can occupy any set of nodes.
1344 		 * The further away a node is, the less the faults count.
1345 		 * This seems to result in good task placement.
1346 		 */
1347 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1348 			faults *= (max_dist - dist);
1349 			faults /= (max_dist - LOCAL_DISTANCE);
1350 		}
1351 
1352 		score += faults;
1353 	}
1354 
1355 	return score;
1356 }
1357 
1358 /*
1359  * These return the fraction of accesses done by a particular task, or
1360  * task group, on a particular numa node.  The group weight is given a
1361  * larger multiplier, in order to group tasks together that are almost
1362  * evenly spread out between numa nodes.
1363  */
1364 static inline unsigned long task_weight(struct task_struct *p, int nid,
1365 					int dist)
1366 {
1367 	unsigned long faults, total_faults;
1368 
1369 	if (!p->numa_faults)
1370 		return 0;
1371 
1372 	total_faults = p->total_numa_faults;
1373 
1374 	if (!total_faults)
1375 		return 0;
1376 
1377 	faults = task_faults(p, nid);
1378 	faults += score_nearby_nodes(p, nid, dist, true);
1379 
1380 	return 1000 * faults / total_faults;
1381 }
1382 
1383 static inline unsigned long group_weight(struct task_struct *p, int nid,
1384 					 int dist)
1385 {
1386 	struct numa_group *ng = deref_task_numa_group(p);
1387 	unsigned long faults, total_faults;
1388 
1389 	if (!ng)
1390 		return 0;
1391 
1392 	total_faults = ng->total_faults;
1393 
1394 	if (!total_faults)
1395 		return 0;
1396 
1397 	faults = group_faults(p, nid);
1398 	faults += score_nearby_nodes(p, nid, dist, false);
1399 
1400 	return 1000 * faults / total_faults;
1401 }
1402 
1403 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1404 				int src_nid, int dst_cpu)
1405 {
1406 	struct numa_group *ng = deref_curr_numa_group(p);
1407 	int dst_nid = cpu_to_node(dst_cpu);
1408 	int last_cpupid, this_cpupid;
1409 
1410 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1411 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1412 
1413 	/*
1414 	 * Allow first faults or private faults to migrate immediately early in
1415 	 * the lifetime of a task. The magic number 4 is based on waiting for
1416 	 * two full passes of the "multi-stage node selection" test that is
1417 	 * executed below.
1418 	 */
1419 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1420 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1421 		return true;
1422 
1423 	/*
1424 	 * Multi-stage node selection is used in conjunction with a periodic
1425 	 * migration fault to build a temporal task<->page relation. By using
1426 	 * a two-stage filter we remove short/unlikely relations.
1427 	 *
1428 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1429 	 * a task's usage of a particular page (n_p) per total usage of this
1430 	 * page (n_t) (in a given time-span) to a probability.
1431 	 *
1432 	 * Our periodic faults will sample this probability and getting the
1433 	 * same result twice in a row, given these samples are fully
1434 	 * independent, is then given by P(n)^2, provided our sample period
1435 	 * is sufficiently short compared to the usage pattern.
1436 	 *
1437 	 * This quadric squishes small probabilities, making it less likely we
1438 	 * act on an unlikely task<->page relation.
1439 	 */
1440 	if (!cpupid_pid_unset(last_cpupid) &&
1441 				cpupid_to_nid(last_cpupid) != dst_nid)
1442 		return false;
1443 
1444 	/* Always allow migrate on private faults */
1445 	if (cpupid_match_pid(p, last_cpupid))
1446 		return true;
1447 
1448 	/* A shared fault, but p->numa_group has not been set up yet. */
1449 	if (!ng)
1450 		return true;
1451 
1452 	/*
1453 	 * Destination node is much more heavily used than the source
1454 	 * node? Allow migration.
1455 	 */
1456 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1457 					ACTIVE_NODE_FRACTION)
1458 		return true;
1459 
1460 	/*
1461 	 * Distribute memory according to CPU & memory use on each node,
1462 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1463 	 *
1464 	 * faults_cpu(dst)   3   faults_cpu(src)
1465 	 * --------------- * - > ---------------
1466 	 * faults_mem(dst)   4   faults_mem(src)
1467 	 */
1468 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1469 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1470 }
1471 
1472 /*
1473  * 'numa_type' describes the node at the moment of load balancing.
1474  */
1475 enum numa_type {
1476 	/* The node has spare capacity that can be used to run more tasks.  */
1477 	node_has_spare = 0,
1478 	/*
1479 	 * The node is fully used and the tasks don't compete for more CPU
1480 	 * cycles. Nevertheless, some tasks might wait before running.
1481 	 */
1482 	node_fully_busy,
1483 	/*
1484 	 * The node is overloaded and can't provide expected CPU cycles to all
1485 	 * tasks.
1486 	 */
1487 	node_overloaded
1488 };
1489 
1490 /* Cached statistics for all CPUs within a node */
1491 struct numa_stats {
1492 	unsigned long load;
1493 	unsigned long runnable;
1494 	unsigned long util;
1495 	/* Total compute capacity of CPUs on a node */
1496 	unsigned long compute_capacity;
1497 	unsigned int nr_running;
1498 	unsigned int weight;
1499 	enum numa_type node_type;
1500 	int idle_cpu;
1501 };
1502 
1503 static inline bool is_core_idle(int cpu)
1504 {
1505 #ifdef CONFIG_SCHED_SMT
1506 	int sibling;
1507 
1508 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1509 		if (cpu == sibling)
1510 			continue;
1511 
1512 		if (!idle_cpu(sibling))
1513 			return false;
1514 	}
1515 #endif
1516 
1517 	return true;
1518 }
1519 
1520 struct task_numa_env {
1521 	struct task_struct *p;
1522 
1523 	int src_cpu, src_nid;
1524 	int dst_cpu, dst_nid;
1525 	int imb_numa_nr;
1526 
1527 	struct numa_stats src_stats, dst_stats;
1528 
1529 	int imbalance_pct;
1530 	int dist;
1531 
1532 	struct task_struct *best_task;
1533 	long best_imp;
1534 	int best_cpu;
1535 };
1536 
1537 static unsigned long cpu_load(struct rq *rq);
1538 static unsigned long cpu_runnable(struct rq *rq);
1539 static inline long adjust_numa_imbalance(int imbalance,
1540 					int dst_running, int imb_numa_nr);
1541 
1542 static inline enum
1543 numa_type numa_classify(unsigned int imbalance_pct,
1544 			 struct numa_stats *ns)
1545 {
1546 	if ((ns->nr_running > ns->weight) &&
1547 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1548 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1549 		return node_overloaded;
1550 
1551 	if ((ns->nr_running < ns->weight) ||
1552 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1553 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1554 		return node_has_spare;
1555 
1556 	return node_fully_busy;
1557 }
1558 
1559 #ifdef CONFIG_SCHED_SMT
1560 /* Forward declarations of select_idle_sibling helpers */
1561 static inline bool test_idle_cores(int cpu, bool def);
1562 static inline int numa_idle_core(int idle_core, int cpu)
1563 {
1564 	if (!static_branch_likely(&sched_smt_present) ||
1565 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1566 		return idle_core;
1567 
1568 	/*
1569 	 * Prefer cores instead of packing HT siblings
1570 	 * and triggering future load balancing.
1571 	 */
1572 	if (is_core_idle(cpu))
1573 		idle_core = cpu;
1574 
1575 	return idle_core;
1576 }
1577 #else
1578 static inline int numa_idle_core(int idle_core, int cpu)
1579 {
1580 	return idle_core;
1581 }
1582 #endif
1583 
1584 /*
1585  * Gather all necessary information to make NUMA balancing placement
1586  * decisions that are compatible with standard load balancer. This
1587  * borrows code and logic from update_sg_lb_stats but sharing a
1588  * common implementation is impractical.
1589  */
1590 static void update_numa_stats(struct task_numa_env *env,
1591 			      struct numa_stats *ns, int nid,
1592 			      bool find_idle)
1593 {
1594 	int cpu, idle_core = -1;
1595 
1596 	memset(ns, 0, sizeof(*ns));
1597 	ns->idle_cpu = -1;
1598 
1599 	rcu_read_lock();
1600 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1601 		struct rq *rq = cpu_rq(cpu);
1602 
1603 		ns->load += cpu_load(rq);
1604 		ns->runnable += cpu_runnable(rq);
1605 		ns->util += cpu_util_cfs(cpu);
1606 		ns->nr_running += rq->cfs.h_nr_running;
1607 		ns->compute_capacity += capacity_of(cpu);
1608 
1609 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1610 			if (READ_ONCE(rq->numa_migrate_on) ||
1611 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1612 				continue;
1613 
1614 			if (ns->idle_cpu == -1)
1615 				ns->idle_cpu = cpu;
1616 
1617 			idle_core = numa_idle_core(idle_core, cpu);
1618 		}
1619 	}
1620 	rcu_read_unlock();
1621 
1622 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1623 
1624 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1625 
1626 	if (idle_core >= 0)
1627 		ns->idle_cpu = idle_core;
1628 }
1629 
1630 static void task_numa_assign(struct task_numa_env *env,
1631 			     struct task_struct *p, long imp)
1632 {
1633 	struct rq *rq = cpu_rq(env->dst_cpu);
1634 
1635 	/* Check if run-queue part of active NUMA balance. */
1636 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1637 		int cpu;
1638 		int start = env->dst_cpu;
1639 
1640 		/* Find alternative idle CPU. */
1641 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1642 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1643 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1644 				continue;
1645 			}
1646 
1647 			env->dst_cpu = cpu;
1648 			rq = cpu_rq(env->dst_cpu);
1649 			if (!xchg(&rq->numa_migrate_on, 1))
1650 				goto assign;
1651 		}
1652 
1653 		/* Failed to find an alternative idle CPU */
1654 		return;
1655 	}
1656 
1657 assign:
1658 	/*
1659 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1660 	 * found a better CPU to move/swap.
1661 	 */
1662 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1663 		rq = cpu_rq(env->best_cpu);
1664 		WRITE_ONCE(rq->numa_migrate_on, 0);
1665 	}
1666 
1667 	if (env->best_task)
1668 		put_task_struct(env->best_task);
1669 	if (p)
1670 		get_task_struct(p);
1671 
1672 	env->best_task = p;
1673 	env->best_imp = imp;
1674 	env->best_cpu = env->dst_cpu;
1675 }
1676 
1677 static bool load_too_imbalanced(long src_load, long dst_load,
1678 				struct task_numa_env *env)
1679 {
1680 	long imb, old_imb;
1681 	long orig_src_load, orig_dst_load;
1682 	long src_capacity, dst_capacity;
1683 
1684 	/*
1685 	 * The load is corrected for the CPU capacity available on each node.
1686 	 *
1687 	 * src_load        dst_load
1688 	 * ------------ vs ---------
1689 	 * src_capacity    dst_capacity
1690 	 */
1691 	src_capacity = env->src_stats.compute_capacity;
1692 	dst_capacity = env->dst_stats.compute_capacity;
1693 
1694 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1695 
1696 	orig_src_load = env->src_stats.load;
1697 	orig_dst_load = env->dst_stats.load;
1698 
1699 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1700 
1701 	/* Would this change make things worse? */
1702 	return (imb > old_imb);
1703 }
1704 
1705 /*
1706  * Maximum NUMA importance can be 1998 (2*999);
1707  * SMALLIMP @ 30 would be close to 1998/64.
1708  * Used to deter task migration.
1709  */
1710 #define SMALLIMP	30
1711 
1712 /*
1713  * This checks if the overall compute and NUMA accesses of the system would
1714  * be improved if the source tasks was migrated to the target dst_cpu taking
1715  * into account that it might be best if task running on the dst_cpu should
1716  * be exchanged with the source task
1717  */
1718 static bool task_numa_compare(struct task_numa_env *env,
1719 			      long taskimp, long groupimp, bool maymove)
1720 {
1721 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1722 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1723 	long imp = p_ng ? groupimp : taskimp;
1724 	struct task_struct *cur;
1725 	long src_load, dst_load;
1726 	int dist = env->dist;
1727 	long moveimp = imp;
1728 	long load;
1729 	bool stopsearch = false;
1730 
1731 	if (READ_ONCE(dst_rq->numa_migrate_on))
1732 		return false;
1733 
1734 	rcu_read_lock();
1735 	cur = rcu_dereference(dst_rq->curr);
1736 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1737 		cur = NULL;
1738 
1739 	/*
1740 	 * Because we have preemption enabled we can get migrated around and
1741 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1742 	 */
1743 	if (cur == env->p) {
1744 		stopsearch = true;
1745 		goto unlock;
1746 	}
1747 
1748 	if (!cur) {
1749 		if (maymove && moveimp >= env->best_imp)
1750 			goto assign;
1751 		else
1752 			goto unlock;
1753 	}
1754 
1755 	/* Skip this swap candidate if cannot move to the source cpu. */
1756 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1757 		goto unlock;
1758 
1759 	/*
1760 	 * Skip this swap candidate if it is not moving to its preferred
1761 	 * node and the best task is.
1762 	 */
1763 	if (env->best_task &&
1764 	    env->best_task->numa_preferred_nid == env->src_nid &&
1765 	    cur->numa_preferred_nid != env->src_nid) {
1766 		goto unlock;
1767 	}
1768 
1769 	/*
1770 	 * "imp" is the fault differential for the source task between the
1771 	 * source and destination node. Calculate the total differential for
1772 	 * the source task and potential destination task. The more negative
1773 	 * the value is, the more remote accesses that would be expected to
1774 	 * be incurred if the tasks were swapped.
1775 	 *
1776 	 * If dst and source tasks are in the same NUMA group, or not
1777 	 * in any group then look only at task weights.
1778 	 */
1779 	cur_ng = rcu_dereference(cur->numa_group);
1780 	if (cur_ng == p_ng) {
1781 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1782 		      task_weight(cur, env->dst_nid, dist);
1783 		/*
1784 		 * Add some hysteresis to prevent swapping the
1785 		 * tasks within a group over tiny differences.
1786 		 */
1787 		if (cur_ng)
1788 			imp -= imp / 16;
1789 	} else {
1790 		/*
1791 		 * Compare the group weights. If a task is all by itself
1792 		 * (not part of a group), use the task weight instead.
1793 		 */
1794 		if (cur_ng && p_ng)
1795 			imp += group_weight(cur, env->src_nid, dist) -
1796 			       group_weight(cur, env->dst_nid, dist);
1797 		else
1798 			imp += task_weight(cur, env->src_nid, dist) -
1799 			       task_weight(cur, env->dst_nid, dist);
1800 	}
1801 
1802 	/* Discourage picking a task already on its preferred node */
1803 	if (cur->numa_preferred_nid == env->dst_nid)
1804 		imp -= imp / 16;
1805 
1806 	/*
1807 	 * Encourage picking a task that moves to its preferred node.
1808 	 * This potentially makes imp larger than it's maximum of
1809 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1810 	 * case, it does not matter.
1811 	 */
1812 	if (cur->numa_preferred_nid == env->src_nid)
1813 		imp += imp / 8;
1814 
1815 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1816 		imp = moveimp;
1817 		cur = NULL;
1818 		goto assign;
1819 	}
1820 
1821 	/*
1822 	 * Prefer swapping with a task moving to its preferred node over a
1823 	 * task that is not.
1824 	 */
1825 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1826 	    env->best_task->numa_preferred_nid != env->src_nid) {
1827 		goto assign;
1828 	}
1829 
1830 	/*
1831 	 * If the NUMA importance is less than SMALLIMP,
1832 	 * task migration might only result in ping pong
1833 	 * of tasks and also hurt performance due to cache
1834 	 * misses.
1835 	 */
1836 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1837 		goto unlock;
1838 
1839 	/*
1840 	 * In the overloaded case, try and keep the load balanced.
1841 	 */
1842 	load = task_h_load(env->p) - task_h_load(cur);
1843 	if (!load)
1844 		goto assign;
1845 
1846 	dst_load = env->dst_stats.load + load;
1847 	src_load = env->src_stats.load - load;
1848 
1849 	if (load_too_imbalanced(src_load, dst_load, env))
1850 		goto unlock;
1851 
1852 assign:
1853 	/* Evaluate an idle CPU for a task numa move. */
1854 	if (!cur) {
1855 		int cpu = env->dst_stats.idle_cpu;
1856 
1857 		/* Nothing cached so current CPU went idle since the search. */
1858 		if (cpu < 0)
1859 			cpu = env->dst_cpu;
1860 
1861 		/*
1862 		 * If the CPU is no longer truly idle and the previous best CPU
1863 		 * is, keep using it.
1864 		 */
1865 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1866 		    idle_cpu(env->best_cpu)) {
1867 			cpu = env->best_cpu;
1868 		}
1869 
1870 		env->dst_cpu = cpu;
1871 	}
1872 
1873 	task_numa_assign(env, cur, imp);
1874 
1875 	/*
1876 	 * If a move to idle is allowed because there is capacity or load
1877 	 * balance improves then stop the search. While a better swap
1878 	 * candidate may exist, a search is not free.
1879 	 */
1880 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1881 		stopsearch = true;
1882 
1883 	/*
1884 	 * If a swap candidate must be identified and the current best task
1885 	 * moves its preferred node then stop the search.
1886 	 */
1887 	if (!maymove && env->best_task &&
1888 	    env->best_task->numa_preferred_nid == env->src_nid) {
1889 		stopsearch = true;
1890 	}
1891 unlock:
1892 	rcu_read_unlock();
1893 
1894 	return stopsearch;
1895 }
1896 
1897 static void task_numa_find_cpu(struct task_numa_env *env,
1898 				long taskimp, long groupimp)
1899 {
1900 	bool maymove = false;
1901 	int cpu;
1902 
1903 	/*
1904 	 * If dst node has spare capacity, then check if there is an
1905 	 * imbalance that would be overruled by the load balancer.
1906 	 */
1907 	if (env->dst_stats.node_type == node_has_spare) {
1908 		unsigned int imbalance;
1909 		int src_running, dst_running;
1910 
1911 		/*
1912 		 * Would movement cause an imbalance? Note that if src has
1913 		 * more running tasks that the imbalance is ignored as the
1914 		 * move improves the imbalance from the perspective of the
1915 		 * CPU load balancer.
1916 		 * */
1917 		src_running = env->src_stats.nr_running - 1;
1918 		dst_running = env->dst_stats.nr_running + 1;
1919 		imbalance = max(0, dst_running - src_running);
1920 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1921 						  env->imb_numa_nr);
1922 
1923 		/* Use idle CPU if there is no imbalance */
1924 		if (!imbalance) {
1925 			maymove = true;
1926 			if (env->dst_stats.idle_cpu >= 0) {
1927 				env->dst_cpu = env->dst_stats.idle_cpu;
1928 				task_numa_assign(env, NULL, 0);
1929 				return;
1930 			}
1931 		}
1932 	} else {
1933 		long src_load, dst_load, load;
1934 		/*
1935 		 * If the improvement from just moving env->p direction is better
1936 		 * than swapping tasks around, check if a move is possible.
1937 		 */
1938 		load = task_h_load(env->p);
1939 		dst_load = env->dst_stats.load + load;
1940 		src_load = env->src_stats.load - load;
1941 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1942 	}
1943 
1944 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1945 		/* Skip this CPU if the source task cannot migrate */
1946 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1947 			continue;
1948 
1949 		env->dst_cpu = cpu;
1950 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1951 			break;
1952 	}
1953 }
1954 
1955 static int task_numa_migrate(struct task_struct *p)
1956 {
1957 	struct task_numa_env env = {
1958 		.p = p,
1959 
1960 		.src_cpu = task_cpu(p),
1961 		.src_nid = task_node(p),
1962 
1963 		.imbalance_pct = 112,
1964 
1965 		.best_task = NULL,
1966 		.best_imp = 0,
1967 		.best_cpu = -1,
1968 	};
1969 	unsigned long taskweight, groupweight;
1970 	struct sched_domain *sd;
1971 	long taskimp, groupimp;
1972 	struct numa_group *ng;
1973 	struct rq *best_rq;
1974 	int nid, ret, dist;
1975 
1976 	/*
1977 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1978 	 * imbalance and would be the first to start moving tasks about.
1979 	 *
1980 	 * And we want to avoid any moving of tasks about, as that would create
1981 	 * random movement of tasks -- counter the numa conditions we're trying
1982 	 * to satisfy here.
1983 	 */
1984 	rcu_read_lock();
1985 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1986 	if (sd) {
1987 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1988 		env.imb_numa_nr = sd->imb_numa_nr;
1989 	}
1990 	rcu_read_unlock();
1991 
1992 	/*
1993 	 * Cpusets can break the scheduler domain tree into smaller
1994 	 * balance domains, some of which do not cross NUMA boundaries.
1995 	 * Tasks that are "trapped" in such domains cannot be migrated
1996 	 * elsewhere, so there is no point in (re)trying.
1997 	 */
1998 	if (unlikely(!sd)) {
1999 		sched_setnuma(p, task_node(p));
2000 		return -EINVAL;
2001 	}
2002 
2003 	env.dst_nid = p->numa_preferred_nid;
2004 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2005 	taskweight = task_weight(p, env.src_nid, dist);
2006 	groupweight = group_weight(p, env.src_nid, dist);
2007 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2008 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2009 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2010 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2011 
2012 	/* Try to find a spot on the preferred nid. */
2013 	task_numa_find_cpu(&env, taskimp, groupimp);
2014 
2015 	/*
2016 	 * Look at other nodes in these cases:
2017 	 * - there is no space available on the preferred_nid
2018 	 * - the task is part of a numa_group that is interleaved across
2019 	 *   multiple NUMA nodes; in order to better consolidate the group,
2020 	 *   we need to check other locations.
2021 	 */
2022 	ng = deref_curr_numa_group(p);
2023 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2024 		for_each_node_state(nid, N_CPU) {
2025 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2026 				continue;
2027 
2028 			dist = node_distance(env.src_nid, env.dst_nid);
2029 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2030 						dist != env.dist) {
2031 				taskweight = task_weight(p, env.src_nid, dist);
2032 				groupweight = group_weight(p, env.src_nid, dist);
2033 			}
2034 
2035 			/* Only consider nodes where both task and groups benefit */
2036 			taskimp = task_weight(p, nid, dist) - taskweight;
2037 			groupimp = group_weight(p, nid, dist) - groupweight;
2038 			if (taskimp < 0 && groupimp < 0)
2039 				continue;
2040 
2041 			env.dist = dist;
2042 			env.dst_nid = nid;
2043 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2044 			task_numa_find_cpu(&env, taskimp, groupimp);
2045 		}
2046 	}
2047 
2048 	/*
2049 	 * If the task is part of a workload that spans multiple NUMA nodes,
2050 	 * and is migrating into one of the workload's active nodes, remember
2051 	 * this node as the task's preferred numa node, so the workload can
2052 	 * settle down.
2053 	 * A task that migrated to a second choice node will be better off
2054 	 * trying for a better one later. Do not set the preferred node here.
2055 	 */
2056 	if (ng) {
2057 		if (env.best_cpu == -1)
2058 			nid = env.src_nid;
2059 		else
2060 			nid = cpu_to_node(env.best_cpu);
2061 
2062 		if (nid != p->numa_preferred_nid)
2063 			sched_setnuma(p, nid);
2064 	}
2065 
2066 	/* No better CPU than the current one was found. */
2067 	if (env.best_cpu == -1) {
2068 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2069 		return -EAGAIN;
2070 	}
2071 
2072 	best_rq = cpu_rq(env.best_cpu);
2073 	if (env.best_task == NULL) {
2074 		ret = migrate_task_to(p, env.best_cpu);
2075 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2076 		if (ret != 0)
2077 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2078 		return ret;
2079 	}
2080 
2081 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2082 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2083 
2084 	if (ret != 0)
2085 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2086 	put_task_struct(env.best_task);
2087 	return ret;
2088 }
2089 
2090 /* Attempt to migrate a task to a CPU on the preferred node. */
2091 static void numa_migrate_preferred(struct task_struct *p)
2092 {
2093 	unsigned long interval = HZ;
2094 
2095 	/* This task has no NUMA fault statistics yet */
2096 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2097 		return;
2098 
2099 	/* Periodically retry migrating the task to the preferred node */
2100 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2101 	p->numa_migrate_retry = jiffies + interval;
2102 
2103 	/* Success if task is already running on preferred CPU */
2104 	if (task_node(p) == p->numa_preferred_nid)
2105 		return;
2106 
2107 	/* Otherwise, try migrate to a CPU on the preferred node */
2108 	task_numa_migrate(p);
2109 }
2110 
2111 /*
2112  * Find out how many nodes the workload is actively running on. Do this by
2113  * tracking the nodes from which NUMA hinting faults are triggered. This can
2114  * be different from the set of nodes where the workload's memory is currently
2115  * located.
2116  */
2117 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2118 {
2119 	unsigned long faults, max_faults = 0;
2120 	int nid, active_nodes = 0;
2121 
2122 	for_each_node_state(nid, N_CPU) {
2123 		faults = group_faults_cpu(numa_group, nid);
2124 		if (faults > max_faults)
2125 			max_faults = faults;
2126 	}
2127 
2128 	for_each_node_state(nid, N_CPU) {
2129 		faults = group_faults_cpu(numa_group, nid);
2130 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2131 			active_nodes++;
2132 	}
2133 
2134 	numa_group->max_faults_cpu = max_faults;
2135 	numa_group->active_nodes = active_nodes;
2136 }
2137 
2138 /*
2139  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2140  * increments. The more local the fault statistics are, the higher the scan
2141  * period will be for the next scan window. If local/(local+remote) ratio is
2142  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2143  * the scan period will decrease. Aim for 70% local accesses.
2144  */
2145 #define NUMA_PERIOD_SLOTS 10
2146 #define NUMA_PERIOD_THRESHOLD 7
2147 
2148 /*
2149  * Increase the scan period (slow down scanning) if the majority of
2150  * our memory is already on our local node, or if the majority of
2151  * the page accesses are shared with other processes.
2152  * Otherwise, decrease the scan period.
2153  */
2154 static void update_task_scan_period(struct task_struct *p,
2155 			unsigned long shared, unsigned long private)
2156 {
2157 	unsigned int period_slot;
2158 	int lr_ratio, ps_ratio;
2159 	int diff;
2160 
2161 	unsigned long remote = p->numa_faults_locality[0];
2162 	unsigned long local = p->numa_faults_locality[1];
2163 
2164 	/*
2165 	 * If there were no record hinting faults then either the task is
2166 	 * completely idle or all activity is in areas that are not of interest
2167 	 * to automatic numa balancing. Related to that, if there were failed
2168 	 * migration then it implies we are migrating too quickly or the local
2169 	 * node is overloaded. In either case, scan slower
2170 	 */
2171 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2172 		p->numa_scan_period = min(p->numa_scan_period_max,
2173 			p->numa_scan_period << 1);
2174 
2175 		p->mm->numa_next_scan = jiffies +
2176 			msecs_to_jiffies(p->numa_scan_period);
2177 
2178 		return;
2179 	}
2180 
2181 	/*
2182 	 * Prepare to scale scan period relative to the current period.
2183 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2184 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2185 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2186 	 */
2187 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2188 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2189 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2190 
2191 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2192 		/*
2193 		 * Most memory accesses are local. There is no need to
2194 		 * do fast NUMA scanning, since memory is already local.
2195 		 */
2196 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2197 		if (!slot)
2198 			slot = 1;
2199 		diff = slot * period_slot;
2200 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2201 		/*
2202 		 * Most memory accesses are shared with other tasks.
2203 		 * There is no point in continuing fast NUMA scanning,
2204 		 * since other tasks may just move the memory elsewhere.
2205 		 */
2206 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2207 		if (!slot)
2208 			slot = 1;
2209 		diff = slot * period_slot;
2210 	} else {
2211 		/*
2212 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2213 		 * yet they are not on the local NUMA node. Speed up
2214 		 * NUMA scanning to get the memory moved over.
2215 		 */
2216 		int ratio = max(lr_ratio, ps_ratio);
2217 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2218 	}
2219 
2220 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2221 			task_scan_min(p), task_scan_max(p));
2222 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2223 }
2224 
2225 /*
2226  * Get the fraction of time the task has been running since the last
2227  * NUMA placement cycle. The scheduler keeps similar statistics, but
2228  * decays those on a 32ms period, which is orders of magnitude off
2229  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2230  * stats only if the task is so new there are no NUMA statistics yet.
2231  */
2232 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2233 {
2234 	u64 runtime, delta, now;
2235 	/* Use the start of this time slice to avoid calculations. */
2236 	now = p->se.exec_start;
2237 	runtime = p->se.sum_exec_runtime;
2238 
2239 	if (p->last_task_numa_placement) {
2240 		delta = runtime - p->last_sum_exec_runtime;
2241 		*period = now - p->last_task_numa_placement;
2242 
2243 		/* Avoid time going backwards, prevent potential divide error: */
2244 		if (unlikely((s64)*period < 0))
2245 			*period = 0;
2246 	} else {
2247 		delta = p->se.avg.load_sum;
2248 		*period = LOAD_AVG_MAX;
2249 	}
2250 
2251 	p->last_sum_exec_runtime = runtime;
2252 	p->last_task_numa_placement = now;
2253 
2254 	return delta;
2255 }
2256 
2257 /*
2258  * Determine the preferred nid for a task in a numa_group. This needs to
2259  * be done in a way that produces consistent results with group_weight,
2260  * otherwise workloads might not converge.
2261  */
2262 static int preferred_group_nid(struct task_struct *p, int nid)
2263 {
2264 	nodemask_t nodes;
2265 	int dist;
2266 
2267 	/* Direct connections between all NUMA nodes. */
2268 	if (sched_numa_topology_type == NUMA_DIRECT)
2269 		return nid;
2270 
2271 	/*
2272 	 * On a system with glueless mesh NUMA topology, group_weight
2273 	 * scores nodes according to the number of NUMA hinting faults on
2274 	 * both the node itself, and on nearby nodes.
2275 	 */
2276 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2277 		unsigned long score, max_score = 0;
2278 		int node, max_node = nid;
2279 
2280 		dist = sched_max_numa_distance;
2281 
2282 		for_each_node_state(node, N_CPU) {
2283 			score = group_weight(p, node, dist);
2284 			if (score > max_score) {
2285 				max_score = score;
2286 				max_node = node;
2287 			}
2288 		}
2289 		return max_node;
2290 	}
2291 
2292 	/*
2293 	 * Finding the preferred nid in a system with NUMA backplane
2294 	 * interconnect topology is more involved. The goal is to locate
2295 	 * tasks from numa_groups near each other in the system, and
2296 	 * untangle workloads from different sides of the system. This requires
2297 	 * searching down the hierarchy of node groups, recursively searching
2298 	 * inside the highest scoring group of nodes. The nodemask tricks
2299 	 * keep the complexity of the search down.
2300 	 */
2301 	nodes = node_states[N_CPU];
2302 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2303 		unsigned long max_faults = 0;
2304 		nodemask_t max_group = NODE_MASK_NONE;
2305 		int a, b;
2306 
2307 		/* Are there nodes at this distance from each other? */
2308 		if (!find_numa_distance(dist))
2309 			continue;
2310 
2311 		for_each_node_mask(a, nodes) {
2312 			unsigned long faults = 0;
2313 			nodemask_t this_group;
2314 			nodes_clear(this_group);
2315 
2316 			/* Sum group's NUMA faults; includes a==b case. */
2317 			for_each_node_mask(b, nodes) {
2318 				if (node_distance(a, b) < dist) {
2319 					faults += group_faults(p, b);
2320 					node_set(b, this_group);
2321 					node_clear(b, nodes);
2322 				}
2323 			}
2324 
2325 			/* Remember the top group. */
2326 			if (faults > max_faults) {
2327 				max_faults = faults;
2328 				max_group = this_group;
2329 				/*
2330 				 * subtle: at the smallest distance there is
2331 				 * just one node left in each "group", the
2332 				 * winner is the preferred nid.
2333 				 */
2334 				nid = a;
2335 			}
2336 		}
2337 		/* Next round, evaluate the nodes within max_group. */
2338 		if (!max_faults)
2339 			break;
2340 		nodes = max_group;
2341 	}
2342 	return nid;
2343 }
2344 
2345 static void task_numa_placement(struct task_struct *p)
2346 {
2347 	int seq, nid, max_nid = NUMA_NO_NODE;
2348 	unsigned long max_faults = 0;
2349 	unsigned long fault_types[2] = { 0, 0 };
2350 	unsigned long total_faults;
2351 	u64 runtime, period;
2352 	spinlock_t *group_lock = NULL;
2353 	struct numa_group *ng;
2354 
2355 	/*
2356 	 * The p->mm->numa_scan_seq field gets updated without
2357 	 * exclusive access. Use READ_ONCE() here to ensure
2358 	 * that the field is read in a single access:
2359 	 */
2360 	seq = READ_ONCE(p->mm->numa_scan_seq);
2361 	if (p->numa_scan_seq == seq)
2362 		return;
2363 	p->numa_scan_seq = seq;
2364 	p->numa_scan_period_max = task_scan_max(p);
2365 
2366 	total_faults = p->numa_faults_locality[0] +
2367 		       p->numa_faults_locality[1];
2368 	runtime = numa_get_avg_runtime(p, &period);
2369 
2370 	/* If the task is part of a group prevent parallel updates to group stats */
2371 	ng = deref_curr_numa_group(p);
2372 	if (ng) {
2373 		group_lock = &ng->lock;
2374 		spin_lock_irq(group_lock);
2375 	}
2376 
2377 	/* Find the node with the highest number of faults */
2378 	for_each_online_node(nid) {
2379 		/* Keep track of the offsets in numa_faults array */
2380 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2381 		unsigned long faults = 0, group_faults = 0;
2382 		int priv;
2383 
2384 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2385 			long diff, f_diff, f_weight;
2386 
2387 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2388 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2389 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2390 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2391 
2392 			/* Decay existing window, copy faults since last scan */
2393 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2394 			fault_types[priv] += p->numa_faults[membuf_idx];
2395 			p->numa_faults[membuf_idx] = 0;
2396 
2397 			/*
2398 			 * Normalize the faults_from, so all tasks in a group
2399 			 * count according to CPU use, instead of by the raw
2400 			 * number of faults. Tasks with little runtime have
2401 			 * little over-all impact on throughput, and thus their
2402 			 * faults are less important.
2403 			 */
2404 			f_weight = div64_u64(runtime << 16, period + 1);
2405 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2406 				   (total_faults + 1);
2407 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2408 			p->numa_faults[cpubuf_idx] = 0;
2409 
2410 			p->numa_faults[mem_idx] += diff;
2411 			p->numa_faults[cpu_idx] += f_diff;
2412 			faults += p->numa_faults[mem_idx];
2413 			p->total_numa_faults += diff;
2414 			if (ng) {
2415 				/*
2416 				 * safe because we can only change our own group
2417 				 *
2418 				 * mem_idx represents the offset for a given
2419 				 * nid and priv in a specific region because it
2420 				 * is at the beginning of the numa_faults array.
2421 				 */
2422 				ng->faults[mem_idx] += diff;
2423 				ng->faults[cpu_idx] += f_diff;
2424 				ng->total_faults += diff;
2425 				group_faults += ng->faults[mem_idx];
2426 			}
2427 		}
2428 
2429 		if (!ng) {
2430 			if (faults > max_faults) {
2431 				max_faults = faults;
2432 				max_nid = nid;
2433 			}
2434 		} else if (group_faults > max_faults) {
2435 			max_faults = group_faults;
2436 			max_nid = nid;
2437 		}
2438 	}
2439 
2440 	/* Cannot migrate task to CPU-less node */
2441 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2442 		int near_nid = max_nid;
2443 		int distance, near_distance = INT_MAX;
2444 
2445 		for_each_node_state(nid, N_CPU) {
2446 			distance = node_distance(max_nid, nid);
2447 			if (distance < near_distance) {
2448 				near_nid = nid;
2449 				near_distance = distance;
2450 			}
2451 		}
2452 		max_nid = near_nid;
2453 	}
2454 
2455 	if (ng) {
2456 		numa_group_count_active_nodes(ng);
2457 		spin_unlock_irq(group_lock);
2458 		max_nid = preferred_group_nid(p, max_nid);
2459 	}
2460 
2461 	if (max_faults) {
2462 		/* Set the new preferred node */
2463 		if (max_nid != p->numa_preferred_nid)
2464 			sched_setnuma(p, max_nid);
2465 	}
2466 
2467 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2468 }
2469 
2470 static inline int get_numa_group(struct numa_group *grp)
2471 {
2472 	return refcount_inc_not_zero(&grp->refcount);
2473 }
2474 
2475 static inline void put_numa_group(struct numa_group *grp)
2476 {
2477 	if (refcount_dec_and_test(&grp->refcount))
2478 		kfree_rcu(grp, rcu);
2479 }
2480 
2481 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2482 			int *priv)
2483 {
2484 	struct numa_group *grp, *my_grp;
2485 	struct task_struct *tsk;
2486 	bool join = false;
2487 	int cpu = cpupid_to_cpu(cpupid);
2488 	int i;
2489 
2490 	if (unlikely(!deref_curr_numa_group(p))) {
2491 		unsigned int size = sizeof(struct numa_group) +
2492 				    NR_NUMA_HINT_FAULT_STATS *
2493 				    nr_node_ids * sizeof(unsigned long);
2494 
2495 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2496 		if (!grp)
2497 			return;
2498 
2499 		refcount_set(&grp->refcount, 1);
2500 		grp->active_nodes = 1;
2501 		grp->max_faults_cpu = 0;
2502 		spin_lock_init(&grp->lock);
2503 		grp->gid = p->pid;
2504 
2505 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2506 			grp->faults[i] = p->numa_faults[i];
2507 
2508 		grp->total_faults = p->total_numa_faults;
2509 
2510 		grp->nr_tasks++;
2511 		rcu_assign_pointer(p->numa_group, grp);
2512 	}
2513 
2514 	rcu_read_lock();
2515 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2516 
2517 	if (!cpupid_match_pid(tsk, cpupid))
2518 		goto no_join;
2519 
2520 	grp = rcu_dereference(tsk->numa_group);
2521 	if (!grp)
2522 		goto no_join;
2523 
2524 	my_grp = deref_curr_numa_group(p);
2525 	if (grp == my_grp)
2526 		goto no_join;
2527 
2528 	/*
2529 	 * Only join the other group if its bigger; if we're the bigger group,
2530 	 * the other task will join us.
2531 	 */
2532 	if (my_grp->nr_tasks > grp->nr_tasks)
2533 		goto no_join;
2534 
2535 	/*
2536 	 * Tie-break on the grp address.
2537 	 */
2538 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2539 		goto no_join;
2540 
2541 	/* Always join threads in the same process. */
2542 	if (tsk->mm == current->mm)
2543 		join = true;
2544 
2545 	/* Simple filter to avoid false positives due to PID collisions */
2546 	if (flags & TNF_SHARED)
2547 		join = true;
2548 
2549 	/* Update priv based on whether false sharing was detected */
2550 	*priv = !join;
2551 
2552 	if (join && !get_numa_group(grp))
2553 		goto no_join;
2554 
2555 	rcu_read_unlock();
2556 
2557 	if (!join)
2558 		return;
2559 
2560 	BUG_ON(irqs_disabled());
2561 	double_lock_irq(&my_grp->lock, &grp->lock);
2562 
2563 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2564 		my_grp->faults[i] -= p->numa_faults[i];
2565 		grp->faults[i] += p->numa_faults[i];
2566 	}
2567 	my_grp->total_faults -= p->total_numa_faults;
2568 	grp->total_faults += p->total_numa_faults;
2569 
2570 	my_grp->nr_tasks--;
2571 	grp->nr_tasks++;
2572 
2573 	spin_unlock(&my_grp->lock);
2574 	spin_unlock_irq(&grp->lock);
2575 
2576 	rcu_assign_pointer(p->numa_group, grp);
2577 
2578 	put_numa_group(my_grp);
2579 	return;
2580 
2581 no_join:
2582 	rcu_read_unlock();
2583 	return;
2584 }
2585 
2586 /*
2587  * Get rid of NUMA statistics associated with a task (either current or dead).
2588  * If @final is set, the task is dead and has reached refcount zero, so we can
2589  * safely free all relevant data structures. Otherwise, there might be
2590  * concurrent reads from places like load balancing and procfs, and we should
2591  * reset the data back to default state without freeing ->numa_faults.
2592  */
2593 void task_numa_free(struct task_struct *p, bool final)
2594 {
2595 	/* safe: p either is current or is being freed by current */
2596 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2597 	unsigned long *numa_faults = p->numa_faults;
2598 	unsigned long flags;
2599 	int i;
2600 
2601 	if (!numa_faults)
2602 		return;
2603 
2604 	if (grp) {
2605 		spin_lock_irqsave(&grp->lock, flags);
2606 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2607 			grp->faults[i] -= p->numa_faults[i];
2608 		grp->total_faults -= p->total_numa_faults;
2609 
2610 		grp->nr_tasks--;
2611 		spin_unlock_irqrestore(&grp->lock, flags);
2612 		RCU_INIT_POINTER(p->numa_group, NULL);
2613 		put_numa_group(grp);
2614 	}
2615 
2616 	if (final) {
2617 		p->numa_faults = NULL;
2618 		kfree(numa_faults);
2619 	} else {
2620 		p->total_numa_faults = 0;
2621 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2622 			numa_faults[i] = 0;
2623 	}
2624 }
2625 
2626 /*
2627  * Got a PROT_NONE fault for a page on @node.
2628  */
2629 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2630 {
2631 	struct task_struct *p = current;
2632 	bool migrated = flags & TNF_MIGRATED;
2633 	int cpu_node = task_node(current);
2634 	int local = !!(flags & TNF_FAULT_LOCAL);
2635 	struct numa_group *ng;
2636 	int priv;
2637 
2638 	if (!static_branch_likely(&sched_numa_balancing))
2639 		return;
2640 
2641 	/* for example, ksmd faulting in a user's mm */
2642 	if (!p->mm)
2643 		return;
2644 
2645 	/* Allocate buffer to track faults on a per-node basis */
2646 	if (unlikely(!p->numa_faults)) {
2647 		int size = sizeof(*p->numa_faults) *
2648 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2649 
2650 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2651 		if (!p->numa_faults)
2652 			return;
2653 
2654 		p->total_numa_faults = 0;
2655 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2656 	}
2657 
2658 	/*
2659 	 * First accesses are treated as private, otherwise consider accesses
2660 	 * to be private if the accessing pid has not changed
2661 	 */
2662 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2663 		priv = 1;
2664 	} else {
2665 		priv = cpupid_match_pid(p, last_cpupid);
2666 		if (!priv && !(flags & TNF_NO_GROUP))
2667 			task_numa_group(p, last_cpupid, flags, &priv);
2668 	}
2669 
2670 	/*
2671 	 * If a workload spans multiple NUMA nodes, a shared fault that
2672 	 * occurs wholly within the set of nodes that the workload is
2673 	 * actively using should be counted as local. This allows the
2674 	 * scan rate to slow down when a workload has settled down.
2675 	 */
2676 	ng = deref_curr_numa_group(p);
2677 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2678 				numa_is_active_node(cpu_node, ng) &&
2679 				numa_is_active_node(mem_node, ng))
2680 		local = 1;
2681 
2682 	/*
2683 	 * Retry to migrate task to preferred node periodically, in case it
2684 	 * previously failed, or the scheduler moved us.
2685 	 */
2686 	if (time_after(jiffies, p->numa_migrate_retry)) {
2687 		task_numa_placement(p);
2688 		numa_migrate_preferred(p);
2689 	}
2690 
2691 	if (migrated)
2692 		p->numa_pages_migrated += pages;
2693 	if (flags & TNF_MIGRATE_FAIL)
2694 		p->numa_faults_locality[2] += pages;
2695 
2696 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2697 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2698 	p->numa_faults_locality[local] += pages;
2699 }
2700 
2701 static void reset_ptenuma_scan(struct task_struct *p)
2702 {
2703 	/*
2704 	 * We only did a read acquisition of the mmap sem, so
2705 	 * p->mm->numa_scan_seq is written to without exclusive access
2706 	 * and the update is not guaranteed to be atomic. That's not
2707 	 * much of an issue though, since this is just used for
2708 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2709 	 * expensive, to avoid any form of compiler optimizations:
2710 	 */
2711 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2712 	p->mm->numa_scan_offset = 0;
2713 }
2714 
2715 /*
2716  * The expensive part of numa migration is done from task_work context.
2717  * Triggered from task_tick_numa().
2718  */
2719 static void task_numa_work(struct callback_head *work)
2720 {
2721 	unsigned long migrate, next_scan, now = jiffies;
2722 	struct task_struct *p = current;
2723 	struct mm_struct *mm = p->mm;
2724 	u64 runtime = p->se.sum_exec_runtime;
2725 	struct vm_area_struct *vma;
2726 	unsigned long start, end;
2727 	unsigned long nr_pte_updates = 0;
2728 	long pages, virtpages;
2729 
2730 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2731 
2732 	work->next = work;
2733 	/*
2734 	 * Who cares about NUMA placement when they're dying.
2735 	 *
2736 	 * NOTE: make sure not to dereference p->mm before this check,
2737 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2738 	 * without p->mm even though we still had it when we enqueued this
2739 	 * work.
2740 	 */
2741 	if (p->flags & PF_EXITING)
2742 		return;
2743 
2744 	if (!mm->numa_next_scan) {
2745 		mm->numa_next_scan = now +
2746 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2747 	}
2748 
2749 	/*
2750 	 * Enforce maximal scan/migration frequency..
2751 	 */
2752 	migrate = mm->numa_next_scan;
2753 	if (time_before(now, migrate))
2754 		return;
2755 
2756 	if (p->numa_scan_period == 0) {
2757 		p->numa_scan_period_max = task_scan_max(p);
2758 		p->numa_scan_period = task_scan_start(p);
2759 	}
2760 
2761 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2762 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2763 		return;
2764 
2765 	/*
2766 	 * Delay this task enough that another task of this mm will likely win
2767 	 * the next time around.
2768 	 */
2769 	p->node_stamp += 2 * TICK_NSEC;
2770 
2771 	start = mm->numa_scan_offset;
2772 	pages = sysctl_numa_balancing_scan_size;
2773 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2774 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2775 	if (!pages)
2776 		return;
2777 
2778 
2779 	if (!mmap_read_trylock(mm))
2780 		return;
2781 	vma = find_vma(mm, start);
2782 	if (!vma) {
2783 		reset_ptenuma_scan(p);
2784 		start = 0;
2785 		vma = mm->mmap;
2786 	}
2787 	for (; vma; vma = vma->vm_next) {
2788 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2789 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2790 			continue;
2791 		}
2792 
2793 		/*
2794 		 * Shared library pages mapped by multiple processes are not
2795 		 * migrated as it is expected they are cache replicated. Avoid
2796 		 * hinting faults in read-only file-backed mappings or the vdso
2797 		 * as migrating the pages will be of marginal benefit.
2798 		 */
2799 		if (!vma->vm_mm ||
2800 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2801 			continue;
2802 
2803 		/*
2804 		 * Skip inaccessible VMAs to avoid any confusion between
2805 		 * PROT_NONE and NUMA hinting ptes
2806 		 */
2807 		if (!vma_is_accessible(vma))
2808 			continue;
2809 
2810 		do {
2811 			start = max(start, vma->vm_start);
2812 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2813 			end = min(end, vma->vm_end);
2814 			nr_pte_updates = change_prot_numa(vma, start, end);
2815 
2816 			/*
2817 			 * Try to scan sysctl_numa_balancing_size worth of
2818 			 * hpages that have at least one present PTE that
2819 			 * is not already pte-numa. If the VMA contains
2820 			 * areas that are unused or already full of prot_numa
2821 			 * PTEs, scan up to virtpages, to skip through those
2822 			 * areas faster.
2823 			 */
2824 			if (nr_pte_updates)
2825 				pages -= (end - start) >> PAGE_SHIFT;
2826 			virtpages -= (end - start) >> PAGE_SHIFT;
2827 
2828 			start = end;
2829 			if (pages <= 0 || virtpages <= 0)
2830 				goto out;
2831 
2832 			cond_resched();
2833 		} while (end != vma->vm_end);
2834 	}
2835 
2836 out:
2837 	/*
2838 	 * It is possible to reach the end of the VMA list but the last few
2839 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2840 	 * would find the !migratable VMA on the next scan but not reset the
2841 	 * scanner to the start so check it now.
2842 	 */
2843 	if (vma)
2844 		mm->numa_scan_offset = start;
2845 	else
2846 		reset_ptenuma_scan(p);
2847 	mmap_read_unlock(mm);
2848 
2849 	/*
2850 	 * Make sure tasks use at least 32x as much time to run other code
2851 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2852 	 * Usually update_task_scan_period slows down scanning enough; on an
2853 	 * overloaded system we need to limit overhead on a per task basis.
2854 	 */
2855 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2856 		u64 diff = p->se.sum_exec_runtime - runtime;
2857 		p->node_stamp += 32 * diff;
2858 	}
2859 }
2860 
2861 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2862 {
2863 	int mm_users = 0;
2864 	struct mm_struct *mm = p->mm;
2865 
2866 	if (mm) {
2867 		mm_users = atomic_read(&mm->mm_users);
2868 		if (mm_users == 1) {
2869 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2870 			mm->numa_scan_seq = 0;
2871 		}
2872 	}
2873 	p->node_stamp			= 0;
2874 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2875 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2876 	/* Protect against double add, see task_tick_numa and task_numa_work */
2877 	p->numa_work.next		= &p->numa_work;
2878 	p->numa_faults			= NULL;
2879 	p->numa_pages_migrated		= 0;
2880 	p->total_numa_faults		= 0;
2881 	RCU_INIT_POINTER(p->numa_group, NULL);
2882 	p->last_task_numa_placement	= 0;
2883 	p->last_sum_exec_runtime	= 0;
2884 
2885 	init_task_work(&p->numa_work, task_numa_work);
2886 
2887 	/* New address space, reset the preferred nid */
2888 	if (!(clone_flags & CLONE_VM)) {
2889 		p->numa_preferred_nid = NUMA_NO_NODE;
2890 		return;
2891 	}
2892 
2893 	/*
2894 	 * New thread, keep existing numa_preferred_nid which should be copied
2895 	 * already by arch_dup_task_struct but stagger when scans start.
2896 	 */
2897 	if (mm) {
2898 		unsigned int delay;
2899 
2900 		delay = min_t(unsigned int, task_scan_max(current),
2901 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2902 		delay += 2 * TICK_NSEC;
2903 		p->node_stamp = delay;
2904 	}
2905 }
2906 
2907 /*
2908  * Drive the periodic memory faults..
2909  */
2910 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2911 {
2912 	struct callback_head *work = &curr->numa_work;
2913 	u64 period, now;
2914 
2915 	/*
2916 	 * We don't care about NUMA placement if we don't have memory.
2917 	 */
2918 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2919 		return;
2920 
2921 	/*
2922 	 * Using runtime rather than walltime has the dual advantage that
2923 	 * we (mostly) drive the selection from busy threads and that the
2924 	 * task needs to have done some actual work before we bother with
2925 	 * NUMA placement.
2926 	 */
2927 	now = curr->se.sum_exec_runtime;
2928 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2929 
2930 	if (now > curr->node_stamp + period) {
2931 		if (!curr->node_stamp)
2932 			curr->numa_scan_period = task_scan_start(curr);
2933 		curr->node_stamp += period;
2934 
2935 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2936 			task_work_add(curr, work, TWA_RESUME);
2937 	}
2938 }
2939 
2940 static void update_scan_period(struct task_struct *p, int new_cpu)
2941 {
2942 	int src_nid = cpu_to_node(task_cpu(p));
2943 	int dst_nid = cpu_to_node(new_cpu);
2944 
2945 	if (!static_branch_likely(&sched_numa_balancing))
2946 		return;
2947 
2948 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2949 		return;
2950 
2951 	if (src_nid == dst_nid)
2952 		return;
2953 
2954 	/*
2955 	 * Allow resets if faults have been trapped before one scan
2956 	 * has completed. This is most likely due to a new task that
2957 	 * is pulled cross-node due to wakeups or load balancing.
2958 	 */
2959 	if (p->numa_scan_seq) {
2960 		/*
2961 		 * Avoid scan adjustments if moving to the preferred
2962 		 * node or if the task was not previously running on
2963 		 * the preferred node.
2964 		 */
2965 		if (dst_nid == p->numa_preferred_nid ||
2966 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2967 			src_nid != p->numa_preferred_nid))
2968 			return;
2969 	}
2970 
2971 	p->numa_scan_period = task_scan_start(p);
2972 }
2973 
2974 #else
2975 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2976 {
2977 }
2978 
2979 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2980 {
2981 }
2982 
2983 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2984 {
2985 }
2986 
2987 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2988 {
2989 }
2990 
2991 #endif /* CONFIG_NUMA_BALANCING */
2992 
2993 static void
2994 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2995 {
2996 	update_load_add(&cfs_rq->load, se->load.weight);
2997 #ifdef CONFIG_SMP
2998 	if (entity_is_task(se)) {
2999 		struct rq *rq = rq_of(cfs_rq);
3000 
3001 		account_numa_enqueue(rq, task_of(se));
3002 		list_add(&se->group_node, &rq->cfs_tasks);
3003 	}
3004 #endif
3005 	cfs_rq->nr_running++;
3006 	if (se_is_idle(se))
3007 		cfs_rq->idle_nr_running++;
3008 }
3009 
3010 static void
3011 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3012 {
3013 	update_load_sub(&cfs_rq->load, se->load.weight);
3014 #ifdef CONFIG_SMP
3015 	if (entity_is_task(se)) {
3016 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3017 		list_del_init(&se->group_node);
3018 	}
3019 #endif
3020 	cfs_rq->nr_running--;
3021 	if (se_is_idle(se))
3022 		cfs_rq->idle_nr_running--;
3023 }
3024 
3025 /*
3026  * Signed add and clamp on underflow.
3027  *
3028  * Explicitly do a load-store to ensure the intermediate value never hits
3029  * memory. This allows lockless observations without ever seeing the negative
3030  * values.
3031  */
3032 #define add_positive(_ptr, _val) do {                           \
3033 	typeof(_ptr) ptr = (_ptr);                              \
3034 	typeof(_val) val = (_val);                              \
3035 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3036 								\
3037 	res = var + val;                                        \
3038 								\
3039 	if (val < 0 && res > var)                               \
3040 		res = 0;                                        \
3041 								\
3042 	WRITE_ONCE(*ptr, res);                                  \
3043 } while (0)
3044 
3045 /*
3046  * Unsigned subtract and clamp on underflow.
3047  *
3048  * Explicitly do a load-store to ensure the intermediate value never hits
3049  * memory. This allows lockless observations without ever seeing the negative
3050  * values.
3051  */
3052 #define sub_positive(_ptr, _val) do {				\
3053 	typeof(_ptr) ptr = (_ptr);				\
3054 	typeof(*ptr) val = (_val);				\
3055 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3056 	res = var - val;					\
3057 	if (res > var)						\
3058 		res = 0;					\
3059 	WRITE_ONCE(*ptr, res);					\
3060 } while (0)
3061 
3062 /*
3063  * Remove and clamp on negative, from a local variable.
3064  *
3065  * A variant of sub_positive(), which does not use explicit load-store
3066  * and is thus optimized for local variable updates.
3067  */
3068 #define lsub_positive(_ptr, _val) do {				\
3069 	typeof(_ptr) ptr = (_ptr);				\
3070 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3071 } while (0)
3072 
3073 #ifdef CONFIG_SMP
3074 static inline void
3075 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3076 {
3077 	cfs_rq->avg.load_avg += se->avg.load_avg;
3078 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3079 }
3080 
3081 static inline void
3082 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3083 {
3084 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3085 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3086 	/* See update_cfs_rq_load_avg() */
3087 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3088 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3089 }
3090 #else
3091 static inline void
3092 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3093 static inline void
3094 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3095 #endif
3096 
3097 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3098 			    unsigned long weight)
3099 {
3100 	if (se->on_rq) {
3101 		/* commit outstanding execution time */
3102 		if (cfs_rq->curr == se)
3103 			update_curr(cfs_rq);
3104 		update_load_sub(&cfs_rq->load, se->load.weight);
3105 	}
3106 	dequeue_load_avg(cfs_rq, se);
3107 
3108 	update_load_set(&se->load, weight);
3109 
3110 #ifdef CONFIG_SMP
3111 	do {
3112 		u32 divider = get_pelt_divider(&se->avg);
3113 
3114 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3115 	} while (0);
3116 #endif
3117 
3118 	enqueue_load_avg(cfs_rq, se);
3119 	if (se->on_rq)
3120 		update_load_add(&cfs_rq->load, se->load.weight);
3121 
3122 }
3123 
3124 void reweight_task(struct task_struct *p, int prio)
3125 {
3126 	struct sched_entity *se = &p->se;
3127 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3128 	struct load_weight *load = &se->load;
3129 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3130 
3131 	reweight_entity(cfs_rq, se, weight);
3132 	load->inv_weight = sched_prio_to_wmult[prio];
3133 }
3134 
3135 #ifdef CONFIG_FAIR_GROUP_SCHED
3136 #ifdef CONFIG_SMP
3137 /*
3138  * All this does is approximate the hierarchical proportion which includes that
3139  * global sum we all love to hate.
3140  *
3141  * That is, the weight of a group entity, is the proportional share of the
3142  * group weight based on the group runqueue weights. That is:
3143  *
3144  *                     tg->weight * grq->load.weight
3145  *   ge->load.weight = -----------------------------               (1)
3146  *                       \Sum grq->load.weight
3147  *
3148  * Now, because computing that sum is prohibitively expensive to compute (been
3149  * there, done that) we approximate it with this average stuff. The average
3150  * moves slower and therefore the approximation is cheaper and more stable.
3151  *
3152  * So instead of the above, we substitute:
3153  *
3154  *   grq->load.weight -> grq->avg.load_avg                         (2)
3155  *
3156  * which yields the following:
3157  *
3158  *                     tg->weight * grq->avg.load_avg
3159  *   ge->load.weight = ------------------------------              (3)
3160  *                             tg->load_avg
3161  *
3162  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3163  *
3164  * That is shares_avg, and it is right (given the approximation (2)).
3165  *
3166  * The problem with it is that because the average is slow -- it was designed
3167  * to be exactly that of course -- this leads to transients in boundary
3168  * conditions. In specific, the case where the group was idle and we start the
3169  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3170  * yielding bad latency etc..
3171  *
3172  * Now, in that special case (1) reduces to:
3173  *
3174  *                     tg->weight * grq->load.weight
3175  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3176  *                         grp->load.weight
3177  *
3178  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3179  *
3180  * So what we do is modify our approximation (3) to approach (4) in the (near)
3181  * UP case, like:
3182  *
3183  *   ge->load.weight =
3184  *
3185  *              tg->weight * grq->load.weight
3186  *     ---------------------------------------------------         (5)
3187  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3188  *
3189  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3190  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3191  *
3192  *
3193  *                     tg->weight * grq->load.weight
3194  *   ge->load.weight = -----------------------------		   (6)
3195  *                             tg_load_avg'
3196  *
3197  * Where:
3198  *
3199  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3200  *                  max(grq->load.weight, grq->avg.load_avg)
3201  *
3202  * And that is shares_weight and is icky. In the (near) UP case it approaches
3203  * (4) while in the normal case it approaches (3). It consistently
3204  * overestimates the ge->load.weight and therefore:
3205  *
3206  *   \Sum ge->load.weight >= tg->weight
3207  *
3208  * hence icky!
3209  */
3210 static long calc_group_shares(struct cfs_rq *cfs_rq)
3211 {
3212 	long tg_weight, tg_shares, load, shares;
3213 	struct task_group *tg = cfs_rq->tg;
3214 
3215 	tg_shares = READ_ONCE(tg->shares);
3216 
3217 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3218 
3219 	tg_weight = atomic_long_read(&tg->load_avg);
3220 
3221 	/* Ensure tg_weight >= load */
3222 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3223 	tg_weight += load;
3224 
3225 	shares = (tg_shares * load);
3226 	if (tg_weight)
3227 		shares /= tg_weight;
3228 
3229 	/*
3230 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3231 	 * of a group with small tg->shares value. It is a floor value which is
3232 	 * assigned as a minimum load.weight to the sched_entity representing
3233 	 * the group on a CPU.
3234 	 *
3235 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3236 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3237 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3238 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3239 	 * instead of 0.
3240 	 */
3241 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3242 }
3243 #endif /* CONFIG_SMP */
3244 
3245 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3246 
3247 /*
3248  * Recomputes the group entity based on the current state of its group
3249  * runqueue.
3250  */
3251 static void update_cfs_group(struct sched_entity *se)
3252 {
3253 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3254 	long shares;
3255 
3256 	if (!gcfs_rq)
3257 		return;
3258 
3259 	if (throttled_hierarchy(gcfs_rq))
3260 		return;
3261 
3262 #ifndef CONFIG_SMP
3263 	shares = READ_ONCE(gcfs_rq->tg->shares);
3264 
3265 	if (likely(se->load.weight == shares))
3266 		return;
3267 #else
3268 	shares   = calc_group_shares(gcfs_rq);
3269 #endif
3270 
3271 	reweight_entity(cfs_rq_of(se), se, shares);
3272 }
3273 
3274 #else /* CONFIG_FAIR_GROUP_SCHED */
3275 static inline void update_cfs_group(struct sched_entity *se)
3276 {
3277 }
3278 #endif /* CONFIG_FAIR_GROUP_SCHED */
3279 
3280 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3281 {
3282 	struct rq *rq = rq_of(cfs_rq);
3283 
3284 	if (&rq->cfs == cfs_rq) {
3285 		/*
3286 		 * There are a few boundary cases this might miss but it should
3287 		 * get called often enough that that should (hopefully) not be
3288 		 * a real problem.
3289 		 *
3290 		 * It will not get called when we go idle, because the idle
3291 		 * thread is a different class (!fair), nor will the utilization
3292 		 * number include things like RT tasks.
3293 		 *
3294 		 * As is, the util number is not freq-invariant (we'd have to
3295 		 * implement arch_scale_freq_capacity() for that).
3296 		 *
3297 		 * See cpu_util_cfs().
3298 		 */
3299 		cpufreq_update_util(rq, flags);
3300 	}
3301 }
3302 
3303 #ifdef CONFIG_SMP
3304 #ifdef CONFIG_FAIR_GROUP_SCHED
3305 /*
3306  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3307  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3308  * bottom-up, we only have to test whether the cfs_rq before us on the list
3309  * is our child.
3310  * If cfs_rq is not on the list, test whether a child needs its to be added to
3311  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3312  */
3313 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3314 {
3315 	struct cfs_rq *prev_cfs_rq;
3316 	struct list_head *prev;
3317 
3318 	if (cfs_rq->on_list) {
3319 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3320 	} else {
3321 		struct rq *rq = rq_of(cfs_rq);
3322 
3323 		prev = rq->tmp_alone_branch;
3324 	}
3325 
3326 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3327 
3328 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3329 }
3330 
3331 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3332 {
3333 	if (cfs_rq->load.weight)
3334 		return false;
3335 
3336 	if (cfs_rq->avg.load_sum)
3337 		return false;
3338 
3339 	if (cfs_rq->avg.util_sum)
3340 		return false;
3341 
3342 	if (cfs_rq->avg.runnable_sum)
3343 		return false;
3344 
3345 	if (child_cfs_rq_on_list(cfs_rq))
3346 		return false;
3347 
3348 	/*
3349 	 * _avg must be null when _sum are null because _avg = _sum / divider
3350 	 * Make sure that rounding and/or propagation of PELT values never
3351 	 * break this.
3352 	 */
3353 	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3354 		      cfs_rq->avg.util_avg ||
3355 		      cfs_rq->avg.runnable_avg);
3356 
3357 	return true;
3358 }
3359 
3360 /**
3361  * update_tg_load_avg - update the tg's load avg
3362  * @cfs_rq: the cfs_rq whose avg changed
3363  *
3364  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3365  * However, because tg->load_avg is a global value there are performance
3366  * considerations.
3367  *
3368  * In order to avoid having to look at the other cfs_rq's, we use a
3369  * differential update where we store the last value we propagated. This in
3370  * turn allows skipping updates if the differential is 'small'.
3371  *
3372  * Updating tg's load_avg is necessary before update_cfs_share().
3373  */
3374 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3375 {
3376 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3377 
3378 	/*
3379 	 * No need to update load_avg for root_task_group as it is not used.
3380 	 */
3381 	if (cfs_rq->tg == &root_task_group)
3382 		return;
3383 
3384 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3385 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3386 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3387 	}
3388 }
3389 
3390 /*
3391  * Called within set_task_rq() right before setting a task's CPU. The
3392  * caller only guarantees p->pi_lock is held; no other assumptions,
3393  * including the state of rq->lock, should be made.
3394  */
3395 void set_task_rq_fair(struct sched_entity *se,
3396 		      struct cfs_rq *prev, struct cfs_rq *next)
3397 {
3398 	u64 p_last_update_time;
3399 	u64 n_last_update_time;
3400 
3401 	if (!sched_feat(ATTACH_AGE_LOAD))
3402 		return;
3403 
3404 	/*
3405 	 * We are supposed to update the task to "current" time, then its up to
3406 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3407 	 * getting what current time is, so simply throw away the out-of-date
3408 	 * time. This will result in the wakee task is less decayed, but giving
3409 	 * the wakee more load sounds not bad.
3410 	 */
3411 	if (!(se->avg.last_update_time && prev))
3412 		return;
3413 
3414 #ifndef CONFIG_64BIT
3415 	{
3416 		u64 p_last_update_time_copy;
3417 		u64 n_last_update_time_copy;
3418 
3419 		do {
3420 			p_last_update_time_copy = prev->load_last_update_time_copy;
3421 			n_last_update_time_copy = next->load_last_update_time_copy;
3422 
3423 			smp_rmb();
3424 
3425 			p_last_update_time = prev->avg.last_update_time;
3426 			n_last_update_time = next->avg.last_update_time;
3427 
3428 		} while (p_last_update_time != p_last_update_time_copy ||
3429 			 n_last_update_time != n_last_update_time_copy);
3430 	}
3431 #else
3432 	p_last_update_time = prev->avg.last_update_time;
3433 	n_last_update_time = next->avg.last_update_time;
3434 #endif
3435 	__update_load_avg_blocked_se(p_last_update_time, se);
3436 	se->avg.last_update_time = n_last_update_time;
3437 }
3438 
3439 /*
3440  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3441  * propagate its contribution. The key to this propagation is the invariant
3442  * that for each group:
3443  *
3444  *   ge->avg == grq->avg						(1)
3445  *
3446  * _IFF_ we look at the pure running and runnable sums. Because they
3447  * represent the very same entity, just at different points in the hierarchy.
3448  *
3449  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3450  * and simply copies the running/runnable sum over (but still wrong, because
3451  * the group entity and group rq do not have their PELT windows aligned).
3452  *
3453  * However, update_tg_cfs_load() is more complex. So we have:
3454  *
3455  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3456  *
3457  * And since, like util, the runnable part should be directly transferable,
3458  * the following would _appear_ to be the straight forward approach:
3459  *
3460  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3461  *
3462  * And per (1) we have:
3463  *
3464  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3465  *
3466  * Which gives:
3467  *
3468  *                      ge->load.weight * grq->avg.load_avg
3469  *   ge->avg.load_avg = -----------------------------------		(4)
3470  *                               grq->load.weight
3471  *
3472  * Except that is wrong!
3473  *
3474  * Because while for entities historical weight is not important and we
3475  * really only care about our future and therefore can consider a pure
3476  * runnable sum, runqueues can NOT do this.
3477  *
3478  * We specifically want runqueues to have a load_avg that includes
3479  * historical weights. Those represent the blocked load, the load we expect
3480  * to (shortly) return to us. This only works by keeping the weights as
3481  * integral part of the sum. We therefore cannot decompose as per (3).
3482  *
3483  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3484  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3485  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3486  * runnable section of these tasks overlap (or not). If they were to perfectly
3487  * align the rq as a whole would be runnable 2/3 of the time. If however we
3488  * always have at least 1 runnable task, the rq as a whole is always runnable.
3489  *
3490  * So we'll have to approximate.. :/
3491  *
3492  * Given the constraint:
3493  *
3494  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3495  *
3496  * We can construct a rule that adds runnable to a rq by assuming minimal
3497  * overlap.
3498  *
3499  * On removal, we'll assume each task is equally runnable; which yields:
3500  *
3501  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3502  *
3503  * XXX: only do this for the part of runnable > running ?
3504  *
3505  */
3506 static inline void
3507 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3508 {
3509 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3510 	u32 new_sum, divider;
3511 
3512 	/* Nothing to update */
3513 	if (!delta_avg)
3514 		return;
3515 
3516 	/*
3517 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3518 	 * See ___update_load_avg() for details.
3519 	 */
3520 	divider = get_pelt_divider(&cfs_rq->avg);
3521 
3522 
3523 	/* Set new sched_entity's utilization */
3524 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3525 	new_sum = se->avg.util_avg * divider;
3526 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3527 	se->avg.util_sum = new_sum;
3528 
3529 	/* Update parent cfs_rq utilization */
3530 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3531 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3532 
3533 	/* See update_cfs_rq_load_avg() */
3534 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3535 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3536 }
3537 
3538 static inline void
3539 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3540 {
3541 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3542 	u32 new_sum, divider;
3543 
3544 	/* Nothing to update */
3545 	if (!delta_avg)
3546 		return;
3547 
3548 	/*
3549 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3550 	 * See ___update_load_avg() for details.
3551 	 */
3552 	divider = get_pelt_divider(&cfs_rq->avg);
3553 
3554 	/* Set new sched_entity's runnable */
3555 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3556 	new_sum = se->avg.runnable_avg * divider;
3557 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3558 	se->avg.runnable_sum = new_sum;
3559 
3560 	/* Update parent cfs_rq runnable */
3561 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3562 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3563 	/* See update_cfs_rq_load_avg() */
3564 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3565 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3566 }
3567 
3568 static inline void
3569 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3570 {
3571 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3572 	unsigned long load_avg;
3573 	u64 load_sum = 0;
3574 	s64 delta_sum;
3575 	u32 divider;
3576 
3577 	if (!runnable_sum)
3578 		return;
3579 
3580 	gcfs_rq->prop_runnable_sum = 0;
3581 
3582 	/*
3583 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3584 	 * See ___update_load_avg() for details.
3585 	 */
3586 	divider = get_pelt_divider(&cfs_rq->avg);
3587 
3588 	if (runnable_sum >= 0) {
3589 		/*
3590 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3591 		 * the CPU is saturated running == runnable.
3592 		 */
3593 		runnable_sum += se->avg.load_sum;
3594 		runnable_sum = min_t(long, runnable_sum, divider);
3595 	} else {
3596 		/*
3597 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3598 		 * assuming all tasks are equally runnable.
3599 		 */
3600 		if (scale_load_down(gcfs_rq->load.weight)) {
3601 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3602 				scale_load_down(gcfs_rq->load.weight));
3603 		}
3604 
3605 		/* But make sure to not inflate se's runnable */
3606 		runnable_sum = min(se->avg.load_sum, load_sum);
3607 	}
3608 
3609 	/*
3610 	 * runnable_sum can't be lower than running_sum
3611 	 * Rescale running sum to be in the same range as runnable sum
3612 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3613 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3614 	 */
3615 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3616 	runnable_sum = max(runnable_sum, running_sum);
3617 
3618 	load_sum = se_weight(se) * runnable_sum;
3619 	load_avg = div_u64(load_sum, divider);
3620 
3621 	delta_avg = load_avg - se->avg.load_avg;
3622 	if (!delta_avg)
3623 		return;
3624 
3625 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3626 
3627 	se->avg.load_sum = runnable_sum;
3628 	se->avg.load_avg = load_avg;
3629 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3630 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3631 	/* See update_cfs_rq_load_avg() */
3632 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3633 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3634 }
3635 
3636 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3637 {
3638 	cfs_rq->propagate = 1;
3639 	cfs_rq->prop_runnable_sum += runnable_sum;
3640 }
3641 
3642 /* Update task and its cfs_rq load average */
3643 static inline int propagate_entity_load_avg(struct sched_entity *se)
3644 {
3645 	struct cfs_rq *cfs_rq, *gcfs_rq;
3646 
3647 	if (entity_is_task(se))
3648 		return 0;
3649 
3650 	gcfs_rq = group_cfs_rq(se);
3651 	if (!gcfs_rq->propagate)
3652 		return 0;
3653 
3654 	gcfs_rq->propagate = 0;
3655 
3656 	cfs_rq = cfs_rq_of(se);
3657 
3658 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3659 
3660 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3661 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3662 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3663 
3664 	trace_pelt_cfs_tp(cfs_rq);
3665 	trace_pelt_se_tp(se);
3666 
3667 	return 1;
3668 }
3669 
3670 /*
3671  * Check if we need to update the load and the utilization of a blocked
3672  * group_entity:
3673  */
3674 static inline bool skip_blocked_update(struct sched_entity *se)
3675 {
3676 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3677 
3678 	/*
3679 	 * If sched_entity still have not zero load or utilization, we have to
3680 	 * decay it:
3681 	 */
3682 	if (se->avg.load_avg || se->avg.util_avg)
3683 		return false;
3684 
3685 	/*
3686 	 * If there is a pending propagation, we have to update the load and
3687 	 * the utilization of the sched_entity:
3688 	 */
3689 	if (gcfs_rq->propagate)
3690 		return false;
3691 
3692 	/*
3693 	 * Otherwise, the load and the utilization of the sched_entity is
3694 	 * already zero and there is no pending propagation, so it will be a
3695 	 * waste of time to try to decay it:
3696 	 */
3697 	return true;
3698 }
3699 
3700 #else /* CONFIG_FAIR_GROUP_SCHED */
3701 
3702 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3703 
3704 static inline int propagate_entity_load_avg(struct sched_entity *se)
3705 {
3706 	return 0;
3707 }
3708 
3709 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3710 
3711 #endif /* CONFIG_FAIR_GROUP_SCHED */
3712 
3713 /**
3714  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3715  * @now: current time, as per cfs_rq_clock_pelt()
3716  * @cfs_rq: cfs_rq to update
3717  *
3718  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3719  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3720  * post_init_entity_util_avg().
3721  *
3722  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3723  *
3724  * Return: true if the load decayed or we removed load.
3725  *
3726  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3727  * call update_tg_load_avg() when this function returns true.
3728  */
3729 static inline int
3730 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3731 {
3732 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3733 	struct sched_avg *sa = &cfs_rq->avg;
3734 	int decayed = 0;
3735 
3736 	if (cfs_rq->removed.nr) {
3737 		unsigned long r;
3738 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3739 
3740 		raw_spin_lock(&cfs_rq->removed.lock);
3741 		swap(cfs_rq->removed.util_avg, removed_util);
3742 		swap(cfs_rq->removed.load_avg, removed_load);
3743 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3744 		cfs_rq->removed.nr = 0;
3745 		raw_spin_unlock(&cfs_rq->removed.lock);
3746 
3747 		r = removed_load;
3748 		sub_positive(&sa->load_avg, r);
3749 		sub_positive(&sa->load_sum, r * divider);
3750 		/* See sa->util_sum below */
3751 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
3752 
3753 		r = removed_util;
3754 		sub_positive(&sa->util_avg, r);
3755 		sub_positive(&sa->util_sum, r * divider);
3756 		/*
3757 		 * Because of rounding, se->util_sum might ends up being +1 more than
3758 		 * cfs->util_sum. Although this is not a problem by itself, detaching
3759 		 * a lot of tasks with the rounding problem between 2 updates of
3760 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3761 		 * cfs_util_avg is not.
3762 		 * Check that util_sum is still above its lower bound for the new
3763 		 * util_avg. Given that period_contrib might have moved since the last
3764 		 * sync, we are only sure that util_sum must be above or equal to
3765 		 *    util_avg * minimum possible divider
3766 		 */
3767 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3768 
3769 		r = removed_runnable;
3770 		sub_positive(&sa->runnable_avg, r);
3771 		sub_positive(&sa->runnable_sum, r * divider);
3772 		/* See sa->util_sum above */
3773 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
3774 					      sa->runnable_avg * PELT_MIN_DIVIDER);
3775 
3776 		/*
3777 		 * removed_runnable is the unweighted version of removed_load so we
3778 		 * can use it to estimate removed_load_sum.
3779 		 */
3780 		add_tg_cfs_propagate(cfs_rq,
3781 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3782 
3783 		decayed = 1;
3784 	}
3785 
3786 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3787 
3788 #ifndef CONFIG_64BIT
3789 	smp_wmb();
3790 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3791 #endif
3792 
3793 	return decayed;
3794 }
3795 
3796 /**
3797  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3798  * @cfs_rq: cfs_rq to attach to
3799  * @se: sched_entity to attach
3800  *
3801  * Must call update_cfs_rq_load_avg() before this, since we rely on
3802  * cfs_rq->avg.last_update_time being current.
3803  */
3804 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3805 {
3806 	/*
3807 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3808 	 * See ___update_load_avg() for details.
3809 	 */
3810 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3811 
3812 	/*
3813 	 * When we attach the @se to the @cfs_rq, we must align the decay
3814 	 * window because without that, really weird and wonderful things can
3815 	 * happen.
3816 	 *
3817 	 * XXX illustrate
3818 	 */
3819 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3820 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3821 
3822 	/*
3823 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3824 	 * period_contrib. This isn't strictly correct, but since we're
3825 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3826 	 * _sum a little.
3827 	 */
3828 	se->avg.util_sum = se->avg.util_avg * divider;
3829 
3830 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3831 
3832 	se->avg.load_sum = divider;
3833 	if (se_weight(se)) {
3834 		se->avg.load_sum =
3835 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3836 	}
3837 
3838 	enqueue_load_avg(cfs_rq, se);
3839 	cfs_rq->avg.util_avg += se->avg.util_avg;
3840 	cfs_rq->avg.util_sum += se->avg.util_sum;
3841 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3842 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3843 
3844 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3845 
3846 	cfs_rq_util_change(cfs_rq, 0);
3847 
3848 	trace_pelt_cfs_tp(cfs_rq);
3849 }
3850 
3851 /**
3852  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3853  * @cfs_rq: cfs_rq to detach from
3854  * @se: sched_entity to detach
3855  *
3856  * Must call update_cfs_rq_load_avg() before this, since we rely on
3857  * cfs_rq->avg.last_update_time being current.
3858  */
3859 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3860 {
3861 	dequeue_load_avg(cfs_rq, se);
3862 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3863 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3864 	/* See update_cfs_rq_load_avg() */
3865 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3866 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3867 
3868 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3869 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3870 	/* See update_cfs_rq_load_avg() */
3871 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3872 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3873 
3874 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3875 
3876 	cfs_rq_util_change(cfs_rq, 0);
3877 
3878 	trace_pelt_cfs_tp(cfs_rq);
3879 }
3880 
3881 /*
3882  * Optional action to be done while updating the load average
3883  */
3884 #define UPDATE_TG	0x1
3885 #define SKIP_AGE_LOAD	0x2
3886 #define DO_ATTACH	0x4
3887 
3888 /* Update task and its cfs_rq load average */
3889 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3890 {
3891 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3892 	int decayed;
3893 
3894 	/*
3895 	 * Track task load average for carrying it to new CPU after migrated, and
3896 	 * track group sched_entity load average for task_h_load calc in migration
3897 	 */
3898 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3899 		__update_load_avg_se(now, cfs_rq, se);
3900 
3901 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3902 	decayed |= propagate_entity_load_avg(se);
3903 
3904 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3905 
3906 		/*
3907 		 * DO_ATTACH means we're here from enqueue_entity().
3908 		 * !last_update_time means we've passed through
3909 		 * migrate_task_rq_fair() indicating we migrated.
3910 		 *
3911 		 * IOW we're enqueueing a task on a new CPU.
3912 		 */
3913 		attach_entity_load_avg(cfs_rq, se);
3914 		update_tg_load_avg(cfs_rq);
3915 
3916 	} else if (decayed) {
3917 		cfs_rq_util_change(cfs_rq, 0);
3918 
3919 		if (flags & UPDATE_TG)
3920 			update_tg_load_avg(cfs_rq);
3921 	}
3922 }
3923 
3924 #ifndef CONFIG_64BIT
3925 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3926 {
3927 	u64 last_update_time_copy;
3928 	u64 last_update_time;
3929 
3930 	do {
3931 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3932 		smp_rmb();
3933 		last_update_time = cfs_rq->avg.last_update_time;
3934 	} while (last_update_time != last_update_time_copy);
3935 
3936 	return last_update_time;
3937 }
3938 #else
3939 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3940 {
3941 	return cfs_rq->avg.last_update_time;
3942 }
3943 #endif
3944 
3945 /*
3946  * Synchronize entity load avg of dequeued entity without locking
3947  * the previous rq.
3948  */
3949 static void sync_entity_load_avg(struct sched_entity *se)
3950 {
3951 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3952 	u64 last_update_time;
3953 
3954 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3955 	__update_load_avg_blocked_se(last_update_time, se);
3956 }
3957 
3958 /*
3959  * Task first catches up with cfs_rq, and then subtract
3960  * itself from the cfs_rq (task must be off the queue now).
3961  */
3962 static void remove_entity_load_avg(struct sched_entity *se)
3963 {
3964 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3965 	unsigned long flags;
3966 
3967 	/*
3968 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3969 	 * post_init_entity_util_avg() which will have added things to the
3970 	 * cfs_rq, so we can remove unconditionally.
3971 	 */
3972 
3973 	sync_entity_load_avg(se);
3974 
3975 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3976 	++cfs_rq->removed.nr;
3977 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3978 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3979 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3980 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3981 }
3982 
3983 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3984 {
3985 	return cfs_rq->avg.runnable_avg;
3986 }
3987 
3988 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3989 {
3990 	return cfs_rq->avg.load_avg;
3991 }
3992 
3993 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3994 
3995 static inline unsigned long task_util(struct task_struct *p)
3996 {
3997 	return READ_ONCE(p->se.avg.util_avg);
3998 }
3999 
4000 static inline unsigned long _task_util_est(struct task_struct *p)
4001 {
4002 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4003 
4004 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4005 }
4006 
4007 static inline unsigned long task_util_est(struct task_struct *p)
4008 {
4009 	return max(task_util(p), _task_util_est(p));
4010 }
4011 
4012 #ifdef CONFIG_UCLAMP_TASK
4013 static inline unsigned long uclamp_task_util(struct task_struct *p)
4014 {
4015 	return clamp(task_util_est(p),
4016 		     uclamp_eff_value(p, UCLAMP_MIN),
4017 		     uclamp_eff_value(p, UCLAMP_MAX));
4018 }
4019 #else
4020 static inline unsigned long uclamp_task_util(struct task_struct *p)
4021 {
4022 	return task_util_est(p);
4023 }
4024 #endif
4025 
4026 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4027 				    struct task_struct *p)
4028 {
4029 	unsigned int enqueued;
4030 
4031 	if (!sched_feat(UTIL_EST))
4032 		return;
4033 
4034 	/* Update root cfs_rq's estimated utilization */
4035 	enqueued  = cfs_rq->avg.util_est.enqueued;
4036 	enqueued += _task_util_est(p);
4037 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4038 
4039 	trace_sched_util_est_cfs_tp(cfs_rq);
4040 }
4041 
4042 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4043 				    struct task_struct *p)
4044 {
4045 	unsigned int enqueued;
4046 
4047 	if (!sched_feat(UTIL_EST))
4048 		return;
4049 
4050 	/* Update root cfs_rq's estimated utilization */
4051 	enqueued  = cfs_rq->avg.util_est.enqueued;
4052 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4053 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4054 
4055 	trace_sched_util_est_cfs_tp(cfs_rq);
4056 }
4057 
4058 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4059 
4060 /*
4061  * Check if a (signed) value is within a specified (unsigned) margin,
4062  * based on the observation that:
4063  *
4064  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4065  *
4066  * NOTE: this only works when value + margin < INT_MAX.
4067  */
4068 static inline bool within_margin(int value, int margin)
4069 {
4070 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4071 }
4072 
4073 static inline void util_est_update(struct cfs_rq *cfs_rq,
4074 				   struct task_struct *p,
4075 				   bool task_sleep)
4076 {
4077 	long last_ewma_diff, last_enqueued_diff;
4078 	struct util_est ue;
4079 
4080 	if (!sched_feat(UTIL_EST))
4081 		return;
4082 
4083 	/*
4084 	 * Skip update of task's estimated utilization when the task has not
4085 	 * yet completed an activation, e.g. being migrated.
4086 	 */
4087 	if (!task_sleep)
4088 		return;
4089 
4090 	/*
4091 	 * If the PELT values haven't changed since enqueue time,
4092 	 * skip the util_est update.
4093 	 */
4094 	ue = p->se.avg.util_est;
4095 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4096 		return;
4097 
4098 	last_enqueued_diff = ue.enqueued;
4099 
4100 	/*
4101 	 * Reset EWMA on utilization increases, the moving average is used only
4102 	 * to smooth utilization decreases.
4103 	 */
4104 	ue.enqueued = task_util(p);
4105 	if (sched_feat(UTIL_EST_FASTUP)) {
4106 		if (ue.ewma < ue.enqueued) {
4107 			ue.ewma = ue.enqueued;
4108 			goto done;
4109 		}
4110 	}
4111 
4112 	/*
4113 	 * Skip update of task's estimated utilization when its members are
4114 	 * already ~1% close to its last activation value.
4115 	 */
4116 	last_ewma_diff = ue.enqueued - ue.ewma;
4117 	last_enqueued_diff -= ue.enqueued;
4118 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4119 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4120 			goto done;
4121 
4122 		return;
4123 	}
4124 
4125 	/*
4126 	 * To avoid overestimation of actual task utilization, skip updates if
4127 	 * we cannot grant there is idle time in this CPU.
4128 	 */
4129 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4130 		return;
4131 
4132 	/*
4133 	 * Update Task's estimated utilization
4134 	 *
4135 	 * When *p completes an activation we can consolidate another sample
4136 	 * of the task size. This is done by storing the current PELT value
4137 	 * as ue.enqueued and by using this value to update the Exponential
4138 	 * Weighted Moving Average (EWMA):
4139 	 *
4140 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4141 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4142 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4143 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4144 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4145 	 *
4146 	 * Where 'w' is the weight of new samples, which is configured to be
4147 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4148 	 */
4149 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4150 	ue.ewma  += last_ewma_diff;
4151 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4152 done:
4153 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4154 	WRITE_ONCE(p->se.avg.util_est, ue);
4155 
4156 	trace_sched_util_est_se_tp(&p->se);
4157 }
4158 
4159 static inline int task_fits_capacity(struct task_struct *p,
4160 				     unsigned long capacity)
4161 {
4162 	return fits_capacity(uclamp_task_util(p), capacity);
4163 }
4164 
4165 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4166 {
4167 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4168 		return;
4169 
4170 	if (!p || p->nr_cpus_allowed == 1) {
4171 		rq->misfit_task_load = 0;
4172 		return;
4173 	}
4174 
4175 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4176 		rq->misfit_task_load = 0;
4177 		return;
4178 	}
4179 
4180 	/*
4181 	 * Make sure that misfit_task_load will not be null even if
4182 	 * task_h_load() returns 0.
4183 	 */
4184 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4185 }
4186 
4187 #else /* CONFIG_SMP */
4188 
4189 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4190 {
4191 	return true;
4192 }
4193 
4194 #define UPDATE_TG	0x0
4195 #define SKIP_AGE_LOAD	0x0
4196 #define DO_ATTACH	0x0
4197 
4198 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4199 {
4200 	cfs_rq_util_change(cfs_rq, 0);
4201 }
4202 
4203 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4204 
4205 static inline void
4206 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4207 static inline void
4208 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4209 
4210 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4211 {
4212 	return 0;
4213 }
4214 
4215 static inline void
4216 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4217 
4218 static inline void
4219 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4220 
4221 static inline void
4222 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4223 		bool task_sleep) {}
4224 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4225 
4226 #endif /* CONFIG_SMP */
4227 
4228 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4229 {
4230 #ifdef CONFIG_SCHED_DEBUG
4231 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4232 
4233 	if (d < 0)
4234 		d = -d;
4235 
4236 	if (d > 3*sysctl_sched_latency)
4237 		schedstat_inc(cfs_rq->nr_spread_over);
4238 #endif
4239 }
4240 
4241 static void
4242 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4243 {
4244 	u64 vruntime = cfs_rq->min_vruntime;
4245 
4246 	/*
4247 	 * The 'current' period is already promised to the current tasks,
4248 	 * however the extra weight of the new task will slow them down a
4249 	 * little, place the new task so that it fits in the slot that
4250 	 * stays open at the end.
4251 	 */
4252 	if (initial && sched_feat(START_DEBIT))
4253 		vruntime += sched_vslice(cfs_rq, se);
4254 
4255 	/* sleeps up to a single latency don't count. */
4256 	if (!initial) {
4257 		unsigned long thresh;
4258 
4259 		if (se_is_idle(se))
4260 			thresh = sysctl_sched_min_granularity;
4261 		else
4262 			thresh = sysctl_sched_latency;
4263 
4264 		/*
4265 		 * Halve their sleep time's effect, to allow
4266 		 * for a gentler effect of sleepers:
4267 		 */
4268 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4269 			thresh >>= 1;
4270 
4271 		vruntime -= thresh;
4272 	}
4273 
4274 	/* ensure we never gain time by being placed backwards. */
4275 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4276 }
4277 
4278 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4279 
4280 static inline bool cfs_bandwidth_used(void);
4281 
4282 /*
4283  * MIGRATION
4284  *
4285  *	dequeue
4286  *	  update_curr()
4287  *	    update_min_vruntime()
4288  *	  vruntime -= min_vruntime
4289  *
4290  *	enqueue
4291  *	  update_curr()
4292  *	    update_min_vruntime()
4293  *	  vruntime += min_vruntime
4294  *
4295  * this way the vruntime transition between RQs is done when both
4296  * min_vruntime are up-to-date.
4297  *
4298  * WAKEUP (remote)
4299  *
4300  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4301  *	  vruntime -= min_vruntime
4302  *
4303  *	enqueue
4304  *	  update_curr()
4305  *	    update_min_vruntime()
4306  *	  vruntime += min_vruntime
4307  *
4308  * this way we don't have the most up-to-date min_vruntime on the originating
4309  * CPU and an up-to-date min_vruntime on the destination CPU.
4310  */
4311 
4312 static void
4313 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4314 {
4315 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4316 	bool curr = cfs_rq->curr == se;
4317 
4318 	/*
4319 	 * If we're the current task, we must renormalise before calling
4320 	 * update_curr().
4321 	 */
4322 	if (renorm && curr)
4323 		se->vruntime += cfs_rq->min_vruntime;
4324 
4325 	update_curr(cfs_rq);
4326 
4327 	/*
4328 	 * Otherwise, renormalise after, such that we're placed at the current
4329 	 * moment in time, instead of some random moment in the past. Being
4330 	 * placed in the past could significantly boost this task to the
4331 	 * fairness detriment of existing tasks.
4332 	 */
4333 	if (renorm && !curr)
4334 		se->vruntime += cfs_rq->min_vruntime;
4335 
4336 	/*
4337 	 * When enqueuing a sched_entity, we must:
4338 	 *   - Update loads to have both entity and cfs_rq synced with now.
4339 	 *   - Add its load to cfs_rq->runnable_avg
4340 	 *   - For group_entity, update its weight to reflect the new share of
4341 	 *     its group cfs_rq
4342 	 *   - Add its new weight to cfs_rq->load.weight
4343 	 */
4344 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4345 	se_update_runnable(se);
4346 	update_cfs_group(se);
4347 	account_entity_enqueue(cfs_rq, se);
4348 
4349 	if (flags & ENQUEUE_WAKEUP)
4350 		place_entity(cfs_rq, se, 0);
4351 
4352 	check_schedstat_required();
4353 	update_stats_enqueue_fair(cfs_rq, se, flags);
4354 	check_spread(cfs_rq, se);
4355 	if (!curr)
4356 		__enqueue_entity(cfs_rq, se);
4357 	se->on_rq = 1;
4358 
4359 	/*
4360 	 * When bandwidth control is enabled, cfs might have been removed
4361 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4362 	 * add it unconditionally.
4363 	 */
4364 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4365 		list_add_leaf_cfs_rq(cfs_rq);
4366 
4367 	if (cfs_rq->nr_running == 1)
4368 		check_enqueue_throttle(cfs_rq);
4369 }
4370 
4371 static void __clear_buddies_last(struct sched_entity *se)
4372 {
4373 	for_each_sched_entity(se) {
4374 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4375 		if (cfs_rq->last != se)
4376 			break;
4377 
4378 		cfs_rq->last = NULL;
4379 	}
4380 }
4381 
4382 static void __clear_buddies_next(struct sched_entity *se)
4383 {
4384 	for_each_sched_entity(se) {
4385 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4386 		if (cfs_rq->next != se)
4387 			break;
4388 
4389 		cfs_rq->next = NULL;
4390 	}
4391 }
4392 
4393 static void __clear_buddies_skip(struct sched_entity *se)
4394 {
4395 	for_each_sched_entity(se) {
4396 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4397 		if (cfs_rq->skip != se)
4398 			break;
4399 
4400 		cfs_rq->skip = NULL;
4401 	}
4402 }
4403 
4404 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4405 {
4406 	if (cfs_rq->last == se)
4407 		__clear_buddies_last(se);
4408 
4409 	if (cfs_rq->next == se)
4410 		__clear_buddies_next(se);
4411 
4412 	if (cfs_rq->skip == se)
4413 		__clear_buddies_skip(se);
4414 }
4415 
4416 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4417 
4418 static void
4419 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4420 {
4421 	/*
4422 	 * Update run-time statistics of the 'current'.
4423 	 */
4424 	update_curr(cfs_rq);
4425 
4426 	/*
4427 	 * When dequeuing a sched_entity, we must:
4428 	 *   - Update loads to have both entity and cfs_rq synced with now.
4429 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4430 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4431 	 *   - For group entity, update its weight to reflect the new share
4432 	 *     of its group cfs_rq.
4433 	 */
4434 	update_load_avg(cfs_rq, se, UPDATE_TG);
4435 	se_update_runnable(se);
4436 
4437 	update_stats_dequeue_fair(cfs_rq, se, flags);
4438 
4439 	clear_buddies(cfs_rq, se);
4440 
4441 	if (se != cfs_rq->curr)
4442 		__dequeue_entity(cfs_rq, se);
4443 	se->on_rq = 0;
4444 	account_entity_dequeue(cfs_rq, se);
4445 
4446 	/*
4447 	 * Normalize after update_curr(); which will also have moved
4448 	 * min_vruntime if @se is the one holding it back. But before doing
4449 	 * update_min_vruntime() again, which will discount @se's position and
4450 	 * can move min_vruntime forward still more.
4451 	 */
4452 	if (!(flags & DEQUEUE_SLEEP))
4453 		se->vruntime -= cfs_rq->min_vruntime;
4454 
4455 	/* return excess runtime on last dequeue */
4456 	return_cfs_rq_runtime(cfs_rq);
4457 
4458 	update_cfs_group(se);
4459 
4460 	/*
4461 	 * Now advance min_vruntime if @se was the entity holding it back,
4462 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4463 	 * put back on, and if we advance min_vruntime, we'll be placed back
4464 	 * further than we started -- ie. we'll be penalized.
4465 	 */
4466 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4467 		update_min_vruntime(cfs_rq);
4468 }
4469 
4470 /*
4471  * Preempt the current task with a newly woken task if needed:
4472  */
4473 static void
4474 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4475 {
4476 	unsigned long ideal_runtime, delta_exec;
4477 	struct sched_entity *se;
4478 	s64 delta;
4479 
4480 	ideal_runtime = sched_slice(cfs_rq, curr);
4481 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4482 	if (delta_exec > ideal_runtime) {
4483 		resched_curr(rq_of(cfs_rq));
4484 		/*
4485 		 * The current task ran long enough, ensure it doesn't get
4486 		 * re-elected due to buddy favours.
4487 		 */
4488 		clear_buddies(cfs_rq, curr);
4489 		return;
4490 	}
4491 
4492 	/*
4493 	 * Ensure that a task that missed wakeup preemption by a
4494 	 * narrow margin doesn't have to wait for a full slice.
4495 	 * This also mitigates buddy induced latencies under load.
4496 	 */
4497 	if (delta_exec < sysctl_sched_min_granularity)
4498 		return;
4499 
4500 	se = __pick_first_entity(cfs_rq);
4501 	delta = curr->vruntime - se->vruntime;
4502 
4503 	if (delta < 0)
4504 		return;
4505 
4506 	if (delta > ideal_runtime)
4507 		resched_curr(rq_of(cfs_rq));
4508 }
4509 
4510 static void
4511 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4512 {
4513 	clear_buddies(cfs_rq, se);
4514 
4515 	/* 'current' is not kept within the tree. */
4516 	if (se->on_rq) {
4517 		/*
4518 		 * Any task has to be enqueued before it get to execute on
4519 		 * a CPU. So account for the time it spent waiting on the
4520 		 * runqueue.
4521 		 */
4522 		update_stats_wait_end_fair(cfs_rq, se);
4523 		__dequeue_entity(cfs_rq, se);
4524 		update_load_avg(cfs_rq, se, UPDATE_TG);
4525 	}
4526 
4527 	update_stats_curr_start(cfs_rq, se);
4528 	cfs_rq->curr = se;
4529 
4530 	/*
4531 	 * Track our maximum slice length, if the CPU's load is at
4532 	 * least twice that of our own weight (i.e. dont track it
4533 	 * when there are only lesser-weight tasks around):
4534 	 */
4535 	if (schedstat_enabled() &&
4536 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4537 		struct sched_statistics *stats;
4538 
4539 		stats = __schedstats_from_se(se);
4540 		__schedstat_set(stats->slice_max,
4541 				max((u64)stats->slice_max,
4542 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4543 	}
4544 
4545 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4546 }
4547 
4548 static int
4549 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4550 
4551 /*
4552  * Pick the next process, keeping these things in mind, in this order:
4553  * 1) keep things fair between processes/task groups
4554  * 2) pick the "next" process, since someone really wants that to run
4555  * 3) pick the "last" process, for cache locality
4556  * 4) do not run the "skip" process, if something else is available
4557  */
4558 static struct sched_entity *
4559 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4560 {
4561 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4562 	struct sched_entity *se;
4563 
4564 	/*
4565 	 * If curr is set we have to see if its left of the leftmost entity
4566 	 * still in the tree, provided there was anything in the tree at all.
4567 	 */
4568 	if (!left || (curr && entity_before(curr, left)))
4569 		left = curr;
4570 
4571 	se = left; /* ideally we run the leftmost entity */
4572 
4573 	/*
4574 	 * Avoid running the skip buddy, if running something else can
4575 	 * be done without getting too unfair.
4576 	 */
4577 	if (cfs_rq->skip && cfs_rq->skip == se) {
4578 		struct sched_entity *second;
4579 
4580 		if (se == curr) {
4581 			second = __pick_first_entity(cfs_rq);
4582 		} else {
4583 			second = __pick_next_entity(se);
4584 			if (!second || (curr && entity_before(curr, second)))
4585 				second = curr;
4586 		}
4587 
4588 		if (second && wakeup_preempt_entity(second, left) < 1)
4589 			se = second;
4590 	}
4591 
4592 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4593 		/*
4594 		 * Someone really wants this to run. If it's not unfair, run it.
4595 		 */
4596 		se = cfs_rq->next;
4597 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4598 		/*
4599 		 * Prefer last buddy, try to return the CPU to a preempted task.
4600 		 */
4601 		se = cfs_rq->last;
4602 	}
4603 
4604 	return se;
4605 }
4606 
4607 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4608 
4609 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4610 {
4611 	/*
4612 	 * If still on the runqueue then deactivate_task()
4613 	 * was not called and update_curr() has to be done:
4614 	 */
4615 	if (prev->on_rq)
4616 		update_curr(cfs_rq);
4617 
4618 	/* throttle cfs_rqs exceeding runtime */
4619 	check_cfs_rq_runtime(cfs_rq);
4620 
4621 	check_spread(cfs_rq, prev);
4622 
4623 	if (prev->on_rq) {
4624 		update_stats_wait_start_fair(cfs_rq, prev);
4625 		/* Put 'current' back into the tree. */
4626 		__enqueue_entity(cfs_rq, prev);
4627 		/* in !on_rq case, update occurred at dequeue */
4628 		update_load_avg(cfs_rq, prev, 0);
4629 	}
4630 	cfs_rq->curr = NULL;
4631 }
4632 
4633 static void
4634 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4635 {
4636 	/*
4637 	 * Update run-time statistics of the 'current'.
4638 	 */
4639 	update_curr(cfs_rq);
4640 
4641 	/*
4642 	 * Ensure that runnable average is periodically updated.
4643 	 */
4644 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4645 	update_cfs_group(curr);
4646 
4647 #ifdef CONFIG_SCHED_HRTICK
4648 	/*
4649 	 * queued ticks are scheduled to match the slice, so don't bother
4650 	 * validating it and just reschedule.
4651 	 */
4652 	if (queued) {
4653 		resched_curr(rq_of(cfs_rq));
4654 		return;
4655 	}
4656 	/*
4657 	 * don't let the period tick interfere with the hrtick preemption
4658 	 */
4659 	if (!sched_feat(DOUBLE_TICK) &&
4660 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4661 		return;
4662 #endif
4663 
4664 	if (cfs_rq->nr_running > 1)
4665 		check_preempt_tick(cfs_rq, curr);
4666 }
4667 
4668 
4669 /**************************************************
4670  * CFS bandwidth control machinery
4671  */
4672 
4673 #ifdef CONFIG_CFS_BANDWIDTH
4674 
4675 #ifdef CONFIG_JUMP_LABEL
4676 static struct static_key __cfs_bandwidth_used;
4677 
4678 static inline bool cfs_bandwidth_used(void)
4679 {
4680 	return static_key_false(&__cfs_bandwidth_used);
4681 }
4682 
4683 void cfs_bandwidth_usage_inc(void)
4684 {
4685 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4686 }
4687 
4688 void cfs_bandwidth_usage_dec(void)
4689 {
4690 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4691 }
4692 #else /* CONFIG_JUMP_LABEL */
4693 static bool cfs_bandwidth_used(void)
4694 {
4695 	return true;
4696 }
4697 
4698 void cfs_bandwidth_usage_inc(void) {}
4699 void cfs_bandwidth_usage_dec(void) {}
4700 #endif /* CONFIG_JUMP_LABEL */
4701 
4702 /*
4703  * default period for cfs group bandwidth.
4704  * default: 0.1s, units: nanoseconds
4705  */
4706 static inline u64 default_cfs_period(void)
4707 {
4708 	return 100000000ULL;
4709 }
4710 
4711 static inline u64 sched_cfs_bandwidth_slice(void)
4712 {
4713 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4714 }
4715 
4716 /*
4717  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4718  * directly instead of rq->clock to avoid adding additional synchronization
4719  * around rq->lock.
4720  *
4721  * requires cfs_b->lock
4722  */
4723 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4724 {
4725 	s64 runtime;
4726 
4727 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4728 		return;
4729 
4730 	cfs_b->runtime += cfs_b->quota;
4731 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
4732 	if (runtime > 0) {
4733 		cfs_b->burst_time += runtime;
4734 		cfs_b->nr_burst++;
4735 	}
4736 
4737 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4738 	cfs_b->runtime_snap = cfs_b->runtime;
4739 }
4740 
4741 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4742 {
4743 	return &tg->cfs_bandwidth;
4744 }
4745 
4746 /* returns 0 on failure to allocate runtime */
4747 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4748 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4749 {
4750 	u64 min_amount, amount = 0;
4751 
4752 	lockdep_assert_held(&cfs_b->lock);
4753 
4754 	/* note: this is a positive sum as runtime_remaining <= 0 */
4755 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4756 
4757 	if (cfs_b->quota == RUNTIME_INF)
4758 		amount = min_amount;
4759 	else {
4760 		start_cfs_bandwidth(cfs_b);
4761 
4762 		if (cfs_b->runtime > 0) {
4763 			amount = min(cfs_b->runtime, min_amount);
4764 			cfs_b->runtime -= amount;
4765 			cfs_b->idle = 0;
4766 		}
4767 	}
4768 
4769 	cfs_rq->runtime_remaining += amount;
4770 
4771 	return cfs_rq->runtime_remaining > 0;
4772 }
4773 
4774 /* returns 0 on failure to allocate runtime */
4775 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4776 {
4777 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4778 	int ret;
4779 
4780 	raw_spin_lock(&cfs_b->lock);
4781 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4782 	raw_spin_unlock(&cfs_b->lock);
4783 
4784 	return ret;
4785 }
4786 
4787 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4788 {
4789 	/* dock delta_exec before expiring quota (as it could span periods) */
4790 	cfs_rq->runtime_remaining -= delta_exec;
4791 
4792 	if (likely(cfs_rq->runtime_remaining > 0))
4793 		return;
4794 
4795 	if (cfs_rq->throttled)
4796 		return;
4797 	/*
4798 	 * if we're unable to extend our runtime we resched so that the active
4799 	 * hierarchy can be throttled
4800 	 */
4801 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4802 		resched_curr(rq_of(cfs_rq));
4803 }
4804 
4805 static __always_inline
4806 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4807 {
4808 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4809 		return;
4810 
4811 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4812 }
4813 
4814 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4815 {
4816 	return cfs_bandwidth_used() && cfs_rq->throttled;
4817 }
4818 
4819 /* check whether cfs_rq, or any parent, is throttled */
4820 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4821 {
4822 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4823 }
4824 
4825 /*
4826  * Ensure that neither of the group entities corresponding to src_cpu or
4827  * dest_cpu are members of a throttled hierarchy when performing group
4828  * load-balance operations.
4829  */
4830 static inline int throttled_lb_pair(struct task_group *tg,
4831 				    int src_cpu, int dest_cpu)
4832 {
4833 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4834 
4835 	src_cfs_rq = tg->cfs_rq[src_cpu];
4836 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4837 
4838 	return throttled_hierarchy(src_cfs_rq) ||
4839 	       throttled_hierarchy(dest_cfs_rq);
4840 }
4841 
4842 static int tg_unthrottle_up(struct task_group *tg, void *data)
4843 {
4844 	struct rq *rq = data;
4845 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4846 
4847 	cfs_rq->throttle_count--;
4848 	if (!cfs_rq->throttle_count) {
4849 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4850 					     cfs_rq->throttled_clock_task;
4851 
4852 		/* Add cfs_rq with load or one or more already running entities to the list */
4853 		if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4854 			list_add_leaf_cfs_rq(cfs_rq);
4855 	}
4856 
4857 	return 0;
4858 }
4859 
4860 static int tg_throttle_down(struct task_group *tg, void *data)
4861 {
4862 	struct rq *rq = data;
4863 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4864 
4865 	/* group is entering throttled state, stop time */
4866 	if (!cfs_rq->throttle_count) {
4867 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4868 		list_del_leaf_cfs_rq(cfs_rq);
4869 	}
4870 	cfs_rq->throttle_count++;
4871 
4872 	return 0;
4873 }
4874 
4875 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4876 {
4877 	struct rq *rq = rq_of(cfs_rq);
4878 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4879 	struct sched_entity *se;
4880 	long task_delta, idle_task_delta, dequeue = 1;
4881 
4882 	raw_spin_lock(&cfs_b->lock);
4883 	/* This will start the period timer if necessary */
4884 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4885 		/*
4886 		 * We have raced with bandwidth becoming available, and if we
4887 		 * actually throttled the timer might not unthrottle us for an
4888 		 * entire period. We additionally needed to make sure that any
4889 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4890 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4891 		 * for 1ns of runtime rather than just check cfs_b.
4892 		 */
4893 		dequeue = 0;
4894 	} else {
4895 		list_add_tail_rcu(&cfs_rq->throttled_list,
4896 				  &cfs_b->throttled_cfs_rq);
4897 	}
4898 	raw_spin_unlock(&cfs_b->lock);
4899 
4900 	if (!dequeue)
4901 		return false;  /* Throttle no longer required. */
4902 
4903 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4904 
4905 	/* freeze hierarchy runnable averages while throttled */
4906 	rcu_read_lock();
4907 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4908 	rcu_read_unlock();
4909 
4910 	task_delta = cfs_rq->h_nr_running;
4911 	idle_task_delta = cfs_rq->idle_h_nr_running;
4912 	for_each_sched_entity(se) {
4913 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4914 		/* throttled entity or throttle-on-deactivate */
4915 		if (!se->on_rq)
4916 			goto done;
4917 
4918 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4919 
4920 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4921 			idle_task_delta = cfs_rq->h_nr_running;
4922 
4923 		qcfs_rq->h_nr_running -= task_delta;
4924 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4925 
4926 		if (qcfs_rq->load.weight) {
4927 			/* Avoid re-evaluating load for this entity: */
4928 			se = parent_entity(se);
4929 			break;
4930 		}
4931 	}
4932 
4933 	for_each_sched_entity(se) {
4934 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4935 		/* throttled entity or throttle-on-deactivate */
4936 		if (!se->on_rq)
4937 			goto done;
4938 
4939 		update_load_avg(qcfs_rq, se, 0);
4940 		se_update_runnable(se);
4941 
4942 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4943 			idle_task_delta = cfs_rq->h_nr_running;
4944 
4945 		qcfs_rq->h_nr_running -= task_delta;
4946 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4947 	}
4948 
4949 	/* At this point se is NULL and we are at root level*/
4950 	sub_nr_running(rq, task_delta);
4951 
4952 done:
4953 	/*
4954 	 * Note: distribution will already see us throttled via the
4955 	 * throttled-list.  rq->lock protects completion.
4956 	 */
4957 	cfs_rq->throttled = 1;
4958 	cfs_rq->throttled_clock = rq_clock(rq);
4959 	return true;
4960 }
4961 
4962 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4963 {
4964 	struct rq *rq = rq_of(cfs_rq);
4965 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4966 	struct sched_entity *se;
4967 	long task_delta, idle_task_delta;
4968 
4969 	se = cfs_rq->tg->se[cpu_of(rq)];
4970 
4971 	cfs_rq->throttled = 0;
4972 
4973 	update_rq_clock(rq);
4974 
4975 	raw_spin_lock(&cfs_b->lock);
4976 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4977 	list_del_rcu(&cfs_rq->throttled_list);
4978 	raw_spin_unlock(&cfs_b->lock);
4979 
4980 	/* update hierarchical throttle state */
4981 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4982 
4983 	/* Nothing to run but something to decay (on_list)? Complete the branch */
4984 	if (!cfs_rq->load.weight) {
4985 		if (cfs_rq->on_list)
4986 			goto unthrottle_throttle;
4987 		return;
4988 	}
4989 
4990 	task_delta = cfs_rq->h_nr_running;
4991 	idle_task_delta = cfs_rq->idle_h_nr_running;
4992 	for_each_sched_entity(se) {
4993 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4994 
4995 		if (se->on_rq)
4996 			break;
4997 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
4998 
4999 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5000 			idle_task_delta = cfs_rq->h_nr_running;
5001 
5002 		qcfs_rq->h_nr_running += task_delta;
5003 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5004 
5005 		/* end evaluation on encountering a throttled cfs_rq */
5006 		if (cfs_rq_throttled(qcfs_rq))
5007 			goto unthrottle_throttle;
5008 	}
5009 
5010 	for_each_sched_entity(se) {
5011 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5012 
5013 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5014 		se_update_runnable(se);
5015 
5016 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5017 			idle_task_delta = cfs_rq->h_nr_running;
5018 
5019 		qcfs_rq->h_nr_running += task_delta;
5020 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5021 
5022 		/* end evaluation on encountering a throttled cfs_rq */
5023 		if (cfs_rq_throttled(qcfs_rq))
5024 			goto unthrottle_throttle;
5025 
5026 		/*
5027 		 * One parent has been throttled and cfs_rq removed from the
5028 		 * list. Add it back to not break the leaf list.
5029 		 */
5030 		if (throttled_hierarchy(qcfs_rq))
5031 			list_add_leaf_cfs_rq(qcfs_rq);
5032 	}
5033 
5034 	/* At this point se is NULL and we are at root level*/
5035 	add_nr_running(rq, task_delta);
5036 
5037 unthrottle_throttle:
5038 	/*
5039 	 * The cfs_rq_throttled() breaks in the above iteration can result in
5040 	 * incomplete leaf list maintenance, resulting in triggering the
5041 	 * assertion below.
5042 	 */
5043 	for_each_sched_entity(se) {
5044 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5045 
5046 		if (list_add_leaf_cfs_rq(qcfs_rq))
5047 			break;
5048 	}
5049 
5050 	assert_list_leaf_cfs_rq(rq);
5051 
5052 	/* Determine whether we need to wake up potentially idle CPU: */
5053 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5054 		resched_curr(rq);
5055 }
5056 
5057 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5058 {
5059 	struct cfs_rq *cfs_rq;
5060 	u64 runtime, remaining = 1;
5061 
5062 	rcu_read_lock();
5063 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5064 				throttled_list) {
5065 		struct rq *rq = rq_of(cfs_rq);
5066 		struct rq_flags rf;
5067 
5068 		rq_lock_irqsave(rq, &rf);
5069 		if (!cfs_rq_throttled(cfs_rq))
5070 			goto next;
5071 
5072 		/* By the above check, this should never be true */
5073 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5074 
5075 		raw_spin_lock(&cfs_b->lock);
5076 		runtime = -cfs_rq->runtime_remaining + 1;
5077 		if (runtime > cfs_b->runtime)
5078 			runtime = cfs_b->runtime;
5079 		cfs_b->runtime -= runtime;
5080 		remaining = cfs_b->runtime;
5081 		raw_spin_unlock(&cfs_b->lock);
5082 
5083 		cfs_rq->runtime_remaining += runtime;
5084 
5085 		/* we check whether we're throttled above */
5086 		if (cfs_rq->runtime_remaining > 0)
5087 			unthrottle_cfs_rq(cfs_rq);
5088 
5089 next:
5090 		rq_unlock_irqrestore(rq, &rf);
5091 
5092 		if (!remaining)
5093 			break;
5094 	}
5095 	rcu_read_unlock();
5096 }
5097 
5098 /*
5099  * Responsible for refilling a task_group's bandwidth and unthrottling its
5100  * cfs_rqs as appropriate. If there has been no activity within the last
5101  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5102  * used to track this state.
5103  */
5104 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5105 {
5106 	int throttled;
5107 
5108 	/* no need to continue the timer with no bandwidth constraint */
5109 	if (cfs_b->quota == RUNTIME_INF)
5110 		goto out_deactivate;
5111 
5112 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5113 	cfs_b->nr_periods += overrun;
5114 
5115 	/* Refill extra burst quota even if cfs_b->idle */
5116 	__refill_cfs_bandwidth_runtime(cfs_b);
5117 
5118 	/*
5119 	 * idle depends on !throttled (for the case of a large deficit), and if
5120 	 * we're going inactive then everything else can be deferred
5121 	 */
5122 	if (cfs_b->idle && !throttled)
5123 		goto out_deactivate;
5124 
5125 	if (!throttled) {
5126 		/* mark as potentially idle for the upcoming period */
5127 		cfs_b->idle = 1;
5128 		return 0;
5129 	}
5130 
5131 	/* account preceding periods in which throttling occurred */
5132 	cfs_b->nr_throttled += overrun;
5133 
5134 	/*
5135 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5136 	 */
5137 	while (throttled && cfs_b->runtime > 0) {
5138 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5139 		/* we can't nest cfs_b->lock while distributing bandwidth */
5140 		distribute_cfs_runtime(cfs_b);
5141 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5142 
5143 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5144 	}
5145 
5146 	/*
5147 	 * While we are ensured activity in the period following an
5148 	 * unthrottle, this also covers the case in which the new bandwidth is
5149 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5150 	 * timer to remain active while there are any throttled entities.)
5151 	 */
5152 	cfs_b->idle = 0;
5153 
5154 	return 0;
5155 
5156 out_deactivate:
5157 	return 1;
5158 }
5159 
5160 /* a cfs_rq won't donate quota below this amount */
5161 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5162 /* minimum remaining period time to redistribute slack quota */
5163 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5164 /* how long we wait to gather additional slack before distributing */
5165 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5166 
5167 /*
5168  * Are we near the end of the current quota period?
5169  *
5170  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5171  * hrtimer base being cleared by hrtimer_start. In the case of
5172  * migrate_hrtimers, base is never cleared, so we are fine.
5173  */
5174 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5175 {
5176 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5177 	s64 remaining;
5178 
5179 	/* if the call-back is running a quota refresh is already occurring */
5180 	if (hrtimer_callback_running(refresh_timer))
5181 		return 1;
5182 
5183 	/* is a quota refresh about to occur? */
5184 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5185 	if (remaining < (s64)min_expire)
5186 		return 1;
5187 
5188 	return 0;
5189 }
5190 
5191 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5192 {
5193 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5194 
5195 	/* if there's a quota refresh soon don't bother with slack */
5196 	if (runtime_refresh_within(cfs_b, min_left))
5197 		return;
5198 
5199 	/* don't push forwards an existing deferred unthrottle */
5200 	if (cfs_b->slack_started)
5201 		return;
5202 	cfs_b->slack_started = true;
5203 
5204 	hrtimer_start(&cfs_b->slack_timer,
5205 			ns_to_ktime(cfs_bandwidth_slack_period),
5206 			HRTIMER_MODE_REL);
5207 }
5208 
5209 /* we know any runtime found here is valid as update_curr() precedes return */
5210 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5211 {
5212 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5213 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5214 
5215 	if (slack_runtime <= 0)
5216 		return;
5217 
5218 	raw_spin_lock(&cfs_b->lock);
5219 	if (cfs_b->quota != RUNTIME_INF) {
5220 		cfs_b->runtime += slack_runtime;
5221 
5222 		/* we are under rq->lock, defer unthrottling using a timer */
5223 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5224 		    !list_empty(&cfs_b->throttled_cfs_rq))
5225 			start_cfs_slack_bandwidth(cfs_b);
5226 	}
5227 	raw_spin_unlock(&cfs_b->lock);
5228 
5229 	/* even if it's not valid for return we don't want to try again */
5230 	cfs_rq->runtime_remaining -= slack_runtime;
5231 }
5232 
5233 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5234 {
5235 	if (!cfs_bandwidth_used())
5236 		return;
5237 
5238 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5239 		return;
5240 
5241 	__return_cfs_rq_runtime(cfs_rq);
5242 }
5243 
5244 /*
5245  * This is done with a timer (instead of inline with bandwidth return) since
5246  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5247  */
5248 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5249 {
5250 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5251 	unsigned long flags;
5252 
5253 	/* confirm we're still not at a refresh boundary */
5254 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5255 	cfs_b->slack_started = false;
5256 
5257 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5258 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5259 		return;
5260 	}
5261 
5262 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5263 		runtime = cfs_b->runtime;
5264 
5265 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5266 
5267 	if (!runtime)
5268 		return;
5269 
5270 	distribute_cfs_runtime(cfs_b);
5271 }
5272 
5273 /*
5274  * When a group wakes up we want to make sure that its quota is not already
5275  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5276  * runtime as update_curr() throttling can not trigger until it's on-rq.
5277  */
5278 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5279 {
5280 	if (!cfs_bandwidth_used())
5281 		return;
5282 
5283 	/* an active group must be handled by the update_curr()->put() path */
5284 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5285 		return;
5286 
5287 	/* ensure the group is not already throttled */
5288 	if (cfs_rq_throttled(cfs_rq))
5289 		return;
5290 
5291 	/* update runtime allocation */
5292 	account_cfs_rq_runtime(cfs_rq, 0);
5293 	if (cfs_rq->runtime_remaining <= 0)
5294 		throttle_cfs_rq(cfs_rq);
5295 }
5296 
5297 static void sync_throttle(struct task_group *tg, int cpu)
5298 {
5299 	struct cfs_rq *pcfs_rq, *cfs_rq;
5300 
5301 	if (!cfs_bandwidth_used())
5302 		return;
5303 
5304 	if (!tg->parent)
5305 		return;
5306 
5307 	cfs_rq = tg->cfs_rq[cpu];
5308 	pcfs_rq = tg->parent->cfs_rq[cpu];
5309 
5310 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5311 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5312 }
5313 
5314 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5315 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5316 {
5317 	if (!cfs_bandwidth_used())
5318 		return false;
5319 
5320 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5321 		return false;
5322 
5323 	/*
5324 	 * it's possible for a throttled entity to be forced into a running
5325 	 * state (e.g. set_curr_task), in this case we're finished.
5326 	 */
5327 	if (cfs_rq_throttled(cfs_rq))
5328 		return true;
5329 
5330 	return throttle_cfs_rq(cfs_rq);
5331 }
5332 
5333 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5334 {
5335 	struct cfs_bandwidth *cfs_b =
5336 		container_of(timer, struct cfs_bandwidth, slack_timer);
5337 
5338 	do_sched_cfs_slack_timer(cfs_b);
5339 
5340 	return HRTIMER_NORESTART;
5341 }
5342 
5343 extern const u64 max_cfs_quota_period;
5344 
5345 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5346 {
5347 	struct cfs_bandwidth *cfs_b =
5348 		container_of(timer, struct cfs_bandwidth, period_timer);
5349 	unsigned long flags;
5350 	int overrun;
5351 	int idle = 0;
5352 	int count = 0;
5353 
5354 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5355 	for (;;) {
5356 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5357 		if (!overrun)
5358 			break;
5359 
5360 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5361 
5362 		if (++count > 3) {
5363 			u64 new, old = ktime_to_ns(cfs_b->period);
5364 
5365 			/*
5366 			 * Grow period by a factor of 2 to avoid losing precision.
5367 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5368 			 * to fail.
5369 			 */
5370 			new = old * 2;
5371 			if (new < max_cfs_quota_period) {
5372 				cfs_b->period = ns_to_ktime(new);
5373 				cfs_b->quota *= 2;
5374 				cfs_b->burst *= 2;
5375 
5376 				pr_warn_ratelimited(
5377 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5378 					smp_processor_id(),
5379 					div_u64(new, NSEC_PER_USEC),
5380 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5381 			} else {
5382 				pr_warn_ratelimited(
5383 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5384 					smp_processor_id(),
5385 					div_u64(old, NSEC_PER_USEC),
5386 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5387 			}
5388 
5389 			/* reset count so we don't come right back in here */
5390 			count = 0;
5391 		}
5392 	}
5393 	if (idle)
5394 		cfs_b->period_active = 0;
5395 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5396 
5397 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5398 }
5399 
5400 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5401 {
5402 	raw_spin_lock_init(&cfs_b->lock);
5403 	cfs_b->runtime = 0;
5404 	cfs_b->quota = RUNTIME_INF;
5405 	cfs_b->period = ns_to_ktime(default_cfs_period());
5406 	cfs_b->burst = 0;
5407 
5408 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5409 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5410 	cfs_b->period_timer.function = sched_cfs_period_timer;
5411 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5412 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5413 	cfs_b->slack_started = false;
5414 }
5415 
5416 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5417 {
5418 	cfs_rq->runtime_enabled = 0;
5419 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5420 }
5421 
5422 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5423 {
5424 	lockdep_assert_held(&cfs_b->lock);
5425 
5426 	if (cfs_b->period_active)
5427 		return;
5428 
5429 	cfs_b->period_active = 1;
5430 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5431 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5432 }
5433 
5434 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5435 {
5436 	/* init_cfs_bandwidth() was not called */
5437 	if (!cfs_b->throttled_cfs_rq.next)
5438 		return;
5439 
5440 	hrtimer_cancel(&cfs_b->period_timer);
5441 	hrtimer_cancel(&cfs_b->slack_timer);
5442 }
5443 
5444 /*
5445  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5446  *
5447  * The race is harmless, since modifying bandwidth settings of unhooked group
5448  * bits doesn't do much.
5449  */
5450 
5451 /* cpu online callback */
5452 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5453 {
5454 	struct task_group *tg;
5455 
5456 	lockdep_assert_rq_held(rq);
5457 
5458 	rcu_read_lock();
5459 	list_for_each_entry_rcu(tg, &task_groups, list) {
5460 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5461 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5462 
5463 		raw_spin_lock(&cfs_b->lock);
5464 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5465 		raw_spin_unlock(&cfs_b->lock);
5466 	}
5467 	rcu_read_unlock();
5468 }
5469 
5470 /* cpu offline callback */
5471 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5472 {
5473 	struct task_group *tg;
5474 
5475 	lockdep_assert_rq_held(rq);
5476 
5477 	rcu_read_lock();
5478 	list_for_each_entry_rcu(tg, &task_groups, list) {
5479 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5480 
5481 		if (!cfs_rq->runtime_enabled)
5482 			continue;
5483 
5484 		/*
5485 		 * clock_task is not advancing so we just need to make sure
5486 		 * there's some valid quota amount
5487 		 */
5488 		cfs_rq->runtime_remaining = 1;
5489 		/*
5490 		 * Offline rq is schedulable till CPU is completely disabled
5491 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5492 		 */
5493 		cfs_rq->runtime_enabled = 0;
5494 
5495 		if (cfs_rq_throttled(cfs_rq))
5496 			unthrottle_cfs_rq(cfs_rq);
5497 	}
5498 	rcu_read_unlock();
5499 }
5500 
5501 #else /* CONFIG_CFS_BANDWIDTH */
5502 
5503 static inline bool cfs_bandwidth_used(void)
5504 {
5505 	return false;
5506 }
5507 
5508 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5509 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5510 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5511 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5512 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5513 
5514 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5515 {
5516 	return 0;
5517 }
5518 
5519 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5520 {
5521 	return 0;
5522 }
5523 
5524 static inline int throttled_lb_pair(struct task_group *tg,
5525 				    int src_cpu, int dest_cpu)
5526 {
5527 	return 0;
5528 }
5529 
5530 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5531 
5532 #ifdef CONFIG_FAIR_GROUP_SCHED
5533 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5534 #endif
5535 
5536 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5537 {
5538 	return NULL;
5539 }
5540 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5541 static inline void update_runtime_enabled(struct rq *rq) {}
5542 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5543 
5544 #endif /* CONFIG_CFS_BANDWIDTH */
5545 
5546 /**************************************************
5547  * CFS operations on tasks:
5548  */
5549 
5550 #ifdef CONFIG_SCHED_HRTICK
5551 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5552 {
5553 	struct sched_entity *se = &p->se;
5554 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5555 
5556 	SCHED_WARN_ON(task_rq(p) != rq);
5557 
5558 	if (rq->cfs.h_nr_running > 1) {
5559 		u64 slice = sched_slice(cfs_rq, se);
5560 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5561 		s64 delta = slice - ran;
5562 
5563 		if (delta < 0) {
5564 			if (task_current(rq, p))
5565 				resched_curr(rq);
5566 			return;
5567 		}
5568 		hrtick_start(rq, delta);
5569 	}
5570 }
5571 
5572 /*
5573  * called from enqueue/dequeue and updates the hrtick when the
5574  * current task is from our class and nr_running is low enough
5575  * to matter.
5576  */
5577 static void hrtick_update(struct rq *rq)
5578 {
5579 	struct task_struct *curr = rq->curr;
5580 
5581 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5582 		return;
5583 
5584 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5585 		hrtick_start_fair(rq, curr);
5586 }
5587 #else /* !CONFIG_SCHED_HRTICK */
5588 static inline void
5589 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5590 {
5591 }
5592 
5593 static inline void hrtick_update(struct rq *rq)
5594 {
5595 }
5596 #endif
5597 
5598 #ifdef CONFIG_SMP
5599 static inline bool cpu_overutilized(int cpu)
5600 {
5601 	return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5602 }
5603 
5604 static inline void update_overutilized_status(struct rq *rq)
5605 {
5606 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5607 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5608 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5609 	}
5610 }
5611 #else
5612 static inline void update_overutilized_status(struct rq *rq) { }
5613 #endif
5614 
5615 /* Runqueue only has SCHED_IDLE tasks enqueued */
5616 static int sched_idle_rq(struct rq *rq)
5617 {
5618 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5619 			rq->nr_running);
5620 }
5621 
5622 /*
5623  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5624  * of idle_nr_running, which does not consider idle descendants of normal
5625  * entities.
5626  */
5627 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5628 {
5629 	return cfs_rq->nr_running &&
5630 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5631 }
5632 
5633 #ifdef CONFIG_SMP
5634 static int sched_idle_cpu(int cpu)
5635 {
5636 	return sched_idle_rq(cpu_rq(cpu));
5637 }
5638 #endif
5639 
5640 /*
5641  * The enqueue_task method is called before nr_running is
5642  * increased. Here we update the fair scheduling stats and
5643  * then put the task into the rbtree:
5644  */
5645 static void
5646 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5647 {
5648 	struct cfs_rq *cfs_rq;
5649 	struct sched_entity *se = &p->se;
5650 	int idle_h_nr_running = task_has_idle_policy(p);
5651 	int task_new = !(flags & ENQUEUE_WAKEUP);
5652 
5653 	/*
5654 	 * The code below (indirectly) updates schedutil which looks at
5655 	 * the cfs_rq utilization to select a frequency.
5656 	 * Let's add the task's estimated utilization to the cfs_rq's
5657 	 * estimated utilization, before we update schedutil.
5658 	 */
5659 	util_est_enqueue(&rq->cfs, p);
5660 
5661 	/*
5662 	 * If in_iowait is set, the code below may not trigger any cpufreq
5663 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5664 	 * passed.
5665 	 */
5666 	if (p->in_iowait)
5667 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5668 
5669 	for_each_sched_entity(se) {
5670 		if (se->on_rq)
5671 			break;
5672 		cfs_rq = cfs_rq_of(se);
5673 		enqueue_entity(cfs_rq, se, flags);
5674 
5675 		cfs_rq->h_nr_running++;
5676 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5677 
5678 		if (cfs_rq_is_idle(cfs_rq))
5679 			idle_h_nr_running = 1;
5680 
5681 		/* end evaluation on encountering a throttled cfs_rq */
5682 		if (cfs_rq_throttled(cfs_rq))
5683 			goto enqueue_throttle;
5684 
5685 		flags = ENQUEUE_WAKEUP;
5686 	}
5687 
5688 	for_each_sched_entity(se) {
5689 		cfs_rq = cfs_rq_of(se);
5690 
5691 		update_load_avg(cfs_rq, se, UPDATE_TG);
5692 		se_update_runnable(se);
5693 		update_cfs_group(se);
5694 
5695 		cfs_rq->h_nr_running++;
5696 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5697 
5698 		if (cfs_rq_is_idle(cfs_rq))
5699 			idle_h_nr_running = 1;
5700 
5701 		/* end evaluation on encountering a throttled cfs_rq */
5702 		if (cfs_rq_throttled(cfs_rq))
5703 			goto enqueue_throttle;
5704 
5705                /*
5706                 * One parent has been throttled and cfs_rq removed from the
5707                 * list. Add it back to not break the leaf list.
5708                 */
5709                if (throttled_hierarchy(cfs_rq))
5710                        list_add_leaf_cfs_rq(cfs_rq);
5711 	}
5712 
5713 	/* At this point se is NULL and we are at root level*/
5714 	add_nr_running(rq, 1);
5715 
5716 	/*
5717 	 * Since new tasks are assigned an initial util_avg equal to
5718 	 * half of the spare capacity of their CPU, tiny tasks have the
5719 	 * ability to cross the overutilized threshold, which will
5720 	 * result in the load balancer ruining all the task placement
5721 	 * done by EAS. As a way to mitigate that effect, do not account
5722 	 * for the first enqueue operation of new tasks during the
5723 	 * overutilized flag detection.
5724 	 *
5725 	 * A better way of solving this problem would be to wait for
5726 	 * the PELT signals of tasks to converge before taking them
5727 	 * into account, but that is not straightforward to implement,
5728 	 * and the following generally works well enough in practice.
5729 	 */
5730 	if (!task_new)
5731 		update_overutilized_status(rq);
5732 
5733 enqueue_throttle:
5734 	if (cfs_bandwidth_used()) {
5735 		/*
5736 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5737 		 * breaks in the above iteration can result in incomplete
5738 		 * leaf list maintenance, resulting in triggering the assertion
5739 		 * below.
5740 		 */
5741 		for_each_sched_entity(se) {
5742 			cfs_rq = cfs_rq_of(se);
5743 
5744 			if (list_add_leaf_cfs_rq(cfs_rq))
5745 				break;
5746 		}
5747 	}
5748 
5749 	assert_list_leaf_cfs_rq(rq);
5750 
5751 	hrtick_update(rq);
5752 }
5753 
5754 static void set_next_buddy(struct sched_entity *se);
5755 
5756 /*
5757  * The dequeue_task method is called before nr_running is
5758  * decreased. We remove the task from the rbtree and
5759  * update the fair scheduling stats:
5760  */
5761 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5762 {
5763 	struct cfs_rq *cfs_rq;
5764 	struct sched_entity *se = &p->se;
5765 	int task_sleep = flags & DEQUEUE_SLEEP;
5766 	int idle_h_nr_running = task_has_idle_policy(p);
5767 	bool was_sched_idle = sched_idle_rq(rq);
5768 
5769 	util_est_dequeue(&rq->cfs, p);
5770 
5771 	for_each_sched_entity(se) {
5772 		cfs_rq = cfs_rq_of(se);
5773 		dequeue_entity(cfs_rq, se, flags);
5774 
5775 		cfs_rq->h_nr_running--;
5776 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5777 
5778 		if (cfs_rq_is_idle(cfs_rq))
5779 			idle_h_nr_running = 1;
5780 
5781 		/* end evaluation on encountering a throttled cfs_rq */
5782 		if (cfs_rq_throttled(cfs_rq))
5783 			goto dequeue_throttle;
5784 
5785 		/* Don't dequeue parent if it has other entities besides us */
5786 		if (cfs_rq->load.weight) {
5787 			/* Avoid re-evaluating load for this entity: */
5788 			se = parent_entity(se);
5789 			/*
5790 			 * Bias pick_next to pick a task from this cfs_rq, as
5791 			 * p is sleeping when it is within its sched_slice.
5792 			 */
5793 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5794 				set_next_buddy(se);
5795 			break;
5796 		}
5797 		flags |= DEQUEUE_SLEEP;
5798 	}
5799 
5800 	for_each_sched_entity(se) {
5801 		cfs_rq = cfs_rq_of(se);
5802 
5803 		update_load_avg(cfs_rq, se, UPDATE_TG);
5804 		se_update_runnable(se);
5805 		update_cfs_group(se);
5806 
5807 		cfs_rq->h_nr_running--;
5808 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5809 
5810 		if (cfs_rq_is_idle(cfs_rq))
5811 			idle_h_nr_running = 1;
5812 
5813 		/* end evaluation on encountering a throttled cfs_rq */
5814 		if (cfs_rq_throttled(cfs_rq))
5815 			goto dequeue_throttle;
5816 
5817 	}
5818 
5819 	/* At this point se is NULL and we are at root level*/
5820 	sub_nr_running(rq, 1);
5821 
5822 	/* balance early to pull high priority tasks */
5823 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5824 		rq->next_balance = jiffies;
5825 
5826 dequeue_throttle:
5827 	util_est_update(&rq->cfs, p, task_sleep);
5828 	hrtick_update(rq);
5829 }
5830 
5831 #ifdef CONFIG_SMP
5832 
5833 /* Working cpumask for: load_balance, load_balance_newidle. */
5834 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5835 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5836 
5837 #ifdef CONFIG_NO_HZ_COMMON
5838 
5839 static struct {
5840 	cpumask_var_t idle_cpus_mask;
5841 	atomic_t nr_cpus;
5842 	int has_blocked;		/* Idle CPUS has blocked load */
5843 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
5844 	unsigned long next_balance;     /* in jiffy units */
5845 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5846 } nohz ____cacheline_aligned;
5847 
5848 #endif /* CONFIG_NO_HZ_COMMON */
5849 
5850 static unsigned long cpu_load(struct rq *rq)
5851 {
5852 	return cfs_rq_load_avg(&rq->cfs);
5853 }
5854 
5855 /*
5856  * cpu_load_without - compute CPU load without any contributions from *p
5857  * @cpu: the CPU which load is requested
5858  * @p: the task which load should be discounted
5859  *
5860  * The load of a CPU is defined by the load of tasks currently enqueued on that
5861  * CPU as well as tasks which are currently sleeping after an execution on that
5862  * CPU.
5863  *
5864  * This method returns the load of the specified CPU by discounting the load of
5865  * the specified task, whenever the task is currently contributing to the CPU
5866  * load.
5867  */
5868 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5869 {
5870 	struct cfs_rq *cfs_rq;
5871 	unsigned int load;
5872 
5873 	/* Task has no contribution or is new */
5874 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5875 		return cpu_load(rq);
5876 
5877 	cfs_rq = &rq->cfs;
5878 	load = READ_ONCE(cfs_rq->avg.load_avg);
5879 
5880 	/* Discount task's util from CPU's util */
5881 	lsub_positive(&load, task_h_load(p));
5882 
5883 	return load;
5884 }
5885 
5886 static unsigned long cpu_runnable(struct rq *rq)
5887 {
5888 	return cfs_rq_runnable_avg(&rq->cfs);
5889 }
5890 
5891 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5892 {
5893 	struct cfs_rq *cfs_rq;
5894 	unsigned int runnable;
5895 
5896 	/* Task has no contribution or is new */
5897 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5898 		return cpu_runnable(rq);
5899 
5900 	cfs_rq = &rq->cfs;
5901 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5902 
5903 	/* Discount task's runnable from CPU's runnable */
5904 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5905 
5906 	return runnable;
5907 }
5908 
5909 static unsigned long capacity_of(int cpu)
5910 {
5911 	return cpu_rq(cpu)->cpu_capacity;
5912 }
5913 
5914 static void record_wakee(struct task_struct *p)
5915 {
5916 	/*
5917 	 * Only decay a single time; tasks that have less then 1 wakeup per
5918 	 * jiffy will not have built up many flips.
5919 	 */
5920 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5921 		current->wakee_flips >>= 1;
5922 		current->wakee_flip_decay_ts = jiffies;
5923 	}
5924 
5925 	if (current->last_wakee != p) {
5926 		current->last_wakee = p;
5927 		current->wakee_flips++;
5928 	}
5929 }
5930 
5931 /*
5932  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5933  *
5934  * A waker of many should wake a different task than the one last awakened
5935  * at a frequency roughly N times higher than one of its wakees.
5936  *
5937  * In order to determine whether we should let the load spread vs consolidating
5938  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5939  * partner, and a factor of lls_size higher frequency in the other.
5940  *
5941  * With both conditions met, we can be relatively sure that the relationship is
5942  * non-monogamous, with partner count exceeding socket size.
5943  *
5944  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5945  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5946  * socket size.
5947  */
5948 static int wake_wide(struct task_struct *p)
5949 {
5950 	unsigned int master = current->wakee_flips;
5951 	unsigned int slave = p->wakee_flips;
5952 	int factor = __this_cpu_read(sd_llc_size);
5953 
5954 	if (master < slave)
5955 		swap(master, slave);
5956 	if (slave < factor || master < slave * factor)
5957 		return 0;
5958 	return 1;
5959 }
5960 
5961 /*
5962  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5963  * soonest. For the purpose of speed we only consider the waking and previous
5964  * CPU.
5965  *
5966  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5967  *			cache-affine and is (or	will be) idle.
5968  *
5969  * wake_affine_weight() - considers the weight to reflect the average
5970  *			  scheduling latency of the CPUs. This seems to work
5971  *			  for the overloaded case.
5972  */
5973 static int
5974 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5975 {
5976 	/*
5977 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5978 	 * context. Only allow the move if cache is shared. Otherwise an
5979 	 * interrupt intensive workload could force all tasks onto one
5980 	 * node depending on the IO topology or IRQ affinity settings.
5981 	 *
5982 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5983 	 * There is no guarantee that the cache hot data from an interrupt
5984 	 * is more important than cache hot data on the prev_cpu and from
5985 	 * a cpufreq perspective, it's better to have higher utilisation
5986 	 * on one CPU.
5987 	 */
5988 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5989 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5990 
5991 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5992 		return this_cpu;
5993 
5994 	if (available_idle_cpu(prev_cpu))
5995 		return prev_cpu;
5996 
5997 	return nr_cpumask_bits;
5998 }
5999 
6000 static int
6001 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6002 		   int this_cpu, int prev_cpu, int sync)
6003 {
6004 	s64 this_eff_load, prev_eff_load;
6005 	unsigned long task_load;
6006 
6007 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6008 
6009 	if (sync) {
6010 		unsigned long current_load = task_h_load(current);
6011 
6012 		if (current_load > this_eff_load)
6013 			return this_cpu;
6014 
6015 		this_eff_load -= current_load;
6016 	}
6017 
6018 	task_load = task_h_load(p);
6019 
6020 	this_eff_load += task_load;
6021 	if (sched_feat(WA_BIAS))
6022 		this_eff_load *= 100;
6023 	this_eff_load *= capacity_of(prev_cpu);
6024 
6025 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6026 	prev_eff_load -= task_load;
6027 	if (sched_feat(WA_BIAS))
6028 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6029 	prev_eff_load *= capacity_of(this_cpu);
6030 
6031 	/*
6032 	 * If sync, adjust the weight of prev_eff_load such that if
6033 	 * prev_eff == this_eff that select_idle_sibling() will consider
6034 	 * stacking the wakee on top of the waker if no other CPU is
6035 	 * idle.
6036 	 */
6037 	if (sync)
6038 		prev_eff_load += 1;
6039 
6040 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6041 }
6042 
6043 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6044 		       int this_cpu, int prev_cpu, int sync)
6045 {
6046 	int target = nr_cpumask_bits;
6047 
6048 	if (sched_feat(WA_IDLE))
6049 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6050 
6051 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6052 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6053 
6054 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6055 	if (target == nr_cpumask_bits)
6056 		return prev_cpu;
6057 
6058 	schedstat_inc(sd->ttwu_move_affine);
6059 	schedstat_inc(p->stats.nr_wakeups_affine);
6060 	return target;
6061 }
6062 
6063 static struct sched_group *
6064 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6065 
6066 /*
6067  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6068  */
6069 static int
6070 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6071 {
6072 	unsigned long load, min_load = ULONG_MAX;
6073 	unsigned int min_exit_latency = UINT_MAX;
6074 	u64 latest_idle_timestamp = 0;
6075 	int least_loaded_cpu = this_cpu;
6076 	int shallowest_idle_cpu = -1;
6077 	int i;
6078 
6079 	/* Check if we have any choice: */
6080 	if (group->group_weight == 1)
6081 		return cpumask_first(sched_group_span(group));
6082 
6083 	/* Traverse only the allowed CPUs */
6084 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6085 		struct rq *rq = cpu_rq(i);
6086 
6087 		if (!sched_core_cookie_match(rq, p))
6088 			continue;
6089 
6090 		if (sched_idle_cpu(i))
6091 			return i;
6092 
6093 		if (available_idle_cpu(i)) {
6094 			struct cpuidle_state *idle = idle_get_state(rq);
6095 			if (idle && idle->exit_latency < min_exit_latency) {
6096 				/*
6097 				 * We give priority to a CPU whose idle state
6098 				 * has the smallest exit latency irrespective
6099 				 * of any idle timestamp.
6100 				 */
6101 				min_exit_latency = idle->exit_latency;
6102 				latest_idle_timestamp = rq->idle_stamp;
6103 				shallowest_idle_cpu = i;
6104 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6105 				   rq->idle_stamp > latest_idle_timestamp) {
6106 				/*
6107 				 * If equal or no active idle state, then
6108 				 * the most recently idled CPU might have
6109 				 * a warmer cache.
6110 				 */
6111 				latest_idle_timestamp = rq->idle_stamp;
6112 				shallowest_idle_cpu = i;
6113 			}
6114 		} else if (shallowest_idle_cpu == -1) {
6115 			load = cpu_load(cpu_rq(i));
6116 			if (load < min_load) {
6117 				min_load = load;
6118 				least_loaded_cpu = i;
6119 			}
6120 		}
6121 	}
6122 
6123 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6124 }
6125 
6126 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6127 				  int cpu, int prev_cpu, int sd_flag)
6128 {
6129 	int new_cpu = cpu;
6130 
6131 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6132 		return prev_cpu;
6133 
6134 	/*
6135 	 * We need task's util for cpu_util_without, sync it up to
6136 	 * prev_cpu's last_update_time.
6137 	 */
6138 	if (!(sd_flag & SD_BALANCE_FORK))
6139 		sync_entity_load_avg(&p->se);
6140 
6141 	while (sd) {
6142 		struct sched_group *group;
6143 		struct sched_domain *tmp;
6144 		int weight;
6145 
6146 		if (!(sd->flags & sd_flag)) {
6147 			sd = sd->child;
6148 			continue;
6149 		}
6150 
6151 		group = find_idlest_group(sd, p, cpu);
6152 		if (!group) {
6153 			sd = sd->child;
6154 			continue;
6155 		}
6156 
6157 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6158 		if (new_cpu == cpu) {
6159 			/* Now try balancing at a lower domain level of 'cpu': */
6160 			sd = sd->child;
6161 			continue;
6162 		}
6163 
6164 		/* Now try balancing at a lower domain level of 'new_cpu': */
6165 		cpu = new_cpu;
6166 		weight = sd->span_weight;
6167 		sd = NULL;
6168 		for_each_domain(cpu, tmp) {
6169 			if (weight <= tmp->span_weight)
6170 				break;
6171 			if (tmp->flags & sd_flag)
6172 				sd = tmp;
6173 		}
6174 	}
6175 
6176 	return new_cpu;
6177 }
6178 
6179 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6180 {
6181 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6182 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6183 		return cpu;
6184 
6185 	return -1;
6186 }
6187 
6188 #ifdef CONFIG_SCHED_SMT
6189 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6190 EXPORT_SYMBOL_GPL(sched_smt_present);
6191 
6192 static inline void set_idle_cores(int cpu, int val)
6193 {
6194 	struct sched_domain_shared *sds;
6195 
6196 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6197 	if (sds)
6198 		WRITE_ONCE(sds->has_idle_cores, val);
6199 }
6200 
6201 static inline bool test_idle_cores(int cpu, bool def)
6202 {
6203 	struct sched_domain_shared *sds;
6204 
6205 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6206 	if (sds)
6207 		return READ_ONCE(sds->has_idle_cores);
6208 
6209 	return def;
6210 }
6211 
6212 /*
6213  * Scans the local SMT mask to see if the entire core is idle, and records this
6214  * information in sd_llc_shared->has_idle_cores.
6215  *
6216  * Since SMT siblings share all cache levels, inspecting this limited remote
6217  * state should be fairly cheap.
6218  */
6219 void __update_idle_core(struct rq *rq)
6220 {
6221 	int core = cpu_of(rq);
6222 	int cpu;
6223 
6224 	rcu_read_lock();
6225 	if (test_idle_cores(core, true))
6226 		goto unlock;
6227 
6228 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6229 		if (cpu == core)
6230 			continue;
6231 
6232 		if (!available_idle_cpu(cpu))
6233 			goto unlock;
6234 	}
6235 
6236 	set_idle_cores(core, 1);
6237 unlock:
6238 	rcu_read_unlock();
6239 }
6240 
6241 /*
6242  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6243  * there are no idle cores left in the system; tracked through
6244  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6245  */
6246 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6247 {
6248 	bool idle = true;
6249 	int cpu;
6250 
6251 	if (!static_branch_likely(&sched_smt_present))
6252 		return __select_idle_cpu(core, p);
6253 
6254 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6255 		if (!available_idle_cpu(cpu)) {
6256 			idle = false;
6257 			if (*idle_cpu == -1) {
6258 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6259 					*idle_cpu = cpu;
6260 					break;
6261 				}
6262 				continue;
6263 			}
6264 			break;
6265 		}
6266 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6267 			*idle_cpu = cpu;
6268 	}
6269 
6270 	if (idle)
6271 		return core;
6272 
6273 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6274 	return -1;
6275 }
6276 
6277 /*
6278  * Scan the local SMT mask for idle CPUs.
6279  */
6280 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6281 {
6282 	int cpu;
6283 
6284 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6285 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6286 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6287 			continue;
6288 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6289 			return cpu;
6290 	}
6291 
6292 	return -1;
6293 }
6294 
6295 #else /* CONFIG_SCHED_SMT */
6296 
6297 static inline void set_idle_cores(int cpu, int val)
6298 {
6299 }
6300 
6301 static inline bool test_idle_cores(int cpu, bool def)
6302 {
6303 	return def;
6304 }
6305 
6306 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6307 {
6308 	return __select_idle_cpu(core, p);
6309 }
6310 
6311 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6312 {
6313 	return -1;
6314 }
6315 
6316 #endif /* CONFIG_SCHED_SMT */
6317 
6318 /*
6319  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6320  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6321  * average idle time for this rq (as found in rq->avg_idle).
6322  */
6323 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6324 {
6325 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6326 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6327 	struct rq *this_rq = this_rq();
6328 	int this = smp_processor_id();
6329 	struct sched_domain *this_sd;
6330 	u64 time = 0;
6331 
6332 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6333 	if (!this_sd)
6334 		return -1;
6335 
6336 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6337 
6338 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6339 		u64 avg_cost, avg_idle, span_avg;
6340 		unsigned long now = jiffies;
6341 
6342 		/*
6343 		 * If we're busy, the assumption that the last idle period
6344 		 * predicts the future is flawed; age away the remaining
6345 		 * predicted idle time.
6346 		 */
6347 		if (unlikely(this_rq->wake_stamp < now)) {
6348 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6349 				this_rq->wake_stamp++;
6350 				this_rq->wake_avg_idle >>= 1;
6351 			}
6352 		}
6353 
6354 		avg_idle = this_rq->wake_avg_idle;
6355 		avg_cost = this_sd->avg_scan_cost + 1;
6356 
6357 		span_avg = sd->span_weight * avg_idle;
6358 		if (span_avg > 4*avg_cost)
6359 			nr = div_u64(span_avg, avg_cost);
6360 		else
6361 			nr = 4;
6362 
6363 		time = cpu_clock(this);
6364 	}
6365 
6366 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6367 		if (has_idle_core) {
6368 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6369 			if ((unsigned int)i < nr_cpumask_bits)
6370 				return i;
6371 
6372 		} else {
6373 			if (!--nr)
6374 				return -1;
6375 			idle_cpu = __select_idle_cpu(cpu, p);
6376 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6377 				break;
6378 		}
6379 	}
6380 
6381 	if (has_idle_core)
6382 		set_idle_cores(target, false);
6383 
6384 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6385 		time = cpu_clock(this) - time;
6386 
6387 		/*
6388 		 * Account for the scan cost of wakeups against the average
6389 		 * idle time.
6390 		 */
6391 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6392 
6393 		update_avg(&this_sd->avg_scan_cost, time);
6394 	}
6395 
6396 	return idle_cpu;
6397 }
6398 
6399 /*
6400  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6401  * the task fits. If no CPU is big enough, but there are idle ones, try to
6402  * maximize capacity.
6403  */
6404 static int
6405 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6406 {
6407 	unsigned long task_util, best_cap = 0;
6408 	int cpu, best_cpu = -1;
6409 	struct cpumask *cpus;
6410 
6411 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6412 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6413 
6414 	task_util = uclamp_task_util(p);
6415 
6416 	for_each_cpu_wrap(cpu, cpus, target) {
6417 		unsigned long cpu_cap = capacity_of(cpu);
6418 
6419 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6420 			continue;
6421 		if (fits_capacity(task_util, cpu_cap))
6422 			return cpu;
6423 
6424 		if (cpu_cap > best_cap) {
6425 			best_cap = cpu_cap;
6426 			best_cpu = cpu;
6427 		}
6428 	}
6429 
6430 	return best_cpu;
6431 }
6432 
6433 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6434 {
6435 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6436 		return fits_capacity(task_util, capacity_of(cpu));
6437 
6438 	return true;
6439 }
6440 
6441 /*
6442  * Try and locate an idle core/thread in the LLC cache domain.
6443  */
6444 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6445 {
6446 	bool has_idle_core = false;
6447 	struct sched_domain *sd;
6448 	unsigned long task_util;
6449 	int i, recent_used_cpu;
6450 
6451 	/*
6452 	 * On asymmetric system, update task utilization because we will check
6453 	 * that the task fits with cpu's capacity.
6454 	 */
6455 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6456 		sync_entity_load_avg(&p->se);
6457 		task_util = uclamp_task_util(p);
6458 	}
6459 
6460 	/*
6461 	 * per-cpu select_idle_mask usage
6462 	 */
6463 	lockdep_assert_irqs_disabled();
6464 
6465 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6466 	    asym_fits_capacity(task_util, target))
6467 		return target;
6468 
6469 	/*
6470 	 * If the previous CPU is cache affine and idle, don't be stupid:
6471 	 */
6472 	if (prev != target && cpus_share_cache(prev, target) &&
6473 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6474 	    asym_fits_capacity(task_util, prev))
6475 		return prev;
6476 
6477 	/*
6478 	 * Allow a per-cpu kthread to stack with the wakee if the
6479 	 * kworker thread and the tasks previous CPUs are the same.
6480 	 * The assumption is that the wakee queued work for the
6481 	 * per-cpu kthread that is now complete and the wakeup is
6482 	 * essentially a sync wakeup. An obvious example of this
6483 	 * pattern is IO completions.
6484 	 */
6485 	if (is_per_cpu_kthread(current) &&
6486 	    in_task() &&
6487 	    prev == smp_processor_id() &&
6488 	    this_rq()->nr_running <= 1 &&
6489 	    asym_fits_capacity(task_util, prev)) {
6490 		return prev;
6491 	}
6492 
6493 	/* Check a recently used CPU as a potential idle candidate: */
6494 	recent_used_cpu = p->recent_used_cpu;
6495 	p->recent_used_cpu = prev;
6496 	if (recent_used_cpu != prev &&
6497 	    recent_used_cpu != target &&
6498 	    cpus_share_cache(recent_used_cpu, target) &&
6499 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6500 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6501 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6502 		return recent_used_cpu;
6503 	}
6504 
6505 	/*
6506 	 * For asymmetric CPU capacity systems, our domain of interest is
6507 	 * sd_asym_cpucapacity rather than sd_llc.
6508 	 */
6509 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6510 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6511 		/*
6512 		 * On an asymmetric CPU capacity system where an exclusive
6513 		 * cpuset defines a symmetric island (i.e. one unique
6514 		 * capacity_orig value through the cpuset), the key will be set
6515 		 * but the CPUs within that cpuset will not have a domain with
6516 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6517 		 * capacity path.
6518 		 */
6519 		if (sd) {
6520 			i = select_idle_capacity(p, sd, target);
6521 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6522 		}
6523 	}
6524 
6525 	sd = rcu_dereference(per_cpu(sd_llc, target));
6526 	if (!sd)
6527 		return target;
6528 
6529 	if (sched_smt_active()) {
6530 		has_idle_core = test_idle_cores(target, false);
6531 
6532 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6533 			i = select_idle_smt(p, sd, prev);
6534 			if ((unsigned int)i < nr_cpumask_bits)
6535 				return i;
6536 		}
6537 	}
6538 
6539 	i = select_idle_cpu(p, sd, has_idle_core, target);
6540 	if ((unsigned)i < nr_cpumask_bits)
6541 		return i;
6542 
6543 	return target;
6544 }
6545 
6546 /*
6547  * cpu_util_without: compute cpu utilization without any contributions from *p
6548  * @cpu: the CPU which utilization is requested
6549  * @p: the task which utilization should be discounted
6550  *
6551  * The utilization of a CPU is defined by the utilization of tasks currently
6552  * enqueued on that CPU as well as tasks which are currently sleeping after an
6553  * execution on that CPU.
6554  *
6555  * This method returns the utilization of the specified CPU by discounting the
6556  * utilization of the specified task, whenever the task is currently
6557  * contributing to the CPU utilization.
6558  */
6559 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6560 {
6561 	struct cfs_rq *cfs_rq;
6562 	unsigned int util;
6563 
6564 	/* Task has no contribution or is new */
6565 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6566 		return cpu_util_cfs(cpu);
6567 
6568 	cfs_rq = &cpu_rq(cpu)->cfs;
6569 	util = READ_ONCE(cfs_rq->avg.util_avg);
6570 
6571 	/* Discount task's util from CPU's util */
6572 	lsub_positive(&util, task_util(p));
6573 
6574 	/*
6575 	 * Covered cases:
6576 	 *
6577 	 * a) if *p is the only task sleeping on this CPU, then:
6578 	 *      cpu_util (== task_util) > util_est (== 0)
6579 	 *    and thus we return:
6580 	 *      cpu_util_without = (cpu_util - task_util) = 0
6581 	 *
6582 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6583 	 *    IDLE, then:
6584 	 *      cpu_util >= task_util
6585 	 *      cpu_util > util_est (== 0)
6586 	 *    and thus we discount *p's blocked utilization to return:
6587 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6588 	 *
6589 	 * c) if other tasks are RUNNABLE on that CPU and
6590 	 *      util_est > cpu_util
6591 	 *    then we use util_est since it returns a more restrictive
6592 	 *    estimation of the spare capacity on that CPU, by just
6593 	 *    considering the expected utilization of tasks already
6594 	 *    runnable on that CPU.
6595 	 *
6596 	 * Cases a) and b) are covered by the above code, while case c) is
6597 	 * covered by the following code when estimated utilization is
6598 	 * enabled.
6599 	 */
6600 	if (sched_feat(UTIL_EST)) {
6601 		unsigned int estimated =
6602 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6603 
6604 		/*
6605 		 * Despite the following checks we still have a small window
6606 		 * for a possible race, when an execl's select_task_rq_fair()
6607 		 * races with LB's detach_task():
6608 		 *
6609 		 *   detach_task()
6610 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6611 		 *     ---------------------------------- A
6612 		 *     deactivate_task()                   \
6613 		 *       dequeue_task()                     + RaceTime
6614 		 *         util_est_dequeue()              /
6615 		 *     ---------------------------------- B
6616 		 *
6617 		 * The additional check on "current == p" it's required to
6618 		 * properly fix the execl regression and it helps in further
6619 		 * reducing the chances for the above race.
6620 		 */
6621 		if (unlikely(task_on_rq_queued(p) || current == p))
6622 			lsub_positive(&estimated, _task_util_est(p));
6623 
6624 		util = max(util, estimated);
6625 	}
6626 
6627 	/*
6628 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6629 	 * clamp to the maximum CPU capacity to ensure consistency with
6630 	 * cpu_util.
6631 	 */
6632 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6633 }
6634 
6635 /*
6636  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6637  * to @dst_cpu.
6638  */
6639 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6640 {
6641 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6642 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6643 
6644 	/*
6645 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6646 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6647 	 * the other cases, @cpu is not impacted by the migration, so the
6648 	 * util_avg should already be correct.
6649 	 */
6650 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6651 		lsub_positive(&util, task_util(p));
6652 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6653 		util += task_util(p);
6654 
6655 	if (sched_feat(UTIL_EST)) {
6656 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6657 
6658 		/*
6659 		 * During wake-up, the task isn't enqueued yet and doesn't
6660 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6661 		 * so just add it (if needed) to "simulate" what will be
6662 		 * cpu_util after the task has been enqueued.
6663 		 */
6664 		if (dst_cpu == cpu)
6665 			util_est += _task_util_est(p);
6666 
6667 		util = max(util, util_est);
6668 	}
6669 
6670 	return min(util, capacity_orig_of(cpu));
6671 }
6672 
6673 /*
6674  * compute_energy(): Estimates the energy that @pd would consume if @p was
6675  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6676  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6677  * to compute what would be the energy if we decided to actually migrate that
6678  * task.
6679  */
6680 static long
6681 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6682 {
6683 	struct cpumask *pd_mask = perf_domain_span(pd);
6684 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6685 	unsigned long max_util = 0, sum_util = 0;
6686 	unsigned long _cpu_cap = cpu_cap;
6687 	int cpu;
6688 
6689 	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6690 
6691 	/*
6692 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6693 	 * of another rd if they belong to the same pd. So, account for the
6694 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6695 	 * instead of the rd span.
6696 	 *
6697 	 * If an entire pd is outside of the current rd, it will not appear in
6698 	 * its pd list and will not be accounted by compute_energy().
6699 	 */
6700 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6701 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6702 		unsigned long cpu_util, util_running = util_freq;
6703 		struct task_struct *tsk = NULL;
6704 
6705 		/*
6706 		 * When @p is placed on @cpu:
6707 		 *
6708 		 * util_running = max(cpu_util, cpu_util_est) +
6709 		 *		  max(task_util, _task_util_est)
6710 		 *
6711 		 * while cpu_util_next is: max(cpu_util + task_util,
6712 		 *			       cpu_util_est + _task_util_est)
6713 		 */
6714 		if (cpu == dst_cpu) {
6715 			tsk = p;
6716 			util_running =
6717 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6718 		}
6719 
6720 		/*
6721 		 * Busy time computation: utilization clamping is not
6722 		 * required since the ratio (sum_util / cpu_capacity)
6723 		 * is already enough to scale the EM reported power
6724 		 * consumption at the (eventually clamped) cpu_capacity.
6725 		 */
6726 		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6727 					      ENERGY_UTIL, NULL);
6728 
6729 		sum_util += min(cpu_util, _cpu_cap);
6730 
6731 		/*
6732 		 * Performance domain frequency: utilization clamping
6733 		 * must be considered since it affects the selection
6734 		 * of the performance domain frequency.
6735 		 * NOTE: in case RT tasks are running, by default the
6736 		 * FREQUENCY_UTIL's utilization can be max OPP.
6737 		 */
6738 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6739 					      FREQUENCY_UTIL, tsk);
6740 		max_util = max(max_util, min(cpu_util, _cpu_cap));
6741 	}
6742 
6743 	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6744 }
6745 
6746 /*
6747  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6748  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6749  * spare capacity in each performance domain and uses it as a potential
6750  * candidate to execute the task. Then, it uses the Energy Model to figure
6751  * out which of the CPU candidates is the most energy-efficient.
6752  *
6753  * The rationale for this heuristic is as follows. In a performance domain,
6754  * all the most energy efficient CPU candidates (according to the Energy
6755  * Model) are those for which we'll request a low frequency. When there are
6756  * several CPUs for which the frequency request will be the same, we don't
6757  * have enough data to break the tie between them, because the Energy Model
6758  * only includes active power costs. With this model, if we assume that
6759  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6760  * the maximum spare capacity in a performance domain is guaranteed to be among
6761  * the best candidates of the performance domain.
6762  *
6763  * In practice, it could be preferable from an energy standpoint to pack
6764  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6765  * but that could also hurt our chances to go cluster idle, and we have no
6766  * ways to tell with the current Energy Model if this is actually a good
6767  * idea or not. So, find_energy_efficient_cpu() basically favors
6768  * cluster-packing, and spreading inside a cluster. That should at least be
6769  * a good thing for latency, and this is consistent with the idea that most
6770  * of the energy savings of EAS come from the asymmetry of the system, and
6771  * not so much from breaking the tie between identical CPUs. That's also the
6772  * reason why EAS is enabled in the topology code only for systems where
6773  * SD_ASYM_CPUCAPACITY is set.
6774  *
6775  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6776  * they don't have any useful utilization data yet and it's not possible to
6777  * forecast their impact on energy consumption. Consequently, they will be
6778  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6779  * to be energy-inefficient in some use-cases. The alternative would be to
6780  * bias new tasks towards specific types of CPUs first, or to try to infer
6781  * their util_avg from the parent task, but those heuristics could hurt
6782  * other use-cases too. So, until someone finds a better way to solve this,
6783  * let's keep things simple by re-using the existing slow path.
6784  */
6785 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6786 {
6787 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6788 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6789 	int cpu, best_energy_cpu = prev_cpu, target = -1;
6790 	unsigned long cpu_cap, util, base_energy = 0;
6791 	struct sched_domain *sd;
6792 	struct perf_domain *pd;
6793 
6794 	rcu_read_lock();
6795 	pd = rcu_dereference(rd->pd);
6796 	if (!pd || READ_ONCE(rd->overutilized))
6797 		goto unlock;
6798 
6799 	/*
6800 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6801 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6802 	 */
6803 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6804 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6805 		sd = sd->parent;
6806 	if (!sd)
6807 		goto unlock;
6808 
6809 	target = prev_cpu;
6810 
6811 	sync_entity_load_avg(&p->se);
6812 	if (!task_util_est(p))
6813 		goto unlock;
6814 
6815 	for (; pd; pd = pd->next) {
6816 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6817 		bool compute_prev_delta = false;
6818 		unsigned long base_energy_pd;
6819 		int max_spare_cap_cpu = -1;
6820 
6821 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6822 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6823 				continue;
6824 
6825 			util = cpu_util_next(cpu, p, cpu);
6826 			cpu_cap = capacity_of(cpu);
6827 			spare_cap = cpu_cap;
6828 			lsub_positive(&spare_cap, util);
6829 
6830 			/*
6831 			 * Skip CPUs that cannot satisfy the capacity request.
6832 			 * IOW, placing the task there would make the CPU
6833 			 * overutilized. Take uclamp into account to see how
6834 			 * much capacity we can get out of the CPU; this is
6835 			 * aligned with sched_cpu_util().
6836 			 */
6837 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6838 			if (!fits_capacity(util, cpu_cap))
6839 				continue;
6840 
6841 			if (cpu == prev_cpu) {
6842 				/* Always use prev_cpu as a candidate. */
6843 				compute_prev_delta = true;
6844 			} else if (spare_cap > max_spare_cap) {
6845 				/*
6846 				 * Find the CPU with the maximum spare capacity
6847 				 * in the performance domain.
6848 				 */
6849 				max_spare_cap = spare_cap;
6850 				max_spare_cap_cpu = cpu;
6851 			}
6852 		}
6853 
6854 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6855 			continue;
6856 
6857 		/* Compute the 'base' energy of the pd, without @p */
6858 		base_energy_pd = compute_energy(p, -1, pd);
6859 		base_energy += base_energy_pd;
6860 
6861 		/* Evaluate the energy impact of using prev_cpu. */
6862 		if (compute_prev_delta) {
6863 			prev_delta = compute_energy(p, prev_cpu, pd);
6864 			if (prev_delta < base_energy_pd)
6865 				goto unlock;
6866 			prev_delta -= base_energy_pd;
6867 			best_delta = min(best_delta, prev_delta);
6868 		}
6869 
6870 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6871 		if (max_spare_cap_cpu >= 0) {
6872 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6873 			if (cur_delta < base_energy_pd)
6874 				goto unlock;
6875 			cur_delta -= base_energy_pd;
6876 			if (cur_delta < best_delta) {
6877 				best_delta = cur_delta;
6878 				best_energy_cpu = max_spare_cap_cpu;
6879 			}
6880 		}
6881 	}
6882 	rcu_read_unlock();
6883 
6884 	/*
6885 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6886 	 * least 6% of the energy used by prev_cpu.
6887 	 */
6888 	if ((prev_delta == ULONG_MAX) ||
6889 	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6890 		target = best_energy_cpu;
6891 
6892 	return target;
6893 
6894 unlock:
6895 	rcu_read_unlock();
6896 
6897 	return target;
6898 }
6899 
6900 /*
6901  * select_task_rq_fair: Select target runqueue for the waking task in domains
6902  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6903  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6904  *
6905  * Balances load by selecting the idlest CPU in the idlest group, or under
6906  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6907  *
6908  * Returns the target CPU number.
6909  */
6910 static int
6911 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6912 {
6913 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6914 	struct sched_domain *tmp, *sd = NULL;
6915 	int cpu = smp_processor_id();
6916 	int new_cpu = prev_cpu;
6917 	int want_affine = 0;
6918 	/* SD_flags and WF_flags share the first nibble */
6919 	int sd_flag = wake_flags & 0xF;
6920 
6921 	/*
6922 	 * required for stable ->cpus_allowed
6923 	 */
6924 	lockdep_assert_held(&p->pi_lock);
6925 	if (wake_flags & WF_TTWU) {
6926 		record_wakee(p);
6927 
6928 		if (sched_energy_enabled()) {
6929 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6930 			if (new_cpu >= 0)
6931 				return new_cpu;
6932 			new_cpu = prev_cpu;
6933 		}
6934 
6935 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6936 	}
6937 
6938 	rcu_read_lock();
6939 	for_each_domain(cpu, tmp) {
6940 		/*
6941 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6942 		 * cpu is a valid SD_WAKE_AFFINE target.
6943 		 */
6944 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6945 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6946 			if (cpu != prev_cpu)
6947 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6948 
6949 			sd = NULL; /* Prefer wake_affine over balance flags */
6950 			break;
6951 		}
6952 
6953 		/*
6954 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
6955 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
6956 		 * will usually go to the fast path.
6957 		 */
6958 		if (tmp->flags & sd_flag)
6959 			sd = tmp;
6960 		else if (!want_affine)
6961 			break;
6962 	}
6963 
6964 	if (unlikely(sd)) {
6965 		/* Slow path */
6966 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6967 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6968 		/* Fast path */
6969 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6970 	}
6971 	rcu_read_unlock();
6972 
6973 	return new_cpu;
6974 }
6975 
6976 static void detach_entity_cfs_rq(struct sched_entity *se);
6977 
6978 /*
6979  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6980  * cfs_rq_of(p) references at time of call are still valid and identify the
6981  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6982  */
6983 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6984 {
6985 	/*
6986 	 * As blocked tasks retain absolute vruntime the migration needs to
6987 	 * deal with this by subtracting the old and adding the new
6988 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6989 	 * the task on the new runqueue.
6990 	 */
6991 	if (READ_ONCE(p->__state) == TASK_WAKING) {
6992 		struct sched_entity *se = &p->se;
6993 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6994 		u64 min_vruntime;
6995 
6996 #ifndef CONFIG_64BIT
6997 		u64 min_vruntime_copy;
6998 
6999 		do {
7000 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
7001 			smp_rmb();
7002 			min_vruntime = cfs_rq->min_vruntime;
7003 		} while (min_vruntime != min_vruntime_copy);
7004 #else
7005 		min_vruntime = cfs_rq->min_vruntime;
7006 #endif
7007 
7008 		se->vruntime -= min_vruntime;
7009 	}
7010 
7011 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7012 		/*
7013 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7014 		 * rq->lock and can modify state directly.
7015 		 */
7016 		lockdep_assert_rq_held(task_rq(p));
7017 		detach_entity_cfs_rq(&p->se);
7018 
7019 	} else {
7020 		/*
7021 		 * We are supposed to update the task to "current" time, then
7022 		 * its up to date and ready to go to new CPU/cfs_rq. But we
7023 		 * have difficulty in getting what current time is, so simply
7024 		 * throw away the out-of-date time. This will result in the
7025 		 * wakee task is less decayed, but giving the wakee more load
7026 		 * sounds not bad.
7027 		 */
7028 		remove_entity_load_avg(&p->se);
7029 	}
7030 
7031 	/* Tell new CPU we are migrated */
7032 	p->se.avg.last_update_time = 0;
7033 
7034 	/* We have migrated, no longer consider this task hot */
7035 	p->se.exec_start = 0;
7036 
7037 	update_scan_period(p, new_cpu);
7038 }
7039 
7040 static void task_dead_fair(struct task_struct *p)
7041 {
7042 	remove_entity_load_avg(&p->se);
7043 }
7044 
7045 static int
7046 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7047 {
7048 	if (rq->nr_running)
7049 		return 1;
7050 
7051 	return newidle_balance(rq, rf) != 0;
7052 }
7053 #endif /* CONFIG_SMP */
7054 
7055 static unsigned long wakeup_gran(struct sched_entity *se)
7056 {
7057 	unsigned long gran = sysctl_sched_wakeup_granularity;
7058 
7059 	/*
7060 	 * Since its curr running now, convert the gran from real-time
7061 	 * to virtual-time in his units.
7062 	 *
7063 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7064 	 * they get preempted easier. That is, if 'se' < 'curr' then
7065 	 * the resulting gran will be larger, therefore penalizing the
7066 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7067 	 * be smaller, again penalizing the lighter task.
7068 	 *
7069 	 * This is especially important for buddies when the leftmost
7070 	 * task is higher priority than the buddy.
7071 	 */
7072 	return calc_delta_fair(gran, se);
7073 }
7074 
7075 /*
7076  * Should 'se' preempt 'curr'.
7077  *
7078  *             |s1
7079  *        |s2
7080  *   |s3
7081  *         g
7082  *      |<--->|c
7083  *
7084  *  w(c, s1) = -1
7085  *  w(c, s2) =  0
7086  *  w(c, s3) =  1
7087  *
7088  */
7089 static int
7090 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7091 {
7092 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7093 
7094 	if (vdiff <= 0)
7095 		return -1;
7096 
7097 	gran = wakeup_gran(se);
7098 	if (vdiff > gran)
7099 		return 1;
7100 
7101 	return 0;
7102 }
7103 
7104 static void set_last_buddy(struct sched_entity *se)
7105 {
7106 	for_each_sched_entity(se) {
7107 		if (SCHED_WARN_ON(!se->on_rq))
7108 			return;
7109 		if (se_is_idle(se))
7110 			return;
7111 		cfs_rq_of(se)->last = se;
7112 	}
7113 }
7114 
7115 static void set_next_buddy(struct sched_entity *se)
7116 {
7117 	for_each_sched_entity(se) {
7118 		if (SCHED_WARN_ON(!se->on_rq))
7119 			return;
7120 		if (se_is_idle(se))
7121 			return;
7122 		cfs_rq_of(se)->next = se;
7123 	}
7124 }
7125 
7126 static void set_skip_buddy(struct sched_entity *se)
7127 {
7128 	for_each_sched_entity(se)
7129 		cfs_rq_of(se)->skip = se;
7130 }
7131 
7132 /*
7133  * Preempt the current task with a newly woken task if needed:
7134  */
7135 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7136 {
7137 	struct task_struct *curr = rq->curr;
7138 	struct sched_entity *se = &curr->se, *pse = &p->se;
7139 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7140 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7141 	int next_buddy_marked = 0;
7142 	int cse_is_idle, pse_is_idle;
7143 
7144 	if (unlikely(se == pse))
7145 		return;
7146 
7147 	/*
7148 	 * This is possible from callers such as attach_tasks(), in which we
7149 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7150 	 * lead to a throttle).  This both saves work and prevents false
7151 	 * next-buddy nomination below.
7152 	 */
7153 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7154 		return;
7155 
7156 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7157 		set_next_buddy(pse);
7158 		next_buddy_marked = 1;
7159 	}
7160 
7161 	/*
7162 	 * We can come here with TIF_NEED_RESCHED already set from new task
7163 	 * wake up path.
7164 	 *
7165 	 * Note: this also catches the edge-case of curr being in a throttled
7166 	 * group (e.g. via set_curr_task), since update_curr() (in the
7167 	 * enqueue of curr) will have resulted in resched being set.  This
7168 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7169 	 * below.
7170 	 */
7171 	if (test_tsk_need_resched(curr))
7172 		return;
7173 
7174 	/* Idle tasks are by definition preempted by non-idle tasks. */
7175 	if (unlikely(task_has_idle_policy(curr)) &&
7176 	    likely(!task_has_idle_policy(p)))
7177 		goto preempt;
7178 
7179 	/*
7180 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7181 	 * is driven by the tick):
7182 	 */
7183 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7184 		return;
7185 
7186 	find_matching_se(&se, &pse);
7187 	BUG_ON(!pse);
7188 
7189 	cse_is_idle = se_is_idle(se);
7190 	pse_is_idle = se_is_idle(pse);
7191 
7192 	/*
7193 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7194 	 * in the inverse case).
7195 	 */
7196 	if (cse_is_idle && !pse_is_idle)
7197 		goto preempt;
7198 	if (cse_is_idle != pse_is_idle)
7199 		return;
7200 
7201 	update_curr(cfs_rq_of(se));
7202 	if (wakeup_preempt_entity(se, pse) == 1) {
7203 		/*
7204 		 * Bias pick_next to pick the sched entity that is
7205 		 * triggering this preemption.
7206 		 */
7207 		if (!next_buddy_marked)
7208 			set_next_buddy(pse);
7209 		goto preempt;
7210 	}
7211 
7212 	return;
7213 
7214 preempt:
7215 	resched_curr(rq);
7216 	/*
7217 	 * Only set the backward buddy when the current task is still
7218 	 * on the rq. This can happen when a wakeup gets interleaved
7219 	 * with schedule on the ->pre_schedule() or idle_balance()
7220 	 * point, either of which can * drop the rq lock.
7221 	 *
7222 	 * Also, during early boot the idle thread is in the fair class,
7223 	 * for obvious reasons its a bad idea to schedule back to it.
7224 	 */
7225 	if (unlikely(!se->on_rq || curr == rq->idle))
7226 		return;
7227 
7228 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7229 		set_last_buddy(se);
7230 }
7231 
7232 #ifdef CONFIG_SMP
7233 static struct task_struct *pick_task_fair(struct rq *rq)
7234 {
7235 	struct sched_entity *se;
7236 	struct cfs_rq *cfs_rq;
7237 
7238 again:
7239 	cfs_rq = &rq->cfs;
7240 	if (!cfs_rq->nr_running)
7241 		return NULL;
7242 
7243 	do {
7244 		struct sched_entity *curr = cfs_rq->curr;
7245 
7246 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7247 		if (curr) {
7248 			if (curr->on_rq)
7249 				update_curr(cfs_rq);
7250 			else
7251 				curr = NULL;
7252 
7253 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7254 				goto again;
7255 		}
7256 
7257 		se = pick_next_entity(cfs_rq, curr);
7258 		cfs_rq = group_cfs_rq(se);
7259 	} while (cfs_rq);
7260 
7261 	return task_of(se);
7262 }
7263 #endif
7264 
7265 struct task_struct *
7266 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7267 {
7268 	struct cfs_rq *cfs_rq = &rq->cfs;
7269 	struct sched_entity *se;
7270 	struct task_struct *p;
7271 	int new_tasks;
7272 
7273 again:
7274 	if (!sched_fair_runnable(rq))
7275 		goto idle;
7276 
7277 #ifdef CONFIG_FAIR_GROUP_SCHED
7278 	if (!prev || prev->sched_class != &fair_sched_class)
7279 		goto simple;
7280 
7281 	/*
7282 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7283 	 * likely that a next task is from the same cgroup as the current.
7284 	 *
7285 	 * Therefore attempt to avoid putting and setting the entire cgroup
7286 	 * hierarchy, only change the part that actually changes.
7287 	 */
7288 
7289 	do {
7290 		struct sched_entity *curr = cfs_rq->curr;
7291 
7292 		/*
7293 		 * Since we got here without doing put_prev_entity() we also
7294 		 * have to consider cfs_rq->curr. If it is still a runnable
7295 		 * entity, update_curr() will update its vruntime, otherwise
7296 		 * forget we've ever seen it.
7297 		 */
7298 		if (curr) {
7299 			if (curr->on_rq)
7300 				update_curr(cfs_rq);
7301 			else
7302 				curr = NULL;
7303 
7304 			/*
7305 			 * This call to check_cfs_rq_runtime() will do the
7306 			 * throttle and dequeue its entity in the parent(s).
7307 			 * Therefore the nr_running test will indeed
7308 			 * be correct.
7309 			 */
7310 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7311 				cfs_rq = &rq->cfs;
7312 
7313 				if (!cfs_rq->nr_running)
7314 					goto idle;
7315 
7316 				goto simple;
7317 			}
7318 		}
7319 
7320 		se = pick_next_entity(cfs_rq, curr);
7321 		cfs_rq = group_cfs_rq(se);
7322 	} while (cfs_rq);
7323 
7324 	p = task_of(se);
7325 
7326 	/*
7327 	 * Since we haven't yet done put_prev_entity and if the selected task
7328 	 * is a different task than we started out with, try and touch the
7329 	 * least amount of cfs_rqs.
7330 	 */
7331 	if (prev != p) {
7332 		struct sched_entity *pse = &prev->se;
7333 
7334 		while (!(cfs_rq = is_same_group(se, pse))) {
7335 			int se_depth = se->depth;
7336 			int pse_depth = pse->depth;
7337 
7338 			if (se_depth <= pse_depth) {
7339 				put_prev_entity(cfs_rq_of(pse), pse);
7340 				pse = parent_entity(pse);
7341 			}
7342 			if (se_depth >= pse_depth) {
7343 				set_next_entity(cfs_rq_of(se), se);
7344 				se = parent_entity(se);
7345 			}
7346 		}
7347 
7348 		put_prev_entity(cfs_rq, pse);
7349 		set_next_entity(cfs_rq, se);
7350 	}
7351 
7352 	goto done;
7353 simple:
7354 #endif
7355 	if (prev)
7356 		put_prev_task(rq, prev);
7357 
7358 	do {
7359 		se = pick_next_entity(cfs_rq, NULL);
7360 		set_next_entity(cfs_rq, se);
7361 		cfs_rq = group_cfs_rq(se);
7362 	} while (cfs_rq);
7363 
7364 	p = task_of(se);
7365 
7366 done: __maybe_unused;
7367 #ifdef CONFIG_SMP
7368 	/*
7369 	 * Move the next running task to the front of
7370 	 * the list, so our cfs_tasks list becomes MRU
7371 	 * one.
7372 	 */
7373 	list_move(&p->se.group_node, &rq->cfs_tasks);
7374 #endif
7375 
7376 	if (hrtick_enabled_fair(rq))
7377 		hrtick_start_fair(rq, p);
7378 
7379 	update_misfit_status(p, rq);
7380 
7381 	return p;
7382 
7383 idle:
7384 	if (!rf)
7385 		return NULL;
7386 
7387 	new_tasks = newidle_balance(rq, rf);
7388 
7389 	/*
7390 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7391 	 * possible for any higher priority task to appear. In that case we
7392 	 * must re-start the pick_next_entity() loop.
7393 	 */
7394 	if (new_tasks < 0)
7395 		return RETRY_TASK;
7396 
7397 	if (new_tasks > 0)
7398 		goto again;
7399 
7400 	/*
7401 	 * rq is about to be idle, check if we need to update the
7402 	 * lost_idle_time of clock_pelt
7403 	 */
7404 	update_idle_rq_clock_pelt(rq);
7405 
7406 	return NULL;
7407 }
7408 
7409 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7410 {
7411 	return pick_next_task_fair(rq, NULL, NULL);
7412 }
7413 
7414 /*
7415  * Account for a descheduled task:
7416  */
7417 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7418 {
7419 	struct sched_entity *se = &prev->se;
7420 	struct cfs_rq *cfs_rq;
7421 
7422 	for_each_sched_entity(se) {
7423 		cfs_rq = cfs_rq_of(se);
7424 		put_prev_entity(cfs_rq, se);
7425 	}
7426 }
7427 
7428 /*
7429  * sched_yield() is very simple
7430  *
7431  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7432  */
7433 static void yield_task_fair(struct rq *rq)
7434 {
7435 	struct task_struct *curr = rq->curr;
7436 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7437 	struct sched_entity *se = &curr->se;
7438 
7439 	/*
7440 	 * Are we the only task in the tree?
7441 	 */
7442 	if (unlikely(rq->nr_running == 1))
7443 		return;
7444 
7445 	clear_buddies(cfs_rq, se);
7446 
7447 	if (curr->policy != SCHED_BATCH) {
7448 		update_rq_clock(rq);
7449 		/*
7450 		 * Update run-time statistics of the 'current'.
7451 		 */
7452 		update_curr(cfs_rq);
7453 		/*
7454 		 * Tell update_rq_clock() that we've just updated,
7455 		 * so we don't do microscopic update in schedule()
7456 		 * and double the fastpath cost.
7457 		 */
7458 		rq_clock_skip_update(rq);
7459 	}
7460 
7461 	set_skip_buddy(se);
7462 }
7463 
7464 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7465 {
7466 	struct sched_entity *se = &p->se;
7467 
7468 	/* throttled hierarchies are not runnable */
7469 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7470 		return false;
7471 
7472 	/* Tell the scheduler that we'd really like pse to run next. */
7473 	set_next_buddy(se);
7474 
7475 	yield_task_fair(rq);
7476 
7477 	return true;
7478 }
7479 
7480 #ifdef CONFIG_SMP
7481 /**************************************************
7482  * Fair scheduling class load-balancing methods.
7483  *
7484  * BASICS
7485  *
7486  * The purpose of load-balancing is to achieve the same basic fairness the
7487  * per-CPU scheduler provides, namely provide a proportional amount of compute
7488  * time to each task. This is expressed in the following equation:
7489  *
7490  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7491  *
7492  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7493  * W_i,0 is defined as:
7494  *
7495  *   W_i,0 = \Sum_j w_i,j                                             (2)
7496  *
7497  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7498  * is derived from the nice value as per sched_prio_to_weight[].
7499  *
7500  * The weight average is an exponential decay average of the instantaneous
7501  * weight:
7502  *
7503  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7504  *
7505  * C_i is the compute capacity of CPU i, typically it is the
7506  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7507  * can also include other factors [XXX].
7508  *
7509  * To achieve this balance we define a measure of imbalance which follows
7510  * directly from (1):
7511  *
7512  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7513  *
7514  * We them move tasks around to minimize the imbalance. In the continuous
7515  * function space it is obvious this converges, in the discrete case we get
7516  * a few fun cases generally called infeasible weight scenarios.
7517  *
7518  * [XXX expand on:
7519  *     - infeasible weights;
7520  *     - local vs global optima in the discrete case. ]
7521  *
7522  *
7523  * SCHED DOMAINS
7524  *
7525  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7526  * for all i,j solution, we create a tree of CPUs that follows the hardware
7527  * topology where each level pairs two lower groups (or better). This results
7528  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7529  * tree to only the first of the previous level and we decrease the frequency
7530  * of load-balance at each level inv. proportional to the number of CPUs in
7531  * the groups.
7532  *
7533  * This yields:
7534  *
7535  *     log_2 n     1     n
7536  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7537  *     i = 0      2^i   2^i
7538  *                               `- size of each group
7539  *         |         |     `- number of CPUs doing load-balance
7540  *         |         `- freq
7541  *         `- sum over all levels
7542  *
7543  * Coupled with a limit on how many tasks we can migrate every balance pass,
7544  * this makes (5) the runtime complexity of the balancer.
7545  *
7546  * An important property here is that each CPU is still (indirectly) connected
7547  * to every other CPU in at most O(log n) steps:
7548  *
7549  * The adjacency matrix of the resulting graph is given by:
7550  *
7551  *             log_2 n
7552  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7553  *             k = 0
7554  *
7555  * And you'll find that:
7556  *
7557  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7558  *
7559  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7560  * The task movement gives a factor of O(m), giving a convergence complexity
7561  * of:
7562  *
7563  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7564  *
7565  *
7566  * WORK CONSERVING
7567  *
7568  * In order to avoid CPUs going idle while there's still work to do, new idle
7569  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7570  * tree itself instead of relying on other CPUs to bring it work.
7571  *
7572  * This adds some complexity to both (5) and (8) but it reduces the total idle
7573  * time.
7574  *
7575  * [XXX more?]
7576  *
7577  *
7578  * CGROUPS
7579  *
7580  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7581  *
7582  *                                s_k,i
7583  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7584  *                                 S_k
7585  *
7586  * Where
7587  *
7588  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7589  *
7590  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7591  *
7592  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7593  * property.
7594  *
7595  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7596  *      rewrite all of this once again.]
7597  */
7598 
7599 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7600 
7601 enum fbq_type { regular, remote, all };
7602 
7603 /*
7604  * 'group_type' describes the group of CPUs at the moment of load balancing.
7605  *
7606  * The enum is ordered by pulling priority, with the group with lowest priority
7607  * first so the group_type can simply be compared when selecting the busiest
7608  * group. See update_sd_pick_busiest().
7609  */
7610 enum group_type {
7611 	/* The group has spare capacity that can be used to run more tasks.  */
7612 	group_has_spare = 0,
7613 	/*
7614 	 * The group is fully used and the tasks don't compete for more CPU
7615 	 * cycles. Nevertheless, some tasks might wait before running.
7616 	 */
7617 	group_fully_busy,
7618 	/*
7619 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7620 	 * and must be migrated to a more powerful CPU.
7621 	 */
7622 	group_misfit_task,
7623 	/*
7624 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7625 	 * and the task should be migrated to it instead of running on the
7626 	 * current CPU.
7627 	 */
7628 	group_asym_packing,
7629 	/*
7630 	 * The tasks' affinity constraints previously prevented the scheduler
7631 	 * from balancing the load across the system.
7632 	 */
7633 	group_imbalanced,
7634 	/*
7635 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7636 	 * tasks.
7637 	 */
7638 	group_overloaded
7639 };
7640 
7641 enum migration_type {
7642 	migrate_load = 0,
7643 	migrate_util,
7644 	migrate_task,
7645 	migrate_misfit
7646 };
7647 
7648 #define LBF_ALL_PINNED	0x01
7649 #define LBF_NEED_BREAK	0x02
7650 #define LBF_DST_PINNED  0x04
7651 #define LBF_SOME_PINNED	0x08
7652 #define LBF_ACTIVE_LB	0x10
7653 
7654 struct lb_env {
7655 	struct sched_domain	*sd;
7656 
7657 	struct rq		*src_rq;
7658 	int			src_cpu;
7659 
7660 	int			dst_cpu;
7661 	struct rq		*dst_rq;
7662 
7663 	struct cpumask		*dst_grpmask;
7664 	int			new_dst_cpu;
7665 	enum cpu_idle_type	idle;
7666 	long			imbalance;
7667 	/* The set of CPUs under consideration for load-balancing */
7668 	struct cpumask		*cpus;
7669 
7670 	unsigned int		flags;
7671 
7672 	unsigned int		loop;
7673 	unsigned int		loop_break;
7674 	unsigned int		loop_max;
7675 
7676 	enum fbq_type		fbq_type;
7677 	enum migration_type	migration_type;
7678 	struct list_head	tasks;
7679 };
7680 
7681 /*
7682  * Is this task likely cache-hot:
7683  */
7684 static int task_hot(struct task_struct *p, struct lb_env *env)
7685 {
7686 	s64 delta;
7687 
7688 	lockdep_assert_rq_held(env->src_rq);
7689 
7690 	if (p->sched_class != &fair_sched_class)
7691 		return 0;
7692 
7693 	if (unlikely(task_has_idle_policy(p)))
7694 		return 0;
7695 
7696 	/* SMT siblings share cache */
7697 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7698 		return 0;
7699 
7700 	/*
7701 	 * Buddy candidates are cache hot:
7702 	 */
7703 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7704 			(&p->se == cfs_rq_of(&p->se)->next ||
7705 			 &p->se == cfs_rq_of(&p->se)->last))
7706 		return 1;
7707 
7708 	if (sysctl_sched_migration_cost == -1)
7709 		return 1;
7710 
7711 	/*
7712 	 * Don't migrate task if the task's cookie does not match
7713 	 * with the destination CPU's core cookie.
7714 	 */
7715 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7716 		return 1;
7717 
7718 	if (sysctl_sched_migration_cost == 0)
7719 		return 0;
7720 
7721 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7722 
7723 	return delta < (s64)sysctl_sched_migration_cost;
7724 }
7725 
7726 #ifdef CONFIG_NUMA_BALANCING
7727 /*
7728  * Returns 1, if task migration degrades locality
7729  * Returns 0, if task migration improves locality i.e migration preferred.
7730  * Returns -1, if task migration is not affected by locality.
7731  */
7732 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7733 {
7734 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7735 	unsigned long src_weight, dst_weight;
7736 	int src_nid, dst_nid, dist;
7737 
7738 	if (!static_branch_likely(&sched_numa_balancing))
7739 		return -1;
7740 
7741 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7742 		return -1;
7743 
7744 	src_nid = cpu_to_node(env->src_cpu);
7745 	dst_nid = cpu_to_node(env->dst_cpu);
7746 
7747 	if (src_nid == dst_nid)
7748 		return -1;
7749 
7750 	/* Migrating away from the preferred node is always bad. */
7751 	if (src_nid == p->numa_preferred_nid) {
7752 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7753 			return 1;
7754 		else
7755 			return -1;
7756 	}
7757 
7758 	/* Encourage migration to the preferred node. */
7759 	if (dst_nid == p->numa_preferred_nid)
7760 		return 0;
7761 
7762 	/* Leaving a core idle is often worse than degrading locality. */
7763 	if (env->idle == CPU_IDLE)
7764 		return -1;
7765 
7766 	dist = node_distance(src_nid, dst_nid);
7767 	if (numa_group) {
7768 		src_weight = group_weight(p, src_nid, dist);
7769 		dst_weight = group_weight(p, dst_nid, dist);
7770 	} else {
7771 		src_weight = task_weight(p, src_nid, dist);
7772 		dst_weight = task_weight(p, dst_nid, dist);
7773 	}
7774 
7775 	return dst_weight < src_weight;
7776 }
7777 
7778 #else
7779 static inline int migrate_degrades_locality(struct task_struct *p,
7780 					     struct lb_env *env)
7781 {
7782 	return -1;
7783 }
7784 #endif
7785 
7786 /*
7787  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7788  */
7789 static
7790 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7791 {
7792 	int tsk_cache_hot;
7793 
7794 	lockdep_assert_rq_held(env->src_rq);
7795 
7796 	/*
7797 	 * We do not migrate tasks that are:
7798 	 * 1) throttled_lb_pair, or
7799 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7800 	 * 3) running (obviously), or
7801 	 * 4) are cache-hot on their current CPU.
7802 	 */
7803 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7804 		return 0;
7805 
7806 	/* Disregard pcpu kthreads; they are where they need to be. */
7807 	if (kthread_is_per_cpu(p))
7808 		return 0;
7809 
7810 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7811 		int cpu;
7812 
7813 		schedstat_inc(p->stats.nr_failed_migrations_affine);
7814 
7815 		env->flags |= LBF_SOME_PINNED;
7816 
7817 		/*
7818 		 * Remember if this task can be migrated to any other CPU in
7819 		 * our sched_group. We may want to revisit it if we couldn't
7820 		 * meet load balance goals by pulling other tasks on src_cpu.
7821 		 *
7822 		 * Avoid computing new_dst_cpu
7823 		 * - for NEWLY_IDLE
7824 		 * - if we have already computed one in current iteration
7825 		 * - if it's an active balance
7826 		 */
7827 		if (env->idle == CPU_NEWLY_IDLE ||
7828 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7829 			return 0;
7830 
7831 		/* Prevent to re-select dst_cpu via env's CPUs: */
7832 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7833 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7834 				env->flags |= LBF_DST_PINNED;
7835 				env->new_dst_cpu = cpu;
7836 				break;
7837 			}
7838 		}
7839 
7840 		return 0;
7841 	}
7842 
7843 	/* Record that we found at least one task that could run on dst_cpu */
7844 	env->flags &= ~LBF_ALL_PINNED;
7845 
7846 	if (task_running(env->src_rq, p)) {
7847 		schedstat_inc(p->stats.nr_failed_migrations_running);
7848 		return 0;
7849 	}
7850 
7851 	/*
7852 	 * Aggressive migration if:
7853 	 * 1) active balance
7854 	 * 2) destination numa is preferred
7855 	 * 3) task is cache cold, or
7856 	 * 4) too many balance attempts have failed.
7857 	 */
7858 	if (env->flags & LBF_ACTIVE_LB)
7859 		return 1;
7860 
7861 	tsk_cache_hot = migrate_degrades_locality(p, env);
7862 	if (tsk_cache_hot == -1)
7863 		tsk_cache_hot = task_hot(p, env);
7864 
7865 	if (tsk_cache_hot <= 0 ||
7866 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7867 		if (tsk_cache_hot == 1) {
7868 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7869 			schedstat_inc(p->stats.nr_forced_migrations);
7870 		}
7871 		return 1;
7872 	}
7873 
7874 	schedstat_inc(p->stats.nr_failed_migrations_hot);
7875 	return 0;
7876 }
7877 
7878 /*
7879  * detach_task() -- detach the task for the migration specified in env
7880  */
7881 static void detach_task(struct task_struct *p, struct lb_env *env)
7882 {
7883 	lockdep_assert_rq_held(env->src_rq);
7884 
7885 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7886 	set_task_cpu(p, env->dst_cpu);
7887 }
7888 
7889 /*
7890  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7891  * part of active balancing operations within "domain".
7892  *
7893  * Returns a task if successful and NULL otherwise.
7894  */
7895 static struct task_struct *detach_one_task(struct lb_env *env)
7896 {
7897 	struct task_struct *p;
7898 
7899 	lockdep_assert_rq_held(env->src_rq);
7900 
7901 	list_for_each_entry_reverse(p,
7902 			&env->src_rq->cfs_tasks, se.group_node) {
7903 		if (!can_migrate_task(p, env))
7904 			continue;
7905 
7906 		detach_task(p, env);
7907 
7908 		/*
7909 		 * Right now, this is only the second place where
7910 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7911 		 * so we can safely collect stats here rather than
7912 		 * inside detach_tasks().
7913 		 */
7914 		schedstat_inc(env->sd->lb_gained[env->idle]);
7915 		return p;
7916 	}
7917 	return NULL;
7918 }
7919 
7920 static const unsigned int sched_nr_migrate_break = 32;
7921 
7922 /*
7923  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7924  * busiest_rq, as part of a balancing operation within domain "sd".
7925  *
7926  * Returns number of detached tasks if successful and 0 otherwise.
7927  */
7928 static int detach_tasks(struct lb_env *env)
7929 {
7930 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7931 	unsigned long util, load;
7932 	struct task_struct *p;
7933 	int detached = 0;
7934 
7935 	lockdep_assert_rq_held(env->src_rq);
7936 
7937 	/*
7938 	 * Source run queue has been emptied by another CPU, clear
7939 	 * LBF_ALL_PINNED flag as we will not test any task.
7940 	 */
7941 	if (env->src_rq->nr_running <= 1) {
7942 		env->flags &= ~LBF_ALL_PINNED;
7943 		return 0;
7944 	}
7945 
7946 	if (env->imbalance <= 0)
7947 		return 0;
7948 
7949 	while (!list_empty(tasks)) {
7950 		/*
7951 		 * We don't want to steal all, otherwise we may be treated likewise,
7952 		 * which could at worst lead to a livelock crash.
7953 		 */
7954 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7955 			break;
7956 
7957 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7958 
7959 		env->loop++;
7960 		/* We've more or less seen every task there is, call it quits */
7961 		if (env->loop > env->loop_max)
7962 			break;
7963 
7964 		/* take a breather every nr_migrate tasks */
7965 		if (env->loop > env->loop_break) {
7966 			env->loop_break += sched_nr_migrate_break;
7967 			env->flags |= LBF_NEED_BREAK;
7968 			break;
7969 		}
7970 
7971 		if (!can_migrate_task(p, env))
7972 			goto next;
7973 
7974 		switch (env->migration_type) {
7975 		case migrate_load:
7976 			/*
7977 			 * Depending of the number of CPUs and tasks and the
7978 			 * cgroup hierarchy, task_h_load() can return a null
7979 			 * value. Make sure that env->imbalance decreases
7980 			 * otherwise detach_tasks() will stop only after
7981 			 * detaching up to loop_max tasks.
7982 			 */
7983 			load = max_t(unsigned long, task_h_load(p), 1);
7984 
7985 			if (sched_feat(LB_MIN) &&
7986 			    load < 16 && !env->sd->nr_balance_failed)
7987 				goto next;
7988 
7989 			/*
7990 			 * Make sure that we don't migrate too much load.
7991 			 * Nevertheless, let relax the constraint if
7992 			 * scheduler fails to find a good waiting task to
7993 			 * migrate.
7994 			 */
7995 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7996 				goto next;
7997 
7998 			env->imbalance -= load;
7999 			break;
8000 
8001 		case migrate_util:
8002 			util = task_util_est(p);
8003 
8004 			if (util > env->imbalance)
8005 				goto next;
8006 
8007 			env->imbalance -= util;
8008 			break;
8009 
8010 		case migrate_task:
8011 			env->imbalance--;
8012 			break;
8013 
8014 		case migrate_misfit:
8015 			/* This is not a misfit task */
8016 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
8017 				goto next;
8018 
8019 			env->imbalance = 0;
8020 			break;
8021 		}
8022 
8023 		detach_task(p, env);
8024 		list_add(&p->se.group_node, &env->tasks);
8025 
8026 		detached++;
8027 
8028 #ifdef CONFIG_PREEMPTION
8029 		/*
8030 		 * NEWIDLE balancing is a source of latency, so preemptible
8031 		 * kernels will stop after the first task is detached to minimize
8032 		 * the critical section.
8033 		 */
8034 		if (env->idle == CPU_NEWLY_IDLE)
8035 			break;
8036 #endif
8037 
8038 		/*
8039 		 * We only want to steal up to the prescribed amount of
8040 		 * load/util/tasks.
8041 		 */
8042 		if (env->imbalance <= 0)
8043 			break;
8044 
8045 		continue;
8046 next:
8047 		list_move(&p->se.group_node, tasks);
8048 	}
8049 
8050 	/*
8051 	 * Right now, this is one of only two places we collect this stat
8052 	 * so we can safely collect detach_one_task() stats here rather
8053 	 * than inside detach_one_task().
8054 	 */
8055 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8056 
8057 	return detached;
8058 }
8059 
8060 /*
8061  * attach_task() -- attach the task detached by detach_task() to its new rq.
8062  */
8063 static void attach_task(struct rq *rq, struct task_struct *p)
8064 {
8065 	lockdep_assert_rq_held(rq);
8066 
8067 	BUG_ON(task_rq(p) != rq);
8068 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8069 	check_preempt_curr(rq, p, 0);
8070 }
8071 
8072 /*
8073  * attach_one_task() -- attaches the task returned from detach_one_task() to
8074  * its new rq.
8075  */
8076 static void attach_one_task(struct rq *rq, struct task_struct *p)
8077 {
8078 	struct rq_flags rf;
8079 
8080 	rq_lock(rq, &rf);
8081 	update_rq_clock(rq);
8082 	attach_task(rq, p);
8083 	rq_unlock(rq, &rf);
8084 }
8085 
8086 /*
8087  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8088  * new rq.
8089  */
8090 static void attach_tasks(struct lb_env *env)
8091 {
8092 	struct list_head *tasks = &env->tasks;
8093 	struct task_struct *p;
8094 	struct rq_flags rf;
8095 
8096 	rq_lock(env->dst_rq, &rf);
8097 	update_rq_clock(env->dst_rq);
8098 
8099 	while (!list_empty(tasks)) {
8100 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8101 		list_del_init(&p->se.group_node);
8102 
8103 		attach_task(env->dst_rq, p);
8104 	}
8105 
8106 	rq_unlock(env->dst_rq, &rf);
8107 }
8108 
8109 #ifdef CONFIG_NO_HZ_COMMON
8110 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8111 {
8112 	if (cfs_rq->avg.load_avg)
8113 		return true;
8114 
8115 	if (cfs_rq->avg.util_avg)
8116 		return true;
8117 
8118 	return false;
8119 }
8120 
8121 static inline bool others_have_blocked(struct rq *rq)
8122 {
8123 	if (READ_ONCE(rq->avg_rt.util_avg))
8124 		return true;
8125 
8126 	if (READ_ONCE(rq->avg_dl.util_avg))
8127 		return true;
8128 
8129 	if (thermal_load_avg(rq))
8130 		return true;
8131 
8132 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8133 	if (READ_ONCE(rq->avg_irq.util_avg))
8134 		return true;
8135 #endif
8136 
8137 	return false;
8138 }
8139 
8140 static inline void update_blocked_load_tick(struct rq *rq)
8141 {
8142 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8143 }
8144 
8145 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8146 {
8147 	if (!has_blocked)
8148 		rq->has_blocked_load = 0;
8149 }
8150 #else
8151 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8152 static inline bool others_have_blocked(struct rq *rq) { return false; }
8153 static inline void update_blocked_load_tick(struct rq *rq) {}
8154 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8155 #endif
8156 
8157 static bool __update_blocked_others(struct rq *rq, bool *done)
8158 {
8159 	const struct sched_class *curr_class;
8160 	u64 now = rq_clock_pelt(rq);
8161 	unsigned long thermal_pressure;
8162 	bool decayed;
8163 
8164 	/*
8165 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8166 	 * DL and IRQ signals have been updated before updating CFS.
8167 	 */
8168 	curr_class = rq->curr->sched_class;
8169 
8170 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8171 
8172 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8173 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8174 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8175 		  update_irq_load_avg(rq, 0);
8176 
8177 	if (others_have_blocked(rq))
8178 		*done = false;
8179 
8180 	return decayed;
8181 }
8182 
8183 #ifdef CONFIG_FAIR_GROUP_SCHED
8184 
8185 static bool __update_blocked_fair(struct rq *rq, bool *done)
8186 {
8187 	struct cfs_rq *cfs_rq, *pos;
8188 	bool decayed = false;
8189 	int cpu = cpu_of(rq);
8190 
8191 	/*
8192 	 * Iterates the task_group tree in a bottom up fashion, see
8193 	 * list_add_leaf_cfs_rq() for details.
8194 	 */
8195 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8196 		struct sched_entity *se;
8197 
8198 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8199 			update_tg_load_avg(cfs_rq);
8200 
8201 			if (cfs_rq == &rq->cfs)
8202 				decayed = true;
8203 		}
8204 
8205 		/* Propagate pending load changes to the parent, if any: */
8206 		se = cfs_rq->tg->se[cpu];
8207 		if (se && !skip_blocked_update(se))
8208 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8209 
8210 		/*
8211 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8212 		 * decayed cfs_rqs linger on the list.
8213 		 */
8214 		if (cfs_rq_is_decayed(cfs_rq))
8215 			list_del_leaf_cfs_rq(cfs_rq);
8216 
8217 		/* Don't need periodic decay once load/util_avg are null */
8218 		if (cfs_rq_has_blocked(cfs_rq))
8219 			*done = false;
8220 	}
8221 
8222 	return decayed;
8223 }
8224 
8225 /*
8226  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8227  * This needs to be done in a top-down fashion because the load of a child
8228  * group is a fraction of its parents load.
8229  */
8230 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8231 {
8232 	struct rq *rq = rq_of(cfs_rq);
8233 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8234 	unsigned long now = jiffies;
8235 	unsigned long load;
8236 
8237 	if (cfs_rq->last_h_load_update == now)
8238 		return;
8239 
8240 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8241 	for_each_sched_entity(se) {
8242 		cfs_rq = cfs_rq_of(se);
8243 		WRITE_ONCE(cfs_rq->h_load_next, se);
8244 		if (cfs_rq->last_h_load_update == now)
8245 			break;
8246 	}
8247 
8248 	if (!se) {
8249 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8250 		cfs_rq->last_h_load_update = now;
8251 	}
8252 
8253 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8254 		load = cfs_rq->h_load;
8255 		load = div64_ul(load * se->avg.load_avg,
8256 			cfs_rq_load_avg(cfs_rq) + 1);
8257 		cfs_rq = group_cfs_rq(se);
8258 		cfs_rq->h_load = load;
8259 		cfs_rq->last_h_load_update = now;
8260 	}
8261 }
8262 
8263 static unsigned long task_h_load(struct task_struct *p)
8264 {
8265 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8266 
8267 	update_cfs_rq_h_load(cfs_rq);
8268 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8269 			cfs_rq_load_avg(cfs_rq) + 1);
8270 }
8271 #else
8272 static bool __update_blocked_fair(struct rq *rq, bool *done)
8273 {
8274 	struct cfs_rq *cfs_rq = &rq->cfs;
8275 	bool decayed;
8276 
8277 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8278 	if (cfs_rq_has_blocked(cfs_rq))
8279 		*done = false;
8280 
8281 	return decayed;
8282 }
8283 
8284 static unsigned long task_h_load(struct task_struct *p)
8285 {
8286 	return p->se.avg.load_avg;
8287 }
8288 #endif
8289 
8290 static void update_blocked_averages(int cpu)
8291 {
8292 	bool decayed = false, done = true;
8293 	struct rq *rq = cpu_rq(cpu);
8294 	struct rq_flags rf;
8295 
8296 	rq_lock_irqsave(rq, &rf);
8297 	update_blocked_load_tick(rq);
8298 	update_rq_clock(rq);
8299 
8300 	decayed |= __update_blocked_others(rq, &done);
8301 	decayed |= __update_blocked_fair(rq, &done);
8302 
8303 	update_blocked_load_status(rq, !done);
8304 	if (decayed)
8305 		cpufreq_update_util(rq, 0);
8306 	rq_unlock_irqrestore(rq, &rf);
8307 }
8308 
8309 /********** Helpers for find_busiest_group ************************/
8310 
8311 /*
8312  * sg_lb_stats - stats of a sched_group required for load_balancing
8313  */
8314 struct sg_lb_stats {
8315 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8316 	unsigned long group_load; /* Total load over the CPUs of the group */
8317 	unsigned long group_capacity;
8318 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8319 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8320 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8321 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8322 	unsigned int idle_cpus;
8323 	unsigned int group_weight;
8324 	enum group_type group_type;
8325 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8326 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8327 #ifdef CONFIG_NUMA_BALANCING
8328 	unsigned int nr_numa_running;
8329 	unsigned int nr_preferred_running;
8330 #endif
8331 };
8332 
8333 /*
8334  * sd_lb_stats - Structure to store the statistics of a sched_domain
8335  *		 during load balancing.
8336  */
8337 struct sd_lb_stats {
8338 	struct sched_group *busiest;	/* Busiest group in this sd */
8339 	struct sched_group *local;	/* Local group in this sd */
8340 	unsigned long total_load;	/* Total load of all groups in sd */
8341 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8342 	unsigned long avg_load;	/* Average load across all groups in sd */
8343 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8344 
8345 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8346 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8347 };
8348 
8349 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8350 {
8351 	/*
8352 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8353 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8354 	 * We must however set busiest_stat::group_type and
8355 	 * busiest_stat::idle_cpus to the worst busiest group because
8356 	 * update_sd_pick_busiest() reads these before assignment.
8357 	 */
8358 	*sds = (struct sd_lb_stats){
8359 		.busiest = NULL,
8360 		.local = NULL,
8361 		.total_load = 0UL,
8362 		.total_capacity = 0UL,
8363 		.busiest_stat = {
8364 			.idle_cpus = UINT_MAX,
8365 			.group_type = group_has_spare,
8366 		},
8367 	};
8368 }
8369 
8370 static unsigned long scale_rt_capacity(int cpu)
8371 {
8372 	struct rq *rq = cpu_rq(cpu);
8373 	unsigned long max = arch_scale_cpu_capacity(cpu);
8374 	unsigned long used, free;
8375 	unsigned long irq;
8376 
8377 	irq = cpu_util_irq(rq);
8378 
8379 	if (unlikely(irq >= max))
8380 		return 1;
8381 
8382 	/*
8383 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8384 	 * (running and not running) with weights 0 and 1024 respectively.
8385 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8386 	 * average uses the actual delta max capacity(load).
8387 	 */
8388 	used = READ_ONCE(rq->avg_rt.util_avg);
8389 	used += READ_ONCE(rq->avg_dl.util_avg);
8390 	used += thermal_load_avg(rq);
8391 
8392 	if (unlikely(used >= max))
8393 		return 1;
8394 
8395 	free = max - used;
8396 
8397 	return scale_irq_capacity(free, irq, max);
8398 }
8399 
8400 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8401 {
8402 	unsigned long capacity = scale_rt_capacity(cpu);
8403 	struct sched_group *sdg = sd->groups;
8404 
8405 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8406 
8407 	if (!capacity)
8408 		capacity = 1;
8409 
8410 	cpu_rq(cpu)->cpu_capacity = capacity;
8411 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8412 
8413 	sdg->sgc->capacity = capacity;
8414 	sdg->sgc->min_capacity = capacity;
8415 	sdg->sgc->max_capacity = capacity;
8416 }
8417 
8418 void update_group_capacity(struct sched_domain *sd, int cpu)
8419 {
8420 	struct sched_domain *child = sd->child;
8421 	struct sched_group *group, *sdg = sd->groups;
8422 	unsigned long capacity, min_capacity, max_capacity;
8423 	unsigned long interval;
8424 
8425 	interval = msecs_to_jiffies(sd->balance_interval);
8426 	interval = clamp(interval, 1UL, max_load_balance_interval);
8427 	sdg->sgc->next_update = jiffies + interval;
8428 
8429 	if (!child) {
8430 		update_cpu_capacity(sd, cpu);
8431 		return;
8432 	}
8433 
8434 	capacity = 0;
8435 	min_capacity = ULONG_MAX;
8436 	max_capacity = 0;
8437 
8438 	if (child->flags & SD_OVERLAP) {
8439 		/*
8440 		 * SD_OVERLAP domains cannot assume that child groups
8441 		 * span the current group.
8442 		 */
8443 
8444 		for_each_cpu(cpu, sched_group_span(sdg)) {
8445 			unsigned long cpu_cap = capacity_of(cpu);
8446 
8447 			capacity += cpu_cap;
8448 			min_capacity = min(cpu_cap, min_capacity);
8449 			max_capacity = max(cpu_cap, max_capacity);
8450 		}
8451 	} else  {
8452 		/*
8453 		 * !SD_OVERLAP domains can assume that child groups
8454 		 * span the current group.
8455 		 */
8456 
8457 		group = child->groups;
8458 		do {
8459 			struct sched_group_capacity *sgc = group->sgc;
8460 
8461 			capacity += sgc->capacity;
8462 			min_capacity = min(sgc->min_capacity, min_capacity);
8463 			max_capacity = max(sgc->max_capacity, max_capacity);
8464 			group = group->next;
8465 		} while (group != child->groups);
8466 	}
8467 
8468 	sdg->sgc->capacity = capacity;
8469 	sdg->sgc->min_capacity = min_capacity;
8470 	sdg->sgc->max_capacity = max_capacity;
8471 }
8472 
8473 /*
8474  * Check whether the capacity of the rq has been noticeably reduced by side
8475  * activity. The imbalance_pct is used for the threshold.
8476  * Return true is the capacity is reduced
8477  */
8478 static inline int
8479 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8480 {
8481 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8482 				(rq->cpu_capacity_orig * 100));
8483 }
8484 
8485 /*
8486  * Check whether a rq has a misfit task and if it looks like we can actually
8487  * help that task: we can migrate the task to a CPU of higher capacity, or
8488  * the task's current CPU is heavily pressured.
8489  */
8490 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8491 {
8492 	return rq->misfit_task_load &&
8493 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8494 		 check_cpu_capacity(rq, sd));
8495 }
8496 
8497 /*
8498  * Group imbalance indicates (and tries to solve) the problem where balancing
8499  * groups is inadequate due to ->cpus_ptr constraints.
8500  *
8501  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8502  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8503  * Something like:
8504  *
8505  *	{ 0 1 2 3 } { 4 5 6 7 }
8506  *	        *     * * *
8507  *
8508  * If we were to balance group-wise we'd place two tasks in the first group and
8509  * two tasks in the second group. Clearly this is undesired as it will overload
8510  * cpu 3 and leave one of the CPUs in the second group unused.
8511  *
8512  * The current solution to this issue is detecting the skew in the first group
8513  * by noticing the lower domain failed to reach balance and had difficulty
8514  * moving tasks due to affinity constraints.
8515  *
8516  * When this is so detected; this group becomes a candidate for busiest; see
8517  * update_sd_pick_busiest(). And calculate_imbalance() and
8518  * find_busiest_group() avoid some of the usual balance conditions to allow it
8519  * to create an effective group imbalance.
8520  *
8521  * This is a somewhat tricky proposition since the next run might not find the
8522  * group imbalance and decide the groups need to be balanced again. A most
8523  * subtle and fragile situation.
8524  */
8525 
8526 static inline int sg_imbalanced(struct sched_group *group)
8527 {
8528 	return group->sgc->imbalance;
8529 }
8530 
8531 /*
8532  * group_has_capacity returns true if the group has spare capacity that could
8533  * be used by some tasks.
8534  * We consider that a group has spare capacity if the  * number of task is
8535  * smaller than the number of CPUs or if the utilization is lower than the
8536  * available capacity for CFS tasks.
8537  * For the latter, we use a threshold to stabilize the state, to take into
8538  * account the variance of the tasks' load and to return true if the available
8539  * capacity in meaningful for the load balancer.
8540  * As an example, an available capacity of 1% can appear but it doesn't make
8541  * any benefit for the load balance.
8542  */
8543 static inline bool
8544 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8545 {
8546 	if (sgs->sum_nr_running < sgs->group_weight)
8547 		return true;
8548 
8549 	if ((sgs->group_capacity * imbalance_pct) <
8550 			(sgs->group_runnable * 100))
8551 		return false;
8552 
8553 	if ((sgs->group_capacity * 100) >
8554 			(sgs->group_util * imbalance_pct))
8555 		return true;
8556 
8557 	return false;
8558 }
8559 
8560 /*
8561  *  group_is_overloaded returns true if the group has more tasks than it can
8562  *  handle.
8563  *  group_is_overloaded is not equals to !group_has_capacity because a group
8564  *  with the exact right number of tasks, has no more spare capacity but is not
8565  *  overloaded so both group_has_capacity and group_is_overloaded return
8566  *  false.
8567  */
8568 static inline bool
8569 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8570 {
8571 	if (sgs->sum_nr_running <= sgs->group_weight)
8572 		return false;
8573 
8574 	if ((sgs->group_capacity * 100) <
8575 			(sgs->group_util * imbalance_pct))
8576 		return true;
8577 
8578 	if ((sgs->group_capacity * imbalance_pct) <
8579 			(sgs->group_runnable * 100))
8580 		return true;
8581 
8582 	return false;
8583 }
8584 
8585 static inline enum
8586 group_type group_classify(unsigned int imbalance_pct,
8587 			  struct sched_group *group,
8588 			  struct sg_lb_stats *sgs)
8589 {
8590 	if (group_is_overloaded(imbalance_pct, sgs))
8591 		return group_overloaded;
8592 
8593 	if (sg_imbalanced(group))
8594 		return group_imbalanced;
8595 
8596 	if (sgs->group_asym_packing)
8597 		return group_asym_packing;
8598 
8599 	if (sgs->group_misfit_task_load)
8600 		return group_misfit_task;
8601 
8602 	if (!group_has_capacity(imbalance_pct, sgs))
8603 		return group_fully_busy;
8604 
8605 	return group_has_spare;
8606 }
8607 
8608 /**
8609  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8610  * @dst_cpu:	Destination CPU of the load balancing
8611  * @sds:	Load-balancing data with statistics of the local group
8612  * @sgs:	Load-balancing statistics of the candidate busiest group
8613  * @sg:		The candidate busiest group
8614  *
8615  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8616  * if @dst_cpu can pull tasks.
8617  *
8618  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8619  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8620  * only if @dst_cpu has higher priority.
8621  *
8622  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8623  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8624  * Bigger imbalances in the number of busy CPUs will be dealt with in
8625  * update_sd_pick_busiest().
8626  *
8627  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8628  * of @dst_cpu are idle and @sg has lower priority.
8629  *
8630  * Return: true if @dst_cpu can pull tasks, false otherwise.
8631  */
8632 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8633 				    struct sg_lb_stats *sgs,
8634 				    struct sched_group *sg)
8635 {
8636 #ifdef CONFIG_SCHED_SMT
8637 	bool local_is_smt, sg_is_smt;
8638 	int sg_busy_cpus;
8639 
8640 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8641 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8642 
8643 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8644 
8645 	if (!local_is_smt) {
8646 		/*
8647 		 * If we are here, @dst_cpu is idle and does not have SMT
8648 		 * siblings. Pull tasks if candidate group has two or more
8649 		 * busy CPUs.
8650 		 */
8651 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8652 			return true;
8653 
8654 		/*
8655 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8656 		 * siblings and only one is busy. In such case, @dst_cpu
8657 		 * can help if it has higher priority and is idle (i.e.,
8658 		 * it has no running tasks).
8659 		 */
8660 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8661 	}
8662 
8663 	/* @dst_cpu has SMT siblings. */
8664 
8665 	if (sg_is_smt) {
8666 		int local_busy_cpus = sds->local->group_weight -
8667 				      sds->local_stat.idle_cpus;
8668 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8669 
8670 		if (busy_cpus_delta == 1)
8671 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8672 
8673 		return false;
8674 	}
8675 
8676 	/*
8677 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8678 	 * up with more than one busy SMT sibling and only pull tasks if there
8679 	 * are not busy CPUs (i.e., no CPU has running tasks).
8680 	 */
8681 	if (!sds->local_stat.sum_nr_running)
8682 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8683 
8684 	return false;
8685 #else
8686 	/* Always return false so that callers deal with non-SMT cases. */
8687 	return false;
8688 #endif
8689 }
8690 
8691 static inline bool
8692 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8693 	   struct sched_group *group)
8694 {
8695 	/* Only do SMT checks if either local or candidate have SMT siblings */
8696 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8697 	    (group->flags & SD_SHARE_CPUCAPACITY))
8698 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8699 
8700 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8701 }
8702 
8703 /**
8704  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8705  * @env: The load balancing environment.
8706  * @sds: Load-balancing data with statistics of the local group.
8707  * @group: sched_group whose statistics are to be updated.
8708  * @sgs: variable to hold the statistics for this group.
8709  * @sg_status: Holds flag indicating the status of the sched_group
8710  */
8711 static inline void update_sg_lb_stats(struct lb_env *env,
8712 				      struct sd_lb_stats *sds,
8713 				      struct sched_group *group,
8714 				      struct sg_lb_stats *sgs,
8715 				      int *sg_status)
8716 {
8717 	int i, nr_running, local_group;
8718 
8719 	memset(sgs, 0, sizeof(*sgs));
8720 
8721 	local_group = group == sds->local;
8722 
8723 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8724 		struct rq *rq = cpu_rq(i);
8725 
8726 		sgs->group_load += cpu_load(rq);
8727 		sgs->group_util += cpu_util_cfs(i);
8728 		sgs->group_runnable += cpu_runnable(rq);
8729 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8730 
8731 		nr_running = rq->nr_running;
8732 		sgs->sum_nr_running += nr_running;
8733 
8734 		if (nr_running > 1)
8735 			*sg_status |= SG_OVERLOAD;
8736 
8737 		if (cpu_overutilized(i))
8738 			*sg_status |= SG_OVERUTILIZED;
8739 
8740 #ifdef CONFIG_NUMA_BALANCING
8741 		sgs->nr_numa_running += rq->nr_numa_running;
8742 		sgs->nr_preferred_running += rq->nr_preferred_running;
8743 #endif
8744 		/*
8745 		 * No need to call idle_cpu() if nr_running is not 0
8746 		 */
8747 		if (!nr_running && idle_cpu(i)) {
8748 			sgs->idle_cpus++;
8749 			/* Idle cpu can't have misfit task */
8750 			continue;
8751 		}
8752 
8753 		if (local_group)
8754 			continue;
8755 
8756 		/* Check for a misfit task on the cpu */
8757 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8758 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8759 			sgs->group_misfit_task_load = rq->misfit_task_load;
8760 			*sg_status |= SG_OVERLOAD;
8761 		}
8762 	}
8763 
8764 	sgs->group_capacity = group->sgc->capacity;
8765 
8766 	sgs->group_weight = group->group_weight;
8767 
8768 	/* Check if dst CPU is idle and preferred to this group */
8769 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8770 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8771 	    sched_asym(env, sds, sgs, group)) {
8772 		sgs->group_asym_packing = 1;
8773 	}
8774 
8775 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8776 
8777 	/* Computing avg_load makes sense only when group is overloaded */
8778 	if (sgs->group_type == group_overloaded)
8779 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8780 				sgs->group_capacity;
8781 }
8782 
8783 /**
8784  * update_sd_pick_busiest - return 1 on busiest group
8785  * @env: The load balancing environment.
8786  * @sds: sched_domain statistics
8787  * @sg: sched_group candidate to be checked for being the busiest
8788  * @sgs: sched_group statistics
8789  *
8790  * Determine if @sg is a busier group than the previously selected
8791  * busiest group.
8792  *
8793  * Return: %true if @sg is a busier group than the previously selected
8794  * busiest group. %false otherwise.
8795  */
8796 static bool update_sd_pick_busiest(struct lb_env *env,
8797 				   struct sd_lb_stats *sds,
8798 				   struct sched_group *sg,
8799 				   struct sg_lb_stats *sgs)
8800 {
8801 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8802 
8803 	/* Make sure that there is at least one task to pull */
8804 	if (!sgs->sum_h_nr_running)
8805 		return false;
8806 
8807 	/*
8808 	 * Don't try to pull misfit tasks we can't help.
8809 	 * We can use max_capacity here as reduction in capacity on some
8810 	 * CPUs in the group should either be possible to resolve
8811 	 * internally or be covered by avg_load imbalance (eventually).
8812 	 */
8813 	if (sgs->group_type == group_misfit_task &&
8814 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8815 	     sds->local_stat.group_type != group_has_spare))
8816 		return false;
8817 
8818 	if (sgs->group_type > busiest->group_type)
8819 		return true;
8820 
8821 	if (sgs->group_type < busiest->group_type)
8822 		return false;
8823 
8824 	/*
8825 	 * The candidate and the current busiest group are the same type of
8826 	 * group. Let check which one is the busiest according to the type.
8827 	 */
8828 
8829 	switch (sgs->group_type) {
8830 	case group_overloaded:
8831 		/* Select the overloaded group with highest avg_load. */
8832 		if (sgs->avg_load <= busiest->avg_load)
8833 			return false;
8834 		break;
8835 
8836 	case group_imbalanced:
8837 		/*
8838 		 * Select the 1st imbalanced group as we don't have any way to
8839 		 * choose one more than another.
8840 		 */
8841 		return false;
8842 
8843 	case group_asym_packing:
8844 		/* Prefer to move from lowest priority CPU's work */
8845 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8846 			return false;
8847 		break;
8848 
8849 	case group_misfit_task:
8850 		/*
8851 		 * If we have more than one misfit sg go with the biggest
8852 		 * misfit.
8853 		 */
8854 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8855 			return false;
8856 		break;
8857 
8858 	case group_fully_busy:
8859 		/*
8860 		 * Select the fully busy group with highest avg_load. In
8861 		 * theory, there is no need to pull task from such kind of
8862 		 * group because tasks have all compute capacity that they need
8863 		 * but we can still improve the overall throughput by reducing
8864 		 * contention when accessing shared HW resources.
8865 		 *
8866 		 * XXX for now avg_load is not computed and always 0 so we
8867 		 * select the 1st one.
8868 		 */
8869 		if (sgs->avg_load <= busiest->avg_load)
8870 			return false;
8871 		break;
8872 
8873 	case group_has_spare:
8874 		/*
8875 		 * Select not overloaded group with lowest number of idle cpus
8876 		 * and highest number of running tasks. We could also compare
8877 		 * the spare capacity which is more stable but it can end up
8878 		 * that the group has less spare capacity but finally more idle
8879 		 * CPUs which means less opportunity to pull tasks.
8880 		 */
8881 		if (sgs->idle_cpus > busiest->idle_cpus)
8882 			return false;
8883 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8884 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8885 			return false;
8886 
8887 		break;
8888 	}
8889 
8890 	/*
8891 	 * Candidate sg has no more than one task per CPU and has higher
8892 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8893 	 * throughput. Maximize throughput, power/energy consequences are not
8894 	 * considered.
8895 	 */
8896 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8897 	    (sgs->group_type <= group_fully_busy) &&
8898 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8899 		return false;
8900 
8901 	return true;
8902 }
8903 
8904 #ifdef CONFIG_NUMA_BALANCING
8905 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8906 {
8907 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8908 		return regular;
8909 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8910 		return remote;
8911 	return all;
8912 }
8913 
8914 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8915 {
8916 	if (rq->nr_running > rq->nr_numa_running)
8917 		return regular;
8918 	if (rq->nr_running > rq->nr_preferred_running)
8919 		return remote;
8920 	return all;
8921 }
8922 #else
8923 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8924 {
8925 	return all;
8926 }
8927 
8928 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8929 {
8930 	return regular;
8931 }
8932 #endif /* CONFIG_NUMA_BALANCING */
8933 
8934 
8935 struct sg_lb_stats;
8936 
8937 /*
8938  * task_running_on_cpu - return 1 if @p is running on @cpu.
8939  */
8940 
8941 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8942 {
8943 	/* Task has no contribution or is new */
8944 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8945 		return 0;
8946 
8947 	if (task_on_rq_queued(p))
8948 		return 1;
8949 
8950 	return 0;
8951 }
8952 
8953 /**
8954  * idle_cpu_without - would a given CPU be idle without p ?
8955  * @cpu: the processor on which idleness is tested.
8956  * @p: task which should be ignored.
8957  *
8958  * Return: 1 if the CPU would be idle. 0 otherwise.
8959  */
8960 static int idle_cpu_without(int cpu, struct task_struct *p)
8961 {
8962 	struct rq *rq = cpu_rq(cpu);
8963 
8964 	if (rq->curr != rq->idle && rq->curr != p)
8965 		return 0;
8966 
8967 	/*
8968 	 * rq->nr_running can't be used but an updated version without the
8969 	 * impact of p on cpu must be used instead. The updated nr_running
8970 	 * be computed and tested before calling idle_cpu_without().
8971 	 */
8972 
8973 #ifdef CONFIG_SMP
8974 	if (rq->ttwu_pending)
8975 		return 0;
8976 #endif
8977 
8978 	return 1;
8979 }
8980 
8981 /*
8982  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8983  * @sd: The sched_domain level to look for idlest group.
8984  * @group: sched_group whose statistics are to be updated.
8985  * @sgs: variable to hold the statistics for this group.
8986  * @p: The task for which we look for the idlest group/CPU.
8987  */
8988 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8989 					  struct sched_group *group,
8990 					  struct sg_lb_stats *sgs,
8991 					  struct task_struct *p)
8992 {
8993 	int i, nr_running;
8994 
8995 	memset(sgs, 0, sizeof(*sgs));
8996 
8997 	for_each_cpu(i, sched_group_span(group)) {
8998 		struct rq *rq = cpu_rq(i);
8999 		unsigned int local;
9000 
9001 		sgs->group_load += cpu_load_without(rq, p);
9002 		sgs->group_util += cpu_util_without(i, p);
9003 		sgs->group_runnable += cpu_runnable_without(rq, p);
9004 		local = task_running_on_cpu(i, p);
9005 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9006 
9007 		nr_running = rq->nr_running - local;
9008 		sgs->sum_nr_running += nr_running;
9009 
9010 		/*
9011 		 * No need to call idle_cpu_without() if nr_running is not 0
9012 		 */
9013 		if (!nr_running && idle_cpu_without(i, p))
9014 			sgs->idle_cpus++;
9015 
9016 	}
9017 
9018 	/* Check if task fits in the group */
9019 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
9020 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
9021 		sgs->group_misfit_task_load = 1;
9022 	}
9023 
9024 	sgs->group_capacity = group->sgc->capacity;
9025 
9026 	sgs->group_weight = group->group_weight;
9027 
9028 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9029 
9030 	/*
9031 	 * Computing avg_load makes sense only when group is fully busy or
9032 	 * overloaded
9033 	 */
9034 	if (sgs->group_type == group_fully_busy ||
9035 		sgs->group_type == group_overloaded)
9036 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9037 				sgs->group_capacity;
9038 }
9039 
9040 static bool update_pick_idlest(struct sched_group *idlest,
9041 			       struct sg_lb_stats *idlest_sgs,
9042 			       struct sched_group *group,
9043 			       struct sg_lb_stats *sgs)
9044 {
9045 	if (sgs->group_type < idlest_sgs->group_type)
9046 		return true;
9047 
9048 	if (sgs->group_type > idlest_sgs->group_type)
9049 		return false;
9050 
9051 	/*
9052 	 * The candidate and the current idlest group are the same type of
9053 	 * group. Let check which one is the idlest according to the type.
9054 	 */
9055 
9056 	switch (sgs->group_type) {
9057 	case group_overloaded:
9058 	case group_fully_busy:
9059 		/* Select the group with lowest avg_load. */
9060 		if (idlest_sgs->avg_load <= sgs->avg_load)
9061 			return false;
9062 		break;
9063 
9064 	case group_imbalanced:
9065 	case group_asym_packing:
9066 		/* Those types are not used in the slow wakeup path */
9067 		return false;
9068 
9069 	case group_misfit_task:
9070 		/* Select group with the highest max capacity */
9071 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9072 			return false;
9073 		break;
9074 
9075 	case group_has_spare:
9076 		/* Select group with most idle CPUs */
9077 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9078 			return false;
9079 
9080 		/* Select group with lowest group_util */
9081 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9082 			idlest_sgs->group_util <= sgs->group_util)
9083 			return false;
9084 
9085 		break;
9086 	}
9087 
9088 	return true;
9089 }
9090 
9091 /*
9092  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9093  * This is an approximation as the number of running tasks may not be
9094  * related to the number of busy CPUs due to sched_setaffinity.
9095  */
9096 static inline bool allow_numa_imbalance(int running, int imb_numa_nr)
9097 {
9098 	return running <= imb_numa_nr;
9099 }
9100 
9101 /*
9102  * find_idlest_group() finds and returns the least busy CPU group within the
9103  * domain.
9104  *
9105  * Assumes p is allowed on at least one CPU in sd.
9106  */
9107 static struct sched_group *
9108 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9109 {
9110 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9111 	struct sg_lb_stats local_sgs, tmp_sgs;
9112 	struct sg_lb_stats *sgs;
9113 	unsigned long imbalance;
9114 	struct sg_lb_stats idlest_sgs = {
9115 			.avg_load = UINT_MAX,
9116 			.group_type = group_overloaded,
9117 	};
9118 
9119 	do {
9120 		int local_group;
9121 
9122 		/* Skip over this group if it has no CPUs allowed */
9123 		if (!cpumask_intersects(sched_group_span(group),
9124 					p->cpus_ptr))
9125 			continue;
9126 
9127 		/* Skip over this group if no cookie matched */
9128 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9129 			continue;
9130 
9131 		local_group = cpumask_test_cpu(this_cpu,
9132 					       sched_group_span(group));
9133 
9134 		if (local_group) {
9135 			sgs = &local_sgs;
9136 			local = group;
9137 		} else {
9138 			sgs = &tmp_sgs;
9139 		}
9140 
9141 		update_sg_wakeup_stats(sd, group, sgs, p);
9142 
9143 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9144 			idlest = group;
9145 			idlest_sgs = *sgs;
9146 		}
9147 
9148 	} while (group = group->next, group != sd->groups);
9149 
9150 
9151 	/* There is no idlest group to push tasks to */
9152 	if (!idlest)
9153 		return NULL;
9154 
9155 	/* The local group has been skipped because of CPU affinity */
9156 	if (!local)
9157 		return idlest;
9158 
9159 	/*
9160 	 * If the local group is idler than the selected idlest group
9161 	 * don't try and push the task.
9162 	 */
9163 	if (local_sgs.group_type < idlest_sgs.group_type)
9164 		return NULL;
9165 
9166 	/*
9167 	 * If the local group is busier than the selected idlest group
9168 	 * try and push the task.
9169 	 */
9170 	if (local_sgs.group_type > idlest_sgs.group_type)
9171 		return idlest;
9172 
9173 	switch (local_sgs.group_type) {
9174 	case group_overloaded:
9175 	case group_fully_busy:
9176 
9177 		/* Calculate allowed imbalance based on load */
9178 		imbalance = scale_load_down(NICE_0_LOAD) *
9179 				(sd->imbalance_pct-100) / 100;
9180 
9181 		/*
9182 		 * When comparing groups across NUMA domains, it's possible for
9183 		 * the local domain to be very lightly loaded relative to the
9184 		 * remote domains but "imbalance" skews the comparison making
9185 		 * remote CPUs look much more favourable. When considering
9186 		 * cross-domain, add imbalance to the load on the remote node
9187 		 * and consider staying local.
9188 		 */
9189 
9190 		if ((sd->flags & SD_NUMA) &&
9191 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9192 			return NULL;
9193 
9194 		/*
9195 		 * If the local group is less loaded than the selected
9196 		 * idlest group don't try and push any tasks.
9197 		 */
9198 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9199 			return NULL;
9200 
9201 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9202 			return NULL;
9203 		break;
9204 
9205 	case group_imbalanced:
9206 	case group_asym_packing:
9207 		/* Those type are not used in the slow wakeup path */
9208 		return NULL;
9209 
9210 	case group_misfit_task:
9211 		/* Select group with the highest max capacity */
9212 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9213 			return NULL;
9214 		break;
9215 
9216 	case group_has_spare:
9217 		if (sd->flags & SD_NUMA) {
9218 #ifdef CONFIG_NUMA_BALANCING
9219 			int idlest_cpu;
9220 			/*
9221 			 * If there is spare capacity at NUMA, try to select
9222 			 * the preferred node
9223 			 */
9224 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9225 				return NULL;
9226 
9227 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9228 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9229 				return idlest;
9230 #endif
9231 			/*
9232 			 * Otherwise, keep the task close to the wakeup source
9233 			 * and improve locality if the number of running tasks
9234 			 * would remain below threshold where an imbalance is
9235 			 * allowed. If there is a real need of migration,
9236 			 * periodic load balance will take care of it.
9237 			 */
9238 			if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, sd->imb_numa_nr))
9239 				return NULL;
9240 		}
9241 
9242 		/*
9243 		 * Select group with highest number of idle CPUs. We could also
9244 		 * compare the utilization which is more stable but it can end
9245 		 * up that the group has less spare capacity but finally more
9246 		 * idle CPUs which means more opportunity to run task.
9247 		 */
9248 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9249 			return NULL;
9250 		break;
9251 	}
9252 
9253 	return idlest;
9254 }
9255 
9256 /**
9257  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9258  * @env: The load balancing environment.
9259  * @sds: variable to hold the statistics for this sched_domain.
9260  */
9261 
9262 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9263 {
9264 	struct sched_domain *child = env->sd->child;
9265 	struct sched_group *sg = env->sd->groups;
9266 	struct sg_lb_stats *local = &sds->local_stat;
9267 	struct sg_lb_stats tmp_sgs;
9268 	int sg_status = 0;
9269 
9270 	do {
9271 		struct sg_lb_stats *sgs = &tmp_sgs;
9272 		int local_group;
9273 
9274 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9275 		if (local_group) {
9276 			sds->local = sg;
9277 			sgs = local;
9278 
9279 			if (env->idle != CPU_NEWLY_IDLE ||
9280 			    time_after_eq(jiffies, sg->sgc->next_update))
9281 				update_group_capacity(env->sd, env->dst_cpu);
9282 		}
9283 
9284 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9285 
9286 		if (local_group)
9287 			goto next_group;
9288 
9289 
9290 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9291 			sds->busiest = sg;
9292 			sds->busiest_stat = *sgs;
9293 		}
9294 
9295 next_group:
9296 		/* Now, start updating sd_lb_stats */
9297 		sds->total_load += sgs->group_load;
9298 		sds->total_capacity += sgs->group_capacity;
9299 
9300 		sg = sg->next;
9301 	} while (sg != env->sd->groups);
9302 
9303 	/* Tag domain that child domain prefers tasks go to siblings first */
9304 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9305 
9306 
9307 	if (env->sd->flags & SD_NUMA)
9308 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9309 
9310 	if (!env->sd->parent) {
9311 		struct root_domain *rd = env->dst_rq->rd;
9312 
9313 		/* update overload indicator if we are at root domain */
9314 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9315 
9316 		/* Update over-utilization (tipping point, U >= 0) indicator */
9317 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9318 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9319 	} else if (sg_status & SG_OVERUTILIZED) {
9320 		struct root_domain *rd = env->dst_rq->rd;
9321 
9322 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9323 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9324 	}
9325 }
9326 
9327 #define NUMA_IMBALANCE_MIN 2
9328 
9329 static inline long adjust_numa_imbalance(int imbalance,
9330 				int dst_running, int imb_numa_nr)
9331 {
9332 	if (!allow_numa_imbalance(dst_running, imb_numa_nr))
9333 		return imbalance;
9334 
9335 	/*
9336 	 * Allow a small imbalance based on a simple pair of communicating
9337 	 * tasks that remain local when the destination is lightly loaded.
9338 	 */
9339 	if (imbalance <= NUMA_IMBALANCE_MIN)
9340 		return 0;
9341 
9342 	return imbalance;
9343 }
9344 
9345 /**
9346  * calculate_imbalance - Calculate the amount of imbalance present within the
9347  *			 groups of a given sched_domain during load balance.
9348  * @env: load balance environment
9349  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9350  */
9351 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9352 {
9353 	struct sg_lb_stats *local, *busiest;
9354 
9355 	local = &sds->local_stat;
9356 	busiest = &sds->busiest_stat;
9357 
9358 	if (busiest->group_type == group_misfit_task) {
9359 		/* Set imbalance to allow misfit tasks to be balanced. */
9360 		env->migration_type = migrate_misfit;
9361 		env->imbalance = 1;
9362 		return;
9363 	}
9364 
9365 	if (busiest->group_type == group_asym_packing) {
9366 		/*
9367 		 * In case of asym capacity, we will try to migrate all load to
9368 		 * the preferred CPU.
9369 		 */
9370 		env->migration_type = migrate_task;
9371 		env->imbalance = busiest->sum_h_nr_running;
9372 		return;
9373 	}
9374 
9375 	if (busiest->group_type == group_imbalanced) {
9376 		/*
9377 		 * In the group_imb case we cannot rely on group-wide averages
9378 		 * to ensure CPU-load equilibrium, try to move any task to fix
9379 		 * the imbalance. The next load balance will take care of
9380 		 * balancing back the system.
9381 		 */
9382 		env->migration_type = migrate_task;
9383 		env->imbalance = 1;
9384 		return;
9385 	}
9386 
9387 	/*
9388 	 * Try to use spare capacity of local group without overloading it or
9389 	 * emptying busiest.
9390 	 */
9391 	if (local->group_type == group_has_spare) {
9392 		if ((busiest->group_type > group_fully_busy) &&
9393 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9394 			/*
9395 			 * If busiest is overloaded, try to fill spare
9396 			 * capacity. This might end up creating spare capacity
9397 			 * in busiest or busiest still being overloaded but
9398 			 * there is no simple way to directly compute the
9399 			 * amount of load to migrate in order to balance the
9400 			 * system.
9401 			 */
9402 			env->migration_type = migrate_util;
9403 			env->imbalance = max(local->group_capacity, local->group_util) -
9404 					 local->group_util;
9405 
9406 			/*
9407 			 * In some cases, the group's utilization is max or even
9408 			 * higher than capacity because of migrations but the
9409 			 * local CPU is (newly) idle. There is at least one
9410 			 * waiting task in this overloaded busiest group. Let's
9411 			 * try to pull it.
9412 			 */
9413 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9414 				env->migration_type = migrate_task;
9415 				env->imbalance = 1;
9416 			}
9417 
9418 			return;
9419 		}
9420 
9421 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9422 			unsigned int nr_diff = busiest->sum_nr_running;
9423 			/*
9424 			 * When prefer sibling, evenly spread running tasks on
9425 			 * groups.
9426 			 */
9427 			env->migration_type = migrate_task;
9428 			lsub_positive(&nr_diff, local->sum_nr_running);
9429 			env->imbalance = nr_diff >> 1;
9430 		} else {
9431 
9432 			/*
9433 			 * If there is no overload, we just want to even the number of
9434 			 * idle cpus.
9435 			 */
9436 			env->migration_type = migrate_task;
9437 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9438 						 busiest->idle_cpus) >> 1);
9439 		}
9440 
9441 		/* Consider allowing a small imbalance between NUMA groups */
9442 		if (env->sd->flags & SD_NUMA) {
9443 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9444 				local->sum_nr_running + 1, env->sd->imb_numa_nr);
9445 		}
9446 
9447 		return;
9448 	}
9449 
9450 	/*
9451 	 * Local is fully busy but has to take more load to relieve the
9452 	 * busiest group
9453 	 */
9454 	if (local->group_type < group_overloaded) {
9455 		/*
9456 		 * Local will become overloaded so the avg_load metrics are
9457 		 * finally needed.
9458 		 */
9459 
9460 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9461 				  local->group_capacity;
9462 
9463 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9464 				sds->total_capacity;
9465 		/*
9466 		 * If the local group is more loaded than the selected
9467 		 * busiest group don't try to pull any tasks.
9468 		 */
9469 		if (local->avg_load >= busiest->avg_load) {
9470 			env->imbalance = 0;
9471 			return;
9472 		}
9473 	}
9474 
9475 	/*
9476 	 * Both group are or will become overloaded and we're trying to get all
9477 	 * the CPUs to the average_load, so we don't want to push ourselves
9478 	 * above the average load, nor do we wish to reduce the max loaded CPU
9479 	 * below the average load. At the same time, we also don't want to
9480 	 * reduce the group load below the group capacity. Thus we look for
9481 	 * the minimum possible imbalance.
9482 	 */
9483 	env->migration_type = migrate_load;
9484 	env->imbalance = min(
9485 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9486 		(sds->avg_load - local->avg_load) * local->group_capacity
9487 	) / SCHED_CAPACITY_SCALE;
9488 }
9489 
9490 /******* find_busiest_group() helpers end here *********************/
9491 
9492 /*
9493  * Decision matrix according to the local and busiest group type:
9494  *
9495  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9496  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9497  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9498  * misfit_task      force     N/A        N/A    N/A  force      force
9499  * asym_packing     force     force      N/A    N/A  force      force
9500  * imbalanced       force     force      N/A    N/A  force      force
9501  * overloaded       force     force      N/A    N/A  force      avg_load
9502  *
9503  * N/A :      Not Applicable because already filtered while updating
9504  *            statistics.
9505  * balanced : The system is balanced for these 2 groups.
9506  * force :    Calculate the imbalance as load migration is probably needed.
9507  * avg_load : Only if imbalance is significant enough.
9508  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9509  *            different in groups.
9510  */
9511 
9512 /**
9513  * find_busiest_group - Returns the busiest group within the sched_domain
9514  * if there is an imbalance.
9515  * @env: The load balancing environment.
9516  *
9517  * Also calculates the amount of runnable load which should be moved
9518  * to restore balance.
9519  *
9520  * Return:	- The busiest group if imbalance exists.
9521  */
9522 static struct sched_group *find_busiest_group(struct lb_env *env)
9523 {
9524 	struct sg_lb_stats *local, *busiest;
9525 	struct sd_lb_stats sds;
9526 
9527 	init_sd_lb_stats(&sds);
9528 
9529 	/*
9530 	 * Compute the various statistics relevant for load balancing at
9531 	 * this level.
9532 	 */
9533 	update_sd_lb_stats(env, &sds);
9534 
9535 	if (sched_energy_enabled()) {
9536 		struct root_domain *rd = env->dst_rq->rd;
9537 
9538 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9539 			goto out_balanced;
9540 	}
9541 
9542 	local = &sds.local_stat;
9543 	busiest = &sds.busiest_stat;
9544 
9545 	/* There is no busy sibling group to pull tasks from */
9546 	if (!sds.busiest)
9547 		goto out_balanced;
9548 
9549 	/* Misfit tasks should be dealt with regardless of the avg load */
9550 	if (busiest->group_type == group_misfit_task)
9551 		goto force_balance;
9552 
9553 	/* ASYM feature bypasses nice load balance check */
9554 	if (busiest->group_type == group_asym_packing)
9555 		goto force_balance;
9556 
9557 	/*
9558 	 * If the busiest group is imbalanced the below checks don't
9559 	 * work because they assume all things are equal, which typically
9560 	 * isn't true due to cpus_ptr constraints and the like.
9561 	 */
9562 	if (busiest->group_type == group_imbalanced)
9563 		goto force_balance;
9564 
9565 	/*
9566 	 * If the local group is busier than the selected busiest group
9567 	 * don't try and pull any tasks.
9568 	 */
9569 	if (local->group_type > busiest->group_type)
9570 		goto out_balanced;
9571 
9572 	/*
9573 	 * When groups are overloaded, use the avg_load to ensure fairness
9574 	 * between tasks.
9575 	 */
9576 	if (local->group_type == group_overloaded) {
9577 		/*
9578 		 * If the local group is more loaded than the selected
9579 		 * busiest group don't try to pull any tasks.
9580 		 */
9581 		if (local->avg_load >= busiest->avg_load)
9582 			goto out_balanced;
9583 
9584 		/* XXX broken for overlapping NUMA groups */
9585 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9586 				sds.total_capacity;
9587 
9588 		/*
9589 		 * Don't pull any tasks if this group is already above the
9590 		 * domain average load.
9591 		 */
9592 		if (local->avg_load >= sds.avg_load)
9593 			goto out_balanced;
9594 
9595 		/*
9596 		 * If the busiest group is more loaded, use imbalance_pct to be
9597 		 * conservative.
9598 		 */
9599 		if (100 * busiest->avg_load <=
9600 				env->sd->imbalance_pct * local->avg_load)
9601 			goto out_balanced;
9602 	}
9603 
9604 	/* Try to move all excess tasks to child's sibling domain */
9605 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9606 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9607 		goto force_balance;
9608 
9609 	if (busiest->group_type != group_overloaded) {
9610 		if (env->idle == CPU_NOT_IDLE)
9611 			/*
9612 			 * If the busiest group is not overloaded (and as a
9613 			 * result the local one too) but this CPU is already
9614 			 * busy, let another idle CPU try to pull task.
9615 			 */
9616 			goto out_balanced;
9617 
9618 		if (busiest->group_weight > 1 &&
9619 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9620 			/*
9621 			 * If the busiest group is not overloaded
9622 			 * and there is no imbalance between this and busiest
9623 			 * group wrt idle CPUs, it is balanced. The imbalance
9624 			 * becomes significant if the diff is greater than 1
9625 			 * otherwise we might end up to just move the imbalance
9626 			 * on another group. Of course this applies only if
9627 			 * there is more than 1 CPU per group.
9628 			 */
9629 			goto out_balanced;
9630 
9631 		if (busiest->sum_h_nr_running == 1)
9632 			/*
9633 			 * busiest doesn't have any tasks waiting to run
9634 			 */
9635 			goto out_balanced;
9636 	}
9637 
9638 force_balance:
9639 	/* Looks like there is an imbalance. Compute it */
9640 	calculate_imbalance(env, &sds);
9641 	return env->imbalance ? sds.busiest : NULL;
9642 
9643 out_balanced:
9644 	env->imbalance = 0;
9645 	return NULL;
9646 }
9647 
9648 /*
9649  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9650  */
9651 static struct rq *find_busiest_queue(struct lb_env *env,
9652 				     struct sched_group *group)
9653 {
9654 	struct rq *busiest = NULL, *rq;
9655 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9656 	unsigned int busiest_nr = 0;
9657 	int i;
9658 
9659 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9660 		unsigned long capacity, load, util;
9661 		unsigned int nr_running;
9662 		enum fbq_type rt;
9663 
9664 		rq = cpu_rq(i);
9665 		rt = fbq_classify_rq(rq);
9666 
9667 		/*
9668 		 * We classify groups/runqueues into three groups:
9669 		 *  - regular: there are !numa tasks
9670 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9671 		 *  - all:     there is no distinction
9672 		 *
9673 		 * In order to avoid migrating ideally placed numa tasks,
9674 		 * ignore those when there's better options.
9675 		 *
9676 		 * If we ignore the actual busiest queue to migrate another
9677 		 * task, the next balance pass can still reduce the busiest
9678 		 * queue by moving tasks around inside the node.
9679 		 *
9680 		 * If we cannot move enough load due to this classification
9681 		 * the next pass will adjust the group classification and
9682 		 * allow migration of more tasks.
9683 		 *
9684 		 * Both cases only affect the total convergence complexity.
9685 		 */
9686 		if (rt > env->fbq_type)
9687 			continue;
9688 
9689 		nr_running = rq->cfs.h_nr_running;
9690 		if (!nr_running)
9691 			continue;
9692 
9693 		capacity = capacity_of(i);
9694 
9695 		/*
9696 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9697 		 * eventually lead to active_balancing high->low capacity.
9698 		 * Higher per-CPU capacity is considered better than balancing
9699 		 * average load.
9700 		 */
9701 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9702 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9703 		    nr_running == 1)
9704 			continue;
9705 
9706 		/* Make sure we only pull tasks from a CPU of lower priority */
9707 		if ((env->sd->flags & SD_ASYM_PACKING) &&
9708 		    sched_asym_prefer(i, env->dst_cpu) &&
9709 		    nr_running == 1)
9710 			continue;
9711 
9712 		switch (env->migration_type) {
9713 		case migrate_load:
9714 			/*
9715 			 * When comparing with load imbalance, use cpu_load()
9716 			 * which is not scaled with the CPU capacity.
9717 			 */
9718 			load = cpu_load(rq);
9719 
9720 			if (nr_running == 1 && load > env->imbalance &&
9721 			    !check_cpu_capacity(rq, env->sd))
9722 				break;
9723 
9724 			/*
9725 			 * For the load comparisons with the other CPUs,
9726 			 * consider the cpu_load() scaled with the CPU
9727 			 * capacity, so that the load can be moved away
9728 			 * from the CPU that is potentially running at a
9729 			 * lower capacity.
9730 			 *
9731 			 * Thus we're looking for max(load_i / capacity_i),
9732 			 * crosswise multiplication to rid ourselves of the
9733 			 * division works out to:
9734 			 * load_i * capacity_j > load_j * capacity_i;
9735 			 * where j is our previous maximum.
9736 			 */
9737 			if (load * busiest_capacity > busiest_load * capacity) {
9738 				busiest_load = load;
9739 				busiest_capacity = capacity;
9740 				busiest = rq;
9741 			}
9742 			break;
9743 
9744 		case migrate_util:
9745 			util = cpu_util_cfs(i);
9746 
9747 			/*
9748 			 * Don't try to pull utilization from a CPU with one
9749 			 * running task. Whatever its utilization, we will fail
9750 			 * detach the task.
9751 			 */
9752 			if (nr_running <= 1)
9753 				continue;
9754 
9755 			if (busiest_util < util) {
9756 				busiest_util = util;
9757 				busiest = rq;
9758 			}
9759 			break;
9760 
9761 		case migrate_task:
9762 			if (busiest_nr < nr_running) {
9763 				busiest_nr = nr_running;
9764 				busiest = rq;
9765 			}
9766 			break;
9767 
9768 		case migrate_misfit:
9769 			/*
9770 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9771 			 * simply seek the "biggest" misfit task.
9772 			 */
9773 			if (rq->misfit_task_load > busiest_load) {
9774 				busiest_load = rq->misfit_task_load;
9775 				busiest = rq;
9776 			}
9777 
9778 			break;
9779 
9780 		}
9781 	}
9782 
9783 	return busiest;
9784 }
9785 
9786 /*
9787  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9788  * so long as it is large enough.
9789  */
9790 #define MAX_PINNED_INTERVAL	512
9791 
9792 static inline bool
9793 asym_active_balance(struct lb_env *env)
9794 {
9795 	/*
9796 	 * ASYM_PACKING needs to force migrate tasks from busy but
9797 	 * lower priority CPUs in order to pack all tasks in the
9798 	 * highest priority CPUs.
9799 	 */
9800 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9801 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9802 }
9803 
9804 static inline bool
9805 imbalanced_active_balance(struct lb_env *env)
9806 {
9807 	struct sched_domain *sd = env->sd;
9808 
9809 	/*
9810 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9811 	 * distribution of the load on the system but also the even distribution of the
9812 	 * threads on a system with spare capacity
9813 	 */
9814 	if ((env->migration_type == migrate_task) &&
9815 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9816 		return 1;
9817 
9818 	return 0;
9819 }
9820 
9821 static int need_active_balance(struct lb_env *env)
9822 {
9823 	struct sched_domain *sd = env->sd;
9824 
9825 	if (asym_active_balance(env))
9826 		return 1;
9827 
9828 	if (imbalanced_active_balance(env))
9829 		return 1;
9830 
9831 	/*
9832 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9833 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9834 	 * because of other sched_class or IRQs if more capacity stays
9835 	 * available on dst_cpu.
9836 	 */
9837 	if ((env->idle != CPU_NOT_IDLE) &&
9838 	    (env->src_rq->cfs.h_nr_running == 1)) {
9839 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9840 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9841 			return 1;
9842 	}
9843 
9844 	if (env->migration_type == migrate_misfit)
9845 		return 1;
9846 
9847 	return 0;
9848 }
9849 
9850 static int active_load_balance_cpu_stop(void *data);
9851 
9852 static int should_we_balance(struct lb_env *env)
9853 {
9854 	struct sched_group *sg = env->sd->groups;
9855 	int cpu;
9856 
9857 	/*
9858 	 * Ensure the balancing environment is consistent; can happen
9859 	 * when the softirq triggers 'during' hotplug.
9860 	 */
9861 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9862 		return 0;
9863 
9864 	/*
9865 	 * In the newly idle case, we will allow all the CPUs
9866 	 * to do the newly idle load balance.
9867 	 */
9868 	if (env->idle == CPU_NEWLY_IDLE)
9869 		return 1;
9870 
9871 	/* Try to find first idle CPU */
9872 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9873 		if (!idle_cpu(cpu))
9874 			continue;
9875 
9876 		/* Are we the first idle CPU? */
9877 		return cpu == env->dst_cpu;
9878 	}
9879 
9880 	/* Are we the first CPU of this group ? */
9881 	return group_balance_cpu(sg) == env->dst_cpu;
9882 }
9883 
9884 /*
9885  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9886  * tasks if there is an imbalance.
9887  */
9888 static int load_balance(int this_cpu, struct rq *this_rq,
9889 			struct sched_domain *sd, enum cpu_idle_type idle,
9890 			int *continue_balancing)
9891 {
9892 	int ld_moved, cur_ld_moved, active_balance = 0;
9893 	struct sched_domain *sd_parent = sd->parent;
9894 	struct sched_group *group;
9895 	struct rq *busiest;
9896 	struct rq_flags rf;
9897 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9898 
9899 	struct lb_env env = {
9900 		.sd		= sd,
9901 		.dst_cpu	= this_cpu,
9902 		.dst_rq		= this_rq,
9903 		.dst_grpmask    = sched_group_span(sd->groups),
9904 		.idle		= idle,
9905 		.loop_break	= sched_nr_migrate_break,
9906 		.cpus		= cpus,
9907 		.fbq_type	= all,
9908 		.tasks		= LIST_HEAD_INIT(env.tasks),
9909 	};
9910 
9911 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9912 
9913 	schedstat_inc(sd->lb_count[idle]);
9914 
9915 redo:
9916 	if (!should_we_balance(&env)) {
9917 		*continue_balancing = 0;
9918 		goto out_balanced;
9919 	}
9920 
9921 	group = find_busiest_group(&env);
9922 	if (!group) {
9923 		schedstat_inc(sd->lb_nobusyg[idle]);
9924 		goto out_balanced;
9925 	}
9926 
9927 	busiest = find_busiest_queue(&env, group);
9928 	if (!busiest) {
9929 		schedstat_inc(sd->lb_nobusyq[idle]);
9930 		goto out_balanced;
9931 	}
9932 
9933 	BUG_ON(busiest == env.dst_rq);
9934 
9935 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9936 
9937 	env.src_cpu = busiest->cpu;
9938 	env.src_rq = busiest;
9939 
9940 	ld_moved = 0;
9941 	/* Clear this flag as soon as we find a pullable task */
9942 	env.flags |= LBF_ALL_PINNED;
9943 	if (busiest->nr_running > 1) {
9944 		/*
9945 		 * Attempt to move tasks. If find_busiest_group has found
9946 		 * an imbalance but busiest->nr_running <= 1, the group is
9947 		 * still unbalanced. ld_moved simply stays zero, so it is
9948 		 * correctly treated as an imbalance.
9949 		 */
9950 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9951 
9952 more_balance:
9953 		rq_lock_irqsave(busiest, &rf);
9954 		update_rq_clock(busiest);
9955 
9956 		/*
9957 		 * cur_ld_moved - load moved in current iteration
9958 		 * ld_moved     - cumulative load moved across iterations
9959 		 */
9960 		cur_ld_moved = detach_tasks(&env);
9961 
9962 		/*
9963 		 * We've detached some tasks from busiest_rq. Every
9964 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9965 		 * unlock busiest->lock, and we are able to be sure
9966 		 * that nobody can manipulate the tasks in parallel.
9967 		 * See task_rq_lock() family for the details.
9968 		 */
9969 
9970 		rq_unlock(busiest, &rf);
9971 
9972 		if (cur_ld_moved) {
9973 			attach_tasks(&env);
9974 			ld_moved += cur_ld_moved;
9975 		}
9976 
9977 		local_irq_restore(rf.flags);
9978 
9979 		if (env.flags & LBF_NEED_BREAK) {
9980 			env.flags &= ~LBF_NEED_BREAK;
9981 			goto more_balance;
9982 		}
9983 
9984 		/*
9985 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9986 		 * us and move them to an alternate dst_cpu in our sched_group
9987 		 * where they can run. The upper limit on how many times we
9988 		 * iterate on same src_cpu is dependent on number of CPUs in our
9989 		 * sched_group.
9990 		 *
9991 		 * This changes load balance semantics a bit on who can move
9992 		 * load to a given_cpu. In addition to the given_cpu itself
9993 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9994 		 * nohz-idle), we now have balance_cpu in a position to move
9995 		 * load to given_cpu. In rare situations, this may cause
9996 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9997 		 * _independently_ and at _same_ time to move some load to
9998 		 * given_cpu) causing excess load to be moved to given_cpu.
9999 		 * This however should not happen so much in practice and
10000 		 * moreover subsequent load balance cycles should correct the
10001 		 * excess load moved.
10002 		 */
10003 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10004 
10005 			/* Prevent to re-select dst_cpu via env's CPUs */
10006 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10007 
10008 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10009 			env.dst_cpu	 = env.new_dst_cpu;
10010 			env.flags	&= ~LBF_DST_PINNED;
10011 			env.loop	 = 0;
10012 			env.loop_break	 = sched_nr_migrate_break;
10013 
10014 			/*
10015 			 * Go back to "more_balance" rather than "redo" since we
10016 			 * need to continue with same src_cpu.
10017 			 */
10018 			goto more_balance;
10019 		}
10020 
10021 		/*
10022 		 * We failed to reach balance because of affinity.
10023 		 */
10024 		if (sd_parent) {
10025 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10026 
10027 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10028 				*group_imbalance = 1;
10029 		}
10030 
10031 		/* All tasks on this runqueue were pinned by CPU affinity */
10032 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10033 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10034 			/*
10035 			 * Attempting to continue load balancing at the current
10036 			 * sched_domain level only makes sense if there are
10037 			 * active CPUs remaining as possible busiest CPUs to
10038 			 * pull load from which are not contained within the
10039 			 * destination group that is receiving any migrated
10040 			 * load.
10041 			 */
10042 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10043 				env.loop = 0;
10044 				env.loop_break = sched_nr_migrate_break;
10045 				goto redo;
10046 			}
10047 			goto out_all_pinned;
10048 		}
10049 	}
10050 
10051 	if (!ld_moved) {
10052 		schedstat_inc(sd->lb_failed[idle]);
10053 		/*
10054 		 * Increment the failure counter only on periodic balance.
10055 		 * We do not want newidle balance, which can be very
10056 		 * frequent, pollute the failure counter causing
10057 		 * excessive cache_hot migrations and active balances.
10058 		 */
10059 		if (idle != CPU_NEWLY_IDLE)
10060 			sd->nr_balance_failed++;
10061 
10062 		if (need_active_balance(&env)) {
10063 			unsigned long flags;
10064 
10065 			raw_spin_rq_lock_irqsave(busiest, flags);
10066 
10067 			/*
10068 			 * Don't kick the active_load_balance_cpu_stop,
10069 			 * if the curr task on busiest CPU can't be
10070 			 * moved to this_cpu:
10071 			 */
10072 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10073 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10074 				goto out_one_pinned;
10075 			}
10076 
10077 			/* Record that we found at least one task that could run on this_cpu */
10078 			env.flags &= ~LBF_ALL_PINNED;
10079 
10080 			/*
10081 			 * ->active_balance synchronizes accesses to
10082 			 * ->active_balance_work.  Once set, it's cleared
10083 			 * only after active load balance is finished.
10084 			 */
10085 			if (!busiest->active_balance) {
10086 				busiest->active_balance = 1;
10087 				busiest->push_cpu = this_cpu;
10088 				active_balance = 1;
10089 			}
10090 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10091 
10092 			if (active_balance) {
10093 				stop_one_cpu_nowait(cpu_of(busiest),
10094 					active_load_balance_cpu_stop, busiest,
10095 					&busiest->active_balance_work);
10096 			}
10097 		}
10098 	} else {
10099 		sd->nr_balance_failed = 0;
10100 	}
10101 
10102 	if (likely(!active_balance) || need_active_balance(&env)) {
10103 		/* We were unbalanced, so reset the balancing interval */
10104 		sd->balance_interval = sd->min_interval;
10105 	}
10106 
10107 	goto out;
10108 
10109 out_balanced:
10110 	/*
10111 	 * We reach balance although we may have faced some affinity
10112 	 * constraints. Clear the imbalance flag only if other tasks got
10113 	 * a chance to move and fix the imbalance.
10114 	 */
10115 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10116 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10117 
10118 		if (*group_imbalance)
10119 			*group_imbalance = 0;
10120 	}
10121 
10122 out_all_pinned:
10123 	/*
10124 	 * We reach balance because all tasks are pinned at this level so
10125 	 * we can't migrate them. Let the imbalance flag set so parent level
10126 	 * can try to migrate them.
10127 	 */
10128 	schedstat_inc(sd->lb_balanced[idle]);
10129 
10130 	sd->nr_balance_failed = 0;
10131 
10132 out_one_pinned:
10133 	ld_moved = 0;
10134 
10135 	/*
10136 	 * newidle_balance() disregards balance intervals, so we could
10137 	 * repeatedly reach this code, which would lead to balance_interval
10138 	 * skyrocketing in a short amount of time. Skip the balance_interval
10139 	 * increase logic to avoid that.
10140 	 */
10141 	if (env.idle == CPU_NEWLY_IDLE)
10142 		goto out;
10143 
10144 	/* tune up the balancing interval */
10145 	if ((env.flags & LBF_ALL_PINNED &&
10146 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10147 	    sd->balance_interval < sd->max_interval)
10148 		sd->balance_interval *= 2;
10149 out:
10150 	return ld_moved;
10151 }
10152 
10153 static inline unsigned long
10154 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10155 {
10156 	unsigned long interval = sd->balance_interval;
10157 
10158 	if (cpu_busy)
10159 		interval *= sd->busy_factor;
10160 
10161 	/* scale ms to jiffies */
10162 	interval = msecs_to_jiffies(interval);
10163 
10164 	/*
10165 	 * Reduce likelihood of busy balancing at higher domains racing with
10166 	 * balancing at lower domains by preventing their balancing periods
10167 	 * from being multiples of each other.
10168 	 */
10169 	if (cpu_busy)
10170 		interval -= 1;
10171 
10172 	interval = clamp(interval, 1UL, max_load_balance_interval);
10173 
10174 	return interval;
10175 }
10176 
10177 static inline void
10178 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10179 {
10180 	unsigned long interval, next;
10181 
10182 	/* used by idle balance, so cpu_busy = 0 */
10183 	interval = get_sd_balance_interval(sd, 0);
10184 	next = sd->last_balance + interval;
10185 
10186 	if (time_after(*next_balance, next))
10187 		*next_balance = next;
10188 }
10189 
10190 /*
10191  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10192  * running tasks off the busiest CPU onto idle CPUs. It requires at
10193  * least 1 task to be running on each physical CPU where possible, and
10194  * avoids physical / logical imbalances.
10195  */
10196 static int active_load_balance_cpu_stop(void *data)
10197 {
10198 	struct rq *busiest_rq = data;
10199 	int busiest_cpu = cpu_of(busiest_rq);
10200 	int target_cpu = busiest_rq->push_cpu;
10201 	struct rq *target_rq = cpu_rq(target_cpu);
10202 	struct sched_domain *sd;
10203 	struct task_struct *p = NULL;
10204 	struct rq_flags rf;
10205 
10206 	rq_lock_irq(busiest_rq, &rf);
10207 	/*
10208 	 * Between queueing the stop-work and running it is a hole in which
10209 	 * CPUs can become inactive. We should not move tasks from or to
10210 	 * inactive CPUs.
10211 	 */
10212 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10213 		goto out_unlock;
10214 
10215 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10216 	if (unlikely(busiest_cpu != smp_processor_id() ||
10217 		     !busiest_rq->active_balance))
10218 		goto out_unlock;
10219 
10220 	/* Is there any task to move? */
10221 	if (busiest_rq->nr_running <= 1)
10222 		goto out_unlock;
10223 
10224 	/*
10225 	 * This condition is "impossible", if it occurs
10226 	 * we need to fix it. Originally reported by
10227 	 * Bjorn Helgaas on a 128-CPU setup.
10228 	 */
10229 	BUG_ON(busiest_rq == target_rq);
10230 
10231 	/* Search for an sd spanning us and the target CPU. */
10232 	rcu_read_lock();
10233 	for_each_domain(target_cpu, sd) {
10234 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10235 			break;
10236 	}
10237 
10238 	if (likely(sd)) {
10239 		struct lb_env env = {
10240 			.sd		= sd,
10241 			.dst_cpu	= target_cpu,
10242 			.dst_rq		= target_rq,
10243 			.src_cpu	= busiest_rq->cpu,
10244 			.src_rq		= busiest_rq,
10245 			.idle		= CPU_IDLE,
10246 			.flags		= LBF_ACTIVE_LB,
10247 		};
10248 
10249 		schedstat_inc(sd->alb_count);
10250 		update_rq_clock(busiest_rq);
10251 
10252 		p = detach_one_task(&env);
10253 		if (p) {
10254 			schedstat_inc(sd->alb_pushed);
10255 			/* Active balancing done, reset the failure counter. */
10256 			sd->nr_balance_failed = 0;
10257 		} else {
10258 			schedstat_inc(sd->alb_failed);
10259 		}
10260 	}
10261 	rcu_read_unlock();
10262 out_unlock:
10263 	busiest_rq->active_balance = 0;
10264 	rq_unlock(busiest_rq, &rf);
10265 
10266 	if (p)
10267 		attach_one_task(target_rq, p);
10268 
10269 	local_irq_enable();
10270 
10271 	return 0;
10272 }
10273 
10274 static DEFINE_SPINLOCK(balancing);
10275 
10276 /*
10277  * Scale the max load_balance interval with the number of CPUs in the system.
10278  * This trades load-balance latency on larger machines for less cross talk.
10279  */
10280 void update_max_interval(void)
10281 {
10282 	max_load_balance_interval = HZ*num_online_cpus()/10;
10283 }
10284 
10285 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10286 {
10287 	if (cost > sd->max_newidle_lb_cost) {
10288 		/*
10289 		 * Track max cost of a domain to make sure to not delay the
10290 		 * next wakeup on the CPU.
10291 		 */
10292 		sd->max_newidle_lb_cost = cost;
10293 		sd->last_decay_max_lb_cost = jiffies;
10294 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10295 		/*
10296 		 * Decay the newidle max times by ~1% per second to ensure that
10297 		 * it is not outdated and the current max cost is actually
10298 		 * shorter.
10299 		 */
10300 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10301 		sd->last_decay_max_lb_cost = jiffies;
10302 
10303 		return true;
10304 	}
10305 
10306 	return false;
10307 }
10308 
10309 /*
10310  * It checks each scheduling domain to see if it is due to be balanced,
10311  * and initiates a balancing operation if so.
10312  *
10313  * Balancing parameters are set up in init_sched_domains.
10314  */
10315 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10316 {
10317 	int continue_balancing = 1;
10318 	int cpu = rq->cpu;
10319 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10320 	unsigned long interval;
10321 	struct sched_domain *sd;
10322 	/* Earliest time when we have to do rebalance again */
10323 	unsigned long next_balance = jiffies + 60*HZ;
10324 	int update_next_balance = 0;
10325 	int need_serialize, need_decay = 0;
10326 	u64 max_cost = 0;
10327 
10328 	rcu_read_lock();
10329 	for_each_domain(cpu, sd) {
10330 		/*
10331 		 * Decay the newidle max times here because this is a regular
10332 		 * visit to all the domains.
10333 		 */
10334 		need_decay = update_newidle_cost(sd, 0);
10335 		max_cost += sd->max_newidle_lb_cost;
10336 
10337 		/*
10338 		 * Stop the load balance at this level. There is another
10339 		 * CPU in our sched group which is doing load balancing more
10340 		 * actively.
10341 		 */
10342 		if (!continue_balancing) {
10343 			if (need_decay)
10344 				continue;
10345 			break;
10346 		}
10347 
10348 		interval = get_sd_balance_interval(sd, busy);
10349 
10350 		need_serialize = sd->flags & SD_SERIALIZE;
10351 		if (need_serialize) {
10352 			if (!spin_trylock(&balancing))
10353 				goto out;
10354 		}
10355 
10356 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10357 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10358 				/*
10359 				 * The LBF_DST_PINNED logic could have changed
10360 				 * env->dst_cpu, so we can't know our idle
10361 				 * state even if we migrated tasks. Update it.
10362 				 */
10363 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10364 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10365 			}
10366 			sd->last_balance = jiffies;
10367 			interval = get_sd_balance_interval(sd, busy);
10368 		}
10369 		if (need_serialize)
10370 			spin_unlock(&balancing);
10371 out:
10372 		if (time_after(next_balance, sd->last_balance + interval)) {
10373 			next_balance = sd->last_balance + interval;
10374 			update_next_balance = 1;
10375 		}
10376 	}
10377 	if (need_decay) {
10378 		/*
10379 		 * Ensure the rq-wide value also decays but keep it at a
10380 		 * reasonable floor to avoid funnies with rq->avg_idle.
10381 		 */
10382 		rq->max_idle_balance_cost =
10383 			max((u64)sysctl_sched_migration_cost, max_cost);
10384 	}
10385 	rcu_read_unlock();
10386 
10387 	/*
10388 	 * next_balance will be updated only when there is a need.
10389 	 * When the cpu is attached to null domain for ex, it will not be
10390 	 * updated.
10391 	 */
10392 	if (likely(update_next_balance))
10393 		rq->next_balance = next_balance;
10394 
10395 }
10396 
10397 static inline int on_null_domain(struct rq *rq)
10398 {
10399 	return unlikely(!rcu_dereference_sched(rq->sd));
10400 }
10401 
10402 #ifdef CONFIG_NO_HZ_COMMON
10403 /*
10404  * idle load balancing details
10405  * - When one of the busy CPUs notice that there may be an idle rebalancing
10406  *   needed, they will kick the idle load balancer, which then does idle
10407  *   load balancing for all the idle CPUs.
10408  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
10409  *   anywhere yet.
10410  */
10411 
10412 static inline int find_new_ilb(void)
10413 {
10414 	int ilb;
10415 	const struct cpumask *hk_mask;
10416 
10417 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
10418 
10419 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10420 
10421 		if (ilb == smp_processor_id())
10422 			continue;
10423 
10424 		if (idle_cpu(ilb))
10425 			return ilb;
10426 	}
10427 
10428 	return nr_cpu_ids;
10429 }
10430 
10431 /*
10432  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10433  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
10434  */
10435 static void kick_ilb(unsigned int flags)
10436 {
10437 	int ilb_cpu;
10438 
10439 	/*
10440 	 * Increase nohz.next_balance only when if full ilb is triggered but
10441 	 * not if we only update stats.
10442 	 */
10443 	if (flags & NOHZ_BALANCE_KICK)
10444 		nohz.next_balance = jiffies+1;
10445 
10446 	ilb_cpu = find_new_ilb();
10447 
10448 	if (ilb_cpu >= nr_cpu_ids)
10449 		return;
10450 
10451 	/*
10452 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10453 	 * the first flag owns it; cleared by nohz_csd_func().
10454 	 */
10455 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10456 	if (flags & NOHZ_KICK_MASK)
10457 		return;
10458 
10459 	/*
10460 	 * This way we generate an IPI on the target CPU which
10461 	 * is idle. And the softirq performing nohz idle load balance
10462 	 * will be run before returning from the IPI.
10463 	 */
10464 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10465 }
10466 
10467 /*
10468  * Current decision point for kicking the idle load balancer in the presence
10469  * of idle CPUs in the system.
10470  */
10471 static void nohz_balancer_kick(struct rq *rq)
10472 {
10473 	unsigned long now = jiffies;
10474 	struct sched_domain_shared *sds;
10475 	struct sched_domain *sd;
10476 	int nr_busy, i, cpu = rq->cpu;
10477 	unsigned int flags = 0;
10478 
10479 	if (unlikely(rq->idle_balance))
10480 		return;
10481 
10482 	/*
10483 	 * We may be recently in ticked or tickless idle mode. At the first
10484 	 * busy tick after returning from idle, we will update the busy stats.
10485 	 */
10486 	nohz_balance_exit_idle(rq);
10487 
10488 	/*
10489 	 * None are in tickless mode and hence no need for NOHZ idle load
10490 	 * balancing.
10491 	 */
10492 	if (likely(!atomic_read(&nohz.nr_cpus)))
10493 		return;
10494 
10495 	if (READ_ONCE(nohz.has_blocked) &&
10496 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10497 		flags = NOHZ_STATS_KICK;
10498 
10499 	if (time_before(now, nohz.next_balance))
10500 		goto out;
10501 
10502 	if (rq->nr_running >= 2) {
10503 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10504 		goto out;
10505 	}
10506 
10507 	rcu_read_lock();
10508 
10509 	sd = rcu_dereference(rq->sd);
10510 	if (sd) {
10511 		/*
10512 		 * If there's a CFS task and the current CPU has reduced
10513 		 * capacity; kick the ILB to see if there's a better CPU to run
10514 		 * on.
10515 		 */
10516 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10517 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10518 			goto unlock;
10519 		}
10520 	}
10521 
10522 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10523 	if (sd) {
10524 		/*
10525 		 * When ASYM_PACKING; see if there's a more preferred CPU
10526 		 * currently idle; in which case, kick the ILB to move tasks
10527 		 * around.
10528 		 */
10529 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10530 			if (sched_asym_prefer(i, cpu)) {
10531 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10532 				goto unlock;
10533 			}
10534 		}
10535 	}
10536 
10537 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10538 	if (sd) {
10539 		/*
10540 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10541 		 * to run the misfit task on.
10542 		 */
10543 		if (check_misfit_status(rq, sd)) {
10544 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10545 			goto unlock;
10546 		}
10547 
10548 		/*
10549 		 * For asymmetric systems, we do not want to nicely balance
10550 		 * cache use, instead we want to embrace asymmetry and only
10551 		 * ensure tasks have enough CPU capacity.
10552 		 *
10553 		 * Skip the LLC logic because it's not relevant in that case.
10554 		 */
10555 		goto unlock;
10556 	}
10557 
10558 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10559 	if (sds) {
10560 		/*
10561 		 * If there is an imbalance between LLC domains (IOW we could
10562 		 * increase the overall cache use), we need some less-loaded LLC
10563 		 * domain to pull some load. Likewise, we may need to spread
10564 		 * load within the current LLC domain (e.g. packed SMT cores but
10565 		 * other CPUs are idle). We can't really know from here how busy
10566 		 * the others are - so just get a nohz balance going if it looks
10567 		 * like this LLC domain has tasks we could move.
10568 		 */
10569 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10570 		if (nr_busy > 1) {
10571 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10572 			goto unlock;
10573 		}
10574 	}
10575 unlock:
10576 	rcu_read_unlock();
10577 out:
10578 	if (READ_ONCE(nohz.needs_update))
10579 		flags |= NOHZ_NEXT_KICK;
10580 
10581 	if (flags)
10582 		kick_ilb(flags);
10583 }
10584 
10585 static void set_cpu_sd_state_busy(int cpu)
10586 {
10587 	struct sched_domain *sd;
10588 
10589 	rcu_read_lock();
10590 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10591 
10592 	if (!sd || !sd->nohz_idle)
10593 		goto unlock;
10594 	sd->nohz_idle = 0;
10595 
10596 	atomic_inc(&sd->shared->nr_busy_cpus);
10597 unlock:
10598 	rcu_read_unlock();
10599 }
10600 
10601 void nohz_balance_exit_idle(struct rq *rq)
10602 {
10603 	SCHED_WARN_ON(rq != this_rq());
10604 
10605 	if (likely(!rq->nohz_tick_stopped))
10606 		return;
10607 
10608 	rq->nohz_tick_stopped = 0;
10609 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10610 	atomic_dec(&nohz.nr_cpus);
10611 
10612 	set_cpu_sd_state_busy(rq->cpu);
10613 }
10614 
10615 static void set_cpu_sd_state_idle(int cpu)
10616 {
10617 	struct sched_domain *sd;
10618 
10619 	rcu_read_lock();
10620 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10621 
10622 	if (!sd || sd->nohz_idle)
10623 		goto unlock;
10624 	sd->nohz_idle = 1;
10625 
10626 	atomic_dec(&sd->shared->nr_busy_cpus);
10627 unlock:
10628 	rcu_read_unlock();
10629 }
10630 
10631 /*
10632  * This routine will record that the CPU is going idle with tick stopped.
10633  * This info will be used in performing idle load balancing in the future.
10634  */
10635 void nohz_balance_enter_idle(int cpu)
10636 {
10637 	struct rq *rq = cpu_rq(cpu);
10638 
10639 	SCHED_WARN_ON(cpu != smp_processor_id());
10640 
10641 	/* If this CPU is going down, then nothing needs to be done: */
10642 	if (!cpu_active(cpu))
10643 		return;
10644 
10645 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10646 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
10647 		return;
10648 
10649 	/*
10650 	 * Can be set safely without rq->lock held
10651 	 * If a clear happens, it will have evaluated last additions because
10652 	 * rq->lock is held during the check and the clear
10653 	 */
10654 	rq->has_blocked_load = 1;
10655 
10656 	/*
10657 	 * The tick is still stopped but load could have been added in the
10658 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10659 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10660 	 * of nohz.has_blocked can only happen after checking the new load
10661 	 */
10662 	if (rq->nohz_tick_stopped)
10663 		goto out;
10664 
10665 	/* If we're a completely isolated CPU, we don't play: */
10666 	if (on_null_domain(rq))
10667 		return;
10668 
10669 	rq->nohz_tick_stopped = 1;
10670 
10671 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10672 	atomic_inc(&nohz.nr_cpus);
10673 
10674 	/*
10675 	 * Ensures that if nohz_idle_balance() fails to observe our
10676 	 * @idle_cpus_mask store, it must observe the @has_blocked
10677 	 * and @needs_update stores.
10678 	 */
10679 	smp_mb__after_atomic();
10680 
10681 	set_cpu_sd_state_idle(cpu);
10682 
10683 	WRITE_ONCE(nohz.needs_update, 1);
10684 out:
10685 	/*
10686 	 * Each time a cpu enter idle, we assume that it has blocked load and
10687 	 * enable the periodic update of the load of idle cpus
10688 	 */
10689 	WRITE_ONCE(nohz.has_blocked, 1);
10690 }
10691 
10692 static bool update_nohz_stats(struct rq *rq)
10693 {
10694 	unsigned int cpu = rq->cpu;
10695 
10696 	if (!rq->has_blocked_load)
10697 		return false;
10698 
10699 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10700 		return false;
10701 
10702 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10703 		return true;
10704 
10705 	update_blocked_averages(cpu);
10706 
10707 	return rq->has_blocked_load;
10708 }
10709 
10710 /*
10711  * Internal function that runs load balance for all idle cpus. The load balance
10712  * can be a simple update of blocked load or a complete load balance with
10713  * tasks movement depending of flags.
10714  */
10715 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10716 			       enum cpu_idle_type idle)
10717 {
10718 	/* Earliest time when we have to do rebalance again */
10719 	unsigned long now = jiffies;
10720 	unsigned long next_balance = now + 60*HZ;
10721 	bool has_blocked_load = false;
10722 	int update_next_balance = 0;
10723 	int this_cpu = this_rq->cpu;
10724 	int balance_cpu;
10725 	struct rq *rq;
10726 
10727 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10728 
10729 	/*
10730 	 * We assume there will be no idle load after this update and clear
10731 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10732 	 * set the has_blocked flag and trigger another update of idle load.
10733 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10734 	 * setting the flag, we are sure to not clear the state and not
10735 	 * check the load of an idle cpu.
10736 	 *
10737 	 * Same applies to idle_cpus_mask vs needs_update.
10738 	 */
10739 	if (flags & NOHZ_STATS_KICK)
10740 		WRITE_ONCE(nohz.has_blocked, 0);
10741 	if (flags & NOHZ_NEXT_KICK)
10742 		WRITE_ONCE(nohz.needs_update, 0);
10743 
10744 	/*
10745 	 * Ensures that if we miss the CPU, we must see the has_blocked
10746 	 * store from nohz_balance_enter_idle().
10747 	 */
10748 	smp_mb();
10749 
10750 	/*
10751 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10752 	 * chance for other idle cpu to pull load.
10753 	 */
10754 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10755 		if (!idle_cpu(balance_cpu))
10756 			continue;
10757 
10758 		/*
10759 		 * If this CPU gets work to do, stop the load balancing
10760 		 * work being done for other CPUs. Next load
10761 		 * balancing owner will pick it up.
10762 		 */
10763 		if (need_resched()) {
10764 			if (flags & NOHZ_STATS_KICK)
10765 				has_blocked_load = true;
10766 			if (flags & NOHZ_NEXT_KICK)
10767 				WRITE_ONCE(nohz.needs_update, 1);
10768 			goto abort;
10769 		}
10770 
10771 		rq = cpu_rq(balance_cpu);
10772 
10773 		if (flags & NOHZ_STATS_KICK)
10774 			has_blocked_load |= update_nohz_stats(rq);
10775 
10776 		/*
10777 		 * If time for next balance is due,
10778 		 * do the balance.
10779 		 */
10780 		if (time_after_eq(jiffies, rq->next_balance)) {
10781 			struct rq_flags rf;
10782 
10783 			rq_lock_irqsave(rq, &rf);
10784 			update_rq_clock(rq);
10785 			rq_unlock_irqrestore(rq, &rf);
10786 
10787 			if (flags & NOHZ_BALANCE_KICK)
10788 				rebalance_domains(rq, CPU_IDLE);
10789 		}
10790 
10791 		if (time_after(next_balance, rq->next_balance)) {
10792 			next_balance = rq->next_balance;
10793 			update_next_balance = 1;
10794 		}
10795 	}
10796 
10797 	/*
10798 	 * next_balance will be updated only when there is a need.
10799 	 * When the CPU is attached to null domain for ex, it will not be
10800 	 * updated.
10801 	 */
10802 	if (likely(update_next_balance))
10803 		nohz.next_balance = next_balance;
10804 
10805 	if (flags & NOHZ_STATS_KICK)
10806 		WRITE_ONCE(nohz.next_blocked,
10807 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10808 
10809 abort:
10810 	/* There is still blocked load, enable periodic update */
10811 	if (has_blocked_load)
10812 		WRITE_ONCE(nohz.has_blocked, 1);
10813 }
10814 
10815 /*
10816  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10817  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10818  */
10819 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10820 {
10821 	unsigned int flags = this_rq->nohz_idle_balance;
10822 
10823 	if (!flags)
10824 		return false;
10825 
10826 	this_rq->nohz_idle_balance = 0;
10827 
10828 	if (idle != CPU_IDLE)
10829 		return false;
10830 
10831 	_nohz_idle_balance(this_rq, flags, idle);
10832 
10833 	return true;
10834 }
10835 
10836 /*
10837  * Check if we need to run the ILB for updating blocked load before entering
10838  * idle state.
10839  */
10840 void nohz_run_idle_balance(int cpu)
10841 {
10842 	unsigned int flags;
10843 
10844 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10845 
10846 	/*
10847 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10848 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10849 	 */
10850 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10851 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10852 }
10853 
10854 static void nohz_newidle_balance(struct rq *this_rq)
10855 {
10856 	int this_cpu = this_rq->cpu;
10857 
10858 	/*
10859 	 * This CPU doesn't want to be disturbed by scheduler
10860 	 * housekeeping
10861 	 */
10862 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
10863 		return;
10864 
10865 	/* Will wake up very soon. No time for doing anything else*/
10866 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10867 		return;
10868 
10869 	/* Don't need to update blocked load of idle CPUs*/
10870 	if (!READ_ONCE(nohz.has_blocked) ||
10871 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10872 		return;
10873 
10874 	/*
10875 	 * Set the need to trigger ILB in order to update blocked load
10876 	 * before entering idle state.
10877 	 */
10878 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10879 }
10880 
10881 #else /* !CONFIG_NO_HZ_COMMON */
10882 static inline void nohz_balancer_kick(struct rq *rq) { }
10883 
10884 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10885 {
10886 	return false;
10887 }
10888 
10889 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10890 #endif /* CONFIG_NO_HZ_COMMON */
10891 
10892 /*
10893  * newidle_balance is called by schedule() if this_cpu is about to become
10894  * idle. Attempts to pull tasks from other CPUs.
10895  *
10896  * Returns:
10897  *   < 0 - we released the lock and there are !fair tasks present
10898  *     0 - failed, no new tasks
10899  *   > 0 - success, new (fair) tasks present
10900  */
10901 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10902 {
10903 	unsigned long next_balance = jiffies + HZ;
10904 	int this_cpu = this_rq->cpu;
10905 	u64 t0, t1, curr_cost = 0;
10906 	struct sched_domain *sd;
10907 	int pulled_task = 0;
10908 
10909 	update_misfit_status(NULL, this_rq);
10910 
10911 	/*
10912 	 * There is a task waiting to run. No need to search for one.
10913 	 * Return 0; the task will be enqueued when switching to idle.
10914 	 */
10915 	if (this_rq->ttwu_pending)
10916 		return 0;
10917 
10918 	/*
10919 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10920 	 * measure the duration of idle_balance() as idle time.
10921 	 */
10922 	this_rq->idle_stamp = rq_clock(this_rq);
10923 
10924 	/*
10925 	 * Do not pull tasks towards !active CPUs...
10926 	 */
10927 	if (!cpu_active(this_cpu))
10928 		return 0;
10929 
10930 	/*
10931 	 * This is OK, because current is on_cpu, which avoids it being picked
10932 	 * for load-balance and preemption/IRQs are still disabled avoiding
10933 	 * further scheduler activity on it and we're being very careful to
10934 	 * re-start the picking loop.
10935 	 */
10936 	rq_unpin_lock(this_rq, rf);
10937 
10938 	rcu_read_lock();
10939 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
10940 
10941 	if (!READ_ONCE(this_rq->rd->overload) ||
10942 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
10943 
10944 		if (sd)
10945 			update_next_balance(sd, &next_balance);
10946 		rcu_read_unlock();
10947 
10948 		goto out;
10949 	}
10950 	rcu_read_unlock();
10951 
10952 	raw_spin_rq_unlock(this_rq);
10953 
10954 	t0 = sched_clock_cpu(this_cpu);
10955 	update_blocked_averages(this_cpu);
10956 
10957 	rcu_read_lock();
10958 	for_each_domain(this_cpu, sd) {
10959 		int continue_balancing = 1;
10960 		u64 domain_cost;
10961 
10962 		update_next_balance(sd, &next_balance);
10963 
10964 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
10965 			break;
10966 
10967 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10968 
10969 			pulled_task = load_balance(this_cpu, this_rq,
10970 						   sd, CPU_NEWLY_IDLE,
10971 						   &continue_balancing);
10972 
10973 			t1 = sched_clock_cpu(this_cpu);
10974 			domain_cost = t1 - t0;
10975 			update_newidle_cost(sd, domain_cost);
10976 
10977 			curr_cost += domain_cost;
10978 			t0 = t1;
10979 		}
10980 
10981 		/*
10982 		 * Stop searching for tasks to pull if there are
10983 		 * now runnable tasks on this rq.
10984 		 */
10985 		if (pulled_task || this_rq->nr_running > 0 ||
10986 		    this_rq->ttwu_pending)
10987 			break;
10988 	}
10989 	rcu_read_unlock();
10990 
10991 	raw_spin_rq_lock(this_rq);
10992 
10993 	if (curr_cost > this_rq->max_idle_balance_cost)
10994 		this_rq->max_idle_balance_cost = curr_cost;
10995 
10996 	/*
10997 	 * While browsing the domains, we released the rq lock, a task could
10998 	 * have been enqueued in the meantime. Since we're not going idle,
10999 	 * pretend we pulled a task.
11000 	 */
11001 	if (this_rq->cfs.h_nr_running && !pulled_task)
11002 		pulled_task = 1;
11003 
11004 	/* Is there a task of a high priority class? */
11005 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11006 		pulled_task = -1;
11007 
11008 out:
11009 	/* Move the next balance forward */
11010 	if (time_after(this_rq->next_balance, next_balance))
11011 		this_rq->next_balance = next_balance;
11012 
11013 	if (pulled_task)
11014 		this_rq->idle_stamp = 0;
11015 	else
11016 		nohz_newidle_balance(this_rq);
11017 
11018 	rq_repin_lock(this_rq, rf);
11019 
11020 	return pulled_task;
11021 }
11022 
11023 /*
11024  * run_rebalance_domains is triggered when needed from the scheduler tick.
11025  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11026  */
11027 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11028 {
11029 	struct rq *this_rq = this_rq();
11030 	enum cpu_idle_type idle = this_rq->idle_balance ?
11031 						CPU_IDLE : CPU_NOT_IDLE;
11032 
11033 	/*
11034 	 * If this CPU has a pending nohz_balance_kick, then do the
11035 	 * balancing on behalf of the other idle CPUs whose ticks are
11036 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11037 	 * give the idle CPUs a chance to load balance. Else we may
11038 	 * load balance only within the local sched_domain hierarchy
11039 	 * and abort nohz_idle_balance altogether if we pull some load.
11040 	 */
11041 	if (nohz_idle_balance(this_rq, idle))
11042 		return;
11043 
11044 	/* normal load balance */
11045 	update_blocked_averages(this_rq->cpu);
11046 	rebalance_domains(this_rq, idle);
11047 }
11048 
11049 /*
11050  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11051  */
11052 void trigger_load_balance(struct rq *rq)
11053 {
11054 	/*
11055 	 * Don't need to rebalance while attached to NULL domain or
11056 	 * runqueue CPU is not active
11057 	 */
11058 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11059 		return;
11060 
11061 	if (time_after_eq(jiffies, rq->next_balance))
11062 		raise_softirq(SCHED_SOFTIRQ);
11063 
11064 	nohz_balancer_kick(rq);
11065 }
11066 
11067 static void rq_online_fair(struct rq *rq)
11068 {
11069 	update_sysctl();
11070 
11071 	update_runtime_enabled(rq);
11072 }
11073 
11074 static void rq_offline_fair(struct rq *rq)
11075 {
11076 	update_sysctl();
11077 
11078 	/* Ensure any throttled groups are reachable by pick_next_task */
11079 	unthrottle_offline_cfs_rqs(rq);
11080 }
11081 
11082 #endif /* CONFIG_SMP */
11083 
11084 #ifdef CONFIG_SCHED_CORE
11085 static inline bool
11086 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11087 {
11088 	u64 slice = sched_slice(cfs_rq_of(se), se);
11089 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11090 
11091 	return (rtime * min_nr_tasks > slice);
11092 }
11093 
11094 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11095 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11096 {
11097 	if (!sched_core_enabled(rq))
11098 		return;
11099 
11100 	/*
11101 	 * If runqueue has only one task which used up its slice and
11102 	 * if the sibling is forced idle, then trigger schedule to
11103 	 * give forced idle task a chance.
11104 	 *
11105 	 * sched_slice() considers only this active rq and it gets the
11106 	 * whole slice. But during force idle, we have siblings acting
11107 	 * like a single runqueue and hence we need to consider runnable
11108 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11109 	 * go through the forced idle rq, but that would be a perf hit.
11110 	 * We can assume that the forced idle CPU has at least
11111 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11112 	 * if we need to give up the CPU.
11113 	 */
11114 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11115 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11116 		resched_curr(rq);
11117 }
11118 
11119 /*
11120  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11121  */
11122 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11123 {
11124 	for_each_sched_entity(se) {
11125 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11126 
11127 		if (forceidle) {
11128 			if (cfs_rq->forceidle_seq == fi_seq)
11129 				break;
11130 			cfs_rq->forceidle_seq = fi_seq;
11131 		}
11132 
11133 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11134 	}
11135 }
11136 
11137 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11138 {
11139 	struct sched_entity *se = &p->se;
11140 
11141 	if (p->sched_class != &fair_sched_class)
11142 		return;
11143 
11144 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11145 }
11146 
11147 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11148 {
11149 	struct rq *rq = task_rq(a);
11150 	struct sched_entity *sea = &a->se;
11151 	struct sched_entity *seb = &b->se;
11152 	struct cfs_rq *cfs_rqa;
11153 	struct cfs_rq *cfs_rqb;
11154 	s64 delta;
11155 
11156 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11157 
11158 #ifdef CONFIG_FAIR_GROUP_SCHED
11159 	/*
11160 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11161 	 * are immediate siblings.
11162 	 */
11163 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11164 		int sea_depth = sea->depth;
11165 		int seb_depth = seb->depth;
11166 
11167 		if (sea_depth >= seb_depth)
11168 			sea = parent_entity(sea);
11169 		if (sea_depth <= seb_depth)
11170 			seb = parent_entity(seb);
11171 	}
11172 
11173 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11174 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11175 
11176 	cfs_rqa = sea->cfs_rq;
11177 	cfs_rqb = seb->cfs_rq;
11178 #else
11179 	cfs_rqa = &task_rq(a)->cfs;
11180 	cfs_rqb = &task_rq(b)->cfs;
11181 #endif
11182 
11183 	/*
11184 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11185 	 * min_vruntime_fi, which would have been updated in prior calls
11186 	 * to se_fi_update().
11187 	 */
11188 	delta = (s64)(sea->vruntime - seb->vruntime) +
11189 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11190 
11191 	return delta > 0;
11192 }
11193 #else
11194 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11195 #endif
11196 
11197 /*
11198  * scheduler tick hitting a task of our scheduling class.
11199  *
11200  * NOTE: This function can be called remotely by the tick offload that
11201  * goes along full dynticks. Therefore no local assumption can be made
11202  * and everything must be accessed through the @rq and @curr passed in
11203  * parameters.
11204  */
11205 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11206 {
11207 	struct cfs_rq *cfs_rq;
11208 	struct sched_entity *se = &curr->se;
11209 
11210 	for_each_sched_entity(se) {
11211 		cfs_rq = cfs_rq_of(se);
11212 		entity_tick(cfs_rq, se, queued);
11213 	}
11214 
11215 	if (static_branch_unlikely(&sched_numa_balancing))
11216 		task_tick_numa(rq, curr);
11217 
11218 	update_misfit_status(curr, rq);
11219 	update_overutilized_status(task_rq(curr));
11220 
11221 	task_tick_core(rq, curr);
11222 }
11223 
11224 /*
11225  * called on fork with the child task as argument from the parent's context
11226  *  - child not yet on the tasklist
11227  *  - preemption disabled
11228  */
11229 static void task_fork_fair(struct task_struct *p)
11230 {
11231 	struct cfs_rq *cfs_rq;
11232 	struct sched_entity *se = &p->se, *curr;
11233 	struct rq *rq = this_rq();
11234 	struct rq_flags rf;
11235 
11236 	rq_lock(rq, &rf);
11237 	update_rq_clock(rq);
11238 
11239 	cfs_rq = task_cfs_rq(current);
11240 	curr = cfs_rq->curr;
11241 	if (curr) {
11242 		update_curr(cfs_rq);
11243 		se->vruntime = curr->vruntime;
11244 	}
11245 	place_entity(cfs_rq, se, 1);
11246 
11247 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11248 		/*
11249 		 * Upon rescheduling, sched_class::put_prev_task() will place
11250 		 * 'current' within the tree based on its new key value.
11251 		 */
11252 		swap(curr->vruntime, se->vruntime);
11253 		resched_curr(rq);
11254 	}
11255 
11256 	se->vruntime -= cfs_rq->min_vruntime;
11257 	rq_unlock(rq, &rf);
11258 }
11259 
11260 /*
11261  * Priority of the task has changed. Check to see if we preempt
11262  * the current task.
11263  */
11264 static void
11265 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11266 {
11267 	if (!task_on_rq_queued(p))
11268 		return;
11269 
11270 	if (rq->cfs.nr_running == 1)
11271 		return;
11272 
11273 	/*
11274 	 * Reschedule if we are currently running on this runqueue and
11275 	 * our priority decreased, or if we are not currently running on
11276 	 * this runqueue and our priority is higher than the current's
11277 	 */
11278 	if (task_current(rq, p)) {
11279 		if (p->prio > oldprio)
11280 			resched_curr(rq);
11281 	} else
11282 		check_preempt_curr(rq, p, 0);
11283 }
11284 
11285 static inline bool vruntime_normalized(struct task_struct *p)
11286 {
11287 	struct sched_entity *se = &p->se;
11288 
11289 	/*
11290 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11291 	 * the dequeue_entity(.flags=0) will already have normalized the
11292 	 * vruntime.
11293 	 */
11294 	if (p->on_rq)
11295 		return true;
11296 
11297 	/*
11298 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11299 	 * But there are some cases where it has already been normalized:
11300 	 *
11301 	 * - A forked child which is waiting for being woken up by
11302 	 *   wake_up_new_task().
11303 	 * - A task which has been woken up by try_to_wake_up() and
11304 	 *   waiting for actually being woken up by sched_ttwu_pending().
11305 	 */
11306 	if (!se->sum_exec_runtime ||
11307 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11308 		return true;
11309 
11310 	return false;
11311 }
11312 
11313 #ifdef CONFIG_FAIR_GROUP_SCHED
11314 /*
11315  * Propagate the changes of the sched_entity across the tg tree to make it
11316  * visible to the root
11317  */
11318 static void propagate_entity_cfs_rq(struct sched_entity *se)
11319 {
11320 	struct cfs_rq *cfs_rq;
11321 
11322 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11323 
11324 	/* Start to propagate at parent */
11325 	se = se->parent;
11326 
11327 	for_each_sched_entity(se) {
11328 		cfs_rq = cfs_rq_of(se);
11329 
11330 		if (!cfs_rq_throttled(cfs_rq)){
11331 			update_load_avg(cfs_rq, se, UPDATE_TG);
11332 			list_add_leaf_cfs_rq(cfs_rq);
11333 			continue;
11334 		}
11335 
11336 		if (list_add_leaf_cfs_rq(cfs_rq))
11337 			break;
11338 	}
11339 }
11340 #else
11341 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11342 #endif
11343 
11344 static void detach_entity_cfs_rq(struct sched_entity *se)
11345 {
11346 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11347 
11348 	/* Catch up with the cfs_rq and remove our load when we leave */
11349 	update_load_avg(cfs_rq, se, 0);
11350 	detach_entity_load_avg(cfs_rq, se);
11351 	update_tg_load_avg(cfs_rq);
11352 	propagate_entity_cfs_rq(se);
11353 }
11354 
11355 static void attach_entity_cfs_rq(struct sched_entity *se)
11356 {
11357 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11358 
11359 #ifdef CONFIG_FAIR_GROUP_SCHED
11360 	/*
11361 	 * Since the real-depth could have been changed (only FAIR
11362 	 * class maintain depth value), reset depth properly.
11363 	 */
11364 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11365 #endif
11366 
11367 	/* Synchronize entity with its cfs_rq */
11368 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11369 	attach_entity_load_avg(cfs_rq, se);
11370 	update_tg_load_avg(cfs_rq);
11371 	propagate_entity_cfs_rq(se);
11372 }
11373 
11374 static void detach_task_cfs_rq(struct task_struct *p)
11375 {
11376 	struct sched_entity *se = &p->se;
11377 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11378 
11379 	if (!vruntime_normalized(p)) {
11380 		/*
11381 		 * Fix up our vruntime so that the current sleep doesn't
11382 		 * cause 'unlimited' sleep bonus.
11383 		 */
11384 		place_entity(cfs_rq, se, 0);
11385 		se->vruntime -= cfs_rq->min_vruntime;
11386 	}
11387 
11388 	detach_entity_cfs_rq(se);
11389 }
11390 
11391 static void attach_task_cfs_rq(struct task_struct *p)
11392 {
11393 	struct sched_entity *se = &p->se;
11394 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11395 
11396 	attach_entity_cfs_rq(se);
11397 
11398 	if (!vruntime_normalized(p))
11399 		se->vruntime += cfs_rq->min_vruntime;
11400 }
11401 
11402 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11403 {
11404 	detach_task_cfs_rq(p);
11405 }
11406 
11407 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11408 {
11409 	attach_task_cfs_rq(p);
11410 
11411 	if (task_on_rq_queued(p)) {
11412 		/*
11413 		 * We were most likely switched from sched_rt, so
11414 		 * kick off the schedule if running, otherwise just see
11415 		 * if we can still preempt the current task.
11416 		 */
11417 		if (task_current(rq, p))
11418 			resched_curr(rq);
11419 		else
11420 			check_preempt_curr(rq, p, 0);
11421 	}
11422 }
11423 
11424 /* Account for a task changing its policy or group.
11425  *
11426  * This routine is mostly called to set cfs_rq->curr field when a task
11427  * migrates between groups/classes.
11428  */
11429 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11430 {
11431 	struct sched_entity *se = &p->se;
11432 
11433 #ifdef CONFIG_SMP
11434 	if (task_on_rq_queued(p)) {
11435 		/*
11436 		 * Move the next running task to the front of the list, so our
11437 		 * cfs_tasks list becomes MRU one.
11438 		 */
11439 		list_move(&se->group_node, &rq->cfs_tasks);
11440 	}
11441 #endif
11442 
11443 	for_each_sched_entity(se) {
11444 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11445 
11446 		set_next_entity(cfs_rq, se);
11447 		/* ensure bandwidth has been allocated on our new cfs_rq */
11448 		account_cfs_rq_runtime(cfs_rq, 0);
11449 	}
11450 }
11451 
11452 void init_cfs_rq(struct cfs_rq *cfs_rq)
11453 {
11454 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11455 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11456 #ifndef CONFIG_64BIT
11457 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11458 #endif
11459 #ifdef CONFIG_SMP
11460 	raw_spin_lock_init(&cfs_rq->removed.lock);
11461 #endif
11462 }
11463 
11464 #ifdef CONFIG_FAIR_GROUP_SCHED
11465 static void task_set_group_fair(struct task_struct *p)
11466 {
11467 	struct sched_entity *se = &p->se;
11468 
11469 	set_task_rq(p, task_cpu(p));
11470 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11471 }
11472 
11473 static void task_move_group_fair(struct task_struct *p)
11474 {
11475 	detach_task_cfs_rq(p);
11476 	set_task_rq(p, task_cpu(p));
11477 
11478 #ifdef CONFIG_SMP
11479 	/* Tell se's cfs_rq has been changed -- migrated */
11480 	p->se.avg.last_update_time = 0;
11481 #endif
11482 	attach_task_cfs_rq(p);
11483 }
11484 
11485 static void task_change_group_fair(struct task_struct *p, int type)
11486 {
11487 	switch (type) {
11488 	case TASK_SET_GROUP:
11489 		task_set_group_fair(p);
11490 		break;
11491 
11492 	case TASK_MOVE_GROUP:
11493 		task_move_group_fair(p);
11494 		break;
11495 	}
11496 }
11497 
11498 void free_fair_sched_group(struct task_group *tg)
11499 {
11500 	int i;
11501 
11502 	for_each_possible_cpu(i) {
11503 		if (tg->cfs_rq)
11504 			kfree(tg->cfs_rq[i]);
11505 		if (tg->se)
11506 			kfree(tg->se[i]);
11507 	}
11508 
11509 	kfree(tg->cfs_rq);
11510 	kfree(tg->se);
11511 }
11512 
11513 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11514 {
11515 	struct sched_entity *se;
11516 	struct cfs_rq *cfs_rq;
11517 	int i;
11518 
11519 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11520 	if (!tg->cfs_rq)
11521 		goto err;
11522 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11523 	if (!tg->se)
11524 		goto err;
11525 
11526 	tg->shares = NICE_0_LOAD;
11527 
11528 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11529 
11530 	for_each_possible_cpu(i) {
11531 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11532 				      GFP_KERNEL, cpu_to_node(i));
11533 		if (!cfs_rq)
11534 			goto err;
11535 
11536 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11537 				  GFP_KERNEL, cpu_to_node(i));
11538 		if (!se)
11539 			goto err_free_rq;
11540 
11541 		init_cfs_rq(cfs_rq);
11542 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11543 		init_entity_runnable_average(se);
11544 	}
11545 
11546 	return 1;
11547 
11548 err_free_rq:
11549 	kfree(cfs_rq);
11550 err:
11551 	return 0;
11552 }
11553 
11554 void online_fair_sched_group(struct task_group *tg)
11555 {
11556 	struct sched_entity *se;
11557 	struct rq_flags rf;
11558 	struct rq *rq;
11559 	int i;
11560 
11561 	for_each_possible_cpu(i) {
11562 		rq = cpu_rq(i);
11563 		se = tg->se[i];
11564 		rq_lock_irq(rq, &rf);
11565 		update_rq_clock(rq);
11566 		attach_entity_cfs_rq(se);
11567 		sync_throttle(tg, i);
11568 		rq_unlock_irq(rq, &rf);
11569 	}
11570 }
11571 
11572 void unregister_fair_sched_group(struct task_group *tg)
11573 {
11574 	unsigned long flags;
11575 	struct rq *rq;
11576 	int cpu;
11577 
11578 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11579 
11580 	for_each_possible_cpu(cpu) {
11581 		if (tg->se[cpu])
11582 			remove_entity_load_avg(tg->se[cpu]);
11583 
11584 		/*
11585 		 * Only empty task groups can be destroyed; so we can speculatively
11586 		 * check on_list without danger of it being re-added.
11587 		 */
11588 		if (!tg->cfs_rq[cpu]->on_list)
11589 			continue;
11590 
11591 		rq = cpu_rq(cpu);
11592 
11593 		raw_spin_rq_lock_irqsave(rq, flags);
11594 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11595 		raw_spin_rq_unlock_irqrestore(rq, flags);
11596 	}
11597 }
11598 
11599 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11600 			struct sched_entity *se, int cpu,
11601 			struct sched_entity *parent)
11602 {
11603 	struct rq *rq = cpu_rq(cpu);
11604 
11605 	cfs_rq->tg = tg;
11606 	cfs_rq->rq = rq;
11607 	init_cfs_rq_runtime(cfs_rq);
11608 
11609 	tg->cfs_rq[cpu] = cfs_rq;
11610 	tg->se[cpu] = se;
11611 
11612 	/* se could be NULL for root_task_group */
11613 	if (!se)
11614 		return;
11615 
11616 	if (!parent) {
11617 		se->cfs_rq = &rq->cfs;
11618 		se->depth = 0;
11619 	} else {
11620 		se->cfs_rq = parent->my_q;
11621 		se->depth = parent->depth + 1;
11622 	}
11623 
11624 	se->my_q = cfs_rq;
11625 	/* guarantee group entities always have weight */
11626 	update_load_set(&se->load, NICE_0_LOAD);
11627 	se->parent = parent;
11628 }
11629 
11630 static DEFINE_MUTEX(shares_mutex);
11631 
11632 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11633 {
11634 	int i;
11635 
11636 	lockdep_assert_held(&shares_mutex);
11637 
11638 	/*
11639 	 * We can't change the weight of the root cgroup.
11640 	 */
11641 	if (!tg->se[0])
11642 		return -EINVAL;
11643 
11644 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11645 
11646 	if (tg->shares == shares)
11647 		return 0;
11648 
11649 	tg->shares = shares;
11650 	for_each_possible_cpu(i) {
11651 		struct rq *rq = cpu_rq(i);
11652 		struct sched_entity *se = tg->se[i];
11653 		struct rq_flags rf;
11654 
11655 		/* Propagate contribution to hierarchy */
11656 		rq_lock_irqsave(rq, &rf);
11657 		update_rq_clock(rq);
11658 		for_each_sched_entity(se) {
11659 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11660 			update_cfs_group(se);
11661 		}
11662 		rq_unlock_irqrestore(rq, &rf);
11663 	}
11664 
11665 	return 0;
11666 }
11667 
11668 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11669 {
11670 	int ret;
11671 
11672 	mutex_lock(&shares_mutex);
11673 	if (tg_is_idle(tg))
11674 		ret = -EINVAL;
11675 	else
11676 		ret = __sched_group_set_shares(tg, shares);
11677 	mutex_unlock(&shares_mutex);
11678 
11679 	return ret;
11680 }
11681 
11682 int sched_group_set_idle(struct task_group *tg, long idle)
11683 {
11684 	int i;
11685 
11686 	if (tg == &root_task_group)
11687 		return -EINVAL;
11688 
11689 	if (idle < 0 || idle > 1)
11690 		return -EINVAL;
11691 
11692 	mutex_lock(&shares_mutex);
11693 
11694 	if (tg->idle == idle) {
11695 		mutex_unlock(&shares_mutex);
11696 		return 0;
11697 	}
11698 
11699 	tg->idle = idle;
11700 
11701 	for_each_possible_cpu(i) {
11702 		struct rq *rq = cpu_rq(i);
11703 		struct sched_entity *se = tg->se[i];
11704 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11705 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11706 		long idle_task_delta;
11707 		struct rq_flags rf;
11708 
11709 		rq_lock_irqsave(rq, &rf);
11710 
11711 		grp_cfs_rq->idle = idle;
11712 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11713 			goto next_cpu;
11714 
11715 		if (se->on_rq) {
11716 			parent_cfs_rq = cfs_rq_of(se);
11717 			if (cfs_rq_is_idle(grp_cfs_rq))
11718 				parent_cfs_rq->idle_nr_running++;
11719 			else
11720 				parent_cfs_rq->idle_nr_running--;
11721 		}
11722 
11723 		idle_task_delta = grp_cfs_rq->h_nr_running -
11724 				  grp_cfs_rq->idle_h_nr_running;
11725 		if (!cfs_rq_is_idle(grp_cfs_rq))
11726 			idle_task_delta *= -1;
11727 
11728 		for_each_sched_entity(se) {
11729 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
11730 
11731 			if (!se->on_rq)
11732 				break;
11733 
11734 			cfs_rq->idle_h_nr_running += idle_task_delta;
11735 
11736 			/* Already accounted at parent level and above. */
11737 			if (cfs_rq_is_idle(cfs_rq))
11738 				break;
11739 		}
11740 
11741 next_cpu:
11742 		rq_unlock_irqrestore(rq, &rf);
11743 	}
11744 
11745 	/* Idle groups have minimum weight. */
11746 	if (tg_is_idle(tg))
11747 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11748 	else
11749 		__sched_group_set_shares(tg, NICE_0_LOAD);
11750 
11751 	mutex_unlock(&shares_mutex);
11752 	return 0;
11753 }
11754 
11755 #else /* CONFIG_FAIR_GROUP_SCHED */
11756 
11757 void free_fair_sched_group(struct task_group *tg) { }
11758 
11759 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11760 {
11761 	return 1;
11762 }
11763 
11764 void online_fair_sched_group(struct task_group *tg) { }
11765 
11766 void unregister_fair_sched_group(struct task_group *tg) { }
11767 
11768 #endif /* CONFIG_FAIR_GROUP_SCHED */
11769 
11770 
11771 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11772 {
11773 	struct sched_entity *se = &task->se;
11774 	unsigned int rr_interval = 0;
11775 
11776 	/*
11777 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11778 	 * idle runqueue:
11779 	 */
11780 	if (rq->cfs.load.weight)
11781 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11782 
11783 	return rr_interval;
11784 }
11785 
11786 /*
11787  * All the scheduling class methods:
11788  */
11789 DEFINE_SCHED_CLASS(fair) = {
11790 
11791 	.enqueue_task		= enqueue_task_fair,
11792 	.dequeue_task		= dequeue_task_fair,
11793 	.yield_task		= yield_task_fair,
11794 	.yield_to_task		= yield_to_task_fair,
11795 
11796 	.check_preempt_curr	= check_preempt_wakeup,
11797 
11798 	.pick_next_task		= __pick_next_task_fair,
11799 	.put_prev_task		= put_prev_task_fair,
11800 	.set_next_task          = set_next_task_fair,
11801 
11802 #ifdef CONFIG_SMP
11803 	.balance		= balance_fair,
11804 	.pick_task		= pick_task_fair,
11805 	.select_task_rq		= select_task_rq_fair,
11806 	.migrate_task_rq	= migrate_task_rq_fair,
11807 
11808 	.rq_online		= rq_online_fair,
11809 	.rq_offline		= rq_offline_fair,
11810 
11811 	.task_dead		= task_dead_fair,
11812 	.set_cpus_allowed	= set_cpus_allowed_common,
11813 #endif
11814 
11815 	.task_tick		= task_tick_fair,
11816 	.task_fork		= task_fork_fair,
11817 
11818 	.prio_changed		= prio_changed_fair,
11819 	.switched_from		= switched_from_fair,
11820 	.switched_to		= switched_to_fair,
11821 
11822 	.get_rr_interval	= get_rr_interval_fair,
11823 
11824 	.update_curr		= update_curr_fair,
11825 
11826 #ifdef CONFIG_FAIR_GROUP_SCHED
11827 	.task_change_group	= task_change_group_fair,
11828 #endif
11829 
11830 #ifdef CONFIG_UCLAMP_TASK
11831 	.uclamp_enabled		= 1,
11832 #endif
11833 };
11834 
11835 #ifdef CONFIG_SCHED_DEBUG
11836 void print_cfs_stats(struct seq_file *m, int cpu)
11837 {
11838 	struct cfs_rq *cfs_rq, *pos;
11839 
11840 	rcu_read_lock();
11841 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11842 		print_cfs_rq(m, cpu, cfs_rq);
11843 	rcu_read_unlock();
11844 }
11845 
11846 #ifdef CONFIG_NUMA_BALANCING
11847 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11848 {
11849 	int node;
11850 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11851 	struct numa_group *ng;
11852 
11853 	rcu_read_lock();
11854 	ng = rcu_dereference(p->numa_group);
11855 	for_each_online_node(node) {
11856 		if (p->numa_faults) {
11857 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11858 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11859 		}
11860 		if (ng) {
11861 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11862 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11863 		}
11864 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11865 	}
11866 	rcu_read_unlock();
11867 }
11868 #endif /* CONFIG_NUMA_BALANCING */
11869 #endif /* CONFIG_SCHED_DEBUG */
11870 
11871 __init void init_sched_fair_class(void)
11872 {
11873 #ifdef CONFIG_SMP
11874 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11875 
11876 #ifdef CONFIG_NO_HZ_COMMON
11877 	nohz.next_balance = jiffies;
11878 	nohz.next_blocked = jiffies;
11879 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11880 #endif
11881 #endif /* SMP */
11882 
11883 }
11884 
11885 /*
11886  * Helper functions to facilitate extracting info from tracepoints.
11887  */
11888 
11889 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11890 {
11891 #ifdef CONFIG_SMP
11892 	return cfs_rq ? &cfs_rq->avg : NULL;
11893 #else
11894 	return NULL;
11895 #endif
11896 }
11897 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11898 
11899 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11900 {
11901 	if (!cfs_rq) {
11902 		if (str)
11903 			strlcpy(str, "(null)", len);
11904 		else
11905 			return NULL;
11906 	}
11907 
11908 	cfs_rq_tg_path(cfs_rq, str, len);
11909 	return str;
11910 }
11911 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11912 
11913 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11914 {
11915 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11916 }
11917 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11918 
11919 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11920 {
11921 #ifdef CONFIG_SMP
11922 	return rq ? &rq->avg_rt : NULL;
11923 #else
11924 	return NULL;
11925 #endif
11926 }
11927 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11928 
11929 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11930 {
11931 #ifdef CONFIG_SMP
11932 	return rq ? &rq->avg_dl : NULL;
11933 #else
11934 	return NULL;
11935 #endif
11936 }
11937 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11938 
11939 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11940 {
11941 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11942 	return rq ? &rq->avg_irq : NULL;
11943 #else
11944 	return NULL;
11945 #endif
11946 }
11947 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11948 
11949 int sched_trace_rq_cpu(struct rq *rq)
11950 {
11951 	return rq ? cpu_of(rq) : -1;
11952 }
11953 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11954 
11955 int sched_trace_rq_cpu_capacity(struct rq *rq)
11956 {
11957 	return rq ?
11958 #ifdef CONFIG_SMP
11959 		rq->cpu_capacity
11960 #else
11961 		SCHED_CAPACITY_SCALE
11962 #endif
11963 		: -1;
11964 }
11965 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11966 
11967 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11968 {
11969 #ifdef CONFIG_SMP
11970 	return rd ? rd->span : NULL;
11971 #else
11972 	return NULL;
11973 #endif
11974 }
11975 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11976 
11977 int sched_trace_rq_nr_running(struct rq *rq)
11978 {
11979         return rq ? rq->nr_running : -1;
11980 }
11981 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
11982