1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 #ifdef CONFIG_SMP 92 /* 93 * For asym packing, by default the lower numbered CPU has higher priority. 94 */ 95 int __weak arch_asym_cpu_priority(int cpu) 96 { 97 return -cpu; 98 } 99 100 /* 101 * The margin used when comparing utilization with CPU capacity. 102 * 103 * (default: ~20%) 104 */ 105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 106 107 /* 108 * The margin used when comparing CPU capacities. 109 * is 'cap1' noticeably greater than 'cap2' 110 * 111 * (default: ~5%) 112 */ 113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 114 #endif 115 116 #ifdef CONFIG_CFS_BANDWIDTH 117 /* 118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 119 * each time a cfs_rq requests quota. 120 * 121 * Note: in the case that the slice exceeds the runtime remaining (either due 122 * to consumption or the quota being specified to be smaller than the slice) 123 * we will always only issue the remaining available time. 124 * 125 * (default: 5 msec, units: microseconds) 126 */ 127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 128 #endif 129 130 #ifdef CONFIG_NUMA_BALANCING 131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 133 #endif 134 135 #ifdef CONFIG_SYSCTL 136 static const struct ctl_table sched_fair_sysctls[] = { 137 #ifdef CONFIG_CFS_BANDWIDTH 138 { 139 .procname = "sched_cfs_bandwidth_slice_us", 140 .data = &sysctl_sched_cfs_bandwidth_slice, 141 .maxlen = sizeof(unsigned int), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_minmax, 144 .extra1 = SYSCTL_ONE, 145 }, 146 #endif 147 #ifdef CONFIG_NUMA_BALANCING 148 { 149 .procname = "numa_balancing_promote_rate_limit_MBps", 150 .data = &sysctl_numa_balancing_promote_rate_limit, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec_minmax, 154 .extra1 = SYSCTL_ZERO, 155 }, 156 #endif /* CONFIG_NUMA_BALANCING */ 157 }; 158 159 static int __init sched_fair_sysctl_init(void) 160 { 161 register_sysctl_init("kernel", sched_fair_sysctls); 162 return 0; 163 } 164 late_initcall(sched_fair_sysctl_init); 165 #endif 166 167 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 168 { 169 lw->weight += inc; 170 lw->inv_weight = 0; 171 } 172 173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 174 { 175 lw->weight -= dec; 176 lw->inv_weight = 0; 177 } 178 179 static inline void update_load_set(struct load_weight *lw, unsigned long w) 180 { 181 lw->weight = w; 182 lw->inv_weight = 0; 183 } 184 185 /* 186 * Increase the granularity value when there are more CPUs, 187 * because with more CPUs the 'effective latency' as visible 188 * to users decreases. But the relationship is not linear, 189 * so pick a second-best guess by going with the log2 of the 190 * number of CPUs. 191 * 192 * This idea comes from the SD scheduler of Con Kolivas: 193 */ 194 static unsigned int get_update_sysctl_factor(void) 195 { 196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 197 unsigned int factor; 198 199 switch (sysctl_sched_tunable_scaling) { 200 case SCHED_TUNABLESCALING_NONE: 201 factor = 1; 202 break; 203 case SCHED_TUNABLESCALING_LINEAR: 204 factor = cpus; 205 break; 206 case SCHED_TUNABLESCALING_LOG: 207 default: 208 factor = 1 + ilog2(cpus); 209 break; 210 } 211 212 return factor; 213 } 214 215 static void update_sysctl(void) 216 { 217 unsigned int factor = get_update_sysctl_factor(); 218 219 #define SET_SYSCTL(name) \ 220 (sysctl_##name = (factor) * normalized_sysctl_##name) 221 SET_SYSCTL(sched_base_slice); 222 #undef SET_SYSCTL 223 } 224 225 void __init sched_init_granularity(void) 226 { 227 update_sysctl(); 228 } 229 230 #define WMULT_CONST (~0U) 231 #define WMULT_SHIFT 32 232 233 static void __update_inv_weight(struct load_weight *lw) 234 { 235 unsigned long w; 236 237 if (likely(lw->inv_weight)) 238 return; 239 240 w = scale_load_down(lw->weight); 241 242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 243 lw->inv_weight = 1; 244 else if (unlikely(!w)) 245 lw->inv_weight = WMULT_CONST; 246 else 247 lw->inv_weight = WMULT_CONST / w; 248 } 249 250 /* 251 * delta_exec * weight / lw.weight 252 * OR 253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 254 * 255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 256 * we're guaranteed shift stays positive because inv_weight is guaranteed to 257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 258 * 259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 260 * weight/lw.weight <= 1, and therefore our shift will also be positive. 261 */ 262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 263 { 264 u64 fact = scale_load_down(weight); 265 u32 fact_hi = (u32)(fact >> 32); 266 int shift = WMULT_SHIFT; 267 int fs; 268 269 __update_inv_weight(lw); 270 271 if (unlikely(fact_hi)) { 272 fs = fls(fact_hi); 273 shift -= fs; 274 fact >>= fs; 275 } 276 277 fact = mul_u32_u32(fact, lw->inv_weight); 278 279 fact_hi = (u32)(fact >> 32); 280 if (fact_hi) { 281 fs = fls(fact_hi); 282 shift -= fs; 283 fact >>= fs; 284 } 285 286 return mul_u64_u32_shr(delta_exec, fact, shift); 287 } 288 289 /* 290 * delta /= w 291 */ 292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 293 { 294 if (unlikely(se->load.weight != NICE_0_LOAD)) 295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 296 297 return delta; 298 } 299 300 const struct sched_class fair_sched_class; 301 302 /************************************************************** 303 * CFS operations on generic schedulable entities: 304 */ 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 308 /* Walk up scheduling entities hierarchy */ 309 #define for_each_sched_entity(se) \ 310 for (; se; se = se->parent) 311 312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 struct rq *rq = rq_of(cfs_rq); 315 int cpu = cpu_of(rq); 316 317 if (cfs_rq->on_list) 318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 319 320 cfs_rq->on_list = 1; 321 322 /* 323 * Ensure we either appear before our parent (if already 324 * enqueued) or force our parent to appear after us when it is 325 * enqueued. The fact that we always enqueue bottom-up 326 * reduces this to two cases and a special case for the root 327 * cfs_rq. Furthermore, it also means that we will always reset 328 * tmp_alone_branch either when the branch is connected 329 * to a tree or when we reach the top of the tree 330 */ 331 if (cfs_rq->tg->parent && 332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 333 /* 334 * If parent is already on the list, we add the child 335 * just before. Thanks to circular linked property of 336 * the list, this means to put the child at the tail 337 * of the list that starts by parent. 338 */ 339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 341 /* 342 * The branch is now connected to its tree so we can 343 * reset tmp_alone_branch to the beginning of the 344 * list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 if (!cfs_rq->tg->parent) { 351 /* 352 * cfs rq without parent should be put 353 * at the tail of the list. 354 */ 355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 356 &rq->leaf_cfs_rq_list); 357 /* 358 * We have reach the top of a tree so we can reset 359 * tmp_alone_branch to the beginning of the list. 360 */ 361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 362 return true; 363 } 364 365 /* 366 * The parent has not already been added so we want to 367 * make sure that it will be put after us. 368 * tmp_alone_branch points to the begin of the branch 369 * where we will add parent. 370 */ 371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 372 /* 373 * update tmp_alone_branch to points to the new begin 374 * of the branch 375 */ 376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 377 return false; 378 } 379 380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 381 { 382 if (cfs_rq->on_list) { 383 struct rq *rq = rq_of(cfs_rq); 384 385 /* 386 * With cfs_rq being unthrottled/throttled during an enqueue, 387 * it can happen the tmp_alone_branch points to the leaf that 388 * we finally want to delete. In this case, tmp_alone_branch moves 389 * to the prev element but it will point to rq->leaf_cfs_rq_list 390 * at the end of the enqueue. 391 */ 392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 394 395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 396 cfs_rq->on_list = 0; 397 } 398 } 399 400 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 401 { 402 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 403 } 404 405 /* Iterate through all leaf cfs_rq's on a runqueue */ 406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 408 leaf_cfs_rq_list) 409 410 /* Do the two (enqueued) entities belong to the same group ? */ 411 static inline struct cfs_rq * 412 is_same_group(struct sched_entity *se, struct sched_entity *pse) 413 { 414 if (se->cfs_rq == pse->cfs_rq) 415 return se->cfs_rq; 416 417 return NULL; 418 } 419 420 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 421 { 422 return se->parent; 423 } 424 425 static void 426 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 427 { 428 int se_depth, pse_depth; 429 430 /* 431 * preemption test can be made between sibling entities who are in the 432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 433 * both tasks until we find their ancestors who are siblings of common 434 * parent. 435 */ 436 437 /* First walk up until both entities are at same depth */ 438 se_depth = (*se)->depth; 439 pse_depth = (*pse)->depth; 440 441 while (se_depth > pse_depth) { 442 se_depth--; 443 *se = parent_entity(*se); 444 } 445 446 while (pse_depth > se_depth) { 447 pse_depth--; 448 *pse = parent_entity(*pse); 449 } 450 451 while (!is_same_group(*se, *pse)) { 452 *se = parent_entity(*se); 453 *pse = parent_entity(*pse); 454 } 455 } 456 457 static int tg_is_idle(struct task_group *tg) 458 { 459 return tg->idle > 0; 460 } 461 462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 463 { 464 return cfs_rq->idle > 0; 465 } 466 467 static int se_is_idle(struct sched_entity *se) 468 { 469 if (entity_is_task(se)) 470 return task_has_idle_policy(task_of(se)); 471 return cfs_rq_is_idle(group_cfs_rq(se)); 472 } 473 474 #else /* !CONFIG_FAIR_GROUP_SCHED */ 475 476 #define for_each_sched_entity(se) \ 477 for (; se; se = NULL) 478 479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 480 { 481 return true; 482 } 483 484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 } 487 488 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 489 { 490 } 491 492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 494 495 static inline struct sched_entity *parent_entity(struct sched_entity *se) 496 { 497 return NULL; 498 } 499 500 static inline void 501 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 502 { 503 } 504 505 static inline int tg_is_idle(struct task_group *tg) 506 { 507 return 0; 508 } 509 510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 511 { 512 return 0; 513 } 514 515 static int se_is_idle(struct sched_entity *se) 516 { 517 return task_has_idle_policy(task_of(se)); 518 } 519 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 static __always_inline 523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 524 525 /************************************************************** 526 * Scheduling class tree data structure manipulation methods: 527 */ 528 529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - max_vruntime); 532 if (delta > 0) 533 max_vruntime = vruntime; 534 535 return max_vruntime; 536 } 537 538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 539 { 540 s64 delta = (s64)(vruntime - min_vruntime); 541 if (delta < 0) 542 min_vruntime = vruntime; 543 544 return min_vruntime; 545 } 546 547 static inline bool entity_before(const struct sched_entity *a, 548 const struct sched_entity *b) 549 { 550 /* 551 * Tiebreak on vruntime seems unnecessary since it can 552 * hardly happen. 553 */ 554 return (s64)(a->deadline - b->deadline) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-contiguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplication could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceiling */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 vlag, limit; 698 699 WARN_ON_ONCE(!se->on_rq); 700 701 vlag = avg_vruntime(cfs_rq) - se->vruntime; 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 704 se->vlag = clamp(vlag, -limit, limit); 705 } 706 707 /* 708 * Entity is eligible once it received less service than it ought to have, 709 * eg. lag >= 0. 710 * 711 * lag_i = S - s_i = w_i*(V - v_i) 712 * 713 * lag_i >= 0 -> V >= v_i 714 * 715 * \Sum (v_i - v)*w_i 716 * V = ------------------ + v 717 * \Sum w_i 718 * 719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 720 * 721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 722 * to the loss in precision caused by the division. 723 */ 724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 s64 avg = cfs_rq->avg_vruntime; 728 long load = cfs_rq->avg_load; 729 730 if (curr && curr->on_rq) { 731 unsigned long weight = scale_load_down(curr->load.weight); 732 733 avg += entity_key(cfs_rq, curr) * weight; 734 load += weight; 735 } 736 737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 738 } 739 740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 741 { 742 return vruntime_eligible(cfs_rq, se->vruntime); 743 } 744 745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 746 { 747 u64 min_vruntime = cfs_rq->min_vruntime; 748 /* 749 * open coded max_vruntime() to allow updating avg_vruntime 750 */ 751 s64 delta = (s64)(vruntime - min_vruntime); 752 if (delta > 0) { 753 avg_vruntime_update(cfs_rq, delta); 754 min_vruntime = vruntime; 755 } 756 return min_vruntime; 757 } 758 759 static void update_min_vruntime(struct cfs_rq *cfs_rq) 760 { 761 struct sched_entity *se = __pick_root_entity(cfs_rq); 762 struct sched_entity *curr = cfs_rq->curr; 763 u64 vruntime = cfs_rq->min_vruntime; 764 765 if (curr) { 766 if (curr->on_rq) 767 vruntime = curr->vruntime; 768 else 769 curr = NULL; 770 } 771 772 if (se) { 773 if (!curr) 774 vruntime = se->min_vruntime; 775 else 776 vruntime = min_vruntime(vruntime, se->min_vruntime); 777 } 778 779 /* ensure we never gain time by being placed backwards. */ 780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 781 } 782 783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *root = __pick_root_entity(cfs_rq); 786 struct sched_entity *curr = cfs_rq->curr; 787 u64 min_slice = ~0ULL; 788 789 if (curr && curr->on_rq) 790 min_slice = curr->slice; 791 792 if (root) 793 min_slice = min(min_slice, root->min_slice); 794 795 return min_slice; 796 } 797 798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 799 { 800 return entity_before(__node_2_se(a), __node_2_se(b)); 801 } 802 803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 804 805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 806 { 807 if (node) { 808 struct sched_entity *rse = __node_2_se(node); 809 if (vruntime_gt(min_vruntime, se, rse)) 810 se->min_vruntime = rse->min_vruntime; 811 } 812 } 813 814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 815 { 816 if (node) { 817 struct sched_entity *rse = __node_2_se(node); 818 if (rse->min_slice < se->min_slice) 819 se->min_slice = rse->min_slice; 820 } 821 } 822 823 /* 824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 825 */ 826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 827 { 828 u64 old_min_vruntime = se->min_vruntime; 829 u64 old_min_slice = se->min_slice; 830 struct rb_node *node = &se->run_node; 831 832 se->min_vruntime = se->vruntime; 833 __min_vruntime_update(se, node->rb_right); 834 __min_vruntime_update(se, node->rb_left); 835 836 se->min_slice = se->slice; 837 __min_slice_update(se, node->rb_right); 838 __min_slice_update(se, node->rb_left); 839 840 return se->min_vruntime == old_min_vruntime && 841 se->min_slice == old_min_slice; 842 } 843 844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 845 run_node, min_vruntime, min_vruntime_update); 846 847 /* 848 * Enqueue an entity into the rb-tree: 849 */ 850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 851 { 852 avg_vruntime_add(cfs_rq, se); 853 se->min_vruntime = se->vruntime; 854 se->min_slice = se->slice; 855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 856 __entity_less, &min_vruntime_cb); 857 } 858 859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 860 { 861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 862 &min_vruntime_cb); 863 avg_vruntime_sub(cfs_rq, se); 864 } 865 866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 867 { 868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 869 870 if (!root) 871 return NULL; 872 873 return __node_2_se(root); 874 } 875 876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 877 { 878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 879 880 if (!left) 881 return NULL; 882 883 return __node_2_se(left); 884 } 885 886 /* 887 * HACK, stash a copy of deadline at the point of pick in vlag, 888 * which isn't used until dequeue. 889 */ 890 static inline void set_protect_slice(struct sched_entity *se) 891 { 892 se->vlag = se->deadline; 893 } 894 895 static inline bool protect_slice(struct sched_entity *se) 896 { 897 return se->vlag == se->deadline; 898 } 899 900 static inline void cancel_protect_slice(struct sched_entity *se) 901 { 902 if (protect_slice(se)) 903 se->vlag = se->deadline + 1; 904 } 905 906 /* 907 * Earliest Eligible Virtual Deadline First 908 * 909 * In order to provide latency guarantees for different request sizes 910 * EEVDF selects the best runnable task from two criteria: 911 * 912 * 1) the task must be eligible (must be owed service) 913 * 914 * 2) from those tasks that meet 1), we select the one 915 * with the earliest virtual deadline. 916 * 917 * We can do this in O(log n) time due to an augmented RB-tree. The 918 * tree keeps the entries sorted on deadline, but also functions as a 919 * heap based on the vruntime by keeping: 920 * 921 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 922 * 923 * Which allows tree pruning through eligibility. 924 */ 925 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 926 { 927 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 928 struct sched_entity *se = __pick_first_entity(cfs_rq); 929 struct sched_entity *curr = cfs_rq->curr; 930 struct sched_entity *best = NULL; 931 932 /* 933 * We can safely skip eligibility check if there is only one entity 934 * in this cfs_rq, saving some cycles. 935 */ 936 if (cfs_rq->nr_queued == 1) 937 return curr && curr->on_rq ? curr : se; 938 939 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 940 curr = NULL; 941 942 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr)) 943 return curr; 944 945 /* Pick the leftmost entity if it's eligible */ 946 if (se && entity_eligible(cfs_rq, se)) { 947 best = se; 948 goto found; 949 } 950 951 /* Heap search for the EEVD entity */ 952 while (node) { 953 struct rb_node *left = node->rb_left; 954 955 /* 956 * Eligible entities in left subtree are always better 957 * choices, since they have earlier deadlines. 958 */ 959 if (left && vruntime_eligible(cfs_rq, 960 __node_2_se(left)->min_vruntime)) { 961 node = left; 962 continue; 963 } 964 965 se = __node_2_se(node); 966 967 /* 968 * The left subtree either is empty or has no eligible 969 * entity, so check the current node since it is the one 970 * with earliest deadline that might be eligible. 971 */ 972 if (entity_eligible(cfs_rq, se)) { 973 best = se; 974 break; 975 } 976 977 node = node->rb_right; 978 } 979 found: 980 if (!best || (curr && entity_before(curr, best))) 981 best = curr; 982 983 return best; 984 } 985 986 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 987 { 988 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 989 990 if (!last) 991 return NULL; 992 993 return __node_2_se(last); 994 } 995 996 /************************************************************** 997 * Scheduling class statistics methods: 998 */ 999 #ifdef CONFIG_SMP 1000 int sched_update_scaling(void) 1001 { 1002 unsigned int factor = get_update_sysctl_factor(); 1003 1004 #define WRT_SYSCTL(name) \ 1005 (normalized_sysctl_##name = sysctl_##name / (factor)) 1006 WRT_SYSCTL(sched_base_slice); 1007 #undef WRT_SYSCTL 1008 1009 return 0; 1010 } 1011 #endif 1012 1013 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1014 1015 /* 1016 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1017 * this is probably good enough. 1018 */ 1019 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1020 { 1021 if ((s64)(se->vruntime - se->deadline) < 0) 1022 return false; 1023 1024 /* 1025 * For EEVDF the virtual time slope is determined by w_i (iow. 1026 * nice) while the request time r_i is determined by 1027 * sysctl_sched_base_slice. 1028 */ 1029 if (!se->custom_slice) 1030 se->slice = sysctl_sched_base_slice; 1031 1032 /* 1033 * EEVDF: vd_i = ve_i + r_i / w_i 1034 */ 1035 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1036 1037 /* 1038 * The task has consumed its request, reschedule. 1039 */ 1040 return true; 1041 } 1042 1043 #include "pelt.h" 1044 #ifdef CONFIG_SMP 1045 1046 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1047 static unsigned long task_h_load(struct task_struct *p); 1048 static unsigned long capacity_of(int cpu); 1049 1050 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1051 void init_entity_runnable_average(struct sched_entity *se) 1052 { 1053 struct sched_avg *sa = &se->avg; 1054 1055 memset(sa, 0, sizeof(*sa)); 1056 1057 /* 1058 * Tasks are initialized with full load to be seen as heavy tasks until 1059 * they get a chance to stabilize to their real load level. 1060 * Group entities are initialized with zero load to reflect the fact that 1061 * nothing has been attached to the task group yet. 1062 */ 1063 if (entity_is_task(se)) 1064 sa->load_avg = scale_load_down(se->load.weight); 1065 1066 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1067 } 1068 1069 /* 1070 * With new tasks being created, their initial util_avgs are extrapolated 1071 * based on the cfs_rq's current util_avg: 1072 * 1073 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1074 * * se_weight(se) 1075 * 1076 * However, in many cases, the above util_avg does not give a desired 1077 * value. Moreover, the sum of the util_avgs may be divergent, such 1078 * as when the series is a harmonic series. 1079 * 1080 * To solve this problem, we also cap the util_avg of successive tasks to 1081 * only 1/2 of the left utilization budget: 1082 * 1083 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1084 * 1085 * where n denotes the nth task and cpu_scale the CPU capacity. 1086 * 1087 * For example, for a CPU with 1024 of capacity, a simplest series from 1088 * the beginning would be like: 1089 * 1090 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1091 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1092 * 1093 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1094 * if util_avg > util_avg_cap. 1095 */ 1096 void post_init_entity_util_avg(struct task_struct *p) 1097 { 1098 struct sched_entity *se = &p->se; 1099 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1100 struct sched_avg *sa = &se->avg; 1101 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1102 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1103 1104 if (p->sched_class != &fair_sched_class) { 1105 /* 1106 * For !fair tasks do: 1107 * 1108 update_cfs_rq_load_avg(now, cfs_rq); 1109 attach_entity_load_avg(cfs_rq, se); 1110 switched_from_fair(rq, p); 1111 * 1112 * such that the next switched_to_fair() has the 1113 * expected state. 1114 */ 1115 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1116 return; 1117 } 1118 1119 if (cap > 0) { 1120 if (cfs_rq->avg.util_avg != 0) { 1121 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1122 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1123 1124 if (sa->util_avg > cap) 1125 sa->util_avg = cap; 1126 } else { 1127 sa->util_avg = cap; 1128 } 1129 } 1130 1131 sa->runnable_avg = sa->util_avg; 1132 } 1133 1134 #else /* !CONFIG_SMP */ 1135 void init_entity_runnable_average(struct sched_entity *se) 1136 { 1137 } 1138 void post_init_entity_util_avg(struct task_struct *p) 1139 { 1140 } 1141 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1142 { 1143 } 1144 #endif /* CONFIG_SMP */ 1145 1146 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1147 { 1148 u64 now = rq_clock_task(rq); 1149 s64 delta_exec; 1150 1151 delta_exec = now - curr->exec_start; 1152 if (unlikely(delta_exec <= 0)) 1153 return delta_exec; 1154 1155 curr->exec_start = now; 1156 curr->sum_exec_runtime += delta_exec; 1157 1158 if (schedstat_enabled()) { 1159 struct sched_statistics *stats; 1160 1161 stats = __schedstats_from_se(curr); 1162 __schedstat_set(stats->exec_max, 1163 max(delta_exec, stats->exec_max)); 1164 } 1165 1166 return delta_exec; 1167 } 1168 1169 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1170 { 1171 trace_sched_stat_runtime(p, delta_exec); 1172 account_group_exec_runtime(p, delta_exec); 1173 cgroup_account_cputime(p, delta_exec); 1174 } 1175 1176 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1177 { 1178 if (!sched_feat(PREEMPT_SHORT)) 1179 return false; 1180 1181 if (curr->vlag == curr->deadline) 1182 return false; 1183 1184 return !entity_eligible(cfs_rq, curr); 1185 } 1186 1187 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1188 struct sched_entity *pse, struct sched_entity *se) 1189 { 1190 if (!sched_feat(PREEMPT_SHORT)) 1191 return false; 1192 1193 if (pse->slice >= se->slice) 1194 return false; 1195 1196 if (!entity_eligible(cfs_rq, pse)) 1197 return false; 1198 1199 if (entity_before(pse, se)) 1200 return true; 1201 1202 if (!entity_eligible(cfs_rq, se)) 1203 return true; 1204 1205 return false; 1206 } 1207 1208 /* 1209 * Used by other classes to account runtime. 1210 */ 1211 s64 update_curr_common(struct rq *rq) 1212 { 1213 struct task_struct *donor = rq->donor; 1214 s64 delta_exec; 1215 1216 delta_exec = update_curr_se(rq, &donor->se); 1217 if (likely(delta_exec > 0)) 1218 update_curr_task(donor, delta_exec); 1219 1220 return delta_exec; 1221 } 1222 1223 /* 1224 * Update the current task's runtime statistics. 1225 */ 1226 static void update_curr(struct cfs_rq *cfs_rq) 1227 { 1228 struct sched_entity *curr = cfs_rq->curr; 1229 struct rq *rq = rq_of(cfs_rq); 1230 s64 delta_exec; 1231 bool resched; 1232 1233 if (unlikely(!curr)) 1234 return; 1235 1236 delta_exec = update_curr_se(rq, curr); 1237 if (unlikely(delta_exec <= 0)) 1238 return; 1239 1240 curr->vruntime += calc_delta_fair(delta_exec, curr); 1241 resched = update_deadline(cfs_rq, curr); 1242 update_min_vruntime(cfs_rq); 1243 1244 if (entity_is_task(curr)) { 1245 struct task_struct *p = task_of(curr); 1246 1247 update_curr_task(p, delta_exec); 1248 1249 /* 1250 * If the fair_server is active, we need to account for the 1251 * fair_server time whether or not the task is running on 1252 * behalf of fair_server or not: 1253 * - If the task is running on behalf of fair_server, we need 1254 * to limit its time based on the assigned runtime. 1255 * - Fair task that runs outside of fair_server should account 1256 * against fair_server such that it can account for this time 1257 * and possibly avoid running this period. 1258 */ 1259 if (dl_server_active(&rq->fair_server)) 1260 dl_server_update(&rq->fair_server, delta_exec); 1261 } 1262 1263 account_cfs_rq_runtime(cfs_rq, delta_exec); 1264 1265 if (cfs_rq->nr_queued == 1) 1266 return; 1267 1268 if (resched || did_preempt_short(cfs_rq, curr)) { 1269 resched_curr_lazy(rq); 1270 clear_buddies(cfs_rq, curr); 1271 } 1272 } 1273 1274 static void update_curr_fair(struct rq *rq) 1275 { 1276 update_curr(cfs_rq_of(&rq->donor->se)); 1277 } 1278 1279 static inline void 1280 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1281 { 1282 struct sched_statistics *stats; 1283 struct task_struct *p = NULL; 1284 1285 if (!schedstat_enabled()) 1286 return; 1287 1288 stats = __schedstats_from_se(se); 1289 1290 if (entity_is_task(se)) 1291 p = task_of(se); 1292 1293 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1294 } 1295 1296 static inline void 1297 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1298 { 1299 struct sched_statistics *stats; 1300 struct task_struct *p = NULL; 1301 1302 if (!schedstat_enabled()) 1303 return; 1304 1305 stats = __schedstats_from_se(se); 1306 1307 /* 1308 * When the sched_schedstat changes from 0 to 1, some sched se 1309 * maybe already in the runqueue, the se->statistics.wait_start 1310 * will be 0.So it will let the delta wrong. We need to avoid this 1311 * scenario. 1312 */ 1313 if (unlikely(!schedstat_val(stats->wait_start))) 1314 return; 1315 1316 if (entity_is_task(se)) 1317 p = task_of(se); 1318 1319 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1320 } 1321 1322 static inline void 1323 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1324 { 1325 struct sched_statistics *stats; 1326 struct task_struct *tsk = NULL; 1327 1328 if (!schedstat_enabled()) 1329 return; 1330 1331 stats = __schedstats_from_se(se); 1332 1333 if (entity_is_task(se)) 1334 tsk = task_of(se); 1335 1336 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1337 } 1338 1339 /* 1340 * Task is being enqueued - update stats: 1341 */ 1342 static inline void 1343 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1344 { 1345 if (!schedstat_enabled()) 1346 return; 1347 1348 /* 1349 * Are we enqueueing a waiting task? (for current tasks 1350 * a dequeue/enqueue event is a NOP) 1351 */ 1352 if (se != cfs_rq->curr) 1353 update_stats_wait_start_fair(cfs_rq, se); 1354 1355 if (flags & ENQUEUE_WAKEUP) 1356 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1357 } 1358 1359 static inline void 1360 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1361 { 1362 1363 if (!schedstat_enabled()) 1364 return; 1365 1366 /* 1367 * Mark the end of the wait period if dequeueing a 1368 * waiting task: 1369 */ 1370 if (se != cfs_rq->curr) 1371 update_stats_wait_end_fair(cfs_rq, se); 1372 1373 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1374 struct task_struct *tsk = task_of(se); 1375 unsigned int state; 1376 1377 /* XXX racy against TTWU */ 1378 state = READ_ONCE(tsk->__state); 1379 if (state & TASK_INTERRUPTIBLE) 1380 __schedstat_set(tsk->stats.sleep_start, 1381 rq_clock(rq_of(cfs_rq))); 1382 if (state & TASK_UNINTERRUPTIBLE) 1383 __schedstat_set(tsk->stats.block_start, 1384 rq_clock(rq_of(cfs_rq))); 1385 } 1386 } 1387 1388 /* 1389 * We are picking a new current task - update its stats: 1390 */ 1391 static inline void 1392 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1393 { 1394 /* 1395 * We are starting a new run period: 1396 */ 1397 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1398 } 1399 1400 /************************************************** 1401 * Scheduling class queueing methods: 1402 */ 1403 1404 static inline bool is_core_idle(int cpu) 1405 { 1406 #ifdef CONFIG_SCHED_SMT 1407 int sibling; 1408 1409 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1410 if (cpu == sibling) 1411 continue; 1412 1413 if (!idle_cpu(sibling)) 1414 return false; 1415 } 1416 #endif 1417 1418 return true; 1419 } 1420 1421 #ifdef CONFIG_NUMA 1422 #define NUMA_IMBALANCE_MIN 2 1423 1424 static inline long 1425 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1426 { 1427 /* 1428 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1429 * threshold. Above this threshold, individual tasks may be contending 1430 * for both memory bandwidth and any shared HT resources. This is an 1431 * approximation as the number of running tasks may not be related to 1432 * the number of busy CPUs due to sched_setaffinity. 1433 */ 1434 if (dst_running > imb_numa_nr) 1435 return imbalance; 1436 1437 /* 1438 * Allow a small imbalance based on a simple pair of communicating 1439 * tasks that remain local when the destination is lightly loaded. 1440 */ 1441 if (imbalance <= NUMA_IMBALANCE_MIN) 1442 return 0; 1443 1444 return imbalance; 1445 } 1446 #endif /* CONFIG_NUMA */ 1447 1448 #ifdef CONFIG_NUMA_BALANCING 1449 /* 1450 * Approximate time to scan a full NUMA task in ms. The task scan period is 1451 * calculated based on the tasks virtual memory size and 1452 * numa_balancing_scan_size. 1453 */ 1454 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1455 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1456 1457 /* Portion of address space to scan in MB */ 1458 unsigned int sysctl_numa_balancing_scan_size = 256; 1459 1460 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1461 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1462 1463 /* The page with hint page fault latency < threshold in ms is considered hot */ 1464 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1465 1466 struct numa_group { 1467 refcount_t refcount; 1468 1469 spinlock_t lock; /* nr_tasks, tasks */ 1470 int nr_tasks; 1471 pid_t gid; 1472 int active_nodes; 1473 1474 struct rcu_head rcu; 1475 unsigned long total_faults; 1476 unsigned long max_faults_cpu; 1477 /* 1478 * faults[] array is split into two regions: faults_mem and faults_cpu. 1479 * 1480 * Faults_cpu is used to decide whether memory should move 1481 * towards the CPU. As a consequence, these stats are weighted 1482 * more by CPU use than by memory faults. 1483 */ 1484 unsigned long faults[]; 1485 }; 1486 1487 /* 1488 * For functions that can be called in multiple contexts that permit reading 1489 * ->numa_group (see struct task_struct for locking rules). 1490 */ 1491 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1492 { 1493 return rcu_dereference_check(p->numa_group, p == current || 1494 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1495 } 1496 1497 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1498 { 1499 return rcu_dereference_protected(p->numa_group, p == current); 1500 } 1501 1502 static inline unsigned long group_faults_priv(struct numa_group *ng); 1503 static inline unsigned long group_faults_shared(struct numa_group *ng); 1504 1505 static unsigned int task_nr_scan_windows(struct task_struct *p) 1506 { 1507 unsigned long rss = 0; 1508 unsigned long nr_scan_pages; 1509 1510 /* 1511 * Calculations based on RSS as non-present and empty pages are skipped 1512 * by the PTE scanner and NUMA hinting faults should be trapped based 1513 * on resident pages 1514 */ 1515 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1516 rss = get_mm_rss(p->mm); 1517 if (!rss) 1518 rss = nr_scan_pages; 1519 1520 rss = round_up(rss, nr_scan_pages); 1521 return rss / nr_scan_pages; 1522 } 1523 1524 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1525 #define MAX_SCAN_WINDOW 2560 1526 1527 static unsigned int task_scan_min(struct task_struct *p) 1528 { 1529 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1530 unsigned int scan, floor; 1531 unsigned int windows = 1; 1532 1533 if (scan_size < MAX_SCAN_WINDOW) 1534 windows = MAX_SCAN_WINDOW / scan_size; 1535 floor = 1000 / windows; 1536 1537 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1538 return max_t(unsigned int, floor, scan); 1539 } 1540 1541 static unsigned int task_scan_start(struct task_struct *p) 1542 { 1543 unsigned long smin = task_scan_min(p); 1544 unsigned long period = smin; 1545 struct numa_group *ng; 1546 1547 /* Scale the maximum scan period with the amount of shared memory. */ 1548 rcu_read_lock(); 1549 ng = rcu_dereference(p->numa_group); 1550 if (ng) { 1551 unsigned long shared = group_faults_shared(ng); 1552 unsigned long private = group_faults_priv(ng); 1553 1554 period *= refcount_read(&ng->refcount); 1555 period *= shared + 1; 1556 period /= private + shared + 1; 1557 } 1558 rcu_read_unlock(); 1559 1560 return max(smin, period); 1561 } 1562 1563 static unsigned int task_scan_max(struct task_struct *p) 1564 { 1565 unsigned long smin = task_scan_min(p); 1566 unsigned long smax; 1567 struct numa_group *ng; 1568 1569 /* Watch for min being lower than max due to floor calculations */ 1570 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1571 1572 /* Scale the maximum scan period with the amount of shared memory. */ 1573 ng = deref_curr_numa_group(p); 1574 if (ng) { 1575 unsigned long shared = group_faults_shared(ng); 1576 unsigned long private = group_faults_priv(ng); 1577 unsigned long period = smax; 1578 1579 period *= refcount_read(&ng->refcount); 1580 period *= shared + 1; 1581 period /= private + shared + 1; 1582 1583 smax = max(smax, period); 1584 } 1585 1586 return max(smin, smax); 1587 } 1588 1589 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1590 { 1591 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1592 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1593 } 1594 1595 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1596 { 1597 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1598 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1599 } 1600 1601 /* Shared or private faults. */ 1602 #define NR_NUMA_HINT_FAULT_TYPES 2 1603 1604 /* Memory and CPU locality */ 1605 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1606 1607 /* Averaged statistics, and temporary buffers. */ 1608 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1609 1610 pid_t task_numa_group_id(struct task_struct *p) 1611 { 1612 struct numa_group *ng; 1613 pid_t gid = 0; 1614 1615 rcu_read_lock(); 1616 ng = rcu_dereference(p->numa_group); 1617 if (ng) 1618 gid = ng->gid; 1619 rcu_read_unlock(); 1620 1621 return gid; 1622 } 1623 1624 /* 1625 * The averaged statistics, shared & private, memory & CPU, 1626 * occupy the first half of the array. The second half of the 1627 * array is for current counters, which are averaged into the 1628 * first set by task_numa_placement. 1629 */ 1630 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1631 { 1632 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1633 } 1634 1635 static inline unsigned long task_faults(struct task_struct *p, int nid) 1636 { 1637 if (!p->numa_faults) 1638 return 0; 1639 1640 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1641 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1642 } 1643 1644 static inline unsigned long group_faults(struct task_struct *p, int nid) 1645 { 1646 struct numa_group *ng = deref_task_numa_group(p); 1647 1648 if (!ng) 1649 return 0; 1650 1651 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1652 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1653 } 1654 1655 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1656 { 1657 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1658 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1659 } 1660 1661 static inline unsigned long group_faults_priv(struct numa_group *ng) 1662 { 1663 unsigned long faults = 0; 1664 int node; 1665 1666 for_each_online_node(node) { 1667 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1668 } 1669 1670 return faults; 1671 } 1672 1673 static inline unsigned long group_faults_shared(struct numa_group *ng) 1674 { 1675 unsigned long faults = 0; 1676 int node; 1677 1678 for_each_online_node(node) { 1679 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1680 } 1681 1682 return faults; 1683 } 1684 1685 /* 1686 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1687 * considered part of a numa group's pseudo-interleaving set. Migrations 1688 * between these nodes are slowed down, to allow things to settle down. 1689 */ 1690 #define ACTIVE_NODE_FRACTION 3 1691 1692 static bool numa_is_active_node(int nid, struct numa_group *ng) 1693 { 1694 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1695 } 1696 1697 /* Handle placement on systems where not all nodes are directly connected. */ 1698 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1699 int lim_dist, bool task) 1700 { 1701 unsigned long score = 0; 1702 int node, max_dist; 1703 1704 /* 1705 * All nodes are directly connected, and the same distance 1706 * from each other. No need for fancy placement algorithms. 1707 */ 1708 if (sched_numa_topology_type == NUMA_DIRECT) 1709 return 0; 1710 1711 /* sched_max_numa_distance may be changed in parallel. */ 1712 max_dist = READ_ONCE(sched_max_numa_distance); 1713 /* 1714 * This code is called for each node, introducing N^2 complexity, 1715 * which should be OK given the number of nodes rarely exceeds 8. 1716 */ 1717 for_each_online_node(node) { 1718 unsigned long faults; 1719 int dist = node_distance(nid, node); 1720 1721 /* 1722 * The furthest away nodes in the system are not interesting 1723 * for placement; nid was already counted. 1724 */ 1725 if (dist >= max_dist || node == nid) 1726 continue; 1727 1728 /* 1729 * On systems with a backplane NUMA topology, compare groups 1730 * of nodes, and move tasks towards the group with the most 1731 * memory accesses. When comparing two nodes at distance 1732 * "hoplimit", only nodes closer by than "hoplimit" are part 1733 * of each group. Skip other nodes. 1734 */ 1735 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1736 continue; 1737 1738 /* Add up the faults from nearby nodes. */ 1739 if (task) 1740 faults = task_faults(p, node); 1741 else 1742 faults = group_faults(p, node); 1743 1744 /* 1745 * On systems with a glueless mesh NUMA topology, there are 1746 * no fixed "groups of nodes". Instead, nodes that are not 1747 * directly connected bounce traffic through intermediate 1748 * nodes; a numa_group can occupy any set of nodes. 1749 * The further away a node is, the less the faults count. 1750 * This seems to result in good task placement. 1751 */ 1752 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1753 faults *= (max_dist - dist); 1754 faults /= (max_dist - LOCAL_DISTANCE); 1755 } 1756 1757 score += faults; 1758 } 1759 1760 return score; 1761 } 1762 1763 /* 1764 * These return the fraction of accesses done by a particular task, or 1765 * task group, on a particular numa node. The group weight is given a 1766 * larger multiplier, in order to group tasks together that are almost 1767 * evenly spread out between numa nodes. 1768 */ 1769 static inline unsigned long task_weight(struct task_struct *p, int nid, 1770 int dist) 1771 { 1772 unsigned long faults, total_faults; 1773 1774 if (!p->numa_faults) 1775 return 0; 1776 1777 total_faults = p->total_numa_faults; 1778 1779 if (!total_faults) 1780 return 0; 1781 1782 faults = task_faults(p, nid); 1783 faults += score_nearby_nodes(p, nid, dist, true); 1784 1785 return 1000 * faults / total_faults; 1786 } 1787 1788 static inline unsigned long group_weight(struct task_struct *p, int nid, 1789 int dist) 1790 { 1791 struct numa_group *ng = deref_task_numa_group(p); 1792 unsigned long faults, total_faults; 1793 1794 if (!ng) 1795 return 0; 1796 1797 total_faults = ng->total_faults; 1798 1799 if (!total_faults) 1800 return 0; 1801 1802 faults = group_faults(p, nid); 1803 faults += score_nearby_nodes(p, nid, dist, false); 1804 1805 return 1000 * faults / total_faults; 1806 } 1807 1808 /* 1809 * If memory tiering mode is enabled, cpupid of slow memory page is 1810 * used to record scan time instead of CPU and PID. When tiering mode 1811 * is disabled at run time, the scan time (in cpupid) will be 1812 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1813 * access out of array bound. 1814 */ 1815 static inline bool cpupid_valid(int cpupid) 1816 { 1817 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1818 } 1819 1820 /* 1821 * For memory tiering mode, if there are enough free pages (more than 1822 * enough watermark defined here) in fast memory node, to take full 1823 * advantage of fast memory capacity, all recently accessed slow 1824 * memory pages will be migrated to fast memory node without 1825 * considering hot threshold. 1826 */ 1827 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1828 { 1829 int z; 1830 unsigned long enough_wmark; 1831 1832 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1833 pgdat->node_present_pages >> 4); 1834 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1835 struct zone *zone = pgdat->node_zones + z; 1836 1837 if (!populated_zone(zone)) 1838 continue; 1839 1840 if (zone_watermark_ok(zone, 0, 1841 promo_wmark_pages(zone) + enough_wmark, 1842 ZONE_MOVABLE, 0)) 1843 return true; 1844 } 1845 return false; 1846 } 1847 1848 /* 1849 * For memory tiering mode, when page tables are scanned, the scan 1850 * time will be recorded in struct page in addition to make page 1851 * PROT_NONE for slow memory page. So when the page is accessed, in 1852 * hint page fault handler, the hint page fault latency is calculated 1853 * via, 1854 * 1855 * hint page fault latency = hint page fault time - scan time 1856 * 1857 * The smaller the hint page fault latency, the higher the possibility 1858 * for the page to be hot. 1859 */ 1860 static int numa_hint_fault_latency(struct folio *folio) 1861 { 1862 int last_time, time; 1863 1864 time = jiffies_to_msecs(jiffies); 1865 last_time = folio_xchg_access_time(folio, time); 1866 1867 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1868 } 1869 1870 /* 1871 * For memory tiering mode, too high promotion/demotion throughput may 1872 * hurt application latency. So we provide a mechanism to rate limit 1873 * the number of pages that are tried to be promoted. 1874 */ 1875 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1876 unsigned long rate_limit, int nr) 1877 { 1878 unsigned long nr_cand; 1879 unsigned int now, start; 1880 1881 now = jiffies_to_msecs(jiffies); 1882 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1883 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1884 start = pgdat->nbp_rl_start; 1885 if (now - start > MSEC_PER_SEC && 1886 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1887 pgdat->nbp_rl_nr_cand = nr_cand; 1888 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1889 return true; 1890 return false; 1891 } 1892 1893 #define NUMA_MIGRATION_ADJUST_STEPS 16 1894 1895 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1896 unsigned long rate_limit, 1897 unsigned int ref_th) 1898 { 1899 unsigned int now, start, th_period, unit_th, th; 1900 unsigned long nr_cand, ref_cand, diff_cand; 1901 1902 now = jiffies_to_msecs(jiffies); 1903 th_period = sysctl_numa_balancing_scan_period_max; 1904 start = pgdat->nbp_th_start; 1905 if (now - start > th_period && 1906 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1907 ref_cand = rate_limit * 1908 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1909 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1910 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1911 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1912 th = pgdat->nbp_threshold ? : ref_th; 1913 if (diff_cand > ref_cand * 11 / 10) 1914 th = max(th - unit_th, unit_th); 1915 else if (diff_cand < ref_cand * 9 / 10) 1916 th = min(th + unit_th, ref_th * 2); 1917 pgdat->nbp_th_nr_cand = nr_cand; 1918 pgdat->nbp_threshold = th; 1919 } 1920 } 1921 1922 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1923 int src_nid, int dst_cpu) 1924 { 1925 struct numa_group *ng = deref_curr_numa_group(p); 1926 int dst_nid = cpu_to_node(dst_cpu); 1927 int last_cpupid, this_cpupid; 1928 1929 /* 1930 * Cannot migrate to memoryless nodes. 1931 */ 1932 if (!node_state(dst_nid, N_MEMORY)) 1933 return false; 1934 1935 /* 1936 * The pages in slow memory node should be migrated according 1937 * to hot/cold instead of private/shared. 1938 */ 1939 if (folio_use_access_time(folio)) { 1940 struct pglist_data *pgdat; 1941 unsigned long rate_limit; 1942 unsigned int latency, th, def_th; 1943 1944 pgdat = NODE_DATA(dst_nid); 1945 if (pgdat_free_space_enough(pgdat)) { 1946 /* workload changed, reset hot threshold */ 1947 pgdat->nbp_threshold = 0; 1948 return true; 1949 } 1950 1951 def_th = sysctl_numa_balancing_hot_threshold; 1952 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1953 (20 - PAGE_SHIFT); 1954 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1955 1956 th = pgdat->nbp_threshold ? : def_th; 1957 latency = numa_hint_fault_latency(folio); 1958 if (latency >= th) 1959 return false; 1960 1961 return !numa_promotion_rate_limit(pgdat, rate_limit, 1962 folio_nr_pages(folio)); 1963 } 1964 1965 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1966 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1967 1968 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1969 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1970 return false; 1971 1972 /* 1973 * Allow first faults or private faults to migrate immediately early in 1974 * the lifetime of a task. The magic number 4 is based on waiting for 1975 * two full passes of the "multi-stage node selection" test that is 1976 * executed below. 1977 */ 1978 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1979 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1980 return true; 1981 1982 /* 1983 * Multi-stage node selection is used in conjunction with a periodic 1984 * migration fault to build a temporal task<->page relation. By using 1985 * a two-stage filter we remove short/unlikely relations. 1986 * 1987 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1988 * a task's usage of a particular page (n_p) per total usage of this 1989 * page (n_t) (in a given time-span) to a probability. 1990 * 1991 * Our periodic faults will sample this probability and getting the 1992 * same result twice in a row, given these samples are fully 1993 * independent, is then given by P(n)^2, provided our sample period 1994 * is sufficiently short compared to the usage pattern. 1995 * 1996 * This quadric squishes small probabilities, making it less likely we 1997 * act on an unlikely task<->page relation. 1998 */ 1999 if (!cpupid_pid_unset(last_cpupid) && 2000 cpupid_to_nid(last_cpupid) != dst_nid) 2001 return false; 2002 2003 /* Always allow migrate on private faults */ 2004 if (cpupid_match_pid(p, last_cpupid)) 2005 return true; 2006 2007 /* A shared fault, but p->numa_group has not been set up yet. */ 2008 if (!ng) 2009 return true; 2010 2011 /* 2012 * Destination node is much more heavily used than the source 2013 * node? Allow migration. 2014 */ 2015 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2016 ACTIVE_NODE_FRACTION) 2017 return true; 2018 2019 /* 2020 * Distribute memory according to CPU & memory use on each node, 2021 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2022 * 2023 * faults_cpu(dst) 3 faults_cpu(src) 2024 * --------------- * - > --------------- 2025 * faults_mem(dst) 4 faults_mem(src) 2026 */ 2027 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2028 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2029 } 2030 2031 /* 2032 * 'numa_type' describes the node at the moment of load balancing. 2033 */ 2034 enum numa_type { 2035 /* The node has spare capacity that can be used to run more tasks. */ 2036 node_has_spare = 0, 2037 /* 2038 * The node is fully used and the tasks don't compete for more CPU 2039 * cycles. Nevertheless, some tasks might wait before running. 2040 */ 2041 node_fully_busy, 2042 /* 2043 * The node is overloaded and can't provide expected CPU cycles to all 2044 * tasks. 2045 */ 2046 node_overloaded 2047 }; 2048 2049 /* Cached statistics for all CPUs within a node */ 2050 struct numa_stats { 2051 unsigned long load; 2052 unsigned long runnable; 2053 unsigned long util; 2054 /* Total compute capacity of CPUs on a node */ 2055 unsigned long compute_capacity; 2056 unsigned int nr_running; 2057 unsigned int weight; 2058 enum numa_type node_type; 2059 int idle_cpu; 2060 }; 2061 2062 struct task_numa_env { 2063 struct task_struct *p; 2064 2065 int src_cpu, src_nid; 2066 int dst_cpu, dst_nid; 2067 int imb_numa_nr; 2068 2069 struct numa_stats src_stats, dst_stats; 2070 2071 int imbalance_pct; 2072 int dist; 2073 2074 struct task_struct *best_task; 2075 long best_imp; 2076 int best_cpu; 2077 }; 2078 2079 static unsigned long cpu_load(struct rq *rq); 2080 static unsigned long cpu_runnable(struct rq *rq); 2081 2082 static inline enum 2083 numa_type numa_classify(unsigned int imbalance_pct, 2084 struct numa_stats *ns) 2085 { 2086 if ((ns->nr_running > ns->weight) && 2087 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2088 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2089 return node_overloaded; 2090 2091 if ((ns->nr_running < ns->weight) || 2092 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2093 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2094 return node_has_spare; 2095 2096 return node_fully_busy; 2097 } 2098 2099 #ifdef CONFIG_SCHED_SMT 2100 /* Forward declarations of select_idle_sibling helpers */ 2101 static inline bool test_idle_cores(int cpu); 2102 static inline int numa_idle_core(int idle_core, int cpu) 2103 { 2104 if (!static_branch_likely(&sched_smt_present) || 2105 idle_core >= 0 || !test_idle_cores(cpu)) 2106 return idle_core; 2107 2108 /* 2109 * Prefer cores instead of packing HT siblings 2110 * and triggering future load balancing. 2111 */ 2112 if (is_core_idle(cpu)) 2113 idle_core = cpu; 2114 2115 return idle_core; 2116 } 2117 #else 2118 static inline int numa_idle_core(int idle_core, int cpu) 2119 { 2120 return idle_core; 2121 } 2122 #endif 2123 2124 /* 2125 * Gather all necessary information to make NUMA balancing placement 2126 * decisions that are compatible with standard load balancer. This 2127 * borrows code and logic from update_sg_lb_stats but sharing a 2128 * common implementation is impractical. 2129 */ 2130 static void update_numa_stats(struct task_numa_env *env, 2131 struct numa_stats *ns, int nid, 2132 bool find_idle) 2133 { 2134 int cpu, idle_core = -1; 2135 2136 memset(ns, 0, sizeof(*ns)); 2137 ns->idle_cpu = -1; 2138 2139 rcu_read_lock(); 2140 for_each_cpu(cpu, cpumask_of_node(nid)) { 2141 struct rq *rq = cpu_rq(cpu); 2142 2143 ns->load += cpu_load(rq); 2144 ns->runnable += cpu_runnable(rq); 2145 ns->util += cpu_util_cfs(cpu); 2146 ns->nr_running += rq->cfs.h_nr_runnable; 2147 ns->compute_capacity += capacity_of(cpu); 2148 2149 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2150 if (READ_ONCE(rq->numa_migrate_on) || 2151 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2152 continue; 2153 2154 if (ns->idle_cpu == -1) 2155 ns->idle_cpu = cpu; 2156 2157 idle_core = numa_idle_core(idle_core, cpu); 2158 } 2159 } 2160 rcu_read_unlock(); 2161 2162 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2163 2164 ns->node_type = numa_classify(env->imbalance_pct, ns); 2165 2166 if (idle_core >= 0) 2167 ns->idle_cpu = idle_core; 2168 } 2169 2170 static void task_numa_assign(struct task_numa_env *env, 2171 struct task_struct *p, long imp) 2172 { 2173 struct rq *rq = cpu_rq(env->dst_cpu); 2174 2175 /* Check if run-queue part of active NUMA balance. */ 2176 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2177 int cpu; 2178 int start = env->dst_cpu; 2179 2180 /* Find alternative idle CPU. */ 2181 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2182 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2183 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2184 continue; 2185 } 2186 2187 env->dst_cpu = cpu; 2188 rq = cpu_rq(env->dst_cpu); 2189 if (!xchg(&rq->numa_migrate_on, 1)) 2190 goto assign; 2191 } 2192 2193 /* Failed to find an alternative idle CPU */ 2194 return; 2195 } 2196 2197 assign: 2198 /* 2199 * Clear previous best_cpu/rq numa-migrate flag, since task now 2200 * found a better CPU to move/swap. 2201 */ 2202 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2203 rq = cpu_rq(env->best_cpu); 2204 WRITE_ONCE(rq->numa_migrate_on, 0); 2205 } 2206 2207 if (env->best_task) 2208 put_task_struct(env->best_task); 2209 if (p) 2210 get_task_struct(p); 2211 2212 env->best_task = p; 2213 env->best_imp = imp; 2214 env->best_cpu = env->dst_cpu; 2215 } 2216 2217 static bool load_too_imbalanced(long src_load, long dst_load, 2218 struct task_numa_env *env) 2219 { 2220 long imb, old_imb; 2221 long orig_src_load, orig_dst_load; 2222 long src_capacity, dst_capacity; 2223 2224 /* 2225 * The load is corrected for the CPU capacity available on each node. 2226 * 2227 * src_load dst_load 2228 * ------------ vs --------- 2229 * src_capacity dst_capacity 2230 */ 2231 src_capacity = env->src_stats.compute_capacity; 2232 dst_capacity = env->dst_stats.compute_capacity; 2233 2234 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2235 2236 orig_src_load = env->src_stats.load; 2237 orig_dst_load = env->dst_stats.load; 2238 2239 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2240 2241 /* Would this change make things worse? */ 2242 return (imb > old_imb); 2243 } 2244 2245 /* 2246 * Maximum NUMA importance can be 1998 (2*999); 2247 * SMALLIMP @ 30 would be close to 1998/64. 2248 * Used to deter task migration. 2249 */ 2250 #define SMALLIMP 30 2251 2252 /* 2253 * This checks if the overall compute and NUMA accesses of the system would 2254 * be improved if the source tasks was migrated to the target dst_cpu taking 2255 * into account that it might be best if task running on the dst_cpu should 2256 * be exchanged with the source task 2257 */ 2258 static bool task_numa_compare(struct task_numa_env *env, 2259 long taskimp, long groupimp, bool maymove) 2260 { 2261 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2262 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2263 long imp = p_ng ? groupimp : taskimp; 2264 struct task_struct *cur; 2265 long src_load, dst_load; 2266 int dist = env->dist; 2267 long moveimp = imp; 2268 long load; 2269 bool stopsearch = false; 2270 2271 if (READ_ONCE(dst_rq->numa_migrate_on)) 2272 return false; 2273 2274 rcu_read_lock(); 2275 cur = rcu_dereference(dst_rq->curr); 2276 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2277 cur = NULL; 2278 2279 /* 2280 * Because we have preemption enabled we can get migrated around and 2281 * end try selecting ourselves (current == env->p) as a swap candidate. 2282 */ 2283 if (cur == env->p) { 2284 stopsearch = true; 2285 goto unlock; 2286 } 2287 2288 if (!cur) { 2289 if (maymove && moveimp >= env->best_imp) 2290 goto assign; 2291 else 2292 goto unlock; 2293 } 2294 2295 /* Skip this swap candidate if cannot move to the source cpu. */ 2296 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2297 goto unlock; 2298 2299 /* 2300 * Skip this swap candidate if it is not moving to its preferred 2301 * node and the best task is. 2302 */ 2303 if (env->best_task && 2304 env->best_task->numa_preferred_nid == env->src_nid && 2305 cur->numa_preferred_nid != env->src_nid) { 2306 goto unlock; 2307 } 2308 2309 /* 2310 * "imp" is the fault differential for the source task between the 2311 * source and destination node. Calculate the total differential for 2312 * the source task and potential destination task. The more negative 2313 * the value is, the more remote accesses that would be expected to 2314 * be incurred if the tasks were swapped. 2315 * 2316 * If dst and source tasks are in the same NUMA group, or not 2317 * in any group then look only at task weights. 2318 */ 2319 cur_ng = rcu_dereference(cur->numa_group); 2320 if (cur_ng == p_ng) { 2321 /* 2322 * Do not swap within a group or between tasks that have 2323 * no group if there is spare capacity. Swapping does 2324 * not address the load imbalance and helps one task at 2325 * the cost of punishing another. 2326 */ 2327 if (env->dst_stats.node_type == node_has_spare) 2328 goto unlock; 2329 2330 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2331 task_weight(cur, env->dst_nid, dist); 2332 /* 2333 * Add some hysteresis to prevent swapping the 2334 * tasks within a group over tiny differences. 2335 */ 2336 if (cur_ng) 2337 imp -= imp / 16; 2338 } else { 2339 /* 2340 * Compare the group weights. If a task is all by itself 2341 * (not part of a group), use the task weight instead. 2342 */ 2343 if (cur_ng && p_ng) 2344 imp += group_weight(cur, env->src_nid, dist) - 2345 group_weight(cur, env->dst_nid, dist); 2346 else 2347 imp += task_weight(cur, env->src_nid, dist) - 2348 task_weight(cur, env->dst_nid, dist); 2349 } 2350 2351 /* Discourage picking a task already on its preferred node */ 2352 if (cur->numa_preferred_nid == env->dst_nid) 2353 imp -= imp / 16; 2354 2355 /* 2356 * Encourage picking a task that moves to its preferred node. 2357 * This potentially makes imp larger than it's maximum of 2358 * 1998 (see SMALLIMP and task_weight for why) but in this 2359 * case, it does not matter. 2360 */ 2361 if (cur->numa_preferred_nid == env->src_nid) 2362 imp += imp / 8; 2363 2364 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2365 imp = moveimp; 2366 cur = NULL; 2367 goto assign; 2368 } 2369 2370 /* 2371 * Prefer swapping with a task moving to its preferred node over a 2372 * task that is not. 2373 */ 2374 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2375 env->best_task->numa_preferred_nid != env->src_nid) { 2376 goto assign; 2377 } 2378 2379 /* 2380 * If the NUMA importance is less than SMALLIMP, 2381 * task migration might only result in ping pong 2382 * of tasks and also hurt performance due to cache 2383 * misses. 2384 */ 2385 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2386 goto unlock; 2387 2388 /* 2389 * In the overloaded case, try and keep the load balanced. 2390 */ 2391 load = task_h_load(env->p) - task_h_load(cur); 2392 if (!load) 2393 goto assign; 2394 2395 dst_load = env->dst_stats.load + load; 2396 src_load = env->src_stats.load - load; 2397 2398 if (load_too_imbalanced(src_load, dst_load, env)) 2399 goto unlock; 2400 2401 assign: 2402 /* Evaluate an idle CPU for a task numa move. */ 2403 if (!cur) { 2404 int cpu = env->dst_stats.idle_cpu; 2405 2406 /* Nothing cached so current CPU went idle since the search. */ 2407 if (cpu < 0) 2408 cpu = env->dst_cpu; 2409 2410 /* 2411 * If the CPU is no longer truly idle and the previous best CPU 2412 * is, keep using it. 2413 */ 2414 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2415 idle_cpu(env->best_cpu)) { 2416 cpu = env->best_cpu; 2417 } 2418 2419 env->dst_cpu = cpu; 2420 } 2421 2422 task_numa_assign(env, cur, imp); 2423 2424 /* 2425 * If a move to idle is allowed because there is capacity or load 2426 * balance improves then stop the search. While a better swap 2427 * candidate may exist, a search is not free. 2428 */ 2429 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2430 stopsearch = true; 2431 2432 /* 2433 * If a swap candidate must be identified and the current best task 2434 * moves its preferred node then stop the search. 2435 */ 2436 if (!maymove && env->best_task && 2437 env->best_task->numa_preferred_nid == env->src_nid) { 2438 stopsearch = true; 2439 } 2440 unlock: 2441 rcu_read_unlock(); 2442 2443 return stopsearch; 2444 } 2445 2446 static void task_numa_find_cpu(struct task_numa_env *env, 2447 long taskimp, long groupimp) 2448 { 2449 bool maymove = false; 2450 int cpu; 2451 2452 /* 2453 * If dst node has spare capacity, then check if there is an 2454 * imbalance that would be overruled by the load balancer. 2455 */ 2456 if (env->dst_stats.node_type == node_has_spare) { 2457 unsigned int imbalance; 2458 int src_running, dst_running; 2459 2460 /* 2461 * Would movement cause an imbalance? Note that if src has 2462 * more running tasks that the imbalance is ignored as the 2463 * move improves the imbalance from the perspective of the 2464 * CPU load balancer. 2465 * */ 2466 src_running = env->src_stats.nr_running - 1; 2467 dst_running = env->dst_stats.nr_running + 1; 2468 imbalance = max(0, dst_running - src_running); 2469 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2470 env->imb_numa_nr); 2471 2472 /* Use idle CPU if there is no imbalance */ 2473 if (!imbalance) { 2474 maymove = true; 2475 if (env->dst_stats.idle_cpu >= 0) { 2476 env->dst_cpu = env->dst_stats.idle_cpu; 2477 task_numa_assign(env, NULL, 0); 2478 return; 2479 } 2480 } 2481 } else { 2482 long src_load, dst_load, load; 2483 /* 2484 * If the improvement from just moving env->p direction is better 2485 * than swapping tasks around, check if a move is possible. 2486 */ 2487 load = task_h_load(env->p); 2488 dst_load = env->dst_stats.load + load; 2489 src_load = env->src_stats.load - load; 2490 maymove = !load_too_imbalanced(src_load, dst_load, env); 2491 } 2492 2493 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2494 /* Skip this CPU if the source task cannot migrate */ 2495 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2496 continue; 2497 2498 env->dst_cpu = cpu; 2499 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2500 break; 2501 } 2502 } 2503 2504 static int task_numa_migrate(struct task_struct *p) 2505 { 2506 struct task_numa_env env = { 2507 .p = p, 2508 2509 .src_cpu = task_cpu(p), 2510 .src_nid = task_node(p), 2511 2512 .imbalance_pct = 112, 2513 2514 .best_task = NULL, 2515 .best_imp = 0, 2516 .best_cpu = -1, 2517 }; 2518 unsigned long taskweight, groupweight; 2519 struct sched_domain *sd; 2520 long taskimp, groupimp; 2521 struct numa_group *ng; 2522 struct rq *best_rq; 2523 int nid, ret, dist; 2524 2525 /* 2526 * Pick the lowest SD_NUMA domain, as that would have the smallest 2527 * imbalance and would be the first to start moving tasks about. 2528 * 2529 * And we want to avoid any moving of tasks about, as that would create 2530 * random movement of tasks -- counter the numa conditions we're trying 2531 * to satisfy here. 2532 */ 2533 rcu_read_lock(); 2534 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2535 if (sd) { 2536 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2537 env.imb_numa_nr = sd->imb_numa_nr; 2538 } 2539 rcu_read_unlock(); 2540 2541 /* 2542 * Cpusets can break the scheduler domain tree into smaller 2543 * balance domains, some of which do not cross NUMA boundaries. 2544 * Tasks that are "trapped" in such domains cannot be migrated 2545 * elsewhere, so there is no point in (re)trying. 2546 */ 2547 if (unlikely(!sd)) { 2548 sched_setnuma(p, task_node(p)); 2549 return -EINVAL; 2550 } 2551 2552 env.dst_nid = p->numa_preferred_nid; 2553 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2554 taskweight = task_weight(p, env.src_nid, dist); 2555 groupweight = group_weight(p, env.src_nid, dist); 2556 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2557 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2558 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2559 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2560 2561 /* Try to find a spot on the preferred nid. */ 2562 task_numa_find_cpu(&env, taskimp, groupimp); 2563 2564 /* 2565 * Look at other nodes in these cases: 2566 * - there is no space available on the preferred_nid 2567 * - the task is part of a numa_group that is interleaved across 2568 * multiple NUMA nodes; in order to better consolidate the group, 2569 * we need to check other locations. 2570 */ 2571 ng = deref_curr_numa_group(p); 2572 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2573 for_each_node_state(nid, N_CPU) { 2574 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2575 continue; 2576 2577 dist = node_distance(env.src_nid, env.dst_nid); 2578 if (sched_numa_topology_type == NUMA_BACKPLANE && 2579 dist != env.dist) { 2580 taskweight = task_weight(p, env.src_nid, dist); 2581 groupweight = group_weight(p, env.src_nid, dist); 2582 } 2583 2584 /* Only consider nodes where both task and groups benefit */ 2585 taskimp = task_weight(p, nid, dist) - taskweight; 2586 groupimp = group_weight(p, nid, dist) - groupweight; 2587 if (taskimp < 0 && groupimp < 0) 2588 continue; 2589 2590 env.dist = dist; 2591 env.dst_nid = nid; 2592 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2593 task_numa_find_cpu(&env, taskimp, groupimp); 2594 } 2595 } 2596 2597 /* 2598 * If the task is part of a workload that spans multiple NUMA nodes, 2599 * and is migrating into one of the workload's active nodes, remember 2600 * this node as the task's preferred numa node, so the workload can 2601 * settle down. 2602 * A task that migrated to a second choice node will be better off 2603 * trying for a better one later. Do not set the preferred node here. 2604 */ 2605 if (ng) { 2606 if (env.best_cpu == -1) 2607 nid = env.src_nid; 2608 else 2609 nid = cpu_to_node(env.best_cpu); 2610 2611 if (nid != p->numa_preferred_nid) 2612 sched_setnuma(p, nid); 2613 } 2614 2615 /* No better CPU than the current one was found. */ 2616 if (env.best_cpu == -1) { 2617 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2618 return -EAGAIN; 2619 } 2620 2621 best_rq = cpu_rq(env.best_cpu); 2622 if (env.best_task == NULL) { 2623 ret = migrate_task_to(p, env.best_cpu); 2624 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2625 if (ret != 0) 2626 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2627 return ret; 2628 } 2629 2630 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2631 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2632 2633 if (ret != 0) 2634 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2635 put_task_struct(env.best_task); 2636 return ret; 2637 } 2638 2639 /* Attempt to migrate a task to a CPU on the preferred node. */ 2640 static void numa_migrate_preferred(struct task_struct *p) 2641 { 2642 unsigned long interval = HZ; 2643 2644 /* This task has no NUMA fault statistics yet */ 2645 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2646 return; 2647 2648 /* Periodically retry migrating the task to the preferred node */ 2649 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2650 p->numa_migrate_retry = jiffies + interval; 2651 2652 /* Success if task is already running on preferred CPU */ 2653 if (task_node(p) == p->numa_preferred_nid) 2654 return; 2655 2656 /* Otherwise, try migrate to a CPU on the preferred node */ 2657 task_numa_migrate(p); 2658 } 2659 2660 /* 2661 * Find out how many nodes the workload is actively running on. Do this by 2662 * tracking the nodes from which NUMA hinting faults are triggered. This can 2663 * be different from the set of nodes where the workload's memory is currently 2664 * located. 2665 */ 2666 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2667 { 2668 unsigned long faults, max_faults = 0; 2669 int nid, active_nodes = 0; 2670 2671 for_each_node_state(nid, N_CPU) { 2672 faults = group_faults_cpu(numa_group, nid); 2673 if (faults > max_faults) 2674 max_faults = faults; 2675 } 2676 2677 for_each_node_state(nid, N_CPU) { 2678 faults = group_faults_cpu(numa_group, nid); 2679 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2680 active_nodes++; 2681 } 2682 2683 numa_group->max_faults_cpu = max_faults; 2684 numa_group->active_nodes = active_nodes; 2685 } 2686 2687 /* 2688 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2689 * increments. The more local the fault statistics are, the higher the scan 2690 * period will be for the next scan window. If local/(local+remote) ratio is 2691 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2692 * the scan period will decrease. Aim for 70% local accesses. 2693 */ 2694 #define NUMA_PERIOD_SLOTS 10 2695 #define NUMA_PERIOD_THRESHOLD 7 2696 2697 /* 2698 * Increase the scan period (slow down scanning) if the majority of 2699 * our memory is already on our local node, or if the majority of 2700 * the page accesses are shared with other processes. 2701 * Otherwise, decrease the scan period. 2702 */ 2703 static void update_task_scan_period(struct task_struct *p, 2704 unsigned long shared, unsigned long private) 2705 { 2706 unsigned int period_slot; 2707 int lr_ratio, ps_ratio; 2708 int diff; 2709 2710 unsigned long remote = p->numa_faults_locality[0]; 2711 unsigned long local = p->numa_faults_locality[1]; 2712 2713 /* 2714 * If there were no record hinting faults then either the task is 2715 * completely idle or all activity is in areas that are not of interest 2716 * to automatic numa balancing. Related to that, if there were failed 2717 * migration then it implies we are migrating too quickly or the local 2718 * node is overloaded. In either case, scan slower 2719 */ 2720 if (local + shared == 0 || p->numa_faults_locality[2]) { 2721 p->numa_scan_period = min(p->numa_scan_period_max, 2722 p->numa_scan_period << 1); 2723 2724 p->mm->numa_next_scan = jiffies + 2725 msecs_to_jiffies(p->numa_scan_period); 2726 2727 return; 2728 } 2729 2730 /* 2731 * Prepare to scale scan period relative to the current period. 2732 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2733 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2734 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2735 */ 2736 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2737 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2738 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2739 2740 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2741 /* 2742 * Most memory accesses are local. There is no need to 2743 * do fast NUMA scanning, since memory is already local. 2744 */ 2745 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2746 if (!slot) 2747 slot = 1; 2748 diff = slot * period_slot; 2749 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2750 /* 2751 * Most memory accesses are shared with other tasks. 2752 * There is no point in continuing fast NUMA scanning, 2753 * since other tasks may just move the memory elsewhere. 2754 */ 2755 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2756 if (!slot) 2757 slot = 1; 2758 diff = slot * period_slot; 2759 } else { 2760 /* 2761 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2762 * yet they are not on the local NUMA node. Speed up 2763 * NUMA scanning to get the memory moved over. 2764 */ 2765 int ratio = max(lr_ratio, ps_ratio); 2766 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2767 } 2768 2769 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2770 task_scan_min(p), task_scan_max(p)); 2771 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2772 } 2773 2774 /* 2775 * Get the fraction of time the task has been running since the last 2776 * NUMA placement cycle. The scheduler keeps similar statistics, but 2777 * decays those on a 32ms period, which is orders of magnitude off 2778 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2779 * stats only if the task is so new there are no NUMA statistics yet. 2780 */ 2781 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2782 { 2783 u64 runtime, delta, now; 2784 /* Use the start of this time slice to avoid calculations. */ 2785 now = p->se.exec_start; 2786 runtime = p->se.sum_exec_runtime; 2787 2788 if (p->last_task_numa_placement) { 2789 delta = runtime - p->last_sum_exec_runtime; 2790 *period = now - p->last_task_numa_placement; 2791 2792 /* Avoid time going backwards, prevent potential divide error: */ 2793 if (unlikely((s64)*period < 0)) 2794 *period = 0; 2795 } else { 2796 delta = p->se.avg.load_sum; 2797 *period = LOAD_AVG_MAX; 2798 } 2799 2800 p->last_sum_exec_runtime = runtime; 2801 p->last_task_numa_placement = now; 2802 2803 return delta; 2804 } 2805 2806 /* 2807 * Determine the preferred nid for a task in a numa_group. This needs to 2808 * be done in a way that produces consistent results with group_weight, 2809 * otherwise workloads might not converge. 2810 */ 2811 static int preferred_group_nid(struct task_struct *p, int nid) 2812 { 2813 nodemask_t nodes; 2814 int dist; 2815 2816 /* Direct connections between all NUMA nodes. */ 2817 if (sched_numa_topology_type == NUMA_DIRECT) 2818 return nid; 2819 2820 /* 2821 * On a system with glueless mesh NUMA topology, group_weight 2822 * scores nodes according to the number of NUMA hinting faults on 2823 * both the node itself, and on nearby nodes. 2824 */ 2825 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2826 unsigned long score, max_score = 0; 2827 int node, max_node = nid; 2828 2829 dist = sched_max_numa_distance; 2830 2831 for_each_node_state(node, N_CPU) { 2832 score = group_weight(p, node, dist); 2833 if (score > max_score) { 2834 max_score = score; 2835 max_node = node; 2836 } 2837 } 2838 return max_node; 2839 } 2840 2841 /* 2842 * Finding the preferred nid in a system with NUMA backplane 2843 * interconnect topology is more involved. The goal is to locate 2844 * tasks from numa_groups near each other in the system, and 2845 * untangle workloads from different sides of the system. This requires 2846 * searching down the hierarchy of node groups, recursively searching 2847 * inside the highest scoring group of nodes. The nodemask tricks 2848 * keep the complexity of the search down. 2849 */ 2850 nodes = node_states[N_CPU]; 2851 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2852 unsigned long max_faults = 0; 2853 nodemask_t max_group = NODE_MASK_NONE; 2854 int a, b; 2855 2856 /* Are there nodes at this distance from each other? */ 2857 if (!find_numa_distance(dist)) 2858 continue; 2859 2860 for_each_node_mask(a, nodes) { 2861 unsigned long faults = 0; 2862 nodemask_t this_group; 2863 nodes_clear(this_group); 2864 2865 /* Sum group's NUMA faults; includes a==b case. */ 2866 for_each_node_mask(b, nodes) { 2867 if (node_distance(a, b) < dist) { 2868 faults += group_faults(p, b); 2869 node_set(b, this_group); 2870 node_clear(b, nodes); 2871 } 2872 } 2873 2874 /* Remember the top group. */ 2875 if (faults > max_faults) { 2876 max_faults = faults; 2877 max_group = this_group; 2878 /* 2879 * subtle: at the smallest distance there is 2880 * just one node left in each "group", the 2881 * winner is the preferred nid. 2882 */ 2883 nid = a; 2884 } 2885 } 2886 /* Next round, evaluate the nodes within max_group. */ 2887 if (!max_faults) 2888 break; 2889 nodes = max_group; 2890 } 2891 return nid; 2892 } 2893 2894 static void task_numa_placement(struct task_struct *p) 2895 { 2896 int seq, nid, max_nid = NUMA_NO_NODE; 2897 unsigned long max_faults = 0; 2898 unsigned long fault_types[2] = { 0, 0 }; 2899 unsigned long total_faults; 2900 u64 runtime, period; 2901 spinlock_t *group_lock = NULL; 2902 struct numa_group *ng; 2903 2904 /* 2905 * The p->mm->numa_scan_seq field gets updated without 2906 * exclusive access. Use READ_ONCE() here to ensure 2907 * that the field is read in a single access: 2908 */ 2909 seq = READ_ONCE(p->mm->numa_scan_seq); 2910 if (p->numa_scan_seq == seq) 2911 return; 2912 p->numa_scan_seq = seq; 2913 p->numa_scan_period_max = task_scan_max(p); 2914 2915 total_faults = p->numa_faults_locality[0] + 2916 p->numa_faults_locality[1]; 2917 runtime = numa_get_avg_runtime(p, &period); 2918 2919 /* If the task is part of a group prevent parallel updates to group stats */ 2920 ng = deref_curr_numa_group(p); 2921 if (ng) { 2922 group_lock = &ng->lock; 2923 spin_lock_irq(group_lock); 2924 } 2925 2926 /* Find the node with the highest number of faults */ 2927 for_each_online_node(nid) { 2928 /* Keep track of the offsets in numa_faults array */ 2929 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2930 unsigned long faults = 0, group_faults = 0; 2931 int priv; 2932 2933 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2934 long diff, f_diff, f_weight; 2935 2936 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2937 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2938 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2939 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2940 2941 /* Decay existing window, copy faults since last scan */ 2942 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2943 fault_types[priv] += p->numa_faults[membuf_idx]; 2944 p->numa_faults[membuf_idx] = 0; 2945 2946 /* 2947 * Normalize the faults_from, so all tasks in a group 2948 * count according to CPU use, instead of by the raw 2949 * number of faults. Tasks with little runtime have 2950 * little over-all impact on throughput, and thus their 2951 * faults are less important. 2952 */ 2953 f_weight = div64_u64(runtime << 16, period + 1); 2954 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2955 (total_faults + 1); 2956 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2957 p->numa_faults[cpubuf_idx] = 0; 2958 2959 p->numa_faults[mem_idx] += diff; 2960 p->numa_faults[cpu_idx] += f_diff; 2961 faults += p->numa_faults[mem_idx]; 2962 p->total_numa_faults += diff; 2963 if (ng) { 2964 /* 2965 * safe because we can only change our own group 2966 * 2967 * mem_idx represents the offset for a given 2968 * nid and priv in a specific region because it 2969 * is at the beginning of the numa_faults array. 2970 */ 2971 ng->faults[mem_idx] += diff; 2972 ng->faults[cpu_idx] += f_diff; 2973 ng->total_faults += diff; 2974 group_faults += ng->faults[mem_idx]; 2975 } 2976 } 2977 2978 if (!ng) { 2979 if (faults > max_faults) { 2980 max_faults = faults; 2981 max_nid = nid; 2982 } 2983 } else if (group_faults > max_faults) { 2984 max_faults = group_faults; 2985 max_nid = nid; 2986 } 2987 } 2988 2989 /* Cannot migrate task to CPU-less node */ 2990 max_nid = numa_nearest_node(max_nid, N_CPU); 2991 2992 if (ng) { 2993 numa_group_count_active_nodes(ng); 2994 spin_unlock_irq(group_lock); 2995 max_nid = preferred_group_nid(p, max_nid); 2996 } 2997 2998 if (max_faults) { 2999 /* Set the new preferred node */ 3000 if (max_nid != p->numa_preferred_nid) 3001 sched_setnuma(p, max_nid); 3002 } 3003 3004 update_task_scan_period(p, fault_types[0], fault_types[1]); 3005 } 3006 3007 static inline int get_numa_group(struct numa_group *grp) 3008 { 3009 return refcount_inc_not_zero(&grp->refcount); 3010 } 3011 3012 static inline void put_numa_group(struct numa_group *grp) 3013 { 3014 if (refcount_dec_and_test(&grp->refcount)) 3015 kfree_rcu(grp, rcu); 3016 } 3017 3018 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3019 int *priv) 3020 { 3021 struct numa_group *grp, *my_grp; 3022 struct task_struct *tsk; 3023 bool join = false; 3024 int cpu = cpupid_to_cpu(cpupid); 3025 int i; 3026 3027 if (unlikely(!deref_curr_numa_group(p))) { 3028 unsigned int size = sizeof(struct numa_group) + 3029 NR_NUMA_HINT_FAULT_STATS * 3030 nr_node_ids * sizeof(unsigned long); 3031 3032 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3033 if (!grp) 3034 return; 3035 3036 refcount_set(&grp->refcount, 1); 3037 grp->active_nodes = 1; 3038 grp->max_faults_cpu = 0; 3039 spin_lock_init(&grp->lock); 3040 grp->gid = p->pid; 3041 3042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3043 grp->faults[i] = p->numa_faults[i]; 3044 3045 grp->total_faults = p->total_numa_faults; 3046 3047 grp->nr_tasks++; 3048 rcu_assign_pointer(p->numa_group, grp); 3049 } 3050 3051 rcu_read_lock(); 3052 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3053 3054 if (!cpupid_match_pid(tsk, cpupid)) 3055 goto no_join; 3056 3057 grp = rcu_dereference(tsk->numa_group); 3058 if (!grp) 3059 goto no_join; 3060 3061 my_grp = deref_curr_numa_group(p); 3062 if (grp == my_grp) 3063 goto no_join; 3064 3065 /* 3066 * Only join the other group if its bigger; if we're the bigger group, 3067 * the other task will join us. 3068 */ 3069 if (my_grp->nr_tasks > grp->nr_tasks) 3070 goto no_join; 3071 3072 /* 3073 * Tie-break on the grp address. 3074 */ 3075 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3076 goto no_join; 3077 3078 /* Always join threads in the same process. */ 3079 if (tsk->mm == current->mm) 3080 join = true; 3081 3082 /* Simple filter to avoid false positives due to PID collisions */ 3083 if (flags & TNF_SHARED) 3084 join = true; 3085 3086 /* Update priv based on whether false sharing was detected */ 3087 *priv = !join; 3088 3089 if (join && !get_numa_group(grp)) 3090 goto no_join; 3091 3092 rcu_read_unlock(); 3093 3094 if (!join) 3095 return; 3096 3097 WARN_ON_ONCE(irqs_disabled()); 3098 double_lock_irq(&my_grp->lock, &grp->lock); 3099 3100 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3101 my_grp->faults[i] -= p->numa_faults[i]; 3102 grp->faults[i] += p->numa_faults[i]; 3103 } 3104 my_grp->total_faults -= p->total_numa_faults; 3105 grp->total_faults += p->total_numa_faults; 3106 3107 my_grp->nr_tasks--; 3108 grp->nr_tasks++; 3109 3110 spin_unlock(&my_grp->lock); 3111 spin_unlock_irq(&grp->lock); 3112 3113 rcu_assign_pointer(p->numa_group, grp); 3114 3115 put_numa_group(my_grp); 3116 return; 3117 3118 no_join: 3119 rcu_read_unlock(); 3120 return; 3121 } 3122 3123 /* 3124 * Get rid of NUMA statistics associated with a task (either current or dead). 3125 * If @final is set, the task is dead and has reached refcount zero, so we can 3126 * safely free all relevant data structures. Otherwise, there might be 3127 * concurrent reads from places like load balancing and procfs, and we should 3128 * reset the data back to default state without freeing ->numa_faults. 3129 */ 3130 void task_numa_free(struct task_struct *p, bool final) 3131 { 3132 /* safe: p either is current or is being freed by current */ 3133 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3134 unsigned long *numa_faults = p->numa_faults; 3135 unsigned long flags; 3136 int i; 3137 3138 if (!numa_faults) 3139 return; 3140 3141 if (grp) { 3142 spin_lock_irqsave(&grp->lock, flags); 3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3144 grp->faults[i] -= p->numa_faults[i]; 3145 grp->total_faults -= p->total_numa_faults; 3146 3147 grp->nr_tasks--; 3148 spin_unlock_irqrestore(&grp->lock, flags); 3149 RCU_INIT_POINTER(p->numa_group, NULL); 3150 put_numa_group(grp); 3151 } 3152 3153 if (final) { 3154 p->numa_faults = NULL; 3155 kfree(numa_faults); 3156 } else { 3157 p->total_numa_faults = 0; 3158 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3159 numa_faults[i] = 0; 3160 } 3161 } 3162 3163 /* 3164 * Got a PROT_NONE fault for a page on @node. 3165 */ 3166 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3167 { 3168 struct task_struct *p = current; 3169 bool migrated = flags & TNF_MIGRATED; 3170 int cpu_node = task_node(current); 3171 int local = !!(flags & TNF_FAULT_LOCAL); 3172 struct numa_group *ng; 3173 int priv; 3174 3175 if (!static_branch_likely(&sched_numa_balancing)) 3176 return; 3177 3178 /* for example, ksmd faulting in a user's mm */ 3179 if (!p->mm) 3180 return; 3181 3182 /* 3183 * NUMA faults statistics are unnecessary for the slow memory 3184 * node for memory tiering mode. 3185 */ 3186 if (!node_is_toptier(mem_node) && 3187 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3188 !cpupid_valid(last_cpupid))) 3189 return; 3190 3191 /* Allocate buffer to track faults on a per-node basis */ 3192 if (unlikely(!p->numa_faults)) { 3193 int size = sizeof(*p->numa_faults) * 3194 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3195 3196 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3197 if (!p->numa_faults) 3198 return; 3199 3200 p->total_numa_faults = 0; 3201 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3202 } 3203 3204 /* 3205 * First accesses are treated as private, otherwise consider accesses 3206 * to be private if the accessing pid has not changed 3207 */ 3208 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3209 priv = 1; 3210 } else { 3211 priv = cpupid_match_pid(p, last_cpupid); 3212 if (!priv && !(flags & TNF_NO_GROUP)) 3213 task_numa_group(p, last_cpupid, flags, &priv); 3214 } 3215 3216 /* 3217 * If a workload spans multiple NUMA nodes, a shared fault that 3218 * occurs wholly within the set of nodes that the workload is 3219 * actively using should be counted as local. This allows the 3220 * scan rate to slow down when a workload has settled down. 3221 */ 3222 ng = deref_curr_numa_group(p); 3223 if (!priv && !local && ng && ng->active_nodes > 1 && 3224 numa_is_active_node(cpu_node, ng) && 3225 numa_is_active_node(mem_node, ng)) 3226 local = 1; 3227 3228 /* 3229 * Retry to migrate task to preferred node periodically, in case it 3230 * previously failed, or the scheduler moved us. 3231 */ 3232 if (time_after(jiffies, p->numa_migrate_retry)) { 3233 task_numa_placement(p); 3234 numa_migrate_preferred(p); 3235 } 3236 3237 if (migrated) 3238 p->numa_pages_migrated += pages; 3239 if (flags & TNF_MIGRATE_FAIL) 3240 p->numa_faults_locality[2] += pages; 3241 3242 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3243 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3244 p->numa_faults_locality[local] += pages; 3245 } 3246 3247 static void reset_ptenuma_scan(struct task_struct *p) 3248 { 3249 /* 3250 * We only did a read acquisition of the mmap sem, so 3251 * p->mm->numa_scan_seq is written to without exclusive access 3252 * and the update is not guaranteed to be atomic. That's not 3253 * much of an issue though, since this is just used for 3254 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3255 * expensive, to avoid any form of compiler optimizations: 3256 */ 3257 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3258 p->mm->numa_scan_offset = 0; 3259 } 3260 3261 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3262 { 3263 unsigned long pids; 3264 /* 3265 * Allow unconditional access first two times, so that all the (pages) 3266 * of VMAs get prot_none fault introduced irrespective of accesses. 3267 * This is also done to avoid any side effect of task scanning 3268 * amplifying the unfairness of disjoint set of VMAs' access. 3269 */ 3270 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3271 return true; 3272 3273 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3274 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3275 return true; 3276 3277 /* 3278 * Complete a scan that has already started regardless of PID access, or 3279 * some VMAs may never be scanned in multi-threaded applications: 3280 */ 3281 if (mm->numa_scan_offset > vma->vm_start) { 3282 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3283 return true; 3284 } 3285 3286 /* 3287 * This vma has not been accessed for a while, and if the number 3288 * the threads in the same process is low, which means no other 3289 * threads can help scan this vma, force a vma scan. 3290 */ 3291 if (READ_ONCE(mm->numa_scan_seq) > 3292 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3293 return true; 3294 3295 return false; 3296 } 3297 3298 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3299 3300 /* 3301 * The expensive part of numa migration is done from task_work context. 3302 * Triggered from task_tick_numa(). 3303 */ 3304 static void task_numa_work(struct callback_head *work) 3305 { 3306 unsigned long migrate, next_scan, now = jiffies; 3307 struct task_struct *p = current; 3308 struct mm_struct *mm = p->mm; 3309 u64 runtime = p->se.sum_exec_runtime; 3310 struct vm_area_struct *vma; 3311 unsigned long start, end; 3312 unsigned long nr_pte_updates = 0; 3313 long pages, virtpages; 3314 struct vma_iterator vmi; 3315 bool vma_pids_skipped; 3316 bool vma_pids_forced = false; 3317 3318 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3319 3320 work->next = work; 3321 /* 3322 * Who cares about NUMA placement when they're dying. 3323 * 3324 * NOTE: make sure not to dereference p->mm before this check, 3325 * exit_task_work() happens _after_ exit_mm() so we could be called 3326 * without p->mm even though we still had it when we enqueued this 3327 * work. 3328 */ 3329 if (p->flags & PF_EXITING) 3330 return; 3331 3332 if (!mm->numa_next_scan) { 3333 mm->numa_next_scan = now + 3334 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3335 } 3336 3337 /* 3338 * Enforce maximal scan/migration frequency.. 3339 */ 3340 migrate = mm->numa_next_scan; 3341 if (time_before(now, migrate)) 3342 return; 3343 3344 if (p->numa_scan_period == 0) { 3345 p->numa_scan_period_max = task_scan_max(p); 3346 p->numa_scan_period = task_scan_start(p); 3347 } 3348 3349 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3350 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3351 return; 3352 3353 /* 3354 * Delay this task enough that another task of this mm will likely win 3355 * the next time around. 3356 */ 3357 p->node_stamp += 2 * TICK_NSEC; 3358 3359 pages = sysctl_numa_balancing_scan_size; 3360 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3361 virtpages = pages * 8; /* Scan up to this much virtual space */ 3362 if (!pages) 3363 return; 3364 3365 3366 if (!mmap_read_trylock(mm)) 3367 return; 3368 3369 /* 3370 * VMAs are skipped if the current PID has not trapped a fault within 3371 * the VMA recently. Allow scanning to be forced if there is no 3372 * suitable VMA remaining. 3373 */ 3374 vma_pids_skipped = false; 3375 3376 retry_pids: 3377 start = mm->numa_scan_offset; 3378 vma_iter_init(&vmi, mm, start); 3379 vma = vma_next(&vmi); 3380 if (!vma) { 3381 reset_ptenuma_scan(p); 3382 start = 0; 3383 vma_iter_set(&vmi, start); 3384 vma = vma_next(&vmi); 3385 } 3386 3387 for (; vma; vma = vma_next(&vmi)) { 3388 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3389 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3390 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3391 continue; 3392 } 3393 3394 /* 3395 * Shared library pages mapped by multiple processes are not 3396 * migrated as it is expected they are cache replicated. Avoid 3397 * hinting faults in read-only file-backed mappings or the vDSO 3398 * as migrating the pages will be of marginal benefit. 3399 */ 3400 if (!vma->vm_mm || 3401 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3402 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3403 continue; 3404 } 3405 3406 /* 3407 * Skip inaccessible VMAs to avoid any confusion between 3408 * PROT_NONE and NUMA hinting PTEs 3409 */ 3410 if (!vma_is_accessible(vma)) { 3411 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3412 continue; 3413 } 3414 3415 /* Initialise new per-VMA NUMAB state. */ 3416 if (!vma->numab_state) { 3417 struct vma_numab_state *ptr; 3418 3419 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3420 if (!ptr) 3421 continue; 3422 3423 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3424 kfree(ptr); 3425 continue; 3426 } 3427 3428 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3429 3430 vma->numab_state->next_scan = now + 3431 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3432 3433 /* Reset happens after 4 times scan delay of scan start */ 3434 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3435 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3436 3437 /* 3438 * Ensure prev_scan_seq does not match numa_scan_seq, 3439 * to prevent VMAs being skipped prematurely on the 3440 * first scan: 3441 */ 3442 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3443 } 3444 3445 /* 3446 * Scanning the VMAs of short lived tasks add more overhead. So 3447 * delay the scan for new VMAs. 3448 */ 3449 if (mm->numa_scan_seq && time_before(jiffies, 3450 vma->numab_state->next_scan)) { 3451 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3452 continue; 3453 } 3454 3455 /* RESET access PIDs regularly for old VMAs. */ 3456 if (mm->numa_scan_seq && 3457 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3458 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3459 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3460 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3461 vma->numab_state->pids_active[1] = 0; 3462 } 3463 3464 /* Do not rescan VMAs twice within the same sequence. */ 3465 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3466 mm->numa_scan_offset = vma->vm_end; 3467 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3468 continue; 3469 } 3470 3471 /* 3472 * Do not scan the VMA if task has not accessed it, unless no other 3473 * VMA candidate exists. 3474 */ 3475 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3476 vma_pids_skipped = true; 3477 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3478 continue; 3479 } 3480 3481 do { 3482 start = max(start, vma->vm_start); 3483 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3484 end = min(end, vma->vm_end); 3485 nr_pte_updates = change_prot_numa(vma, start, end); 3486 3487 /* 3488 * Try to scan sysctl_numa_balancing_size worth of 3489 * hpages that have at least one present PTE that 3490 * is not already PTE-numa. If the VMA contains 3491 * areas that are unused or already full of prot_numa 3492 * PTEs, scan up to virtpages, to skip through those 3493 * areas faster. 3494 */ 3495 if (nr_pte_updates) 3496 pages -= (end - start) >> PAGE_SHIFT; 3497 virtpages -= (end - start) >> PAGE_SHIFT; 3498 3499 start = end; 3500 if (pages <= 0 || virtpages <= 0) 3501 goto out; 3502 3503 cond_resched(); 3504 } while (end != vma->vm_end); 3505 3506 /* VMA scan is complete, do not scan until next sequence. */ 3507 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3508 3509 /* 3510 * Only force scan within one VMA at a time, to limit the 3511 * cost of scanning a potentially uninteresting VMA. 3512 */ 3513 if (vma_pids_forced) 3514 break; 3515 } 3516 3517 /* 3518 * If no VMAs are remaining and VMAs were skipped due to the PID 3519 * not accessing the VMA previously, then force a scan to ensure 3520 * forward progress: 3521 */ 3522 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3523 vma_pids_forced = true; 3524 goto retry_pids; 3525 } 3526 3527 out: 3528 /* 3529 * It is possible to reach the end of the VMA list but the last few 3530 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3531 * would find the !migratable VMA on the next scan but not reset the 3532 * scanner to the start so check it now. 3533 */ 3534 if (vma) 3535 mm->numa_scan_offset = start; 3536 else 3537 reset_ptenuma_scan(p); 3538 mmap_read_unlock(mm); 3539 3540 /* 3541 * Make sure tasks use at least 32x as much time to run other code 3542 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3543 * Usually update_task_scan_period slows down scanning enough; on an 3544 * overloaded system we need to limit overhead on a per task basis. 3545 */ 3546 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3547 u64 diff = p->se.sum_exec_runtime - runtime; 3548 p->node_stamp += 32 * diff; 3549 } 3550 } 3551 3552 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3553 { 3554 int mm_users = 0; 3555 struct mm_struct *mm = p->mm; 3556 3557 if (mm) { 3558 mm_users = atomic_read(&mm->mm_users); 3559 if (mm_users == 1) { 3560 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3561 mm->numa_scan_seq = 0; 3562 } 3563 } 3564 p->node_stamp = 0; 3565 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3566 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3567 p->numa_migrate_retry = 0; 3568 /* Protect against double add, see task_tick_numa and task_numa_work */ 3569 p->numa_work.next = &p->numa_work; 3570 p->numa_faults = NULL; 3571 p->numa_pages_migrated = 0; 3572 p->total_numa_faults = 0; 3573 RCU_INIT_POINTER(p->numa_group, NULL); 3574 p->last_task_numa_placement = 0; 3575 p->last_sum_exec_runtime = 0; 3576 3577 init_task_work(&p->numa_work, task_numa_work); 3578 3579 /* New address space, reset the preferred nid */ 3580 if (!(clone_flags & CLONE_VM)) { 3581 p->numa_preferred_nid = NUMA_NO_NODE; 3582 return; 3583 } 3584 3585 /* 3586 * New thread, keep existing numa_preferred_nid which should be copied 3587 * already by arch_dup_task_struct but stagger when scans start. 3588 */ 3589 if (mm) { 3590 unsigned int delay; 3591 3592 delay = min_t(unsigned int, task_scan_max(current), 3593 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3594 delay += 2 * TICK_NSEC; 3595 p->node_stamp = delay; 3596 } 3597 } 3598 3599 /* 3600 * Drive the periodic memory faults.. 3601 */ 3602 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3603 { 3604 struct callback_head *work = &curr->numa_work; 3605 u64 period, now; 3606 3607 /* 3608 * We don't care about NUMA placement if we don't have memory. 3609 */ 3610 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3611 return; 3612 3613 /* 3614 * Using runtime rather than walltime has the dual advantage that 3615 * we (mostly) drive the selection from busy threads and that the 3616 * task needs to have done some actual work before we bother with 3617 * NUMA placement. 3618 */ 3619 now = curr->se.sum_exec_runtime; 3620 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3621 3622 if (now > curr->node_stamp + period) { 3623 if (!curr->node_stamp) 3624 curr->numa_scan_period = task_scan_start(curr); 3625 curr->node_stamp += period; 3626 3627 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3628 task_work_add(curr, work, TWA_RESUME); 3629 } 3630 } 3631 3632 static void update_scan_period(struct task_struct *p, int new_cpu) 3633 { 3634 int src_nid = cpu_to_node(task_cpu(p)); 3635 int dst_nid = cpu_to_node(new_cpu); 3636 3637 if (!static_branch_likely(&sched_numa_balancing)) 3638 return; 3639 3640 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3641 return; 3642 3643 if (src_nid == dst_nid) 3644 return; 3645 3646 /* 3647 * Allow resets if faults have been trapped before one scan 3648 * has completed. This is most likely due to a new task that 3649 * is pulled cross-node due to wakeups or load balancing. 3650 */ 3651 if (p->numa_scan_seq) { 3652 /* 3653 * Avoid scan adjustments if moving to the preferred 3654 * node or if the task was not previously running on 3655 * the preferred node. 3656 */ 3657 if (dst_nid == p->numa_preferred_nid || 3658 (p->numa_preferred_nid != NUMA_NO_NODE && 3659 src_nid != p->numa_preferred_nid)) 3660 return; 3661 } 3662 3663 p->numa_scan_period = task_scan_start(p); 3664 } 3665 3666 #else 3667 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3668 { 3669 } 3670 3671 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3672 { 3673 } 3674 3675 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3676 { 3677 } 3678 3679 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3680 { 3681 } 3682 3683 #endif /* CONFIG_NUMA_BALANCING */ 3684 3685 static void 3686 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3687 { 3688 update_load_add(&cfs_rq->load, se->load.weight); 3689 #ifdef CONFIG_SMP 3690 if (entity_is_task(se)) { 3691 struct rq *rq = rq_of(cfs_rq); 3692 3693 account_numa_enqueue(rq, task_of(se)); 3694 list_add(&se->group_node, &rq->cfs_tasks); 3695 } 3696 #endif 3697 cfs_rq->nr_queued++; 3698 } 3699 3700 static void 3701 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3702 { 3703 update_load_sub(&cfs_rq->load, se->load.weight); 3704 #ifdef CONFIG_SMP 3705 if (entity_is_task(se)) { 3706 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3707 list_del_init(&se->group_node); 3708 } 3709 #endif 3710 cfs_rq->nr_queued--; 3711 } 3712 3713 /* 3714 * Signed add and clamp on underflow. 3715 * 3716 * Explicitly do a load-store to ensure the intermediate value never hits 3717 * memory. This allows lockless observations without ever seeing the negative 3718 * values. 3719 */ 3720 #define add_positive(_ptr, _val) do { \ 3721 typeof(_ptr) ptr = (_ptr); \ 3722 typeof(_val) val = (_val); \ 3723 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3724 \ 3725 res = var + val; \ 3726 \ 3727 if (val < 0 && res > var) \ 3728 res = 0; \ 3729 \ 3730 WRITE_ONCE(*ptr, res); \ 3731 } while (0) 3732 3733 /* 3734 * Unsigned subtract and clamp on underflow. 3735 * 3736 * Explicitly do a load-store to ensure the intermediate value never hits 3737 * memory. This allows lockless observations without ever seeing the negative 3738 * values. 3739 */ 3740 #define sub_positive(_ptr, _val) do { \ 3741 typeof(_ptr) ptr = (_ptr); \ 3742 typeof(*ptr) val = (_val); \ 3743 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3744 res = var - val; \ 3745 if (res > var) \ 3746 res = 0; \ 3747 WRITE_ONCE(*ptr, res); \ 3748 } while (0) 3749 3750 /* 3751 * Remove and clamp on negative, from a local variable. 3752 * 3753 * A variant of sub_positive(), which does not use explicit load-store 3754 * and is thus optimized for local variable updates. 3755 */ 3756 #define lsub_positive(_ptr, _val) do { \ 3757 typeof(_ptr) ptr = (_ptr); \ 3758 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3759 } while (0) 3760 3761 #ifdef CONFIG_SMP 3762 static inline void 3763 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3764 { 3765 cfs_rq->avg.load_avg += se->avg.load_avg; 3766 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3767 } 3768 3769 static inline void 3770 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3771 { 3772 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3773 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3774 /* See update_cfs_rq_load_avg() */ 3775 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3776 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3777 } 3778 #else 3779 static inline void 3780 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3781 static inline void 3782 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3783 #endif 3784 3785 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3786 3787 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3788 unsigned long weight) 3789 { 3790 bool curr = cfs_rq->curr == se; 3791 3792 if (se->on_rq) { 3793 /* commit outstanding execution time */ 3794 update_curr(cfs_rq); 3795 update_entity_lag(cfs_rq, se); 3796 se->deadline -= se->vruntime; 3797 se->rel_deadline = 1; 3798 cfs_rq->nr_queued--; 3799 if (!curr) 3800 __dequeue_entity(cfs_rq, se); 3801 update_load_sub(&cfs_rq->load, se->load.weight); 3802 } 3803 dequeue_load_avg(cfs_rq, se); 3804 3805 /* 3806 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3807 * we need to scale se->vlag when w_i changes. 3808 */ 3809 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3810 if (se->rel_deadline) 3811 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3812 3813 update_load_set(&se->load, weight); 3814 3815 #ifdef CONFIG_SMP 3816 do { 3817 u32 divider = get_pelt_divider(&se->avg); 3818 3819 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3820 } while (0); 3821 #endif 3822 3823 enqueue_load_avg(cfs_rq, se); 3824 if (se->on_rq) { 3825 place_entity(cfs_rq, se, 0); 3826 update_load_add(&cfs_rq->load, se->load.weight); 3827 if (!curr) 3828 __enqueue_entity(cfs_rq, se); 3829 cfs_rq->nr_queued++; 3830 3831 /* 3832 * The entity's vruntime has been adjusted, so let's check 3833 * whether the rq-wide min_vruntime needs updated too. Since 3834 * the calculations above require stable min_vruntime rather 3835 * than up-to-date one, we do the update at the end of the 3836 * reweight process. 3837 */ 3838 update_min_vruntime(cfs_rq); 3839 } 3840 } 3841 3842 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3843 const struct load_weight *lw) 3844 { 3845 struct sched_entity *se = &p->se; 3846 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3847 struct load_weight *load = &se->load; 3848 3849 reweight_entity(cfs_rq, se, lw->weight); 3850 load->inv_weight = lw->inv_weight; 3851 } 3852 3853 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3854 3855 #ifdef CONFIG_FAIR_GROUP_SCHED 3856 #ifdef CONFIG_SMP 3857 /* 3858 * All this does is approximate the hierarchical proportion which includes that 3859 * global sum we all love to hate. 3860 * 3861 * That is, the weight of a group entity, is the proportional share of the 3862 * group weight based on the group runqueue weights. That is: 3863 * 3864 * tg->weight * grq->load.weight 3865 * ge->load.weight = ----------------------------- (1) 3866 * \Sum grq->load.weight 3867 * 3868 * Now, because computing that sum is prohibitively expensive to compute (been 3869 * there, done that) we approximate it with this average stuff. The average 3870 * moves slower and therefore the approximation is cheaper and more stable. 3871 * 3872 * So instead of the above, we substitute: 3873 * 3874 * grq->load.weight -> grq->avg.load_avg (2) 3875 * 3876 * which yields the following: 3877 * 3878 * tg->weight * grq->avg.load_avg 3879 * ge->load.weight = ------------------------------ (3) 3880 * tg->load_avg 3881 * 3882 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3883 * 3884 * That is shares_avg, and it is right (given the approximation (2)). 3885 * 3886 * The problem with it is that because the average is slow -- it was designed 3887 * to be exactly that of course -- this leads to transients in boundary 3888 * conditions. In specific, the case where the group was idle and we start the 3889 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3890 * yielding bad latency etc.. 3891 * 3892 * Now, in that special case (1) reduces to: 3893 * 3894 * tg->weight * grq->load.weight 3895 * ge->load.weight = ----------------------------- = tg->weight (4) 3896 * grp->load.weight 3897 * 3898 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3899 * 3900 * So what we do is modify our approximation (3) to approach (4) in the (near) 3901 * UP case, like: 3902 * 3903 * ge->load.weight = 3904 * 3905 * tg->weight * grq->load.weight 3906 * --------------------------------------------------- (5) 3907 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3908 * 3909 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3910 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3911 * 3912 * 3913 * tg->weight * grq->load.weight 3914 * ge->load.weight = ----------------------------- (6) 3915 * tg_load_avg' 3916 * 3917 * Where: 3918 * 3919 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3920 * max(grq->load.weight, grq->avg.load_avg) 3921 * 3922 * And that is shares_weight and is icky. In the (near) UP case it approaches 3923 * (4) while in the normal case it approaches (3). It consistently 3924 * overestimates the ge->load.weight and therefore: 3925 * 3926 * \Sum ge->load.weight >= tg->weight 3927 * 3928 * hence icky! 3929 */ 3930 static long calc_group_shares(struct cfs_rq *cfs_rq) 3931 { 3932 long tg_weight, tg_shares, load, shares; 3933 struct task_group *tg = cfs_rq->tg; 3934 3935 tg_shares = READ_ONCE(tg->shares); 3936 3937 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3938 3939 tg_weight = atomic_long_read(&tg->load_avg); 3940 3941 /* Ensure tg_weight >= load */ 3942 tg_weight -= cfs_rq->tg_load_avg_contrib; 3943 tg_weight += load; 3944 3945 shares = (tg_shares * load); 3946 if (tg_weight) 3947 shares /= tg_weight; 3948 3949 /* 3950 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3951 * of a group with small tg->shares value. It is a floor value which is 3952 * assigned as a minimum load.weight to the sched_entity representing 3953 * the group on a CPU. 3954 * 3955 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3956 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3957 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3958 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3959 * instead of 0. 3960 */ 3961 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3962 } 3963 #endif /* CONFIG_SMP */ 3964 3965 /* 3966 * Recomputes the group entity based on the current state of its group 3967 * runqueue. 3968 */ 3969 static void update_cfs_group(struct sched_entity *se) 3970 { 3971 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3972 long shares; 3973 3974 /* 3975 * When a group becomes empty, preserve its weight. This matters for 3976 * DELAY_DEQUEUE. 3977 */ 3978 if (!gcfs_rq || !gcfs_rq->load.weight) 3979 return; 3980 3981 if (throttled_hierarchy(gcfs_rq)) 3982 return; 3983 3984 #ifndef CONFIG_SMP 3985 shares = READ_ONCE(gcfs_rq->tg->shares); 3986 #else 3987 shares = calc_group_shares(gcfs_rq); 3988 #endif 3989 if (unlikely(se->load.weight != shares)) 3990 reweight_entity(cfs_rq_of(se), se, shares); 3991 } 3992 3993 #else /* CONFIG_FAIR_GROUP_SCHED */ 3994 static inline void update_cfs_group(struct sched_entity *se) 3995 { 3996 } 3997 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3998 3999 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 4000 { 4001 struct rq *rq = rq_of(cfs_rq); 4002 4003 if (&rq->cfs == cfs_rq) { 4004 /* 4005 * There are a few boundary cases this might miss but it should 4006 * get called often enough that that should (hopefully) not be 4007 * a real problem. 4008 * 4009 * It will not get called when we go idle, because the idle 4010 * thread is a different class (!fair), nor will the utilization 4011 * number include things like RT tasks. 4012 * 4013 * As is, the util number is not freq-invariant (we'd have to 4014 * implement arch_scale_freq_capacity() for that). 4015 * 4016 * See cpu_util_cfs(). 4017 */ 4018 cpufreq_update_util(rq, flags); 4019 } 4020 } 4021 4022 #ifdef CONFIG_SMP 4023 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4024 { 4025 if (sa->load_sum) 4026 return false; 4027 4028 if (sa->util_sum) 4029 return false; 4030 4031 if (sa->runnable_sum) 4032 return false; 4033 4034 /* 4035 * _avg must be null when _sum are null because _avg = _sum / divider 4036 * Make sure that rounding and/or propagation of PELT values never 4037 * break this. 4038 */ 4039 WARN_ON_ONCE(sa->load_avg || 4040 sa->util_avg || 4041 sa->runnable_avg); 4042 4043 return true; 4044 } 4045 4046 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4047 { 4048 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4049 cfs_rq->last_update_time_copy); 4050 } 4051 #ifdef CONFIG_FAIR_GROUP_SCHED 4052 /* 4053 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4054 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4055 * bottom-up, we only have to test whether the cfs_rq before us on the list 4056 * is our child. 4057 * If cfs_rq is not on the list, test whether a child needs its to be added to 4058 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4059 */ 4060 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4061 { 4062 struct cfs_rq *prev_cfs_rq; 4063 struct list_head *prev; 4064 struct rq *rq = rq_of(cfs_rq); 4065 4066 if (cfs_rq->on_list) { 4067 prev = cfs_rq->leaf_cfs_rq_list.prev; 4068 } else { 4069 prev = rq->tmp_alone_branch; 4070 } 4071 4072 if (prev == &rq->leaf_cfs_rq_list) 4073 return false; 4074 4075 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4076 4077 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4078 } 4079 4080 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4081 { 4082 if (cfs_rq->load.weight) 4083 return false; 4084 4085 if (!load_avg_is_decayed(&cfs_rq->avg)) 4086 return false; 4087 4088 if (child_cfs_rq_on_list(cfs_rq)) 4089 return false; 4090 4091 return true; 4092 } 4093 4094 /** 4095 * update_tg_load_avg - update the tg's load avg 4096 * @cfs_rq: the cfs_rq whose avg changed 4097 * 4098 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4099 * However, because tg->load_avg is a global value there are performance 4100 * considerations. 4101 * 4102 * In order to avoid having to look at the other cfs_rq's, we use a 4103 * differential update where we store the last value we propagated. This in 4104 * turn allows skipping updates if the differential is 'small'. 4105 * 4106 * Updating tg's load_avg is necessary before update_cfs_share(). 4107 */ 4108 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4109 { 4110 long delta; 4111 u64 now; 4112 4113 /* 4114 * No need to update load_avg for root_task_group as it is not used. 4115 */ 4116 if (cfs_rq->tg == &root_task_group) 4117 return; 4118 4119 /* rq has been offline and doesn't contribute to the share anymore: */ 4120 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4121 return; 4122 4123 /* 4124 * For migration heavy workloads, access to tg->load_avg can be 4125 * unbound. Limit the update rate to at most once per ms. 4126 */ 4127 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4128 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4129 return; 4130 4131 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4132 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4133 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4134 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4135 cfs_rq->last_update_tg_load_avg = now; 4136 } 4137 } 4138 4139 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4140 { 4141 long delta; 4142 u64 now; 4143 4144 /* 4145 * No need to update load_avg for root_task_group, as it is not used. 4146 */ 4147 if (cfs_rq->tg == &root_task_group) 4148 return; 4149 4150 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4151 delta = 0 - cfs_rq->tg_load_avg_contrib; 4152 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4153 cfs_rq->tg_load_avg_contrib = 0; 4154 cfs_rq->last_update_tg_load_avg = now; 4155 } 4156 4157 /* CPU offline callback: */ 4158 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4159 { 4160 struct task_group *tg; 4161 4162 lockdep_assert_rq_held(rq); 4163 4164 /* 4165 * The rq clock has already been updated in 4166 * set_rq_offline(), so we should skip updating 4167 * the rq clock again in unthrottle_cfs_rq(). 4168 */ 4169 rq_clock_start_loop_update(rq); 4170 4171 rcu_read_lock(); 4172 list_for_each_entry_rcu(tg, &task_groups, list) { 4173 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4174 4175 clear_tg_load_avg(cfs_rq); 4176 } 4177 rcu_read_unlock(); 4178 4179 rq_clock_stop_loop_update(rq); 4180 } 4181 4182 /* 4183 * Called within set_task_rq() right before setting a task's CPU. The 4184 * caller only guarantees p->pi_lock is held; no other assumptions, 4185 * including the state of rq->lock, should be made. 4186 */ 4187 void set_task_rq_fair(struct sched_entity *se, 4188 struct cfs_rq *prev, struct cfs_rq *next) 4189 { 4190 u64 p_last_update_time; 4191 u64 n_last_update_time; 4192 4193 if (!sched_feat(ATTACH_AGE_LOAD)) 4194 return; 4195 4196 /* 4197 * We are supposed to update the task to "current" time, then its up to 4198 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4199 * getting what current time is, so simply throw away the out-of-date 4200 * time. This will result in the wakee task is less decayed, but giving 4201 * the wakee more load sounds not bad. 4202 */ 4203 if (!(se->avg.last_update_time && prev)) 4204 return; 4205 4206 p_last_update_time = cfs_rq_last_update_time(prev); 4207 n_last_update_time = cfs_rq_last_update_time(next); 4208 4209 __update_load_avg_blocked_se(p_last_update_time, se); 4210 se->avg.last_update_time = n_last_update_time; 4211 } 4212 4213 /* 4214 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4215 * propagate its contribution. The key to this propagation is the invariant 4216 * that for each group: 4217 * 4218 * ge->avg == grq->avg (1) 4219 * 4220 * _IFF_ we look at the pure running and runnable sums. Because they 4221 * represent the very same entity, just at different points in the hierarchy. 4222 * 4223 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4224 * and simply copies the running/runnable sum over (but still wrong, because 4225 * the group entity and group rq do not have their PELT windows aligned). 4226 * 4227 * However, update_tg_cfs_load() is more complex. So we have: 4228 * 4229 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4230 * 4231 * And since, like util, the runnable part should be directly transferable, 4232 * the following would _appear_ to be the straight forward approach: 4233 * 4234 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4235 * 4236 * And per (1) we have: 4237 * 4238 * ge->avg.runnable_avg == grq->avg.runnable_avg 4239 * 4240 * Which gives: 4241 * 4242 * ge->load.weight * grq->avg.load_avg 4243 * ge->avg.load_avg = ----------------------------------- (4) 4244 * grq->load.weight 4245 * 4246 * Except that is wrong! 4247 * 4248 * Because while for entities historical weight is not important and we 4249 * really only care about our future and therefore can consider a pure 4250 * runnable sum, runqueues can NOT do this. 4251 * 4252 * We specifically want runqueues to have a load_avg that includes 4253 * historical weights. Those represent the blocked load, the load we expect 4254 * to (shortly) return to us. This only works by keeping the weights as 4255 * integral part of the sum. We therefore cannot decompose as per (3). 4256 * 4257 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4258 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4259 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4260 * runnable section of these tasks overlap (or not). If they were to perfectly 4261 * align the rq as a whole would be runnable 2/3 of the time. If however we 4262 * always have at least 1 runnable task, the rq as a whole is always runnable. 4263 * 4264 * So we'll have to approximate.. :/ 4265 * 4266 * Given the constraint: 4267 * 4268 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4269 * 4270 * We can construct a rule that adds runnable to a rq by assuming minimal 4271 * overlap. 4272 * 4273 * On removal, we'll assume each task is equally runnable; which yields: 4274 * 4275 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4276 * 4277 * XXX: only do this for the part of runnable > running ? 4278 * 4279 */ 4280 static inline void 4281 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4282 { 4283 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4284 u32 new_sum, divider; 4285 4286 /* Nothing to update */ 4287 if (!delta_avg) 4288 return; 4289 4290 /* 4291 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4292 * See ___update_load_avg() for details. 4293 */ 4294 divider = get_pelt_divider(&cfs_rq->avg); 4295 4296 4297 /* Set new sched_entity's utilization */ 4298 se->avg.util_avg = gcfs_rq->avg.util_avg; 4299 new_sum = se->avg.util_avg * divider; 4300 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4301 se->avg.util_sum = new_sum; 4302 4303 /* Update parent cfs_rq utilization */ 4304 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4305 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4306 4307 /* See update_cfs_rq_load_avg() */ 4308 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4309 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4310 } 4311 4312 static inline void 4313 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4314 { 4315 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4316 u32 new_sum, divider; 4317 4318 /* Nothing to update */ 4319 if (!delta_avg) 4320 return; 4321 4322 /* 4323 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4324 * See ___update_load_avg() for details. 4325 */ 4326 divider = get_pelt_divider(&cfs_rq->avg); 4327 4328 /* Set new sched_entity's runnable */ 4329 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4330 new_sum = se->avg.runnable_avg * divider; 4331 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4332 se->avg.runnable_sum = new_sum; 4333 4334 /* Update parent cfs_rq runnable */ 4335 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4336 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4337 /* See update_cfs_rq_load_avg() */ 4338 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4339 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4340 } 4341 4342 static inline void 4343 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4344 { 4345 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4346 unsigned long load_avg; 4347 u64 load_sum = 0; 4348 s64 delta_sum; 4349 u32 divider; 4350 4351 if (!runnable_sum) 4352 return; 4353 4354 gcfs_rq->prop_runnable_sum = 0; 4355 4356 /* 4357 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4358 * See ___update_load_avg() for details. 4359 */ 4360 divider = get_pelt_divider(&cfs_rq->avg); 4361 4362 if (runnable_sum >= 0) { 4363 /* 4364 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4365 * the CPU is saturated running == runnable. 4366 */ 4367 runnable_sum += se->avg.load_sum; 4368 runnable_sum = min_t(long, runnable_sum, divider); 4369 } else { 4370 /* 4371 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4372 * assuming all tasks are equally runnable. 4373 */ 4374 if (scale_load_down(gcfs_rq->load.weight)) { 4375 load_sum = div_u64(gcfs_rq->avg.load_sum, 4376 scale_load_down(gcfs_rq->load.weight)); 4377 } 4378 4379 /* But make sure to not inflate se's runnable */ 4380 runnable_sum = min(se->avg.load_sum, load_sum); 4381 } 4382 4383 /* 4384 * runnable_sum can't be lower than running_sum 4385 * Rescale running sum to be in the same range as runnable sum 4386 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4387 * runnable_sum is in [0 : LOAD_AVG_MAX] 4388 */ 4389 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4390 runnable_sum = max(runnable_sum, running_sum); 4391 4392 load_sum = se_weight(se) * runnable_sum; 4393 load_avg = div_u64(load_sum, divider); 4394 4395 delta_avg = load_avg - se->avg.load_avg; 4396 if (!delta_avg) 4397 return; 4398 4399 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4400 4401 se->avg.load_sum = runnable_sum; 4402 se->avg.load_avg = load_avg; 4403 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4404 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4405 /* See update_cfs_rq_load_avg() */ 4406 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4407 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4408 } 4409 4410 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4411 { 4412 cfs_rq->propagate = 1; 4413 cfs_rq->prop_runnable_sum += runnable_sum; 4414 } 4415 4416 /* Update task and its cfs_rq load average */ 4417 static inline int propagate_entity_load_avg(struct sched_entity *se) 4418 { 4419 struct cfs_rq *cfs_rq, *gcfs_rq; 4420 4421 if (entity_is_task(se)) 4422 return 0; 4423 4424 gcfs_rq = group_cfs_rq(se); 4425 if (!gcfs_rq->propagate) 4426 return 0; 4427 4428 gcfs_rq->propagate = 0; 4429 4430 cfs_rq = cfs_rq_of(se); 4431 4432 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4433 4434 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4435 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4436 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4437 4438 trace_pelt_cfs_tp(cfs_rq); 4439 trace_pelt_se_tp(se); 4440 4441 return 1; 4442 } 4443 4444 /* 4445 * Check if we need to update the load and the utilization of a blocked 4446 * group_entity: 4447 */ 4448 static inline bool skip_blocked_update(struct sched_entity *se) 4449 { 4450 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4451 4452 /* 4453 * If sched_entity still have not zero load or utilization, we have to 4454 * decay it: 4455 */ 4456 if (se->avg.load_avg || se->avg.util_avg) 4457 return false; 4458 4459 /* 4460 * If there is a pending propagation, we have to update the load and 4461 * the utilization of the sched_entity: 4462 */ 4463 if (gcfs_rq->propagate) 4464 return false; 4465 4466 /* 4467 * Otherwise, the load and the utilization of the sched_entity is 4468 * already zero and there is no pending propagation, so it will be a 4469 * waste of time to try to decay it: 4470 */ 4471 return true; 4472 } 4473 4474 #else /* CONFIG_FAIR_GROUP_SCHED */ 4475 4476 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4477 4478 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4479 4480 static inline int propagate_entity_load_avg(struct sched_entity *se) 4481 { 4482 return 0; 4483 } 4484 4485 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4486 4487 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4488 4489 #ifdef CONFIG_NO_HZ_COMMON 4490 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4491 { 4492 u64 throttled = 0, now, lut; 4493 struct cfs_rq *cfs_rq; 4494 struct rq *rq; 4495 bool is_idle; 4496 4497 if (load_avg_is_decayed(&se->avg)) 4498 return; 4499 4500 cfs_rq = cfs_rq_of(se); 4501 rq = rq_of(cfs_rq); 4502 4503 rcu_read_lock(); 4504 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4505 rcu_read_unlock(); 4506 4507 /* 4508 * The lag estimation comes with a cost we don't want to pay all the 4509 * time. Hence, limiting to the case where the source CPU is idle and 4510 * we know we are at the greatest risk to have an outdated clock. 4511 */ 4512 if (!is_idle) 4513 return; 4514 4515 /* 4516 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4517 * 4518 * last_update_time (the cfs_rq's last_update_time) 4519 * = cfs_rq_clock_pelt()@cfs_rq_idle 4520 * = rq_clock_pelt()@cfs_rq_idle 4521 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4522 * 4523 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4524 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4525 * 4526 * rq_idle_lag (delta between now and rq's update) 4527 * = sched_clock_cpu() - rq_clock()@rq_idle 4528 * 4529 * We can then write: 4530 * 4531 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4532 * sched_clock_cpu() - rq_clock()@rq_idle 4533 * Where: 4534 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4535 * rq_clock()@rq_idle is rq->clock_idle 4536 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4537 * is cfs_rq->throttled_pelt_idle 4538 */ 4539 4540 #ifdef CONFIG_CFS_BANDWIDTH 4541 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4542 /* The clock has been stopped for throttling */ 4543 if (throttled == U64_MAX) 4544 return; 4545 #endif 4546 now = u64_u32_load(rq->clock_pelt_idle); 4547 /* 4548 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4549 * is observed the old clock_pelt_idle value and the new clock_idle, 4550 * which lead to an underestimation. The opposite would lead to an 4551 * overestimation. 4552 */ 4553 smp_rmb(); 4554 lut = cfs_rq_last_update_time(cfs_rq); 4555 4556 now -= throttled; 4557 if (now < lut) 4558 /* 4559 * cfs_rq->avg.last_update_time is more recent than our 4560 * estimation, let's use it. 4561 */ 4562 now = lut; 4563 else 4564 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4565 4566 __update_load_avg_blocked_se(now, se); 4567 } 4568 #else 4569 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4570 #endif 4571 4572 /** 4573 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4574 * @now: current time, as per cfs_rq_clock_pelt() 4575 * @cfs_rq: cfs_rq to update 4576 * 4577 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4578 * avg. The immediate corollary is that all (fair) tasks must be attached. 4579 * 4580 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4581 * 4582 * Return: true if the load decayed or we removed load. 4583 * 4584 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4585 * call update_tg_load_avg() when this function returns true. 4586 */ 4587 static inline int 4588 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4589 { 4590 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4591 struct sched_avg *sa = &cfs_rq->avg; 4592 int decayed = 0; 4593 4594 if (cfs_rq->removed.nr) { 4595 unsigned long r; 4596 u32 divider = get_pelt_divider(&cfs_rq->avg); 4597 4598 raw_spin_lock(&cfs_rq->removed.lock); 4599 swap(cfs_rq->removed.util_avg, removed_util); 4600 swap(cfs_rq->removed.load_avg, removed_load); 4601 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4602 cfs_rq->removed.nr = 0; 4603 raw_spin_unlock(&cfs_rq->removed.lock); 4604 4605 r = removed_load; 4606 sub_positive(&sa->load_avg, r); 4607 sub_positive(&sa->load_sum, r * divider); 4608 /* See sa->util_sum below */ 4609 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4610 4611 r = removed_util; 4612 sub_positive(&sa->util_avg, r); 4613 sub_positive(&sa->util_sum, r * divider); 4614 /* 4615 * Because of rounding, se->util_sum might ends up being +1 more than 4616 * cfs->util_sum. Although this is not a problem by itself, detaching 4617 * a lot of tasks with the rounding problem between 2 updates of 4618 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4619 * cfs_util_avg is not. 4620 * Check that util_sum is still above its lower bound for the new 4621 * util_avg. Given that period_contrib might have moved since the last 4622 * sync, we are only sure that util_sum must be above or equal to 4623 * util_avg * minimum possible divider 4624 */ 4625 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4626 4627 r = removed_runnable; 4628 sub_positive(&sa->runnable_avg, r); 4629 sub_positive(&sa->runnable_sum, r * divider); 4630 /* See sa->util_sum above */ 4631 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4632 sa->runnable_avg * PELT_MIN_DIVIDER); 4633 4634 /* 4635 * removed_runnable is the unweighted version of removed_load so we 4636 * can use it to estimate removed_load_sum. 4637 */ 4638 add_tg_cfs_propagate(cfs_rq, 4639 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4640 4641 decayed = 1; 4642 } 4643 4644 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4645 u64_u32_store_copy(sa->last_update_time, 4646 cfs_rq->last_update_time_copy, 4647 sa->last_update_time); 4648 return decayed; 4649 } 4650 4651 /** 4652 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4653 * @cfs_rq: cfs_rq to attach to 4654 * @se: sched_entity to attach 4655 * 4656 * Must call update_cfs_rq_load_avg() before this, since we rely on 4657 * cfs_rq->avg.last_update_time being current. 4658 */ 4659 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4660 { 4661 /* 4662 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4663 * See ___update_load_avg() for details. 4664 */ 4665 u32 divider = get_pelt_divider(&cfs_rq->avg); 4666 4667 /* 4668 * When we attach the @se to the @cfs_rq, we must align the decay 4669 * window because without that, really weird and wonderful things can 4670 * happen. 4671 * 4672 * XXX illustrate 4673 */ 4674 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4675 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4676 4677 /* 4678 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4679 * period_contrib. This isn't strictly correct, but since we're 4680 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4681 * _sum a little. 4682 */ 4683 se->avg.util_sum = se->avg.util_avg * divider; 4684 4685 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4686 4687 se->avg.load_sum = se->avg.load_avg * divider; 4688 if (se_weight(se) < se->avg.load_sum) 4689 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4690 else 4691 se->avg.load_sum = 1; 4692 4693 enqueue_load_avg(cfs_rq, se); 4694 cfs_rq->avg.util_avg += se->avg.util_avg; 4695 cfs_rq->avg.util_sum += se->avg.util_sum; 4696 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4697 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4698 4699 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4700 4701 cfs_rq_util_change(cfs_rq, 0); 4702 4703 trace_pelt_cfs_tp(cfs_rq); 4704 } 4705 4706 /** 4707 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4708 * @cfs_rq: cfs_rq to detach from 4709 * @se: sched_entity to detach 4710 * 4711 * Must call update_cfs_rq_load_avg() before this, since we rely on 4712 * cfs_rq->avg.last_update_time being current. 4713 */ 4714 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4715 { 4716 dequeue_load_avg(cfs_rq, se); 4717 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4718 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4719 /* See update_cfs_rq_load_avg() */ 4720 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4721 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4722 4723 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4724 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4725 /* See update_cfs_rq_load_avg() */ 4726 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4727 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4728 4729 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4730 4731 cfs_rq_util_change(cfs_rq, 0); 4732 4733 trace_pelt_cfs_tp(cfs_rq); 4734 } 4735 4736 /* 4737 * Optional action to be done while updating the load average 4738 */ 4739 #define UPDATE_TG 0x1 4740 #define SKIP_AGE_LOAD 0x2 4741 #define DO_ATTACH 0x4 4742 #define DO_DETACH 0x8 4743 4744 /* Update task and its cfs_rq load average */ 4745 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4746 { 4747 u64 now = cfs_rq_clock_pelt(cfs_rq); 4748 int decayed; 4749 4750 /* 4751 * Track task load average for carrying it to new CPU after migrated, and 4752 * track group sched_entity load average for task_h_load calculation in migration 4753 */ 4754 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4755 __update_load_avg_se(now, cfs_rq, se); 4756 4757 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4758 decayed |= propagate_entity_load_avg(se); 4759 4760 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4761 4762 /* 4763 * DO_ATTACH means we're here from enqueue_entity(). 4764 * !last_update_time means we've passed through 4765 * migrate_task_rq_fair() indicating we migrated. 4766 * 4767 * IOW we're enqueueing a task on a new CPU. 4768 */ 4769 attach_entity_load_avg(cfs_rq, se); 4770 update_tg_load_avg(cfs_rq); 4771 4772 } else if (flags & DO_DETACH) { 4773 /* 4774 * DO_DETACH means we're here from dequeue_entity() 4775 * and we are migrating task out of the CPU. 4776 */ 4777 detach_entity_load_avg(cfs_rq, se); 4778 update_tg_load_avg(cfs_rq); 4779 } else if (decayed) { 4780 cfs_rq_util_change(cfs_rq, 0); 4781 4782 if (flags & UPDATE_TG) 4783 update_tg_load_avg(cfs_rq); 4784 } 4785 } 4786 4787 /* 4788 * Synchronize entity load avg of dequeued entity without locking 4789 * the previous rq. 4790 */ 4791 static void sync_entity_load_avg(struct sched_entity *se) 4792 { 4793 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4794 u64 last_update_time; 4795 4796 last_update_time = cfs_rq_last_update_time(cfs_rq); 4797 __update_load_avg_blocked_se(last_update_time, se); 4798 } 4799 4800 /* 4801 * Task first catches up with cfs_rq, and then subtract 4802 * itself from the cfs_rq (task must be off the queue now). 4803 */ 4804 static void remove_entity_load_avg(struct sched_entity *se) 4805 { 4806 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4807 unsigned long flags; 4808 4809 /* 4810 * tasks cannot exit without having gone through wake_up_new_task() -> 4811 * enqueue_task_fair() which will have added things to the cfs_rq, 4812 * so we can remove unconditionally. 4813 */ 4814 4815 sync_entity_load_avg(se); 4816 4817 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4818 ++cfs_rq->removed.nr; 4819 cfs_rq->removed.util_avg += se->avg.util_avg; 4820 cfs_rq->removed.load_avg += se->avg.load_avg; 4821 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4822 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4823 } 4824 4825 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4826 { 4827 return cfs_rq->avg.runnable_avg; 4828 } 4829 4830 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4831 { 4832 return cfs_rq->avg.load_avg; 4833 } 4834 4835 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4836 4837 static inline unsigned long task_util(struct task_struct *p) 4838 { 4839 return READ_ONCE(p->se.avg.util_avg); 4840 } 4841 4842 static inline unsigned long task_runnable(struct task_struct *p) 4843 { 4844 return READ_ONCE(p->se.avg.runnable_avg); 4845 } 4846 4847 static inline unsigned long _task_util_est(struct task_struct *p) 4848 { 4849 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4850 } 4851 4852 static inline unsigned long task_util_est(struct task_struct *p) 4853 { 4854 return max(task_util(p), _task_util_est(p)); 4855 } 4856 4857 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4858 struct task_struct *p) 4859 { 4860 unsigned int enqueued; 4861 4862 if (!sched_feat(UTIL_EST)) 4863 return; 4864 4865 /* Update root cfs_rq's estimated utilization */ 4866 enqueued = cfs_rq->avg.util_est; 4867 enqueued += _task_util_est(p); 4868 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4869 4870 trace_sched_util_est_cfs_tp(cfs_rq); 4871 } 4872 4873 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4874 struct task_struct *p) 4875 { 4876 unsigned int enqueued; 4877 4878 if (!sched_feat(UTIL_EST)) 4879 return; 4880 4881 /* Update root cfs_rq's estimated utilization */ 4882 enqueued = cfs_rq->avg.util_est; 4883 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4884 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4885 4886 trace_sched_util_est_cfs_tp(cfs_rq); 4887 } 4888 4889 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4890 4891 static inline void util_est_update(struct cfs_rq *cfs_rq, 4892 struct task_struct *p, 4893 bool task_sleep) 4894 { 4895 unsigned int ewma, dequeued, last_ewma_diff; 4896 4897 if (!sched_feat(UTIL_EST)) 4898 return; 4899 4900 /* 4901 * Skip update of task's estimated utilization when the task has not 4902 * yet completed an activation, e.g. being migrated. 4903 */ 4904 if (!task_sleep) 4905 return; 4906 4907 /* Get current estimate of utilization */ 4908 ewma = READ_ONCE(p->se.avg.util_est); 4909 4910 /* 4911 * If the PELT values haven't changed since enqueue time, 4912 * skip the util_est update. 4913 */ 4914 if (ewma & UTIL_AVG_UNCHANGED) 4915 return; 4916 4917 /* Get utilization at dequeue */ 4918 dequeued = task_util(p); 4919 4920 /* 4921 * Reset EWMA on utilization increases, the moving average is used only 4922 * to smooth utilization decreases. 4923 */ 4924 if (ewma <= dequeued) { 4925 ewma = dequeued; 4926 goto done; 4927 } 4928 4929 /* 4930 * Skip update of task's estimated utilization when its members are 4931 * already ~1% close to its last activation value. 4932 */ 4933 last_ewma_diff = ewma - dequeued; 4934 if (last_ewma_diff < UTIL_EST_MARGIN) 4935 goto done; 4936 4937 /* 4938 * To avoid underestimate of task utilization, skip updates of EWMA if 4939 * we cannot grant that thread got all CPU time it wanted. 4940 */ 4941 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4942 goto done; 4943 4944 4945 /* 4946 * Update Task's estimated utilization 4947 * 4948 * When *p completes an activation we can consolidate another sample 4949 * of the task size. This is done by using this value to update the 4950 * Exponential Weighted Moving Average (EWMA): 4951 * 4952 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4953 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4954 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4955 * = w * ( -last_ewma_diff ) + ewma(t-1) 4956 * = w * (-last_ewma_diff + ewma(t-1) / w) 4957 * 4958 * Where 'w' is the weight of new samples, which is configured to be 4959 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4960 */ 4961 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4962 ewma -= last_ewma_diff; 4963 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4964 done: 4965 ewma |= UTIL_AVG_UNCHANGED; 4966 WRITE_ONCE(p->se.avg.util_est, ewma); 4967 4968 trace_sched_util_est_se_tp(&p->se); 4969 } 4970 4971 static inline unsigned long get_actual_cpu_capacity(int cpu) 4972 { 4973 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4974 4975 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4976 4977 return capacity; 4978 } 4979 4980 static inline int util_fits_cpu(unsigned long util, 4981 unsigned long uclamp_min, 4982 unsigned long uclamp_max, 4983 int cpu) 4984 { 4985 unsigned long capacity = capacity_of(cpu); 4986 unsigned long capacity_orig; 4987 bool fits, uclamp_max_fits; 4988 4989 /* 4990 * Check if the real util fits without any uclamp boost/cap applied. 4991 */ 4992 fits = fits_capacity(util, capacity); 4993 4994 if (!uclamp_is_used()) 4995 return fits; 4996 4997 /* 4998 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4999 * uclamp_max. We only care about capacity pressure (by using 5000 * capacity_of()) for comparing against the real util. 5001 * 5002 * If a task is boosted to 1024 for example, we don't want a tiny 5003 * pressure to skew the check whether it fits a CPU or not. 5004 * 5005 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5006 * should fit a little cpu even if there's some pressure. 5007 * 5008 * Only exception is for HW or cpufreq pressure since it has a direct impact 5009 * on available OPP of the system. 5010 * 5011 * We honour it for uclamp_min only as a drop in performance level 5012 * could result in not getting the requested minimum performance level. 5013 * 5014 * For uclamp_max, we can tolerate a drop in performance level as the 5015 * goal is to cap the task. So it's okay if it's getting less. 5016 */ 5017 capacity_orig = arch_scale_cpu_capacity(cpu); 5018 5019 /* 5020 * We want to force a task to fit a cpu as implied by uclamp_max. 5021 * But we do have some corner cases to cater for.. 5022 * 5023 * 5024 * C=z 5025 * | ___ 5026 * | C=y | | 5027 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5028 * | C=x | | | | 5029 * | ___ | | | | 5030 * | | | | | | | (util somewhere in this region) 5031 * | | | | | | | 5032 * | | | | | | | 5033 * +---------------------------------------- 5034 * CPU0 CPU1 CPU2 5035 * 5036 * In the above example if a task is capped to a specific performance 5037 * point, y, then when: 5038 * 5039 * * util = 80% of x then it does not fit on CPU0 and should migrate 5040 * to CPU1 5041 * * util = 80% of y then it is forced to fit on CPU1 to honour 5042 * uclamp_max request. 5043 * 5044 * which is what we're enforcing here. A task always fits if 5045 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5046 * the normal upmigration rules should withhold still. 5047 * 5048 * Only exception is when we are on max capacity, then we need to be 5049 * careful not to block overutilized state. This is so because: 5050 * 5051 * 1. There's no concept of capping at max_capacity! We can't go 5052 * beyond this performance level anyway. 5053 * 2. The system is being saturated when we're operating near 5054 * max capacity, it doesn't make sense to block overutilized. 5055 */ 5056 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5057 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5058 fits = fits || uclamp_max_fits; 5059 5060 /* 5061 * 5062 * C=z 5063 * | ___ (region a, capped, util >= uclamp_max) 5064 * | C=y | | 5065 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5066 * | C=x | | | | 5067 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5068 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5069 * | | | | | | | 5070 * | | | | | | | (region c, boosted, util < uclamp_min) 5071 * +---------------------------------------- 5072 * CPU0 CPU1 CPU2 5073 * 5074 * a) If util > uclamp_max, then we're capped, we don't care about 5075 * actual fitness value here. We only care if uclamp_max fits 5076 * capacity without taking margin/pressure into account. 5077 * See comment above. 5078 * 5079 * b) If uclamp_min <= util <= uclamp_max, then the normal 5080 * fits_capacity() rules apply. Except we need to ensure that we 5081 * enforce we remain within uclamp_max, see comment above. 5082 * 5083 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5084 * need to take into account the boosted value fits the CPU without 5085 * taking margin/pressure into account. 5086 * 5087 * Cases (a) and (b) are handled in the 'fits' variable already. We 5088 * just need to consider an extra check for case (c) after ensuring we 5089 * handle the case uclamp_min > uclamp_max. 5090 */ 5091 uclamp_min = min(uclamp_min, uclamp_max); 5092 if (fits && (util < uclamp_min) && 5093 (uclamp_min > get_actual_cpu_capacity(cpu))) 5094 return -1; 5095 5096 return fits; 5097 } 5098 5099 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5100 { 5101 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5102 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5103 unsigned long util = task_util_est(p); 5104 /* 5105 * Return true only if the cpu fully fits the task requirements, which 5106 * include the utilization but also the performance hints. 5107 */ 5108 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5109 } 5110 5111 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5112 { 5113 int cpu = cpu_of(rq); 5114 5115 if (!sched_asym_cpucap_active()) 5116 return; 5117 5118 /* 5119 * Affinity allows us to go somewhere higher? Or are we on biggest 5120 * available CPU already? Or do we fit into this CPU ? 5121 */ 5122 if (!p || (p->nr_cpus_allowed == 1) || 5123 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5124 task_fits_cpu(p, cpu)) { 5125 5126 rq->misfit_task_load = 0; 5127 return; 5128 } 5129 5130 /* 5131 * Make sure that misfit_task_load will not be null even if 5132 * task_h_load() returns 0. 5133 */ 5134 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5135 } 5136 5137 #else /* CONFIG_SMP */ 5138 5139 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5140 { 5141 return !cfs_rq->nr_queued; 5142 } 5143 5144 #define UPDATE_TG 0x0 5145 #define SKIP_AGE_LOAD 0x0 5146 #define DO_ATTACH 0x0 5147 #define DO_DETACH 0x0 5148 5149 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5150 { 5151 cfs_rq_util_change(cfs_rq, 0); 5152 } 5153 5154 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5155 5156 static inline void 5157 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5158 static inline void 5159 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5160 5161 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5162 { 5163 return 0; 5164 } 5165 5166 static inline void 5167 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5168 5169 static inline void 5170 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5171 5172 static inline void 5173 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5174 bool task_sleep) {} 5175 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5176 5177 #endif /* CONFIG_SMP */ 5178 5179 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5180 { 5181 struct sched_entity *se = &p->se; 5182 5183 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5184 if (attr->sched_runtime) { 5185 se->custom_slice = 1; 5186 se->slice = clamp_t(u64, attr->sched_runtime, 5187 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5188 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5189 } else { 5190 se->custom_slice = 0; 5191 se->slice = sysctl_sched_base_slice; 5192 } 5193 } 5194 5195 static void 5196 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5197 { 5198 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5199 s64 lag = 0; 5200 5201 if (!se->custom_slice) 5202 se->slice = sysctl_sched_base_slice; 5203 vslice = calc_delta_fair(se->slice, se); 5204 5205 /* 5206 * Due to how V is constructed as the weighted average of entities, 5207 * adding tasks with positive lag, or removing tasks with negative lag 5208 * will move 'time' backwards, this can screw around with the lag of 5209 * other tasks. 5210 * 5211 * EEVDF: placement strategy #1 / #2 5212 */ 5213 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5214 struct sched_entity *curr = cfs_rq->curr; 5215 unsigned long load; 5216 5217 lag = se->vlag; 5218 5219 /* 5220 * If we want to place a task and preserve lag, we have to 5221 * consider the effect of the new entity on the weighted 5222 * average and compensate for this, otherwise lag can quickly 5223 * evaporate. 5224 * 5225 * Lag is defined as: 5226 * 5227 * lag_i = S - s_i = w_i * (V - v_i) 5228 * 5229 * To avoid the 'w_i' term all over the place, we only track 5230 * the virtual lag: 5231 * 5232 * vl_i = V - v_i <=> v_i = V - vl_i 5233 * 5234 * And we take V to be the weighted average of all v: 5235 * 5236 * V = (\Sum w_j*v_j) / W 5237 * 5238 * Where W is: \Sum w_j 5239 * 5240 * Then, the weighted average after adding an entity with lag 5241 * vl_i is given by: 5242 * 5243 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5244 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5245 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5246 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5247 * = V - w_i*vl_i / (W + w_i) 5248 * 5249 * And the actual lag after adding an entity with vl_i is: 5250 * 5251 * vl'_i = V' - v_i 5252 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5253 * = vl_i - w_i*vl_i / (W + w_i) 5254 * 5255 * Which is strictly less than vl_i. So in order to preserve lag 5256 * we should inflate the lag before placement such that the 5257 * effective lag after placement comes out right. 5258 * 5259 * As such, invert the above relation for vl'_i to get the vl_i 5260 * we need to use such that the lag after placement is the lag 5261 * we computed before dequeue. 5262 * 5263 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5264 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5265 * 5266 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5267 * = W*vl_i 5268 * 5269 * vl_i = (W + w_i)*vl'_i / W 5270 */ 5271 load = cfs_rq->avg_load; 5272 if (curr && curr->on_rq) 5273 load += scale_load_down(curr->load.weight); 5274 5275 lag *= load + scale_load_down(se->load.weight); 5276 if (WARN_ON_ONCE(!load)) 5277 load = 1; 5278 lag = div_s64(lag, load); 5279 } 5280 5281 se->vruntime = vruntime - lag; 5282 5283 if (se->rel_deadline) { 5284 se->deadline += se->vruntime; 5285 se->rel_deadline = 0; 5286 return; 5287 } 5288 5289 /* 5290 * When joining the competition; the existing tasks will be, 5291 * on average, halfway through their slice, as such start tasks 5292 * off with half a slice to ease into the competition. 5293 */ 5294 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5295 vslice /= 2; 5296 5297 /* 5298 * EEVDF: vd_i = ve_i + r_i/w_i 5299 */ 5300 se->deadline = se->vruntime + vslice; 5301 } 5302 5303 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5304 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5305 5306 static void 5307 requeue_delayed_entity(struct sched_entity *se); 5308 5309 static void 5310 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5311 { 5312 bool curr = cfs_rq->curr == se; 5313 5314 /* 5315 * If we're the current task, we must renormalise before calling 5316 * update_curr(). 5317 */ 5318 if (curr) 5319 place_entity(cfs_rq, se, flags); 5320 5321 update_curr(cfs_rq); 5322 5323 /* 5324 * When enqueuing a sched_entity, we must: 5325 * - Update loads to have both entity and cfs_rq synced with now. 5326 * - For group_entity, update its runnable_weight to reflect the new 5327 * h_nr_runnable of its group cfs_rq. 5328 * - For group_entity, update its weight to reflect the new share of 5329 * its group cfs_rq 5330 * - Add its new weight to cfs_rq->load.weight 5331 */ 5332 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5333 se_update_runnable(se); 5334 /* 5335 * XXX update_load_avg() above will have attached us to the pelt sum; 5336 * but update_cfs_group() here will re-adjust the weight and have to 5337 * undo/redo all that. Seems wasteful. 5338 */ 5339 update_cfs_group(se); 5340 5341 /* 5342 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5343 * we can place the entity. 5344 */ 5345 if (!curr) 5346 place_entity(cfs_rq, se, flags); 5347 5348 account_entity_enqueue(cfs_rq, se); 5349 5350 /* Entity has migrated, no longer consider this task hot */ 5351 if (flags & ENQUEUE_MIGRATED) 5352 se->exec_start = 0; 5353 5354 check_schedstat_required(); 5355 update_stats_enqueue_fair(cfs_rq, se, flags); 5356 if (!curr) 5357 __enqueue_entity(cfs_rq, se); 5358 se->on_rq = 1; 5359 5360 if (cfs_rq->nr_queued == 1) { 5361 check_enqueue_throttle(cfs_rq); 5362 if (!throttled_hierarchy(cfs_rq)) { 5363 list_add_leaf_cfs_rq(cfs_rq); 5364 } else { 5365 #ifdef CONFIG_CFS_BANDWIDTH 5366 struct rq *rq = rq_of(cfs_rq); 5367 5368 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5369 cfs_rq->throttled_clock = rq_clock(rq); 5370 if (!cfs_rq->throttled_clock_self) 5371 cfs_rq->throttled_clock_self = rq_clock(rq); 5372 #endif 5373 } 5374 } 5375 } 5376 5377 static void __clear_buddies_next(struct sched_entity *se) 5378 { 5379 for_each_sched_entity(se) { 5380 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5381 if (cfs_rq->next != se) 5382 break; 5383 5384 cfs_rq->next = NULL; 5385 } 5386 } 5387 5388 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5389 { 5390 if (cfs_rq->next == se) 5391 __clear_buddies_next(se); 5392 } 5393 5394 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5395 5396 static void set_delayed(struct sched_entity *se) 5397 { 5398 se->sched_delayed = 1; 5399 5400 /* 5401 * Delayed se of cfs_rq have no tasks queued on them. 5402 * Do not adjust h_nr_runnable since dequeue_entities() 5403 * will account it for blocked tasks. 5404 */ 5405 if (!entity_is_task(se)) 5406 return; 5407 5408 for_each_sched_entity(se) { 5409 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5410 5411 cfs_rq->h_nr_runnable--; 5412 if (cfs_rq_throttled(cfs_rq)) 5413 break; 5414 } 5415 } 5416 5417 static void clear_delayed(struct sched_entity *se) 5418 { 5419 se->sched_delayed = 0; 5420 5421 /* 5422 * Delayed se of cfs_rq have no tasks queued on them. 5423 * Do not adjust h_nr_runnable since a dequeue has 5424 * already accounted for it or an enqueue of a task 5425 * below it will account for it in enqueue_task_fair(). 5426 */ 5427 if (!entity_is_task(se)) 5428 return; 5429 5430 for_each_sched_entity(se) { 5431 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5432 5433 cfs_rq->h_nr_runnable++; 5434 if (cfs_rq_throttled(cfs_rq)) 5435 break; 5436 } 5437 } 5438 5439 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5440 { 5441 clear_delayed(se); 5442 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5443 se->vlag = 0; 5444 } 5445 5446 static bool 5447 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5448 { 5449 bool sleep = flags & DEQUEUE_SLEEP; 5450 int action = UPDATE_TG; 5451 5452 update_curr(cfs_rq); 5453 clear_buddies(cfs_rq, se); 5454 5455 if (flags & DEQUEUE_DELAYED) { 5456 WARN_ON_ONCE(!se->sched_delayed); 5457 } else { 5458 bool delay = sleep; 5459 /* 5460 * DELAY_DEQUEUE relies on spurious wakeups, special task 5461 * states must not suffer spurious wakeups, excempt them. 5462 */ 5463 if (flags & DEQUEUE_SPECIAL) 5464 delay = false; 5465 5466 WARN_ON_ONCE(delay && se->sched_delayed); 5467 5468 if (sched_feat(DELAY_DEQUEUE) && delay && 5469 !entity_eligible(cfs_rq, se)) { 5470 update_load_avg(cfs_rq, se, 0); 5471 set_delayed(se); 5472 return false; 5473 } 5474 } 5475 5476 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5477 action |= DO_DETACH; 5478 5479 /* 5480 * When dequeuing a sched_entity, we must: 5481 * - Update loads to have both entity and cfs_rq synced with now. 5482 * - For group_entity, update its runnable_weight to reflect the new 5483 * h_nr_runnable of its group cfs_rq. 5484 * - Subtract its previous weight from cfs_rq->load.weight. 5485 * - For group entity, update its weight to reflect the new share 5486 * of its group cfs_rq. 5487 */ 5488 update_load_avg(cfs_rq, se, action); 5489 se_update_runnable(se); 5490 5491 update_stats_dequeue_fair(cfs_rq, se, flags); 5492 5493 update_entity_lag(cfs_rq, se); 5494 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5495 se->deadline -= se->vruntime; 5496 se->rel_deadline = 1; 5497 } 5498 5499 if (se != cfs_rq->curr) 5500 __dequeue_entity(cfs_rq, se); 5501 se->on_rq = 0; 5502 account_entity_dequeue(cfs_rq, se); 5503 5504 /* return excess runtime on last dequeue */ 5505 return_cfs_rq_runtime(cfs_rq); 5506 5507 update_cfs_group(se); 5508 5509 /* 5510 * Now advance min_vruntime if @se was the entity holding it back, 5511 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5512 * put back on, and if we advance min_vruntime, we'll be placed back 5513 * further than we started -- i.e. we'll be penalized. 5514 */ 5515 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5516 update_min_vruntime(cfs_rq); 5517 5518 if (flags & DEQUEUE_DELAYED) 5519 finish_delayed_dequeue_entity(se); 5520 5521 if (cfs_rq->nr_queued == 0) 5522 update_idle_cfs_rq_clock_pelt(cfs_rq); 5523 5524 return true; 5525 } 5526 5527 static void 5528 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5529 { 5530 clear_buddies(cfs_rq, se); 5531 5532 /* 'current' is not kept within the tree. */ 5533 if (se->on_rq) { 5534 /* 5535 * Any task has to be enqueued before it get to execute on 5536 * a CPU. So account for the time it spent waiting on the 5537 * runqueue. 5538 */ 5539 update_stats_wait_end_fair(cfs_rq, se); 5540 __dequeue_entity(cfs_rq, se); 5541 update_load_avg(cfs_rq, se, UPDATE_TG); 5542 5543 set_protect_slice(se); 5544 } 5545 5546 update_stats_curr_start(cfs_rq, se); 5547 WARN_ON_ONCE(cfs_rq->curr); 5548 cfs_rq->curr = se; 5549 5550 /* 5551 * Track our maximum slice length, if the CPU's load is at 5552 * least twice that of our own weight (i.e. don't track it 5553 * when there are only lesser-weight tasks around): 5554 */ 5555 if (schedstat_enabled() && 5556 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5557 struct sched_statistics *stats; 5558 5559 stats = __schedstats_from_se(se); 5560 __schedstat_set(stats->slice_max, 5561 max((u64)stats->slice_max, 5562 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5563 } 5564 5565 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5566 } 5567 5568 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5569 5570 /* 5571 * Pick the next process, keeping these things in mind, in this order: 5572 * 1) keep things fair between processes/task groups 5573 * 2) pick the "next" process, since someone really wants that to run 5574 * 3) pick the "last" process, for cache locality 5575 * 4) do not run the "skip" process, if something else is available 5576 */ 5577 static struct sched_entity * 5578 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5579 { 5580 struct sched_entity *se; 5581 5582 /* 5583 * Picking the ->next buddy will affect latency but not fairness. 5584 */ 5585 if (sched_feat(PICK_BUDDY) && 5586 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5587 /* ->next will never be delayed */ 5588 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 5589 return cfs_rq->next; 5590 } 5591 5592 se = pick_eevdf(cfs_rq); 5593 if (se->sched_delayed) { 5594 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5595 /* 5596 * Must not reference @se again, see __block_task(). 5597 */ 5598 return NULL; 5599 } 5600 return se; 5601 } 5602 5603 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5604 5605 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5606 { 5607 /* 5608 * If still on the runqueue then deactivate_task() 5609 * was not called and update_curr() has to be done: 5610 */ 5611 if (prev->on_rq) 5612 update_curr(cfs_rq); 5613 5614 /* throttle cfs_rqs exceeding runtime */ 5615 check_cfs_rq_runtime(cfs_rq); 5616 5617 if (prev->on_rq) { 5618 update_stats_wait_start_fair(cfs_rq, prev); 5619 /* Put 'current' back into the tree. */ 5620 __enqueue_entity(cfs_rq, prev); 5621 /* in !on_rq case, update occurred at dequeue */ 5622 update_load_avg(cfs_rq, prev, 0); 5623 } 5624 WARN_ON_ONCE(cfs_rq->curr != prev); 5625 cfs_rq->curr = NULL; 5626 } 5627 5628 static void 5629 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5630 { 5631 /* 5632 * Update run-time statistics of the 'current'. 5633 */ 5634 update_curr(cfs_rq); 5635 5636 /* 5637 * Ensure that runnable average is periodically updated. 5638 */ 5639 update_load_avg(cfs_rq, curr, UPDATE_TG); 5640 update_cfs_group(curr); 5641 5642 #ifdef CONFIG_SCHED_HRTICK 5643 /* 5644 * queued ticks are scheduled to match the slice, so don't bother 5645 * validating it and just reschedule. 5646 */ 5647 if (queued) { 5648 resched_curr_lazy(rq_of(cfs_rq)); 5649 return; 5650 } 5651 #endif 5652 } 5653 5654 5655 /************************************************** 5656 * CFS bandwidth control machinery 5657 */ 5658 5659 #ifdef CONFIG_CFS_BANDWIDTH 5660 5661 #ifdef CONFIG_JUMP_LABEL 5662 static struct static_key __cfs_bandwidth_used; 5663 5664 static inline bool cfs_bandwidth_used(void) 5665 { 5666 return static_key_false(&__cfs_bandwidth_used); 5667 } 5668 5669 void cfs_bandwidth_usage_inc(void) 5670 { 5671 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5672 } 5673 5674 void cfs_bandwidth_usage_dec(void) 5675 { 5676 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5677 } 5678 #else /* CONFIG_JUMP_LABEL */ 5679 static bool cfs_bandwidth_used(void) 5680 { 5681 return true; 5682 } 5683 5684 void cfs_bandwidth_usage_inc(void) {} 5685 void cfs_bandwidth_usage_dec(void) {} 5686 #endif /* CONFIG_JUMP_LABEL */ 5687 5688 /* 5689 * default period for cfs group bandwidth. 5690 * default: 0.1s, units: nanoseconds 5691 */ 5692 static inline u64 default_cfs_period(void) 5693 { 5694 return 100000000ULL; 5695 } 5696 5697 static inline u64 sched_cfs_bandwidth_slice(void) 5698 { 5699 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5700 } 5701 5702 /* 5703 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5704 * directly instead of rq->clock to avoid adding additional synchronization 5705 * around rq->lock. 5706 * 5707 * requires cfs_b->lock 5708 */ 5709 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5710 { 5711 s64 runtime; 5712 5713 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5714 return; 5715 5716 cfs_b->runtime += cfs_b->quota; 5717 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5718 if (runtime > 0) { 5719 cfs_b->burst_time += runtime; 5720 cfs_b->nr_burst++; 5721 } 5722 5723 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5724 cfs_b->runtime_snap = cfs_b->runtime; 5725 } 5726 5727 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5728 { 5729 return &tg->cfs_bandwidth; 5730 } 5731 5732 /* returns 0 on failure to allocate runtime */ 5733 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5734 struct cfs_rq *cfs_rq, u64 target_runtime) 5735 { 5736 u64 min_amount, amount = 0; 5737 5738 lockdep_assert_held(&cfs_b->lock); 5739 5740 /* note: this is a positive sum as runtime_remaining <= 0 */ 5741 min_amount = target_runtime - cfs_rq->runtime_remaining; 5742 5743 if (cfs_b->quota == RUNTIME_INF) 5744 amount = min_amount; 5745 else { 5746 start_cfs_bandwidth(cfs_b); 5747 5748 if (cfs_b->runtime > 0) { 5749 amount = min(cfs_b->runtime, min_amount); 5750 cfs_b->runtime -= amount; 5751 cfs_b->idle = 0; 5752 } 5753 } 5754 5755 cfs_rq->runtime_remaining += amount; 5756 5757 return cfs_rq->runtime_remaining > 0; 5758 } 5759 5760 /* returns 0 on failure to allocate runtime */ 5761 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5762 { 5763 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5764 int ret; 5765 5766 raw_spin_lock(&cfs_b->lock); 5767 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5768 raw_spin_unlock(&cfs_b->lock); 5769 5770 return ret; 5771 } 5772 5773 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5774 { 5775 /* dock delta_exec before expiring quota (as it could span periods) */ 5776 cfs_rq->runtime_remaining -= delta_exec; 5777 5778 if (likely(cfs_rq->runtime_remaining > 0)) 5779 return; 5780 5781 if (cfs_rq->throttled) 5782 return; 5783 /* 5784 * if we're unable to extend our runtime we resched so that the active 5785 * hierarchy can be throttled 5786 */ 5787 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5788 resched_curr(rq_of(cfs_rq)); 5789 } 5790 5791 static __always_inline 5792 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5793 { 5794 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5795 return; 5796 5797 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5798 } 5799 5800 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5801 { 5802 return cfs_bandwidth_used() && cfs_rq->throttled; 5803 } 5804 5805 /* check whether cfs_rq, or any parent, is throttled */ 5806 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5807 { 5808 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5809 } 5810 5811 /* 5812 * Ensure that neither of the group entities corresponding to src_cpu or 5813 * dest_cpu are members of a throttled hierarchy when performing group 5814 * load-balance operations. 5815 */ 5816 static inline int throttled_lb_pair(struct task_group *tg, 5817 int src_cpu, int dest_cpu) 5818 { 5819 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5820 5821 src_cfs_rq = tg->cfs_rq[src_cpu]; 5822 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5823 5824 return throttled_hierarchy(src_cfs_rq) || 5825 throttled_hierarchy(dest_cfs_rq); 5826 } 5827 5828 static int tg_unthrottle_up(struct task_group *tg, void *data) 5829 { 5830 struct rq *rq = data; 5831 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5832 5833 cfs_rq->throttle_count--; 5834 if (!cfs_rq->throttle_count) { 5835 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5836 cfs_rq->throttled_clock_pelt; 5837 5838 /* Add cfs_rq with load or one or more already running entities to the list */ 5839 if (!cfs_rq_is_decayed(cfs_rq)) 5840 list_add_leaf_cfs_rq(cfs_rq); 5841 5842 if (cfs_rq->throttled_clock_self) { 5843 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5844 5845 cfs_rq->throttled_clock_self = 0; 5846 5847 if (WARN_ON_ONCE((s64)delta < 0)) 5848 delta = 0; 5849 5850 cfs_rq->throttled_clock_self_time += delta; 5851 } 5852 } 5853 5854 return 0; 5855 } 5856 5857 static int tg_throttle_down(struct task_group *tg, void *data) 5858 { 5859 struct rq *rq = data; 5860 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5861 5862 /* group is entering throttled state, stop time */ 5863 if (!cfs_rq->throttle_count) { 5864 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5865 list_del_leaf_cfs_rq(cfs_rq); 5866 5867 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5868 if (cfs_rq->nr_queued) 5869 cfs_rq->throttled_clock_self = rq_clock(rq); 5870 } 5871 cfs_rq->throttle_count++; 5872 5873 return 0; 5874 } 5875 5876 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5877 { 5878 struct rq *rq = rq_of(cfs_rq); 5879 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5880 struct sched_entity *se; 5881 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5882 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5883 5884 raw_spin_lock(&cfs_b->lock); 5885 /* This will start the period timer if necessary */ 5886 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5887 /* 5888 * We have raced with bandwidth becoming available, and if we 5889 * actually throttled the timer might not unthrottle us for an 5890 * entire period. We additionally needed to make sure that any 5891 * subsequent check_cfs_rq_runtime calls agree not to throttle 5892 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5893 * for 1ns of runtime rather than just check cfs_b. 5894 */ 5895 dequeue = 0; 5896 } else { 5897 list_add_tail_rcu(&cfs_rq->throttled_list, 5898 &cfs_b->throttled_cfs_rq); 5899 } 5900 raw_spin_unlock(&cfs_b->lock); 5901 5902 if (!dequeue) 5903 return false; /* Throttle no longer required. */ 5904 5905 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5906 5907 /* freeze hierarchy runnable averages while throttled */ 5908 rcu_read_lock(); 5909 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5910 rcu_read_unlock(); 5911 5912 queued_delta = cfs_rq->h_nr_queued; 5913 runnable_delta = cfs_rq->h_nr_runnable; 5914 idle_delta = cfs_rq->h_nr_idle; 5915 for_each_sched_entity(se) { 5916 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5917 int flags; 5918 5919 /* throttled entity or throttle-on-deactivate */ 5920 if (!se->on_rq) 5921 goto done; 5922 5923 /* 5924 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5925 * This avoids teaching dequeue_entities() about throttled 5926 * entities and keeps things relatively simple. 5927 */ 5928 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5929 if (se->sched_delayed) 5930 flags |= DEQUEUE_DELAYED; 5931 dequeue_entity(qcfs_rq, se, flags); 5932 5933 if (cfs_rq_is_idle(group_cfs_rq(se))) 5934 idle_delta = cfs_rq->h_nr_queued; 5935 5936 qcfs_rq->h_nr_queued -= queued_delta; 5937 qcfs_rq->h_nr_runnable -= runnable_delta; 5938 qcfs_rq->h_nr_idle -= idle_delta; 5939 5940 if (qcfs_rq->load.weight) { 5941 /* Avoid re-evaluating load for this entity: */ 5942 se = parent_entity(se); 5943 break; 5944 } 5945 } 5946 5947 for_each_sched_entity(se) { 5948 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5949 /* throttled entity or throttle-on-deactivate */ 5950 if (!se->on_rq) 5951 goto done; 5952 5953 update_load_avg(qcfs_rq, se, 0); 5954 se_update_runnable(se); 5955 5956 if (cfs_rq_is_idle(group_cfs_rq(se))) 5957 idle_delta = cfs_rq->h_nr_queued; 5958 5959 qcfs_rq->h_nr_queued -= queued_delta; 5960 qcfs_rq->h_nr_runnable -= runnable_delta; 5961 qcfs_rq->h_nr_idle -= idle_delta; 5962 } 5963 5964 /* At this point se is NULL and we are at root level*/ 5965 sub_nr_running(rq, queued_delta); 5966 5967 /* Stop the fair server if throttling resulted in no runnable tasks */ 5968 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5969 dl_server_stop(&rq->fair_server); 5970 done: 5971 /* 5972 * Note: distribution will already see us throttled via the 5973 * throttled-list. rq->lock protects completion. 5974 */ 5975 cfs_rq->throttled = 1; 5976 WARN_ON_ONCE(cfs_rq->throttled_clock); 5977 if (cfs_rq->nr_queued) 5978 cfs_rq->throttled_clock = rq_clock(rq); 5979 return true; 5980 } 5981 5982 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5983 { 5984 struct rq *rq = rq_of(cfs_rq); 5985 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5986 struct sched_entity *se; 5987 long queued_delta, runnable_delta, idle_delta; 5988 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5989 5990 se = cfs_rq->tg->se[cpu_of(rq)]; 5991 5992 cfs_rq->throttled = 0; 5993 5994 update_rq_clock(rq); 5995 5996 raw_spin_lock(&cfs_b->lock); 5997 if (cfs_rq->throttled_clock) { 5998 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5999 cfs_rq->throttled_clock = 0; 6000 } 6001 list_del_rcu(&cfs_rq->throttled_list); 6002 raw_spin_unlock(&cfs_b->lock); 6003 6004 /* update hierarchical throttle state */ 6005 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6006 6007 if (!cfs_rq->load.weight) { 6008 if (!cfs_rq->on_list) 6009 return; 6010 /* 6011 * Nothing to run but something to decay (on_list)? 6012 * Complete the branch. 6013 */ 6014 for_each_sched_entity(se) { 6015 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6016 break; 6017 } 6018 goto unthrottle_throttle; 6019 } 6020 6021 queued_delta = cfs_rq->h_nr_queued; 6022 runnable_delta = cfs_rq->h_nr_runnable; 6023 idle_delta = cfs_rq->h_nr_idle; 6024 for_each_sched_entity(se) { 6025 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6026 6027 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6028 if (se->sched_delayed) { 6029 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6030 6031 dequeue_entity(qcfs_rq, se, flags); 6032 } else if (se->on_rq) 6033 break; 6034 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6035 6036 if (cfs_rq_is_idle(group_cfs_rq(se))) 6037 idle_delta = cfs_rq->h_nr_queued; 6038 6039 qcfs_rq->h_nr_queued += queued_delta; 6040 qcfs_rq->h_nr_runnable += runnable_delta; 6041 qcfs_rq->h_nr_idle += idle_delta; 6042 6043 /* end evaluation on encountering a throttled cfs_rq */ 6044 if (cfs_rq_throttled(qcfs_rq)) 6045 goto unthrottle_throttle; 6046 } 6047 6048 for_each_sched_entity(se) { 6049 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6050 6051 update_load_avg(qcfs_rq, se, UPDATE_TG); 6052 se_update_runnable(se); 6053 6054 if (cfs_rq_is_idle(group_cfs_rq(se))) 6055 idle_delta = cfs_rq->h_nr_queued; 6056 6057 qcfs_rq->h_nr_queued += queued_delta; 6058 qcfs_rq->h_nr_runnable += runnable_delta; 6059 qcfs_rq->h_nr_idle += idle_delta; 6060 6061 /* end evaluation on encountering a throttled cfs_rq */ 6062 if (cfs_rq_throttled(qcfs_rq)) 6063 goto unthrottle_throttle; 6064 } 6065 6066 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6067 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6068 dl_server_start(&rq->fair_server); 6069 6070 /* At this point se is NULL and we are at root level*/ 6071 add_nr_running(rq, queued_delta); 6072 6073 unthrottle_throttle: 6074 assert_list_leaf_cfs_rq(rq); 6075 6076 /* Determine whether we need to wake up potentially idle CPU: */ 6077 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6078 resched_curr(rq); 6079 } 6080 6081 #ifdef CONFIG_SMP 6082 static void __cfsb_csd_unthrottle(void *arg) 6083 { 6084 struct cfs_rq *cursor, *tmp; 6085 struct rq *rq = arg; 6086 struct rq_flags rf; 6087 6088 rq_lock(rq, &rf); 6089 6090 /* 6091 * Iterating over the list can trigger several call to 6092 * update_rq_clock() in unthrottle_cfs_rq(). 6093 * Do it once and skip the potential next ones. 6094 */ 6095 update_rq_clock(rq); 6096 rq_clock_start_loop_update(rq); 6097 6098 /* 6099 * Since we hold rq lock we're safe from concurrent manipulation of 6100 * the CSD list. However, this RCU critical section annotates the 6101 * fact that we pair with sched_free_group_rcu(), so that we cannot 6102 * race with group being freed in the window between removing it 6103 * from the list and advancing to the next entry in the list. 6104 */ 6105 rcu_read_lock(); 6106 6107 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6108 throttled_csd_list) { 6109 list_del_init(&cursor->throttled_csd_list); 6110 6111 if (cfs_rq_throttled(cursor)) 6112 unthrottle_cfs_rq(cursor); 6113 } 6114 6115 rcu_read_unlock(); 6116 6117 rq_clock_stop_loop_update(rq); 6118 rq_unlock(rq, &rf); 6119 } 6120 6121 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6122 { 6123 struct rq *rq = rq_of(cfs_rq); 6124 bool first; 6125 6126 if (rq == this_rq()) { 6127 unthrottle_cfs_rq(cfs_rq); 6128 return; 6129 } 6130 6131 /* Already enqueued */ 6132 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6133 return; 6134 6135 first = list_empty(&rq->cfsb_csd_list); 6136 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6137 if (first) 6138 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6139 } 6140 #else 6141 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6142 { 6143 unthrottle_cfs_rq(cfs_rq); 6144 } 6145 #endif 6146 6147 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6148 { 6149 lockdep_assert_rq_held(rq_of(cfs_rq)); 6150 6151 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6152 cfs_rq->runtime_remaining <= 0)) 6153 return; 6154 6155 __unthrottle_cfs_rq_async(cfs_rq); 6156 } 6157 6158 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6159 { 6160 int this_cpu = smp_processor_id(); 6161 u64 runtime, remaining = 1; 6162 bool throttled = false; 6163 struct cfs_rq *cfs_rq, *tmp; 6164 struct rq_flags rf; 6165 struct rq *rq; 6166 LIST_HEAD(local_unthrottle); 6167 6168 rcu_read_lock(); 6169 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6170 throttled_list) { 6171 rq = rq_of(cfs_rq); 6172 6173 if (!remaining) { 6174 throttled = true; 6175 break; 6176 } 6177 6178 rq_lock_irqsave(rq, &rf); 6179 if (!cfs_rq_throttled(cfs_rq)) 6180 goto next; 6181 6182 /* Already queued for async unthrottle */ 6183 if (!list_empty(&cfs_rq->throttled_csd_list)) 6184 goto next; 6185 6186 /* By the above checks, this should never be true */ 6187 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6188 6189 raw_spin_lock(&cfs_b->lock); 6190 runtime = -cfs_rq->runtime_remaining + 1; 6191 if (runtime > cfs_b->runtime) 6192 runtime = cfs_b->runtime; 6193 cfs_b->runtime -= runtime; 6194 remaining = cfs_b->runtime; 6195 raw_spin_unlock(&cfs_b->lock); 6196 6197 cfs_rq->runtime_remaining += runtime; 6198 6199 /* we check whether we're throttled above */ 6200 if (cfs_rq->runtime_remaining > 0) { 6201 if (cpu_of(rq) != this_cpu) { 6202 unthrottle_cfs_rq_async(cfs_rq); 6203 } else { 6204 /* 6205 * We currently only expect to be unthrottling 6206 * a single cfs_rq locally. 6207 */ 6208 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6209 list_add_tail(&cfs_rq->throttled_csd_list, 6210 &local_unthrottle); 6211 } 6212 } else { 6213 throttled = true; 6214 } 6215 6216 next: 6217 rq_unlock_irqrestore(rq, &rf); 6218 } 6219 6220 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6221 throttled_csd_list) { 6222 struct rq *rq = rq_of(cfs_rq); 6223 6224 rq_lock_irqsave(rq, &rf); 6225 6226 list_del_init(&cfs_rq->throttled_csd_list); 6227 6228 if (cfs_rq_throttled(cfs_rq)) 6229 unthrottle_cfs_rq(cfs_rq); 6230 6231 rq_unlock_irqrestore(rq, &rf); 6232 } 6233 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6234 6235 rcu_read_unlock(); 6236 6237 return throttled; 6238 } 6239 6240 /* 6241 * Responsible for refilling a task_group's bandwidth and unthrottling its 6242 * cfs_rqs as appropriate. If there has been no activity within the last 6243 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6244 * used to track this state. 6245 */ 6246 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6247 { 6248 int throttled; 6249 6250 /* no need to continue the timer with no bandwidth constraint */ 6251 if (cfs_b->quota == RUNTIME_INF) 6252 goto out_deactivate; 6253 6254 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6255 cfs_b->nr_periods += overrun; 6256 6257 /* Refill extra burst quota even if cfs_b->idle */ 6258 __refill_cfs_bandwidth_runtime(cfs_b); 6259 6260 /* 6261 * idle depends on !throttled (for the case of a large deficit), and if 6262 * we're going inactive then everything else can be deferred 6263 */ 6264 if (cfs_b->idle && !throttled) 6265 goto out_deactivate; 6266 6267 if (!throttled) { 6268 /* mark as potentially idle for the upcoming period */ 6269 cfs_b->idle = 1; 6270 return 0; 6271 } 6272 6273 /* account preceding periods in which throttling occurred */ 6274 cfs_b->nr_throttled += overrun; 6275 6276 /* 6277 * This check is repeated as we release cfs_b->lock while we unthrottle. 6278 */ 6279 while (throttled && cfs_b->runtime > 0) { 6280 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6281 /* we can't nest cfs_b->lock while distributing bandwidth */ 6282 throttled = distribute_cfs_runtime(cfs_b); 6283 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6284 } 6285 6286 /* 6287 * While we are ensured activity in the period following an 6288 * unthrottle, this also covers the case in which the new bandwidth is 6289 * insufficient to cover the existing bandwidth deficit. (Forcing the 6290 * timer to remain active while there are any throttled entities.) 6291 */ 6292 cfs_b->idle = 0; 6293 6294 return 0; 6295 6296 out_deactivate: 6297 return 1; 6298 } 6299 6300 /* a cfs_rq won't donate quota below this amount */ 6301 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6302 /* minimum remaining period time to redistribute slack quota */ 6303 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6304 /* how long we wait to gather additional slack before distributing */ 6305 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6306 6307 /* 6308 * Are we near the end of the current quota period? 6309 * 6310 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6311 * hrtimer base being cleared by hrtimer_start. In the case of 6312 * migrate_hrtimers, base is never cleared, so we are fine. 6313 */ 6314 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6315 { 6316 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6317 s64 remaining; 6318 6319 /* if the call-back is running a quota refresh is already occurring */ 6320 if (hrtimer_callback_running(refresh_timer)) 6321 return 1; 6322 6323 /* is a quota refresh about to occur? */ 6324 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6325 if (remaining < (s64)min_expire) 6326 return 1; 6327 6328 return 0; 6329 } 6330 6331 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6332 { 6333 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6334 6335 /* if there's a quota refresh soon don't bother with slack */ 6336 if (runtime_refresh_within(cfs_b, min_left)) 6337 return; 6338 6339 /* don't push forwards an existing deferred unthrottle */ 6340 if (cfs_b->slack_started) 6341 return; 6342 cfs_b->slack_started = true; 6343 6344 hrtimer_start(&cfs_b->slack_timer, 6345 ns_to_ktime(cfs_bandwidth_slack_period), 6346 HRTIMER_MODE_REL); 6347 } 6348 6349 /* we know any runtime found here is valid as update_curr() precedes return */ 6350 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6351 { 6352 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6353 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6354 6355 if (slack_runtime <= 0) 6356 return; 6357 6358 raw_spin_lock(&cfs_b->lock); 6359 if (cfs_b->quota != RUNTIME_INF) { 6360 cfs_b->runtime += slack_runtime; 6361 6362 /* we are under rq->lock, defer unthrottling using a timer */ 6363 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6364 !list_empty(&cfs_b->throttled_cfs_rq)) 6365 start_cfs_slack_bandwidth(cfs_b); 6366 } 6367 raw_spin_unlock(&cfs_b->lock); 6368 6369 /* even if it's not valid for return we don't want to try again */ 6370 cfs_rq->runtime_remaining -= slack_runtime; 6371 } 6372 6373 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6374 { 6375 if (!cfs_bandwidth_used()) 6376 return; 6377 6378 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6379 return; 6380 6381 __return_cfs_rq_runtime(cfs_rq); 6382 } 6383 6384 /* 6385 * This is done with a timer (instead of inline with bandwidth return) since 6386 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6387 */ 6388 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6389 { 6390 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6391 unsigned long flags; 6392 6393 /* confirm we're still not at a refresh boundary */ 6394 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6395 cfs_b->slack_started = false; 6396 6397 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6398 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6399 return; 6400 } 6401 6402 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6403 runtime = cfs_b->runtime; 6404 6405 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6406 6407 if (!runtime) 6408 return; 6409 6410 distribute_cfs_runtime(cfs_b); 6411 } 6412 6413 /* 6414 * When a group wakes up we want to make sure that its quota is not already 6415 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6416 * runtime as update_curr() throttling can not trigger until it's on-rq. 6417 */ 6418 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6419 { 6420 if (!cfs_bandwidth_used()) 6421 return; 6422 6423 /* an active group must be handled by the update_curr()->put() path */ 6424 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6425 return; 6426 6427 /* ensure the group is not already throttled */ 6428 if (cfs_rq_throttled(cfs_rq)) 6429 return; 6430 6431 /* update runtime allocation */ 6432 account_cfs_rq_runtime(cfs_rq, 0); 6433 if (cfs_rq->runtime_remaining <= 0) 6434 throttle_cfs_rq(cfs_rq); 6435 } 6436 6437 static void sync_throttle(struct task_group *tg, int cpu) 6438 { 6439 struct cfs_rq *pcfs_rq, *cfs_rq; 6440 6441 if (!cfs_bandwidth_used()) 6442 return; 6443 6444 if (!tg->parent) 6445 return; 6446 6447 cfs_rq = tg->cfs_rq[cpu]; 6448 pcfs_rq = tg->parent->cfs_rq[cpu]; 6449 6450 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6451 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6452 } 6453 6454 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6455 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6456 { 6457 if (!cfs_bandwidth_used()) 6458 return false; 6459 6460 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6461 return false; 6462 6463 /* 6464 * it's possible for a throttled entity to be forced into a running 6465 * state (e.g. set_curr_task), in this case we're finished. 6466 */ 6467 if (cfs_rq_throttled(cfs_rq)) 6468 return true; 6469 6470 return throttle_cfs_rq(cfs_rq); 6471 } 6472 6473 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6474 { 6475 struct cfs_bandwidth *cfs_b = 6476 container_of(timer, struct cfs_bandwidth, slack_timer); 6477 6478 do_sched_cfs_slack_timer(cfs_b); 6479 6480 return HRTIMER_NORESTART; 6481 } 6482 6483 extern const u64 max_cfs_quota_period; 6484 6485 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6486 { 6487 struct cfs_bandwidth *cfs_b = 6488 container_of(timer, struct cfs_bandwidth, period_timer); 6489 unsigned long flags; 6490 int overrun; 6491 int idle = 0; 6492 int count = 0; 6493 6494 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6495 for (;;) { 6496 overrun = hrtimer_forward_now(timer, cfs_b->period); 6497 if (!overrun) 6498 break; 6499 6500 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6501 6502 if (++count > 3) { 6503 u64 new, old = ktime_to_ns(cfs_b->period); 6504 6505 /* 6506 * Grow period by a factor of 2 to avoid losing precision. 6507 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6508 * to fail. 6509 */ 6510 new = old * 2; 6511 if (new < max_cfs_quota_period) { 6512 cfs_b->period = ns_to_ktime(new); 6513 cfs_b->quota *= 2; 6514 cfs_b->burst *= 2; 6515 6516 pr_warn_ratelimited( 6517 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6518 smp_processor_id(), 6519 div_u64(new, NSEC_PER_USEC), 6520 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6521 } else { 6522 pr_warn_ratelimited( 6523 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6524 smp_processor_id(), 6525 div_u64(old, NSEC_PER_USEC), 6526 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6527 } 6528 6529 /* reset count so we don't come right back in here */ 6530 count = 0; 6531 } 6532 } 6533 if (idle) 6534 cfs_b->period_active = 0; 6535 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6536 6537 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6538 } 6539 6540 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6541 { 6542 raw_spin_lock_init(&cfs_b->lock); 6543 cfs_b->runtime = 0; 6544 cfs_b->quota = RUNTIME_INF; 6545 cfs_b->period = ns_to_ktime(default_cfs_period()); 6546 cfs_b->burst = 0; 6547 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6548 6549 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6550 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6551 HRTIMER_MODE_ABS_PINNED); 6552 6553 /* Add a random offset so that timers interleave */ 6554 hrtimer_set_expires(&cfs_b->period_timer, 6555 get_random_u32_below(cfs_b->period)); 6556 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6557 HRTIMER_MODE_REL); 6558 cfs_b->slack_started = false; 6559 } 6560 6561 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6562 { 6563 cfs_rq->runtime_enabled = 0; 6564 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6565 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6566 } 6567 6568 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6569 { 6570 lockdep_assert_held(&cfs_b->lock); 6571 6572 if (cfs_b->period_active) 6573 return; 6574 6575 cfs_b->period_active = 1; 6576 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6577 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6578 } 6579 6580 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6581 { 6582 int __maybe_unused i; 6583 6584 /* init_cfs_bandwidth() was not called */ 6585 if (!cfs_b->throttled_cfs_rq.next) 6586 return; 6587 6588 hrtimer_cancel(&cfs_b->period_timer); 6589 hrtimer_cancel(&cfs_b->slack_timer); 6590 6591 /* 6592 * It is possible that we still have some cfs_rq's pending on a CSD 6593 * list, though this race is very rare. In order for this to occur, we 6594 * must have raced with the last task leaving the group while there 6595 * exist throttled cfs_rq(s), and the period_timer must have queued the 6596 * CSD item but the remote cpu has not yet processed it. To handle this, 6597 * we can simply flush all pending CSD work inline here. We're 6598 * guaranteed at this point that no additional cfs_rq of this group can 6599 * join a CSD list. 6600 */ 6601 #ifdef CONFIG_SMP 6602 for_each_possible_cpu(i) { 6603 struct rq *rq = cpu_rq(i); 6604 unsigned long flags; 6605 6606 if (list_empty(&rq->cfsb_csd_list)) 6607 continue; 6608 6609 local_irq_save(flags); 6610 __cfsb_csd_unthrottle(rq); 6611 local_irq_restore(flags); 6612 } 6613 #endif 6614 } 6615 6616 /* 6617 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6618 * 6619 * The race is harmless, since modifying bandwidth settings of unhooked group 6620 * bits doesn't do much. 6621 */ 6622 6623 /* cpu online callback */ 6624 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6625 { 6626 struct task_group *tg; 6627 6628 lockdep_assert_rq_held(rq); 6629 6630 rcu_read_lock(); 6631 list_for_each_entry_rcu(tg, &task_groups, list) { 6632 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6633 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6634 6635 raw_spin_lock(&cfs_b->lock); 6636 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6637 raw_spin_unlock(&cfs_b->lock); 6638 } 6639 rcu_read_unlock(); 6640 } 6641 6642 /* cpu offline callback */ 6643 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6644 { 6645 struct task_group *tg; 6646 6647 lockdep_assert_rq_held(rq); 6648 6649 // Do not unthrottle for an active CPU 6650 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6651 return; 6652 6653 /* 6654 * The rq clock has already been updated in the 6655 * set_rq_offline(), so we should skip updating 6656 * the rq clock again in unthrottle_cfs_rq(). 6657 */ 6658 rq_clock_start_loop_update(rq); 6659 6660 rcu_read_lock(); 6661 list_for_each_entry_rcu(tg, &task_groups, list) { 6662 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6663 6664 if (!cfs_rq->runtime_enabled) 6665 continue; 6666 6667 /* 6668 * Offline rq is schedulable till CPU is completely disabled 6669 * in take_cpu_down(), so we prevent new cfs throttling here. 6670 */ 6671 cfs_rq->runtime_enabled = 0; 6672 6673 if (!cfs_rq_throttled(cfs_rq)) 6674 continue; 6675 6676 /* 6677 * clock_task is not advancing so we just need to make sure 6678 * there's some valid quota amount 6679 */ 6680 cfs_rq->runtime_remaining = 1; 6681 unthrottle_cfs_rq(cfs_rq); 6682 } 6683 rcu_read_unlock(); 6684 6685 rq_clock_stop_loop_update(rq); 6686 } 6687 6688 bool cfs_task_bw_constrained(struct task_struct *p) 6689 { 6690 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6691 6692 if (!cfs_bandwidth_used()) 6693 return false; 6694 6695 if (cfs_rq->runtime_enabled || 6696 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6697 return true; 6698 6699 return false; 6700 } 6701 6702 #ifdef CONFIG_NO_HZ_FULL 6703 /* called from pick_next_task_fair() */ 6704 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6705 { 6706 int cpu = cpu_of(rq); 6707 6708 if (!cfs_bandwidth_used()) 6709 return; 6710 6711 if (!tick_nohz_full_cpu(cpu)) 6712 return; 6713 6714 if (rq->nr_running != 1) 6715 return; 6716 6717 /* 6718 * We know there is only one task runnable and we've just picked it. The 6719 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6720 * be otherwise able to stop the tick. Just need to check if we are using 6721 * bandwidth control. 6722 */ 6723 if (cfs_task_bw_constrained(p)) 6724 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6725 } 6726 #endif 6727 6728 #else /* CONFIG_CFS_BANDWIDTH */ 6729 6730 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6731 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6732 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6733 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6734 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6735 6736 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6737 { 6738 return 0; 6739 } 6740 6741 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6742 { 6743 return 0; 6744 } 6745 6746 static inline int throttled_lb_pair(struct task_group *tg, 6747 int src_cpu, int dest_cpu) 6748 { 6749 return 0; 6750 } 6751 6752 #ifdef CONFIG_FAIR_GROUP_SCHED 6753 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6754 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6755 #endif 6756 6757 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6758 { 6759 return NULL; 6760 } 6761 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6762 static inline void update_runtime_enabled(struct rq *rq) {} 6763 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6764 #ifdef CONFIG_CGROUP_SCHED 6765 bool cfs_task_bw_constrained(struct task_struct *p) 6766 { 6767 return false; 6768 } 6769 #endif 6770 #endif /* CONFIG_CFS_BANDWIDTH */ 6771 6772 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6773 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6774 #endif 6775 6776 /************************************************** 6777 * CFS operations on tasks: 6778 */ 6779 6780 #ifdef CONFIG_SCHED_HRTICK 6781 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6782 { 6783 struct sched_entity *se = &p->se; 6784 6785 WARN_ON_ONCE(task_rq(p) != rq); 6786 6787 if (rq->cfs.h_nr_queued > 1) { 6788 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6789 u64 slice = se->slice; 6790 s64 delta = slice - ran; 6791 6792 if (delta < 0) { 6793 if (task_current_donor(rq, p)) 6794 resched_curr(rq); 6795 return; 6796 } 6797 hrtick_start(rq, delta); 6798 } 6799 } 6800 6801 /* 6802 * called from enqueue/dequeue and updates the hrtick when the 6803 * current task is from our class and nr_running is low enough 6804 * to matter. 6805 */ 6806 static void hrtick_update(struct rq *rq) 6807 { 6808 struct task_struct *donor = rq->donor; 6809 6810 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6811 return; 6812 6813 hrtick_start_fair(rq, donor); 6814 } 6815 #else /* !CONFIG_SCHED_HRTICK */ 6816 static inline void 6817 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6818 { 6819 } 6820 6821 static inline void hrtick_update(struct rq *rq) 6822 { 6823 } 6824 #endif 6825 6826 #ifdef CONFIG_SMP 6827 static inline bool cpu_overutilized(int cpu) 6828 { 6829 unsigned long rq_util_min, rq_util_max; 6830 6831 if (!sched_energy_enabled()) 6832 return false; 6833 6834 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6835 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6836 6837 /* Return true only if the utilization doesn't fit CPU's capacity */ 6838 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6839 } 6840 6841 /* 6842 * overutilized value make sense only if EAS is enabled 6843 */ 6844 static inline bool is_rd_overutilized(struct root_domain *rd) 6845 { 6846 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6847 } 6848 6849 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6850 { 6851 if (!sched_energy_enabled()) 6852 return; 6853 6854 WRITE_ONCE(rd->overutilized, flag); 6855 trace_sched_overutilized_tp(rd, flag); 6856 } 6857 6858 static inline void check_update_overutilized_status(struct rq *rq) 6859 { 6860 /* 6861 * overutilized field is used for load balancing decisions only 6862 * if energy aware scheduler is being used 6863 */ 6864 6865 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6866 set_rd_overutilized(rq->rd, 1); 6867 } 6868 #else 6869 static inline void check_update_overutilized_status(struct rq *rq) { } 6870 #endif 6871 6872 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6873 static int sched_idle_rq(struct rq *rq) 6874 { 6875 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6876 rq->nr_running); 6877 } 6878 6879 #ifdef CONFIG_SMP 6880 static int sched_idle_cpu(int cpu) 6881 { 6882 return sched_idle_rq(cpu_rq(cpu)); 6883 } 6884 #endif 6885 6886 static void 6887 requeue_delayed_entity(struct sched_entity *se) 6888 { 6889 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6890 6891 /* 6892 * se->sched_delayed should imply: se->on_rq == 1. 6893 * Because a delayed entity is one that is still on 6894 * the runqueue competing until elegibility. 6895 */ 6896 WARN_ON_ONCE(!se->sched_delayed); 6897 WARN_ON_ONCE(!se->on_rq); 6898 6899 if (sched_feat(DELAY_ZERO)) { 6900 update_entity_lag(cfs_rq, se); 6901 if (se->vlag > 0) { 6902 cfs_rq->nr_queued--; 6903 if (se != cfs_rq->curr) 6904 __dequeue_entity(cfs_rq, se); 6905 se->vlag = 0; 6906 place_entity(cfs_rq, se, 0); 6907 if (se != cfs_rq->curr) 6908 __enqueue_entity(cfs_rq, se); 6909 cfs_rq->nr_queued++; 6910 } 6911 } 6912 6913 update_load_avg(cfs_rq, se, 0); 6914 clear_delayed(se); 6915 } 6916 6917 /* 6918 * The enqueue_task method is called before nr_running is 6919 * increased. Here we update the fair scheduling stats and 6920 * then put the task into the rbtree: 6921 */ 6922 static void 6923 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6924 { 6925 struct cfs_rq *cfs_rq; 6926 struct sched_entity *se = &p->se; 6927 int h_nr_idle = task_has_idle_policy(p); 6928 int h_nr_runnable = 1; 6929 int task_new = !(flags & ENQUEUE_WAKEUP); 6930 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6931 u64 slice = 0; 6932 6933 /* 6934 * The code below (indirectly) updates schedutil which looks at 6935 * the cfs_rq utilization to select a frequency. 6936 * Let's add the task's estimated utilization to the cfs_rq's 6937 * estimated utilization, before we update schedutil. 6938 */ 6939 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) 6940 util_est_enqueue(&rq->cfs, p); 6941 6942 if (flags & ENQUEUE_DELAYED) { 6943 requeue_delayed_entity(se); 6944 return; 6945 } 6946 6947 /* 6948 * If in_iowait is set, the code below may not trigger any cpufreq 6949 * utilization updates, so do it here explicitly with the IOWAIT flag 6950 * passed. 6951 */ 6952 if (p->in_iowait) 6953 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6954 6955 if (task_new && se->sched_delayed) 6956 h_nr_runnable = 0; 6957 6958 for_each_sched_entity(se) { 6959 if (se->on_rq) { 6960 if (se->sched_delayed) 6961 requeue_delayed_entity(se); 6962 break; 6963 } 6964 cfs_rq = cfs_rq_of(se); 6965 6966 /* 6967 * Basically set the slice of group entries to the min_slice of 6968 * their respective cfs_rq. This ensures the group can service 6969 * its entities in the desired time-frame. 6970 */ 6971 if (slice) { 6972 se->slice = slice; 6973 se->custom_slice = 1; 6974 } 6975 enqueue_entity(cfs_rq, se, flags); 6976 slice = cfs_rq_min_slice(cfs_rq); 6977 6978 cfs_rq->h_nr_runnable += h_nr_runnable; 6979 cfs_rq->h_nr_queued++; 6980 cfs_rq->h_nr_idle += h_nr_idle; 6981 6982 if (cfs_rq_is_idle(cfs_rq)) 6983 h_nr_idle = 1; 6984 6985 /* end evaluation on encountering a throttled cfs_rq */ 6986 if (cfs_rq_throttled(cfs_rq)) 6987 goto enqueue_throttle; 6988 6989 flags = ENQUEUE_WAKEUP; 6990 } 6991 6992 for_each_sched_entity(se) { 6993 cfs_rq = cfs_rq_of(se); 6994 6995 update_load_avg(cfs_rq, se, UPDATE_TG); 6996 se_update_runnable(se); 6997 update_cfs_group(se); 6998 6999 se->slice = slice; 7000 if (se != cfs_rq->curr) 7001 min_vruntime_cb_propagate(&se->run_node, NULL); 7002 slice = cfs_rq_min_slice(cfs_rq); 7003 7004 cfs_rq->h_nr_runnable += h_nr_runnable; 7005 cfs_rq->h_nr_queued++; 7006 cfs_rq->h_nr_idle += h_nr_idle; 7007 7008 if (cfs_rq_is_idle(cfs_rq)) 7009 h_nr_idle = 1; 7010 7011 /* end evaluation on encountering a throttled cfs_rq */ 7012 if (cfs_rq_throttled(cfs_rq)) 7013 goto enqueue_throttle; 7014 } 7015 7016 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 7017 /* Account for idle runtime */ 7018 if (!rq->nr_running) 7019 dl_server_update_idle_time(rq, rq->curr); 7020 dl_server_start(&rq->fair_server); 7021 } 7022 7023 /* At this point se is NULL and we are at root level*/ 7024 add_nr_running(rq, 1); 7025 7026 /* 7027 * Since new tasks are assigned an initial util_avg equal to 7028 * half of the spare capacity of their CPU, tiny tasks have the 7029 * ability to cross the overutilized threshold, which will 7030 * result in the load balancer ruining all the task placement 7031 * done by EAS. As a way to mitigate that effect, do not account 7032 * for the first enqueue operation of new tasks during the 7033 * overutilized flag detection. 7034 * 7035 * A better way of solving this problem would be to wait for 7036 * the PELT signals of tasks to converge before taking them 7037 * into account, but that is not straightforward to implement, 7038 * and the following generally works well enough in practice. 7039 */ 7040 if (!task_new) 7041 check_update_overutilized_status(rq); 7042 7043 enqueue_throttle: 7044 assert_list_leaf_cfs_rq(rq); 7045 7046 hrtick_update(rq); 7047 } 7048 7049 static void set_next_buddy(struct sched_entity *se); 7050 7051 /* 7052 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7053 * failing half-way through and resume the dequeue later. 7054 * 7055 * Returns: 7056 * -1 - dequeue delayed 7057 * 0 - dequeue throttled 7058 * 1 - dequeue complete 7059 */ 7060 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7061 { 7062 bool was_sched_idle = sched_idle_rq(rq); 7063 int rq_h_nr_queued = rq->cfs.h_nr_queued; 7064 bool task_sleep = flags & DEQUEUE_SLEEP; 7065 bool task_delayed = flags & DEQUEUE_DELAYED; 7066 struct task_struct *p = NULL; 7067 int h_nr_idle = 0; 7068 int h_nr_queued = 0; 7069 int h_nr_runnable = 0; 7070 struct cfs_rq *cfs_rq; 7071 u64 slice = 0; 7072 7073 if (entity_is_task(se)) { 7074 p = task_of(se); 7075 h_nr_queued = 1; 7076 h_nr_idle = task_has_idle_policy(p); 7077 if (task_sleep || task_delayed || !se->sched_delayed) 7078 h_nr_runnable = 1; 7079 } 7080 7081 for_each_sched_entity(se) { 7082 cfs_rq = cfs_rq_of(se); 7083 7084 if (!dequeue_entity(cfs_rq, se, flags)) { 7085 if (p && &p->se == se) 7086 return -1; 7087 7088 slice = cfs_rq_min_slice(cfs_rq); 7089 break; 7090 } 7091 7092 cfs_rq->h_nr_runnable -= h_nr_runnable; 7093 cfs_rq->h_nr_queued -= h_nr_queued; 7094 cfs_rq->h_nr_idle -= h_nr_idle; 7095 7096 if (cfs_rq_is_idle(cfs_rq)) 7097 h_nr_idle = h_nr_queued; 7098 7099 /* end evaluation on encountering a throttled cfs_rq */ 7100 if (cfs_rq_throttled(cfs_rq)) 7101 return 0; 7102 7103 /* Don't dequeue parent if it has other entities besides us */ 7104 if (cfs_rq->load.weight) { 7105 slice = cfs_rq_min_slice(cfs_rq); 7106 7107 /* Avoid re-evaluating load for this entity: */ 7108 se = parent_entity(se); 7109 /* 7110 * Bias pick_next to pick a task from this cfs_rq, as 7111 * p is sleeping when it is within its sched_slice. 7112 */ 7113 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7114 set_next_buddy(se); 7115 break; 7116 } 7117 flags |= DEQUEUE_SLEEP; 7118 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7119 } 7120 7121 for_each_sched_entity(se) { 7122 cfs_rq = cfs_rq_of(se); 7123 7124 update_load_avg(cfs_rq, se, UPDATE_TG); 7125 se_update_runnable(se); 7126 update_cfs_group(se); 7127 7128 se->slice = slice; 7129 if (se != cfs_rq->curr) 7130 min_vruntime_cb_propagate(&se->run_node, NULL); 7131 slice = cfs_rq_min_slice(cfs_rq); 7132 7133 cfs_rq->h_nr_runnable -= h_nr_runnable; 7134 cfs_rq->h_nr_queued -= h_nr_queued; 7135 cfs_rq->h_nr_idle -= h_nr_idle; 7136 7137 if (cfs_rq_is_idle(cfs_rq)) 7138 h_nr_idle = h_nr_queued; 7139 7140 /* end evaluation on encountering a throttled cfs_rq */ 7141 if (cfs_rq_throttled(cfs_rq)) 7142 return 0; 7143 } 7144 7145 sub_nr_running(rq, h_nr_queued); 7146 7147 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7148 dl_server_stop(&rq->fair_server); 7149 7150 /* balance early to pull high priority tasks */ 7151 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7152 rq->next_balance = jiffies; 7153 7154 if (p && task_delayed) { 7155 WARN_ON_ONCE(!task_sleep); 7156 WARN_ON_ONCE(p->on_rq != 1); 7157 7158 /* Fix-up what dequeue_task_fair() skipped */ 7159 hrtick_update(rq); 7160 7161 /* 7162 * Fix-up what block_task() skipped. 7163 * 7164 * Must be last, @p might not be valid after this. 7165 */ 7166 __block_task(rq, p); 7167 } 7168 7169 return 1; 7170 } 7171 7172 /* 7173 * The dequeue_task method is called before nr_running is 7174 * decreased. We remove the task from the rbtree and 7175 * update the fair scheduling stats: 7176 */ 7177 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7178 { 7179 if (!p->se.sched_delayed) 7180 util_est_dequeue(&rq->cfs, p); 7181 7182 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7183 if (dequeue_entities(rq, &p->se, flags) < 0) 7184 return false; 7185 7186 /* 7187 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7188 */ 7189 7190 hrtick_update(rq); 7191 return true; 7192 } 7193 7194 static inline unsigned int cfs_h_nr_delayed(struct rq *rq) 7195 { 7196 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); 7197 } 7198 7199 #ifdef CONFIG_SMP 7200 7201 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7202 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7203 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7204 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7205 7206 #ifdef CONFIG_NO_HZ_COMMON 7207 7208 static struct { 7209 cpumask_var_t idle_cpus_mask; 7210 atomic_t nr_cpus; 7211 int has_blocked; /* Idle CPUS has blocked load */ 7212 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7213 unsigned long next_balance; /* in jiffy units */ 7214 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7215 } nohz ____cacheline_aligned; 7216 7217 #endif /* CONFIG_NO_HZ_COMMON */ 7218 7219 static unsigned long cpu_load(struct rq *rq) 7220 { 7221 return cfs_rq_load_avg(&rq->cfs); 7222 } 7223 7224 /* 7225 * cpu_load_without - compute CPU load without any contributions from *p 7226 * @cpu: the CPU which load is requested 7227 * @p: the task which load should be discounted 7228 * 7229 * The load of a CPU is defined by the load of tasks currently enqueued on that 7230 * CPU as well as tasks which are currently sleeping after an execution on that 7231 * CPU. 7232 * 7233 * This method returns the load of the specified CPU by discounting the load of 7234 * the specified task, whenever the task is currently contributing to the CPU 7235 * load. 7236 */ 7237 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7238 { 7239 struct cfs_rq *cfs_rq; 7240 unsigned int load; 7241 7242 /* Task has no contribution or is new */ 7243 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7244 return cpu_load(rq); 7245 7246 cfs_rq = &rq->cfs; 7247 load = READ_ONCE(cfs_rq->avg.load_avg); 7248 7249 /* Discount task's util from CPU's util */ 7250 lsub_positive(&load, task_h_load(p)); 7251 7252 return load; 7253 } 7254 7255 static unsigned long cpu_runnable(struct rq *rq) 7256 { 7257 return cfs_rq_runnable_avg(&rq->cfs); 7258 } 7259 7260 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7261 { 7262 struct cfs_rq *cfs_rq; 7263 unsigned int runnable; 7264 7265 /* Task has no contribution or is new */ 7266 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7267 return cpu_runnable(rq); 7268 7269 cfs_rq = &rq->cfs; 7270 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7271 7272 /* Discount task's runnable from CPU's runnable */ 7273 lsub_positive(&runnable, p->se.avg.runnable_avg); 7274 7275 return runnable; 7276 } 7277 7278 static unsigned long capacity_of(int cpu) 7279 { 7280 return cpu_rq(cpu)->cpu_capacity; 7281 } 7282 7283 static void record_wakee(struct task_struct *p) 7284 { 7285 /* 7286 * Only decay a single time; tasks that have less then 1 wakeup per 7287 * jiffy will not have built up many flips. 7288 */ 7289 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7290 current->wakee_flips >>= 1; 7291 current->wakee_flip_decay_ts = jiffies; 7292 } 7293 7294 if (current->last_wakee != p) { 7295 current->last_wakee = p; 7296 current->wakee_flips++; 7297 } 7298 } 7299 7300 /* 7301 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7302 * 7303 * A waker of many should wake a different task than the one last awakened 7304 * at a frequency roughly N times higher than one of its wakees. 7305 * 7306 * In order to determine whether we should let the load spread vs consolidating 7307 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7308 * partner, and a factor of lls_size higher frequency in the other. 7309 * 7310 * With both conditions met, we can be relatively sure that the relationship is 7311 * non-monogamous, with partner count exceeding socket size. 7312 * 7313 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7314 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7315 * socket size. 7316 */ 7317 static int wake_wide(struct task_struct *p) 7318 { 7319 unsigned int master = current->wakee_flips; 7320 unsigned int slave = p->wakee_flips; 7321 int factor = __this_cpu_read(sd_llc_size); 7322 7323 if (master < slave) 7324 swap(master, slave); 7325 if (slave < factor || master < slave * factor) 7326 return 0; 7327 return 1; 7328 } 7329 7330 /* 7331 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7332 * soonest. For the purpose of speed we only consider the waking and previous 7333 * CPU. 7334 * 7335 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7336 * cache-affine and is (or will be) idle. 7337 * 7338 * wake_affine_weight() - considers the weight to reflect the average 7339 * scheduling latency of the CPUs. This seems to work 7340 * for the overloaded case. 7341 */ 7342 static int 7343 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7344 { 7345 /* 7346 * If this_cpu is idle, it implies the wakeup is from interrupt 7347 * context. Only allow the move if cache is shared. Otherwise an 7348 * interrupt intensive workload could force all tasks onto one 7349 * node depending on the IO topology or IRQ affinity settings. 7350 * 7351 * If the prev_cpu is idle and cache affine then avoid a migration. 7352 * There is no guarantee that the cache hot data from an interrupt 7353 * is more important than cache hot data on the prev_cpu and from 7354 * a cpufreq perspective, it's better to have higher utilisation 7355 * on one CPU. 7356 */ 7357 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7358 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7359 7360 if (sync) { 7361 struct rq *rq = cpu_rq(this_cpu); 7362 7363 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) 7364 return this_cpu; 7365 } 7366 7367 if (available_idle_cpu(prev_cpu)) 7368 return prev_cpu; 7369 7370 return nr_cpumask_bits; 7371 } 7372 7373 static int 7374 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7375 int this_cpu, int prev_cpu, int sync) 7376 { 7377 s64 this_eff_load, prev_eff_load; 7378 unsigned long task_load; 7379 7380 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7381 7382 if (sync) { 7383 unsigned long current_load = task_h_load(current); 7384 7385 if (current_load > this_eff_load) 7386 return this_cpu; 7387 7388 this_eff_load -= current_load; 7389 } 7390 7391 task_load = task_h_load(p); 7392 7393 this_eff_load += task_load; 7394 if (sched_feat(WA_BIAS)) 7395 this_eff_load *= 100; 7396 this_eff_load *= capacity_of(prev_cpu); 7397 7398 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7399 prev_eff_load -= task_load; 7400 if (sched_feat(WA_BIAS)) 7401 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7402 prev_eff_load *= capacity_of(this_cpu); 7403 7404 /* 7405 * If sync, adjust the weight of prev_eff_load such that if 7406 * prev_eff == this_eff that select_idle_sibling() will consider 7407 * stacking the wakee on top of the waker if no other CPU is 7408 * idle. 7409 */ 7410 if (sync) 7411 prev_eff_load += 1; 7412 7413 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7414 } 7415 7416 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7417 int this_cpu, int prev_cpu, int sync) 7418 { 7419 int target = nr_cpumask_bits; 7420 7421 if (sched_feat(WA_IDLE)) 7422 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7423 7424 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7425 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7426 7427 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7428 if (target != this_cpu) 7429 return prev_cpu; 7430 7431 schedstat_inc(sd->ttwu_move_affine); 7432 schedstat_inc(p->stats.nr_wakeups_affine); 7433 return target; 7434 } 7435 7436 static struct sched_group * 7437 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7438 7439 /* 7440 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7441 */ 7442 static int 7443 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7444 { 7445 unsigned long load, min_load = ULONG_MAX; 7446 unsigned int min_exit_latency = UINT_MAX; 7447 u64 latest_idle_timestamp = 0; 7448 int least_loaded_cpu = this_cpu; 7449 int shallowest_idle_cpu = -1; 7450 int i; 7451 7452 /* Check if we have any choice: */ 7453 if (group->group_weight == 1) 7454 return cpumask_first(sched_group_span(group)); 7455 7456 /* Traverse only the allowed CPUs */ 7457 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7458 struct rq *rq = cpu_rq(i); 7459 7460 if (!sched_core_cookie_match(rq, p)) 7461 continue; 7462 7463 if (sched_idle_cpu(i)) 7464 return i; 7465 7466 if (available_idle_cpu(i)) { 7467 struct cpuidle_state *idle = idle_get_state(rq); 7468 if (idle && idle->exit_latency < min_exit_latency) { 7469 /* 7470 * We give priority to a CPU whose idle state 7471 * has the smallest exit latency irrespective 7472 * of any idle timestamp. 7473 */ 7474 min_exit_latency = idle->exit_latency; 7475 latest_idle_timestamp = rq->idle_stamp; 7476 shallowest_idle_cpu = i; 7477 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7478 rq->idle_stamp > latest_idle_timestamp) { 7479 /* 7480 * If equal or no active idle state, then 7481 * the most recently idled CPU might have 7482 * a warmer cache. 7483 */ 7484 latest_idle_timestamp = rq->idle_stamp; 7485 shallowest_idle_cpu = i; 7486 } 7487 } else if (shallowest_idle_cpu == -1) { 7488 load = cpu_load(cpu_rq(i)); 7489 if (load < min_load) { 7490 min_load = load; 7491 least_loaded_cpu = i; 7492 } 7493 } 7494 } 7495 7496 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7497 } 7498 7499 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7500 int cpu, int prev_cpu, int sd_flag) 7501 { 7502 int new_cpu = cpu; 7503 7504 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7505 return prev_cpu; 7506 7507 /* 7508 * We need task's util for cpu_util_without, sync it up to 7509 * prev_cpu's last_update_time. 7510 */ 7511 if (!(sd_flag & SD_BALANCE_FORK)) 7512 sync_entity_load_avg(&p->se); 7513 7514 while (sd) { 7515 struct sched_group *group; 7516 struct sched_domain *tmp; 7517 int weight; 7518 7519 if (!(sd->flags & sd_flag)) { 7520 sd = sd->child; 7521 continue; 7522 } 7523 7524 group = sched_balance_find_dst_group(sd, p, cpu); 7525 if (!group) { 7526 sd = sd->child; 7527 continue; 7528 } 7529 7530 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7531 if (new_cpu == cpu) { 7532 /* Now try balancing at a lower domain level of 'cpu': */ 7533 sd = sd->child; 7534 continue; 7535 } 7536 7537 /* Now try balancing at a lower domain level of 'new_cpu': */ 7538 cpu = new_cpu; 7539 weight = sd->span_weight; 7540 sd = NULL; 7541 for_each_domain(cpu, tmp) { 7542 if (weight <= tmp->span_weight) 7543 break; 7544 if (tmp->flags & sd_flag) 7545 sd = tmp; 7546 } 7547 } 7548 7549 return new_cpu; 7550 } 7551 7552 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7553 { 7554 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7555 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7556 return cpu; 7557 7558 return -1; 7559 } 7560 7561 #ifdef CONFIG_SCHED_SMT 7562 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7563 EXPORT_SYMBOL_GPL(sched_smt_present); 7564 7565 static inline void set_idle_cores(int cpu, int val) 7566 { 7567 struct sched_domain_shared *sds; 7568 7569 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7570 if (sds) 7571 WRITE_ONCE(sds->has_idle_cores, val); 7572 } 7573 7574 static inline bool test_idle_cores(int cpu) 7575 { 7576 struct sched_domain_shared *sds; 7577 7578 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7579 if (sds) 7580 return READ_ONCE(sds->has_idle_cores); 7581 7582 return false; 7583 } 7584 7585 /* 7586 * Scans the local SMT mask to see if the entire core is idle, and records this 7587 * information in sd_llc_shared->has_idle_cores. 7588 * 7589 * Since SMT siblings share all cache levels, inspecting this limited remote 7590 * state should be fairly cheap. 7591 */ 7592 void __update_idle_core(struct rq *rq) 7593 { 7594 int core = cpu_of(rq); 7595 int cpu; 7596 7597 rcu_read_lock(); 7598 if (test_idle_cores(core)) 7599 goto unlock; 7600 7601 for_each_cpu(cpu, cpu_smt_mask(core)) { 7602 if (cpu == core) 7603 continue; 7604 7605 if (!available_idle_cpu(cpu)) 7606 goto unlock; 7607 } 7608 7609 set_idle_cores(core, 1); 7610 unlock: 7611 rcu_read_unlock(); 7612 } 7613 7614 /* 7615 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7616 * there are no idle cores left in the system; tracked through 7617 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7618 */ 7619 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7620 { 7621 bool idle = true; 7622 int cpu; 7623 7624 for_each_cpu(cpu, cpu_smt_mask(core)) { 7625 if (!available_idle_cpu(cpu)) { 7626 idle = false; 7627 if (*idle_cpu == -1) { 7628 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7629 *idle_cpu = cpu; 7630 break; 7631 } 7632 continue; 7633 } 7634 break; 7635 } 7636 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7637 *idle_cpu = cpu; 7638 } 7639 7640 if (idle) 7641 return core; 7642 7643 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7644 return -1; 7645 } 7646 7647 /* 7648 * Scan the local SMT mask for idle CPUs. 7649 */ 7650 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7651 { 7652 int cpu; 7653 7654 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7655 if (cpu == target) 7656 continue; 7657 /* 7658 * Check if the CPU is in the LLC scheduling domain of @target. 7659 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7660 */ 7661 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7662 continue; 7663 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7664 return cpu; 7665 } 7666 7667 return -1; 7668 } 7669 7670 #else /* CONFIG_SCHED_SMT */ 7671 7672 static inline void set_idle_cores(int cpu, int val) 7673 { 7674 } 7675 7676 static inline bool test_idle_cores(int cpu) 7677 { 7678 return false; 7679 } 7680 7681 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7682 { 7683 return __select_idle_cpu(core, p); 7684 } 7685 7686 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7687 { 7688 return -1; 7689 } 7690 7691 #endif /* CONFIG_SCHED_SMT */ 7692 7693 /* 7694 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7695 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7696 * average idle time for this rq (as found in rq->avg_idle). 7697 */ 7698 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7699 { 7700 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7701 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7702 struct sched_domain_shared *sd_share; 7703 7704 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7705 7706 if (sched_feat(SIS_UTIL)) { 7707 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7708 if (sd_share) { 7709 /* because !--nr is the condition to stop scan */ 7710 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7711 /* overloaded LLC is unlikely to have idle cpu/core */ 7712 if (nr == 1) 7713 return -1; 7714 } 7715 } 7716 7717 if (static_branch_unlikely(&sched_cluster_active)) { 7718 struct sched_group *sg = sd->groups; 7719 7720 if (sg->flags & SD_CLUSTER) { 7721 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7722 if (!cpumask_test_cpu(cpu, cpus)) 7723 continue; 7724 7725 if (has_idle_core) { 7726 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7727 if ((unsigned int)i < nr_cpumask_bits) 7728 return i; 7729 } else { 7730 if (--nr <= 0) 7731 return -1; 7732 idle_cpu = __select_idle_cpu(cpu, p); 7733 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7734 return idle_cpu; 7735 } 7736 } 7737 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7738 } 7739 } 7740 7741 for_each_cpu_wrap(cpu, cpus, target + 1) { 7742 if (has_idle_core) { 7743 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7744 if ((unsigned int)i < nr_cpumask_bits) 7745 return i; 7746 7747 } else { 7748 if (--nr <= 0) 7749 return -1; 7750 idle_cpu = __select_idle_cpu(cpu, p); 7751 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7752 break; 7753 } 7754 } 7755 7756 if (has_idle_core) 7757 set_idle_cores(target, false); 7758 7759 return idle_cpu; 7760 } 7761 7762 /* 7763 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7764 * the task fits. If no CPU is big enough, but there are idle ones, try to 7765 * maximize capacity. 7766 */ 7767 static int 7768 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7769 { 7770 unsigned long task_util, util_min, util_max, best_cap = 0; 7771 int fits, best_fits = 0; 7772 int cpu, best_cpu = -1; 7773 struct cpumask *cpus; 7774 7775 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7776 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7777 7778 task_util = task_util_est(p); 7779 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7780 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7781 7782 for_each_cpu_wrap(cpu, cpus, target) { 7783 unsigned long cpu_cap = capacity_of(cpu); 7784 7785 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7786 continue; 7787 7788 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7789 7790 /* This CPU fits with all requirements */ 7791 if (fits > 0) 7792 return cpu; 7793 /* 7794 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7795 * Look for the CPU with best capacity. 7796 */ 7797 else if (fits < 0) 7798 cpu_cap = get_actual_cpu_capacity(cpu); 7799 7800 /* 7801 * First, select CPU which fits better (-1 being better than 0). 7802 * Then, select the one with best capacity at same level. 7803 */ 7804 if ((fits < best_fits) || 7805 ((fits == best_fits) && (cpu_cap > best_cap))) { 7806 best_cap = cpu_cap; 7807 best_cpu = cpu; 7808 best_fits = fits; 7809 } 7810 } 7811 7812 return best_cpu; 7813 } 7814 7815 static inline bool asym_fits_cpu(unsigned long util, 7816 unsigned long util_min, 7817 unsigned long util_max, 7818 int cpu) 7819 { 7820 if (sched_asym_cpucap_active()) 7821 /* 7822 * Return true only if the cpu fully fits the task requirements 7823 * which include the utilization and the performance hints. 7824 */ 7825 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7826 7827 return true; 7828 } 7829 7830 /* 7831 * Try and locate an idle core/thread in the LLC cache domain. 7832 */ 7833 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7834 { 7835 bool has_idle_core = false; 7836 struct sched_domain *sd; 7837 unsigned long task_util, util_min, util_max; 7838 int i, recent_used_cpu, prev_aff = -1; 7839 7840 /* 7841 * On asymmetric system, update task utilization because we will check 7842 * that the task fits with CPU's capacity. 7843 */ 7844 if (sched_asym_cpucap_active()) { 7845 sync_entity_load_avg(&p->se); 7846 task_util = task_util_est(p); 7847 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7848 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7849 } 7850 7851 /* 7852 * per-cpu select_rq_mask usage 7853 */ 7854 lockdep_assert_irqs_disabled(); 7855 7856 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7857 asym_fits_cpu(task_util, util_min, util_max, target)) 7858 return target; 7859 7860 /* 7861 * If the previous CPU is cache affine and idle, don't be stupid: 7862 */ 7863 if (prev != target && cpus_share_cache(prev, target) && 7864 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7865 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7866 7867 if (!static_branch_unlikely(&sched_cluster_active) || 7868 cpus_share_resources(prev, target)) 7869 return prev; 7870 7871 prev_aff = prev; 7872 } 7873 7874 /* 7875 * Allow a per-cpu kthread to stack with the wakee if the 7876 * kworker thread and the tasks previous CPUs are the same. 7877 * The assumption is that the wakee queued work for the 7878 * per-cpu kthread that is now complete and the wakeup is 7879 * essentially a sync wakeup. An obvious example of this 7880 * pattern is IO completions. 7881 */ 7882 if (is_per_cpu_kthread(current) && 7883 in_task() && 7884 prev == smp_processor_id() && 7885 this_rq()->nr_running <= 1 && 7886 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7887 return prev; 7888 } 7889 7890 /* Check a recently used CPU as a potential idle candidate: */ 7891 recent_used_cpu = p->recent_used_cpu; 7892 p->recent_used_cpu = prev; 7893 if (recent_used_cpu != prev && 7894 recent_used_cpu != target && 7895 cpus_share_cache(recent_used_cpu, target) && 7896 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7897 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7898 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7899 7900 if (!static_branch_unlikely(&sched_cluster_active) || 7901 cpus_share_resources(recent_used_cpu, target)) 7902 return recent_used_cpu; 7903 7904 } else { 7905 recent_used_cpu = -1; 7906 } 7907 7908 /* 7909 * For asymmetric CPU capacity systems, our domain of interest is 7910 * sd_asym_cpucapacity rather than sd_llc. 7911 */ 7912 if (sched_asym_cpucap_active()) { 7913 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7914 /* 7915 * On an asymmetric CPU capacity system where an exclusive 7916 * cpuset defines a symmetric island (i.e. one unique 7917 * capacity_orig value through the cpuset), the key will be set 7918 * but the CPUs within that cpuset will not have a domain with 7919 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7920 * capacity path. 7921 */ 7922 if (sd) { 7923 i = select_idle_capacity(p, sd, target); 7924 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7925 } 7926 } 7927 7928 sd = rcu_dereference(per_cpu(sd_llc, target)); 7929 if (!sd) 7930 return target; 7931 7932 if (sched_smt_active()) { 7933 has_idle_core = test_idle_cores(target); 7934 7935 if (!has_idle_core && cpus_share_cache(prev, target)) { 7936 i = select_idle_smt(p, sd, prev); 7937 if ((unsigned int)i < nr_cpumask_bits) 7938 return i; 7939 } 7940 } 7941 7942 i = select_idle_cpu(p, sd, has_idle_core, target); 7943 if ((unsigned)i < nr_cpumask_bits) 7944 return i; 7945 7946 /* 7947 * For cluster machines which have lower sharing cache like L2 or 7948 * LLC Tag, we tend to find an idle CPU in the target's cluster 7949 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7950 * use them if possible when no idle CPU found in select_idle_cpu(). 7951 */ 7952 if ((unsigned int)prev_aff < nr_cpumask_bits) 7953 return prev_aff; 7954 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7955 return recent_used_cpu; 7956 7957 return target; 7958 } 7959 7960 /** 7961 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7962 * @cpu: the CPU to get the utilization for 7963 * @p: task for which the CPU utilization should be predicted or NULL 7964 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7965 * @boost: 1 to enable boosting, otherwise 0 7966 * 7967 * The unit of the return value must be the same as the one of CPU capacity 7968 * so that CPU utilization can be compared with CPU capacity. 7969 * 7970 * CPU utilization is the sum of running time of runnable tasks plus the 7971 * recent utilization of currently non-runnable tasks on that CPU. 7972 * It represents the amount of CPU capacity currently used by CFS tasks in 7973 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7974 * capacity at f_max. 7975 * 7976 * The estimated CPU utilization is defined as the maximum between CPU 7977 * utilization and sum of the estimated utilization of the currently 7978 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7979 * previously-executed tasks, which helps better deduce how busy a CPU will 7980 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7981 * of such a task would be significantly decayed at this point of time. 7982 * 7983 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7984 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7985 * utilization. Boosting is implemented in cpu_util() so that internal 7986 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7987 * latter via cpu_util_cfs_boost(). 7988 * 7989 * CPU utilization can be higher than the current CPU capacity 7990 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7991 * of rounding errors as well as task migrations or wakeups of new tasks. 7992 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7993 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7994 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7995 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7996 * though since this is useful for predicting the CPU capacity required 7997 * after task migrations (scheduler-driven DVFS). 7998 * 7999 * Return: (Boosted) (estimated) utilization for the specified CPU. 8000 */ 8001 static unsigned long 8002 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 8003 { 8004 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 8005 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 8006 unsigned long runnable; 8007 8008 if (boost) { 8009 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 8010 util = max(util, runnable); 8011 } 8012 8013 /* 8014 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 8015 * contribution. If @p migrates from another CPU to @cpu add its 8016 * contribution. In all the other cases @cpu is not impacted by the 8017 * migration so its util_avg is already correct. 8018 */ 8019 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8020 lsub_positive(&util, task_util(p)); 8021 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8022 util += task_util(p); 8023 8024 if (sched_feat(UTIL_EST)) { 8025 unsigned long util_est; 8026 8027 util_est = READ_ONCE(cfs_rq->avg.util_est); 8028 8029 /* 8030 * During wake-up @p isn't enqueued yet and doesn't contribute 8031 * to any cpu_rq(cpu)->cfs.avg.util_est. 8032 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8033 * has been enqueued. 8034 * 8035 * During exec (@dst_cpu = -1) @p is enqueued and does 8036 * contribute to cpu_rq(cpu)->cfs.util_est. 8037 * Remove it to "simulate" cpu_util without @p's contribution. 8038 * 8039 * Despite the task_on_rq_queued(@p) check there is still a 8040 * small window for a possible race when an exec 8041 * select_task_rq_fair() races with LB's detach_task(). 8042 * 8043 * detach_task() 8044 * deactivate_task() 8045 * p->on_rq = TASK_ON_RQ_MIGRATING; 8046 * -------------------------------- A 8047 * dequeue_task() \ 8048 * dequeue_task_fair() + Race Time 8049 * util_est_dequeue() / 8050 * -------------------------------- B 8051 * 8052 * The additional check "current == p" is required to further 8053 * reduce the race window. 8054 */ 8055 if (dst_cpu == cpu) 8056 util_est += _task_util_est(p); 8057 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8058 lsub_positive(&util_est, _task_util_est(p)); 8059 8060 util = max(util, util_est); 8061 } 8062 8063 return min(util, arch_scale_cpu_capacity(cpu)); 8064 } 8065 8066 unsigned long cpu_util_cfs(int cpu) 8067 { 8068 return cpu_util(cpu, NULL, -1, 0); 8069 } 8070 8071 unsigned long cpu_util_cfs_boost(int cpu) 8072 { 8073 return cpu_util(cpu, NULL, -1, 1); 8074 } 8075 8076 /* 8077 * cpu_util_without: compute cpu utilization without any contributions from *p 8078 * @cpu: the CPU which utilization is requested 8079 * @p: the task which utilization should be discounted 8080 * 8081 * The utilization of a CPU is defined by the utilization of tasks currently 8082 * enqueued on that CPU as well as tasks which are currently sleeping after an 8083 * execution on that CPU. 8084 * 8085 * This method returns the utilization of the specified CPU by discounting the 8086 * utilization of the specified task, whenever the task is currently 8087 * contributing to the CPU utilization. 8088 */ 8089 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8090 { 8091 /* Task has no contribution or is new */ 8092 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8093 p = NULL; 8094 8095 return cpu_util(cpu, p, -1, 0); 8096 } 8097 8098 /* 8099 * This function computes an effective utilization for the given CPU, to be 8100 * used for frequency selection given the linear relation: f = u * f_max. 8101 * 8102 * The scheduler tracks the following metrics: 8103 * 8104 * cpu_util_{cfs,rt,dl,irq}() 8105 * cpu_bw_dl() 8106 * 8107 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8108 * synchronized windows and are thus directly comparable. 8109 * 8110 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8111 * which excludes things like IRQ and steal-time. These latter are then accrued 8112 * in the IRQ utilization. 8113 * 8114 * The DL bandwidth number OTOH is not a measured metric but a value computed 8115 * based on the task model parameters and gives the minimal utilization 8116 * required to meet deadlines. 8117 */ 8118 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8119 unsigned long *min, 8120 unsigned long *max) 8121 { 8122 unsigned long util, irq, scale; 8123 struct rq *rq = cpu_rq(cpu); 8124 8125 scale = arch_scale_cpu_capacity(cpu); 8126 8127 /* 8128 * Early check to see if IRQ/steal time saturates the CPU, can be 8129 * because of inaccuracies in how we track these -- see 8130 * update_irq_load_avg(). 8131 */ 8132 irq = cpu_util_irq(rq); 8133 if (unlikely(irq >= scale)) { 8134 if (min) 8135 *min = scale; 8136 if (max) 8137 *max = scale; 8138 return scale; 8139 } 8140 8141 if (min) { 8142 /* 8143 * The minimum utilization returns the highest level between: 8144 * - the computed DL bandwidth needed with the IRQ pressure which 8145 * steals time to the deadline task. 8146 * - The minimum performance requirement for CFS and/or RT. 8147 */ 8148 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8149 8150 /* 8151 * When an RT task is runnable and uclamp is not used, we must 8152 * ensure that the task will run at maximum compute capacity. 8153 */ 8154 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8155 *min = max(*min, scale); 8156 } 8157 8158 /* 8159 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8160 * CFS tasks and we use the same metric to track the effective 8161 * utilization (PELT windows are synchronized) we can directly add them 8162 * to obtain the CPU's actual utilization. 8163 */ 8164 util = util_cfs + cpu_util_rt(rq); 8165 util += cpu_util_dl(rq); 8166 8167 /* 8168 * The maximum hint is a soft bandwidth requirement, which can be lower 8169 * than the actual utilization because of uclamp_max requirements. 8170 */ 8171 if (max) 8172 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8173 8174 if (util >= scale) 8175 return scale; 8176 8177 /* 8178 * There is still idle time; further improve the number by using the 8179 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8180 * need to scale the task numbers: 8181 * 8182 * max - irq 8183 * U' = irq + --------- * U 8184 * max 8185 */ 8186 util = scale_irq_capacity(util, irq, scale); 8187 util += irq; 8188 8189 return min(scale, util); 8190 } 8191 8192 unsigned long sched_cpu_util(int cpu) 8193 { 8194 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8195 } 8196 8197 /* 8198 * energy_env - Utilization landscape for energy estimation. 8199 * @task_busy_time: Utilization contribution by the task for which we test the 8200 * placement. Given by eenv_task_busy_time(). 8201 * @pd_busy_time: Utilization of the whole perf domain without the task 8202 * contribution. Given by eenv_pd_busy_time(). 8203 * @cpu_cap: Maximum CPU capacity for the perf domain. 8204 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8205 */ 8206 struct energy_env { 8207 unsigned long task_busy_time; 8208 unsigned long pd_busy_time; 8209 unsigned long cpu_cap; 8210 unsigned long pd_cap; 8211 }; 8212 8213 /* 8214 * Compute the task busy time for compute_energy(). This time cannot be 8215 * injected directly into effective_cpu_util() because of the IRQ scaling. 8216 * The latter only makes sense with the most recent CPUs where the task has 8217 * run. 8218 */ 8219 static inline void eenv_task_busy_time(struct energy_env *eenv, 8220 struct task_struct *p, int prev_cpu) 8221 { 8222 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8223 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8224 8225 if (unlikely(irq >= max_cap)) 8226 busy_time = max_cap; 8227 else 8228 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8229 8230 eenv->task_busy_time = busy_time; 8231 } 8232 8233 /* 8234 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8235 * utilization for each @pd_cpus, it however doesn't take into account 8236 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8237 * scale the EM reported power consumption at the (eventually clamped) 8238 * cpu_capacity. 8239 * 8240 * The contribution of the task @p for which we want to estimate the 8241 * energy cost is removed (by cpu_util()) and must be calculated 8242 * separately (see eenv_task_busy_time). This ensures: 8243 * 8244 * - A stable PD utilization, no matter which CPU of that PD we want to place 8245 * the task on. 8246 * 8247 * - A fair comparison between CPUs as the task contribution (task_util()) 8248 * will always be the same no matter which CPU utilization we rely on 8249 * (util_avg or util_est). 8250 * 8251 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8252 * exceed @eenv->pd_cap. 8253 */ 8254 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8255 struct cpumask *pd_cpus, 8256 struct task_struct *p) 8257 { 8258 unsigned long busy_time = 0; 8259 int cpu; 8260 8261 for_each_cpu(cpu, pd_cpus) { 8262 unsigned long util = cpu_util(cpu, p, -1, 0); 8263 8264 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8265 } 8266 8267 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8268 } 8269 8270 /* 8271 * Compute the maximum utilization for compute_energy() when the task @p 8272 * is placed on the cpu @dst_cpu. 8273 * 8274 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8275 * exceed @eenv->cpu_cap. 8276 */ 8277 static inline unsigned long 8278 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8279 struct task_struct *p, int dst_cpu) 8280 { 8281 unsigned long max_util = 0; 8282 int cpu; 8283 8284 for_each_cpu(cpu, pd_cpus) { 8285 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8286 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8287 unsigned long eff_util, min, max; 8288 8289 /* 8290 * Performance domain frequency: utilization clamping 8291 * must be considered since it affects the selection 8292 * of the performance domain frequency. 8293 * NOTE: in case RT tasks are running, by default the min 8294 * utilization can be max OPP. 8295 */ 8296 eff_util = effective_cpu_util(cpu, util, &min, &max); 8297 8298 /* Task's uclamp can modify min and max value */ 8299 if (tsk && uclamp_is_used()) { 8300 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8301 8302 /* 8303 * If there is no active max uclamp constraint, 8304 * directly use task's one, otherwise keep max. 8305 */ 8306 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8307 max = uclamp_eff_value(p, UCLAMP_MAX); 8308 else 8309 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8310 } 8311 8312 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8313 max_util = max(max_util, eff_util); 8314 } 8315 8316 return min(max_util, eenv->cpu_cap); 8317 } 8318 8319 /* 8320 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8321 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8322 * contribution is ignored. 8323 */ 8324 static inline unsigned long 8325 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8326 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8327 { 8328 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8329 unsigned long busy_time = eenv->pd_busy_time; 8330 unsigned long energy; 8331 8332 if (dst_cpu >= 0) 8333 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8334 8335 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8336 8337 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8338 8339 return energy; 8340 } 8341 8342 /* 8343 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8344 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8345 * spare capacity in each performance domain and uses it as a potential 8346 * candidate to execute the task. Then, it uses the Energy Model to figure 8347 * out which of the CPU candidates is the most energy-efficient. 8348 * 8349 * The rationale for this heuristic is as follows. In a performance domain, 8350 * all the most energy efficient CPU candidates (according to the Energy 8351 * Model) are those for which we'll request a low frequency. When there are 8352 * several CPUs for which the frequency request will be the same, we don't 8353 * have enough data to break the tie between them, because the Energy Model 8354 * only includes active power costs. With this model, if we assume that 8355 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8356 * the maximum spare capacity in a performance domain is guaranteed to be among 8357 * the best candidates of the performance domain. 8358 * 8359 * In practice, it could be preferable from an energy standpoint to pack 8360 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8361 * but that could also hurt our chances to go cluster idle, and we have no 8362 * ways to tell with the current Energy Model if this is actually a good 8363 * idea or not. So, find_energy_efficient_cpu() basically favors 8364 * cluster-packing, and spreading inside a cluster. That should at least be 8365 * a good thing for latency, and this is consistent with the idea that most 8366 * of the energy savings of EAS come from the asymmetry of the system, and 8367 * not so much from breaking the tie between identical CPUs. That's also the 8368 * reason why EAS is enabled in the topology code only for systems where 8369 * SD_ASYM_CPUCAPACITY is set. 8370 * 8371 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8372 * they don't have any useful utilization data yet and it's not possible to 8373 * forecast their impact on energy consumption. Consequently, they will be 8374 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8375 * to be energy-inefficient in some use-cases. The alternative would be to 8376 * bias new tasks towards specific types of CPUs first, or to try to infer 8377 * their util_avg from the parent task, but those heuristics could hurt 8378 * other use-cases too. So, until someone finds a better way to solve this, 8379 * let's keep things simple by re-using the existing slow path. 8380 */ 8381 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8382 { 8383 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8384 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8385 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8386 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8387 struct root_domain *rd = this_rq()->rd; 8388 int cpu, best_energy_cpu, target = -1; 8389 int prev_fits = -1, best_fits = -1; 8390 unsigned long best_actual_cap = 0; 8391 unsigned long prev_actual_cap = 0; 8392 struct sched_domain *sd; 8393 struct perf_domain *pd; 8394 struct energy_env eenv; 8395 8396 rcu_read_lock(); 8397 pd = rcu_dereference(rd->pd); 8398 if (!pd) 8399 goto unlock; 8400 8401 /* 8402 * Energy-aware wake-up happens on the lowest sched_domain starting 8403 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8404 */ 8405 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8406 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8407 sd = sd->parent; 8408 if (!sd) 8409 goto unlock; 8410 8411 target = prev_cpu; 8412 8413 sync_entity_load_avg(&p->se); 8414 if (!task_util_est(p) && p_util_min == 0) 8415 goto unlock; 8416 8417 eenv_task_busy_time(&eenv, p, prev_cpu); 8418 8419 for (; pd; pd = pd->next) { 8420 unsigned long util_min = p_util_min, util_max = p_util_max; 8421 unsigned long cpu_cap, cpu_actual_cap, util; 8422 long prev_spare_cap = -1, max_spare_cap = -1; 8423 unsigned long rq_util_min, rq_util_max; 8424 unsigned long cur_delta, base_energy; 8425 int max_spare_cap_cpu = -1; 8426 int fits, max_fits = -1; 8427 8428 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8429 8430 if (cpumask_empty(cpus)) 8431 continue; 8432 8433 /* Account external pressure for the energy estimation */ 8434 cpu = cpumask_first(cpus); 8435 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8436 8437 eenv.cpu_cap = cpu_actual_cap; 8438 eenv.pd_cap = 0; 8439 8440 for_each_cpu(cpu, cpus) { 8441 struct rq *rq = cpu_rq(cpu); 8442 8443 eenv.pd_cap += cpu_actual_cap; 8444 8445 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8446 continue; 8447 8448 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8449 continue; 8450 8451 util = cpu_util(cpu, p, cpu, 0); 8452 cpu_cap = capacity_of(cpu); 8453 8454 /* 8455 * Skip CPUs that cannot satisfy the capacity request. 8456 * IOW, placing the task there would make the CPU 8457 * overutilized. Take uclamp into account to see how 8458 * much capacity we can get out of the CPU; this is 8459 * aligned with sched_cpu_util(). 8460 */ 8461 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8462 /* 8463 * Open code uclamp_rq_util_with() except for 8464 * the clamp() part. I.e.: apply max aggregation 8465 * only. util_fits_cpu() logic requires to 8466 * operate on non clamped util but must use the 8467 * max-aggregated uclamp_{min, max}. 8468 */ 8469 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8470 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8471 8472 util_min = max(rq_util_min, p_util_min); 8473 util_max = max(rq_util_max, p_util_max); 8474 } 8475 8476 fits = util_fits_cpu(util, util_min, util_max, cpu); 8477 if (!fits) 8478 continue; 8479 8480 lsub_positive(&cpu_cap, util); 8481 8482 if (cpu == prev_cpu) { 8483 /* Always use prev_cpu as a candidate. */ 8484 prev_spare_cap = cpu_cap; 8485 prev_fits = fits; 8486 } else if ((fits > max_fits) || 8487 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8488 /* 8489 * Find the CPU with the maximum spare capacity 8490 * among the remaining CPUs in the performance 8491 * domain. 8492 */ 8493 max_spare_cap = cpu_cap; 8494 max_spare_cap_cpu = cpu; 8495 max_fits = fits; 8496 } 8497 } 8498 8499 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8500 continue; 8501 8502 eenv_pd_busy_time(&eenv, cpus, p); 8503 /* Compute the 'base' energy of the pd, without @p */ 8504 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8505 8506 /* Evaluate the energy impact of using prev_cpu. */ 8507 if (prev_spare_cap > -1) { 8508 prev_delta = compute_energy(&eenv, pd, cpus, p, 8509 prev_cpu); 8510 /* CPU utilization has changed */ 8511 if (prev_delta < base_energy) 8512 goto unlock; 8513 prev_delta -= base_energy; 8514 prev_actual_cap = cpu_actual_cap; 8515 best_delta = min(best_delta, prev_delta); 8516 } 8517 8518 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8519 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8520 /* Current best energy cpu fits better */ 8521 if (max_fits < best_fits) 8522 continue; 8523 8524 /* 8525 * Both don't fit performance hint (i.e. uclamp_min) 8526 * but best energy cpu has better capacity. 8527 */ 8528 if ((max_fits < 0) && 8529 (cpu_actual_cap <= best_actual_cap)) 8530 continue; 8531 8532 cur_delta = compute_energy(&eenv, pd, cpus, p, 8533 max_spare_cap_cpu); 8534 /* CPU utilization has changed */ 8535 if (cur_delta < base_energy) 8536 goto unlock; 8537 cur_delta -= base_energy; 8538 8539 /* 8540 * Both fit for the task but best energy cpu has lower 8541 * energy impact. 8542 */ 8543 if ((max_fits > 0) && (best_fits > 0) && 8544 (cur_delta >= best_delta)) 8545 continue; 8546 8547 best_delta = cur_delta; 8548 best_energy_cpu = max_spare_cap_cpu; 8549 best_fits = max_fits; 8550 best_actual_cap = cpu_actual_cap; 8551 } 8552 } 8553 rcu_read_unlock(); 8554 8555 if ((best_fits > prev_fits) || 8556 ((best_fits > 0) && (best_delta < prev_delta)) || 8557 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8558 target = best_energy_cpu; 8559 8560 return target; 8561 8562 unlock: 8563 rcu_read_unlock(); 8564 8565 return target; 8566 } 8567 8568 /* 8569 * select_task_rq_fair: Select target runqueue for the waking task in domains 8570 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8571 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8572 * 8573 * Balances load by selecting the idlest CPU in the idlest group, or under 8574 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8575 * 8576 * Returns the target CPU number. 8577 */ 8578 static int 8579 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8580 { 8581 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8582 struct sched_domain *tmp, *sd = NULL; 8583 int cpu = smp_processor_id(); 8584 int new_cpu = prev_cpu; 8585 int want_affine = 0; 8586 /* SD_flags and WF_flags share the first nibble */ 8587 int sd_flag = wake_flags & 0xF; 8588 8589 /* 8590 * required for stable ->cpus_allowed 8591 */ 8592 lockdep_assert_held(&p->pi_lock); 8593 if (wake_flags & WF_TTWU) { 8594 record_wakee(p); 8595 8596 if ((wake_flags & WF_CURRENT_CPU) && 8597 cpumask_test_cpu(cpu, p->cpus_ptr)) 8598 return cpu; 8599 8600 if (!is_rd_overutilized(this_rq()->rd)) { 8601 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8602 if (new_cpu >= 0) 8603 return new_cpu; 8604 new_cpu = prev_cpu; 8605 } 8606 8607 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8608 } 8609 8610 rcu_read_lock(); 8611 for_each_domain(cpu, tmp) { 8612 /* 8613 * If both 'cpu' and 'prev_cpu' are part of this domain, 8614 * cpu is a valid SD_WAKE_AFFINE target. 8615 */ 8616 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8617 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8618 if (cpu != prev_cpu) 8619 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8620 8621 sd = NULL; /* Prefer wake_affine over balance flags */ 8622 break; 8623 } 8624 8625 /* 8626 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8627 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8628 * will usually go to the fast path. 8629 */ 8630 if (tmp->flags & sd_flag) 8631 sd = tmp; 8632 else if (!want_affine) 8633 break; 8634 } 8635 8636 if (unlikely(sd)) { 8637 /* Slow path */ 8638 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8639 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8640 /* Fast path */ 8641 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8642 } 8643 rcu_read_unlock(); 8644 8645 return new_cpu; 8646 } 8647 8648 /* 8649 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8650 * cfs_rq_of(p) references at time of call are still valid and identify the 8651 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8652 */ 8653 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8654 { 8655 struct sched_entity *se = &p->se; 8656 8657 if (!task_on_rq_migrating(p)) { 8658 remove_entity_load_avg(se); 8659 8660 /* 8661 * Here, the task's PELT values have been updated according to 8662 * the current rq's clock. But if that clock hasn't been 8663 * updated in a while, a substantial idle time will be missed, 8664 * leading to an inflation after wake-up on the new rq. 8665 * 8666 * Estimate the missing time from the cfs_rq last_update_time 8667 * and update sched_avg to improve the PELT continuity after 8668 * migration. 8669 */ 8670 migrate_se_pelt_lag(se); 8671 } 8672 8673 /* Tell new CPU we are migrated */ 8674 se->avg.last_update_time = 0; 8675 8676 update_scan_period(p, new_cpu); 8677 } 8678 8679 static void task_dead_fair(struct task_struct *p) 8680 { 8681 struct sched_entity *se = &p->se; 8682 8683 if (se->sched_delayed) { 8684 struct rq_flags rf; 8685 struct rq *rq; 8686 8687 rq = task_rq_lock(p, &rf); 8688 if (se->sched_delayed) { 8689 update_rq_clock(rq); 8690 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8691 } 8692 task_rq_unlock(rq, p, &rf); 8693 } 8694 8695 remove_entity_load_avg(se); 8696 } 8697 8698 /* 8699 * Set the max capacity the task is allowed to run at for misfit detection. 8700 */ 8701 static void set_task_max_allowed_capacity(struct task_struct *p) 8702 { 8703 struct asym_cap_data *entry; 8704 8705 if (!sched_asym_cpucap_active()) 8706 return; 8707 8708 rcu_read_lock(); 8709 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8710 cpumask_t *cpumask; 8711 8712 cpumask = cpu_capacity_span(entry); 8713 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8714 continue; 8715 8716 p->max_allowed_capacity = entry->capacity; 8717 break; 8718 } 8719 rcu_read_unlock(); 8720 } 8721 8722 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8723 { 8724 set_cpus_allowed_common(p, ctx); 8725 set_task_max_allowed_capacity(p); 8726 } 8727 8728 static int 8729 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8730 { 8731 if (sched_fair_runnable(rq)) 8732 return 1; 8733 8734 return sched_balance_newidle(rq, rf) != 0; 8735 } 8736 #else 8737 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8738 #endif /* CONFIG_SMP */ 8739 8740 static void set_next_buddy(struct sched_entity *se) 8741 { 8742 for_each_sched_entity(se) { 8743 if (WARN_ON_ONCE(!se->on_rq)) 8744 return; 8745 if (se_is_idle(se)) 8746 return; 8747 cfs_rq_of(se)->next = se; 8748 } 8749 } 8750 8751 /* 8752 * Preempt the current task with a newly woken task if needed: 8753 */ 8754 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8755 { 8756 struct task_struct *donor = rq->donor; 8757 struct sched_entity *se = &donor->se, *pse = &p->se; 8758 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8759 int cse_is_idle, pse_is_idle; 8760 8761 if (unlikely(se == pse)) 8762 return; 8763 8764 /* 8765 * This is possible from callers such as attach_tasks(), in which we 8766 * unconditionally wakeup_preempt() after an enqueue (which may have 8767 * lead to a throttle). This both saves work and prevents false 8768 * next-buddy nomination below. 8769 */ 8770 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8771 return; 8772 8773 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8774 set_next_buddy(pse); 8775 } 8776 8777 /* 8778 * We can come here with TIF_NEED_RESCHED already set from new task 8779 * wake up path. 8780 * 8781 * Note: this also catches the edge-case of curr being in a throttled 8782 * group (e.g. via set_curr_task), since update_curr() (in the 8783 * enqueue of curr) will have resulted in resched being set. This 8784 * prevents us from potentially nominating it as a false LAST_BUDDY 8785 * below. 8786 */ 8787 if (test_tsk_need_resched(rq->curr)) 8788 return; 8789 8790 if (!sched_feat(WAKEUP_PREEMPTION)) 8791 return; 8792 8793 find_matching_se(&se, &pse); 8794 WARN_ON_ONCE(!pse); 8795 8796 cse_is_idle = se_is_idle(se); 8797 pse_is_idle = se_is_idle(pse); 8798 8799 /* 8800 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8801 * in the inverse case). 8802 */ 8803 if (cse_is_idle && !pse_is_idle) { 8804 /* 8805 * When non-idle entity preempt an idle entity, 8806 * don't give idle entity slice protection. 8807 */ 8808 cancel_protect_slice(se); 8809 goto preempt; 8810 } 8811 8812 if (cse_is_idle != pse_is_idle) 8813 return; 8814 8815 /* 8816 * BATCH and IDLE tasks do not preempt others. 8817 */ 8818 if (unlikely(!normal_policy(p->policy))) 8819 return; 8820 8821 cfs_rq = cfs_rq_of(se); 8822 update_curr(cfs_rq); 8823 /* 8824 * If @p has a shorter slice than current and @p is eligible, override 8825 * current's slice protection in order to allow preemption. 8826 * 8827 * Note that even if @p does not turn out to be the most eligible 8828 * task at this moment, current's slice protection will be lost. 8829 */ 8830 if (do_preempt_short(cfs_rq, pse, se)) 8831 cancel_protect_slice(se); 8832 8833 /* 8834 * If @p has become the most eligible task, force preemption. 8835 */ 8836 if (pick_eevdf(cfs_rq) == pse) 8837 goto preempt; 8838 8839 return; 8840 8841 preempt: 8842 resched_curr_lazy(rq); 8843 } 8844 8845 static struct task_struct *pick_task_fair(struct rq *rq) 8846 { 8847 struct sched_entity *se; 8848 struct cfs_rq *cfs_rq; 8849 8850 again: 8851 cfs_rq = &rq->cfs; 8852 if (!cfs_rq->nr_queued) 8853 return NULL; 8854 8855 do { 8856 /* Might not have done put_prev_entity() */ 8857 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8858 update_curr(cfs_rq); 8859 8860 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8861 goto again; 8862 8863 se = pick_next_entity(rq, cfs_rq); 8864 if (!se) 8865 goto again; 8866 cfs_rq = group_cfs_rq(se); 8867 } while (cfs_rq); 8868 8869 return task_of(se); 8870 } 8871 8872 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8873 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8874 8875 struct task_struct * 8876 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8877 { 8878 struct sched_entity *se; 8879 struct task_struct *p; 8880 int new_tasks; 8881 8882 again: 8883 p = pick_task_fair(rq); 8884 if (!p) 8885 goto idle; 8886 se = &p->se; 8887 8888 #ifdef CONFIG_FAIR_GROUP_SCHED 8889 if (prev->sched_class != &fair_sched_class) 8890 goto simple; 8891 8892 __put_prev_set_next_dl_server(rq, prev, p); 8893 8894 /* 8895 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8896 * likely that a next task is from the same cgroup as the current. 8897 * 8898 * Therefore attempt to avoid putting and setting the entire cgroup 8899 * hierarchy, only change the part that actually changes. 8900 * 8901 * Since we haven't yet done put_prev_entity and if the selected task 8902 * is a different task than we started out with, try and touch the 8903 * least amount of cfs_rqs. 8904 */ 8905 if (prev != p) { 8906 struct sched_entity *pse = &prev->se; 8907 struct cfs_rq *cfs_rq; 8908 8909 while (!(cfs_rq = is_same_group(se, pse))) { 8910 int se_depth = se->depth; 8911 int pse_depth = pse->depth; 8912 8913 if (se_depth <= pse_depth) { 8914 put_prev_entity(cfs_rq_of(pse), pse); 8915 pse = parent_entity(pse); 8916 } 8917 if (se_depth >= pse_depth) { 8918 set_next_entity(cfs_rq_of(se), se); 8919 se = parent_entity(se); 8920 } 8921 } 8922 8923 put_prev_entity(cfs_rq, pse); 8924 set_next_entity(cfs_rq, se); 8925 8926 __set_next_task_fair(rq, p, true); 8927 } 8928 8929 return p; 8930 8931 simple: 8932 #endif 8933 put_prev_set_next_task(rq, prev, p); 8934 return p; 8935 8936 idle: 8937 if (!rf) 8938 return NULL; 8939 8940 new_tasks = sched_balance_newidle(rq, rf); 8941 8942 /* 8943 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8944 * possible for any higher priority task to appear. In that case we 8945 * must re-start the pick_next_entity() loop. 8946 */ 8947 if (new_tasks < 0) 8948 return RETRY_TASK; 8949 8950 if (new_tasks > 0) 8951 goto again; 8952 8953 /* 8954 * rq is about to be idle, check if we need to update the 8955 * lost_idle_time of clock_pelt 8956 */ 8957 update_idle_rq_clock_pelt(rq); 8958 8959 return NULL; 8960 } 8961 8962 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8963 { 8964 return pick_next_task_fair(rq, prev, NULL); 8965 } 8966 8967 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8968 { 8969 return !!dl_se->rq->cfs.nr_queued; 8970 } 8971 8972 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8973 { 8974 return pick_task_fair(dl_se->rq); 8975 } 8976 8977 void fair_server_init(struct rq *rq) 8978 { 8979 struct sched_dl_entity *dl_se = &rq->fair_server; 8980 8981 init_dl_entity(dl_se); 8982 8983 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8984 } 8985 8986 /* 8987 * Account for a descheduled task: 8988 */ 8989 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8990 { 8991 struct sched_entity *se = &prev->se; 8992 struct cfs_rq *cfs_rq; 8993 8994 for_each_sched_entity(se) { 8995 cfs_rq = cfs_rq_of(se); 8996 put_prev_entity(cfs_rq, se); 8997 } 8998 } 8999 9000 /* 9001 * sched_yield() is very simple 9002 */ 9003 static void yield_task_fair(struct rq *rq) 9004 { 9005 struct task_struct *curr = rq->curr; 9006 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9007 struct sched_entity *se = &curr->se; 9008 9009 /* 9010 * Are we the only task in the tree? 9011 */ 9012 if (unlikely(rq->nr_running == 1)) 9013 return; 9014 9015 clear_buddies(cfs_rq, se); 9016 9017 update_rq_clock(rq); 9018 /* 9019 * Update run-time statistics of the 'current'. 9020 */ 9021 update_curr(cfs_rq); 9022 /* 9023 * Tell update_rq_clock() that we've just updated, 9024 * so we don't do microscopic update in schedule() 9025 * and double the fastpath cost. 9026 */ 9027 rq_clock_skip_update(rq); 9028 9029 se->deadline += calc_delta_fair(se->slice, se); 9030 } 9031 9032 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9033 { 9034 struct sched_entity *se = &p->se; 9035 9036 /* throttled hierarchies are not runnable */ 9037 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9038 return false; 9039 9040 /* Tell the scheduler that we'd really like se to run next. */ 9041 set_next_buddy(se); 9042 9043 yield_task_fair(rq); 9044 9045 return true; 9046 } 9047 9048 #ifdef CONFIG_SMP 9049 /************************************************** 9050 * Fair scheduling class load-balancing methods. 9051 * 9052 * BASICS 9053 * 9054 * The purpose of load-balancing is to achieve the same basic fairness the 9055 * per-CPU scheduler provides, namely provide a proportional amount of compute 9056 * time to each task. This is expressed in the following equation: 9057 * 9058 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9059 * 9060 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9061 * W_i,0 is defined as: 9062 * 9063 * W_i,0 = \Sum_j w_i,j (2) 9064 * 9065 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9066 * is derived from the nice value as per sched_prio_to_weight[]. 9067 * 9068 * The weight average is an exponential decay average of the instantaneous 9069 * weight: 9070 * 9071 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9072 * 9073 * C_i is the compute capacity of CPU i, typically it is the 9074 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9075 * can also include other factors [XXX]. 9076 * 9077 * To achieve this balance we define a measure of imbalance which follows 9078 * directly from (1): 9079 * 9080 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9081 * 9082 * We them move tasks around to minimize the imbalance. In the continuous 9083 * function space it is obvious this converges, in the discrete case we get 9084 * a few fun cases generally called infeasible weight scenarios. 9085 * 9086 * [XXX expand on: 9087 * - infeasible weights; 9088 * - local vs global optima in the discrete case. ] 9089 * 9090 * 9091 * SCHED DOMAINS 9092 * 9093 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9094 * for all i,j solution, we create a tree of CPUs that follows the hardware 9095 * topology where each level pairs two lower groups (or better). This results 9096 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9097 * tree to only the first of the previous level and we decrease the frequency 9098 * of load-balance at each level inversely proportional to the number of CPUs in 9099 * the groups. 9100 * 9101 * This yields: 9102 * 9103 * log_2 n 1 n 9104 * \Sum { --- * --- * 2^i } = O(n) (5) 9105 * i = 0 2^i 2^i 9106 * `- size of each group 9107 * | | `- number of CPUs doing load-balance 9108 * | `- freq 9109 * `- sum over all levels 9110 * 9111 * Coupled with a limit on how many tasks we can migrate every balance pass, 9112 * this makes (5) the runtime complexity of the balancer. 9113 * 9114 * An important property here is that each CPU is still (indirectly) connected 9115 * to every other CPU in at most O(log n) steps: 9116 * 9117 * The adjacency matrix of the resulting graph is given by: 9118 * 9119 * log_2 n 9120 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9121 * k = 0 9122 * 9123 * And you'll find that: 9124 * 9125 * A^(log_2 n)_i,j != 0 for all i,j (7) 9126 * 9127 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9128 * The task movement gives a factor of O(m), giving a convergence complexity 9129 * of: 9130 * 9131 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9132 * 9133 * 9134 * WORK CONSERVING 9135 * 9136 * In order to avoid CPUs going idle while there's still work to do, new idle 9137 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9138 * tree itself instead of relying on other CPUs to bring it work. 9139 * 9140 * This adds some complexity to both (5) and (8) but it reduces the total idle 9141 * time. 9142 * 9143 * [XXX more?] 9144 * 9145 * 9146 * CGROUPS 9147 * 9148 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9149 * 9150 * s_k,i 9151 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9152 * S_k 9153 * 9154 * Where 9155 * 9156 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9157 * 9158 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9159 * 9160 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9161 * property. 9162 * 9163 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9164 * rewrite all of this once again.] 9165 */ 9166 9167 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9168 9169 enum fbq_type { regular, remote, all }; 9170 9171 /* 9172 * 'group_type' describes the group of CPUs at the moment of load balancing. 9173 * 9174 * The enum is ordered by pulling priority, with the group with lowest priority 9175 * first so the group_type can simply be compared when selecting the busiest 9176 * group. See update_sd_pick_busiest(). 9177 */ 9178 enum group_type { 9179 /* The group has spare capacity that can be used to run more tasks. */ 9180 group_has_spare = 0, 9181 /* 9182 * The group is fully used and the tasks don't compete for more CPU 9183 * cycles. Nevertheless, some tasks might wait before running. 9184 */ 9185 group_fully_busy, 9186 /* 9187 * One task doesn't fit with CPU's capacity and must be migrated to a 9188 * more powerful CPU. 9189 */ 9190 group_misfit_task, 9191 /* 9192 * Balance SMT group that's fully busy. Can benefit from migration 9193 * a task on SMT with busy sibling to another CPU on idle core. 9194 */ 9195 group_smt_balance, 9196 /* 9197 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9198 * and the task should be migrated to it instead of running on the 9199 * current CPU. 9200 */ 9201 group_asym_packing, 9202 /* 9203 * The tasks' affinity constraints previously prevented the scheduler 9204 * from balancing the load across the system. 9205 */ 9206 group_imbalanced, 9207 /* 9208 * The CPU is overloaded and can't provide expected CPU cycles to all 9209 * tasks. 9210 */ 9211 group_overloaded 9212 }; 9213 9214 enum migration_type { 9215 migrate_load = 0, 9216 migrate_util, 9217 migrate_task, 9218 migrate_misfit 9219 }; 9220 9221 #define LBF_ALL_PINNED 0x01 9222 #define LBF_NEED_BREAK 0x02 9223 #define LBF_DST_PINNED 0x04 9224 #define LBF_SOME_PINNED 0x08 9225 #define LBF_ACTIVE_LB 0x10 9226 9227 struct lb_env { 9228 struct sched_domain *sd; 9229 9230 struct rq *src_rq; 9231 int src_cpu; 9232 9233 int dst_cpu; 9234 struct rq *dst_rq; 9235 9236 struct cpumask *dst_grpmask; 9237 int new_dst_cpu; 9238 enum cpu_idle_type idle; 9239 long imbalance; 9240 /* The set of CPUs under consideration for load-balancing */ 9241 struct cpumask *cpus; 9242 9243 unsigned int flags; 9244 9245 unsigned int loop; 9246 unsigned int loop_break; 9247 unsigned int loop_max; 9248 9249 enum fbq_type fbq_type; 9250 enum migration_type migration_type; 9251 struct list_head tasks; 9252 }; 9253 9254 /* 9255 * Is this task likely cache-hot: 9256 */ 9257 static int task_hot(struct task_struct *p, struct lb_env *env) 9258 { 9259 s64 delta; 9260 9261 lockdep_assert_rq_held(env->src_rq); 9262 9263 if (p->sched_class != &fair_sched_class) 9264 return 0; 9265 9266 if (unlikely(task_has_idle_policy(p))) 9267 return 0; 9268 9269 /* SMT siblings share cache */ 9270 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9271 return 0; 9272 9273 /* 9274 * Buddy candidates are cache hot: 9275 */ 9276 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9277 (&p->se == cfs_rq_of(&p->se)->next)) 9278 return 1; 9279 9280 if (sysctl_sched_migration_cost == -1) 9281 return 1; 9282 9283 /* 9284 * Don't migrate task if the task's cookie does not match 9285 * with the destination CPU's core cookie. 9286 */ 9287 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9288 return 1; 9289 9290 if (sysctl_sched_migration_cost == 0) 9291 return 0; 9292 9293 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9294 9295 return delta < (s64)sysctl_sched_migration_cost; 9296 } 9297 9298 #ifdef CONFIG_NUMA_BALANCING 9299 /* 9300 * Returns a positive value, if task migration degrades locality. 9301 * Returns 0, if task migration is not affected by locality. 9302 * Returns a negative value, if task migration improves locality i.e migration preferred. 9303 */ 9304 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9305 { 9306 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9307 unsigned long src_weight, dst_weight; 9308 int src_nid, dst_nid, dist; 9309 9310 if (!static_branch_likely(&sched_numa_balancing)) 9311 return 0; 9312 9313 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9314 return 0; 9315 9316 src_nid = cpu_to_node(env->src_cpu); 9317 dst_nid = cpu_to_node(env->dst_cpu); 9318 9319 if (src_nid == dst_nid) 9320 return 0; 9321 9322 /* Migrating away from the preferred node is always bad. */ 9323 if (src_nid == p->numa_preferred_nid) { 9324 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9325 return 1; 9326 else 9327 return 0; 9328 } 9329 9330 /* Encourage migration to the preferred node. */ 9331 if (dst_nid == p->numa_preferred_nid) 9332 return -1; 9333 9334 /* Leaving a core idle is often worse than degrading locality. */ 9335 if (env->idle == CPU_IDLE) 9336 return 0; 9337 9338 dist = node_distance(src_nid, dst_nid); 9339 if (numa_group) { 9340 src_weight = group_weight(p, src_nid, dist); 9341 dst_weight = group_weight(p, dst_nid, dist); 9342 } else { 9343 src_weight = task_weight(p, src_nid, dist); 9344 dst_weight = task_weight(p, dst_nid, dist); 9345 } 9346 9347 return src_weight - dst_weight; 9348 } 9349 9350 #else 9351 static inline long migrate_degrades_locality(struct task_struct *p, 9352 struct lb_env *env) 9353 { 9354 return 0; 9355 } 9356 #endif 9357 9358 /* 9359 * Check whether the task is ineligible on the destination cpu 9360 * 9361 * When the PLACE_LAG scheduling feature is enabled and 9362 * dst_cfs_rq->nr_queued is greater than 1, if the task 9363 * is ineligible, it will also be ineligible when 9364 * it is migrated to the destination cpu. 9365 */ 9366 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9367 { 9368 struct cfs_rq *dst_cfs_rq; 9369 9370 #ifdef CONFIG_FAIR_GROUP_SCHED 9371 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9372 #else 9373 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9374 #endif 9375 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9376 !entity_eligible(task_cfs_rq(p), &p->se)) 9377 return 1; 9378 9379 return 0; 9380 } 9381 9382 /* 9383 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9384 */ 9385 static 9386 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9387 { 9388 long degrades, hot; 9389 9390 lockdep_assert_rq_held(env->src_rq); 9391 if (p->sched_task_hot) 9392 p->sched_task_hot = 0; 9393 9394 /* 9395 * We do not migrate tasks that are: 9396 * 1) delayed dequeued unless we migrate load, or 9397 * 2) throttled_lb_pair, or 9398 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9399 * 4) running (obviously), or 9400 * 5) are cache-hot on their current CPU. 9401 */ 9402 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9403 return 0; 9404 9405 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9406 return 0; 9407 9408 /* 9409 * We want to prioritize the migration of eligible tasks. 9410 * For ineligible tasks we soft-limit them and only allow 9411 * them to migrate when nr_balance_failed is non-zero to 9412 * avoid load-balancing trying very hard to balance the load. 9413 */ 9414 if (!env->sd->nr_balance_failed && 9415 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9416 return 0; 9417 9418 /* Disregard percpu kthreads; they are where they need to be. */ 9419 if (kthread_is_per_cpu(p)) 9420 return 0; 9421 9422 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9423 int cpu; 9424 9425 schedstat_inc(p->stats.nr_failed_migrations_affine); 9426 9427 env->flags |= LBF_SOME_PINNED; 9428 9429 /* 9430 * Remember if this task can be migrated to any other CPU in 9431 * our sched_group. We may want to revisit it if we couldn't 9432 * meet load balance goals by pulling other tasks on src_cpu. 9433 * 9434 * Avoid computing new_dst_cpu 9435 * - for NEWLY_IDLE 9436 * - if we have already computed one in current iteration 9437 * - if it's an active balance 9438 */ 9439 if (env->idle == CPU_NEWLY_IDLE || 9440 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9441 return 0; 9442 9443 /* Prevent to re-select dst_cpu via env's CPUs: */ 9444 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9445 9446 if (cpu < nr_cpu_ids) { 9447 env->flags |= LBF_DST_PINNED; 9448 env->new_dst_cpu = cpu; 9449 } 9450 9451 return 0; 9452 } 9453 9454 /* Record that we found at least one task that could run on dst_cpu */ 9455 env->flags &= ~LBF_ALL_PINNED; 9456 9457 if (task_on_cpu(env->src_rq, p)) { 9458 schedstat_inc(p->stats.nr_failed_migrations_running); 9459 return 0; 9460 } 9461 9462 /* 9463 * Aggressive migration if: 9464 * 1) active balance 9465 * 2) destination numa is preferred 9466 * 3) task is cache cold, or 9467 * 4) too many balance attempts have failed. 9468 */ 9469 if (env->flags & LBF_ACTIVE_LB) 9470 return 1; 9471 9472 degrades = migrate_degrades_locality(p, env); 9473 if (!degrades) 9474 hot = task_hot(p, env); 9475 else 9476 hot = degrades > 0; 9477 9478 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9479 if (hot) 9480 p->sched_task_hot = 1; 9481 return 1; 9482 } 9483 9484 schedstat_inc(p->stats.nr_failed_migrations_hot); 9485 return 0; 9486 } 9487 9488 /* 9489 * detach_task() -- detach the task for the migration specified in env 9490 */ 9491 static void detach_task(struct task_struct *p, struct lb_env *env) 9492 { 9493 lockdep_assert_rq_held(env->src_rq); 9494 9495 if (p->sched_task_hot) { 9496 p->sched_task_hot = 0; 9497 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9498 schedstat_inc(p->stats.nr_forced_migrations); 9499 } 9500 9501 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9502 set_task_cpu(p, env->dst_cpu); 9503 } 9504 9505 /* 9506 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9507 * part of active balancing operations within "domain". 9508 * 9509 * Returns a task if successful and NULL otherwise. 9510 */ 9511 static struct task_struct *detach_one_task(struct lb_env *env) 9512 { 9513 struct task_struct *p; 9514 9515 lockdep_assert_rq_held(env->src_rq); 9516 9517 list_for_each_entry_reverse(p, 9518 &env->src_rq->cfs_tasks, se.group_node) { 9519 if (!can_migrate_task(p, env)) 9520 continue; 9521 9522 detach_task(p, env); 9523 9524 /* 9525 * Right now, this is only the second place where 9526 * lb_gained[env->idle] is updated (other is detach_tasks) 9527 * so we can safely collect stats here rather than 9528 * inside detach_tasks(). 9529 */ 9530 schedstat_inc(env->sd->lb_gained[env->idle]); 9531 return p; 9532 } 9533 return NULL; 9534 } 9535 9536 /* 9537 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9538 * busiest_rq, as part of a balancing operation within domain "sd". 9539 * 9540 * Returns number of detached tasks if successful and 0 otherwise. 9541 */ 9542 static int detach_tasks(struct lb_env *env) 9543 { 9544 struct list_head *tasks = &env->src_rq->cfs_tasks; 9545 unsigned long util, load; 9546 struct task_struct *p; 9547 int detached = 0; 9548 9549 lockdep_assert_rq_held(env->src_rq); 9550 9551 /* 9552 * Source run queue has been emptied by another CPU, clear 9553 * LBF_ALL_PINNED flag as we will not test any task. 9554 */ 9555 if (env->src_rq->nr_running <= 1) { 9556 env->flags &= ~LBF_ALL_PINNED; 9557 return 0; 9558 } 9559 9560 if (env->imbalance <= 0) 9561 return 0; 9562 9563 while (!list_empty(tasks)) { 9564 /* 9565 * We don't want to steal all, otherwise we may be treated likewise, 9566 * which could at worst lead to a livelock crash. 9567 */ 9568 if (env->idle && env->src_rq->nr_running <= 1) 9569 break; 9570 9571 env->loop++; 9572 /* We've more or less seen every task there is, call it quits */ 9573 if (env->loop > env->loop_max) 9574 break; 9575 9576 /* take a breather every nr_migrate tasks */ 9577 if (env->loop > env->loop_break) { 9578 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9579 env->flags |= LBF_NEED_BREAK; 9580 break; 9581 } 9582 9583 p = list_last_entry(tasks, struct task_struct, se.group_node); 9584 9585 if (!can_migrate_task(p, env)) 9586 goto next; 9587 9588 switch (env->migration_type) { 9589 case migrate_load: 9590 /* 9591 * Depending of the number of CPUs and tasks and the 9592 * cgroup hierarchy, task_h_load() can return a null 9593 * value. Make sure that env->imbalance decreases 9594 * otherwise detach_tasks() will stop only after 9595 * detaching up to loop_max tasks. 9596 */ 9597 load = max_t(unsigned long, task_h_load(p), 1); 9598 9599 if (sched_feat(LB_MIN) && 9600 load < 16 && !env->sd->nr_balance_failed) 9601 goto next; 9602 9603 /* 9604 * Make sure that we don't migrate too much load. 9605 * Nevertheless, let relax the constraint if 9606 * scheduler fails to find a good waiting task to 9607 * migrate. 9608 */ 9609 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9610 goto next; 9611 9612 env->imbalance -= load; 9613 break; 9614 9615 case migrate_util: 9616 util = task_util_est(p); 9617 9618 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9619 goto next; 9620 9621 env->imbalance -= util; 9622 break; 9623 9624 case migrate_task: 9625 env->imbalance--; 9626 break; 9627 9628 case migrate_misfit: 9629 /* This is not a misfit task */ 9630 if (task_fits_cpu(p, env->src_cpu)) 9631 goto next; 9632 9633 env->imbalance = 0; 9634 break; 9635 } 9636 9637 detach_task(p, env); 9638 list_add(&p->se.group_node, &env->tasks); 9639 9640 detached++; 9641 9642 #ifdef CONFIG_PREEMPTION 9643 /* 9644 * NEWIDLE balancing is a source of latency, so preemptible 9645 * kernels will stop after the first task is detached to minimize 9646 * the critical section. 9647 */ 9648 if (env->idle == CPU_NEWLY_IDLE) 9649 break; 9650 #endif 9651 9652 /* 9653 * We only want to steal up to the prescribed amount of 9654 * load/util/tasks. 9655 */ 9656 if (env->imbalance <= 0) 9657 break; 9658 9659 continue; 9660 next: 9661 if (p->sched_task_hot) 9662 schedstat_inc(p->stats.nr_failed_migrations_hot); 9663 9664 list_move(&p->se.group_node, tasks); 9665 } 9666 9667 /* 9668 * Right now, this is one of only two places we collect this stat 9669 * so we can safely collect detach_one_task() stats here rather 9670 * than inside detach_one_task(). 9671 */ 9672 schedstat_add(env->sd->lb_gained[env->idle], detached); 9673 9674 return detached; 9675 } 9676 9677 /* 9678 * attach_task() -- attach the task detached by detach_task() to its new rq. 9679 */ 9680 static void attach_task(struct rq *rq, struct task_struct *p) 9681 { 9682 lockdep_assert_rq_held(rq); 9683 9684 WARN_ON_ONCE(task_rq(p) != rq); 9685 activate_task(rq, p, ENQUEUE_NOCLOCK); 9686 wakeup_preempt(rq, p, 0); 9687 } 9688 9689 /* 9690 * attach_one_task() -- attaches the task returned from detach_one_task() to 9691 * its new rq. 9692 */ 9693 static void attach_one_task(struct rq *rq, struct task_struct *p) 9694 { 9695 struct rq_flags rf; 9696 9697 rq_lock(rq, &rf); 9698 update_rq_clock(rq); 9699 attach_task(rq, p); 9700 rq_unlock(rq, &rf); 9701 } 9702 9703 /* 9704 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9705 * new rq. 9706 */ 9707 static void attach_tasks(struct lb_env *env) 9708 { 9709 struct list_head *tasks = &env->tasks; 9710 struct task_struct *p; 9711 struct rq_flags rf; 9712 9713 rq_lock(env->dst_rq, &rf); 9714 update_rq_clock(env->dst_rq); 9715 9716 while (!list_empty(tasks)) { 9717 p = list_first_entry(tasks, struct task_struct, se.group_node); 9718 list_del_init(&p->se.group_node); 9719 9720 attach_task(env->dst_rq, p); 9721 } 9722 9723 rq_unlock(env->dst_rq, &rf); 9724 } 9725 9726 #ifdef CONFIG_NO_HZ_COMMON 9727 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9728 { 9729 if (cfs_rq->avg.load_avg) 9730 return true; 9731 9732 if (cfs_rq->avg.util_avg) 9733 return true; 9734 9735 return false; 9736 } 9737 9738 static inline bool others_have_blocked(struct rq *rq) 9739 { 9740 if (cpu_util_rt(rq)) 9741 return true; 9742 9743 if (cpu_util_dl(rq)) 9744 return true; 9745 9746 if (hw_load_avg(rq)) 9747 return true; 9748 9749 if (cpu_util_irq(rq)) 9750 return true; 9751 9752 return false; 9753 } 9754 9755 static inline void update_blocked_load_tick(struct rq *rq) 9756 { 9757 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9758 } 9759 9760 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9761 { 9762 if (!has_blocked) 9763 rq->has_blocked_load = 0; 9764 } 9765 #else 9766 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9767 static inline bool others_have_blocked(struct rq *rq) { return false; } 9768 static inline void update_blocked_load_tick(struct rq *rq) {} 9769 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9770 #endif 9771 9772 static bool __update_blocked_others(struct rq *rq, bool *done) 9773 { 9774 bool updated; 9775 9776 /* 9777 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9778 * DL and IRQ signals have been updated before updating CFS. 9779 */ 9780 updated = update_other_load_avgs(rq); 9781 9782 if (others_have_blocked(rq)) 9783 *done = false; 9784 9785 return updated; 9786 } 9787 9788 #ifdef CONFIG_FAIR_GROUP_SCHED 9789 9790 static bool __update_blocked_fair(struct rq *rq, bool *done) 9791 { 9792 struct cfs_rq *cfs_rq, *pos; 9793 bool decayed = false; 9794 int cpu = cpu_of(rq); 9795 9796 /* 9797 * Iterates the task_group tree in a bottom up fashion, see 9798 * list_add_leaf_cfs_rq() for details. 9799 */ 9800 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9801 struct sched_entity *se; 9802 9803 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9804 update_tg_load_avg(cfs_rq); 9805 9806 if (cfs_rq->nr_queued == 0) 9807 update_idle_cfs_rq_clock_pelt(cfs_rq); 9808 9809 if (cfs_rq == &rq->cfs) 9810 decayed = true; 9811 } 9812 9813 /* Propagate pending load changes to the parent, if any: */ 9814 se = cfs_rq->tg->se[cpu]; 9815 if (se && !skip_blocked_update(se)) 9816 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9817 9818 /* 9819 * There can be a lot of idle CPU cgroups. Don't let fully 9820 * decayed cfs_rqs linger on the list. 9821 */ 9822 if (cfs_rq_is_decayed(cfs_rq)) 9823 list_del_leaf_cfs_rq(cfs_rq); 9824 9825 /* Don't need periodic decay once load/util_avg are null */ 9826 if (cfs_rq_has_blocked(cfs_rq)) 9827 *done = false; 9828 } 9829 9830 return decayed; 9831 } 9832 9833 /* 9834 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9835 * This needs to be done in a top-down fashion because the load of a child 9836 * group is a fraction of its parents load. 9837 */ 9838 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9839 { 9840 struct rq *rq = rq_of(cfs_rq); 9841 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9842 unsigned long now = jiffies; 9843 unsigned long load; 9844 9845 if (cfs_rq->last_h_load_update == now) 9846 return; 9847 9848 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9849 for_each_sched_entity(se) { 9850 cfs_rq = cfs_rq_of(se); 9851 WRITE_ONCE(cfs_rq->h_load_next, se); 9852 if (cfs_rq->last_h_load_update == now) 9853 break; 9854 } 9855 9856 if (!se) { 9857 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9858 cfs_rq->last_h_load_update = now; 9859 } 9860 9861 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9862 load = cfs_rq->h_load; 9863 load = div64_ul(load * se->avg.load_avg, 9864 cfs_rq_load_avg(cfs_rq) + 1); 9865 cfs_rq = group_cfs_rq(se); 9866 cfs_rq->h_load = load; 9867 cfs_rq->last_h_load_update = now; 9868 } 9869 } 9870 9871 static unsigned long task_h_load(struct task_struct *p) 9872 { 9873 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9874 9875 update_cfs_rq_h_load(cfs_rq); 9876 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9877 cfs_rq_load_avg(cfs_rq) + 1); 9878 } 9879 #else 9880 static bool __update_blocked_fair(struct rq *rq, bool *done) 9881 { 9882 struct cfs_rq *cfs_rq = &rq->cfs; 9883 bool decayed; 9884 9885 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9886 if (cfs_rq_has_blocked(cfs_rq)) 9887 *done = false; 9888 9889 return decayed; 9890 } 9891 9892 static unsigned long task_h_load(struct task_struct *p) 9893 { 9894 return p->se.avg.load_avg; 9895 } 9896 #endif 9897 9898 static void sched_balance_update_blocked_averages(int cpu) 9899 { 9900 bool decayed = false, done = true; 9901 struct rq *rq = cpu_rq(cpu); 9902 struct rq_flags rf; 9903 9904 rq_lock_irqsave(rq, &rf); 9905 update_blocked_load_tick(rq); 9906 update_rq_clock(rq); 9907 9908 decayed |= __update_blocked_others(rq, &done); 9909 decayed |= __update_blocked_fair(rq, &done); 9910 9911 update_blocked_load_status(rq, !done); 9912 if (decayed) 9913 cpufreq_update_util(rq, 0); 9914 rq_unlock_irqrestore(rq, &rf); 9915 } 9916 9917 /********** Helpers for sched_balance_find_src_group ************************/ 9918 9919 /* 9920 * sg_lb_stats - stats of a sched_group required for load-balancing: 9921 */ 9922 struct sg_lb_stats { 9923 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9924 unsigned long group_load; /* Total load over the CPUs of the group */ 9925 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9926 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9927 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9928 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9929 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9930 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9931 unsigned int group_weight; 9932 enum group_type group_type; 9933 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9934 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9935 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9936 #ifdef CONFIG_NUMA_BALANCING 9937 unsigned int nr_numa_running; 9938 unsigned int nr_preferred_running; 9939 #endif 9940 }; 9941 9942 /* 9943 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9944 */ 9945 struct sd_lb_stats { 9946 struct sched_group *busiest; /* Busiest group in this sd */ 9947 struct sched_group *local; /* Local group in this sd */ 9948 unsigned long total_load; /* Total load of all groups in sd */ 9949 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9950 unsigned long avg_load; /* Average load across all groups in sd */ 9951 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9952 9953 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9954 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9955 }; 9956 9957 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9958 { 9959 /* 9960 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9961 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9962 * We must however set busiest_stat::group_type and 9963 * busiest_stat::idle_cpus to the worst busiest group because 9964 * update_sd_pick_busiest() reads these before assignment. 9965 */ 9966 *sds = (struct sd_lb_stats){ 9967 .busiest = NULL, 9968 .local = NULL, 9969 .total_load = 0UL, 9970 .total_capacity = 0UL, 9971 .busiest_stat = { 9972 .idle_cpus = UINT_MAX, 9973 .group_type = group_has_spare, 9974 }, 9975 }; 9976 } 9977 9978 static unsigned long scale_rt_capacity(int cpu) 9979 { 9980 unsigned long max = get_actual_cpu_capacity(cpu); 9981 struct rq *rq = cpu_rq(cpu); 9982 unsigned long used, free; 9983 unsigned long irq; 9984 9985 irq = cpu_util_irq(rq); 9986 9987 if (unlikely(irq >= max)) 9988 return 1; 9989 9990 /* 9991 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9992 * (running and not running) with weights 0 and 1024 respectively. 9993 */ 9994 used = cpu_util_rt(rq); 9995 used += cpu_util_dl(rq); 9996 9997 if (unlikely(used >= max)) 9998 return 1; 9999 10000 free = max - used; 10001 10002 return scale_irq_capacity(free, irq, max); 10003 } 10004 10005 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10006 { 10007 unsigned long capacity = scale_rt_capacity(cpu); 10008 struct sched_group *sdg = sd->groups; 10009 10010 if (!capacity) 10011 capacity = 1; 10012 10013 cpu_rq(cpu)->cpu_capacity = capacity; 10014 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10015 10016 sdg->sgc->capacity = capacity; 10017 sdg->sgc->min_capacity = capacity; 10018 sdg->sgc->max_capacity = capacity; 10019 } 10020 10021 void update_group_capacity(struct sched_domain *sd, int cpu) 10022 { 10023 struct sched_domain *child = sd->child; 10024 struct sched_group *group, *sdg = sd->groups; 10025 unsigned long capacity, min_capacity, max_capacity; 10026 unsigned long interval; 10027 10028 interval = msecs_to_jiffies(sd->balance_interval); 10029 interval = clamp(interval, 1UL, max_load_balance_interval); 10030 sdg->sgc->next_update = jiffies + interval; 10031 10032 if (!child) { 10033 update_cpu_capacity(sd, cpu); 10034 return; 10035 } 10036 10037 capacity = 0; 10038 min_capacity = ULONG_MAX; 10039 max_capacity = 0; 10040 10041 if (child->flags & SD_OVERLAP) { 10042 /* 10043 * SD_OVERLAP domains cannot assume that child groups 10044 * span the current group. 10045 */ 10046 10047 for_each_cpu(cpu, sched_group_span(sdg)) { 10048 unsigned long cpu_cap = capacity_of(cpu); 10049 10050 capacity += cpu_cap; 10051 min_capacity = min(cpu_cap, min_capacity); 10052 max_capacity = max(cpu_cap, max_capacity); 10053 } 10054 } else { 10055 /* 10056 * !SD_OVERLAP domains can assume that child groups 10057 * span the current group. 10058 */ 10059 10060 group = child->groups; 10061 do { 10062 struct sched_group_capacity *sgc = group->sgc; 10063 10064 capacity += sgc->capacity; 10065 min_capacity = min(sgc->min_capacity, min_capacity); 10066 max_capacity = max(sgc->max_capacity, max_capacity); 10067 group = group->next; 10068 } while (group != child->groups); 10069 } 10070 10071 sdg->sgc->capacity = capacity; 10072 sdg->sgc->min_capacity = min_capacity; 10073 sdg->sgc->max_capacity = max_capacity; 10074 } 10075 10076 /* 10077 * Check whether the capacity of the rq has been noticeably reduced by side 10078 * activity. The imbalance_pct is used for the threshold. 10079 * Return true is the capacity is reduced 10080 */ 10081 static inline int 10082 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10083 { 10084 return ((rq->cpu_capacity * sd->imbalance_pct) < 10085 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10086 } 10087 10088 /* Check if the rq has a misfit task */ 10089 static inline bool check_misfit_status(struct rq *rq) 10090 { 10091 return rq->misfit_task_load; 10092 } 10093 10094 /* 10095 * Group imbalance indicates (and tries to solve) the problem where balancing 10096 * groups is inadequate due to ->cpus_ptr constraints. 10097 * 10098 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10099 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10100 * Something like: 10101 * 10102 * { 0 1 2 3 } { 4 5 6 7 } 10103 * * * * * 10104 * 10105 * If we were to balance group-wise we'd place two tasks in the first group and 10106 * two tasks in the second group. Clearly this is undesired as it will overload 10107 * cpu 3 and leave one of the CPUs in the second group unused. 10108 * 10109 * The current solution to this issue is detecting the skew in the first group 10110 * by noticing the lower domain failed to reach balance and had difficulty 10111 * moving tasks due to affinity constraints. 10112 * 10113 * When this is so detected; this group becomes a candidate for busiest; see 10114 * update_sd_pick_busiest(). And calculate_imbalance() and 10115 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10116 * to create an effective group imbalance. 10117 * 10118 * This is a somewhat tricky proposition since the next run might not find the 10119 * group imbalance and decide the groups need to be balanced again. A most 10120 * subtle and fragile situation. 10121 */ 10122 10123 static inline int sg_imbalanced(struct sched_group *group) 10124 { 10125 return group->sgc->imbalance; 10126 } 10127 10128 /* 10129 * group_has_capacity returns true if the group has spare capacity that could 10130 * be used by some tasks. 10131 * We consider that a group has spare capacity if the number of task is 10132 * smaller than the number of CPUs or if the utilization is lower than the 10133 * available capacity for CFS tasks. 10134 * For the latter, we use a threshold to stabilize the state, to take into 10135 * account the variance of the tasks' load and to return true if the available 10136 * capacity in meaningful for the load balancer. 10137 * As an example, an available capacity of 1% can appear but it doesn't make 10138 * any benefit for the load balance. 10139 */ 10140 static inline bool 10141 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10142 { 10143 if (sgs->sum_nr_running < sgs->group_weight) 10144 return true; 10145 10146 if ((sgs->group_capacity * imbalance_pct) < 10147 (sgs->group_runnable * 100)) 10148 return false; 10149 10150 if ((sgs->group_capacity * 100) > 10151 (sgs->group_util * imbalance_pct)) 10152 return true; 10153 10154 return false; 10155 } 10156 10157 /* 10158 * group_is_overloaded returns true if the group has more tasks than it can 10159 * handle. 10160 * group_is_overloaded is not equals to !group_has_capacity because a group 10161 * with the exact right number of tasks, has no more spare capacity but is not 10162 * overloaded so both group_has_capacity and group_is_overloaded return 10163 * false. 10164 */ 10165 static inline bool 10166 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10167 { 10168 if (sgs->sum_nr_running <= sgs->group_weight) 10169 return false; 10170 10171 if ((sgs->group_capacity * 100) < 10172 (sgs->group_util * imbalance_pct)) 10173 return true; 10174 10175 if ((sgs->group_capacity * imbalance_pct) < 10176 (sgs->group_runnable * 100)) 10177 return true; 10178 10179 return false; 10180 } 10181 10182 static inline enum 10183 group_type group_classify(unsigned int imbalance_pct, 10184 struct sched_group *group, 10185 struct sg_lb_stats *sgs) 10186 { 10187 if (group_is_overloaded(imbalance_pct, sgs)) 10188 return group_overloaded; 10189 10190 if (sg_imbalanced(group)) 10191 return group_imbalanced; 10192 10193 if (sgs->group_asym_packing) 10194 return group_asym_packing; 10195 10196 if (sgs->group_smt_balance) 10197 return group_smt_balance; 10198 10199 if (sgs->group_misfit_task_load) 10200 return group_misfit_task; 10201 10202 if (!group_has_capacity(imbalance_pct, sgs)) 10203 return group_fully_busy; 10204 10205 return group_has_spare; 10206 } 10207 10208 /** 10209 * sched_use_asym_prio - Check whether asym_packing priority must be used 10210 * @sd: The scheduling domain of the load balancing 10211 * @cpu: A CPU 10212 * 10213 * Always use CPU priority when balancing load between SMT siblings. When 10214 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10215 * use CPU priority if the whole core is idle. 10216 * 10217 * Returns: True if the priority of @cpu must be followed. False otherwise. 10218 */ 10219 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10220 { 10221 if (!(sd->flags & SD_ASYM_PACKING)) 10222 return false; 10223 10224 if (!sched_smt_active()) 10225 return true; 10226 10227 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10228 } 10229 10230 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10231 { 10232 /* 10233 * First check if @dst_cpu can do asym_packing load balance. Only do it 10234 * if it has higher priority than @src_cpu. 10235 */ 10236 return sched_use_asym_prio(sd, dst_cpu) && 10237 sched_asym_prefer(dst_cpu, src_cpu); 10238 } 10239 10240 /** 10241 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10242 * @env: The load balancing environment 10243 * @sgs: Load-balancing statistics of the candidate busiest group 10244 * @group: The candidate busiest group 10245 * 10246 * @env::dst_cpu can do asym_packing if it has higher priority than the 10247 * preferred CPU of @group. 10248 * 10249 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10250 * otherwise. 10251 */ 10252 static inline bool 10253 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10254 { 10255 /* 10256 * CPU priorities do not make sense for SMT cores with more than one 10257 * busy sibling. 10258 */ 10259 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10260 (sgs->group_weight - sgs->idle_cpus != 1)) 10261 return false; 10262 10263 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); 10264 } 10265 10266 /* One group has more than one SMT CPU while the other group does not */ 10267 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10268 struct sched_group *sg2) 10269 { 10270 if (!sg1 || !sg2) 10271 return false; 10272 10273 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10274 (sg2->flags & SD_SHARE_CPUCAPACITY); 10275 } 10276 10277 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10278 struct sched_group *group) 10279 { 10280 if (!env->idle) 10281 return false; 10282 10283 /* 10284 * For SMT source group, it is better to move a task 10285 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10286 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10287 * will not be on. 10288 */ 10289 if (group->flags & SD_SHARE_CPUCAPACITY && 10290 sgs->sum_h_nr_running > 1) 10291 return true; 10292 10293 return false; 10294 } 10295 10296 static inline long sibling_imbalance(struct lb_env *env, 10297 struct sd_lb_stats *sds, 10298 struct sg_lb_stats *busiest, 10299 struct sg_lb_stats *local) 10300 { 10301 int ncores_busiest, ncores_local; 10302 long imbalance; 10303 10304 if (!env->idle || !busiest->sum_nr_running) 10305 return 0; 10306 10307 ncores_busiest = sds->busiest->cores; 10308 ncores_local = sds->local->cores; 10309 10310 if (ncores_busiest == ncores_local) { 10311 imbalance = busiest->sum_nr_running; 10312 lsub_positive(&imbalance, local->sum_nr_running); 10313 return imbalance; 10314 } 10315 10316 /* Balance such that nr_running/ncores ratio are same on both groups */ 10317 imbalance = ncores_local * busiest->sum_nr_running; 10318 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10319 /* Normalize imbalance and do rounding on normalization */ 10320 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10321 imbalance /= ncores_local + ncores_busiest; 10322 10323 /* Take advantage of resource in an empty sched group */ 10324 if (imbalance <= 1 && local->sum_nr_running == 0 && 10325 busiest->sum_nr_running > 1) 10326 imbalance = 2; 10327 10328 return imbalance; 10329 } 10330 10331 static inline bool 10332 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10333 { 10334 /* 10335 * When there is more than 1 task, the group_overloaded case already 10336 * takes care of cpu with reduced capacity 10337 */ 10338 if (rq->cfs.h_nr_runnable != 1) 10339 return false; 10340 10341 return check_cpu_capacity(rq, sd); 10342 } 10343 10344 /** 10345 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10346 * @env: The load balancing environment. 10347 * @sds: Load-balancing data with statistics of the local group. 10348 * @group: sched_group whose statistics are to be updated. 10349 * @sgs: variable to hold the statistics for this group. 10350 * @sg_overloaded: sched_group is overloaded 10351 * @sg_overutilized: sched_group is overutilized 10352 */ 10353 static inline void update_sg_lb_stats(struct lb_env *env, 10354 struct sd_lb_stats *sds, 10355 struct sched_group *group, 10356 struct sg_lb_stats *sgs, 10357 bool *sg_overloaded, 10358 bool *sg_overutilized) 10359 { 10360 int i, nr_running, local_group, sd_flags = env->sd->flags; 10361 bool balancing_at_rd = !env->sd->parent; 10362 10363 memset(sgs, 0, sizeof(*sgs)); 10364 10365 local_group = group == sds->local; 10366 10367 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10368 struct rq *rq = cpu_rq(i); 10369 unsigned long load = cpu_load(rq); 10370 10371 sgs->group_load += load; 10372 sgs->group_util += cpu_util_cfs(i); 10373 sgs->group_runnable += cpu_runnable(rq); 10374 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10375 10376 nr_running = rq->nr_running; 10377 sgs->sum_nr_running += nr_running; 10378 10379 if (cpu_overutilized(i)) 10380 *sg_overutilized = 1; 10381 10382 /* 10383 * No need to call idle_cpu() if nr_running is not 0 10384 */ 10385 if (!nr_running && idle_cpu(i)) { 10386 sgs->idle_cpus++; 10387 /* Idle cpu can't have misfit task */ 10388 continue; 10389 } 10390 10391 /* Overload indicator is only updated at root domain */ 10392 if (balancing_at_rd && nr_running > 1) 10393 *sg_overloaded = 1; 10394 10395 #ifdef CONFIG_NUMA_BALANCING 10396 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10397 if (sd_flags & SD_NUMA) { 10398 sgs->nr_numa_running += rq->nr_numa_running; 10399 sgs->nr_preferred_running += rq->nr_preferred_running; 10400 } 10401 #endif 10402 if (local_group) 10403 continue; 10404 10405 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10406 /* Check for a misfit task on the cpu */ 10407 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10408 sgs->group_misfit_task_load = rq->misfit_task_load; 10409 *sg_overloaded = 1; 10410 } 10411 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10412 /* Check for a task running on a CPU with reduced capacity */ 10413 if (sgs->group_misfit_task_load < load) 10414 sgs->group_misfit_task_load = load; 10415 } 10416 } 10417 10418 sgs->group_capacity = group->sgc->capacity; 10419 10420 sgs->group_weight = group->group_weight; 10421 10422 /* Check if dst CPU is idle and preferred to this group */ 10423 if (!local_group && env->idle && sgs->sum_h_nr_running && 10424 sched_group_asym(env, sgs, group)) 10425 sgs->group_asym_packing = 1; 10426 10427 /* Check for loaded SMT group to be balanced to dst CPU */ 10428 if (!local_group && smt_balance(env, sgs, group)) 10429 sgs->group_smt_balance = 1; 10430 10431 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10432 10433 /* Computing avg_load makes sense only when group is overloaded */ 10434 if (sgs->group_type == group_overloaded) 10435 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10436 sgs->group_capacity; 10437 } 10438 10439 /** 10440 * update_sd_pick_busiest - return 1 on busiest group 10441 * @env: The load balancing environment. 10442 * @sds: sched_domain statistics 10443 * @sg: sched_group candidate to be checked for being the busiest 10444 * @sgs: sched_group statistics 10445 * 10446 * Determine if @sg is a busier group than the previously selected 10447 * busiest group. 10448 * 10449 * Return: %true if @sg is a busier group than the previously selected 10450 * busiest group. %false otherwise. 10451 */ 10452 static bool update_sd_pick_busiest(struct lb_env *env, 10453 struct sd_lb_stats *sds, 10454 struct sched_group *sg, 10455 struct sg_lb_stats *sgs) 10456 { 10457 struct sg_lb_stats *busiest = &sds->busiest_stat; 10458 10459 /* Make sure that there is at least one task to pull */ 10460 if (!sgs->sum_h_nr_running) 10461 return false; 10462 10463 /* 10464 * Don't try to pull misfit tasks we can't help. 10465 * We can use max_capacity here as reduction in capacity on some 10466 * CPUs in the group should either be possible to resolve 10467 * internally or be covered by avg_load imbalance (eventually). 10468 */ 10469 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10470 (sgs->group_type == group_misfit_task) && 10471 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10472 sds->local_stat.group_type != group_has_spare)) 10473 return false; 10474 10475 if (sgs->group_type > busiest->group_type) 10476 return true; 10477 10478 if (sgs->group_type < busiest->group_type) 10479 return false; 10480 10481 /* 10482 * The candidate and the current busiest group are the same type of 10483 * group. Let check which one is the busiest according to the type. 10484 */ 10485 10486 switch (sgs->group_type) { 10487 case group_overloaded: 10488 /* Select the overloaded group with highest avg_load. */ 10489 return sgs->avg_load > busiest->avg_load; 10490 10491 case group_imbalanced: 10492 /* 10493 * Select the 1st imbalanced group as we don't have any way to 10494 * choose one more than another. 10495 */ 10496 return false; 10497 10498 case group_asym_packing: 10499 /* Prefer to move from lowest priority CPU's work */ 10500 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), 10501 READ_ONCE(sg->asym_prefer_cpu)); 10502 10503 case group_misfit_task: 10504 /* 10505 * If we have more than one misfit sg go with the biggest 10506 * misfit. 10507 */ 10508 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10509 10510 case group_smt_balance: 10511 /* 10512 * Check if we have spare CPUs on either SMT group to 10513 * choose has spare or fully busy handling. 10514 */ 10515 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10516 goto has_spare; 10517 10518 fallthrough; 10519 10520 case group_fully_busy: 10521 /* 10522 * Select the fully busy group with highest avg_load. In 10523 * theory, there is no need to pull task from such kind of 10524 * group because tasks have all compute capacity that they need 10525 * but we can still improve the overall throughput by reducing 10526 * contention when accessing shared HW resources. 10527 * 10528 * XXX for now avg_load is not computed and always 0 so we 10529 * select the 1st one, except if @sg is composed of SMT 10530 * siblings. 10531 */ 10532 10533 if (sgs->avg_load < busiest->avg_load) 10534 return false; 10535 10536 if (sgs->avg_load == busiest->avg_load) { 10537 /* 10538 * SMT sched groups need more help than non-SMT groups. 10539 * If @sg happens to also be SMT, either choice is good. 10540 */ 10541 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10542 return false; 10543 } 10544 10545 break; 10546 10547 case group_has_spare: 10548 /* 10549 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10550 * as we do not want to pull task off SMT core with one task 10551 * and make the core idle. 10552 */ 10553 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10554 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10555 return false; 10556 else 10557 return true; 10558 } 10559 has_spare: 10560 10561 /* 10562 * Select not overloaded group with lowest number of idle CPUs 10563 * and highest number of running tasks. We could also compare 10564 * the spare capacity which is more stable but it can end up 10565 * that the group has less spare capacity but finally more idle 10566 * CPUs which means less opportunity to pull tasks. 10567 */ 10568 if (sgs->idle_cpus > busiest->idle_cpus) 10569 return false; 10570 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10571 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10572 return false; 10573 10574 break; 10575 } 10576 10577 /* 10578 * Candidate sg has no more than one task per CPU and has higher 10579 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10580 * throughput. Maximize throughput, power/energy consequences are not 10581 * considered. 10582 */ 10583 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10584 (sgs->group_type <= group_fully_busy) && 10585 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10586 return false; 10587 10588 return true; 10589 } 10590 10591 #ifdef CONFIG_NUMA_BALANCING 10592 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10593 { 10594 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10595 return regular; 10596 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10597 return remote; 10598 return all; 10599 } 10600 10601 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10602 { 10603 if (rq->nr_running > rq->nr_numa_running) 10604 return regular; 10605 if (rq->nr_running > rq->nr_preferred_running) 10606 return remote; 10607 return all; 10608 } 10609 #else 10610 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10611 { 10612 return all; 10613 } 10614 10615 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10616 { 10617 return regular; 10618 } 10619 #endif /* CONFIG_NUMA_BALANCING */ 10620 10621 10622 struct sg_lb_stats; 10623 10624 /* 10625 * task_running_on_cpu - return 1 if @p is running on @cpu. 10626 */ 10627 10628 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10629 { 10630 /* Task has no contribution or is new */ 10631 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10632 return 0; 10633 10634 if (task_on_rq_queued(p)) 10635 return 1; 10636 10637 return 0; 10638 } 10639 10640 /** 10641 * idle_cpu_without - would a given CPU be idle without p ? 10642 * @cpu: the processor on which idleness is tested. 10643 * @p: task which should be ignored. 10644 * 10645 * Return: 1 if the CPU would be idle. 0 otherwise. 10646 */ 10647 static int idle_cpu_without(int cpu, struct task_struct *p) 10648 { 10649 struct rq *rq = cpu_rq(cpu); 10650 10651 if (rq->curr != rq->idle && rq->curr != p) 10652 return 0; 10653 10654 /* 10655 * rq->nr_running can't be used but an updated version without the 10656 * impact of p on cpu must be used instead. The updated nr_running 10657 * be computed and tested before calling idle_cpu_without(). 10658 */ 10659 10660 if (rq->ttwu_pending) 10661 return 0; 10662 10663 return 1; 10664 } 10665 10666 /* 10667 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10668 * @sd: The sched_domain level to look for idlest group. 10669 * @group: sched_group whose statistics are to be updated. 10670 * @sgs: variable to hold the statistics for this group. 10671 * @p: The task for which we look for the idlest group/CPU. 10672 */ 10673 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10674 struct sched_group *group, 10675 struct sg_lb_stats *sgs, 10676 struct task_struct *p) 10677 { 10678 int i, nr_running; 10679 10680 memset(sgs, 0, sizeof(*sgs)); 10681 10682 /* Assume that task can't fit any CPU of the group */ 10683 if (sd->flags & SD_ASYM_CPUCAPACITY) 10684 sgs->group_misfit_task_load = 1; 10685 10686 for_each_cpu(i, sched_group_span(group)) { 10687 struct rq *rq = cpu_rq(i); 10688 unsigned int local; 10689 10690 sgs->group_load += cpu_load_without(rq, p); 10691 sgs->group_util += cpu_util_without(i, p); 10692 sgs->group_runnable += cpu_runnable_without(rq, p); 10693 local = task_running_on_cpu(i, p); 10694 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10695 10696 nr_running = rq->nr_running - local; 10697 sgs->sum_nr_running += nr_running; 10698 10699 /* 10700 * No need to call idle_cpu_without() if nr_running is not 0 10701 */ 10702 if (!nr_running && idle_cpu_without(i, p)) 10703 sgs->idle_cpus++; 10704 10705 /* Check if task fits in the CPU */ 10706 if (sd->flags & SD_ASYM_CPUCAPACITY && 10707 sgs->group_misfit_task_load && 10708 task_fits_cpu(p, i)) 10709 sgs->group_misfit_task_load = 0; 10710 10711 } 10712 10713 sgs->group_capacity = group->sgc->capacity; 10714 10715 sgs->group_weight = group->group_weight; 10716 10717 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10718 10719 /* 10720 * Computing avg_load makes sense only when group is fully busy or 10721 * overloaded 10722 */ 10723 if (sgs->group_type == group_fully_busy || 10724 sgs->group_type == group_overloaded) 10725 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10726 sgs->group_capacity; 10727 } 10728 10729 static bool update_pick_idlest(struct sched_group *idlest, 10730 struct sg_lb_stats *idlest_sgs, 10731 struct sched_group *group, 10732 struct sg_lb_stats *sgs) 10733 { 10734 if (sgs->group_type < idlest_sgs->group_type) 10735 return true; 10736 10737 if (sgs->group_type > idlest_sgs->group_type) 10738 return false; 10739 10740 /* 10741 * The candidate and the current idlest group are the same type of 10742 * group. Let check which one is the idlest according to the type. 10743 */ 10744 10745 switch (sgs->group_type) { 10746 case group_overloaded: 10747 case group_fully_busy: 10748 /* Select the group with lowest avg_load. */ 10749 if (idlest_sgs->avg_load <= sgs->avg_load) 10750 return false; 10751 break; 10752 10753 case group_imbalanced: 10754 case group_asym_packing: 10755 case group_smt_balance: 10756 /* Those types are not used in the slow wakeup path */ 10757 return false; 10758 10759 case group_misfit_task: 10760 /* Select group with the highest max capacity */ 10761 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10762 return false; 10763 break; 10764 10765 case group_has_spare: 10766 /* Select group with most idle CPUs */ 10767 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10768 return false; 10769 10770 /* Select group with lowest group_util */ 10771 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10772 idlest_sgs->group_util <= sgs->group_util) 10773 return false; 10774 10775 break; 10776 } 10777 10778 return true; 10779 } 10780 10781 /* 10782 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10783 * domain. 10784 * 10785 * Assumes p is allowed on at least one CPU in sd. 10786 */ 10787 static struct sched_group * 10788 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10789 { 10790 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10791 struct sg_lb_stats local_sgs, tmp_sgs; 10792 struct sg_lb_stats *sgs; 10793 unsigned long imbalance; 10794 struct sg_lb_stats idlest_sgs = { 10795 .avg_load = UINT_MAX, 10796 .group_type = group_overloaded, 10797 }; 10798 10799 do { 10800 int local_group; 10801 10802 /* Skip over this group if it has no CPUs allowed */ 10803 if (!cpumask_intersects(sched_group_span(group), 10804 p->cpus_ptr)) 10805 continue; 10806 10807 /* Skip over this group if no cookie matched */ 10808 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10809 continue; 10810 10811 local_group = cpumask_test_cpu(this_cpu, 10812 sched_group_span(group)); 10813 10814 if (local_group) { 10815 sgs = &local_sgs; 10816 local = group; 10817 } else { 10818 sgs = &tmp_sgs; 10819 } 10820 10821 update_sg_wakeup_stats(sd, group, sgs, p); 10822 10823 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10824 idlest = group; 10825 idlest_sgs = *sgs; 10826 } 10827 10828 } while (group = group->next, group != sd->groups); 10829 10830 10831 /* There is no idlest group to push tasks to */ 10832 if (!idlest) 10833 return NULL; 10834 10835 /* The local group has been skipped because of CPU affinity */ 10836 if (!local) 10837 return idlest; 10838 10839 /* 10840 * If the local group is idler than the selected idlest group 10841 * don't try and push the task. 10842 */ 10843 if (local_sgs.group_type < idlest_sgs.group_type) 10844 return NULL; 10845 10846 /* 10847 * If the local group is busier than the selected idlest group 10848 * try and push the task. 10849 */ 10850 if (local_sgs.group_type > idlest_sgs.group_type) 10851 return idlest; 10852 10853 switch (local_sgs.group_type) { 10854 case group_overloaded: 10855 case group_fully_busy: 10856 10857 /* Calculate allowed imbalance based on load */ 10858 imbalance = scale_load_down(NICE_0_LOAD) * 10859 (sd->imbalance_pct-100) / 100; 10860 10861 /* 10862 * When comparing groups across NUMA domains, it's possible for 10863 * the local domain to be very lightly loaded relative to the 10864 * remote domains but "imbalance" skews the comparison making 10865 * remote CPUs look much more favourable. When considering 10866 * cross-domain, add imbalance to the load on the remote node 10867 * and consider staying local. 10868 */ 10869 10870 if ((sd->flags & SD_NUMA) && 10871 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10872 return NULL; 10873 10874 /* 10875 * If the local group is less loaded than the selected 10876 * idlest group don't try and push any tasks. 10877 */ 10878 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10879 return NULL; 10880 10881 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10882 return NULL; 10883 break; 10884 10885 case group_imbalanced: 10886 case group_asym_packing: 10887 case group_smt_balance: 10888 /* Those type are not used in the slow wakeup path */ 10889 return NULL; 10890 10891 case group_misfit_task: 10892 /* Select group with the highest max capacity */ 10893 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10894 return NULL; 10895 break; 10896 10897 case group_has_spare: 10898 #ifdef CONFIG_NUMA 10899 if (sd->flags & SD_NUMA) { 10900 int imb_numa_nr = sd->imb_numa_nr; 10901 #ifdef CONFIG_NUMA_BALANCING 10902 int idlest_cpu; 10903 /* 10904 * If there is spare capacity at NUMA, try to select 10905 * the preferred node 10906 */ 10907 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10908 return NULL; 10909 10910 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10911 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10912 return idlest; 10913 #endif /* CONFIG_NUMA_BALANCING */ 10914 /* 10915 * Otherwise, keep the task close to the wakeup source 10916 * and improve locality if the number of running tasks 10917 * would remain below threshold where an imbalance is 10918 * allowed while accounting for the possibility the 10919 * task is pinned to a subset of CPUs. If there is a 10920 * real need of migration, periodic load balance will 10921 * take care of it. 10922 */ 10923 if (p->nr_cpus_allowed != NR_CPUS) { 10924 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10925 10926 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10927 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10928 } 10929 10930 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10931 if (!adjust_numa_imbalance(imbalance, 10932 local_sgs.sum_nr_running + 1, 10933 imb_numa_nr)) { 10934 return NULL; 10935 } 10936 } 10937 #endif /* CONFIG_NUMA */ 10938 10939 /* 10940 * Select group with highest number of idle CPUs. We could also 10941 * compare the utilization which is more stable but it can end 10942 * up that the group has less spare capacity but finally more 10943 * idle CPUs which means more opportunity to run task. 10944 */ 10945 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10946 return NULL; 10947 break; 10948 } 10949 10950 return idlest; 10951 } 10952 10953 static void update_idle_cpu_scan(struct lb_env *env, 10954 unsigned long sum_util) 10955 { 10956 struct sched_domain_shared *sd_share; 10957 int llc_weight, pct; 10958 u64 x, y, tmp; 10959 /* 10960 * Update the number of CPUs to scan in LLC domain, which could 10961 * be used as a hint in select_idle_cpu(). The update of sd_share 10962 * could be expensive because it is within a shared cache line. 10963 * So the write of this hint only occurs during periodic load 10964 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10965 * can fire way more frequently than the former. 10966 */ 10967 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10968 return; 10969 10970 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10971 if (env->sd->span_weight != llc_weight) 10972 return; 10973 10974 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10975 if (!sd_share) 10976 return; 10977 10978 /* 10979 * The number of CPUs to search drops as sum_util increases, when 10980 * sum_util hits 85% or above, the scan stops. 10981 * The reason to choose 85% as the threshold is because this is the 10982 * imbalance_pct(117) when a LLC sched group is overloaded. 10983 * 10984 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10985 * and y'= y / SCHED_CAPACITY_SCALE 10986 * 10987 * x is the ratio of sum_util compared to the CPU capacity: 10988 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10989 * y' is the ratio of CPUs to be scanned in the LLC domain, 10990 * and the number of CPUs to scan is calculated by: 10991 * 10992 * nr_scan = llc_weight * y' [2] 10993 * 10994 * When x hits the threshold of overloaded, AKA, when 10995 * x = 100 / pct, y drops to 0. According to [1], 10996 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10997 * 10998 * Scale x by SCHED_CAPACITY_SCALE: 10999 * x' = sum_util / llc_weight; [3] 11000 * 11001 * and finally [1] becomes: 11002 * y = SCHED_CAPACITY_SCALE - 11003 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 11004 * 11005 */ 11006 /* equation [3] */ 11007 x = sum_util; 11008 do_div(x, llc_weight); 11009 11010 /* equation [4] */ 11011 pct = env->sd->imbalance_pct; 11012 tmp = x * x * pct * pct; 11013 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11014 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11015 y = SCHED_CAPACITY_SCALE - tmp; 11016 11017 /* equation [2] */ 11018 y *= llc_weight; 11019 do_div(y, SCHED_CAPACITY_SCALE); 11020 if ((int)y != sd_share->nr_idle_scan) 11021 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11022 } 11023 11024 /** 11025 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11026 * @env: The load balancing environment. 11027 * @sds: variable to hold the statistics for this sched_domain. 11028 */ 11029 11030 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11031 { 11032 struct sched_group *sg = env->sd->groups; 11033 struct sg_lb_stats *local = &sds->local_stat; 11034 struct sg_lb_stats tmp_sgs; 11035 unsigned long sum_util = 0; 11036 bool sg_overloaded = 0, sg_overutilized = 0; 11037 11038 do { 11039 struct sg_lb_stats *sgs = &tmp_sgs; 11040 int local_group; 11041 11042 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11043 if (local_group) { 11044 sds->local = sg; 11045 sgs = local; 11046 11047 if (env->idle != CPU_NEWLY_IDLE || 11048 time_after_eq(jiffies, sg->sgc->next_update)) 11049 update_group_capacity(env->sd, env->dst_cpu); 11050 } 11051 11052 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11053 11054 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11055 sds->busiest = sg; 11056 sds->busiest_stat = *sgs; 11057 } 11058 11059 /* Now, start updating sd_lb_stats */ 11060 sds->total_load += sgs->group_load; 11061 sds->total_capacity += sgs->group_capacity; 11062 11063 sum_util += sgs->group_util; 11064 sg = sg->next; 11065 } while (sg != env->sd->groups); 11066 11067 /* 11068 * Indicate that the child domain of the busiest group prefers tasks 11069 * go to a child's sibling domains first. NB the flags of a sched group 11070 * are those of the child domain. 11071 */ 11072 if (sds->busiest) 11073 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11074 11075 11076 if (env->sd->flags & SD_NUMA) 11077 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11078 11079 if (!env->sd->parent) { 11080 /* update overload indicator if we are at root domain */ 11081 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11082 11083 /* Update over-utilization (tipping point, U >= 0) indicator */ 11084 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11085 } else if (sg_overutilized) { 11086 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11087 } 11088 11089 update_idle_cpu_scan(env, sum_util); 11090 } 11091 11092 /** 11093 * calculate_imbalance - Calculate the amount of imbalance present within the 11094 * groups of a given sched_domain during load balance. 11095 * @env: load balance environment 11096 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11097 */ 11098 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11099 { 11100 struct sg_lb_stats *local, *busiest; 11101 11102 local = &sds->local_stat; 11103 busiest = &sds->busiest_stat; 11104 11105 if (busiest->group_type == group_misfit_task) { 11106 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11107 /* Set imbalance to allow misfit tasks to be balanced. */ 11108 env->migration_type = migrate_misfit; 11109 env->imbalance = 1; 11110 } else { 11111 /* 11112 * Set load imbalance to allow moving task from cpu 11113 * with reduced capacity. 11114 */ 11115 env->migration_type = migrate_load; 11116 env->imbalance = busiest->group_misfit_task_load; 11117 } 11118 return; 11119 } 11120 11121 if (busiest->group_type == group_asym_packing) { 11122 /* 11123 * In case of asym capacity, we will try to migrate all load to 11124 * the preferred CPU. 11125 */ 11126 env->migration_type = migrate_task; 11127 env->imbalance = busiest->sum_h_nr_running; 11128 return; 11129 } 11130 11131 if (busiest->group_type == group_smt_balance) { 11132 /* Reduce number of tasks sharing CPU capacity */ 11133 env->migration_type = migrate_task; 11134 env->imbalance = 1; 11135 return; 11136 } 11137 11138 if (busiest->group_type == group_imbalanced) { 11139 /* 11140 * In the group_imb case we cannot rely on group-wide averages 11141 * to ensure CPU-load equilibrium, try to move any task to fix 11142 * the imbalance. The next load balance will take care of 11143 * balancing back the system. 11144 */ 11145 env->migration_type = migrate_task; 11146 env->imbalance = 1; 11147 return; 11148 } 11149 11150 /* 11151 * Try to use spare capacity of local group without overloading it or 11152 * emptying busiest. 11153 */ 11154 if (local->group_type == group_has_spare) { 11155 if ((busiest->group_type > group_fully_busy) && 11156 !(env->sd->flags & SD_SHARE_LLC)) { 11157 /* 11158 * If busiest is overloaded, try to fill spare 11159 * capacity. This might end up creating spare capacity 11160 * in busiest or busiest still being overloaded but 11161 * there is no simple way to directly compute the 11162 * amount of load to migrate in order to balance the 11163 * system. 11164 */ 11165 env->migration_type = migrate_util; 11166 env->imbalance = max(local->group_capacity, local->group_util) - 11167 local->group_util; 11168 11169 /* 11170 * In some cases, the group's utilization is max or even 11171 * higher than capacity because of migrations but the 11172 * local CPU is (newly) idle. There is at least one 11173 * waiting task in this overloaded busiest group. Let's 11174 * try to pull it. 11175 */ 11176 if (env->idle && env->imbalance == 0) { 11177 env->migration_type = migrate_task; 11178 env->imbalance = 1; 11179 } 11180 11181 return; 11182 } 11183 11184 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11185 /* 11186 * When prefer sibling, evenly spread running tasks on 11187 * groups. 11188 */ 11189 env->migration_type = migrate_task; 11190 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11191 } else { 11192 11193 /* 11194 * If there is no overload, we just want to even the number of 11195 * idle CPUs. 11196 */ 11197 env->migration_type = migrate_task; 11198 env->imbalance = max_t(long, 0, 11199 (local->idle_cpus - busiest->idle_cpus)); 11200 } 11201 11202 #ifdef CONFIG_NUMA 11203 /* Consider allowing a small imbalance between NUMA groups */ 11204 if (env->sd->flags & SD_NUMA) { 11205 env->imbalance = adjust_numa_imbalance(env->imbalance, 11206 local->sum_nr_running + 1, 11207 env->sd->imb_numa_nr); 11208 } 11209 #endif 11210 11211 /* Number of tasks to move to restore balance */ 11212 env->imbalance >>= 1; 11213 11214 return; 11215 } 11216 11217 /* 11218 * Local is fully busy but has to take more load to relieve the 11219 * busiest group 11220 */ 11221 if (local->group_type < group_overloaded) { 11222 /* 11223 * Local will become overloaded so the avg_load metrics are 11224 * finally needed. 11225 */ 11226 11227 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11228 local->group_capacity; 11229 11230 /* 11231 * If the local group is more loaded than the selected 11232 * busiest group don't try to pull any tasks. 11233 */ 11234 if (local->avg_load >= busiest->avg_load) { 11235 env->imbalance = 0; 11236 return; 11237 } 11238 11239 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11240 sds->total_capacity; 11241 11242 /* 11243 * If the local group is more loaded than the average system 11244 * load, don't try to pull any tasks. 11245 */ 11246 if (local->avg_load >= sds->avg_load) { 11247 env->imbalance = 0; 11248 return; 11249 } 11250 11251 } 11252 11253 /* 11254 * Both group are or will become overloaded and we're trying to get all 11255 * the CPUs to the average_load, so we don't want to push ourselves 11256 * above the average load, nor do we wish to reduce the max loaded CPU 11257 * below the average load. At the same time, we also don't want to 11258 * reduce the group load below the group capacity. Thus we look for 11259 * the minimum possible imbalance. 11260 */ 11261 env->migration_type = migrate_load; 11262 env->imbalance = min( 11263 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11264 (sds->avg_load - local->avg_load) * local->group_capacity 11265 ) / SCHED_CAPACITY_SCALE; 11266 } 11267 11268 /******* sched_balance_find_src_group() helpers end here *********************/ 11269 11270 /* 11271 * Decision matrix according to the local and busiest group type: 11272 * 11273 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11274 * has_spare nr_idle balanced N/A N/A balanced balanced 11275 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11276 * misfit_task force N/A N/A N/A N/A N/A 11277 * asym_packing force force N/A N/A force force 11278 * imbalanced force force N/A N/A force force 11279 * overloaded force force N/A N/A force avg_load 11280 * 11281 * N/A : Not Applicable because already filtered while updating 11282 * statistics. 11283 * balanced : The system is balanced for these 2 groups. 11284 * force : Calculate the imbalance as load migration is probably needed. 11285 * avg_load : Only if imbalance is significant enough. 11286 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11287 * different in groups. 11288 */ 11289 11290 /** 11291 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11292 * if there is an imbalance. 11293 * @env: The load balancing environment. 11294 * 11295 * Also calculates the amount of runnable load which should be moved 11296 * to restore balance. 11297 * 11298 * Return: - The busiest group if imbalance exists. 11299 */ 11300 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11301 { 11302 struct sg_lb_stats *local, *busiest; 11303 struct sd_lb_stats sds; 11304 11305 init_sd_lb_stats(&sds); 11306 11307 /* 11308 * Compute the various statistics relevant for load balancing at 11309 * this level. 11310 */ 11311 update_sd_lb_stats(env, &sds); 11312 11313 /* There is no busy sibling group to pull tasks from */ 11314 if (!sds.busiest) 11315 goto out_balanced; 11316 11317 busiest = &sds.busiest_stat; 11318 11319 /* Misfit tasks should be dealt with regardless of the avg load */ 11320 if (busiest->group_type == group_misfit_task) 11321 goto force_balance; 11322 11323 if (!is_rd_overutilized(env->dst_rq->rd) && 11324 rcu_dereference(env->dst_rq->rd->pd)) 11325 goto out_balanced; 11326 11327 /* ASYM feature bypasses nice load balance check */ 11328 if (busiest->group_type == group_asym_packing) 11329 goto force_balance; 11330 11331 /* 11332 * If the busiest group is imbalanced the below checks don't 11333 * work because they assume all things are equal, which typically 11334 * isn't true due to cpus_ptr constraints and the like. 11335 */ 11336 if (busiest->group_type == group_imbalanced) 11337 goto force_balance; 11338 11339 local = &sds.local_stat; 11340 /* 11341 * If the local group is busier than the selected busiest group 11342 * don't try and pull any tasks. 11343 */ 11344 if (local->group_type > busiest->group_type) 11345 goto out_balanced; 11346 11347 /* 11348 * When groups are overloaded, use the avg_load to ensure fairness 11349 * between tasks. 11350 */ 11351 if (local->group_type == group_overloaded) { 11352 /* 11353 * If the local group is more loaded than the selected 11354 * busiest group don't try to pull any tasks. 11355 */ 11356 if (local->avg_load >= busiest->avg_load) 11357 goto out_balanced; 11358 11359 /* XXX broken for overlapping NUMA groups */ 11360 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11361 sds.total_capacity; 11362 11363 /* 11364 * Don't pull any tasks if this group is already above the 11365 * domain average load. 11366 */ 11367 if (local->avg_load >= sds.avg_load) 11368 goto out_balanced; 11369 11370 /* 11371 * If the busiest group is more loaded, use imbalance_pct to be 11372 * conservative. 11373 */ 11374 if (100 * busiest->avg_load <= 11375 env->sd->imbalance_pct * local->avg_load) 11376 goto out_balanced; 11377 } 11378 11379 /* 11380 * Try to move all excess tasks to a sibling domain of the busiest 11381 * group's child domain. 11382 */ 11383 if (sds.prefer_sibling && local->group_type == group_has_spare && 11384 sibling_imbalance(env, &sds, busiest, local) > 1) 11385 goto force_balance; 11386 11387 if (busiest->group_type != group_overloaded) { 11388 if (!env->idle) { 11389 /* 11390 * If the busiest group is not overloaded (and as a 11391 * result the local one too) but this CPU is already 11392 * busy, let another idle CPU try to pull task. 11393 */ 11394 goto out_balanced; 11395 } 11396 11397 if (busiest->group_type == group_smt_balance && 11398 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11399 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11400 goto force_balance; 11401 } 11402 11403 if (busiest->group_weight > 1 && 11404 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11405 /* 11406 * If the busiest group is not overloaded 11407 * and there is no imbalance between this and busiest 11408 * group wrt idle CPUs, it is balanced. The imbalance 11409 * becomes significant if the diff is greater than 1 11410 * otherwise we might end up to just move the imbalance 11411 * on another group. Of course this applies only if 11412 * there is more than 1 CPU per group. 11413 */ 11414 goto out_balanced; 11415 } 11416 11417 if (busiest->sum_h_nr_running == 1) { 11418 /* 11419 * busiest doesn't have any tasks waiting to run 11420 */ 11421 goto out_balanced; 11422 } 11423 } 11424 11425 force_balance: 11426 /* Looks like there is an imbalance. Compute it */ 11427 calculate_imbalance(env, &sds); 11428 return env->imbalance ? sds.busiest : NULL; 11429 11430 out_balanced: 11431 env->imbalance = 0; 11432 return NULL; 11433 } 11434 11435 /* 11436 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11437 */ 11438 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11439 struct sched_group *group) 11440 { 11441 struct rq *busiest = NULL, *rq; 11442 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11443 unsigned int busiest_nr = 0; 11444 int i; 11445 11446 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11447 unsigned long capacity, load, util; 11448 unsigned int nr_running; 11449 enum fbq_type rt; 11450 11451 rq = cpu_rq(i); 11452 rt = fbq_classify_rq(rq); 11453 11454 /* 11455 * We classify groups/runqueues into three groups: 11456 * - regular: there are !numa tasks 11457 * - remote: there are numa tasks that run on the 'wrong' node 11458 * - all: there is no distinction 11459 * 11460 * In order to avoid migrating ideally placed numa tasks, 11461 * ignore those when there's better options. 11462 * 11463 * If we ignore the actual busiest queue to migrate another 11464 * task, the next balance pass can still reduce the busiest 11465 * queue by moving tasks around inside the node. 11466 * 11467 * If we cannot move enough load due to this classification 11468 * the next pass will adjust the group classification and 11469 * allow migration of more tasks. 11470 * 11471 * Both cases only affect the total convergence complexity. 11472 */ 11473 if (rt > env->fbq_type) 11474 continue; 11475 11476 nr_running = rq->cfs.h_nr_runnable; 11477 if (!nr_running) 11478 continue; 11479 11480 capacity = capacity_of(i); 11481 11482 /* 11483 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11484 * eventually lead to active_balancing high->low capacity. 11485 * Higher per-CPU capacity is considered better than balancing 11486 * average load. 11487 */ 11488 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11489 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11490 nr_running == 1) 11491 continue; 11492 11493 /* 11494 * Make sure we only pull tasks from a CPU of lower priority 11495 * when balancing between SMT siblings. 11496 * 11497 * If balancing between cores, let lower priority CPUs help 11498 * SMT cores with more than one busy sibling. 11499 */ 11500 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11501 continue; 11502 11503 switch (env->migration_type) { 11504 case migrate_load: 11505 /* 11506 * When comparing with load imbalance, use cpu_load() 11507 * which is not scaled with the CPU capacity. 11508 */ 11509 load = cpu_load(rq); 11510 11511 if (nr_running == 1 && load > env->imbalance && 11512 !check_cpu_capacity(rq, env->sd)) 11513 break; 11514 11515 /* 11516 * For the load comparisons with the other CPUs, 11517 * consider the cpu_load() scaled with the CPU 11518 * capacity, so that the load can be moved away 11519 * from the CPU that is potentially running at a 11520 * lower capacity. 11521 * 11522 * Thus we're looking for max(load_i / capacity_i), 11523 * crosswise multiplication to rid ourselves of the 11524 * division works out to: 11525 * load_i * capacity_j > load_j * capacity_i; 11526 * where j is our previous maximum. 11527 */ 11528 if (load * busiest_capacity > busiest_load * capacity) { 11529 busiest_load = load; 11530 busiest_capacity = capacity; 11531 busiest = rq; 11532 } 11533 break; 11534 11535 case migrate_util: 11536 util = cpu_util_cfs_boost(i); 11537 11538 /* 11539 * Don't try to pull utilization from a CPU with one 11540 * running task. Whatever its utilization, we will fail 11541 * detach the task. 11542 */ 11543 if (nr_running <= 1) 11544 continue; 11545 11546 if (busiest_util < util) { 11547 busiest_util = util; 11548 busiest = rq; 11549 } 11550 break; 11551 11552 case migrate_task: 11553 if (busiest_nr < nr_running) { 11554 busiest_nr = nr_running; 11555 busiest = rq; 11556 } 11557 break; 11558 11559 case migrate_misfit: 11560 /* 11561 * For ASYM_CPUCAPACITY domains with misfit tasks we 11562 * simply seek the "biggest" misfit task. 11563 */ 11564 if (rq->misfit_task_load > busiest_load) { 11565 busiest_load = rq->misfit_task_load; 11566 busiest = rq; 11567 } 11568 11569 break; 11570 11571 } 11572 } 11573 11574 return busiest; 11575 } 11576 11577 /* 11578 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11579 * so long as it is large enough. 11580 */ 11581 #define MAX_PINNED_INTERVAL 512 11582 11583 static inline bool 11584 asym_active_balance(struct lb_env *env) 11585 { 11586 /* 11587 * ASYM_PACKING needs to force migrate tasks from busy but lower 11588 * priority CPUs in order to pack all tasks in the highest priority 11589 * CPUs. When done between cores, do it only if the whole core if the 11590 * whole core is idle. 11591 * 11592 * If @env::src_cpu is an SMT core with busy siblings, let 11593 * the lower priority @env::dst_cpu help it. Do not follow 11594 * CPU priority. 11595 */ 11596 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11597 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11598 !sched_use_asym_prio(env->sd, env->src_cpu)); 11599 } 11600 11601 static inline bool 11602 imbalanced_active_balance(struct lb_env *env) 11603 { 11604 struct sched_domain *sd = env->sd; 11605 11606 /* 11607 * The imbalanced case includes the case of pinned tasks preventing a fair 11608 * distribution of the load on the system but also the even distribution of the 11609 * threads on a system with spare capacity 11610 */ 11611 if ((env->migration_type == migrate_task) && 11612 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11613 return 1; 11614 11615 return 0; 11616 } 11617 11618 static int need_active_balance(struct lb_env *env) 11619 { 11620 struct sched_domain *sd = env->sd; 11621 11622 if (asym_active_balance(env)) 11623 return 1; 11624 11625 if (imbalanced_active_balance(env)) 11626 return 1; 11627 11628 /* 11629 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11630 * It's worth migrating the task if the src_cpu's capacity is reduced 11631 * because of other sched_class or IRQs if more capacity stays 11632 * available on dst_cpu. 11633 */ 11634 if (env->idle && 11635 (env->src_rq->cfs.h_nr_runnable == 1)) { 11636 if ((check_cpu_capacity(env->src_rq, sd)) && 11637 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11638 return 1; 11639 } 11640 11641 if (env->migration_type == migrate_misfit) 11642 return 1; 11643 11644 return 0; 11645 } 11646 11647 static int active_load_balance_cpu_stop(void *data); 11648 11649 static int should_we_balance(struct lb_env *env) 11650 { 11651 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11652 struct sched_group *sg = env->sd->groups; 11653 int cpu, idle_smt = -1; 11654 11655 /* 11656 * Ensure the balancing environment is consistent; can happen 11657 * when the softirq triggers 'during' hotplug. 11658 */ 11659 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11660 return 0; 11661 11662 /* 11663 * In the newly idle case, we will allow all the CPUs 11664 * to do the newly idle load balance. 11665 * 11666 * However, we bail out if we already have tasks or a wakeup pending, 11667 * to optimize wakeup latency. 11668 */ 11669 if (env->idle == CPU_NEWLY_IDLE) { 11670 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11671 return 0; 11672 return 1; 11673 } 11674 11675 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11676 /* Try to find first idle CPU */ 11677 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11678 if (!idle_cpu(cpu)) 11679 continue; 11680 11681 /* 11682 * Don't balance to idle SMT in busy core right away when 11683 * balancing cores, but remember the first idle SMT CPU for 11684 * later consideration. Find CPU on an idle core first. 11685 */ 11686 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11687 if (idle_smt == -1) 11688 idle_smt = cpu; 11689 /* 11690 * If the core is not idle, and first SMT sibling which is 11691 * idle has been found, then its not needed to check other 11692 * SMT siblings for idleness: 11693 */ 11694 #ifdef CONFIG_SCHED_SMT 11695 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11696 #endif 11697 continue; 11698 } 11699 11700 /* 11701 * Are we the first idle core in a non-SMT domain or higher, 11702 * or the first idle CPU in a SMT domain? 11703 */ 11704 return cpu == env->dst_cpu; 11705 } 11706 11707 /* Are we the first idle CPU with busy siblings? */ 11708 if (idle_smt != -1) 11709 return idle_smt == env->dst_cpu; 11710 11711 /* Are we the first CPU of this group ? */ 11712 return group_balance_cpu(sg) == env->dst_cpu; 11713 } 11714 11715 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11716 enum cpu_idle_type idle) 11717 { 11718 if (!schedstat_enabled()) 11719 return; 11720 11721 switch (env->migration_type) { 11722 case migrate_load: 11723 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11724 break; 11725 case migrate_util: 11726 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11727 break; 11728 case migrate_task: 11729 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11730 break; 11731 case migrate_misfit: 11732 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11733 break; 11734 } 11735 } 11736 11737 /* 11738 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11739 * tasks if there is an imbalance. 11740 */ 11741 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11742 struct sched_domain *sd, enum cpu_idle_type idle, 11743 int *continue_balancing) 11744 { 11745 int ld_moved, cur_ld_moved, active_balance = 0; 11746 struct sched_domain *sd_parent = sd->parent; 11747 struct sched_group *group; 11748 struct rq *busiest; 11749 struct rq_flags rf; 11750 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11751 struct lb_env env = { 11752 .sd = sd, 11753 .dst_cpu = this_cpu, 11754 .dst_rq = this_rq, 11755 .dst_grpmask = group_balance_mask(sd->groups), 11756 .idle = idle, 11757 .loop_break = SCHED_NR_MIGRATE_BREAK, 11758 .cpus = cpus, 11759 .fbq_type = all, 11760 .tasks = LIST_HEAD_INIT(env.tasks), 11761 }; 11762 11763 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11764 11765 schedstat_inc(sd->lb_count[idle]); 11766 11767 redo: 11768 if (!should_we_balance(&env)) { 11769 *continue_balancing = 0; 11770 goto out_balanced; 11771 } 11772 11773 group = sched_balance_find_src_group(&env); 11774 if (!group) { 11775 schedstat_inc(sd->lb_nobusyg[idle]); 11776 goto out_balanced; 11777 } 11778 11779 busiest = sched_balance_find_src_rq(&env, group); 11780 if (!busiest) { 11781 schedstat_inc(sd->lb_nobusyq[idle]); 11782 goto out_balanced; 11783 } 11784 11785 WARN_ON_ONCE(busiest == env.dst_rq); 11786 11787 update_lb_imbalance_stat(&env, sd, idle); 11788 11789 env.src_cpu = busiest->cpu; 11790 env.src_rq = busiest; 11791 11792 ld_moved = 0; 11793 /* Clear this flag as soon as we find a pullable task */ 11794 env.flags |= LBF_ALL_PINNED; 11795 if (busiest->nr_running > 1) { 11796 /* 11797 * Attempt to move tasks. If sched_balance_find_src_group has found 11798 * an imbalance but busiest->nr_running <= 1, the group is 11799 * still unbalanced. ld_moved simply stays zero, so it is 11800 * correctly treated as an imbalance. 11801 */ 11802 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11803 11804 more_balance: 11805 rq_lock_irqsave(busiest, &rf); 11806 update_rq_clock(busiest); 11807 11808 /* 11809 * cur_ld_moved - load moved in current iteration 11810 * ld_moved - cumulative load moved across iterations 11811 */ 11812 cur_ld_moved = detach_tasks(&env); 11813 11814 /* 11815 * We've detached some tasks from busiest_rq. Every 11816 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11817 * unlock busiest->lock, and we are able to be sure 11818 * that nobody can manipulate the tasks in parallel. 11819 * See task_rq_lock() family for the details. 11820 */ 11821 11822 rq_unlock(busiest, &rf); 11823 11824 if (cur_ld_moved) { 11825 attach_tasks(&env); 11826 ld_moved += cur_ld_moved; 11827 } 11828 11829 local_irq_restore(rf.flags); 11830 11831 if (env.flags & LBF_NEED_BREAK) { 11832 env.flags &= ~LBF_NEED_BREAK; 11833 goto more_balance; 11834 } 11835 11836 /* 11837 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11838 * us and move them to an alternate dst_cpu in our sched_group 11839 * where they can run. The upper limit on how many times we 11840 * iterate on same src_cpu is dependent on number of CPUs in our 11841 * sched_group. 11842 * 11843 * This changes load balance semantics a bit on who can move 11844 * load to a given_cpu. In addition to the given_cpu itself 11845 * (or a ilb_cpu acting on its behalf where given_cpu is 11846 * nohz-idle), we now have balance_cpu in a position to move 11847 * load to given_cpu. In rare situations, this may cause 11848 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11849 * _independently_ and at _same_ time to move some load to 11850 * given_cpu) causing excess load to be moved to given_cpu. 11851 * This however should not happen so much in practice and 11852 * moreover subsequent load balance cycles should correct the 11853 * excess load moved. 11854 */ 11855 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11856 11857 /* Prevent to re-select dst_cpu via env's CPUs */ 11858 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11859 11860 env.dst_rq = cpu_rq(env.new_dst_cpu); 11861 env.dst_cpu = env.new_dst_cpu; 11862 env.flags &= ~LBF_DST_PINNED; 11863 env.loop = 0; 11864 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11865 11866 /* 11867 * Go back to "more_balance" rather than "redo" since we 11868 * need to continue with same src_cpu. 11869 */ 11870 goto more_balance; 11871 } 11872 11873 /* 11874 * We failed to reach balance because of affinity. 11875 */ 11876 if (sd_parent) { 11877 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11878 11879 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11880 *group_imbalance = 1; 11881 } 11882 11883 /* All tasks on this runqueue were pinned by CPU affinity */ 11884 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11885 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11886 /* 11887 * Attempting to continue load balancing at the current 11888 * sched_domain level only makes sense if there are 11889 * active CPUs remaining as possible busiest CPUs to 11890 * pull load from which are not contained within the 11891 * destination group that is receiving any migrated 11892 * load. 11893 */ 11894 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11895 env.loop = 0; 11896 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11897 goto redo; 11898 } 11899 goto out_all_pinned; 11900 } 11901 } 11902 11903 if (!ld_moved) { 11904 schedstat_inc(sd->lb_failed[idle]); 11905 /* 11906 * Increment the failure counter only on periodic balance. 11907 * We do not want newidle balance, which can be very 11908 * frequent, pollute the failure counter causing 11909 * excessive cache_hot migrations and active balances. 11910 * 11911 * Similarly for migration_misfit which is not related to 11912 * load/util migration, don't pollute nr_balance_failed. 11913 */ 11914 if (idle != CPU_NEWLY_IDLE && 11915 env.migration_type != migrate_misfit) 11916 sd->nr_balance_failed++; 11917 11918 if (need_active_balance(&env)) { 11919 unsigned long flags; 11920 11921 raw_spin_rq_lock_irqsave(busiest, flags); 11922 11923 /* 11924 * Don't kick the active_load_balance_cpu_stop, 11925 * if the curr task on busiest CPU can't be 11926 * moved to this_cpu: 11927 */ 11928 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11929 raw_spin_rq_unlock_irqrestore(busiest, flags); 11930 goto out_one_pinned; 11931 } 11932 11933 /* Record that we found at least one task that could run on this_cpu */ 11934 env.flags &= ~LBF_ALL_PINNED; 11935 11936 /* 11937 * ->active_balance synchronizes accesses to 11938 * ->active_balance_work. Once set, it's cleared 11939 * only after active load balance is finished. 11940 */ 11941 if (!busiest->active_balance) { 11942 busiest->active_balance = 1; 11943 busiest->push_cpu = this_cpu; 11944 active_balance = 1; 11945 } 11946 11947 preempt_disable(); 11948 raw_spin_rq_unlock_irqrestore(busiest, flags); 11949 if (active_balance) { 11950 stop_one_cpu_nowait(cpu_of(busiest), 11951 active_load_balance_cpu_stop, busiest, 11952 &busiest->active_balance_work); 11953 } 11954 preempt_enable(); 11955 } 11956 } else { 11957 sd->nr_balance_failed = 0; 11958 } 11959 11960 if (likely(!active_balance) || need_active_balance(&env)) { 11961 /* We were unbalanced, so reset the balancing interval */ 11962 sd->balance_interval = sd->min_interval; 11963 } 11964 11965 goto out; 11966 11967 out_balanced: 11968 /* 11969 * We reach balance although we may have faced some affinity 11970 * constraints. Clear the imbalance flag only if other tasks got 11971 * a chance to move and fix the imbalance. 11972 */ 11973 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11974 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11975 11976 if (*group_imbalance) 11977 *group_imbalance = 0; 11978 } 11979 11980 out_all_pinned: 11981 /* 11982 * We reach balance because all tasks are pinned at this level so 11983 * we can't migrate them. Let the imbalance flag set so parent level 11984 * can try to migrate them. 11985 */ 11986 schedstat_inc(sd->lb_balanced[idle]); 11987 11988 sd->nr_balance_failed = 0; 11989 11990 out_one_pinned: 11991 ld_moved = 0; 11992 11993 /* 11994 * sched_balance_newidle() disregards balance intervals, so we could 11995 * repeatedly reach this code, which would lead to balance_interval 11996 * skyrocketing in a short amount of time. Skip the balance_interval 11997 * increase logic to avoid that. 11998 * 11999 * Similarly misfit migration which is not necessarily an indication of 12000 * the system being busy and requires lb to backoff to let it settle 12001 * down. 12002 */ 12003 if (env.idle == CPU_NEWLY_IDLE || 12004 env.migration_type == migrate_misfit) 12005 goto out; 12006 12007 /* tune up the balancing interval */ 12008 if ((env.flags & LBF_ALL_PINNED && 12009 sd->balance_interval < MAX_PINNED_INTERVAL) || 12010 sd->balance_interval < sd->max_interval) 12011 sd->balance_interval *= 2; 12012 out: 12013 return ld_moved; 12014 } 12015 12016 static inline unsigned long 12017 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 12018 { 12019 unsigned long interval = sd->balance_interval; 12020 12021 if (cpu_busy) 12022 interval *= sd->busy_factor; 12023 12024 /* scale ms to jiffies */ 12025 interval = msecs_to_jiffies(interval); 12026 12027 /* 12028 * Reduce likelihood of busy balancing at higher domains racing with 12029 * balancing at lower domains by preventing their balancing periods 12030 * from being multiples of each other. 12031 */ 12032 if (cpu_busy) 12033 interval -= 1; 12034 12035 interval = clamp(interval, 1UL, max_load_balance_interval); 12036 12037 return interval; 12038 } 12039 12040 static inline void 12041 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12042 { 12043 unsigned long interval, next; 12044 12045 /* used by idle balance, so cpu_busy = 0 */ 12046 interval = get_sd_balance_interval(sd, 0); 12047 next = sd->last_balance + interval; 12048 12049 if (time_after(*next_balance, next)) 12050 *next_balance = next; 12051 } 12052 12053 /* 12054 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12055 * running tasks off the busiest CPU onto idle CPUs. It requires at 12056 * least 1 task to be running on each physical CPU where possible, and 12057 * avoids physical / logical imbalances. 12058 */ 12059 static int active_load_balance_cpu_stop(void *data) 12060 { 12061 struct rq *busiest_rq = data; 12062 int busiest_cpu = cpu_of(busiest_rq); 12063 int target_cpu = busiest_rq->push_cpu; 12064 struct rq *target_rq = cpu_rq(target_cpu); 12065 struct sched_domain *sd; 12066 struct task_struct *p = NULL; 12067 struct rq_flags rf; 12068 12069 rq_lock_irq(busiest_rq, &rf); 12070 /* 12071 * Between queueing the stop-work and running it is a hole in which 12072 * CPUs can become inactive. We should not move tasks from or to 12073 * inactive CPUs. 12074 */ 12075 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12076 goto out_unlock; 12077 12078 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12079 if (unlikely(busiest_cpu != smp_processor_id() || 12080 !busiest_rq->active_balance)) 12081 goto out_unlock; 12082 12083 /* Is there any task to move? */ 12084 if (busiest_rq->nr_running <= 1) 12085 goto out_unlock; 12086 12087 /* 12088 * This condition is "impossible", if it occurs 12089 * we need to fix it. Originally reported by 12090 * Bjorn Helgaas on a 128-CPU setup. 12091 */ 12092 WARN_ON_ONCE(busiest_rq == target_rq); 12093 12094 /* Search for an sd spanning us and the target CPU. */ 12095 rcu_read_lock(); 12096 for_each_domain(target_cpu, sd) { 12097 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12098 break; 12099 } 12100 12101 if (likely(sd)) { 12102 struct lb_env env = { 12103 .sd = sd, 12104 .dst_cpu = target_cpu, 12105 .dst_rq = target_rq, 12106 .src_cpu = busiest_rq->cpu, 12107 .src_rq = busiest_rq, 12108 .idle = CPU_IDLE, 12109 .flags = LBF_ACTIVE_LB, 12110 }; 12111 12112 schedstat_inc(sd->alb_count); 12113 update_rq_clock(busiest_rq); 12114 12115 p = detach_one_task(&env); 12116 if (p) { 12117 schedstat_inc(sd->alb_pushed); 12118 /* Active balancing done, reset the failure counter. */ 12119 sd->nr_balance_failed = 0; 12120 } else { 12121 schedstat_inc(sd->alb_failed); 12122 } 12123 } 12124 rcu_read_unlock(); 12125 out_unlock: 12126 busiest_rq->active_balance = 0; 12127 rq_unlock(busiest_rq, &rf); 12128 12129 if (p) 12130 attach_one_task(target_rq, p); 12131 12132 local_irq_enable(); 12133 12134 return 0; 12135 } 12136 12137 /* 12138 * This flag serializes load-balancing passes over large domains 12139 * (above the NODE topology level) - only one load-balancing instance 12140 * may run at a time, to reduce overhead on very large systems with 12141 * lots of CPUs and large NUMA distances. 12142 * 12143 * - Note that load-balancing passes triggered while another one 12144 * is executing are skipped and not re-tried. 12145 * 12146 * - Also note that this does not serialize rebalance_domains() 12147 * execution, as non-SD_SERIALIZE domains will still be 12148 * load-balanced in parallel. 12149 */ 12150 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12151 12152 /* 12153 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12154 * This trades load-balance latency on larger machines for less cross talk. 12155 */ 12156 void update_max_interval(void) 12157 { 12158 max_load_balance_interval = HZ*num_online_cpus()/10; 12159 } 12160 12161 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12162 { 12163 if (cost > sd->max_newidle_lb_cost) { 12164 /* 12165 * Track max cost of a domain to make sure to not delay the 12166 * next wakeup on the CPU. 12167 */ 12168 sd->max_newidle_lb_cost = cost; 12169 sd->last_decay_max_lb_cost = jiffies; 12170 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12171 /* 12172 * Decay the newidle max times by ~1% per second to ensure that 12173 * it is not outdated and the current max cost is actually 12174 * shorter. 12175 */ 12176 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12177 sd->last_decay_max_lb_cost = jiffies; 12178 12179 return true; 12180 } 12181 12182 return false; 12183 } 12184 12185 /* 12186 * It checks each scheduling domain to see if it is due to be balanced, 12187 * and initiates a balancing operation if so. 12188 * 12189 * Balancing parameters are set up in init_sched_domains. 12190 */ 12191 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12192 { 12193 int continue_balancing = 1; 12194 int cpu = rq->cpu; 12195 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12196 unsigned long interval; 12197 struct sched_domain *sd; 12198 /* Earliest time when we have to do rebalance again */ 12199 unsigned long next_balance = jiffies + 60*HZ; 12200 int update_next_balance = 0; 12201 int need_serialize, need_decay = 0; 12202 u64 max_cost = 0; 12203 12204 rcu_read_lock(); 12205 for_each_domain(cpu, sd) { 12206 /* 12207 * Decay the newidle max times here because this is a regular 12208 * visit to all the domains. 12209 */ 12210 need_decay = update_newidle_cost(sd, 0); 12211 max_cost += sd->max_newidle_lb_cost; 12212 12213 /* 12214 * Stop the load balance at this level. There is another 12215 * CPU in our sched group which is doing load balancing more 12216 * actively. 12217 */ 12218 if (!continue_balancing) { 12219 if (need_decay) 12220 continue; 12221 break; 12222 } 12223 12224 interval = get_sd_balance_interval(sd, busy); 12225 12226 need_serialize = sd->flags & SD_SERIALIZE; 12227 if (need_serialize) { 12228 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12229 goto out; 12230 } 12231 12232 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12233 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12234 /* 12235 * The LBF_DST_PINNED logic could have changed 12236 * env->dst_cpu, so we can't know our idle 12237 * state even if we migrated tasks. Update it. 12238 */ 12239 idle = idle_cpu(cpu); 12240 busy = !idle && !sched_idle_cpu(cpu); 12241 } 12242 sd->last_balance = jiffies; 12243 interval = get_sd_balance_interval(sd, busy); 12244 } 12245 if (need_serialize) 12246 atomic_set_release(&sched_balance_running, 0); 12247 out: 12248 if (time_after(next_balance, sd->last_balance + interval)) { 12249 next_balance = sd->last_balance + interval; 12250 update_next_balance = 1; 12251 } 12252 } 12253 if (need_decay) { 12254 /* 12255 * Ensure the rq-wide value also decays but keep it at a 12256 * reasonable floor to avoid funnies with rq->avg_idle. 12257 */ 12258 rq->max_idle_balance_cost = 12259 max((u64)sysctl_sched_migration_cost, max_cost); 12260 } 12261 rcu_read_unlock(); 12262 12263 /* 12264 * next_balance will be updated only when there is a need. 12265 * When the cpu is attached to null domain for ex, it will not be 12266 * updated. 12267 */ 12268 if (likely(update_next_balance)) 12269 rq->next_balance = next_balance; 12270 12271 } 12272 12273 static inline int on_null_domain(struct rq *rq) 12274 { 12275 return unlikely(!rcu_dereference_sched(rq->sd)); 12276 } 12277 12278 #ifdef CONFIG_NO_HZ_COMMON 12279 /* 12280 * NOHZ idle load balancing (ILB) details: 12281 * 12282 * - When one of the busy CPUs notices that there may be an idle rebalancing 12283 * needed, they will kick the idle load balancer, which then does idle 12284 * load balancing for all the idle CPUs. 12285 */ 12286 static inline int find_new_ilb(void) 12287 { 12288 const struct cpumask *hk_mask; 12289 int ilb_cpu; 12290 12291 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12292 12293 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12294 12295 if (ilb_cpu == smp_processor_id()) 12296 continue; 12297 12298 if (idle_cpu(ilb_cpu)) 12299 return ilb_cpu; 12300 } 12301 12302 return -1; 12303 } 12304 12305 /* 12306 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12307 * SMP function call (IPI). 12308 * 12309 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12310 * (if there is one). 12311 */ 12312 static void kick_ilb(unsigned int flags) 12313 { 12314 int ilb_cpu; 12315 12316 /* 12317 * Increase nohz.next_balance only when if full ilb is triggered but 12318 * not if we only update stats. 12319 */ 12320 if (flags & NOHZ_BALANCE_KICK) 12321 nohz.next_balance = jiffies+1; 12322 12323 ilb_cpu = find_new_ilb(); 12324 if (ilb_cpu < 0) 12325 return; 12326 12327 /* 12328 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12329 * i.e. all bits in flags are already set in ilb_cpu. 12330 */ 12331 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12332 return; 12333 12334 /* 12335 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12336 * the first flag owns it; cleared by nohz_csd_func(). 12337 */ 12338 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12339 if (flags & NOHZ_KICK_MASK) 12340 return; 12341 12342 /* 12343 * This way we generate an IPI on the target CPU which 12344 * is idle, and the softirq performing NOHZ idle load balancing 12345 * will be run before returning from the IPI. 12346 */ 12347 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12348 } 12349 12350 /* 12351 * Current decision point for kicking the idle load balancer in the presence 12352 * of idle CPUs in the system. 12353 */ 12354 static void nohz_balancer_kick(struct rq *rq) 12355 { 12356 unsigned long now = jiffies; 12357 struct sched_domain_shared *sds; 12358 struct sched_domain *sd; 12359 int nr_busy, i, cpu = rq->cpu; 12360 unsigned int flags = 0; 12361 12362 if (unlikely(rq->idle_balance)) 12363 return; 12364 12365 /* 12366 * We may be recently in ticked or tickless idle mode. At the first 12367 * busy tick after returning from idle, we will update the busy stats. 12368 */ 12369 nohz_balance_exit_idle(rq); 12370 12371 /* 12372 * None are in tickless mode and hence no need for NOHZ idle load 12373 * balancing: 12374 */ 12375 if (likely(!atomic_read(&nohz.nr_cpus))) 12376 return; 12377 12378 if (READ_ONCE(nohz.has_blocked) && 12379 time_after(now, READ_ONCE(nohz.next_blocked))) 12380 flags = NOHZ_STATS_KICK; 12381 12382 if (time_before(now, nohz.next_balance)) 12383 goto out; 12384 12385 if (rq->nr_running >= 2) { 12386 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12387 goto out; 12388 } 12389 12390 rcu_read_lock(); 12391 12392 sd = rcu_dereference(rq->sd); 12393 if (sd) { 12394 /* 12395 * If there's a runnable CFS task and the current CPU has reduced 12396 * capacity, kick the ILB to see if there's a better CPU to run on: 12397 */ 12398 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12399 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12400 goto unlock; 12401 } 12402 } 12403 12404 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12405 if (sd) { 12406 /* 12407 * When ASYM_PACKING; see if there's a more preferred CPU 12408 * currently idle; in which case, kick the ILB to move tasks 12409 * around. 12410 * 12411 * When balancing between cores, all the SMT siblings of the 12412 * preferred CPU must be idle. 12413 */ 12414 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12415 if (sched_asym(sd, i, cpu)) { 12416 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12417 goto unlock; 12418 } 12419 } 12420 } 12421 12422 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12423 if (sd) { 12424 /* 12425 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12426 * to run the misfit task on. 12427 */ 12428 if (check_misfit_status(rq)) { 12429 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12430 goto unlock; 12431 } 12432 12433 /* 12434 * For asymmetric systems, we do not want to nicely balance 12435 * cache use, instead we want to embrace asymmetry and only 12436 * ensure tasks have enough CPU capacity. 12437 * 12438 * Skip the LLC logic because it's not relevant in that case. 12439 */ 12440 goto unlock; 12441 } 12442 12443 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12444 if (sds) { 12445 /* 12446 * If there is an imbalance between LLC domains (IOW we could 12447 * increase the overall cache utilization), we need a less-loaded LLC 12448 * domain to pull some load from. Likewise, we may need to spread 12449 * load within the current LLC domain (e.g. packed SMT cores but 12450 * other CPUs are idle). We can't really know from here how busy 12451 * the others are - so just get a NOHZ balance going if it looks 12452 * like this LLC domain has tasks we could move. 12453 */ 12454 nr_busy = atomic_read(&sds->nr_busy_cpus); 12455 if (nr_busy > 1) { 12456 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12457 goto unlock; 12458 } 12459 } 12460 unlock: 12461 rcu_read_unlock(); 12462 out: 12463 if (READ_ONCE(nohz.needs_update)) 12464 flags |= NOHZ_NEXT_KICK; 12465 12466 if (flags) 12467 kick_ilb(flags); 12468 } 12469 12470 static void set_cpu_sd_state_busy(int cpu) 12471 { 12472 struct sched_domain *sd; 12473 12474 rcu_read_lock(); 12475 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12476 12477 if (!sd || !sd->nohz_idle) 12478 goto unlock; 12479 sd->nohz_idle = 0; 12480 12481 atomic_inc(&sd->shared->nr_busy_cpus); 12482 unlock: 12483 rcu_read_unlock(); 12484 } 12485 12486 void nohz_balance_exit_idle(struct rq *rq) 12487 { 12488 WARN_ON_ONCE(rq != this_rq()); 12489 12490 if (likely(!rq->nohz_tick_stopped)) 12491 return; 12492 12493 rq->nohz_tick_stopped = 0; 12494 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12495 atomic_dec(&nohz.nr_cpus); 12496 12497 set_cpu_sd_state_busy(rq->cpu); 12498 } 12499 12500 static void set_cpu_sd_state_idle(int cpu) 12501 { 12502 struct sched_domain *sd; 12503 12504 rcu_read_lock(); 12505 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12506 12507 if (!sd || sd->nohz_idle) 12508 goto unlock; 12509 sd->nohz_idle = 1; 12510 12511 atomic_dec(&sd->shared->nr_busy_cpus); 12512 unlock: 12513 rcu_read_unlock(); 12514 } 12515 12516 /* 12517 * This routine will record that the CPU is going idle with tick stopped. 12518 * This info will be used in performing idle load balancing in the future. 12519 */ 12520 void nohz_balance_enter_idle(int cpu) 12521 { 12522 struct rq *rq = cpu_rq(cpu); 12523 12524 WARN_ON_ONCE(cpu != smp_processor_id()); 12525 12526 /* If this CPU is going down, then nothing needs to be done: */ 12527 if (!cpu_active(cpu)) 12528 return; 12529 12530 /* 12531 * Can be set safely without rq->lock held 12532 * If a clear happens, it will have evaluated last additions because 12533 * rq->lock is held during the check and the clear 12534 */ 12535 rq->has_blocked_load = 1; 12536 12537 /* 12538 * The tick is still stopped but load could have been added in the 12539 * meantime. We set the nohz.has_blocked flag to trig a check of the 12540 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12541 * of nohz.has_blocked can only happen after checking the new load 12542 */ 12543 if (rq->nohz_tick_stopped) 12544 goto out; 12545 12546 /* If we're a completely isolated CPU, we don't play: */ 12547 if (on_null_domain(rq)) 12548 return; 12549 12550 rq->nohz_tick_stopped = 1; 12551 12552 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12553 atomic_inc(&nohz.nr_cpus); 12554 12555 /* 12556 * Ensures that if nohz_idle_balance() fails to observe our 12557 * @idle_cpus_mask store, it must observe the @has_blocked 12558 * and @needs_update stores. 12559 */ 12560 smp_mb__after_atomic(); 12561 12562 set_cpu_sd_state_idle(cpu); 12563 12564 WRITE_ONCE(nohz.needs_update, 1); 12565 out: 12566 /* 12567 * Each time a cpu enter idle, we assume that it has blocked load and 12568 * enable the periodic update of the load of idle CPUs 12569 */ 12570 WRITE_ONCE(nohz.has_blocked, 1); 12571 } 12572 12573 static bool update_nohz_stats(struct rq *rq) 12574 { 12575 unsigned int cpu = rq->cpu; 12576 12577 if (!rq->has_blocked_load) 12578 return false; 12579 12580 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12581 return false; 12582 12583 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12584 return true; 12585 12586 sched_balance_update_blocked_averages(cpu); 12587 12588 return rq->has_blocked_load; 12589 } 12590 12591 /* 12592 * Internal function that runs load balance for all idle CPUs. The load balance 12593 * can be a simple update of blocked load or a complete load balance with 12594 * tasks movement depending of flags. 12595 */ 12596 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12597 { 12598 /* Earliest time when we have to do rebalance again */ 12599 unsigned long now = jiffies; 12600 unsigned long next_balance = now + 60*HZ; 12601 bool has_blocked_load = false; 12602 int update_next_balance = 0; 12603 int this_cpu = this_rq->cpu; 12604 int balance_cpu; 12605 struct rq *rq; 12606 12607 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12608 12609 /* 12610 * We assume there will be no idle load after this update and clear 12611 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12612 * set the has_blocked flag and trigger another update of idle load. 12613 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12614 * setting the flag, we are sure to not clear the state and not 12615 * check the load of an idle cpu. 12616 * 12617 * Same applies to idle_cpus_mask vs needs_update. 12618 */ 12619 if (flags & NOHZ_STATS_KICK) 12620 WRITE_ONCE(nohz.has_blocked, 0); 12621 if (flags & NOHZ_NEXT_KICK) 12622 WRITE_ONCE(nohz.needs_update, 0); 12623 12624 /* 12625 * Ensures that if we miss the CPU, we must see the has_blocked 12626 * store from nohz_balance_enter_idle(). 12627 */ 12628 smp_mb(); 12629 12630 /* 12631 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12632 * chance for other idle cpu to pull load. 12633 */ 12634 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12635 if (!idle_cpu(balance_cpu)) 12636 continue; 12637 12638 /* 12639 * If this CPU gets work to do, stop the load balancing 12640 * work being done for other CPUs. Next load 12641 * balancing owner will pick it up. 12642 */ 12643 if (!idle_cpu(this_cpu) && need_resched()) { 12644 if (flags & NOHZ_STATS_KICK) 12645 has_blocked_load = true; 12646 if (flags & NOHZ_NEXT_KICK) 12647 WRITE_ONCE(nohz.needs_update, 1); 12648 goto abort; 12649 } 12650 12651 rq = cpu_rq(balance_cpu); 12652 12653 if (flags & NOHZ_STATS_KICK) 12654 has_blocked_load |= update_nohz_stats(rq); 12655 12656 /* 12657 * If time for next balance is due, 12658 * do the balance. 12659 */ 12660 if (time_after_eq(jiffies, rq->next_balance)) { 12661 struct rq_flags rf; 12662 12663 rq_lock_irqsave(rq, &rf); 12664 update_rq_clock(rq); 12665 rq_unlock_irqrestore(rq, &rf); 12666 12667 if (flags & NOHZ_BALANCE_KICK) 12668 sched_balance_domains(rq, CPU_IDLE); 12669 } 12670 12671 if (time_after(next_balance, rq->next_balance)) { 12672 next_balance = rq->next_balance; 12673 update_next_balance = 1; 12674 } 12675 } 12676 12677 /* 12678 * next_balance will be updated only when there is a need. 12679 * When the CPU is attached to null domain for ex, it will not be 12680 * updated. 12681 */ 12682 if (likely(update_next_balance)) 12683 nohz.next_balance = next_balance; 12684 12685 if (flags & NOHZ_STATS_KICK) 12686 WRITE_ONCE(nohz.next_blocked, 12687 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12688 12689 abort: 12690 /* There is still blocked load, enable periodic update */ 12691 if (has_blocked_load) 12692 WRITE_ONCE(nohz.has_blocked, 1); 12693 } 12694 12695 /* 12696 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12697 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12698 */ 12699 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12700 { 12701 unsigned int flags = this_rq->nohz_idle_balance; 12702 12703 if (!flags) 12704 return false; 12705 12706 this_rq->nohz_idle_balance = 0; 12707 12708 if (idle != CPU_IDLE) 12709 return false; 12710 12711 _nohz_idle_balance(this_rq, flags); 12712 12713 return true; 12714 } 12715 12716 /* 12717 * Check if we need to directly run the ILB for updating blocked load before 12718 * entering idle state. Here we run ILB directly without issuing IPIs. 12719 * 12720 * Note that when this function is called, the tick may not yet be stopped on 12721 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12722 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12723 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12724 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12725 * called from this function on (this) CPU that's not yet in the mask. That's 12726 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12727 * updating the blocked load of already idle CPUs without waking up one of 12728 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12729 * cpu about to enter idle, because it can take a long time. 12730 */ 12731 void nohz_run_idle_balance(int cpu) 12732 { 12733 unsigned int flags; 12734 12735 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12736 12737 /* 12738 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12739 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12740 */ 12741 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12742 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12743 } 12744 12745 static void nohz_newidle_balance(struct rq *this_rq) 12746 { 12747 int this_cpu = this_rq->cpu; 12748 12749 /* Will wake up very soon. No time for doing anything else*/ 12750 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12751 return; 12752 12753 /* Don't need to update blocked load of idle CPUs*/ 12754 if (!READ_ONCE(nohz.has_blocked) || 12755 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12756 return; 12757 12758 /* 12759 * Set the need to trigger ILB in order to update blocked load 12760 * before entering idle state. 12761 */ 12762 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12763 } 12764 12765 #else /* !CONFIG_NO_HZ_COMMON */ 12766 static inline void nohz_balancer_kick(struct rq *rq) { } 12767 12768 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12769 { 12770 return false; 12771 } 12772 12773 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12774 #endif /* CONFIG_NO_HZ_COMMON */ 12775 12776 /* 12777 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12778 * idle. Attempts to pull tasks from other CPUs. 12779 * 12780 * Returns: 12781 * < 0 - we released the lock and there are !fair tasks present 12782 * 0 - failed, no new tasks 12783 * > 0 - success, new (fair) tasks present 12784 */ 12785 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12786 { 12787 unsigned long next_balance = jiffies + HZ; 12788 int this_cpu = this_rq->cpu; 12789 int continue_balancing = 1; 12790 u64 t0, t1, curr_cost = 0; 12791 struct sched_domain *sd; 12792 int pulled_task = 0; 12793 12794 update_misfit_status(NULL, this_rq); 12795 12796 /* 12797 * There is a task waiting to run. No need to search for one. 12798 * Return 0; the task will be enqueued when switching to idle. 12799 */ 12800 if (this_rq->ttwu_pending) 12801 return 0; 12802 12803 /* 12804 * We must set idle_stamp _before_ calling sched_balance_rq() 12805 * for CPU_NEWLY_IDLE, such that we measure the this duration 12806 * as idle time. 12807 */ 12808 this_rq->idle_stamp = rq_clock(this_rq); 12809 12810 /* 12811 * Do not pull tasks towards !active CPUs... 12812 */ 12813 if (!cpu_active(this_cpu)) 12814 return 0; 12815 12816 /* 12817 * This is OK, because current is on_cpu, which avoids it being picked 12818 * for load-balance and preemption/IRQs are still disabled avoiding 12819 * further scheduler activity on it and we're being very careful to 12820 * re-start the picking loop. 12821 */ 12822 rq_unpin_lock(this_rq, rf); 12823 12824 rcu_read_lock(); 12825 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12826 12827 if (!get_rd_overloaded(this_rq->rd) || 12828 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12829 12830 if (sd) 12831 update_next_balance(sd, &next_balance); 12832 rcu_read_unlock(); 12833 12834 goto out; 12835 } 12836 rcu_read_unlock(); 12837 12838 raw_spin_rq_unlock(this_rq); 12839 12840 t0 = sched_clock_cpu(this_cpu); 12841 sched_balance_update_blocked_averages(this_cpu); 12842 12843 rcu_read_lock(); 12844 for_each_domain(this_cpu, sd) { 12845 u64 domain_cost; 12846 12847 update_next_balance(sd, &next_balance); 12848 12849 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12850 break; 12851 12852 if (sd->flags & SD_BALANCE_NEWIDLE) { 12853 12854 pulled_task = sched_balance_rq(this_cpu, this_rq, 12855 sd, CPU_NEWLY_IDLE, 12856 &continue_balancing); 12857 12858 t1 = sched_clock_cpu(this_cpu); 12859 domain_cost = t1 - t0; 12860 update_newidle_cost(sd, domain_cost); 12861 12862 curr_cost += domain_cost; 12863 t0 = t1; 12864 } 12865 12866 /* 12867 * Stop searching for tasks to pull if there are 12868 * now runnable tasks on this rq. 12869 */ 12870 if (pulled_task || !continue_balancing) 12871 break; 12872 } 12873 rcu_read_unlock(); 12874 12875 raw_spin_rq_lock(this_rq); 12876 12877 if (curr_cost > this_rq->max_idle_balance_cost) 12878 this_rq->max_idle_balance_cost = curr_cost; 12879 12880 /* 12881 * While browsing the domains, we released the rq lock, a task could 12882 * have been enqueued in the meantime. Since we're not going idle, 12883 * pretend we pulled a task. 12884 */ 12885 if (this_rq->cfs.h_nr_queued && !pulled_task) 12886 pulled_task = 1; 12887 12888 /* Is there a task of a high priority class? */ 12889 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12890 pulled_task = -1; 12891 12892 out: 12893 /* Move the next balance forward */ 12894 if (time_after(this_rq->next_balance, next_balance)) 12895 this_rq->next_balance = next_balance; 12896 12897 if (pulled_task) 12898 this_rq->idle_stamp = 0; 12899 else 12900 nohz_newidle_balance(this_rq); 12901 12902 rq_repin_lock(this_rq, rf); 12903 12904 return pulled_task; 12905 } 12906 12907 /* 12908 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12909 * 12910 * - directly from the local sched_tick() for periodic load balancing 12911 * 12912 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12913 * through the SMP cross-call nohz_csd_func() 12914 */ 12915 static __latent_entropy void sched_balance_softirq(void) 12916 { 12917 struct rq *this_rq = this_rq(); 12918 enum cpu_idle_type idle = this_rq->idle_balance; 12919 /* 12920 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12921 * balancing on behalf of the other idle CPUs whose ticks are 12922 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12923 * give the idle CPUs a chance to load balance. Else we may 12924 * load balance only within the local sched_domain hierarchy 12925 * and abort nohz_idle_balance altogether if we pull some load. 12926 */ 12927 if (nohz_idle_balance(this_rq, idle)) 12928 return; 12929 12930 /* normal load balance */ 12931 sched_balance_update_blocked_averages(this_rq->cpu); 12932 sched_balance_domains(this_rq, idle); 12933 } 12934 12935 /* 12936 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12937 */ 12938 void sched_balance_trigger(struct rq *rq) 12939 { 12940 /* 12941 * Don't need to rebalance while attached to NULL domain or 12942 * runqueue CPU is not active 12943 */ 12944 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12945 return; 12946 12947 if (time_after_eq(jiffies, rq->next_balance)) 12948 raise_softirq(SCHED_SOFTIRQ); 12949 12950 nohz_balancer_kick(rq); 12951 } 12952 12953 static void rq_online_fair(struct rq *rq) 12954 { 12955 update_sysctl(); 12956 12957 update_runtime_enabled(rq); 12958 } 12959 12960 static void rq_offline_fair(struct rq *rq) 12961 { 12962 update_sysctl(); 12963 12964 /* Ensure any throttled groups are reachable by pick_next_task */ 12965 unthrottle_offline_cfs_rqs(rq); 12966 12967 /* Ensure that we remove rq contribution to group share: */ 12968 clear_tg_offline_cfs_rqs(rq); 12969 } 12970 12971 #endif /* CONFIG_SMP */ 12972 12973 #ifdef CONFIG_SCHED_CORE 12974 static inline bool 12975 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12976 { 12977 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12978 u64 slice = se->slice; 12979 12980 return (rtime * min_nr_tasks > slice); 12981 } 12982 12983 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12984 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12985 { 12986 if (!sched_core_enabled(rq)) 12987 return; 12988 12989 /* 12990 * If runqueue has only one task which used up its slice and 12991 * if the sibling is forced idle, then trigger schedule to 12992 * give forced idle task a chance. 12993 * 12994 * sched_slice() considers only this active rq and it gets the 12995 * whole slice. But during force idle, we have siblings acting 12996 * like a single runqueue and hence we need to consider runnable 12997 * tasks on this CPU and the forced idle CPU. Ideally, we should 12998 * go through the forced idle rq, but that would be a perf hit. 12999 * We can assume that the forced idle CPU has at least 13000 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 13001 * if we need to give up the CPU. 13002 */ 13003 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 13004 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 13005 resched_curr(rq); 13006 } 13007 13008 /* 13009 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 13010 */ 13011 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 13012 bool forceidle) 13013 { 13014 for_each_sched_entity(se) { 13015 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13016 13017 if (forceidle) { 13018 if (cfs_rq->forceidle_seq == fi_seq) 13019 break; 13020 cfs_rq->forceidle_seq = fi_seq; 13021 } 13022 13023 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 13024 } 13025 } 13026 13027 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13028 { 13029 struct sched_entity *se = &p->se; 13030 13031 if (p->sched_class != &fair_sched_class) 13032 return; 13033 13034 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13035 } 13036 13037 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13038 bool in_fi) 13039 { 13040 struct rq *rq = task_rq(a); 13041 const struct sched_entity *sea = &a->se; 13042 const struct sched_entity *seb = &b->se; 13043 struct cfs_rq *cfs_rqa; 13044 struct cfs_rq *cfs_rqb; 13045 s64 delta; 13046 13047 WARN_ON_ONCE(task_rq(b)->core != rq->core); 13048 13049 #ifdef CONFIG_FAIR_GROUP_SCHED 13050 /* 13051 * Find an se in the hierarchy for tasks a and b, such that the se's 13052 * are immediate siblings. 13053 */ 13054 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13055 int sea_depth = sea->depth; 13056 int seb_depth = seb->depth; 13057 13058 if (sea_depth >= seb_depth) 13059 sea = parent_entity(sea); 13060 if (sea_depth <= seb_depth) 13061 seb = parent_entity(seb); 13062 } 13063 13064 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13065 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13066 13067 cfs_rqa = sea->cfs_rq; 13068 cfs_rqb = seb->cfs_rq; 13069 #else 13070 cfs_rqa = &task_rq(a)->cfs; 13071 cfs_rqb = &task_rq(b)->cfs; 13072 #endif 13073 13074 /* 13075 * Find delta after normalizing se's vruntime with its cfs_rq's 13076 * min_vruntime_fi, which would have been updated in prior calls 13077 * to se_fi_update(). 13078 */ 13079 delta = (s64)(sea->vruntime - seb->vruntime) + 13080 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13081 13082 return delta > 0; 13083 } 13084 13085 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13086 { 13087 struct cfs_rq *cfs_rq; 13088 13089 #ifdef CONFIG_FAIR_GROUP_SCHED 13090 cfs_rq = task_group(p)->cfs_rq[cpu]; 13091 #else 13092 cfs_rq = &cpu_rq(cpu)->cfs; 13093 #endif 13094 return throttled_hierarchy(cfs_rq); 13095 } 13096 #else 13097 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13098 #endif 13099 13100 /* 13101 * scheduler tick hitting a task of our scheduling class. 13102 * 13103 * NOTE: This function can be called remotely by the tick offload that 13104 * goes along full dynticks. Therefore no local assumption can be made 13105 * and everything must be accessed through the @rq and @curr passed in 13106 * parameters. 13107 */ 13108 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13109 { 13110 struct cfs_rq *cfs_rq; 13111 struct sched_entity *se = &curr->se; 13112 13113 for_each_sched_entity(se) { 13114 cfs_rq = cfs_rq_of(se); 13115 entity_tick(cfs_rq, se, queued); 13116 } 13117 13118 if (static_branch_unlikely(&sched_numa_balancing)) 13119 task_tick_numa(rq, curr); 13120 13121 update_misfit_status(curr, rq); 13122 check_update_overutilized_status(task_rq(curr)); 13123 13124 task_tick_core(rq, curr); 13125 } 13126 13127 /* 13128 * called on fork with the child task as argument from the parent's context 13129 * - child not yet on the tasklist 13130 * - preemption disabled 13131 */ 13132 static void task_fork_fair(struct task_struct *p) 13133 { 13134 set_task_max_allowed_capacity(p); 13135 } 13136 13137 /* 13138 * Priority of the task has changed. Check to see if we preempt 13139 * the current task. 13140 */ 13141 static void 13142 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13143 { 13144 if (!task_on_rq_queued(p)) 13145 return; 13146 13147 if (rq->cfs.nr_queued == 1) 13148 return; 13149 13150 /* 13151 * Reschedule if we are currently running on this runqueue and 13152 * our priority decreased, or if we are not currently running on 13153 * this runqueue and our priority is higher than the current's 13154 */ 13155 if (task_current_donor(rq, p)) { 13156 if (p->prio > oldprio) 13157 resched_curr(rq); 13158 } else 13159 wakeup_preempt(rq, p, 0); 13160 } 13161 13162 #ifdef CONFIG_FAIR_GROUP_SCHED 13163 /* 13164 * Propagate the changes of the sched_entity across the tg tree to make it 13165 * visible to the root 13166 */ 13167 static void propagate_entity_cfs_rq(struct sched_entity *se) 13168 { 13169 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13170 13171 if (cfs_rq_throttled(cfs_rq)) 13172 return; 13173 13174 if (!throttled_hierarchy(cfs_rq)) 13175 list_add_leaf_cfs_rq(cfs_rq); 13176 13177 /* Start to propagate at parent */ 13178 se = se->parent; 13179 13180 for_each_sched_entity(se) { 13181 cfs_rq = cfs_rq_of(se); 13182 13183 update_load_avg(cfs_rq, se, UPDATE_TG); 13184 13185 if (cfs_rq_throttled(cfs_rq)) 13186 break; 13187 13188 if (!throttled_hierarchy(cfs_rq)) 13189 list_add_leaf_cfs_rq(cfs_rq); 13190 } 13191 } 13192 #else 13193 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13194 #endif 13195 13196 static void detach_entity_cfs_rq(struct sched_entity *se) 13197 { 13198 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13199 13200 #ifdef CONFIG_SMP 13201 /* 13202 * In case the task sched_avg hasn't been attached: 13203 * - A forked task which hasn't been woken up by wake_up_new_task(). 13204 * - A task which has been woken up by try_to_wake_up() but is 13205 * waiting for actually being woken up by sched_ttwu_pending(). 13206 */ 13207 if (!se->avg.last_update_time) 13208 return; 13209 #endif 13210 13211 /* Catch up with the cfs_rq and remove our load when we leave */ 13212 update_load_avg(cfs_rq, se, 0); 13213 detach_entity_load_avg(cfs_rq, se); 13214 update_tg_load_avg(cfs_rq); 13215 propagate_entity_cfs_rq(se); 13216 } 13217 13218 static void attach_entity_cfs_rq(struct sched_entity *se) 13219 { 13220 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13221 13222 /* Synchronize entity with its cfs_rq */ 13223 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13224 attach_entity_load_avg(cfs_rq, se); 13225 update_tg_load_avg(cfs_rq); 13226 propagate_entity_cfs_rq(se); 13227 } 13228 13229 static void detach_task_cfs_rq(struct task_struct *p) 13230 { 13231 struct sched_entity *se = &p->se; 13232 13233 detach_entity_cfs_rq(se); 13234 } 13235 13236 static void attach_task_cfs_rq(struct task_struct *p) 13237 { 13238 struct sched_entity *se = &p->se; 13239 13240 attach_entity_cfs_rq(se); 13241 } 13242 13243 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13244 { 13245 detach_task_cfs_rq(p); 13246 } 13247 13248 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13249 { 13250 WARN_ON_ONCE(p->se.sched_delayed); 13251 13252 attach_task_cfs_rq(p); 13253 13254 set_task_max_allowed_capacity(p); 13255 13256 if (task_on_rq_queued(p)) { 13257 /* 13258 * We were most likely switched from sched_rt, so 13259 * kick off the schedule if running, otherwise just see 13260 * if we can still preempt the current task. 13261 */ 13262 if (task_current_donor(rq, p)) 13263 resched_curr(rq); 13264 else 13265 wakeup_preempt(rq, p, 0); 13266 } 13267 } 13268 13269 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13270 { 13271 struct sched_entity *se = &p->se; 13272 13273 #ifdef CONFIG_SMP 13274 if (task_on_rq_queued(p)) { 13275 /* 13276 * Move the next running task to the front of the list, so our 13277 * cfs_tasks list becomes MRU one. 13278 */ 13279 list_move(&se->group_node, &rq->cfs_tasks); 13280 } 13281 #endif 13282 if (!first) 13283 return; 13284 13285 WARN_ON_ONCE(se->sched_delayed); 13286 13287 if (hrtick_enabled_fair(rq)) 13288 hrtick_start_fair(rq, p); 13289 13290 update_misfit_status(p, rq); 13291 sched_fair_update_stop_tick(rq, p); 13292 } 13293 13294 /* 13295 * Account for a task changing its policy or group. 13296 * 13297 * This routine is mostly called to set cfs_rq->curr field when a task 13298 * migrates between groups/classes. 13299 */ 13300 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13301 { 13302 struct sched_entity *se = &p->se; 13303 13304 for_each_sched_entity(se) { 13305 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13306 13307 set_next_entity(cfs_rq, se); 13308 /* ensure bandwidth has been allocated on our new cfs_rq */ 13309 account_cfs_rq_runtime(cfs_rq, 0); 13310 } 13311 13312 __set_next_task_fair(rq, p, first); 13313 } 13314 13315 void init_cfs_rq(struct cfs_rq *cfs_rq) 13316 { 13317 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13318 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13319 #ifdef CONFIG_SMP 13320 raw_spin_lock_init(&cfs_rq->removed.lock); 13321 #endif 13322 } 13323 13324 #ifdef CONFIG_FAIR_GROUP_SCHED 13325 static void task_change_group_fair(struct task_struct *p) 13326 { 13327 /* 13328 * We couldn't detach or attach a forked task which 13329 * hasn't been woken up by wake_up_new_task(). 13330 */ 13331 if (READ_ONCE(p->__state) == TASK_NEW) 13332 return; 13333 13334 detach_task_cfs_rq(p); 13335 13336 #ifdef CONFIG_SMP 13337 /* Tell se's cfs_rq has been changed -- migrated */ 13338 p->se.avg.last_update_time = 0; 13339 #endif 13340 set_task_rq(p, task_cpu(p)); 13341 attach_task_cfs_rq(p); 13342 } 13343 13344 void free_fair_sched_group(struct task_group *tg) 13345 { 13346 int i; 13347 13348 for_each_possible_cpu(i) { 13349 if (tg->cfs_rq) 13350 kfree(tg->cfs_rq[i]); 13351 if (tg->se) 13352 kfree(tg->se[i]); 13353 } 13354 13355 kfree(tg->cfs_rq); 13356 kfree(tg->se); 13357 } 13358 13359 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13360 { 13361 struct sched_entity *se; 13362 struct cfs_rq *cfs_rq; 13363 int i; 13364 13365 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13366 if (!tg->cfs_rq) 13367 goto err; 13368 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13369 if (!tg->se) 13370 goto err; 13371 13372 tg->shares = NICE_0_LOAD; 13373 13374 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13375 13376 for_each_possible_cpu(i) { 13377 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13378 GFP_KERNEL, cpu_to_node(i)); 13379 if (!cfs_rq) 13380 goto err; 13381 13382 se = kzalloc_node(sizeof(struct sched_entity_stats), 13383 GFP_KERNEL, cpu_to_node(i)); 13384 if (!se) 13385 goto err_free_rq; 13386 13387 init_cfs_rq(cfs_rq); 13388 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13389 init_entity_runnable_average(se); 13390 } 13391 13392 return 1; 13393 13394 err_free_rq: 13395 kfree(cfs_rq); 13396 err: 13397 return 0; 13398 } 13399 13400 void online_fair_sched_group(struct task_group *tg) 13401 { 13402 struct sched_entity *se; 13403 struct rq_flags rf; 13404 struct rq *rq; 13405 int i; 13406 13407 for_each_possible_cpu(i) { 13408 rq = cpu_rq(i); 13409 se = tg->se[i]; 13410 rq_lock_irq(rq, &rf); 13411 update_rq_clock(rq); 13412 attach_entity_cfs_rq(se); 13413 sync_throttle(tg, i); 13414 rq_unlock_irq(rq, &rf); 13415 } 13416 } 13417 13418 void unregister_fair_sched_group(struct task_group *tg) 13419 { 13420 int cpu; 13421 13422 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13423 13424 for_each_possible_cpu(cpu) { 13425 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13426 struct sched_entity *se = tg->se[cpu]; 13427 struct rq *rq = cpu_rq(cpu); 13428 13429 if (se) { 13430 if (se->sched_delayed) { 13431 guard(rq_lock_irqsave)(rq); 13432 if (se->sched_delayed) { 13433 update_rq_clock(rq); 13434 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13435 } 13436 list_del_leaf_cfs_rq(cfs_rq); 13437 } 13438 remove_entity_load_avg(se); 13439 } 13440 13441 /* 13442 * Only empty task groups can be destroyed; so we can speculatively 13443 * check on_list without danger of it being re-added. 13444 */ 13445 if (cfs_rq->on_list) { 13446 guard(rq_lock_irqsave)(rq); 13447 list_del_leaf_cfs_rq(cfs_rq); 13448 } 13449 } 13450 } 13451 13452 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13453 struct sched_entity *se, int cpu, 13454 struct sched_entity *parent) 13455 { 13456 struct rq *rq = cpu_rq(cpu); 13457 13458 cfs_rq->tg = tg; 13459 cfs_rq->rq = rq; 13460 init_cfs_rq_runtime(cfs_rq); 13461 13462 tg->cfs_rq[cpu] = cfs_rq; 13463 tg->se[cpu] = se; 13464 13465 /* se could be NULL for root_task_group */ 13466 if (!se) 13467 return; 13468 13469 if (!parent) { 13470 se->cfs_rq = &rq->cfs; 13471 se->depth = 0; 13472 } else { 13473 se->cfs_rq = parent->my_q; 13474 se->depth = parent->depth + 1; 13475 } 13476 13477 se->my_q = cfs_rq; 13478 /* guarantee group entities always have weight */ 13479 update_load_set(&se->load, NICE_0_LOAD); 13480 se->parent = parent; 13481 } 13482 13483 static DEFINE_MUTEX(shares_mutex); 13484 13485 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13486 { 13487 int i; 13488 13489 lockdep_assert_held(&shares_mutex); 13490 13491 /* 13492 * We can't change the weight of the root cgroup. 13493 */ 13494 if (!tg->se[0]) 13495 return -EINVAL; 13496 13497 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13498 13499 if (tg->shares == shares) 13500 return 0; 13501 13502 tg->shares = shares; 13503 for_each_possible_cpu(i) { 13504 struct rq *rq = cpu_rq(i); 13505 struct sched_entity *se = tg->se[i]; 13506 struct rq_flags rf; 13507 13508 /* Propagate contribution to hierarchy */ 13509 rq_lock_irqsave(rq, &rf); 13510 update_rq_clock(rq); 13511 for_each_sched_entity(se) { 13512 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13513 update_cfs_group(se); 13514 } 13515 rq_unlock_irqrestore(rq, &rf); 13516 } 13517 13518 return 0; 13519 } 13520 13521 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13522 { 13523 int ret; 13524 13525 mutex_lock(&shares_mutex); 13526 if (tg_is_idle(tg)) 13527 ret = -EINVAL; 13528 else 13529 ret = __sched_group_set_shares(tg, shares); 13530 mutex_unlock(&shares_mutex); 13531 13532 return ret; 13533 } 13534 13535 int sched_group_set_idle(struct task_group *tg, long idle) 13536 { 13537 int i; 13538 13539 if (tg == &root_task_group) 13540 return -EINVAL; 13541 13542 if (idle < 0 || idle > 1) 13543 return -EINVAL; 13544 13545 mutex_lock(&shares_mutex); 13546 13547 if (tg->idle == idle) { 13548 mutex_unlock(&shares_mutex); 13549 return 0; 13550 } 13551 13552 tg->idle = idle; 13553 13554 for_each_possible_cpu(i) { 13555 struct rq *rq = cpu_rq(i); 13556 struct sched_entity *se = tg->se[i]; 13557 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13558 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13559 long idle_task_delta; 13560 struct rq_flags rf; 13561 13562 rq_lock_irqsave(rq, &rf); 13563 13564 grp_cfs_rq->idle = idle; 13565 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13566 goto next_cpu; 13567 13568 idle_task_delta = grp_cfs_rq->h_nr_queued - 13569 grp_cfs_rq->h_nr_idle; 13570 if (!cfs_rq_is_idle(grp_cfs_rq)) 13571 idle_task_delta *= -1; 13572 13573 for_each_sched_entity(se) { 13574 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13575 13576 if (!se->on_rq) 13577 break; 13578 13579 cfs_rq->h_nr_idle += idle_task_delta; 13580 13581 /* Already accounted at parent level and above. */ 13582 if (cfs_rq_is_idle(cfs_rq)) 13583 break; 13584 } 13585 13586 next_cpu: 13587 rq_unlock_irqrestore(rq, &rf); 13588 } 13589 13590 /* Idle groups have minimum weight. */ 13591 if (tg_is_idle(tg)) 13592 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13593 else 13594 __sched_group_set_shares(tg, NICE_0_LOAD); 13595 13596 mutex_unlock(&shares_mutex); 13597 return 0; 13598 } 13599 13600 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13601 13602 13603 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13604 { 13605 struct sched_entity *se = &task->se; 13606 unsigned int rr_interval = 0; 13607 13608 /* 13609 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13610 * idle runqueue: 13611 */ 13612 if (rq->cfs.load.weight) 13613 rr_interval = NS_TO_JIFFIES(se->slice); 13614 13615 return rr_interval; 13616 } 13617 13618 /* 13619 * All the scheduling class methods: 13620 */ 13621 DEFINE_SCHED_CLASS(fair) = { 13622 13623 .enqueue_task = enqueue_task_fair, 13624 .dequeue_task = dequeue_task_fair, 13625 .yield_task = yield_task_fair, 13626 .yield_to_task = yield_to_task_fair, 13627 13628 .wakeup_preempt = check_preempt_wakeup_fair, 13629 13630 .pick_task = pick_task_fair, 13631 .pick_next_task = __pick_next_task_fair, 13632 .put_prev_task = put_prev_task_fair, 13633 .set_next_task = set_next_task_fair, 13634 13635 #ifdef CONFIG_SMP 13636 .balance = balance_fair, 13637 .select_task_rq = select_task_rq_fair, 13638 .migrate_task_rq = migrate_task_rq_fair, 13639 13640 .rq_online = rq_online_fair, 13641 .rq_offline = rq_offline_fair, 13642 13643 .task_dead = task_dead_fair, 13644 .set_cpus_allowed = set_cpus_allowed_fair, 13645 #endif 13646 13647 .task_tick = task_tick_fair, 13648 .task_fork = task_fork_fair, 13649 13650 .reweight_task = reweight_task_fair, 13651 .prio_changed = prio_changed_fair, 13652 .switched_from = switched_from_fair, 13653 .switched_to = switched_to_fair, 13654 13655 .get_rr_interval = get_rr_interval_fair, 13656 13657 .update_curr = update_curr_fair, 13658 13659 #ifdef CONFIG_FAIR_GROUP_SCHED 13660 .task_change_group = task_change_group_fair, 13661 #endif 13662 13663 #ifdef CONFIG_SCHED_CORE 13664 .task_is_throttled = task_is_throttled_fair, 13665 #endif 13666 13667 #ifdef CONFIG_UCLAMP_TASK 13668 .uclamp_enabled = 1, 13669 #endif 13670 }; 13671 13672 void print_cfs_stats(struct seq_file *m, int cpu) 13673 { 13674 struct cfs_rq *cfs_rq, *pos; 13675 13676 rcu_read_lock(); 13677 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13678 print_cfs_rq(m, cpu, cfs_rq); 13679 rcu_read_unlock(); 13680 } 13681 13682 #ifdef CONFIG_NUMA_BALANCING 13683 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13684 { 13685 int node; 13686 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13687 struct numa_group *ng; 13688 13689 rcu_read_lock(); 13690 ng = rcu_dereference(p->numa_group); 13691 for_each_online_node(node) { 13692 if (p->numa_faults) { 13693 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13694 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13695 } 13696 if (ng) { 13697 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13698 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13699 } 13700 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13701 } 13702 rcu_read_unlock(); 13703 } 13704 #endif /* CONFIG_NUMA_BALANCING */ 13705 13706 __init void init_sched_fair_class(void) 13707 { 13708 #ifdef CONFIG_SMP 13709 int i; 13710 13711 for_each_possible_cpu(i) { 13712 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13713 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13714 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13715 GFP_KERNEL, cpu_to_node(i)); 13716 13717 #ifdef CONFIG_CFS_BANDWIDTH 13718 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13719 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13720 #endif 13721 } 13722 13723 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13724 13725 #ifdef CONFIG_NO_HZ_COMMON 13726 nohz.next_balance = jiffies; 13727 nohz.next_blocked = jiffies; 13728 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13729 #endif 13730 #endif /* SMP */ 13731 13732 } 13733