xref: /linux/kernel/sched/fair.c (revision 5ab1de932e2923f490645ad017a689c5b58dc433)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity		= 750000ULL;
62 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
85 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 #endif
98 
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102  * each time a cfs_rq requests quota.
103  *
104  * Note: in the case that the slice exceeds the runtime remaining (either due
105  * to consumption or the quota being specified to be smaller than the slice)
106  * we will always only issue the remaining available time.
107  *
108  * (default: 5 msec, units: microseconds)
109  */
110 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 #endif
112 
113 /*
114  * The margin used when comparing utilization with CPU capacity:
115  * util * margin < capacity * 1024
116  *
117  * (default: ~20%)
118  */
119 unsigned int capacity_margin				= 1280;
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 static inline struct task_struct *task_of(struct sched_entity *se)
259 {
260 	SCHED_WARN_ON(!entity_is_task(se));
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 {
287 	if (!cfs_rq->on_list) {
288 		struct rq *rq = rq_of(cfs_rq);
289 		int cpu = cpu_of(rq);
290 		/*
291 		 * Ensure we either appear before our parent (if already
292 		 * enqueued) or force our parent to appear after us when it is
293 		 * enqueued. The fact that we always enqueue bottom-up
294 		 * reduces this to two cases and a special case for the root
295 		 * cfs_rq. Furthermore, it also means that we will always reset
296 		 * tmp_alone_branch either when the branch is connected
297 		 * to a tree or when we reach the beg of the tree
298 		 */
299 		if (cfs_rq->tg->parent &&
300 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 			/*
302 			 * If parent is already on the list, we add the child
303 			 * just before. Thanks to circular linked property of
304 			 * the list, this means to put the child at the tail
305 			 * of the list that starts by parent.
306 			 */
307 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 			/*
310 			 * The branch is now connected to its tree so we can
311 			 * reset tmp_alone_branch to the beginning of the
312 			 * list.
313 			 */
314 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 		} else if (!cfs_rq->tg->parent) {
316 			/*
317 			 * cfs rq without parent should be put
318 			 * at the tail of the list.
319 			 */
320 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 				&rq->leaf_cfs_rq_list);
322 			/*
323 			 * We have reach the beg of a tree so we can reset
324 			 * tmp_alone_branch to the beginning of the list.
325 			 */
326 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 		} else {
328 			/*
329 			 * The parent has not already been added so we want to
330 			 * make sure that it will be put after us.
331 			 * tmp_alone_branch points to the beg of the branch
332 			 * where we will add parent.
333 			 */
334 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 				rq->tmp_alone_branch);
336 			/*
337 			 * update tmp_alone_branch to points to the new beg
338 			 * of the branch
339 			 */
340 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341 		}
342 
343 		cfs_rq->on_list = 1;
344 	}
345 }
346 
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	if (cfs_rq->on_list) {
350 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 		cfs_rq->on_list = 0;
352 	}
353 }
354 
355 /* Iterate thr' all leaf cfs_rq's on a runqueue */
356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
357 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
358 				 leaf_cfs_rq_list)
359 
360 /* Do the two (enqueued) entities belong to the same group ? */
361 static inline struct cfs_rq *
362 is_same_group(struct sched_entity *se, struct sched_entity *pse)
363 {
364 	if (se->cfs_rq == pse->cfs_rq)
365 		return se->cfs_rq;
366 
367 	return NULL;
368 }
369 
370 static inline struct sched_entity *parent_entity(struct sched_entity *se)
371 {
372 	return se->parent;
373 }
374 
375 static void
376 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377 {
378 	int se_depth, pse_depth;
379 
380 	/*
381 	 * preemption test can be made between sibling entities who are in the
382 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 	 * both tasks until we find their ancestors who are siblings of common
384 	 * parent.
385 	 */
386 
387 	/* First walk up until both entities are at same depth */
388 	se_depth = (*se)->depth;
389 	pse_depth = (*pse)->depth;
390 
391 	while (se_depth > pse_depth) {
392 		se_depth--;
393 		*se = parent_entity(*se);
394 	}
395 
396 	while (pse_depth > se_depth) {
397 		pse_depth--;
398 		*pse = parent_entity(*pse);
399 	}
400 
401 	while (!is_same_group(*se, *pse)) {
402 		*se = parent_entity(*se);
403 		*pse = parent_entity(*pse);
404 	}
405 }
406 
407 #else	/* !CONFIG_FAIR_GROUP_SCHED */
408 
409 static inline struct task_struct *task_of(struct sched_entity *se)
410 {
411 	return container_of(se, struct task_struct, se);
412 }
413 
414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415 {
416 	return container_of(cfs_rq, struct rq, cfs);
417 }
418 
419 
420 #define for_each_sched_entity(se) \
421 		for (; se; se = NULL)
422 
423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424 {
425 	return &task_rq(p)->cfs;
426 }
427 
428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429 {
430 	struct task_struct *p = task_of(se);
431 	struct rq *rq = task_rq(p);
432 
433 	return &rq->cfs;
434 }
435 
436 /* runqueue "owned" by this group */
437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438 {
439 	return NULL;
440 }
441 
442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443 {
444 }
445 
446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447 {
448 }
449 
450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
451 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
452 
453 static inline struct sched_entity *parent_entity(struct sched_entity *se)
454 {
455 	return NULL;
456 }
457 
458 static inline void
459 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460 {
461 }
462 
463 #endif	/* CONFIG_FAIR_GROUP_SCHED */
464 
465 static __always_inline
466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 
468 /**************************************************************
469  * Scheduling class tree data structure manipulation methods:
470  */
471 
472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473 {
474 	s64 delta = (s64)(vruntime - max_vruntime);
475 	if (delta > 0)
476 		max_vruntime = vruntime;
477 
478 	return max_vruntime;
479 }
480 
481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
482 {
483 	s64 delta = (s64)(vruntime - min_vruntime);
484 	if (delta < 0)
485 		min_vruntime = vruntime;
486 
487 	return min_vruntime;
488 }
489 
490 static inline int entity_before(struct sched_entity *a,
491 				struct sched_entity *b)
492 {
493 	return (s64)(a->vruntime - b->vruntime) < 0;
494 }
495 
496 static void update_min_vruntime(struct cfs_rq *cfs_rq)
497 {
498 	struct sched_entity *curr = cfs_rq->curr;
499 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500 
501 	u64 vruntime = cfs_rq->min_vruntime;
502 
503 	if (curr) {
504 		if (curr->on_rq)
505 			vruntime = curr->vruntime;
506 		else
507 			curr = NULL;
508 	}
509 
510 	if (leftmost) { /* non-empty tree */
511 		struct sched_entity *se;
512 		se = rb_entry(leftmost, struct sched_entity, run_node);
513 
514 		if (!curr)
515 			vruntime = se->vruntime;
516 		else
517 			vruntime = min_vruntime(vruntime, se->vruntime);
518 	}
519 
520 	/* ensure we never gain time by being placed backwards. */
521 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 #ifndef CONFIG_64BIT
523 	smp_wmb();
524 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525 #endif
526 }
527 
528 /*
529  * Enqueue an entity into the rb-tree:
530  */
531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct sched_entity *entry;
536 	bool leftmost = true;
537 
538 	/*
539 	 * Find the right place in the rbtree:
540 	 */
541 	while (*link) {
542 		parent = *link;
543 		entry = rb_entry(parent, struct sched_entity, run_node);
544 		/*
545 		 * We dont care about collisions. Nodes with
546 		 * the same key stay together.
547 		 */
548 		if (entity_before(se, entry)) {
549 			link = &parent->rb_left;
550 		} else {
551 			link = &parent->rb_right;
552 			leftmost = false;
553 		}
554 	}
555 
556 	rb_link_node(&se->run_node, parent, link);
557 	rb_insert_color_cached(&se->run_node,
558 			       &cfs_rq->tasks_timeline, leftmost);
559 }
560 
561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 }
565 
566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567 {
568 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 
570 	if (!left)
571 		return NULL;
572 
573 	return rb_entry(left, struct sched_entity, run_node);
574 }
575 
576 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577 {
578 	struct rb_node *next = rb_next(&se->run_node);
579 
580 	if (!next)
581 		return NULL;
582 
583 	return rb_entry(next, struct sched_entity, run_node);
584 }
585 
586 #ifdef CONFIG_SCHED_DEBUG
587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588 {
589 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590 
591 	if (!last)
592 		return NULL;
593 
594 	return rb_entry(last, struct sched_entity, run_node);
595 }
596 
597 /**************************************************************
598  * Scheduling class statistics methods:
599  */
600 
601 int sched_proc_update_handler(struct ctl_table *table, int write,
602 		void __user *buffer, size_t *lenp,
603 		loff_t *ppos)
604 {
605 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606 	unsigned int factor = get_update_sysctl_factor();
607 
608 	if (ret || !write)
609 		return ret;
610 
611 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 					sysctl_sched_min_granularity);
613 
614 #define WRT_SYSCTL(name) \
615 	(normalized_sysctl_##name = sysctl_##name / (factor))
616 	WRT_SYSCTL(sched_min_granularity);
617 	WRT_SYSCTL(sched_latency);
618 	WRT_SYSCTL(sched_wakeup_granularity);
619 #undef WRT_SYSCTL
620 
621 	return 0;
622 }
623 #endif
624 
625 /*
626  * delta /= w
627  */
628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629 {
630 	if (unlikely(se->load.weight != NICE_0_LOAD))
631 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 
633 	return delta;
634 }
635 
636 /*
637  * The idea is to set a period in which each task runs once.
638  *
639  * When there are too many tasks (sched_nr_latency) we have to stretch
640  * this period because otherwise the slices get too small.
641  *
642  * p = (nr <= nl) ? l : l*nr/nl
643  */
644 static u64 __sched_period(unsigned long nr_running)
645 {
646 	if (unlikely(nr_running > sched_nr_latency))
647 		return nr_running * sysctl_sched_min_granularity;
648 	else
649 		return sysctl_sched_latency;
650 }
651 
652 /*
653  * We calculate the wall-time slice from the period by taking a part
654  * proportional to the weight.
655  *
656  * s = p*P[w/rw]
657  */
658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659 {
660 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661 
662 	for_each_sched_entity(se) {
663 		struct load_weight *load;
664 		struct load_weight lw;
665 
666 		cfs_rq = cfs_rq_of(se);
667 		load = &cfs_rq->load;
668 
669 		if (unlikely(!se->on_rq)) {
670 			lw = cfs_rq->load;
671 
672 			update_load_add(&lw, se->load.weight);
673 			load = &lw;
674 		}
675 		slice = __calc_delta(slice, se->load.weight, load);
676 	}
677 	return slice;
678 }
679 
680 /*
681  * We calculate the vruntime slice of a to-be-inserted task.
682  *
683  * vs = s/w
684  */
685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 }
689 
690 #ifdef CONFIG_SMP
691 #include "pelt.h"
692 #include "sched-pelt.h"
693 
694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 static unsigned long task_h_load(struct task_struct *p);
696 
697 /* Give new sched_entity start runnable values to heavy its load in infant time */
698 void init_entity_runnable_average(struct sched_entity *se)
699 {
700 	struct sched_avg *sa = &se->avg;
701 
702 	memset(sa, 0, sizeof(*sa));
703 
704 	/*
705 	 * Tasks are intialized with full load to be seen as heavy tasks until
706 	 * they get a chance to stabilize to their real load level.
707 	 * Group entities are intialized with zero load to reflect the fact that
708 	 * nothing has been attached to the task group yet.
709 	 */
710 	if (entity_is_task(se))
711 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
712 
713 	se->runnable_weight = se->load.weight;
714 
715 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716 }
717 
718 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719 static void attach_entity_cfs_rq(struct sched_entity *se);
720 
721 /*
722  * With new tasks being created, their initial util_avgs are extrapolated
723  * based on the cfs_rq's current util_avg:
724  *
725  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
726  *
727  * However, in many cases, the above util_avg does not give a desired
728  * value. Moreover, the sum of the util_avgs may be divergent, such
729  * as when the series is a harmonic series.
730  *
731  * To solve this problem, we also cap the util_avg of successive tasks to
732  * only 1/2 of the left utilization budget:
733  *
734  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735  *
736  * where n denotes the nth task and cpu_scale the CPU capacity.
737  *
738  * For example, for a CPU with 1024 of capacity, a simplest series from
739  * the beginning would be like:
740  *
741  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
742  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
743  *
744  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
745  * if util_avg > util_avg_cap.
746  */
747 void post_init_entity_util_avg(struct sched_entity *se)
748 {
749 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
750 	struct sched_avg *sa = &se->avg;
751 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
752 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 
754 	if (cap > 0) {
755 		if (cfs_rq->avg.util_avg != 0) {
756 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
757 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
758 
759 			if (sa->util_avg > cap)
760 				sa->util_avg = cap;
761 		} else {
762 			sa->util_avg = cap;
763 		}
764 	}
765 
766 	if (entity_is_task(se)) {
767 		struct task_struct *p = task_of(se);
768 		if (p->sched_class != &fair_sched_class) {
769 			/*
770 			 * For !fair tasks do:
771 			 *
772 			update_cfs_rq_load_avg(now, cfs_rq);
773 			attach_entity_load_avg(cfs_rq, se, 0);
774 			switched_from_fair(rq, p);
775 			 *
776 			 * such that the next switched_to_fair() has the
777 			 * expected state.
778 			 */
779 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 			return;
781 		}
782 	}
783 
784 	attach_entity_cfs_rq(se);
785 }
786 
787 #else /* !CONFIG_SMP */
788 void init_entity_runnable_average(struct sched_entity *se)
789 {
790 }
791 void post_init_entity_util_avg(struct sched_entity *se)
792 {
793 }
794 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
795 {
796 }
797 #endif /* CONFIG_SMP */
798 
799 /*
800  * Update the current task's runtime statistics.
801  */
802 static void update_curr(struct cfs_rq *cfs_rq)
803 {
804 	struct sched_entity *curr = cfs_rq->curr;
805 	u64 now = rq_clock_task(rq_of(cfs_rq));
806 	u64 delta_exec;
807 
808 	if (unlikely(!curr))
809 		return;
810 
811 	delta_exec = now - curr->exec_start;
812 	if (unlikely((s64)delta_exec <= 0))
813 		return;
814 
815 	curr->exec_start = now;
816 
817 	schedstat_set(curr->statistics.exec_max,
818 		      max(delta_exec, curr->statistics.exec_max));
819 
820 	curr->sum_exec_runtime += delta_exec;
821 	schedstat_add(cfs_rq->exec_clock, delta_exec);
822 
823 	curr->vruntime += calc_delta_fair(delta_exec, curr);
824 	update_min_vruntime(cfs_rq);
825 
826 	if (entity_is_task(curr)) {
827 		struct task_struct *curtask = task_of(curr);
828 
829 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830 		cgroup_account_cputime(curtask, delta_exec);
831 		account_group_exec_runtime(curtask, delta_exec);
832 	}
833 
834 	account_cfs_rq_runtime(cfs_rq, delta_exec);
835 }
836 
837 static void update_curr_fair(struct rq *rq)
838 {
839 	update_curr(cfs_rq_of(&rq->curr->se));
840 }
841 
842 static inline void
843 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844 {
845 	u64 wait_start, prev_wait_start;
846 
847 	if (!schedstat_enabled())
848 		return;
849 
850 	wait_start = rq_clock(rq_of(cfs_rq));
851 	prev_wait_start = schedstat_val(se->statistics.wait_start);
852 
853 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 	    likely(wait_start > prev_wait_start))
855 		wait_start -= prev_wait_start;
856 
857 	__schedstat_set(se->statistics.wait_start, wait_start);
858 }
859 
860 static inline void
861 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 	struct task_struct *p;
864 	u64 delta;
865 
866 	if (!schedstat_enabled())
867 		return;
868 
869 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 
871 	if (entity_is_task(se)) {
872 		p = task_of(se);
873 		if (task_on_rq_migrating(p)) {
874 			/*
875 			 * Preserve migrating task's wait time so wait_start
876 			 * time stamp can be adjusted to accumulate wait time
877 			 * prior to migration.
878 			 */
879 			__schedstat_set(se->statistics.wait_start, delta);
880 			return;
881 		}
882 		trace_sched_stat_wait(p, delta);
883 	}
884 
885 	__schedstat_set(se->statistics.wait_max,
886 		      max(schedstat_val(se->statistics.wait_max), delta));
887 	__schedstat_inc(se->statistics.wait_count);
888 	__schedstat_add(se->statistics.wait_sum, delta);
889 	__schedstat_set(se->statistics.wait_start, 0);
890 }
891 
892 static inline void
893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *tsk = NULL;
896 	u64 sleep_start, block_start;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	sleep_start = schedstat_val(se->statistics.sleep_start);
902 	block_start = schedstat_val(se->statistics.block_start);
903 
904 	if (entity_is_task(se))
905 		tsk = task_of(se);
906 
907 	if (sleep_start) {
908 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 
910 		if ((s64)delta < 0)
911 			delta = 0;
912 
913 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914 			__schedstat_set(se->statistics.sleep_max, delta);
915 
916 		__schedstat_set(se->statistics.sleep_start, 0);
917 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 
919 		if (tsk) {
920 			account_scheduler_latency(tsk, delta >> 10, 1);
921 			trace_sched_stat_sleep(tsk, delta);
922 		}
923 	}
924 	if (block_start) {
925 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 
927 		if ((s64)delta < 0)
928 			delta = 0;
929 
930 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931 			__schedstat_set(se->statistics.block_max, delta);
932 
933 		__schedstat_set(se->statistics.block_start, 0);
934 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 
936 		if (tsk) {
937 			if (tsk->in_iowait) {
938 				__schedstat_add(se->statistics.iowait_sum, delta);
939 				__schedstat_inc(se->statistics.iowait_count);
940 				trace_sched_stat_iowait(tsk, delta);
941 			}
942 
943 			trace_sched_stat_blocked(tsk, delta);
944 
945 			/*
946 			 * Blocking time is in units of nanosecs, so shift by
947 			 * 20 to get a milliseconds-range estimation of the
948 			 * amount of time that the task spent sleeping:
949 			 */
950 			if (unlikely(prof_on == SLEEP_PROFILING)) {
951 				profile_hits(SLEEP_PROFILING,
952 						(void *)get_wchan(tsk),
953 						delta >> 20);
954 			}
955 			account_scheduler_latency(tsk, delta >> 10, 0);
956 		}
957 	}
958 }
959 
960 /*
961  * Task is being enqueued - update stats:
962  */
963 static inline void
964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965 {
966 	if (!schedstat_enabled())
967 		return;
968 
969 	/*
970 	 * Are we enqueueing a waiting task? (for current tasks
971 	 * a dequeue/enqueue event is a NOP)
972 	 */
973 	if (se != cfs_rq->curr)
974 		update_stats_wait_start(cfs_rq, se);
975 
976 	if (flags & ENQUEUE_WAKEUP)
977 		update_stats_enqueue_sleeper(cfs_rq, se);
978 }
979 
980 static inline void
981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982 {
983 
984 	if (!schedstat_enabled())
985 		return;
986 
987 	/*
988 	 * Mark the end of the wait period if dequeueing a
989 	 * waiting task:
990 	 */
991 	if (se != cfs_rq->curr)
992 		update_stats_wait_end(cfs_rq, se);
993 
994 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 		struct task_struct *tsk = task_of(se);
996 
997 		if (tsk->state & TASK_INTERRUPTIBLE)
998 			__schedstat_set(se->statistics.sleep_start,
999 				      rq_clock(rq_of(cfs_rq)));
1000 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1001 			__schedstat_set(se->statistics.block_start,
1002 				      rq_clock(rq_of(cfs_rq)));
1003 	}
1004 }
1005 
1006 /*
1007  * We are picking a new current task - update its stats:
1008  */
1009 static inline void
1010 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011 {
1012 	/*
1013 	 * We are starting a new run period:
1014 	 */
1015 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016 }
1017 
1018 /**************************************************
1019  * Scheduling class queueing methods:
1020  */
1021 
1022 #ifdef CONFIG_NUMA_BALANCING
1023 /*
1024  * Approximate time to scan a full NUMA task in ms. The task scan period is
1025  * calculated based on the tasks virtual memory size and
1026  * numa_balancing_scan_size.
1027  */
1028 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1029 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 
1031 /* Portion of address space to scan in MB */
1032 unsigned int sysctl_numa_balancing_scan_size = 256;
1033 
1034 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1035 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1036 
1037 struct numa_group {
1038 	atomic_t refcount;
1039 
1040 	spinlock_t lock; /* nr_tasks, tasks */
1041 	int nr_tasks;
1042 	pid_t gid;
1043 	int active_nodes;
1044 
1045 	struct rcu_head rcu;
1046 	unsigned long total_faults;
1047 	unsigned long max_faults_cpu;
1048 	/*
1049 	 * Faults_cpu is used to decide whether memory should move
1050 	 * towards the CPU. As a consequence, these stats are weighted
1051 	 * more by CPU use than by memory faults.
1052 	 */
1053 	unsigned long *faults_cpu;
1054 	unsigned long faults[0];
1055 };
1056 
1057 static inline unsigned long group_faults_priv(struct numa_group *ng);
1058 static inline unsigned long group_faults_shared(struct numa_group *ng);
1059 
1060 static unsigned int task_nr_scan_windows(struct task_struct *p)
1061 {
1062 	unsigned long rss = 0;
1063 	unsigned long nr_scan_pages;
1064 
1065 	/*
1066 	 * Calculations based on RSS as non-present and empty pages are skipped
1067 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1068 	 * on resident pages
1069 	 */
1070 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1071 	rss = get_mm_rss(p->mm);
1072 	if (!rss)
1073 		rss = nr_scan_pages;
1074 
1075 	rss = round_up(rss, nr_scan_pages);
1076 	return rss / nr_scan_pages;
1077 }
1078 
1079 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1080 #define MAX_SCAN_WINDOW 2560
1081 
1082 static unsigned int task_scan_min(struct task_struct *p)
1083 {
1084 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 	unsigned int scan, floor;
1086 	unsigned int windows = 1;
1087 
1088 	if (scan_size < MAX_SCAN_WINDOW)
1089 		windows = MAX_SCAN_WINDOW / scan_size;
1090 	floor = 1000 / windows;
1091 
1092 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1093 	return max_t(unsigned int, floor, scan);
1094 }
1095 
1096 static unsigned int task_scan_start(struct task_struct *p)
1097 {
1098 	unsigned long smin = task_scan_min(p);
1099 	unsigned long period = smin;
1100 
1101 	/* Scale the maximum scan period with the amount of shared memory. */
1102 	if (p->numa_group) {
1103 		struct numa_group *ng = p->numa_group;
1104 		unsigned long shared = group_faults_shared(ng);
1105 		unsigned long private = group_faults_priv(ng);
1106 
1107 		period *= atomic_read(&ng->refcount);
1108 		period *= shared + 1;
1109 		period /= private + shared + 1;
1110 	}
1111 
1112 	return max(smin, period);
1113 }
1114 
1115 static unsigned int task_scan_max(struct task_struct *p)
1116 {
1117 	unsigned long smin = task_scan_min(p);
1118 	unsigned long smax;
1119 
1120 	/* Watch for min being lower than max due to floor calculations */
1121 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 
1123 	/* Scale the maximum scan period with the amount of shared memory. */
1124 	if (p->numa_group) {
1125 		struct numa_group *ng = p->numa_group;
1126 		unsigned long shared = group_faults_shared(ng);
1127 		unsigned long private = group_faults_priv(ng);
1128 		unsigned long period = smax;
1129 
1130 		period *= atomic_read(&ng->refcount);
1131 		period *= shared + 1;
1132 		period /= private + shared + 1;
1133 
1134 		smax = max(smax, period);
1135 	}
1136 
1137 	return max(smin, smax);
1138 }
1139 
1140 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1141 {
1142 	int mm_users = 0;
1143 	struct mm_struct *mm = p->mm;
1144 
1145 	if (mm) {
1146 		mm_users = atomic_read(&mm->mm_users);
1147 		if (mm_users == 1) {
1148 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1149 			mm->numa_scan_seq = 0;
1150 		}
1151 	}
1152 	p->node_stamp			= 0;
1153 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1154 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1155 	p->numa_work.next		= &p->numa_work;
1156 	p->numa_faults			= NULL;
1157 	p->numa_group			= NULL;
1158 	p->last_task_numa_placement	= 0;
1159 	p->last_sum_exec_runtime	= 0;
1160 
1161 	/* New address space, reset the preferred nid */
1162 	if (!(clone_flags & CLONE_VM)) {
1163 		p->numa_preferred_nid = -1;
1164 		return;
1165 	}
1166 
1167 	/*
1168 	 * New thread, keep existing numa_preferred_nid which should be copied
1169 	 * already by arch_dup_task_struct but stagger when scans start.
1170 	 */
1171 	if (mm) {
1172 		unsigned int delay;
1173 
1174 		delay = min_t(unsigned int, task_scan_max(current),
1175 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1176 		delay += 2 * TICK_NSEC;
1177 		p->node_stamp = delay;
1178 	}
1179 }
1180 
1181 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1182 {
1183 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1184 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1185 }
1186 
1187 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1188 {
1189 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1190 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1191 }
1192 
1193 /* Shared or private faults. */
1194 #define NR_NUMA_HINT_FAULT_TYPES 2
1195 
1196 /* Memory and CPU locality */
1197 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198 
1199 /* Averaged statistics, and temporary buffers. */
1200 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201 
1202 pid_t task_numa_group_id(struct task_struct *p)
1203 {
1204 	return p->numa_group ? p->numa_group->gid : 0;
1205 }
1206 
1207 /*
1208  * The averaged statistics, shared & private, memory & CPU,
1209  * occupy the first half of the array. The second half of the
1210  * array is for current counters, which are averaged into the
1211  * first set by task_numa_placement.
1212  */
1213 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214 {
1215 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216 }
1217 
1218 static inline unsigned long task_faults(struct task_struct *p, int nid)
1219 {
1220 	if (!p->numa_faults)
1221 		return 0;
1222 
1223 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 }
1226 
1227 static inline unsigned long group_faults(struct task_struct *p, int nid)
1228 {
1229 	if (!p->numa_group)
1230 		return 0;
1231 
1232 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1233 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234 }
1235 
1236 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1237 {
1238 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1239 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240 }
1241 
1242 static inline unsigned long group_faults_priv(struct numa_group *ng)
1243 {
1244 	unsigned long faults = 0;
1245 	int node;
1246 
1247 	for_each_online_node(node) {
1248 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1249 	}
1250 
1251 	return faults;
1252 }
1253 
1254 static inline unsigned long group_faults_shared(struct numa_group *ng)
1255 {
1256 	unsigned long faults = 0;
1257 	int node;
1258 
1259 	for_each_online_node(node) {
1260 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1261 	}
1262 
1263 	return faults;
1264 }
1265 
1266 /*
1267  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1268  * considered part of a numa group's pseudo-interleaving set. Migrations
1269  * between these nodes are slowed down, to allow things to settle down.
1270  */
1271 #define ACTIVE_NODE_FRACTION 3
1272 
1273 static bool numa_is_active_node(int nid, struct numa_group *ng)
1274 {
1275 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1276 }
1277 
1278 /* Handle placement on systems where not all nodes are directly connected. */
1279 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1280 					int maxdist, bool task)
1281 {
1282 	unsigned long score = 0;
1283 	int node;
1284 
1285 	/*
1286 	 * All nodes are directly connected, and the same distance
1287 	 * from each other. No need for fancy placement algorithms.
1288 	 */
1289 	if (sched_numa_topology_type == NUMA_DIRECT)
1290 		return 0;
1291 
1292 	/*
1293 	 * This code is called for each node, introducing N^2 complexity,
1294 	 * which should be ok given the number of nodes rarely exceeds 8.
1295 	 */
1296 	for_each_online_node(node) {
1297 		unsigned long faults;
1298 		int dist = node_distance(nid, node);
1299 
1300 		/*
1301 		 * The furthest away nodes in the system are not interesting
1302 		 * for placement; nid was already counted.
1303 		 */
1304 		if (dist == sched_max_numa_distance || node == nid)
1305 			continue;
1306 
1307 		/*
1308 		 * On systems with a backplane NUMA topology, compare groups
1309 		 * of nodes, and move tasks towards the group with the most
1310 		 * memory accesses. When comparing two nodes at distance
1311 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1312 		 * of each group. Skip other nodes.
1313 		 */
1314 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1315 					dist >= maxdist)
1316 			continue;
1317 
1318 		/* Add up the faults from nearby nodes. */
1319 		if (task)
1320 			faults = task_faults(p, node);
1321 		else
1322 			faults = group_faults(p, node);
1323 
1324 		/*
1325 		 * On systems with a glueless mesh NUMA topology, there are
1326 		 * no fixed "groups of nodes". Instead, nodes that are not
1327 		 * directly connected bounce traffic through intermediate
1328 		 * nodes; a numa_group can occupy any set of nodes.
1329 		 * The further away a node is, the less the faults count.
1330 		 * This seems to result in good task placement.
1331 		 */
1332 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1333 			faults *= (sched_max_numa_distance - dist);
1334 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1335 		}
1336 
1337 		score += faults;
1338 	}
1339 
1340 	return score;
1341 }
1342 
1343 /*
1344  * These return the fraction of accesses done by a particular task, or
1345  * task group, on a particular numa node.  The group weight is given a
1346  * larger multiplier, in order to group tasks together that are almost
1347  * evenly spread out between numa nodes.
1348  */
1349 static inline unsigned long task_weight(struct task_struct *p, int nid,
1350 					int dist)
1351 {
1352 	unsigned long faults, total_faults;
1353 
1354 	if (!p->numa_faults)
1355 		return 0;
1356 
1357 	total_faults = p->total_numa_faults;
1358 
1359 	if (!total_faults)
1360 		return 0;
1361 
1362 	faults = task_faults(p, nid);
1363 	faults += score_nearby_nodes(p, nid, dist, true);
1364 
1365 	return 1000 * faults / total_faults;
1366 }
1367 
1368 static inline unsigned long group_weight(struct task_struct *p, int nid,
1369 					 int dist)
1370 {
1371 	unsigned long faults, total_faults;
1372 
1373 	if (!p->numa_group)
1374 		return 0;
1375 
1376 	total_faults = p->numa_group->total_faults;
1377 
1378 	if (!total_faults)
1379 		return 0;
1380 
1381 	faults = group_faults(p, nid);
1382 	faults += score_nearby_nodes(p, nid, dist, false);
1383 
1384 	return 1000 * faults / total_faults;
1385 }
1386 
1387 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1388 				int src_nid, int dst_cpu)
1389 {
1390 	struct numa_group *ng = p->numa_group;
1391 	int dst_nid = cpu_to_node(dst_cpu);
1392 	int last_cpupid, this_cpupid;
1393 
1394 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1395 
1396 	/*
1397 	 * Multi-stage node selection is used in conjunction with a periodic
1398 	 * migration fault to build a temporal task<->page relation. By using
1399 	 * a two-stage filter we remove short/unlikely relations.
1400 	 *
1401 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1402 	 * a task's usage of a particular page (n_p) per total usage of this
1403 	 * page (n_t) (in a given time-span) to a probability.
1404 	 *
1405 	 * Our periodic faults will sample this probability and getting the
1406 	 * same result twice in a row, given these samples are fully
1407 	 * independent, is then given by P(n)^2, provided our sample period
1408 	 * is sufficiently short compared to the usage pattern.
1409 	 *
1410 	 * This quadric squishes small probabilities, making it less likely we
1411 	 * act on an unlikely task<->page relation.
1412 	 */
1413 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1414 	if (!cpupid_pid_unset(last_cpupid) &&
1415 				cpupid_to_nid(last_cpupid) != dst_nid)
1416 		return false;
1417 
1418 	/* Always allow migrate on private faults */
1419 	if (cpupid_match_pid(p, last_cpupid))
1420 		return true;
1421 
1422 	/* A shared fault, but p->numa_group has not been set up yet. */
1423 	if (!ng)
1424 		return true;
1425 
1426 	/*
1427 	 * Destination node is much more heavily used than the source
1428 	 * node? Allow migration.
1429 	 */
1430 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1431 					ACTIVE_NODE_FRACTION)
1432 		return true;
1433 
1434 	/*
1435 	 * Distribute memory according to CPU & memory use on each node,
1436 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1437 	 *
1438 	 * faults_cpu(dst)   3   faults_cpu(src)
1439 	 * --------------- * - > ---------------
1440 	 * faults_mem(dst)   4   faults_mem(src)
1441 	 */
1442 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1443 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1444 }
1445 
1446 static unsigned long weighted_cpuload(struct rq *rq);
1447 static unsigned long source_load(int cpu, int type);
1448 static unsigned long target_load(int cpu, int type);
1449 static unsigned long capacity_of(int cpu);
1450 
1451 /* Cached statistics for all CPUs within a node */
1452 struct numa_stats {
1453 	unsigned long load;
1454 
1455 	/* Total compute capacity of CPUs on a node */
1456 	unsigned long compute_capacity;
1457 
1458 	unsigned int nr_running;
1459 };
1460 
1461 /*
1462  * XXX borrowed from update_sg_lb_stats
1463  */
1464 static void update_numa_stats(struct numa_stats *ns, int nid)
1465 {
1466 	int smt, cpu, cpus = 0;
1467 	unsigned long capacity;
1468 
1469 	memset(ns, 0, sizeof(*ns));
1470 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1471 		struct rq *rq = cpu_rq(cpu);
1472 
1473 		ns->nr_running += rq->nr_running;
1474 		ns->load += weighted_cpuload(rq);
1475 		ns->compute_capacity += capacity_of(cpu);
1476 
1477 		cpus++;
1478 	}
1479 
1480 	/*
1481 	 * If we raced with hotplug and there are no CPUs left in our mask
1482 	 * the @ns structure is NULL'ed and task_numa_compare() will
1483 	 * not find this node attractive.
1484 	 *
1485 	 * We'll detect a huge imbalance and bail there.
1486 	 */
1487 	if (!cpus)
1488 		return;
1489 
1490 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1491 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1492 	capacity = cpus / smt; /* cores */
1493 
1494 	capacity = min_t(unsigned, capacity,
1495 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1496 }
1497 
1498 struct task_numa_env {
1499 	struct task_struct *p;
1500 
1501 	int src_cpu, src_nid;
1502 	int dst_cpu, dst_nid;
1503 
1504 	struct numa_stats src_stats, dst_stats;
1505 
1506 	int imbalance_pct;
1507 	int dist;
1508 
1509 	struct task_struct *best_task;
1510 	long best_imp;
1511 	int best_cpu;
1512 };
1513 
1514 static void task_numa_assign(struct task_numa_env *env,
1515 			     struct task_struct *p, long imp)
1516 {
1517 	if (env->best_task)
1518 		put_task_struct(env->best_task);
1519 	if (p)
1520 		get_task_struct(p);
1521 
1522 	env->best_task = p;
1523 	env->best_imp = imp;
1524 	env->best_cpu = env->dst_cpu;
1525 }
1526 
1527 static bool load_too_imbalanced(long src_load, long dst_load,
1528 				struct task_numa_env *env)
1529 {
1530 	long imb, old_imb;
1531 	long orig_src_load, orig_dst_load;
1532 	long src_capacity, dst_capacity;
1533 
1534 	/*
1535 	 * The load is corrected for the CPU capacity available on each node.
1536 	 *
1537 	 * src_load        dst_load
1538 	 * ------------ vs ---------
1539 	 * src_capacity    dst_capacity
1540 	 */
1541 	src_capacity = env->src_stats.compute_capacity;
1542 	dst_capacity = env->dst_stats.compute_capacity;
1543 
1544 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1545 
1546 	orig_src_load = env->src_stats.load;
1547 	orig_dst_load = env->dst_stats.load;
1548 
1549 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1550 
1551 	/* Would this change make things worse? */
1552 	return (imb > old_imb);
1553 }
1554 
1555 /*
1556  * This checks if the overall compute and NUMA accesses of the system would
1557  * be improved if the source tasks was migrated to the target dst_cpu taking
1558  * into account that it might be best if task running on the dst_cpu should
1559  * be exchanged with the source task
1560  */
1561 static void task_numa_compare(struct task_numa_env *env,
1562 			      long taskimp, long groupimp, bool maymove)
1563 {
1564 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1565 	struct task_struct *cur;
1566 	long src_load, dst_load;
1567 	long load;
1568 	long imp = env->p->numa_group ? groupimp : taskimp;
1569 	long moveimp = imp;
1570 	int dist = env->dist;
1571 
1572 	rcu_read_lock();
1573 	cur = task_rcu_dereference(&dst_rq->curr);
1574 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1575 		cur = NULL;
1576 
1577 	/*
1578 	 * Because we have preemption enabled we can get migrated around and
1579 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1580 	 */
1581 	if (cur == env->p)
1582 		goto unlock;
1583 
1584 	if (!cur) {
1585 		if (maymove || imp > env->best_imp)
1586 			goto assign;
1587 		else
1588 			goto unlock;
1589 	}
1590 
1591 	/*
1592 	 * "imp" is the fault differential for the source task between the
1593 	 * source and destination node. Calculate the total differential for
1594 	 * the source task and potential destination task. The more negative
1595 	 * the value is, the more remote accesses that would be expected to
1596 	 * be incurred if the tasks were swapped.
1597 	 */
1598 	/* Skip this swap candidate if cannot move to the source cpu */
1599 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1600 		goto unlock;
1601 
1602 	/*
1603 	 * If dst and source tasks are in the same NUMA group, or not
1604 	 * in any group then look only at task weights.
1605 	 */
1606 	if (cur->numa_group == env->p->numa_group) {
1607 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1608 		      task_weight(cur, env->dst_nid, dist);
1609 		/*
1610 		 * Add some hysteresis to prevent swapping the
1611 		 * tasks within a group over tiny differences.
1612 		 */
1613 		if (cur->numa_group)
1614 			imp -= imp / 16;
1615 	} else {
1616 		/*
1617 		 * Compare the group weights. If a task is all by itself
1618 		 * (not part of a group), use the task weight instead.
1619 		 */
1620 		if (cur->numa_group && env->p->numa_group)
1621 			imp += group_weight(cur, env->src_nid, dist) -
1622 			       group_weight(cur, env->dst_nid, dist);
1623 		else
1624 			imp += task_weight(cur, env->src_nid, dist) -
1625 			       task_weight(cur, env->dst_nid, dist);
1626 	}
1627 
1628 	if (imp <= env->best_imp)
1629 		goto unlock;
1630 
1631 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1632 		imp = moveimp - 1;
1633 		cur = NULL;
1634 		goto assign;
1635 	}
1636 
1637 	/*
1638 	 * In the overloaded case, try and keep the load balanced.
1639 	 */
1640 	load = task_h_load(env->p) - task_h_load(cur);
1641 	if (!load)
1642 		goto assign;
1643 
1644 	dst_load = env->dst_stats.load + load;
1645 	src_load = env->src_stats.load - load;
1646 
1647 	if (load_too_imbalanced(src_load, dst_load, env))
1648 		goto unlock;
1649 
1650 assign:
1651 	/*
1652 	 * One idle CPU per node is evaluated for a task numa move.
1653 	 * Call select_idle_sibling to maybe find a better one.
1654 	 */
1655 	if (!cur) {
1656 		/*
1657 		 * select_idle_siblings() uses an per-CPU cpumask that
1658 		 * can be used from IRQ context.
1659 		 */
1660 		local_irq_disable();
1661 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1662 						   env->dst_cpu);
1663 		local_irq_enable();
1664 	}
1665 
1666 	task_numa_assign(env, cur, imp);
1667 unlock:
1668 	rcu_read_unlock();
1669 }
1670 
1671 static void task_numa_find_cpu(struct task_numa_env *env,
1672 				long taskimp, long groupimp)
1673 {
1674 	long src_load, dst_load, load;
1675 	bool maymove = false;
1676 	int cpu;
1677 
1678 	load = task_h_load(env->p);
1679 	dst_load = env->dst_stats.load + load;
1680 	src_load = env->src_stats.load - load;
1681 
1682 	/*
1683 	 * If the improvement from just moving env->p direction is better
1684 	 * than swapping tasks around, check if a move is possible.
1685 	 */
1686 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1687 
1688 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1689 		/* Skip this CPU if the source task cannot migrate */
1690 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1691 			continue;
1692 
1693 		env->dst_cpu = cpu;
1694 		task_numa_compare(env, taskimp, groupimp, maymove);
1695 	}
1696 }
1697 
1698 static int task_numa_migrate(struct task_struct *p)
1699 {
1700 	struct task_numa_env env = {
1701 		.p = p,
1702 
1703 		.src_cpu = task_cpu(p),
1704 		.src_nid = task_node(p),
1705 
1706 		.imbalance_pct = 112,
1707 
1708 		.best_task = NULL,
1709 		.best_imp = 0,
1710 		.best_cpu = -1,
1711 	};
1712 	struct sched_domain *sd;
1713 	unsigned long taskweight, groupweight;
1714 	int nid, ret, dist;
1715 	long taskimp, groupimp;
1716 
1717 	/*
1718 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1719 	 * imbalance and would be the first to start moving tasks about.
1720 	 *
1721 	 * And we want to avoid any moving of tasks about, as that would create
1722 	 * random movement of tasks -- counter the numa conditions we're trying
1723 	 * to satisfy here.
1724 	 */
1725 	rcu_read_lock();
1726 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1727 	if (sd)
1728 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1729 	rcu_read_unlock();
1730 
1731 	/*
1732 	 * Cpusets can break the scheduler domain tree into smaller
1733 	 * balance domains, some of which do not cross NUMA boundaries.
1734 	 * Tasks that are "trapped" in such domains cannot be migrated
1735 	 * elsewhere, so there is no point in (re)trying.
1736 	 */
1737 	if (unlikely(!sd)) {
1738 		sched_setnuma(p, task_node(p));
1739 		return -EINVAL;
1740 	}
1741 
1742 	env.dst_nid = p->numa_preferred_nid;
1743 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1744 	taskweight = task_weight(p, env.src_nid, dist);
1745 	groupweight = group_weight(p, env.src_nid, dist);
1746 	update_numa_stats(&env.src_stats, env.src_nid);
1747 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1748 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1749 	update_numa_stats(&env.dst_stats, env.dst_nid);
1750 
1751 	/* Try to find a spot on the preferred nid. */
1752 	task_numa_find_cpu(&env, taskimp, groupimp);
1753 
1754 	/*
1755 	 * Look at other nodes in these cases:
1756 	 * - there is no space available on the preferred_nid
1757 	 * - the task is part of a numa_group that is interleaved across
1758 	 *   multiple NUMA nodes; in order to better consolidate the group,
1759 	 *   we need to check other locations.
1760 	 */
1761 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1762 		for_each_online_node(nid) {
1763 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1764 				continue;
1765 
1766 			dist = node_distance(env.src_nid, env.dst_nid);
1767 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1768 						dist != env.dist) {
1769 				taskweight = task_weight(p, env.src_nid, dist);
1770 				groupweight = group_weight(p, env.src_nid, dist);
1771 			}
1772 
1773 			/* Only consider nodes where both task and groups benefit */
1774 			taskimp = task_weight(p, nid, dist) - taskweight;
1775 			groupimp = group_weight(p, nid, dist) - groupweight;
1776 			if (taskimp < 0 && groupimp < 0)
1777 				continue;
1778 
1779 			env.dist = dist;
1780 			env.dst_nid = nid;
1781 			update_numa_stats(&env.dst_stats, env.dst_nid);
1782 			task_numa_find_cpu(&env, taskimp, groupimp);
1783 		}
1784 	}
1785 
1786 	/*
1787 	 * If the task is part of a workload that spans multiple NUMA nodes,
1788 	 * and is migrating into one of the workload's active nodes, remember
1789 	 * this node as the task's preferred numa node, so the workload can
1790 	 * settle down.
1791 	 * A task that migrated to a second choice node will be better off
1792 	 * trying for a better one later. Do not set the preferred node here.
1793 	 */
1794 	if (p->numa_group) {
1795 		if (env.best_cpu == -1)
1796 			nid = env.src_nid;
1797 		else
1798 			nid = cpu_to_node(env.best_cpu);
1799 
1800 		if (nid != p->numa_preferred_nid)
1801 			sched_setnuma(p, nid);
1802 	}
1803 
1804 	/* No better CPU than the current one was found. */
1805 	if (env.best_cpu == -1)
1806 		return -EAGAIN;
1807 
1808 	/*
1809 	 * Reset the scan period if the task is being rescheduled on an
1810 	 * alternative node to recheck if the tasks is now properly placed.
1811 	 */
1812 	p->numa_scan_period = task_scan_start(p);
1813 
1814 	if (env.best_task == NULL) {
1815 		ret = migrate_task_to(p, env.best_cpu);
1816 		if (ret != 0)
1817 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1818 		return ret;
1819 	}
1820 
1821 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1822 
1823 	if (ret != 0)
1824 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1825 	put_task_struct(env.best_task);
1826 	return ret;
1827 }
1828 
1829 /* Attempt to migrate a task to a CPU on the preferred node. */
1830 static void numa_migrate_preferred(struct task_struct *p)
1831 {
1832 	unsigned long interval = HZ;
1833 
1834 	/* This task has no NUMA fault statistics yet */
1835 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1836 		return;
1837 
1838 	/* Periodically retry migrating the task to the preferred node */
1839 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1840 	p->numa_migrate_retry = jiffies + interval;
1841 
1842 	/* Success if task is already running on preferred CPU */
1843 	if (task_node(p) == p->numa_preferred_nid)
1844 		return;
1845 
1846 	/* Otherwise, try migrate to a CPU on the preferred node */
1847 	task_numa_migrate(p);
1848 }
1849 
1850 /*
1851  * Find out how many nodes on the workload is actively running on. Do this by
1852  * tracking the nodes from which NUMA hinting faults are triggered. This can
1853  * be different from the set of nodes where the workload's memory is currently
1854  * located.
1855  */
1856 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1857 {
1858 	unsigned long faults, max_faults = 0;
1859 	int nid, active_nodes = 0;
1860 
1861 	for_each_online_node(nid) {
1862 		faults = group_faults_cpu(numa_group, nid);
1863 		if (faults > max_faults)
1864 			max_faults = faults;
1865 	}
1866 
1867 	for_each_online_node(nid) {
1868 		faults = group_faults_cpu(numa_group, nid);
1869 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1870 			active_nodes++;
1871 	}
1872 
1873 	numa_group->max_faults_cpu = max_faults;
1874 	numa_group->active_nodes = active_nodes;
1875 }
1876 
1877 /*
1878  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1879  * increments. The more local the fault statistics are, the higher the scan
1880  * period will be for the next scan window. If local/(local+remote) ratio is
1881  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1882  * the scan period will decrease. Aim for 70% local accesses.
1883  */
1884 #define NUMA_PERIOD_SLOTS 10
1885 #define NUMA_PERIOD_THRESHOLD 7
1886 
1887 /*
1888  * Increase the scan period (slow down scanning) if the majority of
1889  * our memory is already on our local node, or if the majority of
1890  * the page accesses are shared with other processes.
1891  * Otherwise, decrease the scan period.
1892  */
1893 static void update_task_scan_period(struct task_struct *p,
1894 			unsigned long shared, unsigned long private)
1895 {
1896 	unsigned int period_slot;
1897 	int lr_ratio, ps_ratio;
1898 	int diff;
1899 
1900 	unsigned long remote = p->numa_faults_locality[0];
1901 	unsigned long local = p->numa_faults_locality[1];
1902 
1903 	/*
1904 	 * If there were no record hinting faults then either the task is
1905 	 * completely idle or all activity is areas that are not of interest
1906 	 * to automatic numa balancing. Related to that, if there were failed
1907 	 * migration then it implies we are migrating too quickly or the local
1908 	 * node is overloaded. In either case, scan slower
1909 	 */
1910 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1911 		p->numa_scan_period = min(p->numa_scan_period_max,
1912 			p->numa_scan_period << 1);
1913 
1914 		p->mm->numa_next_scan = jiffies +
1915 			msecs_to_jiffies(p->numa_scan_period);
1916 
1917 		return;
1918 	}
1919 
1920 	/*
1921 	 * Prepare to scale scan period relative to the current period.
1922 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1923 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1924 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1925 	 */
1926 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1927 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1928 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1929 
1930 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1931 		/*
1932 		 * Most memory accesses are local. There is no need to
1933 		 * do fast NUMA scanning, since memory is already local.
1934 		 */
1935 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1936 		if (!slot)
1937 			slot = 1;
1938 		diff = slot * period_slot;
1939 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1940 		/*
1941 		 * Most memory accesses are shared with other tasks.
1942 		 * There is no point in continuing fast NUMA scanning,
1943 		 * since other tasks may just move the memory elsewhere.
1944 		 */
1945 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1946 		if (!slot)
1947 			slot = 1;
1948 		diff = slot * period_slot;
1949 	} else {
1950 		/*
1951 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1952 		 * yet they are not on the local NUMA node. Speed up
1953 		 * NUMA scanning to get the memory moved over.
1954 		 */
1955 		int ratio = max(lr_ratio, ps_ratio);
1956 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1957 	}
1958 
1959 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1960 			task_scan_min(p), task_scan_max(p));
1961 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1962 }
1963 
1964 /*
1965  * Get the fraction of time the task has been running since the last
1966  * NUMA placement cycle. The scheduler keeps similar statistics, but
1967  * decays those on a 32ms period, which is orders of magnitude off
1968  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1969  * stats only if the task is so new there are no NUMA statistics yet.
1970  */
1971 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1972 {
1973 	u64 runtime, delta, now;
1974 	/* Use the start of this time slice to avoid calculations. */
1975 	now = p->se.exec_start;
1976 	runtime = p->se.sum_exec_runtime;
1977 
1978 	if (p->last_task_numa_placement) {
1979 		delta = runtime - p->last_sum_exec_runtime;
1980 		*period = now - p->last_task_numa_placement;
1981 	} else {
1982 		delta = p->se.avg.load_sum;
1983 		*period = LOAD_AVG_MAX;
1984 	}
1985 
1986 	p->last_sum_exec_runtime = runtime;
1987 	p->last_task_numa_placement = now;
1988 
1989 	return delta;
1990 }
1991 
1992 /*
1993  * Determine the preferred nid for a task in a numa_group. This needs to
1994  * be done in a way that produces consistent results with group_weight,
1995  * otherwise workloads might not converge.
1996  */
1997 static int preferred_group_nid(struct task_struct *p, int nid)
1998 {
1999 	nodemask_t nodes;
2000 	int dist;
2001 
2002 	/* Direct connections between all NUMA nodes. */
2003 	if (sched_numa_topology_type == NUMA_DIRECT)
2004 		return nid;
2005 
2006 	/*
2007 	 * On a system with glueless mesh NUMA topology, group_weight
2008 	 * scores nodes according to the number of NUMA hinting faults on
2009 	 * both the node itself, and on nearby nodes.
2010 	 */
2011 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2012 		unsigned long score, max_score = 0;
2013 		int node, max_node = nid;
2014 
2015 		dist = sched_max_numa_distance;
2016 
2017 		for_each_online_node(node) {
2018 			score = group_weight(p, node, dist);
2019 			if (score > max_score) {
2020 				max_score = score;
2021 				max_node = node;
2022 			}
2023 		}
2024 		return max_node;
2025 	}
2026 
2027 	/*
2028 	 * Finding the preferred nid in a system with NUMA backplane
2029 	 * interconnect topology is more involved. The goal is to locate
2030 	 * tasks from numa_groups near each other in the system, and
2031 	 * untangle workloads from different sides of the system. This requires
2032 	 * searching down the hierarchy of node groups, recursively searching
2033 	 * inside the highest scoring group of nodes. The nodemask tricks
2034 	 * keep the complexity of the search down.
2035 	 */
2036 	nodes = node_online_map;
2037 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2038 		unsigned long max_faults = 0;
2039 		nodemask_t max_group = NODE_MASK_NONE;
2040 		int a, b;
2041 
2042 		/* Are there nodes at this distance from each other? */
2043 		if (!find_numa_distance(dist))
2044 			continue;
2045 
2046 		for_each_node_mask(a, nodes) {
2047 			unsigned long faults = 0;
2048 			nodemask_t this_group;
2049 			nodes_clear(this_group);
2050 
2051 			/* Sum group's NUMA faults; includes a==b case. */
2052 			for_each_node_mask(b, nodes) {
2053 				if (node_distance(a, b) < dist) {
2054 					faults += group_faults(p, b);
2055 					node_set(b, this_group);
2056 					node_clear(b, nodes);
2057 				}
2058 			}
2059 
2060 			/* Remember the top group. */
2061 			if (faults > max_faults) {
2062 				max_faults = faults;
2063 				max_group = this_group;
2064 				/*
2065 				 * subtle: at the smallest distance there is
2066 				 * just one node left in each "group", the
2067 				 * winner is the preferred nid.
2068 				 */
2069 				nid = a;
2070 			}
2071 		}
2072 		/* Next round, evaluate the nodes within max_group. */
2073 		if (!max_faults)
2074 			break;
2075 		nodes = max_group;
2076 	}
2077 	return nid;
2078 }
2079 
2080 static void task_numa_placement(struct task_struct *p)
2081 {
2082 	int seq, nid, max_nid = -1;
2083 	unsigned long max_faults = 0;
2084 	unsigned long fault_types[2] = { 0, 0 };
2085 	unsigned long total_faults;
2086 	u64 runtime, period;
2087 	spinlock_t *group_lock = NULL;
2088 
2089 	/*
2090 	 * The p->mm->numa_scan_seq field gets updated without
2091 	 * exclusive access. Use READ_ONCE() here to ensure
2092 	 * that the field is read in a single access:
2093 	 */
2094 	seq = READ_ONCE(p->mm->numa_scan_seq);
2095 	if (p->numa_scan_seq == seq)
2096 		return;
2097 	p->numa_scan_seq = seq;
2098 	p->numa_scan_period_max = task_scan_max(p);
2099 
2100 	total_faults = p->numa_faults_locality[0] +
2101 		       p->numa_faults_locality[1];
2102 	runtime = numa_get_avg_runtime(p, &period);
2103 
2104 	/* If the task is part of a group prevent parallel updates to group stats */
2105 	if (p->numa_group) {
2106 		group_lock = &p->numa_group->lock;
2107 		spin_lock_irq(group_lock);
2108 	}
2109 
2110 	/* Find the node with the highest number of faults */
2111 	for_each_online_node(nid) {
2112 		/* Keep track of the offsets in numa_faults array */
2113 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2114 		unsigned long faults = 0, group_faults = 0;
2115 		int priv;
2116 
2117 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2118 			long diff, f_diff, f_weight;
2119 
2120 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2121 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2122 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2123 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2124 
2125 			/* Decay existing window, copy faults since last scan */
2126 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2127 			fault_types[priv] += p->numa_faults[membuf_idx];
2128 			p->numa_faults[membuf_idx] = 0;
2129 
2130 			/*
2131 			 * Normalize the faults_from, so all tasks in a group
2132 			 * count according to CPU use, instead of by the raw
2133 			 * number of faults. Tasks with little runtime have
2134 			 * little over-all impact on throughput, and thus their
2135 			 * faults are less important.
2136 			 */
2137 			f_weight = div64_u64(runtime << 16, period + 1);
2138 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2139 				   (total_faults + 1);
2140 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2141 			p->numa_faults[cpubuf_idx] = 0;
2142 
2143 			p->numa_faults[mem_idx] += diff;
2144 			p->numa_faults[cpu_idx] += f_diff;
2145 			faults += p->numa_faults[mem_idx];
2146 			p->total_numa_faults += diff;
2147 			if (p->numa_group) {
2148 				/*
2149 				 * safe because we can only change our own group
2150 				 *
2151 				 * mem_idx represents the offset for a given
2152 				 * nid and priv in a specific region because it
2153 				 * is at the beginning of the numa_faults array.
2154 				 */
2155 				p->numa_group->faults[mem_idx] += diff;
2156 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2157 				p->numa_group->total_faults += diff;
2158 				group_faults += p->numa_group->faults[mem_idx];
2159 			}
2160 		}
2161 
2162 		if (!p->numa_group) {
2163 			if (faults > max_faults) {
2164 				max_faults = faults;
2165 				max_nid = nid;
2166 			}
2167 		} else if (group_faults > max_faults) {
2168 			max_faults = group_faults;
2169 			max_nid = nid;
2170 		}
2171 	}
2172 
2173 	if (p->numa_group) {
2174 		numa_group_count_active_nodes(p->numa_group);
2175 		spin_unlock_irq(group_lock);
2176 		max_nid = preferred_group_nid(p, max_nid);
2177 	}
2178 
2179 	if (max_faults) {
2180 		/* Set the new preferred node */
2181 		if (max_nid != p->numa_preferred_nid)
2182 			sched_setnuma(p, max_nid);
2183 	}
2184 
2185 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2186 }
2187 
2188 static inline int get_numa_group(struct numa_group *grp)
2189 {
2190 	return atomic_inc_not_zero(&grp->refcount);
2191 }
2192 
2193 static inline void put_numa_group(struct numa_group *grp)
2194 {
2195 	if (atomic_dec_and_test(&grp->refcount))
2196 		kfree_rcu(grp, rcu);
2197 }
2198 
2199 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2200 			int *priv)
2201 {
2202 	struct numa_group *grp, *my_grp;
2203 	struct task_struct *tsk;
2204 	bool join = false;
2205 	int cpu = cpupid_to_cpu(cpupid);
2206 	int i;
2207 
2208 	if (unlikely(!p->numa_group)) {
2209 		unsigned int size = sizeof(struct numa_group) +
2210 				    4*nr_node_ids*sizeof(unsigned long);
2211 
2212 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2213 		if (!grp)
2214 			return;
2215 
2216 		atomic_set(&grp->refcount, 1);
2217 		grp->active_nodes = 1;
2218 		grp->max_faults_cpu = 0;
2219 		spin_lock_init(&grp->lock);
2220 		grp->gid = p->pid;
2221 		/* Second half of the array tracks nids where faults happen */
2222 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2223 						nr_node_ids;
2224 
2225 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2226 			grp->faults[i] = p->numa_faults[i];
2227 
2228 		grp->total_faults = p->total_numa_faults;
2229 
2230 		grp->nr_tasks++;
2231 		rcu_assign_pointer(p->numa_group, grp);
2232 	}
2233 
2234 	rcu_read_lock();
2235 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2236 
2237 	if (!cpupid_match_pid(tsk, cpupid))
2238 		goto no_join;
2239 
2240 	grp = rcu_dereference(tsk->numa_group);
2241 	if (!grp)
2242 		goto no_join;
2243 
2244 	my_grp = p->numa_group;
2245 	if (grp == my_grp)
2246 		goto no_join;
2247 
2248 	/*
2249 	 * Only join the other group if its bigger; if we're the bigger group,
2250 	 * the other task will join us.
2251 	 */
2252 	if (my_grp->nr_tasks > grp->nr_tasks)
2253 		goto no_join;
2254 
2255 	/*
2256 	 * Tie-break on the grp address.
2257 	 */
2258 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2259 		goto no_join;
2260 
2261 	/* Always join threads in the same process. */
2262 	if (tsk->mm == current->mm)
2263 		join = true;
2264 
2265 	/* Simple filter to avoid false positives due to PID collisions */
2266 	if (flags & TNF_SHARED)
2267 		join = true;
2268 
2269 	/* Update priv based on whether false sharing was detected */
2270 	*priv = !join;
2271 
2272 	if (join && !get_numa_group(grp))
2273 		goto no_join;
2274 
2275 	rcu_read_unlock();
2276 
2277 	if (!join)
2278 		return;
2279 
2280 	BUG_ON(irqs_disabled());
2281 	double_lock_irq(&my_grp->lock, &grp->lock);
2282 
2283 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2284 		my_grp->faults[i] -= p->numa_faults[i];
2285 		grp->faults[i] += p->numa_faults[i];
2286 	}
2287 	my_grp->total_faults -= p->total_numa_faults;
2288 	grp->total_faults += p->total_numa_faults;
2289 
2290 	my_grp->nr_tasks--;
2291 	grp->nr_tasks++;
2292 
2293 	spin_unlock(&my_grp->lock);
2294 	spin_unlock_irq(&grp->lock);
2295 
2296 	rcu_assign_pointer(p->numa_group, grp);
2297 
2298 	put_numa_group(my_grp);
2299 	return;
2300 
2301 no_join:
2302 	rcu_read_unlock();
2303 	return;
2304 }
2305 
2306 void task_numa_free(struct task_struct *p)
2307 {
2308 	struct numa_group *grp = p->numa_group;
2309 	void *numa_faults = p->numa_faults;
2310 	unsigned long flags;
2311 	int i;
2312 
2313 	if (grp) {
2314 		spin_lock_irqsave(&grp->lock, flags);
2315 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2316 			grp->faults[i] -= p->numa_faults[i];
2317 		grp->total_faults -= p->total_numa_faults;
2318 
2319 		grp->nr_tasks--;
2320 		spin_unlock_irqrestore(&grp->lock, flags);
2321 		RCU_INIT_POINTER(p->numa_group, NULL);
2322 		put_numa_group(grp);
2323 	}
2324 
2325 	p->numa_faults = NULL;
2326 	kfree(numa_faults);
2327 }
2328 
2329 /*
2330  * Got a PROT_NONE fault for a page on @node.
2331  */
2332 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2333 {
2334 	struct task_struct *p = current;
2335 	bool migrated = flags & TNF_MIGRATED;
2336 	int cpu_node = task_node(current);
2337 	int local = !!(flags & TNF_FAULT_LOCAL);
2338 	struct numa_group *ng;
2339 	int priv;
2340 
2341 	if (!static_branch_likely(&sched_numa_balancing))
2342 		return;
2343 
2344 	/* for example, ksmd faulting in a user's mm */
2345 	if (!p->mm)
2346 		return;
2347 
2348 	/* Allocate buffer to track faults on a per-node basis */
2349 	if (unlikely(!p->numa_faults)) {
2350 		int size = sizeof(*p->numa_faults) *
2351 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2352 
2353 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2354 		if (!p->numa_faults)
2355 			return;
2356 
2357 		p->total_numa_faults = 0;
2358 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2359 	}
2360 
2361 	/*
2362 	 * First accesses are treated as private, otherwise consider accesses
2363 	 * to be private if the accessing pid has not changed
2364 	 */
2365 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2366 		priv = 1;
2367 	} else {
2368 		priv = cpupid_match_pid(p, last_cpupid);
2369 		if (!priv && !(flags & TNF_NO_GROUP))
2370 			task_numa_group(p, last_cpupid, flags, &priv);
2371 	}
2372 
2373 	/*
2374 	 * If a workload spans multiple NUMA nodes, a shared fault that
2375 	 * occurs wholly within the set of nodes that the workload is
2376 	 * actively using should be counted as local. This allows the
2377 	 * scan rate to slow down when a workload has settled down.
2378 	 */
2379 	ng = p->numa_group;
2380 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2381 				numa_is_active_node(cpu_node, ng) &&
2382 				numa_is_active_node(mem_node, ng))
2383 		local = 1;
2384 
2385 	/*
2386 	 * Retry task to preferred node migration periodically, in case it
2387 	 * case it previously failed, or the scheduler moved us.
2388 	 */
2389 	if (time_after(jiffies, p->numa_migrate_retry)) {
2390 		task_numa_placement(p);
2391 		numa_migrate_preferred(p);
2392 	}
2393 
2394 	if (migrated)
2395 		p->numa_pages_migrated += pages;
2396 	if (flags & TNF_MIGRATE_FAIL)
2397 		p->numa_faults_locality[2] += pages;
2398 
2399 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2400 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2401 	p->numa_faults_locality[local] += pages;
2402 }
2403 
2404 static void reset_ptenuma_scan(struct task_struct *p)
2405 {
2406 	/*
2407 	 * We only did a read acquisition of the mmap sem, so
2408 	 * p->mm->numa_scan_seq is written to without exclusive access
2409 	 * and the update is not guaranteed to be atomic. That's not
2410 	 * much of an issue though, since this is just used for
2411 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2412 	 * expensive, to avoid any form of compiler optimizations:
2413 	 */
2414 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2415 	p->mm->numa_scan_offset = 0;
2416 }
2417 
2418 /*
2419  * The expensive part of numa migration is done from task_work context.
2420  * Triggered from task_tick_numa().
2421  */
2422 void task_numa_work(struct callback_head *work)
2423 {
2424 	unsigned long migrate, next_scan, now = jiffies;
2425 	struct task_struct *p = current;
2426 	struct mm_struct *mm = p->mm;
2427 	u64 runtime = p->se.sum_exec_runtime;
2428 	struct vm_area_struct *vma;
2429 	unsigned long start, end;
2430 	unsigned long nr_pte_updates = 0;
2431 	long pages, virtpages;
2432 
2433 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2434 
2435 	work->next = work; /* protect against double add */
2436 	/*
2437 	 * Who cares about NUMA placement when they're dying.
2438 	 *
2439 	 * NOTE: make sure not to dereference p->mm before this check,
2440 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2441 	 * without p->mm even though we still had it when we enqueued this
2442 	 * work.
2443 	 */
2444 	if (p->flags & PF_EXITING)
2445 		return;
2446 
2447 	if (!mm->numa_next_scan) {
2448 		mm->numa_next_scan = now +
2449 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2450 	}
2451 
2452 	/*
2453 	 * Enforce maximal scan/migration frequency..
2454 	 */
2455 	migrate = mm->numa_next_scan;
2456 	if (time_before(now, migrate))
2457 		return;
2458 
2459 	if (p->numa_scan_period == 0) {
2460 		p->numa_scan_period_max = task_scan_max(p);
2461 		p->numa_scan_period = task_scan_start(p);
2462 	}
2463 
2464 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2465 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2466 		return;
2467 
2468 	/*
2469 	 * Delay this task enough that another task of this mm will likely win
2470 	 * the next time around.
2471 	 */
2472 	p->node_stamp += 2 * TICK_NSEC;
2473 
2474 	start = mm->numa_scan_offset;
2475 	pages = sysctl_numa_balancing_scan_size;
2476 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2477 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2478 	if (!pages)
2479 		return;
2480 
2481 
2482 	if (!down_read_trylock(&mm->mmap_sem))
2483 		return;
2484 	vma = find_vma(mm, start);
2485 	if (!vma) {
2486 		reset_ptenuma_scan(p);
2487 		start = 0;
2488 		vma = mm->mmap;
2489 	}
2490 	for (; vma; vma = vma->vm_next) {
2491 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2492 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2493 			continue;
2494 		}
2495 
2496 		/*
2497 		 * Shared library pages mapped by multiple processes are not
2498 		 * migrated as it is expected they are cache replicated. Avoid
2499 		 * hinting faults in read-only file-backed mappings or the vdso
2500 		 * as migrating the pages will be of marginal benefit.
2501 		 */
2502 		if (!vma->vm_mm ||
2503 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2504 			continue;
2505 
2506 		/*
2507 		 * Skip inaccessible VMAs to avoid any confusion between
2508 		 * PROT_NONE and NUMA hinting ptes
2509 		 */
2510 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2511 			continue;
2512 
2513 		do {
2514 			start = max(start, vma->vm_start);
2515 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2516 			end = min(end, vma->vm_end);
2517 			nr_pte_updates = change_prot_numa(vma, start, end);
2518 
2519 			/*
2520 			 * Try to scan sysctl_numa_balancing_size worth of
2521 			 * hpages that have at least one present PTE that
2522 			 * is not already pte-numa. If the VMA contains
2523 			 * areas that are unused or already full of prot_numa
2524 			 * PTEs, scan up to virtpages, to skip through those
2525 			 * areas faster.
2526 			 */
2527 			if (nr_pte_updates)
2528 				pages -= (end - start) >> PAGE_SHIFT;
2529 			virtpages -= (end - start) >> PAGE_SHIFT;
2530 
2531 			start = end;
2532 			if (pages <= 0 || virtpages <= 0)
2533 				goto out;
2534 
2535 			cond_resched();
2536 		} while (end != vma->vm_end);
2537 	}
2538 
2539 out:
2540 	/*
2541 	 * It is possible to reach the end of the VMA list but the last few
2542 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2543 	 * would find the !migratable VMA on the next scan but not reset the
2544 	 * scanner to the start so check it now.
2545 	 */
2546 	if (vma)
2547 		mm->numa_scan_offset = start;
2548 	else
2549 		reset_ptenuma_scan(p);
2550 	up_read(&mm->mmap_sem);
2551 
2552 	/*
2553 	 * Make sure tasks use at least 32x as much time to run other code
2554 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2555 	 * Usually update_task_scan_period slows down scanning enough; on an
2556 	 * overloaded system we need to limit overhead on a per task basis.
2557 	 */
2558 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2559 		u64 diff = p->se.sum_exec_runtime - runtime;
2560 		p->node_stamp += 32 * diff;
2561 	}
2562 }
2563 
2564 /*
2565  * Drive the periodic memory faults..
2566  */
2567 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2568 {
2569 	struct callback_head *work = &curr->numa_work;
2570 	u64 period, now;
2571 
2572 	/*
2573 	 * We don't care about NUMA placement if we don't have memory.
2574 	 */
2575 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2576 		return;
2577 
2578 	/*
2579 	 * Using runtime rather than walltime has the dual advantage that
2580 	 * we (mostly) drive the selection from busy threads and that the
2581 	 * task needs to have done some actual work before we bother with
2582 	 * NUMA placement.
2583 	 */
2584 	now = curr->se.sum_exec_runtime;
2585 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2586 
2587 	if (now > curr->node_stamp + period) {
2588 		if (!curr->node_stamp)
2589 			curr->numa_scan_period = task_scan_start(curr);
2590 		curr->node_stamp += period;
2591 
2592 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2593 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2594 			task_work_add(curr, work, true);
2595 		}
2596 	}
2597 }
2598 
2599 #else
2600 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2601 {
2602 }
2603 
2604 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2605 {
2606 }
2607 
2608 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2609 {
2610 }
2611 
2612 #endif /* CONFIG_NUMA_BALANCING */
2613 
2614 static void
2615 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2616 {
2617 	update_load_add(&cfs_rq->load, se->load.weight);
2618 	if (!parent_entity(se))
2619 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2620 #ifdef CONFIG_SMP
2621 	if (entity_is_task(se)) {
2622 		struct rq *rq = rq_of(cfs_rq);
2623 
2624 		account_numa_enqueue(rq, task_of(se));
2625 		list_add(&se->group_node, &rq->cfs_tasks);
2626 	}
2627 #endif
2628 	cfs_rq->nr_running++;
2629 }
2630 
2631 static void
2632 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2633 {
2634 	update_load_sub(&cfs_rq->load, se->load.weight);
2635 	if (!parent_entity(se))
2636 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2637 #ifdef CONFIG_SMP
2638 	if (entity_is_task(se)) {
2639 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2640 		list_del_init(&se->group_node);
2641 	}
2642 #endif
2643 	cfs_rq->nr_running--;
2644 }
2645 
2646 /*
2647  * Signed add and clamp on underflow.
2648  *
2649  * Explicitly do a load-store to ensure the intermediate value never hits
2650  * memory. This allows lockless observations without ever seeing the negative
2651  * values.
2652  */
2653 #define add_positive(_ptr, _val) do {                           \
2654 	typeof(_ptr) ptr = (_ptr);                              \
2655 	typeof(_val) val = (_val);                              \
2656 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2657 								\
2658 	res = var + val;                                        \
2659 								\
2660 	if (val < 0 && res > var)                               \
2661 		res = 0;                                        \
2662 								\
2663 	WRITE_ONCE(*ptr, res);                                  \
2664 } while (0)
2665 
2666 /*
2667  * Unsigned subtract and clamp on underflow.
2668  *
2669  * Explicitly do a load-store to ensure the intermediate value never hits
2670  * memory. This allows lockless observations without ever seeing the negative
2671  * values.
2672  */
2673 #define sub_positive(_ptr, _val) do {				\
2674 	typeof(_ptr) ptr = (_ptr);				\
2675 	typeof(*ptr) val = (_val);				\
2676 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2677 	res = var - val;					\
2678 	if (res > var)						\
2679 		res = 0;					\
2680 	WRITE_ONCE(*ptr, res);					\
2681 } while (0)
2682 
2683 #ifdef CONFIG_SMP
2684 static inline void
2685 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2686 {
2687 	cfs_rq->runnable_weight += se->runnable_weight;
2688 
2689 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2690 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2691 }
2692 
2693 static inline void
2694 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2695 {
2696 	cfs_rq->runnable_weight -= se->runnable_weight;
2697 
2698 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2699 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2700 		     se_runnable(se) * se->avg.runnable_load_sum);
2701 }
2702 
2703 static inline void
2704 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2705 {
2706 	cfs_rq->avg.load_avg += se->avg.load_avg;
2707 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2708 }
2709 
2710 static inline void
2711 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2712 {
2713 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2714 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2715 }
2716 #else
2717 static inline void
2718 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2719 static inline void
2720 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2721 static inline void
2722 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2723 static inline void
2724 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2725 #endif
2726 
2727 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2728 			    unsigned long weight, unsigned long runnable)
2729 {
2730 	if (se->on_rq) {
2731 		/* commit outstanding execution time */
2732 		if (cfs_rq->curr == se)
2733 			update_curr(cfs_rq);
2734 		account_entity_dequeue(cfs_rq, se);
2735 		dequeue_runnable_load_avg(cfs_rq, se);
2736 	}
2737 	dequeue_load_avg(cfs_rq, se);
2738 
2739 	se->runnable_weight = runnable;
2740 	update_load_set(&se->load, weight);
2741 
2742 #ifdef CONFIG_SMP
2743 	do {
2744 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2745 
2746 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2747 		se->avg.runnable_load_avg =
2748 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2749 	} while (0);
2750 #endif
2751 
2752 	enqueue_load_avg(cfs_rq, se);
2753 	if (se->on_rq) {
2754 		account_entity_enqueue(cfs_rq, se);
2755 		enqueue_runnable_load_avg(cfs_rq, se);
2756 	}
2757 }
2758 
2759 void reweight_task(struct task_struct *p, int prio)
2760 {
2761 	struct sched_entity *se = &p->se;
2762 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2763 	struct load_weight *load = &se->load;
2764 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2765 
2766 	reweight_entity(cfs_rq, se, weight, weight);
2767 	load->inv_weight = sched_prio_to_wmult[prio];
2768 }
2769 
2770 #ifdef CONFIG_FAIR_GROUP_SCHED
2771 #ifdef CONFIG_SMP
2772 /*
2773  * All this does is approximate the hierarchical proportion which includes that
2774  * global sum we all love to hate.
2775  *
2776  * That is, the weight of a group entity, is the proportional share of the
2777  * group weight based on the group runqueue weights. That is:
2778  *
2779  *                     tg->weight * grq->load.weight
2780  *   ge->load.weight = -----------------------------               (1)
2781  *			  \Sum grq->load.weight
2782  *
2783  * Now, because computing that sum is prohibitively expensive to compute (been
2784  * there, done that) we approximate it with this average stuff. The average
2785  * moves slower and therefore the approximation is cheaper and more stable.
2786  *
2787  * So instead of the above, we substitute:
2788  *
2789  *   grq->load.weight -> grq->avg.load_avg                         (2)
2790  *
2791  * which yields the following:
2792  *
2793  *                     tg->weight * grq->avg.load_avg
2794  *   ge->load.weight = ------------------------------              (3)
2795  *				tg->load_avg
2796  *
2797  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2798  *
2799  * That is shares_avg, and it is right (given the approximation (2)).
2800  *
2801  * The problem with it is that because the average is slow -- it was designed
2802  * to be exactly that of course -- this leads to transients in boundary
2803  * conditions. In specific, the case where the group was idle and we start the
2804  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2805  * yielding bad latency etc..
2806  *
2807  * Now, in that special case (1) reduces to:
2808  *
2809  *                     tg->weight * grq->load.weight
2810  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2811  *			    grp->load.weight
2812  *
2813  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2814  *
2815  * So what we do is modify our approximation (3) to approach (4) in the (near)
2816  * UP case, like:
2817  *
2818  *   ge->load.weight =
2819  *
2820  *              tg->weight * grq->load.weight
2821  *     ---------------------------------------------------         (5)
2822  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2823  *
2824  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2825  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2826  *
2827  *
2828  *                     tg->weight * grq->load.weight
2829  *   ge->load.weight = -----------------------------		   (6)
2830  *				tg_load_avg'
2831  *
2832  * Where:
2833  *
2834  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2835  *                  max(grq->load.weight, grq->avg.load_avg)
2836  *
2837  * And that is shares_weight and is icky. In the (near) UP case it approaches
2838  * (4) while in the normal case it approaches (3). It consistently
2839  * overestimates the ge->load.weight and therefore:
2840  *
2841  *   \Sum ge->load.weight >= tg->weight
2842  *
2843  * hence icky!
2844  */
2845 static long calc_group_shares(struct cfs_rq *cfs_rq)
2846 {
2847 	long tg_weight, tg_shares, load, shares;
2848 	struct task_group *tg = cfs_rq->tg;
2849 
2850 	tg_shares = READ_ONCE(tg->shares);
2851 
2852 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2853 
2854 	tg_weight = atomic_long_read(&tg->load_avg);
2855 
2856 	/* Ensure tg_weight >= load */
2857 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2858 	tg_weight += load;
2859 
2860 	shares = (tg_shares * load);
2861 	if (tg_weight)
2862 		shares /= tg_weight;
2863 
2864 	/*
2865 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2866 	 * of a group with small tg->shares value. It is a floor value which is
2867 	 * assigned as a minimum load.weight to the sched_entity representing
2868 	 * the group on a CPU.
2869 	 *
2870 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2871 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2872 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2873 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2874 	 * instead of 0.
2875 	 */
2876 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2877 }
2878 
2879 /*
2880  * This calculates the effective runnable weight for a group entity based on
2881  * the group entity weight calculated above.
2882  *
2883  * Because of the above approximation (2), our group entity weight is
2884  * an load_avg based ratio (3). This means that it includes blocked load and
2885  * does not represent the runnable weight.
2886  *
2887  * Approximate the group entity's runnable weight per ratio from the group
2888  * runqueue:
2889  *
2890  *					     grq->avg.runnable_load_avg
2891  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2892  *						 grq->avg.load_avg
2893  *
2894  * However, analogous to above, since the avg numbers are slow, this leads to
2895  * transients in the from-idle case. Instead we use:
2896  *
2897  *   ge->runnable_weight = ge->load.weight *
2898  *
2899  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2900  *		-----------------------------------------------------	(8)
2901  *		      max(grq->avg.load_avg, grq->load.weight)
2902  *
2903  * Where these max() serve both to use the 'instant' values to fix the slow
2904  * from-idle and avoid the /0 on to-idle, similar to (6).
2905  */
2906 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2907 {
2908 	long runnable, load_avg;
2909 
2910 	load_avg = max(cfs_rq->avg.load_avg,
2911 		       scale_load_down(cfs_rq->load.weight));
2912 
2913 	runnable = max(cfs_rq->avg.runnable_load_avg,
2914 		       scale_load_down(cfs_rq->runnable_weight));
2915 
2916 	runnable *= shares;
2917 	if (load_avg)
2918 		runnable /= load_avg;
2919 
2920 	return clamp_t(long, runnable, MIN_SHARES, shares);
2921 }
2922 #endif /* CONFIG_SMP */
2923 
2924 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2925 
2926 /*
2927  * Recomputes the group entity based on the current state of its group
2928  * runqueue.
2929  */
2930 static void update_cfs_group(struct sched_entity *se)
2931 {
2932 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2933 	long shares, runnable;
2934 
2935 	if (!gcfs_rq)
2936 		return;
2937 
2938 	if (throttled_hierarchy(gcfs_rq))
2939 		return;
2940 
2941 #ifndef CONFIG_SMP
2942 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2943 
2944 	if (likely(se->load.weight == shares))
2945 		return;
2946 #else
2947 	shares   = calc_group_shares(gcfs_rq);
2948 	runnable = calc_group_runnable(gcfs_rq, shares);
2949 #endif
2950 
2951 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
2952 }
2953 
2954 #else /* CONFIG_FAIR_GROUP_SCHED */
2955 static inline void update_cfs_group(struct sched_entity *se)
2956 {
2957 }
2958 #endif /* CONFIG_FAIR_GROUP_SCHED */
2959 
2960 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
2961 {
2962 	struct rq *rq = rq_of(cfs_rq);
2963 
2964 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
2965 		/*
2966 		 * There are a few boundary cases this might miss but it should
2967 		 * get called often enough that that should (hopefully) not be
2968 		 * a real problem.
2969 		 *
2970 		 * It will not get called when we go idle, because the idle
2971 		 * thread is a different class (!fair), nor will the utilization
2972 		 * number include things like RT tasks.
2973 		 *
2974 		 * As is, the util number is not freq-invariant (we'd have to
2975 		 * implement arch_scale_freq_capacity() for that).
2976 		 *
2977 		 * See cpu_util().
2978 		 */
2979 		cpufreq_update_util(rq, flags);
2980 	}
2981 }
2982 
2983 #ifdef CONFIG_SMP
2984 #ifdef CONFIG_FAIR_GROUP_SCHED
2985 /**
2986  * update_tg_load_avg - update the tg's load avg
2987  * @cfs_rq: the cfs_rq whose avg changed
2988  * @force: update regardless of how small the difference
2989  *
2990  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2991  * However, because tg->load_avg is a global value there are performance
2992  * considerations.
2993  *
2994  * In order to avoid having to look at the other cfs_rq's, we use a
2995  * differential update where we store the last value we propagated. This in
2996  * turn allows skipping updates if the differential is 'small'.
2997  *
2998  * Updating tg's load_avg is necessary before update_cfs_share().
2999  */
3000 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3001 {
3002 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3003 
3004 	/*
3005 	 * No need to update load_avg for root_task_group as it is not used.
3006 	 */
3007 	if (cfs_rq->tg == &root_task_group)
3008 		return;
3009 
3010 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3011 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3012 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3013 	}
3014 }
3015 
3016 /*
3017  * Called within set_task_rq() right before setting a task's CPU. The
3018  * caller only guarantees p->pi_lock is held; no other assumptions,
3019  * including the state of rq->lock, should be made.
3020  */
3021 void set_task_rq_fair(struct sched_entity *se,
3022 		      struct cfs_rq *prev, struct cfs_rq *next)
3023 {
3024 	u64 p_last_update_time;
3025 	u64 n_last_update_time;
3026 
3027 	if (!sched_feat(ATTACH_AGE_LOAD))
3028 		return;
3029 
3030 	/*
3031 	 * We are supposed to update the task to "current" time, then its up to
3032 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3033 	 * getting what current time is, so simply throw away the out-of-date
3034 	 * time. This will result in the wakee task is less decayed, but giving
3035 	 * the wakee more load sounds not bad.
3036 	 */
3037 	if (!(se->avg.last_update_time && prev))
3038 		return;
3039 
3040 #ifndef CONFIG_64BIT
3041 	{
3042 		u64 p_last_update_time_copy;
3043 		u64 n_last_update_time_copy;
3044 
3045 		do {
3046 			p_last_update_time_copy = prev->load_last_update_time_copy;
3047 			n_last_update_time_copy = next->load_last_update_time_copy;
3048 
3049 			smp_rmb();
3050 
3051 			p_last_update_time = prev->avg.last_update_time;
3052 			n_last_update_time = next->avg.last_update_time;
3053 
3054 		} while (p_last_update_time != p_last_update_time_copy ||
3055 			 n_last_update_time != n_last_update_time_copy);
3056 	}
3057 #else
3058 	p_last_update_time = prev->avg.last_update_time;
3059 	n_last_update_time = next->avg.last_update_time;
3060 #endif
3061 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3062 	se->avg.last_update_time = n_last_update_time;
3063 }
3064 
3065 
3066 /*
3067  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3068  * propagate its contribution. The key to this propagation is the invariant
3069  * that for each group:
3070  *
3071  *   ge->avg == grq->avg						(1)
3072  *
3073  * _IFF_ we look at the pure running and runnable sums. Because they
3074  * represent the very same entity, just at different points in the hierarchy.
3075  *
3076  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3077  * sum over (but still wrong, because the group entity and group rq do not have
3078  * their PELT windows aligned).
3079  *
3080  * However, update_tg_cfs_runnable() is more complex. So we have:
3081  *
3082  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3083  *
3084  * And since, like util, the runnable part should be directly transferable,
3085  * the following would _appear_ to be the straight forward approach:
3086  *
3087  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3088  *
3089  * And per (1) we have:
3090  *
3091  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3092  *
3093  * Which gives:
3094  *
3095  *                      ge->load.weight * grq->avg.load_avg
3096  *   ge->avg.load_avg = -----------------------------------		(4)
3097  *                               grq->load.weight
3098  *
3099  * Except that is wrong!
3100  *
3101  * Because while for entities historical weight is not important and we
3102  * really only care about our future and therefore can consider a pure
3103  * runnable sum, runqueues can NOT do this.
3104  *
3105  * We specifically want runqueues to have a load_avg that includes
3106  * historical weights. Those represent the blocked load, the load we expect
3107  * to (shortly) return to us. This only works by keeping the weights as
3108  * integral part of the sum. We therefore cannot decompose as per (3).
3109  *
3110  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3111  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3112  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3113  * runnable section of these tasks overlap (or not). If they were to perfectly
3114  * align the rq as a whole would be runnable 2/3 of the time. If however we
3115  * always have at least 1 runnable task, the rq as a whole is always runnable.
3116  *
3117  * So we'll have to approximate.. :/
3118  *
3119  * Given the constraint:
3120  *
3121  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3122  *
3123  * We can construct a rule that adds runnable to a rq by assuming minimal
3124  * overlap.
3125  *
3126  * On removal, we'll assume each task is equally runnable; which yields:
3127  *
3128  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3129  *
3130  * XXX: only do this for the part of runnable > running ?
3131  *
3132  */
3133 
3134 static inline void
3135 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3136 {
3137 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3138 
3139 	/* Nothing to update */
3140 	if (!delta)
3141 		return;
3142 
3143 	/*
3144 	 * The relation between sum and avg is:
3145 	 *
3146 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3147 	 *
3148 	 * however, the PELT windows are not aligned between grq and gse.
3149 	 */
3150 
3151 	/* Set new sched_entity's utilization */
3152 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3153 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3154 
3155 	/* Update parent cfs_rq utilization */
3156 	add_positive(&cfs_rq->avg.util_avg, delta);
3157 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3158 }
3159 
3160 static inline void
3161 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3162 {
3163 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3164 	unsigned long runnable_load_avg, load_avg;
3165 	u64 runnable_load_sum, load_sum = 0;
3166 	s64 delta_sum;
3167 
3168 	if (!runnable_sum)
3169 		return;
3170 
3171 	gcfs_rq->prop_runnable_sum = 0;
3172 
3173 	if (runnable_sum >= 0) {
3174 		/*
3175 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3176 		 * the CPU is saturated running == runnable.
3177 		 */
3178 		runnable_sum += se->avg.load_sum;
3179 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3180 	} else {
3181 		/*
3182 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3183 		 * assuming all tasks are equally runnable.
3184 		 */
3185 		if (scale_load_down(gcfs_rq->load.weight)) {
3186 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3187 				scale_load_down(gcfs_rq->load.weight));
3188 		}
3189 
3190 		/* But make sure to not inflate se's runnable */
3191 		runnable_sum = min(se->avg.load_sum, load_sum);
3192 	}
3193 
3194 	/*
3195 	 * runnable_sum can't be lower than running_sum
3196 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3197 	 * is not we rescale running_sum 1st
3198 	 */
3199 	running_sum = se->avg.util_sum /
3200 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3201 	runnable_sum = max(runnable_sum, running_sum);
3202 
3203 	load_sum = (s64)se_weight(se) * runnable_sum;
3204 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3205 
3206 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3207 	delta_avg = load_avg - se->avg.load_avg;
3208 
3209 	se->avg.load_sum = runnable_sum;
3210 	se->avg.load_avg = load_avg;
3211 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3212 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3213 
3214 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3215 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3216 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3217 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3218 
3219 	se->avg.runnable_load_sum = runnable_sum;
3220 	se->avg.runnable_load_avg = runnable_load_avg;
3221 
3222 	if (se->on_rq) {
3223 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3224 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3225 	}
3226 }
3227 
3228 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3229 {
3230 	cfs_rq->propagate = 1;
3231 	cfs_rq->prop_runnable_sum += runnable_sum;
3232 }
3233 
3234 /* Update task and its cfs_rq load average */
3235 static inline int propagate_entity_load_avg(struct sched_entity *se)
3236 {
3237 	struct cfs_rq *cfs_rq, *gcfs_rq;
3238 
3239 	if (entity_is_task(se))
3240 		return 0;
3241 
3242 	gcfs_rq = group_cfs_rq(se);
3243 	if (!gcfs_rq->propagate)
3244 		return 0;
3245 
3246 	gcfs_rq->propagate = 0;
3247 
3248 	cfs_rq = cfs_rq_of(se);
3249 
3250 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3251 
3252 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3253 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3254 
3255 	return 1;
3256 }
3257 
3258 /*
3259  * Check if we need to update the load and the utilization of a blocked
3260  * group_entity:
3261  */
3262 static inline bool skip_blocked_update(struct sched_entity *se)
3263 {
3264 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3265 
3266 	/*
3267 	 * If sched_entity still have not zero load or utilization, we have to
3268 	 * decay it:
3269 	 */
3270 	if (se->avg.load_avg || se->avg.util_avg)
3271 		return false;
3272 
3273 	/*
3274 	 * If there is a pending propagation, we have to update the load and
3275 	 * the utilization of the sched_entity:
3276 	 */
3277 	if (gcfs_rq->propagate)
3278 		return false;
3279 
3280 	/*
3281 	 * Otherwise, the load and the utilization of the sched_entity is
3282 	 * already zero and there is no pending propagation, so it will be a
3283 	 * waste of time to try to decay it:
3284 	 */
3285 	return true;
3286 }
3287 
3288 #else /* CONFIG_FAIR_GROUP_SCHED */
3289 
3290 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3291 
3292 static inline int propagate_entity_load_avg(struct sched_entity *se)
3293 {
3294 	return 0;
3295 }
3296 
3297 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3298 
3299 #endif /* CONFIG_FAIR_GROUP_SCHED */
3300 
3301 /**
3302  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3303  * @now: current time, as per cfs_rq_clock_task()
3304  * @cfs_rq: cfs_rq to update
3305  *
3306  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3307  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3308  * post_init_entity_util_avg().
3309  *
3310  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3311  *
3312  * Returns true if the load decayed or we removed load.
3313  *
3314  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3315  * call update_tg_load_avg() when this function returns true.
3316  */
3317 static inline int
3318 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3319 {
3320 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3321 	struct sched_avg *sa = &cfs_rq->avg;
3322 	int decayed = 0;
3323 
3324 	if (cfs_rq->removed.nr) {
3325 		unsigned long r;
3326 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3327 
3328 		raw_spin_lock(&cfs_rq->removed.lock);
3329 		swap(cfs_rq->removed.util_avg, removed_util);
3330 		swap(cfs_rq->removed.load_avg, removed_load);
3331 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3332 		cfs_rq->removed.nr = 0;
3333 		raw_spin_unlock(&cfs_rq->removed.lock);
3334 
3335 		r = removed_load;
3336 		sub_positive(&sa->load_avg, r);
3337 		sub_positive(&sa->load_sum, r * divider);
3338 
3339 		r = removed_util;
3340 		sub_positive(&sa->util_avg, r);
3341 		sub_positive(&sa->util_sum, r * divider);
3342 
3343 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3344 
3345 		decayed = 1;
3346 	}
3347 
3348 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3349 
3350 #ifndef CONFIG_64BIT
3351 	smp_wmb();
3352 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3353 #endif
3354 
3355 	if (decayed)
3356 		cfs_rq_util_change(cfs_rq, 0);
3357 
3358 	return decayed;
3359 }
3360 
3361 /**
3362  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3363  * @cfs_rq: cfs_rq to attach to
3364  * @se: sched_entity to attach
3365  *
3366  * Must call update_cfs_rq_load_avg() before this, since we rely on
3367  * cfs_rq->avg.last_update_time being current.
3368  */
3369 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3370 {
3371 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3372 
3373 	/*
3374 	 * When we attach the @se to the @cfs_rq, we must align the decay
3375 	 * window because without that, really weird and wonderful things can
3376 	 * happen.
3377 	 *
3378 	 * XXX illustrate
3379 	 */
3380 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3381 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3382 
3383 	/*
3384 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3385 	 * period_contrib. This isn't strictly correct, but since we're
3386 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3387 	 * _sum a little.
3388 	 */
3389 	se->avg.util_sum = se->avg.util_avg * divider;
3390 
3391 	se->avg.load_sum = divider;
3392 	if (se_weight(se)) {
3393 		se->avg.load_sum =
3394 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3395 	}
3396 
3397 	se->avg.runnable_load_sum = se->avg.load_sum;
3398 
3399 	enqueue_load_avg(cfs_rq, se);
3400 	cfs_rq->avg.util_avg += se->avg.util_avg;
3401 	cfs_rq->avg.util_sum += se->avg.util_sum;
3402 
3403 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3404 
3405 	cfs_rq_util_change(cfs_rq, flags);
3406 }
3407 
3408 /**
3409  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3410  * @cfs_rq: cfs_rq to detach from
3411  * @se: sched_entity to detach
3412  *
3413  * Must call update_cfs_rq_load_avg() before this, since we rely on
3414  * cfs_rq->avg.last_update_time being current.
3415  */
3416 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3417 {
3418 	dequeue_load_avg(cfs_rq, se);
3419 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3420 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3421 
3422 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3423 
3424 	cfs_rq_util_change(cfs_rq, 0);
3425 }
3426 
3427 /*
3428  * Optional action to be done while updating the load average
3429  */
3430 #define UPDATE_TG	0x1
3431 #define SKIP_AGE_LOAD	0x2
3432 #define DO_ATTACH	0x4
3433 
3434 /* Update task and its cfs_rq load average */
3435 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3436 {
3437 	u64 now = cfs_rq_clock_task(cfs_rq);
3438 	struct rq *rq = rq_of(cfs_rq);
3439 	int cpu = cpu_of(rq);
3440 	int decayed;
3441 
3442 	/*
3443 	 * Track task load average for carrying it to new CPU after migrated, and
3444 	 * track group sched_entity load average for task_h_load calc in migration
3445 	 */
3446 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3447 		__update_load_avg_se(now, cpu, cfs_rq, se);
3448 
3449 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3450 	decayed |= propagate_entity_load_avg(se);
3451 
3452 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3453 
3454 		/*
3455 		 * DO_ATTACH means we're here from enqueue_entity().
3456 		 * !last_update_time means we've passed through
3457 		 * migrate_task_rq_fair() indicating we migrated.
3458 		 *
3459 		 * IOW we're enqueueing a task on a new CPU.
3460 		 */
3461 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3462 		update_tg_load_avg(cfs_rq, 0);
3463 
3464 	} else if (decayed && (flags & UPDATE_TG))
3465 		update_tg_load_avg(cfs_rq, 0);
3466 }
3467 
3468 #ifndef CONFIG_64BIT
3469 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3470 {
3471 	u64 last_update_time_copy;
3472 	u64 last_update_time;
3473 
3474 	do {
3475 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3476 		smp_rmb();
3477 		last_update_time = cfs_rq->avg.last_update_time;
3478 	} while (last_update_time != last_update_time_copy);
3479 
3480 	return last_update_time;
3481 }
3482 #else
3483 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3484 {
3485 	return cfs_rq->avg.last_update_time;
3486 }
3487 #endif
3488 
3489 /*
3490  * Synchronize entity load avg of dequeued entity without locking
3491  * the previous rq.
3492  */
3493 void sync_entity_load_avg(struct sched_entity *se)
3494 {
3495 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3496 	u64 last_update_time;
3497 
3498 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3499 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3500 }
3501 
3502 /*
3503  * Task first catches up with cfs_rq, and then subtract
3504  * itself from the cfs_rq (task must be off the queue now).
3505  */
3506 void remove_entity_load_avg(struct sched_entity *se)
3507 {
3508 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3509 	unsigned long flags;
3510 
3511 	/*
3512 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3513 	 * post_init_entity_util_avg() which will have added things to the
3514 	 * cfs_rq, so we can remove unconditionally.
3515 	 *
3516 	 * Similarly for groups, they will have passed through
3517 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3518 	 * calls this.
3519 	 */
3520 
3521 	sync_entity_load_avg(se);
3522 
3523 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3524 	++cfs_rq->removed.nr;
3525 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3526 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3527 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3528 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3529 }
3530 
3531 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3532 {
3533 	return cfs_rq->avg.runnable_load_avg;
3534 }
3535 
3536 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3537 {
3538 	return cfs_rq->avg.load_avg;
3539 }
3540 
3541 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3542 
3543 static inline unsigned long task_util(struct task_struct *p)
3544 {
3545 	return READ_ONCE(p->se.avg.util_avg);
3546 }
3547 
3548 static inline unsigned long _task_util_est(struct task_struct *p)
3549 {
3550 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3551 
3552 	return max(ue.ewma, ue.enqueued);
3553 }
3554 
3555 static inline unsigned long task_util_est(struct task_struct *p)
3556 {
3557 	return max(task_util(p), _task_util_est(p));
3558 }
3559 
3560 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3561 				    struct task_struct *p)
3562 {
3563 	unsigned int enqueued;
3564 
3565 	if (!sched_feat(UTIL_EST))
3566 		return;
3567 
3568 	/* Update root cfs_rq's estimated utilization */
3569 	enqueued  = cfs_rq->avg.util_est.enqueued;
3570 	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3571 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3572 }
3573 
3574 /*
3575  * Check if a (signed) value is within a specified (unsigned) margin,
3576  * based on the observation that:
3577  *
3578  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3579  *
3580  * NOTE: this only works when value + maring < INT_MAX.
3581  */
3582 static inline bool within_margin(int value, int margin)
3583 {
3584 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3585 }
3586 
3587 static void
3588 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3589 {
3590 	long last_ewma_diff;
3591 	struct util_est ue;
3592 
3593 	if (!sched_feat(UTIL_EST))
3594 		return;
3595 
3596 	/* Update root cfs_rq's estimated utilization */
3597 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3598 	ue.enqueued -= min_t(unsigned int, ue.enqueued,
3599 			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3600 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3601 
3602 	/*
3603 	 * Skip update of task's estimated utilization when the task has not
3604 	 * yet completed an activation, e.g. being migrated.
3605 	 */
3606 	if (!task_sleep)
3607 		return;
3608 
3609 	/*
3610 	 * If the PELT values haven't changed since enqueue time,
3611 	 * skip the util_est update.
3612 	 */
3613 	ue = p->se.avg.util_est;
3614 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3615 		return;
3616 
3617 	/*
3618 	 * Skip update of task's estimated utilization when its EWMA is
3619 	 * already ~1% close to its last activation value.
3620 	 */
3621 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3622 	last_ewma_diff = ue.enqueued - ue.ewma;
3623 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3624 		return;
3625 
3626 	/*
3627 	 * Update Task's estimated utilization
3628 	 *
3629 	 * When *p completes an activation we can consolidate another sample
3630 	 * of the task size. This is done by storing the current PELT value
3631 	 * as ue.enqueued and by using this value to update the Exponential
3632 	 * Weighted Moving Average (EWMA):
3633 	 *
3634 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3635 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3636 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3637 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3638 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3639 	 *
3640 	 * Where 'w' is the weight of new samples, which is configured to be
3641 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3642 	 */
3643 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3644 	ue.ewma  += last_ewma_diff;
3645 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3646 	WRITE_ONCE(p->se.avg.util_est, ue);
3647 }
3648 
3649 #else /* CONFIG_SMP */
3650 
3651 #define UPDATE_TG	0x0
3652 #define SKIP_AGE_LOAD	0x0
3653 #define DO_ATTACH	0x0
3654 
3655 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3656 {
3657 	cfs_rq_util_change(cfs_rq, 0);
3658 }
3659 
3660 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3661 
3662 static inline void
3663 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3664 static inline void
3665 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3666 
3667 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3668 {
3669 	return 0;
3670 }
3671 
3672 static inline void
3673 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3674 
3675 static inline void
3676 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3677 		 bool task_sleep) {}
3678 
3679 #endif /* CONFIG_SMP */
3680 
3681 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3682 {
3683 #ifdef CONFIG_SCHED_DEBUG
3684 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3685 
3686 	if (d < 0)
3687 		d = -d;
3688 
3689 	if (d > 3*sysctl_sched_latency)
3690 		schedstat_inc(cfs_rq->nr_spread_over);
3691 #endif
3692 }
3693 
3694 static void
3695 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3696 {
3697 	u64 vruntime = cfs_rq->min_vruntime;
3698 
3699 	/*
3700 	 * The 'current' period is already promised to the current tasks,
3701 	 * however the extra weight of the new task will slow them down a
3702 	 * little, place the new task so that it fits in the slot that
3703 	 * stays open at the end.
3704 	 */
3705 	if (initial && sched_feat(START_DEBIT))
3706 		vruntime += sched_vslice(cfs_rq, se);
3707 
3708 	/* sleeps up to a single latency don't count. */
3709 	if (!initial) {
3710 		unsigned long thresh = sysctl_sched_latency;
3711 
3712 		/*
3713 		 * Halve their sleep time's effect, to allow
3714 		 * for a gentler effect of sleepers:
3715 		 */
3716 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3717 			thresh >>= 1;
3718 
3719 		vruntime -= thresh;
3720 	}
3721 
3722 	/* ensure we never gain time by being placed backwards. */
3723 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3724 }
3725 
3726 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3727 
3728 static inline void check_schedstat_required(void)
3729 {
3730 #ifdef CONFIG_SCHEDSTATS
3731 	if (schedstat_enabled())
3732 		return;
3733 
3734 	/* Force schedstat enabled if a dependent tracepoint is active */
3735 	if (trace_sched_stat_wait_enabled()    ||
3736 			trace_sched_stat_sleep_enabled()   ||
3737 			trace_sched_stat_iowait_enabled()  ||
3738 			trace_sched_stat_blocked_enabled() ||
3739 			trace_sched_stat_runtime_enabled())  {
3740 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3741 			     "stat_blocked and stat_runtime require the "
3742 			     "kernel parameter schedstats=enable or "
3743 			     "kernel.sched_schedstats=1\n");
3744 	}
3745 #endif
3746 }
3747 
3748 
3749 /*
3750  * MIGRATION
3751  *
3752  *	dequeue
3753  *	  update_curr()
3754  *	    update_min_vruntime()
3755  *	  vruntime -= min_vruntime
3756  *
3757  *	enqueue
3758  *	  update_curr()
3759  *	    update_min_vruntime()
3760  *	  vruntime += min_vruntime
3761  *
3762  * this way the vruntime transition between RQs is done when both
3763  * min_vruntime are up-to-date.
3764  *
3765  * WAKEUP (remote)
3766  *
3767  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3768  *	  vruntime -= min_vruntime
3769  *
3770  *	enqueue
3771  *	  update_curr()
3772  *	    update_min_vruntime()
3773  *	  vruntime += min_vruntime
3774  *
3775  * this way we don't have the most up-to-date min_vruntime on the originating
3776  * CPU and an up-to-date min_vruntime on the destination CPU.
3777  */
3778 
3779 static void
3780 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3781 {
3782 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3783 	bool curr = cfs_rq->curr == se;
3784 
3785 	/*
3786 	 * If we're the current task, we must renormalise before calling
3787 	 * update_curr().
3788 	 */
3789 	if (renorm && curr)
3790 		se->vruntime += cfs_rq->min_vruntime;
3791 
3792 	update_curr(cfs_rq);
3793 
3794 	/*
3795 	 * Otherwise, renormalise after, such that we're placed at the current
3796 	 * moment in time, instead of some random moment in the past. Being
3797 	 * placed in the past could significantly boost this task to the
3798 	 * fairness detriment of existing tasks.
3799 	 */
3800 	if (renorm && !curr)
3801 		se->vruntime += cfs_rq->min_vruntime;
3802 
3803 	/*
3804 	 * When enqueuing a sched_entity, we must:
3805 	 *   - Update loads to have both entity and cfs_rq synced with now.
3806 	 *   - Add its load to cfs_rq->runnable_avg
3807 	 *   - For group_entity, update its weight to reflect the new share of
3808 	 *     its group cfs_rq
3809 	 *   - Add its new weight to cfs_rq->load.weight
3810 	 */
3811 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3812 	update_cfs_group(se);
3813 	enqueue_runnable_load_avg(cfs_rq, se);
3814 	account_entity_enqueue(cfs_rq, se);
3815 
3816 	if (flags & ENQUEUE_WAKEUP)
3817 		place_entity(cfs_rq, se, 0);
3818 
3819 	check_schedstat_required();
3820 	update_stats_enqueue(cfs_rq, se, flags);
3821 	check_spread(cfs_rq, se);
3822 	if (!curr)
3823 		__enqueue_entity(cfs_rq, se);
3824 	se->on_rq = 1;
3825 
3826 	if (cfs_rq->nr_running == 1) {
3827 		list_add_leaf_cfs_rq(cfs_rq);
3828 		check_enqueue_throttle(cfs_rq);
3829 	}
3830 }
3831 
3832 static void __clear_buddies_last(struct sched_entity *se)
3833 {
3834 	for_each_sched_entity(se) {
3835 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3836 		if (cfs_rq->last != se)
3837 			break;
3838 
3839 		cfs_rq->last = NULL;
3840 	}
3841 }
3842 
3843 static void __clear_buddies_next(struct sched_entity *se)
3844 {
3845 	for_each_sched_entity(se) {
3846 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3847 		if (cfs_rq->next != se)
3848 			break;
3849 
3850 		cfs_rq->next = NULL;
3851 	}
3852 }
3853 
3854 static void __clear_buddies_skip(struct sched_entity *se)
3855 {
3856 	for_each_sched_entity(se) {
3857 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3858 		if (cfs_rq->skip != se)
3859 			break;
3860 
3861 		cfs_rq->skip = NULL;
3862 	}
3863 }
3864 
3865 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3866 {
3867 	if (cfs_rq->last == se)
3868 		__clear_buddies_last(se);
3869 
3870 	if (cfs_rq->next == se)
3871 		__clear_buddies_next(se);
3872 
3873 	if (cfs_rq->skip == se)
3874 		__clear_buddies_skip(se);
3875 }
3876 
3877 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3878 
3879 static void
3880 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3881 {
3882 	/*
3883 	 * Update run-time statistics of the 'current'.
3884 	 */
3885 	update_curr(cfs_rq);
3886 
3887 	/*
3888 	 * When dequeuing a sched_entity, we must:
3889 	 *   - Update loads to have both entity and cfs_rq synced with now.
3890 	 *   - Substract its load from the cfs_rq->runnable_avg.
3891 	 *   - Substract its previous weight from cfs_rq->load.weight.
3892 	 *   - For group entity, update its weight to reflect the new share
3893 	 *     of its group cfs_rq.
3894 	 */
3895 	update_load_avg(cfs_rq, se, UPDATE_TG);
3896 	dequeue_runnable_load_avg(cfs_rq, se);
3897 
3898 	update_stats_dequeue(cfs_rq, se, flags);
3899 
3900 	clear_buddies(cfs_rq, se);
3901 
3902 	if (se != cfs_rq->curr)
3903 		__dequeue_entity(cfs_rq, se);
3904 	se->on_rq = 0;
3905 	account_entity_dequeue(cfs_rq, se);
3906 
3907 	/*
3908 	 * Normalize after update_curr(); which will also have moved
3909 	 * min_vruntime if @se is the one holding it back. But before doing
3910 	 * update_min_vruntime() again, which will discount @se's position and
3911 	 * can move min_vruntime forward still more.
3912 	 */
3913 	if (!(flags & DEQUEUE_SLEEP))
3914 		se->vruntime -= cfs_rq->min_vruntime;
3915 
3916 	/* return excess runtime on last dequeue */
3917 	return_cfs_rq_runtime(cfs_rq);
3918 
3919 	update_cfs_group(se);
3920 
3921 	/*
3922 	 * Now advance min_vruntime if @se was the entity holding it back,
3923 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3924 	 * put back on, and if we advance min_vruntime, we'll be placed back
3925 	 * further than we started -- ie. we'll be penalized.
3926 	 */
3927 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3928 		update_min_vruntime(cfs_rq);
3929 }
3930 
3931 /*
3932  * Preempt the current task with a newly woken task if needed:
3933  */
3934 static void
3935 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3936 {
3937 	unsigned long ideal_runtime, delta_exec;
3938 	struct sched_entity *se;
3939 	s64 delta;
3940 
3941 	ideal_runtime = sched_slice(cfs_rq, curr);
3942 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3943 	if (delta_exec > ideal_runtime) {
3944 		resched_curr(rq_of(cfs_rq));
3945 		/*
3946 		 * The current task ran long enough, ensure it doesn't get
3947 		 * re-elected due to buddy favours.
3948 		 */
3949 		clear_buddies(cfs_rq, curr);
3950 		return;
3951 	}
3952 
3953 	/*
3954 	 * Ensure that a task that missed wakeup preemption by a
3955 	 * narrow margin doesn't have to wait for a full slice.
3956 	 * This also mitigates buddy induced latencies under load.
3957 	 */
3958 	if (delta_exec < sysctl_sched_min_granularity)
3959 		return;
3960 
3961 	se = __pick_first_entity(cfs_rq);
3962 	delta = curr->vruntime - se->vruntime;
3963 
3964 	if (delta < 0)
3965 		return;
3966 
3967 	if (delta > ideal_runtime)
3968 		resched_curr(rq_of(cfs_rq));
3969 }
3970 
3971 static void
3972 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3973 {
3974 	/* 'current' is not kept within the tree. */
3975 	if (se->on_rq) {
3976 		/*
3977 		 * Any task has to be enqueued before it get to execute on
3978 		 * a CPU. So account for the time it spent waiting on the
3979 		 * runqueue.
3980 		 */
3981 		update_stats_wait_end(cfs_rq, se);
3982 		__dequeue_entity(cfs_rq, se);
3983 		update_load_avg(cfs_rq, se, UPDATE_TG);
3984 	}
3985 
3986 	update_stats_curr_start(cfs_rq, se);
3987 	cfs_rq->curr = se;
3988 
3989 	/*
3990 	 * Track our maximum slice length, if the CPU's load is at
3991 	 * least twice that of our own weight (i.e. dont track it
3992 	 * when there are only lesser-weight tasks around):
3993 	 */
3994 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3995 		schedstat_set(se->statistics.slice_max,
3996 			max((u64)schedstat_val(se->statistics.slice_max),
3997 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3998 	}
3999 
4000 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4001 }
4002 
4003 static int
4004 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4005 
4006 /*
4007  * Pick the next process, keeping these things in mind, in this order:
4008  * 1) keep things fair between processes/task groups
4009  * 2) pick the "next" process, since someone really wants that to run
4010  * 3) pick the "last" process, for cache locality
4011  * 4) do not run the "skip" process, if something else is available
4012  */
4013 static struct sched_entity *
4014 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4015 {
4016 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4017 	struct sched_entity *se;
4018 
4019 	/*
4020 	 * If curr is set we have to see if its left of the leftmost entity
4021 	 * still in the tree, provided there was anything in the tree at all.
4022 	 */
4023 	if (!left || (curr && entity_before(curr, left)))
4024 		left = curr;
4025 
4026 	se = left; /* ideally we run the leftmost entity */
4027 
4028 	/*
4029 	 * Avoid running the skip buddy, if running something else can
4030 	 * be done without getting too unfair.
4031 	 */
4032 	if (cfs_rq->skip == se) {
4033 		struct sched_entity *second;
4034 
4035 		if (se == curr) {
4036 			second = __pick_first_entity(cfs_rq);
4037 		} else {
4038 			second = __pick_next_entity(se);
4039 			if (!second || (curr && entity_before(curr, second)))
4040 				second = curr;
4041 		}
4042 
4043 		if (second && wakeup_preempt_entity(second, left) < 1)
4044 			se = second;
4045 	}
4046 
4047 	/*
4048 	 * Prefer last buddy, try to return the CPU to a preempted task.
4049 	 */
4050 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4051 		se = cfs_rq->last;
4052 
4053 	/*
4054 	 * Someone really wants this to run. If it's not unfair, run it.
4055 	 */
4056 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4057 		se = cfs_rq->next;
4058 
4059 	clear_buddies(cfs_rq, se);
4060 
4061 	return se;
4062 }
4063 
4064 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4065 
4066 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4067 {
4068 	/*
4069 	 * If still on the runqueue then deactivate_task()
4070 	 * was not called and update_curr() has to be done:
4071 	 */
4072 	if (prev->on_rq)
4073 		update_curr(cfs_rq);
4074 
4075 	/* throttle cfs_rqs exceeding runtime */
4076 	check_cfs_rq_runtime(cfs_rq);
4077 
4078 	check_spread(cfs_rq, prev);
4079 
4080 	if (prev->on_rq) {
4081 		update_stats_wait_start(cfs_rq, prev);
4082 		/* Put 'current' back into the tree. */
4083 		__enqueue_entity(cfs_rq, prev);
4084 		/* in !on_rq case, update occurred at dequeue */
4085 		update_load_avg(cfs_rq, prev, 0);
4086 	}
4087 	cfs_rq->curr = NULL;
4088 }
4089 
4090 static void
4091 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4092 {
4093 	/*
4094 	 * Update run-time statistics of the 'current'.
4095 	 */
4096 	update_curr(cfs_rq);
4097 
4098 	/*
4099 	 * Ensure that runnable average is periodically updated.
4100 	 */
4101 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4102 	update_cfs_group(curr);
4103 
4104 #ifdef CONFIG_SCHED_HRTICK
4105 	/*
4106 	 * queued ticks are scheduled to match the slice, so don't bother
4107 	 * validating it and just reschedule.
4108 	 */
4109 	if (queued) {
4110 		resched_curr(rq_of(cfs_rq));
4111 		return;
4112 	}
4113 	/*
4114 	 * don't let the period tick interfere with the hrtick preemption
4115 	 */
4116 	if (!sched_feat(DOUBLE_TICK) &&
4117 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4118 		return;
4119 #endif
4120 
4121 	if (cfs_rq->nr_running > 1)
4122 		check_preempt_tick(cfs_rq, curr);
4123 }
4124 
4125 
4126 /**************************************************
4127  * CFS bandwidth control machinery
4128  */
4129 
4130 #ifdef CONFIG_CFS_BANDWIDTH
4131 
4132 #ifdef HAVE_JUMP_LABEL
4133 static struct static_key __cfs_bandwidth_used;
4134 
4135 static inline bool cfs_bandwidth_used(void)
4136 {
4137 	return static_key_false(&__cfs_bandwidth_used);
4138 }
4139 
4140 void cfs_bandwidth_usage_inc(void)
4141 {
4142 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4143 }
4144 
4145 void cfs_bandwidth_usage_dec(void)
4146 {
4147 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4148 }
4149 #else /* HAVE_JUMP_LABEL */
4150 static bool cfs_bandwidth_used(void)
4151 {
4152 	return true;
4153 }
4154 
4155 void cfs_bandwidth_usage_inc(void) {}
4156 void cfs_bandwidth_usage_dec(void) {}
4157 #endif /* HAVE_JUMP_LABEL */
4158 
4159 /*
4160  * default period for cfs group bandwidth.
4161  * default: 0.1s, units: nanoseconds
4162  */
4163 static inline u64 default_cfs_period(void)
4164 {
4165 	return 100000000ULL;
4166 }
4167 
4168 static inline u64 sched_cfs_bandwidth_slice(void)
4169 {
4170 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4171 }
4172 
4173 /*
4174  * Replenish runtime according to assigned quota and update expiration time.
4175  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4176  * additional synchronization around rq->lock.
4177  *
4178  * requires cfs_b->lock
4179  */
4180 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4181 {
4182 	u64 now;
4183 
4184 	if (cfs_b->quota == RUNTIME_INF)
4185 		return;
4186 
4187 	now = sched_clock_cpu(smp_processor_id());
4188 	cfs_b->runtime = cfs_b->quota;
4189 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4190 	cfs_b->expires_seq++;
4191 }
4192 
4193 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4194 {
4195 	return &tg->cfs_bandwidth;
4196 }
4197 
4198 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4199 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4200 {
4201 	if (unlikely(cfs_rq->throttle_count))
4202 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4203 
4204 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4205 }
4206 
4207 /* returns 0 on failure to allocate runtime */
4208 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4209 {
4210 	struct task_group *tg = cfs_rq->tg;
4211 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4212 	u64 amount = 0, min_amount, expires;
4213 	int expires_seq;
4214 
4215 	/* note: this is a positive sum as runtime_remaining <= 0 */
4216 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4217 
4218 	raw_spin_lock(&cfs_b->lock);
4219 	if (cfs_b->quota == RUNTIME_INF)
4220 		amount = min_amount;
4221 	else {
4222 		start_cfs_bandwidth(cfs_b);
4223 
4224 		if (cfs_b->runtime > 0) {
4225 			amount = min(cfs_b->runtime, min_amount);
4226 			cfs_b->runtime -= amount;
4227 			cfs_b->idle = 0;
4228 		}
4229 	}
4230 	expires_seq = cfs_b->expires_seq;
4231 	expires = cfs_b->runtime_expires;
4232 	raw_spin_unlock(&cfs_b->lock);
4233 
4234 	cfs_rq->runtime_remaining += amount;
4235 	/*
4236 	 * we may have advanced our local expiration to account for allowed
4237 	 * spread between our sched_clock and the one on which runtime was
4238 	 * issued.
4239 	 */
4240 	if (cfs_rq->expires_seq != expires_seq) {
4241 		cfs_rq->expires_seq = expires_seq;
4242 		cfs_rq->runtime_expires = expires;
4243 	}
4244 
4245 	return cfs_rq->runtime_remaining > 0;
4246 }
4247 
4248 /*
4249  * Note: This depends on the synchronization provided by sched_clock and the
4250  * fact that rq->clock snapshots this value.
4251  */
4252 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4253 {
4254 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4255 
4256 	/* if the deadline is ahead of our clock, nothing to do */
4257 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4258 		return;
4259 
4260 	if (cfs_rq->runtime_remaining < 0)
4261 		return;
4262 
4263 	/*
4264 	 * If the local deadline has passed we have to consider the
4265 	 * possibility that our sched_clock is 'fast' and the global deadline
4266 	 * has not truly expired.
4267 	 *
4268 	 * Fortunately we can check determine whether this the case by checking
4269 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4270 	 */
4271 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4272 		/* extend local deadline, drift is bounded above by 2 ticks */
4273 		cfs_rq->runtime_expires += TICK_NSEC;
4274 	} else {
4275 		/* global deadline is ahead, expiration has passed */
4276 		cfs_rq->runtime_remaining = 0;
4277 	}
4278 }
4279 
4280 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4281 {
4282 	/* dock delta_exec before expiring quota (as it could span periods) */
4283 	cfs_rq->runtime_remaining -= delta_exec;
4284 	expire_cfs_rq_runtime(cfs_rq);
4285 
4286 	if (likely(cfs_rq->runtime_remaining > 0))
4287 		return;
4288 
4289 	/*
4290 	 * if we're unable to extend our runtime we resched so that the active
4291 	 * hierarchy can be throttled
4292 	 */
4293 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4294 		resched_curr(rq_of(cfs_rq));
4295 }
4296 
4297 static __always_inline
4298 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4299 {
4300 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4301 		return;
4302 
4303 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4304 }
4305 
4306 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4307 {
4308 	return cfs_bandwidth_used() && cfs_rq->throttled;
4309 }
4310 
4311 /* check whether cfs_rq, or any parent, is throttled */
4312 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4313 {
4314 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4315 }
4316 
4317 /*
4318  * Ensure that neither of the group entities corresponding to src_cpu or
4319  * dest_cpu are members of a throttled hierarchy when performing group
4320  * load-balance operations.
4321  */
4322 static inline int throttled_lb_pair(struct task_group *tg,
4323 				    int src_cpu, int dest_cpu)
4324 {
4325 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4326 
4327 	src_cfs_rq = tg->cfs_rq[src_cpu];
4328 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4329 
4330 	return throttled_hierarchy(src_cfs_rq) ||
4331 	       throttled_hierarchy(dest_cfs_rq);
4332 }
4333 
4334 static int tg_unthrottle_up(struct task_group *tg, void *data)
4335 {
4336 	struct rq *rq = data;
4337 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4338 
4339 	cfs_rq->throttle_count--;
4340 	if (!cfs_rq->throttle_count) {
4341 		/* adjust cfs_rq_clock_task() */
4342 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4343 					     cfs_rq->throttled_clock_task;
4344 	}
4345 
4346 	return 0;
4347 }
4348 
4349 static int tg_throttle_down(struct task_group *tg, void *data)
4350 {
4351 	struct rq *rq = data;
4352 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4353 
4354 	/* group is entering throttled state, stop time */
4355 	if (!cfs_rq->throttle_count)
4356 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4357 	cfs_rq->throttle_count++;
4358 
4359 	return 0;
4360 }
4361 
4362 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4363 {
4364 	struct rq *rq = rq_of(cfs_rq);
4365 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4366 	struct sched_entity *se;
4367 	long task_delta, dequeue = 1;
4368 	bool empty;
4369 
4370 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4371 
4372 	/* freeze hierarchy runnable averages while throttled */
4373 	rcu_read_lock();
4374 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4375 	rcu_read_unlock();
4376 
4377 	task_delta = cfs_rq->h_nr_running;
4378 	for_each_sched_entity(se) {
4379 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4380 		/* throttled entity or throttle-on-deactivate */
4381 		if (!se->on_rq)
4382 			break;
4383 
4384 		if (dequeue)
4385 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4386 		qcfs_rq->h_nr_running -= task_delta;
4387 
4388 		if (qcfs_rq->load.weight)
4389 			dequeue = 0;
4390 	}
4391 
4392 	if (!se)
4393 		sub_nr_running(rq, task_delta);
4394 
4395 	cfs_rq->throttled = 1;
4396 	cfs_rq->throttled_clock = rq_clock(rq);
4397 	raw_spin_lock(&cfs_b->lock);
4398 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4399 
4400 	/*
4401 	 * Add to the _head_ of the list, so that an already-started
4402 	 * distribute_cfs_runtime will not see us
4403 	 */
4404 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4405 
4406 	/*
4407 	 * If we're the first throttled task, make sure the bandwidth
4408 	 * timer is running.
4409 	 */
4410 	if (empty)
4411 		start_cfs_bandwidth(cfs_b);
4412 
4413 	raw_spin_unlock(&cfs_b->lock);
4414 }
4415 
4416 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4417 {
4418 	struct rq *rq = rq_of(cfs_rq);
4419 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4420 	struct sched_entity *se;
4421 	int enqueue = 1;
4422 	long task_delta;
4423 
4424 	se = cfs_rq->tg->se[cpu_of(rq)];
4425 
4426 	cfs_rq->throttled = 0;
4427 
4428 	update_rq_clock(rq);
4429 
4430 	raw_spin_lock(&cfs_b->lock);
4431 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4432 	list_del_rcu(&cfs_rq->throttled_list);
4433 	raw_spin_unlock(&cfs_b->lock);
4434 
4435 	/* update hierarchical throttle state */
4436 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4437 
4438 	if (!cfs_rq->load.weight)
4439 		return;
4440 
4441 	task_delta = cfs_rq->h_nr_running;
4442 	for_each_sched_entity(se) {
4443 		if (se->on_rq)
4444 			enqueue = 0;
4445 
4446 		cfs_rq = cfs_rq_of(se);
4447 		if (enqueue)
4448 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4449 		cfs_rq->h_nr_running += task_delta;
4450 
4451 		if (cfs_rq_throttled(cfs_rq))
4452 			break;
4453 	}
4454 
4455 	if (!se)
4456 		add_nr_running(rq, task_delta);
4457 
4458 	/* Determine whether we need to wake up potentially idle CPU: */
4459 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4460 		resched_curr(rq);
4461 }
4462 
4463 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4464 		u64 remaining, u64 expires)
4465 {
4466 	struct cfs_rq *cfs_rq;
4467 	u64 runtime;
4468 	u64 starting_runtime = remaining;
4469 
4470 	rcu_read_lock();
4471 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4472 				throttled_list) {
4473 		struct rq *rq = rq_of(cfs_rq);
4474 		struct rq_flags rf;
4475 
4476 		rq_lock(rq, &rf);
4477 		if (!cfs_rq_throttled(cfs_rq))
4478 			goto next;
4479 
4480 		runtime = -cfs_rq->runtime_remaining + 1;
4481 		if (runtime > remaining)
4482 			runtime = remaining;
4483 		remaining -= runtime;
4484 
4485 		cfs_rq->runtime_remaining += runtime;
4486 		cfs_rq->runtime_expires = expires;
4487 
4488 		/* we check whether we're throttled above */
4489 		if (cfs_rq->runtime_remaining > 0)
4490 			unthrottle_cfs_rq(cfs_rq);
4491 
4492 next:
4493 		rq_unlock(rq, &rf);
4494 
4495 		if (!remaining)
4496 			break;
4497 	}
4498 	rcu_read_unlock();
4499 
4500 	return starting_runtime - remaining;
4501 }
4502 
4503 /*
4504  * Responsible for refilling a task_group's bandwidth and unthrottling its
4505  * cfs_rqs as appropriate. If there has been no activity within the last
4506  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4507  * used to track this state.
4508  */
4509 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4510 {
4511 	u64 runtime, runtime_expires;
4512 	int throttled;
4513 
4514 	/* no need to continue the timer with no bandwidth constraint */
4515 	if (cfs_b->quota == RUNTIME_INF)
4516 		goto out_deactivate;
4517 
4518 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4519 	cfs_b->nr_periods += overrun;
4520 
4521 	/*
4522 	 * idle depends on !throttled (for the case of a large deficit), and if
4523 	 * we're going inactive then everything else can be deferred
4524 	 */
4525 	if (cfs_b->idle && !throttled)
4526 		goto out_deactivate;
4527 
4528 	__refill_cfs_bandwidth_runtime(cfs_b);
4529 
4530 	if (!throttled) {
4531 		/* mark as potentially idle for the upcoming period */
4532 		cfs_b->idle = 1;
4533 		return 0;
4534 	}
4535 
4536 	/* account preceding periods in which throttling occurred */
4537 	cfs_b->nr_throttled += overrun;
4538 
4539 	runtime_expires = cfs_b->runtime_expires;
4540 
4541 	/*
4542 	 * This check is repeated as we are holding onto the new bandwidth while
4543 	 * we unthrottle. This can potentially race with an unthrottled group
4544 	 * trying to acquire new bandwidth from the global pool. This can result
4545 	 * in us over-using our runtime if it is all used during this loop, but
4546 	 * only by limited amounts in that extreme case.
4547 	 */
4548 	while (throttled && cfs_b->runtime > 0) {
4549 		runtime = cfs_b->runtime;
4550 		raw_spin_unlock(&cfs_b->lock);
4551 		/* we can't nest cfs_b->lock while distributing bandwidth */
4552 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4553 						 runtime_expires);
4554 		raw_spin_lock(&cfs_b->lock);
4555 
4556 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4557 
4558 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4559 	}
4560 
4561 	/*
4562 	 * While we are ensured activity in the period following an
4563 	 * unthrottle, this also covers the case in which the new bandwidth is
4564 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4565 	 * timer to remain active while there are any throttled entities.)
4566 	 */
4567 	cfs_b->idle = 0;
4568 
4569 	return 0;
4570 
4571 out_deactivate:
4572 	return 1;
4573 }
4574 
4575 /* a cfs_rq won't donate quota below this amount */
4576 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4577 /* minimum remaining period time to redistribute slack quota */
4578 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4579 /* how long we wait to gather additional slack before distributing */
4580 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4581 
4582 /*
4583  * Are we near the end of the current quota period?
4584  *
4585  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4586  * hrtimer base being cleared by hrtimer_start. In the case of
4587  * migrate_hrtimers, base is never cleared, so we are fine.
4588  */
4589 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4590 {
4591 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4592 	u64 remaining;
4593 
4594 	/* if the call-back is running a quota refresh is already occurring */
4595 	if (hrtimer_callback_running(refresh_timer))
4596 		return 1;
4597 
4598 	/* is a quota refresh about to occur? */
4599 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4600 	if (remaining < min_expire)
4601 		return 1;
4602 
4603 	return 0;
4604 }
4605 
4606 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4607 {
4608 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4609 
4610 	/* if there's a quota refresh soon don't bother with slack */
4611 	if (runtime_refresh_within(cfs_b, min_left))
4612 		return;
4613 
4614 	hrtimer_start(&cfs_b->slack_timer,
4615 			ns_to_ktime(cfs_bandwidth_slack_period),
4616 			HRTIMER_MODE_REL);
4617 }
4618 
4619 /* we know any runtime found here is valid as update_curr() precedes return */
4620 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4621 {
4622 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4623 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4624 
4625 	if (slack_runtime <= 0)
4626 		return;
4627 
4628 	raw_spin_lock(&cfs_b->lock);
4629 	if (cfs_b->quota != RUNTIME_INF &&
4630 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4631 		cfs_b->runtime += slack_runtime;
4632 
4633 		/* we are under rq->lock, defer unthrottling using a timer */
4634 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4635 		    !list_empty(&cfs_b->throttled_cfs_rq))
4636 			start_cfs_slack_bandwidth(cfs_b);
4637 	}
4638 	raw_spin_unlock(&cfs_b->lock);
4639 
4640 	/* even if it's not valid for return we don't want to try again */
4641 	cfs_rq->runtime_remaining -= slack_runtime;
4642 }
4643 
4644 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4645 {
4646 	if (!cfs_bandwidth_used())
4647 		return;
4648 
4649 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4650 		return;
4651 
4652 	__return_cfs_rq_runtime(cfs_rq);
4653 }
4654 
4655 /*
4656  * This is done with a timer (instead of inline with bandwidth return) since
4657  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4658  */
4659 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4660 {
4661 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4662 	u64 expires;
4663 
4664 	/* confirm we're still not at a refresh boundary */
4665 	raw_spin_lock(&cfs_b->lock);
4666 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4667 		raw_spin_unlock(&cfs_b->lock);
4668 		return;
4669 	}
4670 
4671 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4672 		runtime = cfs_b->runtime;
4673 
4674 	expires = cfs_b->runtime_expires;
4675 	raw_spin_unlock(&cfs_b->lock);
4676 
4677 	if (!runtime)
4678 		return;
4679 
4680 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4681 
4682 	raw_spin_lock(&cfs_b->lock);
4683 	if (expires == cfs_b->runtime_expires)
4684 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4685 	raw_spin_unlock(&cfs_b->lock);
4686 }
4687 
4688 /*
4689  * When a group wakes up we want to make sure that its quota is not already
4690  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4691  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4692  */
4693 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4694 {
4695 	if (!cfs_bandwidth_used())
4696 		return;
4697 
4698 	/* an active group must be handled by the update_curr()->put() path */
4699 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4700 		return;
4701 
4702 	/* ensure the group is not already throttled */
4703 	if (cfs_rq_throttled(cfs_rq))
4704 		return;
4705 
4706 	/* update runtime allocation */
4707 	account_cfs_rq_runtime(cfs_rq, 0);
4708 	if (cfs_rq->runtime_remaining <= 0)
4709 		throttle_cfs_rq(cfs_rq);
4710 }
4711 
4712 static void sync_throttle(struct task_group *tg, int cpu)
4713 {
4714 	struct cfs_rq *pcfs_rq, *cfs_rq;
4715 
4716 	if (!cfs_bandwidth_used())
4717 		return;
4718 
4719 	if (!tg->parent)
4720 		return;
4721 
4722 	cfs_rq = tg->cfs_rq[cpu];
4723 	pcfs_rq = tg->parent->cfs_rq[cpu];
4724 
4725 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4726 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4727 }
4728 
4729 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4730 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4731 {
4732 	if (!cfs_bandwidth_used())
4733 		return false;
4734 
4735 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4736 		return false;
4737 
4738 	/*
4739 	 * it's possible for a throttled entity to be forced into a running
4740 	 * state (e.g. set_curr_task), in this case we're finished.
4741 	 */
4742 	if (cfs_rq_throttled(cfs_rq))
4743 		return true;
4744 
4745 	throttle_cfs_rq(cfs_rq);
4746 	return true;
4747 }
4748 
4749 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4750 {
4751 	struct cfs_bandwidth *cfs_b =
4752 		container_of(timer, struct cfs_bandwidth, slack_timer);
4753 
4754 	do_sched_cfs_slack_timer(cfs_b);
4755 
4756 	return HRTIMER_NORESTART;
4757 }
4758 
4759 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4760 {
4761 	struct cfs_bandwidth *cfs_b =
4762 		container_of(timer, struct cfs_bandwidth, period_timer);
4763 	int overrun;
4764 	int idle = 0;
4765 
4766 	raw_spin_lock(&cfs_b->lock);
4767 	for (;;) {
4768 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4769 		if (!overrun)
4770 			break;
4771 
4772 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4773 	}
4774 	if (idle)
4775 		cfs_b->period_active = 0;
4776 	raw_spin_unlock(&cfs_b->lock);
4777 
4778 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4779 }
4780 
4781 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4782 {
4783 	raw_spin_lock_init(&cfs_b->lock);
4784 	cfs_b->runtime = 0;
4785 	cfs_b->quota = RUNTIME_INF;
4786 	cfs_b->period = ns_to_ktime(default_cfs_period());
4787 
4788 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4789 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4790 	cfs_b->period_timer.function = sched_cfs_period_timer;
4791 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4792 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4793 }
4794 
4795 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4796 {
4797 	cfs_rq->runtime_enabled = 0;
4798 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4799 }
4800 
4801 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4802 {
4803 	u64 overrun;
4804 
4805 	lockdep_assert_held(&cfs_b->lock);
4806 
4807 	if (cfs_b->period_active)
4808 		return;
4809 
4810 	cfs_b->period_active = 1;
4811 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4812 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4813 	cfs_b->expires_seq++;
4814 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4815 }
4816 
4817 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4818 {
4819 	/* init_cfs_bandwidth() was not called */
4820 	if (!cfs_b->throttled_cfs_rq.next)
4821 		return;
4822 
4823 	hrtimer_cancel(&cfs_b->period_timer);
4824 	hrtimer_cancel(&cfs_b->slack_timer);
4825 }
4826 
4827 /*
4828  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4829  *
4830  * The race is harmless, since modifying bandwidth settings of unhooked group
4831  * bits doesn't do much.
4832  */
4833 
4834 /* cpu online calback */
4835 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4836 {
4837 	struct task_group *tg;
4838 
4839 	lockdep_assert_held(&rq->lock);
4840 
4841 	rcu_read_lock();
4842 	list_for_each_entry_rcu(tg, &task_groups, list) {
4843 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4844 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4845 
4846 		raw_spin_lock(&cfs_b->lock);
4847 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4848 		raw_spin_unlock(&cfs_b->lock);
4849 	}
4850 	rcu_read_unlock();
4851 }
4852 
4853 /* cpu offline callback */
4854 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4855 {
4856 	struct task_group *tg;
4857 
4858 	lockdep_assert_held(&rq->lock);
4859 
4860 	rcu_read_lock();
4861 	list_for_each_entry_rcu(tg, &task_groups, list) {
4862 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4863 
4864 		if (!cfs_rq->runtime_enabled)
4865 			continue;
4866 
4867 		/*
4868 		 * clock_task is not advancing so we just need to make sure
4869 		 * there's some valid quota amount
4870 		 */
4871 		cfs_rq->runtime_remaining = 1;
4872 		/*
4873 		 * Offline rq is schedulable till CPU is completely disabled
4874 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4875 		 */
4876 		cfs_rq->runtime_enabled = 0;
4877 
4878 		if (cfs_rq_throttled(cfs_rq))
4879 			unthrottle_cfs_rq(cfs_rq);
4880 	}
4881 	rcu_read_unlock();
4882 }
4883 
4884 #else /* CONFIG_CFS_BANDWIDTH */
4885 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4886 {
4887 	return rq_clock_task(rq_of(cfs_rq));
4888 }
4889 
4890 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4891 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4892 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4893 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4894 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4895 
4896 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4897 {
4898 	return 0;
4899 }
4900 
4901 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4902 {
4903 	return 0;
4904 }
4905 
4906 static inline int throttled_lb_pair(struct task_group *tg,
4907 				    int src_cpu, int dest_cpu)
4908 {
4909 	return 0;
4910 }
4911 
4912 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4913 
4914 #ifdef CONFIG_FAIR_GROUP_SCHED
4915 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4916 #endif
4917 
4918 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4919 {
4920 	return NULL;
4921 }
4922 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4923 static inline void update_runtime_enabled(struct rq *rq) {}
4924 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4925 
4926 #endif /* CONFIG_CFS_BANDWIDTH */
4927 
4928 /**************************************************
4929  * CFS operations on tasks:
4930  */
4931 
4932 #ifdef CONFIG_SCHED_HRTICK
4933 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4934 {
4935 	struct sched_entity *se = &p->se;
4936 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4937 
4938 	SCHED_WARN_ON(task_rq(p) != rq);
4939 
4940 	if (rq->cfs.h_nr_running > 1) {
4941 		u64 slice = sched_slice(cfs_rq, se);
4942 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4943 		s64 delta = slice - ran;
4944 
4945 		if (delta < 0) {
4946 			if (rq->curr == p)
4947 				resched_curr(rq);
4948 			return;
4949 		}
4950 		hrtick_start(rq, delta);
4951 	}
4952 }
4953 
4954 /*
4955  * called from enqueue/dequeue and updates the hrtick when the
4956  * current task is from our class and nr_running is low enough
4957  * to matter.
4958  */
4959 static void hrtick_update(struct rq *rq)
4960 {
4961 	struct task_struct *curr = rq->curr;
4962 
4963 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4964 		return;
4965 
4966 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4967 		hrtick_start_fair(rq, curr);
4968 }
4969 #else /* !CONFIG_SCHED_HRTICK */
4970 static inline void
4971 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4972 {
4973 }
4974 
4975 static inline void hrtick_update(struct rq *rq)
4976 {
4977 }
4978 #endif
4979 
4980 /*
4981  * The enqueue_task method is called before nr_running is
4982  * increased. Here we update the fair scheduling stats and
4983  * then put the task into the rbtree:
4984  */
4985 static void
4986 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4987 {
4988 	struct cfs_rq *cfs_rq;
4989 	struct sched_entity *se = &p->se;
4990 
4991 	/*
4992 	 * The code below (indirectly) updates schedutil which looks at
4993 	 * the cfs_rq utilization to select a frequency.
4994 	 * Let's add the task's estimated utilization to the cfs_rq's
4995 	 * estimated utilization, before we update schedutil.
4996 	 */
4997 	util_est_enqueue(&rq->cfs, p);
4998 
4999 	/*
5000 	 * If in_iowait is set, the code below may not trigger any cpufreq
5001 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5002 	 * passed.
5003 	 */
5004 	if (p->in_iowait)
5005 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5006 
5007 	for_each_sched_entity(se) {
5008 		if (se->on_rq)
5009 			break;
5010 		cfs_rq = cfs_rq_of(se);
5011 		enqueue_entity(cfs_rq, se, flags);
5012 
5013 		/*
5014 		 * end evaluation on encountering a throttled cfs_rq
5015 		 *
5016 		 * note: in the case of encountering a throttled cfs_rq we will
5017 		 * post the final h_nr_running increment below.
5018 		 */
5019 		if (cfs_rq_throttled(cfs_rq))
5020 			break;
5021 		cfs_rq->h_nr_running++;
5022 
5023 		flags = ENQUEUE_WAKEUP;
5024 	}
5025 
5026 	for_each_sched_entity(se) {
5027 		cfs_rq = cfs_rq_of(se);
5028 		cfs_rq->h_nr_running++;
5029 
5030 		if (cfs_rq_throttled(cfs_rq))
5031 			break;
5032 
5033 		update_load_avg(cfs_rq, se, UPDATE_TG);
5034 		update_cfs_group(se);
5035 	}
5036 
5037 	if (!se)
5038 		add_nr_running(rq, 1);
5039 
5040 	hrtick_update(rq);
5041 }
5042 
5043 static void set_next_buddy(struct sched_entity *se);
5044 
5045 /*
5046  * The dequeue_task method is called before nr_running is
5047  * decreased. We remove the task from the rbtree and
5048  * update the fair scheduling stats:
5049  */
5050 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5051 {
5052 	struct cfs_rq *cfs_rq;
5053 	struct sched_entity *se = &p->se;
5054 	int task_sleep = flags & DEQUEUE_SLEEP;
5055 
5056 	for_each_sched_entity(se) {
5057 		cfs_rq = cfs_rq_of(se);
5058 		dequeue_entity(cfs_rq, se, flags);
5059 
5060 		/*
5061 		 * end evaluation on encountering a throttled cfs_rq
5062 		 *
5063 		 * note: in the case of encountering a throttled cfs_rq we will
5064 		 * post the final h_nr_running decrement below.
5065 		*/
5066 		if (cfs_rq_throttled(cfs_rq))
5067 			break;
5068 		cfs_rq->h_nr_running--;
5069 
5070 		/* Don't dequeue parent if it has other entities besides us */
5071 		if (cfs_rq->load.weight) {
5072 			/* Avoid re-evaluating load for this entity: */
5073 			se = parent_entity(se);
5074 			/*
5075 			 * Bias pick_next to pick a task from this cfs_rq, as
5076 			 * p is sleeping when it is within its sched_slice.
5077 			 */
5078 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5079 				set_next_buddy(se);
5080 			break;
5081 		}
5082 		flags |= DEQUEUE_SLEEP;
5083 	}
5084 
5085 	for_each_sched_entity(se) {
5086 		cfs_rq = cfs_rq_of(se);
5087 		cfs_rq->h_nr_running--;
5088 
5089 		if (cfs_rq_throttled(cfs_rq))
5090 			break;
5091 
5092 		update_load_avg(cfs_rq, se, UPDATE_TG);
5093 		update_cfs_group(se);
5094 	}
5095 
5096 	if (!se)
5097 		sub_nr_running(rq, 1);
5098 
5099 	util_est_dequeue(&rq->cfs, p, task_sleep);
5100 	hrtick_update(rq);
5101 }
5102 
5103 #ifdef CONFIG_SMP
5104 
5105 /* Working cpumask for: load_balance, load_balance_newidle. */
5106 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5107 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5108 
5109 #ifdef CONFIG_NO_HZ_COMMON
5110 /*
5111  * per rq 'load' arrray crap; XXX kill this.
5112  */
5113 
5114 /*
5115  * The exact cpuload calculated at every tick would be:
5116  *
5117  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5118  *
5119  * If a CPU misses updates for n ticks (as it was idle) and update gets
5120  * called on the n+1-th tick when CPU may be busy, then we have:
5121  *
5122  *   load_n   = (1 - 1/2^i)^n * load_0
5123  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5124  *
5125  * decay_load_missed() below does efficient calculation of
5126  *
5127  *   load' = (1 - 1/2^i)^n * load
5128  *
5129  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5130  * This allows us to precompute the above in said factors, thereby allowing the
5131  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5132  * fixed_power_int())
5133  *
5134  * The calculation is approximated on a 128 point scale.
5135  */
5136 #define DEGRADE_SHIFT		7
5137 
5138 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5139 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5140 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5141 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5142 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5143 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5144 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5145 };
5146 
5147 /*
5148  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5149  * would be when CPU is idle and so we just decay the old load without
5150  * adding any new load.
5151  */
5152 static unsigned long
5153 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5154 {
5155 	int j = 0;
5156 
5157 	if (!missed_updates)
5158 		return load;
5159 
5160 	if (missed_updates >= degrade_zero_ticks[idx])
5161 		return 0;
5162 
5163 	if (idx == 1)
5164 		return load >> missed_updates;
5165 
5166 	while (missed_updates) {
5167 		if (missed_updates % 2)
5168 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5169 
5170 		missed_updates >>= 1;
5171 		j++;
5172 	}
5173 	return load;
5174 }
5175 
5176 static struct {
5177 	cpumask_var_t idle_cpus_mask;
5178 	atomic_t nr_cpus;
5179 	int has_blocked;		/* Idle CPUS has blocked load */
5180 	unsigned long next_balance;     /* in jiffy units */
5181 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5182 } nohz ____cacheline_aligned;
5183 
5184 #endif /* CONFIG_NO_HZ_COMMON */
5185 
5186 /**
5187  * __cpu_load_update - update the rq->cpu_load[] statistics
5188  * @this_rq: The rq to update statistics for
5189  * @this_load: The current load
5190  * @pending_updates: The number of missed updates
5191  *
5192  * Update rq->cpu_load[] statistics. This function is usually called every
5193  * scheduler tick (TICK_NSEC).
5194  *
5195  * This function computes a decaying average:
5196  *
5197  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5198  *
5199  * Because of NOHZ it might not get called on every tick which gives need for
5200  * the @pending_updates argument.
5201  *
5202  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5203  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5204  *             = A * (A * load[i]_n-2 + B) + B
5205  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5206  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5207  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5208  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5209  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5210  *
5211  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5212  * any change in load would have resulted in the tick being turned back on.
5213  *
5214  * For regular NOHZ, this reduces to:
5215  *
5216  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5217  *
5218  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5219  * term.
5220  */
5221 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5222 			    unsigned long pending_updates)
5223 {
5224 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5225 	int i, scale;
5226 
5227 	this_rq->nr_load_updates++;
5228 
5229 	/* Update our load: */
5230 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5231 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5232 		unsigned long old_load, new_load;
5233 
5234 		/* scale is effectively 1 << i now, and >> i divides by scale */
5235 
5236 		old_load = this_rq->cpu_load[i];
5237 #ifdef CONFIG_NO_HZ_COMMON
5238 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5239 		if (tickless_load) {
5240 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5241 			/*
5242 			 * old_load can never be a negative value because a
5243 			 * decayed tickless_load cannot be greater than the
5244 			 * original tickless_load.
5245 			 */
5246 			old_load += tickless_load;
5247 		}
5248 #endif
5249 		new_load = this_load;
5250 		/*
5251 		 * Round up the averaging division if load is increasing. This
5252 		 * prevents us from getting stuck on 9 if the load is 10, for
5253 		 * example.
5254 		 */
5255 		if (new_load > old_load)
5256 			new_load += scale - 1;
5257 
5258 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5259 	}
5260 }
5261 
5262 /* Used instead of source_load when we know the type == 0 */
5263 static unsigned long weighted_cpuload(struct rq *rq)
5264 {
5265 	return cfs_rq_runnable_load_avg(&rq->cfs);
5266 }
5267 
5268 #ifdef CONFIG_NO_HZ_COMMON
5269 /*
5270  * There is no sane way to deal with nohz on smp when using jiffies because the
5271  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5272  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5273  *
5274  * Therefore we need to avoid the delta approach from the regular tick when
5275  * possible since that would seriously skew the load calculation. This is why we
5276  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5277  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5278  * loop exit, nohz_idle_balance, nohz full exit...)
5279  *
5280  * This means we might still be one tick off for nohz periods.
5281  */
5282 
5283 static void cpu_load_update_nohz(struct rq *this_rq,
5284 				 unsigned long curr_jiffies,
5285 				 unsigned long load)
5286 {
5287 	unsigned long pending_updates;
5288 
5289 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5290 	if (pending_updates) {
5291 		this_rq->last_load_update_tick = curr_jiffies;
5292 		/*
5293 		 * In the regular NOHZ case, we were idle, this means load 0.
5294 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5295 		 * its weighted load.
5296 		 */
5297 		cpu_load_update(this_rq, load, pending_updates);
5298 	}
5299 }
5300 
5301 /*
5302  * Called from nohz_idle_balance() to update the load ratings before doing the
5303  * idle balance.
5304  */
5305 static void cpu_load_update_idle(struct rq *this_rq)
5306 {
5307 	/*
5308 	 * bail if there's load or we're actually up-to-date.
5309 	 */
5310 	if (weighted_cpuload(this_rq))
5311 		return;
5312 
5313 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5314 }
5315 
5316 /*
5317  * Record CPU load on nohz entry so we know the tickless load to account
5318  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5319  * than other cpu_load[idx] but it should be fine as cpu_load readers
5320  * shouldn't rely into synchronized cpu_load[*] updates.
5321  */
5322 void cpu_load_update_nohz_start(void)
5323 {
5324 	struct rq *this_rq = this_rq();
5325 
5326 	/*
5327 	 * This is all lockless but should be fine. If weighted_cpuload changes
5328 	 * concurrently we'll exit nohz. And cpu_load write can race with
5329 	 * cpu_load_update_idle() but both updater would be writing the same.
5330 	 */
5331 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5332 }
5333 
5334 /*
5335  * Account the tickless load in the end of a nohz frame.
5336  */
5337 void cpu_load_update_nohz_stop(void)
5338 {
5339 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5340 	struct rq *this_rq = this_rq();
5341 	unsigned long load;
5342 	struct rq_flags rf;
5343 
5344 	if (curr_jiffies == this_rq->last_load_update_tick)
5345 		return;
5346 
5347 	load = weighted_cpuload(this_rq);
5348 	rq_lock(this_rq, &rf);
5349 	update_rq_clock(this_rq);
5350 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5351 	rq_unlock(this_rq, &rf);
5352 }
5353 #else /* !CONFIG_NO_HZ_COMMON */
5354 static inline void cpu_load_update_nohz(struct rq *this_rq,
5355 					unsigned long curr_jiffies,
5356 					unsigned long load) { }
5357 #endif /* CONFIG_NO_HZ_COMMON */
5358 
5359 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5360 {
5361 #ifdef CONFIG_NO_HZ_COMMON
5362 	/* See the mess around cpu_load_update_nohz(). */
5363 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5364 #endif
5365 	cpu_load_update(this_rq, load, 1);
5366 }
5367 
5368 /*
5369  * Called from scheduler_tick()
5370  */
5371 void cpu_load_update_active(struct rq *this_rq)
5372 {
5373 	unsigned long load = weighted_cpuload(this_rq);
5374 
5375 	if (tick_nohz_tick_stopped())
5376 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5377 	else
5378 		cpu_load_update_periodic(this_rq, load);
5379 }
5380 
5381 /*
5382  * Return a low guess at the load of a migration-source CPU weighted
5383  * according to the scheduling class and "nice" value.
5384  *
5385  * We want to under-estimate the load of migration sources, to
5386  * balance conservatively.
5387  */
5388 static unsigned long source_load(int cpu, int type)
5389 {
5390 	struct rq *rq = cpu_rq(cpu);
5391 	unsigned long total = weighted_cpuload(rq);
5392 
5393 	if (type == 0 || !sched_feat(LB_BIAS))
5394 		return total;
5395 
5396 	return min(rq->cpu_load[type-1], total);
5397 }
5398 
5399 /*
5400  * Return a high guess at the load of a migration-target CPU weighted
5401  * according to the scheduling class and "nice" value.
5402  */
5403 static unsigned long target_load(int cpu, int type)
5404 {
5405 	struct rq *rq = cpu_rq(cpu);
5406 	unsigned long total = weighted_cpuload(rq);
5407 
5408 	if (type == 0 || !sched_feat(LB_BIAS))
5409 		return total;
5410 
5411 	return max(rq->cpu_load[type-1], total);
5412 }
5413 
5414 static unsigned long capacity_of(int cpu)
5415 {
5416 	return cpu_rq(cpu)->cpu_capacity;
5417 }
5418 
5419 static unsigned long capacity_orig_of(int cpu)
5420 {
5421 	return cpu_rq(cpu)->cpu_capacity_orig;
5422 }
5423 
5424 static unsigned long cpu_avg_load_per_task(int cpu)
5425 {
5426 	struct rq *rq = cpu_rq(cpu);
5427 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5428 	unsigned long load_avg = weighted_cpuload(rq);
5429 
5430 	if (nr_running)
5431 		return load_avg / nr_running;
5432 
5433 	return 0;
5434 }
5435 
5436 static void record_wakee(struct task_struct *p)
5437 {
5438 	/*
5439 	 * Only decay a single time; tasks that have less then 1 wakeup per
5440 	 * jiffy will not have built up many flips.
5441 	 */
5442 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5443 		current->wakee_flips >>= 1;
5444 		current->wakee_flip_decay_ts = jiffies;
5445 	}
5446 
5447 	if (current->last_wakee != p) {
5448 		current->last_wakee = p;
5449 		current->wakee_flips++;
5450 	}
5451 }
5452 
5453 /*
5454  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5455  *
5456  * A waker of many should wake a different task than the one last awakened
5457  * at a frequency roughly N times higher than one of its wakees.
5458  *
5459  * In order to determine whether we should let the load spread vs consolidating
5460  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5461  * partner, and a factor of lls_size higher frequency in the other.
5462  *
5463  * With both conditions met, we can be relatively sure that the relationship is
5464  * non-monogamous, with partner count exceeding socket size.
5465  *
5466  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5467  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5468  * socket size.
5469  */
5470 static int wake_wide(struct task_struct *p)
5471 {
5472 	unsigned int master = current->wakee_flips;
5473 	unsigned int slave = p->wakee_flips;
5474 	int factor = this_cpu_read(sd_llc_size);
5475 
5476 	if (master < slave)
5477 		swap(master, slave);
5478 	if (slave < factor || master < slave * factor)
5479 		return 0;
5480 	return 1;
5481 }
5482 
5483 /*
5484  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5485  * soonest. For the purpose of speed we only consider the waking and previous
5486  * CPU.
5487  *
5488  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5489  *			cache-affine and is (or	will be) idle.
5490  *
5491  * wake_affine_weight() - considers the weight to reflect the average
5492  *			  scheduling latency of the CPUs. This seems to work
5493  *			  for the overloaded case.
5494  */
5495 static int
5496 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5497 {
5498 	/*
5499 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5500 	 * context. Only allow the move if cache is shared. Otherwise an
5501 	 * interrupt intensive workload could force all tasks onto one
5502 	 * node depending on the IO topology or IRQ affinity settings.
5503 	 *
5504 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5505 	 * There is no guarantee that the cache hot data from an interrupt
5506 	 * is more important than cache hot data on the prev_cpu and from
5507 	 * a cpufreq perspective, it's better to have higher utilisation
5508 	 * on one CPU.
5509 	 */
5510 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5511 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5512 
5513 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5514 		return this_cpu;
5515 
5516 	return nr_cpumask_bits;
5517 }
5518 
5519 static int
5520 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5521 		   int this_cpu, int prev_cpu, int sync)
5522 {
5523 	s64 this_eff_load, prev_eff_load;
5524 	unsigned long task_load;
5525 
5526 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5527 
5528 	if (sync) {
5529 		unsigned long current_load = task_h_load(current);
5530 
5531 		if (current_load > this_eff_load)
5532 			return this_cpu;
5533 
5534 		this_eff_load -= current_load;
5535 	}
5536 
5537 	task_load = task_h_load(p);
5538 
5539 	this_eff_load += task_load;
5540 	if (sched_feat(WA_BIAS))
5541 		this_eff_load *= 100;
5542 	this_eff_load *= capacity_of(prev_cpu);
5543 
5544 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5545 	prev_eff_load -= task_load;
5546 	if (sched_feat(WA_BIAS))
5547 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5548 	prev_eff_load *= capacity_of(this_cpu);
5549 
5550 	/*
5551 	 * If sync, adjust the weight of prev_eff_load such that if
5552 	 * prev_eff == this_eff that select_idle_sibling() will consider
5553 	 * stacking the wakee on top of the waker if no other CPU is
5554 	 * idle.
5555 	 */
5556 	if (sync)
5557 		prev_eff_load += 1;
5558 
5559 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5560 }
5561 
5562 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5563 		       int this_cpu, int prev_cpu, int sync)
5564 {
5565 	int target = nr_cpumask_bits;
5566 
5567 	if (sched_feat(WA_IDLE))
5568 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5569 
5570 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5571 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5572 
5573 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5574 	if (target == nr_cpumask_bits)
5575 		return prev_cpu;
5576 
5577 	schedstat_inc(sd->ttwu_move_affine);
5578 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5579 	return target;
5580 }
5581 
5582 static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5583 
5584 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5585 {
5586 	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5587 }
5588 
5589 /*
5590  * find_idlest_group finds and returns the least busy CPU group within the
5591  * domain.
5592  *
5593  * Assumes p is allowed on at least one CPU in sd.
5594  */
5595 static struct sched_group *
5596 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5597 		  int this_cpu, int sd_flag)
5598 {
5599 	struct sched_group *idlest = NULL, *group = sd->groups;
5600 	struct sched_group *most_spare_sg = NULL;
5601 	unsigned long min_runnable_load = ULONG_MAX;
5602 	unsigned long this_runnable_load = ULONG_MAX;
5603 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5604 	unsigned long most_spare = 0, this_spare = 0;
5605 	int load_idx = sd->forkexec_idx;
5606 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5607 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5608 				(sd->imbalance_pct-100) / 100;
5609 
5610 	if (sd_flag & SD_BALANCE_WAKE)
5611 		load_idx = sd->wake_idx;
5612 
5613 	do {
5614 		unsigned long load, avg_load, runnable_load;
5615 		unsigned long spare_cap, max_spare_cap;
5616 		int local_group;
5617 		int i;
5618 
5619 		/* Skip over this group if it has no CPUs allowed */
5620 		if (!cpumask_intersects(sched_group_span(group),
5621 					&p->cpus_allowed))
5622 			continue;
5623 
5624 		local_group = cpumask_test_cpu(this_cpu,
5625 					       sched_group_span(group));
5626 
5627 		/*
5628 		 * Tally up the load of all CPUs in the group and find
5629 		 * the group containing the CPU with most spare capacity.
5630 		 */
5631 		avg_load = 0;
5632 		runnable_load = 0;
5633 		max_spare_cap = 0;
5634 
5635 		for_each_cpu(i, sched_group_span(group)) {
5636 			/* Bias balancing toward CPUs of our domain */
5637 			if (local_group)
5638 				load = source_load(i, load_idx);
5639 			else
5640 				load = target_load(i, load_idx);
5641 
5642 			runnable_load += load;
5643 
5644 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5645 
5646 			spare_cap = capacity_spare_wake(i, p);
5647 
5648 			if (spare_cap > max_spare_cap)
5649 				max_spare_cap = spare_cap;
5650 		}
5651 
5652 		/* Adjust by relative CPU capacity of the group */
5653 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5654 					group->sgc->capacity;
5655 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5656 					group->sgc->capacity;
5657 
5658 		if (local_group) {
5659 			this_runnable_load = runnable_load;
5660 			this_avg_load = avg_load;
5661 			this_spare = max_spare_cap;
5662 		} else {
5663 			if (min_runnable_load > (runnable_load + imbalance)) {
5664 				/*
5665 				 * The runnable load is significantly smaller
5666 				 * so we can pick this new CPU:
5667 				 */
5668 				min_runnable_load = runnable_load;
5669 				min_avg_load = avg_load;
5670 				idlest = group;
5671 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5672 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5673 				/*
5674 				 * The runnable loads are close so take the
5675 				 * blocked load into account through avg_load:
5676 				 */
5677 				min_avg_load = avg_load;
5678 				idlest = group;
5679 			}
5680 
5681 			if (most_spare < max_spare_cap) {
5682 				most_spare = max_spare_cap;
5683 				most_spare_sg = group;
5684 			}
5685 		}
5686 	} while (group = group->next, group != sd->groups);
5687 
5688 	/*
5689 	 * The cross-over point between using spare capacity or least load
5690 	 * is too conservative for high utilization tasks on partially
5691 	 * utilized systems if we require spare_capacity > task_util(p),
5692 	 * so we allow for some task stuffing by using
5693 	 * spare_capacity > task_util(p)/2.
5694 	 *
5695 	 * Spare capacity can't be used for fork because the utilization has
5696 	 * not been set yet, we must first select a rq to compute the initial
5697 	 * utilization.
5698 	 */
5699 	if (sd_flag & SD_BALANCE_FORK)
5700 		goto skip_spare;
5701 
5702 	if (this_spare > task_util(p) / 2 &&
5703 	    imbalance_scale*this_spare > 100*most_spare)
5704 		return NULL;
5705 
5706 	if (most_spare > task_util(p) / 2)
5707 		return most_spare_sg;
5708 
5709 skip_spare:
5710 	if (!idlest)
5711 		return NULL;
5712 
5713 	/*
5714 	 * When comparing groups across NUMA domains, it's possible for the
5715 	 * local domain to be very lightly loaded relative to the remote
5716 	 * domains but "imbalance" skews the comparison making remote CPUs
5717 	 * look much more favourable. When considering cross-domain, add
5718 	 * imbalance to the runnable load on the remote node and consider
5719 	 * staying local.
5720 	 */
5721 	if ((sd->flags & SD_NUMA) &&
5722 	    min_runnable_load + imbalance >= this_runnable_load)
5723 		return NULL;
5724 
5725 	if (min_runnable_load > (this_runnable_load + imbalance))
5726 		return NULL;
5727 
5728 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5729 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5730 		return NULL;
5731 
5732 	return idlest;
5733 }
5734 
5735 /*
5736  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5737  */
5738 static int
5739 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5740 {
5741 	unsigned long load, min_load = ULONG_MAX;
5742 	unsigned int min_exit_latency = UINT_MAX;
5743 	u64 latest_idle_timestamp = 0;
5744 	int least_loaded_cpu = this_cpu;
5745 	int shallowest_idle_cpu = -1;
5746 	int i;
5747 
5748 	/* Check if we have any choice: */
5749 	if (group->group_weight == 1)
5750 		return cpumask_first(sched_group_span(group));
5751 
5752 	/* Traverse only the allowed CPUs */
5753 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5754 		if (available_idle_cpu(i)) {
5755 			struct rq *rq = cpu_rq(i);
5756 			struct cpuidle_state *idle = idle_get_state(rq);
5757 			if (idle && idle->exit_latency < min_exit_latency) {
5758 				/*
5759 				 * We give priority to a CPU whose idle state
5760 				 * has the smallest exit latency irrespective
5761 				 * of any idle timestamp.
5762 				 */
5763 				min_exit_latency = idle->exit_latency;
5764 				latest_idle_timestamp = rq->idle_stamp;
5765 				shallowest_idle_cpu = i;
5766 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5767 				   rq->idle_stamp > latest_idle_timestamp) {
5768 				/*
5769 				 * If equal or no active idle state, then
5770 				 * the most recently idled CPU might have
5771 				 * a warmer cache.
5772 				 */
5773 				latest_idle_timestamp = rq->idle_stamp;
5774 				shallowest_idle_cpu = i;
5775 			}
5776 		} else if (shallowest_idle_cpu == -1) {
5777 			load = weighted_cpuload(cpu_rq(i));
5778 			if (load < min_load) {
5779 				min_load = load;
5780 				least_loaded_cpu = i;
5781 			}
5782 		}
5783 	}
5784 
5785 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5786 }
5787 
5788 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5789 				  int cpu, int prev_cpu, int sd_flag)
5790 {
5791 	int new_cpu = cpu;
5792 
5793 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5794 		return prev_cpu;
5795 
5796 	/*
5797 	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
5798 	 * last_update_time.
5799 	 */
5800 	if (!(sd_flag & SD_BALANCE_FORK))
5801 		sync_entity_load_avg(&p->se);
5802 
5803 	while (sd) {
5804 		struct sched_group *group;
5805 		struct sched_domain *tmp;
5806 		int weight;
5807 
5808 		if (!(sd->flags & sd_flag)) {
5809 			sd = sd->child;
5810 			continue;
5811 		}
5812 
5813 		group = find_idlest_group(sd, p, cpu, sd_flag);
5814 		if (!group) {
5815 			sd = sd->child;
5816 			continue;
5817 		}
5818 
5819 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5820 		if (new_cpu == cpu) {
5821 			/* Now try balancing at a lower domain level of 'cpu': */
5822 			sd = sd->child;
5823 			continue;
5824 		}
5825 
5826 		/* Now try balancing at a lower domain level of 'new_cpu': */
5827 		cpu = new_cpu;
5828 		weight = sd->span_weight;
5829 		sd = NULL;
5830 		for_each_domain(cpu, tmp) {
5831 			if (weight <= tmp->span_weight)
5832 				break;
5833 			if (tmp->flags & sd_flag)
5834 				sd = tmp;
5835 		}
5836 	}
5837 
5838 	return new_cpu;
5839 }
5840 
5841 #ifdef CONFIG_SCHED_SMT
5842 
5843 static inline void set_idle_cores(int cpu, int val)
5844 {
5845 	struct sched_domain_shared *sds;
5846 
5847 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5848 	if (sds)
5849 		WRITE_ONCE(sds->has_idle_cores, val);
5850 }
5851 
5852 static inline bool test_idle_cores(int cpu, bool def)
5853 {
5854 	struct sched_domain_shared *sds;
5855 
5856 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5857 	if (sds)
5858 		return READ_ONCE(sds->has_idle_cores);
5859 
5860 	return def;
5861 }
5862 
5863 /*
5864  * Scans the local SMT mask to see if the entire core is idle, and records this
5865  * information in sd_llc_shared->has_idle_cores.
5866  *
5867  * Since SMT siblings share all cache levels, inspecting this limited remote
5868  * state should be fairly cheap.
5869  */
5870 void __update_idle_core(struct rq *rq)
5871 {
5872 	int core = cpu_of(rq);
5873 	int cpu;
5874 
5875 	rcu_read_lock();
5876 	if (test_idle_cores(core, true))
5877 		goto unlock;
5878 
5879 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5880 		if (cpu == core)
5881 			continue;
5882 
5883 		if (!available_idle_cpu(cpu))
5884 			goto unlock;
5885 	}
5886 
5887 	set_idle_cores(core, 1);
5888 unlock:
5889 	rcu_read_unlock();
5890 }
5891 
5892 /*
5893  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5894  * there are no idle cores left in the system; tracked through
5895  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5896  */
5897 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5898 {
5899 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5900 	int core, cpu;
5901 
5902 	if (!static_branch_likely(&sched_smt_present))
5903 		return -1;
5904 
5905 	if (!test_idle_cores(target, false))
5906 		return -1;
5907 
5908 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5909 
5910 	for_each_cpu_wrap(core, cpus, target) {
5911 		bool idle = true;
5912 
5913 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5914 			cpumask_clear_cpu(cpu, cpus);
5915 			if (!available_idle_cpu(cpu))
5916 				idle = false;
5917 		}
5918 
5919 		if (idle)
5920 			return core;
5921 	}
5922 
5923 	/*
5924 	 * Failed to find an idle core; stop looking for one.
5925 	 */
5926 	set_idle_cores(target, 0);
5927 
5928 	return -1;
5929 }
5930 
5931 /*
5932  * Scan the local SMT mask for idle CPUs.
5933  */
5934 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5935 {
5936 	int cpu;
5937 
5938 	if (!static_branch_likely(&sched_smt_present))
5939 		return -1;
5940 
5941 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5942 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5943 			continue;
5944 		if (available_idle_cpu(cpu))
5945 			return cpu;
5946 	}
5947 
5948 	return -1;
5949 }
5950 
5951 #else /* CONFIG_SCHED_SMT */
5952 
5953 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5954 {
5955 	return -1;
5956 }
5957 
5958 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5959 {
5960 	return -1;
5961 }
5962 
5963 #endif /* CONFIG_SCHED_SMT */
5964 
5965 /*
5966  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5967  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5968  * average idle time for this rq (as found in rq->avg_idle).
5969  */
5970 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5971 {
5972 	struct sched_domain *this_sd;
5973 	u64 avg_cost, avg_idle;
5974 	u64 time, cost;
5975 	s64 delta;
5976 	int cpu, nr = INT_MAX;
5977 
5978 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5979 	if (!this_sd)
5980 		return -1;
5981 
5982 	/*
5983 	 * Due to large variance we need a large fuzz factor; hackbench in
5984 	 * particularly is sensitive here.
5985 	 */
5986 	avg_idle = this_rq()->avg_idle / 512;
5987 	avg_cost = this_sd->avg_scan_cost + 1;
5988 
5989 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5990 		return -1;
5991 
5992 	if (sched_feat(SIS_PROP)) {
5993 		u64 span_avg = sd->span_weight * avg_idle;
5994 		if (span_avg > 4*avg_cost)
5995 			nr = div_u64(span_avg, avg_cost);
5996 		else
5997 			nr = 4;
5998 	}
5999 
6000 	time = local_clock();
6001 
6002 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6003 		if (!--nr)
6004 			return -1;
6005 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6006 			continue;
6007 		if (available_idle_cpu(cpu))
6008 			break;
6009 	}
6010 
6011 	time = local_clock() - time;
6012 	cost = this_sd->avg_scan_cost;
6013 	delta = (s64)(time - cost) / 8;
6014 	this_sd->avg_scan_cost += delta;
6015 
6016 	return cpu;
6017 }
6018 
6019 /*
6020  * Try and locate an idle core/thread in the LLC cache domain.
6021  */
6022 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6023 {
6024 	struct sched_domain *sd;
6025 	int i, recent_used_cpu;
6026 
6027 	if (available_idle_cpu(target))
6028 		return target;
6029 
6030 	/*
6031 	 * If the previous CPU is cache affine and idle, don't be stupid:
6032 	 */
6033 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6034 		return prev;
6035 
6036 	/* Check a recently used CPU as a potential idle candidate: */
6037 	recent_used_cpu = p->recent_used_cpu;
6038 	if (recent_used_cpu != prev &&
6039 	    recent_used_cpu != target &&
6040 	    cpus_share_cache(recent_used_cpu, target) &&
6041 	    available_idle_cpu(recent_used_cpu) &&
6042 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6043 		/*
6044 		 * Replace recent_used_cpu with prev as it is a potential
6045 		 * candidate for the next wake:
6046 		 */
6047 		p->recent_used_cpu = prev;
6048 		return recent_used_cpu;
6049 	}
6050 
6051 	sd = rcu_dereference(per_cpu(sd_llc, target));
6052 	if (!sd)
6053 		return target;
6054 
6055 	i = select_idle_core(p, sd, target);
6056 	if ((unsigned)i < nr_cpumask_bits)
6057 		return i;
6058 
6059 	i = select_idle_cpu(p, sd, target);
6060 	if ((unsigned)i < nr_cpumask_bits)
6061 		return i;
6062 
6063 	i = select_idle_smt(p, sd, target);
6064 	if ((unsigned)i < nr_cpumask_bits)
6065 		return i;
6066 
6067 	return target;
6068 }
6069 
6070 /**
6071  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6072  * @cpu: the CPU to get the utilization of
6073  *
6074  * The unit of the return value must be the one of capacity so we can compare
6075  * the utilization with the capacity of the CPU that is available for CFS task
6076  * (ie cpu_capacity).
6077  *
6078  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6079  * recent utilization of currently non-runnable tasks on a CPU. It represents
6080  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6081  * capacity_orig is the cpu_capacity available at the highest frequency
6082  * (arch_scale_freq_capacity()).
6083  * The utilization of a CPU converges towards a sum equal to or less than the
6084  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6085  * the running time on this CPU scaled by capacity_curr.
6086  *
6087  * The estimated utilization of a CPU is defined to be the maximum between its
6088  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6089  * currently RUNNABLE on that CPU.
6090  * This allows to properly represent the expected utilization of a CPU which
6091  * has just got a big task running since a long sleep period. At the same time
6092  * however it preserves the benefits of the "blocked utilization" in
6093  * describing the potential for other tasks waking up on the same CPU.
6094  *
6095  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6096  * higher than capacity_orig because of unfortunate rounding in
6097  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6098  * the average stabilizes with the new running time. We need to check that the
6099  * utilization stays within the range of [0..capacity_orig] and cap it if
6100  * necessary. Without utilization capping, a group could be seen as overloaded
6101  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6102  * available capacity. We allow utilization to overshoot capacity_curr (but not
6103  * capacity_orig) as it useful for predicting the capacity required after task
6104  * migrations (scheduler-driven DVFS).
6105  *
6106  * Return: the (estimated) utilization for the specified CPU
6107  */
6108 static inline unsigned long cpu_util(int cpu)
6109 {
6110 	struct cfs_rq *cfs_rq;
6111 	unsigned int util;
6112 
6113 	cfs_rq = &cpu_rq(cpu)->cfs;
6114 	util = READ_ONCE(cfs_rq->avg.util_avg);
6115 
6116 	if (sched_feat(UTIL_EST))
6117 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6118 
6119 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6120 }
6121 
6122 /*
6123  * cpu_util_wake: Compute CPU utilization with any contributions from
6124  * the waking task p removed.
6125  */
6126 static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6127 {
6128 	struct cfs_rq *cfs_rq;
6129 	unsigned int util;
6130 
6131 	/* Task has no contribution or is new */
6132 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6133 		return cpu_util(cpu);
6134 
6135 	cfs_rq = &cpu_rq(cpu)->cfs;
6136 	util = READ_ONCE(cfs_rq->avg.util_avg);
6137 
6138 	/* Discount task's blocked util from CPU's util */
6139 	util -= min_t(unsigned int, util, task_util(p));
6140 
6141 	/*
6142 	 * Covered cases:
6143 	 *
6144 	 * a) if *p is the only task sleeping on this CPU, then:
6145 	 *      cpu_util (== task_util) > util_est (== 0)
6146 	 *    and thus we return:
6147 	 *      cpu_util_wake = (cpu_util - task_util) = 0
6148 	 *
6149 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6150 	 *    IDLE, then:
6151 	 *      cpu_util >= task_util
6152 	 *      cpu_util > util_est (== 0)
6153 	 *    and thus we discount *p's blocked utilization to return:
6154 	 *      cpu_util_wake = (cpu_util - task_util) >= 0
6155 	 *
6156 	 * c) if other tasks are RUNNABLE on that CPU and
6157 	 *      util_est > cpu_util
6158 	 *    then we use util_est since it returns a more restrictive
6159 	 *    estimation of the spare capacity on that CPU, by just
6160 	 *    considering the expected utilization of tasks already
6161 	 *    runnable on that CPU.
6162 	 *
6163 	 * Cases a) and b) are covered by the above code, while case c) is
6164 	 * covered by the following code when estimated utilization is
6165 	 * enabled.
6166 	 */
6167 	if (sched_feat(UTIL_EST))
6168 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6169 
6170 	/*
6171 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6172 	 * clamp to the maximum CPU capacity to ensure consistency with
6173 	 * the cpu_util call.
6174 	 */
6175 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6176 }
6177 
6178 /*
6179  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6180  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6181  *
6182  * In that case WAKE_AFFINE doesn't make sense and we'll let
6183  * BALANCE_WAKE sort things out.
6184  */
6185 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6186 {
6187 	long min_cap, max_cap;
6188 
6189 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6190 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6191 
6192 	/* Minimum capacity is close to max, no need to abort wake_affine */
6193 	if (max_cap - min_cap < max_cap >> 3)
6194 		return 0;
6195 
6196 	/* Bring task utilization in sync with prev_cpu */
6197 	sync_entity_load_avg(&p->se);
6198 
6199 	return min_cap * 1024 < task_util(p) * capacity_margin;
6200 }
6201 
6202 /*
6203  * select_task_rq_fair: Select target runqueue for the waking task in domains
6204  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6205  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6206  *
6207  * Balances load by selecting the idlest CPU in the idlest group, or under
6208  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6209  *
6210  * Returns the target CPU number.
6211  *
6212  * preempt must be disabled.
6213  */
6214 static int
6215 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6216 {
6217 	struct sched_domain *tmp, *sd = NULL;
6218 	int cpu = smp_processor_id();
6219 	int new_cpu = prev_cpu;
6220 	int want_affine = 0;
6221 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6222 
6223 	if (sd_flag & SD_BALANCE_WAKE) {
6224 		record_wakee(p);
6225 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6226 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
6227 	}
6228 
6229 	rcu_read_lock();
6230 	for_each_domain(cpu, tmp) {
6231 		if (!(tmp->flags & SD_LOAD_BALANCE))
6232 			break;
6233 
6234 		/*
6235 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6236 		 * cpu is a valid SD_WAKE_AFFINE target.
6237 		 */
6238 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6239 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6240 			if (cpu != prev_cpu)
6241 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6242 
6243 			sd = NULL; /* Prefer wake_affine over balance flags */
6244 			break;
6245 		}
6246 
6247 		if (tmp->flags & sd_flag)
6248 			sd = tmp;
6249 		else if (!want_affine)
6250 			break;
6251 	}
6252 
6253 	if (unlikely(sd)) {
6254 		/* Slow path */
6255 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6256 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6257 		/* Fast path */
6258 
6259 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6260 
6261 		if (want_affine)
6262 			current->recent_used_cpu = cpu;
6263 	}
6264 	rcu_read_unlock();
6265 
6266 	return new_cpu;
6267 }
6268 
6269 static void detach_entity_cfs_rq(struct sched_entity *se);
6270 
6271 /*
6272  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6273  * cfs_rq_of(p) references at time of call are still valid and identify the
6274  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6275  */
6276 static void migrate_task_rq_fair(struct task_struct *p)
6277 {
6278 	/*
6279 	 * As blocked tasks retain absolute vruntime the migration needs to
6280 	 * deal with this by subtracting the old and adding the new
6281 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6282 	 * the task on the new runqueue.
6283 	 */
6284 	if (p->state == TASK_WAKING) {
6285 		struct sched_entity *se = &p->se;
6286 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6287 		u64 min_vruntime;
6288 
6289 #ifndef CONFIG_64BIT
6290 		u64 min_vruntime_copy;
6291 
6292 		do {
6293 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6294 			smp_rmb();
6295 			min_vruntime = cfs_rq->min_vruntime;
6296 		} while (min_vruntime != min_vruntime_copy);
6297 #else
6298 		min_vruntime = cfs_rq->min_vruntime;
6299 #endif
6300 
6301 		se->vruntime -= min_vruntime;
6302 	}
6303 
6304 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6305 		/*
6306 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6307 		 * rq->lock and can modify state directly.
6308 		 */
6309 		lockdep_assert_held(&task_rq(p)->lock);
6310 		detach_entity_cfs_rq(&p->se);
6311 
6312 	} else {
6313 		/*
6314 		 * We are supposed to update the task to "current" time, then
6315 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6316 		 * have difficulty in getting what current time is, so simply
6317 		 * throw away the out-of-date time. This will result in the
6318 		 * wakee task is less decayed, but giving the wakee more load
6319 		 * sounds not bad.
6320 		 */
6321 		remove_entity_load_avg(&p->se);
6322 	}
6323 
6324 	/* Tell new CPU we are migrated */
6325 	p->se.avg.last_update_time = 0;
6326 
6327 	/* We have migrated, no longer consider this task hot */
6328 	p->se.exec_start = 0;
6329 }
6330 
6331 static void task_dead_fair(struct task_struct *p)
6332 {
6333 	remove_entity_load_avg(&p->se);
6334 }
6335 #endif /* CONFIG_SMP */
6336 
6337 static unsigned long wakeup_gran(struct sched_entity *se)
6338 {
6339 	unsigned long gran = sysctl_sched_wakeup_granularity;
6340 
6341 	/*
6342 	 * Since its curr running now, convert the gran from real-time
6343 	 * to virtual-time in his units.
6344 	 *
6345 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6346 	 * they get preempted easier. That is, if 'se' < 'curr' then
6347 	 * the resulting gran will be larger, therefore penalizing the
6348 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6349 	 * be smaller, again penalizing the lighter task.
6350 	 *
6351 	 * This is especially important for buddies when the leftmost
6352 	 * task is higher priority than the buddy.
6353 	 */
6354 	return calc_delta_fair(gran, se);
6355 }
6356 
6357 /*
6358  * Should 'se' preempt 'curr'.
6359  *
6360  *             |s1
6361  *        |s2
6362  *   |s3
6363  *         g
6364  *      |<--->|c
6365  *
6366  *  w(c, s1) = -1
6367  *  w(c, s2) =  0
6368  *  w(c, s3) =  1
6369  *
6370  */
6371 static int
6372 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6373 {
6374 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6375 
6376 	if (vdiff <= 0)
6377 		return -1;
6378 
6379 	gran = wakeup_gran(se);
6380 	if (vdiff > gran)
6381 		return 1;
6382 
6383 	return 0;
6384 }
6385 
6386 static void set_last_buddy(struct sched_entity *se)
6387 {
6388 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6389 		return;
6390 
6391 	for_each_sched_entity(se) {
6392 		if (SCHED_WARN_ON(!se->on_rq))
6393 			return;
6394 		cfs_rq_of(se)->last = se;
6395 	}
6396 }
6397 
6398 static void set_next_buddy(struct sched_entity *se)
6399 {
6400 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6401 		return;
6402 
6403 	for_each_sched_entity(se) {
6404 		if (SCHED_WARN_ON(!se->on_rq))
6405 			return;
6406 		cfs_rq_of(se)->next = se;
6407 	}
6408 }
6409 
6410 static void set_skip_buddy(struct sched_entity *se)
6411 {
6412 	for_each_sched_entity(se)
6413 		cfs_rq_of(se)->skip = se;
6414 }
6415 
6416 /*
6417  * Preempt the current task with a newly woken task if needed:
6418  */
6419 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6420 {
6421 	struct task_struct *curr = rq->curr;
6422 	struct sched_entity *se = &curr->se, *pse = &p->se;
6423 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6424 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6425 	int next_buddy_marked = 0;
6426 
6427 	if (unlikely(se == pse))
6428 		return;
6429 
6430 	/*
6431 	 * This is possible from callers such as attach_tasks(), in which we
6432 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6433 	 * lead to a throttle).  This both saves work and prevents false
6434 	 * next-buddy nomination below.
6435 	 */
6436 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6437 		return;
6438 
6439 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6440 		set_next_buddy(pse);
6441 		next_buddy_marked = 1;
6442 	}
6443 
6444 	/*
6445 	 * We can come here with TIF_NEED_RESCHED already set from new task
6446 	 * wake up path.
6447 	 *
6448 	 * Note: this also catches the edge-case of curr being in a throttled
6449 	 * group (e.g. via set_curr_task), since update_curr() (in the
6450 	 * enqueue of curr) will have resulted in resched being set.  This
6451 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6452 	 * below.
6453 	 */
6454 	if (test_tsk_need_resched(curr))
6455 		return;
6456 
6457 	/* Idle tasks are by definition preempted by non-idle tasks. */
6458 	if (unlikely(curr->policy == SCHED_IDLE) &&
6459 	    likely(p->policy != SCHED_IDLE))
6460 		goto preempt;
6461 
6462 	/*
6463 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6464 	 * is driven by the tick):
6465 	 */
6466 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6467 		return;
6468 
6469 	find_matching_se(&se, &pse);
6470 	update_curr(cfs_rq_of(se));
6471 	BUG_ON(!pse);
6472 	if (wakeup_preempt_entity(se, pse) == 1) {
6473 		/*
6474 		 * Bias pick_next to pick the sched entity that is
6475 		 * triggering this preemption.
6476 		 */
6477 		if (!next_buddy_marked)
6478 			set_next_buddy(pse);
6479 		goto preempt;
6480 	}
6481 
6482 	return;
6483 
6484 preempt:
6485 	resched_curr(rq);
6486 	/*
6487 	 * Only set the backward buddy when the current task is still
6488 	 * on the rq. This can happen when a wakeup gets interleaved
6489 	 * with schedule on the ->pre_schedule() or idle_balance()
6490 	 * point, either of which can * drop the rq lock.
6491 	 *
6492 	 * Also, during early boot the idle thread is in the fair class,
6493 	 * for obvious reasons its a bad idea to schedule back to it.
6494 	 */
6495 	if (unlikely(!se->on_rq || curr == rq->idle))
6496 		return;
6497 
6498 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6499 		set_last_buddy(se);
6500 }
6501 
6502 static struct task_struct *
6503 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6504 {
6505 	struct cfs_rq *cfs_rq = &rq->cfs;
6506 	struct sched_entity *se;
6507 	struct task_struct *p;
6508 	int new_tasks;
6509 
6510 again:
6511 	if (!cfs_rq->nr_running)
6512 		goto idle;
6513 
6514 #ifdef CONFIG_FAIR_GROUP_SCHED
6515 	if (prev->sched_class != &fair_sched_class)
6516 		goto simple;
6517 
6518 	/*
6519 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6520 	 * likely that a next task is from the same cgroup as the current.
6521 	 *
6522 	 * Therefore attempt to avoid putting and setting the entire cgroup
6523 	 * hierarchy, only change the part that actually changes.
6524 	 */
6525 
6526 	do {
6527 		struct sched_entity *curr = cfs_rq->curr;
6528 
6529 		/*
6530 		 * Since we got here without doing put_prev_entity() we also
6531 		 * have to consider cfs_rq->curr. If it is still a runnable
6532 		 * entity, update_curr() will update its vruntime, otherwise
6533 		 * forget we've ever seen it.
6534 		 */
6535 		if (curr) {
6536 			if (curr->on_rq)
6537 				update_curr(cfs_rq);
6538 			else
6539 				curr = NULL;
6540 
6541 			/*
6542 			 * This call to check_cfs_rq_runtime() will do the
6543 			 * throttle and dequeue its entity in the parent(s).
6544 			 * Therefore the nr_running test will indeed
6545 			 * be correct.
6546 			 */
6547 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6548 				cfs_rq = &rq->cfs;
6549 
6550 				if (!cfs_rq->nr_running)
6551 					goto idle;
6552 
6553 				goto simple;
6554 			}
6555 		}
6556 
6557 		se = pick_next_entity(cfs_rq, curr);
6558 		cfs_rq = group_cfs_rq(se);
6559 	} while (cfs_rq);
6560 
6561 	p = task_of(se);
6562 
6563 	/*
6564 	 * Since we haven't yet done put_prev_entity and if the selected task
6565 	 * is a different task than we started out with, try and touch the
6566 	 * least amount of cfs_rqs.
6567 	 */
6568 	if (prev != p) {
6569 		struct sched_entity *pse = &prev->se;
6570 
6571 		while (!(cfs_rq = is_same_group(se, pse))) {
6572 			int se_depth = se->depth;
6573 			int pse_depth = pse->depth;
6574 
6575 			if (se_depth <= pse_depth) {
6576 				put_prev_entity(cfs_rq_of(pse), pse);
6577 				pse = parent_entity(pse);
6578 			}
6579 			if (se_depth >= pse_depth) {
6580 				set_next_entity(cfs_rq_of(se), se);
6581 				se = parent_entity(se);
6582 			}
6583 		}
6584 
6585 		put_prev_entity(cfs_rq, pse);
6586 		set_next_entity(cfs_rq, se);
6587 	}
6588 
6589 	goto done;
6590 simple:
6591 #endif
6592 
6593 	put_prev_task(rq, prev);
6594 
6595 	do {
6596 		se = pick_next_entity(cfs_rq, NULL);
6597 		set_next_entity(cfs_rq, se);
6598 		cfs_rq = group_cfs_rq(se);
6599 	} while (cfs_rq);
6600 
6601 	p = task_of(se);
6602 
6603 done: __maybe_unused;
6604 #ifdef CONFIG_SMP
6605 	/*
6606 	 * Move the next running task to the front of
6607 	 * the list, so our cfs_tasks list becomes MRU
6608 	 * one.
6609 	 */
6610 	list_move(&p->se.group_node, &rq->cfs_tasks);
6611 #endif
6612 
6613 	if (hrtick_enabled(rq))
6614 		hrtick_start_fair(rq, p);
6615 
6616 	return p;
6617 
6618 idle:
6619 	new_tasks = idle_balance(rq, rf);
6620 
6621 	/*
6622 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6623 	 * possible for any higher priority task to appear. In that case we
6624 	 * must re-start the pick_next_entity() loop.
6625 	 */
6626 	if (new_tasks < 0)
6627 		return RETRY_TASK;
6628 
6629 	if (new_tasks > 0)
6630 		goto again;
6631 
6632 	return NULL;
6633 }
6634 
6635 /*
6636  * Account for a descheduled task:
6637  */
6638 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6639 {
6640 	struct sched_entity *se = &prev->se;
6641 	struct cfs_rq *cfs_rq;
6642 
6643 	for_each_sched_entity(se) {
6644 		cfs_rq = cfs_rq_of(se);
6645 		put_prev_entity(cfs_rq, se);
6646 	}
6647 }
6648 
6649 /*
6650  * sched_yield() is very simple
6651  *
6652  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6653  */
6654 static void yield_task_fair(struct rq *rq)
6655 {
6656 	struct task_struct *curr = rq->curr;
6657 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6658 	struct sched_entity *se = &curr->se;
6659 
6660 	/*
6661 	 * Are we the only task in the tree?
6662 	 */
6663 	if (unlikely(rq->nr_running == 1))
6664 		return;
6665 
6666 	clear_buddies(cfs_rq, se);
6667 
6668 	if (curr->policy != SCHED_BATCH) {
6669 		update_rq_clock(rq);
6670 		/*
6671 		 * Update run-time statistics of the 'current'.
6672 		 */
6673 		update_curr(cfs_rq);
6674 		/*
6675 		 * Tell update_rq_clock() that we've just updated,
6676 		 * so we don't do microscopic update in schedule()
6677 		 * and double the fastpath cost.
6678 		 */
6679 		rq_clock_skip_update(rq);
6680 	}
6681 
6682 	set_skip_buddy(se);
6683 }
6684 
6685 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6686 {
6687 	struct sched_entity *se = &p->se;
6688 
6689 	/* throttled hierarchies are not runnable */
6690 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6691 		return false;
6692 
6693 	/* Tell the scheduler that we'd really like pse to run next. */
6694 	set_next_buddy(se);
6695 
6696 	yield_task_fair(rq);
6697 
6698 	return true;
6699 }
6700 
6701 #ifdef CONFIG_SMP
6702 /**************************************************
6703  * Fair scheduling class load-balancing methods.
6704  *
6705  * BASICS
6706  *
6707  * The purpose of load-balancing is to achieve the same basic fairness the
6708  * per-CPU scheduler provides, namely provide a proportional amount of compute
6709  * time to each task. This is expressed in the following equation:
6710  *
6711  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6712  *
6713  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6714  * W_i,0 is defined as:
6715  *
6716  *   W_i,0 = \Sum_j w_i,j                                             (2)
6717  *
6718  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6719  * is derived from the nice value as per sched_prio_to_weight[].
6720  *
6721  * The weight average is an exponential decay average of the instantaneous
6722  * weight:
6723  *
6724  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6725  *
6726  * C_i is the compute capacity of CPU i, typically it is the
6727  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6728  * can also include other factors [XXX].
6729  *
6730  * To achieve this balance we define a measure of imbalance which follows
6731  * directly from (1):
6732  *
6733  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6734  *
6735  * We them move tasks around to minimize the imbalance. In the continuous
6736  * function space it is obvious this converges, in the discrete case we get
6737  * a few fun cases generally called infeasible weight scenarios.
6738  *
6739  * [XXX expand on:
6740  *     - infeasible weights;
6741  *     - local vs global optima in the discrete case. ]
6742  *
6743  *
6744  * SCHED DOMAINS
6745  *
6746  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6747  * for all i,j solution, we create a tree of CPUs that follows the hardware
6748  * topology where each level pairs two lower groups (or better). This results
6749  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6750  * tree to only the first of the previous level and we decrease the frequency
6751  * of load-balance at each level inv. proportional to the number of CPUs in
6752  * the groups.
6753  *
6754  * This yields:
6755  *
6756  *     log_2 n     1     n
6757  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6758  *     i = 0      2^i   2^i
6759  *                               `- size of each group
6760  *         |         |     `- number of CPUs doing load-balance
6761  *         |         `- freq
6762  *         `- sum over all levels
6763  *
6764  * Coupled with a limit on how many tasks we can migrate every balance pass,
6765  * this makes (5) the runtime complexity of the balancer.
6766  *
6767  * An important property here is that each CPU is still (indirectly) connected
6768  * to every other CPU in at most O(log n) steps:
6769  *
6770  * The adjacency matrix of the resulting graph is given by:
6771  *
6772  *             log_2 n
6773  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6774  *             k = 0
6775  *
6776  * And you'll find that:
6777  *
6778  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6779  *
6780  * Showing there's indeed a path between every CPU in at most O(log n) steps.
6781  * The task movement gives a factor of O(m), giving a convergence complexity
6782  * of:
6783  *
6784  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6785  *
6786  *
6787  * WORK CONSERVING
6788  *
6789  * In order to avoid CPUs going idle while there's still work to do, new idle
6790  * balancing is more aggressive and has the newly idle CPU iterate up the domain
6791  * tree itself instead of relying on other CPUs to bring it work.
6792  *
6793  * This adds some complexity to both (5) and (8) but it reduces the total idle
6794  * time.
6795  *
6796  * [XXX more?]
6797  *
6798  *
6799  * CGROUPS
6800  *
6801  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6802  *
6803  *                                s_k,i
6804  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6805  *                                 S_k
6806  *
6807  * Where
6808  *
6809  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6810  *
6811  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6812  *
6813  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6814  * property.
6815  *
6816  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6817  *      rewrite all of this once again.]
6818  */
6819 
6820 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6821 
6822 enum fbq_type { regular, remote, all };
6823 
6824 #define LBF_ALL_PINNED	0x01
6825 #define LBF_NEED_BREAK	0x02
6826 #define LBF_DST_PINNED  0x04
6827 #define LBF_SOME_PINNED	0x08
6828 #define LBF_NOHZ_STATS	0x10
6829 #define LBF_NOHZ_AGAIN	0x20
6830 
6831 struct lb_env {
6832 	struct sched_domain	*sd;
6833 
6834 	struct rq		*src_rq;
6835 	int			src_cpu;
6836 
6837 	int			dst_cpu;
6838 	struct rq		*dst_rq;
6839 
6840 	struct cpumask		*dst_grpmask;
6841 	int			new_dst_cpu;
6842 	enum cpu_idle_type	idle;
6843 	long			imbalance;
6844 	/* The set of CPUs under consideration for load-balancing */
6845 	struct cpumask		*cpus;
6846 
6847 	unsigned int		flags;
6848 
6849 	unsigned int		loop;
6850 	unsigned int		loop_break;
6851 	unsigned int		loop_max;
6852 
6853 	enum fbq_type		fbq_type;
6854 	struct list_head	tasks;
6855 };
6856 
6857 /*
6858  * Is this task likely cache-hot:
6859  */
6860 static int task_hot(struct task_struct *p, struct lb_env *env)
6861 {
6862 	s64 delta;
6863 
6864 	lockdep_assert_held(&env->src_rq->lock);
6865 
6866 	if (p->sched_class != &fair_sched_class)
6867 		return 0;
6868 
6869 	if (unlikely(p->policy == SCHED_IDLE))
6870 		return 0;
6871 
6872 	/*
6873 	 * Buddy candidates are cache hot:
6874 	 */
6875 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6876 			(&p->se == cfs_rq_of(&p->se)->next ||
6877 			 &p->se == cfs_rq_of(&p->se)->last))
6878 		return 1;
6879 
6880 	if (sysctl_sched_migration_cost == -1)
6881 		return 1;
6882 	if (sysctl_sched_migration_cost == 0)
6883 		return 0;
6884 
6885 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6886 
6887 	return delta < (s64)sysctl_sched_migration_cost;
6888 }
6889 
6890 #ifdef CONFIG_NUMA_BALANCING
6891 /*
6892  * Returns 1, if task migration degrades locality
6893  * Returns 0, if task migration improves locality i.e migration preferred.
6894  * Returns -1, if task migration is not affected by locality.
6895  */
6896 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6897 {
6898 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6899 	unsigned long src_weight, dst_weight;
6900 	int src_nid, dst_nid, dist;
6901 
6902 	if (!static_branch_likely(&sched_numa_balancing))
6903 		return -1;
6904 
6905 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6906 		return -1;
6907 
6908 	src_nid = cpu_to_node(env->src_cpu);
6909 	dst_nid = cpu_to_node(env->dst_cpu);
6910 
6911 	if (src_nid == dst_nid)
6912 		return -1;
6913 
6914 	/* Migrating away from the preferred node is always bad. */
6915 	if (src_nid == p->numa_preferred_nid) {
6916 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6917 			return 1;
6918 		else
6919 			return -1;
6920 	}
6921 
6922 	/* Encourage migration to the preferred node. */
6923 	if (dst_nid == p->numa_preferred_nid)
6924 		return 0;
6925 
6926 	/* Leaving a core idle is often worse than degrading locality. */
6927 	if (env->idle == CPU_IDLE)
6928 		return -1;
6929 
6930 	dist = node_distance(src_nid, dst_nid);
6931 	if (numa_group) {
6932 		src_weight = group_weight(p, src_nid, dist);
6933 		dst_weight = group_weight(p, dst_nid, dist);
6934 	} else {
6935 		src_weight = task_weight(p, src_nid, dist);
6936 		dst_weight = task_weight(p, dst_nid, dist);
6937 	}
6938 
6939 	return dst_weight < src_weight;
6940 }
6941 
6942 #else
6943 static inline int migrate_degrades_locality(struct task_struct *p,
6944 					     struct lb_env *env)
6945 {
6946 	return -1;
6947 }
6948 #endif
6949 
6950 /*
6951  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6952  */
6953 static
6954 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6955 {
6956 	int tsk_cache_hot;
6957 
6958 	lockdep_assert_held(&env->src_rq->lock);
6959 
6960 	/*
6961 	 * We do not migrate tasks that are:
6962 	 * 1) throttled_lb_pair, or
6963 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6964 	 * 3) running (obviously), or
6965 	 * 4) are cache-hot on their current CPU.
6966 	 */
6967 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6968 		return 0;
6969 
6970 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6971 		int cpu;
6972 
6973 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6974 
6975 		env->flags |= LBF_SOME_PINNED;
6976 
6977 		/*
6978 		 * Remember if this task can be migrated to any other CPU in
6979 		 * our sched_group. We may want to revisit it if we couldn't
6980 		 * meet load balance goals by pulling other tasks on src_cpu.
6981 		 *
6982 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
6983 		 * already computed one in current iteration.
6984 		 */
6985 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6986 			return 0;
6987 
6988 		/* Prevent to re-select dst_cpu via env's CPUs: */
6989 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6990 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6991 				env->flags |= LBF_DST_PINNED;
6992 				env->new_dst_cpu = cpu;
6993 				break;
6994 			}
6995 		}
6996 
6997 		return 0;
6998 	}
6999 
7000 	/* Record that we found atleast one task that could run on dst_cpu */
7001 	env->flags &= ~LBF_ALL_PINNED;
7002 
7003 	if (task_running(env->src_rq, p)) {
7004 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7005 		return 0;
7006 	}
7007 
7008 	/*
7009 	 * Aggressive migration if:
7010 	 * 1) destination numa is preferred
7011 	 * 2) task is cache cold, or
7012 	 * 3) too many balance attempts have failed.
7013 	 */
7014 	tsk_cache_hot = migrate_degrades_locality(p, env);
7015 	if (tsk_cache_hot == -1)
7016 		tsk_cache_hot = task_hot(p, env);
7017 
7018 	if (tsk_cache_hot <= 0 ||
7019 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7020 		if (tsk_cache_hot == 1) {
7021 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7022 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7023 		}
7024 		return 1;
7025 	}
7026 
7027 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7028 	return 0;
7029 }
7030 
7031 /*
7032  * detach_task() -- detach the task for the migration specified in env
7033  */
7034 static void detach_task(struct task_struct *p, struct lb_env *env)
7035 {
7036 	lockdep_assert_held(&env->src_rq->lock);
7037 
7038 	p->on_rq = TASK_ON_RQ_MIGRATING;
7039 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7040 	set_task_cpu(p, env->dst_cpu);
7041 }
7042 
7043 /*
7044  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7045  * part of active balancing operations within "domain".
7046  *
7047  * Returns a task if successful and NULL otherwise.
7048  */
7049 static struct task_struct *detach_one_task(struct lb_env *env)
7050 {
7051 	struct task_struct *p;
7052 
7053 	lockdep_assert_held(&env->src_rq->lock);
7054 
7055 	list_for_each_entry_reverse(p,
7056 			&env->src_rq->cfs_tasks, se.group_node) {
7057 		if (!can_migrate_task(p, env))
7058 			continue;
7059 
7060 		detach_task(p, env);
7061 
7062 		/*
7063 		 * Right now, this is only the second place where
7064 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7065 		 * so we can safely collect stats here rather than
7066 		 * inside detach_tasks().
7067 		 */
7068 		schedstat_inc(env->sd->lb_gained[env->idle]);
7069 		return p;
7070 	}
7071 	return NULL;
7072 }
7073 
7074 static const unsigned int sched_nr_migrate_break = 32;
7075 
7076 /*
7077  * detach_tasks() -- tries to detach up to imbalance weighted load from
7078  * busiest_rq, as part of a balancing operation within domain "sd".
7079  *
7080  * Returns number of detached tasks if successful and 0 otherwise.
7081  */
7082 static int detach_tasks(struct lb_env *env)
7083 {
7084 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7085 	struct task_struct *p;
7086 	unsigned long load;
7087 	int detached = 0;
7088 
7089 	lockdep_assert_held(&env->src_rq->lock);
7090 
7091 	if (env->imbalance <= 0)
7092 		return 0;
7093 
7094 	while (!list_empty(tasks)) {
7095 		/*
7096 		 * We don't want to steal all, otherwise we may be treated likewise,
7097 		 * which could at worst lead to a livelock crash.
7098 		 */
7099 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7100 			break;
7101 
7102 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7103 
7104 		env->loop++;
7105 		/* We've more or less seen every task there is, call it quits */
7106 		if (env->loop > env->loop_max)
7107 			break;
7108 
7109 		/* take a breather every nr_migrate tasks */
7110 		if (env->loop > env->loop_break) {
7111 			env->loop_break += sched_nr_migrate_break;
7112 			env->flags |= LBF_NEED_BREAK;
7113 			break;
7114 		}
7115 
7116 		if (!can_migrate_task(p, env))
7117 			goto next;
7118 
7119 		load = task_h_load(p);
7120 
7121 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7122 			goto next;
7123 
7124 		if ((load / 2) > env->imbalance)
7125 			goto next;
7126 
7127 		detach_task(p, env);
7128 		list_add(&p->se.group_node, &env->tasks);
7129 
7130 		detached++;
7131 		env->imbalance -= load;
7132 
7133 #ifdef CONFIG_PREEMPT
7134 		/*
7135 		 * NEWIDLE balancing is a source of latency, so preemptible
7136 		 * kernels will stop after the first task is detached to minimize
7137 		 * the critical section.
7138 		 */
7139 		if (env->idle == CPU_NEWLY_IDLE)
7140 			break;
7141 #endif
7142 
7143 		/*
7144 		 * We only want to steal up to the prescribed amount of
7145 		 * weighted load.
7146 		 */
7147 		if (env->imbalance <= 0)
7148 			break;
7149 
7150 		continue;
7151 next:
7152 		list_move(&p->se.group_node, tasks);
7153 	}
7154 
7155 	/*
7156 	 * Right now, this is one of only two places we collect this stat
7157 	 * so we can safely collect detach_one_task() stats here rather
7158 	 * than inside detach_one_task().
7159 	 */
7160 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7161 
7162 	return detached;
7163 }
7164 
7165 /*
7166  * attach_task() -- attach the task detached by detach_task() to its new rq.
7167  */
7168 static void attach_task(struct rq *rq, struct task_struct *p)
7169 {
7170 	lockdep_assert_held(&rq->lock);
7171 
7172 	BUG_ON(task_rq(p) != rq);
7173 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7174 	p->on_rq = TASK_ON_RQ_QUEUED;
7175 	check_preempt_curr(rq, p, 0);
7176 }
7177 
7178 /*
7179  * attach_one_task() -- attaches the task returned from detach_one_task() to
7180  * its new rq.
7181  */
7182 static void attach_one_task(struct rq *rq, struct task_struct *p)
7183 {
7184 	struct rq_flags rf;
7185 
7186 	rq_lock(rq, &rf);
7187 	update_rq_clock(rq);
7188 	attach_task(rq, p);
7189 	rq_unlock(rq, &rf);
7190 }
7191 
7192 /*
7193  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7194  * new rq.
7195  */
7196 static void attach_tasks(struct lb_env *env)
7197 {
7198 	struct list_head *tasks = &env->tasks;
7199 	struct task_struct *p;
7200 	struct rq_flags rf;
7201 
7202 	rq_lock(env->dst_rq, &rf);
7203 	update_rq_clock(env->dst_rq);
7204 
7205 	while (!list_empty(tasks)) {
7206 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7207 		list_del_init(&p->se.group_node);
7208 
7209 		attach_task(env->dst_rq, p);
7210 	}
7211 
7212 	rq_unlock(env->dst_rq, &rf);
7213 }
7214 
7215 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7216 {
7217 	if (cfs_rq->avg.load_avg)
7218 		return true;
7219 
7220 	if (cfs_rq->avg.util_avg)
7221 		return true;
7222 
7223 	return false;
7224 }
7225 
7226 static inline bool others_have_blocked(struct rq *rq)
7227 {
7228 	if (READ_ONCE(rq->avg_rt.util_avg))
7229 		return true;
7230 
7231 	if (READ_ONCE(rq->avg_dl.util_avg))
7232 		return true;
7233 
7234 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
7235 	if (READ_ONCE(rq->avg_irq.util_avg))
7236 		return true;
7237 #endif
7238 
7239 	return false;
7240 }
7241 
7242 #ifdef CONFIG_FAIR_GROUP_SCHED
7243 
7244 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7245 {
7246 	if (cfs_rq->load.weight)
7247 		return false;
7248 
7249 	if (cfs_rq->avg.load_sum)
7250 		return false;
7251 
7252 	if (cfs_rq->avg.util_sum)
7253 		return false;
7254 
7255 	if (cfs_rq->avg.runnable_load_sum)
7256 		return false;
7257 
7258 	return true;
7259 }
7260 
7261 static void update_blocked_averages(int cpu)
7262 {
7263 	struct rq *rq = cpu_rq(cpu);
7264 	struct cfs_rq *cfs_rq, *pos;
7265 	struct rq_flags rf;
7266 	bool done = true;
7267 
7268 	rq_lock_irqsave(rq, &rf);
7269 	update_rq_clock(rq);
7270 
7271 	/*
7272 	 * Iterates the task_group tree in a bottom up fashion, see
7273 	 * list_add_leaf_cfs_rq() for details.
7274 	 */
7275 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7276 		struct sched_entity *se;
7277 
7278 		/* throttled entities do not contribute to load */
7279 		if (throttled_hierarchy(cfs_rq))
7280 			continue;
7281 
7282 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7283 			update_tg_load_avg(cfs_rq, 0);
7284 
7285 		/* Propagate pending load changes to the parent, if any: */
7286 		se = cfs_rq->tg->se[cpu];
7287 		if (se && !skip_blocked_update(se))
7288 			update_load_avg(cfs_rq_of(se), se, 0);
7289 
7290 		/*
7291 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7292 		 * decayed cfs_rqs linger on the list.
7293 		 */
7294 		if (cfs_rq_is_decayed(cfs_rq))
7295 			list_del_leaf_cfs_rq(cfs_rq);
7296 
7297 		/* Don't need periodic decay once load/util_avg are null */
7298 		if (cfs_rq_has_blocked(cfs_rq))
7299 			done = false;
7300 	}
7301 	update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
7302 	update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
7303 	update_irq_load_avg(rq, 0);
7304 	/* Don't need periodic decay once load/util_avg are null */
7305 	if (others_have_blocked(rq))
7306 		done = false;
7307 
7308 #ifdef CONFIG_NO_HZ_COMMON
7309 	rq->last_blocked_load_update_tick = jiffies;
7310 	if (done)
7311 		rq->has_blocked_load = 0;
7312 #endif
7313 	rq_unlock_irqrestore(rq, &rf);
7314 }
7315 
7316 /*
7317  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7318  * This needs to be done in a top-down fashion because the load of a child
7319  * group is a fraction of its parents load.
7320  */
7321 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7322 {
7323 	struct rq *rq = rq_of(cfs_rq);
7324 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7325 	unsigned long now = jiffies;
7326 	unsigned long load;
7327 
7328 	if (cfs_rq->last_h_load_update == now)
7329 		return;
7330 
7331 	cfs_rq->h_load_next = NULL;
7332 	for_each_sched_entity(se) {
7333 		cfs_rq = cfs_rq_of(se);
7334 		cfs_rq->h_load_next = se;
7335 		if (cfs_rq->last_h_load_update == now)
7336 			break;
7337 	}
7338 
7339 	if (!se) {
7340 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7341 		cfs_rq->last_h_load_update = now;
7342 	}
7343 
7344 	while ((se = cfs_rq->h_load_next) != NULL) {
7345 		load = cfs_rq->h_load;
7346 		load = div64_ul(load * se->avg.load_avg,
7347 			cfs_rq_load_avg(cfs_rq) + 1);
7348 		cfs_rq = group_cfs_rq(se);
7349 		cfs_rq->h_load = load;
7350 		cfs_rq->last_h_load_update = now;
7351 	}
7352 }
7353 
7354 static unsigned long task_h_load(struct task_struct *p)
7355 {
7356 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7357 
7358 	update_cfs_rq_h_load(cfs_rq);
7359 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7360 			cfs_rq_load_avg(cfs_rq) + 1);
7361 }
7362 #else
7363 static inline void update_blocked_averages(int cpu)
7364 {
7365 	struct rq *rq = cpu_rq(cpu);
7366 	struct cfs_rq *cfs_rq = &rq->cfs;
7367 	struct rq_flags rf;
7368 
7369 	rq_lock_irqsave(rq, &rf);
7370 	update_rq_clock(rq);
7371 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7372 	update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
7373 	update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
7374 	update_irq_load_avg(rq, 0);
7375 #ifdef CONFIG_NO_HZ_COMMON
7376 	rq->last_blocked_load_update_tick = jiffies;
7377 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7378 		rq->has_blocked_load = 0;
7379 #endif
7380 	rq_unlock_irqrestore(rq, &rf);
7381 }
7382 
7383 static unsigned long task_h_load(struct task_struct *p)
7384 {
7385 	return p->se.avg.load_avg;
7386 }
7387 #endif
7388 
7389 /********** Helpers for find_busiest_group ************************/
7390 
7391 enum group_type {
7392 	group_other = 0,
7393 	group_imbalanced,
7394 	group_overloaded,
7395 };
7396 
7397 /*
7398  * sg_lb_stats - stats of a sched_group required for load_balancing
7399  */
7400 struct sg_lb_stats {
7401 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7402 	unsigned long group_load; /* Total load over the CPUs of the group */
7403 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7404 	unsigned long load_per_task;
7405 	unsigned long group_capacity;
7406 	unsigned long group_util; /* Total utilization of the group */
7407 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7408 	unsigned int idle_cpus;
7409 	unsigned int group_weight;
7410 	enum group_type group_type;
7411 	int group_no_capacity;
7412 #ifdef CONFIG_NUMA_BALANCING
7413 	unsigned int nr_numa_running;
7414 	unsigned int nr_preferred_running;
7415 #endif
7416 };
7417 
7418 /*
7419  * sd_lb_stats - Structure to store the statistics of a sched_domain
7420  *		 during load balancing.
7421  */
7422 struct sd_lb_stats {
7423 	struct sched_group *busiest;	/* Busiest group in this sd */
7424 	struct sched_group *local;	/* Local group in this sd */
7425 	unsigned long total_running;
7426 	unsigned long total_load;	/* Total load of all groups in sd */
7427 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7428 	unsigned long avg_load;	/* Average load across all groups in sd */
7429 
7430 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7431 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7432 };
7433 
7434 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7435 {
7436 	/*
7437 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7438 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7439 	 * We must however clear busiest_stat::avg_load because
7440 	 * update_sd_pick_busiest() reads this before assignment.
7441 	 */
7442 	*sds = (struct sd_lb_stats){
7443 		.busiest = NULL,
7444 		.local = NULL,
7445 		.total_running = 0UL,
7446 		.total_load = 0UL,
7447 		.total_capacity = 0UL,
7448 		.busiest_stat = {
7449 			.avg_load = 0UL,
7450 			.sum_nr_running = 0,
7451 			.group_type = group_other,
7452 		},
7453 	};
7454 }
7455 
7456 /**
7457  * get_sd_load_idx - Obtain the load index for a given sched domain.
7458  * @sd: The sched_domain whose load_idx is to be obtained.
7459  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7460  *
7461  * Return: The load index.
7462  */
7463 static inline int get_sd_load_idx(struct sched_domain *sd,
7464 					enum cpu_idle_type idle)
7465 {
7466 	int load_idx;
7467 
7468 	switch (idle) {
7469 	case CPU_NOT_IDLE:
7470 		load_idx = sd->busy_idx;
7471 		break;
7472 
7473 	case CPU_NEWLY_IDLE:
7474 		load_idx = sd->newidle_idx;
7475 		break;
7476 	default:
7477 		load_idx = sd->idle_idx;
7478 		break;
7479 	}
7480 
7481 	return load_idx;
7482 }
7483 
7484 static unsigned long scale_rt_capacity(int cpu)
7485 {
7486 	struct rq *rq = cpu_rq(cpu);
7487 	unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
7488 	unsigned long used, free;
7489 	unsigned long irq;
7490 
7491 	irq = cpu_util_irq(rq);
7492 
7493 	if (unlikely(irq >= max))
7494 		return 1;
7495 
7496 	used = READ_ONCE(rq->avg_rt.util_avg);
7497 	used += READ_ONCE(rq->avg_dl.util_avg);
7498 
7499 	if (unlikely(used >= max))
7500 		return 1;
7501 
7502 	free = max - used;
7503 
7504 	return scale_irq_capacity(free, irq, max);
7505 }
7506 
7507 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7508 {
7509 	unsigned long capacity = scale_rt_capacity(cpu);
7510 	struct sched_group *sdg = sd->groups;
7511 
7512 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7513 
7514 	if (!capacity)
7515 		capacity = 1;
7516 
7517 	cpu_rq(cpu)->cpu_capacity = capacity;
7518 	sdg->sgc->capacity = capacity;
7519 	sdg->sgc->min_capacity = capacity;
7520 }
7521 
7522 void update_group_capacity(struct sched_domain *sd, int cpu)
7523 {
7524 	struct sched_domain *child = sd->child;
7525 	struct sched_group *group, *sdg = sd->groups;
7526 	unsigned long capacity, min_capacity;
7527 	unsigned long interval;
7528 
7529 	interval = msecs_to_jiffies(sd->balance_interval);
7530 	interval = clamp(interval, 1UL, max_load_balance_interval);
7531 	sdg->sgc->next_update = jiffies + interval;
7532 
7533 	if (!child) {
7534 		update_cpu_capacity(sd, cpu);
7535 		return;
7536 	}
7537 
7538 	capacity = 0;
7539 	min_capacity = ULONG_MAX;
7540 
7541 	if (child->flags & SD_OVERLAP) {
7542 		/*
7543 		 * SD_OVERLAP domains cannot assume that child groups
7544 		 * span the current group.
7545 		 */
7546 
7547 		for_each_cpu(cpu, sched_group_span(sdg)) {
7548 			struct sched_group_capacity *sgc;
7549 			struct rq *rq = cpu_rq(cpu);
7550 
7551 			/*
7552 			 * build_sched_domains() -> init_sched_groups_capacity()
7553 			 * gets here before we've attached the domains to the
7554 			 * runqueues.
7555 			 *
7556 			 * Use capacity_of(), which is set irrespective of domains
7557 			 * in update_cpu_capacity().
7558 			 *
7559 			 * This avoids capacity from being 0 and
7560 			 * causing divide-by-zero issues on boot.
7561 			 */
7562 			if (unlikely(!rq->sd)) {
7563 				capacity += capacity_of(cpu);
7564 			} else {
7565 				sgc = rq->sd->groups->sgc;
7566 				capacity += sgc->capacity;
7567 			}
7568 
7569 			min_capacity = min(capacity, min_capacity);
7570 		}
7571 	} else  {
7572 		/*
7573 		 * !SD_OVERLAP domains can assume that child groups
7574 		 * span the current group.
7575 		 */
7576 
7577 		group = child->groups;
7578 		do {
7579 			struct sched_group_capacity *sgc = group->sgc;
7580 
7581 			capacity += sgc->capacity;
7582 			min_capacity = min(sgc->min_capacity, min_capacity);
7583 			group = group->next;
7584 		} while (group != child->groups);
7585 	}
7586 
7587 	sdg->sgc->capacity = capacity;
7588 	sdg->sgc->min_capacity = min_capacity;
7589 }
7590 
7591 /*
7592  * Check whether the capacity of the rq has been noticeably reduced by side
7593  * activity. The imbalance_pct is used for the threshold.
7594  * Return true is the capacity is reduced
7595  */
7596 static inline int
7597 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7598 {
7599 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7600 				(rq->cpu_capacity_orig * 100));
7601 }
7602 
7603 /*
7604  * Group imbalance indicates (and tries to solve) the problem where balancing
7605  * groups is inadequate due to ->cpus_allowed constraints.
7606  *
7607  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7608  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7609  * Something like:
7610  *
7611  *	{ 0 1 2 3 } { 4 5 6 7 }
7612  *	        *     * * *
7613  *
7614  * If we were to balance group-wise we'd place two tasks in the first group and
7615  * two tasks in the second group. Clearly this is undesired as it will overload
7616  * cpu 3 and leave one of the CPUs in the second group unused.
7617  *
7618  * The current solution to this issue is detecting the skew in the first group
7619  * by noticing the lower domain failed to reach balance and had difficulty
7620  * moving tasks due to affinity constraints.
7621  *
7622  * When this is so detected; this group becomes a candidate for busiest; see
7623  * update_sd_pick_busiest(). And calculate_imbalance() and
7624  * find_busiest_group() avoid some of the usual balance conditions to allow it
7625  * to create an effective group imbalance.
7626  *
7627  * This is a somewhat tricky proposition since the next run might not find the
7628  * group imbalance and decide the groups need to be balanced again. A most
7629  * subtle and fragile situation.
7630  */
7631 
7632 static inline int sg_imbalanced(struct sched_group *group)
7633 {
7634 	return group->sgc->imbalance;
7635 }
7636 
7637 /*
7638  * group_has_capacity returns true if the group has spare capacity that could
7639  * be used by some tasks.
7640  * We consider that a group has spare capacity if the  * number of task is
7641  * smaller than the number of CPUs or if the utilization is lower than the
7642  * available capacity for CFS tasks.
7643  * For the latter, we use a threshold to stabilize the state, to take into
7644  * account the variance of the tasks' load and to return true if the available
7645  * capacity in meaningful for the load balancer.
7646  * As an example, an available capacity of 1% can appear but it doesn't make
7647  * any benefit for the load balance.
7648  */
7649 static inline bool
7650 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7651 {
7652 	if (sgs->sum_nr_running < sgs->group_weight)
7653 		return true;
7654 
7655 	if ((sgs->group_capacity * 100) >
7656 			(sgs->group_util * env->sd->imbalance_pct))
7657 		return true;
7658 
7659 	return false;
7660 }
7661 
7662 /*
7663  *  group_is_overloaded returns true if the group has more tasks than it can
7664  *  handle.
7665  *  group_is_overloaded is not equals to !group_has_capacity because a group
7666  *  with the exact right number of tasks, has no more spare capacity but is not
7667  *  overloaded so both group_has_capacity and group_is_overloaded return
7668  *  false.
7669  */
7670 static inline bool
7671 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7672 {
7673 	if (sgs->sum_nr_running <= sgs->group_weight)
7674 		return false;
7675 
7676 	if ((sgs->group_capacity * 100) <
7677 			(sgs->group_util * env->sd->imbalance_pct))
7678 		return true;
7679 
7680 	return false;
7681 }
7682 
7683 /*
7684  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7685  * per-CPU capacity than sched_group ref.
7686  */
7687 static inline bool
7688 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7689 {
7690 	return sg->sgc->min_capacity * capacity_margin <
7691 						ref->sgc->min_capacity * 1024;
7692 }
7693 
7694 static inline enum
7695 group_type group_classify(struct sched_group *group,
7696 			  struct sg_lb_stats *sgs)
7697 {
7698 	if (sgs->group_no_capacity)
7699 		return group_overloaded;
7700 
7701 	if (sg_imbalanced(group))
7702 		return group_imbalanced;
7703 
7704 	return group_other;
7705 }
7706 
7707 static bool update_nohz_stats(struct rq *rq, bool force)
7708 {
7709 #ifdef CONFIG_NO_HZ_COMMON
7710 	unsigned int cpu = rq->cpu;
7711 
7712 	if (!rq->has_blocked_load)
7713 		return false;
7714 
7715 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7716 		return false;
7717 
7718 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7719 		return true;
7720 
7721 	update_blocked_averages(cpu);
7722 
7723 	return rq->has_blocked_load;
7724 #else
7725 	return false;
7726 #endif
7727 }
7728 
7729 /**
7730  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7731  * @env: The load balancing environment.
7732  * @group: sched_group whose statistics are to be updated.
7733  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7734  * @local_group: Does group contain this_cpu.
7735  * @sgs: variable to hold the statistics for this group.
7736  * @overload: Indicate more than one runnable task for any CPU.
7737  */
7738 static inline void update_sg_lb_stats(struct lb_env *env,
7739 			struct sched_group *group, int load_idx,
7740 			int local_group, struct sg_lb_stats *sgs,
7741 			bool *overload)
7742 {
7743 	unsigned long load;
7744 	int i, nr_running;
7745 
7746 	memset(sgs, 0, sizeof(*sgs));
7747 
7748 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7749 		struct rq *rq = cpu_rq(i);
7750 
7751 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7752 			env->flags |= LBF_NOHZ_AGAIN;
7753 
7754 		/* Bias balancing toward CPUs of our domain: */
7755 		if (local_group)
7756 			load = target_load(i, load_idx);
7757 		else
7758 			load = source_load(i, load_idx);
7759 
7760 		sgs->group_load += load;
7761 		sgs->group_util += cpu_util(i);
7762 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7763 
7764 		nr_running = rq->nr_running;
7765 		if (nr_running > 1)
7766 			*overload = true;
7767 
7768 #ifdef CONFIG_NUMA_BALANCING
7769 		sgs->nr_numa_running += rq->nr_numa_running;
7770 		sgs->nr_preferred_running += rq->nr_preferred_running;
7771 #endif
7772 		sgs->sum_weighted_load += weighted_cpuload(rq);
7773 		/*
7774 		 * No need to call idle_cpu() if nr_running is not 0
7775 		 */
7776 		if (!nr_running && idle_cpu(i))
7777 			sgs->idle_cpus++;
7778 	}
7779 
7780 	/* Adjust by relative CPU capacity of the group */
7781 	sgs->group_capacity = group->sgc->capacity;
7782 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7783 
7784 	if (sgs->sum_nr_running)
7785 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7786 
7787 	sgs->group_weight = group->group_weight;
7788 
7789 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7790 	sgs->group_type = group_classify(group, sgs);
7791 }
7792 
7793 /**
7794  * update_sd_pick_busiest - return 1 on busiest group
7795  * @env: The load balancing environment.
7796  * @sds: sched_domain statistics
7797  * @sg: sched_group candidate to be checked for being the busiest
7798  * @sgs: sched_group statistics
7799  *
7800  * Determine if @sg is a busier group than the previously selected
7801  * busiest group.
7802  *
7803  * Return: %true if @sg is a busier group than the previously selected
7804  * busiest group. %false otherwise.
7805  */
7806 static bool update_sd_pick_busiest(struct lb_env *env,
7807 				   struct sd_lb_stats *sds,
7808 				   struct sched_group *sg,
7809 				   struct sg_lb_stats *sgs)
7810 {
7811 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7812 
7813 	if (sgs->group_type > busiest->group_type)
7814 		return true;
7815 
7816 	if (sgs->group_type < busiest->group_type)
7817 		return false;
7818 
7819 	if (sgs->avg_load <= busiest->avg_load)
7820 		return false;
7821 
7822 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7823 		goto asym_packing;
7824 
7825 	/*
7826 	 * Candidate sg has no more than one task per CPU and
7827 	 * has higher per-CPU capacity. Migrating tasks to less
7828 	 * capable CPUs may harm throughput. Maximize throughput,
7829 	 * power/energy consequences are not considered.
7830 	 */
7831 	if (sgs->sum_nr_running <= sgs->group_weight &&
7832 	    group_smaller_cpu_capacity(sds->local, sg))
7833 		return false;
7834 
7835 asym_packing:
7836 	/* This is the busiest node in its class. */
7837 	if (!(env->sd->flags & SD_ASYM_PACKING))
7838 		return true;
7839 
7840 	/* No ASYM_PACKING if target CPU is already busy */
7841 	if (env->idle == CPU_NOT_IDLE)
7842 		return true;
7843 	/*
7844 	 * ASYM_PACKING needs to move all the work to the highest
7845 	 * prority CPUs in the group, therefore mark all groups
7846 	 * of lower priority than ourself as busy.
7847 	 */
7848 	if (sgs->sum_nr_running &&
7849 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7850 		if (!sds->busiest)
7851 			return true;
7852 
7853 		/* Prefer to move from lowest priority CPU's work */
7854 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7855 				      sg->asym_prefer_cpu))
7856 			return true;
7857 	}
7858 
7859 	return false;
7860 }
7861 
7862 #ifdef CONFIG_NUMA_BALANCING
7863 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7864 {
7865 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7866 		return regular;
7867 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7868 		return remote;
7869 	return all;
7870 }
7871 
7872 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7873 {
7874 	if (rq->nr_running > rq->nr_numa_running)
7875 		return regular;
7876 	if (rq->nr_running > rq->nr_preferred_running)
7877 		return remote;
7878 	return all;
7879 }
7880 #else
7881 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7882 {
7883 	return all;
7884 }
7885 
7886 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7887 {
7888 	return regular;
7889 }
7890 #endif /* CONFIG_NUMA_BALANCING */
7891 
7892 /**
7893  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7894  * @env: The load balancing environment.
7895  * @sds: variable to hold the statistics for this sched_domain.
7896  */
7897 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7898 {
7899 	struct sched_domain *child = env->sd->child;
7900 	struct sched_group *sg = env->sd->groups;
7901 	struct sg_lb_stats *local = &sds->local_stat;
7902 	struct sg_lb_stats tmp_sgs;
7903 	int load_idx, prefer_sibling = 0;
7904 	bool overload = false;
7905 
7906 	if (child && child->flags & SD_PREFER_SIBLING)
7907 		prefer_sibling = 1;
7908 
7909 #ifdef CONFIG_NO_HZ_COMMON
7910 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
7911 		env->flags |= LBF_NOHZ_STATS;
7912 #endif
7913 
7914 	load_idx = get_sd_load_idx(env->sd, env->idle);
7915 
7916 	do {
7917 		struct sg_lb_stats *sgs = &tmp_sgs;
7918 		int local_group;
7919 
7920 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7921 		if (local_group) {
7922 			sds->local = sg;
7923 			sgs = local;
7924 
7925 			if (env->idle != CPU_NEWLY_IDLE ||
7926 			    time_after_eq(jiffies, sg->sgc->next_update))
7927 				update_group_capacity(env->sd, env->dst_cpu);
7928 		}
7929 
7930 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7931 						&overload);
7932 
7933 		if (local_group)
7934 			goto next_group;
7935 
7936 		/*
7937 		 * In case the child domain prefers tasks go to siblings
7938 		 * first, lower the sg capacity so that we'll try
7939 		 * and move all the excess tasks away. We lower the capacity
7940 		 * of a group only if the local group has the capacity to fit
7941 		 * these excess tasks. The extra check prevents the case where
7942 		 * you always pull from the heaviest group when it is already
7943 		 * under-utilized (possible with a large weight task outweighs
7944 		 * the tasks on the system).
7945 		 */
7946 		if (prefer_sibling && sds->local &&
7947 		    group_has_capacity(env, local) &&
7948 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7949 			sgs->group_no_capacity = 1;
7950 			sgs->group_type = group_classify(sg, sgs);
7951 		}
7952 
7953 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7954 			sds->busiest = sg;
7955 			sds->busiest_stat = *sgs;
7956 		}
7957 
7958 next_group:
7959 		/* Now, start updating sd_lb_stats */
7960 		sds->total_running += sgs->sum_nr_running;
7961 		sds->total_load += sgs->group_load;
7962 		sds->total_capacity += sgs->group_capacity;
7963 
7964 		sg = sg->next;
7965 	} while (sg != env->sd->groups);
7966 
7967 #ifdef CONFIG_NO_HZ_COMMON
7968 	if ((env->flags & LBF_NOHZ_AGAIN) &&
7969 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
7970 
7971 		WRITE_ONCE(nohz.next_blocked,
7972 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
7973 	}
7974 #endif
7975 
7976 	if (env->sd->flags & SD_NUMA)
7977 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7978 
7979 	if (!env->sd->parent) {
7980 		/* update overload indicator if we are at root domain */
7981 		if (env->dst_rq->rd->overload != overload)
7982 			env->dst_rq->rd->overload = overload;
7983 	}
7984 }
7985 
7986 /**
7987  * check_asym_packing - Check to see if the group is packed into the
7988  *			sched domain.
7989  *
7990  * This is primarily intended to used at the sibling level.  Some
7991  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7992  * case of POWER7, it can move to lower SMT modes only when higher
7993  * threads are idle.  When in lower SMT modes, the threads will
7994  * perform better since they share less core resources.  Hence when we
7995  * have idle threads, we want them to be the higher ones.
7996  *
7997  * This packing function is run on idle threads.  It checks to see if
7998  * the busiest CPU in this domain (core in the P7 case) has a higher
7999  * CPU number than the packing function is being run on.  Here we are
8000  * assuming lower CPU number will be equivalent to lower a SMT thread
8001  * number.
8002  *
8003  * Return: 1 when packing is required and a task should be moved to
8004  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8005  *
8006  * @env: The load balancing environment.
8007  * @sds: Statistics of the sched_domain which is to be packed
8008  */
8009 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8010 {
8011 	int busiest_cpu;
8012 
8013 	if (!(env->sd->flags & SD_ASYM_PACKING))
8014 		return 0;
8015 
8016 	if (env->idle == CPU_NOT_IDLE)
8017 		return 0;
8018 
8019 	if (!sds->busiest)
8020 		return 0;
8021 
8022 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8023 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8024 		return 0;
8025 
8026 	env->imbalance = DIV_ROUND_CLOSEST(
8027 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8028 		SCHED_CAPACITY_SCALE);
8029 
8030 	return 1;
8031 }
8032 
8033 /**
8034  * fix_small_imbalance - Calculate the minor imbalance that exists
8035  *			amongst the groups of a sched_domain, during
8036  *			load balancing.
8037  * @env: The load balancing environment.
8038  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8039  */
8040 static inline
8041 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8042 {
8043 	unsigned long tmp, capa_now = 0, capa_move = 0;
8044 	unsigned int imbn = 2;
8045 	unsigned long scaled_busy_load_per_task;
8046 	struct sg_lb_stats *local, *busiest;
8047 
8048 	local = &sds->local_stat;
8049 	busiest = &sds->busiest_stat;
8050 
8051 	if (!local->sum_nr_running)
8052 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8053 	else if (busiest->load_per_task > local->load_per_task)
8054 		imbn = 1;
8055 
8056 	scaled_busy_load_per_task =
8057 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8058 		busiest->group_capacity;
8059 
8060 	if (busiest->avg_load + scaled_busy_load_per_task >=
8061 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8062 		env->imbalance = busiest->load_per_task;
8063 		return;
8064 	}
8065 
8066 	/*
8067 	 * OK, we don't have enough imbalance to justify moving tasks,
8068 	 * however we may be able to increase total CPU capacity used by
8069 	 * moving them.
8070 	 */
8071 
8072 	capa_now += busiest->group_capacity *
8073 			min(busiest->load_per_task, busiest->avg_load);
8074 	capa_now += local->group_capacity *
8075 			min(local->load_per_task, local->avg_load);
8076 	capa_now /= SCHED_CAPACITY_SCALE;
8077 
8078 	/* Amount of load we'd subtract */
8079 	if (busiest->avg_load > scaled_busy_load_per_task) {
8080 		capa_move += busiest->group_capacity *
8081 			    min(busiest->load_per_task,
8082 				busiest->avg_load - scaled_busy_load_per_task);
8083 	}
8084 
8085 	/* Amount of load we'd add */
8086 	if (busiest->avg_load * busiest->group_capacity <
8087 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8088 		tmp = (busiest->avg_load * busiest->group_capacity) /
8089 		      local->group_capacity;
8090 	} else {
8091 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8092 		      local->group_capacity;
8093 	}
8094 	capa_move += local->group_capacity *
8095 		    min(local->load_per_task, local->avg_load + tmp);
8096 	capa_move /= SCHED_CAPACITY_SCALE;
8097 
8098 	/* Move if we gain throughput */
8099 	if (capa_move > capa_now)
8100 		env->imbalance = busiest->load_per_task;
8101 }
8102 
8103 /**
8104  * calculate_imbalance - Calculate the amount of imbalance present within the
8105  *			 groups of a given sched_domain during load balance.
8106  * @env: load balance environment
8107  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8108  */
8109 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8110 {
8111 	unsigned long max_pull, load_above_capacity = ~0UL;
8112 	struct sg_lb_stats *local, *busiest;
8113 
8114 	local = &sds->local_stat;
8115 	busiest = &sds->busiest_stat;
8116 
8117 	if (busiest->group_type == group_imbalanced) {
8118 		/*
8119 		 * In the group_imb case we cannot rely on group-wide averages
8120 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8121 		 */
8122 		busiest->load_per_task =
8123 			min(busiest->load_per_task, sds->avg_load);
8124 	}
8125 
8126 	/*
8127 	 * Avg load of busiest sg can be less and avg load of local sg can
8128 	 * be greater than avg load across all sgs of sd because avg load
8129 	 * factors in sg capacity and sgs with smaller group_type are
8130 	 * skipped when updating the busiest sg:
8131 	 */
8132 	if (busiest->avg_load <= sds->avg_load ||
8133 	    local->avg_load >= sds->avg_load) {
8134 		env->imbalance = 0;
8135 		return fix_small_imbalance(env, sds);
8136 	}
8137 
8138 	/*
8139 	 * If there aren't any idle CPUs, avoid creating some.
8140 	 */
8141 	if (busiest->group_type == group_overloaded &&
8142 	    local->group_type   == group_overloaded) {
8143 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8144 		if (load_above_capacity > busiest->group_capacity) {
8145 			load_above_capacity -= busiest->group_capacity;
8146 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8147 			load_above_capacity /= busiest->group_capacity;
8148 		} else
8149 			load_above_capacity = ~0UL;
8150 	}
8151 
8152 	/*
8153 	 * We're trying to get all the CPUs to the average_load, so we don't
8154 	 * want to push ourselves above the average load, nor do we wish to
8155 	 * reduce the max loaded CPU below the average load. At the same time,
8156 	 * we also don't want to reduce the group load below the group
8157 	 * capacity. Thus we look for the minimum possible imbalance.
8158 	 */
8159 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8160 
8161 	/* How much load to actually move to equalise the imbalance */
8162 	env->imbalance = min(
8163 		max_pull * busiest->group_capacity,
8164 		(sds->avg_load - local->avg_load) * local->group_capacity
8165 	) / SCHED_CAPACITY_SCALE;
8166 
8167 	/*
8168 	 * if *imbalance is less than the average load per runnable task
8169 	 * there is no guarantee that any tasks will be moved so we'll have
8170 	 * a think about bumping its value to force at least one task to be
8171 	 * moved
8172 	 */
8173 	if (env->imbalance < busiest->load_per_task)
8174 		return fix_small_imbalance(env, sds);
8175 }
8176 
8177 /******* find_busiest_group() helpers end here *********************/
8178 
8179 /**
8180  * find_busiest_group - Returns the busiest group within the sched_domain
8181  * if there is an imbalance.
8182  *
8183  * Also calculates the amount of weighted load which should be moved
8184  * to restore balance.
8185  *
8186  * @env: The load balancing environment.
8187  *
8188  * Return:	- The busiest group if imbalance exists.
8189  */
8190 static struct sched_group *find_busiest_group(struct lb_env *env)
8191 {
8192 	struct sg_lb_stats *local, *busiest;
8193 	struct sd_lb_stats sds;
8194 
8195 	init_sd_lb_stats(&sds);
8196 
8197 	/*
8198 	 * Compute the various statistics relavent for load balancing at
8199 	 * this level.
8200 	 */
8201 	update_sd_lb_stats(env, &sds);
8202 	local = &sds.local_stat;
8203 	busiest = &sds.busiest_stat;
8204 
8205 	/* ASYM feature bypasses nice load balance check */
8206 	if (check_asym_packing(env, &sds))
8207 		return sds.busiest;
8208 
8209 	/* There is no busy sibling group to pull tasks from */
8210 	if (!sds.busiest || busiest->sum_nr_running == 0)
8211 		goto out_balanced;
8212 
8213 	/* XXX broken for overlapping NUMA groups */
8214 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8215 						/ sds.total_capacity;
8216 
8217 	/*
8218 	 * If the busiest group is imbalanced the below checks don't
8219 	 * work because they assume all things are equal, which typically
8220 	 * isn't true due to cpus_allowed constraints and the like.
8221 	 */
8222 	if (busiest->group_type == group_imbalanced)
8223 		goto force_balance;
8224 
8225 	/*
8226 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8227 	 * capacities from resulting in underutilization due to avg_load.
8228 	 */
8229 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8230 	    busiest->group_no_capacity)
8231 		goto force_balance;
8232 
8233 	/*
8234 	 * If the local group is busier than the selected busiest group
8235 	 * don't try and pull any tasks.
8236 	 */
8237 	if (local->avg_load >= busiest->avg_load)
8238 		goto out_balanced;
8239 
8240 	/*
8241 	 * Don't pull any tasks if this group is already above the domain
8242 	 * average load.
8243 	 */
8244 	if (local->avg_load >= sds.avg_load)
8245 		goto out_balanced;
8246 
8247 	if (env->idle == CPU_IDLE) {
8248 		/*
8249 		 * This CPU is idle. If the busiest group is not overloaded
8250 		 * and there is no imbalance between this and busiest group
8251 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8252 		 * significant if the diff is greater than 1 otherwise we
8253 		 * might end up to just move the imbalance on another group
8254 		 */
8255 		if ((busiest->group_type != group_overloaded) &&
8256 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8257 			goto out_balanced;
8258 	} else {
8259 		/*
8260 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8261 		 * imbalance_pct to be conservative.
8262 		 */
8263 		if (100 * busiest->avg_load <=
8264 				env->sd->imbalance_pct * local->avg_load)
8265 			goto out_balanced;
8266 	}
8267 
8268 force_balance:
8269 	/* Looks like there is an imbalance. Compute it */
8270 	calculate_imbalance(env, &sds);
8271 	return sds.busiest;
8272 
8273 out_balanced:
8274 	env->imbalance = 0;
8275 	return NULL;
8276 }
8277 
8278 /*
8279  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8280  */
8281 static struct rq *find_busiest_queue(struct lb_env *env,
8282 				     struct sched_group *group)
8283 {
8284 	struct rq *busiest = NULL, *rq;
8285 	unsigned long busiest_load = 0, busiest_capacity = 1;
8286 	int i;
8287 
8288 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8289 		unsigned long capacity, wl;
8290 		enum fbq_type rt;
8291 
8292 		rq = cpu_rq(i);
8293 		rt = fbq_classify_rq(rq);
8294 
8295 		/*
8296 		 * We classify groups/runqueues into three groups:
8297 		 *  - regular: there are !numa tasks
8298 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8299 		 *  - all:     there is no distinction
8300 		 *
8301 		 * In order to avoid migrating ideally placed numa tasks,
8302 		 * ignore those when there's better options.
8303 		 *
8304 		 * If we ignore the actual busiest queue to migrate another
8305 		 * task, the next balance pass can still reduce the busiest
8306 		 * queue by moving tasks around inside the node.
8307 		 *
8308 		 * If we cannot move enough load due to this classification
8309 		 * the next pass will adjust the group classification and
8310 		 * allow migration of more tasks.
8311 		 *
8312 		 * Both cases only affect the total convergence complexity.
8313 		 */
8314 		if (rt > env->fbq_type)
8315 			continue;
8316 
8317 		capacity = capacity_of(i);
8318 
8319 		wl = weighted_cpuload(rq);
8320 
8321 		/*
8322 		 * When comparing with imbalance, use weighted_cpuload()
8323 		 * which is not scaled with the CPU capacity.
8324 		 */
8325 
8326 		if (rq->nr_running == 1 && wl > env->imbalance &&
8327 		    !check_cpu_capacity(rq, env->sd))
8328 			continue;
8329 
8330 		/*
8331 		 * For the load comparisons with the other CPU's, consider
8332 		 * the weighted_cpuload() scaled with the CPU capacity, so
8333 		 * that the load can be moved away from the CPU that is
8334 		 * potentially running at a lower capacity.
8335 		 *
8336 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8337 		 * multiplication to rid ourselves of the division works out
8338 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8339 		 * our previous maximum.
8340 		 */
8341 		if (wl * busiest_capacity > busiest_load * capacity) {
8342 			busiest_load = wl;
8343 			busiest_capacity = capacity;
8344 			busiest = rq;
8345 		}
8346 	}
8347 
8348 	return busiest;
8349 }
8350 
8351 /*
8352  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8353  * so long as it is large enough.
8354  */
8355 #define MAX_PINNED_INTERVAL	512
8356 
8357 static int need_active_balance(struct lb_env *env)
8358 {
8359 	struct sched_domain *sd = env->sd;
8360 
8361 	if (env->idle == CPU_NEWLY_IDLE) {
8362 
8363 		/*
8364 		 * ASYM_PACKING needs to force migrate tasks from busy but
8365 		 * lower priority CPUs in order to pack all tasks in the
8366 		 * highest priority CPUs.
8367 		 */
8368 		if ((sd->flags & SD_ASYM_PACKING) &&
8369 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8370 			return 1;
8371 	}
8372 
8373 	/*
8374 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8375 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8376 	 * because of other sched_class or IRQs if more capacity stays
8377 	 * available on dst_cpu.
8378 	 */
8379 	if ((env->idle != CPU_NOT_IDLE) &&
8380 	    (env->src_rq->cfs.h_nr_running == 1)) {
8381 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8382 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8383 			return 1;
8384 	}
8385 
8386 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8387 }
8388 
8389 static int active_load_balance_cpu_stop(void *data);
8390 
8391 static int should_we_balance(struct lb_env *env)
8392 {
8393 	struct sched_group *sg = env->sd->groups;
8394 	int cpu, balance_cpu = -1;
8395 
8396 	/*
8397 	 * Ensure the balancing environment is consistent; can happen
8398 	 * when the softirq triggers 'during' hotplug.
8399 	 */
8400 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8401 		return 0;
8402 
8403 	/*
8404 	 * In the newly idle case, we will allow all the CPUs
8405 	 * to do the newly idle load balance.
8406 	 */
8407 	if (env->idle == CPU_NEWLY_IDLE)
8408 		return 1;
8409 
8410 	/* Try to find first idle CPU */
8411 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8412 		if (!idle_cpu(cpu))
8413 			continue;
8414 
8415 		balance_cpu = cpu;
8416 		break;
8417 	}
8418 
8419 	if (balance_cpu == -1)
8420 		balance_cpu = group_balance_cpu(sg);
8421 
8422 	/*
8423 	 * First idle CPU or the first CPU(busiest) in this sched group
8424 	 * is eligible for doing load balancing at this and above domains.
8425 	 */
8426 	return balance_cpu == env->dst_cpu;
8427 }
8428 
8429 /*
8430  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8431  * tasks if there is an imbalance.
8432  */
8433 static int load_balance(int this_cpu, struct rq *this_rq,
8434 			struct sched_domain *sd, enum cpu_idle_type idle,
8435 			int *continue_balancing)
8436 {
8437 	int ld_moved, cur_ld_moved, active_balance = 0;
8438 	struct sched_domain *sd_parent = sd->parent;
8439 	struct sched_group *group;
8440 	struct rq *busiest;
8441 	struct rq_flags rf;
8442 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8443 
8444 	struct lb_env env = {
8445 		.sd		= sd,
8446 		.dst_cpu	= this_cpu,
8447 		.dst_rq		= this_rq,
8448 		.dst_grpmask    = sched_group_span(sd->groups),
8449 		.idle		= idle,
8450 		.loop_break	= sched_nr_migrate_break,
8451 		.cpus		= cpus,
8452 		.fbq_type	= all,
8453 		.tasks		= LIST_HEAD_INIT(env.tasks),
8454 	};
8455 
8456 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8457 
8458 	schedstat_inc(sd->lb_count[idle]);
8459 
8460 redo:
8461 	if (!should_we_balance(&env)) {
8462 		*continue_balancing = 0;
8463 		goto out_balanced;
8464 	}
8465 
8466 	group = find_busiest_group(&env);
8467 	if (!group) {
8468 		schedstat_inc(sd->lb_nobusyg[idle]);
8469 		goto out_balanced;
8470 	}
8471 
8472 	busiest = find_busiest_queue(&env, group);
8473 	if (!busiest) {
8474 		schedstat_inc(sd->lb_nobusyq[idle]);
8475 		goto out_balanced;
8476 	}
8477 
8478 	BUG_ON(busiest == env.dst_rq);
8479 
8480 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8481 
8482 	env.src_cpu = busiest->cpu;
8483 	env.src_rq = busiest;
8484 
8485 	ld_moved = 0;
8486 	if (busiest->nr_running > 1) {
8487 		/*
8488 		 * Attempt to move tasks. If find_busiest_group has found
8489 		 * an imbalance but busiest->nr_running <= 1, the group is
8490 		 * still unbalanced. ld_moved simply stays zero, so it is
8491 		 * correctly treated as an imbalance.
8492 		 */
8493 		env.flags |= LBF_ALL_PINNED;
8494 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8495 
8496 more_balance:
8497 		rq_lock_irqsave(busiest, &rf);
8498 		update_rq_clock(busiest);
8499 
8500 		/*
8501 		 * cur_ld_moved - load moved in current iteration
8502 		 * ld_moved     - cumulative load moved across iterations
8503 		 */
8504 		cur_ld_moved = detach_tasks(&env);
8505 
8506 		/*
8507 		 * We've detached some tasks from busiest_rq. Every
8508 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8509 		 * unlock busiest->lock, and we are able to be sure
8510 		 * that nobody can manipulate the tasks in parallel.
8511 		 * See task_rq_lock() family for the details.
8512 		 */
8513 
8514 		rq_unlock(busiest, &rf);
8515 
8516 		if (cur_ld_moved) {
8517 			attach_tasks(&env);
8518 			ld_moved += cur_ld_moved;
8519 		}
8520 
8521 		local_irq_restore(rf.flags);
8522 
8523 		if (env.flags & LBF_NEED_BREAK) {
8524 			env.flags &= ~LBF_NEED_BREAK;
8525 			goto more_balance;
8526 		}
8527 
8528 		/*
8529 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8530 		 * us and move them to an alternate dst_cpu in our sched_group
8531 		 * where they can run. The upper limit on how many times we
8532 		 * iterate on same src_cpu is dependent on number of CPUs in our
8533 		 * sched_group.
8534 		 *
8535 		 * This changes load balance semantics a bit on who can move
8536 		 * load to a given_cpu. In addition to the given_cpu itself
8537 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8538 		 * nohz-idle), we now have balance_cpu in a position to move
8539 		 * load to given_cpu. In rare situations, this may cause
8540 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8541 		 * _independently_ and at _same_ time to move some load to
8542 		 * given_cpu) causing exceess load to be moved to given_cpu.
8543 		 * This however should not happen so much in practice and
8544 		 * moreover subsequent load balance cycles should correct the
8545 		 * excess load moved.
8546 		 */
8547 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8548 
8549 			/* Prevent to re-select dst_cpu via env's CPUs */
8550 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8551 
8552 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8553 			env.dst_cpu	 = env.new_dst_cpu;
8554 			env.flags	&= ~LBF_DST_PINNED;
8555 			env.loop	 = 0;
8556 			env.loop_break	 = sched_nr_migrate_break;
8557 
8558 			/*
8559 			 * Go back to "more_balance" rather than "redo" since we
8560 			 * need to continue with same src_cpu.
8561 			 */
8562 			goto more_balance;
8563 		}
8564 
8565 		/*
8566 		 * We failed to reach balance because of affinity.
8567 		 */
8568 		if (sd_parent) {
8569 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8570 
8571 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8572 				*group_imbalance = 1;
8573 		}
8574 
8575 		/* All tasks on this runqueue were pinned by CPU affinity */
8576 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8577 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8578 			/*
8579 			 * Attempting to continue load balancing at the current
8580 			 * sched_domain level only makes sense if there are
8581 			 * active CPUs remaining as possible busiest CPUs to
8582 			 * pull load from which are not contained within the
8583 			 * destination group that is receiving any migrated
8584 			 * load.
8585 			 */
8586 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8587 				env.loop = 0;
8588 				env.loop_break = sched_nr_migrate_break;
8589 				goto redo;
8590 			}
8591 			goto out_all_pinned;
8592 		}
8593 	}
8594 
8595 	if (!ld_moved) {
8596 		schedstat_inc(sd->lb_failed[idle]);
8597 		/*
8598 		 * Increment the failure counter only on periodic balance.
8599 		 * We do not want newidle balance, which can be very
8600 		 * frequent, pollute the failure counter causing
8601 		 * excessive cache_hot migrations and active balances.
8602 		 */
8603 		if (idle != CPU_NEWLY_IDLE)
8604 			sd->nr_balance_failed++;
8605 
8606 		if (need_active_balance(&env)) {
8607 			unsigned long flags;
8608 
8609 			raw_spin_lock_irqsave(&busiest->lock, flags);
8610 
8611 			/*
8612 			 * Don't kick the active_load_balance_cpu_stop,
8613 			 * if the curr task on busiest CPU can't be
8614 			 * moved to this_cpu:
8615 			 */
8616 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8617 				raw_spin_unlock_irqrestore(&busiest->lock,
8618 							    flags);
8619 				env.flags |= LBF_ALL_PINNED;
8620 				goto out_one_pinned;
8621 			}
8622 
8623 			/*
8624 			 * ->active_balance synchronizes accesses to
8625 			 * ->active_balance_work.  Once set, it's cleared
8626 			 * only after active load balance is finished.
8627 			 */
8628 			if (!busiest->active_balance) {
8629 				busiest->active_balance = 1;
8630 				busiest->push_cpu = this_cpu;
8631 				active_balance = 1;
8632 			}
8633 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8634 
8635 			if (active_balance) {
8636 				stop_one_cpu_nowait(cpu_of(busiest),
8637 					active_load_balance_cpu_stop, busiest,
8638 					&busiest->active_balance_work);
8639 			}
8640 
8641 			/* We've kicked active balancing, force task migration. */
8642 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8643 		}
8644 	} else
8645 		sd->nr_balance_failed = 0;
8646 
8647 	if (likely(!active_balance)) {
8648 		/* We were unbalanced, so reset the balancing interval */
8649 		sd->balance_interval = sd->min_interval;
8650 	} else {
8651 		/*
8652 		 * If we've begun active balancing, start to back off. This
8653 		 * case may not be covered by the all_pinned logic if there
8654 		 * is only 1 task on the busy runqueue (because we don't call
8655 		 * detach_tasks).
8656 		 */
8657 		if (sd->balance_interval < sd->max_interval)
8658 			sd->balance_interval *= 2;
8659 	}
8660 
8661 	goto out;
8662 
8663 out_balanced:
8664 	/*
8665 	 * We reach balance although we may have faced some affinity
8666 	 * constraints. Clear the imbalance flag if it was set.
8667 	 */
8668 	if (sd_parent) {
8669 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8670 
8671 		if (*group_imbalance)
8672 			*group_imbalance = 0;
8673 	}
8674 
8675 out_all_pinned:
8676 	/*
8677 	 * We reach balance because all tasks are pinned at this level so
8678 	 * we can't migrate them. Let the imbalance flag set so parent level
8679 	 * can try to migrate them.
8680 	 */
8681 	schedstat_inc(sd->lb_balanced[idle]);
8682 
8683 	sd->nr_balance_failed = 0;
8684 
8685 out_one_pinned:
8686 	/* tune up the balancing interval */
8687 	if (((env.flags & LBF_ALL_PINNED) &&
8688 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8689 			(sd->balance_interval < sd->max_interval))
8690 		sd->balance_interval *= 2;
8691 
8692 	ld_moved = 0;
8693 out:
8694 	return ld_moved;
8695 }
8696 
8697 static inline unsigned long
8698 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8699 {
8700 	unsigned long interval = sd->balance_interval;
8701 
8702 	if (cpu_busy)
8703 		interval *= sd->busy_factor;
8704 
8705 	/* scale ms to jiffies */
8706 	interval = msecs_to_jiffies(interval);
8707 	interval = clamp(interval, 1UL, max_load_balance_interval);
8708 
8709 	return interval;
8710 }
8711 
8712 static inline void
8713 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8714 {
8715 	unsigned long interval, next;
8716 
8717 	/* used by idle balance, so cpu_busy = 0 */
8718 	interval = get_sd_balance_interval(sd, 0);
8719 	next = sd->last_balance + interval;
8720 
8721 	if (time_after(*next_balance, next))
8722 		*next_balance = next;
8723 }
8724 
8725 /*
8726  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8727  * running tasks off the busiest CPU onto idle CPUs. It requires at
8728  * least 1 task to be running on each physical CPU where possible, and
8729  * avoids physical / logical imbalances.
8730  */
8731 static int active_load_balance_cpu_stop(void *data)
8732 {
8733 	struct rq *busiest_rq = data;
8734 	int busiest_cpu = cpu_of(busiest_rq);
8735 	int target_cpu = busiest_rq->push_cpu;
8736 	struct rq *target_rq = cpu_rq(target_cpu);
8737 	struct sched_domain *sd;
8738 	struct task_struct *p = NULL;
8739 	struct rq_flags rf;
8740 
8741 	rq_lock_irq(busiest_rq, &rf);
8742 	/*
8743 	 * Between queueing the stop-work and running it is a hole in which
8744 	 * CPUs can become inactive. We should not move tasks from or to
8745 	 * inactive CPUs.
8746 	 */
8747 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8748 		goto out_unlock;
8749 
8750 	/* Make sure the requested CPU hasn't gone down in the meantime: */
8751 	if (unlikely(busiest_cpu != smp_processor_id() ||
8752 		     !busiest_rq->active_balance))
8753 		goto out_unlock;
8754 
8755 	/* Is there any task to move? */
8756 	if (busiest_rq->nr_running <= 1)
8757 		goto out_unlock;
8758 
8759 	/*
8760 	 * This condition is "impossible", if it occurs
8761 	 * we need to fix it. Originally reported by
8762 	 * Bjorn Helgaas on a 128-CPU setup.
8763 	 */
8764 	BUG_ON(busiest_rq == target_rq);
8765 
8766 	/* Search for an sd spanning us and the target CPU. */
8767 	rcu_read_lock();
8768 	for_each_domain(target_cpu, sd) {
8769 		if ((sd->flags & SD_LOAD_BALANCE) &&
8770 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8771 				break;
8772 	}
8773 
8774 	if (likely(sd)) {
8775 		struct lb_env env = {
8776 			.sd		= sd,
8777 			.dst_cpu	= target_cpu,
8778 			.dst_rq		= target_rq,
8779 			.src_cpu	= busiest_rq->cpu,
8780 			.src_rq		= busiest_rq,
8781 			.idle		= CPU_IDLE,
8782 			/*
8783 			 * can_migrate_task() doesn't need to compute new_dst_cpu
8784 			 * for active balancing. Since we have CPU_IDLE, but no
8785 			 * @dst_grpmask we need to make that test go away with lying
8786 			 * about DST_PINNED.
8787 			 */
8788 			.flags		= LBF_DST_PINNED,
8789 		};
8790 
8791 		schedstat_inc(sd->alb_count);
8792 		update_rq_clock(busiest_rq);
8793 
8794 		p = detach_one_task(&env);
8795 		if (p) {
8796 			schedstat_inc(sd->alb_pushed);
8797 			/* Active balancing done, reset the failure counter. */
8798 			sd->nr_balance_failed = 0;
8799 		} else {
8800 			schedstat_inc(sd->alb_failed);
8801 		}
8802 	}
8803 	rcu_read_unlock();
8804 out_unlock:
8805 	busiest_rq->active_balance = 0;
8806 	rq_unlock(busiest_rq, &rf);
8807 
8808 	if (p)
8809 		attach_one_task(target_rq, p);
8810 
8811 	local_irq_enable();
8812 
8813 	return 0;
8814 }
8815 
8816 static DEFINE_SPINLOCK(balancing);
8817 
8818 /*
8819  * Scale the max load_balance interval with the number of CPUs in the system.
8820  * This trades load-balance latency on larger machines for less cross talk.
8821  */
8822 void update_max_interval(void)
8823 {
8824 	max_load_balance_interval = HZ*num_online_cpus()/10;
8825 }
8826 
8827 /*
8828  * It checks each scheduling domain to see if it is due to be balanced,
8829  * and initiates a balancing operation if so.
8830  *
8831  * Balancing parameters are set up in init_sched_domains.
8832  */
8833 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8834 {
8835 	int continue_balancing = 1;
8836 	int cpu = rq->cpu;
8837 	unsigned long interval;
8838 	struct sched_domain *sd;
8839 	/* Earliest time when we have to do rebalance again */
8840 	unsigned long next_balance = jiffies + 60*HZ;
8841 	int update_next_balance = 0;
8842 	int need_serialize, need_decay = 0;
8843 	u64 max_cost = 0;
8844 
8845 	rcu_read_lock();
8846 	for_each_domain(cpu, sd) {
8847 		/*
8848 		 * Decay the newidle max times here because this is a regular
8849 		 * visit to all the domains. Decay ~1% per second.
8850 		 */
8851 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8852 			sd->max_newidle_lb_cost =
8853 				(sd->max_newidle_lb_cost * 253) / 256;
8854 			sd->next_decay_max_lb_cost = jiffies + HZ;
8855 			need_decay = 1;
8856 		}
8857 		max_cost += sd->max_newidle_lb_cost;
8858 
8859 		if (!(sd->flags & SD_LOAD_BALANCE))
8860 			continue;
8861 
8862 		/*
8863 		 * Stop the load balance at this level. There is another
8864 		 * CPU in our sched group which is doing load balancing more
8865 		 * actively.
8866 		 */
8867 		if (!continue_balancing) {
8868 			if (need_decay)
8869 				continue;
8870 			break;
8871 		}
8872 
8873 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8874 
8875 		need_serialize = sd->flags & SD_SERIALIZE;
8876 		if (need_serialize) {
8877 			if (!spin_trylock(&balancing))
8878 				goto out;
8879 		}
8880 
8881 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8882 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8883 				/*
8884 				 * The LBF_DST_PINNED logic could have changed
8885 				 * env->dst_cpu, so we can't know our idle
8886 				 * state even if we migrated tasks. Update it.
8887 				 */
8888 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8889 			}
8890 			sd->last_balance = jiffies;
8891 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8892 		}
8893 		if (need_serialize)
8894 			spin_unlock(&balancing);
8895 out:
8896 		if (time_after(next_balance, sd->last_balance + interval)) {
8897 			next_balance = sd->last_balance + interval;
8898 			update_next_balance = 1;
8899 		}
8900 	}
8901 	if (need_decay) {
8902 		/*
8903 		 * Ensure the rq-wide value also decays but keep it at a
8904 		 * reasonable floor to avoid funnies with rq->avg_idle.
8905 		 */
8906 		rq->max_idle_balance_cost =
8907 			max((u64)sysctl_sched_migration_cost, max_cost);
8908 	}
8909 	rcu_read_unlock();
8910 
8911 	/*
8912 	 * next_balance will be updated only when there is a need.
8913 	 * When the cpu is attached to null domain for ex, it will not be
8914 	 * updated.
8915 	 */
8916 	if (likely(update_next_balance)) {
8917 		rq->next_balance = next_balance;
8918 
8919 #ifdef CONFIG_NO_HZ_COMMON
8920 		/*
8921 		 * If this CPU has been elected to perform the nohz idle
8922 		 * balance. Other idle CPUs have already rebalanced with
8923 		 * nohz_idle_balance() and nohz.next_balance has been
8924 		 * updated accordingly. This CPU is now running the idle load
8925 		 * balance for itself and we need to update the
8926 		 * nohz.next_balance accordingly.
8927 		 */
8928 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8929 			nohz.next_balance = rq->next_balance;
8930 #endif
8931 	}
8932 }
8933 
8934 static inline int on_null_domain(struct rq *rq)
8935 {
8936 	return unlikely(!rcu_dereference_sched(rq->sd));
8937 }
8938 
8939 #ifdef CONFIG_NO_HZ_COMMON
8940 /*
8941  * idle load balancing details
8942  * - When one of the busy CPUs notice that there may be an idle rebalancing
8943  *   needed, they will kick the idle load balancer, which then does idle
8944  *   load balancing for all the idle CPUs.
8945  */
8946 
8947 static inline int find_new_ilb(void)
8948 {
8949 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8950 
8951 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8952 		return ilb;
8953 
8954 	return nr_cpu_ids;
8955 }
8956 
8957 /*
8958  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8959  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8960  * CPU (if there is one).
8961  */
8962 static void kick_ilb(unsigned int flags)
8963 {
8964 	int ilb_cpu;
8965 
8966 	nohz.next_balance++;
8967 
8968 	ilb_cpu = find_new_ilb();
8969 
8970 	if (ilb_cpu >= nr_cpu_ids)
8971 		return;
8972 
8973 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
8974 	if (flags & NOHZ_KICK_MASK)
8975 		return;
8976 
8977 	/*
8978 	 * Use smp_send_reschedule() instead of resched_cpu().
8979 	 * This way we generate a sched IPI on the target CPU which
8980 	 * is idle. And the softirq performing nohz idle load balance
8981 	 * will be run before returning from the IPI.
8982 	 */
8983 	smp_send_reschedule(ilb_cpu);
8984 }
8985 
8986 /*
8987  * Current heuristic for kicking the idle load balancer in the presence
8988  * of an idle cpu in the system.
8989  *   - This rq has more than one task.
8990  *   - This rq has at least one CFS task and the capacity of the CPU is
8991  *     significantly reduced because of RT tasks or IRQs.
8992  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8993  *     multiple busy cpu.
8994  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8995  *     domain span are idle.
8996  */
8997 static void nohz_balancer_kick(struct rq *rq)
8998 {
8999 	unsigned long now = jiffies;
9000 	struct sched_domain_shared *sds;
9001 	struct sched_domain *sd;
9002 	int nr_busy, i, cpu = rq->cpu;
9003 	unsigned int flags = 0;
9004 
9005 	if (unlikely(rq->idle_balance))
9006 		return;
9007 
9008 	/*
9009 	 * We may be recently in ticked or tickless idle mode. At the first
9010 	 * busy tick after returning from idle, we will update the busy stats.
9011 	 */
9012 	nohz_balance_exit_idle(rq);
9013 
9014 	/*
9015 	 * None are in tickless mode and hence no need for NOHZ idle load
9016 	 * balancing.
9017 	 */
9018 	if (likely(!atomic_read(&nohz.nr_cpus)))
9019 		return;
9020 
9021 	if (READ_ONCE(nohz.has_blocked) &&
9022 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9023 		flags = NOHZ_STATS_KICK;
9024 
9025 	if (time_before(now, nohz.next_balance))
9026 		goto out;
9027 
9028 	if (rq->nr_running >= 2) {
9029 		flags = NOHZ_KICK_MASK;
9030 		goto out;
9031 	}
9032 
9033 	rcu_read_lock();
9034 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9035 	if (sds) {
9036 		/*
9037 		 * XXX: write a coherent comment on why we do this.
9038 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9039 		 */
9040 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9041 		if (nr_busy > 1) {
9042 			flags = NOHZ_KICK_MASK;
9043 			goto unlock;
9044 		}
9045 
9046 	}
9047 
9048 	sd = rcu_dereference(rq->sd);
9049 	if (sd) {
9050 		if ((rq->cfs.h_nr_running >= 1) &&
9051 				check_cpu_capacity(rq, sd)) {
9052 			flags = NOHZ_KICK_MASK;
9053 			goto unlock;
9054 		}
9055 	}
9056 
9057 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
9058 	if (sd) {
9059 		for_each_cpu(i, sched_domain_span(sd)) {
9060 			if (i == cpu ||
9061 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9062 				continue;
9063 
9064 			if (sched_asym_prefer(i, cpu)) {
9065 				flags = NOHZ_KICK_MASK;
9066 				goto unlock;
9067 			}
9068 		}
9069 	}
9070 unlock:
9071 	rcu_read_unlock();
9072 out:
9073 	if (flags)
9074 		kick_ilb(flags);
9075 }
9076 
9077 static void set_cpu_sd_state_busy(int cpu)
9078 {
9079 	struct sched_domain *sd;
9080 
9081 	rcu_read_lock();
9082 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9083 
9084 	if (!sd || !sd->nohz_idle)
9085 		goto unlock;
9086 	sd->nohz_idle = 0;
9087 
9088 	atomic_inc(&sd->shared->nr_busy_cpus);
9089 unlock:
9090 	rcu_read_unlock();
9091 }
9092 
9093 void nohz_balance_exit_idle(struct rq *rq)
9094 {
9095 	SCHED_WARN_ON(rq != this_rq());
9096 
9097 	if (likely(!rq->nohz_tick_stopped))
9098 		return;
9099 
9100 	rq->nohz_tick_stopped = 0;
9101 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9102 	atomic_dec(&nohz.nr_cpus);
9103 
9104 	set_cpu_sd_state_busy(rq->cpu);
9105 }
9106 
9107 static void set_cpu_sd_state_idle(int cpu)
9108 {
9109 	struct sched_domain *sd;
9110 
9111 	rcu_read_lock();
9112 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9113 
9114 	if (!sd || sd->nohz_idle)
9115 		goto unlock;
9116 	sd->nohz_idle = 1;
9117 
9118 	atomic_dec(&sd->shared->nr_busy_cpus);
9119 unlock:
9120 	rcu_read_unlock();
9121 }
9122 
9123 /*
9124  * This routine will record that the CPU is going idle with tick stopped.
9125  * This info will be used in performing idle load balancing in the future.
9126  */
9127 void nohz_balance_enter_idle(int cpu)
9128 {
9129 	struct rq *rq = cpu_rq(cpu);
9130 
9131 	SCHED_WARN_ON(cpu != smp_processor_id());
9132 
9133 	/* If this CPU is going down, then nothing needs to be done: */
9134 	if (!cpu_active(cpu))
9135 		return;
9136 
9137 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9138 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9139 		return;
9140 
9141 	/*
9142 	 * Can be set safely without rq->lock held
9143 	 * If a clear happens, it will have evaluated last additions because
9144 	 * rq->lock is held during the check and the clear
9145 	 */
9146 	rq->has_blocked_load = 1;
9147 
9148 	/*
9149 	 * The tick is still stopped but load could have been added in the
9150 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9151 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9152 	 * of nohz.has_blocked can only happen after checking the new load
9153 	 */
9154 	if (rq->nohz_tick_stopped)
9155 		goto out;
9156 
9157 	/* If we're a completely isolated CPU, we don't play: */
9158 	if (on_null_domain(rq))
9159 		return;
9160 
9161 	rq->nohz_tick_stopped = 1;
9162 
9163 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9164 	atomic_inc(&nohz.nr_cpus);
9165 
9166 	/*
9167 	 * Ensures that if nohz_idle_balance() fails to observe our
9168 	 * @idle_cpus_mask store, it must observe the @has_blocked
9169 	 * store.
9170 	 */
9171 	smp_mb__after_atomic();
9172 
9173 	set_cpu_sd_state_idle(cpu);
9174 
9175 out:
9176 	/*
9177 	 * Each time a cpu enter idle, we assume that it has blocked load and
9178 	 * enable the periodic update of the load of idle cpus
9179 	 */
9180 	WRITE_ONCE(nohz.has_blocked, 1);
9181 }
9182 
9183 /*
9184  * Internal function that runs load balance for all idle cpus. The load balance
9185  * can be a simple update of blocked load or a complete load balance with
9186  * tasks movement depending of flags.
9187  * The function returns false if the loop has stopped before running
9188  * through all idle CPUs.
9189  */
9190 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9191 			       enum cpu_idle_type idle)
9192 {
9193 	/* Earliest time when we have to do rebalance again */
9194 	unsigned long now = jiffies;
9195 	unsigned long next_balance = now + 60*HZ;
9196 	bool has_blocked_load = false;
9197 	int update_next_balance = 0;
9198 	int this_cpu = this_rq->cpu;
9199 	int balance_cpu;
9200 	int ret = false;
9201 	struct rq *rq;
9202 
9203 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9204 
9205 	/*
9206 	 * We assume there will be no idle load after this update and clear
9207 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9208 	 * set the has_blocked flag and trig another update of idle load.
9209 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9210 	 * setting the flag, we are sure to not clear the state and not
9211 	 * check the load of an idle cpu.
9212 	 */
9213 	WRITE_ONCE(nohz.has_blocked, 0);
9214 
9215 	/*
9216 	 * Ensures that if we miss the CPU, we must see the has_blocked
9217 	 * store from nohz_balance_enter_idle().
9218 	 */
9219 	smp_mb();
9220 
9221 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9222 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9223 			continue;
9224 
9225 		/*
9226 		 * If this CPU gets work to do, stop the load balancing
9227 		 * work being done for other CPUs. Next load
9228 		 * balancing owner will pick it up.
9229 		 */
9230 		if (need_resched()) {
9231 			has_blocked_load = true;
9232 			goto abort;
9233 		}
9234 
9235 		rq = cpu_rq(balance_cpu);
9236 
9237 		has_blocked_load |= update_nohz_stats(rq, true);
9238 
9239 		/*
9240 		 * If time for next balance is due,
9241 		 * do the balance.
9242 		 */
9243 		if (time_after_eq(jiffies, rq->next_balance)) {
9244 			struct rq_flags rf;
9245 
9246 			rq_lock_irqsave(rq, &rf);
9247 			update_rq_clock(rq);
9248 			cpu_load_update_idle(rq);
9249 			rq_unlock_irqrestore(rq, &rf);
9250 
9251 			if (flags & NOHZ_BALANCE_KICK)
9252 				rebalance_domains(rq, CPU_IDLE);
9253 		}
9254 
9255 		if (time_after(next_balance, rq->next_balance)) {
9256 			next_balance = rq->next_balance;
9257 			update_next_balance = 1;
9258 		}
9259 	}
9260 
9261 	/* Newly idle CPU doesn't need an update */
9262 	if (idle != CPU_NEWLY_IDLE) {
9263 		update_blocked_averages(this_cpu);
9264 		has_blocked_load |= this_rq->has_blocked_load;
9265 	}
9266 
9267 	if (flags & NOHZ_BALANCE_KICK)
9268 		rebalance_domains(this_rq, CPU_IDLE);
9269 
9270 	WRITE_ONCE(nohz.next_blocked,
9271 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9272 
9273 	/* The full idle balance loop has been done */
9274 	ret = true;
9275 
9276 abort:
9277 	/* There is still blocked load, enable periodic update */
9278 	if (has_blocked_load)
9279 		WRITE_ONCE(nohz.has_blocked, 1);
9280 
9281 	/*
9282 	 * next_balance will be updated only when there is a need.
9283 	 * When the CPU is attached to null domain for ex, it will not be
9284 	 * updated.
9285 	 */
9286 	if (likely(update_next_balance))
9287 		nohz.next_balance = next_balance;
9288 
9289 	return ret;
9290 }
9291 
9292 /*
9293  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9294  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9295  */
9296 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9297 {
9298 	int this_cpu = this_rq->cpu;
9299 	unsigned int flags;
9300 
9301 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9302 		return false;
9303 
9304 	if (idle != CPU_IDLE) {
9305 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9306 		return false;
9307 	}
9308 
9309 	/*
9310 	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9311 	 */
9312 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9313 	if (!(flags & NOHZ_KICK_MASK))
9314 		return false;
9315 
9316 	_nohz_idle_balance(this_rq, flags, idle);
9317 
9318 	return true;
9319 }
9320 
9321 static void nohz_newidle_balance(struct rq *this_rq)
9322 {
9323 	int this_cpu = this_rq->cpu;
9324 
9325 	/*
9326 	 * This CPU doesn't want to be disturbed by scheduler
9327 	 * housekeeping
9328 	 */
9329 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9330 		return;
9331 
9332 	/* Will wake up very soon. No time for doing anything else*/
9333 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9334 		return;
9335 
9336 	/* Don't need to update blocked load of idle CPUs*/
9337 	if (!READ_ONCE(nohz.has_blocked) ||
9338 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9339 		return;
9340 
9341 	raw_spin_unlock(&this_rq->lock);
9342 	/*
9343 	 * This CPU is going to be idle and blocked load of idle CPUs
9344 	 * need to be updated. Run the ilb locally as it is a good
9345 	 * candidate for ilb instead of waking up another idle CPU.
9346 	 * Kick an normal ilb if we failed to do the update.
9347 	 */
9348 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9349 		kick_ilb(NOHZ_STATS_KICK);
9350 	raw_spin_lock(&this_rq->lock);
9351 }
9352 
9353 #else /* !CONFIG_NO_HZ_COMMON */
9354 static inline void nohz_balancer_kick(struct rq *rq) { }
9355 
9356 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9357 {
9358 	return false;
9359 }
9360 
9361 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9362 #endif /* CONFIG_NO_HZ_COMMON */
9363 
9364 /*
9365  * idle_balance is called by schedule() if this_cpu is about to become
9366  * idle. Attempts to pull tasks from other CPUs.
9367  */
9368 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9369 {
9370 	unsigned long next_balance = jiffies + HZ;
9371 	int this_cpu = this_rq->cpu;
9372 	struct sched_domain *sd;
9373 	int pulled_task = 0;
9374 	u64 curr_cost = 0;
9375 
9376 	/*
9377 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9378 	 * measure the duration of idle_balance() as idle time.
9379 	 */
9380 	this_rq->idle_stamp = rq_clock(this_rq);
9381 
9382 	/*
9383 	 * Do not pull tasks towards !active CPUs...
9384 	 */
9385 	if (!cpu_active(this_cpu))
9386 		return 0;
9387 
9388 	/*
9389 	 * This is OK, because current is on_cpu, which avoids it being picked
9390 	 * for load-balance and preemption/IRQs are still disabled avoiding
9391 	 * further scheduler activity on it and we're being very careful to
9392 	 * re-start the picking loop.
9393 	 */
9394 	rq_unpin_lock(this_rq, rf);
9395 
9396 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9397 	    !this_rq->rd->overload) {
9398 
9399 		rcu_read_lock();
9400 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9401 		if (sd)
9402 			update_next_balance(sd, &next_balance);
9403 		rcu_read_unlock();
9404 
9405 		nohz_newidle_balance(this_rq);
9406 
9407 		goto out;
9408 	}
9409 
9410 	raw_spin_unlock(&this_rq->lock);
9411 
9412 	update_blocked_averages(this_cpu);
9413 	rcu_read_lock();
9414 	for_each_domain(this_cpu, sd) {
9415 		int continue_balancing = 1;
9416 		u64 t0, domain_cost;
9417 
9418 		if (!(sd->flags & SD_LOAD_BALANCE))
9419 			continue;
9420 
9421 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9422 			update_next_balance(sd, &next_balance);
9423 			break;
9424 		}
9425 
9426 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9427 			t0 = sched_clock_cpu(this_cpu);
9428 
9429 			pulled_task = load_balance(this_cpu, this_rq,
9430 						   sd, CPU_NEWLY_IDLE,
9431 						   &continue_balancing);
9432 
9433 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9434 			if (domain_cost > sd->max_newidle_lb_cost)
9435 				sd->max_newidle_lb_cost = domain_cost;
9436 
9437 			curr_cost += domain_cost;
9438 		}
9439 
9440 		update_next_balance(sd, &next_balance);
9441 
9442 		/*
9443 		 * Stop searching for tasks to pull if there are
9444 		 * now runnable tasks on this rq.
9445 		 */
9446 		if (pulled_task || this_rq->nr_running > 0)
9447 			break;
9448 	}
9449 	rcu_read_unlock();
9450 
9451 	raw_spin_lock(&this_rq->lock);
9452 
9453 	if (curr_cost > this_rq->max_idle_balance_cost)
9454 		this_rq->max_idle_balance_cost = curr_cost;
9455 
9456 out:
9457 	/*
9458 	 * While browsing the domains, we released the rq lock, a task could
9459 	 * have been enqueued in the meantime. Since we're not going idle,
9460 	 * pretend we pulled a task.
9461 	 */
9462 	if (this_rq->cfs.h_nr_running && !pulled_task)
9463 		pulled_task = 1;
9464 
9465 	/* Move the next balance forward */
9466 	if (time_after(this_rq->next_balance, next_balance))
9467 		this_rq->next_balance = next_balance;
9468 
9469 	/* Is there a task of a high priority class? */
9470 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9471 		pulled_task = -1;
9472 
9473 	if (pulled_task)
9474 		this_rq->idle_stamp = 0;
9475 
9476 	rq_repin_lock(this_rq, rf);
9477 
9478 	return pulled_task;
9479 }
9480 
9481 /*
9482  * run_rebalance_domains is triggered when needed from the scheduler tick.
9483  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9484  */
9485 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9486 {
9487 	struct rq *this_rq = this_rq();
9488 	enum cpu_idle_type idle = this_rq->idle_balance ?
9489 						CPU_IDLE : CPU_NOT_IDLE;
9490 
9491 	/*
9492 	 * If this CPU has a pending nohz_balance_kick, then do the
9493 	 * balancing on behalf of the other idle CPUs whose ticks are
9494 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9495 	 * give the idle CPUs a chance to load balance. Else we may
9496 	 * load balance only within the local sched_domain hierarchy
9497 	 * and abort nohz_idle_balance altogether if we pull some load.
9498 	 */
9499 	if (nohz_idle_balance(this_rq, idle))
9500 		return;
9501 
9502 	/* normal load balance */
9503 	update_blocked_averages(this_rq->cpu);
9504 	rebalance_domains(this_rq, idle);
9505 }
9506 
9507 /*
9508  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9509  */
9510 void trigger_load_balance(struct rq *rq)
9511 {
9512 	/* Don't need to rebalance while attached to NULL domain */
9513 	if (unlikely(on_null_domain(rq)))
9514 		return;
9515 
9516 	if (time_after_eq(jiffies, rq->next_balance))
9517 		raise_softirq(SCHED_SOFTIRQ);
9518 
9519 	nohz_balancer_kick(rq);
9520 }
9521 
9522 static void rq_online_fair(struct rq *rq)
9523 {
9524 	update_sysctl();
9525 
9526 	update_runtime_enabled(rq);
9527 }
9528 
9529 static void rq_offline_fair(struct rq *rq)
9530 {
9531 	update_sysctl();
9532 
9533 	/* Ensure any throttled groups are reachable by pick_next_task */
9534 	unthrottle_offline_cfs_rqs(rq);
9535 }
9536 
9537 #endif /* CONFIG_SMP */
9538 
9539 /*
9540  * scheduler tick hitting a task of our scheduling class.
9541  *
9542  * NOTE: This function can be called remotely by the tick offload that
9543  * goes along full dynticks. Therefore no local assumption can be made
9544  * and everything must be accessed through the @rq and @curr passed in
9545  * parameters.
9546  */
9547 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9548 {
9549 	struct cfs_rq *cfs_rq;
9550 	struct sched_entity *se = &curr->se;
9551 
9552 	for_each_sched_entity(se) {
9553 		cfs_rq = cfs_rq_of(se);
9554 		entity_tick(cfs_rq, se, queued);
9555 	}
9556 
9557 	if (static_branch_unlikely(&sched_numa_balancing))
9558 		task_tick_numa(rq, curr);
9559 }
9560 
9561 /*
9562  * called on fork with the child task as argument from the parent's context
9563  *  - child not yet on the tasklist
9564  *  - preemption disabled
9565  */
9566 static void task_fork_fair(struct task_struct *p)
9567 {
9568 	struct cfs_rq *cfs_rq;
9569 	struct sched_entity *se = &p->se, *curr;
9570 	struct rq *rq = this_rq();
9571 	struct rq_flags rf;
9572 
9573 	rq_lock(rq, &rf);
9574 	update_rq_clock(rq);
9575 
9576 	cfs_rq = task_cfs_rq(current);
9577 	curr = cfs_rq->curr;
9578 	if (curr) {
9579 		update_curr(cfs_rq);
9580 		se->vruntime = curr->vruntime;
9581 	}
9582 	place_entity(cfs_rq, se, 1);
9583 
9584 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9585 		/*
9586 		 * Upon rescheduling, sched_class::put_prev_task() will place
9587 		 * 'current' within the tree based on its new key value.
9588 		 */
9589 		swap(curr->vruntime, se->vruntime);
9590 		resched_curr(rq);
9591 	}
9592 
9593 	se->vruntime -= cfs_rq->min_vruntime;
9594 	rq_unlock(rq, &rf);
9595 }
9596 
9597 /*
9598  * Priority of the task has changed. Check to see if we preempt
9599  * the current task.
9600  */
9601 static void
9602 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9603 {
9604 	if (!task_on_rq_queued(p))
9605 		return;
9606 
9607 	/*
9608 	 * Reschedule if we are currently running on this runqueue and
9609 	 * our priority decreased, or if we are not currently running on
9610 	 * this runqueue and our priority is higher than the current's
9611 	 */
9612 	if (rq->curr == p) {
9613 		if (p->prio > oldprio)
9614 			resched_curr(rq);
9615 	} else
9616 		check_preempt_curr(rq, p, 0);
9617 }
9618 
9619 static inline bool vruntime_normalized(struct task_struct *p)
9620 {
9621 	struct sched_entity *se = &p->se;
9622 
9623 	/*
9624 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9625 	 * the dequeue_entity(.flags=0) will already have normalized the
9626 	 * vruntime.
9627 	 */
9628 	if (p->on_rq)
9629 		return true;
9630 
9631 	/*
9632 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9633 	 * But there are some cases where it has already been normalized:
9634 	 *
9635 	 * - A forked child which is waiting for being woken up by
9636 	 *   wake_up_new_task().
9637 	 * - A task which has been woken up by try_to_wake_up() and
9638 	 *   waiting for actually being woken up by sched_ttwu_pending().
9639 	 */
9640 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9641 		return true;
9642 
9643 	return false;
9644 }
9645 
9646 #ifdef CONFIG_FAIR_GROUP_SCHED
9647 /*
9648  * Propagate the changes of the sched_entity across the tg tree to make it
9649  * visible to the root
9650  */
9651 static void propagate_entity_cfs_rq(struct sched_entity *se)
9652 {
9653 	struct cfs_rq *cfs_rq;
9654 
9655 	/* Start to propagate at parent */
9656 	se = se->parent;
9657 
9658 	for_each_sched_entity(se) {
9659 		cfs_rq = cfs_rq_of(se);
9660 
9661 		if (cfs_rq_throttled(cfs_rq))
9662 			break;
9663 
9664 		update_load_avg(cfs_rq, se, UPDATE_TG);
9665 	}
9666 }
9667 #else
9668 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9669 #endif
9670 
9671 static void detach_entity_cfs_rq(struct sched_entity *se)
9672 {
9673 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9674 
9675 	/* Catch up with the cfs_rq and remove our load when we leave */
9676 	update_load_avg(cfs_rq, se, 0);
9677 	detach_entity_load_avg(cfs_rq, se);
9678 	update_tg_load_avg(cfs_rq, false);
9679 	propagate_entity_cfs_rq(se);
9680 }
9681 
9682 static void attach_entity_cfs_rq(struct sched_entity *se)
9683 {
9684 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9685 
9686 #ifdef CONFIG_FAIR_GROUP_SCHED
9687 	/*
9688 	 * Since the real-depth could have been changed (only FAIR
9689 	 * class maintain depth value), reset depth properly.
9690 	 */
9691 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9692 #endif
9693 
9694 	/* Synchronize entity with its cfs_rq */
9695 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9696 	attach_entity_load_avg(cfs_rq, se, 0);
9697 	update_tg_load_avg(cfs_rq, false);
9698 	propagate_entity_cfs_rq(se);
9699 }
9700 
9701 static void detach_task_cfs_rq(struct task_struct *p)
9702 {
9703 	struct sched_entity *se = &p->se;
9704 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9705 
9706 	if (!vruntime_normalized(p)) {
9707 		/*
9708 		 * Fix up our vruntime so that the current sleep doesn't
9709 		 * cause 'unlimited' sleep bonus.
9710 		 */
9711 		place_entity(cfs_rq, se, 0);
9712 		se->vruntime -= cfs_rq->min_vruntime;
9713 	}
9714 
9715 	detach_entity_cfs_rq(se);
9716 }
9717 
9718 static void attach_task_cfs_rq(struct task_struct *p)
9719 {
9720 	struct sched_entity *se = &p->se;
9721 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9722 
9723 	attach_entity_cfs_rq(se);
9724 
9725 	if (!vruntime_normalized(p))
9726 		se->vruntime += cfs_rq->min_vruntime;
9727 }
9728 
9729 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9730 {
9731 	detach_task_cfs_rq(p);
9732 }
9733 
9734 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9735 {
9736 	attach_task_cfs_rq(p);
9737 
9738 	if (task_on_rq_queued(p)) {
9739 		/*
9740 		 * We were most likely switched from sched_rt, so
9741 		 * kick off the schedule if running, otherwise just see
9742 		 * if we can still preempt the current task.
9743 		 */
9744 		if (rq->curr == p)
9745 			resched_curr(rq);
9746 		else
9747 			check_preempt_curr(rq, p, 0);
9748 	}
9749 }
9750 
9751 /* Account for a task changing its policy or group.
9752  *
9753  * This routine is mostly called to set cfs_rq->curr field when a task
9754  * migrates between groups/classes.
9755  */
9756 static void set_curr_task_fair(struct rq *rq)
9757 {
9758 	struct sched_entity *se = &rq->curr->se;
9759 
9760 	for_each_sched_entity(se) {
9761 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9762 
9763 		set_next_entity(cfs_rq, se);
9764 		/* ensure bandwidth has been allocated on our new cfs_rq */
9765 		account_cfs_rq_runtime(cfs_rq, 0);
9766 	}
9767 }
9768 
9769 void init_cfs_rq(struct cfs_rq *cfs_rq)
9770 {
9771 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9772 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9773 #ifndef CONFIG_64BIT
9774 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9775 #endif
9776 #ifdef CONFIG_SMP
9777 	raw_spin_lock_init(&cfs_rq->removed.lock);
9778 #endif
9779 }
9780 
9781 #ifdef CONFIG_FAIR_GROUP_SCHED
9782 static void task_set_group_fair(struct task_struct *p)
9783 {
9784 	struct sched_entity *se = &p->se;
9785 
9786 	set_task_rq(p, task_cpu(p));
9787 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9788 }
9789 
9790 static void task_move_group_fair(struct task_struct *p)
9791 {
9792 	detach_task_cfs_rq(p);
9793 	set_task_rq(p, task_cpu(p));
9794 
9795 #ifdef CONFIG_SMP
9796 	/* Tell se's cfs_rq has been changed -- migrated */
9797 	p->se.avg.last_update_time = 0;
9798 #endif
9799 	attach_task_cfs_rq(p);
9800 }
9801 
9802 static void task_change_group_fair(struct task_struct *p, int type)
9803 {
9804 	switch (type) {
9805 	case TASK_SET_GROUP:
9806 		task_set_group_fair(p);
9807 		break;
9808 
9809 	case TASK_MOVE_GROUP:
9810 		task_move_group_fair(p);
9811 		break;
9812 	}
9813 }
9814 
9815 void free_fair_sched_group(struct task_group *tg)
9816 {
9817 	int i;
9818 
9819 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9820 
9821 	for_each_possible_cpu(i) {
9822 		if (tg->cfs_rq)
9823 			kfree(tg->cfs_rq[i]);
9824 		if (tg->se)
9825 			kfree(tg->se[i]);
9826 	}
9827 
9828 	kfree(tg->cfs_rq);
9829 	kfree(tg->se);
9830 }
9831 
9832 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9833 {
9834 	struct sched_entity *se;
9835 	struct cfs_rq *cfs_rq;
9836 	int i;
9837 
9838 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9839 	if (!tg->cfs_rq)
9840 		goto err;
9841 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9842 	if (!tg->se)
9843 		goto err;
9844 
9845 	tg->shares = NICE_0_LOAD;
9846 
9847 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9848 
9849 	for_each_possible_cpu(i) {
9850 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9851 				      GFP_KERNEL, cpu_to_node(i));
9852 		if (!cfs_rq)
9853 			goto err;
9854 
9855 		se = kzalloc_node(sizeof(struct sched_entity),
9856 				  GFP_KERNEL, cpu_to_node(i));
9857 		if (!se)
9858 			goto err_free_rq;
9859 
9860 		init_cfs_rq(cfs_rq);
9861 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9862 		init_entity_runnable_average(se);
9863 	}
9864 
9865 	return 1;
9866 
9867 err_free_rq:
9868 	kfree(cfs_rq);
9869 err:
9870 	return 0;
9871 }
9872 
9873 void online_fair_sched_group(struct task_group *tg)
9874 {
9875 	struct sched_entity *se;
9876 	struct rq *rq;
9877 	int i;
9878 
9879 	for_each_possible_cpu(i) {
9880 		rq = cpu_rq(i);
9881 		se = tg->se[i];
9882 
9883 		raw_spin_lock_irq(&rq->lock);
9884 		update_rq_clock(rq);
9885 		attach_entity_cfs_rq(se);
9886 		sync_throttle(tg, i);
9887 		raw_spin_unlock_irq(&rq->lock);
9888 	}
9889 }
9890 
9891 void unregister_fair_sched_group(struct task_group *tg)
9892 {
9893 	unsigned long flags;
9894 	struct rq *rq;
9895 	int cpu;
9896 
9897 	for_each_possible_cpu(cpu) {
9898 		if (tg->se[cpu])
9899 			remove_entity_load_avg(tg->se[cpu]);
9900 
9901 		/*
9902 		 * Only empty task groups can be destroyed; so we can speculatively
9903 		 * check on_list without danger of it being re-added.
9904 		 */
9905 		if (!tg->cfs_rq[cpu]->on_list)
9906 			continue;
9907 
9908 		rq = cpu_rq(cpu);
9909 
9910 		raw_spin_lock_irqsave(&rq->lock, flags);
9911 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9912 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9913 	}
9914 }
9915 
9916 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9917 			struct sched_entity *se, int cpu,
9918 			struct sched_entity *parent)
9919 {
9920 	struct rq *rq = cpu_rq(cpu);
9921 
9922 	cfs_rq->tg = tg;
9923 	cfs_rq->rq = rq;
9924 	init_cfs_rq_runtime(cfs_rq);
9925 
9926 	tg->cfs_rq[cpu] = cfs_rq;
9927 	tg->se[cpu] = se;
9928 
9929 	/* se could be NULL for root_task_group */
9930 	if (!se)
9931 		return;
9932 
9933 	if (!parent) {
9934 		se->cfs_rq = &rq->cfs;
9935 		se->depth = 0;
9936 	} else {
9937 		se->cfs_rq = parent->my_q;
9938 		se->depth = parent->depth + 1;
9939 	}
9940 
9941 	se->my_q = cfs_rq;
9942 	/* guarantee group entities always have weight */
9943 	update_load_set(&se->load, NICE_0_LOAD);
9944 	se->parent = parent;
9945 }
9946 
9947 static DEFINE_MUTEX(shares_mutex);
9948 
9949 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9950 {
9951 	int i;
9952 
9953 	/*
9954 	 * We can't change the weight of the root cgroup.
9955 	 */
9956 	if (!tg->se[0])
9957 		return -EINVAL;
9958 
9959 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9960 
9961 	mutex_lock(&shares_mutex);
9962 	if (tg->shares == shares)
9963 		goto done;
9964 
9965 	tg->shares = shares;
9966 	for_each_possible_cpu(i) {
9967 		struct rq *rq = cpu_rq(i);
9968 		struct sched_entity *se = tg->se[i];
9969 		struct rq_flags rf;
9970 
9971 		/* Propagate contribution to hierarchy */
9972 		rq_lock_irqsave(rq, &rf);
9973 		update_rq_clock(rq);
9974 		for_each_sched_entity(se) {
9975 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9976 			update_cfs_group(se);
9977 		}
9978 		rq_unlock_irqrestore(rq, &rf);
9979 	}
9980 
9981 done:
9982 	mutex_unlock(&shares_mutex);
9983 	return 0;
9984 }
9985 #else /* CONFIG_FAIR_GROUP_SCHED */
9986 
9987 void free_fair_sched_group(struct task_group *tg) { }
9988 
9989 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9990 {
9991 	return 1;
9992 }
9993 
9994 void online_fair_sched_group(struct task_group *tg) { }
9995 
9996 void unregister_fair_sched_group(struct task_group *tg) { }
9997 
9998 #endif /* CONFIG_FAIR_GROUP_SCHED */
9999 
10000 
10001 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10002 {
10003 	struct sched_entity *se = &task->se;
10004 	unsigned int rr_interval = 0;
10005 
10006 	/*
10007 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10008 	 * idle runqueue:
10009 	 */
10010 	if (rq->cfs.load.weight)
10011 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10012 
10013 	return rr_interval;
10014 }
10015 
10016 /*
10017  * All the scheduling class methods:
10018  */
10019 const struct sched_class fair_sched_class = {
10020 	.next			= &idle_sched_class,
10021 	.enqueue_task		= enqueue_task_fair,
10022 	.dequeue_task		= dequeue_task_fair,
10023 	.yield_task		= yield_task_fair,
10024 	.yield_to_task		= yield_to_task_fair,
10025 
10026 	.check_preempt_curr	= check_preempt_wakeup,
10027 
10028 	.pick_next_task		= pick_next_task_fair,
10029 	.put_prev_task		= put_prev_task_fair,
10030 
10031 #ifdef CONFIG_SMP
10032 	.select_task_rq		= select_task_rq_fair,
10033 	.migrate_task_rq	= migrate_task_rq_fair,
10034 
10035 	.rq_online		= rq_online_fair,
10036 	.rq_offline		= rq_offline_fair,
10037 
10038 	.task_dead		= task_dead_fair,
10039 	.set_cpus_allowed	= set_cpus_allowed_common,
10040 #endif
10041 
10042 	.set_curr_task          = set_curr_task_fair,
10043 	.task_tick		= task_tick_fair,
10044 	.task_fork		= task_fork_fair,
10045 
10046 	.prio_changed		= prio_changed_fair,
10047 	.switched_from		= switched_from_fair,
10048 	.switched_to		= switched_to_fair,
10049 
10050 	.get_rr_interval	= get_rr_interval_fair,
10051 
10052 	.update_curr		= update_curr_fair,
10053 
10054 #ifdef CONFIG_FAIR_GROUP_SCHED
10055 	.task_change_group	= task_change_group_fair,
10056 #endif
10057 };
10058 
10059 #ifdef CONFIG_SCHED_DEBUG
10060 void print_cfs_stats(struct seq_file *m, int cpu)
10061 {
10062 	struct cfs_rq *cfs_rq, *pos;
10063 
10064 	rcu_read_lock();
10065 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10066 		print_cfs_rq(m, cpu, cfs_rq);
10067 	rcu_read_unlock();
10068 }
10069 
10070 #ifdef CONFIG_NUMA_BALANCING
10071 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10072 {
10073 	int node;
10074 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10075 
10076 	for_each_online_node(node) {
10077 		if (p->numa_faults) {
10078 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10079 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10080 		}
10081 		if (p->numa_group) {
10082 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10083 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10084 		}
10085 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10086 	}
10087 }
10088 #endif /* CONFIG_NUMA_BALANCING */
10089 #endif /* CONFIG_SCHED_DEBUG */
10090 
10091 __init void init_sched_fair_class(void)
10092 {
10093 #ifdef CONFIG_SMP
10094 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10095 
10096 #ifdef CONFIG_NO_HZ_COMMON
10097 	nohz.next_balance = jiffies;
10098 	nohz.next_blocked = jiffies;
10099 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10100 #endif
10101 #endif /* SMP */
10102 
10103 }
10104