1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 24 #include <linux/sched/mm.h> 25 #include <linux/sched/topology.h> 26 27 #include <linux/latencytop.h> 28 #include <linux/cpumask.h> 29 #include <linux/cpuidle.h> 30 #include <linux/slab.h> 31 #include <linux/profile.h> 32 #include <linux/interrupt.h> 33 #include <linux/mempolicy.h> 34 #include <linux/migrate.h> 35 #include <linux/task_work.h> 36 #include <linux/sched/isolation.h> 37 38 #include <trace/events/sched.h> 39 40 #include "sched.h" 41 42 /* 43 * Targeted preemption latency for CPU-bound tasks: 44 * 45 * NOTE: this latency value is not the same as the concept of 46 * 'timeslice length' - timeslices in CFS are of variable length 47 * and have no persistent notion like in traditional, time-slice 48 * based scheduling concepts. 49 * 50 * (to see the precise effective timeslice length of your workload, 51 * run vmstat and monitor the context-switches (cs) field) 52 * 53 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 54 */ 55 unsigned int sysctl_sched_latency = 6000000ULL; 56 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_min_granularity = 750000ULL; 77 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 78 79 /* 80 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 81 */ 82 static unsigned int sched_nr_latency = 8; 83 84 /* 85 * After fork, child runs first. If set to 0 (default) then 86 * parent will (try to) run first. 87 */ 88 unsigned int sysctl_sched_child_runs_first __read_mostly; 89 90 /* 91 * SCHED_OTHER wake-up granularity. 92 * 93 * This option delays the preemption effects of decoupled workloads 94 * and reduces their over-scheduling. Synchronous workloads will still 95 * have immediate wakeup/sleep latencies. 96 * 97 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 98 */ 99 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 100 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 101 102 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 103 104 #ifdef CONFIG_SMP 105 /* 106 * For asym packing, by default the lower numbered cpu has higher priority. 107 */ 108 int __weak arch_asym_cpu_priority(int cpu) 109 { 110 return -cpu; 111 } 112 #endif 113 114 #ifdef CONFIG_CFS_BANDWIDTH 115 /* 116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 117 * each time a cfs_rq requests quota. 118 * 119 * Note: in the case that the slice exceeds the runtime remaining (either due 120 * to consumption or the quota being specified to be smaller than the slice) 121 * we will always only issue the remaining available time. 122 * 123 * (default: 5 msec, units: microseconds) 124 */ 125 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 126 #endif 127 128 /* 129 * The margin used when comparing utilization with CPU capacity: 130 * util * margin < capacity * 1024 131 * 132 * (default: ~20%) 133 */ 134 unsigned int capacity_margin = 1280; 135 136 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 137 { 138 lw->weight += inc; 139 lw->inv_weight = 0; 140 } 141 142 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 143 { 144 lw->weight -= dec; 145 lw->inv_weight = 0; 146 } 147 148 static inline void update_load_set(struct load_weight *lw, unsigned long w) 149 { 150 lw->weight = w; 151 lw->inv_weight = 0; 152 } 153 154 /* 155 * Increase the granularity value when there are more CPUs, 156 * because with more CPUs the 'effective latency' as visible 157 * to users decreases. But the relationship is not linear, 158 * so pick a second-best guess by going with the log2 of the 159 * number of CPUs. 160 * 161 * This idea comes from the SD scheduler of Con Kolivas: 162 */ 163 static unsigned int get_update_sysctl_factor(void) 164 { 165 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 166 unsigned int factor; 167 168 switch (sysctl_sched_tunable_scaling) { 169 case SCHED_TUNABLESCALING_NONE: 170 factor = 1; 171 break; 172 case SCHED_TUNABLESCALING_LINEAR: 173 factor = cpus; 174 break; 175 case SCHED_TUNABLESCALING_LOG: 176 default: 177 factor = 1 + ilog2(cpus); 178 break; 179 } 180 181 return factor; 182 } 183 184 static void update_sysctl(void) 185 { 186 unsigned int factor = get_update_sysctl_factor(); 187 188 #define SET_SYSCTL(name) \ 189 (sysctl_##name = (factor) * normalized_sysctl_##name) 190 SET_SYSCTL(sched_min_granularity); 191 SET_SYSCTL(sched_latency); 192 SET_SYSCTL(sched_wakeup_granularity); 193 #undef SET_SYSCTL 194 } 195 196 void sched_init_granularity(void) 197 { 198 update_sysctl(); 199 } 200 201 #define WMULT_CONST (~0U) 202 #define WMULT_SHIFT 32 203 204 static void __update_inv_weight(struct load_weight *lw) 205 { 206 unsigned long w; 207 208 if (likely(lw->inv_weight)) 209 return; 210 211 w = scale_load_down(lw->weight); 212 213 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 214 lw->inv_weight = 1; 215 else if (unlikely(!w)) 216 lw->inv_weight = WMULT_CONST; 217 else 218 lw->inv_weight = WMULT_CONST / w; 219 } 220 221 /* 222 * delta_exec * weight / lw.weight 223 * OR 224 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 225 * 226 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 227 * we're guaranteed shift stays positive because inv_weight is guaranteed to 228 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 229 * 230 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 231 * weight/lw.weight <= 1, and therefore our shift will also be positive. 232 */ 233 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 234 { 235 u64 fact = scale_load_down(weight); 236 int shift = WMULT_SHIFT; 237 238 __update_inv_weight(lw); 239 240 if (unlikely(fact >> 32)) { 241 while (fact >> 32) { 242 fact >>= 1; 243 shift--; 244 } 245 } 246 247 /* hint to use a 32x32->64 mul */ 248 fact = (u64)(u32)fact * lw->inv_weight; 249 250 while (fact >> 32) { 251 fact >>= 1; 252 shift--; 253 } 254 255 return mul_u64_u32_shr(delta_exec, fact, shift); 256 } 257 258 259 const struct sched_class fair_sched_class; 260 261 /************************************************************** 262 * CFS operations on generic schedulable entities: 263 */ 264 265 #ifdef CONFIG_FAIR_GROUP_SCHED 266 267 /* cpu runqueue to which this cfs_rq is attached */ 268 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 269 { 270 return cfs_rq->rq; 271 } 272 273 /* An entity is a task if it doesn't "own" a runqueue */ 274 #define entity_is_task(se) (!se->my_q) 275 276 static inline struct task_struct *task_of(struct sched_entity *se) 277 { 278 SCHED_WARN_ON(!entity_is_task(se)); 279 return container_of(se, struct task_struct, se); 280 } 281 282 /* Walk up scheduling entities hierarchy */ 283 #define for_each_sched_entity(se) \ 284 for (; se; se = se->parent) 285 286 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 287 { 288 return p->se.cfs_rq; 289 } 290 291 /* runqueue on which this entity is (to be) queued */ 292 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 293 { 294 return se->cfs_rq; 295 } 296 297 /* runqueue "owned" by this group */ 298 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 299 { 300 return grp->my_q; 301 } 302 303 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 304 { 305 if (!cfs_rq->on_list) { 306 struct rq *rq = rq_of(cfs_rq); 307 int cpu = cpu_of(rq); 308 /* 309 * Ensure we either appear before our parent (if already 310 * enqueued) or force our parent to appear after us when it is 311 * enqueued. The fact that we always enqueue bottom-up 312 * reduces this to two cases and a special case for the root 313 * cfs_rq. Furthermore, it also means that we will always reset 314 * tmp_alone_branch either when the branch is connected 315 * to a tree or when we reach the beg of the tree 316 */ 317 if (cfs_rq->tg->parent && 318 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 319 /* 320 * If parent is already on the list, we add the child 321 * just before. Thanks to circular linked property of 322 * the list, this means to put the child at the tail 323 * of the list that starts by parent. 324 */ 325 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 326 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 327 /* 328 * The branch is now connected to its tree so we can 329 * reset tmp_alone_branch to the beginning of the 330 * list. 331 */ 332 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 333 } else if (!cfs_rq->tg->parent) { 334 /* 335 * cfs rq without parent should be put 336 * at the tail of the list. 337 */ 338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 339 &rq->leaf_cfs_rq_list); 340 /* 341 * We have reach the beg of a tree so we can reset 342 * tmp_alone_branch to the beginning of the list. 343 */ 344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 345 } else { 346 /* 347 * The parent has not already been added so we want to 348 * make sure that it will be put after us. 349 * tmp_alone_branch points to the beg of the branch 350 * where we will add parent. 351 */ 352 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 353 rq->tmp_alone_branch); 354 /* 355 * update tmp_alone_branch to points to the new beg 356 * of the branch 357 */ 358 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 359 } 360 361 cfs_rq->on_list = 1; 362 } 363 } 364 365 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 366 { 367 if (cfs_rq->on_list) { 368 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 369 cfs_rq->on_list = 0; 370 } 371 } 372 373 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 374 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 375 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 376 leaf_cfs_rq_list) 377 378 /* Do the two (enqueued) entities belong to the same group ? */ 379 static inline struct cfs_rq * 380 is_same_group(struct sched_entity *se, struct sched_entity *pse) 381 { 382 if (se->cfs_rq == pse->cfs_rq) 383 return se->cfs_rq; 384 385 return NULL; 386 } 387 388 static inline struct sched_entity *parent_entity(struct sched_entity *se) 389 { 390 return se->parent; 391 } 392 393 static void 394 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 395 { 396 int se_depth, pse_depth; 397 398 /* 399 * preemption test can be made between sibling entities who are in the 400 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 401 * both tasks until we find their ancestors who are siblings of common 402 * parent. 403 */ 404 405 /* First walk up until both entities are at same depth */ 406 se_depth = (*se)->depth; 407 pse_depth = (*pse)->depth; 408 409 while (se_depth > pse_depth) { 410 se_depth--; 411 *se = parent_entity(*se); 412 } 413 414 while (pse_depth > se_depth) { 415 pse_depth--; 416 *pse = parent_entity(*pse); 417 } 418 419 while (!is_same_group(*se, *pse)) { 420 *se = parent_entity(*se); 421 *pse = parent_entity(*pse); 422 } 423 } 424 425 #else /* !CONFIG_FAIR_GROUP_SCHED */ 426 427 static inline struct task_struct *task_of(struct sched_entity *se) 428 { 429 return container_of(se, struct task_struct, se); 430 } 431 432 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 433 { 434 return container_of(cfs_rq, struct rq, cfs); 435 } 436 437 #define entity_is_task(se) 1 438 439 #define for_each_sched_entity(se) \ 440 for (; se; se = NULL) 441 442 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 443 { 444 return &task_rq(p)->cfs; 445 } 446 447 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 448 { 449 struct task_struct *p = task_of(se); 450 struct rq *rq = task_rq(p); 451 452 return &rq->cfs; 453 } 454 455 /* runqueue "owned" by this group */ 456 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 457 { 458 return NULL; 459 } 460 461 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 462 { 463 } 464 465 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 466 { 467 } 468 469 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 470 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 471 472 static inline struct sched_entity *parent_entity(struct sched_entity *se) 473 { 474 return NULL; 475 } 476 477 static inline void 478 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 479 { 480 } 481 482 #endif /* CONFIG_FAIR_GROUP_SCHED */ 483 484 static __always_inline 485 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 486 487 /************************************************************** 488 * Scheduling class tree data structure manipulation methods: 489 */ 490 491 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 492 { 493 s64 delta = (s64)(vruntime - max_vruntime); 494 if (delta > 0) 495 max_vruntime = vruntime; 496 497 return max_vruntime; 498 } 499 500 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 501 { 502 s64 delta = (s64)(vruntime - min_vruntime); 503 if (delta < 0) 504 min_vruntime = vruntime; 505 506 return min_vruntime; 507 } 508 509 static inline int entity_before(struct sched_entity *a, 510 struct sched_entity *b) 511 { 512 return (s64)(a->vruntime - b->vruntime) < 0; 513 } 514 515 static void update_min_vruntime(struct cfs_rq *cfs_rq) 516 { 517 struct sched_entity *curr = cfs_rq->curr; 518 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 519 520 u64 vruntime = cfs_rq->min_vruntime; 521 522 if (curr) { 523 if (curr->on_rq) 524 vruntime = curr->vruntime; 525 else 526 curr = NULL; 527 } 528 529 if (leftmost) { /* non-empty tree */ 530 struct sched_entity *se; 531 se = rb_entry(leftmost, struct sched_entity, run_node); 532 533 if (!curr) 534 vruntime = se->vruntime; 535 else 536 vruntime = min_vruntime(vruntime, se->vruntime); 537 } 538 539 /* ensure we never gain time by being placed backwards. */ 540 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 541 #ifndef CONFIG_64BIT 542 smp_wmb(); 543 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 544 #endif 545 } 546 547 /* 548 * Enqueue an entity into the rb-tree: 549 */ 550 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 551 { 552 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 553 struct rb_node *parent = NULL; 554 struct sched_entity *entry; 555 bool leftmost = true; 556 557 /* 558 * Find the right place in the rbtree: 559 */ 560 while (*link) { 561 parent = *link; 562 entry = rb_entry(parent, struct sched_entity, run_node); 563 /* 564 * We dont care about collisions. Nodes with 565 * the same key stay together. 566 */ 567 if (entity_before(se, entry)) { 568 link = &parent->rb_left; 569 } else { 570 link = &parent->rb_right; 571 leftmost = false; 572 } 573 } 574 575 rb_link_node(&se->run_node, parent, link); 576 rb_insert_color_cached(&se->run_node, 577 &cfs_rq->tasks_timeline, leftmost); 578 } 579 580 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 581 { 582 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 583 } 584 585 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 586 { 587 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 588 589 if (!left) 590 return NULL; 591 592 return rb_entry(left, struct sched_entity, run_node); 593 } 594 595 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 596 { 597 struct rb_node *next = rb_next(&se->run_node); 598 599 if (!next) 600 return NULL; 601 602 return rb_entry(next, struct sched_entity, run_node); 603 } 604 605 #ifdef CONFIG_SCHED_DEBUG 606 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 607 { 608 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 609 610 if (!last) 611 return NULL; 612 613 return rb_entry(last, struct sched_entity, run_node); 614 } 615 616 /************************************************************** 617 * Scheduling class statistics methods: 618 */ 619 620 int sched_proc_update_handler(struct ctl_table *table, int write, 621 void __user *buffer, size_t *lenp, 622 loff_t *ppos) 623 { 624 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 625 unsigned int factor = get_update_sysctl_factor(); 626 627 if (ret || !write) 628 return ret; 629 630 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 631 sysctl_sched_min_granularity); 632 633 #define WRT_SYSCTL(name) \ 634 (normalized_sysctl_##name = sysctl_##name / (factor)) 635 WRT_SYSCTL(sched_min_granularity); 636 WRT_SYSCTL(sched_latency); 637 WRT_SYSCTL(sched_wakeup_granularity); 638 #undef WRT_SYSCTL 639 640 return 0; 641 } 642 #endif 643 644 /* 645 * delta /= w 646 */ 647 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 648 { 649 if (unlikely(se->load.weight != NICE_0_LOAD)) 650 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 651 652 return delta; 653 } 654 655 /* 656 * The idea is to set a period in which each task runs once. 657 * 658 * When there are too many tasks (sched_nr_latency) we have to stretch 659 * this period because otherwise the slices get too small. 660 * 661 * p = (nr <= nl) ? l : l*nr/nl 662 */ 663 static u64 __sched_period(unsigned long nr_running) 664 { 665 if (unlikely(nr_running > sched_nr_latency)) 666 return nr_running * sysctl_sched_min_granularity; 667 else 668 return sysctl_sched_latency; 669 } 670 671 /* 672 * We calculate the wall-time slice from the period by taking a part 673 * proportional to the weight. 674 * 675 * s = p*P[w/rw] 676 */ 677 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 678 { 679 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 680 681 for_each_sched_entity(se) { 682 struct load_weight *load; 683 struct load_weight lw; 684 685 cfs_rq = cfs_rq_of(se); 686 load = &cfs_rq->load; 687 688 if (unlikely(!se->on_rq)) { 689 lw = cfs_rq->load; 690 691 update_load_add(&lw, se->load.weight); 692 load = &lw; 693 } 694 slice = __calc_delta(slice, se->load.weight, load); 695 } 696 return slice; 697 } 698 699 /* 700 * We calculate the vruntime slice of a to-be-inserted task. 701 * 702 * vs = s/w 703 */ 704 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 705 { 706 return calc_delta_fair(sched_slice(cfs_rq, se), se); 707 } 708 709 #ifdef CONFIG_SMP 710 711 #include "sched-pelt.h" 712 713 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 714 static unsigned long task_h_load(struct task_struct *p); 715 716 /* Give new sched_entity start runnable values to heavy its load in infant time */ 717 void init_entity_runnable_average(struct sched_entity *se) 718 { 719 struct sched_avg *sa = &se->avg; 720 721 memset(sa, 0, sizeof(*sa)); 722 723 /* 724 * Tasks are intialized with full load to be seen as heavy tasks until 725 * they get a chance to stabilize to their real load level. 726 * Group entities are intialized with zero load to reflect the fact that 727 * nothing has been attached to the task group yet. 728 */ 729 if (entity_is_task(se)) 730 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 731 732 se->runnable_weight = se->load.weight; 733 734 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 735 } 736 737 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 738 static void attach_entity_cfs_rq(struct sched_entity *se); 739 740 /* 741 * With new tasks being created, their initial util_avgs are extrapolated 742 * based on the cfs_rq's current util_avg: 743 * 744 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 745 * 746 * However, in many cases, the above util_avg does not give a desired 747 * value. Moreover, the sum of the util_avgs may be divergent, such 748 * as when the series is a harmonic series. 749 * 750 * To solve this problem, we also cap the util_avg of successive tasks to 751 * only 1/2 of the left utilization budget: 752 * 753 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 754 * 755 * where n denotes the nth task. 756 * 757 * For example, a simplest series from the beginning would be like: 758 * 759 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 760 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 761 * 762 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 763 * if util_avg > util_avg_cap. 764 */ 765 void post_init_entity_util_avg(struct sched_entity *se) 766 { 767 struct cfs_rq *cfs_rq = cfs_rq_of(se); 768 struct sched_avg *sa = &se->avg; 769 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 770 771 if (cap > 0) { 772 if (cfs_rq->avg.util_avg != 0) { 773 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 774 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 775 776 if (sa->util_avg > cap) 777 sa->util_avg = cap; 778 } else { 779 sa->util_avg = cap; 780 } 781 } 782 783 if (entity_is_task(se)) { 784 struct task_struct *p = task_of(se); 785 if (p->sched_class != &fair_sched_class) { 786 /* 787 * For !fair tasks do: 788 * 789 update_cfs_rq_load_avg(now, cfs_rq); 790 attach_entity_load_avg(cfs_rq, se); 791 switched_from_fair(rq, p); 792 * 793 * such that the next switched_to_fair() has the 794 * expected state. 795 */ 796 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 797 return; 798 } 799 } 800 801 attach_entity_cfs_rq(se); 802 } 803 804 #else /* !CONFIG_SMP */ 805 void init_entity_runnable_average(struct sched_entity *se) 806 { 807 } 808 void post_init_entity_util_avg(struct sched_entity *se) 809 { 810 } 811 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 812 { 813 } 814 #endif /* CONFIG_SMP */ 815 816 /* 817 * Update the current task's runtime statistics. 818 */ 819 static void update_curr(struct cfs_rq *cfs_rq) 820 { 821 struct sched_entity *curr = cfs_rq->curr; 822 u64 now = rq_clock_task(rq_of(cfs_rq)); 823 u64 delta_exec; 824 825 if (unlikely(!curr)) 826 return; 827 828 delta_exec = now - curr->exec_start; 829 if (unlikely((s64)delta_exec <= 0)) 830 return; 831 832 curr->exec_start = now; 833 834 schedstat_set(curr->statistics.exec_max, 835 max(delta_exec, curr->statistics.exec_max)); 836 837 curr->sum_exec_runtime += delta_exec; 838 schedstat_add(cfs_rq->exec_clock, delta_exec); 839 840 curr->vruntime += calc_delta_fair(delta_exec, curr); 841 update_min_vruntime(cfs_rq); 842 843 if (entity_is_task(curr)) { 844 struct task_struct *curtask = task_of(curr); 845 846 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 847 cgroup_account_cputime(curtask, delta_exec); 848 account_group_exec_runtime(curtask, delta_exec); 849 } 850 851 account_cfs_rq_runtime(cfs_rq, delta_exec); 852 } 853 854 static void update_curr_fair(struct rq *rq) 855 { 856 update_curr(cfs_rq_of(&rq->curr->se)); 857 } 858 859 static inline void 860 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 861 { 862 u64 wait_start, prev_wait_start; 863 864 if (!schedstat_enabled()) 865 return; 866 867 wait_start = rq_clock(rq_of(cfs_rq)); 868 prev_wait_start = schedstat_val(se->statistics.wait_start); 869 870 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 871 likely(wait_start > prev_wait_start)) 872 wait_start -= prev_wait_start; 873 874 schedstat_set(se->statistics.wait_start, wait_start); 875 } 876 877 static inline void 878 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 879 { 880 struct task_struct *p; 881 u64 delta; 882 883 if (!schedstat_enabled()) 884 return; 885 886 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 887 888 if (entity_is_task(se)) { 889 p = task_of(se); 890 if (task_on_rq_migrating(p)) { 891 /* 892 * Preserve migrating task's wait time so wait_start 893 * time stamp can be adjusted to accumulate wait time 894 * prior to migration. 895 */ 896 schedstat_set(se->statistics.wait_start, delta); 897 return; 898 } 899 trace_sched_stat_wait(p, delta); 900 } 901 902 schedstat_set(se->statistics.wait_max, 903 max(schedstat_val(se->statistics.wait_max), delta)); 904 schedstat_inc(se->statistics.wait_count); 905 schedstat_add(se->statistics.wait_sum, delta); 906 schedstat_set(se->statistics.wait_start, 0); 907 } 908 909 static inline void 910 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 911 { 912 struct task_struct *tsk = NULL; 913 u64 sleep_start, block_start; 914 915 if (!schedstat_enabled()) 916 return; 917 918 sleep_start = schedstat_val(se->statistics.sleep_start); 919 block_start = schedstat_val(se->statistics.block_start); 920 921 if (entity_is_task(se)) 922 tsk = task_of(se); 923 924 if (sleep_start) { 925 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 926 927 if ((s64)delta < 0) 928 delta = 0; 929 930 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 931 schedstat_set(se->statistics.sleep_max, delta); 932 933 schedstat_set(se->statistics.sleep_start, 0); 934 schedstat_add(se->statistics.sum_sleep_runtime, delta); 935 936 if (tsk) { 937 account_scheduler_latency(tsk, delta >> 10, 1); 938 trace_sched_stat_sleep(tsk, delta); 939 } 940 } 941 if (block_start) { 942 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 943 944 if ((s64)delta < 0) 945 delta = 0; 946 947 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 948 schedstat_set(se->statistics.block_max, delta); 949 950 schedstat_set(se->statistics.block_start, 0); 951 schedstat_add(se->statistics.sum_sleep_runtime, delta); 952 953 if (tsk) { 954 if (tsk->in_iowait) { 955 schedstat_add(se->statistics.iowait_sum, delta); 956 schedstat_inc(se->statistics.iowait_count); 957 trace_sched_stat_iowait(tsk, delta); 958 } 959 960 trace_sched_stat_blocked(tsk, delta); 961 962 /* 963 * Blocking time is in units of nanosecs, so shift by 964 * 20 to get a milliseconds-range estimation of the 965 * amount of time that the task spent sleeping: 966 */ 967 if (unlikely(prof_on == SLEEP_PROFILING)) { 968 profile_hits(SLEEP_PROFILING, 969 (void *)get_wchan(tsk), 970 delta >> 20); 971 } 972 account_scheduler_latency(tsk, delta >> 10, 0); 973 } 974 } 975 } 976 977 /* 978 * Task is being enqueued - update stats: 979 */ 980 static inline void 981 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 982 { 983 if (!schedstat_enabled()) 984 return; 985 986 /* 987 * Are we enqueueing a waiting task? (for current tasks 988 * a dequeue/enqueue event is a NOP) 989 */ 990 if (se != cfs_rq->curr) 991 update_stats_wait_start(cfs_rq, se); 992 993 if (flags & ENQUEUE_WAKEUP) 994 update_stats_enqueue_sleeper(cfs_rq, se); 995 } 996 997 static inline void 998 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 999 { 1000 1001 if (!schedstat_enabled()) 1002 return; 1003 1004 /* 1005 * Mark the end of the wait period if dequeueing a 1006 * waiting task: 1007 */ 1008 if (se != cfs_rq->curr) 1009 update_stats_wait_end(cfs_rq, se); 1010 1011 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1012 struct task_struct *tsk = task_of(se); 1013 1014 if (tsk->state & TASK_INTERRUPTIBLE) 1015 schedstat_set(se->statistics.sleep_start, 1016 rq_clock(rq_of(cfs_rq))); 1017 if (tsk->state & TASK_UNINTERRUPTIBLE) 1018 schedstat_set(se->statistics.block_start, 1019 rq_clock(rq_of(cfs_rq))); 1020 } 1021 } 1022 1023 /* 1024 * We are picking a new current task - update its stats: 1025 */ 1026 static inline void 1027 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1028 { 1029 /* 1030 * We are starting a new run period: 1031 */ 1032 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1033 } 1034 1035 /************************************************** 1036 * Scheduling class queueing methods: 1037 */ 1038 1039 #ifdef CONFIG_NUMA_BALANCING 1040 /* 1041 * Approximate time to scan a full NUMA task in ms. The task scan period is 1042 * calculated based on the tasks virtual memory size and 1043 * numa_balancing_scan_size. 1044 */ 1045 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1046 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1047 1048 /* Portion of address space to scan in MB */ 1049 unsigned int sysctl_numa_balancing_scan_size = 256; 1050 1051 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1052 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1053 1054 struct numa_group { 1055 atomic_t refcount; 1056 1057 spinlock_t lock; /* nr_tasks, tasks */ 1058 int nr_tasks; 1059 pid_t gid; 1060 int active_nodes; 1061 1062 struct rcu_head rcu; 1063 unsigned long total_faults; 1064 unsigned long max_faults_cpu; 1065 /* 1066 * Faults_cpu is used to decide whether memory should move 1067 * towards the CPU. As a consequence, these stats are weighted 1068 * more by CPU use than by memory faults. 1069 */ 1070 unsigned long *faults_cpu; 1071 unsigned long faults[0]; 1072 }; 1073 1074 static inline unsigned long group_faults_priv(struct numa_group *ng); 1075 static inline unsigned long group_faults_shared(struct numa_group *ng); 1076 1077 static unsigned int task_nr_scan_windows(struct task_struct *p) 1078 { 1079 unsigned long rss = 0; 1080 unsigned long nr_scan_pages; 1081 1082 /* 1083 * Calculations based on RSS as non-present and empty pages are skipped 1084 * by the PTE scanner and NUMA hinting faults should be trapped based 1085 * on resident pages 1086 */ 1087 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1088 rss = get_mm_rss(p->mm); 1089 if (!rss) 1090 rss = nr_scan_pages; 1091 1092 rss = round_up(rss, nr_scan_pages); 1093 return rss / nr_scan_pages; 1094 } 1095 1096 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1097 #define MAX_SCAN_WINDOW 2560 1098 1099 static unsigned int task_scan_min(struct task_struct *p) 1100 { 1101 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1102 unsigned int scan, floor; 1103 unsigned int windows = 1; 1104 1105 if (scan_size < MAX_SCAN_WINDOW) 1106 windows = MAX_SCAN_WINDOW / scan_size; 1107 floor = 1000 / windows; 1108 1109 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1110 return max_t(unsigned int, floor, scan); 1111 } 1112 1113 static unsigned int task_scan_start(struct task_struct *p) 1114 { 1115 unsigned long smin = task_scan_min(p); 1116 unsigned long period = smin; 1117 1118 /* Scale the maximum scan period with the amount of shared memory. */ 1119 if (p->numa_group) { 1120 struct numa_group *ng = p->numa_group; 1121 unsigned long shared = group_faults_shared(ng); 1122 unsigned long private = group_faults_priv(ng); 1123 1124 period *= atomic_read(&ng->refcount); 1125 period *= shared + 1; 1126 period /= private + shared + 1; 1127 } 1128 1129 return max(smin, period); 1130 } 1131 1132 static unsigned int task_scan_max(struct task_struct *p) 1133 { 1134 unsigned long smin = task_scan_min(p); 1135 unsigned long smax; 1136 1137 /* Watch for min being lower than max due to floor calculations */ 1138 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1139 1140 /* Scale the maximum scan period with the amount of shared memory. */ 1141 if (p->numa_group) { 1142 struct numa_group *ng = p->numa_group; 1143 unsigned long shared = group_faults_shared(ng); 1144 unsigned long private = group_faults_priv(ng); 1145 unsigned long period = smax; 1146 1147 period *= atomic_read(&ng->refcount); 1148 period *= shared + 1; 1149 period /= private + shared + 1; 1150 1151 smax = max(smax, period); 1152 } 1153 1154 return max(smin, smax); 1155 } 1156 1157 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1158 { 1159 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1160 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1161 } 1162 1163 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1164 { 1165 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1166 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1167 } 1168 1169 /* Shared or private faults. */ 1170 #define NR_NUMA_HINT_FAULT_TYPES 2 1171 1172 /* Memory and CPU locality */ 1173 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1174 1175 /* Averaged statistics, and temporary buffers. */ 1176 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1177 1178 pid_t task_numa_group_id(struct task_struct *p) 1179 { 1180 return p->numa_group ? p->numa_group->gid : 0; 1181 } 1182 1183 /* 1184 * The averaged statistics, shared & private, memory & cpu, 1185 * occupy the first half of the array. The second half of the 1186 * array is for current counters, which are averaged into the 1187 * first set by task_numa_placement. 1188 */ 1189 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1190 { 1191 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1192 } 1193 1194 static inline unsigned long task_faults(struct task_struct *p, int nid) 1195 { 1196 if (!p->numa_faults) 1197 return 0; 1198 1199 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1200 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1201 } 1202 1203 static inline unsigned long group_faults(struct task_struct *p, int nid) 1204 { 1205 if (!p->numa_group) 1206 return 0; 1207 1208 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1209 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1210 } 1211 1212 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1213 { 1214 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1215 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1216 } 1217 1218 static inline unsigned long group_faults_priv(struct numa_group *ng) 1219 { 1220 unsigned long faults = 0; 1221 int node; 1222 1223 for_each_online_node(node) { 1224 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1225 } 1226 1227 return faults; 1228 } 1229 1230 static inline unsigned long group_faults_shared(struct numa_group *ng) 1231 { 1232 unsigned long faults = 0; 1233 int node; 1234 1235 for_each_online_node(node) { 1236 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1237 } 1238 1239 return faults; 1240 } 1241 1242 /* 1243 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1244 * considered part of a numa group's pseudo-interleaving set. Migrations 1245 * between these nodes are slowed down, to allow things to settle down. 1246 */ 1247 #define ACTIVE_NODE_FRACTION 3 1248 1249 static bool numa_is_active_node(int nid, struct numa_group *ng) 1250 { 1251 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1252 } 1253 1254 /* Handle placement on systems where not all nodes are directly connected. */ 1255 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1256 int maxdist, bool task) 1257 { 1258 unsigned long score = 0; 1259 int node; 1260 1261 /* 1262 * All nodes are directly connected, and the same distance 1263 * from each other. No need for fancy placement algorithms. 1264 */ 1265 if (sched_numa_topology_type == NUMA_DIRECT) 1266 return 0; 1267 1268 /* 1269 * This code is called for each node, introducing N^2 complexity, 1270 * which should be ok given the number of nodes rarely exceeds 8. 1271 */ 1272 for_each_online_node(node) { 1273 unsigned long faults; 1274 int dist = node_distance(nid, node); 1275 1276 /* 1277 * The furthest away nodes in the system are not interesting 1278 * for placement; nid was already counted. 1279 */ 1280 if (dist == sched_max_numa_distance || node == nid) 1281 continue; 1282 1283 /* 1284 * On systems with a backplane NUMA topology, compare groups 1285 * of nodes, and move tasks towards the group with the most 1286 * memory accesses. When comparing two nodes at distance 1287 * "hoplimit", only nodes closer by than "hoplimit" are part 1288 * of each group. Skip other nodes. 1289 */ 1290 if (sched_numa_topology_type == NUMA_BACKPLANE && 1291 dist > maxdist) 1292 continue; 1293 1294 /* Add up the faults from nearby nodes. */ 1295 if (task) 1296 faults = task_faults(p, node); 1297 else 1298 faults = group_faults(p, node); 1299 1300 /* 1301 * On systems with a glueless mesh NUMA topology, there are 1302 * no fixed "groups of nodes". Instead, nodes that are not 1303 * directly connected bounce traffic through intermediate 1304 * nodes; a numa_group can occupy any set of nodes. 1305 * The further away a node is, the less the faults count. 1306 * This seems to result in good task placement. 1307 */ 1308 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1309 faults *= (sched_max_numa_distance - dist); 1310 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1311 } 1312 1313 score += faults; 1314 } 1315 1316 return score; 1317 } 1318 1319 /* 1320 * These return the fraction of accesses done by a particular task, or 1321 * task group, on a particular numa node. The group weight is given a 1322 * larger multiplier, in order to group tasks together that are almost 1323 * evenly spread out between numa nodes. 1324 */ 1325 static inline unsigned long task_weight(struct task_struct *p, int nid, 1326 int dist) 1327 { 1328 unsigned long faults, total_faults; 1329 1330 if (!p->numa_faults) 1331 return 0; 1332 1333 total_faults = p->total_numa_faults; 1334 1335 if (!total_faults) 1336 return 0; 1337 1338 faults = task_faults(p, nid); 1339 faults += score_nearby_nodes(p, nid, dist, true); 1340 1341 return 1000 * faults / total_faults; 1342 } 1343 1344 static inline unsigned long group_weight(struct task_struct *p, int nid, 1345 int dist) 1346 { 1347 unsigned long faults, total_faults; 1348 1349 if (!p->numa_group) 1350 return 0; 1351 1352 total_faults = p->numa_group->total_faults; 1353 1354 if (!total_faults) 1355 return 0; 1356 1357 faults = group_faults(p, nid); 1358 faults += score_nearby_nodes(p, nid, dist, false); 1359 1360 return 1000 * faults / total_faults; 1361 } 1362 1363 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1364 int src_nid, int dst_cpu) 1365 { 1366 struct numa_group *ng = p->numa_group; 1367 int dst_nid = cpu_to_node(dst_cpu); 1368 int last_cpupid, this_cpupid; 1369 1370 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1371 1372 /* 1373 * Multi-stage node selection is used in conjunction with a periodic 1374 * migration fault to build a temporal task<->page relation. By using 1375 * a two-stage filter we remove short/unlikely relations. 1376 * 1377 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1378 * a task's usage of a particular page (n_p) per total usage of this 1379 * page (n_t) (in a given time-span) to a probability. 1380 * 1381 * Our periodic faults will sample this probability and getting the 1382 * same result twice in a row, given these samples are fully 1383 * independent, is then given by P(n)^2, provided our sample period 1384 * is sufficiently short compared to the usage pattern. 1385 * 1386 * This quadric squishes small probabilities, making it less likely we 1387 * act on an unlikely task<->page relation. 1388 */ 1389 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1390 if (!cpupid_pid_unset(last_cpupid) && 1391 cpupid_to_nid(last_cpupid) != dst_nid) 1392 return false; 1393 1394 /* Always allow migrate on private faults */ 1395 if (cpupid_match_pid(p, last_cpupid)) 1396 return true; 1397 1398 /* A shared fault, but p->numa_group has not been set up yet. */ 1399 if (!ng) 1400 return true; 1401 1402 /* 1403 * Destination node is much more heavily used than the source 1404 * node? Allow migration. 1405 */ 1406 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1407 ACTIVE_NODE_FRACTION) 1408 return true; 1409 1410 /* 1411 * Distribute memory according to CPU & memory use on each node, 1412 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1413 * 1414 * faults_cpu(dst) 3 faults_cpu(src) 1415 * --------------- * - > --------------- 1416 * faults_mem(dst) 4 faults_mem(src) 1417 */ 1418 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1419 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1420 } 1421 1422 static unsigned long weighted_cpuload(struct rq *rq); 1423 static unsigned long source_load(int cpu, int type); 1424 static unsigned long target_load(int cpu, int type); 1425 static unsigned long capacity_of(int cpu); 1426 1427 /* Cached statistics for all CPUs within a node */ 1428 struct numa_stats { 1429 unsigned long nr_running; 1430 unsigned long load; 1431 1432 /* Total compute capacity of CPUs on a node */ 1433 unsigned long compute_capacity; 1434 1435 /* Approximate capacity in terms of runnable tasks on a node */ 1436 unsigned long task_capacity; 1437 int has_free_capacity; 1438 }; 1439 1440 /* 1441 * XXX borrowed from update_sg_lb_stats 1442 */ 1443 static void update_numa_stats(struct numa_stats *ns, int nid) 1444 { 1445 int smt, cpu, cpus = 0; 1446 unsigned long capacity; 1447 1448 memset(ns, 0, sizeof(*ns)); 1449 for_each_cpu(cpu, cpumask_of_node(nid)) { 1450 struct rq *rq = cpu_rq(cpu); 1451 1452 ns->nr_running += rq->nr_running; 1453 ns->load += weighted_cpuload(rq); 1454 ns->compute_capacity += capacity_of(cpu); 1455 1456 cpus++; 1457 } 1458 1459 /* 1460 * If we raced with hotplug and there are no CPUs left in our mask 1461 * the @ns structure is NULL'ed and task_numa_compare() will 1462 * not find this node attractive. 1463 * 1464 * We'll either bail at !has_free_capacity, or we'll detect a huge 1465 * imbalance and bail there. 1466 */ 1467 if (!cpus) 1468 return; 1469 1470 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1471 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1472 capacity = cpus / smt; /* cores */ 1473 1474 ns->task_capacity = min_t(unsigned, capacity, 1475 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1476 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1477 } 1478 1479 struct task_numa_env { 1480 struct task_struct *p; 1481 1482 int src_cpu, src_nid; 1483 int dst_cpu, dst_nid; 1484 1485 struct numa_stats src_stats, dst_stats; 1486 1487 int imbalance_pct; 1488 int dist; 1489 1490 struct task_struct *best_task; 1491 long best_imp; 1492 int best_cpu; 1493 }; 1494 1495 static void task_numa_assign(struct task_numa_env *env, 1496 struct task_struct *p, long imp) 1497 { 1498 if (env->best_task) 1499 put_task_struct(env->best_task); 1500 if (p) 1501 get_task_struct(p); 1502 1503 env->best_task = p; 1504 env->best_imp = imp; 1505 env->best_cpu = env->dst_cpu; 1506 } 1507 1508 static bool load_too_imbalanced(long src_load, long dst_load, 1509 struct task_numa_env *env) 1510 { 1511 long imb, old_imb; 1512 long orig_src_load, orig_dst_load; 1513 long src_capacity, dst_capacity; 1514 1515 /* 1516 * The load is corrected for the CPU capacity available on each node. 1517 * 1518 * src_load dst_load 1519 * ------------ vs --------- 1520 * src_capacity dst_capacity 1521 */ 1522 src_capacity = env->src_stats.compute_capacity; 1523 dst_capacity = env->dst_stats.compute_capacity; 1524 1525 /* We care about the slope of the imbalance, not the direction. */ 1526 if (dst_load < src_load) 1527 swap(dst_load, src_load); 1528 1529 /* Is the difference below the threshold? */ 1530 imb = dst_load * src_capacity * 100 - 1531 src_load * dst_capacity * env->imbalance_pct; 1532 if (imb <= 0) 1533 return false; 1534 1535 /* 1536 * The imbalance is above the allowed threshold. 1537 * Compare it with the old imbalance. 1538 */ 1539 orig_src_load = env->src_stats.load; 1540 orig_dst_load = env->dst_stats.load; 1541 1542 if (orig_dst_load < orig_src_load) 1543 swap(orig_dst_load, orig_src_load); 1544 1545 old_imb = orig_dst_load * src_capacity * 100 - 1546 orig_src_load * dst_capacity * env->imbalance_pct; 1547 1548 /* Would this change make things worse? */ 1549 return (imb > old_imb); 1550 } 1551 1552 /* 1553 * This checks if the overall compute and NUMA accesses of the system would 1554 * be improved if the source tasks was migrated to the target dst_cpu taking 1555 * into account that it might be best if task running on the dst_cpu should 1556 * be exchanged with the source task 1557 */ 1558 static void task_numa_compare(struct task_numa_env *env, 1559 long taskimp, long groupimp) 1560 { 1561 struct rq *src_rq = cpu_rq(env->src_cpu); 1562 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1563 struct task_struct *cur; 1564 long src_load, dst_load; 1565 long load; 1566 long imp = env->p->numa_group ? groupimp : taskimp; 1567 long moveimp = imp; 1568 int dist = env->dist; 1569 1570 rcu_read_lock(); 1571 cur = task_rcu_dereference(&dst_rq->curr); 1572 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1573 cur = NULL; 1574 1575 /* 1576 * Because we have preemption enabled we can get migrated around and 1577 * end try selecting ourselves (current == env->p) as a swap candidate. 1578 */ 1579 if (cur == env->p) 1580 goto unlock; 1581 1582 /* 1583 * "imp" is the fault differential for the source task between the 1584 * source and destination node. Calculate the total differential for 1585 * the source task and potential destination task. The more negative 1586 * the value is, the more rmeote accesses that would be expected to 1587 * be incurred if the tasks were swapped. 1588 */ 1589 if (cur) { 1590 /* Skip this swap candidate if cannot move to the source cpu */ 1591 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1592 goto unlock; 1593 1594 /* 1595 * If dst and source tasks are in the same NUMA group, or not 1596 * in any group then look only at task weights. 1597 */ 1598 if (cur->numa_group == env->p->numa_group) { 1599 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1600 task_weight(cur, env->dst_nid, dist); 1601 /* 1602 * Add some hysteresis to prevent swapping the 1603 * tasks within a group over tiny differences. 1604 */ 1605 if (cur->numa_group) 1606 imp -= imp/16; 1607 } else { 1608 /* 1609 * Compare the group weights. If a task is all by 1610 * itself (not part of a group), use the task weight 1611 * instead. 1612 */ 1613 if (cur->numa_group) 1614 imp += group_weight(cur, env->src_nid, dist) - 1615 group_weight(cur, env->dst_nid, dist); 1616 else 1617 imp += task_weight(cur, env->src_nid, dist) - 1618 task_weight(cur, env->dst_nid, dist); 1619 } 1620 } 1621 1622 if (imp <= env->best_imp && moveimp <= env->best_imp) 1623 goto unlock; 1624 1625 if (!cur) { 1626 /* Is there capacity at our destination? */ 1627 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1628 !env->dst_stats.has_free_capacity) 1629 goto unlock; 1630 1631 goto balance; 1632 } 1633 1634 /* Balance doesn't matter much if we're running a task per cpu */ 1635 if (imp > env->best_imp && src_rq->nr_running == 1 && 1636 dst_rq->nr_running == 1) 1637 goto assign; 1638 1639 /* 1640 * In the overloaded case, try and keep the load balanced. 1641 */ 1642 balance: 1643 load = task_h_load(env->p); 1644 dst_load = env->dst_stats.load + load; 1645 src_load = env->src_stats.load - load; 1646 1647 if (moveimp > imp && moveimp > env->best_imp) { 1648 /* 1649 * If the improvement from just moving env->p direction is 1650 * better than swapping tasks around, check if a move is 1651 * possible. Store a slightly smaller score than moveimp, 1652 * so an actually idle CPU will win. 1653 */ 1654 if (!load_too_imbalanced(src_load, dst_load, env)) { 1655 imp = moveimp - 1; 1656 cur = NULL; 1657 goto assign; 1658 } 1659 } 1660 1661 if (imp <= env->best_imp) 1662 goto unlock; 1663 1664 if (cur) { 1665 load = task_h_load(cur); 1666 dst_load -= load; 1667 src_load += load; 1668 } 1669 1670 if (load_too_imbalanced(src_load, dst_load, env)) 1671 goto unlock; 1672 1673 /* 1674 * One idle CPU per node is evaluated for a task numa move. 1675 * Call select_idle_sibling to maybe find a better one. 1676 */ 1677 if (!cur) { 1678 /* 1679 * select_idle_siblings() uses an per-cpu cpumask that 1680 * can be used from IRQ context. 1681 */ 1682 local_irq_disable(); 1683 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1684 env->dst_cpu); 1685 local_irq_enable(); 1686 } 1687 1688 assign: 1689 task_numa_assign(env, cur, imp); 1690 unlock: 1691 rcu_read_unlock(); 1692 } 1693 1694 static void task_numa_find_cpu(struct task_numa_env *env, 1695 long taskimp, long groupimp) 1696 { 1697 int cpu; 1698 1699 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1700 /* Skip this CPU if the source task cannot migrate */ 1701 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1702 continue; 1703 1704 env->dst_cpu = cpu; 1705 task_numa_compare(env, taskimp, groupimp); 1706 } 1707 } 1708 1709 /* Only move tasks to a NUMA node less busy than the current node. */ 1710 static bool numa_has_capacity(struct task_numa_env *env) 1711 { 1712 struct numa_stats *src = &env->src_stats; 1713 struct numa_stats *dst = &env->dst_stats; 1714 1715 if (src->has_free_capacity && !dst->has_free_capacity) 1716 return false; 1717 1718 /* 1719 * Only consider a task move if the source has a higher load 1720 * than the destination, corrected for CPU capacity on each node. 1721 * 1722 * src->load dst->load 1723 * --------------------- vs --------------------- 1724 * src->compute_capacity dst->compute_capacity 1725 */ 1726 if (src->load * dst->compute_capacity * env->imbalance_pct > 1727 1728 dst->load * src->compute_capacity * 100) 1729 return true; 1730 1731 return false; 1732 } 1733 1734 static int task_numa_migrate(struct task_struct *p) 1735 { 1736 struct task_numa_env env = { 1737 .p = p, 1738 1739 .src_cpu = task_cpu(p), 1740 .src_nid = task_node(p), 1741 1742 .imbalance_pct = 112, 1743 1744 .best_task = NULL, 1745 .best_imp = 0, 1746 .best_cpu = -1, 1747 }; 1748 struct sched_domain *sd; 1749 unsigned long taskweight, groupweight; 1750 int nid, ret, dist; 1751 long taskimp, groupimp; 1752 1753 /* 1754 * Pick the lowest SD_NUMA domain, as that would have the smallest 1755 * imbalance and would be the first to start moving tasks about. 1756 * 1757 * And we want to avoid any moving of tasks about, as that would create 1758 * random movement of tasks -- counter the numa conditions we're trying 1759 * to satisfy here. 1760 */ 1761 rcu_read_lock(); 1762 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1763 if (sd) 1764 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1765 rcu_read_unlock(); 1766 1767 /* 1768 * Cpusets can break the scheduler domain tree into smaller 1769 * balance domains, some of which do not cross NUMA boundaries. 1770 * Tasks that are "trapped" in such domains cannot be migrated 1771 * elsewhere, so there is no point in (re)trying. 1772 */ 1773 if (unlikely(!sd)) { 1774 p->numa_preferred_nid = task_node(p); 1775 return -EINVAL; 1776 } 1777 1778 env.dst_nid = p->numa_preferred_nid; 1779 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1780 taskweight = task_weight(p, env.src_nid, dist); 1781 groupweight = group_weight(p, env.src_nid, dist); 1782 update_numa_stats(&env.src_stats, env.src_nid); 1783 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1784 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1785 update_numa_stats(&env.dst_stats, env.dst_nid); 1786 1787 /* Try to find a spot on the preferred nid. */ 1788 if (numa_has_capacity(&env)) 1789 task_numa_find_cpu(&env, taskimp, groupimp); 1790 1791 /* 1792 * Look at other nodes in these cases: 1793 * - there is no space available on the preferred_nid 1794 * - the task is part of a numa_group that is interleaved across 1795 * multiple NUMA nodes; in order to better consolidate the group, 1796 * we need to check other locations. 1797 */ 1798 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1799 for_each_online_node(nid) { 1800 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1801 continue; 1802 1803 dist = node_distance(env.src_nid, env.dst_nid); 1804 if (sched_numa_topology_type == NUMA_BACKPLANE && 1805 dist != env.dist) { 1806 taskweight = task_weight(p, env.src_nid, dist); 1807 groupweight = group_weight(p, env.src_nid, dist); 1808 } 1809 1810 /* Only consider nodes where both task and groups benefit */ 1811 taskimp = task_weight(p, nid, dist) - taskweight; 1812 groupimp = group_weight(p, nid, dist) - groupweight; 1813 if (taskimp < 0 && groupimp < 0) 1814 continue; 1815 1816 env.dist = dist; 1817 env.dst_nid = nid; 1818 update_numa_stats(&env.dst_stats, env.dst_nid); 1819 if (numa_has_capacity(&env)) 1820 task_numa_find_cpu(&env, taskimp, groupimp); 1821 } 1822 } 1823 1824 /* 1825 * If the task is part of a workload that spans multiple NUMA nodes, 1826 * and is migrating into one of the workload's active nodes, remember 1827 * this node as the task's preferred numa node, so the workload can 1828 * settle down. 1829 * A task that migrated to a second choice node will be better off 1830 * trying for a better one later. Do not set the preferred node here. 1831 */ 1832 if (p->numa_group) { 1833 struct numa_group *ng = p->numa_group; 1834 1835 if (env.best_cpu == -1) 1836 nid = env.src_nid; 1837 else 1838 nid = env.dst_nid; 1839 1840 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1841 sched_setnuma(p, env.dst_nid); 1842 } 1843 1844 /* No better CPU than the current one was found. */ 1845 if (env.best_cpu == -1) 1846 return -EAGAIN; 1847 1848 /* 1849 * Reset the scan period if the task is being rescheduled on an 1850 * alternative node to recheck if the tasks is now properly placed. 1851 */ 1852 p->numa_scan_period = task_scan_start(p); 1853 1854 if (env.best_task == NULL) { 1855 ret = migrate_task_to(p, env.best_cpu); 1856 if (ret != 0) 1857 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1858 return ret; 1859 } 1860 1861 ret = migrate_swap(p, env.best_task); 1862 if (ret != 0) 1863 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1864 put_task_struct(env.best_task); 1865 return ret; 1866 } 1867 1868 /* Attempt to migrate a task to a CPU on the preferred node. */ 1869 static void numa_migrate_preferred(struct task_struct *p) 1870 { 1871 unsigned long interval = HZ; 1872 1873 /* This task has no NUMA fault statistics yet */ 1874 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1875 return; 1876 1877 /* Periodically retry migrating the task to the preferred node */ 1878 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1879 p->numa_migrate_retry = jiffies + interval; 1880 1881 /* Success if task is already running on preferred CPU */ 1882 if (task_node(p) == p->numa_preferred_nid) 1883 return; 1884 1885 /* Otherwise, try migrate to a CPU on the preferred node */ 1886 task_numa_migrate(p); 1887 } 1888 1889 /* 1890 * Find out how many nodes on the workload is actively running on. Do this by 1891 * tracking the nodes from which NUMA hinting faults are triggered. This can 1892 * be different from the set of nodes where the workload's memory is currently 1893 * located. 1894 */ 1895 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1896 { 1897 unsigned long faults, max_faults = 0; 1898 int nid, active_nodes = 0; 1899 1900 for_each_online_node(nid) { 1901 faults = group_faults_cpu(numa_group, nid); 1902 if (faults > max_faults) 1903 max_faults = faults; 1904 } 1905 1906 for_each_online_node(nid) { 1907 faults = group_faults_cpu(numa_group, nid); 1908 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1909 active_nodes++; 1910 } 1911 1912 numa_group->max_faults_cpu = max_faults; 1913 numa_group->active_nodes = active_nodes; 1914 } 1915 1916 /* 1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1918 * increments. The more local the fault statistics are, the higher the scan 1919 * period will be for the next scan window. If local/(local+remote) ratio is 1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1921 * the scan period will decrease. Aim for 70% local accesses. 1922 */ 1923 #define NUMA_PERIOD_SLOTS 10 1924 #define NUMA_PERIOD_THRESHOLD 7 1925 1926 /* 1927 * Increase the scan period (slow down scanning) if the majority of 1928 * our memory is already on our local node, or if the majority of 1929 * the page accesses are shared with other processes. 1930 * Otherwise, decrease the scan period. 1931 */ 1932 static void update_task_scan_period(struct task_struct *p, 1933 unsigned long shared, unsigned long private) 1934 { 1935 unsigned int period_slot; 1936 int lr_ratio, ps_ratio; 1937 int diff; 1938 1939 unsigned long remote = p->numa_faults_locality[0]; 1940 unsigned long local = p->numa_faults_locality[1]; 1941 1942 /* 1943 * If there were no record hinting faults then either the task is 1944 * completely idle or all activity is areas that are not of interest 1945 * to automatic numa balancing. Related to that, if there were failed 1946 * migration then it implies we are migrating too quickly or the local 1947 * node is overloaded. In either case, scan slower 1948 */ 1949 if (local + shared == 0 || p->numa_faults_locality[2]) { 1950 p->numa_scan_period = min(p->numa_scan_period_max, 1951 p->numa_scan_period << 1); 1952 1953 p->mm->numa_next_scan = jiffies + 1954 msecs_to_jiffies(p->numa_scan_period); 1955 1956 return; 1957 } 1958 1959 /* 1960 * Prepare to scale scan period relative to the current period. 1961 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1962 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1963 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1964 */ 1965 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1966 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1967 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1968 1969 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1970 /* 1971 * Most memory accesses are local. There is no need to 1972 * do fast NUMA scanning, since memory is already local. 1973 */ 1974 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1975 if (!slot) 1976 slot = 1; 1977 diff = slot * period_slot; 1978 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1979 /* 1980 * Most memory accesses are shared with other tasks. 1981 * There is no point in continuing fast NUMA scanning, 1982 * since other tasks may just move the memory elsewhere. 1983 */ 1984 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1985 if (!slot) 1986 slot = 1; 1987 diff = slot * period_slot; 1988 } else { 1989 /* 1990 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1991 * yet they are not on the local NUMA node. Speed up 1992 * NUMA scanning to get the memory moved over. 1993 */ 1994 int ratio = max(lr_ratio, ps_ratio); 1995 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1996 } 1997 1998 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1999 task_scan_min(p), task_scan_max(p)); 2000 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2001 } 2002 2003 /* 2004 * Get the fraction of time the task has been running since the last 2005 * NUMA placement cycle. The scheduler keeps similar statistics, but 2006 * decays those on a 32ms period, which is orders of magnitude off 2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2008 * stats only if the task is so new there are no NUMA statistics yet. 2009 */ 2010 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2011 { 2012 u64 runtime, delta, now; 2013 /* Use the start of this time slice to avoid calculations. */ 2014 now = p->se.exec_start; 2015 runtime = p->se.sum_exec_runtime; 2016 2017 if (p->last_task_numa_placement) { 2018 delta = runtime - p->last_sum_exec_runtime; 2019 *period = now - p->last_task_numa_placement; 2020 } else { 2021 delta = p->se.avg.load_sum; 2022 *period = LOAD_AVG_MAX; 2023 } 2024 2025 p->last_sum_exec_runtime = runtime; 2026 p->last_task_numa_placement = now; 2027 2028 return delta; 2029 } 2030 2031 /* 2032 * Determine the preferred nid for a task in a numa_group. This needs to 2033 * be done in a way that produces consistent results with group_weight, 2034 * otherwise workloads might not converge. 2035 */ 2036 static int preferred_group_nid(struct task_struct *p, int nid) 2037 { 2038 nodemask_t nodes; 2039 int dist; 2040 2041 /* Direct connections between all NUMA nodes. */ 2042 if (sched_numa_topology_type == NUMA_DIRECT) 2043 return nid; 2044 2045 /* 2046 * On a system with glueless mesh NUMA topology, group_weight 2047 * scores nodes according to the number of NUMA hinting faults on 2048 * both the node itself, and on nearby nodes. 2049 */ 2050 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2051 unsigned long score, max_score = 0; 2052 int node, max_node = nid; 2053 2054 dist = sched_max_numa_distance; 2055 2056 for_each_online_node(node) { 2057 score = group_weight(p, node, dist); 2058 if (score > max_score) { 2059 max_score = score; 2060 max_node = node; 2061 } 2062 } 2063 return max_node; 2064 } 2065 2066 /* 2067 * Finding the preferred nid in a system with NUMA backplane 2068 * interconnect topology is more involved. The goal is to locate 2069 * tasks from numa_groups near each other in the system, and 2070 * untangle workloads from different sides of the system. This requires 2071 * searching down the hierarchy of node groups, recursively searching 2072 * inside the highest scoring group of nodes. The nodemask tricks 2073 * keep the complexity of the search down. 2074 */ 2075 nodes = node_online_map; 2076 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2077 unsigned long max_faults = 0; 2078 nodemask_t max_group = NODE_MASK_NONE; 2079 int a, b; 2080 2081 /* Are there nodes at this distance from each other? */ 2082 if (!find_numa_distance(dist)) 2083 continue; 2084 2085 for_each_node_mask(a, nodes) { 2086 unsigned long faults = 0; 2087 nodemask_t this_group; 2088 nodes_clear(this_group); 2089 2090 /* Sum group's NUMA faults; includes a==b case. */ 2091 for_each_node_mask(b, nodes) { 2092 if (node_distance(a, b) < dist) { 2093 faults += group_faults(p, b); 2094 node_set(b, this_group); 2095 node_clear(b, nodes); 2096 } 2097 } 2098 2099 /* Remember the top group. */ 2100 if (faults > max_faults) { 2101 max_faults = faults; 2102 max_group = this_group; 2103 /* 2104 * subtle: at the smallest distance there is 2105 * just one node left in each "group", the 2106 * winner is the preferred nid. 2107 */ 2108 nid = a; 2109 } 2110 } 2111 /* Next round, evaluate the nodes within max_group. */ 2112 if (!max_faults) 2113 break; 2114 nodes = max_group; 2115 } 2116 return nid; 2117 } 2118 2119 static void task_numa_placement(struct task_struct *p) 2120 { 2121 int seq, nid, max_nid = -1, max_group_nid = -1; 2122 unsigned long max_faults = 0, max_group_faults = 0; 2123 unsigned long fault_types[2] = { 0, 0 }; 2124 unsigned long total_faults; 2125 u64 runtime, period; 2126 spinlock_t *group_lock = NULL; 2127 2128 /* 2129 * The p->mm->numa_scan_seq field gets updated without 2130 * exclusive access. Use READ_ONCE() here to ensure 2131 * that the field is read in a single access: 2132 */ 2133 seq = READ_ONCE(p->mm->numa_scan_seq); 2134 if (p->numa_scan_seq == seq) 2135 return; 2136 p->numa_scan_seq = seq; 2137 p->numa_scan_period_max = task_scan_max(p); 2138 2139 total_faults = p->numa_faults_locality[0] + 2140 p->numa_faults_locality[1]; 2141 runtime = numa_get_avg_runtime(p, &period); 2142 2143 /* If the task is part of a group prevent parallel updates to group stats */ 2144 if (p->numa_group) { 2145 group_lock = &p->numa_group->lock; 2146 spin_lock_irq(group_lock); 2147 } 2148 2149 /* Find the node with the highest number of faults */ 2150 for_each_online_node(nid) { 2151 /* Keep track of the offsets in numa_faults array */ 2152 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2153 unsigned long faults = 0, group_faults = 0; 2154 int priv; 2155 2156 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2157 long diff, f_diff, f_weight; 2158 2159 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2160 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2161 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2162 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2163 2164 /* Decay existing window, copy faults since last scan */ 2165 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2166 fault_types[priv] += p->numa_faults[membuf_idx]; 2167 p->numa_faults[membuf_idx] = 0; 2168 2169 /* 2170 * Normalize the faults_from, so all tasks in a group 2171 * count according to CPU use, instead of by the raw 2172 * number of faults. Tasks with little runtime have 2173 * little over-all impact on throughput, and thus their 2174 * faults are less important. 2175 */ 2176 f_weight = div64_u64(runtime << 16, period + 1); 2177 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2178 (total_faults + 1); 2179 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2180 p->numa_faults[cpubuf_idx] = 0; 2181 2182 p->numa_faults[mem_idx] += diff; 2183 p->numa_faults[cpu_idx] += f_diff; 2184 faults += p->numa_faults[mem_idx]; 2185 p->total_numa_faults += diff; 2186 if (p->numa_group) { 2187 /* 2188 * safe because we can only change our own group 2189 * 2190 * mem_idx represents the offset for a given 2191 * nid and priv in a specific region because it 2192 * is at the beginning of the numa_faults array. 2193 */ 2194 p->numa_group->faults[mem_idx] += diff; 2195 p->numa_group->faults_cpu[mem_idx] += f_diff; 2196 p->numa_group->total_faults += diff; 2197 group_faults += p->numa_group->faults[mem_idx]; 2198 } 2199 } 2200 2201 if (faults > max_faults) { 2202 max_faults = faults; 2203 max_nid = nid; 2204 } 2205 2206 if (group_faults > max_group_faults) { 2207 max_group_faults = group_faults; 2208 max_group_nid = nid; 2209 } 2210 } 2211 2212 update_task_scan_period(p, fault_types[0], fault_types[1]); 2213 2214 if (p->numa_group) { 2215 numa_group_count_active_nodes(p->numa_group); 2216 spin_unlock_irq(group_lock); 2217 max_nid = preferred_group_nid(p, max_group_nid); 2218 } 2219 2220 if (max_faults) { 2221 /* Set the new preferred node */ 2222 if (max_nid != p->numa_preferred_nid) 2223 sched_setnuma(p, max_nid); 2224 2225 if (task_node(p) != p->numa_preferred_nid) 2226 numa_migrate_preferred(p); 2227 } 2228 } 2229 2230 static inline int get_numa_group(struct numa_group *grp) 2231 { 2232 return atomic_inc_not_zero(&grp->refcount); 2233 } 2234 2235 static inline void put_numa_group(struct numa_group *grp) 2236 { 2237 if (atomic_dec_and_test(&grp->refcount)) 2238 kfree_rcu(grp, rcu); 2239 } 2240 2241 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2242 int *priv) 2243 { 2244 struct numa_group *grp, *my_grp; 2245 struct task_struct *tsk; 2246 bool join = false; 2247 int cpu = cpupid_to_cpu(cpupid); 2248 int i; 2249 2250 if (unlikely(!p->numa_group)) { 2251 unsigned int size = sizeof(struct numa_group) + 2252 4*nr_node_ids*sizeof(unsigned long); 2253 2254 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2255 if (!grp) 2256 return; 2257 2258 atomic_set(&grp->refcount, 1); 2259 grp->active_nodes = 1; 2260 grp->max_faults_cpu = 0; 2261 spin_lock_init(&grp->lock); 2262 grp->gid = p->pid; 2263 /* Second half of the array tracks nids where faults happen */ 2264 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2265 nr_node_ids; 2266 2267 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2268 grp->faults[i] = p->numa_faults[i]; 2269 2270 grp->total_faults = p->total_numa_faults; 2271 2272 grp->nr_tasks++; 2273 rcu_assign_pointer(p->numa_group, grp); 2274 } 2275 2276 rcu_read_lock(); 2277 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2278 2279 if (!cpupid_match_pid(tsk, cpupid)) 2280 goto no_join; 2281 2282 grp = rcu_dereference(tsk->numa_group); 2283 if (!grp) 2284 goto no_join; 2285 2286 my_grp = p->numa_group; 2287 if (grp == my_grp) 2288 goto no_join; 2289 2290 /* 2291 * Only join the other group if its bigger; if we're the bigger group, 2292 * the other task will join us. 2293 */ 2294 if (my_grp->nr_tasks > grp->nr_tasks) 2295 goto no_join; 2296 2297 /* 2298 * Tie-break on the grp address. 2299 */ 2300 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2301 goto no_join; 2302 2303 /* Always join threads in the same process. */ 2304 if (tsk->mm == current->mm) 2305 join = true; 2306 2307 /* Simple filter to avoid false positives due to PID collisions */ 2308 if (flags & TNF_SHARED) 2309 join = true; 2310 2311 /* Update priv based on whether false sharing was detected */ 2312 *priv = !join; 2313 2314 if (join && !get_numa_group(grp)) 2315 goto no_join; 2316 2317 rcu_read_unlock(); 2318 2319 if (!join) 2320 return; 2321 2322 BUG_ON(irqs_disabled()); 2323 double_lock_irq(&my_grp->lock, &grp->lock); 2324 2325 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2326 my_grp->faults[i] -= p->numa_faults[i]; 2327 grp->faults[i] += p->numa_faults[i]; 2328 } 2329 my_grp->total_faults -= p->total_numa_faults; 2330 grp->total_faults += p->total_numa_faults; 2331 2332 my_grp->nr_tasks--; 2333 grp->nr_tasks++; 2334 2335 spin_unlock(&my_grp->lock); 2336 spin_unlock_irq(&grp->lock); 2337 2338 rcu_assign_pointer(p->numa_group, grp); 2339 2340 put_numa_group(my_grp); 2341 return; 2342 2343 no_join: 2344 rcu_read_unlock(); 2345 return; 2346 } 2347 2348 void task_numa_free(struct task_struct *p) 2349 { 2350 struct numa_group *grp = p->numa_group; 2351 void *numa_faults = p->numa_faults; 2352 unsigned long flags; 2353 int i; 2354 2355 if (grp) { 2356 spin_lock_irqsave(&grp->lock, flags); 2357 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2358 grp->faults[i] -= p->numa_faults[i]; 2359 grp->total_faults -= p->total_numa_faults; 2360 2361 grp->nr_tasks--; 2362 spin_unlock_irqrestore(&grp->lock, flags); 2363 RCU_INIT_POINTER(p->numa_group, NULL); 2364 put_numa_group(grp); 2365 } 2366 2367 p->numa_faults = NULL; 2368 kfree(numa_faults); 2369 } 2370 2371 /* 2372 * Got a PROT_NONE fault for a page on @node. 2373 */ 2374 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2375 { 2376 struct task_struct *p = current; 2377 bool migrated = flags & TNF_MIGRATED; 2378 int cpu_node = task_node(current); 2379 int local = !!(flags & TNF_FAULT_LOCAL); 2380 struct numa_group *ng; 2381 int priv; 2382 2383 if (!static_branch_likely(&sched_numa_balancing)) 2384 return; 2385 2386 /* for example, ksmd faulting in a user's mm */ 2387 if (!p->mm) 2388 return; 2389 2390 /* Allocate buffer to track faults on a per-node basis */ 2391 if (unlikely(!p->numa_faults)) { 2392 int size = sizeof(*p->numa_faults) * 2393 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2394 2395 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2396 if (!p->numa_faults) 2397 return; 2398 2399 p->total_numa_faults = 0; 2400 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2401 } 2402 2403 /* 2404 * First accesses are treated as private, otherwise consider accesses 2405 * to be private if the accessing pid has not changed 2406 */ 2407 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2408 priv = 1; 2409 } else { 2410 priv = cpupid_match_pid(p, last_cpupid); 2411 if (!priv && !(flags & TNF_NO_GROUP)) 2412 task_numa_group(p, last_cpupid, flags, &priv); 2413 } 2414 2415 /* 2416 * If a workload spans multiple NUMA nodes, a shared fault that 2417 * occurs wholly within the set of nodes that the workload is 2418 * actively using should be counted as local. This allows the 2419 * scan rate to slow down when a workload has settled down. 2420 */ 2421 ng = p->numa_group; 2422 if (!priv && !local && ng && ng->active_nodes > 1 && 2423 numa_is_active_node(cpu_node, ng) && 2424 numa_is_active_node(mem_node, ng)) 2425 local = 1; 2426 2427 task_numa_placement(p); 2428 2429 /* 2430 * Retry task to preferred node migration periodically, in case it 2431 * case it previously failed, or the scheduler moved us. 2432 */ 2433 if (time_after(jiffies, p->numa_migrate_retry)) 2434 numa_migrate_preferred(p); 2435 2436 if (migrated) 2437 p->numa_pages_migrated += pages; 2438 if (flags & TNF_MIGRATE_FAIL) 2439 p->numa_faults_locality[2] += pages; 2440 2441 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2442 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2443 p->numa_faults_locality[local] += pages; 2444 } 2445 2446 static void reset_ptenuma_scan(struct task_struct *p) 2447 { 2448 /* 2449 * We only did a read acquisition of the mmap sem, so 2450 * p->mm->numa_scan_seq is written to without exclusive access 2451 * and the update is not guaranteed to be atomic. That's not 2452 * much of an issue though, since this is just used for 2453 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2454 * expensive, to avoid any form of compiler optimizations: 2455 */ 2456 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2457 p->mm->numa_scan_offset = 0; 2458 } 2459 2460 /* 2461 * The expensive part of numa migration is done from task_work context. 2462 * Triggered from task_tick_numa(). 2463 */ 2464 void task_numa_work(struct callback_head *work) 2465 { 2466 unsigned long migrate, next_scan, now = jiffies; 2467 struct task_struct *p = current; 2468 struct mm_struct *mm = p->mm; 2469 u64 runtime = p->se.sum_exec_runtime; 2470 struct vm_area_struct *vma; 2471 unsigned long start, end; 2472 unsigned long nr_pte_updates = 0; 2473 long pages, virtpages; 2474 2475 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2476 2477 work->next = work; /* protect against double add */ 2478 /* 2479 * Who cares about NUMA placement when they're dying. 2480 * 2481 * NOTE: make sure not to dereference p->mm before this check, 2482 * exit_task_work() happens _after_ exit_mm() so we could be called 2483 * without p->mm even though we still had it when we enqueued this 2484 * work. 2485 */ 2486 if (p->flags & PF_EXITING) 2487 return; 2488 2489 if (!mm->numa_next_scan) { 2490 mm->numa_next_scan = now + 2491 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2492 } 2493 2494 /* 2495 * Enforce maximal scan/migration frequency.. 2496 */ 2497 migrate = mm->numa_next_scan; 2498 if (time_before(now, migrate)) 2499 return; 2500 2501 if (p->numa_scan_period == 0) { 2502 p->numa_scan_period_max = task_scan_max(p); 2503 p->numa_scan_period = task_scan_start(p); 2504 } 2505 2506 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2507 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2508 return; 2509 2510 /* 2511 * Delay this task enough that another task of this mm will likely win 2512 * the next time around. 2513 */ 2514 p->node_stamp += 2 * TICK_NSEC; 2515 2516 start = mm->numa_scan_offset; 2517 pages = sysctl_numa_balancing_scan_size; 2518 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2519 virtpages = pages * 8; /* Scan up to this much virtual space */ 2520 if (!pages) 2521 return; 2522 2523 2524 if (!down_read_trylock(&mm->mmap_sem)) 2525 return; 2526 vma = find_vma(mm, start); 2527 if (!vma) { 2528 reset_ptenuma_scan(p); 2529 start = 0; 2530 vma = mm->mmap; 2531 } 2532 for (; vma; vma = vma->vm_next) { 2533 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2534 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2535 continue; 2536 } 2537 2538 /* 2539 * Shared library pages mapped by multiple processes are not 2540 * migrated as it is expected they are cache replicated. Avoid 2541 * hinting faults in read-only file-backed mappings or the vdso 2542 * as migrating the pages will be of marginal benefit. 2543 */ 2544 if (!vma->vm_mm || 2545 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2546 continue; 2547 2548 /* 2549 * Skip inaccessible VMAs to avoid any confusion between 2550 * PROT_NONE and NUMA hinting ptes 2551 */ 2552 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2553 continue; 2554 2555 do { 2556 start = max(start, vma->vm_start); 2557 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2558 end = min(end, vma->vm_end); 2559 nr_pte_updates = change_prot_numa(vma, start, end); 2560 2561 /* 2562 * Try to scan sysctl_numa_balancing_size worth of 2563 * hpages that have at least one present PTE that 2564 * is not already pte-numa. If the VMA contains 2565 * areas that are unused or already full of prot_numa 2566 * PTEs, scan up to virtpages, to skip through those 2567 * areas faster. 2568 */ 2569 if (nr_pte_updates) 2570 pages -= (end - start) >> PAGE_SHIFT; 2571 virtpages -= (end - start) >> PAGE_SHIFT; 2572 2573 start = end; 2574 if (pages <= 0 || virtpages <= 0) 2575 goto out; 2576 2577 cond_resched(); 2578 } while (end != vma->vm_end); 2579 } 2580 2581 out: 2582 /* 2583 * It is possible to reach the end of the VMA list but the last few 2584 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2585 * would find the !migratable VMA on the next scan but not reset the 2586 * scanner to the start so check it now. 2587 */ 2588 if (vma) 2589 mm->numa_scan_offset = start; 2590 else 2591 reset_ptenuma_scan(p); 2592 up_read(&mm->mmap_sem); 2593 2594 /* 2595 * Make sure tasks use at least 32x as much time to run other code 2596 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2597 * Usually update_task_scan_period slows down scanning enough; on an 2598 * overloaded system we need to limit overhead on a per task basis. 2599 */ 2600 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2601 u64 diff = p->se.sum_exec_runtime - runtime; 2602 p->node_stamp += 32 * diff; 2603 } 2604 } 2605 2606 /* 2607 * Drive the periodic memory faults.. 2608 */ 2609 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2610 { 2611 struct callback_head *work = &curr->numa_work; 2612 u64 period, now; 2613 2614 /* 2615 * We don't care about NUMA placement if we don't have memory. 2616 */ 2617 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2618 return; 2619 2620 /* 2621 * Using runtime rather than walltime has the dual advantage that 2622 * we (mostly) drive the selection from busy threads and that the 2623 * task needs to have done some actual work before we bother with 2624 * NUMA placement. 2625 */ 2626 now = curr->se.sum_exec_runtime; 2627 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2628 2629 if (now > curr->node_stamp + period) { 2630 if (!curr->node_stamp) 2631 curr->numa_scan_period = task_scan_start(curr); 2632 curr->node_stamp += period; 2633 2634 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2635 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2636 task_work_add(curr, work, true); 2637 } 2638 } 2639 } 2640 2641 #else 2642 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2643 { 2644 } 2645 2646 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2647 { 2648 } 2649 2650 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2651 { 2652 } 2653 2654 #endif /* CONFIG_NUMA_BALANCING */ 2655 2656 static void 2657 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2658 { 2659 update_load_add(&cfs_rq->load, se->load.weight); 2660 if (!parent_entity(se)) 2661 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2662 #ifdef CONFIG_SMP 2663 if (entity_is_task(se)) { 2664 struct rq *rq = rq_of(cfs_rq); 2665 2666 account_numa_enqueue(rq, task_of(se)); 2667 list_add(&se->group_node, &rq->cfs_tasks); 2668 } 2669 #endif 2670 cfs_rq->nr_running++; 2671 } 2672 2673 static void 2674 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2675 { 2676 update_load_sub(&cfs_rq->load, se->load.weight); 2677 if (!parent_entity(se)) 2678 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2679 #ifdef CONFIG_SMP 2680 if (entity_is_task(se)) { 2681 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2682 list_del_init(&se->group_node); 2683 } 2684 #endif 2685 cfs_rq->nr_running--; 2686 } 2687 2688 /* 2689 * Signed add and clamp on underflow. 2690 * 2691 * Explicitly do a load-store to ensure the intermediate value never hits 2692 * memory. This allows lockless observations without ever seeing the negative 2693 * values. 2694 */ 2695 #define add_positive(_ptr, _val) do { \ 2696 typeof(_ptr) ptr = (_ptr); \ 2697 typeof(_val) val = (_val); \ 2698 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2699 \ 2700 res = var + val; \ 2701 \ 2702 if (val < 0 && res > var) \ 2703 res = 0; \ 2704 \ 2705 WRITE_ONCE(*ptr, res); \ 2706 } while (0) 2707 2708 /* 2709 * Unsigned subtract and clamp on underflow. 2710 * 2711 * Explicitly do a load-store to ensure the intermediate value never hits 2712 * memory. This allows lockless observations without ever seeing the negative 2713 * values. 2714 */ 2715 #define sub_positive(_ptr, _val) do { \ 2716 typeof(_ptr) ptr = (_ptr); \ 2717 typeof(*ptr) val = (_val); \ 2718 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2719 res = var - val; \ 2720 if (res > var) \ 2721 res = 0; \ 2722 WRITE_ONCE(*ptr, res); \ 2723 } while (0) 2724 2725 #ifdef CONFIG_SMP 2726 /* 2727 * XXX we want to get rid of these helpers and use the full load resolution. 2728 */ 2729 static inline long se_weight(struct sched_entity *se) 2730 { 2731 return scale_load_down(se->load.weight); 2732 } 2733 2734 static inline long se_runnable(struct sched_entity *se) 2735 { 2736 return scale_load_down(se->runnable_weight); 2737 } 2738 2739 static inline void 2740 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2741 { 2742 cfs_rq->runnable_weight += se->runnable_weight; 2743 2744 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2745 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2746 } 2747 2748 static inline void 2749 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2750 { 2751 cfs_rq->runnable_weight -= se->runnable_weight; 2752 2753 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2754 sub_positive(&cfs_rq->avg.runnable_load_sum, 2755 se_runnable(se) * se->avg.runnable_load_sum); 2756 } 2757 2758 static inline void 2759 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2760 { 2761 cfs_rq->avg.load_avg += se->avg.load_avg; 2762 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2763 } 2764 2765 static inline void 2766 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2767 { 2768 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2769 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2770 } 2771 #else 2772 static inline void 2773 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2774 static inline void 2775 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2776 static inline void 2777 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2778 static inline void 2779 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2780 #endif 2781 2782 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2783 unsigned long weight, unsigned long runnable) 2784 { 2785 if (se->on_rq) { 2786 /* commit outstanding execution time */ 2787 if (cfs_rq->curr == se) 2788 update_curr(cfs_rq); 2789 account_entity_dequeue(cfs_rq, se); 2790 dequeue_runnable_load_avg(cfs_rq, se); 2791 } 2792 dequeue_load_avg(cfs_rq, se); 2793 2794 se->runnable_weight = runnable; 2795 update_load_set(&se->load, weight); 2796 2797 #ifdef CONFIG_SMP 2798 do { 2799 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2800 2801 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2802 se->avg.runnable_load_avg = 2803 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2804 } while (0); 2805 #endif 2806 2807 enqueue_load_avg(cfs_rq, se); 2808 if (se->on_rq) { 2809 account_entity_enqueue(cfs_rq, se); 2810 enqueue_runnable_load_avg(cfs_rq, se); 2811 } 2812 } 2813 2814 void reweight_task(struct task_struct *p, int prio) 2815 { 2816 struct sched_entity *se = &p->se; 2817 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2818 struct load_weight *load = &se->load; 2819 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2820 2821 reweight_entity(cfs_rq, se, weight, weight); 2822 load->inv_weight = sched_prio_to_wmult[prio]; 2823 } 2824 2825 #ifdef CONFIG_FAIR_GROUP_SCHED 2826 # ifdef CONFIG_SMP 2827 /* 2828 * All this does is approximate the hierarchical proportion which includes that 2829 * global sum we all love to hate. 2830 * 2831 * That is, the weight of a group entity, is the proportional share of the 2832 * group weight based on the group runqueue weights. That is: 2833 * 2834 * tg->weight * grq->load.weight 2835 * ge->load.weight = ----------------------------- (1) 2836 * \Sum grq->load.weight 2837 * 2838 * Now, because computing that sum is prohibitively expensive to compute (been 2839 * there, done that) we approximate it with this average stuff. The average 2840 * moves slower and therefore the approximation is cheaper and more stable. 2841 * 2842 * So instead of the above, we substitute: 2843 * 2844 * grq->load.weight -> grq->avg.load_avg (2) 2845 * 2846 * which yields the following: 2847 * 2848 * tg->weight * grq->avg.load_avg 2849 * ge->load.weight = ------------------------------ (3) 2850 * tg->load_avg 2851 * 2852 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2853 * 2854 * That is shares_avg, and it is right (given the approximation (2)). 2855 * 2856 * The problem with it is that because the average is slow -- it was designed 2857 * to be exactly that of course -- this leads to transients in boundary 2858 * conditions. In specific, the case where the group was idle and we start the 2859 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2860 * yielding bad latency etc.. 2861 * 2862 * Now, in that special case (1) reduces to: 2863 * 2864 * tg->weight * grq->load.weight 2865 * ge->load.weight = ----------------------------- = tg->weight (4) 2866 * grp->load.weight 2867 * 2868 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2869 * 2870 * So what we do is modify our approximation (3) to approach (4) in the (near) 2871 * UP case, like: 2872 * 2873 * ge->load.weight = 2874 * 2875 * tg->weight * grq->load.weight 2876 * --------------------------------------------------- (5) 2877 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2878 * 2879 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2880 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2881 * 2882 * 2883 * tg->weight * grq->load.weight 2884 * ge->load.weight = ----------------------------- (6) 2885 * tg_load_avg' 2886 * 2887 * Where: 2888 * 2889 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2890 * max(grq->load.weight, grq->avg.load_avg) 2891 * 2892 * And that is shares_weight and is icky. In the (near) UP case it approaches 2893 * (4) while in the normal case it approaches (3). It consistently 2894 * overestimates the ge->load.weight and therefore: 2895 * 2896 * \Sum ge->load.weight >= tg->weight 2897 * 2898 * hence icky! 2899 */ 2900 static long calc_group_shares(struct cfs_rq *cfs_rq) 2901 { 2902 long tg_weight, tg_shares, load, shares; 2903 struct task_group *tg = cfs_rq->tg; 2904 2905 tg_shares = READ_ONCE(tg->shares); 2906 2907 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2908 2909 tg_weight = atomic_long_read(&tg->load_avg); 2910 2911 /* Ensure tg_weight >= load */ 2912 tg_weight -= cfs_rq->tg_load_avg_contrib; 2913 tg_weight += load; 2914 2915 shares = (tg_shares * load); 2916 if (tg_weight) 2917 shares /= tg_weight; 2918 2919 /* 2920 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2921 * of a group with small tg->shares value. It is a floor value which is 2922 * assigned as a minimum load.weight to the sched_entity representing 2923 * the group on a CPU. 2924 * 2925 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2926 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2927 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2928 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2929 * instead of 0. 2930 */ 2931 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2932 } 2933 2934 /* 2935 * This calculates the effective runnable weight for a group entity based on 2936 * the group entity weight calculated above. 2937 * 2938 * Because of the above approximation (2), our group entity weight is 2939 * an load_avg based ratio (3). This means that it includes blocked load and 2940 * does not represent the runnable weight. 2941 * 2942 * Approximate the group entity's runnable weight per ratio from the group 2943 * runqueue: 2944 * 2945 * grq->avg.runnable_load_avg 2946 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2947 * grq->avg.load_avg 2948 * 2949 * However, analogous to above, since the avg numbers are slow, this leads to 2950 * transients in the from-idle case. Instead we use: 2951 * 2952 * ge->runnable_weight = ge->load.weight * 2953 * 2954 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2955 * ----------------------------------------------------- (8) 2956 * max(grq->avg.load_avg, grq->load.weight) 2957 * 2958 * Where these max() serve both to use the 'instant' values to fix the slow 2959 * from-idle and avoid the /0 on to-idle, similar to (6). 2960 */ 2961 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2962 { 2963 long runnable, load_avg; 2964 2965 load_avg = max(cfs_rq->avg.load_avg, 2966 scale_load_down(cfs_rq->load.weight)); 2967 2968 runnable = max(cfs_rq->avg.runnable_load_avg, 2969 scale_load_down(cfs_rq->runnable_weight)); 2970 2971 runnable *= shares; 2972 if (load_avg) 2973 runnable /= load_avg; 2974 2975 return clamp_t(long, runnable, MIN_SHARES, shares); 2976 } 2977 # endif /* CONFIG_SMP */ 2978 2979 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2980 2981 /* 2982 * Recomputes the group entity based on the current state of its group 2983 * runqueue. 2984 */ 2985 static void update_cfs_group(struct sched_entity *se) 2986 { 2987 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 2988 long shares, runnable; 2989 2990 if (!gcfs_rq) 2991 return; 2992 2993 if (throttled_hierarchy(gcfs_rq)) 2994 return; 2995 2996 #ifndef CONFIG_SMP 2997 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 2998 2999 if (likely(se->load.weight == shares)) 3000 return; 3001 #else 3002 shares = calc_group_shares(gcfs_rq); 3003 runnable = calc_group_runnable(gcfs_rq, shares); 3004 #endif 3005 3006 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3007 } 3008 3009 #else /* CONFIG_FAIR_GROUP_SCHED */ 3010 static inline void update_cfs_group(struct sched_entity *se) 3011 { 3012 } 3013 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3014 3015 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 3016 { 3017 struct rq *rq = rq_of(cfs_rq); 3018 3019 if (&rq->cfs == cfs_rq) { 3020 /* 3021 * There are a few boundary cases this might miss but it should 3022 * get called often enough that that should (hopefully) not be 3023 * a real problem. 3024 * 3025 * It will not get called when we go idle, because the idle 3026 * thread is a different class (!fair), nor will the utilization 3027 * number include things like RT tasks. 3028 * 3029 * As is, the util number is not freq-invariant (we'd have to 3030 * implement arch_scale_freq_capacity() for that). 3031 * 3032 * See cpu_util(). 3033 */ 3034 cpufreq_update_util(rq, 0); 3035 } 3036 } 3037 3038 #ifdef CONFIG_SMP 3039 /* 3040 * Approximate: 3041 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 3042 */ 3043 static u64 decay_load(u64 val, u64 n) 3044 { 3045 unsigned int local_n; 3046 3047 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 3048 return 0; 3049 3050 /* after bounds checking we can collapse to 32-bit */ 3051 local_n = n; 3052 3053 /* 3054 * As y^PERIOD = 1/2, we can combine 3055 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 3056 * With a look-up table which covers y^n (n<PERIOD) 3057 * 3058 * To achieve constant time decay_load. 3059 */ 3060 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 3061 val >>= local_n / LOAD_AVG_PERIOD; 3062 local_n %= LOAD_AVG_PERIOD; 3063 } 3064 3065 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 3066 return val; 3067 } 3068 3069 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 3070 { 3071 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 3072 3073 /* 3074 * c1 = d1 y^p 3075 */ 3076 c1 = decay_load((u64)d1, periods); 3077 3078 /* 3079 * p-1 3080 * c2 = 1024 \Sum y^n 3081 * n=1 3082 * 3083 * inf inf 3084 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 3085 * n=0 n=p 3086 */ 3087 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 3088 3089 return c1 + c2 + c3; 3090 } 3091 3092 /* 3093 * Accumulate the three separate parts of the sum; d1 the remainder 3094 * of the last (incomplete) period, d2 the span of full periods and d3 3095 * the remainder of the (incomplete) current period. 3096 * 3097 * d1 d2 d3 3098 * ^ ^ ^ 3099 * | | | 3100 * |<->|<----------------->|<--->| 3101 * ... |---x---|------| ... |------|-----x (now) 3102 * 3103 * p-1 3104 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 3105 * n=1 3106 * 3107 * = u y^p + (Step 1) 3108 * 3109 * p-1 3110 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 3111 * n=1 3112 */ 3113 static __always_inline u32 3114 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa, 3115 unsigned long load, unsigned long runnable, int running) 3116 { 3117 unsigned long scale_freq, scale_cpu; 3118 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 3119 u64 periods; 3120 3121 scale_freq = arch_scale_freq_capacity(cpu); 3122 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 3123 3124 delta += sa->period_contrib; 3125 periods = delta / 1024; /* A period is 1024us (~1ms) */ 3126 3127 /* 3128 * Step 1: decay old *_sum if we crossed period boundaries. 3129 */ 3130 if (periods) { 3131 sa->load_sum = decay_load(sa->load_sum, periods); 3132 sa->runnable_load_sum = 3133 decay_load(sa->runnable_load_sum, periods); 3134 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 3135 3136 /* 3137 * Step 2 3138 */ 3139 delta %= 1024; 3140 contrib = __accumulate_pelt_segments(periods, 3141 1024 - sa->period_contrib, delta); 3142 } 3143 sa->period_contrib = delta; 3144 3145 contrib = cap_scale(contrib, scale_freq); 3146 if (load) 3147 sa->load_sum += load * contrib; 3148 if (runnable) 3149 sa->runnable_load_sum += runnable * contrib; 3150 if (running) 3151 sa->util_sum += contrib * scale_cpu; 3152 3153 return periods; 3154 } 3155 3156 /* 3157 * We can represent the historical contribution to runnable average as the 3158 * coefficients of a geometric series. To do this we sub-divide our runnable 3159 * history into segments of approximately 1ms (1024us); label the segment that 3160 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 3161 * 3162 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 3163 * p0 p1 p2 3164 * (now) (~1ms ago) (~2ms ago) 3165 * 3166 * Let u_i denote the fraction of p_i that the entity was runnable. 3167 * 3168 * We then designate the fractions u_i as our co-efficients, yielding the 3169 * following representation of historical load: 3170 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 3171 * 3172 * We choose y based on the with of a reasonably scheduling period, fixing: 3173 * y^32 = 0.5 3174 * 3175 * This means that the contribution to load ~32ms ago (u_32) will be weighted 3176 * approximately half as much as the contribution to load within the last ms 3177 * (u_0). 3178 * 3179 * When a period "rolls over" and we have new u_0`, multiplying the previous 3180 * sum again by y is sufficient to update: 3181 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 3182 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 3183 */ 3184 static __always_inline int 3185 ___update_load_sum(u64 now, int cpu, struct sched_avg *sa, 3186 unsigned long load, unsigned long runnable, int running) 3187 { 3188 u64 delta; 3189 3190 delta = now - sa->last_update_time; 3191 /* 3192 * This should only happen when time goes backwards, which it 3193 * unfortunately does during sched clock init when we swap over to TSC. 3194 */ 3195 if ((s64)delta < 0) { 3196 sa->last_update_time = now; 3197 return 0; 3198 } 3199 3200 /* 3201 * Use 1024ns as the unit of measurement since it's a reasonable 3202 * approximation of 1us and fast to compute. 3203 */ 3204 delta >>= 10; 3205 if (!delta) 3206 return 0; 3207 3208 sa->last_update_time += delta << 10; 3209 3210 /* 3211 * running is a subset of runnable (weight) so running can't be set if 3212 * runnable is clear. But there are some corner cases where the current 3213 * se has been already dequeued but cfs_rq->curr still points to it. 3214 * This means that weight will be 0 but not running for a sched_entity 3215 * but also for a cfs_rq if the latter becomes idle. As an example, 3216 * this happens during idle_balance() which calls 3217 * update_blocked_averages() 3218 */ 3219 if (!load) 3220 runnable = running = 0; 3221 3222 /* 3223 * Now we know we crossed measurement unit boundaries. The *_avg 3224 * accrues by two steps: 3225 * 3226 * Step 1: accumulate *_sum since last_update_time. If we haven't 3227 * crossed period boundaries, finish. 3228 */ 3229 if (!accumulate_sum(delta, cpu, sa, load, runnable, running)) 3230 return 0; 3231 3232 return 1; 3233 } 3234 3235 static __always_inline void 3236 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) 3237 { 3238 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3239 3240 /* 3241 * Step 2: update *_avg. 3242 */ 3243 sa->load_avg = div_u64(load * sa->load_sum, divider); 3244 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); 3245 sa->util_avg = sa->util_sum / divider; 3246 } 3247 3248 /* 3249 * sched_entity: 3250 * 3251 * task: 3252 * se_runnable() == se_weight() 3253 * 3254 * group: [ see update_cfs_group() ] 3255 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 3256 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg 3257 * 3258 * load_sum := runnable_sum 3259 * load_avg = se_weight(se) * runnable_avg 3260 * 3261 * runnable_load_sum := runnable_sum 3262 * runnable_load_avg = se_runnable(se) * runnable_avg 3263 * 3264 * XXX collapse load_sum and runnable_load_sum 3265 * 3266 * cfq_rs: 3267 * 3268 * load_sum = \Sum se_weight(se) * se->avg.load_sum 3269 * load_avg = \Sum se->avg.load_avg 3270 * 3271 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum 3272 * runnable_load_avg = \Sum se->avg.runable_load_avg 3273 */ 3274 3275 static int 3276 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se) 3277 { 3278 if (entity_is_task(se)) 3279 se->runnable_weight = se->load.weight; 3280 3281 if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) { 3282 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3283 return 1; 3284 } 3285 3286 return 0; 3287 } 3288 3289 static int 3290 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se) 3291 { 3292 if (entity_is_task(se)) 3293 se->runnable_weight = se->load.weight; 3294 3295 if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq, 3296 cfs_rq->curr == se)) { 3297 3298 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 3299 return 1; 3300 } 3301 3302 return 0; 3303 } 3304 3305 static int 3306 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq) 3307 { 3308 if (___update_load_sum(now, cpu, &cfs_rq->avg, 3309 scale_load_down(cfs_rq->load.weight), 3310 scale_load_down(cfs_rq->runnable_weight), 3311 cfs_rq->curr != NULL)) { 3312 3313 ___update_load_avg(&cfs_rq->avg, 1, 1); 3314 return 1; 3315 } 3316 3317 return 0; 3318 } 3319 3320 #ifdef CONFIG_FAIR_GROUP_SCHED 3321 /** 3322 * update_tg_load_avg - update the tg's load avg 3323 * @cfs_rq: the cfs_rq whose avg changed 3324 * @force: update regardless of how small the difference 3325 * 3326 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3327 * However, because tg->load_avg is a global value there are performance 3328 * considerations. 3329 * 3330 * In order to avoid having to look at the other cfs_rq's, we use a 3331 * differential update where we store the last value we propagated. This in 3332 * turn allows skipping updates if the differential is 'small'. 3333 * 3334 * Updating tg's load_avg is necessary before update_cfs_share(). 3335 */ 3336 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3337 { 3338 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3339 3340 /* 3341 * No need to update load_avg for root_task_group as it is not used. 3342 */ 3343 if (cfs_rq->tg == &root_task_group) 3344 return; 3345 3346 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3347 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3348 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3349 } 3350 } 3351 3352 /* 3353 * Called within set_task_rq() right before setting a task's cpu. The 3354 * caller only guarantees p->pi_lock is held; no other assumptions, 3355 * including the state of rq->lock, should be made. 3356 */ 3357 void set_task_rq_fair(struct sched_entity *se, 3358 struct cfs_rq *prev, struct cfs_rq *next) 3359 { 3360 u64 p_last_update_time; 3361 u64 n_last_update_time; 3362 3363 if (!sched_feat(ATTACH_AGE_LOAD)) 3364 return; 3365 3366 /* 3367 * We are supposed to update the task to "current" time, then its up to 3368 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3369 * getting what current time is, so simply throw away the out-of-date 3370 * time. This will result in the wakee task is less decayed, but giving 3371 * the wakee more load sounds not bad. 3372 */ 3373 if (!(se->avg.last_update_time && prev)) 3374 return; 3375 3376 #ifndef CONFIG_64BIT 3377 { 3378 u64 p_last_update_time_copy; 3379 u64 n_last_update_time_copy; 3380 3381 do { 3382 p_last_update_time_copy = prev->load_last_update_time_copy; 3383 n_last_update_time_copy = next->load_last_update_time_copy; 3384 3385 smp_rmb(); 3386 3387 p_last_update_time = prev->avg.last_update_time; 3388 n_last_update_time = next->avg.last_update_time; 3389 3390 } while (p_last_update_time != p_last_update_time_copy || 3391 n_last_update_time != n_last_update_time_copy); 3392 } 3393 #else 3394 p_last_update_time = prev->avg.last_update_time; 3395 n_last_update_time = next->avg.last_update_time; 3396 #endif 3397 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3398 se->avg.last_update_time = n_last_update_time; 3399 } 3400 3401 3402 /* 3403 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3404 * propagate its contribution. The key to this propagation is the invariant 3405 * that for each group: 3406 * 3407 * ge->avg == grq->avg (1) 3408 * 3409 * _IFF_ we look at the pure running and runnable sums. Because they 3410 * represent the very same entity, just at different points in the hierarchy. 3411 * 3412 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3413 * sum over (but still wrong, because the group entity and group rq do not have 3414 * their PELT windows aligned). 3415 * 3416 * However, update_tg_cfs_runnable() is more complex. So we have: 3417 * 3418 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3419 * 3420 * And since, like util, the runnable part should be directly transferable, 3421 * the following would _appear_ to be the straight forward approach: 3422 * 3423 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3424 * 3425 * And per (1) we have: 3426 * 3427 * ge->avg.runnable_avg == grq->avg.runnable_avg 3428 * 3429 * Which gives: 3430 * 3431 * ge->load.weight * grq->avg.load_avg 3432 * ge->avg.load_avg = ----------------------------------- (4) 3433 * grq->load.weight 3434 * 3435 * Except that is wrong! 3436 * 3437 * Because while for entities historical weight is not important and we 3438 * really only care about our future and therefore can consider a pure 3439 * runnable sum, runqueues can NOT do this. 3440 * 3441 * We specifically want runqueues to have a load_avg that includes 3442 * historical weights. Those represent the blocked load, the load we expect 3443 * to (shortly) return to us. This only works by keeping the weights as 3444 * integral part of the sum. We therefore cannot decompose as per (3). 3445 * 3446 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3447 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3448 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3449 * runnable section of these tasks overlap (or not). If they were to perfectly 3450 * align the rq as a whole would be runnable 2/3 of the time. If however we 3451 * always have at least 1 runnable task, the rq as a whole is always runnable. 3452 * 3453 * So we'll have to approximate.. :/ 3454 * 3455 * Given the constraint: 3456 * 3457 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3458 * 3459 * We can construct a rule that adds runnable to a rq by assuming minimal 3460 * overlap. 3461 * 3462 * On removal, we'll assume each task is equally runnable; which yields: 3463 * 3464 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3465 * 3466 * XXX: only do this for the part of runnable > running ? 3467 * 3468 */ 3469 3470 static inline void 3471 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3472 { 3473 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3474 3475 /* Nothing to update */ 3476 if (!delta) 3477 return; 3478 3479 /* 3480 * The relation between sum and avg is: 3481 * 3482 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3483 * 3484 * however, the PELT windows are not aligned between grq and gse. 3485 */ 3486 3487 /* Set new sched_entity's utilization */ 3488 se->avg.util_avg = gcfs_rq->avg.util_avg; 3489 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3490 3491 /* Update parent cfs_rq utilization */ 3492 add_positive(&cfs_rq->avg.util_avg, delta); 3493 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3494 } 3495 3496 static inline void 3497 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3498 { 3499 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3500 unsigned long runnable_load_avg, load_avg; 3501 u64 runnable_load_sum, load_sum = 0; 3502 s64 delta_sum; 3503 3504 if (!runnable_sum) 3505 return; 3506 3507 gcfs_rq->prop_runnable_sum = 0; 3508 3509 if (runnable_sum >= 0) { 3510 /* 3511 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3512 * the CPU is saturated running == runnable. 3513 */ 3514 runnable_sum += se->avg.load_sum; 3515 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3516 } else { 3517 /* 3518 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3519 * assuming all tasks are equally runnable. 3520 */ 3521 if (scale_load_down(gcfs_rq->load.weight)) { 3522 load_sum = div_s64(gcfs_rq->avg.load_sum, 3523 scale_load_down(gcfs_rq->load.weight)); 3524 } 3525 3526 /* But make sure to not inflate se's runnable */ 3527 runnable_sum = min(se->avg.load_sum, load_sum); 3528 } 3529 3530 /* 3531 * runnable_sum can't be lower than running_sum 3532 * As running sum is scale with cpu capacity wehreas the runnable sum 3533 * is not we rescale running_sum 1st 3534 */ 3535 running_sum = se->avg.util_sum / 3536 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3537 runnable_sum = max(runnable_sum, running_sum); 3538 3539 load_sum = (s64)se_weight(se) * runnable_sum; 3540 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3541 3542 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3543 delta_avg = load_avg - se->avg.load_avg; 3544 3545 se->avg.load_sum = runnable_sum; 3546 se->avg.load_avg = load_avg; 3547 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3548 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3549 3550 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3551 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3552 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3553 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3554 3555 se->avg.runnable_load_sum = runnable_sum; 3556 se->avg.runnable_load_avg = runnable_load_avg; 3557 3558 if (se->on_rq) { 3559 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3560 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3561 } 3562 } 3563 3564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3565 { 3566 cfs_rq->propagate = 1; 3567 cfs_rq->prop_runnable_sum += runnable_sum; 3568 } 3569 3570 /* Update task and its cfs_rq load average */ 3571 static inline int propagate_entity_load_avg(struct sched_entity *se) 3572 { 3573 struct cfs_rq *cfs_rq, *gcfs_rq; 3574 3575 if (entity_is_task(se)) 3576 return 0; 3577 3578 gcfs_rq = group_cfs_rq(se); 3579 if (!gcfs_rq->propagate) 3580 return 0; 3581 3582 gcfs_rq->propagate = 0; 3583 3584 cfs_rq = cfs_rq_of(se); 3585 3586 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3587 3588 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3589 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3590 3591 return 1; 3592 } 3593 3594 /* 3595 * Check if we need to update the load and the utilization of a blocked 3596 * group_entity: 3597 */ 3598 static inline bool skip_blocked_update(struct sched_entity *se) 3599 { 3600 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3601 3602 /* 3603 * If sched_entity still have not zero load or utilization, we have to 3604 * decay it: 3605 */ 3606 if (se->avg.load_avg || se->avg.util_avg) 3607 return false; 3608 3609 /* 3610 * If there is a pending propagation, we have to update the load and 3611 * the utilization of the sched_entity: 3612 */ 3613 if (gcfs_rq->propagate) 3614 return false; 3615 3616 /* 3617 * Otherwise, the load and the utilization of the sched_entity is 3618 * already zero and there is no pending propagation, so it will be a 3619 * waste of time to try to decay it: 3620 */ 3621 return true; 3622 } 3623 3624 #else /* CONFIG_FAIR_GROUP_SCHED */ 3625 3626 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3627 3628 static inline int propagate_entity_load_avg(struct sched_entity *se) 3629 { 3630 return 0; 3631 } 3632 3633 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3634 3635 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3636 3637 /** 3638 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3639 * @now: current time, as per cfs_rq_clock_task() 3640 * @cfs_rq: cfs_rq to update 3641 * 3642 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3643 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3644 * post_init_entity_util_avg(). 3645 * 3646 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3647 * 3648 * Returns true if the load decayed or we removed load. 3649 * 3650 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3651 * call update_tg_load_avg() when this function returns true. 3652 */ 3653 static inline int 3654 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3655 { 3656 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3657 struct sched_avg *sa = &cfs_rq->avg; 3658 int decayed = 0; 3659 3660 if (cfs_rq->removed.nr) { 3661 unsigned long r; 3662 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3663 3664 raw_spin_lock(&cfs_rq->removed.lock); 3665 swap(cfs_rq->removed.util_avg, removed_util); 3666 swap(cfs_rq->removed.load_avg, removed_load); 3667 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3668 cfs_rq->removed.nr = 0; 3669 raw_spin_unlock(&cfs_rq->removed.lock); 3670 3671 r = removed_load; 3672 sub_positive(&sa->load_avg, r); 3673 sub_positive(&sa->load_sum, r * divider); 3674 3675 r = removed_util; 3676 sub_positive(&sa->util_avg, r); 3677 sub_positive(&sa->util_sum, r * divider); 3678 3679 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3680 3681 decayed = 1; 3682 } 3683 3684 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3685 3686 #ifndef CONFIG_64BIT 3687 smp_wmb(); 3688 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3689 #endif 3690 3691 if (decayed) 3692 cfs_rq_util_change(cfs_rq); 3693 3694 return decayed; 3695 } 3696 3697 /** 3698 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3699 * @cfs_rq: cfs_rq to attach to 3700 * @se: sched_entity to attach 3701 * 3702 * Must call update_cfs_rq_load_avg() before this, since we rely on 3703 * cfs_rq->avg.last_update_time being current. 3704 */ 3705 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3706 { 3707 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3708 3709 /* 3710 * When we attach the @se to the @cfs_rq, we must align the decay 3711 * window because without that, really weird and wonderful things can 3712 * happen. 3713 * 3714 * XXX illustrate 3715 */ 3716 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3717 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3718 3719 /* 3720 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3721 * period_contrib. This isn't strictly correct, but since we're 3722 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3723 * _sum a little. 3724 */ 3725 se->avg.util_sum = se->avg.util_avg * divider; 3726 3727 se->avg.load_sum = divider; 3728 if (se_weight(se)) { 3729 se->avg.load_sum = 3730 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3731 } 3732 3733 se->avg.runnable_load_sum = se->avg.load_sum; 3734 3735 enqueue_load_avg(cfs_rq, se); 3736 cfs_rq->avg.util_avg += se->avg.util_avg; 3737 cfs_rq->avg.util_sum += se->avg.util_sum; 3738 3739 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3740 3741 cfs_rq_util_change(cfs_rq); 3742 } 3743 3744 /** 3745 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3746 * @cfs_rq: cfs_rq to detach from 3747 * @se: sched_entity to detach 3748 * 3749 * Must call update_cfs_rq_load_avg() before this, since we rely on 3750 * cfs_rq->avg.last_update_time being current. 3751 */ 3752 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3753 { 3754 dequeue_load_avg(cfs_rq, se); 3755 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3756 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3757 3758 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3759 3760 cfs_rq_util_change(cfs_rq); 3761 } 3762 3763 /* 3764 * Optional action to be done while updating the load average 3765 */ 3766 #define UPDATE_TG 0x1 3767 #define SKIP_AGE_LOAD 0x2 3768 #define DO_ATTACH 0x4 3769 3770 /* Update task and its cfs_rq load average */ 3771 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3772 { 3773 u64 now = cfs_rq_clock_task(cfs_rq); 3774 struct rq *rq = rq_of(cfs_rq); 3775 int cpu = cpu_of(rq); 3776 int decayed; 3777 3778 /* 3779 * Track task load average for carrying it to new CPU after migrated, and 3780 * track group sched_entity load average for task_h_load calc in migration 3781 */ 3782 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3783 __update_load_avg_se(now, cpu, cfs_rq, se); 3784 3785 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3786 decayed |= propagate_entity_load_avg(se); 3787 3788 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3789 3790 attach_entity_load_avg(cfs_rq, se); 3791 update_tg_load_avg(cfs_rq, 0); 3792 3793 } else if (decayed && (flags & UPDATE_TG)) 3794 update_tg_load_avg(cfs_rq, 0); 3795 } 3796 3797 #ifndef CONFIG_64BIT 3798 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3799 { 3800 u64 last_update_time_copy; 3801 u64 last_update_time; 3802 3803 do { 3804 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3805 smp_rmb(); 3806 last_update_time = cfs_rq->avg.last_update_time; 3807 } while (last_update_time != last_update_time_copy); 3808 3809 return last_update_time; 3810 } 3811 #else 3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3813 { 3814 return cfs_rq->avg.last_update_time; 3815 } 3816 #endif 3817 3818 /* 3819 * Synchronize entity load avg of dequeued entity without locking 3820 * the previous rq. 3821 */ 3822 void sync_entity_load_avg(struct sched_entity *se) 3823 { 3824 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3825 u64 last_update_time; 3826 3827 last_update_time = cfs_rq_last_update_time(cfs_rq); 3828 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3829 } 3830 3831 /* 3832 * Task first catches up with cfs_rq, and then subtract 3833 * itself from the cfs_rq (task must be off the queue now). 3834 */ 3835 void remove_entity_load_avg(struct sched_entity *se) 3836 { 3837 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3838 unsigned long flags; 3839 3840 /* 3841 * tasks cannot exit without having gone through wake_up_new_task() -> 3842 * post_init_entity_util_avg() which will have added things to the 3843 * cfs_rq, so we can remove unconditionally. 3844 * 3845 * Similarly for groups, they will have passed through 3846 * post_init_entity_util_avg() before unregister_sched_fair_group() 3847 * calls this. 3848 */ 3849 3850 sync_entity_load_avg(se); 3851 3852 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3853 ++cfs_rq->removed.nr; 3854 cfs_rq->removed.util_avg += se->avg.util_avg; 3855 cfs_rq->removed.load_avg += se->avg.load_avg; 3856 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3857 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3858 } 3859 3860 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3861 { 3862 return cfs_rq->avg.runnable_load_avg; 3863 } 3864 3865 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3866 { 3867 return cfs_rq->avg.load_avg; 3868 } 3869 3870 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3871 3872 #else /* CONFIG_SMP */ 3873 3874 static inline int 3875 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3876 { 3877 return 0; 3878 } 3879 3880 #define UPDATE_TG 0x0 3881 #define SKIP_AGE_LOAD 0x0 3882 #define DO_ATTACH 0x0 3883 3884 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3885 { 3886 cfs_rq_util_change(cfs_rq); 3887 } 3888 3889 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3890 3891 static inline void 3892 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3893 static inline void 3894 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3895 3896 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3897 { 3898 return 0; 3899 } 3900 3901 #endif /* CONFIG_SMP */ 3902 3903 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3904 { 3905 #ifdef CONFIG_SCHED_DEBUG 3906 s64 d = se->vruntime - cfs_rq->min_vruntime; 3907 3908 if (d < 0) 3909 d = -d; 3910 3911 if (d > 3*sysctl_sched_latency) 3912 schedstat_inc(cfs_rq->nr_spread_over); 3913 #endif 3914 } 3915 3916 static void 3917 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3918 { 3919 u64 vruntime = cfs_rq->min_vruntime; 3920 3921 /* 3922 * The 'current' period is already promised to the current tasks, 3923 * however the extra weight of the new task will slow them down a 3924 * little, place the new task so that it fits in the slot that 3925 * stays open at the end. 3926 */ 3927 if (initial && sched_feat(START_DEBIT)) 3928 vruntime += sched_vslice(cfs_rq, se); 3929 3930 /* sleeps up to a single latency don't count. */ 3931 if (!initial) { 3932 unsigned long thresh = sysctl_sched_latency; 3933 3934 /* 3935 * Halve their sleep time's effect, to allow 3936 * for a gentler effect of sleepers: 3937 */ 3938 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3939 thresh >>= 1; 3940 3941 vruntime -= thresh; 3942 } 3943 3944 /* ensure we never gain time by being placed backwards. */ 3945 se->vruntime = max_vruntime(se->vruntime, vruntime); 3946 } 3947 3948 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3949 3950 static inline void check_schedstat_required(void) 3951 { 3952 #ifdef CONFIG_SCHEDSTATS 3953 if (schedstat_enabled()) 3954 return; 3955 3956 /* Force schedstat enabled if a dependent tracepoint is active */ 3957 if (trace_sched_stat_wait_enabled() || 3958 trace_sched_stat_sleep_enabled() || 3959 trace_sched_stat_iowait_enabled() || 3960 trace_sched_stat_blocked_enabled() || 3961 trace_sched_stat_runtime_enabled()) { 3962 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3963 "stat_blocked and stat_runtime require the " 3964 "kernel parameter schedstats=enable or " 3965 "kernel.sched_schedstats=1\n"); 3966 } 3967 #endif 3968 } 3969 3970 3971 /* 3972 * MIGRATION 3973 * 3974 * dequeue 3975 * update_curr() 3976 * update_min_vruntime() 3977 * vruntime -= min_vruntime 3978 * 3979 * enqueue 3980 * update_curr() 3981 * update_min_vruntime() 3982 * vruntime += min_vruntime 3983 * 3984 * this way the vruntime transition between RQs is done when both 3985 * min_vruntime are up-to-date. 3986 * 3987 * WAKEUP (remote) 3988 * 3989 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3990 * vruntime -= min_vruntime 3991 * 3992 * enqueue 3993 * update_curr() 3994 * update_min_vruntime() 3995 * vruntime += min_vruntime 3996 * 3997 * this way we don't have the most up-to-date min_vruntime on the originating 3998 * CPU and an up-to-date min_vruntime on the destination CPU. 3999 */ 4000 4001 static void 4002 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4003 { 4004 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4005 bool curr = cfs_rq->curr == se; 4006 4007 /* 4008 * If we're the current task, we must renormalise before calling 4009 * update_curr(). 4010 */ 4011 if (renorm && curr) 4012 se->vruntime += cfs_rq->min_vruntime; 4013 4014 update_curr(cfs_rq); 4015 4016 /* 4017 * Otherwise, renormalise after, such that we're placed at the current 4018 * moment in time, instead of some random moment in the past. Being 4019 * placed in the past could significantly boost this task to the 4020 * fairness detriment of existing tasks. 4021 */ 4022 if (renorm && !curr) 4023 se->vruntime += cfs_rq->min_vruntime; 4024 4025 /* 4026 * When enqueuing a sched_entity, we must: 4027 * - Update loads to have both entity and cfs_rq synced with now. 4028 * - Add its load to cfs_rq->runnable_avg 4029 * - For group_entity, update its weight to reflect the new share of 4030 * its group cfs_rq 4031 * - Add its new weight to cfs_rq->load.weight 4032 */ 4033 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4034 update_cfs_group(se); 4035 enqueue_runnable_load_avg(cfs_rq, se); 4036 account_entity_enqueue(cfs_rq, se); 4037 4038 if (flags & ENQUEUE_WAKEUP) 4039 place_entity(cfs_rq, se, 0); 4040 4041 check_schedstat_required(); 4042 update_stats_enqueue(cfs_rq, se, flags); 4043 check_spread(cfs_rq, se); 4044 if (!curr) 4045 __enqueue_entity(cfs_rq, se); 4046 se->on_rq = 1; 4047 4048 if (cfs_rq->nr_running == 1) { 4049 list_add_leaf_cfs_rq(cfs_rq); 4050 check_enqueue_throttle(cfs_rq); 4051 } 4052 } 4053 4054 static void __clear_buddies_last(struct sched_entity *se) 4055 { 4056 for_each_sched_entity(se) { 4057 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4058 if (cfs_rq->last != se) 4059 break; 4060 4061 cfs_rq->last = NULL; 4062 } 4063 } 4064 4065 static void __clear_buddies_next(struct sched_entity *se) 4066 { 4067 for_each_sched_entity(se) { 4068 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4069 if (cfs_rq->next != se) 4070 break; 4071 4072 cfs_rq->next = NULL; 4073 } 4074 } 4075 4076 static void __clear_buddies_skip(struct sched_entity *se) 4077 { 4078 for_each_sched_entity(se) { 4079 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4080 if (cfs_rq->skip != se) 4081 break; 4082 4083 cfs_rq->skip = NULL; 4084 } 4085 } 4086 4087 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4088 { 4089 if (cfs_rq->last == se) 4090 __clear_buddies_last(se); 4091 4092 if (cfs_rq->next == se) 4093 __clear_buddies_next(se); 4094 4095 if (cfs_rq->skip == se) 4096 __clear_buddies_skip(se); 4097 } 4098 4099 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4100 4101 static void 4102 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4103 { 4104 /* 4105 * Update run-time statistics of the 'current'. 4106 */ 4107 update_curr(cfs_rq); 4108 4109 /* 4110 * When dequeuing a sched_entity, we must: 4111 * - Update loads to have both entity and cfs_rq synced with now. 4112 * - Substract its load from the cfs_rq->runnable_avg. 4113 * - Substract its previous weight from cfs_rq->load.weight. 4114 * - For group entity, update its weight to reflect the new share 4115 * of its group cfs_rq. 4116 */ 4117 update_load_avg(cfs_rq, se, UPDATE_TG); 4118 dequeue_runnable_load_avg(cfs_rq, se); 4119 4120 update_stats_dequeue(cfs_rq, se, flags); 4121 4122 clear_buddies(cfs_rq, se); 4123 4124 if (se != cfs_rq->curr) 4125 __dequeue_entity(cfs_rq, se); 4126 se->on_rq = 0; 4127 account_entity_dequeue(cfs_rq, se); 4128 4129 /* 4130 * Normalize after update_curr(); which will also have moved 4131 * min_vruntime if @se is the one holding it back. But before doing 4132 * update_min_vruntime() again, which will discount @se's position and 4133 * can move min_vruntime forward still more. 4134 */ 4135 if (!(flags & DEQUEUE_SLEEP)) 4136 se->vruntime -= cfs_rq->min_vruntime; 4137 4138 /* return excess runtime on last dequeue */ 4139 return_cfs_rq_runtime(cfs_rq); 4140 4141 update_cfs_group(se); 4142 4143 /* 4144 * Now advance min_vruntime if @se was the entity holding it back, 4145 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4146 * put back on, and if we advance min_vruntime, we'll be placed back 4147 * further than we started -- ie. we'll be penalized. 4148 */ 4149 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 4150 update_min_vruntime(cfs_rq); 4151 } 4152 4153 /* 4154 * Preempt the current task with a newly woken task if needed: 4155 */ 4156 static void 4157 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4158 { 4159 unsigned long ideal_runtime, delta_exec; 4160 struct sched_entity *se; 4161 s64 delta; 4162 4163 ideal_runtime = sched_slice(cfs_rq, curr); 4164 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4165 if (delta_exec > ideal_runtime) { 4166 resched_curr(rq_of(cfs_rq)); 4167 /* 4168 * The current task ran long enough, ensure it doesn't get 4169 * re-elected due to buddy favours. 4170 */ 4171 clear_buddies(cfs_rq, curr); 4172 return; 4173 } 4174 4175 /* 4176 * Ensure that a task that missed wakeup preemption by a 4177 * narrow margin doesn't have to wait for a full slice. 4178 * This also mitigates buddy induced latencies under load. 4179 */ 4180 if (delta_exec < sysctl_sched_min_granularity) 4181 return; 4182 4183 se = __pick_first_entity(cfs_rq); 4184 delta = curr->vruntime - se->vruntime; 4185 4186 if (delta < 0) 4187 return; 4188 4189 if (delta > ideal_runtime) 4190 resched_curr(rq_of(cfs_rq)); 4191 } 4192 4193 static void 4194 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4195 { 4196 /* 'current' is not kept within the tree. */ 4197 if (se->on_rq) { 4198 /* 4199 * Any task has to be enqueued before it get to execute on 4200 * a CPU. So account for the time it spent waiting on the 4201 * runqueue. 4202 */ 4203 update_stats_wait_end(cfs_rq, se); 4204 __dequeue_entity(cfs_rq, se); 4205 update_load_avg(cfs_rq, se, UPDATE_TG); 4206 } 4207 4208 update_stats_curr_start(cfs_rq, se); 4209 cfs_rq->curr = se; 4210 4211 /* 4212 * Track our maximum slice length, if the CPU's load is at 4213 * least twice that of our own weight (i.e. dont track it 4214 * when there are only lesser-weight tasks around): 4215 */ 4216 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4217 schedstat_set(se->statistics.slice_max, 4218 max((u64)schedstat_val(se->statistics.slice_max), 4219 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4220 } 4221 4222 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4223 } 4224 4225 static int 4226 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4227 4228 /* 4229 * Pick the next process, keeping these things in mind, in this order: 4230 * 1) keep things fair between processes/task groups 4231 * 2) pick the "next" process, since someone really wants that to run 4232 * 3) pick the "last" process, for cache locality 4233 * 4) do not run the "skip" process, if something else is available 4234 */ 4235 static struct sched_entity * 4236 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4237 { 4238 struct sched_entity *left = __pick_first_entity(cfs_rq); 4239 struct sched_entity *se; 4240 4241 /* 4242 * If curr is set we have to see if its left of the leftmost entity 4243 * still in the tree, provided there was anything in the tree at all. 4244 */ 4245 if (!left || (curr && entity_before(curr, left))) 4246 left = curr; 4247 4248 se = left; /* ideally we run the leftmost entity */ 4249 4250 /* 4251 * Avoid running the skip buddy, if running something else can 4252 * be done without getting too unfair. 4253 */ 4254 if (cfs_rq->skip == se) { 4255 struct sched_entity *second; 4256 4257 if (se == curr) { 4258 second = __pick_first_entity(cfs_rq); 4259 } else { 4260 second = __pick_next_entity(se); 4261 if (!second || (curr && entity_before(curr, second))) 4262 second = curr; 4263 } 4264 4265 if (second && wakeup_preempt_entity(second, left) < 1) 4266 se = second; 4267 } 4268 4269 /* 4270 * Prefer last buddy, try to return the CPU to a preempted task. 4271 */ 4272 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4273 se = cfs_rq->last; 4274 4275 /* 4276 * Someone really wants this to run. If it's not unfair, run it. 4277 */ 4278 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4279 se = cfs_rq->next; 4280 4281 clear_buddies(cfs_rq, se); 4282 4283 return se; 4284 } 4285 4286 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4287 4288 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4289 { 4290 /* 4291 * If still on the runqueue then deactivate_task() 4292 * was not called and update_curr() has to be done: 4293 */ 4294 if (prev->on_rq) 4295 update_curr(cfs_rq); 4296 4297 /* throttle cfs_rqs exceeding runtime */ 4298 check_cfs_rq_runtime(cfs_rq); 4299 4300 check_spread(cfs_rq, prev); 4301 4302 if (prev->on_rq) { 4303 update_stats_wait_start(cfs_rq, prev); 4304 /* Put 'current' back into the tree. */ 4305 __enqueue_entity(cfs_rq, prev); 4306 /* in !on_rq case, update occurred at dequeue */ 4307 update_load_avg(cfs_rq, prev, 0); 4308 } 4309 cfs_rq->curr = NULL; 4310 } 4311 4312 static void 4313 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4314 { 4315 /* 4316 * Update run-time statistics of the 'current'. 4317 */ 4318 update_curr(cfs_rq); 4319 4320 /* 4321 * Ensure that runnable average is periodically updated. 4322 */ 4323 update_load_avg(cfs_rq, curr, UPDATE_TG); 4324 update_cfs_group(curr); 4325 4326 #ifdef CONFIG_SCHED_HRTICK 4327 /* 4328 * queued ticks are scheduled to match the slice, so don't bother 4329 * validating it and just reschedule. 4330 */ 4331 if (queued) { 4332 resched_curr(rq_of(cfs_rq)); 4333 return; 4334 } 4335 /* 4336 * don't let the period tick interfere with the hrtick preemption 4337 */ 4338 if (!sched_feat(DOUBLE_TICK) && 4339 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4340 return; 4341 #endif 4342 4343 if (cfs_rq->nr_running > 1) 4344 check_preempt_tick(cfs_rq, curr); 4345 } 4346 4347 4348 /************************************************** 4349 * CFS bandwidth control machinery 4350 */ 4351 4352 #ifdef CONFIG_CFS_BANDWIDTH 4353 4354 #ifdef HAVE_JUMP_LABEL 4355 static struct static_key __cfs_bandwidth_used; 4356 4357 static inline bool cfs_bandwidth_used(void) 4358 { 4359 return static_key_false(&__cfs_bandwidth_used); 4360 } 4361 4362 void cfs_bandwidth_usage_inc(void) 4363 { 4364 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4365 } 4366 4367 void cfs_bandwidth_usage_dec(void) 4368 { 4369 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4370 } 4371 #else /* HAVE_JUMP_LABEL */ 4372 static bool cfs_bandwidth_used(void) 4373 { 4374 return true; 4375 } 4376 4377 void cfs_bandwidth_usage_inc(void) {} 4378 void cfs_bandwidth_usage_dec(void) {} 4379 #endif /* HAVE_JUMP_LABEL */ 4380 4381 /* 4382 * default period for cfs group bandwidth. 4383 * default: 0.1s, units: nanoseconds 4384 */ 4385 static inline u64 default_cfs_period(void) 4386 { 4387 return 100000000ULL; 4388 } 4389 4390 static inline u64 sched_cfs_bandwidth_slice(void) 4391 { 4392 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4393 } 4394 4395 /* 4396 * Replenish runtime according to assigned quota and update expiration time. 4397 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4398 * additional synchronization around rq->lock. 4399 * 4400 * requires cfs_b->lock 4401 */ 4402 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4403 { 4404 u64 now; 4405 4406 if (cfs_b->quota == RUNTIME_INF) 4407 return; 4408 4409 now = sched_clock_cpu(smp_processor_id()); 4410 cfs_b->runtime = cfs_b->quota; 4411 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4412 } 4413 4414 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4415 { 4416 return &tg->cfs_bandwidth; 4417 } 4418 4419 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4420 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4421 { 4422 if (unlikely(cfs_rq->throttle_count)) 4423 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4424 4425 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4426 } 4427 4428 /* returns 0 on failure to allocate runtime */ 4429 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4430 { 4431 struct task_group *tg = cfs_rq->tg; 4432 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4433 u64 amount = 0, min_amount, expires; 4434 4435 /* note: this is a positive sum as runtime_remaining <= 0 */ 4436 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4437 4438 raw_spin_lock(&cfs_b->lock); 4439 if (cfs_b->quota == RUNTIME_INF) 4440 amount = min_amount; 4441 else { 4442 start_cfs_bandwidth(cfs_b); 4443 4444 if (cfs_b->runtime > 0) { 4445 amount = min(cfs_b->runtime, min_amount); 4446 cfs_b->runtime -= amount; 4447 cfs_b->idle = 0; 4448 } 4449 } 4450 expires = cfs_b->runtime_expires; 4451 raw_spin_unlock(&cfs_b->lock); 4452 4453 cfs_rq->runtime_remaining += amount; 4454 /* 4455 * we may have advanced our local expiration to account for allowed 4456 * spread between our sched_clock and the one on which runtime was 4457 * issued. 4458 */ 4459 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4460 cfs_rq->runtime_expires = expires; 4461 4462 return cfs_rq->runtime_remaining > 0; 4463 } 4464 4465 /* 4466 * Note: This depends on the synchronization provided by sched_clock and the 4467 * fact that rq->clock snapshots this value. 4468 */ 4469 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4470 { 4471 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4472 4473 /* if the deadline is ahead of our clock, nothing to do */ 4474 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4475 return; 4476 4477 if (cfs_rq->runtime_remaining < 0) 4478 return; 4479 4480 /* 4481 * If the local deadline has passed we have to consider the 4482 * possibility that our sched_clock is 'fast' and the global deadline 4483 * has not truly expired. 4484 * 4485 * Fortunately we can check determine whether this the case by checking 4486 * whether the global deadline has advanced. It is valid to compare 4487 * cfs_b->runtime_expires without any locks since we only care about 4488 * exact equality, so a partial write will still work. 4489 */ 4490 4491 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4492 /* extend local deadline, drift is bounded above by 2 ticks */ 4493 cfs_rq->runtime_expires += TICK_NSEC; 4494 } else { 4495 /* global deadline is ahead, expiration has passed */ 4496 cfs_rq->runtime_remaining = 0; 4497 } 4498 } 4499 4500 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4501 { 4502 /* dock delta_exec before expiring quota (as it could span periods) */ 4503 cfs_rq->runtime_remaining -= delta_exec; 4504 expire_cfs_rq_runtime(cfs_rq); 4505 4506 if (likely(cfs_rq->runtime_remaining > 0)) 4507 return; 4508 4509 /* 4510 * if we're unable to extend our runtime we resched so that the active 4511 * hierarchy can be throttled 4512 */ 4513 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4514 resched_curr(rq_of(cfs_rq)); 4515 } 4516 4517 static __always_inline 4518 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4519 { 4520 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4521 return; 4522 4523 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4524 } 4525 4526 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4527 { 4528 return cfs_bandwidth_used() && cfs_rq->throttled; 4529 } 4530 4531 /* check whether cfs_rq, or any parent, is throttled */ 4532 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4533 { 4534 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4535 } 4536 4537 /* 4538 * Ensure that neither of the group entities corresponding to src_cpu or 4539 * dest_cpu are members of a throttled hierarchy when performing group 4540 * load-balance operations. 4541 */ 4542 static inline int throttled_lb_pair(struct task_group *tg, 4543 int src_cpu, int dest_cpu) 4544 { 4545 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4546 4547 src_cfs_rq = tg->cfs_rq[src_cpu]; 4548 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4549 4550 return throttled_hierarchy(src_cfs_rq) || 4551 throttled_hierarchy(dest_cfs_rq); 4552 } 4553 4554 /* updated child weight may affect parent so we have to do this bottom up */ 4555 static int tg_unthrottle_up(struct task_group *tg, void *data) 4556 { 4557 struct rq *rq = data; 4558 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4559 4560 cfs_rq->throttle_count--; 4561 if (!cfs_rq->throttle_count) { 4562 /* adjust cfs_rq_clock_task() */ 4563 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4564 cfs_rq->throttled_clock_task; 4565 } 4566 4567 return 0; 4568 } 4569 4570 static int tg_throttle_down(struct task_group *tg, void *data) 4571 { 4572 struct rq *rq = data; 4573 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4574 4575 /* group is entering throttled state, stop time */ 4576 if (!cfs_rq->throttle_count) 4577 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4578 cfs_rq->throttle_count++; 4579 4580 return 0; 4581 } 4582 4583 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4584 { 4585 struct rq *rq = rq_of(cfs_rq); 4586 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4587 struct sched_entity *se; 4588 long task_delta, dequeue = 1; 4589 bool empty; 4590 4591 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4592 4593 /* freeze hierarchy runnable averages while throttled */ 4594 rcu_read_lock(); 4595 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4596 rcu_read_unlock(); 4597 4598 task_delta = cfs_rq->h_nr_running; 4599 for_each_sched_entity(se) { 4600 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4601 /* throttled entity or throttle-on-deactivate */ 4602 if (!se->on_rq) 4603 break; 4604 4605 if (dequeue) 4606 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4607 qcfs_rq->h_nr_running -= task_delta; 4608 4609 if (qcfs_rq->load.weight) 4610 dequeue = 0; 4611 } 4612 4613 if (!se) 4614 sub_nr_running(rq, task_delta); 4615 4616 cfs_rq->throttled = 1; 4617 cfs_rq->throttled_clock = rq_clock(rq); 4618 raw_spin_lock(&cfs_b->lock); 4619 empty = list_empty(&cfs_b->throttled_cfs_rq); 4620 4621 /* 4622 * Add to the _head_ of the list, so that an already-started 4623 * distribute_cfs_runtime will not see us 4624 */ 4625 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4626 4627 /* 4628 * If we're the first throttled task, make sure the bandwidth 4629 * timer is running. 4630 */ 4631 if (empty) 4632 start_cfs_bandwidth(cfs_b); 4633 4634 raw_spin_unlock(&cfs_b->lock); 4635 } 4636 4637 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4638 { 4639 struct rq *rq = rq_of(cfs_rq); 4640 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4641 struct sched_entity *se; 4642 int enqueue = 1; 4643 long task_delta; 4644 4645 se = cfs_rq->tg->se[cpu_of(rq)]; 4646 4647 cfs_rq->throttled = 0; 4648 4649 update_rq_clock(rq); 4650 4651 raw_spin_lock(&cfs_b->lock); 4652 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4653 list_del_rcu(&cfs_rq->throttled_list); 4654 raw_spin_unlock(&cfs_b->lock); 4655 4656 /* update hierarchical throttle state */ 4657 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4658 4659 if (!cfs_rq->load.weight) 4660 return; 4661 4662 task_delta = cfs_rq->h_nr_running; 4663 for_each_sched_entity(se) { 4664 if (se->on_rq) 4665 enqueue = 0; 4666 4667 cfs_rq = cfs_rq_of(se); 4668 if (enqueue) 4669 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4670 cfs_rq->h_nr_running += task_delta; 4671 4672 if (cfs_rq_throttled(cfs_rq)) 4673 break; 4674 } 4675 4676 if (!se) 4677 add_nr_running(rq, task_delta); 4678 4679 /* determine whether we need to wake up potentially idle cpu */ 4680 if (rq->curr == rq->idle && rq->cfs.nr_running) 4681 resched_curr(rq); 4682 } 4683 4684 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4685 u64 remaining, u64 expires) 4686 { 4687 struct cfs_rq *cfs_rq; 4688 u64 runtime; 4689 u64 starting_runtime = remaining; 4690 4691 rcu_read_lock(); 4692 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4693 throttled_list) { 4694 struct rq *rq = rq_of(cfs_rq); 4695 struct rq_flags rf; 4696 4697 rq_lock(rq, &rf); 4698 if (!cfs_rq_throttled(cfs_rq)) 4699 goto next; 4700 4701 runtime = -cfs_rq->runtime_remaining + 1; 4702 if (runtime > remaining) 4703 runtime = remaining; 4704 remaining -= runtime; 4705 4706 cfs_rq->runtime_remaining += runtime; 4707 cfs_rq->runtime_expires = expires; 4708 4709 /* we check whether we're throttled above */ 4710 if (cfs_rq->runtime_remaining > 0) 4711 unthrottle_cfs_rq(cfs_rq); 4712 4713 next: 4714 rq_unlock(rq, &rf); 4715 4716 if (!remaining) 4717 break; 4718 } 4719 rcu_read_unlock(); 4720 4721 return starting_runtime - remaining; 4722 } 4723 4724 /* 4725 * Responsible for refilling a task_group's bandwidth and unthrottling its 4726 * cfs_rqs as appropriate. If there has been no activity within the last 4727 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4728 * used to track this state. 4729 */ 4730 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4731 { 4732 u64 runtime, runtime_expires; 4733 int throttled; 4734 4735 /* no need to continue the timer with no bandwidth constraint */ 4736 if (cfs_b->quota == RUNTIME_INF) 4737 goto out_deactivate; 4738 4739 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4740 cfs_b->nr_periods += overrun; 4741 4742 /* 4743 * idle depends on !throttled (for the case of a large deficit), and if 4744 * we're going inactive then everything else can be deferred 4745 */ 4746 if (cfs_b->idle && !throttled) 4747 goto out_deactivate; 4748 4749 __refill_cfs_bandwidth_runtime(cfs_b); 4750 4751 if (!throttled) { 4752 /* mark as potentially idle for the upcoming period */ 4753 cfs_b->idle = 1; 4754 return 0; 4755 } 4756 4757 /* account preceding periods in which throttling occurred */ 4758 cfs_b->nr_throttled += overrun; 4759 4760 runtime_expires = cfs_b->runtime_expires; 4761 4762 /* 4763 * This check is repeated as we are holding onto the new bandwidth while 4764 * we unthrottle. This can potentially race with an unthrottled group 4765 * trying to acquire new bandwidth from the global pool. This can result 4766 * in us over-using our runtime if it is all used during this loop, but 4767 * only by limited amounts in that extreme case. 4768 */ 4769 while (throttled && cfs_b->runtime > 0) { 4770 runtime = cfs_b->runtime; 4771 raw_spin_unlock(&cfs_b->lock); 4772 /* we can't nest cfs_b->lock while distributing bandwidth */ 4773 runtime = distribute_cfs_runtime(cfs_b, runtime, 4774 runtime_expires); 4775 raw_spin_lock(&cfs_b->lock); 4776 4777 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4778 4779 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4780 } 4781 4782 /* 4783 * While we are ensured activity in the period following an 4784 * unthrottle, this also covers the case in which the new bandwidth is 4785 * insufficient to cover the existing bandwidth deficit. (Forcing the 4786 * timer to remain active while there are any throttled entities.) 4787 */ 4788 cfs_b->idle = 0; 4789 4790 return 0; 4791 4792 out_deactivate: 4793 return 1; 4794 } 4795 4796 /* a cfs_rq won't donate quota below this amount */ 4797 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4798 /* minimum remaining period time to redistribute slack quota */ 4799 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4800 /* how long we wait to gather additional slack before distributing */ 4801 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4802 4803 /* 4804 * Are we near the end of the current quota period? 4805 * 4806 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4807 * hrtimer base being cleared by hrtimer_start. In the case of 4808 * migrate_hrtimers, base is never cleared, so we are fine. 4809 */ 4810 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4811 { 4812 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4813 u64 remaining; 4814 4815 /* if the call-back is running a quota refresh is already occurring */ 4816 if (hrtimer_callback_running(refresh_timer)) 4817 return 1; 4818 4819 /* is a quota refresh about to occur? */ 4820 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4821 if (remaining < min_expire) 4822 return 1; 4823 4824 return 0; 4825 } 4826 4827 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4828 { 4829 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4830 4831 /* if there's a quota refresh soon don't bother with slack */ 4832 if (runtime_refresh_within(cfs_b, min_left)) 4833 return; 4834 4835 hrtimer_start(&cfs_b->slack_timer, 4836 ns_to_ktime(cfs_bandwidth_slack_period), 4837 HRTIMER_MODE_REL); 4838 } 4839 4840 /* we know any runtime found here is valid as update_curr() precedes return */ 4841 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4842 { 4843 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4844 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4845 4846 if (slack_runtime <= 0) 4847 return; 4848 4849 raw_spin_lock(&cfs_b->lock); 4850 if (cfs_b->quota != RUNTIME_INF && 4851 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4852 cfs_b->runtime += slack_runtime; 4853 4854 /* we are under rq->lock, defer unthrottling using a timer */ 4855 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4856 !list_empty(&cfs_b->throttled_cfs_rq)) 4857 start_cfs_slack_bandwidth(cfs_b); 4858 } 4859 raw_spin_unlock(&cfs_b->lock); 4860 4861 /* even if it's not valid for return we don't want to try again */ 4862 cfs_rq->runtime_remaining -= slack_runtime; 4863 } 4864 4865 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4866 { 4867 if (!cfs_bandwidth_used()) 4868 return; 4869 4870 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4871 return; 4872 4873 __return_cfs_rq_runtime(cfs_rq); 4874 } 4875 4876 /* 4877 * This is done with a timer (instead of inline with bandwidth return) since 4878 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4879 */ 4880 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4881 { 4882 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4883 u64 expires; 4884 4885 /* confirm we're still not at a refresh boundary */ 4886 raw_spin_lock(&cfs_b->lock); 4887 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4888 raw_spin_unlock(&cfs_b->lock); 4889 return; 4890 } 4891 4892 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4893 runtime = cfs_b->runtime; 4894 4895 expires = cfs_b->runtime_expires; 4896 raw_spin_unlock(&cfs_b->lock); 4897 4898 if (!runtime) 4899 return; 4900 4901 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4902 4903 raw_spin_lock(&cfs_b->lock); 4904 if (expires == cfs_b->runtime_expires) 4905 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4906 raw_spin_unlock(&cfs_b->lock); 4907 } 4908 4909 /* 4910 * When a group wakes up we want to make sure that its quota is not already 4911 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4912 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4913 */ 4914 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4915 { 4916 if (!cfs_bandwidth_used()) 4917 return; 4918 4919 /* an active group must be handled by the update_curr()->put() path */ 4920 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4921 return; 4922 4923 /* ensure the group is not already throttled */ 4924 if (cfs_rq_throttled(cfs_rq)) 4925 return; 4926 4927 /* update runtime allocation */ 4928 account_cfs_rq_runtime(cfs_rq, 0); 4929 if (cfs_rq->runtime_remaining <= 0) 4930 throttle_cfs_rq(cfs_rq); 4931 } 4932 4933 static void sync_throttle(struct task_group *tg, int cpu) 4934 { 4935 struct cfs_rq *pcfs_rq, *cfs_rq; 4936 4937 if (!cfs_bandwidth_used()) 4938 return; 4939 4940 if (!tg->parent) 4941 return; 4942 4943 cfs_rq = tg->cfs_rq[cpu]; 4944 pcfs_rq = tg->parent->cfs_rq[cpu]; 4945 4946 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4947 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4948 } 4949 4950 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4951 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4952 { 4953 if (!cfs_bandwidth_used()) 4954 return false; 4955 4956 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4957 return false; 4958 4959 /* 4960 * it's possible for a throttled entity to be forced into a running 4961 * state (e.g. set_curr_task), in this case we're finished. 4962 */ 4963 if (cfs_rq_throttled(cfs_rq)) 4964 return true; 4965 4966 throttle_cfs_rq(cfs_rq); 4967 return true; 4968 } 4969 4970 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4971 { 4972 struct cfs_bandwidth *cfs_b = 4973 container_of(timer, struct cfs_bandwidth, slack_timer); 4974 4975 do_sched_cfs_slack_timer(cfs_b); 4976 4977 return HRTIMER_NORESTART; 4978 } 4979 4980 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4981 { 4982 struct cfs_bandwidth *cfs_b = 4983 container_of(timer, struct cfs_bandwidth, period_timer); 4984 int overrun; 4985 int idle = 0; 4986 4987 raw_spin_lock(&cfs_b->lock); 4988 for (;;) { 4989 overrun = hrtimer_forward_now(timer, cfs_b->period); 4990 if (!overrun) 4991 break; 4992 4993 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4994 } 4995 if (idle) 4996 cfs_b->period_active = 0; 4997 raw_spin_unlock(&cfs_b->lock); 4998 4999 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5000 } 5001 5002 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5003 { 5004 raw_spin_lock_init(&cfs_b->lock); 5005 cfs_b->runtime = 0; 5006 cfs_b->quota = RUNTIME_INF; 5007 cfs_b->period = ns_to_ktime(default_cfs_period()); 5008 5009 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5010 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5011 cfs_b->period_timer.function = sched_cfs_period_timer; 5012 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5013 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5014 } 5015 5016 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5017 { 5018 cfs_rq->runtime_enabled = 0; 5019 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5020 } 5021 5022 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5023 { 5024 lockdep_assert_held(&cfs_b->lock); 5025 5026 if (!cfs_b->period_active) { 5027 cfs_b->period_active = 1; 5028 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5029 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5030 } 5031 } 5032 5033 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5034 { 5035 /* init_cfs_bandwidth() was not called */ 5036 if (!cfs_b->throttled_cfs_rq.next) 5037 return; 5038 5039 hrtimer_cancel(&cfs_b->period_timer); 5040 hrtimer_cancel(&cfs_b->slack_timer); 5041 } 5042 5043 /* 5044 * Both these cpu hotplug callbacks race against unregister_fair_sched_group() 5045 * 5046 * The race is harmless, since modifying bandwidth settings of unhooked group 5047 * bits doesn't do much. 5048 */ 5049 5050 /* cpu online calback */ 5051 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5052 { 5053 struct task_group *tg; 5054 5055 lockdep_assert_held(&rq->lock); 5056 5057 rcu_read_lock(); 5058 list_for_each_entry_rcu(tg, &task_groups, list) { 5059 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5061 5062 raw_spin_lock(&cfs_b->lock); 5063 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5064 raw_spin_unlock(&cfs_b->lock); 5065 } 5066 rcu_read_unlock(); 5067 } 5068 5069 /* cpu offline callback */ 5070 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5071 { 5072 struct task_group *tg; 5073 5074 lockdep_assert_held(&rq->lock); 5075 5076 rcu_read_lock(); 5077 list_for_each_entry_rcu(tg, &task_groups, list) { 5078 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5079 5080 if (!cfs_rq->runtime_enabled) 5081 continue; 5082 5083 /* 5084 * clock_task is not advancing so we just need to make sure 5085 * there's some valid quota amount 5086 */ 5087 cfs_rq->runtime_remaining = 1; 5088 /* 5089 * Offline rq is schedulable till cpu is completely disabled 5090 * in take_cpu_down(), so we prevent new cfs throttling here. 5091 */ 5092 cfs_rq->runtime_enabled = 0; 5093 5094 if (cfs_rq_throttled(cfs_rq)) 5095 unthrottle_cfs_rq(cfs_rq); 5096 } 5097 rcu_read_unlock(); 5098 } 5099 5100 #else /* CONFIG_CFS_BANDWIDTH */ 5101 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 5102 { 5103 return rq_clock_task(rq_of(cfs_rq)); 5104 } 5105 5106 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5107 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5108 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5109 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5111 5112 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5113 { 5114 return 0; 5115 } 5116 5117 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5118 { 5119 return 0; 5120 } 5121 5122 static inline int throttled_lb_pair(struct task_group *tg, 5123 int src_cpu, int dest_cpu) 5124 { 5125 return 0; 5126 } 5127 5128 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5129 5130 #ifdef CONFIG_FAIR_GROUP_SCHED 5131 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5132 #endif 5133 5134 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5135 { 5136 return NULL; 5137 } 5138 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5139 static inline void update_runtime_enabled(struct rq *rq) {} 5140 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5141 5142 #endif /* CONFIG_CFS_BANDWIDTH */ 5143 5144 /************************************************** 5145 * CFS operations on tasks: 5146 */ 5147 5148 #ifdef CONFIG_SCHED_HRTICK 5149 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5150 { 5151 struct sched_entity *se = &p->se; 5152 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5153 5154 SCHED_WARN_ON(task_rq(p) != rq); 5155 5156 if (rq->cfs.h_nr_running > 1) { 5157 u64 slice = sched_slice(cfs_rq, se); 5158 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5159 s64 delta = slice - ran; 5160 5161 if (delta < 0) { 5162 if (rq->curr == p) 5163 resched_curr(rq); 5164 return; 5165 } 5166 hrtick_start(rq, delta); 5167 } 5168 } 5169 5170 /* 5171 * called from enqueue/dequeue and updates the hrtick when the 5172 * current task is from our class and nr_running is low enough 5173 * to matter. 5174 */ 5175 static void hrtick_update(struct rq *rq) 5176 { 5177 struct task_struct *curr = rq->curr; 5178 5179 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5180 return; 5181 5182 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5183 hrtick_start_fair(rq, curr); 5184 } 5185 #else /* !CONFIG_SCHED_HRTICK */ 5186 static inline void 5187 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5188 { 5189 } 5190 5191 static inline void hrtick_update(struct rq *rq) 5192 { 5193 } 5194 #endif 5195 5196 /* 5197 * The enqueue_task method is called before nr_running is 5198 * increased. Here we update the fair scheduling stats and 5199 * then put the task into the rbtree: 5200 */ 5201 static void 5202 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5203 { 5204 struct cfs_rq *cfs_rq; 5205 struct sched_entity *se = &p->se; 5206 5207 /* 5208 * If in_iowait is set, the code below may not trigger any cpufreq 5209 * utilization updates, so do it here explicitly with the IOWAIT flag 5210 * passed. 5211 */ 5212 if (p->in_iowait) 5213 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5214 5215 for_each_sched_entity(se) { 5216 if (se->on_rq) 5217 break; 5218 cfs_rq = cfs_rq_of(se); 5219 enqueue_entity(cfs_rq, se, flags); 5220 5221 /* 5222 * end evaluation on encountering a throttled cfs_rq 5223 * 5224 * note: in the case of encountering a throttled cfs_rq we will 5225 * post the final h_nr_running increment below. 5226 */ 5227 if (cfs_rq_throttled(cfs_rq)) 5228 break; 5229 cfs_rq->h_nr_running++; 5230 5231 flags = ENQUEUE_WAKEUP; 5232 } 5233 5234 for_each_sched_entity(se) { 5235 cfs_rq = cfs_rq_of(se); 5236 cfs_rq->h_nr_running++; 5237 5238 if (cfs_rq_throttled(cfs_rq)) 5239 break; 5240 5241 update_load_avg(cfs_rq, se, UPDATE_TG); 5242 update_cfs_group(se); 5243 } 5244 5245 if (!se) 5246 add_nr_running(rq, 1); 5247 5248 hrtick_update(rq); 5249 } 5250 5251 static void set_next_buddy(struct sched_entity *se); 5252 5253 /* 5254 * The dequeue_task method is called before nr_running is 5255 * decreased. We remove the task from the rbtree and 5256 * update the fair scheduling stats: 5257 */ 5258 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5259 { 5260 struct cfs_rq *cfs_rq; 5261 struct sched_entity *se = &p->se; 5262 int task_sleep = flags & DEQUEUE_SLEEP; 5263 5264 for_each_sched_entity(se) { 5265 cfs_rq = cfs_rq_of(se); 5266 dequeue_entity(cfs_rq, se, flags); 5267 5268 /* 5269 * end evaluation on encountering a throttled cfs_rq 5270 * 5271 * note: in the case of encountering a throttled cfs_rq we will 5272 * post the final h_nr_running decrement below. 5273 */ 5274 if (cfs_rq_throttled(cfs_rq)) 5275 break; 5276 cfs_rq->h_nr_running--; 5277 5278 /* Don't dequeue parent if it has other entities besides us */ 5279 if (cfs_rq->load.weight) { 5280 /* Avoid re-evaluating load for this entity: */ 5281 se = parent_entity(se); 5282 /* 5283 * Bias pick_next to pick a task from this cfs_rq, as 5284 * p is sleeping when it is within its sched_slice. 5285 */ 5286 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5287 set_next_buddy(se); 5288 break; 5289 } 5290 flags |= DEQUEUE_SLEEP; 5291 } 5292 5293 for_each_sched_entity(se) { 5294 cfs_rq = cfs_rq_of(se); 5295 cfs_rq->h_nr_running--; 5296 5297 if (cfs_rq_throttled(cfs_rq)) 5298 break; 5299 5300 update_load_avg(cfs_rq, se, UPDATE_TG); 5301 update_cfs_group(se); 5302 } 5303 5304 if (!se) 5305 sub_nr_running(rq, 1); 5306 5307 hrtick_update(rq); 5308 } 5309 5310 #ifdef CONFIG_SMP 5311 5312 /* Working cpumask for: load_balance, load_balance_newidle. */ 5313 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5314 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5315 5316 #ifdef CONFIG_NO_HZ_COMMON 5317 /* 5318 * per rq 'load' arrray crap; XXX kill this. 5319 */ 5320 5321 /* 5322 * The exact cpuload calculated at every tick would be: 5323 * 5324 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5325 * 5326 * If a cpu misses updates for n ticks (as it was idle) and update gets 5327 * called on the n+1-th tick when cpu may be busy, then we have: 5328 * 5329 * load_n = (1 - 1/2^i)^n * load_0 5330 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5331 * 5332 * decay_load_missed() below does efficient calculation of 5333 * 5334 * load' = (1 - 1/2^i)^n * load 5335 * 5336 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5337 * This allows us to precompute the above in said factors, thereby allowing the 5338 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5339 * fixed_power_int()) 5340 * 5341 * The calculation is approximated on a 128 point scale. 5342 */ 5343 #define DEGRADE_SHIFT 7 5344 5345 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5346 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5347 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5348 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5349 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5350 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5351 { 120, 112, 98, 76, 45, 16, 2, 0 } 5352 }; 5353 5354 /* 5355 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5356 * would be when CPU is idle and so we just decay the old load without 5357 * adding any new load. 5358 */ 5359 static unsigned long 5360 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5361 { 5362 int j = 0; 5363 5364 if (!missed_updates) 5365 return load; 5366 5367 if (missed_updates >= degrade_zero_ticks[idx]) 5368 return 0; 5369 5370 if (idx == 1) 5371 return load >> missed_updates; 5372 5373 while (missed_updates) { 5374 if (missed_updates % 2) 5375 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5376 5377 missed_updates >>= 1; 5378 j++; 5379 } 5380 return load; 5381 } 5382 #endif /* CONFIG_NO_HZ_COMMON */ 5383 5384 /** 5385 * __cpu_load_update - update the rq->cpu_load[] statistics 5386 * @this_rq: The rq to update statistics for 5387 * @this_load: The current load 5388 * @pending_updates: The number of missed updates 5389 * 5390 * Update rq->cpu_load[] statistics. This function is usually called every 5391 * scheduler tick (TICK_NSEC). 5392 * 5393 * This function computes a decaying average: 5394 * 5395 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5396 * 5397 * Because of NOHZ it might not get called on every tick which gives need for 5398 * the @pending_updates argument. 5399 * 5400 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5401 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5402 * = A * (A * load[i]_n-2 + B) + B 5403 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5404 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5405 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5406 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5407 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5408 * 5409 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5410 * any change in load would have resulted in the tick being turned back on. 5411 * 5412 * For regular NOHZ, this reduces to: 5413 * 5414 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5415 * 5416 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5417 * term. 5418 */ 5419 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5420 unsigned long pending_updates) 5421 { 5422 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5423 int i, scale; 5424 5425 this_rq->nr_load_updates++; 5426 5427 /* Update our load: */ 5428 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5429 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5430 unsigned long old_load, new_load; 5431 5432 /* scale is effectively 1 << i now, and >> i divides by scale */ 5433 5434 old_load = this_rq->cpu_load[i]; 5435 #ifdef CONFIG_NO_HZ_COMMON 5436 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5437 if (tickless_load) { 5438 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5439 /* 5440 * old_load can never be a negative value because a 5441 * decayed tickless_load cannot be greater than the 5442 * original tickless_load. 5443 */ 5444 old_load += tickless_load; 5445 } 5446 #endif 5447 new_load = this_load; 5448 /* 5449 * Round up the averaging division if load is increasing. This 5450 * prevents us from getting stuck on 9 if the load is 10, for 5451 * example. 5452 */ 5453 if (new_load > old_load) 5454 new_load += scale - 1; 5455 5456 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5457 } 5458 5459 sched_avg_update(this_rq); 5460 } 5461 5462 /* Used instead of source_load when we know the type == 0 */ 5463 static unsigned long weighted_cpuload(struct rq *rq) 5464 { 5465 return cfs_rq_runnable_load_avg(&rq->cfs); 5466 } 5467 5468 #ifdef CONFIG_NO_HZ_COMMON 5469 /* 5470 * There is no sane way to deal with nohz on smp when using jiffies because the 5471 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 5472 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5473 * 5474 * Therefore we need to avoid the delta approach from the regular tick when 5475 * possible since that would seriously skew the load calculation. This is why we 5476 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5477 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5478 * loop exit, nohz_idle_balance, nohz full exit...) 5479 * 5480 * This means we might still be one tick off for nohz periods. 5481 */ 5482 5483 static void cpu_load_update_nohz(struct rq *this_rq, 5484 unsigned long curr_jiffies, 5485 unsigned long load) 5486 { 5487 unsigned long pending_updates; 5488 5489 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5490 if (pending_updates) { 5491 this_rq->last_load_update_tick = curr_jiffies; 5492 /* 5493 * In the regular NOHZ case, we were idle, this means load 0. 5494 * In the NOHZ_FULL case, we were non-idle, we should consider 5495 * its weighted load. 5496 */ 5497 cpu_load_update(this_rq, load, pending_updates); 5498 } 5499 } 5500 5501 /* 5502 * Called from nohz_idle_balance() to update the load ratings before doing the 5503 * idle balance. 5504 */ 5505 static void cpu_load_update_idle(struct rq *this_rq) 5506 { 5507 /* 5508 * bail if there's load or we're actually up-to-date. 5509 */ 5510 if (weighted_cpuload(this_rq)) 5511 return; 5512 5513 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5514 } 5515 5516 /* 5517 * Record CPU load on nohz entry so we know the tickless load to account 5518 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5519 * than other cpu_load[idx] but it should be fine as cpu_load readers 5520 * shouldn't rely into synchronized cpu_load[*] updates. 5521 */ 5522 void cpu_load_update_nohz_start(void) 5523 { 5524 struct rq *this_rq = this_rq(); 5525 5526 /* 5527 * This is all lockless but should be fine. If weighted_cpuload changes 5528 * concurrently we'll exit nohz. And cpu_load write can race with 5529 * cpu_load_update_idle() but both updater would be writing the same. 5530 */ 5531 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5532 } 5533 5534 /* 5535 * Account the tickless load in the end of a nohz frame. 5536 */ 5537 void cpu_load_update_nohz_stop(void) 5538 { 5539 unsigned long curr_jiffies = READ_ONCE(jiffies); 5540 struct rq *this_rq = this_rq(); 5541 unsigned long load; 5542 struct rq_flags rf; 5543 5544 if (curr_jiffies == this_rq->last_load_update_tick) 5545 return; 5546 5547 load = weighted_cpuload(this_rq); 5548 rq_lock(this_rq, &rf); 5549 update_rq_clock(this_rq); 5550 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5551 rq_unlock(this_rq, &rf); 5552 } 5553 #else /* !CONFIG_NO_HZ_COMMON */ 5554 static inline void cpu_load_update_nohz(struct rq *this_rq, 5555 unsigned long curr_jiffies, 5556 unsigned long load) { } 5557 #endif /* CONFIG_NO_HZ_COMMON */ 5558 5559 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5560 { 5561 #ifdef CONFIG_NO_HZ_COMMON 5562 /* See the mess around cpu_load_update_nohz(). */ 5563 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5564 #endif 5565 cpu_load_update(this_rq, load, 1); 5566 } 5567 5568 /* 5569 * Called from scheduler_tick() 5570 */ 5571 void cpu_load_update_active(struct rq *this_rq) 5572 { 5573 unsigned long load = weighted_cpuload(this_rq); 5574 5575 if (tick_nohz_tick_stopped()) 5576 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5577 else 5578 cpu_load_update_periodic(this_rq, load); 5579 } 5580 5581 /* 5582 * Return a low guess at the load of a migration-source cpu weighted 5583 * according to the scheduling class and "nice" value. 5584 * 5585 * We want to under-estimate the load of migration sources, to 5586 * balance conservatively. 5587 */ 5588 static unsigned long source_load(int cpu, int type) 5589 { 5590 struct rq *rq = cpu_rq(cpu); 5591 unsigned long total = weighted_cpuload(rq); 5592 5593 if (type == 0 || !sched_feat(LB_BIAS)) 5594 return total; 5595 5596 return min(rq->cpu_load[type-1], total); 5597 } 5598 5599 /* 5600 * Return a high guess at the load of a migration-target cpu weighted 5601 * according to the scheduling class and "nice" value. 5602 */ 5603 static unsigned long target_load(int cpu, int type) 5604 { 5605 struct rq *rq = cpu_rq(cpu); 5606 unsigned long total = weighted_cpuload(rq); 5607 5608 if (type == 0 || !sched_feat(LB_BIAS)) 5609 return total; 5610 5611 return max(rq->cpu_load[type-1], total); 5612 } 5613 5614 static unsigned long capacity_of(int cpu) 5615 { 5616 return cpu_rq(cpu)->cpu_capacity; 5617 } 5618 5619 static unsigned long capacity_orig_of(int cpu) 5620 { 5621 return cpu_rq(cpu)->cpu_capacity_orig; 5622 } 5623 5624 static unsigned long cpu_avg_load_per_task(int cpu) 5625 { 5626 struct rq *rq = cpu_rq(cpu); 5627 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5628 unsigned long load_avg = weighted_cpuload(rq); 5629 5630 if (nr_running) 5631 return load_avg / nr_running; 5632 5633 return 0; 5634 } 5635 5636 static void record_wakee(struct task_struct *p) 5637 { 5638 /* 5639 * Only decay a single time; tasks that have less then 1 wakeup per 5640 * jiffy will not have built up many flips. 5641 */ 5642 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5643 current->wakee_flips >>= 1; 5644 current->wakee_flip_decay_ts = jiffies; 5645 } 5646 5647 if (current->last_wakee != p) { 5648 current->last_wakee = p; 5649 current->wakee_flips++; 5650 } 5651 } 5652 5653 /* 5654 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5655 * 5656 * A waker of many should wake a different task than the one last awakened 5657 * at a frequency roughly N times higher than one of its wakees. 5658 * 5659 * In order to determine whether we should let the load spread vs consolidating 5660 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5661 * partner, and a factor of lls_size higher frequency in the other. 5662 * 5663 * With both conditions met, we can be relatively sure that the relationship is 5664 * non-monogamous, with partner count exceeding socket size. 5665 * 5666 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5667 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5668 * socket size. 5669 */ 5670 static int wake_wide(struct task_struct *p) 5671 { 5672 unsigned int master = current->wakee_flips; 5673 unsigned int slave = p->wakee_flips; 5674 int factor = this_cpu_read(sd_llc_size); 5675 5676 if (master < slave) 5677 swap(master, slave); 5678 if (slave < factor || master < slave * factor) 5679 return 0; 5680 return 1; 5681 } 5682 5683 /* 5684 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5685 * soonest. For the purpose of speed we only consider the waking and previous 5686 * CPU. 5687 * 5688 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5689 * cache-affine and is (or will be) idle. 5690 * 5691 * wake_affine_weight() - considers the weight to reflect the average 5692 * scheduling latency of the CPUs. This seems to work 5693 * for the overloaded case. 5694 */ 5695 5696 static bool 5697 wake_affine_idle(struct sched_domain *sd, struct task_struct *p, 5698 int this_cpu, int prev_cpu, int sync) 5699 { 5700 /* 5701 * If this_cpu is idle, it implies the wakeup is from interrupt 5702 * context. Only allow the move if cache is shared. Otherwise an 5703 * interrupt intensive workload could force all tasks onto one 5704 * node depending on the IO topology or IRQ affinity settings. 5705 */ 5706 if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5707 return true; 5708 5709 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5710 return true; 5711 5712 return false; 5713 } 5714 5715 static bool 5716 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5717 int this_cpu, int prev_cpu, int sync) 5718 { 5719 s64 this_eff_load, prev_eff_load; 5720 unsigned long task_load; 5721 5722 this_eff_load = target_load(this_cpu, sd->wake_idx); 5723 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5724 5725 if (sync) { 5726 unsigned long current_load = task_h_load(current); 5727 5728 if (current_load > this_eff_load) 5729 return true; 5730 5731 this_eff_load -= current_load; 5732 } 5733 5734 task_load = task_h_load(p); 5735 5736 this_eff_load += task_load; 5737 if (sched_feat(WA_BIAS)) 5738 this_eff_load *= 100; 5739 this_eff_load *= capacity_of(prev_cpu); 5740 5741 prev_eff_load -= task_load; 5742 if (sched_feat(WA_BIAS)) 5743 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5744 prev_eff_load *= capacity_of(this_cpu); 5745 5746 return this_eff_load <= prev_eff_load; 5747 } 5748 5749 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5750 int prev_cpu, int sync) 5751 { 5752 int this_cpu = smp_processor_id(); 5753 bool affine = false; 5754 5755 if (sched_feat(WA_IDLE) && !affine) 5756 affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync); 5757 5758 if (sched_feat(WA_WEIGHT) && !affine) 5759 affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5760 5761 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5762 if (affine) { 5763 schedstat_inc(sd->ttwu_move_affine); 5764 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5765 } 5766 5767 return affine; 5768 } 5769 5770 static inline unsigned long task_util(struct task_struct *p); 5771 static unsigned long cpu_util_wake(int cpu, struct task_struct *p); 5772 5773 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5774 { 5775 return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0); 5776 } 5777 5778 /* 5779 * find_idlest_group finds and returns the least busy CPU group within the 5780 * domain. 5781 * 5782 * Assumes p is allowed on at least one CPU in sd. 5783 */ 5784 static struct sched_group * 5785 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5786 int this_cpu, int sd_flag) 5787 { 5788 struct sched_group *idlest = NULL, *group = sd->groups; 5789 struct sched_group *most_spare_sg = NULL; 5790 unsigned long min_runnable_load = ULONG_MAX; 5791 unsigned long this_runnable_load = ULONG_MAX; 5792 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5793 unsigned long most_spare = 0, this_spare = 0; 5794 int load_idx = sd->forkexec_idx; 5795 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5796 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5797 (sd->imbalance_pct-100) / 100; 5798 5799 if (sd_flag & SD_BALANCE_WAKE) 5800 load_idx = sd->wake_idx; 5801 5802 do { 5803 unsigned long load, avg_load, runnable_load; 5804 unsigned long spare_cap, max_spare_cap; 5805 int local_group; 5806 int i; 5807 5808 /* Skip over this group if it has no CPUs allowed */ 5809 if (!cpumask_intersects(sched_group_span(group), 5810 &p->cpus_allowed)) 5811 continue; 5812 5813 local_group = cpumask_test_cpu(this_cpu, 5814 sched_group_span(group)); 5815 5816 /* 5817 * Tally up the load of all CPUs in the group and find 5818 * the group containing the CPU with most spare capacity. 5819 */ 5820 avg_load = 0; 5821 runnable_load = 0; 5822 max_spare_cap = 0; 5823 5824 for_each_cpu(i, sched_group_span(group)) { 5825 /* Bias balancing toward cpus of our domain */ 5826 if (local_group) 5827 load = source_load(i, load_idx); 5828 else 5829 load = target_load(i, load_idx); 5830 5831 runnable_load += load; 5832 5833 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5834 5835 spare_cap = capacity_spare_wake(i, p); 5836 5837 if (spare_cap > max_spare_cap) 5838 max_spare_cap = spare_cap; 5839 } 5840 5841 /* Adjust by relative CPU capacity of the group */ 5842 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5843 group->sgc->capacity; 5844 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5845 group->sgc->capacity; 5846 5847 if (local_group) { 5848 this_runnable_load = runnable_load; 5849 this_avg_load = avg_load; 5850 this_spare = max_spare_cap; 5851 } else { 5852 if (min_runnable_load > (runnable_load + imbalance)) { 5853 /* 5854 * The runnable load is significantly smaller 5855 * so we can pick this new cpu 5856 */ 5857 min_runnable_load = runnable_load; 5858 min_avg_load = avg_load; 5859 idlest = group; 5860 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5861 (100*min_avg_load > imbalance_scale*avg_load)) { 5862 /* 5863 * The runnable loads are close so take the 5864 * blocked load into account through avg_load. 5865 */ 5866 min_avg_load = avg_load; 5867 idlest = group; 5868 } 5869 5870 if (most_spare < max_spare_cap) { 5871 most_spare = max_spare_cap; 5872 most_spare_sg = group; 5873 } 5874 } 5875 } while (group = group->next, group != sd->groups); 5876 5877 /* 5878 * The cross-over point between using spare capacity or least load 5879 * is too conservative for high utilization tasks on partially 5880 * utilized systems if we require spare_capacity > task_util(p), 5881 * so we allow for some task stuffing by using 5882 * spare_capacity > task_util(p)/2. 5883 * 5884 * Spare capacity can't be used for fork because the utilization has 5885 * not been set yet, we must first select a rq to compute the initial 5886 * utilization. 5887 */ 5888 if (sd_flag & SD_BALANCE_FORK) 5889 goto skip_spare; 5890 5891 if (this_spare > task_util(p) / 2 && 5892 imbalance_scale*this_spare > 100*most_spare) 5893 return NULL; 5894 5895 if (most_spare > task_util(p) / 2) 5896 return most_spare_sg; 5897 5898 skip_spare: 5899 if (!idlest) 5900 return NULL; 5901 5902 if (min_runnable_load > (this_runnable_load + imbalance)) 5903 return NULL; 5904 5905 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5906 (100*this_avg_load < imbalance_scale*min_avg_load)) 5907 return NULL; 5908 5909 return idlest; 5910 } 5911 5912 /* 5913 * find_idlest_group_cpu - find the idlest cpu among the cpus in group. 5914 */ 5915 static int 5916 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5917 { 5918 unsigned long load, min_load = ULONG_MAX; 5919 unsigned int min_exit_latency = UINT_MAX; 5920 u64 latest_idle_timestamp = 0; 5921 int least_loaded_cpu = this_cpu; 5922 int shallowest_idle_cpu = -1; 5923 int i; 5924 5925 /* Check if we have any choice: */ 5926 if (group->group_weight == 1) 5927 return cpumask_first(sched_group_span(group)); 5928 5929 /* Traverse only the allowed CPUs */ 5930 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5931 if (idle_cpu(i)) { 5932 struct rq *rq = cpu_rq(i); 5933 struct cpuidle_state *idle = idle_get_state(rq); 5934 if (idle && idle->exit_latency < min_exit_latency) { 5935 /* 5936 * We give priority to a CPU whose idle state 5937 * has the smallest exit latency irrespective 5938 * of any idle timestamp. 5939 */ 5940 min_exit_latency = idle->exit_latency; 5941 latest_idle_timestamp = rq->idle_stamp; 5942 shallowest_idle_cpu = i; 5943 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5944 rq->idle_stamp > latest_idle_timestamp) { 5945 /* 5946 * If equal or no active idle state, then 5947 * the most recently idled CPU might have 5948 * a warmer cache. 5949 */ 5950 latest_idle_timestamp = rq->idle_stamp; 5951 shallowest_idle_cpu = i; 5952 } 5953 } else if (shallowest_idle_cpu == -1) { 5954 load = weighted_cpuload(cpu_rq(i)); 5955 if (load < min_load) { 5956 min_load = load; 5957 least_loaded_cpu = i; 5958 } 5959 } 5960 } 5961 5962 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5963 } 5964 5965 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5966 int cpu, int prev_cpu, int sd_flag) 5967 { 5968 int new_cpu = cpu; 5969 5970 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 5971 return prev_cpu; 5972 5973 while (sd) { 5974 struct sched_group *group; 5975 struct sched_domain *tmp; 5976 int weight; 5977 5978 if (!(sd->flags & sd_flag)) { 5979 sd = sd->child; 5980 continue; 5981 } 5982 5983 group = find_idlest_group(sd, p, cpu, sd_flag); 5984 if (!group) { 5985 sd = sd->child; 5986 continue; 5987 } 5988 5989 new_cpu = find_idlest_group_cpu(group, p, cpu); 5990 if (new_cpu == cpu) { 5991 /* Now try balancing at a lower domain level of cpu */ 5992 sd = sd->child; 5993 continue; 5994 } 5995 5996 /* Now try balancing at a lower domain level of new_cpu */ 5997 cpu = new_cpu; 5998 weight = sd->span_weight; 5999 sd = NULL; 6000 for_each_domain(cpu, tmp) { 6001 if (weight <= tmp->span_weight) 6002 break; 6003 if (tmp->flags & sd_flag) 6004 sd = tmp; 6005 } 6006 /* while loop will break here if sd == NULL */ 6007 } 6008 6009 return new_cpu; 6010 } 6011 6012 #ifdef CONFIG_SCHED_SMT 6013 6014 static inline void set_idle_cores(int cpu, int val) 6015 { 6016 struct sched_domain_shared *sds; 6017 6018 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6019 if (sds) 6020 WRITE_ONCE(sds->has_idle_cores, val); 6021 } 6022 6023 static inline bool test_idle_cores(int cpu, bool def) 6024 { 6025 struct sched_domain_shared *sds; 6026 6027 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6028 if (sds) 6029 return READ_ONCE(sds->has_idle_cores); 6030 6031 return def; 6032 } 6033 6034 /* 6035 * Scans the local SMT mask to see if the entire core is idle, and records this 6036 * information in sd_llc_shared->has_idle_cores. 6037 * 6038 * Since SMT siblings share all cache levels, inspecting this limited remote 6039 * state should be fairly cheap. 6040 */ 6041 void __update_idle_core(struct rq *rq) 6042 { 6043 int core = cpu_of(rq); 6044 int cpu; 6045 6046 rcu_read_lock(); 6047 if (test_idle_cores(core, true)) 6048 goto unlock; 6049 6050 for_each_cpu(cpu, cpu_smt_mask(core)) { 6051 if (cpu == core) 6052 continue; 6053 6054 if (!idle_cpu(cpu)) 6055 goto unlock; 6056 } 6057 6058 set_idle_cores(core, 1); 6059 unlock: 6060 rcu_read_unlock(); 6061 } 6062 6063 /* 6064 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6065 * there are no idle cores left in the system; tracked through 6066 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6067 */ 6068 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6069 { 6070 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6071 int core, cpu; 6072 6073 if (!static_branch_likely(&sched_smt_present)) 6074 return -1; 6075 6076 if (!test_idle_cores(target, false)) 6077 return -1; 6078 6079 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6080 6081 for_each_cpu_wrap(core, cpus, target) { 6082 bool idle = true; 6083 6084 for_each_cpu(cpu, cpu_smt_mask(core)) { 6085 cpumask_clear_cpu(cpu, cpus); 6086 if (!idle_cpu(cpu)) 6087 idle = false; 6088 } 6089 6090 if (idle) 6091 return core; 6092 } 6093 6094 /* 6095 * Failed to find an idle core; stop looking for one. 6096 */ 6097 set_idle_cores(target, 0); 6098 6099 return -1; 6100 } 6101 6102 /* 6103 * Scan the local SMT mask for idle CPUs. 6104 */ 6105 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6106 { 6107 int cpu; 6108 6109 if (!static_branch_likely(&sched_smt_present)) 6110 return -1; 6111 6112 for_each_cpu(cpu, cpu_smt_mask(target)) { 6113 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6114 continue; 6115 if (idle_cpu(cpu)) 6116 return cpu; 6117 } 6118 6119 return -1; 6120 } 6121 6122 #else /* CONFIG_SCHED_SMT */ 6123 6124 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6125 { 6126 return -1; 6127 } 6128 6129 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6130 { 6131 return -1; 6132 } 6133 6134 #endif /* CONFIG_SCHED_SMT */ 6135 6136 /* 6137 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6138 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6139 * average idle time for this rq (as found in rq->avg_idle). 6140 */ 6141 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6142 { 6143 struct sched_domain *this_sd; 6144 u64 avg_cost, avg_idle; 6145 u64 time, cost; 6146 s64 delta; 6147 int cpu, nr = INT_MAX; 6148 6149 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6150 if (!this_sd) 6151 return -1; 6152 6153 /* 6154 * Due to large variance we need a large fuzz factor; hackbench in 6155 * particularly is sensitive here. 6156 */ 6157 avg_idle = this_rq()->avg_idle / 512; 6158 avg_cost = this_sd->avg_scan_cost + 1; 6159 6160 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6161 return -1; 6162 6163 if (sched_feat(SIS_PROP)) { 6164 u64 span_avg = sd->span_weight * avg_idle; 6165 if (span_avg > 4*avg_cost) 6166 nr = div_u64(span_avg, avg_cost); 6167 else 6168 nr = 4; 6169 } 6170 6171 time = local_clock(); 6172 6173 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6174 if (!--nr) 6175 return -1; 6176 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6177 continue; 6178 if (idle_cpu(cpu)) 6179 break; 6180 } 6181 6182 time = local_clock() - time; 6183 cost = this_sd->avg_scan_cost; 6184 delta = (s64)(time - cost) / 8; 6185 this_sd->avg_scan_cost += delta; 6186 6187 return cpu; 6188 } 6189 6190 /* 6191 * Try and locate an idle core/thread in the LLC cache domain. 6192 */ 6193 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6194 { 6195 struct sched_domain *sd; 6196 int i; 6197 6198 if (idle_cpu(target)) 6199 return target; 6200 6201 /* 6202 * If the previous cpu is cache affine and idle, don't be stupid. 6203 */ 6204 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 6205 return prev; 6206 6207 sd = rcu_dereference(per_cpu(sd_llc, target)); 6208 if (!sd) 6209 return target; 6210 6211 i = select_idle_core(p, sd, target); 6212 if ((unsigned)i < nr_cpumask_bits) 6213 return i; 6214 6215 i = select_idle_cpu(p, sd, target); 6216 if ((unsigned)i < nr_cpumask_bits) 6217 return i; 6218 6219 i = select_idle_smt(p, sd, target); 6220 if ((unsigned)i < nr_cpumask_bits) 6221 return i; 6222 6223 return target; 6224 } 6225 6226 /* 6227 * cpu_util returns the amount of capacity of a CPU that is used by CFS 6228 * tasks. The unit of the return value must be the one of capacity so we can 6229 * compare the utilization with the capacity of the CPU that is available for 6230 * CFS task (ie cpu_capacity). 6231 * 6232 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6233 * recent utilization of currently non-runnable tasks on a CPU. It represents 6234 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6235 * capacity_orig is the cpu_capacity available at the highest frequency 6236 * (arch_scale_freq_capacity()). 6237 * The utilization of a CPU converges towards a sum equal to or less than the 6238 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6239 * the running time on this CPU scaled by capacity_curr. 6240 * 6241 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6242 * higher than capacity_orig because of unfortunate rounding in 6243 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6244 * the average stabilizes with the new running time. We need to check that the 6245 * utilization stays within the range of [0..capacity_orig] and cap it if 6246 * necessary. Without utilization capping, a group could be seen as overloaded 6247 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6248 * available capacity. We allow utilization to overshoot capacity_curr (but not 6249 * capacity_orig) as it useful for predicting the capacity required after task 6250 * migrations (scheduler-driven DVFS). 6251 */ 6252 static unsigned long cpu_util(int cpu) 6253 { 6254 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 6255 unsigned long capacity = capacity_orig_of(cpu); 6256 6257 return (util >= capacity) ? capacity : util; 6258 } 6259 6260 static inline unsigned long task_util(struct task_struct *p) 6261 { 6262 return p->se.avg.util_avg; 6263 } 6264 6265 /* 6266 * cpu_util_wake: Compute cpu utilization with any contributions from 6267 * the waking task p removed. 6268 */ 6269 static unsigned long cpu_util_wake(int cpu, struct task_struct *p) 6270 { 6271 unsigned long util, capacity; 6272 6273 /* Task has no contribution or is new */ 6274 if (cpu != task_cpu(p) || !p->se.avg.last_update_time) 6275 return cpu_util(cpu); 6276 6277 capacity = capacity_orig_of(cpu); 6278 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0); 6279 6280 return (util >= capacity) ? capacity : util; 6281 } 6282 6283 /* 6284 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6285 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6286 * 6287 * In that case WAKE_AFFINE doesn't make sense and we'll let 6288 * BALANCE_WAKE sort things out. 6289 */ 6290 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6291 { 6292 long min_cap, max_cap; 6293 6294 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6295 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6296 6297 /* Minimum capacity is close to max, no need to abort wake_affine */ 6298 if (max_cap - min_cap < max_cap >> 3) 6299 return 0; 6300 6301 /* Bring task utilization in sync with prev_cpu */ 6302 sync_entity_load_avg(&p->se); 6303 6304 return min_cap * 1024 < task_util(p) * capacity_margin; 6305 } 6306 6307 /* 6308 * select_task_rq_fair: Select target runqueue for the waking task in domains 6309 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6310 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6311 * 6312 * Balances load by selecting the idlest cpu in the idlest group, or under 6313 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 6314 * 6315 * Returns the target cpu number. 6316 * 6317 * preempt must be disabled. 6318 */ 6319 static int 6320 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6321 { 6322 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 6323 int cpu = smp_processor_id(); 6324 int new_cpu = prev_cpu; 6325 int want_affine = 0; 6326 int sync = wake_flags & WF_SYNC; 6327 6328 if (sd_flag & SD_BALANCE_WAKE) { 6329 record_wakee(p); 6330 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 6331 && cpumask_test_cpu(cpu, &p->cpus_allowed); 6332 } 6333 6334 rcu_read_lock(); 6335 for_each_domain(cpu, tmp) { 6336 if (!(tmp->flags & SD_LOAD_BALANCE)) 6337 break; 6338 6339 /* 6340 * If both cpu and prev_cpu are part of this domain, 6341 * cpu is a valid SD_WAKE_AFFINE target. 6342 */ 6343 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6344 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6345 affine_sd = tmp; 6346 break; 6347 } 6348 6349 if (tmp->flags & sd_flag) 6350 sd = tmp; 6351 else if (!want_affine) 6352 break; 6353 } 6354 6355 if (affine_sd) { 6356 sd = NULL; /* Prefer wake_affine over balance flags */ 6357 if (cpu == prev_cpu) 6358 goto pick_cpu; 6359 6360 if (wake_affine(affine_sd, p, prev_cpu, sync)) 6361 new_cpu = cpu; 6362 } 6363 6364 if (sd && !(sd_flag & SD_BALANCE_FORK)) { 6365 /* 6366 * We're going to need the task's util for capacity_spare_wake 6367 * in find_idlest_group. Sync it up to prev_cpu's 6368 * last_update_time. 6369 */ 6370 sync_entity_load_avg(&p->se); 6371 } 6372 6373 if (!sd) { 6374 pick_cpu: 6375 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 6376 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6377 6378 } else { 6379 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6380 } 6381 rcu_read_unlock(); 6382 6383 return new_cpu; 6384 } 6385 6386 static void detach_entity_cfs_rq(struct sched_entity *se); 6387 6388 /* 6389 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 6390 * cfs_rq_of(p) references at time of call are still valid and identify the 6391 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6392 */ 6393 static void migrate_task_rq_fair(struct task_struct *p) 6394 { 6395 /* 6396 * As blocked tasks retain absolute vruntime the migration needs to 6397 * deal with this by subtracting the old and adding the new 6398 * min_vruntime -- the latter is done by enqueue_entity() when placing 6399 * the task on the new runqueue. 6400 */ 6401 if (p->state == TASK_WAKING) { 6402 struct sched_entity *se = &p->se; 6403 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6404 u64 min_vruntime; 6405 6406 #ifndef CONFIG_64BIT 6407 u64 min_vruntime_copy; 6408 6409 do { 6410 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6411 smp_rmb(); 6412 min_vruntime = cfs_rq->min_vruntime; 6413 } while (min_vruntime != min_vruntime_copy); 6414 #else 6415 min_vruntime = cfs_rq->min_vruntime; 6416 #endif 6417 6418 se->vruntime -= min_vruntime; 6419 } 6420 6421 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6422 /* 6423 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6424 * rq->lock and can modify state directly. 6425 */ 6426 lockdep_assert_held(&task_rq(p)->lock); 6427 detach_entity_cfs_rq(&p->se); 6428 6429 } else { 6430 /* 6431 * We are supposed to update the task to "current" time, then 6432 * its up to date and ready to go to new CPU/cfs_rq. But we 6433 * have difficulty in getting what current time is, so simply 6434 * throw away the out-of-date time. This will result in the 6435 * wakee task is less decayed, but giving the wakee more load 6436 * sounds not bad. 6437 */ 6438 remove_entity_load_avg(&p->se); 6439 } 6440 6441 /* Tell new CPU we are migrated */ 6442 p->se.avg.last_update_time = 0; 6443 6444 /* We have migrated, no longer consider this task hot */ 6445 p->se.exec_start = 0; 6446 } 6447 6448 static void task_dead_fair(struct task_struct *p) 6449 { 6450 remove_entity_load_avg(&p->se); 6451 } 6452 #endif /* CONFIG_SMP */ 6453 6454 static unsigned long wakeup_gran(struct sched_entity *se) 6455 { 6456 unsigned long gran = sysctl_sched_wakeup_granularity; 6457 6458 /* 6459 * Since its curr running now, convert the gran from real-time 6460 * to virtual-time in his units. 6461 * 6462 * By using 'se' instead of 'curr' we penalize light tasks, so 6463 * they get preempted easier. That is, if 'se' < 'curr' then 6464 * the resulting gran will be larger, therefore penalizing the 6465 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6466 * be smaller, again penalizing the lighter task. 6467 * 6468 * This is especially important for buddies when the leftmost 6469 * task is higher priority than the buddy. 6470 */ 6471 return calc_delta_fair(gran, se); 6472 } 6473 6474 /* 6475 * Should 'se' preempt 'curr'. 6476 * 6477 * |s1 6478 * |s2 6479 * |s3 6480 * g 6481 * |<--->|c 6482 * 6483 * w(c, s1) = -1 6484 * w(c, s2) = 0 6485 * w(c, s3) = 1 6486 * 6487 */ 6488 static int 6489 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6490 { 6491 s64 gran, vdiff = curr->vruntime - se->vruntime; 6492 6493 if (vdiff <= 0) 6494 return -1; 6495 6496 gran = wakeup_gran(se); 6497 if (vdiff > gran) 6498 return 1; 6499 6500 return 0; 6501 } 6502 6503 static void set_last_buddy(struct sched_entity *se) 6504 { 6505 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6506 return; 6507 6508 for_each_sched_entity(se) { 6509 if (SCHED_WARN_ON(!se->on_rq)) 6510 return; 6511 cfs_rq_of(se)->last = se; 6512 } 6513 } 6514 6515 static void set_next_buddy(struct sched_entity *se) 6516 { 6517 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6518 return; 6519 6520 for_each_sched_entity(se) { 6521 if (SCHED_WARN_ON(!se->on_rq)) 6522 return; 6523 cfs_rq_of(se)->next = se; 6524 } 6525 } 6526 6527 static void set_skip_buddy(struct sched_entity *se) 6528 { 6529 for_each_sched_entity(se) 6530 cfs_rq_of(se)->skip = se; 6531 } 6532 6533 /* 6534 * Preempt the current task with a newly woken task if needed: 6535 */ 6536 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6537 { 6538 struct task_struct *curr = rq->curr; 6539 struct sched_entity *se = &curr->se, *pse = &p->se; 6540 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6541 int scale = cfs_rq->nr_running >= sched_nr_latency; 6542 int next_buddy_marked = 0; 6543 6544 if (unlikely(se == pse)) 6545 return; 6546 6547 /* 6548 * This is possible from callers such as attach_tasks(), in which we 6549 * unconditionally check_prempt_curr() after an enqueue (which may have 6550 * lead to a throttle). This both saves work and prevents false 6551 * next-buddy nomination below. 6552 */ 6553 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6554 return; 6555 6556 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6557 set_next_buddy(pse); 6558 next_buddy_marked = 1; 6559 } 6560 6561 /* 6562 * We can come here with TIF_NEED_RESCHED already set from new task 6563 * wake up path. 6564 * 6565 * Note: this also catches the edge-case of curr being in a throttled 6566 * group (e.g. via set_curr_task), since update_curr() (in the 6567 * enqueue of curr) will have resulted in resched being set. This 6568 * prevents us from potentially nominating it as a false LAST_BUDDY 6569 * below. 6570 */ 6571 if (test_tsk_need_resched(curr)) 6572 return; 6573 6574 /* Idle tasks are by definition preempted by non-idle tasks. */ 6575 if (unlikely(curr->policy == SCHED_IDLE) && 6576 likely(p->policy != SCHED_IDLE)) 6577 goto preempt; 6578 6579 /* 6580 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6581 * is driven by the tick): 6582 */ 6583 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6584 return; 6585 6586 find_matching_se(&se, &pse); 6587 update_curr(cfs_rq_of(se)); 6588 BUG_ON(!pse); 6589 if (wakeup_preempt_entity(se, pse) == 1) { 6590 /* 6591 * Bias pick_next to pick the sched entity that is 6592 * triggering this preemption. 6593 */ 6594 if (!next_buddy_marked) 6595 set_next_buddy(pse); 6596 goto preempt; 6597 } 6598 6599 return; 6600 6601 preempt: 6602 resched_curr(rq); 6603 /* 6604 * Only set the backward buddy when the current task is still 6605 * on the rq. This can happen when a wakeup gets interleaved 6606 * with schedule on the ->pre_schedule() or idle_balance() 6607 * point, either of which can * drop the rq lock. 6608 * 6609 * Also, during early boot the idle thread is in the fair class, 6610 * for obvious reasons its a bad idea to schedule back to it. 6611 */ 6612 if (unlikely(!se->on_rq || curr == rq->idle)) 6613 return; 6614 6615 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6616 set_last_buddy(se); 6617 } 6618 6619 static struct task_struct * 6620 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6621 { 6622 struct cfs_rq *cfs_rq = &rq->cfs; 6623 struct sched_entity *se; 6624 struct task_struct *p; 6625 int new_tasks; 6626 6627 again: 6628 if (!cfs_rq->nr_running) 6629 goto idle; 6630 6631 #ifdef CONFIG_FAIR_GROUP_SCHED 6632 if (prev->sched_class != &fair_sched_class) 6633 goto simple; 6634 6635 /* 6636 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6637 * likely that a next task is from the same cgroup as the current. 6638 * 6639 * Therefore attempt to avoid putting and setting the entire cgroup 6640 * hierarchy, only change the part that actually changes. 6641 */ 6642 6643 do { 6644 struct sched_entity *curr = cfs_rq->curr; 6645 6646 /* 6647 * Since we got here without doing put_prev_entity() we also 6648 * have to consider cfs_rq->curr. If it is still a runnable 6649 * entity, update_curr() will update its vruntime, otherwise 6650 * forget we've ever seen it. 6651 */ 6652 if (curr) { 6653 if (curr->on_rq) 6654 update_curr(cfs_rq); 6655 else 6656 curr = NULL; 6657 6658 /* 6659 * This call to check_cfs_rq_runtime() will do the 6660 * throttle and dequeue its entity in the parent(s). 6661 * Therefore the nr_running test will indeed 6662 * be correct. 6663 */ 6664 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6665 cfs_rq = &rq->cfs; 6666 6667 if (!cfs_rq->nr_running) 6668 goto idle; 6669 6670 goto simple; 6671 } 6672 } 6673 6674 se = pick_next_entity(cfs_rq, curr); 6675 cfs_rq = group_cfs_rq(se); 6676 } while (cfs_rq); 6677 6678 p = task_of(se); 6679 6680 /* 6681 * Since we haven't yet done put_prev_entity and if the selected task 6682 * is a different task than we started out with, try and touch the 6683 * least amount of cfs_rqs. 6684 */ 6685 if (prev != p) { 6686 struct sched_entity *pse = &prev->se; 6687 6688 while (!(cfs_rq = is_same_group(se, pse))) { 6689 int se_depth = se->depth; 6690 int pse_depth = pse->depth; 6691 6692 if (se_depth <= pse_depth) { 6693 put_prev_entity(cfs_rq_of(pse), pse); 6694 pse = parent_entity(pse); 6695 } 6696 if (se_depth >= pse_depth) { 6697 set_next_entity(cfs_rq_of(se), se); 6698 se = parent_entity(se); 6699 } 6700 } 6701 6702 put_prev_entity(cfs_rq, pse); 6703 set_next_entity(cfs_rq, se); 6704 } 6705 6706 goto done; 6707 simple: 6708 #endif 6709 6710 put_prev_task(rq, prev); 6711 6712 do { 6713 se = pick_next_entity(cfs_rq, NULL); 6714 set_next_entity(cfs_rq, se); 6715 cfs_rq = group_cfs_rq(se); 6716 } while (cfs_rq); 6717 6718 p = task_of(se); 6719 6720 done: __maybe_unused 6721 #ifdef CONFIG_SMP 6722 /* 6723 * Move the next running task to the front of 6724 * the list, so our cfs_tasks list becomes MRU 6725 * one. 6726 */ 6727 list_move(&p->se.group_node, &rq->cfs_tasks); 6728 #endif 6729 6730 if (hrtick_enabled(rq)) 6731 hrtick_start_fair(rq, p); 6732 6733 return p; 6734 6735 idle: 6736 new_tasks = idle_balance(rq, rf); 6737 6738 /* 6739 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6740 * possible for any higher priority task to appear. In that case we 6741 * must re-start the pick_next_entity() loop. 6742 */ 6743 if (new_tasks < 0) 6744 return RETRY_TASK; 6745 6746 if (new_tasks > 0) 6747 goto again; 6748 6749 return NULL; 6750 } 6751 6752 /* 6753 * Account for a descheduled task: 6754 */ 6755 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6756 { 6757 struct sched_entity *se = &prev->se; 6758 struct cfs_rq *cfs_rq; 6759 6760 for_each_sched_entity(se) { 6761 cfs_rq = cfs_rq_of(se); 6762 put_prev_entity(cfs_rq, se); 6763 } 6764 } 6765 6766 /* 6767 * sched_yield() is very simple 6768 * 6769 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6770 */ 6771 static void yield_task_fair(struct rq *rq) 6772 { 6773 struct task_struct *curr = rq->curr; 6774 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6775 struct sched_entity *se = &curr->se; 6776 6777 /* 6778 * Are we the only task in the tree? 6779 */ 6780 if (unlikely(rq->nr_running == 1)) 6781 return; 6782 6783 clear_buddies(cfs_rq, se); 6784 6785 if (curr->policy != SCHED_BATCH) { 6786 update_rq_clock(rq); 6787 /* 6788 * Update run-time statistics of the 'current'. 6789 */ 6790 update_curr(cfs_rq); 6791 /* 6792 * Tell update_rq_clock() that we've just updated, 6793 * so we don't do microscopic update in schedule() 6794 * and double the fastpath cost. 6795 */ 6796 rq_clock_skip_update(rq, true); 6797 } 6798 6799 set_skip_buddy(se); 6800 } 6801 6802 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6803 { 6804 struct sched_entity *se = &p->se; 6805 6806 /* throttled hierarchies are not runnable */ 6807 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6808 return false; 6809 6810 /* Tell the scheduler that we'd really like pse to run next. */ 6811 set_next_buddy(se); 6812 6813 yield_task_fair(rq); 6814 6815 return true; 6816 } 6817 6818 #ifdef CONFIG_SMP 6819 /************************************************** 6820 * Fair scheduling class load-balancing methods. 6821 * 6822 * BASICS 6823 * 6824 * The purpose of load-balancing is to achieve the same basic fairness the 6825 * per-cpu scheduler provides, namely provide a proportional amount of compute 6826 * time to each task. This is expressed in the following equation: 6827 * 6828 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6829 * 6830 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 6831 * W_i,0 is defined as: 6832 * 6833 * W_i,0 = \Sum_j w_i,j (2) 6834 * 6835 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 6836 * is derived from the nice value as per sched_prio_to_weight[]. 6837 * 6838 * The weight average is an exponential decay average of the instantaneous 6839 * weight: 6840 * 6841 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6842 * 6843 * C_i is the compute capacity of cpu i, typically it is the 6844 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6845 * can also include other factors [XXX]. 6846 * 6847 * To achieve this balance we define a measure of imbalance which follows 6848 * directly from (1): 6849 * 6850 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6851 * 6852 * We them move tasks around to minimize the imbalance. In the continuous 6853 * function space it is obvious this converges, in the discrete case we get 6854 * a few fun cases generally called infeasible weight scenarios. 6855 * 6856 * [XXX expand on: 6857 * - infeasible weights; 6858 * - local vs global optima in the discrete case. ] 6859 * 6860 * 6861 * SCHED DOMAINS 6862 * 6863 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6864 * for all i,j solution, we create a tree of cpus that follows the hardware 6865 * topology where each level pairs two lower groups (or better). This results 6866 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 6867 * tree to only the first of the previous level and we decrease the frequency 6868 * of load-balance at each level inv. proportional to the number of cpus in 6869 * the groups. 6870 * 6871 * This yields: 6872 * 6873 * log_2 n 1 n 6874 * \Sum { --- * --- * 2^i } = O(n) (5) 6875 * i = 0 2^i 2^i 6876 * `- size of each group 6877 * | | `- number of cpus doing load-balance 6878 * | `- freq 6879 * `- sum over all levels 6880 * 6881 * Coupled with a limit on how many tasks we can migrate every balance pass, 6882 * this makes (5) the runtime complexity of the balancer. 6883 * 6884 * An important property here is that each CPU is still (indirectly) connected 6885 * to every other cpu in at most O(log n) steps: 6886 * 6887 * The adjacency matrix of the resulting graph is given by: 6888 * 6889 * log_2 n 6890 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6891 * k = 0 6892 * 6893 * And you'll find that: 6894 * 6895 * A^(log_2 n)_i,j != 0 for all i,j (7) 6896 * 6897 * Showing there's indeed a path between every cpu in at most O(log n) steps. 6898 * The task movement gives a factor of O(m), giving a convergence complexity 6899 * of: 6900 * 6901 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6902 * 6903 * 6904 * WORK CONSERVING 6905 * 6906 * In order to avoid CPUs going idle while there's still work to do, new idle 6907 * balancing is more aggressive and has the newly idle cpu iterate up the domain 6908 * tree itself instead of relying on other CPUs to bring it work. 6909 * 6910 * This adds some complexity to both (5) and (8) but it reduces the total idle 6911 * time. 6912 * 6913 * [XXX more?] 6914 * 6915 * 6916 * CGROUPS 6917 * 6918 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6919 * 6920 * s_k,i 6921 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6922 * S_k 6923 * 6924 * Where 6925 * 6926 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6927 * 6928 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 6929 * 6930 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6931 * property. 6932 * 6933 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6934 * rewrite all of this once again.] 6935 */ 6936 6937 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6938 6939 enum fbq_type { regular, remote, all }; 6940 6941 #define LBF_ALL_PINNED 0x01 6942 #define LBF_NEED_BREAK 0x02 6943 #define LBF_DST_PINNED 0x04 6944 #define LBF_SOME_PINNED 0x08 6945 6946 struct lb_env { 6947 struct sched_domain *sd; 6948 6949 struct rq *src_rq; 6950 int src_cpu; 6951 6952 int dst_cpu; 6953 struct rq *dst_rq; 6954 6955 struct cpumask *dst_grpmask; 6956 int new_dst_cpu; 6957 enum cpu_idle_type idle; 6958 long imbalance; 6959 /* The set of CPUs under consideration for load-balancing */ 6960 struct cpumask *cpus; 6961 6962 unsigned int flags; 6963 6964 unsigned int loop; 6965 unsigned int loop_break; 6966 unsigned int loop_max; 6967 6968 enum fbq_type fbq_type; 6969 struct list_head tasks; 6970 }; 6971 6972 /* 6973 * Is this task likely cache-hot: 6974 */ 6975 static int task_hot(struct task_struct *p, struct lb_env *env) 6976 { 6977 s64 delta; 6978 6979 lockdep_assert_held(&env->src_rq->lock); 6980 6981 if (p->sched_class != &fair_sched_class) 6982 return 0; 6983 6984 if (unlikely(p->policy == SCHED_IDLE)) 6985 return 0; 6986 6987 /* 6988 * Buddy candidates are cache hot: 6989 */ 6990 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6991 (&p->se == cfs_rq_of(&p->se)->next || 6992 &p->se == cfs_rq_of(&p->se)->last)) 6993 return 1; 6994 6995 if (sysctl_sched_migration_cost == -1) 6996 return 1; 6997 if (sysctl_sched_migration_cost == 0) 6998 return 0; 6999 7000 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7001 7002 return delta < (s64)sysctl_sched_migration_cost; 7003 } 7004 7005 #ifdef CONFIG_NUMA_BALANCING 7006 /* 7007 * Returns 1, if task migration degrades locality 7008 * Returns 0, if task migration improves locality i.e migration preferred. 7009 * Returns -1, if task migration is not affected by locality. 7010 */ 7011 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7012 { 7013 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7014 unsigned long src_faults, dst_faults; 7015 int src_nid, dst_nid; 7016 7017 if (!static_branch_likely(&sched_numa_balancing)) 7018 return -1; 7019 7020 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7021 return -1; 7022 7023 src_nid = cpu_to_node(env->src_cpu); 7024 dst_nid = cpu_to_node(env->dst_cpu); 7025 7026 if (src_nid == dst_nid) 7027 return -1; 7028 7029 /* Migrating away from the preferred node is always bad. */ 7030 if (src_nid == p->numa_preferred_nid) { 7031 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7032 return 1; 7033 else 7034 return -1; 7035 } 7036 7037 /* Encourage migration to the preferred node. */ 7038 if (dst_nid == p->numa_preferred_nid) 7039 return 0; 7040 7041 /* Leaving a core idle is often worse than degrading locality. */ 7042 if (env->idle != CPU_NOT_IDLE) 7043 return -1; 7044 7045 if (numa_group) { 7046 src_faults = group_faults(p, src_nid); 7047 dst_faults = group_faults(p, dst_nid); 7048 } else { 7049 src_faults = task_faults(p, src_nid); 7050 dst_faults = task_faults(p, dst_nid); 7051 } 7052 7053 return dst_faults < src_faults; 7054 } 7055 7056 #else 7057 static inline int migrate_degrades_locality(struct task_struct *p, 7058 struct lb_env *env) 7059 { 7060 return -1; 7061 } 7062 #endif 7063 7064 /* 7065 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7066 */ 7067 static 7068 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7069 { 7070 int tsk_cache_hot; 7071 7072 lockdep_assert_held(&env->src_rq->lock); 7073 7074 /* 7075 * We do not migrate tasks that are: 7076 * 1) throttled_lb_pair, or 7077 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7078 * 3) running (obviously), or 7079 * 4) are cache-hot on their current CPU. 7080 */ 7081 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7082 return 0; 7083 7084 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7085 int cpu; 7086 7087 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7088 7089 env->flags |= LBF_SOME_PINNED; 7090 7091 /* 7092 * Remember if this task can be migrated to any other cpu in 7093 * our sched_group. We may want to revisit it if we couldn't 7094 * meet load balance goals by pulling other tasks on src_cpu. 7095 * 7096 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7097 * already computed one in current iteration. 7098 */ 7099 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7100 return 0; 7101 7102 /* Prevent to re-select dst_cpu via env's cpus */ 7103 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7104 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7105 env->flags |= LBF_DST_PINNED; 7106 env->new_dst_cpu = cpu; 7107 break; 7108 } 7109 } 7110 7111 return 0; 7112 } 7113 7114 /* Record that we found atleast one task that could run on dst_cpu */ 7115 env->flags &= ~LBF_ALL_PINNED; 7116 7117 if (task_running(env->src_rq, p)) { 7118 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7119 return 0; 7120 } 7121 7122 /* 7123 * Aggressive migration if: 7124 * 1) destination numa is preferred 7125 * 2) task is cache cold, or 7126 * 3) too many balance attempts have failed. 7127 */ 7128 tsk_cache_hot = migrate_degrades_locality(p, env); 7129 if (tsk_cache_hot == -1) 7130 tsk_cache_hot = task_hot(p, env); 7131 7132 if (tsk_cache_hot <= 0 || 7133 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7134 if (tsk_cache_hot == 1) { 7135 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7136 schedstat_inc(p->se.statistics.nr_forced_migrations); 7137 } 7138 return 1; 7139 } 7140 7141 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7142 return 0; 7143 } 7144 7145 /* 7146 * detach_task() -- detach the task for the migration specified in env 7147 */ 7148 static void detach_task(struct task_struct *p, struct lb_env *env) 7149 { 7150 lockdep_assert_held(&env->src_rq->lock); 7151 7152 p->on_rq = TASK_ON_RQ_MIGRATING; 7153 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7154 set_task_cpu(p, env->dst_cpu); 7155 } 7156 7157 /* 7158 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7159 * part of active balancing operations within "domain". 7160 * 7161 * Returns a task if successful and NULL otherwise. 7162 */ 7163 static struct task_struct *detach_one_task(struct lb_env *env) 7164 { 7165 struct task_struct *p; 7166 7167 lockdep_assert_held(&env->src_rq->lock); 7168 7169 list_for_each_entry_reverse(p, 7170 &env->src_rq->cfs_tasks, se.group_node) { 7171 if (!can_migrate_task(p, env)) 7172 continue; 7173 7174 detach_task(p, env); 7175 7176 /* 7177 * Right now, this is only the second place where 7178 * lb_gained[env->idle] is updated (other is detach_tasks) 7179 * so we can safely collect stats here rather than 7180 * inside detach_tasks(). 7181 */ 7182 schedstat_inc(env->sd->lb_gained[env->idle]); 7183 return p; 7184 } 7185 return NULL; 7186 } 7187 7188 static const unsigned int sched_nr_migrate_break = 32; 7189 7190 /* 7191 * detach_tasks() -- tries to detach up to imbalance weighted load from 7192 * busiest_rq, as part of a balancing operation within domain "sd". 7193 * 7194 * Returns number of detached tasks if successful and 0 otherwise. 7195 */ 7196 static int detach_tasks(struct lb_env *env) 7197 { 7198 struct list_head *tasks = &env->src_rq->cfs_tasks; 7199 struct task_struct *p; 7200 unsigned long load; 7201 int detached = 0; 7202 7203 lockdep_assert_held(&env->src_rq->lock); 7204 7205 if (env->imbalance <= 0) 7206 return 0; 7207 7208 while (!list_empty(tasks)) { 7209 /* 7210 * We don't want to steal all, otherwise we may be treated likewise, 7211 * which could at worst lead to a livelock crash. 7212 */ 7213 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7214 break; 7215 7216 p = list_last_entry(tasks, struct task_struct, se.group_node); 7217 7218 env->loop++; 7219 /* We've more or less seen every task there is, call it quits */ 7220 if (env->loop > env->loop_max) 7221 break; 7222 7223 /* take a breather every nr_migrate tasks */ 7224 if (env->loop > env->loop_break) { 7225 env->loop_break += sched_nr_migrate_break; 7226 env->flags |= LBF_NEED_BREAK; 7227 break; 7228 } 7229 7230 if (!can_migrate_task(p, env)) 7231 goto next; 7232 7233 load = task_h_load(p); 7234 7235 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7236 goto next; 7237 7238 if ((load / 2) > env->imbalance) 7239 goto next; 7240 7241 detach_task(p, env); 7242 list_add(&p->se.group_node, &env->tasks); 7243 7244 detached++; 7245 env->imbalance -= load; 7246 7247 #ifdef CONFIG_PREEMPT 7248 /* 7249 * NEWIDLE balancing is a source of latency, so preemptible 7250 * kernels will stop after the first task is detached to minimize 7251 * the critical section. 7252 */ 7253 if (env->idle == CPU_NEWLY_IDLE) 7254 break; 7255 #endif 7256 7257 /* 7258 * We only want to steal up to the prescribed amount of 7259 * weighted load. 7260 */ 7261 if (env->imbalance <= 0) 7262 break; 7263 7264 continue; 7265 next: 7266 list_move(&p->se.group_node, tasks); 7267 } 7268 7269 /* 7270 * Right now, this is one of only two places we collect this stat 7271 * so we can safely collect detach_one_task() stats here rather 7272 * than inside detach_one_task(). 7273 */ 7274 schedstat_add(env->sd->lb_gained[env->idle], detached); 7275 7276 return detached; 7277 } 7278 7279 /* 7280 * attach_task() -- attach the task detached by detach_task() to its new rq. 7281 */ 7282 static void attach_task(struct rq *rq, struct task_struct *p) 7283 { 7284 lockdep_assert_held(&rq->lock); 7285 7286 BUG_ON(task_rq(p) != rq); 7287 activate_task(rq, p, ENQUEUE_NOCLOCK); 7288 p->on_rq = TASK_ON_RQ_QUEUED; 7289 check_preempt_curr(rq, p, 0); 7290 } 7291 7292 /* 7293 * attach_one_task() -- attaches the task returned from detach_one_task() to 7294 * its new rq. 7295 */ 7296 static void attach_one_task(struct rq *rq, struct task_struct *p) 7297 { 7298 struct rq_flags rf; 7299 7300 rq_lock(rq, &rf); 7301 update_rq_clock(rq); 7302 attach_task(rq, p); 7303 rq_unlock(rq, &rf); 7304 } 7305 7306 /* 7307 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7308 * new rq. 7309 */ 7310 static void attach_tasks(struct lb_env *env) 7311 { 7312 struct list_head *tasks = &env->tasks; 7313 struct task_struct *p; 7314 struct rq_flags rf; 7315 7316 rq_lock(env->dst_rq, &rf); 7317 update_rq_clock(env->dst_rq); 7318 7319 while (!list_empty(tasks)) { 7320 p = list_first_entry(tasks, struct task_struct, se.group_node); 7321 list_del_init(&p->se.group_node); 7322 7323 attach_task(env->dst_rq, p); 7324 } 7325 7326 rq_unlock(env->dst_rq, &rf); 7327 } 7328 7329 #ifdef CONFIG_FAIR_GROUP_SCHED 7330 7331 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7332 { 7333 if (cfs_rq->load.weight) 7334 return false; 7335 7336 if (cfs_rq->avg.load_sum) 7337 return false; 7338 7339 if (cfs_rq->avg.util_sum) 7340 return false; 7341 7342 if (cfs_rq->avg.runnable_load_sum) 7343 return false; 7344 7345 return true; 7346 } 7347 7348 static void update_blocked_averages(int cpu) 7349 { 7350 struct rq *rq = cpu_rq(cpu); 7351 struct cfs_rq *cfs_rq, *pos; 7352 struct rq_flags rf; 7353 7354 rq_lock_irqsave(rq, &rf); 7355 update_rq_clock(rq); 7356 7357 /* 7358 * Iterates the task_group tree in a bottom up fashion, see 7359 * list_add_leaf_cfs_rq() for details. 7360 */ 7361 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7362 struct sched_entity *se; 7363 7364 /* throttled entities do not contribute to load */ 7365 if (throttled_hierarchy(cfs_rq)) 7366 continue; 7367 7368 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7369 update_tg_load_avg(cfs_rq, 0); 7370 7371 /* Propagate pending load changes to the parent, if any: */ 7372 se = cfs_rq->tg->se[cpu]; 7373 if (se && !skip_blocked_update(se)) 7374 update_load_avg(cfs_rq_of(se), se, 0); 7375 7376 /* 7377 * There can be a lot of idle CPU cgroups. Don't let fully 7378 * decayed cfs_rqs linger on the list. 7379 */ 7380 if (cfs_rq_is_decayed(cfs_rq)) 7381 list_del_leaf_cfs_rq(cfs_rq); 7382 } 7383 rq_unlock_irqrestore(rq, &rf); 7384 } 7385 7386 /* 7387 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7388 * This needs to be done in a top-down fashion because the load of a child 7389 * group is a fraction of its parents load. 7390 */ 7391 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7392 { 7393 struct rq *rq = rq_of(cfs_rq); 7394 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7395 unsigned long now = jiffies; 7396 unsigned long load; 7397 7398 if (cfs_rq->last_h_load_update == now) 7399 return; 7400 7401 cfs_rq->h_load_next = NULL; 7402 for_each_sched_entity(se) { 7403 cfs_rq = cfs_rq_of(se); 7404 cfs_rq->h_load_next = se; 7405 if (cfs_rq->last_h_load_update == now) 7406 break; 7407 } 7408 7409 if (!se) { 7410 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7411 cfs_rq->last_h_load_update = now; 7412 } 7413 7414 while ((se = cfs_rq->h_load_next) != NULL) { 7415 load = cfs_rq->h_load; 7416 load = div64_ul(load * se->avg.load_avg, 7417 cfs_rq_load_avg(cfs_rq) + 1); 7418 cfs_rq = group_cfs_rq(se); 7419 cfs_rq->h_load = load; 7420 cfs_rq->last_h_load_update = now; 7421 } 7422 } 7423 7424 static unsigned long task_h_load(struct task_struct *p) 7425 { 7426 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7427 7428 update_cfs_rq_h_load(cfs_rq); 7429 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7430 cfs_rq_load_avg(cfs_rq) + 1); 7431 } 7432 #else 7433 static inline void update_blocked_averages(int cpu) 7434 { 7435 struct rq *rq = cpu_rq(cpu); 7436 struct cfs_rq *cfs_rq = &rq->cfs; 7437 struct rq_flags rf; 7438 7439 rq_lock_irqsave(rq, &rf); 7440 update_rq_clock(rq); 7441 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7442 rq_unlock_irqrestore(rq, &rf); 7443 } 7444 7445 static unsigned long task_h_load(struct task_struct *p) 7446 { 7447 return p->se.avg.load_avg; 7448 } 7449 #endif 7450 7451 /********** Helpers for find_busiest_group ************************/ 7452 7453 enum group_type { 7454 group_other = 0, 7455 group_imbalanced, 7456 group_overloaded, 7457 }; 7458 7459 /* 7460 * sg_lb_stats - stats of a sched_group required for load_balancing 7461 */ 7462 struct sg_lb_stats { 7463 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7464 unsigned long group_load; /* Total load over the CPUs of the group */ 7465 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7466 unsigned long load_per_task; 7467 unsigned long group_capacity; 7468 unsigned long group_util; /* Total utilization of the group */ 7469 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7470 unsigned int idle_cpus; 7471 unsigned int group_weight; 7472 enum group_type group_type; 7473 int group_no_capacity; 7474 #ifdef CONFIG_NUMA_BALANCING 7475 unsigned int nr_numa_running; 7476 unsigned int nr_preferred_running; 7477 #endif 7478 }; 7479 7480 /* 7481 * sd_lb_stats - Structure to store the statistics of a sched_domain 7482 * during load balancing. 7483 */ 7484 struct sd_lb_stats { 7485 struct sched_group *busiest; /* Busiest group in this sd */ 7486 struct sched_group *local; /* Local group in this sd */ 7487 unsigned long total_running; 7488 unsigned long total_load; /* Total load of all groups in sd */ 7489 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7490 unsigned long avg_load; /* Average load across all groups in sd */ 7491 7492 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7493 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7494 }; 7495 7496 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7497 { 7498 /* 7499 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7500 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7501 * We must however clear busiest_stat::avg_load because 7502 * update_sd_pick_busiest() reads this before assignment. 7503 */ 7504 *sds = (struct sd_lb_stats){ 7505 .busiest = NULL, 7506 .local = NULL, 7507 .total_running = 0UL, 7508 .total_load = 0UL, 7509 .total_capacity = 0UL, 7510 .busiest_stat = { 7511 .avg_load = 0UL, 7512 .sum_nr_running = 0, 7513 .group_type = group_other, 7514 }, 7515 }; 7516 } 7517 7518 /** 7519 * get_sd_load_idx - Obtain the load index for a given sched domain. 7520 * @sd: The sched_domain whose load_idx is to be obtained. 7521 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7522 * 7523 * Return: The load index. 7524 */ 7525 static inline int get_sd_load_idx(struct sched_domain *sd, 7526 enum cpu_idle_type idle) 7527 { 7528 int load_idx; 7529 7530 switch (idle) { 7531 case CPU_NOT_IDLE: 7532 load_idx = sd->busy_idx; 7533 break; 7534 7535 case CPU_NEWLY_IDLE: 7536 load_idx = sd->newidle_idx; 7537 break; 7538 default: 7539 load_idx = sd->idle_idx; 7540 break; 7541 } 7542 7543 return load_idx; 7544 } 7545 7546 static unsigned long scale_rt_capacity(int cpu) 7547 { 7548 struct rq *rq = cpu_rq(cpu); 7549 u64 total, used, age_stamp, avg; 7550 s64 delta; 7551 7552 /* 7553 * Since we're reading these variables without serialization make sure 7554 * we read them once before doing sanity checks on them. 7555 */ 7556 age_stamp = READ_ONCE(rq->age_stamp); 7557 avg = READ_ONCE(rq->rt_avg); 7558 delta = __rq_clock_broken(rq) - age_stamp; 7559 7560 if (unlikely(delta < 0)) 7561 delta = 0; 7562 7563 total = sched_avg_period() + delta; 7564 7565 used = div_u64(avg, total); 7566 7567 if (likely(used < SCHED_CAPACITY_SCALE)) 7568 return SCHED_CAPACITY_SCALE - used; 7569 7570 return 1; 7571 } 7572 7573 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7574 { 7575 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7576 struct sched_group *sdg = sd->groups; 7577 7578 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7579 7580 capacity *= scale_rt_capacity(cpu); 7581 capacity >>= SCHED_CAPACITY_SHIFT; 7582 7583 if (!capacity) 7584 capacity = 1; 7585 7586 cpu_rq(cpu)->cpu_capacity = capacity; 7587 sdg->sgc->capacity = capacity; 7588 sdg->sgc->min_capacity = capacity; 7589 } 7590 7591 void update_group_capacity(struct sched_domain *sd, int cpu) 7592 { 7593 struct sched_domain *child = sd->child; 7594 struct sched_group *group, *sdg = sd->groups; 7595 unsigned long capacity, min_capacity; 7596 unsigned long interval; 7597 7598 interval = msecs_to_jiffies(sd->balance_interval); 7599 interval = clamp(interval, 1UL, max_load_balance_interval); 7600 sdg->sgc->next_update = jiffies + interval; 7601 7602 if (!child) { 7603 update_cpu_capacity(sd, cpu); 7604 return; 7605 } 7606 7607 capacity = 0; 7608 min_capacity = ULONG_MAX; 7609 7610 if (child->flags & SD_OVERLAP) { 7611 /* 7612 * SD_OVERLAP domains cannot assume that child groups 7613 * span the current group. 7614 */ 7615 7616 for_each_cpu(cpu, sched_group_span(sdg)) { 7617 struct sched_group_capacity *sgc; 7618 struct rq *rq = cpu_rq(cpu); 7619 7620 /* 7621 * build_sched_domains() -> init_sched_groups_capacity() 7622 * gets here before we've attached the domains to the 7623 * runqueues. 7624 * 7625 * Use capacity_of(), which is set irrespective of domains 7626 * in update_cpu_capacity(). 7627 * 7628 * This avoids capacity from being 0 and 7629 * causing divide-by-zero issues on boot. 7630 */ 7631 if (unlikely(!rq->sd)) { 7632 capacity += capacity_of(cpu); 7633 } else { 7634 sgc = rq->sd->groups->sgc; 7635 capacity += sgc->capacity; 7636 } 7637 7638 min_capacity = min(capacity, min_capacity); 7639 } 7640 } else { 7641 /* 7642 * !SD_OVERLAP domains can assume that child groups 7643 * span the current group. 7644 */ 7645 7646 group = child->groups; 7647 do { 7648 struct sched_group_capacity *sgc = group->sgc; 7649 7650 capacity += sgc->capacity; 7651 min_capacity = min(sgc->min_capacity, min_capacity); 7652 group = group->next; 7653 } while (group != child->groups); 7654 } 7655 7656 sdg->sgc->capacity = capacity; 7657 sdg->sgc->min_capacity = min_capacity; 7658 } 7659 7660 /* 7661 * Check whether the capacity of the rq has been noticeably reduced by side 7662 * activity. The imbalance_pct is used for the threshold. 7663 * Return true is the capacity is reduced 7664 */ 7665 static inline int 7666 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7667 { 7668 return ((rq->cpu_capacity * sd->imbalance_pct) < 7669 (rq->cpu_capacity_orig * 100)); 7670 } 7671 7672 /* 7673 * Group imbalance indicates (and tries to solve) the problem where balancing 7674 * groups is inadequate due to ->cpus_allowed constraints. 7675 * 7676 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 7677 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 7678 * Something like: 7679 * 7680 * { 0 1 2 3 } { 4 5 6 7 } 7681 * * * * * 7682 * 7683 * If we were to balance group-wise we'd place two tasks in the first group and 7684 * two tasks in the second group. Clearly this is undesired as it will overload 7685 * cpu 3 and leave one of the cpus in the second group unused. 7686 * 7687 * The current solution to this issue is detecting the skew in the first group 7688 * by noticing the lower domain failed to reach balance and had difficulty 7689 * moving tasks due to affinity constraints. 7690 * 7691 * When this is so detected; this group becomes a candidate for busiest; see 7692 * update_sd_pick_busiest(). And calculate_imbalance() and 7693 * find_busiest_group() avoid some of the usual balance conditions to allow it 7694 * to create an effective group imbalance. 7695 * 7696 * This is a somewhat tricky proposition since the next run might not find the 7697 * group imbalance and decide the groups need to be balanced again. A most 7698 * subtle and fragile situation. 7699 */ 7700 7701 static inline int sg_imbalanced(struct sched_group *group) 7702 { 7703 return group->sgc->imbalance; 7704 } 7705 7706 /* 7707 * group_has_capacity returns true if the group has spare capacity that could 7708 * be used by some tasks. 7709 * We consider that a group has spare capacity if the * number of task is 7710 * smaller than the number of CPUs or if the utilization is lower than the 7711 * available capacity for CFS tasks. 7712 * For the latter, we use a threshold to stabilize the state, to take into 7713 * account the variance of the tasks' load and to return true if the available 7714 * capacity in meaningful for the load balancer. 7715 * As an example, an available capacity of 1% can appear but it doesn't make 7716 * any benefit for the load balance. 7717 */ 7718 static inline bool 7719 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7720 { 7721 if (sgs->sum_nr_running < sgs->group_weight) 7722 return true; 7723 7724 if ((sgs->group_capacity * 100) > 7725 (sgs->group_util * env->sd->imbalance_pct)) 7726 return true; 7727 7728 return false; 7729 } 7730 7731 /* 7732 * group_is_overloaded returns true if the group has more tasks than it can 7733 * handle. 7734 * group_is_overloaded is not equals to !group_has_capacity because a group 7735 * with the exact right number of tasks, has no more spare capacity but is not 7736 * overloaded so both group_has_capacity and group_is_overloaded return 7737 * false. 7738 */ 7739 static inline bool 7740 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7741 { 7742 if (sgs->sum_nr_running <= sgs->group_weight) 7743 return false; 7744 7745 if ((sgs->group_capacity * 100) < 7746 (sgs->group_util * env->sd->imbalance_pct)) 7747 return true; 7748 7749 return false; 7750 } 7751 7752 /* 7753 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7754 * per-CPU capacity than sched_group ref. 7755 */ 7756 static inline bool 7757 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7758 { 7759 return sg->sgc->min_capacity * capacity_margin < 7760 ref->sgc->min_capacity * 1024; 7761 } 7762 7763 static inline enum 7764 group_type group_classify(struct sched_group *group, 7765 struct sg_lb_stats *sgs) 7766 { 7767 if (sgs->group_no_capacity) 7768 return group_overloaded; 7769 7770 if (sg_imbalanced(group)) 7771 return group_imbalanced; 7772 7773 return group_other; 7774 } 7775 7776 /** 7777 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7778 * @env: The load balancing environment. 7779 * @group: sched_group whose statistics are to be updated. 7780 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7781 * @local_group: Does group contain this_cpu. 7782 * @sgs: variable to hold the statistics for this group. 7783 * @overload: Indicate more than one runnable task for any CPU. 7784 */ 7785 static inline void update_sg_lb_stats(struct lb_env *env, 7786 struct sched_group *group, int load_idx, 7787 int local_group, struct sg_lb_stats *sgs, 7788 bool *overload) 7789 { 7790 unsigned long load; 7791 int i, nr_running; 7792 7793 memset(sgs, 0, sizeof(*sgs)); 7794 7795 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 7796 struct rq *rq = cpu_rq(i); 7797 7798 /* Bias balancing toward cpus of our domain */ 7799 if (local_group) 7800 load = target_load(i, load_idx); 7801 else 7802 load = source_load(i, load_idx); 7803 7804 sgs->group_load += load; 7805 sgs->group_util += cpu_util(i); 7806 sgs->sum_nr_running += rq->cfs.h_nr_running; 7807 7808 nr_running = rq->nr_running; 7809 if (nr_running > 1) 7810 *overload = true; 7811 7812 #ifdef CONFIG_NUMA_BALANCING 7813 sgs->nr_numa_running += rq->nr_numa_running; 7814 sgs->nr_preferred_running += rq->nr_preferred_running; 7815 #endif 7816 sgs->sum_weighted_load += weighted_cpuload(rq); 7817 /* 7818 * No need to call idle_cpu() if nr_running is not 0 7819 */ 7820 if (!nr_running && idle_cpu(i)) 7821 sgs->idle_cpus++; 7822 } 7823 7824 /* Adjust by relative CPU capacity of the group */ 7825 sgs->group_capacity = group->sgc->capacity; 7826 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7827 7828 if (sgs->sum_nr_running) 7829 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7830 7831 sgs->group_weight = group->group_weight; 7832 7833 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7834 sgs->group_type = group_classify(group, sgs); 7835 } 7836 7837 /** 7838 * update_sd_pick_busiest - return 1 on busiest group 7839 * @env: The load balancing environment. 7840 * @sds: sched_domain statistics 7841 * @sg: sched_group candidate to be checked for being the busiest 7842 * @sgs: sched_group statistics 7843 * 7844 * Determine if @sg is a busier group than the previously selected 7845 * busiest group. 7846 * 7847 * Return: %true if @sg is a busier group than the previously selected 7848 * busiest group. %false otherwise. 7849 */ 7850 static bool update_sd_pick_busiest(struct lb_env *env, 7851 struct sd_lb_stats *sds, 7852 struct sched_group *sg, 7853 struct sg_lb_stats *sgs) 7854 { 7855 struct sg_lb_stats *busiest = &sds->busiest_stat; 7856 7857 if (sgs->group_type > busiest->group_type) 7858 return true; 7859 7860 if (sgs->group_type < busiest->group_type) 7861 return false; 7862 7863 if (sgs->avg_load <= busiest->avg_load) 7864 return false; 7865 7866 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7867 goto asym_packing; 7868 7869 /* 7870 * Candidate sg has no more than one task per CPU and 7871 * has higher per-CPU capacity. Migrating tasks to less 7872 * capable CPUs may harm throughput. Maximize throughput, 7873 * power/energy consequences are not considered. 7874 */ 7875 if (sgs->sum_nr_running <= sgs->group_weight && 7876 group_smaller_cpu_capacity(sds->local, sg)) 7877 return false; 7878 7879 asym_packing: 7880 /* This is the busiest node in its class. */ 7881 if (!(env->sd->flags & SD_ASYM_PACKING)) 7882 return true; 7883 7884 /* No ASYM_PACKING if target cpu is already busy */ 7885 if (env->idle == CPU_NOT_IDLE) 7886 return true; 7887 /* 7888 * ASYM_PACKING needs to move all the work to the highest 7889 * prority CPUs in the group, therefore mark all groups 7890 * of lower priority than ourself as busy. 7891 */ 7892 if (sgs->sum_nr_running && 7893 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7894 if (!sds->busiest) 7895 return true; 7896 7897 /* Prefer to move from lowest priority cpu's work */ 7898 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7899 sg->asym_prefer_cpu)) 7900 return true; 7901 } 7902 7903 return false; 7904 } 7905 7906 #ifdef CONFIG_NUMA_BALANCING 7907 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7908 { 7909 if (sgs->sum_nr_running > sgs->nr_numa_running) 7910 return regular; 7911 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7912 return remote; 7913 return all; 7914 } 7915 7916 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7917 { 7918 if (rq->nr_running > rq->nr_numa_running) 7919 return regular; 7920 if (rq->nr_running > rq->nr_preferred_running) 7921 return remote; 7922 return all; 7923 } 7924 #else 7925 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7926 { 7927 return all; 7928 } 7929 7930 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7931 { 7932 return regular; 7933 } 7934 #endif /* CONFIG_NUMA_BALANCING */ 7935 7936 /** 7937 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7938 * @env: The load balancing environment. 7939 * @sds: variable to hold the statistics for this sched_domain. 7940 */ 7941 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7942 { 7943 struct sched_domain *child = env->sd->child; 7944 struct sched_group *sg = env->sd->groups; 7945 struct sg_lb_stats *local = &sds->local_stat; 7946 struct sg_lb_stats tmp_sgs; 7947 int load_idx, prefer_sibling = 0; 7948 bool overload = false; 7949 7950 if (child && child->flags & SD_PREFER_SIBLING) 7951 prefer_sibling = 1; 7952 7953 load_idx = get_sd_load_idx(env->sd, env->idle); 7954 7955 do { 7956 struct sg_lb_stats *sgs = &tmp_sgs; 7957 int local_group; 7958 7959 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 7960 if (local_group) { 7961 sds->local = sg; 7962 sgs = local; 7963 7964 if (env->idle != CPU_NEWLY_IDLE || 7965 time_after_eq(jiffies, sg->sgc->next_update)) 7966 update_group_capacity(env->sd, env->dst_cpu); 7967 } 7968 7969 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7970 &overload); 7971 7972 if (local_group) 7973 goto next_group; 7974 7975 /* 7976 * In case the child domain prefers tasks go to siblings 7977 * first, lower the sg capacity so that we'll try 7978 * and move all the excess tasks away. We lower the capacity 7979 * of a group only if the local group has the capacity to fit 7980 * these excess tasks. The extra check prevents the case where 7981 * you always pull from the heaviest group when it is already 7982 * under-utilized (possible with a large weight task outweighs 7983 * the tasks on the system). 7984 */ 7985 if (prefer_sibling && sds->local && 7986 group_has_capacity(env, local) && 7987 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 7988 sgs->group_no_capacity = 1; 7989 sgs->group_type = group_classify(sg, sgs); 7990 } 7991 7992 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7993 sds->busiest = sg; 7994 sds->busiest_stat = *sgs; 7995 } 7996 7997 next_group: 7998 /* Now, start updating sd_lb_stats */ 7999 sds->total_running += sgs->sum_nr_running; 8000 sds->total_load += sgs->group_load; 8001 sds->total_capacity += sgs->group_capacity; 8002 8003 sg = sg->next; 8004 } while (sg != env->sd->groups); 8005 8006 if (env->sd->flags & SD_NUMA) 8007 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8008 8009 if (!env->sd->parent) { 8010 /* update overload indicator if we are at root domain */ 8011 if (env->dst_rq->rd->overload != overload) 8012 env->dst_rq->rd->overload = overload; 8013 } 8014 } 8015 8016 /** 8017 * check_asym_packing - Check to see if the group is packed into the 8018 * sched domain. 8019 * 8020 * This is primarily intended to used at the sibling level. Some 8021 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8022 * case of POWER7, it can move to lower SMT modes only when higher 8023 * threads are idle. When in lower SMT modes, the threads will 8024 * perform better since they share less core resources. Hence when we 8025 * have idle threads, we want them to be the higher ones. 8026 * 8027 * This packing function is run on idle threads. It checks to see if 8028 * the busiest CPU in this domain (core in the P7 case) has a higher 8029 * CPU number than the packing function is being run on. Here we are 8030 * assuming lower CPU number will be equivalent to lower a SMT thread 8031 * number. 8032 * 8033 * Return: 1 when packing is required and a task should be moved to 8034 * this CPU. The amount of the imbalance is returned in env->imbalance. 8035 * 8036 * @env: The load balancing environment. 8037 * @sds: Statistics of the sched_domain which is to be packed 8038 */ 8039 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8040 { 8041 int busiest_cpu; 8042 8043 if (!(env->sd->flags & SD_ASYM_PACKING)) 8044 return 0; 8045 8046 if (env->idle == CPU_NOT_IDLE) 8047 return 0; 8048 8049 if (!sds->busiest) 8050 return 0; 8051 8052 busiest_cpu = sds->busiest->asym_prefer_cpu; 8053 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8054 return 0; 8055 8056 env->imbalance = DIV_ROUND_CLOSEST( 8057 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8058 SCHED_CAPACITY_SCALE); 8059 8060 return 1; 8061 } 8062 8063 /** 8064 * fix_small_imbalance - Calculate the minor imbalance that exists 8065 * amongst the groups of a sched_domain, during 8066 * load balancing. 8067 * @env: The load balancing environment. 8068 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8069 */ 8070 static inline 8071 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8072 { 8073 unsigned long tmp, capa_now = 0, capa_move = 0; 8074 unsigned int imbn = 2; 8075 unsigned long scaled_busy_load_per_task; 8076 struct sg_lb_stats *local, *busiest; 8077 8078 local = &sds->local_stat; 8079 busiest = &sds->busiest_stat; 8080 8081 if (!local->sum_nr_running) 8082 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8083 else if (busiest->load_per_task > local->load_per_task) 8084 imbn = 1; 8085 8086 scaled_busy_load_per_task = 8087 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8088 busiest->group_capacity; 8089 8090 if (busiest->avg_load + scaled_busy_load_per_task >= 8091 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8092 env->imbalance = busiest->load_per_task; 8093 return; 8094 } 8095 8096 /* 8097 * OK, we don't have enough imbalance to justify moving tasks, 8098 * however we may be able to increase total CPU capacity used by 8099 * moving them. 8100 */ 8101 8102 capa_now += busiest->group_capacity * 8103 min(busiest->load_per_task, busiest->avg_load); 8104 capa_now += local->group_capacity * 8105 min(local->load_per_task, local->avg_load); 8106 capa_now /= SCHED_CAPACITY_SCALE; 8107 8108 /* Amount of load we'd subtract */ 8109 if (busiest->avg_load > scaled_busy_load_per_task) { 8110 capa_move += busiest->group_capacity * 8111 min(busiest->load_per_task, 8112 busiest->avg_load - scaled_busy_load_per_task); 8113 } 8114 8115 /* Amount of load we'd add */ 8116 if (busiest->avg_load * busiest->group_capacity < 8117 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8118 tmp = (busiest->avg_load * busiest->group_capacity) / 8119 local->group_capacity; 8120 } else { 8121 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8122 local->group_capacity; 8123 } 8124 capa_move += local->group_capacity * 8125 min(local->load_per_task, local->avg_load + tmp); 8126 capa_move /= SCHED_CAPACITY_SCALE; 8127 8128 /* Move if we gain throughput */ 8129 if (capa_move > capa_now) 8130 env->imbalance = busiest->load_per_task; 8131 } 8132 8133 /** 8134 * calculate_imbalance - Calculate the amount of imbalance present within the 8135 * groups of a given sched_domain during load balance. 8136 * @env: load balance environment 8137 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8138 */ 8139 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8140 { 8141 unsigned long max_pull, load_above_capacity = ~0UL; 8142 struct sg_lb_stats *local, *busiest; 8143 8144 local = &sds->local_stat; 8145 busiest = &sds->busiest_stat; 8146 8147 if (busiest->group_type == group_imbalanced) { 8148 /* 8149 * In the group_imb case we cannot rely on group-wide averages 8150 * to ensure cpu-load equilibrium, look at wider averages. XXX 8151 */ 8152 busiest->load_per_task = 8153 min(busiest->load_per_task, sds->avg_load); 8154 } 8155 8156 /* 8157 * Avg load of busiest sg can be less and avg load of local sg can 8158 * be greater than avg load across all sgs of sd because avg load 8159 * factors in sg capacity and sgs with smaller group_type are 8160 * skipped when updating the busiest sg: 8161 */ 8162 if (busiest->avg_load <= sds->avg_load || 8163 local->avg_load >= sds->avg_load) { 8164 env->imbalance = 0; 8165 return fix_small_imbalance(env, sds); 8166 } 8167 8168 /* 8169 * If there aren't any idle cpus, avoid creating some. 8170 */ 8171 if (busiest->group_type == group_overloaded && 8172 local->group_type == group_overloaded) { 8173 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8174 if (load_above_capacity > busiest->group_capacity) { 8175 load_above_capacity -= busiest->group_capacity; 8176 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8177 load_above_capacity /= busiest->group_capacity; 8178 } else 8179 load_above_capacity = ~0UL; 8180 } 8181 8182 /* 8183 * We're trying to get all the cpus to the average_load, so we don't 8184 * want to push ourselves above the average load, nor do we wish to 8185 * reduce the max loaded cpu below the average load. At the same time, 8186 * we also don't want to reduce the group load below the group 8187 * capacity. Thus we look for the minimum possible imbalance. 8188 */ 8189 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8190 8191 /* How much load to actually move to equalise the imbalance */ 8192 env->imbalance = min( 8193 max_pull * busiest->group_capacity, 8194 (sds->avg_load - local->avg_load) * local->group_capacity 8195 ) / SCHED_CAPACITY_SCALE; 8196 8197 /* 8198 * if *imbalance is less than the average load per runnable task 8199 * there is no guarantee that any tasks will be moved so we'll have 8200 * a think about bumping its value to force at least one task to be 8201 * moved 8202 */ 8203 if (env->imbalance < busiest->load_per_task) 8204 return fix_small_imbalance(env, sds); 8205 } 8206 8207 /******* find_busiest_group() helpers end here *********************/ 8208 8209 /** 8210 * find_busiest_group - Returns the busiest group within the sched_domain 8211 * if there is an imbalance. 8212 * 8213 * Also calculates the amount of weighted load which should be moved 8214 * to restore balance. 8215 * 8216 * @env: The load balancing environment. 8217 * 8218 * Return: - The busiest group if imbalance exists. 8219 */ 8220 static struct sched_group *find_busiest_group(struct lb_env *env) 8221 { 8222 struct sg_lb_stats *local, *busiest; 8223 struct sd_lb_stats sds; 8224 8225 init_sd_lb_stats(&sds); 8226 8227 /* 8228 * Compute the various statistics relavent for load balancing at 8229 * this level. 8230 */ 8231 update_sd_lb_stats(env, &sds); 8232 local = &sds.local_stat; 8233 busiest = &sds.busiest_stat; 8234 8235 /* ASYM feature bypasses nice load balance check */ 8236 if (check_asym_packing(env, &sds)) 8237 return sds.busiest; 8238 8239 /* There is no busy sibling group to pull tasks from */ 8240 if (!sds.busiest || busiest->sum_nr_running == 0) 8241 goto out_balanced; 8242 8243 /* XXX broken for overlapping NUMA groups */ 8244 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8245 / sds.total_capacity; 8246 8247 /* 8248 * If the busiest group is imbalanced the below checks don't 8249 * work because they assume all things are equal, which typically 8250 * isn't true due to cpus_allowed constraints and the like. 8251 */ 8252 if (busiest->group_type == group_imbalanced) 8253 goto force_balance; 8254 8255 /* 8256 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8257 * capacities from resulting in underutilization due to avg_load. 8258 */ 8259 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8260 busiest->group_no_capacity) 8261 goto force_balance; 8262 8263 /* 8264 * If the local group is busier than the selected busiest group 8265 * don't try and pull any tasks. 8266 */ 8267 if (local->avg_load >= busiest->avg_load) 8268 goto out_balanced; 8269 8270 /* 8271 * Don't pull any tasks if this group is already above the domain 8272 * average load. 8273 */ 8274 if (local->avg_load >= sds.avg_load) 8275 goto out_balanced; 8276 8277 if (env->idle == CPU_IDLE) { 8278 /* 8279 * This cpu is idle. If the busiest group is not overloaded 8280 * and there is no imbalance between this and busiest group 8281 * wrt idle cpus, it is balanced. The imbalance becomes 8282 * significant if the diff is greater than 1 otherwise we 8283 * might end up to just move the imbalance on another group 8284 */ 8285 if ((busiest->group_type != group_overloaded) && 8286 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8287 goto out_balanced; 8288 } else { 8289 /* 8290 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8291 * imbalance_pct to be conservative. 8292 */ 8293 if (100 * busiest->avg_load <= 8294 env->sd->imbalance_pct * local->avg_load) 8295 goto out_balanced; 8296 } 8297 8298 force_balance: 8299 /* Looks like there is an imbalance. Compute it */ 8300 calculate_imbalance(env, &sds); 8301 return sds.busiest; 8302 8303 out_balanced: 8304 env->imbalance = 0; 8305 return NULL; 8306 } 8307 8308 /* 8309 * find_busiest_queue - find the busiest runqueue among the cpus in group. 8310 */ 8311 static struct rq *find_busiest_queue(struct lb_env *env, 8312 struct sched_group *group) 8313 { 8314 struct rq *busiest = NULL, *rq; 8315 unsigned long busiest_load = 0, busiest_capacity = 1; 8316 int i; 8317 8318 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8319 unsigned long capacity, wl; 8320 enum fbq_type rt; 8321 8322 rq = cpu_rq(i); 8323 rt = fbq_classify_rq(rq); 8324 8325 /* 8326 * We classify groups/runqueues into three groups: 8327 * - regular: there are !numa tasks 8328 * - remote: there are numa tasks that run on the 'wrong' node 8329 * - all: there is no distinction 8330 * 8331 * In order to avoid migrating ideally placed numa tasks, 8332 * ignore those when there's better options. 8333 * 8334 * If we ignore the actual busiest queue to migrate another 8335 * task, the next balance pass can still reduce the busiest 8336 * queue by moving tasks around inside the node. 8337 * 8338 * If we cannot move enough load due to this classification 8339 * the next pass will adjust the group classification and 8340 * allow migration of more tasks. 8341 * 8342 * Both cases only affect the total convergence complexity. 8343 */ 8344 if (rt > env->fbq_type) 8345 continue; 8346 8347 capacity = capacity_of(i); 8348 8349 wl = weighted_cpuload(rq); 8350 8351 /* 8352 * When comparing with imbalance, use weighted_cpuload() 8353 * which is not scaled with the cpu capacity. 8354 */ 8355 8356 if (rq->nr_running == 1 && wl > env->imbalance && 8357 !check_cpu_capacity(rq, env->sd)) 8358 continue; 8359 8360 /* 8361 * For the load comparisons with the other cpu's, consider 8362 * the weighted_cpuload() scaled with the cpu capacity, so 8363 * that the load can be moved away from the cpu that is 8364 * potentially running at a lower capacity. 8365 * 8366 * Thus we're looking for max(wl_i / capacity_i), crosswise 8367 * multiplication to rid ourselves of the division works out 8368 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8369 * our previous maximum. 8370 */ 8371 if (wl * busiest_capacity > busiest_load * capacity) { 8372 busiest_load = wl; 8373 busiest_capacity = capacity; 8374 busiest = rq; 8375 } 8376 } 8377 8378 return busiest; 8379 } 8380 8381 /* 8382 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8383 * so long as it is large enough. 8384 */ 8385 #define MAX_PINNED_INTERVAL 512 8386 8387 static int need_active_balance(struct lb_env *env) 8388 { 8389 struct sched_domain *sd = env->sd; 8390 8391 if (env->idle == CPU_NEWLY_IDLE) { 8392 8393 /* 8394 * ASYM_PACKING needs to force migrate tasks from busy but 8395 * lower priority CPUs in order to pack all tasks in the 8396 * highest priority CPUs. 8397 */ 8398 if ((sd->flags & SD_ASYM_PACKING) && 8399 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8400 return 1; 8401 } 8402 8403 /* 8404 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8405 * It's worth migrating the task if the src_cpu's capacity is reduced 8406 * because of other sched_class or IRQs if more capacity stays 8407 * available on dst_cpu. 8408 */ 8409 if ((env->idle != CPU_NOT_IDLE) && 8410 (env->src_rq->cfs.h_nr_running == 1)) { 8411 if ((check_cpu_capacity(env->src_rq, sd)) && 8412 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8413 return 1; 8414 } 8415 8416 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8417 } 8418 8419 static int active_load_balance_cpu_stop(void *data); 8420 8421 static int should_we_balance(struct lb_env *env) 8422 { 8423 struct sched_group *sg = env->sd->groups; 8424 int cpu, balance_cpu = -1; 8425 8426 /* 8427 * Ensure the balancing environment is consistent; can happen 8428 * when the softirq triggers 'during' hotplug. 8429 */ 8430 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8431 return 0; 8432 8433 /* 8434 * In the newly idle case, we will allow all the cpu's 8435 * to do the newly idle load balance. 8436 */ 8437 if (env->idle == CPU_NEWLY_IDLE) 8438 return 1; 8439 8440 /* Try to find first idle cpu */ 8441 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8442 if (!idle_cpu(cpu)) 8443 continue; 8444 8445 balance_cpu = cpu; 8446 break; 8447 } 8448 8449 if (balance_cpu == -1) 8450 balance_cpu = group_balance_cpu(sg); 8451 8452 /* 8453 * First idle cpu or the first cpu(busiest) in this sched group 8454 * is eligible for doing load balancing at this and above domains. 8455 */ 8456 return balance_cpu == env->dst_cpu; 8457 } 8458 8459 /* 8460 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8461 * tasks if there is an imbalance. 8462 */ 8463 static int load_balance(int this_cpu, struct rq *this_rq, 8464 struct sched_domain *sd, enum cpu_idle_type idle, 8465 int *continue_balancing) 8466 { 8467 int ld_moved, cur_ld_moved, active_balance = 0; 8468 struct sched_domain *sd_parent = sd->parent; 8469 struct sched_group *group; 8470 struct rq *busiest; 8471 struct rq_flags rf; 8472 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8473 8474 struct lb_env env = { 8475 .sd = sd, 8476 .dst_cpu = this_cpu, 8477 .dst_rq = this_rq, 8478 .dst_grpmask = sched_group_span(sd->groups), 8479 .idle = idle, 8480 .loop_break = sched_nr_migrate_break, 8481 .cpus = cpus, 8482 .fbq_type = all, 8483 .tasks = LIST_HEAD_INIT(env.tasks), 8484 }; 8485 8486 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8487 8488 schedstat_inc(sd->lb_count[idle]); 8489 8490 redo: 8491 if (!should_we_balance(&env)) { 8492 *continue_balancing = 0; 8493 goto out_balanced; 8494 } 8495 8496 group = find_busiest_group(&env); 8497 if (!group) { 8498 schedstat_inc(sd->lb_nobusyg[idle]); 8499 goto out_balanced; 8500 } 8501 8502 busiest = find_busiest_queue(&env, group); 8503 if (!busiest) { 8504 schedstat_inc(sd->lb_nobusyq[idle]); 8505 goto out_balanced; 8506 } 8507 8508 BUG_ON(busiest == env.dst_rq); 8509 8510 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8511 8512 env.src_cpu = busiest->cpu; 8513 env.src_rq = busiest; 8514 8515 ld_moved = 0; 8516 if (busiest->nr_running > 1) { 8517 /* 8518 * Attempt to move tasks. If find_busiest_group has found 8519 * an imbalance but busiest->nr_running <= 1, the group is 8520 * still unbalanced. ld_moved simply stays zero, so it is 8521 * correctly treated as an imbalance. 8522 */ 8523 env.flags |= LBF_ALL_PINNED; 8524 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8525 8526 more_balance: 8527 rq_lock_irqsave(busiest, &rf); 8528 update_rq_clock(busiest); 8529 8530 /* 8531 * cur_ld_moved - load moved in current iteration 8532 * ld_moved - cumulative load moved across iterations 8533 */ 8534 cur_ld_moved = detach_tasks(&env); 8535 8536 /* 8537 * We've detached some tasks from busiest_rq. Every 8538 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8539 * unlock busiest->lock, and we are able to be sure 8540 * that nobody can manipulate the tasks in parallel. 8541 * See task_rq_lock() family for the details. 8542 */ 8543 8544 rq_unlock(busiest, &rf); 8545 8546 if (cur_ld_moved) { 8547 attach_tasks(&env); 8548 ld_moved += cur_ld_moved; 8549 } 8550 8551 local_irq_restore(rf.flags); 8552 8553 if (env.flags & LBF_NEED_BREAK) { 8554 env.flags &= ~LBF_NEED_BREAK; 8555 goto more_balance; 8556 } 8557 8558 /* 8559 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8560 * us and move them to an alternate dst_cpu in our sched_group 8561 * where they can run. The upper limit on how many times we 8562 * iterate on same src_cpu is dependent on number of cpus in our 8563 * sched_group. 8564 * 8565 * This changes load balance semantics a bit on who can move 8566 * load to a given_cpu. In addition to the given_cpu itself 8567 * (or a ilb_cpu acting on its behalf where given_cpu is 8568 * nohz-idle), we now have balance_cpu in a position to move 8569 * load to given_cpu. In rare situations, this may cause 8570 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8571 * _independently_ and at _same_ time to move some load to 8572 * given_cpu) causing exceess load to be moved to given_cpu. 8573 * This however should not happen so much in practice and 8574 * moreover subsequent load balance cycles should correct the 8575 * excess load moved. 8576 */ 8577 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8578 8579 /* Prevent to re-select dst_cpu via env's cpus */ 8580 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8581 8582 env.dst_rq = cpu_rq(env.new_dst_cpu); 8583 env.dst_cpu = env.new_dst_cpu; 8584 env.flags &= ~LBF_DST_PINNED; 8585 env.loop = 0; 8586 env.loop_break = sched_nr_migrate_break; 8587 8588 /* 8589 * Go back to "more_balance" rather than "redo" since we 8590 * need to continue with same src_cpu. 8591 */ 8592 goto more_balance; 8593 } 8594 8595 /* 8596 * We failed to reach balance because of affinity. 8597 */ 8598 if (sd_parent) { 8599 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8600 8601 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8602 *group_imbalance = 1; 8603 } 8604 8605 /* All tasks on this runqueue were pinned by CPU affinity */ 8606 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8607 cpumask_clear_cpu(cpu_of(busiest), cpus); 8608 /* 8609 * Attempting to continue load balancing at the current 8610 * sched_domain level only makes sense if there are 8611 * active CPUs remaining as possible busiest CPUs to 8612 * pull load from which are not contained within the 8613 * destination group that is receiving any migrated 8614 * load. 8615 */ 8616 if (!cpumask_subset(cpus, env.dst_grpmask)) { 8617 env.loop = 0; 8618 env.loop_break = sched_nr_migrate_break; 8619 goto redo; 8620 } 8621 goto out_all_pinned; 8622 } 8623 } 8624 8625 if (!ld_moved) { 8626 schedstat_inc(sd->lb_failed[idle]); 8627 /* 8628 * Increment the failure counter only on periodic balance. 8629 * We do not want newidle balance, which can be very 8630 * frequent, pollute the failure counter causing 8631 * excessive cache_hot migrations and active balances. 8632 */ 8633 if (idle != CPU_NEWLY_IDLE) 8634 sd->nr_balance_failed++; 8635 8636 if (need_active_balance(&env)) { 8637 unsigned long flags; 8638 8639 raw_spin_lock_irqsave(&busiest->lock, flags); 8640 8641 /* don't kick the active_load_balance_cpu_stop, 8642 * if the curr task on busiest cpu can't be 8643 * moved to this_cpu 8644 */ 8645 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8646 raw_spin_unlock_irqrestore(&busiest->lock, 8647 flags); 8648 env.flags |= LBF_ALL_PINNED; 8649 goto out_one_pinned; 8650 } 8651 8652 /* 8653 * ->active_balance synchronizes accesses to 8654 * ->active_balance_work. Once set, it's cleared 8655 * only after active load balance is finished. 8656 */ 8657 if (!busiest->active_balance) { 8658 busiest->active_balance = 1; 8659 busiest->push_cpu = this_cpu; 8660 active_balance = 1; 8661 } 8662 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8663 8664 if (active_balance) { 8665 stop_one_cpu_nowait(cpu_of(busiest), 8666 active_load_balance_cpu_stop, busiest, 8667 &busiest->active_balance_work); 8668 } 8669 8670 /* We've kicked active balancing, force task migration. */ 8671 sd->nr_balance_failed = sd->cache_nice_tries+1; 8672 } 8673 } else 8674 sd->nr_balance_failed = 0; 8675 8676 if (likely(!active_balance)) { 8677 /* We were unbalanced, so reset the balancing interval */ 8678 sd->balance_interval = sd->min_interval; 8679 } else { 8680 /* 8681 * If we've begun active balancing, start to back off. This 8682 * case may not be covered by the all_pinned logic if there 8683 * is only 1 task on the busy runqueue (because we don't call 8684 * detach_tasks). 8685 */ 8686 if (sd->balance_interval < sd->max_interval) 8687 sd->balance_interval *= 2; 8688 } 8689 8690 goto out; 8691 8692 out_balanced: 8693 /* 8694 * We reach balance although we may have faced some affinity 8695 * constraints. Clear the imbalance flag if it was set. 8696 */ 8697 if (sd_parent) { 8698 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8699 8700 if (*group_imbalance) 8701 *group_imbalance = 0; 8702 } 8703 8704 out_all_pinned: 8705 /* 8706 * We reach balance because all tasks are pinned at this level so 8707 * we can't migrate them. Let the imbalance flag set so parent level 8708 * can try to migrate them. 8709 */ 8710 schedstat_inc(sd->lb_balanced[idle]); 8711 8712 sd->nr_balance_failed = 0; 8713 8714 out_one_pinned: 8715 /* tune up the balancing interval */ 8716 if (((env.flags & LBF_ALL_PINNED) && 8717 sd->balance_interval < MAX_PINNED_INTERVAL) || 8718 (sd->balance_interval < sd->max_interval)) 8719 sd->balance_interval *= 2; 8720 8721 ld_moved = 0; 8722 out: 8723 return ld_moved; 8724 } 8725 8726 static inline unsigned long 8727 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8728 { 8729 unsigned long interval = sd->balance_interval; 8730 8731 if (cpu_busy) 8732 interval *= sd->busy_factor; 8733 8734 /* scale ms to jiffies */ 8735 interval = msecs_to_jiffies(interval); 8736 interval = clamp(interval, 1UL, max_load_balance_interval); 8737 8738 return interval; 8739 } 8740 8741 static inline void 8742 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8743 { 8744 unsigned long interval, next; 8745 8746 /* used by idle balance, so cpu_busy = 0 */ 8747 interval = get_sd_balance_interval(sd, 0); 8748 next = sd->last_balance + interval; 8749 8750 if (time_after(*next_balance, next)) 8751 *next_balance = next; 8752 } 8753 8754 /* 8755 * idle_balance is called by schedule() if this_cpu is about to become 8756 * idle. Attempts to pull tasks from other CPUs. 8757 */ 8758 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 8759 { 8760 unsigned long next_balance = jiffies + HZ; 8761 int this_cpu = this_rq->cpu; 8762 struct sched_domain *sd; 8763 int pulled_task = 0; 8764 u64 curr_cost = 0; 8765 8766 /* 8767 * We must set idle_stamp _before_ calling idle_balance(), such that we 8768 * measure the duration of idle_balance() as idle time. 8769 */ 8770 this_rq->idle_stamp = rq_clock(this_rq); 8771 8772 /* 8773 * Do not pull tasks towards !active CPUs... 8774 */ 8775 if (!cpu_active(this_cpu)) 8776 return 0; 8777 8778 /* 8779 * This is OK, because current is on_cpu, which avoids it being picked 8780 * for load-balance and preemption/IRQs are still disabled avoiding 8781 * further scheduler activity on it and we're being very careful to 8782 * re-start the picking loop. 8783 */ 8784 rq_unpin_lock(this_rq, rf); 8785 8786 if (this_rq->avg_idle < sysctl_sched_migration_cost || 8787 !this_rq->rd->overload) { 8788 rcu_read_lock(); 8789 sd = rcu_dereference_check_sched_domain(this_rq->sd); 8790 if (sd) 8791 update_next_balance(sd, &next_balance); 8792 rcu_read_unlock(); 8793 8794 goto out; 8795 } 8796 8797 raw_spin_unlock(&this_rq->lock); 8798 8799 update_blocked_averages(this_cpu); 8800 rcu_read_lock(); 8801 for_each_domain(this_cpu, sd) { 8802 int continue_balancing = 1; 8803 u64 t0, domain_cost; 8804 8805 if (!(sd->flags & SD_LOAD_BALANCE)) 8806 continue; 8807 8808 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 8809 update_next_balance(sd, &next_balance); 8810 break; 8811 } 8812 8813 if (sd->flags & SD_BALANCE_NEWIDLE) { 8814 t0 = sched_clock_cpu(this_cpu); 8815 8816 pulled_task = load_balance(this_cpu, this_rq, 8817 sd, CPU_NEWLY_IDLE, 8818 &continue_balancing); 8819 8820 domain_cost = sched_clock_cpu(this_cpu) - t0; 8821 if (domain_cost > sd->max_newidle_lb_cost) 8822 sd->max_newidle_lb_cost = domain_cost; 8823 8824 curr_cost += domain_cost; 8825 } 8826 8827 update_next_balance(sd, &next_balance); 8828 8829 /* 8830 * Stop searching for tasks to pull if there are 8831 * now runnable tasks on this rq. 8832 */ 8833 if (pulled_task || this_rq->nr_running > 0) 8834 break; 8835 } 8836 rcu_read_unlock(); 8837 8838 raw_spin_lock(&this_rq->lock); 8839 8840 if (curr_cost > this_rq->max_idle_balance_cost) 8841 this_rq->max_idle_balance_cost = curr_cost; 8842 8843 /* 8844 * While browsing the domains, we released the rq lock, a task could 8845 * have been enqueued in the meantime. Since we're not going idle, 8846 * pretend we pulled a task. 8847 */ 8848 if (this_rq->cfs.h_nr_running && !pulled_task) 8849 pulled_task = 1; 8850 8851 out: 8852 /* Move the next balance forward */ 8853 if (time_after(this_rq->next_balance, next_balance)) 8854 this_rq->next_balance = next_balance; 8855 8856 /* Is there a task of a high priority class? */ 8857 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 8858 pulled_task = -1; 8859 8860 if (pulled_task) 8861 this_rq->idle_stamp = 0; 8862 8863 rq_repin_lock(this_rq, rf); 8864 8865 return pulled_task; 8866 } 8867 8868 /* 8869 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 8870 * running tasks off the busiest CPU onto idle CPUs. It requires at 8871 * least 1 task to be running on each physical CPU where possible, and 8872 * avoids physical / logical imbalances. 8873 */ 8874 static int active_load_balance_cpu_stop(void *data) 8875 { 8876 struct rq *busiest_rq = data; 8877 int busiest_cpu = cpu_of(busiest_rq); 8878 int target_cpu = busiest_rq->push_cpu; 8879 struct rq *target_rq = cpu_rq(target_cpu); 8880 struct sched_domain *sd; 8881 struct task_struct *p = NULL; 8882 struct rq_flags rf; 8883 8884 rq_lock_irq(busiest_rq, &rf); 8885 /* 8886 * Between queueing the stop-work and running it is a hole in which 8887 * CPUs can become inactive. We should not move tasks from or to 8888 * inactive CPUs. 8889 */ 8890 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 8891 goto out_unlock; 8892 8893 /* make sure the requested cpu hasn't gone down in the meantime */ 8894 if (unlikely(busiest_cpu != smp_processor_id() || 8895 !busiest_rq->active_balance)) 8896 goto out_unlock; 8897 8898 /* Is there any task to move? */ 8899 if (busiest_rq->nr_running <= 1) 8900 goto out_unlock; 8901 8902 /* 8903 * This condition is "impossible", if it occurs 8904 * we need to fix it. Originally reported by 8905 * Bjorn Helgaas on a 128-cpu setup. 8906 */ 8907 BUG_ON(busiest_rq == target_rq); 8908 8909 /* Search for an sd spanning us and the target CPU. */ 8910 rcu_read_lock(); 8911 for_each_domain(target_cpu, sd) { 8912 if ((sd->flags & SD_LOAD_BALANCE) && 8913 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8914 break; 8915 } 8916 8917 if (likely(sd)) { 8918 struct lb_env env = { 8919 .sd = sd, 8920 .dst_cpu = target_cpu, 8921 .dst_rq = target_rq, 8922 .src_cpu = busiest_rq->cpu, 8923 .src_rq = busiest_rq, 8924 .idle = CPU_IDLE, 8925 /* 8926 * can_migrate_task() doesn't need to compute new_dst_cpu 8927 * for active balancing. Since we have CPU_IDLE, but no 8928 * @dst_grpmask we need to make that test go away with lying 8929 * about DST_PINNED. 8930 */ 8931 .flags = LBF_DST_PINNED, 8932 }; 8933 8934 schedstat_inc(sd->alb_count); 8935 update_rq_clock(busiest_rq); 8936 8937 p = detach_one_task(&env); 8938 if (p) { 8939 schedstat_inc(sd->alb_pushed); 8940 /* Active balancing done, reset the failure counter. */ 8941 sd->nr_balance_failed = 0; 8942 } else { 8943 schedstat_inc(sd->alb_failed); 8944 } 8945 } 8946 rcu_read_unlock(); 8947 out_unlock: 8948 busiest_rq->active_balance = 0; 8949 rq_unlock(busiest_rq, &rf); 8950 8951 if (p) 8952 attach_one_task(target_rq, p); 8953 8954 local_irq_enable(); 8955 8956 return 0; 8957 } 8958 8959 static inline int on_null_domain(struct rq *rq) 8960 { 8961 return unlikely(!rcu_dereference_sched(rq->sd)); 8962 } 8963 8964 #ifdef CONFIG_NO_HZ_COMMON 8965 /* 8966 * idle load balancing details 8967 * - When one of the busy CPUs notice that there may be an idle rebalancing 8968 * needed, they will kick the idle load balancer, which then does idle 8969 * load balancing for all the idle CPUs. 8970 */ 8971 static struct { 8972 cpumask_var_t idle_cpus_mask; 8973 atomic_t nr_cpus; 8974 unsigned long next_balance; /* in jiffy units */ 8975 } nohz ____cacheline_aligned; 8976 8977 static inline int find_new_ilb(void) 8978 { 8979 int ilb = cpumask_first(nohz.idle_cpus_mask); 8980 8981 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8982 return ilb; 8983 8984 return nr_cpu_ids; 8985 } 8986 8987 /* 8988 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8989 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8990 * CPU (if there is one). 8991 */ 8992 static void nohz_balancer_kick(void) 8993 { 8994 int ilb_cpu; 8995 8996 nohz.next_balance++; 8997 8998 ilb_cpu = find_new_ilb(); 8999 9000 if (ilb_cpu >= nr_cpu_ids) 9001 return; 9002 9003 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 9004 return; 9005 /* 9006 * Use smp_send_reschedule() instead of resched_cpu(). 9007 * This way we generate a sched IPI on the target cpu which 9008 * is idle. And the softirq performing nohz idle load balance 9009 * will be run before returning from the IPI. 9010 */ 9011 smp_send_reschedule(ilb_cpu); 9012 return; 9013 } 9014 9015 void nohz_balance_exit_idle(unsigned int cpu) 9016 { 9017 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 9018 /* 9019 * Completely isolated CPUs don't ever set, so we must test. 9020 */ 9021 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 9022 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 9023 atomic_dec(&nohz.nr_cpus); 9024 } 9025 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 9026 } 9027 } 9028 9029 static inline void set_cpu_sd_state_busy(void) 9030 { 9031 struct sched_domain *sd; 9032 int cpu = smp_processor_id(); 9033 9034 rcu_read_lock(); 9035 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9036 9037 if (!sd || !sd->nohz_idle) 9038 goto unlock; 9039 sd->nohz_idle = 0; 9040 9041 atomic_inc(&sd->shared->nr_busy_cpus); 9042 unlock: 9043 rcu_read_unlock(); 9044 } 9045 9046 void set_cpu_sd_state_idle(void) 9047 { 9048 struct sched_domain *sd; 9049 int cpu = smp_processor_id(); 9050 9051 rcu_read_lock(); 9052 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9053 9054 if (!sd || sd->nohz_idle) 9055 goto unlock; 9056 sd->nohz_idle = 1; 9057 9058 atomic_dec(&sd->shared->nr_busy_cpus); 9059 unlock: 9060 rcu_read_unlock(); 9061 } 9062 9063 /* 9064 * This routine will record that the cpu is going idle with tick stopped. 9065 * This info will be used in performing idle load balancing in the future. 9066 */ 9067 void nohz_balance_enter_idle(int cpu) 9068 { 9069 /* 9070 * If this cpu is going down, then nothing needs to be done. 9071 */ 9072 if (!cpu_active(cpu)) 9073 return; 9074 9075 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9076 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9077 return; 9078 9079 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 9080 return; 9081 9082 /* 9083 * If we're a completely isolated CPU, we don't play. 9084 */ 9085 if (on_null_domain(cpu_rq(cpu))) 9086 return; 9087 9088 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9089 atomic_inc(&nohz.nr_cpus); 9090 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 9091 } 9092 #endif 9093 9094 static DEFINE_SPINLOCK(balancing); 9095 9096 /* 9097 * Scale the max load_balance interval with the number of CPUs in the system. 9098 * This trades load-balance latency on larger machines for less cross talk. 9099 */ 9100 void update_max_interval(void) 9101 { 9102 max_load_balance_interval = HZ*num_online_cpus()/10; 9103 } 9104 9105 /* 9106 * It checks each scheduling domain to see if it is due to be balanced, 9107 * and initiates a balancing operation if so. 9108 * 9109 * Balancing parameters are set up in init_sched_domains. 9110 */ 9111 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9112 { 9113 int continue_balancing = 1; 9114 int cpu = rq->cpu; 9115 unsigned long interval; 9116 struct sched_domain *sd; 9117 /* Earliest time when we have to do rebalance again */ 9118 unsigned long next_balance = jiffies + 60*HZ; 9119 int update_next_balance = 0; 9120 int need_serialize, need_decay = 0; 9121 u64 max_cost = 0; 9122 9123 update_blocked_averages(cpu); 9124 9125 rcu_read_lock(); 9126 for_each_domain(cpu, sd) { 9127 /* 9128 * Decay the newidle max times here because this is a regular 9129 * visit to all the domains. Decay ~1% per second. 9130 */ 9131 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9132 sd->max_newidle_lb_cost = 9133 (sd->max_newidle_lb_cost * 253) / 256; 9134 sd->next_decay_max_lb_cost = jiffies + HZ; 9135 need_decay = 1; 9136 } 9137 max_cost += sd->max_newidle_lb_cost; 9138 9139 if (!(sd->flags & SD_LOAD_BALANCE)) 9140 continue; 9141 9142 /* 9143 * Stop the load balance at this level. There is another 9144 * CPU in our sched group which is doing load balancing more 9145 * actively. 9146 */ 9147 if (!continue_balancing) { 9148 if (need_decay) 9149 continue; 9150 break; 9151 } 9152 9153 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9154 9155 need_serialize = sd->flags & SD_SERIALIZE; 9156 if (need_serialize) { 9157 if (!spin_trylock(&balancing)) 9158 goto out; 9159 } 9160 9161 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9162 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9163 /* 9164 * The LBF_DST_PINNED logic could have changed 9165 * env->dst_cpu, so we can't know our idle 9166 * state even if we migrated tasks. Update it. 9167 */ 9168 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9169 } 9170 sd->last_balance = jiffies; 9171 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9172 } 9173 if (need_serialize) 9174 spin_unlock(&balancing); 9175 out: 9176 if (time_after(next_balance, sd->last_balance + interval)) { 9177 next_balance = sd->last_balance + interval; 9178 update_next_balance = 1; 9179 } 9180 } 9181 if (need_decay) { 9182 /* 9183 * Ensure the rq-wide value also decays but keep it at a 9184 * reasonable floor to avoid funnies with rq->avg_idle. 9185 */ 9186 rq->max_idle_balance_cost = 9187 max((u64)sysctl_sched_migration_cost, max_cost); 9188 } 9189 rcu_read_unlock(); 9190 9191 /* 9192 * next_balance will be updated only when there is a need. 9193 * When the cpu is attached to null domain for ex, it will not be 9194 * updated. 9195 */ 9196 if (likely(update_next_balance)) { 9197 rq->next_balance = next_balance; 9198 9199 #ifdef CONFIG_NO_HZ_COMMON 9200 /* 9201 * If this CPU has been elected to perform the nohz idle 9202 * balance. Other idle CPUs have already rebalanced with 9203 * nohz_idle_balance() and nohz.next_balance has been 9204 * updated accordingly. This CPU is now running the idle load 9205 * balance for itself and we need to update the 9206 * nohz.next_balance accordingly. 9207 */ 9208 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9209 nohz.next_balance = rq->next_balance; 9210 #endif 9211 } 9212 } 9213 9214 #ifdef CONFIG_NO_HZ_COMMON 9215 /* 9216 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9217 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9218 */ 9219 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9220 { 9221 int this_cpu = this_rq->cpu; 9222 struct rq *rq; 9223 int balance_cpu; 9224 /* Earliest time when we have to do rebalance again */ 9225 unsigned long next_balance = jiffies + 60*HZ; 9226 int update_next_balance = 0; 9227 9228 if (idle != CPU_IDLE || 9229 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 9230 goto end; 9231 9232 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9233 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9234 continue; 9235 9236 /* 9237 * If this cpu gets work to do, stop the load balancing 9238 * work being done for other cpus. Next load 9239 * balancing owner will pick it up. 9240 */ 9241 if (need_resched()) 9242 break; 9243 9244 rq = cpu_rq(balance_cpu); 9245 9246 /* 9247 * If time for next balance is due, 9248 * do the balance. 9249 */ 9250 if (time_after_eq(jiffies, rq->next_balance)) { 9251 struct rq_flags rf; 9252 9253 rq_lock_irq(rq, &rf); 9254 update_rq_clock(rq); 9255 cpu_load_update_idle(rq); 9256 rq_unlock_irq(rq, &rf); 9257 9258 rebalance_domains(rq, CPU_IDLE); 9259 } 9260 9261 if (time_after(next_balance, rq->next_balance)) { 9262 next_balance = rq->next_balance; 9263 update_next_balance = 1; 9264 } 9265 } 9266 9267 /* 9268 * next_balance will be updated only when there is a need. 9269 * When the CPU is attached to null domain for ex, it will not be 9270 * updated. 9271 */ 9272 if (likely(update_next_balance)) 9273 nohz.next_balance = next_balance; 9274 end: 9275 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 9276 } 9277 9278 /* 9279 * Current heuristic for kicking the idle load balancer in the presence 9280 * of an idle cpu in the system. 9281 * - This rq has more than one task. 9282 * - This rq has at least one CFS task and the capacity of the CPU is 9283 * significantly reduced because of RT tasks or IRQs. 9284 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9285 * multiple busy cpu. 9286 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9287 * domain span are idle. 9288 */ 9289 static inline bool nohz_kick_needed(struct rq *rq) 9290 { 9291 unsigned long now = jiffies; 9292 struct sched_domain_shared *sds; 9293 struct sched_domain *sd; 9294 int nr_busy, i, cpu = rq->cpu; 9295 bool kick = false; 9296 9297 if (unlikely(rq->idle_balance)) 9298 return false; 9299 9300 /* 9301 * We may be recently in ticked or tickless idle mode. At the first 9302 * busy tick after returning from idle, we will update the busy stats. 9303 */ 9304 set_cpu_sd_state_busy(); 9305 nohz_balance_exit_idle(cpu); 9306 9307 /* 9308 * None are in tickless mode and hence no need for NOHZ idle load 9309 * balancing. 9310 */ 9311 if (likely(!atomic_read(&nohz.nr_cpus))) 9312 return false; 9313 9314 if (time_before(now, nohz.next_balance)) 9315 return false; 9316 9317 if (rq->nr_running >= 2) 9318 return true; 9319 9320 rcu_read_lock(); 9321 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9322 if (sds) { 9323 /* 9324 * XXX: write a coherent comment on why we do this. 9325 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9326 */ 9327 nr_busy = atomic_read(&sds->nr_busy_cpus); 9328 if (nr_busy > 1) { 9329 kick = true; 9330 goto unlock; 9331 } 9332 9333 } 9334 9335 sd = rcu_dereference(rq->sd); 9336 if (sd) { 9337 if ((rq->cfs.h_nr_running >= 1) && 9338 check_cpu_capacity(rq, sd)) { 9339 kick = true; 9340 goto unlock; 9341 } 9342 } 9343 9344 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 9345 if (sd) { 9346 for_each_cpu(i, sched_domain_span(sd)) { 9347 if (i == cpu || 9348 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9349 continue; 9350 9351 if (sched_asym_prefer(i, cpu)) { 9352 kick = true; 9353 goto unlock; 9354 } 9355 } 9356 } 9357 unlock: 9358 rcu_read_unlock(); 9359 return kick; 9360 } 9361 #else 9362 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 9363 #endif 9364 9365 /* 9366 * run_rebalance_domains is triggered when needed from the scheduler tick. 9367 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9368 */ 9369 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9370 { 9371 struct rq *this_rq = this_rq(); 9372 enum cpu_idle_type idle = this_rq->idle_balance ? 9373 CPU_IDLE : CPU_NOT_IDLE; 9374 9375 /* 9376 * If this cpu has a pending nohz_balance_kick, then do the 9377 * balancing on behalf of the other idle cpus whose ticks are 9378 * stopped. Do nohz_idle_balance *before* rebalance_domains to 9379 * give the idle cpus a chance to load balance. Else we may 9380 * load balance only within the local sched_domain hierarchy 9381 * and abort nohz_idle_balance altogether if we pull some load. 9382 */ 9383 nohz_idle_balance(this_rq, idle); 9384 rebalance_domains(this_rq, idle); 9385 } 9386 9387 /* 9388 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 9389 */ 9390 void trigger_load_balance(struct rq *rq) 9391 { 9392 /* Don't need to rebalance while attached to NULL domain */ 9393 if (unlikely(on_null_domain(rq))) 9394 return; 9395 9396 if (time_after_eq(jiffies, rq->next_balance)) 9397 raise_softirq(SCHED_SOFTIRQ); 9398 #ifdef CONFIG_NO_HZ_COMMON 9399 if (nohz_kick_needed(rq)) 9400 nohz_balancer_kick(); 9401 #endif 9402 } 9403 9404 static void rq_online_fair(struct rq *rq) 9405 { 9406 update_sysctl(); 9407 9408 update_runtime_enabled(rq); 9409 } 9410 9411 static void rq_offline_fair(struct rq *rq) 9412 { 9413 update_sysctl(); 9414 9415 /* Ensure any throttled groups are reachable by pick_next_task */ 9416 unthrottle_offline_cfs_rqs(rq); 9417 } 9418 9419 #endif /* CONFIG_SMP */ 9420 9421 /* 9422 * scheduler tick hitting a task of our scheduling class: 9423 */ 9424 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 9425 { 9426 struct cfs_rq *cfs_rq; 9427 struct sched_entity *se = &curr->se; 9428 9429 for_each_sched_entity(se) { 9430 cfs_rq = cfs_rq_of(se); 9431 entity_tick(cfs_rq, se, queued); 9432 } 9433 9434 if (static_branch_unlikely(&sched_numa_balancing)) 9435 task_tick_numa(rq, curr); 9436 } 9437 9438 /* 9439 * called on fork with the child task as argument from the parent's context 9440 * - child not yet on the tasklist 9441 * - preemption disabled 9442 */ 9443 static void task_fork_fair(struct task_struct *p) 9444 { 9445 struct cfs_rq *cfs_rq; 9446 struct sched_entity *se = &p->se, *curr; 9447 struct rq *rq = this_rq(); 9448 struct rq_flags rf; 9449 9450 rq_lock(rq, &rf); 9451 update_rq_clock(rq); 9452 9453 cfs_rq = task_cfs_rq(current); 9454 curr = cfs_rq->curr; 9455 if (curr) { 9456 update_curr(cfs_rq); 9457 se->vruntime = curr->vruntime; 9458 } 9459 place_entity(cfs_rq, se, 1); 9460 9461 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9462 /* 9463 * Upon rescheduling, sched_class::put_prev_task() will place 9464 * 'current' within the tree based on its new key value. 9465 */ 9466 swap(curr->vruntime, se->vruntime); 9467 resched_curr(rq); 9468 } 9469 9470 se->vruntime -= cfs_rq->min_vruntime; 9471 rq_unlock(rq, &rf); 9472 } 9473 9474 /* 9475 * Priority of the task has changed. Check to see if we preempt 9476 * the current task. 9477 */ 9478 static void 9479 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9480 { 9481 if (!task_on_rq_queued(p)) 9482 return; 9483 9484 /* 9485 * Reschedule if we are currently running on this runqueue and 9486 * our priority decreased, or if we are not currently running on 9487 * this runqueue and our priority is higher than the current's 9488 */ 9489 if (rq->curr == p) { 9490 if (p->prio > oldprio) 9491 resched_curr(rq); 9492 } else 9493 check_preempt_curr(rq, p, 0); 9494 } 9495 9496 static inline bool vruntime_normalized(struct task_struct *p) 9497 { 9498 struct sched_entity *se = &p->se; 9499 9500 /* 9501 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9502 * the dequeue_entity(.flags=0) will already have normalized the 9503 * vruntime. 9504 */ 9505 if (p->on_rq) 9506 return true; 9507 9508 /* 9509 * When !on_rq, vruntime of the task has usually NOT been normalized. 9510 * But there are some cases where it has already been normalized: 9511 * 9512 * - A forked child which is waiting for being woken up by 9513 * wake_up_new_task(). 9514 * - A task which has been woken up by try_to_wake_up() and 9515 * waiting for actually being woken up by sched_ttwu_pending(). 9516 */ 9517 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9518 return true; 9519 9520 return false; 9521 } 9522 9523 #ifdef CONFIG_FAIR_GROUP_SCHED 9524 /* 9525 * Propagate the changes of the sched_entity across the tg tree to make it 9526 * visible to the root 9527 */ 9528 static void propagate_entity_cfs_rq(struct sched_entity *se) 9529 { 9530 struct cfs_rq *cfs_rq; 9531 9532 /* Start to propagate at parent */ 9533 se = se->parent; 9534 9535 for_each_sched_entity(se) { 9536 cfs_rq = cfs_rq_of(se); 9537 9538 if (cfs_rq_throttled(cfs_rq)) 9539 break; 9540 9541 update_load_avg(cfs_rq, se, UPDATE_TG); 9542 } 9543 } 9544 #else 9545 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9546 #endif 9547 9548 static void detach_entity_cfs_rq(struct sched_entity *se) 9549 { 9550 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9551 9552 /* Catch up with the cfs_rq and remove our load when we leave */ 9553 update_load_avg(cfs_rq, se, 0); 9554 detach_entity_load_avg(cfs_rq, se); 9555 update_tg_load_avg(cfs_rq, false); 9556 propagate_entity_cfs_rq(se); 9557 } 9558 9559 static void attach_entity_cfs_rq(struct sched_entity *se) 9560 { 9561 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9562 9563 #ifdef CONFIG_FAIR_GROUP_SCHED 9564 /* 9565 * Since the real-depth could have been changed (only FAIR 9566 * class maintain depth value), reset depth properly. 9567 */ 9568 se->depth = se->parent ? se->parent->depth + 1 : 0; 9569 #endif 9570 9571 /* Synchronize entity with its cfs_rq */ 9572 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9573 attach_entity_load_avg(cfs_rq, se); 9574 update_tg_load_avg(cfs_rq, false); 9575 propagate_entity_cfs_rq(se); 9576 } 9577 9578 static void detach_task_cfs_rq(struct task_struct *p) 9579 { 9580 struct sched_entity *se = &p->se; 9581 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9582 9583 if (!vruntime_normalized(p)) { 9584 /* 9585 * Fix up our vruntime so that the current sleep doesn't 9586 * cause 'unlimited' sleep bonus. 9587 */ 9588 place_entity(cfs_rq, se, 0); 9589 se->vruntime -= cfs_rq->min_vruntime; 9590 } 9591 9592 detach_entity_cfs_rq(se); 9593 } 9594 9595 static void attach_task_cfs_rq(struct task_struct *p) 9596 { 9597 struct sched_entity *se = &p->se; 9598 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9599 9600 attach_entity_cfs_rq(se); 9601 9602 if (!vruntime_normalized(p)) 9603 se->vruntime += cfs_rq->min_vruntime; 9604 } 9605 9606 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9607 { 9608 detach_task_cfs_rq(p); 9609 } 9610 9611 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9612 { 9613 attach_task_cfs_rq(p); 9614 9615 if (task_on_rq_queued(p)) { 9616 /* 9617 * We were most likely switched from sched_rt, so 9618 * kick off the schedule if running, otherwise just see 9619 * if we can still preempt the current task. 9620 */ 9621 if (rq->curr == p) 9622 resched_curr(rq); 9623 else 9624 check_preempt_curr(rq, p, 0); 9625 } 9626 } 9627 9628 /* Account for a task changing its policy or group. 9629 * 9630 * This routine is mostly called to set cfs_rq->curr field when a task 9631 * migrates between groups/classes. 9632 */ 9633 static void set_curr_task_fair(struct rq *rq) 9634 { 9635 struct sched_entity *se = &rq->curr->se; 9636 9637 for_each_sched_entity(se) { 9638 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9639 9640 set_next_entity(cfs_rq, se); 9641 /* ensure bandwidth has been allocated on our new cfs_rq */ 9642 account_cfs_rq_runtime(cfs_rq, 0); 9643 } 9644 } 9645 9646 void init_cfs_rq(struct cfs_rq *cfs_rq) 9647 { 9648 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 9649 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9650 #ifndef CONFIG_64BIT 9651 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9652 #endif 9653 #ifdef CONFIG_SMP 9654 raw_spin_lock_init(&cfs_rq->removed.lock); 9655 #endif 9656 } 9657 9658 #ifdef CONFIG_FAIR_GROUP_SCHED 9659 static void task_set_group_fair(struct task_struct *p) 9660 { 9661 struct sched_entity *se = &p->se; 9662 9663 set_task_rq(p, task_cpu(p)); 9664 se->depth = se->parent ? se->parent->depth + 1 : 0; 9665 } 9666 9667 static void task_move_group_fair(struct task_struct *p) 9668 { 9669 detach_task_cfs_rq(p); 9670 set_task_rq(p, task_cpu(p)); 9671 9672 #ifdef CONFIG_SMP 9673 /* Tell se's cfs_rq has been changed -- migrated */ 9674 p->se.avg.last_update_time = 0; 9675 #endif 9676 attach_task_cfs_rq(p); 9677 } 9678 9679 static void task_change_group_fair(struct task_struct *p, int type) 9680 { 9681 switch (type) { 9682 case TASK_SET_GROUP: 9683 task_set_group_fair(p); 9684 break; 9685 9686 case TASK_MOVE_GROUP: 9687 task_move_group_fair(p); 9688 break; 9689 } 9690 } 9691 9692 void free_fair_sched_group(struct task_group *tg) 9693 { 9694 int i; 9695 9696 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9697 9698 for_each_possible_cpu(i) { 9699 if (tg->cfs_rq) 9700 kfree(tg->cfs_rq[i]); 9701 if (tg->se) 9702 kfree(tg->se[i]); 9703 } 9704 9705 kfree(tg->cfs_rq); 9706 kfree(tg->se); 9707 } 9708 9709 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9710 { 9711 struct sched_entity *se; 9712 struct cfs_rq *cfs_rq; 9713 int i; 9714 9715 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 9716 if (!tg->cfs_rq) 9717 goto err; 9718 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 9719 if (!tg->se) 9720 goto err; 9721 9722 tg->shares = NICE_0_LOAD; 9723 9724 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9725 9726 for_each_possible_cpu(i) { 9727 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9728 GFP_KERNEL, cpu_to_node(i)); 9729 if (!cfs_rq) 9730 goto err; 9731 9732 se = kzalloc_node(sizeof(struct sched_entity), 9733 GFP_KERNEL, cpu_to_node(i)); 9734 if (!se) 9735 goto err_free_rq; 9736 9737 init_cfs_rq(cfs_rq); 9738 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9739 init_entity_runnable_average(se); 9740 } 9741 9742 return 1; 9743 9744 err_free_rq: 9745 kfree(cfs_rq); 9746 err: 9747 return 0; 9748 } 9749 9750 void online_fair_sched_group(struct task_group *tg) 9751 { 9752 struct sched_entity *se; 9753 struct rq *rq; 9754 int i; 9755 9756 for_each_possible_cpu(i) { 9757 rq = cpu_rq(i); 9758 se = tg->se[i]; 9759 9760 raw_spin_lock_irq(&rq->lock); 9761 update_rq_clock(rq); 9762 attach_entity_cfs_rq(se); 9763 sync_throttle(tg, i); 9764 raw_spin_unlock_irq(&rq->lock); 9765 } 9766 } 9767 9768 void unregister_fair_sched_group(struct task_group *tg) 9769 { 9770 unsigned long flags; 9771 struct rq *rq; 9772 int cpu; 9773 9774 for_each_possible_cpu(cpu) { 9775 if (tg->se[cpu]) 9776 remove_entity_load_avg(tg->se[cpu]); 9777 9778 /* 9779 * Only empty task groups can be destroyed; so we can speculatively 9780 * check on_list without danger of it being re-added. 9781 */ 9782 if (!tg->cfs_rq[cpu]->on_list) 9783 continue; 9784 9785 rq = cpu_rq(cpu); 9786 9787 raw_spin_lock_irqsave(&rq->lock, flags); 9788 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9789 raw_spin_unlock_irqrestore(&rq->lock, flags); 9790 } 9791 } 9792 9793 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9794 struct sched_entity *se, int cpu, 9795 struct sched_entity *parent) 9796 { 9797 struct rq *rq = cpu_rq(cpu); 9798 9799 cfs_rq->tg = tg; 9800 cfs_rq->rq = rq; 9801 init_cfs_rq_runtime(cfs_rq); 9802 9803 tg->cfs_rq[cpu] = cfs_rq; 9804 tg->se[cpu] = se; 9805 9806 /* se could be NULL for root_task_group */ 9807 if (!se) 9808 return; 9809 9810 if (!parent) { 9811 se->cfs_rq = &rq->cfs; 9812 se->depth = 0; 9813 } else { 9814 se->cfs_rq = parent->my_q; 9815 se->depth = parent->depth + 1; 9816 } 9817 9818 se->my_q = cfs_rq; 9819 /* guarantee group entities always have weight */ 9820 update_load_set(&se->load, NICE_0_LOAD); 9821 se->parent = parent; 9822 } 9823 9824 static DEFINE_MUTEX(shares_mutex); 9825 9826 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9827 { 9828 int i; 9829 9830 /* 9831 * We can't change the weight of the root cgroup. 9832 */ 9833 if (!tg->se[0]) 9834 return -EINVAL; 9835 9836 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9837 9838 mutex_lock(&shares_mutex); 9839 if (tg->shares == shares) 9840 goto done; 9841 9842 tg->shares = shares; 9843 for_each_possible_cpu(i) { 9844 struct rq *rq = cpu_rq(i); 9845 struct sched_entity *se = tg->se[i]; 9846 struct rq_flags rf; 9847 9848 /* Propagate contribution to hierarchy */ 9849 rq_lock_irqsave(rq, &rf); 9850 update_rq_clock(rq); 9851 for_each_sched_entity(se) { 9852 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9853 update_cfs_group(se); 9854 } 9855 rq_unlock_irqrestore(rq, &rf); 9856 } 9857 9858 done: 9859 mutex_unlock(&shares_mutex); 9860 return 0; 9861 } 9862 #else /* CONFIG_FAIR_GROUP_SCHED */ 9863 9864 void free_fair_sched_group(struct task_group *tg) { } 9865 9866 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9867 { 9868 return 1; 9869 } 9870 9871 void online_fair_sched_group(struct task_group *tg) { } 9872 9873 void unregister_fair_sched_group(struct task_group *tg) { } 9874 9875 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9876 9877 9878 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 9879 { 9880 struct sched_entity *se = &task->se; 9881 unsigned int rr_interval = 0; 9882 9883 /* 9884 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 9885 * idle runqueue: 9886 */ 9887 if (rq->cfs.load.weight) 9888 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 9889 9890 return rr_interval; 9891 } 9892 9893 /* 9894 * All the scheduling class methods: 9895 */ 9896 const struct sched_class fair_sched_class = { 9897 .next = &idle_sched_class, 9898 .enqueue_task = enqueue_task_fair, 9899 .dequeue_task = dequeue_task_fair, 9900 .yield_task = yield_task_fair, 9901 .yield_to_task = yield_to_task_fair, 9902 9903 .check_preempt_curr = check_preempt_wakeup, 9904 9905 .pick_next_task = pick_next_task_fair, 9906 .put_prev_task = put_prev_task_fair, 9907 9908 #ifdef CONFIG_SMP 9909 .select_task_rq = select_task_rq_fair, 9910 .migrate_task_rq = migrate_task_rq_fair, 9911 9912 .rq_online = rq_online_fair, 9913 .rq_offline = rq_offline_fair, 9914 9915 .task_dead = task_dead_fair, 9916 .set_cpus_allowed = set_cpus_allowed_common, 9917 #endif 9918 9919 .set_curr_task = set_curr_task_fair, 9920 .task_tick = task_tick_fair, 9921 .task_fork = task_fork_fair, 9922 9923 .prio_changed = prio_changed_fair, 9924 .switched_from = switched_from_fair, 9925 .switched_to = switched_to_fair, 9926 9927 .get_rr_interval = get_rr_interval_fair, 9928 9929 .update_curr = update_curr_fair, 9930 9931 #ifdef CONFIG_FAIR_GROUP_SCHED 9932 .task_change_group = task_change_group_fair, 9933 #endif 9934 }; 9935 9936 #ifdef CONFIG_SCHED_DEBUG 9937 void print_cfs_stats(struct seq_file *m, int cpu) 9938 { 9939 struct cfs_rq *cfs_rq, *pos; 9940 9941 rcu_read_lock(); 9942 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 9943 print_cfs_rq(m, cpu, cfs_rq); 9944 rcu_read_unlock(); 9945 } 9946 9947 #ifdef CONFIG_NUMA_BALANCING 9948 void show_numa_stats(struct task_struct *p, struct seq_file *m) 9949 { 9950 int node; 9951 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 9952 9953 for_each_online_node(node) { 9954 if (p->numa_faults) { 9955 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 9956 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 9957 } 9958 if (p->numa_group) { 9959 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 9960 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 9961 } 9962 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 9963 } 9964 } 9965 #endif /* CONFIG_NUMA_BALANCING */ 9966 #endif /* CONFIG_SCHED_DEBUG */ 9967 9968 __init void init_sched_fair_class(void) 9969 { 9970 #ifdef CONFIG_SMP 9971 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9972 9973 #ifdef CONFIG_NO_HZ_COMMON 9974 nohz.next_balance = jiffies; 9975 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 9976 #endif 9977 #endif /* SMP */ 9978 9979 } 9980