1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include <linux/sched/cond_resched.h> 55 56 #include "sched.h" 57 #include "stats.h" 58 #include "autogroup.h" 59 60 /* 61 * The initial- and re-scaling of tunables is configurable 62 * 63 * Options are: 64 * 65 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 66 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 67 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 68 * 69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 70 */ 71 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 72 73 /* 74 * Minimal preemption granularity for CPU-bound tasks: 75 * 76 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 77 */ 78 unsigned int sysctl_sched_base_slice = 750000ULL; 79 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 80 81 /* 82 * After fork, child runs first. If set to 0 (default) then 83 * parent will (try to) run first. 84 */ 85 unsigned int sysctl_sched_child_runs_first __read_mostly; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 int sched_thermal_decay_shift; 90 static int __init setup_sched_thermal_decay_shift(char *str) 91 { 92 int _shift = 0; 93 94 if (kstrtoint(str, 0, &_shift)) 95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 96 97 sched_thermal_decay_shift = clamp(_shift, 0, 10); 98 return 1; 99 } 100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered CPU has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 111 /* 112 * The margin used when comparing utilization with CPU capacity. 113 * 114 * (default: ~20%) 115 */ 116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 117 118 /* 119 * The margin used when comparing CPU capacities. 120 * is 'cap1' noticeably greater than 'cap2' 121 * 122 * (default: ~5%) 123 */ 124 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 125 #endif 126 127 #ifdef CONFIG_CFS_BANDWIDTH 128 /* 129 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 130 * each time a cfs_rq requests quota. 131 * 132 * Note: in the case that the slice exceeds the runtime remaining (either due 133 * to consumption or the quota being specified to be smaller than the slice) 134 * we will always only issue the remaining available time. 135 * 136 * (default: 5 msec, units: microseconds) 137 */ 138 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 139 #endif 140 141 #ifdef CONFIG_NUMA_BALANCING 142 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 143 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 144 #endif 145 146 #ifdef CONFIG_SYSCTL 147 static struct ctl_table sched_fair_sysctls[] = { 148 { 149 .procname = "sched_child_runs_first", 150 .data = &sysctl_sched_child_runs_first, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec, 154 }, 155 #ifdef CONFIG_CFS_BANDWIDTH 156 { 157 .procname = "sched_cfs_bandwidth_slice_us", 158 .data = &sysctl_sched_cfs_bandwidth_slice, 159 .maxlen = sizeof(unsigned int), 160 .mode = 0644, 161 .proc_handler = proc_dointvec_minmax, 162 .extra1 = SYSCTL_ONE, 163 }, 164 #endif 165 #ifdef CONFIG_NUMA_BALANCING 166 { 167 .procname = "numa_balancing_promote_rate_limit_MBps", 168 .data = &sysctl_numa_balancing_promote_rate_limit, 169 .maxlen = sizeof(unsigned int), 170 .mode = 0644, 171 .proc_handler = proc_dointvec_minmax, 172 .extra1 = SYSCTL_ZERO, 173 }, 174 #endif /* CONFIG_NUMA_BALANCING */ 175 {} 176 }; 177 178 static int __init sched_fair_sysctl_init(void) 179 { 180 register_sysctl_init("kernel", sched_fair_sysctls); 181 return 0; 182 } 183 late_initcall(sched_fair_sysctl_init); 184 #endif 185 186 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 187 { 188 lw->weight += inc; 189 lw->inv_weight = 0; 190 } 191 192 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 193 { 194 lw->weight -= dec; 195 lw->inv_weight = 0; 196 } 197 198 static inline void update_load_set(struct load_weight *lw, unsigned long w) 199 { 200 lw->weight = w; 201 lw->inv_weight = 0; 202 } 203 204 /* 205 * Increase the granularity value when there are more CPUs, 206 * because with more CPUs the 'effective latency' as visible 207 * to users decreases. But the relationship is not linear, 208 * so pick a second-best guess by going with the log2 of the 209 * number of CPUs. 210 * 211 * This idea comes from the SD scheduler of Con Kolivas: 212 */ 213 static unsigned int get_update_sysctl_factor(void) 214 { 215 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 216 unsigned int factor; 217 218 switch (sysctl_sched_tunable_scaling) { 219 case SCHED_TUNABLESCALING_NONE: 220 factor = 1; 221 break; 222 case SCHED_TUNABLESCALING_LINEAR: 223 factor = cpus; 224 break; 225 case SCHED_TUNABLESCALING_LOG: 226 default: 227 factor = 1 + ilog2(cpus); 228 break; 229 } 230 231 return factor; 232 } 233 234 static void update_sysctl(void) 235 { 236 unsigned int factor = get_update_sysctl_factor(); 237 238 #define SET_SYSCTL(name) \ 239 (sysctl_##name = (factor) * normalized_sysctl_##name) 240 SET_SYSCTL(sched_base_slice); 241 #undef SET_SYSCTL 242 } 243 244 void __init sched_init_granularity(void) 245 { 246 update_sysctl(); 247 } 248 249 #define WMULT_CONST (~0U) 250 #define WMULT_SHIFT 32 251 252 static void __update_inv_weight(struct load_weight *lw) 253 { 254 unsigned long w; 255 256 if (likely(lw->inv_weight)) 257 return; 258 259 w = scale_load_down(lw->weight); 260 261 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 262 lw->inv_weight = 1; 263 else if (unlikely(!w)) 264 lw->inv_weight = WMULT_CONST; 265 else 266 lw->inv_weight = WMULT_CONST / w; 267 } 268 269 /* 270 * delta_exec * weight / lw.weight 271 * OR 272 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 273 * 274 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 275 * we're guaranteed shift stays positive because inv_weight is guaranteed to 276 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 277 * 278 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 279 * weight/lw.weight <= 1, and therefore our shift will also be positive. 280 */ 281 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 282 { 283 u64 fact = scale_load_down(weight); 284 u32 fact_hi = (u32)(fact >> 32); 285 int shift = WMULT_SHIFT; 286 int fs; 287 288 __update_inv_weight(lw); 289 290 if (unlikely(fact_hi)) { 291 fs = fls(fact_hi); 292 shift -= fs; 293 fact >>= fs; 294 } 295 296 fact = mul_u32_u32(fact, lw->inv_weight); 297 298 fact_hi = (u32)(fact >> 32); 299 if (fact_hi) { 300 fs = fls(fact_hi); 301 shift -= fs; 302 fact >>= fs; 303 } 304 305 return mul_u64_u32_shr(delta_exec, fact, shift); 306 } 307 308 /* 309 * delta /= w 310 */ 311 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 312 { 313 if (unlikely(se->load.weight != NICE_0_LOAD)) 314 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 315 316 return delta; 317 } 318 319 const struct sched_class fair_sched_class; 320 321 /************************************************************** 322 * CFS operations on generic schedulable entities: 323 */ 324 325 #ifdef CONFIG_FAIR_GROUP_SCHED 326 327 /* Walk up scheduling entities hierarchy */ 328 #define for_each_sched_entity(se) \ 329 for (; se; se = se->parent) 330 331 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 332 { 333 struct rq *rq = rq_of(cfs_rq); 334 int cpu = cpu_of(rq); 335 336 if (cfs_rq->on_list) 337 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 338 339 cfs_rq->on_list = 1; 340 341 /* 342 * Ensure we either appear before our parent (if already 343 * enqueued) or force our parent to appear after us when it is 344 * enqueued. The fact that we always enqueue bottom-up 345 * reduces this to two cases and a special case for the root 346 * cfs_rq. Furthermore, it also means that we will always reset 347 * tmp_alone_branch either when the branch is connected 348 * to a tree or when we reach the top of the tree 349 */ 350 if (cfs_rq->tg->parent && 351 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 352 /* 353 * If parent is already on the list, we add the child 354 * just before. Thanks to circular linked property of 355 * the list, this means to put the child at the tail 356 * of the list that starts by parent. 357 */ 358 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 359 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 360 /* 361 * The branch is now connected to its tree so we can 362 * reset tmp_alone_branch to the beginning of the 363 * list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 if (!cfs_rq->tg->parent) { 370 /* 371 * cfs rq without parent should be put 372 * at the tail of the list. 373 */ 374 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 375 &rq->leaf_cfs_rq_list); 376 /* 377 * We have reach the top of a tree so we can reset 378 * tmp_alone_branch to the beginning of the list. 379 */ 380 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 381 return true; 382 } 383 384 /* 385 * The parent has not already been added so we want to 386 * make sure that it will be put after us. 387 * tmp_alone_branch points to the begin of the branch 388 * where we will add parent. 389 */ 390 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 391 /* 392 * update tmp_alone_branch to points to the new begin 393 * of the branch 394 */ 395 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 396 return false; 397 } 398 399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 400 { 401 if (cfs_rq->on_list) { 402 struct rq *rq = rq_of(cfs_rq); 403 404 /* 405 * With cfs_rq being unthrottled/throttled during an enqueue, 406 * it can happen the tmp_alone_branch points the a leaf that 407 * we finally want to del. In this case, tmp_alone_branch moves 408 * to the prev element but it will point to rq->leaf_cfs_rq_list 409 * at the end of the enqueue. 410 */ 411 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 412 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 413 414 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 415 cfs_rq->on_list = 0; 416 } 417 } 418 419 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 420 { 421 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 422 } 423 424 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 425 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 426 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 427 leaf_cfs_rq_list) 428 429 /* Do the two (enqueued) entities belong to the same group ? */ 430 static inline struct cfs_rq * 431 is_same_group(struct sched_entity *se, struct sched_entity *pse) 432 { 433 if (se->cfs_rq == pse->cfs_rq) 434 return se->cfs_rq; 435 436 return NULL; 437 } 438 439 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 440 { 441 return se->parent; 442 } 443 444 static void 445 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 446 { 447 int se_depth, pse_depth; 448 449 /* 450 * preemption test can be made between sibling entities who are in the 451 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 452 * both tasks until we find their ancestors who are siblings of common 453 * parent. 454 */ 455 456 /* First walk up until both entities are at same depth */ 457 se_depth = (*se)->depth; 458 pse_depth = (*pse)->depth; 459 460 while (se_depth > pse_depth) { 461 se_depth--; 462 *se = parent_entity(*se); 463 } 464 465 while (pse_depth > se_depth) { 466 pse_depth--; 467 *pse = parent_entity(*pse); 468 } 469 470 while (!is_same_group(*se, *pse)) { 471 *se = parent_entity(*se); 472 *pse = parent_entity(*pse); 473 } 474 } 475 476 static int tg_is_idle(struct task_group *tg) 477 { 478 return tg->idle > 0; 479 } 480 481 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 482 { 483 return cfs_rq->idle > 0; 484 } 485 486 static int se_is_idle(struct sched_entity *se) 487 { 488 if (entity_is_task(se)) 489 return task_has_idle_policy(task_of(se)); 490 return cfs_rq_is_idle(group_cfs_rq(se)); 491 } 492 493 #else /* !CONFIG_FAIR_GROUP_SCHED */ 494 495 #define for_each_sched_entity(se) \ 496 for (; se; se = NULL) 497 498 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 499 { 500 return true; 501 } 502 503 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 504 { 505 } 506 507 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 508 { 509 } 510 511 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 512 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 513 514 static inline struct sched_entity *parent_entity(struct sched_entity *se) 515 { 516 return NULL; 517 } 518 519 static inline void 520 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 521 { 522 } 523 524 static inline int tg_is_idle(struct task_group *tg) 525 { 526 return 0; 527 } 528 529 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 530 { 531 return 0; 532 } 533 534 static int se_is_idle(struct sched_entity *se) 535 { 536 return 0; 537 } 538 539 #endif /* CONFIG_FAIR_GROUP_SCHED */ 540 541 static __always_inline 542 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 543 544 /************************************************************** 545 * Scheduling class tree data structure manipulation methods: 546 */ 547 548 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 549 { 550 s64 delta = (s64)(vruntime - max_vruntime); 551 if (delta > 0) 552 max_vruntime = vruntime; 553 554 return max_vruntime; 555 } 556 557 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 558 { 559 s64 delta = (s64)(vruntime - min_vruntime); 560 if (delta < 0) 561 min_vruntime = vruntime; 562 563 return min_vruntime; 564 } 565 566 static inline bool entity_before(const struct sched_entity *a, 567 const struct sched_entity *b) 568 { 569 return (s64)(a->vruntime - b->vruntime) < 0; 570 } 571 572 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 573 { 574 return (s64)(se->vruntime - cfs_rq->min_vruntime); 575 } 576 577 #define __node_2_se(node) \ 578 rb_entry((node), struct sched_entity, run_node) 579 580 /* 581 * Compute virtual time from the per-task service numbers: 582 * 583 * Fair schedulers conserve lag: 584 * 585 * \Sum lag_i = 0 586 * 587 * Where lag_i is given by: 588 * 589 * lag_i = S - s_i = w_i * (V - v_i) 590 * 591 * Where S is the ideal service time and V is it's virtual time counterpart. 592 * Therefore: 593 * 594 * \Sum lag_i = 0 595 * \Sum w_i * (V - v_i) = 0 596 * \Sum w_i * V - w_i * v_i = 0 597 * 598 * From which we can solve an expression for V in v_i (which we have in 599 * se->vruntime): 600 * 601 * \Sum v_i * w_i \Sum v_i * w_i 602 * V = -------------- = -------------- 603 * \Sum w_i W 604 * 605 * Specifically, this is the weighted average of all entity virtual runtimes. 606 * 607 * [[ NOTE: this is only equal to the ideal scheduler under the condition 608 * that join/leave operations happen at lag_i = 0, otherwise the 609 * virtual time has non-continguous motion equivalent to: 610 * 611 * V +-= lag_i / W 612 * 613 * Also see the comment in place_entity() that deals with this. ]] 614 * 615 * However, since v_i is u64, and the multiplcation could easily overflow 616 * transform it into a relative form that uses smaller quantities: 617 * 618 * Substitute: v_i == (v_i - v0) + v0 619 * 620 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 621 * V = ---------------------------- = --------------------- + v0 622 * W W 623 * 624 * Which we track using: 625 * 626 * v0 := cfs_rq->min_vruntime 627 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 628 * \Sum w_i := cfs_rq->avg_load 629 * 630 * Since min_vruntime is a monotonic increasing variable that closely tracks 631 * the per-task service, these deltas: (v_i - v), will be in the order of the 632 * maximal (virtual) lag induced in the system due to quantisation. 633 * 634 * Also, we use scale_load_down() to reduce the size. 635 * 636 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 637 */ 638 static void 639 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 640 { 641 unsigned long weight = scale_load_down(se->load.weight); 642 s64 key = entity_key(cfs_rq, se); 643 644 cfs_rq->avg_vruntime += key * weight; 645 cfs_rq->avg_load += weight; 646 } 647 648 static void 649 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 650 { 651 unsigned long weight = scale_load_down(se->load.weight); 652 s64 key = entity_key(cfs_rq, se); 653 654 cfs_rq->avg_vruntime -= key * weight; 655 cfs_rq->avg_load -= weight; 656 } 657 658 static inline 659 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 660 { 661 /* 662 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 663 */ 664 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 665 } 666 667 u64 avg_vruntime(struct cfs_rq *cfs_rq) 668 { 669 struct sched_entity *curr = cfs_rq->curr; 670 s64 avg = cfs_rq->avg_vruntime; 671 long load = cfs_rq->avg_load; 672 673 if (curr && curr->on_rq) { 674 unsigned long weight = scale_load_down(curr->load.weight); 675 676 avg += entity_key(cfs_rq, curr) * weight; 677 load += weight; 678 } 679 680 if (load) 681 avg = div_s64(avg, load); 682 683 return cfs_rq->min_vruntime + avg; 684 } 685 686 /* 687 * lag_i = S - s_i = w_i * (V - v_i) 688 * 689 * However, since V is approximated by the weighted average of all entities it 690 * is possible -- by addition/removal/reweight to the tree -- to move V around 691 * and end up with a larger lag than we started with. 692 * 693 * Limit this to either double the slice length with a minimum of TICK_NSEC 694 * since that is the timing granularity. 695 * 696 * EEVDF gives the following limit for a steady state system: 697 * 698 * -r_max < lag < max(r_max, q) 699 * 700 * XXX could add max_slice to the augmented data to track this. 701 */ 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 s64 lag, limit; 705 706 SCHED_WARN_ON(!se->on_rq); 707 lag = avg_vruntime(cfs_rq) - se->vruntime; 708 709 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 710 se->vlag = clamp(lag, -limit, limit); 711 } 712 713 /* 714 * Entity is eligible once it received less service than it ought to have, 715 * eg. lag >= 0. 716 * 717 * lag_i = S - s_i = w_i*(V - v_i) 718 * 719 * lag_i >= 0 -> V >= v_i 720 * 721 * \Sum (v_i - v)*w_i 722 * V = ------------------ + v 723 * \Sum w_i 724 * 725 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 726 * 727 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 728 * to the loss in precision caused by the division. 729 */ 730 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 731 { 732 struct sched_entity *curr = cfs_rq->curr; 733 s64 avg = cfs_rq->avg_vruntime; 734 long load = cfs_rq->avg_load; 735 736 if (curr && curr->on_rq) { 737 unsigned long weight = scale_load_down(curr->load.weight); 738 739 avg += entity_key(cfs_rq, curr) * weight; 740 load += weight; 741 } 742 743 return avg >= entity_key(cfs_rq, se) * load; 744 } 745 746 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 747 { 748 u64 min_vruntime = cfs_rq->min_vruntime; 749 /* 750 * open coded max_vruntime() to allow updating avg_vruntime 751 */ 752 s64 delta = (s64)(vruntime - min_vruntime); 753 if (delta > 0) { 754 avg_vruntime_update(cfs_rq, delta); 755 min_vruntime = vruntime; 756 } 757 return min_vruntime; 758 } 759 760 static void update_min_vruntime(struct cfs_rq *cfs_rq) 761 { 762 struct sched_entity *se = __pick_first_entity(cfs_rq); 763 struct sched_entity *curr = cfs_rq->curr; 764 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 u64_u32_store(cfs_rq->min_vruntime, 783 __update_min_vruntime(cfs_rq, vruntime)); 784 } 785 786 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 787 { 788 return entity_before(__node_2_se(a), __node_2_se(b)); 789 } 790 791 #define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 792 793 static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) 794 { 795 if (node) { 796 struct sched_entity *rse = __node_2_se(node); 797 if (deadline_gt(min_deadline, se, rse)) 798 se->min_deadline = rse->min_deadline; 799 } 800 } 801 802 /* 803 * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) 804 */ 805 static inline bool min_deadline_update(struct sched_entity *se, bool exit) 806 { 807 u64 old_min_deadline = se->min_deadline; 808 struct rb_node *node = &se->run_node; 809 810 se->min_deadline = se->deadline; 811 __update_min_deadline(se, node->rb_right); 812 __update_min_deadline(se, node->rb_left); 813 814 return se->min_deadline == old_min_deadline; 815 } 816 817 RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, 818 run_node, min_deadline, min_deadline_update); 819 820 /* 821 * Enqueue an entity into the rb-tree: 822 */ 823 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 824 { 825 avg_vruntime_add(cfs_rq, se); 826 se->min_deadline = se->deadline; 827 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 828 __entity_less, &min_deadline_cb); 829 } 830 831 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 832 { 833 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 834 &min_deadline_cb); 835 avg_vruntime_sub(cfs_rq, se); 836 } 837 838 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 839 { 840 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 841 842 if (!left) 843 return NULL; 844 845 return __node_2_se(left); 846 } 847 848 /* 849 * Earliest Eligible Virtual Deadline First 850 * 851 * In order to provide latency guarantees for different request sizes 852 * EEVDF selects the best runnable task from two criteria: 853 * 854 * 1) the task must be eligible (must be owed service) 855 * 856 * 2) from those tasks that meet 1), we select the one 857 * with the earliest virtual deadline. 858 * 859 * We can do this in O(log n) time due to an augmented RB-tree. The 860 * tree keeps the entries sorted on service, but also functions as a 861 * heap based on the deadline by keeping: 862 * 863 * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) 864 * 865 * Which allows an EDF like search on (sub)trees. 866 */ 867 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 868 { 869 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 870 struct sched_entity *curr = cfs_rq->curr; 871 struct sched_entity *best = NULL; 872 873 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 874 curr = NULL; 875 876 /* 877 * Once selected, run a task until it either becomes non-eligible or 878 * until it gets a new slice. See the HACK in set_next_entity(). 879 */ 880 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 881 return curr; 882 883 while (node) { 884 struct sched_entity *se = __node_2_se(node); 885 886 /* 887 * If this entity is not eligible, try the left subtree. 888 */ 889 if (!entity_eligible(cfs_rq, se)) { 890 node = node->rb_left; 891 continue; 892 } 893 894 /* 895 * If this entity has an earlier deadline than the previous 896 * best, take this one. If it also has the earliest deadline 897 * of its subtree, we're done. 898 */ 899 if (!best || deadline_gt(deadline, best, se)) { 900 best = se; 901 if (best->deadline == best->min_deadline) 902 break; 903 } 904 905 /* 906 * If the earlest deadline in this subtree is in the fully 907 * eligible left half of our space, go there. 908 */ 909 if (node->rb_left && 910 __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { 911 node = node->rb_left; 912 continue; 913 } 914 915 node = node->rb_right; 916 } 917 918 if (!best || (curr && deadline_gt(deadline, best, curr))) 919 best = curr; 920 921 if (unlikely(!best)) { 922 struct sched_entity *left = __pick_first_entity(cfs_rq); 923 if (left) { 924 pr_err("EEVDF scheduling fail, picking leftmost\n"); 925 return left; 926 } 927 } 928 929 return best; 930 } 931 932 #ifdef CONFIG_SCHED_DEBUG 933 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 934 { 935 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 936 937 if (!last) 938 return NULL; 939 940 return __node_2_se(last); 941 } 942 943 /************************************************************** 944 * Scheduling class statistics methods: 945 */ 946 #ifdef CONFIG_SMP 947 int sched_update_scaling(void) 948 { 949 unsigned int factor = get_update_sysctl_factor(); 950 951 #define WRT_SYSCTL(name) \ 952 (normalized_sysctl_##name = sysctl_##name / (factor)) 953 WRT_SYSCTL(sched_base_slice); 954 #undef WRT_SYSCTL 955 956 return 0; 957 } 958 #endif 959 #endif 960 961 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 962 963 /* 964 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 965 * this is probably good enough. 966 */ 967 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 968 { 969 if ((s64)(se->vruntime - se->deadline) < 0) 970 return; 971 972 /* 973 * For EEVDF the virtual time slope is determined by w_i (iow. 974 * nice) while the request time r_i is determined by 975 * sysctl_sched_base_slice. 976 */ 977 se->slice = sysctl_sched_base_slice; 978 979 /* 980 * EEVDF: vd_i = ve_i + r_i / w_i 981 */ 982 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 983 984 /* 985 * The task has consumed its request, reschedule. 986 */ 987 if (cfs_rq->nr_running > 1) { 988 resched_curr(rq_of(cfs_rq)); 989 clear_buddies(cfs_rq, se); 990 } 991 } 992 993 #include "pelt.h" 994 #ifdef CONFIG_SMP 995 996 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 997 static unsigned long task_h_load(struct task_struct *p); 998 static unsigned long capacity_of(int cpu); 999 1000 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1001 void init_entity_runnable_average(struct sched_entity *se) 1002 { 1003 struct sched_avg *sa = &se->avg; 1004 1005 memset(sa, 0, sizeof(*sa)); 1006 1007 /* 1008 * Tasks are initialized with full load to be seen as heavy tasks until 1009 * they get a chance to stabilize to their real load level. 1010 * Group entities are initialized with zero load to reflect the fact that 1011 * nothing has been attached to the task group yet. 1012 */ 1013 if (entity_is_task(se)) 1014 sa->load_avg = scale_load_down(se->load.weight); 1015 1016 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1017 } 1018 1019 /* 1020 * With new tasks being created, their initial util_avgs are extrapolated 1021 * based on the cfs_rq's current util_avg: 1022 * 1023 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1024 * 1025 * However, in many cases, the above util_avg does not give a desired 1026 * value. Moreover, the sum of the util_avgs may be divergent, such 1027 * as when the series is a harmonic series. 1028 * 1029 * To solve this problem, we also cap the util_avg of successive tasks to 1030 * only 1/2 of the left utilization budget: 1031 * 1032 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1033 * 1034 * where n denotes the nth task and cpu_scale the CPU capacity. 1035 * 1036 * For example, for a CPU with 1024 of capacity, a simplest series from 1037 * the beginning would be like: 1038 * 1039 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1040 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1041 * 1042 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1043 * if util_avg > util_avg_cap. 1044 */ 1045 void post_init_entity_util_avg(struct task_struct *p) 1046 { 1047 struct sched_entity *se = &p->se; 1048 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1049 struct sched_avg *sa = &se->avg; 1050 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1051 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1052 1053 if (p->sched_class != &fair_sched_class) { 1054 /* 1055 * For !fair tasks do: 1056 * 1057 update_cfs_rq_load_avg(now, cfs_rq); 1058 attach_entity_load_avg(cfs_rq, se); 1059 switched_from_fair(rq, p); 1060 * 1061 * such that the next switched_to_fair() has the 1062 * expected state. 1063 */ 1064 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1065 return; 1066 } 1067 1068 if (cap > 0) { 1069 if (cfs_rq->avg.util_avg != 0) { 1070 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1071 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1072 1073 if (sa->util_avg > cap) 1074 sa->util_avg = cap; 1075 } else { 1076 sa->util_avg = cap; 1077 } 1078 } 1079 1080 sa->runnable_avg = sa->util_avg; 1081 } 1082 1083 #else /* !CONFIG_SMP */ 1084 void init_entity_runnable_average(struct sched_entity *se) 1085 { 1086 } 1087 void post_init_entity_util_avg(struct task_struct *p) 1088 { 1089 } 1090 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1091 { 1092 } 1093 #endif /* CONFIG_SMP */ 1094 1095 /* 1096 * Update the current task's runtime statistics. 1097 */ 1098 static void update_curr(struct cfs_rq *cfs_rq) 1099 { 1100 struct sched_entity *curr = cfs_rq->curr; 1101 u64 now = rq_clock_task(rq_of(cfs_rq)); 1102 u64 delta_exec; 1103 1104 if (unlikely(!curr)) 1105 return; 1106 1107 delta_exec = now - curr->exec_start; 1108 if (unlikely((s64)delta_exec <= 0)) 1109 return; 1110 1111 curr->exec_start = now; 1112 1113 if (schedstat_enabled()) { 1114 struct sched_statistics *stats; 1115 1116 stats = __schedstats_from_se(curr); 1117 __schedstat_set(stats->exec_max, 1118 max(delta_exec, stats->exec_max)); 1119 } 1120 1121 curr->sum_exec_runtime += delta_exec; 1122 schedstat_add(cfs_rq->exec_clock, delta_exec); 1123 1124 curr->vruntime += calc_delta_fair(delta_exec, curr); 1125 update_deadline(cfs_rq, curr); 1126 update_min_vruntime(cfs_rq); 1127 1128 if (entity_is_task(curr)) { 1129 struct task_struct *curtask = task_of(curr); 1130 1131 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 1132 cgroup_account_cputime(curtask, delta_exec); 1133 account_group_exec_runtime(curtask, delta_exec); 1134 } 1135 1136 account_cfs_rq_runtime(cfs_rq, delta_exec); 1137 } 1138 1139 static void update_curr_fair(struct rq *rq) 1140 { 1141 update_curr(cfs_rq_of(&rq->curr->se)); 1142 } 1143 1144 static inline void 1145 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1146 { 1147 struct sched_statistics *stats; 1148 struct task_struct *p = NULL; 1149 1150 if (!schedstat_enabled()) 1151 return; 1152 1153 stats = __schedstats_from_se(se); 1154 1155 if (entity_is_task(se)) 1156 p = task_of(se); 1157 1158 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1159 } 1160 1161 static inline void 1162 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1163 { 1164 struct sched_statistics *stats; 1165 struct task_struct *p = NULL; 1166 1167 if (!schedstat_enabled()) 1168 return; 1169 1170 stats = __schedstats_from_se(se); 1171 1172 /* 1173 * When the sched_schedstat changes from 0 to 1, some sched se 1174 * maybe already in the runqueue, the se->statistics.wait_start 1175 * will be 0.So it will let the delta wrong. We need to avoid this 1176 * scenario. 1177 */ 1178 if (unlikely(!schedstat_val(stats->wait_start))) 1179 return; 1180 1181 if (entity_is_task(se)) 1182 p = task_of(se); 1183 1184 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1185 } 1186 1187 static inline void 1188 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1189 { 1190 struct sched_statistics *stats; 1191 struct task_struct *tsk = NULL; 1192 1193 if (!schedstat_enabled()) 1194 return; 1195 1196 stats = __schedstats_from_se(se); 1197 1198 if (entity_is_task(se)) 1199 tsk = task_of(se); 1200 1201 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1202 } 1203 1204 /* 1205 * Task is being enqueued - update stats: 1206 */ 1207 static inline void 1208 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1209 { 1210 if (!schedstat_enabled()) 1211 return; 1212 1213 /* 1214 * Are we enqueueing a waiting task? (for current tasks 1215 * a dequeue/enqueue event is a NOP) 1216 */ 1217 if (se != cfs_rq->curr) 1218 update_stats_wait_start_fair(cfs_rq, se); 1219 1220 if (flags & ENQUEUE_WAKEUP) 1221 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1222 } 1223 1224 static inline void 1225 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1226 { 1227 1228 if (!schedstat_enabled()) 1229 return; 1230 1231 /* 1232 * Mark the end of the wait period if dequeueing a 1233 * waiting task: 1234 */ 1235 if (se != cfs_rq->curr) 1236 update_stats_wait_end_fair(cfs_rq, se); 1237 1238 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1239 struct task_struct *tsk = task_of(se); 1240 unsigned int state; 1241 1242 /* XXX racy against TTWU */ 1243 state = READ_ONCE(tsk->__state); 1244 if (state & TASK_INTERRUPTIBLE) 1245 __schedstat_set(tsk->stats.sleep_start, 1246 rq_clock(rq_of(cfs_rq))); 1247 if (state & TASK_UNINTERRUPTIBLE) 1248 __schedstat_set(tsk->stats.block_start, 1249 rq_clock(rq_of(cfs_rq))); 1250 } 1251 } 1252 1253 /* 1254 * We are picking a new current task - update its stats: 1255 */ 1256 static inline void 1257 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1258 { 1259 /* 1260 * We are starting a new run period: 1261 */ 1262 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1263 } 1264 1265 /************************************************** 1266 * Scheduling class queueing methods: 1267 */ 1268 1269 static inline bool is_core_idle(int cpu) 1270 { 1271 #ifdef CONFIG_SCHED_SMT 1272 int sibling; 1273 1274 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1275 if (cpu == sibling) 1276 continue; 1277 1278 if (!idle_cpu(sibling)) 1279 return false; 1280 } 1281 #endif 1282 1283 return true; 1284 } 1285 1286 #ifdef CONFIG_NUMA 1287 #define NUMA_IMBALANCE_MIN 2 1288 1289 static inline long 1290 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1291 { 1292 /* 1293 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1294 * threshold. Above this threshold, individual tasks may be contending 1295 * for both memory bandwidth and any shared HT resources. This is an 1296 * approximation as the number of running tasks may not be related to 1297 * the number of busy CPUs due to sched_setaffinity. 1298 */ 1299 if (dst_running > imb_numa_nr) 1300 return imbalance; 1301 1302 /* 1303 * Allow a small imbalance based on a simple pair of communicating 1304 * tasks that remain local when the destination is lightly loaded. 1305 */ 1306 if (imbalance <= NUMA_IMBALANCE_MIN) 1307 return 0; 1308 1309 return imbalance; 1310 } 1311 #endif /* CONFIG_NUMA */ 1312 1313 #ifdef CONFIG_NUMA_BALANCING 1314 /* 1315 * Approximate time to scan a full NUMA task in ms. The task scan period is 1316 * calculated based on the tasks virtual memory size and 1317 * numa_balancing_scan_size. 1318 */ 1319 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1320 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1321 1322 /* Portion of address space to scan in MB */ 1323 unsigned int sysctl_numa_balancing_scan_size = 256; 1324 1325 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1326 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1327 1328 /* The page with hint page fault latency < threshold in ms is considered hot */ 1329 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1330 1331 struct numa_group { 1332 refcount_t refcount; 1333 1334 spinlock_t lock; /* nr_tasks, tasks */ 1335 int nr_tasks; 1336 pid_t gid; 1337 int active_nodes; 1338 1339 struct rcu_head rcu; 1340 unsigned long total_faults; 1341 unsigned long max_faults_cpu; 1342 /* 1343 * faults[] array is split into two regions: faults_mem and faults_cpu. 1344 * 1345 * Faults_cpu is used to decide whether memory should move 1346 * towards the CPU. As a consequence, these stats are weighted 1347 * more by CPU use than by memory faults. 1348 */ 1349 unsigned long faults[]; 1350 }; 1351 1352 /* 1353 * For functions that can be called in multiple contexts that permit reading 1354 * ->numa_group (see struct task_struct for locking rules). 1355 */ 1356 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1357 { 1358 return rcu_dereference_check(p->numa_group, p == current || 1359 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1360 } 1361 1362 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1363 { 1364 return rcu_dereference_protected(p->numa_group, p == current); 1365 } 1366 1367 static inline unsigned long group_faults_priv(struct numa_group *ng); 1368 static inline unsigned long group_faults_shared(struct numa_group *ng); 1369 1370 static unsigned int task_nr_scan_windows(struct task_struct *p) 1371 { 1372 unsigned long rss = 0; 1373 unsigned long nr_scan_pages; 1374 1375 /* 1376 * Calculations based on RSS as non-present and empty pages are skipped 1377 * by the PTE scanner and NUMA hinting faults should be trapped based 1378 * on resident pages 1379 */ 1380 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1381 rss = get_mm_rss(p->mm); 1382 if (!rss) 1383 rss = nr_scan_pages; 1384 1385 rss = round_up(rss, nr_scan_pages); 1386 return rss / nr_scan_pages; 1387 } 1388 1389 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1390 #define MAX_SCAN_WINDOW 2560 1391 1392 static unsigned int task_scan_min(struct task_struct *p) 1393 { 1394 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1395 unsigned int scan, floor; 1396 unsigned int windows = 1; 1397 1398 if (scan_size < MAX_SCAN_WINDOW) 1399 windows = MAX_SCAN_WINDOW / scan_size; 1400 floor = 1000 / windows; 1401 1402 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1403 return max_t(unsigned int, floor, scan); 1404 } 1405 1406 static unsigned int task_scan_start(struct task_struct *p) 1407 { 1408 unsigned long smin = task_scan_min(p); 1409 unsigned long period = smin; 1410 struct numa_group *ng; 1411 1412 /* Scale the maximum scan period with the amount of shared memory. */ 1413 rcu_read_lock(); 1414 ng = rcu_dereference(p->numa_group); 1415 if (ng) { 1416 unsigned long shared = group_faults_shared(ng); 1417 unsigned long private = group_faults_priv(ng); 1418 1419 period *= refcount_read(&ng->refcount); 1420 period *= shared + 1; 1421 period /= private + shared + 1; 1422 } 1423 rcu_read_unlock(); 1424 1425 return max(smin, period); 1426 } 1427 1428 static unsigned int task_scan_max(struct task_struct *p) 1429 { 1430 unsigned long smin = task_scan_min(p); 1431 unsigned long smax; 1432 struct numa_group *ng; 1433 1434 /* Watch for min being lower than max due to floor calculations */ 1435 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1436 1437 /* Scale the maximum scan period with the amount of shared memory. */ 1438 ng = deref_curr_numa_group(p); 1439 if (ng) { 1440 unsigned long shared = group_faults_shared(ng); 1441 unsigned long private = group_faults_priv(ng); 1442 unsigned long period = smax; 1443 1444 period *= refcount_read(&ng->refcount); 1445 period *= shared + 1; 1446 period /= private + shared + 1; 1447 1448 smax = max(smax, period); 1449 } 1450 1451 return max(smin, smax); 1452 } 1453 1454 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1455 { 1456 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1457 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1458 } 1459 1460 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1461 { 1462 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1463 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1464 } 1465 1466 /* Shared or private faults. */ 1467 #define NR_NUMA_HINT_FAULT_TYPES 2 1468 1469 /* Memory and CPU locality */ 1470 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1471 1472 /* Averaged statistics, and temporary buffers. */ 1473 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1474 1475 pid_t task_numa_group_id(struct task_struct *p) 1476 { 1477 struct numa_group *ng; 1478 pid_t gid = 0; 1479 1480 rcu_read_lock(); 1481 ng = rcu_dereference(p->numa_group); 1482 if (ng) 1483 gid = ng->gid; 1484 rcu_read_unlock(); 1485 1486 return gid; 1487 } 1488 1489 /* 1490 * The averaged statistics, shared & private, memory & CPU, 1491 * occupy the first half of the array. The second half of the 1492 * array is for current counters, which are averaged into the 1493 * first set by task_numa_placement. 1494 */ 1495 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1496 { 1497 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1498 } 1499 1500 static inline unsigned long task_faults(struct task_struct *p, int nid) 1501 { 1502 if (!p->numa_faults) 1503 return 0; 1504 1505 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1506 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1507 } 1508 1509 static inline unsigned long group_faults(struct task_struct *p, int nid) 1510 { 1511 struct numa_group *ng = deref_task_numa_group(p); 1512 1513 if (!ng) 1514 return 0; 1515 1516 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1517 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1518 } 1519 1520 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1521 { 1522 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1523 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1524 } 1525 1526 static inline unsigned long group_faults_priv(struct numa_group *ng) 1527 { 1528 unsigned long faults = 0; 1529 int node; 1530 1531 for_each_online_node(node) { 1532 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1533 } 1534 1535 return faults; 1536 } 1537 1538 static inline unsigned long group_faults_shared(struct numa_group *ng) 1539 { 1540 unsigned long faults = 0; 1541 int node; 1542 1543 for_each_online_node(node) { 1544 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1545 } 1546 1547 return faults; 1548 } 1549 1550 /* 1551 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1552 * considered part of a numa group's pseudo-interleaving set. Migrations 1553 * between these nodes are slowed down, to allow things to settle down. 1554 */ 1555 #define ACTIVE_NODE_FRACTION 3 1556 1557 static bool numa_is_active_node(int nid, struct numa_group *ng) 1558 { 1559 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1560 } 1561 1562 /* Handle placement on systems where not all nodes are directly connected. */ 1563 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1564 int lim_dist, bool task) 1565 { 1566 unsigned long score = 0; 1567 int node, max_dist; 1568 1569 /* 1570 * All nodes are directly connected, and the same distance 1571 * from each other. No need for fancy placement algorithms. 1572 */ 1573 if (sched_numa_topology_type == NUMA_DIRECT) 1574 return 0; 1575 1576 /* sched_max_numa_distance may be changed in parallel. */ 1577 max_dist = READ_ONCE(sched_max_numa_distance); 1578 /* 1579 * This code is called for each node, introducing N^2 complexity, 1580 * which should be ok given the number of nodes rarely exceeds 8. 1581 */ 1582 for_each_online_node(node) { 1583 unsigned long faults; 1584 int dist = node_distance(nid, node); 1585 1586 /* 1587 * The furthest away nodes in the system are not interesting 1588 * for placement; nid was already counted. 1589 */ 1590 if (dist >= max_dist || node == nid) 1591 continue; 1592 1593 /* 1594 * On systems with a backplane NUMA topology, compare groups 1595 * of nodes, and move tasks towards the group with the most 1596 * memory accesses. When comparing two nodes at distance 1597 * "hoplimit", only nodes closer by than "hoplimit" are part 1598 * of each group. Skip other nodes. 1599 */ 1600 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1601 continue; 1602 1603 /* Add up the faults from nearby nodes. */ 1604 if (task) 1605 faults = task_faults(p, node); 1606 else 1607 faults = group_faults(p, node); 1608 1609 /* 1610 * On systems with a glueless mesh NUMA topology, there are 1611 * no fixed "groups of nodes". Instead, nodes that are not 1612 * directly connected bounce traffic through intermediate 1613 * nodes; a numa_group can occupy any set of nodes. 1614 * The further away a node is, the less the faults count. 1615 * This seems to result in good task placement. 1616 */ 1617 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1618 faults *= (max_dist - dist); 1619 faults /= (max_dist - LOCAL_DISTANCE); 1620 } 1621 1622 score += faults; 1623 } 1624 1625 return score; 1626 } 1627 1628 /* 1629 * These return the fraction of accesses done by a particular task, or 1630 * task group, on a particular numa node. The group weight is given a 1631 * larger multiplier, in order to group tasks together that are almost 1632 * evenly spread out between numa nodes. 1633 */ 1634 static inline unsigned long task_weight(struct task_struct *p, int nid, 1635 int dist) 1636 { 1637 unsigned long faults, total_faults; 1638 1639 if (!p->numa_faults) 1640 return 0; 1641 1642 total_faults = p->total_numa_faults; 1643 1644 if (!total_faults) 1645 return 0; 1646 1647 faults = task_faults(p, nid); 1648 faults += score_nearby_nodes(p, nid, dist, true); 1649 1650 return 1000 * faults / total_faults; 1651 } 1652 1653 static inline unsigned long group_weight(struct task_struct *p, int nid, 1654 int dist) 1655 { 1656 struct numa_group *ng = deref_task_numa_group(p); 1657 unsigned long faults, total_faults; 1658 1659 if (!ng) 1660 return 0; 1661 1662 total_faults = ng->total_faults; 1663 1664 if (!total_faults) 1665 return 0; 1666 1667 faults = group_faults(p, nid); 1668 faults += score_nearby_nodes(p, nid, dist, false); 1669 1670 return 1000 * faults / total_faults; 1671 } 1672 1673 /* 1674 * If memory tiering mode is enabled, cpupid of slow memory page is 1675 * used to record scan time instead of CPU and PID. When tiering mode 1676 * is disabled at run time, the scan time (in cpupid) will be 1677 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1678 * access out of array bound. 1679 */ 1680 static inline bool cpupid_valid(int cpupid) 1681 { 1682 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1683 } 1684 1685 /* 1686 * For memory tiering mode, if there are enough free pages (more than 1687 * enough watermark defined here) in fast memory node, to take full 1688 * advantage of fast memory capacity, all recently accessed slow 1689 * memory pages will be migrated to fast memory node without 1690 * considering hot threshold. 1691 */ 1692 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1693 { 1694 int z; 1695 unsigned long enough_wmark; 1696 1697 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1698 pgdat->node_present_pages >> 4); 1699 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1700 struct zone *zone = pgdat->node_zones + z; 1701 1702 if (!populated_zone(zone)) 1703 continue; 1704 1705 if (zone_watermark_ok(zone, 0, 1706 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1707 ZONE_MOVABLE, 0)) 1708 return true; 1709 } 1710 return false; 1711 } 1712 1713 /* 1714 * For memory tiering mode, when page tables are scanned, the scan 1715 * time will be recorded in struct page in addition to make page 1716 * PROT_NONE for slow memory page. So when the page is accessed, in 1717 * hint page fault handler, the hint page fault latency is calculated 1718 * via, 1719 * 1720 * hint page fault latency = hint page fault time - scan time 1721 * 1722 * The smaller the hint page fault latency, the higher the possibility 1723 * for the page to be hot. 1724 */ 1725 static int numa_hint_fault_latency(struct page *page) 1726 { 1727 int last_time, time; 1728 1729 time = jiffies_to_msecs(jiffies); 1730 last_time = xchg_page_access_time(page, time); 1731 1732 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1733 } 1734 1735 /* 1736 * For memory tiering mode, too high promotion/demotion throughput may 1737 * hurt application latency. So we provide a mechanism to rate limit 1738 * the number of pages that are tried to be promoted. 1739 */ 1740 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1741 unsigned long rate_limit, int nr) 1742 { 1743 unsigned long nr_cand; 1744 unsigned int now, start; 1745 1746 now = jiffies_to_msecs(jiffies); 1747 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1748 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1749 start = pgdat->nbp_rl_start; 1750 if (now - start > MSEC_PER_SEC && 1751 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1752 pgdat->nbp_rl_nr_cand = nr_cand; 1753 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1754 return true; 1755 return false; 1756 } 1757 1758 #define NUMA_MIGRATION_ADJUST_STEPS 16 1759 1760 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1761 unsigned long rate_limit, 1762 unsigned int ref_th) 1763 { 1764 unsigned int now, start, th_period, unit_th, th; 1765 unsigned long nr_cand, ref_cand, diff_cand; 1766 1767 now = jiffies_to_msecs(jiffies); 1768 th_period = sysctl_numa_balancing_scan_period_max; 1769 start = pgdat->nbp_th_start; 1770 if (now - start > th_period && 1771 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1772 ref_cand = rate_limit * 1773 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1774 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1775 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1776 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1777 th = pgdat->nbp_threshold ? : ref_th; 1778 if (diff_cand > ref_cand * 11 / 10) 1779 th = max(th - unit_th, unit_th); 1780 else if (diff_cand < ref_cand * 9 / 10) 1781 th = min(th + unit_th, ref_th * 2); 1782 pgdat->nbp_th_nr_cand = nr_cand; 1783 pgdat->nbp_threshold = th; 1784 } 1785 } 1786 1787 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1788 int src_nid, int dst_cpu) 1789 { 1790 struct numa_group *ng = deref_curr_numa_group(p); 1791 int dst_nid = cpu_to_node(dst_cpu); 1792 int last_cpupid, this_cpupid; 1793 1794 /* 1795 * The pages in slow memory node should be migrated according 1796 * to hot/cold instead of private/shared. 1797 */ 1798 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1799 !node_is_toptier(src_nid)) { 1800 struct pglist_data *pgdat; 1801 unsigned long rate_limit; 1802 unsigned int latency, th, def_th; 1803 1804 pgdat = NODE_DATA(dst_nid); 1805 if (pgdat_free_space_enough(pgdat)) { 1806 /* workload changed, reset hot threshold */ 1807 pgdat->nbp_threshold = 0; 1808 return true; 1809 } 1810 1811 def_th = sysctl_numa_balancing_hot_threshold; 1812 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1813 (20 - PAGE_SHIFT); 1814 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1815 1816 th = pgdat->nbp_threshold ? : def_th; 1817 latency = numa_hint_fault_latency(page); 1818 if (latency >= th) 1819 return false; 1820 1821 return !numa_promotion_rate_limit(pgdat, rate_limit, 1822 thp_nr_pages(page)); 1823 } 1824 1825 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1826 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1827 1828 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1829 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1830 return false; 1831 1832 /* 1833 * Allow first faults or private faults to migrate immediately early in 1834 * the lifetime of a task. The magic number 4 is based on waiting for 1835 * two full passes of the "multi-stage node selection" test that is 1836 * executed below. 1837 */ 1838 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1839 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1840 return true; 1841 1842 /* 1843 * Multi-stage node selection is used in conjunction with a periodic 1844 * migration fault to build a temporal task<->page relation. By using 1845 * a two-stage filter we remove short/unlikely relations. 1846 * 1847 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1848 * a task's usage of a particular page (n_p) per total usage of this 1849 * page (n_t) (in a given time-span) to a probability. 1850 * 1851 * Our periodic faults will sample this probability and getting the 1852 * same result twice in a row, given these samples are fully 1853 * independent, is then given by P(n)^2, provided our sample period 1854 * is sufficiently short compared to the usage pattern. 1855 * 1856 * This quadric squishes small probabilities, making it less likely we 1857 * act on an unlikely task<->page relation. 1858 */ 1859 if (!cpupid_pid_unset(last_cpupid) && 1860 cpupid_to_nid(last_cpupid) != dst_nid) 1861 return false; 1862 1863 /* Always allow migrate on private faults */ 1864 if (cpupid_match_pid(p, last_cpupid)) 1865 return true; 1866 1867 /* A shared fault, but p->numa_group has not been set up yet. */ 1868 if (!ng) 1869 return true; 1870 1871 /* 1872 * Destination node is much more heavily used than the source 1873 * node? Allow migration. 1874 */ 1875 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1876 ACTIVE_NODE_FRACTION) 1877 return true; 1878 1879 /* 1880 * Distribute memory according to CPU & memory use on each node, 1881 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1882 * 1883 * faults_cpu(dst) 3 faults_cpu(src) 1884 * --------------- * - > --------------- 1885 * faults_mem(dst) 4 faults_mem(src) 1886 */ 1887 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1888 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1889 } 1890 1891 /* 1892 * 'numa_type' describes the node at the moment of load balancing. 1893 */ 1894 enum numa_type { 1895 /* The node has spare capacity that can be used to run more tasks. */ 1896 node_has_spare = 0, 1897 /* 1898 * The node is fully used and the tasks don't compete for more CPU 1899 * cycles. Nevertheless, some tasks might wait before running. 1900 */ 1901 node_fully_busy, 1902 /* 1903 * The node is overloaded and can't provide expected CPU cycles to all 1904 * tasks. 1905 */ 1906 node_overloaded 1907 }; 1908 1909 /* Cached statistics for all CPUs within a node */ 1910 struct numa_stats { 1911 unsigned long load; 1912 unsigned long runnable; 1913 unsigned long util; 1914 /* Total compute capacity of CPUs on a node */ 1915 unsigned long compute_capacity; 1916 unsigned int nr_running; 1917 unsigned int weight; 1918 enum numa_type node_type; 1919 int idle_cpu; 1920 }; 1921 1922 struct task_numa_env { 1923 struct task_struct *p; 1924 1925 int src_cpu, src_nid; 1926 int dst_cpu, dst_nid; 1927 int imb_numa_nr; 1928 1929 struct numa_stats src_stats, dst_stats; 1930 1931 int imbalance_pct; 1932 int dist; 1933 1934 struct task_struct *best_task; 1935 long best_imp; 1936 int best_cpu; 1937 }; 1938 1939 static unsigned long cpu_load(struct rq *rq); 1940 static unsigned long cpu_runnable(struct rq *rq); 1941 1942 static inline enum 1943 numa_type numa_classify(unsigned int imbalance_pct, 1944 struct numa_stats *ns) 1945 { 1946 if ((ns->nr_running > ns->weight) && 1947 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1948 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1949 return node_overloaded; 1950 1951 if ((ns->nr_running < ns->weight) || 1952 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1953 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1954 return node_has_spare; 1955 1956 return node_fully_busy; 1957 } 1958 1959 #ifdef CONFIG_SCHED_SMT 1960 /* Forward declarations of select_idle_sibling helpers */ 1961 static inline bool test_idle_cores(int cpu); 1962 static inline int numa_idle_core(int idle_core, int cpu) 1963 { 1964 if (!static_branch_likely(&sched_smt_present) || 1965 idle_core >= 0 || !test_idle_cores(cpu)) 1966 return idle_core; 1967 1968 /* 1969 * Prefer cores instead of packing HT siblings 1970 * and triggering future load balancing. 1971 */ 1972 if (is_core_idle(cpu)) 1973 idle_core = cpu; 1974 1975 return idle_core; 1976 } 1977 #else 1978 static inline int numa_idle_core(int idle_core, int cpu) 1979 { 1980 return idle_core; 1981 } 1982 #endif 1983 1984 /* 1985 * Gather all necessary information to make NUMA balancing placement 1986 * decisions that are compatible with standard load balancer. This 1987 * borrows code and logic from update_sg_lb_stats but sharing a 1988 * common implementation is impractical. 1989 */ 1990 static void update_numa_stats(struct task_numa_env *env, 1991 struct numa_stats *ns, int nid, 1992 bool find_idle) 1993 { 1994 int cpu, idle_core = -1; 1995 1996 memset(ns, 0, sizeof(*ns)); 1997 ns->idle_cpu = -1; 1998 1999 rcu_read_lock(); 2000 for_each_cpu(cpu, cpumask_of_node(nid)) { 2001 struct rq *rq = cpu_rq(cpu); 2002 2003 ns->load += cpu_load(rq); 2004 ns->runnable += cpu_runnable(rq); 2005 ns->util += cpu_util_cfs(cpu); 2006 ns->nr_running += rq->cfs.h_nr_running; 2007 ns->compute_capacity += capacity_of(cpu); 2008 2009 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2010 if (READ_ONCE(rq->numa_migrate_on) || 2011 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2012 continue; 2013 2014 if (ns->idle_cpu == -1) 2015 ns->idle_cpu = cpu; 2016 2017 idle_core = numa_idle_core(idle_core, cpu); 2018 } 2019 } 2020 rcu_read_unlock(); 2021 2022 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2023 2024 ns->node_type = numa_classify(env->imbalance_pct, ns); 2025 2026 if (idle_core >= 0) 2027 ns->idle_cpu = idle_core; 2028 } 2029 2030 static void task_numa_assign(struct task_numa_env *env, 2031 struct task_struct *p, long imp) 2032 { 2033 struct rq *rq = cpu_rq(env->dst_cpu); 2034 2035 /* Check if run-queue part of active NUMA balance. */ 2036 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2037 int cpu; 2038 int start = env->dst_cpu; 2039 2040 /* Find alternative idle CPU. */ 2041 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2042 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2043 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2044 continue; 2045 } 2046 2047 env->dst_cpu = cpu; 2048 rq = cpu_rq(env->dst_cpu); 2049 if (!xchg(&rq->numa_migrate_on, 1)) 2050 goto assign; 2051 } 2052 2053 /* Failed to find an alternative idle CPU */ 2054 return; 2055 } 2056 2057 assign: 2058 /* 2059 * Clear previous best_cpu/rq numa-migrate flag, since task now 2060 * found a better CPU to move/swap. 2061 */ 2062 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2063 rq = cpu_rq(env->best_cpu); 2064 WRITE_ONCE(rq->numa_migrate_on, 0); 2065 } 2066 2067 if (env->best_task) 2068 put_task_struct(env->best_task); 2069 if (p) 2070 get_task_struct(p); 2071 2072 env->best_task = p; 2073 env->best_imp = imp; 2074 env->best_cpu = env->dst_cpu; 2075 } 2076 2077 static bool load_too_imbalanced(long src_load, long dst_load, 2078 struct task_numa_env *env) 2079 { 2080 long imb, old_imb; 2081 long orig_src_load, orig_dst_load; 2082 long src_capacity, dst_capacity; 2083 2084 /* 2085 * The load is corrected for the CPU capacity available on each node. 2086 * 2087 * src_load dst_load 2088 * ------------ vs --------- 2089 * src_capacity dst_capacity 2090 */ 2091 src_capacity = env->src_stats.compute_capacity; 2092 dst_capacity = env->dst_stats.compute_capacity; 2093 2094 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2095 2096 orig_src_load = env->src_stats.load; 2097 orig_dst_load = env->dst_stats.load; 2098 2099 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2100 2101 /* Would this change make things worse? */ 2102 return (imb > old_imb); 2103 } 2104 2105 /* 2106 * Maximum NUMA importance can be 1998 (2*999); 2107 * SMALLIMP @ 30 would be close to 1998/64. 2108 * Used to deter task migration. 2109 */ 2110 #define SMALLIMP 30 2111 2112 /* 2113 * This checks if the overall compute and NUMA accesses of the system would 2114 * be improved if the source tasks was migrated to the target dst_cpu taking 2115 * into account that it might be best if task running on the dst_cpu should 2116 * be exchanged with the source task 2117 */ 2118 static bool task_numa_compare(struct task_numa_env *env, 2119 long taskimp, long groupimp, bool maymove) 2120 { 2121 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2122 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2123 long imp = p_ng ? groupimp : taskimp; 2124 struct task_struct *cur; 2125 long src_load, dst_load; 2126 int dist = env->dist; 2127 long moveimp = imp; 2128 long load; 2129 bool stopsearch = false; 2130 2131 if (READ_ONCE(dst_rq->numa_migrate_on)) 2132 return false; 2133 2134 rcu_read_lock(); 2135 cur = rcu_dereference(dst_rq->curr); 2136 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2137 cur = NULL; 2138 2139 /* 2140 * Because we have preemption enabled we can get migrated around and 2141 * end try selecting ourselves (current == env->p) as a swap candidate. 2142 */ 2143 if (cur == env->p) { 2144 stopsearch = true; 2145 goto unlock; 2146 } 2147 2148 if (!cur) { 2149 if (maymove && moveimp >= env->best_imp) 2150 goto assign; 2151 else 2152 goto unlock; 2153 } 2154 2155 /* Skip this swap candidate if cannot move to the source cpu. */ 2156 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2157 goto unlock; 2158 2159 /* 2160 * Skip this swap candidate if it is not moving to its preferred 2161 * node and the best task is. 2162 */ 2163 if (env->best_task && 2164 env->best_task->numa_preferred_nid == env->src_nid && 2165 cur->numa_preferred_nid != env->src_nid) { 2166 goto unlock; 2167 } 2168 2169 /* 2170 * "imp" is the fault differential for the source task between the 2171 * source and destination node. Calculate the total differential for 2172 * the source task and potential destination task. The more negative 2173 * the value is, the more remote accesses that would be expected to 2174 * be incurred if the tasks were swapped. 2175 * 2176 * If dst and source tasks are in the same NUMA group, or not 2177 * in any group then look only at task weights. 2178 */ 2179 cur_ng = rcu_dereference(cur->numa_group); 2180 if (cur_ng == p_ng) { 2181 /* 2182 * Do not swap within a group or between tasks that have 2183 * no group if there is spare capacity. Swapping does 2184 * not address the load imbalance and helps one task at 2185 * the cost of punishing another. 2186 */ 2187 if (env->dst_stats.node_type == node_has_spare) 2188 goto unlock; 2189 2190 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2191 task_weight(cur, env->dst_nid, dist); 2192 /* 2193 * Add some hysteresis to prevent swapping the 2194 * tasks within a group over tiny differences. 2195 */ 2196 if (cur_ng) 2197 imp -= imp / 16; 2198 } else { 2199 /* 2200 * Compare the group weights. If a task is all by itself 2201 * (not part of a group), use the task weight instead. 2202 */ 2203 if (cur_ng && p_ng) 2204 imp += group_weight(cur, env->src_nid, dist) - 2205 group_weight(cur, env->dst_nid, dist); 2206 else 2207 imp += task_weight(cur, env->src_nid, dist) - 2208 task_weight(cur, env->dst_nid, dist); 2209 } 2210 2211 /* Discourage picking a task already on its preferred node */ 2212 if (cur->numa_preferred_nid == env->dst_nid) 2213 imp -= imp / 16; 2214 2215 /* 2216 * Encourage picking a task that moves to its preferred node. 2217 * This potentially makes imp larger than it's maximum of 2218 * 1998 (see SMALLIMP and task_weight for why) but in this 2219 * case, it does not matter. 2220 */ 2221 if (cur->numa_preferred_nid == env->src_nid) 2222 imp += imp / 8; 2223 2224 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2225 imp = moveimp; 2226 cur = NULL; 2227 goto assign; 2228 } 2229 2230 /* 2231 * Prefer swapping with a task moving to its preferred node over a 2232 * task that is not. 2233 */ 2234 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2235 env->best_task->numa_preferred_nid != env->src_nid) { 2236 goto assign; 2237 } 2238 2239 /* 2240 * If the NUMA importance is less than SMALLIMP, 2241 * task migration might only result in ping pong 2242 * of tasks and also hurt performance due to cache 2243 * misses. 2244 */ 2245 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2246 goto unlock; 2247 2248 /* 2249 * In the overloaded case, try and keep the load balanced. 2250 */ 2251 load = task_h_load(env->p) - task_h_load(cur); 2252 if (!load) 2253 goto assign; 2254 2255 dst_load = env->dst_stats.load + load; 2256 src_load = env->src_stats.load - load; 2257 2258 if (load_too_imbalanced(src_load, dst_load, env)) 2259 goto unlock; 2260 2261 assign: 2262 /* Evaluate an idle CPU for a task numa move. */ 2263 if (!cur) { 2264 int cpu = env->dst_stats.idle_cpu; 2265 2266 /* Nothing cached so current CPU went idle since the search. */ 2267 if (cpu < 0) 2268 cpu = env->dst_cpu; 2269 2270 /* 2271 * If the CPU is no longer truly idle and the previous best CPU 2272 * is, keep using it. 2273 */ 2274 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2275 idle_cpu(env->best_cpu)) { 2276 cpu = env->best_cpu; 2277 } 2278 2279 env->dst_cpu = cpu; 2280 } 2281 2282 task_numa_assign(env, cur, imp); 2283 2284 /* 2285 * If a move to idle is allowed because there is capacity or load 2286 * balance improves then stop the search. While a better swap 2287 * candidate may exist, a search is not free. 2288 */ 2289 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2290 stopsearch = true; 2291 2292 /* 2293 * If a swap candidate must be identified and the current best task 2294 * moves its preferred node then stop the search. 2295 */ 2296 if (!maymove && env->best_task && 2297 env->best_task->numa_preferred_nid == env->src_nid) { 2298 stopsearch = true; 2299 } 2300 unlock: 2301 rcu_read_unlock(); 2302 2303 return stopsearch; 2304 } 2305 2306 static void task_numa_find_cpu(struct task_numa_env *env, 2307 long taskimp, long groupimp) 2308 { 2309 bool maymove = false; 2310 int cpu; 2311 2312 /* 2313 * If dst node has spare capacity, then check if there is an 2314 * imbalance that would be overruled by the load balancer. 2315 */ 2316 if (env->dst_stats.node_type == node_has_spare) { 2317 unsigned int imbalance; 2318 int src_running, dst_running; 2319 2320 /* 2321 * Would movement cause an imbalance? Note that if src has 2322 * more running tasks that the imbalance is ignored as the 2323 * move improves the imbalance from the perspective of the 2324 * CPU load balancer. 2325 * */ 2326 src_running = env->src_stats.nr_running - 1; 2327 dst_running = env->dst_stats.nr_running + 1; 2328 imbalance = max(0, dst_running - src_running); 2329 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2330 env->imb_numa_nr); 2331 2332 /* Use idle CPU if there is no imbalance */ 2333 if (!imbalance) { 2334 maymove = true; 2335 if (env->dst_stats.idle_cpu >= 0) { 2336 env->dst_cpu = env->dst_stats.idle_cpu; 2337 task_numa_assign(env, NULL, 0); 2338 return; 2339 } 2340 } 2341 } else { 2342 long src_load, dst_load, load; 2343 /* 2344 * If the improvement from just moving env->p direction is better 2345 * than swapping tasks around, check if a move is possible. 2346 */ 2347 load = task_h_load(env->p); 2348 dst_load = env->dst_stats.load + load; 2349 src_load = env->src_stats.load - load; 2350 maymove = !load_too_imbalanced(src_load, dst_load, env); 2351 } 2352 2353 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2354 /* Skip this CPU if the source task cannot migrate */ 2355 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2356 continue; 2357 2358 env->dst_cpu = cpu; 2359 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2360 break; 2361 } 2362 } 2363 2364 static int task_numa_migrate(struct task_struct *p) 2365 { 2366 struct task_numa_env env = { 2367 .p = p, 2368 2369 .src_cpu = task_cpu(p), 2370 .src_nid = task_node(p), 2371 2372 .imbalance_pct = 112, 2373 2374 .best_task = NULL, 2375 .best_imp = 0, 2376 .best_cpu = -1, 2377 }; 2378 unsigned long taskweight, groupweight; 2379 struct sched_domain *sd; 2380 long taskimp, groupimp; 2381 struct numa_group *ng; 2382 struct rq *best_rq; 2383 int nid, ret, dist; 2384 2385 /* 2386 * Pick the lowest SD_NUMA domain, as that would have the smallest 2387 * imbalance and would be the first to start moving tasks about. 2388 * 2389 * And we want to avoid any moving of tasks about, as that would create 2390 * random movement of tasks -- counter the numa conditions we're trying 2391 * to satisfy here. 2392 */ 2393 rcu_read_lock(); 2394 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2395 if (sd) { 2396 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2397 env.imb_numa_nr = sd->imb_numa_nr; 2398 } 2399 rcu_read_unlock(); 2400 2401 /* 2402 * Cpusets can break the scheduler domain tree into smaller 2403 * balance domains, some of which do not cross NUMA boundaries. 2404 * Tasks that are "trapped" in such domains cannot be migrated 2405 * elsewhere, so there is no point in (re)trying. 2406 */ 2407 if (unlikely(!sd)) { 2408 sched_setnuma(p, task_node(p)); 2409 return -EINVAL; 2410 } 2411 2412 env.dst_nid = p->numa_preferred_nid; 2413 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2414 taskweight = task_weight(p, env.src_nid, dist); 2415 groupweight = group_weight(p, env.src_nid, dist); 2416 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2417 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2418 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2419 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2420 2421 /* Try to find a spot on the preferred nid. */ 2422 task_numa_find_cpu(&env, taskimp, groupimp); 2423 2424 /* 2425 * Look at other nodes in these cases: 2426 * - there is no space available on the preferred_nid 2427 * - the task is part of a numa_group that is interleaved across 2428 * multiple NUMA nodes; in order to better consolidate the group, 2429 * we need to check other locations. 2430 */ 2431 ng = deref_curr_numa_group(p); 2432 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2433 for_each_node_state(nid, N_CPU) { 2434 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2435 continue; 2436 2437 dist = node_distance(env.src_nid, env.dst_nid); 2438 if (sched_numa_topology_type == NUMA_BACKPLANE && 2439 dist != env.dist) { 2440 taskweight = task_weight(p, env.src_nid, dist); 2441 groupweight = group_weight(p, env.src_nid, dist); 2442 } 2443 2444 /* Only consider nodes where both task and groups benefit */ 2445 taskimp = task_weight(p, nid, dist) - taskweight; 2446 groupimp = group_weight(p, nid, dist) - groupweight; 2447 if (taskimp < 0 && groupimp < 0) 2448 continue; 2449 2450 env.dist = dist; 2451 env.dst_nid = nid; 2452 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2453 task_numa_find_cpu(&env, taskimp, groupimp); 2454 } 2455 } 2456 2457 /* 2458 * If the task is part of a workload that spans multiple NUMA nodes, 2459 * and is migrating into one of the workload's active nodes, remember 2460 * this node as the task's preferred numa node, so the workload can 2461 * settle down. 2462 * A task that migrated to a second choice node will be better off 2463 * trying for a better one later. Do not set the preferred node here. 2464 */ 2465 if (ng) { 2466 if (env.best_cpu == -1) 2467 nid = env.src_nid; 2468 else 2469 nid = cpu_to_node(env.best_cpu); 2470 2471 if (nid != p->numa_preferred_nid) 2472 sched_setnuma(p, nid); 2473 } 2474 2475 /* No better CPU than the current one was found. */ 2476 if (env.best_cpu == -1) { 2477 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2478 return -EAGAIN; 2479 } 2480 2481 best_rq = cpu_rq(env.best_cpu); 2482 if (env.best_task == NULL) { 2483 ret = migrate_task_to(p, env.best_cpu); 2484 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2485 if (ret != 0) 2486 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2487 return ret; 2488 } 2489 2490 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2491 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2492 2493 if (ret != 0) 2494 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2495 put_task_struct(env.best_task); 2496 return ret; 2497 } 2498 2499 /* Attempt to migrate a task to a CPU on the preferred node. */ 2500 static void numa_migrate_preferred(struct task_struct *p) 2501 { 2502 unsigned long interval = HZ; 2503 2504 /* This task has no NUMA fault statistics yet */ 2505 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2506 return; 2507 2508 /* Periodically retry migrating the task to the preferred node */ 2509 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2510 p->numa_migrate_retry = jiffies + interval; 2511 2512 /* Success if task is already running on preferred CPU */ 2513 if (task_node(p) == p->numa_preferred_nid) 2514 return; 2515 2516 /* Otherwise, try migrate to a CPU on the preferred node */ 2517 task_numa_migrate(p); 2518 } 2519 2520 /* 2521 * Find out how many nodes the workload is actively running on. Do this by 2522 * tracking the nodes from which NUMA hinting faults are triggered. This can 2523 * be different from the set of nodes where the workload's memory is currently 2524 * located. 2525 */ 2526 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2527 { 2528 unsigned long faults, max_faults = 0; 2529 int nid, active_nodes = 0; 2530 2531 for_each_node_state(nid, N_CPU) { 2532 faults = group_faults_cpu(numa_group, nid); 2533 if (faults > max_faults) 2534 max_faults = faults; 2535 } 2536 2537 for_each_node_state(nid, N_CPU) { 2538 faults = group_faults_cpu(numa_group, nid); 2539 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2540 active_nodes++; 2541 } 2542 2543 numa_group->max_faults_cpu = max_faults; 2544 numa_group->active_nodes = active_nodes; 2545 } 2546 2547 /* 2548 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2549 * increments. The more local the fault statistics are, the higher the scan 2550 * period will be for the next scan window. If local/(local+remote) ratio is 2551 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2552 * the scan period will decrease. Aim for 70% local accesses. 2553 */ 2554 #define NUMA_PERIOD_SLOTS 10 2555 #define NUMA_PERIOD_THRESHOLD 7 2556 2557 /* 2558 * Increase the scan period (slow down scanning) if the majority of 2559 * our memory is already on our local node, or if the majority of 2560 * the page accesses are shared with other processes. 2561 * Otherwise, decrease the scan period. 2562 */ 2563 static void update_task_scan_period(struct task_struct *p, 2564 unsigned long shared, unsigned long private) 2565 { 2566 unsigned int period_slot; 2567 int lr_ratio, ps_ratio; 2568 int diff; 2569 2570 unsigned long remote = p->numa_faults_locality[0]; 2571 unsigned long local = p->numa_faults_locality[1]; 2572 2573 /* 2574 * If there were no record hinting faults then either the task is 2575 * completely idle or all activity is in areas that are not of interest 2576 * to automatic numa balancing. Related to that, if there were failed 2577 * migration then it implies we are migrating too quickly or the local 2578 * node is overloaded. In either case, scan slower 2579 */ 2580 if (local + shared == 0 || p->numa_faults_locality[2]) { 2581 p->numa_scan_period = min(p->numa_scan_period_max, 2582 p->numa_scan_period << 1); 2583 2584 p->mm->numa_next_scan = jiffies + 2585 msecs_to_jiffies(p->numa_scan_period); 2586 2587 return; 2588 } 2589 2590 /* 2591 * Prepare to scale scan period relative to the current period. 2592 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2593 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2594 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2595 */ 2596 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2597 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2598 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2599 2600 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2601 /* 2602 * Most memory accesses are local. There is no need to 2603 * do fast NUMA scanning, since memory is already local. 2604 */ 2605 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2606 if (!slot) 2607 slot = 1; 2608 diff = slot * period_slot; 2609 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2610 /* 2611 * Most memory accesses are shared with other tasks. 2612 * There is no point in continuing fast NUMA scanning, 2613 * since other tasks may just move the memory elsewhere. 2614 */ 2615 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2616 if (!slot) 2617 slot = 1; 2618 diff = slot * period_slot; 2619 } else { 2620 /* 2621 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2622 * yet they are not on the local NUMA node. Speed up 2623 * NUMA scanning to get the memory moved over. 2624 */ 2625 int ratio = max(lr_ratio, ps_ratio); 2626 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2627 } 2628 2629 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2630 task_scan_min(p), task_scan_max(p)); 2631 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2632 } 2633 2634 /* 2635 * Get the fraction of time the task has been running since the last 2636 * NUMA placement cycle. The scheduler keeps similar statistics, but 2637 * decays those on a 32ms period, which is orders of magnitude off 2638 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2639 * stats only if the task is so new there are no NUMA statistics yet. 2640 */ 2641 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2642 { 2643 u64 runtime, delta, now; 2644 /* Use the start of this time slice to avoid calculations. */ 2645 now = p->se.exec_start; 2646 runtime = p->se.sum_exec_runtime; 2647 2648 if (p->last_task_numa_placement) { 2649 delta = runtime - p->last_sum_exec_runtime; 2650 *period = now - p->last_task_numa_placement; 2651 2652 /* Avoid time going backwards, prevent potential divide error: */ 2653 if (unlikely((s64)*period < 0)) 2654 *period = 0; 2655 } else { 2656 delta = p->se.avg.load_sum; 2657 *period = LOAD_AVG_MAX; 2658 } 2659 2660 p->last_sum_exec_runtime = runtime; 2661 p->last_task_numa_placement = now; 2662 2663 return delta; 2664 } 2665 2666 /* 2667 * Determine the preferred nid for a task in a numa_group. This needs to 2668 * be done in a way that produces consistent results with group_weight, 2669 * otherwise workloads might not converge. 2670 */ 2671 static int preferred_group_nid(struct task_struct *p, int nid) 2672 { 2673 nodemask_t nodes; 2674 int dist; 2675 2676 /* Direct connections between all NUMA nodes. */ 2677 if (sched_numa_topology_type == NUMA_DIRECT) 2678 return nid; 2679 2680 /* 2681 * On a system with glueless mesh NUMA topology, group_weight 2682 * scores nodes according to the number of NUMA hinting faults on 2683 * both the node itself, and on nearby nodes. 2684 */ 2685 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2686 unsigned long score, max_score = 0; 2687 int node, max_node = nid; 2688 2689 dist = sched_max_numa_distance; 2690 2691 for_each_node_state(node, N_CPU) { 2692 score = group_weight(p, node, dist); 2693 if (score > max_score) { 2694 max_score = score; 2695 max_node = node; 2696 } 2697 } 2698 return max_node; 2699 } 2700 2701 /* 2702 * Finding the preferred nid in a system with NUMA backplane 2703 * interconnect topology is more involved. The goal is to locate 2704 * tasks from numa_groups near each other in the system, and 2705 * untangle workloads from different sides of the system. This requires 2706 * searching down the hierarchy of node groups, recursively searching 2707 * inside the highest scoring group of nodes. The nodemask tricks 2708 * keep the complexity of the search down. 2709 */ 2710 nodes = node_states[N_CPU]; 2711 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2712 unsigned long max_faults = 0; 2713 nodemask_t max_group = NODE_MASK_NONE; 2714 int a, b; 2715 2716 /* Are there nodes at this distance from each other? */ 2717 if (!find_numa_distance(dist)) 2718 continue; 2719 2720 for_each_node_mask(a, nodes) { 2721 unsigned long faults = 0; 2722 nodemask_t this_group; 2723 nodes_clear(this_group); 2724 2725 /* Sum group's NUMA faults; includes a==b case. */ 2726 for_each_node_mask(b, nodes) { 2727 if (node_distance(a, b) < dist) { 2728 faults += group_faults(p, b); 2729 node_set(b, this_group); 2730 node_clear(b, nodes); 2731 } 2732 } 2733 2734 /* Remember the top group. */ 2735 if (faults > max_faults) { 2736 max_faults = faults; 2737 max_group = this_group; 2738 /* 2739 * subtle: at the smallest distance there is 2740 * just one node left in each "group", the 2741 * winner is the preferred nid. 2742 */ 2743 nid = a; 2744 } 2745 } 2746 /* Next round, evaluate the nodes within max_group. */ 2747 if (!max_faults) 2748 break; 2749 nodes = max_group; 2750 } 2751 return nid; 2752 } 2753 2754 static void task_numa_placement(struct task_struct *p) 2755 { 2756 int seq, nid, max_nid = NUMA_NO_NODE; 2757 unsigned long max_faults = 0; 2758 unsigned long fault_types[2] = { 0, 0 }; 2759 unsigned long total_faults; 2760 u64 runtime, period; 2761 spinlock_t *group_lock = NULL; 2762 struct numa_group *ng; 2763 2764 /* 2765 * The p->mm->numa_scan_seq field gets updated without 2766 * exclusive access. Use READ_ONCE() here to ensure 2767 * that the field is read in a single access: 2768 */ 2769 seq = READ_ONCE(p->mm->numa_scan_seq); 2770 if (p->numa_scan_seq == seq) 2771 return; 2772 p->numa_scan_seq = seq; 2773 p->numa_scan_period_max = task_scan_max(p); 2774 2775 total_faults = p->numa_faults_locality[0] + 2776 p->numa_faults_locality[1]; 2777 runtime = numa_get_avg_runtime(p, &period); 2778 2779 /* If the task is part of a group prevent parallel updates to group stats */ 2780 ng = deref_curr_numa_group(p); 2781 if (ng) { 2782 group_lock = &ng->lock; 2783 spin_lock_irq(group_lock); 2784 } 2785 2786 /* Find the node with the highest number of faults */ 2787 for_each_online_node(nid) { 2788 /* Keep track of the offsets in numa_faults array */ 2789 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2790 unsigned long faults = 0, group_faults = 0; 2791 int priv; 2792 2793 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2794 long diff, f_diff, f_weight; 2795 2796 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2797 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2798 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2799 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2800 2801 /* Decay existing window, copy faults since last scan */ 2802 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2803 fault_types[priv] += p->numa_faults[membuf_idx]; 2804 p->numa_faults[membuf_idx] = 0; 2805 2806 /* 2807 * Normalize the faults_from, so all tasks in a group 2808 * count according to CPU use, instead of by the raw 2809 * number of faults. Tasks with little runtime have 2810 * little over-all impact on throughput, and thus their 2811 * faults are less important. 2812 */ 2813 f_weight = div64_u64(runtime << 16, period + 1); 2814 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2815 (total_faults + 1); 2816 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2817 p->numa_faults[cpubuf_idx] = 0; 2818 2819 p->numa_faults[mem_idx] += diff; 2820 p->numa_faults[cpu_idx] += f_diff; 2821 faults += p->numa_faults[mem_idx]; 2822 p->total_numa_faults += diff; 2823 if (ng) { 2824 /* 2825 * safe because we can only change our own group 2826 * 2827 * mem_idx represents the offset for a given 2828 * nid and priv in a specific region because it 2829 * is at the beginning of the numa_faults array. 2830 */ 2831 ng->faults[mem_idx] += diff; 2832 ng->faults[cpu_idx] += f_diff; 2833 ng->total_faults += diff; 2834 group_faults += ng->faults[mem_idx]; 2835 } 2836 } 2837 2838 if (!ng) { 2839 if (faults > max_faults) { 2840 max_faults = faults; 2841 max_nid = nid; 2842 } 2843 } else if (group_faults > max_faults) { 2844 max_faults = group_faults; 2845 max_nid = nid; 2846 } 2847 } 2848 2849 /* Cannot migrate task to CPU-less node */ 2850 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2851 int near_nid = max_nid; 2852 int distance, near_distance = INT_MAX; 2853 2854 for_each_node_state(nid, N_CPU) { 2855 distance = node_distance(max_nid, nid); 2856 if (distance < near_distance) { 2857 near_nid = nid; 2858 near_distance = distance; 2859 } 2860 } 2861 max_nid = near_nid; 2862 } 2863 2864 if (ng) { 2865 numa_group_count_active_nodes(ng); 2866 spin_unlock_irq(group_lock); 2867 max_nid = preferred_group_nid(p, max_nid); 2868 } 2869 2870 if (max_faults) { 2871 /* Set the new preferred node */ 2872 if (max_nid != p->numa_preferred_nid) 2873 sched_setnuma(p, max_nid); 2874 } 2875 2876 update_task_scan_period(p, fault_types[0], fault_types[1]); 2877 } 2878 2879 static inline int get_numa_group(struct numa_group *grp) 2880 { 2881 return refcount_inc_not_zero(&grp->refcount); 2882 } 2883 2884 static inline void put_numa_group(struct numa_group *grp) 2885 { 2886 if (refcount_dec_and_test(&grp->refcount)) 2887 kfree_rcu(grp, rcu); 2888 } 2889 2890 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2891 int *priv) 2892 { 2893 struct numa_group *grp, *my_grp; 2894 struct task_struct *tsk; 2895 bool join = false; 2896 int cpu = cpupid_to_cpu(cpupid); 2897 int i; 2898 2899 if (unlikely(!deref_curr_numa_group(p))) { 2900 unsigned int size = sizeof(struct numa_group) + 2901 NR_NUMA_HINT_FAULT_STATS * 2902 nr_node_ids * sizeof(unsigned long); 2903 2904 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2905 if (!grp) 2906 return; 2907 2908 refcount_set(&grp->refcount, 1); 2909 grp->active_nodes = 1; 2910 grp->max_faults_cpu = 0; 2911 spin_lock_init(&grp->lock); 2912 grp->gid = p->pid; 2913 2914 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2915 grp->faults[i] = p->numa_faults[i]; 2916 2917 grp->total_faults = p->total_numa_faults; 2918 2919 grp->nr_tasks++; 2920 rcu_assign_pointer(p->numa_group, grp); 2921 } 2922 2923 rcu_read_lock(); 2924 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2925 2926 if (!cpupid_match_pid(tsk, cpupid)) 2927 goto no_join; 2928 2929 grp = rcu_dereference(tsk->numa_group); 2930 if (!grp) 2931 goto no_join; 2932 2933 my_grp = deref_curr_numa_group(p); 2934 if (grp == my_grp) 2935 goto no_join; 2936 2937 /* 2938 * Only join the other group if its bigger; if we're the bigger group, 2939 * the other task will join us. 2940 */ 2941 if (my_grp->nr_tasks > grp->nr_tasks) 2942 goto no_join; 2943 2944 /* 2945 * Tie-break on the grp address. 2946 */ 2947 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2948 goto no_join; 2949 2950 /* Always join threads in the same process. */ 2951 if (tsk->mm == current->mm) 2952 join = true; 2953 2954 /* Simple filter to avoid false positives due to PID collisions */ 2955 if (flags & TNF_SHARED) 2956 join = true; 2957 2958 /* Update priv based on whether false sharing was detected */ 2959 *priv = !join; 2960 2961 if (join && !get_numa_group(grp)) 2962 goto no_join; 2963 2964 rcu_read_unlock(); 2965 2966 if (!join) 2967 return; 2968 2969 WARN_ON_ONCE(irqs_disabled()); 2970 double_lock_irq(&my_grp->lock, &grp->lock); 2971 2972 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2973 my_grp->faults[i] -= p->numa_faults[i]; 2974 grp->faults[i] += p->numa_faults[i]; 2975 } 2976 my_grp->total_faults -= p->total_numa_faults; 2977 grp->total_faults += p->total_numa_faults; 2978 2979 my_grp->nr_tasks--; 2980 grp->nr_tasks++; 2981 2982 spin_unlock(&my_grp->lock); 2983 spin_unlock_irq(&grp->lock); 2984 2985 rcu_assign_pointer(p->numa_group, grp); 2986 2987 put_numa_group(my_grp); 2988 return; 2989 2990 no_join: 2991 rcu_read_unlock(); 2992 return; 2993 } 2994 2995 /* 2996 * Get rid of NUMA statistics associated with a task (either current or dead). 2997 * If @final is set, the task is dead and has reached refcount zero, so we can 2998 * safely free all relevant data structures. Otherwise, there might be 2999 * concurrent reads from places like load balancing and procfs, and we should 3000 * reset the data back to default state without freeing ->numa_faults. 3001 */ 3002 void task_numa_free(struct task_struct *p, bool final) 3003 { 3004 /* safe: p either is current or is being freed by current */ 3005 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3006 unsigned long *numa_faults = p->numa_faults; 3007 unsigned long flags; 3008 int i; 3009 3010 if (!numa_faults) 3011 return; 3012 3013 if (grp) { 3014 spin_lock_irqsave(&grp->lock, flags); 3015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3016 grp->faults[i] -= p->numa_faults[i]; 3017 grp->total_faults -= p->total_numa_faults; 3018 3019 grp->nr_tasks--; 3020 spin_unlock_irqrestore(&grp->lock, flags); 3021 RCU_INIT_POINTER(p->numa_group, NULL); 3022 put_numa_group(grp); 3023 } 3024 3025 if (final) { 3026 p->numa_faults = NULL; 3027 kfree(numa_faults); 3028 } else { 3029 p->total_numa_faults = 0; 3030 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3031 numa_faults[i] = 0; 3032 } 3033 } 3034 3035 /* 3036 * Got a PROT_NONE fault for a page on @node. 3037 */ 3038 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3039 { 3040 struct task_struct *p = current; 3041 bool migrated = flags & TNF_MIGRATED; 3042 int cpu_node = task_node(current); 3043 int local = !!(flags & TNF_FAULT_LOCAL); 3044 struct numa_group *ng; 3045 int priv; 3046 3047 if (!static_branch_likely(&sched_numa_balancing)) 3048 return; 3049 3050 /* for example, ksmd faulting in a user's mm */ 3051 if (!p->mm) 3052 return; 3053 3054 /* 3055 * NUMA faults statistics are unnecessary for the slow memory 3056 * node for memory tiering mode. 3057 */ 3058 if (!node_is_toptier(mem_node) && 3059 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3060 !cpupid_valid(last_cpupid))) 3061 return; 3062 3063 /* Allocate buffer to track faults on a per-node basis */ 3064 if (unlikely(!p->numa_faults)) { 3065 int size = sizeof(*p->numa_faults) * 3066 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3067 3068 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3069 if (!p->numa_faults) 3070 return; 3071 3072 p->total_numa_faults = 0; 3073 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3074 } 3075 3076 /* 3077 * First accesses are treated as private, otherwise consider accesses 3078 * to be private if the accessing pid has not changed 3079 */ 3080 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3081 priv = 1; 3082 } else { 3083 priv = cpupid_match_pid(p, last_cpupid); 3084 if (!priv && !(flags & TNF_NO_GROUP)) 3085 task_numa_group(p, last_cpupid, flags, &priv); 3086 } 3087 3088 /* 3089 * If a workload spans multiple NUMA nodes, a shared fault that 3090 * occurs wholly within the set of nodes that the workload is 3091 * actively using should be counted as local. This allows the 3092 * scan rate to slow down when a workload has settled down. 3093 */ 3094 ng = deref_curr_numa_group(p); 3095 if (!priv && !local && ng && ng->active_nodes > 1 && 3096 numa_is_active_node(cpu_node, ng) && 3097 numa_is_active_node(mem_node, ng)) 3098 local = 1; 3099 3100 /* 3101 * Retry to migrate task to preferred node periodically, in case it 3102 * previously failed, or the scheduler moved us. 3103 */ 3104 if (time_after(jiffies, p->numa_migrate_retry)) { 3105 task_numa_placement(p); 3106 numa_migrate_preferred(p); 3107 } 3108 3109 if (migrated) 3110 p->numa_pages_migrated += pages; 3111 if (flags & TNF_MIGRATE_FAIL) 3112 p->numa_faults_locality[2] += pages; 3113 3114 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3115 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3116 p->numa_faults_locality[local] += pages; 3117 } 3118 3119 static void reset_ptenuma_scan(struct task_struct *p) 3120 { 3121 /* 3122 * We only did a read acquisition of the mmap sem, so 3123 * p->mm->numa_scan_seq is written to without exclusive access 3124 * and the update is not guaranteed to be atomic. That's not 3125 * much of an issue though, since this is just used for 3126 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3127 * expensive, to avoid any form of compiler optimizations: 3128 */ 3129 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3130 p->mm->numa_scan_offset = 0; 3131 } 3132 3133 static bool vma_is_accessed(struct vm_area_struct *vma) 3134 { 3135 unsigned long pids; 3136 /* 3137 * Allow unconditional access first two times, so that all the (pages) 3138 * of VMAs get prot_none fault introduced irrespective of accesses. 3139 * This is also done to avoid any side effect of task scanning 3140 * amplifying the unfairness of disjoint set of VMAs' access. 3141 */ 3142 if (READ_ONCE(current->mm->numa_scan_seq) < 2) 3143 return true; 3144 3145 pids = vma->numab_state->access_pids[0] | vma->numab_state->access_pids[1]; 3146 return test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids); 3147 } 3148 3149 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3150 3151 /* 3152 * The expensive part of numa migration is done from task_work context. 3153 * Triggered from task_tick_numa(). 3154 */ 3155 static void task_numa_work(struct callback_head *work) 3156 { 3157 unsigned long migrate, next_scan, now = jiffies; 3158 struct task_struct *p = current; 3159 struct mm_struct *mm = p->mm; 3160 u64 runtime = p->se.sum_exec_runtime; 3161 struct vm_area_struct *vma; 3162 unsigned long start, end; 3163 unsigned long nr_pte_updates = 0; 3164 long pages, virtpages; 3165 struct vma_iterator vmi; 3166 3167 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3168 3169 work->next = work; 3170 /* 3171 * Who cares about NUMA placement when they're dying. 3172 * 3173 * NOTE: make sure not to dereference p->mm before this check, 3174 * exit_task_work() happens _after_ exit_mm() so we could be called 3175 * without p->mm even though we still had it when we enqueued this 3176 * work. 3177 */ 3178 if (p->flags & PF_EXITING) 3179 return; 3180 3181 if (!mm->numa_next_scan) { 3182 mm->numa_next_scan = now + 3183 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3184 } 3185 3186 /* 3187 * Enforce maximal scan/migration frequency.. 3188 */ 3189 migrate = mm->numa_next_scan; 3190 if (time_before(now, migrate)) 3191 return; 3192 3193 if (p->numa_scan_period == 0) { 3194 p->numa_scan_period_max = task_scan_max(p); 3195 p->numa_scan_period = task_scan_start(p); 3196 } 3197 3198 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3199 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3200 return; 3201 3202 /* 3203 * Delay this task enough that another task of this mm will likely win 3204 * the next time around. 3205 */ 3206 p->node_stamp += 2 * TICK_NSEC; 3207 3208 start = mm->numa_scan_offset; 3209 pages = sysctl_numa_balancing_scan_size; 3210 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3211 virtpages = pages * 8; /* Scan up to this much virtual space */ 3212 if (!pages) 3213 return; 3214 3215 3216 if (!mmap_read_trylock(mm)) 3217 return; 3218 vma_iter_init(&vmi, mm, start); 3219 vma = vma_next(&vmi); 3220 if (!vma) { 3221 reset_ptenuma_scan(p); 3222 start = 0; 3223 vma_iter_set(&vmi, start); 3224 vma = vma_next(&vmi); 3225 } 3226 3227 do { 3228 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3229 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3230 continue; 3231 } 3232 3233 /* 3234 * Shared library pages mapped by multiple processes are not 3235 * migrated as it is expected they are cache replicated. Avoid 3236 * hinting faults in read-only file-backed mappings or the vdso 3237 * as migrating the pages will be of marginal benefit. 3238 */ 3239 if (!vma->vm_mm || 3240 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3241 continue; 3242 3243 /* 3244 * Skip inaccessible VMAs to avoid any confusion between 3245 * PROT_NONE and NUMA hinting ptes 3246 */ 3247 if (!vma_is_accessible(vma)) 3248 continue; 3249 3250 /* Initialise new per-VMA NUMAB state. */ 3251 if (!vma->numab_state) { 3252 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3253 GFP_KERNEL); 3254 if (!vma->numab_state) 3255 continue; 3256 3257 vma->numab_state->next_scan = now + 3258 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3259 3260 /* Reset happens after 4 times scan delay of scan start */ 3261 vma->numab_state->next_pid_reset = vma->numab_state->next_scan + 3262 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3263 } 3264 3265 /* 3266 * Scanning the VMA's of short lived tasks add more overhead. So 3267 * delay the scan for new VMAs. 3268 */ 3269 if (mm->numa_scan_seq && time_before(jiffies, 3270 vma->numab_state->next_scan)) 3271 continue; 3272 3273 /* Do not scan the VMA if task has not accessed */ 3274 if (!vma_is_accessed(vma)) 3275 continue; 3276 3277 /* 3278 * RESET access PIDs regularly for old VMAs. Resetting after checking 3279 * vma for recent access to avoid clearing PID info before access.. 3280 */ 3281 if (mm->numa_scan_seq && 3282 time_after(jiffies, vma->numab_state->next_pid_reset)) { 3283 vma->numab_state->next_pid_reset = vma->numab_state->next_pid_reset + 3284 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3285 vma->numab_state->access_pids[0] = READ_ONCE(vma->numab_state->access_pids[1]); 3286 vma->numab_state->access_pids[1] = 0; 3287 } 3288 3289 do { 3290 start = max(start, vma->vm_start); 3291 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3292 end = min(end, vma->vm_end); 3293 nr_pte_updates = change_prot_numa(vma, start, end); 3294 3295 /* 3296 * Try to scan sysctl_numa_balancing_size worth of 3297 * hpages that have at least one present PTE that 3298 * is not already pte-numa. If the VMA contains 3299 * areas that are unused or already full of prot_numa 3300 * PTEs, scan up to virtpages, to skip through those 3301 * areas faster. 3302 */ 3303 if (nr_pte_updates) 3304 pages -= (end - start) >> PAGE_SHIFT; 3305 virtpages -= (end - start) >> PAGE_SHIFT; 3306 3307 start = end; 3308 if (pages <= 0 || virtpages <= 0) 3309 goto out; 3310 3311 cond_resched(); 3312 } while (end != vma->vm_end); 3313 } for_each_vma(vmi, vma); 3314 3315 out: 3316 /* 3317 * It is possible to reach the end of the VMA list but the last few 3318 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3319 * would find the !migratable VMA on the next scan but not reset the 3320 * scanner to the start so check it now. 3321 */ 3322 if (vma) 3323 mm->numa_scan_offset = start; 3324 else 3325 reset_ptenuma_scan(p); 3326 mmap_read_unlock(mm); 3327 3328 /* 3329 * Make sure tasks use at least 32x as much time to run other code 3330 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3331 * Usually update_task_scan_period slows down scanning enough; on an 3332 * overloaded system we need to limit overhead on a per task basis. 3333 */ 3334 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3335 u64 diff = p->se.sum_exec_runtime - runtime; 3336 p->node_stamp += 32 * diff; 3337 } 3338 } 3339 3340 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3341 { 3342 int mm_users = 0; 3343 struct mm_struct *mm = p->mm; 3344 3345 if (mm) { 3346 mm_users = atomic_read(&mm->mm_users); 3347 if (mm_users == 1) { 3348 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3349 mm->numa_scan_seq = 0; 3350 } 3351 } 3352 p->node_stamp = 0; 3353 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3354 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3355 p->numa_migrate_retry = 0; 3356 /* Protect against double add, see task_tick_numa and task_numa_work */ 3357 p->numa_work.next = &p->numa_work; 3358 p->numa_faults = NULL; 3359 p->numa_pages_migrated = 0; 3360 p->total_numa_faults = 0; 3361 RCU_INIT_POINTER(p->numa_group, NULL); 3362 p->last_task_numa_placement = 0; 3363 p->last_sum_exec_runtime = 0; 3364 3365 init_task_work(&p->numa_work, task_numa_work); 3366 3367 /* New address space, reset the preferred nid */ 3368 if (!(clone_flags & CLONE_VM)) { 3369 p->numa_preferred_nid = NUMA_NO_NODE; 3370 return; 3371 } 3372 3373 /* 3374 * New thread, keep existing numa_preferred_nid which should be copied 3375 * already by arch_dup_task_struct but stagger when scans start. 3376 */ 3377 if (mm) { 3378 unsigned int delay; 3379 3380 delay = min_t(unsigned int, task_scan_max(current), 3381 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3382 delay += 2 * TICK_NSEC; 3383 p->node_stamp = delay; 3384 } 3385 } 3386 3387 /* 3388 * Drive the periodic memory faults.. 3389 */ 3390 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3391 { 3392 struct callback_head *work = &curr->numa_work; 3393 u64 period, now; 3394 3395 /* 3396 * We don't care about NUMA placement if we don't have memory. 3397 */ 3398 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3399 return; 3400 3401 /* 3402 * Using runtime rather than walltime has the dual advantage that 3403 * we (mostly) drive the selection from busy threads and that the 3404 * task needs to have done some actual work before we bother with 3405 * NUMA placement. 3406 */ 3407 now = curr->se.sum_exec_runtime; 3408 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3409 3410 if (now > curr->node_stamp + period) { 3411 if (!curr->node_stamp) 3412 curr->numa_scan_period = task_scan_start(curr); 3413 curr->node_stamp += period; 3414 3415 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3416 task_work_add(curr, work, TWA_RESUME); 3417 } 3418 } 3419 3420 static void update_scan_period(struct task_struct *p, int new_cpu) 3421 { 3422 int src_nid = cpu_to_node(task_cpu(p)); 3423 int dst_nid = cpu_to_node(new_cpu); 3424 3425 if (!static_branch_likely(&sched_numa_balancing)) 3426 return; 3427 3428 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3429 return; 3430 3431 if (src_nid == dst_nid) 3432 return; 3433 3434 /* 3435 * Allow resets if faults have been trapped before one scan 3436 * has completed. This is most likely due to a new task that 3437 * is pulled cross-node due to wakeups or load balancing. 3438 */ 3439 if (p->numa_scan_seq) { 3440 /* 3441 * Avoid scan adjustments if moving to the preferred 3442 * node or if the task was not previously running on 3443 * the preferred node. 3444 */ 3445 if (dst_nid == p->numa_preferred_nid || 3446 (p->numa_preferred_nid != NUMA_NO_NODE && 3447 src_nid != p->numa_preferred_nid)) 3448 return; 3449 } 3450 3451 p->numa_scan_period = task_scan_start(p); 3452 } 3453 3454 #else 3455 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3456 { 3457 } 3458 3459 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3460 { 3461 } 3462 3463 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3464 { 3465 } 3466 3467 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3468 { 3469 } 3470 3471 #endif /* CONFIG_NUMA_BALANCING */ 3472 3473 static void 3474 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3475 { 3476 update_load_add(&cfs_rq->load, se->load.weight); 3477 #ifdef CONFIG_SMP 3478 if (entity_is_task(se)) { 3479 struct rq *rq = rq_of(cfs_rq); 3480 3481 account_numa_enqueue(rq, task_of(se)); 3482 list_add(&se->group_node, &rq->cfs_tasks); 3483 } 3484 #endif 3485 cfs_rq->nr_running++; 3486 if (se_is_idle(se)) 3487 cfs_rq->idle_nr_running++; 3488 } 3489 3490 static void 3491 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3492 { 3493 update_load_sub(&cfs_rq->load, se->load.weight); 3494 #ifdef CONFIG_SMP 3495 if (entity_is_task(se)) { 3496 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3497 list_del_init(&se->group_node); 3498 } 3499 #endif 3500 cfs_rq->nr_running--; 3501 if (se_is_idle(se)) 3502 cfs_rq->idle_nr_running--; 3503 } 3504 3505 /* 3506 * Signed add and clamp on underflow. 3507 * 3508 * Explicitly do a load-store to ensure the intermediate value never hits 3509 * memory. This allows lockless observations without ever seeing the negative 3510 * values. 3511 */ 3512 #define add_positive(_ptr, _val) do { \ 3513 typeof(_ptr) ptr = (_ptr); \ 3514 typeof(_val) val = (_val); \ 3515 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3516 \ 3517 res = var + val; \ 3518 \ 3519 if (val < 0 && res > var) \ 3520 res = 0; \ 3521 \ 3522 WRITE_ONCE(*ptr, res); \ 3523 } while (0) 3524 3525 /* 3526 * Unsigned subtract and clamp on underflow. 3527 * 3528 * Explicitly do a load-store to ensure the intermediate value never hits 3529 * memory. This allows lockless observations without ever seeing the negative 3530 * values. 3531 */ 3532 #define sub_positive(_ptr, _val) do { \ 3533 typeof(_ptr) ptr = (_ptr); \ 3534 typeof(*ptr) val = (_val); \ 3535 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3536 res = var - val; \ 3537 if (res > var) \ 3538 res = 0; \ 3539 WRITE_ONCE(*ptr, res); \ 3540 } while (0) 3541 3542 /* 3543 * Remove and clamp on negative, from a local variable. 3544 * 3545 * A variant of sub_positive(), which does not use explicit load-store 3546 * and is thus optimized for local variable updates. 3547 */ 3548 #define lsub_positive(_ptr, _val) do { \ 3549 typeof(_ptr) ptr = (_ptr); \ 3550 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3551 } while (0) 3552 3553 #ifdef CONFIG_SMP 3554 static inline void 3555 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3556 { 3557 cfs_rq->avg.load_avg += se->avg.load_avg; 3558 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3559 } 3560 3561 static inline void 3562 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3563 { 3564 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3565 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3566 /* See update_cfs_rq_load_avg() */ 3567 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3568 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3569 } 3570 #else 3571 static inline void 3572 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3573 static inline void 3574 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3575 #endif 3576 3577 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3578 unsigned long weight) 3579 { 3580 unsigned long old_weight = se->load.weight; 3581 3582 if (se->on_rq) { 3583 /* commit outstanding execution time */ 3584 if (cfs_rq->curr == se) 3585 update_curr(cfs_rq); 3586 else 3587 avg_vruntime_sub(cfs_rq, se); 3588 update_load_sub(&cfs_rq->load, se->load.weight); 3589 } 3590 dequeue_load_avg(cfs_rq, se); 3591 3592 update_load_set(&se->load, weight); 3593 3594 if (!se->on_rq) { 3595 /* 3596 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3597 * we need to scale se->vlag when w_i changes. 3598 */ 3599 se->vlag = div_s64(se->vlag * old_weight, weight); 3600 } else { 3601 s64 deadline = se->deadline - se->vruntime; 3602 /* 3603 * When the weight changes, the virtual time slope changes and 3604 * we should adjust the relative virtual deadline accordingly. 3605 */ 3606 deadline = div_s64(deadline * old_weight, weight); 3607 se->deadline = se->vruntime + deadline; 3608 } 3609 3610 #ifdef CONFIG_SMP 3611 do { 3612 u32 divider = get_pelt_divider(&se->avg); 3613 3614 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3615 } while (0); 3616 #endif 3617 3618 enqueue_load_avg(cfs_rq, se); 3619 if (se->on_rq) { 3620 update_load_add(&cfs_rq->load, se->load.weight); 3621 if (cfs_rq->curr != se) 3622 avg_vruntime_add(cfs_rq, se); 3623 } 3624 } 3625 3626 void reweight_task(struct task_struct *p, int prio) 3627 { 3628 struct sched_entity *se = &p->se; 3629 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3630 struct load_weight *load = &se->load; 3631 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3632 3633 reweight_entity(cfs_rq, se, weight); 3634 load->inv_weight = sched_prio_to_wmult[prio]; 3635 } 3636 3637 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3638 3639 #ifdef CONFIG_FAIR_GROUP_SCHED 3640 #ifdef CONFIG_SMP 3641 /* 3642 * All this does is approximate the hierarchical proportion which includes that 3643 * global sum we all love to hate. 3644 * 3645 * That is, the weight of a group entity, is the proportional share of the 3646 * group weight based on the group runqueue weights. That is: 3647 * 3648 * tg->weight * grq->load.weight 3649 * ge->load.weight = ----------------------------- (1) 3650 * \Sum grq->load.weight 3651 * 3652 * Now, because computing that sum is prohibitively expensive to compute (been 3653 * there, done that) we approximate it with this average stuff. The average 3654 * moves slower and therefore the approximation is cheaper and more stable. 3655 * 3656 * So instead of the above, we substitute: 3657 * 3658 * grq->load.weight -> grq->avg.load_avg (2) 3659 * 3660 * which yields the following: 3661 * 3662 * tg->weight * grq->avg.load_avg 3663 * ge->load.weight = ------------------------------ (3) 3664 * tg->load_avg 3665 * 3666 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3667 * 3668 * That is shares_avg, and it is right (given the approximation (2)). 3669 * 3670 * The problem with it is that because the average is slow -- it was designed 3671 * to be exactly that of course -- this leads to transients in boundary 3672 * conditions. In specific, the case where the group was idle and we start the 3673 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3674 * yielding bad latency etc.. 3675 * 3676 * Now, in that special case (1) reduces to: 3677 * 3678 * tg->weight * grq->load.weight 3679 * ge->load.weight = ----------------------------- = tg->weight (4) 3680 * grp->load.weight 3681 * 3682 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3683 * 3684 * So what we do is modify our approximation (3) to approach (4) in the (near) 3685 * UP case, like: 3686 * 3687 * ge->load.weight = 3688 * 3689 * tg->weight * grq->load.weight 3690 * --------------------------------------------------- (5) 3691 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3692 * 3693 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3694 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3695 * 3696 * 3697 * tg->weight * grq->load.weight 3698 * ge->load.weight = ----------------------------- (6) 3699 * tg_load_avg' 3700 * 3701 * Where: 3702 * 3703 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3704 * max(grq->load.weight, grq->avg.load_avg) 3705 * 3706 * And that is shares_weight and is icky. In the (near) UP case it approaches 3707 * (4) while in the normal case it approaches (3). It consistently 3708 * overestimates the ge->load.weight and therefore: 3709 * 3710 * \Sum ge->load.weight >= tg->weight 3711 * 3712 * hence icky! 3713 */ 3714 static long calc_group_shares(struct cfs_rq *cfs_rq) 3715 { 3716 long tg_weight, tg_shares, load, shares; 3717 struct task_group *tg = cfs_rq->tg; 3718 3719 tg_shares = READ_ONCE(tg->shares); 3720 3721 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3722 3723 tg_weight = atomic_long_read(&tg->load_avg); 3724 3725 /* Ensure tg_weight >= load */ 3726 tg_weight -= cfs_rq->tg_load_avg_contrib; 3727 tg_weight += load; 3728 3729 shares = (tg_shares * load); 3730 if (tg_weight) 3731 shares /= tg_weight; 3732 3733 /* 3734 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3735 * of a group with small tg->shares value. It is a floor value which is 3736 * assigned as a minimum load.weight to the sched_entity representing 3737 * the group on a CPU. 3738 * 3739 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3740 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3741 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3742 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3743 * instead of 0. 3744 */ 3745 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3746 } 3747 #endif /* CONFIG_SMP */ 3748 3749 /* 3750 * Recomputes the group entity based on the current state of its group 3751 * runqueue. 3752 */ 3753 static void update_cfs_group(struct sched_entity *se) 3754 { 3755 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3756 long shares; 3757 3758 if (!gcfs_rq) 3759 return; 3760 3761 if (throttled_hierarchy(gcfs_rq)) 3762 return; 3763 3764 #ifndef CONFIG_SMP 3765 shares = READ_ONCE(gcfs_rq->tg->shares); 3766 3767 if (likely(se->load.weight == shares)) 3768 return; 3769 #else 3770 shares = calc_group_shares(gcfs_rq); 3771 #endif 3772 3773 reweight_entity(cfs_rq_of(se), se, shares); 3774 } 3775 3776 #else /* CONFIG_FAIR_GROUP_SCHED */ 3777 static inline void update_cfs_group(struct sched_entity *se) 3778 { 3779 } 3780 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3781 3782 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3783 { 3784 struct rq *rq = rq_of(cfs_rq); 3785 3786 if (&rq->cfs == cfs_rq) { 3787 /* 3788 * There are a few boundary cases this might miss but it should 3789 * get called often enough that that should (hopefully) not be 3790 * a real problem. 3791 * 3792 * It will not get called when we go idle, because the idle 3793 * thread is a different class (!fair), nor will the utilization 3794 * number include things like RT tasks. 3795 * 3796 * As is, the util number is not freq-invariant (we'd have to 3797 * implement arch_scale_freq_capacity() for that). 3798 * 3799 * See cpu_util_cfs(). 3800 */ 3801 cpufreq_update_util(rq, flags); 3802 } 3803 } 3804 3805 #ifdef CONFIG_SMP 3806 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3807 { 3808 if (sa->load_sum) 3809 return false; 3810 3811 if (sa->util_sum) 3812 return false; 3813 3814 if (sa->runnable_sum) 3815 return false; 3816 3817 /* 3818 * _avg must be null when _sum are null because _avg = _sum / divider 3819 * Make sure that rounding and/or propagation of PELT values never 3820 * break this. 3821 */ 3822 SCHED_WARN_ON(sa->load_avg || 3823 sa->util_avg || 3824 sa->runnable_avg); 3825 3826 return true; 3827 } 3828 3829 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3830 { 3831 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3832 cfs_rq->last_update_time_copy); 3833 } 3834 #ifdef CONFIG_FAIR_GROUP_SCHED 3835 /* 3836 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3837 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3838 * bottom-up, we only have to test whether the cfs_rq before us on the list 3839 * is our child. 3840 * If cfs_rq is not on the list, test whether a child needs its to be added to 3841 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3842 */ 3843 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3844 { 3845 struct cfs_rq *prev_cfs_rq; 3846 struct list_head *prev; 3847 3848 if (cfs_rq->on_list) { 3849 prev = cfs_rq->leaf_cfs_rq_list.prev; 3850 } else { 3851 struct rq *rq = rq_of(cfs_rq); 3852 3853 prev = rq->tmp_alone_branch; 3854 } 3855 3856 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3857 3858 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3859 } 3860 3861 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3862 { 3863 if (cfs_rq->load.weight) 3864 return false; 3865 3866 if (!load_avg_is_decayed(&cfs_rq->avg)) 3867 return false; 3868 3869 if (child_cfs_rq_on_list(cfs_rq)) 3870 return false; 3871 3872 return true; 3873 } 3874 3875 /** 3876 * update_tg_load_avg - update the tg's load avg 3877 * @cfs_rq: the cfs_rq whose avg changed 3878 * 3879 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3880 * However, because tg->load_avg is a global value there are performance 3881 * considerations. 3882 * 3883 * In order to avoid having to look at the other cfs_rq's, we use a 3884 * differential update where we store the last value we propagated. This in 3885 * turn allows skipping updates if the differential is 'small'. 3886 * 3887 * Updating tg's load_avg is necessary before update_cfs_share(). 3888 */ 3889 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3890 { 3891 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3892 3893 /* 3894 * No need to update load_avg for root_task_group as it is not used. 3895 */ 3896 if (cfs_rq->tg == &root_task_group) 3897 return; 3898 3899 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3900 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3901 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3902 } 3903 } 3904 3905 /* 3906 * Called within set_task_rq() right before setting a task's CPU. The 3907 * caller only guarantees p->pi_lock is held; no other assumptions, 3908 * including the state of rq->lock, should be made. 3909 */ 3910 void set_task_rq_fair(struct sched_entity *se, 3911 struct cfs_rq *prev, struct cfs_rq *next) 3912 { 3913 u64 p_last_update_time; 3914 u64 n_last_update_time; 3915 3916 if (!sched_feat(ATTACH_AGE_LOAD)) 3917 return; 3918 3919 /* 3920 * We are supposed to update the task to "current" time, then its up to 3921 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3922 * getting what current time is, so simply throw away the out-of-date 3923 * time. This will result in the wakee task is less decayed, but giving 3924 * the wakee more load sounds not bad. 3925 */ 3926 if (!(se->avg.last_update_time && prev)) 3927 return; 3928 3929 p_last_update_time = cfs_rq_last_update_time(prev); 3930 n_last_update_time = cfs_rq_last_update_time(next); 3931 3932 __update_load_avg_blocked_se(p_last_update_time, se); 3933 se->avg.last_update_time = n_last_update_time; 3934 } 3935 3936 /* 3937 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3938 * propagate its contribution. The key to this propagation is the invariant 3939 * that for each group: 3940 * 3941 * ge->avg == grq->avg (1) 3942 * 3943 * _IFF_ we look at the pure running and runnable sums. Because they 3944 * represent the very same entity, just at different points in the hierarchy. 3945 * 3946 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3947 * and simply copies the running/runnable sum over (but still wrong, because 3948 * the group entity and group rq do not have their PELT windows aligned). 3949 * 3950 * However, update_tg_cfs_load() is more complex. So we have: 3951 * 3952 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3953 * 3954 * And since, like util, the runnable part should be directly transferable, 3955 * the following would _appear_ to be the straight forward approach: 3956 * 3957 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3958 * 3959 * And per (1) we have: 3960 * 3961 * ge->avg.runnable_avg == grq->avg.runnable_avg 3962 * 3963 * Which gives: 3964 * 3965 * ge->load.weight * grq->avg.load_avg 3966 * ge->avg.load_avg = ----------------------------------- (4) 3967 * grq->load.weight 3968 * 3969 * Except that is wrong! 3970 * 3971 * Because while for entities historical weight is not important and we 3972 * really only care about our future and therefore can consider a pure 3973 * runnable sum, runqueues can NOT do this. 3974 * 3975 * We specifically want runqueues to have a load_avg that includes 3976 * historical weights. Those represent the blocked load, the load we expect 3977 * to (shortly) return to us. This only works by keeping the weights as 3978 * integral part of the sum. We therefore cannot decompose as per (3). 3979 * 3980 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3981 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3982 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3983 * runnable section of these tasks overlap (or not). If they were to perfectly 3984 * align the rq as a whole would be runnable 2/3 of the time. If however we 3985 * always have at least 1 runnable task, the rq as a whole is always runnable. 3986 * 3987 * So we'll have to approximate.. :/ 3988 * 3989 * Given the constraint: 3990 * 3991 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3992 * 3993 * We can construct a rule that adds runnable to a rq by assuming minimal 3994 * overlap. 3995 * 3996 * On removal, we'll assume each task is equally runnable; which yields: 3997 * 3998 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3999 * 4000 * XXX: only do this for the part of runnable > running ? 4001 * 4002 */ 4003 static inline void 4004 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4005 { 4006 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4007 u32 new_sum, divider; 4008 4009 /* Nothing to update */ 4010 if (!delta_avg) 4011 return; 4012 4013 /* 4014 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4015 * See ___update_load_avg() for details. 4016 */ 4017 divider = get_pelt_divider(&cfs_rq->avg); 4018 4019 4020 /* Set new sched_entity's utilization */ 4021 se->avg.util_avg = gcfs_rq->avg.util_avg; 4022 new_sum = se->avg.util_avg * divider; 4023 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4024 se->avg.util_sum = new_sum; 4025 4026 /* Update parent cfs_rq utilization */ 4027 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4028 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4029 4030 /* See update_cfs_rq_load_avg() */ 4031 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4032 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4033 } 4034 4035 static inline void 4036 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4037 { 4038 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4039 u32 new_sum, divider; 4040 4041 /* Nothing to update */ 4042 if (!delta_avg) 4043 return; 4044 4045 /* 4046 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4047 * See ___update_load_avg() for details. 4048 */ 4049 divider = get_pelt_divider(&cfs_rq->avg); 4050 4051 /* Set new sched_entity's runnable */ 4052 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4053 new_sum = se->avg.runnable_avg * divider; 4054 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4055 se->avg.runnable_sum = new_sum; 4056 4057 /* Update parent cfs_rq runnable */ 4058 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4059 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4060 /* See update_cfs_rq_load_avg() */ 4061 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4062 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4063 } 4064 4065 static inline void 4066 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4067 { 4068 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4069 unsigned long load_avg; 4070 u64 load_sum = 0; 4071 s64 delta_sum; 4072 u32 divider; 4073 4074 if (!runnable_sum) 4075 return; 4076 4077 gcfs_rq->prop_runnable_sum = 0; 4078 4079 /* 4080 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4081 * See ___update_load_avg() for details. 4082 */ 4083 divider = get_pelt_divider(&cfs_rq->avg); 4084 4085 if (runnable_sum >= 0) { 4086 /* 4087 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4088 * the CPU is saturated running == runnable. 4089 */ 4090 runnable_sum += se->avg.load_sum; 4091 runnable_sum = min_t(long, runnable_sum, divider); 4092 } else { 4093 /* 4094 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4095 * assuming all tasks are equally runnable. 4096 */ 4097 if (scale_load_down(gcfs_rq->load.weight)) { 4098 load_sum = div_u64(gcfs_rq->avg.load_sum, 4099 scale_load_down(gcfs_rq->load.weight)); 4100 } 4101 4102 /* But make sure to not inflate se's runnable */ 4103 runnable_sum = min(se->avg.load_sum, load_sum); 4104 } 4105 4106 /* 4107 * runnable_sum can't be lower than running_sum 4108 * Rescale running sum to be in the same range as runnable sum 4109 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4110 * runnable_sum is in [0 : LOAD_AVG_MAX] 4111 */ 4112 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4113 runnable_sum = max(runnable_sum, running_sum); 4114 4115 load_sum = se_weight(se) * runnable_sum; 4116 load_avg = div_u64(load_sum, divider); 4117 4118 delta_avg = load_avg - se->avg.load_avg; 4119 if (!delta_avg) 4120 return; 4121 4122 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4123 4124 se->avg.load_sum = runnable_sum; 4125 se->avg.load_avg = load_avg; 4126 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4127 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4128 /* See update_cfs_rq_load_avg() */ 4129 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4130 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4131 } 4132 4133 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4134 { 4135 cfs_rq->propagate = 1; 4136 cfs_rq->prop_runnable_sum += runnable_sum; 4137 } 4138 4139 /* Update task and its cfs_rq load average */ 4140 static inline int propagate_entity_load_avg(struct sched_entity *se) 4141 { 4142 struct cfs_rq *cfs_rq, *gcfs_rq; 4143 4144 if (entity_is_task(se)) 4145 return 0; 4146 4147 gcfs_rq = group_cfs_rq(se); 4148 if (!gcfs_rq->propagate) 4149 return 0; 4150 4151 gcfs_rq->propagate = 0; 4152 4153 cfs_rq = cfs_rq_of(se); 4154 4155 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4156 4157 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4158 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4159 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4160 4161 trace_pelt_cfs_tp(cfs_rq); 4162 trace_pelt_se_tp(se); 4163 4164 return 1; 4165 } 4166 4167 /* 4168 * Check if we need to update the load and the utilization of a blocked 4169 * group_entity: 4170 */ 4171 static inline bool skip_blocked_update(struct sched_entity *se) 4172 { 4173 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4174 4175 /* 4176 * If sched_entity still have not zero load or utilization, we have to 4177 * decay it: 4178 */ 4179 if (se->avg.load_avg || se->avg.util_avg) 4180 return false; 4181 4182 /* 4183 * If there is a pending propagation, we have to update the load and 4184 * the utilization of the sched_entity: 4185 */ 4186 if (gcfs_rq->propagate) 4187 return false; 4188 4189 /* 4190 * Otherwise, the load and the utilization of the sched_entity is 4191 * already zero and there is no pending propagation, so it will be a 4192 * waste of time to try to decay it: 4193 */ 4194 return true; 4195 } 4196 4197 #else /* CONFIG_FAIR_GROUP_SCHED */ 4198 4199 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4200 4201 static inline int propagate_entity_load_avg(struct sched_entity *se) 4202 { 4203 return 0; 4204 } 4205 4206 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4207 4208 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4209 4210 #ifdef CONFIG_NO_HZ_COMMON 4211 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4212 { 4213 u64 throttled = 0, now, lut; 4214 struct cfs_rq *cfs_rq; 4215 struct rq *rq; 4216 bool is_idle; 4217 4218 if (load_avg_is_decayed(&se->avg)) 4219 return; 4220 4221 cfs_rq = cfs_rq_of(se); 4222 rq = rq_of(cfs_rq); 4223 4224 rcu_read_lock(); 4225 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4226 rcu_read_unlock(); 4227 4228 /* 4229 * The lag estimation comes with a cost we don't want to pay all the 4230 * time. Hence, limiting to the case where the source CPU is idle and 4231 * we know we are at the greatest risk to have an outdated clock. 4232 */ 4233 if (!is_idle) 4234 return; 4235 4236 /* 4237 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4238 * 4239 * last_update_time (the cfs_rq's last_update_time) 4240 * = cfs_rq_clock_pelt()@cfs_rq_idle 4241 * = rq_clock_pelt()@cfs_rq_idle 4242 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4243 * 4244 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4245 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4246 * 4247 * rq_idle_lag (delta between now and rq's update) 4248 * = sched_clock_cpu() - rq_clock()@rq_idle 4249 * 4250 * We can then write: 4251 * 4252 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4253 * sched_clock_cpu() - rq_clock()@rq_idle 4254 * Where: 4255 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4256 * rq_clock()@rq_idle is rq->clock_idle 4257 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4258 * is cfs_rq->throttled_pelt_idle 4259 */ 4260 4261 #ifdef CONFIG_CFS_BANDWIDTH 4262 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4263 /* The clock has been stopped for throttling */ 4264 if (throttled == U64_MAX) 4265 return; 4266 #endif 4267 now = u64_u32_load(rq->clock_pelt_idle); 4268 /* 4269 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4270 * is observed the old clock_pelt_idle value and the new clock_idle, 4271 * which lead to an underestimation. The opposite would lead to an 4272 * overestimation. 4273 */ 4274 smp_rmb(); 4275 lut = cfs_rq_last_update_time(cfs_rq); 4276 4277 now -= throttled; 4278 if (now < lut) 4279 /* 4280 * cfs_rq->avg.last_update_time is more recent than our 4281 * estimation, let's use it. 4282 */ 4283 now = lut; 4284 else 4285 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4286 4287 __update_load_avg_blocked_se(now, se); 4288 } 4289 #else 4290 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4291 #endif 4292 4293 /** 4294 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4295 * @now: current time, as per cfs_rq_clock_pelt() 4296 * @cfs_rq: cfs_rq to update 4297 * 4298 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4299 * avg. The immediate corollary is that all (fair) tasks must be attached. 4300 * 4301 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4302 * 4303 * Return: true if the load decayed or we removed load. 4304 * 4305 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4306 * call update_tg_load_avg() when this function returns true. 4307 */ 4308 static inline int 4309 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4310 { 4311 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4312 struct sched_avg *sa = &cfs_rq->avg; 4313 int decayed = 0; 4314 4315 if (cfs_rq->removed.nr) { 4316 unsigned long r; 4317 u32 divider = get_pelt_divider(&cfs_rq->avg); 4318 4319 raw_spin_lock(&cfs_rq->removed.lock); 4320 swap(cfs_rq->removed.util_avg, removed_util); 4321 swap(cfs_rq->removed.load_avg, removed_load); 4322 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4323 cfs_rq->removed.nr = 0; 4324 raw_spin_unlock(&cfs_rq->removed.lock); 4325 4326 r = removed_load; 4327 sub_positive(&sa->load_avg, r); 4328 sub_positive(&sa->load_sum, r * divider); 4329 /* See sa->util_sum below */ 4330 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4331 4332 r = removed_util; 4333 sub_positive(&sa->util_avg, r); 4334 sub_positive(&sa->util_sum, r * divider); 4335 /* 4336 * Because of rounding, se->util_sum might ends up being +1 more than 4337 * cfs->util_sum. Although this is not a problem by itself, detaching 4338 * a lot of tasks with the rounding problem between 2 updates of 4339 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4340 * cfs_util_avg is not. 4341 * Check that util_sum is still above its lower bound for the new 4342 * util_avg. Given that period_contrib might have moved since the last 4343 * sync, we are only sure that util_sum must be above or equal to 4344 * util_avg * minimum possible divider 4345 */ 4346 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4347 4348 r = removed_runnable; 4349 sub_positive(&sa->runnable_avg, r); 4350 sub_positive(&sa->runnable_sum, r * divider); 4351 /* See sa->util_sum above */ 4352 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4353 sa->runnable_avg * PELT_MIN_DIVIDER); 4354 4355 /* 4356 * removed_runnable is the unweighted version of removed_load so we 4357 * can use it to estimate removed_load_sum. 4358 */ 4359 add_tg_cfs_propagate(cfs_rq, 4360 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4361 4362 decayed = 1; 4363 } 4364 4365 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4366 u64_u32_store_copy(sa->last_update_time, 4367 cfs_rq->last_update_time_copy, 4368 sa->last_update_time); 4369 return decayed; 4370 } 4371 4372 /** 4373 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4374 * @cfs_rq: cfs_rq to attach to 4375 * @se: sched_entity to attach 4376 * 4377 * Must call update_cfs_rq_load_avg() before this, since we rely on 4378 * cfs_rq->avg.last_update_time being current. 4379 */ 4380 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4381 { 4382 /* 4383 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4384 * See ___update_load_avg() for details. 4385 */ 4386 u32 divider = get_pelt_divider(&cfs_rq->avg); 4387 4388 /* 4389 * When we attach the @se to the @cfs_rq, we must align the decay 4390 * window because without that, really weird and wonderful things can 4391 * happen. 4392 * 4393 * XXX illustrate 4394 */ 4395 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4396 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4397 4398 /* 4399 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4400 * period_contrib. This isn't strictly correct, but since we're 4401 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4402 * _sum a little. 4403 */ 4404 se->avg.util_sum = se->avg.util_avg * divider; 4405 4406 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4407 4408 se->avg.load_sum = se->avg.load_avg * divider; 4409 if (se_weight(se) < se->avg.load_sum) 4410 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4411 else 4412 se->avg.load_sum = 1; 4413 4414 enqueue_load_avg(cfs_rq, se); 4415 cfs_rq->avg.util_avg += se->avg.util_avg; 4416 cfs_rq->avg.util_sum += se->avg.util_sum; 4417 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4418 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4419 4420 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4421 4422 cfs_rq_util_change(cfs_rq, 0); 4423 4424 trace_pelt_cfs_tp(cfs_rq); 4425 } 4426 4427 /** 4428 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4429 * @cfs_rq: cfs_rq to detach from 4430 * @se: sched_entity to detach 4431 * 4432 * Must call update_cfs_rq_load_avg() before this, since we rely on 4433 * cfs_rq->avg.last_update_time being current. 4434 */ 4435 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4436 { 4437 dequeue_load_avg(cfs_rq, se); 4438 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4439 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4440 /* See update_cfs_rq_load_avg() */ 4441 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4442 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4443 4444 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4445 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4446 /* See update_cfs_rq_load_avg() */ 4447 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4448 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4449 4450 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4451 4452 cfs_rq_util_change(cfs_rq, 0); 4453 4454 trace_pelt_cfs_tp(cfs_rq); 4455 } 4456 4457 /* 4458 * Optional action to be done while updating the load average 4459 */ 4460 #define UPDATE_TG 0x1 4461 #define SKIP_AGE_LOAD 0x2 4462 #define DO_ATTACH 0x4 4463 #define DO_DETACH 0x8 4464 4465 /* Update task and its cfs_rq load average */ 4466 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4467 { 4468 u64 now = cfs_rq_clock_pelt(cfs_rq); 4469 int decayed; 4470 4471 /* 4472 * Track task load average for carrying it to new CPU after migrated, and 4473 * track group sched_entity load average for task_h_load calc in migration 4474 */ 4475 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4476 __update_load_avg_se(now, cfs_rq, se); 4477 4478 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4479 decayed |= propagate_entity_load_avg(se); 4480 4481 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4482 4483 /* 4484 * DO_ATTACH means we're here from enqueue_entity(). 4485 * !last_update_time means we've passed through 4486 * migrate_task_rq_fair() indicating we migrated. 4487 * 4488 * IOW we're enqueueing a task on a new CPU. 4489 */ 4490 attach_entity_load_avg(cfs_rq, se); 4491 update_tg_load_avg(cfs_rq); 4492 4493 } else if (flags & DO_DETACH) { 4494 /* 4495 * DO_DETACH means we're here from dequeue_entity() 4496 * and we are migrating task out of the CPU. 4497 */ 4498 detach_entity_load_avg(cfs_rq, se); 4499 update_tg_load_avg(cfs_rq); 4500 } else if (decayed) { 4501 cfs_rq_util_change(cfs_rq, 0); 4502 4503 if (flags & UPDATE_TG) 4504 update_tg_load_avg(cfs_rq); 4505 } 4506 } 4507 4508 /* 4509 * Synchronize entity load avg of dequeued entity without locking 4510 * the previous rq. 4511 */ 4512 static void sync_entity_load_avg(struct sched_entity *se) 4513 { 4514 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4515 u64 last_update_time; 4516 4517 last_update_time = cfs_rq_last_update_time(cfs_rq); 4518 __update_load_avg_blocked_se(last_update_time, se); 4519 } 4520 4521 /* 4522 * Task first catches up with cfs_rq, and then subtract 4523 * itself from the cfs_rq (task must be off the queue now). 4524 */ 4525 static void remove_entity_load_avg(struct sched_entity *se) 4526 { 4527 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4528 unsigned long flags; 4529 4530 /* 4531 * tasks cannot exit without having gone through wake_up_new_task() -> 4532 * enqueue_task_fair() which will have added things to the cfs_rq, 4533 * so we can remove unconditionally. 4534 */ 4535 4536 sync_entity_load_avg(se); 4537 4538 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4539 ++cfs_rq->removed.nr; 4540 cfs_rq->removed.util_avg += se->avg.util_avg; 4541 cfs_rq->removed.load_avg += se->avg.load_avg; 4542 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4543 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4544 } 4545 4546 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4547 { 4548 return cfs_rq->avg.runnable_avg; 4549 } 4550 4551 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4552 { 4553 return cfs_rq->avg.load_avg; 4554 } 4555 4556 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4557 4558 static inline unsigned long task_util(struct task_struct *p) 4559 { 4560 return READ_ONCE(p->se.avg.util_avg); 4561 } 4562 4563 static inline unsigned long _task_util_est(struct task_struct *p) 4564 { 4565 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4566 4567 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4568 } 4569 4570 static inline unsigned long task_util_est(struct task_struct *p) 4571 { 4572 return max(task_util(p), _task_util_est(p)); 4573 } 4574 4575 #ifdef CONFIG_UCLAMP_TASK 4576 static inline unsigned long uclamp_task_util(struct task_struct *p, 4577 unsigned long uclamp_min, 4578 unsigned long uclamp_max) 4579 { 4580 return clamp(task_util_est(p), uclamp_min, uclamp_max); 4581 } 4582 #else 4583 static inline unsigned long uclamp_task_util(struct task_struct *p, 4584 unsigned long uclamp_min, 4585 unsigned long uclamp_max) 4586 { 4587 return task_util_est(p); 4588 } 4589 #endif 4590 4591 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4592 struct task_struct *p) 4593 { 4594 unsigned int enqueued; 4595 4596 if (!sched_feat(UTIL_EST)) 4597 return; 4598 4599 /* Update root cfs_rq's estimated utilization */ 4600 enqueued = cfs_rq->avg.util_est.enqueued; 4601 enqueued += _task_util_est(p); 4602 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4603 4604 trace_sched_util_est_cfs_tp(cfs_rq); 4605 } 4606 4607 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4608 struct task_struct *p) 4609 { 4610 unsigned int enqueued; 4611 4612 if (!sched_feat(UTIL_EST)) 4613 return; 4614 4615 /* Update root cfs_rq's estimated utilization */ 4616 enqueued = cfs_rq->avg.util_est.enqueued; 4617 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4618 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4619 4620 trace_sched_util_est_cfs_tp(cfs_rq); 4621 } 4622 4623 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4624 4625 /* 4626 * Check if a (signed) value is within a specified (unsigned) margin, 4627 * based on the observation that: 4628 * 4629 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4630 * 4631 * NOTE: this only works when value + margin < INT_MAX. 4632 */ 4633 static inline bool within_margin(int value, int margin) 4634 { 4635 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4636 } 4637 4638 static inline void util_est_update(struct cfs_rq *cfs_rq, 4639 struct task_struct *p, 4640 bool task_sleep) 4641 { 4642 long last_ewma_diff, last_enqueued_diff; 4643 struct util_est ue; 4644 4645 if (!sched_feat(UTIL_EST)) 4646 return; 4647 4648 /* 4649 * Skip update of task's estimated utilization when the task has not 4650 * yet completed an activation, e.g. being migrated. 4651 */ 4652 if (!task_sleep) 4653 return; 4654 4655 /* 4656 * If the PELT values haven't changed since enqueue time, 4657 * skip the util_est update. 4658 */ 4659 ue = p->se.avg.util_est; 4660 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4661 return; 4662 4663 last_enqueued_diff = ue.enqueued; 4664 4665 /* 4666 * Reset EWMA on utilization increases, the moving average is used only 4667 * to smooth utilization decreases. 4668 */ 4669 ue.enqueued = task_util(p); 4670 if (sched_feat(UTIL_EST_FASTUP)) { 4671 if (ue.ewma < ue.enqueued) { 4672 ue.ewma = ue.enqueued; 4673 goto done; 4674 } 4675 } 4676 4677 /* 4678 * Skip update of task's estimated utilization when its members are 4679 * already ~1% close to its last activation value. 4680 */ 4681 last_ewma_diff = ue.enqueued - ue.ewma; 4682 last_enqueued_diff -= ue.enqueued; 4683 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4684 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4685 goto done; 4686 4687 return; 4688 } 4689 4690 /* 4691 * To avoid overestimation of actual task utilization, skip updates if 4692 * we cannot grant there is idle time in this CPU. 4693 */ 4694 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4695 return; 4696 4697 /* 4698 * Update Task's estimated utilization 4699 * 4700 * When *p completes an activation we can consolidate another sample 4701 * of the task size. This is done by storing the current PELT value 4702 * as ue.enqueued and by using this value to update the Exponential 4703 * Weighted Moving Average (EWMA): 4704 * 4705 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4706 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4707 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4708 * = w * ( last_ewma_diff ) + ewma(t-1) 4709 * = w * (last_ewma_diff + ewma(t-1) / w) 4710 * 4711 * Where 'w' is the weight of new samples, which is configured to be 4712 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4713 */ 4714 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4715 ue.ewma += last_ewma_diff; 4716 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4717 done: 4718 ue.enqueued |= UTIL_AVG_UNCHANGED; 4719 WRITE_ONCE(p->se.avg.util_est, ue); 4720 4721 trace_sched_util_est_se_tp(&p->se); 4722 } 4723 4724 static inline int util_fits_cpu(unsigned long util, 4725 unsigned long uclamp_min, 4726 unsigned long uclamp_max, 4727 int cpu) 4728 { 4729 unsigned long capacity_orig, capacity_orig_thermal; 4730 unsigned long capacity = capacity_of(cpu); 4731 bool fits, uclamp_max_fits; 4732 4733 /* 4734 * Check if the real util fits without any uclamp boost/cap applied. 4735 */ 4736 fits = fits_capacity(util, capacity); 4737 4738 if (!uclamp_is_used()) 4739 return fits; 4740 4741 /* 4742 * We must use capacity_orig_of() for comparing against uclamp_min and 4743 * uclamp_max. We only care about capacity pressure (by using 4744 * capacity_of()) for comparing against the real util. 4745 * 4746 * If a task is boosted to 1024 for example, we don't want a tiny 4747 * pressure to skew the check whether it fits a CPU or not. 4748 * 4749 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4750 * should fit a little cpu even if there's some pressure. 4751 * 4752 * Only exception is for thermal pressure since it has a direct impact 4753 * on available OPP of the system. 4754 * 4755 * We honour it for uclamp_min only as a drop in performance level 4756 * could result in not getting the requested minimum performance level. 4757 * 4758 * For uclamp_max, we can tolerate a drop in performance level as the 4759 * goal is to cap the task. So it's okay if it's getting less. 4760 */ 4761 capacity_orig = capacity_orig_of(cpu); 4762 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4763 4764 /* 4765 * We want to force a task to fit a cpu as implied by uclamp_max. 4766 * But we do have some corner cases to cater for.. 4767 * 4768 * 4769 * C=z 4770 * | ___ 4771 * | C=y | | 4772 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4773 * | C=x | | | | 4774 * | ___ | | | | 4775 * | | | | | | | (util somewhere in this region) 4776 * | | | | | | | 4777 * | | | | | | | 4778 * +---------------------------------------- 4779 * cpu0 cpu1 cpu2 4780 * 4781 * In the above example if a task is capped to a specific performance 4782 * point, y, then when: 4783 * 4784 * * util = 80% of x then it does not fit on cpu0 and should migrate 4785 * to cpu1 4786 * * util = 80% of y then it is forced to fit on cpu1 to honour 4787 * uclamp_max request. 4788 * 4789 * which is what we're enforcing here. A task always fits if 4790 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4791 * the normal upmigration rules should withhold still. 4792 * 4793 * Only exception is when we are on max capacity, then we need to be 4794 * careful not to block overutilized state. This is so because: 4795 * 4796 * 1. There's no concept of capping at max_capacity! We can't go 4797 * beyond this performance level anyway. 4798 * 2. The system is being saturated when we're operating near 4799 * max capacity, it doesn't make sense to block overutilized. 4800 */ 4801 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4802 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4803 fits = fits || uclamp_max_fits; 4804 4805 /* 4806 * 4807 * C=z 4808 * | ___ (region a, capped, util >= uclamp_max) 4809 * | C=y | | 4810 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4811 * | C=x | | | | 4812 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4813 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4814 * | | | | | | | 4815 * | | | | | | | (region c, boosted, util < uclamp_min) 4816 * +---------------------------------------- 4817 * cpu0 cpu1 cpu2 4818 * 4819 * a) If util > uclamp_max, then we're capped, we don't care about 4820 * actual fitness value here. We only care if uclamp_max fits 4821 * capacity without taking margin/pressure into account. 4822 * See comment above. 4823 * 4824 * b) If uclamp_min <= util <= uclamp_max, then the normal 4825 * fits_capacity() rules apply. Except we need to ensure that we 4826 * enforce we remain within uclamp_max, see comment above. 4827 * 4828 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4829 * need to take into account the boosted value fits the CPU without 4830 * taking margin/pressure into account. 4831 * 4832 * Cases (a) and (b) are handled in the 'fits' variable already. We 4833 * just need to consider an extra check for case (c) after ensuring we 4834 * handle the case uclamp_min > uclamp_max. 4835 */ 4836 uclamp_min = min(uclamp_min, uclamp_max); 4837 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4838 return -1; 4839 4840 return fits; 4841 } 4842 4843 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4844 { 4845 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4846 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4847 unsigned long util = task_util_est(p); 4848 /* 4849 * Return true only if the cpu fully fits the task requirements, which 4850 * include the utilization but also the performance hints. 4851 */ 4852 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 4853 } 4854 4855 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4856 { 4857 if (!sched_asym_cpucap_active()) 4858 return; 4859 4860 if (!p || p->nr_cpus_allowed == 1) { 4861 rq->misfit_task_load = 0; 4862 return; 4863 } 4864 4865 if (task_fits_cpu(p, cpu_of(rq))) { 4866 rq->misfit_task_load = 0; 4867 return; 4868 } 4869 4870 /* 4871 * Make sure that misfit_task_load will not be null even if 4872 * task_h_load() returns 0. 4873 */ 4874 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4875 } 4876 4877 #else /* CONFIG_SMP */ 4878 4879 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4880 { 4881 return true; 4882 } 4883 4884 #define UPDATE_TG 0x0 4885 #define SKIP_AGE_LOAD 0x0 4886 #define DO_ATTACH 0x0 4887 #define DO_DETACH 0x0 4888 4889 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4890 { 4891 cfs_rq_util_change(cfs_rq, 0); 4892 } 4893 4894 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4895 4896 static inline void 4897 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4898 static inline void 4899 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4900 4901 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4902 { 4903 return 0; 4904 } 4905 4906 static inline void 4907 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4908 4909 static inline void 4910 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4911 4912 static inline void 4913 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4914 bool task_sleep) {} 4915 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4916 4917 #endif /* CONFIG_SMP */ 4918 4919 static void 4920 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4921 { 4922 u64 vslice = calc_delta_fair(se->slice, se); 4923 u64 vruntime = avg_vruntime(cfs_rq); 4924 s64 lag = 0; 4925 4926 /* 4927 * Due to how V is constructed as the weighted average of entities, 4928 * adding tasks with positive lag, or removing tasks with negative lag 4929 * will move 'time' backwards, this can screw around with the lag of 4930 * other tasks. 4931 * 4932 * EEVDF: placement strategy #1 / #2 4933 */ 4934 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 4935 struct sched_entity *curr = cfs_rq->curr; 4936 unsigned long load; 4937 4938 lag = se->vlag; 4939 4940 /* 4941 * If we want to place a task and preserve lag, we have to 4942 * consider the effect of the new entity on the weighted 4943 * average and compensate for this, otherwise lag can quickly 4944 * evaporate. 4945 * 4946 * Lag is defined as: 4947 * 4948 * lag_i = S - s_i = w_i * (V - v_i) 4949 * 4950 * To avoid the 'w_i' term all over the place, we only track 4951 * the virtual lag: 4952 * 4953 * vl_i = V - v_i <=> v_i = V - vl_i 4954 * 4955 * And we take V to be the weighted average of all v: 4956 * 4957 * V = (\Sum w_j*v_j) / W 4958 * 4959 * Where W is: \Sum w_j 4960 * 4961 * Then, the weighted average after adding an entity with lag 4962 * vl_i is given by: 4963 * 4964 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 4965 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 4966 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 4967 * = (V*(W + w_i) - w_i*l) / (W + w_i) 4968 * = V - w_i*vl_i / (W + w_i) 4969 * 4970 * And the actual lag after adding an entity with vl_i is: 4971 * 4972 * vl'_i = V' - v_i 4973 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 4974 * = vl_i - w_i*vl_i / (W + w_i) 4975 * 4976 * Which is strictly less than vl_i. So in order to preserve lag 4977 * we should inflate the lag before placement such that the 4978 * effective lag after placement comes out right. 4979 * 4980 * As such, invert the above relation for vl'_i to get the vl_i 4981 * we need to use such that the lag after placement is the lag 4982 * we computed before dequeue. 4983 * 4984 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 4985 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 4986 * 4987 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 4988 * = W*vl_i 4989 * 4990 * vl_i = (W + w_i)*vl'_i / W 4991 */ 4992 load = cfs_rq->avg_load; 4993 if (curr && curr->on_rq) 4994 load += scale_load_down(curr->load.weight); 4995 4996 lag *= load + scale_load_down(se->load.weight); 4997 if (WARN_ON_ONCE(!load)) 4998 load = 1; 4999 lag = div_s64(lag, load); 5000 } 5001 5002 se->vruntime = vruntime - lag; 5003 5004 /* 5005 * When joining the competition; the exisiting tasks will be, 5006 * on average, halfway through their slice, as such start tasks 5007 * off with half a slice to ease into the competition. 5008 */ 5009 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5010 vslice /= 2; 5011 5012 /* 5013 * EEVDF: vd_i = ve_i + r_i/w_i 5014 */ 5015 se->deadline = se->vruntime + vslice; 5016 } 5017 5018 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5019 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5020 5021 static inline bool cfs_bandwidth_used(void); 5022 5023 static void 5024 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5025 { 5026 bool curr = cfs_rq->curr == se; 5027 5028 /* 5029 * If we're the current task, we must renormalise before calling 5030 * update_curr(). 5031 */ 5032 if (curr) 5033 place_entity(cfs_rq, se, flags); 5034 5035 update_curr(cfs_rq); 5036 5037 /* 5038 * When enqueuing a sched_entity, we must: 5039 * - Update loads to have both entity and cfs_rq synced with now. 5040 * - For group_entity, update its runnable_weight to reflect the new 5041 * h_nr_running of its group cfs_rq. 5042 * - For group_entity, update its weight to reflect the new share of 5043 * its group cfs_rq 5044 * - Add its new weight to cfs_rq->load.weight 5045 */ 5046 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5047 se_update_runnable(se); 5048 /* 5049 * XXX update_load_avg() above will have attached us to the pelt sum; 5050 * but update_cfs_group() here will re-adjust the weight and have to 5051 * undo/redo all that. Seems wasteful. 5052 */ 5053 update_cfs_group(se); 5054 5055 /* 5056 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5057 * we can place the entity. 5058 */ 5059 if (!curr) 5060 place_entity(cfs_rq, se, flags); 5061 5062 account_entity_enqueue(cfs_rq, se); 5063 5064 /* Entity has migrated, no longer consider this task hot */ 5065 if (flags & ENQUEUE_MIGRATED) 5066 se->exec_start = 0; 5067 5068 check_schedstat_required(); 5069 update_stats_enqueue_fair(cfs_rq, se, flags); 5070 if (!curr) 5071 __enqueue_entity(cfs_rq, se); 5072 se->on_rq = 1; 5073 5074 if (cfs_rq->nr_running == 1) { 5075 check_enqueue_throttle(cfs_rq); 5076 if (!throttled_hierarchy(cfs_rq)) { 5077 list_add_leaf_cfs_rq(cfs_rq); 5078 } else { 5079 #ifdef CONFIG_CFS_BANDWIDTH 5080 struct rq *rq = rq_of(cfs_rq); 5081 5082 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5083 cfs_rq->throttled_clock = rq_clock(rq); 5084 if (!cfs_rq->throttled_clock_self) 5085 cfs_rq->throttled_clock_self = rq_clock(rq); 5086 #endif 5087 } 5088 } 5089 } 5090 5091 static void __clear_buddies_next(struct sched_entity *se) 5092 { 5093 for_each_sched_entity(se) { 5094 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5095 if (cfs_rq->next != se) 5096 break; 5097 5098 cfs_rq->next = NULL; 5099 } 5100 } 5101 5102 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5103 { 5104 if (cfs_rq->next == se) 5105 __clear_buddies_next(se); 5106 } 5107 5108 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5109 5110 static void 5111 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5112 { 5113 int action = UPDATE_TG; 5114 5115 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5116 action |= DO_DETACH; 5117 5118 /* 5119 * Update run-time statistics of the 'current'. 5120 */ 5121 update_curr(cfs_rq); 5122 5123 /* 5124 * When dequeuing a sched_entity, we must: 5125 * - Update loads to have both entity and cfs_rq synced with now. 5126 * - For group_entity, update its runnable_weight to reflect the new 5127 * h_nr_running of its group cfs_rq. 5128 * - Subtract its previous weight from cfs_rq->load.weight. 5129 * - For group entity, update its weight to reflect the new share 5130 * of its group cfs_rq. 5131 */ 5132 update_load_avg(cfs_rq, se, action); 5133 se_update_runnable(se); 5134 5135 update_stats_dequeue_fair(cfs_rq, se, flags); 5136 5137 clear_buddies(cfs_rq, se); 5138 5139 update_entity_lag(cfs_rq, se); 5140 if (se != cfs_rq->curr) 5141 __dequeue_entity(cfs_rq, se); 5142 se->on_rq = 0; 5143 account_entity_dequeue(cfs_rq, se); 5144 5145 /* return excess runtime on last dequeue */ 5146 return_cfs_rq_runtime(cfs_rq); 5147 5148 update_cfs_group(se); 5149 5150 /* 5151 * Now advance min_vruntime if @se was the entity holding it back, 5152 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5153 * put back on, and if we advance min_vruntime, we'll be placed back 5154 * further than we started -- ie. we'll be penalized. 5155 */ 5156 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5157 update_min_vruntime(cfs_rq); 5158 5159 if (cfs_rq->nr_running == 0) 5160 update_idle_cfs_rq_clock_pelt(cfs_rq); 5161 } 5162 5163 static void 5164 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5165 { 5166 clear_buddies(cfs_rq, se); 5167 5168 /* 'current' is not kept within the tree. */ 5169 if (se->on_rq) { 5170 /* 5171 * Any task has to be enqueued before it get to execute on 5172 * a CPU. So account for the time it spent waiting on the 5173 * runqueue. 5174 */ 5175 update_stats_wait_end_fair(cfs_rq, se); 5176 __dequeue_entity(cfs_rq, se); 5177 update_load_avg(cfs_rq, se, UPDATE_TG); 5178 /* 5179 * HACK, stash a copy of deadline at the point of pick in vlag, 5180 * which isn't used until dequeue. 5181 */ 5182 se->vlag = se->deadline; 5183 } 5184 5185 update_stats_curr_start(cfs_rq, se); 5186 cfs_rq->curr = se; 5187 5188 /* 5189 * Track our maximum slice length, if the CPU's load is at 5190 * least twice that of our own weight (i.e. dont track it 5191 * when there are only lesser-weight tasks around): 5192 */ 5193 if (schedstat_enabled() && 5194 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5195 struct sched_statistics *stats; 5196 5197 stats = __schedstats_from_se(se); 5198 __schedstat_set(stats->slice_max, 5199 max((u64)stats->slice_max, 5200 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5201 } 5202 5203 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5204 } 5205 5206 /* 5207 * Pick the next process, keeping these things in mind, in this order: 5208 * 1) keep things fair between processes/task groups 5209 * 2) pick the "next" process, since someone really wants that to run 5210 * 3) pick the "last" process, for cache locality 5211 * 4) do not run the "skip" process, if something else is available 5212 */ 5213 static struct sched_entity * 5214 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 5215 { 5216 /* 5217 * Enabling NEXT_BUDDY will affect latency but not fairness. 5218 */ 5219 if (sched_feat(NEXT_BUDDY) && 5220 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5221 return cfs_rq->next; 5222 5223 return pick_eevdf(cfs_rq); 5224 } 5225 5226 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5227 5228 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5229 { 5230 /* 5231 * If still on the runqueue then deactivate_task() 5232 * was not called and update_curr() has to be done: 5233 */ 5234 if (prev->on_rq) 5235 update_curr(cfs_rq); 5236 5237 /* throttle cfs_rqs exceeding runtime */ 5238 check_cfs_rq_runtime(cfs_rq); 5239 5240 if (prev->on_rq) { 5241 update_stats_wait_start_fair(cfs_rq, prev); 5242 /* Put 'current' back into the tree. */ 5243 __enqueue_entity(cfs_rq, prev); 5244 /* in !on_rq case, update occurred at dequeue */ 5245 update_load_avg(cfs_rq, prev, 0); 5246 } 5247 cfs_rq->curr = NULL; 5248 } 5249 5250 static void 5251 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5252 { 5253 /* 5254 * Update run-time statistics of the 'current'. 5255 */ 5256 update_curr(cfs_rq); 5257 5258 /* 5259 * Ensure that runnable average is periodically updated. 5260 */ 5261 update_load_avg(cfs_rq, curr, UPDATE_TG); 5262 update_cfs_group(curr); 5263 5264 #ifdef CONFIG_SCHED_HRTICK 5265 /* 5266 * queued ticks are scheduled to match the slice, so don't bother 5267 * validating it and just reschedule. 5268 */ 5269 if (queued) { 5270 resched_curr(rq_of(cfs_rq)); 5271 return; 5272 } 5273 /* 5274 * don't let the period tick interfere with the hrtick preemption 5275 */ 5276 if (!sched_feat(DOUBLE_TICK) && 5277 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5278 return; 5279 #endif 5280 } 5281 5282 5283 /************************************************** 5284 * CFS bandwidth control machinery 5285 */ 5286 5287 #ifdef CONFIG_CFS_BANDWIDTH 5288 5289 #ifdef CONFIG_JUMP_LABEL 5290 static struct static_key __cfs_bandwidth_used; 5291 5292 static inline bool cfs_bandwidth_used(void) 5293 { 5294 return static_key_false(&__cfs_bandwidth_used); 5295 } 5296 5297 void cfs_bandwidth_usage_inc(void) 5298 { 5299 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5300 } 5301 5302 void cfs_bandwidth_usage_dec(void) 5303 { 5304 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5305 } 5306 #else /* CONFIG_JUMP_LABEL */ 5307 static bool cfs_bandwidth_used(void) 5308 { 5309 return true; 5310 } 5311 5312 void cfs_bandwidth_usage_inc(void) {} 5313 void cfs_bandwidth_usage_dec(void) {} 5314 #endif /* CONFIG_JUMP_LABEL */ 5315 5316 /* 5317 * default period for cfs group bandwidth. 5318 * default: 0.1s, units: nanoseconds 5319 */ 5320 static inline u64 default_cfs_period(void) 5321 { 5322 return 100000000ULL; 5323 } 5324 5325 static inline u64 sched_cfs_bandwidth_slice(void) 5326 { 5327 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5328 } 5329 5330 /* 5331 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5332 * directly instead of rq->clock to avoid adding additional synchronization 5333 * around rq->lock. 5334 * 5335 * requires cfs_b->lock 5336 */ 5337 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5338 { 5339 s64 runtime; 5340 5341 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5342 return; 5343 5344 cfs_b->runtime += cfs_b->quota; 5345 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5346 if (runtime > 0) { 5347 cfs_b->burst_time += runtime; 5348 cfs_b->nr_burst++; 5349 } 5350 5351 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5352 cfs_b->runtime_snap = cfs_b->runtime; 5353 } 5354 5355 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5356 { 5357 return &tg->cfs_bandwidth; 5358 } 5359 5360 /* returns 0 on failure to allocate runtime */ 5361 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5362 struct cfs_rq *cfs_rq, u64 target_runtime) 5363 { 5364 u64 min_amount, amount = 0; 5365 5366 lockdep_assert_held(&cfs_b->lock); 5367 5368 /* note: this is a positive sum as runtime_remaining <= 0 */ 5369 min_amount = target_runtime - cfs_rq->runtime_remaining; 5370 5371 if (cfs_b->quota == RUNTIME_INF) 5372 amount = min_amount; 5373 else { 5374 start_cfs_bandwidth(cfs_b); 5375 5376 if (cfs_b->runtime > 0) { 5377 amount = min(cfs_b->runtime, min_amount); 5378 cfs_b->runtime -= amount; 5379 cfs_b->idle = 0; 5380 } 5381 } 5382 5383 cfs_rq->runtime_remaining += amount; 5384 5385 return cfs_rq->runtime_remaining > 0; 5386 } 5387 5388 /* returns 0 on failure to allocate runtime */ 5389 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5390 { 5391 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5392 int ret; 5393 5394 raw_spin_lock(&cfs_b->lock); 5395 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5396 raw_spin_unlock(&cfs_b->lock); 5397 5398 return ret; 5399 } 5400 5401 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5402 { 5403 /* dock delta_exec before expiring quota (as it could span periods) */ 5404 cfs_rq->runtime_remaining -= delta_exec; 5405 5406 if (likely(cfs_rq->runtime_remaining > 0)) 5407 return; 5408 5409 if (cfs_rq->throttled) 5410 return; 5411 /* 5412 * if we're unable to extend our runtime we resched so that the active 5413 * hierarchy can be throttled 5414 */ 5415 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5416 resched_curr(rq_of(cfs_rq)); 5417 } 5418 5419 static __always_inline 5420 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5421 { 5422 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5423 return; 5424 5425 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5426 } 5427 5428 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5429 { 5430 return cfs_bandwidth_used() && cfs_rq->throttled; 5431 } 5432 5433 /* check whether cfs_rq, or any parent, is throttled */ 5434 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5435 { 5436 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5437 } 5438 5439 /* 5440 * Ensure that neither of the group entities corresponding to src_cpu or 5441 * dest_cpu are members of a throttled hierarchy when performing group 5442 * load-balance operations. 5443 */ 5444 static inline int throttled_lb_pair(struct task_group *tg, 5445 int src_cpu, int dest_cpu) 5446 { 5447 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5448 5449 src_cfs_rq = tg->cfs_rq[src_cpu]; 5450 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5451 5452 return throttled_hierarchy(src_cfs_rq) || 5453 throttled_hierarchy(dest_cfs_rq); 5454 } 5455 5456 static int tg_unthrottle_up(struct task_group *tg, void *data) 5457 { 5458 struct rq *rq = data; 5459 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5460 5461 cfs_rq->throttle_count--; 5462 if (!cfs_rq->throttle_count) { 5463 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5464 cfs_rq->throttled_clock_pelt; 5465 5466 /* Add cfs_rq with load or one or more already running entities to the list */ 5467 if (!cfs_rq_is_decayed(cfs_rq)) 5468 list_add_leaf_cfs_rq(cfs_rq); 5469 5470 if (cfs_rq->throttled_clock_self) { 5471 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5472 5473 cfs_rq->throttled_clock_self = 0; 5474 5475 if (SCHED_WARN_ON((s64)delta < 0)) 5476 delta = 0; 5477 5478 cfs_rq->throttled_clock_self_time += delta; 5479 } 5480 } 5481 5482 return 0; 5483 } 5484 5485 static int tg_throttle_down(struct task_group *tg, void *data) 5486 { 5487 struct rq *rq = data; 5488 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5489 5490 /* group is entering throttled state, stop time */ 5491 if (!cfs_rq->throttle_count) { 5492 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5493 list_del_leaf_cfs_rq(cfs_rq); 5494 5495 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5496 if (cfs_rq->nr_running) 5497 cfs_rq->throttled_clock_self = rq_clock(rq); 5498 } 5499 cfs_rq->throttle_count++; 5500 5501 return 0; 5502 } 5503 5504 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5505 { 5506 struct rq *rq = rq_of(cfs_rq); 5507 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5508 struct sched_entity *se; 5509 long task_delta, idle_task_delta, dequeue = 1; 5510 5511 raw_spin_lock(&cfs_b->lock); 5512 /* This will start the period timer if necessary */ 5513 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5514 /* 5515 * We have raced with bandwidth becoming available, and if we 5516 * actually throttled the timer might not unthrottle us for an 5517 * entire period. We additionally needed to make sure that any 5518 * subsequent check_cfs_rq_runtime calls agree not to throttle 5519 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5520 * for 1ns of runtime rather than just check cfs_b. 5521 */ 5522 dequeue = 0; 5523 } else { 5524 list_add_tail_rcu(&cfs_rq->throttled_list, 5525 &cfs_b->throttled_cfs_rq); 5526 } 5527 raw_spin_unlock(&cfs_b->lock); 5528 5529 if (!dequeue) 5530 return false; /* Throttle no longer required. */ 5531 5532 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5533 5534 /* freeze hierarchy runnable averages while throttled */ 5535 rcu_read_lock(); 5536 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5537 rcu_read_unlock(); 5538 5539 task_delta = cfs_rq->h_nr_running; 5540 idle_task_delta = cfs_rq->idle_h_nr_running; 5541 for_each_sched_entity(se) { 5542 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5543 /* throttled entity or throttle-on-deactivate */ 5544 if (!se->on_rq) 5545 goto done; 5546 5547 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5548 5549 if (cfs_rq_is_idle(group_cfs_rq(se))) 5550 idle_task_delta = cfs_rq->h_nr_running; 5551 5552 qcfs_rq->h_nr_running -= task_delta; 5553 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5554 5555 if (qcfs_rq->load.weight) { 5556 /* Avoid re-evaluating load for this entity: */ 5557 se = parent_entity(se); 5558 break; 5559 } 5560 } 5561 5562 for_each_sched_entity(se) { 5563 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5564 /* throttled entity or throttle-on-deactivate */ 5565 if (!se->on_rq) 5566 goto done; 5567 5568 update_load_avg(qcfs_rq, se, 0); 5569 se_update_runnable(se); 5570 5571 if (cfs_rq_is_idle(group_cfs_rq(se))) 5572 idle_task_delta = cfs_rq->h_nr_running; 5573 5574 qcfs_rq->h_nr_running -= task_delta; 5575 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5576 } 5577 5578 /* At this point se is NULL and we are at root level*/ 5579 sub_nr_running(rq, task_delta); 5580 5581 done: 5582 /* 5583 * Note: distribution will already see us throttled via the 5584 * throttled-list. rq->lock protects completion. 5585 */ 5586 cfs_rq->throttled = 1; 5587 SCHED_WARN_ON(cfs_rq->throttled_clock); 5588 if (cfs_rq->nr_running) 5589 cfs_rq->throttled_clock = rq_clock(rq); 5590 return true; 5591 } 5592 5593 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5594 { 5595 struct rq *rq = rq_of(cfs_rq); 5596 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5597 struct sched_entity *se; 5598 long task_delta, idle_task_delta; 5599 5600 se = cfs_rq->tg->se[cpu_of(rq)]; 5601 5602 cfs_rq->throttled = 0; 5603 5604 update_rq_clock(rq); 5605 5606 raw_spin_lock(&cfs_b->lock); 5607 if (cfs_rq->throttled_clock) { 5608 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5609 cfs_rq->throttled_clock = 0; 5610 } 5611 list_del_rcu(&cfs_rq->throttled_list); 5612 raw_spin_unlock(&cfs_b->lock); 5613 5614 /* update hierarchical throttle state */ 5615 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5616 5617 if (!cfs_rq->load.weight) { 5618 if (!cfs_rq->on_list) 5619 return; 5620 /* 5621 * Nothing to run but something to decay (on_list)? 5622 * Complete the branch. 5623 */ 5624 for_each_sched_entity(se) { 5625 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5626 break; 5627 } 5628 goto unthrottle_throttle; 5629 } 5630 5631 task_delta = cfs_rq->h_nr_running; 5632 idle_task_delta = cfs_rq->idle_h_nr_running; 5633 for_each_sched_entity(se) { 5634 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5635 5636 if (se->on_rq) 5637 break; 5638 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5639 5640 if (cfs_rq_is_idle(group_cfs_rq(se))) 5641 idle_task_delta = cfs_rq->h_nr_running; 5642 5643 qcfs_rq->h_nr_running += task_delta; 5644 qcfs_rq->idle_h_nr_running += idle_task_delta; 5645 5646 /* end evaluation on encountering a throttled cfs_rq */ 5647 if (cfs_rq_throttled(qcfs_rq)) 5648 goto unthrottle_throttle; 5649 } 5650 5651 for_each_sched_entity(se) { 5652 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5653 5654 update_load_avg(qcfs_rq, se, UPDATE_TG); 5655 se_update_runnable(se); 5656 5657 if (cfs_rq_is_idle(group_cfs_rq(se))) 5658 idle_task_delta = cfs_rq->h_nr_running; 5659 5660 qcfs_rq->h_nr_running += task_delta; 5661 qcfs_rq->idle_h_nr_running += idle_task_delta; 5662 5663 /* end evaluation on encountering a throttled cfs_rq */ 5664 if (cfs_rq_throttled(qcfs_rq)) 5665 goto unthrottle_throttle; 5666 } 5667 5668 /* At this point se is NULL and we are at root level*/ 5669 add_nr_running(rq, task_delta); 5670 5671 unthrottle_throttle: 5672 assert_list_leaf_cfs_rq(rq); 5673 5674 /* Determine whether we need to wake up potentially idle CPU: */ 5675 if (rq->curr == rq->idle && rq->cfs.nr_running) 5676 resched_curr(rq); 5677 } 5678 5679 #ifdef CONFIG_SMP 5680 static void __cfsb_csd_unthrottle(void *arg) 5681 { 5682 struct cfs_rq *cursor, *tmp; 5683 struct rq *rq = arg; 5684 struct rq_flags rf; 5685 5686 rq_lock(rq, &rf); 5687 5688 /* 5689 * Iterating over the list can trigger several call to 5690 * update_rq_clock() in unthrottle_cfs_rq(). 5691 * Do it once and skip the potential next ones. 5692 */ 5693 update_rq_clock(rq); 5694 rq_clock_start_loop_update(rq); 5695 5696 /* 5697 * Since we hold rq lock we're safe from concurrent manipulation of 5698 * the CSD list. However, this RCU critical section annotates the 5699 * fact that we pair with sched_free_group_rcu(), so that we cannot 5700 * race with group being freed in the window between removing it 5701 * from the list and advancing to the next entry in the list. 5702 */ 5703 rcu_read_lock(); 5704 5705 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5706 throttled_csd_list) { 5707 list_del_init(&cursor->throttled_csd_list); 5708 5709 if (cfs_rq_throttled(cursor)) 5710 unthrottle_cfs_rq(cursor); 5711 } 5712 5713 rcu_read_unlock(); 5714 5715 rq_clock_stop_loop_update(rq); 5716 rq_unlock(rq, &rf); 5717 } 5718 5719 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5720 { 5721 struct rq *rq = rq_of(cfs_rq); 5722 bool first; 5723 5724 if (rq == this_rq()) { 5725 unthrottle_cfs_rq(cfs_rq); 5726 return; 5727 } 5728 5729 /* Already enqueued */ 5730 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5731 return; 5732 5733 first = list_empty(&rq->cfsb_csd_list); 5734 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5735 if (first) 5736 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5737 } 5738 #else 5739 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5740 { 5741 unthrottle_cfs_rq(cfs_rq); 5742 } 5743 #endif 5744 5745 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5746 { 5747 lockdep_assert_rq_held(rq_of(cfs_rq)); 5748 5749 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5750 cfs_rq->runtime_remaining <= 0)) 5751 return; 5752 5753 __unthrottle_cfs_rq_async(cfs_rq); 5754 } 5755 5756 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5757 { 5758 struct cfs_rq *local_unthrottle = NULL; 5759 int this_cpu = smp_processor_id(); 5760 u64 runtime, remaining = 1; 5761 bool throttled = false; 5762 struct cfs_rq *cfs_rq; 5763 struct rq_flags rf; 5764 struct rq *rq; 5765 5766 rcu_read_lock(); 5767 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5768 throttled_list) { 5769 rq = rq_of(cfs_rq); 5770 5771 if (!remaining) { 5772 throttled = true; 5773 break; 5774 } 5775 5776 rq_lock_irqsave(rq, &rf); 5777 if (!cfs_rq_throttled(cfs_rq)) 5778 goto next; 5779 5780 #ifdef CONFIG_SMP 5781 /* Already queued for async unthrottle */ 5782 if (!list_empty(&cfs_rq->throttled_csd_list)) 5783 goto next; 5784 #endif 5785 5786 /* By the above checks, this should never be true */ 5787 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5788 5789 raw_spin_lock(&cfs_b->lock); 5790 runtime = -cfs_rq->runtime_remaining + 1; 5791 if (runtime > cfs_b->runtime) 5792 runtime = cfs_b->runtime; 5793 cfs_b->runtime -= runtime; 5794 remaining = cfs_b->runtime; 5795 raw_spin_unlock(&cfs_b->lock); 5796 5797 cfs_rq->runtime_remaining += runtime; 5798 5799 /* we check whether we're throttled above */ 5800 if (cfs_rq->runtime_remaining > 0) { 5801 if (cpu_of(rq) != this_cpu || 5802 SCHED_WARN_ON(local_unthrottle)) 5803 unthrottle_cfs_rq_async(cfs_rq); 5804 else 5805 local_unthrottle = cfs_rq; 5806 } else { 5807 throttled = true; 5808 } 5809 5810 next: 5811 rq_unlock_irqrestore(rq, &rf); 5812 } 5813 rcu_read_unlock(); 5814 5815 if (local_unthrottle) { 5816 rq = cpu_rq(this_cpu); 5817 rq_lock_irqsave(rq, &rf); 5818 if (cfs_rq_throttled(local_unthrottle)) 5819 unthrottle_cfs_rq(local_unthrottle); 5820 rq_unlock_irqrestore(rq, &rf); 5821 } 5822 5823 return throttled; 5824 } 5825 5826 /* 5827 * Responsible for refilling a task_group's bandwidth and unthrottling its 5828 * cfs_rqs as appropriate. If there has been no activity within the last 5829 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5830 * used to track this state. 5831 */ 5832 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5833 { 5834 int throttled; 5835 5836 /* no need to continue the timer with no bandwidth constraint */ 5837 if (cfs_b->quota == RUNTIME_INF) 5838 goto out_deactivate; 5839 5840 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5841 cfs_b->nr_periods += overrun; 5842 5843 /* Refill extra burst quota even if cfs_b->idle */ 5844 __refill_cfs_bandwidth_runtime(cfs_b); 5845 5846 /* 5847 * idle depends on !throttled (for the case of a large deficit), and if 5848 * we're going inactive then everything else can be deferred 5849 */ 5850 if (cfs_b->idle && !throttled) 5851 goto out_deactivate; 5852 5853 if (!throttled) { 5854 /* mark as potentially idle for the upcoming period */ 5855 cfs_b->idle = 1; 5856 return 0; 5857 } 5858 5859 /* account preceding periods in which throttling occurred */ 5860 cfs_b->nr_throttled += overrun; 5861 5862 /* 5863 * This check is repeated as we release cfs_b->lock while we unthrottle. 5864 */ 5865 while (throttled && cfs_b->runtime > 0) { 5866 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5867 /* we can't nest cfs_b->lock while distributing bandwidth */ 5868 throttled = distribute_cfs_runtime(cfs_b); 5869 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5870 } 5871 5872 /* 5873 * While we are ensured activity in the period following an 5874 * unthrottle, this also covers the case in which the new bandwidth is 5875 * insufficient to cover the existing bandwidth deficit. (Forcing the 5876 * timer to remain active while there are any throttled entities.) 5877 */ 5878 cfs_b->idle = 0; 5879 5880 return 0; 5881 5882 out_deactivate: 5883 return 1; 5884 } 5885 5886 /* a cfs_rq won't donate quota below this amount */ 5887 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5888 /* minimum remaining period time to redistribute slack quota */ 5889 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5890 /* how long we wait to gather additional slack before distributing */ 5891 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5892 5893 /* 5894 * Are we near the end of the current quota period? 5895 * 5896 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5897 * hrtimer base being cleared by hrtimer_start. In the case of 5898 * migrate_hrtimers, base is never cleared, so we are fine. 5899 */ 5900 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5901 { 5902 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5903 s64 remaining; 5904 5905 /* if the call-back is running a quota refresh is already occurring */ 5906 if (hrtimer_callback_running(refresh_timer)) 5907 return 1; 5908 5909 /* is a quota refresh about to occur? */ 5910 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5911 if (remaining < (s64)min_expire) 5912 return 1; 5913 5914 return 0; 5915 } 5916 5917 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5918 { 5919 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5920 5921 /* if there's a quota refresh soon don't bother with slack */ 5922 if (runtime_refresh_within(cfs_b, min_left)) 5923 return; 5924 5925 /* don't push forwards an existing deferred unthrottle */ 5926 if (cfs_b->slack_started) 5927 return; 5928 cfs_b->slack_started = true; 5929 5930 hrtimer_start(&cfs_b->slack_timer, 5931 ns_to_ktime(cfs_bandwidth_slack_period), 5932 HRTIMER_MODE_REL); 5933 } 5934 5935 /* we know any runtime found here is valid as update_curr() precedes return */ 5936 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5937 { 5938 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5939 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5940 5941 if (slack_runtime <= 0) 5942 return; 5943 5944 raw_spin_lock(&cfs_b->lock); 5945 if (cfs_b->quota != RUNTIME_INF) { 5946 cfs_b->runtime += slack_runtime; 5947 5948 /* we are under rq->lock, defer unthrottling using a timer */ 5949 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5950 !list_empty(&cfs_b->throttled_cfs_rq)) 5951 start_cfs_slack_bandwidth(cfs_b); 5952 } 5953 raw_spin_unlock(&cfs_b->lock); 5954 5955 /* even if it's not valid for return we don't want to try again */ 5956 cfs_rq->runtime_remaining -= slack_runtime; 5957 } 5958 5959 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5960 { 5961 if (!cfs_bandwidth_used()) 5962 return; 5963 5964 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5965 return; 5966 5967 __return_cfs_rq_runtime(cfs_rq); 5968 } 5969 5970 /* 5971 * This is done with a timer (instead of inline with bandwidth return) since 5972 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5973 */ 5974 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5975 { 5976 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5977 unsigned long flags; 5978 5979 /* confirm we're still not at a refresh boundary */ 5980 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5981 cfs_b->slack_started = false; 5982 5983 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5984 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5985 return; 5986 } 5987 5988 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5989 runtime = cfs_b->runtime; 5990 5991 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5992 5993 if (!runtime) 5994 return; 5995 5996 distribute_cfs_runtime(cfs_b); 5997 } 5998 5999 /* 6000 * When a group wakes up we want to make sure that its quota is not already 6001 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6002 * runtime as update_curr() throttling can not trigger until it's on-rq. 6003 */ 6004 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6005 { 6006 if (!cfs_bandwidth_used()) 6007 return; 6008 6009 /* an active group must be handled by the update_curr()->put() path */ 6010 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6011 return; 6012 6013 /* ensure the group is not already throttled */ 6014 if (cfs_rq_throttled(cfs_rq)) 6015 return; 6016 6017 /* update runtime allocation */ 6018 account_cfs_rq_runtime(cfs_rq, 0); 6019 if (cfs_rq->runtime_remaining <= 0) 6020 throttle_cfs_rq(cfs_rq); 6021 } 6022 6023 static void sync_throttle(struct task_group *tg, int cpu) 6024 { 6025 struct cfs_rq *pcfs_rq, *cfs_rq; 6026 6027 if (!cfs_bandwidth_used()) 6028 return; 6029 6030 if (!tg->parent) 6031 return; 6032 6033 cfs_rq = tg->cfs_rq[cpu]; 6034 pcfs_rq = tg->parent->cfs_rq[cpu]; 6035 6036 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6037 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6038 } 6039 6040 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6041 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6042 { 6043 if (!cfs_bandwidth_used()) 6044 return false; 6045 6046 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6047 return false; 6048 6049 /* 6050 * it's possible for a throttled entity to be forced into a running 6051 * state (e.g. set_curr_task), in this case we're finished. 6052 */ 6053 if (cfs_rq_throttled(cfs_rq)) 6054 return true; 6055 6056 return throttle_cfs_rq(cfs_rq); 6057 } 6058 6059 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6060 { 6061 struct cfs_bandwidth *cfs_b = 6062 container_of(timer, struct cfs_bandwidth, slack_timer); 6063 6064 do_sched_cfs_slack_timer(cfs_b); 6065 6066 return HRTIMER_NORESTART; 6067 } 6068 6069 extern const u64 max_cfs_quota_period; 6070 6071 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6072 { 6073 struct cfs_bandwidth *cfs_b = 6074 container_of(timer, struct cfs_bandwidth, period_timer); 6075 unsigned long flags; 6076 int overrun; 6077 int idle = 0; 6078 int count = 0; 6079 6080 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6081 for (;;) { 6082 overrun = hrtimer_forward_now(timer, cfs_b->period); 6083 if (!overrun) 6084 break; 6085 6086 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6087 6088 if (++count > 3) { 6089 u64 new, old = ktime_to_ns(cfs_b->period); 6090 6091 /* 6092 * Grow period by a factor of 2 to avoid losing precision. 6093 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6094 * to fail. 6095 */ 6096 new = old * 2; 6097 if (new < max_cfs_quota_period) { 6098 cfs_b->period = ns_to_ktime(new); 6099 cfs_b->quota *= 2; 6100 cfs_b->burst *= 2; 6101 6102 pr_warn_ratelimited( 6103 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6104 smp_processor_id(), 6105 div_u64(new, NSEC_PER_USEC), 6106 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6107 } else { 6108 pr_warn_ratelimited( 6109 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6110 smp_processor_id(), 6111 div_u64(old, NSEC_PER_USEC), 6112 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6113 } 6114 6115 /* reset count so we don't come right back in here */ 6116 count = 0; 6117 } 6118 } 6119 if (idle) 6120 cfs_b->period_active = 0; 6121 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6122 6123 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6124 } 6125 6126 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6127 { 6128 raw_spin_lock_init(&cfs_b->lock); 6129 cfs_b->runtime = 0; 6130 cfs_b->quota = RUNTIME_INF; 6131 cfs_b->period = ns_to_ktime(default_cfs_period()); 6132 cfs_b->burst = 0; 6133 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6134 6135 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6136 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6137 cfs_b->period_timer.function = sched_cfs_period_timer; 6138 6139 /* Add a random offset so that timers interleave */ 6140 hrtimer_set_expires(&cfs_b->period_timer, 6141 get_random_u32_below(cfs_b->period)); 6142 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6143 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6144 cfs_b->slack_started = false; 6145 } 6146 6147 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6148 { 6149 cfs_rq->runtime_enabled = 0; 6150 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6151 #ifdef CONFIG_SMP 6152 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6153 #endif 6154 } 6155 6156 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6157 { 6158 lockdep_assert_held(&cfs_b->lock); 6159 6160 if (cfs_b->period_active) 6161 return; 6162 6163 cfs_b->period_active = 1; 6164 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6165 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6166 } 6167 6168 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6169 { 6170 int __maybe_unused i; 6171 6172 /* init_cfs_bandwidth() was not called */ 6173 if (!cfs_b->throttled_cfs_rq.next) 6174 return; 6175 6176 hrtimer_cancel(&cfs_b->period_timer); 6177 hrtimer_cancel(&cfs_b->slack_timer); 6178 6179 /* 6180 * It is possible that we still have some cfs_rq's pending on a CSD 6181 * list, though this race is very rare. In order for this to occur, we 6182 * must have raced with the last task leaving the group while there 6183 * exist throttled cfs_rq(s), and the period_timer must have queued the 6184 * CSD item but the remote cpu has not yet processed it. To handle this, 6185 * we can simply flush all pending CSD work inline here. We're 6186 * guaranteed at this point that no additional cfs_rq of this group can 6187 * join a CSD list. 6188 */ 6189 #ifdef CONFIG_SMP 6190 for_each_possible_cpu(i) { 6191 struct rq *rq = cpu_rq(i); 6192 unsigned long flags; 6193 6194 if (list_empty(&rq->cfsb_csd_list)) 6195 continue; 6196 6197 local_irq_save(flags); 6198 __cfsb_csd_unthrottle(rq); 6199 local_irq_restore(flags); 6200 } 6201 #endif 6202 } 6203 6204 /* 6205 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6206 * 6207 * The race is harmless, since modifying bandwidth settings of unhooked group 6208 * bits doesn't do much. 6209 */ 6210 6211 /* cpu online callback */ 6212 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6213 { 6214 struct task_group *tg; 6215 6216 lockdep_assert_rq_held(rq); 6217 6218 rcu_read_lock(); 6219 list_for_each_entry_rcu(tg, &task_groups, list) { 6220 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6221 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6222 6223 raw_spin_lock(&cfs_b->lock); 6224 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6225 raw_spin_unlock(&cfs_b->lock); 6226 } 6227 rcu_read_unlock(); 6228 } 6229 6230 /* cpu offline callback */ 6231 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6232 { 6233 struct task_group *tg; 6234 6235 lockdep_assert_rq_held(rq); 6236 6237 /* 6238 * The rq clock has already been updated in the 6239 * set_rq_offline(), so we should skip updating 6240 * the rq clock again in unthrottle_cfs_rq(). 6241 */ 6242 rq_clock_start_loop_update(rq); 6243 6244 rcu_read_lock(); 6245 list_for_each_entry_rcu(tg, &task_groups, list) { 6246 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6247 6248 if (!cfs_rq->runtime_enabled) 6249 continue; 6250 6251 /* 6252 * clock_task is not advancing so we just need to make sure 6253 * there's some valid quota amount 6254 */ 6255 cfs_rq->runtime_remaining = 1; 6256 /* 6257 * Offline rq is schedulable till CPU is completely disabled 6258 * in take_cpu_down(), so we prevent new cfs throttling here. 6259 */ 6260 cfs_rq->runtime_enabled = 0; 6261 6262 if (cfs_rq_throttled(cfs_rq)) 6263 unthrottle_cfs_rq(cfs_rq); 6264 } 6265 rcu_read_unlock(); 6266 6267 rq_clock_stop_loop_update(rq); 6268 } 6269 6270 bool cfs_task_bw_constrained(struct task_struct *p) 6271 { 6272 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6273 6274 if (!cfs_bandwidth_used()) 6275 return false; 6276 6277 if (cfs_rq->runtime_enabled || 6278 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6279 return true; 6280 6281 return false; 6282 } 6283 6284 #ifdef CONFIG_NO_HZ_FULL 6285 /* called from pick_next_task_fair() */ 6286 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6287 { 6288 int cpu = cpu_of(rq); 6289 6290 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6291 return; 6292 6293 if (!tick_nohz_full_cpu(cpu)) 6294 return; 6295 6296 if (rq->nr_running != 1) 6297 return; 6298 6299 /* 6300 * We know there is only one task runnable and we've just picked it. The 6301 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6302 * be otherwise able to stop the tick. Just need to check if we are using 6303 * bandwidth control. 6304 */ 6305 if (cfs_task_bw_constrained(p)) 6306 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6307 } 6308 #endif 6309 6310 #else /* CONFIG_CFS_BANDWIDTH */ 6311 6312 static inline bool cfs_bandwidth_used(void) 6313 { 6314 return false; 6315 } 6316 6317 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6318 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6319 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6320 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6321 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6322 6323 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6324 { 6325 return 0; 6326 } 6327 6328 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6329 { 6330 return 0; 6331 } 6332 6333 static inline int throttled_lb_pair(struct task_group *tg, 6334 int src_cpu, int dest_cpu) 6335 { 6336 return 0; 6337 } 6338 6339 #ifdef CONFIG_FAIR_GROUP_SCHED 6340 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6341 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6342 #endif 6343 6344 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6345 { 6346 return NULL; 6347 } 6348 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6349 static inline void update_runtime_enabled(struct rq *rq) {} 6350 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6351 #ifdef CONFIG_CGROUP_SCHED 6352 bool cfs_task_bw_constrained(struct task_struct *p) 6353 { 6354 return false; 6355 } 6356 #endif 6357 #endif /* CONFIG_CFS_BANDWIDTH */ 6358 6359 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6360 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6361 #endif 6362 6363 /************************************************** 6364 * CFS operations on tasks: 6365 */ 6366 6367 #ifdef CONFIG_SCHED_HRTICK 6368 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6369 { 6370 struct sched_entity *se = &p->se; 6371 6372 SCHED_WARN_ON(task_rq(p) != rq); 6373 6374 if (rq->cfs.h_nr_running > 1) { 6375 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6376 u64 slice = se->slice; 6377 s64 delta = slice - ran; 6378 6379 if (delta < 0) { 6380 if (task_current(rq, p)) 6381 resched_curr(rq); 6382 return; 6383 } 6384 hrtick_start(rq, delta); 6385 } 6386 } 6387 6388 /* 6389 * called from enqueue/dequeue and updates the hrtick when the 6390 * current task is from our class and nr_running is low enough 6391 * to matter. 6392 */ 6393 static void hrtick_update(struct rq *rq) 6394 { 6395 struct task_struct *curr = rq->curr; 6396 6397 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6398 return; 6399 6400 hrtick_start_fair(rq, curr); 6401 } 6402 #else /* !CONFIG_SCHED_HRTICK */ 6403 static inline void 6404 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6405 { 6406 } 6407 6408 static inline void hrtick_update(struct rq *rq) 6409 { 6410 } 6411 #endif 6412 6413 #ifdef CONFIG_SMP 6414 static inline bool cpu_overutilized(int cpu) 6415 { 6416 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6417 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6418 6419 /* Return true only if the utilization doesn't fit CPU's capacity */ 6420 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6421 } 6422 6423 static inline void update_overutilized_status(struct rq *rq) 6424 { 6425 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6426 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6427 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6428 } 6429 } 6430 #else 6431 static inline void update_overutilized_status(struct rq *rq) { } 6432 #endif 6433 6434 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6435 static int sched_idle_rq(struct rq *rq) 6436 { 6437 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6438 rq->nr_running); 6439 } 6440 6441 #ifdef CONFIG_SMP 6442 static int sched_idle_cpu(int cpu) 6443 { 6444 return sched_idle_rq(cpu_rq(cpu)); 6445 } 6446 #endif 6447 6448 /* 6449 * The enqueue_task method is called before nr_running is 6450 * increased. Here we update the fair scheduling stats and 6451 * then put the task into the rbtree: 6452 */ 6453 static void 6454 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6455 { 6456 struct cfs_rq *cfs_rq; 6457 struct sched_entity *se = &p->se; 6458 int idle_h_nr_running = task_has_idle_policy(p); 6459 int task_new = !(flags & ENQUEUE_WAKEUP); 6460 6461 /* 6462 * The code below (indirectly) updates schedutil which looks at 6463 * the cfs_rq utilization to select a frequency. 6464 * Let's add the task's estimated utilization to the cfs_rq's 6465 * estimated utilization, before we update schedutil. 6466 */ 6467 util_est_enqueue(&rq->cfs, p); 6468 6469 /* 6470 * If in_iowait is set, the code below may not trigger any cpufreq 6471 * utilization updates, so do it here explicitly with the IOWAIT flag 6472 * passed. 6473 */ 6474 if (p->in_iowait) 6475 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6476 6477 for_each_sched_entity(se) { 6478 if (se->on_rq) 6479 break; 6480 cfs_rq = cfs_rq_of(se); 6481 enqueue_entity(cfs_rq, se, flags); 6482 6483 cfs_rq->h_nr_running++; 6484 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6485 6486 if (cfs_rq_is_idle(cfs_rq)) 6487 idle_h_nr_running = 1; 6488 6489 /* end evaluation on encountering a throttled cfs_rq */ 6490 if (cfs_rq_throttled(cfs_rq)) 6491 goto enqueue_throttle; 6492 6493 flags = ENQUEUE_WAKEUP; 6494 } 6495 6496 for_each_sched_entity(se) { 6497 cfs_rq = cfs_rq_of(se); 6498 6499 update_load_avg(cfs_rq, se, UPDATE_TG); 6500 se_update_runnable(se); 6501 update_cfs_group(se); 6502 6503 cfs_rq->h_nr_running++; 6504 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6505 6506 if (cfs_rq_is_idle(cfs_rq)) 6507 idle_h_nr_running = 1; 6508 6509 /* end evaluation on encountering a throttled cfs_rq */ 6510 if (cfs_rq_throttled(cfs_rq)) 6511 goto enqueue_throttle; 6512 } 6513 6514 /* At this point se is NULL and we are at root level*/ 6515 add_nr_running(rq, 1); 6516 6517 /* 6518 * Since new tasks are assigned an initial util_avg equal to 6519 * half of the spare capacity of their CPU, tiny tasks have the 6520 * ability to cross the overutilized threshold, which will 6521 * result in the load balancer ruining all the task placement 6522 * done by EAS. As a way to mitigate that effect, do not account 6523 * for the first enqueue operation of new tasks during the 6524 * overutilized flag detection. 6525 * 6526 * A better way of solving this problem would be to wait for 6527 * the PELT signals of tasks to converge before taking them 6528 * into account, but that is not straightforward to implement, 6529 * and the following generally works well enough in practice. 6530 */ 6531 if (!task_new) 6532 update_overutilized_status(rq); 6533 6534 enqueue_throttle: 6535 assert_list_leaf_cfs_rq(rq); 6536 6537 hrtick_update(rq); 6538 } 6539 6540 static void set_next_buddy(struct sched_entity *se); 6541 6542 /* 6543 * The dequeue_task method is called before nr_running is 6544 * decreased. We remove the task from the rbtree and 6545 * update the fair scheduling stats: 6546 */ 6547 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6548 { 6549 struct cfs_rq *cfs_rq; 6550 struct sched_entity *se = &p->se; 6551 int task_sleep = flags & DEQUEUE_SLEEP; 6552 int idle_h_nr_running = task_has_idle_policy(p); 6553 bool was_sched_idle = sched_idle_rq(rq); 6554 6555 util_est_dequeue(&rq->cfs, p); 6556 6557 for_each_sched_entity(se) { 6558 cfs_rq = cfs_rq_of(se); 6559 dequeue_entity(cfs_rq, se, flags); 6560 6561 cfs_rq->h_nr_running--; 6562 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6563 6564 if (cfs_rq_is_idle(cfs_rq)) 6565 idle_h_nr_running = 1; 6566 6567 /* end evaluation on encountering a throttled cfs_rq */ 6568 if (cfs_rq_throttled(cfs_rq)) 6569 goto dequeue_throttle; 6570 6571 /* Don't dequeue parent if it has other entities besides us */ 6572 if (cfs_rq->load.weight) { 6573 /* Avoid re-evaluating load for this entity: */ 6574 se = parent_entity(se); 6575 /* 6576 * Bias pick_next to pick a task from this cfs_rq, as 6577 * p is sleeping when it is within its sched_slice. 6578 */ 6579 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6580 set_next_buddy(se); 6581 break; 6582 } 6583 flags |= DEQUEUE_SLEEP; 6584 } 6585 6586 for_each_sched_entity(se) { 6587 cfs_rq = cfs_rq_of(se); 6588 6589 update_load_avg(cfs_rq, se, UPDATE_TG); 6590 se_update_runnable(se); 6591 update_cfs_group(se); 6592 6593 cfs_rq->h_nr_running--; 6594 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6595 6596 if (cfs_rq_is_idle(cfs_rq)) 6597 idle_h_nr_running = 1; 6598 6599 /* end evaluation on encountering a throttled cfs_rq */ 6600 if (cfs_rq_throttled(cfs_rq)) 6601 goto dequeue_throttle; 6602 6603 } 6604 6605 /* At this point se is NULL and we are at root level*/ 6606 sub_nr_running(rq, 1); 6607 6608 /* balance early to pull high priority tasks */ 6609 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6610 rq->next_balance = jiffies; 6611 6612 dequeue_throttle: 6613 util_est_update(&rq->cfs, p, task_sleep); 6614 hrtick_update(rq); 6615 } 6616 6617 #ifdef CONFIG_SMP 6618 6619 /* Working cpumask for: load_balance, load_balance_newidle. */ 6620 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6621 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6622 6623 #ifdef CONFIG_NO_HZ_COMMON 6624 6625 static struct { 6626 cpumask_var_t idle_cpus_mask; 6627 atomic_t nr_cpus; 6628 int has_blocked; /* Idle CPUS has blocked load */ 6629 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6630 unsigned long next_balance; /* in jiffy units */ 6631 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6632 } nohz ____cacheline_aligned; 6633 6634 #endif /* CONFIG_NO_HZ_COMMON */ 6635 6636 static unsigned long cpu_load(struct rq *rq) 6637 { 6638 return cfs_rq_load_avg(&rq->cfs); 6639 } 6640 6641 /* 6642 * cpu_load_without - compute CPU load without any contributions from *p 6643 * @cpu: the CPU which load is requested 6644 * @p: the task which load should be discounted 6645 * 6646 * The load of a CPU is defined by the load of tasks currently enqueued on that 6647 * CPU as well as tasks which are currently sleeping after an execution on that 6648 * CPU. 6649 * 6650 * This method returns the load of the specified CPU by discounting the load of 6651 * the specified task, whenever the task is currently contributing to the CPU 6652 * load. 6653 */ 6654 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6655 { 6656 struct cfs_rq *cfs_rq; 6657 unsigned int load; 6658 6659 /* Task has no contribution or is new */ 6660 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6661 return cpu_load(rq); 6662 6663 cfs_rq = &rq->cfs; 6664 load = READ_ONCE(cfs_rq->avg.load_avg); 6665 6666 /* Discount task's util from CPU's util */ 6667 lsub_positive(&load, task_h_load(p)); 6668 6669 return load; 6670 } 6671 6672 static unsigned long cpu_runnable(struct rq *rq) 6673 { 6674 return cfs_rq_runnable_avg(&rq->cfs); 6675 } 6676 6677 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6678 { 6679 struct cfs_rq *cfs_rq; 6680 unsigned int runnable; 6681 6682 /* Task has no contribution or is new */ 6683 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6684 return cpu_runnable(rq); 6685 6686 cfs_rq = &rq->cfs; 6687 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6688 6689 /* Discount task's runnable from CPU's runnable */ 6690 lsub_positive(&runnable, p->se.avg.runnable_avg); 6691 6692 return runnable; 6693 } 6694 6695 static unsigned long capacity_of(int cpu) 6696 { 6697 return cpu_rq(cpu)->cpu_capacity; 6698 } 6699 6700 static void record_wakee(struct task_struct *p) 6701 { 6702 /* 6703 * Only decay a single time; tasks that have less then 1 wakeup per 6704 * jiffy will not have built up many flips. 6705 */ 6706 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6707 current->wakee_flips >>= 1; 6708 current->wakee_flip_decay_ts = jiffies; 6709 } 6710 6711 if (current->last_wakee != p) { 6712 current->last_wakee = p; 6713 current->wakee_flips++; 6714 } 6715 } 6716 6717 /* 6718 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6719 * 6720 * A waker of many should wake a different task than the one last awakened 6721 * at a frequency roughly N times higher than one of its wakees. 6722 * 6723 * In order to determine whether we should let the load spread vs consolidating 6724 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6725 * partner, and a factor of lls_size higher frequency in the other. 6726 * 6727 * With both conditions met, we can be relatively sure that the relationship is 6728 * non-monogamous, with partner count exceeding socket size. 6729 * 6730 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6731 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6732 * socket size. 6733 */ 6734 static int wake_wide(struct task_struct *p) 6735 { 6736 unsigned int master = current->wakee_flips; 6737 unsigned int slave = p->wakee_flips; 6738 int factor = __this_cpu_read(sd_llc_size); 6739 6740 if (master < slave) 6741 swap(master, slave); 6742 if (slave < factor || master < slave * factor) 6743 return 0; 6744 return 1; 6745 } 6746 6747 /* 6748 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6749 * soonest. For the purpose of speed we only consider the waking and previous 6750 * CPU. 6751 * 6752 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6753 * cache-affine and is (or will be) idle. 6754 * 6755 * wake_affine_weight() - considers the weight to reflect the average 6756 * scheduling latency of the CPUs. This seems to work 6757 * for the overloaded case. 6758 */ 6759 static int 6760 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6761 { 6762 /* 6763 * If this_cpu is idle, it implies the wakeup is from interrupt 6764 * context. Only allow the move if cache is shared. Otherwise an 6765 * interrupt intensive workload could force all tasks onto one 6766 * node depending on the IO topology or IRQ affinity settings. 6767 * 6768 * If the prev_cpu is idle and cache affine then avoid a migration. 6769 * There is no guarantee that the cache hot data from an interrupt 6770 * is more important than cache hot data on the prev_cpu and from 6771 * a cpufreq perspective, it's better to have higher utilisation 6772 * on one CPU. 6773 */ 6774 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6775 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6776 6777 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6778 return this_cpu; 6779 6780 if (available_idle_cpu(prev_cpu)) 6781 return prev_cpu; 6782 6783 return nr_cpumask_bits; 6784 } 6785 6786 static int 6787 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6788 int this_cpu, int prev_cpu, int sync) 6789 { 6790 s64 this_eff_load, prev_eff_load; 6791 unsigned long task_load; 6792 6793 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6794 6795 if (sync) { 6796 unsigned long current_load = task_h_load(current); 6797 6798 if (current_load > this_eff_load) 6799 return this_cpu; 6800 6801 this_eff_load -= current_load; 6802 } 6803 6804 task_load = task_h_load(p); 6805 6806 this_eff_load += task_load; 6807 if (sched_feat(WA_BIAS)) 6808 this_eff_load *= 100; 6809 this_eff_load *= capacity_of(prev_cpu); 6810 6811 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6812 prev_eff_load -= task_load; 6813 if (sched_feat(WA_BIAS)) 6814 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6815 prev_eff_load *= capacity_of(this_cpu); 6816 6817 /* 6818 * If sync, adjust the weight of prev_eff_load such that if 6819 * prev_eff == this_eff that select_idle_sibling() will consider 6820 * stacking the wakee on top of the waker if no other CPU is 6821 * idle. 6822 */ 6823 if (sync) 6824 prev_eff_load += 1; 6825 6826 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6827 } 6828 6829 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6830 int this_cpu, int prev_cpu, int sync) 6831 { 6832 int target = nr_cpumask_bits; 6833 6834 if (sched_feat(WA_IDLE)) 6835 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6836 6837 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6838 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6839 6840 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6841 if (target != this_cpu) 6842 return prev_cpu; 6843 6844 schedstat_inc(sd->ttwu_move_affine); 6845 schedstat_inc(p->stats.nr_wakeups_affine); 6846 return target; 6847 } 6848 6849 static struct sched_group * 6850 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6851 6852 /* 6853 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6854 */ 6855 static int 6856 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6857 { 6858 unsigned long load, min_load = ULONG_MAX; 6859 unsigned int min_exit_latency = UINT_MAX; 6860 u64 latest_idle_timestamp = 0; 6861 int least_loaded_cpu = this_cpu; 6862 int shallowest_idle_cpu = -1; 6863 int i; 6864 6865 /* Check if we have any choice: */ 6866 if (group->group_weight == 1) 6867 return cpumask_first(sched_group_span(group)); 6868 6869 /* Traverse only the allowed CPUs */ 6870 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6871 struct rq *rq = cpu_rq(i); 6872 6873 if (!sched_core_cookie_match(rq, p)) 6874 continue; 6875 6876 if (sched_idle_cpu(i)) 6877 return i; 6878 6879 if (available_idle_cpu(i)) { 6880 struct cpuidle_state *idle = idle_get_state(rq); 6881 if (idle && idle->exit_latency < min_exit_latency) { 6882 /* 6883 * We give priority to a CPU whose idle state 6884 * has the smallest exit latency irrespective 6885 * of any idle timestamp. 6886 */ 6887 min_exit_latency = idle->exit_latency; 6888 latest_idle_timestamp = rq->idle_stamp; 6889 shallowest_idle_cpu = i; 6890 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6891 rq->idle_stamp > latest_idle_timestamp) { 6892 /* 6893 * If equal or no active idle state, then 6894 * the most recently idled CPU might have 6895 * a warmer cache. 6896 */ 6897 latest_idle_timestamp = rq->idle_stamp; 6898 shallowest_idle_cpu = i; 6899 } 6900 } else if (shallowest_idle_cpu == -1) { 6901 load = cpu_load(cpu_rq(i)); 6902 if (load < min_load) { 6903 min_load = load; 6904 least_loaded_cpu = i; 6905 } 6906 } 6907 } 6908 6909 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6910 } 6911 6912 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6913 int cpu, int prev_cpu, int sd_flag) 6914 { 6915 int new_cpu = cpu; 6916 6917 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6918 return prev_cpu; 6919 6920 /* 6921 * We need task's util for cpu_util_without, sync it up to 6922 * prev_cpu's last_update_time. 6923 */ 6924 if (!(sd_flag & SD_BALANCE_FORK)) 6925 sync_entity_load_avg(&p->se); 6926 6927 while (sd) { 6928 struct sched_group *group; 6929 struct sched_domain *tmp; 6930 int weight; 6931 6932 if (!(sd->flags & sd_flag)) { 6933 sd = sd->child; 6934 continue; 6935 } 6936 6937 group = find_idlest_group(sd, p, cpu); 6938 if (!group) { 6939 sd = sd->child; 6940 continue; 6941 } 6942 6943 new_cpu = find_idlest_group_cpu(group, p, cpu); 6944 if (new_cpu == cpu) { 6945 /* Now try balancing at a lower domain level of 'cpu': */ 6946 sd = sd->child; 6947 continue; 6948 } 6949 6950 /* Now try balancing at a lower domain level of 'new_cpu': */ 6951 cpu = new_cpu; 6952 weight = sd->span_weight; 6953 sd = NULL; 6954 for_each_domain(cpu, tmp) { 6955 if (weight <= tmp->span_weight) 6956 break; 6957 if (tmp->flags & sd_flag) 6958 sd = tmp; 6959 } 6960 } 6961 6962 return new_cpu; 6963 } 6964 6965 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6966 { 6967 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6968 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6969 return cpu; 6970 6971 return -1; 6972 } 6973 6974 #ifdef CONFIG_SCHED_SMT 6975 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6976 EXPORT_SYMBOL_GPL(sched_smt_present); 6977 6978 static inline void set_idle_cores(int cpu, int val) 6979 { 6980 struct sched_domain_shared *sds; 6981 6982 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6983 if (sds) 6984 WRITE_ONCE(sds->has_idle_cores, val); 6985 } 6986 6987 static inline bool test_idle_cores(int cpu) 6988 { 6989 struct sched_domain_shared *sds; 6990 6991 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6992 if (sds) 6993 return READ_ONCE(sds->has_idle_cores); 6994 6995 return false; 6996 } 6997 6998 /* 6999 * Scans the local SMT mask to see if the entire core is idle, and records this 7000 * information in sd_llc_shared->has_idle_cores. 7001 * 7002 * Since SMT siblings share all cache levels, inspecting this limited remote 7003 * state should be fairly cheap. 7004 */ 7005 void __update_idle_core(struct rq *rq) 7006 { 7007 int core = cpu_of(rq); 7008 int cpu; 7009 7010 rcu_read_lock(); 7011 if (test_idle_cores(core)) 7012 goto unlock; 7013 7014 for_each_cpu(cpu, cpu_smt_mask(core)) { 7015 if (cpu == core) 7016 continue; 7017 7018 if (!available_idle_cpu(cpu)) 7019 goto unlock; 7020 } 7021 7022 set_idle_cores(core, 1); 7023 unlock: 7024 rcu_read_unlock(); 7025 } 7026 7027 /* 7028 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7029 * there are no idle cores left in the system; tracked through 7030 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7031 */ 7032 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7033 { 7034 bool idle = true; 7035 int cpu; 7036 7037 for_each_cpu(cpu, cpu_smt_mask(core)) { 7038 if (!available_idle_cpu(cpu)) { 7039 idle = false; 7040 if (*idle_cpu == -1) { 7041 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 7042 *idle_cpu = cpu; 7043 break; 7044 } 7045 continue; 7046 } 7047 break; 7048 } 7049 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 7050 *idle_cpu = cpu; 7051 } 7052 7053 if (idle) 7054 return core; 7055 7056 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7057 return -1; 7058 } 7059 7060 /* 7061 * Scan the local SMT mask for idle CPUs. 7062 */ 7063 static int select_idle_smt(struct task_struct *p, int target) 7064 { 7065 int cpu; 7066 7067 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7068 if (cpu == target) 7069 continue; 7070 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7071 return cpu; 7072 } 7073 7074 return -1; 7075 } 7076 7077 #else /* CONFIG_SCHED_SMT */ 7078 7079 static inline void set_idle_cores(int cpu, int val) 7080 { 7081 } 7082 7083 static inline bool test_idle_cores(int cpu) 7084 { 7085 return false; 7086 } 7087 7088 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7089 { 7090 return __select_idle_cpu(core, p); 7091 } 7092 7093 static inline int select_idle_smt(struct task_struct *p, int target) 7094 { 7095 return -1; 7096 } 7097 7098 #endif /* CONFIG_SCHED_SMT */ 7099 7100 /* 7101 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7102 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7103 * average idle time for this rq (as found in rq->avg_idle). 7104 */ 7105 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7106 { 7107 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7108 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7109 struct sched_domain_shared *sd_share; 7110 struct rq *this_rq = this_rq(); 7111 int this = smp_processor_id(); 7112 struct sched_domain *this_sd = NULL; 7113 u64 time = 0; 7114 7115 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7116 7117 if (sched_feat(SIS_PROP) && !has_idle_core) { 7118 u64 avg_cost, avg_idle, span_avg; 7119 unsigned long now = jiffies; 7120 7121 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 7122 if (!this_sd) 7123 return -1; 7124 7125 /* 7126 * If we're busy, the assumption that the last idle period 7127 * predicts the future is flawed; age away the remaining 7128 * predicted idle time. 7129 */ 7130 if (unlikely(this_rq->wake_stamp < now)) { 7131 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 7132 this_rq->wake_stamp++; 7133 this_rq->wake_avg_idle >>= 1; 7134 } 7135 } 7136 7137 avg_idle = this_rq->wake_avg_idle; 7138 avg_cost = this_sd->avg_scan_cost + 1; 7139 7140 span_avg = sd->span_weight * avg_idle; 7141 if (span_avg > 4*avg_cost) 7142 nr = div_u64(span_avg, avg_cost); 7143 else 7144 nr = 4; 7145 7146 time = cpu_clock(this); 7147 } 7148 7149 if (sched_feat(SIS_UTIL)) { 7150 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7151 if (sd_share) { 7152 /* because !--nr is the condition to stop scan */ 7153 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7154 /* overloaded LLC is unlikely to have idle cpu/core */ 7155 if (nr == 1) 7156 return -1; 7157 } 7158 } 7159 7160 for_each_cpu_wrap(cpu, cpus, target + 1) { 7161 if (has_idle_core) { 7162 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7163 if ((unsigned int)i < nr_cpumask_bits) 7164 return i; 7165 7166 } else { 7167 if (!--nr) 7168 return -1; 7169 idle_cpu = __select_idle_cpu(cpu, p); 7170 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7171 break; 7172 } 7173 } 7174 7175 if (has_idle_core) 7176 set_idle_cores(target, false); 7177 7178 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 7179 time = cpu_clock(this) - time; 7180 7181 /* 7182 * Account for the scan cost of wakeups against the average 7183 * idle time. 7184 */ 7185 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 7186 7187 update_avg(&this_sd->avg_scan_cost, time); 7188 } 7189 7190 return idle_cpu; 7191 } 7192 7193 /* 7194 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7195 * the task fits. If no CPU is big enough, but there are idle ones, try to 7196 * maximize capacity. 7197 */ 7198 static int 7199 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7200 { 7201 unsigned long task_util, util_min, util_max, best_cap = 0; 7202 int fits, best_fits = 0; 7203 int cpu, best_cpu = -1; 7204 struct cpumask *cpus; 7205 7206 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7207 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7208 7209 task_util = task_util_est(p); 7210 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7211 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7212 7213 for_each_cpu_wrap(cpu, cpus, target) { 7214 unsigned long cpu_cap = capacity_of(cpu); 7215 7216 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7217 continue; 7218 7219 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7220 7221 /* This CPU fits with all requirements */ 7222 if (fits > 0) 7223 return cpu; 7224 /* 7225 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7226 * Look for the CPU with best capacity. 7227 */ 7228 else if (fits < 0) 7229 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 7230 7231 /* 7232 * First, select CPU which fits better (-1 being better than 0). 7233 * Then, select the one with best capacity at same level. 7234 */ 7235 if ((fits < best_fits) || 7236 ((fits == best_fits) && (cpu_cap > best_cap))) { 7237 best_cap = cpu_cap; 7238 best_cpu = cpu; 7239 best_fits = fits; 7240 } 7241 } 7242 7243 return best_cpu; 7244 } 7245 7246 static inline bool asym_fits_cpu(unsigned long util, 7247 unsigned long util_min, 7248 unsigned long util_max, 7249 int cpu) 7250 { 7251 if (sched_asym_cpucap_active()) 7252 /* 7253 * Return true only if the cpu fully fits the task requirements 7254 * which include the utilization and the performance hints. 7255 */ 7256 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7257 7258 return true; 7259 } 7260 7261 /* 7262 * Try and locate an idle core/thread in the LLC cache domain. 7263 */ 7264 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7265 { 7266 bool has_idle_core = false; 7267 struct sched_domain *sd; 7268 unsigned long task_util, util_min, util_max; 7269 int i, recent_used_cpu; 7270 7271 /* 7272 * On asymmetric system, update task utilization because we will check 7273 * that the task fits with cpu's capacity. 7274 */ 7275 if (sched_asym_cpucap_active()) { 7276 sync_entity_load_avg(&p->se); 7277 task_util = task_util_est(p); 7278 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7279 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7280 } 7281 7282 /* 7283 * per-cpu select_rq_mask usage 7284 */ 7285 lockdep_assert_irqs_disabled(); 7286 7287 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7288 asym_fits_cpu(task_util, util_min, util_max, target)) 7289 return target; 7290 7291 /* 7292 * If the previous CPU is cache affine and idle, don't be stupid: 7293 */ 7294 if (prev != target && cpus_share_cache(prev, target) && 7295 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7296 asym_fits_cpu(task_util, util_min, util_max, prev)) 7297 return prev; 7298 7299 /* 7300 * Allow a per-cpu kthread to stack with the wakee if the 7301 * kworker thread and the tasks previous CPUs are the same. 7302 * The assumption is that the wakee queued work for the 7303 * per-cpu kthread that is now complete and the wakeup is 7304 * essentially a sync wakeup. An obvious example of this 7305 * pattern is IO completions. 7306 */ 7307 if (is_per_cpu_kthread(current) && 7308 in_task() && 7309 prev == smp_processor_id() && 7310 this_rq()->nr_running <= 1 && 7311 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7312 return prev; 7313 } 7314 7315 /* Check a recently used CPU as a potential idle candidate: */ 7316 recent_used_cpu = p->recent_used_cpu; 7317 p->recent_used_cpu = prev; 7318 if (recent_used_cpu != prev && 7319 recent_used_cpu != target && 7320 cpus_share_cache(recent_used_cpu, target) && 7321 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7322 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7323 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7324 return recent_used_cpu; 7325 } 7326 7327 /* 7328 * For asymmetric CPU capacity systems, our domain of interest is 7329 * sd_asym_cpucapacity rather than sd_llc. 7330 */ 7331 if (sched_asym_cpucap_active()) { 7332 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7333 /* 7334 * On an asymmetric CPU capacity system where an exclusive 7335 * cpuset defines a symmetric island (i.e. one unique 7336 * capacity_orig value through the cpuset), the key will be set 7337 * but the CPUs within that cpuset will not have a domain with 7338 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7339 * capacity path. 7340 */ 7341 if (sd) { 7342 i = select_idle_capacity(p, sd, target); 7343 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7344 } 7345 } 7346 7347 sd = rcu_dereference(per_cpu(sd_llc, target)); 7348 if (!sd) 7349 return target; 7350 7351 if (sched_smt_active()) { 7352 has_idle_core = test_idle_cores(target); 7353 7354 if (!has_idle_core && cpus_share_cache(prev, target)) { 7355 i = select_idle_smt(p, prev); 7356 if ((unsigned int)i < nr_cpumask_bits) 7357 return i; 7358 } 7359 } 7360 7361 i = select_idle_cpu(p, sd, has_idle_core, target); 7362 if ((unsigned)i < nr_cpumask_bits) 7363 return i; 7364 7365 return target; 7366 } 7367 7368 /** 7369 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7370 * @cpu: the CPU to get the utilization for 7371 * @p: task for which the CPU utilization should be predicted or NULL 7372 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7373 * @boost: 1 to enable boosting, otherwise 0 7374 * 7375 * The unit of the return value must be the same as the one of CPU capacity 7376 * so that CPU utilization can be compared with CPU capacity. 7377 * 7378 * CPU utilization is the sum of running time of runnable tasks plus the 7379 * recent utilization of currently non-runnable tasks on that CPU. 7380 * It represents the amount of CPU capacity currently used by CFS tasks in 7381 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7382 * capacity at f_max. 7383 * 7384 * The estimated CPU utilization is defined as the maximum between CPU 7385 * utilization and sum of the estimated utilization of the currently 7386 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7387 * previously-executed tasks, which helps better deduce how busy a CPU will 7388 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7389 * of such a task would be significantly decayed at this point of time. 7390 * 7391 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7392 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7393 * utilization. Boosting is implemented in cpu_util() so that internal 7394 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7395 * latter via cpu_util_cfs_boost(). 7396 * 7397 * CPU utilization can be higher than the current CPU capacity 7398 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7399 * of rounding errors as well as task migrations or wakeups of new tasks. 7400 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7401 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7402 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7403 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7404 * though since this is useful for predicting the CPU capacity required 7405 * after task migrations (scheduler-driven DVFS). 7406 * 7407 * Return: (Boosted) (estimated) utilization for the specified CPU. 7408 */ 7409 static unsigned long 7410 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7411 { 7412 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7413 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7414 unsigned long runnable; 7415 7416 if (boost) { 7417 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7418 util = max(util, runnable); 7419 } 7420 7421 /* 7422 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7423 * contribution. If @p migrates from another CPU to @cpu add its 7424 * contribution. In all the other cases @cpu is not impacted by the 7425 * migration so its util_avg is already correct. 7426 */ 7427 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7428 lsub_positive(&util, task_util(p)); 7429 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7430 util += task_util(p); 7431 7432 if (sched_feat(UTIL_EST)) { 7433 unsigned long util_est; 7434 7435 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7436 7437 /* 7438 * During wake-up @p isn't enqueued yet and doesn't contribute 7439 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7440 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7441 * has been enqueued. 7442 * 7443 * During exec (@dst_cpu = -1) @p is enqueued and does 7444 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7445 * Remove it to "simulate" cpu_util without @p's contribution. 7446 * 7447 * Despite the task_on_rq_queued(@p) check there is still a 7448 * small window for a possible race when an exec 7449 * select_task_rq_fair() races with LB's detach_task(). 7450 * 7451 * detach_task() 7452 * deactivate_task() 7453 * p->on_rq = TASK_ON_RQ_MIGRATING; 7454 * -------------------------------- A 7455 * dequeue_task() \ 7456 * dequeue_task_fair() + Race Time 7457 * util_est_dequeue() / 7458 * -------------------------------- B 7459 * 7460 * The additional check "current == p" is required to further 7461 * reduce the race window. 7462 */ 7463 if (dst_cpu == cpu) 7464 util_est += _task_util_est(p); 7465 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7466 lsub_positive(&util_est, _task_util_est(p)); 7467 7468 util = max(util, util_est); 7469 } 7470 7471 return min(util, capacity_orig_of(cpu)); 7472 } 7473 7474 unsigned long cpu_util_cfs(int cpu) 7475 { 7476 return cpu_util(cpu, NULL, -1, 0); 7477 } 7478 7479 unsigned long cpu_util_cfs_boost(int cpu) 7480 { 7481 return cpu_util(cpu, NULL, -1, 1); 7482 } 7483 7484 /* 7485 * cpu_util_without: compute cpu utilization without any contributions from *p 7486 * @cpu: the CPU which utilization is requested 7487 * @p: the task which utilization should be discounted 7488 * 7489 * The utilization of a CPU is defined by the utilization of tasks currently 7490 * enqueued on that CPU as well as tasks which are currently sleeping after an 7491 * execution on that CPU. 7492 * 7493 * This method returns the utilization of the specified CPU by discounting the 7494 * utilization of the specified task, whenever the task is currently 7495 * contributing to the CPU utilization. 7496 */ 7497 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7498 { 7499 /* Task has no contribution or is new */ 7500 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7501 p = NULL; 7502 7503 return cpu_util(cpu, p, -1, 0); 7504 } 7505 7506 /* 7507 * energy_env - Utilization landscape for energy estimation. 7508 * @task_busy_time: Utilization contribution by the task for which we test the 7509 * placement. Given by eenv_task_busy_time(). 7510 * @pd_busy_time: Utilization of the whole perf domain without the task 7511 * contribution. Given by eenv_pd_busy_time(). 7512 * @cpu_cap: Maximum CPU capacity for the perf domain. 7513 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7514 */ 7515 struct energy_env { 7516 unsigned long task_busy_time; 7517 unsigned long pd_busy_time; 7518 unsigned long cpu_cap; 7519 unsigned long pd_cap; 7520 }; 7521 7522 /* 7523 * Compute the task busy time for compute_energy(). This time cannot be 7524 * injected directly into effective_cpu_util() because of the IRQ scaling. 7525 * The latter only makes sense with the most recent CPUs where the task has 7526 * run. 7527 */ 7528 static inline void eenv_task_busy_time(struct energy_env *eenv, 7529 struct task_struct *p, int prev_cpu) 7530 { 7531 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7532 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7533 7534 if (unlikely(irq >= max_cap)) 7535 busy_time = max_cap; 7536 else 7537 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7538 7539 eenv->task_busy_time = busy_time; 7540 } 7541 7542 /* 7543 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7544 * utilization for each @pd_cpus, it however doesn't take into account 7545 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7546 * scale the EM reported power consumption at the (eventually clamped) 7547 * cpu_capacity. 7548 * 7549 * The contribution of the task @p for which we want to estimate the 7550 * energy cost is removed (by cpu_util()) and must be calculated 7551 * separately (see eenv_task_busy_time). This ensures: 7552 * 7553 * - A stable PD utilization, no matter which CPU of that PD we want to place 7554 * the task on. 7555 * 7556 * - A fair comparison between CPUs as the task contribution (task_util()) 7557 * will always be the same no matter which CPU utilization we rely on 7558 * (util_avg or util_est). 7559 * 7560 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7561 * exceed @eenv->pd_cap. 7562 */ 7563 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7564 struct cpumask *pd_cpus, 7565 struct task_struct *p) 7566 { 7567 unsigned long busy_time = 0; 7568 int cpu; 7569 7570 for_each_cpu(cpu, pd_cpus) { 7571 unsigned long util = cpu_util(cpu, p, -1, 0); 7572 7573 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7574 } 7575 7576 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7577 } 7578 7579 /* 7580 * Compute the maximum utilization for compute_energy() when the task @p 7581 * is placed on the cpu @dst_cpu. 7582 * 7583 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7584 * exceed @eenv->cpu_cap. 7585 */ 7586 static inline unsigned long 7587 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7588 struct task_struct *p, int dst_cpu) 7589 { 7590 unsigned long max_util = 0; 7591 int cpu; 7592 7593 for_each_cpu(cpu, pd_cpus) { 7594 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7595 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7596 unsigned long eff_util; 7597 7598 /* 7599 * Performance domain frequency: utilization clamping 7600 * must be considered since it affects the selection 7601 * of the performance domain frequency. 7602 * NOTE: in case RT tasks are running, by default the 7603 * FREQUENCY_UTIL's utilization can be max OPP. 7604 */ 7605 eff_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7606 max_util = max(max_util, eff_util); 7607 } 7608 7609 return min(max_util, eenv->cpu_cap); 7610 } 7611 7612 /* 7613 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7614 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7615 * contribution is ignored. 7616 */ 7617 static inline unsigned long 7618 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7619 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7620 { 7621 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7622 unsigned long busy_time = eenv->pd_busy_time; 7623 7624 if (dst_cpu >= 0) 7625 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7626 7627 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7628 } 7629 7630 /* 7631 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7632 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7633 * spare capacity in each performance domain and uses it as a potential 7634 * candidate to execute the task. Then, it uses the Energy Model to figure 7635 * out which of the CPU candidates is the most energy-efficient. 7636 * 7637 * The rationale for this heuristic is as follows. In a performance domain, 7638 * all the most energy efficient CPU candidates (according to the Energy 7639 * Model) are those for which we'll request a low frequency. When there are 7640 * several CPUs for which the frequency request will be the same, we don't 7641 * have enough data to break the tie between them, because the Energy Model 7642 * only includes active power costs. With this model, if we assume that 7643 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7644 * the maximum spare capacity in a performance domain is guaranteed to be among 7645 * the best candidates of the performance domain. 7646 * 7647 * In practice, it could be preferable from an energy standpoint to pack 7648 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7649 * but that could also hurt our chances to go cluster idle, and we have no 7650 * ways to tell with the current Energy Model if this is actually a good 7651 * idea or not. So, find_energy_efficient_cpu() basically favors 7652 * cluster-packing, and spreading inside a cluster. That should at least be 7653 * a good thing for latency, and this is consistent with the idea that most 7654 * of the energy savings of EAS come from the asymmetry of the system, and 7655 * not so much from breaking the tie between identical CPUs. That's also the 7656 * reason why EAS is enabled in the topology code only for systems where 7657 * SD_ASYM_CPUCAPACITY is set. 7658 * 7659 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7660 * they don't have any useful utilization data yet and it's not possible to 7661 * forecast their impact on energy consumption. Consequently, they will be 7662 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7663 * to be energy-inefficient in some use-cases. The alternative would be to 7664 * bias new tasks towards specific types of CPUs first, or to try to infer 7665 * their util_avg from the parent task, but those heuristics could hurt 7666 * other use-cases too. So, until someone finds a better way to solve this, 7667 * let's keep things simple by re-using the existing slow path. 7668 */ 7669 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7670 { 7671 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7672 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7673 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7674 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7675 struct root_domain *rd = this_rq()->rd; 7676 int cpu, best_energy_cpu, target = -1; 7677 int prev_fits = -1, best_fits = -1; 7678 unsigned long best_thermal_cap = 0; 7679 unsigned long prev_thermal_cap = 0; 7680 struct sched_domain *sd; 7681 struct perf_domain *pd; 7682 struct energy_env eenv; 7683 7684 rcu_read_lock(); 7685 pd = rcu_dereference(rd->pd); 7686 if (!pd || READ_ONCE(rd->overutilized)) 7687 goto unlock; 7688 7689 /* 7690 * Energy-aware wake-up happens on the lowest sched_domain starting 7691 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7692 */ 7693 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7694 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7695 sd = sd->parent; 7696 if (!sd) 7697 goto unlock; 7698 7699 target = prev_cpu; 7700 7701 sync_entity_load_avg(&p->se); 7702 if (!uclamp_task_util(p, p_util_min, p_util_max)) 7703 goto unlock; 7704 7705 eenv_task_busy_time(&eenv, p, prev_cpu); 7706 7707 for (; pd; pd = pd->next) { 7708 unsigned long util_min = p_util_min, util_max = p_util_max; 7709 unsigned long cpu_cap, cpu_thermal_cap, util; 7710 unsigned long cur_delta, max_spare_cap = 0; 7711 unsigned long rq_util_min, rq_util_max; 7712 unsigned long prev_spare_cap = 0; 7713 int max_spare_cap_cpu = -1; 7714 unsigned long base_energy; 7715 int fits, max_fits = -1; 7716 7717 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7718 7719 if (cpumask_empty(cpus)) 7720 continue; 7721 7722 /* Account thermal pressure for the energy estimation */ 7723 cpu = cpumask_first(cpus); 7724 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7725 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7726 7727 eenv.cpu_cap = cpu_thermal_cap; 7728 eenv.pd_cap = 0; 7729 7730 for_each_cpu(cpu, cpus) { 7731 struct rq *rq = cpu_rq(cpu); 7732 7733 eenv.pd_cap += cpu_thermal_cap; 7734 7735 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7736 continue; 7737 7738 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7739 continue; 7740 7741 util = cpu_util(cpu, p, cpu, 0); 7742 cpu_cap = capacity_of(cpu); 7743 7744 /* 7745 * Skip CPUs that cannot satisfy the capacity request. 7746 * IOW, placing the task there would make the CPU 7747 * overutilized. Take uclamp into account to see how 7748 * much capacity we can get out of the CPU; this is 7749 * aligned with sched_cpu_util(). 7750 */ 7751 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7752 /* 7753 * Open code uclamp_rq_util_with() except for 7754 * the clamp() part. Ie: apply max aggregation 7755 * only. util_fits_cpu() logic requires to 7756 * operate on non clamped util but must use the 7757 * max-aggregated uclamp_{min, max}. 7758 */ 7759 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7760 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7761 7762 util_min = max(rq_util_min, p_util_min); 7763 util_max = max(rq_util_max, p_util_max); 7764 } 7765 7766 fits = util_fits_cpu(util, util_min, util_max, cpu); 7767 if (!fits) 7768 continue; 7769 7770 lsub_positive(&cpu_cap, util); 7771 7772 if (cpu == prev_cpu) { 7773 /* Always use prev_cpu as a candidate. */ 7774 prev_spare_cap = cpu_cap; 7775 prev_fits = fits; 7776 } else if ((fits > max_fits) || 7777 ((fits == max_fits) && (cpu_cap > max_spare_cap))) { 7778 /* 7779 * Find the CPU with the maximum spare capacity 7780 * among the remaining CPUs in the performance 7781 * domain. 7782 */ 7783 max_spare_cap = cpu_cap; 7784 max_spare_cap_cpu = cpu; 7785 max_fits = fits; 7786 } 7787 } 7788 7789 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0) 7790 continue; 7791 7792 eenv_pd_busy_time(&eenv, cpus, p); 7793 /* Compute the 'base' energy of the pd, without @p */ 7794 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7795 7796 /* Evaluate the energy impact of using prev_cpu. */ 7797 if (prev_spare_cap > 0) { 7798 prev_delta = compute_energy(&eenv, pd, cpus, p, 7799 prev_cpu); 7800 /* CPU utilization has changed */ 7801 if (prev_delta < base_energy) 7802 goto unlock; 7803 prev_delta -= base_energy; 7804 prev_thermal_cap = cpu_thermal_cap; 7805 best_delta = min(best_delta, prev_delta); 7806 } 7807 7808 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7809 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7810 /* Current best energy cpu fits better */ 7811 if (max_fits < best_fits) 7812 continue; 7813 7814 /* 7815 * Both don't fit performance hint (i.e. uclamp_min) 7816 * but best energy cpu has better capacity. 7817 */ 7818 if ((max_fits < 0) && 7819 (cpu_thermal_cap <= best_thermal_cap)) 7820 continue; 7821 7822 cur_delta = compute_energy(&eenv, pd, cpus, p, 7823 max_spare_cap_cpu); 7824 /* CPU utilization has changed */ 7825 if (cur_delta < base_energy) 7826 goto unlock; 7827 cur_delta -= base_energy; 7828 7829 /* 7830 * Both fit for the task but best energy cpu has lower 7831 * energy impact. 7832 */ 7833 if ((max_fits > 0) && (best_fits > 0) && 7834 (cur_delta >= best_delta)) 7835 continue; 7836 7837 best_delta = cur_delta; 7838 best_energy_cpu = max_spare_cap_cpu; 7839 best_fits = max_fits; 7840 best_thermal_cap = cpu_thermal_cap; 7841 } 7842 } 7843 rcu_read_unlock(); 7844 7845 if ((best_fits > prev_fits) || 7846 ((best_fits > 0) && (best_delta < prev_delta)) || 7847 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 7848 target = best_energy_cpu; 7849 7850 return target; 7851 7852 unlock: 7853 rcu_read_unlock(); 7854 7855 return target; 7856 } 7857 7858 /* 7859 * select_task_rq_fair: Select target runqueue for the waking task in domains 7860 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7861 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7862 * 7863 * Balances load by selecting the idlest CPU in the idlest group, or under 7864 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7865 * 7866 * Returns the target CPU number. 7867 */ 7868 static int 7869 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7870 { 7871 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7872 struct sched_domain *tmp, *sd = NULL; 7873 int cpu = smp_processor_id(); 7874 int new_cpu = prev_cpu; 7875 int want_affine = 0; 7876 /* SD_flags and WF_flags share the first nibble */ 7877 int sd_flag = wake_flags & 0xF; 7878 7879 /* 7880 * required for stable ->cpus_allowed 7881 */ 7882 lockdep_assert_held(&p->pi_lock); 7883 if (wake_flags & WF_TTWU) { 7884 record_wakee(p); 7885 7886 if ((wake_flags & WF_CURRENT_CPU) && 7887 cpumask_test_cpu(cpu, p->cpus_ptr)) 7888 return cpu; 7889 7890 if (sched_energy_enabled()) { 7891 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7892 if (new_cpu >= 0) 7893 return new_cpu; 7894 new_cpu = prev_cpu; 7895 } 7896 7897 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7898 } 7899 7900 rcu_read_lock(); 7901 for_each_domain(cpu, tmp) { 7902 /* 7903 * If both 'cpu' and 'prev_cpu' are part of this domain, 7904 * cpu is a valid SD_WAKE_AFFINE target. 7905 */ 7906 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7907 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7908 if (cpu != prev_cpu) 7909 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7910 7911 sd = NULL; /* Prefer wake_affine over balance flags */ 7912 break; 7913 } 7914 7915 /* 7916 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7917 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7918 * will usually go to the fast path. 7919 */ 7920 if (tmp->flags & sd_flag) 7921 sd = tmp; 7922 else if (!want_affine) 7923 break; 7924 } 7925 7926 if (unlikely(sd)) { 7927 /* Slow path */ 7928 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7929 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7930 /* Fast path */ 7931 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7932 } 7933 rcu_read_unlock(); 7934 7935 return new_cpu; 7936 } 7937 7938 /* 7939 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7940 * cfs_rq_of(p) references at time of call are still valid and identify the 7941 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7942 */ 7943 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7944 { 7945 struct sched_entity *se = &p->se; 7946 7947 if (!task_on_rq_migrating(p)) { 7948 remove_entity_load_avg(se); 7949 7950 /* 7951 * Here, the task's PELT values have been updated according to 7952 * the current rq's clock. But if that clock hasn't been 7953 * updated in a while, a substantial idle time will be missed, 7954 * leading to an inflation after wake-up on the new rq. 7955 * 7956 * Estimate the missing time from the cfs_rq last_update_time 7957 * and update sched_avg to improve the PELT continuity after 7958 * migration. 7959 */ 7960 migrate_se_pelt_lag(se); 7961 } 7962 7963 /* Tell new CPU we are migrated */ 7964 se->avg.last_update_time = 0; 7965 7966 update_scan_period(p, new_cpu); 7967 } 7968 7969 static void task_dead_fair(struct task_struct *p) 7970 { 7971 remove_entity_load_avg(&p->se); 7972 } 7973 7974 static int 7975 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7976 { 7977 if (rq->nr_running) 7978 return 1; 7979 7980 return newidle_balance(rq, rf) != 0; 7981 } 7982 #endif /* CONFIG_SMP */ 7983 7984 static void set_next_buddy(struct sched_entity *se) 7985 { 7986 for_each_sched_entity(se) { 7987 if (SCHED_WARN_ON(!se->on_rq)) 7988 return; 7989 if (se_is_idle(se)) 7990 return; 7991 cfs_rq_of(se)->next = se; 7992 } 7993 } 7994 7995 /* 7996 * Preempt the current task with a newly woken task if needed: 7997 */ 7998 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7999 { 8000 struct task_struct *curr = rq->curr; 8001 struct sched_entity *se = &curr->se, *pse = &p->se; 8002 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8003 int next_buddy_marked = 0; 8004 int cse_is_idle, pse_is_idle; 8005 8006 if (unlikely(se == pse)) 8007 return; 8008 8009 /* 8010 * This is possible from callers such as attach_tasks(), in which we 8011 * unconditionally check_preempt_curr() after an enqueue (which may have 8012 * lead to a throttle). This both saves work and prevents false 8013 * next-buddy nomination below. 8014 */ 8015 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8016 return; 8017 8018 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8019 set_next_buddy(pse); 8020 next_buddy_marked = 1; 8021 } 8022 8023 /* 8024 * We can come here with TIF_NEED_RESCHED already set from new task 8025 * wake up path. 8026 * 8027 * Note: this also catches the edge-case of curr being in a throttled 8028 * group (e.g. via set_curr_task), since update_curr() (in the 8029 * enqueue of curr) will have resulted in resched being set. This 8030 * prevents us from potentially nominating it as a false LAST_BUDDY 8031 * below. 8032 */ 8033 if (test_tsk_need_resched(curr)) 8034 return; 8035 8036 /* Idle tasks are by definition preempted by non-idle tasks. */ 8037 if (unlikely(task_has_idle_policy(curr)) && 8038 likely(!task_has_idle_policy(p))) 8039 goto preempt; 8040 8041 /* 8042 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8043 * is driven by the tick): 8044 */ 8045 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8046 return; 8047 8048 find_matching_se(&se, &pse); 8049 WARN_ON_ONCE(!pse); 8050 8051 cse_is_idle = se_is_idle(se); 8052 pse_is_idle = se_is_idle(pse); 8053 8054 /* 8055 * Preempt an idle group in favor of a non-idle group (and don't preempt 8056 * in the inverse case). 8057 */ 8058 if (cse_is_idle && !pse_is_idle) 8059 goto preempt; 8060 if (cse_is_idle != pse_is_idle) 8061 return; 8062 8063 cfs_rq = cfs_rq_of(se); 8064 update_curr(cfs_rq); 8065 8066 /* 8067 * XXX pick_eevdf(cfs_rq) != se ? 8068 */ 8069 if (pick_eevdf(cfs_rq) == pse) 8070 goto preempt; 8071 8072 return; 8073 8074 preempt: 8075 resched_curr(rq); 8076 } 8077 8078 #ifdef CONFIG_SMP 8079 static struct task_struct *pick_task_fair(struct rq *rq) 8080 { 8081 struct sched_entity *se; 8082 struct cfs_rq *cfs_rq; 8083 8084 again: 8085 cfs_rq = &rq->cfs; 8086 if (!cfs_rq->nr_running) 8087 return NULL; 8088 8089 do { 8090 struct sched_entity *curr = cfs_rq->curr; 8091 8092 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8093 if (curr) { 8094 if (curr->on_rq) 8095 update_curr(cfs_rq); 8096 else 8097 curr = NULL; 8098 8099 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8100 goto again; 8101 } 8102 8103 se = pick_next_entity(cfs_rq, curr); 8104 cfs_rq = group_cfs_rq(se); 8105 } while (cfs_rq); 8106 8107 return task_of(se); 8108 } 8109 #endif 8110 8111 struct task_struct * 8112 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8113 { 8114 struct cfs_rq *cfs_rq = &rq->cfs; 8115 struct sched_entity *se; 8116 struct task_struct *p; 8117 int new_tasks; 8118 8119 again: 8120 if (!sched_fair_runnable(rq)) 8121 goto idle; 8122 8123 #ifdef CONFIG_FAIR_GROUP_SCHED 8124 if (!prev || prev->sched_class != &fair_sched_class) 8125 goto simple; 8126 8127 /* 8128 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8129 * likely that a next task is from the same cgroup as the current. 8130 * 8131 * Therefore attempt to avoid putting and setting the entire cgroup 8132 * hierarchy, only change the part that actually changes. 8133 */ 8134 8135 do { 8136 struct sched_entity *curr = cfs_rq->curr; 8137 8138 /* 8139 * Since we got here without doing put_prev_entity() we also 8140 * have to consider cfs_rq->curr. If it is still a runnable 8141 * entity, update_curr() will update its vruntime, otherwise 8142 * forget we've ever seen it. 8143 */ 8144 if (curr) { 8145 if (curr->on_rq) 8146 update_curr(cfs_rq); 8147 else 8148 curr = NULL; 8149 8150 /* 8151 * This call to check_cfs_rq_runtime() will do the 8152 * throttle and dequeue its entity in the parent(s). 8153 * Therefore the nr_running test will indeed 8154 * be correct. 8155 */ 8156 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8157 cfs_rq = &rq->cfs; 8158 8159 if (!cfs_rq->nr_running) 8160 goto idle; 8161 8162 goto simple; 8163 } 8164 } 8165 8166 se = pick_next_entity(cfs_rq, curr); 8167 cfs_rq = group_cfs_rq(se); 8168 } while (cfs_rq); 8169 8170 p = task_of(se); 8171 8172 /* 8173 * Since we haven't yet done put_prev_entity and if the selected task 8174 * is a different task than we started out with, try and touch the 8175 * least amount of cfs_rqs. 8176 */ 8177 if (prev != p) { 8178 struct sched_entity *pse = &prev->se; 8179 8180 while (!(cfs_rq = is_same_group(se, pse))) { 8181 int se_depth = se->depth; 8182 int pse_depth = pse->depth; 8183 8184 if (se_depth <= pse_depth) { 8185 put_prev_entity(cfs_rq_of(pse), pse); 8186 pse = parent_entity(pse); 8187 } 8188 if (se_depth >= pse_depth) { 8189 set_next_entity(cfs_rq_of(se), se); 8190 se = parent_entity(se); 8191 } 8192 } 8193 8194 put_prev_entity(cfs_rq, pse); 8195 set_next_entity(cfs_rq, se); 8196 } 8197 8198 goto done; 8199 simple: 8200 #endif 8201 if (prev) 8202 put_prev_task(rq, prev); 8203 8204 do { 8205 se = pick_next_entity(cfs_rq, NULL); 8206 set_next_entity(cfs_rq, se); 8207 cfs_rq = group_cfs_rq(se); 8208 } while (cfs_rq); 8209 8210 p = task_of(se); 8211 8212 done: __maybe_unused; 8213 #ifdef CONFIG_SMP 8214 /* 8215 * Move the next running task to the front of 8216 * the list, so our cfs_tasks list becomes MRU 8217 * one. 8218 */ 8219 list_move(&p->se.group_node, &rq->cfs_tasks); 8220 #endif 8221 8222 if (hrtick_enabled_fair(rq)) 8223 hrtick_start_fair(rq, p); 8224 8225 update_misfit_status(p, rq); 8226 sched_fair_update_stop_tick(rq, p); 8227 8228 return p; 8229 8230 idle: 8231 if (!rf) 8232 return NULL; 8233 8234 new_tasks = newidle_balance(rq, rf); 8235 8236 /* 8237 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8238 * possible for any higher priority task to appear. In that case we 8239 * must re-start the pick_next_entity() loop. 8240 */ 8241 if (new_tasks < 0) 8242 return RETRY_TASK; 8243 8244 if (new_tasks > 0) 8245 goto again; 8246 8247 /* 8248 * rq is about to be idle, check if we need to update the 8249 * lost_idle_time of clock_pelt 8250 */ 8251 update_idle_rq_clock_pelt(rq); 8252 8253 return NULL; 8254 } 8255 8256 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8257 { 8258 return pick_next_task_fair(rq, NULL, NULL); 8259 } 8260 8261 /* 8262 * Account for a descheduled task: 8263 */ 8264 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8265 { 8266 struct sched_entity *se = &prev->se; 8267 struct cfs_rq *cfs_rq; 8268 8269 for_each_sched_entity(se) { 8270 cfs_rq = cfs_rq_of(se); 8271 put_prev_entity(cfs_rq, se); 8272 } 8273 } 8274 8275 /* 8276 * sched_yield() is very simple 8277 */ 8278 static void yield_task_fair(struct rq *rq) 8279 { 8280 struct task_struct *curr = rq->curr; 8281 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8282 struct sched_entity *se = &curr->se; 8283 8284 /* 8285 * Are we the only task in the tree? 8286 */ 8287 if (unlikely(rq->nr_running == 1)) 8288 return; 8289 8290 clear_buddies(cfs_rq, se); 8291 8292 update_rq_clock(rq); 8293 /* 8294 * Update run-time statistics of the 'current'. 8295 */ 8296 update_curr(cfs_rq); 8297 /* 8298 * Tell update_rq_clock() that we've just updated, 8299 * so we don't do microscopic update in schedule() 8300 * and double the fastpath cost. 8301 */ 8302 rq_clock_skip_update(rq); 8303 8304 se->deadline += calc_delta_fair(se->slice, se); 8305 } 8306 8307 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8308 { 8309 struct sched_entity *se = &p->se; 8310 8311 /* throttled hierarchies are not runnable */ 8312 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8313 return false; 8314 8315 /* Tell the scheduler that we'd really like pse to run next. */ 8316 set_next_buddy(se); 8317 8318 yield_task_fair(rq); 8319 8320 return true; 8321 } 8322 8323 #ifdef CONFIG_SMP 8324 /************************************************** 8325 * Fair scheduling class load-balancing methods. 8326 * 8327 * BASICS 8328 * 8329 * The purpose of load-balancing is to achieve the same basic fairness the 8330 * per-CPU scheduler provides, namely provide a proportional amount of compute 8331 * time to each task. This is expressed in the following equation: 8332 * 8333 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8334 * 8335 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8336 * W_i,0 is defined as: 8337 * 8338 * W_i,0 = \Sum_j w_i,j (2) 8339 * 8340 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8341 * is derived from the nice value as per sched_prio_to_weight[]. 8342 * 8343 * The weight average is an exponential decay average of the instantaneous 8344 * weight: 8345 * 8346 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8347 * 8348 * C_i is the compute capacity of CPU i, typically it is the 8349 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8350 * can also include other factors [XXX]. 8351 * 8352 * To achieve this balance we define a measure of imbalance which follows 8353 * directly from (1): 8354 * 8355 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8356 * 8357 * We them move tasks around to minimize the imbalance. In the continuous 8358 * function space it is obvious this converges, in the discrete case we get 8359 * a few fun cases generally called infeasible weight scenarios. 8360 * 8361 * [XXX expand on: 8362 * - infeasible weights; 8363 * - local vs global optima in the discrete case. ] 8364 * 8365 * 8366 * SCHED DOMAINS 8367 * 8368 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8369 * for all i,j solution, we create a tree of CPUs that follows the hardware 8370 * topology where each level pairs two lower groups (or better). This results 8371 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8372 * tree to only the first of the previous level and we decrease the frequency 8373 * of load-balance at each level inv. proportional to the number of CPUs in 8374 * the groups. 8375 * 8376 * This yields: 8377 * 8378 * log_2 n 1 n 8379 * \Sum { --- * --- * 2^i } = O(n) (5) 8380 * i = 0 2^i 2^i 8381 * `- size of each group 8382 * | | `- number of CPUs doing load-balance 8383 * | `- freq 8384 * `- sum over all levels 8385 * 8386 * Coupled with a limit on how many tasks we can migrate every balance pass, 8387 * this makes (5) the runtime complexity of the balancer. 8388 * 8389 * An important property here is that each CPU is still (indirectly) connected 8390 * to every other CPU in at most O(log n) steps: 8391 * 8392 * The adjacency matrix of the resulting graph is given by: 8393 * 8394 * log_2 n 8395 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8396 * k = 0 8397 * 8398 * And you'll find that: 8399 * 8400 * A^(log_2 n)_i,j != 0 for all i,j (7) 8401 * 8402 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8403 * The task movement gives a factor of O(m), giving a convergence complexity 8404 * of: 8405 * 8406 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8407 * 8408 * 8409 * WORK CONSERVING 8410 * 8411 * In order to avoid CPUs going idle while there's still work to do, new idle 8412 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8413 * tree itself instead of relying on other CPUs to bring it work. 8414 * 8415 * This adds some complexity to both (5) and (8) but it reduces the total idle 8416 * time. 8417 * 8418 * [XXX more?] 8419 * 8420 * 8421 * CGROUPS 8422 * 8423 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8424 * 8425 * s_k,i 8426 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8427 * S_k 8428 * 8429 * Where 8430 * 8431 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8432 * 8433 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8434 * 8435 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8436 * property. 8437 * 8438 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8439 * rewrite all of this once again.] 8440 */ 8441 8442 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8443 8444 enum fbq_type { regular, remote, all }; 8445 8446 /* 8447 * 'group_type' describes the group of CPUs at the moment of load balancing. 8448 * 8449 * The enum is ordered by pulling priority, with the group with lowest priority 8450 * first so the group_type can simply be compared when selecting the busiest 8451 * group. See update_sd_pick_busiest(). 8452 */ 8453 enum group_type { 8454 /* The group has spare capacity that can be used to run more tasks. */ 8455 group_has_spare = 0, 8456 /* 8457 * The group is fully used and the tasks don't compete for more CPU 8458 * cycles. Nevertheless, some tasks might wait before running. 8459 */ 8460 group_fully_busy, 8461 /* 8462 * One task doesn't fit with CPU's capacity and must be migrated to a 8463 * more powerful CPU. 8464 */ 8465 group_misfit_task, 8466 /* 8467 * Balance SMT group that's fully busy. Can benefit from migration 8468 * a task on SMT with busy sibling to another CPU on idle core. 8469 */ 8470 group_smt_balance, 8471 /* 8472 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8473 * and the task should be migrated to it instead of running on the 8474 * current CPU. 8475 */ 8476 group_asym_packing, 8477 /* 8478 * The tasks' affinity constraints previously prevented the scheduler 8479 * from balancing the load across the system. 8480 */ 8481 group_imbalanced, 8482 /* 8483 * The CPU is overloaded and can't provide expected CPU cycles to all 8484 * tasks. 8485 */ 8486 group_overloaded 8487 }; 8488 8489 enum migration_type { 8490 migrate_load = 0, 8491 migrate_util, 8492 migrate_task, 8493 migrate_misfit 8494 }; 8495 8496 #define LBF_ALL_PINNED 0x01 8497 #define LBF_NEED_BREAK 0x02 8498 #define LBF_DST_PINNED 0x04 8499 #define LBF_SOME_PINNED 0x08 8500 #define LBF_ACTIVE_LB 0x10 8501 8502 struct lb_env { 8503 struct sched_domain *sd; 8504 8505 struct rq *src_rq; 8506 int src_cpu; 8507 8508 int dst_cpu; 8509 struct rq *dst_rq; 8510 8511 struct cpumask *dst_grpmask; 8512 int new_dst_cpu; 8513 enum cpu_idle_type idle; 8514 long imbalance; 8515 /* The set of CPUs under consideration for load-balancing */ 8516 struct cpumask *cpus; 8517 8518 unsigned int flags; 8519 8520 unsigned int loop; 8521 unsigned int loop_break; 8522 unsigned int loop_max; 8523 8524 enum fbq_type fbq_type; 8525 enum migration_type migration_type; 8526 struct list_head tasks; 8527 }; 8528 8529 /* 8530 * Is this task likely cache-hot: 8531 */ 8532 static int task_hot(struct task_struct *p, struct lb_env *env) 8533 { 8534 s64 delta; 8535 8536 lockdep_assert_rq_held(env->src_rq); 8537 8538 if (p->sched_class != &fair_sched_class) 8539 return 0; 8540 8541 if (unlikely(task_has_idle_policy(p))) 8542 return 0; 8543 8544 /* SMT siblings share cache */ 8545 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8546 return 0; 8547 8548 /* 8549 * Buddy candidates are cache hot: 8550 */ 8551 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8552 (&p->se == cfs_rq_of(&p->se)->next)) 8553 return 1; 8554 8555 if (sysctl_sched_migration_cost == -1) 8556 return 1; 8557 8558 /* 8559 * Don't migrate task if the task's cookie does not match 8560 * with the destination CPU's core cookie. 8561 */ 8562 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8563 return 1; 8564 8565 if (sysctl_sched_migration_cost == 0) 8566 return 0; 8567 8568 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8569 8570 return delta < (s64)sysctl_sched_migration_cost; 8571 } 8572 8573 #ifdef CONFIG_NUMA_BALANCING 8574 /* 8575 * Returns 1, if task migration degrades locality 8576 * Returns 0, if task migration improves locality i.e migration preferred. 8577 * Returns -1, if task migration is not affected by locality. 8578 */ 8579 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8580 { 8581 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8582 unsigned long src_weight, dst_weight; 8583 int src_nid, dst_nid, dist; 8584 8585 if (!static_branch_likely(&sched_numa_balancing)) 8586 return -1; 8587 8588 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8589 return -1; 8590 8591 src_nid = cpu_to_node(env->src_cpu); 8592 dst_nid = cpu_to_node(env->dst_cpu); 8593 8594 if (src_nid == dst_nid) 8595 return -1; 8596 8597 /* Migrating away from the preferred node is always bad. */ 8598 if (src_nid == p->numa_preferred_nid) { 8599 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8600 return 1; 8601 else 8602 return -1; 8603 } 8604 8605 /* Encourage migration to the preferred node. */ 8606 if (dst_nid == p->numa_preferred_nid) 8607 return 0; 8608 8609 /* Leaving a core idle is often worse than degrading locality. */ 8610 if (env->idle == CPU_IDLE) 8611 return -1; 8612 8613 dist = node_distance(src_nid, dst_nid); 8614 if (numa_group) { 8615 src_weight = group_weight(p, src_nid, dist); 8616 dst_weight = group_weight(p, dst_nid, dist); 8617 } else { 8618 src_weight = task_weight(p, src_nid, dist); 8619 dst_weight = task_weight(p, dst_nid, dist); 8620 } 8621 8622 return dst_weight < src_weight; 8623 } 8624 8625 #else 8626 static inline int migrate_degrades_locality(struct task_struct *p, 8627 struct lb_env *env) 8628 { 8629 return -1; 8630 } 8631 #endif 8632 8633 /* 8634 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8635 */ 8636 static 8637 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8638 { 8639 int tsk_cache_hot; 8640 8641 lockdep_assert_rq_held(env->src_rq); 8642 8643 /* 8644 * We do not migrate tasks that are: 8645 * 1) throttled_lb_pair, or 8646 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8647 * 3) running (obviously), or 8648 * 4) are cache-hot on their current CPU. 8649 */ 8650 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8651 return 0; 8652 8653 /* Disregard pcpu kthreads; they are where they need to be. */ 8654 if (kthread_is_per_cpu(p)) 8655 return 0; 8656 8657 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8658 int cpu; 8659 8660 schedstat_inc(p->stats.nr_failed_migrations_affine); 8661 8662 env->flags |= LBF_SOME_PINNED; 8663 8664 /* 8665 * Remember if this task can be migrated to any other CPU in 8666 * our sched_group. We may want to revisit it if we couldn't 8667 * meet load balance goals by pulling other tasks on src_cpu. 8668 * 8669 * Avoid computing new_dst_cpu 8670 * - for NEWLY_IDLE 8671 * - if we have already computed one in current iteration 8672 * - if it's an active balance 8673 */ 8674 if (env->idle == CPU_NEWLY_IDLE || 8675 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8676 return 0; 8677 8678 /* Prevent to re-select dst_cpu via env's CPUs: */ 8679 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8680 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8681 env->flags |= LBF_DST_PINNED; 8682 env->new_dst_cpu = cpu; 8683 break; 8684 } 8685 } 8686 8687 return 0; 8688 } 8689 8690 /* Record that we found at least one task that could run on dst_cpu */ 8691 env->flags &= ~LBF_ALL_PINNED; 8692 8693 if (task_on_cpu(env->src_rq, p)) { 8694 schedstat_inc(p->stats.nr_failed_migrations_running); 8695 return 0; 8696 } 8697 8698 /* 8699 * Aggressive migration if: 8700 * 1) active balance 8701 * 2) destination numa is preferred 8702 * 3) task is cache cold, or 8703 * 4) too many balance attempts have failed. 8704 */ 8705 if (env->flags & LBF_ACTIVE_LB) 8706 return 1; 8707 8708 tsk_cache_hot = migrate_degrades_locality(p, env); 8709 if (tsk_cache_hot == -1) 8710 tsk_cache_hot = task_hot(p, env); 8711 8712 if (tsk_cache_hot <= 0 || 8713 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8714 if (tsk_cache_hot == 1) { 8715 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8716 schedstat_inc(p->stats.nr_forced_migrations); 8717 } 8718 return 1; 8719 } 8720 8721 schedstat_inc(p->stats.nr_failed_migrations_hot); 8722 return 0; 8723 } 8724 8725 /* 8726 * detach_task() -- detach the task for the migration specified in env 8727 */ 8728 static void detach_task(struct task_struct *p, struct lb_env *env) 8729 { 8730 lockdep_assert_rq_held(env->src_rq); 8731 8732 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8733 set_task_cpu(p, env->dst_cpu); 8734 } 8735 8736 /* 8737 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8738 * part of active balancing operations within "domain". 8739 * 8740 * Returns a task if successful and NULL otherwise. 8741 */ 8742 static struct task_struct *detach_one_task(struct lb_env *env) 8743 { 8744 struct task_struct *p; 8745 8746 lockdep_assert_rq_held(env->src_rq); 8747 8748 list_for_each_entry_reverse(p, 8749 &env->src_rq->cfs_tasks, se.group_node) { 8750 if (!can_migrate_task(p, env)) 8751 continue; 8752 8753 detach_task(p, env); 8754 8755 /* 8756 * Right now, this is only the second place where 8757 * lb_gained[env->idle] is updated (other is detach_tasks) 8758 * so we can safely collect stats here rather than 8759 * inside detach_tasks(). 8760 */ 8761 schedstat_inc(env->sd->lb_gained[env->idle]); 8762 return p; 8763 } 8764 return NULL; 8765 } 8766 8767 /* 8768 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8769 * busiest_rq, as part of a balancing operation within domain "sd". 8770 * 8771 * Returns number of detached tasks if successful and 0 otherwise. 8772 */ 8773 static int detach_tasks(struct lb_env *env) 8774 { 8775 struct list_head *tasks = &env->src_rq->cfs_tasks; 8776 unsigned long util, load; 8777 struct task_struct *p; 8778 int detached = 0; 8779 8780 lockdep_assert_rq_held(env->src_rq); 8781 8782 /* 8783 * Source run queue has been emptied by another CPU, clear 8784 * LBF_ALL_PINNED flag as we will not test any task. 8785 */ 8786 if (env->src_rq->nr_running <= 1) { 8787 env->flags &= ~LBF_ALL_PINNED; 8788 return 0; 8789 } 8790 8791 if (env->imbalance <= 0) 8792 return 0; 8793 8794 while (!list_empty(tasks)) { 8795 /* 8796 * We don't want to steal all, otherwise we may be treated likewise, 8797 * which could at worst lead to a livelock crash. 8798 */ 8799 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8800 break; 8801 8802 env->loop++; 8803 /* 8804 * We've more or less seen every task there is, call it quits 8805 * unless we haven't found any movable task yet. 8806 */ 8807 if (env->loop > env->loop_max && 8808 !(env->flags & LBF_ALL_PINNED)) 8809 break; 8810 8811 /* take a breather every nr_migrate tasks */ 8812 if (env->loop > env->loop_break) { 8813 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8814 env->flags |= LBF_NEED_BREAK; 8815 break; 8816 } 8817 8818 p = list_last_entry(tasks, struct task_struct, se.group_node); 8819 8820 if (!can_migrate_task(p, env)) 8821 goto next; 8822 8823 switch (env->migration_type) { 8824 case migrate_load: 8825 /* 8826 * Depending of the number of CPUs and tasks and the 8827 * cgroup hierarchy, task_h_load() can return a null 8828 * value. Make sure that env->imbalance decreases 8829 * otherwise detach_tasks() will stop only after 8830 * detaching up to loop_max tasks. 8831 */ 8832 load = max_t(unsigned long, task_h_load(p), 1); 8833 8834 if (sched_feat(LB_MIN) && 8835 load < 16 && !env->sd->nr_balance_failed) 8836 goto next; 8837 8838 /* 8839 * Make sure that we don't migrate too much load. 8840 * Nevertheless, let relax the constraint if 8841 * scheduler fails to find a good waiting task to 8842 * migrate. 8843 */ 8844 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8845 goto next; 8846 8847 env->imbalance -= load; 8848 break; 8849 8850 case migrate_util: 8851 util = task_util_est(p); 8852 8853 if (util > env->imbalance) 8854 goto next; 8855 8856 env->imbalance -= util; 8857 break; 8858 8859 case migrate_task: 8860 env->imbalance--; 8861 break; 8862 8863 case migrate_misfit: 8864 /* This is not a misfit task */ 8865 if (task_fits_cpu(p, env->src_cpu)) 8866 goto next; 8867 8868 env->imbalance = 0; 8869 break; 8870 } 8871 8872 detach_task(p, env); 8873 list_add(&p->se.group_node, &env->tasks); 8874 8875 detached++; 8876 8877 #ifdef CONFIG_PREEMPTION 8878 /* 8879 * NEWIDLE balancing is a source of latency, so preemptible 8880 * kernels will stop after the first task is detached to minimize 8881 * the critical section. 8882 */ 8883 if (env->idle == CPU_NEWLY_IDLE) 8884 break; 8885 #endif 8886 8887 /* 8888 * We only want to steal up to the prescribed amount of 8889 * load/util/tasks. 8890 */ 8891 if (env->imbalance <= 0) 8892 break; 8893 8894 continue; 8895 next: 8896 list_move(&p->se.group_node, tasks); 8897 } 8898 8899 /* 8900 * Right now, this is one of only two places we collect this stat 8901 * so we can safely collect detach_one_task() stats here rather 8902 * than inside detach_one_task(). 8903 */ 8904 schedstat_add(env->sd->lb_gained[env->idle], detached); 8905 8906 return detached; 8907 } 8908 8909 /* 8910 * attach_task() -- attach the task detached by detach_task() to its new rq. 8911 */ 8912 static void attach_task(struct rq *rq, struct task_struct *p) 8913 { 8914 lockdep_assert_rq_held(rq); 8915 8916 WARN_ON_ONCE(task_rq(p) != rq); 8917 activate_task(rq, p, ENQUEUE_NOCLOCK); 8918 check_preempt_curr(rq, p, 0); 8919 } 8920 8921 /* 8922 * attach_one_task() -- attaches the task returned from detach_one_task() to 8923 * its new rq. 8924 */ 8925 static void attach_one_task(struct rq *rq, struct task_struct *p) 8926 { 8927 struct rq_flags rf; 8928 8929 rq_lock(rq, &rf); 8930 update_rq_clock(rq); 8931 attach_task(rq, p); 8932 rq_unlock(rq, &rf); 8933 } 8934 8935 /* 8936 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8937 * new rq. 8938 */ 8939 static void attach_tasks(struct lb_env *env) 8940 { 8941 struct list_head *tasks = &env->tasks; 8942 struct task_struct *p; 8943 struct rq_flags rf; 8944 8945 rq_lock(env->dst_rq, &rf); 8946 update_rq_clock(env->dst_rq); 8947 8948 while (!list_empty(tasks)) { 8949 p = list_first_entry(tasks, struct task_struct, se.group_node); 8950 list_del_init(&p->se.group_node); 8951 8952 attach_task(env->dst_rq, p); 8953 } 8954 8955 rq_unlock(env->dst_rq, &rf); 8956 } 8957 8958 #ifdef CONFIG_NO_HZ_COMMON 8959 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8960 { 8961 if (cfs_rq->avg.load_avg) 8962 return true; 8963 8964 if (cfs_rq->avg.util_avg) 8965 return true; 8966 8967 return false; 8968 } 8969 8970 static inline bool others_have_blocked(struct rq *rq) 8971 { 8972 if (READ_ONCE(rq->avg_rt.util_avg)) 8973 return true; 8974 8975 if (READ_ONCE(rq->avg_dl.util_avg)) 8976 return true; 8977 8978 if (thermal_load_avg(rq)) 8979 return true; 8980 8981 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8982 if (READ_ONCE(rq->avg_irq.util_avg)) 8983 return true; 8984 #endif 8985 8986 return false; 8987 } 8988 8989 static inline void update_blocked_load_tick(struct rq *rq) 8990 { 8991 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8992 } 8993 8994 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8995 { 8996 if (!has_blocked) 8997 rq->has_blocked_load = 0; 8998 } 8999 #else 9000 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9001 static inline bool others_have_blocked(struct rq *rq) { return false; } 9002 static inline void update_blocked_load_tick(struct rq *rq) {} 9003 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9004 #endif 9005 9006 static bool __update_blocked_others(struct rq *rq, bool *done) 9007 { 9008 const struct sched_class *curr_class; 9009 u64 now = rq_clock_pelt(rq); 9010 unsigned long thermal_pressure; 9011 bool decayed; 9012 9013 /* 9014 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9015 * DL and IRQ signals have been updated before updating CFS. 9016 */ 9017 curr_class = rq->curr->sched_class; 9018 9019 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9020 9021 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9022 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9023 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9024 update_irq_load_avg(rq, 0); 9025 9026 if (others_have_blocked(rq)) 9027 *done = false; 9028 9029 return decayed; 9030 } 9031 9032 #ifdef CONFIG_FAIR_GROUP_SCHED 9033 9034 static bool __update_blocked_fair(struct rq *rq, bool *done) 9035 { 9036 struct cfs_rq *cfs_rq, *pos; 9037 bool decayed = false; 9038 int cpu = cpu_of(rq); 9039 9040 /* 9041 * Iterates the task_group tree in a bottom up fashion, see 9042 * list_add_leaf_cfs_rq() for details. 9043 */ 9044 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9045 struct sched_entity *se; 9046 9047 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9048 update_tg_load_avg(cfs_rq); 9049 9050 if (cfs_rq->nr_running == 0) 9051 update_idle_cfs_rq_clock_pelt(cfs_rq); 9052 9053 if (cfs_rq == &rq->cfs) 9054 decayed = true; 9055 } 9056 9057 /* Propagate pending load changes to the parent, if any: */ 9058 se = cfs_rq->tg->se[cpu]; 9059 if (se && !skip_blocked_update(se)) 9060 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9061 9062 /* 9063 * There can be a lot of idle CPU cgroups. Don't let fully 9064 * decayed cfs_rqs linger on the list. 9065 */ 9066 if (cfs_rq_is_decayed(cfs_rq)) 9067 list_del_leaf_cfs_rq(cfs_rq); 9068 9069 /* Don't need periodic decay once load/util_avg are null */ 9070 if (cfs_rq_has_blocked(cfs_rq)) 9071 *done = false; 9072 } 9073 9074 return decayed; 9075 } 9076 9077 /* 9078 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9079 * This needs to be done in a top-down fashion because the load of a child 9080 * group is a fraction of its parents load. 9081 */ 9082 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9083 { 9084 struct rq *rq = rq_of(cfs_rq); 9085 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9086 unsigned long now = jiffies; 9087 unsigned long load; 9088 9089 if (cfs_rq->last_h_load_update == now) 9090 return; 9091 9092 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9093 for_each_sched_entity(se) { 9094 cfs_rq = cfs_rq_of(se); 9095 WRITE_ONCE(cfs_rq->h_load_next, se); 9096 if (cfs_rq->last_h_load_update == now) 9097 break; 9098 } 9099 9100 if (!se) { 9101 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9102 cfs_rq->last_h_load_update = now; 9103 } 9104 9105 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9106 load = cfs_rq->h_load; 9107 load = div64_ul(load * se->avg.load_avg, 9108 cfs_rq_load_avg(cfs_rq) + 1); 9109 cfs_rq = group_cfs_rq(se); 9110 cfs_rq->h_load = load; 9111 cfs_rq->last_h_load_update = now; 9112 } 9113 } 9114 9115 static unsigned long task_h_load(struct task_struct *p) 9116 { 9117 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9118 9119 update_cfs_rq_h_load(cfs_rq); 9120 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9121 cfs_rq_load_avg(cfs_rq) + 1); 9122 } 9123 #else 9124 static bool __update_blocked_fair(struct rq *rq, bool *done) 9125 { 9126 struct cfs_rq *cfs_rq = &rq->cfs; 9127 bool decayed; 9128 9129 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9130 if (cfs_rq_has_blocked(cfs_rq)) 9131 *done = false; 9132 9133 return decayed; 9134 } 9135 9136 static unsigned long task_h_load(struct task_struct *p) 9137 { 9138 return p->se.avg.load_avg; 9139 } 9140 #endif 9141 9142 static void update_blocked_averages(int cpu) 9143 { 9144 bool decayed = false, done = true; 9145 struct rq *rq = cpu_rq(cpu); 9146 struct rq_flags rf; 9147 9148 rq_lock_irqsave(rq, &rf); 9149 update_blocked_load_tick(rq); 9150 update_rq_clock(rq); 9151 9152 decayed |= __update_blocked_others(rq, &done); 9153 decayed |= __update_blocked_fair(rq, &done); 9154 9155 update_blocked_load_status(rq, !done); 9156 if (decayed) 9157 cpufreq_update_util(rq, 0); 9158 rq_unlock_irqrestore(rq, &rf); 9159 } 9160 9161 /********** Helpers for find_busiest_group ************************/ 9162 9163 /* 9164 * sg_lb_stats - stats of a sched_group required for load_balancing 9165 */ 9166 struct sg_lb_stats { 9167 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9168 unsigned long group_load; /* Total load over the CPUs of the group */ 9169 unsigned long group_capacity; 9170 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9171 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9172 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9173 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9174 unsigned int idle_cpus; 9175 unsigned int group_weight; 9176 enum group_type group_type; 9177 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9178 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9179 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9180 #ifdef CONFIG_NUMA_BALANCING 9181 unsigned int nr_numa_running; 9182 unsigned int nr_preferred_running; 9183 #endif 9184 }; 9185 9186 /* 9187 * sd_lb_stats - Structure to store the statistics of a sched_domain 9188 * during load balancing. 9189 */ 9190 struct sd_lb_stats { 9191 struct sched_group *busiest; /* Busiest group in this sd */ 9192 struct sched_group *local; /* Local group in this sd */ 9193 unsigned long total_load; /* Total load of all groups in sd */ 9194 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9195 unsigned long avg_load; /* Average load across all groups in sd */ 9196 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9197 9198 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9199 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9200 }; 9201 9202 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9203 { 9204 /* 9205 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9206 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9207 * We must however set busiest_stat::group_type and 9208 * busiest_stat::idle_cpus to the worst busiest group because 9209 * update_sd_pick_busiest() reads these before assignment. 9210 */ 9211 *sds = (struct sd_lb_stats){ 9212 .busiest = NULL, 9213 .local = NULL, 9214 .total_load = 0UL, 9215 .total_capacity = 0UL, 9216 .busiest_stat = { 9217 .idle_cpus = UINT_MAX, 9218 .group_type = group_has_spare, 9219 }, 9220 }; 9221 } 9222 9223 static unsigned long scale_rt_capacity(int cpu) 9224 { 9225 struct rq *rq = cpu_rq(cpu); 9226 unsigned long max = arch_scale_cpu_capacity(cpu); 9227 unsigned long used, free; 9228 unsigned long irq; 9229 9230 irq = cpu_util_irq(rq); 9231 9232 if (unlikely(irq >= max)) 9233 return 1; 9234 9235 /* 9236 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9237 * (running and not running) with weights 0 and 1024 respectively. 9238 * avg_thermal.load_avg tracks thermal pressure and the weighted 9239 * average uses the actual delta max capacity(load). 9240 */ 9241 used = READ_ONCE(rq->avg_rt.util_avg); 9242 used += READ_ONCE(rq->avg_dl.util_avg); 9243 used += thermal_load_avg(rq); 9244 9245 if (unlikely(used >= max)) 9246 return 1; 9247 9248 free = max - used; 9249 9250 return scale_irq_capacity(free, irq, max); 9251 } 9252 9253 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9254 { 9255 unsigned long capacity = scale_rt_capacity(cpu); 9256 struct sched_group *sdg = sd->groups; 9257 9258 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9259 9260 if (!capacity) 9261 capacity = 1; 9262 9263 cpu_rq(cpu)->cpu_capacity = capacity; 9264 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9265 9266 sdg->sgc->capacity = capacity; 9267 sdg->sgc->min_capacity = capacity; 9268 sdg->sgc->max_capacity = capacity; 9269 } 9270 9271 void update_group_capacity(struct sched_domain *sd, int cpu) 9272 { 9273 struct sched_domain *child = sd->child; 9274 struct sched_group *group, *sdg = sd->groups; 9275 unsigned long capacity, min_capacity, max_capacity; 9276 unsigned long interval; 9277 9278 interval = msecs_to_jiffies(sd->balance_interval); 9279 interval = clamp(interval, 1UL, max_load_balance_interval); 9280 sdg->sgc->next_update = jiffies + interval; 9281 9282 if (!child) { 9283 update_cpu_capacity(sd, cpu); 9284 return; 9285 } 9286 9287 capacity = 0; 9288 min_capacity = ULONG_MAX; 9289 max_capacity = 0; 9290 9291 if (child->flags & SD_OVERLAP) { 9292 /* 9293 * SD_OVERLAP domains cannot assume that child groups 9294 * span the current group. 9295 */ 9296 9297 for_each_cpu(cpu, sched_group_span(sdg)) { 9298 unsigned long cpu_cap = capacity_of(cpu); 9299 9300 capacity += cpu_cap; 9301 min_capacity = min(cpu_cap, min_capacity); 9302 max_capacity = max(cpu_cap, max_capacity); 9303 } 9304 } else { 9305 /* 9306 * !SD_OVERLAP domains can assume that child groups 9307 * span the current group. 9308 */ 9309 9310 group = child->groups; 9311 do { 9312 struct sched_group_capacity *sgc = group->sgc; 9313 9314 capacity += sgc->capacity; 9315 min_capacity = min(sgc->min_capacity, min_capacity); 9316 max_capacity = max(sgc->max_capacity, max_capacity); 9317 group = group->next; 9318 } while (group != child->groups); 9319 } 9320 9321 sdg->sgc->capacity = capacity; 9322 sdg->sgc->min_capacity = min_capacity; 9323 sdg->sgc->max_capacity = max_capacity; 9324 } 9325 9326 /* 9327 * Check whether the capacity of the rq has been noticeably reduced by side 9328 * activity. The imbalance_pct is used for the threshold. 9329 * Return true is the capacity is reduced 9330 */ 9331 static inline int 9332 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9333 { 9334 return ((rq->cpu_capacity * sd->imbalance_pct) < 9335 (rq->cpu_capacity_orig * 100)); 9336 } 9337 9338 /* 9339 * Check whether a rq has a misfit task and if it looks like we can actually 9340 * help that task: we can migrate the task to a CPU of higher capacity, or 9341 * the task's current CPU is heavily pressured. 9342 */ 9343 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9344 { 9345 return rq->misfit_task_load && 9346 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9347 check_cpu_capacity(rq, sd)); 9348 } 9349 9350 /* 9351 * Group imbalance indicates (and tries to solve) the problem where balancing 9352 * groups is inadequate due to ->cpus_ptr constraints. 9353 * 9354 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9355 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9356 * Something like: 9357 * 9358 * { 0 1 2 3 } { 4 5 6 7 } 9359 * * * * * 9360 * 9361 * If we were to balance group-wise we'd place two tasks in the first group and 9362 * two tasks in the second group. Clearly this is undesired as it will overload 9363 * cpu 3 and leave one of the CPUs in the second group unused. 9364 * 9365 * The current solution to this issue is detecting the skew in the first group 9366 * by noticing the lower domain failed to reach balance and had difficulty 9367 * moving tasks due to affinity constraints. 9368 * 9369 * When this is so detected; this group becomes a candidate for busiest; see 9370 * update_sd_pick_busiest(). And calculate_imbalance() and 9371 * find_busiest_group() avoid some of the usual balance conditions to allow it 9372 * to create an effective group imbalance. 9373 * 9374 * This is a somewhat tricky proposition since the next run might not find the 9375 * group imbalance and decide the groups need to be balanced again. A most 9376 * subtle and fragile situation. 9377 */ 9378 9379 static inline int sg_imbalanced(struct sched_group *group) 9380 { 9381 return group->sgc->imbalance; 9382 } 9383 9384 /* 9385 * group_has_capacity returns true if the group has spare capacity that could 9386 * be used by some tasks. 9387 * We consider that a group has spare capacity if the number of task is 9388 * smaller than the number of CPUs or if the utilization is lower than the 9389 * available capacity for CFS tasks. 9390 * For the latter, we use a threshold to stabilize the state, to take into 9391 * account the variance of the tasks' load and to return true if the available 9392 * capacity in meaningful for the load balancer. 9393 * As an example, an available capacity of 1% can appear but it doesn't make 9394 * any benefit for the load balance. 9395 */ 9396 static inline bool 9397 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9398 { 9399 if (sgs->sum_nr_running < sgs->group_weight) 9400 return true; 9401 9402 if ((sgs->group_capacity * imbalance_pct) < 9403 (sgs->group_runnable * 100)) 9404 return false; 9405 9406 if ((sgs->group_capacity * 100) > 9407 (sgs->group_util * imbalance_pct)) 9408 return true; 9409 9410 return false; 9411 } 9412 9413 /* 9414 * group_is_overloaded returns true if the group has more tasks than it can 9415 * handle. 9416 * group_is_overloaded is not equals to !group_has_capacity because a group 9417 * with the exact right number of tasks, has no more spare capacity but is not 9418 * overloaded so both group_has_capacity and group_is_overloaded return 9419 * false. 9420 */ 9421 static inline bool 9422 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9423 { 9424 if (sgs->sum_nr_running <= sgs->group_weight) 9425 return false; 9426 9427 if ((sgs->group_capacity * 100) < 9428 (sgs->group_util * imbalance_pct)) 9429 return true; 9430 9431 if ((sgs->group_capacity * imbalance_pct) < 9432 (sgs->group_runnable * 100)) 9433 return true; 9434 9435 return false; 9436 } 9437 9438 static inline enum 9439 group_type group_classify(unsigned int imbalance_pct, 9440 struct sched_group *group, 9441 struct sg_lb_stats *sgs) 9442 { 9443 if (group_is_overloaded(imbalance_pct, sgs)) 9444 return group_overloaded; 9445 9446 if (sg_imbalanced(group)) 9447 return group_imbalanced; 9448 9449 if (sgs->group_asym_packing) 9450 return group_asym_packing; 9451 9452 if (sgs->group_smt_balance) 9453 return group_smt_balance; 9454 9455 if (sgs->group_misfit_task_load) 9456 return group_misfit_task; 9457 9458 if (!group_has_capacity(imbalance_pct, sgs)) 9459 return group_fully_busy; 9460 9461 return group_has_spare; 9462 } 9463 9464 /** 9465 * sched_use_asym_prio - Check whether asym_packing priority must be used 9466 * @sd: The scheduling domain of the load balancing 9467 * @cpu: A CPU 9468 * 9469 * Always use CPU priority when balancing load between SMT siblings. When 9470 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9471 * use CPU priority if the whole core is idle. 9472 * 9473 * Returns: True if the priority of @cpu must be followed. False otherwise. 9474 */ 9475 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9476 { 9477 if (!sched_smt_active()) 9478 return true; 9479 9480 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9481 } 9482 9483 /** 9484 * sched_asym - Check if the destination CPU can do asym_packing load balance 9485 * @env: The load balancing environment 9486 * @sds: Load-balancing data with statistics of the local group 9487 * @sgs: Load-balancing statistics of the candidate busiest group 9488 * @group: The candidate busiest group 9489 * 9490 * @env::dst_cpu can do asym_packing if it has higher priority than the 9491 * preferred CPU of @group. 9492 * 9493 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9494 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9495 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9496 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9497 * 9498 * If we are balancing load within an SMT core, or at DIE domain level, always 9499 * proceed. 9500 * 9501 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9502 * otherwise. 9503 */ 9504 static inline bool 9505 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9506 struct sched_group *group) 9507 { 9508 /* Ensure that the whole local core is idle, if applicable. */ 9509 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9510 return false; 9511 9512 /* 9513 * CPU priorities does not make sense for SMT cores with more than one 9514 * busy sibling. 9515 */ 9516 if (group->flags & SD_SHARE_CPUCAPACITY) { 9517 if (sgs->group_weight - sgs->idle_cpus != 1) 9518 return false; 9519 } 9520 9521 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9522 } 9523 9524 /* One group has more than one SMT CPU while the other group does not */ 9525 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9526 struct sched_group *sg2) 9527 { 9528 if (!sg1 || !sg2) 9529 return false; 9530 9531 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9532 (sg2->flags & SD_SHARE_CPUCAPACITY); 9533 } 9534 9535 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9536 struct sched_group *group) 9537 { 9538 if (env->idle == CPU_NOT_IDLE) 9539 return false; 9540 9541 /* 9542 * For SMT source group, it is better to move a task 9543 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9544 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9545 * will not be on. 9546 */ 9547 if (group->flags & SD_SHARE_CPUCAPACITY && 9548 sgs->sum_h_nr_running > 1) 9549 return true; 9550 9551 return false; 9552 } 9553 9554 static inline long sibling_imbalance(struct lb_env *env, 9555 struct sd_lb_stats *sds, 9556 struct sg_lb_stats *busiest, 9557 struct sg_lb_stats *local) 9558 { 9559 int ncores_busiest, ncores_local; 9560 long imbalance; 9561 9562 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9563 return 0; 9564 9565 ncores_busiest = sds->busiest->cores; 9566 ncores_local = sds->local->cores; 9567 9568 if (ncores_busiest == ncores_local) { 9569 imbalance = busiest->sum_nr_running; 9570 lsub_positive(&imbalance, local->sum_nr_running); 9571 return imbalance; 9572 } 9573 9574 /* Balance such that nr_running/ncores ratio are same on both groups */ 9575 imbalance = ncores_local * busiest->sum_nr_running; 9576 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9577 /* Normalize imbalance and do rounding on normalization */ 9578 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9579 imbalance /= ncores_local + ncores_busiest; 9580 9581 /* Take advantage of resource in an empty sched group */ 9582 if (imbalance == 0 && local->sum_nr_running == 0 && 9583 busiest->sum_nr_running > 1) 9584 imbalance = 2; 9585 9586 return imbalance; 9587 } 9588 9589 static inline bool 9590 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9591 { 9592 /* 9593 * When there is more than 1 task, the group_overloaded case already 9594 * takes care of cpu with reduced capacity 9595 */ 9596 if (rq->cfs.h_nr_running != 1) 9597 return false; 9598 9599 return check_cpu_capacity(rq, sd); 9600 } 9601 9602 /** 9603 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9604 * @env: The load balancing environment. 9605 * @sds: Load-balancing data with statistics of the local group. 9606 * @group: sched_group whose statistics are to be updated. 9607 * @sgs: variable to hold the statistics for this group. 9608 * @sg_status: Holds flag indicating the status of the sched_group 9609 */ 9610 static inline void update_sg_lb_stats(struct lb_env *env, 9611 struct sd_lb_stats *sds, 9612 struct sched_group *group, 9613 struct sg_lb_stats *sgs, 9614 int *sg_status) 9615 { 9616 int i, nr_running, local_group; 9617 9618 memset(sgs, 0, sizeof(*sgs)); 9619 9620 local_group = group == sds->local; 9621 9622 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9623 struct rq *rq = cpu_rq(i); 9624 unsigned long load = cpu_load(rq); 9625 9626 sgs->group_load += load; 9627 sgs->group_util += cpu_util_cfs(i); 9628 sgs->group_runnable += cpu_runnable(rq); 9629 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9630 9631 nr_running = rq->nr_running; 9632 sgs->sum_nr_running += nr_running; 9633 9634 if (nr_running > 1) 9635 *sg_status |= SG_OVERLOAD; 9636 9637 if (cpu_overutilized(i)) 9638 *sg_status |= SG_OVERUTILIZED; 9639 9640 #ifdef CONFIG_NUMA_BALANCING 9641 sgs->nr_numa_running += rq->nr_numa_running; 9642 sgs->nr_preferred_running += rq->nr_preferred_running; 9643 #endif 9644 /* 9645 * No need to call idle_cpu() if nr_running is not 0 9646 */ 9647 if (!nr_running && idle_cpu(i)) { 9648 sgs->idle_cpus++; 9649 /* Idle cpu can't have misfit task */ 9650 continue; 9651 } 9652 9653 if (local_group) 9654 continue; 9655 9656 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9657 /* Check for a misfit task on the cpu */ 9658 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9659 sgs->group_misfit_task_load = rq->misfit_task_load; 9660 *sg_status |= SG_OVERLOAD; 9661 } 9662 } else if ((env->idle != CPU_NOT_IDLE) && 9663 sched_reduced_capacity(rq, env->sd)) { 9664 /* Check for a task running on a CPU with reduced capacity */ 9665 if (sgs->group_misfit_task_load < load) 9666 sgs->group_misfit_task_load = load; 9667 } 9668 } 9669 9670 sgs->group_capacity = group->sgc->capacity; 9671 9672 sgs->group_weight = group->group_weight; 9673 9674 /* Check if dst CPU is idle and preferred to this group */ 9675 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9676 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9677 sched_asym(env, sds, sgs, group)) { 9678 sgs->group_asym_packing = 1; 9679 } 9680 9681 /* Check for loaded SMT group to be balanced to dst CPU */ 9682 if (!local_group && smt_balance(env, sgs, group)) 9683 sgs->group_smt_balance = 1; 9684 9685 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9686 9687 /* Computing avg_load makes sense only when group is overloaded */ 9688 if (sgs->group_type == group_overloaded) 9689 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9690 sgs->group_capacity; 9691 } 9692 9693 /** 9694 * update_sd_pick_busiest - return 1 on busiest group 9695 * @env: The load balancing environment. 9696 * @sds: sched_domain statistics 9697 * @sg: sched_group candidate to be checked for being the busiest 9698 * @sgs: sched_group statistics 9699 * 9700 * Determine if @sg is a busier group than the previously selected 9701 * busiest group. 9702 * 9703 * Return: %true if @sg is a busier group than the previously selected 9704 * busiest group. %false otherwise. 9705 */ 9706 static bool update_sd_pick_busiest(struct lb_env *env, 9707 struct sd_lb_stats *sds, 9708 struct sched_group *sg, 9709 struct sg_lb_stats *sgs) 9710 { 9711 struct sg_lb_stats *busiest = &sds->busiest_stat; 9712 9713 /* Make sure that there is at least one task to pull */ 9714 if (!sgs->sum_h_nr_running) 9715 return false; 9716 9717 /* 9718 * Don't try to pull misfit tasks we can't help. 9719 * We can use max_capacity here as reduction in capacity on some 9720 * CPUs in the group should either be possible to resolve 9721 * internally or be covered by avg_load imbalance (eventually). 9722 */ 9723 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9724 (sgs->group_type == group_misfit_task) && 9725 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9726 sds->local_stat.group_type != group_has_spare)) 9727 return false; 9728 9729 if (sgs->group_type > busiest->group_type) 9730 return true; 9731 9732 if (sgs->group_type < busiest->group_type) 9733 return false; 9734 9735 /* 9736 * The candidate and the current busiest group are the same type of 9737 * group. Let check which one is the busiest according to the type. 9738 */ 9739 9740 switch (sgs->group_type) { 9741 case group_overloaded: 9742 /* Select the overloaded group with highest avg_load. */ 9743 if (sgs->avg_load <= busiest->avg_load) 9744 return false; 9745 break; 9746 9747 case group_imbalanced: 9748 /* 9749 * Select the 1st imbalanced group as we don't have any way to 9750 * choose one more than another. 9751 */ 9752 return false; 9753 9754 case group_asym_packing: 9755 /* Prefer to move from lowest priority CPU's work */ 9756 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9757 return false; 9758 break; 9759 9760 case group_misfit_task: 9761 /* 9762 * If we have more than one misfit sg go with the biggest 9763 * misfit. 9764 */ 9765 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9766 return false; 9767 break; 9768 9769 case group_smt_balance: 9770 case group_fully_busy: 9771 /* 9772 * Select the fully busy group with highest avg_load. In 9773 * theory, there is no need to pull task from such kind of 9774 * group because tasks have all compute capacity that they need 9775 * but we can still improve the overall throughput by reducing 9776 * contention when accessing shared HW resources. 9777 * 9778 * XXX for now avg_load is not computed and always 0 so we 9779 * select the 1st one, except if @sg is composed of SMT 9780 * siblings. 9781 */ 9782 9783 if (sgs->avg_load < busiest->avg_load) 9784 return false; 9785 9786 if (sgs->avg_load == busiest->avg_load) { 9787 /* 9788 * SMT sched groups need more help than non-SMT groups. 9789 * If @sg happens to also be SMT, either choice is good. 9790 */ 9791 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 9792 return false; 9793 } 9794 9795 break; 9796 9797 case group_has_spare: 9798 /* 9799 * Do not pick sg with SMT CPUs over sg with pure CPUs, 9800 * as we do not want to pull task off SMT core with one task 9801 * and make the core idle. 9802 */ 9803 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 9804 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 9805 return false; 9806 else 9807 return true; 9808 } 9809 9810 /* 9811 * Select not overloaded group with lowest number of idle cpus 9812 * and highest number of running tasks. We could also compare 9813 * the spare capacity which is more stable but it can end up 9814 * that the group has less spare capacity but finally more idle 9815 * CPUs which means less opportunity to pull tasks. 9816 */ 9817 if (sgs->idle_cpus > busiest->idle_cpus) 9818 return false; 9819 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9820 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9821 return false; 9822 9823 break; 9824 } 9825 9826 /* 9827 * Candidate sg has no more than one task per CPU and has higher 9828 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9829 * throughput. Maximize throughput, power/energy consequences are not 9830 * considered. 9831 */ 9832 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9833 (sgs->group_type <= group_fully_busy) && 9834 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9835 return false; 9836 9837 return true; 9838 } 9839 9840 #ifdef CONFIG_NUMA_BALANCING 9841 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9842 { 9843 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9844 return regular; 9845 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9846 return remote; 9847 return all; 9848 } 9849 9850 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9851 { 9852 if (rq->nr_running > rq->nr_numa_running) 9853 return regular; 9854 if (rq->nr_running > rq->nr_preferred_running) 9855 return remote; 9856 return all; 9857 } 9858 #else 9859 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9860 { 9861 return all; 9862 } 9863 9864 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9865 { 9866 return regular; 9867 } 9868 #endif /* CONFIG_NUMA_BALANCING */ 9869 9870 9871 struct sg_lb_stats; 9872 9873 /* 9874 * task_running_on_cpu - return 1 if @p is running on @cpu. 9875 */ 9876 9877 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9878 { 9879 /* Task has no contribution or is new */ 9880 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9881 return 0; 9882 9883 if (task_on_rq_queued(p)) 9884 return 1; 9885 9886 return 0; 9887 } 9888 9889 /** 9890 * idle_cpu_without - would a given CPU be idle without p ? 9891 * @cpu: the processor on which idleness is tested. 9892 * @p: task which should be ignored. 9893 * 9894 * Return: 1 if the CPU would be idle. 0 otherwise. 9895 */ 9896 static int idle_cpu_without(int cpu, struct task_struct *p) 9897 { 9898 struct rq *rq = cpu_rq(cpu); 9899 9900 if (rq->curr != rq->idle && rq->curr != p) 9901 return 0; 9902 9903 /* 9904 * rq->nr_running can't be used but an updated version without the 9905 * impact of p on cpu must be used instead. The updated nr_running 9906 * be computed and tested before calling idle_cpu_without(). 9907 */ 9908 9909 #ifdef CONFIG_SMP 9910 if (rq->ttwu_pending) 9911 return 0; 9912 #endif 9913 9914 return 1; 9915 } 9916 9917 /* 9918 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9919 * @sd: The sched_domain level to look for idlest group. 9920 * @group: sched_group whose statistics are to be updated. 9921 * @sgs: variable to hold the statistics for this group. 9922 * @p: The task for which we look for the idlest group/CPU. 9923 */ 9924 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9925 struct sched_group *group, 9926 struct sg_lb_stats *sgs, 9927 struct task_struct *p) 9928 { 9929 int i, nr_running; 9930 9931 memset(sgs, 0, sizeof(*sgs)); 9932 9933 /* Assume that task can't fit any CPU of the group */ 9934 if (sd->flags & SD_ASYM_CPUCAPACITY) 9935 sgs->group_misfit_task_load = 1; 9936 9937 for_each_cpu(i, sched_group_span(group)) { 9938 struct rq *rq = cpu_rq(i); 9939 unsigned int local; 9940 9941 sgs->group_load += cpu_load_without(rq, p); 9942 sgs->group_util += cpu_util_without(i, p); 9943 sgs->group_runnable += cpu_runnable_without(rq, p); 9944 local = task_running_on_cpu(i, p); 9945 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9946 9947 nr_running = rq->nr_running - local; 9948 sgs->sum_nr_running += nr_running; 9949 9950 /* 9951 * No need to call idle_cpu_without() if nr_running is not 0 9952 */ 9953 if (!nr_running && idle_cpu_without(i, p)) 9954 sgs->idle_cpus++; 9955 9956 /* Check if task fits in the CPU */ 9957 if (sd->flags & SD_ASYM_CPUCAPACITY && 9958 sgs->group_misfit_task_load && 9959 task_fits_cpu(p, i)) 9960 sgs->group_misfit_task_load = 0; 9961 9962 } 9963 9964 sgs->group_capacity = group->sgc->capacity; 9965 9966 sgs->group_weight = group->group_weight; 9967 9968 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9969 9970 /* 9971 * Computing avg_load makes sense only when group is fully busy or 9972 * overloaded 9973 */ 9974 if (sgs->group_type == group_fully_busy || 9975 sgs->group_type == group_overloaded) 9976 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9977 sgs->group_capacity; 9978 } 9979 9980 static bool update_pick_idlest(struct sched_group *idlest, 9981 struct sg_lb_stats *idlest_sgs, 9982 struct sched_group *group, 9983 struct sg_lb_stats *sgs) 9984 { 9985 if (sgs->group_type < idlest_sgs->group_type) 9986 return true; 9987 9988 if (sgs->group_type > idlest_sgs->group_type) 9989 return false; 9990 9991 /* 9992 * The candidate and the current idlest group are the same type of 9993 * group. Let check which one is the idlest according to the type. 9994 */ 9995 9996 switch (sgs->group_type) { 9997 case group_overloaded: 9998 case group_fully_busy: 9999 /* Select the group with lowest avg_load. */ 10000 if (idlest_sgs->avg_load <= sgs->avg_load) 10001 return false; 10002 break; 10003 10004 case group_imbalanced: 10005 case group_asym_packing: 10006 case group_smt_balance: 10007 /* Those types are not used in the slow wakeup path */ 10008 return false; 10009 10010 case group_misfit_task: 10011 /* Select group with the highest max capacity */ 10012 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10013 return false; 10014 break; 10015 10016 case group_has_spare: 10017 /* Select group with most idle CPUs */ 10018 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10019 return false; 10020 10021 /* Select group with lowest group_util */ 10022 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10023 idlest_sgs->group_util <= sgs->group_util) 10024 return false; 10025 10026 break; 10027 } 10028 10029 return true; 10030 } 10031 10032 /* 10033 * find_idlest_group() finds and returns the least busy CPU group within the 10034 * domain. 10035 * 10036 * Assumes p is allowed on at least one CPU in sd. 10037 */ 10038 static struct sched_group * 10039 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10040 { 10041 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10042 struct sg_lb_stats local_sgs, tmp_sgs; 10043 struct sg_lb_stats *sgs; 10044 unsigned long imbalance; 10045 struct sg_lb_stats idlest_sgs = { 10046 .avg_load = UINT_MAX, 10047 .group_type = group_overloaded, 10048 }; 10049 10050 do { 10051 int local_group; 10052 10053 /* Skip over this group if it has no CPUs allowed */ 10054 if (!cpumask_intersects(sched_group_span(group), 10055 p->cpus_ptr)) 10056 continue; 10057 10058 /* Skip over this group if no cookie matched */ 10059 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10060 continue; 10061 10062 local_group = cpumask_test_cpu(this_cpu, 10063 sched_group_span(group)); 10064 10065 if (local_group) { 10066 sgs = &local_sgs; 10067 local = group; 10068 } else { 10069 sgs = &tmp_sgs; 10070 } 10071 10072 update_sg_wakeup_stats(sd, group, sgs, p); 10073 10074 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10075 idlest = group; 10076 idlest_sgs = *sgs; 10077 } 10078 10079 } while (group = group->next, group != sd->groups); 10080 10081 10082 /* There is no idlest group to push tasks to */ 10083 if (!idlest) 10084 return NULL; 10085 10086 /* The local group has been skipped because of CPU affinity */ 10087 if (!local) 10088 return idlest; 10089 10090 /* 10091 * If the local group is idler than the selected idlest group 10092 * don't try and push the task. 10093 */ 10094 if (local_sgs.group_type < idlest_sgs.group_type) 10095 return NULL; 10096 10097 /* 10098 * If the local group is busier than the selected idlest group 10099 * try and push the task. 10100 */ 10101 if (local_sgs.group_type > idlest_sgs.group_type) 10102 return idlest; 10103 10104 switch (local_sgs.group_type) { 10105 case group_overloaded: 10106 case group_fully_busy: 10107 10108 /* Calculate allowed imbalance based on load */ 10109 imbalance = scale_load_down(NICE_0_LOAD) * 10110 (sd->imbalance_pct-100) / 100; 10111 10112 /* 10113 * When comparing groups across NUMA domains, it's possible for 10114 * the local domain to be very lightly loaded relative to the 10115 * remote domains but "imbalance" skews the comparison making 10116 * remote CPUs look much more favourable. When considering 10117 * cross-domain, add imbalance to the load on the remote node 10118 * and consider staying local. 10119 */ 10120 10121 if ((sd->flags & SD_NUMA) && 10122 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10123 return NULL; 10124 10125 /* 10126 * If the local group is less loaded than the selected 10127 * idlest group don't try and push any tasks. 10128 */ 10129 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10130 return NULL; 10131 10132 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10133 return NULL; 10134 break; 10135 10136 case group_imbalanced: 10137 case group_asym_packing: 10138 case group_smt_balance: 10139 /* Those type are not used in the slow wakeup path */ 10140 return NULL; 10141 10142 case group_misfit_task: 10143 /* Select group with the highest max capacity */ 10144 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10145 return NULL; 10146 break; 10147 10148 case group_has_spare: 10149 #ifdef CONFIG_NUMA 10150 if (sd->flags & SD_NUMA) { 10151 int imb_numa_nr = sd->imb_numa_nr; 10152 #ifdef CONFIG_NUMA_BALANCING 10153 int idlest_cpu; 10154 /* 10155 * If there is spare capacity at NUMA, try to select 10156 * the preferred node 10157 */ 10158 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10159 return NULL; 10160 10161 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10162 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10163 return idlest; 10164 #endif /* CONFIG_NUMA_BALANCING */ 10165 /* 10166 * Otherwise, keep the task close to the wakeup source 10167 * and improve locality if the number of running tasks 10168 * would remain below threshold where an imbalance is 10169 * allowed while accounting for the possibility the 10170 * task is pinned to a subset of CPUs. If there is a 10171 * real need of migration, periodic load balance will 10172 * take care of it. 10173 */ 10174 if (p->nr_cpus_allowed != NR_CPUS) { 10175 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10176 10177 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10178 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10179 } 10180 10181 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10182 if (!adjust_numa_imbalance(imbalance, 10183 local_sgs.sum_nr_running + 1, 10184 imb_numa_nr)) { 10185 return NULL; 10186 } 10187 } 10188 #endif /* CONFIG_NUMA */ 10189 10190 /* 10191 * Select group with highest number of idle CPUs. We could also 10192 * compare the utilization which is more stable but it can end 10193 * up that the group has less spare capacity but finally more 10194 * idle CPUs which means more opportunity to run task. 10195 */ 10196 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10197 return NULL; 10198 break; 10199 } 10200 10201 return idlest; 10202 } 10203 10204 static void update_idle_cpu_scan(struct lb_env *env, 10205 unsigned long sum_util) 10206 { 10207 struct sched_domain_shared *sd_share; 10208 int llc_weight, pct; 10209 u64 x, y, tmp; 10210 /* 10211 * Update the number of CPUs to scan in LLC domain, which could 10212 * be used as a hint in select_idle_cpu(). The update of sd_share 10213 * could be expensive because it is within a shared cache line. 10214 * So the write of this hint only occurs during periodic load 10215 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10216 * can fire way more frequently than the former. 10217 */ 10218 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10219 return; 10220 10221 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10222 if (env->sd->span_weight != llc_weight) 10223 return; 10224 10225 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10226 if (!sd_share) 10227 return; 10228 10229 /* 10230 * The number of CPUs to search drops as sum_util increases, when 10231 * sum_util hits 85% or above, the scan stops. 10232 * The reason to choose 85% as the threshold is because this is the 10233 * imbalance_pct(117) when a LLC sched group is overloaded. 10234 * 10235 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10236 * and y'= y / SCHED_CAPACITY_SCALE 10237 * 10238 * x is the ratio of sum_util compared to the CPU capacity: 10239 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10240 * y' is the ratio of CPUs to be scanned in the LLC domain, 10241 * and the number of CPUs to scan is calculated by: 10242 * 10243 * nr_scan = llc_weight * y' [2] 10244 * 10245 * When x hits the threshold of overloaded, AKA, when 10246 * x = 100 / pct, y drops to 0. According to [1], 10247 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10248 * 10249 * Scale x by SCHED_CAPACITY_SCALE: 10250 * x' = sum_util / llc_weight; [3] 10251 * 10252 * and finally [1] becomes: 10253 * y = SCHED_CAPACITY_SCALE - 10254 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10255 * 10256 */ 10257 /* equation [3] */ 10258 x = sum_util; 10259 do_div(x, llc_weight); 10260 10261 /* equation [4] */ 10262 pct = env->sd->imbalance_pct; 10263 tmp = x * x * pct * pct; 10264 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10265 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10266 y = SCHED_CAPACITY_SCALE - tmp; 10267 10268 /* equation [2] */ 10269 y *= llc_weight; 10270 do_div(y, SCHED_CAPACITY_SCALE); 10271 if ((int)y != sd_share->nr_idle_scan) 10272 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10273 } 10274 10275 /** 10276 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10277 * @env: The load balancing environment. 10278 * @sds: variable to hold the statistics for this sched_domain. 10279 */ 10280 10281 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10282 { 10283 struct sched_group *sg = env->sd->groups; 10284 struct sg_lb_stats *local = &sds->local_stat; 10285 struct sg_lb_stats tmp_sgs; 10286 unsigned long sum_util = 0; 10287 int sg_status = 0; 10288 10289 do { 10290 struct sg_lb_stats *sgs = &tmp_sgs; 10291 int local_group; 10292 10293 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10294 if (local_group) { 10295 sds->local = sg; 10296 sgs = local; 10297 10298 if (env->idle != CPU_NEWLY_IDLE || 10299 time_after_eq(jiffies, sg->sgc->next_update)) 10300 update_group_capacity(env->sd, env->dst_cpu); 10301 } 10302 10303 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10304 10305 if (local_group) 10306 goto next_group; 10307 10308 10309 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10310 sds->busiest = sg; 10311 sds->busiest_stat = *sgs; 10312 } 10313 10314 next_group: 10315 /* Now, start updating sd_lb_stats */ 10316 sds->total_load += sgs->group_load; 10317 sds->total_capacity += sgs->group_capacity; 10318 10319 sum_util += sgs->group_util; 10320 sg = sg->next; 10321 } while (sg != env->sd->groups); 10322 10323 /* 10324 * Indicate that the child domain of the busiest group prefers tasks 10325 * go to a child's sibling domains first. NB the flags of a sched group 10326 * are those of the child domain. 10327 */ 10328 if (sds->busiest) 10329 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10330 10331 10332 if (env->sd->flags & SD_NUMA) 10333 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10334 10335 if (!env->sd->parent) { 10336 struct root_domain *rd = env->dst_rq->rd; 10337 10338 /* update overload indicator if we are at root domain */ 10339 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10340 10341 /* Update over-utilization (tipping point, U >= 0) indicator */ 10342 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10343 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10344 } else if (sg_status & SG_OVERUTILIZED) { 10345 struct root_domain *rd = env->dst_rq->rd; 10346 10347 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10348 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10349 } 10350 10351 update_idle_cpu_scan(env, sum_util); 10352 } 10353 10354 /** 10355 * calculate_imbalance - Calculate the amount of imbalance present within the 10356 * groups of a given sched_domain during load balance. 10357 * @env: load balance environment 10358 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10359 */ 10360 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10361 { 10362 struct sg_lb_stats *local, *busiest; 10363 10364 local = &sds->local_stat; 10365 busiest = &sds->busiest_stat; 10366 10367 if (busiest->group_type == group_misfit_task) { 10368 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10369 /* Set imbalance to allow misfit tasks to be balanced. */ 10370 env->migration_type = migrate_misfit; 10371 env->imbalance = 1; 10372 } else { 10373 /* 10374 * Set load imbalance to allow moving task from cpu 10375 * with reduced capacity. 10376 */ 10377 env->migration_type = migrate_load; 10378 env->imbalance = busiest->group_misfit_task_load; 10379 } 10380 return; 10381 } 10382 10383 if (busiest->group_type == group_asym_packing) { 10384 /* 10385 * In case of asym capacity, we will try to migrate all load to 10386 * the preferred CPU. 10387 */ 10388 env->migration_type = migrate_task; 10389 env->imbalance = busiest->sum_h_nr_running; 10390 return; 10391 } 10392 10393 if (busiest->group_type == group_smt_balance) { 10394 /* Reduce number of tasks sharing CPU capacity */ 10395 env->migration_type = migrate_task; 10396 env->imbalance = 1; 10397 return; 10398 } 10399 10400 if (busiest->group_type == group_imbalanced) { 10401 /* 10402 * In the group_imb case we cannot rely on group-wide averages 10403 * to ensure CPU-load equilibrium, try to move any task to fix 10404 * the imbalance. The next load balance will take care of 10405 * balancing back the system. 10406 */ 10407 env->migration_type = migrate_task; 10408 env->imbalance = 1; 10409 return; 10410 } 10411 10412 /* 10413 * Try to use spare capacity of local group without overloading it or 10414 * emptying busiest. 10415 */ 10416 if (local->group_type == group_has_spare) { 10417 if ((busiest->group_type > group_fully_busy) && 10418 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10419 /* 10420 * If busiest is overloaded, try to fill spare 10421 * capacity. This might end up creating spare capacity 10422 * in busiest or busiest still being overloaded but 10423 * there is no simple way to directly compute the 10424 * amount of load to migrate in order to balance the 10425 * system. 10426 */ 10427 env->migration_type = migrate_util; 10428 env->imbalance = max(local->group_capacity, local->group_util) - 10429 local->group_util; 10430 10431 /* 10432 * In some cases, the group's utilization is max or even 10433 * higher than capacity because of migrations but the 10434 * local CPU is (newly) idle. There is at least one 10435 * waiting task in this overloaded busiest group. Let's 10436 * try to pull it. 10437 */ 10438 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10439 env->migration_type = migrate_task; 10440 env->imbalance = 1; 10441 } 10442 10443 return; 10444 } 10445 10446 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10447 /* 10448 * When prefer sibling, evenly spread running tasks on 10449 * groups. 10450 */ 10451 env->migration_type = migrate_task; 10452 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10453 } else { 10454 10455 /* 10456 * If there is no overload, we just want to even the number of 10457 * idle cpus. 10458 */ 10459 env->migration_type = migrate_task; 10460 env->imbalance = max_t(long, 0, 10461 (local->idle_cpus - busiest->idle_cpus)); 10462 } 10463 10464 #ifdef CONFIG_NUMA 10465 /* Consider allowing a small imbalance between NUMA groups */ 10466 if (env->sd->flags & SD_NUMA) { 10467 env->imbalance = adjust_numa_imbalance(env->imbalance, 10468 local->sum_nr_running + 1, 10469 env->sd->imb_numa_nr); 10470 } 10471 #endif 10472 10473 /* Number of tasks to move to restore balance */ 10474 env->imbalance >>= 1; 10475 10476 return; 10477 } 10478 10479 /* 10480 * Local is fully busy but has to take more load to relieve the 10481 * busiest group 10482 */ 10483 if (local->group_type < group_overloaded) { 10484 /* 10485 * Local will become overloaded so the avg_load metrics are 10486 * finally needed. 10487 */ 10488 10489 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10490 local->group_capacity; 10491 10492 /* 10493 * If the local group is more loaded than the selected 10494 * busiest group don't try to pull any tasks. 10495 */ 10496 if (local->avg_load >= busiest->avg_load) { 10497 env->imbalance = 0; 10498 return; 10499 } 10500 10501 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10502 sds->total_capacity; 10503 10504 /* 10505 * If the local group is more loaded than the average system 10506 * load, don't try to pull any tasks. 10507 */ 10508 if (local->avg_load >= sds->avg_load) { 10509 env->imbalance = 0; 10510 return; 10511 } 10512 10513 } 10514 10515 /* 10516 * Both group are or will become overloaded and we're trying to get all 10517 * the CPUs to the average_load, so we don't want to push ourselves 10518 * above the average load, nor do we wish to reduce the max loaded CPU 10519 * below the average load. At the same time, we also don't want to 10520 * reduce the group load below the group capacity. Thus we look for 10521 * the minimum possible imbalance. 10522 */ 10523 env->migration_type = migrate_load; 10524 env->imbalance = min( 10525 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10526 (sds->avg_load - local->avg_load) * local->group_capacity 10527 ) / SCHED_CAPACITY_SCALE; 10528 } 10529 10530 /******* find_busiest_group() helpers end here *********************/ 10531 10532 /* 10533 * Decision matrix according to the local and busiest group type: 10534 * 10535 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10536 * has_spare nr_idle balanced N/A N/A balanced balanced 10537 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10538 * misfit_task force N/A N/A N/A N/A N/A 10539 * asym_packing force force N/A N/A force force 10540 * imbalanced force force N/A N/A force force 10541 * overloaded force force N/A N/A force avg_load 10542 * 10543 * N/A : Not Applicable because already filtered while updating 10544 * statistics. 10545 * balanced : The system is balanced for these 2 groups. 10546 * force : Calculate the imbalance as load migration is probably needed. 10547 * avg_load : Only if imbalance is significant enough. 10548 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10549 * different in groups. 10550 */ 10551 10552 /** 10553 * find_busiest_group - Returns the busiest group within the sched_domain 10554 * if there is an imbalance. 10555 * @env: The load balancing environment. 10556 * 10557 * Also calculates the amount of runnable load which should be moved 10558 * to restore balance. 10559 * 10560 * Return: - The busiest group if imbalance exists. 10561 */ 10562 static struct sched_group *find_busiest_group(struct lb_env *env) 10563 { 10564 struct sg_lb_stats *local, *busiest; 10565 struct sd_lb_stats sds; 10566 10567 init_sd_lb_stats(&sds); 10568 10569 /* 10570 * Compute the various statistics relevant for load balancing at 10571 * this level. 10572 */ 10573 update_sd_lb_stats(env, &sds); 10574 10575 /* There is no busy sibling group to pull tasks from */ 10576 if (!sds.busiest) 10577 goto out_balanced; 10578 10579 busiest = &sds.busiest_stat; 10580 10581 /* Misfit tasks should be dealt with regardless of the avg load */ 10582 if (busiest->group_type == group_misfit_task) 10583 goto force_balance; 10584 10585 if (sched_energy_enabled()) { 10586 struct root_domain *rd = env->dst_rq->rd; 10587 10588 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10589 goto out_balanced; 10590 } 10591 10592 /* ASYM feature bypasses nice load balance check */ 10593 if (busiest->group_type == group_asym_packing) 10594 goto force_balance; 10595 10596 /* 10597 * If the busiest group is imbalanced the below checks don't 10598 * work because they assume all things are equal, which typically 10599 * isn't true due to cpus_ptr constraints and the like. 10600 */ 10601 if (busiest->group_type == group_imbalanced) 10602 goto force_balance; 10603 10604 local = &sds.local_stat; 10605 /* 10606 * If the local group is busier than the selected busiest group 10607 * don't try and pull any tasks. 10608 */ 10609 if (local->group_type > busiest->group_type) 10610 goto out_balanced; 10611 10612 /* 10613 * When groups are overloaded, use the avg_load to ensure fairness 10614 * between tasks. 10615 */ 10616 if (local->group_type == group_overloaded) { 10617 /* 10618 * If the local group is more loaded than the selected 10619 * busiest group don't try to pull any tasks. 10620 */ 10621 if (local->avg_load >= busiest->avg_load) 10622 goto out_balanced; 10623 10624 /* XXX broken for overlapping NUMA groups */ 10625 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10626 sds.total_capacity; 10627 10628 /* 10629 * Don't pull any tasks if this group is already above the 10630 * domain average load. 10631 */ 10632 if (local->avg_load >= sds.avg_load) 10633 goto out_balanced; 10634 10635 /* 10636 * If the busiest group is more loaded, use imbalance_pct to be 10637 * conservative. 10638 */ 10639 if (100 * busiest->avg_load <= 10640 env->sd->imbalance_pct * local->avg_load) 10641 goto out_balanced; 10642 } 10643 10644 /* 10645 * Try to move all excess tasks to a sibling domain of the busiest 10646 * group's child domain. 10647 */ 10648 if (sds.prefer_sibling && local->group_type == group_has_spare && 10649 sibling_imbalance(env, &sds, busiest, local) > 1) 10650 goto force_balance; 10651 10652 if (busiest->group_type != group_overloaded) { 10653 if (env->idle == CPU_NOT_IDLE) { 10654 /* 10655 * If the busiest group is not overloaded (and as a 10656 * result the local one too) but this CPU is already 10657 * busy, let another idle CPU try to pull task. 10658 */ 10659 goto out_balanced; 10660 } 10661 10662 if (busiest->group_type == group_smt_balance && 10663 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10664 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10665 goto force_balance; 10666 } 10667 10668 if (busiest->group_weight > 1 && 10669 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10670 /* 10671 * If the busiest group is not overloaded 10672 * and there is no imbalance between this and busiest 10673 * group wrt idle CPUs, it is balanced. The imbalance 10674 * becomes significant if the diff is greater than 1 10675 * otherwise we might end up to just move the imbalance 10676 * on another group. Of course this applies only if 10677 * there is more than 1 CPU per group. 10678 */ 10679 goto out_balanced; 10680 } 10681 10682 if (busiest->sum_h_nr_running == 1) { 10683 /* 10684 * busiest doesn't have any tasks waiting to run 10685 */ 10686 goto out_balanced; 10687 } 10688 } 10689 10690 force_balance: 10691 /* Looks like there is an imbalance. Compute it */ 10692 calculate_imbalance(env, &sds); 10693 return env->imbalance ? sds.busiest : NULL; 10694 10695 out_balanced: 10696 env->imbalance = 0; 10697 return NULL; 10698 } 10699 10700 /* 10701 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10702 */ 10703 static struct rq *find_busiest_queue(struct lb_env *env, 10704 struct sched_group *group) 10705 { 10706 struct rq *busiest = NULL, *rq; 10707 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10708 unsigned int busiest_nr = 0; 10709 int i; 10710 10711 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10712 unsigned long capacity, load, util; 10713 unsigned int nr_running; 10714 enum fbq_type rt; 10715 10716 rq = cpu_rq(i); 10717 rt = fbq_classify_rq(rq); 10718 10719 /* 10720 * We classify groups/runqueues into three groups: 10721 * - regular: there are !numa tasks 10722 * - remote: there are numa tasks that run on the 'wrong' node 10723 * - all: there is no distinction 10724 * 10725 * In order to avoid migrating ideally placed numa tasks, 10726 * ignore those when there's better options. 10727 * 10728 * If we ignore the actual busiest queue to migrate another 10729 * task, the next balance pass can still reduce the busiest 10730 * queue by moving tasks around inside the node. 10731 * 10732 * If we cannot move enough load due to this classification 10733 * the next pass will adjust the group classification and 10734 * allow migration of more tasks. 10735 * 10736 * Both cases only affect the total convergence complexity. 10737 */ 10738 if (rt > env->fbq_type) 10739 continue; 10740 10741 nr_running = rq->cfs.h_nr_running; 10742 if (!nr_running) 10743 continue; 10744 10745 capacity = capacity_of(i); 10746 10747 /* 10748 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10749 * eventually lead to active_balancing high->low capacity. 10750 * Higher per-CPU capacity is considered better than balancing 10751 * average load. 10752 */ 10753 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10754 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10755 nr_running == 1) 10756 continue; 10757 10758 /* 10759 * Make sure we only pull tasks from a CPU of lower priority 10760 * when balancing between SMT siblings. 10761 * 10762 * If balancing between cores, let lower priority CPUs help 10763 * SMT cores with more than one busy sibling. 10764 */ 10765 if ((env->sd->flags & SD_ASYM_PACKING) && 10766 sched_use_asym_prio(env->sd, i) && 10767 sched_asym_prefer(i, env->dst_cpu) && 10768 nr_running == 1) 10769 continue; 10770 10771 switch (env->migration_type) { 10772 case migrate_load: 10773 /* 10774 * When comparing with load imbalance, use cpu_load() 10775 * which is not scaled with the CPU capacity. 10776 */ 10777 load = cpu_load(rq); 10778 10779 if (nr_running == 1 && load > env->imbalance && 10780 !check_cpu_capacity(rq, env->sd)) 10781 break; 10782 10783 /* 10784 * For the load comparisons with the other CPUs, 10785 * consider the cpu_load() scaled with the CPU 10786 * capacity, so that the load can be moved away 10787 * from the CPU that is potentially running at a 10788 * lower capacity. 10789 * 10790 * Thus we're looking for max(load_i / capacity_i), 10791 * crosswise multiplication to rid ourselves of the 10792 * division works out to: 10793 * load_i * capacity_j > load_j * capacity_i; 10794 * where j is our previous maximum. 10795 */ 10796 if (load * busiest_capacity > busiest_load * capacity) { 10797 busiest_load = load; 10798 busiest_capacity = capacity; 10799 busiest = rq; 10800 } 10801 break; 10802 10803 case migrate_util: 10804 util = cpu_util_cfs_boost(i); 10805 10806 /* 10807 * Don't try to pull utilization from a CPU with one 10808 * running task. Whatever its utilization, we will fail 10809 * detach the task. 10810 */ 10811 if (nr_running <= 1) 10812 continue; 10813 10814 if (busiest_util < util) { 10815 busiest_util = util; 10816 busiest = rq; 10817 } 10818 break; 10819 10820 case migrate_task: 10821 if (busiest_nr < nr_running) { 10822 busiest_nr = nr_running; 10823 busiest = rq; 10824 } 10825 break; 10826 10827 case migrate_misfit: 10828 /* 10829 * For ASYM_CPUCAPACITY domains with misfit tasks we 10830 * simply seek the "biggest" misfit task. 10831 */ 10832 if (rq->misfit_task_load > busiest_load) { 10833 busiest_load = rq->misfit_task_load; 10834 busiest = rq; 10835 } 10836 10837 break; 10838 10839 } 10840 } 10841 10842 return busiest; 10843 } 10844 10845 /* 10846 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10847 * so long as it is large enough. 10848 */ 10849 #define MAX_PINNED_INTERVAL 512 10850 10851 static inline bool 10852 asym_active_balance(struct lb_env *env) 10853 { 10854 /* 10855 * ASYM_PACKING needs to force migrate tasks from busy but lower 10856 * priority CPUs in order to pack all tasks in the highest priority 10857 * CPUs. When done between cores, do it only if the whole core if the 10858 * whole core is idle. 10859 * 10860 * If @env::src_cpu is an SMT core with busy siblings, let 10861 * the lower priority @env::dst_cpu help it. Do not follow 10862 * CPU priority. 10863 */ 10864 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10865 sched_use_asym_prio(env->sd, env->dst_cpu) && 10866 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 10867 !sched_use_asym_prio(env->sd, env->src_cpu)); 10868 } 10869 10870 static inline bool 10871 imbalanced_active_balance(struct lb_env *env) 10872 { 10873 struct sched_domain *sd = env->sd; 10874 10875 /* 10876 * The imbalanced case includes the case of pinned tasks preventing a fair 10877 * distribution of the load on the system but also the even distribution of the 10878 * threads on a system with spare capacity 10879 */ 10880 if ((env->migration_type == migrate_task) && 10881 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10882 return 1; 10883 10884 return 0; 10885 } 10886 10887 static int need_active_balance(struct lb_env *env) 10888 { 10889 struct sched_domain *sd = env->sd; 10890 10891 if (asym_active_balance(env)) 10892 return 1; 10893 10894 if (imbalanced_active_balance(env)) 10895 return 1; 10896 10897 /* 10898 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10899 * It's worth migrating the task if the src_cpu's capacity is reduced 10900 * because of other sched_class or IRQs if more capacity stays 10901 * available on dst_cpu. 10902 */ 10903 if ((env->idle != CPU_NOT_IDLE) && 10904 (env->src_rq->cfs.h_nr_running == 1)) { 10905 if ((check_cpu_capacity(env->src_rq, sd)) && 10906 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10907 return 1; 10908 } 10909 10910 if (env->migration_type == migrate_misfit) 10911 return 1; 10912 10913 return 0; 10914 } 10915 10916 static int active_load_balance_cpu_stop(void *data); 10917 10918 static int should_we_balance(struct lb_env *env) 10919 { 10920 struct sched_group *sg = env->sd->groups; 10921 int cpu, idle_smt = -1; 10922 10923 /* 10924 * Ensure the balancing environment is consistent; can happen 10925 * when the softirq triggers 'during' hotplug. 10926 */ 10927 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10928 return 0; 10929 10930 /* 10931 * In the newly idle case, we will allow all the CPUs 10932 * to do the newly idle load balance. 10933 * 10934 * However, we bail out if we already have tasks or a wakeup pending, 10935 * to optimize wakeup latency. 10936 */ 10937 if (env->idle == CPU_NEWLY_IDLE) { 10938 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10939 return 0; 10940 return 1; 10941 } 10942 10943 /* Try to find first idle CPU */ 10944 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10945 if (!idle_cpu(cpu)) 10946 continue; 10947 10948 /* 10949 * Don't balance to idle SMT in busy core right away when 10950 * balancing cores, but remember the first idle SMT CPU for 10951 * later consideration. Find CPU on an idle core first. 10952 */ 10953 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 10954 if (idle_smt == -1) 10955 idle_smt = cpu; 10956 continue; 10957 } 10958 10959 /* Are we the first idle CPU? */ 10960 return cpu == env->dst_cpu; 10961 } 10962 10963 if (idle_smt == env->dst_cpu) 10964 return true; 10965 10966 /* Are we the first CPU of this group ? */ 10967 return group_balance_cpu(sg) == env->dst_cpu; 10968 } 10969 10970 /* 10971 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10972 * tasks if there is an imbalance. 10973 */ 10974 static int load_balance(int this_cpu, struct rq *this_rq, 10975 struct sched_domain *sd, enum cpu_idle_type idle, 10976 int *continue_balancing) 10977 { 10978 int ld_moved, cur_ld_moved, active_balance = 0; 10979 struct sched_domain *sd_parent = sd->parent; 10980 struct sched_group *group; 10981 struct rq *busiest; 10982 struct rq_flags rf; 10983 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10984 struct lb_env env = { 10985 .sd = sd, 10986 .dst_cpu = this_cpu, 10987 .dst_rq = this_rq, 10988 .dst_grpmask = group_balance_mask(sd->groups), 10989 .idle = idle, 10990 .loop_break = SCHED_NR_MIGRATE_BREAK, 10991 .cpus = cpus, 10992 .fbq_type = all, 10993 .tasks = LIST_HEAD_INIT(env.tasks), 10994 }; 10995 10996 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10997 10998 schedstat_inc(sd->lb_count[idle]); 10999 11000 redo: 11001 if (!should_we_balance(&env)) { 11002 *continue_balancing = 0; 11003 goto out_balanced; 11004 } 11005 11006 group = find_busiest_group(&env); 11007 if (!group) { 11008 schedstat_inc(sd->lb_nobusyg[idle]); 11009 goto out_balanced; 11010 } 11011 11012 busiest = find_busiest_queue(&env, group); 11013 if (!busiest) { 11014 schedstat_inc(sd->lb_nobusyq[idle]); 11015 goto out_balanced; 11016 } 11017 11018 WARN_ON_ONCE(busiest == env.dst_rq); 11019 11020 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11021 11022 env.src_cpu = busiest->cpu; 11023 env.src_rq = busiest; 11024 11025 ld_moved = 0; 11026 /* Clear this flag as soon as we find a pullable task */ 11027 env.flags |= LBF_ALL_PINNED; 11028 if (busiest->nr_running > 1) { 11029 /* 11030 * Attempt to move tasks. If find_busiest_group has found 11031 * an imbalance but busiest->nr_running <= 1, the group is 11032 * still unbalanced. ld_moved simply stays zero, so it is 11033 * correctly treated as an imbalance. 11034 */ 11035 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11036 11037 more_balance: 11038 rq_lock_irqsave(busiest, &rf); 11039 update_rq_clock(busiest); 11040 11041 /* 11042 * cur_ld_moved - load moved in current iteration 11043 * ld_moved - cumulative load moved across iterations 11044 */ 11045 cur_ld_moved = detach_tasks(&env); 11046 11047 /* 11048 * We've detached some tasks from busiest_rq. Every 11049 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11050 * unlock busiest->lock, and we are able to be sure 11051 * that nobody can manipulate the tasks in parallel. 11052 * See task_rq_lock() family for the details. 11053 */ 11054 11055 rq_unlock(busiest, &rf); 11056 11057 if (cur_ld_moved) { 11058 attach_tasks(&env); 11059 ld_moved += cur_ld_moved; 11060 } 11061 11062 local_irq_restore(rf.flags); 11063 11064 if (env.flags & LBF_NEED_BREAK) { 11065 env.flags &= ~LBF_NEED_BREAK; 11066 /* Stop if we tried all running tasks */ 11067 if (env.loop < busiest->nr_running) 11068 goto more_balance; 11069 } 11070 11071 /* 11072 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11073 * us and move them to an alternate dst_cpu in our sched_group 11074 * where they can run. The upper limit on how many times we 11075 * iterate on same src_cpu is dependent on number of CPUs in our 11076 * sched_group. 11077 * 11078 * This changes load balance semantics a bit on who can move 11079 * load to a given_cpu. In addition to the given_cpu itself 11080 * (or a ilb_cpu acting on its behalf where given_cpu is 11081 * nohz-idle), we now have balance_cpu in a position to move 11082 * load to given_cpu. In rare situations, this may cause 11083 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11084 * _independently_ and at _same_ time to move some load to 11085 * given_cpu) causing excess load to be moved to given_cpu. 11086 * This however should not happen so much in practice and 11087 * moreover subsequent load balance cycles should correct the 11088 * excess load moved. 11089 */ 11090 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11091 11092 /* Prevent to re-select dst_cpu via env's CPUs */ 11093 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11094 11095 env.dst_rq = cpu_rq(env.new_dst_cpu); 11096 env.dst_cpu = env.new_dst_cpu; 11097 env.flags &= ~LBF_DST_PINNED; 11098 env.loop = 0; 11099 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11100 11101 /* 11102 * Go back to "more_balance" rather than "redo" since we 11103 * need to continue with same src_cpu. 11104 */ 11105 goto more_balance; 11106 } 11107 11108 /* 11109 * We failed to reach balance because of affinity. 11110 */ 11111 if (sd_parent) { 11112 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11113 11114 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11115 *group_imbalance = 1; 11116 } 11117 11118 /* All tasks on this runqueue were pinned by CPU affinity */ 11119 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11120 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11121 /* 11122 * Attempting to continue load balancing at the current 11123 * sched_domain level only makes sense if there are 11124 * active CPUs remaining as possible busiest CPUs to 11125 * pull load from which are not contained within the 11126 * destination group that is receiving any migrated 11127 * load. 11128 */ 11129 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11130 env.loop = 0; 11131 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11132 goto redo; 11133 } 11134 goto out_all_pinned; 11135 } 11136 } 11137 11138 if (!ld_moved) { 11139 schedstat_inc(sd->lb_failed[idle]); 11140 /* 11141 * Increment the failure counter only on periodic balance. 11142 * We do not want newidle balance, which can be very 11143 * frequent, pollute the failure counter causing 11144 * excessive cache_hot migrations and active balances. 11145 */ 11146 if (idle != CPU_NEWLY_IDLE) 11147 sd->nr_balance_failed++; 11148 11149 if (need_active_balance(&env)) { 11150 unsigned long flags; 11151 11152 raw_spin_rq_lock_irqsave(busiest, flags); 11153 11154 /* 11155 * Don't kick the active_load_balance_cpu_stop, 11156 * if the curr task on busiest CPU can't be 11157 * moved to this_cpu: 11158 */ 11159 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11160 raw_spin_rq_unlock_irqrestore(busiest, flags); 11161 goto out_one_pinned; 11162 } 11163 11164 /* Record that we found at least one task that could run on this_cpu */ 11165 env.flags &= ~LBF_ALL_PINNED; 11166 11167 /* 11168 * ->active_balance synchronizes accesses to 11169 * ->active_balance_work. Once set, it's cleared 11170 * only after active load balance is finished. 11171 */ 11172 if (!busiest->active_balance) { 11173 busiest->active_balance = 1; 11174 busiest->push_cpu = this_cpu; 11175 active_balance = 1; 11176 } 11177 raw_spin_rq_unlock_irqrestore(busiest, flags); 11178 11179 if (active_balance) { 11180 stop_one_cpu_nowait(cpu_of(busiest), 11181 active_load_balance_cpu_stop, busiest, 11182 &busiest->active_balance_work); 11183 } 11184 } 11185 } else { 11186 sd->nr_balance_failed = 0; 11187 } 11188 11189 if (likely(!active_balance) || need_active_balance(&env)) { 11190 /* We were unbalanced, so reset the balancing interval */ 11191 sd->balance_interval = sd->min_interval; 11192 } 11193 11194 goto out; 11195 11196 out_balanced: 11197 /* 11198 * We reach balance although we may have faced some affinity 11199 * constraints. Clear the imbalance flag only if other tasks got 11200 * a chance to move and fix the imbalance. 11201 */ 11202 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11203 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11204 11205 if (*group_imbalance) 11206 *group_imbalance = 0; 11207 } 11208 11209 out_all_pinned: 11210 /* 11211 * We reach balance because all tasks are pinned at this level so 11212 * we can't migrate them. Let the imbalance flag set so parent level 11213 * can try to migrate them. 11214 */ 11215 schedstat_inc(sd->lb_balanced[idle]); 11216 11217 sd->nr_balance_failed = 0; 11218 11219 out_one_pinned: 11220 ld_moved = 0; 11221 11222 /* 11223 * newidle_balance() disregards balance intervals, so we could 11224 * repeatedly reach this code, which would lead to balance_interval 11225 * skyrocketing in a short amount of time. Skip the balance_interval 11226 * increase logic to avoid that. 11227 */ 11228 if (env.idle == CPU_NEWLY_IDLE) 11229 goto out; 11230 11231 /* tune up the balancing interval */ 11232 if ((env.flags & LBF_ALL_PINNED && 11233 sd->balance_interval < MAX_PINNED_INTERVAL) || 11234 sd->balance_interval < sd->max_interval) 11235 sd->balance_interval *= 2; 11236 out: 11237 return ld_moved; 11238 } 11239 11240 static inline unsigned long 11241 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11242 { 11243 unsigned long interval = sd->balance_interval; 11244 11245 if (cpu_busy) 11246 interval *= sd->busy_factor; 11247 11248 /* scale ms to jiffies */ 11249 interval = msecs_to_jiffies(interval); 11250 11251 /* 11252 * Reduce likelihood of busy balancing at higher domains racing with 11253 * balancing at lower domains by preventing their balancing periods 11254 * from being multiples of each other. 11255 */ 11256 if (cpu_busy) 11257 interval -= 1; 11258 11259 interval = clamp(interval, 1UL, max_load_balance_interval); 11260 11261 return interval; 11262 } 11263 11264 static inline void 11265 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11266 { 11267 unsigned long interval, next; 11268 11269 /* used by idle balance, so cpu_busy = 0 */ 11270 interval = get_sd_balance_interval(sd, 0); 11271 next = sd->last_balance + interval; 11272 11273 if (time_after(*next_balance, next)) 11274 *next_balance = next; 11275 } 11276 11277 /* 11278 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11279 * running tasks off the busiest CPU onto idle CPUs. It requires at 11280 * least 1 task to be running on each physical CPU where possible, and 11281 * avoids physical / logical imbalances. 11282 */ 11283 static int active_load_balance_cpu_stop(void *data) 11284 { 11285 struct rq *busiest_rq = data; 11286 int busiest_cpu = cpu_of(busiest_rq); 11287 int target_cpu = busiest_rq->push_cpu; 11288 struct rq *target_rq = cpu_rq(target_cpu); 11289 struct sched_domain *sd; 11290 struct task_struct *p = NULL; 11291 struct rq_flags rf; 11292 11293 rq_lock_irq(busiest_rq, &rf); 11294 /* 11295 * Between queueing the stop-work and running it is a hole in which 11296 * CPUs can become inactive. We should not move tasks from or to 11297 * inactive CPUs. 11298 */ 11299 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11300 goto out_unlock; 11301 11302 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11303 if (unlikely(busiest_cpu != smp_processor_id() || 11304 !busiest_rq->active_balance)) 11305 goto out_unlock; 11306 11307 /* Is there any task to move? */ 11308 if (busiest_rq->nr_running <= 1) 11309 goto out_unlock; 11310 11311 /* 11312 * This condition is "impossible", if it occurs 11313 * we need to fix it. Originally reported by 11314 * Bjorn Helgaas on a 128-CPU setup. 11315 */ 11316 WARN_ON_ONCE(busiest_rq == target_rq); 11317 11318 /* Search for an sd spanning us and the target CPU. */ 11319 rcu_read_lock(); 11320 for_each_domain(target_cpu, sd) { 11321 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11322 break; 11323 } 11324 11325 if (likely(sd)) { 11326 struct lb_env env = { 11327 .sd = sd, 11328 .dst_cpu = target_cpu, 11329 .dst_rq = target_rq, 11330 .src_cpu = busiest_rq->cpu, 11331 .src_rq = busiest_rq, 11332 .idle = CPU_IDLE, 11333 .flags = LBF_ACTIVE_LB, 11334 }; 11335 11336 schedstat_inc(sd->alb_count); 11337 update_rq_clock(busiest_rq); 11338 11339 p = detach_one_task(&env); 11340 if (p) { 11341 schedstat_inc(sd->alb_pushed); 11342 /* Active balancing done, reset the failure counter. */ 11343 sd->nr_balance_failed = 0; 11344 } else { 11345 schedstat_inc(sd->alb_failed); 11346 } 11347 } 11348 rcu_read_unlock(); 11349 out_unlock: 11350 busiest_rq->active_balance = 0; 11351 rq_unlock(busiest_rq, &rf); 11352 11353 if (p) 11354 attach_one_task(target_rq, p); 11355 11356 local_irq_enable(); 11357 11358 return 0; 11359 } 11360 11361 static DEFINE_SPINLOCK(balancing); 11362 11363 /* 11364 * Scale the max load_balance interval with the number of CPUs in the system. 11365 * This trades load-balance latency on larger machines for less cross talk. 11366 */ 11367 void update_max_interval(void) 11368 { 11369 max_load_balance_interval = HZ*num_online_cpus()/10; 11370 } 11371 11372 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11373 { 11374 if (cost > sd->max_newidle_lb_cost) { 11375 /* 11376 * Track max cost of a domain to make sure to not delay the 11377 * next wakeup on the CPU. 11378 */ 11379 sd->max_newidle_lb_cost = cost; 11380 sd->last_decay_max_lb_cost = jiffies; 11381 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11382 /* 11383 * Decay the newidle max times by ~1% per second to ensure that 11384 * it is not outdated and the current max cost is actually 11385 * shorter. 11386 */ 11387 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11388 sd->last_decay_max_lb_cost = jiffies; 11389 11390 return true; 11391 } 11392 11393 return false; 11394 } 11395 11396 /* 11397 * It checks each scheduling domain to see if it is due to be balanced, 11398 * and initiates a balancing operation if so. 11399 * 11400 * Balancing parameters are set up in init_sched_domains. 11401 */ 11402 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11403 { 11404 int continue_balancing = 1; 11405 int cpu = rq->cpu; 11406 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11407 unsigned long interval; 11408 struct sched_domain *sd; 11409 /* Earliest time when we have to do rebalance again */ 11410 unsigned long next_balance = jiffies + 60*HZ; 11411 int update_next_balance = 0; 11412 int need_serialize, need_decay = 0; 11413 u64 max_cost = 0; 11414 11415 rcu_read_lock(); 11416 for_each_domain(cpu, sd) { 11417 /* 11418 * Decay the newidle max times here because this is a regular 11419 * visit to all the domains. 11420 */ 11421 need_decay = update_newidle_cost(sd, 0); 11422 max_cost += sd->max_newidle_lb_cost; 11423 11424 /* 11425 * Stop the load balance at this level. There is another 11426 * CPU in our sched group which is doing load balancing more 11427 * actively. 11428 */ 11429 if (!continue_balancing) { 11430 if (need_decay) 11431 continue; 11432 break; 11433 } 11434 11435 interval = get_sd_balance_interval(sd, busy); 11436 11437 need_serialize = sd->flags & SD_SERIALIZE; 11438 if (need_serialize) { 11439 if (!spin_trylock(&balancing)) 11440 goto out; 11441 } 11442 11443 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11444 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11445 /* 11446 * The LBF_DST_PINNED logic could have changed 11447 * env->dst_cpu, so we can't know our idle 11448 * state even if we migrated tasks. Update it. 11449 */ 11450 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11451 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11452 } 11453 sd->last_balance = jiffies; 11454 interval = get_sd_balance_interval(sd, busy); 11455 } 11456 if (need_serialize) 11457 spin_unlock(&balancing); 11458 out: 11459 if (time_after(next_balance, sd->last_balance + interval)) { 11460 next_balance = sd->last_balance + interval; 11461 update_next_balance = 1; 11462 } 11463 } 11464 if (need_decay) { 11465 /* 11466 * Ensure the rq-wide value also decays but keep it at a 11467 * reasonable floor to avoid funnies with rq->avg_idle. 11468 */ 11469 rq->max_idle_balance_cost = 11470 max((u64)sysctl_sched_migration_cost, max_cost); 11471 } 11472 rcu_read_unlock(); 11473 11474 /* 11475 * next_balance will be updated only when there is a need. 11476 * When the cpu is attached to null domain for ex, it will not be 11477 * updated. 11478 */ 11479 if (likely(update_next_balance)) 11480 rq->next_balance = next_balance; 11481 11482 } 11483 11484 static inline int on_null_domain(struct rq *rq) 11485 { 11486 return unlikely(!rcu_dereference_sched(rq->sd)); 11487 } 11488 11489 #ifdef CONFIG_NO_HZ_COMMON 11490 /* 11491 * idle load balancing details 11492 * - When one of the busy CPUs notice that there may be an idle rebalancing 11493 * needed, they will kick the idle load balancer, which then does idle 11494 * load balancing for all the idle CPUs. 11495 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11496 * anywhere yet. 11497 */ 11498 11499 static inline int find_new_ilb(void) 11500 { 11501 int ilb; 11502 const struct cpumask *hk_mask; 11503 11504 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11505 11506 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11507 11508 if (ilb == smp_processor_id()) 11509 continue; 11510 11511 if (idle_cpu(ilb)) 11512 return ilb; 11513 } 11514 11515 return nr_cpu_ids; 11516 } 11517 11518 /* 11519 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11520 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11521 */ 11522 static void kick_ilb(unsigned int flags) 11523 { 11524 int ilb_cpu; 11525 11526 /* 11527 * Increase nohz.next_balance only when if full ilb is triggered but 11528 * not if we only update stats. 11529 */ 11530 if (flags & NOHZ_BALANCE_KICK) 11531 nohz.next_balance = jiffies+1; 11532 11533 ilb_cpu = find_new_ilb(); 11534 11535 if (ilb_cpu >= nr_cpu_ids) 11536 return; 11537 11538 /* 11539 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11540 * the first flag owns it; cleared by nohz_csd_func(). 11541 */ 11542 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11543 if (flags & NOHZ_KICK_MASK) 11544 return; 11545 11546 /* 11547 * This way we generate an IPI on the target CPU which 11548 * is idle. And the softirq performing nohz idle load balance 11549 * will be run before returning from the IPI. 11550 */ 11551 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11552 } 11553 11554 /* 11555 * Current decision point for kicking the idle load balancer in the presence 11556 * of idle CPUs in the system. 11557 */ 11558 static void nohz_balancer_kick(struct rq *rq) 11559 { 11560 unsigned long now = jiffies; 11561 struct sched_domain_shared *sds; 11562 struct sched_domain *sd; 11563 int nr_busy, i, cpu = rq->cpu; 11564 unsigned int flags = 0; 11565 11566 if (unlikely(rq->idle_balance)) 11567 return; 11568 11569 /* 11570 * We may be recently in ticked or tickless idle mode. At the first 11571 * busy tick after returning from idle, we will update the busy stats. 11572 */ 11573 nohz_balance_exit_idle(rq); 11574 11575 /* 11576 * None are in tickless mode and hence no need for NOHZ idle load 11577 * balancing. 11578 */ 11579 if (likely(!atomic_read(&nohz.nr_cpus))) 11580 return; 11581 11582 if (READ_ONCE(nohz.has_blocked) && 11583 time_after(now, READ_ONCE(nohz.next_blocked))) 11584 flags = NOHZ_STATS_KICK; 11585 11586 if (time_before(now, nohz.next_balance)) 11587 goto out; 11588 11589 if (rq->nr_running >= 2) { 11590 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11591 goto out; 11592 } 11593 11594 rcu_read_lock(); 11595 11596 sd = rcu_dereference(rq->sd); 11597 if (sd) { 11598 /* 11599 * If there's a CFS task and the current CPU has reduced 11600 * capacity; kick the ILB to see if there's a better CPU to run 11601 * on. 11602 */ 11603 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11604 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11605 goto unlock; 11606 } 11607 } 11608 11609 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11610 if (sd) { 11611 /* 11612 * When ASYM_PACKING; see if there's a more preferred CPU 11613 * currently idle; in which case, kick the ILB to move tasks 11614 * around. 11615 * 11616 * When balancing betwen cores, all the SMT siblings of the 11617 * preferred CPU must be idle. 11618 */ 11619 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11620 if (sched_use_asym_prio(sd, i) && 11621 sched_asym_prefer(i, cpu)) { 11622 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11623 goto unlock; 11624 } 11625 } 11626 } 11627 11628 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11629 if (sd) { 11630 /* 11631 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11632 * to run the misfit task on. 11633 */ 11634 if (check_misfit_status(rq, sd)) { 11635 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11636 goto unlock; 11637 } 11638 11639 /* 11640 * For asymmetric systems, we do not want to nicely balance 11641 * cache use, instead we want to embrace asymmetry and only 11642 * ensure tasks have enough CPU capacity. 11643 * 11644 * Skip the LLC logic because it's not relevant in that case. 11645 */ 11646 goto unlock; 11647 } 11648 11649 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11650 if (sds) { 11651 /* 11652 * If there is an imbalance between LLC domains (IOW we could 11653 * increase the overall cache use), we need some less-loaded LLC 11654 * domain to pull some load. Likewise, we may need to spread 11655 * load within the current LLC domain (e.g. packed SMT cores but 11656 * other CPUs are idle). We can't really know from here how busy 11657 * the others are - so just get a nohz balance going if it looks 11658 * like this LLC domain has tasks we could move. 11659 */ 11660 nr_busy = atomic_read(&sds->nr_busy_cpus); 11661 if (nr_busy > 1) { 11662 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11663 goto unlock; 11664 } 11665 } 11666 unlock: 11667 rcu_read_unlock(); 11668 out: 11669 if (READ_ONCE(nohz.needs_update)) 11670 flags |= NOHZ_NEXT_KICK; 11671 11672 if (flags) 11673 kick_ilb(flags); 11674 } 11675 11676 static void set_cpu_sd_state_busy(int cpu) 11677 { 11678 struct sched_domain *sd; 11679 11680 rcu_read_lock(); 11681 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11682 11683 if (!sd || !sd->nohz_idle) 11684 goto unlock; 11685 sd->nohz_idle = 0; 11686 11687 atomic_inc(&sd->shared->nr_busy_cpus); 11688 unlock: 11689 rcu_read_unlock(); 11690 } 11691 11692 void nohz_balance_exit_idle(struct rq *rq) 11693 { 11694 SCHED_WARN_ON(rq != this_rq()); 11695 11696 if (likely(!rq->nohz_tick_stopped)) 11697 return; 11698 11699 rq->nohz_tick_stopped = 0; 11700 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11701 atomic_dec(&nohz.nr_cpus); 11702 11703 set_cpu_sd_state_busy(rq->cpu); 11704 } 11705 11706 static void set_cpu_sd_state_idle(int cpu) 11707 { 11708 struct sched_domain *sd; 11709 11710 rcu_read_lock(); 11711 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11712 11713 if (!sd || sd->nohz_idle) 11714 goto unlock; 11715 sd->nohz_idle = 1; 11716 11717 atomic_dec(&sd->shared->nr_busy_cpus); 11718 unlock: 11719 rcu_read_unlock(); 11720 } 11721 11722 /* 11723 * This routine will record that the CPU is going idle with tick stopped. 11724 * This info will be used in performing idle load balancing in the future. 11725 */ 11726 void nohz_balance_enter_idle(int cpu) 11727 { 11728 struct rq *rq = cpu_rq(cpu); 11729 11730 SCHED_WARN_ON(cpu != smp_processor_id()); 11731 11732 /* If this CPU is going down, then nothing needs to be done: */ 11733 if (!cpu_active(cpu)) 11734 return; 11735 11736 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11737 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11738 return; 11739 11740 /* 11741 * Can be set safely without rq->lock held 11742 * If a clear happens, it will have evaluated last additions because 11743 * rq->lock is held during the check and the clear 11744 */ 11745 rq->has_blocked_load = 1; 11746 11747 /* 11748 * The tick is still stopped but load could have been added in the 11749 * meantime. We set the nohz.has_blocked flag to trig a check of the 11750 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11751 * of nohz.has_blocked can only happen after checking the new load 11752 */ 11753 if (rq->nohz_tick_stopped) 11754 goto out; 11755 11756 /* If we're a completely isolated CPU, we don't play: */ 11757 if (on_null_domain(rq)) 11758 return; 11759 11760 rq->nohz_tick_stopped = 1; 11761 11762 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11763 atomic_inc(&nohz.nr_cpus); 11764 11765 /* 11766 * Ensures that if nohz_idle_balance() fails to observe our 11767 * @idle_cpus_mask store, it must observe the @has_blocked 11768 * and @needs_update stores. 11769 */ 11770 smp_mb__after_atomic(); 11771 11772 set_cpu_sd_state_idle(cpu); 11773 11774 WRITE_ONCE(nohz.needs_update, 1); 11775 out: 11776 /* 11777 * Each time a cpu enter idle, we assume that it has blocked load and 11778 * enable the periodic update of the load of idle cpus 11779 */ 11780 WRITE_ONCE(nohz.has_blocked, 1); 11781 } 11782 11783 static bool update_nohz_stats(struct rq *rq) 11784 { 11785 unsigned int cpu = rq->cpu; 11786 11787 if (!rq->has_blocked_load) 11788 return false; 11789 11790 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11791 return false; 11792 11793 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11794 return true; 11795 11796 update_blocked_averages(cpu); 11797 11798 return rq->has_blocked_load; 11799 } 11800 11801 /* 11802 * Internal function that runs load balance for all idle cpus. The load balance 11803 * can be a simple update of blocked load or a complete load balance with 11804 * tasks movement depending of flags. 11805 */ 11806 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11807 { 11808 /* Earliest time when we have to do rebalance again */ 11809 unsigned long now = jiffies; 11810 unsigned long next_balance = now + 60*HZ; 11811 bool has_blocked_load = false; 11812 int update_next_balance = 0; 11813 int this_cpu = this_rq->cpu; 11814 int balance_cpu; 11815 struct rq *rq; 11816 11817 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11818 11819 /* 11820 * We assume there will be no idle load after this update and clear 11821 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11822 * set the has_blocked flag and trigger another update of idle load. 11823 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11824 * setting the flag, we are sure to not clear the state and not 11825 * check the load of an idle cpu. 11826 * 11827 * Same applies to idle_cpus_mask vs needs_update. 11828 */ 11829 if (flags & NOHZ_STATS_KICK) 11830 WRITE_ONCE(nohz.has_blocked, 0); 11831 if (flags & NOHZ_NEXT_KICK) 11832 WRITE_ONCE(nohz.needs_update, 0); 11833 11834 /* 11835 * Ensures that if we miss the CPU, we must see the has_blocked 11836 * store from nohz_balance_enter_idle(). 11837 */ 11838 smp_mb(); 11839 11840 /* 11841 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11842 * chance for other idle cpu to pull load. 11843 */ 11844 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11845 if (!idle_cpu(balance_cpu)) 11846 continue; 11847 11848 /* 11849 * If this CPU gets work to do, stop the load balancing 11850 * work being done for other CPUs. Next load 11851 * balancing owner will pick it up. 11852 */ 11853 if (need_resched()) { 11854 if (flags & NOHZ_STATS_KICK) 11855 has_blocked_load = true; 11856 if (flags & NOHZ_NEXT_KICK) 11857 WRITE_ONCE(nohz.needs_update, 1); 11858 goto abort; 11859 } 11860 11861 rq = cpu_rq(balance_cpu); 11862 11863 if (flags & NOHZ_STATS_KICK) 11864 has_blocked_load |= update_nohz_stats(rq); 11865 11866 /* 11867 * If time for next balance is due, 11868 * do the balance. 11869 */ 11870 if (time_after_eq(jiffies, rq->next_balance)) { 11871 struct rq_flags rf; 11872 11873 rq_lock_irqsave(rq, &rf); 11874 update_rq_clock(rq); 11875 rq_unlock_irqrestore(rq, &rf); 11876 11877 if (flags & NOHZ_BALANCE_KICK) 11878 rebalance_domains(rq, CPU_IDLE); 11879 } 11880 11881 if (time_after(next_balance, rq->next_balance)) { 11882 next_balance = rq->next_balance; 11883 update_next_balance = 1; 11884 } 11885 } 11886 11887 /* 11888 * next_balance will be updated only when there is a need. 11889 * When the CPU is attached to null domain for ex, it will not be 11890 * updated. 11891 */ 11892 if (likely(update_next_balance)) 11893 nohz.next_balance = next_balance; 11894 11895 if (flags & NOHZ_STATS_KICK) 11896 WRITE_ONCE(nohz.next_blocked, 11897 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11898 11899 abort: 11900 /* There is still blocked load, enable periodic update */ 11901 if (has_blocked_load) 11902 WRITE_ONCE(nohz.has_blocked, 1); 11903 } 11904 11905 /* 11906 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11907 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11908 */ 11909 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11910 { 11911 unsigned int flags = this_rq->nohz_idle_balance; 11912 11913 if (!flags) 11914 return false; 11915 11916 this_rq->nohz_idle_balance = 0; 11917 11918 if (idle != CPU_IDLE) 11919 return false; 11920 11921 _nohz_idle_balance(this_rq, flags); 11922 11923 return true; 11924 } 11925 11926 /* 11927 * Check if we need to run the ILB for updating blocked load before entering 11928 * idle state. 11929 */ 11930 void nohz_run_idle_balance(int cpu) 11931 { 11932 unsigned int flags; 11933 11934 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11935 11936 /* 11937 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11938 * (ie NOHZ_STATS_KICK set) and will do the same. 11939 */ 11940 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11941 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11942 } 11943 11944 static void nohz_newidle_balance(struct rq *this_rq) 11945 { 11946 int this_cpu = this_rq->cpu; 11947 11948 /* 11949 * This CPU doesn't want to be disturbed by scheduler 11950 * housekeeping 11951 */ 11952 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11953 return; 11954 11955 /* Will wake up very soon. No time for doing anything else*/ 11956 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11957 return; 11958 11959 /* Don't need to update blocked load of idle CPUs*/ 11960 if (!READ_ONCE(nohz.has_blocked) || 11961 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11962 return; 11963 11964 /* 11965 * Set the need to trigger ILB in order to update blocked load 11966 * before entering idle state. 11967 */ 11968 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11969 } 11970 11971 #else /* !CONFIG_NO_HZ_COMMON */ 11972 static inline void nohz_balancer_kick(struct rq *rq) { } 11973 11974 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11975 { 11976 return false; 11977 } 11978 11979 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11980 #endif /* CONFIG_NO_HZ_COMMON */ 11981 11982 /* 11983 * newidle_balance is called by schedule() if this_cpu is about to become 11984 * idle. Attempts to pull tasks from other CPUs. 11985 * 11986 * Returns: 11987 * < 0 - we released the lock and there are !fair tasks present 11988 * 0 - failed, no new tasks 11989 * > 0 - success, new (fair) tasks present 11990 */ 11991 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11992 { 11993 unsigned long next_balance = jiffies + HZ; 11994 int this_cpu = this_rq->cpu; 11995 u64 t0, t1, curr_cost = 0; 11996 struct sched_domain *sd; 11997 int pulled_task = 0; 11998 11999 update_misfit_status(NULL, this_rq); 12000 12001 /* 12002 * There is a task waiting to run. No need to search for one. 12003 * Return 0; the task will be enqueued when switching to idle. 12004 */ 12005 if (this_rq->ttwu_pending) 12006 return 0; 12007 12008 /* 12009 * We must set idle_stamp _before_ calling idle_balance(), such that we 12010 * measure the duration of idle_balance() as idle time. 12011 */ 12012 this_rq->idle_stamp = rq_clock(this_rq); 12013 12014 /* 12015 * Do not pull tasks towards !active CPUs... 12016 */ 12017 if (!cpu_active(this_cpu)) 12018 return 0; 12019 12020 /* 12021 * This is OK, because current is on_cpu, which avoids it being picked 12022 * for load-balance and preemption/IRQs are still disabled avoiding 12023 * further scheduler activity on it and we're being very careful to 12024 * re-start the picking loop. 12025 */ 12026 rq_unpin_lock(this_rq, rf); 12027 12028 rcu_read_lock(); 12029 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12030 12031 if (!READ_ONCE(this_rq->rd->overload) || 12032 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12033 12034 if (sd) 12035 update_next_balance(sd, &next_balance); 12036 rcu_read_unlock(); 12037 12038 goto out; 12039 } 12040 rcu_read_unlock(); 12041 12042 raw_spin_rq_unlock(this_rq); 12043 12044 t0 = sched_clock_cpu(this_cpu); 12045 update_blocked_averages(this_cpu); 12046 12047 rcu_read_lock(); 12048 for_each_domain(this_cpu, sd) { 12049 int continue_balancing = 1; 12050 u64 domain_cost; 12051 12052 update_next_balance(sd, &next_balance); 12053 12054 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12055 break; 12056 12057 if (sd->flags & SD_BALANCE_NEWIDLE) { 12058 12059 pulled_task = load_balance(this_cpu, this_rq, 12060 sd, CPU_NEWLY_IDLE, 12061 &continue_balancing); 12062 12063 t1 = sched_clock_cpu(this_cpu); 12064 domain_cost = t1 - t0; 12065 update_newidle_cost(sd, domain_cost); 12066 12067 curr_cost += domain_cost; 12068 t0 = t1; 12069 } 12070 12071 /* 12072 * Stop searching for tasks to pull if there are 12073 * now runnable tasks on this rq. 12074 */ 12075 if (pulled_task || this_rq->nr_running > 0 || 12076 this_rq->ttwu_pending) 12077 break; 12078 } 12079 rcu_read_unlock(); 12080 12081 raw_spin_rq_lock(this_rq); 12082 12083 if (curr_cost > this_rq->max_idle_balance_cost) 12084 this_rq->max_idle_balance_cost = curr_cost; 12085 12086 /* 12087 * While browsing the domains, we released the rq lock, a task could 12088 * have been enqueued in the meantime. Since we're not going idle, 12089 * pretend we pulled a task. 12090 */ 12091 if (this_rq->cfs.h_nr_running && !pulled_task) 12092 pulled_task = 1; 12093 12094 /* Is there a task of a high priority class? */ 12095 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12096 pulled_task = -1; 12097 12098 out: 12099 /* Move the next balance forward */ 12100 if (time_after(this_rq->next_balance, next_balance)) 12101 this_rq->next_balance = next_balance; 12102 12103 if (pulled_task) 12104 this_rq->idle_stamp = 0; 12105 else 12106 nohz_newidle_balance(this_rq); 12107 12108 rq_repin_lock(this_rq, rf); 12109 12110 return pulled_task; 12111 } 12112 12113 /* 12114 * run_rebalance_domains is triggered when needed from the scheduler tick. 12115 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12116 */ 12117 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12118 { 12119 struct rq *this_rq = this_rq(); 12120 enum cpu_idle_type idle = this_rq->idle_balance ? 12121 CPU_IDLE : CPU_NOT_IDLE; 12122 12123 /* 12124 * If this CPU has a pending nohz_balance_kick, then do the 12125 * balancing on behalf of the other idle CPUs whose ticks are 12126 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12127 * give the idle CPUs a chance to load balance. Else we may 12128 * load balance only within the local sched_domain hierarchy 12129 * and abort nohz_idle_balance altogether if we pull some load. 12130 */ 12131 if (nohz_idle_balance(this_rq, idle)) 12132 return; 12133 12134 /* normal load balance */ 12135 update_blocked_averages(this_rq->cpu); 12136 rebalance_domains(this_rq, idle); 12137 } 12138 12139 /* 12140 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12141 */ 12142 void trigger_load_balance(struct rq *rq) 12143 { 12144 /* 12145 * Don't need to rebalance while attached to NULL domain or 12146 * runqueue CPU is not active 12147 */ 12148 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12149 return; 12150 12151 if (time_after_eq(jiffies, rq->next_balance)) 12152 raise_softirq(SCHED_SOFTIRQ); 12153 12154 nohz_balancer_kick(rq); 12155 } 12156 12157 static void rq_online_fair(struct rq *rq) 12158 { 12159 update_sysctl(); 12160 12161 update_runtime_enabled(rq); 12162 } 12163 12164 static void rq_offline_fair(struct rq *rq) 12165 { 12166 update_sysctl(); 12167 12168 /* Ensure any throttled groups are reachable by pick_next_task */ 12169 unthrottle_offline_cfs_rqs(rq); 12170 } 12171 12172 #endif /* CONFIG_SMP */ 12173 12174 #ifdef CONFIG_SCHED_CORE 12175 static inline bool 12176 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12177 { 12178 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12179 u64 slice = se->slice; 12180 12181 return (rtime * min_nr_tasks > slice); 12182 } 12183 12184 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12185 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12186 { 12187 if (!sched_core_enabled(rq)) 12188 return; 12189 12190 /* 12191 * If runqueue has only one task which used up its slice and 12192 * if the sibling is forced idle, then trigger schedule to 12193 * give forced idle task a chance. 12194 * 12195 * sched_slice() considers only this active rq and it gets the 12196 * whole slice. But during force idle, we have siblings acting 12197 * like a single runqueue and hence we need to consider runnable 12198 * tasks on this CPU and the forced idle CPU. Ideally, we should 12199 * go through the forced idle rq, but that would be a perf hit. 12200 * We can assume that the forced idle CPU has at least 12201 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12202 * if we need to give up the CPU. 12203 */ 12204 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12205 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12206 resched_curr(rq); 12207 } 12208 12209 /* 12210 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12211 */ 12212 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12213 bool forceidle) 12214 { 12215 for_each_sched_entity(se) { 12216 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12217 12218 if (forceidle) { 12219 if (cfs_rq->forceidle_seq == fi_seq) 12220 break; 12221 cfs_rq->forceidle_seq = fi_seq; 12222 } 12223 12224 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12225 } 12226 } 12227 12228 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12229 { 12230 struct sched_entity *se = &p->se; 12231 12232 if (p->sched_class != &fair_sched_class) 12233 return; 12234 12235 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12236 } 12237 12238 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12239 bool in_fi) 12240 { 12241 struct rq *rq = task_rq(a); 12242 const struct sched_entity *sea = &a->se; 12243 const struct sched_entity *seb = &b->se; 12244 struct cfs_rq *cfs_rqa; 12245 struct cfs_rq *cfs_rqb; 12246 s64 delta; 12247 12248 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12249 12250 #ifdef CONFIG_FAIR_GROUP_SCHED 12251 /* 12252 * Find an se in the hierarchy for tasks a and b, such that the se's 12253 * are immediate siblings. 12254 */ 12255 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12256 int sea_depth = sea->depth; 12257 int seb_depth = seb->depth; 12258 12259 if (sea_depth >= seb_depth) 12260 sea = parent_entity(sea); 12261 if (sea_depth <= seb_depth) 12262 seb = parent_entity(seb); 12263 } 12264 12265 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12266 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12267 12268 cfs_rqa = sea->cfs_rq; 12269 cfs_rqb = seb->cfs_rq; 12270 #else 12271 cfs_rqa = &task_rq(a)->cfs; 12272 cfs_rqb = &task_rq(b)->cfs; 12273 #endif 12274 12275 /* 12276 * Find delta after normalizing se's vruntime with its cfs_rq's 12277 * min_vruntime_fi, which would have been updated in prior calls 12278 * to se_fi_update(). 12279 */ 12280 delta = (s64)(sea->vruntime - seb->vruntime) + 12281 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12282 12283 return delta > 0; 12284 } 12285 12286 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12287 { 12288 struct cfs_rq *cfs_rq; 12289 12290 #ifdef CONFIG_FAIR_GROUP_SCHED 12291 cfs_rq = task_group(p)->cfs_rq[cpu]; 12292 #else 12293 cfs_rq = &cpu_rq(cpu)->cfs; 12294 #endif 12295 return throttled_hierarchy(cfs_rq); 12296 } 12297 #else 12298 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12299 #endif 12300 12301 /* 12302 * scheduler tick hitting a task of our scheduling class. 12303 * 12304 * NOTE: This function can be called remotely by the tick offload that 12305 * goes along full dynticks. Therefore no local assumption can be made 12306 * and everything must be accessed through the @rq and @curr passed in 12307 * parameters. 12308 */ 12309 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12310 { 12311 struct cfs_rq *cfs_rq; 12312 struct sched_entity *se = &curr->se; 12313 12314 for_each_sched_entity(se) { 12315 cfs_rq = cfs_rq_of(se); 12316 entity_tick(cfs_rq, se, queued); 12317 } 12318 12319 if (static_branch_unlikely(&sched_numa_balancing)) 12320 task_tick_numa(rq, curr); 12321 12322 update_misfit_status(curr, rq); 12323 update_overutilized_status(task_rq(curr)); 12324 12325 task_tick_core(rq, curr); 12326 } 12327 12328 /* 12329 * called on fork with the child task as argument from the parent's context 12330 * - child not yet on the tasklist 12331 * - preemption disabled 12332 */ 12333 static void task_fork_fair(struct task_struct *p) 12334 { 12335 struct sched_entity *se = &p->se, *curr; 12336 struct cfs_rq *cfs_rq; 12337 struct rq *rq = this_rq(); 12338 struct rq_flags rf; 12339 12340 rq_lock(rq, &rf); 12341 update_rq_clock(rq); 12342 12343 cfs_rq = task_cfs_rq(current); 12344 curr = cfs_rq->curr; 12345 if (curr) 12346 update_curr(cfs_rq); 12347 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12348 rq_unlock(rq, &rf); 12349 } 12350 12351 /* 12352 * Priority of the task has changed. Check to see if we preempt 12353 * the current task. 12354 */ 12355 static void 12356 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12357 { 12358 if (!task_on_rq_queued(p)) 12359 return; 12360 12361 if (rq->cfs.nr_running == 1) 12362 return; 12363 12364 /* 12365 * Reschedule if we are currently running on this runqueue and 12366 * our priority decreased, or if we are not currently running on 12367 * this runqueue and our priority is higher than the current's 12368 */ 12369 if (task_current(rq, p)) { 12370 if (p->prio > oldprio) 12371 resched_curr(rq); 12372 } else 12373 check_preempt_curr(rq, p, 0); 12374 } 12375 12376 #ifdef CONFIG_FAIR_GROUP_SCHED 12377 /* 12378 * Propagate the changes of the sched_entity across the tg tree to make it 12379 * visible to the root 12380 */ 12381 static void propagate_entity_cfs_rq(struct sched_entity *se) 12382 { 12383 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12384 12385 if (cfs_rq_throttled(cfs_rq)) 12386 return; 12387 12388 if (!throttled_hierarchy(cfs_rq)) 12389 list_add_leaf_cfs_rq(cfs_rq); 12390 12391 /* Start to propagate at parent */ 12392 se = se->parent; 12393 12394 for_each_sched_entity(se) { 12395 cfs_rq = cfs_rq_of(se); 12396 12397 update_load_avg(cfs_rq, se, UPDATE_TG); 12398 12399 if (cfs_rq_throttled(cfs_rq)) 12400 break; 12401 12402 if (!throttled_hierarchy(cfs_rq)) 12403 list_add_leaf_cfs_rq(cfs_rq); 12404 } 12405 } 12406 #else 12407 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12408 #endif 12409 12410 static void detach_entity_cfs_rq(struct sched_entity *se) 12411 { 12412 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12413 12414 #ifdef CONFIG_SMP 12415 /* 12416 * In case the task sched_avg hasn't been attached: 12417 * - A forked task which hasn't been woken up by wake_up_new_task(). 12418 * - A task which has been woken up by try_to_wake_up() but is 12419 * waiting for actually being woken up by sched_ttwu_pending(). 12420 */ 12421 if (!se->avg.last_update_time) 12422 return; 12423 #endif 12424 12425 /* Catch up with the cfs_rq and remove our load when we leave */ 12426 update_load_avg(cfs_rq, se, 0); 12427 detach_entity_load_avg(cfs_rq, se); 12428 update_tg_load_avg(cfs_rq); 12429 propagate_entity_cfs_rq(se); 12430 } 12431 12432 static void attach_entity_cfs_rq(struct sched_entity *se) 12433 { 12434 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12435 12436 /* Synchronize entity with its cfs_rq */ 12437 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12438 attach_entity_load_avg(cfs_rq, se); 12439 update_tg_load_avg(cfs_rq); 12440 propagate_entity_cfs_rq(se); 12441 } 12442 12443 static void detach_task_cfs_rq(struct task_struct *p) 12444 { 12445 struct sched_entity *se = &p->se; 12446 12447 detach_entity_cfs_rq(se); 12448 } 12449 12450 static void attach_task_cfs_rq(struct task_struct *p) 12451 { 12452 struct sched_entity *se = &p->se; 12453 12454 attach_entity_cfs_rq(se); 12455 } 12456 12457 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12458 { 12459 detach_task_cfs_rq(p); 12460 } 12461 12462 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12463 { 12464 attach_task_cfs_rq(p); 12465 12466 if (task_on_rq_queued(p)) { 12467 /* 12468 * We were most likely switched from sched_rt, so 12469 * kick off the schedule if running, otherwise just see 12470 * if we can still preempt the current task. 12471 */ 12472 if (task_current(rq, p)) 12473 resched_curr(rq); 12474 else 12475 check_preempt_curr(rq, p, 0); 12476 } 12477 } 12478 12479 /* Account for a task changing its policy or group. 12480 * 12481 * This routine is mostly called to set cfs_rq->curr field when a task 12482 * migrates between groups/classes. 12483 */ 12484 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12485 { 12486 struct sched_entity *se = &p->se; 12487 12488 #ifdef CONFIG_SMP 12489 if (task_on_rq_queued(p)) { 12490 /* 12491 * Move the next running task to the front of the list, so our 12492 * cfs_tasks list becomes MRU one. 12493 */ 12494 list_move(&se->group_node, &rq->cfs_tasks); 12495 } 12496 #endif 12497 12498 for_each_sched_entity(se) { 12499 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12500 12501 set_next_entity(cfs_rq, se); 12502 /* ensure bandwidth has been allocated on our new cfs_rq */ 12503 account_cfs_rq_runtime(cfs_rq, 0); 12504 } 12505 } 12506 12507 void init_cfs_rq(struct cfs_rq *cfs_rq) 12508 { 12509 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12510 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12511 #ifdef CONFIG_SMP 12512 raw_spin_lock_init(&cfs_rq->removed.lock); 12513 #endif 12514 } 12515 12516 #ifdef CONFIG_FAIR_GROUP_SCHED 12517 static void task_change_group_fair(struct task_struct *p) 12518 { 12519 /* 12520 * We couldn't detach or attach a forked task which 12521 * hasn't been woken up by wake_up_new_task(). 12522 */ 12523 if (READ_ONCE(p->__state) == TASK_NEW) 12524 return; 12525 12526 detach_task_cfs_rq(p); 12527 12528 #ifdef CONFIG_SMP 12529 /* Tell se's cfs_rq has been changed -- migrated */ 12530 p->se.avg.last_update_time = 0; 12531 #endif 12532 set_task_rq(p, task_cpu(p)); 12533 attach_task_cfs_rq(p); 12534 } 12535 12536 void free_fair_sched_group(struct task_group *tg) 12537 { 12538 int i; 12539 12540 for_each_possible_cpu(i) { 12541 if (tg->cfs_rq) 12542 kfree(tg->cfs_rq[i]); 12543 if (tg->se) 12544 kfree(tg->se[i]); 12545 } 12546 12547 kfree(tg->cfs_rq); 12548 kfree(tg->se); 12549 } 12550 12551 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12552 { 12553 struct sched_entity *se; 12554 struct cfs_rq *cfs_rq; 12555 int i; 12556 12557 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12558 if (!tg->cfs_rq) 12559 goto err; 12560 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12561 if (!tg->se) 12562 goto err; 12563 12564 tg->shares = NICE_0_LOAD; 12565 12566 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12567 12568 for_each_possible_cpu(i) { 12569 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12570 GFP_KERNEL, cpu_to_node(i)); 12571 if (!cfs_rq) 12572 goto err; 12573 12574 se = kzalloc_node(sizeof(struct sched_entity_stats), 12575 GFP_KERNEL, cpu_to_node(i)); 12576 if (!se) 12577 goto err_free_rq; 12578 12579 init_cfs_rq(cfs_rq); 12580 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12581 init_entity_runnable_average(se); 12582 } 12583 12584 return 1; 12585 12586 err_free_rq: 12587 kfree(cfs_rq); 12588 err: 12589 return 0; 12590 } 12591 12592 void online_fair_sched_group(struct task_group *tg) 12593 { 12594 struct sched_entity *se; 12595 struct rq_flags rf; 12596 struct rq *rq; 12597 int i; 12598 12599 for_each_possible_cpu(i) { 12600 rq = cpu_rq(i); 12601 se = tg->se[i]; 12602 rq_lock_irq(rq, &rf); 12603 update_rq_clock(rq); 12604 attach_entity_cfs_rq(se); 12605 sync_throttle(tg, i); 12606 rq_unlock_irq(rq, &rf); 12607 } 12608 } 12609 12610 void unregister_fair_sched_group(struct task_group *tg) 12611 { 12612 unsigned long flags; 12613 struct rq *rq; 12614 int cpu; 12615 12616 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12617 12618 for_each_possible_cpu(cpu) { 12619 if (tg->se[cpu]) 12620 remove_entity_load_avg(tg->se[cpu]); 12621 12622 /* 12623 * Only empty task groups can be destroyed; so we can speculatively 12624 * check on_list without danger of it being re-added. 12625 */ 12626 if (!tg->cfs_rq[cpu]->on_list) 12627 continue; 12628 12629 rq = cpu_rq(cpu); 12630 12631 raw_spin_rq_lock_irqsave(rq, flags); 12632 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12633 raw_spin_rq_unlock_irqrestore(rq, flags); 12634 } 12635 } 12636 12637 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12638 struct sched_entity *se, int cpu, 12639 struct sched_entity *parent) 12640 { 12641 struct rq *rq = cpu_rq(cpu); 12642 12643 cfs_rq->tg = tg; 12644 cfs_rq->rq = rq; 12645 init_cfs_rq_runtime(cfs_rq); 12646 12647 tg->cfs_rq[cpu] = cfs_rq; 12648 tg->se[cpu] = se; 12649 12650 /* se could be NULL for root_task_group */ 12651 if (!se) 12652 return; 12653 12654 if (!parent) { 12655 se->cfs_rq = &rq->cfs; 12656 se->depth = 0; 12657 } else { 12658 se->cfs_rq = parent->my_q; 12659 se->depth = parent->depth + 1; 12660 } 12661 12662 se->my_q = cfs_rq; 12663 /* guarantee group entities always have weight */ 12664 update_load_set(&se->load, NICE_0_LOAD); 12665 se->parent = parent; 12666 } 12667 12668 static DEFINE_MUTEX(shares_mutex); 12669 12670 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12671 { 12672 int i; 12673 12674 lockdep_assert_held(&shares_mutex); 12675 12676 /* 12677 * We can't change the weight of the root cgroup. 12678 */ 12679 if (!tg->se[0]) 12680 return -EINVAL; 12681 12682 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12683 12684 if (tg->shares == shares) 12685 return 0; 12686 12687 tg->shares = shares; 12688 for_each_possible_cpu(i) { 12689 struct rq *rq = cpu_rq(i); 12690 struct sched_entity *se = tg->se[i]; 12691 struct rq_flags rf; 12692 12693 /* Propagate contribution to hierarchy */ 12694 rq_lock_irqsave(rq, &rf); 12695 update_rq_clock(rq); 12696 for_each_sched_entity(se) { 12697 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12698 update_cfs_group(se); 12699 } 12700 rq_unlock_irqrestore(rq, &rf); 12701 } 12702 12703 return 0; 12704 } 12705 12706 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12707 { 12708 int ret; 12709 12710 mutex_lock(&shares_mutex); 12711 if (tg_is_idle(tg)) 12712 ret = -EINVAL; 12713 else 12714 ret = __sched_group_set_shares(tg, shares); 12715 mutex_unlock(&shares_mutex); 12716 12717 return ret; 12718 } 12719 12720 int sched_group_set_idle(struct task_group *tg, long idle) 12721 { 12722 int i; 12723 12724 if (tg == &root_task_group) 12725 return -EINVAL; 12726 12727 if (idle < 0 || idle > 1) 12728 return -EINVAL; 12729 12730 mutex_lock(&shares_mutex); 12731 12732 if (tg->idle == idle) { 12733 mutex_unlock(&shares_mutex); 12734 return 0; 12735 } 12736 12737 tg->idle = idle; 12738 12739 for_each_possible_cpu(i) { 12740 struct rq *rq = cpu_rq(i); 12741 struct sched_entity *se = tg->se[i]; 12742 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12743 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12744 long idle_task_delta; 12745 struct rq_flags rf; 12746 12747 rq_lock_irqsave(rq, &rf); 12748 12749 grp_cfs_rq->idle = idle; 12750 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12751 goto next_cpu; 12752 12753 if (se->on_rq) { 12754 parent_cfs_rq = cfs_rq_of(se); 12755 if (cfs_rq_is_idle(grp_cfs_rq)) 12756 parent_cfs_rq->idle_nr_running++; 12757 else 12758 parent_cfs_rq->idle_nr_running--; 12759 } 12760 12761 idle_task_delta = grp_cfs_rq->h_nr_running - 12762 grp_cfs_rq->idle_h_nr_running; 12763 if (!cfs_rq_is_idle(grp_cfs_rq)) 12764 idle_task_delta *= -1; 12765 12766 for_each_sched_entity(se) { 12767 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12768 12769 if (!se->on_rq) 12770 break; 12771 12772 cfs_rq->idle_h_nr_running += idle_task_delta; 12773 12774 /* Already accounted at parent level and above. */ 12775 if (cfs_rq_is_idle(cfs_rq)) 12776 break; 12777 } 12778 12779 next_cpu: 12780 rq_unlock_irqrestore(rq, &rf); 12781 } 12782 12783 /* Idle groups have minimum weight. */ 12784 if (tg_is_idle(tg)) 12785 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12786 else 12787 __sched_group_set_shares(tg, NICE_0_LOAD); 12788 12789 mutex_unlock(&shares_mutex); 12790 return 0; 12791 } 12792 12793 #else /* CONFIG_FAIR_GROUP_SCHED */ 12794 12795 void free_fair_sched_group(struct task_group *tg) { } 12796 12797 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12798 { 12799 return 1; 12800 } 12801 12802 void online_fair_sched_group(struct task_group *tg) { } 12803 12804 void unregister_fair_sched_group(struct task_group *tg) { } 12805 12806 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12807 12808 12809 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12810 { 12811 struct sched_entity *se = &task->se; 12812 unsigned int rr_interval = 0; 12813 12814 /* 12815 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12816 * idle runqueue: 12817 */ 12818 if (rq->cfs.load.weight) 12819 rr_interval = NS_TO_JIFFIES(se->slice); 12820 12821 return rr_interval; 12822 } 12823 12824 /* 12825 * All the scheduling class methods: 12826 */ 12827 DEFINE_SCHED_CLASS(fair) = { 12828 12829 .enqueue_task = enqueue_task_fair, 12830 .dequeue_task = dequeue_task_fair, 12831 .yield_task = yield_task_fair, 12832 .yield_to_task = yield_to_task_fair, 12833 12834 .check_preempt_curr = check_preempt_wakeup, 12835 12836 .pick_next_task = __pick_next_task_fair, 12837 .put_prev_task = put_prev_task_fair, 12838 .set_next_task = set_next_task_fair, 12839 12840 #ifdef CONFIG_SMP 12841 .balance = balance_fair, 12842 .pick_task = pick_task_fair, 12843 .select_task_rq = select_task_rq_fair, 12844 .migrate_task_rq = migrate_task_rq_fair, 12845 12846 .rq_online = rq_online_fair, 12847 .rq_offline = rq_offline_fair, 12848 12849 .task_dead = task_dead_fair, 12850 .set_cpus_allowed = set_cpus_allowed_common, 12851 #endif 12852 12853 .task_tick = task_tick_fair, 12854 .task_fork = task_fork_fair, 12855 12856 .prio_changed = prio_changed_fair, 12857 .switched_from = switched_from_fair, 12858 .switched_to = switched_to_fair, 12859 12860 .get_rr_interval = get_rr_interval_fair, 12861 12862 .update_curr = update_curr_fair, 12863 12864 #ifdef CONFIG_FAIR_GROUP_SCHED 12865 .task_change_group = task_change_group_fair, 12866 #endif 12867 12868 #ifdef CONFIG_SCHED_CORE 12869 .task_is_throttled = task_is_throttled_fair, 12870 #endif 12871 12872 #ifdef CONFIG_UCLAMP_TASK 12873 .uclamp_enabled = 1, 12874 #endif 12875 }; 12876 12877 #ifdef CONFIG_SCHED_DEBUG 12878 void print_cfs_stats(struct seq_file *m, int cpu) 12879 { 12880 struct cfs_rq *cfs_rq, *pos; 12881 12882 rcu_read_lock(); 12883 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12884 print_cfs_rq(m, cpu, cfs_rq); 12885 rcu_read_unlock(); 12886 } 12887 12888 #ifdef CONFIG_NUMA_BALANCING 12889 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12890 { 12891 int node; 12892 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12893 struct numa_group *ng; 12894 12895 rcu_read_lock(); 12896 ng = rcu_dereference(p->numa_group); 12897 for_each_online_node(node) { 12898 if (p->numa_faults) { 12899 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12900 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12901 } 12902 if (ng) { 12903 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12904 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12905 } 12906 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12907 } 12908 rcu_read_unlock(); 12909 } 12910 #endif /* CONFIG_NUMA_BALANCING */ 12911 #endif /* CONFIG_SCHED_DEBUG */ 12912 12913 __init void init_sched_fair_class(void) 12914 { 12915 #ifdef CONFIG_SMP 12916 int i; 12917 12918 for_each_possible_cpu(i) { 12919 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12920 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12921 12922 #ifdef CONFIG_CFS_BANDWIDTH 12923 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 12924 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 12925 #endif 12926 } 12927 12928 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12929 12930 #ifdef CONFIG_NO_HZ_COMMON 12931 nohz.next_balance = jiffies; 12932 nohz.next_blocked = jiffies; 12933 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12934 #endif 12935 #endif /* SMP */ 12936 12937 } 12938